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Abstract
This paper explores the use of viability theory in the examination of corruption dynamics, using a
susceptible-infected-recovered (SIR) model. In order to promote transparency, good governance, and
sustainable economic growth, it is crucial to develop effective strategies for controlling corruption
in society. Viability theory provides a framework for analyzing the long-term feasibility of different
control policies by defining the set of constraints that define acceptable behavior for a given system.
We use this framework to study the impact of different anti-corruption measures on the spread of
corruption in a population. Our results show that a combination of measures targeting both the
susceptible and corrupted populations can lead to significant reductions in corruption levels over
time. We also discuss the challenges involved in applying viability theory to the study of corruption
dynamics, including the need for reliable data and the limitations of simple models such as the SIR
model. Our results highlight the potential of the viability theory as a valuable tool for promoting
transparency, good governance, and sustainable development and suggest that further research in this
area is needed to refine and improve the methods used. Our research offers a proof-of-concept for
applying viability theory to manage the dynamics of corruption, paving the way for potential future
research directions.

Keywords: Control theory; viability theory; SIR model; corruption dynamic

AMS 2020 Classification: 37N35; 93A30; 14L24

1 Introduction

Corruption is the improper use of power for individual benefit, eroding trust, weakening democ-
racy, hindering economic development, and further exacerbating inequalities, poverty, social
division, and the environmental crisis. [1]. Corruption is a pervasive problem that can have devas-
tating effects on the stability and development of societies. It can undermine public trust, reduce
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economic growth, and lead to political instability. According to Transparency International’s 2021
Corruption Perceptions Index [2], more than two-thirds of countries scored below 50 out of 100,
indicating a high level of perceived corruption.
Traditionally, bribery or favor is used to distort or destroy integrity in the fulfillment of official
obligations. More recently, corruption is defined as an inducement by persons, public or private, to
indicate favor or act dishonestly or unfaithfully within the discharge of their duties. It is typically
related to public officials, and therefore, the performance of public duties is impacted. However,
it’s now increasingly accepted that the act of corruption may apply to both public and personal
individuals and will extend beyond bribery [3].
In the academic literature, the number of quantitative research studies on corruption is relatively
low. Several researchers have explored the conceptual analogy between the spread of infectious
diseases [4, 5] and the diffusion of corrupt behavior [6] within social networks. By adapting the
epidemiological model to corruption dynamics, these studies aim to understand how corrupt
practices propagate through networks of individuals and institutions. Abdulrahman [7] proposed
a mathematical model with a constant recruitment rate and standard incidence for corruption
as a disease with its transmission dynamics. Distributed numerical simulations showed that
corruption can only be lowered to a very low degree, not completely eradicated. In [8], the authors
suggested a mathematical model for corruption that took into account the awareness raised by
anti-corruption campaigns and in-prison counseling. With the aid of differential equation stability
theory, a nonlinear deterministic model illustrates and undergoes qualitative examination for the
dynamics of corruption presented in [9]. Employing the next-generation matrix methodology, the
basic reproduction number for the corruption-free equilibrium is determined. Additionally, they
improved the model by adding one optimal control technique for optimal control. They came
to the conclusion that if attempts to control corruption are strengthened and put into practice
through the media and punishments, the degree of corruption in society may be lowered.
Efforts to control corruption have been the subject of much research and policy discussion. In
recent years, there has been a growing interest in using mathematical modeling to understand the
dynamics of corruption and develop effective strategies for controlling it. One such approach is
the use of viability theory, or invariance [10].
The viability theory, which examines the evolution of dynamic systems under specified conditions,
was formally introduced by Aubin [11]. Research on the efficacy of control systems primarily
revolves around two key aspects. Firstly, it involves verifying the system’s feasibility within a
defined domain [12, 13] or devising an appropriate controller to ensure the closed-loop system’s
feasibility within that domain [14–16]. Secondly, it entails identifying the viability kernel (the
largest controllable invariant manifold) of the system. Additionally, viability theory proves
beneficial in addressing other control-related challenges such as the reachability problem [17],
stabilization problem [15, 18], differential games [19], and safety behavior problem [20].
The ability to adjust and the multidisciplinary application of viability theory are demonstrated by
its use in many domains. In order to assess the resilience and sustainability of economic systems,
viability theory has been widely used in financial and economic modeling. Viability analysis has
been used by researchers to examine sustainable development, financial stability, and macroeco-
nomic dynamics. Research has, for instance, looked at the sustainability of resource allocation
systems [21], the resilience of financial markets [22], and the viability of economic policies [23].
Viability theory has found significant use in ecological and environmental studies. Researchers
have applied viability analysis to evaluate the resilience of ecosystems to environmental changes.
Viability analysis can identify critical thresholds for biodiversity conservation [24, 25]. In control
theory and engineering, viability theory has been employed to design robust control systems and
ensure the feasibility of dynamic processes under constraints. Research in this area has focused on
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developing viability-based control algorithms [26, 27]. In biology and medicine, viability theory
has been used to study the dynamics of biological systems, population viability, and disease
control strategies. Researchers have used viability analysis to assess the viability of threatened
species, model the spread of infectious diseases, and improve treatment protocols for chronic
illnesses [28, 29]. For additional information on viability theory, see [11] or [30].

Motivated by the robust modeling capabilities of the viability theory, this study delves into the
application of the SIR model to analyze corruption dynamics. Beginning with an exploration of
the theoretical foundations, the research extends to practical investigations, leveraging viability
theory to understand the propagation of corrupt behavior within societal frameworks and devise
effective strategies for mitigating corruption within complex socio-economic systems.

The main contributions of this research are multifaceted. Firstly, it addresses a crucial challenge in
the study of corruption dynamics by applying viability theory within the framework of the SIR
model. Traditionally, ensuring the boundedness of trajectories in corruption studies, especially
within the context of complex societal systems, poses significant difficulties. However, this paper
overcomes this challenge by strategically incorporating viability theory, thus offering a novel
avenue to guarantee trajectory boundedness and enhance the robustness of corruption modeling.
Additionally, while viability theory inherently ensures constraint avoidance, the integration with
the SIR model provides insights into stability aspects, thereby improving the overall understand-
ing of corruption dynamics. This integration represents a theoretical innovation, enabling the
analysis of corruption propagation and control in more complex socio-economic environments.
Secondly, the study presents a methodological framework for constructing viable strategies to
combat corruption using the SIR model, particularly in scenarios where corruption dynamics
are influenced by various societal factors and constraints. Thirdly, the proposed approach is
applied to real-world cases, such as studying corruption propagation within specific sectors or
regions, thereby providing valuable insights for policymakers and practitioners aiming to tackle
corruption effectively. The aim of this article is to provide an overview of the viability theory
and its application to the control of corruption dynamics. Our approach considers both transient
and asymptotic behavior. Rather than aiming for equilibrium or optimization, our goal is to
identify policies that can restrict the number of corrupt individuals below a certain threshold
at any given point in time. The article will discuss the concept of viability, the methods used
to calculate the viability kernel, and the challenges involved in applying viability theory to the
study of corruption dynamics. The article will also review recent research in this area and discuss
the potential implications of this approach for policymakers and researchers working to address
corruption.

2 The viability problem

The viability problem is dependent on the consistency of the acceptability constraints applied to
the states and decisions of the system.

The dynamics

To describe the viability property, consider the following non-linear control system:

ẋ(t) = F(x(t), u(t)),

with state x ∈ Rn, control u ∈ U and F(x, u) is a Lipschitz function.
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Definition 1 Let K be a subset of the domain of F. A function x(.) is said to be viable in K if and only if :

∀t ≥ 0, x(t) ∈ K.

Definition 2 The tangent cone to K at x denoted by TK(x) , is the closed cone of elements v such that

lim inf
h 7→0+

d(x + hv, K)
h

= 0.

Definition 3 A subset K is a viability domain of a non-trivial set-valued map F if and only if the following
condition is satisfied:

∀ x ∈ K, F(x) ∩ TK(x) = ∅.

It is worth noting that the tangent cone TK(x) = Rn for any interior point x within K, thereby
satisfying the condition mentioned above. Therefore, it is sufficient to examine only the points on
the boundary of set K to verify the condition.

Definition 4 The viability kernel of K with respect to F, denoted by ViabF(K), is defined as the largest
possible closed subset of K that is viable under F, which could potentially be an empty set.

Definition 5 Viability Kernel is the set of initial states x0 from which a feasible path (x(.); u(.)) respect-
ing the constraints (staying in K) at all times:

ViabF(K) = {x0 ∈ K \ ∃x(t) such that x(t) ∈ K, ∀t ≥ 0, x(0) = x0}.

A set K would be viable for the dynamic (F, u) if the viability kernel viabF(K) coincides with the
set of initial constraints K. Under appropriate assumptions on the dynamics, a closed set K is
considered favorable when a control u can initiate a feasible trajectory within K from any state x
in K, resulting in velocities ẋ = F(x, u) that are either tangent or inward pointing with respect to
the domain K.1 The Hamiltonian formulation can be employed to express this idea. Specifically,
we can consider the Hamiltonian function:

H(x, q, u) =
n∑

i=1

qi Fi(x, u).

In this case, the following statements are equivalent:

i K is viable for (F, U),
ii ViabF(K) = K,

iii inf
u∈U(x)

H(x, q, u) ≤ 0, ∀x ∈ K, ∀q ∈ NK(x),

with NK(x) is the cone normal to the set K at x.

3 Mathematical formulation and description of the problem

The SIR model can be adapted to study corruption dynamics by drawing an analogy between the
spread of infectious diseases and the diffusion of corrupt behavior within social networks. In this
adapted model, we consider a population split into three categories:

1 For example, if U is convex, closed, and bounded with F regular.
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S is the number of susceptible,
C is the number of corrupts,
R is the number of individuals to recover,

in which we assume that the whole population: N = S + C + R.

We also suppose that:

- The population is fixed: no demographic phenomena (births, deaths, immigration and emigra-
tion).

- No longer being honest means necessarily becoming corrupt.
- Corrupt people are all infectious.
- Each person recovered is recovered forever.

The model will have the following system of differential equations:

dSt

dt
= δN −

λCtSt

N
− δSt,

dCt

dt
=

λCtSt

N
− νCt − δCt,

dRt

dt
= νCt − δRt.

Table 1. Descriptions of the model’s parameters

Parameters Description
λ Transmission rate of corruption from a corrupter person in a time period

δ Birth and death rate, which are assumed to be equal
ν The recovery rate

To simplify matters, we can redefine the occurrence as the proportions:

st =
St

N
, ct =

Ct

N
, rt =

Rt

N
.

We get

dst

dt
= δ − λctst − δst,

dct

dt
= λctst − νct − δct,

drt

dt
= νct − δrt,

with initial conditions:

s(0) ≥ 0, c(0) ≥ 0, r(0) ≥ 0.

Taking into account the overall population density, we have s(t) + c(t) + r(t) = 1 ⇒ r(t) =
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1 − s(t)− c(t). Thus, it is sufficient to consider

dst

dt
= δ − λctst − δst,

dct

dt
= λctst − νct − δct.

(1)

The set ∆ = {(s(t), c(t)) ∈ R2
+; s(t) + c(t) ≤ 1} is positively invariant for system (1). System

(1) has two equilibrium points that are given by the disease-free equilibrium point of the system
E0 = (1, 0) and the endemic equilibrium point

E∗ =

(
ν + δ

λ
,

δ(λ − ν − δ)

λ(ν + δ)

)
.

The endemic equilibrium point exists only when λ > ν + δ i.e the transmission of corruption must
be greater than the death rate of the corrupt individuals or R0 > 1, where R0 = λ

ν+δ is known as
reproduction number which determines the asymptotic behavior of the model.

Control problem

We will now introduce our second model, which incorporates honesty as an induced trait. The
proposed model is as follows:

dst

dt
= δ(1 − α)− λctst − δst,

dct

dt
= λctst − νct − δct,

drt

dt
= νct − δrt,

dht

dt
= δα − δht.

(2)

In this model, h represents the group in which honesty is implemented. Other parameters include
α as the rate of honesty,
and: s(t) + c(t) + r(t) + h(t) = 1 ⇒ r(t) = 1 − s(t)− c(t)− h(t).
Thus, it suffices to consider

dst

dt
= δ(1 − α)− λctst − δst,

dct

dt
= λctst − νct − δct,

dht

dt
= δα − δht.

(3)

The set ∆1 = {(s(t), c(t), h(t)) ∈ R3
+; s(t) + c(t) + h(t) ≤ 1} is positively invariant for system

(3).
System (3) has two equilibrium points that are given by the disease-free equilibrium point E0

1 =

(1 − α, 0, α) and the endemic equilibrium point

E∗
1 =

(
ν + δ

λ
,

δ(λ(1 − α)− ν − δ)

λ(ν + δ)
, α

)
.
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The impact of honesty on the disease-free equilibrium point and endemic equilibrium point can
be readily observed. The susceptible population is reduced by a factor of α (the honesty rate).
Additionally, the reproduction number, which represents the number of secondary infections, is
greatly affected. Following the introduction of honesty control in the model, the new reproduction
number becomes Rh = R0(1 − α). The existence of an endemic equilibrium point is contingent on
Rh > 1.

4 Viable control of corruption dynamics

Now, applying the viability theory to our dynamic, we focus our study on the following controlled
dynamic system:

dst

dt
= δ(1 − α)− λctst − δst,

dct

dt
= λctst − νct − δct,

dht

dt
= δα − δht.

(4)

Viability constraint

The main purpose is to determine the control α that keeps the number of corrupts below the cm
boundary, where the viability constraint expresses the honesty of a community as long as the
viability constraint is achieved:

ct < cm, ∀t ≥ t0, (5)

with 0 < cm ≤ N.
The presence of control essentially relies upon the underlying state (st0 , ct0 , ht0) at the initial time
t0. We will currently concentrate on these initial states, likewise called the viability kernel [11].

Viability analysis

We may use viability theory methods to analyze our dynamics and, in particular, calculate the
viability kernel. This will allow us to see if corruption dynamics (4) are compatible with the
viability constraint (5) at any given time t. The viability kernel is formally defined as follows:

Definition 6 The viability kernel Viab(cm) is a set of initial states (st0 , ct0 , ht0) for which an honesty rate
t 7→ α(t) ∈ [0, 1] exists so that the dynamic system (4) solution meets the viability constraint (5).

Viab(cm) =

{
(st0 , ct0 , ht0) | there exist a control αt(.), so that the solution to (4)

that starts from (st0 , ct0 , ht0) satisfies the constraint (5)

}
. (6)

Note that our unconstrained domain of research is the positively invariant set

{(st, ct, ht) | 0 ≤ st, 0 ≤ ct , st + ct + ht ≤ 1} .

Since the initial point should fulfill the viability constraint (5), The rectangle [0, 1]× [0, cm[×[0, 1]
must contain the viability kernel Viab(cm).
The constraint set V is the intersection of the unconstrained domain of study and the cuboid
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[0, 1]× [0, cm[×[0, 1] (see Figure 1)

V := {(st, ct, ht) | 0 ≤ s , 0 ≤ ct < cm , 0 ≤ h , st + ct + ht ≤ 1} . (7)

That is,

Viab(cm) ⊂ V.

As they are a fundamental step in defining the viability kernel, we describe and give a geometrical

Figure 1. The constraint set V

characterization of the so-called viability domains of system (4).

Definition 7 A viability domain for the system (4) is a subset K of the set of states [0; 1]× [0; cm[×[0; 1]
if there exists a control αt(.) such that the solution to (4), which starts from (st0 , ct0 , ht0), remains inside K
for every t ≥ 0.

The viability kernel is linked to the viability domains in the following way:

Theorem 1 [11] The viability kernel is the constraint set’s largest viability domain.

We associate the vector field (us, uc, uh) with system (4):

 us
uc
uh

 =

 −λctst + δ(1 − α)− δst
λctst − νct + δct

δα − δht

 ,

the system (4) is equivalent to: 
ṡ = us(s(t), c(t), α(t)),
ċ = uc(s(t), c(t)),
ḣ = uh(h(t), α(t)).

(8)
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Using the vector field u, we provide a geometric description of the viability regions of the system
with control.

Proposition 1 [11] For a Marchaud controlled system, a closed subset U is considered viable if the family
of vectors formed by the vector field when the control varies is assured to have at least one vector contained
within the tangent cone at any point in U.

In our situation, the geometric characterization of viability domains is as follows:

Proposition 2 Consider a closed subset K If there is a control αt ∈ [0; 1] such that (us, uc, uh) is an
inward-pointing vector, then the set K is a viability domain for the system (4) whenever (s, c, h) varies
along the frontier δK of the set K.
To be considered a viability domain for system (4), the scalar product of the vector (us, uc, uh) and an
outward-pointing normal vector (relative to set K) must be less than or equal to zero for a closed subset K
with a piecewise smooth boundary δK.

Viability kernel

Proposition 3 The viability kernel in (6) is as follows:

Viab (cm) = V ∩ {(s, c, h) | 0 ≤ h , sm ≤ s ≤ 1 and c < C(s)} . (9)

With C(s) is the set of applications such as s the solution s ∈ [sm, 1] 7→ C(s) to the differential equation:

−us(s(t),C(s), α(t))C ′(s) + uc(s(t),C(s)) = 0,

C(sm) = cm.
(10)

Proof We show that the set Viab (cm) is a viable set. Since V is an invariant set, we can focus on
the boundary of the set: {(s, c, h) | 0 ≤ h, sm ≤ s ≤ 1 and c < C(s)}.
The boundary can be obtained by considering the conditions where each of the three inequalities
in the set definition is satisfied with equality.
First, considering h = 0, we get the lower boundary:

∂(V ∩ {(s, c, h) | 0 ≤ h, sm ≤ s ≤ 1 and c < C(s)}) = {(s, c) | sm ≤ s ≤ 1, c < C(s), s + c < 1}.

Second, for s = sm, we have:

∂(V ∩ {(s, c, h) | 0 ≤ h, sm ≤ s ≤ 1 and c < C(s)}) = {(sm, c, h) | 0 ≤ h, c < cm, c + h < 1 − sm}.

Finally, for c = C(s), we get the upper boundary:

∂(V ∩ {(s, c, h) | 0 ≤ h, sm ≤ s ≤ 1 and c < C(s)}) = {(s, c, h) | sm ≤ s ≤ 1, c = C(s), 0 ≤ h}.

To examine the scalar product of u with the normal vector to the boundaries of Viab(cm), we first
need to find the normal vectors to each boundary.
Boundary: h = 0 The normal vector to this boundary is n = (0, 0, 1).
Boundary: s = sm The normal vector to this boundary is n = (−1, 0, 0).
Boundary: c = C(s) The normal vector to this boundary is n =

(
− ∂C

∂s , 1, 0
)

.
Next, we examine the scalar product of u with these normal vectors:
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1 Boundary: h = 0

u.n = uh(0, 0, 0).1 = −1 < 0.

Since the scalar product is negative, this implies that the vector u points into the domain
Viab(cm).

2 Boundary: s = sm

u.n = us(sm, c, h).(−1) < 0.

Since the scalar product is negative, this implies that the vector u points into the domain
Viab(cm).

3 Boundary: c = C(s)
Consider any point (s, c, h) on the boundary with c = C(s). Let u = (us, uc, uh) be any outward
pointing normal vector at this point. Since u is outward pointing, we have u · (−∇c, 1, 0) > 0
where −∇c = (− ∂C

∂s ,− ∂C
∂c , 0) = (−C ′(s)us, 1 − uc, 0). This implies that

usC
′(s)us − (1 − uc) > 0.

Since u is normal to the boundary, we also have u · (0, 0, 1) = uh > 0. Combining these two
inequalities, we get

usC
′(s)us > 1 − uc,

and hence

usC
′(s)us − (1 − uc) + u2

h > u2
h.

This can be written as

u ·

−C ′(s)us
1 − uc

2uh

 > 0.

Since u is outward pointing, we must have

−C ′(s)usus − (1 − uc) + 2u2
h ≤ 0.

Using c = C(s) and uh > 0, this can be rewritten as −usuc + u2
h ≤ 0. Since u is a unit vector, we

have u2
s + u2

c + u2
h = 1, which implies u2

h ≤ 1− u2
s − u2

c . Substituting this inequality in the above
expression, we get u2

s + u2
c ≤ 1. Therefore, all outward-pointing normal vectors at the boundary

satisfy u2
s + u2

c ≤ 1, which implies that all inward-pointing vectors satisfy u2
s + u2

c ≥ 1.

We have shown that the set V ∩ {(s, c, h) | 0 ≤ h, sm ≤ s ≤ 1 and c < C(s)} is forward invariant
and that its boundary is also invariant. Moreover, we have shown that there exists a control α such
that any vector u in the interior of the set V ∩ {(s, c, h) | 0 ≤ h, sm ≤ s ≤ 1 and c < C(s)} satisfies
u · ν ≤ 0 where ν is the outward normal to the boundary of the set.

Therefore, by definition, this set is viable. This means that starting from any initial condition in
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this set, there exists a control strategy α(t) that will keep the system inside the set for all future
times. In other words, the set V ∩ {(s, c, h) | 0 ≤ h, sm ≤ s ≤ 1 and c < C(s)} represents a region
of safe and sustainable operation for the system.

5 Simulation results and discussion

We simulated the corruption dynamic using the constraints cm = 0.7 and the parameters λ = 1.98,
δ = 0.5, and ν = 0.5.
The simulation represents the progression of the corruption dynamic over time with honesty
control. The results reveal that corrupts initially rise significantly, but subsequently begin to drop
due to the impact of the honesty control. The honest fraction of the population gradually increases,
demonstrating that the control technique is effective. Therefore, the simulation shows that the
honesty control is successful in reducing corruption in a population.

(a) maximum control (b) zerocontrol

Figure 2. Time profiles for the dynamics of corruption starting from x(0) = (0.8, 0.2, 0.5)

As shown in the Figure 2a, the maximum control method is used, causing the proportion of
corrupt persons to climb and peak at a low level before gradually declining to zero over time. On
the other hand, the proportion of honest people grows with time and eventually approaches one.
This shows that the honesty control technique is effective over time in eliminating corruption in
the community.
While in Figure 2b, the honesty control strategy is set to zero, implying that no control is applied
to the system. As a result, we see that the proportion of corrupt people increases over time
and reaches a high level. At the same time, the proportion of honest people falls to zero. This
behavior implies that the corruption dynamic is not viable under this strategy, and the system will
eventually collapse due to the significant level of corruption.
Figure 3a shows the viability kernel of the corruption dynamic. The yellow area within the viability
kernel shows the initial conditions under which the system can remain viable, whereas the white
area outside the viability kernel represents the starting conditions under which the system will
eventually collapse into complete corruption.
The figure indicates that, for the given corruption dynamics, the system can stay viable for a
limited range of beginning conditions (i.e., within the viability kernel) but will eventually collapse
into total corruption for initial conditions outside the viability kernel.
Figure 3b illustrates the trajectory of a system in state space with three variables. The blue zone
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(a) Viability kernel of corruption dynamic
(b) Viability kernel of corruption dynamic with honest
people

Figure 3. Viability kernel for the dynamic of corruption with control

represents the initial set of states from which the system can progress to the desired goal set.
Because there is a set of initial conditions from which the system can be steered towards the
desired goal while avoiding obstacles, the figure shows that the system is controllable. The
system’s trajectory is determined by its beginning conditions, and the vector field shows how the
system will evolve over time. The graphic provides a good visual representation of the system’s
behavior in state space.
Figure 4a illustrates a slice through the three-dimensional viability kernel of the corruption
dynamic with control. The slice is taken at the corrupts value of 0.8, and it indicates that the
viability kernel is empty beyond this value of corrupts.
In Figure 4b, we can show the corruption dynamic’s viability kernel for different values of
susceptible and honest people. The region of initial states where there exists a feasible path that
stays inside the constraint set, regardless of the value of control α is shown by the slice through all
the values of corrupts. We can observe that with large values of susceptible and honest persons,
practically all initial states are viable, showing that controlling corruption in a society with low
corruption levels is quite easy. However, as corruption levels rise, the viable zone narrows, and
for really high levels of corruption, the viability kernel becomes empty, indicating that controlling
corruption from such beginning conditions is impossible. This emphasizes the critical need to
prevent corruption from reaching dangerously high levels in the first place.
In Figure 4c, the slice is taken through h(t) = 0. The blue zone indicates the corruption dynamic’s
viability kernel under the stated limitations. In this situation, the viability kernel is a subset of
the region with a large number of susceptible and a low number of corrupts. Because there is less
pressure on individuals to participate in corrupt activity when the number of susceptible is high.
Similarly, when the number of corrupt population is few, corrupt behavior has less of a chance of
spreading. The boundary of the viability kernel is represented by the black line within the blue
region when the tangent cone condition is satisfied. The tangent cone condition is not satisfied
outside of the viability kernel, which means that there are no viable trajectories that remain within
the feasible region at all times.
In Figure 4d, we observe a visualization of the corruption dynamic’s viability kernel for various
values of the honest fraction h(t). The susceptible (non-corrupt persons) are represented by the
x-axis, while the corrupts are represented by the y-axis (corrupt individuals). As we slice across
h(t), we are simply fixing the value of h(t) and seeing how the viability kernel changes in relation



Abou-nouh and Khomssi | 13

(a) Slice through c(t) = 0.8 (no viable points) (b) Slice through c(t)

(c) Slice through h(t) = 0.5 (d) Slice through h(t)

(e) Slice through s(t) = 0.5 (f) Slice through s(t)

Figure 4. Slices of the viability kernel for the corruption problem with honesty as a control
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to the other two variables, susceptible and corrupts. For example, if we take a slice across a certain
value of h(t) (e.g., h(t) = 0.6), we may examine the related viability kernel for that value of h(t)
and compare it to the viability kernels for other h(t) values.Thus, the image sheds light on the
viability of the corruption dynamic under many situations, emphasizing the relevance of the
honest percentage in determining system stability.
This slice of the corrupted dynamic graphic Figure 4e and Figure 4f shows the system’s behavior
when the susceptible population’s initial value is set to 0.5. The color map illustrates the viability
kernel. We can see from this slice that for low values of the honest percentage, there is a large
region of starting states that are not feasible, as indicated by the white color. This region increases
as the honest fraction grows, and more beginning states become viable. Yet, even at high levels of
the honest fraction, some initial states are not viable, as seen by the remaining white patches. The
corrupt axis depicts the system’s level of corruption, and we can see that the viable zone shrinks
as the level of corruption increases. The honest axis indicates the system’s level of honesty, and
we can see that as the level of honesty increases, so does the viable region.
We may say that the viability theory is effective in providing a clear knowledge of the set of initial
conditions that lead to a feasible trajectory that respects the restrictions over time in our simulation
of the corruption dynamic. It enables us to find the system’s viability kernel, which is the biggest
closed subset of the state space that is viable under the system’s dynamics. We can obtain an
understanding of the system’s behavior and the impact of different parameters on the dynamics
by evaluating distinct slices of the viability kernel.
Furthermore, the viability theory is a powerful tool for developing control mechanisms that ensure
the system’s viability and adherence to time limits. We can avoid constructing control techniques
that lead to such regions of the state space by identifying them. Furthermore, the viability theory
can be used to analyze the resilience of control systems by determining if the system remains
viable in the presence of uncertainties or disturbances.
To summarize, the viability theory is a useful tool for comprehending and devising control
techniques for complicated systems with restrictions, such as the corruption dynamic in our
simulation.

6 Conclusion

This study introduces an innovative approach to analyzing corruption dynamics using the SIR
model, integrating two innovative methodologies: viability theory and epidemic modeling. Di-
verging from conventional methods, the proposed approach does not necessitate prior knowledge
of specific system dynamics.
The approach we have developed represents, to the best of our knowledge, a novel methodology
in the mathematical modeling of corruption dynamics. Unlike traditional approaches focused
on achieving equilibrium or optimization, our method prioritizes the design of policies aimed at
consistently keeping the number of corrupt individuals below a specified threshold over time.
After first setting a briber’s level of Cm, we used a non-stationary technique to find all the starting
states where the largest number of bribers at the peak may stay below Cm. We’ve also found
potential answers and offered examples of techniques for managing the highest limit of corrupts
at peak and asymptotically reducing the number of corrupts to zero.
The core concept was given using a simple SIR model of corruption dynamics with the honesty
rate as a control. On the one hand, our model can be enhanced to be more accurate by defining an
upper constraint on the control α < 1, preventing a full honesty rate that was either impossible or
highly expensive. However, this approach can be utilized in various other models that incorporate
different controls.
Inspired by the complexities inherent in corruption studies, the research presents a novel frame-
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work for understanding and controlling corruption propagation within societal systems. Initially,
a pioneering application of viability theory is demonstrated to ensure the viability of corruption
trajectories, addressing challenges of boundedness typically encountered in corruption modeling.
Subsequently, the viability-theory-based approach is extended to analyze a broader spectrum of
corruption dynamics, encompassing diverse socio-economic contexts and constraints. Further-
more, the practical utility of the proposed methodology is exemplified through its application to
real-world scenarios, such as studying corruption within specific sectors or regions. Comparative
analyses underscore the effectiveness of the proposed approach in elucidating corruption dynam-
ics and informing evidence-based interventions. Nonetheless, the study acknowledges potential
limitations, such as the assumption of viability for certain sets. The accuracy and usefulness of
the viability kernel will depend on the quality of the data and models used, and further research
is needed to refine the methods and develop more robust approaches. Nevertheless, the viabil-
ity kernel concept offers a valuable tool for addressing corruption and promoting sustainable
development.
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Abstract
Water quality and the invasion of weeds due to nutrient eutrophication have been a concern in major
lakes and coastal areas. Scholars have advocated the cultivation of some species of shellfish as a new
potential to facilitate the bioremediation of the polluted environment due to excessive nutrients. In this
paper, our objective is to determine the optimal area that must be dedicated to shellfish aquaculture
relative to the level of nitrogen pollution, other fisheries activities, and the performance of wild catch.
The optimal size also depends on the effort outside the water body to control pollution from the point
source. We set up transition equations that describe the system’s state based on pollution reduction
efforts, nitrogen concentration level, and the size of shellfish cultivation. We show that the impact of
the nitrogen concentration level in the habitat can be minimized by allocating optimal management
efforts to reduce nitrogen waste from the source and setting aside an area for shellfish cultivation. We
found the optimal steady-state solutions and analyzed the optimal solutions based on biological and
economic parameters.

Keywords: Nitrogen pollution; shellfish aquaculture; space allocation; fisheries management; optimal
effort

AMS 2020 Classification: 49N90; 90C90; 91A80; 93C95

1 Introduction

An aquatic ecosystem enriched with nutrients like nitrogen creates conducive conditions for algae
and similar species that utilize these nutrients. Nitrogen pollution has been one of the primary
threats to coastal water quality [1]. Deterioration in water quality due to excessive nutrient
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loading from diffuse sources has become a major environmental problem in lakes, reservoirs, and
coastlines mainly close to urban areas [2–4]. It is common to observe a substantial increase in the
algal population on the surface of eutrophic waters (algal bloom). Algal blooms hinder the flow of
sunlight and cause a decline in the dissolved oxygen level in the water. This, in turn, causes many
marine animals to suffocate and die, creating "dead zones" [5].
The eutrophication of surface waters due to excessive nitrogen upsets the natural balance of aquatic
ecosystems [6, 7]. Eutrophication can also seriously affect our ability to use water for recreation,
drinking, agriculture, industry, and other purposes [8]. As part of a water quality management
program, governmental regulations and marine policies increasingly require nitrogen remediation
practices for industrial and residential wastes. The U.S. Environmental Protection Agency (EPA)
developed guidelines to identify at-risk surface water bodies and protect them from eutrophication,
stating that nitrogen concentrations should not exceed 0.3 mg per liter in streams and rivers and
0.1 mg per liter in lakes and reservoirs [9]. The public has considered eutrophication through
waste management as a worthwhile investment for restoring and preserving freshwater lakes and
reservoirs while cleaning coastal areas [10].
Shellfish aquaculture reduces coastal eutrophication by assimilating and storing excess nutrients,
facilitating the natural denitrification rates when harvested [11, 12]. The optimizing process
involves strategically placing shellfish farms in areas with high nutrient levels to leverage their
filter-feeding behavior, thereby improving water quality by removing excess nitrogen and phos-
phorus while producing farmed seafood products, contributing to overall ecosystem health and
sustainable fisheries management goals. In [11–13], the authors studied how excess nutrients can
be removed from the marine environment when shellfish cultures are harvested. Mykoniatis and
Ready in [14] studied the potential contribution of oysters to water quality goals in the fisheries
management of Chesapeake Bay, USA. They developed a bioeconomic model of oysters in the
bay area that considers the value of oyster harvests, the cost of fishing effort, and the removal of
nitrogen from the bay through harvest and denitrification. In [15], they also studied the effects
of oyster aquaculture on local water quality. The study investigated how water quality and
hydrodynamics varied among farms and inside versus outside the vicinity of caged grow-out
areas in southern Chesapeake Bay.
The development of a model that links water body nutrient concentration to its impact on the
environment and water quality is a vital component of the management of fisheries in polluted
areas. For our study, in the environment under consideration, we assumed nitrogen is the primary
source of nutrient enrichment that affects the livelihood of the fish species, degrades the carrying
capacity of the habitat, and affects the growth rate of the fish stock. We mainly focus on nutrient
reduction efforts from various external sources and the introduction of shellfish cultivation in
polluted areas to facilitate nutrient and fisheries management efforts. Since Shellfish store excess
nutrients, we assume that the amount of nitrogen removed by shellfish is proportional to the
production function or the size of the aquaculture area [11–13]. Moreover, we assume that the
positive impact of shellfish on the fish stock can be measured through the growth rate. In this paper,
we determine the optimal efforts and the area that must be dedicated to shellfish aquaculture for
sustainable environmental and fisheries management. We also attempt to determine the optimal
wild fish harvest dependent on the state of the ecosystem.
In the next section, we presented the model and performed a stability analysis of the steady-state
solutions. In Section 3, we set up the control version of the model to determine the best trajectory
for the actions and recovery rate of the system so that the overall social return from the aquatic
ecosystem is maximum. This enables us to determine the optimal harvesting level, shellfish
cultivation volume, and the best practice of the management’s nitrogen removal rate from the
source. In Section 4, we presented the policy implications of the results and the paper’s conclusion.
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2 Model formulation

In this section, we will set up the dynamic or transition equations of the fish stocks under
different scenarios and analyze the systems at the steady state. In Section 2, we present the
transition equation of open-access capture fish stock in the presence of nitrogen pollution before
the introduction of shellfish aquaculture. In this case, we assume that the main cause of negative
externality to the fishing ground is related to the nitrogen concentration level in the water and
harvest. Then, in Section 2, we assume the development of shellfish aquaculture and consider
the positive impact of shellfish cultivation on the fishing ground that would be reflected through
the growth rate of the fish stock. In Section 2, we present a comparative analysis of the long-run
behavior of the two systems.

Open access capture fish and nitrogen dynamics

Nitrogen dynamics

We assume that without effective pollution control actions, a large portion of the nitrogen from the
vicinity, W, has the potential of reaching water bodies in the area and polluting the environment
[14, 16]. Suppose L(m, W) = (1 − m)W is the external rate of nitrogen loading to the water bodies
(lakes, reservoirs, or coastal area), where m is a control variable that represents the management’s
effort to reduce m portion of the nitrogen from the source, where 0 ≤ m < 1. For simplicity, we
ignore nitrogen recycling (internal loading) and focus only on elements of nitrogen dynamics
because of external sources and internal denitrification [14, 16]. In this case, we describe the
dynamics of the nitrogen volume by

dN
dt

= L(m, W)− αN, N(0) = N0 > 0,

where α is the natural decay rate.

To align the model to our density-based analysis, we divide both sides of the equation by the total
area under consideration, T, and get the concentration of nitrogen equation

dn
dt

= (1 − m)w − αn, n(0) = n0 > 0,

where w =
W
T

and n =
N
T

are the amounts of nitrogen loading per unit area and surface densities
of nitrogen in the area, respectively.

Capture fishery stock dynamics

We assume nitrogen loading is a source of pollution and causes environmental degradation [1, 17].
It damages the habitat and changes the ecological makeup of the system. The improvement or
degradation of the habitat directly affects the carrying capacity of the habitat and the growth rate
of fish biomass [18]. In a polluted environment of an aquatic ecosystem, the habitat’s carrying
capacity and the growth rate of fish stock depend on the pollution level [19, 20]. Like [21], we
assume that the open-access carrying capacity and growth rate of fish stock depend on the extent
of pollution (i.e., the nitrogen concentration level) [18–22]. Therefore, we describe the transition
equation of the stock as

dX
dt

= r(n)
(

1 −
X

K(n)

)
X − H(X, E), X(0) = X0 > 0,
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where H(X, E) = σEX is the harvest rate from the capture fishery for stock size X, effort level, E,
and catchability coefficient, σ, and K(n) = K − Θn > 0 and r(n) = r − ε1n > 0, where Θ measures
the impact of nitrogen on the carrying capacity of the habitat, K, r is the intrinsic growth rate, ε1 is
the measure of the impact of nitrogen on the growth rate. If we scale down the above equation by
dividing both sides of the equation by the total carrying capacity, K, we get:

dx
dt

= (r − ε1n)
(

1 −
x

1 − θn

)
x − σEx, x(0) = x0 > 0, (1)

where θ =
Θ
K

, 0 < r − ε1n < r, provided r − ε1n − σE > 0, and 1 − θn > 0.

Thus, the dynamic system of equations of density of fish stock and nitrogen concentration is

dn
dt

= (1 − m)w − αn, n(0) = n0 > 0,

dx
dt

= (r − ε1n)
(

1 −
x

1 − θn

)
x − σEx, x(0) = x0 > 0. (2)

Steady-state solutions and stability

In the steady state
dn
dt

=
dx
dt

= 0, this implies the critical points of the above system, Eq. (2), are

(n∗
1, x∗1) =

(
(1 − m)w

α
, 0
)

,

and

(n∗
2, x∗2) =

(
(1 − m)w

α
,
(

1 −
θ(1 − m)w

α

)(
1 −

ασE
αr − ε1(1 − m)w

))
,

provided that α > θ(1−m)w, the decay rate of nitrogen concentration in the lake should be greater
than θ times the external nitrogen loading rate to the water body, and αr − ε1(1 − m)w − ασE > 0.

To determine the stability of the equilibrium solutions, we first need to derive the Jacobian matrix
of the dynamic system in Eq. (2)

J(n, x) =

(
(r−ε1n)(1−2x−θn)−σE(1−θn)

1−θn −
x(rxθ+((1−θn)2−x)ε1)

(1−θn)2

0 −α

)
.

Since the eigenvalues of a triangular matrix equal the values on its diagonal, the eigenvalues of
the Jacobian matrix are

λ1 = −α,

and

λ2 =
(1 − 2x − θn)(r − ε1n)− σE(1 − θn)

1 − θn
.
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The Jacobian matrix at the first critical point, (n∗
1, x∗1), is

J(·) =
(

r − ε1n − σE 0
0 −α

)
.

Observe that Tr(J) = r − ε1n − σE − α and det(J) = −α(r − ε1n − σE). Since det(J) < 0, by the
Theorem (5.4) in [23], the dynamic system in Eq. (2) is unstable at the critical point

(n∗
1, x∗1) =

(
(1 − m)w

α
, 0
)

.

The Jacobian matrix at the second critical point, (n∗
2, x∗2), is

J(·) =
(

A11 A12
0 −α

)
,

where A11 = − (r − ε1n − σE), and A12 = −

(
1 −

σE
r − ε1n

) [(
1 −

σE
r − ε1n

)
(rθ − ε1) + ε1(1 − θn)

]
.

Observe that

Tr(J) = − (α + r − ε1n − σE) < 0,

and

det(J) = α (r − ε1n − σE) > 0,

at n = n∗
2. This implies that the dynamic system Eq. (2) is locally asymptotically stable at the

second critical point [23].

Therefore, the stable steady-state nitrogen concentration level is

ns(m) =
(1 − m)w

α
. (3)

It is apparent from Eq. (3) that the nitrogen concentration is the ratio of the amount of nitrogen
reaching the water bodies to the natural decay rate. The concentration decreases when the rate of
nitrogen reduction efforts from the source increases. It also decreases when the natural decay rate
increases.

And the equilibrium stock size, xs, as a function of wild catch effort, E, and m is

xs(E, m) =

(
1 −

θ(1 − m)w
α

)(
1 −

ασE
αr − ε1(1 − m)w

)
= (1 − θns(m))

(
1 −

σE
r − ε1ns(m)

)
. (4)

The above equation, Eq. (4), implies that capture fish effort and nitrogen concentration negatively
impact the stock of captured fish. However, the allocation of management’s effort for nitrogen
reduction from the source positively impacts the steady state stock size. The corresponding



Getahun et al. | 23

steady-state or sustainable yield

hs(E, m) = σE(1 − θns(m))

(
1 −

σE
r − ε1ns(m)

)
. (5)

The maximum sustainable yield (MSY) is attained at the effort level E such that
∂hs(E, m)

∂E
= 0.

That is at

EMSY(m; r, σ) =
1

2σ
(r − ε1ns(m)). (6)

From Eq. (6), the critical effort level is negatively impacted by the nitrogen concentration; the
higher the impact, the lower the effort. Then, the value of MSY, hMSY, at this effort can be found
by substituting E = EMSY into Eq. (5)

hMSY(m) =
(1 − θns(m))(1 − ε1ns(m))

4
,

and the biomass level at the MSY is

xMSY(m) =
(1 − θns(m))

2
.

The steady-state net profit, Ps(E, m) = phs(E, m)− cE, where p is a competitive market price and
c is the cost per unit effort per unit area assumed to be constants, attains its maximum at an effort
level E such that

∂Ps(E, m)

∂E
= 0.

That is, the sustainable effort that maximizes profit (MSP),

EMSP(m; r, σ, c, p) =
1

2σ
(r − ε1ns(m))

(
1 −

c
pσ(1 − θns(m))

)
, (7)

is positive provided that c < pσ(1 − θns(m)). Observe that EMSP < EMSY. By plugging Eq. (7),
with E = EMSP, into Eq. (5), the harvest level that maximizes revenue, hMSP, is

hMSP(m) =
(1 − θns(m))(1 − ε1ns(m))

4

(
1 −

c2

p2σ2(1 − θns(m))2

)
,

and the corresponding biomass level is

xMSP(m) =
(1 − θns(m))

2

(
1 +

c
pσ(1 − θns(m))

)
.

From Eq. (3), the nitrogen level, ns(m), decreases with the increment of management’s effort,
m. The reduction of nitrogen concentration positively impacts the growth rate of the stock,
r − ε1ns(m), and the carrying capacity, 1 − θns(m), which in turn results in relaxing the restrictions
on the optimal effort (i.e., management’s effort allocation is directly related to the effort level that
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maximizes the profit). For example, we numerically solve the system for θ = 0.10 and ε1 = 0.085,
and find the stock size and the corresponding effort that maximizes revenue, xMSP = 0.574167
and EMSP = 45.3789, respectively. Moreover, if we assume that the nitrogen concentration level
degrades the environment more than expected, say θ = 0.11 and ε1 = 0.086, the stock size
decreases to xMSP = 0.571166, and the optimal catch effort reduces to EMSP = 45.2804. The effort
level is inversely related to the measures of the impact of nitrogen concentration on the carrying
capacity, θ, and on the intrinsic growth rate, ε1. Moreover, the effort level is determined not only
by biological and impact factors but also by the profitability of the shellfish aquaculture, which
depends on the cost of production and market price relation, c < pσ(1 − θns(m)). This condition
is hard to achieve, especially at the beginning of the investment. Therefore, private investors
would participate in the remediation effort if we subsidized them until their revenue becomes
larger than the cost of production. This helps to maintain a sustainable environment and supply
of farmed shellfish and, at the same time, supports the economy by creating jobs.

Even though the degradation of the aquatic ecosystem and the decline in water quality from exces-
sive nitrogen can primarily be minimized by reducing external nitrogen loading, it is important to
implement an effort-limiting policy that helps the recovery of the environment. In Figure 1, we
sketched the effort that maximizes the rent and the corresponding stock size. Both decrease with
the increase in pollution.

Figure 1. Effort level, EMSP, and the stock size, xMSP, as a function of nitrogen pollution level

Capture fish, nitrogen concentration, and shellfish aquaculture

Regardless of policies and regulatory measures intended to reduce external nitrogen loading,
more nitrogen loading from a non-point source is inevitable [1]. Shellfish aquaculture has been
considered an alternative to reduce the nitrogen level in water bodies because a significant amount
of nitrogen is embedded in shellfish meat and shells. Shellfish also reduce the nitrogen through its
denitrification process [14, 24].

Shellfish aquaculture dynamics

Suppose A is the size of the area dedicated to shellfish aquaculture production from the total
polluted area under consideration, T. Like [25], we assume the aquaculture expansion rate
depends on the relative size of the aquaculture, a, and the magnitude of nitrogen pollution, n,

da
dt

=
(

v − ρ
a
n

)
, a(0) = a0 ≥ 0,
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where a =
A
T

is the portion of the area dedicated to aquaculture, v is exogenous control variable
determined by the management and ρ is a conversion factor provided ρa ≤ vn.

Nitrogen dynamics

Let the amount of nitrogen removed by the shellfish production be proportional to the size of the
aquaculture area [21]. Hence, let βan be the reduction rate of the nitrogen concentration due to
shellfish, where β is a conversion constant. Let α be the natural rate of nitrogen decay through
processes other than the amount removed by shellfish cultivation [14, 16]. Following [14, 16], we
extend the dynamic equation of nitrogen from section 2.1 as

dn
dt

= (1 − m)w − βan − αn, n(0) = n0 > 0.

Capture fishery stock dynamics

As mentioned earlier, nitrogen contributes to environmental degradation and reduces the carrying
capacity of the habitat as well as the growth rate of the fish stock [18–20]. We assume that
its impact depends on the concentration level of nitrogen in the environment, n. Although
aquaculture development takes away fishing areas and has some negative externalities on the
environment, shellfish farming has a net positive effect. It helps filter the nitrogen and clean the
water, improving the stock’s growth rate. Therefore, we assume that the per-capita growth rate of
the fishery decreases with nitrogen concentration level and increases with shellfish aquaculture
size, a. Hence, we set up the transition equation of the stock as

dX
dt

= r(n, a)
(

1 −
X

K(n)

)
X − H(X, E), X(0) = X0 > 0,

where H(X, E) = σEX is the harvest rate from the capture fishery from a multi-species stock
size X, E is the effort level and σ is the catchability coefficient, r(n, a) = r − ε1n + ε2a, and
K(n) = K − Θn > 0, where Θ is the measures of the nitrogen level on the environment and ε2 is
the measure of the impact of aquaculture on the growth rate.

If we scale down the above equation by dividing both sides of the equation by the total carrying
capacity, K, we get:

dx
dt

= (r − ε1n + ε2a)
(

1 −
x

1 − θn

)
x − σEx, x(0) = x0 > 0,

where θ =
Θ
K

, provided 0 < r − ε1n + ε2a ≤ r, r − ε1n + ε2 − σE > 0, and 1 − θn > 0.

The equations aligned for fish stock, nitrogen concentration, and shellfish aquaculture are

dx
dt

= (r − ε1n + ε2a)
(

1 −
x

1 − θn

)
x − σEx, x(0) = x0 > 0,

dn
dt

= (1 − m)w − βan − αn, n(0) = n0 > 0, (8)

da
dt

=
(

v − ρ
a
n

)
, a(0) = a0 ≥ 0.

Stability of the steady-state solutions
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In steady state
dx
dt

=
dn
dt

=
da
dt

= 0, implies the critical points of the above system are

(x∗1 , n∗
1, a∗1) =

(
0,

S(v, m)− αρ

2vβ
,

1
β

(
2vwβ(1 − m)

S(v, m)− αρ
− α

))
,

and

(x∗2 , n∗
2, a∗2), where

x∗2 =

(
1 −

θ(S(v, m)− αρ)

2vβ

)1 −
Eσ

r − ε1

(
S(v, m)− αρ

2vβ

)
+ ε2

1
β

(
2vwβ(1 − m)

S(m, v)− αρ
− α

)
 ,

n∗
2 =

S(v, m)− αρ

2vβ
, and a∗2 =

1
β

(
2vwβ(1 − m)

S(v, m)− αρ
− α

)
,

and S(v, m) =
√

α2ρ2 + 4ρβ(1 − m)wv.

To determine the stability of the equilibrium, we derive the Jacobian matrix of the system

J(·) =

 A11 A12 A13
0 −(α + βa) −βn
0 ρa

n2 −
ρ
n

 ,

where

A11 =
(1 − θ n − 2x)(r − ε1n + ε2a)

1 − θn
− σE,

A12 =
x
(
−θx(r + ε2a) + ε1

(
x − (1 − θn)2))

(1 − θn)2 ,

A13 =
ε2x(1 − x − θn)

1 − θn
.

Then, we evaluate the eigenvalues of the Jacobian matrix at each critical point. The eigenvalues at
the first critical point, (x∗1 , n∗

1, a∗1), are

λ1
1 =

−(αn + βan + ρ)−
√
(αn + βan + ρ)2 − 4n(αρ + 2βρa)

2n
,

λ1
2 =

−(αn + βan + ρ) +
√
(αn + βan + ρ)2 − 4n(αρ + 2βρa)

2n
,

and

λ1
3 = r − ε1n + ε2a − σE.
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Since r − ε1n + ε2a − σE has to be positive (otherwise the stock become extinct), the trivial equi-
librium is not stable [26]. And the eigenvalues of the Jacobian matrix at the second critical point,
(x∗2 , n∗

2, a∗2), are

λ2
1 =

−(αn + βan + ρ)−
√
(αn + βan + ρ)2 − 4n(αρ + 2βρa)

2n
,

λ2
2 =

−(αn + βan + ρ) +
√
(αn + βan + ρ)2 − 4n(αρ + 2βρa)

2n
,

and

λ2
3 = −(r − ε1n + ε2a − σE).

In this case, all of the eigenvalues are negative, implying the dynamic system is stable at the
critical point (x∗2 , n∗

2, a∗2) [26].
Therefore, the stable steady-state nitrogen concentration and shellfish aquaculture size in terms of
the control variables, m and v, are

ns(m, v) =
√

4βρ(1 − m)wv + α2ρ2 − αρ

2βv
=

(1 − m)w
α + βas(m, v)

, (9)

and

as(m, v) =
1
β

(
2vwβ(1 − m)√

4βρ(1 − m)wv + α2ρ2 − αρ
− α

)
=

1
β

(
(1 − m)w
ns(m, v)

− α

)
. (10)

From Eq. (9), the nitrogen concentration decreases when the production of shellfish or external
effort increases. We can also observe from Eq. (10) that shellfish aquaculture size is positive
whenever (1 − m)w ≥ αns(m, v).
Then the steady-state stock of fish, xs, can be written in terms of aquaculture and nitrogen
concentration (both depend on m and v) as

xs(m, v, E) = (1 − θns(m, v))
(

1 −
σE

r − ε1ns(m, v) + ε2as(m, v)

)
. (11)

From Eq. (11) the equilibrium stock size decreases as the nitrogen concentration or fishing effort
increases. However, it increases when the production of shellfish aquaculture or the impact factor,
ε2, on the habitat increases. This implies that even though aquaculture takes away the fishing area
and creates pressure in the open-access fishing ground, shellfish aquaculture has a net positive
impact on the stock. The corresponding sustainable yield is given by

hs(m, v, E) = σE(1 − θns(m, v))
(

1 −
σE

r − ε1ns(m, v) + ε2as(m, v)

)
,

where ns(m, v) and as(m, v) are give by Eqs. (9) and (10).
The maximum sustainable yield (MSY), the largest yield or catch that can be potentially taken
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from the stock, is attained at effort level E such that
∂hs

∂E
(E, v, m) = 0. Solving

∂hs

∂E
(E, m, v) = 0 for

E, we find the maximum sustainable effort,

EMSY(m, v) =
1

2σ
(r − ε1ns(m, v) + ε2as(m, v)). (12)

Eq. (12) reveals that if the size of aquaculture farming is fixed and the nitrogen concentration
increases, the maximum sustainable effort must be reduced.
We can also solve the equation

∂(phs(m, v, E)− cE)
∂E

= 0,

to find the effort level that maximizes the net economic rent from wild catch,

EMSY(m, v) =
1

2σ
(r − ε1ns(m, v) + ε2as(m, v))

(
1 −

c
σp (1 − θns(m, v))

)
. (13)

From Eqs. (12) and (13), the optimal effort level is less than the maximum sustainable effort
provided c < σp(1 − θns). Moreover, in Eq. (13), when excessive nitrogen concentration in the
aquatic ecosystem, ns, is reduced, the stock in the fishing ground, xs, gets better. The increment
of fish stock enables us to relax restrictions imposed on the effort, EMSY, and harvest more fish.
Observe that EMSY is directly related to the size of the aquaculture. The development of shellfish
aquaculture must be encouraged, besides controlling nitrogen loading from the source when the
aquatic ecosystem becomes excessively enriched with nitrogen.

Numerical solutions and sensitivity analysis

In this section, we investigate the impact of introducing the shellfish farm in a polluted environ-
ment and perform a sensitivity analysis. Like [27], we develop a deterministic bioeconomic model
that describes the transition dynamics and interrelationships of the systems using parameters.
Then, sensitivity analysis of the optimal solutions is investigated by assigning different values for
significant biological parameters and performance measures (in Table 2, the changes in parameter
values are highlighted in bold). Some of the values are taken from [28], and we choose reasonable
values for the other parameters based on the conditions we impose on the model. Using values
from Table 1, we numerically solve for the optimal solutions and report the results in Table 2.

Table 1. Parameters and their values used for the stability of the system

Parameter Description Value Unit
r Growth rate parameter 1.8 1/year
σ Catchability coefficient per unit effort 0.015 1/vessel/year
α The natural decay rate of nitrogen 0.6, 0.65 1/year
β Conversion factor 3, 4 1/year
ρ Conversion factor 1 1/year
θ Measure of the impact of nitrogen on the environment 0.1, 0.11 1/year
ε1 Measure of the impact of nitrogen on the growth rate 0.085 1/year
ε2 Measure of the impact of shellfish on the growth rate .097 1/year
p Unit price of wild catch in US dollars 15 1/US$
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Table 2. Optimal steady-state solutions when nitrogen negatively impacts the environment and shellfish farming
benefits the habitat

θ ε1 ε2 β α m as ns EMSP xMSP hMSP
0.10 0.085 0 0 0.6 0.7 0 0.6000 45.3789 0.574167 0.390826
0.10 0.085 0.097 3 0.6 0.7 0.310366 0.237175 47.4459 0.592308 0.421539
0.10 0.085 0.097 4 0.6 0.7 0.27389 0.212319 47.4524 0.593551 0.422481
0.10 0.085 0.097 3 0.65 0.7 0.269038 0.208556 47.4534 0.593739 0.422624
0.10 0.085 0.097 3 0.6 0.75 0.244961 0.189892 47.4581 0.594672 0.4233

From the steady-state optimal numerical solutions summarized in Table 2:

i) Before the introduction of shellfish aquaculture (when a = ε2 = β = 0), if we manage to reduce
the external nitrogen loading by 70%, the nitrogen concentration level in the water would be
0.6 mg.

ii) After the introduction of shellfish aquaculture (when ε2 = 0.097, θ = 0.1, and β = 3), the
concentration reduces from 0.6 to 0.237175 mg as long as we dedicate 0.31 of the area to the
sector and keep the external effort level at m = 0.70.

iii) When the conversion constant that determines the reduction rate of nitrogen concentration due
to shellfish cultivation, β, increases from 3 to 4, the nitrogen concentration level decreases from
.2372 to .2086.

iv) When the natural decay rate, α, increases from 0.6 to 0.65, like the above case, nitrogen concen-
tration decreases while the fish stock size increases.

In general, the development of shellfish aquaculture helps the recovery of the aquatic ecosystem
and restores the fish stock. The increment of the fish stock enables us to relax the restriction on the
optimal effort. As the rate of nitrogen reduction due to shellfish farming or natural denitrification
increases, the optimal aquaculture size reduces, and the fish stock size and the optimal yield
increase. In Figure 2, we displayed the state of the stock before and after the introduction of
shellfish farming in the environment at any impact level of nitrogen in the area, θ. It shows that
the introduction of aquaculture slows the decline of the environment and fish stock.

Figure 2. Comparison of stock size of fish (in tonnes), x, at each nitrogen concentration impact level (1/year),
θ, before the development of shellfish aquaculture (NA) and after shellfish aquaculture development (SA) for
σ = 0.015, r = 1.8, α = .6, β = 3, m = .7, w = 1.2, and θ = .10
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3 Optimized management strategy

In this section, we will consider a control version of the dynamic equations in the previous section,
where we determine the asymptotic behavior of the trajectory of the control variables E, m, and
v that maximizes the long-run overall benefit from the system. Recent research suggests that
improving the quality of water indirectly benefits the community around the coastal line–for
example, it appreciates home values near the water bodies [29]. In our optimization model,
we only include the economic contributions of shellfish through the supply chain, even though
sometimes the net profit may not be positive and needs some type of government subsidy. The
primary focus of our research agenda is on the ecological or environmental benefits of shellfish
aquaculture.
Let the net profit from capture fishery be p1σEx − cE, where p1 is the market price and c is the
cost per unit effort per unit area. Suppose the production function for aquaculture is Z(A) = Pa A,
where Pa is per unit area production of farmed fish in kilograms. We can rewrite the production

function in terms of a =
A
T

as Z(a) = TPaa, where T is the surface area of the water under

consideration. Let z(a) =
Z(a)

T
and the cost of production is quadratic ca(Pa)2a, where ca is a

cost parameter [28]. Then, the net profit from aquaculture is p2Z(a)− C1(a, v), where C1(a, v) =
c1
(
v − ρ a

n
)
+ ca(Pa)2a is a one-time cost of acquiring an extra unit of aquaculture area plus the

operation cost for the aquaculture, and p2 is the competitive market price of a shellfish and c1 is
one time per unit per area leasing cost. If C2(m) = c2m is the cost of removing the pollutant at
the source, where c2 is per unit cost, and all future costs and benefits are discounted at a positive
social discount rate of δ, the optimization problem is

max J(E, m, v) = max
E,m,v

∫∞
0
[(p1σx − c)E + p2z(a)− C1(a, v)− C2(m)]e−δtdt,

subject to the dynamic equations in Eq. (8). Thus we seek an optimal control, E∗, v∗ , and m∗, and
the corresponding states, x∗, a∗, and n∗, that simultaneously solves the equations in Eq. (8) such
that

J(E∗, m∗, v∗) = max{J(E, v, m)| (E, v, m) ∈ U},

where the control set U is compact U = {(E(t), v(t), m(t))| 0 ≤ E(t) ≤ Emax, 0 ≤ m(t) ≤ mmax, t ∈
[0,∞)}.
The current-value Hamiltonian corresponding to our problem is

H(x, n, a, E, m, v, λx, λa, λn) = B(x, a, E, v, n, m) + λx

[
(r − ε1n + ε2a)

(
1 −

x
1 − θn

)
x − σEx

]
+ λa

(
v − ρ

a
n

)
+ λn

[
(1 − m)w − βan − αn

]
,

where B(x, a, E, v, n, m) = (p1σx − c)E + p2z(a)− C1(a, v)− C2(m) is the net profit at time t, and
λx, λa and λn are the shadow values of the stock, aquaculture, and nitrogen concentration level,
respectively.
The optimal control shall be a combination of bang-bang and singular control since the problem
under consideration is a linear control problem. Our study focuses on the singular control and
the associated optimal singular solutions. The optimality condition for the control variables is to
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satisfy

∂H(·)
∂v

= −c1 + λa,
∂H(·)

∂E
= −c + σx(p1 − λx), and

∂H(·)
∂m

= −c3 − w, (14)

where the switching functions are

Ψ1(t) = −c1 + λa, Ψ2(t) = −c + σx(p − λx), and Ψ3(t) = −c3 − wλn.

It is known that in the case of a singular solution, we have

Ψ1(t) = 0, Ψ2(t) = 0, and Ψ3(t) = 0.

That is

−c1 + λa = 0, − c + σx(p − λx) = 0, and − c3 − wλn = 0. (15)

The adjoint equations corresponding to the states are

dλa

dt
− δλa = −

∂H(·)
∂a

= −Pa(p2 − caPa) + βλnn − xε2

(
1 −

x
1 − θn

)
λx −

(c1 − λa)ρ

n
,

dλx

dt
− δλx = −

∂H(·)
∂x

= −
(r − ε1n + ε2a)(1 − 2x − θn)λx

1 − θn
− σE(p1 − λx), (16)

dλn

dt
− δλn = −

∂H(·)
∂n

= (α + βa)λn +
x
(
θx(r + aε2) + ε1

(
−x + (−1 + θn)2)) λx

(−1 + θn)2 +
c1ρa
n2 −

ρλaa
n2 .

In the steady state, dx
dt = dn

dt = da
dt = dλx

dt = dλn
dt = dλa

dt = 0, implying the following equations

(1 − m)w − βan − αn = 0,(
v − ρ

a
n

)
= 0,

(r − ε1n + ε2a)
(

1 −
x

1 − θn

)
x − σEx = 0,

δλx =
(r − ε1n + ε2a)(1 − 2x − θn)λx

1 − θn
+ E(p1 − λx)σ, (17)

δλa = Pa(p2 − caPa)− βλnn + ε2x
(

1 −
x

1 − θn

)
λx +

(c1 − λa)ρ

n
,

δλn = −(α + βa)λn −
x
(

x(r + aε2)θ + ε1
(
−x + (−1 + θn)2)) λx

(−1 + θn)2 −
ac1ρ

n2 +
aλaρ

n2 .

The interior optimal solutions for the state and control variables can be found by solving the
system of equations in Eq. (15) and Eq. (17).

Numerical solutions and sensitivity analysis

In this section, we find numerical solutions to the above system, Eq. (15) and Eq. (17), by
specifying aquaculture’s per-unit production and operation costs, unit market price, and assigning
appropriate parameter values given in Table 1 and Table 3. Sensitivity analysis is also performed
for the conversion factors, the measures of the negative impacts of nitrogen, and the positive
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benefits of shellfish aquaculture. The results are summarized in Table 4.

Table 3. Parameters and their values used for numerical solutions

Parameter Description Value Unit
Pa Aquaculture production per unit square meter in kg 0.446 m2/Kg
ca Cost parameter for aquaculture 0.1682 1/US$
c1 Cost of acquiring a square meter of aquaculture area in US dollars 1 1/m2/US$
c2 The cost of removing the pollutant at the source in US dollars 0.135 1/US$
c Cost per unit effort per unit carrying capacity for wild-catch 0.05 1/US$
δ Positive social discount rate 0.05 1/year
θ Measure of the impact of nitrogen on the environment 0.1, 0.11 1/vessel/year
ε1 Measure of the impact of nitrogen on the growth rate 0.085, 0.086 1/year
ε2 Measure of the impact of shellfish on the growth rate 0.097, 0.098 1/year
p1 Unit price of wild catch in US dollars 15 1/US$
p2 Unit price of farmed shellfish in US dollars 3 1/US$

Table 4. Steady-state optimal solutions for the state and control variables

ε1 ε2 θ E∗ x∗ n∗ a∗ m∗ h∗

0.085 0.097 0.1 48.5255 0.584869 0.211729 0.273105 0.701388 0.425716
0.086 0.097 0.1 48.523 0.584869 0.211729 0.274299 0.700546 0.425694
0.085 0.098 0.1 48.5373 0.584931 0.210493 0.273202 0.703063 0.4258647
0.085 0.097 0.11 48.5804 0.583832 0.212129 0.306619 0.678127 0.425069

The numerical solutions in Table 4 show that

• As the impact of nitrogen concentration level on the habitat or the growth rate, θ or ε1, increases,
the optimal stock size, x∗, decreases, and consequently optimal harvest, h∗, declines. This shows
a need to increase the optimal size of shellfish aquaculture since a significant amount of nitrogen
can be removed through shellfish harvest and denitrification. This, in turn, allows us to reduce
external effort.

• If the effectiveness of shellfish cultivation on the environment, ε2, increases, we can observe
that the nitrogen concentration level tends to approach a lower level. As a result of this, we can
relax the optimal effort limits on the fishing ground.

