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WEDGE CAVITY

HALIS BILGIL, ZARIFE DOLEK

ABSTRACT. This paper analyzes the 2-D Stokes flow in annular wedge cavities with dif-
ferent cavity angles. In order to analyze the flow structures, the two dimensional bi-
harmonic equation is solved analytically. The flow is governed by two physical control
parameters: the cavity angleα and the ratio of the upper and lower lid speeds (S = U1

U2
).

By varying α for each S , the effect of cavity angle on the streamline patterns and their
bifurcations are investigated.

1. INTRODUCTION

Stokes flow generated within different shaped cavities is encountered in several
manufacturing processes and engineering applications. The list of some of these ap-
plications can be found in the references [6,12,14,17]. Flow within the cavities has also
been a focus attention for computational fluid dynamic studies since it is a commonly
used as a benchmark problem.

There are many works in the literature on cavity flows related to eddy structure and
their bifurcations. Gürcan et al. [8] analyzed the generation of eddies in a rectangular
cavity. They showed effects of cavity aspect ratio and speed ratio of the moving lids on
the streamline topology and the flow bifurcations. Flow bifurcation and eddy gener-
ation for steady, viscous flow in an L-shaped cavity, with the lids moving in opposite
directions, has been investigated by Deliceoğlu and Aydın [2]. Arun and Satheesh [1]
analyzed the effects of aspect ratio and Reynolds number on flow structures in a rect-
angular cavity.

Most of the these studies in literature related to cavity flow are concerned with the
square or rectangular cavity flows, although the cavities may be non-rectangular in
applications. Gürcan & Bilgil [9], and Gürcan et al. [10] investigated bifurcations and
eddy genesis mechanisms of Stokes flow in a sectorial cavity. Ertürk and Dursun [3]
solved 2-D steady and driven skewed cavity flow of an incompressible fluid numeri-
cally for skew angles ranging between 15o and 165o . Ertürk and Gökçöl [4] studied 2-D,
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steady and incompressible flow inside a triangular driven cavity. A sequence of flow
structures is illustrated by Gaskell et al. [7] for Stokes flow in a cylindrical cavity. Flow
structures in different shaped cavities investigated by Ozalp et al. [15]. They showed
effects of cavity shape on flow structure within the cavity in detail.

As can be seen from the literature survey given above and references therein, most
of the studies on cavity flows are performed on cavity aspect ratio and speed ratio of
moving lids. There is a need to investigate the effect of cavity angle on flow structure
in annular wedge cavities. This is aim of this study.

2. MATHEMATICAL FORMULATION

We considered a two-dimensional creeping flow in an annular wedge cavity r1 ≤
r ≤ r2,−α ≤ θ ≤ α (Fig. 1). The side walls, r = r1, r = r2 are fixed. The boundaries
θ = α and θ = −α are two moving lids, which translate with speeds U1 and U2 in the
radial direction respectively. The equation for the stream function governing the two-

FIGURE 1. Geometry and boundary conditions for the lid driven cavity

dimensional steady flow of a viscous fluid is

(2.1) ∇2∇2ψ(r,θ ) = 0,

where∇2 stands for the Laplace operator

(2.2)
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in polar coordinates.
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The derivatives ofψ give the velocity components:

(2.3) ur =−
1

r

∂ ψ

∂ θ
, uθ =

∂ ψ

∂ r
,

where ur and uθ are the radial and azimuthal components of velocity, respectively.
The streamfunction is constant (taken to be zero) on the boundaries

(2.4) ψ (r1,θ ) =ψ (r2,θ ) = 0 , ψ (r,±α) = 0 .

The ratio of the radii of the cylinders and speed ratio of the moving lids are our two
control parameters which are defined by:

(2.5) A =
r2

r1
, S =

U1

U2
.

In the plane polar coordinate system (r,θ ), the other boundary conditions are

(2.6) ur (r,α) = S , ur (r,−α) = 1 ,

and on the side walls:

(2.7) uθ (r1,θ ) = uθ (r2,θ ) = 0,

where we fixed U1 = S and U2 = 1.

2.1. Eigenfunction solution. The general solution for the streamfunction can be writ-
ten [13] in separable form as

(2.8) ψ (r,θ ) =
∞
∑

−∞
[En sin(λnθ ) + Fn cos(λnθ )]φ

(n )
1 (r ),

where

(2.9) φ(n )1 (r,λn ) = an r λn + bn r −λn + cn r 2−λn +dn r 2+λn ,

and λn are complex eigenvalues given by

(2.10) sin(bλn ) =±βbλn ,

where

(2.11) bλn = (i log
1

A
)λn and β =

1

2 log A
(A−

1

A
).

These complex eigenvalues are found via a Newton iteration procedure as described
by Robbins & Smith [165], Fettis [5] and Khuri [13]; and values of the corresponding
eigenvalues λn are given in Table 2.1.

The coefficients an , bn , cn and dn have to be determined from the sidewall bound-
ary conditions. These coefficients are given by Khuri [13].

The coefficients En and Fn in Eq. (2.8) have to be determined from the upper and
the lower boundary conditions in (2,4) and (2,6). It is clear that the coefficients and
the eigenvalues depends on S and A, respectively (see for details [55,99]).
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Table 2.1: The first 30 roots of λn for r1 = 1, r2 = 4.

n λn n λn

1 1.86054+2.99451i 11 3.75801+48.66728i
2 2.46101+7.70825i 12 3.82201+53.203498i
3 2.78163+12.30346i 13 3.88080+57.739178i
4 3.00270+16.86922i 14 3.93515+62.27442i
5 3.17170+21.42265i 15 3.98570+66.80932i
6 3.30856+25.96964i 16 4.03295+71.34393i
7 3.42358+30.51282i 17 4.07728+75.87830i
8 3.52277+35.05353i 18 4.11906+80.41247i
9 3.60998+39.59256i 19 4.15854+84.94646i

10 3.68778+44.13037i 20 4.19598+89.48031i

The infinite series thereby obtained are in practice truncated after N terms, i.e. the
lower and upper summation limits are replaced by −N and N , respectively. The con-
vergence of the infinite series in (2.9) are necessary to determine the number N which
assures that the truncated series is close enough to the infinite series.

3. RESULTS

We first analyzed flow structures and their bifurcations in a half-annular ring cavity.
Then flow structures and their bifurcations in an annular wedge cavity wiht different
cavity angle are investigated. Effects of the cavity angle on flow topology are revealed.

3.1. Flow structures in a half-annular ring. A half-annular ring cavity, α = π
2 and

3.2 ≤ r ≤ 18, consisting of two stationary side walls and both lids moving is consid-
ered; the boundary conditions and solution procedure are as given in section 2. As
in Gürcan and Bilgil’s work [9], mechanisms for eddy generation are examined via the
emergence and the coalesce of corner-eedies or side-eddies as the aspect ratio is de-
creased; initially for single driven cavity, S = 1, and then for symmetric flow S =−1 and
S = 1. For each case, the flow structures and eddy genesis mechanisms are illustrated
in detail with figures.

3.1.1. Bifurcations for a Single Lid-Driven Sectorial Cavity. The aim of this section is
to consider Stokes flow in a single lid driven annular cavity with three stationary walls
(from Fig 1., S = 0 implies the top lid is stationary ; since the solutions obtained are
independent of which lid is stationary and which one moves, to aid visualsation the
flow patterns presented are for the case of a stationary bottom lid). Although the an-
alytical solution of this problem was obtained by Khuri [13], he was not interested in
the mechanism(s) of eddy generations.

In this case, the boundary conditions are defined as follows:

(3.1) ψ (r1,θ ) =ψ (r2,θ ) = 0 , ψ (r,±α) = 0

and imposing the no-slip condition on all four walls gives,

(3.2) uθ (r1,θ ) = uθ (r2,θ ) = 0

(3.3) ur (r,α) = 1 , ur (r,−α) = 0
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The values of the streamfunction and the radial velocity on top and bottom bound-
aries are given in Table 3.1. For different values of N in the infinite series in (2.8), the
radial velocity on top and bottom boundaries are given in Table 3.2.

To investigate streamline bifurcations and hence a mechanism of eddy generation
in this cavity, the aspect ratio was decreased, starting from A = 18 where the flow con-
sist of a single main eddy and two smaller ones near the bottom corners (Fig. 2a). As A
decreases it is observed that the corner eddies grow in size relative to the large central
eddy, to meet each other on the bottom wall at a critical value of A = 15.49 , see Fig. 2b.
At this critical aspect ratio a new eddy is formed with a saddle point and a separatrix
with streamfunction value ψ = 0. As A is decreased further this new eddy continues
to grow (see Fig. 2c-d), the centers of two sub-eddies approach the saddle point and
the center near the left-bottom of the cavity (say left center) coalesces with the saddle
point to form a cusp bifurcation at A = 12.05. Hence these two critical points disap-
pear and only the center near the right-bottom side of the cavity remains (say right
center). In fact, at this critical aspect ratio the development of this second eddy is now
complete as shown in Fig. 2e, A = 11.10. In this figure small corner eddies can be seen
once again developing in each of the bottom corners. The process of eddy generation
continues as the aspect ratio decreases( see Fig. 2f, where A = 3.20).

The same mechanism of eddy generation has similarly been reported by Gurcan
[8,11] for the case of a rectangular cavity and Gurcan & Bilgil [9] for a sectorial cavity
(for α= π

4 ).

Table 3.1: The values ofψ and ur on boundaries for r1 = 1, r2 = 4 and N = 30.

r ψ
�

r, π2 ; 30
�

ψ
�

r,−π2 ; 30
�

- 1
r
∂ ψ
∂ θ

�

r, π2 ; 30
�

- 1
r
∂ ψ
∂ θ

�

r,−π2 ; 30
�

1.0 -9.6458E-17 -3.2719E-020 1.7708E-15 0
1.2 7.1537E-04 -7.8157E-13 0.8817E+01 -0.1332E-10
1.4 -1.1147E-03 3.0229E-12 0.1071E+01 0.3918E-10
1.6 -1.4256E-03 3.7842E-12 0.1122E+01 0.3750E-09
1.8 9.9134E-04 -3.8356E-12 0.9247E+00 -0.3135E-09
2.0 -1.8560E-03 4.8247E-12 0.1163E+01 0.5496E-09
2.2 -1.4157E-03 2.3535E-12 0.1123E+01 0.3588E-09
2.4 -1.9610E-03 3.1865E-12 0.1139E+01 0.3818E-09
2.6 -1.5174E-03 8.4531E-12 0.1047E+01 0.2580E-09
2.8 2.2270E-03 -3.4649E-12 0.9173E+00 -0.3142E-10
3.0 -1.7164E-04 -2.5217E-12 0.1036E+01 -0.4235E-09
3.2 1.6848E-03 2.0594E-11 0.9621E+00 0.5959E-09
3.4 -2.1931E-03 4.9270E-12 0.1170E+01 0.7111E-09
3.6 2.1211E-03 -1.3457E-11 0.9658E+00 -0.1104E-08
3.8 -4.6814E-05 2.9814E-11 0.1195E+01 -0.1758E-09
4.0 -3.9111E-16 2.0768E-19 0.6123E-15 0

Table 3.2: The values of ur on boundaries for different N and r1 = 1, r2 = 4.
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r - 1
r
∂ ψ
∂ θ

�

r, π2 ; 15
�

- 1
r
∂ ψ
∂ θ

�

r,−π2 ; 15
�

1.0 0 0
1.6 0.9127 -0.1003-07
2.2 1.0922 0.8708E-08
2.8 1.0043 0.5807E-08
3.4 0.9439 -0.1674E-7
4.0 0 0

r - 1
r
∂ ψ
∂ θ

�

r, π2 ; 30
�

- 1
r
∂ ψ
∂ θ

�

r,−π2 ; 30
�

1.0 0 0
1.6 1.1227 0.3750E-09
2.2 1.1236 0.3588E-09
2.8 0.9173 -0.3142E-10
3.4 1.1707 0.7111E-09
4.0 0 0

r - 1
r
∂ ψ
∂ θ

�

r, π2 ; 60
�

- 1
r
∂ ψ
∂ θ

�

r,−π2 ; 60
�

1.0 0 0
1.6 1.0484 -0.2170E-10
2.2 1.0698 -0.9644E-11
2.8 1.0628 -0.2684E-10
3.4 0.8381 0.3904E-10
4.0 0 0

r - 1
r
∂ ψ
∂ θ

�

r, π2 ; 90
�

- 1
r
∂ ψ
∂ θ

�

r,−π2 ; 90
�

1.0 0 0
1.6 1.0015 0.3599E-11
2.2 1.0003 -0.4064E-12
2.8 0.9996 -0.1018E-10
3.4 0.9928 -0.4382E-11
4.0 0 0

3.1.2. Case S =−1. In the case of lids moving in opposite directions with equal speeds,
(i.e. S =−1), the flow structure is symmetrical about θ = 0 for all values of A. For large
aspect ratios, a single eddy occupies the cavity, see Fig. 3a for A = 180. As the aspect
ratio is decreased from 180 there are four main stages in the development of the second
and third eddies. In the first stage, a ’Pitchfork bifurcation appears at a critical value
of A1 = 161.4. Thus, two additional stagnation points are generated in the cavity, (see
Fig. 3b where A = 130).

As A is decreased further, the separatrix continues to grow and the second critical
aspect ratio, A2 = 4.14, is obtained at which two degenerate critical points appear on
the two stationary side walls where side eddies are about to emerge as A is decreased
further, see Fig. 3c-h.

In the third stage, at A3 = 3.56, the heteroclinic connections coalesce with each
other at the interior saddle point to produce four heteroclinic connections between
the saddle point and the four separation points on the side walls, as shown in Fig. 3i
(where A = 3.5).

At this critical aspect ratio, A3, there are now two complete eddies within the cavity
and between them a third is about to be created. As A decreases, the sub-eddy center
lying left of the saddle on θ = 0 approach the saddle point on θ = 0 and coalesce,
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(a) (b) (c)

(d) (e) (f)

FIGURE 2. Eddy generation with decreasing A and S fixed at S = 0.
a) A = 18.0, b) A = 15.49, c) A = 13.20, d) A = 12.50, e) A = 11.10, f)
A = 3.20

disappearing at A4 = 3.29. This is a cusp (saddle-node) bifurcation. At this critical
aspect ratio the formation of a third eddy, between the other two, is completed so that
three eddies now occupy the cavity (Fig. 3j).

This is a mechanism for eddy generation in which one eddy becomes three. The
number of complete eddies increases from 3 to 5 and 5 to 7 etc. via similar eddy genesis
mechanism (see Fig. 3k-m).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l) (m)

FIGURE 3. Eddy generation via the appearance of sides-eddies with
decreasing A and S fixed at S =−1 for α= π

2 .
a) A = 180, b) A = 130, c) A = 90, d) A = 25, e) A = 12, f) A = 5, g) A = 4,
h) A = 3.6, i) A = 3.5, j) A = 3.2, k) A = 2.4, l) A = 2, m) A = 1.4
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(a) (b) (c)

(d) (e) (f)

FIGURE 4. Eddy generation with decreasing A and S fixed at S = 1.
a) A = 5, b) A = 3.1, c) A = 2.85, d) A = 2.8, e) A = 2.4, f) A = 1.74

3.1.3. Case S = 1. In the case of lids moving in the same radial direction with equal
speed, (i.e. S = 1), the flow structure is symmetric about θ = 0 for all values of A. It is
clear that the peripheral velocity is zero on θ = 0.

For large aspect ratios, only two symmetric eddies occupy the cavity; see Fig. 4a
for A = 5. As the aspect ratio is decreased from 5, there are three main stages in the
simultaneously development of the third and fourth eddies. In the first stage, as A is
decreased the first critical aspect ratio, A1 = 3.076, is reached at which two degenerate
critical points appear on each stationary sidewall; see Fig. 4b for A = 3.10. The side
eddies approach each other as A is further decreased, such that, when A2 = 2.831 is
reached, they coalesce on θ = 0. Thence a separatrix with a saddle point and two
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centers (i.e. two sub-eddies) is seen in the cavity (see Fig.4c-d). As A decreases, the
sub-eddy centers lying to the left of each of the saddles, approach the saddle point
and coalesce, disappearing at A3 = 2.664 which means that this is a cusp (saddle–node)
bifurcation. Hence four fully developed eddies are now visible in the cavity (see Fig.
4e-f).

This is a mechanism that consists from three steps for eddy generation from two
complete eddies to four. Firstly, side eddies born on each stationary sidewall. Sec-
ondly, these side eddies approach and coalesce each other to produce two reflected
separatrices enclosing two sub-eddies. In the last step, the cusp bifurcation are seen
on the each separatrix and there are now four complete eddies within the cavity. A
similar mechanism in a sectorial cavity is given by Gürcan and Bilgil [9].

3.2. Effect of the cavity angle on flow structures. It is the aim of this section to track
the various flow transformations arising in the cavity as α is gradually increased for
0 < α < π, and to expose the mechanisms by which new eddies emerge and develop
within a sectorial cavity.

This work is, which to our knowledge, the first such study in the literature in terms
of effect of cavity angle on flow structures and bifurcations.

For S = 0, A = 3 and S = 1, A = 2, the various flow transformations are tracked as α is
increased and hence the means is identified by which new eddies appear and become
fully developed.

3.2.1. Case: S = 0, A = 3. Solution of this problem is introduced in above section. For
narrow cavity angle, a single eddy occupies the cavity; see Fig.5 for α = 15, where the
flow consist of a single main eddy and two smaller ones near the bottom corners.

0 , 00 , 20 , 40 , 60 , 81 , 01 , 21 , 41 , 61 , 82 , 02 , 22 , 42 , 62 , 83 , 0

0

3 0

6 0
9 0

1 2 0

1 5 0

1 8 0

2 1 0

2 4 0
2 7 0

3 0 0

3 3 0

0 , 00 , 20 , 40 , 60 , 81 , 01 , 21 , 41 , 61 , 82 , 02 , 22 , 42 , 62 , 83 , 0

FIGURE 5. The cavity geometry and flow structure for S = 0, A = 3 and
α= 15.
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As α increases it is observed that the corner eddies grow and meet each other on
the bottom wall at a critical value of α = 47.31 , see Fig. 6a-d. At this critical cavity
angle a new eddy is formed with a separatrix. As α is increased further this new eddy
continues to grow and the centers of two sub-eddies approach the saddle point and
the center near the left-bottom of the cavity coalesces with the saddle point to form
a cusp bifurcation at α = 50.902. Hence these two critical points disappear and only
the center near the right-bottom side of the cavity remains see Fig. 6e-f. Hence the
second eddy is completed in the cavity. As α increases the small corner eddies can
be seen once again developing in each of the bottom corners. The process of eddy
generation continues as the cavity angle increases (see Fig. 6g-p). It is seen that, as
α→ π, the number of completed eddy is five in the cavity for A = 3, see Fig.6p. It is
clear that, in case of selecting smaller aspect ratio, the number of completed eddy will
be more.

3.2.2. Case: S = −1, A = 2. In this special case the flow is symmetric about θ = 0 for
all values of α. When 5 ≤ α ≤ 17.44 (Fig. 7a-b) the flow in the cavity is in its simplest
form: one single eddy with a centre-type stagnation point on θ = 0. As α is gradually
increased a sequence of flow transformations unfold, by which two additional eddies
are generated in the cavity. For example, at α = 17.44 the centre on θ = 0 becomes a
saddle point and two new centres appear (see Fig.7b where α = 22). As α is increased
further, the separatrix continues to grow and the second critical aspect angle is α =
48.24, at which two degenerate critical points appear on the two side walls (see Fig.
7c-f).

As α increases, the side eddies expand and approach the saddle point on θ = 0, and
at α = 53.1 coalesce with each other at the interior saddle point. At this critical cavity
angle there are now two complete eddies within the cavity and between them a third is
about to be created. Asα is increased further, it seen that there are a separatrix between
the two complete eddies (see Fig. 7g). As α increases, the sub-eddy center lying left of
the saddle approach the saddle point on θ = 0 and coalesce at α = 56.7 to produce
a centre. At this critical aspect ratio the development of the third eddy, between the
other two, is complete so that three eddies now occupy the cavity (see Fig. 7h).

It can be seen from the above that there are four main stages in the development of
the flow as the cavity aspect angle is increased: an interior saddle point appears; side
eddies appear; the left side eddy and saddle point touch; and the interior substructure
disappears.

This mechanism of eddy generation continues as the cavity angle increases (see Fig.
7i-r). It is seen that, as α is increased up to π, there are seven complete eddy and one
separatrix in the cavity for A = 2 (see Fig. 7r). It is clear that, in the case of selecting
smaller aspect ratio than A = 2, the number of complete eddy will be more.

In this study, derived from the one of the most important results, decreasing the
aspect ratio (A) of cavity with increasing the cavity angle of flow structures cavity shows
similar effects on the eddy genesis and their bifurcations.
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(e) (f) (g) (h)

(i) (j) (k)

(Continue)
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(l) (m) (n)

(o) (p) (q)

(r) (s)

FIGURE 6. Eddy generation with increasing α for S = 0 and A = 3.
a) α= 25, b) α= 35, c) α= 43, d) α= 46, e) α= 48, f) α= 52, g) α= 65,
h) α = 87, i) α = 90, j) α = 110, k) α = 120, l) α = 127, m) α = 130, n)
α= 155, o) α= 170, p) α→ 180
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(a) (b) (c)
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(g) (h) (i)

(Continue)
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(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

FIGURE 7. Eddy generation with increasing α for S =−1 and A = 4.
a) θ = 5, b) θ = 15, c) θ = 22, d) θ = 30, e) θ = 45, f) θ = 52, g) θ = 54,
h) θ = 60, i) θ = 80, j) θ = 100, k) θ = 105, l) θ = 106.76, m) θ = 107, n)
θ = 120, o) θ = 130, p) θ = 158, r) θ = 170, s) θ → 180
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NONPOLYNOMIAL CUBIC SPLINE APPROXIMATION FOR

THE EQUAL WIDTH EQUATION

ALI SAHIN AND LEVENT AKYUZ

Abstract. In this paper, we investigate the numerical solutions of the equal

width (EW) equation via the nonpolynomial cubic spline functions. Crank-

Nicolson formulas are used for time discretization of the target equation. A
linearization technique is also employed for the numerical purpose. Accuracy

of the method is observed by the pointwise rate of convergence. Stability

of the suggested method is investigated via the von-Neumann analysis. Six
numerical examples related to single solitary wave, interaction of two, three

and opposite waves, wave undulation and the Maxwell wave are considered as

the test problems. The accuracy and the efficiency of the purposed method are
measured by L∞ and L2 error norms and conserved constants. The obtained

results are compared with the possible analytical values and those in some
earlier studies.

1. Introduction

The field of nonlinear dispersive waves is one of the rapidly developed area in
science over the last few decades. Because of their attractive solutions such as
shallow water and plasma waves, studying on this field has been source of interest.
Since the analytical solutions are not available in general and the possible cases are
limited, numerical solutions for those equations have importance to understand the
nonlinear phenomena.

There are many different models for the nonlinear dispersive waves in the lit-
erature. In this paper, we focus on the equal width (EW) equation which is first
suggested by Morrison et.al. [2] and it represents an alternative to the well known
KdV and RLW equations.

The EW equation has the following form:

(1.1)
∂u

∂t
+ u

∂u

∂x
− µ ∂3u

∂x2∂t
= 0
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where µ is a positive parameter and u is a smooth function that represents the
wave amplitude on a domain Ω × [0, T ] with Ω ∈ R. The only possible analytical
solution of Eq.(1.1) is the single travelling solitary wave solution. Therefore numer-
ical methods have to be used for some other initial conditions such as interactions,
undulation or the Maxwell initial condition.

Numerical methods including spectral method[4], least squares finite element
method[5], Galerkin method[6][8][9], collocation method[7][10][14], finite difference
method[12][13], differential quadrature method, meshless method[14][22] and Petrov-
Galerkin method[3][19] have been presented in the literature for the EW equation.

Spline approximation is based upon to divide the solution domain into a collec-
tion of subdomains and construct an approximating function on each subdomains.
The most known spline approximation is the cubic spline in which piecewise cubic
polynomials are used for the approximation. The objective of spline approximation
is to obtain an interpolation formula that has continuous derivatives in required
order both within the intervals and at the interpolating nodes.

Nonpolynomial spline based methods have been used for some other partial dif-
ferential equations such as non-linear Schrödinger equation[20], RLW equation[21],
Burgers’ equation[16], Klein-Gordon equation[17], Bratu’s problem[18]. However,
with our knowledge, numerical solution of the EW equation has not been pub-
lished yet. The aim of this paper is to investigate the numerical solution of the
EW equation via the nonpolynomial cubic spline method. Crank-Nicolson method
and Rubin-Graves technique[1] are also used for the time discretization and the
linearization of the governing equation respectively.

This paper is organized as follows: Section 2 is devoted to the numerical method.
Truncation error and stability analysis are also given in that section. The numerical
testing and the comparisons on the examples are studied in Section 3. Finally, a
conclusion is presented in the last section.

2. Numerical method

Let’s start the numerical method by partitioning the solution domain Ω ∈ R into
subintervals. For this purpose, we consider N + 1 equally distributed mesh points
such that

Ω : x0 < x1 < · · · < xN

where xi+1 = xi + h, i = 0, 1, ..., N − 1 and h is the grid size.
The proposed spline functions in this paper have the form

T3 =span{1, x, sin (ωx) , cos (ωx)}
where ω is the frequency of the trigonometric part of the spline. The cubic non-
polynomial spline functions can be constructed over this mesh as follows:

(2.1)
Pi (x, tj) = ai (tj) cos [ω (x− xi)] + bi (tj) sin [ω (x− xi)]

+ci (tj) (x− xi) + di (tj)

where i and j are indices for space and time respectively.
Because of the spline properties, it can written that

U j
i = Pi (xi, tj) , U j

i+1 = Pi (xi+1, tj) ,

Sj
i = P ′′i (xi, tj) , Sj

i+1 = P ′′i (xi+1, tj) .
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Then the coefficients in Eq.(2.1) are obtained as

ai = −h
2

θ2
Sj
i , bi =

h2
(
Sj
i cos θ − Sj

i+1

)
θ2 sin θ

,

ci =
U j
i+1 − U

j
i

h
+
h
(
Sj
i+1 − S

j
i

)
θ2

, di =
h2

θ2
Sj
i + U j

i

where θ = ωh and capital U is used for the approximation to the exact function u.
Another useful tool for the purposed method comes from the continuity of

the first derivatives. Having first order continuous derivatives at grid points, i.e.
P ′i (xi, tj) = P ′i−1 (xi, tj), gives the equation

(2.2) biω + ci = −ai−1ω sin θ + bi−1ω cos θ + ci−1.

Substitution of related coefficients in Eq.(2.2) and slight arrangements on it lead
to the following relation between the solutions and their second derivatives:

(2.3) U j
i−1 − 2U j

i + U j
i+1 = αSj

i−1 + βSj
i + αSj

i+1, i = 1, 2, · · · , N − 1

where α =
h2

θ sin θ
− h2

θ2
and β = −2h2 cos θ

θ sin θ
+

2h2

θ2
. Also note here that if θ → 0

then α→ h2

6
and β → 2h2

3
which means the standard cubic spline case.

Eq.(2.3) can be written between two successive time levels j and j + 1 so that

(2.4)

(
U j+1
i−1 − U

j
i−1

)
− 2

(
U j+1
i − U j

i

)
+
(
U j+1
i+1 − U

j
i+1

)
=

α
(
Sj+1
i−1 − S

j
i−1

)
+ β

(
Sj+1
i − Sj

i

)
+ α

(
Sj+1
i+1 − S

j
i+1

)
where i = 1, 2, · · · , N − 1. The present numerical method will be built on Eq.(2.4).

Theorem 2.1. The difference equation (2.4) has the local truncation error of order
i) O(h2) when 2α+ β 6= h2,
ii) O(h4) when 2α+ β = h2 and α 6= h2/12,
iii) O(h6) when 2α+ β = h2 and α = h2/12.

Proof. It was proved in [21] by using the Taylor series expansion, see [21]. �

Besides the spline relation (2.4), the EW equation gives some additional facts
about the second derivative of the solution. First, Eq.(1.1) may be rearranged as

∂

∂t

(
∂2u

∂x2
− 1

µ
u

)
=

1

µ

(
u
∂u

∂x

)
.

Then following Crank-Nicolson scheme for the time discretization, the EW equation
turns into the form:

(2.5)

[
∂2U

∂x2
− 1

µ
U

]t=tj+1

x=xi

−
[
∂2U

∂x2
− 1

µ
U

]t=tj

x=xi

=
k

2µ

([
U
∂U

∂x

]t=tj+1

x=xi

+

[
U
∂U

∂x

]t=tj

x=xi

)
The nonlinear term in Eq.(2.5) can be linearized with the technique

(UUx)
j+1

= U j+1U j
x + U jU j+1

x − U jU j
x
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which is suggested by Rubin and Graves[1] as

(2.6) Sj+1 − Sj =
1

µ

(
U j+1 − U j

)
+

k

2µ

(
U j+1U j

x + U jU j+1
x

)
.

Using difference formulas for the first order space derivatives in Eq.(2.6) leads
to

(2.7)



Sj+1
i−1 − Sji−1 = 1

µ

(
Uj+1
i−1 − Uji−1

)
+ 2rUj+1

i−1

(
Uji − Uji−1

)
+ 2rUji−1

(
Uj+1
i − Uj+1

i−1

)
,

Sj+1
i − Sji = 1

µ

(
Uj+1
i − Uji

)
+ rUj+1

i

(
Uji+1 − Uji−1

)
+ rUji

(
Uj+1
i+1 − Uj+1

i−1

)
,

Sj+1
i+1 − Sji+1 = 1

µ

(
Uj+1
i+1 − Uji+1

)
+ 2rUj+1

i+1

(
Uji+1 − Uji

)
+ 2rUji+1

(
Uj+1
i+1 − Uj+1

i

)
where r = k/ (4µh) .

Finally, considering Eq.(2.4) together with Eq.(2.7) gives the recurrence relation

(2.8) AiU
j+1
i−1 +BiU

j+1
i + CiU

j+1
i+1 = DiU

j
i−1 + EiU

j
i + FiU

j
i+1

where

Ai = 1− α/µ+ 4αrU j
i−1 − r (2α− β)U j

i ,

Bi = −2− β/µ+ r (2α− β)
(
U j
i+1 − U

j
i−1

)
,

Ci = 1− α/µ− 4αrU j
i+1 + r (2α− β)U j

i ,

Di = 1− α/µ,

Ei = −2− β/µ,

Fi = 1− α/µ.
The recurrence relation (2.8) contains N − 1 equations in N + 1 unknowns. By
adding two equations from the boundary conditions, it will be a solvable linear
system. After the initial solutions U0 computed from the initial condition, all the
other solutions at different time levels are calculated from the system (2.8).

2.1. Stability analysis. According to von-Neumann analysis, it is assumed that
the solution of the governing equation is in the following form:

U j
i = ξjeqϕih

where q is the imaginary unit, ϕ is the wave number and ξ is the amplification
factor. Substitution of the above expression in Eq.(2.8) yields

Aiξ
j+1eqϕ(i−1)h +Biξ

j+1eqϕih + Ciξ
j+1eqϕ(i+1)h

= Diξ
jeqϕ(i−1)h + Eiξ

jeqϕih + Fiξ
jeqϕ(i+1)h.

Then

ξ =

(
2− 2α

µ

)
cosϕh− 2− β

µ
+ q (2α+ β) 2rd∗(

2− 2α

µ

)
cosϕh− 2− β

µ
− q (2α+ β) 2rd∗
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where d∗ is locally constant for U in the nonlinear terms. Hence, the above ex-
pression gives |ξ| = 1 which means that the numerical method is unconditionally
stable.

3. Test problems

In this section, several test problems take part in order to show the accuracy
and the efficiency of the numerical method. The accuracy is measured by L∞ and
L2 error norms that are defined by

L∞ = max
i

∣∣uexacti − Unumeric
i

∣∣ ,
L2 =

√√√√h

N∑
i=0

∣∣uexacti − Unumeric
i

∣∣2 .
In all numerical computations except the motion of single solitary wave, the

discretization parameters are chosen as h = 0.1 and k = 0.1. Additionally, similar
to the reference [21], the parameters α and β are selected as 2α + β = h2 and
α = h2/4 in all computations.

The EW equation has also the following conserved quantities:

C1 =
b∫
a

udx, C2 =
b∫
a

(
u2 + µ (ux)

2
)
dx, C3 =

b∫
a

u3dx

which correspond to mass, momentum and energy respectively. These invariants
also give an idea about the accuracy of the numerical method especially in cases
that the equation does not have an analytical solution. Therefore the invariants
are monitored to check the conservation of the numerical algorithms for all test
problems.

In order to compute the rate of convergence, the algorithm has been performed
for difference space and time steps. Then the results are used in the formula

space order =
log(‖u− uhi‖2 /

∥∥u− uhi+1

∥∥
2
)

log(hi/hi+1)

time order =
log(‖u− uki‖2 /

∥∥u− uki+1

∥∥
2
)

log(ki/ki+1)

where u is the exact solution and uhi and uki are the numerical solutions for space
size hi and time step ki respectively.

3.1. Motion of single solitary wave. A single solitary wave which is initially
centered at x̃s and travels with a constant velocity has the following analytical
solution

(3.1) u (x, t) = 3csech2 [K (x− x̃s − ct)] ,

where K = 1/
√

4µ is the width of the wave pulse, c is the velocity and 3c is the
magnitude of the wave.

The initial condition comes from Eq.(3.1) and the boundary conditions are given
by

u (x0, t) = 0 and u (xN , t) = 0.
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The common parameter choices in the literature are µ = 1 and xs = 10. Although
almost all earlier papers use same time increment, i.e. k = 0.05, there are some
different considerations for the grid size. For instance, h = 0.15 in [22] and MM[14],
h = 0.1 in DQM[14], h = 0.05 in [7], [9] and [6]. In this test problem, similar
to QBGM[14], the solutions are calculated over Ω = [0, 30] and t ∈ [0, 80] with
the discretization parameters h = 0.03 and k = 0.05. The solution profiles are
illustrated in Fig.1-2 for c = 0.1 and Fig.3-4 for c = 0.03 at different times. It is
clear from these figures that solutions remain in same profile.

3.1 Motion of single solitary wave
A single solitary wave which is initially centered at exs and travels with a constant velocity has the
following analytical solution

u (x; t) = 3csech2 [K (x� exs � ct)] ; (10)

where K = 1=
p
4� is the width of the wave pulse, c is the velocity and 3c is the magnitude of the

wave.
The initial condition comes from Eq.(10) and the boundary conditions are given by

u (x0; t) = 0 and u (xN ; t) = 0:

The common parameter choices in the literature are � = 1 and xs = 10: Although almost all earlier
papers use same time increment, i.e. k = 0:05; there are some di¤erent considerations for the grid
size. For instance, h = 0:15 in [22] and MM[14], h = 0:1 in DQM[14], h = 0:05 in [7], [9] and [6]. In
this test problem, similar to QBGM[14], the solutions are calculated over 
 = [0; 30] and t 2 [0; 80]
with the discretization parameters h = 0:03 and k = 0:05: The solution pro�les are illustrated in
Fig.1-2 for c = 0:1 and Fig.3-4 for c = 0:03 at di¤erent times. It is clear from these �gures that
solutions remain in same pro�le.
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Fig.1: Solitary waves for c = 0:1 Fig.2: Solitary waves for c = 0:1
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Fig.3: Solitary waves for c = 0:03 Fig.4: Solitary waves for c = 0:03

The analytical values of the invariants are calculated by

C1 =
6c

K
; C2 =

12c2

K
+
48Kc2�

5
; C3 =

144c3

5K

that correspond to C1 = 1:2; C2 = 0:288 and C3 = 0:0576 for c = 0:1 and C1 = 0:36; C2 = 0:02592
and C3 = 0:001555 for c = 0:03: Computed errors and invariants are presented in Table 1 and
Table 3 for c = 0:1 and c = 0:03 respectively. According to Table 1 and 3, the present results are
acceptable and the given method is comparable with others.

Table 1
Errors and invariants at time t = 80 for c = 0:1
Method L1 � 104 L2 � 104 C1 C2 C3
Analytic 1.2 0.288 0.05760
Present 0.07372964 0.1289443 1.199985 0.2879897 0.05760
[7] 0.53 0.56 1.19998 0.28798 0.05759
[9] 0.21 0.29 1.19995 0.28798 0.05759
[6] 0.01704 0.03064 1.19999 0.28801 0.05760
QBGM[14] 0.07370 0.06095 1.20000 0.288000 0.05760
DQM[14] 0.07373 0.07035 1.19999 0.288000 0.05760
MM[14] 0.20296 0.31198 1.20003 0.288000 0.05760
W(7,5)[22] 0.03537611 0.03360406 1.19999752 0.28800001 0.05760

Absolute error distributions at t = 80 are plotted in Fig.5 and Fig.6. Due to the relatively high
velocity, the solution domain is short when c = 0:1: Therefore the maximum error is observed at

7

The analytical values of the invariants are calculated by

C1 =
6c

K
, C2 =

12c2

K
+

48Kc2µ

5
, C3 =

144c3

5K

that correspond to C1 = 1.2, C2 = 0.288 and C3 = 0.0576 for c = 0.1 and C1 = 0.36,
C2 = 0.02592 and C3 = 0.001555 for c = 0.03. Computed errors and invariants are
presented in Table 1 and Table 3 for c = 0.1 and c = 0.03 respectively. According to
Table 1 and 3, the present results are acceptable and the given method is comparable
with others.



NONPOLYNOMIAL CUBIC SPLINE APPROXIMATION FOR THE EW EQUATION 23

Table 1
Errors and invariants at time t = 80 for c = 0.1
Method L∞ × 104 L2 × 104 C1 C2 C3

Analytic 1.2 0.288 0.05760
Present 0.07372964 0.1289443 1.199985 0.2879897 0.05760
[7] 0.53 0.56 1.19998 0.28798 0.05759
[9] 0.21 0.29 1.19995 0.28798 0.05759
[6] 0.01704 0.03064 1.19999 0.28801 0.05760
QBGM[14] 0.07370 0.06095 1.20000 0.288000 0.05760
DQM[14] 0.07373 0.07035 1.19999 0.288000 0.05760
MM[14] 0.20296 0.31198 1.20003 0.288000 0.05760
W(7,5)[22] 0.03537611 0.03360406 1.19999752 0.28800001 0.05760

Absolute error distributions at t = 80 are plotted in Fig.5 and Fig.6. Due to the
relatively high velocity, the solution domain is short when c = 0.1. Therefore the
maximum error is observed at the right hand boundary in Fig.5. To overcome this
problem, the solution domain can be extended so that the error at the right hand
boundary decreases.

the right hand boundary in Fig.5. To overcome this problem, the solution domain can be extended
so that the error at the right hand boundary decreases.
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Fig.5: Absolute error for c = 0:1 Fig.6: Absolute error for c = 0:03

The orders for pointwise rate of convergence are given in Table 2 which shows that the present
method has second order accuracy in terms of both space and time.

Table 2: Rate of convergence
Spatial order (�t = 0:05) Temporal order (h = 0:03)
hi t = 80 �ti t = 80
2:00 2:00
1:00 3:1914841 1:00 1:9942460
0:50 2:1804472 0:50 2:0091253
0:25 2:0403988 0:25 2:0364273
0:125 2:0157560 0:125 1:9910816
0:0625 2:0207153 0:0625 0:9043434

8

The orders for pointwise rate of convergence are given in Table 2 which shows
that the present method has second order accuracy in terms of both space and time.

Table 2: Rate of convergence
Spatial order (∆t = 0.05) Temporal order (h = 0.03)
hi t = 80 ∆ti t = 80
2.00 2.00
1.00 3.1914841 1.00 1.9942460
0.50 2.1804472 0.50 2.0091253
0.25 2.0403988 0.25 2.0364273
0.125 2.0157560 0.125 1.9910816
0.0625 2.0207153 0.0625 0.9043434
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Table 3
Errors and invariants at time t = 80 for c = 0.03
Method L∞ × 104 L2 × 104 C1 C2 C3

Analytic 0.36000 0.02592 0.001555
Present 0.02299 0.03812 0.359997 0.025919 0.0015552
[8] 18.36 26.83 0.36665 0.02658
[9] 0.07 0.13 0.36000 0.02592 0.00156
[6] 0.01483 0.01025 0.36000 0.02592 0.00156
QBGM[14] 0.01483 0.01064 0.36000 0.02592 0.00156
DQM[14] 0.01483 0.00934 0.36000 0.02592 0.00156
MM[14] 0.07598 0.04911 0.36000 0.02592 0.00156
W(7,5)[22] 0.01418041 0.01267701 0.36000055 0.02592 0.0015552

3.2. Interaction of two solitary waves. As a second problem, interaction of two
solitary waves is considered. The initial condition

(3.2)
u0 (x) = U1 + U2

Uj = 3cjsech2 [Kj (x− x̃j − cj)] , j = 1, 2

}
yields two waves travelling in same direction and having amplitude 3c1 and 3c2.
These waves are initially positioned at x = x̃1 and x = x̃2 respectively. The
following parameter choices give a complete interaction over the solution domain
x ∈ [0, 80] .

µ = 1, K1 = 0.5, K2 = 0.5, x̃1 = 10, x̃2 = 25, c1 = 1.5, c2 = 0.75.

To illustrate the interaction, the solution profiles are figured in Fig.7-8 at three
different times. The figures show that there is no decay on the solitary waves after
the interaction. However, as seen in Fig.9, there are some changes on magnitudes
for both waves at the interaction process.
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Fig.7: Interaction of two solitary waves Fig.8: Interaction of two solitary waves

In order to see the results quantitatively and to make a comparison, Table 4 is constructed.
Since there is no analytical solution with the considered initial condition (11), only the invariants
are compared in the table. Analytical values of the invariants are

C1 = 12 (c1 + c2) = 27; C2 = 28:8 (c21 + c
2
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is constructed. Since there is no analytical solution with the considered initial
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condition (3.2), only the invariants are compared in the table. Analytical values of
the invariants are

C1 = 12 (c1 + c2) = 27, C2 = 28.8
(
c21 + c22

)
= 81, C3 = 57.6

(
c31 + c32

)
= 218.7.
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Table 4
Invariants for the interaction of two solitary waves at t = 30.
Method C1 C2 C3

Analytic 27 81 218.7
Present 26.999997 80.968402 218.70289
[9] 27.00003 81.01719 218.70650
[6] 27.00068 81.02407 218.73673
[10] 27.12702 80.98988 218.6996
QBGM[14] 26.99973 80.99778 218.69094
DQM[14] 27.00017 81.00044 218.70304
MM[14] 27.00024 81.00140 218.70694
W(7,5)[22] 27.000049 81.000204 218.70186

3.3. Interaction of three solitary waves. Interaction of three solitary waves is
figured out in this subsection. The initial condition

u0 (x) =

3∑
j=1

3cjsech2 [Kj (x− x̃j − cj)]

where

K1 = K2 = K3 = 0.5, c1 = 4.5, c2 = 1.5, c3 = 0.5, x̃1 = 10, x̃2 = 25, x̃3 = 35

leads to three waves which interact together. Figs.10-11 shows the complete inter-
action. The backmost wave passes the others without any decay on its profile. The
invariants are tabulated at t = 15 for h = 0.1 and k = 0.1 in Table 5.
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Table 4
Invariants for the interaction of two solitary waves at t = 30:
Method C1 C2 C3
Analytic 27 81 218.7
Present 26.999997 80.968402 218.70289
[9] 27.00003 81.01719 218.70650
[6] 27.00068 81.02407 218.73673
[10] 27.12702 80.98988 218.6996
QBGM[14] 26.99973 80.99778 218.69094
DQM[14] 27.00017 81.00044 218.70304
MM[14] 27.00024 81.00140 218.70694
W(7,5)[22] 27.000049 81.000204 218.70186

3.3 Interaction of three solitary waves
Interaction of three solitary waves is �gured out in this subsection. The initial condition

u0 (x) =
3X
j=1

3cjsech
2 [Kj (x� exj � cj)]

where

K1 = K2 = K3 = 0:5; c1 = 4:5; c2 = 1:5; c3 = 0:5; ex1 = 10; ex2 = 25; ex3 = 35
leads to three waves which interact together. Figs.10-11 shows the complete interaction. The
backmost wave passes the others without any decay on its pro�le. The invariants are tabulated at
t = 15 for h = 0:1 and k = 0:1 in Table 5.
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Table 5
Invariants for the interaction of two solitary waves at t = 15.
Method C1 C2 C3

Analytic 78 655.2 5450.4
Present 77.999994 655.069708 5451.895023
[10] 77.99539 652.8104 5411.639
[11] 78.00490 652.3474 5412.232
W(7,5)[22] 78.000004 655.263936 5451.005509

3.4. Interaction of opposite waves. The last interaction example is the inter-
action between two opposite waves that have exactly the same form but different
signs. This case is relatively less considered problem in the literature. Although
it is stated in [22] that the colliding solitons has never been treated before, it was
also studied in [4] and [11].

The initial condition for colliding waves that are initially centered at x = 40 and
x = 120 is given in [4] as

u0 (x) = 4.5sech2 [(x− 40) /2]− 4.5sech2 [(x− 120) /2]

which is also considered here with h = 0.1 and k = 0.1.
These two opposite waves move towards each other and then a singularity occurs

when they meet. The colliding yields trains of smaller waves on both sides, while
the singularity gradually vanishes over time, see Figs.12-15.
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Table 5
Invariants for the interaction of two solitary waves at t = 15:
Method C1 C2 C3
Analytic 78 655.2 5450.4
Present 77.999994 655.069708 5451.895023
[10] 77.99539 652.8104 5411.639
[11] 78.00490 652.3474 5412.232
W(7,5)[22] 78.000004 655.263936 5451.005509

3.4 Interaction of opposite waves
The last interaction example is the interaction between two opposite waves that have exactly the
same form but di¤erent signs. This case is relatively less considered problem in the literature.
Although it is stated in [22] that the colliding solitons has never been treated before, it was also
studied in [4] and [11].
The initial condition for colliding waves that are initially centered at x = 40 and x = 120 is

given in [4] as
u0 (x) = 4:5sech

2 [(x� 40) =2]� 4:5sech2 [(x� 120) =2]
which is also considered here with h = 0:1 and k = 0:1:
These two opposite waves move towards each other and then a singularity occurs when they

meet. The colliding yields trains of smaller waves on both sides, while the singularity gradually
vanishes over time, see Figs.12-15.
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3.5 Wave undulation
Development of an undular bore is studied here by the initial function

u0 (x) =
U0
2

�
1� tanh

�
x� xc
d

��
where d shows the slope between the still and deeper water and xc is the center of the change in water
level of magnitude U0: The EW equation has not an analytical solution with the mentioned initial
condition. So, only the invariants of the EW equation are considered in order to see the e¢ ciency
of the method. A comparison on invariants, position and amplitude of the leading undulation is
presented in Table 6.

13

3.5. Wave undulation. Development of an undular bore is studied here by the
initial function

u0 (x) =
U0

2

(
1− tanh

(
x− xc
d

))

where d shows the slope between the still and deeper water and xc is the center of
the change in water level of magnitude U0. The EW equation has not an analytical
solution with the mentioned initial condition. So, only the invariants of the EW
equation are considered in order to see the efficiency of the method. A comparison
on invariants, position and amplitude of the leading undulation is presented in
Table 6.
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Table 6
Development of undular bore

Time C1 C2 C3 x U
d = 2 0 2.0000000 0.19027759 0.018500000

200 3.0000000 0.32337149 0.033500252 9.4 0.17579731
400 4.0000000 0.45637134 0.048500614 21.4 0.18142204
600 5.0000000 0.58937051 0.063500976 33.6 0.18321870
800 5.9999778 0.72236947 0.078501338 45.8 0.18383578

QBGM[14] 800 0.6002474 0.72386 0.078525 45.85 0.18471
DQM[14] 800 0.6025073 0.72402 0.07853 45.85 0.184713
d = 5 0 2.0000839 0.17512787 0.01625251521

200 3.0000815 0.30837385 0.03125247301 8.8 0.16035721
400 4.0000815 0.44138580 0.04625256015 20.4 0.17905369
600 5.0000815 0.57438765 0.06125265022 32.5 0.18242416
800 6.0000801 0.70738790 0.07625274062 44.7 0.18364070

QBGM[14] 800 6.002578 0.708710 0.076277 44.75 0.18405
DQM[14] 800 6.025306 0.711361 0.076579 44.75 0.17259
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Variations in invariants that are given in Table 7 are calculated numerically with the formula

Mi =
Ci (at time t = 800)� Ci (at time t = 0)

Running time

and analytically with

M1=
dC1
dt

=
d

dt

Z xN

x0

udx =
1

2
U20 = 5� 10�3

M2=
dC2
dt

=
d

dt

Z xN

x0

�
u2 + �u2x

�
dx =

2

3
U30 = 6:66667� 10�4

M3=
dC3
dt

=
d

dt

Z xN

x0

u3dx =
3

4
U40 = 7:5� 10�5

The undulation pro�les are illustrated in Figs.16-19 for d = 2 and Figs.20-23 for d = 5:
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Variations in invariants that are given in Table 7 are calculated numerically with
the formula

Mi =
Ci (at time t = 800)− Ci (at time t = 0)

Running time

and analytically with

M1 =
dC1

dt
=

d

dt

∫ xN

x0

udx =
1

2
U2
0 = 5× 10−3

M2 =
dC2

dt
=

d

dt

∫ xN

x0

(
u2 + µu2x

)
dx =

2

3
U3
0 = 6.66667× 10−4

M3 =
dC3

dt
=

d

dt

∫ xN

x0

u3dx =
3

4
U4
0 = 7.5× 10−5

The undulation profiles are illustrated in Figs.16-19 for d = 2 and Figs.20-23 for
d = 5.
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Table 7
Variations in invariants

Method M1 × 10−3 M2 × 10−4 M3 × 10−5

Analytical 5 6.66667 7.5
d = 2 Present 4.9999723 6.6511485 7.500167

QBGM[14] 4.99997 6.66665 7.5
DQM[14] 5 6.669387 7.507
MM[14] 5 6.669387 7.507
W(7,5)[22] 4.99937586 6.66667317 7.50000017

d = 5 Present 4.9999953 6.6532503 7.5001382
QBGM[14] 4.99999 6.66665 7.7
DQM[14] 5 6.671688 7.509
MM[14] 5 6.671688 7.509

3.6. The Maxwell wave. The last problem for testing our method is the Maxwell
wave where the starting function is

u0 (x) = 0.05 exp
(
− (x− 20)

2
/25
)
.

Again the analytical solution does not exist with this initial condition. The solutions
are computed over Ω = [0, 50] until T = 1000. The wave profiles are drawn in
Figs.24-25 at four different times to figure out the behavior of the initial wave over
time.

Table 7
Variations in invariants

Method M1 � 10�3 M2 � 10�4 M3 � 10�5
Analytical 5 6:66667 7:5

d = 2 Present 4:9999723 6:6511485 7:500167
QBGM[14] 4:99997 6:66665 7:5
DQM[14] 5 6:669387 7:507
MM[14] 5 6:669387 7:507
W(7,5)[22] 4:99937586 6:66667317 7:50000017

d = 5 Present 4:9999953 6:6532503 7:5001382
QBGM[14] 4:99999 6:66665 7:7
DQM[14] 5 6:671688 7:509
MM[14] 5 6:671688 7:509

3.6 The Maxwell wave
The last problem for testing our method is the Maxwell wave where the starting function is

u0 (x) = 0:05 exp
�
� (x� 20)2 =25

�
:

Again the analytical solution does not exist with this initial condition. The solutions are computed
over 
 = [0; 50] until T = 1000: The wave pro�les are drawn in Figs.24-25 at four di¤erent times to
�gure out the behavior of the initial wave over time.
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17There are some changes in the initial profile in course of time. It turns into a
train such that while its amplitude becomes larger, the wave length becomes smaller
and there are tails that will turn to a new small wave.

The invariants are presented at some different times in Table 8. The results show
that the method is very conservative in this problem.
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Table 8
Invariants for the Maxwell wave
Time C1 C2 C3

0 0.44311346 0.016292833 0.00063957919
100 0.44311348 0.016292567 0.00063957921
200 0.44311349 0.016291320 0.00063957928
300 0.44311349 0.016289148 0.00063957937
400 0.44311350 0.016287762 0.00063957944
500 0.44311349 0.016287480 0.00063957947
600 0.44311337 0.016287483 0.00063957947
700 0.44311225 0.016287440 0.00063957948
800 0.44310227 0.016287342 0.00063957947
900 0.44301341 0.016287228 0.00063957915
1000 0.44222656 0.016287133 0.00063955380

4. Conclusion

In this study, cubic nonpolynomial spline based numerical method is imple-
mented in order to get the solution of the EW equation. Over the uniform mesh,
Crank-Nicolson formulas are employed for time discretization whereas Rubin and
Graves[1] technique is used for the linearization. According to pointwise rate of
convergence, the present method has second order accuracy for both space and
time. Also the von-Neumann stability analysis shows that the purposed method is
unconditionally stable. Six problems that related to single solitary wave, interac-
tion of two, three and opposite solitary, the undulation bore and the Maxwell wave
are examined for testing the numerical scheme. Comparisons between the obtained
results and some earlier papers show that the present results are all acceptable and
in agreement with those in the literature. Simple adaptation and yielding band
matrices can be stated as the advantages of the method. On the other hand, ac-
cording to your problem, requiring the determination of two parameters (α and β)
is an undesirable situation. In conclusion, cubic nonpolynomial spline method can
be considered as a conservative numerical method that leads to reasonable results.
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ON A SUBCLASS OF UNIFORMLY QUASI CONVEX

FUNCTIONS OF ORDER α

D. VAMSHEE KRISHNA, B. VENKATESWARLU, AND T. RAMREDDY

Abstract. In this paper, we introduce two new classes of analytic functions

namely uniformly quasi convex functions of order α and quasi uniformly con-

vex functions of order α denoted by UQCV (α) and QUCV (α) (0 ≤ α < 1)
respectively and study certain properties of functions belonging to these two

classes. Further, we obtain a necessary and sufficient condition for the function
f(z) to be in the class UQCV (α). These results are generalized recent results

of Rajalakshmi Rajagopal and Selvaraj [7].

1. Introduction and Preliminaries

Let A denote the class of functions of the form

(1.1) f(z) = z +

∞∑
n=2

anz
n

which are analytic in the unit disc U = {z : |z| < 1}. Let S denote the subclass of
A which are univalent in U.

Definition 1.1. [3] A function f given in (1.1) is said to be uniformly convex in
U, if f is convex and has the property that for every circular arc γ contained in
U with centre ξ the arc f(γ) is convex. The class of uniformly convex functions is
denoted by UCV . The analytical characterization of the function f ∈ UCV was
given by Goodman [3].
Theorem 1.1. [3] A function f of the form (1.1) is in UCV if and only if

Re
{

1 + (z − ξ) f
′′(z)
f ′(z)

}
> 0,∀ (z, ξ) ∈ U × U and z 6= ξ.

Theorem 1.2. [8] A function f of the form (1.1) is in UCV if and only if

Re
{

1 + zf ′′(z)
f ′(z)

}
≥
∣∣∣ zf ′′(z)
f ′(z)

∣∣∣ ,∀ z ∈ U.
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Definition 1.2. [5] A function f of the form (1.1) is said to be quasi convex in
U if there exists a convex function g in U with g(0) = 0 = g′(0) − 1 such that

Re

{
{zf ′(z)}′
g′(z)

}
> 0,∀ z ∈ U.

The class of quasi convex functions is denoted by c∗.
Definition 1.3. [6] A function f of the form (1.1) is said to be close-to- uniformly

convex if there exists a uniformly convex function g in U such that Re
{
f ′(z)
g′(z)

}
>

0, z ∈ U.

The class of all close-to-uniformly convex functions is denoted by CUCV. The
subclasses uniformly quasi convex functions and quasi uniformly convex functions
denoted by UQCV and QUCV respectively of S are introduced and studied by
Rajalakshmi Rajagopal and Selvaraj [7]. The following Definitions are due to them.

Definition 1.4. A function f(z) in A is said to be uniformly quasi convex in U if
there exists a uniformly convex function g in U with g(0) = 0 = g′(0)− 1 such that

Re

{
{(z−ξ)f ′(z)}′

g′(z)

}
> 0, ∀ z, ξ ∈ U, z 6= ξ.

The class of all such functions is denoted by UQCV .

Definition 1.5. A function f(z) is A is said to be quasi uniformly convex in U if
there exists a uniformly convex function g in U with g(0) = 0 = g′(0)− 1 such that

Re

{
{zf ′(z)}′
g′(z)

}
> 0, ∀ z ∈ U.

The class of all quasi uniformly convex functions is denoted by QUCV. From the
Definitions 1.4 and 1.5, it is observed that QUCV ⊂ UQCV. Now, we introduce
and study certain important properties of the following two classes.

2. Main results:

Definition 2.1. A function f(z) in A is said to be uniformly quasi convex function
of order α (0 ≤ α < 1) if there exists a uniformly convex function g in U with
g(0) = g′(0)− 1 such that

(2.1) Re

{
{(z − ξ)f ′(z)}′

g′(z)

}
> α, ∀ (z, ξ) ∈ U × U and z 6= ξ.

We denote the class of uniformly quasi convex functions of order α by UQCV (α).

Definition 2.2. A function f(z) in A is said to be uniformly convex of function of
order α (0 ≤ α < 1) if and only if

(2.2) Re

{
1 + (z − ξ)f

′′(z)

f ′(z)

}
> α, ∀ (z, ξ) ∈ U × U and z 6= ξ.

The class of such functions is denoted by UCV (α).

Definition 2.3. A function f(z) in A is said to be quasi convex function of order
α (0 ≤ α < 1) if there exists a convex function g in U with g(0) = 0 = g′(0) − 1
such that

(2.3) Re

{
{zf ′(z)}′

g′(z)

}
> α, ∀ z ∈ U.
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The class of such functions is denoted by c∗(α).

Definition 2.4. A function f(z) in A is said to be quasi uniformly convex function
of order α (0 ≤ α < 1) if there exists a uniformly convex function g in U with
g(0) = 0 = g′(0)− 1 such that

(2.4) Re

{
{z f ′(z) }′

g′(z)

}
> α, ∀ z ∈ U.

The class of all quasi uniformly convex functions is denoted by QUCV (α).

Definition 2.5. A function f(z) in A is said to be close-to-convex function of order
α (0 ≤ α < 1) if there exists a convex function g in U such that

(2.5) Re

{
f ′(z)

g′(z)

}
> α, ∀ z ∈ U.

The class of all close - to- convex functions of order α is denoted by K(α).

Definition 2.6. A function f(z) in A is said to be close-to- uniformly convex
function of order α (0 ≤ α < 1) if there exists a uniformly convex function g in U
such that

(2.6) Re

{
f ′(z)

g′(z)

}
> α, ∀ z ∈ U.

The class of all close - to- uniformly convex functions of order α is denoted by
CUCV (α). From the above Definitions, we observe the following conclusions:

1. Choosing g(z) = f(z) in (2.1), where g(z) ∈ UCV, we obtain

Re

{
{(z − ξ)f ′(z)}′

f ′(z)

}
= Re

{
1 + (z − ξ)f

′′(z)

f ′(z)

}
> α,

for z 6= ξ in |z| < 1 for (0 ≤ α < 1).

From this result and in view of Definition 2.2, we get

(2.7) UCV (α) ⊂ UQCV (α)

2. Taking ξ = 0 in (2.1), we obtain

(2.8) Re

{
{zf ′(z)}′

g′(z)

}
> α, for z ∈ U, for (0 ≤ α < 1).

From the Definition 2.3, we observe that

(2.9) UQCV (α) ⊂ c∗(α).

From the expressions (2.7) and (2.9), we obtain

(2.10) UCV (α) ⊂ UQCV (α) ⊂ c∗(α).

Therefore, an immediate consequence of (2.10) is that every uniformly
quasi-convex function of order α is univalent.

3. Choosing t(z) = zf ′(z) in (2.3), we get

Re

{
t′(z)

g′(z)

}
> α, for (0 ≤ α < 1).

(2.11) From the Definition 2.5, we observe that c∗(α) ⊂ K(α).
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4. Taking ξ = 0 in (2.1), we obtain

(2.12) Re

{
{zf ′(z)}′

g′(z)

}
> α, for z ∈ U,

which implies that QUCV (α) ⊂ UQCV (α).

Lemma 2.1. If g(z) ∈ UCV, then

|g′(z)| ≤ 1

1− r
, for |z| = r < 1, z ∈ U.

Proof. Let g(z) = z +
∑∞
n=2 bnz

n ⇔ g′(z) = 1 +
∑∞
n=2 nbnz

n−1. Taking modulus
on both sides of g′(z), using the facts |a+ b| ≤ |a|+ |b| and |ab| = |a||b|, we get

(2.13) |g′(z)| =

∣∣∣∣∣1 +

∞∑
n=2

nbnz
n−1

∣∣∣∣∣⇔ |g′(z)| ≤
[

1 +

∞∑
n=2

n|bn|rn−1
]
.

For the function g(z) ∈ UCV (according to Goodman [2]), we have

(2.14) |bn| ≤
1

n
, ∀n ≥ 2.

Simplifying the expressions (2.13) and (2.14), we obtain

|g′(z)| ≤

[
1 +

∞∑
n=2

rn−1

]
=

1

1− r
.

Hence the Lemma. �

Theorem 2.1. Let f(z) be in A. Then f is uniformly quasi-convex function of

order α (0 ≤ α < 1) if and only if Re

{
{zf ′(z)}′
g′(z)

}
> α +

∣∣∣ zf ′′(z)
g′(z)

∣∣∣ .
Proof. Let f(z) ∈ UQCV (α) (0 ≤ α < 1). By virtue of Definition 2.1, there exists
uniformly convex function g(z) ∈ U such that

(2.15) Re

{
{(z − ξ)f ′(z)}′

g′(z)

}
> α, ∀ (z, ξ) ∈ U × U and z 6= ξ.

(2.16) ⇔ Re

{
{zf ′(z)}′

g′(z)

}
> α + Re

{
ξf ′′(z)

g′(z)

}
.

If we choose ξ = zeiβ in a suitable way, for some real β, we get

(2.17) Re

{
ξf ′′(z)

g′(z)

}
=

∣∣∣∣zeiβf ′′(z)g′(z)

∣∣∣∣ =

∣∣∣∣zf ′′(z)g′(z)

∣∣∣∣ .
From the expressions (2.16) and ( 2.17), we obtain

(2.18) Re

{
{zf ′(z)}′

g′(z)

}
≥ α+

∣∣∣∣zf ′′(z)g′(z)

∣∣∣∣ .
Hence, the condition is necessary.

Conversely, suppose the condition given by (2.18) is true.
Let ξ be an arbitrary but fixed point in the unit disc U. Since the quotient of two an-

alytic functions, whose real part is harmonic and hence the function Re

{
{zf ′(z)}′
g′(z)

}
becomes harmonic, provided g(z) ∈ UCV.
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Therefore, by the minimum principle it is enough to show that the result is true
for |z| = ρ > |ξ|, ρ < 1. From (2.18), for |ξ| < |z| = ρ < 1 and using the fact
Re(z) ≤ |z|, we get

Re

{
{zf ′(z)}′

g′(z)

}
≥
[
α+

∣∣∣∣zf ′′(z)g′(z)

∣∣∣∣] > [α+

∣∣∣∣ξf ′′(z)g′(z)

∣∣∣∣] ≥ [α+Re

{
ξf ′′(z)

g′(z)

}]
.

⇔ Re
{{(z − ξ)f ′(z)}′

g′(z)

}
≥ α,

which shows that f(z) ∈ UQCV (α). Hence the condition is sufficient. �

Remark 2.1. Since
{zf ′(z)}′
g′(z) is analytic in |z| < 1 and maps 0 to 1, the open mapping

theorem implies that equality in (2.18) is not possible.

Theorem 2.2. If f(z) ∈ UQCV (α) (0 ≤ α < 1) then

|an| ≤
1

n

[
(1− α) +

α

(2n− 1)

]
, n ≥ 2.

Proof. Let f(z) ∈ UQCV (α), from the Definition 2.1, there exists uniformly convex
function g given in Lemma 2.1, such that

Re

[
{(z − ξ)f ′(z)}′

g′(z)

]
> α, ∀ (z, ξ) ∈ U × U and z 6= ξ

⇔ Re

[
(z − ξ)f ′′(z) + f ′(z)

g′(z)

]
> α.(2.19)

Choosing ξ = −z in (2.19), it takes the form

Re

[
2zf ′′(z)

g′(z)
+
f ′(z)

g′(z)

]
> α.(2.20)

Let p(z) = 2zf ′′(z)
g′(z) + f ′(z)

g′(z) , which is incompatible with p(z) = 1+(1−2α)w(z)
1−w(z) , where

w(z) is schwarz’s function in the unit disc U and p(z) =
∑∞
n=0 pnz

n with p0 = 1,
then we have

2zf ′′(z) + f ′(z) = p(z)g′(z).(2.21)

Replacing f ′(z), f ′′(z), g′(z) and p(z) by their equivalent expressions in series in
(2.21), after simplifying, we get

(2.22) 1 +

∞∑
n=2

{2n(n− 1) + n} anzn−1 =
{

1 + p1z + p2z
2 + · · ·+ pn−1z

n−1

+ pnz
n + · · ·

}
×
{

1 + 2b2z + 3b3z
2 + · · ·+ (n− 1)bn−1z

n−2 + nbnz
n−1 + · · ·

}
.

Equating the coefficient of zn−1 on both sides of (2.22), we have

(2.23)
[
2n(n− 1) + n

]
an = [nbn + p1(n− 1)bn−1 + p2(n− 2)bn−2+

· · ·+ pn−22b2 + pn−1].

Taking the modulus on both sides of (2.23) and using the facts, for the functions
with positive real part, |p0| = 1, |pn| ≤ 2(1− α), ∀ n ≥ 1 with 0 ≤ α < 1 and the
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result from (2.14), which simplifies to

n(2n− 1)|an| ≤ [(1− α)(2n− 1) + α]

⇔ |an| ≤
1

n

[
(1− α) +

α

2n− 1

]
, ∀ n ≥ 2.

Hence the Theorem. �

Theorem 2.3. If f ∈ UQCV (α) (0 ≤ α < 1) then

|2f ′(z)− f(z)| ≤
[

2(1− α)r

1− r
+ (1− 2α) log(1− r)

]
, for |z| = r < 1.

Proof. Let f ∈ UQCV (α), from the Definition 2.1, there exists a uniformly convex
function g such that

Re

[
{(z − ξ)f ′(z)}′

g′(z)

]
> α, z, ξ ∈ U, where z 6= ξ

⇒ Re

[
(z − ξ)f ′′(z) + f ′(z)

g′(z)

]
> α(2.24)

Choosing ξ = −z in (2.24), we get

Re

[
2zf ′′(z)

g′(z)
+
f ′(z)

g′(z)

]
> α.(2.25)

Put p(z) = 2zf ′′(z)
g′(z) + f ′(z)

g′(z) in (2.25), which takes the form Re(p(z)) > α (0 ≤ α < 1)

so that we can have

[2zf ′′(z) + f ′(z)] = p(z)g′(z)⇔ [2zf ′(z)− f(z)]′ = p(z)g′(z).

Taking modulus on both sides, we get∣∣[2zf ′(z)− f(z)]′
∣∣ =

∣∣p(z)∣∣∣∣g′(z)∣∣.
Using the known result for |p(z)| ( according to Goodman [2] ) and Lemma 2.1,
resolving into partial fractions on the right hand side, we obtain
(2.26)∣∣∣[2zf ′(z)− f(z)]′

∣∣∣ ≤ [1 + (1− 2α)r

(1− r)2

]
=

[
2α− 1

1− r
+

2(1− α)

(1− r)2

]
, for |z| = r < 1.

On integrating along a line segment from 0 to |z| = r in (2.26) and using the fact
|f(z)| ≤

∫ z
0
|f ′(z)||dz|, which simplifies to give

[2zf ′(z)− f(z)] ≤
[

2(1− α)r

1− r
+ (1− 2α) log(1− r)

]
, (0 ≤ α < 1).

Hence the Theorem. �

Theorem 2.4. f(z) ∈ QUCV (α)⇔ zf ′ ∈ CUCV (α) (0 ≤ α < 1).

Proof. Let f(z) ∈ QUCV (α), from the Definition 2.4 , we have

(2.27) Re

[
{zf ′(z)}′

g′(z)

]
> α.

Choosing zf ′(z) = F (z) in (2.27), we get

Re

[
F ′(z)

g′(z)

]
> α, for |z| < 1.



ON A SUBCLASS OF UNIFORMLY QUASI CONVEX FUNCTIONS OF ORDER α 39

From the Definition 2.6, we conclude that F = zf ′ ∈ CUCV (α).

Conversely, let F = zf ′ ∈ CUCV (α, from the Definition 2.6, we have

Re

[
{zf ′(z)}′

g′(z)

]
> α, |z| < 1.

