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MODULES WITH VALUES IN THE SPACE OF ALL

DERIVATIONS OF AN ALGEBRA

H. ABBASI AND GH. HAGHIGHATDOOST

Abstract. In this paper, we construct a groupoid associated to a module

with values in the space of all derivations of a unital algebra. More precisely,

for a pair (A,G) consisting of an algebra A with a unit, a module G over the
center Z(A) of A together with a homomorphism of Z(A)-modules from G to

the space of all derivations Der(A) of A, we associate a groupoid. We discuss

on the equivalence relation induced from this groupoid.

1. Introduction

The concept of a groupoid is a generalization of the concept of a group, the main
difference being that not any two elements of a groupoid are composable. Note that
groupoids generalize not only the notion of a group but also the notion of a group
action. A groupoid can be endowed with the algebraic, geometric or topological
structures and in this case we can study the compatibility among these structures
and groupoid.

Note that the theory of groupoids has developed in different fields of mathe-
matics. The algebraic, topological and differentiable groupoids play an important
role in algebra, measure theory, harmonic analysis, differential geometry and sym-
plectic geometry. This can also be seen from a look at the list of references (see
[3, 5, 6, 7, 8, 9]).

A set H(1) has the structure of a groupoid with the set of units H(0), if there
are defined maps ∆ : H(0) → H(1), an involution ı : H(1) → H(1) and denoted by
ı(α) = α−1, a map r : H(1) → H(0), a map s : H(1) → H(0) and an associative
multiplication (α, β) 7→ αβ defined on the set

H(2) = {(α, β) ∈ H(1) ×H(1)
∣∣ s(α) = r(β)},

satisfying the conditions
(i) s(α) = r(α−1), αα−1 = ∆(r(α)),
(ii) r(∆(t)) = t = s(∆(t)), α∆(s(α)) = α, ∆(r(α))α = α,
for all α ∈ H(1) and t ∈ H(0).
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It is known that for an arbitrary groupoid (H(1),H(0)) there is an equivalence
relation on the unit set H(0). Namely, for two elements x, y ∈ H(0) the relation
x ∼ y iff s−1(x) ∩ r−1(y) 6= ∅ is an equivalence relation on the unit set H(0).

In [1], a method of associating a groupoid to a smooth manifold was introduced.
In this paper, we use the same method to construct a groupoid associated to a
module with values in the space of all derivations of a unital algebra. The focus in
this paper is on the several examples.

Let A be an algebra with a unit. Let Der(A) denote the space of all derivations
of A, i.e., the space of all linear mappings X of A into itself satisfying the Leibniz
rule X(ab) = X(a)b+ aX(b). The space Der(A) is in a natural way a module over
the center Z(A) of A. Furthermore, the space Der(A) is also a Lie algebra with
Lie bracket [X,Y ] = XY − Y X.

Consider a pair (A,G) consisting of a module G over the center Z(A) of A
together with a linear map from G to Der(A), which is also a homomorphism of
Z(A)-modules. In this paper, such pairs are called A-pairs.

We now give a brief summary of how the paper is organized.
In Section 2, we begin with our basic construction. We construct a groupoid

associated to an A-pair and we shall discuss on the equivalence relation induced
from this groupoid. In the case when G is a Lie algebra, we will give the conditions
that the equivalence classes are abelian Lie subalgebras of the Lie algebra G.

In Section 3, we compute and investigate the equivalence classes for several
examples. This section is devoted to the central algebras, foliation manifolds and
the endomorphism algebra of a vector bundle.

Our basic reference for groupoids is [2], and for an extensive use of them one can
refer to [5].

Throughout this paper, all smooth manifolds are assumed to be real, Hausdorff,
and finite-dimensional. All vector fields on manifolds are assumed to be smooth. If
M is a smooth manifold, let =(M) be the Lie algebra of all vector fields on M and
let C∞(M) be the algebra of all smooth functions on M .

2. Groupoid associated to an A-pair

In this section, we will introduce and construct a groupoid associated to an
A-pair. Let A be an algebra with a unit.

Definition 2.1. By an A-pair we mean a pair (A,G), where G is a module over
the center Z(A) of A together with a homomorphism of Z(A)-modules T : G →
Der(A).

In this paper, X(a) denotes T (X)(a), for all X ∈ G and a ∈ A. Using Definition
2.1, for all X ∈ G and a ∈ Z(A) we have X(a) ∈ Z(A).

Example 2.1. The pair (A, Der(A)) is an A-pair.

Consider an A-pair (A,G). The set of all invertible elements in the algebra A is
denoted by Inv(A), that is, for all a ∈ Inv(A) there exists an element a−1 ∈ A
such that aa−1 = 1 = a−1a.

Let ΓA = (Z(A) ∩ Inv(A))× Z(A). Fix an element X ∈ G. Let

G(1)X (A) = {(Y, a, b)
∣∣ Y ∈ G, (a, b) ∈ ΓA, Y (a) = X(b) + b}.
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We have to show that the pair (G(1)X (A),G) has the structure of a groupoid. Define

the map ∆ : G → G(1)X (A) by

∆(Y ) := (Y, 1, 0).

Since Y (1) = X(0) + 0, it follows that ∆ is well-defined. Define r, s : G(1)X (A)→ G
by

r(Y, a, b) := Y, s(Y, a, b) := aY − bX.
Define the involution ı : G(1)X (A)→ G(1)X (A) by

ı(Y, a, b) = (Y, a, b)−1 := (aY − bX, a−1,−a−1b).
We have

(aY − bX)(a−1)−X(−a−1b) = aY (a−1) + a−1Y (a)− a−1b
= Y (1)− a−1b = −a−1b.

This shows that ı is well-defined. Define the multiplication by

(Y, a, b)(aY − bX, c, d) := (Y, ac, bc+ d).

We have

Y (ac)−X(bc+ d) = (Y (a)−X(b))c+ aY (c)− bX(c)−X(d)

= bc+ (aY − bX)(c)−X(d) = bc+ d.

It is straightforward to check the following axioms are true:

s(α) = r(α−1), r(∆(Y )) = Y = s(∆(Y )),

αα−1 = ∆(r(α)),

α∆(s(α)) = α, ∆(r(α))α = α,

for all α ∈ G(1)X (A) and Y ∈ G.
For any fixed X ∈ G, we obtain an equivalence relation on the module G (see

Section 1 above). We say that two elements Y and W of G are equivalent iff there
exists a pair (a, b) ∈ ΓA such that

aW = bX + Y, W (a) = X(b) + b.

Let [(X,Y )]A be the equivalence class of any Y ∈ G.
Let us give an example. In the following, we consider the case for (C∞(R2),=(R2))

(see Example 2.1 above).

Example 2.2. The vector field X on R2 defined in terms of the identity chart x
by

X = x1
∂

∂x1
+ x2

∂

∂x2

has integral curves γ(t) = (z1 exp t, z2 exp t) starting at the point (z1, z2). Let
ζ : C∞(R2) → C∞(R2) be the zero vector field, defined by ζ(f) = 0 for each
f ∈ C∞(R2). We have

[(X, ζ)]C∞(R2) = { g
f
X | (f, g) ∈ ΓC∞(R2), gX(f)− fX(g) = fg}.

Assume that W = g
fX ∈ [(X, ζ)]C∞(R2) such that g is a non-zero function. Since

d
dt (

g
f ◦ γ) = X( gf ) ◦ γ, it follows that

f(z1, z2)g(z1 exp t, z2 exp t) exp t = f(z1 exp t, z2 exp t)g(z1, z2),
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on R, for all (z1, z2) ∈ R2. Hence, we have

f(z1, z2)g(z1s, z2s)s = f(z1s, z2s)g(z1, z2),

for all (z1, z2) ∈ R2 and all s > 0. Since g
f 6= 0 we can choose z ∈ R2 such that

g(z)
f(z) 6= 0. Then lims→0 | g(sz)f(sz) | would be infinite and this would imply that g

f is not

continuous at 0 and this is a contradiction. Hence, we have [(X, ζ)]C∞(R2) = {ζ}.

In addition, in the case when G is a Lie algebra we will give the conditions that
the equivalence classes are Lie subalgebras of the Lie algebra G.

The following theorem is the main result of this paper.

Theorem 2.1. Consider an A-pair (A,G), where G is also a Lie algebra with a
Lie bracket [, ]. Moreover, assume that for all a ∈ Z(A) and X,Y ∈ G we have
[X, aY ] = X(a)Y + a[X,Y ]. Let X,Y ∈ G. Then the following properties are
equivalent:

(i) [(X,Y )]A is an abelian Lie subalgebra of the Lie algebra G,
(ii) [(X,Y )]A = {aX | a ∈ Z(A), X(a) = −a},
(iii) there is an element t ∈ Z(A) such that Y = −tX and X(t) = −t.

Proof. It is easy to check that (i) =⇒ (ii) and (ii) =⇒ (iii). It suffices to prove
that (iii) =⇒ (i). Let t ∈ Z(A) such that Y = −tX and X(t) = −t. Assume that
W,Z ∈ [(X,Y )]A and λ ∈ C. We have to show that W + Z ∈ [(X,Y )]A, λW ∈
[(X,Y )]A and [W,Z] = 0. Choose (a, b) and (c, d) in ΓA such that

cZ = (d− t)X, aW = (b− t)X,

and

Z(c) = X(d) + d, W (a) = X(b) + b.

Let (s, h) = (ac, ad+ bc+ t(1− c− a)). It follows that

s(W + Z)− hX = Y.

Also, we have

(W + Z)(s)−X(h) = X(b)c+ cb+ (b− t)X(c) + (d− t)X(a)

+ aX(d) + ad−X(a)d− aX(d)−X(b)c

− bX(c)−X(t) +X(t)c+ tX(c) +X(t)a

+ tX(a)

= ad+ bc−X(t) +X(t)c+X(t)a = h.

So, we have W + Z ∈ [(X,Y )]A. On the other hand, it is simple to see that
λW ∈ [(X,Y )]A. Also, we have

ac[W,Z] = (b− t)X(d− t)X − (b− t)X(c)c−1(d− t)︸ ︷︷ ︸
X(d)+d

X

− (d− t)X(b− t)X + (d− t)X(a)a−1(b− t)︸ ︷︷ ︸
X(b)+b

X

= (b− t)X(d− t)X − (b− t)(X(d) + d)X

− (d− t)X(b− t)X + (d− t)(X(b) + b)X = 0.

Since ac ∈ Inv(A), it follows that [W,Z] = 0. �
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Let M be a smooth manifold and X a vector field on it. A non-zero function
h ∈ C∞(M) such that X(h) = λh, for some real number λ, is said to be an
eigenfunction of the vector field X and λ is called the corresponding eigenvalue.
Note that a non-zero function h ∈ C∞(M) is an eigenfunction of a vector field X
corresponding to a zero eigenvalue if and only if it is constant on the range of every
integral curve.

Example 2.3. (i) Any vector field X on a compact manifold M has all its eigen-
values zero. Let ζ : C∞(M) → C∞(M) be the zero vector field. Using Theorem
2.1, one gets [(X, ζ)]C∞(M) = {ζ}.

(ii) The vector field X on R2 defined in terms of the identity chart x by

X = x2
∂

∂x1
− x1 ∂

∂x2

has every eigenvalue zero, since its integral curves

γ(t) = (a sin(t+ b), a cos(t+ b)), γ(0) = (a sin(b), a cos(b)),

are all periodic, that is, there exists r > 0 such that γ(t1) = γ(t2) if and only if
t1 − t2 = kr, for some k ∈ Z. Let ζ be the zero vector field on R2. Hence, using
Theorem 2.1, we have [(X, ζ)]C∞(R2) = {ζ}.

3. Examples

Let us compute and investigate the equivalence classes for some examples. First,
we consider the case where the center of the algebra A is the set Z(A) = C1. For
example, consider the algebra of n× n complex matrices Mn(C).

Example 3.1. Consider an A-pair (A,G), assume that Z(A) = C1. We see that
X(Z(A)) = 0, for all X ∈ G. Let X,Y ∈ G and W ∈ [(X,Y )]A. It follows that

W (a) = X(b) + b, aW = bX + Y,

for a = α1, b = β1, where α, β ∈ C and α 6= 0. Therefore, we have b = 0 and
W = 1

αY. Thus [(X,Y )]A ⊂ (C − {0})Y . On the other hand, it is simple to see
that (C− {0})Y ⊂ [(X,Y )]A. Hence, we have

[(X,Y )]A = (C− {0})Y,
for all X,Y ∈ G.

Recall that a p-dimensional foliation F on a n-dimensional smooth manifold
M consists of the partition of M into maximal integral submanifolds (leaves) of
an integrable, p-dimensional subbundle F = TF of the tangent bundle TM . The
vector fields on M which are tangent to the leaves of F form a Lie subalgebra of
the Lie algebra =(M), which we denote by =(F). In other words, =(F) consists
of the sections of the tangent bundle TF of the foliation F . A smooth function ϕ
on M is called basic if it is constant along the leaves. Equivalently, a function ϕ is
basic if X(ϕ) = 0 whenever X ∈ =(F), briefly =(F)(ϕ) = 0. We refer to [4], for
details on foliations.

Example 3.2. Let (M,F) be a foliation manifold. The basic functions on (M,F)
form a subalgebra A of C∞(M):

A = {ϕ ∈ C∞(M)
∣∣ =(F)(ϕ) = 0}.
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In general, the Lie subalgebra =(F) is not a Lie ideal in =(M), but it is clearly a
Lie ideal in the Lie subalgebra

G = {Z ∈ =(M)
∣∣ [=(F), Z] ⊂ =(F)}.

Remark that G is a module over the algebra of basic functions. Also, the definition
of the Lie bracket implies that the derivative of a basic function in the direction of
a vector field in G is again basic. Therefore, we can define a linear map T : G →
Der(A) by T (Z)(ϕ) = Z(ϕ). We obtain that the pair (A,G) is an A-pair. Let
X ∈ =(F) ⊂ G and one gets

[(X,X)]A = {ϕX
∣∣ϕ ∈ Inv(A)}.

In the following, we consider the case for the pair

(End(E), Der(End(E))),

which End(E) is the algebra of the endomorphisms of a vector bundle E over a
smooth manifold M. We compute the equivalence class for X,Y ∈ Der(End(E))
which are also homomorphisms of C∞(M)-modules.

Example 3.3. Let E be a finite-dimensional complex (or real) vector bundle over
a smooth manifold M . We denote by End(E) the algebra of the endomorphisms of
this bundle. Any element ϕ ∈ End(E) can be considered as a section of the bundle
of endomorphisms. Therefore, for any element ϕ ∈ End(E) and any point p ∈ M
we have ϕp ∈ End(Ep). The center of the algebra End(E) is the set

C∞(M) · 1 = Z(End(E)).

Assume that derivations X,Y : End(E)→ End(E) are homomorphisms of C∞(M)-
modules, i.e., X(f · ϕ) = f ·X(ϕ) and Y (f · ϕ) = f · Y (ϕ), for all f ∈ C∞(M) and
ϕ ∈ End(E). Hence, we obtain

X(Z(End(E))) = 0 = Y (Z(End(E))).

Let W ∈ [(X,Y )]End(E). Hence, there exists a pair (a, b) such that

W (a) = X(b) + b, aW = bX + Y,

where a = f · 1, b = g · 1, f ∈ Inv(C∞(M)) and g ∈ C∞(M). Therefore, we have
W (Z(End(E))) = 0 and

W = (
1

f
· 1)Y ∈ (Inv(C∞(M)) · 1)Y.

Also, it is simple to see that (Inv(C∞(M))·1)Y ⊂ [(X,Y )]End(E). Hence, we obtain

[(X,Y )]End(E) = (Inv(C∞(M)) · 1)Y,

for all derivations X,Y : End(E) → End(E) that are homomorphisms of C∞(M)-
modules.

As another example we would like to investigate the equivalence classes for
derivations of the endomorphism algebra End(E) of a vector bundle E over a smooth
manifold M. In the following, we investigate the equivalence classes for a type of
derivations of the algebra End(E) that are not homomorphisms of C∞(M)-modules.

Recall that a Lie algebroid may be thought of as a generalization of the tangent
bundle of a manifold. Just as Lie algebras are in some sense the infinitesimal
versions of Lie groups, Lie algebroids are objects that play a similar role for Lie
groupoids. A Lie algebroid over the manifold M is the triple (K, [, ], µ) where K
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is a vector bundle over M , whose C∞(M)-module of sections Γ(K) is equipped
with a Lie algebra structure [, ] and µ : K → TM is a bundle map which induces
a Lie algebra homomorphism (also denoted µ) from Γ(K) to =(M), satisfying the
Leibnitz rule

[X, fY ] = µ(X)(f)Y + f [X,Y ],

for all f ∈ C∞(M) and X,Y ∈ Γ(K). Here, the map µ : K → TM is called an
anchor map (see [10, 11]).

Example 3.4. Let M be a smooth manifold and (K, [, ], µ) be a Lie algebroid over
M . Consider a K-connection on a vector bundle E over M . So, there exists a
R-bilinear map ∇ : Γ(K)× Γ(E)→ Γ(E) such that

∇fX(s) = f∇X(s), ∇X(fs) = µ(X)(f)s+ f∇X(s),

for all f ∈ C∞(M), X ∈ Γ(K) and s ∈ Γ(E). For any X ∈ Γ(K) define a derivation
DX : End(E)→ End(E) as

DX(ϕ)(s) = ∇X(ϕ(s))− ϕ(∇X(s)),

for all ϕ ∈ End(E) and s ∈ Γ(E). It is simple to see that

DX(f · ϕ) = µ(X)(f) · ϕ+ f ·DX(ϕ),

for all f ∈ C∞(M) and ϕ ∈ End(E). Thus, one gets

DX(f · 1) = µ(X)(f) · 1,

for all f ∈ C∞(M). Take X,Y ∈ Γ(K) and W ∈ [(X,Y )]C∞(M). There exists a
pair (f, g) ∈ ΓC∞(M) such that

fW = gX + Y, µ(W )(f) = µ(X)(g) + g.

We show that DW ∈ [(DX , DY )]End(E). For all ϕ ∈ End(E) and s ∈ Γ(E) we have

((f · 1)DW − (g · 1)DX)(ϕ)(s) = ∇fW−gX(ϕ(s))− ϕ(∇fW−gX(s))

= ∇Y (ϕ(s))− ϕ(∇Y (s))

= DY (ϕ)(s),

which implies that (f · 1)DW − (g · 1)DX = DY . Also, we have

DW (f · 1)−DX(g · 1) = µ(W )(f) · 1− µ(X)(g) · 1
= (µ(W )(f)− µ(X)(g)) · 1
= g · 1,

hence one gets DW ∈ [(DX , DY )]End(E). So, we can define the surjective map
F : [(X,Y )]C∞(M) → [(DX , DY )]End(E) by F (W ) = DW . Now, we can check that
if the anchor map µ is injective then

[(X,Y )]C∞(M) ' [(DX , DY )]End(E),

for all X,Y ∈ Γ(K).
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FRAMED-COMPLEX SUBMERSIONS

YILMAZ GÜNDÜZALP

Abstract. In this paper, we introduce the concept of framed-complex sub-

mersion from a framed metric manifold onto an almost Hermitian manifold.
We investigate the influence of a given structure defined on the total mani-

fold on the determination of the corresponding structure on the base mani-
fold. Moreover, we provide an example, investigate various properties of the

O’Neill’s tensors for such submersions, find the integrability of the horizontal

distribution. We also obtain curvature relations between the base manifold
and the total manifold.

1. Introduction

The theory of Riemannian submersion was introduced by O’Neill and Gray in
[15] and [11], respectively. Presently, there is an extensive literature on the Rie-
mannian submersions with different conditions imposed on the total space and on
the fibres. Riemannian submersions were considered between almost complex mani-
folds by Watson in [19] under the name of almost Hermitian submersion. He showed
that if the total manifold is a Kähler manifold, the base manifold is also a Kähler
manifold. Riemannian submersions between almost contact manifolds were studied
by Chinea in [2] under the name of almost contact submersions. Since then, Rie-
mannian submersions have been used as an effective tool to describe the structure
of a Riemannian manifold equipped with a differentiable structure. For instance,
Riemannian submersions have been also considered for quaternionic Kähler man-
ifolds [12]. This kind of submersions have been studied with different names by
many authors(see [7], [8],[9], [10], [13],[14], [18], and more).

On the other hand, let (M, g) be a Riemannian manifold equipped with a framed
metric structure, i.e. an endomorphism ϕ of the tangent bundle such that ϕ3+ϕ = 0
and which is compatible with g; the compatibility means that for each X,Y ∈ TM
we have g(ϕX, Y ) = −g(X,ϕY ) [21]. Moreover we assume that the kernel of ϕ
is of constant rank and parallelizable, i.e. there exist global vector fields ξ1, ..., ξs
spanning kerϕ. Such manifolds are necessarily of dimension 2m+s where 2m is the

2000 Mathematics Subject Classification. 53C15, 53C40.
Key words and phrases. Framed metric manifold, Almost Hermitian manifold, Riemannian

submersion, Framed-complex submersion.
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rank of ϕ. The study of such manifolds was started by Blair, Goldberg and Yano
([1], [5], [6]). In this paper, we define framed-complex submersions from a framed
metric manifold onto an almost Hermitian manifold and study the geometry of such
submersions. We observe that framed-complex submersion has also rich geometric
properties.

The paper is organized as follows. In section 2, we collect basic definitions,
some formulas and results for later use. In section 3, we introduce the notion of
framed-complex submersions and give an example of framed-complex submersion.
Moreover, we investigate properties of O’Neill’s tensors and show that such tensors
have nice algebraic properties for framed-complex submersions. We find the inte-
grability of the horizontal distribution. In section 4 is focused on the transference
of structures defined on the total manifold. Finally, we obtain relations between
bisectional curvatures and sectional curvatures of the base manifold, the total man-
ifold and the fibres of a framed-complex submersion.

2. Preliminaries

In this section, we are going to recall main definitions and properties of framed
metric manifolds, almost Hermitian manifolds and Riemannian submersions.

2.1. Framed metric manifolds. Let M be a (2m+ s)- dimensional framed met-
ric manifold [20](or almost s-contact metric manifold[17]) with a framed metric
structure (ϕ, ξj , ηj , g), j ∈ {1, ..., s}, that is, ϕ is a (1, 1)−tensor field defining a
ϕ−structure of rank 2m; ξ1, ..., ξs are s vector fields; η1, ..., ηs are s 1-forms and g
is a Riemannian metric on M such that

(2.1) ϕ2 = −I +

s∑
j=1

ηj ⊗ ξj , ηj(ξi) = δji , ϕ(ξj) = 0, ηj ◦ ϕ = 0,

(2.2) g(ϕX,ϕY ) = g(X,Y )−
s∑

j=1

ηj(X)ηj(Y ),

(2.3) Φ(X,Y ) = g(X,ϕY ) = −Φ(Y,X),

(2.4) g(X, ξj) = ηj(X)

for all X,Y ∈ Γ(TM) and i, j ∈ {1, ..., s}[20].

A framed metric structure is called normal[20]if

(2.5) [ϕ,ϕ] + 2dηj ⊗ ξj = 0,

where [ϕ,ϕ] is the Nijenhuis torsion of ϕ given by

(2.6) [ϕ,ϕ](X,Y ) = ϕ2[X,Y ] + [ϕX,ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ].

We note that a framed metric manifold (M2m+s, g, ϕ, ξj , ηj) is called

(a) almost S−manifold, if dηj = Φ;
(b) K−manifold, if dΦ = 0 and normal;
(c) S−manifold, if dηj = dΦ and normal;
(d) almost C−manifold, if dηj = 0, dΦ = 0;
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(e) C−manifold, if dηj = 0, dΦ = 0 and normal([1], [3]).

We have the following relation between the Levi-Civita connection and funda-
mental 2-form of M.

Lemma 2.1. [3]. Let (M,ϕ, ξj , ηj , g) be a framed metric manifold. Then we have

2g((∇Xϕ)Y,Z) = 3dΦ(X,ϕY, ϕZ)− 3dΦ(X,Y, Z) + +g(N (1)(Y, Z), ϕX)

+

s∑
j=1

{N (2)(Y,Z)ηj(X) + 2dηj(ϕY,X)ηj(Z)

−2dηj(ϕZ,X)ηj(Y )},(2.7)

where the tensor field N (2) is defined defined by N (2)(X,Y ) = (LϕXηj)(Y ) −
(LϕY ηj)(X), where L denotes the Lie derivative, for any X,Y, Z vector fields on M .

On S− manifolds we have[16]

(∇XΦ)(Y,Z) =
1

2

s∑
i=1

[ηi(Y )g(X,Z)− ηi(Z)g(X,Y )]

−1

2

s∑
i,j=1

ηj(X)[ηi(Y )ηj(Z)− ηi(Z)ηj(Y )].(2.8)

It is easy to see that if M is a framed metric manifold, then the following iden-
tities are well known:

(2.9) N (1)(X,Y ) = [ϕ,ϕ](X,Y ) + 2

s∑
j=1

dηj(X,Y )ξj ,

(2.10) (∇Xϕ)Y = ∇XϕY − ϕ(∇XY ),

(2.11) (∇XΦ)(Y,Z) = g(Y, (∇Xϕ)Z) = −g(Z, (∇Xϕ)Y ),

(2.12) (∇Xηj)Y = g(Y,∇Xξj).

2.2. Almost Hermitian manifolds. Let M be an even-dimensional differentiable
manifold. An almost Hermitian structure on M is by definition a pair (J, g) of an
almost complex structure J and a Riemannian metric g satisfying

(2.13) J2(X) = −X, g(JX, JY ) = g(X,Y )

for any vector fields X,Y on M. A manifold with such a structure (J, g) is called
an almost Hermitian manifold. The fundamental 2-from Φ of an almost Hermitian
structure is defined by

Φ(X,Y ) = g(X, JY )

for any vector fields X,Y and is skew-symmetric[20].
The Nijenhuis(or the torsion) tensor of an almost complex structure J is defined
by

(2.14) N(X,Y ) = −[X,Y ] + [JX, JY ]− J [X, JY ]− J [JX, Y ]
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for any vector fields X,Y on M.
An almost Hermitian manifold (M, g, J) is called

(a) Kähler if ∇J = 0;
(b) almost Kähler if dΦ = 0;
(c) nearly Kähler if (∇XJ)X = 0;
(d) Hermitian if N = 0[20], where N is the Nijenhuis tensor of J.

2.3. Riemannian Submersions. Let (M, g) and (B, g′) be two Riemannian
manifolds. A surjective C∞−map π : M → B is a C∞−submersion if it has max-
imal rank at any point of M. Putting Vx = Kerπ∗x, for any x ∈ M, we obtain an
integrable distribution V, which is called vertical distribution and corresponds to
the foliation of M determined by the fibres of π. The complementary distribution
H of V, determined by the Riemannian metric g, is called horizontal distribution.
A C∞−submersion π : M → B between two Riemannian manifolds (M, g) and
(B, g′) is called a Riemannian submersion if, at each point x of M, π∗x preserves
the length of the horizontal vectors. A horizontal vector field X on M is said to be
basic if X is π−related to a vector field X ′ on B. It is clear that every vector field
X ′ on B has a unique horizontal lift X to M and X is basic.

We recall that the sections of V, respectively H, are called the vertical vector
fields, respectively horizontal vector fields. A Riemannian submersion π : M → B
determines two (1, 2) tensor fields T and A on M, by the formulas:

(2.15) T (E,F ) = TEF = h∇vEvF + v∇vEhF

and

(2.16) A(E,F ) = AEF = v∇hEhF + h∇hEvF

for any E,F ∈ Γ(TM), where v and h are the vertical and horizontal projections
(see [4]). From (2.15) and (2.16), one can obtain

(2.17) ∇UX = TUX + h(∇UX);

(2.18) ∇XU = v(∇XU) +AXU ;

(2.19) ∇XY = AXY + h(∇XY ),

for any X,Y ∈ Γ(H), U ∈ Γ(V). Moreover, if X is basic then

(2.20) h(∇UX) = h(∇XU) = AXU.

We note that for U, V ∈ Γ(V), TUV coincides with the second fundamental form
of the immersion of the fibre submanifolds and for X,Y ∈ Γ(H), AXY = 1

2v[X,Y ]
reflecting the complete integrability of the horizontal distribution H. It is known
that A is alternating on the horizontal distribution: AXY = −AYX, for X,Y ∈
Γ(H) and T is symmetric on the vertical distribution: TUV = TV U, for U, V ∈ Γ(V).

We now recall the following result which will be useful for later.

Lemma 2.2. (see [4],[15]). If π : M → B is a Riemannian submersion and X,Y
basic vector fields on M, π−related to X ′ and Y ′ on B, then we have the following
properties
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(1) h[X,Y ] is a basic vector field and π∗h[X,Y ] = [X ′, Y ′] ◦ π;
(2) h(∇XY ) is a basic vector field π−related to (∇′X′Y ′), where ∇ and ∇′ are

the Levi-Civita connection on M and B;
(3) [E,U ] ∈ Γ(V), for any U ∈ Γ(V) and for any basic vector field E.

3. Framed-Complex Submersions

In this section, we define the notion of framed-complex submersion, give an exam-
ple and study the geometry of such submersions. We now define a (ϕ, J)−holomorphic
map between framed metric manifolds and almost Hermitian manifolds.

Definition 3.1. Let (M2m+s, ϕ, (ξj , ηj)
s
j=1, g) be a framed metric manifold and

(B2n, J) be an almost complex manifold, respectively. The map π : M → B is
(ϕ, J)−holomorphic if π∗ ◦ ϕ = J ◦ π∗.

By using the above definition, we are ready to give the following notion.

Definition 3.2. Let (M2m+s, ϕ, (ξj , ηj)
s
j=1, g) be a framed metric manifold and

(B, J, g′) be an almost Hermitian manifold. A Riemannian submersion π : M → B
is called a framed-complex submersion if it is (ϕ, J)-holomorphic, as well.

Consider R2m+s with its standard coordinates x1, ..., xm, y1, ..., ym, z1, ..., zs. We
introduce on R2m+s a framed metric structure (ϕ, ξj , ηj , g) by setting

ηj = dzj , ξj =
∂

∂zj
, g = 2

m∑
i=1

((dxi)
2 + (dyi)

2) +

s∑
j=1

(ηj ⊗ ηj)

and ϕ given, with respect to the frame ( ∂
∂x1

, ..., ∂
∂xm

, ∂
∂y1

, ..., ∂
∂ym

, ∂
∂z1

, ..., ∂
∂zs

) by

the (2m+ s)× (2m+ s)−matrix 0 −Im 0
Im 0 0
0 0 0

 .

On the other hand, the canonical almost complex structure on R2n is given by

J(x1, ..., x2n) = (−x2n,−x2n−1, ..., x2, x1),

where Riemannian metric is standard inner product defined on R2n.

We now give an example for a framed-complex submersion.

Example 3.1. Consider the following submersion defined by

π : R4+2 → R2

(x1, x2, y1, y2, z1, z2) → (x1 + x2, y1 + y2).

Then, the kernel of π∗ is

V = Kerπ∗ = Span{V1 = − ∂

∂ x1
+

∂

∂ x2
, V2 = − ∂

∂ y1
+

∂

∂ y2
, ξ1 =

∂

∂z1
, ξ2 =

∂

∂z2
}

and the horizontal distribution is spanned by

H = (Kerπ∗)
⊥ = Span{X =

∂

∂ x1
+

∂

∂ x2
, Y =

∂

∂ y1
+

∂

∂ y2
}.
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Hence, we have

g(X,X) = g′(π∗X,π∗X) = 4, g(Y, Y ) = g′(π∗Y, π∗Y ) = 4.

Thus, π is a Riemannnian submersion. Moreover, we can easily obtain that π
satisfies

π∗ϕX = Jπ∗X, π∗ϕY = Jπ∗Y.

Thus, π is a framed-complex submersion.

As an obvious consequence of Definition 3.2 we obtain:

Proposition 3.1. Let π : M → B be a framed-complex submersion from a framed
metric manifold M onto an almost Hermitian manifold B. If X,Y are basic vector
fields on M, π−related to X ′, Y ′ on B, then, we have

(i) h(∇Xϕ)Y is the basic vector field π−related to (∇′X′J)Y ′;
(ii) ϕX is the basic vector field π−related to JX ′.

Next proposition shows that a framed-complex submersion puts some restrictions
on the distributions V and H.

Proposition 3.2. Let π : M → B be a framed-complex submersion from a framed
metric manifold M onto an almost Hermitian manifold B. Then, the horizontal
and vertical distributions are ϕ− invariant.

Proof. Consider a vertical vector field U ; it is known that π∗(ϕU) = J(π∗U). Since
U is vertical and π is a Riemannian submersion, we have π∗U = 0 from which
π∗(ϕU) = 0 follows and implies that ϕU is vertical, being in the kernel of π∗.
As concerns the horizontal distribution, let X be a horizontal vector field. We
have g(ϕX,U) = −g(X,ϕU) = 0 because ϕU is vertical and X is horizontal. From
g(ϕX,U) = 0 we deduce that ϕX is orthogonal to U and then ϕX is horizontal. �

Proposition 3.3. Let π : M → B be a framed-complex submersion from a framed
metric manifold M onto an almost Hermitian manifold B. Then, we have

(i) π∗Φ′ = Φ holds on the horizontal distribution, only;
(ii) Each ξj is vertical vector field, j ∈ {1, ..., s};
(iii) ηj(X) = 0, for all horizontal vector fields X.

Proof. We prove only statement (i), the other assertions can be obtained in a similar
way. If X and Y are basic vector fields on M, π−related to X ′, Y ′ on B, then using
the definition of a framed-complex submersion, we have

π∗Φ′(X,Y ) = Φ′(π∗X,π∗Y ) = g′(π∗X, Jπ∗Y ) = g′(π∗X,π∗ϕY )

= π∗g′(X,ϕY ) = g(X,ϕY ) = Φ(X,Y )

which gives the proof of assertion(i). �

We now check the properties of the tensor fields T and A for a framed-complex
submersion, we will see that such tensors have extra properties for such submersions.

Lemma 3.1. Let π : M → B be a framed-complex submersion. If the total space
is a C−manifold, then we have

(i) TUϕV = ϕTUV ;
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(ii) TϕUV = ϕTUV,

for U, V ∈ Γ(V).

Proof. We only prove (i), the other assertion can be obtained in a similar way. Let
U and V be vertical vector fields, and X horizontal. Since M is a C−manifold,
from (2.7) we get

2g((∇Uϕ)V,X) = 0.

Then, since the vertical and the horizontal distributions are ϕ−invariant, from
(2.15) we obtain

g(TUϕV − ϕTUV,X) = 0.

Hence, we have

TUϕV = ϕTUV.

�

For the tensor field A we have the following.

Lemma 3.2. Let π : M → B be a framed-complex submersion. If the total space
is a C−manifold, then we have

(i) AXϕY = ϕAXY ;

(ii) AϕXY = ϕAXY ;

(iii) AϕXX = 0;

for X,Y ∈ Γ(H).

Using (2.8) we have the following.

Lemma 3.3. Let π : M → B be a framed-complex submersion. If the total space
is a S−manifold, then we have

(i) TUϕV = ϕTUV ;

(ii) TϕUV = ϕTUV,

(iii) AXϕY = ϕAXY ;

(iv) AϕXY = ϕAXY ;

(v) AϕXX = 0;

for X,Y ∈ Γ(H) and U, V ∈ Γ(V).

We shall be interested with the tensor T which is a usefully tool in the study of
the fibres.
If TUϕV = ϕTUV, then the fibres are minimal and if T = 0 they are totally geodesic.

Theorem 3.1. Let π : M → B be a framed-complex submersion from a S−manifold
or a C−manifold M onto an almost Hermitian manifold B. If for all U, V , TϕUϕV +
TUV = 0, then T=0.
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Proof. Let U and V be vertical vector fields. From Lemma 3.1, we get TϕUϕV =
ϕTϕUV. Using again Lemma 3.1, we have

TϕUϕV = ϕTϕUV = ϕ2TUV = −TUV +

s∑
j=1

ηj(TUV )ξj , j ∈ {1, ..., s}.

On the other hand, it can be shown that TUξj = 0 and then ηj(TUV ) = 0 which
gives TϕUϕV = −TUV from which TϕUϕV + TUV = 0 follows. Thus, we get
T = 0. �

Corollary 3.1. Let π : M → B be a framed-complex submersion. If the total space
is a K− manifold or an almost C−manifold, then the fibres are totally geodesic.

We now investigate the integrability of the horizontal distribution H.

Theorem 3.2. Let π : M → B be a framed-complex submersion from a K−manifold
M onto an almost Hermitian manifold B. Then, the horizontal distribution is in-
tegrable.

Proof. Let X and Y be basic vector fields. It suffices to prove that v([X,Y ]) = 0,
for basic vector fields on M. Since M is a K−manifold, it implies dΦ(X,Y, V ) = 0,
for any vertical vector V. Then, one obtains

X(Φ(Y, V ))− Y (Φ(X,V )) + V (Φ(X,Y ))

−Φ([X,Y ], V ) + Φ([X,V ], Y )− Φ([Y, V ], X) = 0.

Since [X,V ], [Y, V ] are vertical and the two distributions are ϕ−invariant, the last
two and the first two terms vanish. Thus, one gets

g([X,Y ], ϕV ) = V (g(X,ϕY )).

On the other hand, if X is basic then h(∇VX) = h(∇XV ) = AXV, thus we have

V (g(X,ϕY )) = g(∇VX,ϕY ) + g(∇V ϕY,X)

= g(AXV, ϕY ) + g(AϕY V,X).

Since A are skew-symmetric and alternating operator, we get V (g(X,ϕY )) = 0.
This proves the assertion. �

Corollary 3.2. Let π : M → B be a framed-complex submersion. If the total
space is a S−manifold, an almost C−manifold or a C−manifold, then the horizontal
distribution is integrable.

4. Transference of Structures

In this section, we investigate what kind of almost Hermitian structures are
defined on the base manifold, when the total manifold has some special framed
structures.

As the fibres of a framed-complex submersion is an invariant submanifold of M
with respect to ϕ, we have the following.

