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AN [P HEISENBERG-PAULI-WEYL UNCERTAINTY PRINCIPLE
FOR THE DUNKL TRANSFORM

FETHI SOLTANI

ABSTRACT. In this paper, we give a generalization of the Heisenberg-Pauli-
Weyl uncertainty inequality for the Dunkl transform on R¢ in LP-norm.

1. INTRODUCTION AND PRELIMINARIES

In this paper, we consider R? with the Euclidean inner product {(.,.) and norm
ly| := \/{y,y). For a € R?\{0}, let o, be the reflection in the hyperplane H, C R?
orthogonal to a:

A finite set ® C R4\{0} is called a root system, if R N R.a = {—a,a} and
ooR = R for all @ € R. We assume that it is normalized by |a|> = 2 for all
a € R. For a root system R, the reflections o,, o € R, generate a finite group
G C O(d), the reflection group associated with ¥. All reflections in G, correspond
to suitable pairs of roots. For a given 8 € R%\ Uasen Ha, we fix the positive
subsystem £, := {a € R : (a,5) > 0}. Then for each o € R either « € R4 or
—o € %4,.

Let k : # — C be a multiplicity function on R (that is, a function which is
constant on the orbits under the action of G). As an abbreviation, we introduce
the index v =7y, 1= 3", cq, k(a).

Throughout this paper, we will assume that k(«) > 0 for all a € . Moreover,
let wy denote the weight function wi(y) = [ en, [, y)|?*(), for all y € RY,
which is G-invariant and homogeneous of degree 2+.

The Dunkl operators D;; j = 1,...,d, on R? associated with the finite reflection
group G and multiplicity function k are given, for a function f of class C' on R,
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Z k(a — floay) )
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For y € RY, the initial problem Dju(.,y)(z) = yju(z,y), j = 1,..,d, with
u(0,) = 1 admits a unique analytic solution on R? which will be denoted by
Ex(x,y) and called Dunkl kernel [4, 7]. This kernel has a unique analytic extension
to C? x C?. In our case, |Ey(—iz,y)| < 1, for all z,y € R%.

Let ¢ be the Mehta-type constant given by cx := ([za e~ W/ 2, (y)dy) L. We
denote by py the measure on RY given by dux(y) := cpwi(y)dy; and by LP(uy),
1 < p < oo, the space of measurable functions f on R%, such that

1/
iy = ([ I Pam) " <o 1<p <.

Il fll oo () == es8 supd [f(y)] < oc.
If f e L' (u) with f(z) = F(|z|), then
1 o0
1.1 / )d / F(t)t2+ra=1qt,
(1) o)l T oIy 4 4) g
The Dunkl kernel gives rise to an integral transform, which is called Dunkl
transform on R?, and was introduced by Dunkl in [5], where already many basic

properties were established. Dunkl’s results were completed and extended later by
de Jeu [7]. The Dunkl transform of a function f in L'(ug), is

Fpla) = [ Bulcina)f)dmG). =R
Some of the properties of Dunkl transform Fj, are collected bellow (see [5, 7]).
(a) L' — L**-boundedness. For all f € L' (uy), Fr(f) € L>(ux) and

(1.2) 1Pk (2o uy < AL (-

(b) Inversion theorem. Let f € L'(us), such that Fy(f) € L*(uy). Then

fz) = Fi (fk(f)>(—a:), a.e. xeR%

(c) Plancherel theorem. The Dunkl transform Fj, extends uniquely to an iso-
metric isomorphism of L?(ju) onto itself. In particular,

(1.3) £l 22 () = IFk(N L2 () -

Using relations (1.2) and (1.3) with Marcinkiewicz’s interpolation theorem [10,
11], we deduce that for every 1 < p < 2, and for every f € LP(uy), the function
Fir(f) belongs to the space LI(ug), g =p/(p—1), and

(1.4) 1 2o ey < Wl 2w ur-

Many uncertainty principles have already been proved for the Dunkl transform,
namely by Résler [8] and Shimeno [9] who established the Heisenberg-Pauli-Weyl
inequality for the Dunkl transform, by showing that for every f € L?(uy),

(1.5) 112y < o +dll 2 f 1l 22 o) Y15 (P 22 ) -

Building on the techniques of Ciatti et al. [1] we show a general form of the
Heisenberg-Pauli-Weyl inequality for the Dunkl transform Fj. More precisely, we
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prove that for all f € LP(ug), 1l <p<2,¢g=p/(p—1)and 0 < a < (2v+d)/q,
b> 0,

_b _a_
(1.6) 1F (P Loy < Clas )l I E30 o 1Y Fr O 2 ey

where C(a,b) is a positive constant. This inequality generalizes the Heisenberg-
Pauli-Weyl inequality given by (1.5); and in the case k = 0 and ¢ = 2, this inequality
is due to Cowling-Price [2] and Hirschman [6].

We shall use the Heisenberg-Pauli-Weyl principle (1.6); and building on the
techniques of Donoho and Stark [3], we show a continuous-time principle for the
LP theory, when 1 < p < 2.

This paper is organized as follows. In Section 2 we list some basic properties of
the Dunkl transform Fj. In Section 3 we prove a general form of the Heisenberg-
Pauli-Weyl inequality for Fj. The last section is devoted to Donoho-Stark’s uncer-
tainty principle for the Dunkl transform Fj in the L? theory, when 1 < p < 2.

2. LP HEISENBERG-PAULI-WEYL INEQUALITY

In this section, we extend the Heisenberg-Pauli-Weyl uncertainty principle (1.5)
to more general case. We need to use the method of Ciatti et al. [1], which is the
counterpart in the Euclidean case. We begin by the following lemma.

Lemma 2.1. Let 1 <p<2,g=p/(p—1) and 0 < a < (2y+d)/q. Then for all

feLP(uy) andt >0,
— 2 a
@) e E D g < (14—

- *(1/2 a
(261)(%3);)16 I 21 £l 2o )

where

—-1/q
ay = [(27—|—d—qa)27+2_11“(7+ 2)} :

Proof. Inequality (2.1) holds if || || f|| r(,,) = 00. Assume that || [z|* f[| 1r(u,)
co. For r > 0, let B, = {z : |z| < r} and BS = R"\B,. Denote by xp, and xpe
the characteristic functions. Let f € LP(ug), 1 <p < 2 and let ¢ =p/(p —1).
Since [(fxng)(x)| < r7|z[*[f(2)], then by (1.4),

e " Fu(fxB) | o)

A

e P oo (i 1 F (FXBE | L)
I xBellLe ) < Mz 1l o) -
On the other hand, by (1.2) and Hélder’s inequality,

||€_t|y‘2fk(fXB,»)

[VANRVAN

| Lo ()

2
< e ™ aguo 1 xB, Lt (u)

_ 2
‘L“(uk) < e tlel HL‘I(uk)||-7:k(fXB,.)

42 —
< e paquo 217X B, Lo gun | 121 £l o () -

(g dyl

By (1.1)’ we have ||€_t‘y|2||m(m€) _ mt (v+5) 3 and H ‘xl_aXB,, L = akr—a+(2'y+d)/Q.
q
Hence,
a2 ag - - 4+
lle=tvl Fe(fxp )Ly < ——ay7r at@rtd/a= sy 2|“ Fll Lo (ur)

(2q)(w+%)%
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and
I Fe Dl < e Flfx ) zogu) + e Fu(Fxoe)ll g
< o1+ mr@wdvqt—(w?é) Il f 1l -
Choosing r = t'/2, we obtain (2.1). =

Theorem 2.1. Let 1 <p<2,qg=p/(p—1),0<a < (2y+d)/q and b > 0, then
for all f € LP(p),

_b_
(22) IF (Dl ey < Clas D2l FIET, P FDIET,
where C(a,b) is a positive constant.

Proof. Let f € L”(u), 1 < p < 2, such that || |2 f]| 1o )+ [y1*Fre ()l L) <
oo. Assume that 0 < a < (2v +d)/q and b < 2. By Lemma 2.1, for all ¢ > 0,

_ 2 _ 2
1F( oy < e Fllpagu + 10 = e ) Fu()l 2w

k —a a — 2
< (1+()(+))t P11 F L ey + 108 = e ) F ) -

On the other hand,
2 2
I = e W) Fr( Pl gy = 211?720 = e D)y Fr ()l Laur) -
Since (1 — e~*)t~%/2 is bounded for t > 0 if b < 2. Hence,

IF(Dl oty < C (£ 1 ooy + 2 P F ()0 ) -

2
We choose t = (%M) “*" we obtain the result

(2.3) 1 Fk (Pl ey < Cl | fllilbuk I yl"Fi(f )ll““ o forall b<2.
Ifb>2 Foru>0,u<1+ud which for u = ‘%l gives the inequality ‘%l <

b
1+ (I%I) , for all € > 0. It follows that

Y1 (Pl agun) < elFu(Hlagun) + Ny Frl) Lagun)-

1/b
I 11" F (F)ll e
We choose € = (b — 1)'/° (W) , we get

b b1 b
@4) NF D rga € o (0= D NE | Fe
Then, by (2.3) and (2.4) we obtain

1
1Fe( M raguy < ClIl* FI LD (Y1 FR(f )IIETM

a(b—1) 1
< CIEWDN I el FIEE o I P P DI,

Thus,
1B < Ot AU P Fe DI

LP(pr) La(pk)’
which gives the result for b > 2. (]
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Remark 2.1. When g = 2, by (1.3) we obtain

_b_ _a_
171122 un) < Cla )l FUE s I P F ()|t

which is the general case of the inequality (1.5) proved by Résler [8] and Shimeno
[9]-

Now, we give application of the LP Heisenberg-Pauli-Weyl inequality to the
Donoho-Stark uncertainty principle.

Let E be measurable subset of R¢. We introduce the partial sum operator Sg
by
(2.5) Fie(Sef) = Fu(f)xe

Let b > 0. We say that a function f € LP(uy), 1 < p < 2, is |y|°Fu(f) is
e-concentrated to F in L?(ug)-norm, ¢ = p/(p — 1), if there is a function h(y)
vanishing outside E with || |y|*F.(f) — Pl La(uy) < €l |y|b.7:k(f)||Lq(Mk).

From (2.5) it follows that |y|*F(f) is eg-concentrated to E in L?(uy)-norm,
qg=p/(p—1),if and only if

(2.6) Hy1*Fi(f) = 1y Fr(Se )l ague < el vl Fie(F)llogu

It is useful to have uncertainty principle for the LP(uy)-norm.

Theorem 2.2. Let E be measurable subset of R%; and let 1 <p <2, q=p/(p—1),
f € LP(ug) and b > 0. If |y|°Fr(f) is ep-concentrated to E in L9 (uy)-norm, then

for0<a< (2y+d)/q:
C(a,b)
||fk(f>||Lq([Lk) < ﬁ

where C(a,b) is the constant given by (2.2).

u.+b b u.+b
G N Fe ()X B £a

Proof. Let f € LP(ux), 1 < p < 2. Since |y|°Fi(f) is ep-concentrated to E in
L4(pur)-norm, ¢ = p/(p — 1), then by (2.6),

191 Fie ()l zaun) < el 19IPFe(O N pacue) + 1Y Fr(F)XE Lo o) -

Thus,
NP DN < s | BB Ny
Multiply this inequality by C(a,b)|| |z|* f Hzi;bf(buk) and applying Theorem 2.1 we de-
duce the desired inequality. ([l
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SIMPLICIAL AND CROSSED HOM-LIE ALGEBRA

AHMET FARUK ASLAN

ABSTRACT. We introduce the simplicial Hom-Lie algebras and determine their
relations among crossed modules of Hom-Lie algebras.

1. INTRODUCTION

A Hom algebra structure is a multiplication on a vector space where the
structure is twisted by a homomorphism. The structure of Hom-Lie algebra was
introduced in [2]. Crossed modules were introduced by Whitehead in [7] as a
model for connected homotopy 2-types. After then, crossed modules were used in
many branches of mathematics such as category theory, cohomology of algebraic
structures, differential geometry and in physics. This makes the crossed modules
one of the fundamental algebraic gadget. For some different usage, crossed modules
were defined in different categories such as Lie algebras, commutative algebras
ete.([5],[3]). Also the crossed modules of Hom-Lie algebras were defined in [6]. The
goal of this paper is to define simplicial Hom-Lie algebras and show their relation
between the crossed modules over Hom-Lie algebras and the simplicial Hom-Lie
algebras.

2. PRELIMINARIES

In the rest of this paper k will be a fixed field.

Definition 2.1. ([ 2]) A Hom-Lie algebra is a triple space (L,[—,—],ar) consist-
ing of a k-vector space L, a skew-symmetric bilinear map [—,—]: L x L — L
and a k-linear map «p : L — L satisfying the following hom-Jacobi identity;

[OéL(JZ), [y’ Z]] + [a(y), [Z,J?]] + [Oé(Z), ['Ta yH =0,
for all z,y,2z € L.

Definition 2.2. A homomorphism of Hom-Lie algebras

Vi (L> [77*]11’0411) - (L7 [*ai]MvaM)

2000 Mathematics Subject Classification. 18G50 (18G55), 17A32 (17A42), 17B99.
Key words and phrases. Simplicial object, Crossed module, Hom-Lie algebras.
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is a linear map f: L — M such that

f([mvy]L):[f(x)vf(y)]M ) foaL:aMofv
for all z,y € L.

Example 2.1. If we take o = id, then every Lie algebra L forms a Hom-Lie algebra
(L7 [77 7]a Zd)

We have the category HomLie whose objects are Hom-Lie algebras and whose
morphisms are Hom-Lie algebra homomorphism.

So the category Lie of Lie algebras is a full subcategory of HomLie which gives
an inclusion functor Lie — HomLie.

From now on we use L instead of (L, [—, —|r, ar), for shortness.

3. CROSSED MODULES OF HOM-LIE ALGEBRAS

In this section we will recall the action in HomLie and the definition of crossed
modules from [6]. Also we will adapt some well known examples and results from
crossed modules of groups to crossed modules of Hom-Lie algebras.

Definition 3.1. Let L be a Hom-Lie algebra. A Hom-representation of L is a k-

vector space M together with a bilinearmap p: L@ M — M , p(l®@m) = 'm

and a k-linear map ajp; : M — M such that
1. BYlay(m)= 2@ (y,) — @ (z,,),
2. auy(zn) = “0(an(m)),
for all x,y € L and m € M.

Definition 3.2. Let L, M be Hom-Lie algebras and L has an action on M. Then
we have the Hom-Lie algebra (M x L, «) defined on the vector space M @& L where

a:MxL— MxL isdefined by a(m,l) = (ap(m),ar(l)) and the bracket
is as follows

[(m, 1), (m, 1)) = [[m,m]ar + “*Om/ = 22O [1,1],]
for all (m,1),(m',l') e M & L.
Definition 3.3. A crossed module of Hom-Lie algebras is Hom-Lie homomorphism
0: M — L where M is a Hom-representation of L such that
o *m) = [x,0m], 2™m! = [m,m/],
forall z € L,m,m’' € M.
The crossed module 0: M — L will be denoted by (M, L, ).

Definition 3.4. Let (M, L,9),(M’, L, ") be crossed modules. A homomorphism
from (M, L,0) to (M',L',d') is a pair (u1,po) of Hom-Lie homomorphisms such
that,
pod = 0'py and  pa(tm) = oW (1 (m)),

forallle Lym e M.

Consequently, we define the category of crossed modules on Hom-Lie algebras,
whose objects are crossed modules of Hom-Lie algebras and whose morphisms are
homomorphisms of crossed modules. This category will be denoted by XHomLie.
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Example 3.1. Let L be a Hom-Lie algebra and I be an ideal of L. I is a Hom-
representation of L thanks to the map p: L ® I — I defined by

p(l, Z) = [Z, i},
for all [ € L,i € I. This gives rise to the crossed module (I, L, inc.).

Proposition 3.1. If (M, L,0) is a crossed module then O(M) is an ideal of L (This
is not the case for arbitrary homomorphisms, in general).

Proof. Since 9 : M — L is a crossed module, we have [l,0m] = d( 'm) for all
l € L,m e M, as required. [l

Example 3.2. Let M be a k-vector space which is also a Hom-representation of a
Hom-Lie algebra L. Then 0: M — L is a crossed module. (Here, if M chosen
as an arbitrary Hom-Lie algebra, then the Peiffer condition do not satisfied, in
general.)

4. SIMPLICIAL HOM-LIE ALGEBRAS

Let A be the category of finite ordinals. A simplicial Hom-Lie algebra HL is
a sequence of Hom-Lie algebras

HL={HLy,HLy,...,HL,,...}
together with face and degeneracy maps

d*: HL, — HL, 1 ,0<i<n (n#0)
st HL, — HL,4; , 0Z5i1<n

K2

which are Hom-Lie homomorphisms satisfying the usual simplicial identities.

4.1. The Moore Complex. The Moore complex NHL of a simplicial Hom-Lie
algebra HL is the complex

NHL:--- — NHL, 2 NHL, , 2= ... 2 NHL, 2% NHL,

n—1
where NHLo = HLy, NHL,, = () Kerd; and 9y, is the restriction of d,, to NHL,,.

=0
We say that the Moore complex NHL of a simplicial Hom-Lie algebra HL is of
length k if NHL, =0, for all n > k+ 1. Let Simp_, (HL) be the category whose
objects are simplicial Hom-Lie algebras with Moore complex of length k.

4.2. Truncated Simplicial Hom-Lie Algebras. The following terminology
adapted to simplicial Hom-Lie algebras from [1]. Details of the group case can
be found in [1]. A k-truncated simplicial Hom-Lie algebra is a family of Hom-
Lie algebras {H Lo, HL1,..., HL;} and homomorphism d; : HL, — HL,_1, s; :
HL, — HL,41, for each 0 < i < n which satisfy the simplicial identities. We
denote the category of k-truncated simplicial Hom-Lie algebras by Tr;Simp(HL).
There is a truncation functor try from the category Simp(HL) to the category
Tr,Simp(HL) given by restrictions. This truncation functor has a left adjoint sty
and a right adjoint cost; called as k-skeleton and k-coskeleton respectively. These
adjoints can be pictured as follows;
(“‘i try
TrySimp(HL) Simp(HL)

costy sty

Tr,Simp(HL).
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see [1] for details about the functors costy and st.

Theorem 4.1. The category XHomLie of crossed modules of Hom-Lie algebras
is naturally equivalent to the category Simpgl(HL) of simplicial Hom-Lie algebras
with Moore complex of length 1.

Proof. Let HL be a simplicial Hom-Lie algebra with Moore complex of length 1.
NHL, is a Hom-representation of N H Lg, thanks to the degenerate operator sJ. In
fact, by using themap p: NHLo® NHLy — NHL, , (z,a) — %a:=[so(x),qa] ,

we have

=¥l (m) = [[so, soy], s (m)]

= —([aar(m), [[s0, soy]]])

(aarso, [soy, m] + [anrsoy, [m, sox]])
= [soarw, [soy, m]] — [soary, [sox, m]]
= aL(z)( ym) — aL(y)( fm)’

and
*m) = aum(so(z), m]
= o Sox, aprm]
= [soar(z), anm(m)],
forall x,y € NHLy,a € NHL;.
Define 0 := dy |kerd, - Then (NHLy, NHLg,9) is a crossed module. We have

OéM(

9( "a) = 0O[so(x),q]
= [0s0(x), 0(a)]
= [z,0(a)],

since d} sy = id. On the other hand, we have

0@y = [s90(a), ]

b] — [a + sodi(a), b]
~ o] [d3sla + d3sba, d3st]
= [a,b] — d3[sla + s}a, sib]
= [a, b]

foralla,b € NHLy,since d3si =id , s{di =d3s} . Consequently (NHL;, NHLg,0)
is a crossed module. So we obtain the functor

X : Simp,; (HL) — XHomLie

Conversely, let (M, L, 9) be a crossed module. Since M is a Hom-representation of
L, we have the semi-direct product M x L. Define the maps do: M x L — L |

dy:MXxL—1L and sg: L — M xL by (m,l)—1, (m,1)— d(m)+1
and [ +— (0,) , respectively. It can be easily showed that these maps are Hom-Lie
algebra homomorphisms. So HL; = M x L and HLy = L. Then

dy
—

HL, Y HL,

—
S0
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is a 1-trunated simplicial Hom-Lie algebra. Thus we have the functor

T : XHomLie — Tr;Simp(HL)

By using the functor stj, we have

S :=st)T : XHomLie — Simp_, (HL)

which gives the natural equivalance of the categories XHomLie and Simp, (HL)

with the functor X. O
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About one non-local problem for the degenerating
parabolic-hyperbolic type equation.

Abdullaev O. Kh., Begimqulov F. Kh.

e — mail : obid_mthQyahoo.com, begimqulov. fozilQmail.ru

Abstract.

In the present paper, the existence and uniqueness of solution of the analogue of
Frankl’s problem for the degenerated equation of the parabolic-hyperbolic type was
investigated. Uniqueness of solution of the investigated problem are proved with
principle an extremum and existence of solution with method of integral equations.

Key words.

Boundary value problem, existence and uniqueness of solution, degenerating
equation, parabolic-hyperbolic type, a principle an extremum, method of integral
equations.

1.Introduction.

As we know, in 1959 year in the first by I.M Gelfand [3] was offered to studying
of boundary value problems for the equations parabolic-hyperbolic type.

Since A.V.Bitsadze’s works, in the theory partial differential equations there
was a new direction, in which the problem of the type of Frankl for the first time
is formulated and investigated for the modeling equations of the mixed type. We
note following works that are connected with studying Frankl problem for the mixed
type equations. In the books [1],[2] the Frankl problem was discussed for the special
mixed type equation of second order: ug, + signyu,, = 0. The Frankl problem
for the mixed equation with parabolic degeneracy singy|y|™uzs + uyy = 0 with is
a mathematical model of problem of gas dynamic, was discussed in the book of
M.M.Smirnov [8]. Existence of solution of Frankl problem for general Lavrent’ev-
Bitsadze equations was proved in work of Guo-chun Wen and H.Begehr [4].

The basic review of boundary value problems for the mixed type equations with
Frankl condition it is possible will receive in the work J. M. Rassias [9].