In view of Definition 2.4, we conclude that f(z) ∈ QUCV (α).
Hence the Theorem. �

Theorem 2.5. If f ∈ QUCV (α) then f ∈ CUCV (α).

Proof. Let f ∈ QUCV (α), then by a result obtained by Libera [4], we have

(2.28) Re

[
{zf ′(z)}′

g′(z)

]
> α ⇔

[
zf ′(z)

g(z)

]
> α, z ∈ U,

where g ∈ UCV, which is also in Sp, denotes the class of parabolic star like functions
introduced by Ronning [9]. Geometrically Sp is the class of functions f given (1.1),

for which zf ′(z)
f(z) takes its value in the interior of the parabola in the right half plane

symmetric about the real axis with vertex at
(
1
2 , 0
)
.

(2.29) Put h(z) =

∫ z

0

g(t)

t
dt⇔ h′(z) =

g(z)

z
⇔ g(z) = zh′(z) ∈ Sp.

By the relation between UCV and Sp given in terms of the Alexander type Theo-
rem [1] by Ronning [8], we have

zh′(z) ∈ Sp ⇔ h(z) ∈ UCV.
Simplifying the relations (2.28) and (2.29), we obtain

Re

[
f ′(z)

h′(z)

]
> α, z ∈ U for (0 ≤ α < 1).

Since h(z) ∈ UCV , from the Definition 2.7, we conclude that f(z) ∈ CUCV (α).
Hence the Theorem. �

Remark 2.2. From the Theorems 2.4 and 2.5, we conclude that
if f(z) ∈ QUCV (α) then both f(z) and zf ′(z) belongs to CUCV (α).

Theorem 2.6. If f ∈ QUCV (α) (0 ≤ α < 1) then

|an| ≤
1

n2
[
2n(1− α) + (2α− 1)

]
, ∀ n ≥ 2.

Proof. Let f ∈ QUCV (α), from the Definition 2.4, there exists uniformly convex
function g in U such that

(2.30) Re

[
{zf ′(z)}′

g′(z)

]
> α, z ∈ U.

Choosing p(z) =
{zf ′(z)}′

g′(z)
in (2.30), we can have

Re(p(z)) > α, so that {zf ′(z)}′ = p(z)g′(z).
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Applying the same procedure described in Theorem 2.2, we obtain

(2.31) |an| ≤
1

n2
[
(1− α)(2n− 1) + α

]
, ∀ n ≥ 2.

Hence the Theorem. �

Theorem 2.7. If f ∈ QUCV (α) (0 ≤ α < 1), then

|zf ′(z)| ≤
[

2(1− α)r

1− r
+ (1− 2α) log(1− r)

]
, for |z| ≤ r < 1.

Proof. Let f ∈ QUCV (α), from the Definition 2.1, we have

(2.32) Re

[
{zf ′(z)}′

g′(z)

]
> α

Putp(z) =
{zf ′(z)}′

g′(z)
in (2.32),we get Re{p(z)} > α,

so that, we can have

(2.33) {zf ′(z)}′ = p(z)g′(z).

Taking modulus on both sides of (2.33), which takes the form

|zf ′(z))′| = |p(z)||g′(z)|.

Applying the same procedure described in Theorem 2.3, we obtain

|zf ′(z)| ≤
[

2(1− α)r

(1− r)
+ (1− 2α) log(1− r)

]
.

Hence the Theorem. �
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LEFT-HOM-SYMMETRIC AND HOM-POISSON DIALGEBRAS

BAKAYOKO I. AND BANGOURA M.

Abstract. The aim of this paper is to introduce left-Hom-symmetric dial-
gebras (which contain left-Hom-symmetric algebras or Hom-preLie algebras

and Hom-dialgebras as special cases) and Hom-Poisson dialgebras. We give

some examples and some construction theorems by using the composition con-
struction. We prove that the commutator bracket of any left-Hom-symmetric

dialgebra provides Hom-Leibniz algebra. We also prove that bimodules over

Hom-dialgebras are closed under twisting. Next, we show that bimodules over
Hom-dendriform algebras D extend to bimodules over the left-Hom-symmetric

algebra associated to D. Finally, we give some examples of Hom-Poisson dial-

gebras and prove that the commutator bracket of any Hom-dialgebra structure
map leads to Hom-Poisson dialgebra.

1. Introduction

Leibniz algebras are introduced by J.-L. Loday in [8] as a generalization of Lie
algebras where the skew-symmetry of the bracket is dropped and the Jacobi iden-
tity is changed by the Leibniz identity. The author showed that the relationship
between Lie algebras and associative algebras translates into an analogous relation-
ship between Leibniz algebras and the so-called diassociative algebras or associative
dialgebras, which are a generalization of associative algebras possessing two prod-
ucts. In particular, he showed that any dialgebra becomes a Leibniz algebra under
the commutator bracket.

Otherwise, left-symmetric dialgebras appear in the work of R. Felipe [10] as
an algebraic structure with two products containing dialgebras as particular case,
and Poisson dialgebras are introduced in [7] as a vector space endowed with both
dialgebra structure and Leibniz structure which are compatible in certain sense.

The purpose of this paper is to study Left-Hom-symmetric dialgebras and Hom-
Poisson dialgebras. We define bimodules over Hom-dialgebras and Hom-dendriform
algebras [2] and give some construction theorems. Next, we introduce Hom-Poisson
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dialgebras as Hom-type of Poisson dialgebras which are generalization of “non-
commutative Poisson algebras”.

The paper is organized as follows. In section 2, we recall some basic notions
related to Hom-algebras, Hom-Lie algebras and Hom-Leibniz algebras. In Section
3, we show that one can obtain a left-Hom-symmetric algebra from a left-symmetric
algebra and an algebra endomorphism. We prove that twisting a Hom-dialgebra
module structure map by an endomorphism of Hom-dialgebras, we get another
one. Next, we show that any left-Hom-symmetric dialgebra leads to Hom-Leibniz
algebra via the Loday commutator. Finally, we introduce affine Hom-Leibniz struc-
ture on Hom-Leibniz algebras and point out that one may associate a left-Hom-
symmetric algebra to any affine Hom-Leibniz algebra. In section 4, we introduce
bimodules over Hom-dendriform algebras and prove that to any bimodule over a
Hom-dendriform algebra D corresponds a module over the left-Hom-symmetric al-
gebra associated to D. In section 5, we introduce Hom-Poisson dialgebras ; we give
some examples and some construction theorems of Hom-Poisson dialgebras.

Throughout this paper, all vector spaces are assumed to be over a field K of
characteristic different from 2.

2. Preliminaries

In this section, we recall some basic definitions.

Definition 2.1. [1] By a Hom-algebra we mean a triple (A, [·, ·], α) in which A is a
vector space, [·, ·] : A⊗A→ A is a bilinear map (the multiplication) and α : A→ A
is a linear map (the twisting map).

If in addition, α ◦ [·, ·] = [·, ·] ◦ (α⊗ α), then the Hom-algebra (A, [·, ·], α) is said
to be multiplicative.

A morphism f : (A, [·, ·], α)→ (A′, [·, ·]′, α′) of Hom-algebras is a linear map f of
the underlying vector spaces such that f ◦ α = α′ ◦ f and [·, ·]′ ◦ (f ⊗ f) = f ◦ [·, ·].

Remark 2.1. If (A, [·, ·]) is a non-necessarily associative algebra in the usual sense,
we also regard it as the Hom-algebra (A, [·, ·], IdA) with identity twisting map.

Definition 2.2. [1] Let (A, [·, ·], α) be a Hom-algebra.

(1) The Hom-associator of A is the trilinear map asα : A⊗3 → A defined as

asα = [·, ·] ◦ ([·, ·]⊗ α− α⊗ [·, ·]).
(2) The Hom-Jacobian of A is the trilinear map Jα : A⊗3 → A defined as

Jα = [·, ·] ◦ ([·, ·]⊗ α) ◦ (IdA + σ + σ2),

where σ : A⊗3 → A⊗3 is the cyclic permutation σ(x⊗ y ⊗ z) = y ⊗ z ⊗ x.
(3) The Hom-Leibnizator of A is a trilinear map Leibα : A⊗3 → A defined as

Leibα = [·, ·](α⊗ [·, ·]) + [·, ·]([·, ·]⊗ α)− [·, ·]([·, ·]⊗ α)(IdA ⊗ τ),

where τ is the twist isomorphism i.e. τ(x⊗ y) = y ⊗ x, for any x, y ∈ A.

Definition 2.3. [1] A Hom-associative algebra is a triple (A, ·, α) consisting of a
linear space A, a K-bilinear map · : A × A −→ A and a linear map α : A −→ A
satisfying

asα(x, y, z) = 0 (Hom-associativity),(2.1)

for all x, y, z ∈ A.
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Definition 2.4. [6] A Hom-Lie algebra is a triple (V, [·, ·], α) consisting of a linear
space V , a bilinear map [·, ·] : V ×V −→ V and a linear map α : V −→ V satisfying

[x, y] = −[y, x] (skew-symmetry),(2.2)

Jα(x, y, z) = 0 (Hom-Jacobi identity),(2.3)

for all x, y, z ∈ V .

Remark 2.2. When α = IdV , we obtain the definition of Lie algebras.

Definition 2.5. [1] A Hom-algebra (L, [·, ·], α) is said to be a Hom-Leibniz algebra
if it satisfies the Hom-Leibniz identity i.e.

Leibα(x, y, z) = 0,(2.4)

for all x, y, z ∈ L.

Remark 2.3. (1) When α = IdL, we recover the concept of Leibniz algebra.
(2) If the bracket is skew-symmetric, then L is a Hom-Lie algebra. Therefore

Hom-Lie algebras are particular cases of Hom-Leibniz algebras.

3. Left-Hom-symmetric dialgebras

We introduce modules over Hom-dialgebras and left-Hom-symmetric dialgebras.

3.1. Left-Hom-symmetric algebras.

Definition 3.1. [1] A left-Hom-symmetric algebra is a vector space S together
with a bilinear map ◦ : S ⊗ S → S and a linear map α : S → S such that the
following left-Hom-symmetry identity

α(x) ◦ (y ◦ z)− (x ◦ y) ◦ α(z) = α(y) ◦ (x ◦ z)− (y ◦ x) ◦ α(z),(3.1)

holds.

Remark 3.1. (1) When α = IdS , we recover the notion of left-symmetric alge-
bras.

(2) In terms of Hom-associators, the left-Hom-symmetry identity is

asα(x, y, z) = asα(y, x, z).

Example 3.1. Let (S, ◦, αS) be a left-Hom-symmetric algebra and (A, ·, αA) a com-
mutative Hom-associative algebra. Then (S ⊗A, •, αS⊗A) is a left-Hom-symmetric
algebra, with

αS⊗A = αS ⊗ αA,
(x⊗ a) • (y ⊗ b) = (x ◦ y)⊗ (a · b),

for all x, y ∈ S, a, b ∈ A.

The following theorem allows to obtain left-Hom-symmetric algebras from left-
symmetric algebras.

Theorem 3.1. Let (S, •) be a left-symmetric algebra and α : S → S be an endo-
morphism. Then, Sα = (S, •α, α), where x•α y = α(x•y), is a left-Hom-symmetric
algebra.

Moreover, suppose that (S′, •′) is another left-symmetric algebra and α′ : S′ → S′

is an algebra endomorphism. If f : S → S′ is a left-symmetric algebra morphism
that satisfies f ◦ • = •′ ◦ f then f : Sα → S′α′ is a morphism of left-Hom-symmetric
algebras.
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Proof. For any x, y, z ∈ S, we have

α(x) •α (y •α z)− (x •α y) •α α(z) = α(x) •α (α(y) • α(z))− (α(x) • α(y)) •α α(z)

= α2(x) • (α2(y) • α2(z))− (α2(x) • α2(y)) • α2(z)

= (α2)⊗3((x • y) • z)− (x • y) • z)
= (α2)⊗3(y • (x • z)− (y • x) • z)
= α(y) •α (x •α z)− (y •α x) •α α(z).

For the second part, we have

f ◦ •α = f ◦ α ◦ • = α′ ◦ f ◦ • = α′ ◦ •′ ◦ (f ⊗ f) = •′α′ ◦ (f ⊗ f).

This completes the proof. �

Example 3.2. : Left-Hom-symmetric algebra of vector fields
First we need some definitions. Let M be a differential manifold, and let 5 be
the covariant operator associated to a connection on the tangent bundle TM . The
covariant derivation is a bilinear operator on vector fields (i.e. two sections of the
tangent bundle) (X,Y ) 7→ 5XY such that the following axioms are fulfilled :

5fXY = f 5X Y,

5X(fY ) = f 5X Y + (X · f)Y (Leibniz rule).

The torsion of the connection τ is defined by :

τ(X,Y ) = 5XY −5YX − [X,Y ],(3.2)

and the curvature tensor is defined by :

R(X,Y ) = [5X ,5Y ]−5[X,Y ].(3.3)

The connection is flat if the curvature R vanishes identically, and torsion-free if
τ = 0.

Now, let M be a smooth manifold endowed with a flat torsion-free connection
5, χ(M) the space of vector fields and ϕ : M → M a smooth map such that
dϕ(5XY ) = 5dϕ(X)dϕ(Y ). Then (χ(M), ◦, dϕ) is a left-Hom-symmetric algebra,
with the left-Hom-symmetric product given by :

X ◦ Y = 5XY.

3.2. Modules over Hom-dialgebras.

Definition 3.2. A Hom-dialgebra is a vector space D equipped with a linear map
α : D → D and two Hom-associative products

a: D ×D → D

`: D ×D → D.

satisfying the identities :

α(x) a (y a z) = α(x) a (y ` z),(3.4)

(x ` y) a α(z) = α(x) ` (y a z),(3.5)

(x ` y) ` α(z) = (x a y) ` α(z).(3.6)

If in addition, α is an endomorphism with respect to a and `, then D is said to be
a multiplicative Hom-dialgebra.
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Remark 3.2. For any x, y, z in a Hom-dialgebra, one has

α(x) ? (y ? z) = α(x) ? (z ? y) (right commutativity)

where x ? y = x a y + y ` x.

Here are some examples of Hom-dialgebras.

Example 3.3. Any dialgebra is a Hom-dialgebra with α = Id.

Example 3.4. If (A,µ, α) is a Hom-associative algebra, then (D,a,`, α) is a Hom-
dialgebra in which a= µ =`.

Example 3.5. Let (D,a,`, α) be a Hom-dialgebra. Then (D,a′,`′, α) is also a
Hom-dialgebra, with

x a′ y := y ` x and x `′ y := y a x.

Example 3.6. Let (D,aD,`D, αD) and (D′,aD′ ,`D′ , αD′) be two Hom-dialgebras.
The tensor product D ⊗D′ is also a Hom-dialgebra with

αD⊗D′(x⊗ y) := αD(x)⊗ αD′(x′),

(x⊗ x′) a (y ⊗ y′) := (x aD y)⊗ (x′ aD′ y′),

(x⊗ x′) ` (y ⊗ y′) := (x `D y)⊗ (x′ `D′ y′).

Example 3.7. Let (A, ·, α) be a Hom-associative algebra. Then, for any positive
integer n, An = A×A× · · · ×A (n times) is a Hom-dialgebra, with

αAn := (α, α, . . . , α),

(x aAn y)i := xi · (
∑

yj),

(x `An y)i := (
∑

xj) · yi,

for any 1 ≤ i, j ≤ n.

Example 3.8. The Hom-dialgebra arising from a bimodule over Hom-associative
algebra and morphism of Hom-bimodules is exposed in [4].

Now, we have the following definitions.

Definition 3.3. [5] A Hom-module is a pair (M,β) in which M is a vector space
and β : M −→M is a linear map.

Definition 3.4. Let (A, ·, α) be a Hom-associative algebra and let (M,β) be a
Hom-module. A bimodule structure on M consists of :

(1) a left A-action, ≺: A⊗M →M (x⊗m 7→ x ≺ m), and
(2) a right A-action, �: M ⊗A→M (m⊗ x 7→ m � x)

such that the following conditions hold for x, y ∈ A and m ∈M :

β(x ≺ m) = α(x) ≺ β(m),(3.7)

β(m � x) = β(m) � α(x),(3.8)

α(x) ≺ (y ≺ m) = (x · y) ≺ β(m),(3.9)

(m � x) � α(y) = β(m) � (x · y),(3.10)

α(x) ≺ (m � y) = (x ≺ m) � α(y).(3.11)
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Definition 3.5. Let (D,a,`, α) be a Hom-dialgebra and (M,β) be a Hom-module.
Assume that M is endowed with two operations ≺: D⊗M →M and �: M ⊗D →
M . We say that (M,≺,�, β) is a bimodule over the Hom-dialgebra (D,a,`, α) if,
for any x, y ∈ D,m ∈M , the following identities are satisfied :

β(x ≺ m) = α(x) ≺ β(m),(3.12)

β(m � x) = β(m) � α(x)(3.13)

(x ≺ m) � α(y) = α(x) ≺ (m � y),(3.14)

β(m) � (x a y) = (m � x) � α(y) = β(m) � (x ` y)(3.15)

(x a y) ≺ β(m) = α(x) ≺ (y ≺ m) = (x ` y) ≺ β(m)(3.16)

Remark 3.3. (1) (a) Axioms (3.12) and (3.13) can be interpreted as the mul-
tiplicativity in the Hom-modules theory.

(b) Axiom (3.15) (resp. (3.16)) is the left-module (resp. right-module)
condition.

(c) Axiom (3.14) is the compatibility condition of left and right modules.
(2) Taking M = D (as vector space), ≺=a and �=`, we see that any Hom-

dialgebra is a bimodule over itself.

We have the following result.

Proposition 3.1. Let (D,a,`, α) be a Hom-dialgebra. Then (M,≺,�, β) is a
bimodule over (D,a,`, α) if and only if it is a bimodule over (D,µ, α), where a=
µ =`.

Proof. The proof follows from Definition 3.4 and Definition 3.5. �

The following theorem asserts that bimodules over Hom-dialgebras are closed
under twisting.

Theorem 3.2. Let (D,a,`, α) be a Hom-dialgebra and (M,≺,�, β) be a bimodule
over D. Define the maps

≺α:=≺ ◦(α2 ⊗ IdM ) : D ⊗M →M, x⊗m 7→ α2(x) ≺ m(3.17)

�α:=� ◦(IdM ⊗ α2) : M ⊗D →M, m⊗ x 7→ m � α2(x).(3.18)

Then (M,≺α,�α, β) is a bimodule over D.

Proof. We shall only prove (3.12) and (3.14). For any x, y ∈ D,m ∈M ,

β(x ≺α m)
(3.17)

= β(α2(x) ≺ m)
(3.12)

= α3(x) ≺ β(m)
(3.17)

= α(x) ≺α β(m),

and,

(x ≺α m) �α α(y)− α(x) ≺α (m �α y)
(3.17)

= (α2(x) ≺ m) � α3(y)

−α3(x) ≺ (m � α2(y))
(3.14)

= 0.

All the rest of equalities are proved analogously. �

Proposition 3.2. Let (M,≺,�, β) be a bimodule over the Hom-dialgebra (D,a,`
, α). Then, we have the following identities :

[x, y] ≺ β(m) = α(x) ≺ (y ≺ m)− α(y) ≺ (x ≺ m),(3.19)

β(m) � [x, y] = (x ≺ m) � α(y) + α(x) ≺ (m � y),(3.20)

where, [x, y] = x a y − y ` x.
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Proof. The first equality is proved by using (3.16). For the second equality, we
have, for any x, y ∈ D,m ∈M ,

β(m) � [x, y]− (x ≺ m) � α(y)− α(x) ≺ (m � y) =

= β(m) � (x a y − y ` x)− (x ≺ m) � α(y)− α(x) ≺ (m � y) =

= β(m) � (x a y)− β(m) � (y ` x)− (x ≺ m) � α(y)− α(x) ≺ (m � y).

The last line vanishes by (3.14) and (3.15). �

3.3. Left-Hom-symmetric dialgebras.

Definition 3.6. A Left-Hom-symmetric dialgebra is a vector space S equipped
with two bilinear products

a: S × S → S,

`: S × S → S,

satisfying the identities

α(x) a (y a z) = α(x) a (y ` z),(3.21)

(x ` y) ` α(z) = (x a y) ` α(z),(3.22)

α(x) a (y a z)− (x a y) a α(z) = α(y) ` (x a z)− (y ` x) a α(z),(3.23)

α(x) ` (y ` z)− (x ` y) ` α(z) = α(y) ` (x ` z)− (y ` x) ` α(z).(3.24)

Remark 3.4. The identities (3.23) and (3.24) can be written as

Laα(x)L
a
y − L`α(y)L

a
x = La[x,y]α,

L`α(x)L
`
y − L`α(y)L

`
x = L`[x,y]α,

where, Lax and L`x are defined respectively by Laxy = x a y and L`xy = x ` y, and
[x, y] = x a y − y ` x.

Now we give some examples of left-Hom-symmetric dialgebras.

Example 3.9. Any Hom-dialgebra is a left-Hom-symmetric dialgebra.

Example 3.10. Any left-Hom-symmetric algebra is a left-Hom-symmetric dialge-
bra in which `=a.

Example 3.11. Let (S,a,`, αS) be a left-Hom-symmetric dialgebra and (A, ·, αA)
be a left-Hom-symmetric algebra, then S × A is a left-Hom-symmetric dialgebra
with

αS×A := (αS , αA),

(x, a) aS×A (y, b) := (x a y, a · b),
(x, a) `S×A (y, b) := (x ` y, a · b).

We have the following result whose ordinary case is Proposition 4 in [10].

Proposition 3.3. A left-Hom-symmetric dialgebra S is a Hom-dialgebra if and
only if both products of S are Hom-associative.

Proof. If a left-Hom-symmetric dialgebra S is a Hom-dialgebra, then both products
a and ` defined over S are Hom-associative according to Definition 3.2. Conversely,
if each product of a left-Hom-symmetric dialgebra is Hom-associative, then from
(3.23), we get (3.5). �
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The next statement is one of the main results of this paper ; it states that
the commutator bracket of any left-Hom-symmetric dialgebra gives rise to a Hom-
Leibniz algebra.

Theorem 3.3. Let (S,a,`, α) be a left-Hom-symmetric dialgebra. Then the Loday
commutator defined by

[x, y] := x a y − y ` x,(3.25)

defines a structure of Hom-Leibniz algebra on S.

Proof. The proof follows by a straighforward computation in which the identities
(3.21) and (3.22) are used once. In fact, for any x, y, z ∈ S, we have

Leibα(x, y, z) = [α(x), [y, z]]− [[x, y], α(z)] + [[x, z], α(y)]

= α(x) a (y a z)− α(x) a (z ` y)− (y a z) ` α(x) + (z ` y) ` α(x)

−(x a y) a α(z) + (y ` x) a α(z) + α(z) ` (x a y)− α(z) ` (y ` x)

+(x a z) a α(y)− (z ` x) a α(y)− α(y) ` (x a z) + α(y) ` (z ` x)

= 0.

Now, by (3.23) and (3.24) it follows that Leibα(x, y, z) = 0. This completes the
proof. �

We need the below definition in the next theorem.

Definition 3.7. Let (S,a,`, α) and (S′,a′,`′, α′) be two left-Hom-symmetric di-
algebras. A map f : S → S′ is said to be a morphism of left-Hom-symmetric
dialgebras if

α′ ◦ f = f ◦ α, f(x a y) = f(x) a′ f(y) and f(x ` y) = f(x) `′ f(y),

for any x, y ∈ S.

Twisting a left-symmetric dialgebra by a left-symmetric dialgebras endomor-
phism, we get a left-Hom-symmetric dialgebra ; this is stated in the following
theorem.

Theorem 3.4. Let (S,a,`) be a left-symmetric dialgebra and α : S → S be a
morphism of left-symmetric dialgebras. Then (S,aα,`α, α) is a multiplicative left-
Hom-symmetric dialgebra with

x `α y = α(x ` y),

x aα y = α(x a y).

Proof. The proof is similar to that of Proposition 3.1. �

In the rest of this section, we introduce affine Hom-Leibniz structures on Hom-
Leibniz algebras.

Definition 3.8. Let (L, [−,−], α) be a Hom-Leibniz algebra. A pair (51,52) of
bilinear maps

51 : L× L→ L

and

52 : L× L→ L.
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is called an affine Hom-Leibniz structure if

52(x, y)−51(y, x) = [x, y],(3.26)

51(51(x, y), α(z)) = 51(52(x, y), α(z)),(3.27)

52(α(x),52(y, z))) = 52(α(x),51(y, z))),(3.28)

52(α(x),51(y, z))−51(α(y),52(x, z)) = 52([x, y], α(z)),(3.29)

and

51(α(x),51(y, z))−51(α(y),51(x, z)) = 51([x, y], α(z)),(3.30)

for all x, y, z ∈ L.

The next result is the Hom-type of ([10], Theorem 11).

Theorem 3.5. Let (L, [−,−], α) be a Hom-Leibniz algebra and let (51,52) be an
affine Hom-Leibniz structure. Then L is a left-Hom-symmetric dialgebra with `
and a defined as

x ` y = 51(x, y), x a y = 52(x, y).(3.31)

Proof. Relations (3.27) and (3.28) imply (3.21) and (3.22) respectively. Next, (3.23)
follows from (3.26) and (3.29). Finally, (3.24) is established by applying (3.21),
(3.26) and (3.30). �

Corollary 3.1. Let (5,5) be an affine structure on the Hom-Leibniz algebra
(L, [−,−], α). Then (L,5, α) is a left-Hom-symmetric algebra.

4. Hom-dendriform algebras

This section in devoted to modules over Hom-dendriform algebras.

Definition 4.1. [2] A Hom-dendriform algebra is a vector space D together with
bilinear maps a: D ⊗D → D, `: D ⊗D → D and linear map α : S → S such that

α(x) ` (y a z) = (x ` y) a α(z),(4.1)

(x a y) a α(z) = α(x) a (y a z) + α(x) a (y ` z),(4.2)

α(x) ` (y ` z) = (x a y) ` α(z) + (x ` y) ` α(z).(4.3)

Lemma 4.1. [2] Let (D,a,`, α) be a Hom-dendriform algebra. Defining x ◦ y =
x ` y − y a x, one obtains a left-Hom-symmetric algebra structure on D.

The following result is the Hom-analogue of Proposition 5.3 in [7].

Proposition 4.1. Let (D,a,`, αD) and (D,≺,�, αD) be a Hom-dialgebra and a
Hom-dendriform algebra respectively. Then, on the tensor product D ⊗ D, the
bracket

[x⊗ a, y ⊗ b] := (x a y)⊗ (a ≺ b)− (y ` x)⊗ (b � a)

−(y a x)⊗ (b ≺ a) + (x ` y)⊗ (a � b),

where x, y ∈ D, a, b ∈ D, defines a structure of Hom-Lie algebra on D ⊗ D, with
αD⊗D = αD ⊗ αD.
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Proof. The bracket is skew-symmetric by definition. Hence, it suffices to show that
the Hom-Jacobi identity is fulfilled.

The Hom-Jacobi identity for x⊗ a, y ⊗ b, z ⊗ c gives a total of 48 terms, in fact
8× 3! terms. There are 8 terms for which x, y, z (and also a, b, c) stay in the same
order. The other set of 8 terms are permutations of this set which reads :

α(x) a (y a z)⊗ α(a) ≺ (b ≺ c)− (x a y) a α(z)⊗ (a ≺ b) ≺ α(c),

α(x) ` (y a z)⊗ α(a) � (b ≺ c)− (x ` y) a α(z)⊗ (a � b) ≺ α(c),

α(x) a (y ` z)⊗ α(a) ≺ (b � c)− (x a y) ` α(z)⊗ (a ≺ b) � α(c),

α(x) ` (y ` z)⊗ α(a) � (b � c)− (x ` y) ` α(z)⊗ (a � b) � α(c).

The terms 1 and 3 in column 1 together with the term 1 in column 2 cancel due to
Definition 3.2 and (4.2). Similarly, the terms 41, 32 and 42 cancel due to Definition
3.2 and (4.3). Finally the terms 21 and 22 cancel due to Definition 3.2 and (4.1). �

Corollary 4.1. If D and D are multiplicative, then D⊗D is also a multiplicative
Hom-Lie algebra.

Definition 4.2. Let (S, ◦, α) be a left-Hom-symmetric algebra. An S-bimodule
is a vector space M endowed with a linear map β : M → M , two bilinear maps
S ⊗M →M,x⊗m 7→ x ≺ m and M ⊗ S →M,m⊗ x 7→ m � x, such that

α(x) ≺ (y ≺ m)− (x ◦ y) ≺ β(m)− α(y) ≺ (x ≺ m) + (y ◦ x) ≺ β(m) = 0,

and,

α(x) ≺ (m � y)− (x ≺ m) � α(y)− β(m) � (x ◦ y) + (m � x) � α(y) = 0.

Example 4.1. Any left-Hom-symmetric algebra is a bimodule over itself.

The following theorem gives a kind of connection between left-Hom-symmetric
algebras and left-Hom-symmetric dialgebras.

Proposition 4.2. Let (S, ·, α) be a left-Hom-symmetric algebra and I be a bimodule
over S. Assume that, for all i, j ∈ I and a, b, c, d ∈ S,

α(i) · (a · b)− (i · a) · α(b) = α(a) · (i · b)− (a · i) · α(b),

α(c) · (d · j)− (c · d) · α(j) = α(d) · (c · j)− (d · c) · α(j).

Then (S ⊕ I,a,`, αS⊕I) is a left-Hom-symmetric dialgebra with

αS⊕I = αS ⊕ αI ,
(i1 + a1) a (i2 + a2) = i1a2 + a1a2,

(i1 + a1) ` (i2 + a2) = a1i2 + a1a2.

Proof. It is straighforward by calculation. �

Corollary 4.2. Let (S, ·, α) be a left-Hom-symmetric algebra and I be an ideal of
S. Then (S ⊕ I,a,`, αS⊕I) is a left-Hom-symmetric dialgebra.

Now, we define bimodules over Hom-dendriform algebras which are Hom-analogue
of ([9], Definition 5.5).

Definition 4.3. Let (D,a,`, α) be a Hom-dendriform algebra. A D-bimodule is
a Hom-module (M,β) together with four bilinear maps

D ⊗M →M,x⊗m 7→ x � m; D ⊗M →M,x⊗m 7→ x ≺ m;

M ⊗D →M,m⊗ x 7→ m � x; M ⊗D →M,m⊗ x 7→ m ≺ x
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such that

α(x) � (y ≺ m) = (x ` y) ≺ β(m),(4.4)

(x a y) ≺ β(m) = α(x) ≺ (y ≺ m) + α(x) ≺ (y � m),(4.5)

α(x) � (y � m) = (x a y) � β(m) + (x ` y) � β(m),(4.6)

α(x) � (m ≺ y) = (x � m) ≺ α(y),(4.7)

(x ≺ m) ≺ α(y) = α(x) ≺ (m ≺ y) + α(x) ≺ (m � y),(4.8)

α(x) � (m � y) = (x ≺ m) � α(y) + (x � m) � α(y),(4.9)

β(m) � (x a y) = (m � x) ≺ α(y),(4.10)

(m ≺ x) ≺ α(y) = β(m) ≺ (x a y) + β(m) ≺ (x ` y),(4.11)

β(m) � (x ` y) = (m ≺ x) � α(y) + (m � x) � α(y).(4.12)

Theorem 4.1. Let (D,a,`, α) be a Hom-dendriform algebra and (M,≺,�, β) be
a dendriform bimodule over D. Then (M,/, ., β) is a left-symmetric bimodule over
the left-Hom-symmetric algebra associated to (D,a,`, α) (i.e. (D, ◦, α), where x ◦
y = x ` y − y a x) by means of

x / m = x � m−m ≺ x and m . x = m � x− x ≺ m.

Proof. The first condition in Definition 4.2 is proved by expanded

α(x) / (y / m)− (x ◦ y) / β(m)− α(y) / (x / m) + (y ◦ x) / β(m)

by means of a, `, ≺ and �, and using (4.6), (4.7) and (4.11). The second condition
is proved similarly by using the rest of relations. �

5. Hom-Poisson dialgebras

In this section, we introduce Hom-Poisson dialgebras and we give some examples
and some construction theorems.

Definition 5.1. A Hom-Poisson dialgebra is a quintuple (P,a,`, [−,−], α) in which
P is a vector space, a,`, [−,−] : P ⊗P → P are three bilinear maps and α : P → P
is a linear map such that

[x a y, α(z)] = α(x) a [y, z] + [x, z] a α(y),(5.1)

[x ` y, α(z)] = α(x) ` [y, z] + [x, z] ` α(y),(5.2)

[α(x), y a z] = α(y) ` [x, z] + [x, y] a α(z) = [α(x), y ` z].(5.3)

for all x, y, z ∈ P .

Example 5.1. Any Poisson dialgebra is a Hom-Poisson dialgebra with α = Id.

Example 5.2. If (A, ·, α) is a symmetric Hom-Leibniz algebra [11] i.e. both left
and right Hom-Leibniz algebra, then (A,a,`, [−,−], α) is a Hom-Poisson dialgebra,
with [−,−] = · =a=`.

Example 5.3. Let (P,a,`, [−,−], α) and (P ′,a′,`′, [−,−]′, α′) be two Hom-Poisson
dialgebras. Then the direct product P × P ′ is also a Hom-Poisson dialgebra
with componentwise operation. In particular, for any non-negative integer n,
Pn = P × P × · · · × P (n times) is a Hom-Poisson dialgebra.

The below theorem generalizes Proposition 2.6 in [3].
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Theorem 5.1. Let (D,a,`, α) be a Hom-dialgebra. Then (D,a,`, [−,−], α) is a
Hom-Poisson dialgebra, where

[x, y] = x a y − y ` x,
for any x, y ∈ D.

Proof. It follows from axioms in Definition 3.2. �

Observe that by setting a= µ and `= µop, we recover ([3], Proposition 2.6).

Definition 5.2. Let (P,a,`, [−,−], α) and (P ′,a′,`′, [−,−]′, α′) be two Hom-
Poisson dialgebras. A linear map f : P → P ′ is said to be a morphism of Hom-
Poisson dialgebras, if α′ ◦ f = f ◦ α and for any x, y ∈ P ,

f(x a y) = f(x) a′ f(y), f(x ` y) = f(x) `′ f(y), f([x, y]) = [f(x), f(y)]′.

The following theorem allows to obtain a Hom-Poisson dialgebra from Poisson
dialgebra and an endomorphism.

Theorem 5.2. Let (P,a,`, [−,−]) be a Poisson dialgebra and α : P → P an
endomorphism of Poisson dialgebras. Then (P,aα,`α, [−,−]α, α) is a Hom-Poisson
dialgebra, with

x aα y = α(x a y), x `α y = α(x ` y), [x, y]α = α([x, y]),

for all x, y ∈ P .

Proof. The proof is analogue to the one of Theorem 3.1. �
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ON SOME INEQUALITIES FOR THE EXPECTATION AND

VARIANCE

ZHENG LIU

Abstract. Some elementary inequalities for the expectation and variance of

a continuous random variable whose probability density function is defined on
a finite interval are obtained by using an identity due to P. Cerone for the

Chebyshev functional and some standard results from the theory of inequali-
ties. Thus some mistakes in the literatures are corrected.

1. INTRODUCTION

Let X be a continuous random variable having the probability density func-
tion f defined on a finite interval [a, b].

By definition

(1.1) E(X) :=

∫ b

a

tf(t) dt

the expectation of X, and

(1.2)
σ2(X) :=

∫ b
a

[t− E(X)]2f(t) dt

=
∫ b
a
t2f(t) dt− [E(X)]2

the variance of X.
For two integral functions f, g : [a, b]→ R, define the Chebyshev functional

(1.3) T (f, g) :=
1

b− a

∫ b

a

f(t)g(t) dt− 1

b− a

∫ b

a

f(t) dt · 1

b− a

∫ b

a

g(t) dt.

In [1], P. Cerone has obtained the following identity that involves a Riemann-
Stieltjes integral:

Date: December 14, 2014.

2000 Mathematics Subject Classification. 26D15.
Key words and phrases. random variable, expectation, variance, probability density function,

Chebyshev functional.
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Lemma 1.1. Let f, g : [a, b] → R be such that f is of bounded variation on [a, b]
and g is continuous on [a, b]. Then

(1.4) T (f, g) =
1

(b− a)2

∫ b

a

Ψ(t) df(t),

where

(1.5) Ψ(t) := (t− a)A(t, b)− (b− t)A(a, t),

with

(1.6) A(c, d) :=

∫ d

c

g(x) dx.

In [1] we can also find the following useful result:

Lemma 1.2. Let f, g : [a, b] → R be such that f is of bounded variation and g is
continuous on [a, b]. Then

(1.7)

(b− a)2|T (f, g)| ≤


supt∈[a,b]|Ψ(t)|

∨b
a(f),

L
∫ b
a
|Ψ(t)| dt, for f L-Lipschitzian,∫ b

a
|Ψ(t)| df(t), for f monotonic nondecreasing,

where
∨b
a(f) is the total variation of f on [a, b].

The purpose of this paper is to derive some elementary inequalities for the ex-
pectation (1.1) and variance (1.2) by using Lemma 1.1 and Lemma 1.2. Thus some
mistakes in [1] and [2] are corrected.

2. INEQUALITIES FOR THE EXPECTATION

We prove the following theorem by using the Lemma 1.1.

Theorem 2.1. Let f : [a, b]→ R+ be an absolutely continuous probability density
function associated with a random variable X, then the expectation E(X) satisfies
the inequalities

(2.1)

|E(X)− a+b
2 |

≤


(b−a)3

12 ‖f
′‖∞, f ′ ∈ L∞[a, b];

1
2 (b− a)2+

1
q [B(q + 1, q + 1)]

1
q ‖f ′‖p, f ′ ∈ Lp[a, b], p > 1,

1
p + 1

q = 1;
(b−a)2

8 ‖f ′‖1, f ′ ∈ L1[a, b].

where ‖ · ‖p, 1 ≤ p ≤ ∞ are the usual Lebesgue norms on [a, b], i.e.,

(2.2) ‖g‖p :=

{
[
∫ b
a
|g(t)|p dt]

1
p , 1 ≤ p <∞,

ess supt∈[a,b] |g(t)|, p =∞.
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Proof. Notice that
∫ b
a
f(t) dt = 1 and f is absolutely continuous on [a, b], by

(1.3) and (1.4)-(1.6) we get

E(X)− a+ b

2
= (b− a)T (t, f(t)) =

1

2

∫ b

a

(t− a)(b− t)f ′(t) dt,

and so

|E(X)− a+ b

2
| ≤ 1

2

∫ b

a

(t− a)(b− t)|f ′(t)| dt.

Using the Hölder’s integral inequality, we have

∫ b

a

(t− a)(b− t)f ′(t) dt ≤


1
2‖f

′‖∞
∫ b
a

(t− a)(b− t) dt, f ′ ∈ L∞[a, b];
1
2‖f

′‖p[
∫ b
a
|(t− a)(b− t)|q dt]

1
q , f ′ ∈ Lp[a, b],

p > 1, 1p + 1
q = 1;

1
2‖f

′‖1 supt∈[a,b](t− a)(b− t), f ′ ∈ L1[a, b].

Clearly, ∫ b

a

(t− a)(b− t) dt =
(b− a)3

6
,

sup
t∈[a,b]

(t− a)(b− t) =
(b− a)2

4
,

and it is easy to find by substitution u = a+ (b− a)t that

∫ b

a

[(t− a)(b− t)]q dt = (b− a)2q+1

∫ 1

0

uq(1− u)q du = (b− a)2q+1B(q + 1, q + 1).

Thus we have proved the inequalities (2.1).

Remark 2.1. The inequalities (2.1) provide a correction of the inequalities (3.22)
in [2].

Theorem 2.2. Let f : [a, b]→ R+ be a probability density function associated with
a random variable X. Then the expectation E(X) satisfies the inequalities

(2.3) |E(X)− a+ b

2
| ≤


(b−a)2

8

∨b
a(f), for f of bounded variation,

(b−a)3
12 L, for f L-Lipschitzian,

(b−a)2
8 [f(b)− f(a)], for f monotonic nondecreasing.

Proof. Notice that
∫ b
a
f(t) dt = 1, by (1.3), (1.4) and (1.6) we get

E(X)− a+ b

2
= (b− a)T (t, f(t)) =

1

2

∫ b

a

(t− a)(b− t) df(t),

and so it follows from Lemma 1.2,

|E(X)−a+ b

2
| ≤


1
2 supt∈[a,b](t− a)(b− t)

∨b
a(f), for f of bounded variation,

L
2

∫ b
a

(t− a)(b− t) dt, for f L-Lipschitzian,
1
2

∫ b
a

(t− a)(b− t) df(t), for f monotonic nondecreasing.
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We need only to calculate and estimate that

∫ b
a

(t− a)(b− t) df(t) = (t− a)(b− t)f(t)|ba + 2
∫ b
a

(t− a+b
2 )f(t) dt

= 2[
∫ a+b

2

a
(t− a+b

2 )f(t) dt+
∫ b

a+b
2

(t− a+b
2 )f(t) dt]

≤ 2f(a)
∫ a+b

2

a
(t− a+b

2 ) dt+ 2f(b)
∫ b

a+b
2

(t− a+b
2 ) dt

= (b−a)2
4 [f(b)− f(a)].

Consequently, the inequalities (2.2) are proved.

Remark 2.2. The inequalities (2.2) provide a correction of inequalities (3.14) in [1].

3. INEQUALITIES FOR THE VARIANCE

For convenience in further discussions, we will first to derive some technical
results in what follows. Put

(3.1) φ(t) := (t− γ)3 +
1

b− a
[(b− t)(γ − a)3 − (t− a)(b− γ)3]

for t ∈ [a, b] and γ ∈ R.
It is easy to find that

(3.2)
φ(t) = t3 − 3γt2 − [a2 + ab+ b2 − 3(a+ b)γ]t− ab[3γ − (a+ b)]

= (t− a)(t− b)(t− c),
where c = 3γ − a− b. This implies that

(3.3) c


> γ, γ > a+b

2 ,
= γ, γ = a+b

2 ,
< γ, γ < a+b

2 .

Moreover, we see that c < a for γ < 2a+b
3 , c > b for γ > a+2b

3 and a ≤ c ≤ b for
2a+b
3 ≤ γ ≤ a+2b

3 . Therefore, by (3.2) we can conclude that φ(t) ≤ 0 for t ∈ [a, b] if

γ < 2a+b
3 , φ(t) ≥ 0 for t ∈ [a, b] if γ > a+2b

3 and φ(t) > 0 for t ∈ (a, c) with φ(t) < 0

for t ∈ (c, b) if 2a+b
3 ≤ γ ≤ a+2b

3 .
Thus we have

(3.4)

∫ b

a

|φ(t)| dt = −
∫ b

a

φ(t) dt =
1

2
(
a+ b

2
− γ)(b− a)3

in case γ < 2a+b
3 ,

(3.5)

∫ b

a

|φ(t)| dt =

∫ b

a

φ(t) dt =
1

2
(γ − a+ b

2
)(b− a)3

in case a+2b
3 < γ, and

(3.6)∫ b
a
|φ(t)| dt =

∫ c
a
φ(t) dt−

∫ b
c
φ(t) dt

= 1
4 [18(γ − a)(b− γ)(b− a)2 − 54(γ − a)2(b− γ)2 − (b− a)4]
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in case 2a+b
3 ≤ γ ≤ a+2b

3 .
Also, it is not difficult to get by elementary calculus that

(3.7) sup
t∈[a,b]

|φ(t)| = 2{[(γ − a+ b

2
)2 +

(b− a)2

12
]
3
2 − (γ − a)(b− γ)|γ − a+ b

2
|},

for γ ∈ R.
Now we would like to give some inequalities for the variance with different

bounds.

Theorem 3.1. Let f : [a, b]→ R+ be an absolutely continuous probability density
function associated with a random variable X. If f ′ ∈ L∞[a, b], then the variance
σ2(X) satisfies the inequalities

(3.8)

|σ2(X)− (γ − a+b
2 )2 − (b−a)2

12 |

≤ ‖f ′‖∞


1
6 (a+b2 − γ)(b− a)3, a < γ < 2a+b

3
1
12 [18(γ − a)(b− γ)(b− a)2 − 54(γ − a)2(b− γ)2 − (b− a)2], 2a+b

3 ≤ γ ≤ a+2b
3 ,

1
6 (γ − a+b

2 )(b− a)3, a+2b
3 < γ < b,

where a < γ = E(X) < b.

Proof. It is easy to find from (1.3)-(1.6) that

(3.9) σ2(X)− (γ − a+ b

2
)2 − (b− a)2

12
= −1

3

∫ b

a

φ(t)f ′(t) dt,

where φ(t) is as defined in (3.1).
Thus the inequalities (3.8) follow from (3.4), (3.5) and (3.6).

Theorem 3.2. Let f : [a, b]→ R+ be an absolutely continuous probability density
function associated with a random variable X. If f ′ ∈ L1[a, b], then the variance
σ2(X) satisfies the inequality

(3.10)
|σ2(X)− (γ − a+b

2 )2 − (b−a)2
12 |

≤ 2
3{[(γ −

a+b
2 )2 + (b−a)2

12 ]
3
2 − (γ − a)(b− γ)|γ − a+b

2 |}‖f
′‖1,

where a < γ = E(X) < b.

Proof. The inequality (3.10) follows immediately from (3.7) and (3.9).

Remark 3.1. The inequalities (3.8) and inequality (3.10) provide a correction of
inequalities (3.23) in [2].

Theorem 3.3. Let f : [a, b]→ R+ be a probability density function associated with
a random variable X which is of bounded variation on [a, b]. Then the variance
σ2(X) satisfies the inequality

(3.11)
|σ2(X)− (γ − a+b

2 )2 − (b−a)2
12 |

≤ 2
3{[(γ −

a+b
2 )2 + (b−a)2

12 ]
3
2 − (γ − a)(b− γ)|γ − a+b

2 |}
∨b
a(f),

where a < γ = E(X) < b and
∨b
a(f) is the total variation of f on [a, b].
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Proof. By Lemma 1.1 and Lemma 1.2 we can conclude that

|σ2(X)− (γ − a+ b

2
)2 − (b− a)2

12
| ≤ 1

3
sup
t∈[a,b]

|φ(t)|
∨b

a
(f),

where φ(t) is as defined in (3.1).
Thus the inequality (3.11) follows from (3.7).

Theorem 3.4. Let f : [a, b]→ R+ be a probability density function associated with
a random variable X which is L-Lipschitzian on [a, b]. Then the variance σ2(X)
satisfies the inequalities

(3.12)

|σ2(X)− (γ − a+b
2 )2 − (b−a)2

12 |

≤ L


1
6 (a+b2 − γ)(b− a)3, a < γ < 2a+b

3 ,
1
12 [18(γ − a)(b− γ)(b− a)2 − 54(γ − a)2(b− γ)2 − (b− a)4], 2a+b

3 ≤ γ ≤ a+2b
3 ,

1
6 (γ − a+b

2 )(b− a)3, a+2b
3 < γ < b,

where a < γ = E(X) < b.

Proof. By Lemma 1.1 and Lemma 1.2 we can conclude that

|σ2(X)− (γ − a+ b

2
)2 − (b− a)2

12
| ≤ L

3

∫ b

a

|φ(t)| dt,

where φ(t) is as defined in (3.1).
Thus the inequalities (3.12) follow from (3.4), (3.5) and (3.6).

Theorem 3.5. Let f : [a, b] → R+ be a probability density function associated
with a random variable X which is monotonic nondecreasing on [a, b]. Then the
variance σ2(X) satisfies the inequality

(3.13)

|σ2(X)− (γ − a+b
2 )2 − (b−a)2

12 |

≤


5b+4a−9γ

18 (b− a)2[f(b)− f(a)], a < γ < 2a+b
3 ,

3b−2a−c
18 (c− a)2[f(c)− f(a)] + 2b+c−3a

18 (b− c)2[f(b)− f(c)], 2a+b
3 ≤ γ ≤ a+2b

3 ,
9γ−5a−4b

18 (b− a)2[f(b)− f(a)], a+2b
3 < γ < b,

where a < γ = E(X) < b and c = 3γ − a− b.

Proof. By Lemma 1.1 and Lemma 1.2 we can conclude that

|σ2(X)− (γ − a+ b

2
)2 − (b− a)2

12
| ≤ 1

3

∫ b

a

|φ(t)| df(t),

where φ(t) is as defined in (3.1).
Notice that

φ(t) = (t− a)(t− b)(t− c)

for t ∈ [a, b], where c = 3γ − a− b, it is easy to calculate that
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∫ b
a
|φ(t)| df(t) = −

∫ b
a
φ(t) df(t) =

∫ b
a
φ′(t)f(t) dt

=
∫ b
a

[(t− b)(t− c) + (t− a)(t− c) + (t− a)(t− b)]f(t) dt

≤ f(a)
∫ b
a

(t− b)(t− c) dt+ f(b)
∫ b
a

(t− a)(t− c) dt+ f(a)
∫ b
a

(t− a)(t− b) dt
= 5b+4a−9γ

6 (b− a)2[f(b)− f(a)],

in case a < γ < 2a+b
3 ,

∫ b
a
|φ(t)| df(t) =

∫ b
a
φ(t) df(t) = −

∫ b
a
φ′(t)f(t) dt

= −
∫ b
a

[(t− b)(t− c) + (t− a)(t− c) + (t− a)(t− b)]f(t) dt

≤ −f(a)
∫ b
a

(t− b)(t− c) dt− f(b)
∫ b
a

(t− a)(t− c) dt− f(b)
∫ b
a

(t− a)(t− b) dt
= 9γ−5a−4b

6 (b− a)2[f(b)− f(a)],

in case a+2b
3 < γ < b, and

∫ b
a
|φ(t)| df(t) =

∫ c
a
φ(t) df(t)−

∫ b
c
φ(t) df(t)

= −
∫ c
a
φ′(t)f(t) dt+

∫ b
c
φ′(t)f(t) dt

= −
∫ c
a

[(t− b)(t− c) + (t− a)(t− c) + (t− a)(t− b)]f(t) dt

+
∫ b
c

[(t− b)(t− c) + (t− a)(t− c) + (t− a)(t− b)]f(t) dt
≤ −f(a)

∫ c
a

(t− b)(t− c) dt− f(c)
∫ c
a

(t− a)(t− c) dt− f(c)
∫ c
a

(t− a)(t− b) dt
+f(c)

∫ b
c

(t− b)(t− c) dt+ f(b)
∫ b
c

(t− a)(t− c) dt+ f(c)
∫ b
c

(t− a)(t− b) dt
= 3b−2a−c

6 (c− a)2[f(c)− f(a)] + 2b+c−3a
6 (b− c)2[f(b)− f(c)]

in case 2a+b
3 ≤ γ ≤ a+2b

3 .
Consequently, the inequalities (3.13) are proved.

Corollary 3.1. Let f : [a, b] → R+ be a probability density function associated
with a random variable X. If E(X) = a+b

2 , then the variance σ2(X) satisfies the
inequalities

|σ2(X)− (b− a)2

12
| ≤


(b−a)3

36
√
3

∨b
a(f), f of bounded variation,

(b−a)4
96 L, f L-Lipschitzian,

5(b−a)3
144 [f(b)− f(a)], f monotonic nondecreasing.

Proof. It is immediate from the inequalities (3.11), (3.12) and (3.13).

Remark 3.2. The inequalities (3.11), (3.12) and (3.13) provide a correction of in-
equalities (3.15) in [1].

Remark 3.3. The mistakes of Corollary 8 and Corollary 9 1n [2] as well as the
mistakes of Corollary 3.7 and Corollary 3.8 in [1] seemed as if they are originated
from having wrongly examined the behaviour of φ(t) as given by

φ(t) = (t− γ)n+1 + (
b− t
b− a

)(γ − a)n+1 − (
t− a
b− a

)(b− γ)n+1

for t ∈ [a, b] in case n is even. (See (3.13) of Lemma 2 in [2] and also (3.6) of Lemma
3.3 in [1] and compare them with the assertions expressed at the beginning of this
section as a special case of n = 2.)
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A DIFFERENT LOOK FOR PARANORMED

RIESZ SEQUENCE SPACE DERIVED BY

FIBONACCI MATRIX

MURAT CANDAN AND GÜLSEN KILINÇ

Abstract. This paper presents the generalized Riesz sequence space rq(F̂ p
u )

which is formed all sequences whose Rq
uF̂ -transforms are in the space `(p),

where F̂ is a Fibonacci matrix. α- β- and γ-duals of the newly described

sequence space have been given in addition to some topological properties of

its. Also, it has been established the basis of rq(F̂ p
u ). Finally, we have been

described a matrix class on the sequence space. Results obtained are more

general and more comprehensive than presented up to now.

1. Preliminaries

The concept of sequence is widely considered to be one of the important concepts
in summability theory, so let us begin by remembering the definition of it. A
sequence is a function of which domain set is natural numbers N = {0, 1, 2, . . . }.
In other words, an ordered list of numbers x0, x1, ..., xn, ... is a sequence. If it is
an infinite sequence, it is illustrated with notation {xn}∞n=0, as a convenience, we
write {xn} briefly. A sequence {xn} converges with limit a if each neighborhood
of a contains almost all terms of the sequence, i.e., there must be at most only
finitely many elements of {xn} outside any neighborhood of a. In this case, we say
that {xn} converges to a as n goes to ∞. The set of all real or complex convergent
sequences is indicated by c. Let {xn} be a sequence and define a new sequence
{sn} called the sequence of partial sums of {xn}with relation sn =

∑n
k=1 xk. When

{sn} is convergent, we say that {xn} is summable and we point out the lim
n
sn

by
∑∞
j=0 xj . A real or complex number sequence converges to zero is called null

sequence. The set of all real or complex null sequences is denoted by c0. A sequence
is bounded, if all its terms remain between two numbers. The set of all bounded
sequences is denoted by l∞. We denote the family of all {xn} sequences by w, where
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xn belongs to real or complex numbers set. Then w is a linear space under the
usual pointwise addition and scalar multiplication over C and R. Since any linear
subspace of w is called a sequence space, also c, c0 and `∞ are the subspaces of w,
we concludes that they are sequence spaces. Further, we symbolizes the spaces of
all bounded, convergent, absolutely and p−absolutely convergent series by bs, cs,
`1, `p; respectively.

These spaces are Banach spaces with following norms:
‖x‖`∞ = ‖x‖c = ‖x‖c0 = supk |xk|, ‖x‖bs = ‖x‖cs = supn |

∑n
k=1 xk|, and

‖x‖`p = (
∑
k |xk|p)

1
p .

For sake of brevity, here and after the summation without limits runs from 1 to
∞.

Now, let us look at historical information about Fibonacci sequence. Fibonacci
sequence consist of {fn} numbers such that each its term is the sum of two terms
preceding its. In this sequence, the first two terms are 1. If we write it clearly, it is
a sequence of numbers 1, 1, 2, 3, 5, 8, 13, · · · . We can define it by the equation fn =
fn−1 + fn−2, where n ≥ 2 and f1 = f0 = 1. Fibonacci numbers were come out by
Leonardo Pisano Bogollo (c-1170-c1250), he is known with his nickname Fibonacci.
Numbers of the sequence is seen in the book “Liber Abaci ”firstly written by
Leonardo of Pisa. He helped to replace Roman numerical system with the numbers
system used today consists of numbers from 0 to 9 in Europa. Fibonacci sequence
has some well-known properties such as Golden Ratio and Cassini Formula. If we
take ratio of two successive terms of Fibonacci sequences, limit of the this ratio is
famous Golden Ratio which is 1.61803 and written by φ.

lim
n→∞

fn+1

fn
=

1 +
√

5

2
= φ (Golden Ratio).

n∑
k=0

fk = fn+2 − 1 for each n ∈ N.

∑
k

1

fk
converges.

fn−1.fn+1 − f2
n = (−1)n+1 for each n ≥ 1 (Cassini Formula).

Let A = (ank) be a triangle matrix, that is ank = 0 for k > n and ann 6= 0 for
all n ∈ N. The equality A(Bx) = (AB)x holds for the triangle matrices A,B and
a sequence x. Furthermore, a triangle matrix A has an inverse A−1which is also a
triangle matrix and unique such that for each x ∈ ω, x = A(A−1x) = A−1(Ax).

The domain XA of an infinite matrix A which is a sequence space is defined as

(1.1) XA :=
{
x = (xk) ∈ ω : Ax ∈ X

}
,

in a sequence space X.
Generally XA constructed by the limitation matrix A is either the expansion or

the contraction of the space X itself, where X is a sequence space. Sometimes they
are overlap. The inclusion XS ⊂ X is provided strictly for X ∈ {`∞, c, c0}. From
this property, it can be concluded that the inclusion X ⊂ X∆(1) is also provided
firmly for X ∈ {`∞, c, c0, `p}. But, if X is taken as X := c0 ⊕ span{z} for each
x ∈ X, there exist an s ∈ c0 and an α ∈ C such that x := s+αz, where z = ((−1)k)
and it is considered the matrix A with the rows An defined by An := (−1)ne(n) for
all n ∈ N, then we obtain Ae = z ∈ λ when Az = e /∈ λ resulting in the sequences
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z ∈ X \ XA and e ∈ XA \ λ, here e = (1, 1, 1, . . .) and e(n) represents a sequence
of which nth term is 1 for each n ∈ N and the others are 0. Namely, the sequence
spaces XA and X are overlap when none of them contains the other one [10].

A linear topological space X over the real field R is said to be a paranormed
space if there is subadditive function g : X → R such that g(θ) = 0, g(x) = g(−x),
|αn − α| → 0 and g(xn − x) → 0 imply g(αnxn − αx) → 0 for all α ∈ R and all
x ∈ X, where θ is the zero vector in the linear space X.

Let us suppose that (pk) be a bounded sequence of strictly positive real numbers

with sup pk = H and M = max {1, H} and 1/pk + 1/p
′

k = 1 provided 1 < infpk ≤
H <∞. The linear spaces `∞(p) and `(p) were defined by Maddox in [56, 57] (see
also Simons [68] and Nakano [63]) as follows:

`(p) =

{
x = (xk) ∈ w :

∑
k

|xk|pk <∞

}
,

and

`∞(p) =

{
x = (xk) ∈ w : sup

k∈N
|xk|pk <∞

}
,

which are the complete spaces paranormed by

h1(x) =

(∑
k

|xk|pk
)1/M

and h2(x) = sup
k∈N
|xk|pk/M iff inf pk > 0,

respectively. In addition to this, by notation F , we denote the collection consisting
of all nonempty and finite subsets of N.

Constructing a new sequence space by means of the matrix domain of a particular
triangle has been used in literature as the sequence spaces Xp = (`p)C1

[64], rt(p) =
(`(p))Rt

[2], erp = (`p)Er and er(p) = (`(p))Er [7, 48, 61]. Z(u, v, `p) = (`p)G(u,v)

and `(u, v, p) = (`(p))G(u,v) [4, 60], ar(p) = (`p)Ar and ar(u, p) = (`(p))Ar
u

[8, 9],

bvp = (`p)∆ and bv(u, p) = (`(p))Au [3, 11, 59], `(p) = (`(p))S [37], `λp = (`p)Λ in

[62], λB(r,s) in [53] λB(r̃,s̃) in [25], f0(B) and f(B) in [12], f0(B̃) and f(B̃) in [26],
where C1 = {cnk}, Rt = {rtnk}, Er = {ernk}, S = {snk}, ∆ = {δnk}, G(u, v) =

{gnk}, ∆(m) = {∆(m)
nk }, Ar = {arnk}, Aru = {ank(r)}, Au = {aunk}, B(r, s) =

{bnk(r, s)}, B(r̃, s̃) = {bnk(r̃, s̃)}, Λ = {λnk}∞n,k=0 and A(λ) = {ank(λ)} denote the
Cesàro, Riesz, Euler, generalized weighted means or factorable matrix, summation
matrix, difference matrix, generalized difference matrix and sequential band matrix,
respectively [6, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 27, 28, 29, 40, 41, 42, 50, 51,
52, 54, 55, 66]. Let us note here, there are many different ways to construct new
sequence spaces from old ones. To get more detailed information, one can look at
the articles [24, 30, 35, 36, 69].

Given any infinite matrix A = (ank) of real numbers ank, where n, k ∈ N and
let X,Y be sequence spaces. For any sequence x, A-transform of x is written as
Ax =

(
(Ax)n

)
. If it is A-transform of x, it means that (Ax)n =

∑
k ankxk converges

for each n ∈ N. If x ∈ X implies that Ax ∈ Y then A is called a matrix mapping
from X into Y and is denoted by A : X → Y . We illustrate the class of all infinite
matrices such that A : X → Y by (X : Y ).

The new sequence spaces derived by Riesz mean (R, qn) and Fibonacci matrix

F̂ = {f̂nk} are given in this study.
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In this paper, section 2 is dedicated for the spaces of difference sequences and
given some historical developments about this subject. In addition, the definition

of Fibonacci Matrix and the paranormed sequence space rq(F̂ pu ) of non-absolute

type which is the set of all sequences whose RquF̂ -transforms are in the space `(p)
are presented. In section 3, alpha-, beta- and gamma-duals of the sequence space

rq(F̂ pu ) are found. Moreover, the basis of the space rq(F̂ pu ) is attained. In the final
section, we characterize a matrix class on the sequence space.

2. Difference operator and the Riesz Sequence Space rq(F̂ pu ) of
Non-absolute Type

Before following non-absolute type the Riesz sequence space rq(F̂ pu ), firstly, let us
recall some definitions. We remember the idea of difference operator. The difference
sequence spaces have been introduced by Kızmaz [49]. For λ ∈ {`∞, c, c0}, λ(∆)
consisting of the sequences x = (xk) such that (xk−xk+1) ∈ λ is called the difference
sequence spaces [49]. The difference spaces bvp consisting of the sequences x = (xk)
such that (xk − xk−1) ∈ `p have been studied in the case 0 < p < 1 by Altay and
Başar [5], and in the case 1 ≤ p < ∞ by Başar and Altay [11], and Çolak, et.al.
[38].

The concept of difference sequences was generalized by Çolak and Et [39]. They
defined and analyzed some property of these sequence spaces

∆mλ =
{
x = (xk) ∈ ω : ∆mx ∈ λ

}
,

where ∆1x = (xk−xk+1) and ∆mx = ∆(∆m−1x) for m ∈ {1, 2, 3, . . .}. Malkowsky
and Parashar [58] introduced the sequence spaces as follows

∆(m)λ =
{
x = (xk) ∈ ω : ∆(m)x ∈ λ

}
,

where m ∈ N, ∆(1)x = (xk − xk−1) and ∆(m)x = ∆(1)(∆(m−1)x). Polat and
Başar [65] introduced the spaces er0(∆(m)), erc(∆

(m)) and er∞(∆(m)) consisting of
all sequences whose mth order differences are in the Euler spaces er0, erc and er∞,
respectively. Altay [1] studied the space `p(∆

(m)) consisting of all sequences whose
mth order differences are p−absolutely summable which is a generalization of the
spaces bvp [11, 38].

The transformation given by

qn =
q1s1 + · · ·+ qnsn

Qn

is called the Riesz mean (R, qn) or simply the (R, qn) mean, where (qk) is a sequence
of positive numbers and Qn = q1 + q2 + · · ·+ qn.

The (R, qn) matrix method is given by

rtnk :=

{ qk
Qn

, (0 ≤ k ≤ n),

0 , (k > n).

The Riesz sequence spaces rq(u, p) and rq(∆p
u) of non-absolute type had been

studied by Ganie and Sheikh [43, 67]. After then, Candan and Güneş [32] had
examined the sequence space rq(Bpu).

Many mathematician used Fibonacci numbers to construct new sequence space.

Some of them are here. Kara [46] defined `p(F̂ ) sequence space. After Kara et
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al. [47] characterized some class of compact operators on the spaces `p(F̂ ) and

`∞(F̂ ), where 1 ≤ p ≤ ∞. Also, Başarır et al. [15] introduced the sequence space

λ(F̂ ) and λ(F̂ , p). Later, Candan [31] presented the sequence spaces c0(F̂ (r, s))

and c(F̂ (r, s)). After then, Candan and Kayaduman [34] introduced the sequence
space ĉf(r,s) derived by generalized difference Fibonacci matrix. Finally, Candan

and Kara [33] studied the space `p(F̂ (r, s)), where 1 ≤ p ≤ ∞.
Let fn be the n−th Fibonacci number for every n ∈ N. Then we define the

Fibonacci matrix F̂ = {f̂nk} by

f̂nk :=


fn
fn+1

, k = n,

− fn+1

fn
, k = n− 1,

0 , 0 ≤ k < n− 1 or k > n,

for all k, n ∈ N.

For 0 < pk ≤ H < ∞, let us define the set rq(F̂ pu ) as the set of all sequences

whose RquF̂ -transforms are in the sequence space `(p), that is

rq(F̂ pu ) =

x = (xk) ∈ w :
∑
k

∣∣∣∣∣∣ 1

Qk

k∑
j=0

ujqjF̂ xj

∣∣∣∣∣∣
pk

<∞

 .

We can rewrite the set rq(F̂ pu ) by means of the notation of (1.1) as follow

rq(F̂ pu ) = {`(p)}Rq
uF̂
,

where RquF = (r
quF
nk) is a matrix defined as follows:

r
qu
F̂

nk =


1
Qn

(
fk
fk+1

ukqk − fk+2

fk+1
uk+1qk+1

)
, 0 ≤ k ≤ n− 1,

fn
fn+1

qnun

Qn
, k = n,

0 , k > n.

If y = (yk) is a RquF̂ - transform of any given sequence x = (xk), then it is written
as

(2.1) yk =
1

Qk

k∑
j=0

ujqjF̂ xj .

Hereafter, when we talk about the sequences x = (xk) and y = (yk), we will
mean that they are connected with the relation (2.1).

For the sake of simplicity, here and what follows, we shall write

πi :=
fi+1

fiuiqi
− fi+1

fi+2ui+1qi+1
, ϕi :=

fi
fi+1

uiqi −
fi+2

fi+1
ui+1qi+1

for every i ∈ N.
Now, it is time to give the following theorem.

Theorem 2.1. The set rq(F̂ pu ) is a linear space together with coordinatewise addi-

tion and scalar multiplication, that is, rq(F̂ pu ) is a sequence space.

Proof. The proof of this theorem is obtained by using elementary calculations of
linear algebra. �
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Theorem 2.2. Let 0 < pk ≤ H <∞. Then, rq(F̂ pu ) is the complete linear metric
space with h paronorm defined by the following equality

hF̂ (x) =

∑
k

∣∣∣∣∣∣ 1

Qk

k−1∑
j=0

ϕjxj +
fk
fk+1

ukqk
Qk

xk

∣∣∣∣∣∣
pk

1
M

.

Proof. According to the definition of paranorm reminded in introduction, it is suffi-
cient to show that the conditions of the paranorm are satisfied. It is easy to see that

hF̂ (θ) = 0 for the null element of rq(F̂ pu ) and hF̂ (x) = hF̂ (−x) for all x ∈ rq(F̂ pu ).

Now, we shall show the subadditivity of h. By taking z, x ∈ rq(F̂ pu ), we have

hF̂ (x+ z) =

∑
k

∣∣∣∣∣∣ 1

Qk

k−1∑
j=0

ϕj(xj + zj) +
fk
fk+1

ukqk
Qk

(xk + zk)

∣∣∣∣∣∣
pk

1
M

(2.2)

≤

∑
k

∣∣∣∣∣∣ 1

Qk

k−1∑
j=0

ϕjxj +
fk
fk+1

ukqk
Qk

xk

∣∣∣∣∣∣
pk

1
M

+

∑
k

∣∣∣∣∣∣ 1

Qk

k−1∑
j=0

ϕjzj +
fk
fk+1

ukqk
Qk

zk

∣∣∣∣∣∣
pk

1
M

= hF̂ (x) + hF̂ (z).

For an arbitrary α ∈ R (see [57, p. 30])

(2.3) |α|pk ≤ max{1, |α|M}.

Again, the inequalities (2.2) and (2.3) are come out by the subadditivity of h
and the following inequality clearly holds

hF̂ (αx) ≤ max{1, |α|M}hF̂ (x).

Finally, we show that the scalar multiplication is continuous. Let α be any

complex number and (xn) be any sequence in rq(F̂ pu ) such that hF̂ (xn − x) → 0.
Additionally, let (αn) be an arbitrary sequence of scalars such that αn → α, we get

hF̂ (αnx
n − αx) =

∑
k

∣∣∣∣∣∣ 1

Qk

k−1∑
j=0

ϕj(αnx
n
j − αxj)

∣∣∣∣∣∣
pk

1
M

≤ |αn − α|
1
M hF̂ (xn) + |α| 1

M hF̂ (xn − x),

tending to zero, for n→∞, since
{
hF̂ (xn)

}
is bounded due to the inequality

hF̂ (xn) ≤ hF̂ (x) + hF̂ (xn − x).