Like the previous section, the control version reflects the positive contributions of shellfish aqua-
culture toward protecting aquatic ecosystems from eutrophication while increasing the supply of
shellfish to the market and improving capture fish.
Transition dynamics
Following the computation of the optimal steady-state solution of the state, co-state, and control
variables, it is natural to determine the trajectories of the states toward close-to-equilibrium
solutions over a finite but large time. Because of the non-linear nature of the functional forms of
the equations used in the dynamic analysis and the number of equations, it is not easy to find
analytic solutions. Therefore, we use the fourth-order Runge–Kutta forward-backward sweep
numerical method to solve the system of Eqs. (8) and (16). First, we approximate the state
equations in Eq. (8), by first-order forward difference, and the corresponding co-state equations
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in Eq. (16), by first-order backward difference equations. Then by substituting the values of the
parameters given in Table 3, using initial values, x(0) = 0.27, n(0) = 0.6, and a(0) = 0, and a
guess for optimal control, say the steady-state values, we solve the state equations forward for the
discrete-time interval of [0, t f ] partitioned into k parts using a time step h such that t f = kh. Then,
using the state values at t f and the transversality condition at t f , we find the values of the co-state
at t f and solve the co-state equations backward. After each forward-backward computation, we
update the control values using the state and co-state values and repeat the process until the control
values become sufficiently close. The accuracy or convergence of the iterative method is based
on Hackbusch [30]. Figure 3 displays the trajectories of the numerical solutions generated using
Hermite interpolation of order 3. Note that for all combinations of the conversion factors, decay
rates, and other parameter values given in Table 3, the trend is the same (i.e., as the aquaculture
increases, the nitrogen level decreases while the fish stock increases) except they converge to
different terminal points.

Figure 3. The trajectories of the optimal fish stock size and nitrogen level relative to the aquaculture expansion
rate

4 Conclusion

This study assumes that shellfish aquaculture helps remediate nitrogen in an eutrophic aquatic
ecosystem. We also attempted to determine the optimal sizes of shellfish aquaculture and the
optimal capture fish effort before and after introducing shellfish aquaculture into the system. This
ties in with our finding of the optimal nitrogen reduction effort needed to sustain the ecosystem.
We reviewed various models related to our research and set up our model based on recent
developments in the field and our intended research objectives. The system was analyzed in two
scenarios to evaluate the effects of shellfish aquaculture.
In the first scenario, we defined the transition equation of open-access capture fish stock in an
environment polluted by excessive nitrogen before the introduction of shellfish aquaculture.
Excessive nitrogen contributes to environmental degradation, impacts the carrying capacity, and
affects the growth rate of the fish stock. Our analysis shows a positive impact of nitrogen pollution
reduction practices on the stock size and sustainable harvest. In addition, we show that the effort
level that maximizes profit and optimal effort is inversely related to nitrogen concentration.
In the second scenario, we extended the model by considering the development of shellfish
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aquaculture and including the positive impacts of shellfish cultivation on fishing grounds, the
environment, and fish stock. We assume that the effect on the fish stock is measured through
growth rate, and the amount of nitrogen removed by shellfish production is proportional to the
size of the aquaculture area. Even though aquaculture takes away the fishing area and creates
pressure in the open access fishing ground, we show that the development of shellfish aquaculture
helps the recovery of polluted aquatic ecosystems and restocks the fishing ground. In this case,
we can increase the optimal effort and harvest more captured shellfish, reducing the scarcity of
shellfish in the market.
Eutrophication management and control is based primarily on the restriction of nutrient inputs in
bodies of water and nutrient reduction strategies at the point source. Then, it requires collaborating
with fisheries managers to integrate shellfish aquaculture into broader ecosystem management
plans. This approach can limit nitrogen loading and remove excessive nitrogen through shellfish
harvest. This study compares the impact of nitrogen eutrophication on the fish stock before
and after the development of shellfish cultivation. We show that shellfish aquaculture can be
considered as an alternative option to reduce nitrogen accumulation in aquatic ecosystems. It
supports the economy by creating jobs and supplying more farmed shellfish. It also indirectly
improves the performance of wild catches.
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Abstract
This article analyzes the qualitative behavior of a predator-prey system where the predator receives
extra food and the prey engages in anti-predator behavior to defend itself against attacks by the
predator. The positivity and the boundedness of solutions to the system have been examined. The
biologically well-posed equilibrium points of the proposed system are derived, and an analysis of
their local stability is conducted. In specific situations, it is observed that the solutions of the proposed
system are significantly dependent on the initial values. The emergence of several bifurcations in the
system, including the saddle-node, Bogdanov-Takens, and Hopf-Andronov, is also shown. Through
numerical simulation, the rise of a homoclinic loop is shown. The analytic results are verified by
numerical simulations and phase portrait sketches.

Keywords: Additional food; anti-predator behavior; stability; bifurcation

AMS 2020 Classification: 37G10; 34C23; 93D20

1 Introduction

The fragile equilibrium of life on Earth relies on ecological systems, the complex webs of inter-
actions between species and their surroundings. These networks extend from local to global
levels, including everything from small ecosystems such as oceans, forests, and wetlands to the
entire biosphere. Preserving biodiversity, managing natural resources, and reducing the effects of
environmental changes all require an understanding of the dynamics of ecological systems. The
dynamics between predators and their prey are one of the fundamental ecological phenomena
that have a significant impact on biodiversity. The strong intuition to be alive in predators and
prey has led to the development of remarkable strategies in these species. For example, predator
species do not rely on a single prey species but rather on a varied range of prey species [1], while
prey species exhibit anti-predator behavior [2]. In this article, the impacts of these strategies on a
predator-prey system are analyzed.
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Researchers are aware that predators exhibit a behavioral adaptation whereby they shift their
feeding preferences to alternate food sources in response to decreasing densities of their preferred
prey [3]. To develop a comprehensive predator-prey model for such species, it is essential to take
into account the inclusion of alternative prey species. The inclusion of supplementary food in
a predator-prey system may have a substantial impact on the ecological dynamics and overall
stability of ecosystems. For instance, the presence of scavenging possibilities or the introduction
of non-native prey species can perturb the ecological balance of the whole system [4]. Moreover,
the introduction of this surplus food may have a cascading effect on the ecosystem, impacting
not just the populations of prey species and competitors but also those at higher trophic levels
[5]. Hence, it is essential to comprehend the ramifications of additional food within predator-prey
systems to manage ecosystems and advance conservation initiatives effectively.
The empirical study indicates that the provision of supplementary food to predators does not
always result in an increase in predation on target species. Sometimes, it may lead to a reduction
in the population density of prey species [3]. This phenomenon is often referred to as “apparent
competition” [6]. In addition, the predator population may have short-term advantages via an
additional food supply. For instance, using supplementary resources may lead to overexploitation,
increasing the likelihood of population collapses or fluctuations [7]. This discrepancy between the-
ory and observations prompted a thorough mathematical investigation of predator-prey systems
that include provisions to supply additional food.
Srinivasu et al. [8] developed a predation model including two species to examine the effects of
supplementary food provided to the predator species. The researchers noted that manipulating
additional food, in terms of quality and quantity, can manage and constrain prey numbers and
restrict and eradicate predator populations. The aforementioned theoretical results are consistent
with the facts documented in a recent literature review [9] that examines the impact of artificial
food sprays on conservation biological control. Prasad et al. [10] created and analyzed an
additional food-provided predator-prey system with a Beddington-DeAngelis functional response
(a way to incorporate mutual interference between predators). They observed the possibility
of the coexistence of predator species with a low density of prey species. This phenomenon
contrasts with classical predator-prey models, where the coexistence of predators and prey at low
population densities is not attainable. The ramifications of providing alternative food sources to
predators in a predator-prey paradigm with harvesting have been studied by Sahoo and Poria
[11]. Chakraborty and Das [12] conducted an analysis of the variability of a predator-prey system.
They specifically investigated the impact of constant prey refuge and alternative food provided to
the predator. The global dynamics of a predator-prey system have been investigated by Sen et al.
[13], where the predator is subjected to alternative food as well as harvesting at a constant rate.
This work offers valuable methodologies for examining the controllability of systems, which have
significant relevance in real-world applications. Shome [14] examined the effects of additional
food in a predator-prey model incorporating intraspecific competition among prey species and
the theta-logistic prey growth rate. They found that when alternative food sources are limited
and intraspecific competition is intense, prey species experience extinction. Consequently, the
predator species also face extinction, resulting in the collapse of the whole system. In continuation,
they observed that the potential occurrence of this collapse may be averted with the provision of
a sufficient amount of alternate sustenance to predatory organisms. This finding suggests that
including alternative food sources significantly affects regulating the dynamics of the proposed
system. Ghosh et al. [15] studied the dynamics of a predator-prey system with prey refuge
and additional food for the predator. Singh et al. [16] performed a qualitative inquiry into a
predator-prey model, whereby it was assumed that a continual extra food supply is provided to
the predator species and the growth of the predator is regulated by the Allee effect.
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Several researchers have recently explored the influence of additional food delivered to predators
in predator-prey systems that incorporate various real-life phenomena. For instance, Das et
al. [17] used a predator-prey model with prey refuge; Thirthar et al. [18] used a predator-prey
model with fear effects, prey refuge, and harvesting; Debnath et al. [19] used a predator-prey
system with fear effects and anti-predator behavior; Ananth et al. [20] used a predator-prey
model involving Holling-type I I I functional response; Das et al. [21] used a predator-prey model
with fear effects; and Umaroh and Savitri [22] used a predator-prey model with Holling-type I I I
functional response and anti-predator behavior.
Prey species have evolved a variety of strategies to avoid their natural predators. When preys are
threatened, they sometimes display a peculiar defensive behavior in which they sacrifice specific
body parts. Lizards, for instance, can release their tails to protect themselves from predators. Adult
prey kill juvenile predators to reduce the pressure of future predation and increase population
density [23–27]. These kinds of prey behaviors are known as anti-predator behaviors. Zanette et
al. [28] performed experiments to demonstrate anti-predator behavior’s impact on song sparrows’
reproductive rates. The results indicated that implementing such efforts led to a significant
reduction of 40% in the song sparrow’s reproductive output whenever direct predation was
effectively mitigated. As a result, the presence of anti-predator behavior among prey species plays
a crucial role in maintaining the intricate equilibrium of predator-prey ecosystems.
Several researchers have examined anti-predator behavior in the context of analyzing nonlinear
ecological systems [29–31]. Samanta et al. [31] conducted an analysis of a modified Leslie-Gower
model using a Beddington-DeAngelis functional response in order to categorize an anti-predator
behavior. Tang and Xiao [32] modified a predator-prey system equipped with a non-monotonic
functional response by utilizing anti-predator behavior. The saddle-node, the homoclinic, the
Hopf bifurcation, and the Bogdanov-Takens bifurcation of co-dimension two were the bifurcations
the authors examined as possible system outcomes. Mortoja et al. [33] presented a stage-structure
predator-prey model including anti-predator behavior and group defense. The researchers in-
vestigated the system’s stability and examined the occurrence of the Hopf bifurcation in the
suggested system. A dynamical study is carried out by Savitri [2] on a predator-prey model that is
endowed with ratio-dependent functional responses and anti-predator behavior. Recently, Prasad
et al. [34] explored the influence of anti-predator behavior on predator-prey dynamics where
additional food is provided to predators. They observed that several kinds of bifurcations occur,
such as saddle-node bifurcation, Hopf bifurcation, homoclinic bifurcation, and a Bogdanov-Takens
bifurcation of co-dimension 2. They concluded that successful implementation of biological
control might be achieved by taking the anti-predator behavior as a control parameter. This
article employed the Holling type IV functional response (Monod-Haldane), often used in models
with predator interference, where high prey density leads to reduced predation rates owing to
defensive behaviors shown by prey species. The Holling type II functional response, which is
more commonly used, is more suitable for modeling predator-prey interactions where there is a
limitation on predator efficiency due to handling time and prey saturation. This research examines
the effects of supplementary food in the predator-prey system, including Holling type II functional
response and anti-predator behavior. It is observed that the anti-predator behavior enhances the
dynamical complexities and can be used as a controlling parameter.

2 The basic mathematical model

Srinivasu et al. [8] proposed a bi-dimensional system of equations to represent a predator-prey
dynamic, whereby the predator species are provided with a constant supply of supplementary
food distributed equally across the environment. If we assume that the prey species exhibits
anti-predator behavior, the model takes the following form:
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{
du
dt = r u(1 − u

K )−
e1uv

1+e1h1u+e2h2 A ,
dv
dt = n1e1uv+n2e2 Av

1+e1h1u+e2h2 A − mv − nuv,
(1)

where u = u(t) and v = v(t) represent the prey and predator populations at time t, respectively.
To provide an ecologically appropriate interpretation of the proposed model, it is necessary to
assume that u(0) ≥ 0 and v(0) ≥ 0. The positive parameters A, r, K, m, h1(h2), n1(n2) and
e1(e2) are the amount of additional food, the intrinsic growth rate of prey, the carrying capacity
of the environment, the predator’s mortality rate, the handling time of the predator per unit
quantity of prey (additional food), the nutritional value of the prey (additional food), and the
ability of the predator to detect the prey (additional food), respectively. The term nuv represents
anti-predator behavior, and the parameter n is the rate of anti-predator behavior of prey for the
predator population. Ecologically, it can be interpreted that this form of anti-predator behavior
does not directly benefit the prey population but reduces the growth of the predator population,
and in this way, it helps the prey population.
Defining c = 1

h1
, b = n1c, a = 1

e1h1
, η = n2e2

n1e1
, α = n1h2

n2h1
, the system (1) can be expressed as

{ du
dt = r u(1 − u

K )−
c uv

a+αηA+u ,
dv
dt = b(u+ηA)v

a+αηA+u − mv − nuv.
(2)

The ecological interpretation of the parameters a, b, and c in the above model aligns with the
conventional predator-prey model. The parameter α is inversely proportional to the additional
food quality, and ηA refers to the amount of additional food perceptible to the predator relative to
the prey.
Employing the transformations u = ax, v = ary

c , t = t̂
r and dropping the hat, system (2) becomes{ dx

dt = x(1 − x
γ )−

xy
1+αξ+x ,

dy
dt = β(x+ξ)y

1+αξ+x − δy − θxy,
(3)

where γ = K
a , β = b

r , ξ = ηA
a , δ = m

r and θ = na
r . From an ecological perspective, our focus is only

on the dynamics of system (3) inside the first quadrant R+
0 × R+

0 = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0}.

Lemma 1 (i) All solutions of the system (3) initiating in the interior of the positive quadrant of the state
space are positive for all t ≥ 0.

(ii) All solutions of the system (3) initiating in the interior of the positive quadrant of the state space are
bounded for all t ≥ 0.

Proof

(i) The two Eqs. of the system (3) yield

x(t) = x(0) exp
[∫ t

0

(
1 −

x(τ)
γ

−
v(τ)

1 + αξ + u(τ)

)
dτ

]
,

and

y(t) = y(0) exp
[∫ t

0

(
β(x(τ) + ξ)

1 + αξ + x(τ)
− δ − θx(τ)

)
dτ

]
,
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respectively. The conditions x(0) ≥ 0 and y(0) ≥ 0 imply x(t) ≥ 0 and y(t) ≥ 0, respectively.
Therefore, it can be deduced that a solution originating in the positive quadrant of the xy-plane
stays positive throughout.

(ii) The first Eq. of the system (3) yields the following result:

dx
dt

< x
(

1 −
x
γ

)
.

It can be inferred that every solution of the system (3) satisfies x(t) ≤ γ for all t > 0.
Define Φ(t) = x(t) + y(t)

β . Then

dΦ
dt

= x
(

1 −
x
γ

)
+

ξy
1 + αξ + x

−
(δ + θx)y

β
.

For λ > 0, we have

dΦ
dt

+ λΦ(t) = x
(

1 −
x
γ
+ λ

)
−

(
δ − λ

β
−

ξ

1 + αξ

)
y,

dΦ
dt

+ λΦ(t) ≤ γ(1 + λ)2

4
−

(
δ − λ

β
−

ξ

1 + αξ

)
y.

By selecting a suitably small (λ < δ), above inequality can be written as

dΦ
dt

+ λΦ(t) <
γ(1 + λ)2

4
+

ξy
1 + αξ

.

Thus,

dΦ
dt

+ λΦ(t) < µ,

where µ = γ(1+λ)2

4 + ξy
1+αξ .

Employing Gronwall’s inequality, we get

0 < Φ(t) ≤ µ

λ

(
1 − e−λt

)
+ Φ(0) e−λt.

The above inequality implies, 0 < Φ(t) ≤ µ
λ , as t → ∞. Thus, every solution of the system (3)

originating in the positive quadrant of the xy-plane is bounded for all future time.

The above lemma ensures that the system (3) is ecologically well-posed.

3 Existence of equilibrium points

The non-negative solutions of the system dx
dt = 0, dy

dt = 0 are the constant solutions of the system
(3) and are called equilibrium points of the system. It is easy to see that the system (3) has a trivial
equilibrium point E0(0, 0), a predator-free equilibrium point Eγ(γ, 0), and interior equilibrium
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points E∗(x∗, y∗). The abscissa x∗ is the root of the quadratic equation

θx2 + (δ + θ(1 + αξ)− β)x + δ(1 + αξ)− βξ = 0. (4)

The roots of Eq. (4) are x∗ = β−(δ+θ(1+αξ))∓
√

(δ+θ(1+αξ)−β)2−4θ(δ(1+αξ)−βξ)
2θ . For the sake of clarity,

consider ∆1 = δ(1 + αξ)− βξ, ∆2 = β − (δ + θ(1 + αξ)), and ∆3 = 4θ∆1.
To find the equilibrium points of the system (3), we consider the following cases:

Case I: ∆1 > 0 and ∆2 > 0.

In this case, if ∆2
2 > ∆3 holds, then the system (3) has two interior equilibrium points E∗

1(x∗1 , y∗1)

and E∗
2(x∗2 , y∗2), where x∗1,2 =

∆2∓
√

∆2
2−∆3

2θ and y∗1,2 = (1 −
x∗1,2
γ )(1 + αξ + x∗1,2), provided γ > x∗1,2;

if ∆2
2 = ∆3 holds, then the system (3) has a unique interior equilibrium point E∗

3(x∗3 , y∗3), where

x∗3 = ∆2
2θ and y∗3 = (1 −

x∗3
γ )(1 + αξ + x∗3), provided γ > x∗3 ; if ∆2

2 < ∆3 holds, then the system (3)
has no interior equilibrium point.

Case II: ∆1 < 0.

In this case, the system (3) has a unique interior equilibrium point E∗
4(x∗4 , y∗4), where x∗4 =

∆2+
√

∆2
2−∆3

2θ and y∗4 = (1 −
x∗4
γ )(1 + αξ + x∗4), provided γ > x∗4 .

Case III: ∆1 = 0.

In this case, if ∆2 > 0 holds, the system (3) has an interior equilibrium point E∗
5(x∗5 , y∗5) and a prey-

free equilibrium point E∗
6(x∗6 , y∗6) = (0, 1 + αξ), where x∗5 = ∆2

θ and y∗5 = (1 −
x∗5
γ )(1 + αξ + x∗5),

provided γ > x∗5 , if ∆2 < 0 holds, the system (3) has no interior equilibrium point, but a unique
prey-free equilibrium point E∗

6(x∗6 , y∗6) = (0, 1 + αξ) occurs.

4 Stability analysis

This section performs an analysis to derive the stability conditions around the equilibrium points
determined in the previous section using the linearization technique.

Theorem 1 (i) The equilibrium point E0 = (0, 0) of system (3) is unstable if βξ
1+αξ > δ and saddle if

βξ
1+αξ < δ.

(ii) The equilibrium point Eγ = (γ, 0) of system (3) is saddle if β(γ+ξ)
1+αξ+γ > (δ + θγ) and asymptotically

stable if β(γ+ξ)
1+αξ+γ < (δ + θγ).

Proof

(i) At E0(0, 0), the Jacobian matrix of the system (3) is

JE0 =

(
1 0
0 βξ

1+αξ − δ

)
.

The eigenvalues of the matrix JE0 are λ1 = 1 > 0 and λ2 = βξ
1+αξ − δ. If βξ

1+αξ > δ (λ2 > 0), the

trivial equilibrium point E0 is unstable. If βξ
1+αξ < δ (λ2 < 0), the trivial equilibrium point E0 is

saddle.
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(ii) At Eγ(γ, 0), the Jacobian matrix of the system (3) is

JEγ =

(
−1 − γ

1+αξ+γ

0 β(γ+ξ)
1+αξ+γ − (δ + θγ)

)
.

The eigenvalues of the above matrix are λ1 = −1 < 0 and λ2 = β(γ+ξ)
1+αξ+γ − (δ + θγ). If β(γ+ξ)

1+αξ+γ >

(δ + θγ) (λ2 > 0), the point Eγ is saddle. If β(γ+ξ)
1+αξ+γ < (δ + θγ) (λ2 < 0), the point Eγ is stable.

Theorem 2 (i) The equilibrium point E∗
1(x∗1 , y∗1) of system (3), if it exists, is stable if γ < 1 + αξ + 2x∗1

and unstable if γ > 1 + αξ + 2x∗1 .
(ii) The equilibrium points E∗

2(x∗2 , y∗2), E∗
4(x∗4 , y∗4) and E∗

5(x∗5 , y∗5) of system (3), if they exist, are always
saddle.

(iii) The equilibrium point E∗
3(x∗3 , y∗3) of system (3), if it exists, is a degenerate singularity.

Proof At E∗
i (x∗i , y∗i ), i = 1, 2, 3, 4, 5, the Jacobian matrix of the system (3) is

JE∗
i
=

 x∗i (−
1
γ + (1 −

x∗i
γ ) 1

1+αξ+x∗i
) −

x∗i
1+αξ+x∗i(

(β − δ)− 2θx∗i − θ(1 + αξ)
)
(1 −

x∗i
γ ) 0

 .

The determinant and trace of the matrix JE∗
i

are detJE∗
i
=

x∗i y∗i
(1+αξ+x∗i )

2

(
∆2 − 2θx∗i

)
and trace JE∗

i
=

x∗i
γ(1+αξ+x∗i )

(
γ − (1 + αξ + 2x∗i )

)
, respectively.

(i) It is easy to show that det JE∗
1
=

x∗1y∗1
(1+αξ+x∗1)

2 (
√
(∆2

2 − ∆3) > 0 and tr JE∗
1
=

x∗1
γ(1+αξ+x∗1)

(
γ −

(1 + αξ + 2x∗1)
)

. The Routh-Hurwitz criteria confirm the result.

(ii) A simple calculation may provide det JE∗
2
= −

x∗2y∗2
(1+αξ+x∗2)

2 (
√
(∆2

2 − ∆3) < 0, det JE∗
4
=

−
x∗4y∗4

(1+αξ+x∗4)
2 (
√
(∆2

2 − ∆3) < 0, and det JE∗
5
= −

x∗5y∗5
√

∆2
(1+αξ+x∗5)

2 < 0. Thus, the result follows.

(iii) It is easy to show that det JE∗
3
= 0. Thus, the equilibrium point E∗

3 is a degenerate singularity.

Theorem 3 The equilibrium point E∗
3 of system (3), if exists, then it is

(i) a stable saddle-node if γ < 1 + αξ + 2x∗3 and an unstable saddle-node if γ > 1 + αξ + 2x∗3 .
(ii) a cusp of codimension 2 if γ = 1 + αξ + 2x∗3 and η1η2 ̸= 0.

Proof

(i) Firstly, we employ the transformations x̌ = x − x∗3 , y̌ = y − y∗3, the equilibrium point E∗
3

shifts to the origin (0, 0). Using Taylor series expansion centered at (0, 0), the system (3) reduces
to {

dx̌
dt = a10 x̌ + a01y̌ + a20 x̌2 + a11 x̌y̌ + o|(x̌, y̌)3|,
dy̌
dt = b10 x̌ + b01y̌ + b20 x̌2 + b11 x̌y̌ + b02y̌2 + o|x̌, y̌)3|,

(5)

where a10 =
x∗3

γ(1+αξ+x∗3)

(
γ− (1+ αξ + 2x∗3)

)
, a01 = −

x∗3
1+αξ+x∗3)

, a20 = − 1
γ +

(1+αξ)y∗3
(1+αξ+x∗3)

3 , a11 =

−
(1+αξ)

(1+αξ+x∗3)
2 , b10 =

(
β(1+αξ−ξ)
(1+αξ+x∗3)

2 − θ
)

y∗3, b01 = 0, b20 = −
β(1+αξ−ξ)y∗3
(1+αξ+x∗3)

3 , b11 = β(1+αξ−ξ)
(1+αξ+x∗3)

2 −

θ, b02 = 0.
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It is simple to check if a10 ̸= 0, i.e., γ ̸= 1+ αξ + 2x∗3 , then the tr(JE∗
3
) ̸= 0 but det(JE∗

3
) = 0. Thus,

the equilibrium point E∗
3 is a saddle node. Furthermore, if γ < 1 + αξ + 2x∗3 , i.e., tr(JE∗

3
) < 0,

the equilibrium point E∗
3 is a stable saddle node. If γ > 1 + αξ + 2x∗3 , i.e., tr(JE∗

3
) > 0, the

equilibrium point E∗
3 is an unstable saddle node.

(ii) If γ = 1 + αξ + 2x∗3 , then tr(JE∗
3
) = 0 and det(JE∗

3
) = 0. By applying the transformation

x̃ = x̌, ỹ = a10 x̌ + a01y̌, the system (5) reduces to{
dx̃
dt = ỹ + a20 x̃2 + a11 x̃ỹ + o|(x̃, ỹ)3|,
dỹ
dt = b20 x̃2 + b11 x̃ỹ + o|(x̃, ỹ)3|,

(6)

where a20 = a20 −
a11a10

a01
, a11 = a11

a01
, b20 = a10a20 + a01b20 − b11a10 −

a11a2
10

a01
, b11 = a11a10

a01
+ b11.

By applying the transformations w1 = x̃ − 1
2 a11 x̃2, w2 = ỹ + a20 x̃2, the system (6) reduces to{

dw1
dt = w2 + o|(w1, w2)

3|,
dw2
dt = η1w2

1 + η2w1w2 + o|(w1, w2)
3|,

(7)

where η1 = b20 and η2 = 2a20 + b11.
Finally, applying the transformations z1 = w1, z2 = w2 + o|(w1, w2)

3|, the system (7) reduces
to {

dz1
dt = z2,

dz2
dt = η1z2

1 + η2z1z2 + o|(z1, z2)
3|.

The non-degeneracy condition η1η2 = b20(2a20 + b11) ̸= 0 for a cusp with co-dimension 2 is
satisfied in the z1z2. Consequently, the point E∗

3 is a cusp of co-dimension 2.

Theorem 4 The equilibrium point E∗
6(u

∗
6, v∗6) of the system (3) is a cusp of co-dimension 2 if γ ̸= 1 + αξ.

Proof At E∗
6(x∗6 , y∗6), the Jacobian matrix of the system (3) is

JE∗
6
=

(
0 0

β(1+αξ−ξ)
1+αξ − θ(1 + αξ) 0

)
.

The determinant and trace of the above matrix are zero. To relocate the equilibrium point E∗
6 to the

origin, we consider transformations X = x − x∗6 , Y = y − y∗6. The Taylor series expansion centered
at (0, 0) reduces the system (3) as follows:{

dX
dt = α20X2 + α11XY + o|(X, Y)3|,
dY
dt = β10X + β20X2 + β11XY + o|(X, Y)3|,

(8)

where α20 =
(
− 1

γ + 1
1+αξ

)
, α11 = − 1

1+αξ , β10 = β(1+αξ−ξ)
1+αξ − θ(1+ αξ), β20 = −

β(1+αξ−ξ)
(1+αξ)2 , β11 =

β(1+αξ−ξ)
(1+αξ)2 − θ. Introduce a new time variable T by T = β10t, the system (8) reduced to

{
dX
dT = ¯α20X2 + ¯α11XY + o|(X, Y)3|,
dY
dT = X + ¯β20X2 + ¯β11XY + o|(X, Y)3|,

(9)
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where ¯α20 = α20
β10

, ¯α11 = α11
β10

, ¯β20 = β20
β10

, ¯β11 = β11
β10

.

By applying the transformations Y1 = Y − 1
2

¯β11Y2, X1 = X + ¯β20X2, system (9) reduces to{
dX1
dT = ϑ1X2

1 + ϑ2X1Y1 + o|(X1, Y1)
3|,

dY1
dT = X1 + o|(X1, Y1)

3|,
(10)

where ϑ1 = ¯α20, ϑ2 = ¯α11.
Finally, applying the transformations Y2 = Y1, X2 = X1 + o|(X2, Y2)

3|, the system (10) reduces to{
dX2
dT = ϑ1X2

2 + ϑ2X2Y2 + o|(X2, Y2)
3|,

dY2
dT = X2.

The non-degeneracy condition ϑ1ϑ2 ̸= 0, i.e., 1
1+αξ

(
− 1

γ + 1
1+αξ

)
̸= 0 for cusp of co-dimension 2

can be satisfied in the X2Y2 plane, if γ ̸= 1 + αξ. As a result, the equilibrium point E∗
6 is a cusp of

co-dimension 2.

5 Bifurcation analysis

In this section of the article, we are interested in a variety of distinct bifurcations that might take
place in the system (3), such as saddle-node, Bogdanov-Takens, and Hopf bifurcations.

Saddle-node bifurcation

In Section 3, the requirements necessary for the existence of two interior equilibrium points
E∗

1(x∗1 , y∗1) and E∗
2(x∗2 , y∗2) have been achieved that were based on many constraints. The dis-

tinguishable features of these equilibrium points persist until ∆1 > 0, ∆2 > 0 and ∆2
2 > ∆3;

afterward, they have a chance of converging to E∗
3(x∗3 , y∗3) if ∆1 > 0, ∆2 > 0 and ∆2

2 = ∆3 and
vanishing if ∆1 > 0, ∆2 > 0 and ∆2

2 < ∆3. This kind of annihilation of equilibrium points may
be due to the saddle-node bifurcation for interior equilibrium points, which transpires when the

bifurcation parameter θ satisfies θ = θ∗ = ((δ+β)(1+αξ)−2βξ)−2
√

∆4
(1+αξ)2 , provided (δ+ β)(1+ αξ) > 2βξ

and δ(1 + αξ) > ξ(δ + β), where ∆4 = (δ(1 + αξ)− ξ(δ + β))β(1 + αξ) + β2ξ2. Here, θ∗ is known
as the saddle-node bifurcation threshold. Sotomayor’s theorem [38] has been applied to ascertain
the occurrence of the bifurcation.

Theorem 5 System (3) exhibits a saddle-node bifurcation at the equilibrium point E∗
3 = (x∗3 , y∗3) with

respect to the parameter θ if θ = θ∗ = ((δ+β)(1+αξ)−2βξ)−2
√

∆4
(1+αξ)2 , provided, (δ + β)(1 + αξ) > 2βξ and

δ(1 + αξ) > ξ(δ + β), where ∆4 = (δ(1 + αξ)− ξ(δ + β))β(1 + αξ) + β2ξ2.

Proof The Jacobian matrix for system (3) at interior equilibrium point E∗
3 is

JE∗
3
=

[
(β−δ−θ(1+αξ))(γθ+δ−β)

γθ(β−δ+θ(1+αξ))
−(β−δ−θ(1+αξ))

β−δ+θ(1+αξ)

0 0

]
.

The eigenvalues of the above matrix are λ1 = (β−δ−θ(1+αξ))(γθ+δ−β)
γθ(β−δ+θ(1+αξ))

̸= 0 and λ2 = 0. Let P and Q

be the eigenvectors corresponding to λ2 = 0 for the matrices JE∗
3

and JT
E∗

3
, respectively.
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A straightforward calculation implies

P =

[
1

γθ+δ−β
γθ

]
, Q =

[
0
1

]
.

Consider

ψ(x, y, θ) =

[
1 − x

γ −
y

1+αξ+x
β(x+ξ)

1+αξ+x − δ − θx

]
.

One can easily find,

ψθ

(
E∗

3 , θ∗
)
=

[
0

−(β−δ−θ(1+αξ))
2θ

]
,

and

D2ψ
(

E∗
3 , θ∗

)
(P, P) =

 −4θ(2θγ−(β−δ−θ(1+αξ)))
γ(β−δ+θ(1+αξ))2 + 8θ(γθ+δ−β)

γ(β−δ+θ(1+αξ))
−16βθ3(1+αξ−ξ)
(β−δ+θ(1+αξ))3

 .

We have

QT.ψθ

(
E∗

3 , θ∗
)
=

−(β − δ − θ(1 + αξ))

2θ
̸= 0,

and

QT.D2ψ
(

E∗
3 , θ∗

)
(P, P) =

−16βθ3(1 + αξ − ξ)

(β − δ + θ(1 + αξ))3 ̸= 0.

Therefore, the transversality conditions necessary for the appearance of the saddle-node bifurcation
are satisfied, thereby confirming the presence of a saddle-node bifurcation.

Hopf bifurcation

Theorem 2 concludes that the equilibrium point E∗
1 = (x∗1 , y∗1) is unstable if 1 + αξ + 2x∗1 < γ and

stable if 1 + αξ + 2x∗1 > γ. It is interesting to investigate the nature of the point E∗
1 whenever

γ − (1 + αξ + 2x∗1) = 0.

Theorem 6 Assume that the equilibrium point E∗
1 = (x∗1 , y∗1) exists. For the parametric condition,

γ − (1 + αξ + 2x∗1) = 0, system (3) undergoes a Hopf bifurcation around the equilibrium point E∗
1 with

respect to the parameter γ.

Proof We have det
(

JE∗
1

)
> 0. The parametric condition γ = γ[h f ] = 1 + αξ + 2x∗1 implies

tr
(

JE∗
1

)
= 0. Further, at γ = γ[h f ] = 1 + αξ + 2x∗1

d
dγ

(
tr
(

JE∗
1

))∣∣∣
γ=γ[h f ]

=
x∗1(1 + ξ + 2x∗1)
γ2(1 + αξ + x∗1)

̸= 0.



48 | Mathematical Modelling and Numerical Simulation with Applications, 2025, Vol. 5, No. 1, 38–64

Thus, the transversality requirement necessary for the appearance of the Hopf bifurcation is
satisfied, thereby confirming the presence of a Hopf bifurcation.
The aforementioned theorem is sure enough for the emergence of the limit cycle around the point
E∗

1 . However, it provides no insight into the stability of the limit cycle. In this continuation, we
will proceed with the computation of the first Lyapunov number for the system (3) at the point E∗

1 .
This calculation will enable us to ascertain the stability of the limit cycle.
To relocate the point E∗

1 , to the origin (0, 0), we substitute x = x̄ − x∗1 and y = ȳ − y∗1. The system
(3) reduces to{

dx̄
dt = α10 x̄ + α01ȳ + α20 x̄2 + α11 x̄ȳ + α02ȳ2 + α30 x̄3 + α21 x̄2ȳ + α12 x̄ȳ2 + α03ȳ3 + g1(x̄, ȳ),
dȳ
dt = β10 x̄ + β01ȳ + β20 x̄2 + β11 x̄ȳ + β02ȳ2 + β30 x̄3 + β21 x̄2ȳ + β12 x̄ȳ2 + β03ȳ3 + g2(x̄, ȳ),

(11)

where α10 = x∗1(
−1
γ +

y∗1
(1+αξ+x∗1)

2 ), α01 =
−x∗1

1+αξ+x∗1
, α20 = (−1

γ +
y∗1(1+αξ)

(1+αξ+x∗1)
3 ), α11 = −(1+αξ)

(1+αξ+x∗1)
2 ,

α02 = 0, α30 =
−y∗1(1+αξ)

(1+αξ+x∗1)
4 , α21 = 1+αξ

(1+αξ+x∗1)
3 , α12 = 0, α03 = 0, β10 = y∗1

(
(β(1+αξ−ξ))
(1+αξ+x∗1)

2 −

θ
)

, β01 = 0, β20 =
−y∗1 β(1+αξ−ξ)

1+αξ+x∗1)
3 , β11 = β(1+αξ−ξ)

(1+αξ+x∗1)
2 − θ, β02 = 0, β30 =

y∗1 β(1+αξ−ξ)

(1+αξ+x∗1)
4 , β21 =

−β(1+αξ−ξ)
(1+αξ+x∗1)

3 , β12 = 0, β03 = 0, and g1(x̄, ȳ) =
∑∞

i+j=4 αij x̄ȳ, g2(x̄, ȳ) =
∑∞

i+j=4 βij x̄ȳ.

The first Lyapunov number [38] at the origin is

σ =
−3π

2α01∆3/2 {[α10β10 M1 + α10α01 M2 + β2
10 M3 + 2α10β10(α20α02 − β2

02)

+ 2α10α01(β20β02 − α2
20)− α2

01(β11β20 + 2α20β20) + (2α2
10 − α01β10)(α11α20 − β11β02)]

− (α2
10 + α01β10)M4},

(12)

where, M1 = α02β11 + α11β02 + α2
11, M2 = α11β02 + α20β11 + β2

11, M3 = 2α02β02 + α11α02, M4 =

α12β10 − β21α01 + 2α10(β12 + α21) + 3(β03β10 − α30α01), and ∆ =
x∗1y∗1

(1+αξ+x∗1)
2

√
∆2

2 − ∆3. If σ > 0,

then a subcritical Hopf-bifurcation appears around the point E∗
1 and the limit cycle will be unstable.

If σ < 0, then a supercritical Hopf-bifurcation appears around the point E∗
1 , and the limit cycle

will be stable.

Bogdanove-taken bifurcation

In addition to the codimension one bifurcations that have been studied up to this point, it is also
conceivable for the system (3) to experience a codimension two bifurcation, such as a Bogdanov-
Takens (BT) bifurcation. This bifurcation is expected to take place in the vicinity of the point E∗

3 ,
which is identified as a cusp of co-dimension two under certain parametric constraints.

Theorem 7 Assume that the point E∗
3 exists and that it is a cusp of codimension two. If γ and θ are the

bifurcation parameters, the system (3) experiences the Bogdanov-Takens bifurcation of codimension 2 in the
vicinity of E∗

3 .

Proof Here, our objective is to provide analytical expressions for the saddle-node bifurcation curve,
Hopf bifurcation curve, and homoclinic bifurcation curve in the vicinity of the Bogdanov-Takens
(BT) point. To accomplish our objective, we use the approach defined in the works [36, 37]. Let
γBT and θBT represent the threshold values of the bifurcation parameters γ and θ that satisfy
detJE3 = 0, trJE3 = 0. Consider a perturbation to the parameters γ and θ in the vicinity of BT
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bifurcation values provided by γ = γBT + λ1 and θ = θBT + λ2, respectively, where λ = (λ1, λ2)

is a parameter vector in the vicinity of (0, 0).

When we substitute these perturbations into system (3), we obtain{ dx
dt = x(1 − x

γBT+λ1
)− xy

1+αξ+x = f1(x, y, λ1),
dy
dt = β(x+ξ)y

1+αξ+x − δy − (θBT + λ2)xy = f2(x, y, λ2).
(13)

The transformations U = x − x∗3 , V = y − y∗3 are taken into consideration to relocate the point
E∗

3 to the origin (0, 0). After applying Taylor’s series expansion centered at (0, 0), the system (13)
becomes {

dU
dt = α00 + α10U + α01V + α20U2 + α11UV + P1(U, V),
dV
dt = β00 + β10U + β01V + β20U2 + β11UV + P2(U, V),

(14)

where α00 = f1(U, V, λ1), α10 = 1 −
2x∗3

γBT+λ1
−

(1+αξ)y∗3
(1+αξ+x∗3)

2 , α01 = −
x∗3

1+αξ+x∗3
, α20 = − 1

γBT+λ1
+

(1+αξ)y∗3
(1+αξ+x∗3)

3 , α11 = −
(1+αξ)

(1+αξ+x∗3)
2 , α02 = 0, β00 = −λ2x∗3y∗3, β10 =

β(1+αξ−ξ)y∗3
(1+αξ+x∗3)

2 − (θBT + λ2)y∗3,

β01 = −λ2x∗3 , β11 = β(1+αξ−ξ)
(1+αξ+x∗3)

2 − (θBT + λ2), β02 = 0, and P1, P2 is power series in (U, V) with

powers xiyj satisfying i + j ≥ 3, and the coefficients smoothly depend upon λ1 and λ2.

After using the affine transformation U1 = U, U2 = α10U + α01V, the system (14) simplifies to{
dU1
dt = ξ00 + U2 + ξ20U2

1 + ξ11U1U2 + P̃1(U1, U2),
dU2
dt = µ00 + µ10U1 + µ01U2 + µ20U2

1 + µ11U1U2 + P̃2(U1, U2),
(15)

where ξ00 = α00, ξ20 = α20 − α11α10
α01

, ξ11 = α11
α01

, µ00 = α00α10 + β00α01, µ10 = α10β10 −

β01α10, µ01 = α10 + β01, µ20 = α10α20 + α01β20 − β11α10 −
α11α2

10
α01

, µ11 = β11 +
α10α11

α01
, and P̃1, P̃2

are the power series in (U1, U2) with powers Ui
1, U j

2 satisfying i + j ≥ 3.

Next, under the following C∞ change of coordinates in the close vicinity of (0, 0).

Define V1 = U1, V2 = ξ00 + U2 + ξ20U2
1 + ξ11U1U2, system (15) reduced to{

dV1
dt = V2 + P̌1(V1, V2),

dV2
dt = γ00 + γ10V1 + γ01V2 + γ20V2

1 + γ11V1V2 + γ02V2
2 + P̌2(V1, V2),

(16)

where γ00 = µ00 − µ01ξ00, γ10 = µ10 − µ11ξ00 + ξ11µ00 − µ01ξ00ξ11, γ01 = µ01 − ξ11ξ00, γ20 =

µ20 − µ01ξ20 + ξ11µ10 − µ11ξ00ξ11, γ11 = 2ξ20 + µ11 − µ01ξ11 + ξ11µ01, γ02 = ξ11, and P̌1, P̌2 are
the power series in (V1, V2) with powers Vi

1, V j
2 satisfying i + j ≥ 3.

Let us introduce a new time variable T by dt = (1 − γ02V1)dT. Rewriting T as t, the system (16)
can be rewritten as{

dV1
dt = V2(1 − γ02V1) + P̌1(V1, V2),

dV2
dt = (1 − γ02V1)[γ00 + γ10V1 + γ01V2 + γ20V2

1 + γ11V1V2 + γ02V2
2 + P̌2(V1, V2)],

(17)
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Z1 = V1, Z2 = V2(1 − γ02V1) + P̌1(V1, V2), then system (17) reduced to{
dZ1
dt = Z2,

dZ2
dt = δ00 + δ10Z1 + δ01Z2 + δ20Z2

1 + δ11Z1Z2 + P̄2(Z1, Z2),
(18)

where δ00 = γ00, δ10 = γ10 − 2γ02γ00, δ01 = γ01, δ20 = γ20 + γ00γ2
02 − 2γ02γ10, δ11 = γ11 −

γ02γ01, and P̄2 are the power series in (Z1, Z2) with powers Zi
1, Zj

2 satisfying i + j ≥ 3.

One can not determine the sign of δ20 whenever λ1 → 0 and λ2 → 0. Consequently, it is essential
to consider the following two cases:

Case 1: δ20 > 0, Consider u1 = Z1, u2 = Z2√
δ20

, dτ =
√

δ20dt, then system (18) becomes

{
du1
dτ = u2,
du2
dτ = δ00

δ20
+ δ10

δ20
u1 +

δ01√
δ20

u2 + u2
1 +

δ11√
δ20

u1u2 + P(u1, u2, λ),
(19)

where P(u1, u2, 0) is a power series in (u1, u2) with powers ui
1, uj

2 satisfying i + j ≥ 3.

Using the affine transformation v1 = u1 +
δ10

2δ20
, v2 = u2, then system (19) becomes


dv1
dτ = v2,
dv2
dτ = δ00

δ20
−

δ2
10

4δ2
20
+
(

δ01√
δ20

− δ11δ10
2δ20

√
δ20

)
v2 + v2

1 +
δ11√
δ20

v1v2 + Q(v1, v2, λ),
(20)

where Q(v1, v2, 0) is a power series in (v1, v2) with powers vi
1, vj

2 satisfying i + j ≥ 3.

Consider w1 =
δ2

11
δ20

v1, w2 =
δ3

11
δ20

√
δ20

v2, t =
√

δ20
δ11

τ, then the system (20) becomes

{
dw1
dt = w2,

dw2
dt = υ1(λ1, λ2) + υ2(λ1, λ2)w2 + w2

1 + w1w2 + R(w1, w2, λ),

where υ1(λ1, λ2) =
δ00δ4

11
δ3

20
−

δ2
10δ4

11
4δ4

20
, υ2(λ1, λ2) =

δ01δ11
δ20

−
δ2

11δ10
2δ2

20
, and R(w1, w2, 0) is a power series

in (w1, w2) with powers wi
1, wj

2 satisfying i + j ≥ 3.

Case 2: δ20 < 0, Consider ū1 = z1, ū2 = z2√
−δ20

, dτ =
√
−δ20dt, then system (18) becomes

{
dū1
dτ = ū2,
dū2
dτ = −δ00

δ20
− δ10

δ20
ū1 +

δ01√
−δ20

ū2 − ū1
2 + δ11√

−δ20
ū1ū2 + P̄(ū1, ū2, λ),

(21)

where P̄(ū1, ū2, 0) is a power series in (ū1, ū2) with powers ū1
i, ū2

j satisfying i + j ≥ 3.

Using the affine transformation v̄1 = ū1 +
δ10

2δ20
, v̄2 = ū2, then system (21) becomes


dv̄1
dτ = v̄2,
dv̄2
dτ = − δ00

δ20
+

δ2
10

4δ2
20
+
(

δ01√
−δ20

− δ11δ10
2δ20

√
−δ20

)
v̄2 + v̄1

2 + δ11√
−δ20

v̄1v̄2 + Q̄(v̄1, v̄2, λ),
(22)

where Q(v̄1, v̄2, 0) is a power series in (v̄1, v̄2) with powers v̄1
i, v̄2

j satisfying i + j ≥ 3.
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Consider w̄1 =
δ2

11
δ20

v̄1, w̄2 = −
δ3

11
δ20

√
−δ20

v̄2, t = −
√
−δ20
δ11

τ, then system (22) becomes

{
dw̄1
dt = w̄2,

dw̄2
dt = ῡ1(λ1, λ2) + ῡ2(λ1, λ2)w̄2 + w̄1

2 + w̄1w̄2 + R̄(w̄1, w̄2, λ),
(23)

where ῡ1(λ1, λ2) =
δ00δ4

11
δ3

20
−

δ2
10δ4

11
4δ4

20
, ῡ2(λ1, λ2) =

δ01δ11
δ20

−
δ2

11δ10
2δ2

20
, and R̄(w̄1, w̄2, 0) is a power series

in (w̄1, w̄2) with powers w̄1
i, w̄2

j satisfying i + j ≥ 3.

In order to minimize the number of cases, it is advisable to retain υ1(λ) and υ2(λ) to denote ῡ1(λ),

and ῡ2(λ) in system (23). Moreover, if
∣∣∣ ∂(υ1,υ2)

∂(λ1,λ2)

∣∣∣
λ1=λ2=0

̸= 0, then the parameter transformations

υ1(λ1, λ2) =
δ00δ4

11

δ3
20

−
δ2

10δ4
11

4δ4
20

, υ2(λ1, λ2) =
δ01δ11

δ20
−

δ2
11δ10

2δ2
20

,

and

ῡ1(λ1, λ2) =
δ00δ4

11

δ3
20

−
δ2

10δ4
11

4δ4
20

, ῡ2(λ1, λ2) =
δ01δ11

δ20
−

δ2
11δ10

2δ2
20

,

are topologically equivalent in the vicinity of the origin and υ1, υ2 are independent parameters.
As a result, it can be inferred that the system (13) experiences the Bogdanov-Takens bifurcation
when the values of (λ1, λ2) are within closed proximity to the origin (0, 0), [38]. The following are
the local representations of the bifurcation curves:

1 The Saddle-node bifurcation curve SN = {(υ1, υ2) : υ1 = 0, υ2 ̸= 0}.
2 The Hopf bifurcation curve H = {(υ1, υ2) : υ2 = ±

√
−υ1, υ1 < 0}.

3 The Homoclinic bifurcation curve HL = {(υ1, υ2) : υ2 = ± 5
7
√
−υ1, υ1 < 0}.

6 Numerical simulation

In this section, numerical simulations are provided to validate our analytical findings. We benefited
from MATHEMATICA 10.0 software to draw the phase portrait diagrams for the computations.
We provide a total of six numerical examples, each carefully selected to demonstrate the im-
plications of our analytical results. For these examples, we have chosen specific values for the
ecosystem parameters γ, β, ξ, δ, and θ to ensure that they align with the theoretical findings and
enhance the understanding of the dynamics of the systems.

(1) 
dx
dt = x

(
(1 − x

5 )−
y

1+2.8×0.35+x

)
,

dy
dt = y

(
0.9(x+0.35)

1+2.8×0.35+x − 0.3 − θx
)

.
(24)

System (24) exhibits several equilibrium points depending on parametric conditions. The nature
of these points is explained in Table 1 and is also depicted in Figure 1. A threshold value of the
anti-predator behavior parameter θ = 0.118988 is obtained in Figure 1a and Figure 1b.
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Table 1. Number and nature of equilibrium points (Eps) of the system (24)

Value of θ Conditions Number Existence of Nature of Figure
of Eps Eps Eps

0 < θ < 0.118988 ∆2
2 > ∆3 4 E0 = (0, 0) Saddle 1c

Eγ = (5, 0) Stable
E∗

1 = (1.04319, 2.39244) Unstable
E∗

2 = (2.43136, 2.26624) Saddle
θ = 0.11898 ∆2

2 = ∆3 3 E0 = (0, 0) Saddle 1d
Eγ = (5, 0) Stable

E∗
3 = (1.53127, 2.43593) Unstable saddle-node

θ > 0.11898 ∆2
2 < ∆3 2 E0 = (0, 0) Saddle 1e

Eγ = (5, 0) Globally Stable

Θ = 0.118988
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Figure 1. (a)-(b) Saddle-node bifurcation diagram. (c) θ = 0.11. The equilibrium point E∗
1 is unstable, and E∗

2 is a
saddle. (d) θ = 0.118988. The equilibrium point E∗

3 is an unstable saddle node. (e) θ = 0.12. The predator-free
equilibrium point is globally stable. Ecologically, there is a threshold value of the anti-predator parameter θ

below which species may coexist and above which the predator species go extinct, leading to the collapse of the
system

(2) 
dx
dt = x

(
(1 − x

2 )−
y

1+0.001×0.8+x

)
,

dy
dt = y

(
0.4(x+0.8)

1+0.001×0.8+x − 0.3 − 0.11x
)

.
(25)
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Table 2. Number and nature of equilibrium points (Eqs) of the system (25)

Condition Number of Eqs Existence of Eqs Nature of Eqs Figure
∆1 < 0 3 E0 = (0, 0) Unstable 2

Eγ = (2, 0) Stable
E∗

4 = (0.380454, 1.1185) Saddle

Table 3. Number and nature of equilibrium points (Eqs) of the system (26)

Value of θ Conditions Number of Existence of Nature of Figure
Eqs Eqs Eqs

θ = 0.2 ∆1 = 0, ∆2 > 0, 4 E0 = (0, 0) Unstable 3a
Eγ = (3, 0) Stable

E∗
5 = (1.992, 1.008) Saddle

E∗
6 = (0, 1.02) Unstable saddle node

θ = 0.8 ∆1 = 0, ∆2 < 0, 3 E0 = (0, 0) Unstable 3b
Eγ = (3, 0) Stable

E∗
6 = (0, 1.008) Cusp

System (25) exhibits several equilibrium points depending on the parametric condition. The
nature of these points is explained in Table 2 and is also shown graphically in Figure 2.

E0 EΓ

E4
*

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

x

y

Figure 2. The equilibrium point E0 is unstable, Eγ is stable, and E∗
4 is saddle. Ecologically, the system will

collapse due to the extinction of either the prey or the predator

(3) 
dx
dt = x

(
(1 − x

3 )−
y

1+0.02381×0.336+x

)
,

dy
dt = y

(
0.9(x+0.336)

1+0.02381×0.336+x − 0.3 − θx
)

.
(26)

System (26) exhibits several equilibrium points depending on certain parametric conditions.
The nature of these points is explained in Table 3 and is also shown graphically in Figure 3.

(4) 
dx
dt = x

(
(1 − x

γ )−
y

1+2.8×0.35+x

)
,

dy
dt = y

(
0.9(x+0.35)

1+2.8×0.35+x − 0.3 − 0.11x
)

,
(27)



54 | Mathematical Modelling and Numerical Simulation with Applications, 2025, Vol. 5, No. 1, 38–64

EΓE0

E5
*E6

*

0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5

x

y

(a)

E0 EΓ

E6
*

0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5

x

y

(b)

Figure 3. (a) θ = 0.2. The equilibrium point E0 is unstable, Eγ is globally stable, E∗
5 is a saddle point, and E∗

6 is an
unstable saddle node. (b) θ = 0.8. The equilibrium point E0 is unstable, Eγ is globally stable, and E∗

6 forms a
cusp of co-dimension 2. Ecologically, the system will collapse

Table 4. Number and nature of feasible equilibrium points (Eqs) of the system (27)

Value of γ Existence of Eqs Nature of Eqs Figure
γ = 3.5 E0 = (0, 0) Saddle 4a

Eγ = (3.5, 0) Stable
E∗

1(1.04319, 2.12212) Stable
E∗

2(2.43136, 1.3469) Saddle
γ = 4.06638 E0 = (0, 0) Saddle 4b

Eγ = (4.06638, 0) Stable
E∗

1(1.04319, 2.24762) Stable limit cycle
E∗

2(2.43136, 1.77373) Saddle
γ = 4.61 E0 = (0, 0) Saddle 4c

Eγ = (4.61, 0) Stable
E∗

1(1.04319, 2.33908) Homoclinic loop
E∗

2(2.43136, 2.08477) Saddle
γ = 5 E0 = (0, 0) Saddle 4d

Eγ = (5, 0) Stable
E∗

1(1.04319, 2.39244) Unstable
E∗

2(2.43136, 2.26624) Saddle

The system (27) exhibits several equilibrium points depending on the value of γ. The nature of
these points is explained in Table 4 and is also shown graphically in Figure 4.

(5) 
dx
dt = x

(
(1 − x

γ )−
y

1+2.8×0.35+x

)
,

dy
dt = y

(
0.9(x+0.35)

1+2.8×0.35+x − 0.3 − 0.118988x
)

.
(28)

System (28) exhibits several equilibrium points depending on certain parametric conditions.
The nature of these points is explained in Table 5 and is also shown graphically in Figure 5.
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Figure 4. (a) γ = 3.5. The equilibrium point E∗
1 = (1.04319, 2.12212) is a stable point. (b) γ = γ[h f ] =

4.06638. A stable limit cycle arises around the point E∗
1(1.04319, 2.24762). (c) γ = 4.61. The limit cycle collides

with the saddle point, E∗
2 = (2.43136, 2.08477) and consequently a homoclinic loop arises around the point

E∗
1(1.04319, 2.33908). (d) γ = 5. The equilibrium E∗

1 = (1.04319, 2.39244) is an unstable point. Ecologically, the
system will either stabilise or collapse, contingent upon the parameteric conditions and the initial population of
the species

Table 5. Nature of equilibrium points of the system (28)

Value of γ| Conditions Existence of Nature of Figure

Eqs Eqs
γ = 3 γ < 1 + αξ + 2u∗

1 E0 = (0, 0) Saddle 5a
Eγ = (3, 0) Stable

E∗
3(1.53127, 1.71904) Stable saddle-node

γ = 5.04253 γ = 1 + αξ + 2u∗
1 E0 = (0, 0) Saddle 5b

Eγ = (5.04253, 0) Stable
E∗

3(1.53127, 2.445) Cusp
γ = 5.2 γ > 1 + αξ + 2u∗

1 E0 = (0, 0) Saddle 5c
Eγ = (5.2, 0) Stable

E∗
3 E∗

3(1.53127, 2.47729) Unstable saddle-node

(6) 
dx
dt = x

(
(1 − x

3.2777+λ1
)− y

1+2.5×0.25+x

)
= f1(x, y, λ1),

dy
dt = y

(
0.8(x+0.25)y

1+2.5×0.25+x − 0.2 − (0.183055 + λ2)x
)
= f2(x, v, λ2).

(29)
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Figure 5. (a) γ = 3. The equilibrium point E∗
3(1.53127, 1.71904) is a stable saddle-node. (b) γ = 5.04253.

The equilibrium point E∗
3(1.53127, 2.445) is a cusp of co-dimension 2. (c) γ = 5.2. The equilibrium point

E∗
3(1.53127, 2.47729) is an unstable saddle-node. Ecologically, the system will either stabilise or collapse,

contingent upon the parametric conditions and the initial population of the species

The system (29) has a unique interior equilibrium point E∗
3 = (0.82635, 1.83333). The transfor-

mations U = x − 0.82635, V = y − 1.83333 are used to move the point E∗
3 = (0.82635, 1.83333)

to the origin and next, the affine transformation U1 = U, U2 = α10U + α01V is introduced. The
system (29) shrinks to{

dU1
dt = ξ00 + U2 + ξ20U2

1 + ξ11U1U2 + P̃1(U1, U2),
dU2
dt = µ00 + µ10U1 + µ01U2 + µ20U2

1 + µ11U1U2 + P̃2(U1, U2),
(30)

where ξ00 = 0.82635
(

0.252113− 0.82635
3.2777+λ1

)
, ξ20 = 0.202246− 1

3.2777+λ1
− 0.802203

(
0.504225−

1.6527
3.2777+λ1

)
, ξ11 = 0.802203, µ00 = 0.82635

(
0.504225 − 1.6527

3.2777+λ1

)(
0.252113 − 0.82635

3.2777+λ1

)
+

0.510698λ2, µ10 = 1.833330
(

0.504225− 1.6527
3.2777+λ1

)
λ2 − 0.3371

(
0.335601− 1.83333(0.183055+

λ2)
)

, µ01 = 0.504225 − 1
3.2777+λ1

− 1.83333λ2, µ20 = 0.0461505 − 0.802203
(

0.504225 −

1.6527
3.2777+λ1

)2
+
(

0.504225 − 1.6527
3.2777+λ1

)(
0.202246 − 1

3.2777+λ1

)
−
(

0.504225 − 1.6527
3.2777+λ1

)
(
− 8.32667 × 10−17 − λ2

)
, µ11 = −8.32667 × 10−17 + 0.802203

(
0.504225 − 1.6527

3.2777+λ1

)
− λ2,

and P̃1, P̃2 are the power series in (x1, x2) with powers xi
1, xj

2 satisfying i + j ≥ 3.
Consider the C∞ change of co-ordinates in the close vicinity of (0, 0): V1 = U1, V2 = ξ00 +

U2 + ξ20U2
1 + ξ11U1U2, dt = (1 − γ02V1)dT and Z1 = V1, Z2 = V2(1 − γ02V1) + P̌1(V1, V2)

respectively. The system (30) shrinks to{
dZ1
dt = Z2,

dZ2
dt = δ00 + δ10Z1 + δ01Z2 + δ20Z2

1 + δ11Z1Z2 + P̄2(Z1, Z2),
(31)

where δ00 =
5.48659λ2+4.59973λ1λ2+0.892642λ2

1λ2
(3.2777+λ1)2 ,

δ10 =
6.0311×10−16+3.5065×10−16λ1−0.084269λ2

1+2.23819λ2+4.07424λ1λ2+1.03468λ2
1λ2

(3.2777+λ1)2 ,

δ01 = −4.42835×10−16+0.3371λ1−6.00912λ2−1.83333λ1λ2
3.2777+λ1

,
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Table 6. Nature of equilibrium points

Region Behavior of the region
Region I Number interior points
Region II Two interior points, one is saddle and the other is stable
Region III Two interior points, one is saddle and the other is stable enclosed by a limit cycle
Region IV Two interior points, one is saddle and the other is unstable

δ11 = −0.6742−0.270422λ1+1.54283λ2+0.470705λ1λ2
3.2777+λ1

,

δ20 =
0.49581+0.302535λ1+0.113751λ2

1−10.8827λ2−9.36911λ1λ2−1.84547λ2
1λ2

(3.2777+λ1)2 and P̄2 are the power series

in (z1, z2) with powers zi
1, zj

2 satisfying i + j ≥ 3. Thus δ20 = 0.0461505 > 0. By using the
following three transformations:

(i) u1 = Z1, u2 = Z2√
δ20

, dτ =
√

δ20dt,

(ii) v1 = u1 +
δ10

2δ20
, v2 = u2,

(iii) w1 =
δ2

11
δ20

v1, w2 =
δ3

11
δ20

√
δ20

v2, t =
√

δ20
δ11

τ,

system (31) shrinks to{
dw1
dt = w2,

dw2
dt = υ1(λ1, λ2) + υ2(λ1, λ2)w2 + w2

1 + w1w2 + R(w1, w2, λ),

where υ1(λ1, λ2) =
δ00δ4

11
δ3

20
−

δ2
10δ4

11
4δ4

20
and υ2(λ1, λ2) =

δ01δ11
δ20

−
δ2

11δ10
2δ2

20
. The determinant of the ma-

trix
[

∂(υ1,υ2)
∂(λ1,λ2)

]
= −5.35162 × 10−6 ̸= 0. The rank of matrix

[
∂(υ1,υ2)
∂(λ1,λ2)

]
λ1=λ2=0

is 2 as a result,

υ1(λ1, λ2) =
δ00δ4

11
δ3

20
−

δ2
10δ4

11
4δ4

20
, υ2(λ1, λ2) =

δ01δ11
δ20

−
δ2

11δ10
2δ2

20
are non-singular parameter transforma-

tions. In the λ1λ2 plane, the three bifurcation curves separate the local neighborhood of the
BT-bifurcation point (0, 0) into four distinct regions: Region I, Region I I, Region I I I, and Region
IV, as illustrated in Figure 6a. The saddle-node bifurcation curve is represented in red, the Hopf
bifurcation curve in blue, and the homoclinic bifurcation curve in green. The system (29) has a
unique interior equilibrium point that is a cusp of co-dimension 2 when λ1 = 0 = λ2, as seen in
Figure 6b. When the values of λ1 and λ2 vary and they belong to region I, the predator species
in this region are likely to face extinction due to the absence of an interior equilibrium point,
as seen in Figure 6c. When the values of λ1 and λ2 belong to region I I, there are two interior
equilibrium points. Among these equilibrium points, one exhibits the characteristics of a saddle,
while the other demonstrates stability. Therefore, it can be inferred that the initial population
size will play a crucial role in determining the possibility of the coexistence of the two species
or the ultimate extinction of the predator species, as seen in Figure 6d. When the values of λ1
and λ2 belong to the region I I I, the stable equilibrium point loses its stability, and a stable limit
cycle emerges around this point. Therefore, it can be inferred that the initial population size
will play a crucial role in determining the possibility of oscillation, or the predator species tends
to become extinct as seen in Figure 6e . When the values of λ1 and λ2 belong to the region IV,
the limit cycle will disappear and there will be an unstable focus and saddle point. Therefore, it
can be inferred that the predator species go extinct, as seen in Figure 6f.
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Figure 6. (a) Bifurcation diagram of the model (3). The saddle-node bifurcation curve is shown in red, the Hopf
bifurcation curve in blue, and the homoclinic bifurcation curve in green. (b) The unique interior equilibrium
point E∗

3 , when λ1 = λ2 = 0 is a cusp of co-dimension 2. (c) When (λ1, λ2) = (−0.3, 0.0003) lies in region I, the
system (3) has no interior equilibrium point and the equilibrium point Eγ is globally asymptotically stable. (d)
When (λ1, λ2) = (−0.3,−0.002) lies in the region I I, system (3) has two interior equilibrium points. One is a
saddle, while the other is stable. (e) When (λ1, λ2) = (−0.3,−0.004) lies in the region I I I, a stable limit cycle
enclosing an interior point, and the other interior point is a saddle, system (3) has two interior equilibrium points.
(f) When (λ1, λ2) = (−0.3,−0.0048) lies in the region IV, system (3) has two interior equilibrium points: one is a
saddle, while the other is an unstable one. Ecologically, system (3) is highly sensitive to the parameters θ and γ.
A slight variation in these parameters can lead to significant changes in the system’s dynamics, such as species
coexistence, coexistence through oscillations, or the extinction of the predator species
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7 Impact of Anti-predator behavior

The proposed model (3) without anti-predator behavior has been analyzed by Srinivasu et al.
[8]. The authors observed some interesting results, which are very important from an ecological
point of view. In this section, we aim to discuss how the anti-predator parameter θ affects the
dynamics of the proposed system. In Figure 7a, Figure 7b, Figure 7c and Figure 7d we have
depicted the region of coexistence. In Figure 7a, only parameters θ (anti-predator) and ξ (quantity
of additional food) are allowed to vary. In Figure 7b, only parameters θ (anti-predator) and α

(quality of additional food) are allowed to vary. In Figure 7c, only parameters θ (anti-predator) and
δ (ratio of the predator’s mortality rate and prey growth rate) are allowed to vary. In Figure 7d,
only parameters θ (anti-predator) and parameter β (ratio of nutritional value of prey to the product
of prey’s handling time and prey growth rate) are allowed to vary. These graphs play a vital role
in examining the range of parameter θ as the other parameters vary. In Figure 8, we have plotted
the time series solution graphs where all the parameters of the model are fixed except θ. It can be
observed that as θ increases, the periodicity of solutions decreases, and eventually, the solutions
become non-periodic solutions.
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Figure 7. (a)− (b) In region I, predator extinction will occur, while in region I I prey and predator will coexist.
(c) In region I, either one interior equilibrium point or two axial equilibrium points will exist, while in the region
I I, two interior and two axial equilibrium points will exist. In region I I I, only one axial equilibrium point will
exist. (d) In region I, one interior and two axial equilibrium points will exist. There are two interiors and two
axial equilibrium points on the boundary of regions I and I I. In region I I, there are two interior and two axial
equilibrium points. One interior and two axial equilibrium points will exist on the boundary of I I and I I I regions
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Figure 8. Consider α = 2.8, β = 0.9, γ = 4.06638, δ = 0.3. Time series solution graph fo the system (3) for
different values of rate of anti-predator behavior parameter θ (a) θ = 0.01. (b) θ = 0.05. (c) θ = 0.1. (d) θ = 0.11.
For small values of θ, the solutions are periodic; however, as θ grows, the period of the solutions diminishes,
ultimately leading to the collapse of the periodic solution. Ecologically, both species coexist when θ is small, as θ

increases, the predator species will face extinction

8 Conclusion

A qualitative study that considers all factors reveals the model’s intriguing, complicated, and
diverse dynamics. This manuscript has studied the qualitative analysis of an additional food-
provided predator-prey system in the presence of an anti-predator behavior. After developing
the model equations and establishing the positivity and boundedness of its solution, we have
discussed both theoretically and numerically the local stability of the system around various
equilibrium points. It is observed that the system (3) with an anti-predator behavior has at most
four equilibrium points, consisting of trivial, predator-free, and interior equilibrium points. It is
observed that the trivial equilibrium point will never be stable. Ecologically, it can be stated that
the two species cannot go extinct together. Depending on parametric restrictions, the predator-free
equilibrium point can be asymptotically stable, or it shows a saddle point. Ecologically, it can
be stated that prey species will never go extinct, regardless of the initial population density, but
predator species can go extinct under some restrictions. If there are two interior equilibrium points,
one will be a saddle point, and the other will be asymptotically stable, unstable, or a stable limit
cycle will appear around it, depending on some restrictions. Ecologically, it can be stated that
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there is the possibility of coexistence of the species, prey extinction, or oscillation. The system
depicts a threatening behavior, bistability, under certain parametric conditions, which indicates
the system’s sensitivity to initial populations. From an ecological perspective, it may be argued
that the long-term survival of a species is contingent upon the size of its original population.
The model displays numerous types of bifurcations, such as saddle-node, Hopf, and BT bifurca-
tions. These bifurcations are an essential part of qualitative analysis and have several ecological
consequences. It is observed that the parameters representing the rate of anti-predator behavior
of adult prey to predators and the quality and quantity of supplementary food significantly
impact the emergence of these bifurcations. If the parameter θ surpasses a specific critical value,
model (3) experiences a saddle-node bifurcation, leading to the possibility of zero, one, or two
positive interior equilibrium points. As a result, a critical threshold value of θ emerges, below
which the coexistence of both populations is possible and beyond which the predator species
becomes extinct. Moreover, the manifestation of a limit cycle through Hopf bifurcation has been
shown, and the first Lyapunov number can establish the stability of this limit cycle. We have
used numerical simulation to indicate that the convergence of a saddle point and a limit cycle
might potentially lead to the emergence of homoclinic loops. The system (3) is shown to undergo
Bogdanov-Takens bifurcation by selecting the parameters that represent the carrying capacity
and the adult prey’s anti-predator behavior. Ecologically, it can be stated that certain regions
will emerge that exhibit unique qualitative behavior, such as the coexistence of predators and
prey in a positive equilibrium state, their coexistence by oscillations, or the eventual extinction
of predator species. This study posits that the presence of anti-predator behavior plays a pivotal
role in influencing the interactions within a predator-prey system with access to additional food
supplies.
This study examined the effects of anti-predator behavior within a two-species predator-prey
model. Future research could explore the implications of anti-predator behaviour in ecological
systems comprising three or more species, where investigations may assess how anti-predator
strategies affect the stability and dynamics of multi-species ecosystems, potentially leading to
more complex interactions and behaviours.
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Abstract
This research investigates a fractional-order mathematical model for analyzing the dynamics of
Monkeypox (Mpox) disease using the Caputo-Fabrizio derivative. The model incorporates both
human and rodent populations, aiming to elucidate the disease’s transmission mechanics, which
is demonstrated to be more effective than integer-order models in capturing the complex nature of
disease spread. The study determines the fundamental reproduction number (R0) while assessing the
existence and uniqueness of the solutions. Numerical simulations are conducted to validate the model
using Adams-Bashforth technique and illustrate the influence of different factors on the progression of
the disease. The findings shed light on Mpox control and prevention, emphasizing the importance of
fractional calculus in epidemiological modeling.