2. Initial necessary dates
12
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Definition. Let’s, the function f(z) is any function from a class L(a,b) a <
x < 0o0. An operator in the form

T

1 (1)
i | g <O

D, f(z) = a

amtt a—(n+1)

dzn+1 Dam f(x)a a > 07
R0
t

a<0

o I'(—a / t—x)ite’ ’

Do fa) =4 T ) (2.1)
dntt _
(71)n+1 d$n+1 D:b (ny) (:E)7 o> 07

where Dy, and DY, is called as the integral operator of fractionally integration a,
at a < 0, and the generalized derivatives in understand of Liuvill on the order «,
at a > 0, n = [a]; [@] the whole part of number «.
Some properties integral differential operators of fractionally order.
19 If f(z) € L(a,b), then for all @ > 0 almost for all x € (a,b)

Dy Doy f(x) = f(x), (2.2)
20, Lets f(z) € L(a,b), then:
1) if 8> «a > 0, then
DD f(w) = Dol f(w), D3,D) f(a) = Doy (), o € (a,b);
2) if @ > 3 > 0 and the function f(z) have a derivative of D, ? f(x), Dz‘b_ﬁ (x)
then
D3, Dl f(w) = D™ f (@),
DD flw) = D57 (@), @ € (a,b);
30.Let 0<28<1 (b—x) Pf(x) € L(a,b). then almost everywhere on (a, b) it
is fair identities:
DS (b—2)*1DI (b —2) P f(a) = (b—2)P 7 D2 f(2). (2.3)
49, A principle of an extremum for the fractional derivative operations D, and
D% (0 < a < 1). Let positive not decreasing function w(t) and a function f(t)
continuously in [a, b]. Then, if the function f(t) reaches the positive maximum (a
negative minimum) in the segment [a,b] on the point ¢t = z, a < < b and in as
much as small vicinity of this point derivative of function w(t)f(¢) satisfy Gelder
condition with an indicator v > «, then D wf > 0, (DY%wf < 0).
The similar remark takes place for the operator D, if w(t) positive not increas-
ing function on the [a, b].

3. The statement of problems F.

The given work is devoted research of non-local problem of the Frankl type for
the equation

YU — "0y, x>0,y >0,
0= {( Y (3.1)

=) Ugz — 2" Uyy, >0,y <0,

where mg, ng,n = const, mg > 0,n9 > 0,n > 0.
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Let’s Q is, domain restricted at < 0, y > 0, by the segments AB, BBy, Ay By,
AgA on the linesy =0,z =1, y=1, x =0 and at z > 0, y < 0, restricted by
line z = 0, (—1 <y < 0) and characteristics

n+2

BC:z" + (—y) = =1,
(1,

of equation (3.1), where A(0,0), B(1,0), Ag(0,1), Bo(1,1).
Let’s to put designations:

J=A(z,y):0<xz<1l,y=0}, Q3 =Qn{(z,y) : 2 >0,y > 0},
Dy =0Nn{(z,y) : 2 >0,y <0}, Qo1 = N{(x,y): z+y > 0},

n ng + 1
Qs = Qo N ,Y) <0LQ" =Q U UJ, 20=——, = ,
22 2N {(z,y) x4y } 1 21 B P Qo o + 2
and
0<26<1, 1<2a9<2. (3.2)

we will designate, through

. 1+ 29 % 1=z %
o = (5T i () (33)

affix of the point of crossing characteristic BCyy by the characteristic leaving on the
point (z,0) € J, parallel characteristic ACy, where Cy (21/("+2) 21/ (n+2))

The Problem F. To find a function u(z,y) with following conditions:
Du(z,y) € C(Q) N C>'(Q1) N C*(Q21 U Qa2);
2)u(x,y) satisfies equation (3.1) in the domain €y U Qo1 U Qao;
3uz(z,y) € C(Q1 U AA)) NC (22 U AC), uz(+0,y) € C(Q2 U AC), y~™0u,, €
C(UJ), uy, € C(Q2UJ) and on AB satisfied gluing condition:

lim y~"uy(z,y) = lim uy(z,y), (z,y) € J, (3.4)
y—-+0 y——0

4)u(z,y) satisfies boundary conditions :

u(@,y)lan, = 10(y), uw@,y)lBB, = o(y), 0<y <1, (3.5)
D, (1= 22?0 [0(2)] = a(w ( )
+b(@) (1 = 2%)7 My (2752,0) + o(z), @ € (0,1), (3.6)
e (0,+y) = uz(0, —y), 0<y <1, (3.7)
where o (y),70(y), a(x), b(x), c¢(z) are given continuous functions, at that
T0(y), po(y) € C[0,1]N ct (0,1), (3-8)
a(x),b(z),c(z) € C'[0,1]NC3(0,1). (3.9)

3.1. Reduction of main functional relations.

A solution of the Cauchy problem satisfying the following conditions 77 (z) =
uw(z,—0), 0 <z <1, v (z) = uy(z,—0), 0 < z < 1, for the equation(3.1) in the
domain of 91, looks like[7]:

1
_1
weg) = [+ (577) 0= ane
0
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1

1
1 1
—fyyl:y/zl “EPyT <zl"+2) 271 = 2)7Pdz, (3.10)
0

where , 7 = 1“(25)’ 72 He 2 21 = 2" 4 (—y) " 22 E (_y)nTH(QZ -1).

r2(1-p)’
By virtue (3.3), from (3.10), we have

w

0

_1
x / (2 +(1— x2)z)g 7 [(w2 +(1- LE2)Z)%_B] (2(1 = 2))Pdz.
0
From here, owing to replacement 22 + (1 — 2%)z = s, we will receive

1
ulf(z)] = 1 (1 —2*)' =% / (s — 2P~ 1 —s)P 1 (sﬁ)ds—i—

1
g4t / (s —a®)~P(1 - $) PP aym (s#?)ds.

2

Further,taking properties of integro-differential operators into account (2.1)[8],we
have

ulb(@)) = DB - )20 (o7 ) (1= 2
Hyal (1 — 34281 DBI (1 = 52) =281y~ (xn%) . (3.11)
Substituting (3.11),(2.2) to the condition (3.6), and replacing z? to x, we have

[@(x) — nT(B)(1 —2)* "] (ajT) +2(z) = yl(1 — B)428~1x

fol(l — x)w_lfol(l — x)_ﬁxﬁ_%y_ (azﬁ) -(1- x)ﬁ_lg (x) v~ (a:ir2> .

From (3.12) and (2.3), we have
@ (2)7 (2) =3l (1 = B4 D e =257 (2)—
—b(x)v (2) —e(x)(1 —2)'P, 0<z<1, (3.13)
where, 7~ (z) = 7~ (x#?) , UV () =v" (x#?) ,

a1 (z) = a(x)(1 — )P =y T(B), a(z) = a(v/x), b(x) = b(v/x), &(z) = (V).
(3.14)
Let’s consider three cases:
I. Let’s b(z) =0, a(z) # 0. Then from (3.13), receive
YoT(1 = B)42P 1 D218 =35~ (2) = @y (2)7 (2) + (1 — 2)Pe(x).  (3.15)
Applying the operator D11 %’[] to both parts of equality (3.15), we will obtain
the basic functional relation between 7~ (z) and 7~ () :

1l(1 = B)4%° =10 (2) = 22~ DL G ()7 (2)+
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+a2 PDITP(1 — 1) Fe (). (3.16)

Further, from the equation uz, — ™0y~ ™°u, = 0 at the y — +0 we have receive
ordinary differential equation

T”+(.’E) 2"t (z) =0, 0<wz<l, (3.17)

where 71 (z) = u(z,4+0) and v+ (z) = lim+0 Yy~ "ouy (2, y).
y—)

Solving this equation with conditions 7+ (0) = 79(0) and 77 (1) = ¢0(0), deduce
functional relation between 7 (z) and v (z) :

1
/G z, Ot vt (H)dt + f(z), 01,
0

here
- { 0 0545n o2
f(@) =10(0) + z(0(0) — 70(0)). (3.19)

Further, by virtue replace x ~ z7¥2 and ¢ ~ 72 receive functional relation
between 7+ (z) vt (z):

1
/G Ddt + f@),  0xl, (3.20)
0
where, f(z)=f (x%ﬁ) , 7H(z)=71" (.Z‘%“) , vt(t)=vt (trlﬂ) ,
Gz, t) = ni2t7?le—10(x%+z7t%u). (3.21)

3.2. Uniqueness of the solution.
Theorem 1. If satisfying the conditions (3.2),b(z) = 0, a(z) # 0 and

a(z) >0, =ze(0,1), (3.22)

then a solution u(zx,y) of the problem F is unique.

The Proof. According to the extremum principle for the parabolic equations
[5], [10], the solution u(x,y) of the equation(3.1) cannot reach the positive maxi-
mum and negative minimum in the domain of €; and on a piece AygBy. We will
denote, that the solution u(x,y) does not reach the positive maximum and negative
minimum on an interval AB.

Let’s assume the return, i.e. let in some point E(x¢,0) function u(z,y) reaches
the positive maximum (negative minimum). Then from (3.16), at ¢(x) = 0 we have:

¥l (1 = B2 715 () = 28 DL, (w0)7 (o). (3.23)

From here, owing to a principle for the differential operators fractional order

[8], on the point of positive maximum (negative minimum) strictly positively (neg-

atively) Digfﬁﬁl(xo)?* (zo) > 0, (Di,ofﬁal(xo) (o) < O) . Accordingly, owing

to that zg > 0, 72 > 0 from (3.23), receive, v~ (z¢) > 0, (v~ (z9) < 0) . From here,

by virtue (3.4) we have v (z¢) > 0, (" (2¢) < 0). This inequality contradicts an
inequality 7" (z9) 0, (7 (x¢) > 0), which is direct appears from (3.17).
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Thus, the solution u(z,y) of equation (3.1) can’t reach the positive maximum
and negative minimum on an interval AB. Hence, u(z,y) can to reach the positive
maximum (a negative minimum) on the piece of AAy and BB,.

From here owing to (3.5), considering continuity of the function u(z,y) in 1, a
solution of the first boundary value problem for the equation (3.1) in the domain
of ©; to identically equally zero at ¢o(y) = m0(y) = 0.

As u(z,y) = 0 in domain Q; we have 7 (z) = 0, and by virtue (3.23), v (z)
Hence, owing to unequivocal solvability of Cauchy problem it is had u(x,y) =
the domain Qs1, from here u(z, —z) = 0.

Further, from solution homogeneous first boundary value problem for the equa-
tion (3.1) in domain of €; taking into account a condition (3.7), we will receive
uz(0,y) = ug(0,—y) = 0, 0 < y < 1. Hence, the solution of the Cauchy-Gaursat
problem for the equation (3.1) with zero given identically equally to zero in the
domain of Qgg, i.e. u(x,y) =0 in the domain Qgs.

Thus, from the above-stated we will receive, that u(z,y) = 0 in the domain €.
Hence, the solution of a problem F in the domain of €2 is unique. The theorem 1
was proved.

O

3.3. Existence of the solution.

Theorem 2. If satisfying the conditions (3.2), (3.8), (3.9) and b(z) = 0, a(z) # 0
then a solution u(x,y) of the problem F is exist in the domain of (2.
Proof. Considering a continuity of the solution of a problem F, excluding 7(z) =
77 (x) =71 (x) from (3.16) and (3.20), we have
1
1242 I0(1 — B)i(x) = 2P DL ¥ a () / Gz, )u(t)dt + f(z) | +
0

+a 2 P DLPe(a) (1 - 2)t P,

Further, taking into account properties of integro-differential operators (2.1) [11],
we find

(@) = ko PL /(t x)m_lal(t)dt/G(t S)(s)ds | +
x 0
thyzs P — /(t—x)% Ya dt+/ ) 1 =) Pe)dt | |

(3.24)
where, ki = 1/7242871T(1 — B)T'(23)
Having executed replacement ¢t = z+(1—x)o and changing an order of integration
from (3.24), we have

v(z) = klx%_5% (1— a2 /025_161(36 +(1- m)o)da/é (x+ (1 —x)o,9))v(s)ds | +
0

1
+k1x%_5% (1— )% /J2ﬁ_151(x +(1—2)0)f(z+ (1 —2)o)do | +
0
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+k1x%*ﬁ% ((1 - x)lw/g?ﬁ*l(l — o) Pex+ (1 — z)o)da) .

0
From here, after some evaluations, we will obtain the integral equation

/K (z,5)0(s)ds + D(z), (3.25)

where

K(z,s) = Ki(z,5) + Ka(x, s), (3.26)

Ki(2,8) = —2Bkiz2 P (1 —2)*71 [ 62071, (z + (1 — 2)0) x

o _

xG (z+ (1 —z)0, ) do, (3.27)

~ d
Kg(acs)—klaﬂ 51—302’8%/0251 (z+ (1 —x)o)x
0

xG(z + (1 — x)0,s)do (3.28)

1
d(z) = —28kia? /026 a1z + (1 —2)0)f(z + (1 — 2)o)do+
0

1
1

a1 — )28 / azﬁflﬁ [al (z+ (1 — 2)o) flz + (1 — x)a)] do—

—(1+ Bkzz P —2)? | 6711 - 0)Pe(x + (1 — z)o)do+

o _

A1 — 2)Ho /025—1(1 - a)l_ﬂ% Ela+ (1—2)0)do.  (3.29)
0

From here, owing to continuity the functions G(z,t) € C ([0, 1] x [0, 1]) and a(z),
we have

‘f(l(x, s)‘ 0187;:214 (1—2)%71, (3.30)
Also, considering (3.9),(3.14), (3.18), (3 21) from (3.28) we will receive

‘Kg x s)‘czs W 1 - )2 (3.31)
Thus, by virtue (3.30) and (3.31) from (3.26), we have

‘K(z, 5)| czs T (1 — 2)281, (3.32)

There under (3.2), (3.9), (3.14), (3.19) appear from (3.29) that the function ®(z).
Supposes an estimate

‘&»(x)‘ ca(1 — )%, (3.33)

where, ¢, co, c3,c4 = const.
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Thus, by virtue (3.32), (3.33) integral equation (3.25) constitute Fredholm in-
tegral equation of the second kind[6], with the weak feature which unequivocal
solvability appears from the uniqueness of the solution of investigated problem, i.e.
the equation (3.25) has the unique solution, and v*(z) € C?(0,1).

Hence, it is possible to present its solution on the form of[6]:

v (z) = ®(x) + /R(a:,s)@(s)ds, (3.34)

where R(z, s)- resolvent the kernel of K(z,s).
From here, according to gluing condition (3.4) taking into account (3.34) and
(3.20) we find function 7 (z),

FHa) = [ Ga,t) |®1t) + | R(t, 2)®(2)dz| dt + f(),
/ /

1

Further, designating, ®(t) = ®(t) + [ R(t, 2)®(z)dz, we have
0

() = / Gz, )B(t)dt + Flz), Ol (3.35)
0

Hence, by virtue (3.2), (3.9) owing to (3.35) and (3.21), (3.19) conclude, that
the function 77 (z) in C[0,1] N C?(0,1).

I1. Let’s b(xz) #0, a(z) #0.

From (3.13), we will receive

1
- I'(1—pB)4%-1 -
b (g) = 22D0 =BT / (t — 2)~2P40= 35 (1)t
b(2)T(1 - 25)
‘fl(x)%—(x) - f(i)u — )b, (3.36)
b(x) b(x)

Let’s notice, that the integral equation (2.36) is integrated Equation Volterra of
the second kind

1

7 (2) = A / N(a, )5~ (8)dt + F(x), (3.37)

where, \ = 721“1(‘1(7;222;5717
Fla) = — 2@y 8@y i, (3.38)

b(x) b(x)
1
N(z,t) = —(t —x) 2P0~ 2, (3.39)
b(x)
By virtue (3.9), from (3.38) and (3.39) accordingly
IN(z,t)] <M, 0<z<1, (3.40)
and

|F(z)| < const (3.41)
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further, owing to the theory of integrated equations Volterra of the second kind [9],
taking into account (3.40) and (3.41), we have |R(z, s; \)| < const, i. the solution
of equation (3.37) it is possible will present on the form of

vo(z) = —)\/al(s)R(x,s;/\)?_(S)ds - )\/R(x’bs(;);)c(s)ds_

J b(x) s
a(z) - () -
—WT (x) — %(1 — )P, (3.42)

3.4. Uniqueness of the solution.

Theorem 3. If satisfying the conditions (3.2),(3.8), (3.9), b(z) # 0, a(x) # 0
and
a(z) >0, bx)<0, O0<z<l, (3.43)

then the solution u(x,y) of the problem F is unique.

Proof. Let’s notice, that justice of the theorem 3 the follows at once from the
theorem 1, if is proved, than the solution u(z,y) of the equations (3.1) cannot reach
the positive maximum and negative minimum in domain of ; and on a piece AgBy.
And this statement is similarly proved as the theorem 1, i.e. by virtue principle of
an extremum for the parabolic equations [5], the solution u(z,y) the equation (3.1)
cannot reach the positive maximum and a negative minimum in domain £2; and
on a piece AgBy. Let’s show, that the solution u(x,y) does not reach the positive
maximum and negative minimum on an interval AB. We will assume the return, i.e.
let in some point (zp,0) function u(x,y) reaches the positive maximum (negative
minimum). Then from (3.42), at ¢(z) = 0 we have:

1

v = — @ (s) o, S; AT (s s—al(xo)?fx
7 (o) = = | T R, 07 (s)ds = T ).

zo

From here considering (3.43), owing to, that R(xg,s;\) > 0 in the point of
positive maximum (negative minimum) 7 (z¢) > 0 (7~ (x9) < 0) we will receive
v (z0) > 0 (7 (x9) < 0), and this inequality contradicts an inequality ot (z¢) 0,
(7t (x¢) > 0), which directly follows from (3.17). Hence the solution u(z,y) the
equation (3.1) can’t reach the positive maximum and negative minimum in domain
Q4 and on a piece AgBy. The theorem 3 is proved.

3.5. Existence of the solution.

Theorem 4. If satisfying the conditions (3.2), (3.8), (3.9) and b(x) # 0, a(z) #
0 then the solution u(z,y) of the problem F is exist.
Proof. Substituting (3.42) in (3.20), we have

1
T(z) = /IN((JU, $)7(s)ds + f(x), 0x1, (3.44)
0

where,
S

K(z,s) = —C;l((s) G(z,s) —&—)\/@(x,t)R(us;)\)dt
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The equation (3.44) is Fredholm integral equation the second kind[6] and it un-
equivocal resolubility follows from the uniqueness of the solution the problems F.

IIT. Let’s a(x) =0, b(x) # 0.

3.6. Uniqueness and existence of the solution.

On the case of a(x) =0, b(z) # 0 takes place the following uniqueness theorem:
Theorem 5. If satisfying the conditions (3.2) and

b(z) >0, O0<ux<l, (3.45)

then the solution u(x,y) of the problem F is unique.
Proof. From the integral equation (3.36) at a(x) = 0, taking into account (3.14)
we will receive:

) =208 e (s)ds + Fi(x)

1
— 7l(1 - )42~ 42681 /
v (z) =

b(x)[(1—23)
where
nl(B) - c(z) 1-8
File) = T 57 @) - g 0,

and |Fy (z)| const.
Hence, from (3.42), at a(x) = 0 we obtain main functional relation between
7 (z) and v~ () :

R O e Oy
A0 o) A8y gy (3.46)

b(x) b(x)

Let’s show, that the solution u(z,y) does not reach the positive maximum and
negative minimum on an interval AB. We will assume the return, i.e. let in some
point (xg,0) function u(x,y) reach the positive maximum (negative minimum).
Then from (3.46), at ¢(z) = 0 we have:

v (@0) = InI'(B) / E(xO)R(Io,S;)\)?f(s)ds + ’Y;(I;(Oﬂ))

?7 (1’0)

xo

From here considering (3.45), owing to, that R(xg,s;\) > 0 in the point of
positive maximum (negative minimum) 7 (z¢) > 0 (7~ (x9) < 0) we will receive
v (z0) > 0 (" (x9) < 0), and this inequality contradicts an inequality ot (z¢) 0,
(vt (z9) > 0), which directly follows from (3.17). Hence the solution u(z,y) the
equation (3.1) can’t reach the positive maximum and negative minimum in domain
Q; and on a piece AgBy. further, let’s notice, that justice of the theorem 4 the
follows at once from the theorem 1 and theorem 3. The theorem 5 is proved.

Theorem 6. If satisfying the conditions (3.2), (3.8), (3.9) and a(x) = 0,
b(x) # 0 then the solution u(z,y) of the problem F is exist.
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Proof. Substituting (3.46) in (3.20), we have

/K1 (s)ds + f(z), 0x1, (3.47)
0
where,
Ri(z,s) = 71658()@ Gz, )+ A / G, t)R(t, 5 \)dt

The equation (3.47) is Fredholm integral equation the second kind[6], and it
unequivocal solubility follows from the uniqueness of the solution the problems F.

Thus, the solution of the investigated problem in the domain of €2, is restored
as the solution of the first boundary problem which has kind of [11]:

1 Yy
0
u(x,y) = Gl(xvf;y7a0)7+(£)£nod€ +y7m07 G2($,y t aO) ( )tmodt+

y
0
+y_m087y /Gg(x,y —t,a0)po(t)t™odt,

where
1
Gy (w,,a0) = (1 = )"0z — / G1(w,€ . a0) (1 = 00)?072)| gmode,
0

1
Ga(w,y, a0) = 1= (1= 0)*! =) - / G1(, €y, o) |1 = (1= a0)21 7] e,

AZymo+!

G1(z, &, y; ap) Ze_ Ao T (1 —ag)y/xtx

1

1m0 (L= a0)(VE) 501y k(1 = o) (V&) =)
']22—a0 (/\k) ’

0o Ve (= 42k
Ju(z) = E m is the function of Bessel on the first kind , A, are

positive bOluthDb of equation Ji_q, (M) =0, k =0,1,2. G1(x,&;y,ap) - the Grin
function of the first boundary value problem.