Because of subadditive of hF̂ , it is valid. It means that the scalar multiplication is

continuous and hF̂ is a paranorm on the space rq(F̂ pu ).

Let us suppose that {xi} is an arbitrary Cauchy sequence in the space rq(F̂ pu ),
where xi = {xi0, xi1, ...}. In that case, there exists a positive integer n0(ε)

(2.4) hF̂ (xi − xj) <∞,
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for all i, j ≥ n0(ε) for a given ε > 0. By using definition of hF̂ , for each fixed k ∈ N

∣∣∣(RquF̂ xi)k − (RquF̂ x
j)k

∣∣∣ ≤ [∑
k

∣∣∣(RquF̂ xi)k − (RquF̂ x
j)k

∣∣∣pk] 1
M

<∞,

for i, j ≥ n0(ε), and
{

(RquF̂ x
0)k, (R

q
uF̂ x

1)k, ...
}

is a Cauchy sequence of real num-

bers for every fixed k ∈ N. Since R is complete, it converges. Therefore, we can write

(RquF̂ x
i)k → (RquF̂ x)k, for i→∞. Using these infinitely limits (RquF̂ x)0, (R

q
uF̂ x)1, ...,

we can constitute the sequence
{

(RquF̂ x)0, (R
q
uF̂ x)1, ...

}
. From inequality (2.4) for

each m ∈ N and i, j ≥ n0(ε), we have

(2.5)

m∑
k=0

∣∣∣(RquF̂ xi)k − (RquF̂ x
j)k

∣∣∣pk ≤ hF̂ (xi − xj)M < εM .

For j and m→∞ inequality (2.5) becomes

hF̂ (xi − x) <∞.

Taking ε = 1, i ≥ n0(1) in inequality (2.5) and using Minkowsky’s inequality, for
each m ∈ N, we get[

m∑
k=0

∣∣∣(RquF̂ x)k

∣∣∣pk] 1
M

≤ hF̂ (xi − x) + hF̂ (xi) ≤ 1 + hF̂ (xi),

i.e., x ∈ rq(F̂ pu ). Because hF̂ (xi − x) ≤ ∞ for all i ≥ n0(ε), xi → x as i→∞, thus

it is proved that rq(F̂ pu ) is complete. �

It is seen that the absolute property is invalid on the space rq(F̂ pu ), in other

words hF̂ (x) 6= hF̂ (| x |) holds for at least one sequence in the space rq(F̂ pu ) i.e.,

rq(F̂ pu ) is a sequence space of non-absolute type.

Theorem 2.3. Let 0 < pk ≤ H < ∞. Then the sequence space rq(F̂ pu ) is linearly
isomorphic to the space `(p).

Proof. To prove this theorem’s assertion, we firstly have to make sure that there

exists a transformation T between the spaces rq(F̂ pu ) and `(p). Let us take into

account the transformation T from rq(F̂ pu ) to `(p) by x → y = Tx. Since it is
obvious to show that T is linear, we omit the details. Now, it is necessary to prove
that both T is injective and surjective. If we take x = θ, we obtain that Tx = θ
and this shows that T is injective.

We consider an arbitrary sequence y ∈ `(p) and later define the sequence x = (xk)

xk =

k−1∑
n=0

k−1∏
j=n

(
fj+2

fj+1

)2

πnQnyn +
fk+1

fk

Qk
ukqk

yk,
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for k ∈ N. If we use the newly defined sequence x = (xk), then we have

hF̂ (x) =

∑
k

∣∣∣∣∣∣ 1

Qk

k−1∑
j=0

ϕjxj +
fk
fk+1

ukqk
Qk

xk

∣∣∣∣∣∣
pk

1
M

=

∑
k

∣∣∣∣∣∣
k∑
j=0

δkjyj

∣∣∣∣∣∣
pk

1
M

=

[∑
k

|yk|pk
] 1

M

= h1(y) <∞
where

δkj =

{
1 , k = j,
0 , k 6= j.

This shows that x ∈ rq(F̂ pu ). In other words, T is surjective and paranorm
preserving. Thus, the transformation T is a linear bijection which means that

rq(F̂ pu ) and `(p) are linearly isomorphic. This completes the proof. �

3. Schauder Basis and α−, β− and γ− duals of the space rq(F̂ pu )

In the present section, firstly, let us recall the definitions of alpha-, beta-, and
gamma- dual concepts.

If λ, µ ⊂ w and z is an arbitrary sequence, we write

z−1 ∗ λ = {x = (xk) ∈ w : xz ∈ λ},
and

M(λ, µ) = ∩x∈λx−1 ∗ µ.
If we choose µ = `1, cs and bs, then we obtain the α−, β− and γ− duals of the
space λ, respectively as

λα = M(λ, `1) = {a = (ak) ∈ w : ax = (akxk) ∈ `1 for all x ∈ λ},

λβ = M(λ, cs) = {a = (ak) ∈ w : ax = (akxk) ∈ cs for all x ∈ λ},
λγ = M(λ, bs) = {a = (ak) ∈ w : ax = (akxk) ∈ bs for all x ∈ λ}.

Now, we are going to give the following lemmas necessary to prove the theorems

related to the α−, β− and γ− duals of the space rq(F̂ pu ).

Lemma 3.1. [44]

(i) Let 1 < pk ≤ H < ∞. Then A ∈ (`(p) : `1) if and only if there exists an
integer B > 1 such that

sup
K∈F

∑
k

∣∣∣∣∣∑
n∈K

ankB
−1

∣∣∣∣∣
p
′
k

<∞.

(ii) Let 0 < pk ≤ 1. Then A ∈ (`(p) : `1) if and only if

sup
K∈F

sup
k

∣∣∣∣∣∑
n∈K

ank

∣∣∣∣∣
pk

<∞.
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Lemma 3.2. [45]

(i) Let 1 < pk ≤ H < ∞. Then A ∈ (`(p) : `∞) if and only if there exists an
integer B > 1 such that

(3.1) sup
n

∑
k

∣∣ankB−1
∣∣p′k <∞.

(ii) Let 0 < pk ≤ 1 for every k ∈ N . Then A ∈ (`(p) : `∞) if and only if

(3.2) sup
n,k
|ank|pk <∞.

Lemma 3.3. [45] A ∈ (`(p) : c) if and only if there exists an integer B > 1 provided
that (3.1) and (3.2) hold,

(3.3) lim
n
ank = βk for k ∈ N,

also holds, where 0 < pk ≤ H <∞ for every given k ∈ N.

Theorem 3.1. Let 0 < pk ≤ 1 for all k ∈ N. The sets D1(u, p), D2(u, p) and
D3(u, p) are defined by following equations:

D1(u, p) =
⋃
B>1

a = (ak) ∈ w : sup
K∈F

∑
k

∣∣∣∣∣∣
∑
n∈K

n−1∏
j=k

(
fj+2

fj+1

)2

πkanQk +
fn+1

fn

an
unqn

Qn

B−1

∣∣∣∣∣∣
pk

<∞

 ,

D2(u, p) =
⋃
B>1

a = (ak) ∈ w :
∑
k

∣∣∣∣∣∣
fk+1

fk

ak
ukqk

+ πk

n∑
i=k+1

ai

i∏
j=k+1

(
fj+1

fj

)2
Qk

B−1

∣∣∣∣∣∣
p
′
k

<∞

 ,

D3(u, p) =

a = (ak) ∈ w :

∞∑
i=k+1

ai

i∏
j=k+1

(
fj+1

fj

)2

exists

 .

In this case,

[rq(Bpu)]
α

= D1(u, p), [rq(Bpu)]
β

= D2(u, p)∩D3(u, p), [rq(Bpu)]
γ

= D2(u, p).

Proof. Let us take any a = (ak) ∈ w. Then, we obtain

anxn =

n−1∑
k=0

n−1∏
j=k

(
fj+2

fj+1

)2

πkanQkyk +
fn+1

fn

an
unqn

Qnyn(3.4)

= (Dy)n,

where the matrix D = (dnk) is defined by

dnk =


∏n−1
j=k

(
fj+2

fj+1

)2

πkanQk , 0 ≤ k ≤ n− 1,
fn+1

fn
an
unqn

Qn , k = n,

0 , k > n,

for all n, k ∈ N. Thus from Eq.(3.4) that ax = (anxn) ∈ `1 whenever x = (xn) ∈
rq(F pu ) if and only if Dy ∈ `1 whenever y ∈ `(p). This means that D ∈ (`(p), `1),

and Lemma 3.1(ii) gives that
[
rq(F̂ pu )

]α
= D1(u, p).
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For β− dual of space rq(F pu ), let us consider following equation,

n∑
k=0

akxk =

n∑
k=0

fk+1

fk

ak
ukqk

+ πk

n∑
i=k+1

ai

i∏
j=k+1

(
fj+1

fj

)2
Qk

 yk(3.5)

= (Ey)n,

where, E = (enk) is defined as

enk =


[
fk+1

fk
ak
ukqk

+ πk
∑n
i=k+1 ai

∏i
j=k+1

(
fj+1

fj

)2
]
Qk , 0 ≤ k ≤ n,

0 , k > n.

From Eq.(3.5), ax = (akxk) ∈ cs whenever x ∈ rq(F̂ pu ) if and only if Ey ∈ c

whenever y ∈ `(p). In other words, E ∈ (`(p), c). We obtain
[
rq(F̂ pu )

]β
= D2(u, p)∩

D3(u, p), using Lemma 3.3.

For γ− dual of space rq(F̂ pu ), using Eq.(3.5) ax = (akxk) ∈ bs whenever x ∈
rq(F̂ pu ) iff Ey ∈ `∞ whenever y ∈ `(p). In other words, a = (ak) ∈ [rq(F̂ pu )]γ iff

E ∈ (`(p), `∞). Then from Lemma 3.2 (ii) we obtain [rq(F̂ pu )]γ = D2(u, p). �

Theorem 3.2. Let 1 < pk ≤ H <∞ for every k ∈ N and define the sets D4(u, p)
and D5(u, p) with the following equations:

D4(u, p) =

{
a = (ak) ∈ w : sup

K∈F
sup
k

∣∣∣∣∣∣
∑
n∈K

 k∏
j=n+1

(
fj+2

fj+1

)2

πnanQn +
fk+1

fk

an
ukqk

Qk

∣∣∣∣∣∣
pk

<∞
}
,

D5(u, p) =

{
a = (ak) ∈ w : sup

k

∣∣∣∣∣∣
fk+1

fk

ak
ukqk

+ πk

n∑
i=k+1

ai

i∏
j=k+1

(
fj+1

fj

)2
Qk

∣∣∣∣∣∣
pk

<∞
}
.

Then

[rq(F pu )]
α

= D4(u, p),
[
rq(F̂ pu )

]β
= D3(u, p)∩D5(u, p),

[
rq(F̂ pu )

]γ
= D5(u, p).

Proof. It can be done as that of Theorem 3.1. �

Theorem 3.3. Let 0 < pk ≤ H <∞ for all k ∈ N. Define the sequence b(k)(q) ={
b
(k)
n (q)

}
of the elements of the space rq(F̂ pu ) for every fixed k ∈ N by

b(k)
n (q) =


fk+1

fk

Qk

ukqk
, n = k,∏n

j=k+1

(
fj+1

fj

)2

πkQk , n > k,

0 , n < k.

Then, the sequence b(k)(q) is a basis for the space rq(F̂ pu ) and any x ∈ rq(F̂ pu ) has
a unique representation of the form

(3.6) x =
∑
k

λk(q)bk(q),

where λk(q) = (RquF̂ x)k for all k ∈ N.
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Proof. Let 0 < pk ≤ H <∞, and for k ∈ N

(3.7) RquF̂ b
(k)(q) = e(k) ∈ `(p),

where e(k) is a sequence of which kth term is 1 and the others are 0 for each k ∈ N.

Moreover, let x ∈ rq(F̂ pu ). For all non-negative integer m, we get

(3.8) x[m] =

m∑
k=0

λk(q)b(k)(q).

Putting RquF̂ to Eq.(3.8), for i,m ∈ N, we have

RquF̂ x
[m] =

m∑
k=0

λk(q)RquF̂ b
(k)(q) =

m∑
k=0

(RquF̂ x)ke
(k),

and hence (
RquF̂ (x− x[m])

)
i

=

{
0 , 0 ≤ i ≤ m,

(RquF̂ x)i , i > m.

Also, for any given ε > 0, there exists an integer m0 such that for every m ≥ m0( ∞∑
i=m0

∣∣∣(RquF̂ x)i

∣∣∣pk) 1
M

<
ε

2
.

Hence, it is obtained that for all m ≥ m0

hF̂ (x− xm) =

( ∞∑
i=m

∣∣∣(RquF̂ x)i

∣∣∣pk) 1
M

≤

( ∞∑
i=m0

∣∣∣(RquF̂ x)i

∣∣∣pk) 1
M

<
ε

2
< ε.

By using limit properties, limm→∞hF̂ (x − xm) = 0 is obtained. Thus x is repre-
sented as Eq.(3.6).

Let us suppose that it has two representation as x =
∑
k µk(q)b(k) and x =∑

k λk(q)b(k). Since the linear transformation from rq(F̂ pu ) to `(p) is continuous, we
get

(RquF̂ x)n =
∑
k

µk(q)
(
RquFb

(k)(q)
)
n

=
∑
k

µk(q)e(k)
n = µn(q),

for n ∈ N. Taking (RquF̂ x)n = λn for all n ∈ N, it is obtained λn(q) = µn(q) thus
we get Eq. (3.6). �

4. Matrix Mapping on the Space rq(F̂ pu )

In this section, we characterize the matrix class
(
rq(F̂ pu ), `∞

)
.

Theorem 4.1.
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(i) A ∈
(
rq(F̂ pu ), `∞

)
if and only if there exists an integer B > 0 such that

(4.1)

C(B) = sup
n

∑
k

∣∣∣∣∣∣
fk+1

fk

ank
ukqk

+ πk

n∑
i=k+1

ani

i∏
j=k+1

(
fj+1

fj

)2
QkB−1

∣∣∣∣∣∣
p
′
k

<∞,

and

{ank}k∈N ∈ cs (n ∈ N),

where 1 < pk ≤ H <∞ for every k ∈ N.

(ii) A ∈
(
rq(F̂ pu ), `∞

)
if and only if

(4.2) sup
n,k

∣∣∣∣∣∣
fk+1

fk

ank
ukqk

+ πk

n∑
i=k+1

ani

i∏
j=k+1

(
fj+1

fj

)2
Qk

∣∣∣∣∣∣
pk

<∞,

and

{ank}k∈N ∈ cs (n ∈ N),

where 0 < pk ≤ 1 <∞ for every k ∈ N.

Proof.

(i) Let 1 < pk ≤ H <∞ for every k ∈ N and A ∈
(
rq(F̂ pu ), `∞

)
. Then Ax exists for

x ∈ rq(F̂ pu ), {ank}k∈N ∈
[
rq(F̂ pu )

]β
for each n ∈ N. Further, let us consider the

following equality obtained by using the relation (3.4) that

(4.3)

m∑
k=0

ankxk =

m∑
k=0

fk+1

fk

 ank
ukqk

+ πk

m∑
i=k+1

anj

i∏
j=k+1

(
fj+1

fj

)2
Qk

 yk.
From Lemma 3.1 and Eq.(4.3), we obtain the expression.

Conversely, {ank}k∈N ∈ cs for each n ∈ N, x ∈ rq(F̂ pu ). Since {ank}k∈N ∈[
rq(F̂ pu )

]β
for every fixed n ∈ N A-transform of x exists. We derive from Eq.(4.3)

as m→∞ that

(4.4)

∞∑
k=0

ankxk =

∞∑
k=0

fk+1

fk

ank
ukqk

+ πk

∞∑
i=k+1

ani

i∏
j=k+1

(
fj+1

fj

)2
Qk

 yk.
Now, by combining Eq.(4.4) and inequality holding for an arbitrary B > 0 and
complex numbers a, b

|ab| ≤ B
{
|aB−1|p

′

+ |b|p
}
,

where p > 1 and 1/p+ 1/p
′

= 1. We obtain

sup
n∈N

∣∣∣∣∣
∞∑
k=0

ankxk

∣∣∣∣∣ ≤ sup
n∈N

∞∑
k=0

∣∣∣∣∣∣
fk+1

fk

ank
ukqk

+ πk

∞∑
i=k+1

ani

i∏
j=k+1

(
fj+1

fj

)2
Qk

∣∣∣∣∣∣ |yk|
≤ B[C(B) + hM1 (y)] <∞.

This mean that Ax ∈ `∞ whenever x ∈ rq(F̂ pu ).
(ii) The proof of (ii) can be obtained same way. �
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[2] B. Altay, F. Başar, On the paranormed Riesz sequence spaces of non-absolute type, Southeast

Asian Bull. Math., 26(2002), 701–715.
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[41] M. Et, Generalized Cesàro difference sequence spaces of non-absolute type involving lacunary

sequence spaces, Appl. Math. Comput., 219(17)(2013), 9372–9376.
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[48] E. E. Kara, M. Öztürk, M. Başarır, Some topological and geometric properties of generalized
Euler sequence spaces, Math., Slovaca, 60(3)(2010), 385–398.

[49] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull., 24(2)(1981), 169–176.
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ON SOME ČEBYŠEV TYPE INEQUALITIES FOR FUNCTIONS

WHOSE SECOND DERIVATIVES ARE (h1, h2)-CONVEX ON THE

CO-ORDINATES

B. MEFTAH AND K. BOUKERRIOUA∗

Abstract. The aim of this paper is to establish some new Čebyšev type

inequalities involving functions whose mixed partial derivatives are (h1, h2)-

convex on the co-ordinates.

1. Introduction

In 1882, Čebyšev [4] gave the following inequality :

(1.1) |T (f, g)| ≤ 1

12
(b− a)

2 ‖f ′‖∞ ‖g
′‖∞

where f, g : [a, b]→ R are absolutely continuous functions, whose first derivatives
f ′ and g′ are bounded,

(1.2) T (f, g) =
1

b− a

b∫
a

f (x) g (x) dx−

 1

b− a

b∫
a

f (x) dx

 1

b− a

b∫
a

g (x) dx

 ,

and ‖.‖∞ denotes the norm in L∞ [a, b] defined as ‖f‖∞ = ess sup
t∈[a,b]

|f (t)| .

During the past few years many researchers have given considerable attention to
the inequality (1.1), various generalizations, extensions and variants of this inequal-
ity have appeared in the literature, see [1, 3, 6, 8, 9, 10] . Recently, Guezane-Lakoud
and Aissaoui [6] established new Čebyšev type inequalities similar to (1.1) for func-
tions f, g defined on bidimensional intervals ∆ = [a, b] × [c, d] ⊂ [0,∞)2 whose
mixed partial derivatives fst and gst are integrable and bounded. The authors of
the paper [12] further extend these results in special cases when the mixed partial
derivatives belong to certain classes of functions that generalize convex function on
the co-ordinates.

2000 Mathematics Subject Classification. 26D15, 26D20, 39A12.

Key words and phrases. Čebyšev type inequalities, co-ordinates (h1, h2)-convex, integral
inequality.
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The main purpose of this work is to obtain new Čebyšev type inequalities in-
volving functions whose mixed partial derivatives are (h1, h2)-convex on the co-
ordinates.

2. Preliminaries

Throughout this paper we denote by ∆ the bidimensional interval in [0,∞)2,
∆ =: [a, b] × [c, d] with a < b and c < d, k = (b− a) (d − c) and fλα for
∂2f
∂λ∂α .

Definition 2.1 ([5]). A function f : ∆→ R is said to be convex on the co-ordinates
on ∆, if the following inequality

f (λx+ (1− λ) t, αy + (1− α) v) ≤ λαf(x, y) + λ (1− α) f(x, v)

+ (1− λ)αf(t, y) + (1− λ) (1− α) f(t, v)(2.1)

holds for all λ, α ∈ [0, 1] and (x, y), (x, v), (t, y), (t, v) ∈ ∆.

Clearly, every convex mapping f : ∆ → R is convex on the co-ordinates. Fur-
thermore, there exists co-ordinated convex function which is not convex.

Definition 2.2 ([2]). A function f : ∆ → R is said to be s-convex in the second
sense on the co-ordinates on ∆, if the following inequality

f (λx+ (1− λ) t, αy + (1− α) v) ≤ λsαsf(x, y) + λs (1− α)
s
f(x, v)

+ (1− λ)
s
αsf(t, y) + (1− λ)

s
(1− α)

s
f(t, v)(2.2)

holds for all λ, α ∈ [0, 1] and (x, y), (x, v), (t, y), (t, v) ∈ ∆,
for some fixed s ∈ (0, 1] .

s-convexity on the co-ordinates does not imply the s-convexity, that is there exist
functions which are s-convex on the co-ordinates but are not s-convex.

Definition 2.3 ([7]). Let h : J ⊆ R→ R be a positive function. A mapping f : ∆
→ R is said to be h-convex on ∆, if the following inequality

(2.3) f(αx+ (1− α)t, αy + (1− α)v) ≤ h(α)f(x, y) + h(1− α)f(t, v)

holds, for all (x, y), (t, v) ∈ ∆ and α ∈ (0, 1).

Definition 2.4 ([7]). A function f : ∆ → R is said to be (h1, h2)-convex on the
coordinates on ∆, if the following inequality

f (λx+ (1− λ) t, αy + (1− α) v) ≤ h1(λ)h2(α)f(x, y) + h1(λ)h2 (1− α) f(x, v)

+h1 (1− λ)h2(α)f(t, y)

+h1 (1− λ)h2 (1− α) f(t, v)(2.4)

holds for all λ, α ∈]0, 1[ and (x, y), (x, v), (t, y), (t, v) ∈ ∆.

h-convexity on the co-ordinates does not imply the h-convexity, that is there
exist functions which are h-convex on the co-ordinates but are not h-convex.

Lemma 2.1 (Lemma 1. [11]). Let f : ∆ → R be a partial differentiable mapping
on ∆ in R2. If fλα ∈ L1(∆), then for any
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(x, y) ∈ ∆, we have the equality:

f(x, y) =
1

b− a

b∫
a

f(t, y)dt+
1

d− c

d∫
c

f(x, v)dv − 1

k

b∫
a

d∫
c

f(t, v)dvdt

+
1

k

b∫
a

d∫
c

(x− t) (y − v)

×

 1∫
0

1∫
0

f
λα

(λx+ (1− λ)t, αy − (1− α)v) dαdλ

 dvdt(2.5)

3. Main result

Theorem 3.1. Let hi : Ji ⊆ R→ R be positive functions, for i = 1, 2. f, g : ∆ → R
be partially differentiable functions, such that their second derivatives fλα and gλα
are integrable on ∆. If |fλα| and |gλα| are (h1, h2)-convex on the co-ordinates, then
we have

(3.1) |T (f, g)| ≤ 49

3600
k2

 1∫
0

h1(λ)dλ

2 1∫
0

h2(α)dα

2

MN

where

T (f, g) =
1

k

b∫
a

d∫
c

f (x, y) g (x, y) dydx− (d− c)
k2

b∫
a

d∫
c

g (x, y)

 b∫
a

f (t, y) dt

 dydx

− (b− a)

k2

b∫
a

d∫
c

g (x, y)

 d∫
c

f (x, v) dv

 dydx

+
1

k2

 b∫
a

d∫
c

f (x, y) dydx

 b∫
a

d∫
c

g (t, v) dvdt

(3.2)

M = ess sup
x,t∈[a,b],y,v∈[c,d]

[|fλα (x, y)|+ |fλα (x, v)|+ |fλα (t, y)|+ |fλα (t, v)|] ,

N = ess sup
x,t∈[a,b],y,v∈[c,d]

[|gλα (x, y)|+ |gλα (x, v)|+ |gλα (t, y)|+ |gλα (t, v)|]

and k = (b− a) (d− c) .

Proof. Let F, G, F̃ and G̃ be defined as follows

F = f(x, y)− 1

b− a

b∫
a

f(t, y)dt− 1

d− c

d∫
c

f(x, v)dv +
1

k

b∫
a

d∫
c

f(t, v)dvdt

G = g(x, y)− 1

b− a

b∫
a

g(t, y)dt− 1

d− c

d∫
c

g(x, v)dv +
1

k

b∫
a

d∫
c

g(t, v)dvdt

F̃ =
1

k

b∫
a

d∫
c

(x− t) (y − v)×

 1∫
0

1∫
0

f
λα

(λx+ (1− λ)t, αy − (1− α)v) dαdλ

 dvdt
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G̃ =
1

k

b∫
a

d∫
c

(x− t) (y − v)×

 1∫
0

1∫
0

g
λα

(λx+ (1− λ)t, αy − (1− α)v) dαdλ

 dvdt.

By Lemma 2.1, we have

F = F̃ and G = G̃,

then

(3.3) FG = F̃ G̃.

Integrating (3.3) over ∆, with respect to x, y, multiplying the resultant equality
by 1

k , using Fubini’s Theoerm and modulus, we get

|T (f, g)| =
1

k3

∣∣∣∣∣∣
b∫
a

d∫
c

 b∫
a

d∫
c

(x− t) (y − v)

×

 1∫
0

1∫
0

f
λα

(λx+ (1− λ)t, αy − (1− α)v) dαdλ

 dvdt


×

 b∫
a

d∫
c

(x− t) (y − v)

×

 1∫
0

1∫
0

g
λα

(λx+ (1− λ)t, αy − (1− α)v) dαdλ

 dvdt

 dydx
∣∣∣∣∣∣

≤ 1

k3

b∫
a

d∫
c

 b∫
a

d∫
c

|x− t| |y − v|

×

 1∫
0

1∫
0

|f
λα

(λx+ (1− λ)t, αy − (1− α)v)| dαdλ

 dvdt


×

 b∫
a

d∫
c

|x− t| |y − v|

×

 1∫
0

1∫
0

|g
λα

(λx+ (1− λ)t, αy − (1− α)v)| dαdλ

 dvdt

 dydx.(3.4)

Using the (h1, h2)-convexity and taking into account that

b∫
a

 b∫
a

|x− t| dt

2

dx =
7

60
(b− a)

5
,

d∫
c

 d∫
c

|y − v| dv

2

dy =
7

60
(d− c)5

,
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1∫
0

h1(1− λ)dλ =

1∫
0

h1( λ)dλ and

1∫
0

h2(1− α)dα =

1∫
0

h2( α)dα,

we obtain

|T (f, g)| ≤ 1

k3

 1∫
0

h1(λ)dλ

2 1∫
0

h2(α)dα

2

×
b∫
a

d∫
c

 b∫
a

d∫
c

|x− t| |y − v| × [|f
λα

(x, y)|+ |f
λα

(x, v)|

+ |f
λα

(t, y)|+ |f
λα

(t, v)|] dvdt

×

 b∫
a

d∫
c

|x− t| |y − v| × [|g
λα

(x, y)|+ |g
λα

(x, v)|

+ |g
λα

(t, y)|+ |g
λα

(t, v)|] dvdt] dydx

≤ MN

k3

 1∫
0

h1(λ)dλ

2 1∫
0

h2(α)dα

2

×
b∫
a

d∫
c

 b∫
a

d∫
c

|x− t| |y − v| dvdt

2

dydx

=
MN

k3

 1∫
0

h1(λ)dλ

2 1∫
0

h2(α)dα

2

×

 b∫
a

 b∫
a

|x− t| dt

2

dx


 d∫
c

 d∫
c

|y − v| dv

2

dy


=

49

3600
k2

 1∫
0

h1(λ)dλ

2 1∫
0

h2(α)dα

2

MN.

This completes the proof of Theorem 3.1. �

Corollary 3.1. Let h : J ⊆ R→ R be positive function, f, g : ∆ → R be partially
differentiable functions, such that their second derivatives fλαand gλα are integrable
on ∆. If |fλα| and |gλα| are h-convex on the co-ordinates, then we have

(3.5) |T (f, g)| ≤ 49

3600
k2

 1∫
0

h(λ)dλ

4

MN,

where T (f, g), M, N, k are defined as in Theorem 3.1.

Proof. Applying Theorem 3.1, for h1(v) = h2(v) = h(v), we obtain the desired
inequality. �
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Corollary 3.2. Let f, g : ∆ → R be partially differentiable functions, such that
their second derivatives fλα and gλα are integrable on ∆. If |fλα| and |gλα| are
convex on the co-ordinates, then we have

(3.6) |T (f, g)| ≤ 49

57600
k2MN,

where T (f, g), M, N, k are defined as in Theorem 3.1.

Proof. In Theorem 3.1, if we replace h1 and h2 by the identity, we obtain

|T (f, g)| ≤ 49

3600
k2

 1∫
0

λdλ

2 1∫
0

αdα

2

MN

=
49

3600
k2

(
λ2

2

∣∣∣∣λ=1

λ=0

)2(
α2

2

∣∣∣∣α=1

α=0

)2

MN

=
49

3600
k2 × 1

4
× 1

4
MN

=
49

57600
k2MN.

This is the desired inequality in (3.6). The proof is completed. �

Remark 3.1. The result of Corollary 3.2 is similar to the inequality (6) of Theorem
2.1 in [12].

Corollary 3.3. Let f, g : ∆ → R be partially differentiable functions, such that
their second derivatives fλα and gλα are integrable on ∆. If |fλα| and |gλα| are
(s1, s2)-convex in the second sense on the co-ordinates, then

(3.7) |T (f, g)| ≤ 49

3600
k2 1

(1 + s1)
2

1

(1 + s2)
2 MN,

where T (f, g), M, N, k are defined as in Theorem 3.1 and s1, s2 ∈ (0, 1] .

Proof. Taking in Theorem 3.1, h1(λ) = λs1 and h2(α) = αs2 , we obtain

|T (f, g)| ≤ 49

3600
k2

 1∫
0

λs1dλ

2 1∫
0

αs2dα

2

MN

=
49

3600
k2 1

(1 + s1)
2

1

(1 + s2)
2 MN.

This is the desired inequality in (3.7). The proof is completed. �

Corollary 3.4. Let f, g : ∆ → R be partially differentiable functions, such that
their second derivatives fλα and gλα are integrable on ∆. If |fλα| and |gλα| are
s-convex in the second sense on the co-ordinates, then

(3.8) |T (f, g)| ≤ 49

3600
k2 1

(1 + s)
4 MN,

where T (f, g), M, N, k are defined as in Theorem 3.1 and s ∈ (0, 1] .
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Proof. Putting in Theorem 3.1, h1(λ) = λs and h2(α) = αs, we get

|T (f, g)| ≤ 49

3600
k2

 1∫
0

λsdλ

2 1∫
0

αsdα

2

MN

=
49

3600
k2 1

(1 + s)
4 MN.

(3.9)

This is the required inequality in (3.8). The proof is completed. �

Theorem 3.2. Let hi : Ji ⊆ R→ R be positive functions, for i = 1, 2, f, g : ∆ → R
be partially differentiable functions, such that their second derivatives fλα and gλα
are integrable on ∆. If |fλα| and |gλα| are (h1, h2)-convex on the co-ordinates, then
we have

|T (f, g)| ≤ 1

8k2

 1∫
0

h1(λ)dλ

 1∫
0

h2(α)dα


×

b∫
a

d∫
c

[M |g(x, y)|+N |f(x, y)|]

×
(

(x− a)
2

+ (b− x)
2
)(

(y − c)2
+ (d− y)

2
)
dydx.

(3.10)

where T (f, g), M, N, k are defined as in Theorem 3.1.

Proof. By Lemma 2.1, we have

f(x, y) =
1

b− a

b∫
a

f(t, y)dt+
1

d− c

d∫
c

f(x, s)dv − 1

k

b∫
a

d∫
c

f(t, v)dvdt

+
1

k

b∫
a

d∫
c

(x− t) (y − v)

×

 1∫
0

1∫
0

f
λα

(λx+ (1− λ)t, αy − (1− α)v) dαdλ

 dvdt,

(3.11)
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and

g(x, y) =
1

b− a

b∫
a

g(t, y)dt+
1

d− c

d∫
c

g(x, v)ds− 1

k

b∫
a

d∫
c

g(t, v)dvdt

+
1

k

b∫
a

d∫
c

(x− t) (y − v)

×

 1∫
0

1∫
0

g
λα

(λx+ (1− λ)t, αy − (1− α)v) dαdλ

 dvdt.

(3.12)

Multiplying (3.11) by 1
2kg(x, y) and (3.12) by 1

2kf(x, y), summing the resultant
equalities, then integrating on ∆, we get

T (f, g) =
1

2k2

 b∫
a

d∫
c

g(x, y)

 b∫
a

d∫
c

(x− t) (y − v)

×

 1∫
0

1∫
0

f
λα

(λx+ (1− λ)t, αy − (1− α)v) dαdλ

 dvdt

 dydx
+

b∫
a

d∫
c

f(x, y)

 b∫
a

d∫
c

(x− t) (y − v)

×

 1∫
0

1∫
0

g
λα

(λx+ (1− λ)t, αy − (1− α)v) dαdλ

 dvdt

 dydx
 ,

(3.13)

using the properties of modulus, (3.13) becomes

|T (f, g)| ≤ 1

2k2

 b∫
a

d∫
c

|g(x, y)|

 b∫
a

d∫
c

|x− t| |y − v|

×

 1∫
0

1∫
0

|f
λα

(λx+ (1− λ)t, αy − (1− α)v)| dαdλ

 dvdt

 dydx
+

b∫
a

d∫
c

|f(x, y)|

 b∫
a

d∫
c

|x− t| |y − v|

×

 1∫
0

1∫
0

|g
λα

(λx+ (1− λ)t, αy − (1− α)v)| dαdλ

 dvdt

 dydx
 .

(3.14)
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Using the (h1, h2)-convexity, (3.14) gives

|T (f, g)| ≤ 1

2k2

 b∫
a

d∫
c

|g(x, y)|

 1∫
0

h1(λ)dλ

 1∫
0

h2(α)dα


×

 b∫
a

d∫
c

|x− t| |y − v| [|f
λα

(x, y)|+ |f
λα

(x, v)|

+ |f
λα

(t, y)|+ |f
λα

(t, v)|] dvdt ] dydx

+

b∫
a

d∫
c

|f(x, y)|

 1∫
0

h1(λ)dλ

 1∫
0

h2(α)dα


×

 b∫
a

d∫
c

|x− t| |y − v| [|g
λα

(x, y)|+ |g
λα

(x, v)|

+ |g
λα

(t, y)|+ |g
λα

(t, v)|] dvdt] dydx] ,

(3.15)

By a simple calculation we get

|T (f, g)| ≤ 1

2k2

 1∫
0

h1(λ)dλ

 1∫
0

h2(α)dα


×

b∫
a

d∫
c

M |g(x, y)|

 b∫
a

d∫
c

|x− t| |y − v| dvdt


+N |f(x, y)|

 b∫
a

d∫
c

|x− t| |y − v| dvdt

 dydx
=

1

8k2

 1∫
0

h1(λ)dλ

 1∫
0

h2(α)dα


×

b∫
a

d∫
c

[M |g(x, y)|+N |f(x, y)|]

×
(

(x− a)
2

+ (b− x)
2
)(

(y − c)2
+ (d− y)

2
)
dydx.

(3.16)

This completes the proof of Theorem 3.2. �

Corollary 3.5. Let h : J ⊆ R→ R be positive function, f, g : ∆ → R be partially
differentiable functions, such that their second derivatives fλα and gλαare integrable
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on ∆. If |fλα| and |gλα| are h-convex on the co-ordinates, then we have

|T (f, g)| ≤ 1

8k2

 1∫
0

h(λ)dλ

2 b∫
a

d∫
c

[(M |g(x, y)|+N |f(x, y)|)

×
(

(x− a)
2

+ (b− x)
2
)(

(y − c)2
+ (d− y)

2
)]
dydx.

where T (f, g), M, N, k are defined as in Theorem 3.1.

Proof. Applying Theorem 3.2, for h1(λ) = h2(λ), we obtain the desired inequality.
�

Corollary 3.6. Let f, g : ∆ → R be partially differentiable functions, such that
their second derivatives fλα and gλα are integrable on ∆. If |fλα| and |gλα| are
convex on the co-ordinates, then we have

|T (f, g)| ≤ 1

32k2

b∫
a

d∫
c

[M |g(x, y)|+N |f(x, y)|]

×
(

(x− a)
2

+ (b− x)
2
)(

(y − c)2
+ (d− y)

2
)
dydx.

(3.17)

where T (f, g), M, N, k are defined as in Theorem 3.1.

Proof. In Theorem 3.2, if we replace h1 and h2 by the identity, we obtain

|T (f, g)| ≤ 1

8k2

 1∫
0

λdλ

 1∫
0

αdα


×

b∫
a

d∫
c

[M |g(x, y)|+N |f(x, y)|]

×
(

(x− a)
2

+ (b− x)
2
)(

(y − c)2
+ (d− y)

2
)
dydx.

=
1

32k2

b∫
a

d∫
c

[M |g(x, y)|+N |f(x, y)|]

×
(

(x− a)
2

+ (b− x)
2
)(

(y − c)2
+ (d− y)

2
)
dydx.

This is the desired inequality in (3.17). The proof is completed. �

Remark 3.2. The result of Corollary 3.6, is similar to the inequality (7) of Theorem
2.1 in [12].

Corollary 3.7. Let f, g : ∆ → R be partially differentiable functions, such that
their second derivatives fλα and gλα are integrable on ∆. If |fλα| and |gλα| are
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(s1, s2)-convex in the second sense on the co-ordinates, then we have

|T (f, g)| ≤ 1

8k2 (1 + s1) (1 + s2)

×
b∫
a

d∫
c

[M |g(x, y)|+N |f(x, y)|]

×
(

(x− a)
2

+ (b− x)
2
)(

(y − c)2
+ (d− y)

2
)
dydx,

(3.18)

where T (f, g), M, N, k are defined as in Theorem 3.1 and s1, s2 ∈ (0, 1] .

Proof. Putting in Theorem 3.2, h1(λ) = λs1 and h2(α) = αs2 , we get

|T (f, g)| ≤ 1

8k2

 1∫
0

λs1dλ

 1∫
0

αs2dα


×

b∫
a

d∫
c

[M |g(x, y)|+N |f(x, y)|]

×
(

(x− a)
2

+ (b− x)
2
)(

(y − c)2
+ (d− y)

2
)
dydx.

=
1

8 (1 + s1) (1 + s2) k2

×
b∫
a

d∫
c

[M |g(x, y)|+N |f(x, y)|]

×
(

(x− a)
2

+ (b− x)
2
)(

(y − c)2
+ (d− y)

2
)
dydx.

This is the required inequality in (3.18). The proof is completed. �

Corollary 3.8. Let f, g : ∆ → R be partially differentiable functions, such that
their second derivatives fλα and gλα are integrable on ∆. If |fλα| and |gλα| are
s-convex in the second sense on the co-ordinates, then we have

|T (f, g)| ≤ 1

8k2 (1 + s)
2

×
b∫
a

d∫
c

[M |g(x, y)|+N |f(x, y)|]

×
(

(x− a)
2

+ (b− x)
2
)(

(y − c)2
+ (d− y)

2
)
dydx,

(3.19)

where T (f, g), M, N, k are defined as in Theorem 3.1 and s ∈ (0, 1] .
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Proof. Taking in Theorem 3.2, h1(λ) = λs and h2(α) = αs, we get

|T (f, g)| ≤ 1

8k2

 1∫
0

λsdλ

 1∫
0

αsdα


×

b∫
a

d∫
c

[M |g(x, y)|+N |f(x, y)|]

×
(

(x− a)
2

+ (b− x)
2
)(

(y − c)2
+ (d− y)

2
)
dydx.

=
1

8k2 (1 + s)
2

×
b∫
a

d∫
c

[M |g(x, y)|+N |f(x, y)|]

×
(

(x− a)
2

+ (b− x)
2
)(

(y − c)2
+ (d− y)

2
)
dydx.

This is the desired inequality in (3.19). The proof is completed. �
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CONVERGENCE OF MULTI-STEP ITERATIVE SEQUENCE FOR

NONLINEAR UNIFORMLY L-LIPSCHITZIAN MAPPINGS

MOGBADEMU, ADESANMI ALAO

Abstract. In this paper, by using the proof method of Xue, Rafiq and Zhou[19]
some strong convergence results of multi-step iterative sequence are proved for

nearly uniformly L− Lipschitzian mappings in real Banach spaces. Our results
generalise and improve some recent known results.

1. Introduction

We denote by J the normalized duality mapping from X into 2x∗
by

J(x) = {f ∈ X∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2},
where X∗ denotes the dual space of real Banach space X and 〈., .〉 denotes the
generalized duality pairing between elements of X and X∗. We first recall and
define some concepts as follows (see [4]):
Let K be a nonempty subset of real Banach space X.
The mapping T is said to be uniformly L- Lipschitzian if there exists a constant
L > 0 such that

‖Tnx− Tny‖ ≤ L‖x− y‖,
for any x, y ∈ K and ∀n ≥ 1.
The mapping T is said to be asymptotically pseudocontractive if there exists a
sequence (kn) ⊂ [1,∞) with limn→∞kn = 1 and for any x, y ∈ K there exists
j(x− y) ∈ J(x− y) such that

< Tnx− Tny, j(x− y) >≤ kn‖x− y‖2,∀n ≥ 1.

The concept of asymptotically pseudocontractive mappings was introduced by Schu
[17].
A mapping T : K → X is called Lipschitzian if there exists a constant L > 0 such
that

‖Tx− Ty‖ ≤ L‖x− y‖,

2000 Mathematics Subject Classification. 47H10, 46A03.
Key words and phrases. Multistep iteration; asymptotically pseudo-contractive; uniformly L−

Lipschitzian; Banach spaces.
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for all x, y ∈ K and is called generalized Lipschitzian if there exists a constant
L > 0 such that

‖Tx− Ty‖ ≤ L(‖x− y‖+ 1),

for all x, y ∈ K.
It is obvious that the class of generalized Lipschitzian map includes the class of
Lipschitz map. Moreover, every mapping with a bounded range is a generalized
Lipschitzian mapping.
Sahu [18] introduced the following new class of nonlinear map which is more general
than the class of generalized Lipschitzian mappings and the class of uniformly L-
Lipschitzian mappings. In fact, he introduced the following class of nearly Lips-
chitzian: Let K be a subset of a normed space X and let {an}n≥0 be a sequence
in [0,∞) such that limn→∞an = 0.
A mapping T : K → K is called nearly Lipschitzian with respect to {an} if for each
n ∈ N , there exists a constant kn ≥ 0 such that

(1.1) ‖Tnx− Tny‖ ≤ kn(‖x− y‖+ an), ∀ x, y ∈ K.
Define

µ(Tn) = sup{ ||T
nx− Tny||

||x− y||+ an
: x, y ∈ K,x 6= y}.

Observe that for any sequence {kn}n ≥ 1 satisfying (1.1) µ(Tn) ≤ kn ∀n ∈ N and
that

‖Tnx− Tny‖ ≤ µ(Tn)(‖x− y‖+ an), ∀ x, y ∈ K
µ(Tn) is called the nearly Lipschitz constant of the mapping T . A nearly Lips-
chitzian mapping T is said to be
(i) nearly contraction if µ(Tn) < 1 for all n ∈ N ;
(ii) nearly nonexpansive if µ(Tn) = 1 for all n ∈ N ;
(iii) nearly asymptotically nonexpansive if µ(Tn) ≥ 1 for all n ∈ N and
limn→∞ µ(Tn) = 1;
(iv) nearly uniformly L− Lipschitzian if µ(Tn) ≤ L for all n ∈ N ;
(v) nearly uniformly k− contraction if µ(Tn) ≤ k < 1 for all n ∈ N.
A nearly Lipschitzian mapping T with sequence {an} is said to be nearly uniformly
L− Lipschitzian if kn = L for all n ∈ N .
Observe that the class of nearly uniformly L− Lipschitzian mapping is more general
than the class of uniformly L− Lipschitzian mappings.
Example 1.1 (see Sahu[18]). Let E = R, K = [0, 1].
Define T : K → K by

Tx = { 1/2, x ∈ [0, 1/2),
0, x ∈ (1/2, 1].

It is obvious that T is not continuous, and thus not Lipschitz. However, T is nearly
nonexpansive. Infact, for a real sequence {an}n ≥ 1 with a1 = 1

2 and an → 0 as
n→∞, we have

||Tx− Ty|| ≤ ||x− y||+ a1, ∀x, y ∈ K



CONVERGENCE OF MULTI-STEP ITERATIVE SEQUENCE FOR NONLINEAR 91

and

||Tnx− Tny|| ≤ ||x− y||+ an, ∀x, y ∈ K, n ≥ 2.

This is because Tnx = 1
2 ,∀x ∈ [0, 1], n ≥ 2.

Remark 1.1: The class of nearly uniformly L− Lipschitzian is not necessarily
continuous.
In recent years, many authors have given much attention to iterative methods for
approximating fixed points of Lipschitz asymptotically type nonlinear mappings
(see [1-4, 6, 9, 17, 18]).
Schu [17] proved the following theorem:
Theorem 1.1 ([17]). Let H be a Hilbert space, K be a nonempty bounded closed
convex subset of H and T : K → K be completely continuous, uniformly L-
Lipschitzian and asymptotically pseudocontractive mapping with a sequence kn ⊂
[1,∞) satisfying the following conditions:
(i) kn → 1 as n→∞ (ii)

∑∞
n=1 q

2
n − 1 <∞, where qn = 2k − 1.

Suppose further that {αn}∞n=1 and {βn}∞n=1 be two sequences in [0, 1] such that

ε < αn < βn ≤ b, ∀n ≥ 1, where ε > 0 and b ∈ (0, L−2[(1 + L2)
1
2 − 1]) are some

positive numbers. For any x1 ∈ K, let {xn}∞n=1 be iterative sequence defined by

xn+1 = (1− αn)xn + αnT
nxn, n ≥ 1.

Then {xn}∞n=1 converges strongly to a fixed point of T in K.
In [1], Chang extended Theorem 1.3 to a real uniformly smooth Banach space and
proved the following theorem:
Theorem 1.2 ([1]). Let E be a real uniformly smooth Banach space, K be a
nonempty bounded closed convex subset of E, T : K → K be an asymptoti-
cally pseudocontractive mapping with a sequence kn ⊂ [1,∞) with kn → 1 and
F (T ) 6= φ, where F (T ) is the set of fixed points of T in K. Let {αn}∞n=0 be a sequence
in [0, 1] satisfying the following conditions: (i) limn→∞ αn = 0 (ii)

∑∞
n=0 αn = ∞.

For any x0 ∈ K, let {xn}∞n=0 be the iterative sequence defined by

xn+1 = (1− αn)xn + αnT
nxn, n ≥ 0.

If there exists a strictly increasing function Φ : [0,∞)→ [0,∞) with Φ(0) = 0 such
that

< Tnxn − ρ, j(xn − ρ) >≤ kn‖xn − ρ‖2 − Φ(‖xn − ρ‖), n ≥ 0

where ρ ∈ F (T ) is some fixed point of T in K, then xn → ρ as n→∞.
Ofoedu [13] used the modified Mann iteration process introduced by Schu [17] ,

(1.2) xn+1 = (1− αn)xn + αnT
nxn, n ≥ 0,

to obtain a strong convergence theorem for uniformly Lipschitzian asymptotically
pseudocontractive mapping in real Banach space setting. He proved the following
theorem:
Theorem 1.3 ([13]). Let E be a real Banach space, K be a nonempty closed
convex subset of E, T : K → K , be a uniformly L-Lipschitzian asymptotically
mappings with a sequence kn ⊂ [1,∞) , kn → 1 such that ρ ∈ F (T ), where F (T )
is the set of fixed points of T in K. Let {αn}∞n=0 be a sequence in [0, 1] satisfying
the following conditions: (i)

∑∞
n=0 αn = ∞ (ii)

∑∞
n=0 α

2
n < ∞ (iii)

∑∞
n=0 βn < ∞
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(iv)
∑∞

n=0 αn(kn − 1) <∞.
For any x0 ∈ K, let {xn}∞n=0 be the iterative sequence defined by (1.1).
If there exists a strictly increasing function Φ : [0,∞)→ [0,∞) with Φ(0) = 0 such
that

< Tnxn − ρ, j(xn − ρ) >≤ kn‖xn − ρ‖2 − Φ(‖xn − ρ‖)

for all x ∈ K, then {xn}∞n=0 converges strongly to ρ.
Obviously, this result extends Theorem 1.2 of Chang [1] from a real uniformly
smooth Banach space to an arbitrary real Banach space and removes the bounded-
ness condition imposed on K.
Chang et al.[3] used an Ishikawa iteration sequence to prove a strong convergence
theorem for a pair of L− Lipschitzian mappings instead of a single map used in
Ofoedu [13].
Rafiq, Acu and Sofonea [15], improved the results of Chang et al. [3] in a significant
more general context. They then gave an open problem whether their results can
be extended for the case of three mappings which are more general than the two
maps. Indeed, they proved the following theorem.
Theorem 1.3 ([15]). Let K be a nonempty closed convex subset of a real Banach
space E, Ti : K → K , (i = 1, 2) be two uniformly L-Lipschitzian mappings with
sequence kn ⊂ [1,∞),

∑∞
n=1(kn − 1) < ∞ such that F (T1) ∩ F (T2) 6= φ, where

F (Ti) is the set of fixed points of Ti in K and ρ be a point in F (T1) ∩ F (T2).
Let {αn}∞n=1 and {βn}∞n=1 be two sequences in [0, 1] such that

∑∞
n=1 αn = ∞,

limn→∞αn = βn = 0. For any x1 ∈ K, let {xn}∞n=1 be a sequence iteratively de-
fined by

xn+1 = (1− αn)xn + αnT
n
1 yn

yn = (1− βn)xn + βnT
n
2 xn.

Suppose there exists a strictly increasing function Φ : [0,∞)→ [0,∞) with Φ(0) = 0
such that

< Tn
i xn − ρ, j(xn − ρ) >≤ kn‖xn − ρ‖2 − Φ(‖xn − ρ‖),∀x ∈ K(i = 1, 2),

then {xn}∞n=1 converges strongly to ρ ∈ F (T1) ∩ F (T2).
In [10], the author established a new result on convergence of the modified Noor
iteration for three nearly Lipschitzian mappings. His result extends, improves and
unifies a host of recent results. Although, Mogbademu and Xue [9] had earlier
obtained a strong convergence theorem for asymptotically generalized Φ− hemi-
contractive map in real Banach spaces using the iterative sequence generated by
this map.
More recently, Xue, Rafiq and Zhou [19] employed an analytical technique to prove
the convergent of an Ishikawa and Mann iterations for nonlinear mappings in uni-
formly smooth real Banach spaces. It is the purpose of this paper, using the style
of proof by Xue, Rafiq and Zhou [19] to prove strong convergence theorems of mul-
tistep iteration scheme (1.3) for nearly uniformly Lipschitzian mappings in a real
Banach space. Our results significantly generalise and improve some recent results
of [1-3, 6, 13, 17, 18] in some aspects. For this, we need the following concepts and
Lemmas.
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The following iteration (see Rhoades and Soltuz [16]):

xn+1 = (1− αn)xn + αnT
ny1

n, n ≥ 0,

yin = (1− βi
n)xn + βi

nT
nyk+1

n , i = 1, 2, ..., p− 2,

(1.3) yp−1
n = (1− βp−1

n )xn + βp−1
n Tnxn, n ≥ 0, p ≥ 2.

is called the multistep iteration sequence, where p ≥ 2 is fixed order, {αn}, {βi
n}

are sequences in [0, 1] for i = 1, 2, ..., p− 1.
Taking p = 3 in (1.3) we obtain the Noor iteration scheme as follows:

xn+1 = (1− αn)xn + αnT
ny1

n, n ≥ 0,

y1
n = (1− β1

n)xn + β1
nT

ny2
n,

(1.4) y2
n = (1− β2

n)xn + β2
nT

nxn, n ≥ 0.

where {αn}, {βi
n} are sequences in [0, 1] for i = 1, 2.

Taking p = 2 in (1.3) we obtain the Ishikawa iteration scheme as follows:

xn+1 = (1− αn)xn + αnT
ny1

n, n ≥ 0,

(1.5) y1
n = (1− β1

n)xn + β1
nT

nxn,

where {αn}, {β1
n} are sequences in [0, 1].

In particular, if β1
n = 0 for n ≥ 0 in (1.5) the sequence {xn} defined by

(1.6) xn+1 = (1− αn)xn + αnT
nxn, n ≥ 0,

is called the Mann iteration sequence (see [7]).
We remark that iteration (1.3) generalises the Mann, Ishikawa and Noor iteration
sequences. The multistep iteration sequence (1.3) can be viewed as the predictor-
corrector methods for solving nonlinear equations in Banach spaces. For the con-
vergence analysis of the predictor-corrector and multistep iteration sequences for
solving the variational inequalities and optimization problems (see Noor[11], Noor
et al. [12]).
Lemma 1.1 [1, 9]. Let E be real Banach Space and J : E → 2E

∗
be the normalized

duality mapping. Then,for any x, y ∈ E

‖x+ y‖2 ≤ ‖x‖2 + 2 < y, j(x+ y) >,∀j(x+ y) ∈ J(x+ y).

Lemma 1.2 [8]. Let Φ : [0,∞) → [0,∞) be an increasing function with Φ(x) =
0⇔ x = 0 and let {bn}∞n=0 be a positive real sequence satisfying

∞∑
n=0

bn = +∞ and lim
n→∞

bn = 0.

Suppose that {an}∞n=0 is a nonnegative real sequence. If there exists an integer
N0 > 0 satisfying

a2
n+1 < a2

n + o(bn)− bnΦ(an+1), ∀n ≥ N0

where limn→∞
o(bn)
bn

= 0, then limn→∞ an = 0.
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2. Main results

Theorem 2.1. Let X be a real Banach space, K be a nonempty closed con-
vex subset of X, T : K → K be a nearly uniformly L-Lipschitzian mapping
with sequence {an}. Let kn ⊂ [1,∞) and εn be sequences with limn→∞ kn =
1, limn→∞ εn = 0 and F (T ) = {ρ ∈ K : Tρ = ρ}. Let {αn}n≥0 and {βi

n}n≥0, (i =
1, 2, ..., p−1) be real sequences in [0, 1] satisfying the following conditions: (i)

∑
n≥0 αn =

∞ (ii) limn→∞ αn, β
i
n = 0, (i = 1, 2, ..., p − 1). For arbitrary x0 ∈ K, let {xn}n≥0

be iteratively defined by (1.3). If there exists a strictly increasing function Φ :
[0,∞)→ [0,∞) with Φ(0) = 0 such that

< Tnx− Tnρ, j(x− ρ) >≤ kn‖x− ρ‖2 − Φ(‖x− ρ‖) + εn

for all x ∈ K. Then, {xn}n≥0 converges strongly to ρ ∈ F (T ).

Proof. Since there exists a strictly increasing continuous function Φ : [0,∞) →
[0,∞) with Φ(0) = 0 such that

(2.1) 〈Tnx− Tnρ, j(x− ρ)〉 ≤ kn‖x− ρ‖2 − Φ(‖x− ρ‖) + εn,

for x ∈ K, ρ ∈ F (T ), that is

(2.2) εn + 〈kn(x− ρ)− (Tnx− ρ), j(x− ρ)〉 ≥ Φ(‖x− ρ‖).

Choose some x0 ∈ K and x0 6= Tx0 such that εn +(kn +L)‖x0−ρ‖2 +L‖x0−ρ‖2 ∈
R(Φ) and denote that a0 = εn + (kn + L)‖x0 − ρ‖2 + L‖x0 − ρ‖2, R(Φ) is the
range of Φ. Indeed, if Φ(a) → +∞ as a → ∞, then a0 ∈ R(Φ); if sup{Φ(a) : a ∈
[0,∞]} = a1 < +∞ with a1 < a0, then for ρ ∈ K, there exists a sequence {un} in
K such that un → ρ as n → ∞ with un 6= ρ. Clearly, Tun → Tρ as n → ∞ thus
{un − Tun} is a bounded sequence. Therefore, there exists a natural number n0

such that εn + (kn + L)‖un − ρ‖2 + L‖un − ρ‖2 < a1

2 for n ≥ n0, then we redefine

x0 = un0 and εn + (kn + L)‖x0 − ρ‖2 + L‖x0 − ρ‖2 ∈ R(Φ). This is to ensure that
Φ−1(a0) is well defined.
Step 1. We first show that {xn}∞n=0 is a bounded sequence.
Set R = Φ−1(a0), then from above (2.2), we obtain that ‖xn − ρ‖ ≤ R. Denote

(2.3) B1 = {x ∈ K : ‖x− ρ‖ ≤ R}, B2 = {x ∈ K : ‖x− ρ‖ ≤ 2R}.

Now, we want to prove that xn ∈ B1. If n = 0, then x0 ∈ B1. Now assume
that it holds for some n, that is, xn ∈ B1. Suppose that, it is not the case, then
‖xn+1 − ρ‖ > R > R

2 .
Since {an} ∈ [0,∞] with an → 0, set M = sup{an : n ∈ N}. Denote

(2.4)
τ0 = min{1, Φ( R

2 )

32R2 ,
Φ( R

2 )

16R[2(L(2R+M)+R)+M ] ,
Φ( R

2 )

16R[L(2R+M)+R] ,
Φ( R

2 )

8 }.

Since limn→∞ αn, β
i
n = 0 for i = 1, 2, ..., p − 1 and limn→∞ kn = 1. Without loss

of generality, let 0 ≤ αn, β
i
n, kn − 1, εn ≤ τ0 for any n ≥ 0. Then, we have the
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following estimates from (2.1) for i = 1, 2, ..., p− 1.

‖yp−1
n − ρ‖ ≤ (1− βp−1

n )‖xn − ρ‖+ βp−1
n ‖Tnxn − ρ‖

≤ R+ τ0L(R+M)
≤ 2R.

then yp−1 ∈ B2. Similarly,

‖yp−2
n − ρ‖ ≤ (1− βp−2

n )‖xn − ρ‖+ βp−2
n ‖Tnyp−1

n − ρ‖
≤ R+ τ0L(2R+M)
≤ 2R.

then yp−2 ∈ B2..., we have

‖y1
n − ρ‖ ≤ (1− β1

n)‖xn − ρ‖+ β1
n‖Tny2

n − ρ‖
≤ R+ τ0L(2R+M)
≤ 2R.

then for y1 ∈ B2. We get

‖xn+1 − ρ‖ ≤ (1− αn)‖xn − ρ‖+ αn‖Tny1
n − ρ‖

≤ R+ τ0L(2R+M)
≤ 2R.

Therefore, we have

(2.5)

‖xn+1 − xn‖ ≤ αn‖Tny1
n − xn‖

≤ αn(‖Tny1
n − ρ‖+ ‖xn − ρ‖)

≤ τ0(L(2R+M) +R).

(2.6)

‖y1
n − xn+1‖ ≤ βn‖Tny2

n − xn‖+ αn‖Tny1
n − xn‖

≤ βn(‖Tny2
n − ρ‖+ ‖xn − ρ‖)

+αn(‖Tny1
n − ρ‖+ ‖xn − ρ‖)

≤ 2τ0(L(2R+M) +R).

Using Lemma 1.1 and the above estimates, we have

‖xn+1 − ρ‖2 ≤ ‖xn − ρ‖2 + 2αn < Tny1
n − xn, j(xn+1 − ρ) >

= ‖xn − ρ‖2 + 2αn < Tnxn+1 − xn+1, j(xn+1 − ρ) >
+ < xn+1 − xn, j(xn+1 − ρ) >
+ < Tny1

n − Tnxn+1, j(xn+1 − ρ) >
≤ ‖xn − ρ‖2 + 2αn(kn‖xn+1 − ρ‖2 − Φ(‖xn+1 − ρ‖) + εn)
−2αn‖xn+1 − ρ‖2 + 2αnL(‖y1

n − xn+1‖+ an)‖xn+1 − ρ‖
+2αn‖xn+1 − xn‖‖xn+1 − ρ‖

= ‖xn − ρ‖2 + 2αn(kn − 1)‖xn+1 − ρ‖2
−2αnΦ(‖xn+1 − ρ‖) + 2αnεn
+2αnL(‖y1

n − xn+1‖+ an)‖xn+1 − ρ‖
+2αn‖xn+1 − xn‖‖xn+1 − ρ‖

≤ ‖xn − ρ‖2 − 2αnΦ(R
2 ) + 2αn

Φ( R
2 )

32R2 4R2 + 2αn
Φ( R

2 )

8
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(2.7)

+2αnL
Φ( R

2 )

16R[2(L(2R+M)+R)+M ]2R[2(L(2R+M) +R) +M ]

+2αn
Φ( R

2 )

16R[L(2R+M)+R]2R[L(2R+M) +R]

≤ ‖xn − ρ‖2 − αnΦ(R
2 )

≤ R2.

which is a contradiction. Hence {xn}∞n=0 is a bounded sequence. So, {y1
n}, {y2},...,

{yp−1
n } are all bounded sequences.

Step 2. We want to prove ‖xn − ρ‖ → 0 as n→∞.
Since limn→∞ αn, β

k
n = 0, limn→∞ kn = 1 and {xn}∞n=0 is bounded. From (2.5) and

(2.6), we observed that

(2.8) lim
n→∞

‖xn+1 − xn‖ = 0, lim
n→∞

L‖y1
n − xn+1‖ = 0.

So from (2.7), we have

(2.9)
‖xn+1 − ρ‖2 ≤ ‖xn − ρ‖2 + 2αn < Tny1

n − xn, j(xn+1 − ρ) >
= ‖xn − ρ‖2 + 2αn < Tnxn+1 − xn+1, j(xn+1 − ρ) >

+ < xn+1 − xn, j(xn+1 − ρ) >
+ < Tny1

n − Tnxn+1, j(xn+1 − ρ) >
≤ ‖xn − ρ‖2 + 2αn(kn‖xn+1 − ρ‖2 − Φ(‖xn+1 − ρ‖) + εn)
−2αn‖xn+1 − ρ‖2 + 2αnL(‖y1

n − xn+1‖+ an)‖xn+1 − ρ‖
+2αn‖xn+1 − xn‖‖xn+1 − ρ‖

≤ ‖xn − ρ‖2 + 2αn(kn − 1)‖xn+1 − ρ‖2
−2αnΦ(‖xn+1 − ρ‖) + εn
+2αnL(‖y1

n − xn+1‖+ an)‖xn+1 − ρ‖
+2αn‖xn+1 − xn‖‖xn+1 − ρ‖

= ‖xn − ρ‖2 − 2αnΦ(‖xn+1 − ρ‖) + o(αn),

where

2αn(kn − 1)‖xn+1 − ρ‖2 + +2αnL(‖y1
n − xn+1‖+ an)‖xn+1 − ρ‖

+2αn‖xn+1 − xn‖‖xn+1 − ρ‖+ 2αnεn
= o(αn).

By Lemma 1.2, we obtain that

lim
n→∞

‖xn − ρ‖ = 0.

This completes the proof.

Remarks 2.1. Theorem 2.1 improves and extends the corresponding results of
[1-3, 6, 13, 17, 18] in some aspects.
(i) The method of proof of Theorem 2.1 is different from the method given in Chang
[1], Ofoedu [13] and Chang et al. [3] .
(ii) The control conditions (ii)-(iv) in Theorem 2.1 of Chang [1] and that of Ofoedu[13]
are replaced by weaker condition limn→∞ αn = 0.
(iii) Under suitable conditions, sequence {xn}∞n=0 defined by (2.1) in Theorem 2.1
can also be generalized to multi-step iterative scheme with errors.
(iv) The assumption that there exists a strictly increasing function Φ : [0,∞) →
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[0,∞) with Φ(0) = 0 such that

< Tnx− Tnρ, j(x− ρ) >≤ kn‖x− ρ‖2 − Φ(‖x− ρ‖)
for all x ∈ K used by several authors in literature is extended to a more general
assumption: there exists a strictly increasing function Φ : [0,∞) → [0,∞) with
Φ(0) = 0 such that

< Tnx− Tnρ, j(x− ρ) >≤ kn‖x− ρ‖2 − Φ(‖x− ρ‖) + εn

for all x ∈ K
(v) The iteration sequences used in Chang [1], Ofoedu [13] Chang et al. [3] and
Mogbademu [10] are extended to (1.3).
(vi) The mappings in [1, 3, 9, 13, 15] are extended to a more general class of nearly
Lipschitzian mappings.

The following reveals that Theorem 2.1 is applicable.
Application 2.1. Let X = R,K = [0, 1] and T : K → K be a map defined by

Tx =
x

1 + x
,∀x ∈ [0, 1)

Clearly, T is nearly uniformly Lipschitzian (an = 1
2n ) with F (0) = 0.

Define Φ : [0,∞)→ [0,∞) by

Φ(t) =
t2

1 + nt
then, Φ is a strictly increasing function with Φ(0) = 0. For all x ∈ K, ρ ∈ F (T ),
we have that operator T in Theorem 2.1 satisfies

< Tnx− Tnρ, j(x− ρ) >≤ kn‖x− ρ‖2 − Φ(‖x− ρ‖) + εn

with the sequences kn = 1 and εn = x2

1+nx . Set αn = 1
2+n and βi

n = 1
3+n , (i =

1, 2, ..., p− 1) ∀n ≥ 0.

Remarks 2.2. Our results enrich and develop the theory of multi-step iterative
sequence introduced by Rhoades and Soltuz [16].

Taking p = 3 in (1.3), Theorem 2.1 leads to the following corllaries.

Corollary 2.2. Let X be a real Banach space, K be a nonempty closed convex sub-
set of X, T : K → K be a nearly uniformly L-Lipschitzian mapping with sequence
{an}. Let kn ⊂ [1,∞) and εn be sequences with limn→∞ kn = 1, limn→∞ εn =
0 and F (T ) = {ρ ∈ K : Tρ = ρ}. Let {αn}n≥0 and {βi

n}n≥0, (i = 1, 2) be
real sequences in [0, 1] satisfying the following conditions: (i)

∑
n≥0 αn = ∞ (ii)

limn→∞ αn, β
i
n = 0, (i = 1, 2). For arbitrary x0 ∈ K, let {xn}n≥0 be iteratively

defined by (1.4). If there exists a strictly increasing function
Φ : [0,∞)→ [0,∞) with Φ(0) = 0 such that

< Tnx− Tnρ, j(x− ρ) >≤ kn‖x− ρ‖2 − Φ(‖x− ρ‖) + εn

for all x ∈ K. Then, {xn}n≥0 converges strongly to ρ ∈ F (T ).
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Taking p = 2 in (1.3), Theorem 2.1 leads to the following results.

Corollary 2.3. Let X be a real Banach space, K be a nonempty closed convex sub-
set of X, T : K → K be a nearly uniformly L-Lipschitzian mapping with sequence
{an}. Let kn ⊂ [1,∞) and εn be sequences with limn→∞ kn = 1, limn→∞ εn = 0
and F (T ) = {ρ ∈ K : Tρ = ρ}. Let {αn}n≥0 and {βi

n}n≥0, (i = 1) be real sequences
in [0, 1] satisfying the following conditions: (i)

∑
n≥0 αn =∞ (ii) limn→∞ αn, β

i
n =

0, (i = 1). For arbitrary x0 ∈ K, let {xn}n≥0 be iteratively defined by (1.5). If
there exists a strictly increasing function
Φ : [0,∞)→ [0,∞) with Φ(0) = 0 such that

< Tnx− Tnρ, j(x− ρ) >≤ kn‖x− ρ‖2 − Φ(‖x− ρ‖) + εn

for all x ∈ K. Then, {xn}n≥0 converges strongly to ρ ∈ F (T ).

Corollary 2.4. Let X be a real Banach space, K be a nonempty closed convex sub-
set of X, T : K → K be a nearly uniformly L-Lipschitzian mapping with sequence
{an}. Let kn ⊂ [1,∞) and εn be sequences with limn→∞ kn = 1, limn→∞ εn = 0
and F (T ) = {ρ ∈ K : Tρ = ρ}. Let {αn}n≥0 be a real sequence in [0, 1] satisfy-
ing the following conditions: (i)

∑
n≥0 αn = ∞ (ii) limn→∞ αn = 0. For arbitrary

x0 ∈ K, let {xn}n≥0 be iteratively defined by (1.6). If there exists a strictly in-
creasing function
Φ : [0,∞)→ [0,∞) with Φ(0) = 0 such that

< Tnx− Tnρ, j(x− ρ) >≤ kn‖x− ρ‖2 − Φ(‖x− ρ‖) + εn

for all x ∈ K. Then, {xn}n≥0 converges strongly to ρ ∈ F (T ).
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Lp LOCAL UNCERTAINTY PRINCIPLE FOR THE DUNKL

TRANSFORM

FETHI SOLTANI

Abstract. In this paper, we establish Lp local uncertainty principle for the
Dunkl transform on Rd; and we deduce Lp version of the Heisenberg-Pauli-

Weyl uncertainty principle for this transform. We use also the Lp local uncer-

tainty principle for the Dunkl transform and the techniques of Donoho-Stark,
we obtain uncertainty principles of concentration type in the Lp theory, when

1 < p ≤ 2.