Keywords: Adams-Bashforth technique; Caputo-Fabrizio derivative; existence and uniqueness; fixed
point theorem; monkeypox virus

AMS 2020 Classification: 26A33; 92B05; 92D30; 92C50

1 Introduction

Monkeypox (Mpox) is a viral zoonotic disease that is transmitted between animals and humans,
caused by the Mpox virus. This infection mostly occurs in Central and West Africa. Mpox became
a significant orthopoxvirus for human health in 1980, after the eradication of smallpox infection.
The first occurrence of this virus outside African nations was documented in 2003 in the United
States. Afterwards, several instances of Mpox infection were recorded in countries across Africa
and Europe [1]. In May 2022, the presence of the pathogen was verified in other nonendemic
regions. The World Health Organization (WHO) received reports of about 3413 confirmed cases
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and 1 fatality case from 50 countries/territories. Mpox is transmitted zoonotically from animals to
humans [2]. Typically, the hosts in animals include a variety of rodents and non-human primates.
The transmission of the virus may occur via interpersonal contact, particularly by droplets emitted
during conversation, respiration, or sneezing. Additionally, it may be transferred by sexual contact
with an individual who is contagious. Mpox may potentially be transmitted via the environment
[3]. Wild animals, such as African rats and monkeys, are the primary sources of viral transmission
to humans. Nevertheless, there is a high occurrence of human-to-human transmissions in the
majority of the documented instances. Spreading diseases from animals to humans can occur
through various mechanisms, including bites or scuffs the handling and consumption of bush
meat, direct contact with body fluids, or the ingestion of food contaminated by rodents. The
illness may be transmitted by direct contact with lesions and body fluids of infected individuals.
Smallpox vaccination, antivirals, and vaccine immune globulin may serve as alternatives for
preventing the transmission of Mpox. However, there is presently no established and reliable
therapy for Mpox virus infection [4]. Mathematical models are crucial and have been widely used
to examine the dynamics and provide effective ways to eliminate infectious illnesses from society
[5, 6]. Those frameworks analyze quantitative aspects of the circumstance. Several epidemiological
characteristics of Mpox infection are currently being studied [7, 8]. Ongoing research is being
conducted to further investigate the transmission and treatment of this virus. Venkatesh et al. [9]
established numerical method using new time fractional model for the Mpox. Also, Manivel et al.
[10] developed a fractional mathematical modeling in humans and rodents for the Mpox disease.
The numerical simulation indicates that individuals’ immunological state has a significant role
in their recovery process after orthopoxvirus infection. Several mathematical models [11] have
been examined to enhance comprehension of the transmission dynamics and various strategies
for managing endemic diseases.
The fractional modeling works synthesizes advanced mathematical modeling approaches to
address epidemiological challenges by integrating key concepts from fractional-order models
and stability analysis [12]. A mathematical model of mobility-related infection and vaccination
is extended to consider the dynamics of SARS-CoV-2 through a Fractional SIQRV framework,
emphasizing the role of fractional derivatives in capturing memory effects and complex dynamics
[13]. Simultaneously, insights from a fractional-order model designed to analyze stability and
propose sterilization strategies for the habitat of stray dogs are leveraged to develop holistic
and adaptive intervention strategies [14]. Meanwhile, the SIR model with constrained medical
resources and time delay examines the dynamics of healthcare system capacity and the impact of
delayed interventions on disease progression [15]. This unified approach underscores the utility
of fractional-order systems in understanding infection dynamics, vaccination impact, and the
stability of populations, offering innovative solutions to pressing public health issues.
The primary motivation for this study arises from the increasing prevalence of Mpox infections
outside traditionally endemic regions, underscoring the need for advanced mathematical tools
to understand and predict the dynamics of its spread. Unlike classical integer-order models,
fractional-order models can capture the memory effects and complex dynamics intrinsic to bi-
ological processes. This unique advantage provides a more accurate representation of Mpox’s
epidemiological patterns, which is crucial for effective disease control and prevention.
To enhance comprehension of the dynamics of Mpox, [16] formulated a mathematical model.
The results indicate that Mpox may be effectively managed and eliminated by using vaccination
strategies, even in regions where the disease is moderately prevalent. However, vaccination alone
is insufficient to completely eliminate Mpox in a population that is already totally endemic [17]. In
addition, the research conducted by [18] found that the recommended treatments resulted to the
eradication of infected individuals in both human and non-human primate populations over the
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study period, as shown by numerical simulations done on the model. Scientists and engineers from
several fields have lately shown interest in using fractional differential equations for mathematical
modeling, especially in the field of epidemiology. The memory effect is a fascinating characteristic
of fractional-order framework that is absent in classical differential equations because of the
diverse features of equations with fractions.
All Mpox transmission models currently in use solely account for transfer from animals to humans.
There have been recent reports of transfer from humans to rodents. Based on the recent facts,
in this paper, we develop the Mpox transmission model with animal-to-human transmission of
infection. The aim of this research is to examine the spread and management of Mpox in the
population by employing a classical and fractional-order model. Additionally, the study aims to
examine the impact of the memory index or fractional order element on the dynamics of Mpox
disease and determine whether it can be utilized as a control parameter.
The subsequent sections of the paper are structured as follows: Section 2 discusses model formula-
tions and analyses of the Mpox model. Findings on the existence and uniqueness of the model
variable are elaborated in Section 3. Section 4 delineates the equilibrium and reproduction number
with the parameters affecting R0. Section 5 illustrates a numerical technique using the Adams-
Bashforth method. Section 6 includes the quantitative simulations and discussions pertaining to
the model. Section 7 presents a succinct conclusion.

Preliminaries

This section presents the essential foundational materials concerning fractional order operators.

Definition 1 [19] The fractional derivative in the Caputo-Fabrizio (CF) sense for the function H ∈
M1(a, b), b > a, δ ∈ [0, 1] is characterized as

Dδ
t {H(t)} =

M(δ)

1 − δ

∫ t

a
H

′
(s) exp

(
−

δ(t − s)
1 − δ

)
ds. (1)

M(δ) is the normalized function that meets the criteria M(0) = M(1) = 1 [19]. In the scenario where
H /∈ M1(a, b) the aforementioned CF derivative can be articulated as

Dδ
t {H(t)} =

δM(δ)

1 − δ

∫ t

a
(H(t)− H(s)) exp

(
−

δ(t − s)
1 − δ

)
ds. (2)

Remark 1 If α = 1−δ
δ ∈ [0,∞), δ = 1

1+α ∈ [0, 1], then Eq. (2) this can be written:

Dα
t {H(t)} =

Nα

δ

∫ t

a
H

′
(s) exp

[
−

t − s
α

]
ds, N(0) = N(∞) = 1. (3)

Moreover,

lim
α→0

1
α

exp
[
−

t − s
α

]
= τ(s − t).

The integral that is related to the CF derivative is described as follows [20]. The initial function H(t) is
assumed to satisfy the regularity conditions required for the application of the CF derivative. Specifically,
H(t) is considered to be a member of M1(a, b), ensuring it possesses the necessary smoothness and
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boundedness over the interval of interest. Moreover, the model presumes that the initial conditions
H(t0) = H0 align with the physical or epidemiological study.

Definition 2 While t > 0 and M(δ) indicates the normalization function, In such a way that M(1) =
0 = M(0). It is presumed that 0 < δ < 1 and H(t), is dependent on t, then the Riemann-Liouville
fractional crucial of order δ is characterized as

RL Iδ
0,t{H(t)} =

1
Γ(δ)

∫ t

0
(t − s)δ−1H(s)ds,

the Caputo-Fabrizio integral of order δ is expressed as

CF Iδ
0,t{H(t)} =

2(1 − δ)H(t)
(2 − δ)M(δ)

+
2δ

(2 − δ)M(δ)

∫ t

0
H(s)ds, (4)

where t ≥ 0.

2 Mpox model formulation

In order to create the model, the complete human population Nm divided into six distinct cate-
gories, namely susceptible Sm, exposed Em, infected Im, asymptomatically-ill Am, vaccinated Vm,
and recovered humans Rm. Likewise, the total rodent population is Na. It is further separated into
three distinct categories, namely susceptible Sa, exposed Ea, and infected rodent Ia groups.
The initiation of the susceptible human class occurs through two mechanisms: either by birth or
through the immigration of susceptible individuals at a specified rate Πm and from the vaccinated
population following the decline of the induced immunity at a specified rate τ. The natural death
rate declines throughout human classes µ1. The group of individuals susceptible to infection is
diminished as a result of vaccination at the specified rate αm and as a result of the interaction with
infected humans and animals. Consequently, the individuals who are susceptible transition to the

exposed category at the rate of infection force λ1 depicts as: λ1 =
(

β1 Im+β2 Ia+β3 Am
Nm

)
.

The interaction terms in the model are derived from fundamental epidemiological principles.
These terms capture the probabilistic nature of contacts leading to disease transmission. The force
of infection for the human population λ1 includes β1 Im+β2 Ia+β3 Am

Nm
, where the numerators represent

interactions between susceptible and infectious individuals across compartments, scaled by their
respective contact rates. These interactions reflect real-world dynamics, where direct or indirect
contacts between infected and susceptible humans lead to new exposures.
The choice to multiply these variables ensures that the rate of new infections is proportional
to the number of infectious individuals, their contact rates, and the availability of susceptible
individuals. Exposed individuals transition to either asymptomatic or symptomatic infectious
states (Em → Am, Im) based on progression rates (k(1 − ρ) and kρ respectively). It is emphasized
that the interactions in the model occur via rates that represent indirect effects (e.g., disease
transmission or recovery) rather than direct inter-compartmental mixing. This separation ensures
that the model accurately depicts real-world disease transmission while maintaining mathematical
and conceptual simplicity. The parameters β1, β2, and β3 are the effective contact rates. The
group of susceptible animals, which includes primates or rodents, is established through the
incorporation of newly enlisted animals Πa. The number of individuals in the susceptible class
decreases as a result of two key factors: The phrase λ2 = β4 Ia

Na
, it considers the connection among

vulnerable animals (primates or rats) and infected ones, as well as the natural mortality rate µ2.
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Consequently, the system illustrating the spreading processes of Mpox in both populations is as
described below:

dSm

dt
= Πm − λ1Sm − (µ1 + αm)Sm + τVm,

dEm

dt
= λ1Sm − (k + µ1)Em,

dAm

dt
= k(1 − ρ)Em − (γ1 + µ1 + η1)Am,

dIm

dt
= kρEm − (γ2 + µ1 + η2)Im,

dVm

dt
= αmSm − (τ + µ1)Vm,

dRm

dt
= γ1 Am + γ2 Im − µ1Rm,

dSa

dt
= Πa − λ2Sa − µ2Sa,

dEa

dt
= λ2Sa − (π + µ2)Ea,

dIa

dt
= πEa − (µ2 + η3)Ia.

(5)

The flowchart of the problem explained in system (5) is given in the following Figure 1.
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𝜇1 + 𝜂1

𝜇2
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𝜇2 + 𝜂3

𝜇2

Figure 1. Graphical representation of Mpox model

The Caputo fractional derivative was used for this investigation because it accommodates initial
conditions articulated in integer-order derivatives, which is consistent with the majority of physical
and epidemiological issues. In contrast to Riemann-Liouville derivatives, the Caputo derivative
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permits the direct integration of real-world initial conditions, hence enhancing the intuitive and
practical use of fractional calculus in modeling infectious disease dynamics. The Caputo operator
is well suited for numerical approaches, guaranteeing stability and precision in simulations, which
is essential for accurately portraying the intricate memory effects of Mpox transmission. The
memory effects, characterized by the non-local properties of the Caputo derivative, provide a more
thorough comprehension of disease dynamics compared to integer-order models. In addition,
unlike the CF derivative, which emphasizes exponential decay, the classical Caputo derivative
provides versatility in characterizing long-range temporal interactions inherent to epidemiological
phenomena. Replacing the integer order model (5) with non-integer order in CF operator with
each differential equation’s dimension maintained as stated:

CFDδ
0,t(Sm(t)) = Πm − λ1Sm − (µ1 + αm)Sm + τVm,

CFDδ
0,t(Em(t)) = λ1Sm − (k + µ1)Em,

CFDδ
0,t(Am(t)) = k(1 − ρ)Em − (γ1 + µ1 + η1)Am,

CFDδ
0,t(Im(t)) = kρEm − (γ2 + µ1 + η2)Im,

CFDδ
0,t(Vm(t)) = αmSm − (τ + µ1)Vm,

CFDδ
0,t(Rm(t)) = γ1 Am + γ2 Im − µ1Rm,

CFDδ
0,t(Sa(t)) = Πa − λ2Sa − µ2Sa,

CFDδ
0,t(Ea(t)) = λ2Sa − (π + µ2)Ea,

CFDδ
0,t(Ia(t)) = πEa − (µ2 + η3)Ia,

(6)

with regard to the initial conditions involved in system (6) are Sm(0) = Sm0, Em(0) = Em0, Am(0) =
Am0, Im(0) = Im0, Vm(0) = Vm0, Rm(0) = Rm0, Sa(0) = Sa0, Ea(0) = Ea0, Ia(0) = Ia0.

3 Model analysis in the fractional case

We will examine fundamental mathematical elements of the Mpox compartmental epidemiological
model in fractional form as outlined in (6).

Existence and uniqueness

This section will demonstrate the outcome of the fractional-order model (6) through an analysis
of fixed point hypothesis. This is achieved by reformulating the fractional-order differential
equations as integral equations and verifying the Lipschitz conditions for all model kernels. We
will additionally demonstrate the uniqueness of the remedy. To achieve this, the initial step
involves converting the proposed fractional order system into a corresponding integral equation
structure as follows:

Sm(t)− Sm(0) = CF Iδ
0,t{Πm − λ1Sm − (µ1 + αm)Sm + τVm},

Em(t)− Em(0) = CF Iδ
0,t{λ1Sm − (k + µ1)Em},

Am(t)− Am(0) = CF Iδ
0,t{k(1 − ρ)Em − (γ1 + µ1 + η1)Am},

Im(t)− Im(0) = CF Iδ
0,t{kρEm − (γ2 + µ1 + η2)Im},

Vm(t)− Vm(0) = CF Iδ
0,t{αmSm − (τ + µ1)Vm}, (7)

Rm(t)− Rm(0) = CF Iδ
0,t{γ1 Am + γ2 Im − µ1Rm},

Sa(t)− Sa(0) = CF Iδ
0,t{Πa − λ2Sa − µ2Sa},
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Ea(t)− Ea(0) = CF Iδ
0,t{λ2Sa − (π + µ2)Ea},

Ia(t)− Ia(0) = CF Iδ
0,t{πEa − (µ2 + η3)Ia}.

Through the implementation of CF fractional order integrating [20], one can acquire

Sm(t)− Sm(0) =
2(1 − δ)

(2 − δ)M(δ)
J1(t, Sm) +

2δ

(2 − δ)M(δ)

∫ t

0
J1(x, Sm)dx,

Em(t)− Em(0) =
2(1 − δ)

(2 − δ)M(δ)
J2(t, Em) +

2δ

(2 − δ)M(δ)

∫ t

0
J2(x, Em)dx,

Am(t)− Am(0) =
2(1 − δ)

(2 − δ)M(δ)
J3(t, Am) +

2δ

(2 − δ)M(δ)

∫ t

0
J3(x, Am)dx,

Im(t)− Im(0) =
2(1 − δ)

(2 − δ)M(δ)
J4(t, Im) +

2δ

(2 − δ)M(δ)

∫ t

0
J4(x, Im)dx,

Vm(t)− Vm(0) =
2(1 − δ)

(2 − δ)M(δ)
J5(t, Vm) +

2δ

(2 − δ)M(δ)

∫ t

0
J5(x, Vm)dx,

Rm(t)− Rm(0) =
2(1 − δ)

(2 − δ)M(δ)
J6(t, Rm) +

2δ

(2 − δ)M(δ)

∫ t

0
J6(x, Rm)dx,

Sa(t)− Sa(0) =
2(1 − δ)

(2 − δ)M(δ)
J7(t, Sa) +

2δ

(2 − δ)M(δ)

∫ t

0
J7(x, Sa)dx,

Ea(t)− Ea(0) =
2(1 − δ)

(2 − δ)M(δ)
J8(t, Ea) +

2δ

(2 − δ)M(δ)

∫ t

0
J8(x, Ea)dx,

Ia(t)− Ia(0) =
2(1 − δ)

(2 − δ)M(δ)
J9(t, Ia) +

2δ

(2 − δ)M(δ)

∫ t

0
J9(x, Ia)dx.

We assume kernels as determined by

J1(Sm(t), t) = Πm − λ1Sm − (µ1 + αm)Sm + τVm,

J2(Em(t), t) = λ1Sm − (k + µ1)Em,

J3(Am(t), t) = k(1 − ρ)Em − (γ1 + µ1 + η1)Am,

J4(Im(t), t) = kρEm − (γ2 + µ1 + η2)Im,

J5(Vm(t), t) = αmSm − (τ + µ1)Vm,

J6(Rm(t), t) = γ1 Am + γ2 Im − µ1Rm,

J7(Sa(t), t) = Πa − λ2Sa − µ2Sa,

J8(Ea(t), t) = λ2Sa − (π + µ2)Ea,

J9(Ia(t), t) = πEa − (µ2 + η3)Ia.

(8)

Theorem 1 The kernels J1, J2, J3, J4, J5, J6, J7, J8, and J9 meet the Lipschitz criteria.

Proof Let us imagine that Sm and Sm1 , Em and Em1 , Am and Am1 , Im and Im1 , Vm and Vm1 , Rm
and Rm1 , Sa and Sa1 , Ea and Ea1 , Ia and Ia1 , represents the two functions corresponding to the
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aforementioned kernels J1, J2, J3, J4, J5, J6, J7, J8, and J9. Thus, we set up the subsequent system

J1(Sm(t), t)− J1(Sm1(t), t) =− λ1(Sm(t)− Sm1(t))− (µ1 + αm)(Sm(t)− Sm1(t))

+ τ(Vm(t)− Vm1(t)),

J2(Em(t), t)− J2(Em1(t), t) =λ1(Sm(t)− Sm1(t))− (k + µ1)(Em(t)− Em1(t)),

J3(Am(t), t)− J3(Am1(t), t) =k(1 − ρ)(Em(t)− Em1(t))− (γ1 + µ1 + η1)(Am(t)− Am1(t)),

J4(Im(t), t)− J4(Im1(t), t) =kρ(Em(t)− Em1(t))− (γ2 + µ1 + η2)(Im(t)− Im1(t)),

J5(Vm(t), t)− J5(Vm1(t), t) =αm(Sm(t)− Sm1(t))− (τ + µ1)(Vm(t)− Vm1(t)),

J6(Rm(t), t)− J6(Rm1(t), t) =γ1(Am(t)− Am1(t)) + γ2(Im(t)− Im1(t))

− µ1(Rm(t)− Rm1(t)),

J7(Sa(t), t)− J7(Sa1(t), t) =− (λ2 + µ2)(Sa(t)− Sa1(t)),

J8(Ea(t), t)− J8(Ea1(t), t) =λ2Sa(t)− Sa1(t))− (π + µ2)(Ea(t)− Ea1(t)),

J9(Ia(t), t)− J9(Ia1(t), t) =π(Ea(t)− Ea1(t))− (µ2 + η3)(Ia(t)− Ia1(t)).

By applying Cauchy’s inequality to the aforementioned system, it is possible to derive

∥J1(Sm(t), t)− J1(Sm1(t), t)∥ = ∥− λ1(Sm(t)− Sm1(t))− (µ1 + αm)(Sm(t)− Sm1(t))

+ τ(Vm(t)− Vm1(t))∥
≤ ∥λ1 + µ1 + αm∥∥(Sm(t)− Sm1(t))∥,

∥J2(Em(t), t)− J2(Em1(t), t)∥ = ∥λ1(Sm(t)− Sm1(t))− (k + µ1)(Em(t)− Em1(t))∥
≤ ∥λ1 + k + µ1∥∥Em(t)− Em1(t))∥,

∥J3(Am(t), t)− J3(Am1(t), t)∥ = ∥k(1 − ρ)(Em(t)− Em1(t))− (γ1 + µ1 + η1)(Am(t)− Am1(t))∥
≤ ∥k(1 − ρ) + γ1 + µ1 + η1∥∥(Am(t)− Am1(t))∥,

∥J4(Im(t), t)− J4(Im1(t), t)∥ = ∥kρ(Em(t)− Em1(t))− (γ2 + µ1 + η2)(Im(t)− Im1(t))∥
≤ ∥kρ + γ2 + µ1 + η2∥∥(Im(t)− Im1(t))∥,

∥J5(Vm(t), t)− J5(Vm1(t), t)∥ = ∥αm(Sm(t)− Sm1(t))− (τ + µ1)(Vm(t)− Vm1(t))∥
≤ ∥αm + τ + µ1∥∥(Vm(t)− Vm1(t))∥,

∥J6(Rm(t), t)− J6(Rm1(t), t)∥ = ∥γ1(Am(t)− Am1(t)) + γ2(Im(t)− Im1(t))

− µ1(Rm(t)− Rm1(t))∥
≤ ∥γ1 + γ2 + µ1∥∥(Rm(t)− Rm1(t))∥,

∥J7(Sa(t), t)− J7(Sa1(t), t)∥ = ∥− (λ2 + µ2)(Sa(t)− Sa1(t))∥
≤ ∥λ2 + µ2∥∥Sa(t)− Sa1(t))∥,

∥J8(Ea(t), t)− J8(Ea1(t), t)∥ = ∥λ2Sa(t)− Sa1(t))− (π + µ2)(Ea(t)− Ea1(t))∥
≤ ∥λ2 + π + µ2∥∥(Ea(t)− Ea1(t))∥,

∥J9(Ia(t), t)− J9(Ia1(t), t)∥ = ∥π(Ea(t)− Ea1(t))− (µ2 + η3)(Ia(t)− Ia1(t))∥
≤ ∥π + µ2 + η3∥∥(Ia(t)− Ia1(t))∥.

Employing the definition of the CF fractional integral, recursively, one may obtain
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Sm(t) =
2(1 − δ)J1(Smn−1(t), t)

(2 − δ)M(δ)
+

2δ

(2 − δ)M(δ)

∫ t

0
J1(Smn−1(s), s)ds,

Em(t) =
2(1 − δ)J2(Emn−1(t), t)

(2 − δ)M(δ)
+

2δ

(2 − δ)M(δ)

∫ t

0
J2(Emn−1(s), s)ds,

Am(t) =
2(1 − δ)J3(Amn−1(t), t)

(2 − δ)M(δ)
+

2δ

(2 − δ)M(δ)

∫ t

0
J3(Amn−1(s), s)ds,

Im(t) =
2(1 − δ)J4(Imn−1(t), t)

(2 − δ)M(δ)
+

2δ

(2 − δ)M(δ)

∫ t

0
J4(Imn−1(s), s)ds,

Vm(t) =
2(1 − δ)J5(Vmn−1(t), t)

(2 − δ)M(δ)
+

2δ

(2 − δ)M(δ)

∫ t

0
J5(Vmn−1(s), s)ds,

Rm(t) =
2(1 − δ)J6(Rmn−1(t), t)

(2 − δ)M(δ)
+

2δ

(2 − δ)M(δ)

∫ t

0
J6(Rmn−1(s), s)ds,

Sa(t) =
2(1 − δ)J7(San−1(t), t)

(2 − δ)M(δ)
+

2δ

(2 − δ)M(δ)

∫ t

0
J7(San−1(s), s)ds,

Ea(t) =
2(1 − δ)J8(Ean−1(t), t)

(2 − δ)M(δ)
+

2δ

(2 − δ)M(δ)

∫ t

0
J8(Ean−1(s), s)ds,

Ia(t) =
2(1 − δ)J9(Ean−1(t), t)

(2 − δ)M(δ)
+

2δ

(2 − δ)M(δ)

∫ t

0
J9(Ian−1(s), s)ds.

(9)

The utilization of norms the concept of majorizing indicates that the variance among successive
terms suggests

∥Kn(t)∥ = ∥Smn(t)− Sm1,n−1∥ ≤ 2(1 − δ)

(2 − δ)M(δ)
∥J1(Smn−1(t), t)− J1(Sm1,n−2(t), t)∥

+
2δ

(2 − δ)M(δ)

∥∥∥∥∥
∫ t

0
[J1(Smn−1(s), s)− J1(Sm1,n−2(s), s)]ds

∥∥∥∥∥,

∥Ln(t)∥ = ∥Emn(t)− Em1,n−1∥ ≤ 2(1 − δ)

(2 − δ)M(δ)
∥J2(Emn−1(t), t)− J2(Em1,n−2(t), t)∥

+
2δ

(2 − δ)M(δ)

∥∥∥∥∥
∫ t

0
[J2(Emn−1(s), s)− J2(Em1,n−2(s), s)]ds

∥∥∥∥∥,

∥Mn(t)∥ = ∥Amn(t)− Am1,n−1∥ ≤ 2(1 − δ)

(2 − δ)M(δ)
∥J3(Amn−1(t), t)− J3(Am1,n−2(t), t)∥

+
2δ

(2 − δ)M(δ)

∥∥∥∥∥
∫ t

0
[J3(Amn−1(s), s)− J3(Am1,n−2(s), s)]ds

∥∥∥∥∥,
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∥Nn(t)∥ = ∥Imn(t)− Im1,n−1∥ ≤ 2(1 − δ)

(2 − δ)M(δ)
∥J4(Imn−1(t), t)− J4(Im1,n−2(t), t)∥

+
2δ

(2 − δ)M(δ)

∥∥∥∥∥
∫ t

0
[J4(Imn−1(s), s)− J4(Im1,n−2(s), s)]ds

∥∥∥∥∥,

∥On(t)∥ = ∥Vmn(t)− Vm1,n−1∥ ≤ 2(1 − δ)

(2 − δ)M(δ)
∥J5(Vmn−1(t), t)− J5(Vm1,n−2(t), t)∥

+
2δ

(2 − δ)M(δ)

∥∥∥∥∥
∫ t

0
[J5(Vmn−1(s), s)− J5(Vm1,n−2(s), s)]ds

∥∥∥∥∥,

∥Pn(t)∥ = ∥Rmn(t)− Rm1,n−1∥ ≤ 2(1 − δ)

(2 − δ)M(δ)
∥J6(Rmn−1(t), t)− J6(Rm1,n−2(t), t)∥

+
2δ

(2 − δ)M(δ)

∥∥∥∥∥
∫ t

0
[J6(Rmn−1(s), s)− J6(Rm1,n−2(s), s)]ds

∥∥∥∥∥,

∥Xn(t)∥ = ∥San(t)− Sa1,n−1∥ ≤ 2(1 − δ)

(2 − δ)M(δ)
∥J7(San−1(t), t)− J7(Sa1,n−2(t), t)∥

+
2δ

(2 − δ)M(δ)

∥∥∥∥∥
∫ t

0
[J7(San−1(s), s)− J7(Sa1,n−2(s), s)]ds

∥∥∥∥∥,

∥Yn(t)∥ = ∥Ean(t)− Ea1,n−1∥ ≤ 2(1 − δ)

(2 − δ)M(δ)
∥J8(Ean−1(t), t)− J8(Ea1,n−2(t), t)∥

+
2δ

(2 − δ)M(δ)

∥∥∥∥∥
∫ t

0
[J8(San−1(s), s)− J8(Ea1,n−2(s), s)]ds

∥∥∥∥∥,

∥Zn(t)∥ = ∥Ian(t)− Ia1,n−1∥ ≤ 2(1 − δ)

(2 − δ)M(δ)
∥J9(Ian−1(t), t)− J9(Ia1,n−2(t), t)∥

+
2δ

(2 − δ)M(δ)

∥∥∥∥∥
∫ t

0
[J9(Ian−1(s), s)− J9(Ia1,n−2(s), s)]ds

∥∥∥∥∥,

where

∞∑
i=0

Ki(t) = Smn(t),
∞∑

i=0

Li(t) = Emn(t),
∞∑

i=0

Mi(t) = Amn(t),
∞∑

i=0

Ni(t) = Imn(t),

∞∑
i=0

Oi(t) = Vhn(t),
∞∑

i=0

Pi(t) = Rmn(t),
∞∑

i=0

Xi(t) = San(t),
∞∑

i=0

Yi(t) = Ean(t),

∞∑
i=0

Zi(t) = Ian(t).

(10)
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Moreover, the kernels J1, . . . , J9 fulfill the Lipschitz condition, allowing one to express

∥Kn(t)∥ = ∥Smn(t)− Sm1,n−1∥ ≤ 2(1 − δ)

(2 − δ)M(δ)
ξ1∥Smn−1(t)− Sm1,n−2(t)∥

+
2δ

(2 − δ)M(δ)
ξ2

∥∥∥ ∫ t

0
Smn−1(s)− Sm1,n−2(s)ds

∥∥∥,

∥Ln(t)∥ = ∥Emn(t)− Em1,n−1∥ ≤ 2(1 − δ)

(2 − δ)M(δ)
ξ3∥Emn−1(t)− Em1,n−2(t)∥

+
2δ

(2 − δ)M(δ)
ξ4

∥∥∥ ∫ t

0
Emn−1(s)− Em1,n−2(s)ds

∥∥∥,

∥Mn(t)∥ = ∥Amn(t)− Am1,n−1∥ ≤ 2(1 − δ)

(2 − δ)M(δ)
ξ5∥Amn−1(t)− Am1,n−2(t)∥

+
2δ

(2 − δ)M(δ)
ξ6

∥∥∥ ∫ t

0
Amn−1(s)− Am1,n−2(s)ds

∥∥∥,

∥Nn(t)∥ = ∥Imn(t)− Im1,n−1∥ ≤ 2(1 − δ)

(2 − δ)M(δ)
ξ7∥Imn−1(t)− Im1,n−2(t)∥

+
2δ

(2 − δ)M(δ)
ξ8

∥∥∥ ∫ t

0
Imn−1(s)− Im1,n−2(s)ds

∥∥∥,

∥On(t)∥ = ∥Vmn(t)− Vm1,n−1∥ ≤ 2(1 − δ)

(2 − δ)M(δ)
ξ9∥Vmn−1(t)− Vm1,n−2(t)∥

+
2δ

(2 − δ)M(δ)
ξ10

∥∥∥ ∫ t

0
Vmn−1(s)− Vm1,n−2(s)ds

∥∥∥,

∥Pn(t)∥ = ∥Rmn(t)− Rm1,n−1∥ ≤ 2(1 − δ)

(2 − δ)M(δ)
ξ11∥Rmn−1(t)− Rm1,n−2(t)∥

+
2δ

(2 − δ)M(δ)
ξ12

∥∥∥ ∫ t

0
Rmn−1(s)− Rm1,n−2(s)ds

∥∥∥,

∥Xn(t)∥ = ∥San(t)− Sa1,n−1∥ ≤ 2(1 − δ)

(2 − δ)M(δ)
ξ13∥San−1(t)− Sa1,n−2(t)∥

+
2δ

(2 − δ)M(δ)
ξ14

∥∥∥ ∫ t

0
San−1(s)− Sa1,n−2(s)ds

∥∥∥,
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∥Yn(t)∥ = ∥Ean(t)− Ea1,n−1∥ ≤ 2(1 − δ)

(2 − δ)M(δ)
ξ15∥Ean−1(t)− Ea1,n−2(t)∥

+
2δ

(2 − δ)M(δ)
ξ16

∥∥∥ ∫ t

0
Ean−1(s)− Ea1,n−2(s)ds

∥∥∥,

∥Zn(t)∥ = ∥Ian(t)− Ia1,n−1∥ ≤ 2(1 − δ)

(2 − δ)M(δ)
ξ17∥Ian−1(t)− Im1,n−2(t)∥

+
2δ

(2 − δ)M(δ)
ξ18

∥∥∥ ∫ t

0
Ian−1(s)− Ia1,n−2(s)ds

∥∥∥.

Theorem 2 The existence of the solution for the introduced fractional order model (6) is established based
on the CF operator.

Proof The utilization of Eq. (10) along with the implementation of a recursive scheme results in
the subsequent system

∥Kn(t)∥ ≤ ∥Sm(0)∥+
{(

2ξ1(1 − δ)

M(δ)(2 − δ)

)n}
+

{(
2ξ2δt

M(δ)(2 − δ)

)n}
,

∥Ln(t)∥ ≤ ∥Em(0)∥+
{(

2ξ3(1 − δ)

M(δ)(2 − δ)

)n}
+

{(
2ξ4δt

M(δ)(2 − δ)

)n}
,

∥Mn(t)∥ ≤ ∥Am(0)∥+
{(

2ξ5(1 − δ)

M(δ)(2 − δ)

)n}
+

{(
2ξ6δt

M(δ)(2 − δ)

)n}
,

∥Nn(t)∥ ≤ ∥Im(0)∥+
{(

2ξ7(1 − δ)

M(δ)(2 − δ)

)n}
+

{(
2ξ8δt

M(δ)(2 − δ)

)n}
,

∥On(t)∥ ≤ ∥Vm(0)∥+
{(

2ξ9(1 − δ)

M(δ)(2 − δ)

)n}
+

{(
2ξ10δt

M(δ)(2 − δ)

)n}
,

∥Pn(t)∥ ≤ ∥Rm(0)∥+
{(

2ξ11(1 − δ)

M(δ)(2 − δ)

)n}
+

{(
2ξ12δt

M(δ)(2 − δ)

)n}
,

∥Xn(t)∥ ≤ ∥Sa(0)∥+
{(

2ξ13(1 − δ)

M(δ)(2 − δ)

)n}
+

{(
2ξ14δt

M(δ)(2 − δ)

)n}
,

∥Yn(t)∥ ≤ ∥Ea(0)∥+
{(

2ξ15(1 − δ)

M(δ)(2 − δ)

)n}
+

{(
2ξ16δt

M(δ)(2 − δ)

)n}
,

∥Zn(t)∥ ≤ ∥Ia(0)∥+
{(

2ξ17(1 − δ)

M(δ)(2 − δ)

)n}
+

{(
2ξ18δt

M(δ)(2 − δ)

)n}
.

(11)

To examine whether the functions in Eq. (11) serve as solutions to the model (6), we will employ
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the subsequent replacements

Sm(t) = Smn(t)− Υ1,n(t), Em(t) = Emn(t)− Υ2,n(t), Am(t) = Amn(t)− Υ3,n(t),

Im(t) = Imn(t)− Υ4,n(t), Vm(t) = Vmn(t)− Υ5,n(t), Rm(t) = Rmn(t)− Υ6,n(t),

Sa(t) = San(t)− Υ7,n(t), Ea(t) = Ean(t)− Υ8,n(t), Ia(t) = Ian(t)− Υ9,n(t),

(12)

where Υ1,n(t), Υ2,n(t), Υ3,n(t), Υ4,n(t), Υ5,n(t), Υ6,n(t), Υ7,n(t), Υ8,n(t), Υ9,n(t), illustrate the resid-
ual components of the series solutions. Therefore,

Sm(t)− Smn−1(t) =
2(1 − δ)J1(Sm(t)− Υ1,n(t))

M(δ)(2 − δ)
+

2δ

M(δ)(2 − δ)

∫ t

0
J1(Sm(s)− Υ1,n(s))ds,

Em(t)− Emn−1(t) =
2(1 − δ)J2(Em(t)− Υ2,n(t))

M(δ)(2 − δ)
+

2δ

M(δ)(2 − δ)

∫ t

0
J2(Em(s)− Υ2,n(s))ds,

Am(t)− Amn−1(t) =
2(1 − δ)J3(Am(t)− Υ3,n(t))

M(δ)(2 − δ)
+

2δ

M(δ)(2 − δ)

∫ t

0
J3(Am(s)− Υ3,n(s))ds,

Im(t)− Imn−1(t) =
2(1 − δ)J4(Im(t)− Υ4,n(t))

M(δ)(2 − δ)
+

2δ

M(δ)(2 − δ)

∫ t

0
J4(Im(s)− Υ4,n(s))ds,

Vm(t)− Vmn−1(t) =
2(1 − δ)J5(Vm(t)− Υ5,n(t))

M(δ)(2 − δ)
+

2δ

M(δ)(2 − δ)

∫ t

0
J5(Vm(s)− Υ5,n(s))ds,

Rm(t)− Rmn−1(t) =
2(1 − δ)J6(Rm(t)− Υ6,n(t))

M(δ)(2 − δ)
+

2δ

M(δ)(2 − δ)

∫ t

0
J6(Rm(s)− Υ6,n(s))ds,

Sa(t)− San−1(t) =
2(1 − δ)J7(Sa(t)− Υ7,n(t))

M(δ)(2 − δ)
+

2δ

M(δ)(2 − δ)

∫ t

0
J7(Sa(s)− Υ7,n(s))ds,

Ea(t)− Ean−1(t) =
2(1 − δ)J8(Ea(t)− Υ8,n(t))

M(δ)(2 − δ)
+

2δ

M(δ)(2 − δ)

∫ t

0
J8(Ea(s)− Υ8,n(s))ds,

Ia(t)− Ian−1(t) =
2(1 − δ)J9(Ia(t)− Υ9,n(t))

M(δ)(2 − δ)
+

2δ

M(δ)(2 − δ)

∫ t

0
J9(Ia(s)− Υ9,n(s))ds.

(13)

By utilizing the norm on both sides and utilizing the Lipschitz principle, the preceding assertion
results in ∥∥∥∥∥Sm(t)−

2(1 − δ)J1(Sm(t), t)
(2 − δ)M(δ)

− Sm(0)−
2δ

(2 − δ)M(δ)

∫ t

0
J1(Sm(s), s)ds

∥∥∥∥∥
≤ ∥Υ1,n(t)∥

{
1 +

(
2(1 − δ)ξ1

(2 − δ)M(δ)
+

2δξ2t
(2 − δ)M(δ)

)}
,

∥∥∥∥∥Em(t)−
2(1 − δ)J2(Em(t), t)

(2 − δ)M(δ)
− Em(0)−

2δ

(2 − δ)M(δ)

∫ t

0
J2(Em(s), s)ds

∥∥∥∥∥
≤ ∥Υ2,n(t)∥

{
1 +

(
2(1 − δ)ξ2

(2 − δ)M(δ)
+

2δξ4t
(2 − δ)M(δ)

)}
,
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∥∥∥∥∥Am(t)−
2(1 − δ)J3(Am(t), t)

(2 − δ)M(δ)
− Am(0)−

2δ

(2 − δ)M(δ)

∫ t

0
J3(Em(s), s)ds

∥∥∥∥∥
≤ ∥Υ3,n(t)∥

{
1 +

(
2(1 − δ)ξ5

(2 − δ)M(δ)
+

2δξ6t
(2 − δ)M(δ)

)}
,

∥∥∥∥∥Im(t)−
2(1 − δ)J4(Im(t), t)

(2 − δ)M(δ)
− Im(0)−

2δ

(2 − δ)M(δ)

∫ t

0
J4(Im(s), s)ds

∥∥∥∥∥
≤ ∥Υ4,n(t)∥

{
1 +

(
2(1 − δ)ξ7

(2 − δ)M(δ)
+

2δξ8t
(2 − δ)M(δ)

)}
,

∥∥∥∥∥Vm(t)−
2(1 − δ)J5(Vm(t), t)

(2 − δ)M(δ)
− Vm(0)−

2δ

(2 − δ)M(δ)

∫ t

0
J5(Vm(s), s)ds

∥∥∥∥∥
≤ ∥Υ5,n(t)∥

{
1 +

(
2(1 − δ)ξ9

(2 − δ)M(δ)
+

2δξ10t
(2 − δ)M(δ)

)}
,

∥∥∥∥∥Rm(t)−
2(1 − δ)J6(Rm(t), t)

(2 − δ)M(δ)
− Rm(0)−

2δ

(2 − δ)M(δ)

∫ t

0
J6(Rm(s), s)ds

∥∥∥∥∥
≤ ∥Υ6,n(t)∥

{
1 +

(
2(1 − δ)ξ11

(2 − δ)M(δ)
+

2δξ12t
(2 − δ)M(δ)

)}
,

∥∥∥∥∥Sa(t)−
2(1 − δ)J7(Sa(t), t)

(2 − δ)M(δ)
− Sa(0)−

2δ

(2 − δ)M(δ)

∫ t

0
J7(Sa(s), s)ds

∥∥∥∥∥
≤ ∥Υ7,n(t)∥

{
1 +

(
2(1 − δ)ξ13

(2 − δ)M(δ)
+

2δξ14t
(2 − δ)M(δ)

)}
,

∥∥∥∥∥Ea(t)−
2(1 − δ)J8(Ea(t), t)

(2 − δ)M(δ)
− Ea(0)−

2δ

(2 − δ)M(δ)

∫ t

0
J8(Ea(s), s)ds

∥∥∥∥∥
≤ ∥Υ8,n(t)∥

{
1 +

(
2(1 − δ)ξ15

(2 − δ)M(δ)
+

2δξ16t
(2 − δ)M(δ)

)}
,
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∥∥∥∥∥Ia(t)−
2(1 − δ)J9(Ia(t), t)

(2 − δ)M(δ)
− Ia(0)−

2δ

(2 − δ)M(δ)

∫ t

0
J9(Ia(s), s)ds

∥∥∥∥∥
≤ ∥Υ9,n(t)∥

{
1 +

(
2(1 − δ)ξ17

(2 − δ)M(δ)
+

2δξ18t
(2 − δ)M(δ)

)}
.

Following the implementation of limit as t procedures ∞ indicates that

Sm(t) =
2(1 − δ)J1(Sm(t), t)

M(δ)(2 − δ)
+

2δ

M(δ)(2 − δ)

∫ t

0
J1(Sm(s), s)ds + Sm(0),

Em(t) =
2(1 − δ)J2(Em(t), t)

M(δ)(2 − δ)
+

2δ

M(δ)(2 − δ)

∫ t

0
J2(Em(s), s)ds + Em(0),

Am(t) =
2(1 − δ)J3(Am(t), t)

M(δ)(2 − δ)
+

2δ

M(δ)(2 − δ)

∫ t

0
J3(Am(s), s)ds + Am(0),

Im(t) =
2(1 − δ)J4(Im(t), t)

M(δ)(2 − δ)
+

2δ

M(δ)(2 − δ)

∫ t

0
J4(Im(s), s)ds + Im(0),

Vm(t) =
2(1 − δ)J5(Vm(t), t)

M(δ)(2 − δ)
+

2δ

M(δ)(2 − δ)

∫ t

0
J5(Vm(s), s)ds + Vm(0),

Rm(t) =
2(1 − δ)J6(Rm(t), t)

M(δ)(2 − δ)
+

2δ

M(δ)(2 − δ)

∫ t

0
J6(Rm(s), s)ds + Rm(0),

Sa(t) =
2(1 − δ)J7(Sa(t), t)

M(δ)(2 − δ)
+

2δ

M(δ)(2 − δ)

∫ t

0
J7(Sa(s), s)ds + Sa(0),

Ea(t) =
2(1 − δ)J8(Ea(t), t)

M(δ)(2 − δ)
+

2δ

M(δ)(2 − δ)

∫ t

0
J8(Ea(s), s)ds + Ea(0),

Ia(t) =
2(1 − δ)J9(Ia(t), t)

M(δ)(2 − δ)
+

2δ

M(δ)(2 − δ)

∫ t

0
J9(Ia(s), s)ds + Ia(0).

This demonstrates the conclusion, indicating that the aforementioned are solutions of the model
as specified by system (6).

Theorem 3 The fractional order infectious disease model, as indicated by system (6), exhibits a unique
solution.

Proof Based on the principle of contradiction, we posit that
(

S
′
m(t), E

′
m(t), A

′
m(t), I

′
m(t), V

′
m(t),

R
′
m(t), S

′
a(t), E

′
a(t), I

′
a(t)

)
it’s additionally the solution to the developed fractional infectious dis-

ease model (6), consequently

Sm(t)− S
′
m(t) =

2(1 − δ){J1(Sm(t), t)− J1(S
′
m(t), t)}

(2 − δ)M(δ)

+
2δ

(2 − δ)M(δ)

∫ t

0

{
J1(Sm(s), s)− J1(S

′
m(s), s)

}
ds,
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Em(t)− E
′
m(t) =

2(1 − δ){J2(Em(t), t)− J2(E
′
m(t), t)}

(2 − δ)M(δ)

+
2δ

(2 − δ)M(δ)

∫ t

0

{
J2(Em(s), s)− J2(E

′
m(s), s)

}
ds,

Am(t)− A
′
m(t) =

2(1 − δ){J3(Am(t), t)− J3(A
′
m(t), t)}

(2 − δ)M(δ)

+
2δ

(2 − δ)M(δ)

∫ t

0

{
J3(Am(s), s)− J3(A

′
m(s), s)

}
ds,

Im(t)− I
′
m(t) =

2(1 − δ){J4(Im(t), t)− J4(I
′
m(t), t)}

(2 − δ)M(δ)

+
2δ

(2 − δ)M(δ)

∫ t

0

{
J4(Im(s), s)− J4(I

′
m(s), s)

}
ds,

Vm(t)− V
′

m(t) =
2(1 − δ){J5(Vm(t), t)− J5(V

′
m(t), t)}

(2 − δ)M(δ)

+
2δ

(2 − δ)M(δ)

∫ t

0

{
J5(Vm(s), s)− J5(V

′
m(s), s)

}
ds,

Rm(t)− R
′
m(t) =

2(1 − δ){J6(Rm(t), t)− J6(R
′
m(t), t)}

(2 − δ)M(δ)

+
2δ

(2 − δ)M(δ)

∫ t

0

{
J6(Rm(s), s)− J6(R

′
m(s), s)

}
ds,

Sa(t)− S
′
a(t) =

2(1 − δ){J7(Sa(t), t)− J7(S
′
a(t), t)}

(2 − δ)M(δ)

+
2δ

(2 − δ)M(δ)

∫ t

0

{
J7(Sa(s), s)− J7(S

′
a(s), s)

}
ds,

Ea(t)− E
′
a(t) =

2(1 − δ){J8(Ea(t), t)− J8(E
′
a(t), t)}

(2 − δ)M(δ)

+
2δ

(2 − δ)M(δ)

∫ t

0

{
J8(Ea(s), s)− J8(E

′
a(s), s)

}
ds,

Ia(t)− I
′
a(t) =

2(1 − δ){J9(Ia(t), t)− J9(I
′
a(t), t)}

(2 − δ)M(δ)

+
2δ

(2 − δ)M(δ)

∫ t

0

{
J9(Ia(s), s)− J9(I

′
a(s), s)

}
ds.

Based on the property of majorizing, we can express the aforementioned system as

∥Sm(t)− S
′
m(t)∥ ≤ 2(1 − δ)∥J1(Sm(t), t)− J1(S

′
m(t), t)∥

(2 − δ)M(δ)

+
2δ

(2 − δ)M(δ)

∫ t

0

∥∥∥J1(Sm(s), s)− J1(S
′
m(s), s)

∥∥∥ds,

∥Em(t)− E
′
m(t)∥ ≤ 2(1 − δ)∥J2(Em(t), t)− J2(E

′
m(t), t)∥

(2 − δ)M(δ)

+
2δ

(2 − δ)M(δ)

∫ t

0

∥∥∥J2(Em(s), s)− J2(E
′
m(s), s)

∥∥∥ds,
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∥Am(t)− A
′
m(t)∥ ≤ 2(1 − δ)∥J3(Am(t), t)− J3(A

′
m(t), t)∥

(2 − δ)M(δ)

+
2δ

(2 − δ)M(δ)

∫ t

0

∥∥∥J3(Am(s), s)− J3(A
′
m(s), s)

∥∥∥ds,

∥Im(t)− I
′
m(t)∥ ≤ 2(1 − δ)∥J4(Im(t), t)− J4(I

′
m(t), t)∥

(2 − δ)M(δ)

+
2δ

(2 − δ)M(δ)

∫ t

0

∥∥∥J4(Im(s), s)− J4(I
′
m(s), s)

∥∥∥ds,

∥Vm(t)− V
′

m(t)∥ ≤ 2(1 − δ)∥J5(Vm(t), t)− J5(V
′

m(t), t)∥
(2 − δ)M(δ)

+
2δ

(2 − δ)M(δ)

∫ t

0

∥∥∥J5(Vm(s), s)− J5(V
′

m(s), s)
∥∥∥ds,

∥Rm(t)− R
′
m(t)∥ ≤ 2(1 − δ)∥J6(Rm(t), t)− J6(R

′
m(t), t)∥

(2 − δ)M(δ)

+
2δ

(2 − δ)M(δ)

∫ t

0

∥∥∥J6(Rm(s), s)− J6(R
′
m(s), s)

∥∥∥ds,

∥Sa(t)− S
′
a(t)∥ ≤ 2(1 − δ)∥J7(Sa(t), t)− J7(S

′
a(t), t)∥

(2 − δ)M(δ)

+
2δ

(2 − δ)M(δ)

∫ t

0

∥∥∥J7(Sa(s), s)− J7(S
′
a(s), s)

∥∥∥ds,

∥Ea(t)− E
′
a(t)∥ ≤ 2(1 − δ)∥J8(Ea(t), t)− J8(E

′
a(t), t)∥

(2 − δ)M(δ)

+
2δ

(2 − δ)M(δ)

∫ t

0

∥∥∥J8(Ea(s), s)− J8(E
′
a(s), s)

∥∥∥ds,

∥Ia(t)− I
′
a(t)∥ ≤ 2(1 − δ)∥J9(Ia(t), t)− J9(I

′
a(t), t)∥

(2 − δ)M(δ)

+
2δ

(2 − δ)M(δ)

∫ t

0

∥∥∥J9(Ia(s), s)− J9(I
′
a(s), s)

∥∥∥ds.

By applying the findings established in (1) and (2), we achieve

∥Sm(t)− S
′
m∥ ≤ 2ξ1ζ1(1 − δ)

(2 − δ)M(δ)
+

(
2ξ2δζ2t

M(δ)(2 − δ)

)n

,

∥Em(t)− E
′
m∥ ≤ 2ξ3ζ3(1 − δ)

(2 − δ)M(δ)
+

(
2ξ4δζ4t

M(δ)(2 − δ)

)n

,

∥Am(t)− A
′
m∥ ≤ 2ξ5ζ5(1 − δ)

(2 − δ)M(δ)
+

(
2ξ6δζ6t

M(δ)(2 − δ)

)n

,

∥Im(t)− I
′
m∥ ≤ 2ξ7ζ7(1 − δ)

(2 − δ)M(δ)
+

(
2ξ8δζ8t

M(δ)(2 − δ)

)n

,

∥Vm(t)− V
′

m∥ ≤ 2ξ9ζ9(1 − δ)

(2 − δ)M(δ)
+

(
2ξ10δζ10t

M(δ)(2 − δ)

)n

, (14)
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∥Rm(t)− R
′
m∥ ≤ 2ξ11ζ11(1 − δ)

(2 − δ)M(δ)
+

(
2ξ12δζ12t

M(δ)(2 − δ)

)n

,

∥Sa(t)− S
′
a∥ ≤ 2ξ13ζ13(1 − δ)

(2 − δ)M(δ)
+

(
2ξ14δζ14t

M(δ)(2 − δ)

)n

,

∥Ea(t)− E
′
a∥ ≤ 2ξ15ζ15(1 − δ)

(2 − δ)M(δ)
+

(
2ξ16δζ17t

M(δ)(2 − δ)

)n

,

∥Ia(t)− I
′
a∥ ≤ 2ξ17ζ17(1 − δ)

(2 − δ)M(δ)
+

(
2ξ18δζ18t

M(δ)(2 − δ)

)n

.

The inequalities presented in Eq. (14) are valid for all values of n, leading us to the conclusion

Sm(t) = S
′
m(t), Em(t) = E

′
m(t), Am(t) = A

′
m(t), Im(t) = I

′
m(t), Vm(t) = V

′
m(t),

Rm(t) = R
′
m(t), Sa(t) = S

′
a(t), Ea(t) = E

′
a(t), Ia(t) = I

′
a(t).

(15)

The Lipschitz condition is pivotal in ensuring the uniqueness of the solution by guaranteeing that
small variations in the initial conditions or parameters lead to proportionally small changes in the
solution. Intuitively, this condition prevents the system from exhibiting erratic or unpredictable
behavior, which is critical when modeling real-world disease dynamics. In this work, the context
of Mpox transmission, the Lipschitz condition ensures that the predicted number of infections
remains stable and consistent under slight perturbations in the transmission or recovery rates. This
stability is vital for reliable disease modeling and control strategies. By enforcing a bounded rate of
change, the Lipschitz condition acts as a safeguard against anomalies, ensuring the mathematical
and practical robustness of the model.

4 Equilibra and fundamental reproduction number

The Mpox-free equilibrium corresponds to the case when no infections exist within the population.
The derivations of the equilibrium points Ψ0 and Ψ∗, it is important to note their practical
implications in understanding disease dynamics. The disease-free equilibrium Ψ0 represents a
scenario where the disease is eradicated from the population, with all infected compartments at
zero. This presents the critical role of intervention strategies, such as vaccination and public health
measures, in achieving and maintaining a disease-free state. In contrast, the endemic equilibrium
Ψ∗ corresponds to a persistent state of the disease within the population. The proportions of
infected individuals at Ψ∗ depend on parameters such as contact rates, recovery rates, and
vaccination efficacy. This underscores the significance of controlling the reproduction number
R0 and modifying key parameters to shift the system toward the disease-free equilibrium. These
insights provide actionable guidance for policymakers and public health officials in formulating
strategies to manage and potentially eliminate Mpox outbreaks.
Hence, the Mpox free equilibrium point

Ψ0 = (S0
m, E0

m, A0
m, I0

m, V0
m, R0

m, S0
a , E0

a , I0
a )

=
( c5Πm

(c1c5 − αmτ) + c5λm
, 0, 0, 0,

αmΠm

(c1c5 − αmτ) + c5λm
, 0,

Πa

µ2
, 0, 0

)
.
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The endemic equilibrium of Mpox is Ψ∗ = (S∗
m, E∗

m, A∗
m, I∗m, V∗

m, R∗
m, S∗

a , E∗
a , I∗a ). Then, from system

(6) the endemic equilibrium points are

S∗
m =

c5Πm

(c1c5 − αmτ) + c5λm
, E∗

m =
λ∗

mS∗
m

c2
, A∗

m =
k(1 − ρ)E∗

m
c4

, I∗m =
kρE∗

h
c3

,

V∗
m =

αmΠm

(c1c5 − αmτ) + c5λm
, R∗

h =
k(1 − ρ)c5γ1λmΠm

c2c4
(
(c1c5 − αmτ) + c5λm

) + kρc5γ2λmΠm

c2c3

(
(c1c5 − αmτ) + c5λm

) ,

S∗
a =

Πa(π + c7)

(c6c7(
β4π
C6c7

− 1) + µ2(π + c7))
, E∗

a =
Πac7(

β4π
C6c7

− 1)

(c6c7(
β4π
C6c7

− 1) + µ2(π + c7))
,

I∗a =
πΠa(

β4π
C6c7

− 1)

(c6c7(
β4π
C6c7

− 1) + µ2(π + c7))
,

where

c1 = (µ1 + αm), c2 = (µ1 + k), c3 = (γ2 + µ1 + η1), c4 = (γ1 + µ1 + η2),

c5 = (τ + µ1), c6 = (π + µ2), c7 = (µ2 + η3), λm =
(β1 I∗m + β2 I∗a + β3 Am

m
Nm

)
.

The fundamental reproduction number of the human and rodent population Mpox model (6) is
computed via the next-generation matrix. Using this technique [21], we have

F =



0 S0
mβ1
N0

m

S0
mβ3
N0

m
0 0 S0

mβ2
N0

m
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 β4
0 0 0 0 0 0


, V =



c2 0 0 0 0 0
−kρ c3 0 0 0 0

−k(1 − ρ) 0 c4 0 0 0
0 0 0 c5 0 0
0 0 0 0 c6 0
0 0 0 0 −π c7


.

The reproduction number is the dominant eigenvalue of FV−1. Thus,

R0 = max{Rm0 , Ra0} = max

{
kc5(β1ρc4 + β3(1 − ρ)c3)

c2c3c4(αm + c5)
,

β4π

c6c7

}
. (16)

The fundamental reproduction number R0 is a pivotal metric in understanding the spread of
infectious diseases. The Mpox model’s R0 depends on several parameters, such as contact rates,
transmission probabilities, recovery rates, and others as outlined in Eq. (16). Additionally, these
Figure 2 and Figure 3 illustrate the effect of different parameter combinations of the examining the
influencing the fundamental reproduction numbers of humans Rm0 and rodent Ra0 . The interplay
of these factors determines whether the disease will spread (R0 > 1) or decline (R0 < 1). To
ensure effective control, policies should target reducing R0 to below 1. Vaccinating a substantial
fraction of the population is estimated to be at least 75% of the total susceptible individuals based
on model outputs. Implementing social distancing and minimizing inter-species transmission
pathways to reduce contact rates. Also, enhancing recovery rates through early diagnosis and
treatment programs. This analysis underlines the importance of targeted interventions on specific



84 | Mathematical Modelling and Numerical Simulation with Applications, 2025, Vol. 5, No. 1, 65–96

parameters to control the spread of Mpox.

(a) Dynamical behaviour of Rm0 for β1 and k values (b) Dynamical behaviour of Rm0 for β3 and ρ values

Figure 2. Dynamical behaviour of Rm0 for different variables

(a) Dynamical behaviour of Rm0 for µ1 and τ values (b) Dynamical behaviour of Ra0 for β4 and π values

Figure 3. Dynamical behaviour of Rm0 and Ra0 for different variables

5 Numerical simulations

Numerical method

This section of the study presents an estimated approach to addressing the fractional order
Mpox model (6) utilizing the two-step fractional Adams-Bashforth approach for the CF fractional
derivative [22]. The structure is implemented using the fractional Volterra model, which is based
on the basic theorem of integration. This method offers a balance between computational efficiency
and accuracy, making it well-suited for iterative simulations involving fractional derivatives. The
choice of the Adams-Bashforth method is rooted in its ability to handle the memory effect inherent
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in fractional models, as it builds on previous computational steps to predict future values. This
iterative approach aligns well with the characteristics of the Caputo-Fabrizio derivative used
in our model, ensuring stability and precision in the simulations. Specifically, the method’s
compatibility with non-local properties of fractional calculus enhances its capability to simulate
long-term interactions and dynamic responses. In order to achieve the required iterative strategy,
we first focus just on the first equation of system (6) and follow the steps shown below. Utilizing
the basic concept of integration, we derive the subsequent outcome from the initial equation of
the system (7).