Proposition 4.1. Let π : (M2m+s, ϕ, ξ, η, g) → (B2n, J, g′) be a framed-complex
submersion from a framed metric manifold M onto an almost Hermitian manifold
B. Then, the fibres are framed metric manifolds.
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Proof. Denoting by F the fibres, it is clear that dimF = 2(m−n)+s = 2r+s, where

r = m− n. We define a framed metric structure (ĝ, ϕ̂, η̂j , ξ̂j), where j = 1, ..., s, by

setting ϕ = ϕ̂, ηj = η̂jand ξj = ξ̂j . Then, we get

ϕ̂2U = ϕ2U = −U +

s∑
j=1

ηj(U)ξj ,

for U ∈ Γ(V).
On the other hand, for U, V ∈ Γ(V) we obtain

ĝ(ϕ̂V, ϕ̂U) = ĝ(ϕV, ϕU) = −ĝ(V, ϕ2U) = −ĝ(V,−U +

s∑
j=1

ηj(U)ξj)

= ĝ(V,U)−
s∑

j=1

η̂j(U)η̂j(V ),

which gives the proof of assertion. �

In the sequel, we show that base space is a Hermitian manifold if the total space
is a normal.

Theorem 4.1. Let π : M → B be a framed-complex submersion. If the framed
metric structure of M is normal, then the base space B is a Hermitian manifold.

Proof. Let X and Y be basic vector fields on M, π−related to X ′ and Y ′ on B.
From (2.5), we have

π∗(N
(1)(X,Y )) = π∗([ϕ,ϕ](X,Y ) +

s∑
j=1

2dηj(X,Y )ξj).

On the other hand, π∗ϕ = Jπ∗ implies that

π∗([ϕ,ϕ](X,Y )) = π∗(ϕ
2[X,Y ] + [ϕX,ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ])

= −[π∗X,π∗Y ] +

s∑
j=1

ηj([X,Y ])π∗ξj + [π∗ϕX, π∗ϕY ]− Jπ∗[ϕX, Y ]

− Jπ∗[X,ϕY ]

= −[X ′, Y ′] + [JX ′, JY ′]− J [JX ′, Y ′]

− J [X ′, JY ′].

Then, we have

π∗([ϕ,ϕ](X,Y )) = N ′(X ′, Y ′) = 0,

which shows that B is a Hermitian manifold. �

Proposition 4.2. Let π : M → B be a framed-complex submersion. If the total
space M is an almost C− manifold, then the base space B is an almost Kähler
manifold.

Proof. Let X, Y and Z be basic vector fields on M π−related to X ′, Y ′ and Z ′ on
B. Since M is an almost C−manifold, we have dΦ(X,Y, Z) = 0. Then, we obtain

X(Φ(Y,Z))− Y (Φ(X,Z)) + Z(Φ(X,Y ))

−Φ([X,Y ], Z) + Φ([X,Z], Y )− Φ([Y,Z], X) = 0.
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On the other hand, by direct calculations, we get

0 = g(∇XY, ϕZ) + g(Y,∇XϕZ)− g(∇YX,ϕZ)− g(X,∇Y ϕZ)

+ g(∇ZX,ϕY ) + g(X,∇ZϕY )− g([X,Y ], ϕZ)

+ g([X,Z], ϕY )− g([Y, Z], ϕX).

Then, by using π∗ϕ = Jπ∗, we get

0 = g′(∇′X′Y ′, JZ ′) + g′(Y ′,∇′X′JZ ′)− g′(∇′Y ′X ′, JZ ′)− g′(X ′,∇′Y ′JZ ′)

+g′(∇′Z′X ′, JY ′) + g′(X ′,∇′Z′JY ′)− g′([X ′, Y ′], JZ ′)
+g′([X ′, Z ′], JY ′)− g′([Y ′, Z ′], JX ′)
0 = X ′(Φ′(Y ′, Z ′))− Y ′(Φ′(X ′, Z ′)) + Z ′(Φ′(X ′, Y ′))

−Φ′([X ′, Y ′], Z ′) + Φ′([X ′, Z ′], Y ′)− Φ′([Y ′, Z ′], X ′)

0 = dΦ′(X ′, Y ′, Z ′).

Thus, if the total space M is an almost C−manifold, then the base space B is an
almost Kähler manifold. �

Corollary 4.1. Let π : M → B be a framed-complex submersion. If the total space
M is a K− manifold or a S− manifold , then the base space B is an almost Kähler
manifold.

We also have the following result which shows that the other structures can be
mapped onto the base manifold.

Proposition 4.3. Let π : M → B be a framed-complex submersion. If the total
space M is a C− manifold, then the base space B is a Kähler manifold.

Proof. Let X, Y and Z be basic vector fields on M π−related to X ′, Y ′ and Z ′ on
B. Since M is a C− manifold, from (2.7) we get

g((∇Xϕ)Y,Z) = g(∇XϕY − ϕ∇XY,Z) = 0.

Since π is a Riemannian submersion, we obtain

g′(π∗(∇XϕY − ϕ∇XY ), π∗(Z)) = 0.

Then, by using π∗ϕ = Jπ∗, we get

g′(π∗(∇XϕY − Jπ∗(∇XY )), π∗(Z)) = 0.

On the other hand, from Proposition 3.1, we know that if X is π−related to X ′,
then ϕX is π−related to JX ′. Also, from Lemma 2.2, it follows h(∇XϕY ) and
h(∇XY ) are π−related to ∇′X′JY ′ and ∇′X′Y ′. Thus, we have

g′(∇′X′JY ′ − J∇′X′Y ′, Z ′) = 0.

Then, from (2.10) we get g′(∇′X′J)Y ′, Z ′) = 0. Hence, we have (∇′X′J)Y ′ = 0
which proves the assertion. �

Corollary 4.2. Let π : M → B be a framed-complex submersion. If the total space
M is an almost C−manifold, a K− manifold, an almost S− manifold, a C−manifold
or a S− manifold , then the fibres inherit from the total space a structure of the
same type.
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5. Curvature Relations for Framed-Complex Submersions

We begin this section relating the ϕ−holomorphic bisectional and sectional cur-
vatures of the total space, the base space and the fibres of a framed-complex sub-
mersion.

Let π be a framed-complex submersion between a framed metric manifold M
and an almost Hermitian manifold N. We denote the Riemannian curvatures of
M,N and any fibre π−1(x) by R,R′ and R̂, respectively. For X,Y, Z,W ∈ Γ(H),
we have

R∗(X,Y, Z,W ) = R′(π∗X,π∗Y, π∗Z, π∗W ) ◦ π.
Let π : M → N be a framed-complex submersion from a framed metric manifold

(M,ϕ, ξj , ηj , g) onto an almost Hermitian manifold (N, J, g′). We denote by B the
ϕ−holomorphic bisectional curvature, defined for any pair of vectors X and Y on
M orthogonal to ξj by the formula:

B(X,Y ) =
R(X,ϕX, Y, ϕY )

‖X‖2‖Y ‖2
.

The ϕ−holomorphic sectional curvature is H(X) = B(X,X) for any vector X
orthogonal to ξj , j ∈ {1, ..., s}. We denote by B′ and H ′ the ϕ−holomorphic bisec-

tional and ϕ−holomorphic sectional curvatures of N. Similarly, B̂ and Ĥ denote
the bisectional and the sectional holomorphic curvatures of a fibre.

The following is a translation of the results of Gray[11] and O’Neill[15] to the
present situation:

Proposition 5.1. Let π : M → N a framed-complex submersion from a framed
metric manifold M onto an almost Hermitian manifold N. Let U and V be unit
vertical vectors, and X and Y unit horizontal vectors orthogonal to ξj . Then, we
have

(a)B(U, V ) = B̂(U, V )− g(TUV, TϕUϕV ) + g(TϕUV, TUϕV );

(b)B(X,U) = g((∇UA)XϕX,ϕU)− g((∇ϕUA)XϕX,U)

+ g(AXU,AϕXϕU)− g(AXϕU,AϕXU)

− g(TUX,TϕUϕX) + g(TϕUX,TUϕX);

(c)B(X,Y ) = B′(X ′, Y ′) ◦ π − 2g(AXϕX,AY ϕY )

+ g(AϕXY,AXϕY )− g(AXY,AϕXϕY ).

Using Proposition 5.1, we have the following result.

Proposition 5.2. Let π : M → N a framed-complex submersion from a framed
metric manifold M onto an almost Hermitian manifold N. Let U be unit vertical
vector, and X unit horizontal vector orthogonal to ξj . Then, one has:

(a) H(U) = Ĥ(U) + ‖TUϕU‖2 − g(TϕUϕU, TUU);
(b) H(X) = H ′(X ′) ◦ π − 3‖AXϕX‖2.

Theorem 5.1. Let π : M → N a framed-complex submersion. If the total space
is a K−manifold, aS−manifold, an almost C−manifold or a C−manifold, then we
have

(a) B(U, V ) = B̂(U, V );
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(b) H(U) = Ĥ(U),

where U and V are unit vertical vectors orthogonal to ξj .

Proof. (a) Since the fibres are totally geodesic, we have T = 0. Then using Propo-

sition 5.1(a) we get B(U, V ) = B̂(U, V ).
In a similar way, we obtain (b). �

Since the horizontal distribution H is integrable, we get A = 0. Then, we have
the following result.

Theorem 5.2. Let π : M → N a framed-complex submersion. If the total space
is a K−manifold, a S−manifold, an almost C−manifold or a C−manifold, then we
have

(a) B(X,Y ) = B′(X ′, Y ′) ◦ π;
(b) H(X) = H ′(X ′) ◦ π,

where X and Y are unit horizontal vectors orthogonal to ξj .
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APPROXIMATING THE RIEMANN–STIELTJES INTEGRAL BY

A THREE–POINT QUADRATURE RULE AND APPLICATIONS

MOHAMMAD W. ALOMARI

Abstract. In this paper, a three–point quadrature rule for the Riemann–
Stieltjes integral is introduced. As application; an error estimate for the ob-

tained quadrature rule is provided as well.

1. Introduction

The Riemann–Stieltjes integral
∫ b
a
f (t) dg (t) is an important concept in Mathe-

matics with multiple applications in several subfields including Probability Theory
& Statistics, Complex Analysis, Functional Analysis, Operator Theory and others.

In 2008, Mercer [27] has introduced new midpoint and trapezoid type rules for the
Riemann–Stieltjes integral which engender a natural generalization of Hadamard’s
integral inequality, as follows:

Theorem 1.1. Let g be continuous and increasing on [a, b], let c ∈ [a, b] which
satisfies ∫ b

a

g (t) dt = (c− a) g (a) + (b− c) g (b) .

If f ′′ ≥ 0, then we have

f (c) [g (b)− g (a)] ≤
∫ b

a

fdg ≤ [G− g (a)] f (a) + [g (b)−G] f (b)(1.1)

where, G := 1
b−a

∫ b
a
g (t) dt.

In fact, Mercer established the following quadrature rule for the Riemann–
Stieltjes integral. ∫ b

a

fdg ∼= [G− g (a)] f (a) + [g (b)−G] f (b) ,(1.2)

and so that, he obtained the error as follows:

Date: January 1, 2013 and, in revised form, February 2, 2013.
2000 Mathematics Subject Classification. 26D10, 26D15.
Key words and phrases. Riemann–Stieltjes integral, Quadrature rule.
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Theorem 1.2. Suppose that f ′′ and g′ are continuous on [a, b] and that g is mono-

tonic there. Let G := 1
b−a

∫ b
a
g (t) dt. Then there exist η, σ ∈ (a, b) such that∫ b

a

fdg − [G− g (a)] f (a)− [g (b)−G] f (b) = −f ′′ (η) g′ (σ)
(b− a)

3

12
.(1.3)

Recently, Alomari and Dragomir [7], proved several new error bounds for the
Mercer–Trapezoid quadrature rule (1.2) for the Riemann-Stieltjes integral under
various assumptions for the integrand (and integrator) involved.

After that, and motivated by the method used in [27], Alomari and Dragomir
[8] introduced the following quadrature formula:

Theorem 1.3. Suppose that f ′′ and g′ are continuous on [a, b] and that g is mono-
tonic on [a, x] and [x, b]. Then there exist ξ1, η1 ∈ (a, x) and ξ2, η2 ∈ (x, b) such
that ∫ b

a

f (t) g′ (t) dt = [G (a, x)− g (a)] f (a) + [G (x, b)−G (a, x)] f (x)

+ [g (b)−G (x, b)] f (b)

− 1

12

[
f ′′ (ξ1) g′ (η1) (x− a)

3
+ f ′′ (ξ2) g′ (η2) (b− x)

3
]
,(1.4)

for all a < x < b, where G (α, β) := 1
β−α

∫ β
α
g (t) dt.

For other quadrature rules for Riemann–Stieltjes integral under various assump-
tions to the function involved the reader may refer to [1]–[6], [9]–[26] and [28].

In this work, we study the quadrature rule∫ b

a

f (t) dg (t) ∼= [G (a, x)− g (a)] f (a) + [G (x, b)−G (a, x)] f (x)

+ [g (b)−G (x, b)] f (b)

for all x ∈ (a, b), by relaxing the conditions in Theorem 1.3. Various error estimates
for the above quadrature rule are proved. As application an error estimate for the
new three–point quadrature rule for Riemann–Stieltjes integral is given.

2. The case when f is of bounded variation

Theorem 2.1. Fix x ∈ (a, b). Let f, g : [a, b] → R be such that f is of bounded
variation on [a, b] and g is continuous. If g is increasing on the both intervals [a, x]
and [x, b], then

|R (f, g;x)| ≤
[
g (b)− g (a)

2
+

∣∣∣∣g (x)− g (a) + g (b)

2

∣∣∣∣] · b∨
a

(f)(2.1)

for all a < x < b, where G (α, β) := 1
β−α

∫ β
α
g (t) dt.

Proof. It is easy to observe that

R (f, g;x) =

∫ x

a

[g (t)−G (a, x)] df (t) +

∫ b

x

[g (t)−G (x, b)] df (t).(2.2)
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Using the fact that for a continuous function p : [c, d] → R and a function ν :

[c, d] → R of bounded variation, then the Riemann–Stieltjes integral
∫ d
c
p (t) dν (t)

exists and one has the inequality∣∣∣∣∣
∫ d

c

p (t) dν (t)

∣∣∣∣∣ ≤ sup
t∈[c,d]

|p (t)|
d∨
c

(ν) .(2.3)

As f is of bounded variation on [a, b], by (2.3) we have

|R (f, g;x)| ≤
∣∣∣∣∫ x

a

[g (t)−G (a, x)] df (t)

∣∣∣∣+

∣∣∣∣∣
∫ b

x

[g (t)−G (x, b)] df (t)

∣∣∣∣∣
≤ sup
t∈[a,x]

|g (t)−G (a, x)| ·
x∨
a

(f) + sup
t∈(x,b]

|g (t)−G (x, b)| ·
b∨
x

(f) ,(2.4)

but since g is increasing on [a, x] and [x, b], then

sup
t∈[a,x]

|g (t)−G (a, x)| = max {g (x)−G (a, x) , G (a, x)− g (a)}

=
1

2
[g (x)− g (a) + |g (x)− 2G (a, x) + g (a)|] ,(2.5)

and

sup
t∈(x,b]

|g (t)−G (x, b)| = max {g (b)−G (x, b) , G (x, b)− g (x)}

=
1

2
[g (b)− g (x) + |g (b)− 2G (x, b) + g (x)|] .(2.6)

Also, since

g (a) ≤ G (a, x) ≤ g (x) ,

and

g (x) ≤ G (x, b) ≤ g (b) ,

so that from (2.5) and (2.6), we have

sup
t∈[a,x]

|g (t)−G (a, x)| ≤ g (x)− g (a)

and

sup
t∈(x,b]

|g (t)−G (x, b)| ≤ g (b)− g (x)

which gives by (2.4) that

|R (f, g;x)| ≤ sup
t∈[a,x]

|g (t)−G (a, x)| ·
x∨
a

(f) + sup
t∈(x,b]

|g (t)−G (x, b)| ·
b∨
x

(f)

≤ [g (x)− g (a)] ·
x∨
a

(f) + [g (b)− g (x)] ·
b∨
x

(f)

≤
[
g (b)− g (a)

2
+

∣∣∣∣g (x)− g (a) + g (b)

2

∣∣∣∣] · b∨
a

(f) ,

and thus the theorem is proved. �
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Corollary 2.1. In Theorem 2.1, choose g (t) = t, t ∈ [a, b], then we have the
inequality:

(2.7)

∣∣∣∣∣12
[
f (x) +

(x− a) f (a) + (b− x) f (b)

b− a

]
−
∫ b

a

f (t) dt

∣∣∣∣∣
≤
[
b− a

2
+

∣∣∣∣x− a+ b

2

∣∣∣∣] · b∨
a

(f) ,

for all a < x < b. Moreover, if we choose x = a+b
2 , then we get∣∣∣∣∣12

[
f

(
a+ b

2

)
+
f (a) + f (b)

2

]
−
∫ b

a

f (t) dt

∣∣∣∣∣ ≤ 1

2
(b− a)

b∨
a

(f) .(2.8)

Theorem 2.2. Fix x ∈ (a, b). Let f, g : [a, b] → R be such that f is of bounded
variation on [a, b] and g is continuous.

(1) If g is of bounded variation on [a, b], then

|R (f, g;x)| ≤

[
b∨
a

(g) +

∣∣∣∣∣
x∨
a

(g)−
b∨
x

(g)

∣∣∣∣∣
]
·
b∨
a

(f) .(2.9)

(2) If g is of Lg–Lipschitzian on [a, b], then

|R (f, g;x)| ≤ Lg
2

[
b− a

2
+

∣∣∣∣x− a+ b

2

∣∣∣∣] · b∨
a

(f) .(2.10)

for all a < x < b.

Proof. (1) Since f is of bounded variation on [a, b], then by (2.4) we have

(2.11) |R (f, g;x)|

≤ sup
t∈[a,x]

|g (t)−G (a, x)| ·
x∨
a

(f) + sup
t∈(x,b]

|g (t)−G (x, b)| ·
b∨
x

(f) .

In [17], the author proved the following Ostrowski type inequality for func-
tions of bounded variation

|g (t)−G (a, x)| =
∣∣∣∣g (t)− 1

x− a

∫ x

a

g (s) ds

∣∣∣∣ ≤ [1

2
+

∣∣∣∣ t− a+x
2

x− a

∣∣∣∣] x∨
a

(g) ,

it follows that,

sup
t∈[a,x]

|g (t)−G (a, x)| ≤ sup
t∈[a,x]

[
1

2
+

∣∣∣∣ t− a+x
2

x− a

∣∣∣∣] x∨
a

(g) =

x∨
a

(g) .

Similarly, one may observe that

sup
t∈[x,b]

|g (t)−G (x, b)| ≤ sup
t∈[x,b]

[
1

2
+

∣∣∣∣∣ t− x+b
2

b− x

∣∣∣∣∣
]

b∨
x

(g) =

b∨
x

(g) .
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Combining the above two inequalities with (2.11), we get

|R (f, g;x)| ≤
x∨
a

(g) ·
x∨
a

(f) +

b∨
x

(g) ·
b∨
x

(f)

≤

[
b∨
a

(g) +

∣∣∣∣∣
x∨
a

(g)−
b∨
x

(g)

∣∣∣∣∣
]
·
b∨
a

(f)

which proves (2.9).
(2) In [25], the author proved the following Ostrowski type inequality for Lip-

schitzian functions

|g (t)−G (a, x)| =
∣∣∣∣g (t)− 1

x− a

∫ x

a

g (s) ds

∣∣∣∣
≤ Lg

[
1

4
+

(
t− a+x

2

x− a

)2
]

(x− a) ,

it follows that,

sup
t∈[a,x]

|g (t)−G (a, x)| ≤ Lg sup
t∈[a,x]

∣∣∣∣g (t)− 1

x− a

∫ x

a

g (s) ds

∣∣∣∣
≤ Lg sup

t∈[a,x]

[
1

4
+

(
t− a+x

2

x− a

)2
]

(x− a) =
1

2
Lg (x− a) .

Similarly, one may observe that

sup
t∈[x,b]

|g (t)−G (x, b)| ≤ Lg sup
t∈[x,b]

1

4
+

(
t− x+b

2

b− x

)2
 (b− x)

=
1

2
Lg (b− x) .

Combining the above two inequalities with (2.11), we get

|R (f, g;x)| ≤ 1

2
Lg (x− a) ·

x∨
a

(f) +
1

2
Lg (b− x) ·

b∨
x

(f)

≤ Lg
2

[
b− a

2
+

∣∣∣∣x− a+ b

2

∣∣∣∣] · b∨
a

(f) .

which proves (2.10).
Thus the theorem is completely proved. �

3. The case when f is of Lipschitz type

Theorem 3.1. Fix x ∈ (a, b). Let f, g : [a, b]→ R be such that f is Lf–Lipschitzian
on [a, b]and g is a Riemann integrable on [a, b]. If there exists positive constants
γ,Γ, φ,Φ such that

γ ≤ g(t) ≤ Γ, ∀t ∈ [a, x],

and

φ ≤ g(t) ≤ Φ, ∀t ∈ (x, b],
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for some x ∈ (a, b). Then,

|R (f, g;x)| ≤ 1

2
L [(x− a) (Γ− γ) + (b− x) (Φ− φ)](3.1)

for all a < x < b.

Proof. Since

R (f, g;x) =

∫ x

a

[g (t)−G (a, x)] df (t) +

∫ b

x

[g (t)−G (x, b)] df (t),

using the fact that for a Riemann integrable function p : [c, d] → R and L-
Lipschitzian function ν : [c, d]→ R, the inequality one has the inequality∣∣∣∣∣

∫ d

c

p (t) dν (t)

∣∣∣∣∣ ≤ L
∫ d

c

|p (t)| dt.(3.2)

As f is Lf–Lipschitzian on [a, b], by (3.2) we have

|R (f, g;x)| ≤
∣∣∣∣∫ x

a

[g (t)−G (a, x)] df (t)

∣∣∣∣+

∣∣∣∣∣
∫ b

x

[g (t)−G (x, b)] df (t)

∣∣∣∣∣
≤ Lf

[∫ x

a

|g (t)−G (a, x)| dt+

∫ b

x

|g (t)−G (x, b)| dt

]
.(3.3)

Now, using the same techniques applied in [26], we define

I1 (g) :=
1

x− a

∫ x

a

(
g (t)− 1

x− a

∫ x

a

g (s) ds

)2

dt.

Then, we have

I1 (g) : =
1

x− a

∫ x

a

[
g2 (t)− 2g (t)

1

x− a

∫ x

a

g (s) ds+

(
1

x− a

∫ x

a

g (s) ds

)2
]
dt

=
1

x− a

∫ x

a

g2 (t) dt−
(

1

x− a

∫ x

a

g (s) ds

)2

and

I1 (g) :=

(
Γ− 1

x− a

∫ x

a

g (s) ds

)(
1

x− a

∫ x

a

g (s) ds− γ
)

− 1

x− a

∫ x

a

(Γ− g (t)) (g (t)− γ) dt.

As γ ≤ g(t) ≤ Γ, for all t ∈ [a, b], then∫ x

a

(Γ− g (t)) (g (t)− γ) dt ≥ 0,

which implies

I1 (g) ≤
(

Γ− 1

x− a

∫ x

a

g (s) ds

)(
1

x− a

∫ x

a

g (s) ds− γ
)

≤ 1

4

[(
Γ− 1

x− a

∫ x

a

g (s) ds

)
+

(
1

x− a

∫ x

a

g (s) ds− γ
)]2

=
1

4
(Γ− γ)

2
(3.4)
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Using Cauchy–Buniakowski–Schwarz’s integral inequality we have

I1 (g) ≥
[

1

x− a

∫ x

a

∣∣∣∣g (t)− 1

x− a

∫ x

a

g (s) ds

∣∣∣∣ dt]2
and thus by (3.4) we get∫ x

a

∣∣∣∣g (t)− 1

x− a

∫ x

a

g (s) ds

∣∣∣∣ dt ≤ 1

2
(Γ− γ) (x− a) .(3.5)

Similarly, define

I2 (g) :=
1

b− x

∫ b

x

(
g (t)− 1

b− x

∫ b

x

g (s) ds

)2

dt,

then one can observe that∫ b

x

∣∣∣∣∣g (t)− 1

b− x

∫ b

x

g (s) ds

∣∣∣∣∣ dt ≤ 1

2
(Φ− φ) (b− x) .(3.6)

Therefore, from (3.3) we have

|R (f, g;x)| ≤ Lf

[∫ x

a

|g (t)−G (a, x)| dt+

∫ b

x

|g (t)−G (x, b)| dt

]

≤ 1

2
Lf [(x− a) (Γ− γ) + (b− x) (Φ− φ)] ,

which gives the inequality (3.1). �

Remark 3.1. In Theorem 3.1, if γ ≤ g(t) ≤ Γ for all t ∈ [a, b], then we have

|R (f, g;x)| ≤ 1

2
Lf (b− a) (Γ− γ) .(3.7)

for all x ∈ (a, b).

Corollary 3.1. In Theorem 3.1, choose g (t) = t, t ∈ [a, b], then we have the
inequality:∣∣∣∣∣12

[
f (x) +

(x− a) f (a) + (b− x) f (b)

b− a

]
−
∫ b

a

f (t) dt

∣∣∣∣∣ ≤ 1

2
Lf (b− a)

2
(3.8)

for all x ∈ (a, b). Moreover, if we choose x = a+b
2 , then we get∣∣∣∣∣12

[
f

(
a+ b

2

)
+
f (a) + f (b)

2

]
−
∫ b

a

f (t) dt

∣∣∣∣∣ ≤ 1

2
Lf (b− a)

2
.(3.9)

Theorem 3.2. Let f, g : [a, b]→ R be such that f is Lf–Lipschitzian on [a, b] and
g is of r-Hg–Hölder type on [a, b], where r ∈ (0, 1] and Hg > 0 are given. Then,

|R (f, g;x)| ≤ 2LfHg

(r + 1) (r + 2)

[
(x− a)

r+1
+ (b− x)

r+1
]
,(3.10)

for all x ∈ (a, b).
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Proof. Since f is Lf–Lipschitzian on [a, b], then (3.3) holds; that is,

|R (f, g;x)| ≤
∣∣∣∣∫ x

a

[g (t)−G (a, x)] df (t)

∣∣∣∣+

∣∣∣∣∣
∫ b

x

[g (t)−G (x, b)] df (t)

∣∣∣∣∣
≤ Lf

[∫ x

a

|g (t)−G (a, x)| dt+

∫ b

x

|g (t)−G (x, b)| dt

]
.

Also, since g is of r-Hg–Hölder type on [a, b], then we have

|g (t)−G (a, x)| =
∣∣∣∣g (t)− 1

x− a

∫ x

a

g (s) ds

∣∣∣∣
≤ 1

x− a

∫ x

a

|g (t)− g (s)| ds

≤ Hg

x− a

∫ x

a

|t− s|r ds =
Hg

x− a
· (t− a)

r+1
+ (x− t)r+1

r + 1
,

and

|g (t)−G (x, b)| =

∣∣∣∣∣g (t)− 1

b− x

∫ b

x

g (s) ds

∣∣∣∣∣
≤ 1

b− x

∫ b

x

|g (t)− g (s)| ds

≤ Hg

b− x

∫ b

x

|t− s|r ds =
Hg

b− x
· (t− x)

r+1
+ (b− t)r+1

r + 1
,

which gives by (3.3), we have

|R (f, g;x)| ≤ LfHg

x− a
·
∫ x

a

(t− a)
r+1

+ (x− t)r+1

r + 1
dt

+
LfHg

b− x
·
∫ b

x

(t− x)
r+1

+ (b− t)r+1

r + 1
dt

=
2LfHg

(r + 1) (r + 2)

[
(x− a)

r+1
+ (b− x)

r+1
]
,

and thus the proof is completed. �

Corollary 3.2. In Theorem 3.2, if g is Lg–Lipschitzian on [a, b], then we have

|R (f, g;x)| ≤ 1

3
LfLg

[
(x− a)

2
+ (b− x)

2
]
,(3.11)

for all x ∈ (a, b). Moreover, if we choose x = a+b
2 , then∣∣∣∣R(f, g;

a+ b

2

)∣∣∣∣ ≤ 1

6
LfLg (b− a)

2
.(3.12)
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Corollary 3.3. In Theorem 3.2, choose g (t) = t, t ∈ [a, b], then we have the
inequality:

(3.13)

∣∣∣∣∣12
[
f (x) +

(x− a) f (a) + (b− x) f (b)

b− a

]
−
∫ b

a

f (t) dt

∣∣∣∣∣
≤ 2Lf

(r + 1) (r + 2)

[
(x− a)

r+1
+ (b− x)

r+1
]

for all a < x < b. Moreover, if we choose x = a+b
2 , then we get∣∣∣∣∣12

[
f

(
a+ b

2

)
+
f (a) + f (b)

2

]
−
∫ b

a

f (t) dt

∣∣∣∣∣ ≤ 1

6
Lf (b− a)

2
.(3.14)

Theorem 3.3. Let f, g : [a, b]→ R be such that f is Lf–Lipschitzian on [a, b] and
g is of bounded variation on [a, b]. Then,

|R (f, g;x)| ≤ 3

4
Lf

[
b− a

2
+

∣∣∣∣x− a+ b

2

∣∣∣∣] b∨
a

(g) ,(3.15)

for all x ∈ (a, b).

Proof. Since f is Lf–Lipschitzian on [a, b], then (3.3) holds; that is,

|R (f, g;x)| ≤
∣∣∣∣∫ x

a

[g (t)−G (a, x)] df (t)

∣∣∣∣+

∣∣∣∣∣
∫ b

x

[g (t)−G (x, b)] df (t)

∣∣∣∣∣
≤ Lf

[∫ x

a

|g (t)−G (a, x)| dt+

∫ b

x

|g (t)−G (x, b)| dt

]
.

Using the Ostrowski integral inequality for the bounded variation function g we
have ∫ x

a

|g (t)−G (a, x)| dt =

∫ x

a

∣∣∣∣g (t)− 1

x− a

∫ x

a

g (s) ds

∣∣∣∣ dt
≤
∫ x

a

[
1

2
+

∣∣∣∣ t− a+x
2

x− a

∣∣∣∣] dt x∨
a

(g)

≤ 3

4
(x− a)

x∨
a

(g) ,

similarly, we observe∫ b

x

|g (t)−G (x, b)| dt ≤ 3

4
(b− x)

b∨
x

(g) ,

which gives by (3.3), we have

|R (f, g;x)| ≤ 3

4
Lf

[
(x− a)

x∨
a

(g) + (b− x)

b∨
x

(g)

]

≤ 3

4
Lf

[
b− a

2
+

∣∣∣∣x− a+ b

2

∣∣∣∣] b∨
a

(g) ,

for all x ∈ (a, b), and thus the proof is completed. �
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Remark 3.2. Let f be a monotonic nondecreasing in the theorems above. By
applying the same techniques used in the corresponding proofs of each theorem,
we may obtain several inequalities for monotonic non-decreasing integrator f using
the fact that for a monotonic non-decreasing function ν : [a, b]→ R and continuous
function p : [a, b]→ R, one has the inequality∣∣∣∣∣

∫ b

a

p (t) dν (t)

∣∣∣∣∣ ≤
∫ b

a

|p (t)| dν (t).

We leave the details to the interested reader.

4. Applications to A Three-point Quadrature rule

Consider In : a = x0 < x1 < x2 < . . . < xn−1 < xn = b, be a division
of the interval [a, b], Li := g(xi+1) − g(xi), (i = 0, 1, . . . n − 1) and ν (L) :=
max {Li|i = 0, 1, . . . n− 1}. Consider the following Three–point quadrature rule
as

(4.1)

S (f, g, In, ξ) =

n∑
i=0

[G (xi, ξi)− g (xi)] f (xi) + [G (ξi, xi+1)−G (xi, ξi)] f (ξi)

+ [g (xi+1)−G (ξi, xi+1)] f (xi+1)

for all ξi ∈ (xi, xi+1), where G (α, β) := 1
β−α

∫ β
α
g (t) dt.

In the following, we establish an upper bound for the error approximation of the

Riemann–Stieltjes integral
∫ b
a
f (t) dg (t) by its Riemann sum S (f, g, In, ξ). As a

sample we consider (2.1).

Theorem 4.1. Under the assumptions of Theorem 2.1, we have∫ b

a

f (t) dg (t) = S (f, g, In, ξ) +R (f, g, In, ξ)

where, S (f, g, In, ξ) is given in (4.1) and the remainder R (f, g, In, ξ) satisfies the
bound

|R (f, g, In, ξ)| ≤
[

1

2
ν (L) + max

0,n−1

∣∣∣∣g (ξi)−
g (xi) + g (xi+1)

2

∣∣∣∣] · b∨
a

(f)

≤ ν (L) ·
b∨
a

(f) .(4.2)

Proof. Fix ξi ∈ (xi, xi+1). Applying Theorem 2.1 on the intervals [xi, xi+1], we
may state that

|[G (xi, ξi)− g (xi)] f (xi) + [G (ξi, xi+1)−G (xi, ξi)] f (ξi)

+ [g (xi+1)−G (ξi, xi+1)] f (xi+1)−
∫ xi+1

xi

f (t) dg (t)

∣∣∣∣
≤
[
g (xi+1)− g (xi)

2
+

∣∣∣∣g (ξi)−
g (xi) + g (xi+1)

2

∣∣∣∣] · xi+1∨
xi

(f) ,
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for all i ∈ {0, 1, 2, · · · , n− 1}. Summing the above inequality over i from 0 to n−1,
we deduce

|R (f, g, In, ξ)|

=

n−1∑
i=0

{|[G (xi, ξi)− g (xi)] f (xi) + [G (ξi, xi+1)−G (xi, ξi)] f (ξi)

+ [g (xi+1)−G (ξi, xi+1)] f (xi+1)−
∫ xi+1

xi

f (t) dg (t)

∣∣∣∣}
≤
n−1∑
i=0

[
g (xi+1)− g (xi)

2
+

∣∣∣∣g (ξi)−
g (xi) + g (xi+1)

2

∣∣∣∣] · xi+1∨
xi

(f)

≤ max
0,n−1

[
g (xi+1)− g (xi)

2
+

∣∣∣∣g (ξi)−
g (xi) + g (xi+1)

2

∣∣∣∣] · n−1∑
i=0

xi+1∨
xi

(f)

≤ [g (b)− g (a)] ·
b∨
a

(f) ,

since

max
0,n−1

[
g (xi+1)− g (xi)

2
+

∣∣∣∣g (ξi)−
g (xi) + g (xi+1)

2

∣∣∣∣]
≤ 1

2
ν(L) + max

0,n−1

∣∣∣∣g (ξi)−
g (xi) + g (xi+1)

2

∣∣∣∣
and

n−1∑
i=0

xi+1∨
xi

(f) =

b∨
a

(f) .

For the second inequality, we observe that

max
0,n−1

∣∣∣∣g (ξi)−
g (xi) + g (xi+1)

2

∣∣∣∣ ≤ 1

2
max
0,n−1

Li =
1

2
ν(L)

which completes the proof. �

Remark 4.1. Several error estimations for the quadrature S (f, g, In, ξ) (4.1) by
using the results in section 2, we shall omit the details.
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SEMIRADICAL EQUALITY

SİBEL KILIÇARSLAN CANSU

Abstract. Semiprime radical of a module is defined and the relation between

the intersection of prime submodules and the intersection of semiprime sub-
modules is investigated. Semiradical formula is defined and it is shown that

cartesian product of M1 × M2 satisfies the semiradical formula if and only if

M1 and M2 satisfy the semiradical formula.

1. Introduction

Throughout all rings are commutative and all modules are unitary. Let R be a
ring and M be an R-module. A proper submodule N of M is prime if whenever
rm ∈ N , for some r ∈ R,m ∈ M then m ∈ N or rM ⊆ N . A proper submodule
N of an R-module M is semiprime, if whenever rkm ∈ N for some r ∈ R,m ∈ M
and k ∈ Z+, then rm ∈ N . Also, for any submodule N of M the envelope of N in
M is defined as the set

EM (N) = {rm : r ∈ R,m ∈M and rkm ∈ N for some k ∈ Z+}.

It is easy to show that a proper submodule N is semiprime if and only if
〈EM (N)〉 = N . Also, it is clear that every prime submodule is semiprime but
the converse is not true in general; to show this with an example let’s give the
following Theorem of Ylmaz and Klarslan Cansu.

Theorem 1.1. ([4], Theorem 2.5) Let N = Q1∩Q2∩ · · ·∩Qk be minimal primary
decomposition of N where

√
Qi : M = pi for all i = 1, 2, . . . , k and S = {1, 2, . . . , k}.

Then

〈EM (N)〉 = N + (

k⋂
i=1

pi)M +
∑
T⊂S

(
⋂
i∈T

pi)(
⋂

i∈S\T

Qi)

where the summation runs over each non-empty subset T of S.

Date: March 13, 2014 and, in revised form, July 3, 2014.
2000 Mathematics Subject Classification. 13C99, 13A99.
Key words and phrases. Semiprime submodules, semiprime radical.
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Now, we can give the example. The computer algebra system SINGULAR was
used during the computations.

If R = Q[x, y, z], M = R3 and N = 〈ze1, ye1, xye2, xye3, xze2 + x2ze3〉. Then
primary decompostion of N is N = Q1 ∩Q2 ∩Q3 where

Q1 = 〈e1, ye2, ye3, xe3 + e2〉 is 〈y〉 − primary,

Q2 = 〈ze1, ze2, ze3, ye1, ye2, ye3〉 is 〈z, y〉 − primary and

Q3 = 〈e1, xe2, xe3〉 is 〈x〉 − primary.

By Theorem 1.1,
〈EM (N)〉 = N + (p1 ∩ p2 ∩ p3)M + p1(Q2 ∩Q3) + p2(Q1 ∩Q3) + p3(Q1 ∩Q2)

+(p1 ∩ p2)Q3 + (p1 ∩ p3)Q2 + (p2 ∩ p3)Q1

= 〈ze1, ye1, xye2, xye3, xze2 + x2ze3〉 = N.

Hence, N is a semiprime submodule of M with N : M = 〈xy〉. On the
other hand N is not a prime submodule; since r = z and m = (0, x, x2) gives
rm = z(0, x, x2) = (0, xz, x2z) ∈ N but r = z /∈ N : M and m = (0, x, x2) /∈ N .

If N is a proper submodule of an R-module M , then the prime radical of N ,
radM (N), is the intersection of all prime submodules containing N . If it is necessary
to indicate the underlying ring, the prime radical of N is denoted by rad

RM (N).
The semiprime radical of N , denoted by sradM (N)(srad

RM (N)), is defined as
the intersection of all semiprime submodules of M containing N . If there is no
semiprime submodule containing N , then sradM (N) = M .

A module M satisfies the radical formula (s.t.r.f.) if for any submodule N of M ,
radM (N) = 〈EM (N)〉. In the same manner we define, an R-module M satisfies
the semiradical formula (s.t.s.r.f.) if for any submodule N of M , sradM (N) =
〈EM (N)〉. Since intersection of semiprime submodules is semiprime, sradM (N) is
the unique smallest semiprime submodule of M containing N .