Satisfying condition v (y) = u.(0,y), (0 < y < 1) to solution of the first bound-
ary value problem, we have:

vty = lim 2 / G (2, €y, o) (E)€™0dE+

z—+0 Ox
B o [

0
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Y

. 8 —mo a mo

+ lim =y @/Gs(w7y—t7ao)wo(t)t dt
0

From here, by virtue condition(3.7), the solution of the problem F on domain
of Qq9, it is restored as the solution of problem Cauchy-Gaursat, satisfying to
conditions v*(y) = v~ (y) = u(0,y), -1 <y < 0 u(—y,y) = h(y), where h(y)
is the trace of solution of problem Cauchy in domain of 257 on the characteristics
y = —x. Thus, the existence of solution of the problem F is proved.
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CONJUGATE TANGENT VECTORS AND ASYMPTOTIC
DIRECTIONS FOR SURFACES AT A CONSTANT DISTANCE
FROM EDGE OF REGRESSION ON A SURFACE IN FE}

DERYA SAGLAM! AND OZGUR BOYACIOGLU KALKAN?

ABSTRACT. In this paper we give conjugate tangent vectors and asymptotic
directions for surfaces at a constant distance from edge of regression on a
surface in Ei)’

1. INTRODUCTION

Conjugate tangent vectors and asymptotic directions in Euclidean space E3 can
be found in [9]. In 1984, A. Kili¢ and H. H. Hacisalihoglu found the Euler theorem
and Dupin indicatrix for parallel hypersurfaces in E™ [13]. Also the Euler theo-
rem and Dupin indicatrix are obtained for the parallel hypersurfaces in pseudo-
Euclidean spaces ETT' and E?*! in the papers ([5], [7], [8]).

In 2005 H. H. Hacisalihoglu and 0. Tarake introduced surfaces at a constant
distance from edge of regression on a surface. These surfaces are a generalization
of parallel surfaces in E3. Because the authors took any vector instead of normal
vector [17]. Euler theorem and Dupin indicatrix for these surfaces are given in [2].
Conjugate tangent vectors and asymptotic directions are given in [1]. In 2010 we
obtained the surfaces at a constant distance from edge of regression on a surface in
E3 [15]. We obtained the Euler theorem and Dupin indicatrix for these surfaces in
E3 [16].

In this paper we give conjugate tangent vectors and asymptotic directions for
surfaces at a constant distance from edge of regression on a surface in E.

2. PRELIMINARIES

Let E3 be the Minkowski 3-space is the real vector space R® endowed with the
standard flat Lorentzian metric given by

<,> = 7(d9§1)2 + (d$2)2 + (dx3)2
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2000 Mathematics Subject Classification. 51B20, 53B30.
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where (x1,2,23) is a rectangular coordinate system of E}. An arbitrary vector
x € F} is called spacelike if (z,x) > 0 or x = 0, timelike if (z,2) < 0 and lightlike
(null) if (z,z) =0 and z # 0.
The timelike-cone of E is defined as the set of all timelike vectors of E$, that is
T ={(z,y,2) € B}, 2* +9y* - 2% < 0}.
The set of lightlike vectors is defined by C and it is the following set:
C={(z,y,2) € E}; 2* +y* — 22 =0} — {0,0,0}.

The cross product x X y of vectors & = (x1,z2,23) and y = (y1,y2,y3) in E} is
defined as

(x xy,2) =det(x,y,z) forall z=(21,20,23) € E3.
More explicitly, if 2,y belong to E$, then

(r,y) = —x1y1 + T2y2 + 23Yy3
rxy = (—(T2ys — T3y2), T3y1 — T1Y3, T1Y2 — T2Y1)
(a,z) (b,x)
axbxx = —
< v ’ (a,y) (b,y)

where a = (a1,az,a3) and b = (by, by, b3) in E} (Lagrange identity in E}).

Let e1,e2 € E3 be such that < e;,e; >= £1 and (e1,e2) = 0 and e3 = e1 X es.
Then these three vectors form an orthonormal frame. If (e1,e1) = 1 and (ea, e2) =
€9 where 1,9 = 1, it follows from the Lagrange identity that (e3,es) = —e1e9.
Each vector € E} can be written uniquely in terms of e;, es, e3 by

r =& <l’, €1> e1 + &o <l’, 62> €y —E1&2 <177 63> €3.

The angle between two vectors in Minkowski 3-space is defined by ([3], [10], [11],
[12]):

Definition 2.1. i. Hyperbolic angle: Let z and y be timelike vectors in the
same timecone of Minkowski space. Then there is a unique real number 6 > 0,
called the hyperbolic angle between z and y, such that

<@,y >= — |[z[l [yl cosh 6.

ii. Central angle: Let x and y be spacelike vectors in Minkowski space that span
a timelike vector subspace. Then there is a unique real number 6 > 0, called the
central angle between x and y, such that

<@,y > = || [ly[l cosh 6.

iii. Spacelike angle: Let x and y be spacelike vectors in Minkowski space that
span a spacelike vector subspace. Then there is a unique real number 6 between 0
and 7 called the spacelike angle between x and y, such that

<2,y >= [lz] ly[| cos 6.

iv. Lorentzian timelike angle: Let x be a spacelike vector and y be a timelike
vector in Minkowski space. Then there is a unique real number 6 > 0, called the
Lorentzian timelike angle between = and y, such that

< 2y >| = || lyll sinh 6.
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Definition 2.2. Let M and M/ be two surfaces in E and N, be a unit normal
vector of M at the point P € M. Let T,M be tangent space at P € M and
{X,,Y,} be an orthonormal bases of T,M. Let Z, = d1 X, + d2Y, + d3sN,, be a unit
vector, where di,da,d3 € R are constant numbers and e1d3 + egd3 — e162d3 = +1.
If a function f exists and satisfies the condition f : M — M/, f(P) = P +rZ,,
r constant, M7 is called as the surface at a constant distance from the edge of
regression on M and M/ denoted by the pair (M, M7).

If di = dy = 0, then we have Z, = N, and f(P) = P+ rN,. In this case M and
M7 are parallel surfaces [15].

Theorem 2.1. Let the pair (M, M7) be given in E}. For any W € x(M), we
- 3 0 — 3 3}
have f.(W) =W 4+ rDwZ, where W = Zwi@? W= Zma and VP € M,
i=1 i i=1
wilP) = Wi(f(p)), 1< <3[15].

9

Let (¢,U) be a parametrization of M, so we can write that

¢: U CE} - M .
(uv) P=g(u,v)

In this case {Pulp, Pulp} is a basis of T,M. Let N, is a unit normal vector at
P € M and dy,dz,d3s € R be constant numbers then we can write that Z, =
d1bulp + dady|, + d3N,. Since M7 = {f(P) | f(P) = P+ rZ,}, a parametric
representation of M7 is ¢(u,v) = ¢(u,v) + rZ(u,v). Thus we can write

Mf = {¢(Ua ’U) | 1/}(u7 U) = ¢(u7 ’U) + T(d1¢u(u7 ’U) + d2¢1}(u7 1}) + d3N(u7 ’l))),
dy, do, dg,r are constant, Eld% + 52d§ — 61€2d§ = :l:l} .

If we take rd; = A1, rds = A9, rd3s = A3 then we have
M = {Y(u, v) | (u,v) = ¢(u, v)+A1 Gy (U, V) + A2, (w, V)+A3N (u,v), A1, A2, A3 are constant}.

Let {¢u, ¢y} is basis of x(M7). If we take (¢y,du) = €1, (By, dy) = €2 and
(N,N) = —¢e1¢e9, then

Yy = (14 Ask1)du +e2X1k1N,
Yy = (14 X3k2)oy, + 12k N

is a basis of x(M7), where N is the unit normal vector field on M and ki, ky are
principal curvatures of M [15].

Theorem 2.2. Let the pair (M, M') be given in E}. Let {¢y, ¢} (orthonormal
and principal vector fields on M) be basis of x(M) and ki,ks be principal cur-
vatures of M. The matriz of the shape operator of MT with respect to the basis
{0 = (14 Ask1)du + e2Mk1 N, 1y = (14 Ask2) ¢ + 1 X2ka N} of x(MY) is

sf — H1 o p2
M3 Ha
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where
1+ Asks Ok
g o= (1473) {gAlau(Agk; —e1(1 4+ \3k2)?) + k1A2} ,
by = A Aok1ka (1 + Asks) Oky
2 A3 ou’
o —E)\l)\%klk‘g(l + )\3]{:1) %
M3 = AS 8’U )
14+ A3k ok
Ha = (147331) {_5)\281}2()\%k% —52(1+)\3]€1)2)+k2A2}

and A = \/8 (81/\%](}%(1 + /\3k2)2 + 82)\%]{}%(1 + )\3]{}1)2 - 6162(1 + /\3/451)2(1 + /\3]62)2)
115).

Definition 2.3. Let M be an Euclidean surface in £2 and S be shape operator of
M. For any X,,Y, € T,M, if

(2.1) (S(X,), Yp) =0
then X, and Y, are called conjugate tangent vectors of M at p [9].

Definition 2.4. Let M be an Euclidean surface in E? and S be shape
operator of M. For any X, € T,M, if

(2:2) (S(X,), X,) = 0
then X, is called an asymptotic direction of M at p [9].

We can get the definitions of conjugate tangent vectors and asymptotic direction
in Minkowski 3-space similar to Definition 2.3 and 2.4 as below:

Definition 2.5. Let M be a surface in E5 and S be shape operator of M. For any
Xp, Y, € T,M, if

(2.3) (S(X,), ;) = 0
then X, and Y}, are called conjugate tangent vectors of M at p.

Definition 2.6. M be a surface in E} and S be shape operator of M. For any
Xp e T,M, if

(2.4) (S(Xp), Xp) =0

then X, is called an asymptotic direction of M at p.

3. CONJUGATE TANGENT VECTORS FOR SURFACES AT A CONSTANT DISTANCE
FROM EDGE OF REGRESSION ON A SURFACE IN E3

Theorem 3.1. Let M7 be a surface at a constant distance from edge of regression
on a M in E}. Let k1 and ko denote principal curvature function of M and let
{bu, v} be orthonormal basis such that ¢, and ¢, are principal directions on M.
For X,,Y, € T,M, f.(X,) and f.(Y,) are conjugate tangent vectors if and only if

(3.1) E1PIT1IYL + E1U5T1Y2 + E243T2Y1 + E2piyT2Yy2 = 0
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where
(3'2) ry = <va ¢u> ) T2 = <Xp7 ¢v> s
g1 = <Y;77¢u>7 Y2 = <}/;7¢v>7
/ff = Ml(l + Azky 2 )\1k1(€2/i1)\1k1 + 51#2)\2/@ y

2

)

) )
143 p2(1+ Ask2)® — Aoka(e2p A1k + €112 A2k2),
py = pa(l4 Ask1)® — Aiki(eapshikr + e1padoks)
o = pa(l+ )\3k2)2 — Aoka(eapisAkr + €1 padoks).
Proof. Let f.(X,) € Ty M7. Then let us calculate f, (X)) and SY(f.(X,)). Since
¢, and ¢, are orthonormal we have
Xp = &1 <Xp7 ¢u> ¢u + &2 <va ¢v> ¢v

= Elxld)u + 521'2(7251;-

Further without lost of generality, we suppose that X, is a unit vector. Then
(3.3) [(Xp) = e1w1fi(du) + 222 fu(d0)
= a1y + E2w21y.

On the other hand we find that
(3.4)
Sf(f*(X;D)) 51$15f(1/}u) +€2$25f(¢v)
= e1x1 ( (1 + Ask1)du + p2(1 + Aska)dy + (182A1k1 + pog1A2ka) N)
+eoxa (s (1 + Ask1) oy + pa(l + Ask2) o, + (nzea1k1 + pac1Azka)N)

and for Y, € T,M we have

(3’5) Yp = & <va ¢u> by + €2 <Ypa ¢v> ol
= E1Y10Qu + E2Y2Py.

Then
(3.6) [(Yp) = e fu(du) + 292 fi(d0)
= a1ty + e2y2y.
Thus using equations (3.4) and (3.6) in equation (2.3) we obtain (3.1). O

Theorem 3.2. Let M7 be a surface at a constant distance from edge of regression
on M in E}. Let ky and ky denote principal curvature functions of M and let
{bu, v} be orthonormal basis such that ¢, and ¢, are principal directions on M.
Let us denote the angle between X, € T,M and ¢, ¢, by 01, 02 respectively and
the angle between Y, € T,M and ¢, ¢, by 0}, 05 respectively. f.(X,) and f.(Y})
are conjugate tangent vectors if and only if

(a)Let Ny, be a timelike vector then

py cos 0y cos 0] + pb cos by cos 05 + i cos B cos 0] + ) cos b cos 05 = 0.

(b) Let ¢, be a timelike vector.
(b.1) If X, and Y, are spacelike vectors then

0 = —0101 p7 sinh 61 sinh 6] — 61055 sinh 61 cosh 64
+064 6213 cosh 02 sinh 0] + §265 5 cosh O3 cosh 65,
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(b.2) If X,,,Y,, and ¢, are timelike vectors in the same timecone then

0 = pj cosh 0y cosh 0] + 845 cosh 6 sinh &),
— 0o} sinh 05 cosh 0] + 6205 1% sinh O, sinh 6.

(b.3) If X,,, ., are timelike vectors in the same timecone and Y, is spacelike vector
then

0 = &)} cosh 0y sinh 0] + 643 cosh 6 cosh 6,
+081 6243 sinh O sinh 0] + §265 4% sinh O cosh 0.
(b.4) If Y, and ¢, are timelike vectors in the same timecone and X, is spacelike
vector then
0 = 613 sinh 0y cosh 0] — &165 5 sinh 0y sinh 0)
—02 1% cosh Oz cosh 0] + 5264511 cosh O sinh 0.
(c) Let ¢, be a timelike vector.
(c.1) If X, and Y, are spacelike vectors then

0 = 6107 3 cosh 0y cosh 0] + 610515 cosh 0y sinh 0
—01 0215 sinh O cosh 0] — 5265117 sinh O sinh 6.

(c.2) If X,,,Y, and ¢, are timelike vectors in the same timecone then

0 = 6107y sinh 01 sinh 0] — 61 3 sinh 6y cosh 0}
—0% p cosh B sinh 6] — p cosh 65 cosh 6.

(c.3) If X, and ¢, are timelike vectors in the same timecone and Y, is spacelike
vector then
0 = 0104 p sinh 61 cosh 0] + 61055 sinh 6, sinh 6/
+07 ph cosh 02 cosh 0] + 8% cosh 65 sinh 6.
(c.4) If Y, and ¢, are timelike vectors in the same timecone and X, is spacelike
vector then
0 = 6161 i cosh 0 sinh 0] — §; p3 cosh 61 cosh 6
— 0907 p} sinh 65 sinh 0] 4 do 1} sinh 05 cosh 6.

Abovementioned 3, i, 1 and ph are given in (3.2),

1,  x; is positive

e { -1, x; is negative ’ i=(1,2)

and

1 Y; 1s positive ‘
’_ , i B
o= { -1, wy; is negative ’ i=(1,2).

Proof. (a) Let N, be a timelike vector. In this case 61, 02, 0], 05 are spacelike
angles then

x1 = (Xp,¢u) = cosby

z9 = (Xp,¢y) = cosby.
and

yi = (Yp,¢u) = cost

Y2 = (Yp,0y) = costy.

Substituting these equations in (3.1) the proof is obvious.
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(b) Let ¢, be a timelike vector.
(b.1) If X, and Y, are spacelike vectors and ¢, is timelike vector then there are
Lorentzian timelike angles 6, 67 and central angles 65, 6. Thus

r1 = O01sinhf; and x5 = 3 coshby

y1 = 0;sinhf] and yo = &5 cosh b,
(b.2) If X,,,Y, and ¢, are timelike vectors in the same timecone then there are
hyperbolic angles 6, 0] and Lorentzian timelike angles 6, 6. Thus

x1 = —coshf; and x9 = d2sinh by

y1 = —coshf] and yy = ) sinh ).
(b.3) If X, and ¢, are timelike vectors in the same timecone and Y, is spacelike
vector then there is a hyperbolic angle 07, a central angle 6/, and there are Lorentzian
timelike angles 62, 6]. Thus

xr1 = —coshf; and x9 = d5sinh by

y1 = 0&;sinh@] and y, = 05 cosh 6.
(b.4) If Y}, and ¢, are timelike vectors in the same timecone and X, is spacelike
vector then there is a central angle 0, a hyperbolic angle 67 and there are Lorentzian
timelike angles 61, 65. Thus

xy = 01sinhf; and xzo = 6y coshby

y1 = —coshf] and yp = dysinh6).
(¢c) Let ¢, be a timelike vector.
(c.1) If X, and Y), are spacelike vectors and ¢, is timelike vector then there are
central angles 61, 6] and Lorentzian timelike angles 65, 65.Thus

r1 = 51 cosh 01 and To = 52 sinh 92

y1 = O0jcoshf] and yo = &5 sinh 6.
(c.2) If X,,, Y, and ¢, are timelike vectors in the same timecone then there are
Lorentzian timelike angles 61,67 and hyperbolic angles 65, 5. Thus

xy = O01sinhf; and 2o = —coshbsy

y1 = O&;sinh#] and yo = —coshd.
(c.3) If X, and ¢, are timelike vectors in the same timecone and Y}, is spacelike
vector then there is a hyperbolic angle s, a central angle 6] and there are Lorentzian
timelike vectors 6y, 6. Thus

z1 = 01sinhf; and x5 = — coshfy

y1 = djcosh@] and yo = dhsinhd).
(c4) If Y, and ¢, are timelike vectors in the same timecone and X, is spacelike
vector then then there is a central angle 61, a hyperbolic angle 5 and there are
Lorentzian timelike angles 67, 6. Thus

r, = 51 COSh01 and To = 52 sinh92

y1 = 0&;sinh#; and ys = —cosh¥.
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As a special case if we take A\; = Ay = 0, A3 = r = constant, then we obtain
that M and M/ are parallel surfaces. Hence we give the following corollaries.

Corollary 3.1. Let M and M, be parallel surfaces in E}. Let ki and ko denote
principal curvature functions of M and let {¢y, Py} be orthonormal basis such that
@u and ¢, are principal directions on M. Let us denote the angle between X,, € T, M
and ¢, ¢y by 01, 02 respectively and the angle between Y, € T,M and ¢, ¢, by
61, 05 respectively. f.(Xp) and f.(Y,) are conjugate tangent vectors if and only if

(3.7) e1k1(1 + rki)z1yr + e2ka(1 + rkh2)22y2 = 0.
Proof. Since
pi = ki(1+rky),
py = 0,  pu3=0,
wy = ko(1+rks)
from (3.1) we find (3.7). O

Corollary 3.2. Let M and M, be parallel surfaces in Ef Let k1 and ko denote
principal curvature functions of M and let {¢,,, ¢y} be orthonormal basis such that
¢ and ¢, are principal directions on M. Let us denote the angle between X,, € T, M
and ¢, ¢, by 01, Oz respectively and the angle between Y, € T,M and ¢, ¢, by
01, 05 respectively. f.(Y,) are conjugate tangent vectors if and only if

(a)Let N, be a timelike vector then

k1(1+ rky) cos by cos 6y + ka(1 + rko) cos Oz cos 05 = 0.

(b) Let ¢, be a timelike vector.
(b.1) If X, and Y, are spacelike vectors then

—8101k1(1 + rky) sinh 61 sinh 0] + 6285k2(1 + rks) cosh 62 cosh 6, = 0.
b.2) If X,,,Y, and ¢, are timelike vectors in the same timecone then
prLp
—k1(1 4 7k1) cosh 0y cosh 6 + k(1 + rk2) sinh 3 sinh 65 = 0.

(b.3) If X, and ¢, are timelike vectors in the same timecone and Y, is spacelike
vector then

81k1(1 4 rkq) cosh 0y sinh 0] + 6205k (1 + rks) sinh 6 cosh 65 = 0.

(b.4) If Y, and ¢, are timelike vectors in the same timecone and X, is spacelike
vector then

81k1(1 + rky) sinh 61 cosh 0] + 0205k (1 + 7ko) cosh 05 sinh 65 = 0.

(c) Let ¢, be a timelike vector.
(c.1) If X, and Y, are spacelike vectors then

§101k1(1 + rky) cosh 6y cosh 0] — 6285ka(1 + rke) sinh 6 sinh 6 = 0.
(c.2) If X,,, Y, and ¢, are timelike vectors in the same timecone then
8101k1(1 + rky) sinh 61 sinh 0] — ko (1 + rkz) cosh 63 cosh 65 = 0.

(c.3) If X, and ¢, are timelike vectors in the same timecone and Y, is spacelike
vector then

8101k1(1 + rky) sinh 01 cosh 6] + d5k2(1 + rks) cosh O sinh 65 = 0.
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(c.4) If Y, and ¢, are timelike vectors in the same timecone and X, is spacelike
vector then

0101k1 (1 + rk1) cosh 01 sinh 6] + daka (1 + k) sinh 65 cosh 65 = 0.
For the above equations
- 1,  =; is positive o
b= { -1, x; is negative ’ i=(1,2)

and

5 — 1, Y; 18 positive i = (1,2)
-1, vy, is negative ’ T

4. ASYMPTOTIC DIRECTIONS FOR SURFACES AT A CONSTANT DISTANCE FROM
EDGE OF REGRESSION ON A SURFACE IN B3

Theorem 4.1. Let M7 be a surface at a constant distance from edge of regression
on a M in E}. Let ki and ke denote principal curvature functions of M and let
{¢u, ds} be orthonormal basis such that ¢, and ¢, are principal directions on M.
fo(X,) € Tf(p)(Mf) is an asymptotic direction if and only if

(4.1) piat + ereapszirs + iz =0
where
(4'2) Ty = <Xp7 ¢u> ’ L2 = <X;D’ ¢U> )
pi = e (l+ Ask1)® — Mki(ereapm Arkr + podoks),
py = eapa(l+ )\3]@‘2)2 — Aeka(padk1 + €162 0ks)
terus(L+ Ask1)® — ki (e1e2psAiky + padaks),
s = eopa(l+ )\3k2)2 — Aoka(psAikr + e162paN0ks).