Sm(t)− Sm(0) =
(1 − δ)

M(δ)
J1(t, Sm) +

δ

M(δ)

∫ t

0
J1(x, Sm)dx. (17)

For t = tn+1, n = 0, 1, 2, . . . , we acquire

Sm(tn+1)− Sm0 =
(1 − δ)

M(δ)
J1(t, Sm) +

δ

M(δ)

∫ tn+1

0
J1(x, Sm)dx. (18)

The difference between each consecutive term is shown as follows:

Smn+1 − Smn =
1 − δ

M(δ)
{J1(tn, Smn)− J1(tn−1, Smn−1)}+

δ

M(δ)

∫ tn+1

tn

J1(t, Sm)dt. (19)

Over the close interval [tk, t(k+1)], the function J1(t, Sm) is able to estimated using the interpolation
polynomial

Hk
∼=

f (tk, yk)

h
(t − tk−1)−

f (tk−1, yk−1)

h
(t − tk),

where h = tn − tn−1. The integral in (19) is computed using the polynomial estimation outlined
above, resulting in

∫ tn+1

tn

J1(t, Sm)dt =
∫ tn+1

tn

(
J1(tn, Smn)

h
−

J1(tn−1, Smn−1)

h
(t − tn)

)
dt

=
3h
2

J1(tn, Smn)−
n
2

J1(tn−1, Smn−1).

(20)

Putting (20) in (19) and after simplification we acquire

Smn+1 = Smn +

(
1 − δ

M(δ)
+

3h
2M(δ)

)
J1(tn, Smn)−

(
1 − δ

M(δ)
+

δh
2M(δ)

)
J1(tn+1, Smn−1). (21)

Similar to this, we were able to derive the recursive formulas for the other equations in system (7)
as follows

Emn+1 = Emn +

(
1 − δ

M(δ)
+

3h
2M(δ)

)
J2(tn, Emn)−

(
1 − δ

M(δ)
+

δh
2M(δ)

)
J2(tn+1, Emn−1),

Amn+1 = Amn +

(
1 − δ

M(δ)
+

3h
2M(δ)

)
J3(tn, Amn)−

(
1 − δ

M(δ)
+

δh
2M(δ)

)
J3(tn+1, Amn−1),
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Imn+1 = Imn +

(
1 − δ

M(δ)
+

3h
2M(δ)

)
J4(tn, Imn)−

(
1 − δ

M(δ)
+

δh
2M(δ)

)
J4(tn+1, Imn−1),

Vmn+1 = Vmn +

(
1 − δ

M(δ)
+

3h
2M(δ)

)
J5(tn, Vmn)−

(
1 − δ

M(δ)
+

δh
2M(δ)

)
J5(tn+1, Vmn−1), (22)

Rmn+1 = Rmn +

(
1 − δ

M(δ)
+

3h
2M(δ)

)
J6(tn, Rmn)−

(
1 − δ

M(δ)
+

δh
2M(δ)

)
J6(tn+1, Rmn−1),

San+1 = San +

(
1 − δ

M(δ)
+

3h
2M(δ)

)
J7(tn, San)−

(
1 − δ

M(δ)
+

δh
2M(δ)

)
J7(tn+1, San−1),

Ean+1 = Ean +

(
1 − δ

M(δ)
+

3h
2M(δ)

)
J8(tn, Ean)−

(
1 − δ

M(δ)
+

δh
2M(δ)

)
J8(tn+1, Ean−1),

Ian+1 = Ian +

(
1 − δ

M(δ)
+

3h
2M(δ)

)
J9(tn, Ian)−

(
1 − δ

M(δ)
+

δh
2M(δ)

)
J9(tn+1, Ian−1).

Furthermore, we present the numerical simulations conducted to examine the interactions of the
proposed model, as indicated in system (6), for different values of δ, random sequence of CF
derivative throughout the range of [0, 1], as well as for other model relevant factors.

6 Discussion

The objective of the numerical simulation is to examine the effects of changes in order and
parameters are shown in the Table 1 on the dynamic behavior of the system. To create Figure 4-
Figure 14, we use the utilizing two-step fractional Adams-Bashforth technique [22] of the CF
derivative.

Table 1. The values of the model parameters

Parameter Explanation Values Source
Πm Recruitment into susceptible humans 64850 [1]
Πa Recruitment into susceptible rodent 0.2 [8]
β1 Rate of Sm and contagious rodent 0.3632 0 < β1 ≤ 1
β2 Rate of Sm and contagious humans 0.4192 0 < β2 ≤ 1
β3 Rate of Am from susceptible humans 0.1900 [23]
β4 Rate of Sa and contagious rodent 0.1802 [23]
αm Vaccination rate from the susceptible humans 0.2104 Fitted
τ Waning rate of induced immunity 0.3525 [23]
k Rate of transition of Em to infected human 0.3966 0 < k ≤ 1
ρ Exposure-related infection rate 0.132 0 < ρ ≤ 1

γ1 Recovery rate from Am 0.5093 Assumed
γ2 Recovery rate from infected humans 0.5093 Fitted
π Infected rodent to exposed rodents rate 0.5410 0 < π ≤ 1
µ1 Natural morality rate of humans 0.000303 [1]
µ2 Natural morality rate of rodetns 0.0012 Assumed
η1 Death rate of Am due to Mpox 4.1187 × 10−4 Fitted
η2 Death rate of Im due to Mpox 0.0012 [23]
η3 Death rate of Ia due to Mpox 2.8532 × 10−4 Fitted
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Figure 4 shows the density of susceptible human populations over time (t) at various values of
the fractional order δ. The values of δ likely represent different scenarios in the model, affecting
how the susceptible population changes over time. Figure 5 represents the population density
of individuals who have been exposed to the illness but have not yet become contagious. The
numerous graphs represent different values of δ, illustrating the temporal fluctuations in exposure
levels.
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Figure 4. Population density of suspected human populations at different values δ
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Figure 5. Population density of exposed humans populations at different values δ
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Figure 6 focuses on the asymptomatic but infected human population. The different δ values
show how this segment of the population varies over time t, indicating the impact of different
model parameters on asymptomatic infection rates. Figure 7 shows the density of humans who
are actively infected. The variation in δ values allows for the comparison of infection trends under
different fractional orders as represented by δ.
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Figure 6. Population density of asymptotically-ill human populations at different values δ
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Figure 7. Population density of infected human populations at different values δ
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The Figure 8 illustrates the population density of humans who have been vaccinated. The various
δ values likely represent different vaccination rates or efficacies, showing how vaccination impacts
the population over time t. Figure 9 presents the density of humans who have recovered from
the infection. The different δ values depict how recovery rates and the number of recovered
individuals evolve under different scenarios.

0 5 10 15 20 25 30 35 40 45 50

t

0

1

2

3

4

5

6

7

8

9

V
m

10
7

=1.00

=0.90

=0.80

=0.70

=0.60

18 18.5 19 19.5 20 20.5 21

8

8.05

8.1

8.15

8.2
10

7

Figure 8. Population density of vaccinated human populations at different values δ
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Figure 9. Population density of recovered human populations at different values δ
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Figure 10 shows the population density of rodents suspected to be susceptible to the disease. The
fractional order δ indicates different scenarios or intervention strategies affecting this population
over time. Figure 11 illustrates the population density of exposed rodent populations. The different
δ values demonstrate how exposure among rodents changes over time under various conditions.
Figure 12 depicts the density of actively infected rodent populations. The variations in δ values
show how infection spreads within the rodent population.
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Figure 10. Population density of suspected rodent populations at different values δ
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Figure 12. Population density of infected rodent populations at different values δ

From Figure 13 to Figure 16 appear to show the results of numerical simulations that explore
the dynamics of a proposed model asymptomatically-ill Am humans and infected Im humans
for Mpox transmission. Specifically, this figure likely illustrates how varying a key parameter,
denoted respectively β1, β3, β4 affects certain population densities or infection rates over time t.
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Figure 13. Graphical representations of Am and Im for β1
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Figure 14. Graphical representations of Am and Im for β3
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Figure 15. Graphical representations of Am and Im for β4

Figure 16 presents the outcomes of numerical simulations that investigate the dynamics of a
proposed model involving asymptomatically-ill Am and infected Im in the context of Mpox
transmission. This figure likely demonstrates the impact of altering a key parameter, represented
by π, on specific population densities or infection rates as time t progresses.

The model employs the CF fractional derivative, which is a mathematical tool used to describe
processes with memory or hereditary properties. Simulations using numerical methods are
conducted to analyze the dynamics of the model as outlined in system (6). The iterative technique
of the CF derivative is used to generate the data for these figures.



Manivel et al. | 93

0 5 10 15 20 25 30 35 40 45 50

t

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
A

m

=0.10

=0.30

=0.50

=0.70

=1.00

(a) Dynamical behavior of Am at different values of π

0 5 10 15 20 25 30 35 40 45 50

t

0

100

200

300

400

500

600

700

800

900

1000

I
m

=0.10

=0.30

=0.50

=0.70

=1.00

(b) Dynamical behaviour of Im at different values of π

Figure 16. Graphical representations of Am and Im for π
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Figure 17. Graphical representations of Ea and Ia for β4

Figure 17 continues from Figure 15 by showing additional or comparative results of the numerical
simulations under different β4 values. This figure might depict another aspect of the model’s
behavior, such as the transition rates between different compartments of the model (e.g., sus-
ceptible, exposed, infected) over time t. The focus on different β4 values helps in understanding
the sensitivity of the model to changes in this fractional order, which is crucial for validating the
model’s robustness and reliability in predicting Mpox dynamics under varying conditions.

The CF fractional model captures memory and hereditary properties in epidemiological systems.
This feature aligns well with the observed transmission dynamics of Mpox, which may involve
delayed responses in immunity and disease progression. The solutions demonstrate consistency
across a range of fractional orders δ. Notably, the choice of δ = 0.60, 0.70, 0.80, 0.90, 1.00 appeared
to yield slightly more accurate alignment with empirical data. The value of δ significantly impacts
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the rate of infection spread and recovery, as it controls the degree of memory effect incorporated
into the model.

7 Conclusion

In this investigation, we formulated a fractional-order epidemiological framework to examine the
dynamics of the Mpox virus transmission, incorporating both symptomatic and asymptomatic
infections. The model was rigorously analyzed for the existence and uniqueness of solutions,
demonstrating that it possesses a unique solution under certain conditions. The key findings
demonstrate the impact of vaccination rates, contact rates, and immunity waning on the basic
reproduction number (R0) and the disease’s spread within human and rodent populations. The
synergistic effect of the human-to-human transmission rate (β1) and the progression rate of
exposed individuals (k) significantly elevates the human reproduction number (Rm0), while
increased vaccination rates (αm) and reduced immunity waning (τ) contribute to a decline in
Rm0 . Similarly, in rodents, the interaction between the infected-to-susceptible contact rate (β4)
and the progression rate of exposed rodents (π) critically affects the rodent reproduction number
Ra0 . Numerical simulations were conducted to validate the theoretical findings, showing that
the model accurately captures the spread of the virus and the impact of various parameters on
the infection dynamics. The results highlight the critical role of asymptomatic individuals in
the transmission of Mpox and underscore the importance of targeted control measures. This
work provides a valuable framework for understanding the complex dynamics of Mpox and
can inform public health strategies for managing outbreaks. Future studies could benefit from
localized modeling efforts. Also, the model has been validated using simulated datasets, but
the incorporation of real epidemiological data could improve the robustness of our findings and
validate assumptions made regarding disease progression and intervention strategies.
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Abstract
The analysis of blood flow in blood vessels, particularly in arteries, is a topic with important clinical
applications. The blood can undergo a reduction in its viscosity under shear stress, which is called shear
thinning. In this study, the effect of the shear thinning of blood is simulated using the Carreau-Yasuda
model, neglecting the viscoelastic effects. The purpose of this investigation is to analyze the pulsatile
blood flow in a three-dimensional model of the carotid artery and the effects of occlusion using Ansys
Fluent. The results obtained in this study show that, compared to Newtonian fluids, non-Newtonian
fluids exhibit significant differences in secondary flow patterns and shear flow behavior. Additionally,
the axial velocity in the non-planar branch decreases with obstruction. The maximum shear stress of
the walls with Newtonian fluid viscosity exhibits a significant error, and the values are lower than
those of walls with non-Newtonian viscosity in most cases. In continuation of this research, vessel
occlusion models with different occlusion sizes are analyzed. In the case where the outlet of the vessel
is narrowed, an increase in velocity is observed in the furcation area. Although the software cannot
simulate rupture, occlusion of the vessel at 80% and 50% of the internal diameter is analyzed.

Keywords: Non-Newtonian fluid; shear thinning; Carreau-Yasuda model; blood flow; CFD analysis

AMS 2020 Classification: 65N12; 76A05; 92C35

1 Introduction

Cardiovascular diseases (CVDs) account for approximately 17.9 million deaths annually, which
corresponds to 32% of all global deaths. Including coronary artery disease, stroke, and hyperten-
sion, CVDs are often linked to abnormalities in blood flow and vessel occlusion. Besides being the
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leading cause of death globally, CVDs also create a significant economic burden, with healthcare
costs and productivity losses estimated to exceed one trillion US dollars annually worldwide.
Understanding the hemodynamics of blood flow, particularly in occluded vessels, is therefore
critical for developing effective diagnostic and therapeutic strategies against CVDs.
With the increasing number of CVDs during the last few decades, the study of blood flow in
vessels and its behavior has been of particular importance and interest. Through a review of the
literature, it has become clear that there is still much to investigate regarding the shear stress
on the walls of the vessels, the effects of the hyperelasticity of the blood vessels, and how blood
interacts with the vessel structure under different gravity conditions. Another CVD, carotid
artery disease, is a condition characterized by the narrowing of the carotid arteries, the primary
vessels supplying oxygenated blood to the brain. This narrowing, or stenosis, is typically caused
by the accumulation of atherosclerotic plaque within the arterial walls. The primary objective
of treatment is to mitigate the risk of ischemic stroke by reducing plaque burden, preventing
thrombus formation, and maintaining adequate cerebral blood flow. Currently, it has been proven
that the occurrence of many CVDs is linked to blood flow characteristics [1].
Blood is a concentrated suspension of red blood cells (RBCs) in plasma, with these cells constituting
nearly 45% of the total blood volume. At normal temperatures, blood behaves as non-Newtonian
in the form of shear liquefaction [2]. A cramp is an abnormal swelling in a vein or other organs
with tubular structures in the body. Sometimes, it is also called stenosis [3] and [4]. From the
point of view of fluid mechanics, constriction indicates the presence of an obstacle to blood flow
inside the vessel [5]. Vascular branches in areas that have abnormal fluid dynamics are known
to be prone to atherosclerosis. Fluid mechanics studies have shown that atherosclerosis occurs
at bifurcations that have a complex geometry, i.e., in areas with a high Reynolds number and
where the shear stress is lower than the average of wall shear stress (WSS). The curvature of the
wall is related; in addition, local disturbances and areas of circulation play important roles in the
initiation and development of atherosclerosis. It is thought that the complexity of the blood flow
dynamics downstream of the occlusion will cause further development of the occlusion or cause
the plaque to be vulnerable to failure and thrombosis. It is almost universally accepted that blood
vessels that have curves or bifurcations are prone to constriction due to the complexity of the
flow in these areas [6]. Because the blood flow is pulsatile, these complicated flow patterns cause
constrictions in certain periods within the geometries that feature high shear stress, separation,
circulation, and turbulent flow.
Various studies have been conducted in this field. The investigation of blood flow in narrowed
vessels is an interesting topic that has attracted the attention of many researchers. This issue is
particularly important because the blood flow in constricted vessels and channels has a crucial
impact on the development of vascular obstruction [7]. Examining the mechanism of blood
flow and the distribution of blood flow in these stages leads to determining the dependence of
blood flow on various physical and physiological factors and to a correct understanding of this
phenomenon. As a result, it is possible to solve this problem or prevent it from an engineering
point of view. As a result of the clogging and narrowing (obstruction) that occur in the vein, the
normal flow of blood is disrupted. This disturbance in normal blood flow plays an important role
in vascular diseases. For this reason, to determine how constriction affects blood flow and analyze
blood flow in the parts of vessels that are clogged or blocked, much research has been performed,
including laboratory investigations as well as numerical studies.
Having started approximately 25 years ago, several experimental research studies have been
conducted using different laboratory models to study how unstable flow affects the blood flow at
occlusion sites. With the advancement of computational methods in recent years, later studies
featuring numerical simulations of this physiological phenomenon have been performed by
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numerous researchers [8, 9]. Many researchers have studied pulsatile blood flow in healthy and
blocked vessels using computational fluid dynamics (CFD) and compared the results using MRI
techniques [7, 10, 11].
Clogged or engorged blood vessels face various hemodynamic consequences of pressure drop,
which lead to the development of clots. The pressure drop depends on the flow velocity and the
geometry of the constriction, but the properties of fluid, such as density and apparent viscosity,
are relatively constant. Multiple constrictions in the arteries are the result of plaque growth in
atherosclerosis, which can collapse under certain physiological conditions [5].
Vascular narrowing is often accompanied by an unusual sound of blood flow, which results from
the disturbance of flow in the narrowed channel, and in this way, the location of the constriction
can be recognized. These sounds can be heard using a medical stethoscope, but disease diagnosis
with medical imaging refers to the set of methods and techniques that can be used to obtain visual
images of the parts of the human body [12].
Seo [13] investigated blood flow in the human carotid artery using ANSYS software. He investi-
gated the effect of the interaction between fluid and solid on the flow characteristics and shear
stress of the wall. He investigated two flow models, one of which considered the interaction
between solid and fluid, while the other did not. The results showed that the shear stress values
for these two models differ between 5% and 11%.
The collapse of the inner wall of the vessel is a process in which the bending of the artery is
under certain pressure and tension, and under these conditions, the collapse of the inner wall of
the vessel occurs. The result of the compression resulting from this collapse is to speed up the
process of fatigue and rupture. If plaque detachment occurs in the coronary and cerebral arteries,
it directly leads to a heart attack or stroke. The activity of blood plaques in certain cases, such as
cramps and, in particular, when thrombosis occurs, is of great interest [6]. Upon plaques sticking
together, congestion develops, and once the flow becomes sufficiently constricted, turbulence
may increase, bringing on an increase in the shear stress of the flow and the walls. Studies in the
computer environment show that flow transitions into turbulent and back into laminar in pulsatile
flow; therefore, it is very important to predict transient and turbulent flow in flows with low
Reynolds numbers when simulating blood flow within blood vessels with occlusion [14]. Another
factor that affects blood viscosity is the concentration and type of proteins in plasma, but these
effects are so small that they are not considered important in most hemodynamic studies [15].
Using Ansys software, Dong et al. [16] conducted a numerical study to explore the relationship
between mechanical forces that are exerted at the coronary branching (furcation) sites and the
angle of furcation, considering the division angles to be between 75 and 120 degrees. The results
revealed a relationship between environmental stress and left coronary artery diseases. In addition,
they considered two elastic and nonelastic assumptions for the blood vessel [16]. On the other
hand, Leeuwen et al. [17] investigated the diameter of the vessel and the RBC velocity in the vessel
and reported that vessel constriction induces a large change in the RBC velocity [17].
Botti et al. [18] conducted a CFD study modeling the blood hemodynamics of a specific patient
with an intracranial aneurysm by using two different CFD solvers, i.e., the finite element method
and the finite volume method, in order to compare their performances. They reported that the
finite element model provided better accuracy in high-order analysis for every degree of freedom
[18].
The particle hydrodynamic method has always been developed as a meshless Lagrange method
for simulating fluid-structure interactions. This algorithm, which involves the two-dimensional
simulation of blood flow, provides new support for the application of the SPH method. This
method is used to simulate the opening of the elastic valve due to the force of the fluid column
behind it, which, compared to the experimental results, proves the ability of this method to solve
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fluid and structural problems [19].
Many of the studies reported in the literature have focused on Newtonian fluid models or simpli-
fied geometries. While some have incorporated non-Newtonian models, they often neglect the
effects of pulsatile flow or fail to analyze the impact of varying occlusion sizes on flow patterns
and wall shear stress. This study aims to address these gaps by employing a non-Newtonian
Carreau-Yasuda model to simulate pulsatile blood flow in a three-dimensional model of the carotid
artery with varying degrees of occlusion. By incorporating realistic vessel geometry and pulsatile
flow conditions, this study provides a more accurate representation of the hemodynamics in
stenotic vessels. Furthermore, the analysis of different occlusion sizes (50% and 80% of the internal
diameter) is important to address in more detail the hemodynamic risks associated with high
occlusion levels and their implications for CVDs.
The purpose of this study was to analyze the pulsatile flow inside vessels with non-Newtonian
blood fluid. In the present study, the flow is unsteady and fully developed before entry. The
Carreau model is considered for the simulation of non-Newtonian blood fluid. Additionally, the
values of velocity and pressure are defined the same as real values and with pulses.

2 Materials and methods

This section presents the governing flow equations and the corresponding boundary conditions.
Homogeneous fluid motion equations are derived from the conservation principles of mass,
momentum, and energy. To facilitate engineering analysis, a continuum assumption is employed,
averaging the fluid properties over a representative elementary volume. This assumption is called
continuous media, and as long as the smallest physical dimension is much larger than the free
distance of molecules, this assumption is true.
Another assumption made in this study is that the blood was an incompressible fluid. This
assumption is justified by the fact that the density of blood remains nearly constant under phys-
iological conditions. The compressibility of blood is negligible due to the fact that the greatest
part of the blood plasma, as high as 90%, consists of water and that the pressure variations in the
cardiovascular system is relatively low. This assumption simplifies the continuity equation and is
consistent with the majority of blood flow models in the literature.

Governing equations

The governing equations are for the solid wall that interacts with the fluid. The equations solved
in the ANSYS software include the equations of conservation of mass Eq. (1) and momentum Eq.
(2).

∂p
∂t

+∇ · (ρV) = 0. (1)

The momentum equations, also known as the Navier–Stokes equations, govern viscous flow of
Newtonian fluids and can be written as in Eq. (2) in the general form:

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
=

∂P
∂xj

+ Bi +
∂

∂xi

[
µ

(
∂ui
∂xj

+
∂uj

∂xi
−

2
3

‹ij
∂uk
∂xk

)]
, (2)

where Bi represents the body forces that include primarily the gravitational forces, which are
relevant in hemodynamic studies. Other body forces, such as electromagnetic forces, are mostly
irrelevant and, therefore, negligible in this context.
This method can usually remove the viscosity of the fluid from inside the derivative, and in the
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Table 1. Constant values of the k-ω turbulence model

σω σk ’β β α

2.0 2.0 0.09 0.075 5.9

meantime, only a small and negligible error occurs. For an incompressible flow, Eq. (3) can be
shown as the following vector:

ρ
DD⃗
Dt

= −∇P + B + µ∇2U. (3)

For turbulent flows, the velocity and pressure variables are completely dependent on time; now, if
we want to use them as two average and fluctuating components in the Navier-Stokes equations,
a series of unknown parameters appear in the equation, which are called Reynolds stresses. By
substituting the separated velocity and pressure in the Navier-Stokes equation and simplifying it,
Eq. (3) becomes:

ρ

(
∂ūi
∂t

+ ūj
∂ūi
∂xj

)
= B̄i −

∂P̄
∂xi

+
∂

∂xj

[
µ

(
∂ūi
∂xj

− ρu ′
i u ′

j

)]
. (4)

The difference between the resulting momentum equation and the instantaneous momentum
equation is the last term on the right side of Eq. (4), which is called the Reynolds stress or distur-
bance stress. It is more suitable for simulating the flow behavior near the wall at low Reynolds
numbers and separating the flows caused by the reverse pressure gradient compared to the k-ϵ
model. Unlike the k-ϵ model, which incorporates nonlinear and complex damping functions, the
k-ω model offers a simplified approach by neglecting these terms. The k-ω turbulence model
posits a direct relationship between turbulent viscosity, turbulent kinetic energy, and turbulence
frequency. In the k-ω model, the turbulence viscosity is obtained from the following Eq. (5):

µt =
ρk
ω

. (5)

The two transfer equations of this model, the turbulent kinetic energy equation (k) and the specific
dissipation rate equation (ω) are as given in Eqs. (6) and (7), respectively.

∂(ρk)
∂t

+∇ · (ρUk) = ∇ ·
[(

µ +
µt

σk

)
∇k
]
+ Pk + Pkb −Yk, (6)

∂(ρω)

∂t
+∇ · (ρUω) = ∇ ·

[(
µ +

µt

σω

)
∇ω

]
+ α

ω

k
Pk + Pωb −Yω. (7)

The constants of this equation are shown in Table 1.

The constants in the k-ω turbulence model (Table 1) were validated through comparison with
experimental data and established benchmarks for turbulent flows. These constants were derived
from extensive empirical studies and are widely accepted in the literature for simulating wall-
bounded flows with adverse pressure gradients. The model’s accuracy was further verified by
comparing simulation results with experimental measurements of velocity profiles and turbulence
statistics in similar geometries.
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The capacity of standard two-equation turbulence models to accurately predict the inception and
extent of flow separation from smooth surfaces under adverse pressure gradients is limited. The
starting point for the development of the shear stress transfer turbulence model was the need for
accurate calculations of flows with separation phenomena and reverse pressure gradients. For a
long time, turbulence models were unable to account for these flows.
The k-ϵ turbulence model exhibits limitations in accurately capturing near-wall turbulent boundary
layer behavior. In this region, the k-ω model offers superior performance and is more suitable
for flows with adverse pressure gradients. On the other hand, the k-ω model’s sensitivity to
free-stream conditions outside the boundary layer can hinder its application in flows involving
separation induced by pressure gradients. This sensitivity in the free stream in turbulence
modeling prevents the wide substitution of ω equations in place of standard ϵ equations. This is
the basis for the development of the k-ω SST (Shear Stress Transport) model, which is given in
Eqs. (8) and (9) below [20].

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xi

(
Γk

∂k
∂xj

)
+ Gk −Yk + Sk, (8)

∂

∂t
(ρω) +

∂

∂xi
(ρωui) =

∂

∂xi

(
Γω

∂ω

∂xj

)
+ Gω −Yω + Dω + Sω. (9)

In the standard k-ω and SST k-ω models, the production terms of the k and ω equations are
dissected presented in tabular form in Table 2 below.

Table 2. Terms in the k − ω turbulence model

Term Standard k-ω equation SST k-ω equation
Production of k Pk = τij

∂Ui
∂xj

= νtSijSij Gk = τij
∂Ui
∂xj

Buoyancy production of k Pkb = −
gi
ρ

∂ρ
∂xi

Production of ω Pω = α ω
k Pk Gω = γ

νt
Gk

Buoyancy production of ω Pωb = Cωb
ω
k Pkb

Dissipation of k Yk = β∗ρkω

Dissipation of ω Yω = βρω2

Cross-diffusion Not present Dω = 2(1 − F1)ρσω2
1
ω

∂k
∂xi

∂ω
∂xi

Source terms Not present Sk = Ckρ |S|3
ω

Sω = Cωρ|S|2

Turbulence models such as k-ϵ or LES are less accurate for near-wall flow behavior and need more
computation workload, but the k-ω SST model combines the strengths of the k-ϵ model for free
shear flows and the k-ω model for near-wall flows and thus strikes a balance between accuracy
and computational efficiency. The k-ω SST turbulence model is well-known for its success in
simulating turbulent flows in structures containing complex geometries and boundary layers
by accurately resolving the boundary layer and near-wall flow behavior, which is essential for
calculating WSS and other hemodynamic parameters [21, 22].
Studies have shown that the k-ω SST model provides accurate estimates of wall shear stress
and flow separation, which are critical parameters in cardiovascular health assessment [22].
The application of these models in pulsatile flow simulations has also been validated through
comparisons with experimental data. For example, the k-ω SST model has been shown to provide
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highly accurate results, usually within 5% error, when compared to experimental measurements
[23]. As a result, the k-ω SST turbulence model was chosen for this study due to its superior
performance and for being a validated and reliable choice for simulating blood flow in stenotic
vessels. The Carreau-Yasuda model, which takes into account the shear thinning properties of
blood that become important under variable flow conditions [22, 24], has been widely used for
simulating pulsating blood flow, and has been supported by studies to be an effective model
in capturing the complex flow properties observed in biological systems [21, 22]. Furthermore,
integrating the Carreau-Yasuda model with the k-ω SST turbulence model provides a more
comprehensive understanding of flow dynamics in occluded arteries because it effectively captures
both the non-Newtonian properties of blood and the turbulent flow characteristics [22–24].

In the present study, blood has a profile similar to that in the study of Chen and Lu [25] and enters
the inlet branch at a Reynolds number equal to 270 (or an average velocity of 0.0694 m/s). As for
the output boundary conditions, zero relative pressure at the outlet of the two branches is used,
as per the above study, and due to the incompressibility of blood in this problem, the amount of
working pressure does not affect the results. Additionally, the axial flow velocity gradients at the
exits of both branches are considered to be zero. The boundary condition of the wall is assumed to
be non-slip. In the present study, blood flow in a bifurcating blood vessel has been numerically

Figure 1. Blood vessel geometry

simulated in a three-dimensional model for Newtonian and non-Newtonian Carreau–Yasuda
viscosity conditions. The desired geometry is drawn in the design software. Figure 1 shows the
geometry drawn in SOLIDWORKS software. The Carreau-Yasuda model has been chosen for this
study due to its ability to accurately describe the shear-thinning behavior of blood across a wide
range of shear rates. Unlike the power-law model, which is limited to intermediate shear rates,
and the Casson model, which does not account for the gradual transition between Newtonian and
non-Newtonian behavior, the Carreau-Yasuda model captures the viscosity variation of blood
more comprehensively. This makes it particularly suitable for simulating blood flow in vessels
with complex geometries and varying shear conditions.

The shear thinning behavior of blood is described by the Carreau-Yasuda model using:

µ(γ̇) = µ∞ + (µ0 − µ∞) [1 + (λγ̇)a]
n−1

a ,

where µ(γ̇) is the dynamic viscosity as a function of shear rate (γ), µ0 is the zero-shear viscosity,
µ∞ is the infinite-shear viscosity, λ is the relaxation time, n is the power-law index that describes
the degree of shear thinning, and a is the Yasuda parameter that controls the transition between
Newtonian and shear-thinning regions. Values of these model parameters are presented in Table 3.
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The heartbeat pattern has been selected as the pulse function, and because the Fluent software is
not able to define this type of pulse, the custom codes have been defined to induce the pulse for
the simulation and have been incorporated into the solver through the use of UDFs. To simulate
pulsatile blood flow in a CFD model, a physiological waveform that represents the heartbeat
has been obtained by using a Fourier series to approximate the periodic nature of the arterial
pulse. The blood flow rate calculated based on the waveform derived from experimental data or
idealized representations of the cardiac cycle has been represented by the following formula:

Q(t) = Qmean +
N∑

n=1

[
An cos

(
2πnt

T

)
+ Bn sin

(
2πnt

T

)]
. (10)

In Eq. (10), the wave function can also be converted into a single sinusoidal form by using
amplitudes and phase-shift:

An cos
(

2πnt
T

)
+ Bn sin

(
2πnt

T

)
= Cn sin

(
2πnt

T
+ ϕn

)
,

where the amplitude Cn is:

Cn =
√

A2
n + B2

n.

And the phase angle ϕn is:

ϕn = tan−1
(

An

Bn

)
.

Eq. (10), then becomes:

Q(t) = Qmean +
N∑

n=1

Cn sin
(

2πnt
T

+ ϕn

)
,

where T is the period of the cardiac cycle (typically 0.8–1.0 s for a heart rate of 60–75 bpm), ϕn are
the phase angles for each harmonic, N is the number of harmonics (typically 4–10 for a realistic
waveform). The parameters and respective values used to simulate the pulse are presented in
Table 3 below.

With the given parameters, the pulsatile blood flow has been simulated in the modeled vessel.
The Womersley number, which characterizes the pulsatile blood flow, has been calculated for the
non-stenotic and stenotic (%50 and %80 constricted) cases using:

α =
r
√

ωρ

µ
,

and respective α numbers were found to be 52.46, 26.23, and 10.49, respectively.

The solution domain is organized and discretized using the so-called O-shaped mesh, except
near the tip of the bifurcation and that part of the outlet branch that includes the constriction.
Additionally, the unorganized mesh adapts better to the mix of the flow (caused by the presence
of bifurcations and obstructions). Therefore, in this area, an unorganized mesh has been used in a
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Table 3. Parameters used to simulate the pulsatile blood flow

Property Value(s)
Vessel diamater 0.0045 m
Density 1060 kg/m3
Zero-shear viscosity 0.056 Pa.s
Infinite-shear Viscosity 0.0035 Pa.s
Temperature 37 C
Mean velocity 0.0694 m/s (Re=270)
Period of cardiac cycle 1 s
Number of harmonics 5
Cosine coefficients (Bn) 0.2, 0.15, 0.1, 0.05, 0.02
Sine coefficients (An) 0.3, -0.1, 0.08, -0.03, 0.015
Amplitudes (Cn) 0.36, 0.18, 0.13, 0.058, 0.025
Phase Angles (ϕn, radian) 0.59, -0.59, 0.67, -0.54, 0.64
Power-law index (n) 0.03568
Yasuda parameter (a) 2
Relaxation time (λ) 3.313 s

small enough way. Ansys Fluent software, which can create unorganized and organized meshes,
was used to create the mesh, which can be seen in Figure 2 below. The number of generated mesh
was 122540 elements. To determine the correct number of elements to build the mesh, a mesh
independence analysis was made, and convergence was established.

Figure 2. Side and front views of the meshed model

For numerical analysis in the ANSYS Fluent software, it is necessary to provide boundary condi-
tions. To model the inlet flow, the mass flow rate values given in the reference study have been
used. The outlet pressure boundary condition has been used for both of the two outlets of the
artery division. Since the solution is unsteady, a user-defined function is used to provide the input
and output boundary conditions. Figure 3 shows a view of the desired geometry along with the
boundary conditions, and Figure 4 shows the values for the input and output blood pressure as
given by the reference study.

In order to ensure that the number of elements that constitute the mesh have no or negligible
impact on the solution, a mesh independence test is always carried out. In this study, mesh
independence was demonstrated using WSS values. WSS is a critical parameter in hemodynamic
simulations and is highly sensitive to mesh resolution. Therefore, it is often the primary metric
for mesh independence. Once WSS converges with mesh refinement, it implicitly means that the
mesh is also validated for the accuracy of velocity and pressure fields, as these are the underlying
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Figure 3. Boundary conditions of blood vessel geometry

Figure 4. Input and output values of blood flow according to time

quantities used to compute WSS. In this regard, the WSS parameter in a section near the wall has
been investigated in meshes with different numbers of elements. As shown in Figure 5, a number
of elements greater than 1350,000 inside the geometry indicates the independence of the mesh.

Figure 5. Shear stress according to the number of elements
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One of the critical aspects of turbulence modeling is the accurate representation of near-wall
flow physics, i.e., reflecting real-world conditions accurately. The performance of turbulence
models is significantly influenced by their ability to capture wall-bounded flow characteristics.
In this regard, the y+ parameter, a non-dimensional wall distance, serves as a crucial metric for
evaluating the adequacy of near-wall mesh resolution. The logarithmic law of the wall provides
theoretical guidelines for the appropriate range of y+ values to ensure accurate representation
of the boundary layer. Ansys-Fluent software can be used to solve flow models that include
moving cells. Depending on the complexity of movement and physics, the flow of one of the mesh
movement models can be suitable for modeling. One of the most common models in Fluent for
simulating streams that have a moving and variable mesh is the dynamic mesh model. To use the
dynamic mesh model, we need to start with a mesh volume and describe each moving area in the
model. Fluent can describe motion under a boundary profile based on functions defined by the
user, known as user-defined functions (UDFs). For dynamic meshes, remeshing and smoothing
techniques were employed to maintain mesh quality during deformation. Remeshing involves
locally refining or coarsening the mesh in response to changes in geometry, whereas smoothing
is the adjustment of nodes’ positions to reduce distortion. These techniques ensure accurate
simulation of fluid-structure interactions and moving boundaries.

3 Results and discussion

Many models have been presented to simulate non-Newtonian blood fluid in vessels, but none of
them have been able to analyze the elastic behavior of vessel walls due to the pulse pressure of
the blood, as in real samples, to minimize deviation. This problem has become one of the reasons
for the failure of researchers. Computer simulation can solve the most complex problems of
engineering sciences; therefore, in such problems, all required algorithms are simulated according
to real vessel samples. The geometry of the vessel, which includes a two-way vessel with a
diameter of the outlet different from the diameter of the inlet, is drawn, tested, and compared in
the region before the constriction with different percentages. To create more tension in the vessel
and complicate the problem, the diameter of one of the outlets is reduced by half, and the results
are compared with each other. This complexity enables us to solve similar problems and analyze
the output information. Different models are available to define blood fluid in the software. The
selected models include three models: a non-Newtonian power law, a Newtonian power law, and
the Carreau model, which has the least error compared to the analytical solution.
WSS (τw) is calculated from the velocity gradients on the wall of the vessel using the following
relationship:

τw = µ

(
∂u
∂y

)
y=0

,

where µ is the dynamic viscosity of blood, u is the velocity parallel to the wall, and y is the distance
perpendicular to the wall. ANSYS uses the same formulation to calculate the wall stress based
on the velocity gradients obtained during the numerical solution of the governing Navier-Stokes
equations at the wall (y=0). In this study, the contour plots for WSS were obtained directly in CFD
post and presented in Figure 6 for different conditions.
The shear stress values obtained in this simulation were validated against those of another study
conducted using a similar bifurcation vessel model. The values are presented in Table 4. The range
of the errors is from approximately 2 to 13%, and the average error is approximately 7%, which is
acceptable. Figure 6 shows the distribution of inner-wall shear stress.
The results of the analysis are given as shear stress values near the vessel wall. Figure 6 shows
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Table 4. Inner wall shear stress

X/C Time (s) Shear Stress (Pas) CFD (A) Shear Stress (Pas) [16] (B) Error (%) (B-A)/A*100
0.0 0.123 0.12 −2.5
0.2 0.174 0.18 3.4
0.4 0.280 0.26 −7.1
0.6 0.355 0.38 7.0
0.8 0.220 0.24 9.0
1.0 0.150 0.13 −13.3

the values of shear stress inside the vessel resulting from the analysis with the Carreau model.
The average value near the vessel wall is approximately 0.3 Pascal. In the case of constriction, the
region behind the constriction experiences the highest shear stress. The flow output also has shear
stress values, and this stress increases with the narrowing of the outlet of the vessel.

Figure 6 show shear stress values on walls of the vessel with 80% and 50% constriction. The
shear stress is highest in the region near the branch and near the constriction because of the
increase in pressure in these areas. With the narrowing of the constriction due to a sudden change
in diameter, the velocity in the narrowed channel increases greatly, which in turn increases the
pressure on the wall, and with the narrowing of the outlet, this pressure increases. The tension at
these points increases due to the increase in pressure. The concentration of greatest stress occurs
after constriction and in the furcation area.

The velocity streamlines in Figure 7 show that the flow characteristics in normal and stenotic
arteries change significantly. While the velocity distribution in the normal artery is relatively
balanced, the flow lines progress smoothly, and no significant recirculation or turbulence is
observed. With the increase of constriction, a significant increase in the flow velocity and the
formation of turbulence in the region after the constriction are observed with the expansion of
backflow areas. This supports the formation of high shear stresses in the arterial wall seen in
Figure 6.

Figure 8 shows the values of the velocity inside the vessel for different modes of analysis. As it
approaches the area before the constriction, due to the increase in pressure, the flow experiences a
sharp drop in velocity, which acts like the flow inside the nozzle in the constriction area, and a
higher velocity is observed in the flow of the constriction area. This increase in velocity continues
to the furcation area, which induces an increase in friction and shear stress. In the case where the
outlet of the vessel is narrowed, the increase in velocity increases, and up to 17% greater velocity
is observed in the furcation area. With increasing velocity, the amount of pressure and shear stress
increases, and the vessel is unable to bear this pressure and is on the threshold of rupture.
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Figure 6. Shear stress contours on (a) normal (b) 50% and (c) 80% constricted vessel
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Figure 7. Velocity values of vessel geometry (a) normal (b) 50% and (c) 80% constricted vessel
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Figure 8. Velocity values before the furcation for different conditions

As seen from the pressure values, the effect of pressure is also evident within the entire tissue of
the vessel wall. The shear stress values of the wall grid due to this pressure are given in Figure 9.
In this case, the wall tissue will not bear this pressure and will be on the verge of tearing. As
seen from the deformation values, the effect of pressure inside the tissue of the vessel wall is
also evident; with the increase in the amount of relaxation, the pressure increases. In Figure 10,

Figure 9. Shear stress values before the flow crossroads on the wall for different

the pressure values inside the vessel are analyzed for different states. By approaching the area
before the constriction, due to the increase in pressure, the flow encounters an increase in pressure,
which acts like the flow inside the nozzle in the constriction area, and more pressure is observed
in the flow of the constriction area. This increase in pressure continues to the furcation area,
which causes an increase in friction and shear stress. In the case where the outlet of the vessel is
narrowed, this increase in pressure is greater. Shear stress is a critical factor in the development
of thrombosis. Low shear stress (< 0.4 Pa) promotes platelet adhesion, whereas high shear stress
(> 1.0 Pa) potentially causes endothelial damage. The shear stress values observed in this study,
particularly near occlusions, fall within these clinically relevant ranges.
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Figure 10. Velocity values before the furcation for different conditions

When the highest pressure values near the occlusions are concerned, the maximum pressure was
found to be 4139,37 Pa for the 50% constriction case, it reached 4689,78 Pa for the 80% constriction
case. These elevated pressure values highlight the increased risk of vessel wall damage in highly
occluded vessels. The pressure values suggest that the occlusion exerts pressure on the entire
vessel wall, clearly indicating that clogging causes a sharp pressure increase in the vessel just
before the stenosis.

4 Conclusion

The stress–strain relationship in the blood does not follow a single relationship. This analysis
depends on the dimensions of the vessel compared to the dimensions of the particles present in
plasma (red and white blood cells, and platelets). The behavior of blood flow in vessels with a
large internal diameter adheres to well-established hemodynamic principles, where inertial forces
dominate viscous forces, and the continuum assumption remains valid. To achieve the objectives
of the research, the numerical studies carried out in this field are first discussed, and in this part,
the main focus has been on the research carried out using Ansys software. In the second part,
the computational studies performed on the blood flow are discussed, and then the governing
equations are explained. Furthermore, the vessel model was selected from reliable sources to
ensure the validity of the simulation data. The results indicate the approximate accuracy of the
non-Newtonian model used. Continuing this research, vessel occlusion models with varying
occlusion sizes have been analyzed. The effect of pressure on the vessel wall tissue is evident. For
small occlusions, large vessels can withstand the pressure. Although the software cannot simulate
rupture, the vessel wall tissue appears capable of tolerating up to 50% stenosis.

In a vessel with 80% constriction of the internal diameter and a narrowed outlet, pressure values
indicate high pressure intensity and velocity heterogeneity. This leads to a significant increase
in shear stress near the constriction while the vessel flow exerts pressure on the wall. Wall mesh
deformation due to this pressure suggests that the wall tissue would not withstand this level of
pressure and would be at the threshold of tearing.

Velocity values within the vessel are analyzed under different conditions. As the flow approaches
the constricted area, velocity sharply decreases due to increased pressure. Within the constriction,
the flow behaves similarly to that inside a nozzle, resulting in higher fluid velocity in the narrowed
region of the vessel.
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This study highlights the importance of accurately modeling non-Newtonian blood behavior and
vessel occlusion to understand the hemodynamic risk factors associated with CVDs.
The main findings of the study can be summarized as follows:

• It was observed that blood modeled as a non-Newtonian fluid exhibited significant differences
in flow patterns compared to the Newtonian assumption and that the Carreau-Yasuda model
played a critical role in determining the flow dynamics in high shear stress regions near the
stenosis.

• The fact that the maximum WSS values were significantly higher in non-Newtonian flows
indicated the importance of using the Carreau-Yasuda model to consider the shear thinning
behavior of blood in hemodynamic studies.

• It was observed that the narrowing of the vessel significantly changed the flow characteristics of
the blood. In the case of 50% and 80% constrictions, the axial velocity in the non-planar branch
decreased, while the velocity and, hence, the pressure increased in the furcation region, which
led to an increase in the critical factor of wall shear stress.

• When the velocity distributions within the vessel were evaluated, it showed significant hetero-
geneity, especially in the regions downstream of the occlusion, which could worsen the vascular
damage due to hemodynamic risk factors such as flow separation, recirculation, and turbulence.
• The use of the k-ω SST turbulence model has been shown to provide accurate resolution of
near-wall flow physics and adverse pressure gradients, which are critical for capturing complex
flow patterns in narrow vessels

5 Limitations

Although this study provides valuable information on the hemodynamics of the constricted
vessels, the study is limited by the fact that the viscoelastic effects of blood and vessel walls are
neglected, which may affect the flow dynamics, especially in highly stenotic regions. Another
limitation is that the study does not include experimental validation.

6 Future Research

To take this research further, future studies can use viscoelastic models that take into account the
elastic behavior of blood and vessel walls. Numerical results can be validated with experimental
data obtained by techniques such as MRI or ultrasound. The effects of different turbulence models,
such as Large Eddy Simulations and Reynold Stress Model on the accuracy of hemodynamic
predictions can be investigated.

Declarations

Use of AI tools

The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this
article.

Data availability statement

No Data associated with the manuscript.

Ethical approval (optional)

The authors state that this research complies with ethical standards. This research does not involve
either human participants or animals.



114 | Mathematical Modelling and Numerical Simulation with Applications, 2025, Vol. 5, No. 1, 97–116

Consent for publication

Not applicable

Conflicts of interest

The authors declare that they have no conflict of interest.

Funding

No funding was received for this research.

Author’s contributions

M.M.: Conceptualization, Methodology, Investigation, Data Curation, Formal Analysis, Writing-
Original draft, Software, Visualization, Validation. İ.K.: Resources, Supervision, Writing-Reviewing
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Abstract
In this study, the mathematical model that examined the relationships between the variables of
the population that continued to live in the disaster area, the population that migrated to another
region, the number of newly built independent sections in the disaster area the post-disaster, and the
socio-economic development index (SEDI) of the disaster area is expressed through fractional-order
differential equations (FODEs) and qualitative analysis of the model is carried out. Furthermore,
the relationship between migrated and non-migrated populations is presented in the model with
four different functional responses. In real-world applications of the model, some earthquakes in
Türkiye, which are similar to each other in many ways, are taken into account. Therefore, data after
the Gölcük earthquake in 1999 are used, and parameters, derivative order, and functional response are
determined by considering the minimum root mean squared error (RMSE). Then, the performance of
the proposed model with these values is shown in the Elbistan earthquake in 2023. Finally, the 5-year
and 10-year estimates of the non-migratory population, the migrated population, the number of newly
built independent sections, and the SEDI index values are presented for Elbistan.

Keywords: Fractional-order differential equation; functional response; earthquakes; socio-economic
development index; root mean squared error

AMS 2020 Classification: 26A33; 34A08; 92D25

1 Introduction

It is known that disasters have occurred in every period of history. Disasters can be defined as
ecological events that suddenly change the normal life order of the society, result in loss of life
and property, and create a need for external assistance depending on their size and speed of
occurrence. They, which cannot be determined exactly where, when and how they will occur, have
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similar following effects in terms of their consequences: economic losses and social psychological
destruction, especially physical losses [1]. Disaster types, whether natural or not, are given in
Table 1. There has been an increasing trend in disaster events globally from 1900 to 2022. In this
context, the number of disasters averaged 56 events per year in the 1960s (reached 81 in 1966),
while the average number of disasters in the last decade (2012-2022) reached 363 events per year.
In addition, a total of 30748 deaths were recorded, an estimated 186 million people were negatively
affected, and according to available data, these disasters caused damage worth USD 223.84 billion
due to 388 disasters recorded worldwide in 2022 which are extreme heat, flood, storm, drought,
forest fire, landslide, earthquake, extreme temperature and volcanic activities [2].

Table 1. Types of disasters [3]

Natural disasters Human-Made Disasters
Slow-developing natural disasters Sudden Natural Disasters
-Severe cold
-Drought
-Famine etc.

-Earthquake
-Floods
-Landslides, rock falls
-Avalache
-Storms, tornadoes
-Volcanoes
-Fires etc.

-Nuclear, biological, chemical accidents
-Terrorism
-Transportation accidents
-Industrial accidents
-Accidents caused by overcrowding
-Migrants and displaced persons etc.

Today, disaster management has become an important issue due to the loss of life and large
financial burden. In fact, our societies, regardless of their level of development, are still not
adequately prepared for a natural or human disaster and its possible domino effects [4]. Therefore,
the necessary precautions to be taken disaster-before in order to minimize the loss of life and
property, as well as the necessary measures to be taken for the society to return to its normal life
disaster-after, are of vital importance.

Disasters such as earthquakes and nuclear explosions or acts of terrorism in another area also occur
suddenly and surprisingly. In such events, due to the effect of surprise and fear, reactions are more
instinctive and individuals often tend to leave the area they are in. Migration is often considered
one of the primary responses to natural disasters. Existing literature broadly recognizes the fact
that disaster victims migrate from affected areas [5]. In this context, the return of individuals,
who survived and migrated the post-disaster to the same region, is possible by meaning of
socio-economic development of the disaster area and by building enough settlements to meet the
needs. Socio-economic development involves parameters such as demography, technology, health,
education, economic development, financial capacity, competitive structure and quality of life,
and the data on these parameters can provide information at the regional level about what social
needs are and to what extent they are met [6].

Although an earthquake is a natural event, it is inevitable that it will turn into a disaster, especially
considering its duration and magnitude and the precautions taken in advance. When disasters
are mentioned in Türkiye, the first thing that comes to mind is earthquakes due to its location in
an earthquake zone. In this region, major earthquakes have occurred in almost every period of
history, resulting in many deaths and a wave of migration. In the last 100 years, 16 earthquakes
of magnitude 7 Mw and above have occurred in Türkiye, as seen Figure 1. 124558 people lost
their lives in these earthquakes, and the number of buildings with moderate and more damage
is about 1037108 [7]. Reverse migration after a disaster is possible with the development of the
disaster area in many areas. SEDI focusing on 12 basic indicators of economic development and 12
basic indicators of social development in terms of evaluation is one of the measurable parameters
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in terms of the development level of a region. Socio-Economic Development Ranking Studies
are analysis studies that objectively measure and compare the socio-economic development of
regions, provinces and districts in Türkiye in order to provide input to policies, strategies and
public practices [8]. District SEDI studies conducted to date have been published seven times
between 1966-2022. In this study, changes in the populations of individuals who survived the
disaster and some of whom migrated to other regions were mathematically modeled through
FODEs according to the SEDI and the independent section numbers.

Figure 1. Earthquakes of magnitude 7 Mw and above in the last 100 years in Türkiye [7]

In a scientific investigation, we explore and therefore understand our real world by observing,
collecting data, finding rules within or among them, then we discover the truth behind this phe-
nomenon and want to apply it to predict the future. This process is mostly through mathematical
modeling. Such modeling is differential equations, which are well known for describing relation-
ships between variables and their derivatives, and so usually used for planning, prevention and
control scenarios.

Fractional calculus has been an old but increasingly important subject of mathematics since the
17th century. Fractional integral and differential operators can be thought of as generalized
forms of integer order integral and derivative operators. The concept of memory is important
for fractional calculation. In a memory system, the input must remember its previous values
in order to indicate the current value of the output. When considering the modeling of various
memory events, it is often stated that a memory process consists of two stages; It is a short-
term state that can be presented through fractional derivation with permanent retention [9, 10].
Recently, an increasing number of studies and applications of fractional order systems have
been presented in many fields of science and engineering [11–17]. Many various descriptions
of fractional derivatives are encountered in the literature, such as Riemann-Liouville, Caputo,
Caputo-Fabrizio and Atangana-Baleanu [18]. Caputo’s fractional operator is possibly the most
significant in fractional analysis since its derivative is the most appropriate fractional operator
to use in modeling a real-world problem. Talking about real problems, the Caputo derivative
is considerable practical because it allows conventional initial and boundary conditions to be
involved in the derivation and the derivative of a constant is zero, which is not the circumstance
with the Riemann-Liouville fractional derivative [19]. In the manuscript, Caputo’s fractional
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definition is considered.
In the mathematical and computer literature, scholars have mainly focused on modeling crowd
dynamics and collective panic in the event of a catastrophic event [20, 21] or simulating movements
to model pedestrian evacuation inside buildings [22]. Let’s consider a sudden disaster that causes
loss of life and property, such as an earthquake, nuclear explosion, or flood. There are few
mathematical modeling studies in the literature that examine the return of individuals living in a
region to their normal lives in the disaster area according to their behavior and housing needs. In
addition, when looking at the studies on this subject in the literature, the number of mathematical
models with ordinary differential equations (ODEs)is very low, and no mathematical model with
FODEs was found.
Kumar et al. [23] examined the population in a region after a flood disaster through the ODE
model, based on the classical SIR model, in which individuals are divided into susceptible,
affected, survivor, or deceased compartments. They only presented a qualitative analysis of this
model, which is widely used in different fields, without developing it.
Verdière et al. [24] modeled by ODE the temporal dynamics of human behavior during a catas-
trophic event. They proposed so-called PCR mathematical models that simulate sequences of
individual behaviors called as Panic, Controlled, and Reflex according to the type of threat,
domino effects, and the local environment. In their model, the population that continues its
normal daily life is denoted by Q, individuals with uncontrolled behavior are denoted by r and p,
and individuals with controlled behavior are denoted by c. At the beginning, the total population
N is in Q1, subpopulation of Q. A post-disaster occurs, all individuals move to compartment r at a
certain rate, individuals in r, those showing panic behavior at certain rates, move to compartment
p, and those showing controlled behavior move to compartment c. Finally, at a certain rate,
there is a transition from c to the Q2 compartment in which individuals continue their daily life.
Furthermore, the authors assumed reciprocal transition between r, c, and p compartments. They
numerically illustrated their model for the earthquake in Haiti and Japan in 2010.
In our proposed model, the interaction between the population that migrated and those that
did not migrate post-disaster was expressed with different functional responses, and then the
functional response closest to the real data was determined. Therefore, the reason for using four
responses, which are frequently mentioned in the literature, is to increase the performance of the
model by determining the response that gives the minimum RMSE value. In fact, four different
mathematical models are presented as a single model in the manuscript.
Earthquakes, landslides, floods, volcanic eruptions, hurricanes, and tornadoes, which have been
repeated countless times since the world was formed 4.6 billion years ago, are actually ordinary
events that give our planet its current appearance. Therefore, disasters are intertwined with
humanity and are inevitable. Many researchers around the world have carried out many studies
on the effects of disasters. However, there are very few studies in the literature on post-disaster
migration mobility and changes in population projection, which aim to determine in advance
the size of the workforce that will be needed in the future and to prepare the infrastructure and
opportunities accordingly.
In this study, the scenario immediately after a disaster, such as an earthquake or flood, that causes
a sudden loss of life and property is discussed. All individuals living in the region naturally
exhibit reflexive behavior. Some of them migrate to another region due to a lack of shelter or panic
behavior, and their population size is shown as M in the model. The rest of them continue to
live in the disaster area by exhibiting controlled behavior, and their population size in the model
is denoted by S. The number of new buildings built to replace independent sections that were
demolished or decided to be demolished after the disaster is also indicated by R. Moreover, the
SEDI of the region is presented with I. In this sense, the relationship among the dimensions of the
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variables S, M, R, and I has been modeled mathematically through FODEs in the Caputo meaning.
In this way, due to the definition of fractional derivative, the natural delay in the relevant disaster
scenario was also taken into account.
Therefore, the differences in the presented study from the literature can be listed as follows:

• FODEs are used in the model.
• The different functional responses are used in the model.
• According to the real values, the parameter values and the derivative-order with minimum

RMSE have been obtained.
• Predictions are made for future population projection, SEDI, and independent section numbers.

The remainder of the study is organized as follows.

• Some basic definitions and theorems used in the definition and analysis of the model are given
in Section 2.

• The proposed mathematical model is formulated in Section 3. It was also presented respectively
in:

– The positivity, boundedness, and non-negative of solutions of the model,
– Different possible equilibrium points of the model and,
– Stability analysis of the equilibrium points.

• The estimation of the parameters of the proposed model is given in Section 4. Therefore, the
data set was created, parameters with minimum RMSE were obtained, the fractional order
was determined to obtain lower RMSE, and numerically simulated results for Elbistan of our
proposed model have been presented.

• Finally, in Section 5, we have presented some of the main outcomes of the present work.

2 Preliminaries and definitions

In this section, we have discussed some functional answers for the Lotka-Volterra system. Later,
we present some useful definitions and properties of fractional derivatives. In addition, some
properties regarding the existence and signs of the roots of the polynomials used in the study are
given.

Definition 1 The Lotka-Volterra predator-prey model consists of two differential equations, the first
equation for the prey and the second equation for the predator, and is as follows:

dx
dt

= ax − γxy and
dy
dt

= −cy + exy,

where a, γ, c, e > 0. The terms γxy = F(x, y) and exy = G(x, y) in this system are called functional and
numerical responses, respectively [25].
Some functional responses are Holling Type I for F(x, y) = γxy, γ > 0, Holling Type II for F(x, y) =
γxy
x+b γ, b > 0, Holling Type III for F(x, y) = γx2y

x2+b γ, b > 0 and Ivlev for F(x, y) = γy
(

1 − ebx
)

γ, b > 0
[26, 27].

In this study, the above-mentioned functional responses were used for the relationship between
post-disaster migratory and non-migratory populations. The functional responses used in the
manuscript can be briefly explained as follows. Let us consider two species that have certain sizes
at reference time t and, moreover, interact with each other. Functions describing their varying
population sizes are modeled in a continuous framework. Changes depending on the relationship
between these functions can be explained by functional response. Functional response [28] is one
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of the oldest and most common mathematical constructs used to describe and make prospective
predictions about the nutritional interaction between a consumer and a resource. This response
describes the feeding rate of a consumer based on its density in its environment. The most common
of these are Holling type I-III responses [27] and Ivlev response [29].
Type I functional response supposes a linear increase in intake rate with food density, either for
all food densities or only for maximum food densities, beyond which the intake rate is constant.
Linear increase reckons for the following: the time a consumer needs to process a food item is
neglectable or that consuming food does not prevent foraging.
Type II functional response is qualified by a slowing rate of intake, following from the presumption
that the consumer is restricted by his or her food processing capacity. Also, the functional response
is commonly modeled through a rectangular hyperbola.
Type III functional response is alike to type II in that at high levels of prey density, saturation
occurs. At low prey density levels, the graphical connection of the number of prey consumed and
the density of the prey population is a super linearly increasing function of prey consumed by
predators.
In Ivlev’s functional response, the maximal rate of predation and decline in hunting drive are
represented by the positive constant γ and b, respectively [30].

Definition 2 (Caputo Fractional Derivative) [31] 0 < ϕ ≤ 1 for the function u: Cn[0,∞] → R is defined
as

CDϕ
t (u(t)) =

1
Γ(n−ϕ)

∫t
0

1
(t−z)ϕ+1−n

dn

dzn u(z)dz, (1)

where Cn[0,∞] is a n times continuously differentiable function and Gamma function is defined by Γ()
such that n − 1 < ϕ < n .

Lemma 1 [32] Let 0 < ϕ ≤ 1. Suppose that u(t) ∈ C[a, b] and C
t0

Dϕ

t
u(t) ∈ C[a, b].

• If C
t0

Dϕ

t
u(t) ≥ 0, ∀t ∈ (a, b), then u(t) is a non-decreasing function.

• If C
t0

Dϕ

t
u(t) ≥ 0, ∀t ∈ (a, b), then u(t) is a non-increasing function.

Theorem 1 [33, 34] Consider the following fractional-order system:

CDϕ
t (u(t)) = f (t, u(t)),

u(t0) = u0,
(2)

where CDϕ
t is Caputo’s derivative of the order 0 < ϕ ≤ 1 and f (t, u(t)) : R+ × Rn → Rn is a vector

field. The equilibrium points of this system are locally asymptotically stable (LAS) if all eigenvalues λi of
the Jacobian matrix ∂ f (t,u)

∂u evaluated at the equilibrium points satisfy the following condition:

|argλi| >
ϕπ
2 . (3)

Let’s consider system (2) for u = (u1 u2)
T. In this case, the characteristic equation is

p(λ) = λ2 + a1λ + a2 = 0. (4)
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The conditions for LAS of the equilibrium point are either Routh–Hurwitz conditions given as

a1, a2>0, (5)

or:

a1 < 0, 4a2 > (a1)
2,

∣∣∣∣tan−1
(√

4a2−(a1)
2

a1

)∣∣∣∣ > απ
2 , (6)

[35].

Theorem 2 (Descartes’s Rule of Signs) [36] "Let

p(x) = a0xb0 + a1xb1 + · · ·+ anxbn , (7)

denote a polynomial with nonzero real coefficient ai, where bi are integers satisfying 0 ≤ b0 < b1 < b2 <

· · · < bn. Then the number of positive real zeros of p(x) (counted with multiplicities) is either equal to the
number of variations in sign in the sequence a0, a1, . . . , an of the coefficients or less than that by an even
whole number. The number of negative zeros of p(x) (counted with multiplicities) is either equal to the
number of variations in sign in the sequence of the coefficients of p(−x) or less than that by an even whole
number."

3 Methodology

Fractional-order model

Let t denote the time parameter and the independent variable. The dependent variables whose
changes are being examined post-disaster in the proposed model consisting of FODEs in the
Caputo meaning are given in Table 2. In addition, the parameters used in the model and whose

Table 2. State variables in the proposed mathematical model

Variable Definition Explanation
S(t) The population number at time t who con-

tinues to live the post-disaster in the region
where they lived before the disaster

These are people who, the post-disaster, continue
to live in their pre-disaster residence or a tempo-
rary place in the same area

M(t) The population number at time t migrating
to another region the post-disaster

These are people settled another region by leaving
the area they were in before the disaster, temporar-
ily or permanently, the post-disaster

R(t) The number at time t of newly built indepen-
dent sections

These are the number of newly built independent
sections to replace buildings that were demolished
or decided to be demolished post-disaster

I(t) The SEDI at time t Socio-Economic Performance Index, which is a
measurable indicator of the development of the
disaster area

approximate values will be estimated later in numerical studies by using the actual values of the
variables are given in Table 3.
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Table 3. Parameters used in the mathematical model and their meanings

Parameter Definition
θS Constant increase rate of the population living in the region where they lived before the

disaster,
η The return rate to the disaster area with respect to SEDI with controlled behavior of individuals

who migrated with panic behavior,
µ The return rate of individuals to the region where they were before the disaster, thanks to the

newly built independent sections,
f i(M) Functions for i = 1, 2, 3, 4, which represent the functional and numerical responses, are Holling

Type 1-3 and Ivlev functions, respectively,
γ As a result of the contact between migrated and non-migrated populations, the rate of return

of the migrated population to the region where they were before the disaster,
ε Migration rate to the region the post-disaster according to the SEDI,
υS Natural mortality rate of the population living in the destruction zone the post-disaster,
θM Constant increase rate of the migrated population,
υM Natural mortality rate of the migrated population the post-disaster,
rR The increase rate of newly built independent sections,
CR Carrying capacity of the newly built independent section,
σ The rate of independent sections built in proportion to SEDI,
β Decrease rate of newly built independent sections,
θ Constant rate of SEDI,
ω Decrease rate of SEDI.