We know that for an ideal I of R,
√√

I =
√
I; but the envelope of a submodule

does not satisfy an equation similiar to this one. If R = Q[x, y, z], M is an R-module
R⊕R and N = 〈z2e1, z

2e2, yze2, y
2e1 + ze2, y

2e2, ye1 + x3e2〉 is an R-submodule
of M . Since N is 〈z, y〉-primary,

〈EM (N)〉 = N + 〈z, y〉M = 〈ze1, ze2, ye1, ye2, x
3e2〉.

Since 〈EM (N)〉 = Q1 ∩Q2, where

Q1 = 〈e2, ze1, ye1〉 is 〈z, y〉 − primary,

Q2 = 〈ze1, ze2, ze3, ye1, ye2, x
3e1, x

3e2〉 is 〈x, y, z〉 − primary,

Theorem 1.1 implies that 〈EM (〈EM (N)〉)〉 = 〈ze1, ze2, ye1, ye2, xe2〉 6= 〈EM (N)〉.

In [2], Azizi and Nikseresht defined the kth envelope of N recursively by E0(N) =
N,E1(N) = EM (N), E2(N) = EM (〈EM (N)〉) and Ek(N) = EM (〈Ek−1(N))〉 for
every submodule N of M . It is easy to show that

N = 〈E0(N)〉 ⊆ 〈E1(N)〉 ⊆ 〈E2(N)〉 ⊆ · · · · · · ⊆ 〈E∞(N)〉 ⊆ sradM (N) ⊆ radM (N)
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where 〈E∞(N)〉 =
∞⋃
k=0

〈Ek(N)〉. It is clear that 〈E∞(N)〉 is semiprime and thus

〈E∞(N)〉 = sradM (N).

When we consider the chain

N = 〈E0(N)〉 ⊆ 〈E1(N)〉 ⊆ 〈E2(N)〉 ⊆ · · · · · · ⊆ 〈E∞(N)〉 = sradM (N) ⊆ radM (N),

it seems meaningfull to focus on the submodules sradM (N) and radM (N) and in-
vestigate the conditions where the equality sradM (N) = radM (N) occurs.

Here, semiradical equality is defined and some equivalent conditions for a ring
to satisfy the semiradical equality are stated.

2. Semiradical Equality

It is clear that intersection of prime submodules is semiprime, but the converse
is not true in general, see [1].

Lemma 2.1. Let M be an R-module. Then every semiprime submodule is an
intersection of prime submodules if and only if sradM (N) = radM (N) for any
submodule N of M .

Proof. (⇒) Since intersection of semiprime submodules is semiprime , sradM (N)
is a semiprime submodule. Hence it is obvious.

(⇐) Let K be a semiprime submodule of M . Then K = sradM (K) = radM (K).
Hence K is an intersection of prime submodules. �

Lemma 2.2. Let N be a submodule of an R-module M such that M/N is projective.
Then sradM (N) = radM (N).

Proof. Since M/N is projective, radM/N (0) = 〈EM/N (0)〉 by [1] Lemma 8. Then
we have,radM (N) = 〈EM (N)〉 which implies that sradM (N) = radM (N). �

Corollary 2.1. Let N be a submodule of an R-module M such that M/N is pro-
jective. Then sradM (N) = radRM + N .

Proof. Clear by [5] Theorem 2.7 and the above lemma. �

We say that a module M satisfies the semiradical equality if for every submodule
N of M , sradM (N) = radM (N). It is said that a ring R satisfies the semiradical
equality if every R-module satisfies the semiradical equality. Since arithmetical
rings satisfy the radical formula [3], an arithmetical ring satisfies the semiradical
equality.

Proposition 2.1. The followings are equivalent.

(i) The ring R satisfies the semiradical equality.
(ii) for any ideal I of R, the ring R/I satisfies the semiradical equality.
(iii) for any non-maximal semiprime ideal P of R, the ring R/P satisfies the

semiradical equality.

Proof. (i⇒ ii) Let M be an R/I-module. By Lemma 2.1, it is enough to show that
every semiprime R/I-module is an intersection of prime submodules. Let K be a
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semiprime submodule of an R/I-module M . Then K is a semiprime submodule of
M as an R-module. So, K = srad

RM (K) = rad
RM (K).

It is easy to see that every submodule of M is a prime R-submodule if and
only if it is a prime R/I-submodule. Hence rad

RM (K) = rad
R/IM (K) and thus

K = rad
R/IM (K).

(iii ⇒ i) Let N be a semiprime submodule of an R-module M with N :
M = P where P is a non-maximal semiprime ideal. Consider M/N as an R/P -
module. Then by our assumption, sradM/N (0) = radM/N (0). Hence sradM (N) =
radM (N).

�

Corollary 2.2. If for any non-maximal semiprime ideal P of R; R/P is a Prüfer
domain, then R satisfies the semiradical equality.

Lemma 2.3. A ring R satisfies the semiradical equality if and only if every free
R-module satisfies the semiradical equality.

Proof. Let M be an R-module. Then there exists a free R-module F such that
M ∼= F/K. By our assumption, for any submodule N of M

sradF/K(N/K) = sradF (N)/K

= radF (N)/K

= radF/K(N/K).

Hence M satisfies the semiradical equality. �

3. Semiprime Submodules of Cartesian Product of Modules

Let R = R1 × R2 where each Ri is a commutative ring with nonzero identity.
Let Mi be an Ri-module for i = 1, 2 and M = M1 ×M2 be the R-module with
action (r1, r2)(m1,m2) = (r1m1, r2m2) where ri ∈ Ri,mi ∈ Mi. These notations
are fixed for this section.

Note that since our action is (r1, r2)(m1,m2) = (r1m1, r2m2) where ri ∈ Ri,mi ∈
Mi, every submodule of M1 ×M2 is of the form N1 ×N2 with N1 is a submodule
of M1 and N2 is a submodule of M2.

Proposition 3.1. Let R and M be as above. Then

(i) If N1 is semiprime submodule of M1, then N1×M2 is semiprime submodule
of M1 ×M2.

(ii) If N2 is semiprime submodule of M2, then M1×N2 is semiprime submodule
of M1 ×M2.

Proof. (i) Let r = (r1, r2) ∈ R, m = (m1,m2) ∈ M and rkm ∈ N1 ×M2 for some
k ∈ Z+. Since N1 is semiprime submodule of M1, r1m1 ∈ N1. Then (r1m1, r2m2) =
rm ∈ N1 ×M2 which implies that N1 ×M2 is semiprime submodule of M .

(ii) Similiar to case (i). �

Lemma 3.1. Let R and M be as above. Then Q1 ×Q2 is a semiprime submodule
of M if and only if Qi is semiprime submodule of Mi for all i = 1, 2.
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Proof. Let (r1, r2)k(m1,m2) ∈ Q1 × Q2 where mi ∈ Mi, ri ∈ Ri and k ∈ Z+ and
Q1 and Q2 be semiprime submodules of M1 and M2 respectively. Since Q1 and Q2

are semiprime, rimi ∈ Qi for i = 1, 2 which implies that Q1 ×Q2 is semiprime.
Now assume that Q1 × Q2 is semiprime submodule of M1 × M2. Let r1 ∈ R1,
m1 ∈ M1 with rk1m1 ∈ Q1. Then (r1, 1)k(m1, 0) ∈ Q1 × Q2. Since Q1 × Q2

is semiprime, (r1, 1)(m1, 0) = (r1m1, 0) ∈ Q1 × Q2 implies that Q1 is semiprime
submodule of M1. Similarly it can be shown that Q2 is semiprime submodule of
M2. �

Lemma 3.2. Let N = N1 ×N2 be a submodule of M where Ni is a submodule of
Mi for i = 1, 2. Then N : M = (N1 : M1)× (N2 : M2)

Proof. Let x = (x1, x2) ∈ (N : M). Then xM ⊆ N which means that

(x1, x2)(m1,m2) = (x1m1, x2m2) ∈ N1 ×N2

for all m1 ∈M1 and m2 ∈M2. So, x1m1 ∈ N1 and x2m2 ∈ N2. Hence

x1 ∈ (N1 : M1), x2 ∈ (N2 : M2)

and thus x = (x1, x2) ∈ (N1 : M1)× (N2 : M2).
Conversely, let y = (y1, y2) ∈ (N1 : M1) × (N2 : M2). Then y1M1 ⊆ N1 and

y2M2 ⊆ N2. Hence for all m1 ∈M1,m2 ∈M2,

(y1, y2)(m1,m2) = (y1m1, y2m2) ∈ N1 ×N2.

This implies that y ∈ (N1 ×N2) : (M1 ×M2) = (N : M). �

Let N be a semiprime submodule of an R-module M . If p =
√
N : M is a prime

ideal, then N is called p -semiprime submodule.

Lemma 3.3. Let N = N1 ×N2 be a submodule of M . Then

(i) N is p × R2 semiprime submodule of M iff N1 is p-semiprime submodule
of M1 and N2 = M2.

(ii) N is R1 × p semiprime submodule of M iff N2 is p-semiprime submodule
of M2 and N1 = M1.

Proof. (i) Suppose N = N1 ×N2 is semiprime submodule of M1 ×M2. By Lemma
3.1, N1 is semiprime submodule of M1.

Since N : M = p × R2, N1 is p-semiprime and N2 : M2 = R2 implies that
N2 = M2.

Other side is clear by Proposition 3.1 and Lemma 3.2.
(ii) Similiar to case (i). �

If p1 and p2 are prime ideals of R1 and R2 respectively, it is not true in general
that p1×p2 is prime ideal of R1×R2, for example if we take R1 = R2 = Z, p1 = 2Z
and p2 = 3Z, then 2Z × 3Z is not a prime ideal of Z × Z since Z2 × Z3 is not an
integral domain. So, if we try to generalize Lemma 3.3, we only get the following
lemma.

Lemma 3.4. Let N = N1 × N2 be a submodule of M . If N1 × N2 is p1 × p2-
semiprime submodule, then Ni is pi-semiprime submodule of Mi for i = 1, 2.
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Proof. Assume that N1×N2 is p1×p2-semiprime submodule of M . By Lemma 3.1,
N1 and N2 are semiprime submodules of M1 and M2 respectively. Since p1 × p2 is
prime ideal, by Lemma 3.2

(N1 ×N2) : (M1 ×M2) =
√
N : M = p1 × p2

(N1 : M1)× (N2 : M2) = p1 × p2.

Hence, N1 : M1 = p1 and N2 : M2 = p2. Since p1 and p2 are prime ideals,

N1 : M1 =
√
N1 : M1 = p1 and

N2 : M2 =
√
N2 : M2 = p2.

Thus, Ni is pi-semiprime submodule of Mi for i = 1, 2. �

Proposition 3.2. Let N = N1 ×N2 be a submodule of M . Then

sradM (N) = sradM1
(N1)× sradM2

(N2)

Proof. Let Q1 × Q2 be a semiprime submodule of M containing N1 × N2. By
Lemma 3.1, Qi is semiprime submodule of Mi containing Ni for i = 1, 2. Then

sradM1
(N1)× sradM2

(N2) ⊆ sradM (N1 ×N2)

since sradM1(N1)× sradM2(N2) ⊆ Q1 ×Q2.

Since sradMi
(Ni) is the minimal semiprime submodule of Mi containing Ni,

Lemma 3.1 implies that sradM1
(N1) × sradM2

(N2) is a semiprime submodule of
M1 ×M2 which contains N1 ×N2. Hence

sradM (N) ⊆ sradM1
(N1)× sradM2

(N2)

�

Corollary 3.1. Let N = N1 ×N2 be a submodule of M . Then

(i) sradM (N1 ×M2) = sradM1(N1)×M2

(ii) sradM (M1 ×N2) = M1 × sradM2(N2)

Proof. Clear by Proposition 3.2.
�

Proposition 3.3. ([6], Proposition 2.12) Let N = N1 ×N2 be a submodule of M .
Then 〈EM (N)〉 = 〈EM1

(N1)〉 × 〈EM2
(N2)〉.

Theorem 3.1. M s.t.s.r.f. if and only if Mi s.t.s.r.f. for all i = 1, 2.

Proof. Assume M s.t.s.r.f.. Take a submodule N1 of M1. Then N1 ×M2 s.t.s.r.f.,
so that sradM1

(N1) ×M2 = 〈EM1
(N1)〉 × 〈EM2

(M2)〉. Now, let x ∈ sradM1
(N1).

Then (x,m) ∈ sradM1
(N1) ×M2 and hence x ∈ 〈EM1

(N1)〉. Similiarly it can be
shown that sradM2(N2) = 〈EM2(N2)〉.

Conversely assume that M1 and M2 s.t.s.r.f.. Take any submodule N1 × N2 of
M1 ×M2. Then

sradM (N1 ×N2) = sradM1(N1)× sradM2(N2)

= 〈EM1(N1)〉 × 〈EM2(N2)〉
= 〈EM (N1 ×N2)〉

Thus, M = M1 ×M2 s.t.s.r.f.. �
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UNIQUENESS OF MEROMORPHIC FUNCTIONS SHARING

TWO FINITE SETS IN C WITH FINITE WEIGHT

ABHIJIT BANERJEE AND GOUTAM HALDAR

Abstract. With the aid of the notion of weighted sharing of sets of mero-
morphic functions we improve some previous results concerning a particular

range set.

1. Introduction, Definitions and Results

In this paper by meromorphic functions we will always mean meromorphic func-
tions in the complex plane. It will be convenient to let E denote any set of positive
real numbers of finite linear measure, not necessarily the same at each occurrence.
For any non-constant meromorphic function h(z) we denote by S(r, h) any quantity
satisfying

S(r, h) = o(T (r, h)) (r −→∞, r 6∈ E).

Let f and g be two non-constant meromorphic functions and let a be a finite
complex number. We say that f and g share a CM, provided that f − a and g − a
have the same zeros with the same multiplicities. Similarly, we say that f and g
share a IM, provided that f−a and g−a have the same zeros ignoring multiplicities.
In addition we say that f and g share ∞ CM, if 1/f and 1/g share 0 CM and we
say that f and g share ∞ IM, if 1/f and 1/g share 0 IM.

Let S be a set of distinct elements of C∪{∞} and Ef (S) =
⋃
a∈S{z : f(z)−a =

0}, where each zero is counted according to its multiplicity. If we do not count the
multiplicity the set

⋃
a∈S{z : f(z)−a = 0} is denoted by Ef (S). If Ef (S) = Eg(S)

we say that f and g share the set S CM. On the other hand if Ef (S) = Eg(S),
we say that f and g share the set S IM. Evidently, if S contains only one element,
then it coincides with the usual definition of CM (respectively, IM) shared values.

In connection with the famous “Gross Question” {see [8]} in the uniqueness
literature Gross and Yang [9] (see also [16]) made a vital contribution by introducing
the new idea of unique range set for meromophic function (URSM in brief). We
recall that “Gross’s Question” was the first one which deal with the uniqueness of

2000 Mathematics Subject Classification. 30D35.
Key words and phrases. eromorphic function, Uniqueness, Shared Set, Weighted sharing.
The first author is thankful to DST-PURSE programme for financial assistance.
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two functions that share sets of distinct elements instead of values. Initially Gross
and Yang proved that if f and g are two non-constant entire functions and S1, S2

and S3 are three distinct finite sets such that f−1(Si) = g−1(Si) for i = 1, 2, 3,
then f ≡ g. In [8] Gross posed the following question:

Question A. Can one find two finite sets Sj (j = 1, 2) such that any two non-
constant entire functions f and g satisfying Ef (Sj) = Eg(Sj) for j = 1, 2 must be
identical ?

In 2003, the following question was asked by Lin and Yi [18] which is also per-
tinent with that of Gross.
Question B. Can one find two finite sets Sj (j = 1, 2) such that any two non-
constant meromorphic functions f and g satisfying Ef (Sj ,∞) = Eg(Sj ,∞) for
j = 1, 2 must be identical ?

During the last two decades, the main investigations on two set sharing problems
of entire and meromorphic functions have been oriented on the basis of this two
questions. Gradually the research in this direction has somehow been shifted to
give explicitly a set S with n elements and make n as small as possible such that
any two meromorphic functions f and g that share the value∞ and the set S must
be equal {cf.[1]-[7], [11], [15], [17]-[18], [20]-[23]}.

In this connection, we recall the following theorem of Yi [20].

Theorem A. [20] Let S = {z : zn+azn−m+b = 0} where n and m are two positive
integers such that m ≥ 2, n ≥ 2m + 7 with n and m having no common factor, a
and b be two nonzero constants such that zn + azn−m + b = 0 has no multiple root.
If f and g are two non-constant meromorphic functions satisfying Ef (S) = Eg(S)
and Ef ({∞}) = Eg({∞}) then f ≡ g.

In the same paper Yi [19] also asked the following question:
What can be said if m = 1 in Theorem A?
To answer this question Yi [20] proved the following theorem.

Theorem B. [20] Let S = {z : zn+azn−1+b = 0} where n(≥ 9) be an integer and a
and b be two nonzero constants such that zn+azn−1+b = 0 has no multiple root. If
f and g be two non-constant meromorphic functions such that Ef (S) = Eg(S) and

Ef ({∞}) = Eg({∞}) then either f ≡ g or f ≡ −ah(h
n−1−1)

hn−1 and g ≡ −a(h
n−1−1)

hn−1 ,
where h is a non-constant meromorphic function.

In 2001 the idea of gradation of sharing of values and sets known as weighted
sharing has been introduced in [13, 14] which measures how close a shared value is
to being shared IM or to being shared CM. We now give the definition.

Definition 1.1. [13, 14] Let k be a nonnegative integer or infinity. For a ∈ C∪{∞}
we denote by Ek(a; f) the set of all a-points of f , where an a-point of multiplicity
m is counted m times if m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g),
we say that f , g share the value a with weight k.

We write f , g share (a, k) to mean that f , g share the value a with weight k.
Clearly if f , g share (a, k) then f , g share (a, p) for any integer p, 0 ≤ p < k. Also
we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞)
respectively.

Definition 1.2. [13] Let S be a set of distinct elements of C ∪ {∞} and k be a
nonnegative integer or ∞. We denote by Ef (S, k) the set ∪a∈SEk(a; f).

Clearly Ef (S) = Ef (S,∞) and Ef (S) = Ef (S, 0).
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The notion of weighted sharing of set has immense applications to deal with the
Questions A and B. In particular there are many refinements and improvements
of Theorem B {[2]-[4], [15]} using this notion. But in all the papers, to serve the
purpose, the variations over different deficiency conditions have been taken under
considerations.

In 1996, Yi [21] proved that the set S as defined in Theorem A is an URSM
when m ≥ 2 and n ≥ 2m + 9. Clearly in that case S = {z : z13 + z11 + 1 =
0} is a URSM. So it would be natural to explore the analogous situation in the
direction of Question B, corresponding to the set S as defined in Theorem B such
that the uniqueness of meromorphic functions only depends on the sharing of the
range sets in C. The purpose of the paper is to find a suitable range set, together
with S as defined in Theorem B, such that for the uniqueness of two non-constant
meromorphic functions sharing two sets with finite weight, the conditions over
deficiencies will no longer required. Following two theorems are the main results
of the paper which will improve all the subsequent improvements of Theorem B in
some sense.

Theorem 1.1. Let S1 = {0,−an−1n }, S2 = {z : zn + azn−1 + b = 0} where n(≥ 7)

be an integer and a and b be two nonzero constants such that zn+azn−1+b = 0 has
no multiple root. If Ef (S1, 2) = Eg(S1, 2), and Ef (S2, 3) = Eg(S2, 3), then f ≡ g.

Theorem 1.2. Let Si, i = 1, 2 be given as in Theorem 1.1 where n(≥ 8) be
an integer. If Ef (S1,m) = Eg(S1,m), Ef (S2, p) = Eg(S2, p), then f ≡ g, where
7

2m + m+1
m(2p+1) < 2, with 7

2m + 1
m(2p+1) > 1.

Corollary 1.1. Theorem 1.2 holds for the following pairs of least values of p and
m: (i) p=1, m=3; (ii) p=3, m=2.

Though for the standard definitions and notations of the value distribution the-
ory we refer to [10], we now explain some notations which are used in the paper.

Definition 1.3. [12] For a ∈ C ∪ {∞}we denote by N(r, a; f |= 1) the count-
ing function of simple a points of f . For a positive integer m we denote by
N(r, a; f |≤ m)(N(r, a; f |≥ m)) the counting function of those a points of f whose
multiplicities are not greater(less) than m where each a point is counted according
to its multiplicity.
N(r, a; f |≤ m) (N(r, a; f |≥ m)) are defined similarly, where in counting the

a-points of f we ignore the multiplicities.
Also N(r, a; f |< m), N(r, a; f |> m), N(r, a; f |< m) and N(r, a; f |> m) are

defined analogously.

Definition 1.4. [14] We denote by N2(r, a; f) = N(r, a; f) +N(r, a; f |≥ 2).

Definition 1.5. [13, 14] Let f , g share a value a IM. We denote by N∗(r, a; f, g)
the reduced counting function of those a-points of f whose multiplicities differ
from the multiplicities of the corresponding a-points of g. Clearly N∗(r, a; f, g) ≡
N∗(r, a; g, f) and in particular if f and g share (a, p) thenN∗(r, a; f, g) ≤ N(r, a; f |≥
p+ 1) = N(r, a; g |≥ p+ 1).
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2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let
F and G be two non-constant meromorphic functions defined in C as follows

(2.1) F =
fn−1(f + a)

−b
, G =

gn−1(g + a)

−b
,

where a, b two nonzero constants defined as in Theorem B. Henceforth we shall
denote by H and Φ the following two functions

(2.2) H =

(
F
′′

F ′
− 2F

′

F − 1

)
−

(
G
′′

G′
− 2G

′

G− 1

)
and

(2.3) Φ =
F
′

F − 1
− G

′

G− 1
.

Lemma 2.1. ([14], Lemma 1) Let F , G be two non-constant meromorphic func-
tions sharing (1, 1) and H 6≡ 0. Then

N(r, 1;F |= 1) = N(r, 1;G |= 1) ≤ N(r,H) + S(r, F ) + S(r,G).

Lemma 2.2. Let S1 and S2 be defined as in Theorem 1.1 and F , G be given
by (2.1). If for two non-constant meromorphic functions f and g Ef (S1, p) =
Eg(S1, p), Ef (S2, 0) = Eg(S2, 0), where 0 ≤ p <∞ and H 6≡ 0 then

N(r,H) ≤ N(r, 0; f |≥ p+ 1) +N

(
r,−an− 1

n
; f |≥ p+ 1

)
+N∗(r, 1;F,G)

+N(r,∞; f) + +N(r,∞; g) +N0(r, 0; f
′
) +N0(r, 0; g

′
),

where N0(r, 0; f
′
) is the reduced counting function of those zeros of f

′
which are

not the zeros of f
(
f − an−1n

)
(F − 1) and N0(r, 0; g

′
) is similarly defined.

Proof. We note that F
′

= fn−2(nf+a(n−1))f
′

−b , G
′

= gn−2(ng+a(n−1))g
′

−b and

F
′′

=
fn−2(nf + a(n− 1))f

′′
+ fn−3(n(n− 1)f + a(n− 1)(n− 2))f

′2

−b
,

G
′′

=
gn−2(ng + a(n− 1))g

′′
+ gn−3(n(n− 1)g + a(n− 1)(n− 2))g

′2

−b
.

So

H =
(n− 1)(nf + a(n− 2))f

′

f(nf + a(n− 1))
− (n− 1)(ng + a(n− 2))g

′

g(ng + a(n− 1))

+
f
′′

f ′
− g

′′

g′
−

(
2F
′

F − 1
− 2G

′

G− 1

)
.

Since Ef (S1, 0) = Eg(S1, 0) it follows that if z0 is a 0-point of f (g) then either
g(z0) = 0 (f(z0) = 0) or g(z0) = −an−1n (f(z0) = −an−1n ). Clearly F and G share
(1, 0). Since H has only simple poles, the lemma can easily be proved by simple
calculations. �
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Lemma 2.3. [5] Let f and g be two meromorphic functions sharing (1,m), where
1 ≤ m <∞. Then

N(r, 1; f) +N(r, 1; g)−N(r, 1; f |= 1) +

(
m− 1

2

)
N∗(r, 1; f, g)

≤ 1

2
[N(r, 1; f) +N(r, 1; g)]

Lemma 2.4. [19] Let f be a non-constant meromorphic function and let

R(f) =

n∑
k=0

akf
k

m∑
j=0

bjf j

be an irreducible rational function in f with constant coefficients {ak} and {bj}where
an 6= 0 and bm 6= 0 Then

T (r,R(f)) = dT (r, f) + S(r, f),

where d = max{n,m}.

Lemma 2.5. Let S1 and S2 be defined as in Theorem 1.1 with n ≥ 3 and F , G be
given by (2.1). If for two non-constant meromorphic functions f and g Ef (S1, p) =
Eg(S1, p), Ef (S2,m) = Eg(S2,m), 0 ≤ p <∞ and Φ 6≡ 0 then

(2p+ 1)

{
N (r, 0; f |≥ p+ 1) +N

(
r,−an− 1

n
; f |≥ p+ 1

)}
≤ N(r,∞; f) +N(r,∞; g) +N∗(r, 1;F,G) + S(r, f) + S(r, g).

Proof. By the given condition clearly F and G share (1,m). Also we see that

Φ =
fn−2 (nf + a(n− 1)) f

′

−b(F − 1)
− fn−2 (nf + a(n− 1)) f

′

−b(G− 1)
.

Let z0 be a zero or a −an−1n - point of f with multiplicity r. Since Ef (S1, p) =
Eg(S1, p) then that would be a zero of Φ of multiplicity min {(n−2)r+r−1, r+r−1}
i.e., of multiplicity min {(n − 1)r − 1, 2r − 1} if r ≤ p and a zero of multiplicity
at least min{(n − 2)(p + 1) + p, p + 1 + p} i.e., a zero of multiplicity at least
min{(n − 1)p + (n − 2), 2p + 1} if r > p. So using Lemma 2.4 by a simple
calculation we can write

min{(n− 1)p+ (n− 2), (2p+ 1)}
{
N(r, 0; f |≥ p+ 1)

+N(r,−an− 1

n
; f |≥ p+ 1)

}
≤ N(r, 0; Φ)

≤ T (r,Φ)

≤ N(r,∞; Φ) + S(r, F ) + S(r,G)

≤ N∗(r, 1;F,G) +N(r,∞; f) +N(r,∞; g) + S(r, f) + S(r, g).

�



UNIQUENESS OF MEROMORPHIC FUNCTIONS SHARING TWO FINITE SETS IN C WITH FINITE WEIGHT47

Lemma 2.6. Let S1, S2 be defined as in Theorem 1.1 and F , G be given by (2.1).
If for two non-constant meromorphic functions f and g Ef (S1, p) = Eg(S1, p),
Ef (S2,m) = Eg(S2,m), where 0 ≤ p <∞, 2 ≤ m <∞ and H 6≡ 0, then

(n+ 1) {T (r, f) + T (r, g)}

≤ 2

{
N(r, 0; f) +N

(
r,−an− 1

n
; f

)}
+N(r, 0; f |≥ p+ 1)

+N

(
r,−an− 1

n
; f |≥ p+ 1

)
+ 2{N(r,∞; f) +N(r,∞; g)}

+
1

2
[N(r, 1;F ) +N(r, 1;G)]−

(
m− 3

2

)
N∗(r, 1;F,G) + S(r, f) + S(r, g).

Proof. By the second fundamental theorem we get

(n+ 1){T (r, f) + T (r, g)}(2.4)

≤ N(r, 1;F ) +N(r, 0; f) +N

(
r,−an− 1

n
; f

)
+N(r,∞; f) +N(r, 1;G)

+N(r, 0; g) +N

(
r,−a n

n− 1
; g

)
+N(r,∞; g)−N0(r, 0; f

′
)

−N0(r, 0; g
′
) + S(r, f) + S(r, g).

Using Lemmas 2.1, 2.2, 2.3 and 2.4 we note that

N(r, 1;F ) +N(r, 1;G)(2.5)

≤ 1

2
[N(r, 1;F ) +N(r, 1;G)] +N(r, 1;F |= 1)−

(
m− 1

2

)
N∗(r, 1;F,G)

≤ 1

2
[N(r, 1;F ) +N(r, 1;G)] +N(r, 0; f |≥ p+ 1)

+N

(
r,−an− 1

n
; f |≥ p+ 1

)
+N∗(r,∞; f, g)−

(
m− 3

2

)
N∗(r, 1;F,G)

+N0(r, 0; f
′
) +N0(r, 0; g

′
) + S(r, f) + S(r, g).

Using (2.5) in (2.4) and noting that N(r, 0; f) + N
(
r,−an−1n ; f

)
= N(r, 0; g) +

N
(
r,−an−1n ; g

)
the lemma follows. �

Lemma 2.7. Let f , g be two non-constant meromorphic functions such that
Ef ({0,−an−1n }, 0) = Eg({0,−an−1n }, 0) then fn−1(f + a) ≡ gn−1(g + a) implies
f ≡ g, where n (≥ 2) is an integer and a is a nonzero finite constant.

Proof. Let
fn−1(f + a) ≡ gn−1(g + a)

and suppose f 6≡ g. We consider two cases:
Case I Let y = g

f be a constant. Then from (2.6) it follows that y 6= 1, yn−1 6= 1,

yn 6= 1 and f ≡ −a yn−1−1
yn−1 , a constant, which is impossible.

Case II Let y = g
f be non-constant. Suppose none of 0 and −an−1n is an exceptional

value of Picard (e.v.P.) of f and g. Then from (2.6) we see that if z0 is a 0 (−an−1n )-

point of f then that must be a 0 (−an−1n )-point of g. That is f , g share (0,∞)
(∞,∞). So y has no zero and pole. Again from (2.6) we observe that

f(yn − 1) ≡ −a( yn−1 − 1).
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Clearly y 6≡ 1. So eliminating this common factor we are left with

f(y − α1)(y − α2) . . . (y − αn−1) ≡ −a(y − β1)(y − β2) . . . (y − βn−2),

where αj = exp ( 2jπi
n ) for j = 1, 2, . . . , n − 1 and βk = exp ( 2kπi

n−1 ) for k =
1, 2, . . . , n − 2. Clearly none of the αj ’s coincides with βk’s. First we observe
that y can not omit any of the 2n− 3 distinct values αj or βk for j = 1, 2, . . . , n− 1
and k = 1, 2, . . . , n−2, since otherwise y will have more than two Picard exceptional
value, a contradiction.

So if z0 is a point such that y(z0) = αj , then we have (y(z0) − β1)(y(z0) −
β2) . . . (y(z0)− βn−2) ≡ 0, a contradiction. On the otherhand if z1 is a point such

that y(z1) = g(z1)
f(z1)

= βk 6= 0, k = 1, 2, . . . , n−2, then we must have f(z1) = 0 which

is impossible as f and g share (0,∞).
If 0 is an e.v.P. or 0 and −an−1n both are e.v.P. of f and g then by the same

argument as above we can obtain a contradiction.
If −an−1n is an e.v.P. of f and g, then we have from (2.7) that(

f + a
(n− 1)

n

)
{n(yn − 1)} ≡ a{(n− 1)yn − nyn−1 + 1}.

If we assume p(z) = (n − 1)zn − nzn−1 + 1, then p(0) 6= 0 and p(1) = p
′
(1) = 0.

From above we see that p(y) has n− 1 distinct zeros none of which coincides with
αj , j = 1, 2, . . . , n− 1. Then again by the same argument as above we have at last
left with a point say z2 such that f(z2) = −an−1n , a contradiction.

Hence f ≡ g and this proves the lemma. �

Lemma 2.8. Let f , g be two non-constant meromorphic functions such that
Ef ({0,−an−1n }, 0) = Eg({0,−an−1n }, 0) and suppose n (≥ 3) be an integer. Then

fn−1(f + a)gn−1(g + a) 6≡ b2,
where a, b are finite nonzero constants.

Proof. If possible, let us suppose

(2.6) fn−1(f + a)gn−1(g + a) ≡ b2.
Let z0 be a zero of f (g). Then z0 must be either a 0-point or a −an−1n point of

g (f), which is impossible from (2.6). It follows that f (g) has no zero.
Next let z0 be a zero of f + a with multiplicity p. Then z0 is a pole of g with

multiplicity q such that p = (n− 1)q + q = nq ≥ n.
Since the poles of f are the zeros of g + a only, we get

N(r,∞; f) ≤ N(r,−a; g) ≤ 1

n
T (r, g).

By the second fundamental theorem we get

T (r, f) ≤ N(r,∞; f) +N(r, 0; f) +N(r,−a; f) + S(r, f)

≤ 1

n
N(r,−a; f) +

1

n
T (r, g) + S(r, f)

≤ 1

n
T (r, f) +

1

n
T (r, g) + S(r, f).

i.e.,

(1− 1

n
) T (r, f) ≤ 1

n
T (r, g) + S(r, f).
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Similarly

(1− 1

n
) T (r, g) ≤ 1

n
T (r, f) + S(r, g)

Adding (2.9) and (2.10) we get

(1− 2

n
) {T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

a contradiction for n ≥ 3. This proves the lemma. �

Lemma 2.9. Let F , G be given by (2.1) and they share (1,m). Also let ω1, ω2 . . . ωn
are the members of the set S2 = {z : zn + azn−1 + b = 0}, where a, b are nonzero
constants such that zn + azn−1 + b = 0 has no repeated root and n (≥ 3) is an
integer. Then

N∗(r, 1;F,G) ≤ 1

m

[
N(r, 0; f) +N(r,−an− 1

n
; f)

]
+ S(r, f).

Proof. First we note that since S2 has distinct elements, −an−1n can not be a
member of S2. So

N∗(r, 1;F,G)

≤ N(r, 1;F |≥ m+ 1)

≤ 1

m

(
N(r, 1;F )−N(r, 1;F )

)
≤ 1

m

 n∑
j=1

(
N(r, ωj ; f)−N(r, ωj ; f)

)
≤ 1

m

[
N

(
r, 0; f

′
| f 6= 0, −an− 1

n

)]
]

≤ 1

m

[
N

(
r,∞;

f(f + an−1n )

f ′

)]
≤ 1

m

[
N

(
r,∞;

f
′

f(f + an−1n )

)]
+ S(r, f)

≤ 1

m

[
N(r, 0; f) +N(r,−an− 1

n
; f)

]
+ S(r, f)

�

Lemma 2.10. [2] Let F , G be given by (2.1) where n ≥ 7 is an integer. If H ≡ 0
then either fn−1(f + a)gn−1(g + a) ≡ b2 or fn−1(f + a) ≡ gn−1(g + a)

3. Proofs of the theorems

Proof of Theorem 1.1. Let F , G be given by (2.1). Then F and G share (1, 3). We
consider the following cases.
Case 1. Suppose that Φ 6≡ 0.
Subcase 1.1 Let H 6≡ 0. Then using Lemma 2.6 for m = 3 and p = 2, Lemma 2.5
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for p = 0, Lemma 2.4 and Lemma 2.9 for m = 3 we obtain

(n+ 1) {T (r, f) + T (r, g)}(3.1)

≤ 2

{
N(r, 0; f) +N

(
r,−an− 1

n
; f

)}
+ 2{N(r,∞; f) +N(r,∞; g)}

+N(r, 0; f |≥ 3) +N

(
r,−an− 1

n
; f |≥ 3

)
+

1

2
[N(r, 1;F ) +N(r, 1;G)]

− 3

2
N∗(r, 1;F,G) + S(r, f) + S(r, g)

≤ (4 +
1

5
){N(r,∞; f) +N(r,∞; g)}+

1

2
[N(r, 1;F ) +N(r, 1;G)]

+
7

60

{
N(r, 0; f) +N

(
r,−an− 1

n
; f

)
+N(r, 0; g) +N

(
r,−an− 1

n
; g

)}
+S(r, f) + S(r, g)

≤ (
n

2
+ 4 +

13

30
){T (r, f) + T (r, g)}+ S(r, f) + S(r, g).

(3.1) gives a contradiction for n ≥ 7.
Subcase 1.2 Let H ≡ 0. Now the conclusion of the theorem can be obtain from
Lemmas 2.10, 2.8 and 2.7.
Case 2. Suppose that Φ ≡ 0. On integration we get (F − 1) ≡ A(G− 1) for some
non zero constant A. So in view of Lemma 2.4 we have

(3.2) T (r, f) = T (r, g) +O(1).

Since by the given condition of the theorem Ef (S1, 0) = Eg(S1, 0) we consider the
following cases.
Subcase 2.1. Let us first assume f and g share (0, 0) and (−an−1n , 0). If one of

0 or −an−1n is an e.v.P. of both f and g, then we get A = 1 and we have F ≡ G,

which in view of Lemma 2.7 implies f ≡ g. Let both 0 and −an−1n are e.v.P. of f
as well as g then noting that here F ≡ AG+(1−A), suppose A 6= 1. Using Lemma
2.4, (3.2) and the second fundamental theorem we get

nT (r, f)

≤ N(r, 0;F ) +N(r, 1−A;F ) +N(r,∞;F ) + S(r, F )

≤ N(r, 0; f) +N(r,−a; f) +N(r, 0;G) +N(r,∞; f) + S(r, f)

≤ 2T (r, f) + T (r, g) + S(r, f)

≤ 3T (r, f) + S(r, f),

which implies a contradiction since n ≥ 7.
Subcase 2.2. Next suppose that there is at least one point z0 such that f(z0) = 0
and g(z0) = −an−1n . At the point z0, we have F (z0) = 0 and G(z0) = β (say). So

A = 1
1−β . Putting this values we obtain from above

F ≡ 1

1− β
G+

β

β − 1
.

If β 6= 0 then again noting that N(r, β
β−1 ;F ) = N(r, 0;G), we can again get a

contradiction as above when n ≥ 7. �
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Proof of Theorem 1.2. Let F , G be given by (2.1). Then F and G share (1, 3). We
consider the following cases.
Case 1. Suppose that Φ 6≡ 0.
Subcase 1.1. Let H 6≡ 0. Then using Lemma 2.6, Lemma 2.5 for p = 0, Lemma
2.4 and Lemma 2.9 we obtain

(n+ 1) {T (r, f) + T (r, g)}(3.3)

≤ 2

{
N(r, 0; f) +N

(
r,−an− 1

n
; f

)}
+ 2{N(r,∞; f) +N(r,∞; g)}

+N(r, 0; f |≥ p+ 1) +N

(
r,−an− 1

n
; f |≥ p+ 1

)
+

1

2
[N(r, 1;F )

+N(r, 1;G)] +

(
3

2
−m

)
N∗(r, 1;F,G) + S(r, f) + S(r, g)

≤
(

4 +
1

2p+ 1

)
{N(r,∞; f) +N(r,∞; g)}+

1

2
[N(r, 1;F ) +N(r, 1;G)]

+

(
7

4m
+

1

2m(2p+ 1)
− 1

2

){
N(r, 0; f) +N

(
r,−an− 1

n
; f

)
+N(r, 0; g)

+N

(
r,−an− 1

n
; g

)}
+ S(r, f) + S(r, g)

≤
(
n

2
+ 3 +

7

2m
+

m+ 1

m(2p+ 1)

)
{T (r, f) + T (r, g)}+ S(r, f) + S(r, g).