Proof. Let f.(Xp) € Typy(M7). Then let us calculate f.(X,) and SY(f.(X))).
Since ¢,, and ¢, are orthonormal we have
Xp = &1 <Xp7 ¢u> ¢u + &2 <Xp7 ¢v> ¢v
= E1Z10y + E2T20y
Further without lost of generality, we suppose that X, is a unit vector. Then
(4.3) [(Xp) = ea1x1fu(du) + 222 fu(dn)
= a1Z1¢y + €222ty

On the other hand we find that

(4.4)
Sf(f*(Xp)) = 51$1Sf(1/}u) +€2$25f(¢v)
= a1y (1 + Ask1)du + pa(1 + Aska)do + (1adik + pag1doka) N)
+eoxa (s (1 + Ask1) gy + pa(1 + Asko) oy + (uzeaA1k1 + pag1Aaka)N)
Thus using equations (4.3) and (4.4) in equation (2.4) we obtain (4.1). O

Corollary 4.1. Let M7 be a surface at a constant distance from edge of regression
on M in E}. Let ky and ky denote principal curvature functions of M and let
{bu, v} be orthonormal basis such that ¢, and ¢, are principal directions on M.
Let us denote the angle between X, € T,M and ¢y, ¢, by 01, 02 respectively.
f«(X,) € Tf(p)Mf is an asymptotic direction if and only if
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(a)Let Ny, be a timelike vector then
i cos? 01 + 5 cos 01 cos Oz + 115 cos? 6y = 0.

(b) Let Ny, be a spacelike vector.
(b.1) If X, and ¢, are timelike vectors in the same timecone then

i cosh? 0 + O3 cosh 6y sinh Og + p sinh? 6y = 0.
(b.2) If X, and ¢, are timelike vectors in the same timecone then
i sinh? 0, + 015 sinh 61 cosh 05 + uj cosh? 0y = 0.
(b.3) If X, is a spacelike vector and ¢, is timelike vector then
uy sinh? §; — 01025 sinh 64 cosh 62 + 115 cosh? 6y = 0.
(b.4) If X, is a spacelike vector and ¢, is timelike vector then
i cosh?6; — &, da 5 cosh 61 sinh 0o + 5 sinh? 6, = 0.
Abovementioned p3, 1y and pi are given in (4.2) and

1,  x; is positive

o= { -1, x; is negative ’ i=(1,2).

Proof. (a) Let N, be a timelike vector. In this case #; and 6, are spacelike angles
then

1 = (Xp,¢u) =cosby

x2 = (Xp,¢y) = cosbs.

Substituting these equations in (4.1) the proof is obvious.

(b) Let N, be a spacelike vector.

(b.1) If X, and ¢,, are timelike vectors in the same timecone then there is a hyper-
bolic angle ¢; and a Lorentzian timelike angle 6. Since

xr1 = —coshf; and x5 = d2sinh 6y

the proof is obvious.
(b.2) If X, and ¢, are timelike vectors in the same timecone then there is a
Lorentzian timelike angle #; and a hyperbolic angle 6. Thus

x1 = 01sinhf; and z9 = — cosh6s.

(b.3) If X, is a spacelike vector and ¢,, is timelike vector then there is a Lorentzian
timelike angle 61 and a central angle #5. Thus

x1 = 01 sinh#; and x5 = d2 cosh 0s.

(b.4) If X, is a spacelike vector and ¢, is timelike vector then there is a central
angle 61 and a Lorentzian timelike angle 65. Thus

z1 = d1coshf; and x5 = do sinh O5.

]

As a special case if M and M, be parallel surfaces from (4.1) and (4.2) we obtain
that f.(X,) € Ty M, is an asymptotic direction if and only if

erki(1 4 rky)a? 4 e2ka(1 + rko)a3 = 0.
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Corollary 4.2. Let M and M, be parallel surfaces in E}. Let ky and ko denote
principal curvature function of M and let {¢,, Py} be orthonormal basis such that
@y and ¢, are principal directions on M. Let us denote the angle between X, € T, M
and ¢y, ¢y by 01, O respectively. f.(X,) € Ty M, is an asymptotic direction if
and only if

(a)Let Ny, be a timelike vector then

E1(1 4 rky) cos? 01 + ko(1 4 rky) cos? y = 0.

(b) Let N, be a spacelike vector.
(b.1) If X, and ¢, are timelike vectors in the same timecone then

—k1(L+71kqy) cosh? 6, + ka(1 + ko) sinh? 6, = 0.

(b.2) If X, and ¢, are timelike vectors in the same timecone then

k1 (1 4 rk;) sinh® 6; — ko(1 4 ko) cosh? 6, = 0.

(b.3) If X, is a spacelike vector and ¢, is timelike vector then

—k1(1+1kqy) sinh? 6, + ka(1 + rko) cosh? 6, = 0.

(b.4) If X, is a spacelike vector and ¢, is timelike vector then

1

[7

8

9

(10]
(11]
(12]

(13]

k1 (1 + k1) cosh? 6 — ky(1 + rky) sinh? 6 = 0.
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SOME GRUSS TYPE INEQUALITIES FOR THE
RIEMANN-STIELTJES INTEGRAL WITH LIPSCHITZIAN
INTEGRATORS

M.W. ALOMARI! AND S.S. DRAGOMIR?3

ABSTRACT. In this paper several new inequalities of Griiss’ type for the Riemann—
Stieltjes integral with Lipschitzian integrators are proved.

1. INTRODUCTION

The Cebysev functional

b b b
1) T = [ 10s0d- [ fwa [ g

has interesting applications in the approximation of weighted integrals as one can
has from the literature below.

Bounding Cebysev functional has a long history, starting with Griiss inequality
[14] in 1935, where Griiss had proved that for two integrable mappings f, g such
that ¢ < f(z) < ® and v < f(x) < T, the inequality

(1.2) T, 9l <7 (@=¢) (T —7)

==

holds, and the constant i is the best possible.

After that many authors have studied the functional (1.1) and several bounds
under various assumptions for the functions involved have been obtained. For new
results and generalizations the reader may refer to [2]-[15].

A generalization of (1.1) for Riemann—Stieltjes integral was considered by Dragomir
in [10]. Namely, the author has introduced the following Cebysev functional for the

Date: January 1, 2013 and, in revised form, February 2, 2013.
2000 Mathematics Subject Classification. 26D10, 26D15.
Key words and phrases. Griiss inequality, Function of bounded variation, Hélder continuous

functions.
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Riemann—Stieltjes integral:

b
(1.3) T@mwzg@%aa/fmgwmm

b b
_m/ f(t)du(t)~m/ g (t)du(t)

under the assumptions that, f, g are continuous on [a,b] and u is of bounded vari-
ation on [a, b] with u(b) # u(a).

By simple computations with Riemann—Stieltjes integral, Dragomir [10] has in-
troduced the identity,

’ a
(L4) T(f gu):= m/ {f (t) — f();f(b)}

b
XP@UMFM@/NWWJW@’

to obtain several sharp bounds of the Cebysev functional for the Riemann—Stieltjes
integral (1.3).

In this work, several sharp inequalities of Griiss’ type for the Riemann—Stieltjes
integral with Lipschitzian integrators are proved.

2. THE RESULTS

We recall that a function f : [a,b] — C is p-Hy—Holder continuous on [a, b], if

[f (&) = f(s)| < Hplt — sl

for all ¢,s € [a,b], where p € (0,1] and Hy > 0 are given. If p = 1 we call f
H ¢—Lipschitzian.
We are ready to state our first result as follows:

Theorem 2.1. Let f : [a,b] — R be a p-Hy-Hélder continuous on [a,b], where
p € (0,1] and Hy > 0; are given. Let g,u : [a,b] — R be such that g is Lebesgue
integrable on [a,b] and there exists the real numbers m, M such that m < g(z) < M
for all x € [a,b], and u is L,—Lipschitzian on [a,b] then

L,H; (M —m)

~(b—a)?"*t.
i) ) —u@ Y

(2.1) T (f,g9;u)] <
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Proof. Taking the modulus in (1.4) and utilizing the triangle inequality, we get

<b>i<>/ [f ©)- W]

%’U@)/ g (s)du (s)] du (t)

u

T (f, g;u)| =

g(t) -

®)
<pwen [, [fo- T
X g(t)—M/abg(s)du(s) dt
—M'é% g(”‘u(b)iu(a) /abg<s>du<s>

Ft) - dt

b
X/
a

L, .Lu(M—m) . b o .
STu® —w@] @ —u@ z/a[(t )'+ (b= 1)) dt
_LiH; (M -—m)

P (u(b) —u(a)’

since m < g(z) < M, for all x € [a, b], then

f(a)Jrf(b)‘
2

(b—a)"*?

1 b Il ) — g (s)] du(s)
90~ g [, o) < [
L., b
< ey | e — el as
L,(M—m W
22) S Tu () —ufa) 0~
which completes the proof. O

Corollary 2.1. Let g,u be as in Theorem 2.1. If f : [a,b] — R is Ly-Lipschitzian
on [a,b], then

L2Ls (M —m)
2 (u(b) — u(a)®
Remark 2.1. Under the assumptions of Theorem 2.1, we have

Hy
(p+1)
In particular, if f is Ly—Lipschitzian, then

(2.3) T (f, g5u)] < (b—a)’

(2.4) 1T (f,9) < (M —m)-(b—a)".

(25) T(f,9) < 3Ls (b~ a) (M —m).
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Theorem 2.2. Let g,u be as in Theorem 2.1. Let f : [a,b] — R be a function of
bounded variation on [a,b], then we have

1 L, (M —m) b
2.6 T(f,g;u)] <=
(2.6) |7 (f, ;)| 2 (a (b _u(a)) \a/

Proof. Since u is L,~Lipschitzian on [a,b], as in Theorem 2.1, we have

- sup

b
R ICET IO A Ry [ oau)
. f(a);f(b)‘dt

Since m < g < M, by (2.2) we have

b
T e L s @]
w (M= m b—a
CCECT I
Now as f is of bounded variation on [a, b], we have
[0~ L2IO)_ f()—f(a);f(t)—f(b)‘
te(a,b] te(a,b]
23 <L 110 - F@I+ 0 - r®l< 2V 0.
-2 t€la,b] 2 a

for all ¢t € [a,b]. Finally, combining the inequalities (2.7)—(2.8), we obtain the
required result (2.6). O

Theorem 2.3. Let g,u : [a,b] — R be such that g is of bounded variation on [a,b],
and u be Ly—Lipschitzian on [a,b], then we have

(2.9) T (f,g9:u)l

HyL2(b—a)PT? b . . ..
m'va (g), ’LffZS Hf—p—HoldeT'

Ly(b=a)® b b if fis of bounded variati
30t i@y Va (9) - Va (), if [ is of bounded variation

where, L,,Hy >0 and p € (0,1] are given.
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Proof. Using (1.4) we may write

(2.10) |7 (f,9;u)]

+ f(b) 1 b
~ |u(b) —u(a) 2 ’ g(t) u(b)_u(a)/a g (s)du(s)|dt
b
<u<b>Lu<>>/ ro) = LN o) - g o au o)
2 ’ s
S(u(b)—u(a))z/a Uf(t) ‘ /Ig Ids] dt.

but since g is of bounded variation then we have,

b
(2.11) /|g s)|ds < sup |g(t s)| - /ds< (b—a)\/ (9)

s€la,b]
Therefore, if f is of p—-Holder type, then we have

|7 (f, g;u)l
L2 (b—a)

1 b b
w'ww—m»?'v(g)'/a (15 (1) = £ ()] + 1 (t) — £ ()]} dt

Hy _Lib-a) oo [0 o
< et VO [ el o
_ Hf L2(b )P+2 . b

T (D (u() —u(a)? V).

which prove the first part of inequality (2.9).
To prove the second part of (2.9), assume that f is of bounded variation, then
by (2.10) we have

T (f,9;u)

w02 [ sra]a

a

IN

and thus the theorem is proved. ([

Remark 2.2. Under the assumptions of Theorem 2.3, we have

(2.12) [T (f,9)]

L (b—a)"- Vo (9), if fis Hy — p—Holder
<
%\/Z (9) - \/Z f, if f is of bounded variation

where, Hy, > 0 and p € (0,1] are given.

An improvement for the first inequality in (2.9) may be stated as follows:
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Corollary 2.2. Let g,u be as in Theorem 2.8 and f : [a,b] — R be of p-Hy—Holder
type on [a,b], then

p+2 b
L2H; (b—a) \/(g)

(2.13) T (f,9;u)] < 2 (a (D) — u (@)

Proof. By Theorem 2.3 we have

1T (f,g;0)]
LQ b
R / Uf(t)— '/m |ds]
Bba) f(a)+f(b)’dt
= ) - u(a)? 2
Bo—a? o e L@
" (u(b) —u(a)) 2\/ teapb] ) 2 ‘

o v Vo (57

and since f is of p—H j—Holder type on [a,b], we have

f(t)_f(a);f(b)’_ f(t)f(a);rf(t)f(b)’

<SP F @I+ 5170~ f )

Bolt—ay + -y,

IN

it follows that

(2.14) sup
t€la,b]

f(t)—f(a)—;f(b)’ < (bga)P.

which completes the proof. O

Remark 2.3. Under the assumptions of Corollary 2.2, we have
b

(215) T(9)l < 557 (- 0"\ (9),

a

which improves the first inequality in (2.12), where Hy > 0 and p € (0, 1] are given.

Theorem 2.4. Let g,u : [a,b] — R be such that g is of ¢-Hy—Hélder type on [a,b],
and and u be L, —Lipschitzian on [a,b], then we have

(2.16) T (f,g;u)]

_q)at2 . . . .
(q+1)(q(f2)(1)14(b)7u(a))2 . \/Z (f), if f is of bounded variation

<L)H,-
Hf(b—a)p+q+2
27 (q+1)(¢+2) (u(b) —u(a)*’

where, Ly, Hy, Hy >0 and p,q € (0,1] are given.

if fis Hy — p—Holder
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Proof. Assume that g is of ¢-H,~Hélder type on [a, b] and f is of bounded variation
on [a, b]. Using (1.4) then we may write

\T(f,g;U)l_ Tt ;rf()‘
b
X 9()_m/a g (s)du(s)|dt
T F@) O P
(U(b)U(a))Q/a £ ) 5 1)~ g (s)) du (s)]
L2 b
S(u(b)u(a))z/a [f(t) ’ /Ig |ds]dt
(2.17)
L2

- sup

o - e \/V ot '““1

L%Hg b b .
SZ(u(b)—u(a))Q\/(f)/a [/a |t—s| dS]dt.

a

b

m((f)’i—[—[z(CL))z.\/(f)./ab[/at(s—a)qu—k/tb(b—s)quldt

a
b

2 b 7aq+1 9+l
A, .\/(f)./[@ )4 (b1 ]dt

2(u(b) —u(a)® ) q+1

L2H, ’ (b—a)*?

T () —ula)’ '\,/(f)' (q+1)(g+2)’
which proves the first inequality in (2.16).

To prove the second inequality in (2.16), assume that f is of p—H j—Hélder type
on [a,b], then by (2.17) we have

f(t)—f(a);'f(b)‘ < u (b;ay

which together with (2.17) proves the second part of (2.16), and thus the proof is
established. O

(2.18) sup
t€la,b]

Corollary 2.3. Let g,u: [a,b] — R be respectively; Ly, L,~Lipschitzian on [a,b],
then we have

(2.19) T (f, g;u)l
% . \/Z (f), if f is of bounded variation
< LiLg ’
%, of fis Hf —p— Holder

where, Hy, Hy > 0 and p,q € (0,1] are given.
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Remark 2.4. Under the assumptions of Theorem 2.4, we have

(2.20) |7 (f,9)]

((1(%&)::-2) . \/Z (f), if fis of bounded variation

<H,
H(b—a)Pte . )
m’ if fis Hf —p — Holder

where, Hy > 0 and p,q € (0, 1] are given. In particular, if g is L,~Lipschitzian,

then

(2:21) [T (f,9)]
t(b—a)- VE(f),  if fis of bounded variation

a

%Lf (b— a)2 , if fis Ly — Lipschitzian
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INTEGRAL TRANSFORM METHOD FOR SOLVING
DIFFERENT F.S.I.LES AND P.F.D.ES

A. AGHILT* AND M.R. MASOMI

ABSTRACT. In this work, the authors used Laplace transform to obtain formal
solution to some systems of singular integral equations of fractional type. In
the last section, the authors considered certain non homogeneous fractional
system of heat equations with different orders which is a generalization to the
problem of heat transferring from metallic bar through the surrounding media.
Ilustrative examples are also provided.

1. INTRODUCTION AND DEFINITIONS

Fractional differential equations have been the focus of many studies due to their
frequent appearance in various fields such as chemistry and engineering, physics.
The main reason for success of applications fractional calculus is that these new
fractional order models are more accurate than integer order models, i.e. there are
more degrees of freedom in the fractional order models. The Laplace transform
technique is one of most useful tools of applied mathematics. Typical applications
include heat transfer, diffusion, waves, vibrations and fluid motion problems. How-
ever, contrary to expectations, it is surprising to find that the popularity of Laplace
transforms, in comparison to numerical or other methods, is gradually diminishing
and Laplace transform is less fashionable today than they were a few decades ago.
Nevertheless, the applications of Laplace transforms continue to be an important
part of the mathematical education received by students in various fields of natu-
ral sciences and engineering. The fractional diffusion equation, the fractional wave
equation, the fractional advection-dispersion equation, the fractional kinetic equa-
tion and other fractional PDEs have been studied and explicit solutions have been
achieved by Mainardi, Pagnini and Saxena [18], Langlands [13], Mainardi, Pagnini
and Gorenflo [17], Mainardi and Pagnini [15,16], Yu and Zhang [25], Liu, Anbh,
Turner and Zhang [14], Saichev and Zaslavsky [21], Saxena, Mathai and Haubold
[22], Wyss [24] and several other research works can be found in other literatures.
In these works, the techniques of using integral transforms were used to obtain the

1991 Mathematics Subject Classification. 26A33; 34A08; 34K37; 35R11.

Key words and phrases. Caputo fractional derivative; Time fractional heat equation; Laplace
transform; Fractional order singular integral equation system; Kelvin’s functions.
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formal solutions of fractional PDEs. Integral transforms are extensively used in
solving boundary value problems and integral equations. The problem related to
partial differential equations can be solved by using a special integral transform
thus many authors solved the boundary value problems by using single Laplace
transform. Laplace transform is very useful in applied mathematics, for instance
for solving some differential equations and partial differential equations, and in
automatic control, where it defines a transfer function.

The Caputo fractional derivatives of order a > 0 (n —1 < a@ < m,n € N) is
defined by

1 M)
C na
Dy f(t) = dz.
< DT r(nfo»/a (t— oy
The Laplace transform of a function f(¢) denoted by F(s), is defined by the
integral equation

LU®) = [ e e = F(s).
0
Definition 1.1. The inverse Laplace transform is given by the contour integral

10 =5 [ T et p(s)as,

a 277” —1i00
where F(s) is analytic in the region Re(s) > c.

Theorem 1.1. Forn —1 < a < n, we can get
n—1
L{ED; f()} = 5" F(s) = 3 5710 0).
k=0

Two-parameter Mittag-Leffler function and Wright function is given by

oo Zn
Fes®)= 2 Fam 5y

[ee] Zn
W (a, B; ) :;m'

when «, 3,z € C.

Theorem 1.2. Schouten-Van der Pol Theorem: Consider a function f(t)
which has the Laplace transform F(s) which is analytic in the half-plane Re(s) >
s0- We can use this knowledge to find g(t) whose Laplace transform G(s) equals
F(¢(s)), where ¢(s) is also analytic for Re(s) > so. This means that if

Gs) = F(é(s)) = / " () exp(—o(s)r)dr,
and

1 c+i00

o(t) = — / F(é(s)) exp(ts)ds,

27TZ —ico
then
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o= [ 100 (5 [ " exp(—o(s)7) explt)ds ) dr.

210 Joioo

Proof. See [10]

2. FRACTIONAL ORDER SINGULAR INTEGRAL EQUATIONS

The mathematical formulation of physical phenomena often involves Cauchy
type, or more severe, singular integral equations. There are many applications in
many important fields, like fracture mechanics, elastic contact problems, the theory
of porous filtering contain integral and integro- differential equation with singular
kernel. In following section, Laplace transform has been used to solve certain types
of singular integral equations of fractional order. We solve a fractional order singular
integral equation system. Special examples are mentioned.

Lemma 2.1. The fractional Fredholm singular integro-differential equation of the
form

o0

(2.1) § DYp(x) = f(z) + A ; (

where (0) =0, 0 < a <1 and v > —1 has the formal solution as

1 c+ioco S_QF(S) T %F(l)
2.2 = — ST s/ o5 s,
(2:2) o) = 55 / 1- a2 ¢

Proof. Let L(p(x)) = ®(s) and L(f(z)) = F(s), then by using the Laplace
transform of (2-1) we have the following relation

)20, (2Vxt)e(t)dt,

+1 8

—i00

(2.3) s“D(s) = F(s) + AS%@(E).

In relation (2-3) we replace s by 2, to obtain

1 1
Y= (=
8) (s
Combination of (2-3) and (2-4), ®(s) can be obtained as

(2.4) sTYD( )+ As" T B(s).

ST (s) + A F(5)
1-— X2 '
By using the complex inversion formula, relation (2-5) leads to the following,

(2.5) D(s) =

T 2mi

L[ sTOR(s) ¢ AF(L)
plr) = / , e
c—100
Example 2.1. Solve the following fractional singular integral equation
€D p(x) = +A/°°(””)%J (@VaD)o(t)dt
zP\T) = —F/— 7 1 T )
0 ¥ s o L ¥

Solution. By using the formula (2-2), we get
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1 c+ioco SigF(S)—F%F(l) 1 c+ico %—%—A
o) = — s 7 estg = — 6 2 esr g
21 c—ico 1-— )\2 211 c—ico 1-— )\2
1 z6
= ——(==+\).
1-A2'T(%)

Lemma 2.2. The system of fractional Fredholm singular integro-differential equa-
tion of the form

FDzer(0) = )+ [ T

=+ 8

)LV ()
§Dtea(n) = 9@+ [ (DERVDRL
0

where ©1(0) = ¢2(0) =0 and 0 < a, B < 1 has the formal solutions
(2.6)

o) =g [ (v (Fo 4 2 S0

A 1 1 s
T2 G(S)> e*ds,
(z) = 1 /C+i°° sTOG(s) + 2 G(L) vy

L 12 © s
Proof. Applying the Laplace transform term wise to both equations and using
the initial conditions yields

2 qv—
—i00 1— A2y

2.7)

(28) Saq?l(s) = F(S) + SV%(I)Q(}),
(2.9) 2By (s) = G(s) + SI%%(})

Following the same procedure as in lemma 2.1, we get ®o(s) as

s7*G(s) + 722 G(1)
@ — S S
2(8) 1 _ /\2 )
then, changing s to < leads to

Dy
By replacing ®3(1) in (2-8

®w | =

_ s°G(1) + A IG(s)
)= 1— A2

, we will have

@1(5):S—a<F(s)+ Az G(8)>Jr A1 1

1—M2gv—nr 1— A2 gvtl G(§>
At this point, using the complex inversion formula, the final solutions are as
follows

R N G (O Ly

p) —
—ico 1— A2 sv=#

~—

A 1

1 T s
1 — N2 gvtl G(s)> e ds,
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e”ds.

(z) = 1 /C+i°° sTOG(s) + A G(2)
p2l@) = 55 =V

c—100

Example 2.2. Let us solve the system

§Dipi(a) = —— +A/ (Z)175 (2v/at)pa(t)dt,
2V a3 o t7 2

§Dboa(o) =142 | T ()i Ve (tr,

where ¢1(0) = ¢2(0) =0 and 0 < «, < 1. Direct use of relations (2-6) and
(2-7), leads to

= L' —_—t——
o1(@) {\/5 - 245 "1 43

e~ s n 4N2p3 n 2X\x2
VT 3ym(1=22) (1= )A2)’

s s %xé + \/%
pa(z) = L~ T :

2.1. Evaluation of the Integrals. In applied mathematics, the Kelvin func-
tions Ber,(xz) and Bei,(x) are the real and imaginary parts, respectively, of
J, (ze3™/*) where z is real, and J,(2) is the v-th order Bessel function of the first
kind. Similarly, the functions Ker,(z) and Kei,(z) are the real and imaginary
parts, respectively, of K, (ze™/*), where K,(z)is the v-th order modified Bessel
function of the second kind. These functions are named after William Thomson,
1st Baron Kelvin. The Kelvin functions were investigated because they are involved
in solutions of various engineering problems occurring in the theory of electrical cur-
rents, elasticity and in fluid mechanics. One of the main applications of Laplace
transform is evaluating the integrals as discussed in the following.

Lemma 2.3. The following integral relationship holds true

> bei(V2N)d\
. ﬁ = EJO(l)IO(l)-

Proof. Let us define the following function

> bei(V2x\)dA
I(x) = Y, v B

Laplace transform of I(z) leads to

7 bei(V2aX)dA
L{I(:c)}—/o e (1 m) dx.

By changing the order of integration, which is permissible, we obtain
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L{I(z)} = /100 \/% (/OOO eswbei(mmx> d,

or

L{I(z)} = /100 \/%(é sin %)d/\.

At this point, let us introduce the new variable A = cosh £, we get the following

L{I(z)} = 1/000 sin((2s) ! cosh €)d¢,

using the following well-known integral representation for Jy(p)

Jo(p) = g/0 sin(¢p cosh ¥)dd.

™
One gets finally

L)} = (o),

now, taking inverse Laplace transform of the above relationship leads to

1
I(z) = LY Jo(=
(#) = L {5 dol50)}
Letting x = 1 we get

5 (VR (V).

> bei(V2N)d\  w
) ﬁ = §J0(1)IO(1)-

Lemma 2.4. The following integral relations hold true

1
1 1
/ " ber(2vInz)dx = — cos —,

0 K H

/1 ber(2v/1n )
0

Jz

Proof. Let us define the following function

dxr = 2cos 2.

1
I1(¢) = / o# ber(2y/(Inz)€)da.
0
Laplace transform of I(¢) leads to

L{I(¢)} = /0 h e st ( /O lzﬂflber(z (lnx)f)da:> d€.

By changing the order of integration, which is permissible, we will have

L{I(&)} :/0 o /000 e *Sber(2y/(Inx)€)déda.

But the value of inner integral is as following

(Inx) .

/OO e *Sber(2y/(Inz)€)de = écos

0
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To prove the second relationship, by setting this value in the integral, one gets

1 1
L{I(§)} = / x”_lé coS (lnx)dm = 1/ 2! cos Mdm.
0 0

S S s
At this point, we introduce the new variable Inz = —w. One gets after easy
calculation
1 [ w 1 s
L{I(E)} = f/ e cos(Lydw = L{——5 3.
s Jo ST e e

Taking inverse Laplace transform to obtain

1
I1(¢) :/o " tber(2y/(Inx)€)dx = iCOS%

from the above relationship, we get

1
I(1) = Iy(p) = / " ber(2vInz)dr = 1 cos i
0 H K

In the above integral, by setting 0.5 for the parameter,we obtain the second
assertion

\/E = 2cos 2.

10(0-5)2/0 ber(2vInz)dx

3. BOBYLEV-CERCIGNANI THEOREM AND THEIR APPLICATIONS

Bobylev and Cercignani developed a theorem [8] concerning the inversion of
multivalued transforms that are analytic everywhere in the s— plane except along
the negative real axis. The theorem is as follows:

Theorem 3.1. Bobylev-Cercignani Theorem: Let f(t) denote a real-valued
function, where its Laplace transform F(s) exists. Let F(s) satisfy the following
hypothesis:

1) F(s) is a multi-valued function which has no singularities in the cut s— plane.
The branch cut lies along the negative real azis (—oo,0].

2) F*(s) = F(s*), where the star denotes the complex conjugate.

8) F=(n) = lim F(ye™*") and F*(n) = (F-(n))".

4) F(s) = o(1) as |s| — oo and F(s) = o(‘?ll) as |s| — 0, uniformly in any
sector |arg(s)| <m—mn, 0 <n <.

5) There exists € > 0, such that for every m —e < ¢ < , F(;jim) € Li(RT)
and |F(re*?)| < a(r), where a(r) does not depend on ¢ and a(r)e™®" € Li(RY)

for any 6 > 0.Then

ﬂﬂ=£mhmFka4Wn

In following lemma, we apply this theorem.
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Lemma 3.1. The following relationship holds true

1 n—+ s« 1 [
1 tn
L {s 1 exp (—x h\ s“) } = —/0 Im(F~ (n))e "dn.

where 0 < a < 1, A\, u >0 and

o~y 7 eos(5) p 0, — 6
Im(F~(n)) = - sin <x1 s sin(122)> .
n— P2

Proof. F(s) satisfies all of the conditions listed in the theorem 3.1. Then

_ ) iy 1 naefﬂai +/~L
Fo () = limFpe )= —— exp | —ay| Lo +H
(77) ¢1£>I‘1n_ (776 ) ne—ﬂ'l + 1 exp ( €T ,r]ae—'rron + )\>
1 i(61 —63
= exp <I &6 (629))
1—-mn V P2
1 0, —6 0, —06
= oo <_z, /%(cos(%) —|—isin(122))> :

p1 = V02 4 2un cosa + p2, pa = /12 + 22X cos o + A2,

where

(o 2rt] a L
0, = —tant | L AT ) g o tan~t (LT ) g <9< ).
n*cosam + 1 n*cosam + A

Image part of F~(n) is founded as

_,.\/%Cos(glg%) _
Im(F~(n)) = c sin <x plsin(M)) .

n—1 p2 2
Finally, the inverse Laplace transform is as

=1 [ " Im(F~ (n))e ",

™

Problem 1. Let us consider the following four terms partial fractional differential
equation

0 0%u(x,t) OPu(z,t) ou(z,t)
il =\ t)—b
A T A VT ut) ox
where 0 < a<1,0<<1,0<z <00, t,a,b>0 with the boundary conditions
~y—1

(7)

and the initial conditions u(zx,0) = uy(x,0) = 0.

u(0,t) = (v > O),wllrlgo lu(z, t)] < oo,
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Solution. Applying the Laplace transform of the equation and using the bound-
ary and initial conditions leads to differential equation with respect to x as

as? — \
s*+b
when L{u(z,t)} = U(x, s). Solution of the above equation yields

1 F—
U(z,s) = - &XP (xas > .

Ug(z,t) + U(z,t) =0,

s*¥+b
U(z, s) satisfies all of the conditions explained in the theorem 3.1. Hence

B ) iy 1 anPe=™0 — )
UZ(z.n) = lim Uz, ne ”) = e P (—xmemiﬂ,

eTr'yi ( (anﬁe—ﬂﬁi _ )\)(naeﬂ'ai + b))
exp [ —z ;
n P

where p = 7% + 2bn“ cos ma + b2. Therefore

Im(U_(xan)) =
1 { abn® cos B + an®*P cos(a — B)T — M\ cos am — )\b}
—exp< —x
n p
B sin(a — B)m — abn® sin B — An® si
« sin {7r7 _ o sin(a — )7 — abn® sin fr — An® sin cwr} .
p

Finally, u(z, t) is found to be

1 o0
u(zx,t) = f/ Im(U™ (z,n))e "dn.
T™Jo
4. PARTIAL FRACTIONAL DIFFERENTIAL EQuATION (PFDE) wiTH MOVING
BOUNDARY

In PFDE problems, Laplace transforms are particularly useful when the bound-
ary conditions are time dependent. We consider now the case when one of the
boundaries is moving. This type of problem arises in combustion problems where
the boundary moves due to the burning of the fuel [10]. Such fractional partial
differential equations have not been studied in the literature.

Problem 2. Let us solve the following three terms time-fractional heat equation
with moving boundaries

0%u(x,t)  ,0%u(x,t) Ou(x,t)
(4.1) P A Ox

where A € R, ft < x < oo, t > 0 and subject to the boundary conditions

0<a<l),

1 1 .
u(z,t) " = ﬁexp(—g),wh_{rolo|u(x7t)| < 00,

and the initial condition u(z,0) =0 (0 < z < 00).
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Solution: We introduce the change of variable n = = — t. The above equation
can be reformulated as

aaw(nat) 8 11—« _ 282w(n7t) aw(nat)
T 68777 (oI, “w(n,t)) =a o2 +A o

where 0 < 7 < 0o, t > 0 subject to the boundary conditions

(4.2)

1 1
U}(O, t) = ﬁ exp(_E% nILHc}o ‘w(?’], t)l < 00,

and the initial condition w(n,0) = 0 (0 < n < o0). By applying the Laplace
transform of the equation (4-2), we obtain

PWmn,s) 1. B
on? +a72(31*0‘

oW (n,s) s°

(4.3) @

+ /\) W(n’ 5) =0,

with conditions

V3
w(0,s) = e—, lim |[W(n,t)| < cc.
WS

Differential equation (4-3) has the solution as

W(7775):eexp<—/\n_ﬁn_n\/l(sﬁ _’_)\)2_’_41(;92).

NG

Case 1: If a =1, then

—Vs
_ (B 77\/1 2)2
Wi(n,s)=e 7 exp( Nz B rA2+s .

Using the fact that

~1 n [ 1 1N M
L {exp (a 4a2(5+)\)2+5>}e 102 me Ta%t

and using the Laplace transform inversion and then applying the convolution
theorem in this transform, we get w(n,t) as

wn,t) = L7H{W(n,s)}
L [t T T a2
= N e_(>‘+ﬂ) 242 e e_ﬁﬂ—’_)‘) Te_4227— dr.
2am 0o VT3t —T)
Therefore we obtain u(z,t) as following
.
e 4(t—T) 1

o812
(ﬂ+>\)27—€_($4u§:) dr.

e 4a2

t
(o, t) = TP o g [T TTT
2am 0o VT3t —1)

Case 2: If a # 1, then
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C 9q25l-a 2\ gtg2—2a adgl—a

) 1 2 25N dse
W(n,S)e‘;aé\/geXp<\/§ _bn ) B, 25 +;2+A2>,

and we can use the theorem 3.1, hence

A _mi
6_2077126\/& 2

W= (n,€) = lim W (n,ée %) = X

Bn n B2 28\ 48re—om
oxp <_2a2£1ae(o¢1)7ri "2\ atez—2aca—mi T dAgi—agla—mi = 1A

B e~ 3e% i3 —VE) Bne=emi p | B2e—2ami 4ga 2N )
= exp -\t (= - Je + A
\/E 2(126170‘ 2 a4€27204 a2 a4£17a

e~ 5e% (3 —VE)

v
Bn(cos am—isin aw) B2 cos 2 4e@ 28X [ B2 sin 2 4ee 28X .
e Qazzlfa = —%\/[ a4zgizuaw+( P —a4§17Q)COS°"’"+A2]—7’[ a45]2n72aaw+(7a2 —(14517.1)Sm(’”r
e_ 2)\;]2 ez(%_\/g) Bn(cos ar—isinar) n 8i
— e 2aZel—a —zVpe?
- Ve ’
where

« 2 * «
p:\/{52c052aﬂ'+(4§ 26 )Cosm+A2} +{6251n2aﬂ'+(4§ 26X

a2 ate-

atg2—2

a2 gi¢le aig2—2a

2 g a
1 % + (4fz - afgi‘a ) sin am ;
0 = —tan Foosoar _ ET T 5 (0< 0 <m).
Sadgzoza T (& — a4§1_(,)cosom + A

Then imaginary part of W~ (n, &) is

_2n
e 2a2 Bn cos am n

-1 cos £ . : 0
\/E e2aZ¢l-a 2 p 2 COS(\/E"‘ 2042@_%81110[7{4‘ g\/fmm 5)

Im(W~(n,§)) =

The formal solution will be as follows,

™

u(et) = L / T Im(W (o — B, €)e .

2
) sin om}
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5. A NON-HOMOGENOUS SYSTEM OF FRACTIONAL HEAT EQUATIONS WITH
DIFFERENT ORDERS

In this section, we consider certain non-homogeneous fractional system of heat
equations (different orders) which is a generalization to the problem of heat trans-
ferring from metallic bar through the surrounding media studied by V.A. Ditkin,
P.A. Prudnikov [9]. The basic goal of this work has been to implement the Laplace
transform method for studying the above mentioned problem. The goal has been
achieved by formally deriving exact analytical solution.

Problem 3. We consider the following system of fractional PDE with different
orders in Caputo sense

. 0%u v
(51) Dtu—&—’yU—l—F@—l—/\aa r—a 5
0%v  10v
2 <Dy — By = = i
(5.2) v =B or2  ror’

where 0 < o, < 1, t >0, -l <z <[, r>a and B,v € R with the boundary
conditions

u(z,0) =v(x,r,0) =0,u(-l,t) =u(l,t) =0,
and
v(z,a,t) = u(z,t), im v(x,rt) =0.

Solution: By taking the Laplace transform of relation (5-2), we get

72V + 1V + (in/5° — 6)%r%V = 0.
Let us assume that L{v(z,r,t)} = V(x,r,s), then one has

V(z,r,s) = c1Jo(in/s0 — Br) + e2Yy(in/ s — Br),

where Jy and Y are Bessel functions of the first and second kind of order zero,
respectively. Using this fact that lim v(z,rt) =0, we get

r—00

V(z,r,s) = c1Jo(in/s° — Br).

But v(z,a,t) = u(z,t), therefore

Jo(in/s% — Br)
Viz,r,8) = ——==U(x, s),
(z,7,5) To(iv/5 —Ba) (z,5)

where L{u(z,t)} = U(x,s). On the other hand, we have

8l = xT. S —iW/S[S— Jl(Z— '85_/601)
or | r=a Ula, )< ﬁJO(i\/ma)'

Applying the Laplace transform term wise to relation (5-1), we obtain

, J1(iy/8% — Ba) 1
U = Uy —iday/s® — gV Z P8 5y,
ﬁJo(iv 5% — fa) s
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or
(53) Usa — (U = -1,
where
. J1(iy/8% — Ba)
h(s) = s° Aay/s — gV Z P4
(s) =s*+y+iay/s ﬂJg(i\/ﬂa)

Differential equation (5-3) has the following solution

U(z,s) = c1 cosh(y/h(s)z) + cgsinh(y/h(s)z) + ﬁ(s)

Using the boundary conditions u(—I,t) = u(l,t) = 0 leads to

= (- Sy

Let us assume that

_ cosh(y/h(s)z)

Fle.his)) = cosh \/71
then we get
_ F(x,h(s))
Ule,s) = sh(s)
Now, if
T,s e—§h(s)
Lot} = T2 L ny =
then
ulont) = LU 9) = L () = [Tt
Finally, we will have
oot = L e - - SR
— -1 COSh(\/g.’L') _ -1 s(x— 1+ G_Qﬁx
= 1L {scosh(\/gl)} =1-L {e‘f( ! s(1 4 e—2Vsl) }
_ 1 _ZL {exp (2n—|—sl)l—x)\/§) 3 exp(—((2n—|—81)l+x)\/§)}
= 2n+ 1)l -z 2n+1)l+x
= 1- erfe(————) —erfe(—————) | .
g%< 2Vt 2Vt )

Also,
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Figure 1

hence

7?(5»15) = Lt_{

Case 1: Assume that § = 1, therefore

fen = Ltl{ Jslfﬂexp (—wa\/s—ﬁj'

(
(
T {\1[ exp (mm[ (“/EGD } .

The inverse Laplace transform is given by

i (G (om ) - [ o )

The integrand has a branch point at the origin and it is thus necessary to choose
a contour which does not contain the origin. We deform the Bromwich contour so
that the circular arc BDE is terminated just short of the horizontal axis and the
arc LN A starts just below the horizontal axis. In between the contour follows an
inclined path EH followed by a circular arcH J K enclosing the origin and a return
section K L meeting the arc LN A (see figure). As there are no singularities inside
this contour C, we have

[ Com)
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Now on BDE and LN A, we get

Lo (< L

so that the integrals over these arcs tend to zero as R — oco. Over the circular
arc HJK as its radius € — 0, we have s = ee’? , ¢ <0 < —¢. Thus

lim / — ex (z day/s=—Y""2 ) e*¥ds = 0.
R— o0 JHJK VS P ¢ \[JO(Z\/E‘I)

e—0

Along EH, s = ue'®, /s = \/ﬂe%, hence

R

e—0,0—m

/ —= exp [ ~Ehav/u E\\?Zi)et“du.

Similarly, along KL, s = ue™* /s = \/ue~ % then

I

e—0,0p—m

i e (o)

Consequently, we have

J1(iy/s5a) 1 1
A Sds = — ds + — d
27”/ \[exp< “ a\f Jo(iv/sa) s 2mi Jap * T omi BDE ’
1 1 1 1
+— ds + — ds + — ds + — ds = 0.
211 EH 211 HJIK 21 KL 211 LNA

The final result is as

L[ (o)
[ (o)

Thus we obtain

fEH = Ltl{ ! exp(—z'@aﬂw)}

Vs—p Jo(iv/'s — Ba)
le'Bt ooiex —&a qu(\/ﬂa) e du
2 [ e (CoavEE )

In case of 0 < § < 1, we get
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- —1 #ex —ithar/s — M
REn = L {\/ﬂ p( EAav/s ﬁjo(iﬁvsg_a))}

= / f1(&, )W (=08,0; —rt~%)dr.
Also, for 0 < 6 < 1,

o

falt) = L{W}—L {710 - psiyree)

- ZH’)"( : )Ltl{s—mz—le—fsa}

= L £)k gk

- Z(ﬁ)”( 2 >L { 76n+rlz }
n=0

_ S ( 2 (-F  tnak—3

- 7;)(7ﬁ) (n){; k! F(5n—ak—g+1)}'

Consequently

V(e = L G exp=€h(e)} = [ penfalt—min 0<a5<1

Finally, we obtain u(x,t) as follows

/ w6 bl €)de
[ e ( / e falt - n)dn)

= 2n+ 1)l —=x @Cn+ 1)+
X <1 - nz:% <erfc(2\/g) - eTfC(Q\/E)>> dg.

Now, we should determine the inverse Laplace transform of the following term

in/8% — fBr
V(z,r,s) = U(x,s)jog_\/ai;.
0(in/8% — Ba

u(z,t)

If § = 1, we obtain

k

; Ak 2
) = 1t {0 = 5 2 M el - o),

where A1, Ao, A3, ... are roots of Jy(iy/s — Ba). For 0 < § < 1, we conclude that
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T Gs0 = Br
ga(r,t) = L 0(—6)
Jo(i/ 8% — Ba)
2 o Mo () [ A7 -5
- = 2k T A V(. 0 —rt=0Yg
a2t prs Jl()\k) /0 exp( (a2 ﬁ)T) ( ,0; —7 )T
2 X )\kJO(LkT) B
= — ——a ‘T IW(-6,0:—T1t N ,
a?t & i (\) {W(=6,0;—7t%);7 — s} 3y
2 A Jo (2%

= = Z )nt on
B =0 J1()\k I‘ 5n ()\2 — a25)”+1

2 Aido(2er) a?t=o
ot Z ow0E —ag) e =g

Therefore,

v(z,r = o z,r,8)} = L xs—JO(i 5 — br)
(,7,t) Ly {V(e,rs)y =Ly | Ulz,s) O(iﬁ”sé_ﬁa)

t
= /U(x,n)gz(r,t—n)dn 0< a6 < 1.
0
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7. CONCLUSION

The paper is devoted to study and applications of Laplace transform. The main
purpose of this work is to develop a method for finding formal solution of certain
systems of Fredholm fractional singular integral equations of second kind, analytic
solution of the time fractional heat equation and system of partial fractional differ-
ential equations with different orders, which is a generalization to certain types of
problems in the literature. Numerous non trivial examples and exercises provided
throughout the paper. We hope that it will also benefit many researchers in the
disciplines of applied mathematics, mathematical physics and engineering.
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ON SPECTRAL PROPERTIES FOR A REGULAR
STURM-LIOUVILLE PROBLEM

ERDOGAN SEN, AZAD BAYRAMOV, SERKAN ARACI, AND MEHMET ACIKGOZ

ABSTRACT. In this work we study a discontinuous boundary-value problem
with retarded argument which contains a spectral parameter in the trans-
mission conditions. We firstly prove the existence theorem and then obtain
asymptotic representation of eigenvalues and eigenfunctions.