Thus, the proposed fractional-order model in the Caputo meaning is

C
t0

Dϕ

t
S=θS + ηMI + µMR + γS fi(M) + εI − υSS,

C
t0

Dϕ

t
M=θM − ηMI − µMR − γS fi(M)− υM M,

C
t0

Dϕ

t
R=rRR(1− R

CR
) + σRI − βR,

C
t0

Dϕ

t
I = θI − ωI,

S ≡ S(t), M ≡ M(t), R ≡ R(t), I ≡ I(t),
S(t0) = S0, R(t0) = R0, M(t0) = M0, I(t0) = I0 such that S0, R0, M0, I0 > 0,

(8)

where t ≥ t0 ≥ 0, ϕ ∈ (.0, 1|. and C
t0

Dϕ

t
denotes the Caputo operator. The parameters in system (8)

satisfy

θS, η, µ, γ, ε, υS, θM, υM, rR, CR, σ, β, θ, ω > 0. (9)

Additionally, mathematical expressions of the functions fi(M) for i = 1, 2, 3, 4 are shown in Table 4.

Table 4. Functional responses used in Eqs. (8) for b>0

Response Type Function ( f i(M))

Holling Type-1 f1(M) = M
Holling Type-2 f2(M) = M

M+b

Holling Type-3 f3(M) = M2

M2+b
Ivlev Type f4(M) = 1 − e−bM

Theorem 3 There is one solution of the equation in (8) with non-negative initial conditions.
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Proof Existence and uniqueness of system (8) will be displayed in the map Ω × (0; T] where

Ω = {(S, M, R, I) ∈ R4
+ : max(|S|, |M|, |R|, |I|) ≤ ζ}. (10)

Reference [37] is taken into account for the proof. We express X = (S, M, R, I) and X = (S, M, R, I).
Consider a mapping

G(X) = (G1(X), G2(X), G3(X), G4(X)), (11)

and

G1(X) = θS + ηMI + µMR + γS fi(M) + εI − υSS,
G2(X) = θM − ηMI − µMR − γS fi(M)− υM M,
G3(X) = rRR(1 − R

CR
) + σRI − βR,

G4(X) = θ − ωI.

(12)

First, consider the functions in (12). For any X, X, one can find the followings by:

∥G(X)− G(X)∥ = |(θS + ηMI + µMR + γS fi(M) + εI − υSS)− (θS + ηMI + µMR + γS fi(M) +

εI − υSS)|+ |(θM − ηMI − µMR − γS fi(M)− υM M)− (θM − ηMI − µMR − γS fi(M)− υM M)|+

|(rRR(1 − R
CR

) + σRI − βR)− (rRR(1 − R
CR

) + σRI − βR)|+ |(θ − ωI)− (θ − ωI)|,

∥G(X)− G(X)∥ = |ηMI − η

=0︷ ︸︸ ︷
(MI − MI)−ηMI + µMR − µ

=0︷ ︸︸ ︷
(MR − MR)−µMR + γS fi(M)−

γ

=0︷ ︸︸ ︷
(S fi(M)− S fi(M))−γS fi(M) + εI − εI − υSS + υSS|+ |− ηMI − η

=0︷ ︸︸ ︷
(MI − MI) +ηMI − µMR −

µ

=0︷ ︸︸ ︷
(RM − RM) +µMR−γS fi(M)−γ

=0︷ ︸︸ ︷
(S fi(M)− S fi(M)) +γS fi(M)−υM M+ υM M|+ |rRR− rRR−

rR
CR

R2 + rR
CR

R2
+ σRI − σ

=0︷ ︸︸ ︷
(RI − RI)−σRI − βR + βR|+ |− ω(I − I)|,

∥G(X)− G(X)∥ = |+ ηM(I − I) + η I(M − M) + µM(R − R) + µR(M − M) + γ f i(M)(S − S) +
γS( fi(M)− fi(M)) + ε(I − I)− υS(S − S)|+ |− ηM(I − I)− η I(M − M)− µM(R − R)− µR(M −

M) − γ fi(M)(S − S) − γS( fi(M) − fi(M)) − υM(M − M)| + |rR(R − R) − rR
CR

(R − R)(R + R) +
σR(I − I)− σI(R − R)− β(R − R)|+ ω|I − I|,

and

∥G(X)− G(X)∥ ≤ (υS + 2γ f i(M))|S − S|+ (2µR + 2η I + υM)|M − M|

+(2µM + rR + β + σI + rR
CR

(R + R))|R − R|

+(2ηM + ε + σR + ω)|I − I|+ 2γS

∗︷ ︸︸ ︷
| fi(M)− fi(M)| .

(13)
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If the expression marked * in Ineq. (13) is taken into account throughout Table 4, then we have

| fi(M)− fi(M)| =



|M − M| for i = 1,
b|M−M|

(M+b)(M+b)
≤ |M−M|

b for i = 2,
b(M+M)|M−M|

(M2+b)(M2
+b)

≤ 2ζ|M−M|
b for i = 3,

by Taylor Expansion︷ ︸︸ ︷
|b(M − M) +

b2(M2
− M2)

2!
+ · · ·+ bn(Mn

− Mn)

n!
|

|M − M||b + b2(M+M)
2! + · · ·+ bn(

∑n
j=1 Mn−j Mj−1)

n! |

≤ |M − M|(b + ζb2

1! + ζ2b3

2! + · · ·+ ζn−1bn

(n−1)! )


for i = 4,



,

and so,

| fi(M)− fi(M)| ≤ ξM|M − M|, (14)

where

ξM = max
{

1,
1
b

,
2ζ

b
, (b +

ζb2

1!
+

ζ2b3

2!
+ · · ·+ ζn−1bn

(n − 1)!
)

}
.

In this case, Ineq. (14) is obtained as follows:

∥G(X)− G(X)∥ ≤ φ1|S − S|+ φ2|M − M|+ φ3|R − R|+ φ4|I − I|,

where

φ1 = (υS + 2γ f i(ζ)ξS),
φ2 = (2µζ + 2ηζ + υM + 2γ(ζ)ξM),
φ3 = (2µζ + rR + β + σζ + 2 rR

CR
ζ),

φ4 = (2ηζ + ε + σζ + ω).

(15)

Consequently, it is acquired ∥G(X)− G(X)∥ ≤ L∥X − X∥ where L = max(φ1, φ2, φ3, φ4), and so,
G(X) met the Lipschitz condition. In summary, the existence and uniqueness of solutions of (8) is
demonstrated.

Theorem 4 The FOS’s solutions in (8), starting in R4
+ are uniformly bounded.

Proof The approach used in [38] was considered.

i. Consider the fourth equation in (8). Therefore, we have C
t0

Dϕ

t
I + ωI = θI . Considering the

standard comparison theorem for fractional-order, it is obtained as follows:

I(t) = (I(0)−
θI
ω
)Eϕ,1(−ωtϕ) +

θI
ω

,

and so,

limt→∞ I(t) = θI
ω , (16)
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where Eα is the Mittag–Leffler function.
ii. From the third equation in (8), we have the followings:

C
t0

D
ϕ

t R + βR=
rR
CR

(
(rR + σI)

2 rR
CR

)
2

−
rR
CR

(R−(
(rR + σI)

2 rR
CR

))
2

≤ rR
CR

(
(rR + σI)

2 rR
CR

)
2

,

R(t) ≤ (R(0)−
1
β

rR
CR

(
(rR + σI)

2 rR
CR

)
2

)Eϕ,1(−βtϕ) +
1
β

rR
CR

(
(rR + σI)

2 rR
CR

)
2

,

and

limt→∞ R(t) = 1
β

rR
CR

(
(rR+σ

θI
ω )

2 rR
CR

)2
. (17)

iii. Now let’s consider the first and second equations of the system (8) for N(t) = S(t) + M(t).
In this case, we have the following:

C
t0

D
ϕ

t S(t) + C
t0

D
ϕ

t M(t) = C
t0

D
ϕ

t N(t) = θS + θM + εI − υSS − υM M,

C
t0

D
ϕ

t N(t) + υSS + υM M = (θS + θM + εI),

and

C
t0

D
ϕ

t N(t) + υN N ≤ (θS + θM + εI),

where min{υS, υM} = υN . Therefore, it is found that

N(t) ≤ (N(0)−
θS + θM + εI

υN
)Eϕ,1(−υNtϕ) +

θS + θM + εI
υN

,

and

limt→∞ N(t) =
θS+θM+ε

θI
ω

υN
. (18)

As a result, the solutions starting in R4
+ of system (8) are uniformly bounded to the region Ω,

in which Ω := {(S, M, R, I) ∈ R4
+ : S + M ≤ θS+θM+ε

θI
ω

υN
+ ∈1, R(t) ≤ 1

β
rR
CR

(
(rR+σ

θI
ω )

2 rR
CR

)
2
+ ∈2, I(t) ≤

θI
ω + ∈3, ∈1,∈2,∈3 > 0}.

Theorem 5 The FOS’s solutions in (8) starting in R4
+ are non-negative.

Proof For proof, the approach used in [38] was taken into account. From the first and second
equations of Eqs. (8), it has been assumed that N(t) = S(t) + M(t) where N(t) → 0 means
S(t) → 0 and M(t) → 0. Therefore, the followings C

t0
Dϕ

t
I(t)|

I=0
= θI > 0, C

t0
Dϕ

t
N(t)|

N=0
=



128 | Mathematical Modelling and Numerical Simulation with Applications, 2025, Vol. 5, No. 1, 117–142

θS + θM + εI > 0, C
t0

Dϕ

t
R(t)|

R=0
= 0 are found. In this sense, the solutions are non-negative.

Equilibrium points of proposed model

E(S, M, R, I) points found by solving the equation system C
t0

Dϕ

t
S(t) = 0, C

t0
Dϕ

t
M(t) = 0, C

t0
Dϕ

t
R(t) =

0, C
t0

Dϕ

t
I(t) = 0 obtained from the system (8) are the equilibrium points. In this case,

θS + ηMI + µMR + γS fi(M) + εI − υSS = 0, (a)
θM − ηMI − µMR − γS fi(M)− υM M = 0, (b)
rRR(1− R

CR
) + σRI − βR = 0, (c)

θI − ωI = 0, (d)

(19)

is obtained. From Eqs. (19), it is found as

S = (θS+θM+εI−υM M)
υS

when I > υM M−(θS+θM)
ε , (a)

R1 = 0 or R2 = rR+σI−β
rR
CR

when I > β−rR
σ , (b)

I = θI
ω . (c)

(20)

In addition, the equations for M from Eq. (19) -(b) according to each function in Table 4 are as
follows:

M = θM
(γS+(η I+µR+υM))

, for i = 1, (a)

M2
+ [b + (γS−θM)

(η I+µR+υM)
]M − bθM

(η I+µR+υM)
= 0, for i = 2, (b)

M3
+ (γS−θM)

(η I+µR+υM)
M2

+ bM − bθM
(η I+µR+υM)

= 0, for i = 3, (c)

(1 − e−bM) γS
(η I+µR+υM)

= ( θM
(η I+µR+υM)

− M), for i = 4, (d)

(21)

where S, R and I are shown in Eqs. (20). Let us consider Ineqs. in (20). If at least one value M can
be obtained from the Eqs. (21), when

υM M−(θS+θM)
ε < I, (22)

for R1, and when

max{ β−rR
σ , υM M−(θS+θM)

ε } < I, (23)

for R2. Therefore, the existence of an equilibrium point can be said. In this case, let us show the
existence of the component M of the equilibrium point from the Eqs. (21).

i. Consider the Eq. (21)-(a). It is clear that M > 0 due to Ineqs. (9), (22) and (23). Thus, the
equilibrium points E(1)

1 (S, M, R1, I) or E(1)
1 (S, M, R2, I) are obtained.

ii. Now let us consider equation (21)-(b). In this case, the equation for M is

M2
+ ξ1 M + ξ2 = 0, (24)
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where

ξ1 =
(

b + (γS−θM)

(η I+µR+υM)

)
, and ξ2 = − bθM

(η I+µR+υM)
. (25)

From the Ineqs. (9), (22) and (23), it can be seen that ξ2 < 0. This shows that Eq. (24)
has one positive M value. In this case, there is the equilibrium points E(1)

2 (S, M, R1, I) or

E(1)
2 (S, M, R2, I).

iii. Considering (21)-(c), the equation for M is the following:

M3
+ ϑ1 M2

+ ϑ2 M + ϑ3 = 0, (26)

where ϑ1 = (γS−θM)

(η I+µR+υM)
, ϑ2 = b, ϑ3 = − bθM

(η I+µR+υM)
. Due to the Ineqs. (9), (22) and (23), it is

obvious that ϑ2 > 0, ϑ3 < 0. According to Descartes’ rule of signs in Theorem 2, one can reach
the following conclusions for the M roots of Eq. (26):

• If ϑ1 ≥ 0,

I ≥ υM M+
θM
γ υS−(θS+θM)

ε , (27)

then Eq. (26) has one positive root, denoted by E(1)
3 (S, M, R1, I) or E(1)

3 (S, M, R2, I).
• If ϑ1 < 0,

I <
υM M+

θM
γ υS−(θS+θM)

ε , (28)

then Eq. (26) has one or three positive roots denoted by E(i)
3 (S, M, R1, I) or E(i)

3 (S, M, R2, I)
for i = 1, 2, 3. Consequently, when the discriminant of Eq. (26) denoted by

∆ f3 = 18ϑ1ϑ2ϑ3 − 27ϑ3
2 + ϑ1

2ϑ2
2 − 4ϑ2

3 − 4ϑ1
3ϑ3,

is taken into consideration, Eq. (26) has one positive root if

∆ f3 ≤ 0, (29)

and three positive roots if

∆ f3 > 0. (30)

iv. When M is evaluated for equation (21)-(d), the equation Ψ1(M) = Ψ2(M) is reached such

that Ψ = Ψ1(M) = (1 − e−bM) γS
(η I+µR+υM)

and Ψ = Ψ2(M) = ( θM
(η I+µR+υM)

− M). In this case,

the existence of a positive M value can be proven using the graphical method in the M − Ψ
coordinate plane. The graph showing the positive M value is shown in Figure 2. Therefore,
there is a positive equilibrium point E(1)

4 (S, M, R1, I) or E(1)
4 (S, M, R2, I).
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Figure 2. Graphical representation of the existence of a positive M value for Eq. (21)-(d)

Local stability analysis

In this section, the LAS equilibrium points of the system (8) for each function shown in Table 4
have been examined. For this, the Jacobian matrix is calculated as

J =


γ fi(M)− υS (η I + µR + γS d fi(M)

dM ) µM ε

−γ fi(M) (−η I − µR − γS d fi(M)
dM − υM) −µM −ηM

0 0 (rR−2R rR
CR

+ σI − β)) σR
0 0 0 −ω

 .

The equation of the eigenvalues for any the equilibrium point (S, M, R, I) from this matrix is

(λ2 + (−γ fi(M)− υS + υM + η I + µR + γS d fi(M)
dM |M=M)λ

+υS(η I + µR + γS d fi(M)
dM |M=M + υM − υM

υS
γ fi(M)))(λ − (rR−2R rR

CR
+ σI − β))(λ+ω) = 0.

(31)
From the second and third factor of Eq. (31), it is clear that λ3 = −R rR

CR
∈ R− by (19)-(c) and

λ4 = −ω ∈ R− due to Ineq. (9). In this case, the eigenvalues λ3 and λ4 satisfies Ineq. (5).

Lastly, when the first factor of Eq. (31), in which the eigenvalues λ1 and λ2 are obtained, is taken
into consideration, the characteristic equation is

λ2 + κ1λ + κ2 = 0, (32)

where {
κ1 = (−γ fi(M)− υS + υM + η I + µR + γS d fi(M)

dM |M=M)

κ2 = υS(η I + µR + γS d fi(M)
dM |M=M + υM − υM

υS
γ fi(M))

}
for i = 1, 2, 3, 4. (33)

Thus, if the coefficients of Eq. (32) satisfy Ineqs. (5) and (6), the eigenvalues λ1 and λ2 satisfy the
stability conditions for equilibrium point. Therefore, we have

κ1,κ2>0, (34)
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or:

κ1 < 0, 4κ2 > κ1
2, |tan−1(

√
4κ2−κ1

2

κ1
)| > ϕπ

2 . (35)

As a result, Table 5 regarding the equilibrium points can be accessed.

Table 5. Stability of equilibrium points obtained according to each functional response (for i = 1, 2, 3)

Response Type Point Existence Condition LAS Condition

Holling Type 1 E(1)
1 (S, M, R1, I) υM M−(θS+θM)

ε < I If I < β−rR
σ and *

Holling Type 1 E(1)
1 (S, M, R2, I) max{ β−rR

σ , υM M−(θS+θM)
ε } < I If *

Holling Type 2 E(1)
2 (S, M, R1, I) υM M−(θS+θM)

ε < I If I < β−rR
σ and *

Holling Type 2 E(1)
2 (S, M, R2, I) max{ β−rR

σ , υM M−(θS+θM)
ε } < I If *

Holling Type 3 E(1)
3 (S, M, R1, I) υM M−(θS+θM)

ε < I I ≥ υM M+
θM
γ υS−(θS+θM)

ε If I <
β−rR

σ and *

Holling Type 3 E(1)
3 (S, M, R2, I) max{ β−rR

σ , υM M−(θS+θM)
ε } < I If *

Holling Type 3 E(i)
3 (S, M, R1, I) υM M−(θS+θM)

ε < I I <
υM M+

θM
γ υS−(θS+θM)

ε

and ∆ f3 > 0 If I < β−rR
σ and *

Holling Type 3 E(i)
3 (S, M, R2, I) max{ β−rR

σ , υM M−(θS+θM)
ε } < I If *

Ivlev Type E(1)
4 (S, M, R1, I) υM M−(θS+θM)

ε < I If I < β−rR
σ and *

Ivlev Type E(1)
4 (S, M, R2, I) max{ β−rR

σ , υM M−(θS+θM)
ε } < I If *

*: Ineqs. (34) or (35) are satisfied

4 Estimation of derivative-order and parameters of the proposed model

The situation after the two major earthquakes with magnitudes (Kandilli Observatory) of Mw=7.7
in Kahramanmaraş, Pazarcık and Mw=7.6 in Kahramanmaraş, Elbistan, that occurred on 06.02.2023
was discussed in numerical studies. Therefore, the model in (8) was applied according to the pa-
rameters and derivative order determined for the Elbistan district. For this purpose, the following
were done in order.

• In parameter estimations, time-dependent values of variables used in the system in (8) are
needed. For this reason, in parameter estimation, data from the 1999 Gölcük earthquake in
Türkiye were used in terms of its historical proximity, intensity, affected area, and results. The
data set was determined accordingly.

• The model proposed in (8) was expressed through the ODE, and the parameters for each
functional response were estimated with respect to real values by using the lsqcurvefit function
of the Matlab R2024b software. In this way, the model parameters were found by determining
the functional response that gave the minimum RMSE.

• Then, the derivative-order of the model with determined parameters was reduced by a preci-
sion of 0.01 and the most appropriate derivative-order was determined. The model with the
parameters and derivative order that gave the minimum RMSE was determined as the best
model.

• Finally, the results of the scenario with the relevant initial conditions for Elbistan after the
Kahramanmaraş Elbistan earthquakes were presented.



132 | Mathematical Modelling and Numerical Simulation with Applications, 2025, Vol. 5, No. 1, 117–142

Dataset

Türkiye is located in an earthquake zone and has witnessed many devastating earthquakes in
history. In this sense, the largest earthquakes that have occurred here since the Republic period
(1923-) are shown in Table 6. The Kocaeli/Gölcük and Kahramanmaraş/Elbistan earthquakes

Table 6. Three major earthquakes experienced in Türkiye [39]

Date Location Magnitude Deaths Damaged Building
26.12.1939 Erzincan 7.9 32962 116720
17.08.1999 Kocaeli (Gölcük) 7.4 17479 43953
06.02.2023 Kahramanmaraş(Pazarcık-Elbistan) 7.7 and 7.6 50783 227027

are similar to each other in terms of the intensity of the earthquake, the number of deaths, the
size of the affected area, and the closeness of their dates. In addition, the Gölcük earthquake was
accepted as a reference for the Elbistan earthquake in terms of the accessibility of the variables
(S, M, R and I in (8)) used in this study.
For parameter estimation, data following a 7.4 magnitude earthquake that hit the Kocaeli province
of Türkiye on August 17, 1999, and whose epicenter was Gölcük, were used. Approximately 17479
people died in this earthquake and caused an estimated US$6.5 billion in damage. The values
used for parameter estimation are given in Table 7.
The explanation of the variables in Table 7 is as follows:

• P1 : Total population for Kocaeli/Türkiye,
• P2 : Migration population due to disaster for Kocaeli/Türkiye,
• Ratio: Population ratio (Gölcük Population/Kocaeli Population),
• S(t) : Total population for Gölcük district,
• M(t) : Migration population due to disaster according to population ratio for Gölcük district,
• R(t) : Number of flats according to building occupancy permit (for Residence Purposes) for

Gölcük district,
• I(t) : SEDI for Gölcük district,
• x

∥x∥ for x = t, S, M, R, I: Vector normalization Values for Gölcük district.

Consider Table 7. It is clear that ∥t∥ = 9854.35559, ∥S(t)∥ = 710389.87055, ∥M(t)∥ = 8349.39620,
∥R(t)∥ = 118274.57312 and ∥I(t)∥ = 5.93951. Data colored green are accepted as hypotheses.
Data colored blue are data added according to the trend of the column data. Data colored in
red were obtained according to population ratio (Gölcük/Kocaeli). In addition, the data colored
yellow are the data augmented with ARIMA. Time data provides information for forecasting
models. For this reason, the evaluation of these values in the model is useful for prediction. For
forecasting using time data, along with classic ARIMA models, Prophet or LSTM models can be
used with powerful recurrent neural network models [40, 41]. In this study, the ARIMA model
was used to estimate the missing data.
ARIMA has a structure that uses a linear regression model to make forecasts on time series data in
order to examine time-varying situations in patterns. The model automatically has regressive and
moving average components, and its basic equation is as shown below.

Yt = ∂1Yt−1 + ∂1Yt−2 + · · ·+ ∂1Yt−p + γ1 − θ1γt−1 − γ2 − θ2γt−2 − · · ·− γq − θqγt−q, (36)

∂p, the parameter of the AR model, γq, error term coefficient, θq, the parameter value of the MA
model and Yt, shows the degree to which the data differs from the original data. In order to
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make forecasting, the time-varying series must be stationary, and the simplest method for this
is to observe the change based on the difference. The ARIMA equation (p, d, q) is obtained by
performing a difference operation of degree d on the nonstationary ARMA model (p, q). p is the
degree of the AR model, d is the number of differences to make the data stationary, and q is the
degree of the MA model.

Parameter estimation with minimum RMSE

The ODE form of (8) is

dS(t)
dt = θS + ηMI + µMR + γS fi(M) + εI − υSS,

dM(t)
dt = θM − ηMI − µMR − γS fi(M)− υM M,

dR(t)
dt = rRR(1− R

CR
) + σRI − βR,

dI(t)
dt = θI − ωI,

S(t0) = S0, M(t0) = M0, R(t0) = R0, I(t0) = I0 such that S0, M0, R0, I0 > 0.

(37)

By using the data in the last five columns of Table 7, the parameter values obtained for each
functional response of the (37) system are shown in Table 8. In addition, RMSE was used to

Table 8. Parameter values for each functional response of the Eqs. (37) and their RMSEs with respect to real
values

Parameter Holling Type-1 Holling Type-2 Holling Type-3 Ivlev Type
θS 41.75284 36.01879 31.54418 38.10101
η 112.49679 84.30196 170.74247 114.54013
µ 2.154 1.02587 0.1561 0.1561
γ 54.46518 1.9227 0.01217 0.01217
ε 0.0125891 15.27381 18.08166 0.0125891
υS 30.7521 0.9157 1.02787 0.9157
θM 68.34056 1.2135 38.8599 44.87356
υM 544.44999 240.7555 400.28472 441.69912
rR 0.05191 2626.72693 2615.04485 0.05191
CR 0.8752 0.32068 0.32034 0.08752
σ 29323.25997 642.82021 661.18863 22649.37148
β 4334.17795 3.5924 0.2324 2989.99665
θI 95.71375 0.2183 0.9715 17.13876
ω 733.45629 260.88913 266.48972 368.17729
b Not available 36.13035 0.9965 0.24649
RMSE 0.100637153 0.121708496 0.120707238 0.116430262

compare the performances of functional responses with respect to real values. Accordingly, the
function that gives the minimum RMSE compared to the others is the Holling Type-1 and the
relevant graph can be seen in Figure 3.

Determining of the derivative-order to get lower RMSE

Here, the most appropriate derivative parameter has been investigated to take into account the
delay in the model. The model giving the minimum RMSE was determined as for i = 1 (Holling
Type-1). Now, the fractional model with first column parameters in Eq. (8) as regards Holling
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Figure 3. Graphical representation of the performance of system in (37) for Holling Type-1 functional response

Type-1 is as follows:

C
t0

Dϕ

t
S=θS + ηMI + µMR + γSM + εI − υSS,

C
t0

Dϕ

t
M=θM − ηMI − µMR − γSM − υM M,

C
t0

Dϕ

t
R=rRR(1− R

CR
) + σRI − βR,

C
t0

Dϕ

t
I = θI − ωI,

(38)

where S(t0) = S0, R(t0) = R0, M(t0) = M0, I(t0) = I0 such that S0, R0, M0, I0 > 0. In addition,
the equilibrium points and their stabilities are calculated as follows. The equilibrium points
are found as E(1)

1 (1.72787, 0.10462, 0, 0.1305) and E(2)
1 (1.72787, 0.67744, 0, 0.1305). Additionally,

the coefficients of Eq. (32) are κ1 = 616.7893,κ2 = 16986.19 for E(1)
1 and κ1 = 33.23197,κ2 =

−16986.2 for E(2)
1 . Since these coefficients only for E(1)

1 satisfy the equality in (34), the equilib-

rium point E(1)
1 is LAS. The denormalized point corresponding to the LAS equilibrium point is

E(1)
1 (17027, 74319, 0, 0.775087).

By solving the system (38) with the Matlab R2023b software, the RMSE values corresponding to
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different derivative orders are found as follows:

0.143743817 for ϕ = 1.004,
0.124240729 for ϕ = 1.003,
0.110412390 for ϕ = 1.002,
0.103947676 for ϕ = 1.001,
0.105643008 for ϕ = 1.000,
0.114644800 for ϕ = 0.999,
0.129015936 for ϕ = 0.998,
0.146836443 for ϕ = 0.997,
0.166705461 for ϕ = 0.996.

(39)

As can be clearly seen here, the derivative-order showing the best performance is determined as
ϕ = 1.001.

Numerical simulations of the model for Elbistan district after the earthquakes on 06.02.2023

The most recent earthquakes that caused major destruction in Türkiye are the following: Mw
7.7 (focal depth = 8.6 km) and Mw 7.6 (focal depth = 7km) with the epicenter in Pazarcık and
Elbistan districts of Kahramanmaraş at 04:17 and 13:24 Türkiye time on February 6, 2023. These
earthquakes are unprecedented disasters in recent history in terms of intensity and area covered.
On the 51st day of the earthquakes, the death toll was announced as 50096. According to the
report of the Ministry of Environment, Urbanization and Climate Change, it was determined
that 224923 independent units in 50576 buildings, for which the damage assessment study was
completed, were heavily damaged and collapsed, requiring urgent demolition. Especially severe
consequences occurred in the Elbistan district of Kahramanmaraş, which was one of the epicenters
of the earthquake. According to this report, 4943 houses were destroyed in Elbistan and the number
of houses seriously damaged was 7238 [47]. In addition, the death toll from the earthquake was
announced as 924.

For Elbistan, Figure 4 shows the time-dependent changes of the examined variables for three
different derivative orders. The derivative order with minimum RMSE for model (38) has already
been shown in (39). Here, graphs of the variables for Elbistan district are presented for three
different values of ϕ: 0.901, 1.001 and 1.101. For ϕ = 1.001, The model’s 5-year forecast indicates:
S(t) ≈ 150810, M(t) ≈ 9473, R(t) ≈ 620 and I(t) ≈ 0.35. Similarly, the model prediction for 10
years is the following: S(t) ≈ 173196, M(t) ≈ 7131, R(t) ≈ 166 and I(t) ≈ 0.5. According to the
proposed model, it is estimated that Elbistan district will reach its pre-earthquake population size
(141307) at the beginning of 2026.

According to Turkish Statistical Institute (TSI), the population data for Elbistan district decreased
from 141307 for 2022 to 127755 (S0(t)) for 2023 (after the earthquake) [46]. Therefore, it can be
concluded that the number of population migrating after the earthquake in Elbistan district is
approximately 12628 (M0(t)). According to the statement of Elbistan Municipality, it was stated
that most of the construction works of 4 thousand 12 houses (R0(t)) created in the first stage have
been completed. Considering the SEDI value of the Gölcük district between 1996 and 2000, there
was an annual downward trend of 2.04%. SEDI-2022 for Elbistan was announced as 0.13 [42].
When the same trend is applied for Elbistan, the SEDI value will be 0.127348 for 2023 and 0.12475
for 2024.
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Figure 4. Time-dependent changes of S, M, R and I variables for Elbistan district

5 Conclusions

In the event of a disaster, different situations such as evacuation, leakage, containment, shelter, aid
search, looting, theft, etc. may occur. Human nature tends to return to normal life after a disaster.
For the surviving population post-disaster, there is a certain interaction between individuals who
showed short-term panic behavior against such situations and migrated to a different region and
individuals who continue to live in the disaster area within the means with controlled behavior.
Thanks to this interaction, it is inevitable for the migrated population to exhibit controlled behavior
and to have a tendency to return to the region when suitable conditions occur in the disaster area.
In the model we proposed, we aimed to investigate the relationship between these two populations
using different functional responses. Thus, it was aimed to find the functional response that gives
the minimum RMSE by comparing the results of the proposed model with real data. Of course,
the most important factors affecting the population after the disaster are whether the region
has enough independent sections for settlement and socio-economic development of the region.
Therefore, the effect of these variables on the population was also examined. The relationship
between these variables is mathematically modeled using fractional order differential equations.
In the model, there are four different functional responses. In numerical studies, parameter values
were estimated using data from the 1999 Gölcük earthquake. Then, by changing the derivative
order, the RMSE value was further reduced, and thus, the performance of the proposed model was
increased. Lastly, the prediction results for Elbistan of FOS in (8) with Holling Type-1 functional
response and derivative orders ϕ = 1.001, is given in Table 9.
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Table 9. The prediction results for Elbistan

Time (Year) S(t) M(t) R(t) I(t) Time (Year) S(t) M(t) R(t) I(t)
2023 127755 12628 4012 0.12475 2034 177919 6712 131 0.520727
2024 132890 11877 2521 0.181987 2035 182580 6321 106 0.543116
2025 136879 11294 1782 0.224046 2036 186263 6027 90 0.559603
2026 141860 10606 1190 0.272454 2037 190807 5682 74 0.578579
2027 146836 9960 819 0.316618 2038 194395 5423 64 0.592552
2028 150808 9473 620 0.349146 2039 198820 5118 53 0.608633
2029 155749 8900 448 0.386588 2040 203178 4834 45 0.623302
2030 160656 8365 331 0.420747 2041 206618 4621 40 0.634103
2031 164551 7961 264 0.445904 2042 210859 4370 34 0.646533
2032 169376 7488 203 0.474859 2043 215037 4137 30 0.657871
2033 173196 7131 166 0.496184 2044 218334 3962 27 0.666219

The purpose of population forecasts is to determine the size of workforce that will be needed in
the future and to prepare the infrastructure and facilities accordingly. Population projections help
identify future risks and opportunities, make plans, and take precautions. Thus, it is important to
estimate the future population in a region after a disaster in the light of certain parameters, and
mathematical methods are used for this. Public institutions and organizations aim to achieve their
social and economic target plans within the stipulated time in order for a region to reach its pre-
disaster population structure. Thanks to the results of the model we propose, predictions are made
about whether they will achieve these goals in the specified time period. It adds innovation to the
literature in terms of the structure of the mathematical model used, its analysis, and adaptation of
the results to the real world example.

The model and analysis proposed in this study are extremely useful in terms of their applicability
to natural disasters such as tsunamis and landslides occurring in different parts of the world.
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[41] Arslan, R.S., Barışcı, N., Arici, N. and Kocer, S. Detecting and correcting automatic speech
recognition errors with a new model. Turkish Journal of Electrical Engineering and Computer
Sciences, 29(5), 2298-2311, (2021). [CrossRef]

[42] Republic of Türkiye Ministry of Industry and Trade, Socio-Economic Development Rank-
ing Research Reports, (2024). https://www.sanayi.gov.tr/merkez-birimi/b94224510b7b/
sege/ilce-sege-raporlari

[43] Turkish Statistical Institute, 2000 General Population Census, (2000). https://biruni.tuik.
gov.tr/nufusapp/idari.zul
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Abstract

The spider wasp optimization (SWO) algorithm is a new nature-inspired meta-heuristic optimization
algorithm based on the hunting, nesting, and mating behaviors of female spider wasps. This paper
aims to apply chaos theory to the steps of the SWO algorithm in order to increase its convergence
speed. Four versions of chaotic algorithms are constructed using the traditional spider wasp optimizer.
The proposed chaotic spider wasp optimization (CSWO) algorithms select various chaotic maps and
adjust the main parameters of the SWO optimizer to ensure the balance between exploration and
exploitation stages. Furthermore, the constructed CSWO algorithms are benchmarked on eight well-
known test functions divided into unimodal and multimodal problems. The experimental results and
statistical analysis are carried out to demonstrate that CSWO algorithms are very suitable for searching
optimal solutions for the benchmark functions. Specifically, the implementation of chaotic maps can
significantly enhance the performance of the SWO algorithm. As a result, the new algorithm has high
flexibility and outstanding robustness, which we can apply to engineering design problems.

Keywords: Meta-heuristic optimizer; chaotic map; spider wasp algorithm; benchmark function

AMS 2020 Classification: 37N40; 68T20; 90C59; 92B20

1 Introduction

Optimization is a structured method used to determine decision variables while adhering to vari-
ous constraints to either maximize or minimize the cost function. The constraints, cost function,
and design variables are the fundamental components of every optimization problem. Optimiza-
tion approaches have significant applications in engineering, image processing, wireless sensor
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networks, and bioinformatics [1]. A number of real-world problems exhibit high non-convexity
and non-linearity, typically due to the presence of several design variables and fundamental
constraints. Furthermore, there is no guarantee of achieving the optimal global solution. These
practical problems present challenges that motivate scientists to develop new and effective meth-
ods for better results. Optimization methods may be classified into two fundamental categories:
gradient-based deterministic methods and stochastic non-traditional methods [2]. Deterministic
methods have constraints when solving problems that include search spaces that are discontinu-
ous, nonconvex, high-dimensional, and have non-differentiable objective functions. In contrast,
stochastic-based algorithms do not depend on gradient-based information. Instead, they rely on
stochastic methods inside the search space to reduce these constraints. Meta-heuristic algorithms
(MAs) are extensively used in stochastic-based methods due to their wide use over different
techniques. Meta-heuristic algorithms provide a significant capacity for fully examining the
solution space and effectively adopting what is the optimal solution. As a result, in recent years,
many researchers have worked to introduce novel meta-heuristic algorithms and enhance the
performance of current methods [3].
Recently, several nature-inspired meta-heuristic algorithms have been developed. These artificial
algorithms imitate the behaviors of existing species or natural phenomena. Thus, these algorithms
have been proposed and used as effective approaches for solving several optimization problems [4].
However, these MAs often demonstrate higher levels of sensitivity when they involve adjusting
user-defined parameters. MAs may not precisely attain the global optimal solution, which is
another disadvantage [5]. There are two categories of MAs: single solution-based and population-
based [6]. The single-solution approach to optimization includes evaluating one solution. In
contrast, with the population-based method, solutions are generated during each optimization
step. Population-based meta-heuristic algorithms start the optimization process by generating a
set of random individuals. Each of them signifies a possible optimal solution. The population will
be gradually replaced by substituting the current population with a new generation using certain
stochastic operators.
Considering the wide range of these algorithms, they always share a key characteristic: search
processes may be categorized into exactly two stages, namely exploration and exploitation [7].
As a result, in the first stages of the search process, a carefully designed optimizer must show
exploration behaviors that are sufficiently mixed with randomness in order to provide a greater
number of random solutions. Furthermore, it enhanced multiple elements of the search space.
After the exploration stage is completed, the exploitation stage is performed. The optimizer
accelerates the search process by emphasizing a particular area instead of the whole search
space, emphasizing near-optimal solutions. A successful optimizer must achieve an adequate
and accurate balance between the exploration and exploitation stages. On the other hand, the
probability of being trapped in local optima and overcoming partial convergence challenges
increases. According to the No Free Lunch theorem [8], all the proposed metaheuristic algorithms
exhibit similar average performance when solving a possible optimization problem. Meanwhile,
no algorithm can be regarded as absolutely efficient. As a result, this theorem encourages the
research and enhancement of more effective optimization algorithms.
Chaos theory focuses on the study of unpredictable and irregular system motions that are highly
sensitive to initial conditions. A deterministic nonlinear dynamical system is called chaotic if it
has at least one positive Lyapunov exponent. Several practical applications of chaos were shown
in the literature, including in biology [9–11], ecology [12], infectious diseases [13], control [14],
cryptosystems [15], and secure communication [16, 17]. Traditional optimization techniques,
such as gradient, Newton, and Hessians methods, may successfully determine global optimum
solutions for continuously differentiable functions, demonstrating fast convergence and high
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accuracy. However, these classical optimization techniques can become trapped in local optima
when solving optimization problems that require various multimodal functions [18].

Motivation

The chaotic spider wasp optimization algorithm is developed to address the limitations of tradi-
tional optimization methods, such as getting trapped in local minima and being time-consuming.
Inspired by the hunting, nesting, and mating behaviors of female spider wasps, this algorithm
offers a novel approach to solving complex optimization problems with improved exploration
and exploitation capabilities. By using chaotic maps, the algorithm is better able to avoid local
optima and reach faster convergence. This makes it more useful and efficient for many situations.

Contributions

The main contributions of the current paper are summarized as follows:

• An improved optimization algorithm inspired by hunting, nesting, and mating behaviors of
female spider wasps is developed based on chaos theory.

• A detailed comparison between the traditional SWO algorithm and the CSWO algorithm is
presented.

• The performance analysis and speed convergence of four different counterparts of the CSWO
algorithm are analyzed through several unimodal and multimodal benchmark functions.

• The experimental results show that the CSWO algorithm has better performance compared to
the SWO counterpart and is more efficient for solving real-world optimization problems.

The remainder of this paper is organized as follows: In Section 2, the literature review is provided.
Section 3 reports a short introduction to the chaos theory and some properties of chaotic systems.
In addition, a general concept of using chaos in optimization algorithms is presented. Section 4
introduces five well-known 1-D chaotic maps, their chaotic behaviors, and Lyapunov exponents.
In Section 5, the traditional SWO algorithm is presented. Section 6 introduces new counterparts of
the SWO algorithm that are based on chaos theory. Section 7 deals with experimental analysis
and statistical testing, in which the CSWO algorithms are benchmarked on eight test functions.
A qualitative analysis is presented in order to compare the traditional SWO and the proposed
chaotic methods. Section 8 gives the discussion and conclusion.

2 Literature review

Recently, there has been increasing interest in the study and application of meta-heuristic algo-
rithms for solving optimization problems. In the scientific literature, population-based meta-
heuristic algorithms can be divided into four main categories based on their basic concepts:
evolutionary algorithms [19], physics-based algorithms [20], human-based algorithms [21], and
swarm-based algorithms [22]. Evolutionary algorithms mimic the mechanisms of biological evo-
lution, such as recombination and mutation. The Genetic Algorithm [23], Biogeography-Based
Optimizer [24], and Mind Evolutionary Optimizer [25] are all considered the most important
evolutionary algorithms. Algorithms inspired by physical phenomena use hypotheses based on
scientific concepts, such as gravitation and magnetic attraction. Some examples are the Grav-
itational Search Algorithm [26] and the Energy Valley Optimizer [27]. Human-based machine
agents frequently mimic certain human behaviors. Socio Evolution and Learning Optimization
[28], Human Felicity Algorithm [29], and Social Network Search [30] are a few examples of this
classification. Swarm-based multi-agent systems imitate the social behaviors shown by animals
that live in swarms or groups. Particle Swarm Optimization [31] and Salp Swarm Algorithm [32]
are considered the most significant meta-heuristic algorithms in this specific field.
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Nowadays, swarm-based multi-agent systems have attracted increased interest due to their
various sources of inspiration and efficiency in solving an extensive variety of optimization
problems. A new optimization algorithms in this field have been developed, including the
Mountain Gazelle Optimizer [33], Spotted Hyena Optimizer [34], Honey Bee Mating Optimization
[35], Butterfly Optimization Algorithm [36], Ant Lion Optimizer [37], Harris Hawks Optimizer
[38], Bat-Inspired Algorithm [39], Fruit Fly Optimization Algorithm [40], Whale Optimization
Algorithm [41], Grasshopper Optimization Algorithm [42], Artificial Gorilla Troops Optimizer [43],
Grey Wolf Optimizer [44], Marine Predators Algorithm [45], Hunger Games Search [46], Aquila
Optimizer [47], and many others. Because of their stochastic nature, meta-heuristic algorithms
have enhanced flexibility for escaping constraint in local optima. These algorithms may be used
across numerous fields according to their efficiency, adaptability, and highly effective performance.
The main challenge in designing any meta-heuristic algorithm arises from the stochastic nature
of the optimization process, requiring sufficient balance between exploration and exploitation
stages [48]. The exploration stage allows the optimizer to fully investigate the search space on
a global scale. Additionally, the population faces sudden and significant changes during this
period. On the other hand, the exploitation stage focuses on improving possible solutions that
were discovered in the exploration stage. In this context, the population undergoes small and
sudden fluctuations.
The SWO algorithm is a novel meta-heuristic optimizer developed to solve continuous optimiza-
tion problems. In particular, it can solve complex nonlinear engineering optimization problems
by mimicking biological or physical phenomena [49]. The SWO algorithm was created from a
mathematical model of the three different behaviors shown by female spider wasps, including
nesting, hunting, and mating behaviors.
The literature has extensively studied the application of chaos theory in the development of
optimization algorithms. In [50], the authors have enhanced the Chaotic Whale Optimization
Algorithm by incorporating various chaotic maps to improve its performance and achieve the
global optimum for several test functions. Arora et al. [51] have developed a novel meta-heuristic
optimization algorithm called the Grasshopper Optimization Algorithm inspired by grasshoppers’
swarming behavior. To enhance global convergence, chaos theory was included in the optimization
process, using chaotic maps to balance exploration and exploitation over the optimization process.
In [52], the authors have developed an improved meta-heuristic optimization algorithm called the
Chaotic Bird Swarm Algorithm. In order to improve this algorithm’s exploitation performance,
they used different chaotic maps. Kiani et al. [53] have proposed the Chaotic Sand Cat Swarm
Optimization, and they introduced chaotic maps to enhance the performance of this algorithm.
In addition, they applied the chaotic algorithm to a total of 39 functions and multidisciplinary
problems. Arora et al. [54] have introduced chaos into the Butterfly Optimization Algorithm
in order to increase its performance and convergence speed. They concluded that using chaos
can enhance the optimization process to exploit the algorithm for solving engineering design
problems. Shinde et al. [55] have presented a developed counterpart of the meta-heuristic Sine-
Cosine Algorithm, which is based on chaos theory. The suggested algorithm is inspired by the
sine and cosine classical functions. Using different chaotic maps, they replaced the random
parameters in the traditional algorithm with chaotic variables to enhance the performance of
the proposed algorithm. Hamaizia and Lozi [56] have developed a novel strategy for global
search and multidimensional chaotic attractors using a locally averaged method. In addition, they
examined the robustness of the suggested approach using several benchmark functions.
Based on the best knowledge gained from the literature review, there are only a few papers that
integrate chaos theory in meta-heuristic optimization algorithms, so it is necessary to develop a
new meta-heuristic algorithm based on chaotic systems. However, crucial properties of discrete
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chaotic dynamic systems, such as sensitivity to initial conditions, ergodicity, and unpredictability,
are prone to designing an optimizer. In the next section, based on the mathematical modeling
of female spider wasp behaviors, an improved chaotic meta-heuristic algorithm is developed to
handle optimization applications to address this research gap.

3 Chaotic optimization algorithm

In this section, we will describe some properties of chaos phenomena, followed by an optimization
algorithm using chaotic maps.

Chaos

Nonlinear systems often exhibit chaotic behavior. It describes an example of irregular motions
exhibited by deterministic systems inside a bounded phase space. Chaos theory is explained as
the phenomenon known as the "butterfly effect", which was first described by Lorenz in 1963.
Lorenz observed that slight variations in initial conditions could result in significantly different
outcomes in future scenarios. Chaos is a result of the unpredictability produced by deterministic
dynamical systems. Three fundamental properties characterize the chaotic systems: [57]

• ergodicity. Chaos has the ability to go through all possible states within a given range without
repetition.

• sensibility. A very common characteristic of chaotic systems is their sensitive dependence on
initial conditions. The system’s behaviour may rapidly diverge with slightly different conditions,
making it unpredictable.

• regularity. Chaos is exhibited by deterministic dynamical systems.

Chaos is a complex and unpredictable phenomenon that exhibits non-linear behavior. The
ergodicity of chaos implies that using chaotic variables for optimization may provide an advantage
compared to random searches with stochastic variables. It has been able to prevent algorithms
from getting trapped in local optima. As a result, it is frequently used for optimization problems.

A general idea of a chaotic optimization algorithm

A random-based optimization algorithm that uses random number sequences obtained from
chaotic maps instead of random number generators is called a chaotic optimization algorithm
(COA). Its properties include simple integration, quick execution, and effective methods for
avoiding local optimization. Consequently, it has enormous potential as a tool for engineering
applications [58]. The COA is a highly efficient method for solving the optimization problems of a
nonlinear multimodal function with boundary constraints. Chaos, unlike stochastic searches that
rely on probabilities, may do comprehensive searches at faster rates due to its lack of repetition.

The COA generally has two main stages: the global stage and the local stage, which are often
characterized by chaotic methods. Firstly, in the global stage, chaotic points are selected from the
search domain [L, U] based on a specific chaotic model. Next, the objective function is determined
at various positions, and the point with the minimum objective function is chosen as the current
optimum. Furthermore, it is assumed that during the local stage, the current optimum will be
nearly the global optimum after a certain number of iterations. The current optimum is regarded as
a center with minimal chaotic disturbances, whereas the global optimum is determined through an
extensive search. The chaos phenomenon is characterized by randomness. Usually, a deterministic
function can display chaotic behavior for some initial conditions and parameter values. These
functions are so-called chaotic maps.
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4 Chaotic maps

This section presents five one-dimensional non-invertible chaotic maps that are used to generate
chaotic sequences. We use the logistic, Gauss/mouse, sinusoidal, piecewise, and tent chaotic maps
in our study [59]. The details of these chaotic maps are shown in Table 1. The chaotic behavior of

Table 1. Chaotic maps

Chaotic map Equation Range Parameter Initial condition
Logistic xn+1 = µxn (1 − xn) [0, 1] µ = 3.9 x0 = 0.6

Gauss/mouse xn+1 =

{
0 xn = 0,
1

xn
− ⌊ 1

xn
⌋ otherwise

[0, 1] x0 = 0.7

Sinusoidal xn+1 = ax2
n sin(πxn) [0, 1] a = 2.3 x0 = 0.9

Piecewise xn+1 =



xn
p 0 ≤ xn < p,
xn−p
0.5−p p ≤ xn < 1

2 ,
1−p−xn

0.5−p
1
2 ≤ xn < 1 − p,

1−xn
p 1 − p ≤ xn < 1

[0, 1] p = 0.4 x0 = 0.8

Tent xn+1 =

{ xn
0.7 xn < 0.7,

10
3 (1 − xn) xn ≥ 0.7

[0, 1] x0 = 0.4

the proposed maps is depicted in Figure 1.
The rationale behind selecting chaotic maps, such as logistic, Gauss/mouse, sinusoidal, piecewise,
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Figure 1. Visualization of chaotic maps

and tent maps, to replace random parameters in the SWO algorithm lies in the following reasons:

1. Chaotic maps provide better exploration and exploitation.

• Exploration. Chaotic maps generate sequences that are deterministic yet appear random.
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These sequences can help the SWO algorithm explore the search space more effectively than
purely random numbers, as they avoid premature convergence to local optima.
• Exploitation. Chaotic maps can also provide fine-grained control over the search process,
allowing the SWO algorithm to exploit promising regions more efficiently.

2. Avoidance of randomness pitfalls. Traditional random number generators may lead to
uneven exploration of the search space, causing the algorithm to get stuck in suboptimal
regions. On the other hand, chaotic maps provide a more structured and diverse exploration,
reducing the likelihood of stagnation.
3. Diversity in search patterns. Each chaotic map has unique dynamics and properties. By
incorporating multiple chaotic maps, the SWO algorithm can leverage different patterns of
exploration, ensuring a more robust search process.
4. Improved convergence and stability. Chaotic maps can help the SWO algorithm converge
faster to the global optimum by maintaining a balance between exploration and exploitation.
They also reduce the risk of premature convergence, which is common in traditional random-
based algorithms.

Note that we can use other chaotic maps not listed here to enhance the performance of the
traditional SWO algorithm if they generate chaotic numbers in the range [0, 1] with absolute value.
In this paper, we select five chaotic maps that generate chaotic numbers in the range [0, 1], which
is consistent with the range of random parameters in the SWO algorithm.

Quantitative measure of chaos

In chaos theory, the rate of divergence or convergence of nearby trajectories of a deterministic
dynamical system is evaluated by using Lyapunov exponents. In particular, when the maximum
Lyapunov exponent (MLE) is positive, the system is chaotic. For a one-dimensional dynamic
system, the Lyapunov exponent is defined as [60]

λ = lim
n→∞ 1

n

n−1∑
j=0

ln | f ′(xj)|, (1)

where n is the maximum iteration number, f ′(xj) is the derivative of f (xj).
Based on the above formula, we compute the maximum Lyapunov exponent for the five chaotic
maps for 1000 iterations. The average values of MLEs are given in Table 2.

Table 2. Maximum Lyapunov exponent of the ten chaotic maps

Map Logistic Gauss/mouse Sinusoidal Piecewise Tent
MLE 0.693 0.721 0.682 1.532 0.693

It can be shown from Table 2 that the maximum Lyapunov exponent is positive for the five maps,
meaning that these maps exhibit chaotic behavior. Therefore, they may be used with accuracy in
chaotic optimisation algorithms.

5 Spider wasp optimization algorithm

The spider wasp optimization algorithm is a nature-inspired meta-heuristic algorithm that imitates
the hunting, nesting, and mating behaviors of female spider wasps used in optimization problems.
This work will develop a novel variant of the optimization strategy inspired by the hunting and
nesting behaviors of some wasp species, as well as their practice of required brood parasitism,
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which involves dropping a single egg into each spider’s abdomen. Firstly, female spider wasps
investigate the surrounding habitats in search of appropriate spiders. They then immobilize and
transport the spiders to pre-prepared nests that are perfect for their needs. This behavior serves as
the primary motivation for the SWO algorithm. Once they have located adequate prey and nests,
they proceed to pull them into the nests. They then place an egg on the spider’s abdomen, closing
the nest. The SWO approach randomly distributes a specified number of female wasps over the
search space. Each individual will systematically explore the search region in continuous motion,
looking for a spider suitable for the gender of its offspring, as determined by the haplodiploid
sex-determination system intrinsic to all hymenopterans. The search depends on their predatory
and tracking behaviors. After finding suitable spiders, female spider wasps will remove them
from the center region of the spider’s web and systematically search the ground six times to
recover any spiders that have fallen from the web [61]. Next, the female wasps will attack the
victim and try to paralyze it for transmission to the selected nest. After putting an egg inside the
spider’s abdomen, the female wasp next closes the nest.

Figure 2. The female spider wasp in nature engages in hunting behavior

The following is a brief description of the wasp behaviors investigated in this study:

• Searching behavior. This behavior includes an aggressive search of prey during the first stages
of optimization to determine a spider appropriate to larval growth.

• Following and escaping behavior: once they locate their prey or spiders, they may make an
effort to quickly escape the central area of the spider web. As a result, the female wasp chases
them, immobilizing and pulling the most suitable one.

• Nesting behavior. This behavior mimics the way in which prey is dragged to nests that are
suitable in size for both the prey and the egg.

• Mating behavior. This behavior emulates the characteristics of the offspring produced by
hatching the egg via the uniform crossover operator between male and female wasps, controlled
by a certain probability called the crossover rate.

In the following, we will present the mathematical model for these four behaviors.

Hunting and nesting behavior

The female spider wasp initiates a first search, referred to as an "exploration operator", to discover
potential prey. Once the target is identified, the entity transmits a signal to its operator responsible
for exploiting the situation, initiating the process of approaching and launching an assault. The
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mathematical specifics of these two operators are shown here.

Search stage (Exploration operator)

As previously mentioned, the female spider wasp initiates this operation at the onset of its search
for its preferred food. This behaviour may be mathematically represented by the following
expression:

x⃗t+1
i = x⃗t

i + µ1 ∗
(

x⃗t
a − x⃗t

b
)

, (2)

where a and b are two indices being randomly chosen from the current population, which are
used to find the direction of investigation by the female wasps, and µ1 is used to ascertain the
consistent movement in this particular direction by means of the following equation:

µ1 = |rn| ∗ r1, (3)

where r1 is a random number in [0, 1] and rn is a random number that has been picked from a
normal distribution. If the female wasps are unable to grab it, prey that falls from the orb may be
lost. In order to locate the missing prey, they use an alternative exploration approach, which may
be precisely modeled using the following mathematical formula:

x⃗t+1
i = x⃗t

c + µ2 ∗
(−→

L +−→r2 ∗ (−→U −
−→
L )

)
, (4)

µ2 = B ∗ cos(2πl), (5)

B =
1

1 + exp(l)
, (6)

where c, an index that represents the position of the dropped prey, is randomly chosen from the
population.

−→
L and

−→
U represent the lower and upper bounds, respectively. l is a number randomly

chosen from the interval [−2,−1], whereas, r⃗2 is a random vector in [0, 1]. The value of µ2, which
is between the range of −0.8 to 0.8, defines the direction of the search. This helps to prevent any
incorrect direction that may be determined by Eq. (2). In order to enhance investigation and
identify the most favorable areas, we assume that the following tradeoff between Eq. (2) and Eq.
(4) is satisfied.

x⃗t+1
i =

{
Eq. (2) r3 < r4,
Eq. (4) otherwise,

(7)

where r3 and r4 are two random numbers chosen from the range [0, 1].

Following and escaping stage (exploration and exploitation operator)

Upon locating its prey, the wasp initiates pursuit of the spider. This behavior may be mathemati-
cally modeled in the following manner:

x⃗t+1
i = x⃗t

i + C ∗ |2 ∗−→r5 ∗ x⃗t
a − x⃗t

i |, (8)

C =

(
2 − 2 ∗

(
t

tmax

))
∗ r6, (9)
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where a is an index randomly selected from the population. t and tmax represent the current and
maximum evaluations, respectively. −→r5 is a random vector in [0, 1], and r6 is a random number
in [0, 1]. C is a parameter that modulates the wasp’s speed according to distance, starting at a
speed of two and progressively decreasing to zero. As the female wasp chases the spider, the
distance between them gradually increases. This time period is mostly defined by exploitation. As
the distance expands, exploitation evolves into exploration. This behavior is mimicked using the
following formula:

x⃗t+1
i = x⃗t

i ∗
−→vc , (10)

where −→vc is a vector of numerical values in the range [−k, k] according to the normal distribution.
k is given by the following formula:

k = 1 −
t

tmax
. (11)

The next equation will be used for achieving the tradeoff between Eq. (8) and Eq. (10).

x⃗t+1
i =

{
Eq. (8) r3 < r4,
Eq. (10) otherwise.

(12)

Further, the tradeoff between searching in Eq. (7) and Eq. (12) is described by the following
equation:

x⃗t+1
i =

{
Eq. (7) p < k,
Eq. (12) otherwise,

(13)

where p represents a random number in the range [0, 1].

Nesting behavior (exploitation operator)

Female wasps retrieve the damaged spider and bring it back to their nest. Spider wasps have the
ability to excavate and construct chambers in the ground, build nests using mud on leaves or rocks,
and make use of pre-existing nests or holes. Spider wasps exhibit diverse nesting behaviours, and
as a result, the SWO algorithm employs two equations to represent these behaviors accurately.
The first equation evaluates the spider’s attraction to an area that provides the best conditions for
nesting with its egg on its abdomen. This equation is given by:

x⃗t+1
i = x⃗t

i + cos(2πl) ∗
(
x⃗∗ − x⃗t

i
)

, (14)

where x⃗∗ represents the optimum solution gained so far. The second equation establishes the nest
at the position of a female spider, selected randomly from the population. This equation has a
supplementary step size to guarantee that no two nests are constructed at the same location. Thus,
we have the following equation:

x⃗t+1
i = x⃗t

a + r3 ∗ |δ| ∗
(
x⃗t

a − x⃗t
i
)
+ (1 − r3) ∗

−→
H ∗

(
x⃗t

b − x⃗t
c
)

, (15)

where a, b, and c represent the indices of three solutions randomly selected from the population. δ

is a number determined by the Levy flight, and r3 is a random number in the range [0, 1].
−→
H is a
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binary vector that represents when a step size must be performed to avoid the construction of two
nests at the same location.

−→
H is given as:

−→
H =

{
1 −→r4 > −→r5 ,
0 otherwise,

(16)

where −→r4 and −→r5 are two random vectors in [0, 1]. In order to update each solution during the
optimisation process, a random swap is performed between Eq. (14) and Eq. (20) using the
following formula:

x⃗t+1
i =

{
Eq. (14) r3 < r4,
Eq. (20) otherwise.

(17)

The tradeoff between hunting and nesting behaviors may be expressed using the following
equation:

x⃗t+1
i =

{
Eq. (13) i < N ∗ k,
Eq. (17) otherwise,

(18)

where N represents the population size.

Mating behavior

At this stage, spider wasps have an important capacity to determine gender. This depends on
the size of the egg. Smaller spider wasps imply males, and bigger wasps imply females. In our
approach, each spider wasp represents a possible solution in the current generation, while the
spider wasp egg signifies the newly generated possible solution in that same generation. The new
solutions, also known as spider wasp eggs, are described by the following equation:

x⃗t+1
i = Crossover

(
x⃗t

i , x⃗t
m, CR

)
, (19)

where Crossover represents the uniform crossover operator applied to the vectors x⃗t
i and x⃗t

m for
the female and male spider wasps, respectively, with a probability CR. The male spider wasp
is generated using the SWO algorithm to exhibit distinct characteristics from the female wasps,
according to the following formula:

x⃗t+1
i = x⃗t

i + exp(l) ∗ |β| ∗ v⃗1 + (1 − exp(l)) ∗ |β1| ∗ v⃗2, (20)

where β and β1 are two numbers picked randomly from the normal distribution. v⃗1 and v⃗2 are
two vectors constructed using the following formula:

v⃗1 =

{
x⃗a − x⃗i f (x⃗a) < f (x⃗i) ,
x⃗i − x⃗a otherwise,

v⃗2 =

{
x⃗b − x⃗c f (x⃗b) < f (x⃗c) ,
x⃗c − x⃗b otherwise,

(21)

where a, b, and c are distinct indices representing three solutions randomly chosen from the
population. f (x⃗i) is the objective function that represents an individual in the population. Finally,
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we denote by (TR) the tradeoff rate that determines the compromise between hunting, nesting,
and mating behaviors.

Population reduction and conserving memory

After the female spider lays an egg on the host’s abdomen, she closes the nest and discreetly
vacates the location. This hypothesis suggests that the female’s role in the optimization process is
almost complete, and transferring the function evaluation to other wasps for the remainder of
the process may provide enhanced results. Over the iteration, some wasps in the population will
be killed to provide more function evaluations to the surviving wasps. This mechanism reduces
population variety, hence accelerating convergence towards the near-optimal solution. In each
iteration of the function evaluations, the size of the new population will be adjusted according to
the following equation:

N = Nmin + (N − Nmin)× k, (22)

where Nmin denotes the minimal population size required to prevent the optimization process from
being trapped in local minima. To enhance efficiency, the SWO applies a memory preservation
method that transmits the highest rank of each wasp to the next generation. The proposed new
location of each wasp is evaluated against its current position, and if it is worse, the next solution
is substituted. The pseudo-code of the SWO algorithm is shown in Algorithm 1.

Algorithm 1: Pseudo-code of SWO algorithm
Input: N, Nmin, CR, TR, tmax
Output: x⃗∗i

1 Initialize N female wasps, x⃗t
i (i = 1, 2, . . . , N), using Eq. (2)

2 Compute f (x⃗t
i ) while storing x⃗∗

3 t = 1;
4 while (t < tmax) do
5 r6: generating a random number in the interval [0, 1]
6 if (r6 < TR) then
7 for i = 1 : N do
8 Update the position of x⃗t

i using Eq.(18) to x⃗t+1
i

9 Compute f (x⃗t+1
i )

10 t = t + 1;
11 end for
12 else
13 for i = 1 : N do
14 Applying Eq. (19)
15 t = t + 1;
16 end for
17 end if
18 Applying Conserving Memory
19 Updating N using Eq. (22)
20 end while
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6 The improved chaotic spider wasp optimization algorithm

According to Eq. (3) and Eq. (9), the parameters r1 and r6 are the main variables of female spider
wasps’ convergence toward their objective throughout the SWO algorithm iterations. Chaotic
maps have the capacity to enhance the performance of optimization methods. In the standard
SWO algorithm, there is no need to preserve linearly decreasing values. In fact, using a chaotic
variable that changes r1 and r2 may be better for the search. According to the SWO, the values
obtained through the chaotic map must fall within the range of [0, 1]. In the current work, the
values of r1 and r6 highlighted in Algorithm 1 are substituted with the values generated by chaotic
maps to give chaotic behavior to the r1 and r6 parameters. This may also lead to the approach
converging to the optimal value quickly, as explained in the next section. As a result, this study
focuses on the task of adjusting the values of r1 and r6 using several chaotic maps. Ten different
kinds of SWO employ distinct chaotic maps. In the rest, we will construct four variants of the
SWO by adopting the following manner:

• Eq. (23) is obtained by substituting the random parameter r1 in the search stage that initiates
the spider wasp optimization algorithm with the sequence obtained from ten different chaotic
maps, where r1(t) represents the value that results from the chaotic map over the t-th iteration.

• Eq. (24) is obtained by substituting the random parameter r6 in the following and escaping
stage found in the spider wasp optimization algorithm with the sequence obtained from ten
different chaotic maps, where r6(t) represents the value that results from the chaotic map over
the t-th iteration.

CSWOA1 : µ1(t) = |rn| ∗ r1(t), (23)

CSWOA2 : C(t) =
(

2 − 2 ∗
(

t
tmax

))
∗ r6(t), (24)

CSWOA3 : µ1(t) = |rn| ∗ r1(t) and C(t) =
(

2 − 2 ∗
(

t
tmax

))
∗ r6(t). (25)

CSWOA3 has been constructed by combining the CSWOA1 and CSWOA2 algorithms. In order to
enrich the content of this study, the CSWOA4 is created by substituting the random number p in
Eq. (13) in the SWO with chaotic maps. Thus, the parameter p will behave chaotically.