1. Introduction

In this paper, we consider Rd with the Euclidean inner product 〈., .〉 and norm

|y| :=
√
〈y, y〉. For α ∈ Rd\{0}, let σα be the reflection in the hyperplane Hα ⊂ Rd

orthogonal to α:

σαy := y − 2〈α, y〉
|α|2

α.

A finite set < ⊂ Rd\{0} is called a root system, if < ∩ R.α = {−α, α} and
σα< = < for all α ∈ <. We assume that it is normalized by |α|2 = 2 for all α ∈ <.
For a root system <, the reflections σα, α ∈ <, generate a finite group G. The
Coxeter group G is a subgroup of the orthogonal group O(d). All reflections in
G, correspond to suitable pairs of roots. For a given β ∈ Rd\

⋃
α∈<Hα, we fix

the positive subsystem <+ := {α ∈ < : 〈α, β〉 > 0}. Then for each α ∈ < either
α ∈ <+ or −α ∈ <+.

Let k : < → C be a multiplicity function on < (a function which is constant
on the orbits under the action of G). As an abbreviation, we introduce the index
γ = γk :=

∑
α∈<+

k(α).
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Throughout this paper, we will assume that k(α) ≥ 0 for all α ∈ <. Moreover,
let wk denote the weight function wk(y) :=

∏
α∈<+

|〈α, y〉|2k(α), for all y ∈ Rd,
which is G-invariant and homogeneous of degree 2γ.

Let ck be the Mehta-type constant given by ck := (
∫
Rd e

−|y|2/2wk(y)dy)−1. We

denote by µk the measure on Rd given by dµk(y) := ckwk(y)dy; and by Lp(µk),
1 ≤ p ≤ ∞, the space of measurable functions f on Rd, such that

‖f‖Lp(µk) :=
(∫

Rd
|f(y)|pdµk(y)

)1/p
<∞, 1 ≤ p <∞,

‖f‖L∞(µk) := ess sup
y∈Rd

|f(y)| <∞,

and by Lprad(µk) the subspace of Lp(µk) consisting of radial functions.
For f ∈ L1(µk) the Dunkl transform is defined (see [4]) by

Fk(f)(x) :=

∫
Rd
Ek(−ix, y)f(y)dµk(y), x ∈ Rd,

where Ek(−ix, y) denotes the Dunkl kernel (for more details, see the next section).
Many uncertainty principles have already been proved for the Dunkl transform,

namely by Rösler [10] and Shimeno [11] who established the Heisenberg-Pauli-Weyl
inequality for the Dunkl transform, by showing that for every f ∈ L2(µk),

(1.1) ‖f‖2L2(µk)
≤ 2

2γ + d
‖ |x|f‖L2(µk)‖ |y|Fk(f)‖L2(µk).

Recently the author [17] proved the following Lp version of the Heisenberg-Pauli-
Weyl inequality for the Dunkl transform Fk. Let 0 < a < (2γ + d)/q, b > 0, if
1 < p ≤ 2, q = p/(p− 1) and f ∈ Lp(µk), then

(1.2) ‖Fk(f)‖Lq(µk) ≤ C(a, b)‖ |x|af‖
b
a+b

Lp(µk)
‖ |y|bFk(f)‖

a
a+b

Lq(µk)
,

where C(a, b) is a positive constant.
Building on the ideas of Faris [5] and Price [8, 9] for the Fourier transform, we

show a local uncertainty principles for the Dunkl transform Fk. More precisely,
we will show the following results. Let E be a measurable subset of Rd such that
0 < µk(E) <∞, and a > 0. If 1 < p ≤ 2, q = p/(p− 1) and f ∈ Lp(µk), then

‖χEFk(f)‖Lq(µk) ≤


K1(a)(µk(E))

a
2γ+d ‖ |x|af‖Lp(µk), 0 < a < 2γ+d

q ,

K2(a)(µk(E))1/q‖f‖1−
2γ+d
qa

Lp(µk)
‖ |x|af‖

2γ+d
qa

Lp(µk)
, a > 2γ+d

q ,

2K1(a2 )(µk(E))
1
2q ‖f‖1/2Lp(µk)

‖ |x|af‖1/2Lp(µk)
, a = 2γ+d

q ,

where χE is the characteristic function of the set E and K1(a), K2(a) are positive
constants given explicitly by Theorem 2.1.

We shall use the Lp local uncertainty principle to show Lp version of the Heisenberg-
Pauli-Weyl uncertainty principle for the Dunkl transform Fk. Let a, b > 0, if
1 < p ≤ 2, q = p/(p− 1) and f ∈ Lp(µk), then

‖Fk(f)‖Lq(µk) ≤


K1(a, b)‖ |x|af‖

b
a+b

Lp(µk)
‖ |y|bFk(f)‖

a
a+b

Lq(µk)
, 0 < a < 2γ+d

q ,

K2(a, b)‖f‖
b(qa−2γ−d)
a(qb+2γ+d)

Lp(µk)
‖ |x|af‖

b(2γ+d)
a(2γ+d+qb)

Lp(µk)
‖ |y|bFk(f)‖

2γ+d
2γ+d+qb

Lq(µk)
, a > 2γ+d

q ,

K3(a, b)‖f‖
b

a+2b

Lp(µk)
‖ |x|af‖

b
a+2b

Lp(µk)
‖ |y|bFk(f)‖

a
a+2b

Lq(µk)
, a = 2γ+d

q ,
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where K1(a, b), K2(a, b) and K3(a, b) are positive constants given explicitly by The-
orem 2.2. The inequalities which generalize the Heisenberg-Pauli-Weyl inequalities
given by (1.1) and (1.2). In the case k = 0 and q = 2, these inequalities are due to
Cowling-Price [1] and Hirschman [6].

We shall use also the local uncertainty principle, and building on the techniques
of Donoho-Stark [2, 14, 15, 16, 18], we show uncertainty principles of concentration
type in the Lp theory, when 1 < p ≤ 2.

This paper is organized as follows. In Section 2 we show a local uncertainty
principle for the Dunkl transform Fk; and we deduce Lp version of the Heisenberg-
Pauli-Weyl uncertainty principle for this transform. The last section is devoted
to present uncertainty principles of concentration type in the Lp theory, when
1 < p ≤ 2.

2. Lp uncertainty principles

The Dunkl operators Dj ; j = 1, ..., d, on Rd associated with the finite reflection
group G and multiplicity function k are given, for a function f of class C1 on Rd,
by

Djf(y) :=
∂

∂yj
f(y) +

∑
α∈<+

k(α)αj
f(y)− f(σαy)

〈α, y〉
.

For y ∈ Rd, the initial problem Dju(., y)(x) = yju(x, y), j = 1, ..., d, with
u(0, y) = 1 admits a unique analytic solution on Rd, which will be denoted by
Ek(x, y) and called Dunkl kernel [3, 7]. This kernel has a unique analytic extension
to Cd × Cd. In our case (see [3, 4]),

(2.1) |Ek(−ix, y)| ≤ 1, x, y ∈ Rd.

The Dunkl kernel gives rise to an integral transform, which is called Dunkl
transform on Rd, and was introduced by Dunkl in [4], where already many basic
properties were established. Dunkl’s results were completed and extended later by
De Jeu [7]. The Dunkl transform of a function f in L1(µk), is defined by

Fk(f)(x) :=

∫
Rd
Ek(−ix, y)f(y)dµk(y), x ∈ Rd.

We notice that F0 agrees with the Fourier transform F that is given by

F(f)(x) := (2π)−d/2
∫
Rd
e−i〈x,y〉f(y)dy, x ∈ Rd.

Some of the properties of Dunkl transform Fk are collected bellow (see [4, 7]).
(a) L1 − L∞-boundedness. For all f ∈ L1(µk), Fk(f) ∈ L∞(µk) and

(2.2) ‖Fk(f)‖L∞(µk) ≤ ‖f‖L1(µk).

(b) Inversion theorem. Let f ∈ L1(µk), such that Fk(f) ∈ L1(µk). Then

(2.3) f(x) = Fk(Fk(f))(−x), a.e. x ∈ Rd.

(c) Plancherel theorem. The Dunkl transform Fk extends uniquely to an isomet-
ric isomorphism of L2(µk) onto itself. In particular,

(2.4) ‖f‖L2(µk) = ‖Fk(f)‖L2(µk).
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Using relations (2.2) and (2.4) with Marcinkiewicz’s interpolation theorem [19,
20], we deduce that for every 1 ≤ p ≤ 2, and for every f ∈ Lp(µk), the function
Fk(f) belongs to the space Lq(µk), q = p/(p− 1), and

(2.5) ‖Fk(f)‖Lq(µk) ≤ ‖f‖Lp(µk).

If f ∈ L1
rad(µk) with f(x) = F (|x|), then

(2.6)

∫
Rd
f(x)dµk(x) =

1

2γ+
d
2−1Γ(γ + d

2 )

∫ ∞
0

F (r)r2γ+d−1dr.

In the following we use the inequality (2.5) to establish Lp local uncertainty
principle for the Dunkl transform Fk, more precisely, we will show the following
theorem.

Theorem 2.1. Let E be a measurable subset of Rd such that 0 < µk(E) <∞, and
a > 0. If 1 < p ≤ 2, q = p/(p− 1) and f ∈ Lp(µk), then

‖χEFk(f)‖Lq(µk) ≤


K1(a)(µk(E))

a
2γ+d ‖ |x|af‖Lp(µk), 0 < a < 2γ+d

q ,

K2(a)(µk(E))1/q‖f‖1−
2γ+d
qa

Lp(µk)
‖ |x|af‖

2γ+d
qa

Lp(µk)
, a > 2γ+d

q ,

2K1(a2 )(µk(E))
1
2q ‖f‖1/2Lp(µk)

‖ |x|af‖1/2Lp(µk)
, a = 2γ+d

q ,

where

K1(a) =
2γ + d

2γ + d− qa

[
(2γ + d− qa)q−1

2γ+
d
2−1Γ(γ + d

2 )(qa)q

] a
2γ+d

,

K2(a) =
qa

qa− 2γ − d

(
qa

2γ + d
− 1

) 2γ+d
pqa

[
(qa− 2γ − d)Γ( qa−2γ−dpa )Γ( 2γ+d

pa )

2γ+
d
2−1pqa2Γ(γ + d

2 )Γ( qp )

] 1
q

.

Proof. (i) The first inequality holds if ‖ |x|af‖Lp(µk) = ∞. Assume that

‖ |x|af‖Lp(µk) < ∞. For r > 0, let Br = {x : |x| < r} and Bcr = Rd\Br. Denote
by χE , χBr and χBcr the characteristic functions. Let f ∈ Lp(µk), 1 < p ≤ 2 and
let q = p/(p− 1). By Minkowski’s inequality, for all r > 0,

‖χEFk(f)‖Lq(µk) ≤ ‖χEFk(χBrf)‖Lq(µk) + ‖χEFk(χBcrf)‖Lq(µk)
≤ (µk(E))1/q‖Fk(χBrf)‖L∞(µk) + ‖Fk(χBcrf)‖Lq(µk);

hence it follows from (2.2) and (2.5) that

(2.7) ‖χEFk(f)‖Lq(µk) ≤ (µk(E))1/q‖χBrf‖L1(µk) + ‖χBcrf‖Lp(µk).
On the other hand, by Hölder’s inequality,

‖χBrf‖L1(µk) ≤ ‖ |x|
−aχBr‖Lq(µk)‖ |x|

af‖Lp(µk).
By (2.6) and hypothesis a < (2γ + d)/q,

‖ |x|−aχBr‖Lq(µk) = akr
−a+(2γ+d)/q,

where

ak =

[
(2γ + d− qa)2γ+

d
2−1Γ(γ +

d

2
)

]−1/q
,

and therefore,

(2.8) ‖χBrf‖L1(µk) ≤ akr
−a+(2γ+d)/q‖ |x|af‖Lp(µk).
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Moreover,

(2.9) ‖χBcrf‖Lp(µk) ≤ ‖ |x|
−aχBcr‖L∞(µk)‖ |x|

af‖Lp(µk) ≤ r
−a‖ |x|af‖Lp(µk).

Combining the relations (2.7), (2.8) and (2.9), we deduce that

‖χEFk(f)‖Lq(µk) ≤
[
r−a + ak(µk(E))1/qr−a+(2γ+d)/q

]
‖ |x|af‖Lp(µk).

We choose r =
(

qa
(2γ+d−qa)ak

) q
2γ+d

(µk(E))−
1

2γ+d , we obtain the first inequality.

(ii) The second inequality holds if ‖f‖Lp(µk) =∞ or ‖ |x|af‖Lp(µk) =∞. Assume
that ‖f‖Lp(µk)+‖ |x|af‖Lp(µk) <∞. From the hypothesis a > (2γ+d)/q, we deduce

that the function x→ (1+ |x|pa)−1/p belongs to Lq(µk), and by Hölder’s inequality,

‖f‖pL1(µk)
=

(∫
Rd

(1 + |x|pa)1/p|f(x)|(1 + |x|pa)−1/pdµk(x)

)p
=

(∫
Rd

dµk(x)

(1 + |x|pa)q/p

)p/q [
‖f‖pLp(µk) + ‖ |x|af‖pLp(µk)

]
.

Then the function f belongs to L1(µk). Replacing f(x) by f(rx), r > 0, in the last
inequality gives

‖f‖pL1(µk)
≤
(∫

Rd

dµk(x)

(1 + |x|pa)q/p

)p/q [
r(2γ+d)(p−1)‖f‖pLp(µk) + r(2γ+d)(p−1)−pa‖ |x|af‖pLp(µk)

]
.

We choose r =
(

qa
2γ+d − 1

) 1
pa
(
‖ |x|af‖Lp(µk)

‖f‖Lp(µk)

)1/a
and the fact that∫

Rd

dµk(x)

(1 + |x|pa)q/p
=

1

2γ+
d
2−1Γ(γ + d

2 )

∫ ∞
0

r2γ+d−1dr

(1 + rpa)q/p
=

Γ( qa−2γ−dpa )Γ( 2γ+d
pa )

2γ+
d
2−1paΓ(γ + d

2 )Γ( qp )
,

we deduce that

‖f‖L1(µk) ≤ K2(a)‖f‖1−
2γ+d
qa

Lp(µk)
‖ |x|af‖

2γ+d
qa

Lp(µk)
.

Thus,

‖χEFk(f)‖Lq(µk) ≤ (µk(E))1/q‖Fk(f)‖L∞(µk)

≤ (µk(E))1/q‖f‖L1(µk)

≤ K2(a)(µk(E))1/q‖f‖1−
2γ+d
qa

Lp(µk)
‖ |x|af‖

2γ+d
qa

Lp(µk)
,

which gives the second inequality.

(iii) Let r > 0. From the inequality
(
|x|
r

) 2γ+d
2q ≤ 1 +

(
|x|
r

) 2γ+d
q

, it follows that

‖ |x|
2γ+d
2q f‖Lp(µ) ≤ r

2γ+d
2q ‖f‖Lp(µ) + r−

2γ+d
2q ‖ |x|

2γ+d
q f‖Lp(µ).

Optimizing in r, we get

‖ |x|
2γ+d
2q f‖Lp(µ) ≤ 2‖f‖1/2Lp(µ)‖ |x|

2γ+d
q f‖1/2Lp(µ).

Thus, we deduce that

‖χEFk(f)‖Lq(µk) ≤ K1(
2γ + d

2q
)(µk(E))

1
2q ‖ |x|

2γ+d
2q f‖Lp(µ)

≤ 2K1(
2γ + d

2q
)(µk(E))

1
2q ‖f‖1/2Lp(µ)‖ |x|

2γ+d
q f‖1/2Lp(µ),
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which gives the result for a = (2γ + d)/q. �

Remark 2.1. Let a > 0. If 1 < p ≤ 2, q = p/(p− 1) and f ∈ Lp(µk), then

‖f‖
L
q(2γ+d)
2γ+d−qa ,q(µk)

≤ K1(a)‖ |x|af‖Lp(µk), 0 < a < (2γ + d)/q,

‖f‖L∞,q(µk) ≤ K2(a)‖f‖1−
2γ+d
2a

Lp(µk)
‖ |x|af‖

2γ+d
2a

Lp(µk)
, a > (2γ + d)/q,

‖f‖L2q,q(µk) ≤ 2K1(
a

2
)‖f‖1/2Lp(µk)

‖ |x|af‖1/2Lp(µk)
, a = (2γ + d)/q,

where Ls,q(µk) is the Lorentz-space defined by the norm

‖f‖Ls,q(µk) := sup
E⊂Rd

0<µk(E)<∞

(
(µk(E))

1
s−

1
q ‖χEf‖Lq(µk)

)
.

In the next part of this section, we shall use the Lp local uncertainty principle
(Theorem 2.1) to extend the Heisenberg-Pauli-Weyl uncertainty principles (1.1)
and (1.2) to more general case.

Theorem 2.2. Let a, b > 0,If 1 < p ≤ 2, q = p/(p− 1) and f ∈ Lp(µk), then

‖Fk(f)‖Lq(µk) ≤


K1(a, b)‖ |x|af‖

b
a+b

Lp(µk)
‖ |y|bFk(f)‖

a
a+b

Lq(µk)
, 0 < a < 2γ+d

q ,

K2(a, b)‖f‖
b(qa−2γ−d)
a(qb+2γ+d)

Lp(µk)
‖ |x|af‖

b(2γ+d)
a(2γ+d+qb)

Lp(µk)
‖ |y|bFk(f)‖

2γ+d
2γ+d+qb

Lq(µk)
, a > 2γ+d

q ,

K3(a, b)‖f‖
b

a+2b

Lp(µk)
‖ |x|af‖

b
a+2b

Lp(µk)
‖ |y|bFk(f)‖

a
a+2b

Lq(µk)
, a = 2γ+d

q ,

where

K1(a, b) =

[(
b
a

) a
a+b

+
(
a
b

) b
a+b
]1/q

[
2γ+

d
2 Γ(γ + d

2 + 1)
] ab

(2γ+d)(a+b)

(K1(a))
b
a+b ,

K2(a, b) =

[(
qb

2γ+d

) 2γ+d
2γ+d+qb

+
(

2γ+d
qb

) qb
2γ+d+qb

]1/q
[
2γ+

d
2 Γ(γ + d

2 + 1)
] b

2γ+d+qb

(K2(a))
qb

2γ+d+qb ,

and

K3(a, b) =

[(
2b
a

) a
a+2b

+
(
a
2b

) 2b
a+2b

]1/q
[
2γ+

d
2 Γ(γ + d

2 + 1)
] b

2γ+d+2qb

(2K1(
a

2
))

2b
a+2b .

Proof. (i) Let 0 < a < (2γ + d)/q, b > 0 and r > 0. Then

(2.10) ‖Fk(f)‖qLq(µk) = ‖χBrFk(f)‖qLq(µk) + ‖χBcrFk(f)‖qLq(µk).

Firstly,

(2.11) ‖χBcrFk(f)‖qLq(µk) ≤ r
−qb‖ |y|bFk(f)‖qLq(µk).

By (2.6) and Theorem 2.1, we get

(2.12) ‖χBrFk(f)‖qLq(µk) ≤ K1r
qa‖ |x|af‖qLp(µk),
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where

K1 =
(
K1(a)

)q [
2γ+

d
2 Γ(γ +

d

2
+ 1)

]− qa
2γ+d

.

Combining the relations (2.10), (2.11) and (2.12), we obtain

‖Fk(f)‖qLq(µk) ≤ K1r
qa‖ |x|af‖qLp(µk) + r−qb‖ |y|bFk(f)‖qLq(µk).

We choose r =
(

b
aK1

) 1
q(a+b)

(
‖ |y|bFk(f)‖Lq(µk)

‖ |x|af‖Lp(µk)

) 1
a+b

, we get the first inequality.

(ii) Let a > (2γ + d)/q, b > 0 and r > 0. By (2.6) and Theorem 2.1, we get

(2.13) ‖χBrFk(f)‖qLq(µk) ≤ K2r
2γ+d‖f‖q−

2γ+d
a

Lp(µk)
‖ |x|af‖

2γ+d
a

Lp(µk)
,

where

K2 = (K2(a))q
[
2γ+

d
2 Γ(γ +

d

2
+ 1)

]−1
.

Combining the relations (2.10), (2.11) and (2.13), we obtain

‖Fk(f)‖qLq(µk) ≤ K2r
2γ+d‖f‖q−

2γ+d
a

Lp(µk)
‖ |x|af‖

2γ+d
a

Lp(µk)
+ r−qb‖ |y|bFk(f)‖qLq(µk).

We choose r =
(

qb
(2γ+d)K2

) 1
2γ+d+qb

(
‖ |y|bFk(f)‖qLq(µk)

‖f‖
q− 2γ+d

a
Lp(µk)

‖ |x|af‖
2γ+d
a

Lp(µk)

) 1
2γ+d+qb

, we get the sec-

ond inequality.
(iii) Let a = (2γ + d)/q, b > 0 and r > 0. From Theorem 2.1, we get∫

Br

|Fk(f)(y)|qdµk(y) ≤ K3r
γ+ d

2 ‖f‖q/2Lp(µk)
‖ |x|

2γ+d
q f‖q/2Lp(µk)

,

where

K3 = (K1(
2γ + d

2q
))q
[
2γ+

d
2 Γ(γ +

d

2
+ 1)

]−1/2
.

Therefore,

‖Fk(f)‖qLq(µk) ≤ K3r
γ+ d

2 ‖f‖q/2Lp(µk)
‖ |x|

2γ+d
q f‖q/2Lp(µk)

+ r−qb‖ |y|bFk(f)‖qLq(µk).

We choose r =
(

2qb
(2γ+d)K3

) 2
2γ+d+2qb

(
‖ |y|bFk(f)‖qLq(µk)

‖f‖1/2
Lp(µk)

‖ |x|
2γ+d
q f‖1/2

Lp(µk)

) 2q
2γ+d+2qb

, we get the

third inequality. �

Remark 2.2. The inequalities of Theorem 2.2 generalize the results of the papers
[12, 13, 17]. Furthermore, we have explicitly given the values of the constants
K1(a, b), K2(a, b) and K3(a, b). In particular case, if q = 2, the inequalities of
Theorem 2.2 are given by

‖f‖L2(µk) ≤ K(a, b)‖ |x|af‖
b
a+b

L2(µk)
‖ |y|bFk(f)‖

a
a+b

L2(µk)
,

where

K(a, b) =


K1(a, b), 0 < a < (2γ + d)/2, b > 0,

(K2(a, b))
a(2γ+d+2b)
(2γ+d)(a+b) , a > (2γ + d)/2, b > 0,

(K3(a, b))
a+2b
a+b , a = (2γ + d)/2, b > 0.
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Here K1(a, b), K2(a, b) and K3(a, b) are the constants given by Theorem 2.2 with
p = q = 2.

3. Lp Donoho-Stark uncertainty principles

Let T and E be a measurable subsets of Rd. We introduce the time-limiting
operator PT by

PT f := χT f,

and, we introduce the partial Dunkl integral SEf by

(3.1) Fk(SEf) = χEFk(f).

We shall use the Lp local uncertainty principle (Theorem 2.1) to obtain the
following results for the partial Dunkl integral SEf .

Lemma 3.1. (i) If µk(E) <∞ and f ∈ Lp(µk), 1 ≤ p ≤ 2,

SEf(x) = F−1k (χEFk(f))(x).

(ii) If 0 < µk(E) <∞, a > 0, 1 < p ≤ 2, q = p/(p− 1) and f ∈ Lp(µk), then

‖SEf‖Lq(µk) ≤


K1(a)(µk(E))

2
p+

a
2γ+d−1‖ |x|af‖Lp(µk), 0 < a < 2γ+d

q ,

K2(a)(µk(E))1/p‖f‖1−
2γ+d
qa

Lp(µk)
‖ |x|af‖

2γ+d
qa

Lp(µk)
, a > 2γ+d

q ,

2K1(a2 )(µk(E))
3
2p−

1
2 ‖f‖1/2Lp(µk)

‖ |x|af‖1/2Lp(µk)
, a = 2γ+d

q ,

where K1(a) and K2(a) are the constants given by Theorem 2.1.

Proof. (i) Let f ∈ Lp(µk), 1 ≤ p ≤ 2 and let q = p/(p − 1). Then by Hölder’s
inequality and (2.5), we have

‖χEFk(f)‖L1(µk) ≤ (µk(E))1/p‖Fk(f)‖Lq(µk) ≤ (µk(E))1/p‖f‖Lp(µk),
and

‖χEFk(f)‖L2(µk) ≤ (µk(E))
q−2
2q ‖Fk(f)‖Lq(µk) ≤ (µk(E))

q−2
2q ‖f‖Lp(µk).

Thus χEFk(f) ∈ L1(µk) ∩ L2(µk). Then by (2.3) and (3.1), we obtain

SEf = F−1k (χEFk(f)).

(ii) Let f ∈ Lp(µk), 1 < p ≤ 2 and let q = p/(p − 1). By (2.5) and Hölder’s
inequality, we have

‖SEf‖Lq(µk) ≤ ‖χEFk(f)‖Lp(µk) ≤ (µk(E))
2
p−1‖χEFk(f)‖Lq(µk).

Then we obtain the results from Theorem 2.1. �
Let T be a measurable subset of Rd. We say that a function f ∈ Lp(µk),

1 ≤ p ≤ 2, is ε-concentrated to T in Lp(µk)-norm, if

(3.2) ‖f − PT f‖Lp(µk) ≤ εT ‖f‖Lp(µk).

Let E be a measurable subset of Rd, and f ∈ Lp(µk), 1 ≤ p ≤ 2. We say that
Fk(f) is εE-concentrated to E in Lq(µk)-norm, q = p/(p− 1), if

(3.3) ‖Fk(f)−Fk(SEf)‖Lq(µk) ≤ εE‖Fk(f)‖Lq(µk).
Let Bp(E), 1 ≤ p ≤ 2, be the set of functions f ∈ Lp(µk) that are bandlimited

to E (i.e. f ∈ Bp(E) implies SEf = f).
Then, the space Bp(E) satisfies the following property.
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Lemma 3.2. Let T and E be a measurable subsets of Rd such that 0 < µk(E) <∞,
and a > 0. If 1 < p ≤ 2, q = p/(p− 1) and f ∈ Bp(E), then

‖PT f‖Lp(µk) ≤


K1(a)(µk(T ))1/p(µk(E))

1
p+

a
2γ+d ‖ |x|af‖Lp(µk), 0 < a < 2γ+d

q ,

K2(a)(µk(T ))1/pµk(E)‖f‖1−
2γ+d
qa

Lp(µk)
‖ |x|af‖

2γ+d
qa

Lp(µk)
, a > 2γ+d

q ,

2K1(a2 )(µk(T ))1/p(µk(E))
1
2p+

1
2 ‖f‖1/2Lp(µk)

‖ |x|af‖1/2Lp(µk)
, a = 2γ+d

q ,

Proof. If µk(T ) =∞, the inequality is clear. Assume that µk(T ) <∞.
For f ∈ Bp(E), 1 < p ≤ 2, from Lemma 3.1 (i), we have

SEf(x) = F−1k (χEFk(f))(x).

By (2.1) and Hölder’s inequality, we obtain

|f(x)| ≤ (µk(E))1/p‖χEFk(f)‖Lq(µk), q = p/(p− 1).

Hence,

‖PT f‖Lp(µk) ≤ (µk(T ))1/p(µk(E))1/p‖χEFk(f)‖Lq(µk).
Then we obtain the results Theorem 2.1. �

The following theorem, states an uncertainty principle of concentration type for
the Lp theory.

Theorem 3.1. Let T and E be a measurable subsets of Rd such that 0 < µk(E) <
∞, and a > 0. If 1 < p ≤ 2, q = p/(p− 1), f ∈ Bp(E) and f is εT -concentrated to
T in Lp(µk)-norm, then

‖f‖Lp(µk) ≤



K1(a)
1−εT (µk(T ))1/p(µk(E))

1
p+

a
2γ+d ‖ |x|af‖Lp(µk), 0 < a < 2γ+d

q ,(
K2(a)
1−εT

) qa
2γ+d

(µk(T ))
qa

p(2γ+d) (µk(E))
qa

2γ+d ‖ |x|af‖Lp(µk), a > 2γ+d
q ,(

2K1(
a
2 )

1−εT

)2
(µk(T ))2/p(µk(E))

1
p+1‖ |x|af‖Lp(µk), a = 2γ+d

q ,

Proof. Let f ∈ Bp(E), 1 < p ≤ 2. Since f is εT -concentrated to T in Lp(µk)-
norm, then by (3.2), we have

‖f‖Lp(µk) ≤ εT ‖f‖Lp(µk) + ‖PT f‖Lp(µk).
Thus,

‖f‖Lp(µk) ≤
1

1− εT
‖PT f‖Lp(µk).

Then we obtain the results from Lemma 3.2. �
Another uncertainty principle of concentration type for the Lp theory is given

by the following theorem.

Theorem 3.2. Let E be a measurable subset of Rd such that 0 < µk(E) <∞, and
a > 0. If 1 < p ≤ 2, q = p/(p− 1), f ∈ Lp(µk) and Fk(f) is εE-concentrated to E
in Lq(µk)-norm, then

‖Fk(f)‖Lq(µk) ≤


K1(a)
1−εE (µk(E))

a
2γ+d ‖ |x|af‖Lp(µk), 0 < a < 2γ+d

q ,

K2(a)
1−εE (µk(E))1/q‖f‖1−

2γ+d
qa

Lp(µk)
‖ |x|af‖

2γ+d
qa

Lp(µk)
, a > 2γ+d

q ,

2K1(
a
2 )

1−εE (µk(E))
1
2q ‖f‖1/2Lp(µk)

‖ |x|af‖1/2Lp(µk)
, a = 2γ+d

q ,
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Proof. Let f ∈ Lp(µk), 1 < p ≤ 2. Since Fk(f) is εE-concentrated to E in
Lq(µk)-norm, q = p/(p− 1), then by (3.3), we deduce that

‖Fk(f)‖Lq(µk) ≤ εE‖Fk(f)‖Lq(µk) + ‖χEFk(f)‖Lq(µk).
Thus,

‖Fk(f)‖Lq(µk) ≤
1

1− εE
‖χEFk(f)‖Lq(µk).

Then we obtain the results from Theorem 2.1. �
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MATRICES OF GENERALIZED DUAL QUATERNIONS

MEHDI JAFARI

Abstract. After a brief review of some algebraic properties of a generalized
dual quaternion, we investigate properties of matrix associated with a gener-

alized dual quaternion and examine De Moivre’s formula for this matrix, from

which the n-th power of such a matrix can be determined. We give the relation
between the powers of these matrices.

1. Introduaction

Mathematically, quaternions represent the natural extension of complex num-
bers, forming an associative algebra under addition and multiplication. Dual num-
bers and dual quaternions were introduced in the 19th century by W.K. Clifford [5],
as a tool for his geometrical investigation. Study [17] and Kotel’nikov [12] system-
atically applied the dual number and dual vector in their studies of line geometry
and kinematics and independently discovered the transfer principle.

The use of dual numbers, dual numbers matrix and dual quaternions in instan-
taneous spatial kinematics are investigated in [15,18]. The Euler’s and De-Moivre’s
formulas for the complex numbers are generalized for quaternions in [4]. These
formulas are also investigated for the cases of split and dual quaternions in [11,14].
Some algebraic properties of Hamilton operators are considered in [1,2] where dual
quaternions have been expressed in terms of 4×4 matrices by means of these opera-
tors. Properties of these matrices have applications in mechanics, quantum physics
and computer-aided geometric design [3,20]. Recently, we have derived the De-
Moivre’s and Euler’s formulas for matrices associated with real, dual quaternions
and every power of these matrices are immediately obtained [9,10].

A generalization of real and dual quaternions are also investigated by author
and et al. [6,7]. Here, after a review of some algebraic properties of generalized
dual quaternions, we study the Euler’s and De-Moivre’s formulas for generalized
dual quaternions and for the matrices associated with them. Also, the n-th roots of
these matrices are obtained. Finally, we give some examples for more clarification.

Date: January 1, 2013 and, in revised form, February 2, 2013.

2000 Mathematics Subject Classification. 30G35.
Key words and phrases. De-Moiver’s formula, Hamilton operator, Generalized dual quaternion,

Dual quasi-orthogonal.
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2. Preliminaries

In this section, we give a brief summary algebra of generalized dual quaternions.
For detailed information about this concept, we refer the reader to [7, 8].

Definition 2.1. A generalized dual quaternion Q is written as

Q = A◦1 +A1i+A2j +A3k,

where A·, A1, A2 and A3 are dual numbers and i, j, k are quaternionic units which
satisfy the equalities

i2 = −α, j2 = −β, k2 = −αβ,
ij = k = −ji, jk = βi = −kj,

and

ki = αj = −ik, α, β ∈ R.
As a consequence of this definition, a generalized dual quaternion Q can also be

written as;

Q = q + εq∗, q, q∗ ∈ Hαβ

where q and q∗, real and pure generalized dual quaternion components, respectively.
A quaternion Q = A01 +A1i+A2j+A3k is pieced into two parts with scalar piece

SQ = A· and vectorial piece
−→
V Q = A1i+A2j +A3k. We also write Q = SQ +

−→
V Q.

The conjugate of Q = SQ +
−→
V Q is then defined as Q = SQ −

−→
V Q. If SQ = 0, then

Q is called pure generalized dual quaternion, we may be called its generalized dual
vector. The set of all generalized dual vectors denoted by D3

αβ [15].

Dual quaternionic multiplication of two dual quaternions Q = SQ +
−→
V Q and P

= SP +
−→
V P is defined;

QP = SQSP − g(
−→
V Q,

−→
V P ) + SP

−→
V Q + SQ

−→
V P +

−→
V Q ∧

−→
V P

= A◦B◦ − (αA1B1 + βA2B2 + αβA3B3) +A◦(B1, B2, B3) +B◦(A1, A2, A3)

+(β(A2B3 −A3B2), α(A3B1 −A1B3), (A1B2 −A2B1)).

Also, It could be written

QP =


A◦ −αA1 −βA2 −αβA3

A1 A◦ −βA3 βA2

A2 αA3 A◦ −α A1

A3 −A2 A1 A◦



B◦
B1

B2

B3

 .
So, the multiplication of dual quaternions as matrix-by-vector product. The

norm of Q is defined as NQ = QQ = QQ = A2
0 + αA2

1 + βA2
2 + αβA2

3. If NQ = 1,
then Q is called a unit generalized dual quaternion.The set of all generalized dual

quaternions (abbreviated GDQ) are denoted by H̃αβ .

Theorem 2.1. Every unit generalized dual quaternion is a screw operator [8].
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We investigate the properties of the generalized dual quaternions in two different
cases.

Case 1: Let α, β be positive numbers.

Definition 2.2. Let Ŝ3
D be the set of all unit generalized dual quaternions and

Ŝ2
D the set of unit generalized dual vector, that is,

Ŝ3
D =

{
Q ∈ H̃αβ : NQ = 1

}
⊂ H̃αβ ,

Ŝ2
D =

{−→
V Q = (A1, A2, A3) : g(

−→
V Q,

−→
V Q) = αA2

1 + βA2
2 + αβA2

3 = 1
}
.

Definition 2.3. Every nonzero unit generalized dual quaternion can be written in
the polar form

Q = A0 +A1i+A2j +A3k

= cosφ+
−→
W sinφ,

where cosφ = A0, sinφ =
√

αA2
1 + βA2

2 + αβA2
3. φ = ϕ+ εϕ∗ is a dual angle and

the unit generalized dual vector
−→
W is given by

−→
W =

A1i+A2j +A3j√
αA2

1 + βA2
2 + αβA2

3

=
A1i+A2j +A3j√

1−A2
0

,

with αA2
1 + βA2

2 + αβA2
3 6= 0.

Note that
−→
W is a unit generalized dual vector to which a directed line in R3

αβ

corresponds by means of the generalized E. Study map [16].

Theorem 2.2. (De-Moivre’s formula) Let Q = e
−→
Wφ = cosφ+

−→
W sinφ ∈ Ŝ3

D, where

φ = ϕ+ εϕ∗ is dual angle and
−→
W ∈ Ŝ2

D. Then for every integer n;

Qn = cosnφ+
−→
W sinnφ.

Proof. The proof follows immediately from the induction (see [13]). �

Every generalized dual qauetrnion can be separated into two cases:
1) Generalized dual quaternions with dual angles (φ = ϕ+ εϕ∗); i.e.

Q =
√
NQ(cosφ+

−→
W sinφ).

2) Generalized dual quaternions with real angles (φ = ϕ, ϕ∗ = 0); i.e.

Q =
√
NQ(cosϕ+

−→
W sinϕ).

Theorem 2.3. Let Q = cosϕ +
−→
W sinϕ ∈ Ŝ3

D.De-Moivre’s formula implies that
there are uncountably many unit dual generalized quaternions Q satisfying Qn = 1
for n > 2 [13].
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Case 2: Let α be a positive and β a negative numbers.
In this case, for a generalized dual quaternion Q = A0 + A1i + A2j + A3k, we

can consider three different subcases.

Subcase (i): The norm of generalized dual quaternion is negative, i.e.

NQ = A2
0 + αA2

1 + βA2
2 + αβA2

3 < 0,

since 0 < A2
0 < −αA2

1 − βA2
2 − αβA2

3 thus αA2
1 + βA2

2 + αβA2
3 < 0. In this case,

the polar form of Q is defined as

Q = r(sinh Ψ +
−→
W cosh Ψ)

where we assume

r =
√
|NQ| =

√
|A2
◦ + αA2

1 + βA2
2 + αβA2

3|,

sinh Ψ =
A0√
|NQ|

, cosh Ψ =

√
−αA2

1 − βA2
2 − αβA2

3√
|NQ|

.

The unit dual vector
−→
W (axis of quaternion) is defined as

−→
W = (w1, w2, w3) =

1√
−αA2

1 − βA2
2 − αβA2

3

(A1, A2, A3).

Theorem 2.4. (De-Moivre’s formula) Let Q = sinh Ψ +
−→
W cosh Ψ be a unit gen-

eralized dual quaternion with NQ < 0. Then for every integer n;

Qn = sinhnΨ +
−→
W coshnΨ.

Proof. The proof follows immediately from the induction [13]. �

Subcase (ii): The norm of generalized dual quaternion is positive and the norm
of its vector part to be negative, i.e.

NQ > 0, N−→
V Q

= αA2
1 + βA2

2 + αβA2
3 < 0,

In this case, the polar form of Q is defined as

Q = r(cosh Φ +
−→
W sinh Φ)

where we assume

r =
√
NQ =

√
A2

0 + αA2
1 + βA2

2 + αβA2
3,

cosh Φ =
A0√
NQ

, sinh Φ =

√
−αA2

1 − βA2
2 − αβA2

3√
NQ

.

The unit dual vector
−→
W (axis of quaternion) is defined as

−→
W = (w1, w2, w3) =

1√
−αA2

1 − βA2
2 − αβA2

3

(A1, A2, A3).
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Theorem 2.5. Let Q = cosh Φ +
−→
W sinh Φ be a unit generalized dual quaternion

with NQ > 0 and N−→
V Q

< 0. Then for every integer n;

Qn = coshnΦ +
−→
W sinhnΦ.

Proof. The proof follows immediately from the induction [13]. �

Subcase (iii): The norm of generalized dual quaternion is positive and the norm
of its vector part to be positive, i.e.

NQ > 0, N−→
V Q

= αA2
1 + βA2

2 + αβA2
3 > 0,

In this case, the polar form of Q is defined as

Q = r(cos Θ +
−→
W sin Θ)

where we assume

r =
√
NQ =

√
A2
◦ + αA2

1 + βA2
2 + αβA2

3,

cos Θ =
A0√
NQ

, sin Θ =

√
αA2

1 + βA2
2 + αβA2

3√
NQ

.

The unit dual vector
−→
W (axis of quaternion) is defined as

−→
W = (w1, w2, w3) =

1√
αA2

1 + βA2
2 + αβA2

3

(A1, A2, A3).

Theorem 2.6. Let Q = cos Θ +
−→
W sin Φ be a unit generalized dual quaternion with

NQ > 0 and N−→
V Q

> 0. Then for every integer n;

Qn = cosnΘ +
−→
W sinnΘ.

Proof. The proof follows immediately from the induction. �

2.1. 4× 4 Dual Matrix representation of GDQ.
In this section, we introduce the R-linear transformations representing left mul-

tiplication in H̃αβ and look for also the De-Moiver’s formula for corresponding
matrix representation. Let Q be a generalized dual quaternion, then the linear

map
+

hQ : H̃αβ → H̃αβ defined as follows;

+

hQ(P ) = QP, P ∈ H̃αβ .

The Hamilton’s operator
+

H, could be represented as the matrix

+

H(Q) =


A0 −αA1 −βA2 −αβA3

A1 A0 −βA3 βA2

A2 αA3 A0 −αA1

A3 −A2 A1 A0

 .
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Theorem 2.7. If Q and P are two generalized dual quaternions, λ is a real number,
then the following identities hold;

i. Q = P ⇔
+

H(Q) =
+

H(P )

ii.
+

H(Q+ P ) =
+

H(Q) +
+

H(P )

iii.
+

H(λQ) = λ
+

H(Q)

iv.
+

H(QP ) =
+

H(Q)
+

H(P )

v.
+

H(Q−1) = [
+

H(Q)]−1, NQ 6= 0.

vi.
+

H(Q) = [
+

H(Q)]T

vii. det
+

[H(Q)] = (NQ)2

viii. tr
+

[H(Q)] = 4A◦

Proof. The proof can be found in [7]. �

Following the usual matrix nomenclature, a matrix Â is called a dual quasi-
orthogonal matrix if ÂT εÂ = Aε, where A is a dual number and ε is a 4 × 4
diagonal matrix. A matrix Â is called dual quasi-orthonormal matrix if A = 1 [8].

Theorem 2.8. Matrices generated by operators by
+

H is a dual quasi-orthogonal

matrices; i.e. [
+

H(Q)]T ε
+

H(Q) = NQε where

ε =


1 0 0 0
0 α 0 0
0 0 β 0
0 0 0 αβ

 .
Also,

+

H(Q) is a dual quasi-orthonormal matrices if Q is a unit generalized dual
quaternion [8].

Theorem 2.9. The φ map defined as

φ : (H̃αβ ,+, .)→ (M(4,D),⊕,⊗)

φ(A0 +A1i+A2j +A3k)→


A0 −αA1 −βA2 −αβA3

A1 A0 −βA3 βA2

A2 αA3 A0 −αA1

A3 −A2 A1 A0

 ,
is an isomorphism of algebras.

Proof. We first demonstrate its homomorphic properties. If Q = A01+A1i+A2j+
A3k and P = B01 +B1i+B2j +B3k are any two GDQ, then



116 MEHDI JAFARI

φ{Q+ P} = φ{(A0 +B0) + (A1 +B1)i+ (A2 +B2)j + (A3 +B3)k}

=


A0 +B0 −α(A1 +B1) −β(A2 +B2) −αβ(A3 +B3)

(A1 +B1) A0 +B0 −β(A3 +B3) β(A2 +B2)
(A2 +B2) α(A3 +B3) A0 +B0 −α(A1 +B1)
(A3 +B3) −(A2 +B2) (A1 +B1) A0 +B0



=


A0 −αA1 −βA2 −αβA3

A1 A0 −βA3 βA2

A2 αA3 A0 −αA1

A3 −A2 A1 A0

+


B0 −αB1 −βB2 −αβB3

B1 B0 −βB3 βB2

B2 αB3 B0 −αB1

B3 −B2 B1 B0


= φ{Q} ⊕ φ{P},

φ{QP} = φ{A0B0 − (αA1B1 + βA2B2 + αβA3B3) +A◦(B1, B2, B3) +B◦(A1, A2, A3)

(β(A2B3 −A3B2), α(A3B1 −A1B3), (A1B2 −A2B1))}

=


A0 −αA1 −βA2 −αβA3

A1 A0 −βA3 βA2

A2 αA3 A0 −αA1

A3 −A2 A1 A0

⊗

B0 −αB1 −βB2 −αβB3

B1 B0 −βB3 βB2

B2 αB3 B0 −αB1

B3 −B2 B1 B0


�

We can express the matrix
+

H(Q) in polar form. Let Q be a unit generalized dual
quaternion and α, β > 0. Since

Q = A0 +A1e1 +A2e2 +A3e3

= cosφ+
−→
W sinφ

= cosφ+ (w1, w2, w3) sinφ

so we have
A0 −αA1 −βA2 −αβA3

A1 A0 −βA3 βA2

A2 αA3 A0 −αA1

A3 −A2 A1 A0

 =


cosφ −αw1 sinφ −βw2 sinφ −αβw3 sinφ
w1 sinφ cosφ −βw3 sinφ βw2 sinφ
w2 sinφ αw3 sinφ cosφ −αw1 sinφ
w3 sinφ −w2 sinφ w1 sinφ cosφ

 .
Theorem 2.10. (De-Moivre’s formula) For an integer n and matrix

A =


cosφ −αw1 sinφ −βw2 sinφ −αβw3 sinφ
w1 sinφ cosφ −βw3 sinφ βw2 sinφ
w2 sinφ αw3 sinφ cosφ −αw1 sinφ
w3 sinφ −w2 sinφ w1 sinφ cosφ

 (1.1)

the n-th power of the matrix A reads

An =


cosnφ −αw1 sinnφ −βw2 sinnφ −αβw3 sinnφ
w1 sinnφ cosnφ −βw3 sinnφ βw2 sinnφ
w2 sinnφ αw3 sinnφ cosnφ −αw1 sinnφ
w3 sinnφ −w2 sinnφ w1 sinnφ cosnφ

 .
Proof. The proof follows immediately from the induction. �
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Special cases:

1) If φ,w1, w2 and w3 be real numbers, then Theorem 3.4 holds for real quater-
nions (see [10]).

2) If α = β = 1, then Theorem 3.4 holds for dual quaternions (see [9]).

Example 2.1. Let Q = 1√
2

+ 1
2 ( 1√

α
, 1√

β
, ε) be a unit generalized dual quaternion.

The matrix corresponding to this quaternion is

A =


1√
2
−
√
α
2 −

√
β
2 −αβε2

1√
2α

1√
2

−βε2
√
β
2

1√
2β

αε
2

1√
2

−
√
α
2

ε
2 − 1√

2β
1√
2α

1√
2

 ,

=


cos π4 −αw1 sin π

4 −βw2 sin π
4 −αβw3 sin π

4
w1 sin π

4 cos π4 −βw3 sin π
4 βw2 sin π

4
w2 sin π

4 αw3 sin π
4 cos π4 −αw1 sin π

4
w3 sin π

4 −w2 sin π
4 w1 sin π

4 cos π4


every powers of this matix are found to be with the aid of Theorem 3.4 , for
example, 6−th and 15-th power is

A6 =


0

√
α
2

√
β
2

1√
2
εαβ

− 1√
2α

0 1√
2
εβ −

√
β
2

− 1√
2β

− 1√
2
εα 0

√
α
2

− 1√
2
ε 1√

2β
− 1√

2α
0

 ,

A15 =


1√
2

√
α
2

√
β
2 αβ ε2

− 1√
2α

1√
2

β ε2 −
√
β
2

1
2
√
β

−α ε2
1√
2

√
α
2

− ε2
1

2
√
β
− 1√

2α
1√
2

 .

2.2. Euler’s Formula for Matrices of GDQ.

Definition 2.4. Let A be a dual matrix. We choose

A =


0 −αw1 −βw2 −αβw3

w1 0 −βw3 βw2

w2 αw3 0 −αw1

w3 −w2 w1 0


then one immediately finds A2 = −I4. We have a netural generalization of Euler’s
formula for matrix A;
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eAφ = I4 +Aφ+
(Aφ)2

2!
+

(Aφ)3

3!
+

(Aφ)4

4!
+ ...

= I4(1− φ2

2!
+
φ4

4!
−)...+A(φ− φ3

3!
+
φ5

5!
− ...)

= cosφ+A sinφ,

=


cosφ −αw1 sinφ −βw2 sinφ −αβw3 sinφ
w1 sinφ cosφ −βw3 sinφ βw2 sinφ
w2 sinφ αw3 sinφ cosφ −αw1 sinφ
w3 sinφ −w2 sinφ w1 sinφ cosφ

 .

2.3. n-th Roots of Matrices of GDQ.
Let Q be a unit generalized dual quaternion with real angle, i.e. φ = ϕ and

ϕ∗ = 0. The matrix associated with the quaternion Q is of the form (1.1 ). In a
more general case, we assume for the matrix of (1.1 )

A =


cos(ϕ+ 2kπ) −αw1 sin(ϕ+ 2kπ) −βw2 sin(ϕ+ 2kπ) −αβw3 sin(ϕ+ 2kπ)
w1 sin(ϕ+ 2kπ) cos(ϕ+ 2kπ) −βw3 sin(ϕ+ 2kπ) βw2 sin(ϕ+ 2kπ)
w2 sin(ϕ+ 2kπ) αw3 sin(ϕ+ 2kπ) cos(ϕ+ 2kπ) −αw1 sin(ϕ+ 2kπ)
w3 sin(ϕ+ 2kπ) −w2 sin(ϕ+ 2kπ) w1 sin(ϕ+ 2kπ) cos(ϕ+ 2kπ)

 ,
where k ∈ Z.
The equation Xn = A has n roots. Thus

A
1
n

k =


cos(ϕ+2kπ

n ) −αw1 sin(ϕ+2kπ
n ) −βw2 sin(ϕ+2kπ

n ) −αβw3 sin(ϕ+2kπ
n )

w1 sin(ϕ+2kπ
n ) cos(ϕ+2kπ

n ) −βw3 sin(ϕ+2kπ
n ) βw2 sin(ϕ+2kπ

n )

w2 sin(ϕ+2kπ
n ) αw3 sin(ϕ+2kπ

n ) cos(ϕ+2kπ
n ) −αw1 sin(ϕ+2kπ

n )

w3 sin(ϕ+2kπ
n ) −w2 sin(ϕ+2kπ

n ) w1 sin(ϕ+2kπ
n ) cos(ϕ+2kπ

n )

 .

For k = 0, the first root is

A
1
n
0 =


cos(ϕn ) −αw1 sin(ϕn ) −βw2 sin(ϕn ) −αβw3 sin(ϕn )
w1 sin(ϕn ) cos(ϕn ) −βw3 sin(ϕn ) βw2 sin(ϕn )
w2 sin(ϕn ) αw3 sin(ϕn ) cos(ϕn ) −αw1 sin( θn )
w3 sin(ϕn ) −w2 sin(ϕn ) w1 sin(ϕn ) cos(ϕn )

 ,
for k = 1, the second root is

A
1
n
1 =


cos(ϕ+2π

n ) −αw1 sin(ϕ+2π
n ) −βw2 sin(ϕ+2π

n ) −αβw3 sin(ϕ+2π
n )

w1 sin(ϕ+2π
n ) cos(ϕ+2π

n ) −βw3 sin(ϕ+2π
n ) βw2 sin(ϕ+2π

n )

w2 sin(ϕ+2π
n ) αw3 sin(ϕ+2π

n ) cos(ϕ+2π
n ) −αw1 sin(ϕ+2π

n )

w3 sin(ϕ+2π
n ) −w2 sin(ϕ+2π

n ) w1 sin(ϕ+2π
n ) cos(ϕ+2π

n )

 .

Similarly, for k = n− 1, we obtain the n-th root.
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2.4. Relation Between Power of Matrices. The relations between the powers
of matrices associated with a generalized dual quaternion can be realized by the
following Theorem.

Theorem 2.11. Q be a unit generalized dual quaternion with the polar form Q =

cosϕ+
−→
W sinϕ. If m = 2π

ϕ ∈ Z+ − {1}, then n ≡ p(mod m) is possible if and only

if Qn = Qp.

Proof. Let n ≡ p(mod m). Then we have n = a.m+ p, where a ∈ Z.

Qn = cosnϕ+
−→
W sinnϕ

= cos(am+ p)ϕ+
−→
W sin(am+ p)ϕ

= cos(a
2π

ϕ
+ p)ϕ+

−→
W sin(a

2π

ϕ
+ p)ϕ

= cos(pϕ+ a2π) +
−→
W sin(pϕ+ a2π)

= cos(pϕ) +
−→
W sin(pϕ)

= Qp.

Now suppose Qn = cosnϕ +
−→
W sinnϕ and Qp = cos pϕ +

−→
W sin pϕ . Since

Qn = Qp, we have cosnϕ = cos pϕ and sinnϕ= sin pϕ, which means nϕ = pϕ+2πa,
a ∈ Z. Thus n = a 2π

ϕ + p, n ≡ p(mod m).

�

Example 2.2. Let Q = 1√
2

+ 1
2 ( 1√

α
, 1√

β
, ε) be a unit generalized dual quaternion.

From the theorem 6.1, m = 2π
π/4 = 8, we have

Q = Q9 = Q17 = ...

Q2 = Q10 = Q18 = ...

Q3 = Q11 = Q19 = ...

Q4 = Q12 = Q20 = ... = −1

...

Q8 = Q16 = Q24 = ... = 1.

Theorem 2.12. Q be a unit dual quaternion with the polar form Q = cosϕ +−→
W sinϕ. Let m = 2π

ϕ ∈ Z+ − {1} and the matrix A corresponds to Q. Then n ≡
p(mod m) is possible if and only if An = Ap.

Proof. Proof is same as above. �

Example 2.3. Let Q = − 1
2 + (ε, 1√

2β
, 1
2
√
αβ

) = cos 2π
3 +

−→
W sin 2π

3 be a unit

generalized dual quaternion. The matrix corresponding to this dual quaternion is

A =


− 1

2 −αε −
√

β
2 − 1

2

√
αβ

ε − 1
2 − 1

2

√
β
α

√
β
2

1√
2β

1
2

√
α
β − 1

2 −αε
1

2
√
αβ

− 1√
2β

ε − 1
2

 ,
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From the Theorem 6.2, m = 2π
2π/3 = 3, we have

A = A4 = A7 = ...

A2 = A5 = A8 = ...

A3 = A6 = A9 = ... = I4

The square roots of the matrix A can be achieved too;

A
1
2

k =


cos
(

2kπ+120·

2

)
−αw1 sin

(
2kπ+120·

2

)
−βw2 sin

(
2kπ+120·

2

)
−αβw3 sin

(
2kπ+120·

2

)
w1 sin

(
2kπ+120·

2

)
cos
(

2kπ+120·

2

)
−βw3 sin

(
2kπ+120·

2

)
βw2 sin

(
2kπ+120·

2

)
w2 sin

(
2kπ+120·

2

)
αw3 sin

(
2kπ+120·

2

)
cos
(

2kπ+120·

2

)
−αw1 sin

(
2kπ+120·

2

)
w3 sin

(
2kπ+120·

2

)
−w2 sin

(
2kπ+120·

2

)
w1 sin

(
2kπ+120·

2

)
cos
(

2kπ+120·

2

)


The first root for k = 0 reads

A
1
2
0 =


1
2 −αε −

√
β
2 − 1

2

√
αβ

ε 1
2 − 1

2

√
β
α

√
β
2

1√
2β

1
2

√
α
β

1
2 −αε

1
2
√
αβ

− 1√
2β

ε 1
2


and the second one for k = 1 becomes

A
1
2
1 =


− 1

2 αε
√

β
2

1
2

√
αβ

−ε − 1
2

1
2

√
β
α −

√
β
2

− 1√
2β

− 1
2

√
α
β − 1

2 αε

− 1
2
√
αβ

1√
2β

−ε − 1
2

 .

Also, it is easy to see that A
1
2
0 +A

1
2
1 = 0.

Remark 2.1. Let α be a positive number and β be a negative number, the Theorem
3.4 holds.
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SYMMETRY REDUCTIONS AND EXACT SOLUTIONS TO THE

SEVENTH-ORDER KDV TYPES OF EQUATION

YOUWEI ZHANG

Abstract. In present paper, the seventh-order KdV types of equation is con-

sidered by the Lie symmetry analysis. All of the geometric vector fields of the
KdV equation are obtained, then the symmetry reductions and exact solutions

to the KdV equation are investigated by the dynamical system and the power

series method.

1. Introduction

Recently, mathematics and physics field have devoted considerable effort to the
study of solutions to ordinary and partial differential equations (ODEs and PDEs).
Among many powerful methods for solving the equation, Lie symmetry analysis pro-
vides an effective procedure for integrability, conservation laws, reducing equations
and exact solutions of a wide and general class of differential systems representing
real physical problems [12, 15]. Sinkala et al [14] have performed the group classifi-
cation of a bond-pricing PDE of mathematical finance to discover the combinations
of arbitrary parameters that allow the PDE to admit a nontrivial symmetry Lie
algebra, and computed the admitted Lie point symmetries, identify the correspond-
ing symmetry Lie algebra and solve the PDE. Under the condition of the symmetry
group of the PDE is nontrivial, it contains a standard integral transform of the
fundamental solution for PDEs, and fundamental solution can be reduced to in-
verting a Laplace transform or some other classical transform in [1]. In [7], by the
direct construction method, all of the first-order multipliers of the the generalized
nonlinear second-order equation are obtained, and the corresponding complete con-
servation laws of such equations are provided. Furthermore, Lie symmetry analysis
helps to study their group theoretical properties, and effectively assists to derive
several mathematical characteristics related with their complete integrability [10].
Also, Lie symmetry analysis and dynamical system method is a feasible approach
to dealing with exact explicit solutions to nonlinear PDEs and systems, (see, e.g.,
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[2, 3, 8, 11]). Liu et al have derived the symmetries, bifurcations and exact explicit
solutions to the KdV equation by using Lie symmetry analysis and the dynamical
system method [5, 6]. The KdV equation models the dust-ion-acoustic waves in
such cosmic environments as those in the supernova shells and Saturn’s F-ring [4],
etc., In present paper, we will investigate the vector fields, symmetry reductions
and exact solutions to the KdV equation with power law nonlinearity and linear
damping with dispersion

ut + u2ux + uu4x + 2uxu3x + u2
xx + u7x = 0,(1.1)

where u = u(x, t) is the unknown functions, x is the spatial coordinate in the
propagation direction and t is the temporal coordinates, which occur in different
contexts in mathematical physics.

The rest of this paper is organized as follows: in Section 2, the vector fields of
Eqs. (1.1) are presented by using Lie symmetry analysis method. Based on the
optimal system method, all the similarity reductions to the Eqs. (1.1) are obtained.
In Section 3, the exact analytic solutions to the equations are investigated by means
of the power series method. Finally, the conclusions will be given in Section 4.

2. Lie symmetry analysis and similarity reductions

Recall that the geometric vector field of a PDE equation is as follows:

V = ξ(x, t, u)∂x + τ(x, t, u)∂t + η(x, t, u)∂u,(2.1)

where the coefficient functions ξ(x, t, u), τ(x, t, u), η(x, t, u) of the vector field are
to be determined later.

If the vector field (2.1) generates a symmetry of the equation (1.1), then V must
satisfy the Lie symmetry condition

PrV (∆)|∆=0 = 0,

where PrV denotes the 7-th prolongation of V , and ∆ = ut + u2ux + uu4x +
2uxu3x + u2

xx + u7x. Moreover, the prolongation PrV depends on the equation

PrV = η∂u + ηx∂ux
+ ηxx∂uxx

+ η3x∂u3x
+ η4x∂u4x

+ η7x∂u7x
,

where the coefficient functions ηkx(k = 1, 2, 3, 4, 7) are given as

ηkx = Dk
x(η − τut − ξux) + τukxt + ξu(k+1)x, k = 1, 2, 3, 4, 7,

here symbol Dx denotes the total differentiation operator and is defined as

Dx = ∂x + ux∂u + utx∂ut + uxx∂ux + . . . .

Then, in terms of the Lie symmetry analysis method, we obtain that all of the
geometric vector fields of Eq. (1.1) are as follows:

V1 = x∂x + 7t∂t − 3u∂u, V2 = ∂x, V3 = ∂t.

Moreover, it is necessary to show that the vector fields of Eq. (1.1) are closed
under the Lie bracket, we have

[Vi, Vi] = 0, i = 1, 2, 3,

[V1, V2] = −[V2, V1] = V2, [V1, V3] = −[V3, V1] = 7V3, [V2, V3] = −[V3, V2] = 0.

In the preceding section, we obtained the vector fields and the optimal systems
of Eq. (1.1). Now, we deal with the symmetry reductions and exact solutions to the
equations. We will consider the following similarity reductions and group-invariant
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solutions based on the optimal system method. From an optimal system of group-
invariant solutions to an equation, every other such solution to the equation can be
derived.

For the generator V1, we have

u = t−
3
7 f(z),(2.2)

where z = xt−
1
7 . Substituting (2.2) into Eq. (1.1), we reduce it into the following

ODE

f (7) + f2f ′(4) + 2f ′(3) + f ′′2 − 1

7
zf ′ − 3

7
f = 0,(2.3)

where f ′ = df
dz .

For the generator V2, we get the trivial solution to Eq. (1.1) is u(x, t) = c, where
c is an arbitrary constant.

For the generator V3, we have

u = f(z),(2.4)

where z = x. Substituting (2.4) into Eq. (1.1), we reduce it into the following ODE

f (7) + f2f ′(4) + 2f ′(3) + f ′′2 = 0,(2.5)

where f ′ = df
dz .

For the generator V3 + υV2, υ is an arbitrary constant, we have

u = f(z),(2.6)

where z = x− υt. Substituting (2.6) into Eq. (1.1), we reduce it into the following
ODE

f (7) + f2f ′(4) + 2f ′(3) + f ′′2 − υf ′ = 0,(2.7)

where f ′ = df
dz .

3. The exact power series solutions

By seeking for exact solutions of the PDEs, we mean that those can be obtained
from some ODEs or, in general, from PDEs of lower order than the original PDE.
In terms of this definition, the exact solutions to Eq. (1.1) are obtained actually
in both of the preceding Sections 2. In spite of this, we still want to detect the
explicit solutions expressed in terms of elementary or, at least, known functions of
mathematical physics, in terms of quadratures, and so on. But this is not always
the case, even for simple semilinear PDEs. However, we know that the power series
can be used to solve differential equations, including many complicated differential
equations [9, 13]. In this section, we will consider the exact analytic solutions to
the reduced equations by using the power series method. Once we get the exact
analytic solutions of the reduced ODEs, the exact power series solutions to the
original PDEs are obtained, now we consider the solutions of ODEs (2.3), (2.5) and
(2.7).

3.1 Exact analytic solutions to Eq. (2.3)
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In view of (2.3), we seek a solution in a power series of the form

f(z) =

∞∑
n=0

cnz
n.(3.1)

Substituting (3.1) into (2.3), and comparing coefficients, then we obtain the follow-
ing recursion formula:

cn+7 = − 1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)(n+ 6)(n+ 7)

×
( n∑

k=0

k∑
i=0

(n− k + 1)cick−icn−k+1

+

n∑
k=0

(n− k + 1)(n− k + 2)(n− k + 3)(n− k + 4)ckcn−k+4

+ 2

n∑
k=0

(n− k + 1)(n− k + 2)(n− k + 3)(k + 1)ck+1cn−k+3

+

n∑
k=0

(n− k + 1)(n− k + 2)(k + 1)(k + 2)ck+2cn−k+2

− 1

7
ncn −

3

7
cn

)
,

(3.2)

for all n = 0, 1, 2, . . ..
Thus, for arbitrarily chosen constants ci (i = 0, 1, . . . , 6), we obtain

c7 = − 1

5040

(
c20c1 + 24c0c4 + 12c1c3 + 4c22 −

3

7
c1
)
.(3.3)

Furthermore, from (3.2), it yield

c8 = − 1

20160

(
c0c

2
1 + c20c2 + 60c0c5 + 36c1c4 + 24c2c3 −

2

7
c1
)
,

c9 = − 1

181440

(
3c20c3 + c31 + 6c0c1c2 + 360c0c6 + 240c1c5 + 144c2c4

+ 72c23 + 24c0c4 −
5

7
c2
)
,

(3.4)

and so on.
Thus, for arbitrary chosen constant numbers ci (i = 0, 1, . . .), the other terms

of the sequence {cn}∞n=0 can be determined successively from (3.3) and (3.4) in a
unique manner. This implies that for Eq. (2.3), there exists a power series solution
(3.1) with the coefficients given by (3.3) and (3.4). Furthermore, it is easy to prove
the convergence of the power series (3.1) with the coefficients given by (3.3) and
(3.4). Therefore, this power series solution (3.1) to Eq. (2.3) is an exact analytic
solution.
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Hence, the power series solution of Eq. (2.3) can be written as

f(z) = c0 + c1z + c2z
2 + c3z

3 + c4z
4 + c5z

5 + c6z
6 + c7z

7 +

∞∑
n=1

cn+7z
n+7

= c0 + c1z + c2z
2 + c3z

3 + c4z
4 + c5z

5 + c6z
6

− 1

5040

(
c20c1 + 24c0c4 + 12c1c3 + 4c22 −

3

7
c1
)
z7

−
∞∑

n=1

1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)(n+ 6)(n+ 7)

×
( n∑

k=0

k∑
i=0

(n− k + 1)cick−icn−k+1

+

n∑
k=0

(n− k + 1)(n− k + 2)(n− k + 3)(n− k + 4)ckcn−k+4

+ 2

n∑
k=0

(n− k + 1)(n− k + 2)(n− k + 3)(k + 1)ck+1cn−k+3

+

n∑
k=0

(n− k + 1)(n− k + 2)(k + 1)(k + 2)ck+2cn−k+2 −
1

7
ncn −

3

7
cn

)
zn+7.

Thus, the exact power series solution of Eq. (1.1) is

u(x, t) = c0t
− 3

7 + c1xt
− 4

7 + c2x
2t−

5
7 + c3x

3t−
6
7 + c4x

4t−1 + c5x
5t−

8
7

+ c6x
6t−

9
7 − 1

5040

(
c20c1 + 24c0c4 + 12c1c3 + 4c22 −

3

7
c1
)
x7t−

10
7

−
∞∑

n=1

1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)(n+ 6)(n+ 7)

×
( n∑

k=0

k∑
i=0

(n− k + 1)cick−icn−k+1

+
n∑

k=0

(n− k + 1)(n− k + 2)(n− k + 3)(n− k + 4)ckcn−k+4

+ 2

n∑
k=0

(n− k + 1)(n− k + 2)(n− k + 3)(k + 1)ck+1cn−k+3

+

n∑
k=0

(n− k + 1)(n− k + 2)(k + 1)(k + 2)ck+2cn−k+2 −
1

7
ncn

− 3

7
cn

)
× xn+7t−

n+10
7 .

(3.5)

3.2 Exact analytic solutions to Eq. (2.5)

In view of (2.5), we have

1

3
f3 + ff ′′′ + f ′f ′′(6) + c = 0,(3.6)
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where c is an integration constant.
We seek a solution of Eq. (3.6) in a power series of the form (3.1). Substituting

(3.1) into (3.6), and comparing coefficients, we obtain

cn+6 = − 1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)(n+ 6)

(
1

3

n∑
k=0

k∑
i=0

cick−icn−k

+

n∑
k=0

(n− k + 1)(n− k + 2)(n− k + 3)ckcn−k+3

+

n∑
k=0

(n− k + 1)(n− k + 2)(k + 1)ck+1cn−k+2

)
,

(3.7)

for all n = 1, 2, . . ..
Thus, for arbitrarily chosen constants ci (i = 0, 1, . . . , 5), we have

c6 = − 1

720

(1

3
c30 + 6c0c3 + 2c1c2 + c

)
.

Furthermore, from (3.7), we have

c7 = − 1

5040

(
c20c1 + 24c0c4 + 12c1c3 + 4c1c2

)
,

c8 = − 1

20160

(
c20c2 + c0c

2
1 + 60c0c5 + 36c1c4 + 24c2c3

)
,

and so on.
Hence, the power series solution of Eq. (2.5) can be written as

f(z) = c0 + c1z + c2z
2 + c3z

3 + c4z
4 + c5z

5 + c6z
6 +

∞∑
n=1

cn+6z
n+6

= c0 + c1z + c2z
2 + c3z

3 + c4z
4 + c5z

5 − 1

720

(1

3
c30 + 6c0c3 + 2c1c2 + c

)
z6

−
∞∑

n=1

1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)(n+ 6)

(
1

3

n∑
k=0

k∑
i=0

cick−icn−k

+

n∑
k=0

(n− k + 1)(n− k + 2)(n− k + 3)ckcn−k+3

+

n∑
k=0

(n− k + 1)(n− k + 2)(k + 1)ck+1cn−k+2

)
zn+6.
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Thus, the exact power series solution of Eq. (1.1) is

u(x, t) = c0 + c1x+ c2x
2 + c3x

3 + c4x
4 + c5x

5

− 1

720

(1

3
c30 + 6c0c3 + 2c1c2 + c

)
x6

−
∞∑

n=1

1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)(n+ 6)

×
(

1

3

n∑
k=0

k∑
i=0

cick−icn−k

+

n∑
k=0

(n− k + 1)(n− k + 2)(n− k + 3)ckcn−k+3

+

n∑
k=0

(n− k + 1)(n− k + 2)(k + 1)ck+1cn−k+2

)
xn+6.