Since 7
2m + m+1

m(2p+1) < 2, with 7
2m + 1

m(2p+1) > 1 and n ≥ 8, (3.2) gives a contra-

diction.
We now omit the rest of the proof since the same is similar to that of Theorem
1.1. �
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ON PURE LA-SEMIHYPERGROUPS

1VENUS AMJAD AND 2FAISAL YOUSAFZAI

Abstract. We generalize the existing theory of an associative structure [6] by

studying it in a non-associative hyper-structure called an LA-semihypergroup.
The results obtained will also generalize the results on LA-semigroup without

hyper theory. As an application of our results we characterize (0, 2)-hyperideals
of an LA-semihypergroup H and prove that A is a (0, 2)-hyperideal of H if

and only if A is a left hyperideal of some left hyperideal of H. We also show

that an LA-semihypergroup H is 0-(0, 2)-bisimple if and only if H is right
0-simple. Finally we give the connection of ordered and hyper theories of an

LA-semigroup.

1. Introduction

Hyperstructure theory was introduced in 1934, when F. Marty [9] defined hyper-
groups, began to analyze their properties and applied them to groups. In the follow-
ing decades and nowadays, a number of different hyperstructures are widely studied
from the theoretical point of view and for their applications to many subjects of
pure and applied mathematics by many mathematicians. Nowadays, hyperstruc-
tures have a lot of applications to several domains of mathematics and computer
science and they are studied in many countries of the world. In a classical algebraic
structure, the composition of two elements is an element, while in an algebraic hy-
perstructure, the composition of two elements is a set. A lot of papers and several
books have been written on hyperstructure theory, see [2]. Many authors studied
different aspects of semihypergroups, for instance, Corsini et al. [1], Davvaz et al.
[3], Hila et al. [5] and Leoreanu [8].

A left almost semigroup (LA-semigroup) is a groupoid S whose elements satisfy
the following left invertive law (ab)c = (cb)a for all a, b, c ∈ S.This concept was first
given by Kazim and Naseeruddin in 1972 [7]. In an LA-semigroup, the medial law
[7] (ab)(cd) = (ac)(bd) holds, ∀ a, b, c, d ∈ S. An LA-semigroup may or may not
contain a left identity. The left identity of an LA-semigroup allow us to introduce
the inverses of elements in an LA-semigroup. If an LA-semigroup contains a left

Date: January 1, 2013 and, in revised form, February 2, 2013.
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identity, then it is unique [10]. In an LA-semigroup S with left identity, the para-
medial law (ab)(cd) = (dc)(ba) holds, ∀ a, b, c, d ∈ S. By using medial law with left
identity, we get a(bc) = b(ac) for all a, b, c ∈ S.

An LA-semigroup is a non-associative and non-commutative algebraic structure
mid way between a groupoid and a commutative semigroup. This structure is
closely related to a commutative semigroup; indeed if an LA-semigroup contains
a right identity, then it becomes a commutative semigroup [10]. The connection
between a commutative inverse semigroup and an LA-semigroup was established by
Yousafzai et al. in [18] as follows: a commutative inverse semigroup (S, .) becomes
an LA-semigroup (S, ∗) under a ∗ b = ba-1r-1 for all a, b, r ∈ S. An LA-semigroup
S with a left identity becomes a semigroup under the binary operation ”◦e” defined
as follows: x ◦e y = (xe)y for all x, y ∈ S [18]. There are lot of results which
have been added to the theory of an LA-semigroup by Mushtaq, Kamran, Holgate,
Jezek, Protic, Madad, Yousafzai and many other researchers. An LA-semigroup is
a generalization of a semigroup [10] and it has vast applications in semigroups, as
well as in other branches of mathematics. Yaqoob et al. [11, 12] and Yousafzai et al.
[15, 16, 17] studied some aspects of fuzzy LA-semigroups and fuzzy AG-groupoids.

Recently, Hila et al. introduced the notion of LA-semihypergroups [4]. They
investigated several properties of hyperideals of LA-semihypergroup and defined
the topological space and study the topological structure of LA-semihypergroups
using hyperideal theory. In [13], Yaqoob et al. have characterized intra-regular
LA-semihypergroups by using the properties of their left and right hyperideals,
and investigated some useful conditions for an LA-semihypergroup to become an
intra-regular LA-semihypergroup. This non-associative hyper structure has been
further explored by Yousafzai et al. in [19] and [21]. Yaqoob and Gulistan [14]
defined partial order relations on LA-semihypergroups.

In this paper, we discuss 0-minimal hyperideals and (0, 2)-hyperideals. We char-
acterize an LA-semihypergroup in terms of (1, 2)-hyperideals and show that a (1, 2)-
hyperideal of a pure LA-semihypergroup is a left hyperideal of some bi-hyperideal.
We give the necessary and sufficient condition for an LA-semihypergroup to become
right 0-simple.

2. Preliminaries and examples

A map ◦ : H × H → P∗(H) is called hyperoperation or join operation on the
set H, where H is a non-empty set and P∗(H) = P(H)\{∅} denotes the set of
all non-empty subsets of H. A hypergroupoid is a set H together with a (binary)
hyperoperation.

Let A and B be two non-empty subsets of H, then we denote

A ◦B =
⋃

a∈A,b∈B

a ◦ b, a ◦A = {a} ◦A and a ◦B = {a} ◦B.

A hypergroupoid (H, ◦) is called an LA-semihypergroup [4] if (x ◦ y) ◦ z =
(z ◦ y) ◦ x holds for all x, y, z ∈ H. The law is called a left invertive law. A
hypergroupoid (H, ◦) is called a right almost semihypergroup (RA-semihypergroup)
if x ◦ (y ◦ z) = z ◦ (y ◦ x) hold for all x, y, z ∈ H. The law is called a right
invertive law. A hypergroupoid (H, ◦) is called an almost semihypergroup (A-
semihypergroup) if it is both an LA-semihypergroup and an RA-semihypergroup.
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Every LA-semihypergroup satisfies the law (x ◦ y) ◦ (z ◦ w) = (x ◦ z) ◦ (y ◦ w) for
all w, x, y, z ∈ H. This law is known as medial law (cf. [4]).

Let H be an LA-semihypergroup [13], then an element e ∈ H is called
(i) a left identity (resp. pure left identity) if for all a ∈ H, a ∈ e ◦ a (resp.

a = e ◦ a),
(ii) a right identity (resp. pure right identity) if for all a ∈ H, a ∈ a ◦ e (resp.

a = a ◦ e),
(iii) an identity (resp. pure identity) if for all a ∈ H, a ∈ e ◦ a ∩ a ◦ e (resp.

a = e ◦ a ∩ a ◦ e).
We have shown in [19] that unlike an LA-semigroup, an LA-semihypergroup

may have a right identity or an identity. This fact can lead us to the following
major remark.

Remark 2.1. The right identity of an LA-semihypergroup need not to be a left
identity in general. An LA-semihypergroup may have a left identity or a right
identity or an identity. Moreover, an LA-semihypergroup with a right identity
need not to be associative.

However an LA-semihypergroup with pure right identity becomes a commutative
semigroup with identity [19].

An LA-semihypergroup with pure left identity e is called a pure LA-semihypergroup.
A pure LA-semihypergroup (H, ◦) satisfy the following laws for all w, x, y, z ∈ H :

(x ◦ y) ◦ (z ◦ w) = (w ◦ z) ◦ (y ◦ x),

called a paramedial law, and

x ◦ (y ◦ z) = y ◦ (x ◦ z).

Example 2.1. Let (H, ◦) be an LA-semihypergroup with pure left identity e.
Define a binary hyperoperation ô (e-sandwich hyperoperation) as follows:

a ô b = (a ◦ e) ◦ b for all a, b ∈ H.

Then (H, ô) becomes a commutative semihypergroup with pure identity .

Example 2.2. An A-semihypergroup H with pure left identity becomes an abelian
hypergroup.

If there is an element 0 of an LA-semihypergroup (H, ◦) such that x◦0 = 0◦x = x
∀ x ∈ H, we call 0 a zero element of H.

Example 2.3. Let us consider the following table for H = {a, b, c, d, e} with a pure
left identity d. It is easy to see that (H, ◦) is a pure unitary LA-semigroup with a
zero element a.

◦ a b c d e
a a a a a a
b a {a, e} {a, e} {a, c} {a, e}
c a {a, e} {a, e} {a, b} {a, e}
d a b c d e
e a {a, e} {a, e} {a, e} {a, e}
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A subset A of an LA-semihypergroup H is called a left (right) hyperideal of
H if H ◦ A ⊆ A (A ◦ H ⊆ A), and is called a hyperideal of H if it is both left
and right hyperideal of H. A subset A of an LA-semihypergroup H is called an
LA-subsemihypergroup of H if A2 ⊆ A. A hyperideal A of an LA-semihypergroup
H with zero is said to be 0-minimal if A 6= {0} and {0} is the only hyperideal
of H properly contained in A. An LA-semihypergroup H with zero is said to be
0-(0, 2)-bisimple if H2 6= {0} and {0} is the only proper (0, 2)-bi-hyperideal of H.

3. 0-minimal (0, 2)-bi-hyperideals in pure LA-semihypergroups

If H is a pure LA-semihypergroup, then it is easy to see that H ◦ H = H,
H ◦ A2 = A2 ◦H and A ⊆ H ◦ A ∀ A ⊆ H. Note that every right hyperideal of a
pure LA-semihypergroup H is a left hyperideal of H but the converse is not true in
general. Example 2.3 shows that there exists a subset {a, b, e} of H which is a left
hyperideal of H but not a right hyperideal of H. It is easy to see that H ◦ A and
H ◦ A2 are the left and right hyperideals of a pure LA-semihypergroup H. Thus
H ◦A2 is a hyperideal of a pure LA-semihypergroup H.

Lemma 3.1. Let H be a pure LA-semihypergroup. Then A is a (0, 2)-hyperideal
of H if and only if A is a hyperideal of some left hyperideal of H.

Proof. Let A be a (0, 2)-hyperideal of H, then

(H ◦A) ◦A = (A ◦A) ◦H = H ◦A2 ⊆ A,

and
A ◦ (H ◦A) = H ◦ (A ◦A) = (H ◦H) ◦ (A ◦A) = H ◦A2 ⊆ A.

Hence A is a hyperideal of a left hyperideal H ◦A of H.
Conversely, assume that A is a left hyperideal of a left hyperideal L of H, then

H ◦A2 = (A ◦A) ◦H = (H ◦A) ◦A ⊆ (H ◦ L) ◦A ⊆ L ◦A ⊆ A,

and clearly A is an LA-subsemihypergroup of H, therefore A is a (0, 2)-hyperideal
of H. �

Corollary 3.1. Let H be a pure LA-semihypergroup. Then A is a (0, 2)-hyperideal
of H if and only if A is a left hyperideal of some left hyperideal of H.

Lemma 3.2. Let H be a pure LA-semihypergroup. Then A is a (0, 2)-bi-hyperideal
of H if and only if A is a hyperideal of some right hyperideal of H.

Proof. Let A be a (0, 2)-bi-hyperideal of H, then

(H ◦A2) ◦A = (A2 ◦H) ◦A = (A ◦H) ◦A2 ⊆ H ◦A2 ⊆ A,

and

A ◦ (H ◦A2) = (H ◦H) ◦ (A ◦A2) = (A2 ◦A) ◦ (H ◦H)

= (H ◦A) ◦A2 ⊆ H ◦A2 ⊆ A.

Hence A is a hyperideal of some right hyperideal H ◦A2 of H.
Conversely, assume that A is a hyperideal of a right hyperideal R of H, then

H ◦A2 = A ◦ (H ◦A) = A ◦ ((H ◦H) ◦A) = A ◦ ((A ◦H) ◦H)

⊆ A ◦ ((R ◦H) ◦R) ⊆ A ◦R ⊆ A,

and
(A ◦H) ◦A ⊆ (R ◦H) ◦A ⊆ R ◦A ⊆ A,
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which shows that A is a (0, 2)-hyperideal of H. �

Theorem 3.1. Let H be a pure LA-semihypergroup. Then the following statements
are equivalent.

(i) A is a (1, 2)-hyperideal of H;
(ii) A is a left hyperideal of some bi-hyperideal of H;
(iii) A is a bi-hyperideal of some hyperideal of H;
(iv) A is a (0, 2)-hyperideal of some right hyperideal of H;
(v) A is a left hyperideal of some (0, 2)-hyperideal of H.

Proof. (i) =⇒ (ii). It is easy to see that (H ◦ A2) ◦H is a bi-hyperideal of H. Let
A be a (1, 2)-hyperideal of H, then

{(H ◦A2) ◦H} ◦A = {(H ◦A2) ◦ (H ◦H)} ◦A = {(H ◦H) ◦ (A2 ◦H)} ◦A
= {H ◦ (A2 ◦H)} ◦A = (A2 ◦H) ◦A
= (A ◦H) ◦A2 ⊆ A,

which shows that A is a left hyperideal of a bi-hyperideal (H ◦A2) ◦H of H.
(ii) =⇒ (iii). Let A be a left hyperideal of a bi-hyperideal B of H, then

{A ◦ (H ◦A2)} ◦A = {H ◦ (A ◦A2)} ◦A
⊆ [H ◦ {(H ◦A) ◦ (A ◦A)}] ◦A
= [H ◦ {(A ◦A) ◦ (A ◦H)}] ◦A
= [(A ◦A) ◦ {H ◦ (A ◦H)}] ◦A
= [{(H ◦ (A ◦H)) ◦A} ◦A] ◦A
= [{(A ◦H) ◦A} ◦A] ◦A
⊆ [{(B ◦H) ◦B} ◦A] ◦A
⊆ (B ◦A) ◦A ⊆ A,

which shows that A is a bi-hyperideal of a hyperideal H ◦A2 of H.
(iii) =⇒ (iv). Let A be a bi-hyperideal of a hyperideal I of H, then

(H ◦A2) ◦A2 = {A2 ◦ (A ◦A)} ◦H = {A ◦ (A2 ◦A)} ◦H
⊆ [A ◦ {(A ◦ I) ◦A}] ◦H = (A ◦A) ◦H
= (H ◦A) ◦A ⊆ (H ◦ I) ◦H ⊆ I,

which shows that A is a (0, 2)-hyperideal of a right hyperideal H ◦A2 of H.
(iv) =⇒ (v). It is easy to see that H ◦A3 is a (0, 2)-hyperideal of H. Let A be a

(0, 2)-hyperideal of a right hyperideal R of H, then

A ◦ (H ◦A3) = A ◦ {(H ◦H) ◦ (A2 ◦A)}
= A ◦ {(A ◦A2) ◦H}
⊆ A ◦ [{(H ◦A) ◦ (A ◦A)} ◦H]

= A ◦ [{(A ◦A) ◦ (A ◦H)} ◦H]

= (A ◦A) ◦ [{A ◦ (A ◦H)} ◦H]

= [H ◦ {A ◦ (A ◦H)}] ◦A2

= [A ◦ {H ◦ (A ◦H)}] ◦A2

⊆ (R ◦H) ◦A2 ⊆ R ◦A2 ⊆ A,
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which shows that A is a left hyperideal of a (0, 2)-hyperideal H ◦A3 of H.
(v) =⇒ (i). Let A be a left hyperideal of a (0, 2)-hyperideal O of H, then

(A ◦H) ◦A2 = {(A ◦A) ◦ (H ◦H)} ◦A = (H ◦A2) ◦A
⊆ (H ◦O2) ◦A ⊆ O ◦A ⊆ A,

which shows that A is a (1, 2)-hyperideal of H. �

Lemma 3.3. Let H be a pure LA-semihypergroup and A be an idempotent subset
of H. Then A is a (1, 2)-hyperideal of H if and only if there exist a left hyperideal
L and a right hyperideal R of H such that R ◦ L ⊆ A ⊆ R ∩ L.

Proof. Assume that A is a (1, 2)-hyperideal of H such that A is idempotent. Setting
L = H ◦A and R = H ◦A2, then

R ◦ L = (H ◦A2) ◦ (H ◦A)

= (A2 ◦H) ◦ (H ◦A)

= {(H ◦A) ◦ (H ◦H)} ◦A2

= {(H ◦H) ◦ (A ◦H)} ◦A2

= [H ◦ {(A ◦A) ◦ (H ◦H)}] ◦A2

= [H ◦ {(H ◦H) ◦ (A ◦A)}] ◦A2

= [H ◦ [A ◦ {(H ◦H) ◦A}]] ◦A2

= [A ◦ {H ◦ (H ◦A)}] ◦A2

⊆ (A ◦H) ◦A2 ⊆ A.

It is clear that A ⊆ R ∩ L.
Conversely, let R be a right hyperideal and L be a left hyperideal of H such that

R ◦ L ⊆ A ⊆ R ∩ L, then

(A ◦H) ◦A2 = (A ◦H) ◦ (A ◦A) ⊆ (R ◦H) ◦ (H ◦ L) ⊆ R ◦ L ⊆ A.

�

Assume that H is a pure unitary LA-semihypergroup with zero. Then it is easy
to see that every left (right) hyperideal of H is a (0, 2)-hyperideal of H. Hence
if O is a 0-minimal (0, 2)-hyperideal of H and A is a left (right) hyperideal of H
contained in O, then either A = {0} or A = O.

Lemma 3.4. Let H be a pure LA-semihypergroup with zero. Assume that A is a
0-minimal hyperideal of H and O is an LA-subsemihypergroup of A. Then O is a
(0, 2)-hyperideal of H contained in A if and only if O2 = {0} or O = A.

Proof. Let O be a (0, 2)-hyperideal of H contained in a 0-minimal hyperideal A
of H. Then H ◦ O2 ⊆ O ⊆ A. Since H ◦ O2 is a hyperideal of H, therefore by
minimality of A, H ◦O2 = {0} or H ◦O2 = A. If H ◦O2 = A, then A = H ◦O2 ⊆ O
and therefore O = A. Let H ◦O2 = {0}, then

O2 ◦H = H ◦O2 = {0} ⊆ O2,

which shows that O2 is a right hyperideal of H, and hence a hyperideal of H
contained in A, therefore by minimality of A, we have O2 = {0} or O2 = A. Now
if O2 = A, then O = A.

Conversely, let O2 = {0}, then

H ◦O2 = O2 ◦H = {0} ◦H = {0} = O2.
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Now if O = A, then

H ◦O2 = (H ◦H) ◦ (O ◦O) = (H ◦A) ◦ (H ◦A) ⊆ A = O,

which shows that O is a (0, 2)-hyperideal of H contained in A. �

Corollary 3.2. Let H be a pure LA-semihypergroup with zero. Assume that A is
a 0-minimal left hyperideal of H and O is an LA-subsemihypergroup of A. Then O
is a (0, 2)-hyperideal of H contained in A if and only if O2 = {0} or O = A.

Lemma 3.5. Let H be a pure LA-semihypergroup with zero and O be a 0-minimal
(0, 2)-hyperideal of H. Then O2 = {0} or O is a 0-minimal right (left) hyperideal
of H.

Proof. Let O be a 0-minimal (0, 2)-hyperideal of H, then

H ◦ (O2)2 = (H ◦H) ◦ (O2 ◦O2) = (O2 ◦O2) ◦H
= (H ◦O2) ◦O2 ⊆ O ◦O2 ⊆ O2,

which shows that O2 is a (0, 2)-hyperideal of H contained in O, therefore by
minimality of O, O2 = {0} or O2 = O. Suppose that O2 = O, then O ◦H = (O ◦
O)◦(H ◦H) = H ◦O2 ⊆ O, which shows that O is a right hyperideal of H. Let R be
a right hyperideal of H contained in O, then R2◦H = (R◦R)◦H ⊆ (R◦H)◦H ⊆ R.
Thus R is a (0, 2)-hyperideal of H contained in O, and again by minimality of O,
R = {0} or R = O. �

The following Corollary follows from Lemma 3.4 and Corollary 3.2.

Corollary 3.3. Let H be a pure LA-semihypergroup. Then O is a minimal (0, 2)-
hyperideal of H if and only if O is a minimal left hyperideal of H.

Theorem 3.2. Let H be a pure LA-semihypergroup. Then A is a minimal (2, 1)-
hyperideal of H if and only if A is a minimal bi-hyperideal of H.

Proof. Let A be a minimal (2, 1)-hyperideal of H. Then

[{(A2 ◦H) ◦A}2 ◦H] ◦ {(A2 ◦H) ◦A} = [[{(A2 ◦H) ◦A} ◦ {(A2 ◦H) ◦A}] ◦H]

◦{(A2 ◦H) ◦A}
⊆ [[{(A ◦H) ◦A} ◦ {(A ◦H) ◦A}] ◦H]

◦{(A ◦H) ◦A}
= [[{(A ◦H) ◦ (A ◦H)} ◦ (A ◦A)] ◦H]

◦{(A ◦H) ◦A}
= [{(A2 ◦H) ◦ (A ◦A)} ◦H] ◦ {(A ◦H) ◦A}
⊆ [{(A ◦H) ◦ (A ◦H)} ◦H] ◦ {(A ◦H) ◦A}
= {(A2 ◦H) ◦H} ◦ {(A ◦H) ◦A}
⊆ {(A ◦H) ◦H} ◦ {(A ◦H) ◦A}
= {(A ◦H) ◦ (A ◦H)}(H ◦A)

= (A2 ◦H) ◦ (H ◦A) = (A ◦H) ◦ (H ◦A2)

= {(H ◦A2) ◦H} ◦A = {(A2 ◦H) ◦H} ◦A
= {(H ◦H) ◦ (A ◦A)} ◦A = (A2 ◦H) ◦A,



60 1VENUS AMJAD AND 2FAISAL YOUSAFZAI

and similarly we can show that {(A2◦H)◦A}2 ⊆ (A2◦H)◦A. Thus (A2◦H)◦A is
a (2, 1)-hyperideal of H contained in A, therefore by minimality of A, (A2◦H)◦A =
A. Now

(A ◦H) ◦A = (A ◦H) ◦ {(A2 ◦H) ◦A} = [{(A2 ◦H) ◦A} ◦H] ◦A
= {(H ◦A) ◦ (A2 ◦H)} ◦A = [A2 ◦ {(H ◦A) ◦H}] ◦A
⊆ (A2 ◦H) ◦A = A,

It follows that A is a bi-hyperideal of H. Suppose that there exists a bi-hyperideal
B of H contained in A, then (B2 ◦ H) ◦ B ⊆ (B ◦ H) ◦ B ⊆ B, so B is a
(2, 1)-hyperideal of H contained in A, therefore B = A.

Conversely, assume that A is a minimal bi-hyperideal of H, then it is easy to see
that A is a (2, 1)-hyperideal of H. Let C be a (2, 1)-hyperideal of H contained in
A, then

[{(C2 ◦H) ◦ C} ◦H] ◦ {(C2 ◦H) ◦ C} = {(H ◦ C) ◦ (C2 ◦H)} ◦ {(C2 ◦H) ◦ C}
= {(H ◦ C2) ◦ (C ◦H)} ◦ {(C2 ◦H) ◦ C}
= [C ◦ {(H ◦ C2) ◦H}] ◦ {(C2 ◦H) ◦ C}
= [{(C2 ◦H) ◦ C} ◦ {(H ◦ C2)

◦(H ◦H)}] ◦ C
= [{(C2 ◦H) ◦ C} ◦ {H ◦ (C2 ◦H)}] ◦ C
= [{(C2 ◦H) ◦ C} ◦ (C2 ◦H)] ◦ C
= [C2 ◦ [{(C2 ◦H) ◦ C} ◦H]] ◦ C
⊆ (C2 ◦H) ◦ C.

This shows that (C2 ◦H) ◦ C is a bi-hyperideal of H, and by minimality of A,
(C2 ◦ H) ◦ C = A. Thus A = (C2 ◦ H) ◦ C ⊆ C, and therefore A is a minimal
(2, 1)-hyperideal of H. �

Theorem 3.3. Let A be a 0-minimal (0, 2)-bi-hyperideal of a pure LA-semihypergroup
H with zero. Then exactly one of the following cases occurs:

(i) A = {0, a}, a2 = 0;
(ii) ∀ a ∈ A\{0}, H ◦ ◦a2 = A.

Proof. Assume that A is a 0-minimal (0, 2)-bi-hyperideal of H. Let a ∈ A\{0}, then
H ◦ a2 ⊆ A. Also H ◦ a2 is a (0, 2)-bi-hyperideal of H, therefore H ◦ a2 = {0} or
H ◦ a2 = A.

Let H◦a2 = {0}. Since a2 ⊆ A, we have either a2 = a or a2 = 0 or a2 ⊆ A\{0, a}.
If a2 = a, then a3 = a2 ◦a = a, which is impossible because a3 ⊆ a2 ◦H = H ◦a2 =
{0}. Let a2 ⊆ A\{0, a}, we have

H ◦ [{0, a2}{0, a2}] = (H ◦H) ◦ (a2 ◦ a2) = (H ◦ a2) ◦ (H ◦ a2) = {0} ⊆ {0, a2},
and

[{0, a2}H]{0, a2} = {0, a2H}{0, a2} = a2H · a2 ⊆ Ha2 = {0} ⊆ {0, a2}.
Therefore {0, a2} is a (0, 2)-bi-hyperideal of H contained in A. We observe that

{0, a2} 6= {0} and {0, a2} 6= A. This is a contradiction to the fact that A is a
0-minimal (0, 2)-bi-hyperideal of H. Therefore a2 = 0 and A = {0, a}.

If H ◦ a2 6= {0}, then H ◦ a2 = A. �
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Corollary 3.4. Let A be a 0-minimal (0, 2)-bi-hyperideal of a pure LA-semihypergroup
H with zero such that A2 6= 0. Then A = H ◦ a2 for every a ∈ A\{0}.

Lemma 3.6. Let H be a pure LA-semihypergroup. Then every right hyperideal of
H is a (0, 2)-bi-hyperideal of H.

Proof. Assume that A is a right hyperideal of H, then

H ◦A2 = (A◦A)◦(H ◦H) = (A◦H)◦(A◦H) ⊆ A◦A ⊆ A◦H ⊆ A, (A◦H)◦A ⊆ A,

and clearly A2 ⊆ A, therefore A is a (0, 2)-bi-hyperideal of H. �

The converse of Lemma 3.6 is not true in general. Example 2.3 shows that there
exists a (0, 2)-bi-hyperideal A = {a, c, e} of H which is not a right hyperideal of H.

Theorem 3.4. Let H be a pure LA-semihypergroup with zero. Then H ◦ a2 = H
∀ a ∈ H\{0} if and only if H is 0-(0, 2)-bisimple if and only if H is right 0-simple.

Proof. Assume that H◦a2 = H for every a ∈ H\{0}. Let A be a (0, 2)-bi-hyperideal
of H such that A 6= {0}. Let a ∈ A\{0}, then H = H ◦a2 ⊆ H ◦A2 ⊆ A. Therefore
H = A. Since H = H ◦ a2 ⊆ H ◦ H = H2, we have H2 = H 6= {0}. Thus H is
0-(0, 2)-bisimple. The converse statement follows from Corollary 3.4.

Let R be a right hyperideal of 0-(0, 2)-bisimple H. Then by Lemma 3.6, R is a
(0, 2)-bi-hyperideal of H and so R = {0} or R = H.

Conversely, assume that H is right 0-simple. Let a ∈ H\{0}, then H ◦ a2 = H.
Hence H is 0-(0, 2)-bisimple. �

Theorem 3.5. Let A be a 0-minimal (0, 2)-bi-hyperideal of a pure LA-semihypergroup
H with zero. Then either A2 = {0} or A is right 0-simple.

Proof. Assume that A is 0-minimal (0, 2)-bi-hyperideal of H such that A2 6= {0}.
Then by using Corollary 3.4, H ◦a2 = A for every a ∈ A\{0}. Since a2 ⊆ A\{0} for
every a ∈ A\{0}, we have a4 = (a2)2 ⊆ A\{0} for every a ∈ A\{0}. Let a ∈ A\{0},
then

{(A ◦ a2) ◦H} ◦ (A ◦ a2) = (a2 ◦A) ◦ {H ◦ (A ◦ a2)} = [{H ◦ (A ◦ a2)} ◦A] ◦ a2

⊆ {(H ◦A) ◦A} ◦ a2 = {(A ◦A) ◦ (H ◦H)} ◦ a2

= (H ◦A2) ◦ a2 ⊆ A ◦ a2,

and

H ◦ (A ◦ a2)2 = H ◦ {(A ◦ a2) ◦ (A ◦ a2)} = H ◦ {(a2 ◦A) ◦ (a2 ◦A)}
= H ◦ [a2 ◦ {(a2 ◦A) ◦A}] = (a ◦ a) ◦ [H ◦ {(a2 ◦A) ◦A}]
= [{(a2 ◦A) ◦A} ◦H] ◦ a2 ⊆ {(A ◦A) ◦ (H ◦H)} ◦ a2

= (H ◦A2) ◦ a2 ⊆ A ◦ a2,

which shows that A ◦ a2 is a (0, 2)-bi-hyperideal of H contained in A. Hence
A ◦ a2 = {0} or A ◦ a2 = A. Since a4 ⊆ A ◦ a2 and a4 ⊆ A\{0}, we get A ◦ a2 = A.
Thus by using Theorem 3.4, A is right 0-simple. �



62 1VENUS AMJAD AND 2FAISAL YOUSAFZAI

4. Construction of LA-semihypergroups

Let (H, ·,≤) be any ordered LA-semigroup [20]. Define a hyperoperation ◦ on
H by:

x ◦ y = {z ∈ H : z ≤ xy} = (xy] for all x, y ∈ H.

Then for all a, b, c ∈ H, we claim that (a ◦ b) ◦ c = ((ab)c]. Let x ∈ (a ◦ b) ◦ c,
then x ∈ y ◦ c for some y ∈ a ◦ b, which shows that x ≤ yc and y ≤ ab. Hence
x ≤ (ab)c, so (a ◦ b) ◦ c ⊆ ((ab)c]. Let x ∈ ((ab)c], then x ≤ (ab)c. Thus x ∈ ab ◦ c ⊆
∪

y∈a◦b
y ◦ c = (a◦ b)◦ c. Consequently (a◦ b)◦ c = ((ab)c]. Similarly we can show that

(c ◦ b) ◦ a = ((cb)a], which shows that (a ◦ b) ◦ c = (c ◦ b) ◦ a for all a, b, c ∈ H. Thus
(H, ◦) becomes an LA-semihypergroup.

Let us consider an ordered LA-semigroup H = {a, b, c} in the following multi-
plication table and ordered below:

· a b c
a b c a
b a b c
c c a b

≤:= {(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)}.
The hyperoperation ◦ is defined in the following table.

◦ a b c
a {a, b} {a, b, c} a
b a {a, b} {a, b, c}
c {a, b, c} a {a, b}

Then (H, ◦) is an LA-semihypergroup because (a ◦ b) ◦ c = (c ◦ b) ◦ a for all
a, b, c ∈ H and (c ◦ b) ◦ c 6= c ◦ (b ◦ c) for b, c ∈ H.
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ON THE DIOPHANTINE EQUATION 3x + 5y + 7z = w2

JERICO B. BACANI† AND JULIUS FERGY T. RABAGO‡,∗

Abstract. We exhaust all solutions of the Diophantine equation

3x + 5y + 7z = w2

in non-negative integers using elementary methods.

1. Introduction

One of the many interesting equations that are being studied by number theorists
is the class of Diophantine equations. Diophantine equations are usually polynomial
equations in two or more variables and mathematicians are searching only for integer
solutions. The simplest type of such is the so-called linear Diophantine equation,
which is of the form

(1.1) ax + by = 1,

where x and y are unknowns while a and b are constants. An equation that can not
be transformed into (1.1) is usually referred to as nonlinear diophantine equation.
Pell’s equation is an example, which is of the form x2 − by2 = 1, where b is not a
perfect square integer, and we are searching for the integer values of x and y that
satisfy the equation. Another example is the equation

(1.2) xn + yn = zn,

which has infinitely many integer solutions (x, y, z) if n = 2 but no integer solutions
whenever n > 2. Then there is the class of the so-called exponential Diophantine
equation which is formed when one or more exponents serve as unknowns as well.
An example is the equation

(1.3) ax − by = 1,

where a, b, x, and y are all positive integers greater than 1. In 1844, Charles Catalan
conjectured that the only solution to (1.3) is the 4-tuple (a, b, x, y) = (3, 2, 2, 3) and
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this was finally proven in 2002 by Preda Miháilescu (cf. [6]). In 2007, D. Acu [1]
showed that the Diophantine equation 2x+5y = z2 has exactly two solutions in non-
negative integers. In 2011, A. Suvarnamani, A. Singta, and S. Chotchaisthit [2] used
P. Miháilescu’s theorem (Catalan’s conjecture) to show that the two Diophantine
equations 4x+7y = z2 and 4x+11y = z2 have no solution in non-negative integers.
In [3], S. Chotchaisthit studied the Diophantine equation 4x + py = z2 in non-
negative integers, and in [4], he obtained a complete solution to the Diophantine
equation 2x + 11y = z2 in non-negative integers. In fact, the latter equation has
already been studied by A. D. Nicoară and C. E. Pumnea [7] without the use of
an auxilliary result (Miháilescu’s Theorem). Banyat Sroysang also studied several
exponential Diophantine equations of ax + by = z2 type (cf. [11, 12, 13, 14, 15,
16]). In [16], Sroysang was asking for the set of all solutions (x, y, z, w) for the
Diophantine equation

(1.4) 3x + 5y + 7z = w2

in non-negative integers. As a response, we present in this paper that the only non-
negative integer solutions (x, y, z, w) to (1.4) are (0, 0, 1, 3), (1, 1, 0, 3) and (3, 1, 2, 9).
Related exponential Diophantine equations in the form px±qy±rz = c where p, q, r
are primes, x, y, z are non-negative integers, and c an integer have been studied in
[5] and [10]. Particularly, J. Leitner [5] solved the equation 3a + 5b − 7c = 1 for
non-negative integers a, b, c and the equation y2 = 3a + 2b + 1 for non-negative
integers a, b and integer y. R. Scott and R. Styer [10] studied, among other things,
the Diophantine equation px ± qy ± 2z = 0 for primes p and q and integer c in
positive integers x, y, and z. They used elementary methods to show that, with a
few explicitly listed exceptions, there are at most two solutions (x, y) to |px±qy| = c
and at most two solutions (x, y, z) to px ± qy ± 2z = 0 in positive integers. In the
following section we shall use elementary methods to prove our main result.

2. Main Result

Theorem (0, 0, 1, 3), (1, 1, 0, 3) and (3, 1, 2, 9) are the only solutions (x, y, z, w)
to the exponential Diophantine equation (1.4) in non-negative integers.

The proof considers separate cases where at least one of the three exponents is
zero or where all of them are strictly positive. Throughout the discussion, N and
N0 denote the set of positive and non-negative integers, respectively.

2.1. The case min{x, y, z} = 0. We consider the following cases:

3x + 5y = w2 − 1,(2.1)

3x + 7z = w2 − 1,(2.2)

5y + 7z = w2 − 1.(2.3)

We prove the following lemmas.

LEMMA 1: (1, 1, 3) is the unique solution to equation (2.1) in N0.

Note that by considering only the case when w > 1 is sufficient to study the
problem since the left hand side (LHS) of (1.4) is greater than or equal to three.
So we proceed as follows.
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Proof of Lemma 1. Let x, y, w ∈ N0 with w > 1 and suppose that 3x + 5y = w2− 1
has a solution in N0. First, we let x = 0. So, we have 2+5y = w2 which is impossible
because 2 + 5y ≡ 3 (mod 4) whereas w2 ≡ 0, 1 (mod 4). If y = 0, then we obtain
3x + 2 = w2 which is also impossible since 3x + 2 ≡ 2 (mod 3). This leaves to
consider min{x, y} > 0. Note that 3x ≡ 1 (mod 4) when x is even and 3x ≡ 3 (mod
4) when x is odd. Also, note that 5y ≡ 1 (mod 4) for any y ∈ N0 so, x is odd, i.e.
x = 2r + 1 for some r ∈ N0. Furthermore, since w2 ≡ 0, 1, 4 (mod 8), 32r+1 + 1 ≡ 4
(mod 8) and, 5y ≡ 1 (mod 8) when y is odd and 5y ≡ 5 (mod 8) when y is even,
we conclude that y is odd, i.e. y = 2s + 1 for some s ∈ N0. We also conclude that
w is odd.

Since x and y are odd, we can now express (2.1) as 32r+1 + 52s+1 = w2 − 1.
Writing w as w = 2m + 1 for some m ∈ N, we further express (2.1) as

32r+1 + 52s+1 = 4m2 + 4m = 4m(m + 1).

Dividing this equation by 8, we obtain

(2.4)
32r+1 + 52s+1

8
=

m(m + 1)

2
.

Notice that the LHS of (2.4) is a triangular number. It is easy to see that the
equation is true for r = s = 0, i.e. (31 + 51)/8 = (1)(2)/2 giving us (x, y, w) =
(1, 1, 3) as a solution to (2.1). Now suppose that there is another solution (r′, s′)

such that min{r′, s′} > 0. Hence, w2 ≡ 0, 1, 4, 7 (mod 9), 32r
′+1 + 1 ≡ 1 (mod 9),

and 52s
′+1 ≡ 1, 4, 7 (mod 9). It follows that 32r

′+1 + 52s
′+1 + 1 ≡ 2, 5, 8 6≡ w2 (mod

9). Thus, (r, s, w) = (0, 0, 3) is the only solution to 32r+1 + 52s+1 = w2− 1 and this
completes the proof of the lemma.

�

Note: In equation (2.4), the triangular number is 8 times a perfect square plus
1. So (2.4) has the form 1 +pα1 + · · ·+pαk = A2 where p is prime and A, a1, . . . , ak
are positive integers. This equation has already been studied by Rotkiewicz and
Z lotkowski in 1987 (cf. [9]). Also, Scott and Styer already proved that the equation
32r+1 + 52s+1 = 8× c, where c is a triangular number, has at most 2 solutions (cf.
Theorem 7 of [10]).

LEMMA 2: (0, 1, 3) is the unique solution to equation (2.2) in N0.

Proof of Lemma 2. Consider equation (2.2) modulo 4. Observe that w2 − 1 ≡ 0, 3
(mod 4) and 7z ≡ 1 (mod 4) if z is even and 7z ≡ 3 (mod 4) if z is odd. Hence, x
and z in (2.2) are of different parity. Suppose x is odd and z is even. Then, 3x ≡ 0
(mod 3) and 7z ≡ 1 (mod 3). It follows that 3x + 7z + 1 ≡ 2 6≡ w2 (mod 3) because
w2 ≡ 0, 1 (mod 3). Thus, the equation (2.2) has no solution. Suppose now that
x = 2r and z = 2t + 1 for some r, t ∈ N0. We can express (2.2) as

(2.5) 8(72t − 72t−1 + · · ·+ 1) = (w + 3r)(w − 3r).

For t = 0 we can distribute the factor 8 as 8 = (w + 3r)(w − 3r) with either
w + 3r = 8, w − 3r = 1 or w + 3r = 4, w − 3r = 2 (but not w + 3r = 2 and
w − 3r = 4, etc because w + 3r > w − 3r). If w + 3r = 8 and w − 3r = 1, then
by addition, 2w = 9 which is clearly impossible. If w + 3r = 4 and w − 3r = 2,
then w = 3, r = 0 and here we obtain (x, y, z, w) = (0, 0, 1, 3) which is a solution to
(1.4). Now to deal with the two conditions; namely,
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i) t > 0, 2|(w + 3r), and 4|(w − 3r), and
ii) t > 0, 4|(w + 3r), and 2|(w − 3r),

it suffices to assume that r > 0. We treat these two cases at once. Note that for
r > 0, 32r ≡ 0 (mod 3) and 7z ≡ 1 (mod 3). Hence, we see that 3x+7z+1 ≡ 2 6≡ w2

since w2 ≡ 0, 1 (mod 3). The conclusion follows. �

LEMMA 3: (0, 1, 3) is the unique solution to equation (2.3) in N0.

Proof of Lemma 3. Consider now equation (2.3) modulo 4. Noting that w is odd
we have w2 − 1 ≡ 0, 3 (mod 4) which implies that z is odd. Since w2 ≡ 1 (mod 8),
72t+1 + 1 ≡ 7 + 1 ≡ 0 (mod 8), and 5y ≡ 1 (mod 8) when y is even and 5y ≡ 5
(mod 8) when y is odd, we conclude that y is even.

If y = 2s and z = 2t+1 for some s, t ∈ N0, then we obtain 8(72t−72t−1+· · ·+1) =
(w + 5s)(w− 5s). Note that w + 5s > w− 5s. So for t = 0, we can only distribute 8
as factors of (w + 5s)(w − 5s) as follows: w + 5s = 8 and w − 5s = 1 or w + 5s = 4
and w− 5s = 2. The first pair of equations is clearly impossible since, by addition,
2w = 9. However, the second pair of equations gives us 2w = (w+5s)+(w−5s) = 6,
or equivalently, w = 3. Here we obtain (x, y, z, w) = (0, 0, 1, 3) as a solution to (1.4)
and so it follows that (0, 1, 3) is a solution to (2.3).

For t > 0, we consider the following cases:

i) 4|(w + 5s) and 2|(w − 5s); and
ii) 2|(w + 5s) and 4|(w − 5s).

We treat these cases at once and we may assume (WLOG) that s > 0.
For min{s, t} > 0 we have,

(52s − 1) + (72t + 1) = w2 − 1 ⇔ 8

[
(52s − 1) + (72t + 1)

8

]
= (w + 1)(w − 1).

Since w is odd then w + 1 and w − 1 were both even then the LHS of the latter
equation is 8 times an odd integer. Hence, if 4|(w± 1) and 2|(w∓ 1) then w± 1 =
4(2k + 1) and w∓ 1 = 2(2l + 1) for some k, l ∈ N. Subtracting these two equations
yields 2 = 2[2(2k + 1) − (2l + 1)] or equivalently, 1 = 2(2k + 1) − (2l + 1) which
implies that k = l = 0. This contradicts our assumption that k, l ∈ N. Thus,
52s+72s+1 = w2−1 has no solution for min{s, t} > 0 which completes the proof. �

2.2. The case min{x, y, z} > 0. Let min{x, y, z} > 0. We first determine a possi-
ble parity of x, y, z so that equation (1.4) has a solution in positive integers. Taking
modulo 4 of both sides of (1.4) we see that x and z must be of different parity and
w is odd. If we take modulo 3 of (1.4) both sides, then y must be odd. Lastly,
taking modulo 8 of (1.4) both sides we conclude that x is odd and z is even. Hence,
(1.4) is only possible in positive integers provided x is odd, y is odd, z is even, and
w is odd.

Let w = 2m + 1 where m ∈ N. Suppose that

(2.6) 32r+1 + 52s+1 + 72t = w2,

for some r, s, t ∈ N0. Since w2 ≡ 0 (mod 3) and w2 ≡ 1 (mod 8) then w = 24n− 15
for some n ∈ N. The least possible value of w would be 9. Letting w = 9 we see
that 32r+1 + 52s+1 = 92 − 72t = (9 + 7t)(9 − 7t) in which follows that t = 0 or
z = 2. Now we have 32r+1 + 52s+1 = 32. Since min{r, s} > 0 and, 2r + 1 ≤ 3 and
2s+ 1 ≤ 2 it follows that r = 1 and s = 0 giving us (1, 0, 1, 9) as a solution to (2.6)
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or equivalently, (3, 1, 2, 9) as a solution to (1.4). Now suppose that there is another
solution to (2.6) with s > 0 then we can express (2.6) as

(2.7) 4[(32r − 32r−1 + · · ·+ 1) + (52s + 52s−1 + · · ·+ 1)] = (w + 7t)(w − 7t).

Note that the term inside [ · ] is even and w + 7t and w − 7t were both even.
In addition, w = 8B + 1 and 7t = (8 − 1)t = 8A ± 1 for some A,B ∈ N. So
w2 − 72t = (8B + 1 + 8A ± 1)(8B + 1 − (8A ± 1)) = 16(A + B)(4(B − A) + 1).
Since A + B is even then the LHS of (2.7) is 32 times an odd integer. Hence, we
can rewrite equation (2.7) as

(2.8) 32

[
(32r − 32r−1 + · · ·+ 1) + (52s + 52s−1 + · · ·+ 1)

8

]
= (w + 7t)(w − 7t).

Now we consider the following possibilities: (i) (32r−32r−1+· · ·+1)+(52s+52s−1+
· · · + 1) = 8 where 16|(w + 7s) or 16|(w − 7s); and (ii) 8|(w + 7t) and 4|(w − 7t)
or 8|(w − 7t) and 4|(w + 7t), which are the ways of distributing the factor 16 of
the LHS across the two factors of the RHS. If 16|(w + 7t) or 16|(w − 7t), then we
have (32r − 32r−1 + · · ·+ 1) + (52s + 52s−1 + · · ·+ 1) = 8 which is impossible since
s > 0. If 8|(w ± 7t) and 4|(w ∓ 7t), then the requirements of w ± 7t being both
odd mean 2m + 1 + 7t = 8(2k + 1) and 2m + 1− 7t = 4(2l + 1) for some k, l ∈ N.
Subtracting these two equations yields 2 ·7t = 4(2(2k+1)−(2l+1)) or equivalently
7t = 2(2(2k+1)− (2l+1)) which is clearly impossible. Therefore the only solutions
in N0 to the exponential Diophantine equation (1.4) are (0, 0, 1, 3), (1, 1, 0, 3) and
(3, 1, 2, 9).
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GROWTH PROPERTIES OF GENERALIZED ITERATED

ENTIRE AND COMPOSITE ENTIRE AND MEROMORPHIC

FUNCTIONS

DIBYENDU BANERJEE AND NILKANTA MONDAL

Abstract. In this paper we consider generalized iteration of entire functions

and prove some growth properties of generalized iterated entire functions and

composition of entire and meromorphic functions under certain restrictions on
(p,q) orders of functions.

1. INTRODUCTION AND DEFINITIONS

It is well known that for any two transcendental entire functions f(z) and g(z),

lim
r→∞

M(r,f◦g)
M(r,f) = ∞. In a paper [10] Clunie proved that the same is also true when

maximum modulus functions are replaced by their characteristic functions. Singh
[15] proved some results dealing with the ratios of log T (r, f ◦ g) and T (r, f) under
some restrictions on the order of f and g. After this several authors {see [9], [13]
} made close investigation on comparative growth of log T (r, f ◦ g) and T (r, g) by
imposing certain restrictions on order of f and g.

If f(z) and g(z) be entire functions then following the iteration process of Lahiri
and Banerjee [12], we write
f1(z) = f(z)
f2(z) = f(g(z)) = f(g1(z))
f3(z) = f(g(f(z))) = f(g2(z))
f4(z) = f(g(f(g(z)))) = f(g3(z))

. . . . . . . . .
fn(z) = f(g(f(g(....(f(z) or g(z)) according as n is odd or even)))
and so are
g1(z) = g(z)
g2(z) = g(f(z)) = g(f1(z))
g3(z) = g(f(g(z))) = g(f2(z))
g4(z) = g(f(g(f(z)))) = g(f3(z))

2010 Mathematics Subject Classification. 30D35.
Key words and phrases. Entire function, Meromorphic function, Generalized iteration, Com-

position, Growth.
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. . . . . . . . .
gn(z) = g(f(g(f(....(g(z) or f(z)) according as n is odd or even))).
Clearly all fn(z) and gn(z) are entire functions.
Following this iteration process several papers {see [1], [2], [3], [4] } on growth

properties of entire functions have appeared in the literature where growing interest
of researchers on this topic has been noticed.

Recently Banerjee and Mondal [5] introduced another type of iteration called
generalised iteration to study {see [5], [6] } some growth properties of entire func-
tions.

Let f and g be two non-constant entire functions and α be any real number sat-
isfying 0 < α ≤ 1. Then the generalized iteration of f with respect to g is defined
as follows:

f1,g(z) = (1− α)z + αf(z)
f2,g(z) = (1− α)g1,f (z) + αf(g1,f (z))
f3,g(z) = (1− α)g2,f (z) + αf(g2,f (z))

.... .... ....
fn,g(z) = (1− α)gn−1,f (z) + αf(gn−1,f (z))

and so are
g1,f (z) = (1− α)z + αg(z)
g2,f (z) = (1− α)f1,g(z) + αg(f1,g(z))
g3,f (z) = (1− α)f2,g(z) + αg(f2,g(z))

.... .... ....
gn,f (z) = (1− α)fn−1,g(z) + αg(fn−1,g(z)).

Following Sato [14], we write log[0] x = x, exp[0] x = x and for positive integer

m, log[m] x = log(log[m−1] x), exp[m] x = exp(exp[m−1] x).

Let f(z) =
∞∑
n=0

anz
n be an entire function.Then the (p, q)-order and lower (p, q)-

order of f(z) are denoted by ρ(p,q)(f) and λ(p,q)(f) respectively and defined by[7]

ρ(p,q)(f) = lim
r→∞

sup log[p] T (r,f)

log[q] r
and λ(p,q)(f) = lim

r→∞
inf log[p] T (r,f)

log[q] r
, p ≥ q ≥ 1.

Definition 1.1. A real valued function ϕ(r) is said to have the property P1 if
i) ϕ(r) is non negative ;
ii) ϕ(r) is strictly increasing and ϕ(r)→∞ as r →∞;
iii) logϕ(r) ≤ δϕ( r4 ) holds for every δ > 0 and for all sufficiently large values of

r.

Remark 1.1. If ϕ(r) satisfies the property P1 then it is clear that log[p]ϕ(r) ≤ δϕ( r4 )
holds for every p ≥ 1.

The purpose of this paper is to compare the growth of generalized iterated en-
tire functions with composition of a meromorphic function and an entire function
imposing certain restrictions on (p,q)-order and lower (p,q)-order. Throughout the
paper we assume that f is a meromorphic function and g, h and k are non-constant
entire functions such that the maximum modulus functions of h, k and all of their
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generalized functions satisfy property P1. We do not explain the standard nota-
tions and definitions of the theory of meromorphic functions as those are available
in [11].

2. LEMMAS

In this section we state some known results in the form of lemma which will be
needed in the sequel.

Lemma 2.1. ([11]) If f(z) be regular in |z| ≤ R, then for 0 ≤ r < R
T (r, f) ≤ log+M(r, f) ≤ R+r

R−rT (R, f).
In particular if f be entire, then for all large values of r
T (r, f) ≤ log+M(r, f) ≤ 3T (2r, f).

Lemma 2.2. ([8]) If f is meromorphic and g is entire then for all large values of
r
T (r, f ◦ g) ≤ (1 + o(1)) T (r,g)

logM(r,g)T (M(r, g), f).

Since g is entire so using Lemma 2.1, we have
T (r, f ◦ g) ≤ (1 + o(1))T (M(r, g), f).

Lemma 2.3. ([10]) Let f(z) and g(z) be entire functions with g(0) = 0. Let β

satisfy 0 < β < 1 and let C(β) = (1−β)2
4β . Then for r > 0

M(r, f ◦ g) ≥M(C(β)M(βr, g), f).
Further if g(z) is any entire function, then with β = 1/2, for sufficiently large

values of r
M(r, f ◦ g) ≥M( 1

8M( r2 , g)− |g(0)| , f).

Clearly M(r, f ◦ g) ≥M( 1
16M( r2 , g), f).

3. MAIN THEOREMS

In this section, we present the main results of this paper.

Theorem 3.1. Let g, h and k be three entire functions and f be a meromorphic
function with ρ(p,q)(f) <∞, ρ(p,q)(g) <∞ and λ(p,q)(g) < min{λ(p,q)(h), λ(p,q)(k)}.
Then

lim sup
r→∞

log[p+(n−2)(p+1−q)] T (r,hn,k)

log[p] T (r,f2,g)
= ∞, where f2,g(z) is the generalized composi-

tion of f with respect to g.

Proof. Since λ(p,q)(g) < min{λ(p,q)(h), λ(p,q)(k)} we can choose ε > 0 in such a
way that λ(p,q)(g) + ε < min{λ(p,q)(h)− ε, λ(p,q)(k)− ε}. Using Lemma 2.1 and 2.3,
we have for all large values of r
T (r, hn,k) ≥ 1

3 logM( r2 , hn,k)

≥ 1
3 log{M( r2 , αh(kn−1,h))−M( r2 , (1− α)kn−1,h)}

≥ 1
3 log{αM( 1

16M( r4 , kn−1,h), h)− (1−α)M( r2 , kn−1,h)}+O(1) [for α 6= 1]

= 1
3 [logM( 1

16M( r4 , kn−1,h), h)− logM( r2 , kn−1,h)] +O(1).
So for all sufficiently large values of r, we get

log[p] T (r, hn,k) ≥ log[p+1]M( 1
16M( r4 , kn−1,h), h)− log[p+1]M( r2 , kn−1,h) +O(1)

> (λ(p,q)(h)− ε) log[q]( 1
16M( r4 , kn−1,h))− log[p+1]M( r2 , kn−1,h) +O(1)

> (λ(p,q)(h)− ε) log[q]M( r4 , kn−1,h)−
1
2 (λ(p,q)(h)− ε) log[q]M( r4 , kn−1,h) +O(1),using property P1

(3.1) = 1
2 (λ(p,q)(h)− ε) log[q]M( r4 , kn−1,h) +O(1)



GROWTH PROPERTIES OF GENERALIZED ITERATED ENTIRE AND COMPOSITE ENTIRE AND MEROMORPHIC FUNCTIONS73

or, log[p+(p+1−q)] T (r, hn,k) > log[p]{logM( r4 , kn−1,h)}+O(1)

≥ log[p] T ( r4 , kn−1,h) +O(1)

> 1
2 (λ(p,q)(k)−ε) log[q]M( r42 , hn−2,k)+O(1),using(3.1)

or, log[p+2(p+1−q)] T (r, hn,k) > log[p] T ( r42 , hn−2,k) +O(1)

> 1
2 (λ(p,q)(h)− ε) log[q]M( r43 , kn−3,h) +O(1).

Proceeding similarly after some steps we get for even n

log[p+(n−2)(p+1−q)] T (r, hn,k) > 1
2 (λ(p,q)(h)− ε) log[q]M( r

4n−1 , k1,h) +O(1)

= 1
2 (λ(p,q)(h)− ε) log[q]M{ r

4n−1 , (1− α)z + αk}+O(1)

≥ 1
2 (λ(p,q)(h)− ε){log[q]M( r

4n−1 , k)− log[q]M( r
4n−1 , z)}+O(1)

(3.2) ≥ 1
2 (λ(p,q)(h)− ε)[exp[p−q]{log[q−1]( r

4n−1 )}λ(p,q)(k)−ε− log[q]( r
4n−1 )] +O(1).

On the other hand using Lemma 2.2 for a sequence of values of r tending to
infinity
T (r, f2,g) = T{r, (1− α)g1,f + αf(g1,f )}

≤ T (r, g1,f ) + T (r, f(g1,f )) +O(1)
≤ T (r, g1,f ) + (1 + o(1))T (M(r, g1,f ), f) +O(1)

or, log[p] T (r, f2,g) ≤ log[p] T (r, g1,f ) + log[p] T (M(r, g1,f ), f) +O(1)

< log[p] T (r, g1,f ) + (ρ(p,q)(f) + ε) log[q]M(r, g1,f ) +O(1)

≤ log[p] T (r, z) + log[p] T (r, g) + (ρ(p,q)(f) + ε)[log[q]M(r, z)

(3.3) + log[q]M(r, g)]+O(1)

< log[p+1] r + (ρ(p,q)(g) + ρ(p,q)(f) + 2ε) log[q] r+

(3.4) exp[p−q](log[q−1] r)λ(p,q)(g)+ε+O(1).
From (3.2) and (3.4) we get for a sequence of values of r tending to infinity

(3.5)
log[p+(n−2)(p+1−q)] T (r,hn,k)

log[p] T (r,f2,g)
>

1
2 (λ(p,q)(h)−ε)[exp[p−q]{log[q−1]( r

4n−1 )}λ(p,q)(k)−ε−log[q]( r

4n−1 )]+O(1)

log[p+1] r+(ρ(p,q)(g)+ρ(p,q)(f)+2ε) log[q] r+exp[p−q](log[q−1] r)
λ(p,q)(g)+ε+O(1)

.

When n is odd as in (3.2) we get

(3.6) log[p+(n−2)(p+1−q)] T (r, hn,k) > 1
2 (λ(p,q)(k)−ε)[exp[p−q]{log[q−1]( r

4n−1 )}λ(p,q)(h)−ε

− log[q]( r
4n−1 )] +O(1).

From (3.4) and (3.6) we get for a sequence of values of r tending to infinity

(3.7)
log[p+(n−2)(p+1−q)] T (r,hn,k)

log[p] T (r,f2,g)
>

1
2 (λ(p,q)(k)−ε)[exp[p−q]{log[q−1]( r

4n−1 )}λ(p,q)(h)−ε−log[q]( r

4n−1 )]+O(1)

log[p+1] r+(ρ(p,q)(g)+ρ(p,q)(f)+2ε) log[q] r+exp[p−q](log[q−1] r)
λ(p,q)(g)+ε+O(1)

From (3.5) and (3.7) we get

lim sup
r→∞

log[p+(n−2)(p+1−q)] T (r,hn,k)

log[p] T (r,f2,g)
=∞.

Remark 3.1. In the above theorem if we take ρ(p,q)(g) < min{λ(p,q)(h), λ(p,q)(k)}
instead of λ(p,q)(g) < min{λ(p,q)(h), λ(p,q)(k)} then limit superior is replaced by
limit inferior.

Theorem 3.2. Let g, h and k be three entire functions and f be a meromorphic
function such that ρ(p,q)(f) < ∞, ρ(p,q)(g) < ∞, λ(p,q)(h) > 0 and λ(p,q)(k) > 0.
Then

lim sup
r→∞

log[2p+1−q] T (r,f2,g)

log[p+(n−1)(p+1−q)] T (r,hn,k)
≤ ρ(p,q)(g)

λ(p,q)(k)
, if n is even.

≤ ρ(p,q)(g)

λ(p,q)(h)
, if n is odd.
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Proof. We may suppose that ρ(p,q)(g) is finite. Otherwise the result is obvious.
First suppose that n is even. Then by (3.3) we get for large values of r

log[p] T (r, f2,g) < log[p] T (r, z) + log[p] T (r, g) + (ρ(p,q)(f) + ε)[log[q]M(r, z)

+ log[q]M(r, g)] +O(1)

< log[p+1] r + (ρ(p,q)(g) + ρ(p,q)(f) + 2ε) log[q] r+

exp[p−q](log[q−1] r)ρ(p,q)(g)+ε+O(1).
So,

(3.8) log[2p+1−q] T (r, f2,g) < log[2p+2−q] r+log[p+1] r+(ρ(p,q)(g)+ε) log[q] r+
O(1).

From (3.2) we get for large values of r

log[p+(n−2)(p+1−q)] T (r, hn,k) > 1
2 (λ(p,q)(h)−ε)[exp[p−q]{log[q−1]( r

4n−1 )}λ(p,q)(k)−ε−
log[q]( r

4n−1 )] +O(1).
So,

(3.9) log[p+(n−1)(p+1−q)] T (r, hn,k) > (λ(p,q)(k)− ε) log[q] r− log[p+1]( r
4n−1 )+

O(1).
Now from (3.8) and (3.9) we get for all large values of r

log[2p+1−q] T (r,f2,g)

log[p+(n−1)(p+1−q)] T (r,hn,k)
<

log[2p+2−q] r+log[p+1] r+(ρ(p,q)(g)+ε) log
[q] r+O(1)

(λ(p,q)(k)−ε) log[q] r−logp+1( r

4n−1 )+O(1)

=
(ρ(p,q)(g)+ε) log

[q] r[1+
log[2p+2−q] r+log[p+1] r+O(1)

(ρ(p,q)(g)+ε) log[q] r
]

(λ(p,q)(k)−ε) log[q] r[1−
log[p+1]( r

4n−1 )+O(1)

(λ(p,q)(k)−ε) log[q] r
]

.

Therefore, lim sup
r→∞

log[2p+1−q] T (r,f2,g)

log[p+(n−1)(p+1−q)] T (r,hn,k)
≤ ρ(p,q)(g)

λ(p,q)(k)
.

When n is odd we get as in (3.9)

(3.10) log[p+(n−1)(p+1−q)] T (r, hn,k) > (λ(p,q)(h)− ε) log[q] r − log[p+1]( r
4n−1 ) +

O(1).
Now from (3.8) and (3.10) the remaining part of the theorem easily follows.

Theorem 3.3. Let f be a meromorphic function and g, h and k be three entire
functions such that ρ(p,q)(f) < ∞, ρ(p,q)(g) < ∞, λ(p,q)(h) > 0 and λ(p,q)(k) > 0.
Then

lim sup
r→∞

log[2p+2−q] T (r,f2,g)

log[p+1+(n−1)(p+1−q)] T (r,hn,k)
≤ 1.

Proof. From (3.8) we get for all large values of r

log[2p+1−q] T (r, f2,g) < log[2p+2−q] r + log[p+1] r + (ρ(p,q)(g) + ε) log[q] r +O(1)

= (ρ(p,q)(g) + ε) log[q] r[1 + log[2p+2−q] r+log[p+1] r+O(1)

(ρ(p,q)(g)+ε) log
[q] r

].

Therefore,

(3.11) log[2p+2−q] T (r, f2,g) < log[q+1] r+O(1).
Again from (3.9) we get for all large values of r and for even n

log[p+(n−1)(p+1−q)] T (r, hn,k) > (λ(p,q)(k)− ε) log[q] r − log[p+1]( r
4n−1 ) +O(1)

= (λ(p,q)(k)− ε) log[q] r[1− log[p+1]( r

4n−1 )+O(1)

(λ(p,q)(k)−ε) log[q] r
].

Therefore,

(3.12) log[p+1+(n−1)(p+1−q)] T (r, hn,k) > log[q+1] r + O(1).

When n is odd we get from (3.10)

log[p+(n−1)(p+1−q)] T (r, hn,k) > (λ(p,q)(h)− ε) log[q] r − log[p+1]( r
4n−1 ) +O(1)
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= (λ(p,q)(h)− ε) log[q] r[1− log[p+1]( r

4n−1 )+O(1)

(λ(p,q)(h)−ε) log[q] r
].

So,

(3.13) log[p+1+(n−1)(p+1−q)] T (r, hn,k) > log[q+1] r+O(1).
Therefore from (3.11), (3.12) and (3.13) we get

lim sup
r→∞

log[2p+2−q] T (r,f2,g)

log[p+1+(n−1)(p+1−q)] T (r,hn,k)
≤ 1.

Remark 3.2. In the above theorems if we take relative iteration instead of general-
ized iteration and take q = 1 then the results coincide with the results of Banerjee
and Jana [3].
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HERMITE-HADAMARD’S INEQUALITIES FOR

PREQUASIINVEX FUNCTIONS VIA FRACTIONAL INTEGRALS

IMDAT ISCAN

Abstract. In this paper, we extend some estimates of the right hand side of

Hermite-Hadamard type inequality for prequasiinvex functions via fractional
integrals.

1. Introduction and Preliminaries

Let f : I ⊂ R→ R be a convex mapping defined on the interval I of real numbers
and a, b ∈ I with a < b, then

(1.1) f

(
a+ b

2

)
≤ 1

b− a

b∫
a

f(x)dx ≤ f(a) + f(b)

2
.

This doubly inequality is known in the literature as Hermite-Hadamard integral
inequality for convex mapping. For several recent results concerning the inequality
(1.1) we refer the interested reader to [2, 3, 4, 5, 7, 17, 18].

We recall that the notion of quasi-convex functions generalizes the notion of
convex functions. More precisely, a function f : [a, b]→ R is said to be quasi-convex
on [a, b] if inequality

f (tx+ (1− t)y) ≤ max {f(x), f(y)} ,
holds for all x, y ∈ I and t ∈ [0, 1] .

Clearly, any convex function is quasi-convex function. Furthemore there exist
quasi-convex functions which are not convex (see [7]).

We give some necessary definitions and mathematical preliminaries of fractional
calculus theory which are used throughout this paper.

Definition 1.1. Let f ∈ L [a, b]. The Riemann-Liouville integrals Jαa+f and Jαb−f
of oder α > 0 with a ≥ 0 are defined by

2000 Mathematics Subject Classification. 26D10, 26D15, 26A51.
Key words and phrases. Hermite-Hadamard type inequalities, prequasiinvex function, frac-

tional integral.
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Jαa+f(x) =
1

Γ(α)

x∫
a

(x− t)α−1 f(t)dt, x > a

and

Jαb−f(x) =
1

Γ(α)

b∫
x

(t− x)
α−1

f(t)dt, x < b

respectively, where Γ(α) is the Gamma function and J0
a+f(x) = J0

b−f(x) = f(x).

In the case of α = 1, the fractional integral reduces to the classical integral. For
some recent result connected with fractional integral inequalities see ([13, 16, 18,
19]).

In [13], Ozdemir and Yıldız proved the Hadamard inequality for quasi-convex
functions via Riemann-Liouville fractional integrals as follows:

Theorem 1.1. Let f : [a, b]→ R, be positive function with 0 ≤ a < b and f ∈
L [a, b] . If f is a quasi-convex function on [a, b], then the following inequality for
fractional integrals holds:

(1.2)
Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)] ≤ max {f(a), f(b)}

with α > 0.

Theorem 1.2. Let f : [a, b]→ R, be a differentiable mapping on (a, b) with a < b.
If |f ′| is quasi-convex on [a, b] , α > 0, then the following inequality for fractional
integrals holds: ∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)]

∣∣∣∣(1.3)

≤ b− a
α+ 1

(
1− 1

2α

)
max {|f ′(a)| , |f ′(b)|} .

Theorem 1.3. Let f : [a, b]→ R, be a differentiable mapping on (a, b) with a < b
such that f ′ ∈ L [a, b] . If |f ′|q is quasi-convex on [a, b] , and q > 1, then the following
inequality for fractional integrals holds:∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)]

∣∣∣∣(1.4)

≤ b− a
2 (αp+ 1)

1
p

(
max

{
|f ′(a)|q , |f ′(b)|q

}) 1
q

where 1
p + 1

q = 1 and α ∈ [0, 1] .

Theorem 1.4. Let f : [a, b]→ R, be a differentiable mapping on (a, b) with a < b
such that f ′ ∈ L [a, b] . If |f ′|q is quasi-convex on [a, b] , and q ≥ 1, then the following
inequality for fractional integrals holds:∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)]

∣∣∣∣(1.5)

≤ b− a
(α+ 1)

(
1− 1

2α

)(
max

{
|f ′(a)|q , |f ′(b)|q

}) 1
q



78 IMDAT ISCAN

with α > 0.

In recent years several extentions and generalizations have been considered for
classical convexity. A significant generalization of convex functions is the invex
functions introduced by Hanson in [6]. Weir and Mond [20] introduced the concept
of preinvex functions and applied it to the establisment of the sufficient optimality
conditions and duality in nonlinear programming. Pini [15] introduced the concept
of prequasiinvex function as a generalization of invex functions. Later, Mohan and
Neogy [9] obtained some properties of generalized preinvex functions. Noor ([11]-
[12] )has established some Hermite-Hadamard type inequalities for preinvex and
log-preinvex functions. In recent papers Yang et al. in [22] studied prequasiinvex
functions and semistrictly prequasiinvex functions, Barani et al. in [4] presented
some generalizations of the right hand side of a Hermite-Hadamard type inequality
for prequasiinvex functions and Park in [14] established generalized Simpson-like
and Hermite-Hadamard-like type integral inequalities for functions whose second
derivatives in absolutely value at certain powers are preinvex and prequasiinvex.

In this paper we generalized the results in [13] for prequasiinvex functions. Now
we recall some notions in invexity analysis which will be used throught the paper
(see [1, 21] and references therein)

Let f : A→ R and η : A×A→ R,where A is a nonempty set in Rn, be continuous
functions.

Definition 1.2. The set A ⊆ Rn is said to be invex with respect to η(., .), if for
every x, y ∈ A and t ∈ [0, 1] ,

x+ tη(y, x) ∈ A.
The invex set A is also called a η−connected set.

It is obvious that every convex set is invex with respect to η(y, x) = y − x, but
there exist invex sets which are not convex [1].

Definition 1.3. The function f on the invex set A is said to be preinvex with
respect to η if

f (x+ tη(y, x)) ≤ (1− t) f(x) + tf(y), ∀x, y ∈ A, t ∈ [0, 1] .

The function f is said to be preconcave if and only if −f is preinvex.

Definition 1.4. The function f on the invex set A is said to be prequasiinvex with
respect to η if

f (x+ tη(y, x)) ≤ max {f(x), f(y)} , ∀x, y ∈ A, t ∈ [0, 1] .

Every quasi-convex function is a prequasinvex with respect to η(y, x) = y − x,
but the converse does not holds (see example 1.1 in [22])

We also need the following assumption regarding the function η which is due to
Mohan and Neogy [9]:

Condition C: Let A ⊆ Rn be an invex subset with respect to η : A × A → R.
For any x, y ∈ A and any t ∈ [0, 1] ,

η (y, y + tη(x, y)) = −tη(x, y)

η (x, y + tη(x, y)) = (1− t)η(x, y).

Note that for every x, y ∈ A and every t ∈ [0, 1] from condition C, we have
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(1.6) η (y + t2η(x, y), y + t1η(x, y)) = (t2 − t1)η(x, y).

In [4] Barani et al. proved the Hermite-Hadamard type inequality for prequasi-
invex as follows:

Theorem 1.5. Let A ⊆ R be an open invex subset with respect to η : A×A→ R.
Suppose that f : A → R is a differentiable function. If |f ′| is prequasiinvex on A
then, for every a, b ∈ A the following inequalities holds∣∣∣∣∣∣∣

f(a) + f (a+ η(b, a))

2
− 1

η(b, a)

a+η(b,a)∫
a

f(x)dx

∣∣∣∣∣∣∣
≤ |η(b, a)|

4
max {|f ′(a)| , |f ′(b)|} .(1.7)

Theorem 1.6. Let A ⊆ R be an open invex subset with respect to η : A×A→ R.
Suppose that f : A→ R is a differentiable function. Assume that p ∈ R with p > 1.

If |f ′|
p

p−1 is preinvex on A then, for every a, b ∈ A the following inequalities holds∣∣∣∣∣∣∣
f(a) + f (a+ η(b, a))

2
− 1

η(b, a)

a+η(b,a)∫
a

f(x)dx

∣∣∣∣∣∣∣
≤ |η(b, a)|

2(p+ 1)
1
p

(
max

{
|f ′(a)|

p
p−1 , |f ′(b)|

p
p−1

}) p−1
p

.(1.8)

In order to prove our main results we need the following lemma:

Lemma 1.1. Let A ⊆ R be an open invex subset with respect to η : A×A→ R and
a, b ∈ A with a < a+η(b, a). Suppose that f : A→ R is a differentiable function. If
f ′ is preinvex function on A and f ′ ∈ L [a, a+ η(b, a)] then, the following equality
holds:

f(a) + f (a+ η(b, a))

2
− Γ(α+ 1)

2ηα(b, a)

[
Jαa+f(a+ η(b, a)) + Jα

(a+η(b,a))−
f(a)

]
(1.9)

=
η(b, a)

2

1∫
0

[tα − (1− t)α] f ′ (a+ tη(b, a)) dt

By using partial integration in right hand of (1.9) equality, the proof is obvious
(see [8]).

In this paper, using Lemma 1.1 we obtained new inequalities related to the right
side of Hermite-Hadamard inequalities for prequasiinvex functions via fractional
integrals.

2. Main Results

Theorem 2.1. Let A ⊆ R be an open invex subset with respect to η : A× A→ R
and a, b ∈ A with a < a + η(b, a). If f : [a, a+ η(b, a)] → (0,∞) is a prequasiin-
vex function, f ∈ L [a, a+ η(b, a)] and η satisfies condition C then, the following
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inequalities for fractional integrals holds:

Γ(α+ 1)

2ηα(b, a)

[
Jαa+f(a+ η(b, a)) + Jα

(a+η(b,a))−
f(a)

]
≤ max {f(a), f(a+ η(b, a)} ≤ max {f(a), f(b)}(2.1)

Proof. Since a, b ∈ A and A is an invex set with respect to η, for every t ∈ [0, 1],
we have a + tη(b, a) ∈ A. By prequasiinvexity of f and inequality (1.6) for every
t ∈ [0, 1] we get

f (a+ tη(b, a)) = f (a+ η(b, a) + (1− t)η(a, a+ η(b, a)))

≤ max {f(a), f(a+ η(b, a)}(2.2)

and similarly

f (a+ (1− t)η(b, a)) = f (a+ η(b, a) + tη(a, a+ η(b, a)))

≤ max {f(a), f(a+ η(b, a)} .

By adding these inequalities we have

(2.3) f (a+ tη(b, a)) + f (a+ (1− t)η(b, a)) ≤ 2 max {f(a), f(a+ η(b, a)}

Then multiplying both (2.3) by tα−1 and integrating the resulting inequality with
respect to t over [0, 1] , we obtain

1∫
0

tα−1f (a+ tη(b, a)) dt+

1∫
0

tα−1f (a+ (1− t)η(b, a)) dt ≤ 2 max {f(a), f(a+ η(b, a)}
1∫

0

tα−1dt.

i.e.

Γ(α)

ηα(b, a)

[
Jαa+f(a+ η(b, a)) + Jα

(a+η(b,a))−
f(a)

]
≤ 2 max {f(a), f(a+ η(b, a)}

α
.

Using the mapping η satisfies condition C the proof is completed. �

Remark 2.1. In Theorem 2.1, if we take η(b, a) = b−a, then inequality (2.1) become
inequality (1.2) of Theorem 1.1.

Theorem 2.2. Let A ⊆ R be an open invex subset with respect to η : A×A→ R and
a, b ∈ A with a < a+η(b, a) such that f ′ ∈ L [a, a+ η(b, a)]. Suppose that f : A→ R
is a differentiable function. If |f ′| is prequasiinvex function on [a, a+ η(b, a)] then
the following inequality for fractional integrals with α > 0 holds:∣∣∣∣f(a) + f (a+ η(b, a))

2
− Γ(α+ 1)

2ηα(b, a)

[
Jαa+f(a+ η(b, a)) + Jα

(a+η(b,a))−
f(a)

]∣∣∣∣(2.4)

≤ η(b, a)

α+ 1

(
1− 1

2α

)
max {|f ′(a)| , |f ′(b)|} .
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Proof. Using Lemma 1.1 and the prequasiinvexity of |f ′| we get∣∣∣∣f(a) + f (a+ η(b, a))

2
− Γ(α+ 1)

2ηα(b, a)

[
Jαa+f(a+ η(b, a)) + Jα

(a+η(b,a))−
f(a)

]∣∣∣∣
≤ η(b, a)

2

1∫
0

|tα − (1− t)α| |f ′ (a+ tη(b, a))| dt

≤ η(b, a)

2

1∫
0

|tα − (1− t)α|max {|f ′(a)| , |f ′(b)|} dt

≤ η(b, a)

2


1
2∫

0

[(1− t)α − tα] max {|f ′(a)| , |f ′(b)|} dt+

1∫
1
2

[tα − (1− t)α] max {|f ′(a)| , |f ′(b)|} dt


= η(b, a) max {|f ′(a)| , |f ′(b)|}


1
2∫

0

[(1− t)α − tα] dt


=

η(b, a)

(α+ 1)

(
1− 1

2α

)
max {|f ′(a)| , |f ′(b)|} ,

which completes the proof. �

Remark 2.2. a) In Theorem 2.2, if we take η(b, a) = b − a, then inequality (2.4)
become inequality (1.3) of Theorem 1.2

b) In Theorem2.2, if we take α = 1, then inequality (2.4) become inequality (1.7)
of Theorem 1.5.

c) In Theorem2.2, assume that η satisfies condition C.Using inequality (2.2) we
get ∣∣∣∣f(a) + f (a+ η(b, a))

2
− Γ(α+ 1)

2ηα(b, a)

[
Jαa+f(a+ η(b, a)) + Jα

(a+η(b,a))−
f(a)

]∣∣∣∣
≤ η(b, a)

(α+ 1)

(
1− 1

2α

)
max {|f ′(a)| , |f ′(a+ η(b, a))|}

Theorem 2.3. Let A ⊆ R be an open invex subset with respect to η : A×A→ R and
a, b ∈ A with a < a+η(b, a) such that f ′ ∈ L [a, a+ η(b, a)]. Suppose that f : A→ R
is a differentiable function. If |f ′|q is prequasiinvex function on [a, a+ η(b, a)] for
some fixed q ≥ 1 then the following inequality holds:∣∣∣∣f(a) + f (a+ η(b, a))

2
− Γ(α+ 1)

2ηα(b, a)

[
Jαa+f(a+ η(b, a)) + Jα

(a+η(b,a))−
f(a)

]∣∣∣∣(2.5)

≤ η(b, a)

(α+ 1)

(
1− 1

2α

)(
max

{
|f ′(a)|q , |f ′(b)|q

}) 1
q

where α > 0.
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Proof. From Lemma1.1 and using Power-mean inequality with properties of mod-
ulus, we have∣∣∣∣f(a) + f (a+ η(b, a))

2
− Γ(α+ 1)

2ηα(b, a)

[
Jαa+f(a+ η(b, a)) + Jα

(a+η(b,a))−
f(a)

]∣∣∣∣
≤ η(b, a)

2

1∫
0

|tα − (1− t)α| |f ′ (a+ tη(b, a))| dt

≤ η(b, a)

2

 1∫
0

|tα − (1− t)α| dt

1− 1
q
 1∫

0

|tα − (1− t)α| |f ′ (a+ tη(b, a))|q dt


1
q

.

On the other hand, we have

1∫
0

|tα − (1− t)α| dt =

1
2∫

0

[(1− t)α − tα] dt+

1∫
1
2

[tα − (1− t)α] dt

=
2

α+ 1

(
1− 1

2α

)
.

Since |f ′|q is prequasiinvex function on [a, a+ η(b, a)], we obtain

|f ′ (a+ tη(b, a))|q ≤ max
{
|f ′(a)|q , |f ′(b)|q

}
, t ∈ [0, 1]

and

1∫
0

|tα − (1− t)α| |f ′ (a+ tη(b, a))|q dt ≤
1∫

0

|tα − (1− t)α|max
{
|f ′(a)|q , |f ′(b)|q

}
dt

= max
{
|f ′(a)|q , |f ′(b)|q

}
.

1∫
0

|tα − (1− t)α| dt

=
2

α+ 1

(
1− 1

2α

)
max

{
|f ′(a)|q , |f ′(b)|q

}
from here we obtain inequality (2.5). This completes the proof. �

Remark 2.3. a) In Theorem2.3, if we take η(b, a) = b−a then inequality (2.5)become
inequality (1.5) Theorem1.4.

b) In Theorem2.3, assume that η satisfies condition C. Using inequality (2.2) we
get ∣∣∣∣f(a) + f (a+ η(b, a))

2
− Γ(α+ 1)

2ηα(b, a)

[
Jαa+f(a+ η(b, a)) + Jα

(a+η(b,a))−
f(a)

]∣∣∣∣
≤ η(b, a)

(α+ 1)

(
1− 1

2α

)(
max

{
|f ′(a)|q , |f ′(a+ η(b, a))|q

}) 1
q .

Theorem 2.4. Let A ⊆ R be an open invex subset with respect to η : A×A→ R and
a, b ∈ A with a < a+η(b, a) such that f ′ ∈ L [a, a+ η(b, a)]. Suppose that f : A→ R
is a differentiable function. If |f ′|q is prequasiinvex function on [a, a+ η(b, a)] for
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some fixed q > 1 then the following inequality holds:∣∣∣∣f(a) + f (a+ η(b, a))

2
− Γ(α+ 1)

2ηα(b, a)

[
Jαa+f(a+ η(b, a)) + Jα

(a+η(b,a))−
f(a)

]∣∣∣∣(2.6)

≤ η(b, a)

2 (αp+ 1)
1
p

(
max

{
|f ′(a)|q , |f ′(a+ η(b, a))|q

}) 1
q .

where 1
p + 1

q = 1 and α ∈ [0, 1] .

Proof. From Lemma1.1 and using Hölder inequality with properties of modulus,
we have∣∣∣∣f(a) + f (a+ η(b, a))

2
− Γ(α+ 1)

2ηα(b, a)

[
Jαa+f(a+ η(b, a)) + Jα

(a+η(b,a))−
f(a)

]∣∣∣∣
≤ η(b, a)

2

1∫
0

|tα − (1− t)α| |f ′ (a+ tη(b, a))| dt

≤ η(b, a)

2

 1∫
0

|tα − (1− t)α|p dt


1
p
 1∫

0

|f ′ (a+ tη(b, a))|q dt


1
q

.

We know that for α ∈ [0, 1] and ∀t1, t2 ∈ [0, 1],

|tα1 − tα2 | ≤ |t1 − t2|
α
,

therefore

1∫
0

|tα − (1− t)α|p dt ≤
1∫

0

|1− 2t|αp dt

=

1
2∫

0

[1− 2t]
αp
dt+

1∫
1
2

[2t− 1]
αp
dt

=
1

αp+ 1
.

Since |f ′|q is prequasiinvex on [a, a+ η(b, a)] , we have inequality (2.6). This com-
pletes the proof. �

Remark 2.4. a) In Theorem 2.4, if we take η(b, a) = b − a then inequality (2.6)
become inequality (1.4) of Theorem 1.3.

b) In Theorem 2.4, if we take α = 1then inequality (2.6) become inequality (1.8)
of Theorem 1.6.

c) In Theorem 2.4, assume that η satisfies condition C. Using inequality (2.2) we
get ∣∣∣∣f(a) + f (a+ η(b, a))

2
− Γ(α+ 1)

2ηα(b, a)

[
Jαa+f(a+ η(b, a)) + Jα

(a+η(b,a))−
f(a)

]∣∣∣∣
≤ η(b, a)

2 (αp+ 1)
1
p

(
max

{
|f ′(a)|q , |f ′(a+ η(b, a))|q

}) 1
q .
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AREA FORMULAS FOR A TRIANGLE IN THE m−PLANE

Ö. GELİŞGEN - T. ERMİŞ

Abstract. In this paper, we give three area formulas for a triangle in the

m-plane in terms of the m−distance. The two of them are m−version of the

standart area formula for a triangle in the Euclidean plane, and the third one
is a m−version of the well-known Heron′s formula.

1. Introduction

If one want to measure the distance between two points on a plane, then one
can use frequently Euclidean distance which is defined as the length of segment
between these points. Although it is the most popular distance function, it is not
practical when we measure the distance which we actually move in the real world.
So taxicab distance and Chinese checkers distance were introduced. Taxicab and
Chinese checkers distance functions are similar to moving with a car or Chinese
chess in the real world. Later, Tian [16] introduced α-distance function which
includes the taxicab and Chinese checkers metrics as special cases. Then, some
authors developed and studied on these topics (see [7], [8], [10]). In [5] Colakoğlu
and Kaya gave a new distance function in the real plane which includes alpha,
Chinese checkers, taxicab distances as special cases. The distance function is called
m-distance. If P = (x1, y1) and Q = (x2, y2) are two points in R2, then for each
real numbers u, v and m such that u ≥ v ≥ 0 6= u, the distance function

dm : R2 × R2 → [0,∞)

defined by

dm(P,Q) = (u∆PQ + vδPQ) /
(√

1 +m2
)

where ∆PQ = max {|(x1 − x2) +m(y1 − y2)| , |m(x1 − x2)− (y1 − y2)|} and
δPQ = min {|(x1 − x2) +m(y1 − y2)| , |m(x1 − x2)− (y1 − y2)|} . Obviously, there
are infinitely many different distance function depending on values u, v and m. But
we suppose that values u and v are initially determined and fixed unless otherwise
stated.

Date: January 1, 2013 and, in revised form, February 2, 2013.
2000 Mathematics Subject Classification. 51K05, 51K99.
Key words and phrases. m−distance, m−plane, Heron′s formula, area of a triangle.
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According to m-distance function, the m−distance between points P and Q is
constant u multiple of the Euclidean length of one of the shortest paths from P
to Q composed of line segments each parallel to one of lines with slope m, −1/m,[
m(u2 − v2) + 2uv

]
/
[
(u2 − v2)− 2uvm

]
or
[
m(u2 − v2)− 2uv

]
/
[
(u2 − v2) + 2uvm

]
.

See Figure 1.

In this paper, we give area formulas for a triangle in the m-plane in terms of
the m−distance. In this study, we use the usual Euclidean area notion. One can
easily see that in the m-plane, there are triangles whose -lengths of corresponding
sides are the same, while areas of these triangles are different (see Figure 2).This
fact arises a natural question: How can one compute the area of a triangle in the
m-plane? It is obvious that every formula to compute the area of a triangle depends
on some parameters, and using different parameters gives different formulas. Here
we give three formulas to compute the area of a triangle in the m-plane, using
different parameters.

Let the line AB be parallel to the line y = mx, let C1 be a m−circle with center
A and radius b, C2 a m−circle with center B and radius b + c, and C and D two
points in C1 ∩ C2. For different C and D such that C and D are not symmetric
to the line AB, Area(ABC) 6= Area(ABD), while dm(A,C) = dm(A,D) and
dm(B,C) = dm(B,D).
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2. Area of a Triangle in the m-plane

It is well-known that if ABC is a triangle with the area A in the Euclidean plane,
and H is the point of orthogonal projection of the point A on the line BC, then
standard area formula for the triangle ABC is A = ah/2, where a = dE(B,C)
and h = dE(A,H) or h = dE(A,BC) (see Figure 3). In this section, we give two
m-versions of standard area formula in terms of m-distance. Clearly, a m-version
of standard area formula for triangle ABC would be an equation that relates the
two m-distances a and h, where a = dm(B,C), h = dm(A,H) or h = dm(A,BC)
and area A of triangle ABC. Here, we give two m-versions of the area formula that
depend on one parameter, namely, the slope of the base segment, in addition to the
other parameters. Note that the real numbers u, v and m are fixed.

The following equation, which relates the Euclidean distance to the m-distance
between two points in the Cartesian coordinate plane, plays an important role in
the first m-version of the area formula. Following two proposition are given without
proofs. One can see [2] for proofs.

Proposition 2.1. For any two points P and Q in the Cartesian plane that do not
lie on a vertical line, if n is the slope of the line through P and Q, then

dE(P,Q) = ρ(n)dm(P,Q)

where ρ(n) =

√
(1 + n2) (1 +m2)

umax{|1 +mn| , |m− n|}+ vmin{|1 +mn| , |m− n|}
.

If P and Q lie on a vertical line, then by definition,

dE(P,Q) =

√
1 +m2

umax{1, |m|}+ vmin{1, |m|}
dm(P,Q).

If P and Q lie on the lines y = mx or y = −1
m x, then

dE(P,Q) =
1

u
dm(P,Q).

Another useful fact that can be verified by direct calculation is:

Proposition 2.2. For any real number n 6= 0

ρ(n) = ρ(−1/n).

We first note by Proposition 1 and Proposition 2 that them-distance between two
points is invariant under all translations. If b/a 6=

√
2− 1 in m-plane, the rotations

of π/2 , π and 3π/2 radians around a point, and the reflections about the lines par-

allel to y = nx+c such that n ∈
{
m,
−1

m
,
m− 1

1 +m
,

1 +m

1−m

}
preserve the m−distance.

If b/a =
√

2−1 in the m−plane, the rotations of π/4, π/2, 3π/4, π, 5π/4, 3π/2 and
7π/4 radians around a point, and the reflections about the lines parallel to y = nx+c
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such that

n ∈

{
m,
−1

m
,
m− 1

1 +m
,

1 +m

1−m
,

(1−
√

2)m− 1

(1−
√

2) +m
,

(1 +
√

2)m− 1

(1 +
√

2) +m
,

(1−
√

2)m+ 1

(1−
√

2)−m
,

(1 +
√

2)m+ 1

(1 +
√

2)−m

}
preserve the m−distance (see [5]).

The following theorem gives a m-version of the well-known Euclidean area for-
mula of a triangle:

Theorem 2.1. Let ABC be a triangle with the area A in the m-plane, H be
orthogonal projection (in the Euclidean sense) of the point A on the line BC, n be
the slope of the line BC, and let a = dm(B,C) and h = dm(A,H).
(i) If BC is parallel to one of the lines y = mx or y = −1

m x, then

A =
1

u2

ah

2
.

(ii) If BC is parallel to a coordinate axis, then

A = [ρ(n)]
2 ah

2
,

where ρ(n) =

√
1 + n2

umax{|n| , 1}+ vmin{|n| , 1}
.

(iii) f BC is not parallel to any one of coordinate axes or the lines y = mx or
y = −1

m x, then

A = [ρ(n)]
2 ah

2

where ρ(n) =

√
(1 + n2) (1 +m2)

umax{|1 +mn| , |m− n|}+ vmin{|1 +mn| , |m− n|}
.

Proof. Let a = dE(B,C) and h = dE(A,H). Then A =
ah

2
.

(i) If BC is parallel to one of the lines y = mx or y = −1
m x, then obviously a = 1

ua

and h = 1
uh. Hence A = 1

u2
ah
2 .

(ii) If BC not be parallel to any one of the lines y = mx or y = −1
m x, and let the

slpe of the line BC be n. Then the slope of the line AH is −1
n . By proposition 1

and Proposition 2, a = ρ(n)a, h =ρ(n)h, hence A = [ρ(n)]
2 ah

2 . �

In the m-plane, m-distance from a point P to a line l is defined by

dm(P, l) = min
Q∈l
{dm(P,Q)}

as in the Euclidean plane. It is well-known that in the Euclidean plane, Euclidean
distance from a point P = (x0, y0) to a line l : ax+ by+ c = 0 can be calculated by
the following formula:

(2.1) dE(P, l) = |ax0 + by0 + c|�(a2 + b2)1/2.

In Proposition 4 we give a similar formula for dm(P, l), using m-circles (see [2]).
One can see by calculation that if 0 < v/u < 1, then the unit m−circle is an
octagon with vertices A1 = ( 1

uk ,
m
uk ), A2 = ( 1−m

(u+v)k ,
1+m

(u+v)k ), A3 = (−muk ,
1
uk ),

A4 = ( −1−m
(u+v)k ,

1−m
(u+v)k ), A5 = (−1

uk ,
−m
uk ), A6 = ( m−1

(u+v)k ,
−1−m
(u+v)k ), A7 = ( muk ,

−1
uk ),

A8 = ( 1+m
(u+v)k ,

m−1
(u+v)k ), where k =

√
1 +m2. If u = v or v = 0, then unit m−circle
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is a square with vertices A1, A3, A5, A7 or A2, A4, A6, A8, respectively (See figure
4).

The next proposition introduced m−distance from a point P to a line l. For the
proof of proposition, one can see in [2].

Proposition 2.3. Given a point P = (x0, y0), and a line l : ax+ by+ c = 0 in the
m-plane. Then the m-distance from the point P to the line l can be calculated by
the following formula:
(2.2)

dm(P, l) =



|ax0 + by0 + c|
√

1 +m2

max
{
|a+bm|
u , |am−b|u

} , u = v

|ax0 + by0 + c|
√

1 +m2

max
{
|a(1−m)+b(1+m)|

u , |a(1+m)−b(1−m)|
u

} , v = 0

|ax0 + by0 + c|
√

1 +m2

max
{
|a+bm|
u , |am−b|u , |a(1−m)+b(1+m)|

u+v , |a(1+m)−b(1−m)|
u+v

} , 0 < v/u < 1.

The following equation, which relates the Euclidean distance to the m-distance
from a point to a line in the Cartesian coordinate plane, plays an important role in
the second m-version of the area formula.

Proposition 2.4. Given a point P , and a line l in the Cartesian plane that is not
a vertical line, if n is the slope of the line l, then

(2.3) dE(P, l) = τ(n)dα(P, l)
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where τ(n) =



max

{
|1 + nm|

u
,
|m− n|

u

}
√

(1 + n2) (1 +m2)
, u = v

max

{
|n(1−m)− (1 +m)|

u
,
|n(1 +m) + (1−m)|

u

}
√

(1 + n2) (1 +m2)
, v = 0

max

{
|1 + nm|

u
,
|m− n|

u
,
|n(1−m)− (1 +m)|

u+ v
,
|n(1 +m) + (1−m)|

u+ v

}
√

(1 + n2) (1 +m2)
, 0 < v/u < 1

If l is a vertical line, then

τ(n) =



max

{
|m|
u
,

1

u

}
√

1 +m2
, u = v

max

{
|1−m|
u

,
|1 +m|
u

}
√

1 +m2
, v = 0

max

{
|m|
u
,

1

u
,
|1−m|
u+ v

,
|1 +m|
u+ v

}
√

1 +m2
, 0 < v/u < 1

.

Proof. Let P = (x0, y0) be a point, and l : ax+by+c = 0 be a line in the Cartesian
plane. If l is not a vertical line, then b 6= 0 and n = −ab . Using n in equation 2.1

and equation 2.2, one gets dE(P, l) = |ax0 + by0 + c|� |b| (1 + n2)1/2 and

dm(P, l) =



|ax0 + by0 + c|
√

1 +m2

|b|max
{
|1+nm|

u , |m−n|u

} , u = v

|ax0 + by0 + c|
√

1 +m2

|b|max
{
|n(1−m)−(1+m)|

u , |n(1+m)+(1−m)|
u

} , v = 0

|ax0 + by0 + c|
√

1 +m2

|b|max
{
|1+nm|

u , |m−n|u , |n(1−m)−(1+m)|
u+v , |n(1+m)+(1−m)|

u+v

} , 0 < v/u < 1.

Hence, dE(P, l)=τ(n)dm(P, l) where

τ(n) =



max

{
|1 + nm|

u
,
|m− n|

u

}
√

(1 + n2) (1 +m2)
, u = v

max

{
|n(1−m)− (1 +m)|

u
,
|n(1 +m) + (1−m)|

u

}
√

(1 + n2) (1 +m2)
, v = 0

max

{
|1 + nm|

u
,
|m− n|

u
,
|n(1−m)− (1 +m)|

u+ v
,
|n(1 +m) + (1−m)|

u+ v

}
√

(1 + n2) (1 +m2)
, 0 < v/u < 1.
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If l is a vertical line, then b = 0 and a 6= 0. Therefore, dE(P, l) = |ax0 + c|� |a|
and

dm(P, l) =



|ax0 + c|
√

1 +m2

|a|max
{

1
u ,
|m|
u

} , u = v

|ax0 + c|
√

1 +m2

|a|max
{
|1−m|
u , |1+m|

u

} , v = 0

|ax0 + c|
√

1 +m2

|a|max
{

1
u ,
|m|
u , |1−m|u , |1+m|

u

} , 0 < v/u < 1

,

hence

τ(n) =



max

{
|m|
u
,

1

u

}
√

1 +m2
, u = v

max

{
|1−m|
u

,
|1 +m|
u

}
√

1 +m2
, v = 0

max

{
|m|
u
,

1

u
,
|1−m|
u+ v

,
|1 +m|
u+ v

}
√

1 +m2
, 0 < v/u < 1.

�

The following theorem gives another α-version of the well-known Euclidean area
formula of a triangle:

Theorem 2.2. Let ABC be a triangle with area A in the m-plane, n be the slope
of the line BC, and let a = dα(B,C) and h = dα(A,BC). Then the area of ABC
is

A = σ(n)ah/2

(i) If BC is parallel to lines y = mx or y = −1
m x, then

σ(n) =

{
1/u2 , u = v or v = 0
1/u(u+ v) , 0 < v/u < 1

(ii) If BC is not parallel to any one of the lines y = mx or y = −1
m x, then

σ(n) =



max

{
|1 + nm|

u
,
|m− n|

u

}
umax {|1 + nm| , |m− n|}+ umin {|1 + nm| , |m− n|}

, u = v

max

{
|n(1−m)− (1 +m)|

u
,
|n(1 +m) + (1−m)|

u

}
umax {|1 + nm| , |m− n|}

, v = 0

max

{
|1 + nm|

u
,
|m− n|

u
,
|n(1−m)− (1 +m)|

u+ v
,
|n(1 +m) + (1−m)|

u+ v

}
umax {|1 + nm| , |m− n|}+ vmin {|1 + nm| , |m− n|}

, 0 < v/u < 1.

Proof. Let a = dE(B,C) and h = dE(A,BC). Then, A = ah/2.
(i) If BC is parallel to lines y = mx or y = −1

m x, then clearly a = 1
ua and h = τ(n)h,
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where

τ(n) =


1

u
, u = v or v = 0

1

max {u, u+ v}
, 0 < v/u < 1.

Hence, A = σ(n)ah/2.
(ii) Let BC not be parallel to any one of the coordinate axes, and let the slope of
the line BC be n. Then, by Proposition 1 and Proposition 5, a = ρ(n)a, h = τ(n)h,
hence A = ρ(n)τ(n)ah/2. Since ρ(n)τ(n) = σ(n), we get A = σ(n)ah/2. �

3. m Version of Heron’s Formula

It is well-known that if ABC is a triangle with the area A in the Euclidean plane,
and a = dE(B,C), b = dE(A,C), c = dE(A,B), and p = (a + b + c)/2, then

A = [p(p− a)(p− b)(p− c)]
1/2

, which is known as Heron’s formula. In this sec-
tion, we give an m-version of this formula in terms of m-distance. Clearly, an
m-version of Heron’s formula for triangle ABC would be an equation that relates
the three m-distances a, b and c, where a = dα(B,C), b = dα(A,C), c = dα(A,B),
and the area A of triangle ABC. Here, we give an m-version of Heron’s formula
that depend on three new parameters in addition to a, b, c and A .

We need following two definitions which is revised according to given in [15] and
[13] respectively, to give an m-version of Heron’s formula:

Definition 3.1. Let ABC be any triangle in the m-plane. Clearly, there exists a
pair of lines passing through every vertex of the triangle, each of which is parallel
to lines y = mx or y = −1

m x. A line l is called a base line of ABC if and only if
(1) l passes through a vertex,
(2) l is parallel to lines y = mx or y = −1

m x,
(3) l intersects the opposite side (as a line segment) of the vertex in (1).

Clearly, at least one of vertices of the triangle always has one or two base lines.
Such a vertex of the triangle is called a basic vertex. A base segment is a line
segment on a base line, which is bounded by a basic vertex and its opposite side.

Definition 3.2. A line with slope n is called a steep line, a gradual line and a
separator if n > 1+m

1−m or n < −1+m
1+m or n → ∞, −1+m

1+m < n < 1+m
1−m and n = m or

n = −1
m for 0 ≤ m ≤ 1, respectively.

The following theorem gives an α-version of Heron’s formula:

Theorem 3.1. Let ABC be a triangle with area A in the m-plane, such that C
is a basic vertex, a = dm(B,C), b = dm(A,C) and c = dm(A,B). Let D be the
intersection point of a base line and AB, the opposite side of the basic vertex C.
Let H1 and H2 be orthogonal projections (in the Euclidean sense) of A and B on
the base line CD, respectively. Then,

A=


l

2u

[√
1 +m2(2p− c)− v(l1 + l2)

]
; if C1 is valid

l
2v

[√
1 +m2(2p− c)− u(l1 + l2)

]
; if C2 is valid

l
2uv

[√
1 +m2 (2p− c+ (v − 1) b+ (u− 1) a)−

(
v2l1 + u2l2

)]
; if C3 is valid

l
2uv

[√
1 +m2 (2p− c+ (u− 1) b+ (v − 1) a)−

(
u2l1 + v2l2

)]
; if C4 is valid

where p = (a+ b+ c)/2, l = dm(C,D), l1 = dm(C,H1), l2 = dm(C,H2),
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C1 : lines AC and BC are not gradual and base line CD is horizontal, or lines AC
and BC are not steep and base line CD is vertical,

C2 : lines AC and BC are not steep and base line CD is horizontal, or lines AC
and BC are not gradual and base line CD is vertical,

C3 : line AC is not gradual, line BC is not steep and base line CD is horizontal,
or line AC is not steep, line BC is not gradual and base line CD is vertical,

C4 : line AC is not steep, line BC is not gradual and base line CD is horizontal,
or line AC is not gradual, line BC is not steep and base line CD is vertical.

Proof. Let ABC be a triangle with area A in the m-plane, such that C is a basic
vertex, a = dm(B,C), b = dm(A,C) and c = dm(A,B). Let D be the intersection
point of a base line and AB, the opposite side of the basic vertex C. Let H1 and H2

be orthogonal projections of A and B on the base line CD, respectively. And let
p = (a+ b+ c)/2, l = dm(C,D), l1 = dm(C,H1), l2 = dm(C,H2), h1 = dm(A,H1),
h2 = dm(B,H2). The m-distance between two points is invariant under all trans-

lations. If b/a 6=
√

2 − 1 in m-plane, the rotations of π/2 , π and 3π/2 radians
around a point, and the reflections about the lines parallel to y = nx + c such

that n ∈
{
m,
−1

m
,
m− 1

1 +m
,

1 +m

1−m

}
preserve the m−distance. If b/a =

√
2 − 1 in

the m−plane, the rotations of π/4, π/2, 3π/4, π, 5π/4, 3π/2 and 7π/4 radians
around a point, and the reflections about the lines parallel to y = nx+ c such that

n ∈

{
m,
−1

m
,
m− 1

1 +m
,

1 +m

1−m
,

(1−
√

2)m− 1

(1−
√

2) +m
,

(1 +
√

2)m− 1

(1 +
√

2) +m
,

(1−
√

2)m+ 1

(1−
√

2)−m
,

(1 +
√

2)m+ 1

(1 +
√

2)−m

}
preserve the m−distance. Therefore Figure 5 represent all triangles for which C1

holds, Figure 6 represent all triangles for which C2 holds, Figure 7 represent all
triangles for which C3 holds, and finally Figure 8 represent all triangles for which
C4 holds.

In Figure 5, a = (uh2 + vl2) /
√

1 +m2 and b = (uh1 + vl1) /
√

1 +m2 bym-distance
definition. Since A(ABC) = A(ADC) + A(BDC) = l

2 (h1 + h2), using h1 and h2
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values, one gets A =
l

2u

[√
1 +m2 (2p− c)− v(l1 + l2)

]
.

In Figure 6, a = (ul2 + vh2) /
√

1 +m2 and b = (ul1 + vh1) /
√

1 +m2 bym-distance
definition. Since A(ABC) = A(ADC) + A(BDC) = l

2 (h1 + h2), using h1 and h2

values, one gets A =
l

2v

[√
1 +m2 (2p− c)− u(l1 + l2)

]
.

In Figure 7, a = (ul2 + vh2) /
√

1 +m2 and b = (uh1 + vl1) /
√

1 +m2 bym-distance
definition. Since A(ABC) = A(ADC) + A(BDC) = l

2 (h1 + h2), using h1 and h2

values, one gets A =
l

2uv

[√
1 +m2 (2p− c+ (v − 1)b+ (u− 1) a)− v2l1 − u2l2

]
.

In Figure 8, a = (uh2 + vl2) /
√

1 +m2 and b = (ul1 + vh1) /
√

1 +m2 bym-distance
definition. Since A(ABC) = A(ADC)+A(BDC) = l

2 (h1+h2), using h1 and h2 val-

ues, one gets A =
l

2uv

[√
1 +m2 (2p− c+ (u− 1)b+ (v − 1) a)− u2l1 − v2l2

]
. �
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Since well-known taxicab, Chinese Checker and α−distances are special cases of
m-distance for m = 0 and u = v, v/u =

√
2 − 1 and 0 < v/u < 1, respectively,

Theorem 3, Theorem 6 and Theorem 7 give also taxicab, Chinese Checker and
α−versions of area formulas for a triangle, when m = 0 and u = v, v/u =

√
2 − 1

and 0 < v/u < 1, respectively, (see [12], [15], [11] and [6]).
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FIXED POINT THEOREMS IN CONVEX PARTIAL METRIC

SPACES

OUSSAEIF TAKI-EDDINE AND ABDELKRIM ALIOUCHE

Abstract. Partial metric spaces were introduced by S. G. Matthews [1] as a

part of the study of denotational semantics of dataflow networks, the author
introduced and studied the concept of partial metric space, and obtained a

Banach type fixed point theorem on complete partial metric spaces. In this

paper, we study some fixed point theorems for self-mappings satisfying certain
contraction principles on a convex complete partial metric space, these theorem

generalize previously obtained results in convex metric space.

1. Introduction

In 1970, Takahashi [2] introduced the notion of convexity in metric spaces and
studied some fixed point theorems for nonexpansive mappings in such spaces. A
convex metric space is a generalized space. For example, every normed space and
cone Banach space is a convex metric space and convex complete metric space,
Subsequently, Beg [3], Beg and Abbas [4, 5], Chang, Kim and Jin [6], Ciric [7],
Shimizu and Takahashi [8], Tian [9], Ding [10], and many others studied fixed
point theorems in convex metric spaces.

There exist many generalizations of the concept of metric spaces in the literature.
In particular, Matthews [1] introduced the notion of a partial metric space as a
part of the study of denotational semantics of dataflow networks, showing that
the Banach contraction mapping theorem can be generalized to the partial metric
context for applications in program verification.

After that, fixed point results in partial metric spaces were studied by many
other authors. Refs. [11,12] are some works in this line of research. The existence
of several connections between partial metrics and topological aspects of domain
theory have been pointed out in, e.g., [13–18].

The purpose of this paper is to study the existence of a fixed point for self-
mappings defined on a nonempty closed convex subset of a convex complete partial
metric space that satisfies certain conditions, and knowing that ”the partial metric
space is a generalization of a metric space” from [13], our result improves and

Key words and phrases. Partial metric spaces; convex metric spaces; fixed point theorems.
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extends M. Moosaei result in [19] from a convex complete metric space to a convex
complete partial metric space.

2. Preliminaries

Definition 2.1. Let X be a nonempty set and let p: X ×X → R+ satisfy
(A1) 0 ≤ p (x, x) ≤ p (x, y) (nonnegativity and small self-distances),
(A2) x = y ⇐⇒ p (x, x) = p (y, y) = p (x, y) (indistancy implies equality),
(A3) p (x, y) = p (y, x) (symmetry), and
(A4) p (x, y) ≤ p (x, z) + p (y, z)− p (z, z) (triangularity).
for all x,y and z ∈ X. then tha pair (X, p) is called a partial matric space and p

is called a partial metric on X.

Remark 2.1. It is clear that, if p(x, y) = 0, then from (A1) and (A2), x = y. But
if x = y, p(x, y) may not be 0.

Each partial metric p on X generates a T0 topology τp on X which has as a base
the family of open p-balls
{Bp(x, ε), x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) +Bp(x, ε)}

for all x ∈ X and ε > 0.
For a partial metric p on X, the function dp : X ×X → R+ defined as

dp (x, y) = 2p (x, y)− p (x, x)− p (y, y)

satisfies the conditions of a metric on X; therefore it is a (usual) metric on X.

Example 2.1. Let max(a, b) be the maximum of any two nonnegative real numbers
a and b; then max is a partial metric over R+ = [0,∞).

Example 2.2. If X := {[a, b] / a, b ∈ R, a ≤ b} then

p ([a, b] , [c, d]) = max {b, d} −min {a, c}

defines a partial metric p on X.

Example 2.3. If (X, d) is a metric space and c ≥ 0 is arbitrary, then

p(x, y) = d(x, y) + c

defines a partial metric on X and the corresponding metric is dp(x, y) = 2d(x, y).

Definition 2.2. Let (X, p) be a partial metric space and {xn} be a sequence in
X. Then

(i) {xn} converges to a point x ∈ X if and only if p(x, x) = limn→+∞p(x, xn),
(ii) {xn} is called a Cauchy sequence if there exists (and is finite) limn,m→+∞p(xn, xm).

Definition 2.3. A partial metric space (X, p) is said to be complete if every Cauchy
sequence {xn} in X converges, with respect to τp, to a point x ∈ X, such that
p(x, x) = limn,m→+∞p(xn, xm).

Remark 2.2. It is easy to see that every closed subset of a complete partial metric
space is complete.
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Theorem 2.1. [1]. Let f be a mapping of a complete partial metric space (X, p) into
itself such that there is a real number c with 0 ≤ c < 1, satisfying for all x, y ∈ X:

p(fx, fy) < cp(x, y).

Then f has a unique fixed point.

Definition 2.4. Let (X, p) be a partial metric space and I = [0, 1]. A mapping
W : X ×X × I → X is said to be a convex structure on X if for each

(x, y, λ) ∈ X ×X × I and u ∈ X,

p(u,W (x, y, λ)) ≤ λp(u, x) + (1− λ)p(u, y)

A metric space (X, p) together with a convex structure W is called a convex partial
metric space, which is denoted by (X, p,W ).

Example 2.4. Let (X, |.|) is a metric space, then

p (x, y) =
|x− y|+ x+ y

2

defines a partial metric p on X and it can shown that (X, p) is a convex partial
metric space.

Definition 2.5. Let (X, p,W ) be a convex partial metric space. A nonempty
subset C of X is said to be convex if W (x, y, λ) ∈ C whenever (x, y, λ) ∈ C×C×I.

Definition 2.6. Let f : X → X. A point x ∈ X is called a fixed point of f if
f(x) = x.

F(f), C(f, g), and F(f, g) denote the set of all fixed points of f, coincidence points
of the pair (f, g), and common fixed points of the pair (f, g), respectively.

Theorem 2.2. [19] . Let C be a nonempty closed convex subset of a convex complete
metric space (X, d,W ) and f be a self-mapping of C. If there exist a, b, c, k such
that

2b− |c| ≤ k < 2(a+ b+ c)− |c|,

ad(x, f(x)) + bd(y, f(y)) + cd(f(x), f(y)) ≤ kd(x, y)

for all x, y ∈ C, then f has at least one fixed point.

3. Main result

The following theorem improves and extends Theorem 3.2 in [19].

Theorem 3.1. Let C be a nonempty closed convex subset of a convex complete
partial metric space (X, p,W ) and f be a self-mapping of C. If there exist k
such that

0 ≤ k < 1

4
,

(3.1) p(x, f(y)) + p(f(x), f(y)) ≤ kp(y, f(x))

for all x, y ∈ C, then f has at least one fixed point.
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Proof. From definition 4 and by using (A1) and (A3) ,we have

p(x,W (x, y,
1

2
)) ≤ 1

2
p(x, x) +

1

2
p(x, y),(3.2)

p(y,W (x, y,
1

2
)) ≤ 1

2
p(y, y) +

1

2
p(x, y).(3.3)

so, we find

(3.4) p(x,W (x, y,
1

2
)) + p(y,W (x, y,

1

2
)) ≤ 2p(x, y).

Suppose x0 ∈ C is arbitrary. We define a sequence {xn}∞n=1 in the following way:

(3.5) xn = W (xn−1, f(xn−1,
1

2
), n = 1, ...

As C is convex, xn ∈ C for all n ∈ N. From (3.5) and (3.6) , we have

(3.6) p(xn, xn+1) + p(xn+1, f (xn)) ≤ 2p(xn, f (xn)).

By using (A4) and (A1) ,we have

p (xn, f (xn)) ≤ p (xn, f (xn−1)) + p (f (xn) , f (xn−1))− p (f (xn−1) , f (xn−1))

≤ p (xn, f (xn−1)) + p (f (xn) , f (xn−1))

then, we get

(3.7) 2p (xn, f (xn))− 2p (xn, f (xn−1)) ≤ 2p (f (xn) , f (xn−1)) ,

from (3.7) and (3.8) , we obtain

(3.8) p(xn, xn+1) + p(xn+1, f (xn))− 2p (xn, f (xn−1)) ≤ 2p (f (xn) , f (xn−1)) .

For all n ∈ N. Now by substituting x with xn and y with xn−1 in (3.2) , we get

p(xn, f(xn−1)) + p(f(xn), f(xn−1) ≤ kp(xn−1, f(xn)),

for all n ∈ N. Therefore, from (3.9) , it follows that

(3.9) p(xn, xn+1) + p(xn+1, f (xn)) ≤ 2kp(xn−1, f(xn)),

from (A4) and (A1) , we have

p(xn−1, f(xn) ≤ p(xn, f(xn)) + p(xn−1, xn),

by this inequality and (3.10) , we get

p(xn, f (xn)) ≤ p(xn, xn+1) + p(xn+1, f (xn)) ≤ 2kp(xn, f(xn)) + 2kp(xn−1, xn),

so, we obtain

(3.10) (1− 2k) p(xn, f (xn)) ≤ 2kp(xn−1, xn).

Now, from (3.3) and (3.6) , we have

p(xn, f (xn)) ≥ 2p(xn, xn+1)− p(xn, xn)

for all n ∈ N. from (3.11) , it follows that

(2− 4k) p(xn, xn+1) ≤ 2kp(xn−1, xn) + (1− 2k) p(xn, xn)

by using (A1) , we obtain

(3.11) p(xn, xn+1) ≤ 1

2− 4k
p(xn−1, xn).
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for all n ∈ N. from (3.11) , 1
2−4k ∈ [0, 1), and hence, {xn}∞n=1 is a contraction

sequence in C. Therefore, it is a cauchy sequence. Since C is a closed subset of a
complete space, there exists v ∈ C such that limn→+∞xn = v.

Therefore, by using (3.4) and (3.6) , we have

p (xn, f (xn−1)) ≤ 1

2
p (f (xn−1) , f (xn−1)) +

1

2
p (xn−1, f (xn−1)) ,

we put limn→+∞f (xn−1) = α, letting n → +∞ in the above inequality, it
follows that

(3.12) p (v, α) ≤ 1

2
p (α, α) +

1

2
p (v, α) =⇒ p (v, α) ≤ p (α, α)

and from (A1) , we have

(3.13) p (α, α) ≤ p (v, α) .

Then from (3.13) and (3.14) , we obtain (v, α) = p (α, α) , so limn→+∞f (xn) = v.
Now by substituting x with v and y with xn in (3.2) , we obtain

p(v, f(xn)) + p(f(v), f(xn) ≤ kp(xn, f(v))

for all n ∈ N. Letting n→ +∞ in the above inequality, it follows that

p(v, v) + (1− k) p(v, f (v)) ≤ 0.

Since (1− k) is positive from (3.1) and from (A2), we get

p(v, v) = p(v, f (v)) = 0,

then from (A2), this implies f (v) = v, and the proof of the theorem is complete. �

Corollary 3.1. From theorem 3, we deduce that for all x, y ∈ C, then F(f) is a
nonempty set.

Corollary 3.2. Let (X, d,W) be a convex complete partial metric space and C be
a nonempty subset of X. Suppose that f, g are self-mappings of C, and there exist
a, b, c, k such that

(3.14) 0 ≤ k < 1

4
,

(3.15) p(g (x) , f(y)) + p(f(x), f(y)) ≤ kp(g (y) , f(x))

for all x, y ∈ C. If g has the property

g(W (x, y, λ)) = W (g(x), g(y), λ) for each x, y ∈ C and λ ∈ I = [0, 1].

and F(g) is a nonempty closed subset of C, then F(f,g) is nonempty.
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NEIGHBOURHOODS OF A SUBCLASS OF UNIFORMLY

CONVEX FUNCTIONS

T. RAM REDDY AND P. THIRUPATHI REDDY

Abstract. In this paper, we investigate the properties of neighbourhoods of

functions for the classes U CV (α) and Sp(α). First we established an inclu-
sion relationship between them and proved a necessary and sufficient condition

interms of convolutions for a function f to be in Sp(α). Next we show that

the class Sp(α) is closed under convolution with functions f (z) which are con-
vex univalent. The results obtained in this which generalizes the results of

Padmanabhan [8] and Ronning [9].

1. Introduction:

Let A denote the class of functions of the form

(1.1) f (z) = z +

∞∑
n=2

anz
n

which are analytic in the unit disk E = {z : |z |< 1}. Further, let S be the subclass
of A consisting of those functions that are univalent in E. Let CV and ST denote
the subclasses of S consisting of convex and starlike functions respectively.

If f (z) = z +
∑∞
n=2 anz

n and g (z) = z +
∑∞
n=2 bnz

n then the convolution or
Hadamard product of f (z ) and g(z ) denoted by f * g is defined by

(f ∗ g) (z) = z +
∑∞
n=2 anbnz

n. Clearly
f (z) ∗ z

(1−z)2 = zf ′ (z) and f (z) ∗ z
(1−z) = f (z)

Goodman[3,4] defined the following subclasses of CV and ST.
Definition A: A function f is uniformly convex (Starlike) in E if f is in CV (ST )
and has the property that for every circular arc γ contained in E with centre ξ also
in E, the arc f (γ) is convex (Starlike w.r.t f (ξ).

Goodman [3,4] then gave the following two variable analytic characterizations of
these classes, denoted by UCV and UST.

2000 Mathematics Subject Classification. 30C45.
Key words and phrases. Neighbourhood, Subordination, Hadamard Product.
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Theorem A: A function f of the form (1.1) is in UCV if and only if

(1.2) Re

{
1 + (z − ξ)

f ′′ (z)

f ′

}
≥ 0, (z, ξ) ∈ EXE

and is in UST if any only if

(1.3) Re

{
f (z) − f (ξ)

(z − ξ) f ′ (z)

}
≥ 0, (z, ξ) ∈ EXE

The classical Alexander result that f ∈ CV if and only if zf′ ∈ ST does not
hold between the classes UCV and UST. Ronning [7] defined a subclass of starlike
functions Sp with the property that a function f ∈ UCV if and only if zf′ ∈ Sp.
Definition B: Let Sp = {F ∈ ST/F (z) = zf ′ (z) , f ∈ UCV }

Ma and Minda [6] and Ronning [10] independently found a more applicable one
variable characterization for UCV.
Theorem B: A function f is in UCV if and only if

(1.4) Re

{
1 +

zf ′′ (z)

f ′ (z)

}
≥
∣∣∣∣zf ′′ (z)f ′ (z)

∣∣∣∣ , z ∈ E.

Ronning [10] proved a one variable characterization for Sp as follows:
Theorem C: A function f is in Sp if and only if

(1.5)

∣∣∣∣zf ′ (z)f (z)
− 1

∣∣∣∣ ≤ Re

{
zf ′ (z)

f (z)

}
, z ∈ E.

A function f ∈ A is uniformly convex of order α for -1≤ α < 1 if and only if

1 + zf ′′(z)
f ′(z) lies in the parabolic region

(??) Re {ω - α } > |ω - 1 |
In otherwords, the function f is uniformly convex of order α if

(1.6) 1 +
zf ′′ (z)

f ′ (z)
≺ 1 +

2 (1 − α)

π2

[
log

(
1 +

√
z

1 −
√
z

)]2
, z ∈ E

where the symbol ≺ denotes subordination. This class was introduced by Ronning
[9] and it is denoted by UCV (α). The class of all analytic functions f (z )∈ A for

which zf ′(z)
f(z) lies in the parabolic region is denoted by Sp(α) and defined as follows.

Definition C: A function f (z ) is said to be in the class Sp(α) if for all z ∈ E,

(1.7)

∣∣∣∣zf ′ (z)f (z)
− 1

∣∣∣∣ ≤ Re

{
zf ′ (z)

f (z)

}
− α, for − 1 < α < 1.

This implies f ∈ Sp(α) for z ∈ E if and only if zf ′(z)
f(z) lies in the region Ωα

bounded by a parabola with vertex at
(
1+α
2 , 0

)
and parameterized by

t2+ 1 − α2 + 2 it (1 − α)
2(1 − α) for any real t.

It is known [9] that the function

(1.8) Pα (z) = 1 +
2 (1 − α)

π2

[
log

1 +
√
z

1−
√
z

]2
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maps the unit disk E on to the parabolic region Ωα (The branch
√
z is choosen in

such a way that Im
√
z ≥ 0). Then from the above definition f ∈ A is in the class

Sp(α) if and only if zf ′(z)
f(z) ≺ Pα (z).

The notion of δ - neghbourhood was first introduced by St. Ruscheweyh [11].
Definition D: For δ ≥ 0, the δ - neighbourhood of f (z) = z +

∑∞
n=2 anz

n ∈ A
is defined by

(1.9) Nδ (f) =

{
g (z) = z +

∞∑
n=2

bn z
n :

∞∑
n=2

n |an − bn| ≤ δ

}
.

Recently Padmanabhan [8] has introduced the neighbourhoods of functions in
the calss Sp and studied various properties.

In this paper we studied some related work on the neighbourhood problems for
k-uniformly convex functions of Kanas[5].The work of Ma and Minda [7 ] generalize
many studies on subclasses of starlike and convex functions. we introduce a new
class of functions and study the properties of neighbourhoods, of functions in this
class which generalizes the recent results of Padmanabhan [8] and Ronning [9].

First let us state lammas which are needed to establish our results in the sequel.
Lemma A [2]: Let β, γ ∈ C, let h(z ) be analytic, univalent and convex in E with
h(0) = 1 and Re (β h (z ) + γ) > 0, z ∈ E and let p(z ) = 1 + p1 z + . . . . z ∈ E,
then

(1.10) p (z) +
z p′ (z)

β p (z) + γ
≺ h (z) ⇒ p (z) ≺ h (z) .

Lemma B [12]: Let f (z) =
∑∞
n=2 anz

n and g (z) =
∑∞
n=2 anz

n be in ST
(
1+α
2

)
denote by f * g the Hadamard product (f * g) (z ) =

∑∞
n=2 an bn z

n . Then for
any function F (z ) analytic in E, we have for z ∈ E that

f (z) ∗ g (z) F (z)

f (z) ∗ g (z)
⊂ Co (F (E))

Co denotes the closed convex hull.
2. Main Results

First let us establish an inclusion relation.
Theorem 2.1: Let f ∈ UCV (α). Then f ∈ Sp(α).

Proof: Let p(z ) = zf ′(z)
f(z) . Then since f ∈ UCV (α)

p (z) +
zp′ (z)

p (z)
= 1 +

zf ′′ (z)

f ′ (z)
⊂ Ωα

Since Ωα is a convex damain, an application of Lemma A gives zp′(z)
p(z) = p (z) ⊂

Ωα, z ∈ E which implies that f ∈ Sp(α).
Now we give a characterization of the class Sp(α) in terms of convolution.

Definition 2.1: Let S′p (α) be the class of all functions hα(z ) in A of the form

(1.11)

hα (z) =
2 (1− α)

(1− α)
2 − t2 − 2it (1− α)

[
2

(1− z)2
− t2 + 1 − α2 + 2it (1− α)

2 (1− α)

z

(1− z)

]
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for -1 ≤ α < 1 and for all real t.
Theorem 2.2: A function f (z) in A is in Sp(α) if and only if for all z in E (z 6=
0) there exists a function hα(z) in S′p (α) such that (f∗ hα)(z)

z 6= 0.

Proof: Let us assume that (f∗ hα)(z)
z 6= 0, then for all hα(z ) ∈ S′p (α) and for z ∈

E (z 6= 0). From the definition of hα(z ) it follows that

f (z) ∗ hα (z)

z
=

2 (1− α)

z
[
(1− α)

2 − t2 − 2it (1− α)
] [f (z) ∗ z

(1− z)2
− t2 + 1 − α2 + 2it (1− α)

2 (1− α)
f ∗ z

1− z

]

=
2 (1− α)

z
[
(1− α)

2 − t2 − 2it (1− α)
] [zf ′ (z) − t2 + 1− α2 + 2it (1− α)

2 (1− α)
f (z)

]

6= 0.

Equivalently zf ′(z)
f(z) 6= t2 + 1 − α2 + 2it(1−α)

2(1−α) , t ∈ R. This means that zf ′(z)
f(z) lies

completely either inside Ωα or complement of Ωα for all z in E. At z = 0, zf
′(z)

f(z) =

1 ∈ Ωα , so zf ′(z)
f(z) ⊂ Ωα which means f ∈ Sp(α).

Conversely let f ∈ Sp(α). Hence zf ′(z)
f(z) lies with in the parabola with vertex at

the point
(
1+α
2 , 0

)
and the boundary of this is given by t2 + 1 − α2 + 2it(1−α)

2(1−α) for t

∈ R. So f ∈ Sp(α) only when

zf ′ (z)

f (z)
6= t2 + 1 − α2 + 2it (1− α)

2 (1− α)

Equivalently

f (z) ∗
[

z
(1−z)2 −

t2 + 1 − α2 + 2it(1−α)
2(1−α)

z
(1−z)

]
6= 0 for z 6= 0.

Normalizing the function within the brackets we get (f∗ hα)(z)
z 6= 0 in E where

hα(z ) is the function defined in (1.11).
To investigate the δ neighbourhoods of functions belonging to the class Sp(α),

we need the following lemmas.
Lemma 2.1: Let hα (z) = z +

∑∞
k=2 ck z

k ∈ S′p (α). Then

|ck| ≤
2k − (1 + α)

(1− α)
, k = 2, 3 . . . .

Proof: Let hα (z) ∈ S′p (α). Then for t ∈ R

hα (z) =
2 (1− α)

(1− α)
2 − t2 − 2it (1− α)

[
z

(1− z)2
− t2 + 1 − α2 + 2it (1− α)

2 (1− α)

z

(1− z)

]

=
2 (1− α)

(1− α)
2 − t2 − 2it (1− α)

[(
z + 2z2 + ......

)
− t2 + 1 − α2 + 2it (1− α)

2 (1− α)

(
z + z2 + .....

)]
= z +

∑∞
k=2 ckz

k

Now comparing the coefficients on either side we get



106 T. RAM REDDY AND P. THIRUPATHI REDDY

ck =
2k (1− α) − t2 − 1 + α2 − 2it (1− α)

(1− α)
2 − t2 − 2it (1− α)

After simplication we get

|ck| ≤ Tk =
2k − (1 + α)

(1− α)
, for k = 2, 3 ...

Lemma 2.2: For f ∈ A and or every ε ∈ C such that |ε|< δ if

Fε(z )= f(z) + ε z
1+ε ∈ Sp(α) then for every hα(z ) ∈ S′p (α).∣∣∣∣ (f ∗ hα) (z)

z

∣∣∣∣ ≥ δ, z ∈ E.

Proof: Let Fε(z ) ∈ Sp(α). Then by Theorem 2.2, Fε(z)∗hα(α)
z 6= 0, for all hα(z )

∈ S′p (α) and z ∈ E.
Equivalently

(f ∗ hα) (z) + ε z

(1 + ε) z
6= 0 or

(f ∗ hα) (z)

z
6= − ε,

that is ∣∣∣∣ (f ∗ hα) (z)

z

∣∣∣∣ ≥ δ.

Theorem 2.3: Let f ∈ A, ε ∈ C and for |ε|< δ < 1, if Fε(z) ∈ Sp(α). Then
Nδ(f ) ⊂ Sp(α)
for the sequence

T = Tk =
2k − (1 + α)

(1 + α)

Proof: Let hα(z ) ∈ S′p (α) and g(z ) = z +
∑∞
k=2 bk z

k is in Nδ(f )
Then ∣∣∣∣ (g ∗ hα) (z)

z

∣∣∣∣ =

∣∣∣∣ (f ∗ hα) (z)

z
+

( (g − f) ∗ hα) (z)

z

∣∣∣∣
≥
∣∣∣∣ (f ∗ hα) (z)

z
− (g − f) (z) ∗ hα (z)

z

∣∣∣∣
≥ δ−

∣∣∣∑∞k=2
(bk − ak) ck zk

z

∣∣∣, by lemma 2.2.

We have ∣∣∣∣ (g ∗ hα) (z)

z

∣∣∣∣ ≥ δ − |z|
∞∑
k=2

|ck| |bk − ak|

> δ −
∑∞
k=2 Tk |bk − ak|, by lemma 2.1

> δ - δ = 0.

Thus
∣∣∣ (g ∗ hα)(z)z

∣∣∣ 6= 0 in E for all hα ∈ S′p (α) and then by Theorem 2.2, we have

g ∈ Sp(α). Hence we have Nδ (f ) ⊂ Sp(α).
Next we show that the class Sp(α) is closed under convolution with functions f

which are convex univalent in E.
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Theorem 2.4: Let f ∈ CV the class of convex functions and g(z ) ∈ Sp(α).
Then (f * g) (z ) ∈ Sp(α).
Proof: The proof of Theorem is similer result of T.N.Shanmugan [13], hence we
omitted.
Theorem 2.5: Let f ∈ ST

(
α+1
2

)
, g ∈ Sp(α). Then (f * g) (z ) ∈ Sp(α).

Proof: Let g ∈ Sp(α). Assume f ∈ ST
(
α+1
2

)
and zg′(z)

g(z) play in the role of F in

Lemma B, and let Ωα = {|ω-1|Re (ω-α)}. Using the Lemma B, we get for z ∈ E
that
z(f ∗ g)

′
(z)

(f ∗ g)(z) = f(z) ∗ zg′(z)
(f ∗ g)(z) =

f(z) ∗ g(z) zg
′(z)
g(z)

(f ∗ g)(z) ⊂ Co zg′(z)
g(z) ⊂ Ωα. Since Ωα is

convex and g ∈ Sp(α). This proves that (f * g) (z ) ∈ Sp(α).
Setting α = 0, the following result of Ronning [9] follows.

Corollary 2.1: Let f ∈ ST (1/2), g ∈ Sp(0) = Sp, then (f * g) (z ) ∈ Sp.
Theorem 2.6: Let g∈ UCV (α) and h(z ) ∈ ST

(
α+1
2

)
. Then (g * h) (z ) ∈

UCV (α).
Proof: If g ∈ UCV (α), then z g ′(z ) ∈ Sp(α). By Theorem 2.4 it follows that h *
zg′ ∈ Sp(α). So

z (h * g)′ (z ) = h(z ) * zg ′ (z ) ∈ Sp(α).
This proves that (h * g) (z ) ∈ UCV (α).

Setting α = 0, the following result of Padmanabhan [8] follows.
Corollary 2.2: Let g ∈ UCV and h(z ) ∈ ST (1/2). Then (g * h) (z ) ∈ UCV(α).

Theorem 2.7 : Let f ∈ UCV (α). Then f(z) + ε z
1 + ε ∈ Sp (α) for |ε|< .

Proof: Let f (z) = z +
∑∞
n=2 anz

n then

f (z) + ε z

1 + ε
=

z (1 + ε) +
∑∞
n=2 anz

n

1 + ε
=

f (z) ∗ [z (1 + ε) +
∑∞
n=2 z

n]

1 + ε

= f (z) ∗

(
z − ε

1+ε z
2
)

(1− z)
= f (z) ∗ h (z)

where h (z) =
[z − ε

1+ε z
2]

(1−z)
Now

zh′ (z)

h (z)
=

[
z − 2ε

1+εz
2
]

[
z − ε

1+εz
2
] +

z

1− z
=
−ρ z

1− ρ z
+

1

1− z

where ρ = ε
1+ε . Hence |ρ| < ε

1−|ε| < 1/3 gives |ε|< 1/4

Thus

Re

{
zh′ (z)

h (z)

}
≥ 1− 2 |ρ| |z| − |ρ| |z|2

(1− |ρ| |z|) (1 + |z|)
> 0

if |ρ|(|z |2 + 2 |z |) -1 < 0. This inequality holds for all ρ < 1/3 and |z |< 1, which

is true for |ε|< 1/4. Therefore h(z ) is starlike in the unit disk and so
∫ z
0
h(t)
t dt is

convex.

But h(z ) * log
(

1
1−z

)
=

∫ z

0
h(t)
t dt and so h(z ) * log

(
1

1−z

)
is convex in E

and

(f * h) (z ) = (h * f ) (z ) = h(z ) *
[
zf ′ (z) ∗ log

(
1

1−z

)]
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= zf ′(z) *
[
h (z) ∗ log

(
1

1−z

)]
f (z ) ∈ UCV (α) implies zf′ (z ) ∈ Sp(α) and h(z ) * log

(
1

1−z

)
∈ CV. Now

by Theorem 2.4 h(z ) *
[
zf ′ (z) ∗ log

(
1

1−z

)]
is in Sp(α). Thus (f ∗ h) (z) =

f(z) + ε z
1+ε ∈ Sp (α) for |ε|< 1/4.

Corollary 2. 3: If f ∈ UCV (α), then f ∈ Sp(α).
Proof: Choosing ε = 0 in the Theorem 2.7 we get the result.

Corollary 2. 4: If f ∈ UCV (α) then
∫ z
0
f(t)
t dt ∈ UCV (α).

Proof: f ∈ UCV (α) implies f ∈ Sp(α) by corollary2.3,so we can write f (z ) = zg′
(z ) for some g ∈ UCV (α) and g′ (z ) = f(z)

z gives g (z) =
∫ z
0
f(t)
t dt ∈ UCV (α).
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KOÇAK’S ACCELERATION METHOD SMOOTHLY GEARS UP

ITERATIVE SOLVERS

MEHMET ÇETIN KOÇAK

Abstract. Consider a scalar repetitive scheme symbolically represented by
xk+1 = g(xk) where k is the iteration count. Let z and n respectively de-

note the target fixed-point and convergence order of g. Koçak’s method gK
accelerates g by actually solving a superior secondary solver obtained from a

fixed-point preserving transformation

gK = x + G(g − x) = (g −mx)/(1 −m),m = 1 − 1/G,G = 1/(1 −m)
where G is a gain and m is the slope of a straight line joining g and g = x

line. The method uses derivatives of g in local adjustment of m so as to push

gK towards the ideal solver g = z by annihilating derivatives of gK . If n is 1,
then gK is of third order. If n exceeds 1, then gK is of (n+1)th order. Variable

m improves remote behaviour also. The benefits of gK amply compensate the

cost of extra derivatives. A first-order solver with highly oscillatory divergence
shows that the resultant third-order gK renders a fast and smooth flight from

a remote point to z. Newton’s second-order, Chebyshev’s third-order, and

Ostrowski’s fourth-order solvers all spin off in contrast

1. INTRODUCTION

A nonlinear equation

(1.1) x = g(x)

can be solved by a repetitive scheme xk+1 = g(xk) where k is the iteration count.
If z satisfies (1.1), then z is called a fixed-point of g. (In this text, functions are
usually written without an argument list when it contains x only.) To find a z
is to locate an intersection of the curve g = g(x) with the straight line g = x.
Each scheme starts form one or more points supposedly in the vicinity of z and
usually ends when the absolute difference between successive iterates falls below a
pre-specified tolerance.

Date: January 1, 2013 and, in revised form, February 2, 2013.
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On a plot of x versus g, the iteration process follows a sequence of joined lines
which are vertical and horizontal in turn; the first is a vertical line originating from
the x-axis and ending on g, the second is a horizontal line extending to g = x, then
comes a vertical line to g again, and so on. The ”ideal” solver is the horizontal line
gid which needs just one trial from any starting point. Albeit, z is unavailable until
the end! gid can be harnessed however in post priori analysis, research, comparative
studies, and troubleshooting.

Let εk = xk− z. If there exist a real number n and nonzero constant c such that

lim
k→+∞

|εk+1|
|εk|n

= c,

then n and c are respectively called the convergence order and the asymptotic error
constant. According to Traub [9], if n is integral, then

c = lim
k→+∞

εk+1

εnk
=
g(n)(z)

n!
.

Linear or first order convergence (n = 1) means that g′(z) 6= 0. Quadratic con-
vergence (n = 2) means that g′(z) = 0 but g′′(z) 6= 0. Generalizing, an integral
convergence order n > 1 means that g′(z) = g′′(z) = . . . = g(n−1)(z) = 0 but
g(n)(z) 6= 0 and that εk+1 is proportional to εnk in the vicinity of z. (Thus, nth
order solvers are a subset of (n− 1)th order solvers.)

Many techniques reuse old information and/or harness new information at more
than one point. In Traub’s methodology [9], methods with memory are those which
utilize past values and multipoint solvers are those which harness new information
at a number of points. Furthermore, g ∈ In indicates that g belongs to the class of
solvers of order n. The condition for g to converge is that |g′| < 1 in the vicinity of
z [8].

1.1. A selection of iterative techniques. In numerous cases, the iterative solver
g actually comprises a long chain of equations involving many intermediate vari-
ables. If x = g(x) is a rearrangement of another equation f(x) = 0 , then the
fixed-points of g are identical with the zeroes (roots) of f . Sometimes g comes from
g = x− fu where u is finite. Newton’s popular second-order method [2,4]

gN = f − f

f ′
is an example of this type where u equals 1/f ′. (A subscript starting with a capital
letter is assigned in this paper to a solver g, convergence order n, and asymptotic
error c so as to indicate the person to whom the pertinent method is attributed.).
gN is a piecewise linearization of f since it extends the current tangent to in-

tersect the x-axis and suggests this value as the next approximation to z. (gN
is also called the variable tangent method.) As shown by Traub[9], nN = 2 and
cN = f ′′(z)/(2f ′(z)) for simple roots. Repetition of z demotes convergence of gN
from quadratic to superlinear or geometrical and slows down the iteration process.
If r is the multiplicity of z, then g′(z) = (r−1)/r 6= 0 and gNr = x− rf/f ′ restores
second order [4]. Direct differentiation of gN gives g′N = ff ′′/f ′2 = L where L is
called the logarithmic degree of convexity. So, the convergence condition of gN is
that |g′N | = |L| < 1 in the vicinity of z.
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1.1.1. Secondary solvers generated by partial substitution. Partial substitution (gps)
employs a variable gain G to amplify the correction to x, that is r

gps = x+G(g − x)

Applied to gN , partial substitution gives gNps = x − Gf/f ′. Note that gNr

defined above is a gNps with a fixed gain G = r. Besides gN , this article uses three
gNps methods for comparison with newly geared-up gK . They are Chebyshev’s
(gC ∈ I3), Halley’s (gH ∈ I3) and Ostrowski’s (gH ∈ I4) solvers whose respective
formulas are as follows:

gC = x−G f

f ′
, G = 1 +

L

2
,

gH = x−G f

f ′
= x− f f ′

f ′2 − 0.5ff ′′
, G =

(
1− L

2

)−1

,

gO = x−G f

f ′
, G = 1 +

f(gN )

f − 2f(gN )
=

f − f(gN )

f − 2f(gN )
.

1.1.2. Secondary solvers generated by piecewise linearization. Let K(x,g) be a point
on g and let M(p,p) be an arbitrary point on g = x . The slope m of the straight line
KM is given bym = (g−p)/(x−p). Conversely, given the slopem = (g−p)/(x−p) 6=
1, a straight line through K intersects the line g = x at M(p,p). Rearrangement
renders p = (g − mx)/(1 − m). A specified solver gpl = p may be regarded as a
piecewise linearization of g if p is used to approximate z. Hence,

(1.2) gpl =
g −mx
1−m

.

It is easy to show [5-7] that gpl and gps are uniquely linked. Indeed,

gpl = (g −mx)/(1−m) ≡ x+G(g − x) ≡ gps

if m = 1− 1/G or G = 1/(1−m).
Regardless of the multiplicity of z, the ideal slope for linearization of g is mid =

(g−z)/(x−z). If the chosen slope coincides with mid, then gpl = gid = z and M falls
upon Z(z,z). Two well-known one-point accelerators with memory, namely Aitken’s
[1] and Wegstein’s [3] methods, are examples of gpl. Wegstein’s approximating lines
are secants of g going through a previous iterate (xi,gi) and the current iterate
(xk,gk), that is

m =
gk − gi
xk − xi

, gW =
gkxi − gixk

xi − xk − (gi − gk))
.

gW is calculable first time at the end of the second iteration and is updated at each
iteration afterwards. Aitken’s technique similarly uses secants but its updates are
every other iteration. Since i = k − 1 and xk = gk−1 here,

gA =
gkxk−1 − g2

k−1

xk−1 − xk − (gk−1 − gk)
= gk −

(gk − gk−1)2

xk−1 − xk − (gk−1 − gk)
.
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2. KOÇAK’S ACCELERATOR

Koçak’s method accelerates a given g by actually solving a superior secondary
solver gK generated through the transformation

(2.1) gK = x+G(g − x) =
g −mx
1−m

, m = 1− 1

G
, G =

1

1−m
, m 6= 1

where G is a gain and m is a slope. Obviously, gK is piecewise linearization and
partial substitution, that is gK ≡ gpl ≡ gps. The transformation is the ultimate
result of three successive operations on the equation x = g(x), namely subtraction of
the productmx from both sides, collecting terms, and rearrangement. Symbolically:

x−mx = g −mx =⇒ (1−m)x = g −mx =⇒ x = gK = (g −mx)/(1−m)

The transformation obviously preserves fixed-points, that is gK(z) = g(z) = z.
Direct comparison of (2.1) and (1.2) shows that the varying slope is given by m =
(g − gK)/(x− gK).

Solver comparisons customarily focus on performance in the vicinity of z, paying
attention to the number of function evaluations, the number of derivative calcula-
tions, convergence order, and asymptotic error constants. As previously published
[5-7], if m is adjusted such that

m(i−1)(z) = g(i)(z)/i, i = 1, 2, . . . , nK − 1, nK ≥ 2, m(0)(z) = m(z) = g′(z),
then

g
(i)
K (z) = 0, i = 1, 2, . . . , nK − 1

and gK achieves an integral convergence order nK ≥ 2.
It is well known that, irrespective of its convergence order, an iterative method

is liable to unsatisfactory performance (because of oscillation or slowness) and even
to total failure if the starting point is not near enough the target z. The aim of
the present phase was to improve remote behavior of gK by successively zeroing as
many of its derivatives (gK ′, gK ′′,. . . ) as possible. The action forces gK towards
the ideal curve gid = z. The case gK ′ = gK ′′ = 0 amply illustrates the approach.

Let h = gK − x . Taylor’s expansion of m around x is

m(gK) = m(x+ h) = m(x) +m′h+
m′′h2

2!
+
m′′′h3

3!
+ ...

Truncating after the third term results in

mh = m+m′h+
m′′h2

2!
w m(gK).

In order to attain gK ′ = gK ′′ = 0, the following conditions must be satisfied:

(2.2) m′ = −(m− 1)(m− g′)
g − x

,

(2.3) m′′ = 2(1−m)m′(m− 1− g′) +m′(g − x)

(1−m)2
− (g′′ − 2m′)(1−m)

g − x
.



KOÇAK’S ACCELERATION METHOD SMOOTHLY GEARS UP ITERATIVE SOLVERS 113

Suppose the set {g, g′, g′′} is available at x. Then {gK , h,m′,m′′} and hence mh

depend on m alone. Recall that the minimal condition for nK ≥ 2 is that lim
x→z

m =

g′(z). The problem now is to tune m so as to annihilate a discrepancy function
fm(m) = mh(m) − g′(z). The target is m w mid which makes gK w z, mh w
m(gK) w m(z) = g′(z), and hence fm(m) w 0. It seems convenient to set up
an inner loop to receive {g, g′, g′′} at x, iteratively solve fm for m (subject to a
tolerance), and deliver the pertinent gK to the outer loop as the new x value to
test.

It is easy to see that m = g′, m = g′(z) , or a weighted average

(2.4) m = wg′+ (1− w)g′(z) = g′(z) + w(g′ − g′(z))

fulfills the minimal requirement for nK ≥ 2 since lim
x→z

m = g′(z). The scheme can

be modified in this case such that having received {g, g′, g′′,g′′′} at x the inner loop
solves a corresponding discrepancy function fw(w) = wh(w)−wlim for w by locally
adjusting w subject to a specific end-point limit wlim and return the pertinent gK .
The value of wlim depends on n as explained later. The extra derivative g′′′ enters
the scene because differentiating (2.4) with respect to x renders

w′ = m′ − wg′′
g′ − g′(z)

w′′ = m′′ − (2w′g′′+ wg′′′)
g′ − g′(z)

.

Equations (2.2) and (2.3) supply m′ and m′′ as before. From truncated Taylor’s
expansion again,

wh = w + w′h+
w′′h2

2!
.

Variable w is the distinguishing feature of the third version of gK . The forerunner
[5] employs constant w = 1/2 irrespective of n whereas the second [6] selects a
constant w appropriate to n, that is it couples w to n. These constant w values
which are coupled to n in the second version are now wlim in the third version and
lim
x→z

w = wlim. This means that both nK and cK remain unchanged in going from

the second version to the third. Three different situations exist:

a): If n = 1, then wlim = 1/2 is used with the result that nK = 3, cK =
g′′′K(z)/3!, and g′′′K(z) = −0.5g′′′(z)/(1− g′(z)).

b): If n = 2, then wlim = 1/2 is employed with the result that nK = 3,
cK = g′′′K(z)/3!, and g′′′K(z) = −0.5g′′′(z).

c): If n > 2 , then wlim = 1/n is harnessed which renders nK = n + 1,

cK = g
(n+1)
K (z)/(n+ 1)!, and g

(n+1)
K (z) = −g(n+1)(z)/n.

(Interesting results accrue [7] from the solution of g′K = 0 assuming that w′(g′ −
g′(z))(g − x) w 0 . The new approach described above is free from this restricting
assumption. There is more information in the appendix.)

2.1. The algorithm. The formulation hinged to w has been implemented. After
many revisions and runs, the final version of the accelerator is now housed in a
function that supervises the whole process once triggered by a call giving necessary
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initial information, namely, n, g′(z), number of g derivatives, starting point, conver-
gence tolerance, iteration limit, and name of the function to supply {g, g′, g′′,g′′′}at
x. The supervisor function has two loops one inside the other. The outer loop is
started after setting wlim according to n. It sets w = wlim, gets {g, g′, g′′,g′′′}from
the named user function and begins the inner loop which employs gN to solve
fw(w) = 0 for w thereby fixing the pertinent m and gK . This gK is then used as x
for the next outer iteration.

The inner loop embeds an auxiliary function that takes {w, x,g, g′, g′′,g′′′} and
calculates {wh, gK}as follows. First, it obtains m from (2.4) and gK from (2.1). It
then accrues, m′,w′,m′′,w′′, and wh. If the returned wh exceeds 1.5 times wlim,
then the loop halves w and tries again. Otherwise, it checks |fw|. If this is suf-
ficiently small, then the current w and the resultant gK are accepted and the in-
ner loop is terminated. If not, then w is updated for the next iteration using
w = w − fw(w)/fw′(w) in accordance with gN formulation. The derivative fw′(w)
is calculated numerically which means an extra fw(w) per iteration here.

2.2. Links to other solvers. The accelerator naturally links to other solvers for
it is both gps and gpl. If w = 1, then m = g′ and the application [5] is equivalent
to utilizing gN to solve a secondary function g − x = 0. Indeed,

gN = x− g − x
g′ − 1

=
g′x− x+ g − x

g′ − 1
=
g − g′x
1− g′

=
g −mx
1−m

= gK , m = g′

In this case, nK = nN = 2. Piecewise linearization techniques gA and gW are
in fact a subclass of this case where the slope of a secant approximates g′. Alas,
their popular implementations nullify possible beneficial contribution of g′(z). Since
secants virtually tend to the tangent as x goes to z, it can be asserted that nA =
nW = nN = 2 (provided that z is not repeated). The application of gK converts [5]
gN to gH if w = 1/2 . With variable w tending to wlim = 1/2, the result should
be a smoother gH .

2.3. A highly oscillatory and divergent first-order test case. This bench-
mark is in fact a member of a difficult class of problems keyed to N . Let N = 7 and
s = 10N . Suppose that g = s/xN−1 is to be harnessed for the iterative solution of
f = xN − s. For this class, g′ = −(N − 1)s/xN , g′(z) = −(N − 1), g′′ = −Ng′/x
, and g′′′ = N(N + 1)g′/x2. The new gK with variable w will be applied to accel-
erate the process. The performance of gK will be compared with those of gN ∈ I2,
gC ∈ I3, gH ∈ I3, and gO ∈ I4. (Remember that Chebyshev’s, Halley’s and Os-
trowski’s solvers are partial substitution variants of gN .) The target fixed-point is
z = 10, of course.

3. Results and discussion

Table 1 depicts the test results using x1 = 2 as starting point. Note that wh1 =
w + w′h and wh2 = w + w′h + w′′h2/2!. The use of wh = wh2 limits the extra
information needed to {g′′,g′′′}. (As can be expected, wh2 is better to use than
wh1.) It is obvious that gK with variable w superbly pilots the iteration process;
the flight from a remote point to z is so fast and smooth despite the fact that g is
a first-order solver with highly oscillatory divergence! Consider the first iteration
now. New gK accrues its largest correction here taking x from 2 to 7.950162903588.
Notice that there are 4 internal iterations where w respectively takes the values
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0.5, 0.25, 0.125, 0.056 compared with the ideal wid = 0.041652. (w is halved twice
before applying gN .) In contrast, the solvers {g, gN , gC , gO} all spin off at x = 2.
Only gH takes a small step in the right direction. (Note the previous two versions
use w = 1/2 when n = 1 and with this class of problems this is equivalent to
harnessing gH .) This proves the immense improvement of the third version over
its predecessors. gK continues to lead the other contestants in the second iteration,
taking x to 10.003627135093 which is very close to the target. Not surprisingly,
close to the finish gO ∈ I4 overtakes gK ∈ I3 !

Without doubt, gK with variable w amply compensates the extra cost of {g′′, g′′′}.
In fact, its contribution is invaluable since it converts a divergent solver to a flyer.
Needless to say, Koçak’s acceleration method is also an important tool to analyze
scalar iterative processes.

In summary, w reaches wlim as solely determined by n. Presently, gK needs
{g,g′,g′′,g′′′} and n. If preferred, gK ′ may be estimated numerically at the expense
of an extra g per iteration [5]. Alternatively [5], g′K may be replaced by the slope
of a secant when k ≥ 2. Note that this option envelops previously introduced
piecewise linearization techniques with memory, namely gA and gW . The original
formulations of these forego the beneficial contribution of g′(z) since they harness
w = 1 . However, hinging w to n as described above should improve both of them.
The requirement of g′(z) is a handicap only when n = 1 for g′(z) = 0 when n ≥ 2.

Table 1.gK provides a fast and smooth flight to z from a point where others fail.
k 1 2 3 4
x 2.000000000000 7.950162903588 10.003627135093 10.000000001908
g 156250 39.604436076333 9.978264790570 9.999999988554
gN 22323 12.472201928266 10.000003943018 10.000000000000
gC -747327804 4.755817803051 10.000000006190 10.000000000000
gH 2.666646755895 9.621034770843 10.000000001908 10.000000000000
gO 11162 10.431874480623 10.000000000002 10.000000000000
wid 0.041652 0.353391 0.500242 0.000000

Inner loop iterations
1st w 0.500 0.500 0.500 0.500
wh1 1.167 0.920 0.499 0.500
wh2 1.833 1.341 0.499 0.500
gK 2.666646755895 9.621034770843 10.000000001908 10.000000000000

2nd w 0.250 0.250
wh1 0.667 0.172
wh2 1.083 -0.269
gK 3.333253692267 10.390290953486

3rd w 0.125 0.339
wh1 0.417 0.460
wh2 0.708 0.408
gK 4.666348122867 10.047938453298

4th w 0.056 0.352
wh1 0.278 0.501
wh2 0.498 0.499
gK 7.950162903588 10.003627135093
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4. Conclusions

Old gK needs g, g′, g′(z) and n. The previous two versions use constant w
throughout. The forerunner gK sets w to 1/2 for any g. The second version
couples w to the convergence order n. If n = 1, then w = 1/2 is used and gK is
of third order. If n > 1, then w = 1/n is harnessed and gK is of (n + 1)th order.
The notion in the third version is to get additional higher derivatives {g′′,g′′′,...} at
each step and deploy them within an embedded loop to fix {w,w′,w′′,...} at x such
that {gK ′, gK ′′, ...} are zero and the projected w at x = gK tends to its (constant)
value in the second version. This action forces gK towards the ideal solver g = z .
The resultant gK is of the same order as in the second version but the move to z is
now a fast and smooth flight even from a remote starting point where other solvers
fail.

A highly oscillatory and divergent first-order case demonstrated the super per-
formance of gKwith variable w. The rewards of utilizing a variable w amply com-
pensate the cost of the extra derivative information. It seems sufficient to get {g′′,
g′′′} only, iteratively determine the appropriate set {w,w′,w′′} at x which zeroes
gK ′ and gK ′′ simultaneously and projects w to its expected limit at gK .

Koçak’s accelerator gK has been upgraded with great success; it is now faster,
smoother, and more robust. As implemented, gK is a powerful one-point solver
without memory. Ramifications are possible. For instance, just two iterations with
gK may be sufficient to reach a safe point from which other solvers may take over. If
higher derivatives are difficult or expensive to calculate, then they may be replaced
by finite difference formulae leading to one-point solvers with memory. Extension
to multivariable solvers is another opening to investigate in the future. It is clear
that Koçak’s method provides a super tool for numerical analysis.
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Koçak’s acceleration method relies on the fixed-point preserving transformation

gK = gps = x+G(g− x) = (g−mx)/(1−m) = gpl, m = 1− 1/G, G = 1/(1−m)

where G is a gain and m is the slope of a straight line joining g and g = x line.
Consider the link between gid = z and gK . Regardless of the multiplicity of z [5],
the ideal slope for linearization at the kth iteration is mid = (gk − z)/(xk − z) =
εk+1/εk where εk = xk − z. On the other hand, according to the mean value
theorem for derivatives [5],

mid =
g − z
x− z

=
g − g (z)

x− z
= g′ (ξ) , ξ ∈ (x, z)

Note that this does not necessarily mean that g′(ξ) ∈ (g′(x), g′(z)).
As previously published [5-7], if m is adjusted such that

m(i−1) (z) = g(i) (z) /i, i = 1, 2, ...nK−1 , nK ≥ 2, m(0) (z) = m (z) = g
′

(z) ,

then g
(i)
K (z) = 0, i = 1, 2, ...nK − 1 and gK achieves an integral convergence order

nK ≥ 2. It is easy to see that a weighted average m = wg′+ (1−w)g′(z) = g′(z) +
w(g′ − g′(z)) fulfills the minimal requirement for nK ≥ 2, that is limx→zm = g′(z)
. In this case, symbolic computations show that

(5.1) mid −m =
∑
i

(
1

(i+ 1)!
− w

i!

)
g(i+1) (z) εik.

Suppose that n = 1 . The use of w = 1/2 makes m = (g′ + g′(z)), annihilates the
coefficient in the first summand here, and leads to the results

nK = 3, cK =
g′′′K (z)

3!
, g′′′K (z) = −0.5

g′′′ (z)

1− g′ (z)
The improvement is remarkable since the convergence order is raised from n = 1
to nK = 3. Amelioration is even better if g′(z) < 0 or g′(z) > 2 .

If n = 2 , then g′(z) = 0 and so w = 1/2 renders

nK = 3, cK =
g′′′K (z)

3!
, g′′′K (z) = −0.5g′′′ (z) .

If n = 3, then g′′(z) = 0 and the first summand above is already zero and the
second summand can be annihilated by choosing to employ w = 1/3 which makes
nK = 4 . Similar reasoning leads to the deduction that if n ≥ 2 , then w = 1/n
makes nK = n+ 1 . In fact, symbolic computations reveal [6] that if n ≥ 2, then

g
(i)
K (z) = g(i) (z) (1− wi) , i = 3, 4, ...

This equation not only corroborates that w = 1/2 gives a gK ∈ I3 when n was 1 or
2, but also shows if w = 1/2 is used when n > 2, then

(5.2) nK = n, g
(n)
K (z) = (1− n

2
) g(n) (z) , cK =

g
(n)
K (z)

n!
= (1− n

2
) c.

So, it is unwise to harness w = 1/2 when n > 3. If w = 1/n instead of w = 1/2,
then

(5.3) nK = n+ 1, cK =
g

(n+1
K (z)

(n+ 1)!
, g

(n+1)
K (z) = −g

(n+1)(z)

n!
.
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Clearly, (5.3) is better than (5.2) when n > 3 since it increases nK by 1 and greatly
diminishes cK .

The forerunner of gK [5] employs constant w = 1/2 irrespective of n. The second
version is identical with the first when n was 1 or 2. They differ when n > 2 since the
second version begins to employ w = 1/n (instead of w = 1/2) thereby improving
both nK and cK . Variable w is the distinguishing feature of the third version of
gK . It locally tunes w so as to annihilate derivatives of gK subject to the condition
that w tend to its value in the second version as x approaches z. This means that
the remote behavior is greatly improved but both nK and cK remain unchanged.

An ideal w, symbolized by wid, annihilates the sum on the right-hand side of
(5.1) and renders m = mid. The definition of mid directly leads to wid = (mid −
g′ (z) /(g′ − g′ (z)). Therefore, with the help of Hospital’s rule [6],

wlim = lim
x→z

wid =

{
1/2, n = 1
1/n, n > 1

This fact can be coupled to a simple problem with a known z to estimate integer
convergence orders if n ≥ 2 . In the neighborhood of z:

n =
1

wlim
, wlim ≈ mid − g′ (z)

g′ − g′ (z)
, mid =

g − z
x− z

.

6. Abbreviations
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c Asymptotic error constant
cK Asymptotic error constant of Koçak’s solver
f Nonlinear function to be solved
fw Discrepancy function, fw = wz − wlim

g Nonlinear solver
gA Aitken’s solver (accelerator)
gid Ideal solver, gid = z
gC Chebyshev’s third-order solver
gH Halley’s third-order solver
gK Koçak’s solver
gN Newton’s solver
gNps Newton’s solver with partial substitution
gNr Newton’s solver for repeated roots
gO Ostrowski’s fourth-order solver
gpl Piecewise linearization
gps Partial substitution
gW Wegstein’s solver (accelerator)
k iteration counter
L Logarithmic degree of convexity, L = ff ′′/f ′2

m Linearization slope
mid Ideal linearization slope
n Convergence order
nK Convergence order
r Multiplicity of z
x (Default) independent variable
w Weight for derivative
wh Weight projected to gK
wlim Limit for w at z
z Fixed-point
εk Eror at the kth iteration, εk = xk − z
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SOME RESULTS ON THE SENSITIVITY OF SCHUR STABILITY

OF LINEAR DIFFERENCE EQUATIONS WITH CONSTANT

COEFFICIENTS

AHMET DUMAN AND KEMAL AYDIN

Abstract. In this work, new results on the sensitivity problem of the Schur

stability of linear difference equation systems with constant coefficients and

scalar-linear difference equations with order k are obtained and some examples
illustrating the efficiency of the theorems are given.

1. Introduction

In this article we consider the following linear system of difference equations with
constant coefficients:

(1.1) x(n+ 1) = Ax(n), n ∈ Z.

where A is a matrix of dimensions N ×N . The asymptotic stability of the system
(1.1) is equivalent to the asymptotic stability of the coefficient matrix A. It is well-
known that with respect to Lyapunov, a matrix A is discrete-asymptotically stable if
and only if the discrete-Lyapunov matrix equations A∗XA−X+C = 0, C = C∗ > 0
has a solution matrix X which is positive definite matrix, i.e. X = X∗ > 0.

Moreover, this solution given by X =
∑∞
k=0 (A∗)

k
CAk and also according to the

spectral criteria, a matrix A is discrete-asymptotically stable if and only if the
eigenvalues of the coefficient matrix A lay in the unit disc, i.e. |λi(A)| < 1 for
all i = 1, 2, . . . , N , where λi (i = 1, 2, . . . , N) stands for the eigenvalues of the
coefficient matrix A [1, 2, 3, 4]. Such systems are also called as Schur stable [5, 6, 7].
Throughout the study, we focus our attention to the concept of Schur stability.

In the literature, some restrictions on the perturbation matrix B are assumed to
study the Schur stability of the following system

(1.2) y(n+ 1) = (A+B)y(n), n ∈ Z,
where A is the coefficient matrix of the Schur stable system (1.1). So called contin-
uation are used to study the sensitivity of the ω∗− Schur stability and the Schur
stabilitiy of the system (1.1) [1, 2, 4, 8].

2000 Mathematics Subject Classification. 39A11.
Key words and phrases. Schur stability, difference equations, sensitivity, perturbation systems.
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In this work, some results on the sensitivity of the Schur stability and the ω∗−
Schur stability of the difference equation system (1.1) were presented. We have also
applied the results to the delay difference equations.

2. Sensitivity of Systems

In this section, we give some results in the literature on the sensitivity of the
Schur stability of the systems with constant coefficients.

Let’s start with the parameter ω(A) that shows the quality of Schur stability of
the system (1.1) and holds and an important place in the theory of stability.

Schur stability parameter ω(A) is defined as follows:

ω(A) = ||H||; H =

∞∑
k=0

(A∗)
k
Ak, H = H∗ > 0, A∗HA−H + I = 0

where I is unit matrix, A∗ is adjoint of the matrix A, ||A|| = max‖x‖=1 ‖Ax‖ is the
spectral norm of the matrix A, furthermore the norm ||x|| is Euclidean norm for
the vector x = (x1, x2, . . . , xN )T . Linear difference system (1.1) is Schur stable if
and only if ω(A) < ∞ holds and so it is clear that the perturbed linear difference

system (1.2) is Schur stable if and only if ω(A+ B) = ||H̃|| <∞ holds, where the

matrix H̃ =
∑∞
k=0 (A∗ +B∗)

k
(A+B)k is positive definite solution of the discrete-

Lyapunov matrix equation (A∗ + B∗)H̃(A + B) − H̃ + I = 0. Moreover, let ω∗

be the practical Schur stability parameter of the system (1.1), then the matrix A
is called as practically Schur stable (ω∗− Schur stable) provided that ω∗ > 1 and
ω(A) ≤ ω∗ hold. If ω(A) > ω∗ holds, then the matrix A is called as ω∗− Schur
unstable matrix [1, 3, 9].

Theorem 2.1 ([3]). Let A be a Schur stable matrix (ω(A) <∞). If ‖B‖ ≤ 1
6πω(A)

then the matrix A+B is Schur stable. Moreover, if (2 ‖B‖ ‖A‖+ ‖B‖2)ω(A) < 0.5
then the inequality

|ω(A+B)− ω(A)| ≤ 2ω2(A)(2 ‖A‖+ ‖B‖) ‖B‖ ,

holds.

Corollary 2.1 ([10]). Suppose that A is a Schur stable matrix, that is ω(A) <∞.

If the matrix B satisfies ‖B‖ <
√
‖A‖2 + 1

ω(A) − ‖A‖, then A+B is Schur stable.

Moreover, the inequality

|ω(A+B)− ω(A)| ≤ (2 ‖A‖+ ‖B‖) ‖B‖ω2(A)

1− (2 ‖A‖+ ‖B‖) ‖B‖ω(A)
,

holds.

Now, considering Theorem 2.1 and Corollary 2.1 we give the continuity theorem
which allows the greater perturbe than others without disturbing the Schur stability
for the linear difference equation systems with constant coefficients.

Theorem 2.2 ([10]). Suppose that A is a Schur stable matrix, that is ω(A) <∞.
If the matrix B satisfies ‖B‖ < γ, then A + B is Schur stable. Moreover, if
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‖B‖ <
√
‖A‖2 + 1

ω(A) − ‖A‖, then the following inequalities

ω(A+B) ≤ ω(A)
1−(2‖A‖+‖B‖)‖B‖ω(A) , |ω(A+B)− ω(A)| ≤ (2‖A‖+‖B‖)‖B‖ω2(A)

1−(2‖A‖+‖B‖)‖B‖ω(A)

holds, where γ = max
{

1
6πω(A) ,

√
‖A‖2 + 1

ω(A) − ‖A‖
}

.

Corollary 2.2 ([10]). Let ‖A‖ < 1. If the matrix B satisfies ‖A‖+ ‖B‖ < 1 then
the matrix A+B is Schur stable. Moreover, the following inequalities

ω(A+B) ≤ 1
1−(‖A‖+‖B‖)2 , |ω(A+B)− ω(A)| ≤ ‖B‖

1−‖A‖
1

1−(‖A‖+‖B‖)2

holds.

Theorem 2.3 ([10]). Let A be a ω∗− Schur stable matrix (ω(A) ≤ ω∗). If the

matrix B satisfies ‖B‖ ≤
√
‖A‖2 + ω∗−ω(A)

ω∗ω(A) −‖A‖ then A+B is ω∗− Schur stable.

Corollary 2.3. Let ‖A‖ < 1 and A be a ω∗− Schur stable matrix (ω(A) ≤ ω∗). If

the matrix B satisfies ‖A‖ + ‖B‖ < 1 and ‖B‖ ≤
√

ω∗−1
ω∗ − ‖A‖ then the matrix

A+B is ω∗− Schur stable.

Proof. Let ‖A‖ < 1 and A be a ω∗− Schur stable. ‖A‖ + ‖B‖ < 1 and ‖B‖ ≤√
ω∗−1
ω∗ − ‖A‖ are satisfied. From the second inequality

=⇒ ‖A‖+ ‖B‖ ≤
√

ω∗−1
ω∗

=⇒ (‖A‖+ ‖B‖)2 ≤ ω∗−1
ω∗

=⇒ 1 ≤ ω∗
(

1− (‖A‖+ ‖B‖)2
)

and therefore the inequality

1

1− (‖A‖+ ‖B‖)2
≤ ω∗

is obtained. Since ω(A + B) ≤ 1
1−(‖A‖+‖B‖)2 is valid from Corollary 2.2, the in-

equality ω(A+B) ≤ ω∗ is found. This completes the proof. �

3. Some Results on the Sensitivity of Scalar-Linear Difference
Equations with Order k

Consider the following scalar-linear difference equations with order k

(3.1) x(n+ 1)− a0x(n)− a1x(n− 1)− ...− ak−1x(n− k + 1) = 0, n ≥ 0.

The equation (3.1) can be written as

(3.2) y(n+ 1) = Cy(n), n ≥ 0

in matrix-vector form where the matrix C is companion matrix as follows

C =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
ak−1 ak−2 ak−3 · · · a0

 , c = (ak−1, ak−2, . . . , a0).
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Consider the perturbation of the equation (3.1) and so, of the system (3.2)

(3.3) z(n+ 1) = (C +D) z(n), n ≥ 0,

and the set Bγ called as the nD−ball, i.e. the n−dimensional ball [11], where

D =


0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0
dk−1 dk−2 dk−3 · · · d0

 , Bγ = {x = (x1, x2, . . . , xn)| ‖x‖ < γ} .

Let

• d = (dk−1, dk−2, . . . , d0),

• γ(C) = max
{

1
6πω(C) ,

√
‖C‖2 + 1

ω(C) − ‖C‖
}

,

• δ∗3(C) =
√
‖C‖2 + ω∗−ω(C)

ω∗ω(C) − ‖C‖.

Theorem 3.1 ([10]). Let the system (3.2) be a Schur stable (the companian matrix
C is Schur stable). If the k−tuple d ∈ Bγ(C), then the perturbed system (3.3) is a
Schur stable.

Theorem 3.2 ([10]). Let the system (3.2) be ω∗−Schur stable (the companian
matrix C is ω∗−Schur stable). If the k−tuple d ∈ Bδ∗3 (C), then the perturbed system
(3.3) is also ω∗−Schur stable.

Theorem 3.3. limω→∞Bγ(C) = ∅.

Proof. The equality limω→∞ γ(C) = 0 holds, where limω→∞
1

6πω(C) = 0 and

limω→∞

√
‖C‖2 + 1

ω(C) − ‖C‖ = 0.

Thus limω→∞ {x = (x1, x2, . . . , xn)| ‖x‖ < γ(C)} = ∅. �

Theorem 3.4. The set sequence
{
Bγ(C)

}
is increasing according to γ(C).

Proof. Let x(n + 1) = C1x(n) and y(n + 1) = C2y(n). If γ2(C) < γ1(C) then the
inequality Bγ2(C) ⊂ Bγ1(C) holds. �

Theorem 3.5. The set sequence
{
Bδ∗3

}
a) is an increasing sequence the according to ω∗,
b) is a bounded sequence.

Proof. a) ω∗1 , ω
∗
2 (ω∗1 < ω∗2) are practical Schur stability parameters of the sys-

tem y(n + 1) = Cy(n). 1
ω(C) −

1
ω∗

1
=

ω∗
1−ω(C)
ω∗

1ω(C) < 1
ω(C) −

1
ω∗

2
=

ω∗
2−ω(C)
ω∗

2ω(C) for

ω∗1 < ω∗2 . Therefore Bδ∗31 ⊂ Bδ∗32 for δ∗31 =
√
‖C‖2 +

ω∗
1−ω(C)
ω∗

1ω(C) − ‖C‖ < δ∗32 =√
‖C‖2 +

ω∗
2−ω(C)
ω∗

2ω(C) − ‖C‖.

b)∅ ⊂
{
Bδ∗3

}
⊂ {Bα} for 0 < δ∗3 =

√
‖C‖2 + ω∗−ω(C)

ω∗ω(C) −‖C‖ < α =
√
‖C‖2 + 1

ω(C)−
‖C‖. �

Theorem 3.6. limω→ω∗ Bδ∗3 = ∅.

Proof. Since limω→ω∗ Bδ∗3 = ∅ for limω→ω∗ δ∗3 = limω→ω∗

√
‖C‖2 + ω∗−ω(C)

ω∗ω(C) −
‖C‖ = 0 the proof is obtained. �



SOME RESULTS ON THE SENSITIVITY OF SCHUR STABILITY 5

Theorem 3.7. limω∗→∞Bδ∗3 = Bα where α =
√
‖C‖2 + 1

ω(C) − ‖C‖.

Proof. limω∗→∞Bδ∗3 = Bα for limω∗→∞
ω∗−ω(C)
ω∗ω(C) = 1

ω(C) so the proof is completed.

�

4. Numerical Examples

Example 4.1. A1 =

(
0.5 0
0 0.1

)
and A2 =

(
0.5 9
0 0.1

)
.

• ‖A1‖ = 0.5, ω(A1) = 4
3

We have calculated δ∗ =
√

ω∗−1
ω∗ −‖A‖ = 0.494987 and α∗ =

√
‖A‖2 + ω∗−ω(A)

ω∗ω(A)

− ‖A‖ = 0.494987 for ω∗ = 100. Let us the perturbation matrix B =(
0.494987 0

0 0.494987

)
for δ∗ = α∗ = 0.494987. We have A1 + B, thus we see

that ω(A1 +B) = 99.9913 < 100 holds, therefore the matrix A1 +B is 100−Schur
stable matrix.

• ‖A2‖ = 9.01443, ω(A2) = 121.915

For ω∗ = 125, α∗ = 1.12284e − 05 and Corollary 2.3 fail to apply, therefore
the values δ∗ cannot be calculated. Suitable perturbation matrices for these values

may be selected as B =

(
1.12284e− 05 0

0 1.12284e− 05

)
. Hence we obtain

ω(A2 +B) = 121.919 < 125.

Example 4.2. Consider the delay difference equations xn+1 − xn = − 21
100xn−1 −

1
100xn−2, xn+1+xn = − 1

10xn−1−
1

100xn−2 and xn+1−xn = − 1
2xn−1−

3
10xn−2. The

companion matrices C1 =

 0 1 0
0 0 1
− 1

100 − 21
100 1

, C2 =

 0 1 0
0 0 1
− 1

100 − 1
10 −1

 and

C3 =

 0 1 0
0 0 1
− 3

10 − 1
2 1

.

It is easy to check that ω(C1) = 10.0889, ω(C2) = 16.4554, ω(C3) = 33.3264 and
Bγ1 = {(d2, d1, 0)| ‖d‖ < 0.0342529}, Bγ2 = {(d2, d1, 0)| ‖d‖ < 0.0212722}, Bγ3 =
{(d2, d1, 0)| ‖d‖ < 0.0098588}. As is clearly seen from Figure 1, Bγ3 ⊂ Bγ2 ⊂ Bγ1 .
Therefore Theorem 3.4 is satisfied.
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Figure 1. The regions of Bγ1 , Bγ2 and Bγ3

Since ω(C1) < ∞ the equation (4) is Schur stable. Let ω∗1 = 15, ω∗2 = 60. It is
easy to check that Bδ∗31 = {(d2, d1, 0)| ‖d‖ < 0.0113043}, Bδ∗32 = {(d2, d1, 0)| ‖d‖ <
0.0285496} and it is clear that ω∗1 < ω∗2 ⇒ Bδ∗31 ⊂ Bδ∗32 . Therefore a option of
Theorem 3.5 is satisfied.

Figure 2. The regions of Bδ∗31 , and Bδ∗32

Remark 4.1. The numerical examples have been computed by using matrix vector
calculator MVC [12].
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SIMILAR RULED SURFACES WITH VARIABLE

TRANSFORMATIONS IN THE EUCLIDEAN 3-SPACE E3

MEHMET ÖNDER

Abstract. In this study, we define a family of ruled surfaces in the Euclidean

3-space E3 and called similar ruled surfaces. We obtain some properties of
these special surfaces and we show that developable ruled surfaces form a

family of similar ruled surfaces if and only if the striction curves of the surfaces

are similar curves with variable transformation.

1. Introduction

In local differential geometry, associated curves, the curves for which at the
corresponding points of the curves one of the Frenet vectors of a curve coincides
with one of the Frenet vectors of other curve, are very interesting and an impor-
tant problem of the fundamental theory and the characterizations of space curves.
The well-known pairs of such curves are Bertrand curves, Mannheim curves and
involute-evolute curves [4,9,10]. Recently, a new definition of the associated curves
was given by El-Sabbagh and Ali [1]. They have called these new curves as similar
curves with variable transformation and defined as follows: Let ψα(sα) and ψβ(sβ)
be two regular curves in E3 parametrized by arc lengths sα and sβ with curvatures

κα, κβ and torsions τα, τβ and Frenet frames
{
~Tα, ~Nα, ~Bα

}
and

{
~Tβ , ~Nβ , ~Bβ

}
, re-

spectively. ψα(sα) and ψβ(sβ) are called similar curves with variable transformation
λαβ if there exists a variable transformation

sα =

∫
λαβ(sβ)dsβ ,

of the arc lengths such that the tangent vectors are the same for two curves i.e.,
~Tα = ~Tβ for all corresponding values of parameters under the transformation λαβ .
All curves satisfying this condition is called a family of similar curves. Moreover,
they have obtained some properties of the family of similar curves.

Analogue to the special curve pairs, the surface pairs, especially ruled surface
pairs (called offset surfaces), have an important positions and applications in the

2000 Mathematics Subject Classification. 53A25, 14J26.
Key words and phrases. Ruled surface; Frenet frame; similar curves.
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study of design problems in spatial mechanisms and physics, kinematics and com-
puter aided design (CAD) [6,7]. So, these surfaces are one of the most important
topics of surface theory. In fact, ruled surface offsets are the generalization of the
notion of Bertrand curves and Mannheim curves to line geometry and these surface
pairs are called Bertrand offsets and Mannheim offsets [3,5,8]. In this work, we
consider the notion of similar curves for ruled surfaces. We introduce a family of
ruled surfaces in the Euclidean 3-space E3 and called similar ruled surfaces with
variable transformation. We give some theorems characterizing these special sur-
faces and we show that developable ruled surfaces form a family of similar ruled
surfaces if and only if the striction curves of the surfaces are similar curves with
variable transformation.

2. Ruled Surfaces in E3

In this section, we give a brief summary of the theory of ruled surface in E3. A
more detailed information can be obtained in ref. [2].

Let I be an open interval in the real line IR, ~f = ~f(u) be a curve in E3 defined
on I and ~q = ~q(u) be a unit direction vector of an oriented line in E3. Then we
have the following parametrization for a ruled surface N ,

(2.1) ~r(u, v) = ~f(u) + v ~q(u).

The curve ~f = ~f(u) is called base curve or generating curve of the surface and
various positions of the generating lines ~q = ~q(u) are called rulings. In particular,
if the direction of ~q is constant, then the ruled surface is said to be cylindrical, and
non-cylindrical otherwise.

The distribution parameter of N is given by

(2.2) d =

∣∣∣ ~̇f, ~q, ~̇q∣∣∣〈
~̇q, ~̇q
〉 ,

where ~̇f = d~f
du , ~̇q = d~q

du . If
∣∣∣ ~̇f, ~q, ~̇q∣∣∣ = 0, then normal vectors are collinear at

all points of same ruling and at nonsingular points of the surface N , the tangent
planes are identical. We then say that tangent plane contacts the surface along

a ruling. Such a ruling is called a torsal ruling. If
∣∣∣ ~̇f, ~q, ~̇q∣∣∣ 6= 0, then the tangent

planes of the surface N are distinct at all points of same ruling which is called
nontorsal.

Definition 2.1. ([2]) A ruled surface whose all rulings are torsal is called a devel-
opable ruled surface. The remaining ruled surfaces are called skew ruled surfaces.
From (2.2) it is clear that a ruled surface is developable if and only if at all its
points the distribution parameter is zero.

For the unit normal vector ~m of a ruled surface N we have

(2.3) ~m =
~ru × ~rv
‖~ru × ~rv‖

=
( ~̇f + v~̇q)× ~q√〈

~̇f + v~̇q, ~̇f + v~̇q
〉
−
〈
~̇f, ~q
〉2 .
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The unit normal of the surface along a ruling u = u1 approaches a limiting
direction as v infinitely decreases. This direction is called the asymptotic normal
(central tangent) direction and from (2.3) defined by

~a = lim
v→±∞

~m(u1, v) =
~q × ~̇q∥∥∥~̇q∥∥∥ .

The point at which the unit normal of N is perpendicular to ~a is called the
striction point (or central point) C and the set of striction points on all rulings
is called striction curve of the surface. The parametrization of the striction curve
~c = ~c(u) on a ruled surface is given by

(2.4) ~c(u) = ~f(u) + v0~q(u) = ~f −

〈
~̇q, ~̇f
〉

〈
~̇q, ~̇q
〉 ~q,

where v0 = −
〈
~̇q, ~̇f

〉
〈~̇q,~̇q〉 is called strictional distance.

The vector ~h defined by ~h = ~a × ~q is called central normal which is the surface

normal along the striction curve. Then the orthonormal system
{
C; ~q,~h,~a

}
is

called Frenet frame of the ruled surface N where C is the central point of ruling of

ruled surface N and ~q, ~h = ~a× ~q, ~a are unit vectors of ruling, central normal and
central tangent, respectively.

For the derivatives of the vectors of Frenet frame
{
C; ~q,~h,~a

}
of ruled surface

N with respect to the arc length s of striction curve we have

(2.5)

 d~q/ds

d~h/ds
d~a/ds

 =

 0 k1 0
−k1 0 k2
0 −k2 0

 ~q
~h
~a


where k1 = ds1

ds , k2 = ds3
ds and s1, s3 are the arc lengths of the spherical curves cir-

cumscribed by the bound vectors ~q and ~a, respectively. The ruled surfaces satisfying
k1 6= 0, k2 = 0 are called conoids (For details see [2]).

Now, we can represent and prove the following theorems which are necessary for
the following section.

Theorem 2.1. Let the striction curve ~c = ~c(s) of ruled surface N be unit speed
i.e., s is arc length parameter of ~c(s) and let ~c(s) be the base curve of the surface.
Then N is developable if and only if the unit tangent of the striction curve is the
same with the ruling along the curve.

Proof. Let s be arc length parameter of the striction curve. Then the unit tangent
of the striction curve is given by

~T (s) =
d~c

ds
= (cos θ)~q(s) + (sin θ)~a(s),

where θ = θ(s) is the angle between unit vectors ~T (s) and ~q(s). Since the striction
curve is base curve, then from (2.2) and (2.5) the distribution parameter of the
surface N is obtained as
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d =
sin θ

k1
.

Thus we have that N is developable if and only if sin θ = 0, i.e., ~T (s) = ~q(s)
satisfies. �

Theorem 2.2. Let the striction curve ~c = ~c(s) of ruled surface N be unit speed i.e.,
s is arc length parameter of ~c(s). Suppose that ~c = ~c(ϕ) is another parametrization
of striction curve by the parameter ϕ(s) =

∫
k1(s)ds. Then the ruling ~q satisfies a

vector differential equation of third order given by

(2.6)
d

dϕ

(
1

f(ϕ)

d2~q

dϕ2

)
+

(
1 + f2(ϕ)

f(ϕ)

)
d~q

dϕ
−
(

1

f2(ϕ)

df(ϕ)

dϕ

)
~q = 0,

where f(ϕ) = k2(ϕ)
k1(ϕ)

.

Proof. If we write derivatives given in (2.5) according to ϕ, we have

d~q

dϕ
=
d~q

ds

ds

dϕ
= (k1~h)

1

k1
= ~h,

d~h

dϕ
=
d~h

ds

ds

dϕ
= (−k1~q + k2~a)

1

k1
= −~q + f(ϕ)~a,

d~a

dϕ
=
d~a

ds

ds

dϕ
= (−k2~h)

1

k1
= −f(ϕ)~h,

respectively, where f(ϕ) = k2(ϕ)
k1(ϕ)

. Then corresponding matrix form of (2.5) can be

given

(2.7)

 d~q/dϕ

d~h/dϕ
d~a/dϕ

 =

 0 1 0
−1 0 f(ϕ)
0 −f(ϕ) 0

 ~q
~h
~a

 .
From the first and second equations of new Frenet derivatives (2.7) we have

(2.8) ~a =
1

f(ϕ)

(
d2~q

dϕ2
+ ~q

)
.

Substituting the above equation in the last equation of (2.7) we have desired
equation (2.6). �

3. Similar Ruled Surfaces with Variable Transformations

In this section we introduce the definition and characterizations of similar ruled
surfaces with variable transformation in E3. First, we give the following definition.

Definition 3.1. LetNα andNβ be two ruled surfaces in E3 given by the parametriza-
tions

(3.1)

{
~rα(sα, v) = ~α(sα) + v ~qα(sα), ‖~qα(sα)‖ = 1,

~rβ(sβ , v) = ~β(sβ) + v ~qβ(sβ), ‖~qβ(sβ)‖ = 1,
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respectively, where ~α(sα) and ~β(sβ) are striction curves of Nα and Nβ and sα, sβ
are arc length parameters of ~α(sα) and ~β(sβ), respectively. Let the Frenet frames

and invariants of Nα and Nβ be
{
~qα,~hα,~aα

}
, kα1 , k

α
2 and

{
~qβ ,~hβ ,~aβ

}
, kβ1 , k

β
2 ,

respectively. Then, Nα and Nβ are called similar ruled surfaces with variable trans-
formation λαβ if there exists a variable transformation

(3.2) sα =

∫
λαβ(sβ)dsβ ,

of the arc lengths of striction curves such that the rulings are the same for two
ruled surfaces i.e.,

(3.3) ~qα(sα) = ~qβ(sβ),

for all corresponding values of parameters under the transformation λαβ . All ruled

surfaces satisfying equation (3.3) are called a family of similar ruled surfaces with
variable transformation.

Then we can give the following theorems characterizing similar ruled surfaces.
Whenever we talk aboutNα andNβ we mean that these surfaces have the parametriza-
tions as given in (3.1).

Theorem 3.1. Let Nα and Nβ be two ruled surfaces in E3. Then Nα and Nβ are
similar ruled surfaces with variable transformation if and only if the central normal
vectors of the surfaces are the same, i.e.,

(3.4) ~hα(sα) = ~hβ(sβ),

under the particular variable transformation

(3.5) λαβ =
dsα
dsβ

=
kβ1
kα1
,

of the arc lengths.

Proof. Let Nα and Nβ be two similar ruled surfaces in E3 with variable transfor-
mation. Then differentiating (3.3) with respect to sβ it follows

(3.6) kα1 λ
α
β
~hα = kβ1

~hβ .

From (3.6) we obtain (3.4) and (3.5) immediately.
Conversely, let Nα and Nβ be two ruled surfaces in E3 satisfying (3.4) and (3.5).

By multiplying (3.4) with kβ1 and differentiating the result equality with respect to
sβ we have

(3.7)

∫
kβ1 (sβ)~hβ(sβ)dsβ =

∫
kβ1 (sβ)~hβ(sβ)

dsβ
dsα

dsα.

From (3.4) and (3.5) we obtain

(3.8) ~qβ(sβ) =

∫
kβ1 (sβ)~hβ(sβ)dsβ =

∫
kα1 (sα)~hα(sα)dsα = ~qα(sα),
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which means that Nα and Nβ are similar ruled surfaces with variable transforma-
tion. �

Theorem 3.2. Let Nα and Nβ be two ruled surfaces in E3. Then Nα and Nβ
are similar ruled surfaces with variable transformation if and only if the asymptotic
normal vectors of the surfaces are the same, i.e.,

(3.9) ~aα(sα) = ~aβ(sβ),

under the particular variable transformation

(3.10) λαβ =
dsα
dsβ

=
kβ2
kα2
,

of the arc lengths.

Proof. Let Nα and Nβ be two similar ruled surfaces in E3 with variable trans-
formation. Then from Definition 3.1 and Theorem 3.1, there exists a variable
transformation of the arc lengths such that the rulings and central normal vectors
are the same. Then from (3.3) and (3.4) we have

(3.11) ~aα(sα) = ~qα(sα)× ~hα(sα) = ~qβ(sβ)× ~hβ(sβ) = ~aβ(sβ).

Conversely, let Nα and Nβ be two ruled surfaces in E3 satisfying (3.9) and (3.10).
By differentiating (3.9) with respect to sβ we obtain

(3.12) kα2 (sα)~hα(sα)
dsα
dsβ

= kβ2 (sβ)~hβ(sβ),

which gives us

(3.13) λαβ =
kβ2
kα2
, ~hα(sα) = ~hβ(sβ).

Then from (3.9) and (3.13) we have

(3.14) ~qα(sα) = ~hα(sα)× ~aα(sα) = ~hβ(sβ)× ~aβ(sβ) = ~qβ(sβ),

which completes the proof. �

Theorem 3.3. Let Nα and Nβ be two ruled surfaces in E3. Then Nα and Nβ
are similar ruled surfaces with variable transformation if and only if the ratio of
curvatures are the same i.e.,

(3.15)
kβ2 (sβ)

kβ1 (sβ)
=
kα2 (sα)

kα1 (sα)
,

under the particular variable transformation keeping equal total curvatures, i.e.,

(3.16) ϕβ(sβ) =

∫
kβ1 (sβ)dsβ =

∫
kα1 (sα)dsα = ϕα(sα)

of the arc lengths.
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Proof. Let Nα and Nβ be two similar ruled surfaces in E3 with variable transforma-
tion. Then from (3.10) and (3.13), we have (3.15) under the variable transformation
(3.16), and this transformation is also leads from (3.10) by integration.

Conversely, let Nα and Nβ be two ruled surfaces in E3 satisfying (3.15) and
(3.16). From Theorem 2.2, the rulings ~qα and ~qβ of the surfaces Nα and Nβ satisfy
the following vector differential equations of third order

(3.17)
d

dϕα

(
1

fα(ϕα)

d2~qα
dϕ2

α

)
+

(
1 + f2α(ϕα)

fα(ϕα)

)
d~qα
dϕα

−
(

1

f2α(ϕα)

dfα(ϕα)

dϕα

)
~qα = 0,

(3.18)
d

dϕβ

(
1

fβ(ϕβ)

d2~qβ
dϕ2

β

)
+

(
1 + f2β(ϕβ)

fβ(ϕβ)

)
d~qβ
dϕβ

−

(
1

f2β(ϕβ)

dfβ(ϕβ)

dϕβ

)
~qβ = 0,

where fα(ϕα) =
kα2 (ϕα)
kα1 (ϕα) , fβ(ϕβ) =

kβ2 (ϕβ)

kβ1 (ϕβ)
, ϕα(sα) =

∫
kα1 (sα)dsα, ϕβ(sβ) =∫

kβ1 (sβ)dsβ . From (3.15) we have fα(ϕα) = fβ(ϕβ) under the variable trans-
formation ϕα = ϕβ . Thus under the equation (3.15) and transformation (3.16),
the equations (3.17) and (3.18) are the same, i.e., they have the same solutions. It
means that the rulings ~qα and ~qβ are the same. Then Nα and Nβ are two similar
ruled surfaces in E3 with variable transformation. �

Theorem 3.4. Let the ruled surfaces Nα and Nβ be developable. Then Nα and Nβ
are similar ruled surfaces with variable transformation if and only if the striction
curves of the surfaces are similar curves with variable transformation.

Proof. Let developable ruled surfaces Nα and Nβ be two similar ruled surfaces in
E3 with variable transformation. Since the surfaces are developable, from Theorem
2.1 we have

(3.19)
d~α

dsα
= ~Tα(sα) = ~qα(sα),

d~β

dsβ
= ~Tβ(sβ) = ~qβ(sβ).

where ~Tα(sα) and ~Tβ(sβ) are unit tangents of the curves ~α(sα) and ~β(sβ), respec-
tively. From (3.3) and (3.19) we have

(3.20)
d~α

dsα
= ~qα(sα) = ~qβ(sβ) =

d~β

dsβ

which shows that striction curves ~α(sα) and ~β(sβ) are similar curves.

Conversely, if the striction curves ~α(sα) and ~β(sβ) are similar curves, then there
exists a variable transformation between arc lengths such that

(3.21)
d~α

dsα
= ~Tα(sα) = ~Tβ(sβ) =

d~β

dsβ
.

Since the ruled surfaces are developable, from Theorem 2.1 we have ~Tα(sα) =

~qα(sα) and ~Tβ(sβ) = ~qβ(sβ). Then from (3.21) we have that ~qα(sα) = ~qβ(sβ), i.e.,
Nα and Nβ are similar ruled surfaces with variable transformation.

�
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Let now consider some special cases. From (3.5) and (3.10) we have

(3.22) kβ1 = λαβk
α
1 , kβ2 = λαβk

α
2 ,

respectively. From (3.22) it is clear that if Nα is a cylindrical surface i.e., kα1 = 0,
then under the variable transformation the curvature does not change. So we have
the following corollary.

Corollary 3.1. The family of cylindrical surfaces forms a family of similar ruled
surfaces with variable transformation.

If Nα is a conoid surface i.e., kα2 = 0, then under the variable transformation the
curvature does not change. So we have the following corollary.

Corollary 3.2. The family of conoid surfaces forms a family of similar ruled
surfaces with variable transformation.

Example 3.1. Let consider the ruled surface Nβ given by the parametrization

~rβ(sβ , v) = ~β(sβ) + v ~qβ(sβ)
= (0, 0, sβ) + v (cos sβ , sin sβ , 0)

which is plotted in Fig. 1. The Frenet vectors of Nβ are

~qβ = (cos sβ , sin sβ , 0),
~hβ = (− sin sβ , cos sβ , 0),
~aβ = (0, 0, 1),

and curvatures are obtained as kβ1 = 1, kβ2 = 0. A similar ruled surfaces of Nβ is
the surface Nα given by the parametrization

~rα(sα, v) = ~α(sα) + v ~qα(sα)

=
(
− sin sα√

2
, cos sα√

2
, sα√

2

)
+ v

(
cos sα√

2
, sin sα√

2
, 0
)

which is plotted in Fig. 2. The Frenet vectors of Nα are

~qα =
(

cos sα√
2
, sin sα√

2
, 0
)
,

~hα = (− sin sα√
2
, cos sα√

2
, 0),

~aα = (0, 0, 1),

and curvatures are obtained as kα1 = 1√
2
, kα2 = 0. From Theorem 3.1 we have the

particular variable transformation

λαβ =
dsα
dsβ

=
kβ1
kα1

=
√

2,

which means that sα =
√

2sβ .
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Figure 1. Helicoid surface Nβ

Figure 2. Similar surface Nα of Nβ

4. Conclusions

A family of ruled surfaces in the Euclidean 3-space E3 are defined and called
similar ruled surfaces. Some properties of these special surfaces are obtained and
it is showed that developable ruled surfaces form a family of similar ruled surfaces
if and only if the striction curves of the surfaces are similar curves with variable
transformation. By considering the importance of the offset surfaces we hope this
paper leads new characterizations of ruled surfaces in different spaces.
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