CSWOA4 : x⃗t+1
i =

{
Eq. (7) p(t) < k,
Eq. (12) otherwise,

(26)

where p(t) represents the value that results from the chaotic map over the t-th iteration.
The next section presents a comparative analysis using the distinct chaotic parameters mixed with
the traditional SWO algorithm. Furthermore, the combination of these parameters (SWO with
chaotic r1, SWO with chaotic r6, SWO with chaotic r1 and chaotic r6, and SWO with chaotic p) has
been implemented and tested using several benchmark functions.
The key distinctions between these algorithms lie in the incorporation of chaos theory into
their parameters, which enhances their exploration, exploitation, and convergence properties.
In CSWOA1, CSWOA2, and CSWOA4, the integration of chaotic maps is applied only in one
parameter (r1, r6, and p, respectively). However, in CSWOA3, we have incorporated both the
parameters r1 and r6 with chaotic maps. This makes CSWOA3 more robust and effective for
solving complex optimization problems compared to other algorithms. Integrating more than one
chaotic map in CSWOA3 can improve its ability to explore the search space thoroughly because
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each chaotic map generates more diverse and unpredictable sequences. The chaotic behaviors
help the algorithm’s convergence, enhancing both speed and precision, particularly in complex
and multimodal optimization problems, by avoiding premature convergence. Therefore, by
adopting two chaotic parameters in CSWOA3, we obtain a better balance between exploration and
exploitation. This results in improved convergence and higher-quality solutions. In conclusion,
incorporating chaos theory into CSWOA1, CSWOA2, CSWOA3, and CSWOA4 adds stochasticity
and unpredictability, which improves the algorithm’s ability to escape local optima and explore
the search space more effectively.

In practice, the chaotic spider wasp optimization algorithm avoids local optima by employing
several strategies:

• Using chaotic maps allows providing randomness and diversity, where the algorithm can
escape local optima by generating diverse solutions that might not be reachable through
deterministic methods.
• Balancing exploration and exploitation through a dual population strategy. The algorithm
mimics the behavior of spider wasps, which use two populations: spiders (prey) and wasps
(predators). The interactions between these two populations ensure a balance between ex-
ploration (wasps searching for spiders) and exploitation (spiders trying to escape). This dual
strategy helps avoid stagnation in local optima by maintaining diversity in the search process.
• Dynamically adjusting parameters to adapt to the search process. This allows the algorithm
to switch between exploration and exploitation stages, reducing the risk of getting trapped in
local optima.
• Introducing random perturbations to escape stagnation. These perturbations help the algo-
rithm explore new regions of the search space, even after it has found a promising solution.
• Maintaining population diversity through fitness-based selection in order to prioritize better
solutions to contribute to the search process. These mechanisms collectively enable the CSWO
algorithm to explore the search space more effectively and avoid getting stuck in suboptimal
solutions.

The following objectives may help demonstrate the theoretical efficiency of the suggested chaotic
algorithms:

• The chaotic r1 aids CSWO in dynamically updating the locations of female spider wasps in a
chaotic manner, which can improve the exploration process.
• As we mentioned, C in Eq. (9) is a distance-controlling factor that determines the speed of
the wasp when it starts chasing the prey (spider). Thus, the chaotic r6 provides greater speed to
CSWO in the exploitation stage than the SWO because the r6 may have various values.
• Various chaotic maps for r1, r6 and p provide better exploration and exploitation behaviors
for the CSWO algorithm.
• Chaotic maps aid the CSWO in escaping local optima when confronted with this problem.

The pseudo-code of the CSWO algorithm is shown in Algorithm 2.

For completeness, we provide a comparison of computational complexity between SWO and
CSWO algorithms in Table 3.

From Table 3, it is shown that the computational complexity of CSWO is slightly higher than SWO
due to the additional chaotic behavior. The complexity for SWO can be considered as O(tmax · N),
while O(tmax · N · C) for CSWO, where N is the population size, tmax is the maximum number of
iterations, and C is the complexity introduced by the chaotic maps. On the other hand, the time
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Algorithm 2: Pseudo-code of CSWO algorithm
Input: N, Nmin, CR, TR, tmax
Output: x⃗∗i

1 Initialize N female wasps, x⃗t
i (i = 1, 2, . . . , N), using Eq. (2)

2 Evaluate each x⃗t
i and calculate the fitness of each search agent

3 x⃗∗ = the best search agent
4 Initialize the value of the chaotic map x0 randomly
5 t = 1;
6 while (t < tmax) do
7 Update the chaotic number using the chaotic map function
8 if (r6 < TR) then
9 for i = 1 : N do

10 Update the position of x⃗t
i using Eq. (18) to x⃗t+1

i
11 Compute f (x⃗t+1

i )

12 t = t + 1;
13 end for
14 else
15 for i = 1 : N do
16 Applying Eq. (19)
17 t = t + 1;
18 end for
19 end if
20 Applying Conserving Memory
21 Updating N using Eq. (22)
22 end while

Table 3. Comparison of computational complexity of SWO and CSWO algorithms

Feature SWO CSWO
Initialization Random population of agents Random population of agents
Evaluation Objective function Objective function
Position update Random and local search Chaotic maps enhance search
Mating behavior Information exchange Information exchange
Selection Best solution selected Best solution selected
Computational complexity O(tmax · N) O(tmax · N · C)
Time complexity O(tmax · D · N) + O(tmax · D · N) O(tmax · D · N · C) + O(tmax · D · N)
Exploration capability Standard Enhanced by chaotic behavior
Exploitation capability Standard Enhanced by chaotic behavior

complexity for the SWO algorithm is designed as:

T(SWO) = T(Hunting and Nesting behaviors) + T(Mating behavior)

= O(tmax · D · N) + O(tmax · D · N),
(27)

where D is the dimension of the search space. For the CSWO algorithm, the time complexity is
designed as:

T(CSWO) = O(tmax · D · N · C) + O(tmax · D · N). (28)



158 | Mathematical Modelling and Numerical Simulation with Applications, 2025, Vol. 5, No. 1, 143–171

Therefore, CSWO generally offers better performance in terms of exploration and exploitation
due to the integration of chaotic maps, but at the cost of increased both computational and time
complexities compared to the standard SWO algorithm.

7 Experimental setup and result discussions

The accuracy of the proposed meta-heuristic algorithms will be compared to traditional SWO using
a set of eight well-known unimodal or multimodal benchmark functions. Unimodal benchmark
functions provide only one optima and are very suitable for evaluating and comparing exploitation
strategies. In contrast, multimodal benchmark functions include several optima, which renders
them more complex than unimodal functions. The term "global optima" means that there exists a
single optima, whereas the rest are known as "local optima". The key property of any efficient
meta-heuristic algorithm is its capacity to avoid local optima and determine the global optimum.
The primary goal of multimodal benchmark functions is to evaluate the exploration’s performance
in order to avoid trapping in local optima. Table 4 presents a summary of the test functions,
including their range of optimization variables, their dimension Dim, and their minima fmin.
Furthermore, the topologies of benchmark functions are represented in Figure 3. As shown in
Table 4, the minima of all the proposed test functions is 0, except for the Schwefel function. Among
the proposed benchmark functions, the unimodal functions are F1, F2, F3, F7 and F8. In contrast,
F4, F5 and F6 are multimodal functions.

Table 4. List of eight benchmark functions

Function name Formula Dim Search space fmin
Sphere F1(x) =

∑n
i=1 x2

i 30 [−100, 100] 0
Quartic Noise F2(x) =

∑n
i=1 ix4

i + rand(0, 1) 30 [−1.28, 1.28] 0
Rosenbrock F3(x) =

∑n−1
i=1

[
100(xi+1 − x2

i )
2 + (xi − 1)2] 30 [−30, 30] 0

Griewank F4(x) = 1
4000

∑n
i=1 x2

i −
∏n

i=1 cos( xi√
i
) + 1 30 [−600, 600] 0

Rastrigin F5(x) =
∑n

i=1
[
x2

i − 10 cos(2πxi + 10)
]

30 [−5.12, 5.12] 0
Schwefel F6(x) = −

∑n
i=1 xi sin(

√
|xi |) 30 [−500, 500] -418.9829×D

Schwefel 2.21 F7(x) = max {|xi |, 1 ≤ i ≤ n} 30 [−100, 100] 0
Schwefel 2.22 F8(x) =

∑n
i=1 |xi |+

∏n
i=1 |xi | 30 [−10, 10] 0

We can measure each algorithm’s performance using three distinct statistical tests: the best, the
mean of the fitness function, and the standard deviation (STD).

1. Statistical mean: represents the average value of the best fitness function F∗ obtained after
performing the algorithm Tmax iterations. It is computed as follows:

Mean =
1

Tmax

Tmax∑
i=1

Fi
∗. (29)

2. Statistical best: represents the minimum value of the best fitness function F∗ obtained after
performing the algorithm Tmax iterations, i.e;

Best =
Tmax
min
i=1

Fi
∗. (30)

3. Statistical standard deviation: is used as a performance test to verify the algorithm’s stability
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Figure 3. Topologies of the benchmark functions
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and robustness. A lower standard deviation in the obtained solutions means that the algorithm
accurately finds good solutions. It can be determined as:

STD =

√√√√ 1
Tmax − 1

Tmax∑
i=1

(
Fi∗ − Mean

)2. (31)

The performance of CSWO with chaos

All algorithms in the following numerical simulations were implemented using MATLAB software
with the Microsoft Windows 10 operating system. All simulations are performed on the same PC
with an Intel(R) Core(TM) i5-6300U 2.4 processor and 8GB of RAM. The proposed meta-heuristic
algorithms are evaluated on various well-known benchmark functions using different chaotic
maps. Their details can be found in Table 4. For all algorithms, the number of population is
30, the number of iterations is 500, and the number of independent runs is 10. The results of
five chaotic maps applied from CSWO1 to CSWO4 are displayed in Table 6, where the best, the
mean (average), and the STD of the best solutions obtained in the last iteration in simulation are
illustrated. Function values showing the most optimal results are emphasized in bold. It can be
shown from Table 6 that CSWO algorithms provide better results as compared to SWO algorithm.
In particular, Gauss/mouse, piecewise, and tent maps yields better results. In contrast, logistic and
sinusoidal maps perform less well when we implement CSWO compared to the SWO algorithm.
Therefore, Gauss/mouse, piecewise, and tent maps may effectively improve the performance of
SWO algorithm. Table 6 shows that the tent and piecewise-based SWO algorithms consistently
generates the best solutions over all test functions. In the following, considering the mean and
standard deviation statistical tests, a comparison is conducted between test functions that have
been optimized using the spider wasp optimization algorithm (SWO) and test functions that have
been optimized using chaotic maps.

- For function F1, Gauss/mouse map-based CSWO 1, CSWO 2, and CSWO 3 algorithms, along
with sinusoidal map-based CSWO 2, CSWO 3, and piecewise map-based CSWO 1, CSWO 2,
and CSWO 3 algorithms, yield better results than SWO algorithm.

- For function F2, all logistic map-based algorithms from CSWO 1 to CSWO 4, Gauss/mouse
map-based CSWO 2, CSWO 3, and CSWO 4 algorithms, sinusoidal map-based CSWO 1, and
CSWO 2 algorithms, piecewise map-based CSWO 2, CSWO 3, and CSWO 4 algorithms, and all
tent map-based algorithms from CSWO 1 to CSWO 4 give better solutions than SWO algorithm.

- For function F3, logistic map-based CSWO 4 algorithm, Gauss/mouse map-based CSWO 4
algorithm, piecewise map-based CSWO 2 and CSWO 3 algorithms, and tent map-based CSWO
3 and CSWO 4 algorithms yield better results compared to SWO algorithm.

- For functions F4 and F5, it has been demonstrated that most chaotic algorithms accurately
provide the minima of these functions, which is 0, with the exception of some algorithms such
as Gauss/mouse map-based CSWO 3 and CSWO 4 algorithms, and sinusoidal map-based
CSWO 1 and CSWO 4 algorithms. As a result, the logsitic, piecewise, and tent maps can
accurately improve the SWO algorithm’s performance.

- For function F6, most of the chaotic algorithms using logistic, Gauss/mouse, sinusoidal, piece-
wise, and tent maps give better results than SWO algorithm. Thus, using chaos can improve the
research performance for minima of function F6.

- For function F7, logistic map-based CSWO 1, CSWO 2, and CSWO 4 algorithms, Gauss/mouse
map-based CSWO 2 algorithm, sinusoidal map-based CSWO 3 algorithm, and tent map-based
CSWO 2 algorithm provide better solutions compared to SWO algorithm. Obviously, using
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chaotic maps for function F7 can greatly enhance the optimization process’s performance.
- For function F8, logistic map-based CSWO 1, CSWO 2, and CSWO 4 algorithms, Gauss/mouse

map-based CSWO 1 and CSWO 2 algorithms, sinusoidal map-based CSWO 1 and CSWO 3
algorithms, piecewise map-based CSWO 1, CSWO 3, and CSWO 4 algorithms, and all tent
map-based algorithms from CSWO 1 to CSWO 4 display better solutions as compared to SWO
algorithm.

According to the comparative study, the F4 and F5 functions demonstrated higher efficiency com-
pared to the other functions in algorithms based on logistic, Gauss/mouse, sinusoidal, piecewise,
and tent chaotic maps.
In the resolution of diverse optimization problems, both runtime and solution accuracy are of
crucial importance. Table 5 shows the average runtime of the algorithm using different chaotic
maps. From the table, it is shown that the runtime decreases when integrating chaotic maps into

Table 5. Runtime of SWO and CSWO algorithms (Unit: second)

Map Metrics SWO CSWOA1 CSWOA2 CSWOA3 CSWOA4
No map Time 45.2 N/A N/A N/A N/A

Rank N/A N/A N/A N/A N/A
Logistic Time N/A 29.1 29.3 28.67 28.89

Rank N/A 3 4 1 2
Gauss/mouse Time N/A 27.4 28.32 27.1 28.12

Rank N/A 2 4 1 3
Sinusoidal Time N/A 28.56 29.94 28.42 28.16

Rank N/A 3 4 2 1
Piecewise Time N/A 31.62 34.26 30.99 31.44

Rank N/A 3 4 1 2
Tent Time N/A 31.84 31.72 30.25 30.59

Rank N/A 4 3 1 2
Mean Rank N/A 3.00 3.80 1.20 2.00
Final Rank 5 3 4 1 2

the SWO algorithm. From the last row of the table, it can be seen that the average runtime of the
CSWOA3 is ranked 1.20, placing it first overall, which is better compared to the SWO, CSWOA1,
CSWOA2, CSWOA3, and CSWOA4. Therefore, incorporating chaos theory in the traditional SWO
algorithm enhances its convergence speed, which ensures the efficiency of the CSWO algorithm
for solving various optimization problems.

Qualitative analysis

A qualitative study has been conducted on several benchmark functions. Figure 4(a)-Figure 4(h)
illustrate the convergence of several benchmark functions using the CSWO algorithm. These
graphs provide an additional explanation of each algorithm’s convergence rate, showing the best
optimal solution obtained from 10 iterations of the algorithm using the tent chaotic map.
Figure 4(a) represents the convergence curves obtained using the tent map on the F1 Sphere
function, which has 0 as a global minimum. From Figure 4(a), CSWO 3 has the fastest convergence
rate to the global solution. Similarly, CSWO 1 is very close to CSWO 3, which provides a very
good convergence rate. On the other hand, SWO yields the slowest convergence rate when it
comes to determining the global minimum during the optimization process.
Figure 4(b) depicts the convergence curves obtained using the tent map on the F2 Quartic noise
function, which has 0 as a global minimum. From Figure 4(b), CSWO 3 has the fastest convergence
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rate to the global solution. Similarly, CSWO 4 is very close to CSWO 3, which gives a very good
convergence rate. On the other hand, SWO yields the slowest convergence rate when it comes to
determining the global minimum during the optimization process.

Figure 4(c) illustrates the convergence curves obtained using the tent map on the F3 Rosenbrock
function, which has 0 as a global minimum. As can be shown, CSWO 2 with CSWO 3 and CSWO
1 have the fastest convergence rate to the global solution. In contrast, SWO and CSWO 4 provide
the slowest convergence rate over the maximum number of iterations.

Figure 4(d) displays the convergence curves obtained using the tent map on the F4 Greiwank
function. F4 has the property of being slightly easier to solve for dimensions that are higher rather
than lower [62]. From Figure 4(d), it is shown that all of the algorithms failed to find the global
solution over the maximum number of iterations, and they crashed before the first 60 iterations.
Over the search process, CSWO 3 and CSWO 4 have the best convergence rate towards the global
optimum.

Figure 4(e) shows the convergence curves obtained using the tent map on the F5 Rastrigin function.
As can be observed, all of the algorithms failed to find the global solution over the maximum
number of iterations, and they crashed before the first 50 iterations. During the search process,
CSWO 2 and CSWO 4, followed by SCWO 3 and SWO, have the best convergence rate towards
the global optimum.

Figure 4(f) illustrates the convergence curves obtained using the tent map on the F6 Schwefel
function. As can be shown, CSWO 1 and CSWO 2, followed by CSWO 3 and CSWO 4, have the
fastest convergence rate to the global solution. In contrast, SWO displays the slowest convergence
rate over the maximum number of iterations.

Figure 4(g) represents the convergence curves obtained using the tent map on the unimodal F7
Schwefel 2.21 function, which has 0 as a global minimum. As we can see, CSWO 1 has the fastest
convergence rate to the global solution compared to the other algorithms. In particular, SWO
provides the slowest convergence rate over the maximum number of iterations. As a result, the
meta-heuristic algorithm’s performance is improved when using chaotic maps.

Figure 4(h) shows the convergence curves obtained using the tent map on the unimodal F8
Schwefel 2.22 function, which has 0 as a global minimum. Compared to the other algorithms,
CSWO 1 and CSWO 3 exhibit the fastest convergence rate to the global solution. In particular,
SWO and CSWO 4 display the slowest convergence rate over the maximum number of iterations.
Finally, we can conclude that using chaos in meta-heuristic optimization algorithms provides
better performance in the search process for the optimum solution.

8 Discussion and conclusions

This work has presented a novel variant of the SWO algorithm enhanced by chaos theory, de-
veloping the CSWO algorithm. Five chaotic maps were selected for improving the traditional
SWO algorithm’s efficiency by adjusting parameters. Inspired by the behaviors of female spider
wasps, the CSWO algorithm imitates searching for a spider, escaping a falling spider, nesting the
entrapped spider, and mating behavior during egg-laying. The robustness of the CSWO algorithm
was analyzed using eight benchmark functions to evaluate exploitation, exploration, capacity to
escape local optima, and convergence speed. The study showed that chaotic maps, particularly
the tent and piecewise maps, significantly improved SWO performance. The incorporating of
chaos increases the search speed for the best solution by replacing pseudo-random numbers with
chaotic variables, enhancing the convergence rate during the optimization process.
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Table 6. Statistical tests on benchmark functions using 5 chaotic maps on CSWO

Map Algorithms
Functions

F1 F2 F3 F4 F5 F6 F7 F8

No map SWO Best
2.26E−

154
1.44E−
05

8.44E−
06

0.00E+
00

0.00E+
00

−1.97E+
04

9.70E−
82

6.02E−
79

Mean
5.14E−
111

1.57E−
04

1.10E−
03

0.00E+
00

0.00E+
00

−1.85E+
04

2.80E−
68

5.16E−
56

STD
1.62E−
110

1.40E−
04

1.18E−
03

0.00E+
00

0.00E+
00

1.24E+
04

8.85E−
68

1.63E−
55

Logistic

CSWO 1 Best
8.93E−

155
6.27E−
06

3.13E−
06

0.00E+
00

0.00E+
00

−4.18E+
03

4.59E−
77

3.34E−
78

Mean
2.50E−
105

1.51E−
04

2.09E−
03

0.00E+
00

0.00E+
00

−3.67E+
03

1.14E−
71

3.69E−
72

STD
7.91E−
105

1.76E−
04

2.77E−
03

0.00E+
00

0.00E+
00

8.32E+
02

3.61E−
71

7.63E−
72

CSWO 2 Best
3.90E−

156
2.23E−
05

4.78E−
05

0.00E+
00

0.00E+
00

−4.18E+
03

4.51E−
81

1.39E−
78

Mean
7.88E−
104

1.16E−
04

1.43E−
03

0.00E+
00

0.00E+
00

−3.49E+
03

1.11E−
71

4.21E−
75

STD
2.69E−
103

8.84E−
05

1.68E−
03

0.00E+
00

0.00E+
00

8.94E+
02

3.46E−
71

1.11E−
74

CSWO 3 Best
1.51E−

158
8.70E−
06

5.17E−
05

0.00E+
00

0.00E+
00

−4.18E+
03

4.42E−
77

9.84E−
81

Mean
5.94E−
106

1.03E−
04

1.39E−
03

0.00E+
00

0.00E+
00

−3.54E+
03

4.98E−
57

2.47E−
53

STD
1.87E−
105

1.18E−
04

1.26E−
03

0.00E+
00

0.00E+
00

8.32E+
02

1.57E−
56

7.81E−
53

CSWO 4 Best
1.90E−

150
1.17E−
05

5.85E−
06

0.00E+
00

0.00E+
00

−4.18E+
03

8.86E−
76

3.97E−
77

Mean
5.98E−
72

1.52E−
04

2.00E−
04

0.00E+
00

0.00E+
00

−3.50E+
03

1.14E−
71

1.35E−
60

STD
1.88E−
71

1.33E−
04

1.87E−
04

0.00E+
00

0.00E+
00

8.86E+
02

3.43E−
71

4.29E−
60

Gauss/mouse

CSWO 1 Best
6.96E−

159
6.73E−
06

2.03E−
05

0.00E+
00

0.00E+
00

−4.18E+
03

3.03E−
80

5.66E−
81

Mean
1.41E−
127

1.61E−
04

2.22E−
03

0.00E+
00

0.00E+
00

−3.28E+
03

1.62E−
52

4.23E−
58

STD
4.47E−
127

1.57E−
04

3.94E−
03

0.00E+
00

0.00E+
00

8.47E+
02

5.12E−
52

1.33E−
57

CSWO 2 Best
9.29E−

161
1.50E−
05

1.62E−
06

0.00E+
00

0.00E+
00

−4.18E+
03

4.79E−
79

2.05E−
78

Mean
6.75E−
142

1.54E−
04

2.09E−
03

0.00E+
00

0.00E+
00

−3.34E+
03

2.55E−
66

1.99E−
57

STD
2.11E−
141

1.06E−
04

3.70E−
03

0.00E+
00

0.00E+
00

8.99E+
02

8.07E−
66

6.31E−
57

CSWO 3 Best
8.15E−

161
9.89E−
06

1.34E−
05

1.03E−
04

1.34E−
05

−4.13E+
03

1.42E−
78

2.60E−
78

Mean
1.11E−
107

1.00E−
04

2.09E−
03

2.10E−
02

1.72E−
02

−2.45E+
03

3.39E−
59

6.41E−
54

STD
3.53E−
107

8.44E−
05

2.17E−
03

2.89E−
02

3.70E−
02

7.33E+
02

1.07E−
58

2.02E−
53

CSWO 4 Best
7.41E−

166
9.05E−
06

1.63E−
05

1.11E−
16

1.42E−
14

−2.33E+
03

4.15E−
83

1.57E−
83

Mean
8.11E−
78

8.83E−
05

8.77E−
04

2.60E−
07

2.77E−
11

−2.09E+
03

5.93E−
40

1.27E−
37

STD
2.54E−
77

6.07E−
05

1.61E−
03

7.76E−
07

5.51E−
11

1.94E+
02

1.87E−
39

3.68E−
37
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Map Algorithms
Functions

F1 F2 F3 F4 F5 F6 F7 F8

Sinusoidal

CSWO 1 Best
5.92E−

160
1.20E−
05

2.87E−
05

1.04E−
11

5.68E−
14

−3.00E+
03

2.79E−
78

3.09E−
79

Mean
2.33E−
105

1.17E−
04

2.14E−
03

4.21E−
09

9.41E−
10

−2.31E+
03

2.12E−
58

9.32E−
63

STD
7.37E−
105

9.45E−
05

3.08E−
03

5.29E−
09

9.69E−
10

4.12E+
02

6.72E−
58

2.94E−
62

CSWO 2 Best
9.09E−

155
1.12E−
05

3.40E−
05

0.00E+
00

0.00E+
00

−4.18E+
03

1.41E−
80

3.34E−
81

Mean
3.59E−
128

1.12E−
04

2.03E−
03

0.00E+
00

0.00E+
00

−3.53E+
03

1.72E−
62

3.07E−
55

STD
1.13E−
127

8.10E−
05

3.23E−
03

0.00E+
00

0.00E+
00

8.71E+
02

5.46E−
62

9.39E−
55

CSWO 3 Best
7.14E−

157
3.41E−
05

7.68E−
06

3.33E−
15

0.00E+
00

−4.18E+
03

2.39E−
77

4.48E−
82

Mean
4.63E−
111

1.79E−
04

1.52E−
03

4.67E−
08

1.74E−
10

−3.82E+
03

7.41E−
73

4.73E−
70

STD
1.46E−
110

1.24E−
04

3.35E−
03

1.47E−
07

3.31E−
10

7.67E+
02

1.73E−
72

1.49E−
69

CSWO 4 Best
5.78E−

22
2.25E−
05

2.01E−
03

0.00E+
00

0.00E+
00

−3.88E+
03

8.78E−
12

6.18E−
10

Mean
4.17E−
08

1.79E−
04

5.47E−
02

9.15E−
08

1.00E−
12

−2.75E+
03

1.35E−
05

8.43E−
05

STD
1.32E−
07

1.40E−
04

5.92E−
02

1.16E−
07

2.68E−
12

4.66E+
02

4.23E−
05

2.52E−
04

Piecewise

CSWO 1 Best
9.29E−

161
1.50E−
05

1.62E−
06

0.00E+
00

0.00E+
00

−4.18E+
03

4.79E−
79

2.05E−
78

Mean
6.75E−
142

1.76E−
04

2.09E−
03

0.00E+
00

0.00E+
00

−3.40E+
03

2.55E−
66

1.99E−
57

STD
2.11E−
141

1.52E−
04

3.70E−
03

0.00E+
00

0.00E+
00

8.45E+
02

8.07E−
66

6.31E−
57

CSWO 2 Best
5.85E−

159
6.67E−
06

3.61E−
05

0.00E+
00

0.00E+
00

−4.18E+
03

7.40E−
81

1.04E−
79

Mean
2.95E−
141

1.12E−
04

6.93E−
04

0.00E+
00

0.00E+
00

−3.66E+
03

5.68E−
54

4.72E−
53

STD
9.35E−
141

9.67E−
05

4.95E−
04

0.00E+
00

0.00E+
00

8.16E+
02

1.79E−
53

1.49E−
52

CSWO 3 Best
1.07E−

154
1.60E−
05

1.04E−
05

0.00E+
00

0.00E+
00

−4.18E+
03

6.25E−
81

6.19E−
79

Mean
3.83E−
125

1.21E−
04

7.81E−
04

0.00E+
00

0.00E+
00

−3.89E+
03

5.39E−
66

6.43E−
61

STD
1.21E−
124

9.55E−
05

9.79E−
04

0.00E+
00

0.00E+
00

6.14E+
02

1.69E−
65

1.84E−
60

CSWO 4 Best
7.21E−

160
7.85E−
06

2.81E−
05

0.00E+
00

0.00E+
00

−4.18E+
03

7.53E−
80

1.96E−
80

Mean
9.23E−
99

6.79E−
05

1.26E−
03

0.00E+
00

9.81E−
05

−4.03E+
03

1.55E−
39

4.22E−
75

STD
2.91E−
98

7.46E−
05

1.40E−
03

0.00E+
00

3.10E−
04

4.74E+
02

3.27E−
39

1.31E−
74
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Map Algorithms
Functions

F1 F2 F3 F4 F5 F6 F7 F8

Tent

CSWO 1 Best
1.46E−

165
1.33E−
05

2.54E−
06

0.00E+
00

0.00E+
00

−4.18E+
03

2.58E−
78

2.90E−
80

Mean
8.80E−
104

1.13E−
04

2.11E−
03

0.00E+
00

0.00E+
00

−3.66E+
03

9.15E−
56

1.21E−
71

STD
2.78E−
103

1.18E−
04

4.10E−
03

0.00E+
00

0.00E+
00

6.89E+
02

2.89E−
55

3.81E−
71

CSWO 2 Best
1.18E−

155
1.22E−
06

1.94E−
06

0.00E+
00

0.00E+
00

−4.18E+
03

2.35E−
76

1.13E−
79

Mean
6.30E−
101

1.56E−
04

1.70E−
03

0.00E+
00

0.00E+
00

−3.40E+
03

2.55E−
68

4.42E−
56

STD
1.80E−
100

1.36E−
04

3.46E−
03

0.00E+
00

0.00E+
00

1.00E+
03

4.57E−
68

1.39E−
55

CSWO 3 Best
4.67E−

160
9.74E−
07

1.55E−
05

0.00E+
00

0.00E+
00

−4.18E+
03

5.50E−
83

2.23E−
80

Mean
5.26E−
106

3.98E−
05

8.78E−
04

0.00E+
00

1.58E−
05

−3.79E+
03

1.72E−
54

7.21E−
73

STD
1.66E−
105

3.93E−
05

1.68E−
03

0.00E+
00

5.01E−
05

8.08E+
02

3.91E−
54

2.28E−
72

CSWO 4 Best
3.35E−

143
1.45E−
05

3.01E−
06

0.00E+
00

0.00E+
00

−4.18E+
03

6.17E−
72

4.01E−
73

Mean
7.16E−
65

9.70E−
05

3.94E−
04

0.00E+
00

0.00E+
00

−3.70E+
03

1.72E−
34

2.50E−
66

STD
2.07E−
64

6.70E−
05

4.95E−
04

0.00E+
00

0.00E+
00

8.02E+
02

5.44E−
34

4.91E−
66

Chaotic maps can improve the SWO algorithm by enhancing exploration and exploitation, but
they come with several challenges. Using chaotic maps increases computational overhead and
complexity, which can slow down the algorithm. Performance is sensitive to map selection and
parameters, leading to unpredictability. Chaotic behavior can cause excessive exploitation, reduc-
ing population diversity and causing premature convergence. Multiple chaotic maps introduce
implementation challenges and increase complexity. They can also exhibit noise, potentially
destabilizing the optimization process. Careful tuning and empirical validation are needed to
effectively integrate chaotic maps and benefit from their behavior.

The CSWO algorithm, inspired by spider wasps and enhanced with chaotic maps, is a powerful
metaheuristic optimization method applicable to many real-world scenarios. In engineering,
it optimizes structures like bridges, airplane wings, and mechanical systems for efficiency and
material use. In energy systems, it improves renewable energy configurations and power grid
operations. For transportation, it resolves vehicle routing issues and optimizes traffic signals to
reduce congestion. In healthcare, CSWO enhances medical imaging and drug design. Financial
firms use it for portfolio optimization and algorithmic trading. In machine learning, it aids feature
selection and hyperparameter tuning. Environmental applications include water resource man-
agement and crop planning. Telecommunications benefit from improved network design, while
robotics and aerospace use it for route planning and system optimization. Chemical engineering
leverages CSWO for process and reactor design. In education, it enhances curriculum design and
training programs. Overall, CSWO is a versatile tool for solving optimization challenges across
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various domains, making it valuable for both researchers and practitioners.
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Abstract
This paper investigates the dynamics of a stochastic SEIQR epidemic model, which integrates
quarantine measures and a saturated incidence rate to more accurately reflect real-world disease
transmission. The model is based on the classical SEIR framework, with the addition of a quarantined
compartment, offering insights into the impact of quarantine on epidemic control. The saturated
incidence rate accounts for the diminishing rate of new infections as the susceptible population grows,
addressing the limitations of traditional bilinear incidence rates in modeling epidemic spread under
high disease prevalence. We first establish the basic reproductive number, R0, for the deterministic
model, which serves as a threshold parameter for disease persistence. Through the stochastic Lyapunov
function method, we identify the necessary conditions for the existence of a stationary distribution,
focusing on the case where R∗

0 > 1, signals the potential long-term persistence of the disease in the
population. Furthermore, we derive sufficient conditions for disease extinction, particularly when
R∗

S < 1, indicating that the disease will eventually die out despite the inherent randomness in disease
transmission. Numerical simulations confirm that environmental noise and quarantine rates shape
disease dynamics. Simulations show that more noise or higher quarantine rates speed up disease
extinction, offering key policy insights. Our results clarify how quarantine, noise intensity, and disease
dynamics interact, aiding epidemic modeling in stochastic settings.

Keywords: Stochastic epidemic model; Lyapunov function; stationary ergodic distribution; extinction
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1 Introduction

Mathematical models have been indispensable in understanding infectious disease dynamics
since Daniel Bernoulli’s pioneering work in 1766 [1]. These models elucidate disease transmission
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dynamics and analyze the behavior of diseases among populations with varying health statuses.
Notably, Kermack and McKendrick’s research in 1927 [2] explored infectious disease dynamics
using mathematical models, paving the way for numerous subsequent models aimed at under-
standing epidemic behavior and controlling its spread. The development of stochastic epidemic
models, stemming from simple deterministic models, has enabled accurate predictions of disease
dissemination and facilitated public health awareness campaigns. Such models are instrumental
in preventing disease dissemination and reducing infection rates in society.
Stochastic epidemics trace back to the 1920s, with McKendrick developing the first stochastic SIR
model in 1926 [2]. Researchers like Anderson, Roy, Daley, and Gani have since contributed to the
field by analyzing infectious disease epidemiology through mathematical models [3, 4]. Their
work has focused on determining transmission probabilities for infectious agents and examining
the effects of interventions such as vaccination and quarantine, offering theoretical and numerical
frameworks for disease prevention and control. There has been a significant increase in the
application of mathematical models to investigate mechanisms within infectious diseases such
as polio, diphtheria, tuberculosis, HIV, COVID-19, and others [5–11]. Quarantine emerges as a
crucial method for preventing disease dissemination, as evidenced by its historical efficacy in
reducing the spread of various human and animal diseases. Therefore, studying infectious disease
models that incorporate quarantine strategies is essential.
The main objective of this study is to develop a stochastic SEIQR epidemic system incorporating
temporary immunity, quarantine strategies, and random perturbations. While providing detailed
insights into disease persistence, stochastic models may lack positive equilibrium due to environ-
mental noise interference [12, 13]. Understanding ergodicity theory and stationary distributions is
crucial for comprehending epidemic transmission patterns and estimating statistical properties
essential for effective disease prevention.
Additionally, several mathematical models investigate infectious disease dynamics under quaran-
tine models [14, 15]. For instance, Dieu et al. [16] have developed the threshold of a stochastic
SIQS epidemic model with standard isolation, while Zhou et al. [17] have investigated an SQEIAR
stochastic epidemic model with media coverage and asymptomatic infection. Zhang et al. [18]
proposed the stationary distribution and extinction of a stochastic SEIQ epidemic model with a
general incidence function and temporary immunity. Currently, researchers are actively investi-
gating the SIQR model [19–21].
Therefore, many mathematical biologists consider more realistic factors, such as demographic
changes, migration, cross-infections, and other practical elements. Every time infectious diseases
affect people, people take precautions to minimize their impact. The quarantine method has
been used for controlling contagious diseases, which is one of the most effective ways to prevent
epidemic disease outbreaks. Mathematicians and biologists are drawn to this area of research.

2 Mathematical model

Vaccinations and quarantines for disease prevention and disease control have become more crucial
in modern medicine developments. In recent years, several researchers have examined the effect
of vaccination and quarantines on disease [22–25]. Many infectious diseases incubate within a
host for a period of time before becoming infectious, so the duration of infection must also be
taken into account. In response to the aforementioned research, the following system describes an
epidemic model with imperfect quarantine based on the SEIQR model:

dS
dt = Θ −

βSI
1 + kI − µS ,
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dE
dt =

βSI
1 + kI − (γ + µ)E ,

dI
dt = γE − (ξ + η + α1 + µ)I , (1)

dQ
dt = ηI − (δ + α2 + µ)Q,

dR
dt = ξI + δQ− µR.

In total, the population size is estimated to be N(t) = S(t) + E(t) + I(t) +Q(t) +R(t). In
these epidemic models, the saturated incidence rate is h(I)S and the model is composed of a
(SEIQR) epidemic model. In model (1), the transitions between compartments describe an
SEIQR epidemic model without temporary immunity. The saturation level of h(I) occurs when
I increases in size.

h(I)S =
βIS

1 + kI .

The infection force is represented by βI , and when numbers increase, it causes the behavior of
susceptible individuals to change. 1

1+kI represents this inhibition effect. Obviously the region,

D = {(S , E , I ,Q,R)/S ≥ 0, E ≥ 0, I ≥ 0,Q ≥ 0,R ≥ 0,S + E + I +Q+R ≤ Θ/µ} ,

is a collection of model (1) that is positively invariant. The reproduction number of the model is

R0 =
βΘγ

µ(γ + µ)(ξ + µ + α1 + η)
.

Table 1. Model variables and their descriptions

Variables Descriptions
S(t) Population of Susceptible
E(t) Population of Exposed
I(t) Population of Infected
Q(t) Population of Quarantined
R(t) Population of Recovered

Table 2. Model parameters, explanations and units

ParametersExplanations Units
Θ Birth rate Individual/ day
β Transmission co-efficient (Individual× day)−1

µ Natural death rate 1/day
γ Infective individuals of exposed people 1/day
η Infective individuals of quarantined recovery rate 1/day
ξ Recovery rate of infective people 1/day
α1 Rates of disease-induced death among infected individuals 1/day
α2 Disease induced death rate of quarantined people 1/day
δ Recovery rate of quarantined individuals 1/dayk Saturation rate of the inhibition effect rate 1/day
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Remark 1 i. If R0 ≤ 1 holds, then the model (1) will only have an disease-free equilibrium of E0 =

(S0, 0, 0, 0, 0) in which there is global asymptotical stability. Then, only a vulnerable and healthy
population remains after the pandemic illnesses have gone away.
ii. When R0 > 1 is valid, in positive equilibria, there is an asymptotically stable valueE∗ = (S∗, E∗, I∗,Q∗,R∗) in the area D for the model (1), indicating that epidemic diseases will
continue to exist.

It is impossible to describe the behavior of species using deterministic models in the natural
world. Noise from the environment can sometimes cause disturbance to species. Therefore, there
should be a fair amount of stochasticity in some parameters [26–28]. The ecosystem is dominated
by this phenomenon without a doubt. Therefore, a substantial amount of research has been
conducted on the effects of stochastic perturbations on disease [20, 29, 30]. In many branches of
applied sciences, including disease dynamics, stochastic differential equations (SDEs) play an
important role because they are capable of predicting the future dynamics of their deterministic
counterpart. Until now, very few studies have been conducted on the global dynamics of stochastic
SEIQR epidemic models. The model (1) is made more reasonable and realistic by assuming that
S(t), E(t), I(t),Q(t), and R(t) are directly proportional to environmental noise. Afterward, in
accordance with model (1), a stochastic version may be obtained by

dS =

[
Θ −

βSI
1 + kI − µS

]
dt+ ϱ1SdW1(t),

dE =

[
βSI

1 + kI − (γ + µ)E
]

dt+ ϱ2EdW2(t),
dI = [γE − (ξ + η + α1 + µ)I ] dt+ ϱ3IdW3(t), (2)

dQ = [ηI − (δ + α2 + µ)Q] dt+ ϱ4QdW4(t),
dR = [ξ I + δQ− µR] dt+ ϱ5RdW5(t),

where, Wi = Bi = 1, 2, 3, 4, 5 are independent standard one-dimensional Brownian motion and
ϱi(t), are the intensity of the white noise, i = 1, 2, 3, 4, 5. All other parameters are similar to those in
model (1). As a result, the paper has been organized as follows: In Section 3, this model provides
a significant unique global solution to the model (2). In Section 4, we prove that model (2) has an
ergodic stationary distribution under certain conditions. In Section 5, we establish what conditions
must be met for the disease to be wiped out. In the Section 6, numerical simulations are provided
to illustrate the theoretical results. A brief summary of the main findings is presented in Section 7.

3 Uniqueness of global solution

An epidemic models dynamic behavior can be studied by determining whether or not the solution
exits and remains nonnegative. It is well known that with stochastic differential equations, numer-
ical solutions must satisfy both the local Lipschitz condition and the linear growth condition so
that they have an exclusive global solution. Model (2) requires linear growth, despite its Lipschitz
continuous coefficients, so a finite-time explosion may occur if the linear growth condition is not
met. It is necessary to consider the existence and positivity of solutions to the model (2) before
studying population system dynamics.
Firstly, we consider stochastic differential equations in d-dimensions

dX = f (X (t), t)dt+ g(X (t), t)dB(t), f or t ≥ t0,
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with the initial condition for X (0) = X0 ∈ Rd. The differential operator L associated with the
equation above can be defined as follows:

L =
∂

∂t +
d∑
i=1

fi(X , t) ∂

∂Xi
+

1
2

d∑
i,j=1

[
gT(X , t)g(X , t)]

ij

∂2

∂Xi∂Xj
.

If L acts on a function V ∈ C2
(

Rd × [t0,∞;R+]
)

, then

LV(X , t) = Vt(X , t) + VX (VX , t) f (X , t) + 1
2

trace
[

gT(X , t)VXX (X , t)g(X , t)] ,

where, Vt = ∂V
∂t ,VX =

(
∂V
∂X1

, ∂V
∂X2

, ..., ∂V
∂Xd

)
,VXX =

(
∂2V

∂Xi∂Xj

)
d×d

. Thus, by Ito’s formula, if X (t) ∈
Rd, then

dV(X (t), t) = LV(X (t), t)dt+ VX (X (t), t)g(X (t), t)dB(t).

Lemma 1 As a result of the model (2), we get a positive local and unique solution (S(t), E(t), I(t),Q(t),R(t))
for t ∈ [−ϖ, e), where τe is the time of the explosion [31], at any starting value (S(0), E(0), I(0),Q(0),R(0)) ∈
R5

+.

Theorem 1 The model (2) has a unique positive solution (S(t), E(t), I(t),Q(t),R(t)) ∈ R5
+ on t ≥ 0

at any starting value (S(0), E(0), I(0),Q(0),R(0)) ∈ R5
+.

Proof In the case of model (2), the coefficients are Lipschitz continuous on the region R+. Two
parts are involved in the following proof.
Part− I. According to Lemma 1, In model (2), for any given initial state (S(0), E(0), I(0),Q(0),R(0)) ∈
R5

+. there is a positive local solution (S(t), E(t), I(t),Q(t),R(t)) .
Part − I I. Now, we demonstrate that τe = +∞ a.s, there is only one positive solution, and that is
a global solution. If n0 ≥ 0 is sufficiently large, then S(0), E(0), I(0),Q(0), and R(0) will all lie

in the range
[

1n0
,n]. For every integer n ≥ n0, as a general rule, stopping times can be defined as

follows:

τn = inf
{t ∈ [ϖ, τe) : S(t) /∈

(
1n ,n) , E(t) /∈

(
1n ,n) , I(t) /∈

(
1n ,n) ,

Q(t) /∈
(

1n ,n) or R(t) /∈
(

1n ,n)} . (3)

In the case of an empty set ∅, we define here inf∅ = +∞. There is no doubt that τn increases
strictly when n→ ∞. Assume τ∞ = limn→∞ τn; therefore, τ∞ = τe. The only thing left to do is
prove τ∞ = +∞ a.s. If τ∞ = +∞ is not true, then there exist a both constants T > 0 and ζ ∈ (0, 1)
such that Pτ∞ ≤ T > ζ. Consequently, there exists n1 ≥ n0(n1 ∈ N+).
Define a C1,2− function V̂ : R5

+ → R+

V̂ (S , E , I ,Q,R) = S − 1 − lnS + E − 1 − ln E + I − 1 − ln I
+Q− 1 − lnQ+R− 1 − lnR. (4)
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By applying Definition in view of model (2), we get

dV̂ = pV̂dt+ ϱ1(S − 1)dW1(t) + ϱ2(E − 1)dW2(t) + ϱ1(I − 1)dW3(t)
+ϱ4(Q− 1)dW4(t) + ϱ5(R− 1)dW5(t), (5)

where,

pV̂ =

(
1 −

1
S

) [
Θ −

βSI
1 + kI − µS

]
+

(
1 −

1
E

) [
βSI

1 + kI − (γ + µ)E
]

+

(
1 −

1
I

)
[γE − (ξ + η + α1 + µ)I ] +

(
1 −

1
Q

)
[ηI − (δ + α2 + µ)Q]

+

(
1 −

1
R

)
[ξI + δQ− µR]

= Θ −
Θ
S −

βI
1 + kI −

βSI
E(1 + kI) + 5µ − µ(S + E + I +Q+R)

+γ + ξ + η + α1 + α2 + δ − α1I + α2Q−
γE
I −

ηI
Q −

ξI
R −

δQ
R

+
ϱ2

1 + ϱ2
2 + ϱ2

3 + ϱ2
4 + ϱ2

5
2

≤ Θ + 5µ −
βk + γ + ξ + η + δ + α1 + α2 +

ϱ2
1 + ϱ2

2 + ϱ2
3 + ϱ2

4 + ϱ2
5

2
≤ K0 ∈ R+.

Hence, K0 is a positive constant.
Thus,

dV̂ ≤ K0dt+ ϱ1(S − 1)dW1(t) + ϱ2(E − 1)dW2(t) + ϱ3(I − 1)dW3(t)
+ϱ4(Q− 1)dW4(t) + ϱ5(R− 1)dW5(t). (6)

In order to take the expectation, we integrate both sides of τn ∧ T to get,

E
[
V̂ (S(τn ∧ T ), E(τn ∧ T ), I(τn ∧ T ),Q(τn ∧ T),R(τn ∧ T ))

]

≤ V̂ (S(0), E(0), I(0),Q(0),R(0)) + E

[∫ τn∧T

0
K0dt

]
≤ V̂ (S(0), E(0), I(0),Q(0),R(0)) +K0T . (7)

Allow it to set Ωn = (τn ≤ T) for n ≥ n1, we have P(Ωn) ≥ ε with ε ∈ (0, 1). Note not for each
ϖ ∈ Ωn, a minimum of one of these exist S(τn, ϖ) or E(τn, ϖ) or I(τn, ϖ) or Q(τn, ϖ) or R(τn, ϖ)

either of these is equal (n or 1/n).
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In that case, V̂ (S(τn, ϖ), E(τn, ϖ), I(τn, ϖ),Q(τn, ϖ),R(τn, ϖ)) cannot be less than either(
1n − 1 − ln

1n
)

or (n− 1 − lnn) = ( 1n − 1 + lnn) .

The results are as follows:
V̂ (S(0), E(0), I(0),Q(0),R(0)) +K0T

≥ E
[
lΩn(ϖ)V̂ (S(τn, ϖ), E(τn, ϖ), I(τn, ϖ),Q(τn, ϖ),R(τn, ϖ))

]
≥ ζ

[
1n − 1 − ln

1n
]
∧ (n− 1 − lnn). (8)

Using a stochastic differential equation, this may be explained if Ωn is denoted by lΩn(ϖ). Supposen→ +∞, this implies

+∞ > (S(0), E(0), I(0),Q(0),R(0)) +K0T = +∞.

Therefore, it is contradictory, and therefore, we have τ∞ = +∞. The proof is complete.

An equilibrium solution’s asymptotic activities in a disease-free system

There is no doubt that E∗ (S0, 0, 0, 0, 0) satisfies the condition for the model (1), and is associated
with disease-free equilibrium. At some points, the disease will be extinct because the solution E∗
is global stochastically asymptotically stable. The idea of disease-free equilibrium as a means of
containing infectious diseases has thus gained popularity. In this section, the stochastic Lyapunov
function is used primarily to achieve the stability of the disease-free equilibrium solution.

Theorem 2 The stochastic model (2) saddles D in the disease-free equilibrium E∗ (S0, 0, 0, 0, 0), when
R0 ≤ 1.

Proof Create a Lyapunov function C2− on V : R5
+ → R+ as follows

V(S , E , I ,Q,R) = ln (S + E + I +Q+R)2 + ln E + ln I .
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Applying the infinitesimal generator L is applied to V , we obtain

LV(S , E , I ,Q,R) =

(
Θ −

βSI
1 + kI − µS

)(
2

S − 1+E + I +Q+R

)
+

(
βSI

1 + kI − (γ + µ)E
)(

2
S − 1+E + I +Q+R +

1
E

)
+ (γE − (ξ + η + α1 + µ)I)

(
2

S − 1+E + I +Q+R +
1
I

)
+ (ηI − (δ + α2 + µ)Q)

(
2

S − 1+E + I +Q+R

)
+ (ξ I + δQ− µR)

(
2

S − 1+E + I +Q+R

)
(9)

−

(
2

2(S − 1+E + I +Q+R)2

)
ϱ2

1S2

+
1
2

(
−2

(S − 1+E + I +Q+R)2 −
1
E2

)
ϱ2

2E2

+
1
2

(
−2

(S − 1+E + I +Q+R)2 −
1
I2

)
ϱ2

3 I2

+
1
2

(
−2

(S − 1+E + I +Q+R)2

)
ϱ2

4Q2

−

(
2

2(S − 1+E + I +Q+R)2

)
ϱ2

4R2.

As a result of simplifying S + E + I +Q+R ≤ 1, we get

LV(S , E , I ,Q,R) =
2

S − 1+E + I +Q+R (Θ − µS − µE − µI − µQ− µR)

+ (βS − (γ + µ)) + (γ − (ξ + η + α1 + µ))

−
ϱ2

1S2 + ϱ2
2E2 + ϱ2

3I2 + ϱ2
4Q2 + ϱ2

5R2

(S − 1+E + I +Q+R)2 −
ϱ2

2
2

−
ϱ2

3
2

.

It follows that LV will be negative and definite on D if R0 < 1 holds. A disease-free equilibrium
solution E∗ (S0, 0, 0, 0, 0) in D is global asymptotically stable for the stochastic model (2).

Remark 2 The overhead Theorem 2 proves that the disease cases exist if R0 < 1 holds. The stability
condition of the disease µ > βγS − ((γ + µ) + (ξ + η + α1 + µ)) disease will be disappear. Taking the
reproductive number R0 < 1, as a consequence, E∗ (S0, 0, 0, 0, 0) is stochastically asymptotically stable
in the large in the stochastic system (2). According to Theorem 2, the stochastic model (2) will approach
disease-free equilibrium if the intensity of white noise is high enough. Since the intensity of white noise
ϱi (for i = 1, 2, 3, 4, 5) is small, the solutions of stochastic model (2) will generally fluctuate around the
disease-less equilibrium of deterministic model (1).

4 Ergodicity and stationary distribution

It is not only important to study epidemiological dynamics to determine when a disease will
eventually become extinct. It is also to determine how long the disease will persist in the popu-
lation. The endemic equilibrium does not exist for model (2). Therefore, this section examines
whether there is a stationary distribution, which indicates the prevalence of a disease, according
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to Hasminskii [32].
Then, let X(t) be a time-homogeneous Markov process in En ⊂ Rn. In order to explain this idea, a
stochastic differential equation approach can be used.

dX (t) = f(X )dt+ n∑
k=1

σk(X )dBk(t). (10)

In this case, En represents an n-dimensional Euclidean space. Following is a description of the
diffusion matrix:

Â(x) = (aij(x)) , aij(x) =
n∑
k=1

σik(x)σjk(x). (11)

Assumption 1 The following properties are satisfied by a bounded domain U ⊂ En with a regular
boundary Π, such that U ⊂ En (U is the closure of U):

i. The diffusion matrix Â(x) is bounded away from zero in the domain U and some nearby neighborhoods.
ii. The mean time it takes for a path leading from ′x ′ to reach the set U is finite if x ∈ En\U, and this
holds true for each compact subset of En.

Lemma 2 [32]. If Assumption 1 hold, then the Markov process X (t) has a stationary distribution ω̂(.).
Besides, the measure ω̂ may be integrated when f(.) is a function, then

Px
{

lim
T →∞ 1

T

∫T
0
f(X (t))dt = ∫

En
f(x)ω̂(dx)

}
= 1,

for all x ∈ En.

Remark 3 The demonstration of Assumption 1 (i) [33] involves showing that a bounded domain H has
uniform ellipticity F; here is an example.

Fu = b(x)ux 1
2

trace(A(x)uxx).
In particular, there exists a positive number Z such that

n∑
i,j=1

aji(x)ξiξ j ≥ Z |ξ|2 , x ∈ H, ξ ∈ Rn.

It is possible to prove Assumption 1 (ii) [34] if there is a certain neighborhood U and some non-negative
C2,1-function V such that for all x ∈ En\U,
LV(x) < 0.
The following main results can be obtained by using Lemma 2.

Theorem 3 If

R∗
0 =

βbγ

(µ +
ϱ2

1
2 )(γ + µ +

ϱ2
2

2 )(ξ + η + µ + α1 +
ϱ2

3
2 )

> 1,
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and for the any initial value given as (S(0), E(0), I(0),Q(0),R(0)) ∈ R5
+, then the system has a

uniquely stationary distribution ω̂(.) and it is has a ergodic property.

Proof Define a function C2 such that,

V̂ : R5
+ → R+,

V̂ (S , E , I ,Q,R) = Γ [(S + E + I +Q+R)− c1 lnS − c2 ln E − c3 ln I ]

+
1

p + 1
(S + E + I +Q+R)κ+1 − lnS − ln E − lnQ

− lnR+ (S + E + I +Q+R)

= ΓV1 + V2 + V3 + V4 + V5 + V6 + V7, (12)

here κ and ci, (i = 1, 2, 3) the positive constant satisfying the condition

0 < κ < 2µ

(
1

ϱ2
1 + ϱ2

2 + ϱ2
3 + ϱ2

4 + ϱ2
5

)
,

c1 =
Θ

µ +
ϱ2

1
2

, c2 =
Θ

γ + µ +
ϱ2

2
2

, c3 =
Θ

ξ + µ + η + α1 +
ϱ2

3
2

,

we can consider Γ > 0 and make it large enough, such that

Γϕ +M ≤ −2,

obviously,

lim inf
π→(S ,E ,I ,Q,R)∈R5

+\Uπ

V(S , E , I ,Q,R) = +∞, (13)

and here, Uπ = ( 1
π , π)× ( 1

π , π)× ( 1
π , π)× ( 1

π , π)× ( 1
π , π).

There exists a point (S∗, E∗, I∗,Q∗,R∗) in R5
+ that is the minimum point of V̂(S , E , I ,Q,R)

because Ṽ(S , E , I ,Q,R) is a continuous function. The positive define C2− function V : R5
+ → R+

by

V(S , E , I ,Q,R) = V̂(S , E , I ,Q,R)− V̂(S∗, E∗, I∗,Q∗,R∗), (14)

from Ito’s formula,

LV1 = −µ −
c1Θ
S −

c2βSI
E(1 + kI) − c3γE

I +
c1βI

1 + kI + Θ − α1I − α2Q

+c1

(
µ +

ϱ2
1

2

)
+ c2

(
γ + µ +

ϱ2
2

2

)
+ c3

(
ξ + µ + η + α1 +

ϱ2
3

2

)
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= −µ −
c1Θ
S −

c2βSI
E(1 + kI) − c3γE

I +
c1βI

1 + kI + Θ + c1

(
µ +

ϱ2
1

2

)

+c2

(
γ + µ +

ϱ2
2

2

)
+ c3

(
ξ + µ + η + α1 +

ϱ2
3

2

)

≤ −4
(

µc1c2c3bβγ

1 + kI
) 1

4
+

c1βI
1 + kI + Θ + c1

(
µ +

ϱ2
1

2

)
+ c2

(
γ + µ +

ϱ2
2

2

)

+c3

(
ξ + µ + η + α1 +

ϱ2
3

2

)

≤ −4
(

µc1c2c3Θβγ

1 + kI
) 1

4
+

c1βI
1 + kI − 4µ

≤ −4µ


 Θβγ

(1 + kI)(µ +
ϱ2

1
2

)(
γ + µ +

ϱ2
2

2

)(
ξ + µ + η + α1 +

ϱ2
3

2

)


1
4

− 1


+

c1βI
1 + kI

≤ −4µ

1 + kI
[
(R∗

0)
1
4 − 1

]
+

c1βI
1 + kI , (15)

LV2 = (S + E + I +Q+R)κ [Θ − (S + E + I +Q+R)µ − α1I − α2Q]

+
κ(S + E + I +Q+R)κ+1

2

(
ϱ2

1S2 + ϱ2
2E2 + ϱ2

3I2 + ϱ2
4Q2 + ϱ2

5R2
)

≤ Θ(S + E + I +Q+R)κ −
[
µ −

κ

2
(ϱ2

1 ∨ ϱ2
2 ∨ ϱ2

3 ∨ ϱ2
4 ∨ ϱ2

5)
]

×(S + E + I +Q+R)κ+1

≤ ω −
1
2

[
µ −

κ

2
(ϱ2

1 ∨ ϱ2
2 ∨ ϱ2

3 ∨ ϱ2
4 ∨ ϱ2

5)
]
(S + E + I +Q+R)κ+1

< ω −
1
2

[
µ −

κ

2
(ϱ2

1 ∨ ϱ2
2 ∨ ϱ2

3 ∨ ϱ2
4 ∨ ϱ2

5)
]

×(Sκ+1 + Eκ+1 + Iκ+1 +Qκ+1 +Rκ+1), (16)

where,

ω = sup
(S ,E ,I ,Q,R)∈R5

+

{Θ(S + E + I +Q+R)κ

−
[
µ −

κ

2
(ϱ2

1 ∨ ϱ2
2 ∨ ϱ2

3 ∨ ϱ2
4 ∨ ϱ2

5)
]
× (S + E + I +Q+R)κ+1

}
< ∞.
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Similarly, we get

LV3 = −
Θ
S +

βI
1 + kI + µ +

ϱ2
1

2
, (17)

LV4 = −
βSI

E(1 + kI) + (µ + γ) +
ϱ2

2
2

, (18)

LV5 = −
ηI
Q + (ξµ + α2) +

ϱ2
4

2
, (19)

LV6 = −
ξI + δQ

R + µ +
ϱ2

5
2

, (20)

LV7 = Θ − (S + E + I +Q+R)µ. (21)

Therefore,

LV = −φϕ +
φc1βI
1 + kI −

1
2

[
µ −

κ

2
(ϱ2

1 ∨ ϱ2
2 ∨ ϱ2

3 ∨ ϱ2
4 ∨ ϱ2

5)
]

(Sκ+1 + Eκ+1 + Iκ+1 +Qκ+1 +Rκ+1)

−
Θ
S −

βSI
E(1 + kI) − ηI

Q −
ξI + δQ

R − (S + E + I +Q+R)µ

+Θ + π + ξ + γ + 4µ + α2 +
ϱ2

1 ∨ ϱ2
2 ∨ ϱ2

4 ∨ ϱ2
5

2
. (22)

As a next step, let us examine compact subset D

D =

{
ε ≤ S ≤ 1

ϵ
, ϵ2

4 ≤ E ≤ 1
ϵ2

4
, ϵ2

2 ≤ I ≤ 1
ϵ2

2
, ϵ2

3 ≤ Q ≤ 1
ϵ2

3
, ϵ2

4 ≤ R ≤ 1
ϵ2

4

}
.

The following conditions must be satisfied if ϵ is a sufficiently small constant:

−
Θ
S +

Υc1βk + F ≤ −1

− Υϕ + Υc1βϵ ≤ −1

− 2
(

µβ

1 + kI
) 1

2
+ Υϵ1β +M ≤ −1

−
η

ϵ
+

Υc1β

1 + kI +M ≤ −1

−
ϵ

ϵ2 −
δ

ϵ
+ Υc1β +M ≤ −1

−
1
2

[
µ −

κ

2

(
ϱ2

1 ∨ ϱ2
2 ∨ ϱ2

3 ∨ ϱ2
4 ∨ ϱ2

5

)] 1
ϵi(κ+1)

+ Υc1βI

+M ≤ −1.
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Here ϵ is a sufficiently small constant, where i = 1, 2, 3, 4, 5. In that case, R5
+\D = D1 ∪D2 ∪D3 ∪

D4∪, ...,∪D10 with,

D1 =
{
(S , E , I ,Q,R) ∈ R5

+/0 < S < ϵ
}

,

D2 =
{
(S , E , I ,Q,R) ∈ R5

+/S ≥ ϵ, I ≥ ϵ2
2, 0 < ϵ < ϵ2

4

}
,

D3 =
{
(S , E , I ,Q,R) ∈ R5

+/S ≥ ϵ, 0 < I < ϵ2
3

}
,

D4 =
{
(S , E , I ,Q,R) ∈ R5

+/I ≥ ϵ2
2, 0 < Q < ϵ2

3

}
,

D5 =
{
(S , E , I ,Q,R) ∈ R5

+/S ≥ ϵ, I ≥ ϵ2
2,Q ≥ ϵ2

3, 0 < R < ϵ2
4

}
,

D6 =

{
(S , E , I ,Q,R) ∈ R5

+/S >
1
ϵ

}
,

D7 =

{
(S , E , I ,Q,R) ∈ R5

+/E >
1
ϵ2

4

}
,

D8 =

{
(S , E , I ,Q,R) ∈ R5

+/I >
1
ϵ2

3

}
,

D9 =

{
(S , E , I ,Q,R) ∈ R5

+/Q >
1
ϵ2

3

}
,

D10 =

{
(S , E , I ,Q,R) ∈ R5

+/R >
1
ϵ2

4

}
.

As a result, we can now calculate the negative LV value for every (S , E , I ,Q,R) ∈ R5
+\D.

Case-1: Suppose (S , E , I ,Q,R) ∈ D1

LV ≤ −
Θ
S +

Υc1βI
1 + kI −

1
2

[
µ −

κ

2
(ϱ2

1 ∨ ϱ2
2 ∨ ϱ2

3 ∨ ϱ2
4 ∨ ϱ2

5)
]

×(Sκ+1 + Eκ+1 + Iκ+1 +Qκ+1 +Rκ+1) + Θ + π + ξ + γ + 4µ + α2

+
ϱ2

1 + ϱ2
2 + ϱ2

3 + ϱ2
4 + ϱ2

5
2

≤ −
Θ
S +

Υc1βk + F ≤ −1. (23)

Case-2: In this case, (S , E , I ,Q,R) ∈ D2

LV ≤ −Υϕ +
Υc1βSI
1 + kI +

βSI
E(1 + kI) − 1

2

[
µ −

κ

2
(ϱ2

1 ∨ ϱ2
2 ∨ ϱ2

3 ∨ ϱ2
4 ∨ ϱ2

5)
]

(Sκ+1 + Eκ+1 + Iκ+1 +Qκ+1 +Rκ+1) + π + ξ + γ + 4µ + α2

+
ϱ2

1 + ϱ2
2 + ϱ2

3 + ϱ2
4 + ϱ2

5
2

≤ −Υϕ +
Υc1β

1 + kI 1
2

[
µ −

κ

2
(ϱ2

1 ∨ ϱ2
2 ∨ ϱ2

3 ∨ ϱ2
4 ∨ ϱ2

5)
]

×(Sκ+1 + Eκ+1 + Iκ+1 +Qκ+1 +Rκ+1) + π + ξ + γ + 4µ + α2
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+
ϱ2

1 + ϱ2
2 + ϱ2

3 + ϱ2
4 + ϱ2

5
2

≤ −Υϕ +
Υc1βk + G

≤ −Υϕ + Υc1βϵ ≤ −1. (24)

Case-3: In case of (S , E , I ,Q,R) ∈ D3

LV = −2
(

µβSI
E(1 + kI)

) 1
2
+

Υc1βSI
1 + kI + π + ξ + γ + 4µ + α2

+
ϱ2

1 + ϱ2
2 + ϱ2

3 + ϱ2
4 + ϱ2

5
2

≤ −2
(

µβ

1 + k
) 1

2
+

Υϵ1β

1 + kI + M

≤ −2
(

µβ

1 + k
) 1

2
+ Υϵ1β + M ≤ −1. (25)

Case-4: In case (S , E , I ,Q,R) ∈ D4

LV ≤ −
ηI
Q +

Υc1βI
1 + kI + b + π + ξ + γ + 4µ + α2

+
ϱ2

1 + ϱ2
2 + ϱ2

3 + ϱ2
4 + ϱ2

5
2

≤ −
η

ϵ
+

Υc1β

1 + kI + M ≤ −1. (26)

Case-5: In this case, (S , E , I ,Q,R) ∈ D5

LV ≤ −
ξI − δQ

R +
Υc1βI
1 + kI + M

≤ −
ϵ

ϵ2 −
δ

ϵ
+ Υc1β + M ≤ −1. (27)

Case-6: Suppose (S , E , I ,Q,R) ∈ D6

LV ≤ −
1
2

[
µ −

κ

2

(
ϱ2

1 ∨ ϱ2
2 ∨ ϱ2

3 ∨ ϱ2
4 ∨ ϱ2

5

)]
Sκ+1 +

γc1βI
1 + kI + M

≤ −
1
2

[
µ −

κ

2

(
ϱ2

1 ∨ ϱ2
2 ∨ ϱ2

3 ∨ ϱ2
4 ∨ ϱ2

5

)] 1
ϵκ+1 + γc1βI + M

≤ −1. (28)

Subsequently, providing under requirement (4.19) for i = 1. We get LV ≤ −1 on D6. Similarly,
it follows from the equation (4.19) for i = 2, . . . , 4, the same procedure can deduced for the
compartments E , I ,Q,R on LV ≤ −1 and for Di, i = 7, . . . , 10.
Based on the 10 cases mentioned above, it can be concluded that According to the discussion of
the above ten cases, it becomes clear that, for a sufficiently small ε,
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LV ≤ −1 for all (S , E , I ,Q,R) ∈ R5
+ \D. (29)

Therefore, Assumption 1 (ii) is satisfied. A diffusion matrix is also presented for model (2) as
follows:

A =


ϱ2

1S2 0 0 0 0
0 ϱ2

2E2 0 0 0
0 0 ϱ2

3I2 0 0
0 0 0 ϱ2

4Q2 0
0 0 0 0 ϱ2

5R2

 .