(3.8)

3.3 Exact analytic solutions to Eq. (2.7)

In view of (2.7), we have

1

3
f3 + ff ′′′ + f ′f ′′(6) − υf + c = 0,(3.9)

where c is an integration constant.
Similarly, we seek a solution of Eq. (3.9) in a power series of the form (3.1).

Substituting (3.1) into (3.9), and comparing coefficients, we obtain

cn+6 = − 1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)(n+ 6)

×
(

1

3

n∑
k=0

k∑
i=0

cick−icn−k

+

n∑
k=0

(n− k + 1)(n− k + 2)(n− k + 3)ckcn−k+3

+

n∑
k=0

(n− k + 1)(n− k + 2)(k + 1)ck+1cn−k+2 − υcn
)
,

(3.10)

for all n = 1, 2, . . ..
Thus, for arbitrarily chosen constants ci (i = 0, 1, . . . , 5), we can get

c6 = − 1

720

(1

3
c30 + 6c0c3 + 2c1c2 − υc0 + c

)
.

Furthermore, from (3.10), we have

c7 = − 1

5040

(
c20c1 + 24c0c4 + 12c1c3 + 4c1c2 − υc1

)
,

c8 = − 1

20160

(
c20c2 + c0c

2
1 + 60c0c5 + 36c1c4 + 24c2c3 − υc2

)
,

and so on.
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Hence, the power series solution of Eq. (2.7) can be written as

f(z) = c0 + c1z + c2z
2 + c3z

3 + c4z
4 + c5z

5 + c6z
6 +

∞∑
n=1

cn+6z
n+6

= c0 + c1z + c2z
2 + c3z

3 + c4z
4 + c5z

5 − 1

720

(1

3
c30 + 6c0c3 + 2c1c2 − υc0

)
z6

−
∞∑

n=1

1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)(n+ 6)

(
1

3

n∑
k=0

k∑
i=0

cick−icn−k

+

n∑
k=0

(n− k + 1)(n− k + 2)(n− k + 3)ckcn−k+3

+

n∑
k=0

(n− k + 1)(n− k + 2)(k + 1)ck+1cn−k+2 − υcn
)
zn+6.

Thus, we obtain the traveling wave solution to Eq. (1.1) as follows

u(x, t) = c0 + c1(x− υt) + c2(x− υt)2 + c3(x− υt)3 + c4(x− υt)4

+ c5(x− υt)5 − 1

720

(1

3
c30 + 6c0c3 + 2c1c2

)
(x− υt)6

−
∞∑

n=1

1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)(n+ 6)

×
(

1

3

n∑
k=0

k∑
i=0

cick−icn−k

+

n∑
k=0

(n− k + 1)(n− k + 2)(n− k + 3)ckcn−k+3

+

n∑
k=0

(n− k + 1)(n− k + 2)(k + 1)ck+1cn−k+2 − υcn
)

× (x− υt)n+6.

(3.11)

Remark 3.1. We would like to reiterate that the power series solutions which have
been obtained in this section are exact analytic solutions to the equations. More-
over, we can see that these power series solutions converge for the given chosen
constants ci (i = 0, 1, . . . , 6) of (3.5), ci (i = 0, 1, . . . , 5) of (3.8) and (3.11), respec-
tively, it is actual value for mathematical and physical applications.

4. Summary and discussion

In this paper, we have obtained the symmetries and similarity reductions of the
seventh-order KdV types of equations by using Lie symmetry analysis method. All
the group-invariant solutions to the equations are considered based on the optimal
system method. Then the exact analytic solutions are investigated by using the
power series method, and we can see that these power series solutions converge.
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SOME GENERATING RELATIONS INVOLVING 2-VARIABLE
LAGUERRE AND EXTENDED SRIVASTAVA POLYNOMIALS

Ahmed Ali Al Gonah 1

ABSTRACT: In this paper, we derive families of bilateral and mixed multi-
lateral generating relations involving 2-variable Laguerre and extended Srivastava
polynomials. Further, several bilateral and trilateral generating functions involving
2-variable Laguerre polynomials and other classical polynomials are obtained as
applications of main results.

1. INTRODUCTION

Srivastava [9] introduced the Srivastava polynomials (SP) SNn (w) by the fol-
lowing series definition:

SNn (w) =

[ n
N ]∑
k=0

(−n)Nk
k!

An,k w
k (n ∈ N0 = N ∪ {0};N ∈ N), (1.1)

where N is the set of positive integers, {An,k}∞n,k=0 is a bounded double sequence

of real or complex numbers, [a] denotes the greatest integer in a ∈ R and (λ)ν ,
(λ)0 ≡ 1, denotes the Pochhammer symbol defined by [10]

(λ)ν =
Γ(λ+ ν)

Γ(λ)
, (1.2)

in terms of familiar Gamma function.
Afterward, González et al. [3] extended the SP SNn (w) as follows:

SNn,q(w) =

[ n
N ]∑
k=0

(−n)Nk
k!

An+q,k w
k (q, n ∈ N0;N ∈ N), (1.3)

which were investigated rather extensively in [3] and more recently in [6]. The poly-
nomials SNn,q(w) called as extended Srivastava polynomials (ESP), since SNn,0(w) =

SNn (w).

It is important that, appropriate choices of the double sequence {An,k} in
equation (1.3) give many well known polynomials such as Laguerre, Jacobi and
Bessel polynomials (see [3]). Here, we will recall them and add further new partic-
ular cases as the following remarks:

12010 Mathematics Subject Classification: 33B10, 33C45, 33E30.

Keywords: Generating relations, Laguerre polynomials, Extended Srivastava polynomials.
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Remark 1.1. ([3; p.147] see also [6]) Choosing Aq,n = (−α − q)n (q, n ∈ N0) in Eq.
(1.3), we get

S1
n,q

(
−1

w

)
=

n!

(−w)n
L(α+q)
n (w), (1.4)

where L
(α)
n (w) denotes the associated Laguerre polynomials defined by [10; p.42]

L(α)
n (w) =

(−w)n

n!
2F0

(
−n,−α− n;−;

−1

w

)
(1.5)

and pFq is the generalized hypergeometric function defined by [10; p.42]:

pFq(α1, . . . , αp;β1, . . . , βq; z) =

∞∑
n=0

(α1)n . . . (αp)n
(β1)n . . . (βq)n

zn

n!
, (1.6)

where p, q ∈ N0 and for p = q = 1 reduces to the confluent hypergeometric function

1F1.

Remark 1.2. ([3; p.146]) Choosing Aq,n =
(α+β+1)2q(−β−q)n

(α+β+1)q(−α−β−2q)n (q, n ∈ N0) in Eq.

(1.3), we get

S1
n,q

(
2

1 + w

)
= n!(α+ β + q + n+ 1)q

(
2

1 + w

)n
P (α+q,β+q)
n (w), (1.7)

where P
(α,β)
n (w) denotes the classical Jacobi polynomials defined by [8; p.255]

P (α,β)
n (w) =

(
α+ β + 2n

n

)(
1 + w

2

)n
2F1

(
−n,−β − n;−α− β − 2n;

2

1 + w

)
.

(1.8)

Remark 1.3. ([3; p.148]) Choosing Aq,n = (−α − q)n (q, n ∈ N0) in Eq. (1.3), we
get

S1
n,q

(
−w
β

)
= yn(w, 1− α− q − 2n, β) (β 6= 0), (1.9)

where yn(w,α, β) denotes the Bessel polynomials defined by [10; p.75]

yn(w,α, β) = 2F0

(
−n, α+ n− 1;−;

−w
β

)
. (1.10)

Now, we add the following new particular cases as remarks:

Remark 1.4. Choosing Aq,n =
2q(ν)q(

1
2−ν−q)n

(1−2ν−2q)n (q, n ∈ N0) in Eq. (1.3), we get

S1
n,q

(
2

1− w

)
=
n!2q(ν)q
(w − 1)n

Cν+qn (w), (1.11)

where Cνn(w) denotes the classical Gegenbauer polynomials defined by [8; p.279]

Cνn(w) =
22n(ν)n
n!

(
w − 1

2

)n
2F1

(
−n, 1

2
− ν − n; 1− 2ν − 2n;

2

1− w

)
. (1.12)

Remark 1.5. Choosing Aq,n =
n!(p+1)q
(−p−q)n (q, n ∈ N0) in Eq. (1.3), we get

S1
n,q(w) = n!(p+ 1)q g

(p+q)
n (w), (1.13)
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where g
(p)
n (w) denotes the Cesaro polynomials defined by [10; p.449]

g(p)n (w) =

(
p+ n

n

)
2F1(−n, 1;−p− n;w). (1.14)

Remark 1.6. Choosing Aq,n =
(a)2q

(a)q(a+q)n
(q, n ∈ N0) in Eq. (1.3), we get

S1
n,q(w) = n!(a+ q + 2n)q Rn(a+ q, w), (1.15)

where Rn(a,w) denotes the Shively’s pseudo Laguerre polynomials defined by [8;
p.298]

Rn(a,w) =
(a)2n
n!(a)n

1F1(−n; a+ n;w). (1.16)

Next, we recall that the 2-variable Laguerre polynomials (2VLP) Ln(x, y) are
defined by the series definition (see[1,2])

Ln(x, y) = n!

n∑
k=0

(−1)k xk yn−k

(r!)2 (n− k)!
(1.17)

and specified by the following generating functions:

exp(yt)C0(xt) =

∞∑
n=0

Ln(x, y)
tn

n!
, (1.18)

or, equivalently

1

(1− yt)
exp

( −xt
1− yt

)
=

∞∑
n=0

Ln(x, y)tn
(
|yt| < 1

)
, (1.19)

where C0(x) denotes the 0th order Tricomi function. The nth order Tricomi func-
tions Cn(x) are defined by [10]

Cn(x) =

∞∑
k=0

(−1)k xk

k! (n+ k)!
. (1.20)

Also, we note that the 2VLP Ln(x, y) satisfy the following generating function:

1

(1− yt)a 1F1

(
a; 1;

−xt
1− yt

)
=

∞∑
n=0

(a)n Ln(x, y)
tn

n!

(
|yt| < 1

)
, (1.21)

which for a = 1 reduces to Eq. (1.19).

The 2VLP Ln(x, y) are linked to the classical Laguerre polynomials Ln(x) by
the relations

Ln(x, y) = yn Ln

(
x

y

)
, (1.22)

Ln(x, 1) = Ln(x), (1.23)

where Ln(x) are defined by [8]

Ln(x) =

n∑
k=0

(−1)k n!xk

(k!)2 (n− k)!
. (1.24)

The aim of this paper is to derive some families of bilateral and mixed mul-
tilateral generating relations involving the 2VLP Ln(x, y) and the ESP SNn,q(w) by
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using series rearrangement techniques. Also, the above mentioned remarks will be
used to obtain some illustrative bilateral and trilateral generating functions involv-
ing the 2VLP Ln(x, y) and many classical polynomials in terms of the confluent
hypergeometric function.

2. BILATERAL GENERATING RELATIONS

We prove the following results:

Theorem 2.1. The following family of bilateral generating relation involving the
2VLP Ln(x, y) and the ESP SNn,q(w) holds true:

∞∑
q,n=0

Lq+n(x, y) SNn,q(w)
tq

q!

un

n!
=

∞∑
q,n=0

Lq+Nn(x, y) Aq+Nn,n
(t+ u)q

q!

(
w(−u)N

)n
n!

.

(2.1)

Proof. Denoting the l.h.s. of Eq. (2.1) by ∆1 and using definition (1.3), we have

∆1 =

∞∑
q,n=0

Lq+n(x, y)

[ n
N ]∑
k=0

(−1)Nk

k!(n−Nk)!
Aq+n,k w

k t
q

q!
un. (2.2)

Replacing n by n+Nk in the above equation and using the lemma [10; p.101]

∞∑
n=0

[ n
m ]∑
k=0

A(k, n) =

∞∑
n=0

∞∑
k=0

A(k, n+mk), (2.3)

in the resultant equation, we find

∆1 =

∞∑
q,n,k=0

Lq+n+Nk(x, y)
(−1)Nk

k!
Aq+n+Nk,k w

k t
q

q!

un+Nk

n!
. (2.4)

Again, replacing q by q−n in the r.h.s. of Eq. (2.4) and using the lemma [10;
p.100]

∞∑
n=0

∞∑
k=0

A(k, n) =

∞∑
n=0

n∑
k=0

A(k, n− k), (2.5)

in the resultant equation, we get

∆1 =

∞∑
q,k=0

Lq+Nk(x, y)Aq+Nk,k
tq

q!

(
w(−u)N

)k
k!

q∑
n=0

(−q)n
n!

(
−u
t

)n
, (2.6)

which on using the binomial expansion [10]

(1− x)−λ =

∞∑
n=0

(λ)n
xn

n!
, (2.7)

in the r.h.s., yields the r.h.s. of Eq. (2.1), then the proof of Theorem (2.1) is
completed.

Remark 2.1. Taking u = −t in assertion (2.1) of Theorem 2.1, we deduce the
following consequence of Theorem 2.1.
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Corollary 2.1. The following family of bilateral generating relation involving the
2VLP Ln(x, y) and the ESP SNn,q(w) holds true:

∞∑
q,n=0

Lq+n(x, y) SNn,q(w)
tq

q!

(−t)n

n!
=

∞∑
n=0

LNn(x, y) ANn,n

(
wtN

)n
n!

. (2.8)

Remark 2.2. Taking t = 0 in assertion (2.1) of Theorem 2.1 and using the relation
SNn,0(w) = SNn (w), we deduce the following consequence of Theorem 2.1.

Corollary 2.2. The following family of bilateral generating relation involving the
2VLP Ln(x, y) and the SP SNn (w) holds true:

∞∑
n=0

Ln(x, y) SNn (w)
un

n!
=

∞∑
q,n=0

Lq+Nn(x, y) Aq+Nn,n
uq

q!

(
w(−u)N

)n
n!

. (2.9)

In the next section, Corollaries 2.1 and 2.2 will be exploited to get families of
mixed multilateral generating relations involving the 2VLP Ln(x, y), ESP SNn,q(w)

and SP SNn (w) with the help of the method considered in [10,5,7].

3. MULTILATERAL GENERATING RELATIONS

First, we prove the following theorem by using Corollary 2.1:

Theorem 3.1. Corresponding to an identically non-vanishing function Ωµ(ξ1, . . . , ξl)
of complex variables ξ1, . . . , ξl (l ∈ N) and of complex order µ, let

Λµ,ψ(ξ1, . . . , ξl; η) :=

∞∑
k=0

ak Ωµ+ψk(ξ1, . . . , ξl)η
k, (ak 6= 0, ψ ∈ C). (3.1)

Then we have, for n, p ∈ N,

∞∑
q,n=0

[ qp ]∑
k=0

ak Lq+n−pk(x, y)SNn,q−pk(w) Ωµ+ψk(ξ1, . . . , ξl) η
k (−1)ntn+q−pk

(q − pk)!n!

= Λµ,ψ(ξ1, . . . , ξl; η)

∞∑
n=0

LNn(x, y) ANn,n

(
wtN

)n
n!

. (3.2)

provided that each member of assertion (3.2) exists.

Proof. Denoting the l.h.s. of Eq. (3.2) by ∆2 and using relation (2.3) , we find

∆2 =

∞∑
k=0

ak Ωµ+ψk(ξ1, . . . , ξl)η
k
∞∑

q,n=0

Lq+n(x, y) SNn,q(w)
tq

q!

(−t)n

n!
. (3.3)

Using Eqs. (3.1) and (2.8) in the r.h.s. of Eq. (3.3), we get the r.h.s. of Eq.
(3.2), then the proof of Theorem 3.1 is completed.

Next, proceeding on the same lines of proof of Theorem 3.1 and using Corollary
2.2, we get the following result:
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Theorem 3.2. Corresponding to an identically non-vanishing function Ωµ(ξ1, . . . , ξl)
of complex variables ξ1, . . . , ξl (l ∈ N) and of complex order µ, let

Λµ,ψ(ξ1, . . . , ξl; η) :=

∞∑
k=0

ak Ωµ+ψk(ξ1, . . . , ξl)η
k, (ak 6= 0, ψ ∈ C),

Θµ,ψ
n,p (x, y, z, w; ξ1, . . . , ξl; τ) =

[np ]∑
k=0

ak Ln−pk(x, y) SNn−pk(w) Ωµ+ψk(ξ1, . . . , ξl)
τk

(n− pk)!
,

(3.4)
where n, p ∈ N. Then, we have

∞∑
n=0

Θµ,ψ
n,p

(
x, y, z, w; ξ1, . . . , ξl;

η

tp

)
tn

= Λµ,ψ(ξ1, . . . , ξl; η)

∞∑
q,n=0

Lq+Nn(x, y) Aq+Nn,n
tq

q!

(
w(−t)N

)n
n!

. (3.5)

provided that each member of assertion (3.5) exists.

Notice that, for every suitable choice of the coefficients ak (k ∈ N0), if the
multivariable function Ωµ+ψk(ξ1, . . . , ξl), (l ∈ N), is expressed in terms of simpler
function of one and more variables, the assertions of Theorems 3.1 and 3.2 can
be applied in order to derive various families of multilateral generating relations
involving the 2VLP Ln(x, y) and the ESP SNn,q(w).

For example, if we set l = 1, ξ1 = v, ψ = 1, Ωµ+k(v) = yj(v, µ + k, β) and

ak =
(
µ+j+k−2

k

)
, (k, j ∈ N0, µ ∈ C) in assertion (3.2) of Theorem 3.1 and making

use of the following generating relation [4; p.270]:
∞∑
n=0

(
µ+ j + n− 2

k

)
yj(x, µ+ n, β) tn = (1− t)1−µ−j yj

(
x

1− t
, µ, β

)
, (3.6)

we readily obtain the following mixed trilateral generating function:

∞∑
q,n=0

[ qp ]∑
k=0

(
µ+ j + k − 2

k

)
Lq+n−pk(x, y)SNn,q−pk(w) yj(v, µ+k, β)

(−1)nηk

(q − pk)!

tn+q−pk

n!

= (1− η)1−µ−j yj

(
v

1− η
, µ, β

) ∞∑
n=0

LNn(x, y)ANn,n

(
wtN

)n
n!

. (3.7)

In the next section, we derive some bilateral and trilateral generating func-
tions for the 2VLP Ln(x, y) in terms of the confluent hypergeometric function as
applications of the results derived in Sections 2 and 3 with the help of generating
function (1.21) and the remarks introduced in Section 1.
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4. APPLICATIONS

First, the following bilateral generating functions are obtained as applications
of Corollary 2.1:

I. Taking N = 1 and {Aq,n}∞q,n=0 as in Remark 1.1 and using relation (1.4) in

Eq. (2.8), we get

∞∑
q,n=0

Lq+n(x, y) L(α+q)
n (w)

tq

q!

(
t

w

)n
=

∞∑
n=0

(α+ 1)n Ln(x, y)

(
t
w

)n
n!

, (4.1)

which on using relation (1.21) in the r.h.s. gives

∞∑
n,q=0

Lq+n(x, y) L(α+q)
n (w)

tq

q!

(
t

w

)n
=

(
w

w − yt

)α+1

1F1

(
α+ 1; 1;

−xt
w − yt

)
.

(4.2)

II. Taking N = 1 and {Aq,n}∞q,n=0 as in Remark 1.2 and using relation (1.7) in Eq.

(2.8), we get

∞∑
q,n=0

(α+ β + q + n+ 1)q Lq+n(x, y) P (α+q,β+q)
n (w)

tq

q!

(
−2t

1 + w

)n

=

∞∑
n=0

(β + 1)n Ln(x, y)

(
2t

1+w

)n
n!

, (4.3)

which on using relation (1.21) in the r.h.s. gives

∞∑
q,n=0

(α+β+q+n+1)q Lq+n(x, y) P (α+q,β+q)
n (w)

tq

q!

(
−2t

1 + w

)n

=

(
1 + w

1 + w − 2yt

)β+1

1F1

(
β + 1; 1;

−2xt

1 + w − 2yt

)
. (4.4)

III. Taking N = 1 and {Aq,n}∞q,n=0 as in Remark 1.3 and using relation (1.9) in

Eq. (2.8), we get

∞∑
q,n=0

Lq+n(x, y) yn(w, 1− α− q − 2n, β)
tq

q!

(−t)n

n!
=

∞∑
n=0

(α+ 1)n Ln(x, y)

(
wt
β

)n
n!

,

(4.5)
which on using relation (1.21) in the r.h.s. gives

∞∑
q,n=0

Lq+n(x, y) yn(w, 1−αq−2n, β)
tq

q!

(−t)n

n!
=

(
β

β − ywt

)α+1

1F1

(
α+1; 1;

−xwt
β − ywt

)
.

(4.6)

IV. Taking N = 1 and {Aq,n}∞q,n=0 as in Remark 1.4 and using relation (1.11) in
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Eq. (2.8), we get

∞∑
q,n=0

(ν)q Lq+n(x, y) Cν+qn (w)
2tq

q!

(
t

1− w

)n
=

∞∑
n=0

(2ν)n Ln(x, y)

(
t

1−w

)n
n!

, (4.7)

which on using relation (1.21) in the r.h.s. gives

∞∑
q,n=0

(ν)q Lq+n(x, y) Cν+qn (w)
2tq

q!

(
t

1− w

)n
=

(
1− w

1− w − yt

)2ν

1F1

(
2ν; 1;

−xt
1− w − yt

)
.

(4.8)

V. Taking N = 1 and {Aq,n}∞q,n=0 as in Remark 1.5 and using relation (1.13) in

Eq. (2.8), we get

∞∑
q,n=0

(p+ 1)q Lq+n(x, y) g(p+q)n (w)
tq

q!
(−t)n =

∞∑
n=0

Ln(x, y) (−wt)n, (4.9)

which on using relation (1.19) in the r.h.s. gives

∞∑
q,n=0

(p+ 1)q Lq+n(x, y) g(p+q)n (w)
tq

q!
(−t)n =

1

1 + ywt
exp

( xwt

1 + ywt

)
. (4.10)

VI. Taking N = 1 and {Aq,n}∞q,n=0 as in Remark 1.6 and using relation (1.15) in

Eq. (2.8), we get

∞∑
q,n=0

(a+ q + 2n)q Lq+n(x, y) Rn(a+ q, w)
tq

q!
(−t)n =

∞∑
n=0

Ln(x, y)
(wt)n

n!
, (4.11)

which on using relation (1.18) in the r.h.s. gives

∞∑
q,n=0

(a+ q + 2n)q Lq+n(x, y) Rn(a+ q, w)
tq

q!
(−t)n = exp(ywt) C0(xwt). (4.12)

Next, the following trilateral generating function is obtained as applications
of result (3.7):

VII. Taking N = 1 and {Aq,n}∞q,n=0 as in Remark 1.1 and using relation (1.4)

in Eq. (3.7), we get

∞∑
q,n=0

[ qp ]∑
k=0

(
µ+ j + k − 2

k

)
Lq+n−pk(x, y) L(α+q−pk)

n (w) yj(v, µ+k, β)
tq−pkηk

(q − pk)!

(
t

w

)n

= (1− η)1−µ−j yj

(
v

1− η
, µ, β

) ∞∑
n=0

(α+ 1)n Ln(x, y)

(
t
w

)n
n!

, (4.13)

which on using relation (1.21) in the r.h.s. gives

∞∑
q,n=0

[ qp ]∑
k=0

(
µ+ j + k − 2

k

)
Lq+n−pk(x, y) L(α+q−pk)

n (w) yj(v, µ+k, β)
tq−pkηk

(q − pk)!

(
t

w

)n
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= (1− η)1−µ−j
(

w

w − yt

)α+1

yj

(
v

1− η
, µ, β

)
1F1

(
α+ 1; 1;

−xt
w − yt

)
. (4.14)

Similarly other trilateral generating functions can be obtained as applications
of result (3.7) with the help of Remarks 1.2–1.6 and relation (1.21).

Finally, it is worthy to note that, by taking y = 1 and using relation (1.23) the
results obtained in this section give many bilateral and trilateral generating func-
tions for the classical Laguerre polynomials Ln(x) associated with other classical
polynomials.
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ON RIGHT INVERSE Γ-SEMIGROUP

SUMANTA CHATTOPADHYAY

Abstract. Let S = {a, b, c, . . . } and Γ = {α, β, γ, . . . } be two nonempty

sets. S is called a Γ-semigroup if aαb ∈ S, for all α ∈ Γ and a, b ∈ S and

(aαb)βc = aα(bβc), for all a, b, c ∈ S and for all α, β ∈ Γ. An element e ∈ S
is said to be α-idempotent for some α ∈ Γ if eαe = e. A Γ- semigroup S is

called regular Γ-semigroup if each element of S is regular i.e, for each a ∈ S

there exists an element x ∈ S and there exist α, β ∈ Γ such that a = aαxβa.
A regular Γ-semigroup S is called a right inverse Γ-semigroup if for any α-

idempotent e and β-idempotent f of S, eαfβe = fβe. In this paper we

introduce ip - congruence on regular Γ-semigroup and ip - congruence pair on
right inverse Γ-semigroup and investigate some results relating this pair.

1. Introduction

Let S = {a, b, c, . . . } and Γ = {α, β, γ, . . . } be two nonempty sets. S is called a
Γ-semigroup if
(i)aαb ∈ S, for all α ∈ Γ and a, b ∈ S and
(ii)(aαb)βc = aα(bβc), for all a, b, c ∈ S and for all α, β ∈ Γ.

A semigroup can be considered to be a Γ-semigroup in the following sense. Let
S be an arbitrary semigroup. Let 1 be a symbol not representing any element of S.
Let us extend the binary operation defined on S to S ∪ {1} by defining 11 = 1 and
1a = a1 for all a ∈ S. It can be shown that S ∪ {1} is a semigroup with identity
element 1. Let Γ = {1}. If we take ab = a1b, it can be shown that the semigroup
S is a Γ−semigroup where Γ = {1}.

In [8] we introduced right inverse Γ-semigroup. In [2] Gomes introduced the
notion of congruence pair on inverse semigroup and studied some of its properties.
In this paper we introduce the notion of ip - congruence on regular Γ-semigroup, ip
- congruence pair on right inverse Γ-semigroup and studied some of its properties.
We now recall some definition and results.

Date: July 25, 2014 and, in revised form, April 28, 2015.
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2 SUMANTA CHATTOPADHYAY

Definition 1.1. Let S be a Γ-semigroup. An element a ∈ S is said to be regular
if a ∈ aΓSΓa where aΓSΓa = {aαbβa : b ∈ S, α, β ∈ Γ}. S is said to be regular if
every element of S is regular.
Example 1.1. [8] Let M be the set of all 3×2 matrices and Γ be the set of all 2×3
matrices over a field. Then M is a regular Γ semigroup.

Example 1.2. Let S be a set of all negative rational numbers. Obviously S is not
a semigroup under usual product of rational numbers. Let Γ = {− 1

p : p is prime

}. Let a, b, c ∈ S and α ∈ Γ. Now if aαb is equal to the usual product of rational
numbers a, α, b, then aαb ∈ S and (aαb)βc = aα(bβc). Hence S is a Γ-semigroup.
Let a = m

n ∈ S where m > 0 and n < 0. Suppose m = p
1
p

2
..........p

k
where p

i
’s are

prime. Now
p
1
p
2
..........p

k

n (− 1
p
1

) n
p
2
..........p

k−1
(− 1

p
k

) mn =
p
1
p
2
..........p

k

n . Thus taking

b = n
p2 ..........pk−1

, α = (− 1
p1

) and β = (− 1
p
k

) we can say that a is regular. Hence S

is a regular Γ-semigroup.

Definition 1.2. Let S be a Γ-semigroup and α ∈ Γ. Then e ∈ S is said to be an
α-idempotent if eαe = e. The set of all α-idempotents is denoted by Eα and we

denote
⋃
α∈Γ

Eα by E(S). The elements of E(S) are called idempotent element of S.

Definition 1.3. Let S be a Γ-semigroup and a, b ∈ S, α, β ∈ Γ. b is said to be an
(α, β)-inverse of a if a = aαbβa and b = bβaαb. This is denoted by b ∈ V βα (a) .

Theorem 1.1. Let S be a regular Γ-semigroup and a ∈ S. Then V βα (a) is non-
empty for some α, β ∈ Γ.

Proof: Since S is regular there exist b ∈ S and α, β ∈ Γ such that a = aαbβa.
Now we consider the element bβaαb. aα(bβaαb)βa = (aαbβa)αbβa = aαbβa = a
and (bβaαb)βaα(bβaαb) = bβ(aαb)βa)αbβaαb = bβaαbβaαb = bβaαb. Hence
bβaαb ∈ V βα (a).

Definition 1.4. Let S be a Γ-semigroup. An equivalence relation ρ on S is said to
be a right (left) congruence on S if (a, b) ∈ ρ implies (aαc, bαc) ∈ ρ, ((cαa, cαb) ∈ ρ)
for all a, b, c ∈ S and for all α ∈ Γ. An equivalence relation which is both left and
right congruence on S is called congruence on S.

Definition 1.5. A regular Γ-semigroup S is called a right orthodox Γ-semigroup if
for any α-idempotent e and β-idempotent f of S, eαf is a β-idempotent.

Definition 1.6. A regular Γ-semigroup M is a right orthodox Γ-semigroup if and

only if for a, b ∈ S, α
1
, α

2
, β

1
, β

2
∈ Γ, a′ ∈ V

α2

α
1

(a) and b′ ∈ V
β2

β1
(b), we have

b′β
2
a′ ∈ V

α
2

β1
(aα

1
b).

Definition 1.7. A regular Γ-semigroup S is called a right inverse Γ-semigroup if
for any α-idempotent e and β-idempotent f of S, eαfβe = fβe.

Theorem 1.2. Every right inverse Γ-semigroup is a right orthodox Γ-semigroup.

Theorem 1.3. Let S be a regular Γ-semigroup and Eα be the set of all α-
idempotents in S. Let e ∈ Eα and f ∈ Eβ . Then

RS(e, f) =
{
g ∈ V αβ (eαf) ∩ Eα : gαe = fβg = g

}
is non-empty.
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Proof: Since S is regular, there exist b ∈ S and γ, δ ∈ Γ such that eαfγbδeαf =
eαf and bδeαfγb = b. Now (eαf)β(fγbδe)α(eαf) = eαfγbδeαf = eαf and
(fγbδe)α(eαf)β(fγbδe) = fγbδeαfγbδe = fγbδe. Hence fγbδe ∈ V αβ (eαf). Thus

V αβ (eαf) 6= φ. Now let x ∈ V αβ (eαf) and setting g = fβxαe we have gαg =

(fβxαe)α(fβxαe) = fβ(xαe)αfβx)αe = fβxαe = g. Thus g ∈ Eα.
Again gαeαfβg = fβxαeαeαfβfβxαe = fβxαeαfβxαe = fβxαe = g and

eαfβgαeαf = eαfβfβxαeαeαf = eαfβxαeαf = eαf implies that g ∈ V αβ (eαf)
. Hence gαe = fβxαeαe = fβxαe = g and fβg = fβfβxαe = fβxαe = g .
Therefore RS(e, f) 6= ∅ .

Definition 1.8. Let S be a regular Γ- semigroup and e and f be α and β- idempo-
tents respectively. Then the set RS(e, f) described in the above Theorem is called
the right sandwich set of e and f .

Theorem 1.4. Let S be a regular Γ-semigroup and e and f be α and β-idempotents
respectively. Then the set RS(e, f) = {g ∈ V αβ (eαf) : gαe = g = fβg and eαgαf

= eαf}.

Proof: Let P = {g ∈ V αβ (eαf) : gαe = g = fβg and eαgαf = eαf} and let

g ∈ RS(e, f). Then g ∈ Eα, gαe = g = fβg and g ∈ V αβ (eαf). Now eαgαf =

eαgαeαfβgαf = eαfβgαeαfβgαeαf = eαfβgαeαf = eαf . Hence RS(e, f) ⊆ P .
Next let g ∈ P . Now gαg = gαeαfβg = g. Hence g ∈ Eα, which shows that
P ⊆ RS(e, f) and hence the proof.

Theorem 1.5. Let S be a regular Γ- semigroup and a, b ∈ S.If a′ ∈ V βα (a), b′ ∈
V δγ (b) and g ∈ RS(a′βa, bγb′) then b′δgαa′ ∈ V βγ (aαb).

Proof: Let e = a′βa and f = bγb′. Then e is an α-idempotent and f is
a δ-idempotent and also g is an α-idempotent. Now (aαb)γ(b′δgαa′)β(aαb) =
aαfδgαeαb = aαgαb = aαa′βaαgαbγb′δb = aαeαgαeαb = aαeαfδb = aαa′βaαb
γb′δb = aαb. Again (b′δgαa′)β(aαb)γ(b′δgαa′) = b′δgαeαfδgαa′ = b′δgαgαa′ =
b′δgαa′. Hence b′δgαa′ ∈ V βγ (aαb).

Corollary 1.1. For a, b ∈ S, if V βα (a) and V δγ (b) are nonempty then V βγ (aαb) is
nonempty.

Proof: Let a′ ∈ V βα (a) and b′ ∈ V δγ (b) then we know that RS(a′βa, bγb′) 6= φ.

For g ∈ RS(a′βa, bγb′) and hence we get b′δgαa′ ∈ V βγ (aαb). Hence the proof.

2. ip- congruence pair on right inverse Γ-semigroup

In this section we characterize some congruences on a right inverse Γ - semigroup
S.

Definition 2.1. Let S be a Γ-semigroup. A nonempty subset K of S is said to be
partial Γ-subsemigroup if for a, b ∈ K, aαb ∈ K, whenever V βα (a) 6= φ. for α, β ∈ Γ.

Definition 2.2. A partial Γ-subsemigroup K of S is said to be regular if V βα (k) ⊆ K
for all k ∈ K and α, β ∈ Γ.

Definition 2.3. A partial Γ-subsemigroup K is said to be full if E(S) ⊆ K where
E(S) is the set of all idempotent elements of S.

Definition 2.4. A partial Γ-subsemigroup K of S is said to be self conjugate if for
all a ∈ S, k ∈ K and a′ ∈ V βα (a), a′βkγa ∈ K whenever V δγ (k) 6= φ for some δ ∈ Γ.
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Definition 2.5. A partial Γ-subsemigroup K of S is said to be normal if it is
regular, full and self conjugate.

Definition 2.6. An equivalence relation ρ on S is said to be left partial congruence

if (a, b) ∈ ρ implies (cα
3
a, cα

3
b) ∈ ρ whenever V

β
3

α
3

(c) is nonempty. Note that every
left congruence is a left partial congruence.

Here we consider these left partial congruence which satisfy the following condi-
tion:
(a, b) ∈ ρ implies (aα1c, bα2c) ∈ ρ whenever each of the sets V

β1
α1

(a), V
β2
α2

(b) is
nonempty for αi, βi ∈ Γ, i = 1, 2. We call this left partial congruence as inverse
related partial congruence (ip - congruence).

Example 2.1. Let A = {1, 2, 3} and B = {4, 5}. S denotes the set of all mappings
from A to B. Here members of S will be described by the images of the elements
1, 2, 3. For example the map 1 → 4, 2 → 5, 3 → 4 will be written as (4, 5, 4)
and (5, 5, 4) denotes the map 1 → 5, 2 → 5, 3 → 4. A map from B to A will be
described in the same fashion. For example (1, 2) denotes 4 → 1, 5 → 2. Now

S =
{

(4, 4, 4), (4, 4, 5), (4, 5, 4), (4, 5, 5), (5, 5, 5), (5, 4, 5), (5, 4, 4), (5, 5, 4)
}

and let

Γ = {(1, 1), (1, 2), (2, 3), (3, 1)}. Let f, g ∈ S and α ∈ Γ. We define fαg by

(fαg)(a) = fα
(
g(a)

)
for all a ∈ A. So fαg is a mapping from A to B and hence

fαg ∈ S and we can show that (fαg)βh = fα(gβh) for all f, g, h ∈ S and α, β ∈ Γ.
Hence S is a Γ - semigroup.

We can also show that it is right inverse. We now give a partition S =
⋃

1≤i≤5

Si

and let ρ be the equivalence relation yielded by the partition where each Si is given
by:
S1 = {(4, 4, 4)},
S2 = {(5, 5, 5)},
S3 = {(4, 5, 4), (5, 4, 5)},
S4 = {(4, 5, 5), (5, 4, 4)},
S5 = {(4, 4, 5), (5, 5, 4)}.
Here we see that (4, 5, 4)ρ(5, 4, 5) but (4, 5, 4)(3, 1)(4, 4, 4) = (4, 4, 4) and (5, 4, 5)
(3, 1)(4, 4, 4) = (5, 5, 5) i.e ρ is not a congruence.

Now for f ∈ S we observe the following cases:
(a) (4, 4, 4)αf = (4, 4, 4) for all α ∈ Γ,
(b) (5, 5, 5)αf = (5, 5, 5) for all α ∈ Γ,
(c) (4, 5, 4)(1, 2)f = f and (4, 5, 4)(2, 3)f = f ′,

(5, 4, 5)(2, 3)f = f and (5, 4, 5)(1, 2)f = f ′,
(d) (4, 4, 5)(2, 3)f = f and (4, 4, 5)(3, 1)f = f ′,

(5, 5, 4)(3, 1)f = f and (5, 5, 4)(2, 3)f = f ′,
(e) (4, 5, 5)(1, 2)f = f and (4, 5, 5)(3, 1)f = f ′,

(5, 4, 4)(3, 1)f = f and (5, 4, 4)(1, 2)f = f ′,
From the above cases we can easily verify that ρ is a ip - congruence on S.

Definition 2.7. An ip - congruence ξ on E(S) of S is said to be normal if for
any α-idempotent e and β-idempotent f, a ∈ S and a′ ∈ V δγ (a), (e, f) ∈ ξ implies
(a′δeαa, a′δfβa) ∈ ξ whenever a′δeαa, a′δfβa ∈ E(S).
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Let ρ be an ip - congruence on a regular Γ - semigroup S then we can define
a binary operation on S/ρ as (aρ)(bρ) = (aαb)ρ whenever V βα (a) exists for some
β ∈ Γ. This is well defined because if aρ = a′ρ and bρ = b′ρ then

(aρ)(bρ) = (aαb)ρ (Since V βα (a) 6= φ for some α, β ∈ Γ)
= (aαb′)ρ

= (a′α
1
b′)ρ(Since V

β
1

α
1

(a′) 6= φ for some α
1
, β

1
∈ Γ)

= (a′ρ)(b′ρ).

The operation is easily seen to be associative, and so S/ρ is a semigroup.

Definition 2.8. Let ρ be an ip - congruence on a regular Γ-semigroup S. Let
α ∈ Γ, then the subset {a ∈ S : aρ ∈ E(S/ρ)} of S is called kernel of ρ and it is
denoted by K.

Definition 2.9. Let ρ be an ip - congruence on a regular Γ-semigroup S. Then the
restriction of ρ to the subset E(S) is called the trace of ρ and it is denoted by trρ.

We now treat S as a right inverse Γ-semigroup throughout the paper.

Definition 2.10. A pair (ξ,K) consisting of a normal ip - congruence ξ on E(S)
and a normal partial Γ- subsemigroup K of S is said to be ip - congruence pair for
S if for all a, b ∈ S, a′ ∈ V βα (a) and e ∈ Eγ
(i) eγa ∈ K, (e, aαa′) ∈ ξ ⇒ a ∈ K
(ii) a ∈ K ⇒ (aαeγa′, eγaαa′) ∈ ξ

Given a pair (ξ,K) we define a relation ρ
(ξ,K)

on S by (a, b) ∈ ρ
(ξ,K)

if and only

if there exist a′ ∈ V βα (a) and b′ ∈ V δγ (b) such that aαb′ ∈ K, (a′βa, b′δb) ∈ ξ.

Theorem 2.1. Let S be a right inverse Γ-semigroup. Then for an ip - congruence
pair (ξ,K) and a µ-idempotent e, aαb ∈ K implies aαeµb ∈ K for all a, b ∈ S and
V βα (a) 6= φ for some β ∈ Γ.

Proof: Let aαb ∈ K. Since S is regular there exist γ, δ ∈ Γ such that V δγ (b) 6=
φ. Then by Corollary 1.1 , V βγ (aαb) 6= φ. Let b′ ∈ V δγ (b). Then bγb′ is a δ-
idempotent and since S is a right inverse Γ-semigroup (bγb′)δeµ(bγb′) = eµ(bγb′).
Now aαeµb = aαeµbγb′δb = aα(bγb′)δeµ(bγb′)δb = (aαb)γ(b′δeµb). Since S is right
inverse Γ-semigroup b′δeµb ∈ Eγ ⊆ K . Since K is a partial Γ-subsemigroup and
aαb ∈ K, (aαb)γ(b′δeµb) ∈ K. So aαeµb ∈ K.

Theorem 2.2. Let (ξ,K) be an ip - congruence pair for S and a, b ∈ S are such
that (a, b) ∈ ρ

(ξ,K)
, then there exist a′ ∈ V βα (a) and b′ ∈ V δγ (b) such that

(i) aαb′ ∈ K and (a′βa, b′δb) ∈ ξ
(ii) bγa′ ∈ K and so (b, a) ∈ ρ

(ξ,K)

(iii) (bγb′, aαa′βbγb′) ∈ ξ and (aαa′, bγb′δaαa′) ∈ ξ

Proof: (i) Let a, b ∈ S and (a, b) ∈ ρ
(ξ,K)

. Then (i) follows from definition of

ρ
(ξ,K)

. Now from (i) we have aαb′ ∈ K and (a′βa, b′δb) ∈ ξ. Let g ∈ RS(b′δb, a′βa),

then g is a γ-idempotent. So by Theorem 1.5 we have aαgγb′ ∈ V δβ (bγa′). Also

by Theorem 2.1 aαgγb′ ∈ K since aαb′ ∈ K and g ∈ Eγ . On the other hand

bγa′ ∈ V βδ (aαgγb′) and so bγa′ ∈ K, since K is a normal subsemigroup of S.
Therefore (b, a) ∈ ρ

(ξ,K)
since ξ is symmetric. Hence (ii) follows.

Again for g ∈ RS(b′δb, a′βa), g = gγb′δb = a′βaαg and (b′δb)γgγ(a′βa) = (b′δb)γ
(a′βa) by Theorem 1.4. Hence bγgγb′ ∈ Eδ. Now b′δb = (b′δb)γ(b′δb) ξ (b′δb)γ
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(a′βa) = (b′δb)γgγ(a′βa) ξ (b′δb)γgγ(b′δb) and so by normality of ξ we have
bγ(b′δb)γb′ ξ bγ(b′δbγgγb′δb)γb′ i.e bγb′ ξ bγgγb′. Now aαgγb′ ∈ V δβ (bγa′) and
so we have
bγb′ ξ bγgγb′

= bγ(a′βaαg)γb′ (Since g ∈ RS(b′δb, a′βa))
= (bγa′)β(aαa′βa)αgγb′

= (bγa′)β(aαa′)β(aαgγb′) (Since aαa′ ∈ Eβ and bγa′ ∈ K)
ξ (aαa′)β(bγa′)β(aαgγb′) (by Definition 2.6 and aαgγb′ ∈ V δβ (bγa′))

= aαa′βbγgγb′

ξ (aαa′)β(bγb′).

Similarly interchanging the role of a and b we can get the second relation.

Theorem 2.3. Let (ξ,K) be an ip - congruence pair for S and a, b ∈ S are such that
a, b ∈ ρ

(ξ,K)
, then for all a∗ ∈ V βα (a) and b∗ ∈ V δγ (b), aαb∗ ∈ K and (a∗βa, b∗δb) ∈ ξ

Proof: Since (a, b) ∈ ρ
(ξ,K), there exist a′ ∈ V β1

α
1

(a) and b′ ∈ V δ1γ
1

(b) such that
all the three conditions of Theorem 2.2 are satisfied. Now
a′β1a = a′β1aαa

∗βa
= a′β

1
aαa∗βaα

1
a′β

1
a

ξ a′β
1
aα

1
a∗βaαa′β

1
a (Since ξ is an ip - congruence and V βα (a) and

V
β1
α1

(a) are nonempty.)
= (a′β

1
a)α

1
(a∗βa)α(a′β

1
a)

= (a∗βa)α(a′βa)

ξ a∗βaα
1
a′βa (Since ξ is an ip - congruence and V βα (a) and V

β1
α

1
(a)

are nonempty.)
= a∗βa.

Similarly we can show that (b′δ
1
b, b∗δb) ∈ ξ. Hence we have a∗βa ξ a′β

1
a ξ b′δ

1
b

ξ b∗δb. Hence (a∗βa, b∗δb) ∈ ξ. We now prove that aαb∗ ∈ K. To prove this we
proceed by five steps.
Step1: bγ1a

′ ∈ K.
Step2: b′δ1a ∈ K.
Step3: b∗δa ∈ K.
Step4: (bγb∗, aαa∗βbγb∗) ∈ ξ.
Step5: aαb∗ ∈ K.

Let g ∈ RS(b′δ1b, a
′β1a), then g is a γ1-idempotent and we have aα1gγ1b

′ ∈
V
δ
1

β
1

(bγ1a
′). Also since aα1b

′ ∈ K and g ∈ Eγ
1
, by Theorem 2.1 aα1gγ1b

′ ∈ K. On

the other hand bγ
1
a′ ∈ V β1

δ
1

(aα
1
gγ

1
b′). Since K is regular we have bγ

1
a′ ∈ K.

Let h ∈ RS(bγ1b
′, aα1a

′). Then a′β1hδ1b ∈ V
γ
1

α1
(b′δ1a) i.e, b′δ1a ∈ V

α
1

γ1
(a′β1h

δ
1
b). Now since bγ

1
a′ ∈ K and K is full self conjugate partial Γ-subsemigroup of

S, we have
(b′δ1b)γ1(a′β1a)α1(a′β1hδ1b) = b′δ1((bγ1a

′)β1h)δ1b ∈ K.
Now

hδ
1
(aα

1
a′) = (aα

1
a′)β

1
hδ

1
(aα

1
a′)

ξ (bγ
1
b′)δ

1
(aα

1
a′)β

1
hδ

1
(aα

1
a′)(By Theorem 2.2)

= (bγb′)δ
1
hδ

1
(aαa′) (Since S is right inverse)

= (bγb′)δ1(aαa′) (Since h ∈ RS(bγ1b
′, aα1a

′).
ξ aα1a

′ (By Theorem 2.2).

Again
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(a′β
1
hδ

1
b)γ

1
(b′δ

1
a) = a′β

1
hδ

1
a

ξ aα1a
′

ξ (b′δ1b)γ1(a′β1a) (By Theorem 2.2).

Now since S is a right inverse Γ-semigroup, it is right orthodox and hence (b′δ
1
b)γ

1

(a′β
1
a) is an α

1
-idempotent. Thus by Definition 2.10 a′β

1
hδ

1
b ∈ K and since K is

regular, b′δ
1
a ∈ K.

Now we have b′δ
1
a ∈ K. Hence we get b′δ

1
(bγb∗)δa ∈ K by Theorem 2.1.

Again b∗δa = b∗δbγb∗δa = b∗δ(bγ1b
′δ1b)γb

∗δa = (b∗δb)γ1(b′δbγb∗δa) ∈ K since

b∗δb ∈ Eγ ⊆ K, V
δ
1

γ1
(b) is nonempty and K is a partial Γ-subsemigroup.

We now prove step 4.

bγb∗ = (bγ
1
b′)δ

1
(bγb∗)

ξ (aα1a
′)β1(bγ1b

′)δ1(bγb∗)
= (aαa∗)β(aα1a

′)β1(bγ1b
′)δ1(bγb∗)

ξ (aαa∗)β(bγ
1
b′)δ

1
(bγb∗)

= (aαa∗)β(bγb∗).

Finally we show the last step. Now we have b∗δa ∈ K. Since a∗ ∈ V βα (a) and
b∗ ∈ V δγ (b), we have (a∗βb) ∈ V γα (b∗δa) and hence a∗βb ∈ K, since K is regular. Let

x ∈ RS(a∗βa, b∗δb). Then bγxαa∗ ∈ V βδ (aαb∗). Now ((aαa∗)β(bγb∗))δ(bγxαa∗) =
aαa∗βbγxαa∗ = aα((a∗βb)γx)αa∗ ∈ K, since a∗βb ∈ K,x ∈ E

α
⊆ K and hence

(a∗βb)γx ∈ K and also K is self conjugate. Again

xα(b∗δb) = (b∗δb)γxα(b∗δb) (Since S is right inverse)
ξ ((b∗δbγ(a∗βa))αxα(b∗δb) (Since (a∗βa, b∗δb) ∈ ξ
= (b∗δb)γ(a∗βa)α(b∗δb) (Since x ∈ RS(a∗βa, b∗δb).)
ξ ((b∗δb)γ(b∗δb)γ(b∗δb)(Since ξ is an ip - congruence and

(a∗βa, b∗δb) ∈ ξ)
= b∗δb.

Thus
bγxαb∗ = bγ(xα(b∗δb))γb∗

ξ bγ(b∗b)γb∗

= bγb∗.

Now
(bγxαa∗)β(aαb∗) = bγ(xα(a∗βa))αb∗

= bγxαb∗

ξ bγb∗

ξ (aαa∗)β(bγb∗).

Again since S is a right inverse Γ-semigroup, (aαa∗)β(bγb∗) is a δ-idempotent and
by Definition 2.10(i) bγxαa∗ ∈ K and hence aαb∗ ∈ K since K is regular. Hence
the Theorem.

Remark 2.1. From the previous Theorem, we can say that in the definition 3.11 of
ρ

(ξ,K)
and in the Theorem 2.2 ”there exist” can be substituted by ”for all”.

Theorem 2.4. Let (ξ,K) be an ip - congruence pair for S and a, b, c ∈ S and let
a′ ∈ V β1

α
1

(a), b′ ∈ V β2
α

2
(b), c′ ∈ V β3

α
3

(c), g ∈ RS(c′β
3
c, aα

1
a′), h ∈ RS(c′β

3
c, bα

2
b′).

Then (a′β1a, b
′β2b) ∈ ξ, aα1b

′ ∈ K implies (a′β1gα3a, b
′β2hα3b) ∈ ξ.

Proof: Let (ξ,K) be an ip - congruence pair for S and a, b ∈ S are such that
for some a′ ∈ V β1

α
1

(a), b′ ∈ V β2
α

2
(b), (a′β1a, b

′β2b) ∈ ξ and aα1b
′ ∈ K. Given c ∈ S
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and c′ ∈ V β3
α

3
(c), let g ∈ RS(c′β

3
c, aα

1
a′) and h ∈ RS(c′β

3
c, bα

2
b′). Then g and

h are α3 -idempotents. Choose an arbitrary element x ∈ RS(a′β1a, b
′β2b). Then

bα
2
xα

1
a′ ∈ V β1

β2
(aα

1
b′). So aα

1
b′β

2
bα

2
xα

1
a′ ∈ Eβ1

. Also let t ∈ RS(g, aα
1
b′β

2
bα

2

xα1a
′) then t ∈ Eα

3
and t = tα3g and hence bα2xα1a

′β1tα3g ∈ V
α

3

β
2

(gα3aα1b
′) and

bα2xα1a
′β1tα3aα1b

′ = (bα2xα1a
′)β1(tα3g)α3aα1b

′ = (bα2xα1a
′β1tα3g)α3(gα3aα1

b′) ∈ Eβ
2
. On the other hand bα2xα1a

′ ∈ K, since it is an (β2 , β1)-inverse of

aα1b
′ which belongs to K. Now since (ξ,K) is an ip - congruence pair for S, by

definition we have ((bα
2
xα

1
a′)β

1
tα

3
(aα

1
b′) , tα

3
bα

2
xα

1
a′β

1
aα

1
b′) ∈ ξ. Again since

xα
1
(a′β

1
a) = x we get

(2.1) (bα
2
xα

1
a′β

1
tα

3
aα

1
b′, tα

3
bα

2
xα

1
b′) ∈ ξ

for all x ∈ RS(a′β1a, b
′β2b)

Now since ξ is an ip - congruence and (a′β
1
a, b′β

2
b) ∈ ξ, we have b′β

2
bα

2
xα

1
b′β

2
b

ξ a′β
1
aα

1
xα

1
b′β

2
b = a′β

1
aα

1
b′β

2
b ξ b′β

2
bα

2
b′β

2
b = b′β

2
b. Again and hence

(bα
2
xα

1
b′)β

2
(bα

2
xα

1
b′) = bα

2
xα

1
(b′β

2
bα

2
x)α

1
b′ = bα

2
xα

1
b′ and hence bα

2
xα

1
b′ ∈

Eβ
2
. Hence ξ is normal, we have (bα2(b′β2bα2xα1b

′β2b)α2b
′, bα2(b′β2b)α2b

′) ∈ ξ
which implies
(2.2) (bα

2
xα

1
b′, bα

2
b′) ∈ ξ

Similarly we can show that
(2.3) (aα1xα1a

′, aα1a
′) ∈ ξ

Using (2.1)and(2.2) we get
(2.4) (bα2xα1a

′β1tα3aα1b
′, tα3bα1b

′) ∈ ξ

Since aα
1
a′β

1
t = aα

1
a′β

1
((aα

1
b′β

2
bα

2
xα

1
a′)β

1
t) = aα

1
b′β

2
bα

2
xα

1
a′β

1
t = t, we

have a′β
1
tα

3
a ∈ Eα1

. Since (b′β
2
b, a′β

1
a) ∈ ξ, we have

b′β2bα2xα1a
′β1tα3aα1b

′β2b ξ a′β1aα1xα1a
′β1tα3aα1a

′β1a
= a′β1aα1xα1a

′β1tα3a
= a′β

1
aα

1
(xα

1
a′β

1
a)α

1
a′β

1
tα

3
a

ξ a′β
1
aα

1
xα

1
(b′β

2
b)α

2
a′β

1
tα

3
a (Since ξ is an

= ip - congruence)
= a′β1aα1b

′β2bα2a
′β1tα3a (Since x ∈

RS(a′β
!
a, b′β2b))

ξ a′β
1
aα

1
a′β

1
aα

1
a′β

1
tα

3
a

= a′β
1
tα

3
a.

Hence

(2.5) (b′β
2
bα

2
xα

1
a′β

1
tα

3
aα

1
b′β

2
b, a′β

1
tα

3
a) ∈ ξ

Next since g ∈ RS(c′β
3
c, aα

1
a′), aα

1
a′β

1
g = g and hence we have a′β

1
gα

3
a ∈ Eα

1
.

Now since x ∈ RS(a′β
1
a, b′β

2
b), aα

1
b′β

2
bα

2
xα

1
a′ = aα

1
xα

1
a′ ∈ Eβ

1
and hence t ∈

RS(g, aα
1
xα

1
a′). Thus we have gα

3
tα

3
aα

1
xα

1
a′ = gα

3
aα

1
xα

1
a′. Now by (2.3) we

have ((gα
3
t)α

3
aα

1
xα

1
a′, (gα

3
t)α

3
aα

1
a′) ∈ ξ i.e, (gα

3
aα

1
xα

1
a′, gα

3
tα

3
aα

1
a′) ∈ ξ

since t ∈ RS(gaα
1
xα

1
a′) and again using (2.3)we have gα

3
aα

1
a′ ξ gα

3
aα

1
xα

1
a′ ξ
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gα
3
tα

3
aα

1
a′ i.e, we get (gα

3
aα

1
a′, gα

3
tα

3
aα

1
a′) ∈ ξ. Now since S is a right inverse

Γ-semigroup tα3gα3t = gα3t and hence we have gα3tα3aα1a
′ = tα3gα3tα3aα1a

′ =
tα3aα1a

′ since tα3g = t. Thus (gα3aα1a
′, tα3aα1a

′) ∈ ξ by transitivity of ξ. Now
since ξ is normal, we have (a′β

1
(gα

3
aα

1
a′)β

1
a , a′β

1
(tα

3
aα

1
a′)β

1
a) ∈ ξ. i.e,

(2.6) (a′β1gα3a, a
′β1tα3a) ∈ ξ

Again since S is a right inverse Γ-semigroup and the fact that t ∈ RS(g, aα1xα1a
′)

and g ∈ RS(c′β
3
c, aα

1
a′) we see that

tα3bα2b
′ = bα2b

′β2tα3bα2b
′ (Since S is right inverse Γ-semigroup)

= bα
2
b′β

2
(tα

3
g)α

3
(bα

2
b′)

= bα
2
b′β

2
(tα

3
gα

3
c′β

3
c)α

3
bα

2
b′.

Now since (a′β
1
a, b′β

2
b) ∈ ξ and aα

1
b′ ∈ K, proceeding the same way of Theorem

2.2 we have (bα
2
b′, aα

1
a′β

1
bα

2
b′) ∈ ξ. Now

tα
3
bα

2
b′ = bα

2
b′β

2
tα

3
gα

3
c′β

3
cα

3
bα

2
b′

ξ bα
2
b′β

2
tα

3
gα

3
c′β

3
cα

3
(aα

1
a′β

1
bα

2
b′) (Since

(bα
2
b′, aα

1
a′β

1
bα

2
b′) ∈ ξ)

= bα2b
′β2(gα3tα3g)α3c

′β3cα3aα1a
′β1bα2b

′ (since S is right inverse)
= bα2b

′β2gα3tα3(aα1a
′β1g)α3c

′β3cα3aα1a
′β1bα2b

′ (Since g ∈
RS(c′β

3
c, aα

1
a′))

ξ bα
2
b′β

2
gα

3
tα

3
(aα

1
xα

1
a′)β

1
gα

3
c′β

3
cα

3
aα

1
a′β

1
bα

2
b′ (by (2.3))

= bα
2
b′β

2
(gα

3
(aα

1
xα

1
a′)β

1
g)α

3
c′β

3
cα

3
aα

1
a′β

1
bα

2
b′ (since t ∈

RS(g, aα
1
xα

1
a′))

ξ bα2b
′β2(gα3(aα1a

′)β1g)α3c
′β3cα3aα1a

′β1bα2b
′ ( By (2.3) )

= bα2b
′β2gα3c

′β3cα3aα1a
′β1bα2b

′ (Since (aα1a
′)β1g = g)

= bα
2
b′β

2
(c′β

3
cα

3
gα

3
c′β

3
c)α

3
aα

1
a′β

1
bα

2
b′ (since S is right

inverse)
= bα

2
b′β

2
c′β

3
cα

3
gα

3
(aα

1
a′β

1
c′β

3
cα

3
aα

1
a′)β

1
bα

2
b′ (Since S is right

inverse)
= bα2b

′β2(c′β3cα3aα1a
′)β1c

′β3cα3aα1a
′β1bα2b

′(since g ∈
RS(c′β

3
c, aα

1
a′))

= bα2b
′β2aα1a

′β1c
′β3cα3aα1a

′β1bα2b
′(since S is right inverse)

= bα
2
b′β

2
c′β

3
cα

3
aα

1
a′β

1
bα

2
b

= bα
2
b′β

2
(c′β

3
cα

3
aα

1
a′)β

1
bα

2
b′

= c′β
3
cα

3
aα

1
a′β

1
bα

2
b′ (Since S is right inverse and hence right orthodox)

ξ c′β3cα3bα2b
′

= c′β3α3hα3bα2b
′(since h ∈ RS(c′β3c, bα2b

′)
= hα

3
c′β

3
cα

3
hα

3
bα

2
b′ (since S is right inverse)

= hα
3
bα

2
b′ (Since h ∈ RS(c′β

3
c, bα

2
b′))

Hence we have

(2.7) (tα
3
bα

2
b′, hα

3
bα

2
b′) ∈ ξ

Finally from (2.4) and (2.7) we have (bα
2
xα

1
a′β

1
tα

3
aα

1
b′, hα

3
bα

2
b′) ∈ ξ and by

normality of ξ we have (b′β
2
bα

2
xα

1
a′β

1
tα

3
aα

1
b′β

2
b, b′β

2
hα

3
bα

2
b′β

2
b) ∈ ξ i.e,

(b′β
2
bα

2
xα

1
a′β

1
tα

3
aα

1
b′β

2
b, b′β

2
hα

3
b) ∈ ξ. It is to be noted that both the elements

belong to Eα
2
. Also by normality of ξ together with (2.5) and (2.6) we have

(a′β1gα3a, b
′β2hα3b) ∈ ξ. Hence the proof.
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Theorem 2.5. If (ξ,K) is an ip - congruence pair for S,then ρ
(ξ,K)

is an ip -
congruence with trace ξ and kernel K. Conversely if ρ is an ip - congruence on S
then (trρ,Kerρ)is an ip - congruence pair and ρ = ρ

(trρ,Kerρ)
.

Proof. Let (ξ,K) be an ip - congruence pair for S and ρ
(ξ,K)

and let ρ = ρ
(ξ,K)

.

Since E(S) ⊆ K and ξ is reflexive, ρ is also reflexive. Again from Theorem 2.2 and
Remark 2.1, we see that ρ is symmetric. We now show that ρ is transitive. For this
let us suppose that (a, b) ∈ ρ and (b, c) ∈ ρ and let a′ ∈ V β1

α1
(a), b′ ∈ V β2

α2
(b), c′ ∈

V β3
α3

(c). Then we have (a′β1a, b
′β2b) ∈ ξ, (b′β2b, c

′β3c) ∈ ξ, aα1b
′ ∈ K, bα2c

′ ∈ K.

Since ξ is transitive we have (a′β
1
a, c′β

3
c) ∈ ξ. We now show that aα

1
c′ ∈ K. Now

by Theorem 2.2, bα2a
′ ∈ K and cα3b

′ ∈ K. Hence cα3b
′β2bα2a

′ ∈ K, Since K is a
Γ-subsemigroup. Let g ∈ RS(c′β3c, b

′β2b) and h ∈ RS(c′β3c, a
′β1a). By Theorem

2.1 and since g = gα
3
c′β

3
c ∈ Eα

3
, we have,

(2.8) (cα
3
b′β

2
b)α

2
(gα

3
c′β

3
c)α

3
a′ ∈ K

Again since bα
2
gα

3
c′ ∈ V β3

β
2

(cα
3
b′), cα

3
b′β

2
bα

2
gα

3
c′ ∈ Eβ

3
. Now c′β

3
c = c′β

3
cα

3

c′β
3
c ξ c′β

3
cα

3
b′β

2
b = c′β

3
cα

3
gα

3
b′β

2
b ξ c′β

3
cα

3
gα

3
c′β

3
c = c′β

3
cα

3
g, since (b′β

2
b,

c′β
3
c) ∈ ξ and g ∈ RS(c′β

3
c, b′β

2
b). Also since cα

3
gα

3
c′ ∈ Eβ3

and ξ is normal, it

follows that (cα
3
(c′β

3
c)α

3
c, cα

3
(c′β

3
cα

3
g)α

3
c′) ∈ ξ i.e,(cα

3
c′, cα

3
gα

3
c′) ∈ ξ. Simi-

larly since (c′β
3
c, a′β

1
a) ∈ ξ and cα

3
hα

3
c′ ∈ Eβ3

we have (cα
3
c, cα

3
hα

3
c′) ∈ ξ. By

transitivity of ξ , (cα
3
gα

3
c′, cα

3
hα

3
c′) ∈ ξ. Again cα

3
(b′β

2
bα

2
g)α

3
c′ = cα

3
gα

3
c′ ξ

cα3hα3c
′ = cα3(a′β1aα1h)α3c

′. i.e,

(cα3b
′β2bα2gα3c

′, cα3a
′β1aα1hα3c

′) ∈ ξ. Again since bα2gα3c
′ ∈ V β3

β
2

(cα3b
′), cα3b

′

β
2
bα

2
gα

3
c′ ∈ Eβ

3
and since aα

1
hα

3
c′ ∈ V β3

β
1

(cα
3
a′), from (2.8) and Definition 2.10

we can say that cα
3
a′ ∈ K and by Theorem 2.2 we have aα

1
c′ ∈ K. Hence ρ is

transitive. Hence ρ is an equivalence relation.
We now prove that ρ is an ip - congruence. Let us suppose that (a, b) ∈ ρ. Then

for all a′ ∈ V β1
α

1
(a), b′ ∈ V β2

α
2

(b), (a′β
1
a, b′β

2
b) ∈ ξ and aα

1
b′ ∈ K. Let c ∈ S and

c′ ∈ V β3
α

3
(c). We now prove that (cα

3
a, cα

3
b) ∈ ρ. Let g ∈ RS(c′β

3
c, aα

1
a′) and h ∈

RS(c′β
3
c, bα

2
b′). Then a′β

1
gα

3
c′ ∈ V β3

α
1

(cα
3
a) and b′β

2
hα

3
c′ ∈ V β3

α
2

(cα
3
b) and by

Theorem 2.4 we have a′β
1
gα

3
c′β

3
cα

3
a = a′β

1
gα

3
a ξ b′β

2
hα

3
b = b′β

2
hα

3
c′β

3
cα

3
b.

Also (cα
3
a)α

1
(b′β

2
hα

3
c′) = cα

3
(aα

1
b′)β

2
hα

3
c′ ∈ K since aα

1
b′ ∈ K and h ∈ Eα3

and K is self conjugate. Hence by definition of ρ we have (cα
3
a, cα

3
b) ∈ ρ.

Next we prove that (aα1c, bβ1c) ∈ ρ. For this let g ∈ RS(a′β1a, cα3c
′) and

h ∈ RS(b′β2b, cα3c
′). Then c′β3gα1a

′ ∈ V
β
1

α3
(aα1c) and c′β3hα2b

′ ∈ V
β
2

α3
(bα2c).

Now
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gα
1
cα

3
c′ = gα

1
a′β

1
aα

1
cα

3
c′ (Since g ∈ RS(a′β

1
a, cα

3
c′))

ξ gα1b
′β2bα2cα3c

′

= gα1b
′β2bα2hα2cα3c

′ (Since h ∈ RS(b′β2b, cα3c
′))

ξ gα
1
(a′β

1
a)α

1
hα

2
cα

3
c′ (Since ξ is an ip - congruence and

(a′β
1
a, b′β

2
b) ∈ ξ)

= (a′β
1
aα

1
gα

1
a′β

1
a)α

1
hα

2
cα

3
c′ (Since S is right inverse)

= a′β
1
aα

1
gα

1
a′β

1
aα

1
(cα

3
c′β

3
h)α

2
cα

3
c′(Since h ∈
RS(b′β2b, cα3c

′))
= a′β1aα1gα1(a′β1aα1cα3c

′)β3hα2cα3c
′

= a′β
1
aα

1
gα

1
(cα

3
c′β

3
a′β

1
aα

1
cα

3
c′)β

3
hα

2
cα

3
c′(Since S is

right inverse)
= a′β

1
aα

1
gα

1
cα

3
c′β

3
a′β

1
aα

1
hα

2
cα

3
c′(Since h ∈ RS(b′β

2
b, cα

3
c′))

= (a′β1aα1cα3c
′β3a

′β1a)α1hα2cα3c
′(Since g ∈ RS(a′β1a, cα3c

′))
= cα

3
c′β

3
(a′β

1
aα

1
h)α

2
cα

3
c′(Since S is right inverse)

= a′β
1
aα

1
hα

2
cα

3
c′(Since S is right inverse and

hence right orthodox)
ξ b′β2bα2hα2cα3c

′

= b′β2bα2hα2b
′β2bα2cα3c

′(Since h ∈ RS(b′β2b, cα3c
′))

ξ hα
2
b′β

2
bα

2
cα

3
c′(Since S is right inverse)

= hα
2
cα

3
c′.

Hence

(2.9) (gα
1
cα

3
c′, hα

2
cα

3
c′) ∈ ξ

Now since g ∈ RS(a′β
1
a, cα

3
c′) and h ∈ RS(b′β

2
b, cα

3
c′), c′β

3
hα

2
c ∈ Eα3

and

c′β
3
gα

1
c ∈ Eα3

. Again by normality of ξ and by (2.9) we have (c′β
3
(gα

1
cα

3
c′)β

3
c,

c′β
3
(hα

2
cα

3
c′)β

3
c) ∈ ξ. i.e, (c′β

3
gα

1
c, c′β

3
hα

3
c) ∈ ξ. Thus (c′β

3
gα

1
a′)β

1
(aα

1
c) ξ

(c′β3hα2b
′)β2(bα2c). Finally (aα1c)α3(c′β3hα2b

′) = aα1(cα3c
′β3h)α2b

′ ∈ K since
aα1b

′ ∈ K. Hence (aα1c, bα2c) ∈ ρ by definition of ρ.
Let us now show that trρ = ξ. Let us suppose that e be an α-idempotent and f be
a β-idempotent are such that (e, f) ∈ ρ. Then by definition of ρ we have (e, f) ∈ ξ,
since e ∈ V αα (e) and f ∈ V ββ (f). Hence trρ ⊆ ξ. Conversely let e ∈ Eα and f ∈ Eβ
and (e, f) ∈ ξ. We now show that (e, f) ∈ ρ. Since S is right inverse Γ-semigroup,

eαf ∈ Eβ ⊆ K. Again considering e ∈ V αα (e) and f ∈ V ββ (f) we can say that

(e, f) ∈ ρ. Hence ξ = trρ.
Let us now show that K = kerρ. For that let a ∈ Kerρ. Then there exists an
α-idempotent e ∈ S such that (a, e) ∈ ρ and hence (a′δa, e) ∈ ξ for all a′ ∈ V δγ (a)
and aγe ∈ K. Then by Theorem 2.2 and Remark 2.1 eαa′ ∈ K and so by definition
of (ξ,K) we have a′ ∈ K and hence from regularity of K, a ∈ K.
Conversely suppose that a ∈ K. Let a′ ∈ V βα (a) then (a′βa, a′βaαa′βa) ∈ ξ and
aαa′βa ∈ K i.e, (a, a′βa) ∈ ρ by definition of ρ. Thus a ∈ Kerρ. Hence K = Kerρ.

We now prove the converse part of the Theorem. Let us suppose that ρ is a
ip - congruence on S. We show that (trρ,Kerρ) is an ip - congruence pair and
ρ = ρ

(trρ,Kerρ)
. Let a, b ∈ kerρ and let V βα (a) 6= φ. Hence aρ = eρ and bρ = fρ for

some γ-idempotent e and δ-idempotent f . Now aρe implies aαb ρ eγb ρ eγf . Since
S is a right inverse Γ-semigroup eγf ∈ Eδ and hence aαb ∈ Kerρ. Thus Kerρ is
a partial Γ-subsemigroup of S. Clearly Kerρ contains E(S). Let a ∈ Kerρ and
a′ ∈ V βα (a). We show that a′ ∈ Kerρ. Since a ∈ Kerρ, aρ = eρ for some e ∈ Eγ .
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Now a′ = a′βaαa′ ρ a′βeγa′ = a′βeγeγa′ ρ a′βaαeγa′ ρ a′βaαaαa′. Since (a′βa)α
(aαa′) ∈ Eβ , a

′ ∈ Kerρ. Thus Kerρ is regular. Next let a ∈ S and a′ ∈
V βα (a) and k ∈ Kerρ where V δγ (k) 6= φ. Since k ∈ Kerρ, kρ = eρ for some µ-
idempotent e. Now since S is a right inverse Γ-semigroup, (a′βeµa)α(a′βeµa) =
a′β(eµaαa′βe)µa = a′β(aαa′βe)µa = a′βeµa i.e,a′βeµa ∈ Eα.
Now a′βkγa ρ a′βeµa and hence a′βkγa ∈ Kerρ i.e, Kerρ is self conjugate. Thus
Kerρ is a normal partial Γ-subsemigroup of S. We now prove that (trρ,Kerρ) is
an ip - congruence pair for S. Since ρ is a ip - congruence and for a′ ∈ V βα (a)
and e ∈ Eγ , a

′βeγa ∈ Eα, trρ is a normal ip - congruence. Now let a ∈ S and
a′ ∈ V βα (a) and e ∈ Eγ be such that eγa ∈ kerρ and (e, aαa′) ∈ trρ. Now a ρ
(aαa′)βa ρ eγa ρ f for some f ∈ E(S) since eγa ∈ Kerρ. Hence condition (i)
of Definition 2.10 is satisfied. Next let a ∈ Kerρ and e ∈ Eγ and let a′ ∈ V βα (a)
. Now since a ∈ Kerρ, aρ = fρ for some δ-idempotent f and a′ρ = gρ for some
µ-idempotent g.
Now aαeγa′ = aαeγa′βaαa′ ρ fδeγgµfδg ρ fδeγfδg ρ eγfδg ρ eγaαa′. Now
since aαeγa′, eγaαa′ ∈ Eβ ,we have (aαeγa′, eγaαa′) ∈ trρ. Thus condition (ii) of
definition 2.10 is also satisfied. Finally we show that ρ = ρ

(trρ,Kerρ)
i.e, we prove

(a, b) ∈ ρ if and only if for all a′ ∈ V β1
α

1
(a) and for all b′ ∈ V β2

α
2

(b), aα
1
b′ ∈ Kerρ

and (a′β
1
a, b′β

2
b) ∈ trρ . Suppose (a, b) ∈ ρ and a′ ∈ V β1

α
1

(a), b′ ∈ V β2
α

2
(b). Now

aα
1
b′ ρ bα

2
b′ since ρ is an ip - congruence. Again since bα

2
b′ is a β

2
-idempotent

we can say that aα
1
b′ ∈ Kerρ. Now a′β

1
a ρ a′β

1
b = a′β

1
bα

2
b′β

2
b ρ a′β

1
aα

1
b′β

2
b ρ

(a′β
1
a)α

1
(b′β

2
a) = (a′β

1
a)α

1
b′β

2
aα

1
a′β

1
a ρ (a′β

1
a)α

1
(b′β

2
b)α

2
(a′β

1
a) = (b′β

2
b)α

2

(a′β1a) = b′β2bα2(a′β1a) ρ b′β2(aα1a
′β1a) = b′β2a ρ b

′β2b. Now since a′β1a and
b′β2b are α1-idempotent and α2-idempotent respectively, we have (a′β1a, b

′β2b) ∈
trρ. Hence ρ ⊆ ρ

(trρ,Kerρ)
.

Conversely let (a, b) ∈ S such that for all a′ ∈ V β1
α

1
(a), b′ ∈ V β2

α
2

(b), (a′β
1
a, b′β

2
b) ∈

trρ and aα1b
′ ∈ Kerρ.

Now
(aα1b

′)β2(bα2a
′)β1(aα1b

′) = aα1(b′β2b)α2(a′β1a)α1(b′β2b)α2b
′

= aα1(a′β1a)α1(b′β2b)α2b
′

= aα
1
b′

and
(bα

2
a′)β

1
(aα

1
b′)β

2
(bα

2
a′) = bα

2
(a′β

1
a)α

1
(b′β

2
b)α

2
(a′β

1
a)α

1
a′

= bα
2
(b′β

2
b)α

2
(a′β

1
a)α

1
a′

= bα
2
a′

Hence aα
1
b′ ∈ V

β
2

β1
(bα

2
a′). Again since aα

1
b′ ∈ Kerρ, bα

2
a′ ∈ Kerρ and let

(aα
1
b′) ρ e and (bα

2
a′) ρ f for γ-idempotent e and δ-idempotent f . Now a =

aα
1
(a′β

1
a)α

1
(a′β

1
a) ρ aα

1
(b′β

2
b)α

2
(a′β

1
a) ρ (aα

1
b′)β

2
(bα

2
a′)β

1
a ρ eγfδa = fδeγf

δa ρ (bα2a
′)β1(aα1b

′)β2(bα2a
′)β1a = bα2(a′β1a)α1(b′β2b)α2(a′β1a) = bα2(b′β2b)α2

(a′β1a) ρ bα2(b′β2b)α2(b′β2b = b. i.e, (a, b) ∈ ρ. Hence the proof.
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ON I2-ASYMPTOTICALLY λ2−STATISTICAL EQUIVALENT

DOUBLE SEQUENCES

ÖMER KİŞİ

Abstract. In this paper, we introduce the concept of I2−asymptotically
λ2−statistically equivalence of multiple L for the double sequences (xkl) and

(ykl). Also we give some inclusion relations.

1. Introduction

Pobyvanets [14] introduced the concept of asymptotically regular matrices which
preserve the asymptotic equivalence of two nonnegative numbers sequences. In
1993, Marouf [9] presented definitions for asymptotically equivalent and asymp-
totic regular matrices. In 2003, Patterson extended these concepts by prensenting
an asymptotically statistical equivalent analog of these definitions and natural reg-
ularity conditions for nonnegative summability matrices. Later these definitions
extended to λ-sequences by Savas and Başarır in [18]. Esi and Acıkgöz [1] extended
the definitions prensented in [18] to double λ2-sequence.

2. Preliminaries and Background

In this section, we recall some definitions and notations, which form the base for
the present study.

The notion of statistical convergence depends on the density (asymptotic or
natural) of subsets of natural numbers N. A subsets of natural numbers N is said
to have natural density δ (E) if

δ (E) = lim
n→∞

1

n
|{k ≤ n : k ∈ E}| exists.

Definition 2.1. [4] A real or complex number sequence x = (xk) is said to be
statistically convergent to L if for every ε > 0,

lim
n→∞

1

n
|{k ≤ n : |xk − L| ≥ ε}| = 0.

1991 Mathematics Subject Classification. 40A05, 40A35.
Key words and phrases. Double Statistical convergence, I2−convergence , λ2−convergence,

asymptotically equivalence, double sequences.
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In this case, we write S − limx = L or xk → L (S), and S denotes the statistically
convergent sequences.

Definition 2.2. [7] A family of sets I ⊆ 2N is called an ideal if and only if

(i) ∅ ∈ I,
(ii) For each A,B ∈ I we have A ∪B ∈ I,
(iii) For each A ∈ I and each B ⊆ A we have B ∈ I.

Definition 2.3. [7] A family of sets F ⊆ 2N is a filter in N if and only if

(i) ∅ /∈ F ,
(ii) For each A,B ∈ F we have A ∩B ∈ F ,
(iii) For each A ∈ F and each B ⊇ A we have B ∈ F .

Lemma 2.1. [7] If I is proper ideal of N (i.e., N /∈ I), then the family of sets

F (I) = {M ⊂ N : ∃A ∈ I : M = N \ A}
is a filter of N and it is called the filter associated with the ideal.

An ideal is called non-trivial if N /∈ I and non-trivial ideal is called admissible if
{n} ∈ I for each n ∈ N.

Definition 2.4. [7] A sequence x = (xk) of points in R is said to be I−convergent
to a real number L if

{k ∈ N : |xk − L| ≥ ε} ∈ I,
for every ε > 0. In this case we write I-limx = L.

Definition 2.5. [10] Let λ = (λn) be a non-decreasing sequence of positive real
numbers tending to infinity such that λ1 = 1 and λn+1 ≤ λn + 1. A sequence
x = (xk) is said to be λ−statistically convergent or Sλ−convergent to L if for every
ε > 0,

lim
n→∞

1

λn
|k ∈ In : |xk − L| ≥ ε| = 0

where In = [n− λn + 1, n] for n = 1, 2, ....

In 1900 Pringsheim presented the following definition for the convergence of
double sequences.

Definition 2.6. [15] A double sequence x = (xkl) has a Pringsheim limit L (de-
noted by P − limx = L) provided that for given ε > 0, there exists a n ∈ N such
that |xkl − L| < ε, whenever k, l > n. We describe such an x = (xkl) more briefly
as ”P-convergent”.

The double sequence (xk,l) is bounded if there exists a positive integer M such
that |xkl| < M for all k and l. We denote all bounded double sequence by l2∞.

Definition 2.7. [11] A real double sequence x = (xkl) is to be statistically conver-
gent to L provided that for every ε > 0,

P − lim
m,n→∞

1

mn
|{(k, l) : k ≤ m and l ≤ n : |xk,l − L| ≥ ε}| = 0,

denoted by SL − limx = L.

Now we give a brief history for asymptotical equivalence for single and double
sequences.
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Definition 2.8. [15] Two non-negative double sequences x = (xkl) and y = (ykl)
are said to be P−asymptotically double equivalent of multiple L provided that for
every ε > 0,

P − lim
k,l

xkl
ykl

= L,

denoted by (xkl) ∼P (ykl) and simply asymptotically double equivalent if L = 1.

Definition 2.9. [1] Two non-negative double sequences (xkl) and (ykl) are said
to be asymptotically double statistical equivalent of multiple L provided that for
every ε > 0,

P − lim
m,n→∞

1

mn

∣∣∣∣{ k ≤ m, l ≤ n :

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε }∣∣∣∣ = 0,

denoted by (xkl) ∼S
L

(ykl) and simply asymptotically double statistical equivalent
if L = 1.

Definition 2.10. [6] Two non-negative double sequences (xkl) and (ykl) are said
to be asymptotically I−equivalent of multiple L provided that for every ε > 0,{

(k, l) ∈ N× N :

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε} ∈ I,
denoted by (xkl) ∼I

L

(ykl) and simply asymptotically I−equivalent if L = 1.

Definition 2.11. [6] Two non-negative double sequences (xkl) and (ykl) are said
to be asymptotically I-statistically equivalent of multiple L provided that for every
ε > 0, and for every δ > 0,{

(m,n) ∈ N× N :
1

mn

∣∣∣∣{k ≤ m, l ≤ n :

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε}∣∣∣∣ ≥ δ} ∈ I,

denoted by (xkl)
SL(I)∼ (ykl) and simply asymptotically I−statistical equivalent if

L = 1.

Definition 2.12. [5] Let λ = (λn) be a non-decreasing sequence of positive real
numbers tending to infinity such that λ1 = 1 and λn+1 ≤ λn+1. Two non-negative
sequences (xk) and (yk) are Sλ−asymptotically equivalent of multiple L provided
that for every ε > 0,

lim
n→∞

1

λn

∣∣∣∣{k ∈ In :

∣∣∣∣xkyk − L
∣∣∣∣ ≥ ε}∣∣∣∣ = 0,

where In = [n− λn + 1, n] for n = 1, 2, ....

Definition 2.13. [5] Let λ = (λn) be a non-decreasing sequence of positive real
numbers tending to infinity such that λ1 = 1 and λn+1 ≤ λn + 1. Two non-
negative sequences (xk) and (yk) are strong λ−asymptotically equivalent of multiple
L provided that

lim
n→∞

1

λn

∑
k∈In

∣∣∣∣xkyk − L
∣∣∣∣ = 0,

where In = [n− λn + 1, n] for n = 1, 2, ....
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The double sequence (λmn) of positive real numbers tending to infinity such that

λm+1,n ≤ λmn + 1, λm,n+1 ≤ λmn + 1,

λmn − λm+1,n ≤ λm,n+1 − λm+1,n+1, λ1,1 = 1

and

Imn = {(k, l) : m− λmn + 1 ≤ k ≤ m, n− λmn + 1 ≤ l ≤ n} .

Definition 2.14. [1] For double λ2−sequence; two non-negative double sequences
(xkl) and (yk,l) are said to be λ2−asymptotically double statistical equivalent of
multiple L if for every ε > 0,

P − lim
m,n→∞

1

λmn

∣∣∣∣k ∈ In, l ∈ Im :

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε∣∣∣∣ = 0,(
denoted by (xkl)

SL
λ2∼ (ykl)

)
.

Definition 2.15. [1] For double λ2−sequence; two non-negative double sequences
(xkl) and (yk,l) are said to be strong λ2−asymptotically double equivalent of mul-
tiple L provided that

P − lim
m,n→∞

1

λmn (k,l)∈Imn

∣∣∣∣xklykl
− L

∣∣∣∣ = 0,(
denoted by (xkl)

NL
λ2∼ (ykl)

)
.

Throughout the paper we take I2 as a nontrivial admissible ideal in N × N. A
nontrivial ideal I2 of N×N is called strongly admissible if {i}×N and N× i belongs
to I2 for each i ∈ N.

It is evident that a strongly admissible ideal is admissible also.

3. Main results

In this section we define I2−asymptotically λ2−statistically equivalent, strongly
λ2
I2−asymptotically equivalent, strongly Cesaro asymptotically I2−equivalent of

double sequences and obtain some analogous results from these new definitons point
of views.

Definition 3.1. For double λ2 = (λmn)-sequence; two nonnegative sequences (xkl)
and (ykl) are said to be I2−asymptotically λ2−statistically equivalent of multiple
L if for every ε, δ > 0,{

(m,n) ∈ N× N :
1

λmn

∣∣∣∣{(k, l) ∈ Imn :

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε}∣∣∣∣ ≥ δ} ∈ I2,

denoted by (xkl)
SL
λ2

(I2)
∼ (yk,l) .

Definition 3.2. For double λ2 = (λmn)-sequence; two non-negative double se-
quences (xkl) and (ykl) are said to be strongly λ2

I2−asymptotically equivalent of
multiple L provided that for every ε > 0,{

(m,n) ∈ N× N :
1

λmn (k,l)∈Imn

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε} ∈ I2,
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denoted by xkl

V L
λ2

(I2)
∼ ykl

)
.

Definition 3.3. Two non-negative double sequences (xkl) and (ykl) are said to be
strongly Cesaro asymptotically I2−equivalent of multiple L provided that for every
ε > 0, {

(m,n) ∈ N× N :
1

mn

m,n

k,l=1,1

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε} ∈ I2,(
denoted by xkl

I2[C,1]L∼ ykl

)
.

Theorem 3.1. Let λ2 = (λmn) be a double sequence and I2 is strongly admissible

ideal in N× N. If (xkl)
V L
λ2

(I2)
∼ (ykl) then (xkl)

SL
λ2

(I2)
∼ (ykl) .

Proof. Assume that (xk,l)
V L
λ2

(I2)
∼ (ykl) and ε > 0. Then,

(k,l)∈Imn

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ (k,l)∈Imn∣∣∣∣∣∣∣
xkl
ykl

−L

∣∣∣∣∣∣∣≥ε

∣∣∣∣xklykl
− L

∣∣∣∣

≥ ε.

∣∣∣∣{(k, l) ∈ Im,n :

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε}∣∣∣∣ ,
and so,

1

ε.λmn (k,l)∈Imn

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ 1

λmn

∣∣∣∣{(k, l) ∈ Imn :

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε}∣∣∣∣ .
Then for any δ > 0,{

(m,n) ∈ N× N :
1

λmn

∣∣∣∣{(k, l) ∈ Imn :

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε}∣∣∣∣ ≥ δ}

⊆
{

(m,n) ∈ N× N :
1

λmn (k,l)∈Imn

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε.δ} .
Since right hand belongs to I2, then left hand also belongs to I2 and this completes
the proof. �

Theorem 3.2. Let λ2 = (λmn) be a double sequence and I2 is a strongly admissible

ideal in N×N. If (xkl) and (ykl) are bounded sequences and (xkl)
SL
λ2

(I2)
∼ (ykl) then

(xkl)
V L
λ2

(I2)
∼ (ykl) .

Proof. Let (xkl) and (ykl) are bounded sequences and let (xkl)
SL
λ2

(I2)
∼ (ykl). Then

there is a M such that ∣∣∣∣xklykl
− L

∣∣∣∣ ≤M
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for all (k, l) ∈ N× N. For each ε > 0,

1

λmn (k,l)∈Imn

∣∣∣∣xklykl
− L

∣∣∣∣ =
1

λmn (k,l)∈Imn∣∣∣∣∣∣∣
xkl
ykl

−L

∣∣∣∣∣∣∣≥ε

∣∣∣∣xklykl
− L

∣∣∣∣

+
1

λmn (k,l)∈Imn∣∣∣∣∣∣∣
xkl
ykl

−L

∣∣∣∣∣∣∣<ε

∣∣∣∣xklykl
− L

∣∣∣∣

≤ M.
1

λmn

∣∣∣∣{(k, l) ∈ Imn :

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε

2

}∣∣∣∣+
ε

2
.

And define the sets

D1 =

{
(m,n) ∈ N× N :

1

λmn (k,l)∈Imn

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε}
and

D2 =

{
(m,n) ∈ N× N :

1

λmn

∣∣∣∣{(k, l) ∈ Imn :

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε

2

}∣∣∣∣ ≥ ε

2M

}
.

If (m,n) /∈ D2, then
1

λmn

∣∣∣∣{(k, l) ∈ Imn :

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε

2

}∣∣∣∣ < ε

2M
. Also we can get

1

λmn (k,l)∈Imn

∣∣∣∣xklykl
− L

∣∣∣∣ ≤ M

λmn

∣∣∣∣{(k, l) ∈ Imn :

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε

2

}∣∣∣∣+
ε

2

<
ε

2
+
ε

2
= ε.

Thus (m,n) /∈ D1. Consequently, we have{
(m,n) ∈ N× N :

1

λmn (k,l)∈Imn

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε}
⊆
{

(m,n) ∈ N× N :
1

λmn

∣∣∣∣{(k, l) ∈ Imn :

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε

2

}∣∣∣∣ ≥ ε

2M

}
∈ I2.

Therefore (xkl)
V L
λ2

(I2)
∼ (ykl) . �

The following example shows that if (xkl), (ykl) are not bounded, then theorem
2 can not be true.

Example 3.1. Let (xkl) and (ykl) be two double sequences as follows:

(xkl) =

{
kl, if km−1 < k ≤ km−1 +

[√
λm
]

, ln−1 < l ≤ ln−1 +
[√
λn
]

, m,n = 1, 2, 3, ...;
0, otherwise.

and (yk,l) = 1 for all k, l ∈ N.

It is clear that (xkl) /∈ l2∞ and for ε > 0,

(1.1)
1

λmn

∣∣∣∣{(k, l) ∈ Imn :

∣∣∣∣xklykl
− 1

∣∣∣∣ ≥ ε}∣∣∣∣ ≤
[√
λmn

]
λmn

→ 0 as m,n→∞,
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This implies that{
(m,n) ∈ N× N :

1

λmn

∣∣∣∣{(k, l) ∈ Imn :

∣∣∣∣xklykl
− 1

∣∣∣∣ ≥ ε}∣∣∣∣ ≥ δ}

⊆

{
(m,n) ∈ N× N :

[√
λmn

]
λmn

≥ δ

}
.

By virtue of last part (1.1), the set on the right side is a finite set, and so it belongs
to I2. Consequently, we have{

(m,n) ∈ N× N :
1

λm,n

∣∣∣∣{(k, l) ∈ Imn :

∣∣∣∣xklykl
− 1

∣∣∣∣ ≥ ε}∣∣∣∣ ≥ δ} ∈ I2.

Therefore, (xkl)
SL
λ2

(I2)
∼ (ykl), On the other hand, we shall show that (xkl)

V L
λ2

(I2)
∼

(ykl) is not satisfied. Suppose that (xkl)
V L
λ2

(I2)
∼ (ykl). Then for every δ > 0, we

have

(1.2)

{
(m,n) ∈ N× N :

1

λmn (k,l)∈Imn

∣∣∣∣xklykl
− 1

∣∣∣∣ ≥ δ} ∈ I2.

Now,

lim
m,n→∞

1

λmn (k,l)∈Imn

∣∣∣∣xklykl
− 1

∣∣∣∣ = lim
m,n→∞

1

λmn

([√
λmn

]
.
([√

λmn
]
− 1
)

2

)
=

1

2
.

It follows for the particular choice δ = 1
4 that{

(m,n) ∈ N× N :
1

λmn (k,l)∈Imn

∣∣∣∣xklykl
− 1

∣∣∣∣ ≥ 1

4

}

=

{
(m,n) ∈ N× N :

([√
λmn

]
.
([√

λmn
]
− 1
)

λm,n

)
≥ 1

4

}

= {(r, s) , (r + 1, s+ 1) , (r + 2, s+ 2) ,....}
for some r, s ∈ N which belongs to F (I2) as I2 is admissible. This contradicts (1.2)

for the choice δ = 1
4 . Therefore (xkl)

V L
λ2

(I2) (ykl).

Theorem 3.3. Let λ2 = (λmn) be a double sequence and I2 is a strongly admissible

ideal in N× N. If (xkl)
V L
λ2

(I2)
∼ (ykl) is then (xkl)

I2[C,1]L∼ (ykl) .

Proof. Assume that (xkl)
V L
λ2

(I2)
∼ (ykl) and ε > 0. Then,

1

mn

m,n

k,l=1,1

∣∣∣∣xklykl
− L

∣∣∣∣ =
1

mn

m−λm, n−λn

k,l=1,1

∣∣∣∣xklykl
− L

∣∣∣∣+
1

mn (k,l)∈Im,n

∣∣∣∣xklykl
− L

∣∣∣∣
≤ 1

λmn

m−λm, n−λn

k,l=1,1

∣∣∣∣xklykl
− L

∣∣∣∣+
1

λm,n (k,l)∈Im,n

∣∣∣∣xklykl
− L

∣∣∣∣
≤ 2

λmn (k,l)∈Im,n

∣∣∣∣xklykl
− L

∣∣∣∣
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and so,{
(m,n) ∈ N× N :

1

mn

m,n

k,l=1,1

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε} ⊆ {(m,n) ∈ N× N :(k,l)∈Im,n

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε

2

}
∈ I2.

Hence (xkl)
I2[C,1]L∼ (ykl) . �

Theorem 3.4. If lim inf
λmn
mn

> 0 then (xkl)
SL(I2)∼ (ykl) implies (xkl)

SL
λ2

(I2)
∼ (ykl) .

Proof. Assume that lim inf
λmn
mn

> 0. Then, there exists a δ > 0 such that
λmn
mn

≥ δ
for sufficiently large m, n. For given ε > 0 we have,

1
mn

{
0 ≤ k ≤ m; 0 ≤ l ≤ n, (m,n) ∈ N× N :

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε}

⊇ 1

mn

{
(k, l) ∈ Im,n, (m,n) ∈ N× N :

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε} .
Therefore,

1

mn

∣∣∣∣{0 ≤ k ≤ m; 0 ≤ l ≤ n :

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε}∣∣∣∣
≥ 1

mn

∣∣∣∣{(k, l) ∈ Im,n :

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε}∣∣∣∣
≥ λmn

mn
.

1

λmn

∣∣∣∣{(k, l) ∈ Im,n :

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε}∣∣∣∣
≥ δ. 1

λmn

∣∣∣∣{(k, l) ∈ Im,n :

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε}∣∣∣∣ ,
then for any η > 0 we get{

(m,n) ∈ N× N :
1

λmn

∣∣∣∣{(k, l) ∈ Im,n :

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε}∣∣∣∣ ≥ η}

⊆
{

(m,n) ∈ N× N :
1

mn

∣∣∣∣{0 ≤ k ≤ m; 0 ≤ l ≤ n :

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε}∣∣∣∣ ≥ ηδ} ∈ I2,

and this completes the proof. �

Theorem 3.5. Let λ2 = (λmn) be a double sequence and I2 is a strongly admissible
ideal in N× N, and (xkl) and (ykl) are two non-negative double sequences. Then

(i) If (xkl)
I2[C,1]L∼ (ykl) then (xkl)

SL(I2)∼ (ykl) ,

(ii) Let (xkl), (ykl) ∈ l2∞ and (xkl)
SL(I2)∼ (ykl), then (xkl)

I2[C,1]L∼ (ykl).
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Proof. (i) Let ε > 0 and (xkl)
I2[C,1]L∼ (ykl). Then we can write

m,n
k,l=1,1

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ m,n
k,l=1,1∣∣∣∣∣xklykl
−L

∣∣∣∣∣≥ε

∣∣∣∣xklykl
− L

∣∣∣∣

≥ ε.

∣∣∣∣{1 ≤ k ≤ m, 1 ≤ l ≤ n :

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε}∣∣∣∣
=⇒ 1

ε.mn

m,n

k,l=1,1

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ 1

mn

∣∣∣∣{1 ≤ k ≤ m, 1 ≤ l ≤ n :

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε}∣∣∣∣ .
Thus, for any δ > 0,

1

mn

∣∣∣∣{1 ≤ k ≤ m, 1 ≤ l ≤ n :

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε}∣∣∣∣ ≥ δ
implies that

1

mn

m,n

k,l=1,1

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε.δ.
Therefore, we have{

(m,n) ∈ N× N :
1

mn

∣∣∣∣{1 ≤ k ≤ m, 1 ≤ l ≤ n :

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε}∣∣∣∣ ≥ δ}

⊂
{

(m,n) ∈ N× N :
1

mn

m,n

k,l=1,1

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε.δ} .
Since (xkl)

I2[C,1]L∼ (ykl), so that{
(m,n) ∈ N× N :

1

mn

m,n

k,l=1,1

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε.δ} ∈ I2

which implies that{
(m,n) ∈ N× N :

1

mn

∣∣∣∣{1 ≤ k ≤ m, 1 ≤ l ≤ n :

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε}∣∣∣∣ ≥ δ} ∈ I2.

This shows that (xkl)
SL(I2)∼ (ykl) .

(ii) Suppose that (xkl), (ykl) ∈ l2∞ and (xk,l)
SL(I2)∼ (ykl) . Then there is an M

such that ∣∣∣∣xklykl
− L

∣∣∣∣ ≤M
for all (k, l) ∈ N× N. Given ε > 0, we get

1

mn

m,n

k,l=1,1

∣∣∣∣xklykl
− L

∣∣∣∣ =
1

mn
m,n
k,l=1,1∣∣∣∣∣xklykl
−L

∣∣∣∣∣≥ε

∣∣∣∣xklykl
− L

∣∣∣∣+
1

mn
m,n
k,l=1,1∣∣∣∣∣xklykl
−L

∣∣∣∣∣<ε

∣∣∣∣xklykl
− L

∣∣∣∣

≤ M

mn

∣∣∣∣{1 ≤ k ≤ m, 1 ≤ l ≤ n :

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε}∣∣∣∣+ ε.
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If we put

A (ε) =

{
(m,n) ∈ N× N :

1

mn

m,n

k,l=1,1

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε}
and

B (ε1) =

{
(m,n) ∈ N× N :

1

mn

∣∣∣∣{1 ≤ k ≤ m, 1 ≤ l ≤ n :

∣∣∣∣xklykl
− L

∣∣∣∣ ≥ ε}∣∣∣∣ ≥ ε1

M

}
,

where ε1 = δ − ε > 0, (and δ and ε are independent), then we have A (ε) ⊂ B (ε1),

and so A (ε) ∈ I2. This shows that (xkl)
I2[C,1]L∼ (ykl) . �
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[18] Savaş, R., Başarır M., (2006). (σ, λ)-Asymptotically Statistically Equivalent
Sequences, Filomat 20 (1), 35-42.



ON I2-ASYMPTOTICALLY λ2−STATISTICAL EQUIVALENT DOUBLE SEQUENCES 175

[19] Schoenberg, I. J., (1959). The integrability of certain functions and related
summability methods, Amer. Math. Monthly, 66, 361-375.
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LACUNARY STATISTICAL SUMMABILITY OF SEQUENCES OF

SETS

UĞUR ULUSU AND FATİH NURAY

Abstract. In this paper we define the WSθ−analog of the Cauchy criterion

for convergence and show that it is equivalent to Wijsman lacunary statistical

convergence. Also, Wijsman lacunary statistical convergence is compared to
other summability methods which are defined in this paper. After giving new

definitions for convergence, we prove a result comparing them. In addition, we
give the relationship between Wijsman lacunary statistical convergence and

Hausdorf lacunary statistical convergence.

1. INTRODUCTION AND BACKGROUND

The concept of convergence of a sequence of real numbers has been extended to
statistical convergence independently by Fast [5] and Schoenberg [11]. The concept
of lacunary statistical convergence and summability were defined by Fridy and
Orhan in [7, 8].

The concept of convergence of sequences of numbers has been extended by
several authors to convergence of sequences of sets. The one of these such ex-
tensions considered in this paper is the concept of Wijsman convergence (see,
[1],[2],[3],[4],[9],[12],[13],[14]). Nuray and Rhoades [9] extended the notion of con-
vergence of set sequences to statistical convergence and gave some basic theorems.
Ulusu and Nuray [12] defined the Wijsman lacunary statistical convergence of se-
quence of sets and considered its relation with Wijsman statistical convergence,
which was defined by Nuray and Rhoades.

In this paper, we shall define the concept of Wijsman lacunary statistical Cauchy
sequences for sequences of sets and show that this concept is equivalent to the con-
cept of Wijsman lacunary statistically convergence. Also, Wijsman lacunary statis-
tical convergence will be compared to newly defined Wijsman lacunary summability
methods. Further, the definition of Wijsman lacunary almost convergence for se-
quences of sets is introduced and some comparison theorems are given.
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2. DEFINITIONS AND NOTATIONS

Now, we recall the concept of statistical, lacunary statistical, Wijsman, Haus-
dorff, Wijsman statistiscal, Hausdorff statistical, Wijsman strongly almost, Wijs-
man almost statistical, Wijsman lacunary statistical convergence, Wijsman lacu-
nary summability, Wijsman strongly lacunary summability and Wijsman Cesàro
summability of the sequences of sets (see, [2],[6],[7],[9],[12])

Definition 2.1. A sequence x = (xk) is said to be statistically convergent to the
number L if for every ε > 0,

lim
n→∞

1

n
|{k ≤ n : |xk − L| ≥ ε}| = 0.

In this case, we write st− limxk = L.

By a lacunary sequence we mean an increasing integer sequence θ = {kr} such
that k0 = 0 and hr = kr − kr−1 → ∞ as r → ∞. Throughout this paper the
intervals determined by θ will be denoted by Ir = (kr−1, kr].

Definition 2.2. A sequence x = (xk) is said to be lacunary statistically convergent
to the number L if for every ε > 0,

lim
r

1

hr
|{k ∈ Ir : |xk − L| ≥ ε}| = 0.

In this case, we write Sθ − limxk = L or xk → L(Sθ).

Let (X, ρ) be a metric space. For any point x ∈ X and any non-empty subset A
of X, we define the distance from x to A by

d(x,A) = inf
a∈A

ρ(x, a).

Definition 2.3. Let (X, ρ) be a metric space. For any non-empty closed subsets
A,Ak ⊆ X, we say that the sequence {Ak} is Wijsman convergent to A if

lim
k→∞

d(x,Ak) = d(x,A),

for each x ∈ X. In this case, we write W − limAk = A.

As an example, consider the following sequence of circles in the (x, y)-plane:

Ak = {(x, y) : x2 + y2 + 2kx = 0}.

As k →∞ the sequence is Wijsman convergent to the y-axis A = {(x, y) : x = 0}.

Definition 2.4. Let (X, ρ) be a metric space. For any non-empty closed subsets
A,Ak ⊆ X, we say that the sequence {Ak} is Hausdorff convergent to A if

lim
k→∞

sup
x∈X
|d(x,Ak)− d(x,A)| = 0.

In this case, we write H − limAk = A.

The concepts of Wijsman statistical convergence and Hausdorff statistical con-
vergence were given by Nuray and Rhoades [9] as follows:
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Definition 2.5. Let (X, ρ) be a metric space. For any non-empty closed subsets
A,Ak ⊆ X, we say that the sequence {Ak} is Wijsman statistical convergent to A
if {d(x,Ak)} is statistically convergent to d(x,A); i.e., for every ε > 0 and for each
x ∈ X,

lim
n→∞

1

n
|{k ≤ n : |d(x,Ak)− d(x,A)| ≥ ε}| = 0.

In this case, we write st− limW Ak = A or Ak → A(WS).

Definition 2.6. Let (X, ρ) be a metric space. For any non-empty closed subsets
A,Ak ⊆ X, we say that the sequence {Ak} is Hausdorff statistical convergent to A
if for each ε > 0,

lim
n→∞

1

n
|{k ≤ n : sup

x∈X
|d(x,Ak)− d(x,A)| ≥ ε}| = 0.

In this case, we write st− limH Ak = A or Ak → A(HS).

Let (X, ρ) be a metric space. For any non-empty closed subsets Ak of X, we say
that the sequence {Ak} is bounded if supk d(x,Ak) <∞, for each x ∈ X.

Also, the concepts of Wijsman Cesàro Summability, Wijsman strongly almost
convergence and Wijsman almost statistical convergence for sequences of sets were
given by Nuray and Rhoades [9] as follows:

Definition 2.7. Let (X, ρ) be a metric space. For any non-empty closed subsets
A, Ak ⊆ X, we say that {Ak} is Wijsman Cesàro summable to A if {d(x,Ak)} is
Cesàro summable to d(x,A); i.e., for each x ∈ X,

lim
n→∞

1

n

n∑
k=1

d(x,Ak) = d(x,A).

Definition 2.8. Let (X, ρ) be a metric space. For any non-empty closed subsets
A, Ak ⊆ X, we say that {Ak} is Wijsman strongly almost convergent to A if for
each x ∈ X,

lim
n→∞

1

n

n∑
k=1

|d(x,Ak+i)− d(x,A)| = 0,

uniformly in i.

Definition 2.9. Let (X, ρ) be a metric space. For any non-empty closed subsets A,
Ak ⊆ X, we say that the sequence {Ak} is Wijsman almost statistically convergent
to A if for each ε > 0 and for each x ∈ X,

lim
n→∞

1

n
|{k ≤ n : |d(x,Ak+i)− d(x,A)| ≥ ε}| = 0,

uniformly in i.

The concepts of Wijsman lacunary summability, Wijsman strongly lacunary
Summability and Wijsman lacunary statistical convergence of sequences of sets
were given by Ulusu and Nuray [12] as follows:

Definition 2.10. Let (X, ρ) be a metric space and θ = {kr} be a lacunary sequence.
For any non-empty closed subsetsA, Ak ⊆ X, we say that {Ak} is Wijsman lacunary
summable to A, if {d(x,Ak)} is lacunary summable to d(x,A); i.e., for each x ∈ X,

lim
r→∞

1

hr

∑
Ir

d(x,Ak) = d(x,A).
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Definition 2.11. Let (X, ρ) be a metric space and θ = {kr} be a lacunary sequence.
For any non-empty closed subsets A, Ak ⊆ X, we say that {Ak} is Wijsman strongly
lacunary Summable to A, if {d(x,Ak)} is strongly lacunary summable to d(x,A);
i.e., for each x ∈ X,

lim
r→∞

1

hr

∑
Ir

|d(x,Ak)− d(x,A)| = 0.

Definition 2.12. Let (X, ρ) be a metric space and θ = {kr} be a lacunary sequence.
For any non-empty closed subsets A,Ak ⊆ X, we say that the sequence {Ak} is
Wijsman lacunary statistical convergent to A, if {d(x,Ak)} is lacunary statistically
convergent to d(x,A); i.e., for every ε > 0 and for each x ∈ X,

lim
r

1

hr
|k ∈ Ir : |d(x,Ak)− d(x,A)| ≥ ε| = 0.

In this case, we write Sθ − limW Ak = A or Ak → A(WSθ).

Example 2.1. Let X = R and we define a sequence {Ak} as follows:

Ak :=


{x ∈ R : 2 ≤ x ≤ k} ,

if k ≥ 2, kr−1 < k ≤ kr
and k is a square integer,

{1} , otherwise.

As k → ∞ this sequence is Wijsman lacunary statistical converget to the set
A = {1}.

3. MAIN RESULTS

Definition 3.1. Let (X, ρ) be a metric space and θ = {kr} be a lacunary sequence.
For any non-empty closed subsets A, Ak ⊆ X, we say that the sequence {Ak} is
said to be a Wijsman lacunary statistical Cauchy sequence if there is a subsequence
{Ak′(r)} of {Ak} such that k′(r) ∈ Ir for each r, W − limr Ak′(r) = A, and for every
ε > 0 and x ∈ X,

(3.1) lim
r→∞

1

hr
|{k ∈ Ir : |d(x,Ak)− d(x,Ak′(r))| ≥ ε}| = 0.

Theorem 3.1. Let (X, ρ) be a metric space and θ = {kr} be a lacunary sequence.
The sequence {Ak} is Wijsman lacunary statistical convergent if and only if {Ak}
is a Wijsman lacunary statistical Cauchy sequence.

Proof. (⇒) Let Ak → A(WSθ) and write

K(j) :=

{
k ∈ N : |d(x,Ak)− d(x,A)| < 1

j

}
,

for each x ∈ X and each j ∈ N. Hence, for each j,K(j) ⊇ K(j+1) and

lim
r→∞

|K(j) ∩ Ir|
hr

= 1.

Choose m(1) such that r ≥ m(1) implies
|K(1) ∩ Ir|

hr
> 0, i.e., K(1) ∩ Ir 6= ∅.

Next choose m(2) > m(1) so that r ≥ m(2) implies K(2) ∩ Ir 6= ∅. Then, for
each r satisfying m(1) ≤ r < m(2), choose k′(r) ∈ Ir such that k′(r) ∈ Ir ∩K(1),
i.e., |d(x,Ak′(r)) − d(x,A)| < 1. In general, choose m(p + 1) > m(p) such that
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r > m(p+1) implies Ir∩K(p+1) 6= ∅. Then, for all r satisfying m(p) ≤ r < m(p+1),
choose k′(r) ∈ Ir ∩K(p), i.e.,

(3.2) |d(x,Ak′(r))− d(A, x)| < 1

p
.

Hence, we get k′(r) ∈ Ir for every r and (3.2) implies that

W − lim
r
d(x,Ak′(r)) = d(x,A).

Furthermore, for every ε > 0 we have,

1

hr
|{k ∈ Ir : |d(x,Ak)− d(x,Ak′(r))| ≥ ε}|

≤ 1

hr
|{k ∈ Ir : |d(x,Ak)− d(x,A)| ≥ ε

2
}|

+
1

hr
|{k ∈ Ir : |d(x,Ak′(r))− d(x,A)| ≥ ε

2
}|.

Using the assumptions that Ak → A(WSθ) and W − limr d(x,Ak′(r)) = d(x,A), we
infer (3.1), whence Ak is a Wijsman lacunary statistical Cauchy sequence.

(⇐) Conversely, suppose that {Ak} is a Wijsman lacunary statistical Cauchy
sequence. For every ε > 0, we have

|{k ∈ Ir : |d(x,Ak)− d(x,A)| ≥ ε}| ≤
∣∣∣{k ∈ Ir : |d(x,Ak)− d(x,Ak′(r))| ≥

ε

2
}
∣∣∣

+
∣∣∣{k ∈ Ir : |d(x,Ak′(r))− d(x,A)| ≥ ε

2
}
∣∣∣

from which it follows that Ak → A(WSθ). �

Now we give following theorem where ∆ denotes the forward difference operator
defined by ∆d(x,Ai) = d(x,Ai)− d(x,Ai+1).

Theorem 3.2. Let (X, ρ) be a metric space and θ = {kr} be a lacunary sequence.
If Ak → A(WSθ) and for each x ∈ X

max{|∆d(x,Ai)| : i ∈ Ir} = o(
1

hr
) as r →∞,

then W − limAk = A.

Proof. Assume that Ak → A(WSθ) and by Theorem (3.1), choose a subsequence
{Ak′(r)} of {Ak} as in Definition (3.1). Since k′(r) ∈ Ir, for each x ∈ X we have

|d(x,Ak)− d(x,Ak′(r))| ≤
k′(r)−1∑
i=k

|∆d(x,Ai)|

≤ hr. (maxi∈Ir{|∆d(x,Ai)| : i ∈ Ir})

= o(1)

and therefore Ak′(r) → A(WS) implies that Ak → A(WS). �

Theorem 3.3. Let (X, ρ) be a metric space and θ = {kr} be a lacunary sequence.
If {Ak} is a bounded sequence and Ak → A(WSθ), then {Ak} is Wijsman Cesàro
summable to A.
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Proof. Let (X, ρ) be a metric space, θ = {kr} be a lacunary sequence and let n be
a positive integer with n ∈ Ir; then

1

n

n∑
k=1

(
d(x,Ak)− d(x,A)

)
=

1

n

r−1∑
p=1

∑
k∈Ip

(
d(x,Ak)− d(x,A)

)
(3.3)

+
1

n

n∑
k=1+kr−1

(
d(x,Ak)− d(x,A)

)
.

Consider the first term on the right in (3.3),

1

n

r−1∑
p=1

∑
k∈Ip

(
d(x,Ak)− d(x,A)

)
≤ 1

kr−1

r−1∑
p=1

∑
k∈Ip

∣∣∣∣d(x,Ak)− d(x,A)

∣∣∣∣
(3.4) =

1

kr−1

r−1∑
p=1

hp.tp = (Ht)r,

say, where

tp =
1

hp

∑
k∈Ip

|d(x,Ak)− d(x,A)| .

Since {Ak} is bounded and Ak → A(WSθ), it follows from Theorem 1 (ii) of [12]
that tp → 0. Moreover

kr−1 =

r−1∑
p=1

hp →∞ as r →∞,

because θ is a lacunary sequence, which implies that (3.4) is a regular weighted
mean matrix transform of t in [10]; hence,

(3.5) (Ht)r → 0.

Now consider the second term on the right in (3.3). Since {Ak} is bounded,
there is a constant M > 0 such that |d(x,Ak)− d(x,A)| ≤M , for all k. Therefore,
for every ε > 0 we have,
(3.6)∣∣∣∣∣ 1n n∑

k=1+kr−1

(
d(x,Ak)− d(x,A)

)∣∣∣∣∣ ≤ 1

n

∑
kr−1<k≤n

|d(x,Ak)−d(x,A)|≥ε

|d(x,Ak)− d(x,A)|

+
1

n

∑
kr−1<k≤n

|d(x,Ak)−d(x,A)|<ε

|d(x,Ak)− d(x,A)|

≤ M

hr
|{k ∈ Ir : |d(x,Ak)− d(x,A)| ≥ ε}|+ ε.

Since Ak → A(WSθ) and ε is an arbitrary, the expression on the left side of (3.6)
tends to zero as r →∞. Hence, (3.3), (3.5) and (3.6) imply that {Ak} is Wijsman
Cesàro summable to A. �
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Definition 3.2. Let (X, ρ) be a metric space and θ = {kr} be a lacunary se-
quence. For any non-empty closed subsets A, Ak ⊆ X, we say that {Ak} is Wijsman
strongly p−lacunary summable to A if {d(x,Ak)} is strongly p−lacunary summable
to d(x,A); i.e., for each p positive real number and for each x ∈ X

lim
r→∞

1

hr

∑
Ir

|d(x,Ak)− d(x,A)|p = 0.

Theorem 3.4. Let (X, ρ) be a metric space, θ = {kr} be a lacunary sequence and
let p positive real number. Then, for any non-empty closed subsets A, Ak ⊆ X;

(i) {Ak} is Wijsman lacunary statistical convergent to A if it is Wijsman
strongly p−lacunary summable to A.

(ii) If {Ak} is bounded and Wijsman lacunary statistical convergent to A then
it is Wijsman strongly p−lacunary summable to A.

Proof. (i) For any {Ak}, fix an ε > 0. Then∑
Ir

|d(x,Ak)− d(x,A)|p ≥ εp|{k ∈ Ir : |d(x,Ak)− d(x,A)| ≥ ε}|,

and it follows that if {Ak} is Wijsman strongly p−lacunary summable to A then
{Ak} is Wijsman lacunary statistical convergent to A.

(ii) Let {Ak} be bounded and Wijsman lacunary statistical convergent to A.
Since {Ak} is bounded set

sup
k
{d(x,Ak)}+ d(x,A) = M.

Since {Ak} is Wijsman lacunary statistically convergent to A, for given ε > 0 we
can select Nε such that for each x ∈ X

1

hr

∣∣∣∣{k ∈ Ir : |d(x,Ak)− d(x,A)| ≥
(ε

2

) 1
p

}∣∣∣∣ < ε

2Mp
,

for all r > Nε and we let the set

Lr =

{
k ∈ Ir : |d(x,Ak)− d(x,A)| ≥

(ε
2

) 1
p

}
.

Then, for each x ∈ X

1

hr

∑
Ir

|d(x,Ak)− d(x,A)|p =
1

hr

 ∑
k∈Ir
k∈Lr

|d(x,Ak)− d(x,A)|p

+
∑
k∈Ir
k/∈Lr

|d(x,Ak)− d(x,A)|p


<

1

hr
.
hr.ε

2Mp
Mp +

1

hr
.
hr.ε

2
=
ε

2
+
ε

2
= ε.

Hence, {Ak} is Wijsman strongly p−lacunary summable to A. �
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Definition 3.3. Let (X, ρ) be a metric space and θ = {kr} be a lacunary sequence.
For any non-empty closed subsets A, Ak ⊆ X, we say that {Ak} is Wijsman
lacunary almost convergent to A, if for each ε > 0 and for each x ∈ X,

lim
r→∞

1

hr

∑
Ir

d(x,Ak+i) = d(x,A),

uniformly in i.

Definition 3.4. Let (X, ρ) be a metric space and θ = {kr} be a lacunary sequence.
For any non-empty closed subsets A, Ak ⊆ X, we say that {Ak} is Wijsman
lacunary strongly almost convergent to A, if for each ε > 0 and for each x ∈ X,

lim
r→∞

1

hr

∑
Ir

|d(x,Ak+i)− d(x,A)| = 0,

uniformly in i.

Example 3.1. Let X = R2 and we define a sequence {Ak} as follows:

Ak :=


{

(x, y) ∈ R2 : (x− 1)2 + (y + 1)2 =
1

k

}
, if kr−1 < k < kr−1 + [

√
hr],

{(1, 0)} , otherwise.

As k → ∞ this sequence is Wijsman lacunary strongly almost convergent to the
set A = {(1, 0)}.

Definition 3.5. Let (X, ρ) be a metric space and θ = {kr} be a lacunary sequence.
For any non-empty closed subsets A, Ak ⊆ X, we say that {Ak} is Wijsman
lacunary strongly p−almost convergent to A, if for each ε > 0 and for each x ∈ X,

lim
r→∞

1

hr

∑
Ir

|d(x,Ak+i)− d(x,A)|p = 0,

uniformly in i, where p is a positive real number.

Definition 3.6. Let (X, ρ) be a metric space and θ = {kr} be a lacunary sequence.
For any non-empty closed subsets A, Ak ⊆ X, we say that the sequence {Ak} is
Wijsman lacunary almost statistically convergent to A, if for each ε > 0 and for
each x ∈ X,

lim
r→∞

1

hr
|{k ∈ Ir : |d(x,Ak+i)− d(x,A)| ≥ ε| = 0,

uniformly in i.

Let L∞, C, (WAC)θ and |WAC|θ, respectively, denote the sets of the all bounded,
Wijsman convergent, Wijsman lacunary almost convergent and Wijsman lacunary
strongly almost convergent sequences of sets. It is easy to see that

C ⊂ (WAC)θ ⊂ |WAC|θ ⊂ L∞.

Theorem 3.5. Let (X, ρ) be a metric space, θ = {kr} be a lacunary sequence and
p be a positive number. Then, for any non-empty closed subsets A, Ak ⊆ X,

(i) {Ak} is Wijsman lacunary almost statistically convergent to A, if it is Wijs-
man lacunary strongly p−almost converget to A,
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(ii) If {Ak} is bounded and Wijsman lacunary almost statistically convergent
to A, then it is Wijsman lacunary strongly p−almost convergent to A.

Proof. The proof is similar to the proof of Theorem (3.4). �

Definition 3.7. Let (X, ρ) be a metric space and θ = {kr} be a lacunary sequence.
For any non-empty closed subsets A, Ak ⊆ X, we say that the sequence {Ak} is
Hausdorff lacunary statistically convergent to A, if for each ε > 0,

lim
r→∞

1

hr

∣∣∣∣{k ∈ Ir : sup
x∈X
|d(x,Ak)− d(x,A)| ≥ ε

}∣∣∣∣ = 0

i.e.,
sup
x∈X
|d(x,Ak)− d(x,A)| < ε a.a.k.

in this case, we write HSθ − limAk = A, Sθ − limH Ak = A, Ak → A(HSθ).

Theorem 3.6. Let (X, ρ) be a metric space, θ = {kr} be a lacunary and {Ak} be a
sequence of non-empty closed subsets of X. If {Ak} is Hausdorff lacunary statistical
converget, then {Ak} is Wijsman lacunary statistical convergent.

Proof. For any sequence {Ak} and for every ε > 0, since

|{k ∈ Ir : |d(x,Ak)− d(x,A)| ≥ ε}| ≤
∣∣∣∣{k ∈ Ir : sup

x∈X
|d(x,Ak)− d(x,A)| ≥ ε

}∣∣∣∣
we get the result. �
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A NOTE ON FIBERED QUADRANGLES

S. EKMEKÇİ & A. BAYAR

Abstract. In this work, the fibered versions of the diagonal triangle and the

quadrangular set of a complete quadrangle in fibered projective planes are
introduced. And then some related theorems with them are given.

1. Introduction

Fuzzy set theory was introduced by Zadeh [10] and this theory has been applied in
many areas. One of them is projective geometry, see for instance [1,2,5,7,8,9]. A first
model of fuzzy projective geometries was introduced by Kuijken, Van Maldeghem
and Kerre [7,8]. Also, Kuijken and Van Maldeghem contributed to fuzzy theory
by introducing fibered geometries, which is a particular kind of fuzzy geometries
[6]. They gave the fibered versions of some classical results in projective planes
by using minimum operator. Then the role of the triangular norm in the theory
of fibered projective planes and fibered harmonic conjugates and a fibered version
of Reidemeister’s condition were given in [3]. The fibered version of Menelaus and
Ceva’s 6-figures was studied in [4].

It is well known that triangles and quadrangles have an important role in projec-
tive geometry. A complete quadrangle is a system of geometric objects consisting
of any four points in a plane, no three of which are on a common line, and of the
six lines connecting each pair of points. The free completion of a configuration
containing either a quadrangle or a quadrilateral is a projective plane. In contrast,
the free completion of a (non-empty) configuration which does not contain either
a quadrangle or a quadrilateral is not a projective plane. Notice that the existence
of a quadrangle and the associated diagonal triangle forces any projective plane
to have at least seven points. If, in fact, the points of the diagonal triangle are
collinear, we obtain a projective plane with seven points. This projective plane is
known as the Fano plane.

In the present paper, we consider the fibered versions of classical theorems related
to complete quadrangles. We start by defining the fiber version of the diagonal
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triangle of a complete quadrangle in fibered projective planes. And then some
related theorems are given between them. It is shown that four f -points intersecting
two opposite sides of two f -complete quadrangles are f -collinear when four f -lines
spanned by two opposite vertices of two f -complete quadrangles are f -concurrent.
Finally, the fiber version of a quadrangular set is defined and related theorems with
f -quadrangular sets are given in fibered projective planes.

2. Preliminaries

We first recall some basic notions from fuzzy set theory and fibered geometry.
We denote by ∧ a triangular norm on the (real) unit interval [0, 1], i.e., a symmetric
and associative binary operator satisfying (a∧b) ≤ (c∧d) whenever a ≤ c and b ≤ d,
and a ∧ 1 = a, for all a, b, c, d ∈ [0, 1].

Definition 2.1. (see [6]) Let P = (P,B, ◦) be any projective plane with point set
P and line set B, i.e., P and B are two disjoint sets endowed with a symmetric
relation ◦ (called the incidence relation) such that the graph (P ∪B, ◦) is a bipartite
graph with classes P and B, and such that two distinct points p, q in P are incident
with exactly one line, every two distinct lines L,M are incident with exactly one
point, and every line is incident with at least three points. A set S of collinear
points is a subset of P each member of which is incident with a common line L.
Dually, one defines a set of concurrent lines. We now define fibered points and
fibered lines, briefly called f -points and f -lines.

Definition 2.2. (see [6]) Suppose a ∈ P and α ∈]0, 1]. Then an f -point (a, α) is
the following fuzzy set on the point set P of P :

(a, α) : P → [0, 1] :

{
a→ α,
x→ 0 if x ∈ P\{a}.

Dually, one defines in the same way the f -line (L, β) for L ∈ B and β ∈]0, 1]. The
real number α above is called the membership degree of the f -point (a, α), while
the point a is called the base point of it. Similarly for f -lines.

Definition 2.3. (see [6]) Two f -lines (L,α) and (M,β), with α∧ β > 0, intersect
in the unique f -point (L ∩M,α ∧ β). Dually, the f -points (a, λ) and (b, µ), with
λ ∧ µ > 0, span the unique f - line (〈a, b〉, λ ∧ µ).

Definition 2.4. (see [6]) A (nontrivial) fibered projective plane FP consists of
a set FP of f -points of P and a set FB of f -lines of P such that every point
and every line of P is the base point and base line of at least one f -point and f -
line, respectively (with at least one membership degree different from 1), and such
that FP = (FP, FB) is closed under taking intersections of f -lines and spans of
f -points. Finally, a set of f -points are called collinear if each pair of them span
the same f -line. Dually, a set of f -lines are called concurrent if each pair of them
intersect in the same f -point.
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3. Fibered Version of quadrangles

Definition 3.1. (see [3]) Suppose we have a fibered projective plane FP with base
projective plane P. Choose four f -points (a1, α1), (a2, α2), (a3, α3), and (a4, α4)
in FP no three base points of which are collinear. These f -points are called f -
vertices. The configuration that consists of these four f -points, the six f -lines
(A{i,j}, β{i,j}) =: (〈ai, aj〉 , αi ∧ αj), for i 6= j, i, j ∈ {1, 2, 3, 4} (which we call f -
sides), and three f -points (A{i,j} ∧ A{k,l}, α1 ∧ α2 ∧ α3 ∧ α4), with {i, j, k, l} =
{1, 2, 3, 4} (the f -diagonal points), is called an f -complete quadrangle.

Definition 3.2. Suppose we have a fibered projective plane FP with base projective
plane P. If the vertices of an f -triangle are the f -diagonal points of an f -complete
quadrangle, it this f -triangle is called an f -diagonal triangle.

To simplify notation, we will sometimes omit the binary operator ∧ and write
αβ for α ∧ β. In this notation, we will also abbreviate α ∧ α to α2.

Theorem 3.1. Suppose we have a fibered projective plane FP with base plane P
that is Desarguesian. Let four f -points (a1, α1), (a2, α2), (a3, α3) and (a4, α4) form
an f -complete quadrangle and let the three f - points (bi, βi), i = {1, 2, 3}, with
b1 = a2a3∩a1a4, b2 = a2a4∩a1a3 and b3 = a1a2∩a3a4, be the associated f -diagonal
triangle in FP. The three intersection f -points (ck, γk) of the f -lines (aiaj , αi∧αj)
and (bibj , βi ∧ βj), with {i, j, k} = {1, 2, 3}, are f -collinear if α2

1α2α3 = α1α
2
2α3 =

α1α2α
2
3.

Proof. Note that by Definition 3.1 βi = α1 ∧ α2 ∧ α3 ∧ α4 =: β, i = 1, 2, 3. The
lines aibi, i = 1, 2, 3 are incident with the point a4 in P. If Desargues’ theorem is
applied to the triangles {a1, a2, a3} and {b1, b2, b3}, we see that the points ck =
aiaj ∧ bibj , with {i, j, k} = {1, 2, 3}, are collinear in P. Also, using α2

1α2α3 =
α1α

2
2α3 = α1α2α

2
3, the equality

α2
1α2α3β

4 = α1α
2
2α3β

4 = α1α2α
2
3β

4

is obtained. So, the three f -points (ck, γk) = (aiaj ∧ bibj , αiαjβ
2), with {i, j, k} =

{1, 2, 3}, are f -collinear. �

Corollary 3.1. Suppose we have a fibered projective plane FP with base plane
P that is Desarguesian and let ∧ be the minimum triangular norm. Let four f -
points (a1, α1), (a2, α2), (a3, α3) and (a4, α4) form an f -complete quadrangle and let
(bi, βi), i = {1, 2, 3} be the corresponding f -diagonal triangle, with b1 = a2a3∩a1a4,
b2 = a2a4 ∩ a1a3 and b3 = a1a2 ∩ a3a4. Then the three f -points (ck, γk) = (aiaj ∩
bibj , αi ∧ αj ∧ βi ∧ βj), with {i, j, k} = {1, 2, 3}, are f -collinear.

Theorem 3.2. Suppose we have a fibered projective plane FP with Desarguesian
base plane P. Choose two different f -quadrangles (ai, αi) and (bi, βi), i = 1, 2, 3, 4
in FP. Let the f -lines (〈ai, bi〉 , αiβi), for i ∈ {1, 2, 3, 4}, be concurrent with in-
tersection points (p, γ) in FP, ai 6= bi 6= pi 6= ai. Let the f -lines (〈a1, a2〉 , α1α2),
(〈a3, a4〉 , α3α4), (〈b1, b2〉 , β1β2) and (〈b3, b4〉 , β3β4) meet in the f -point (c1, γ1), the
f -lines (〈a1, a4〉 , α1α4), (〈a2, a3〉 , α2α3), (〈b1, b4〉 , β1β4) and (〈b2, b3〉 , β2β3) meet
in the f -point (c2, γ2), the f -lines (〈a2, a4〉 , α2α4) and (〈b2, b4〉 , β2β4) meet in the
f -point (c3, γ3) and let the f -point (c4, γ4) be the intersection point of the f -lines
(〈a1, a3〉 , α1α3) and (〈b1, b3〉 , β1β3). Then (ci, γi), i ∈ {1, 2, 3, 4} are collinear in
FP (in particular, γ1 = γ2 = γ3 = γ4).
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Proof. One calculates γ = αiαjβiβj , for {i, j} ⊆ {1, 2, 3, 4},with i 6= j. Since the
f -lines (〈a1, a2〉 , α1α2) , (〈a3, a4〉 , α3α4) , (〈b1, b2〉 , β1β2) and (〈b3, b4〉 , β3β4) are f -
concurrent in (c1, γ1), γ1 = α1α2α3α4 = β1β2β3β4 = α1α2β1β2 = α1α2β3β4 =
α3α4β1β2 = α3α4β3β4 = γ. Similarly, it is seen that γ2 = α1α2α3α4 = β1β2β3β4 =
α1α4β1β4 = α1α4β2β4 = α2α3β1β4 = α2α3β2β3 = γ, γ3 = α2α4β2β4 = γ, γ4 =
α1α3β1β3 = γ. Since P is a Desarguesian plane, the ci, i ∈ {1, 2, 3, 4}, are collinear
and the memberships degrees of them are equal to γ. Hence the f -points (ci, γi),
i ∈ {1, 2, 3, 4} are collinear in FP. �

Although the assumptions of the previous Theorem imply a lot of equalities
between expressions in the membership degrees of the points ai and bj , i, j ∈
{1, 2, 3, 4}, they do not imply that all membership degrees should be equal. For
instance, if the minimum operator is used, then α1 = α2 = β1 = β3 ≤ αi, βj , for
i = 1, 2 and j = 2, 4, satisfies the assumptions.

Definition 3.3. Suppose we have a fibered projective plane FP with base projective
plane P. Let (ai, αi), i = 1, 2, 3, 4, be the vertices any f -quadrangle in FP and let
(L,α) be any f -line such that the base line L is not incident with any of the points
ai, i = 1, 2, 3, 4. Let (p1, β1), (p2, β2), (p3, β3) be the f -intersection point of the
f -line (L,α) with the f -line (a1a2, α1α2), (a1a3, α1α3), (a1a4, α1, α4), respectively,
and let (q1, γ1), (q2, γ2), (q3, γ3) be the f -intersection point of the f -line (L,α) with
the f -line (a3a4, α3α4), (a2a4, α2α4), (a2a3, α2, α3), respectively. Then these six
(not necessarily distinct) points are called an f -quadrangular set.

The f -quadrangular set may be consist of five or four f -points if the f -line (L,α)
happens to pass through one or two f -diagonal points.

Although the six base points p1, p2, p3, q1, q2 and q3 of the f -quadrangular set are
collinear in the base plane P, the six f -points (p1, β1), (p2, β2), (p3, β3), (q1, γ1),
(q2, γ2) and (q3, γ3) are not necessarily f -collinear in FP. But we do have the
following property.

Theorem 3.3. Suppose we have a fibered projective plane FP with Desarguesian
base plane P. Let, with the notation of Definition 3.3, {(pi, βi), (qi, γi)}, i = 1, 2, 3,
be the f - quadrangular set determined by the f -quadrangle (ai, αi), i = 1, 2, 3, 4,
and the f -line (L,α) in FP . Then the three pairs of f -points {(pi, βi), (qi, γi)},
i = 1, 2, 3, span the same f -line, namely (L,α2α1α2α3α4).

Proof. Easy calculation. �
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[1] Akça Z, Bayar A, Ekmekçi S, Van Maldeghem H., Fuzzy projective spreads of fuzzy projective

spaces, Fuzzy Sets and Systems 157 (2006) 3237-3247.
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ON THE INVOLUTES FOR DUAL SPLIT QUATERNIONIC

CURVES

CUMALI EKICI AND HATICE TOZAK

Abstract. In this study, definition of involute-evolute curves for semi-dual

quaternionic curves in semi-dual spaces D4
2 known as dual split quaternion

and D3
1 are given and also some well-known theorems for involute-evolute dual

split quaternionic curves are obtained.

1. Introduction

The idea of a string involute is due to C. Huygens (1658) who is also known with
his work in optics. He discovered involutes while trying to build a more accurate
clock [4]. Later, the relations Frenet frame of involute-evolute couple in the space
E3 were given in [10].

In recent years, the theory of degenerate submanifolds has been treated by re-
searchers and some classical differential geometry topics have been extended to
Lorentz manifold. For instance, in [23], the authors extended and studied the
spacelike involute-evolute curves in Minkowski space-time ([2], [5], [23]).

The quaternions were first defined in 1843 by Hamilton. The dual quaternions
are extension of the real quaternions by means of the dual numbers [3], [22], and
they were first introduced by Clifford [6]. In D3 and D4 dual spaces, Serret Frenet
Formulas had been defined by Sivridağ [21]. Inclined curves and characterization
of quaternionic Lorentz manifolds were given in 1999 by Karadağ. In 2002, Serret
Frenet Formulas for quaternionic curves in Semi-Euclidean space were defined by
Tuna. The quaternionic inclined curves in the Semi-Euclidean space E4

2 were given

Date: January 1, 2013 and, in revised form, February 2, 2013.

1991 Mathematics Subject Classification. 53A04, 53A17, 53A25.
Key words and phrases. semi-dual quaternions, semi-dual space, Serret-Frenet formula,

involute-evolute curve couple.
The author is supported by ...

190



ON THE INVOLUTES FOR DUAL SPLIT QUATERNIONIC CURVES 191

in 2004 by Çöken and Tuna [8]. The split quaternions were identified with Semi-
Euclidean space E4

2 , while the vector part of split quaternions were identified with
Minkowski 3-space [11]. In 2009, Serret Frenet Formulas for split quaternionic
curves in Semi-Euclidean space E4

2 were given in [7].
In this paper, we firstly define involute-evolute curve couples in definition of

involute-evolute curves on D3
1 and D4

2. Later, we calculate Frenet frame of the
evolute curve by the help of the frame of the involute curve. We use the methods
expressed in [7]. (In this paper, we consider non-null curves, and a version of this
adapted to null curves can be studied.)

2. Preliminaries

In this section, we will give basic definitions of the dual spaces D3 and D4 and
then the semi-dual spaces D3

1 and D4
2.

A dual number has the form a + ξa∗ where a and a∗ are real numbers and
ξ = (0, 1) is the dual unit with the property that ξ2 = 0. The set of all dual
numbers form a comutative ring over the real number field and denoted by D [25].

D3 dual vector space (D - Module) can be written as

D3 = {(A1, A2, A3) : A1, A2, A3 ∈ D } .
The Euclidean inner-product of two dual vectors A, B ∈ D3 is defined as

〈, 〉 : D3 × D3 −→ D
(A,B) −→ 〈A,B〉 = 〈a, b〉+ ξ(〈a∗, b〉+ 〈a, b∗〉).

Given a dual vector A = a+ ξa∗, the norm of A is

‖A‖ = (〈A,A〉)
1
2 = ‖a‖+ ξ

〈a, a∗〉
‖a‖

, a 6= 0.

The cross-product of two dual vectors A,B ∈ D3 is defined as,

A ∧B = a ∧ b+ ξ (a ∧ b∗ + a∗ ∧ b) .
Similarly, D4 dual vector space can be written as

D4 = {(A1, A2, A3, A4) : A1, A2, A3, A4 ∈ D } .
The same definitions of inner-product, norm and cross-product are hold for D4.

The Lorentzian inner-product of two dual vectors A = a+ ξa∗ and B = b+ ξb∗,
a, b ∈ R3

1 is given as

〈A,B〉 = 〈a, b〉+ ξ(〈a∗, b〉+ 〈a, b∗〉)
with the signature (−,+,+) in R3

1. The D−module D3 with the Lorentzian inner-
product is called the semi-dual space D3

1 [24].
On the other hand, a semi-Euclidean inner-product of two dual vectors in D4,

A = a+ ξa∗ and B = b+ ξb∗, a, b ∈ R4
2, can be defined as

〈A,B〉 = 〈a, b〉+ ξ(〈a∗, b〉+ 〈a, b∗〉)
with the signature (−,−,+,+) in R4

2. The dual space D4 with the semi-Euclidean
inner-product is called the semi-dual space D4

2 or dual-split quaternion [12].
Let A be a dual vector in D3

1. If 〈a, a〉 < 0, then A is called timelike, if 〈a, a〉 > 0,
then A is called spacelike and if 〈a, a〉 = 0, then A is called lightlike (or null) vector.
A smooth curve on the semi-dual space D3

1 is said to be timelike, spacelike or null
if its tangent vectors are timelike, spacelike or null, respectively. Observe that, a
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timelike curve corresponds to the path of an observer moving at less than the speed
of light while the spacelike curves are faster and the null curves are equal to the
speed of light [17].

A real quaternion consists of a set of four ordered real numbers
a, b, c, d associated with four units e1, e2, e3 and 1, respectively. The three units
e1, e2 and e3 have the following properties:

(1)
e21 = e22 = e23 = −1,
e1 × e2 = e3, e2 × e3 = e1, e3 × e1 = e2
e2 × e1 = −e3, e3 × e2 = −e1, e1 × e3 = −e2

A real quaternion q may be written as q = ae1 + be2 + ce3 + d.
Clearly, a quaternion q consists of two parts: the scalar part Sq = d and the

vector part Vq = ae1 + be2 + ce3. The set of all real quaternions is denoted by QR.
The multiplication of two real quaternions p and q is defined as

(2) p× q = Vp ∧ Vq − 〈Vp, Vq〉+ SpSq + SpVq + SqVp

where 〈, 〉 and ∧ are the inner-product and the cross-product on R3 , respectively.
The conjugate of the quaternion q is denoted by αq and defined as αq = Sq − Vq.

The h−inner-product of two quaternions is defined as

(3) h(p, q) =
1

2
(p× αq + q × αp), p, q ∈ QR

The real number [h(p, p)]1/2 is called the norm of the real quaternion p and is
denoted by ‖p‖ . Hence we obtain that

(4) ‖p‖2 = h(p, q) = a2 + b2 + c2 + d2.

It is easy to see that, if p = a1e1+b1e2+c1e3+d1 and q = a2e1+b2e2+c2e3+d2,
then

(5) h(p, q) = a1a2 + b1b2 + c1c2 + d1d2 [1].

Given two real quaternions p and p∗, we define the dual quaternion as
P=p+ξ p∗ and denote the set of dual quaternions by QD. For given A,B,C,D ∈ D,
we can write P = Ae1 + Be2 + Ce3 +D. Here SP = D is called the scalar part of
P and VP = Ae1 +Be2 + Ce3 is called the vector part of P.

The multiplication of two dual quaternions P and Q is defined as

(6) P ×Q = p× q + ξ (p× q∗ + p∗ × q)
where P = p+ξ p∗ and Q = q+ξq∗ and × shows the real quaternion multiplication.
It is clear that

(7) P ×Q = SPSQ + SPVQ + SQVP − 〈VP , VQ〉+ VP ∧ VQ
where 〈, 〉 is the inner product and ∧ is the cross-product on D3 . If P = SP + VP ,
then the conjugate of P is defined by αP = SP − VP . By using this definition, the
following properties can be easily proved:

(i) α(αP ) = P,
(ii) α(P ×Q) = αQ× αP.

The symmetric dual-valued bilinear form H is defined as

(8) H(P,Q) =
1

2
(P × αQ+Q× αP ).
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As a result, we obtain the followings :
1- For all elements P,Q of QD, we have

H(P,Q) = h(p, q) + ξ[h(p, q∗) + h(p∗, q)]

where h is the symmetric real-valued bilinear form.
2- If P = Ae1 +Be2 + Ce3 +D, then we have

H(P, P ) = A2 +B2 + C2 +D2.

3- ∀ P ∈ QD, the norm of P is defined by

‖P‖ = ‖p‖+ ξ
h(p, p∗)

‖p‖
,

and so

(9) ‖P‖2 = H(P, P ) = P × αP .

4- ∀ P ∈ QD, the scalar part and the vector part of P is

SP =
1

2
(P + αP ), VP =

1

2
(P − αP ).

As a result,

(i) if P + αP = 0, then P ∈ D−module,
in this case, P is called dual-spatial quaternion

(ii) if P − αP = 0, then P ∈ D,
in this case, P is called dual-temporal quaternion.

Let P and Q be two dual-spatial quaternion. If H(P,Q) = 0, we say that P
and Q are H−orthogonal[19].

A semi-real quaternion consists of a set of four ordered real numbers a, b, c, d
associated with four units e1, e2,e3 and 1, respectively. The three units e1, e2 and
e3 have the following properties:

(10)
i) ei × ei = −ε(ei), 1 ≤ i ≤ 3
ii) in R3

1, ei × ej = ε(ei)ε(ej)ek 1 ≤ i, j, k ≤ 3,
iii) in R4

2, ei × ej = −ε(ei)ε(ej)ek, 1 ≤ i, j, k ≤ 3,

where (ijk) is the even permutation of (123).
Notice here that,

ε(ei) =

{
−1 , ei timelike
+1 , ei spacelike

.

As a notation, we denote the semi-real quaternions by Qν with an index ν = 1, 2
such that

Qν =

{
q | q = ae1 + be2 + ce3 + d, a, b, c, d ∈ R

e1, e2, e3 ∈ R3
1, hν(ei, ei) = ε(ei), 1 ≤ i ≤ 3

}
.

The multiplication of two semi-real quaternions p and q is defined as

p× q = Vp ∧ Vq − 〈Vp, Vq〉+ SpSq + SpVq + SqVp

where 〈, 〉 and ∧ are the inner-product and the cross-product on R3
1, respectively.

The conjugate of the quaternion q is denoted by αq and defined as αq = Sq − Vq.
For every p, q ∈ Qν , the h−inner-product hν : Qν × Qν −→ D of p and q is

defined as:
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h1(p, q) =
1

2
[ε(p)ε(αq)(p× αq) + ε(q)ε(αp)(q × αp)] for R3

1

and

h2(p, q) =
−1

2
[ε(p)ε(αq)(p× αq) + ε(q)ε(αp)(q × αp)] for R4

2.

The real number [hν(p, p)]1/2 is called the norm of semi-real quaternion p and is
denoted by ‖p‖ . Hence we see that

‖p‖2 = |hν(p, p)| = |ε(p)(p× αp)|.

Given q ∈ Qν , if q + αq = 0, then q is called semi-real spatial quaternion. If
q − αq = 0, q is called semi-real temporal quaternion. The set of semi-real spatial
quaternions is isomorphic to R3

1 .
In general, we can write that

q =
1

2
[q + αq] +

1

2
[q − αq].

For p, q ∈ Qν , if h(p, q) = 0, p and q are called h−orthogonal. If the norm of q
is unit, then it is called unit semi-real quaternion and denoted by q0. So,

Nq =
√
|q × αq| =

√
|−a2 − b2 + c2 + d2|

and

q0 =
q

Nq
=

ae1 + be2 + ce3 + d√
|−a2 − b2 + c2 + d2|

([8],[20]).

Let p and p∗ be two semi-real quaternions. We define the semi-dual quater-
nion as P = p+ ξ p∗ and denote the set of semi-dual quaternions by QD,ν with an
index ν = 1, 2 such that

QD,ν =
{
P | P = Ae1 +Be2 + Ce3 +D, A,B,C,D ∈ D, e1, e2, e3 ∈ R3

1

}
.

We will use H1(ei, ei) = εi, i = 0, 1, 2 for D3
1 and H2(ei, ei) = ε(ei), i = 0, 1, 2, 3

for D4
2 . The multiplication of two dual quaternions P and Q is defined as

P ×Q = p× q + ξ (p× q∗ + p∗ × q) where P = p+ ξ p∗ and Q = q + ξq∗ and ×
shows the quaternion multiplication. It is clear that

(12) P ×Q = SPSQ + SPVQ + SQVP − 〈VP , VQ〉+ VP ∧ VQ
where 〈, 〉 is the inner product and ∧ is the cross-product on D3

1 . If P = SP +VP ,
then the conjugate of P is defined by αP = SP − VP . By using this, the following
properties can be easily proved:

(i) α(αP ) = P,
(ii) α(P ×Q) = αQ× αP.

For every P,Q ∈ QD,ν , we define the symmetric dual-valued bilinear form
Hν : QD,ν ×QD,ν −→ D as

(13) H1(P,Q) =
1

2
[ε(P )ε(αQ)(P × αQ) + ε(Q)ε(αP )(Q× αP )] for D3

1
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and

(14) H2(P,Q) =
−1

2
[ε(P )ε(αQ)(P × αQ) + ε(Q)ε(αP )(Q× αP )] for D4

2.

The following results may be obtained:
1- For all elements P,Q of QD,ν , we have

Hν(P,Q) = hν(p, q) + ξ[hν(p, q∗) + hν(p∗, q)]

where h is the symmetric real-valued bilinear form.
2- If P = Ae1 +Be2 + Ce3 +D, then we have

Hν(P, P ) = −A2 −B2 + C2 +D2.

3- ∀ P ∈ QD,ν , the norm of P is defined by

‖P‖ = ‖p‖+ ξ
hν(p, p∗)

‖p‖
and so

(15) ‖P‖2 = |Hν(P, P )| = |ε(P )(P × αP )|.

4- ∀ P ∈ QD,ν , the scalar part and the vector part of P are

SP =
1

2
(P + αP ), VP =

1

2
(P − αP ).

As a result,

(i) if P + αP = 0, then P ∈ D−module,
in this case, P is called semi-dual-spatial quaternion

(ii) if P − αP = 0, then P ∈ D,
in this case, P is called semi-dual-temporal quaternion.

Let P and Q be two semi-dual spatial quaternion. If Hν(P,Q) = 0, we say that
P and Q are Hν−orthogonal.

Now, we give the Serret-Frenet formulas for a non-null semi-dual quater-
nionic curve in D3

1.

Consider the smooth curve β ⊂ D3
1 , {β ∈ Qν | β + αβ = 0} given by

β : I ⊂ R −→ Qν ⊂ D3
1

s −→ β(s) =
3∑
i=1

βi(s)ei.

Let s be the parameter along β. For any s ∈ I, if {t(s), n1(s), n2(s)} is the Serret-
Frenet frame and k(s), r(s) are the curvatures, then we have the following formulas

(16)
t′ = ε(n1)kn1

n′1 = ε(t)[ε(t)ε(n1)rn2 − kt]
n′2 = −ε(n2)rn1

where t(s) = t+ ξt∗, n1(s) = n1 + ξn∗1 and n2(s) = n2 + ξn∗2 with the Serret-Frenet
frame {t(s), n1(s), n2(s)} of R3

1.

If a curve is a non-null semi-dual quaternionic curve, then the Serret-Frenet
formulas in D4

2 are defined as following :
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Consider the smooth curve γ ⊂ D4
2,

γ : I −→ QD,ν ⊂ D4
2

s −→ γ(s) =
4∑
i=1

βi(s)ei, e4 = 1.

with β4(s)e4 = D(s), D(s) = d(s) + ξd∗(s). For any s ∈ I, if {T (s), N1(s), N2(s),
N3(s)} is the Serret-Frenet frame of dual-split quaternionic curve, then

(17)

T ′ = ε(N1)KN1

N ′1 = ε(n1)kN2 − ε(N1)ε(t)KT
N ′2 = −ε(t)kN1 + ε(n1)[r − ε(T )ε(t)ε(N1)K]N3

N ′3 = −ε(n2)[r − ε(T )ε(t)ε(N1)K]N2

where T (s) = T+ξT ∗, N1(s) = N1+ξN∗1 , N2(s) = N2+ξN∗2 and N3(s) = N3+ξN∗3
with the Serret-Frenet frame {T (s), N1(s),
N2(s), N3(s)} of R4

2 and K = ε(N1) ‖T ′‖ [7].

3. THE INVOLUTES OF THE SEMI-DUAL CURVES IN D3
1

Definition 3.1. Let M1, M2 ⊂ D3
1 be two curves which are given by (I, β) and

(I, β∗) coordinate neighbourhoods, respectively. Let Frenet frame of M1 and M2

be {t, n1, n2} and {t∗,n∗1, n∗2}, respectively. M2 is called the involute of M1(M1 is
called the evolute of M2) if

(18) H1(t, t∗) = 0.

Theorem 3.1. Let (M1, M2) be the involute-evolute curve couple which are given
by (I, β) and (I, β∗) coordinate neighbourhoods, respectively. The distance between
the points β(s) ∈M1 and β∗(s∗) ∈M2 is given by

d(β(s), β∗(s)) = ε0 |c− s| , c=dual constant.

Proof. If M2 is the involute of M1, we have

(19) β∗(s) = β(s) + λ(s)t(s)

Let us derivate both side with respect to s:

(20)
dβ∗

ds
=
dβ

ds
+
dλ

ds
t+ λ

dt

ds

Because of
dt

ds
= t

′
= ε1kn1,

(21)
dβ∗

ds
= (1 +

dλ

ds
)t+ λε1kn1

where s and s∗are arc parameters of M1 and M2, respectively.
Thus we have

(22) t∗
ds∗

ds
= (1 +

dλ

ds
)t+ λε1kn1.

By using the equation (22), we have

(23) H1(t, t∗)
ds∗

ds
= (1 +

dλ

ds
)H1(t, t) + λε1kH1(t, n1).
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From the definition of the involute-evolute curve couple, H1(t, t∗) = 0. Thus we
obtain

(24) 1 +
dλ

ds
= 0 and λ = c− s, c = dual constant.

From the definition of the distance on Lorentzian space, we easily find

(25)
d(β(s), β∗(s)) = ‖β∗(s)− β(s)‖

= ε0 |c− s| .

�

Theorem 3.2. Let (M1, M2) be the involute-evolute curve couple which are given
by (I, β) and (I, β∗) coordinate neighbourhoods, respectively. Let Frenet frames of
M1 and M2 in the points β(s) ∈M1 and β∗(s∗) ∈M2 be {t,n1, n2} and {t∗,n∗1, n∗2},
respectively. For the curvature and torsion of curve M2, we have

k∗ =
ε∗1

(c− s)k
√
|ε0k2 + ε2r2|.

Proof. If M2 is the involute of M1, we have

β∗(s) = β(s) + λ(s)t(s).

Let us derivate both side with respect to s. From equations (22) and (24), we obtain

(26) t∗
ds∗

ds
= (c− s) ε1kn1

where s and s∗are arc parameters of M1 and M2, respectively. We can find

(27)
ds∗

ds
= ε∗0ε1 (c− s) k.

Thus we have

(28) t∗ = ε∗0n1.

Hence {t∗(s), n1(s)} is linear dependent. That’s why we consider that

(29) t∗(s) = n1(s).

By derivating t∗ and using equations (16), (27) and (29), then we get

(30) ε∗1k
∗n∗1 =

ε∗0ε1
(c− s) k

[ε0[ε0ε1rn2 − kt]] .

Then, by the norm of the both side of the equation (30), we have

(31) k∗ =
ε∗1

(c− s)k
√
|ε0k2 + ε2r2|.

�

Theorem 3.3. Let (M1, M2) be the involute-evolute curve couple which are given
by (I, α) and (I, β) coordinate neighbourhoods,respectively. Let Frenet frames of M1

and M2 in the points β(s) ∈ M1 and β∗(s∗) ∈ M2 be {t,n1, n2} and {t∗,n∗1, n∗2},
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respectively, and let the curvature and torsion of curves M1 and M2 be k, r and k∗,
r∗, respectively. We have

n∗1 =
ε∗1ε
∗
0√

|ε∗1(ε2r2 + ε0k2)|
[ε0(ε0ε1rn2 − kt)]

n∗2 =
1√

|ε∗1(ε2r2 + ε0k2)|
(ε2rt+ ε1kn2)

r∗ =
ε2(k

′
r − kr′

)

(ε2r2 + ε0k2)(c− s)k
.

Proof. By using equation (30) and (31), we get

(32) n∗1 =
ε∗1ε
∗
0√

|ε∗1(ε2r2 + ε0k2)|
[ε0(ε0ε1rn2 − kt)] .

From n2 = ε0ε1 (t× n1), we find

n∗2 = ε∗0ε
∗
1 (t∗ × n∗1)

n∗2 = ε∗0ε
∗
1

(
n1 ×

ε∗1ε
∗
0√

|ε∗1(ε2r2 + ε0k2)|
[ε0(ε0ε1rn2 − kt)]

)

n∗2 =
1√

|ε∗1(ε2r2 + ε0k2)|
(ε2rt+ ε1kn2).(3.1)

By derivating n∗2 and using this result in equation (16), we obtain

(34) r∗ =
ε∗0ε
∗
1ε
∗
2ε2(k

′
r − kr′

)

(ε2r2 + ε0k2)(c− s)k
.

�

4. THE INVOLUTES OF THE SEMI-DUAL CURVES IN D4
2

Definition 4.1. Let M1, M2 ⊂ D4
2 be two curves which are given by (I, β) and

(I, β∗) coordinate neighbourhoods, respectively. Let Frenet frame of M1 and M2

be {T ,N1, N2, N3} and {T ∗,N∗1 , N∗2 , N∗3 }, respectively. M2 is called the involute of
M1(M1 is called the evolute of M2) if

(35) H2(T, T ∗) = 0.

Theorem 4.1. Let (M1, M2) be the involute-evolute curve couple which are given
by (I, γ) and (I, γ∗) coordinate neighbourhoods, respectively. The distance between
the points γ(s) ∈M1 and γ∗(s∗) ∈M2 is given by

d(γ(s), γ∗(s)) = |c− s| , c = dual constant.

Proof. If M2 is the involute of M1, we have

(36) γ∗(s) = γ(s) + λ(s)T (s).

Let us derivate both side with respect to s:

(37)
dγ∗

ds
=
dγ

ds
+
dλ

ds
T + λ

dT

ds
.
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Because of
dT

ds
= T

′
= ε(N1)KN1,

(38)
dγ∗

ds
= (1 +

dλ

ds
)T + λε(N1)KN1

where s and s∗are arc parameters of M1 and M2, respectively. Thus we have

(39) T ∗
ds∗

ds
= (1 +

dλ

ds
)T + λε(N1)KN1.

Taking inner product with t this equation’s both side, we have

(40) H2(T, T ∗)
ds∗

ds
= (1 +

dλ

ds
)H2(T, T ∗) + λε1KH(T,N1).

From the definition of the involute-evolute curve couple, H2(T, T ∗) = 0. Thus we
obtain

(41) 1 +
dλ

ds
= 0 and λ = c− s, c=dual constant.

From the definition of the distance on Lorentzian space, we easily find

(42)
d(γ(s), γ∗(s)) = ‖γ∗(s)− γ(s)‖

= |c− s| .

�

Theorem 4.2. Let (M1, M2) be the involute-evolute curve couple which are given
by (I, γ) and (I, γ∗) coordinate neighbourhoods, respectively. Let Frenet frames of
M1 and M2 in the points γ(s) ∈ M1 and γ∗(s∗) ∈ M2 be {T,N1, N2, N3} and
{T ∗, N∗1 , N∗2 , N∗3 }, respectively. For the curvature and torsion of curve M2, we
have

K∗(s∗) =
|ε(N∗1 )|

√
|ε(N2)k2 + ε(T )K2|
(c− s)K

.

Proof. If M2 is the involute of M1, we have

γ∗(s) = γ(s) + λ(s)T (s).

Let us derivate both side with respect to s. From equations (39) and (41), we obtain

(43) T ∗
ds∗

ds
= ε(N1) (c− s)KN1

where s and s∗are arc parameter of M1 and M2, respectively. We can find

(44)
ds∗

ds
= |ε(T ∗)| |(c− s)|K.

Thus we have

(45) T ∗ = |ε(T ∗)| ε(N1)N1.

Hence {T ∗(s), N1(s)} is linear dependent. We consider that

(46) T ∗(s) = N1(s).

By derivating T ∗ and using equations (17), (44) and (46), then we get

(47) ε(N∗1 )K∗N∗1 =
|ε(T ∗)|
|(c− s)| k

(ε1kN2 − ε(N1)ε1KT ) .
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Then, by the norm of the both side of equation (47), we have

(48) K∗(s∗) =
|ε(N∗1 )|

√
|ε(N2)k2 + ε(T )K2|
(c− s)K

.

�

Theorem 4.3. Let (M1, M2) be the involute-evolute curve couple which are given
by (I, γ) and (I, γ∗) coordinate neighbourhoods, respectively. Let Frenet frames of
M1 and M2 in the points γ(s) ∈ M1 and γ∗(s∗) ∈ M2 be {T ,N1, N2, N3} and
{T ∗,N∗1 , N∗2 , N∗3 }, respectively, and let the curvature and torsion of curves M1 and
M2 be K, r, k and K∗, r∗, k ,respectively. we have

N∗1 =
ε(N∗1 ) |ε(N1)|√
|ε(N2)k2 + ε(T )K2|

(ε1kN2 − ε(N1)ε1KT )

N∗2 =
ε(T ∗)√

|ε∗1(ε2r2 + ε0k2)|
(ε2ε0rN2 + ε(T )kT )

N∗3 =
ε(T ∗)ε2ε0√
|ε∗1(ε2r2 + ε0k2)|

(−ε(T )T + ε1kN2).

Proof. By using equations (47) and (48), we get

(49) N∗1 =
ε(N∗1 ) |ε(N1)|√

||ε(N2)| k2 + |ε(T )|K2|
(ε1kN2 − ε(N1)ε1KT ) .

From equalities N2 = ε(T ) (n1 × T ), n2 × N1 = ε1ε2N2 and t × N1 = −ε(T )T ,
we find

N∗2 = ε(T ∗) (n∗1 × T ∗)

N∗2 =
ε(T ∗)ε∗1ε

∗
0√

|ε∗1(ε2r2 + ε0k2)|
(ε2ε0rN2 + ε(T )kT ).50(4.1)

If we use similar step as equation (50) and equality N3 = ε(T ) (n2 × T ), then

N∗3 = ε(T ∗) (n∗2 × T ∗)

N∗3 =
ε(T ∗)ε2ε0√
|ε∗1(ε2r2 + ε0k2)|

(−ε(T )T + ε1kN2).

�
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nionic curves, Kuwait J. Sci. Eng.1A(36): (2009), 1-14
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Edebiyat Fakultesi Yayinlari 2, 1983.
[11] Inoguchi, J., Timelike surfaces of constant mean curvature in Minkowski 3-space, Tokyo

Journal of Mathematics 21(1): (1998), 141-152.
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WEAK SOLUTIONS VIA LAGRANGE MULTIPLIERS FOR

CONTACT MODELS WITH NORMAL COMPLIANCE

ANDALUZIA CRISTINA MATEI

Abstract. We consider a 3D elastostatic frictional contact problem with

normal compliance, which consists of a systems of partial differential equa-
tions associated with a displacement boundary condition, a traction boundary

condition and a frictional contact boundary condition. The frictional con-
tact is modeled by means of a normal compliance condition and a version of

Coulomb’s law of dry friction. After we state the problem and the hypothe-

ses, we deliver a variational formulation as a mixed variational problem with
solution-dependent Lagrange multipliers set. Next, we prove the existence and

the boundedness of the weak solutions.

1. Introduction

The present work focuses on a 3D elastostatic frictional contact problem with
normal compliance. A normal compliance condition was firstly proposed in [11].

Then, the contact with normal compliance was involved in many models, see e.g.
the papers [2, 7, 8, 9, 18].

The model we discuss herein consists of a system of partial differential equations
associated with a displacement boundary condition, a traction boundary condition
and a frictional contact boundary condition. The frictional contact is modeled
by means of a normal compliance condition and a version of Coulomb’s law of
dry friction. This model was already analyzed in the frame of quasivariational
inequalities,

a(u, v − u) + j(u, v)− j(u, u) ≥ (f, v − u)X ;

for details see [19] and the references therein. The novelty in the present paper
consists in the variational approach we adopt; herein, we propose a mixed varia-
tional formulation in a form of a generalized saddle point problem with solution
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dependent Lagrange multipliers set Λ = Λ(u),

a(u, v) + b(v, λ) = (f, v)X for all v ∈ X,
b(u, µ− λ) ≤ 0 for all µ ∈ Λ(u);

Let us refer to [3, 4] for basic elements on the saddle point theory. For recent
papers related to mixed variational formulations in contact mechanics see e.g. [6,
13, 14, 15].

The mixed variational formulations are related to modern numerical techniques
in order to approximate the weak solutions of contact models and this motivates
the research on this direction. Referring to numerical techniques for approximating
weak solutions of contact problems via saddle point technique, we send the reader
to, e.g., [5, 20, 21].

The main goal of the present paper is to prove the existence and the boundedness
of the weak solutions of the considered model, via Lagrange multipliers technique.
The results we obtain rely on the abstract results in [12] which, for the convenience
of the reader, will be recalled below, in Section 2.

The problem we analyze in the present paper can be viewed as a new application
to the abstract results in [12]. A first application was delivered in the antiplane
framework, see [12]. A second application was presented in the conference paper
[17], for a 3D bilateral contact model with slip-dependent friction (see also [16] for
an extended and improved version of the conference paper [17]).

The structure of the paper is as follows. In Section 2 we present abstract auxiliary
results. In Section 3 we state the problem and we fix the hypotheses. Then, in
Section 4 we prove the existence and the boundedness of the weak solutions of the
frictional contact model with normal compliance.

2. Abstract auxiliary results

Let us consider the following abstract mixed variational problem.

Problem 1. Given f ∈ X, f 6= 0X , find (u, λ) ∈ X × Y such that λ ∈ Λ(u) ⊂ Y
and

a(u, v) + b(v, λ) = (f, v)X for all v ∈ X,(2.1)

b(u, µ− λ) ≤ 0 for all µ ∈ Λ(u).(2.2)

We made the following assumptions.

Assumption 1. (X, (·, ·)X , ‖ · ‖X) and (Y, (·, ·)Y , ‖ · ‖Y ) are two Hilbert spaces.

Assumption 2. a(·, ·) : X ×X → R is a symmetric bilinear form such that
(i1) there exists Ma > 0 : |a(u, v)| ≤Ma‖u‖X‖v‖X for all u, v ∈ X,
(i2) there exists ma > 0 : a(v, v) ≥ ma ‖v‖2X for all v ∈ X.

Assumption 3. b(·, ·) : X × Y → R is a bilinear form such that
(j1) there exists Mb > 0 : |b(v, µ)| ≤Mb‖v‖X‖µ‖Y for all v ∈ X, µ ∈ Y,

(j2) there exists α > 0 : inf
µ∈Y,µ 6=0Y

sup
v∈X,v 6=0X

b(v, µ)

‖v‖X‖µ‖Y
≥ α.

Assumption 4. For each ϕ ∈ X, Λ(ϕ) is a closed convex subset of Y such that
0Y ∈ Λ(ϕ).
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Assumption 5. Let (ηn)n ⊂ X and (un)n ⊂ X be two weakly convergent sequences,
ηn ⇀ η in X and un ⇀ u in X, as n→∞.

(k1) For each µ ∈ Λ(η), there exists a sequence (µn)n ⊂ Y such that µn ∈ Λ(ηn) and
lim infn→∞ b(un, µn − µ) ≥ 0.
(k2) For each subsequence (Λ(ηn′))n′ of the sequence (Λ(ηn))n, if (µn′)n′ ⊂ Y such that
µn′ ∈ Λ(ηn′) and µn′ ⇀ µ in Y as n′ →∞, then µ ∈ Λ(η).

Theorem 2.1. If Assumptions 1-5 hold true, then Problem 1 has a solution. In
addition, if (u, λ) ∈ X × Λ(u) is a solution of Problem 1, then

(u, λ) ∈ K1 ×
(
Λ(u) ∩K2),

where

K1 = {v ∈ X | ‖v‖X ≤
1

ma
‖f‖X};

K2 = {µ ∈ Y | ‖µ‖Y ≤
ma +Ma

αma
‖f‖X},

ma, α and Ma being the constants in Assumptions 2-3.

For the proof of this theorem we refer to [12].

3. The model and hypotheses

3.1. The statement of the problem. We consider the following 3D frictional
contact model with normal compliance.

Problem 2. Find : Ω→ R3 and : Ω→ S3 such that

Div() +0 () = 0 in Ω,(3.1)

() = E(()) in Ω,(3.2)

() = on Γ1,(3.3)

() =2 () on Γ2,(3.4)

−σν() = pν(uν()− ga) on Γ3,(3.5)

‖τ ()‖ ≤ pτ (, uν()− ga),(3.6)

τ () = −pτ (, uν()− ga)
τ ()

‖τ ()‖
if τ () 6= on Γ3.

Herein Ω is a bounded domain in R3, Γ1, Γ2, Γ3 is a partition of the boundary
∂Ω := Γ, Ω = Ω∪Γ, 0 : Ω→ R denotes the density of the volume forces, 2 : Γ2 → R
represents the density of the tractions, = () denotes the infinitesimal strain tensor

(εi j = ( ∂ui

∂xj
+

∂uj

∂xi
) for all i, j ∈ {1, 2, 3}) and E denotes the elastic operator. Here

and everywhere below ‖·‖ denotes the Euclidean norm on R3 or S3. Finally, uν = ·,
τ = −uν , σν = ()·, τ = −σν , where ” · ” denotes the inner product of two vectors
and is the unit outward normal vector.

Problem 2 has the following structure: (3.1) represents the equilibrium equation,
(3.2) represents a constitutive law for linearly elastic materials, (3.3) represents the
displacements boundary condition, (3.4) represents the traction boundary condition
and (3.5)-(3.6) models the frictional contact with normal compliance, the friction
law in (3.6) being a version of the Coulomb law of dry friction, where pτ is a given
nonnegative function. In the normal compliance contact condition (3.5) pν is a
nonnegative prescribed function which vanishes for negative argument and ga > 0
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denotes the gap. When uν < ga there is no contact and the normal pressure
vanishes. When there is contact then uν − ga is positive and represents a measure
of the interpenetration of the asperities. Then, condition (3.5) shows that the
foundation exerts a pressure on the body which depends on the penetration.

3.2. Assumptions. In order to weakly solve Problem 2 we make the following
assumptions.

Assumption 6. E = (Eijls) : Ω× S3 → S3,

• Eijls = Eijsl = Elsij ∈ L∞(Ω),
• There exists mE > 0 such that Eijlsεijεls ≥ mE ‖‖2, ∈ S3, a.e. in Ω.

Assumption 7. 0 ∈ L2(Ω)3, 2 ∈ L2(Γ2)3.

Assumption 8. pν : Γ3 × R+ → R+;

• there exists Lν > 0 : |pν(, r1)−pν(, r2)| ≤ Lν |r1−r2| r1, r2 ∈ R+, a.e. ∈
Γ3;
• the mapping 7→ pν(, r) is Lebesgue measurable on Γ3, for all r ∈ R+;
• pν(, r) = 0 for all r ≤ 0 a.e. ∈ Γ3.

Assumption 9. pτ : Γ3 × R+ → R+;

• there exists Lτ > 0 : |pτ (, r1)−pτ (, r2)| ≤ Lτ |r1−r2| r1, r2 ∈ R+, a.e. ∈
Γ3;
• the mapping 7→ pτ (, r) is Lebesgue measurable on Γ3, for all r ∈ R+;
• pτ (, r) = 0 for all r ≤ 0 a.e. ∈ Γ3.

3.3. Weak formulation. Let us introduce the following functional space.

(3.7) V = {∈ H1(Ω)3 | = 0 a.e. on Γ1}.
This is a Hilbert space endowed with the following inner product

(, )V =

∫
Ω

(()) : (()) dx,

where ” : ” denotes the inner product of two tensors.
Everywhere in this paper, for each ∈ V, we denote wν = · and τ = −wν a.e. on

Γ, where denotes the Sobolev trace operator for vectors.
Define ∈ V using Riesz’s representation theorem,

(3.8) (, )V =

∫
Ω

0() · () dx+

∫
Γ2

2() · () dΓ for all v ∈ V.

Let be a sufficiently regular solution of Problem 2. By a Green formula we get

(3.9) a(, ) = (, )V +

∫
Γ3

() · () dΓ for all ∈ V

where

(3.10) a(·, ·) : V × V → R a(, ) =

∫
Ω

E(()) : (()) dx.

Let us introduce the spaces

S = {|Γ3
∈ V };(3.11)

D = S′.(3.12)

For each ∈ S, we denote ζν = · and τ = −ζν a.e. on Γ3.
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Notice that |Γ3
denotes the restriction of the trace of the element ∈ V to Γ3.

Thus, S ⊂ H1/2(Γ3;R3) where H1/2(Γ3;R3) is the space of the restrictions on Γ3

of traces on Γ of functions of H1(Ω)3. On S we consider the Sobolev-Slobodeckii
norm

‖‖S =
(∫

Γ3

∫
Γ3

‖()− ()‖2

‖ − ‖3
dsx dsy

)1/2

;

see e.g. [1, 10].
For each ∈ V we define

Λ() = {∈ D | 〈, |Γ3
〉 ≤(3.13) ∫

Γ3

(pν(, ϕν()− ga)|vν()|+ pτ (, ϕν()− ga)‖τ ()‖)dΓ ∈ V };

here and below 〈·, ·〉 denotes the duality pairing between D and S.
Let us define a Lagrange multiplier ∈ S,

(3.14) 〈, 〉 = −
∫

Γ3

() · () dΓ.

Thus, for all ∈ V,
〈, |Γ3〉 = −

∫
Γ3

(σν()vν() +τ () ·τ ())dΓ.

By (3.14) and (3.13) we deduce that ∈ Λ().
We also define

(3.15) b : V ×D → R b(, ) = 〈, |Γ3
〉.

Let us rewrite (3.9) as

a(, ) = (, )V − 〈, |Γ3
〉 for all ∈ V.

By the definition of the form b(·, ·), we obtain

(3.16) a(, ) + b(, ) = (, )V for all ∈ V.
On the other hand, the normal compliance condition (3.5) leads us to the identity∫

Γ3

σν()uν() dΓ = −
∫

Γ3

pν(, uν()− ga)|uν()| dΓ

while the friction law (3.6) leads us to the identity∫
Γ3

τ () ·τ () dΓ = −
∫

Γ3

pτ (, uν()− ga)‖τ ()‖ dΓ.

Thus,

(3.17) b(, ) =

∫
Γ3

(pν(, uν()− ga)|uν(x)|+ pτ (, uν()− ga)‖τ ()‖)dΓ.

By (3.13) with = we are led to

(3.18) b(, ) ≤
∫

Γ3

(pν(, uν()− ga)|uν()|+ pτ (, uν()− ga)‖τ ()‖)dΓ for all ∈ Λ().

Subtract now (3.17) from (3.18) to obtain the inequality

(3.19) b(,−) ≤ 0 for all ∈ Λ().

Therefore, Problem 2 has the following weak formulation.

Problem 3. Find ∈ V and ∈ Λ() ⊂ S such that (3.16) and (3.19) hold true.
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Each solution of Problem 3 is called weak solution of Problem 2.

3.4. Existence and boundedness results.

Theorem 3.1 (An existence result). If Assumptions 6 -9 hold true, then Problem
2 has a weak solution.

Proof. As the spaces V and D, see (3.7) and (3.12) are real Hilbert spaces, then
Assumption 1 is fulfilled with X = V and Y = D.

The form a(·, ·) defined in (3.10) verifies Assumption 2 with

(3.20) Ma = ‖E‖∞ and ma = mE ,

where

‖E‖∞ = max
0≤i,j,k,l≤d

‖Eijkl‖L∞(Ω).

Let us prove (j1) in Assumption 3. We have

|b(, )| ≤ ‖‖D‖‖HΓ
.

We recall that HΓ = { ∈ V } and the Sobolev trace operator : H1(Ω)3 → HΓ is
a linear and continuous operator. Since ‖ · ‖V and ‖ · ‖H1(Ω)3 are equivalent norms,
we deduce that there exists Mb > 0 such that (j1) holds true.

We also recall that there exists a linear and continuous operator Z such that

Z : HΓ → H1(Ω)3 (Z()) = for all ∈ HΓ.

The operator Z is called the right inverse of the operator . Obviously,

(Z()) = for all ∈ V.

For every ∈ V, we denote by ∗ an element of V such that =∗ a.e. on Γ3 and
∗ = 0 a.e. on Γ2. Therefore, ‖|Γ3‖S = ‖∗‖HΓ .

Since, for each ∗ ∈ V, Z(∗) has the same trace as ∗, we deduce that for each
∗ ∈ V, Z(∗) ∈ V.

Let us prove now (j2) in Assumption 3.

‖‖D = sup
|Γ3
∈S, |Γ3

6=0S

〈, |Γ3
〉

‖|Γ3
‖S

= sup
|Γ3∈S, |Γ3 6=0S

〈,∗ |Γ3
〉

‖∗‖HΓ

≤ c sup
|Γ3∈S, |Γ3 6=0S

b(Z(∗), )

‖Z(∗)‖V

≤ c sup
∈V, 6=V

b(, )

‖‖V
,

where c > 0. We can take

(3.21) α =
1

c
.

Obviously, 0D ∈ Λ(). Also, Λ() is a closed convex subset of the space D. Hence,
Assumption 4 is fulfilled.

Let us verify Assumption 5. To start, let (n)n ⊂ V and (n)n ⊂ V be two weakly
convergent sequences, n ⇀ in V and n ⇀ in V, as n→∞. Let us take ∈ Λ().
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In order to check (k1) in Assumption 5, we define (n)n as follows: for each n ≥ 1,

〈n, 〉 =

∫
Γ3

pν(, ηn ν()− ga) sgnun ν() ζν() dΓ

+

∫
Γ3

pτ (, ηn ν()− ga)(n τ ()) ·τ () dΓ

−
∫

Γ3

pν(, ην()− ga)|un ν()| dΓ

−
∫

Γ3

pτ (, ην()− ga)‖n τ ()‖ dΓ

+〈, n|Γ3
〉, ∈ S,

where

() =

{
‖‖ if 6=;

if =,

and, as usually,

sgn(r) =

 1 if r > 0;
0 if r = 0;
−1 if r < 0.

Taking into account (3.13), we deduce that, for each positive integer n, we have

n ∈ Λ(n).
Since n ⇀ in V and n ⇀ in V as n→∞, we deduce that

n τ ()→τ () a.e. on Γ3 as n→∞,

un ν()→ uν() a.e. on Γ3 as n→∞,

pν(, ηn ν()− ga)→ pν(, ην()− ga) a.e. on Γ3 as n→∞
and

pτ (, ηn ν()− ga)→ pτ (, ην()− ga) a.e. on Γ3 as n→∞.
Setting =n |Γ3

we can write

〈n−,n |Γ3
〉 =

∫
Γ3

(pν(, ηn ν()− ga)− pν(, ην()− ga))|un ν()| dΓ

+

∫
Γ3

(pτ (, ηn ν()− ga)− pτ (, ην()− ga))‖τ n()‖ dΓ.

Hence, passing to the limit as n→∞, we get

lim inf
n→∞

b(n,n−) = lim
n→∞

∫
Γ3

(pν(, ηn ν()− ga)− pν(, ην()− ga))|un ν()| dΓ

+ lim
n→∞

∫
Γ3

(pτ (, ηn ν()− ga)− pτ (, ην()− ga))‖n τ ()‖)dΓ

= 0.

Using again the properties of the trace operator and the assumptions on the
friction bound we deduce that (k2) in Assumption 5 is also verified.

We apply now Theorem 2.1. �
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Let us introduce the notation:

K1 = {∈ V | ‖‖V ≤
1

ma
‖‖V };(3.22)

K2 = {∈ D | ‖‖D ≤
ma +Ma

αma
‖‖V }.(3.23)

Theorem 3.2 (A boundedness result). If (, ) is a weak solution of Problem 2, then

(, ) ∈ K1 ×
(
Λ() ∩K2)

where K1 and K2 are given by (3.22)-(3.23), V given by (3.7), D given by (3.12),
given by (3.8), ma and Ma being the constants in (3.20) and α being the constant
in (3.21).

The proof is a straightforward consequence of Theorem 2.1.
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OSCILLATION OF A CLASS OF NONLINEAR DIFFERENCE

EQUATIONS OF SECOND ORDER WITH OSCILLATING

COEFFICIENTS

MUSTAFA KEMAL YILDIZ

Abstract. In this paper, we study asymptotic behaviour of solutions of the

following second-order difference equation:

∆
[
a(n)∆

[
x(n)+r(n)F (x(n−ρ))

]]
+p(n)G (x(n− τ))−q(n)G (x(n− σ)) = s(n),

where n ∈ N0 := N ∪ {0}, {r(n)}n∈N0
and {s(n)}n∈N0

are sequences of real
numbers, {p(n)}n∈N0

and {q(n)}n∈N0
are nonnegative sequences of real num-

bers, {a(n)}n∈N0
is positive, ρ, τ, σ ≥ 0 are integers and F,G are continuous

functions satisfying the usual sign condition; i.e., F (u)/u,G(u)/u > 0 for
u ∈ R\{0}. Various ranges of the sequence {r(n)}n∈N0

are considered, and

illustrating examples are provided to show applicability of the results.

1. Introduction

In the literature, all the papers concerning second-order equations deal with
asymptotic behaviour of all solutions of delay difference equations have the following
form:

∆ [a(n)∆ [x(n) + r(n)x(n− ρ)]] + p(n)x(n− τ) = f(n),

where n ∈ N0, {r(n)}n∈N0
is of single sign, {a(n)}n∈N0

and {p(n)}n∈N0
are nonneg-

ative sequences of real numbers, ρ, τ ≥ 0 are integers and {f(n)}n∈N0
is a sequence

of real numbers (see [1, 2]). Here, the forward difference operator ∆ is defined as
∆x(n) := x(n+ 1)− x(n) and ∆2x(n) := ∆ [∆x(n)] for n ∈ N0.

In this paper, depending on the sign of the sequence {r(n)}n∈N0
, we investigate

the oscillatory and asymptotic behavior of solutions of the second-order neutral
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nonlinear difference equation with positive and negative coefficients having the fol-
lowing form:
(1.1)
∆ [a(n)∆ [x(n) + r(n)F (x(n− ρ))]] + p(n)G (x(n− τ))− q(n)G (x(n− σ)) = s(n),

where n ∈ N0, {r(n)}n∈N0 and {s(n)}n∈N0 are allowed to oscillate, {p(n)}n∈N0 and
{q(n)}n∈N0 are nonnegative, {a(n)}n∈N0 is positive, ρ, τ, σ ≥ 0 are integers. To
the best of our knowledge, in the literature, there is no work done on second-order
difference equations involving oscillating coefficients inside the neutral part, and
positive and negative coefficients outside the neutral part. Moreover, some of our
results are not restricted with boundedness of the solutions. Also the readers are
referred to the paper [3] which introduces a new method for

∆ [a(n)∆ [x(n) + r(n)x(n− ρ)]] + p(n)x(n− τ)− q(n)x(n− σ) = s(n).

In [4], the authors study the following difference equation

∆

[
a(n)∆

[
x(t) +

∑
i∈R

ri(n)x(n− ρi)

]]
+
∑
i∈P

pi(n)x(n−τi)−
∑
i∈Q

qi(n)x(n−σi) = f(n),

and state new results depending on three different ranges of the sequence
{∑

i∈R ri(n)
}
n∈N0

.

Our results here extend the results of [4] for nonlinear equations, also see the results
in the paper [5] where the author gives results for the existence of positive solutions.

For the fundamentals on the oscillation theory, the readers are referred to the
books [6, 7, 8].

Let δ := max{ρ, τ, σ}. As is usual, a solution x of (1.1) is a sequence of real
numbers defined for all integers satisfying n ≥ −σ, and satisfies (1.1) identically for
all n ∈ N0. It is also known that (1.1) has a unique solution x if an initial sequence
x0 is given to hold x(n) = x0(n) for n = −δ,−δ + 1, . . . , 1. Throughout the paper,
for convenience, we do not consider eventually null solutions of (1.1).

2. Main Results

In this section, we give sufficient conditions for (1.1) to be almost oscillatory,
that is every solution of (1.1) oscillates or tends to zero at infinity. We state our
primary assumptions as follows:

(H1) 0 < F (u)/u ≤ M and N1 ≤ G(u)/u ≤ N2 for all u 6= 0 and some positive
constants M, N1, N2,

(H2) There exists a pair of nonnegative real numbers r−, r+ such that either one
the followings are true:
{i} −r− ≤ r(n) ≤ r+ holds for all sufficiently large n , and that [r− + r+]M <

1 holds,
{ii} r− ≤ r(n) ≤ r+ holds for all sufficiently large n and, satisfying Mr− >

1,
{iii} −r− ≤ r(n) ≤ −r+ holds for all sufficiently large n and satisfying

Mr+ > 1,
(H3)

∑∞
n (1/a(n)) is divergent,

(H4) {i} δ ≥ 1 holds, where δ = τ − σ,
{ii} {h(n)}n∈N0 defined by h(n) := p(n)−q(n−δ) is an eventually positive

sequence of reals,
{iii}

∑∞
n h(n) is divergent,
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{iv}
∑∞
n (1/a(n))

∑n−1
k=n−δ q(k) is convergent,

(H5) There exists a sequence {S(n)}n∈N0 such that limn→∞ S(n) exists and
∆ ((1/a(n))∆S(n)) = s(n) holds for all n ∈ N0.

Theorem 2.1. Assume that (H1), (H2){i}, (H3), (H4){i–iv} and (H5) hold, then
every solution of (1.1) oscillates or tends to zero at infinity.

Proof. Let (1.1) have a nonoscillatory solution x, which does not tend to zero at
infinity. Without loss in the generality, we may suppose that x is eventually positive,
the case where x is eventually negative is very similar and thus we omit. There
exists n1 ∈ N0 such that x(n) > 0 for all n ≥ n1. From (H2){i} and (H4){iv}, we
may find n2 ≥ n1 + δ such that

(2.1) N2

∞∑
n=n2

1

a(n)

n−1∑
k=n−δ

q(k) <
1

2

(
1− r−

)
holds. For n ≥ n2, set

(2.2) y(n) := x(n) + r(n)F (x(n− ρ))

and

(2.3) z(n) := y(n)−
n−1∑
k=n2

1

a(k)

k−1∑
l=k−δ

q(l)G (x(l − σ))− S(n).

Using the fact that x is a solution of (1.1) and (H4){i,ii}, we have

∆w(n) =∆ [a(n)∆y(n)]− [q(n)G (x(n− σ))− q(n− δ)G (x(n− τ))]− s(n)

=− p(n)F (x(n− τ)) + q(n− δ)G(x(n− τ))

≤− p(n)G(x(n− τ)) + q(n− δ)G(x(n− τ))

=− [p(n)− q(n− δ)]G(x(n− τ))

=− h(n)G (x(n− τ)) ≤ 0(2.4)

for all n ≥ n2, where w is defined by w(n) := a(n)∆z(n) for n ≥ n2. Clearly, w is
eventually nonincreasing. Then, from (H4){ii,iii} and (2.4), we have either w < 0
or w > 0 for all n ≥ n3 for some n3 ≥ n2. Consider the following possible ranges:

(C1) w(n) < 0 holds for all n ≥ n3. We first claim that

(2.5) lim
n→∞

z(n) = −∞

holds. Considering the definition of w, we may write

(2.6) ∆z(n) ≤ w(n3)

a(n)
< 0

for all n ≥ n3, which proves that (2.5) is true by summing up from n3 to
∞ because of (H3). Hence, (H5) and (2.5) implies that

(2.7) lim
n→∞

[z(n) + S(n)] = −∞

holds. Next, we claim that x is bounded. If it is not the case, from (2.7),
there exists T ≥ n3,

(2.8) x(T ) = max{x(n) : n3 ≤ n ≤ T} and z(T ) + S(T ) < 0.
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Therefore, considering (H2){i}, (2.1), (2.3) and (2.8), we obtain the follow-
ing contradiction:

0 >z(T ) + S(T ) = y(T )−
N−1∑
k=n2

1

a(k)

k−1∑
l=k−δ

q(l)G (x(l − σ))

≥x(T )− r−x(T − ρ)−N2

N−1∑
k=n2

1

a(k)

k−1∑
l=k−δ

q(l)x(l − σ)

≥

(
1− r− −N2

N−1∑
k=n2

1

a(k)

k−1∑
l=k−δ

q(l)

)
x(T )

≥1

2

(
1− r−

)
x(T ) ≥ 0.

Thus, by (H2){i}, (H5), (2.1)–(2.3), we see that z is bounded. This is a
contradiction to (2.5). Hence, this case is not possible.

(C2) w (n) > 0 for all n ≥ n3. In this case, we see that L is a nonnegative
constant, where L := limn→∞ w(n). Considering (H4){iii} and summing
up (2.4) from n3 to ∞, we obtain

(2.9) ∞ > w(n3)− L = N1

∞∑
n=n3

h(n)x(n− τ),

which implies that lim infn→∞ x(n) = 0 and ` ∈ (0,∞) are true, where
` := lim supn→∞ x(n). Note that, z has limit at infinity because ∆z > 0
holds since a > 0 holds. Because of the boundedness of x, monotonicity
of z, (H4){iv}, (H5) and (2.3), we infer that y has a finite limit at infin-
ity. Now, we prove the contradiction that ` = 0 holds. For this purpose,
pick two increasing divergent sequences of integers {ζn}n∈N0 , {ξn}n∈N0 such
that limn→∞ x(ζn) = ` and limn→∞ x(ξn) = 0 hold. Without loss in the
generality, we may suppose that limn→∞ x(ζn − ρ) and limn→∞ x(ξn − ρ)
exist because of the boundedness of x, and it is trivial that all these limits
are not greater than `. From (2.2), we can estimate that

y(ζn)− y(ξn) =x(ζn) + r(ζn)F (x(ζn − ρ))− [x(ξn) + r(ξn)F (x(ξn − ρ))]

≥x(ζn)− r−F (x(ζn − ρ))−
[
x(ξn) + r+F (x(ξn − ρ))

]
≥x(ζn)− r−Mx(ζn − ρ)− x(ξn)− r+Mx(ξn − ρ)

is true for all n ∈ N0, which yields the inequality

0 ≥
(
1−

(
r− + r+

)
M
)
`

by letting n tend to infinity, and this implies that ` = 0 holds by (H2){i}.
A contradiction.

Contradictions appear in both possible distinct cases. Hence, every solution of
(1.1) oscillates or tends to zero at infinity. �

Theorem 2.2. Assume that (H1), (H2){ii}, (H3), (H4){i–iv}, and (H5) hold, then
every solution of (1.1) oscillates or tends to zero at infinity.
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Proof. Assume that (1.1) has an eventually positive solution x, which does not tend
to zero at infinity. Pick n1 ∈ N0 such that x(n) > 0 for all n ≥ n1. From (H2){ii}
and (H4){iv}, we may find n2 ≥ n1 + δ such

(2.10) M

∞∑
n=n2

1

a(n)

n−1∑
k=n−δ

q(k) <
1

2

holds. Set y, z and w as in the proof of Theorem 2.1, then we have (2.4) for all
n ≥ n2 for some n2 ≥ n1. It is not hard to prove that w < 0 is not possible by
following the steps in (C1) of the proof of Theorem 2.1. Then, by following the
steps in (C2) of the proof of Theorem 2.1, we learn that lim infn→∞ x(n) = 0 and
` ∈ (0,∞) are true, where ` is the superior limit of x, and y has a finite limit at
infinity. Now, we show that ` = 0 holds. Pick two increasing divergent sequences
of integers {ξn}n∈N0

, {ζn}n∈N0
as in the proof of Theorem 2.1. Without loss in the

generality, we may suppose that limn→∞ x(ξn+ρ) and limn→∞ x(ζn+ρ) exist. We
can estimate that

y(ξn + ρ)− y(ζn + ρ) =x(ξn + ρ) + r(ξn + ρ)F (x(ξn))− [x(ζn + ρ) + r(ζn + ρ)F (x(ζn))]

≤x(ξn + ρ) + r+Mx(ξn)− r−Mx(ζn)

is true for all n ∈ N0, which yields to the inequality

0 ≤
(
1 + r−M

)
`

by letting n tend to infinity, and this implies that ` = 0 by (H2){ii}. This is a
contradiction. Hence, every solution of (1.1) oscillates or tends to zero at infinity.

�

The proof of the following theorem is very similar to that of Theorem 2.2, and
thus we omit.

Theorem 2.3. Assume that (H3), (H2){iii}, (H3), (H4){i–iv} and (H5) hold, then
every bounded solution of (1.1) oscillates or tends to zero at infinity.

3. Applications

To illustrate the applicability of our main results in § 2, we give the following
examples.

Example 3.1. Consider the following neutral nonlinear difference equation:

∆2

[
x(n) +

2

5
(−1)n

x(n− 2)|x3(n− 2)|
|x3(n− 2)|+ 1

]
+

n

n2 + 1

x(n− 3)
(
|x3(n− 3)|+ 1

)
|x3(n− 3)|+ 3

(3.1)

− 1

3n
x(n− 1)

(
|x3(n− 1)|+ 1

)
|x3(n− 1)|+ 3

=
2

(n+ 1)(n+ 2)(n+ 3)
.

For this equation, we see that a(n) ≡ 1, r(n) = 2(−1)n/5, ρ = 2, p(n) = 1/(n+ 1),
τ = 3, q(n) = 1/3n, σ = 1, Hence, we have r− = r+ = 2/5, r− + r+ = 4/5 < 1,
δ = τ −σ = 3−1 = 2, h(n) = p(n)−q(n−δ) = 1/(n+1)−1/3n−2 → 0+ as n→∞
and S(n) = 1/ (n+ 1) for n ∈ N0. It is not hard to see that

∞∑
n

h(n) =

∞∑
n

(
n

n2 + 1
− 1

3n−2

)
=∞,
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and
∞∑
n=2

(
n−1∑
k=n−δ

q(k)

)
=

∞∑
n=2

(
n−1∑
k=n−2

1

3k

)
= 2

are true. Therefore, all conditions of Theorem 2.1 are satisfied, and thus every
solution of (3.1) oscillates or tends to zero at infinity. The following graphic belongs
to the solution with the initial conditions x(−3) = x(−2) = x(−1) = x(0) = x(1) =
1 and of 70 iterates:

Figure 1. Graphic of (n, x(n))

Next, we give another example.

Example 3.2. Consider the following neutral nonlinear difference equation:

∆

[
1

n
∆

[
x(n) + 3

x(n− 3)|x(n− 3)|
|x(n− 3)|+ 1

]]
+

n2

n3 + 1

x(n− 2) (|x(n− 2)|+ 3)

|x(n− 2)|+ 5
(3.2)

− 1

7n
x(n− 1) (|x(n− 1)|+ 3)

|x(n− 1)|+ 5
=

2

(n+ 2)(n+ 3)(n+ 4)
.

For this equation, we see that a(n) = 1/n, r(n) = 3, ρ = 3, p(n) = n2/(n3 + 1),
τ = 2, q(n) = 1/7n, σ = 1. Hence, we have r− = r+ = 3 > 1, δ = τ−σ = 2−1 = 1,
h(n) = p(n)−q(n−δ) = n2/(n3+1)−1/7n−1 → 0+ as n→∞ and S(n) = 1/(n+2)
for n ∈ N0. It is not hard to see that

∞∑
n

h(n) =

∞∑
n

(
n2

n3 + 1
− 1

7n−1

)
=∞,

and
∞∑
n=1

(
1

a(n)

n−1∑
k=n−δ

q(k)

)
=

∞∑
n=1

n

7n−1
=

49

36

are true. Therefore, all conditions of Theorem 2.2 are satisfied, and thus every
solution of (3.2) oscillates or tends to zero at infinity. The following graphic belongs
to the solution with the initial conditions x(−3) = x(−2) = x(−1) = x(0) = x(1) =
1 and of 70 iterates:
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Figure 2. Graphic of (n, x(n))

Next, we give another example.

Example 3.3. Consider the following neutral nonlinear difference equation:

∆

[
1

n
∆

[
x(n)− 2

x3(n− 1)

x2(n− 1) + 1

]]
+

n2

n3 + 1

x(n− 3)(x2(n− 3) + 2)

x2(n− 3) + 3
(3.3)

− 1

5n
x(n− 2)(x2(n− 2) + 2)

x2(n− 2) + 3
= 0.

For this equation, we see that a(n) = 1/n, r(n) = 1/4, p(n) = n2/(n3 + 1), τ = 3,
q(n) = 1/5n, σ = 1. Hence, we have r+ = 2, r−1 = 2, δ = τ − σ = 3 − 2 = 1,
h(n) = p(n)− q(n− δ) = n2/(n3 + 1)− 1/5n−1 → 0+ as n→∞ and S(n) ≡ 0 for
n ∈ N0. Also, one can shown that

∞∑
n

h(n) =

∞∑
n

(
n2

n3 + 1
− 1

5n−1

)
=∞,

and

∞∑
n=1

(
1

a(n)

n−1∑
k=n−δ

q(k)

)
=

∞∑
n=1

n

5n−1
=

25

16

hold. Therefore, all bounded solutions of (3.3) oscillate or tend to zero at infinity
by Theorem 2.3.

The following graphic probably belongs to an unbounded solution with the initial
conditions x(−3) = x(−2) = x(−1) = x(0) = x(1) = 1 and of 75 iterates:
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Figure 3. Graphic of (n, x(n))

Thus, the equation may also admit unbounded solutions.
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OPTIMAL SURPLUS, MINIMUM PENSION BENEFITS AND

CONSUMPTION PLANS IN A MEAN-VARIANCE PORTFOLIO

APPROACH FOR A DEFINED CONTRIBUTION PENSION

SCHEME

CHARLES I. NKEKI

Abstract. In this paper, we study the problem of simultaneous maximization
of the value of expected terminal surplus and, minimization of risks associated

with the terminal surplus in a defined contribution (DC) pension scheme. The

surplus, which is discounted, is solved with dynamic programming techniques.
The pension plan member (PPM) makes a flow of contributions from his or her

stochastic salary into the scheme. The flow of contributions are invested into

a market that is characterized by a cash account, an index bond and a stock.
The efficient frontier for the discounted and real surplus are obtained. Optimal

consumption of the PPM was found to depend on the terminal wealth, random

evolution of minimum pension benefit and ”variance minimizing” parameter.
It was found that as the variance minimizing parameter, tends to zero, the op-

timal consumption tends to negative infinity. The optimal expected discounted
and real surplus, optimal total expected pension benefits and expected min-

imum pension benefits were obtained. We found that the optimal portfolio

depends linearly on the random evolution of PPM’s minimum benefits. Some
numerical examples of the results are established.

Keywords. pension scheme, mean-variance, stochastic funding, defined contri-
bution, efficient frontier, surplus, minimum pension benefits, optimal consumption

AMS subject classifications. 91B28, 91B30, 91B70, 93E20.

1. Introduction

In this paper, we consider a mean variance portfolio selection problem for a de-
fined contribution pension scheme. We study the optimal surplus process, minimum
pension benefit and optimal total benefit that will accrued to a PPM at terminal
time. The salary process of the PPM is assumed to be stochastic. The flow of
contribution by by the PPM are invested into a market that is composed of cash
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account, index bond and stock. The real and nominal surplus for the stakeholders
(i.e., PPM and PFA) are obtained. The consumption process of the PPM at time, t
is examined in this paper. The optimal investment allocation strategy can be found
by solving a mean and variance optimization problem, see Nkeki (2012). Optimal
surplus, optimal pension benefits, minimum pension benefits and optimal consump-
tion plan in a mean-variance portfolio selection approach for a defined contribution
pension scheme are considered in this paper.

Haberman and Sung (1994), considered a defined benefit (DB) plans and mod-
eled it as linear-quadratic optimal control problems. Markowitz (1952) studied a
meanvariance optimization model and used it to compare securities and portfolios
based in a tradeoff between their expected return and its variance. Colombo and
Haberman (2005) and Huang and Cairns (2005) considered a mean-variance port-
folio problem in pension plans from a static point. Chiu and Li (2006) studied a
dynamic case of the model for asset and liability management under the meanvari-
ance criteria. Josa-Fombellida and Rincon-Zapatero (2008) studied the benefits of
the DB plan by assuming that the benefits are stochastic, modeled by a geometric
Brownian motion. They assumed that benefit is a non-tradeable asset. They also
considered the existence of correlation between the sources of uncertainty in the
benefits and in the asset returns.

Our paper follows the work of Josa-Fombellida and Rincon-Zapatero (2008). In
our own case, we study optimal surplus, minimum pension benefit, optimal total
benefit and optimal consumption plan under the context of a defined contribution
pension plan. We assume that the salary process of a PPM is stochastic and
modeled by a geometric Brownian motion.

There are extensive literature that exist on the area of accumulation phase of
DC pension plan and optimal investment strategies. This can be found in Cains
et.al (2006), Deelstra et.al (2000), Korn and Krekel (2001), Blake et.al (2008),
Battocchio and Menoncin (2004), Boulier et.al (2001), Di Giacinto et.al (2010),
Haberman and Vigna (2002), Vigna (2010), Gao (2008), Devolder et.al (2003),
Nkeki and Nwozo (2012), Nkeki (2013). For optimal portfolio and life-cycle of a
PPM consumption plan, see Nkeki (2011), Nwozo and Nkeki (2011), Merton (1971).

In the context of DC pension plans, the problem of finding the optimal sur-
plus, minimum pension benefits, total pension benefits, and optimal consumption
plan, with stochastic funding in a DC pension scheme under mean-variance effi-
cient approach has not been reported in published articles. Hφjgaard and Vigna
(2007) and Vigna (2010) assumed a constant flow of contributions into the pension
scheme which will not be applicable to a time-dependent salary earners in pension
scheme. We assume that the contribution of the PPM grows as the salary grows
over time. In the literature, the problem of determining the minimum variance
on trading strategy in continuous-time framework has been studied by Richardson
(1989) via the Martingale approach. Bajeux-Besnainou and Portait (1998) used
the same approach in a more general framework. Li and Ng (2000) solved a mean-
variance optimization problem in a discrete-time multi-period framework. Zhou and
Li (2000) considered a mean-variance in a continuous-time framework. They show
the possibility of transforming the difficult problem of mean-variance optimization
problem into a tractable one, by embedding the original problem into a stochas-
tic linear-quadratic control problem, that can be solved using standard methods.
These approaches have been extended and used by many in the financial literature,
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see for instance, Vigna (2010), Bielecky et.al (2005), Hφjgaard and Vigna (2007),
Chiu and Li (2006), Josa-Fombellida and Rincon-Zapatero (2008).

In this paper, we study a mean-variance approach to portfolio selection problem
for optimal surplus, minimum pension benefits, total pension benefits and optimal
consumption plan with stochastic salary of a PPM in accumulation phase of a
DC pension scheme. Nkeki (2012) considered a mean-variance portfolio selection
problem with inflation hedging strategy for a defined contributory pension scheme.
The efficient frontier was obtained for three asset classes which include cash account,
stock and index bond. The paper assumed that the flow of contributions of the PPM
is stochastic. In this paper, we assumed that the salary of the PPM is stochastic.

The remainder of this paper is organized as follows. In section 2, we present
financial market models. In section 3, we presents the pension benefits that will
accrued to PPM. In section 4, we present the expected discounted flow of contri-
butions, discounted wealth, discounted minimum pension benefit and discounted
surplus. Section 5 presents the problem formulation of the paper. In section 6, we
present the optimal portfolio and optimal consumption plan of a PPM. Section 7
presents the efficient frontier of the optimal terminal expected surplus. In section
8, we presents optimal pension benefit for a PPM at retirement. Section 9 presents
the numerical examples of our models. Finally, section 10 concludes the paper.

2. Financial Market

Let (Ω,F ,P) be a probability space. Let F(F) = {Ft : t ∈ [0, T ]}, where
Ft = σ(W I(s),WS(s) : s ≤ t), where WS(t) and W I(t) are Brownian motions
with respect to stock and index bond at time t. The Brownian motions W (t) =
(W I(t),WS(t))′, 0 ≤ t ≤ T is a 2-dimensional process, defined on a given filtered
probability space (Ω,F ,F(F),P), where P is the real world probability measure.

In this paper, we assume that the pension fund administrator (PFA) manage the
fund contributed by the PPMs through pension fund custodians during the planning
interval [0, T ] by means of a portfolio characterized by a cash account with price
process, B(t), index bond with price process, Z(t, I(t)) which is correlated geometric
Brownian motion, generated by source of inflation risks, W I(t), where I(t) is the
price index at time t and has the dynamics: dI(t) = j(t)I(t)dt + σ1(t)I(t)dW I(t),
j(t) the expected inflation index, which is the difference between nominal interest
rate, r(t), real interest rate R(t) (i.e. j(t) = r(t) − R(t) + σ1(t)θI(t)) and σI(t) =
(σ1(t), 0). Z(t, I(t)) is a zero-coupon bond which pays the price index at maturity,
with a payoff

Z(t, I(t)) = Et

[
I(T )

Λ(T )

Λ(t)

]
,

where

Λ(t) = B(t)−1H(t)

and H(t) satisfies the process

(2.1) H(t) = exp(−θ′(t)W (t)− 1

2
‖θ(t)‖2),

which we assume to be martingale in P, and a stock with price process, S(t)
correlated to geometric Brownian motions, W I(t) and WS(t), whose evolutions are
respectively given by the equations:

(2.2) dB(t) = r(t)B(t)dt,B(0) = 1,
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(2.3) dZ(t, I(t)) = Z(t, I(t))((r(t) +σ1(t)θI(t))dt+σ1(t)dW I(t)), Z(0) = z ∈ R+,

(2.4) dS(t) = S(t)(µ(t)dt+σS(t)qdW I(t)+σS(t)
√

1− q2dWS(t)), S(0) = s ∈ R+.

Here r(t) ∈ R+ denotes the short risk-free interest rate, µ(t) ∈ R+ the mean rate
of return of the stock, σS(t) ∈ R the volatility of stock, σ1(t) ∈ R the volatility
of index bond, q ∈ (−1, 1) correlation coefficient of sources of risks from inflation,
W I(t) and stock, WS(t) and θI(t) ∈ R the inflation price of risk. Moreover, σS(t)
and σ1(t) are the volatilities for the stock and index bond respectively, referred to
as the coefficients of the market and are progressively measurable with respect to
the filtration F .

The proportion of fund invested in stock, S(t) at time, t is denoted by ∆S(t) and
proposition fund invested in index bond is ∆I(t). The remainder, 1−∆I(t)−∆S(t) is
invested in cash account at time, t. We suppose the trading strategy {∆(t) : t ≥ 0},
with ∆(t) = (∆I(t),∆S(t)) is a control process adapted to filtration {Ft}t≥0, Ft-
measurable, Markovian, and stationary processes, satisfying

(2.5) E

∫ T

0

∆(t)∆′(t)dt <∞,

where E is the expectation operator. Let C(t) be the consumption rate process at
time t. Then C(t) is an adapted process with respect to {Ft}t≥0, satisfying

(2.6) E

∫ T

0

C(t)2dt <∞.

Let Y (t) be the salary process of a PPM at time t, then Y (t) satisfies the following
stochastic differential equation:

(2.7) dY (t) = Y (t)(β(t)dt+ σY1
(t)dW I(t) + σY2

(t)dWS(t)), Y (0) = y0 ∈ R.

where β(t) ∈ R+ is the expected growth rate of the salary, σY1(t) is volatility of
the salary of a PPM arising from the uncertainty of inflation, W I(t) and σY2

(t)
is volatility of the salary of a PPM arising from the uncertainty of stock market,
WS(t). We can express (2.3), (2.4) and (2.7) in compact form respectively, as
follows:

(2.8) dZ(t, I(t)) = Z(t, I(t))((r(t) + σ1(t)θI(t))dt+ σZ(t)dW (t)), Z(0) = z ∈ R+,

(2.9) dS(t) = S(t)(µ(t)dt+ σ(t)dW (t)), S(0) = s ∈ R+,

(2.10) dY (t) = Y (t)(β(t)dt+ σY (t)dW (t)), Y (0) = y0 ∈ R,

where σZ(t) = (σ1(t), 0), σ(t) = (σS(t)q, σS(t)
√

1− q2), σY (t) = (σY1
(t), σY2

(t))
and W (t) = (W (I(t),W (S(t))′. Suppose the proportion c ∈ R+ of the salary
process is a contribution of the PPM into the scheme, then cY (t) is the gross
amount of fund contributed into the scheme at time t.

Remark 2.1. If the pension PPM’s salary is deterministic, then (2.10) becomes
dY (t) = β(t)Y (t)dt.

Then, the volatility matrix

(2.11) Σ(t) :=

(
σ1(t) 0

qσS(t) σS(t)
√

1− q2

)



OPTIMAL SURPLUS, MINIMUM PENSION BENEFITS AND CONSUMPTION PLANS IN A MEAN-VARIANCE223

corresponding to the two risky assets and satisfies det(Σ(t)) = σS(t)σ1(t)
√

1− q2 6=
0. Therefore, the market is complete and there exists a unique market price of risks
vector, θ(t) satisfying

(2.12) θ(t) :=

(
θI(t)
θS(t)

)
=

(
θI(t)

µ(t)−r(t)−θI(t)qσS(t)

σS(t)
√

(1−q2)

)
where θS(t) is the market price of stock risks. In this paper, we assume that r(t),
µ(t), σ(t), σS(t), σ1(t), σY (t), σY1

(t), σY2
(t), θI(t), θS(t), q(t), β(t), σZ(t) are

constants in time.
Therefore, the fund, X(t) dynamic evolution under the investment policy ∆ is

(2.13)
dX(t) = (X(t)(r + ∆(t)λ) + c(1− η)Y (t)− C(t))dt+X(t)(Σ′∆′(t))′dW (t),
X(0) = x0 ∈ R+,

where λ = (σ1θI , µ − r)′, η denotes the proportion of PPM’s contribution that is
set aside for administrative cost (AC). It implies that ηcY (t) is the AC at time t
and the net contribution is c(1 − η)Y (t) at time t. We observe that when η = 0,
it implies that the PFA do not charge any management costs. If η = 1, it implies
that the entire contributions by the PPM is taken as management costs, which
is unrealistic. Since the PFA may not (or may) charge management costs for the
operation, we assume that 0 ≤ η < 1.

3. Pension Benefits

In this section, we consider the minimum pension benefits, Pm(t) at time t that
will accrued to a PPM up to the final time, T . Let P (t) be the total pension
benefits of the contributor at time, t ∈ [0, T ]. It is assumed that the value of
minimum benefits a PPM can get at retirement should not be less than the value
of contributions made into the scheme.

The PPM makes a flow of contribution to the pension fund. This flow consists
of a lump sum at time 0, denoted by x0, and a continuously paid premium, at a
rate denoted by cY (t)(t), t ∈ [0, T ]. The value at time 0 of the cash given by the
contributor (i.e., PPM) to the pension scheme is equal to:

X̄0 = x0 + c(1− η)E

[∫ T

0

Λ(s)Y (s)ds

]
.

At time T , the PFA will provide a benefit which consists of two parts: The first part
Pm(T ) is the minimum pension benefit, which means that the total benefit will be
greater than Pm(T ) almost surely. The minimum pension benefit is not a constant
(it is a stochastic minimum pension benefit), but a nonnegative random variable
that is FT -measurable, which is Lp integrable with p > 2. The second part of the
benefit is a fixed fraction of the surplus ΘT (Pm(T )) (the difference between the
terminal wealth X(T ) of the managed portfolio and the minimum pension benefit
Pm(T ). Indeed, we suppose that the PFA receives a fixed fraction of the surplus,
as a way to encourage him/her (see Jensen and Sφrensen, 1999). Let h denotes the
fixed fraction of the surplus that will be kept by the PFA. Then, the total benefit
of the PPM at time T equals:

P (T ) = Pm(T ) + (1− h)(X(T )− Pm(T ))

= Pm(T ) + ΘT (Pm(T )),
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where ΘT (Pm(T )) = (1 − h)V (T ) is the surplus function at the final time, T and
V (T ) = X(T ) − Pm(T ). For h = 0, it implies that the PFA does not keep any
profit from the surplus, so introduction of the minimum pension benefit is more
an obstacle for the PPM, since minimum pension benefits may induce a significant
utility loss for quadratic risk tolerant investors (see Jensen and Sφrensen, 1999 for
relative risk averse investor). On the other hand, if h = 1, it implies that the
PPM will receive only the minimum pension benefit, no matter the final surplus,
which is not reasonable. In order to avoid these trivial cases, we therefore assume
that h ∈ (0, 1). One of the aims of this paper is to find the optimal discounted
benefit that will accrued to the PPM at the final time, T . This is obtained from
the discounted surplus and discounted minimum pension benefit at the final time,
T .

Definition 3.1. The flow of expected discounted minimum pension benefits for
t ≤ T is defined by

(3.1) Pm(t) = Et

[∫ T

0

Λ(u)

Λ(t)
cY (u)du

]
, t ≥ 0.

where Et = E(·|Ft) is the conditional expectation with respect to the Brownian
filtration {F}t≥0.

Definition 3.2. The flow of expected pension benefits, P (t) is defined by

(3.2) P (t) =

{
Pm(t), if 0 ≤ t ≤ T0 < T ,
Pm(t) + Θ(t, V (t)|t−T,t), if t ≥ T ,

where T0 is the time of voluntary retirement and Θ(·, ·) is the surplus function.
At time t ≥ T the surplus depends on the fund wealth level in time period [t−T, t].

Proposition 3.1. Let Pm(t) be the value of flow of the minimum pension benefits
that will accrued to PPM at time t, then

(3.3) Pm(t) =
cY (t)

δ
(eδT − 1),

where δ = β− ξ−σY θ, ξ ∈ [0, r] is the instantaneous guaranteed rate of return and
cY (t) is flow of contributions of PPM at time t.

Proof: By definition 3.1, we have that

Pm(t) = Et

[∫ T

0

Λ(u)

Λ(t)
cY (u)du

]

= cY (t)Et

[∫ T

0

Λ(u)

Λ(t)

Y (u)

Y (t)
du

]
.

Applying change of variable and Markovian rule on the above equation, we have

(3.4) Pm(t) = cY (t)E

[∫ T

0

Λ(τ)

Λ(0)

Y (τ)

Y (0)
dτ

]
,

Applying parallelogram law and martingale principles on (3.4), we have

(3.5) Pm(t) = cY (t)E

∫ T

0

e(β−ξ−σY θ)τdτ.
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Integrating, we have

(3.6) Pm(t) =
cY (t)(e(β−ξ−σY θ)T − 1)

β − ξ − σY θ
.

Therefore,

(3.7) Pm(t) =
cY (t)(eδT − 1)

δ
.

where δ = β − ξ − σY θ.
This implies that the final minimum pension benefits for a PPM is

(3.8) Pm(T ) =
cY (T )(eδT − 1)

δ
,

and the present value of a PPM’s future minimum pension benefit is

(3.9) Pm(0) = Pm0 =
cy0(eδT − 1)

δ
.

Taking the differential of both sides of (3.7), we have

(3.10) dPm(t) = Pm(t)(βdt+ σY dW (t)).

Corollary 3.1. Let Pm(T0) be the minimum pension benefits for a PPM who
retired voluntarily from the scheme and T0 the time of voluntary retirement, then

(3.11) Pm(T0) =
cY (T0)(eδT0 − 1)

δ
, 0 < T0 < T.

4. Expected Discounted Flow of Contributions

In this section, we presents the expected discounted flow of PPM’s contributions
at time t.

Definition 4.1. The expected value of flow of a PPM’s net contribution is defined
as

(4.1) Φ(t) = Et

[∫ T

t

Λ(u)

Λ(t)
c(1− η)Y (u)du

]
.

Theorem 4.1. Suppose Φ(t) is the expected value of a PPM’s net contributions,
then

(4.2) Φ(t) =
c(1− η)Y (t)(eα(T−t) − 1)

α
,

where α = β − r − σY θ.

Proof: By definition 4.1, we have

(4.3) Φ(t) = c(1− η)Y (t)Et

[∫ T

t

Λ(u)

Λ(t)

Y (u)

Y (t)
du

]
.

Applying change of variable and Markovian rule on (4.3), we have

(4.4) Φ(t) = c(1− η)Y (t)E

[∫ T

0

Λ(τ)

Λ(0)

Y (τ)

Y (0)
dτ

]
,
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Applying parallelogram law and martingale principles on (3.4) and then integrate,
we have

(4.5) Φ(t) =
c(1− η)Y (t)(eα(T−t) − 1)

α
,

where α = β− r−σY θ. The present value of a PPM’s future contribution is obtain
as

(4.6) Φ(0) =
c(1− η)y0(eαT − 1)

α
.

Taking the differential of both sides of (4.5), we have

(4.7) dΦ(t) = Φ(t)((r + σY θ)dt+ σY dW (t))− c(1− η)Y (t)dt.

Corollary 4.1. Let Φ(T0) be the value of the contributions of a PPM who will
retired voluntarily at time period T0, then

(4.8) Φ(t) =
c(1− η)Y (t)(eα(T0−t) − 1)

α
, 0 ≤ t ≤ T0.

It implies that the present value of the PPM’s contributions that retired voluntarily
from the scheme is

(4.9) Φ(0) =
c(1− η)y0(eαT0 − 1)

α
.

4.1. Discounted Wealth, Contribution, Minimum Pension Benefit and
Surplus Process. In this subsection, we consider the discounted wealth, dis-
counted contributions and discounted minimum pension benefit of a PPM at time
t. The discounted surplus process of the stakeholder is also established in this
subsection. The discounted wealth of a PPM is given by (4.10).
(4.10)
d(Λ(t)X(t)) = Λ(t)X(t)(Σ′∆′(t)− θ)′dW (t) + (c(1− η)Λ(t)Y (t)− Λ(t)C(t))dt

(4.11) gives the discounted contributions of a PPM at time t and is given by

(4.11) d(Λ(t)Φ(t)) = Λ(t)Φ(t)(σ′Y − θ)′dW (t)− (c(1− η)Λ(t)Y (t)dt.

The discounted minimum pension benefits is given by

(4.12) d(Λ(t)Pm(t)) = Λ(t)Pm(t)(σ′Y − θ)′dW (t).

Setting X̃(t) = Λ(t)X(t), Ỹ (t) = Λ(t)Y (t), C̃(t) = Λ(t)C(t), Φ̃(t) = Λ(t)Φ(t),

P̃m(t) = Λ(t)Pm(t), (4.10)-(4.12) become:

(4.13) dX̃(t) = X̃(t)(Σ′∆′(t)− θ)′dW (t) + (c(1− η)Ỹ (t)− C̃(t))dt

(4.14) dΦ̃(t) = Φ̃(t)(σ′Y − θ)′dW (t)− (c(1− η)Ỹ (t)dt

(4.15) dP̃m(t) = P̃m(t)(σ′Y − θ)′dW (t)dt

Remark 4.1.

(4.16) d(Λ(t)Y (t)) = Λ(t)Y (t)(β − r − σY θ)dt+ Λ(t)Y (t)(σ′Y − θ)′dW (t).

Solving (4.16), we have

(4.17) E(Λ(t)Y (t)) = y0e
(β−r−σY θ)t.
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Solving (4.14), we have

(4.18) EΦ̃(t) = Φ0 − c(1− η)

∫ t

0

E(Λ(s)Y (s))ds.

Using (4.17) on (4.18), we have

(4.19) EΦ̃(t) = Φ0 −
cy0(1− η)

β − r − σY θ

(
e(β−r−σY θ)t − 1

)
.

Hence, the value of a PPM’s surplus is given as

(4.20) V (t) = X(t) + Φ(t)− Pm(t).

Therefore, the value of a PPM’s discounted surplus process is given as

(4.21) Ṽ (t) = X̃(t) + Φ̃(t)− P̃m(t).

Proposition 4.1. Suppose X̃(t) satisfies (4.13), P̃m(t) (4.15) and Φ̃(t) satisfies

(4.14), then the discounted surplus process, Ṽ (t) has the following dynamics

(4.22)
dṼ (t) = [X̃(t)(Σ′∆′(t)− θ)′ + (Φ̃(t)− P̃m(t))(σ′Y − θ)′]dW (t)− C̃(t)dt,

Ṽ (0) = v0.

5. The Mean-Variance Formulation

The objective of the PFA is double. The first objective is to maximize the
expected value of fund’s (and discounted) assets. The second objective is aim at
to minimize the variance of the terminal discounted surplus (and real surplus or

simply surplus), V ar(Ṽ ∗(T )) (and V ar(V ∗(T ))) and the consumption risk, C∗(t)
on the interval [0, T ]. This dual-objective problem reflects the major concern of
the stakeholders (in this paper, stakeholders represents the PFA and the PPM
only) to increase fund assets in order to pay due pension benefits as at when due,
but at the same time not exposed the pension fund to large variations in other
to provide stability to the scheme. According to Josa-Fombellida and Rincon-
Zapatero (2008), minimization of the contribution risk (though, in this paper, we
consider consumption risk) has been considered in other works as Haberman and
Sung (1994), Haberman et al. (2000) and Josa-Fombellida and Rincon-Zapatero
(2001, 2004).

Therefore, this paper is considering a multi-objective optimization problem in-
volving two criteria
(5.1)

min
(∆,C)∈A

(L1(∆, C), L2(∆, C)) = min
(∆,C)∈A

(
−E(Ṽ (T )), E

∫ T

0

eρtC̃2(t)dt+ V ar(Ṽ (T ))

)
subject to (4.22). Here A is the set of measurable processes (∆, C), where ∆
satisfies (2.5), C satisfies (2.6), and such that (4.22) admit a unique solution that
is Ft-measurable adapted to the filtration {Ft}t≥0.

An admissible control process (∆∗, C∗) is Pareto efficient if there exists no ad-
missible (∆, C) such that

L1(∆, C) ≤ L1(∆∗, C∗), L2(∆, C) ≤ L2(∆∗, C∗)

with at least one of the inequalities hold strictly. The pairs (L1(∆∗, C∗);L2(∆∗, C∗)) ∈
R2 form the Pareto frontier. We will refer to C∗ an efficient consumption rate and
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∆∗ an efficient portfolio. The aim of this paper is to find (E(Ṽ ∗(T )), V ar(Ṽ ∗(T )))
(and then deduce (E(V ∗(T )), V ar(V ∗(T )))) refer to as an efficient frontier.

According to Da Cunha and Polak (1967) (in Josa-Fombellida and Rincon-
Zapatero (2008)), when the objective functionals defining the multi-objective pro-
gram are convex, the Pareto efficient points can be found by solving a scalar optimal
control problem where the dynamics is fixed and the objective functional is a con-
vex combination of the original cost functionals. In our case (4.15) and (4.22) are
linear, so both L1 and L2 are indeed convex. Hence, the original problem (4.15),
(4.22) and (5.1) are equivalent to the scalar problem
(5.2)

min
(∆,C)∈A

L1(∆, C)+ψL2(∆, C) = min
(∆,C)∈A

−E(Ṽ (T ))+ψ

(
E

∫ T

0

eρtC̃2(t)dt+ V ar(Ṽ (T ))

)
subject to (4.22) and (4.15), with ψ > 0 a weight parameter. As ψ varies within
the interval (0,∞), the solutions of (5.2) describe the Pareto frontier (see Josa-
Fombellida and Rincon-Zapatero (2008)). Observe that ψ serves the PFA the op-
portunity to transfer linearly units of risk to units of expected return, and vice
versa. The size of ψ shows which one of the objectives is of major concern for the
PFA, to reduce risk or to maximize return.

Problem (4.15), (4.22) and (5.2) are not standard stochastic optimal problem

due to the presents of the term (E(Ṽ (T )))2 in the variance term, and the dynamic
programming approach cannot be applied at this point. Following Zhou and Li
(2000), Li and Ng (2000) and Josa-Fombellida and Rincon-Zapatero (2008), we
propose an auxiliary problem that transform into a stochastic problem of linear-
quadratic case:

(5.3) min
(∆,C)∈A

J(∆, C) = min
(∆,C)∈A

(
E

∫ T

0

eρtC̃2(t)dt+ E(Ṽ 2(T )− 2ϕṼ (T ))

)
subject to (4.22) and (4.15) and ϕ ∈ R.

The relationship between problems (4.15), (4.22), (5.2) and (4.15), (4.22), (5.3)
is shown in the following result.

Theorem 5.1. For any ϕ > 0, if (∆∗, C∗) is an optimal control of (4.15), (4.22),
(5.2) with associated optimal surplus, V ∗, then it is an optimal control of (4.15),

(4.22), (5.3) for ϕ = 1
2ψ + E(Ṽ ∗(T )).

Proof: see Josa-Fombellida and Rincon-Zapatero (2008).

6. Optimal Portfolio and Optimal Consumption

In this section, we find the optimal portfolio and optimal consumption rate for
a PPM. First, we determine the Hamilton-Jacobi-Bellman equation for our surplus
process. We define the follows differential operator:

(6.1) L =

(
1

2
Φ̃2 ∂2

∂Φ̃2
− Φ̃P̃

∂2

∂Φ̃∂P̃
+

1

2
P̃ 2 ∂2

∂P̃ 2

)
(σY σ

′
Y − 2σY θ + θ′θ).

We define the general value function

L(t, x̃, Φ̃, P̃ ) = E[V (T, X̃, Φ̃, P̃ )|X̃(t) = x̃, Φ̃(t) = Φ̃, P̃m(t) = P̃ ]
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where L(t, x̃, Φ̃, P̃ ) is the path of V (t) given the portfolio strategy ∆(t) = (∆I(t),∆S(t)).

Let L(t, x̃, Φ̃, P̃ ) be a convex function in V (t) such that

(6.2)
U(t, x̃, Φ̃, P̃ ) = min∆,C L(t, x̃, Φ̃, P̃ ),
subject to (3.8).

Then U(t, x̃, Φ̃, P̃ ) satisfies the HJB equation

(6.3)

Ut − C̃(t)Ux̃ + C̃2(t)e−ρt + 1
2 x̃

2(Σ∆(t)Σ′∆′(t)− 2Σ∆(t)θ + θ′θ)Ux̃x̃
+2(x̃Φ̃Ux̃Φ̃ − x̃P̃Ux̃P̃ )(Σ∆(t)σ′Y − 2Σ∆(t)θ + θ′θ) + LU = 0,

subject to: U(T, x̃, Φ̃, P̃ ) = (x̃− P̃ )2 − 2ϕ(x̃− P̃ ).

Proposition 6.1. The optimal rate of consumption and the optimal investment in
the risky assets (index bond and stock) are respectively given by

(6.4) ∆
′∗(t) =

(ΣΣ′)−1(x̃ΣθUx̃x̃ − 2(Φ̃Ux̃Φ̃ − P̃Ux̃P̃ )(Σσ′Y − 2Σθ))

x̃Ux̃x̃
.

(6.5) C̃∗(t) =
1

2
Ux̃e

ρt.

Substituting (6.4) and (6.5) into (6.3), we have

(6.6)

Ut − 1
2U

2
x̃e
ρt − 1

2θ
′θ(x̃2 − 1)Ux̃x̃ − 2[θ′Σ′M(Σσ′Y − 2Σθ)Φ̃

−2x̃Φ̃(σY θ − 2θ′θ)− x̃Φ̃θ′θ]Ux̃Φ̃ + 2P̃ [θ′Σ′M(Σσ′Y − 2Σθ)

+2x̃(2θ′θ − σY θ)− x̃θ′θ]Ux̃P̃ − 4(σY σ
′
Y − 4θ′θ)P̃ Φ̃

Ux̃Φ̃Ux̃P̃
Ux̃x̃

+[2(σY σ
′
Y − 4θ′θ)P̃ 2 − 4P̃ 2(3σY θ − 2θ′θ − σY σ′Y )]

U2
x̃P̃

Ux̃x̃

+[2(σY σ
′
Y − 4θ′θ)Φ̃2 + 4Φ̃2(3σY θ − 2θ′θ − σY σ′Y )]

U2
x̃Φ̃

Ux̃x̃
+ LU = 0,

subject to: U(T, x̃, Φ̃, P̃ ) = (x̃− P̃ )2 − 2ϕ(x̃− P̃ ).

We assume a quadratic solution of the form:

(6.7)
U(t, x̃, Φ̃, P̃ ) = φ0(t) + P̃ φP̃ (t) + Φ̃φΦ̃(t) + x̃φx̃(t) + x̃Φ̃φx̃Φ̃(t)

+x̃P̃ φx̃P̃ (t) + Φ̃P̃ φΦ̃P̃ (t) + Φ̃2φΦ̃Φ̃(t) + x̃2φx̃x̃(t) + P̃ 2φP̃ P̃ (t).

Finding the partial derivatives of (6.7) with respect to t, x̃, P̃ , Φ̃, x̃x̃, x̃Φ̃, x̃P̃ , Φ̃P̃ ,

P̃ P̃ , Φ̃Φ̃ as follows:

(6.8)
Ut = φ̇0(t) + P̃ φ̇P̃ (t) + Φ̃φ̇Φ̃(t) + x̃φ̇x̃(t) + x̃Φ̃φ̇x̃Φ̃(t)

+x̃P̃ φ̇x̃P̃ (t) + Φ̃P̃ φ̇Φ̃P̃ (t) + Φ̃2φ̇Φ̃Φ̃(t) + x̃2φ̇x̃x̃(t) + P̃ 2φ̇P̃ P̃ (t),

(6.9) Ux̃ = φx̃(t) + Φ̃φx̃Φ̃(t) + P̃ φx̃P̃ (t) + 2x̃φx̃x̃(t),

(6.10) UΦ̃ = φΦ̃(t) + x̃φx̃Φ̃(t) + P̃ φx̃P̃ (t) + 2Φ̃φΦ̃Φ̃(t),

(6.11) UP̃ = φP̃ (t) + x̃φx̃P̃ (t) + Φ̃φΦ̃P̃ (t) + 2P̃ φP̃ P̃ (t),

(6.12)
Ux̃x̃ = 2φx̃x̃(t), UΦ̃Φ̃ = 2φΦ̃Φ̃(t), UP̃ P̃ = 2φP̃ P̃ (t),
Ux̃Φ̃ = 2φx̃Φ̃(t), Ux̃P̃ = 2φx̃P̃ (t), UΦ̃P̃ = 2φΦ̃P̃ (t).

The following ordinary differential equations are obtained for the above coefficients
of x̃, P̃ , Φ̃, x̃x̃, x̃Φ̃, x̃P̃ , Φ̃P̃ , P̃ P̃ , Φ̃Φ̃ in (6.6):

φ̇0(t) = 1
4e
ρtφ2

x̃(t)− θ′θφx̃x̃(t), φ0(T ) = 0,
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φ̇P̃ (t) = 1
2e
ρtφx̃(t)φx̃P̃ (t)− 4θ′Σ′M(Σσ′Y − 2Σθ)φx̃P̃ (t), φP̃ (T ) = 2ϕ,

φ̇Φ̃(t) = 1
2e
ρtφx̃(t)φx̃Φ̃(t) + 4θ′Σ′M(Σσ′Y − 2Σθ)φx̃Φ̃(t), φΦ̃(T ) = 0,

φ̇Φ̃P̃ (t) = 1
2e
ρtφx̃Φ̃(t)φx̃P̃ (t) + 2(σY σ

′
Y − 2σY θ + θ′θ)φP̃ Φ̃

+8(σY σ
′
Y − 4θ′θ)

φx̃P̃ (t)φx̃Φ̃(t)

φx̃x̃(t) , φΦ̃P̃ (T ) = 0,

φ̇Φ̃Φ̃(t) = 1
4e
ρtφ2

x̃Φ̃
(t)− (σY σ

′
Y − 2σY θ + θ′θ)φΦ̃Φ̃

+4(σY σ
′
Y + 3σY θ + 8θ′θ)

φ2
x̃Φ̃

φx̃x̃
, φΦ̃Φ̃(T ) = 0,

φ̇P̃ P̃ (t) = 1
4e
ρtφ2

x̃P̃
(t)− (σY σ

′
Y − 2σY θ + θ′θ)φP̃ P̃

+12(σY σ
′
Y − 2σY θ)

φ2
x̃P̃

φx̃x̃
, φP̃ P̃ (T ) = 0,

(6.13) φ̇x̃(t) = eρtφx̃(t)φx̃x̃(t), φx̃(T ) = −2ϕ,

(6.14) φ̇x̃Φ̃(t) = eρtφx̃Φ̃(t)φx̃x̃(t)− 4(2σY θ − 3θ′θ)φx̃Φ̃(t), φx̃Φ̃(T ) = 0,

(6.15) φ̇x̃P̃ (t) = eρtφx̃P̃ (t)φx̃x̃(t)− 4(3θ′θ − 2σY θ)φx̃P̃ (t), φx̃P̃ (T ) = −2.

(6.16) φ̇x̃x̃(t) = eρtφ2
x̃x̃(t) + θ′θφx̃x̃(t), φx̃x̃(T ) = 1.

Therefore, from (6.6) the optimal controls must be

(6.17) ∆
′∗(t) = (ΣΣ′)−1Σθ − 2

(
Φ̃
φx̃Φ̃(t)

x̃φx̃x̃(t) − P̃
φx̃P̃ (t)

x̃φx̃x̃(t)

)
(ΣΣ′)−1(Σσ′Y − 2Σθ).

(6.18) C̃∗(t) = (φx̃(t) + Φ̃φx̃Φ̃(t) + P̃ φx̃P̃ (t) + 2x̃φx̃x̃(t))eρt.

Solving (6.13), we have

(6.19) φx̃(t) =
2ϕ(θ′θ + ρ)

e−θ′θ(T−t)+ρt − eρT − (θ′θ + ρ)
,

Solving (6.14), we have

(6.20) φx̃Φ̃(t) = 0,

Solving (6.15), we have

(6.21) φx̃P̃ (t) =
2e4(3θ′θ−2σY θ)(T−t)[e−θ

′θ(T−t)+ρt−eρT−(θ′θ+ρ)]

θ′θ + ρ
.

Solving (6.16), we have

(6.22) φx̃x̃(t) =
(θ′θ + ρ)e−θ

′θ(T−t)

(θ′θ + ρ)− e−θ′θ(T−t)+ρt + eρT
.

Substituting (6.19)-(6.22) into (6.17) and (6.18), we have the following optimal
portfolio and optimal discounted consumption for the PPM at time t:

(6.23)
∆
′∗(t) = MΣθ − 4Pm(t)M(Σσ′Y −2Σθ)

X∗(t) ×
e(13θ′θ+8σY θ)(T−t)(θ′θ+ρ−e−θ

′θ(T−t)+ρt+eρT )2

(θ′θ+ρ)2 .
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The first part of (6.23) is the Merton portfolio process. The second part is the
variational part which is the intertemporal hedging term that offset any shock to
the stochastic salary of a quadratic risk PPM in the scheme.

(6.24)
C̃∗(t) = 2P̃m(t)e4(3θ′θ−2σY θ)(T−t)+ρt[e−θ

′θ(T−t)+ρt−eρT−(θ′θ+ρ)]
θ′θ+ρ

+ 2(θ′θ+ρ)eρt(X̃∗(t)e−θ
′θ(T−t)−ϕ)

θ′θ+ρ−e−θ′θ(T−t)+ρt+eρT .

At time t = 0, we have

(6.25) ∆
′∗(0) = MΣθ − 4Pm(0)M(Σσ′Y −2Σθ)

x0

e(13θ′θ+8σY θ)T (θ′θ+ρ−e−θ
′θT+eρT )2

(θ′θ+ρ)2 .

(6.26) C̃∗(0) = 2P̃m(0)e4(3θ′θ−2σY θ)T [e−θ
′θT−eρT−(θ′θ+ρ)]

θ′θ+ρ + 2(θ′θ+ρ)(x̃0e
−θ′θT−ϕ)

θ′θ+ρ−e−θ′θT+eρT
.

The terminal discounted consumption can be obtained by setting t = T as follows:

(6.27) C̃∗(T ) = −2P̃m(T )eρT +
2(θ′θ + ρ)eρT (X̃∗(T )− ϕ)

θ′θ + ρ
.

6.1. Optimal Consumption of a PPM. In this subsection, we consider the
optimal consumption process of a PPM at time t. It is given by

(6.28) C∗(t) = Λ(t)−1C̃∗(t) = C̃∗(t)e(r+‖θ‖2)t+θ′W (t).

It implies that

(6.29)
C∗(t) = 2Pm(t)e4(3θ′θ−2σY θ)(T−t)+ρt[e−θ

′θ(T−t)+ρt−eρT−(θ′θ+ρ)]
θ′θ+ρ

+ 2(θ′θ+ρ)X∗(t)eρt−θ
′θ(T−t)

θ′θ+ρ−e−θ′θ(T−t)+ρt+eρT −
2(θ′θ+ρ)ϕe(ρ+r+‖θ‖

2)t+θ′W (t)

θ′θ+ρ−e−θ′θ(T−t)+ρt+eρT .

The positive term θ′θ captures the uncertainty of the financial markets. (6.29)
shows that when the market become bearish, it induces the PPM not make more
contributions into the pension fund and consume more, and vice versa. It is also
observed that when the preference consumption rate, ρ increases, the consumption
process increases over time, for all other parameters remain fixed.

At time t = 0, (6.29) becomes

(6.30)
C∗(0) =

2Pm0 e4(3θ′θ−2σY θ)T [e−θ
′θT−eρT−(θ′θ+ρ)]

θ′θ+ρ

+ 2(θ′θ+ρ)x0e
−θ′θT

θ′θ+ρ−e−θ′θT+eρT
− 2(θ′θ+ρ)ϕ

θ′θ+ρ−e−θ′θT+eρT
.

At time t = T , (6.29) becomes

(6.31)
C∗(T ) = − 2Pm(T )eρT [(θ′θ+ρ)]

θ′θ+ρ + 2(θ′θ+ρ)X∗(T )eρT

θ′θ+ρ

− 2(θ′θ+ρ)ϕe(ρ+r+‖θ‖
2)T+θ′W (T )

θ′θ+ρ .

We can express (6.29) in terms of the parameter ψ (which represents the variance
minimizer) as follows:

(6.32)
C∗(t) = 2Pm(t)e4(3θ′θ−2σY θ)(T−t)+ρt[e−θ

′θ(T−t)+ρt−eρT−(θ′θ+ρ)]
θ′θ+ρ

+ 2(θ′θ+ρ)X∗(t)eρt−θ
′θ(T−t)

θ′θ+ρ−e−θ′θ(T−t)+ρt+eρT −
2(θ′θ+ρ)(1+2ψE(Ṽ ∗(T )))e(ρ+r+‖θ‖

2)t+θ′W (t)

2ψ(θ′θ+ρ−e−θ′θ(T−t)+ρt+eρT )
.
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It is observe that as ψ becomes smaller and smaller for all other parameters remain
constant, consumption rate reduces and vice versa. It imply that

(6.33)
limψ→∞ C∗(t) = 2Pm(t)e4(3θ′θ−2σY θ)(T−t)+ρt[e−θ

′θ(T−t)+ρt−eρT−(θ′θ+ρ)]
θ′θ+ρ

+ 2(θ′θ+ρ)X∗(t)eρt−θ
′θ(T−t)

θ′θ+ρ−e−θ′θ(T−t)+ρt+eρT ,

and

(6.34) limψ→0 C
∗(t) = −∞.

This is an intuitive result, since the PPM will consume more over time when the
market is volatile and consume less when the market is not volatile. Observe that
the taste of consumption will be negative if the market is absolutely riskless.

6.2. Special Cases: θ = (0, 0)′, ρ 6= 0; ρ = 0, θ ∈ R2
+. Special Case I: Suppose

θ = (0, 0)′ and ρ 6= 0, then (6.29) becomes

(6.35) C∗(t) = 2Pm(t)eρt[eρt−eρT−ρ]
ρ + 2ρX∗(t)eρt

ρ−eρt+eρT −
2ρϕe(ρ+r)t

ρ−eρt+eρT .

(6.35) shows the consumption level when the investment is not in the risky assets.
It implies that consumption level of the investor do not depends on the uncertainty
of the market over time, but upon the riskless asset. In this case, the initial con-
sumption level and the terminal consumption level are given respectively in (6.36)
and (6.37). At t = 0, (6.35) becomes

(6.36) C∗(0) =
2Pm0 [1−eρT−ρ]

ρ + 2ρx0

ρ−1+eρT
− 2ρϕ

ρ−1+eρT
.

At t = T , (6.35) becomes

(6.37) C∗(T ) = −2Pm(T )eρT + 2X∗(T )eρT − 2ϕe(ρ+r)T .

Special Case II: Suppose ρ = 0, and θ ∈ R2
+, then (6.29) becomes

(6.38)
C∗(t) = 2Pm(t)e4(3θ′θ−2σY θ)(T−t)[e−θ

′θ(T−t)−1−θ′θ]
θ′θ

+ 2θ′θX∗(t)e−θ
′θ(T−t)

θ′θ−e−θ′θ(T−t)+1
− 2θ′θϕe(r+‖θ‖

2)t+θ′W (t)

θ′θ−e−θ′θ(T−t)+1
.

(6.38) shows the consumption level when the sharpe ratio θ′θ is not zero and the
discount factor, ρ is zero. It is observe that consumption level strictly depend
on the risky assets with respect to the riskless one. We observe that the market is
booming, consumption reduces, and vice versa. In this case, the initial and terminal
consumption level are given respectively in (6.39) and (6.40).

Similarly, at t = 0, (6.38) becomes

(6.39)
C∗(0) =

2Pm0 e4(3θ′θ−2σY θ)T [e−θ
′θT−1−θ′θ]

θ′θ

+ 2θ′θx0e
−θ′θT

θ′θ−e−θ′θT+1
− 2θ′θϕ

θ′θ−e−θ′θT+1
.

At t = T , (6.38) becomes

(6.40) C∗(T ) = −2Pm(T ) + 2X∗(T )− 2ϕe(r+‖θ‖2)T+θ′W (T ).

We therefore have the following propositions.

Proposition 6.2. Let

C∗ρ(t) =
2Pm(t)eρt[eρt − eρT − ρ]

ρ
+

2ρX∗(t)eρt

ρ− eρt + eρT
− 2ρϕe(ρ+r)t

ρ− eρt + eρT
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and

C∗θ (t) = 2Pm(t)e4(3θ′θ−2σY θ)(T−t)[e−θ
′θ(T−t)−1−θ′θ]

θ′θ

+ 2θ′θX∗(t)e−θ
′θ(T−t)

θ′θ−e−θ′θ(T−t)+1
− 2θ′θϕe(r+‖θ‖

2)t+θ′W (t)

θ′θ−e−θ′θ(T−t)+1
,

then

(6.41) C∗(t) =

{
C∗ρ(t), if θ′θ = 0, ρ 6= 0,
C∗θ (t), if θ ∈ R2

+, ρ = 0.

7. The Efficient Frontier

In this section, we determine the efficient frontier of the surplus process. Substi-
tuting (6.23) and (6.24) into (4.22), we have the dynamics of the surplus as follows:

(7.1)

dṼ ∗(t) = [(P̃m(t)(1 + f(t)) + Φ̃(t))(σ′Y − θ)′]dW (t)

−2eρt[P̃m(t)g(t) + (θ′θ+ρ)(P̃m(t)−Φ̃(t))e−θ
′θ(T−t)−(θ′θ+ρ)ϕ

θ′θ+ρ−e−θ′θ(T−t)+ρt+eρT

+ (θ′θ+ρ)Ṽ ∗(t)e−θ
′θ(T−t)

θ′θ+ρ−e−θ′θ(T−t)+ρt+eρT ]dt, Ṽ ∗(0) = v0,

where

f(t) = −4e(13θ′θ+8σY θ)(T−t) (θ′θ + ρ− e−θ′θ(T−t)+ρt + eρT )2

(θ′θ + ρ)2
,

g(t) = e4(3θ′θ−2σY θ)(T−t) e
−θ′θ(T−t)+ρt − eρT − (θ′θ + ρ)

θ′θ + ρ
.

Re-writing (7.1) in a more compact form, we have

(7.2) dṼ ∗(t) = (K(t)Ṽ ∗(t) +G(t) + ϕα(t))dt+ F (t)′dW (t), Ṽ ∗(0) = v0,

where

F (t) = (P̃m(t)(1 + f(t)) + Φ̃(t))(σ′Y − θ)

G(t) = −2eρt[P̃m(t)g(t) +
(θ′θ + ρ)(P̃m(t)− Φ̃(t))e−θ

′θ(T−t)

θ′θ + ρ− e−θ′θ(T−t)+ρt + eρT
]

α(t) =
2(θ′θ + ρ)eρt

θ′θ + ρ− e−θ′θ(T−t)+ρt + eρT

(7.3) K(t) = − 2(θ′θ + ρ)eρt−θ
′θ(T−t)

θ′θ + ρ− e−θ′θ(T−t)+ρt + eρT
.

Applying Ito Lemma on (7.2), we have

(7.4)
dṼ ∗2(t) = (2K(t)Ṽ ∗2(t) + 2Ṽ ∗(t)G(t) + 2ϕṼ ∗(t)α(t)

+F (t)′F (t))dt+ F (t)′dW (t), Ṽ ∗2(0) = v2
0 ,

Taking the mathematical expectation of (7.2) and (7.4), we have

(7.5) dE(Ṽ ∗)(t) = (K(t)E(Ṽ ∗(t)) + E(G(t)) + ϕα(t))dt, E(Ṽ ∗)(0) = v0,

(7.6)
dE(Ṽ ∗2)(t) = (2K(t)E(Ṽ ∗2)(t) + 2E(Ṽ ∗)(t)E(G(t)) + 2ϕE(Ṽ ∗)(t)α(t)

+E(F (t))′E(F (t)))dt, E(Ṽ ∗2)(0) = v2
0 ,

Solving the ordinary differential equations (ODEs), (7.5) and (7.6), we have follow-
ings:

(7.7) E(Ṽ ∗)(t) = A(t)e
∫ t
0
K(s)ds + ϕe

∫ t
0
K(s)ds

∫ t
0
e−

∫ t
0
K(s)dsα(s)ds,
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where

A(t) = v0 +

∫ t

0

e−
∫ t
0
K(s)dsG(s)ds.

(7.8)

E(Ṽ ∗2)(t) = v2
0e

2
∫ t
0
K(τ)dτ + e2

∫ t
0
K(τ)dτ

∫ t
0
E(F (τ))′E(F (τ))dτ+

2e2
∫ t
0
K(τ)dτ

∫ t
0
E(G(τ))

(
A(τ)e

∫ τ
0
K(u)du + ϕe

∫ τ
0
K(u)du

∫ τ
0
e−

∫ s
0
K(u)duα(s)ds

)
dτ+

2ϕe2
∫ t
0
K(τ)dτ

∫ t
0
α(τ)

(
A(τ)e

∫ τ
0
K(u)du + ϕe

∫ τ
0
K(u)du

∫ τ
0
e−

∫ s
0
K(u)duα(s)ds

)
dτ

Simplifying (7.8), we have
(7.9)

E(Ṽ ∗2)(t) = v2
0e

2
∫ t
0
K(τ)dτ + e2

∫ t
0
K(τ)dτ

∫ t
0
E(F (τ))′E(F (τ))dτ

+2e2
∫ t
0
K(τ)dτ

∫ t
0
E(G(τ))A(τ)e

∫ τ
0
K(u)dudτ + 2ϕe2

∫ t
0
K(τ)dτ

∫ t
0
α(τ)A(τ)e

∫ τ
0
K(u)dudτ

+2ϕe2
∫ t
0
K(τ)dτ

∫ t
0

∫ τ
0
e
∫ τ
0
K(u)due−

∫ s
0
K(u)duE(G(τ))α(s)dsdτ

+2ϕ2e2
∫ t
0
K(τ)dτ

∫ t
0

∫ τ
0
e
∫ τ
0
K(u)due−

∫ s
0
K(u)duα(τ)α(s)dsdτ

Re-writing (7.9) in compact form, we have

(7.10)
E(Ṽ ∗2)(t) = v2

0e
2
∫ t
0
K(τ)dτ +D1(t)e2

∫ t
0
K(τ)dτ

+2D2(t)ϕe2
∫ t
0
K(τ)dτ + 2D3(t)ϕ2e2

∫ t
0
K(τ)dτ

where

D1(t) =
∫ t

0
E(F (τ))′E(F (τ))dτ + 2

∫ t
0
E(G(τ))A(τ)dτ

D2(t) =
∫ t

0

∫ τ
0
e
∫ τ
0
K(u)due−

∫ s
0
K(u)duE(G(τ))α(s)dsdτ +

∫ t
0
α(τ)A(τ)dτ

D3(t) = 2

∫ t

0

∫ τ

0

e
∫ τ
0
K(u)due−

∫ s
0
K(u)duα(τ)α(s)dsdτ

At t = T , (7.7) and (7.10) becomes:

(7.11) E(Ṽ ∗)(T ) = A(T )γ + ϕγω,

where, γ = e
∫ T
0
K(u)du, ω =

∫ T
0
e−

∫ T
0
K(s)dsα(s)ds.

Lemma 7.1. Suppose that K(t) satisfies (7.14), then

γ =

(
(θ′θ + ρ)eθ

′θT

1− eθ′θT (θ′θ + ρ+ eρT )

)2

.

Proof: Using (7.14), we have that∫ t

0

K(u)du = 2 loge

(
e(θ′θ+ρ)t − e(θ′θ+ρ)T − (θ′θ + ρ)eθ

′θT

1− eθ′θT (θ′θ + ρ+ eρT )

)
.

It implies that

e
∫ t
0
K(u)du =

(
e(θ′θ+ρ)t − e(θ′θ+ρ)T − (θ′θ + ρ)eθ

′θT

1− eθ′θT (θ′θ + ρ+ eρT )

)2

.

Therefore, setting t = T , we have

γ =

(
(θ′θ + ρ)eθ

′θT

1− eθ′θT (θ′θ + ρ+ eρT )

)2

.
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Using Lemma 7.1, the second moments of the surplus process becomes

(7.12) E(Ṽ ∗2)(T ) = v2
0γ

2 +D1(T )γ2 + 2D2(T )ϕγ2 +D3(T )ϕ2γ2

Substituting (7.11) into (7.12), we have

(7.13)
E(Ṽ ∗2)(T ) = v2

0γ
2 +D1(T )γ2 + 2γD2(T )

ω (E(Ṽ ∗(T ))−A(T )γ)

+D3(T )
ω2 (E(Ṽ ∗(T ))−A(T )γ)2

The variance of the discounted surplus process for the stakeholders is

V ar(Ṽ ∗(T )) = E(Ṽ ∗2)(T )− (E(Ṽ ∗)(T ))2

= v2
0γ

2 +D1(T )γ2 +
2γD2(T )

ω
(E(Ṽ ∗(T ))−A(T )γ)

+
D3(T )

ω2
(E(Ṽ ∗(T ))−A(T )γ)2 − (E(Ṽ ∗)(T ))2

= v2
0γ

2 −A(T )2γ2 +D1(T )γ2

+ 2γ

(
D2(T )

ω
−A(T )

)
(E(Ṽ ∗(T ))−A(T )γ)

+

(
D3(T )

ω2
− 1

)
(E(Ṽ ∗(T ))−A(T )γ)2

= v2
0γ

2 −A(T )2γ2 +D1(T )γ2 −
γ2
(
D2(T )
ω −A(T )

)2

(
D3(T )
ω2 − 1

)
+

(
D3(T )

ω2
− 1

)
[γ2

(
D2(T )
ω −A(T )

)2

(
D3(T )
ω2 − 1

)2 + 2γ

(
D2(T )
ω −A(T )

)
(
D3(T )
ω2 − 1

)
× (E(Ṽ ∗(T ))−A(T )γ) + (E(Ṽ ∗(T ))−A(T )γ)2]

= γ2Q+

(
D3(T )

ω2
− 1

)γ
(
D2(T )
ω −A(T )

)
(
D3(T )
ω2 − 1

) + E(Ṽ ∗(T ))−A(T )γ

2

where

Q = v2
0 −A(T )2 +D1(T )−

(
D2(T )
ω −A(T )

)2

(
D3(T )
ω2 − 1

) .

Therefore, the efficient frontier of discounted surplus is obtain as

(7.14) E(Ṽ ∗(T )) =
γ(2ωA(T )−D2(T ))

ω

√(
D3(T )
ω2 − 1

) +

√
σ2
V ∗(T ) − γ2Q√(
D3(T )
ω2 − 1

) .
From (7.14), shows a kind quadratic relation between optimal discounted surplus

and its variance. The minimum possible variance, V ar(Ṽ (∗(T )) = γ2Q ≥ 0, could
be attained when the stakeholder borrows money from the total amount of surplus
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at time t = 0 for T years, so that

E(Ṽ (∗(T )) =
γ(2ωA(T )−D2(T ))

ω

√(
D3(T )
ω2 − 1

) .

We now establish the efficient frontier of the optimal terminal surplus of the stake-
holders. The expected surplus and the variance, σ2

V ∗(T ), at time T are related by

the following (7.15).

Proposition 7.1. Suppose (7.14) holds and E(Λ(T )) = e−(r+2‖θ‖2)T , then

(7.15) E(V ∗(T )) =
γ(2ωA(T )−D2(T ))e(r+2‖θ‖2)T

ω

√(
D3(T )
ω2 − 1

) +
e(r+2‖θ‖2)T

√
σ2
V ∗(T ) − γ2Q√(

D3(T )
ω2 − 1

) .

From (7.15), shows the quadratic relation between surplus and its variance. The
minimum possible variance, V ar(V ∗(T )) = γ2Q ≥ 0, could be attained when the
stakeholder borrows money from the total amount of surplus at time t = 0 for T
years, so that

E(V ∗(T )) =
γ(2ωA(T )−D2(T ))e(r+2‖θ‖2)T

ω

√(
D3(T )
ω2 − 1

) .

We observe that if D3(T )
ω2 = 1, we have infinite slope, if D3(T )

ω2 > 1, we have real

slope and complex slope if D3(T )
ω2 < 1.

8. Optimal Pension Benefit for a PPM at Retirement

In this section, we consider the optimal benefit that will accrued to the PPM at
retirement. By definition, the benefit that will accrued to a PPM at the final time,
T is given by

(8.1) P (T ) = Pm(T ) + ΘT (Pm(T )).

Proposition 8.1. : Let Θ̃∗T (P̃m(T )) be the optimal discounted surplus function at
the final time, T , then

(8.2) P̃ ∗(T ) = P̃m(T ) + Θ̃∗T (P̃m(T )),

with

(8.3) Ṽ ∗(T ) = v0 +

∫ T

0

(K(t)Ṽ ∗(t) +G(t) + ϕα(t))dt+

∫ T

0

F (t)′dW (t).

Corollary 8.1. : Let Θ∗T (Pm(T )) be the optimal surplus function at the final time,
T , then

(8.4) P ∗(T ) = Pm(T ) + Θ∗T (Pm(T )),

with
(8.5)

V ∗(T ) =
1

Λ(T )

(
v0 +

∫ T

0

(K(t)Ṽ ∗(t) +G(t) + ϕα(t))dt+

∫ T

0

F (t)′dW (t)

)
.
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Corollary 8.2. : Let E(Θ̃∗T (P̃m(T ))) be the expected optimal discounted surplus
function at the final time, T , then

(8.6) E(P̃ ∗(T )) = E(P̃m(T )) + E(Θ̃∗T (P̃m(T ))),

with

(8.7) E(Ṽ ∗(T )) = v0 +

∫ T

0

(K(t)E(Ṽ ∗(t)) + E(G(t)) + ϕα(t))dt.

Corollary 8.3. : Let E(Θ∗T (Pm(T ))) be the optimal expected surplus function at
the final time, T , then

(8.8) E(P ∗(T )) = E(Pm(T )) + E(Θ∗T (Pm(T ))),

with

(8.9) E(V ∗(T )) =
1

E(Λ(T ))
E

[
v0 +

∫ T

0

(K(t)Ṽ ∗(t) +G(t) + ϕα(t))dt

]
.

9. Numerical Illustration

In this section, we give numerical illustration of our results in the previous sec-
tions. The aim of this numerical illustration is to observe the nature of the expected
final optimal surplus (both discounted case and the real case) as against the final
standard deviation, the initial optimal consumption, optimal final pension benefits,
minimum pension benefits, with respect to the terminal time to retirement, the
expected final surplus and parameter, ψ given to the minimization of the variance.
The values of parameters that we consider are as followings.
c = 0.15, η = 0.01, r = 0.04, ψ = 10, ξ = 0.3, ρ = 0.01, µ = 0.09, σY =

(0.25, 0.32), θI = 0.02, β = 0.0292, y0 = 0.8, x0 = 1, σS = 0.35, σ1 = 0.23.

Figure 1. Efficient Frontier
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Table 1: Initial Optimal Consumption, C0, with z̃ = E(Ṽ ∗(T ))

z̃
ψ = 0.1
T = 1

ψ = 0.1
T = 2

ψ = 0.1
T = 10

ψ = 0.1
T = 20

ψ = 1
T = 1

ψ = 1
T = 2

ψ = 1
T = 10

ψ = 1
T = 20

6 -10.4172 -7.8403 -13.3382 -21.0730 -5.9279 -4.8594 -12.5551 -20.6823

10 -14.4077 -10.4901 -14.0343 -21.4202 -9.9184 -7.5091 -13.2512 -21.0296

20 -24.3838 -17.1144 -15.7745 -22.2883 -19.8945 -14.1334 -14.9914 -21.8877

30 -34.3600 -23.7387 -17.5148 -23.1564 -29.8707 -20.7577 -16.7317 -22.7658

35 -39.3481 -27.0509 -18.3849 -23.5905 -34.8588 -24.0699 -17.6018 -23.1998

Continuation of Table 1

z̃
ψ = 10
T = 1

ψ = 10
T = 2

ψ = 10
T = 10

ψ = 10
T = 20

ψ =∞
T = 1

ψ =∞
T = 2

ψ =∞
T = 10

ψ =∞
T = 10

6 -5.4790 -4.5613 -2.4767 -20.6433 -5.4266 -4.2949 -3.36116 -1.4281

10 -9.4695 -7.2110 -13.1728 -20.9905 -9.4443 -6.9929 -4.1453 -1.8692

20 -19.4456 -13.8353 -14.8131 -21.8586 -19.4886 -13.7380 -6.1057 -2.9719

30 -29.4200 -20.4597 -16.6534 -22.7267 -29.5328 -20.4830 -8.0661 -4.0747

35 -34.4099 -23.7718 -17.5235 -23.1608 -34.5550 -23.8556 -9.0463 -4.6260

Table 2: EODS, EODPB and Minimum Pension Benefit for a PPM

T EV ∗ EṼ ∗ EP̃m EPm
EP̃ ∗

h = 0.2

EP ∗

h = 0.2
EP̃ ∗

h = 0.3

EP ∗

h = 0.3
EP̃ ∗

h = 0.4

EP ∗

h = 0.4

1 -2.8513 -2.7400 0.1202 0.1189 -2.1676 -2.2573 -1.8816 -1.9603 -1.5956 -1.6632

2 -0.7245 0.2409 0.2409 0.2357 -0.5314 -0.5807 -0.4349 -0.4786 -0.3383 -0.3766

3 0.2708 0.2402 0.3622 0.3567 0.2646 0.2868 0.2768 0.2948 0.2890 0.3027

4 1.4329 1.2211 0.4844 0.4640 1.0737 1.2391 1.0001 1.1422 0.9264 1.0453

5 2.7673 2.2657 0.6077 0.5758 1.9341 2.3290 1.7683 2.1099 1.6025 1.8907

6 4.2720 3.3605 0.7322 0.6853 2.8348 3.5548 2.5720 3.1963 2.3091 2.8377

10 11.7552 7.8797 1.2463 1.1187 6.5531 9.6279 5.8897 8.5643 5.2264 7.5006

20 40.9465 18.3985 2.7168 2.1890 15.2621 33.1950 13.6940 29.3193 12.1258 25.4435

Continuation of Table 2

T
EP̃ ∗

h = 0.5

EP ∗

h = 0.5
EP̃ ∗

h = 0.6

EP ∗

h = 0.6
EP̃ ∗

h = 0.7

EP ∗

h = 0.7
EP̃ ∗

h = 0.8

EP ∗

h = 0.8

1 -1.3097 -1.3662 -1.0237 -1.0692 -0.7377 -0.7722 -0.4518 -0.4751

2 -0.2418 -0.2745 -0.1453 -0.1725 -0.0487 -0.0704 0.0478 0.03161

3 0.3012 0.3107 0.3134 0.3187 0.3256 0.3267 0.3378 0.3347

4 0.8527 0.9484 0.7791 0.8515 0.7054 0.7546 0.6318 0.6577

5 1.4367 1.6715 1.2709 1.4524 1.1051 1.2332 0.9393 1.0141

6 2.0463 2.4791 1.7835 2.1205 1.5207 1.7620 1.2578 1.4034

10 4.5630 6.4370 3.8997 5.3733 3.2363 4.3097 2.5730 3.2460

20 10.5576 21.5678 8.9895 17.6920 7.4213 13.8163 5.8531 9.9405

EODS denotes Expected Optimal Discounted Surplus, EODPB denotes Expected
Optimal Discounted Pension Benefit.
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Figure 2. Initial Optimal Consumption

Figure 3. Portfolio Value in Cash Account
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Figure 4. Portfolio Value in Index Bond

Figure 5. Portfolio Value in Stock
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Figure 6. Portfolio Value in Index bond for Stochastic Salary

Figure 7. Portfolio Value in Stock for Stochastic Salary

Table 1 shows the initial optimal consumption of a PPM at various values of
expected discounted surplus in a varying value of variance minimizer parameter, ψ
at time T = 1, 2, 10 and 20 years. We observed at different values of ψ and T , that
as the expected optimal surplus increases, the initial optimal consumption decreases
and vice versa. This shows that the positive growth of the surplus (resulting from
the positive growth of the financial market and effective management on the part
of the PFA) is capable of discouraging consumption. It was also observed that as ψ
increases, the initial optimal consumption increases. This shows that as the market
continues to be volatile, consumption rate will continue increase and vice versa.
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Table 2 show the expected optimal surplus, expected discounted optimal surplus,
expected discounted minimum pension benefit, expected minimum pension benefit,
expected discounted total benefit and expected total pension benefit for a PPM,
at time T = 1, 2, 3, 4, 5, 6, 10 and 20 years, and at different value of h (i.e., the
proportion of the surplus that will accrued to the PFA). It was observed that
the optimal surplus increases in time, T . It also observed that as the value of h
increases, the benefit of the PPM will decrease, and vice versa, which is an obvious
result. Hence, what ever the bargain between the PPM and PFA on the sharing of
the surplus will be, the values of the PPM minimum and total pension benefit are
given in table 2.

Figure ?? shows the efficient frontier of the surplus process. We observed that
the shape of the efficient frontier is parabolic in nature. It is also observed that the
minimum possible variance is attained when the PFA borrows the amount of about
5200 from the total surplus at time t = 0 for time t = T . Figure ?? shows the initial
optimal consumption of a PPM with 0− 40 optimal surplus at time period 0− 20
years. It is observed that the initial optimal consumption of a PPM remain negative
over the time period, T . This confirm the results obtained in Table 1. Figure ??
shows the portfolio value of the investment in cash account and figure ?? and figure
?? show the portfolio values of a PPM in index bond and stock respectively, under
deterministic salary of a PPM. Figure ?? and figure ?? show the portfolio values
of a PPM in index bond and stock under stochastic salary. Figure ??, figure ??
and figure ?? tell us that the fund should be invested in index bond and stock only
and that cash account should be shorten and then invest in the risky assets (which
include index bond and stock), with high proportion of it being invested in stock
over time in order to attain the required target.

10. Conclusion

This paper have studied the management of a stochastic pension funding process
of a defined contributory pension scheme. The objectives are to determine the
minimum pension benefits, total pension benefits, optimal consumption and optimal
investment strategies maximizing the expected terminal surplus and simultaneously
minimizing the variance of the terminal surplus. The financial market is made up
of cash account, index bond and stock. The salary of the pension plan member is
stochastic. The problem was formulated as a modified mean-variance optimization
problem and was solved using dynamic programming approach.

The efficient frontier which was found to be nonlinear (i.e., possess a parabolic
shape). The optimal investment strategies have two components. The first com-
ponent depends ultimately on the risky assets and its correlation. The second
component is proportional to the ratio of the present expected value of PPM’s min-
imum benefit to the optimal wealth. The second component is the inter-temporal
hedging terms that offset any shock to the stochastic finding overtime.

The optimal consumption (both for real and discounted cases) plan have three
components. First component depends on the current level of minimum pension
benefit, with a coefficient involving the instantaneous variance of salary, prefer-
ence rate of consumption and risky assets. The second component depends on the
optimal wealth, preference rate of consumption and risky assets. The third compo-
nent is proportional to the present expected value of discounted surplus planned,
with coefficient involving preference rate of consumption, variance minimizer, short
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term interest rate, risky assets and the Brownian motion term, which shows that
the consumption of the PPM is stochastic. We found the as the variance mini-
mizing parameter tends to zero, the consumption level tends to negative infinity.
This shows that PPM will consume more over time when the market is volatile and
consume less when the market is less volatile. Also, the taste of consumption will
be negative, if the market is absolutely riskless.

The optimal terminal surplus for the stakeholders was determined in this pa-
per. The pension fund administrator (PFA) was encouraged by sharing the surplus
arising from the investment with the PPM. This strategy will go a long way in-
creasing the final benefit that will accrued to the PPM at retirement. The PFA
charge propositional administrative costs (AC) for the management of the fund.
This costs is on the PPM stochastic contributions into the scheme.

The minimum pension benefit is taken not to be less than the gross contributions
of the PPM. It implies that the total benefit must be greater or equal to the
minimum pension benefit.

A numerical illustrations show the analytical results and models established in
the paper.
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ON INVARIANT SUBMANIFOLDS OF ALMOST

α-COSYMPLECTIC f-MANIFOLDS

SELAHATTIN BEYENDI, NESIP AKTAN, AND ALI IHSAN SIVRIDAĞ

Abstract. In this paper, we investigate some properties of invariant subman-

ifolds of almost α-cosymplectic f - manifolds. We show that every invariant
submanifold of an almost α-cosymplectic f - manifold with Kaehlerian leaves is

also an almost α-cosymplectic f - manifold with Kaehlerian leaves. Moreover,

we give a theorem on minimal invariant submanifold and obtain a necessary
condition on a invariant submanifold to be totally geodesic. Finally, we study

some properties of the curvature tensors of M and M̃ .

1. Introduction

In 1963, Yano [13] introducted an f -structure on a C∞ m-dimensional manifold
M , defined by a non-vanishing tensor field ϕ of type (1, 1) which satisfies ϕ3 +ϕ = 0
and has constant rank r. It is know that in this case r is even, r = 2n. Moreover.
TM splits into two complemantary subbundles Imϕ and kerϕ and the restriction
of ϕ to Imϕ determines a complex structure on such subbundle. It is know that the
exixtence of an f -structure on M is equivalent to a reduction of the structure group
to U(n) × O(s) [2], where s = m − 2n. The geometry of invariant submanifolds
of a Riemannian manifold was studied by many geometers (see [3], [4], [6], [7], [8],
[9], [10]). In general, the geometry an invariant submanifold inherits almost all

properties of the ambient manifold. In 2014, Öztürk et.al. introduced and studied
almost α-cosymplectic f -manifold [7] defined for any real number α which is defined
a metric f -manifold with f -structure (ϕ, ξi, η

i, g) satisfying the condition dηi = 0,
dΩ = 2αη ∧ Ω.

In this paper, we introduce properties of invariant submanifolds of an almost
α-cosymplectic f -manifold. In Section 2, we review basic formulas and definitions
for almost α-cosymplectic f -manifolds. In Section 3, we show that every invariant
submanifold of an almost α-cosymplectic f - manifold with Kaehlerian leaves is also
an almost α-cosymplectic f - manifold with Kaehlerian leaves. Further, we give
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a theorem on minimal invariant submanifold and obtain a necessary condition on
a invariant submanifold to be totally geodesic. In last section, we obtain some

relations of curvature tensors M and M̃ .

2. Preliminaries

Let M̃ be a real (2n+ s)-dimensional framed metric manifold [12] with a framed
(ϕ, ξi, η

i, g), i ∈ {1, ..., s}, that is, ϕ is a non-vanishing tensor field of type (1,1) on

M̃ which satisfies ϕ3 + ϕ = 0 and has constant rank r = 2n; ξ1, ...ξs are s vector

fields; η1, ..., ηs are 1-forms and g is a Riemannian metric on M̃ such that

(2.1) ϕ2 = −I +

s∑
i=1

ηi ⊗ ξi,

(2.2) ηi(ξj) = δij , ϕ(ξi) = 0, ηioϕ = 0,

(2.3) ηi(X) = g(X, ξi),

(2.4) g(X,ϕY ) + g(ϕX, Y ) = 0,

(2.5) g(ϕX,ϕY ) = g(X,Y )−
s∑
i=1

ηi(X)ηi(Y )

for all X,Y ∈ Γ(TM̃) and i, j ∈ {1, ..., s}. In above case, we say that M̃ is a metric

f -manifold and its associated structure will be denoted by M̃(ϕ, ξi, η
i, g) [12].

A 2-form Ω is defined by Ω(X,Y ) = g(X,ϕY ), for any X,Y ∈ Γ(TM̃), is called
the fundamental 2-form. A framed metric structure is called normal [12] if

[ϕ,ϕ] + 2dηi ⊗ ξi = 0

where [ϕ,ϕ] is denoting the Nijenhuis tensor field associated to ϕ. Throughout this

paper we denote by η = η1+η2+...+ηs, ξ = ξ1+ξ2+...+ξs and δ
j

i = δ1
i +δ2

i +...+δsi .
In the sequel, from [7] we give the following definition.

Definition 2.1. Let M̃(ϕ, ξi, η
i, g) be a (2n+ s)-dimensional a metric f -manifold

for each ηi, (1 ≤ i ≤ s) 1-forms and each 2-form Ω, if dηi = 0 and dΩ = 2αη ∧ Ω

satisfy, then M̃ is called almost α-cosymplectic f -manifold [7].

Let M̃ be an almost α-cosypmlectic f -manifold. Since the distribution D is
integrable, we have Lξiη

j = 0, [ξi, ξj ] ∈ D and [X, ξj ] ∈ D for any X ∈ Γ(D). Then
the Levi-Civita connection is given by [7]:

2g((∇̃Xϕ)Y, Z) = 2αg

(
s∑
i=1

(g(ϕX, Y )ξi − ηi(Y )ϕX), Z

)
(2.6)

+ g(N(Y,Z), ϕX)

for any X,Y ∈ Γ(TM̃). Putting X = ξi we obtain ∇̃ξiϕ = 0 which implies ∇̃ξiξj ∈
D⊥ and then ∇̃ξiξj = ∇̃ξjξi, since [ξi, ξj ] = 0. We put AiX = −∇̃Xξi and hi =
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1
2 (Lξiϕ), where L denotes the Lie derivative operator. If M̃ is almost α-cosymplectic
f -manifold with Kaehlerian leaves [6], we have

(∇̃Xϕ)Y =

s∑
i=1

[
−g(ϕAiX,Y )ξi + ηi(Y )ϕAiX

]
or

(2.7) (∇̃Xϕ)Y =

s∑
i=1

[
α
(
g(ϕX, Y )ξi − ηi(Y )ϕX

)
+ g(hiX,Y )ξi − ηi(Y )hiX

]
.

Proposition 2.1. ([7]) For any i ∈ {1, ..., s} the tensor field Ai is a symmetric
operator such that

(i) Ai(ξj) = 0, for any j ∈ {1, ..., s}
(ii) Aioϕ+ ϕoAi = −2αϕ
(iii) tr(Ai) = −2αn

(iv) ∇̃Xξi = −αϕ2X − ϕhiX.
for any X ∈ Γ(TM̃).

Proposition 2.2. ([2]) For any i ∈ {1, ..., s} the tensor field hi is a symmetric
operator and satisfies

(i) hi(ξj) = 0, for any j ∈ {1, ..., s}
(ii) hioϕ+ ϕohi = 0
(iii) trhi = 0
(iv) tr(ϕhi) = 0.

Let M̃ be an almost α-cosymplectic f -manifold with respect to the curvature ten-

sor field R̃ of ∇̃, the following formulas are proved in [7], for allX,Y ∈ Γ(TM̃), i, j ∈
{1, ..., s}.

R̃(X,Y )ξi = α2
s∑

k=1

(ηk(Y )ϕ2X − ηk(X)ϕ2Y )(2.8)

− α
s∑

k=1

(ηk(X)ϕhkY − ηk(Y )ϕhkX)

+ (∇̃Y ϕhi)X − (∇̃Xϕhi)Y,

R̃(X, ξj)ξi =

s∑
k=1

δkj (α2ϕ2X + αϕhkX)(2.9)

+ αϕhiX − hihjX + ϕ(∇̃ξjhi)X,

R̃(ξj , X)ξi − ϕR̃(ξj , ϕX)ξi = 2(−α2ϕ2X + hihjX).(2.10)

Moreover, by using the above formulas, in [7] it is obtained that

(2.11) S̃(X, ξi) = −2nα2
s∑

k=1

ηk(X)− (divϕhi)X,

(2.12) S̃(ξi, ξj) = −2nα2 − tr(hjhi)
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for all X,Y ∈ Γ(TM̃), i, j ∈ {1, ..., s}, where S̃ denote, the Ricci tensor field of the
Riemannian connection.

From [7], we have the following result.

Proposition 2.3. Let M̃ be an almost α-cosymplectic f -manifold and M be an
integral manifold of D. Then

(i) when α = 0, M is totally geodesic if and only if all the operators hi vanish;
(ii) when α 6= 0, M is totally umbilic if and only if all the operators hi vanish.

Theorem 2.1. [2] A C-manifold M̃2n+s is a locally decomposable Riemannian

manifold which is locally the product of a Kaehler manifold M̃2n
1 and an Abelian

Lie group M̃s
2 .

3. On Invariant Submanifold Of Almost α -Cosymplectic f-Manifolds

Let M be a submanifold of the a (2n + s)-dimensional almost α-cosymplectic

f -manifold M̃ . If ϕ(TpM) ⊂ TpM , for any point p ∈ M and ξi are tangent to M

for all i ∈ {1, ..., s}, the M is called an invariant submanifold of M̃ .
Let ∇ be the Levi-Civita connection of M with respect to the induced metric g.
Then Gauss and Weingarten formulas are given by

(3.1) ∇̃XY = ∇XY +B(X,Y )

(3.2) ∇̃XN = ∇⊥
XN −ANX

for any X,Y ∈ Γ(TM) and N ∈ Γ(TM)⊥. ∇⊥ is the connection in the normal
bundle, B is the second fundamental form of M and AN is the Weingarten en-
domorfhism associated with N . The second fundamental form B and the shape
operator A related by

(3.3) g(B(X,Y ), N) = g(ANX,Y ).

The curvature transformattion of M and M̃ will be denote by

(3.4) R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

and

(3.5) R̃(X,Y )Z = ∇̃X∇̃Y Z − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z,

respectively. Using (3.1) and (3.2) in (3.4) and (3.5), we obtain

R̃(X,Y )Z = R(X,Y )Z −AB(Y,Z)X +AB(X,Z)Y(3.6)

+ (∇XB)(Y,Z)− (∇YB)(X,Z)

for any X,Y, Z ∈ Γ(TM). Then, if W is tangent to M , then using (3.6), we get

g(R̃(X,Y )Z,W ) = g(R(X,Y )Z,W ) + g(B(Y,W ), B(X,Z))(3.7)

− g(B(X,W ), B(Y,Z)).

Proposition 3.1. Let M be an invariant submanifold of the almost α-cosymplectic

f -manifold M̃ . Then we have

(3.8) (∇̃Xϕ)Y = (∇Xϕ)Y

and

(3.9) B(X,ϕY ) = ϕB(X,Y ) = B(ϕX, Y )
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for any X,Y ∈ Γ(TM).

Proof. For any X,Y ∈ Γ(TM), using (3.1) we get

(∇̃Xϕ)Y = ∇̃XϕY − ϕ∇̃XY
= ∇XϕY +B(X,ϕY )− ϕ∇XY − ϕB(X,Y )

= (∇Xϕ)Y +B(X,ϕY )− ϕB(X,Y )

In above equation, comparing the tangential and normal part of last equation, we
obtain B(X,ϕY ) = ϕB(X,Y ). Then (3.9) follows in both cases by the symmetry
of B. �

From (3.9) and using symmetry of B, we have the following result.

Corollary 3.1. Let M be an invariant submanifold of the almost α-cosymplectic

f -manifold M̃ . Then we get

(3.10) B(ϕX,ϕY ) = −B(X,Y )

for any X,Y ∈ Γ(TM).

Definition 3.1. A submanifold of an almost α-cosymplectic f -manifold is called
totally geodesic if B(X,Y )=0, for any X,Y ∈ Γ(TM).

Proposition 3.2. Let M be an invariant submanifold of the almost α-cosymplectic
f -manifold. Then we have

(3.11) ∇̃Xξj = ∇Xξj

and

(3.12) B(X, ξj) = 0

for any X ∈ Γ(TM).

Proof. From (3.8), we obtain

(∇̃Xϕ)ξj = (∇Xϕ)ξj ⇒ ϕ∇̃Xξj = ϕ∇Xξj
⇒ ∇̃Xξj = ∇Xξj .

Then, using (3.11) we have

∇̃Xξj = ∇Xξj +B(X, ξj)

⇒ B(X, ξj) = 0.

�

Proposition 3.3. An invariant submanifold of an almost α-cosymplectic f -manifold
with Kaehlerian leaves is also almost α-cosymplectic f -manifold with Kaehlerian
leaves.

Proof. For any X,Y ∈ Γ(TM), using (3.1) we get

(∇̃Xϕ)Y = ∇̃XϕY − ϕ(∇̃XY )

= ∇XϕY +B(X,ϕY )− ϕ(∇XY )− ϕB(X,Y ).
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From (2.7) and the above equation, we get by considering the submanifold as in-
variant and comparing tangential and normal compenents, we obtain

(3.13) (∇Xϕ)Y =

s∑
i=1

[
α
(
g(ϕX, Y )ξi − ηi(Y )ϕX

)
+ g(hiX,Y )ξi − ηi(Y )hiX

]
.

From (3.13), we get the proof. �

Theorem 3.1. Each invariant submanifold of almost α-cosymplectic f - manifold
is minimal.

Proof. Suppose thatM minimal submanifold of an almost α-cosymplectic f -manifold
and dimM = 2m+ s(m < n). From (3.3), one can write,

(2m+ s)tr(AN ) =

m∑
i=1

g(B(ei, ei), N)

+

m∑
i=1

g(B(ϕei, ϕei), N)

+

s∑
i=1

g(B(ξi, ξi), N)

= 0.

Hence from above calculations, mean curvature of M , so tr(AN ) = 0. �

4. Curvature properties

Proposition 4.1. Let M be an invariant submanifold of the almost α-cosymplectic

f -manifold M̃ . Then we

(4.1) R̃(X,Y )ξi = R(X,Y )ξi

for any X,Y ