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ON A NEW CLASS OF s-TYPE OPERATORS

EMRAH EVREN KARA AND MERVE İLKHAN

Abstract. In this paper, we introduce a new class of operators by using s-

numbers and the sequence space Z(u, v; `p) for 1 < p < ∞. We prove that

this class is a quasi-Banach operator ideal. Also, we give some properties of
the quasi-Banach operator ideal. Lastly, we establish some inclusion relations

among the operator ideals formed by different s-number sequences.

1. Introduction

By ω, we denote the space of all real-valued sequences. Any vector subspace of
ω is called a sequence space. We write `p for the sequence space of p-absolutely
convergent series.

Maddox [6] defined the linear space `(p) as follows:

`(p) =

{
x ∈ ω :

∞∑
n=1

|xn|pn <∞

}
,

where (pn) is a bounded sequence of strictly positive real numbers.
Altay and Baar [1] introduced the sequence space `(u, v; p) which is the set of all

sequences whose generalized weighted mean transforms are in the space `(p), that
is,

`(u, v; p) =

{
x ∈ ω :

∞∑
n=1

∣∣∣∣∣un
n∑

k=1

vkxk

∣∣∣∣∣
pn

<∞

}
,

where un, vk 6= 0 for all n, k ∈ N.
If (pn) = (p), `(u, v; p) = Z(u, v; `p) which is defined by Malkowsky and Sava [8]

as follows:

Z(u, v; `p) =

{
x ∈ ω :

∞∑
n=1

∣∣∣∣∣un
n∑

k=1

vkxk

∣∣∣∣∣
p

<∞

}
,

where 1 < p <∞.
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Cesàro sequence space was defined by Shiue [13] as

cesp =

{
x ∈ ω :

∞∑
n=1

(
1

n

n∑
k=1

|xk|

)p

<∞

}
for 1 < p <∞.

In [7], the weighted Cesàro sequence space ces(p, q) is defined as

ces(p, q) =

{
x ∈ ω :

∞∑
n=1

(
1

Qn

n∑
k=1

|qkxk|

)p

<∞

}
,

where q = (qk) is a bounded sequence of positive real numbers, Qn =
∑n

k=1 qk and
1 < p <∞.

In the literature, various operator ideals were defined by using sequences of
different s-numbers of bounded linear operators. For example, Pietsch [9] defined
the class of `p type operators for 0 < p <∞. A bounded linear operator T is in this
class if

∑∞
n=1(an(T ))p < ∞. By using the Cesàro sequence space, Constantin [3]

introduced the class of ces−p type operators which satisfy the following condition:

∞∑
n=1

(
1

n

n∑
k=1

ak(T )

)p

<∞

for 1 < p < ∞. s-type ces(p, q) operators studied by Maji and Srivastava [7] as a
general case of ces − p type operators. A bounded linear operator T is of s-type
ces(p, q) operator if

∞∑
n=1

(
1

Qn

n∑
k=1

qksk(T )

)p

<∞

for 1 < p <∞.
The main purpose of this paper is to introduce a more general class of s-type

operators by using the sequence space Z(u, v; `p). We show that the class of s-type
Z(u, v; `p) operators is an operator ideal and a quasi-norm is defined on this class.
Moreover, we give some properties and inclusion relations related to the operator
ideals formed by different s-number sequences.

2. Preliminaries and Background

Firstly, we give basic notations used throughout this paper. By B, we denote
the class of all bounded linear operators between any two Banach spaces. B(X,Y )
is the space of all bounded linear operators from X to Y , where X and Y Banach
spaces. X ′ is composed of continuous linear functionals on X, that is, X ′ is the
dual of X. The map x′ ⊗ y : X → Y is defined by (x′ ⊗ y)(x) = x′(x)y, where
x′ ∈ X ′ and y ∈ Y . By N and R+, we denote the set of all natural numbers and
all nonnegative real nubers, respectively.

Now, we give some definitions and results about s-number sequences and oper-
ator ideals.

Definition 2.1. [7] A finite rank operator is a bounded linear operator whose
dimension of the range space is finite.

Definition 2.2. [2] A map

s : T → (sn(T )),
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which assigns a non-negative scalar sequence to each operator, is called an s-number
sequence if for all Banach spaces X, Y , Z and W the following conditions are
satisfied:

(i) ‖T‖ = s1(T ) ≥ s2(T ) ≥ ... ≥ 0 for all T ∈ B(X,Y ).
(ii) sn+m−1(T + S) ≤ sn(T ) + sm(S) for T, S ∈ B(X,Y ).
(iii)sn(RST ) ≤ ‖R‖sn(S)‖T‖ for all R ∈ B(Z,W ), S ∈ B(Y, Z), T ∈ B(X,Y ).
(iv) If rank(T ) < n, then sn(T ) = 0 for all T ∈ B(X,Y ).
(v) sn(In) = 1, where In is the identity map of n-dimensional Hilbert space `n2

to itself.

sn(T ) is called the nth s-number of T .
Let T ∈ B(X,Y ) and n ∈ N. (an(T )), (cn(T )), (dn(T )), (xn(T )), (yn(T )) and

(hn(T )) are the sequences of nth approximation number, nth Gel’fand number,
nth Kolmogorov number, Weyl number, Chang number and Hilbert number, re-
spectively. These sequences are some examples of s-number sequences of a bounded
linear operator. For the definition of these sequences, see [7, 2].

Definition 2.3. [4, p. 440] A subcollection M of B is said to be an operator ideal
if the following conditions are satisfied:
(OI-1) x′ ⊗ y : X → Y ∈M(X,Y ) for x′ ∈ X ′ and y ∈ Y .
(OI-2) T + S ∈M(X,Y ) for T, S ∈M(X,Y ).
(OI-3) RST ∈M(X0, Y0) for S ∈M(X,Y ), T ∈M(X0, X) and R ∈M(Y, Y0).

Definition 2.4. [10] A function α : M → R+ is said to be a quasi-norm on the
operator ideal M if the following conditions hold:
(QN-1) If x′ ∈ X ′ and y ∈ Y , then α(x′ ⊗ y) = ‖x′‖‖y‖.
(QN-2) If S, T ∈M(X,Y ), then there exists a constant C ≥ 1 such that α(S+T ) ≤
C[α(S) + α(T )].
(QN-3) If S ∈ M(X,Y ), T ∈ M(X0, X) and R ∈ M(Y, Y0), then α(RST ) ≤
‖R‖α(S)‖T‖.

In particular if C = 1 then α becomes a norm on the operator ideal M.
Let M be an ideal and α be a quasi-norm on the ideal M. [M, α] is said to be

a quasi-Banach operator ideal if each M(X,Y ) is complete under the quasi-norm
α.

Lemma 2.1. [5] If Y is a Banach space, then B(X,Y ) is a Banach space.

Lemma 2.2. [11] Let T, S ∈ B(X,Y ). Then |sn(T ) − sn(S)| ≤ ‖T − S‖ for
n = 1, 2, ....

Definition 2.5. [12, p. 90] An s-number sequence s = (sn) is called injective if,
given any metric injection I ∈ B(Y, Y0), sn(T ) = sn(IT ) for all T ∈ B(X,Y ).

A quasi-normed operator ideal [M, α] is called injective if T ∈ M(X,Y ) and
α(IT ) = α(T ) as IT ∈M(X,Y0), where T ∈ B(X,Y ) and I ∈ B(Y, Y0) is a metric
injection.

Definition 2.6. [12, p. 95] An s-number sequence s = (sn) is called surjective if,
given any metric surjection S ∈ B(X0, X), sn(T ) = sn(TS) for all T ∈ B(X,Y ).

A quasi-normed operator ideal [M, α] is called surjective if T ∈ M(X,Y ) and
α(TS) = α(T ) as TS ∈ M(X0, Y ), where T ∈ B(X,Y ) and S ∈ B(X0, X) is a
metric surjection.



4 EMRAH EVREN KARA AND MERVE İLKHAN

Definition 2.7. [10, p. 152] Let T ′ be the dual of T . An s-number sequence is
called symmetric if s(T ) ≥ sn(T ′) for all T ∈ B. If s(T ) = sn(T ′) then the s-number
sequence is said to be completely symmetric.

Definition 2.8. [10] For every operator ideal M, the dual operator ideal denoted
by M′ is defined as

M′(X,Y ) = T ∈ B(X,Y ) : T ′ ∈M′(Y ′, X ′),

where T ′ is the dual of T , X ′ and Y ′ are duals of X and Y , respectively.

Definition 2.9. [10, p. 68] An operator ideal M is called symmetric if M⊂M′.
If M =M′, the operator ideal M is called completely symmetric.

3. s-type Z(u, v; `p) operators

Let u = (un) and v = (vn) be sequences of positive real numbers. An operator
T ∈ B(X,Y ) is in the class of s-type Z(u, v; `p) if

∞∑
n=1

(
un

n∑
k=1

vksk(T )

)p

<∞, 1 < p <∞.

The class of all s-type Z(u, v; `p) operators is denoted by G(s)p .
If un = 1

Qn
and vk = qk are taken for all n, k ∈ N, then the class of s-type

Z(u, v; `p) operators reduces to the class of s-type ces(p, q) operators.

Theorem 3.1. Let v = (vk) be a sequence of positive numbers such that

(3.1) v2k−1 + v2k ≤Mvk for all k = 1, 2, ...,

where M > 0. If
∑∞

n=1(un)p < ∞, then the class G(s)p is an operator ideal for
1 < p <∞.

Proof. Let X and Y be any two Banach spaces and 1 < p < ∞. For x′ ∈ X ′ and
y ∈ Y , the rank of the operator x′ ⊗ y is one which means sn(x′ ⊗ y) = 0 for all
n ≥ 2. We obtain

∞∑
n=1

(
un

n∑
k=1

vksk(x′ ⊗ y)

)p

=

∞∑
n=1

(unv1s1(x′ ⊗ y))
p

= (v1s1(x′ ⊗ y))
p
∞∑

n=1

(un)p <∞.

Hence x′ ⊗ y ∈ G(s)p (X,Y ).

Let T, S ∈ G(s)p (X,Y ). Then

∞∑
n=1

(
un

n∑
k=1

vksk(T )

)p

<∞,
∞∑

n=1

(
un

n∑
k=1

vksk(S)

)p

<∞.
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By using the inequality (3.1) with monotonicity and additivity of s-number se-
quence,

n∑
k=1

vksk(T + S) =

n∑
k=1

v2k−1s2k−1(T + S) +

n∑
k=1

v2ks2k(T + S)

≤
n∑

k=1

(v2k−1 + v2k)s2k−1(T + S)

≤M
n∑

k=1

vks2k−1(T + S)

≤M

(
n∑

k=1

vksk(T ) +

n∑
k=1

vksk(S)

)
.

From Minkowsky inequality, we have( ∞∑
n=1

(
un

n∑
k=1

vksk(T + S)

)p)1/p

≤M

( ∞∑
n=1

(
un

n∑
k=1

vksk(T ) + un

n∑
k=1

vksk(S)

)p)1/p

≤M

( ∞∑
n=1

(
un

n∑
k=1

vksk(T )

)p)1/p

+

( ∞∑
n=1

(
un

n∑
k=1

vksk(S)

)p)1/p
 .

Thus T + S ∈ G(s)p (X,Y ).

Let S ∈ G(s)p (X,Y ), T ∈ G(s)p (X0, X) and R ∈ G(s)p (Y, Y0). Since s-number
sequence has ideal property, we obtain that( ∞∑

n=1

(
un

n∑
k=1

vksk(RST )

)p)1/p

≤ ‖R‖.‖T‖.

( ∞∑
n=1

(
un

n∑
k=1

vksk(S)

)p)1/p

<∞.

Hence RST ∈ G(s)p (X0, Y0).

We have proved that the class G(s)p satisfied the conditions (OI-1) to (OI-3) and

so G(s)p is an operator ideal. �

Proposition 3.1. The inclusion G(s)p ⊆ G(s)q holds for 1 < p ≤ q <∞.

Proof. Since `p ⊆ `q for 1 < p ≤ q <∞, we have G(s)p ⊆ G(s)q . �

Now, let G(s)p be an operator ideal. Define the maps Γ
(s)
p : G(s)p → R+ and

Γ̂
(s)
p : G(s)p → R+ for 1 < p <∞ by

Γ(s)
p (T ) =

( ∞∑
n=1

(
un

n∑
k=1

vksk(T )

)p)1/p

and Γ̂(s)
p (T ) =

Γ
(s)
p (T )

(
∑∞

n=1(v1un)p)
1/p

.

Theorem 3.2. Let v = (vk) be a sequence of positive numbers satisfying inequality

(3.1). If
∑∞

n=1(un)p <∞, then the function Γ̂
(s)
p is a quasi-norm on G(s)p .
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Proof. Let X and Y be two Banach spaces. Then x′ ⊗ y : X → Y is a rank one
operator, that is, sn(x′ ⊗ y) = 0 for all n ≥ 2. Hence, we have

Γ(s)
p (x′ ⊗ y) =

( ∞∑
n=1

(
un

n∑
k=1

vksk(x′ ⊗ y)

)p)1/p

=

( ∞∑
n=1

(unv1s1(x′ ⊗ y))p

)1/p

= ‖x′ ⊗ y‖

( ∞∑
n=1

(v1un)p

)1/p

.

Since sup‖x‖=1 ‖x′ ⊗ y‖ = sup‖x‖=1 ‖x′(x)y‖ = ‖y‖ sup‖x‖=1 |x′(x)| = ‖x′‖‖y‖, we
have

Γ̂(s)
p (x′ ⊗ y) = ‖x′‖‖y‖.

Since the following inequality holds( ∞∑
n=1

(
un

n∑
k=1

vksk(T + S)

)p)1/p

≤M

( ∞∑
n=1

(
un

n∑
k=1

vksk(T )

)p)1/p

+

( ∞∑
n=1

(
un

n∑
k=1

vksk(S)

)p)1/p
 ,

that is, Γ
(s)
p (T + S) ≤M

[
Γ
(s)
p (T ) + Γ

(s)
p (S)

]
for T, S ∈ G(s)p (X,Y ), we have

Γ̂(s)
p (T + S) =

Γ
(s)
p (T + S)

(
∑∞

n=1(v1un)p)
1/p

≤M

[
Γ
(s)
p (T ) + Γ

(s)
p (S)

]
(
∑∞

n=1(v1un)p)
1/p

= M
[
Γ̂(s)
p (T ) + Γ̂(s)

p (S)
]
.

Let S ∈ G(s)p (X,Y ), T ∈ G(s)p (X0, X) and R ∈ G(s)p (Y, Y0). Then, we have

Γ(s)
p (RST ) =

( ∞∑
n=1

(
un

n∑
k=1

vksk(RST )

)p)1/p

≤ ‖R‖‖T‖

( ∞∑
n=1

(
un

n∑
k=1

vksk(S)

)p)1/p

= ‖R‖‖T‖Γ(s)
p (S).

Hence, we obtain

Γ̂(s)
p (RST ) =

Γ
(s)
p (RST )

(
∑∞

n=1(v1un)p)
1/p

≤ ‖R‖‖T‖Γ(s)
p (S)

(
∑∞

n=1(v1un)p)
1/p

= ‖R‖‖T‖Γ̂(s)
p (S).

Consequently, Γ̂
(s)
p is a quasi-norm on G(s)p . �
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Theorem 3.3. Let 1 < p <∞.
[
G(s)p , Γ̂

(s)
p

]
is a quasi-Banach operator ideal.

Proof. Let X and Y be any two Banach spaces and 1 < p < ∞. The following
inequality holds

Γ(s)
p (T ) =

( ∞∑
n=1

(
un

n∑
k=1

vksk(T )

)p)1/p

≥

( ∞∑
n=1

(unv1s1(T ))
p

)1/p

= ‖T‖

( ∞∑
n=1

(v1un)
p

)1/p

for T ∈ G(s)p (X,Y ). Hence, we have

(3.2) ‖T‖ ≤ Γ̂(s)
p (T ).

Let (Tm) be a Cauchy sequence in G(s)p (X,Y ). Then for every ε > 0 there exists
n0 ∈ N such that

(3.3) Γ̂(s)
p (Tm − Tl) < ε

for ∀m, l ≥ n0. It follows that

‖Tm − Tl‖ ≤ Γ̂(s)
p (Tm − Tl) < ε

from the inequality (3.2). Then (Tm) is a Cauchy sequence in B(X,Y ). According
to Lemma 2.1, B(X,Y ) is a Banach space since Y is a Banach space. Therefore

‖ Tm − T ‖→ 0 as m→∞ for T ∈ B(X,Y ). Now, we show that Γ̂
(s)
p (Tm − T )→ 0

as m→∞ for T ∈ G(s)p (X,Y ).
The operators Tl−Tm, T −Tm are in the class B(X,Y ) for Tm, Tl, T ∈ B(X,Y ).

From Lemma 2.2, we have

|sn(Tl − Tm)− sn(T − Tm)| ≤ ‖Tl − Tm − (T − Tm)‖
= ‖Tl − T‖.

Since Tl → T as l→∞, that is ‖Tl − T‖ < ε, we obtain

(3.4) sn(Tl − Tm)→ sn(T − Tm) as l→∞.
It follows from (3.3) that the statement

Γ̂(s)
p (Tm − Tl) =

Γ
(s)
p (Tm − Tl)

(
∑∞

n=1 (v1un)
p
)
1/p

=

(∑∞
n=1 (un

∑n
k=1 vksk(Tm − Tl))

p)1/p
(
∑∞

n=1 (v1un)
p
)
1/p

< ε

holds for ∀m, l ≥ n0. Then,( ∞∑
n=1

(
un

n∑
k=1

vksk(Tm − Tl)

)p)1/p

< ε

( ∞∑
n=1

(v1un)
p

)1/p

for ∀m, l ≥ n0. We obtain from (3.4) that( ∞∑
n=1

(
un

n∑
k=1

vksk(Tm − T )

)p)1/p

< ε

( ∞∑
n=1

(v1un)
p

)1/p
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as l→∞ for ∀m ≥ n0. Hence, we have Γ̂
(s)
p (Tm − T ) < ε for ∀m ≥ n0.

Finally, we show that T ∈ G(s)p (X,Y ). From the inequality (3.4) and conditions
(i), (ii) of Definition 2.2, we obtain

n∑
k=1

vksk(T ) =

n∑
k=1

v2k−1s2k−1(T ) +

n∑
k=1

v2ks2k(T )

≤
n∑

k=1

(v2k−1 + v2k)s2k−1(T )

≤M
n∑

k=1

vks2k−1(T )

= M

n∑
k=1

vksk+k−1(T − Tm + Tm)

≤M

[
n∑

k=1

vksk(T − Tm) +

n∑
k=1

vksk(Tm)

]
.

By using Minkowsky inequality, since Tm ∈ G(s)p (X,Y ) for all m and Γ̂
(s)
p (Tm −

T )→∞ as m→∞, we have( ∞∑
n=1

(
un

n∑
k=1

vksk(T )

)p)1/p

≤M

[ ∞∑
n=1

(
un

n∑
k=1

vksk(T − Tm) + un

n∑
k=1

vksk(Tm)

)p]1/p

≤M

( ∞∑
n=1

(
un

n∑
k=1

vksk(T − Tm)

)p)1/p

+

( ∞∑
n=1

(
un

n∑
k=1

vksk(Tm)

)p)1/p


<∞

which means T ∈ G(s)p (X,Y ). �

Let
[
G(a)p , Γ̂

(a)
p

]
,
[
G(c)p , Γ̂

(c)
p

]
,
[
G(d)p , Γ̂

(d)
p

]
,
[
G(x)p , Γ̂

(x)
p

]
,
[
G(y)p , Γ̂

(y)
p

]
and

[
G(h)p , Γ̂

(h)
p

]
be the quasi-Banach operator ideals corresponding to the approximation numbers
a = (an), Gel’fand numbers c = (cn), Kolmogorov numbers d = (dn), Weyl numbers
x = (xn), Chang numbers y = (yn) and Hilbert numbers h = (hn), respectively.

Theorem 3.4. If s-number sequence is injective, then the quasi-Banach operator

ideal
[
G(s)p , Γ̂

(s)
p

]
is injective for 1 < p <∞.

Proof. Let T ∈ B(X,Y ) and I ∈ B(Y, Y0) be any metric injections. If IT ∈
G(s)p (X,Y0), then

∞∑
n=1

(
un

n∑
k=1

vksk(IT )

)p

<∞.

Since s = (sn) is injective, we have sn(T ) = sn(IT ) for all T ∈ B(X,Y ). Thus, we
obtain

∞∑
n=1

(
un

n∑
k=1

vksk(T )

)p

=

∞∑
n=1

(
un

n∑
k=1

vksk(IT )

)p

<∞,

that is, T ∈ G(s)p (X,Y ). Clearly, we have Γ̂
(s)
p (IT ) = Γ̂

(s)
p (T ). �
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Conclusion 3.1. The quasi-Banach operator ideals
[
G(c)p , Γ̂

(c)
p

]
and

[
G(x)p , Γ̂

(x)
p

]
are injective since the Gel’fand numbers and the Weyl numbers are injective (See
[12, p. 90-94]).

Theorem 3.5. If s-number sequence is surjective, then the quasi-Banach operator

ideal
[
G(s)p , Γ̂

(s)
p

]
is surjective for 1 < p <∞.

Proof. Let T ∈ B(X,Y ) and S ∈ B(X0, X) be any metric surjections. If TS ∈
G(s)p (X0, Y ), then

∞∑
n=1

(
un

n∑
k=1

vksk(TS)

)p

<∞.

Since s = (sn) is surjective, we have sn(T ) = sn(TS) for all T ∈ B(X,Y ). Thus,
we obtain

∞∑
n=1

(
un

n∑
k=1

vksk(T )

)p

=

∞∑
n=1

(
un

n∑
k=1

vksk(TS)

)p

<∞,

that is, T ∈ G(s)p (X,Y ). Clearly, we have Γ̂
(s)
p (TS) = Γ̂

(s)
p (T ). �

Conclusion 3.2. The quasi-Banach operator ideals
[
G(d)p , Γ̂

(d)
p

]
and

[
G(y)p , Γ̂

(y)
p

]
are surjective since the Kolmogorov numbers and the Chang numbers are surjective
(See [12, p. 95]).

Now, we give some inclusion relations among the operator ideals G(a)p , G(c)p , G(d)p ,

G(x)p , G(y)p and G(h)p .

Theorem 3.6. The following inclusion relations

(i) G(a)p ⊆ G(c)p ⊆ G(x)p ⊆ G(h)p ,

(ii) G(a)p ⊆ G(d)p ⊆ G(y)p ⊆ G(h)p

hold for 1 < p <∞.

Proof. Let T ∈ G(a)p . Then

∞∑
n=1

(
un

n∑
k=1

vkak(T )

)p

<∞,

where 1 < p <∞. It follows from [12, p. 115] that hn(T ) ≤ xn(T ) ≤ cn(T ) ≤ an(T )
and hn(T ) ≤ yn(T ) ≤ dn(T ) ≤ an(T ). Hence, we have

∞∑
n=1

(
un

n∑
k=1

vkhk(T )

)p

≤
∞∑

n=1

(
un

n∑
k=1

vkxk(T )

)p

≤
∞∑

n=1

(
un

n∑
k=1

vkck(T )

)p

≤
∞∑

n=1

(
un

n∑
k=1

vkak(T )

)p

<∞
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and
∞∑

n=1

(
un

n∑
k=1

vkhk(T )

)p

≤
∞∑

n=1

(
un

n∑
k=1

vkyk(T )

)p

≤
∞∑

n=1

(
un

n∑
k=1

vkvk(T )

)p

≤
∞∑

n=1

(
un

n∑
k=1

vkak(T )

)p

<∞.

Thus, the inclusions are clear. �

Theorem 3.7. Let 1 < p < ∞. The operator ideal G(a)p is symmetric and the

operator ideal G(h)p is completely symmetric.

Proof. Let 1 < p <∞.

Firstly, we prove that the inclusion G(a)p ⊆
(
G(a)p

)′
holds. Let T ∈ G(a)p . Then

∞∑
n=1

(
un

n∑
k=1

vkak(T )

)p

<∞.

It follows from [10, p. 152] that an(T ′) ≤ an(T ) for T ∈ B. Hence, we have

∞∑
n=1

(
un

n∑
k=1

vkak(T ′)

)p

≤
∞∑

n=1

(
un

n∑
k=1

vkak(T )

)p

<∞,

that is, T ∈
(
G(a)p

)′
. Thus, G(a)p is symmetric.

Now, we prove that the equation G(h)p =
(
G(h)p

)′
holds. It follows from [12, p. 97]

that hn(T ′) = hn(T ) for T ∈ B. Hence, we have

∞∑
n=1

(
un

n∑
k=1

vkhk(T ′)

)p

=

∞∑
n=1

(
un

n∑
k=1

hkak(T )

)p

.

Thus, G(h)p is completely symmetric. �

Theorem 3.8. Let 1 < p < ∞. The equation G(c)p =
(
G(d)p

)′
and the inclusion

G(d)p ⊆
(
G(c)p

)′
hold. Also, the equation G(d)p =

(
G(c)p

)′
holds for any compact

operators.

Proof. Let 1 < p <∞. We have from [12, p. 95] that cn(T ) = dn(T ′) and cn(T ′) ≤
dn(T ) for T ∈ B. Also, the equality cn(T ′) = dn(T ) holds, where T is a compact
operator. Thus the proof is clear. �

Theorem 3.9. Let 1 < p <∞. The equations G(x)p =
(
G(y)p

)′
and G(y)p =

(
G(x)p

)′
hold.

Proof. Let 1 < p <∞. We have from [12, p. 96] that xn(T ) = yn(T ′) and yn(T ) =
xn(T ′) for T ∈ B. Thus the proof is clear. �
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[13] J. S. Shiue, On the Cesàro sequence spaces, Tamkang J. Math. Vol:1 No.1 (1970), 19–25.

Duzce University, Science and Art Faculty, Department of Mathematics, Duzce-

TURKEY
E-mail address: eevrenkara@hotmail.com

Duzce University, Science and Art Faculty, Department of Mathematics, Duzce-
TURKEY

E-mail address: merveilkhan@gmail.com



Konuralp Journal of Mathematics
Volume 3 No. 1 pp. 12–15 (2015) c©KJM

ON SOME CLASSICAL THEOREMS IN INTUITIONISTIC

FUZZY PROJECTIVE PLANE

A. BAYAR & S. EKMEKÇİ

Abstract. In this work, we introduce that intuitionistic fuzzy versions of

some classical configurations in projective plane are valid in intuitionistic fuzzy
projective plane with base Desarguesian or Pappian plane.

1. Introduction

After the introduction of Fuzzy set theory by Zadeh [12] several researches were
conducted on generalizations of this theory.

A model of fuzzy projective geometries was introduced by Kuijken, Van Maldeghem
and Kerre [10]. This provided a link between the fuzzy versions of classical theo-
ries that are very closely related. Also, Kuijken and Van Maldeghem contributed
to fuzzy theory by introducing fibered geometries, which is a particular kind of
fuzzy geometries [9]. They gave the fibered versions of some classical results in pro-
jective planes by using minimum operator. Then the role of the triangular norm
in the theory of fibered projective planes and fibered harmonic conjugates and a
fibered version of Reidemeister’s condition were given in [3] and the fibered version
of Menelaus and Ceva’s 6-figures was studied in [4]. In these papers, the points and
lines of the base geometry mostly have multiple degrees of membership.

Intuitionistic fuzzy set (IFS) was first published by Atanassov [2] and some
authors appeared in literature [5], [11]. A model of intuitionistic fuzzy projective
geometry and the link between fibered and intuitionistic fuzzy projective geometry
were given by Ghassan E. Arif [7].

In the present paper, the intuitionistic fuzzy versions of some classical theorems
in projective planes were given.

2. Preliminaries

We first recall the basic notions from the theory of intuitionistic fuzzy geometries
and fibered projective geometry. We assume that the reader is familiar with the

2000 Mathematics Subject Classification. 20N25.
Key words and phrases. Projective plane, intuitionistic fuzzy projective plane, Desargues

theorem, Pappus theorem.
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basic notions of fuzzy mathematics, although this is not strictly necessary as the
paper is self-contained in this respect.

We denote by ∧ and ∨, minimum and maximum operators respectively.
Let P = (P,B,∼) be any projective plane with point set P and line set B, i.e.,

P and B are two disjoint sets endowed with a symmetric relation ∼ (called the
incidence relation) such that the graph (P ∪B,∼) is a bipartite graph with classes
P and B, and such that two distinct points p, q in P are incident with exactly one
line (denoted by 〈pq〉), every two distinct lines L,M are incident with exactly one
point (denoted by L ∩M), and every line is incident with at least three points. A
set S of collinear points is a subset of P each member of which is incident with a
common line L. Dually, one defines a set of concurrent lines [8].

Definition 2.1. (see [2]) Let X be a nonempty fixed set. An intuitionistic fuzzy
set A on X is an object having the form

A = {〈x, λ(x), µ(x)〉 : x ∈ X}

where the function λ : X → I and µ : X → I denote the degree of membership
(namely, λ(x)) and the degree of nonmembership (namely, µ(x)) of each element
x ∈ X to the set A, respectively, and 0 ≤ λ(x) + µ(x) ≤ 1 for each x ∈ X.
An intuitionistic fuzzy set A = {〈x, λ(x), µ(x)〉 : x ∈ X} can be written in the
A = {〈x, λ, µ〉 : x ∈ X}, or simply A = 〈λ, µ〉.

Let A = {〈x, λ(x), µ(x)〉 : x ∈ X} and B = {〈x, δ(x), γ(x)〉 : x ∈ X} be an intu-
itionistic fuzzy sets on X . Then,

(a) A = {〈x, µ(x), λ(x)〉 : x ∈ X} (the complement of A ).
(b) A ∩B = {〈x, λ(x) ∧ δ(x), µ(x) ∨ γ(x)〉 : x ∈ X} (the meet of A and B).
(c) A ∪B = {〈x, λ(x) ∨ δ(x), µ(x) ∧ γ(x)〉 : x ∈ X} (the join of A and B).
(d) A ⊆ B ⇔ λ(x) ≤ δ(x) and µ(x) ≥ γ(x) for each x ∈ X.
(e) A = B ⇔ A ⊆ B and B ⊆ A.
(f) 1̃ = {〈x, 1, 0〉 : x ∈ X}, 0̃ = {〈x, 0, 1〉 : x ∈ X} .

Definition 2.2. (see [9]) A fibered projective plane FP on the projective plane P
consist of a set FP of f- points and a set FB of f -lines , such that every point and
line of P is base point and base line of at least one f -point and f -line respectively
, (with at least one membership degree different from 1), and such that FP =
(FP, FB) is closed under taking intersections of f -lines and spans of f -points.
Finally, a set of f -points are called collinear if each pair of them span the same
f -line. Dually, a set of f -lines are called concurrent if each pair of them intersect
in the same f -point.

Definition 2.3. (see [9]) Let P be a projective plane, a ∈ P and α ∈]0, 1]. Then
an f -point (a, α) is the following fuzzy set on the point set P of P:

(a, α) : P → [0, 1] :

{
a→ α
x→ 0 if x ∈ P\{a}.

Dually, one defines in the same way the f -line (L, β) for L ∈ B and β ∈]0, 1].
The real number α above is called the membership degree of the f -point (a, α),

while the point a is called the base point of it. Similarly for f -lines.
Two f -lines (L,α) and (M,β), with α ∧ β > 0, intersect in the unique f -point

(L ∩M,α ∧ β). Dually, the f -points (a, λ) and (b, µ), with λ ∧ µ > 0, span the
unique f -line (〈a, b〉, λ ∧ µ).
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In the above definitions, the ∧ was originally meant to be the minimum operator,
but in [3] was considered any triangular norm.

Definition 2.4. (see [7]) An intuitionistic fuzzy set A = {〈x, λ(x), µ(x)〉 : x ∈ X}
on n -dimensional projective space S is an intuitionistic fuzzy n - dimensional
projective space on S if λ(p) ≥ λ(q) ∧ λ(r) and µ(p) ≤ µ(q) ∨ µ(r), for any three
collinear points p, q, r of A we denoted [A,S].

The projective space S is called the base projective space of [A,S] if [A,S] is an
intuitionistic fuzzy point , line , plane , . . . ,we use base point , base line , base
plane,. . . , respectively.

Definition 2.5. (see [7]) Consider the projective plane P = (P,B, I). Suppose
a ∈ P and α, β ∈ [0, 1]. The IF-point (a, α, β) is the following intuitionistic fuzzy
set on the point set P of P :

(a, α, β) : P → [0, 1] :

{
a→ α, a→ β
x→ 0 if x ∈ P\{a}.

The point a is called the base point of the IF-point (a, α, β). An IF-line (L,α, β)
with base line L is defined in a similar way .

The IF-lines (L,α, β) and (M,σ, ω) intersect in the unique IF- point (L∩M,α∧
σ, β ∨ ω). The IF-points (a, α, β) and (b, σ, ω) span the unique IF-line (〈a, b〉, α ∧
σ, β ∨ ω).

Definition 2.6. (see [7]) Suppose P is a projective plane P = (P,B, I). The
intuitionistic fuzzy set Z = 〈λ, µ〉 on P ∪B is an intuitionistic fuzzy projective
plane on P if :

1) λ(L) ≥ λ(p) ∧ λ(q) and µ(L) ≤ µ(p) ∨µ(q), ∀p, q: 〈p, q〉 = L
2) λ(p) ≥ λ(L) ∧ λ(M) and µ(p) ≤ µ(L) ∨µ(M), ∀L,M : L ∩M = p.

The intuitionistic fuzzy projective plane can be considered as an ordinary pro-
jective plane, where to every point (and only to points) one (and only one ) degrees
of membership and nonmembership are assigned.

3. Some Properties of the IFP with base plane P

We now consider some classical configurations in P and extend them to intu-
itionistic fuzzy projective planes. Firstly, we look at the Desargues configuration
in an intuitionistic projective plane IFP with base plane P that is Desarguesian.

Theorem 3.1. Suppose we have an intuitionistic fuzzy projective plane IFP with
base plane P that is Desarguesian. Choose three IF-points (ai, αi, α

′
i), i ∈ {1, 2, 3}with

noncollinear base points, and three other f- points (bi, βi, β
′
i), i ∈ {1, 2, 3}with non-

collinear base points, such that the f-lines (〈ai, bi〉, αi ∧βi, α′
i ∨β′

i), for i ∈ {1, 2, 3},
meet in an IF-point (p, γ, η) of IFP, with ai 6= bi 6= p 6= ai. Then the three IF-
points (c{i,j}, γ{i,j}, γ

′
{i,j}) obtained by intersecting (〈ai, aj〉, αi ∧ αj , α

′
i ∨ α′

j) and

(〈bi, bj〉, βi ∧ βj , β′
i ∨ β′

j), for i 6= j and i, j ∈ {1, 2, 3}), are collinear.

Proof. One calculates that γ = αi ∧ αj ∧ βi ∧ βj and γ′ = α′
i ∨ α′

j ∨ β′
i ∨ β′

j for
{i, j} ⊆ {1, 2, 3}, with i 6= j. Now, the membership degree of the line spanned by
(c{i,j}, γ{i,j}, γ

′
{i,j}) and (c{i,k}, γ{i,k}, γ

′
{i,k}), with {i, j, k} = {1, 2, 3}, is equal to

αi∧αi∧αj∧αk∧βi∧βi∧βj∧βk = γ∧γ and α′
i∨α′

i∨α′
j∨α′

k∨β′
i∨β′

i∨β′
j∨β′

k = η∨η
which is independent of i. �
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The Pappus’ theorem was fuzzified using minimum operator in [9]. Now, we give
intuitionistic fuzzy version of Pappus theorem as the following:

Theorem 3.2. Suppose we have an intuitionistic fuzzy projective plane IFP with
Pappian base plane P. Choose two different lines L1 and L2 in P. Choose two
triples of IF−points (ai, αi, α

′
i) and (bi, βi, β

′
i) with ai on L1 and bi on L2, i =

1, 2, 3 and such that no three of the base points a1, a2, b1, b2 are collinear. Then
the three intersection IF−points (c1, γ1, γ

′
1) = (a2b3 ∩ a3b2, α2 ∧ α3 ∧ β2 ∧ β3, α

′
2 ∨

α′
3 ∨ β′

2 ∨ β′
3), (c2, γ2, γ

′
2) = (a1b3 ∩ a3b1, α1 ∧ α3 ∧ β1 ∧ β3, α

′
1 ∨ α′

3 ∨ β′
1 ∨ β′

3) and
(c3, γ3, γ

′
3) = (a1b2 ∩ a2b1, α1 ∧ α2 ∧ β1 ∧ β2, α

′
1 ∨ α′

2 ∨ β′
1 ∨ β′

2) are collinear.

Proof. Since IF−points (ai, αi, α
′
i) and (bi, βi, β

′
i) are IF−collinear, α1 ∧ α2 =

α1 ∧ α3 = α2 ∧ α3, α
′
1 ∨ α′

2 = α′
1 ∨ α′

3 = α′
2 ∨ α′

3, and β1 ∧ β2 = β1 ∧ β3 = β2 ∧ β3,
β′

1∨β′
2 = β′

1∨β′
3 = β′

2∨β′
3, i = 1, 2, 3. γ1∧γ2 = α2∧α3∧β2∧β3∧α1∧α3∧β1∧β3,

γ1 ∧ γ3 = α2 ∧ α3 ∧ β2 ∧ β3 ∧ α1 ∧ α2 ∧ β1 ∧ β2 and γ2 ∧ γ3 = α1 ∧ α3 ∧ β1 ∧ β3 ∧
α1 ∧ α2 ∧ β1 ∧ β2. Also, γ′1 ∨ γ′2 = α′

2 ∨ α′
3 ∨ β′

2 ∨ β′
3 ∨ α′

1 ∨ α′
3 ∨ β′

1 ∨ β′
3, γ

′
1 ∨ γ′3 =

α′
2∨α′

3∨β′
2∨β′

3∨α′
1∨α′

2∨β′
1∨β′

2 and γ′2∨γ′3 = α′
1∨α′

3∨β′
1∨β′

3∨α′
1∨α′

2∨β′
1∨β′

2.
So, it is clear that γ1 ∧ γ2 = γ1 ∧ γ3 = γ2 ∧ γ3, γ

′
1 ∨ γ′2 = γ′1 ∨ γ′3 = γ′2 ∨ γ′3. �

Conclusion: In the present paper, we have considered Desargues and Pappus
configurations in projective plane P. We have seen that intuitionistic fuzzy versions
of them automatically holds. In further investigation, when using other triangular
norms, it will be given contribution to the intuitionistic fuzzy projective geome-
try and other classical theorems of projective geometry will be extended to the
intuitionistic fuzzy projective geometry.
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[6] S. Ekmekçi , Z. Akça, A. Bayar, On the classification of fuzzy projective planes of fuzzy
3-dimensional projective space, Chaos Solitons & Fractals, 40 (2009) 2146-2151.

[7] E. A. Ghassan, Intuitionistic fuzzy projective geometry, J. of Al-Ambar University for Pure
Science, 3 (2009) 1-5.

[8] D. R. Hughes, F.C. Piper, Projective planes, Springer, New York, Heidelberg, Berlin, 1973.

[9] L. Kuijken, H. Van Maldeghem, Fibered geometries, Discrete Mathematics 255 (2002) 259-
274.

[10] L. Kuijken, H. Van Maldeghem, E.E. Kerre, Fuzzy projective geometries from fuzzy vector
spaces, in: A. Billot et al. (Eds.), Information Processing and Management of Uncertainty
in Knowledge-based Systems, Editions Medicales et Scientifiques, Paris, La Sorbonne, 1998,
pp. 1331-1338.

[11] N.Turanlı, An overview of intuitionistic fuzzy supratopological spaces, Hacettepe Journal of
Mathematics and Statistics, 32(2003)-(17-26).

[12] L. Zadeh, Fuzzy sets, Inform. Control, 8 (1965) 338-358.

Department of Mathematics - Computer, Eskişehir Osmangazi University, Eskişehir,
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SOME PARANORMED SEQUENCE SPACES DEFINED BY A

MUSIELAK-ORLICZ FUNCTION OVER N-NORMED SPACES

AYHAN ESI AND S. K. SHARMA

Abstract. In this paper we present new classes of sequence spaces using la-

cunary sequences and a Musielak-Orlicz function over n-normed spaces. We

examine some topological properties and prove some interesting inclusion re-
lations between them.

1. Introduction and preliminaries

The concept of 2-normed spaces was initially developed by Gähler [5] in the mid
of 1960’s, while that of n-normed spaces one can see in Misiak [14]. Since then,
many others have studied this concept and obtained various results, see Gunawan
([6], [7]) and Gunawan and Mashadi [8]. Let n ∈ N and X be a linear space over
the field K, where K is field of real or complex numbers of dimension d, where
d ≥ n ≥ 2. A real valued function ||·, · · · , ·|| on Xn satisfying the following four
conditions:

(1) ||x1, x2, · · · , xn|| = 0 if and only if x1, x2, · · · , xn are linearly dependent in
X;

(2) ||x1, x2, · · · , xn|| is invariant under permutation;
(3) ||αx1, x2, · · · , xn|| = |α| ||x1, x2, · · · , xn|| for any α ∈ K, and
(4) ||x+ x′, x2, · · · , xn|| ≤ ||x, x2, · · · , xn||+ ||x′, x2, · · · , xn||

is called an n-norm on X, and the pair (X, ||·, · · · , ·||) is called a n-normed space
over the field K.

For example, we may takeX = Rn being equipped with the n-norm ||x1, x2, · · · , xn||E
= the volume of the n-dimensional parallelopiped spanned by the vectors x1, x2, · · · , xn
which may be given explicitly by the formula

||x1, x2, · · · , xn||E = |det(xij)|,

where xi = (xi1, xi2, · · · , xin) ∈ Rn for each i = 1, 2, · · · , n. Let (X, ||·, · · · , ·||)
be an n-normed space of dimension d ≥ n ≥ 2 and {a1, a2, · · · , an} be linearly

2000 Mathematics Subject Classification. 40A05, 46A45, 40C05A..
Key words and phrases. n-norm, paranorm space, Orlicz function, Musielak-Orlicz function.
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independent set in X. Then the following function ||·, · · · , ·||∞ on Xn−1 defined by

||x1, x2, · · · , xn−1||∞ = max{||x1, x2, · · · , xn−1, ai|| : i = 1, 2, · · · , n}

defines an (n− 1)-norm on X with respect to {a1, a2, · · · , an}.
A sequence (xk) in a n-normed space (X, ||·, · · · , ·||) is said to converge to some

L ∈ X if

lim
k→∞

||xk − L, z1, · · · , zn−1|| = 0 for every z1, · · · , zn−1 ∈ X.

A sequence (xk) in a n-normed space (X, ||·, · · · , ·||) is said to be Cauchy if

lim
k→∞
p→∞

||xk − xp, z1, · · · , zn−1|| = 0 for every z1, · · · , zn−1 ∈ X.

If every cauchy sequence in X converges to some L ∈ X, then X is said to be
complete with respect to the n-norm. Any complete n-normed space is said to be
n-Banach space.

Let X be a linear metric space. A function p : X → R is called paranorm, if

(1) p(x) ≥ 0 for all x ∈ X,
(2) p(−x) = p(x) for all x ∈ X,
(3) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X,
(4) if (λn) is a sequence of scalars with λn → λ as n→∞ and (xn) is a sequence

of vectors with p(xn−x)→ 0 as n→∞, then p(λnxn−λx)→ 0 as n→∞.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the
pair (X, p) is called a total paranormed space. It is well known that the metric of
any linear metric space is given by some total paranorm (see [19, Theorem 10.4.2,
pp. 183]).

For more details about sequence spaces (see [1], [2], [3], [17], [18]) and references
therein.

An Orlicz function M is a function, which is continuous, non-decreasing and
convex with M(0) = 0, M(x) > 0 for x > 0 and M(x) −→∞ as x −→∞.

Lindenstrauss and Tzafriri [10] used the idea of Orlicz function to define the
following sequence space. Let w be the space of all real or complex sequences
x = (xk), then

`M =
{
x ∈ w :

∞∑
k=1

M
( |xk|
ρ

)
<∞

}
which is called as an Orlicz sequence space. The space `M is a Banach space with
the norm

||x|| = inf
{
ρ > 0 :

∞∑
k=1

M
( |xk|
ρ

)
≤ 1
}
.

It is shown in [10] that every Orlicz sequence space `M contains a subspace isomor-
phic to `p(p ≥ 1). The ∆2−condition is equivalent to M(Lx) ≤ kLM(x) for all
values of x ≥ 0, and for L > 1. A sequence M = (Mk) of Orlicz function is called
a Musielak-Orlicz function (see [13], [16]). A sequence N = (Nk) is defined by

Nk(v) = sup{|v|u− (Mk) : u ≥ 0}, k = 1, 2, . . .
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is called the complementary function of a Musielak-Orlicz functionM. For a given
Musielak-Orlicz function M, the Musielak-Orlicz sequence space tM and its sub-
space hM are defined as follows

tM =
{
x ∈ w : IM(cx) <∞ for some c > 0

}
,

hM =
{
x ∈ w : IM(cx) <∞ for all c > 0

}
,

where IM is a convex modular defined by

IM(x) =

∞∑
k=1

(Mk)(xk), x = (xk) ∈ tM.

We consider tM equipped with the Luxemburg norm

||x|| = inf
{
k > 0 : IM

(x
k

)
≤ 1
}

or equipped with the Orlicz norm

||x||0 = inf
{1

k

(
1 + IM(kx)

)
: k > 0

}
.

Let `∞, c and c0 denotes the sequence spaces of bounded, convergent and null
sequences x = (xk) respectively. A sequence x = (xk) ∈ `∞ is said to be almost
convergent if all Banach limits of x = (xk) coincide. In [9], it was shown that

ĉ =
{
x = (xk) : lim

n→∞

1

n

n∑
k=1

xk+s exists, uniformly in s
}
.

In ([11], [12]) Maddox defined strongly almost convergent sequences. Recall that a
sequence x = (xk) is strongly almost convergent if there is a number L such that

lim
n→∞

1

n

n∑
k=1

|xk+s − L| = 0, uniformly in s.

By a lacunary sequence θ = (ir), r = 0, 1, 2, · · · , where i0 = 0, we shall mean an
increasing sequence of non-negative integers gr = (ir − ir−1)→∞ (r →∞). The
intervals determined by θ are denoted by Ir = (ir−1, ir] and the ratio ir/ir−1 will
be denoted by qr. The space of lacunary strongly convergent sequences Nθ was
defined by Freedman [4] as follows:

Nθ =
{
x = (xk) : lim

r→∞

1

gr

∑
k∈Ir

|xk − L| = 0 for some L
}
.

Mursaleen and Noman [15] introduced the notion of λ-convergent and λ-bounded
sequences as follows :

Let λ = (λk)∞k=1 be a strictly increasing sequence of positive real numbers tending
to infinity i.e.

0 < λ0 < λ1 < · · · and λk →∞ as k →∞
and said that a sequence x = (xk) ∈ w is λ-convergent to the number L, called the
λ-limit of x if Λm(x) −→ L as m→∞, where

λm(x) =
1

λm

m∑
k=1

(λk − λk−1)xk.
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The sequence x = (xk) ∈ w is λ-bounded if supm |Λm(x)| < ∞. It is well known
[15] that if limm xm = a in the ordinary sense of convergence, then

lim
m

(
1

λm

( m∑
k=1

(λk − λk−1)|xk − a|
)

= 0.

This implies that

lim
m
|Λm(x)− a| = lim

m
| 1

λm

m∑
k=1

(λk − λk−1)(xk − a)| = 0

which yields that limm Λm(x) = a and hence x = (xk) ∈ w is λ-convergent to a.
Let (X, ||·, · · · , ·||) be a n-normed space and w(n−X) denotes the space of X-

valued sequences. Let M = (Mk) be a Musielak-Orlicz function and p = (pk) be a
bounded sequence of positive real numbers. Then we define the following sequence
spaces in the present paper:

[ c,M, p,Λ, ||·, · · · , ·|| ]θ ={
x = (xk) ∈ w(n−X) : lim

r→∞

1

hr

∑
k∈Ir

[
Mk

(
||Λk(x)− L

ρ
, z1, · · · , zn−1||

)]pk
= 0,

for some ρ > 0, L ∈ X and for every z1, · · · , zn−1 ∈ X
}
,

[ c,M, p,Λ, ||·, · · · , ·|| ]θ0 ={
x = (xk) ∈ w(n−X) : lim

r→∞

1

hr

∑
k∈Ir

[
Mk

(
||Λk(x)

ρ
, z1, · · · , zn−1||

)]pk
= 0,

for some ρ > 0 and for every z1, · · · , zn−1 ∈ X
}

and
[ c,M, p,Λ, ||·, · · · , ·|| ]θ∞ ={
x = (xk) ∈ w(n−X) : sup

r→∞

1

hr

∑
k∈Ir

[
Mk

(
||Λk(x)

ρ
, z1, · · · , zn−1||

)]pk
<∞,

for some ρ > 0 and for every z1, · · · , zn−1 ∈ X
}
.

When, M(x) = x, we get
[ c, p,Λ, ||·, · · · , ·|| ]θ ={

x = (xk) ∈ w(n−X) : lim
r→∞

1

hr

∑
k∈Ir

(
||Λk(x)− L

ρ
, z1, · · · , zn−1||

)pk
= 0,

for some ρ > 0, L ∈ X and for every z1, · · · , zn−1 ∈ X
}
,

[ c, p,Λ, ||·, · · · , ·|| ]θ0 ={
x = (xk) ∈ w(n−X) : lim

r→∞

1

hr

∑
k∈Ir

(
||Λk(x)

ρ
, z1, · · · , zn−1||

)pk
= 0,

for some ρ > 0 and for every z1, · · · , zn−1 ∈ X
}

and
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[ c, p,Λ, ||·, · · · , ·|| ]θ∞ ={
x = (xk) ∈ w(n−X) : sup

r→∞

1

hr

∑
k∈Ir

(
||Λk(x)

ρ
, z1, · · · , zn−1||

)pk
<∞,

for some ρ > 0 and for every z1, · · · , zn−1 ∈ X
}
.

If we take p = (pk) = 1 for all k, then we get
[ c,M,Λ, ||·, · · · , ·|| ]θ ={
x = (xk) ∈ w(n−X) : lim

r→∞

1

hr

∑
k∈Ir

[
Mk

(
||Λk(x)− L

ρ
, z1, · · · , zn−1||

)]
= 0,

for some ρ > 0, L ∈ X and for every z1, · · · , zn−1 ∈ X
}
,

[ c,M,Λ, ||·, · · · , ·|| ]θ0 ={
x = (xk) ∈ w(n−X) : lim

r→∞

1

hr

∑
k∈Ir

[
Mk

(
||Λk(x)

ρ
, z1, · · · , zn−1||

)]
= 0,

for some ρ > 0 and for every z1, · · · , zn−1 ∈ X
}

and
[ c,M,Λ, ||·, · · · , ·|| ]θ∞ ={

x = (xk) ∈ w(n−X) : sup
r→∞

1

hr

∑
k∈Ir

[
Mk

(
||Λk(x)

ρ
, z1, · · · , zn−1||

)]
<∞,

for some ρ > 0 and for every z1, · · · , zn−1 ∈ X
}
.

The following inequality will be used throughout the paper. If 0 ≤ infk pk = H0 ≤
pk ≤ supk = H <∞, K = max(1, 2H−1) and H = sup

k
pk <∞, then

(1.1) |xk + yk|pk ≤ K(|xk|pk + |yk|pk),

for all k ∈ N and xk, yk ∈ C. Also |xk|pk ≤ max(1, |xk|H) for all xk ∈ C.

2. Some properties of difference sequence spaces

Theorem 2.1. Let M = (Mk) be a Musielak-Orlicz function and p = (pk) be a
bounded sequence of positive real numbers. Then [ c,M, p,Λ, ||., · · · , ·|| ]θ, [ c,M, p,Λ, ||·, · · · , ·|| ]θ0
and [ c,M, p,Λ, ||·, · · · , ·|| ]θ∞ are linear spaces over the field of complex numbers C.

Proof. Let x = (xk), y = (yk)∈[ c,M, p,Λ, ||·, · · · , ·|| ]θ0 and α, β ∈ C. Then there
exist positive numbers ρ1 and ρ2 such that

lim
r−→∞

1

hr

∑
k∈Ir

[
Mk

(
||Λk(x)

ρ1
, z1, · · · , zn−1||

)]pk
= 0,

and

lim
r−→∞

1

hr

∑
k∈Ir

[
Mk

(
||Λk(x)

ρ2
, z1, · · · , zn−1||

)]pk
= 0, .
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Let ρ3 = max(2|α|ρ1, 2|β|ρ2). Since M = (Mk) is non-decreasing convex function,
by using inequality (1.1), we have

1

hr

∑
k∈Ir

[
Mk

(
||Λk(αx+ βy)

ρ3
, z1, · · · , zn−1||

)]pk
=

1

hr

∑
k∈Ir

[
Mk

(
||αΛk(x)

ρ3
, z1, · · · , zn−1||+

βΛk(y)

ρ3
, z1, · · · , zn−1||

)]pk
≤ K 1

hr

∑
k∈Ir

1

2pk

[
Mk

(
||Λk(x)

ρ1
, z1, · · · , zn−1||

)]pk
+K

1

hr

∑
k∈Ir

1

2pk

[
Mk

(
||Λk(y)

ρ2
, z1, · · · , zn−1||

)]pk
≤ K 1

hr

∑
k∈Ir

[
Mk

(
||Λk(x)

ρ1
, z1, · · · , zn−1||

)]pk
+K

1

hr

∑
k∈Ir

[
Mk

(
||Λk(y)

ρ1
, z1, · · · , zn−1||

)]pk
−→ 0 as r −→∞.

Thus, we have αx+βy ∈ [ c,M, p,Λ, ||·, · · · , ·|| ]θ0. Hence [ c,M, p,Λ, ||·, · · · , ·|| ]θ0 is
a linear space. Similarly, we can prove that [ c,M, p,Λ, ||·, · · · , ·|| ]θ and [ c,M, p,Λ, ||·, · · · , ·|| ]θ∞
are linear spaces. �

Theorem 2.2. For any Musielak-Orlicz function M = (Mk) and a bounded se-
quence p = (pk) of positive real numbers, [ c,M, p,Λ, ||·, · · · , ·|| ]θ0 is a topological
linear space paranormed by

g(x) = inf
{
ρ
pr
H :

( 1

hr

∑
k∈Ir

[
Mk(||Λk(x)

ρ
, z1, · · · , zn−1||)

]pk) 1
H ≤ 1, r ∈ N

}
,

where H = max(1, supk pk <∞).

Proof. Clearly g(x) ≥ 0 for x = (xk) ∈ [ c,M, p,Λ, ||·, · · · , ·|| ]θ0. Since Mk(0) = 0,
we get g(0) = 0. Again, if g(x) = 0, then

inf
{
ρ
pr
H :

( 1

hr

∑
k∈Ir

[
Mk

(
||Λk(x)

ρ
, z1, · · · , zn−1||

)]pk) 1
H ≤ 1, r ∈ N

}
= 0.

This implies that for a given ε > 0, there exists some ρε(0 < ρε < ε) such that( 1

hr

∑
k∈Ir

[
Mk

(
||Λk(x)

ρε
, z1, · · · , zn−1||

)]pk) 1
H ≤ 1.

Thus( 1

hr

∑
k∈Ir

[
Mk

(
||Λk(x)

ε
, z1, · · · , zn−1||

)]pk) 1
H ≤

( 1

hr

∑
k∈Ir

[
Mk

(
||Λk(x)

ρε
, z1, · · · , zn−1||

)]pk) 1
H

≤ 1,
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for each r. Suppose that x 6= 0 for each k ∈ N . This implies that Λk(x) 6= 0, for

each k ∈ N. Let ε −→ 0, then ||Λk(x)
ε , z1, · · · , zn−1|| −→ ∞. It follows that( 1

hr

∑
k∈Ir

[
Mk

(
||Λk(x)

ε
, z1, · · · , zn−1||

)]pk) 1
H −→∞,

which is a contradiction. Therefore, Λk(x) = 0 for each k and thus x = 0 for each
k ∈ N . Let ρ1 > 0 and ρ2 > 0 be such that( 1

hr

∑
k∈Ir

[
Mk

(
||Λk(x)

ρ1
, z1, · · · , zn−1||

)]pk) 1
H ≤ 1

and ( 1

hr

∑
k∈Ir

[
Mk

(
||Λk(y)

ρ2
, z1, · · · , zn−1||

)]pk) 1
H ≤ 1

for each r. Let ρ = ρ1 + ρ2. Then, by Minkowski’s inequality, we have( 1

hr

∑
k∈Ir

[
Mk

(
||Λk(x+ y)

ρ
, z1, · · · , zn−1||

)]pk) 1
H

≤
( 1

hr

∑
k∈Ir

[
Mk

(
||Λk(x) + Λk(y)

ρ1 + ρ2
, z1, · · · , zn−1||

)]pk) 1
H

≤
( ∑
k∈Ir

[ ρ1

ρ1 + ρ2
Mk

(
||Λk(x)

ρ1
, z1, · · · , zn−1||

)
+

ρ2

ρ1 + ρ2
Mk

(
||Λk(y)

ρ2
, z1, · · · , zn−1||

)]pk) 1
H

≤
( ρ1

ρ1 + ρ2

)( 1

hr

∑
k∈Ir

[
Mk

(
||Λk(x)

ρ1
, z1, · · · , zn−1||

)]pk) 1
H

+
( ρ2

ρ1 + ρ2

)( 1

hr

∑
k∈Ir

[
Mk

(
||Λk(y)

ρ2
, z1, · · · , zn−1||

)]pk) 1
H

≤ 1

Since ρ′s are non-negative, so we have

g(x+ y) = inf
{
ρ
pr
H :

( 1

hr

∑
k∈Ir

[
Mk

(
||Λk(x+ y)

ρ
, z1, · · · , zn−1||

)]pk) 1
H ≤ 1, r ∈ N

}
,

≤ inf
{
ρ
pr
H
1 :

( 1

hr

∑
k∈Ir

[
Mk

(
||Λk(x)

ρ1
, z1, · · · , zn−1||

)]pk) 1
H ≤ 1, r ∈ N

}
+ inf

{
ρ
pr
H
2 :

( 1

hr

∑
k∈Ir

[
Mk

(
||Λk(y)

ρ2
, z1, · · · , zn−1||

)]pk) 1
H ≤ 1, r ∈ N

}
.

Therefore,

g(x+ y) ≤ g(x) + g(y).

Finally, we prove that the scalar multiplication is continuous. Let µ be any complex
number. By definition,
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g(µx) = inf
{
ρ
pr
H :

( 1

hr

∑
k∈Ir

[
Mk

(
||Λk(µx)

ρ
, z1, · · · , zn−1||

)]pk) 1
H ≤ 1, r ∈ N

}
.

Then

g(µx) = inf
{

(|µ|t)
pr
H :

( 1

hr

∑
k∈Ir

[
Mk

(
||Λk(x)

t
, z1, · · · , zn−1||

)]pk) 1
H ≤ 1, r ∈ N

}
,

where t = ρ
|µ| . Since |µ|pr ≤ max(1, |µ|sup pr ), we have

g(µx) ≤ max(1, |µ|sup pr ) inf
{
t
pr
H :

( 1

hr

∑
k∈Ir

[
Mk

(
||Λk(x)

t
, z1, · · · , zn−1||

)]pk) 1
H ≤ 1, r ∈ N

}
.

So, the fact that scalar multiplication is continuous follows from the above inequal-
ity.

This completes the proof of the theorem. �

Theorem 2.3. Let M = (Mk) be a Musielak-Orlicz function. If sup
k

[Mk(x)]pk <∞

for all fixed x > 0, then [ c,M, p,Λ, ||·, · · · , ·|| ]θ0 ⊂ [ c,M, p,Λ, ||·, · · · , ·|| ]θ∞.

Proof. Let x = (xk) ∈ [ c,M, p,Λ, ||·, · · · , ·|| ]θ0. There exists some positive ρ1 such
that

lim
r→∞

1

hr

∑
k∈Ir

[
Mk

(
||Λk(x)

ρ1
, z1, · · · , zn−1||

)]pk
= 0.

Define ρ = 2ρ1. SinceM = (Mk) is non-decreasing and convex, by using inequality
(1.1), we have

sup
r

1

hr

∑
k∈Ir

[
Mk

(
||Λk(x)

ρ
, z1, · · · , zn−1||

)]pk
= sup

r

1

hr

∑
k∈Ir

[
Mk

(
||Λk(x)− L+ L

ρ
, z1, · · · , zn−1||

)]pk
≤ K sup

r

1

hr

∑
k∈Ir

[ 1

2pk
Mk

(
||Λk(x)− L

ρ1
, z1, · · · , zn−1||

)]pk
+K sup

r

1

hr

∑
k∈Ir

[ 1

2pk
Mk

(
|| L
ρ1
, z1, · · · , zn−1||

)]pk
≤ K sup

r

1

hr

∑
k∈Ir

[
Mk

(
||Λk(x)− L

ρ1
, z1, · · · , zn−1||

)]pk
+K sup

r

1

hr

∑
k∈Ir

[
Mk

(
|| L
ρ1
, z1, · · · , zn−1||

)]pk
<∞.

Hence x = (xk) ∈ [ c,M, p,Λ, ||·, · · · , ·|| ]θ∞. �

Theorem 2.4. Let 0 < inf pk = g ≤ pk ≤ sup pk = H < ∞ and M = (Mk),
M ′ = (M ′k) are Musielak-Orlicz functions satisfying ∆2-condition, then we have

(i) [ c,M ′, p,Λ, ||·, · · · , ·|| ]θ ⊂ [ c,M ◦M ′, p,Λ, ||·, · · · , ·|| ]θ,

(ii) [ c,M
′
, p,Λ, ||·, · · · , ·|| ]θ0 ⊂ [ c,M ◦M ′, p,Λ, ||·, · · · , ·|| ]θ0,

(iii) [ c,M ′, p,Λ, ||·, · · · , ·|| ]θ∞ ⊂ [ c,M ◦M ′, p,Λ, ||·, · · · , ·|| ]θ∞.
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Proof. Let x = (xk) ∈ [c,M′, p,Λ, ||·, · · · , ·||]θ. Then we have

lim
r→∞

1

hr

∑
k∈Ir

[
M ′k

(
||Λk(x)− L

ρ
, z1, · · · , zn−1||

)]pk
= 0, for some L.

Let ε > 0 and choose δ with 0 < δ < 1 such that Mk(t) < ε for 0 ≤ t ≤ δ. Let

yk = M ′k

(
||Λk(x)− L

ρ
, z1, · · · , zn−1||

)
for all k ∈ N.

We can write
1

hr

∑
k∈Ir

[Mk(yk)]pk =
1

hr

∑
k∈Ir,yk≤δ

[Mk(yk)]pk +
1

hr

∑
k∈Ir,yk>δ

[Mk(yk)]pk .

Since M = (Mk) satisfies ∆2-condition, we have

1

hr

∑
k∈Ir,yk≤δ

[Mk(yk)]pk ≤ [Mk(1)]H
1

hr

∑
k∈Ir,yk≤δ

[Mk(yk)]pk

≤ [Mk(2)]H
1

hr

∑
k∈Ir,yk≤δ

[Mk(yk)]pk(2.1)

For yk > δ

yk <
yk
δ
< 1 +

yk
δ
.

Since M = (Mk) is non-decreasing and convex, it follows that

Mk(yk) < Mk

(
1 +

yk
δ

)
<

1

2
Mk(2) +

1

2
Mk

(2yk
δ

)
.

Since (Mk) satisfies ∆2-condition, we can write

Mk(yk) <
1

2
T
yk
δ
Mk(2) +

1

2
T
yk
δ
Mk(2)

= T
yk
δ
Mk(2).

Hence,

(2.2)
1

hr

∑
k∈Ir,yk>δ

[Mk(yk)]pk ≤ max
(

1,
(TMk(2)

δ

)H) 1

hr

∑
k∈Ir,yk>δ

[(yk)]
pk

from equations (2.1) and (2.2), we have

x = (xk) ∈ [ c,M◦M′, p,Λ, ||·, · · · , ·||]θ.
This completes the proof of (i). Similarly, we can prove that

[ c,M′θ0 ⊂ [ c,M◦M′θ0
and

[ c,M′θ∞ ⊂ [ c,M◦M′, p,Λ, ||·, · · · , ·|| ]θ∞.
�

Corollary 2.1. Let 0 < inf pk = h ≤ pk ≤ sup pk = H < ∞ and M = (Mk) be a
Musielak-Orlicz function satisfying ∆2-condition, then we have

[ c,M′, p,Λ, ||·, · · · , ·|| ]θ0 ⊂ [ c,M, p,Λ, ||·, · · · , ·|| ]θ0
and

[ c,M′, p,Λ, ||·, · · · , ·|| ]θ∞ ⊂ [ c,M, p,Λ, ||·, · · · , ·|| ]θ∞.
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Proof. Taking M′(x) = x in Theorem 2.4, we get the required result. �

Theorem 2.5. Let M = (Mk) be a Musielak-Orlicz function. Then the following
statements are equivalent:

(i) [ c, p,Λ, ||·, · · · , ·|| ]θ∞ ⊂ [c,M, p,Λ, ||·, · · · , ·|| ]θ∞,
(ii) [c, p,Λ, ||·, · · · , ·|| ]θ0 ⊂ [ c,M, p,Λ, ||·, · · · , ·|| ]θ∞,
(iii) sup

r

1

hr

∑
k∈Ir

[Mk(
t

ρ
)]pk <∞ (t, ρ > 0).

Proof. (i)⇒ (ii) The proof is obvious in view of the fact that [ c, p,Λ, ||·, · · · , ·|| ]θ0 ⊂ [ c, p,Λ, ||·, · · · , ·|| ]θ∞.
(ii)⇒(iii) Let [ c, p,Λ, ||·, · · · , ·|| ]θ0 ⊂ [ c,M, p,Λ, ||·, · · · , ·|| ]θ∞· Suppose that (iii)

does not hold. Then for some t, ρ > 0

sup
r

1

hr

∑
k∈Ir

[Mk(
t

ρ
)]pk =∞

and therefore we can find a subinterval Ir(j) of the set of interval Ir such that

(2.3)
1

hr(j)

∑
k∈Ir(j)

[
Mk

(j−1

ρ

)]pk
> j, j = 1, 2,

Define the sequence x = (xk) by

Λk(x) =

{
j−1, k ∈ Ir(j)

0, k 6∈ Ir(j) for all s ∈ N.

Then x = (xk) ∈ [c, p,Λ, ||·, · · · , ·||]θ0 but by equation (2.3), x = (xk) 6∈ [c,M, p,Λ, ||·, · · · , ·|| ]θ∞,
which contradicts (ii). Hence (iii) must hold.

(iii)⇒ (i) Let (iii) hold and x = (xk) ∈ [c, p,Λ, ||·, · · · , ·|| ]θ∞. Suppose that x = (xk) 6∈ [c,M, p,Λ, ||·, · · · , ·|| ]θ∞.
Then

(2.4) sup
r

1

hr

∑
k∈Ir

[
Mk

(
||Λk(x)

ρ
, z1, · · · , zn−1||

)]pk
=∞

Let t = ||Λk(x), z1, · · · , zn−1|| for each k, then by equations (2.4)

sup
r

1

hr

∑
k∈Ir

[
Mk

( t
ρ

)]
=∞,

which contradicts (iii). Hence (i) must hold. �

Theorem 2.6. Let 1 ≤ pk ≤ sup pk < ∞ and M = (Mk) be a Musielak Orlicz
function. Then the following statements are equivalent:

(i) [ c,M, p,Λ, ||·, · · · , ·|| ]θ0 ⊂ [c, p,Λ, ||·, · · · , ·||]θ0,
(ii) [ c,M, p,Λ, ||·, · · · , ·|| ]θ0 ⊂ [ c, p,Λ, ||·, · · · , ·|| ]θ∞,
(iii) inf

r

1

hr

∑
k∈Ir

[
Mk

( t
ρ

)]pk
> 0 (t, ρ > 0).

Proof. (i) ⇒ (ii) It is trivial.
(ii) ⇒ (iii) Let (ii) hold. Suppose that (iii) does not hold. Then

inf
r

1

hr

∑
k∈Ir

[
Mk

( t
ρ

)]pk
= 0 (t, ρ > 0),
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so we can find a subinterval Ir(j) of the set of interval Ir such that

(2.5)
1

hr(j)

∑
k∈Ir(j)

[
Mk

( j
ρ

)]pk
< j−1, j = 1, 2, .

Define the sequence x = (xk) by

Λk(x) =

{
j, k ∈ Ir(j)

0, k 6∈ Ir(j) for all s ∈ N.

Thus by equation (2.5), x = (xk) ∈ [ c,M, p,Λ, ||·, · · · , ·||]θ0, but by equation (2.3),
x = (xk) 6∈ [c, p,Λ, ||·, · · · , ·|| ]θ∞, which contradicts (ii). Hence (iii) must hold.

(iii) ⇒ (i) Let (iii) hold and suppose that x = (xk) ∈ [ c,M, p,Λ, ||·, · · · , ·|| ]θ0,
i.e,

(2.6) lim
r→∞

1

hr

∑
k∈Ir

[
Mk

(
||Λk(x)

ρ
, z1, · · · , zn−1||

)]pk
= 0, for some ρ > 0.

Again, suppose that x = (xk) 6∈ [ c, p,Λ, ||·, · · · , ·|| ]θ0. Then, for some number ε > 0
and a subinterval Ir(j) of the set of interval Ir, we have ||Λk(x), z1, · · · , zn−1|| ≥ ε
for all k ∈ N and some s ≥ s0. Then, from the properties of the Orlicz function, we
can write

Mk

(
||Λk(x)

ρ
, z1, · · · , zn−1||

)p
k
≥Mk

( ε
ρ

)pk
and consequently by (2.6)

lim
r→∞

1

hr

∑
k∈Ir

[
Mk

( ε
ρ

)]pk
= 0,

which contradicts (iii). Hence (i) must hold. �

Theorem 2.7. Let 0 < pk ≤ qk for all k ∈ N and
(
qk
pk

)
be bounded. Then,

[ c,M, q,Λ, ||·, · · · , ·|| ]θ ⊂ [ c,M, p,Λ, ||·, · · · , ·|| ]θ.

Proof. Let x ∈ [ c,M, q,Λ, ||·, · · · , ·|| ]θ. Write

tk =
[
Mk

(
||Λk(x)− L

ρ
, z1, · · · , zn−1||

)]qk
and µk = pk

qk
for all k ∈ N. Then 0 < µk ≤ 1 for k ∈ N. Take 0 < µ < µk for k ∈ N.

Define the sequences (uk) and (vk) as follows: For tk ≥ 1, let uk = tk and vk = 0
and for tk < 1, let uk = 0 and vk = tk. Then clearly for all k ∈ N, we have

tk = uk + vk, tµkk = uµkk + vµkk

Now it follows that uµkk ≤ uk ≤ tk and vµkk ≤ v
µ
k . Therefore,

1

hr

∑
k∈Ir

tµkk =
1

gh

∑
k∈Ir

(uµkk + vµkk ) ≤ 1

hr

∑
k∈Ir

tk +
1

hr

∑
k∈Ir

vµk .
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Now for each k,

1

hr

∑
k∈Ir

vµk =
∑
k∈Ir

( 1

hr
vk

)µ( 1

hr

)1−µ

≤
( ∑
k∈Ir

[( 1

hr
vk

)µ] 1
µ
)µ( ∑

k∈Ir

[( 1

hr

)1−µ] 1
1−µ
)1−µ

=
( 1

hr

∑
k∈Ir

vk

)µ
and so

1

hr

∑
k∈Ir

tµkk ≤
1

hr

∑
k∈Ir

tk +
( 1

hr

∑
k∈Ir

vk

)µ
.

Hence x ∈ [ c,M, p,Λ, ||·, · · · , ·|| ]θ. �

Theorem 2.8. (a) If 0 < inf pk ≤ pk ≤ 1 for all k ∈ N, then

[ c,M, p,Λ, ||·, · · · , ·|| ]θ ⊂ [ c,M,Λ, ||·, · · · , ·|| ]θ.

(b) If 1 ≤ pk ≤ sup pk <∞ for all k ∈ N. Then

[ c,M,Λ, ||·, · · · , ·|| ]θ ⊂ [ c,M, p,Λ, ||·, · · · , ·|| ]θ.

Proof. (a) Let x ∈ [ c,M, p,Λ, ||·, · · · , ·|| ]θ, then

lim
r→∞

1

hr

∑
k∈Ir

[
Mk

(
||Λk(x)− L

ρ
, z1, · · · , zn−1||

)]pk
= 0.

Since 0 < inf pk ≤ pk ≤ 1. This implies that

lim
r→∞

1

hr

∑
k∈Ir

[
Mk

(
||Λk(x)− L

ρ
, z1, · · · , zn−1||

)]
≤ lim
r→∞

1

hr

∑
k∈Ir

[
Mk

(
||Λk(x)− L

ρ
, z1, · · · , zn−1||

)]pk
,

therefore, lim
r→∞

1

hr

∑
k∈Ir

[
Mk

(
||Λk(x)− L

ρ
, z1, · · · , zn−1||

)]
= 0.

This shows that x ∈ [ c,M,Λ, ||·, · · · , ·|| ]θ· Therefore,

[ c,M, p,Λ, ||·, · · · , ·|| ]θ ⊂ [ c,M,Λ, ||·, · · · , ·|| ]θ.

This completes the proof.
(b) Let pk ≥ 1 for each k and sup pk <∞. Let x ∈ [ c, p,Λ, ||·, · · · , ·|| ]θ. Then

for each ε > 0 there exists a positive integer N such that

lim
r→∞

1

hr

∑
k∈Ir

[
Mk

(
||Λk(x)− L

ρ
, z1, · · · , zn−1||

)]pk
= 0 < 1.

Since 1 ≤ pk ≤ sup pk <∞, we have



28 AYHAN ESI AND S. K. SHARMA

lim
r→∞

1

hr

∑
k∈Ir

[
Mk

(
||Λk(x)− L

ρ
, z1, · · · , zn−1||

)]pk
≤ lim
r→∞

1

hr

∑
k∈Ir

[
Mk

(
||Λk(x)− L

ρ
, z1, · · · , zn−1||

)]
= 0

< 1.

Therefore x ∈ [ c,M, p,Λ, ||·, · · · , ·|| ]θ. �
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AN INEQUALITY OF GRÜSS LIKE VIA VARIANT OF

POMPEIU’S MEAN VALUE THEOREM

MEHMET ZEKI SARIKAYA AND HÜSEYIN BUDAK

Abstract. The main of this paper is to establish an integral inequality of

Grüss type by using a mean value theorem.

1. Introduction

In 1935, G. Grüss [4] proved the following inequality:

∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)g(x)dx− 1

b− a

b∫
a

f(x)dx
1

b− a

b∫
a

g(x)dx

∣∣∣∣∣∣ ≤ 1

4
(Φ− ϕ)(Γ− γ),

provided that f and g are two integrable function on [a, b] satisfying the condition

ϕ ≤ f(x) ≤ Φ and γ ≤ g(x) ≤ Γ for all x ∈ [a, b].

The constant 1
4 is best possible.

In 1882, P. L. Čebyšev [2] gave the following inequality:

|T (f, g)| ≤ 1

12
(b− a)2 ‖f ′‖∞ ‖g

′‖∞ ,

where f, g : [a, b]→ R are absolutely continuous function, whose first derivatives f ′

and g′ are bounded,

T (f, g) =
1

b− a

b∫
a

f(x)g(x)dx−

 1

b− a

b∫
a

f(x)dx

 1

b− a

b∫
a

g(x)dx


and ‖.‖∞ denotes the norm in L∞[a, b] defined as ‖p‖∞ = ess sup

t∈[a,b]
|p(t)| .

2000 Mathematics Subject Classification. 26D07, 26D10, 26D15, 26A33.
Key words and phrases. Pompeius mean value theorem, Grss inequality, Hlders inequality.
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For a differentiable function f : [a, b]→ R, a·b > 0, Pachpatte has in [6] proved,
using Pompeiu’s mean value theorem [9], the following Grüss type inequality:∣∣∣∣∣∣

b∫
a

f(t)g(t)dt− 1

b2 − a2

 b∫
a

f(t)dt.

b∫
a

tg(t)dt+

b∫
a

g(t)dt.

b∫
a

tf(t)dt

∣∣∣∣∣∣
≤ ‖f − `f ′‖∞

b∫
a

|g(t)|
∣∣∣∣12 − t

a+ b

∣∣∣∣ dt+ ‖g − `g′‖∞

b∫
a

|f(t)|
∣∣∣∣12 − t

a+ b

∣∣∣∣ dt
where `(t) = t, t ∈ [a, b] .

In [7], Pecaric and Ungar proved a general estimate with the p-norm, 1 < p <∞,
which will for p =∞ give the Pachpatte [6] result.

The interested reader is also referred to ([1], [3], [5]-[11]) for integral inequalities
by using Pompeiu’s mean value theorem. In this paper, we establish a new integral
inequality of Grüss like via Pompeiu’s mean value theorem.

2. Main Results

Before starting the main results, we will give the following lemma proved by
Pecaric and Ungar in [7]:

Lemma 2.1. For 1
p + 1

q = 1, 1 ≤ p, q ≤ ∞, and 0 < a ≤ x ≤ b, denote

(2.1) A(x, q) :=

 x∫
a

 x∫
t

tqdu

u2q

 dt

 1
q

+

 b∫
x

 t∫
x

tqdu

u2q

 dt


1
q

where for p = 1, i.e. q =∞, the integrals are to be interpreted as the ∞-norms, i.e.
as maxima of the function (u, t) 7→ 1

u2 on the corresponding domains of integration.
Then,

A(x, q) =

(
a2−q − x2−q

(1− 2q) (2− q)
+
x2−q − a1+qx1−2q

(1− 2q) (1 + q)

) 1
q

+

(
b2−q − x2−q

(1− 2q) (2− q)
+
x2−q − b1+qx1−2q

(1− 2q) (1 + q)

) 1
q

,

for 1 < p, q <∞, p, q 6= 2;

A(x, 2) =
1

3

[(
ln
(x
a

)3
+
a3

x3
− 1

) 1
2

+

(
ln
(x
b

)3
+
b3

x3
− 1

) 1
2

]
= lim

q→2
A(x, q);

A (x,∞) =
a2 + b2

2x
+ x− a− b = lim

q→∞
A(x, q);

A (x, 1) =
1

a
+

b

x2
= lim

q→1
A(x, 1).

To prove our theorems, we need the following lemma proved by Sarikaya in [12]:
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Lemma 2.2. f : [a, b]→ R be continuous function on [a, b] and twice order differ-
entiable function on (a, b) with 0 < a < b. Then for any t, x ∈ [a, b], we have

(2.2) tf(x)−xf(t)+xt
f ′(t)− f ′(x)

2
=
xt

2

t∫
x

[
2f (u)− 2uf ′ (u) + u2f ′′ (u)

] 1

u2
du.

Theorem 2.1. f, g : [a, b]→ R be continuous function on [a, b] and twice order
differentiable function on (a, b) with 0 < a < b. Then for 1

p + 1
q = 1, with 1 < p, q <

∞ any t, x ∈ [a, b], we have

∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)g(x)dx(2.3)

−
[

3

b− a

∫
f(t)dt− bf(b)− af(a)

b− a

] 2

5 (b2 − a2)

b∫
a

xg(x)dx


−
[

3

b− a

∫
g(t)dt− bg(b)− ag(a)

b− a

] 2

5 (b2 − a2)

b∫
a

xf(x)dx


−bf(b)g(b)− af(a)g(a)

5(b− a)

∣∣∣∣
≤ 2(b− a)

1
p−2

5 (b+ a)

∥∥2f − 2lf ′ + l2f ′′
∥∥
p

b∫
a

xg(x)A(x, q)dx

+
∥∥2g − 2lg′ + l2g′′

∥∥
p

b∫
a

xf(x)A(x, q)dx



where l(t) = t for t ∈ [a, b].

Proof. Applying (2.2) to the function g, we have

(2.4) tg(x)− xg(t) + xt
g′(t)− g′(x)

2
=
xt

2

t∫
x

[
2g (u)− 2ug′ (u) + u2g′′ (u)

] 1

u2
du.
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Multiplying (2.2) by g(x), (2.4) by f(x),summing the resultant equalities, then
integrating with respect to t on [a, b] , we have

(2.5)

(
b2 − a2

)
f(x)g(x)− 3xg(x)

2

b∫
a

f(t)dt− 3xf(x)

2

b∫
a

g(t)dt+
xg(x)

2
[bf(b)− af(a)]

−b
2 − a2

4
xg(x)f ′(x) +

xf(x)

2
[bg(b)− ag(a)]− b2 − a2

4
xf(x)g′(x)

=
xg(x)

2

b∫
a

t

 t∫
x

[
2f (u)− 2uf ′ (u) + u2f ′′ (u)

] 1

u2
du

 dt
+
xf(x)

2

b∫
a

t

 t∫
x

[
2g (u)− 2ug′ (u) + u2g′′ (u)

] 1

u2
du

 dt.

Integrating with respect to x on [a, b] and adding notations F (u) = 2f (u) −
2uf ′ (u) + u2f ′′ (u) and G(u) = 2g (u)− 2ug′ (u) + u2g′′ (u) , we obtain

(
b2 − a2

) b∫
a

f(x)g(x)dx(2.6)

−3

2

 b∫
a

xg(x)dx

 b∫
a

f(t)dt

− 3

2

 b∫
a

xf(x)dx

 b∫
a

g(t)dt


+
bf(b)− af(a)

2

 b∫
a

xg(x)dx

+
bg(b)− ag(a)

2

 b∫
a

xf(x)dx


−b

2 − a2

4

b∫
a

xg(x)f ′(x)dx− b2 − a2

4

b∫
a

xf(x)g′(x)dx

=
1

2

b∫
a

xg(x)

 b∫
a

t

 t∫
x

F (u)
du

u2

 dt
 dx+

1

2

b∫
a

xf(x)

 b∫
a

t

 t∫
x

G(u)
du

u2

 dt
 dx.

(2.7)

b∫
a

xg(x)f ′(x)dx = bf(b)g(b)−af(a)g(a)−
b∫

a

f(x)g(x)dx−
b∫

a

xf(x)g′(x)dx.
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Adding (2.7) in (2.6), we have

5
(
b2 − a2

)
4

b∫
a

f(x)g(x)dx

−

3

2

b∫
a

f(t)dt− bf(b)− af(a)

2

 b∫
a

xg(x)dx


−

3

2

b∫
a

g(t)dt− bg(b)− ag(a)

2

 b∫
a

xf(x)dx


−
(
b2 − a2

)
4

[bf(b)g(b)− af(a)g(a)]

=
1

2

b∫
a

xg(x)

 b∫
a

t

 t∫
x

F (u)
du

u2

 dt
 dx+

1

2

b∫
a

xf(x)

 b∫
a

t

 t∫
x

G(u)
du

u2

 dt
 dx.

Taking modulus, we have

(2.8)∣∣∣∣∣∣5
(
b2 − a2

)
4

b∫
a

f(x)g(x)dx

−

3

2

b∫
a

f(t)dt− bf(b)− af(a)

2

 b∫
a

xg(x)dx


−

3

2

b∫
a

g(t)dt− bg(b)− ag(a)

2

 b∫
a

xf(x)dx


−
(
b2 − a2

)
4

[bf(b)g(b)− af(a)g(a)]

∣∣∣∣∣
≤ 1

2

∣∣∣∣∣∣
b∫

a

xg(x)

 b∫
a

t

 t∫
x

F (u)
du

u2

 dt
 dx

∣∣∣∣∣∣+
1

2

∣∣∣∣∣∣
b∫

a

xf(x)

 b∫
a

t

 t∫
x

G(u)
du

u2

 dt
∣∣∣∣∣∣ dx

≤ 1

2

b∫
a

|xg(x)|

∣∣∣∣∣∣
b∫

a

t

 t∫
x

F (u)
du

u2

 dt
∣∣∣∣∣∣ dx+

1

2

b∫
a

|xf(x)|

∣∣∣∣∣∣
b∫

a

t

 t∫
x

G(u)
du

u2

 dt
∣∣∣∣∣∣ dx

≤ 1

2

b∫
a

|xg(x)|

 b∫
a

∣∣∣∣∣∣
t∫

x

|F (u)| t
u2
du

∣∣∣∣∣∣ dt
 dx+

1

2

b∫
a

|xf(x)|

 b∫
a

∣∣∣∣∣∣
t∫

x

|G(u)| t
u2
du

∣∣∣∣∣∣ dt
 dx.

In the last line (2.8), we have

(2.9)

b∫
a

∣∣∣∣∣∣
t∫

x

|F (u)| t
u2
du

∣∣∣∣∣∣ dt =

x∫
a

x∫
t

|F (u)| t
u2
dudt+

b∫
x

t∫
x

|F (u)| t
u2
dudt.
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Using Hölder’s inequality in (2.9), we obtain

b∫
a

∣∣∣∣∣∣
t∫

x

|F (u)| t
u2
du

∣∣∣∣∣∣ dt(2.10)

≤

 x∫
a

x∫
t

|F (u)|p dudt

 1
p
 x∫

a

x∫
t

tq

u2q
dudt

 1
q

+

 b∫
x

t∫
x

|F (u)|p dudt


1
p
 b∫

x

t∫
x

tq

u2q
dudt


1
q

≤

 b∫
a

b∫
a

|F (u)|p dudt


1
p


 x∫

a

x∫
t

tq

u2q
dudt

 1
q

+

 b∫
x

t∫
x

tq

u2q
dudt


1
q


= (b− a)

1
p
∥∥2f − 2lf ′ + l2f ′′

∥∥
p
A(x, q).

Similarly, we get

(2.11)

b∫
a

∣∣∣∣∣∣
t∫

x

|G(u)| t
u2
du

∣∣∣∣∣∣ dt ≤ (b− a)
1
p
∥∥2g − 2lg′ + l2g′′

∥∥
p
A(x, q).

Adding (2.10) and (2.11) in (2.8), we obtain∣∣∣∣∣∣5
(
b2 − a2

)
4

b∫
a

f(x)g(x)dx(2.12)

−

3

2

b∫
a

f(t)dt− bf(b)− af(a)

2

 b∫
a

xg(x)dx


−

3

2

b∫
a

g(t)dt− bg(b)− ag(a)

2

 b∫
a

xf(x)dx


−
(
b2 − a2

)
4

[bf(b)g(b)− af(a)g(a)]

∣∣∣∣∣
≤ 1

2
(b− a)

1
p

∥∥2f − 2lf ′ + l2f ′′
∥∥
p

b∫
a

|xg(x)|A(x, q)dx

+
∥∥2g − 2lg′ + l2g′′

∥∥
p

b∫
a

|xf(x)|A(x, q)dx

 .

Dividing (2.12) by
5(b2−a2)(b−a)

4 , we obtain the required inequality (2.3). �
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NEW STRUCTURE TO CONSTRUCT NEW SOLITARY WAVE

SOLUTIONS FOR PERTURBED NLSE WITH POWER LAW

NONLINEARITY

AHMAD NEIRAMEH

Abstract. In this paper we applied new structure to constructing new soli-

tary wave solutions for perturbed nonlinear Schrodinger equation with power
law nonlinearity, which describes the effects of quantic nonlinearity on the ul-

trashort optical solitons pulse propagation in non-Kerr media. These solitary
wave solutions demonstrate the fact that solutions to the perturbed nonlinear

Schrodinger equation with power law nonlinearity model can exhibit a variety

of behaviors.

1. Introduction

Exact solutions can serve as a basis for perfecting and testing computer alge-
bra software packages for solving NLEEs. It is significant that many equations of
physics, chemistry, and biology contain empirical parameters or empirical functions.
Exact solutions allow researchers to design and run experiments, by creating appro-
priate natural conditions, to determine these parameters or functions. Therefore,
investigation of exact traveling wave solutions is becoming successively attractive in
nonlinear sciences day by day. However, not all equations posed of these models are
solvable. Exact solutions can serve as a basis for perfecting and testing computer al-
gebra software packages for solving NLEEs. It is significant that many equations of
physics, chemistry, and biology contain empirical parameters or empirical functions.
Exact solutions allow researchers to design and run experiments, by creating appro-
priate natural conditions, to determine these parameters or functions. Therefore,
investigation of exact traveling wave solutions is becoming successively attractive
in nonlinear sciences day by day. Hence it becomes increasingly important to be
familiar with all traditional and recently developed methods for solving these mod-
els and the implementation of new methods. As a result, many new techniques
have been successfully developed by diverse groups of mathematicians and physi-
cists, such as, the trigonometric function series method [5], the modified mapping

2000 Mathematics Subject Classification. 35G20,35D99.
Key words and phrases. solitary wave solutions, direct algebraic method, perturbed nonlinear

Schrodinger equation with power law nonlinearity.
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method and the extended mapping method [6], homogeneous balance method [7],
tanh function method [8], extended tanh function method [9], hyperbolic function
method [10], rational expansion method [11], sine-cosine method [12].
In this present paper we applied the direct algebraic method for finding new ex-
act solitary wave solutions of perturbed NLSE with power law nonlinearity in the
following form [13],

(1.1) iqt + aqxx + b|q|2mq = icqx − iγqxxx + is(|q|2mq)x+ ir(|q|2m)xq,

Where a, b, c, γ, s and r are all real valued constants. Also, the exponent m rep-
resents the power law nonlinearity parameter. For the perturbation terms on the
right hand side represents the inter-modal dispersion, γ is the coefficient of third
order dispersion, s is the coefficient of self-steepening term while r is the coeffi-
cient of nonlinear dispersion. The self-steepening and nonlinear dispersion terms
are considered with full nonlinearity, namely their intensities are considered with
an exponent m, in order to maintain the problem on a generalized setting [14].

2. Our methodology

For a given partial differential equation

(2.1) G(u, ux, ut, uxx, utt, ....) = 0,

Our method mainly consists of four steps:
Step 1 : We seek complex solutions of Eq. (2.1) as the following form:

(2.2) u = u(ξ), ξ = ik(x− ct),
Where k and c are real constants. Under the transformation (2.2), Eq. (2.1)
becomes an ordinary differential equation

(2.3) N(u, iku′,−ikcu′,−k2u′′, .....) = 0,

Where u′ = du
dξ .

Step 2 : We assume that the solution of Eq. (2.3) is of the form

(2.4) u(ξ) =

n∑
i=0

aiF
i(ξ),

Where ai(i = 1, 2, .., n) are real constants to be determined later.F (ξ)expresses the
solutions of the auxiliary ordinary differential equation

(2.5) F ′(ξ) = b+ F 2(ξ),

Eq. (2.5) admits the following solutions:

(2.6)

F (ξ) =

{
−
√
−b tanh(

√
−bξ), b ≺ 0 (a)

−
√
−b coth(

√
−bξ), b ≺ 0 (b)

F (ξ) =

{ √
b tan(

√
bξ), b � 0 (c)

−
√
b cot(

√
bξ), b � 0 (d)

F (ξ) = − 1
ξ , b = 0 (e)

Integer n in (2.4) can be determined by considering direct algebraic [3] between the
nonlinear terms and the highest derivatives of u(ξ)in Eq. (2.3).
Step 3 : Substituting (2.4) into (2.3) with (2.5), then the left hand side of Eq. (2.3)
is converted into a polynomial inF (ξ), equating each coefficient of the polynomial
to zero yields a set of algebraic equations for ai, k, c.
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Step 4 : Solving the algebraic equations obtained in step 3, and substituting the
results into (2.4), then we obtain the exact traveling wave solutions for Eq. (2.1).

3. Application to the perturbed NLSE with power law nonlinearity

We assume Eq. (2.5) has the traveling wave solution of the form

(3.1) q(x, t) = U(ξ)ei(αx+βt), ξ = i(kx− ωt),

where α, β, k and ωare constants, all of them are to be determined. Thus, from the
wave transformation (3.1), we have

(3.2)

qt = i (βU − ωU ′) ei(αx+βt),
qx = i (αU + kU ′) ei(αx+βt),
qxx = −

(
α2U + 2αkU ′ + k2U ′′

)
ei(αx+βt),

qxxx = −i
(
α3U + 3α2kU ′ + 3αk2U ′′ + k3U ′′′

)
ei(αx+βt),(

|q|2m q
)
x

= i
(
αU2m+1 + k

(
U2m+1

)′)
ei(αx+βt),(

|q|2m
)
x
q = ik

(
U2m

)′
Uei(αx+βt),

Inserting the expressions (3.2) into Eq. (1.1), we obtain nonlinear ODE in the form
(3.3)

(cα+ γα3 − β − aα2)U + (ω − 2aαk + ck + 3α2kγ)U ′ + (3αk2γ − ak2)U ′′

+(b+ sα)U2m+1 + k3γU ′′′ + sk(U2m+1)′ + rk(U2m)′U = 0.

Balancing U ′′′ with U ′U2min Eq. (3.3) give

N + 3 = N + 1 + 2mN ⇔ 3 = 2mN + 1⇔ N =
1

m
.

We then assume that Eq. (3.3) has the following formal solutions:

(3.4) U(ξ) = AF
1
m , A 6= 0

Substituting Eq (3.4) into Eq. (3.3) and collecting all terms with the same order
of F j together, we convert the left-hand side of Eq. (3.3) into a polynomial in
F j . Setting each coefficient of each polynomial to zero, we derive a set of algebraic
equations forα, β, k, ω and A. By solving these algebraic equations we have

(3.5)

A =
[
− sn(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)γ

(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)2 ×(
1
n2 + 3

n + 2
)
− s

2r

(
1
n + 2

)] 1
2n ,

α = a
3γ , β = 9caγ−2a3

27γ2 ,

k = ±
√

2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

γ(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) .

(3.6)

ω = a2

3γ2

√
2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) −
c
√

2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

γ(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) −
b(2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2))

3
2 n3

γ2(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)3 ×(
1
n − 1

) (
1
n − 2

)
−

2bn(2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2))
3
2

γ2(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)3 ,
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From Eq. (2.6)(a) and relations (3.5) , (3.6) along with (3.4) we have

U(ξ) =
[
− sn(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)γ

(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)2 ×(
1
n2 + 3

n + 2
)
− s

2r

(
1
n + 2

)] 1
2n
(
−
√
−b tanh(

√
−bξ)

) 1
n ,

So from (3.1) we have solitary wave solutions of Eq. (1.1) as follows

q1(x, t) =
[
− sn(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)γ

(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)2 ×(
1
n2 + 3

n + 2
)
− s

2r

(
1
n + 2

)] 1
2n ×

[
−
√
−b tanh(

√
−bi(√

2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

γ(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) x−

( a
2

3γ2

√
2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) −
c
√

2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

γ(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) −
b(2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2))

3
2 n3

γ2(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)3 ×(
1
n − 1

) (
1
n − 2

)
−

2bn(2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2))
3
2

γ2(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)3 )t

] 1
n

×

exp
(
i( a3γx+ 9caγ−2a3

27γ2 t)
)
,

From (2.6)(b) and relations (3.5) and (3.6) along with (3.1) and (3.4) we obtaion
solitary wave solutions of Eq. (1.1) in following form

q2(x, t) =
[
− sn(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)γ

(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)2 ×(
1
n2 + 3

n + 2
)
− s

2r

(
1
n + 2

)] 1
2n ×

[
−
√
−b coth(

√
−bi(√

2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

γ(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) x−

( a
2

3γ2

√
2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) −
c
√

2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

γ(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) −
b(2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2))

3
2 n3

γ2(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)3 ×(
1
n − 1

) (
1
n − 2

)
−

2bn(2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2))
3
2

γ2(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)3 )t

] 1
n

×

exp
(
i( a3γx+ 9caγ−2a3

27γ2 t)
)
,
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From (2.6)(c) and relations (3.1),(3.4),(3.5) and (3.6) we obtain solitary wave solu-
tions for nonlinear Schrodinger equation with power law nonlinearity

q3(x, t) =
[
− sn(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)γ

(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)2 ×(
1
n2 + 3

n + 2
)
− s

2r

(
1
n + 2

)] 1
2n ×

[√
b tan(

√
bi(

√
2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

γ(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) x−

( a
2

3γ2

√
2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) −
c
√

2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

γ(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) −
b(2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2))

3
2 n3

γ2(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)3 ×(
1
n − 1

) (
1
n − 2

)
−

2bn(2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2))
3
2

γ2(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)3 )t

] 1
n

×

exp
(
i( a3γx+ 9caγ−2a3

27γ2 t)
)
,

In this case we obtain solitary wave solution for (1.1) from (2.6)(d) and relations
(3.1)-(3.6) as follow

q4(x, t) =
[
− sn(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)γ

(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)2 ×(
1
n2 + 3

n + 2
)
− s

2r

(
1
n + 2

)] 1
2n ×

[
−
√
b cot(

√
bi(

√
2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

γ(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) x−

( a
2

3γ2

√
2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) −
c
√

2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

γ(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) −
b(2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2))

3
2 n3

γ2(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)3 ×(
1
n − 1

) (
1
n − 2

)
−

2bn(2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2))
3
2

γ2(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)3 )t

] 1
n

×

exp
(
i( a3γx+ 9caγ−2a3

27γ2 t)
)
,

Finally from (2.6)(e) we obtain solitary wave solutions for perturbed NLSE with
power law nonlinearity in following form

q5(x, t) =
[
− sn(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)γ

(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)2 ×(
1
n2 + 3

n + 2
)
− s

2r

(
1
n + 2

)] 1
2n ×

n
√
i

[√
2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

γ(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) x−

( a
2

3γ2

√
2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) −

c
√

2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

γ(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) )t

]− 1
n

×

exp
(
i( a3γx+ 9caγ−2a3

27γ2 t)
)
,
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4. Conclusion

In summary we derive many types of optical solitary wave solutions of perturbed
nonlinear Schrodinger equation with power law nonlinearity which include the
bright and dark optical solitary wave solutions. The results show that the method
is reliable and effective and gives more solutions. We hope that the obtained results
will be useful for further studies in mathematical physics and engineering.
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ON SOME NEW INEQUALITIES OF HERMITE-HADAMARD

TYPE INVOLVING HARMONICALLY CONVEX FUNCTIONS

VIA FRACTIONAL INTEGRALS

ERHAN SET, İMDAT İŞCAN, AND FATMA ZEHIR

Abstract. In this paper, some new results related to the left-hand side of the
Hermite-Hadamard type inequality for harmonically convex functions using

Riemann Liouville fractional integrals are obtained.

1. Introduction

Let f : I ⊆ R→ R be a convex function defined on the interval I of real numbers
and a, b ∈ I with a < b. The following inequality holds

(1.1) f

(
a+ b

2

)
≤ 1

b− a

b∫
a

f(x)dx ≤ f(a) + f(b)

2
.

In [4], the author introduced the class of harmonically convex functions, defined as
follows.

Definition 1.1. Let I ⊆ R\ {0} be a real interval. A function f : I → R is said to
be harmonically convex, if

f

(
xy

tx+ (1− t)y

)
≤ tf(y) + (1− t)f(x)

for all x, y ∈ I and t ∈ [0, 1]. If the inequality in (1.1) is reversed, then f is said to
be harmonically concave.

We recall the following special functions and inequality
(1) The Beta function:

β (x, y) =
Γ(x)Γ(y)

Γ(x+ y)
=

1∫
0

tx−1 (1− t)y−1
dt, x, y > 0,

2000 Mathematics Subject Classification. 26A33, 26A51, 26D15.
Key words and phrases. Harmonically convex function, Hermite-Hadamard type inequality,

Riemann Liouville fractional integrals.
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(2) The hypergeometric function:

2F1 (a, b; c; z) =
1

β (b, c− b)

1∫
0

tb−1 (1− t)c−b−1
(1− zt)−a dt, c > b > 0, |z| < 1.

In the following we will give some necessary definitions and mathematical pre-
liminaries of fractional calculus theory which are used further in this paper. More
details, one can consult ([1],[2],[7]).

Definition 1.2. Let f ∈ L [a, b]. The Riemann-Liouville integrals Jαa+f and Jαb−f
of oder α > 0 with a ≥ 0 are defined by

Jαa+f(x) =
1

Γ(α)

x∫
a

(x− t)α−1
f(t)dt, x > a

and

Jαb−f(x) =
1

Γ(α)

b∫
x

(t− x)
α−1

f(t)dt, x < b

respectively, where Γ(α) is the Gamma function defined by Γ(α) =
∞∫
0

e−ttα−1dt

and J0
a+f(x) = J0

b−f(x) = f(x).

Because of the wide application of Hermite-Hadamard type inequalities and frac-
tional integrals, many researchers extend their studies to Hermite-Hadamard type
inequalities involving fractional integrals not limited to integer integrals. Recently,
more and more Hermite-Hadamard inequalities involving fractional integrals have
been obtained for different classes of functions; see ([5],[6],[9],[10],[11]).

In [3], Iscan proved a variant of Hermite-Hadamard inequality which holds for
the harmonically convex functions in fractional integral forms as follows:

Theorem 1.1. Let f : I ⊆ (0,∞) → R be a function such that f ∈ L[a, b], where
a, b ∈ I with a < b. If f is a harmonically convex function on [a, b], then the
following inequalities for fractional integrals hold:

f

(
2ab

a+ b

)
≤ Γ(α+ 1)

2

(
ab

b− a

)α {
Jα1/a− (f ◦ g) (1/b) + Jα1/b+ (f ◦ g) (1/a)

}
≤ f(a) + f(b)

2
with α > 0.

Lemma 1.1. ([8],[12]) For 0 < α ≤ 1 and 0 ≤ a < b, we have

|aα − bα| ≤ (b− a)
α
.

Lemma 1.2. ([3]) Let f : I ⊆ (0,∞) → R be a differentiable function on I◦

such that f ′ ∈ L[a, b], where a, b ∈ I with a < b. Then the following equality for
fractional integrals holds:

If (g;α, a, b)

=
ab (b− a)

2

1∫
0

[tα − (1− t)α]

(ta+ (1− t)b)2 f
′
(

ab

ta+ (1− t)b

)
dt.
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where

If (g;α, a, b)

=
f(a) + f(b)

2
− Γ(α+ 1)

2

(
ab

b− a

)α {
Jα1/a− (f ◦ g) (1/b) + Jα1/b+ (f ◦ g) (1/a)

}
.

with α > 0, g (x) = 1/x and Γ is Euler Gamma function.

In [3], Iscan proved the following theorems using the above Lemma 1.1 and
Lemma 1.2.

Theorem 1.2. Let f : I ⊆ (0,∞)→ R be a differentiable function on I◦ such that
f ′ ∈ L[a, b], where a, b ∈ I◦ with a < b. If |f ′|q is harmonically convex on [a, b] for
some fixed q ≥ 1, then the following inequality for fractional integrals holds:

|If (g;α, a, b)|

≤ ab (b− a)

2
C

1−1/q
1 (α; a, b)

(
C2(α; a, b) |f ′(b)|q + C3(α; a, b) |f ′(a)|q

)1/q
where

C1(α; a, b) =
b−2

α+ 1

[
2F1

(
2, 1;α+ 2; 1− a

b

)
+ 2F1

(
2, α+ 1;α+ 2; 1− a

b

)]
,

C2(α; a, b) =
b−2

α+ 2

[
2F1

(
2, 2;α+ 3; 1− a

b

)
α+ 1

+ 2F1

(
2, α+ 2;α+ 3; 1− a

b

)]
,

C3(α; a, b) =
b−2

α+ 1

[
2F1

(
2, 1;α+ 3; 1− a

b

)
+

2F1

(
2, α+ 1;α+ 3; 1− a

b

)
α+ 1

]
.

Theorem 1.3. Let f : I ⊆ (0,∞)→ R be a differentiable function on I◦ such that
f ′ ∈ L[a, b], where a, b ∈ I◦ with a < b. If |f ′|q is harmonically convex on [a, b] for
some fixed q ≥ 1, then the following inequality for fractional integrals holds:

|If (g;α, a, b)|

≤ ab (b− a)

2
C

1−1/q
1 (α; a, b)

(
C2(α; a, b) |f ′(b)|q + C3(α; a, b) |f ′(a)|q

)1/q
,

where

C1 (α; a, b)

=
b−2

α+ 1

[
2F1

(
2, α+ 1;α+ 2; 1− a

b

)
−2 F1

(
2, 1;α+ 2; 1− a

b

)
+2F1

(
2, 1;α+ 2;

1

2

(
1− a

b

))]
,

C2 (α; a, b)

=
b−2

α+ 2

[
2F1

(
2, α+ 2;α+ 3; 1− a

b

)
− 1

α+ 1
2F1

(
2, 2;α+ 3; 1− a

b

)
+

1

2 (α+ 1)
2F1

(
2, 2;α+ 3;

1

2

(
1− a

b

))]
,
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C3 (α; a, b)

=
b−2

α+ 2

[
1

α+ 1
2F1

(
2, α+ 1;α+ 3; 1− a

b

)
−2 F1

(
2, 1;α+ 3; 1− a

b

)
+2F1

(
2, 1;α+ 3;

1

2

(
1− a

b

))]
and 0 < α ≤ 1.

Theorem 1.4. Let f : I ⊆ (0,∞)→ R be a differentiable function on I◦ such that
f ′ ∈ L[a, b], where a, b ∈ I◦ with a < b. If |f ′|q is harmonically convex on [a, b] for
some fixed q > 1, then the following inequality for fractional integrals holds:

|If (g;α, a, b)|

≤ a (b− a)

2b

(
1

αp+ 1

)1/p( |f ′(b)|q + |f ′(a)|q

2

)1/q

×
[

2F
1/p
1

(
2p, 1;αp+ 2; 1− a

b

)
+2 F

1/p
1

(
2p, αp+ 1;αp+ 2; 1− a

b

)]
,

where 1/p+ 1/q = 1.

Theorem 1.5. Let f : I ⊆ (0,∞)→ R be a differentiable function on I◦ such that
f ′ ∈ L[a, b], where a, b ∈ I◦ with a < b. If |f ′|q is harmonically convex on [a, b] for
some fixed q > 1, then the following inequality for fractional integrals holds:

|If (g;α, a, b)|

≤ b− a
2 (ab)

1−1/p
L

2−2/p
2p−2 (a, b)

(
1

αq + 1

)1/q ( |f ′(b)|q + |f ′(a)|q

2

)1/q

,

where 1/p+ 1/q = 1 and L2p−2(a, b) =
(
b2p−1−a2p−1

(2p−1)(b−a)

)1/(2p−2)

is 2p− 2-Logarithmic
mean.

Theorem 1.6. Let f : I ⊆ (0,∞)→ R be a differentiable function on I◦ such that
f ′ ∈ L[a, b], where a, b ∈ I◦ with a < b. If |f ′|q is harmonically convex on [a, b] for
some fixed q > 1, then the following inequality for fractional integrals holds:

|If (g;α, a, b)|

≤ a (b− a)

2b

(
1

αp+ 1

)1/p

×

(
2F1

(
2q, 2; 3; 1− a

b

)
|f ′(b)|q +2 F1

(
2q, 1; 3; 1− a

b

)
|f ′(a)|q

2

)1/q

,

where 1/p+ 1/q = 1.
In this paper, new identity for fractional integrals have been defined. By using

of this identity we obtained some new results related to the left-hand side of the
Hermite-Hadamard type inequality for harmonically convex functions via Riemann
Liouville fractional integral.
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2. Main Results

Let f : I ⊆ (0,∞) → R be a differentiable function on I◦, the interior of I.
Throughout this section we will take

Kf (g;α, a, b)

= f

(
2ab

a+ b

)
− Γ(α+ 1)

2

(
ab

b− a

)α {
Jα1
a−

(f ◦ g) (1/b) + Jα1
b+ (f ◦ g) (1/a)

}

where a, b ∈ I, with a < b, α > 0, g(x) = 1
x and Γ is Euler Gamma function.

In order to prove our main results, we need the following Lemma:

Lemma 2.1. Let f : I ⊆ (0,∞) → R be a differentiable function on Io such that
f ′ ∈ L [a, b] , where a, b ∈ I with a < b. Then the following equality for fractional
integral holds :

(2.1) Kf (g;α, a, b) =
1

2

3∑
k=1

Ik

where

I1 = ab (b− a)
1/2∫
0

f ′
(
ab
At

)
dt
A2
t

I2 = −ab (b− a)
1∫

1/2

f ′
(
ab
At

)
dt
A2
t

I3 = −ab (b− a)
1∫
0

[(1− t)α − tα] f ′
(
ab
At

)
dt
A2
t

and At = ta+ (1− t) b .

Proof. Calculating I1, I2 and I3 we have

I1 = ab (b− a)

1/2∫
0

f ′
(
ab

At

)
dt

A2
t

=

1/2∫
0

df

(
ab

At

)

= f

(
ab

At

)∣∣∣∣1/2
0

= f

(
2ab

a+ b

)
− f (a) ,
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I2 = −ab (b− a)

1∫
1/2

f ′
(
ab

At

)
dt

A2
t

= −
1∫

1/2

df

(
ab

At

)

= −f
(
ab

At

)∣∣∣∣1
1/2

= f

(
2ab

a+ b

)
− f (b)

and

I3 = −ab (b− a)

1∫
0

[(1− t)α − tα] f ′
(
ab

At

)
dt

A2
t

= −
1∫

0

[(1− t)α − tα] df

(
ab

At

)

= −
1∫

0

(1− t)α df
(
ab

At

)
+

1∫
0

tαdf

(
ab

At

)
= I∗3 + I∗∗3 .

By integrating by part in I∗3 , we get

I∗3 = −
1∫

0

(1− t)α df
(
ab

At

)

= (1− t)α f
(
ab

At

)∣∣∣∣1
0

− α
1∫

0

(1− t)α−1
f

(
ab

At

)
dt

= f(a)− α
1∫

0

(1− t)α−1
f

(
ab

At

)
dt.

Here, by the changes of variables u = ab
At
, we get

I∗3 = f(a)− α
b∫
a

(
ab

b− a

)α−1(
1

u
− 1

b

)α−1

f(u)
ab

b− a
1

u2
du

= f(a)− α
(

ab

b− a

)α b∫
a

(
1

u
− 1

b

)α−1

1

u2
f(u)du
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and again by the changes of variables u = 1
t , we get

I∗3 = f(a)− α
(

ab

b− a

)α ∫ 1/b

1/a

(
t− 1

b

)α−1

t2
(
− 1

t2

)
f(

1

t
)dt

= f(a) + α

(
ab

b− a

)α ∫ 1/b

1/a

(
t− 1

b

)α−1

f ◦ g(t)dt

= f(a)− α
(

ab

b− a

)α
Γ(α)

1

Γ(α)

∫ 1/a

1/b

(
t− 1

b

)α−1

f ◦ g(t)dt

= f(a)− Γ(α+ 1)

(
ab

b− a

)α
Jα1/a−f ◦ g(1/b).

Similarly, we get I∗∗3 =
1∫
0

tαdf
(
ab
At

)
= f(b)− Γ(α+ 1)

(
ab
b−a

)α
Jα1/b+f ◦ g(1/a). By

adding I1, I2 and I3, the desired result is obtained. �

Using this Lemma, we can obtain the following inequalities.

Theorem 2.1. Let f : I ⊆ (0,∞) → R a differentiable increasing function on I◦

such that f ′ ∈ L[a, b], where a, b ∈ I◦ with a < b. If (f ′)q is harmonically convex
on [a, b] for some fixed q ≥ 1, then the following inequality for fractional integrals
holds:

|Kf (g;α, a, b)|

≤ f(b)− f(a)

2
+
ab (b− a)

2
C

1−1/q
1 (α; a, b)

×
[
C2(α; a, b) (f ′(b))

q
+ C3(α; a, b) (f ′(a))

q]1/q
,

where

C1(α; a, b) =
b−2

α+ 1

[
2F1

(
2, 1;α+ 2; 1− a

b

)
+2 F1

(
2, α+ 1;α+ 2; 1− a

b

)]
,

C2(α; a, b) =
b−2

α+ 2

[
2F1

(
2, 2;α+ 3; 1− a

b

)
α+ 1

+ 2F1

(
2, α+ 2;α+ 3; 1− a

b

)]
,

C3(α; a, b) =
b−2

α+ 1

[
2F1

(
2, 1;α+ 3; 1− a

b

)
+

2F1

(
2, α+ 1;α+ 3; 1− a

b

)
α+ 1

]
.

Proof. Let At = ta+(1− t) b. From Lemma 2.1, using the property of the modulus
, the power mean inequality and harmonically convexity of (f ′)q , we find

|Kf (g;α, a, b)| ≤ 1

2
{|I1|+ |I2|+ |I3|}

=
ab(b− a)

2

 1/2∫
0

f ′
(
ab

At

)
dt

A2
t

+

1∫
1/2

f ′
(
ab

At

)
dt

A2
t

+
1

2
|I3|

=
f(b)− f(a)

2
+

1

2
|I3| .

�
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As in the proof of the Theorem 1.2, we have

1

2
|I3| =

ab(b− a)

2

∣∣∣∣∣∣
1∫

0

[(1− t)α − tα] f ′
(
ab

At

)
dt

A2
t

∣∣∣∣∣∣
≤ ab (b− a)

2
C

1−1/q
1 (α; a, b)

(
C2(α; a, b) (f ′(b))

q
+ C3(α; a, b) (f ′(a))

q)1/q
,

where

C1(α; a, b) =
b−2

α+ 1

[
2F1

(
2, 1;α+ 2; 1− a

b

)
+2 F1

(
2, α+ 1;α+ 2; 1− a

b

)]
,

C2(α; a, b) =
b−2

α+ 2

[
2F1

(
2, 2;α+ 3; 1− a

b

)
α+ 1

+2 F1

(
2, α+ 2;α+ 3; 1− a

b

)]
,

C3(α; a, b) =
b−2

α+ 1

[
2F1

(
2, 1;α+ 3; 1− a

b

)
+

2F1

(
2, α+ 1;α+ 3; 1− a

b

)
α+ 1

]
.

The proof is competed.

Theorem 2.2. Let f : I ⊆ (0,∞) → R be a differentiable increasing function on
I◦ such that f ′ ∈ L[a, b], where a, b ∈ I◦ with a < b. If (f ′)

q
is harmonically convex

on [a, b] for some fixed q ≥ 1, then the following inequality for fractional integrals
holds:

|Kf (g;α, a, b)|

≤ f(b)− f(a)

2
+
ab (b− a)

2
C

1−1/q
1 (α; a, b)

× [C2(α; a, b)(f ′(b))q + C3(α; a, b)(f ′(a))q]
1/q

,

where

C1(α; a, b)

=
b−2

α+ 1

[
2F1

(
2, α+ 1;α+ 2; 1− a

b

)
−2 F1

(
2, 1;α+ 2; 1− a

b

)
+2F1

(
2, 1;α+ 2;

1

2

(
1− a

b

))]
,

C2(α; a, b)

=
b−2

α+ 2

[
2F1

(
2, α+ 2;α+ 3; 1− a

b

)
− 1

α+ 1
2F1

(
2, 2;α+ 3; 1− a

b

)
+

1

2 (α+ 1)
2F1

(
2, 2;α+ 3;

1

2

(
1− a

b

))]
,

C3(α; a, b)

=
b−2

α+ 2

[
1

α+ 1
2F1

(
2, α+ 1;α+ 3; 1− a

b

)
−2 F1

(
2, 1;α+ 3; 1− a

b

)
+2F1

(
2, 1;α+ 3;

1

2

(
1− a

b

))]
and 0 < α ≤ 1.
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Proof. Let At = ta+(1− t) b. From Lemma 2.1, using the property of the modulus
, the power mean inequality and the harmonically convexity of (f ′)

q
, we find

|Kf (g;α, a, b)| ≤ 1

2
(|I1|+ |I2|+ |I3|)

≤ f(b)− f(a)

2
+

1

2
|I3|

and

(2.2)

1

2
|I3|

≤ ab (b− a)

2

1∫
0

|(1− t)α − tα|
A2
t

f ′
(
ab

At

)
dt

≤ ab (b− a)

2

 1∫
0

|(1− t)α − tα|
A2
t

dt

1− 1
q
 1∫

0

|(1− t)α − tα|
A2
t

(
f ′
(
ab

At

))q
dt


1
q

≤ ab (b− a)

2
K

1−1/q
1

 1∫
0

|(1− t)α − tα|
A2
t

[t(f ′(b))q + (1− t)(f ′(a))q] dt

1/q

≤ ab (b− a)

2
K

1−1/q
1 (K2(f ′(b))q +K3(f ′(a))q)

1/q
,

where

K1 =

1∫
0

|(1− t)α − tα|
A2
t

dt,

K2 =

1∫
0

|(1− t)α − tα|
A2
t

tdt,

K3 =

1∫
0

|(1− t)α − tα|
A2
t

(1− t) dt.

If K1,K2 and K3 are calculated as in the proof of the Theorem 1.3, and used in
the inequality (2.2), the desired result is obtained.

Theorem 2.3. Let f : I ⊆ (0,∞) → R be a differentiable increasing function on
I◦ such that f ′ ∈ L[a, b], where a, b ∈ I◦ with a < b. If (f ′)q is harmonically convex
on [a, b] for some fixed q > 1, then the following inequality for fractional integrals
holds:

|Kf (g;α, a, b)|(2.3)

≤ f(b)− f(a)

2
+
a (b− a)

2b

(
1

αp+ 1

)1/p(
(f ′(b))q + (f ′(a))q

2

)1/q

×
[

2F
1/p
1

(
2p, 1;αp+ 2; 1− a

b

)
+2 F

1/p
1

(
2p, αp+ 1;αp+ 2; 1− a

b

)]
,
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where 1/p+ 1/q = 1.

�

Proof. Let At = ta + (1− t) b. From Lemma 2.1, using the Hölder inequality and
the harmonically convexity of (f ′)q, we get

|Kf (g;α, a, b)|

≤ f(b)− f(a)

2
+
ab (b− a)

2


1∫

0

(1− t)α

A2
t

f ′
(
ab

At

)
dt+

1∫
0

tα

A2
t

f ′
(
ab

At

)
dt


≤ f(b)− f(a)

2
+
ab (b− a)

2


 1∫

0

(1− t)αp

A2p
t

dt

1/p 1∫
0

(
f ′
(
ab

At

))q
dt

1/q

(2.4)

+

 1∫
0

tαp

A2p
t

dt

1/p 1∫
0

(
f ′
(
ab

At

))q
dt

1/q


≤ f(b)− f(a)

2
+
ab (b− a)

2

(
K

1/p
4 +K

1/p
5

) 1∫
0

[t(f ′(b))q + (1− t)(f ′(a))q] dt


1
q

≤ f(b)− f(a)

2
+
ab (b− a)

2

(
K

1/p
4 +K

1/p
5

)(f ′(b)q + f ′(a)q

2

)1/q

.

As in the proof of Theorem 1.4, calculating K4 and K5, we have

K4 =

1∫
0

(1− t)αp

A2p
t

dt(2.5)

=
b−2p

αp+ 1
.2F1

(
2p, 1;αp+ 2; 1− a

b

)
,

K5 =

1∫
0

tαp

A2p
t

dt(2.6)

=
b−2p

αp+ 1
.2F1

(
2p, αp+ 1;αp+ 2; 1− a

b

)
.

Thus , if we use (2.5) and (2.6 ) in (2.4), we obtain the inequality of (2.3).This
completes the proof. �

Theorem 2.4. Let f : I ⊆ (0,∞) → R be a differentiable increasing function on
I◦ such that f ′ ∈ L[a, b], where a, b ∈ I◦ with a < b. If (f ′)

q
is harmonically convex

on [a, b] for some fixed q > 1, then the following inequality for fractional integrals
holds:
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(2.7)

|Kf (g;α, a, b)|

≤ f(b)− f(a)

2
+

b− a
2 (ab)

1−1/p
L

2−2/p
2p−2 (a, b)

(
1

αq + 1

)1/q (
(f ′(b))q + (f ′(a))q

2

)1/q

,

where 1/p+ 1/q = 1 and L2p−2(a, b) =
(
b2p−1−a2p−1

(2p−1)(b−a)

)1/(2p−2)

is 2p− 2-Logarithmic
mean.

Proof. Let At = ta+ (1− t) b. From Lemma 2.1 and Lemma 1.1, using the Hölder
inequality and the Harmonically convexity of (f ′)

q
, we get

|Kf (g;α, a, b)|

≤ f(b)− f(a)

2
+
ab (b− a)

2

1∫
0

|(1− t)α − tα|
A2
t

(
f ′
(
ab

At

))
dt

≤ f(b)− f(a)

2
+
ab (b− a)

2

 1∫
0

1

A2p
t

dt

1/p

×

 1∫
0

|(1− t)α − tα|q
(
f ′
(
ab

At

))q
dt

1/q

≤ f(b)− f(a)

2
+
ab (b− a)

2

 1∫
0

1

A2p
t

dt

1/p

×

 1∫
0

|1− 2t|αq
[
t (f ′(b))

q
+ (1− t) (f ′(a))

q]
dt


1/q

(2.8) ≤ f(b)− f(a)

2
+
ab (b− a)

2
K

1/p
6

(
K7 |f ′(b)|

q
+K8 |f ′(a)|q

)1/q
,

where as in the proof of Theorem 1.5

K6 =

1∫
0

1

A2p
t

dt = b−2p

1∫
0

(
1− t

(
1− a

b

))−2p

dt(2.9)

= b−2p.2F1

(
2p, 1; 2; 1− a

b

)
=
L2p−2

2p−2(a, b)

(ab)
2p−1 ,
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K7 =

1∫
0

|1− 2t|αq tdt(2.10)

=

1/2∫
0

(1− 2t)
αq
tdt+

1∫
1/2

(2t− 1)
αq
tdt

=
1

2 (αq + 1)
,

and

K8 =

1∫
0

|1− 2t|αq (1− t)dt(2.11)

=
1

2 (αq + 1)
.

If we use (2.9),(2.10) and (2.11) in (2.8), we obtain the inequality of (2.7). This
completes the proof.

Theorem 2.5. Let f : I ⊆ (0,∞) → R be a differentiable increasing function on
I◦ such that f ′ ∈ L[a, b], where a, b ∈ I◦ with a < b. If (f ′)

q
is harmonically convex

on [a, b] for some fixed q > 1, then the following inequality for fractional integrals
holds:

|Kf (g;α, a, b)|(2.12)

≤ f(b)− f(a)

2
+
a (b− a)

2b

(
1

αp+ 1

)1/p

×

(
2F1

(
2q, 2; 3; 1− a

b

)
(f ′(b))

q
+2 F1

(
2q, 1; 3; 1− a

b

)
(f ′(a))

q

2

)1/q

,

where 1/p+ 1/q = 1.

�
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Proof. Let At = ta+ (1− t) b. From Lemma 2.1 and Lemma 1.1, using the Hölder
inequality and Harmonically convexity of (f ′)

q
, we find

|Kf (g;α, a, b)|

≤ f(b)− f(a)

2
+
ab (b− a)

2

1∫
0

|(1− t)α − tα|
A2
t

(
f ′
(
ab

At

))
dt

≤ f(b)− f(a)

2
+
ab (b− a)

2

 1∫
0

|(1− t)α − tα|p dt

1/p

×

 1∫
0

1

A2q
t

(
f ′
(
ab

At

))q
dt

1/q

≤ f(b)− f(a)

2
+
ab (b− a)

2

 1∫
0

|1− 2t|αp dt

1/p

×

 1∫
0

1

A2q
t

[
t (f ′(b))

q
+ (1− t) (f ′(a))

q]
dt

1/q

(2.13) ≤ f(b)− f(a)

2
+
ab (b− a)

2
K

1/p
9

(
K10 (f ′(b))

q
+K11 (f ′(a))

q)1/q
,

where as in the proof of Theorem 1.6,

(2.14) K9 =

1∫
0

|1− 2t|αp dt =
1

αp+ 1

K10 =

1∫
0

tA−2q
t dt = b−2q

1∫
0

t
(

1− t
(

1− a

b

))−2q

dt(2.15)

=
1

2b2q
2F1

(
2q, 2; 3; 1− a

b

)
and

(2.16) K11 =

1∫
0

(1− t)A−2q
t dt =

1

2b2q
2F1

(
2q, 1; 3; 1− a

b

)
Thus, if we use (2.14),(2.15) and (2.16) in (2.13), we obtain the inequality of (2.12).
This completes the proof. �
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REFINEMENT OF SOME INEQUALITIES FOR OPERATORS

ALEMEH SHEIKH HOSSEINI

Abstract. In this paper, we will use a refinement of the classical Young

inequality to improve some inequalities of operators.

1. Introduction

Let H be a complex Hilbert space with inner product 〈., .〉 and norm ‖.‖. Let
B(H) denote the algebra of all bounded linear operators on H, ‖.‖ will also denote
the operator norm on B(H).
For A ∈ B(H) the numerical radius is defined as follows,

ω(A) = sup{|〈Ax, x〉| : x ∈H, ‖x‖ = 1}.

We recall the following results that were proved in [2, 5].

Lemma 1.1. Let A ∈ B(H) and let ω(.) be the numerical radius. Then
(i) ω(.) is a norm on B(H),
(ii) ω(UAU∗) = ω(A), for all unitary operators U ,
(iii) ω(Ak) ≤ ω(A)k, k = 1, 2, 3, . . . (power inequality)
(iv) 1

2‖A‖ ≤ ω(A) ≤ ‖A‖.

Moreover, ω(.) is not a unitarily invariant norm and is not submultiplicative.
For positive real numbers a, b, the classical Young inequality says that if p, q > 1
such that 1/p+ 1/q = 1, then

(1.1) ab ≤ ap

p
+
bq

q
.

Replacing a, b by their squares, we could write (1.1) in the form

(1.2) (ab)2 ≤ a2p

p
+
b2q

q
.

2010 Mathematics Subject Classification. 15A60, 15A18.
Key words and phrases. Inequalities, Numerical radius, Unitarily invariant norms, Young

inequality.
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A refinement of the scalar Young inequality is as follows [9],

(1.3) ab+ r0(ap/2 − bq/2)2 ≤ ap

p
+
bq

q
,

where r0 = min{1/p, 1/q}.
Some authors considered replacing the numbers a, b by positive operators A,B.

But there are some difficulties, for example if A and B are positive operators, the
operator AB is not positive in general. Hence the authors studied the singular
values and the norms of the operators instead of operators in some inequalities.
Let us denote by Mn the algebra of all n×n complex matrices. Bhatia and Kittaneh
in 1990 [3] established a matrix mean inequality as follows:

(1.4) |||A∗B||| ≤ 1

2
|||A∗A+B∗B||| ,

for matrices A,B ∈Mn.
In [2] a generalization of (1.4) was proved, for all X ∈Mn,

(1.5) |||A∗XB||| ≤ 1

2
|||AA∗X +XBB∗||| .

Ando in 1995 [1] established a matrix Young inequality:

(1.6) |||AB||| ≤
∣∣∣∣∣∣∣∣∣∣∣∣App +

Bq

q

∣∣∣∣∣∣∣∣∣∣∣∣
for p, q > 1 with 1/p+ 1/q = 1 and positive matrices A,B. Also, in [11], we showed

that |||AXB||| ≤
∣∣∣∣∣∣∣∣∣ 1pApX + 1

qXB
q
∣∣∣∣∣∣∣∣∣ does not hold in general. In [10] we considered

the inequalities (1.4) and (1.6) with the numerical radius norm as follows:

Proposition 1.1. [10, Proposition 1] If A,B are n× n matrices, then

(1.7) ω(A∗B) ≤ 1

2
ω(A∗A+B∗B).

Also if A and B are positive matrices and p, q > 1 with 1/p+ 1/q = 1, then

ω(AB) ≤ ω(
Ap

p
+
Bq

q
).

In this paper we obtain some generalized matrix versions of the inequalities (1.2)
and (1.7).

2. main results

Let A ∈ B(H). We know that 1
2‖A‖ ≤ ω(A) ≤ ‖A‖(see Lemma 1.1(iv)). These

inequalities were improved in [6, 8] as follows:

(2.1) ω(A) ≤ 1

2
‖|A|+ |A∗|‖ ≤ 1

2
(‖A‖+ ‖A2‖1/2),

(2.2)
1

4
‖A∗A+AA∗‖ ≤ ω2(A) ≤ 1

2
‖A∗A+AA∗‖,

where |A| := (A∗A)
1
2 is the absolute value of A.

Generalizations of the first inequality in (2.1) and the second inequality in (2.2)
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have been established in [4]. It has been shown that if A,B ∈ B(H), for 0 < α < 1
and r ≥ 1, then

(2.3) ωr(A+B) ≤ 2r−2
∥∥∥|A|2rα + |A∗|2r(1−α) + |B|2rα + |B∗|2r(1−α)

∥∥∥ ,
(2.4) ωr(A) ≤ 1

2

∥∥∥|A|2rα + |A∗|2r(1−α)
∥∥∥ .

In 2005, Kittaneh extended the above inequalities as follows:

Theorem 2.1. [8, Theorem 2] If A,B,C,D, S, T ∈ B(H), then for all α ∈ (0, 1),
(2.5)

ω(ATB+CSD) ≤ 1

2

(∥∥∥A|T ∗|2(1−α)A∗ +B∗|T |2(α)B + C|S∗|2(1−α)C∗ +D∗|S|2(α)D
∥∥∥) .

In 2009, Shebrawi and Albadawi extended the inequality (2.5), in the following
form:

Theorem 2.2. [12, Theorem 2.5] Let Ai, Bi, Xi ∈ B(H)(i = 1, 2, . . . , n), and let f
and g be nonnegative continuous functions on [0,∞) such that f(t)g(t) = t for all
t ∈ [0,∞). Then for all r ≥ 1,

(2.6) ωr(

n∑
i=1

A∗iXiBi) ≤
nr−1

2

(∥∥∥∥∥
n∑
i=1

([A∗i g
2(|X∗i |)Ai]r + [B∗i f

2(|Xi|)Bi]r)

∥∥∥∥∥
)
.

In [10] we established a numerical radius inequality that generalizes (2.6) and
consequently, generalize (2.3), (2.4), (2.5).

Theorem 2.3. [10, Theorem 5] Let Ai, Bi, Xi ∈ B(H)(i = 1, 2, . . . , n), and let f
and g be nonnegative continuous functions on [0,∞) such that f(t)g(t) = t for all
t ∈ [0,∞). If p ≥ q > 1 with 1/p+ 1/q = 1, then for all r ≥ 2

q ,

(2.7)

ωr(

n∑
i=1

A∗iXiBi) ≤ nr−1
∥∥∥∥∥
n∑
i=1

1

p
(B∗i f

2(|Xi|)Bi)rp/2 +
1

q
(A∗i g

2(|X∗i |)Ai)rq/2
∥∥∥∥∥ .

In this section, we refine this inequality by using the inequality (1.3) to improve
our results, we need the following basic lemmas.

Lemma 2.1. [7, Theorem 1] Let A be an operator in B(H), and let f and g be
nonnegative continuous functions on [0,∞) such that f(t)g(t) = t for all t ∈ [0,∞).
Then for all x and y in H,

(2.8) |〈Ax, y〉| ≤ ‖f(|A|)x‖‖g(|A∗|)y‖.

The following lemma is a consequence of the spectral theorem for positive oper-
ators and Jensen’s inequality (see, e.g., [7]).

Lemma 2.2. Let A be a positive operator in B(H) and let x ∈ H be any unit
vector. Then for all r ≥ 1,

(2.9) 〈Ax, x〉r ≤ 〈Arx, x〉.

Now, we state the following theorem which is a refinement of (2.7).
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Theorem 2.4. Let Ai, Bi, Xi ∈ B(H)(i = 1, 2, . . . , n), and let f and g be
nonnegative continuous functions on [0,∞) such that f(t)g(t) = t for all t ∈ [0,∞).
If p ≥ q > 1 with 1/p+ 1/q = 1, then for all r ≥ 2

q ,

(2.10)

ωr(

n∑
i=1

A∗iXiBi) ≤ nr−1
(∥∥∥∥∥

n∑
i=1

1

p
(B∗i f

2(|Xi|)Bi)rp/2 +
1

q
(A∗i g

2(|X∗i |)Ai)rq/2
∥∥∥∥∥− (

1

p
) inf
‖x‖=1

η(x)

)
,

where η(x) :=
∑n
i=1

(〈
B∗i f

2(|Xi|)Bix, x
〉rp/4 − 〈A∗i g2(|X∗i |)Aix, x

〉rq/4)2
.

Proof. For every unit vector x ∈H, we have∣∣∣∣∣
〈(

n∑
i=1

A∗iXiBi

)
x, x

〉∣∣∣∣∣
r

≤

(
n∑
i=1

|〈XiBix,Aix〉|

)r

≤
(2.8)

(
n∑
i=1

〈
f2(|Xi|)Bix,Bix

〉1/2 〈
g2(|X∗i |)Aix,Aix

〉1/2)r

≤ nr−1
n∑
i=1

〈
f2(|Xi|)Bix,Bix

〉r/2 〈
g2(|X∗i |)Aix,Aix

〉r/2
= nr−1

n∑
i=1

〈
B∗i f

2(|Xi|)Bix, x
〉r/2 〈

A∗i g
2(|X∗i |)Aix, x

〉r/2
≤ nr−1

n∑
i=1

(
1

p

〈
(B∗i f

2(|Xi|)Bi)rp/2x, x
〉

+
1

q

〈
(A∗i g

2(|X∗i |)Ai)rq/2x, x
〉

− 1

p

(〈
(B∗i f

2(|Xi|)Bi)x, x
〉rp/4 − 〈(A∗i g2(|X∗i |)Ai)x, x

〉rq/4)2
)

=
(1.3),(2.9)

nr−1(〈
n∑
i=1

(
1

p
(B∗i f

2(|Xi|)Bi)rp/2

+
1

q
(A∗i g

2(|X∗i |)Ai)rq/2)x, x〉 − (
1

p
)η(x)).

Now, the result follows by taking the supremum over all unit vectors in H. �

Remark 2.1. Let p = q = r = 2. Then η(x) ≡ 0 if and only if
ω(B∗i f

2(|Xi|)Bi − A∗i g2(|X∗i |)Ai) = 0, for all i = 1, . . . , n. In general, η(x) = 0 if

and only if
〈
B∗i f

2(|Xi|)Bix, x
〉rp/4

=
〈
A∗i g

2(|X∗i |)Aix, x
〉rq/4

, for all i = 1, . . . , n.
Moreover, in the refinement of the Kittaneh’s inequalitity, inf η(x) = 0.
Because 0 ∈ σapp(|A| − |A∗|) (approximate point spectrum) and the approxi-
mate point spectrum is a subset of the closure of the numerical range. Then
inf 〈|A| − |A∗|x, x〉 = 0, where 〈x, x〉 = 1 and hence inf η(x) = 0.

In the following example we show that (2.10) is a refinement of the inequality
(2.7) and inf‖x‖=1 η(x) > 0.

Example 2.1. Let X = I, n = 1, f(t) = g(t) = t1/2, r = p = q = 2 and
|A|2 = diag(5, 1), |B|2 = diag(2, 0) in the inequality (2.10). Then inf‖x‖=1 η(x) > 0
and (2.10) is a refinement of the inequality (2.7).
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The inequality (2.10) includes several numerical radius inequalities as special cases.
Examples of inequalities are shown in the following.

Corollary 2.1. Let Ai, Bi,∈ B(H)(i = 1, 2, . . . , n). If p ≥ q > 1 with
1/p+ 1/q = 1 and r ≥ 2

q , then

ωr(

n∑
i=1

A∗iBi) ≤ nr−1
(∥∥∥∥∥

n∑
i=1

(
1

p
|Bi|rp +

1

q
|Ai|rq)

∥∥∥∥∥− (
1

p
) inf
‖x‖=1

η(x)

)
,

where η(x) :=
∑n
i=1

(
〈|Bi|2x, x〉rp/4 − 〈|Ai|2x, x〉rq/4

)2
.

In particular, if n = 1, then

ωr(A∗B) ≤
∥∥∥∥1

p
|B|rp +

1

q
|A|rq)

∥∥∥∥− (
1

p
) inf
‖x‖=1

η(x),

where η(x) :=
(
〈|B|x, x〉rp/4 − 〈|A|x, x〉rq/4

)2
.

Remark 2.2. By replacing n = 1 in Theorem 2.4, we obtain the following

(2.11) ωr(A∗XB) ≤
∥∥∥∥1

p
(B∗|X|B)rp/2 +

1

q
(A∗|X∗|A)rq/2

∥∥∥∥− (
1

p
) inf
‖x‖=1

η(x),

where η(x) :=
(
〈(B∗|X|B)x, x〉rp/4 − 〈(A∗|X∗|)A)x, x〉rq/4

)2
.

Furthermore, by Lemma 1.1, for all A,B,X ∈ B(H), we obtain the following
inequalities:

(2.12) ω((A∗XB)2) ≤ ω(
1

p
(A∗|X∗|A)p +

1

q
(B∗|X|B)q)− (

1

p
) inf
‖x‖=1

η(x),

where η(x) :=
(
〈(B∗|X|B)x, x〉p/2 − 〈A∗|X∗|Ax, x〉q/2

)2
, and

(2.13) ω(A∗XB) ≤ 1

2
ω(A∗|X∗|A+B∗|X|B)− (

1

2
) inf
‖x‖=1

η(x),

where η(x) :=
(
〈(B∗|X|B)x, x〉1/2 − 〈(A∗|X∗|)A)x, x〉1/2

)2
.

The inequalities (2.12) and (2.13) are generalized matrix versions of the inequalities
(1.2) and (1.7), respectively.

Remark 2.3. By the Example 2.1 we can show that inf‖x‖=1 η(x) > 0, in Corollary
2.1 and the inequalities (2.11), (2.12), (2.13).

3. Additional results

Some of usual operator norm inequalities for summation of operators have been
proved. It has been shown in [4] that if A and B are normal and r ≥ 1, then

(3.1) ‖A+B‖r ≤ 2r−1‖|A|r + |B|r‖.

In this section, we get a norm inequality for Hilbert space operators, so that new
inequalities for operators and generalizations of earlier results will be obtained. By
the same method as in the proof of Theorem 2.4 we obtain the following:



REFINEMENT OF SOME INEQUALITIES FOR OPERATORS 61

Proposition 3.1. Let Ai, Bi, Xi ∈ B(H)(i = 1, 2, ..., n), and let f and g be as in
(2.1) and p ≥ q > 1 with 1/p+ 1/q = 1. Then for all r ≥ 2

q ,∥∥∥∥∥
n∑
i=1

A∗iXiBi

∥∥∥∥∥
r

≤ nr−1(
1

p

∥∥∥∥∥
n∑
i=1

(B∗i f
2(|Xi|)Bi)rp/2

∥∥∥∥∥
+

1

q

∥∥∥∥∥
n∑
i=1

(A∗i g
2(|X∗i |)Ai)rq/2

∥∥∥∥∥− (
1

p
) inf
‖x‖=‖y‖=1

η(x, y)),(3.2)

where η(x, y) :=
∑n
i=1

(
〈(B∗i f2(|Xi|)Bi)x, x〉rp/4 − 〈(A∗i g2(|X∗i |)Ai)y, y〉rq/4

)2
.

Inequality (3.2) yields several norm inequalities as special cases. Samples of these
inequalities are demonstrated below.

Corollary 3.1. Let Ai, Bi, Xi ∈ B(H)(i = 1, 2, ..., n), r ≥ 2
q and p ≥ q > 1 with

1/p+ 1/q = 1 and α ∈ (0, 1). Then∥∥∥∥∥
n∑
i=1

A∗iXiBi

∥∥∥∥∥
r

≤ nr−1(
1

p

∥∥∥∥∥
n∑
i=1

(B∗i |Xi|2αBi)rp/2
∥∥∥∥∥

+
1

q

∥∥∥∥∥
n∑
i=1

(A∗i |X∗i |2(1−α)Ai)rq/2
∥∥∥∥∥− (

1

p
) inf
‖x‖=‖y‖=1

η(x, y)),(3.3)

where η(x, y) :=
∑n
i=1

(
〈(B∗i |Xi|2αBi)x, x〉rp/4 − 〈(A∗i |X∗i |2(1−α)Ai)y, y〉rq/4

)2
.

In particular,

‖A∗XB‖r ≤ 1

p

∥∥∥(B∗|X|B)rp/2
∥∥∥+

1

q

∥∥∥(A∗|X∗|A)rq/2
∥∥∥− (

1

p
) inf
‖x‖=‖y‖=1

η(x, y)

where η(x, y) :=
(
〈(B∗|X|B)x, x〉rp/4 − 〈(A∗|X∗|A)y, y〉rq/4

)2
.

For Xi = I(i = 1, 2, ..., n) in inequality (3.3), we get norm inequalities for prod-
ucts of operators.

Corollary 3.2. Let Ai, Bi ∈ B(H)(i = 1, 2, ..., n), r ≥ 2
q . Then∥∥∥∥∥

n∑
i=1

A∗iBi

∥∥∥∥∥
r

≤ nr−1
(

1

p

∥∥∥∥∥
n∑
i=1

|Bi|rp
∥∥∥∥∥+

1

q

∥∥∥∥∥
n∑
i=1

|Ai|rq
∥∥∥∥∥− (

1

p
) inf
‖x‖=‖y‖=1

η(x, y)

)
,

where η(x, y) :=
∑n
i=1

(
〈|Bi|2x, x〉rp/4 − 〈|Ai|2y, y〉rq/4

)2
. In particular,

∥∥∥∥∥
n∑
i=1

A∗iBi

∥∥∥∥∥
2

≤ n(
1

p

∥∥∥∥∥
n∑
i=1

|Bi|2p
∥∥∥∥∥

+
1

q

∥∥∥∥∥
n∑
i=1

|Ai|2q
∥∥∥∥∥− (

1

p
) inf
‖x‖=‖y‖=1

n∑
i=1

(
〈|Bi|2x, x〉p/2 − 〈|Ai|2y, y〉q/2

)2
).

Example 3.1. Let X = I, n = 1, f(t) = tα, g(t) = t1−α, α = 1/2, r = p = q = 2
and |A|2 = diag(5, 7), |B|2 = diag(2, 3) in the inequalities (3.2) and (3.3) and

Corollary 3.2 if needed. Then η(x, y) :=
(
〈|B|2x, x〉 − 〈|A|2y, y〉

)2
and hence

inf
‖x‖=‖y‖=1

η(x, y) ≥ 4 > 0.
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For n = 2 in inequality (3.3), we get the interesting norm inequalities that give
an
estimate for the operator norm of commutators. Also for Ai = Bi = I(i = 1, 2, ..., n)
in the inequality (3.3), we get the following operator inequalities for summation of
operators.

Corollary 3.3. Let Xi ∈ B(H)(i = 1, 2, ..., n), r ≥ 2
q and α ∈ (0, 1). Then∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
r

≤ nr−1
(

1

p

∥∥∥∥∥
n∑
i=1

|Xi|αrp
∥∥∥∥∥+

1

q

∥∥∥∥∥
n∑
i=1

|X∗i |(1−α)rq
∥∥∥∥∥
)
,

In particular, if Xi(i = 1, 2, ..., n) are normal, then

(3.4)

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
r

≤ nr−1
(

1

p

∥∥∥∥∥
n∑
i=1

|Xi|αrp
∥∥∥∥∥+

1

q

∥∥∥∥∥
n∑
i=1

|Xi|(1−α)rq
∥∥∥∥∥
)
,

The inequality (3.4) is a generalized form of (3.1) and this inequality is not true for
arbitrary operators.
The following example shows that in the inequality (3.4) normality of Xi is neces-
sary,

Example 3.2. Let X1 =

 0 1
0 0

, (non normal) and X2 =

 1 0
0 0

 and let

p = q = 2, α = 1/2 and r = 1. Then ‖X1 + X2‖ =
√

2 as |X1| + |X2| = I,

consequently ‖|X1|+ |X2|‖ = 1, that is a contradiction with
√

2 ≤ 1.
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OSTROWSKI TYPE INEQUALITIES FOR HARMONICALLY

s-CONVEX FUNCTIONS

IMDAT ISCAN

Abstract. The author introduces the concept of harmonically s-convex func-

tions and establishes some Ostrowski type inequalities and a variant of Hermite-

Hadamard inequality for these classes of functions.

1. Introduction

Let f : I→ R, where I ⊆ R is an interval, be a mapping differentiable in I◦ (the
interior of I) and let a, b ∈ I◦ with a < b. If |f ′(x)| ≤M, for all x ∈ [a, b] , then the
following inequality holds

(1.1)

∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤M(b− a)

[
1

4
+

(
x− a+b

2

)2
(b− a)

2

]
for all x ∈ [a, b] . This inequality is known in the literature as the Ostrowski in-
equality (see [13]), which gives an upper bound for the approximation of the inte-

gral average 1
b−a

∫ b

a
f(t)dt by the value f(x) at point x ∈ [a, b]. For some results

which generalize, improve and extend the inequalities(1.1) we refer the reader to
the recent papers (see [2, 12] ).

In [7], Hudzik and Maligranda considered the following class of functions:

Definition 1.1. A function f : I ⊆ R+ → R where R+ = [0,∞), is said to be
s-convex in the second sense if

f (αx+ βy) ≤ αsf(x) + βsf(y)

for all x, y ∈ I and α, β ≥ 0 with α+ β = 1 and s fixed in (0, 1]. They denoted this
by K2

s .

It can be easily seen that for s = 1, s-convexity reduces to ordinary convexity of
functions defined on [0,∞).

2000 Mathematics Subject Classification. 26D15, 26A51.
Key words and phrases. Harmonically s-convex function, Ostrowski type inequality, Hermite-

Hadamard’s inequality, hypergeometric function.
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In [5], Dragomir and Fitzpatrick proved a variant of Hermite-Hadamard inequal-
ity which holds for the s-convex functions.

Theorem 1.1. Suppose that f : R+→R+ is an s-convex function in the second
sense, where s ∈ [0, 1) and let a, b ∈ [0,∞), a < b. If f ∈ L [a, b], then the following
inequalities hold

(1.2) 2s−1f

(
a+ b

2

)
≤ 1

b− a

b∫
a

f(x)dx ≤ f(a) + f(b)

s+ 1
.

the constant k = 1
s+1 is the best possible in the second inequality in (1.2).

The above inequalities are sharp. For some recent results and generalizations
concerning s-convex functions see [3, 4, 5, 6, 8, 10, 11].

In [9], the author gave harmonically convex and established Hermite-Hadamard’s
inequality for harmonically convex functions as follows:

Definition 1.2. Let I ⊂ R\ {0} be a real interval. A function f : I → R is said to
be harmonically convex, if

(1.3) f

(
xy

tx+ (1− t)y

)
≤ tf(y) + (1− t)f(x)

for all x, y ∈ I and t ∈ [0, 1]. If the inequality in (1.3) is reversed, then f is said to
be harmonically concave.

Theorem 1.2. Let f : I ⊂ R\ {0} → R be a harmonically convex function and
a, b ∈ I with a < b. If f ∈ L[a, b] then the following inequalities hold

(1.4) f

(
2ab

a+ b

)
≤ ab

b− a

b∫
a

f(x)

x2
dx ≤ f(a) + f(b)

2
.

The above inequalities are sharp.

The goal of this paper is to introduce the concept of the harmonically s-convex
functions, obtain the similar the inequalities (1.4) for harmonically s-convex func-
tions and establish some new inequalities of Ostrowski type for harmonically s-
convex functions.

2. Main Results

Definition 2.1. Let I ⊂ (0,∞) be an real interval. A function f : I → R is said
to be harmonically s-convex (concave), if

(2.1) f

(
xy

tx+ (1− t)y

)
≤ (≥) tsf(y) + (1− t)sf(x)

for all x, y ∈ I , t ∈ [0, 1] and for some fixed s ∈ (0, 1].

Proposition 2.1. Let I ⊂ (0,∞) be an real interval and f : I → R is a function,
then ;

(1) if f is s-convex and nondecreasing function then f is harmonically s-convex.
(2) if f is harmonically s-convex and nonincreasing function then f is s-convex.
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Proof. Since f : (0,∞)→ R, f(x) = x, harmonically convex function, we have

(2.2)
xy

tx+ (1− t)y
≤ ty + (1− t)x

for all x, y ∈ (0,∞) , t ∈ [0, 1]. The proposition (1) and (2) is easily obtained from
the inequality (2.2). �

Example 2.1. Let s ∈ (0, 1] and f : (0, 1]→ (0, 1] , f(x) = xs. Since f is s-convex
(see [7]) and nondecreasing function, f is harmonically s−convex.

Proposition 2.2. Let s ∈ (0, 1], f : [a, b] ⊂ (0,∞) → R be a function and g :
[a, b]→ [a, b], g (x) = ab

a+b−x . Then f is harmonically s-convex on [a, b] if and only

if f ◦ g is s-convex on [a, b] .

Proof. Since

(2.3) (f ◦ g) (ta+ (1− t)b) = f

(
ab

tb+ (1− t)a

)
for all t ∈ [0, 1]. The proof is obvious from equality (2.3). �

The following result of the Hermite-Hadamard type holds.

Theorem 2.1. Let f : I ⊂ (0,∞) → R be an harmonically s-convex function,
s ∈ (0, 1] and a, b ∈ I with a < b. If f ∈ L[a, b] then the following inequalities hold:

(2.4) 2s−1f

(
2ab

a+ b

)
≤ ab

b− a

b∫
a

f(x)

x2
dx ≤ f(a) + f(b)

s+ 1
.

Proof. Since f : I → R is an harmonically s-convex function, we have, for all
x, y ∈ I (with t = 1

2 in the inequality (2.1) )

f

(
2xy

x+ y

)
≤ f(y) + f(x)

2s

Choosing x = ab
ta+(1−t)b , y = ab

tb+(1−t)a , we get

f

(
2ab

a+ b

)
≤
f
(

ab
tb+(1−t)a

)
+ f

(
ab

ta+(1−t)b

)
2s

Further, integrating for t ∈ [0, 1], we have

(2.5) f

(
2ab

a+ b

)
≤ 1

2s

 1∫
0

f

(
ab

tb+ (1− t)a

)
dt+

1∫
0

f

(
ab

ta+ (1− t)b

)
dt


Since each of the integrals is equal to ab

b−a

b∫
a

f(x)
x2 dx, we obtain the left-hand side of

the inequality (2.4) from (2.5).
The proof of the second inequality follows by using (2.1) with x = a and y = b

and integrating with respect to t over [0, 1]. �

In order to prove our main theorems, we need the following lemma:
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Lemma 2.1. Let f : I ⊂ R\ {0} → R be a differentiable function on I◦ and a, b ∈ I
with a < b. If f ′ ∈ L[a, b] then

f(x)− ab

b− a

b∫
a

f(u)

u2
du

=
ab

b− a

(x− a)
2

1∫
0

t

(ta+ (1− t)x)
2 f
′
(

ax

ta+ (1− t)x

)
dt

− (b− x)
2

1∫
0

t

(tb+ (1− t)x)
2 f
′
(

bx

tb+ (1− t)x

)
dt


Proof. Integrating by part and changing variables of integration yields

ab

b− a

(x− a)
2

1∫
0

t

(ta+ (1− t)x)
2 f
′
(

ax

ta+ (1− t)x

)
dt

− (b− x)
2

1∫
0

t

(tb+ (1− t)x)
2 f
′
(

bx

tb+ (1− t)x

)
dt


=

1

x(b− a)

b (x− a)

1∫
0

tdf

(
ax

ta+ (1− t)x

)
+ a (b− x)

1∫
0

tdf

(
bx

tb+ (1− t)x

)
=

1

x(b− a)

b (x− a)

 tf
(

ax

ta+ (1− t)x

)∣∣∣∣1
0

−
1∫

0

f

(
ax

ta+ (1− t)x

)
dt




+
1

x(b− a)

a (b− x)

 tf
(

bx

tb+ (1− t)x

)∣∣∣∣1
0

−
1∫

0

f

(
bx

tb+ (1− t)x

)
dt




= f(x)− ab

b− a

b∫
a

f(u)

u2
du.

�

Theorem 2.2. Let f : I ⊂ (0,∞)→ R be a differentiable function on I◦, a, b ∈ I◦
with a < b, and f ′ ∈ L[a, b]. If |f ′|q is harmonically s- convex on [a, b] for q ≥ 1,
then for all x ∈ [a, b], we have

(2.6)

∣∣∣∣∣∣f(x)− ab

b− a

b∫
a

f(u)

u2
du

∣∣∣∣∣∣
≤ ab

b− a

{
(x− a)

2 (
λ1(a, x, s, q, q) |f ′ (x)|q + λ2((a, x, s, q, q) |f ′ (a)|q

) 1
q

+ (b− x)
2 (
λ3(b, x, s, q, q) |f ′ (x)|q + λ4(b, x, s, q, q) |f ′ (b)|q

) 1
q

}
,
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where

λ1(a, x, s, ϑ, ρ) =
β (ρ+ s+ 1, 1)

x2ϑ
.2F1

(
2ϑ, ρ+ s+ 1; ρ+ s+ 2; 1− a

x

)
,

λ2(a, x, s, ϑ, ρ) =
β (ρ+ 1, 1)

x2ϑ
.2F1

(
2ϑ, ρ+ 1; ρ+ s+ 2; 1− a

x

)
,

λ3(b, x, s, ϑ, ρ) =
β (1, ρ+ s+ 1)

b2ϑ
.2F1

(
2ϑ, 1; ρ+ s+ 2; 1− x

b

)
,

λ4(b, x, s, ϑ, ρ) =
β (s+ 1, ρ+ 1)

b2ϑ
.2F1

(
2ϑ, s+ 1; ρ+ s+ 2; 1− x

b

)
,

β is Euler Beta function defined by

β (x, y) =
Γ(x)Γ(y)

Γ(x+ y)
=

1∫
0

tx−1 (1− t)y−1 dt, x, y > 0,

and 2F1 is hypergeometric function defined by

2F1 (a, b; c; z) =
1

β (b, c− b)

1∫
0

tb−1 (1− t)c−b−1 (1− zt)−a dt, c > b > 0, |z| < 1 (see [1]).

Proof. From Lemma 2.1, Power mean inequality and the harmonically s-convexity
of |f ′|q on [a, b],we have∣∣∣∣∣∣f(x)− ab

b− a

b∫
a

f(u)

u2
du

∣∣∣∣∣∣
≤ ab

b− a

(x− a)
2

1∫
0

t

(ta+ (1− t)x)
2

∣∣∣∣f ′( ax

ta+ (1− t)x

)∣∣∣∣ dt
+ (b− x)

2

1∫
0

t

(tb+ (1− t)x)
2

∣∣∣∣f ′( bx

tb+ (1− t)x

)∣∣∣∣ dt


≤ ab (x− a)
2

b− a

 1∫
0

1dt

1− 1
q

(2.7)

×

 1∫
0

tq

(ta+ (1− t)x)
2q

[
ts |f ′ (x)|q + (1− t)s |f ′ (a)|q

]
dt


1
q

+
ab (b− x)

2

b− a

 1∫
0

1dt

1− 1
q

×

 1∫
0

tq

(tb+ (1− t)x)
2q

[
ts |f ′ (x)|q + (1− t)s |f ′ (b)|q

]
dt


1
q

,
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where an easy calculation gives
(2.8)

1∫
0

tq+s

(ta+ (1− t)x)
2q dt =

β (q + s+ 1, 1)

x2q
.2F1

(
2q, q + s+ 1; q + s+ 2; 1− a

x

)
,

1∫
0

tq+s

(tb+ (1− t)x)
2q dt =

β (1, q + s+ 1)

b2q
.2F1

(
2q, 1; q + s+ 2; 1− x

b

)
,

1∫
0

tq(1− t)s

(ta+ (1− t)x)
2q dt =

β (q + 1, s+ 1)

x2q
.2F1

(
2q, q + 1; s+ q + 2; 1− a

x

)
,

(2.9)

1∫
0

tq(1− t)s

(tb+ (1− t)x)
2q dt =

β (s+ 1, q + 1)

b2q
.2F1

(
2q, s+ 1; s+ q + 2; 1− x

b

)
.

Hence, If we use (2.8)-(2.9) in (2.7), we obtain the desired result. This completes
the proof. �

Corollary 2.1. In Theorem 2.2, additionally, if |f ′(x)| ≤ M , x ∈ [a, b] , then
inequality ∣∣∣∣∣∣f(x)− ab

b− a

b∫
a

f(u)

u2
du

∣∣∣∣∣∣
≤ ab

b− a
M
{

(x− a)
2

(λ1(a, x, s, q, q) + λ2((a, x, s, q, q))
1
q

+ (b− x)
2

(λ3(b, x, s, q, q) + λ4(b, x, s, q, q))
1
q

}
holds.

Theorem 2.3. Let f : I ⊂ (0,∞)→ R be a differentiable function on I◦, a, b ∈ I◦
with a < b, and f ′ ∈ L[a, b]. If |f ′|q is harmonically s- convex on [a, b] for q ≥ 1,
then for all x ∈ [a, b], we have

(2.10)

∣∣∣∣∣∣f(x)− ab

b− a

b∫
a

f(u)

u2
du

∣∣∣∣∣∣
≤ ab

b− a

(
1

2

)1− 1
q {

(x− a)
2 (
λ1(a, x, s, q, 1) |f ′ (x)|q + λ2(a, x, s, q, 1) |f ′ (a)|q

) 1
q

+ (b− x)
2 (
λ3(b, x, s, q, 1) |f ′ (x)|q + λ4(b, x, s, q, 1) |f ′ (b)|q

) 1
q

}
where λ1, λ2, λ3 and λ4 are defined as in Theorem 2.2.
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Proof. From Lemma 2.1, Power mean inequality and the harmonically s-convexity
of |f ′|q on [a, b],we have∣∣∣∣∣∣f(x)− ab

b− a

b∫
a

f(u)

u2
du

∣∣∣∣∣∣(2.11)

≤ ab (x− a)
2

b− a

 1∫
0

tdt

1− 1
q

×

 1∫
0

t

(ta+ (1− t)x)
2q

[
ts |f ′ (x)|q + (1− t)s |f ′ (a)|q

]
dt


1
q

+
ab (b− x)

2

b− a

 1∫
0

tdt

1− 1
q

×

 1∫
0

t

(tb+ (1− t)x)
2q

[
ts |f ′ (x)|q + (1− t)s |f ′ (b)|q

]
dt


1
q

≤ ab

b− a

(
1

2

)1− 1
q {

(x− a)
2 (
λ1(a, x, s, q, 1) |f ′ (x)|q + λ2(a, x, s, q, 1) |f ′ (a)|q

) 1
q

+ (b− x)
2 (
λ3(b, x, s, q, 1) |f ′ (x)|q + λ4(b, x, s, q, 1) |f ′ (b)|q

) 1
q

}
This completes the proof. �

Corollary 2.2. In Theorem 2.3, additionally, if |f ′(x)| ≤ M , x ∈ [a, b] , then
inequality ∣∣∣∣∣∣f(x)− ab

b− a

b∫
a

f(u)

u2
du

∣∣∣∣∣∣
≤ ab

b− a
M

(
1

2

)1− 1
q {

(x− a)
2

(λ1(a, x, s, q, 1) + λ2((a, x, s, q, 1))
1
q

+ (b− x)
2

(λ3(b, x, s, q, 1) + λ4(b, x, s, q, 1))
1
q

}
holds.

Theorem 2.4. Let f : I ⊂ (0,∞)→ R be a differentiable function on I◦, a, b ∈ I◦
with a < b, and f ′ ∈ L[a, b]. If |f ′|q is harmonically s- convex on [a, b] for q ≥ 1,
then for all x ∈ [a, b], we have

(2.12)

∣∣∣∣∣∣f(x)− ab

b− a

b∫
a

f(u)

u2
du

∣∣∣∣∣∣
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≤ ab

b− a

{
λ
1− 1

q

5 (a, x) (x− a)
2 (
λ1(a, x, s, 1, 1) |f ′ (x)|q + λ2(a, x, s, 1, 1) |f ′ (a)|q

) 1
q

+ λ
1− 1

q

5 (b, x) (b− x)
2 (
λ3(b, x, s, 1, 1) |f ′ (x)|q + λ4(b, x, s, 1, 1) |f ′ (b)|q

) 1
q

}
where

λ5(θ, x) =
1

x− θ

{
1

θ
− lnx− ln θ

x− θ

}
,

and λ1, λ2, λ3 and λ4 are defined as in Theorem 2.2.

Proof. From Lemma 2.1, Power mean inequality and the harmonically s-convexity
of |f ′|q on [a, b],we have∣∣∣∣∣∣f(x)− ab

b− a

b∫
a

f(u)

u2
du

∣∣∣∣∣∣(2.13)

≤ ab (x− a)
2

b− a

 1∫
0

t

(ta+ (1− t)x)
2 dt

1− 1
q

×

 1∫
0

t

(ta+ (1− t)x)
2

[
ts |f ′ (x)|q + (1− t)s |f ′ (a)|q

]
dt


1
q

+
ab (b− x)

2

b− a

 1∫
0

t

(tb+ (1− t)x)
2 dt

1− 1
q

×

 1∫
0

t

(tb+ (1− t)x)
2

[
ts |f ′ (x)|q + (1− t)s |f ′ (b)|q

]
dt


1
q

.

It is easily check that

(2.14)

1∫
0

t

(ta+ (1− t)x)
2 dt =

1

x− a

{
1

a
− lnx− ln a

x− a

}
,

1∫
0

t

(tb+ (1− t)x)
2 dt =

1

b− x

{
ln b− lnx

b− x
− 1

b

}
,

Hence, If we use (2.8)-(2.9) for q = 1 and (2.14) in (2.13), we obtain the desired
result. This completes the proof. �
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Corollary 2.3. In Theorem 2.4, additionally, if |f ′(x)| ≤ M , x ∈ [a, b] , then
inequality ∣∣∣∣∣∣f(x)− ab

b− a

b∫
a

f(u)

u2
du

∣∣∣∣∣∣
≤ ab

b− a
M

{
λ
1− 1

q

5 (a, x) (x− a)
2

(λ1(a, x, s, 1, 1) + λ2(a, x, s, 1, 1))
1
q

+ λ
1− 1

q

5 (b, x) (b− x)
2

(λ3(b, x, s, 1, 1) + λ4(b, x, s, 1, 1))
1
q

}
holds.

Theorem 2.5. Let f : I ⊂ (0,∞)→ R be a differentiable function on I◦, a, b ∈ I◦
with a < b, and f ′ ∈ L[a, b]. If |f ′|q is harmonically s-convex on [a, b] for q >
1, 1

p + 1
q = 1, then

(2.15)

∣∣∣∣∣∣f(x)− ab

b− a

b∫
a

f(u)

u2
du

∣∣∣∣∣∣
≤ ab

b− a

(
1

p+ 1

) 1
p {

(x− a)
2 (
λ1(a, x, s, q, 0) |f ′ (x)|q + λ2(a, x, s, q, 0) |f ′ (a)|q

) 1
q

+ (b− x)
2 (
λ3(b, x, s, q, 0) |f ′ (x)|q + λ4(b, x, s, q, 0) |f ′ (b)|q

) 1
q

}
.

where λ1, λ2, λ3 and λ4 are defined as in Theorem 2.2.

Proof. From Lemma 2.1, Hölder’s inequality and the harmonically convexity of |f ′|q
on [a, b],we have∣∣∣∣∣∣f(x)− ab

b− a

b∫
a

f(u)

u2
du

∣∣∣∣∣∣
≤ ab (x− a)

2

b− a

 1∫
0

tpdt


1
p

×

 1∫
0

1

(ta+ (1− t)x)
2q

[
ts |f ′ (x)|q + (1− t)s |f ′ (a)|q

]
dt


1
q

+
ab (b− x)

2

b− a

 1∫
0

tpdt


1
p

×

 1∫
0

1

(tb+ (1− t)x)
2q

[
ts |f ′ (x)|q + (1− t)s |f ′ (b)|q

]
dt


1
q
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≤ ab

b− a

(
1

p+ 1

) 1
p {

(x− a)
2 (
λ1(a, x, s, q, 0) |f ′ (x)|q + λ2(a, x, s, q, 0) |f ′ (a)|q

) 1
q

+ (b− x)
2 (
λ3(b, x, s, q, 0) |f ′ (x)|q + λ4(b, x, s, q, 0) |f ′ (b)|q

) 1
q

}
.

This completes the proof. �

Corollary 2.4. In Theorem 2.5, additionally, if |f ′(x)| ≤ M , x ∈ [a, b] , then
inequality ∣∣∣∣∣∣f(x)− ab

b− a

b∫
a

f(u)

u2
du

∣∣∣∣∣∣
≤ ab

b− a
M

(
1

p+ 1

) 1
p {

(x− a)
2

(λ1(a, x, s, q, 0) + λ2(a, x, s, q, 0))
1
q

+ (b− x)
2

(λ3(b, x, s, q, 0) + λ4(b, x, s, q, 0))
1
q

}
holds.

Theorem 2.6. Let f : I ⊂ (0,∞)→ R be a differentiable function on I◦, a, b ∈ I◦
with a < b, and f ′ ∈ L[a, b]. If |f ′|q is harmonically s-convex on [a, b] for q >
1, 1

p + 1
q = 1, then ∣∣∣∣∣∣f(x)− ab

b− a

b∫
a

f(u)

u2
du

∣∣∣∣∣∣
≤ ab

b− a

{
(λ1(a, x, 0, p, p))

1
p (x− a)

2

(
|f ′ (x)|q + |f ′ (a)|q

s+ 1

) 1
q

+ (λ3(b, x, 0, p, p))
1
p (b− x)

2

(
|f ′ (x)|q + |f ′ (b)|q

s+ 1

) 1
q

}
.

where λ1, λ2, λ3 and λ4 are defined as in Theorem 2.2.

Proof. From Lemma 2.1, Hölder’s inequality and the harmonically convexity of |f ′|q
on [a, b],we have ∣∣∣∣∣∣f(x)− ab

b− a

b∫
a

f(u)

u2
du

∣∣∣∣∣∣
≤ ab (x− a)

2

b− a

 1∫
0

tp

(ta+ (1− t)x)
2p dt


1
p

×

 1∫
0

[
ts |f ′ (x)|q + (1− t)s |f ′ (a)|q

]
dt


1
q
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+
ab (b− x)

2

b− a

 1∫
0

tp

(tb+ (1− t)x)
2p dt


1
p

×

 1∫
0

[
ts |f ′ (x)|q + (1− t)s |f ′ (b)|q

]
dt


1
q

≤ ab

b− a

{
(λ1(a, x, 0, p, p))

1
p (x− a)

2

(
|f ′ (x)|q + |f ′ (a)|q

s+ 1

) 1
q

+ (λ3(b, x, 0, p, p))
1
p (b− x)

2

(
|f ′ (x)|q + |f ′ (b)|q

s+ 1

) 1
q

}
.

This completes the proof. �

Corollary 2.5. In Theorem 2.6, additionally, if |f ′(x)| ≤ M , x ∈ [a, b] , then
inequality ∣∣∣∣∣∣f(x)− ab

b− a

b∫
a

f(u)

u2
du

∣∣∣∣∣∣
≤ ab

b− a
M

(
2

s+ 1

) 1
q {

(λ1(a, x, 0, p, p))
1
p (x− a)

2

+ (λ3(b, x, 0, p, p))
1
p (b− x)

2
}

holds.
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for s-convex functions, Appl. Math. Comput. 193, no.1 (2007), 26–35.



74 IMDAT ISCAN

[12] Z. Liu, A note on Ostrowski type inequalities related to some s-convex functions in

the second sense, Bull. Korean Math. Soc. 49 (4) (2012), 775-785. Available online at

http://dx.doi.org/10.4134/BKMS.2012.49.4.775.
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ON THE DETERMINATION OF A DEVELOPABLE SPHERICAL

ORTHOTOMIC TIMELIKE RULED SURFACE

Ö. GÖKMEN YILDIZ, SIDDIKA Ö. KARAKUŞ, AND H. HİLMİ HACISALİHOĞLU

Abstract. In this paper, a method for determination of developable spherical

orthotomic ruled surfaces generated by a spacelike curve on dual hyperbolic
unit sphere is given by using dual vector calculus in R3

1. We show that dual

vectorial expression of a developable spherical orthotomic timelike ruled sur-

face can be obtained from coordinates and the first derivatives of the base
curve. The paper concludes with an example related to this method.

1. Introduction

In geometry, a surface is a called ruled surface if it is swept out by a moving
line. The theory of ruled surfaces is a classical subject in differential geometry.
Ruled surface, espicially developable ruled surface have been widely investigated in
mathematics, engineering and architecture [13]. In today’s manufacturing indus-
tries, the developable ruled surface desing and its application are extensively used
in CAD, CAM and CNC. Also it has been popular in architecture such as saddle
roofs, cooling towers, gridshell etc.

Dual numbers were first introduced by W.K. Clifford (1849–79) as a tool for his
geometrical investigations. After him E. Study has done fundamental research with
dual numbers and dual vectors on the geometry of lines and kinematics [2] which is
so-called E. Study mapping. This mapping constitutes a one to one correpondence
between the dual points of dual unit sphere S2 and the directed lines of space of
lines R3 [15]. If we consider the Minkowski 3-space R3

1 instead of R3 the E. Study
mapping can be stated as follows. The dual timelike and spacelike unit vectors
of dual hyperbolic and Lorentzian unit spheres H2

0 and S2
1 at the dual Lorentzian

space D3
1 are in a one to one correspondence with the directed timelike and spacelike

lines of the space of Lorentzian lines R3
1, respectively. Then a differentiable curve

on H2
0 corresponds to a timelike ruled surface in R3

1. Similarly the timelike (resp.
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spacelike) curve on S2
1 corresponds to any spacelike (resp. timelike) ruled surface

at R3[19].

Let α be a regular curve and
−→
T be its tangent, and let u be a source. An

orthotomic of α with respect to the source (u) is defined as a locus of reflection of u

about tangents
−→
T [7]. Bruce and Giblin applied the unfolding theory to the study

of the evolutes and orthotomics of plane and space curves [3], [4] and [5]. Georgiou,
Hasanis and Koutroufiotis investigated the orthotomics in the Euclidean (n + 1)-
space [6]. Alamo and Criado studied the antiorthotomics in the Euclidean (n+1)-
space [1]. Xiong defined the spherical orthotomic and the spherical antiorthotomic
[18]. Yıldız and Hacısalihoğlu examined the Study of spherical orthotomic of a
circle [9]. Also, orthotomic concept can be apply to surface. For a given surface S
and a fixed point (source) P , orthotomic surface of S relative to P is defined as a
locus of reflection of P about all tangent planes of S [8].

Köse introduced a new method for determination of developable ruled surfaces
[11]. Ekici and Özüsağlam [12] study this method in R3

1. And also, Yıldız et al.
applied this method in R3 by using orthotomic concept [10]. For all these the follow-
ing question is interesting: Can we obtain a remarkable method for determination
of developable spherical orthotomic timelike ruled surface in R3

1. The answer is
positive. In this article, we construct a method for determination of developable
orthotomic timelike ruled surfaces by using dual vector calculus.

2. Basic concept

A dual number has the form ã = a + εa∗ where a and a∗ are real numbers and
ε = (0, 1) stands for the dual unit which ε2 = 0.

The set of all dual numbers is denoted by D which is a commutative ring over
R.

D3 is the set of all triples of dual numbers. D3 can be written as

D3 =
{−→
ã = (ã1, ã2, ã3) |ãi ∈ D, 1 ≤ i ≤ 3

}
.

A dual vector has the form
−→
ã = −→a + ε−→a ∗, where −→a and −→a ∗ are real vectors in

R3. The set D3 becomes a modul under addition and scalar multiplication on the
set D [17].

For any dual Lorentzian vector
−→
ã = −→a +ε−→a ∗ and

−→
b̃ =

−→
b +ε

−→
b ∗, inner product

is defined by 〈
−→
ã ,
−→
b̃

〉
=
〈−→a ,−→b 〉+ ε

(〈−→a ,−→b ∗〉+
〈−→a ∗,−→b 〉)

where
〈−→a ,−→b 〉 is the Lorentzian inner product with signature (+,+,−) of the

vectors −→a and
−→
b in the Minkowski 3-Space R3

1.

A dual vector
−→
ã is said to be time-like if 〈−→a ,−→a 〉 < 0, space-like if 〈−→a ,−→a 〉 > 0

and light-like (or null) if 〈−→a ,−→a 〉 = 0 and −→a 6= 0. The set of all dual Lorentzian
vector is called dual Lorentzian space and is denoted by

D3
1 =

{−→
ã = −→a + ε−→a ∗

∣∣−→a ,−→a ∗ ∈ R3
1

}
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For any vector
−→
ã = −→a + ε−→a ∗ and

−→
b̃ =

−→
b + ε

−→
b ∗, vector product is defined by

−→
ã ∧
−→
b̃ = −→a ∧

−→
b + ε

(−→a ∧ −→b ∗ +−→a ∗ ∧
−→
b
)
,

where −→a ∧
−→
b is the Lorentzian vector product.

The norm
∥∥∥−→ã ∥∥∥ of

−→
ã = −→a + ε−→a ∗ is defined as∥∥∥−→ã ∥∥∥ = ‖−→a ‖+ ε

〈−→a ,−→a ∗〉
‖−→a ‖

, −→a 6= 0.

The dual vector
−→
ã with norm 1 is called a dual unit vector.

The dual Lorentzian unit sphere and the dual hyperbolic unit sphere are

S2
1 =

{−→
x̃ = x+ εx∗ ∈ D3

1 |< x̃, x̃ >= 1;x, x∗ ∈ R3
1

}
and

H2
0 =

{−→
x̃ = x+ εx∗ ∈ D3

1 |< x̃, x̃ >= −1;x, x∗ ∈ R3
1

}
respectively. The dual spacelike unit vectors of dual Lorentzian sphere S2

1 represent
oriented spacelike lines is R3

1. The dual timelike unit vectors of dual hyperbolic
unit sphere H2

0 represent oriented timelike lines in R3
1.

For R3
1, the Study Mapping is defined as follows: “There are one-to-one corre-

spondence between the directed timelike (resp. spacelike) lines in three dimensional
Minkowski space and the dual point on the surface of a dual hyperbolic (resp. dual
Lorentzian) unit sphere (resp.) in three dimensional dual Lorentzian space ” [16].

Let S2
1 (resp. H2

0), O and
{
O;
−→
ẽ 1,
−→
ẽ 2,
−→
ẽ 3

}
denote the dual hyperbolic (resp.

Lorentzian) unit sphere , the center of S2
1 (resp. H2

0) and dual orthonormal system
at O, respectively, where

−→
ẽ i = −→e i + ε−→e ∗i ; 1 ≤ i ≤ 3.

Let S3 be the group of all the permutations of the set {1, 2, 3} , then it can be
written as

−→
ẽ σ(1) = sgn(σ)

−→
ẽ σ(2) ∧

−→
ẽ σ(3), sgn(σ) = ±1,

σ =

(
1 2 3

σ(1) σ(2) σ(3)

)
 .

In the case that the orthonormal system

{O;−→e 1,
−→e 2,
−→e 3}

is the system of R3
1.

By using the Study Mapping, we can conclude that there exists a one to one
correspondence between the dual orthonormal system and the real orthonormal
system.

Now, define of spherical normal, spherical tangent and spherical orthotomic of a

spherical curve α. Let
{−→
T ,
−→
N,
−→
B
}

be the Frenet frame of α. The spherical normal
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of α is the great circle, passing through α(s), that is normal to α at α(s) and given
by {

〈−→x ,−→x 〉 = 1,〈−→x ,−→T 〉 = 0,

where x is an arbitrary point of the spherical normal. The spherical tangent of α
is the great circle which tangent to α at α(s) and given by

(2.1)

{
〈−→y ,−→y 〉 = 1,〈−→y , (−→α ∧ −→T )

〉
= 0,

where y is an arbitrary point of the spherical tangent.
Let u be a source on a sphere. Then, Xiong defined the spherical orthotomic of

α relative to u as to be the set of reflections of u about the planes, lying on the
above great circles (2.1) for all s ∈ I and given by

(2.2)
−→
û = 2 〈(−→α −−→u ) ,−→v 〉−→v +−→u

where −→v =
−→
B−

〈−→
B,−→α

〉−→α∥∥∥−→B−〈−→B,−→α〉−→α∥∥∥ [18].

3. The dual vector formulation

Let L be a line and x denotes the direction and p be the position vector of any
point on L. Dual vector representation allows us the Plucker vectors x and p ∧ x.
Thus, dual Lorentzian vector x̃(t) can be written as

x̃(t) = x+ ε(p ∧ x) = x+ εx∗,

where ε is the dual unit and ε2 = 0.
By using the dual Lorentzian vector function x̃(t) = x(t) + ε(p(t) ∧ x(t)) =

x(t) + εx∗(t), a ruled surface can be given as

m(u, t) = p(t) + ux(t).

It is known that the dual unit Lorentzian vector x̃(t) is a differentiable curve on
the dual hyperbolic unit sphere and also having unit magnitude [14].

〈x̃, x̃〉 = 〈x+ εp ∧ x, x+ εp ∧ x〉
= 〈x, x〉+ 〈2εx, p ∧ x〉+ ε2 〈p ∧ x, p ∧ x〉
= 〈x, x〉
= −1.

The dual arc-length of the dual Lorentzian curve x̃(t) is defined as

(3.1) ŝ (t) =

t∫
0

∥∥∥∥dx̂dt
∥∥∥∥dt.

The integrant of (3.1) is the dual speed, δ̃ of x̃(t) and is

δ̃ =

∥∥∥∥dx̂dt
∥∥∥∥ =

∥∥∥∥dxdt
∥∥∥∥
1 + ε

〈
dx
dt ,

dp
dt ∧ x

〉
∥∥dx
dt

∥∥2

 =

∥∥∥∥dxdt
∥∥∥∥ (1 + ε∆).
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The curvature function

∆ =

〈
dx
dt ,

dp
dt ∧ x

〉
∥∥dx
dt

∥∥2 =

〈
dx
dt ,

dx∗

dt

〉
∥∥dx
dt

∥∥2

is the well-known distribution parameter (drall) of the ruled surface.

4. The Determination of Timelike Developable Spherical Orthotomic
Ruled Surface

Let x̃(t) be a point on hyperbolic unit sphere, centered at the origin. The dual
coordinates of x̃(t) = xi + εx∗i can be expressed as

x̃1 = x1 + εx∗1 = sinh ϕ̃ cos ψ̃,

x̃2 = x2 + εx∗2 = sinh ϕ̃ sin ψ̃,(4.1)

x̃3 = x3 + εx∗3 = cosh ϕ̃.

where ϕ̃ = ϕ + εϕ∗and ψ̃ = ψ + εψ∗ are dual hyperbolic angle and dual angle
respectively. Since ε2 = ε3 = ... = 0 according to the Taylor series expansion from
(4.1), we obtain the real parts of x̃(t) as

x1 = sinhϕ cosψ,

x2 = sinhϕ sinψ,

x3 = coshϕ,

and the dual parts of x̃(t) as

x∗1 = ϕ∗ coshϕ cosψ − ψ∗ sinhϕ sinψ,

x∗2 = ϕ∗ coshϕ sinψ + ψ∗ sinhϕ cosψ,

x∗3 = ϕ∗ sinhϕ.

Hence, the dual Lorentzian curve x̃(t) = x(t) + εx∗(t) may be represented by

x̃(t) = (sinhϕ(t) cosψ(t), sinhϕ(t) sinψ(t), coshϕ(t))

+ε

 ϕ∗(t) coshϕ(t) cosψ(t)− ψ∗(t) sinhϕ(t) sinψ(t),
ϕ∗(t) coshϕ(t) sinψ(t) + ψ∗(t) sinhϕ(t) cosψ(t),

ϕ∗(t) sinhϕ(t)

 .

Let σ̃(t) = σ(t) + εσ∗(t) be spherical orthotomic of the great circle, which lies

on the
−→
ẽ 2
−→
ẽ 3 plane, relative to the dual curve x̃(t). By (2.2), we get σ̃(t) =

(−x̃1, x̃2, x̃3) where x̃i’s are the coordinates of x̃(t) for i = 1, 2, 3. By considering
the spherical orthotomic dual curve, we have;

σ̃(t) = (− sinhϕ(t) cosψ(t), sinhϕ(t) sinψ(t), coshϕ(t))

+ε

 −ϕ∗(t) coshϕ(t) cosψ(t) + ψ∗(t) sinhϕ(t) sinψ(t),
ϕ∗(t) coshϕ(t) sinψ(t) + ψ∗(t) sinhϕ(t) cosψ(t),

ϕ∗(t) sinhϕ(t)

(4.2)

on the hyperbolic unit sphere corresponding to a timelike developable spherical
orthotomic ruled surface m(t, u) = p(t) + uσ(t). Because of two timelike vectors
are never ortogonal, then a base curve, p(t), must be a spacelike.
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Since σ∗ = p ∧ σ, we have the following system of linear equations in variables
p1, p2, p3;

−ϕ∗ coshϕ cosψ + ψ∗ sinhϕ sinψ = p2 coshϕ− p3 sinhϕ sinψ

ϕ∗ coshϕ sinψ + ψ∗ sinhϕ cosψ = −p1 coshϕ− p3 sinhϕ cosψ

ϕ∗ sinhϕ = −p1 sinhϕ sinψ − p2 sinhϕ cosψ.

where pi’s are the coordinates of p(t) for i = 1, 2, 3.
The matrix of coefficients of unknowns p1, p2 and p3 is 0 coshϕ − sinhϕ sinψ

− coshϕ 0 − sinhϕ cosψ
− sinhϕ sinψ − sinhϕ cosψ 0


and therefore its rank is 2 .

p1 = − (p3 + ψ∗) cosψ tanhϕ− ϕ∗ sinψ,

p2 = (p3 + ψ∗) sinψ tanhϕ− ϕ∗ cosψ,(4.3)

p3 = p3.

Since p3(t) can be chosen arbitrarily, then we may take p3(t) = −ψ∗(t). In this
case, (4.3) reduces to

p1 = −ϕ∗ sinψ,

p2 = −ϕ∗ cosψ,(4.4)

p3 = −ψ∗.

The distribution parameter of the timelike spherical orthotomic ruled surface
given by (4.2) is obtained as follows

∆ =
< dx

dt ,
dx∗

dt >

‖ dxdt ‖2

=

dψ
dt

dψ∗

dt sinh2 ϕ(t) + ϕ∗
(
dψ
dt

)2

coshϕ(t) sinhϕ(t) + dϕ∗

dt
dϕ
dt(

dψ
dt

)2

sinh2 ϕ(t) +
(
dϕ
dt

)2 .(4.5)

If this timelike spherical orthotomic ruled surface is a developable, then ∆ = 0
and by (4.5) becomes

dϕ∗

dt

d

dt
(cothϕ(t))− ϕ∗

(
dψ

dt

)2

cothϕ(t)− dψ

dt

dψ∗

dt
= 0.

Setting

y(t) = cothϕ(t), A(t) = −
ϕ∗
(
dψ
dt

)2

dϕ∗

dt

, B(t) = −
dψ
dt

dψ∗

dt
dϕ∗

dt

we are lead to a linear differential equation of first degree

(4.6)
dy

dt
+A(t)y +B(t) = 0.
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Let p(t) be a curve. Then we can find a developable spherical orthotomic ruled
surface such that its base curve is the curve p(t) and by (4.4), we have

tanψ =
p1

p2
,

ϕ∗ =
√
p2

1 + p2
2,

ψ∗ = −p3.

Now only ϕ(t) remains to be determined. The solution of the linear differential
(4.6) gives cothϕ(t). This solution includes an integral constant therefore we have
infinitely many timelike developable spherical orthotomic ruled surface such that
its base curve is p(t).

Moreover, it is to be noted that ϕ∗(t) has two values; by using the minus sign we
obtain the reciprocal of the timelike developable spherical orthotomic ruled surface
x̃(t) obtained by using the plus sign for a given integral constant.

Example 4.1. Consider p (t) =
(
t, t, 2t3 + 1

)
. If − 1

4√18
< t < 1

4√18
, then the ruled

surface is timelike. Then we have,

tanψ = 1, ϕ∗ =
√

2t,
dψ∗

dt
= −6t2,

dψ

dt
= 0 and

dϕ∗

dt
=
√

2.

Substituting these values into (4.6) we obtain the linear differential equation of
first degree

dy

dt
= 0.

The solution of this differential equation gives

cothϕ(t) = c.

Hence, the family of the developable timelike ruled surface is given by

m(t, u) = p(t) + uσ(t)

where σ (t) =
(
p2
ϕ∗ sinhϕ,− p1

ϕ∗ sinhϕ, coshϕ
)
.

The graph of the developable timelike ruled surface given by this equation for
c = 2 in domain

D :

{
− 1

4√18
< t < 1

4√18

−1 < u < 1
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Figure 1. Spherical Orthotomic Timelike Ruled Surface

is given in Fig. 1.
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[19] Y.Yaylı, A. Çalışkan, H.H. Uğurlu, The E. Study Maps of Circles on Dual Hyperbolic and
Lorentzian Unit Spheres H2

0 and S21, Mathematical Proceedings of the Royal Irish Academy,

102A(2002), 1, 37-47.
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COSINE ENTROPY AND SIMILARITY MEASURES FOR FUZZY

SETS

RAJKUMAR VERMA

Abstract. In the present paper, based on the cosine function, a new fuzzy
entropy measure is defined. Some interesting properties of this measure are

analyzed. Furthermore, a new fuzzy similarity measure has been proposed

with its elegant properties. A relation between the proposed fuzzy entropy
and fuzzy similarity measure has also been proved.

1. Introduction

The notion of fuzzy sets was introduced by Zadeh [19] in order to provide a scheme
for handling non-statistical vague concepts. Since then, the theory of fuzzy sets has
become a vigorous area of research in different disciplines that include engineering,
medical science, social science, artificial intelligence, signal processing, multi-agent
systems, robotics, computer networks, and expert systems. Fuzzy entropy and
similarity measures are as two important topics in fuzzy set theory, which have
been investigated widely by many researchers from different points of view.

The first attempt to quantify fuzziness of a fuzzy set was made by Zadeh [20] in
1968, he proposed a probabilistic frame work and defined the entropy of a fuzzy set
as weighted Shannon [10] entropy. In 1972, De Luca and Termini [3] first provided
an axiomatic framework for the entropy of fuzzy sets based on the concept of Shan-
non’s entropy. Kaufmann [5] introduced a fuzzy entropy measure based on a metric
distance between a fuzzy set and its nearest crisp set. Yager [15] defined entropy of
a fuzzy set in terms of a lack of distinction between the fuzzy set and its negation, a
kind of ‘norm’. Pal and Pal [7] proposed fuzzy entropy based on exponential func-
tion to measure the fuzziness called exponential fuzzy entropy. Bhandari and Pal
[1] proposed generalized order-α fuzzy entropy to measure the fuzziness. In 2008,
Parkash et al. [9] defined two new fuzzy entropy measures based on trigonometric
functions and proved entropy maximization principle corresponding to these fuzzy
entropies. Besides these, there exists quite a body of research work on applications
of these theoretical studies [12, 16, 17 and 18].

2000 Mathematics Subject Classification. 94 A17 .
Key words and phrases. entropy, fuzzy sets, fuzzy entropy, fuzzy similarity.
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Similarity measures between two fuzzy sets, in particular, have found widespread
applications in diverse fields like decision making, pattern recognition, machine
learning, market prediction etc.

Talking of ‘similarity measures’, first, Wang [13] proposed a measure of similarity
between two fuzzy sets. Salton and McGill [11] introduced a cosine similarity
measure between fuzzy sets, which in essence is a kind of ‘coefficient or a quotient’
and applied it to information retrieval of words. Zwick et al. [21] used geometric
distance and Huasdorff metrics for presenting similarity measures among fuzzy sets.
Pappis and Karacapilidis [8] proposed three similarity measures for fuzzy sets based
on union and intersection operations, the maximum difference, and the difference
and sum of membership grades. Chen et al. [2] extended the work of Pappis and
Karacapilidis [8], and defined some similarity measures on fuzzy sets based on the
geometric model, the set theoretic approach, and matching function. Wang [14]
proposed two similarity measures between fuzzy sets and between the elements of
sets. Liu [6] as well as Fan and Xie [4] provided an axiomatic definition of similarity
measure for fuzzy sets.

In the present paper two new measures called ‘cosine fuzzy entropy ’ and ‘cosine
fuzzy similarity ’ are proposed. This paper is organized as follows:

In Section 2, some basic definitions related to probability theory and fuzzy sets
are briefly discussed. In Section 3 cosine fuzzy entropy measure is proposed and
there we verify its axiomatic requirement [3]. Some mathematical properties of the
proposed entropy are also proved there. In Section 4 the cosine fuzzy similarity
measure is introduced along with some of its properties. A relation between cosine
fuzzy entropy and cosine fuzzy similarity is also established here.

2. Preliminaries

We start with probabilistic background. Let us denote the set of n-complete prob-
ability distributions by

(2.1) Γn =

{
P = (p1, p2, ..., pn) : pi ≥ 0,

n∑
i=1

pi = 1

}
, n ≥ 2.

For a probability distribution P = (p1, p2, ..., pn) ∈ Γn, Shannon’s entropy [14], is
defined as

(2.2) H (P ) = −
n∑
i=1

p (xi) log2 p (xi) .

Definition 2.1. Fuzzy Set [19]: A fuzzy set A in a finite universe of discourse
X = {x1, x2, ..., xn} is given by

(2.3) A = { 〈x, µA (x)〉 | x ∈ X} ,
where µA (x) : X → [0, 1] is the membership function of A. The number µA (x)
describes the degree of membership of x ∈ X in A.

Definition 2.2. A fuzzy set A∗ is called a sharpened version of fuzzy set A if the
following conditions are satisfied:

µA∗ (xi) ≤ µA (xi) if µA (x) ≤ 0.5 ∀ i,
µA∗ (xi) ≥ µA (xi) if µA (x) ≥ 0.5 ∀ i.
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Note: Throughout this paper, we shall denote the set of all fuzzy sets defined in
X byFS (X).

Definition 2.3. Set Operations on FSs [19]: Let A,B ∈ FS (X) be given by

A = {〈x, µA (x)〉 |x ∈ X} ,

B = {〈x, µB (x)〉 |x ∈ X} ,
then usually set operations are defined as follows:

[(i)]
(1) A ⊆ B iff µA (x) ≤ µB (x) ∀ x ∈ X;
(2) A = B iff A ⊆ B and B ⊆ A;
(3) AC = { 〈x, 1− µA (x)〉 | x ∈ X};
(4) A ∩B = {〈x, µA (x) ∧ µB (x)〉 |x ∈ X};
(5) A ∪B = {〈x, µA (x) ∨ µB (x)〉 |x ∈ X};

where ∨ , ∧ stand for max. and min. operators, respectively.

In fuzzy set theory, a measure of fuzziness is the ‘fuzzy entropy’ which expresses
the amount of aggregated ambiguity of a fuzzy set A. The first attempt to quantify
the fuzziness was made in 1968 by Zadeh [20], who defined the entropy of a fuzzy
set A with respect to (X,P ) as

(2.4) H (A,P ) = −
n∑
i=1

µA (xi) p (xi) log2 p (xi) .

De Luca and Termini [3] defined fuzzy entropy for a fuzzy set A corresponding (2.2)
as
(2.5)

HDT (A) = − 1

n

n∑
i=1

[µA (xi) log2 (µA (xi)) + (1− µA (xi)) log2 (1− µA (xi))] .

Based on exponential function, Pal and Pal [7] introduced exponential fuzzy entropy
for fuzzy set A as

(2.6) eH (A) =
1

n (
√
e− 1)

n∑
i=1

[
µA (xi) e

1−µA(xi) + (1− µA (xi)) e
µA(xi) − 1

]
.

Later, Bhandari and Pal [1]made a survey on entropy measures on fuzzy sets and
introduced the following parametric fuzzy entropy for fuzzy set A as

(2.7) Hα (A) =
1

n (1− α)

n∑
i=1

log [µαA (xi) + (1− µA (xi))
α

] .

Parkash et al. [9] defined two fuzzy entropy measures for fuzzy set A based on
trigonometric functions (sine and cosine) given by
(2.8)

HOPR1 (A) =
1

n

n∑
i=1

[{
sin

πµA (xi)

2
+ sin

π (1− µA (xi))

2
− 1

}
× 1(√

2− 1
)] ,

(2.9)

HOPR2 (A) =
1

n

n∑
i=1

[{
cos

πµA (xi)

2
+ cos

π (1− µA (xi))

2
− 1

}
× 1(√

2− 1
)] .
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Definition 2.4. Similarity Measure of FSs [6]: A real function S : FS (X)×
FS (X)→ [0, 1] is called the similarity measure of the fuzzy sets, if S satisfies the
following properties:

[S1.]
(1) 0 ≤ S (A,B) ≤ 1 ∀ A,B ∈ FS (X).
(2) S(A,B) = S (B,A) ∀ A,B ∈ FS (X).
(3) S (A,B) = 1 if and only if A = B, i.e. µA (xi) = µB (xi) for all i =

1, 2, ..., n.
(4) For allA,B,C ∈ FS (X), if A ⊆ B ⊆ C, then S(A,C) ≤ S (A,B),

S(A,C) ≤ S (B,C).

In the next section, we introduce a new entropy measure on fuzzy sets called ‘cosine
fuzzy entropy ’ and verify its axiomatic validity.

3. Cosine Fuzzy Entropy

We submit following formal definition of a new measure of ‘fuzzy entropy’:

Definition 3.1. Cosine Fuzzy Entropy: Let A be a fuzzy set defined on X =
{x1, x2, ..., xn} having the membership values µA (xi) , i = 1, 2, ..., n. We define
the cosine fuzzy entropy for fuzzy set A, Hcos (A) as:

(3.1) Hcos (A) =
1

n

n∑
i=1

[
cos

(
(2µA (xi)− 1)

2
π

)]
.

As a first step, in the next theorem, we establish properties that according to
De Luca and Termini [3] justify the above proposed measure to be a valid ‘fuzzy
entropy’.

Theorem 3.1. The Hcos (A) measure in (3.1) of the cosine fuzzy entropy satisfies
the following propositions:

[P1.](Sharpness): H (A) is minimum if and only if A is a crisp set, i.e.
µA (xi) = 0 or 1 ∀ xi ∈ X. (Maximality): H (A) is maximum if and
only if A is a most fuzzy set, i.e. µA (xi) = 0.5 ∀ xi ∈ X. (Resolution):
H (A∗) ≤ H (A), where A∗ is a sharpened version of the set A. (Symmetry):
H (A) = H

(
AC
)
, where AC is the complement set of the fuzzy set A.

(1)(2)(3)(4) Proof. Let ∆A =
(

(2µA(xi)−1)
2 π

)
and then from 0 ≤ µA (xi) ≤ 1, we note that

−π
2
≤ ∆A ≤

π

2
⇒ 0 ≤ cos

(2µA (xi)− 1)

2
π ≤ 1⇒ 0 ≤ Hcos (A) ≤ 1.

P1. (Sharpness): First, let A be a crisp set with membership values either 0 or
1 for all xi ∈ X. Then from (3.1) we simply obtain

(3.2) Hcos (A) = 0.

This proves ‘if’ part of the statement. Next let us suppose that Hcos (A) = 0, i.e.

(3.3)

n∑
i=1

[
cos

(2µA (xi)− 1)

2
π

]
= 0.
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Then, this being the sum ofn terms and each term in the summation is non negative,
then for all i,

(3.4) cos
(2µA (xi)− 1)

2
π = 0.

From (3.4), it is easy to deduce that µA (xi) = 0 or 1 for all xi ∈ X, that is A is
crisp.

P2. (Maximality): Let µA (xi) = 0.5 for all xi ∈ X. From (3.1) we obtain
Hcos (A) = 1.

Now, let Hcos (A) = 1, and then also from (3.1), we have

cos ∆A = 1⇒ ∆A = 0⇒ µA (xi) = 0.5 ∀xi ∈ X.
P3. (Resolution): Let

(3.5) f (µA (xi)) = cos
(2µA (xi)− 1)

2
π ∀xi ∈ X.

Since f (µA (xi)) is an increasing function of µA (xi) in the range [0, 0.5) and is a
decreasing function of µA (xi) in the range (0.5, 1], therefore

µA∗ (xi) ≤ µA (xi)⇒
(2µA∗ (xi)− 1)

2
π ≤ (2µA (xi)− 1)

2
π

(3.6) ⇒ f (µA∗ (xi)) ≤ f (µA (xi))∀xi ∈ [0 , 0.5)

and

µA∗ (xi) ≥ µA (xi)⇒
(2µA∗ (xi)− 1)

2
π ≥ (2µA (xi)− 1)

2
π

(3.7) ⇒ f (µA∗ (xi)) ≥ f (µA (xi))∀xi ∈ (0.5 , 1] .

From (3.6) and (3.7), we have

(3.8) f (µA∗ (xi)) ≤ f (µA (xi)) .

Since Hcos (A) = 1
n

∑n
i=1 (f (µA (xi))) and Hcos (A∗) = 1

n

∑n
i=1 (f (µA∗ (xi))),

then we obtain

(3.9) Hcos (A∗) ≤ Hcos (A) .

P4. (Symmetry): It is clear from definition of Hcos (A) and with µAC (xi) =
1− µA (xi), we conclude that

(3.10) H (A) = H
(
AC
)
.

Hence Hcos (A) is an axiomatically valid measure of fuzzy entropy.
This proves the theorem. �

We now turn to study of properties of Hcos (A). The proposed cosine fuzzy entropy
Hcos (A), satisfies the following interesting properties.

Theorem 3.2. Let A,B ∈ FS (X) be given by

A = {〈x, µA (x)〉 |x ∈ X} ,

B = {〈x, µB (x)〉 |x ∈ X} ,
such that they satisfy for any xi either A ⊆ B orA ⊃ B, then we have

Hcos (A ∪B) +Hcos (A ∩B) = Hcos (A) +Hcos (B) .
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Proof. Let us separate X into two parts X1 and X2, where

X1 = {xi ∈ X : A ⊆ B} ,
and

X2 = {xi ∈ X : A ⊃ B} .
That is, for all xi ∈ X1

(3.11) µA (xi) ≤ µB (xi) ,

and for all xi ∈ X2

(3.12) µA (xi) > µB (xi) .

From definition in (3.1), we have

Hcos (A ∪B) =
1

n

n∑
i=1

[
cos

(2µA∪B (xi)− 1)

2
π

]

(3.13) =
1

n

[{ ∑
xi∈X1

cos
(2µB (xi)− 1)

2
π

}
+

{ ∑
xi∈X2

cos
(2µA (xi)− 1)

2
π

}]
.

Again from definition in (3.1), we have

Hcos (A ∩B) =
1

n

n∑
i=1

[
cos

(2µA∩B (xi)− 1)

2
π

]

(3.14) =
1

n

[{ ∑
xi∈X1

cos
(2µA (xi)− 1)

2
π

}
+

{ ∑
xi∈X2

cos
(2µB (xi)− 1)

2
π

}]
.

Now adding (3.13) and (3.14), we get

Hcos (A ∪B) +Hcos (A ∩B) = Hcos (A) +Hcos (B) .

This proves the theorem. �

Corollary 3.1. For any A ∈ FS (X), and ACthe complement of fuzzy setA, then

(3.15) Hcos (A) = Hcos

(
AC
)

= Hcos

(
A ∪AC

)
= Hcos

(
A ∩AC

)
.

Proof. This follows from the result H (A) = H
(
AC
)

and the above theorem. �

In the next section, we propose a new similarity measure between fuzzy sets called
‘cosine fuzzy similarity’ and study their properties. We have also given a relation
between cosine fuzzy entropy and cosine fuzzy similarity here.

4. Cosine Fuzzy Similarity Measure

In this section, we propose a new similarity measure for FSs. The formal definition
is as follows:

Definition 4.1. Cosine Fuzzy Similarity Measure: Given two fuzzy sets A
and B defined in X = {x1, x2, ..., xn} having the membership values µA (xi) , i =
1, 2, ..., n and µB (xi) , i = 1, 2, ..., n respectively, we define the measure of cosine
fuzzy similarity, SFS (A,B), between FSs A and B, as

(4.1) SFS (A,B) =
1

n

n∑
i=1

[
cos

(µA (xi)− µB (xi))

2
π

]
.
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In the next theorem, we establish properties that according to Liu [6], justify our
proposed measure to be a valid ‘fuzzy similarity’:

Theorem 4.1. The SFS (A,B) measure in (4.1) of the fuzzy similarity satisfies
the following properties:

[S1.]0 ≤ SFS (A,B) ≤ 1; SFS (A,B) = SFS (B,A); SFS (A,B) =
1 if and only if A = B, i.e. µA (xi) = µB (xi) for all i = 1, 2, ..., n. For
all A,B,C ∈ FS (X), if A ⊆ B ⊆ C, then SFS(A,C) ≤ SFS (A,B),
SFS(A,C) ≤ SFS (B,C).

(1)(2)(3)(4) Proof. S1. Let ∆(A,B) = (µA(xi)−µB(xi))
2 π, then from 0 ≤ µA (xi) , µB (xi) ≤ 1, we

have
(4.2)

−π
2
≤ ∆(A,B) ≤

π

2
⇒ 0 ≤ cos

(µA (xi)− µB (xi))

2
π ≤ 1⇒ 0 ≤ SFS (A,B) ≤ 1.

S2. This simply follows from symmetric expression of SFS (A,B).

S3. Let A = B, i.e. µA (xi) = µB (xi) for all i = 1, 2, ..., n. Then from (4.1) we
obtain that

(4.3) SFS (A,B) = 1.

This proves ‘if’ part of the statement. Next suppose that SFS (A,B) = 1, i.e.

(4.4)

n∑
i=1

[
cos

(µA (xi)− µB (xi))

2
π

]
= n.

Then, this being the sum of n terms, each term in the summation being less than
or equal to 1, then for all i,

(4.5) cos
(µA (xi)− µB (xi))

2
π = 1

or

(4.6) µA (xi)− µB (xi) = 0.

From (4.6), it immediately follows that µA (xi) = µB (xi) for any xi ∈ X, i.e.
A = B.
S4. Since

(4.7) A ⊆ B ⊆ C ⇒ µA (xi) ≤ µB (xi) ≤ µC (xi) ,

then

(4.8)
(µA(xi)−µB(xi))

2 π ≥ (µA(xi)−µC(xi))
2 π

(µB(xi)−µC(xi))
2 π ≥ (µA(xi)−µC(xi))

2 π

}
.

From (4.8) and the nature of cosine function, we get
(4.9)

cos
(µA (xi)− µB (xi))

2
π ≥ cos

(µA (xi)− µC (xi))

2
π ⇒ SFS(A,C) ≤ SFS (A,B) ,

(4.10)

cos
(µB (xi)− µC (xi))

2
π ≥ cos

(µA (xi)− µC (xi))

2
π ⇒ SFS(A,C) ≤ SFS (B,C) .

This proves the theorem. �
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The importance and strength of this measure lies in its properties that we study in
the following theorems.
For proofs of the properties, we will consider separation of X into two parts X1

and X2, such that

X1 = {xi ∈ X : A ⊆ B} ,

and

X2 = {xi ∈ X : A ⊃ B} .

That is, for all xi ∈ X1

(4.11) µA (xi) ≤ µB (xi) ,

and for all xi ∈ X2

(4.12) µA (xi) > µB (xi) .

Theorem 4.2. For A,B ∈ FS (X), and if they satisfy that for any xi ∈ X, either
A ⊆ Bor A ⊃ B, then

SFS (A ∪B,A ∩B) = SFS (A ,B) .

Proof. Using Definition 4.1, we have

SFS (A ∪B,A ∩B)

=
1

n

n∑
i=1

[
cos

(µA∪B (xi)− µA∩B (xi))

2
π

]

=
1

n

[ ∑
xi∈X1

{
cos

(µB (xi)− µA (xi))

2
π

}
+
∑
x2∈X2

{
cos

(µA (xi)− µB (xi))

2
π

}]

=
1

n

n∑
i=1

[
cos

(µA (xi)− µB (xi))

2
π

]
= SFS (A,B) .

This proves the theorem. �

Theorem 4.3. For A,B,C ∈ FS (X),
[(i).]SFS (A ∪B,C) ≤ SFS (A,C) + SFS (B,C), SFS (A ∩B,C) ≤

SFS (A,C) + SFS (B,C).

(1)(2) Proof. We prove (i) only, (ii) can be proved analogously.
(i) Let us consider the expressions for

(4.13) SFS (A,C) + SFS (B,C)− SFS (A ∪B,C)

=
1

n

n∑
i=1

[
cos

(µA (xi)− µC (xi))

2
π

]
+

1

n

n∑
i=1

[
cos

(µB (xi)− µC (xi))

2
π

]

− 1

n

n∑
i=1

[
cos

(µA∪B (xi)− µC (xi))

2
π

]
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=
1

n

n∑
i=1

[
cos

(µA (xi)− µC (xi))

2
π

]
+

1

n

n∑
i=1

[
cos

(µB (xi)− µC (xi))

2
π

]

− 1

n

[ ∑
xi∈X1

{
cos

(µB (xi)− µC (xi))

2
π

}
+
∑
xi∈X2

{
cos

(µA (xi)− µC (xi))

2
π

}]

=
1

n

[ ∑
xi∈X1

{
cos

(µA (xi)− µC (xi))

2
π

}
+
∑
xi∈X2

{
cos

(µB (xi)− µC (xi))

2
π

}]
≥ 0.

This proves the theorem. �

Theorem 4.4. For A,B,C ∈ FS (X),

SFS (A ∪B,C) + SFS (A ∩B,C) = SFS (A,C) + SFS (B,C) .

Proof. From Definition 4.1, we first have:

SFS (A ∪B,C)

=
1

n

n∑
i=1

[
cos

(µA∪B (xi)− µC (xi))

2
π

]

=
1

n

[ ∑
xi∈X1

{
cos

(µB (xi)− µC (xi))

2
π

}
+
∑
xi∈X2

{
cos

(µA (xi)− µC (xi))

2
π

}]
.

(4.14)

Next, again from Definition 4.1, we have

SFS (A ∩B,C)

=
1

n

n∑
i=1

[
cos

(µA∩B (xi)− µC (xi))

2
π

]

=
1

n

[ ∑
xi∈X1

{
cos

(µA (xi)− µC (xi))

2
π

}
+
∑
xi∈X2

{
cos

(µB (xi)− µC (xi))

2
π

}]
.

(4.15)

After adding (4.14) and (4.14), we get the result.
This proves the theorem. �

Theorem 4.5. For A,B ∈ FS (X),
[(i).]SFS (A,B) = SFS

(
AC , BC

)
; SFS

(
A ,BC

)
= SFS

(
AC , B

)
; SFS (A,B)+

SFS
(
AC , B

)
= SFS

(
AC , BC

)
+ SFS

(
A,BC

)
;

where AC and BC represent complements of the fuzzy sets A and B, respectively.

(1)(2)(3) Proof. (i). It simply follows from the relation that membership of an element in a
set has with its complement.
(ii). Let us consider the expressions for

(4.16) SFS
(
A ,BC

)
− SFS

(
AC , B

)
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=
1

n

n∑
i=1

[
cos

(µA (xi)− (1− µB (xi)))

2
π

]
− 1

n

n∑
i=1

[
cos

((1− µA (xi))− µB (xi))

2
π

]

=
1

n

n∑
i=1

[
cos

(1− µA (xi)− µB (xi))

2
π

]
− 1

n

n∑
i=1

[
cos

(1− µA (xi)− µB (xi))

2
π

]
= 0.

(iii). It is obvious from (i) and (ii).

This proves the theorem. �

Interestingly, the cosine fuzzy similarity measure given in (4.1) leads to interesting
situations when it is consider between a set and its complement. The measure (4.1)
reduces to cosine fuzzy entropy (3.1), as shown in the next theorem.

Theorem 4.6. For each A ∈ FS (X),

(4.17) SFS
(
A ,AC

)
= Hcos (A) .

Proof. The proof follows directly from the Definitions 2.3, 3.1 and 4.1. �

5. Conclusions

We have introduced two measures using cosine function. These measures having
elegant properties, present a new vista for applications and further considerations.
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PARALLEL AND SEMIPARALLEL LIGHTLIKE

HYPERSURFACES OF SEMI-RIEMANNIAN SPACE FORMS

SÜLEYMAN CENGİZ

Abstract. In this paper, some properties of lightlike hypersurfaces with par-

allel and semiparallel second fundamental forms are investigated in semi-Riemannian

space forms. Then some generalizations of these conditions are performed.

1. Introduction

The interest on submanifolds with parallel second fundamental forms increased
in 1970s. The study on submanifolds with parallel second fundamental form of
Euclidean spaces was started by J. Vilms [21] and similar case for hypersurfaces
was studied by U. Simon and A. Weinstein [19]. A classification to the submanifolds
with parallel second fundamental form of space forms was carried by Takeuchi [20]
who makes the term parallel submanifolds more popular, especially from the local
point of view. After then parallel submanifolds of Riemannian space forms and
non-degenerate ones of semi-Riemannian space forms have been studied in many
papers [1], [12, 13, 14], [16]. Later the condition for parallelity was generalized to
higher orders and k-parallel submanifolds were introduced [4], [5], [15].

Parallel submanifolds were also extended to a more general class of submanifolds
called semiparallel submanifolds. These wider class of submanifolds in Euclidean
space was introduced and classified by J. Deprez [2], [3]. F. Dillen has given a

classification of semiparallel hypersurfaces of a real space form [6]. Ü. Lumiste has
written a book on this subject and its generalization including many of the old and
recent studies [11].

Here some conditions related to parallel and semiparallel hypersurfaces are in-
vestigated for the degenerate case which is mostly ignored in the mentioned studies.
We will use the screen distribution approach of a lightlike hypersurface explained
as in the books [7],[9].

2010 Mathematics Subject Classification. 53B30, 53C50.
Key words and phrases. Lightlike hypersurfaces, parallel, semiparallel, semi-Riemannian space

forms, 2-parallel, 2-semiparallel.
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2. Preliminaries

Let (M, g) be a hypersurface of an (m+ 2)−dimensional semi-Riemannian man-
ifold (M̄, ḡ) of index q ∈ 1, ...,m+ 1. As for any p ∈ M,TpM is a hyperplane of
the semi-Euclidean space (TpM̄, ḡp), we consider

TpM
⊥ = {Vp ∈ TpM̄ ; ḡp(Vp,Wp) = 0,∀Wp ∈ TpM},

and

RadTpM = TpM ∩ TpM⊥.

Then M is called a lightlike hypersurface of M̄ if RadTpM 6= {0} at any p ∈ M .
The semi-Riemannian metric ḡ on M̄ induces on M a symmetric tensor field g of
type (0, 2), i.e., gp(Xp, Yp), for any p ∈ M . Also we know that g has a constant
rank m on M and RadTpM = TM⊥ [7].

The tangent bundle space TM of a lightlike hypersurface has the decomposition

(2.1) TM = RadTM ⊥ S(TM)

where the complementary vector bundle S(TM) is called the screen distribution
on M . So, a lightlike hypersurface (M, g) of a semi-Riemannian manifold

(
M̄, ḡ

)
is generally shown by (M, g, S(TM)). By [7, Theorem 1.1] there exists a unique
vector bundle tr(TM) of rank 1 over M , such that for any non-zero null section
ξ ∈ RadTM on a coordinate neighborhood U ⊂ M , there exists a unique null
section N of tr(TM) on U satisfying

ḡ (ξ,N) = 1, ḡ (N,N) = ḡ (N,X) = 0,∀X ∈ Γ
(
S (TM)|U

)
where tr (TM) and N are called the lightlike transversal vector bundle and the null
transversal vector field of M with respect to S (TM) respectively. Then we have
the following decomposition of TM̄|M :

TM̄ |M = S(TM) ⊥ (RadTM ⊕ tr (TM)) = TM ⊕ tr (TM) .

Let∇ be the induced connection on the lightlike hypersurface (M, g, S(TM)) and
P be the projection morphism of TM on S (TM) with respect to the decomposition
(2.1). Then the local Gauss and Weingarten formulas are given by

∇̄XY = ∇XY + h (X,Y ) ,

∇̄XN = −ANX +∇tXN,
∇XPY = ∇∗XPY + h∗ (X,PY ) ,

∇Xξ = −A∗ξX −∇∗tXξ,(2.2)

for any X,Y ∈ Γ(TM), where ∇∗,∇t and ∇∗t are the linear connections on
S(TM), tr(TM) and RadTM , h and h∗ are the second fundamental forms of M
and S(TM), AN and A∗ξ are the shape operators of M and S(TM) respectively.

Locally, suppose ξ,N is a pair of sections on U ⊂ M satisfying (2). Then define
a symmetric slF (U)− bilinear form which is called the local second fundamental
form of M and a 1-form τ on U ⊂M defined by

B(X,Y ) = ḡ(h(X,Y ), ξ),

τ(X) = ḡ(∇tXN, ξ)
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for any X,Y ∈ Γ(TM|U ). It follows that

h(X,Y ) = B(X,Y )N,

∇tXN = τ(X)N,

∇∗tXξ = ḡ(∇Xξ,N) = −ḡ(ξ, ∇̄XN) = −τ(X)ξ.

Also we define the local screen fundamental form of S(TM) as

C(X,PY ) = ḡ(h∗(X,PY ), N).

Hence, on U the Gauss and Weingarten equations become

∇̄XY = ∇XY +B(X,Y )N,

∇̄XN = −ANX + τ(X)N,

∇XPY = ∇∗XPY + C(X,PY )ξ,

∇Xξ = −A∗ξX + τ(X)ξ,(2.3)

h is independent of the choice of S (TM) and it satisfies the equation

(2.4) h (X, ξ) = 0, ∀X ∈ Γ (TM) .

The linear connection ∇ of M is not metric and satisfies the equation

(2.5) (∇X g) (Y,Z) = ḡ (h (X,Y ) , Z) + ḡ (h (X,Z) , Y )

for any X,Y, Z ∈ Γ (TM). But the connection ∇∗ of S (TM) is metric.
The second fundamental forms h and h∗ are related to their shape operators

with the equations

ḡ (h (X,Y ) , ξ) = B(X,Y ) = g
(
A∗ξX,Y

)
, ḡ
(
A∗ξX,N

)
= 0,(2.6)

ḡ (h∗ (X,PY ) , N) = C(X,PY ) = g (ANX,PY ) , ḡ (ANX,N) = 0.(2.7)

From (2.6), A∗ξ is S (TM)−valued and self-adjoint on TM such that

(2.8) A∗ξξ = 0.

Covariant derivatives of h and AN with respect to the connection ∇ are defined as

(∇Xh) (Y,Z) = ∇tXh (Y,Z)− h (∇XY, Z)− h (Y,∇XZ) ,(2.9)

∇X (ANY ) = (∇XAN )Y +AN (∇XY ) .(2.10)

The Riemann curvature tensor of a lightlike hypersurface (M, g, S (TM)) of a semi-
Riemannian manifold

(
M̄, ḡ

)
is given at [10] by

R̄ (X,Y )Z = R (X,Y )Z +Ah(X,Z)Y −Ah(Y,Z)X

+ (∇Xh) (Y, Z)− (∇Y h) (X,Z) .(2.11)

Then for a lightlike hypersurface (M, g, S (TM)) of a semi-Riemannian space form
(M̄(c), ḡ) we get the Gauss curvature equation as

(2.12) R (X,Y )Z = c {ḡ (Y,Z)X − ḡ (X,Z)Y } −Ah(X,Z)Y +Ah(Y,Z)X

and the Codazzi equation as

(∇Xh) (Y, Z) = (∇Y h) (X,Z) .

For a lightlike hypersurface M of a semi-Euclidean space M̄ , using the equality
h (X,Y ) = B (X,Y )N the equation (2.12) becomes

(2.13) R (X,Y )Z = B (X,Z)ANY +B (Y,Z)ANX.



98 SÜLEYMAN CENGİZ

The Ricci tensor of a lightlike hypersurface (M, g, S (TM)) of a semi-Riemannian
space form (M̄(c), ḡ) is given at [8] by

(2.14) R(0,2) (X,Y ) = mcg (X,Y ) +B (X,Y ) trAN −B (Y,ANX) .

Let (M, g, S (TM)) be lightlike hypersurface of a semi-Riemannian manifold(
M̄, ḡ

)
. M is totally umbilical, if and only if, locally, on each U ⊂ M there exists

a smooth function ρ such that

(2.15) B (X,Y ) = ρg (X,Y ) , ∀X,Y ∈ Γ (TM |U )

is satisfied [7].
For a (r, s)− tensor field T we define the second covariant derivative

(
∇2T

)
as

the (r, s+ 2)−tensor field [17]

(∇2T )(W1, ...,Ws;U, V ) = (∇2
U,V T )(W1, ...,Ws)

= ∇U ((∇V T )(W1, ...,Ws))

− (∇∇UV T )(W1, ...,Ws)

− (∇V T )(∇UW1, ...,Ws)

− ...− (∇V T )(W1, ...,∇UWs).(2.16)

3. Parallel and 2-Parallel Lightlike Hypersurfaces

A tensor field is said to be parallel if its covariant derivative vanishes. A hyper-
surface whose second fundamental form h is parallel, that is ∇h = 0, is called a
parallel hypersurface. In general if the second fundamental form h of a hypersurface
satisfies the condition

∇kh = 0, ∇sh 6= 0 (s < k) ,

then the hypersurface is said to be k−parallel [11]. Thus, a 0−parallel hypersurface
is simply a totally geodesic one and a 1−paralel hypersurface is parallel that is not
totally geodesic.

We already have the following theorem for parallel lightlike hypersurfaces:

Theorem 3.1. [18] Let M be a lightlike hypersurface of a Lorentzian manifold
M̄ . Then the second fundamental form of M is parallel if and only if M is totally
geodesic.

For the general case the following theorem can be proved.

Theorem 3.2. There exists no proper totally umbilical 2−parallel lightlike hyper-
surface of a semi-Riemannian space form.

Proof. Let (M, g, S(TM)) be a lightlike hypersurface of a semi-Riemannian space
form (M̄(c), ḡ). Using the identity (3.1) the second order covariant derivative of
the second fundamental form h of M can be found as(

∇2
V,Wh

)
(X,Y ) = ∇tV ((∇Wh) (X,Y ))− (∇Wh) (∇VX,Y )

− (∇Wh) (X,∇V Y )− (∇∇VWh) (X,Y )

for any X,Y, V,W ∈ Γ (TM). If we assume that M is 2− parallel, setting W =
X = ξ, we get

0 = ∇tV ((∇ξh) (ξ, Y ))− (∇ξh) (∇V ξ, Y )

− (∇ξh) (ξ,∇V Y )− (∇∇V ξh) (ξ, Y ) .(3.1)
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Substituting (2.4) into (2.9) and using the last equation of (2.2) with (2.8) we obtain
(∇ξh) (ξ, Y ) = 0 and (∇ξh)(ξ,∇V Y ) = 0. Since h is symmetric, from the equation
(2.9) we see that ∇h is also symmetric. Then by the Codazzi equation we can write

(∇ξh) (∇V ξ, Y ) = (∇∇V ξh) (ξ, Y ) = (∇Y h) (ξ,∇V ξ) .

So the equation (3.1) becomes

0 = −2 (∇Y h) (ξ,∇V ξ) .

Again by the equations (2.4),(2.6),(2.8),(2.9),(2.15), the last equation of (2.2) and
since the lightlike hypersurface is totally umbilical we obtain the result

0 = h(A∗ξY,A
∗
ξV ) = B(A∗ξY,A

∗
ξV )N = ρ2h(Y, V ).

Since the second fundamental form of a 2−parallel lightlike hypersurface can not
vanish and ρ 6= 0, we get a contradiction and the theorem is proved. �

4. Semiparallel and 2-Semiparallel Lightlike Hypersurfaces

The integrability condition of the differential system ∇h = 0 is given by the
equation

R (X,Y ) · h = 0

where R(X,Y ) is the curvature operator and h is the second fundamental form.
This equation characterizes the semiparallel hypersurfaces. Equivalently, forX,Y, Z,W ∈
Γ (TM) any hypersurface satisfying the equation

(4.1) h (R (X,Y )Z,W ) + h (Z,R (X,Y )W ) = 0

is called a semiparallel hypersurface [18]. As a generalization of this, we consider
the following integrability condition of the system ∇kh = 0:

(4.2) R (X,Y ) · ∇k−1h = 0.

Hypersurfaces with this condition are said to be k−semiparallel. 1−semiparallel
is simply a semiparallel one. We know that non-degenerate parallel hypersurfaces
of semi-Riemannian spaces are semiparallel [11]. It is clear that the converse of
this is not true. We know the following theorem for the lightlike hypersurfaces of
semi-Euclidean spaces:

Theorem 4.1. Let (M, g, S(TM)) be a semiparallel lightlike hypersurface of semi-

Euclidean (n+ 2)−space. Then either M is totally geodesic or C
(
ξ, A∗ξU

)
= 0 for

any U ∈ (S(TM)) and ξ ∈ Γ
(
TM⊥

)
, where C and A∗ξ are the second fundamental

form and the shape operator of the screen distribution S(TM), respectively [18].

This theorem can be extended as to be valid also for Lorentzian space forms:

Theorem 4.2. Let (M, g, S(TM)) be a semiparallel lightlike hypersurface of a
Lorentzian space form (M̄(c), ḡ). Then, for any Z ∈ Γ(TM), either M is totally
geodesic or the equation R(0,2) (ξ, Z) = 0 is satisfied.
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Proof. Substituting (2.12) in (4.1) we get

h (R (X,Y )Z,W ) + h (Z,R (X,Y )W )

= c{g (Y,Z)B (X,W )− g (X,Z)B (Y,W )

+g (Y,W )B (X,Z)− g (X,W )B (Y, Z)}
−B (X,Z)h (ANY,W ) +B (Y,Z)h (ANX,W )

−B (X,W )h (ANY,Z) +B (Y,W )h (ANX,Z) .(4.3)

Since the lightlike hypersurface is semiparallel, setting X = ξ and Z = W in the
equation above, with (2.4) and (2.6) we find

0 = B (Y, Z) g
(
ANξ, A

∗
ξZ
)
.

Then by the definition of Ricci tensor (2.14) we obtain g
(
ANξ, A

∗
ξZ
)

= R(0,2) (ξ, Z).

Hence, either B = 0, that is M is totally geodesic, or R(0,2) (ξ, Z) = 0. �

Corollary 4.1. Let (M, g, S(TM)) be a totally umbilical lightlike hypersurface of
a semi-Riemannian space form (M̄(c), ḡ). M is semiparallel if and only if M is
semiparallel as a lightlike hypersurface of the ambient semi-Euclidean space.

Proof. Since M is totally umbilical, substituting (2.15) in (4.3) we get

h (R (X,Y )Z,W ) + h (Z,R (X,Y )W ) =

= cρ{g (Y,Z) g (X,W )− g (X,Z) g (Y,W )

+g (Y,W ) g (X,Z)− g (X,W ) g (Y,Z)}
−B (X,Z)h (ANY,W ) +B (Y, Z)h (ANX,W )

−B (X,W )h (ANY, Z) +B (Y,W )h (ANX,Z)

= −h (B (X,Z)ANY −B (Y,Z)ANX,W )

−h (Z,B (X,W )ANY −B (Y,W )ANX)(4.4)

The result is obvious by the equation above. �

Example 4.1. In Minkowski space Rm+2
1 the lightlike cone ∧m+1

0 is given by the
equations

−
(
x0
)2

+

m+1∑
a=1

(xa)
2

= 0, x =

m+1∑
A=0

xA
∂

∂xA
6= 0.

The radical space and the lightlike transversal vector bundle of M are spanned by
the lightlike vector fields

ξ =

m+1∑
A=0

xA
∂

∂xA

and

N =
1

2 (x0)
2

{
−x0 ∂

∂x0
+

m+1∑
a=1

xa
∂

∂xa

}
respectively, for any X ∈ S

(
T∧m+1

0

)
, X =

∑m+1
a=1 X

a ∂
∂xa . The lightcone and its

screen ditribution S
(
TΛm+1

0

)
are totally umbilical as the equations

B (X,Y ) = −g (X,Y )
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ve

C (X,Y ) = − 1

2 (x0)
2 g (X,Y )

are satisfied for any X,Y ∈ S
(
T∧m+1

0

)
. Also the Riemann curvature tensor of

Λm+1
0 is calculated as

R (X,Y )Z = − 1

2 (x0)
2 {g (Y, Z)X − g (X,Z)Y }

similar to the given in [7]. Since Λm+1
0 is not totally geodesic, it is not parallel. But

using the definition of semiparallelity for any X,Y, Z,W ∈ Γ (TM) we get

(R (X,Y ) · h) (Z,W ) = −h (R (X,Y )Z,W )− h (Z,R (X,Y )W )

=
1

2 (x0)
2 {g (Y,Z)h (X,W )− g (X,Z)h (Y,W )}

+
1

2 (x0)
2 {g (Y,W )h (Z,X)− g (X,W )h (Z, Y )}

and with B (X,Y ) = −g (X,Y ) we have

(R (X,Y ) · h) (Z,W ) = 0.

So Λm+1
0 is semiparallel.

Theorem 4.3. Let (M, g, S(TM)) be a lightlike hypersurface of a semi-Riemannian
space form (M̄(c), ḡ). If M is 2−semiparallel, then either M is totally geodesic or

it satisfies the equation R(0,2)
(
A∗ξW, ξ

)
= 0.

Proof. From (4.2), if M is 2−semiparallel, then we get

0 = (R (X,Y ) · ∇h) (U, V,W ) = (R (X,Y ) · ∇Wh) (U, V )

= − (∇Wh) (R (X,Y )U, V )− (∇Wh) (U,R (X,Y )V )

−
(
∇R(X,Y )Wh

)
(U, V )

= −B (Y,U) (∇Wh) (ANX,V ) +B (X,U) (∇Wh) (ANY, V )

−B (Y, V ) (∇Wh) (U,ANX) +B (X,V ) (∇Wh) (U,ANY )

−B (Y,W ) (∇ANXh) (U, V ) +B (X,W ) (∇ANY h) (U, V ) .

Setting U = X = ξ we have

0 = B (Y, V )h (∇W ξ, ANξ) +B (Y,W )h (∇ANξξ, V )

= −B (Y, V )h
(
A∗ξW,ANξ

)
−B (Y,W )h

(
A∗ξ (ANξ) , V

)
and taking V = W it becomes

0 = −2B (Y,W )h
(
A∗ξW,ANξ

)
.

Hence, either B = 0, that is M is totally geodesic, or using (2.14) we see that it

satisfies g
(
A∗ξA

∗
ξW,ANξ

)
= R(0,2)

(
A∗ξW, ξ

)
= 0. �
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[9] Duggal, K.L. and Şahin, B., Differential Geometry of Lightlike Submanifolds, Birkhauser
Verlag AG, 2010.
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ON THE ISOMETRIES OF 3-DIMENSIONAL MAXIMUM SPACE

T. ERMİŞ AND R. KAYA

Abstract. In this article, the hexahedron associated to metric geometry full-

filed by the metric of which unit sphere is hexahedron. We have analytically
proved that the isometry group of the space with respect to this metric is

the semi direct product of the Euclidean symmetry group of the cube and

T (3) which is all translations of analytical 3−space.

1. Introduction

Many geometric studies and investigations are concerned with transformations
of geometric objects on various spaces. Some of the transformations form group.
Many of these groups consist simply of the symmetries of those spaces. The Pla-
tonic solids provide an excellent model for the investigation of symmetries. Also,
Platonic solids are very important in the sense that they can be used not only in
studies on properties of geometric structures, but also investigations on physical
and chemical properties of the system under consideration. The isometry group
have extensive applications in the theory of molecular and crystalline structure [1],
[6]. The importance of isometries is that they preserve some of geometric proper-
ties; distance, angle measure, congruence, betweenness, and incidence [4], [5], [7],
[8]. The isometry group is a fundamental concept in art as well as science. To
develop this concept, it must be given a precise mathematical formulation.

Through the article we will use the definitions, explanations, propositions and
the methods of proofs in the main reference [3].

2. The Maximum Metric

It is important to work on concepts related to the distance in geometric studies,
because change of metric can reveals interesting results. What appears to be es-
sential here is the way in which the lengths are to be measured. The present study
aims to present isometry group of R3 by achieving the measuring process via the
maximum metric dM in preference to the usual Euclidean metric dE.

2000 Mathematics Subject Classification. 51K05, 51K99.
Key words and phrases. maximum distance, maximum space, isometry group.
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For the sake of simple, R3 fullfiled by maximum metric is denoted R3
M in the

rest of the article. Linear structure except distance function in the R3
M is the same

as Euclidean analytical space [9]. This distance function dM is defined as following.

Definition 2.1. Let P1 = (x1, y1, z1) and P2 = (x2, y2, z2) be two points in R3. The

distance function dM : R3 × R3 −→ [0,∞) defined by

dM (P1, P2) := max {|x2 − x1| , |y2 − y1| , |z2 − z1|}

is called maximum distance function.

According to this distance function, the unit sphere is a hexahedron in the R3
M.

Proposition 2.1. The distance function dM is a metric of which unit sphere is
cube in R3 (see Figure 2.1).

Figure 2.1

Proposition 2.2. Given any two points A and B in R3
M. Let direction vector of

the line l through A and B be (p, q, r). Then,

dE (A,B) = µ (AB) dM (A,B)

where

µ (AB) =
max {|p| , |q| , |r|}√

p2 + q2 + r2
.

Proof. Let A=(x1, y1, z1) and B=(x2, y2, z2) be two points in R3
M. If line l with di-

rection vector (p, q, r) passes through the pointsA andB, then
←→
AB ‖ (p, q, r) . There-

fore
→
AB = λ (p, q, r) such that λ ∈ R\ {0} . So

dM (A,B) = |λ|max {|p| , |q| , |r|}

and similarly,

dE (A,B) = |λ|
√

(p)
2

+ (q)
2

+ (r)
2
.

Consequently
dM (A,B)

dE (A,B)
=

max {|p| , |q| , |r|}√
p2 + q2 + r2

is obtained. �
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3. Isometries of the R3
M

We want to show that isometry group of the maximum space R3
M in this section.

At the end of this section we are going to show isometry group of R3
M is the semi

direct product of ” Euclidean symmetry group of cube ” and ” all translations of
R3 ”. Also, Oh consist of identity, reflections, rotations, inversion, rotary reflection
and rotary inversions. Before we give isometries of R3

M, we introduce elements of
the set Oh.

A transformation is any function mapping a set to itself in R3. A figure in R3

is any subset of R3. An isometry of R3
M is a transformation from R3 onto R3 that

preserves distance. This means dM(X,Y ) = dM(α(X), α(Y )) for each points X
and Y in R3

M. A symmetry of a figure F in R3 is an isometry mapping F onto
itself—that is, an isometry f : R3 → R3 such that f(F ) = F . The identity function
I is a transformation is given I(X) = X for each point X in R3. If ∆ represents a
plane, then the reflection σ∆ across the plane ∆ fixes every point on ∆, and takes
every point X not on ∆ to Y , where ∆ is the perpendicular bisector of X and Y .
A rotation is an isometric transformation which can be written as the composition
of two distinc reflections. That is, a rotation about axis l is defined by σ∆σΓ where
two planes Γ and ∆ intersect at line l. A rotary reflection is an transformation which
is the combination of a rotation about an axis and a reflection in a plane. That is,
a rotary reflection is defined by σΠσ∆σΓ such that Γ and ∆ are two intersecting
planes each perpendicular to plane Π. A inversion according to a point P can be
written as the σP (X) = Y such that P is the midpoint of X and Y for X , Y ∈ R3.
Rotary inversion is the combination of a rotation and an inversion in a point.

Proposition 3.1. All Euclidean translation in R3 is an isometry of R3
M.

Proof. Given a points A = (a1, a2, a3) in R3
M. The translation TA : R3

M → R3
M is a

mapping such that TA (X) = A+X.
Let X = (x1, y1, z1) and Y = (x2, y2, z2) be any two points in R3

M, then

dM (TA (X) , TA (Y )) = max

{
|(a1 + x2) - (a1 + x1)| , |(a2 + y2) - (a2 + y1)|

, |(a3 + z2) - (a3 + z1)|

}
= dM (X,Y ) .

This means that translation TA is an isometry. �

Therefore, we now consider planes passing through the origin for all calculations
in the rest of the article.

The following proposition gives reflections which preserve distance R3
M.

Proposition 3.2. Given the plane ∆ having equation ax+by+cz = 0 in R3
M. Reflect-

ion σ∆ is a isometry iff unit normal vector of the plane ∆ is written as λ.
→
V where

λ is a scalar and
→
V ∈ D such that

D = {(1, 0, 0) , (0, 1, 0) , (0, 0, 1) , (±1, 1, 0) , (±1, 0, 1) , (0,±1, 1)} .

Proof. Euclidean reflection σ∆ : R3 → R3 can be defined by

σ∆ (x, y, z) =

( (
1− 2a2

)
x− 2aby − 2acz,−2abx+

(
1− 2b2

)
y − 2bcz,

,−2acx− 2bcy +
(
1− 2c2

)
z

)
such that (a, b, c) is the unit normal vector of the plane ∆.
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We know that the reflection preserving a base of R3 is a isometry. If we take
vector set T = {A1 = (1, 1, 1) , A2 = (1,−1, 1) , A3 = (1,−1,−1)} as base of R3, we
shall find that reflections which preserve vectors of this base. To find reflections,
we shall calculate a, b, c. If we calculate image of set T under Euclidean reflection,
we get

σ∆ (A1) =
(
1− 2a2 − 2ab− 2ac,−2ab+ 1− 2b2 − 2bc,−2ac− 2bc+ 1− 2c2

)
,

σ∆ (A2) =
(
1− 2a2 + 2ab− 2ac,−2ab− 1 + 2b2 − 2bc,−2ac+ 2bc+ 1− 2c2

)
,

σ∆ (A3) =
(
1− 2a2 + 2ab+ 2ac,−2ab− 1 + 2b2 + 2bc,−2ac+ 2bc− 1 + 2c2

)
.

If reflection preserves dM−distance, we have three equations;

dM (O,A1) = dM (σ∆ (O) , σ∆ (A1)) = 1

dM (O,A2) = dM (σ∆ (O) , σ∆ (A2)) = 1

dM (O,A3) = dM (σ∆ (O) , σ∆ (A3)) = 1.

Thus,

max
{∣∣1-2a2-2ab-2ac

∣∣ , ∣∣-2ab+ 1-2b2-2bc
∣∣ , ∣∣-2ac-2bc+ 1-2c2

∣∣}=1

max
{∣∣1-2a2 + 2aby-2ac

∣∣ , ∣∣-2ab-1 + 2b2y-2bc
∣∣ , ∣∣-2ac+ 2bc+ 1-2c2

∣∣}=1

max
{∣∣1-2a2 + 2ab+ 2ac

∣∣ , ∣∣-2ab-1 + 2b2 + 2bc
∣∣ , ∣∣-2ac+ 2bc-1 + 2c2

∣∣}=1

is obtained. Consequently, we have the system of equations with three unknows
a, b and c. Solving these system of equations for a, b and c, we get

(∓1, 0, 0) , (0,∓1, 0) , (0, 0,∓1) ,(
0,∓
√

2

2
,∓
√

2

2

)
,

(
∓
√

2

2
, 0,∓

√
2

2

)
,

(
∓
√

2

2
,∓
√

2

2
, 0

)
.

Conversely, we shall show that reflections σ∆ preserve distance dM. Given reflection
σ∆ such that σ∆ (X) = Y for X, Y ∈ R3

M. Let (p1, q1, r1) and (p2, q2, r2) be the
direction vectors of the lines OX and OY , respectively. If µ (OX) = µ (OY ) , then
dM (O,X) = dM (O, Y ) is obtained by Proposition 2. 2.

To show dM (O,X) = dM (O, Y ), we must check for all possible;

∆ (p2, q2, r2) ∆ (p2, q2, r2)
x = 0 (−p1, q1, r1) x+ z = 0 (−r1, q1,−p1)
y = 0 (p1,−q1, r1) x− z = 0 (r1, q1, p1)
z = 0 (p1, q1,−r1) y + z = 0 (p1,−r1,−q1)

x+ y = 0 (−q1,−p1, r1) y − z = 0 (p1, r1, q1)
x− y = 0 (q1, p1, r1)

�

Corollary 3.1. In R3
M, nine Euclidean reflections according to the planes having

equations x = 0, y = 0, z = 0, x + y = 0, x − y = 0, x + z = 0, x − z = 0,
y + z = 0, y − z = 0 are isometric reflections.

Following proposition tell us isometric rotations in R3
M.

Proposition 3.3. Given a rotation rθ : R3
M → R3

M according to l having equation
x

p
=
y

q
=
z

r
. Rotation rθ is an isometry iff rθ ∈ RM = R1 ∪R2 ∪R3 such that

R1 =

{
rθ : θ ∈

{
π

2
, π,

3π

2

}
, rotation axis has a direction vector in D1

}
,
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R2 =

{
rθ : θ ∈

{
2π

3
,

4π

3

}
, rotation axis has a direction vector in D2

}
,

R3 = {rθ : θ ∈ {π} , rotation axis has a direction vector in D3} ,

where

D1 = {(1, 0, 0) , (0, 1, 0) , (0, 0, 1)} ,

D2 = {(1, 1, 1) , (−1, 1, 1) , (1,−1, 1) , (1, 1,−1)} ,

and

D3 = {(1, 1, 0) , (1,−1, 0) , (1, 0, 1) , (1, 0,−1) , (0, 1, 1) , (0, 1,−1)} .

Proof. Recall that if rθ : R3
M → R3

M according to l having equation
x

p
=
y

q
=
z

r
where (p, q, r) is a unit vector is a Euclidean rotation, then rθ has following matrix
representation: cos θ + p2 (1− cos θ) pq (1− cos θ)− r sin θ pr (1− cos θ) + q sin θ

pq (1− cos θ) + r sin θ cos θ + q2 (1− cos θ) qr (1− cos θ)− p sin θ
pr (1− cos θ)− q sin θ qr (1− cos θ) + p sin θ cos θ + r2 (1− cos θ)


A rotation can be written as the combination of two distinc reflections. So, a
rotation with axis l can be defined by σ∆σΓ where l is line of intersection be-
tween planes Γ and ∆. Consequently, vectors (1, 0, 0) , (0, 1, 0) , (0, 0, 1) , (1, 1, 1)
(−1, 1, 1) , (1,−1, 1) , (1, 1,−1) , (1,±1, 0) , (1, 0,±1) , (0, 1,±1), (0, 1,−1) can be
take as direction vector of the line l by Corollary 3.1. To show isometric rotations
in R3

M, our next step is to give that rotations which preserve the lenghts of the
edges of the unit sphere. To do this it will be enough to find isometric rotations.
Let A1 = (1, 1, 1) and A2 = (1,−1, 1) be points on the unit sphere. If we find image
of A1 and A2 under rθ, we get

rθ (A1) =

 cos θ+p2 (1- cos θ) +pq (1- cos θ) -r sin θ+pr (1- cos θ) +q cos θ

, pq (1- cos θ) +r sin θ+ cos θ+q2 (1- cos θ) +qr (1- cos θ) -p sin θ

, pr (1- cos θ) -q sin θ+qr (1- cos θ) +p sin θ+ cos θ+r2 (1- cos θ)



rθ (A2) =

 cos θ+p2 (1- cos θ) -pq (1- cos θ) +r sin θ+pr (1- cos θ) +q cos θ

, pq (1- cos θ) +r sin θ- cos θ-q2 (1- cos θ) +qr (1- cos θ) -p sin θ

, pr (1- cos θ) -q sin θ-qr (1- cos θ) -p sin θ+ cos θ+r2 (1- cos θ)


If rθ preserves dM−distance, we have equation;

dM (A1, A2) = dM (rθ (A1) , rθ (A2)) = 2.

Let (1, 0, 0) can be taken the direction vector of l in D1. Then (p, q, r) = (1, 0, 0) .
Setting p = 1, q = 0 and r = 0 in the equation dM (rθ (A1) , rθ (A2)) = 2, we get
max {|cos θ| , |sin θ|} = 1. Solving this equation for θ 6= 0, we obtain θ = π/2, π
or 3π/2. Consequently, all Euclidean rotation about the x−axis with θ = π/2, π
or 3π/2 is an isometry of R3

M. Similarly, if the direction vector of l is one of
(0, 1, 0) , (0, 0, 1) , then θ = π/2, π or 3π/2.

Let (1, 1, 1) can be taken the direction vector of l in D2. Then (p, q, r)=
1√
3

(1, 1, 1) .
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Setting p, q and r=1/
√

3 in the equation dM (rθ (A1) , rθ (A2)) = 2, we get:

dM (rθ (A1) , rθ (A2)) =


∣∣∣∣13 (1− cos θ)− 1√

3
sin θ

∣∣∣∣ , ∣∣∣∣cos θ +
1

3
(1− cos θ)

∣∣∣∣
,

∣∣∣∣13 (1− cos θ) +
1√
3

sin θ

∣∣∣∣


=1.

Solving above equation for θ 6= 0, we get θ = 2π/3 or 4π/3. Consequently, rotations
rθ according to the line l having direction (1, 1, 1) with θ = 2π/3 or 4π/3 is an isome-
try of R3

M. Similarly, if the direction vector of l is one of (-1, 1, 1) , (1, -1, 1) , (1, 1, -1) ,
then θ = 2π/3 or 4π/3.

Let (1, 1, 0) can be taken the direction vector of l in D3. Then (p, q, r)=
1√
2

(1, 1, 0) .

Setting p = 1/
√

2, q = 1/
√

2 and r = 0 in the equation dM (rθ (A1) , rθ (A2))=2,
we get

dM (rθ (A1) , rθ (A2)) = max {|1− cos θ| , |cos θ| , |sin θ|}
= 1.

Solving above equation for θ 6= 0, we get θ = π. That is, every Euclidean rota-
tion about the line l that has the direction (1, 1, 0) with θ = π is an isometry of
R3

M. Similarly, if the direction vector of l is one of (1,−1, 0) , (1, 0, 1) , (1, 0,−1) ,
(0, 1, 1) , (0, 1,−1) , then θ = π.

Conversely, we must show that rotations rθ ∈ RM = R1 ∪ R2 ∪ R3 preserve
distance dM. To show dM (O,X) = dM (O, Y ), we shall consider the following
cases to check µ (OX) = µ (OY ). One can easily calculate µ (OX) = µ (OY ) for
all possible cases as in Proposition 3. 2. For example:

rotation
(1, 0, 0)

θ = π/2

1√
3

(1, 1, 1)

θ = 2π/3

1√
2

(1, 1, 0)

θ = π
· · ·

(p2, q2, r2) (p1,−r1, q1) (r1, p1, q1) (q1, p1, r1) · · ·

�

Corollary 3.2. Twenty three Euclidean rotations about the lines passing through
origin are isometric rotations in R3

M.

Note that the inversion σO about O = (0, 0, 0) is the transformation such that
σO (x, y, z) = (−x,−y,−z) for each point (x, y, z) in R3

M. Also, inversion σO is a
isometry in R3

M. We use σO to prove following propositions.

Proposition 3.4. There are only six rotary reflections about O that preserve the
dM−distances.

Proof. We know that the composition of a reflection in a plane and a rotation about
an axis orthogonal to the plane is called a rotary reflection. A rotary reflection is
determined by the reflection and an angle of rotation [2]. So, rotary reflection can be
written briefly as ρ := σΠσ∆σΓ = σΠrθ such that rθ ∈ RM , Γ and ∆ perdendicular
to Π [7]. This means that 9 rotation axes can be selected from 13 rotation axes are
given in Proposition 3. 3, because vectors of the set D2 are not normal vectors of
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the planes is given Corrollary 3.1. Let A1 = (1, 1, 1) and A2 = (1,−1, 1) be two
points in R3

M. Then dM (A1, A2) = 2.
If Π is the plane having equation x = 0, then (1, 0, 0) is unit direction vector of

rθ and ρ (x, y, z) = σΠrθ (x, y, z) = (−x, y cos θ − z sin θ, y sin θ + z cos θ) .

ρ (A1) = (−1, cos θ − sin θ, sin θ + z cos θ)

ρ (A2) = (−1,− cos θ − sin θ,− sin θ + z cos θ) .

Therefore,

dM (ρ (A1) , ρ (A2)) = 2⇔ |2 cos θ|+ |2 sin θ| = 2⇔ θ ∈
{
π

2
, π,

3π

2

}
,

but one can easily obtain that σΠrπ is equals to the inversiyon σO about O =
(0, 0, 0). Therefore, there are only two rotary reflections according to the plane
x = 0. Similarly, two rotary reflections are obtained using the planes y = 0 and
z = 0.

If Π is the plane having equation x+y = 0, then
(
1/
√

2, 1/
√

2, 0
)

is unit direction
vector of rθ and

ρ (x, y, z) = σΠrθ (x, y, z) =



(
-1+ cos θ

2

)
x-

(
1+ cos θ

2

)
y+

(
sin θ√

2

)
z,

,

(
-1- cos θ

2

)
x+

(
-1+ cos θ

2

)
y-

(
sin θ√

2

)
z,

,
- sin θ√

2
x+

sin θ√
2
y+ (cos θ) z


.

Clearly

ρ (A1) =

(
−1 +

sin θ√
2
,−1− sin θ√

2
, cos θ

)
ρ (A2) =

(
cos θ +

sin θ√
2
,− cos θ − sin θ√

2
, cos θ −

√
2 sin θ

)
and

dM (ρ (A1) , ρ (A2)) =2⇔ max
{
|1+ cos θ| , |-1+ cos θ| ,

∣∣∣√2 sin θ
∣∣∣}=2⇔ θ ∈ {0, π} ,

but one can easily obtain that σΠrπ is equals to the inversiyon σO about O =
(0, 0, 0) . This means that if θ = π, then there is no new rotary reflection. Similarly,
if Π are the planes having equations x−y=0, x+z=0, x−z=0, y+z=0, y−z=0,
there is no new rotary reflection. �

Proposition 3.5. There are only eight rotary inversions about O that preserve the
dM−distances.

Proof. We know that a rotary inversions is defined by ρ := σOσ∆σΓ = σOrθ such
that rθ ∈ RM . To show isometric rotary inversions, we have to consider 13 axes of
rotations is given in Proposition 3. 3.

If rθ represents the rotations about the x−axis, then (1, 0, 0) is the unit direction
vector of rθ and

ρ (x, y, z) = σOrθ (x, y, z) = (−x,−y cos θ + z sin θ,−y sin θ − z cos θ) .
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Consequently,

ρ (A1) = (−1,− cos θ + sin θ,− sin θ − cos θ)

ρ (A2) = (−1, cos θ + sin θ, sin θ − cos θ)

and

dM (ρ (A1) , ρ (A2)) = 2⇔ max {|2 cos θ| , |2 sin θ|} = 2⇔ θ ∈
{

0,
π

2
, π,

3π

2

}
.

One can easily obtain that σΠrπ is equals to a rotary reflection or a reflection. This

means that if θ =
π

2
, π and

3π

2
, then there is no new rotary inversion. Similarly,

if rθ represents the rotations about the y, z−axis, then there is no new rotary
inversion.

If rθ represents the rotations about the parallel to (1, 1, 0) , then
(
1/
√

2, 1/
√

2, 0
)

is unit direction vector rθ and

ρ (x, y, z) =σOrθ (x, y, z) =



(
-1- cos θ

2

)
x+

(
-1+ cos θ

2

)
y-

(
sin θ√

2

)
z,

,

(
-1+ cos θ

2

)
x+

(
-1- cos θ

2

)
y+

(
sin θ√

2

)
z,

,
sin θ√

2
x-

sin θ√
2
y- cos θz


.

Clearly

ρ (A1) =

(
−1− sin θ√

2
,−1 +

sin θ√
2
,− cos θ

)
ρ (A2) =

(
− cos θ − sin θ√

2
, cos θ +

sin θ√
2
,− cos θ +

√
2 sin θ

)
and

dM (ρ (A1) , ρ (A2)) =2⇔ max
{
|−1 + cos θ| , |1 + cos θ| ,

∣∣∣√2 sin θ
∣∣∣}=2⇔ θ ∈ {0, π} .

but one can easily obtain that σOrπ is equals to a reflection. This means that if
θ = π, then there is no new rotary inversion. Similarly, it is easily seen that there
is no new rotary inversion if rθ is any of the remaining rotation axes parallel to
(1,−1, 0) , (1, 0, 1) , (1, 0,−1) , (0, 1, 1) , (0, 1,−1) .

If rθ represents the rotations about the parallel to (1, 1, 1) , then
1√
3

(1, 1, 1) is

the unit direction vector of rθ and ρ (x, y, z) = σOrθ (x, y, z) is equals to

(
-1-2 cos θ

3

)
x+

(
-1+ cos θ+

√
3 sin θ

3

)
y+

(
-1+ cos θ-

√
3 sin θ

3

)
z,(

-1+ cos θ-
√

3 sin θ

3

)
x+

(
-1-2 cos θ

3

)
y+

(
-1+ cos θ+

√
3 sin θ

3

)
z,(

-1+ cos θ+
√

3 sin θ

3

)
x+

(
-1+ cos θ-

√
3 sin θ

3

)
y+

(
-1-2 cos θ

3

)
z


Clearly
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ρ (A1) = (−1,−1,−1)

ρ (A2) =

(
−1− 2 cos θ − 2

√
3 sin θ

3
,
−1 + 4 cos θ

3
,
−1− 2 cos θ + 2

√
3 sin θ

3

)
and

dM (ρ (A1) , ρ (A2)) =2 ⇔ max

{∣∣∣∣∣ -2+2 cos θ+2
√

3 sin θ

3

∣∣∣∣∣ ,
∣∣∣∣4-4 cos θ

3

∣∣∣∣ ,∣∣∣∣∣4+2 cos θ-2
√

3 sin θ

3

∣∣∣∣∣
}

=2

⇔ θ ∈
{

0,
2π

3
,

4π

3

}
Therefore, we obtain that only two rotary inversion according to rotation about

the axis parallel to (1, 1, 1) . Similarly, it is easily obtained that there are two new ro-
tary inversions each of the remaining rotation axes parallel to (−1, 1, 1) , (1,−1, 1) ,
(1, 1,−1) . That is, there are eight rotary inversions that preserve dM−distances.

�

It can be easily check that σOσ∆ = rπ, rπ ∈ R1∪R3. Thus we have the octahe-
dral group, Oh, consisting of nine reflections about planes, twenty-three rotations,
six rotary reflections, eight rotary inversions, one inversion and the identity. That
is, the Euclidean symmetry group of the cube.

Now, let us show that all isometries of R3
M are in T (3).Oh.

Definition 3.1. Given A = (a1, a2, a3) and B = (b1, b2, b3) points in R3
M. The

minimum distance set of A, B is defined by

{X : dM (A,X) + dM (X,B) = dM (A,B)}

and is denoted by [AB] .

Proposition 3.6. If φ : R3
M → R3

M is an isometry, then

φ ([AB]) = [φ (A)φ (B)] .

Proof. Let Y ∈ φ ([AB]) . Then,

Y ∈ φ ([AB]) ⇔ ∃X 3 Y = φ (X)
⇔ dM (A,X) + dM (X,B) = dM (A,B)
⇔ dM (φ (A) , φ (X)) + dM (φ (X) , φ (B)) = dM (φ (A) , φ (B))
⇔ Y = φ (X) ∈ [φ (A)φ (B)] .

�

Corollary 3.3. Let φ : R3
M → R3

M be an isometry. Then φ maps vertices to
vertices and preserves the lengths of edges of [AB] .

Proposition 3.7. Let f : R3
M → R3

M be an isometry such that f(O) = O. Then f
is in Oh.

Proof. Let A1 = (1, 1, 1) , A2 = (1,−1, 1) , A5 = (−1, 1, 1) , A6 = (−1,−1, 1) and
D = (0, 0, 2) . Consider the minimum distance set [OD] with corner point D (see
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Figure 3.1).

Figure 3.1

So, f (A1) ∈ AiAj , i 6= j, i, j ∈ {1, 2, 3, 4, 5, 6, 7, 8} . Here the points Ai and
Aj are not on the same coordinate axis. Since f is an isometry by Corollary
3.3, f (A1) , f (A2) , f (A5) and f (A6) must be the vertices of the minimum distance
set with corner point D and origin. Therefore, if f (A1) ∈ AiAj , then f (A1) = Ai
or f (A1) = Aj . Similarly f (A2) = Ai or f (A2) = Aj , f (A5) = Ai or f (A5) = Aj
and f (A6) = Ai or f (A6) = A6. Also any three of f (A1) , f (A2) , f (A5) or f (A6)
is not on the same coordinate axis. Now the following eight cases are possible;

f(A1) = A1 ⇒



f(A2) = A2 , f(A5) = A5 , f(A6) = A6

f(A2) = A4 , f(A5) = A5 , f(A6) = A6

f(A2) = A4 , f(A5) = A2 , f(A6) = A3

f(A2) = A5 , f(A5) = A2 , f(A6) = A6

f(A2) = A5 , f(A5) = A4 , f(A6) = A8

f(A1) = A2 ⇒



f(A2) = A1 , f(A5) = A6 , f(A6) = A5

f(A2) = A1 , f(A5) = A3 , f(A6) = A4

f(A2) = A3 , f(A5) = A1 , f(A6) = A4

f(A2) = A3 , f(A5) = A6 , f(A6) = A7

f(A2) = A6 , f(A5) = A1 , f(A6) = A5

f(A2) = A6 , f(A5) = A3 , f(A6) = A7

f(A1) = A3 ⇒



f(A2) = A2 , f(A5) = A4 , f(A6) = A1

f(A2) = A2 , f(A5) = A7 , f(A6) = A6

f(A2) = A4 , f(A5) = A2 , f(A6) = A1

f(A2) = A4 , f(A5) = A7 , f(A6) = A8

f(A2) = A7 , f(A5) = A2 , f(A6) = A6

f(A2) = A7 , f(A5) = A4 , f(A6) = A8

f(A1) = A4 ⇒



f(A2) = A1 , f(A5) = A3 , f(A6) = A2

f(A2) = A1 , f(A5) = A8 , f(A6) = A5

f(A2) = A3 , f(A5) = A1 , f(A6) = A2

f(A2) = A3 , f(A5) = A8 , f(A6) = A7

f(A2) = A8 , f(A5) = A1 , f(A6) = A5

f(A2) = A8 , f(A5) = A3 , f(A6) = A7
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f(A1) = A5 ⇒



f(A2) = A1 , f(A5) = A6 , f(A6) = A2

f(A2) = A1 , f(A5) = A8 , f(A6) = A4

f(A2) = A6 , f(A5) = A1 , f(A6) = A2

f(A2) = A6 , f(A5) = A8 , f(A6) = A7

f(A2) = A8 , f(A5) = A6 , f(A6) = A7

f(A2) = A8 , f(A5) = A1 , f(A6) = A4

f(A1) = A6 ⇒



f(A2) = A2 , f(A5) = A5 , f(A6) = A1

f(A2) = A2 , f(A5) = A7 , f(A6) = A3

f(A2) = A5 , f(A5) = A2 , f(A6) = A1

f(A2) = A5 , f(A5) = A7 , f(A6) = A8

f(A2) = A7 , f(A5) = A2 , f(A6) = A3

f(A2) = A7 , f(A5) = A5 , f(A6) = A8

f(A1) = A7 ⇒



f(A2) = A3 , f(A5) = A6 , f(A6) = A2

f(A2) = A3 , f(A5) = A8 , f(A6) = A4

f(A2) = A6 , f(A5) = A3 , f(A6) = A2

f(A2) = A6 , f(A5) = A8 , f(A6) = A5

f(A2) = A8 , f(A5) = A6 , f(A6) = A5

f(A2) = A8 , f(A5) = A3 , f(A6) = A4

f(A1) = A8 ⇒



f(A2) = A4 , f(A5) = A5 , f(A6) = A1

f(A2) = A4 , f(A5) = A7 , f(A6) = A3

f(A2) = A5 , f(A5) = A4 , f(A6) = A1

f(A2) = A5 , f(A5) = A7 , f(A6) = A6

f(A2) = A7 , f(A5) = A5 , f(A6) = A6

f(A2) = A7 , f(A5) = A4 , f(A6) = A3

In each case it is easy to show that f is unique and is Oh. For instance in the first
case:

If f(A1) = A1, f(A2) = A2, f(A5) = A5, f(A6) = A6, then f is the identity.

If f(A1) = A1, f(A2) = A4, f(A5) = A5, f(A6) = A6, then f = σ∆ such that
∆ : y − z = 0.

If f(A1) = A1, f(A2) = A4, f(A5) = A2, f(A6) = A3, then f = r2π/3 with
rotation axis ‖ (1, 1, 1) .

If f(A1) = A1, f(A2) = A5, f(A5) = A2, f(A6) = A6, then f = σ∆ such that
∆ : x− y = 0.

If f(A1) = A1, f(A2) = A5, f(A5) = A4, f(A6) = A8, then f = r4π/3 with
rotation axis ‖ (1, 1, 1) .

The proofs of the remaining cases are quite similar to that of the first case. �

Theorem 3.1. Let f : R3
M → R3

M be an isometry. Then there exists a unique
TA ∈ T (3) and g ∈ Oh such that f = TA ◦ g .

Proof. Let f(O) = A where A = (a1, a2, a3) . Define g = T−A ◦ f . We know that
g is an isometry and g(O) = O. Thus, g ∈ Oh and f = TA ◦ g by Proposition 3.7.
The proof of uniqueness is trivial. �
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ON THE BINOMIAL SUMS OF HORADAM SEQUENCE

NAZMIYE YILMAZ AND NECATI TASKARA

Abstract. The main purpose of this paper is to establish some new properties

of Horadam numbers in terms of binomial sums. By that, we can obtain these

special numbers in a new and direct way. Moreover, some connections between
Horadam and generalized Lucas numbers are revealed to get a more strong

result.

1. Introduction

For a, b, p, q ∈ Z, Horadam [1] considered the sequence Wn (a, b ; p, q) , shortly
Wn, which was defined by the recursive equation

(1.1) Wn (a, b ; p, q) = pWn−1 + qWn−2 (n ≥ 2),

where initial conditions are W0 = a, W1 = b and n ∈ N.
In equation (1.1), for special choices of a, b, p and q, the following recurrence

relations can be obtained.

• For a = 0, b = 1, it is obtained generalized Fibonacci numbers:

(1.2) Un = pUn−1 + qUn−2.

• For a = 2, b = p, it is obtained generalized Lucas numbers:

(1.3) Vn = pVn−1 + qVn−2.

• Finally, we should note that choosing suitable values on p, q, a and b in
equation (1.1), it is actually obtained others second order sequences such
as Fibonacci, Pell, Jacobsthal, Horadam and etc. (for example, see [16] and
references therein).

Considering [1] (or [4]), one can clearly obtain the characteristic equation of (1.1)
as the form t2 − pt− q = 0 with the roots

(1.4) α =
p+

√
p2 + 4q

2
and β =

p−
√
p2 + 4q

2
.

2000 Mathematics Subject Classification. 11B39, 11B65.
Key words and phrases. Binomial sums, Horadam numbers, generalized Lucas numbers.
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Hence the Binet formula

(1.5) Wn = Wn (a, b ; p, q) = Aαn +Bβn,

where A = b−aβ
α−β , B = aα−b

α−β , can be thought as a solution of the recursive equation

in (1.1).
The number sequences have been interested by the researchers for a long time.

Recently, there have been so many studies in the literature that concern about
subsequences of Horadam numbers such as Fibonacci, Lucas, Pell and Jacobsthal
numbers. They were widely used in many research areas as Physics, Engineer-
ing, Architecture, Nature and Art (see [1-16]). For example, in [7], Taskara et al.
examined the properties of Lucas numbers with binomial coefficients.

In [3], they also computed the sums of products of the terms of the Lucas se-
quence {Vkn} . In addition in [2], the authors established identities involving sums
of products of binomial coefficients.

And, in [8], we obtained Horadam numbers with positive and negative indices
by using determinants of some special tridiagonal matrices.

In this study, we are mainly interested in some new properties of the binomial
sums of Horadam numbers.

2. Main Results

Let us first consider the following lemma which will be needed later in this
section. In fact, this lemma enables us to construct a relation between Horadam
numbers and generalized Lucas numbers by using their subscripts.

Lemma 2.1. [3]For n ≥ 1, we have

(2.1) Wni+i = ViWni − (−q)iWni−i.

Theorem 2.1. For n ≥ 2, the following equalities are hold:

Wni+i = V n−1
i W2i − (−q)i

n−1∑
j=1

V n−1−j
i Wij .

Proof. Let us show this by induction, for n = 2, we can write

W3i = ViW2i − (−q)iWi,

which coincides with equation (2.1). Now, assume that, it is true for all positive
integers m, i.e.

(2.2) Wmi+i = V m−1
i W2i − (−q)i

m−1∑
j=1

V m−j−1
i Wij .

Then, we need to show that above equality holds for n = m+ 1, that is,

(2.3) W(m+1)i+1 = V mi W2i − (−q)i
m∑
j=1

V m−j
i Wij .
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By considering the right hand side of equation (2.3), we can expand the summation
as

V mi W2i − (−q)i
m∑
j=1

V m−j
i Wij = V mi W2i − (−q)i

m−1∑
j=1

V m−j
i Wij − (−q)iWmi

= Vi

V m−1
i W2i − (−q)i

m−1∑
j=1

V m−j−1
i Wij

− (−q)iWmi.

Then, using equation (2.2), we have

V mi W2i − (−q)i
m∑
j=1

V m−j
i Wij = ViWmi+i − (−q)iWmi

Finally, by considering (2.1), we obtain

V mi W2i − (−q)i
m∑
j=1

V m−j
i Wij = W(m+1)i+i

which ends up the induction. �

Choosing some suitable values on a, b, p and q, one can also obtain the sums of
the well known Fibonacci, Lucas and etc. in terms of the sum in Theorem 2.1.

Corollary 2.1. In Theorem 2.1, for special choices of a, b, p and q, the following
results can be obtained for well-known number sequences in literature.

• For a = 0, b = 1, it is obtained generalized Fibonacci numbers:

Uni+i = V n−1
i U2i − (−q)i

n−1∑
j=1

V n−1−j
i Uij .

• For a = 2, b = p, it is obtained generalized Lucas numbers:

Vni+i = V n−1
i V2i − (−q)i

n−1∑
j=1

V n−1−j
i Vij .

• By choosing other suitable values on a, b, p and q, almost all other special
numbers can also be obtained in terms of the sum in Theorem 2.1.

Now, we will show the relation between Horadam numbers and generalized
Lucas numbers using binomial sums as follows.

Theorem 2.2. For n ≥ 2, the following equalities are satisfied:

Wni+i =


bn

2 c∑
j=0

(
n−j
j

)
V n−2j
i qijWi + qia

bn−1
2 c∑
j=0

(
n−j−1

j

)
V n−2j−1
i qij , i is odd

bn
2 c∑
j=0

(
n−j
j

)
(−1)

j
V n−2j
i qijWi − qia

bn−1
2 c∑
j=0

(
n−j−1

j

)
(−1)

j
V n−2j−1
i qij , i is even.
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Proof. There are two cases of subscript i.
Case 1: Let be i is odd. Then, by Theorem 2.1, we can write

Wni+i = V n−1
i W2i + qi

n−1∑
j=1

V n−1−j
i Wij

= V n−1
i W2i + qiV n−2

i Wi + qiV n−3
i W2i + · · ·+ qiW(n−1)i.

We must note that the proof should be investigated for both cases of n.
If n is odd, then we have

Wni+i = V n−2
i

(
ViW2i + qiWi

)
+ qiV n−4

i (ViW2i +W3i)(2.4)

+ · · ·+ qiVi
(
ViW(n−3)i +W(n−2)i

)
+ qiW(n−1)i.

Hence, it is given the binomial summation, when the recursive substitutions equa-
tion (2.4) by using (2.1),

(2.5) Wni+i =

n−1
2∑
j=0

(
n− j
j

)
V n−2j
i qijWi + qia

n−1
2∑
j=0

(
n− j − 1

j

)
V n−2j−1
i qij .

If n is even, then similar approach can be applied to obtain

Wni+i = V n−2
i

(
ViW2i + qiWi

)
+ qiV n−4

i (ViW2i +W3i)

+ · · ·+ qiV 0
i

(
ViW(n−2)i +W(n−1)i

)
.

and

(2.6) Wni+i =

n
2∑
j=0

(
n− j
j

)
V n−2j
i qijWi + qia

n−2
2∑
j=0

(
n− j − 1

j

)
V n−2j−1
i qij .

For the final step, we combine (2.5) and (2.6) to see the equality

Wni+i =

bn
2 c∑
j=0

(
n− j
j

)
V n−2j
i qijWi + qia

bn−1
2 c∑
j=0

(
n− j − 1

j

)
V n−2j−1
i qij ,

as required. Now, for the next case, consider
Case 2: Let be i is even. Then, by Theorem 2.1, we know

Wni+i = V n−1
i W2i − qi

n−1∑
j=1

V n−1−j
i Wij

= V n−1
i W2i − qiV n−2

i Wi − qiV n−3
i W2i − · · · − qiW(n−1)i.

and therefore, we write
(2.7)

Wni+i =

n−1
2∑
j=0

(
n− j
j

)
(−1)

j
V n−2j
i qijWi − qia

n−1
2∑
j=0

(
n− j − 1

j

)
(−1)

j
V n−2j−1
i qij

if n is odd. And we get
(2.8)

Wni+i =

n
2∑
j=0

(
n− j
j

)
(−1)

j
V n−2j
i qijWi − qia

n−2
2∑
j=0

(
n− j − 1

j

)
(−1)

j
V n−2j−1
i qij
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if n is even. Thus, by combining (2.7) and (2.8), we obtain

Wni+i =

bn
2 c∑
j=0

(
n− j
j

)
(−1)

j
V n−2j
i qijWi−qia

bn−1
2 c∑
j=0

(
n− j − 1

j

)
(−1)

j
V n−2j−1
i qij .

Hence the result follows. �

Choosing some suitable values on i, a, b, p and q, one can also obtain the
binomial sums of the well known Fibonacci, Lucas, Pell, Jacobsthal numbers, etc.
in terms of binomial sums in Theorem 2.2.

Corollary 2.2. In Theorem 2.2, for special choices of i, a, b, p, q, the following
result can be obtained.

• For i = 1,
* For a = 0 and b, p, q = 1, Fibonacci number

Fn+1 =

bn
2 c∑
j=0

(
n− j
j

)
,

* For a = 2 and b, p, q = 1, Lucas number

Ln+1 =

bn
2 c∑
j=0

(
n− j
j

)
+ 2

bn−1
2 c∑
j=0

(
n− j − 1

j

)
.

* For a = 0, b = 1, p = 2 and q = 1, Pell number

Pn+1 =

bn
2 c∑
j=0

(
n− j
j

)
2n−2j .

* For a = 0, b = 1, p = 1 and q = 2, Jacobsthal number

Jn+1 =

bn
2 c∑
j=0

(
n− j
j

)
2j .

• For i = 2,
* For a = 0 and b, p, q = 1, Fibonacci number

F2n+2 =

bn
2 c∑
j=0

(
n− j
j

)
(−1)

j
3n−2j .

* For a = 2 and b, p, q = 1, Lucas number

L2n+2 =

bn
2 c∑
j=0

(
n− j
j

)
(−1)

j
3n+1−2j − 2

bn−1
2 c∑
j=0

(
n− j − 1

j

)
(−1)

j
3n−1−2j .

* For a = 0, b = 1, p = 2 and q = 1, Pell number

P2n+2 = 2

bn
2 c∑
j=0

(
n− j
j

)
(−1)

j
6n−2j .
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* For a = 0, b = 1, p = 1 and q = 2, Jacobsthal number

J2n+2 =

bn
2 c∑
j=0

(
n− j
j

)
(−1)

j
2j .

• By choosing other suitable values on i, a, b, p and q, almost all other special
numbers can also be obtained in terms of the binomial sum in Theorem 2.2.
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EMBEDDING THE COMPLEMENT OF A COMPLETE GRAPH

IN A FINITE PROJECTIVE PLANE

İBRAHIM GÜNALTILI

Abstract. Let S = (P,L) be a non-trivial regular finite linear space with v

points, v + k lines, k ≥ 3. We show that if S contains at least
(k
2

)
lines of size

b(p) − 2 and one line size b(p) for some point p, then S is embeddable in a

unique projective plane π of order b(p) − 1 and π − s is a complete graph of
order k , where b(p) ≥ 4 for some point p.

Key Words: linear space, projective plane, complete graph.

AMS Subject Classification: 51E20 , 51A45.

1. Introduction

Linear spaces lie at the foundation of incidence geometry, and more in particular,
of finite geometry. A lot of characterizations of projective and affine spaces use
linear spaces. Also, many important diagram geometries related to classes of simple
groups are build with linear spaces. Linear spaces with constant block size are called
Steiner systems and also play a prominent role in finite geometry. But there are
also linear spaces that are not Steiner systems, and yet they appear often naturally.
One such class of linear spaces is the class of A-affine linear spaces Let us first recall
some definitions and results. For more details, (see [1] , [2]).

A finite linear space is a pair S = (P,L), where P is a finite set of points and L
is a family of proper subsets of P, which are called lines, such that

(L1) Any two distinct points lie on exactly one line,
(L2) Any line contains at least two points,
(L3) There exist at least two lines.

It is clear that (L3) could be replaced by an axiom (L3)
′
: There are three lines of

S not incident with a common point. In any case, (L3) and (L3)
′

are ‘non-triviality’
conditions. Systems satisfying (L1) and (L2) but not (L3) are called trivial linear
spaces.

In a finite linear space S = (P,L), v and b denote the total number of points
and lines, respectively. The degree b(p) of a point p is the total number of lines
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through p, and the size v(l) of a line l is the total number of points on l. Thus; if
v(l) = k then l is called a k−line. The total number of k−lines is denoted by bk.

The integer n defined by n + 1 = max{b(p) : p ∈ P } is the order of a linear
space. It is clear that any line of size n+1 meets every other line in a linear space of
order n.The linear spaces with constant point degree is called regular linear spaces.

The numbers v, b, v(l) and b(p) will be called the parameters of S.
A projective plane π is a linear space in which all lines meet and in which all

points are on n+ 1 lines, n ≥ 2. The number n is called the order of π.
An affine plane A is a linear space in which, for any point p not on a line l, there

is a unique line on p missing l, and in which all points are on n+ 1 lines, n ≥ 2.
A k-arc in a projective plane of order n is a set of k points no three of which are

colinear. A k-arc can be thought of as a complete graph embedded in the projective
plane.

An hyperoval is an (n+ 2)−arc in a projective plane of even order n.
For any line l of a linear space S of order n, the difference n+ 1− v(l) is called

a deficiency of l, denoted d(l). Since the size of any line cannot exceed n + 1, the
deficiency of any line is non-negative.

Let µ and λ be the respective minimum and maximum deficiencies among those
lines of S which have size less than n.

Let S = (P,L) be a linear space and let X be a subset of P. Then we can define
the linear space S ′ = (X , {l ∩ X : l ∈ L, |l ∩ X | ≥ 2}). If C = P − X , then S ′ is
called the complement of C in S and we say that S ′ is obtained by removing C from
S. We denote the complement of C in S by S − C.

Let X be a set of points in a projective plane π of order n. Suppose that we
remove X from π. We obtain a linear space π − X having certain parameters
(i.e., the number of points, the number of lines, the point-degrees and line-degrees)
(see [1]).

We call any linear space, which has the same parameters as π − X , a pseudo-
complement of X in π.

We have already encountered the notation of a pseudo-complement, namely the
pseudo-complement of one line. This is a linear space with n2 points, n2 + n lines
in which any point has degree n+ 1 and any line has degree n. We know that this
is an affine plane, which is a structure embeddable in a projective plane of order n.

A linear space with n2 + n − m2 − m points, b = n2 + n + 1 lines, constant
point-degree n + 1 and containing at least m2 + m + 1 lines of size n −m will be
called the pseudo-complement of a projective subplane of order m in a projective
plane of order n. It is clear that m < n.

A linear space with n2 + n + 1 − m2 points, b = n2 + n + 1 lines, constant
point-degree n + 1 and containing at least m2 + m lines of size n + 1 −m will be
called the pseudo-complement of an affine subplane order m in a projective plane
of order n. It is clear that m < n.

A linear space with n2 + n+ 1− k points, b = n2 + n+ 1 lines, constant point-
degree n+1 and lines of size n+1, n and n−1 will be called the pseudo-complement
of a k-arc in a projective plane of order n.

Two lines l and l′ are parallel if l = l′ or l∩ l′ = φ. Two lines l and l′ are disjoint
if l ∩ l′ = φ.

A parallel class in the linear space (P,L) is a subset of L with the property that
each point of P is on a unique element of this subset.
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Let S = (P,L) and S ′ = (P ′,L′) be two finite linear spaces. We say that S
can be embedded in S ′ if P ⊆ P ′ and L = {l′ ∩ P : l′ ∈ L′ and |l′ ∩ P| ≥ 2}. Hall
proved in [10] that every finite linear space can be embedded in an infinite projective
plane.

The complementation problem with respect to a projective plane is the following:
Remove a certain subset of points and lines from the projective plane. Determine
the parameters of the resulting space. Now assume that you are starting with a
space having these parameters. Does this somehow force this subset to reappear,
thus giving an embedding in the original projective plane? A number of people have
considered complementation problems ([1] , [2] , [3] , ..., [13]). In 1970, Dickey solved
the problem for the case where the configuration removed was a unital [7]. Batten
[2] gave characterizations of linear spaces which are the complement of affine or
projective subplanes of finite projective planes.

In this paper, We show that if S contains at least
(
k
2

)
lines of size b(p) − 2 and

one line size b(p) for some point p, then S is embeddable in a projective plane π of
order b(p) − 1 and π − s is a complete graph of order k , where b(p) ≥ 4 for some
point p.

2. Main Results

Theorem 2.1. If S is a (n+ 1)−regular linear space with v = n2 + n + 1 − k
points, b = n2 + n + 1 lines and contains exactly k (n+ 2− k) > 0 lines of size n,
S is uniquely embeddable in a projective plane π of order n

Proof. Fix an n−line l. Then the number induces a parallel class of n + 1 lines.
Let a be the number of n−lines in a fixed parallel class. Then

an+ (n+ 1− a)(n− 1) = n2 + n+ 1− k

It requires that the number of n−lines in a parallel class is n + 2 − k. Since bn =
k(n + 2 − k), the number of distinct parallel classes is k. Consider the structure
S? = (P ?, L?) where P ? is P along with the parallel classes and L? consist the lines
of L extended by those parallel classes to which they belong. We shall prove that
S? is a linear space: It is clear that two old points (points of P ?) or an old and a
new point are one unique line of L?, since S is a linear space. Let p and q be two
new distinct points. We must show that thet determine a unique line of L?. Let
lp and lq be n−lines which determine the parallel classes corresponding to p and
q, respectively. If lp ∩ lq = ∅, p = q which is a contradiction. So lp and lq meet.
Each point of lq is on a unique line of the parallel classes determined by lp. Thus lq
does not meet precisely one line to the parallel class determined by lp. This leaves
precisely one line d to parallel to both lp and lq such that p, q ∈ d. Thus S? is a
projective plane of order n. Therefore, S can be embedded in a projective plane π
of order n

�

Theorem 2.2. Let S = (P,L) be a non-trivial regular finite linear space with v

points and b lines, 3 ≤ b−v = k. If S contains at least
(
k
2

)
lines of size b(p)−2,then

S can be embedded in a projective plane π of order b(p)− 1 and π−S is a complete
graph of order k embedded a finite projective plane π of order b(p) − 1 for some
point p ∈ P.
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Proof. Let b(p) = n+ 1, b− v = k ≥ 3 for some point p of S. By all hypothesis of
theorem, n ≥ 2 and S is a non trivial (n+1)−regular linear space with n2+n+1−k
points and n2 + n+ 1 lines. Let bi be the number of all i−lines of S. Then also, by
simple counting methots,
i)
∑
i

bi = n2 + n+ 1

ii)
∑
i

ibi = (n+ 1)(n2 + n+ 1− k)

iii)
∑
i

i(i− 1)bi = (n2 + n− k)(n2 + n+ 1− k)

iv)
∑

(n− i) (n+ i− 1)bi =
(
k
2

)
Hence However, S has at least

(
k
2

)
lines of size n−1, and each of them contributes 2

to the left hand side of the equality iv). Thus bi = 0, i 6= n+1, n, n−1. Therefore,

by i)-iv), the lines of S consist of
(
k
2

)
lines of size n− 1, k(n+ 2− k) lines of size n

and n2 + n+ 1 + k2 −
(
k
2

)
− (n+ 2)k lines of size n+ 1.

Case 1. Let k < n+ 2. In this case, S is the pseudo-complement of a k − arc in a
finite peojective plane of order n and k ≤ n+ 2 since bn ≥ 0, k ≤ n+ 2. Therefore
by theorem 1, S can be embeded in a projective plane of order n. Then k ≤ n+ 2
Case 2. Let k = n + 2. In this case, every point is contained in n+2

2 lines of size

n+ 1 and in n
2 lines of size n− 1. The number of lines size n− 1 is 1

2 (n+ 2)(n+ 1)

and the number of lines of size n + 1 is 1
2n(n − 1). Further more a short line of

size n− 1 is parallel to 2n other (n− 1)−lines and a(n+ 1)−lines meets ever other
line Fix a(n− 1)−line l and denote by π(l) the set of the 2n lines parallel to l. It
follows from proposition 1.1 that if π(l) were to contain a triangle then n ≤ 6 this
case contradiction to n > 6. Let l1 and l2 be intersecting lines of π(l); denote by
M1 the set of lines of π(l) which meet l2 and by M2 the set of lines of π(l) which
meet li since π(l) contains no triangle, M1 and M2 consists of mutually parallel
lines. We have |Mj | = n − 1 and lj ∈ Mj . Furthermore M1 ∩M2 = (because π(l)
contains no triangle). Let d1 and d2 be two lines of π(l) − (M1 ∪M2). We claim
that each line of M1 is parallel to at n − 1 other lines of π(l). Then every line of
M1 meets at least n− 3 lines of M2. Therefore, π(l) = (M1 ∪M2) ∪ {d1 ∪ d2} and
M1 consist of mutually parallel lines.
a(n− 2) + (n+ 1− a)n = n2 − 2 and a = n+2

2 .
Since a ∈ Z, n is even integer.

The line d1 meets n− 1 other lines of π(l). One of these lines may be d2 but at
least n−2 of them are in M1∪M2. Therefore without ........of generality, d1 meets at
least 1

2 (n− 2) > 2, lines of M2. Hence, İf h is an arbitrary line of M1, then h meets
a line of M2, which also meets d1. Since π(l) has no trianles, two implies that d1 is
parallel to h. So d1 is parallel to every line of M1. Consequently, πi M1∪{l, d1} is a
set of mutually parallel lines with |πi| = n+1. In wiew of v = n2−1 = |πi| . (n− 1) ,
πi is a parallel class. Therefore, π1 ∩ π2 = {l} . If α is the totall number of parallel

classes, α = 2bn−1

n+1 = n + 2. Thus extension of S is a projective planes of order n
and S can be embedded into a projective plane of order n as the complement of a
hyperoval.

�

In fact, this case was originally proved by R. C Bose and S. S. Shrikhandle (1973)
and then generalized greatly, allowing n ≥ 2 by P.de Witte (1977)
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Corollary 2.1. If S is a non-trivial regular linear space with b lines, v points,

b − v ≥ 3 and at least
(
b−v
2

)
lines of size

√
4b−3−3

2 and at least one point of degree
√
4b−3+1

2 , S can be embedded in a projective plane π of order
√
4b−3−1

2 and is the

pseudo-complement of a (b− v)− arc in a projective plane of order
√
4b−3−1

2

Corollary 2.2. If S is a non -trivial regular linear space with v points, b lines,
b − v ≥ 3, at least

(
b−v
2

)
lines of size b(p) − 2 , S can be embedded in a projective

plane π of order b(p) − 1 and is the pseudo-complement of a (b − v) − arc in a
projective plane of order b(p)− 1

Theorem 2.3. Let S = (P,L) be a non-trivial n + 1−regular linear space having
properties follows:

i) |P | = n2 + n+ 1− k, |L| = n2 + n+ 1, k ≥ 3, n ≥ 2
ii) v(l) ∈ {n+ 1, n, n− 1} for each line l.
Then S can be embeded in a finite projective plane π of order n and π − S is

the k − arc

Proof. The proof of this theorem is completely similar to theorem 2.2. �

The author is grateful to the referees for useful advice.
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