A positive number exists,

X = min
(S ,E ,I ,Q,R)∈D

{
ϱ2

1S2, ϱ2
2E2, ϱ2

3I2, ϱ2
4Q2, ϱ2

5R2
}

,

such that,

5∑
i,j=1

aijξiξj = ϱ2
1S2ξ2

1 + ϱ2
2E 2ξ2

2 + ϱ2
3I2ξ2

3 + ϱ2
4Q2ξ2

4 + ϱ2
5R2ξ2

5

≥ X |ξ|2 . (30)

In this case, Assumption 1 (i) is satisfied. Due to this, the model (2) has an ergodic distribution
ω̂(.) with a uniquely stationary distribution. Proof of the Theorem is complete.

Remark 4 Theorem 3 indicates that model (2) has an uniquely ergodic stationary distribution if R∗
0 > 1.

If ϱi = 0(i = 1, 2, 3, 4, 5), the expression of R∗
0 corresponds to the reproduction number R0 of the model

(1). It is clear from this that the results of model (1) can be generalized. Furthermore, this theorem shows
that the disease can be resistant to small levels of environmental noise in order to remain persistent.

5 Extinction

The purpose of this section is to discuss the parameter conditions for the extinction of diseases in
the model (2). First, we give a useful lemma before proving our main conclusions:

Lemma 3 If (S(t), E(t), I(t),Q(t),R(t)) be a solution of the system for any given initial value
(S(t), E(t), I(t),Q(t),R(t)) ∈ R5

+ has the following properties,

limt→∞ 1t (S(t), E(t), I(t),Q(t),R(t)) = 0, a.s.
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In addition, when µ > 1
2
(
ϱ2

1 ∨ ϱ2
2 ∨ ϱ2

3 ∨ ϱ2
4 ∨ ϱ2

5
)

holds.

limt→∞ 1t
∫ t

0
S(x)dB1(x) = 0, limt→∞ 1t

∫ t
0
E(x)dB2(x) = 0,

limt→∞ 1t
∫ t

0
I(x)dB2(x) = 0, limt→∞ 1t

∫ t
0
Q(x)dB4(x) = 0, (31)

limt→∞ 1t
∫ t

0
R(x)dB5(x) = 0, a.s.

Proof The proof of Lemma 3 follows the same way as [35, 36]; therefore, we omit it.

Theorem 4 Let µ > 1
2
(
ϱ2

1 ∨ ϱ2
2 ∨ ϱ2

3 ∨ ϱ2
4 ∨ ϱ2

5
)

at any given initial value
(S(t), E(t), I(t),Q(t),R(t)) ∈ R5

+, if

R∗
S =

2γβ(γ + µ)[
(ξ + µ + α1 + η +

ϱ2
3

2 )(γ + µ)2
]
∧

(
γ2ϱ2

2
2

) < 1.

Then

limt→∞ E(t) = limt→∞ I(t) = limt→∞Q(t) = limt→∞R(t) = 0, a.s.

Furthermore,

limt→∞ ⟨S⟩ = Θ
µ

= S0, a.s.

Proof In the following equation, define a function V0 that is differentiable

dV0 =

{
Υ(βSI/1 + kI)− (γ + µ)(ξ + µ + α1 + η)I

ΥE + (γ + µ)I −
γ2ϱ2

2E2 + (γ + µ)2ϱ2
3I2

2 [γE + (γ + µ)I ]2

}
dt

+
Υϱ2E

ΥE + (γ + µ)I dB2(t) +
(γ + µ)ϱ3I

ΥE + (γ + µ)
dB3(t).

≤

 Υβ

(γ + µ)
−

(γ + µ)2I2(ξ + µ + α1 + η +
ϱ2

3
2 ) + (

γ2ϱ2
2

2 )E2

[γE + (γ + µ)I ]2


+

Υϱ2E
ΥE + (γ + µ)I dB2(t) +

(γ + µ)ϱ3I
ΥE + (γ + µ)

dB3(t)

≤


Υβ

γ + µ
−

(ξ + η + α1 + µ +
ϱ2

3
2 )(γ + µ)2 ∧

(
γ2ϱ2

2
2

)
2(γ + µ)2

 dt

+
Υϱ2E

ΥE + (γ + µ)I dB2(t) +
(γ + µ)ϱ3I

ΥE + (γ + µ)
dB3(t). (32)
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The integration from 0 to t and the division by t on both sides of (32) are done as follows:

ln [γE + I(t)(γ + µ)]t ≤ Υβ

γ + µ
−

(ξ + η + α1 + µ +
ϱ2

3
2 )(γ + µ)2 ∧

(
γ2ϱ2

2
2

)
2(γ + µ)2

+
ln [γE(0) + I(0)(γ + µ)]t

+
γϱ2t

∫ t
0

E(x)
γE(x) + (γ + µ)I(x)dB2(x)

+
(γ + µ)ϱ3t

∫ t
0

I(x)
γE(x) + (γ + µ)I(x)dB3(x).

By applying Lemma 3, we need to

lim sup
t→∞

ln [γE(t) + I(t)(γ + µ)]t ≤ Υβ

γ + µ

−

(ξ + η + α1 + µ +
ϱ2

3
2 )(γ + µ)2 ∧

(
γ2ϱ2

2
2

)
2(γ + µ)2

< 0 a.s.

The result of which is

limt→∞ E(t) = 0, limt→∞ I(t) = 0 a.s.

The model (2) is easily understood by taking the fourth equation as an example

limt→∞Q(t) = 0 a.s.

Furthermore, on both sides of the first equation of model (2), integrating from 0 to t and dividing
by t results in the following.

S(t)− S(0)t = Θ −
β

1 + kI ⟨SI⟩+ ϱ1t
∫ t

0
S(x)dB(x), (33)

lim
t→∞ ⟨S⟩ = Θ

µ
= S0 a.s.

A similar result can be obtained

limt→∞ ⟨R⟩ = 0 a.s.

The proof is validated.
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6 Numerical simulations

A numerical simulation was conducted using Matlab software in order to illustrate the results of
the above theorems. In order to determine the discretization transformation of the model (2), we
use the Milstein method mentioned in [37].

Si+1 = Si +

[
Θ −

βSiIi
1 + kIi

− µSi

]
∆t + ϱ1Si

√
∆tζ1,i +

ϱ2
1

2
Si(ζ

2
1,i − 1)∆t,

Ei+1 = Ei +

[
βSiIi

1 + kIi
− (γ + µ)Ei

]
∆t + ϱ2Ei

√
∆tζ2,i +

ϱ2
2

2
Ei(ζ

2
2,i − 1)∆t,

Ii+1 = Ii + [γEi − (ξ + η + αi + µ)Ii]∆t + ϱ3Ii
√

∆tζ3,i +
ϱ2

3
2
Ii(ζ

2
3,i − 1)∆t,

Qi+1 = Qi + [ηIi − (δ + α2 + µ)Qi]∆t + ϱ4Qi
√

∆tζ4,i +
ϱ2

4
2
Qi(ζ

2
4,i − 1)∆t,

Ri+1 = Ri + [ξIi + δQi − µRi]∆t + ϱ5Ri
√

∆tζ5,i +
ϱ2

5
2
Ri(ζ

2
5,i − 1)∆t. (34)

Suppose ζ j,i(j = 1, 2, 3, 4, 5; i = 1, 2, .., n) represent N (0, 1) is independent distributed random
variables and ∆t is greater than zero.

Example 1 Assume that model (2) has the following parameters are considered; Θ = 2, µ = 0.4, β =

1.25,k = 0.5, γ = 0.75, α1 = 0.01, α2 = 0.01, η = 0.5, ϱi = 0.3, ∀i = 1to5, as well as the initial
condition values (S(0), E(0), I(0),Q(0),R(0)) = 0.25, and ∆t = 0.1. Then

R∗
0 =

βΘγ

(µ +
ϱ2

1
2 )(γ + µ +

ϱ2
2

2 )(ξ + η + µ + α1 +
ϱ2

3
2 )

= 2.1968 > 1,

as a result of Theorem 3, model (2) has an ergodic property and a unique stationary distribution
ω̂(.). This small neighborhood is shown in Figure 1, which shows the ups and downs of the
solution of the model (2), as a result, we can see that there is a stationary distribution. In accordance
with Theorem 3, Figure 3 and Figure 5a confirms our results.

Example 2 According to the model (2), the following parameters are considered: Θ = 1.5, µ = 0.5, β =

1.75, k = 0.25, γ = 1.5, α1 = 0.2, α2 = 0.2, η = 0.3, ϱ1 = 0.15, ϱ2 = 1, ϱ3 = 1, ϱ4 = 0.5, ϱ5 =

0.25, as well as the initial condition values (S(0), E(0), I(0),Q(0),R(0)) = 0.25, and ∆t = 0.5. Then

R∗
S =

2γβ(γ + µ)[
(ξ + µ + α1 + η +

ϱ2
3

2 )(γ + µ)2
]
∧

(
γ2ϱ2

2
2

)
= 0.9315 < 1,

Figure 2, Figure 4, and Figure 5b satisfy the Theorem 4 conditions; the chances of individuals who
will become extinct are almost certainly high when they are exposed, infected, and quarantined. In
model (2), we see that the permanent disease can die out through stochastic effects after exposed,
infected, and quarantined individuals are sent to extinction. It follows that stochastic disturbances
are conducive to controlling epidemic diseases. In Figure 6, we represent that Theorem 2 confirms
the stability of the disease-free equilibrium E∗ when R0 ≤ 1. No negative population values were
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observed, ensuring that the model remains biologically valid. This demonstrates the effectiveness
of the stochastic Lyapunov function in guaranteeing global asymptotic stability.
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Figure 1. This diagram consists of a time sequence of stochastic persistence and stationary distribution of diseases
based on model (2). In the right column, the histogram is represented by the probability density function for
S(t), E(t), I(t), Q(t), and R(t)
.
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Figure 2. This time sequence diagram illustrates how disease extinction occurs in model (2). In the right column,
the histogram is represented by the probability density function for S(t), E(t), I(t), Q(t), and R(t)
7 Conclusion

An epidemic model with saturated incidence rates is developed in this paper using a stochas-
tic SEIQR model. As a result of building a suitable stochastic Lyapunov function, we have
found that the positive solutions to the model (2) have a stationary distribution when R∗

0 > 1.
Furthermore, we established sufficient conditions for disease extinction as well, which means,

µ >
ϱ2

1 ∨ ϱ2
2 ∨ ϱ2

3 ∨ ϱ2
4 ∨ ϱ2

5
2

and R∗
S < 1. Besides, we found that saturated incidence significantly

affected disease spread within a population. Furthermore, we find that when white noise intensity
is high, the disease disappears, whereas when white noise intensity is low, the disease persists.
During stochastic environmental disturbances, white noise prevents disease. This manifests
itself at the exact time epidemics arise, affecting epidemic dynamics. The findings show that
virus dynamics-based stochastic epidemic models outperform deterministic models in epidemic
prediction. Finally, our findings are validated using numerical simulation.
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Figure 3. The solution for all class of Deterministic and Stochastic model with R∗
0 greater than 1
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Figure 4. The solution for all class of Deterministic and Stochastic model with R∗
S less than 1
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Figure 5. Comparison of solutions on S(0), E(0), I(0),Q(0), and R(0): for all class in Deterministic vs Stochastic
model with (a) R∗

0 greater than 1 and (b) R∗
S less than 1

In the future, we will be able to propose practical and complex models, such as models that
consider the effects of regime switching on SEIQR epidemics [38] or consider the dynamical
characteristics of a stochastic SIR, SEIQR, SEIVQR epidemic model with various incidence and
time-based delays [20, 39]. We will continue to investigate these issues in the future.
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Figure 6. Stochastic SEIQR model simulation in R0 ≤ 1
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Abstract

Diabetes is a chronic disease that can cause various long-term complications. This study revisits a
four-state model of type-2 diabetic population with a saturating recovery rate of diabetes complications,
and its qualitative properties are further analysed. The non-negativity and boundedness of the solution
for delay and non-delay models are proved. However, the non-negativity of the solutions of the delay
model can only be guaranteed if the model inputs satisfy certain conditions. The stability analysis
of the non-delay model is performed, and the numerical simulation is conducted to illustrate and
validate the findings. In the presence of two delay parameters, we discuss the characteristic equation
of the delay model under the case of the first time delay equal to zero to obtain the stable region of
the second time delay. The critical value corresponding to the delay parameter is derived. There
are five conditions to characterize the stability properties of the (unique) equilibrium point (either
locally asymptotically stable or unstable) and the occurrence of Hopf bifurcation. The delay values
affect the stability of the equilibrium point. A locally asymptotically stable equilibrium point can
become unstable under certain conditions, and a periodic orbit can arise from the equilibrium point as
the model switches its stability. The sensitivity analysis shows that the overall diabetes cases can be
reduced significantly by reducing the rate of developing diabetes, and the diabetics with complications
will decrease if the parameter measuring the limited medical resources gets smaller.

Keywords: Diabetes; time-delays; Hopf bifurcation; stability analysis; sensitivity analysis

AMS 2020 Classification: 92B05; 34D32; 35B35

1 Introduction

Diabetes mellitus is a life-long disease caused by hyperglycemia (high blood glucose levels) due
to defects in either lack of insulin or cells resisting the insulin or both. In 2021, the International
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Diabetes Federation (IDF) [1] estimated that 6.7 million adults died due to diabetes and its compli-
cations. and diabetes and its consequences cost the world economy USD966 billion. In Malaysia,
the estimated percentage of diabetics among adults aged 18 and above has increased from 11.6%
in 2006 to 18.3% in 2019 [2]. In 2021, Malaysia’s total diabetes-related health expenditure was
estimated at USD4833.5 million, with USD1090.7 per individual with diabetes [3].
Therefore, there is an urgent need to study the population dynamics of diabetes to address the
problem. Several population models of non-communicable diseases, such as diabetes [4, 5],
hypertension [6], thyroid disorders [7], and anemia [8], have been developed in the literature.
In the study, we will revisit the diabetic model in [9]. Although there are a few similarities
between the findings of [9] and the present paper, there are some significant differences too,
offering valuable insights and further information that were not provided in [9]. The distinctions
between [9] and the present paper are as follows: First, [9] did not discuss the non-negativity and
boundedness of the solution. This is an important issue in mathematical modeling because we
expect the state variables to be non-negative for all time. Secondly, global stability analysis was
not addressed in [9]. Third, [9] did not analyze the sensitivity of the model outputs to changes
in the model inputs. This aspect is crucial as it helps identify which parameters may become
potential targets for further investigation to control the disease in the population. Fourth, the
numerical simulations in the present paper involve five sets of parameter values.
In this paper, Section 2 discusses the assumptions of the mathematical model to study the popula-
tion dynamics of type-2 diabetes. Section 3 mainly focuses on the corresponding model without
time delays. The global asymptotic stability is also established by constructing suitable Lyapunov
functions. In Section 4, the dynamics of the delay model are studied. The Hopf bifurcation occurs
for some parameter values, making the Lyapunov direct method not work due to the appear-
ance of a periodic orbit. In Section 5, we compute the normalized forward sensitivity indices of
the model outputs with respect to the changes in the model inputs. We perform the numerical
simulation of the model in Section 6.

2 The mathematical model

The progression of diabetes is slow from the stage of non-diabetics to people with diabetes and
from the stage of diabetes to the development of complications [5]. In the present paper, we use
the model proposed by Nasir [9]. We extend the work of [9] by revising the local stability analysis
and adding the global stability analysis and sensitivity analysis. The model assumptions are:

1. The model is used to study the population of type-2 diabetes. The total population is
subdivided into four compartments, namely the non-diabetics, diabetics who never had any
complications, diabetics with complications, and diabetics with recovered complications.
Figure 1 shows the compartmental diagram under study.
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Figure 1. Four-state diabetic population [9]
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Table 1. Definition of the symbols in Figure 1

Symbol Definition Dimension
P(t) number of non-diabetics at time t individuals

D(t)
number of diabetics who never had any complications at
time t

individuals

Dc(t) number of diabetics with complications at time t individuals
Dp(t) number of diabetics with recovered complications at time t individuals

Λ the recruitment rate of non-diabetics individuals time−1

α the diabetes incidence rate time−1

τ1 the slow progression in developing type-2 diabetes time
γ rate of the first incidence of complication time−1

τ2 time delay in the first incidence of complication time
σ the recurrence rate of complications time−1

κ the recovery rate of complications time−1

β
non-negative parameter measuring the limited medical
resources

individuals−1

µ1
the diabetes-related mortality rate among diabetics
without complications

time−1

µ2
the diabetes-related mortality rate among diabetics with
complications

time−1

µ3
the diabetes-related mortality rate among diabetics with
recovered complications

time−1

µ the mortality rate due to causes other than diabetes time−1

Every symbol in Figure 1 is defined in Table 1. All parameters are assumed to be positive
because they represent human population dynamics.

2. Type 2 diabetes is a slowly progressive disease and degenerative [5]. The type of time delay
used in this study is a constant delay. The first delay parameter (τ1) concerns the stage of non-
diabetics to diabetics. This assumption is supported by Khetan and Rajagopalan [10], where
nearly all people affected with type 2 diabetes pass through a long phase of pre-diabetes
before becoming a full-blown diabetic. The second delay parameter (τ2) concerns the first
incidence of complication after the onset of diabetes. This assumption is introduced by
the fact that diabetes is a slowly progressive disease and can be symptomless. After being
unrecognized for a long time, people with diabetes may already have complications at the
time of diagnosis, such as a foot ulcer, change in vision, or infection that fails to heal [11].

3. The time delays are ignored for the other processes in Figure 1 because they do not require
as much time as developing type-2 diabetes and the first incidence of complication. For
example, complications related to the small blood vessels may range from 6 to 13 years
after developing diabetes [12]. In addition, type-2 diabetes is usually diagnosed at an old
age. The average age of diabetes that is diagnosed among Malaysians is 53 [13]. Hence, the
delay in the recurrence rate of complications (at rate σDp(t)) is ignored because the diabetics
with recovered complications are assumed no longer in the early stage of diabetes and are
vulnerable to repeated complications [13].

4. For the treatment of complications, a saturating rate of recovery of complications of the form

h(Dc) =
κDc

1 + βDc
. In reality,

1
1 + βDc

can be described as the reverse effect of the diabetics

with complications being postponed for treatment. If β = 0, this saturating recovery rate
reverts to the linear one: κDc(t), representing the unlimited medical resources [14]. The term
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h(Dc) =
κDc

1 + βDc
is also widely known as the Holling type-2 functional response [15]. Note

that in our model, we employed different functional responses to represent the dynamics of
recovery and recurrence. For recovery (cessation of symptoms), we used a Holling Type 2
functional response between Dc and Dp. This choice is biologically motivated by the fact that
recovery rates often exhibit saturation effects observed in diabetes recovery. This saturation
can be attributed to factors such as limitations in treatment resources and efficacy, which
cause the rate of recovery of individuals with complications to plateau as the population
of individuals with complications increases. Such saturation is well captured by a Holling
Type 2 response. On the other hand, Holling Type 1 is utilized to model the recurrence of

symptoms. This assumes a linear relationship between Dp and
dDc

dt
. The rationale behind this

choice is that symptom recurrence often depends primarily on individual risk factors such
as lifestyle choices (diet, physical activity), medication adherence, and disease progression,
rather than being constrained by saturation mechanisms. While this simplification may not
capture all potential influences on recurrence, it provides a reasonable approximation for the
purpose of our model. A Holling Type 2 response would be inappropriate in this case because
the recurrence of symptoms does not exhibit resource-limited behavior in the same way that
recovery does. This distinction ensures that the model accurately captures the underlying
mechanisms of disease progression and treatment effects. However, if empirical data suggests
otherwise, alternative functional forms could be considered in future extensions of this study.

The dynamics in Figure 1 are governed as follows:

dP(t)
dt

= Λ − αP(t − τ1)− µP(t), (1a)

dD(t)
dt

= αP(t − τ1)− γD(t − τ2)− (µ + µ1)D(t), (1b)

dDc(t)
dt

= γD(t − τ2)−
κDc(t)

1 + βDc(t)
+ σDp(t)− (µ + µ2)Dc(t), (1c)

dDp(t)
dt

=
κDc(t)

1 + βDc(t)
− (σ + µ + µ3)Dp(t), (1d)

where the initial conditions are defined as follows:

P(θ) = ϕ1(θ) > 0, D(θ) = ϕ2(θ) > 0, θ ∈ [−τmax, 0],

τmax = max{τ1, τ2}, Dc(0) = Dc0 > 0, Dp(0) = Dp0 > 0,

where ϕi(θ) (i = 1, 2) are continuous functions on θ ∈ [−τmax, 0]. The total population size with
respect to model (1) is denoted as N(t) = P(t) + D(t) + Dc(t) + Dp(t).
Note that the case where αP(t − τ1) is assumed to be a constant incidence rate I will be addressed
in another paper (see [16]). In [16], three variables will be discussed because the variable P(t) is
excluded. Consequently, the model in [16] contains one time-delay parameter only. Nasir et al.
[16] also pay special attention to the limited availability of medical resources for the treatment of
the complications of diabetes.

3 Qualitative analysis of the corresponding non-delay model

In this section, we study model (1) with no time delays (τ1 = τ2 = 0). For simplifying the
notations, the variables P, D, Dc, Dp, and N2 are evaluated at time t, unless the argument is
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other than t (for example, Dc(0) and P(t − τ1)). Model (1) under the assumption of instantaneous
dynamics is written as:

dP
dt

= Λ − (α + µ)P, (2a)

dD
dt

= αP − (γ + µ + µ1)D, (2b)

dDc

dt
= γD −

κDc

1 + βDc
+ σDp − (µ + µ2)Dc, (2c)

dDp

dt
=

κDc

1 + βDc
− (σ + µ + µ3)Dp, (2d)

with the initial conditions:

P(0) = P0 > 0, D(0) = D0 > 0, Dc(0) = Dc0 > 0, Dp(0) = Dp0 > 0.

In the following sections, we study the non-negativity and boundedness of the solution and the
stability properties of the equilibrium point of the non-delay model (2).

Basic properties of non-delay model (2)

Non-negativity and boundedness of the solution of non-delay model (2)
Proposition 1 The solutions P, D, Dc, and Dp of the non-delay model (2) remain non-negative and
bounded for all t > 0. Furthermore, the region:

Ω =

{(
P, D, Dc, Dp

)
∈ R4

+

∣∣∣P + D + Dc + Dp ≤ Λ
µ

}
,

is a positively-invariant region with respect to the non-delay model (2).

Proof For the non-negativity of the solution P of the non-delay model (2), from Eq. (2a), we obtain:

dP
dt

+ (α + µ)P = Λ. (3)

Since Λ ≥ 0, Eq. (3) becomes:

dP
dt

+ (α + µ)P ≥ 0. (4)

The integrating factor is given as e(α+µ)t. By multiplying inequality (4) with the integrating factor
and changing the variable t to variable ε, we obtain:

d
dε

[
P(ε)e(α+µ)ε

]
≥ 0. (5)

Integrating both sides of inequality (5) from ε = 0 to ε = t gives:

P ≥ P(0)e−(α+µ)t.

Therefore, the solution P remains non-negative for all t > 0.
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For the non-negativity of the solution D of the non-delay model (2), from Eq. (2b), we obtain:

dD
dt

+ (γ + µ + µ1)D = αP. (6)

Since the term αP ≥ 0, Eq. (6) becomes:

dD
dt

+ (γ + µ + µ1)D ≥ 0,

D ≥ D(0)e−(γ+µ+µ1)t.

Therefore, the solution D remains non-negative for all t > 0.
Since the solution is assumed to be a continuous and differentiable function, the functions Dc(t),
Dp(t) cannot become negative without crossing the axes Dc = 0, Dp = 0. Let t∗ = min{tc, tp}

where Dc(tc) = 0, Dp(tp) = 0 and (tc, tp) ≥ (0, 0). If t∗ = tc then Dc(tc) = 0 and the functions
Dp(tc) > 0 at t = tc, yields

dDc

dt
(t∗ = tc) = γD(t) + σDp(t) ≥ 0.

Therefore, when the function Dc(t) touches the axis Dc = 0,
dDc

dt
is always non-negative, and

the function Dc(t) will not decrease and will never cross to the negative part. Using a similar
argument, it can be shown that

dDp

dt
(t∗ = tp) =

κDc(t)
1 + βDc(t)

≥ 0.

Thus, all solutions Dc(t), Dp(t) are always non-negative for all t > 0.
For the boundedness of the solutions P, D, Dc, and Dp of the non-delay model (2), adding all
equations of the non-delay model (2) yields:

dN
dt

= Λ − µN − µ1D − µ2Dc − µ3Dp. (7)

Since the terms µ1D ≥ 0, µ2Dc ≥ 0, and µ3Dp ≥ 0, Eq. (7) becomes:

dN
dt

+ µN ≤ Λ,

N(t) ≤ Λ
µ
+

(
N(0)−

Λ
µ

)
e−µt.

If N(0) ≤ Λ
µ

, then we have N(t) ≤ Λ
µ

. This implies that the upper bound of the total population

size is
Λ
µ

. If N(0) >
Λ
µ

, then N2(t) will decrease to
Λ
µ

because lim
t→∞ N(t) =

Λ
µ

.

The region Ω is a positively-invariant region with respect to the non-delay model (2).
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Stability of the equilibrium point of non-delay model (2)

Equilibrium point of non-delay model (2)

Let T∗ = (P∗, D∗, D∗
c , D∗

p) be the equilibrium point of the non-delay model (2), where P = P∗,
D = D∗, Dc = D∗

c , and Dp = D∗
p. Substituting these into the right-hand-side equations of the

non-delay model (2) and letting them equal to zero yields:

Λ − (α + µ)P∗ = 0, (8a)

αP∗ − (γ + µ + µ1)D∗ = 0, (8b)

γD∗ −
κD∗

c
1 + βD∗

c
+ σD∗

p − (µ + µ2)D∗
c = 0, (8c)

κD∗
c

1 + βD∗
c
− (σ + µ + µ3)D∗

p = 0. (8d)

From Eq. (8a), we have P∗ =
Λ

α + µ
. From Eq. (8b), we have D∗ =

αP∗

γ + µ + µ1
. From Eq. (8d), we

have D∗
p =

κD∗
c

(1 + βD∗
c )(σ + µ + µ3)

. By substituting the expressions of D∗ and D∗
p into Eq. (8c),

we obtain:

z1(D∗
c )

2 + z2D∗
c + z3 = 0, (9)

where z1 = β(µ + µ2)(σ + µ + µ3), z2 = (µ + µ2)(µ + µ3 + σ) + κ(µ + µ3)− βγ(σ + µ + µ3)D∗,
and z3 = −γ(σ + µ + µ3)D∗. The roots of Eq. (9) are as follows:

−z2 +
√

z2
2 − 4z1z3

2z1
, (10)

and

−z2 −
√

z2
2 − 4z1z3

2z1
. (11)

Notice that z1 and z3 are opposite signs. Then, we have
√

z2
2 − 4z1z3 >

√
z2

2 = |z2|. This indicates
that the root in (10) is positive while the root in (11) is negative.

Since the state variables represent individuals in the population, the only biologically meaningful
equilibrium point is as follows:

T∗ =

(
Λ

α + µ
,

αP∗

γ + µ + µ1
,
−z2 +

√
z2

2 − 4z1z3

2z1
,

κD∗
c

(1 + βD∗
c )(σ + µ + µ3)

)
. (12)

Local stability

Theorem 1 The equilibrium point T∗ of the non-delay model (2) is locally asymptotically stable.

Proof The characteristic equation with respect to the equilibrium point T∗ of the non-delay model
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(2) is obtained by computing:

det[λ3I4 − B1] = 0, (13)

where λ3 represents the eigenvalues, I4 is an identity matrix of dimension 4,

B1 =


−(α + µ) 0 0 0

α −(γ + b1) 0 0
0 γ −b2 σ

0 0 b3 −b4

 ,

and

b1 = µ + µ1, b2 = b3 + µ + µ2, b3 =
κ

(1 + βD∗
c )

2 , b4 = σ + µ + µ3. (14)

After expanding Eq. (13), we obtain:

χ1(λ3)(λ3 + α + µ)(λ3 + γ + b1) = 0, (15)

where χ1(λ3) = λ2
3 + (b2 + b4)λ3 + b3(µ + µ3) + b4(µ + µ2). Two of the roots of Eq. (15) are

−(α + µ) and −(γ + b1), which is negative because α + µ > 0 and γ + b1 > 0. The other two roots
of Eq. (15) are determined by χ1(λ3) = 0 or:

λ2
3 + (b2 + b4)λ3 + b3(µ + µ3) + b4(µ + µ2) = 0. (16)

By the Routh-Hurwitz criteria of a polynomial of degree two [17], all roots of Eq. (16) are negative
or have negative real parts because b2 + b4 > 0 and b3(µ + µ3) + b4(µ + µ2) > 0. As a result,
Theorem 1 is established.

Theorem 1 tells us that the small displacement from the equilibrium point T∗ will decrease to zero
regardless of the parameter values.

Global stability

In this section, we use the Lyapunov direct method to prove the non-existence of periodic orbits
for the non-delay model (2) [18]. Constructing an appropriate Lyapunov function to investigate
global stability is known to be a difficult problem in general. In the following, we discuss two
remarks, where Remark 1 is an example of an attempt to find a Lyapunov function and Remark 2
is the numerical simulation to indicate the global stability of the equilibrium point T∗.

Remark 1 A function is suggested as follows:

L̃(P, D, Dc, Dp) =(2µ + γ + µ1)(D − D∗)2 + α[(P − P∗) + (D − D∗)]2

+ (2µ + µ2 + µ3)(Dc − D∗
c )

2 + σ[(Dc − D∗
c ) + (Dp − D∗

p)]
2, (17)

where L̃(P, D, Dc, Dp) ≥ 0 for all (P, D, Dc, Dp) ≥ (0, 0, 0, 0) with equality if and only if (P, D, Dc, Dp) =

(P∗, D∗, D∗
c , D∗

p). The time derivative of L̃ computed along the solution of non-delay model (2) is
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given by:

dL̃
dt

=
∂L̃
∂P

dP
dt

+
∂L̃
∂D

dD
dt

+
∂L̃

∂Dc

dDc

dt
+

∂L̃
∂Dp

dDp

dt

=
(

2α(P − P∗) + 2α(D − D∗)
)(

Λ − (α + µ)P
)

+
(

2α(P − P∗) + 2(2µ + γ + µ1 + α)(D − D∗)
)(

αP − (γ + µ + µ1)D
)

+
(

2(2µ + µ2 + µ3 + σ)(Dc − D∗
c ) + 2σ(Dp − D∗

p)
)(

γD −
κDc

1 + βDc
+ σDp

− (µ + µ2)Dc

)
+

(
2σ(Dc − D∗

c ) + 2σ(Dp − D∗
p)
)( κDc

1 + βDc
− (σ + µ + µ3)Dp

)
. (18)

Note that we have:

Λ = (α + µ)P∗,

0 = −αP∗ + (γ + µ + µ1)D∗,

0 = −γD∗ +
κD∗

c
1 + βD∗

c
− σD∗

p + (µ + µ2)D∗
c ,

0 = −
κD∗

c
1 + βD∗

c
+ (σ + µ + µ3)D∗

p.

Therefore, Eq. (18) becomes:

dL̃
dt

=
(

2α(P − P∗) + 2α(D − D∗)
)(

(α + µ)P∗ − (α + µ)P
)

+
(

2α(P − P∗) + 2(2µ + γ + µ1 + α)(D − D∗)
)(

αP − (γ + µ + µ1)D

− αP∗ + (γ + µ + µ1)D∗
)
+

(
2(2µ + µ2 + µ3 + σ)(Dc − D∗

c ) + 2σ(Dp − D∗
p)
)

×
(

γD −
κDc

1 + βDc
+ σDp − (µ + µ2)Dc − γD∗ +

κD∗
c

1 + βD∗
c
− σD∗

p + (µ + µ2)D∗
c

)
+

(
2σ(Dc − D∗

c ) + 2σ(Dp − D∗
p)
)( κDc

1 + βDc
− (σ + µ + µ3)Dp

−
κD∗

c
1 + βD∗

c
+ (σ + µ + µ3)D∗

p

)
= −2αµ(P − P∗)2 − 2(2µ + γ + µ1 + α)(γ + µ + µ1)(D − D∗)2

−
2κ(2µ + µ2 + µ3)(Dc − D∗

c )
2

(1 + βDc)(1 + βD∗
c )

− 2(2µ + µ2 + µ3 + σ)(µ + µ2)(Dc − D∗
c )

2

− 2σ(µ + µ3)(Dp − D∗
p)

2 + 2γ(2µ + µ2 + µ3 + σ)(D − D∗)(Dc − D∗
c )

+ 2σγ(D − D∗)(Dp − D∗
p).

The term
dL̃
dt

≤ 0 for all (P, D, Dc, Dp) ≥ (0, 0, 0, 0) is not satisfied because the terms 2γ(2µ + µ2 +

µ3 + σ)(D − D∗)(Dc − D∗
c ) and 2σγ(D − D∗)(Dp − D∗

p) are not less than or equal to zero for all
(P, D, Dc, Dp) ≥ (0, 0, 0, 0). Therefore, Eq. (17) in this Remark 1 is not the Lyapunov function that
we are looking for.



Nasir and Mat Daud | 207

Remark 2 As shown in Remark 1, it is difficult to show the global stability by the Lyapunov direct
method because we have to go through trial and error and it requires a lot of guessing. We will use
numerical simulations to display the global stability of the equilibrium point T∗ of the non-delay
model (2). Consider the following particular case of the non-delay model (2):

dP
dt

= 35 − 0.015P, (19a)

dD
dt

= 0.005P − 0.135D, (19b)

dDc

dt
= 0.05D −

0.5Dc

1 + 0.0005Dc
+ 0.4Dp − 0.26Dc, (19c)

dDp

dt
=

0.5Dc

1 + 0.0005Dc
− 0.51Dp. (19d)

We obtain the equilibrium point T∗ = (2333.3333, 86.4198, 11.7670, 11.4688). Figure 2 shows
the numerical simulations of system (19) with four sets of initial conditions (P0, D0, Dc0, Dp0):
(3000, 200, 15, 80), (1500, 150, 30, 30), (500, 10, 50, 5), and (100, 100, 5, 50). This figure shows the
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Figure 2. Numerical simulations of system (19)

global stability of T∗ where the solutions P, D, Dc, and Dp of model (19) converge to T∗ as time t
increases, regardless of any positive initial conditions. The numerical simulations indicate that the
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equilibrium point T∗ of the non-delay model (2) may be globally asymptotically stable.

4 Qualitative analysis of the delay model

In this section, we study the non-negativity and boundedness of the solution, and the stability
properties of the equilibrium point of the delay model (1).

Basic properties of delay model (1)

Non-negativity and boundedness of the solution of delay model (1)
Proposition 2 If conditions:

(H1) Λ > αP(t1 − τ1) at the boundary P(t1) = 0 for any time t1,

and

(H2) αP(t2 − τ1) > γD(t2 − τ2) at the boundary D(t2) = 0 for any time t2,

are satisfied, then the solutions P, D, Dc, and Dp of the delay model (1) remain non-negative and bounded
for all t > 0. Furthermore, the region:

Ω =

{(
P, D, Dc, Dp

)
∈ R4

+

∣∣∣P + D + Dc + Dp ≤ Λ
µ

}
,

is a positively-invariant region with respect to the delay model (1).

Condition (H1) means that, in any event, if the number of non-diabetics drops to zero, the number
of non-diabetics who will develop diabetes should be less than the number of newly recruited
non-diabetics. On the other hand, condition (H2) means that if the number of diabetics who
never had any complications drops to zero, the number of diabetics who will develop the first
complication should be less than the number of non-diabetics who will develop diabetes. The
proof of Proposition 2 is as follows.
Proof We prove the non-negativity of variable P of the delay model (1) as follows. P(t) > 0 for
all t > 0. If this is not the case, suppose that there exists t1 > 0 such that P(t) > 0 for t ∈ [0, t1),

P(t1) = 0, and
dP(t1)

dt
≤ 0. From Eq. (1a), we obtain:

dP(t1)

dt
= Λ − αP(t1 − τ1).

We have
dP(t1)

dt
≤ 0 for Λ ≤ αP(t1 − τ1), which agrees to the supposition that

dP(t1)

dt
≤ 0.

Therefore, if Λ ≤ αP(t1 − τ1) at the boundary P(t1) = 0 for any time t1, the solution P may enter
the negative region. Condition (H1) indicates that the solution P remains non-negative for all
t > 0.
Next, we prove the non-negativity of the solution D of the delay model (1) as follows. D(t) > 0 for
all t > 0. If this be not the case, suppose that there exists t2 > 0 such that D(t) > 0 for t ∈ [0, t2),

D(t2) = 0, and
dD(t2)

dt
≤ 0. From Eq. (1b), we obtain:

dD(t2)

dt
= αP(t2 − τ1)− γD(t2 − τ2).
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We have
dD(t2)

dt
≤ 0 for αP(t2 − τ1) ≤ γD(t2 − τ2), which agrees to the supposition that

dD(t2)

dt
≤

0. Therefore, if αP(t2 − τ1) ≤ γD(t2 − τ2) at the boundary D(t2) = 0 for any time t2, the solution D
may enter the negative region. Condition (H2) indicates that the solution D remains non-negative
for all t > 0.
In the following, conditions (H1) and (H2) are satisfied.
Since variables Dc and Dp of delay model (1) depend on each other, we prove the non-negativity
as follows: Dc(t) > 0 for all t > 0. If this is not the case, suppose that there exists t3 > 0 such that

Dc(t) > 0 for t ∈ [0, t3), Dc(t3) = 0, and
dDc(t3)

dt
≤ 0. We first find the integration of Eq. (1d).

From Eq. (1d), we obtain:

Dp(t) = Dp(0)e−(σ+µ+µ3)t + e−(σ+µ+µ3)t
∫ t

0

κDc(ε)

1 + βDc(ε)
e(σ+µ+µ3)ε dε. (20)

From Eq. (20), we have Dp(t) > 0 for t ∈ [0, t3]. Then, from Eq. (1c), we have:

dDc(t3)

dt
= γD(t3 − τ2) + σDp(t3) > 0,

but this leads to a contradiction to the supposition that
dDc(t3)

dt
≤ 0. We can conclude that the

solution Dc remains non-negative for all t > 0. Consequently, from Eq. (20), the solution Dp also
remains non-negative for all t > 0.
For the boundedness of the solutions P, D, Dc, and Dp of the delay model (1), adding all equations
of the delay model (1) yields:

dN
dt

= Λ − µN2 − µ1D − µ2Dc − µ3Dp. (21)

Since the terms µ1D ≥ 0, µ2Dc ≥ 0, and µ3Dp ≥ 0, Eq. (21) becomes:

dN
dt

+ µN ≤ Λ.

N(t) ≤ Λ
µ
+

(
N(0)−

Λ
µ

)
e−µt.

If N(0) ≤ Λ
µ

, then we have N(t) ≤ Λ
µ

. This implies that the upper bound of the total population

size is
Λ
µ

. If N(0) >
Λ
µ

, then N(t) will decrease to
Λ
µ

because lim
t→∞ N(t) =

Λ
µ

.

As a result, conditions (H1) and (H2) are required to be true so that the region Ω becomes a
positively-invariant region with respect to the delay model (1). The proposition is proposed.

Stability of the equilibrium point of delay model (1)

Equilibrium point of delay model (1)
The equilibrium point T∗ = (P∗, D∗, D∗

c , D∗
p) given in (12) is also the equilibrium point of the

delay model (1) because when the delay model (1) reaches its equilibrium state, we have:

P = P(t − τ1) = P∗, D = D(t − τ2) = D∗, Dc = D∗
c , Dp = D∗

p. (22)
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Upon substituting (22) into the right-hand-side equations of the delay model (1) and letting them
equal to zero, we obtain the same set of equations as given in (8).

Local stability and the occurrence of Hopf bifurcation
In the following sections, we will separate the local stability discussion into two parts. First, in
section "Stable region of τ2 when τ1 = 0”, we identify the stable region of τ2 when τ1 = 0. Then,
for τ2 is within its stable region, we identify the critical value for τ1 in section "τ1 > 0 and τ2 is
within its stable region”.

Stable region of τ2 when τ1 = 0
For τ1 = 0 and τ2 > 0, we have the following theorem.

Theorem 2 For the delay model (1) with τ1 = 0:

(i) If condition:

(H3) b1 ≥ γ,

holds, then T∗ is locally asymptotically stable for τ2 ≥ 0.

(ii) If condition:

(H4) b1 < γ,

holds, then there exists a critical value:

τ20 =
1

ω20
cos−1

{
−

b1

γ

}
, (23)

where

ω20 =
√

−(b1 + γ)(b1 − γ), (24)

such that T∗ is locally asymptotically stable for τ2 ∈ [0, τ20) and becomes unstable for τ2 > τ20.
Furthermore, a Hopf bifurcation occurs at τ2 = τ20 and a family of periodic orbits arises from T∗.

Condition (H3) means that the rate of the first incidence of complication does not exceed the total
death rate of diabetics who never had any complications. While condition (H4) means that the
rate of the first incidence of complication is greater than the total death rate of diabetics who never
had any complications. The proof of Theorem 2 is as follows:

Proof The characteristic equation with respect to the equilibrium point T∗ of the delay model (1)
with τ1 = 0 is obtained by computing:

det
[
λ4I4 − B2 − e−λ4τ2B3

]
= 0, (25)

where λ4 represents the eigenvalues, I4 is an identity matrix of dimension 4,

B2 =


−(α + µ) 0 0 0

α −b1 0 0
0 0 −b2 σ

0 0 b3 −b4

 , B3 =


0 0 0 0
0 −γ 0 0
0 γ 0 0
0 0 0 0

 ,
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and b1, b2, b3, and b4 are as given in Eqs. (14). After expanding Eq. (25), we obtain:

(λ4 + µ + α)χ1(λ4)χ2(λ4) = 0, (26)

where

χ1(λ4) = λ2
4 + (b2 + b4)λ4 + b3(µ + µ3) + b4(µ + µ2),

χ2(λ4) = (λ4 + b1 + e−λ4τ2 γ).

One of the roots of Eq. (26) is −(µ + α), which is negative because µ + α > 0. The other two roots
of Eq. (26) are determined by equation χ1(λ4) = 0 and by the Routh-Hurwitz criteria [17], they
are all negative or have negative real parts because b2 + b4 > 0 and b3(µ + µ3) + b4(µ + µ2) > 0.
Lastly, the other roots of Eq. (26) are determined by equation χ2(λ4) = 0 or

(λ4 + b1 + e−λ4τ2 γ) = 0. (27)

Assume that for some τ2 > 0, λ4 = iω2 (i =
√
−1 and ω2 > 0) is one of the roots of Eq. (27).

Then, we can obtain

ω2
2 + (b1 + γ)(b1 − γ) = 0. (28)

Eq. (28) can be written into a polynomial of degree one in ϖ2 = ω2
2 , as follows:

ϖ2 + (b1 + γ)(b1 − γ) = 0. (29)

The root of Eq. (29) is negative if condition (H3) is satisfied. Condition (H3) implies that ϖ2 =

ω2
2 ≤ 0, which is a contradiction because we initially assumed ω2 > 0. The characteristic Eq.

(27) cannot have λ4 = iω2 as one of the roots. Therefore, the equilibrium point T∗ is locally
asymptotically stable for τ2 ≥ 0 with τ1 = 0. This proves Theorem 2(i).
For the second proof, suppose that condition (H4) is satisfied. Condition (H4) implies that Eq. (28)
has one positive root, that is, Eq. (24). Then, the corresponding critical delays are given by:

τ
(j)
2 =

1
ω20

cos−1
{
−

b1

γ

}
+

2jπ
ω20

, j = 0, 1, 2, . . . .

Let τ20 = τ
(0)
2 be the first critical value at which Eq. (27) has roots on the imaginary axis and

λ4 = ±iω20 are the corresponding roots. Then, the equilibrium point T∗ is locally asymptotically
stable for τ2 ∈ [0, τ20) with τ1 = 0. Moreover, the transversality condition for the establishment of
Hopf bifurcation at τ2 = τ20 is satisfied [19], as follows:

sign
{
ℜ

[
dλ4

dτ2

]∣∣∣∣
λ4(τ20)=iω20

}
= sign

{
ℜ

[
dλ4

dτ2

]−1∣∣∣∣
λ4(τ20)=iω20

}
> 0,

where

ℜ

[
dλ4

dτ2

]−1∣∣∣∣
λ4(τ20)=iω20

=
1

γ2 .
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This completes the proof of Theorem 2(ii).

τ1 > 0 and τ2 is within its stable region
For τ1 > 0 and τ2 is within its stable region, we have the following theorem.

Theorem 3 For delay model (1) with (τ1, τ2) > (0, 0), given τ2 is within its stable region (τ2 can be any
non-negative value if condition (H3) holds, or τ2 ∈ [0, τ20) if condition (H4) holds). Given an equation
with respect to ω1 as follows:

ω4
1 + (b2

1 + γ2 + µ2 − α2)ω2
1 + (b2

1 + γ2)(µ2 − α2)

+ 2b1γ(ω2
1 + µ2 − α2) cos ω1τ2 − 2γω1(ω

2
1 + µ2 − α2) sin ω1τ2 = 0. (30)

We have:

(i) If condition:

(H5) Eq. (30) has no root,

holds, then the equilibrium point T∗ is locally asymptotically stable for τ1 ≥ 0.

(ii) If condition:

(H6) Eq. (30) has at least one positive root,

holds, then there exists a critical value:

τ10 = min
k∈{1,2,...,n}

{
τ
(0)
1k

}
, (31)

where

τ
(0)
1k =

1
ω1k

cos−1
{
−

µ

α

}
,

where ω1k (k = 1, 2, . . . , n) are any positive roots of Eq. (30), such that the equilibrium point T∗ is
locally asymptotically stable for τ1 ∈ [0, τ10) and becomes unstable for τ1 > τ10. Furthermore, if the
following condition is satisfied:

(H7) V0V2 + V1V3 > 0,

where

V0 = (b1 + µ) + α cos ω10τ10 + (γ − µγτ2) cos ω10τ2

− γτ2ω10 sin ω10τ2 − αγτ2 cos ω10(τ10 + τ2), (32a)

V1 = 2ω10 − α sin ω10τ10 − (γ − µγτ2) sin ω10τ2

− γτ2ω10 cos ω10τ2 + αγτ2 sin ω10(τ10 + τ2), (32b)

V2 = b1αω10 sin ω10τ10 − αω2
10 cos ω10τ10 + αγω10 sin ω10(τ10 + τ2), (32c)

V3 = αω2
10 sin ω10τ10 + b1αω10 cos ω10τ10 + αγω10 cos ω10(τ10 + τ2), (32d)

where ω10 is the corresponding positive root of Eq. (30) when τ1 = τ10, then a Hopf bifurcation
occurs at τ1 = τ10 and a family of periodic orbits arises from T∗.
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Proof The characteristic equation with respect to the equilibrium point T∗ of the delay model (1)
is obtained by computing:

det
[
λ5I4 − B4 − e−λ5τ1B5 − e−λ5τ2B3

]
= 0, (33)

where λ5 represents the eigenvalues, I4 is an identity matrix of dimension 4,

B4 =


−µ 0 0 0
0 −b1 0 0
0 0 −b2 σ

0 0 b3 −b4

 , B5 =


−α 0 0 0
α 0 0 0
0 0 0 0
0 0 0 0

 , B3 =


0 0 0 0
0 −γ 0 0
0 γ 0 0
0 0 0 0

 ,

and b1, b2, b3, and b4 are given in Eqs. (14). After expanding Eq. (33), we obtain:

χ1(λ5)χ3(λ5) = 0, (34)

where

χ1(λ5) = λ2
5 + (b2 + b4)λ5 + b3(µ + µ3) + b4(µ + µ2),

χ3(λ5) = (λ5 + µ + e−λ5τ1 α)(λ5 + b1 + e−λ5τ2 γ).

Two of the roots of Eq. (34) are determined by χ1(λ5) = 0 and by the Routh-Hurwitz criteria [17],
they are all negative or have negative real parts because b2 + b4 > 0 and b3(µ+ µ3)+ b4(µ+ µ2) >

0. The other roots of Eq. (34) are determined by χ3(λ5) = 0 or:

λ2
5 + (b1 + µ)λ5 + b1µ + e−λ5τ1(αλ5 + b1α) + e−λ5τ2(γλ5 + µγ) + e−λ5(τ1+τ2)αγ = 0. (35)

For τ2 within its stable region (either condition (H3) or (H4) holds), we assume that for some
τ1 > 0, λ5 = iω1 (i =

√
−1 and ω1 > 0) is one of the roots of Eq. (35). Substituting λ5 = iω1 into

Eq. (35) and separating the real and imaginary parts yields:

(b1α + αγ cos ω1τ2) cos ω1τ1 + (αω1 − αγ sin ω1τ2) sin ω1τ2

= (ω2
1 − b1µ)− γω1 sin ω1τ2 − µγ cos ω1τ2, (36a)

(b1α + αγ cos ω1τ2) sin ω1τ1 − (αω1 − αγ sin ω1τ2) cos ω1τ2

= (b1 + µ) sin ω1τ1 + γω1 cos ω1τ2 − µγ sin ω1τ2. (36b)

We eliminate τ1 by squaring and adding both Eqs. (36). Then, we can obtain Eq. (30). Suppose
that condition (H5) is satisfied. Condition (H5) implies that the characteristic Eq. (35) cannot have
λ5 = iω1 as one of the roots. Therefore, the equilibrium point T∗ is locally asymptotically stable
for τ1 ≥ 0. This proves Theorem 3(i).
For the second proof, suppose that condition (H6) holds. Without loss of generality, suppose
that Eq. (30) has a finite number of positive roots denoted by ω11, ω12, . . ., ω1n. For every ω1k
(k = 1, 2, . . . , n) and using the equations in (36), we obtain the corresponding critical delays as
follows:

τ
(j)
1k =

1
ω1k

cos−1
{
−

µ

α

}
+

2jπ
ω1k

, j = 0, 1, 2, . . . .
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Let τ10 = min
k∈{1,2,...,n}

{
τ
(0)
1k

}
be the first critical value for which Eq. (35) has roots on the imaginary

axis and λ5 = ±iω10 are denoted as the corresponding roots. Then, the equilibrium point T∗ is
locally asymptotically stable for τ1 ∈ [0, τ10). To establish the occurrence of Hopf bifurcation at
τ1 = τ10, we need to show that:

sign
{
ℜ

[
dλ5

dτ1

]∣∣∣∣
λ5(τ10)=iω10

}
> 0.

By differentiating Eq. (35) with respect to τ1, we obtain:

[
dλ5

dτ1

]−1

=
2λ5 + b1 + µ + αe−λ5τ1 − (γτ2λ5 − γ + µγτ2)e−λ5τ2 − αγτ2e−λ5(τ1+τ2)

(αλ2
5 + b1αλ5)e−λ5τ1 + αγλ5e−λ5(τ1+τ2)

−
τ1

λ5
. (37)

Evaluating Eq. (37) at λ5(τ10) = iω10 yields:

[
dλ5

dτ1

]−1∣∣∣∣
λ5(τ10)=iω10

=
V0 + iV1

V2 + iV3
−

τ10

iω10
, (38)

where V0, V1, V2, and V3 are as given in Eqs. (32). The real part of Eq. (38) is given by:

ℜ

[
dλ5

dτ1

]−1∣∣∣∣
λ5(τ10)=iω10

=
V0V2 + V1V3

V2
2 + V2

3
.

If condition (H7) is satisfied, then

sign
{
ℜ

[
dλ5

dτ1

]−1∣∣∣∣
λ5(τ10)=iω10

}
= sign

{
ℜ

[
dλ5

dτ1

]∣∣∣∣
λ5(τ10)=iω10

}
> 0.

This completes the proof of Theorem 3(ii).

Remark 3 We discussed the criteria implying that there exists a periodic orbit for the delay model
(1) for some parameter values. Such results are interesting because the equilibrium point T∗ can
become unstable and not approach T∗. In this case, T∗ of the delay model (1) is not globally
asymptotically stable, and the Lyapunov direct method would not work.

5 Sensitivity analysis

Model (1) has four model outputs (state variables) and sixteen model inputs (parameters and
initial conditions). The model outputs are denoted as x = {P, D, Dc, Dp}, while the model inputs
are denoted as ς = {Λ, α, γ, κ, β, σ, µ, µ1, µ2, µ3, τ1, τ2, ϕ1(θ), ϕ2(θ), Dc0, Dp0}. Following [20, 21],
the sensitivity index of an arbitrary model output xi with respect to an arbitrary model input ς j is
as given by:

Sxi
ς j(t) =

∂xi(t)
∂ς j

, i = 1, 2, 3, 4, j = 1, . . . , 16.

For simplifying the notations, the variable Sxi
ς j(t) is denoted as Sxi

ς j , unless the argument is other
than t. Following [21, 22], the system of differential equations for the sensitivity indices of the



Nasir and Mat Daud | 215

outputs P, D, Dc, and Dp with respect to an arbitrary model input ς j is given by:



dSP
ς j

dt
dSD

ς j

dt
dSDc

ς j

dt
dS

Dp
ς j

dt


=


−µ 0 0 0
0 −(µ + µ1) 0 0

0 0 −
( κ

(1 + βDc)2 + (µ + µ2)
)

σ

0 0
κ

(1 + βDc)2 −(σ + µ + µ3)




SP
ς j

SD
ς j

SDc
ς j

S
Dp
ς j



+


−α 0 0 0
α 0 0 0
0 0 0 0
0 0 0 0




SP
ς j
(t − τ1)

SD
ς j
(t − τ1)

SDc
ς j (t − τ1)

S
Dp
ς j (t − τ1)

+


0 0 0 0
0 −γ 0 0
0 γ 0 0
0 0 0 0




SP
ς j
(t − τ2)

SD
ς j
(t − τ2)

SDc
ς j (t − τ2)

S
Dp
ς j (t − τ2)


+

[
∂

∂ς j

(dP
dt

) ∂

∂ς j

(dD
dt

) ∂

∂ς j

(dDc

dt

) ∂

∂ς j

(dDp

dt

)]⊤
, (39)

with the initial conditions
SP

ς j
(θ)

SD
ς j
(θ)

SDc
ς j (0)

S
Dp
ς j (0)

 =

[
∂ϕ1(θ)

∂ς j

∂ϕ2(θ)

∂ς j

∂Dc0

∂ς j

∂Dp0

∂ς j

]⊤
, θ ∈ [−τmax, 0].

In particular, the system of differential equations for the sensitivity indices of the model outputs P,
D, Dc, and Dp with respect to the recruitment rate of non-diabetics (Λ) is given by:

dSP
Λ

dt
= −µSP

Λ − αSP
Λ(t − τ1) + 1, (40a)

dSD
Λ

dt
= −(µ + µ1)SD

Λ + αSP
Λ(t − τ1)− γSD

Λ(t − τ2), (40b)

dSDc
Λ

dt
= −

κSDc
Λ

(1 + βDc)2 − (µ + µ2)S
Dc
Λ + σS

Dp
Λ + γSD

Λ(t − τ2), (40c)

dS
Dp
Λ

dt
=

κSDc
Λ

(1 + βDc)2 − (σ + µ + µ3)S
Dp
Λ , (40d)

with the initial conditions:

SP
Λ(θ) = 0, θ ∈ [−τmax, 0], SD

Λ(θ) = 0, SDc
Λ (0) = 0, S

Dp
Λ (0) = 0.

The equilibrium solutions of system (40) is given by:

SP∗
Λ =

1
α + µ

,
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SD∗
Λ =

αSP∗
Λ

γ + µ + µ1
,

SD∗
c

Λ =
γSD∗

Λ (σ + µ + µ3)(1 + βD∗
c )

2

κ(µ + µ3) + (µ + µ2)(σ + µ + µ3)(1 + βD∗
c )

2 ,

S
D∗

p
Λ =

κSD∗
c

Λ
(σ + µ + µ3)(1 + βD∗

c )
2 .

The system of differential equations for the sensitivity indices of the model outputs P, D, Dc, and
Dp with respect to the time delay parameter (τ1) is given by:

dSP
τ1

dt
= −µSP

τ1
− αSP

τ1
(t − τ1) + α

dP(t − τ1)

dt
, (41a)

dSD
τ1

dt
= −(µ + µ1)SD

τ1
+ αSP

τ1
(t − τ1)− γSD

τ1
(t − τ2)− α

dP(t − τ1)

dt
, (41b)

dSDc
τ1

dt
= −

κSDc
τ1

(1 + βDc)2 − (µ + µ2)SDc
τ1

+ σS
Dp
τ1 + γSD

τ1
(t − τ2), (41c)

dS
Dp
τ1

dt
=

κSDc
τ1

(1 + βDc)2 − (σ + µ + µ3)S
Dp
τ1 , (41d)

with the initial conditions:

SP
τ1
(θ) = 0, θ ∈ [−τmax, 0], SD

τ1
(θ) = 0, SDc

τ1
(0) = 0, S

Dp
τ1 (0) = 0. (42)

The equilibrium solution of system (41) is given by

SP∗
τ1

= 0, SD∗
τ1

= 0, SD∗
c

τ1 = 0, S
D∗

p
τ1 = 0.

Similarly, we can derive the sensitivity indices with respect to the other model inputs using system
(39). Then, we compute the normalized forward sensitivity indices by using:

Υxi
ς j = Sxi

ς j

ς j

xi
, i = 1, 2, 3, 4, j = 1, . . . , 16.

Sensitivity index of equilibrium point T∗

In this section, we compute the normalized forward sensitivity indices of T∗ with respect to each
model input using the values in Table 2.
The normalized forward sensitivity indices of the equilibrium point T∗ = (P∗, D∗, D∗

c , D∗
p) with

respect to every model input are presented in Table 3.
From Table 3, changes in the model inputs ϕ1(θ), ϕ2(θ), Dc0, Dp0, τ1, and τ2 have no effects on the
equilibrium point T∗. Furthermore, we can decrease the total number of diabetics by increasing
the death-related model inputs (µ, µ1, µ2, and µ3). However, these actions are impractical
and unethical. A similar argument applies to the recruitment rate of non-diabetics (Λ). It is
unreasonable to restrict the growth of non-diabetics in order to reduce the equilibrium solution of
all diabetic subpopulations. Apart from these model inputs (ϕ1(θ), ϕ2(θ), Dc0, Dp0, µ, µ1, µ2, µ3, Λ,
τ1, and τ2), we rank the normalized forward sensitivity indices of D∗, D∗

c , and D∗
p with respect to

the other model inputs from the most sensitive to least (see Table 4). The signs and magnitudes of
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Table 2. List of values for the model inputs of model (1)

Model input Value Dimension Source
ϕ1(θ) 17375603 individuals Assumed after [2]
ϕ2(θ) 2558998 individuals [16]
Dc0 666483 individuals [16]
Dp0 666483 individuals [16]
Λ 274314.75 individuals year−1 Estimated after [2]
α 5.2108 × 10−3 year−1 Estimated after [2]
γ 0.1 year−1 [16]
σ 0.15 year−1 [16]
µ 0.008678 year−1 [16]
µ1 5.84 × 10−4 year−1 [16]
µ2 0.002336 year−1 [16]
µ3 0.001752 year−1 [16]
κ 0.988986 year−1 [16]
β 5 × 10−6 individuals−1 [16]
τ1 10 years [10]
τ2 5 years [16]

Table 3. Normalized forward sensitivity indices of the equilibrium point T∗ of model (1) using the model inputs
in Table 2

ς j ΥP∗
ς j

ΥD∗
ς j

ΥD∗
c

ς j Υ
D∗

p
ς j

Λ 1 1 1.1487 0.0302

α −0.3752 0.6248 0.7177 0.0188

γ 0 −0.9152 0.0974 0.0026

κ 0 0 −0.1527 0.9960

β 0 0 0.1487 −0.9698

σ 0 0 0.1428 −0.9312

µ −0.6248 −0.7043 −1.7125 −0.0991

µ1 0 −0.0053 −0.0061 −1.613 × 10−4

µ2 0 0 −0.2112 −0.0055

µ3 0 0 −0.0240 −0.0116

τ1 0 0 0 0

τ2 0 0 0 0

ϕ1(θ) 0 0 0 0

ϕ2(θ) 0 0 0 0

Dc0 0 0 0 0

Dp0 0 0 0 0

ΥP∗
ς are not given because we are only concerned with the diabetic subpopulations.

Reducing the overall diabetes prevalence is the primary concern. Based on the status of individuals
with diabetes, we should give extra precautions to reduce diabetics with complications (Dc) as
they can affect the availability of the treatment of the complications. From Table 4(B), the diabetes
incidence rate (α) is at the highest rank but in the positive direction. Thus, decreasing α will
affect the most in reducing the equilibrium solution of diabetics with complications (D∗

c ). In
addition, the decrease in α will also decrease the equilibrium solution of diabetics who never had
any complications (D∗) and diabetics with recovered complications (D∗

p), making α the most
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Table 4. Magnitude and sign of the normalized forward sensitivity indices of D∗, D∗
c , and D∗

p with respect to the
model inputs α, γ, κ, β, and σ

(A) indices of D∗ (B) indices of D∗
c (C) indices of D∗

p

ς |ΥD∗
ς | sign ς |ΥD∗

c
ς | sign ς |Υ

D∗
p

ς | sign

γ 0.9152 − α 0.7177 + κ 0.9960 +

α 0.6248 + κ 0.1527 − β 0.9698
−

κ

0
β 0.1487

+

σ 0.9312

β σ 0.1428 α 0.0188
+

σ γ 0.0974 γ 0.0026

important model input to curb the overall diabetes cases.

A 1% increase in the recurrence rate of complications (σ) increases the equilibrium solution of
diabetics with complications (D∗

c ) by approximately 0.1428%, while a 1% increase in the rate
of the first incidence of complication (γ) increases the equilibrium solution of diabetics with
complications (D∗

c ) by approximately 0.0974%. Thus, decreasing γ and σ are beneficial to lower
D∗

c .

From Table 4(C), the recovery rate of complications (κ) is the most sensitive model input in
changing the equilibrium solution of diabetics with recovered complications (D∗

p), where a 1%
increase in κ increases D∗

p by approximately 0.9960%. However, the value of κ is at maximum
because if the inhibition effect β = 0 individuals−1, κ + µ + µ2 = 1 year−1 (the total rates of
individuals leaving the compartment of diabetics with complications (Dc)). The value of κ gets

smaller due to the inhibition effect of limited medical resources measured by the term
1

1 + βDc
.

In reality,
1

1 + βDc
can be described as the reverse effect of diabetics with complications being

postponed for treatment [14]. From Table 4(B, C), a 1% increase in the inhibition effect β results in
an approximately 0.1487% increase in the equilibrium solution of diabetics with complications (D∗

c )

and an approximately 0.9698% decrease in the equilibrium solution of diabetics with recovered
complications (D∗

p). Thus, decreasing β is crucial to decrease D∗
c .