1. Introduction

The theory of differential equations with retarded arguments is one of the actual
branch of the theory of ordinary differential equations. Particularly, there has been
increasing interest in spectral analysis of boundary value problems. There is quite
substantial literature concerning such problems. Here we mention the results of
[1-19].

In this paper we study the eigenvalues and eigenfunctions of a discontinuous
boundary value problem with retarded argument and spectral parameters in the
transmission conditions. Namely we consider the boundary value problem for the
differential equation

(1.1) y'(x) + q(@)y(z — Alx)) + Ay(z) =0
on [0, k1) U (h1, ha) U (he, 7], with boundary conditions

(1.2) y(0) cosa + ¢'(0) sina = 0,
(1.3) y(m) cos B+ y/(m) sin B = 0,
and transmission conditions

(1.4) y(hy = 0) = VAdy(hy +0) = 0,
(1.5) y'(hy — 0) — VA3Y (h1 + 0) = 0,
(1.6) y(ha — 0) —yy(h2 +0) =0,

2000 Mathematics Subject Classification. 34120, 35R10.
Key words and phrases. Differential equation with retarded argument; transmission conditions;
asymptotics of eigenvalues and eigenfunctions.
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(1.7) y'(hy —0) —vy'(ha +0) = 0,

where the real-valued function ¢(x) is continuous in [0, k1) U (h1, ha) U (he, 7] and
has finite limits ¢(hy £ 0) = lim,_p, 10 ¢(x), g(he £0) = lim,_p,+0q(z) the real
valued function A(z) > 0 continuous in [0, k1) U (h1, he) U (he, 7] and has finite
limits A(hy £0) = limy_p, 10 A(x), A(he £0) = limy_p, 10 A(x), z — Ax) > 0, if
x €1[0,h1);x—A(x) > hy, if x € (h1,ha), x — A(x) > he, if © € (he,n]; X is areal
spectral parameter; J,~ are arbitrary real numbers and sin asin 3 # 0.

Let wy(xz,A) be a solution of Equation (1.1) on [0, hq], satisfying the initial
conditions

(1.8) wi (0,\) = sina, w} (0,\) = —cos .

The conditions (1.8) define a unique solution of Equation (1.1) on [0, h1] ([2], p.
12).

After defining the above solution we shall define the solution ws (z, A) of Equation
(1.1) on [hy, ho] by means of the solution wy (z, ) using the initial conditions

(1.9) wy (hy, A) = A3 wy (ha, A), wh(hy, A) = AY367 ] (hy, A).

The conditions (1.9) are defined as a unique solution of Equation (1.1) on [hy, hs] .
After defining the above solution we shall define the solution ws (x, A) of Equation
(1.1) on [hg, 7] by means of the solution ws (2, ) using the initial conditions

(1.10) w3 (ho, A) = v wy (ha, N),  wh(ha, ) = v~ twh(ha, N).

The conditions (1.10) are defined as a unique solution of Equation (1.1) on
[hQ, 7T] .
Consequently, the function w (z, ) is defined on [0, k1) U (h1, ha) U (he, 7] by the
equality
wi(z,A), x€[0,h1),
w(z,A) =1 wax,A), x € (hi,ha),
’LUg(Z‘,/\), T < (h27ﬂ']
is a solution of the Equation (1.1) on [0, hy) U (hy, ha) U (he, | ;which satisfies one
of the.boundary conditions and transmission conditions (1.4)-(1.5).

Lemma 1.1. Let w(z,\) be a solution of Equation (1.1) and A > 0. Then the
following integral equations hold:

oS |
Sin s—

wy(x, \) = sin a cos sx —
xr

(1.11) fl/q(T)sins(:rfT)wl (r—A(r),\)dr (5:\[\,)\>0),

s
0
1 1(h1,A) .
wa(z, \) = w35 (h1,M\)coss (z — hy) + %sms(m — hy)
1 xr
(1.12) —;/q(r)sins(m—T)wg(T—A(T),)\)dT (szxf)\,)\>0),

hy
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1 5 (ha, A
wz(x, A) = —ws (ha, A) cos s (z — ha) + w (h2, ) sin s (z — hg)

v sy

1 xr
(1.13) - ;/Q(T)Sins(l‘—T)’LU3(T—A(7'),>\)dT (s= VA > O) .

ha

Proof. To prove this, it is enough to substitute —swy (1, \)—w/ (7, \), —s?wa (7, \) —
wh (1, \) and —s%ws3 (T, \) — w4 (7, \) instead of —q(7)wy (T — A(T), A), —q(T)wa (T —
A(T),A) and —q(T)ws(t — A(7),A) in the integrals in (1.11), (1.12) and (1.13)
respectively and integrate by parts twice. (Il
Theorem 1.1. The problem (1.1) — (1.7) can have only simple eigenvalues.
Proof. Let X be an eigenvalue of the problem (1.1) — (1.7) and

_ ﬂl(x,g), xz € [0,h),
Yz, A) = §2($75), z € (h1,h2),
ys(z,N), x € (ho, ]
be a corresponding eigenfunction. Then from (1.2) and (1.8) it follows that the
determinant

71(0, ) sin

~ = O7
71(0,0) — cos

W [0, 3),wi (0, 3)] =

and by Theorem 2.2 in [2] the functions ; (z, A) and wy (z, A) are linearly dependent
n [0,h1]. We can also prove that the functions ya(x,\), wa(z, A) are linearly
dependent on [h1, ho] and ys(z, A), ws(x, A) are linearly dependent on [ha, 7] . Hence

(1.14) Ui(r,\) = Kawi(z,))  (i=T1,3)

for some K; # 0, Ky # 0 and K3 # 0. We must show that K1 = Ky = Kj.
Suppose that K 7$ K. From the equalities (1.4) and (1.14), we have

y(hy — \[521 hi +0,2) = g1 (h1, A) \[5212 (h1,\)
= Kywi (hy, \) \f5K2w2 (h1,\)
= \/>5K1U)2 hl, \/>5K2”U.)2 hl,)\)

= \[(S Kl KQ ’wg(hl,)\> =0.
Since ¢ (K1 — K3) # 0 it follows that

(1.15) ws (hl,X) = 0.
By the same procedure from equality (1.5), we can derive that
(1.16) w) (hl,X) —0.

From the fact that ws(z, \) is a solution of the differential Equation (1.1) on [hy, ks
and satisfies the initial conditions (1.15) and (1.16) it follows that wa(z, A) = 0
identically on [hq, ho] (cf. [2, p. 12, Theorem 1.2.1]).

By using this, we may also find

wq (hl,X) = w) (hl,x> =0
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From the latter discussions of ws(z, \) it follows that wy(z, A) = 0 identically on
[0, h1]. But this contradicts (1.8), thus completing the proof. Analogically we can
show that Ky = K3. O

2. AN EXISTENCE THEOREM

The function w(z, A) defined in section 1 is a nontrivial solution of Equation
(1.1) satisfying conditions (1.2) and (1.4)-(1.7). Putting w(z, ) into (1.3), we get
the characteristic equation

(2.1) F(\) = w(m,\)cos 3+ w'(m, \) sin 8 = 0.
By Theorem 1.1, the set of eigenvalues of boundary-value problem (1.1)-(1.7)

hl h2
coincides with the set of real roots of Eq. (2.1). Let ¢1 = [ |q(7)|d7, g2 = [ |q(7)|d7
0 ha
and g3 = [ |q(7)| dr.
ha

Lemma 2.1. (1) Let A > 4q%. Then for the solution wy (x,\) of Equation (1.11),
the following inequality holds:

1
(2.2) lwy (z,A)] < ﬁ\/ﬁqu sinfa +cos?a, x€[0,h].
q

(2) Let A > max {4q%, 4q§}. Then for the solution wy (x,A) of Equation (1.12), the
following inequality holds:

2.5198421
vV q70
(3) Let A > max {4q%, 4q3, 4q§}. Then for the solution wy (x, \) of Equation (1.13),
the following inequality holds:

(2.4) s (2, V)] < 10.0793684

- Vaiy
Proof. Let By = maxg,]|wi (z,A)|. Then from (1.11), it follows that, for every
A > 0, the following inequality holds:

\/4q% sina +cos2a, x € [hy,hs).

\/4q% sin? a4 cos?a, € [ha, 7).

2
. cos?a 1
By < {/sina + > + gBl)\QL

If s > 2¢1 we get (2.2). Differentiating (1.11) with respect to x, we have
(2.5)

wi(z,\) = —ssin asin sz — cos a cos sz — /q(T) coss(x—T1)wi(t—A(T),N)dr.
0
From (2.5) and (2.2), it follows that, for s > 2¢;, the following inequality holds:.
!/
wha M| _ 1

(2.6)

\/4qf sin a + cos? a.
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Let Bax = max(, p,) |we (7,A)]. Then from (1.12),(2.2) and (2.6) it follows that,
for s > 2¢g; and s > 2¢s, the following inequalities hold:

2
Bax < 57—
\/4 5
Bay <
23 < \/—5
Hence if A > max {4q%, 4q2} we get (2.3).
Differentiating (1.12) with respect to z, we have

1
\/4q% sin? o 4 cos? o + — Boxqa,
2q2

\/4(]1 sin? a + cos? a

wy(z,\) = *?wl (hi,\)sins (z — hy) + % coss (z — hy)
(2.7) - /q(T) coss(x —T)wa(T — A(T),N)dr.

h1

From (2.7) and (2.3), it follows that, for s > 2¢;, the following inequality holds:.

|wy (, A

: \/
< 4 2
5 \/» q1 sin? a + cos

Let B3y = max{j, - |ws (v, A)[. Then from (1.13), (2.2), (2.3) and (2.8) it follows
that, for s > 2q1, s > 2g9 and s > 2q3, the following inequalities hold:

(2.8)

Bsy) < \/4q sin’ a 4 cos? o + ———o \/4q sin a+cosza+—B>\q,
3 \/75 1 \/7(5 1 3 3
/910
B3y < —= \/4qfsin2a+0032a
v a0y
Hence if A > max {447, 4¢3, 4¢3 } we get (2.4). O

Theorem 2.1. The problem (1.1)-(1.7) has an infinite set of positive eigenvalues.

Proof. Differentiating (1.9) with respect tox, we get

wy(z,\) = —%wz (ho,\)sins (z — hy) + w (h2, ) cos s (z — ha)
(2.9) - /q('r) coss (x — T)ws(T — A (1), N)dr.
ha

From (1.11), (1.12), (1.13), (2.1), (2.5), (2.7) and (2.9), we get

h1
% ﬁ sin acos shy — O Gin shy — %/Q(T) sin s(hy — 7)w1 (7 — A(7), \)dr
0
x cos s (ha — hy)
hy
1

ssin asin shy + cos a.cos shy + /q(T) cos s(hy — T)wi (T — A(7), A)dr
0

 5/35
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ho
x sins(hy — hy) — 1 /q(T) sin s(hg — T)wa (T — A(T), )\)dT} cos s (m— ha)+
s

hy

1] s i

s ) cosa .
- {—5 (smacos shi— S sin shl—g/q(T) sin s(hy — 7)wq (7 — A(T),)\)dT)
0

X sin s (hg — hl)

h1
1
- 75 (3 sin asin sh1+ cos o cos shﬁ—/q(r) coss(hy — T)wi (T — A(7), )\)dT)
s
0

ha
x coss (hy —hy) — /q(T) cos s(hy — T)wa (T — A(T), /\)dT} sin s (m — ha)

h1

™

_é / q(t)sins (m — 1) ws(r — A(7), )\)dT] cos B+
ha

Y
0

x cos s (hg — hq)

h1
1 1
[_S {2/36 (sinacos shy — coza sin shy — 5 /q(T) sins(hy — 7)wy (7 — A(T),)\)dT)
s

hy
1
~ =75 (s sin asin shy + cos a.cos shy + /q(T) cos s(hy — T)wy (1 — A(7), /\)d7>
s

0
7
xsins (hy —hy) — — /q(T) sin s(he — T)wa (T — A(T), )\)dT} sins (m — ha) +
s
h1
1/3 m
1 1
5 {—85 (sinacos shl—coja sin shl—; /q(T)sin s(hy — T)wy (T — A(T),)\)dr)
0

X sin s (hg — hl)

h1
1
- 75 (5 sin «vsin shy+ cos a cos shy+ / q(7) cos s(hy — T)wy (T — A(7), )\)dT)
s

ha '
X cos s (hy —hy) — /q(T) cos s(hy — T)wa (T — A(T), /\)dr} cos s (m — ha)
h1
(2.10) - / q(t)cos s (m— m)ws(r — A7), )\)dT] sin 3 = 0.

ha
Let A be sufficiently large. Then, by (2.2)-(2.4), Equation (2.10) may be rewritten
in the form

(2.11) Vssinsm+ O(1) = 0.
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Obviously, for large s Equation (2.11) has an infinite set of roots. Thus the theorem
is proved. O

3. ASYMPTOTIC FORMULAS FOR EIGENVALUES AND EIGENFUNCTIONS

Now we begin to study asymptotic properties of eigenvalues and eigenfunctions.
In the following we shall assume thatsis sufficiently large. From (1.11) and (2.2),
we get

(3.1) wi(xz,A) =0(1) on [0,h].
From (1.12) and (2.3), we get

(3.2) wa(x,A) =0(1) on [h,hs].
From (1.13) and (2.4), we get

(3.3) ws(z,\) =0(1) on [hg,n].

The existence and continuity of the derivatives wj,(z, ) for 0 < z < hy, |A| < oo,
whe(x, ) for by < @ < ha, || < 0o and wi,(x, A) for he < z < 7, |A| < oo follows
from Theorem 1.4.1 in [2].

(3.4) wi(x,A) =0(1), z€l0,hq],
(3.5) wy(z,\) = O(1), € [hy, hal,
(3.6) whe(z,\) = O0(1), x € [h,n]
hold.

Proof. By differentiating (1.13) with respect to s, we get, by (3.3)
(3.7)

wh(z,\) = —éoq(T) cos s(z — T)wh, (T — A(T),A) +0(z, N), (|6(x,\)| < b)).

Let Dy = max(, » [ws,(z,\)|. Then the existance of Dy follows from continuity
of derivation for = € [ha, 7). From (3.7)

1
D, < EQSD)\ + 6p.

Now let s > 2g3. Then D) < 26y and the validity of the asymptotic formula (3.6)
follows. Formulas (3.4) and (3.5) may be proved analogically. O

Theorem 3.1. Let n be a natural number. For each sufficiently large n there is

ezactly one eigenvalue of the problem (1.1)-(1.7) near n?.

Proof. We consider the expression which is denoted by O(1) in Equation (2.11):

5'7 7SiH(OL — ﬂ) cos n W g

sin o sin 3 $2/35 ST 5735~ insm
1™ [cosf . sin 3

570 [55/351“8(”‘7) + SszOSS(W—T)} g(r)w (1 — A(r), N dr
172 [cosf . sin 3

3 [ et =)+ G coss =) a8 (1) N

+7, [Cojﬂ sin s(m — 7) + sin B cos s (7 — 7)] ¢ (P ws (r— A (7)) dT} .
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If formulas (3.1)-(3.6) are taken into consideration, it can be shown by differen-
tiation with respect to s that for large s this expression has bounded derivative. It
is obvious that for large s the roots of Equation (2.11) are situated close to entire
numbers. We shall show that, for large n, only one root (2.11) lies near to each
n. We consider the function ¢(s) = /ssin st + O(1). Its derivative, which has the
form ¢'(s) = 3} sin sm + /smcosm + O(1), does not vanish for s close to n for
sufficiently large n. Thus our assertion follows by Rolle’s Theorem. O

Let n be sufficiently large. In what follows we shall denote by)\, = s2 the
eigenvalue of the problem (1.1)-(1.7) situated near n?. We set s, = n + . From
(2.11) it follows that &, = O (7).

Consequently

(3.9) —n+0< 11/3)

Formula (3.8) make it possible to obtain asymptotic expressions for eigenfunction
of the problem (1.1)-(1.7). From (1.11), (2.5) and (3.1), we get

1
(3.9) wi(x,\) = sinacos sz + O (s) ,
(3.10) wi(x,\) = —ssinasinsxz + O (1).

From (1.12), 2.6), (3.2), (3.9) and (3.10), we get
sin 1
(3.11) wa(z, \) = 2735 cossx+0<8)
1/8 &

(3.12) why(z, \) = 7% sinsz 4+ O (1).

From (1.13), (2.7), (3.3), (3.11) and (3.12), we get

wz(z,A) = % cosshs cos s (x — hg) — % sinshg sin s (x — hg) + O (i) )
(3.13)
sin 1
ws(z, \) = 2757 cossz+0(s>

By substituting (3.8) into (3.9), (3.11) and (3.12), we find that

. 1
U1y, = w1 (T, Ay) = sinacosnz + O (nl/d> ,

sin 1
Ugp = W (T, Ap) = Sn2/8 cosnx + O (n> ,

sin o 1
U3zn = W3 (f,)\n) = WCOS'RI‘ + o (n> .

Hence the eigenfunctions u, (z) have the following asymptotic representation:
smacosnx—l—O( —=), x€e0,h),
Up(x) = ;:;% cosnx + O (l) , x € (hy,ha),
6?22‘;3 cosnz + O (l) ,  x € (hg,m].
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Under some additional conditions the more exact asymptotic formulas which
depend upon the retardation may be obtained. Let us assume that the following

conditions are fulfilled:

a) The derivatives ¢'(z) and A”(x) exist and are bounded in [0, 1) U (h1, ho) U
(ha2, 7] and have finite limits ¢’ (h;£0) = li}{njEO ¢ (z) and A”(h;£0) = lim A"(x)

(i = 1,2), respectively.
b) A’(z) < 1in [0, h1)U(h1, he)U(he, 7], A(0) = 0 and li’£I_1+OA(x) =0(i=
By using b), we have

(3.14) A(z) 20, €[0,h1),

(3.15) A(z) = hy,x € (hy, ho),

(3.16) A(z) > hi,x € (he, 7).

From Equations (3.9), (3.11) and (3.13)-(3.16) we have
(3.17) wy (T —A(7), ) :SiHOéCOSS(T—A(T))—I—O(i) )
(3.18) ws <T—A(T),A)=%COSS(T—A(T)HO(D,
sin o 1

(3.19) ws (1 —A(1),\) = mcoss (r—A(r)+0 (s> .

Putting these expressions into Equation (2.10), we have

/ . _ . K
_ S;j sin avsin 3sin s + 7811273 &yﬂ) COs §T — 431220/436(;:5
X {cos sy g (2T) [cos SA(T) + cos s (21 — A(7))] dr
(3.20) +sin sm() q(2 7) [sin sA(7) +sin s (27 — A(7))] dT} +0 (;/3) =0.
Let
Az, s,A(r)) = L [ q(r)sin (sA(r)) dr,
(3.21) 0
B(z,s,A(1)) = %fq(T) cos (sA(T)) dr.
0

It is obvious that these functions are bounded for 0 <z < 7,0 < s < +00.
Under the conditions a) and b) the following formulas

(3.22) j9(7> cos s(27—A(7))dr = O (i) : ]q(r) sins(27—A(7))dr = O (i)
0 0

can be proved by the same technique in Lemma 3.3 in [2]. From Equations (3.20),

(3.21) and(3.22),we have

sin st [ssinasin 8+ A (7,8, A (7)) sinasin §] —

cos s [sinavcos B — cosasinf — B (m,s,A (7)) sinasin 5] + O (1> = 0.
s
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Hence
1 1
tan sm = 5 [cot B — cot v — B (m,8,A(7))] + O (32) .

Again if we take s, = n + §,, then

tan (n + 0,) ™ = tan§,m = 1 [cot B8 — cota — B (m,n, A (7)) + O <12) .
n n
Hence for large n,
1 1
dp = — [cot B — cota — B (m,n, A (7)) + O (2)
n

nm

and finally

1 1
(3.23) snnJr[cotﬂcotaB(ﬂ,n,A(T))]+O(2) .
nm n
Thus, we have proven the following theorem.
Theorem 3.2. If conditions a) and b) are satisfied then, the positive eigenvalues

An = s2 of the problem (1.1)-(1.7) have the asymptotic representation of (3.23)
forn — oo.

We now may obtain a more exact asymptotic formula for the eigenfunctions.
From Equations (1.11), (3.17), (3.21) and (3.22)

wy(z,\) =sinacossz [1 + A(z,)s,) A(T)

S

sin sx

(3.24) - cosa +sinaB (z,) s, ) A(T) + O ( ! )

52
Replacing s by s, and using Equation (3.23), we have

uin(z) = wi(z, \y) = sina {cosnx [1 + ‘W}

(3.25)

sinnx

[(cot B —cota — B (m,n,A(7)))x + (Cota+B(x,n,A(7')))7r]}+O <12> .

From (2.5), (3.18), (3.21), (3.22) and (3.24), we have
AW&A(TD}

sin ov 1
way (2, ) = 2735 CO8 5% + S
sin sz

(3.26) ~ —755

(cosa+sinaB (2,5, A1) + 0 5 ).

Now, replacing s by s,, and using Equation (3.23), we have

sin a 1 A(z,n,A (1)) sin nx
2738 cosnx |1+ " T 5B

Uop () =

X [(cotﬁ—cota—B(W,n,A(T)))x—i—(cota—i—B(m,n,A(T)))w]}—l—O( ! )

n2
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From (2.9), (3.19), (3.21), (3.22) and (3.26), we have

sin A(x, s, A(T
w3 (Jf, A) = m COS ST |:1 + (S()):|
sin sz . 1
sy (cosa +sinaB (z,s,A(T))) + O (52> ,

Now, replacing s by s,, and using Equation (3.23)

sin v 1 A(z,n,A(T)) sin nx
P2 S R RC

usp () =

1
X [(cot B —cota — B (m,n, A(7))) z + (cota+ B (z,n,A(1))) 7]} + O (712) .
Thus, we have proven the following theorem.

Theorem 3.3. If conditions a) and b) are satisfied then, the eigenfunctions u, (x)
of the problem (1.1)-(1.7) have the following asymptotic representation for n — 0o:

uln(:v), S [0, hl) y
un(z) = ¢ ugn(z), € (h1,ha),
usn(x), x € (he, ],

where w1y (), uon(x) and us,(x) are defined as in (3.12) and (3.14) respectively.
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SOME INEQUALITIES OF OSTROWSKI TYPE IN THREE
INDEPENDENT VARIABLES

ZHENG LIU

ABSTRACT. Some new inequalities of Ostrowski type involving functions of
three independent variables are established.

1. INTRODUCTION
In 2001, Cheng in [3] proved the following integral inequality:

Theorem 1.1. Let f : [a,b] — R be an absolutely continuous function such that
there exist constants v, T € R with v < f'(t) <T, t € [a,b]. Then for all z € [a,b],
we have

(z=b)f(b)—(z—a)f(a)
af t dt — 2(b7(a) = |

o (& — ) + (@ —=0)*)(' = 7).

The constant § is sharp (see [4]).

I\J\H

(1.1)

I /\

Remark 1.1. If we take x = a or = b in (1), then we get a sharp trapezoid
inequality

b
HURSU _bia/a flt)d] < 56~ a)(T ~ ).

In 2010, Sarikaya in [5] established the following inequality of Ostrowski type
involving functions of two independent variables.

Theorem 1.2. Let f : [a,b] X [¢c,d] — R be an absolutely continuous function such
that the partial derivative of order 2 exists and suppose that there exist constants

v, I' € R with v < % <T for all (t,s) € [a,b] x [¢,d]. Then we have

2000 Mathematics Subject Classification. 26D15.
Key words and phrases. Ostrowski type inequality, absolutely continuous, triple integral.
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(i) + i Ha ,y>— sieay Jo by dt— s [ f(w,5)ds
WI [(y —o)f(t,e) + (d—y)f(t,d)]dt
(1.2) mfc x—a)f( :8)+ (b—x)f(b,s)]ds

+Wldc)fbfdft S det|

< la—ay® +(§2(§) (]1[)((@/ fc)) +(d—y)* ](F —)

for all (z,y) € [a,b] X [c,d], where

H(z,y) = (z—a)[(y—c)f(a,0)+(d—y) f(a, d)] (b— $)[(y o) f(b,e)+(d—y) f(b,d)]
) (b—a)(d—
_’_(ﬂc—a)f(ayyb)igb—ﬁ") (b.y) 4 (y of (33 C)+(d y)f(z.d)

d—c

Here we have given a revised version for (2) since the expression in [5] and [6]
contained a misprint.

Remark 1.2. If we take any one of the four cases = a,y = ¢; = a,y = d;
x=by=cand z = b,y = d in (2), then we get a trapezoid type inequality for
double integrals.

- b
|f(a,C)+f(b»d)zf(bm)+f(a7d) _ 2(b£a) fa [f(t,c) + f(t,d)] dt

(1.3) i Jo (0 ) + F0,9)] ds + by Ju [ S (0 s) ds ]
< (bfaggdfc) (F o 7)

It is interesting to compare this inequality (3) with the result in [2].

In the literature, we find that Pachpatte was the first author who has established
an inequality of Ostrowski type in three independent variables as follows:

Theorem 1.3. Let f : [a,k] x [b,]] X [e,m] — R be an absolutely continuous
function such that the partial derivative of order 3 exists and continuous for all
(t,s,u) € [a,k] x [b,1] X [c,m]. Then we have

| E=ED=9 £ (b, c) + f(a,b,m) + f(a,l,¢) + f(a,l,m)
FF (ke bie) + Fkbom) + F(k 1)+ (R, 1,m)]
ggmggf[ftb@+f(,@+fw@w0+fwhmﬂﬁ
—hmam=0) [71£(a,s, c)+f(k7s70>+f(aa s,m) + f(k, s,m)] ds
Gl PR b ) 4 )+ fOR ) + £k, )] du
(1.4) (= c>‘[ S (ts,m) + f(ts,0)] dsdt

(k= a)f fr% flk,s,u) + f(a,s,u)]duds

Jr(zzb)f ST w) + f(tb,w)] dudt
f fbf f(t, s,u) duds dt|
< Gma)b)mec) (kb pm ) O (o) | gy g .

Here we also have given a revised version for (4) since the expression in [1]
contained misprints.

In this paper, we will extend the above result to establish some new Ostrowski
type inequalities involving functions of three independent variables.
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2. MAIN RESULTS

Theorem 2.1. Let f : [a,k] x [b,{] X [c,m] — R be an absolutely continuous
function such that the partial derivative of order 3 exists and suppose that there

Prltsu) T forall (t,s,u) € [a, k] x[b,1] x[c,m].

exist constants v, 1" € R with v < =525+

Then we have

(2.1)
|%f(x,y,z)+%H(x,y,z) - ifakGl(t,y,z)dt— ifbng(m,s 2)ds — ff Gs(z,y,u) du
tagmr s U o[z = O f(ts,0) + (m — 2) f(t,5,m) + (m — ) f(t, 5, 2)] ds dt
—l—fblfm [(z — f(a s,u) + (k—x) f(k,s,u) + (k —a) f(x,s,u)] duds
+ 7 [y = ) f (b, U) (L=y)ft.Lu)+ (1 —b)f(t y,v)]dudt}

RO lb)(mT) f Jo S F(t s, u) duds dt]
9)?][(z=c)*+(m—2)7]

z—a)“+(k—z b)“+
< [ L )12”8((yk (3)(l(b)(m o) T=)
for all (z,y, z) € [a,k] x [b,1] X [¢, m], where

H(z,y,2) = (z— C)f(wyf)-i-(TZ Af@ym) o (z—a)f(ay, thgk z) f(k,y,2)
+ = b)f(zbZ) ( y)f(=,1,2)

+z=a)(y— b)f(abZH(k z)(y— b)f(’zkb Z))+((I )a)(l
+ =0 = f(@.b,0)+U—y) (=) f(@,l,e) + (y—b) (m—2) f (2,b,m) + (I—

(I=b)(m
+lz=a)(z=d flay, )+ (k=) (z=c) f(ky,0)+

k—a)(m—c)

(
—0)(z = )(z —a)f(a,b,c) +
(k —x)f(k, 1 c)]

y)f(a.l,2)+(k—z)(=y) f(k,l,2)
> y)(m=2)f(z,l,m)
(z—=a)(m=2) f(a,y,m)+(k=z)(m=z)f(k,y,m)

(k - I)f(k’bv C)]

+W{(
+(—y)(z—c)[(x —a)f(a,l,c) +

+(y —
+( —y)(m—

Gl(tvya Z) =

b)(m —

[(z —a)f(a,b,m)+ (k —

2)
2 —a)fla,l,;m) + (k-

x)f(k,b,m)

]
) f(k,1,m)]},

f(t2) | (=)

f(t:b,2)+ (=

v ftbz) | (z=0)f(ty,0)+(m=2)f(ty,m)

k I—b k m
y)f(tu)ﬁﬂﬁm DMy=b) (b4l y)f((tlrrz)]

(z=9)[(y— b)f(tbc)+(l
+ (h=a)(1=b)(m—c)

GQ(ZE, s, Z) _ f(lz_s \Z) + (z—a)f( + (z—¢) f(z,s c)+(m z)f(m 5,m)

Ek D) (—b)(m
4 G=a)l@=a)f (@.5.0+ (k=) k,5.0)|+(m—2)[(w=a) f (a,s.m)-+ (k= l)f(kbm)]
(k—a)(1—b)(m—0)

a,s,z)+(k—=z) f(k,s,z)

f(z.y, U) + =t f(@bu)+= y)f(ac bu) 4 =a)f(ayw)+ k=) f(ky.u)

U—0)(m— a)(m—c
IEAAE (k—a)l(y—b) f(b) + (=9 holw)]
(k—a)(I=b)(m—c)

Gs(x,y,u) =
+(I a)[(y— b)f(abu)+(l

Proof. Put
— otz tea,n]
— 2 9 )
p(z,t) = { t— kJ2rw7 te (z, k],
_ by g c [b y]
_ 2 s I
q(y78) { s — Hg—ya s € (yal7

and
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We have

ZHENG LIU

= { LT L

JE T e, Oa(y, s)r(z, u) ZEE) du ds dt

=[S ST = ) (s = ) (u — ng)aafgsg ) qu ds dt
S e B (R S [ B (u — m;z)% dudsdt
LTS ) (s — ) (u - o) T gy ds di
LTS S ) (s — B (u — mE) 2 gy ds d
+fgf fby fcz(t — 55 (s~ HTy)(U - pgz)aajtcgs; ) du ds dt
+ff LT =) (s - HTy) u— m;”)% duds dt
IS SR~ ) (s — ) (0 — o42) SIS gy s
- LE LT ) (s — S — ) SIS gy sy,

Integrating by parts three times, we can state:

S Jy SO = 955 (s P (u — H;)% duds dt
= EmDE= [ f(3,y, 2) + f(,9,¢) + f(2,b,2) + f(2,b,¢)
+f(a,y,2) + fla,y,¢) + f(a,b,2) + f(a,b,c)]

—BE=D [VIf(ty,2) + f(Ey,e) + F(£ b 2) + £t b,e)]dt
—wfby[f(x,s,z) + f(z,s,¢) + f(a,s,2) + f(a,s,¢)]ds
Wmm o u) + f(@,b,u) + fla,y,u) + f(a,b,u)] du
2 f f: [f(z,s,u) + f(a,s,u)] duds

+ 3 f%fz (ty,u) + F(t,0,u)] dudt
+5< fqy ft,s,2) + f(t,s,¢)]dsdt
-/ fﬂfc f(t, s,u) dudsdt.

ST — =52 )(s —”Tyx — mpz) DL G ds d
=%[ Fla,y,m) + f(z,y,2) + f(z,bym) + f(z,b,2)
+f(a,y,m) + fla,y, = ) f(a,b,m) + f(a,b, 2)]
e mm2) By om) + f(ty,2) + f(bm) + f(E,b,2)]dt
—wfby[f(x,s,m) + f(z,s,2) + f(a,s,m) + f(a,s,2)]ds

[l

E==0) (™ (0, y,u) + f(x,b,u) + fla,y,u) + fla,byu)] du
z—a [V (™ f(z,5,u) + f(a,s,u)] duds
e ((t Jy,u) + f(£,b,w)] dudt

t,s

|+ +

Lf
2 [0 [t s m) + f(t 5, 2)] ds dt
T2V £(t s, 0) duds dt.
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(2.5)

(2.6)

(2.7)

f f f t— o) S_Ty)( _ng)aa{atgu duds dt

:M[ flxl2) + f(z,l,0) + f(z,y,2) + f(z,y,¢)

+f(a,l,z)+f(a,l,c)+f(a z) + f(a,y,c)]
Qiﬁi?ﬁﬁmh@+f@hd+ﬂt%)+ﬂt%ﬂﬂ
_(z= al(z ©) f;[f(x,s 2)+ f(z,s,¢)+ f(a,s,2) + f(a,s,c)]ds
— U= 2 (0 u) + f,y,u) + fla,lw) + fla,y, w)] du

+554 yl “f (2, 8,u) + f(a, s,u)] duds

+5E [0 [2F (L Lu) + f(ty,w)] dudt

+25< [T 1t s, 2) + f(t,s,0)]dsdt

f; fylf (t,s,u) duds dt.

c

b

~ N

a

N‘d

S Iy I = 52 (s = B (u — 22 S duds di
@ilgﬁlﬁu<me+ﬂaha+fuy,>+ﬂa%a
+ﬂ%um»+ﬂmha+fmy,>+fmy,n
E)m=2) (2058 1m) + f(t,1,2) + f(t,y,m) + f(t,y,2)] dt
[
[£(

—wﬁf fl.s,m) + f(,5,2) + f(a,5,m) + f(a,5,2)] ds
@Jﬂbﬂﬂ"thm+fuy,>+ﬂmhw+fwwwﬂ%
+”§“f [ (@, s,u) + f(a, s,u)] duds

+; f;f [f(t, 1, u) + f(t,y,u)] dudt

af” yl[ ft,s,m) + f(t,s,2)]dsdt

fa fmftsu du ds dt.

5P 7= R (s — ) (u — o52) SLs) gy g

= O 1,2+ f (k) + (kb 2) + (k. boo)
[y, )+ fz,b,2) + f(z,b,¢)]
k(t%)+f6%)+f@b@+f&bdwt
k,s,z)+ f(k,s,¢) + f(x,s,2) + f(x,s,¢)]ds
(k,y,u) + f(k,b,u) + f(z,y,u) + f(z,b,u)] du
JZ1f (kys,u) + fw,5,u)] duds

t,y,u) + f(t,b,u)] dudt

t,s,2z)+ f(t,s,c)|dsdt

s,u) duds dt.

cd.—.
M,khkh
—~




80

(2.8)

(2.9)

(2.10)

ZHENG LIU

JEJY () (s — ) (u — =) DR gy g g

= O 0 £y ) + (kg 2) (kb m) + £k, b, 2)

+f(, Ww+ﬂ%%@+fmmmw+ﬂ%am

- = ’f{” D My m) + f(ty,2) + F(Ebm) + f(8,b,2)] dt
(k=) (m— Z)fb (k,s,m) + f(k,s,2) + f(z,s,m) + f(z,s,2)]ds
b)Y g )+ (R byu) + f(2,y,w) + f(@,bou)] du
fm ksu )+ f(z,s,u)] duds

f Ft g, u) + f(t,b,w)] dudt

R :f” (t,s,m)+ f(t,s,2)] dsdt

fk fm (t,s,u)dudsdt.

T cza
S5y = 5550 = B (u — <52) s duds dt

:@JXYJLQU@JJy+ﬂhL@+f%y,)+ﬂh%@
+{l(m7)l(’ z))—|— {(m,l,c) + f(z,y,2) + f(z,y, )]

S (e
waf-”[{f(&l;z)z; +f§”t(7kl, ?3 i(?é’ Z) z+> i(tfé 2] f)t] ds

1 p /RS, o w T

= R ) 4 f g 0) + S dw) + ()] d
+@4£\[ JUf (ks s,u) + f(x,5,u)] duds

e yf JoUf (L) + f(ty,u)] dudt

4z= cf f[ f(t,s,2)+ f(t,s,c)|dsdt

ff ffftsududsdt

S Ly e s—%y( - =) s duds di

)
%[ﬂ m) + f(k,1,2) + f(k,y,m) + f(k,y, 2)
+f(lm) + f(e L 2) + flz,ym) + f(z,, 2)]

ijLﬁfLﬂme+f@Ld+fG% m) + f(t.y, 2)]dt

— =) [ (K, 5,m) + f(kys,2) + f(2,8,m) + f(@,5,2)]ds

MI L (kL) + f(kyyo) + (a1 u) + f(2,y,u)] du
ke (UM (R, s u) + (2, 5,u)] duds

I
+TT Jo [(uhu)+f@zh u)] dudt
[f(t,s,m)+ f(t,s,2)]dsdt

fkf f ft s,u) duds dt.

From (6)-(14), we can easily deduce that
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k pl pm
/ / / p(z,t)q(y, s)r(z,u) dudsdt = 0.
a Jb Je
. From (16), it follows that

T4y
2

We also have

(2.12)

Let M



82 ZHENG LIU

(2.13) Ja Jy J" Pl Dty S)T(ZW)[% M| du ds dt
A fbf pla s)1(z,u) s qy ds dt.

On the other hand, we have

(2.14)
3 4
L2y 0 pa ey, )z, >[—a{§s;;> ]dudsdt|

< MaxX (¢t s,u)ela,k]x €[b,l]x[c,m] | f)t@tsgi M|f fb f (y, (Z u)\dudsdt
Moreover,

D3f(t,s,u) -~
2.15 2 < — 1L
( ) (t,sm)E[a}cI]lS)e([bJ]X[c,m] ‘ 0tdsou | - 2
and
(2.16)

—a)? —x)2 _ )2 —2l(z — )2 )2
/// (Y, (e ) d = (€= 9P+ G Pl =02+ (=Pl =+ (m =)

From (18)-(20), we get

(2.17) WA f Pl 1)q(y, s)r(z w)[ Z5sd — M] duds di]
’ z—a)*+(k—z b 1—y)? m—z
< [z=a)+( >H<y >1;§ DAC= Hm= ).

Finally, from (15), (17) and (21), we see that the inequality (5) holds.
The proof of Theorem 4 is complete.

Remark 2.1. If we take any one of the eight cases * = a,y = b,z = ¢; z =
ay=bz=mrx=ay=lLz=crx=ay=Lz=mz==Fky=>0z=c
x=ky=bz=m;x=ky=Ilz=cand x =k,y =1,z =m in (5), then we get
the following inequality for triple integrals.

| f(ab,e)+f(a,bm)+f(al,c)+f(al,m)+f(k,bc)+f(kbm)+f(klc)+f(klm)
8

S TCEn] SR e) + f(t 1 €) + (8, bym) + f(t,1,m)] dt
— iy o [f(ass,0) + f(k,5,0) + f(a,5,m) + f(k,5,m)] ds
— 1=y J. [ (a,b,w) + fla, b u) + fk,byw) + f(k, 1)) du
+m fkfbl (t,s,m) + f(t,s,c)]dsdt

RIbT (o ey b)l(m ) fbf f(k,s,u)+ f(a,s,u)] duds

BT (] Cows 1m o) f fm ft, L u) + f(t,b,u)] dudt

(kfa)(lfb)(mfc) fa fb J7 (s, u) duds dt|
k—a)(l—b)(m—c
< ( )(128)( )(Ff'y).
Theorem 2.2. Let [ : [a,k] x [b,]] X [e,m] — R be an absolutely continuous
function such that the partial derivative of order 3 exists and continuous for all
(t,s,u) € [a,k] x [b,1] X [c,m]. Then we have
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(2.18)
|1 f(z,y,2) + H(xy, 4f Gi(t,y,2) t—ifbng(m,sz s—ff Gs(z,y,u) du
m{f fb flt,s,¢) + (m—2)f(t,s,m)+ (m—c)f(t,s, z)] dsdt
—|—fbf (r—a f(a s u)+(k—x)f(k,s,u)+(k—a)f(x,&u)}duds
+ o 7 =B F(E b, U) (=y)f(t,Lu)+ (1 —b)f(t,y,u)] dudt}
%ﬂw3U%fﬂéﬁ@Hﬂﬁi”dﬂfﬁ‘
< e i [ S | i | du ds e

for all (x,y,z) € [a,b] x [b,{] X [¢,m], where H(x,y,z), G1(t,y,z), Ga(z,s,2) and
Gs(x,y,u) are as defined in Theorem 4.

Proof. From (15) we get

|1 f(z,y,2) + £ H(z, y, f Gi(t,y,z)dt — ifbl Go(z,8,2)ds — %f:LGg(a:,y,u)du
m{f fb f(t,s,¢) + (m—2)f(t,s,m)+ (m —c)f(t,s,z)]dsdt

—|—fbf (x—a f(a s u)—i—(k—x)f(k:,s,u)+(k—a)f(w,s7u)]duds

S LE T = 070, + )00+ (00, 0] duat

W i Jy S (s u) duds dt]

MAX (1,5, u)€[a, k] x €[b,1] x [e,m] [P(@:0)q(y,8)r(z,u)| rk pl pm 8% f(t,s,u)
< (k—a)(I—b)(m—c) J. fbf Bison | dudsdt

and observe that

(2.19)
k—a a+k l—b b+1 c c+m
t = - -
e [ )a(y, )z 0)| = (P o= T N = N e
we can easily obtain the inequality (22).
Remark 2.2. If we take any one of the eight cases ¢ = a,y = b,z = ¢; z =

ay=bz=myr=ay=lLz=cr=qay=I>z=m;x=Fky=bz=c
x=ky=bz=myz=ky=1lz=cand z =k,y =1,z =m in (22), then we
get the following inequality for triple integrals.

| f(a,b,C)Jrf(a’b,M)an(a,l,C)Jrf(a,l,m)gf(k,b,c)+f(k,b,m)+f(k,l,c)+f(kyl,m)

— iy SR U (b, 0) + F(E 1 0) + f(t,bm) + f(t,1,m)] dt

_ﬁ fbl[f(a’s’c) + f(k,s,¢) + f(a,s,m) + f(k,s,m)| ds

o [ (ab,) + Fladw) + fkbou) + f(k, 1) du
(2.20) +m fk fbl (t,s,m) + f(t,s,c)]dsdt

R (D o) bl(m ) fbf f(k,s,u)+ f(a,s,u)] duds

sty o ST L w) + £t b, w)] dudt

~ G Ja oy [ (s, 0) duds dt
< LN e | du ds d.

It is clear that inequality (24) is just the same as inequality (4), and thus we may
regard that Theorem 5 is a generalization of Theorem 3.
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ON SOME SINGULAR VALUE INEQUALITIES FOR MATRICES

ILYAS ALI, HU YANG, ABDUL SHAKOOR

ABSTRACT. Some singular value inequalities for matrices are given. Among
other inequalities it is proved that if f and g be nonnegative functions on
[0, 00) which are continuous and satisfying the relation f(t)g(t) = t, for all
t € [0,00), then
Sj (AIXBl + A;XBQ)
< s ((ATF2( X" DAL+ ASF2(| X* ) A2) @ (Big®(| X )B1 + B3g°(| X [)Bz2)),
for j =1,2,...,n, where Ay, As, B1, B2, X are square matrices. Our results in
this article generalize some existing singular value inequalities of matrices.

1. INTRODUCTION

Let M,, , be the space of m x n complex matrices and M,, = M, ,. Let | - ||
stand for any unitarily invariant norm on M, i.e., a norm with the property that
lUAV]| = ||A]l for all A € M, and for all unitary matrices U,V € M,. Any
matrix A € M, is called positive semidefinite, denoted as A > 0 if for all x € C™,
x* Az > 0 and it is called positive definite if for all nonzero z € C", z* Az > 0 and it
is denoted as A > 0. The singular values of matrix A are the eigenvalues of positive
semidefinite matrix | A |= (AA*)2 | enumerated as s1(A) > s2(A) > ... > s, (A)
and repeated according to multiplicity. The direct sum A @ B represent the block

0
0 B )’

The well-known classical arithmetic-geometric mean inequality for a,b > 0 de-

fined as

diagonal matrix

a+b
5
Arithmetic-geometric mean inequality is important in matrix theory, functional

analysis, electrical networks, etc. For A, B, X € M, such that A, B > 0, R. Bhatia
and F. Kittaneh formulated some matrix versions of this inequality in [3,4] one of

SIS
SIS

bz <

(1.1) a

2000 Mathematics Subject Classification. 47A30; 47B15; 15A60.

Key words and phrases. Singular values; Unitarily invariant norms; Positive semidefinite ma-
trices; Positive definite matrices.
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which is the following
1
(1.2) |Az X B3| < 54X + XB.

From (1.2), for X = I we have the following inequality for positive semidefinite
matrices.

1
(1.3) | 4=B2|| < S|4+ B,
R. Bhatia and F. Kittaneh also have proved in [5] that if A, B € M, such that
A, B >0, then
1
(1.4) |A®B® + AZB%| < S[|(A+B)’|.
From (1.3), (1.4) and also by triangle inequality, we obtain the following inequality
1 1
(1.5) |A3B* + A3B3 + A3B3| < SIA+ B[+ 5 lA+ Bl
In [2] L. Zou and Y. Jiang proved that for positive semidefinite matrices A, B €
M, and 1 < j < n, the following inequality also holds
(1.6)  2s,(A?B? + A?B? + A7B?) < 5;((A+ B)> + (A + B)),
and consequently,
2 1 1 s 1 1 ].
(1.7) |A2B% + AZBE + AXBE| < S||(A+ B)’ + (A + B)|.

The inequality (1.7) is an improvement of the inequality (1.5).
One another interesting inequality for sum and direct sum of matrices proved by
R. Bhatia and F. Kittaneh [6] is

(1.8) sj(A*B+ B*A) <s;((A*"A+B*B) @ (A*A+ B*B)),
where A,B € M, and 1 < j <n.

In Section 2, we give generalized form of the inequality (1.6) and also, we obtain
the X-version of the inequality (1.8).

2. SINGULAR VALUES INEQUALITIES FOR MATRICES

In this section, we generalize the inequalities (1.6) and also, we obtain X-version
of the inequality (1.8). Our results based on Several lemmas. First two lemmas
have been given by F. Kittanch in [1] and Lemma 2.3 can be found in [8, Theorem
1].

. |T| T*
Lemma 2.1. Let T' € M,,, then the block matrix T T > 0.
Lemma 2.2. Let A,B,C € M,, such that A and B are positive semidefinite,
BC = CA and let f and g be nonnegative functions on [0, o) which are continuous
and satisfying the relation f(t)g(t) = t, for all ¢ € [0,00). If the block matrix

A C* . f2(A) Cc*
(C B )20,thenso< C 92(3) > 0.
A B

Lemma 2.3. Let A, B,C € M, such that B C

(2.1) 25,(B) < s, < é‘* g),j:m,...,n.
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The following Lemma was proved in [7].

Lemma 2.4. Let A, B,C € M,, such that ( él* g ) > 0, then
(2.2) 5;(B) <sj(AeC), j=1,2,..,n.

To give the general form of (1.6), first we prove the following result.

Theorem 2.5. Let A, B € M, be any two matrices and r be a positive inte-
ger, then

25j(A(JAP + | BP)" "B+ AB") < s;(| AP+ | BP)" + (| AP + [ B ),
for j=1,2,...,n.

A 0
Proof. Let X = ( B 0 ) Then,

v [ A*A+B*B 0 . [ AA* AB*
XX( 0 O)’XX<BA* BB*)'
So, we have

ey = ((@ALTEY )

and
(XX*)T — X(X*X)(rfl)X*

- A(A*A+B*B)""YDA*  A(A*A+ B*B)"-1)B*
- B(A*A+ B*B)""YA* B(A*A+ B*B)("~YB*

Therefore, we obtain

and

A*A+ B*B)" + A*A+ B*B o)
0 0)

(XX*) + XX~
_ A(A*A+ B*B)"~DA* 4+ AA* A(A*A+ B*B)"~VB* + AB*
- B(A*A+ B*B)""YA* + BA* B(A*A+ B*B)"~YB* 4 BB*
So, by Lemma 2.3, from the positive semidefinite block matrix (X X*)" + X X*, we
have
25;(A(A*A+ B*B)""VB* + AB*) < s;((XX*)" 4+ XX¥)
= 5((X"X)" + X*X)
= s;((A*"A+B*"B)"+ (A"A+ B"B)),
for j=1,2,...,n.
The proof is completed. [J

When A, B € M,, be positive semidefinite in Theorem 2.5 and A is replaced by
A? and B is replaced by B%7 then we obtain the following promised generalization
of the inequality (1.6).
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Corollary 2.6. Let A, B € M,, be positive semidefinite and r be a positive integer.
Then,

2s;(A2(A+ B)""YB3 4+ A3B?) < 5;,((A+ B)" + (A + B)),

for j=1,2,...,n.
Remark 2.7. When we take 7 = 2 in Corollary 2.6 , then we obtain the inequality
(1.6).

To give the X-version of the inequality (1.8), first we obtain the following result.

Theorem 2.8. Let Ay, Ay, B1,Bs, X € M,. If f and g be nonnegative func-
tions on [0, 00) which are continuous and satisfying the relation f(t)g(t) = t, for all
t € [0,00), then

(A X By + A5 X By)
(AT X* DAL+ A5 (| X* )A2) @ (Big*(| X )B1 + B3g*(| X [)Bz)),
for j=1,2,...,n.

Proof.Let:n:(%l g),:rb:(%? 12)'
1 2

Sj
< sy

Since the block matrix < | §* | X | ) is positive semidefinite (by Lemma 2.1)
. 2 X)) X ) . . . .

and the block matrix ¥ = N is positive semidefinite (b

(70 ey ) o by

ALf2( X Ay AiX By

Lemma 2.2), so, TyYT) = ( BIX*A, Big®(| X |)By

) > 0 and also,

v ARSI XT ) A, A3X By .
T5YTy = ( BiX* Ay B§g2(| X |)Bs > 0. That is, we have
VYT + T5Y T
ALFA( X7 )As -+ A3 (] X () Ay A{XB, + A5X B, -
BiX*Ay + B3 X" Ay Big*(| X |)B1 + B3g*(| X |)Bs

So, our desired result now follows by invoking inequality (2.2).
The proof is completed. [J

Following is our desired X-version of the inequality (1.8).

Corollary 2.9. Let A, B, X € M, then
sj(A*XB+ B*XA)
< si(A"| X" |A+B" | X" |B)® (A" | X |A+B" | X | B)),
for j=1,2,...,n.
Proof. By taking f(t) = g(t) = t2, Ay = By = A and Ay = B; = B in Theorem
2.8, we get the desired result.
The proof is completed. [J

One another important case follows from Corollary 2.9 for normal matrices.
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Corollary 2.10. Let A, B, X € M,, such that X is normal matrix,then

sj(A*XB+ B*XA)
< s((AT[ XA+ B | X[ B)o (A" | X |A+B"| X | B)),
j=1,2,....n.
particular, when X is positive semidefinite matrix , then
s;(A*XB + B*X A)
< s;((A*XA+ B*XB)® (A*XA+ B*XB)),
j=12,...,n.
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SIMPSON’S TYPE INEQUALITIES FOR m— AND
(a,m) - GEOMETRICALLY CONVEX FUNCTIONS

HAVVA KAVURMACI-ONALAN®* AHMET OCAK AKDEMIR, ERHAN SET, AND M. ZEKI
SARIKAYA

ABSTRACT. In this paper, we establish Simpson’s type inequalities for m— and
(a, m) —geometrically convex functions using the lemmas.

1. INTRODUCTION

The following inequality is well-known in the literature as Simpson’s inequality:
Let f : [a,b] — R be a four times continuously differentiable mapping on [a, b]
and Hf(4) ||OO = sup |f(4) (x)| < 00. Then the folllowing inequality holds:
z€la,b]

L0 IO g (110)]

I 1
< ||y H —a)t.
b—a/a f@)dr < 5555 Hf L b=a)
For the recent results based on the above definition see the papers [1], [4] , [7], [14],
[18] and [20].
In [6], G.Toader defined the concept of m-convexity as the following;

Definition 1.1. The function f : [0,b] — R is said to be m—convex, where m €
[0,1], if for every z,y € [0,b] and t € [0, 1] we have:
fltz+m(1—t)y) <tf(x) +m(l—1)f(y).

Denote by K,,(b) the set of the m—convex functions on [0, b] for which f(0) < 0.
In [19], Mihesan gave definition of (a, m)—convexity as following;

Definition 1.2. The function f : [0,0] — R, b > 0 is said to be («, m)—convex,
where (a, m) € [0, 1], if we have

fltz +m(1 —t)y) <t f(z) +m(l—t)f(y)
for all z,y € [0,b] and t € [0, 1].

2000 Mathematics Subject Classification. Primary 26D15, Secondary 26A51.
Key words and phrases. m— geometrically convex function, (a,m)—geometrically convex
function, Simpson’s type inequality.
% Corresponding Author.
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Denote by K& (b) the class of all (o, m)—convex functions on [0,b] for which
£(0) <0. If we choose (o, m) = (1,m), it can be easily seen that (o, m)—convexity
reduces to m—convexity and for («,m) = (1, 1), we have ordinary convex functions

n [0,b]. For the recent results based on the m— and (a,m)— convexity see the
papers [2], [3], [5], [8]-[13] and [15]-[17].

In [2], Xi et al. introduced m— and («, m) —geometrically convex functions and

give a lemma as following, respectively;

Definition 1.3. Let f () be a positive function on [0,b] and m € (0,1]. If

£ (#tym =) < 17 @) 1

holds for all z,y € [0,b] and ¢ € [0,1], then we say that the function f (z) is
m—geometrically convex on [0,d].

It is clear that when m = 1, m—geometrically convex functions become geomet-
rically convex functions.

Definition 1.4. Let f (z) be a positive function on [0, b] and (a, m) € (0,1] % (0,1].
If

F(atym00) <@l

holds for all z,y € [0,b] and ¢ € [0,1], then we say that the function f(z) is
(o, m) —geometrically convex on [0, ] .

Lemma 1.1. For z,y € [0,00) and m,t € (0,1], if z <y and y > 1, then
2ty < (1—t)y.

In this paper, we recite two lemmas in the literature, then we obtaine Simp-
son’s type inequalities using the lemmas for m— and («, m) —geometrically convex
functions.

2. REsuLTS

Lemma 2.1. [[1], pp.3] Let f: I C R — R be an absolutely continuous mapping
on I° where a,b € I with a <b. Then the following equality holds:

é[f(a)ﬂf(“jb) " }

_ (b—a)/op(t)f’(tb+(1—t)a)dt,

where
-k tefod),
p(t)=

t—2, te(s1].
Theorem 2.1. Let f : I C [0,00) — (0,00) be a differentiable mapping on I°
such that ' € Lla,b], where a,b € I with a < b. If |f'(x)| is decreasing and
(a, m)—geometrically convexr on [min{1,a},b], for b > 1, and for (a,m) € (0,1]?,
then the following inequality holds;

sl () s - < (- a)|f B My (0 m)

x)dx
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where
(2.1)

Voo = [~ ’(If{,(()l) > N d”/; tZ‘ <|L5/<S|)'|")(H)a «

Proof. From Lemma 2, Lemma 1 and since f is decreasing, then

1[f(a)+4f (a+b>+f ]

6
< (b—a>/0 p ()] 1f (tb+ (1 — t)a)|dt
< (b-a) / p(0)]|f (a5 .

Using the («, m) —geometrically convexity of |f/ (x)|, we have,

sl () +r0) -

1 o o
< (b-a) / p @)1 (@) 1 @)Y
0
A e |/ (a)] )“‘”“ ! ’< 1/ ()] )“‘”“
= (b— b - d - dty .
b= alF ¢ {/ 5| (o ”/; ANOE t
So, the proof is completed. O

Corollary 2.1. Let f : I C [0,00) — (0,00) be a differentiable mapping on I°
such that ' € Lla,b], where a,b € I with a < b. If |f' (z)| is decreasing and
m—geometrically conver on [min{l,a},b] for b > 1, and for m € (0,1], then the
following inequality holds;

sl @ (50 s -

) dz| < (b—a)|f ()" My (1,m)

where My (1,m) is the term in (2.1).

Theorem 2.2. Let f : I C [0,00) — (0,00) be a differentiable mapping on I°

such that f' € Lla,b], where a,b € I with a < b. If |f’ (x)|% is decreasing and
(o, m)—geometrically conver on [min{1,a},b], for b > 1, and for (a,m) € (0,1]?,
p > 1 with % + % =1, then the following inequality holds;

s[f@ar () 4r0) - 2

1+ 2r+L

(Wp—kl)) M; (a,m, p)

< G-a)lf <b>|’”(
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where
(2.2)
p—1

Yo N0\ N e
M”%"””_<A (7a) d& *(Angé%J “) |

Proof. By using Lemma 2 and Holder integral inequality, we have

;[fmng(“;b)+f }

1
< wfayA|p@nv%w+wlfwanﬁ
_ (b—a)/02‘t—é’|f’(tb+(1—t)a)dt—i—(b—a) [ t—2’|f’(tb+(1—t)a)dt
< (b—a)</02 t—é dt>p</02f/(tb+(1—t)a)|pfldt> :

p

Jr(ba)([l pdt>p<[1|f/(tb+(1t)a)|Pp1dt> '

Since |f’ (z)| is decreasing by using Lemma 1 and («, m)—geometrically convex, we

have
b b
Sl () s - o2 [ ra

)
t— =
6

< (b—a) 1+2p+1 % %|f/ (a/l_tbmt)‘ppjdt p%_i_ 1|f/ (al_tbmt)‘ppjdt p%
- 6P+1 p + ]. 0 %
14 2ptl H , m
< _
< 0-0 (grogy) 1O
ﬁ(mwamwtp+/KW@U“W~ﬁp
7 m 7 m
o \[f"(b)l 1 \[f"(0)]

So, the desired result is obtained. O

Corollary 2.2. Let f : I C [0,00) — (0,00) be a differentiable mapping on I°
such that f' € Lla,b], where a,b € I with a < b. If |f’ (x)|% is decreasing and
m—geometrically convex on [min{1,a},b], forb > 1, and for m € (0,1], p > 1 with
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+ = =1, then the following inequality holds;

|é [f(a)+4f (a;b>+f<b>] bfa/:ﬂx)dw

1+ vt
6Pt (p+1)

141
P q

< o-alror ) ¥ m.p)

where My (1,m, p) is the term in (2.2).

Theorem 2.3. Let f : I C [0,00) — (0,00) be a differentiable mapping on I°
such that f' € Lla,b], where a,b € I with a < b. If |f' (z)|? is decreasing and
(e, m)—geometrically conver on [min{1,a},b], for b > 1, and for (a,m) € (0,1]?,
q > 1, then the following inequality holds;

é[f(a)+4f (“‘2”)>+f(b)] —bia/abf(ﬂc)dx

< G-alr o (g)  Baema

Q=

where

(2.3)

3 ’ (1=t
o= [ 3| (e y ey,

6 \[f (&)™

o1 |f’<a>|)“‘“°‘q :
t 6‘(|f’(b)lm i+ |,

2

Proof. From Lemma 2 and using the well-known power mean integral inequality,
we have

é{f(a)+4f<a;rb>+f(b)} bia/abf(z)dx

< (b—a)/olIp(t)llf’(tb+(1—t)a)ldt
< (b-a) (/ |p<t>dt)1_é (/ p(t)lf’(tb+(1—t)a)lth);
< (b—a)</01|p(t)dt)l_;{/Oé‘t—é‘lf'(thr(l—t)aﬂth

t—2‘|f’(tb+(1—t)a)|th}q.

1
—I—/
1
2
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Since |f (x)|? is decreasing and (o, m)—geometrically convex on [min{1,a},b], we

have
1 a+b
Hr@ear (“50) v ro)] - s [ 1w
1-1 1
< (b—a)(?ii) {/o ‘t-é“f’(al—tbmt)‘th
+ : —Z“f’(al_tbmt)‘th}q
1-1 1 . e
< 6-0(5) { [ =gl @ et
; ) Y
‘), _éMfWWP“”fwwm*“””ﬁ}
o (BN L A1 (1-6)7q
- moror(g) {/o =il (o)
i |fm>>“t“q
+/; ' 6‘(1”’(6)7" -
So, the proof is completed. O

Corollary 2.3. Let f : I C [0,00) — (0,00) be a differentiable mapping on I°
such that f' € Lla,b], where a,b € I with a < b. If |f'(z)|? is decreasing and
m—geometrically conver on [min{l,a},b], for b > 1, and for m € (0,1], ¢ > 1,
then the following inequality holds;

r@ear (52) v o) - [ 1w

< G-alr o () ama

where Ms (1,m,q) is the term in (2.3).

Q=

Now, we obtain Simpson’s type inequalities for twice differentiable functions
using the following lemma.

Lemma 2.2. [[14], pp.2Let f : I C R — R be twice differentiable mapping on I°
such that f"” € Ly [a,b], where a,b € T with a < b, then the followz'ng equality holds:

slf@rar (50) o) - ot

(b—a)2/01k:(t)f”(tb+(1—t)a)dt
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where

k(t) =

{ 5(3-1) te0,3),
(

oG-, re (]
Theorem 2.4. Let f : I C [0,00) — (0,00) be a differentiable mapping on I°
such that f"” € Lla,b], where a,b € I with a < b. If |f" (x)| is decreasing and
(a, m)—geometrically convexr on [min{1,a},b], for b > 1, and for (a,m) € (0,1]?,
then the following inequality holds;

é[f(a)+4f ("‘2”’) +f(b)] - bia/abf(x)dx
where

< (b—a)’[f" ()" [Ma(a,m)]
(2.4) My (a,m) = /OE

(IR
oDl

Proof. From Lemma 3, Lemma 1 and since |f” ()] is decreasing, then

1[f(a>+4f ("+b>+f ]

6 2

IN

1
(bfaf/O ()] 1 (b + (1 — t)a)| dt

IA

(b—a)2/0 k()] | (') | dt.

Using the (a, m) —geometrically convexity of |f” (z)|, we have

(59 0]
(b—a)’ / eI @ 7 O g

- o-otiror [ (-9 () @
" / a-0(3-3) () dt} '

So, the proof is completed. O

| =

Corollary 2.4. Let f : I C [0,00
,b

— (0,00) be a differentiable mapping on I°
such that f"” € Lla,b], where a I

)
€ I with a < b. If |f" (x)] is decreasing and
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m—geometrically conver on [min{l,a},b] for b > 1, and for m € (0,1], then the
following inequality holds;

@+ (50) o) - < (b | ()" Ma (1,m)

1 b
o [ fads

| =

where My (1,m) is the term in (2.4).

Theorem 2.5. Let f : I C [0,00) — (0,00) be a differentiable mapping on I°
such that f" € Lla,b], where a,b € I with a < b. If |f" (x)|? is decreasing and
(o, m)—geometrically conver on [min{1,a},b], for b > 1, and for (a,m) € (0,1]?,
q > 1, then the following inequality holds;

|(1), [f(a)+4f (a;b>+f(b)] —bia/abf(w)dx

)

Q=

1\ 1
§ (b_a)2 <162) (Mﬁ (Ol7m,q)q +M7 (aam7Q)

where

and

1

Mt =1 @ [ fo o (4= D) (LY

1
2
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Proof. Suppose that ¢ > 1. From Lemma 3 and using the well-known power mean
integral inequality, we have

é{f(a)+4f<a;b>+f(b)} —bia/abf(x)dx

< <ba>2/01|k<t>||f“<tb+<1t>a>|dt

_ (b—a)2{/0é‘;(;—t)‘lf”(tb—k(l—t)aﬂdt
+/ (-1 (;-;)\f"<tb+<1—t>a>|dt}

<o (PGl

1
q

X (/Oi ;(;—t>’|f”(tb+(1—t)a)|th>
+</; (1—1) (;—;)’ﬁ)l_é
y (/j

2

1
q

(1—1) (; - ;>’|f” (b + (1 —t)a)|th>

Since |f” (x)| is decreasing using Lemma 1 and («, m)—geometrically convex on
[min {1,a},b], we have

(2.5) |f" (th+ (1 —t)a)|* dt

IN
S— S
[N [SIE
DN | =+ N | =+

|f// (a)lq(l—t)“ ‘f” (b)|mq(1—(1—t)a) dt

)
(3 — t) | (a'fmh) | dt
)

IN
h
[N
N | o+
7N
W —

|

—

- o[BG

- MG (a7m7Q)
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1
(2.6) / (1—1) (; _ ;) 7 (th+ (1= t)a)|* dt

77 (=) [

IA
N\)—A\
o

_

\
=
7 N
N |+
\
W
~

F @ @)t a

-l )

IA
N\)—A\
o

_

\
N)
7 N\
N |+
\
W
~

- M7 (a7 m, Q)
From (2.5) and (2.6), we have

VAN
=
|
N
[N~}
——
/N
b

where we use the fact that

1 1
/2E Ty dt:/ - (L-Ba= L
s 1243 , 273 162

So, the proof is completed. O

Corollary 2.5. Let f : I C [0,00) — (0,00) be a differentiable mapping on I°
such that f" € Lla,b], where a,b € I with a < b. If |f"” (z)|? is decreasing and
m—geometrically conver on [min{l,a},b], for b > 1, and for m € (0,1], ¢ > 1,
then the following inequality holds;

é[f(a)—i—zlf (“;b>+f(b)] —bia/abf(x)dz

1 17& 1 1
< 0-0 (1) (M ma)t £ 30 (1me)?)

where Mg (1,m,q) and M7 (1,m,q) are in the Theorem 5.
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