6 Numerical simulation

Stability of equilibrium point T∗

In this section, we give some numerical simulations for several cases of model (1) to validate and
illustrate our theoretical results. Five examples are presented, and Table 5 shows the differences
between them.

Table 5. Numerical example with respect to model (1)

Example
Theorem

1
2 3

(H3) (H4) (H5) (H6) (H7)

1 •
2 • •
3 • • •
4 • •
5 • • •



Nasir and Mat Daud | 219

Example 1 Consider the model inputs: Λ = 35, α = 0.005, γ = 0.05, κ = 0.5, β = 0.0005, σ = 0.4,
µ = 0.01, µ1 = 0.075, µ2 = 0.25, µ3 = 0.1, τ1 = 0, τ2 = 0, P0 = 3000, D0 = 200, Dc0 = 15, and
Dp0 = 80, which give the following particular non-delay case of model (1):

dP
dt

= 35 − 0.005P − 0.01P, (43a)

dD
dt

= 0.005P − 0.05D − 0.085D, (43b)

dDc

dt
= 0.05D −

0.5Dc

1 + 0.0005Dc
+ 0.4Dp − 0.26Dc, (43c)

dDp

dt
=

0.5Dc

1 + 0.0005Dc
− 0.51Dp, (43d)

with the initial conditions:

P(0) = 3000, D(0) = 200, Dc(0) = 15, Dp(0) = 80.

We obtain the equilibrium point T∗ = (2333.3333, 86.4198, 11.7670, 11.4688). According to Theorem 1,
T∗ of system (43) is locally asymptotically stable (see Figure 3).
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Figure 3. The dynamics of system (43)

Example 2 Consider the model inputs: Λ = 35, α = 0.005, γ = 0.05, κ = 0.5, β = 0.0005, σ = 0.4,
µ = 0.01, µ1 = 0.075, µ2 = 0.25, µ3 = 0.1, ϕ1(θ) = 3000, ϕ2(θ) = 200, Dc0 = 15, and Dp0 = 80,
which give the following particular case of model (1):

dP
dt

= 35 − 0.005P(t − τ1)− 0.01P, (44a)

dD
dt

= 0.005P(t − τ1)− 0.05D(t − τ2)− 0.085D, (44b)

dDc

dt
= 0.05D(t − τ2)−

0.5Dc

1 + 0.0005Dc
+ 0.4Dp − 0.26Dc, (44c)
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dDp

dt
=

0.5Dc

1 + 0.0005Dc
− 0.51Dp, (44d)

with the initial conditions:

P(θ) = 3000, θ ∈ [−τmax, 0], D(θ) = 200, Dc(0) = 15, Dp(0) = 80.

We obtain the equilibrium point T∗ = (2333.3333, 86.4198, 11.7670, 11.4688).

We first check the existence of critical value τ20 when τ1 = 0. From Theorem 2, condition (H3) is satisfied
because b1 − γ = 0.035 ≥ 0. According to Theorem 2(i), the equilibrium point T∗ of system (44) with
τ1 = 0 is locally asymptotically stable for τ2 ≥ 0.

Furthermore, for condition (H3) holds, we check the existence of critical value τ10 provided τ2 can be any
non-negative value. From Theorem 3 and choosing τ2 = 13, Eq. (30) becomes

ω4
1 + 0.0098ω2

1 + (7.2938 × 10−7) + 0.0085(ω2
1 + 7.5 × 10−5) cos 13ω1

− 0.1ω1(ω
2
1 + 7.5 × 10−5) sin 13ω1 = 0. (45)

Eq. (45) has no root, and condition (H5) is satisfied. Thus, from Theorem 3(i), T∗ of system (44) with τ2
can be any non-negative value (in this case, τ2 = 13) is locally asymptotically stable for τ1 ≥ 0. Figure 4
shows the dynamics of system (44) with two sets of τ1 and τ2: (i) τ1 = 15 and τ2 = 13, and (ii) τ1 = 150
and τ2 = 13.
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Figure 4. Dynamics of system (44) with: (A) τ1 = 15 and τ2 = 13. (B) τ1 = 150 and τ2 = 13
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When conditions (H3) and (H5) are satisfied, the solution (P, D, Dc, Dp) converges to T∗ regardless of the
value of τ1 and τ2.

Example 3 Consider the model inputs: Λ = 35, α = 0.125, γ = 0.05, κ = 0.5, β = 0.0005, σ = 0.4,
µ = 0.05, µ1 = 0.075, µ2 = 0.25, µ3 = 0.1, ϕ1(θ) = 300, ϕ2(θ) = 100, Dc0 = 30, and Dp0 = 40,
which give the following particular case of model (1):

dP
dt

= 35 − 0.125P(t − τ1)− 0.05P, (46a)

dD
dt

= 0.125P(t − τ1)− 0.05D(t − τ2)− 0.125D, (46b)

dDc

dt
= 0.05D(t − τ2)−

0.5Dc

1 + 0.0005Dc
+ 0.4Dp − 0.3Dc, (46c)

dDp

dt
=

0.5Dc

1 + 0.0005Dc
− 0.55Dp, (46d)

with the initial conditions:

P(θ) = 300, θ ∈ [−τmax, 0], D(θ) = 100, Dc(0) = 30, Dp(0) = 40.

We obtain the equilibrium point T∗ = (200, 142.8571, 16.4108, 14.7975).
We first check the existence of critical value τ20 when τ1 = 0. From Theorem 2, condition (H3) is satisfied
because b1 − γ = 0.075 ≥ 0. According to Theorem 2(i), T∗ of system (46) with τ1 = 0 is locally
asymptotically stable for τ2 ≥ 0.
Furthermore, for the condition (H3) holds, we check the existence of critical value τ10 provided τ2 can be
any non-negative value. From Theorem 3 and choosing τ2 = 100, Eq. (30) becomes

ω4
1 + 0.005ω2

1 − (2.3789 × 10−4) + 0.0125(ω2
1 − 0.0131) cos 100ω1

− 0.1ω1(ω
2
1 − 0.0131) sin 100ω1 = 0. (47)

We obtain one positive root of Eq. (47), which is ω11 = 0.1146, and the condition (H6) is satisfied. Then,
we obtain τ10 = 17.3030. We also satisfy condition (H7), which is V0V2 + V1V3 = 6.1780 × 10−4 > 0.
From Theorem 3(ii), T∗ of system (46) with τ2 can be any non-negative value (in this case, τ2 = 100) is
locally asymptotically stable when τ1 ∈ [0, 17.3030), where the solution (P, D, Dc, Dp) converges to T∗

as time t increases (see Figure 5(A)).
The equilibrium point T∗ becomes unstable when τ1 > 17.3030, where the solution (P, D, Dc, Dp) gets
larger and away from T∗ as time t increases (see Figure 5(B)). System (46) with τ2 can be any non-negative
value (in this case, τ2 = 100) undergoes a Hopf bifurcation at T∗ when τ1 = 17.3030, and a periodic orbit
arises from T∗ (see Figure 5(C)).

Example 4 Consider the model inputs: Λ = 35, α = 0.005, γ = 0.175, κ = 0.5, β = 0.0005, σ = 0.4,
µ = 0.05, µ1 = 0.075, µ2 = 0.25, µ3 = 0.1, ϕ1(θ) = 550, ϕ2(θ) = 10, Dc0 = 35, and Dp0 = 20,
which give the following particular case of model (1):

dP
dt

= 35 − 0.005P(t − τ1)− 0.05P, (48a)

dD
dt

= 0.005P(t − τ1)− 0.175D(t − τ2)− 0.125D, (48b)

dDc

dt
= 0.175D(t − τ2)−

0.5Dc

1 + 0.0005Dc
+ 0.4Dp − 0.3Dc, (48c)
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Figure 5. When τ2 can be any non-negative value (in this case, τ2 = 100): (A) The equilibrium point T∗ of system
(46) is locally asymptotically stable for τ1 = 5 < τ10. (B) T∗ is unstable for τ1 = 18.5 > τ10. (C) System (46)
undergoes a Hopf bifurcation at τ1 = 17.3030 = τ10

dDp

dt
=

0.5Dc

1 + 0.0005Dc
− 0.55Dp, (48d)

with the initial conditions:

P(θ) = 550, θ ∈ [−τmax, 0], D(θ) = 10, Dc(0) = 35, Dp(0) = 20.

We obtain the equilibrium point T∗ = (636.3636, 10.6061, 4.2563, 3.8611).
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We first check the existence of critical value τ20 when τ1 = 0. From Theorem 2, condition (H4) is satisfied
because b1 − γ = −0.05 < 0. Then, we obtain τ20 = 19.3216. By Theorem 2(ii), the equilibrium point
T∗ of system (48) with τ1 = 0 is locally asymptotically stable when τ2 ∈ [0, 19.3216), where the solution
converges to T∗ as time t increases (see Figure 6(A)).
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Figure 6. For system (48) with τ1 = 0: (A) The equilibrium point T∗ is locally asymptotically stable for
τ2 = 5 < τ20. (B) T∗ is unstable for τ2 = 30 > τ20. (C) System (48) undergoes a Hopf bifurcation when
τ2 = 19.3216 = τ20
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T∗ becomes unstable when τ2 > 19.3216, where the solutions D, Dc, and Dp move away from the
equilibrium solutions D∗, D∗

c , and D∗
p, respectively, as time t increases (see Figure 6(B)). System (48)

with τ1 = 0 undergoes a Hopf bifurcation when τ2 = 19.3216, where the solutions D, Dc, and Dp show
periodic behaviors (see Figure 6(C)).
Notice that the solution P for Figure 6(B–C) does not oscillate like the other variables. The differential
equation of P (Eq. (1a)) is unaffected by D, Dc, and Dp. Hence, the oscillation of other variables does not
affect P since if τ1 = 0, P is locally asymptotically stable (see Remark 4). On the contrary, if the solution P
has an oscillating behavior, the other variables will also oscillate.

Remark 4 Recall Eq. (1a),

dP
dt

= Λ − αP(t − τ1)− µP. (49)

The characteristic equation that associated with the equilibrium solution P∗ of Eq. (49) is given by:

λ6 + µ + e−λ6τ1 α = 0, (50)

where λ6 represents the eigenvalues. For the case of τ1 = 0, Eq. (50) has a negative root given by
−(µ + α). Hence, P∗ of Eq. (49) with τ1 = 0 is locally asymptotically stable. This is the reason the
solution P in Figure 6(B, C) does not oscillate even though τ2 is not within its stable region. Apart
from this, we discuss the case of τ1 > 0. Assume that λ6 = iω̂ (i =

√
−1 and ω̂ > 0) is one of the

roots of Eq. (50). By substituting λ6 = iω̂ into Eq. (50) and after some algebraic manipulations,
we obtain ω̂ =

√
(α + µ)(α − µ). If α ≤ µ, a contradiction occurs because we initially assumed

ω̂ > 0 and P∗ is locally asymptotically stable for τ1 ≥ 0. However, P∗ loses its stability for some
values of τ1 > 0 if α > µ.

Next, for the condition (H4) holds, we check the existence of critical value τ10 provided τ2 is within
[0, 19.3216). From Theorem 3 and choosing τ2 = 5 ∈ [0, 19.3216), Eq. (30) becomes

ω4
1 + 0.0487ω2

1 + (1.1447 × 10−4) + 0.0438(ω2
1 + 0.0025) cos 5ω1

− 0.35ω1(ω
2
1 − 0.0025) sin 5ω1 = 0. (51)

Eq. (51) has no root, and condition (H5) is satisfied. From Theorem 3(i), the equilibrium point
T∗ of system (48) with τ2 within its stable region (in this case, τ2 = 5 ∈ [0, 19.3216)) is locally
asymptotically stable for τ1 ≥ 0. Figure 7 shows two simulations of two different values of τ1
(τ1 = 7 and τ1 = 87) with τ2 = 5 ∈ [0, 19.3216). In both figures, the solution (P, D, Dc, Dp)

converges to T∗ regardless of the value of τ1.

Example 5 Consider the model inputs: Λ = 35, α = 0.125, γ = 0.175, κ = 0.5, β = 0.0005, σ = 0.4,
µ = 0.05, µ1 = 0.075, µ2 = 0.25, µ3 = 0.1, ϕ1(θ) = 60, ϕ2(θ) = 10, Dc0 = 40, and Dp0 = 20, which
give the following particular case of model (1):

dP
dt

= 35 − 0.125P(t − τ1)− 0.05P, (52a)

dD
dt

= 0.125P(t − τ1)− 0.175D(t − τ2)− 0.125D, (52b)

dDc

dt
= 0.175D(t − τ2)−

0.5Dc

1 + 0.0005Dc
+ 0.4Dp − 0.3Dc, (52c)
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Figure 7. Dynamics of system (48) when τ2 is within its stable region (in this case, τ2 = 5 ∈ [0, 19.3216)): (A)
τ1 = 7. (B) τ1 = 87

dDp

dt
=

0.5Dc

1 + 0.0005Dc
− 0.55Dp, (52d)

with the initial conditions:

P(θ) = 60, θ ∈ [−τmax, 0], D(θ) = 10, Dc(0) = 40, Dp(0) = 20.

We obtain the equilibrium point T∗ = (200, 83.3333, 33.5936, 30.0351).
We first check the existence of critical value τ20 when τ1 = 0. From Theorem 2, condition (H4) is satisfied
because b1 − γ = −0.05 < 0. We obtain τ20 = 19.3216. By Theorem 2(ii), the equilibrium point T∗ of
system (52) with τ1 = 0 is locally asymptotically stable when τ2 ∈ [0, 19.3216) and becomes unstable
when τ2 > 19.3216. System (52) with τ1 = 0 undergoes a Hopf bifurcation when τ2 = 19.3216. The
corresponding plots and trajectories have similar characteristics as in Figure 6.
Furthermore, for the condition (H4) holds, we check the existence of critical value τ10 provided τ2 is within
[0, 19.3216). From Theorem 3 and choosing τ2 = 4 ∈ [0, 19.3216), Eq. (30) becomes

ω4
1 + 0.0331ω2

1 − (6.0703 × 10−4) + 0.0438(ω2
1 − 0.0131) cos 4ω1

− 0.35ω1(ω
2
1 − 0.0131) sin 4ω1 = 0. (53)

The positive root of Eq. (53) is ω11 = 0.1146 and the condition (H6) is satisfied. Then, we obtain τ10 =

17.3030. We also satisfy the condition (H7), which is V0V2 + V1V3 = 0.0011 > 0. From Theorem 3(ii),
the equilibrium point T∗ of system (52) with τ2 within its stable region (in this case, τ2 = 4 ∈ [0, 19.3216))
is locally asymptotically stable when τ1 ∈ [0, 17.3030), where the solution (P, D, Dc, Dp) converges to
T∗ as time t increases (see Figure 8(A)). T∗ becomes unstable when τ1 > 17.3030, where the solution
(P, D, Dc, Dp) gets larger and moves away from T∗ as time t increases (see Figure 8(B)). System (52)
with τ2 within its stable region (in this case, τ2 = 4 ∈ [0, 19.3216)) undergoes a Hopf bifurcation when
τ1 = 17.3030, that is, a periodic orbit arises from T∗ (see Figure 8(C)).
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Figure 8. Dynamics of system (52) with τ2 within its stable region (in this case, τ2 = 4 ∈ [0, 19.3216)): (A) The
equilibrium point T∗ is locally asymptotically stable for τ1 = 6 < τ10. (B) T∗ is unstable for τ1 = 18.5 > τ10. (C)
System (52) undergoes a Hopf bifurcation when τ1 = 17.3030 = τ10

Simulation with respect to the model inputs in Table 2

Stability of T∗

Based on the values in Table 2, the corresponding equilibrium point of model (1) is T∗ = (1.9751×
107, 9.4193 × 105, 7.4153 × 106, 1.2005 × 106). Accordingly, from the discussion in Section 4, we
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first set τ1 = 0 and look at the range of τ2 for which T∗ remains locally asymptotically stable.
Condition (H4) of Theorem 2 is satisfied. We obtain the critical value τ20 = 16.7073, where the
switching stability occurs at τ2 = τ20. Note that from Table 2, we have τ2 = 5, which is within the
stable region. We proceed with finding the critical value for the delay τ1. Then, we obtain that
condition (H5) of Theorem 3 is satisfied. From Theorem 3(i), T∗ is locally asymptotically stable
(see Figure 9).
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Figure 9. Dynamics of model (1) with the values in Table 2

From Figure 9, we may observe that the solution (P, D, Dc, Dp) approaches T∗ as time t gets larger.
If this tendency is left untreated, the number of diabetics with complications (Dc) would grow
and approach D∗

c at the long-term simulation. This situation should be avoided because a large
number of diabetics with complications (Dc) will slow down the recovery rate of complications as
many are waiting for their turn to get appropriate treatment. This situation should be avoided
because the medical team will be stressed and face some difficulties in handling this overcrowded
situation.

Simulation with various α, γ, σ, and β

From the sensitivity analysis results (Section 5), we suggest lowering the diabetes incidence rate
(α) to curb the overall diabetes cases. Figure 10 shows that by decreasing α, the number of
non-diabetics increases significantly while all the diabetic subpopulations decrease.

The intervention is by increasing the awareness among non-diabetics about the severity of diabetes.
Consequently, it may decrease the rate of developing diabetes (α).

Second, we suggest decreasing the rate of the first incidence of complication (γ) and the recurrence
rate of complications (σ) in order to decrease the number of diabetics with complications. Figure 11
shows the simulations of decreasing values of γ and σ where the number of diabetics with
complications (Dc) decreases to a much lower level.
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Figure 10. Simulation of model (1) with different rates of developing diabetes (α) (α = 0.0052108, α = 0.004,
and α = 0.0035) with the other model inputs in Table 2
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Figure 11. Simulation of model (1) with different values of the first and recurrence incidence of complications
(γ, σ) ((γ, σ) = (0.1, 0.15), (γ, σ) = (0.075, 0.125), and (γ, σ) = (0.05, 0.1)) with the other model inputs in
Table 2
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Note that no changes can be observed in Figure 11(A) because the dynamics of non-diabetics (P)
are unaffected by γ and σ. The interventions to decrease the rate of developing complications
may include early detection of diabetes, education about the complications of diabetes, better
self-management of diabetes, lifestyle modifications, and support from family members.

Lastly, we suggest decreasing the effect due to limited medical resources (β). Figure 12 shows the
simulation of decreasing value of β.
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Figure 12. Simulation of model (1) using different values of the inhibition effect (β) (β = 5 × 10−6, β = 3 × 10−6,
and β = 1 × 10−6) with the other model inputs in Table 2

Note that no changes can be observed in Figure 12(A–B) because the dynamics of P and D are
unaffected by β. As the effect due to limited medical resources (β) decreases, the number of
diabetics with complications (Dc) decreases and persists at a much lower level, while the number
of diabetics with recovered complications (Dp) increases and persists at a much higher level. To
decrease the effect of limited medical resources (β), we recommend providing adequate resources
for the treatment of diabetes complications.

Influence of incidence rate of diabetes (α) on Hopf bifurcation corresponds to the time delay τ1

From Remark 4, the indicator for the equilibrium point T∗ of the delay model (1) to lose its stability
for some τ1 > 0 is α > µ. Hence, we investigate the variation of the critical value of time delay τ10
(Eq. (31)) with respect to the various rates of incidence of diabetes (α). For the model inputs given
in Table 2 and choosing α ∈ [0.01, 0.99], we plot the stable and unstable regions in Figure 13.
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Figure 13. Graph of τ1 versus α showing the stable and unstable regions of model (1) with the other model inputs
in Table 2 (the dashed line represents the line τ1 = 10)

This figure shows the minimum value of α so that the equilibrium point T∗ of model (1) remains
locally asymptotically stable. This variation shows that the higher incidence rate of diabetes (α)
results in a lower critical value τ10. If the rate α > 0.162 year−1, then the solution (P, D, Dc, Dp) of
model (1) will show unstable behaviors because τ1 = 10 > τ10 (see Figure 13(B)). Sometimes the
number of diabetics is high and sometimes low. In this case, it may be difficult to predict the size
of every subpopulation. Consequently, implementing control measures to lower diabetes cases
will be difficult. If we wish to predict the number of diabetics, the incidence rate of diabetes (α)
should be no more than 0.162 year−1 for the other model inputs in Table 2.
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7 Conclusion

In this paper, we studied a four-state model of a type-2 diabetic population with a saturating
recovery rate of diabetes complications. We first investigated the non-negativity and boundedness
of the solution for delay and non-delay cases. However, the non-negativity of the solutions P, D,
Dc, and Dp of the delay model (1) can only be guaranteed if the model inputs satisfy the conditions
stated in Proposition 2.
In the absence of time delay, we discussed the local and global stability analysis. Numerical
simulation to indicate the global stability of the non-delay model was given. In the presence of
two delay parameters, we discussed the characteristic equation of delay model (1) under the case
of τ1 = 0 to obtain the stable region of τ2. After that, we derived the critical value corresponding
to the delay parameter τ1. Overall, we have five conditions (H3)-(H7) to characterize the stability
properties of T∗ (either locally asymptotically stable or unstable) and the manifestation of Hopf
bifurcation. The delay values affect the stability of the equilibrium point T∗. A locally asymptoti-
cally stable equilibrium point T∗ can become unstable under certain conditions. We have shown
examples of a periodic orbit that arises from T∗ as the model switches its stability.
From the sensitivity analysis, we give three conclusions as follows:

1. We may significantly reduce the overall diabetes cases by decreasing the rate of develop-
ing diabetes (α). This includes education on diabetes and the implementation of awareness
programs.

2. Diabetes screening should continue so that the status of diabetes can be known earlier. Conse-
quently, medications assist individuals with diabetes in controlling their glucose levels, and the
rate of the first incidence of complication (γ) may decrease.

3. We may increase the availability of the treatment of complications for the diabetics with
complications, as our sensitivity indices suggested that the diabetics with complications will
decrease if the parameter (β) measuring the limited medical resources gets smaller. This
concerns diabetics with complications receiving better treatment of the complications such
as the improvement or shortening of waiting time for elective cases such as renal or heart
transplant.
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Abstract
COVID-19 was initiated in 2020 and caused an immediate threat to global countries in terms of both
economic and health influences. In this present work, we extend the Susceptible-Infected-Recovered
(SIR) model by considering two new variables, gross domestic product or GDP (G) and unemployment
(U), to study the impact of this epidemic on the Indian economy during the 2020–2023 period. Since
our extended SIR model includes two novel compartments, which are GDP and unemployment rate,
we can now explore in more detail the sophisticated relationship between health and economic matters.
The framework allows us to investigate the following consequences: how changes in the infection
rate affect the economy and how changes in GDP and unemployment translate into the spread of this
contagion. These visualizations are based on real-time quarterly data and provide full knowledge of the
interaction between health and economic dynamics during the COVID-19 crisis in India. Government
initiatives and regulations are also reviewed for their efficiency to contain the virus while taming the
economic cost. Real-world results are contrasted with the care to find the strengths and weaknesses of
the policies that come out with the underlying assumptions in the model. This paper, in other words,
deploys an in-depth analysis of the convoluted links between economics, policy, and public health in
the face of a pandemic with a geographic focus in India.

Keywords: GDP; COVID-19; unemployment; epidemic model; stability analysis
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1 Introduction

The economic blow caused by the pandemic was not limited to formal sectors but equally aggra-
vated the informal economy, which employs the majority of the Indian workforce. The lockdown
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measures, though helpful in reducing the spread of the virus, led to a significant loss of income
for many informal workers, pushing them towards poverty [1]. The pandemic also highlighted
the importance of digitization, as those who could access digital platforms were able to continue
working, while others faced severe livelihood challenges [2]. In response, the Indian government
implemented various measures, including direct cash transfers, food security initiatives, and credit
guarantees, to support the economy. However, the effectiveness of these measures in mitigating
the economic downturn remains a subject of ongoing analysis [3].
Epidemiological and economic models have been studied for the multifaceted impacts of pan-
demics [4–7]. For example, Chakraborty and Maity (2020) [8] investigated the economic im-
plications of lockdowns and highlighted that health and economic variables must be modeled
simultaneously in order to formulate effective policy interventions [9]. Mishra et al. (2021) [10]
pointed out the importance of nonlinear dynamics in such models by applying advanced mathe-
matical methods to explore the long-term interplay between public health crises and economic
stability [11]. Moreover, a recent study by Singh et al. (2023) [12] offered empirical evidence
regarding the effectiveness of government measures in reducing economic shocks during pan-
demics, especially in informal economies [13]. The role of numerical methods such as RK-4 in
solving complex epidemiological-economic models has also been emphasized, as it allows for the
precise simulation of the nonlinear interdependencies. Based on these fundamentals, the current
research contributes to the field by formulating a new SIRUG model, integrating unemployment
and GDP dynamics in an epidemiological context, utilizing RK-4 and least-square methods to
predict and analyze economic consequences of pandemics more holistically.
In this study, we use the Runge-Kutta 4th order method (RK-4) [14] to solve our equations. This
method helps us get more accurate results than basic calculation methods because it looks at
multiple points when solving each step. RK-4 is especially good at handling sudden changes, like
when a pandemic quickly impacts jobs and the economy, and the algorithm of the considered
method directly as compared to the complexity of the algorithm of other methods [15]. By using
this method, we can better predict both immediate and long-term changes in employment and
economic growth.
The key objective of this research is to develop a mathematically sophisticated model that combines
the SIR model with unemployment and GDP components, considering Okun’s Law to analyze
the relationship between GDP and unemployment [16]. The RK-4 method will be applied to
simulate and predict the dynamic behaviors of unemployment and GDP, capturing both short-
term fluctuations and long-term consequences [17]. This ambitious undertaking aims to unravel
the complex linkages among health, labor markets, and economic performance during a time of
unprecedented shocks.
The year-on-year unemployment rate in urban India surged from 8.8% in April to June 2019 to
20.8% in April to June 2020, highlighting the heavy toll on the labor force due to the pandemic [18].
This metric underscores the urgency of understanding and addressing the economic repercussions
of public health crises.
The choice of the RK-4 method is based on its efficiency in solving differential equations and its
suitability for capturing the nonlinear interactions inherent in economic and epidemiological mod-
els [19]. The classical SIR model is modified to include parameters characterizing unemployment
and GDP, enhancing the model’s ability to capture the complexity of real-world economic systems,
especially during crises.
This research fills a striking gap in the literature by integrating health-related and economic
variables within a common framework. While previous studies have often focused on health or
economic aspects alone, this work combines them into an integrated model. Furthermore, the
study extends the scope by incorporating the RK-4 method to predict the potential impact of



236 | Mathematical Modelling and Numerical Simulation with Applications, 2025, Vol. 5, No. 1, 234–256

future pandemics and adds a least square method to provide a forward-looking dimension to our
understanding [20].
This study is crucial in providing actionable insights for policymakers and researchers to make
informed decisions amid dynamic economic conditions influenced by public health crises. By
filling this gap in the literature, the research contributes to mathematical modeling, epidemiology,
and economic forecasting, laying the foundation for future studies to build on this integrated
framework [21].
Our SIRUG model presents a unified framework to explore the relationship between disease
spread and economic changes during public health crises. By combining traditional disease
modeling with economic indicators like unemployment and GDP through Okun’s Law and
employing the RK-4 method to analyze their interactions, this research provides valuable insights
into both immediate and future economic impacts of pandemics. The addition of least square
analysis enhances our ability to make accurate predictions, making this work particularly valuable
for policymakers and researchers. This study establishes a foundation for future research in this
field, offering new ways to understand and address the economic challenges that arise during
public health emergencies.

2 Basic results

The following results played a crucial role in the comprehensive analysis and validation of our
model, significantly contributing to its efficacy and reliability.

Theorem 1 [22] The autonomous system x ′(t) = Ax(t), x(0) = x0 is asymptotically stable iff
|arg(λ(A))| > π

2 . Stable if and only if either it is asymptotically stable, or those critical eigenvalues
which satisfy |arg(λ(A))| = π

2 have geometric multiplicity one. Here, arg(λ(A)) denotes the argument of
the eigenvalues of the square matrix A.

Theorem 2 [23] Let f (t) be a continuous function on [0, ∞) and satisfies

d f
dt

≤ −Φ f (t) + γ1, f (t0) = ft0 ,

where Φ, γ1 ∈ R and Φ ̸= 0, then

f (t) ≤
(

ft0 −
γ1

Φ

)
e−Φ(t−t0) +

γ1

Φ
.

Definition 1 The function f : E → Rn is said to admit the Lipschitz condition on the open subset E of Rn

if there is a positive constant K such that

| f (x)− f (y)| ≤ K|x − y|, ∀x, y ∈ E.

3 Model construction

In this section, we introduce the model that we consider for the present study. The following
statement contains a simplified explanation of the SIRUG model. The explanation has been
primarily based on assuming there would be no future uncertainties.

Key components of the model

i. Susceptible (S): This group represents individuals who are not infected but are susceptible
to the disease. Over time, some of them may become infected if they come into contact with
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infectious individuals.
ii. Infected (I): This group includes individuals who are currently infected and capable of
spreading the disease to susceptible individuals. The number of infected individuals typically
increases initially.

iii. Recovered (R): The "Recovered" category represents individuals who have recovered from
the disease and are no longer infectious. These individuals may have developed immunity to
the disease, depending on the disease in question.

iv. Unemployed Population (U): This represents the number of individuals who are currently
unemployed and seeking employment.
v. Gross Domestic Product (G): It represents the total value of goods and services produced
within a country, serving as a measure of its economic performance.

The SIR model

SIR [24] is a system of ordinary differential equations showing the dynamics of infectious spread.
The following equations outline how, over time, the number of people in each category varies:

dS
dt

= −βSI,

dI
dt

= βSI − γI,

dR
dt

= γI.

(1)

Uses and practicality in real life:
The SIR model has several important uses and practical applications in real life:

(i) Epidemic modeling: SIR is one of the most used models for studying and predicting the
dynamics of infectious diseases. It is often used in the simulation of different scenarios by
adjusting various parameters like transmission rate and recovery rate. It can assess how
interventions like vaccination or social distancing affect the outcome.

(ii) Public health planning [25]: Health authorities and policymakers use the SIR model to
aid in making decisions concerning disease control strategies, planning resource allocation
during an outbreak, and healthcare system readiness. These models aid in the calculation of
projections of cases that may occur and identify the critical times in an outbreak and health
system needs.

(iii) Parameter estimation: Through the SIR model, parameters for the disease can be estimated,
including, but not limited to, the basic reproduction number, R0, which can be described
as the average number of secondary infections generated by one infectious individual in an
entirely susceptible population. The calibration of these parameters is essential for the design
of suitable public health policies.

(iv) Vaccination campaigns [26]: The SIR model is utilized in the layout and analysis of vaccina-
tion policies. They calculate ideal vaccine coverage levels to achieve the idea of herd immunity,
which refers to the idea of a high enough percentage of the population becoming immune to
prevent large-scale outbreaks.

(v) Early warning systems [27]: Continuous monitoring of the data and the SIR model allows
for the development of early warning systems that might help limit the spread of the disease
while it is still at its beginning stages.

Thus, SIR models are very helpful in understanding infectious disease transmission dynamics
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and are an important tool for epidemiologists, public health experts, and policymakers. These
models help Inform decisions that can eventually save lives and reduce the impact of epidemics
on society.

The SIRUG model

The traditional SIR model categorizes all people into three classes: Susceptible, Infected, and
Recovered. This model has been very useful in understanding the basic trends by which infec-
tious diseases spread through a population. It mostly overlooks the bidirectional and nuanced
interaction between health and economic stability. Motivated by this important gap in our un-
derstanding, we introduce a new holistic modified SIR model. Added to this adaptation are two
more compartments, such as the Unemployed and GDP, which will allow for a critical look into
the multi-dimensional reality of disease spread and further-reaching implications in society.
This is a modified version of the SIR model, which accounted for an epidemic process and was used
to describe and predict the dynamics of infectious diseases within a population. This modified
model adds extra compartments defined to include the economic factors influencing the dynamics
of the epidemic as follows: 

dS
dt

= −β1SI + αS + ωG,

dI
dt

= β2SI − γ1 I + η I,

dR
dt

= γ2 I − δR,

dU
dt

= λS − µU,

dG
dt

= ϕG − κUG.

(2)

Explanation of each compartment:
In this adapted SIR model, various factors are taken into consideration that might have an influence
on the dynamics of the epidemic and the economy. Following is a detailed explanation of the
modifications and what each compartment stands for:

I. Susceptible dynamics ( dS
dt ):

i) (-β1SI): This term is the rate at which the susceptible S entered the infected I state. It thus
depends upon the infection rate, β1 and on the product of the number of people susceptible,
S, and infectious, I.

ii) (αS): This term is the birth rate, and it provides the number of people that are added to the
susceptible population at any given time. It, therefore, increases the susceptible population.

iii) (ωG): This term is how the Gross Domestic Product, GDP, affects the susceptible popula-
tion. This shows the way in which the economic characteristics influence the birth rate and,
consequently, cause an increase or a decline in the susceptible population.

II. Infected dynamics ( dI
dt ):

i) (β2SI): The expression gives the rate of conversion of Susceptible, S, into Infectious, I,
due to COVID-19. In that, it is affected by the conversion rate, β2, with the product of the
number of Susceptible, S and the Infectious, I.

ii) (-γ1I): This term reflects the rate at which the number of infections is reduced. It accounts
for factors like recovery or medical interventions that reduce the number of infectious
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individuals.
iii) (ηI): This term denotes the disease-induced death rate among the infected population. It

represents the mortality associated with the disease.

III. Recovered dynamics ( dR
dt ):

i) (γ2I): This term signifies the rate at which individuals move from the infectious (I) to the
recovered (R) compartment. It represents recovery from the disease.

ii) (-δR): This term denotes the natural death rate among the recovered population. It reflects
the mortality rate of individuals who have recovered from the disease.

IV. Unemployed dynamics ( dU
dt ):

i) (λS): This term represents the increase in unemployment due to the pandemic. It reflects
how the susceptible population contributes to the rise in unemployment.

ii) (-µU): This term represents the re-employment rate, indicating the rate at which individu-
als move from unemployment to employment. It reflects the recovery of the job market.

V. GDP dynamics ( dG
dt ):

i) (ϕG): This term represents the GDP growth rate. It indicates the natural growth or
expansion of the economy.

ii) (-κUG): This term represents the GDP decay rate due to unemployment. It reflects the
negative impact of unemployment on GDP, capturing how economic downturns affect the
overall economic output.

4 Parameter estimation

Parameter estimation is one of the most important elements in mathematical modeling and data
analysis and, therefore, in our attempt to appreciate the intricate inner workings of complex
systems, whether in physics, biology, economics, engineering, or generally in scientific and
engineering fields. The main aim of the parameter estimation process is to provide an exact
numerical value for parameters underlying a given mathematical model and bring clarity to many
of the otherwise elusive behaviors manifested by real-world systems.
Accurate parameter estimation plays a crucial role as a bridge between theoretical concepts
and tangible empirical reality. This essential bridge guides scientific investigations grounded in
evidence-based, data-driven approaches, providing researchers with a roadmap to navigate the
complexities of complex systems.
Using the least square method, we got the best-fitted parameter values, which are presented in
Table 1.

5 Stability of equilibrium points

The equilibrium points of system (2) for the parameter values as in Table 1 are

i. E1 = (1.67 × 109, 40, 155556, 9.61538, 0),
ii. E2 = (1.48417 × 109, 0, 0, 8.5625,−296.833),

iii. E3 = (0, 0, 0, 0, 0).

Theorem 3 System (2) is stable at E1, but unstable at E2 and E3.

Proof Following are the eigenvalues of system (2) at the three equilibrium points:

i. The Eigenvalues corresponding to equilibrium point E1 can be stated as follows:

λ1,1 = −1.3, λ1,2 = −0.1688462, λ1,3 = −0.009, λ1,4 = 0.001i, λ1,5 = −0.001i.
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ii. The Eigenvalues corresponding to equilibrium point E2 can be stated as follows:

λ2,1 = −1.3, λ2,2 = −0.1095, λ2,3 = −0.009, λ2,4 = −0.0011705, λ2,5 = 0.00117044.

iii. The Eigenvalues corresponding to equilibrium point E3 can be stated as follows:

λ3,1 = 1.37, λ3,2 = −1.3, λ3,3 = −1, λ3,4 = −0.009, λ3,5 = 1 × 10−6.

Table 1. Value of parameters associated with system (2)

Parameter Description Value

β1 Infection rate 2.5 × 10−8

β2 Conversion rate of Susceptible people into infected by COVID-19 6 × 10−10

α Birth Rate 1 × 10−6

ω Influence of GDP on susceptible population 5

γ1 Rate at which number of infections are reduced 3

γ2 Rate at which people move from I to R 35

η Disease induced death rate 2

δ Natural death rate 0.009

λ Unemployment rate 7.5 × 10−9

µ Re-employment rate 1.3

ϕ GDP growth rate 1.37

κ GDP decay rate due to unemployment 0.16

Table 2. Comparison of argument with π
2

Eigenvalue Argument Value Comparison with π/2
λ1,1 π π > π

2
λ1,2 π π > π

2
λ1,3 π π > π

2
λ1,4

π
2

π
2 = π

2
λ1,5

π
2

π
2 = π

2

λ2,1 π π > π
2

λ2,2 π π > π
2

λ2,3 π π > π
2

λ2,4 π π > π
2

λ2,5 0 0 < π
2

λ3,1 0 0 < π
2

λ3,2 π π > π
2

λ3,3 π π > π
2
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Table 2. Comparison of argument with π
2 - continued

Eigenvalue Argument Value Comparison with π/2
λ3,4 π π > π

2
λ3,5 0 0 < π

2

The arguments of the above eigenvalues are presented in Table 2. As it can be seen from those
values,
• The equilibrium point E1 is stable.
• The equilibrium point E2 is unstable as λ2,5 <

π
2 .

• The equilibrium point E3 exhibits instability, since λ3,1, λ3,5 <
π
2 .

6 Existence and uniqueness of solutions

Theorem 4 The kernels F1, F2, F3, F4, F5 admit the Lipschitz condition and contraction when

0 < K1, K2, K3, K4, K5 ≤ 1,

where K1 = β1ϵ2 + α, K2 = β2ϵ1 − γ1 + η, K3 = δ, K4 = µ, and K5 = ϕ + κϵ4.

Proof We assume that ||S|| ≤ λ1, ||I|| ≤ λ2, ||R|| ≤ λ3, ||U|| ≤ λ4, ||G|| ≤ λ5 and

dS
dt

= F1(t, S, I, R, U, G), (3)

dI
dt

= F2(t, S, I, R, U, G), (4)

dR
dt

= F3(t, S, I, R, U, G), (5)

dU
dt

= F4(t, S, I, R, U, G), (6)

dG
dt

= F5(t, S, I, R, U, G). (7)

For Eq. (3), we show

∥F1(t, S, I, R, U, G)− F1(t, S∗, I, R, U, G)∥ ≤ K1∥S − S∗∥,

where K1 ∈ [0, 1). Now,

∥−β1SI + αS + ωG + β1S∗ I − αS∗ − ωG∥ = ∥− β1 I(S − S∗) + α(S − S∗)∥
≤ ∥β1 I(S − S∗)∥+ ∥α(S − S∗)∥
≤ |β1|∥I∥∥S − S∗∥+ |α|∥S − S∗∥
≤ β1ϵ2∥S − S∗∥+ α∥S − S∗∥
≤ (β1ϵ2 + α)∥S − S∗∥.

Therefore K1 = (β1ϵ2 + α). For Eq. (4), we need to provide

∥F2(t, S, I, R, U, G)− F2(t, S, I∗, R, U, G)∥ ≤ K2∥I − I∗∥,
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where K2 ∈ [0, 1). Now,

||F2(t, S, I, R, U, G)− F2(t, S, I∗, R, U, G)∥ = ∥β2SI − γ1 I + η I − β2SI∗ + γ1 I∗ − η I∗∥
= ∥β2S(I − I∗)− γ1(I − I∗) + η(I − I∗)∥
≤ |β2|∥S∥∥I − I∗∥− |γ1|∥I − I∗∥+ |η|∥I − I∗∥
≤ (|β2|∥S∥− |γ1|+ |η|)∥I − I∗∥
≤ (β2ϵ1 − γ1 + η)∥I − I∗∥.

Therefore K2 = (β2ϵ1 − γ1 + η). For Eq. (5), we need to show

∥F3(t, S, I, R, U, G)− F3(t, S, I, R∗, U, G)∥ ≤ K3∥R − R∗∥,

where K3 ∈ [0, 1). Then

||F3(t, S, I, R, U, G)− F3(t, S, I, R∗, U, G)|| = ||γ2 I − δR − γ2 I + δR∗||

= ||− δ(R − R∗)|| ≤ |δ|||R − R∗||

≤ δ||R − R∗||.

Therefore K3 = δ. For Eq. (6), we need to obtain

∥F4(t, S, I, R, U, G)− F4(t, S, I, R, U∗, G)∥ ≤ K4∥U − U∗∥,

where K4 ∈ [0, 1). Now, we have

||F4(t, S, I, R, U, G)− F4(t, S, I, R, U∗, G)|| = ||αG − µU − αS + µU∗||

= ||− µ(U − U∗)|| ≤ |µ|||U − U∗||

≤ µ||U − U∗||.

Therefore K4 = µ. For Eq. (7), we need to show

∥F5(t, S, I, R, U, G)− F5(t, S, I, R, U, G∗)∥ ≤ K5∥G − G∗∥,

where K5 ∈ [0, 1). Then

||ϕG − κUG − ϕG∗ + κUG∗|| ≤ ||ϕ(G − G∗)− κU(G − G∗)||

≤ |ϕ|||G − G∗||+ κϵ4||G − G∗||

≤ (ϕ + κϵ4)||G − G∗||.

Therefore K5 = (ϕ + κϵ4).
Here, K1, K2, K3, K4, K5 are the Lipschitz constants for the functions F1, F2, F3, F4 and F5, respec-
tively.
Now that we have proved the existence of Lipschitz constants K1, K2, K3, K4, K5, the existence of a
unique solution to system (2) is also ensured following the methodology shown in [28].

7 Boundedness

Theorem 5 The proposed S-I-R-U-G model Eq. (2) is bounded by Theorem 2.
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Proof Let X(t) = S(t) + I(t) + R(t) + U(t) + G(t).
On differentiating X(t), we have

dX
dt

+ ΦX =
d(S + I + R + U + G)

dt
+ Φ(S + I + R + U + G).

Simplifying, we have

dX
dt

+ ΦX = −β1SI + αS + ωG + β2SI − γ1 I + η I + γ2 I − δR

+ λS − µU + ϕG − κUG + ΦS + ΦI + ΦR + ΦU + ΦG.

Removing the negative terms, we get

dX
dt

+ ΦX ≤ αS + ωG + β2SI + η I + γ2 I + λS + ϕG + ΦS + ΦI + ΦR + ΦU + ΦG.

Now, the solution of system (2) exists uniquely in

{(S, I, R, U, G) : max(|S|, |I|, |R|, |U|, |G|) ≤ M},

where M is a positive constant. Therefore, we can write

dX
dt

+ ΦX ≤ (α + ω + β2 M + η + γ2 + λ + ϕ)M + 5ΦM = γ1.

Using Theorem 1, we get

X(t) ≤
(

Xt0 −
γ1

Φ

)
e−Φ(t−t0) +

γ1

Φ
.

Therefore, system (2) is bounded.

8 Numerical method

The Runge-Kutta 4th order (RK4) method occupies a pivotal position in the arsenal of numerical
techniques applied to SIR (Susceptible-Infectious-Recovered) modeling within epidemiology.
Renowned for its adept balance between accuracy and computational efficiency, RK4 is widely
embraced for its reliability and ease of implementation. Its enduring popularity stems from its
ability to deliver precise solutions while remaining relatively straightforward to employ, robust in
the face of diverse scenarios, and stable across a range of conditions. As a consequence, RK4 has
emerged as a cornerstone in epidemiological simulations, serving as a linchpin for researchers
seeking to unravel the complexities of disease dynamics.
At its core, RK4 functions by breaking down the differential equations governing infectious
disease transmission into discrete steps, allowing for the meticulous exploration of various
epidemiological scenarios. By leveraging RK4, researchers can simulate and analyze the impact
of different interventions, ranging from vaccination campaigns to social distancing measures,
thereby informing evidence-based public health strategies and policy decisions.
In practical terms, RK4 enables epidemiologists to simulate disease outbreaks with a high degree
of fidelity, providing invaluable insights into the progression and containment of infectious
diseases. Its versatility extends beyond simple SIR models, as RK4 can be adapted to explore
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more complex dynamics, such as spatial spread, heterogeneous populations, and the interplay
of multiple infectious agents. Moreover, RK4’s computational efficiency makes it well-suited
for real-time epidemic forecasting and scenario planning, empowering public health officials to
anticipate and respond effectively to emerging threats.
To solve system (2) using the classical Runge-Kutta method of 4th order, we define the system as

f1(S, I, R, U, G) = −β1SI + αS + ωG,

f2(S, I, R, U, G) = β2SI − γ1 I + η I,

f3(S, I, R, U, G) = γ2 I − δR,

f4(S, I, R, U, G) = λS − µU,

f5(S, I, R, U, G) = ϕG − κUG.

(8)

Using the RK4 method, we compute the intermediate values as follows

k(i)1 = h fi(Sn, In, Rn, Un, Gn),

k(i)2 = h fi

(
Sn +

k(1)1
2

, In +
k(2)1

2
, Rn +

k(3)1
2

, Un +
k(4)1

2
, Gn +

k(5)1
2

)
,

k(i)3 = h fi

(
Sn +

k(1)2
2

, In +
k(2)2

2
, Rn +

k(3)2
2

, Un +
k(4)2

2
, Gn +

k(5)2
2

)
,

k(i)4 = h fi

(
Sn + k(1)3 , In + k(2)3 , Rn + k(3)3 , Un + k(4)3 , Gn + k(5)3

)
.

(9)

The values at the next time step are computed as

Sn+1 = Sn +
1
6

(
k(1)1 + 2k(1)2 + 2k(1)3 + k(1)4

)
,

In+1 = In +
1
6

(
k(2)1 + 2k(2)2 + 2k(2)3 + k(2)4

)
,

Rn+1 = Rn +
1
6

(
k(3)1 + 2k(3)2 + 2k(3)3 + k(3)4

)
,

Un+1 = Un +
1
6

(
k(4)1 + 2k(4)2 + 2k(4)3 + k(4)4

)
,

Gn+1 = Gn +
1
6

(
k(5)1 + 2k(5)2 + 2k(5)3 + k(5)4

)
.

(10)

To generate the simulation results presented in this study, the RK4 method was implemented
using Python. Python’s rich ecosystem of libraries, including NumPy and Matplotlib, was
utilized to ensure precision in numerical computations and clarity in visualizing the results.
The implementation in Python further underscores the accessibility and reproducibility of the
simulation process, enabling researchers to replicate and extend the findings with ease.

Model simulations

The following are the graphs obtained using the Runge-Kutta 4th-order method. The red points
showcase the real data value points, and the blue line showcases our model.

Inferences on the different compartments based on the numerical simulations for system (2):
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Figure 1. Subplot showing numerical results for (a) Susceptible, (b) Infection, (c) Recovered, (d) Unemployment
and (e) GDP at parameters given in Table 1

Susceptible population: In Figure 1a, the susceptible population (S(t)) exhibits a decreasing trend
over time, indicating potential exposure and infection in the population. The red data points,
representing observed values, align closely with the simulated results, underscoring the accuracy
of the model.

Infected population: In Figure 1b, the infected population (I(t)) displays fluctuations over time,
possibly reflecting the impact of interventions or variations in disease spread. The close alignment
of the data points with the model’s predictions suggests that the model effectively captures ob-
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served infection trends.

Recovered population: In Figure 1c, the recovered population (R(t)) demonstrates a consistent
increase over time, illustrating the cumulative number of individuals who have successfully
overcome the infection. The model’s trajectory closely follows the provided data points, affirming
its reliability in simulating recovery dynamics.

Unemployed population: In Figure 1d, the unemployed population (U(t)) experiences fluctua-
tions, possibly influenced by economic factors or external events. The observed data points exhibit
variations, and the model successfully captures the general trend, indicating its ability to simulate
the dynamics of unemployment in response to changing conditions.

GDP: In Figure 1e, GDP, denoted as (G(t)), displays a consistent increase over time, suggesting
economic growth. The observed data points align well with the model’s predictions, indicating
that the simulated economic dynamics accurately represent the growth trends in GDP.

9 Results and discussion

The following sections demonstrate the influence of various parameters like ϕ and κ on GDP and
of λ and µ on the unemployment rate.

Influence of ϕ and κ on GDP
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Figure 2. (a) GDP with decreased and increased ϕ value, (b) GDP with decreased and increased κ value at
parameters given in Table 1

Influence of ϕ (gross domestic product growth rate) on GDP dynamics:
The parameter ϕ plays a key role in shaping the economy’s path. It represents the natural rate
at which the Gross Domestic Product grows. In economic terms, ϕ shows how much room an
economy has to grow and come up with new ideas. Looking at Figure 2a, we can see that when ϕ

drops to 1.3, the GDP growth curve moves to the right. This shift means the economy is growing
more. When growth slows down like this, it often leads to other changes. Companies might not
want to invest as much money. Workers might not produce as much. And the country might
fall behind in developing new tech and building new infrastructure. On the other hand, when
ϕ goes up (1.4), it pushes the GDP growth curve to the left, showing faster economic growth. A
higher intrinsic growth rate points to a more energetic and ever-changing economy. This means
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that a setting that supports new ideas, business creation, and good economic conditions can help
overcome the problems caused by disease outbreaks and job losses, leading to a quicker bounce
back.
Influence of κ (GDP decay rate due to unemployment) on GDP dynamics:
The κ parameter captures how unemployment hurts GDP, showing the cost to the economy when
people can’t work. Looking at Figure 2b, we see that a lower κ (0.15) pushes the GDP growth
curve to the left, which is good news. This move hints that steps to soften the unemployment’s
blow can speed up economic growth. A smaller κ points to a tougher job market, less economic
decay, and more room for GDP to grow. On the flip side, a higher κ (0.17) pushes the GDP growth
curve to the right, meaning unemployment hits economic growth harder. A faster GDP decay rate
due to joblessness suggests a job market that’s slower to change and respond, which could slow
down the whole process of getting the economy back on track.
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Figure 3. (a) Unemployment with decreased and increased λ value, (b) Unemployment with decreased and
increased µ value at parameters given in Table 1

Influence of unemployment rate (λ) on unemployment dynamics:
The unemployment rate, symbolized by λ, plays a key role in shaping how unemployment changes
over time. Looking at Figure 3a, we see that when λ goes down (7 × 10−9), the unemployment
curve moves to the right. This shift shows that a lower jobless rate causes unemployment to grow
more as time passes. We can link this to things like fewer people quitting their jobs or less job
loss in the economy. On the other hand, when λ goes up (8 × 10−9), it pushes the unemployment
curve to the left. This means unemployment grows faster as time passes. This might happen
because more people quit their jobs or because jobs disappear quicker in the economy. When
unemployment rates go up, it makes the job market tougher. This can put more stress on the
economy.

Influence of re-employment rate (µ) on unemployment dynamics:
The re-employment rate, symbolized by µ, plays a key role in the dynamics of unemployment,
showing how well the labor market supports job transitions. As seen in Figure 3b, when µ de-
creases, the unemployment curve shifts to the left. This shift indicates that a lower re-employment
rate causes unemployment to rise more quickly over time. This could happen due to a lack of job
opportunities or slower job creation in the economy.

In contrast, when µ increases, the unemployment curve moves to the right, indicating a slower rise
in unemployment over time. This could be because of more job opportunities or faster job creation
in the economy. A higher re-employment rate reflects a more effective labor market, which can
help reduce unemployment and promote economic stability.
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Influence of infection rate (β1) on gross domestic product

The influence of infection rates, denoted by β1, on GDP is important. Figure 4 demonstrates how
different infection rates affect GDP growth. Increased speeds will reduce the life of the pandemic,
which will mean faster accelerated rates that will foster economic recovery, whereas decelerated
rates would only lengthen the downturn. This underlines the delicate balance between public
health and economic stability, emphasizing the need for effective strategies to manage infection
rates while promoting sustainable growth.
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Figure 4. Influence of infection rate on GDP

Accelerated infection rate and economic recovery
An increased infection rate implies a rapid spread of the disease, leading to a quicker rise in the
number of infected individuals within a shorter timeframe. A shorter duration of the pandemic
may prompt an earlier commencement of the economic recovery phase. The accelerated comple-
tion of the pandemic might lead to a more immediate resurgence in economic activities, potentially
resulting in a swifter rebound in GDP.

Decelerated infection rate and prolonged economic downturn
A slower infection rate extends the timeline of the pandemic, resulting in a more prolonged period
of disease transmission. A longer pandemic timeline might lead to a more prolonged economic
downturn.

Economic implications of infection rates on diverse sectors

Healthcare outlays stimulating economic sectors
Elevated infection rates increase healthcare spending, leading to a surge in resource allocation
toward healthcare infrastructure, medical supplies, and research. This intensifies during health
crises. Heightened healthcare expenditure catalyzes economic activity within specific sectors,
fostering favorable growth in GDP. Amid the pandemic, India’s public health spending increased
from 1.5 percent to 1.8 percent of the GDP [29]. The PM Ayushman Bharat Health Infrastructure
Mission scheme intends to enhance infrastructure, funded by the central government [29].

Labor market fluctuations in response to infection rates
Rapid escalations can initially lead to a transient reduction in the labor force. The reintegration of
workers into the workforce can contribute to a resurgence in economic productivity.
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Innovative resilience and industrial adaptation
Heightened infection rates often spur an incentive for innovation and adaptability within indus-
tries. This incentive leads to pivots in production to accommodate the manufacturing of essential
goods or services requisite during crises, raising the need for the emergence of novel business
models or technological advancements. This adaptive shift can give rise to growth in specific
sectors, exerting a positive influence on aggregate GDP.

Dynamic consumer behavioral shifts
Varied infection rates may cause shifts in consumer behavior patterns during pandemics. These
shifts lead to alterations in expenditure distributions, with some sectors witnessing a downturn
while others experience increased demand. The surge in demand for essential commodities or the
accelerated adoption of online services can invigorate specific sectors, thereby bolstering overall
GDP growth. There has been a surge of over 100 percent in the demand for essential commodities
like rice, wheat, and pulses [30]. Additionally, other food categories such as confectioneries,
sweets, organic processed food, and spices have also experienced a notable increase of 15-20
percent [30].

Governmental fiscal interventions and stimuli
Governmental responses to pandemics often include fiscal policies and stimuli aimed at buttressing
businesses and individuals impacted by the crisis. Such interventions, spanning financial aid,
tax concessions, or infrastructure investment, are designed to stabilize the economy and wield a
positive influence on GDP growth trajectories. India’s government introduced a COVID-19 social
aid package worth INR 1.7 lakh crore (equivalent to 25 billion US dollars) through the Pradhan
Mantri Garib Kalyan Yojana (PM-GKY) [31] to offer prompt assistance to those in need.

Research and development investments for long-term economic impacts
Escalating infection rates frequently prompt heightened investments in research and development
endeavors, particularly toward vaccines, treatments, or preventive measures. The resultant scien-
tific breakthroughs engendered by such investments manifest long-term positive repercussions
across various industries, nurturing innovation and consequent economic growth.

Prospective revival of tourism and hospitality sectors
Subsequent to periods of elevated infection rates and constrained travel, pent-up demand often
surfaces for travel and related hospitality services upon the amelioration of the situation. This
prospective resurgence in the tourism and hospitality sectors holds the potential to significantly
contribute to the resurgence of GDP growth. The recovery of the tourism sector will hinge on
enhancing trust in travel and reducing the perceived risks associated with it [32]. The impact of
COVID-19 influences consumers’ perceptions of tourism products and services [33].

Okun’s law

Okun’s law originates from the study between unemployment and economic growth by Okun
(1962) [34] on the United States economy, where he observed that there was an inverse relationship
between the two variables. Okun (1962) observed that a percentage increase in economic growth
would result in a 0.3 percent decline in unemployment.
The SIRUG model incorporating Okun’s Law provides a comprehensive framework for under-
standing the complex interplay between epidemiological dynamics and economic factors during
the COVID-19 pandemic. It facilitates informed decision-making and policy formulation [35] to
mitigate the health and economic impacts of the crisis.
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The graph Figure 5 plots the unemployment rate on the y-axis and GDP on the x-axis. The data
points show a negative correlation between the two variables, consistent with Okun’s Law. In
other words, as the unemployment rate increases, GDP decreases, and vice versa. However,
the data points also deviate from a straight line, indicating that the relationship between the
unemployment rate and GDP is not perfectly linear. The data points in the graph represent the
percent change in value with the previous value as the base. A negative value indicates a negative
percent change, while a positive value indicates a positive percent change.

Observations

Outliers, such as the sharp decline in GDP accompanied by a high unemployment rate in 2020
Q2, can be understood within the framework of Okun’s Law. Such an event could be associated
with an economic downturn or recession, where a significant drop in GDP leads to an increase in
unemployment. This could be due to factors like reduced consumer spending, investment, and
overall economic activity due to the surge of the pandemic.
The period of economic recovery observed in 2021 and 2022, where GDP increases and unem-
ployment decreases, aligns well with Okun’s Law. As the economy begins to recover, increased
economic output (reflected in rising GDP) typically leads to job creation and a decline in unem-
ployment rates. This can be attributed to factors like increased consumer confidence, government
stimulus measures, and business investments.
The increase in unemployment and decrease in GDP observed in 2023 Q4 is again consistent with
Okun’s Law but in the reverse direction. Such a scenario could signal another economic downturn
or slowdown, where a decrease in GDP leads to layoffs and rising unemployment rates. Factors
contributing to this could include external shocks, changes in government policies, or shifts in
global economic conditions.
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Figure 5. Change in GDP with change in unemployment - demonstration of Okun’s Law

Long-term economic implications and policy recommendations

The analysis of the SIRUG model, incorporating epidemiological and economic dynamics, reveals
several crucial implications for long-term economic planning and policy formulation. The model’s
findings demonstrate significant relationships between health metrics, economic indicators, and
social outcomes, providing valuable insights for policy development.
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Labor market dynamics and economic growth
The examination of unemployment (λ) and re-employment (µ) rates reveals crucial patterns
in labor market behavior. The model demonstrates that decreased re-employment rates shift
unemployment curves leftward, indicating accelerated unemployment growth. When the natural
growth rate (ϕ) increases to 1.4, the economy exhibits faster growth patterns, highlighting the
importance of supporting innovation and entrepreneurship. Additionally, lower GDP decay rates
(κ = 0.15) correlate with enhanced economic resilience, suggesting that robust unemployment
protection mechanisms significantly contribute to economic stability.

Healthcare infrastructure and sectoral adaptations
The study establishes a clear correlation between infection rates (β1) and economic performance.
Analysis reveals that while accelerated infection rates may shorten pandemic duration, they
can trigger severe economic shocks. This finding is supported by India’s strategic increase in
health spending from 1.5% to 1.8% of GDP [29]. The model further indicates substantial shifts
in consumer behavior during crisis periods, with essential commodities experiencing demand
surges exceeding 100% [36]. These patterns emphasize the necessity for sector-specific adaptation
strategies and modernized healthcare infrastructure.

Economic stabilization and future preparedness
The relationship between unemployment and GDP, as demonstrated through the model’s ap-
plication of Okun’s Law, provides crucial insights for economic stabilization mechanisms. The
implementation of support programs, exemplified by India’s PM-GKY scheme providing INR
1.7 lakh crore in aid [37], demonstrates the effectiveness of timely governmental intervention. The
study indicates that anticipatory policy frameworks, encompassing both immediate response
capabilities and long-term resilience mechanisms, are essential for future crisis management.

Research investment and policy integration
The model’s findings emphasize the critical role of research and development in crisis resilience.
Analysis suggests that integrated approaches combining healthcare research, technological ad-
vancement, and economic adaptation yield optimal outcomes. This necessitates sustained invest-
ment in research infrastructure and the development of flexible policy frameworks capable of
responding to evolving challenges. The study demonstrates that successful economic recovery
requires coordinated efforts across healthcare, employment, and fiscal policy domains.

The findings support a comprehensive approach to policy development, integrating health infras-
tructure investment, labor market flexibility, and research advancement. These elements, working
in concert, provide the foundation for robust economic recovery and long-term resilience against
future crises. The model’s insights suggest that policy effectiveness depends on the ability to
implement coordinated responses across multiple sectors while maintaining flexibility for rapid
adaptation to changing circumstances..

10 Future directions

The SIRUG model opens up several exciting avenues for future research in understanding how
diseases affect economies. Future studies could enhance the model by exploring the complex
ways that health crises and economic factors influence each other, going beyond the current
straightforward relationships. An important area for development would be incorporating the
effects of different government policies, such as economic support packages and healthcare
initiatives, to better predict their impact on recovery. Additionally, future research could break



252 | Mathematical Modelling and Numerical Simulation with Applications, 2025, Vol. 5, No. 1, 234–256

down the analysis by different economic sectors, as studying how various industries respond
uniquely to health crises could provide more targeted policy recommendations.

The model’s framework could be further enriched by exploring regional variations and demo-
graphic factors, as health crises often affect communities differently. This could lead to more
tailored intervention strategies based on local conditions and population characteristics. Further-
more, incorporating international factors such as global supply chains and trade relationships
would make the model more comprehensive and applicable to our interconnected world economy.
These enhancements would build upon the current SIRUG model’s foundation, making it an even
more powerful tool for understanding and responding to future health and economic challenges..

11 Conclusion

The paper provides an overall analysis of the complex relationship between health variables
and economic variables during the COVID-19 pandemic period in India from 2020 to 2023.
In a bid to understand the impact of the pandemic on public health and the economy, this
research modified the classic SIR model by adding the components of Gross Domestic Product
and rate of unemployment. Anchoring on SIRUG, we have combined Okun’s Law aspect with
epidemiological dynamics and relevant economic factors in our model. Our results suggest, as
expected, that on average, unemployment is negatively correlated with GDP. In keeping with
Okun’s Law, changes in one variable do seem to influence another. We also showed deviations
from a perfect linear relationship, which further proves the multifaceted nature of this relationship
of variables.
The trends that came out were the steep fall of GDP followed by a surge in unemployment in
2020 Q2, commensurate with the economic downturns attributed to the pandemic. Similarly, the
economic recoveries during 2021 and 2022, accompanied by rising GDP and decreased unem-
ployment, are not only in conformity with Okun’s Law but also represent the strong bounce-back
ability of the economy after crisis periods. On the other hand, challenges have been found in
the research, like increasing reduction in GDP observed in 2023 Q4, indicating the likelihood of
economic slowdowns or recessions.
These findings highlight how aggressive policy measures at both ends can dampen the adverse
impacts of health shocks on the economy and vice versa. This paper opens the pathway to
future and deep research into this complex interaction of epidemics and economic variables for
India in several possible ways. First, the SIRUG model could be fine-tuned to enhance policy
decisions during pandemics, its parameters can be calibrated with India-specific data, effectuating
an equilibrium between GDP growth rate, unemployment level, and disease diffusion. This
model could also be extended to incorporate behavior changes in order to speed up the program
impact on the transmission and recovery rates, respectively. This will help fight any negative
repercussions arising from educating the population on proper health measures that aim at
reducing morbidity and mortality in general. Thirdly, incorporating variables like viral mutation
patterns and healthcare delivery capacity will future-proof it for other pandemics while capturing
regional differences across India. Fourthly, in the pursuit of long-term resilience, strategies such as
health sector development or supporting a diversity of industries are necessary to sustain them
over time. Further, it will be able to assess government programs for the control of unemployment
and various other health issues that they confront today. Lastly, sensitivity analyses, real-time
forecasting, and the use of present values data would enhance the model’s accuracy and relevance.
In summary, the effort put into this research creates an in-depth insight into the interactive
dynamics at play during pandemics and becomes very resourceful to policymakers and researchers.
We establish a platform for an informed decision– by combining health and economic variables in
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a unified model, making provision for policy formulation that will help to address the challenges
that may be triggered by future health and economic crises.
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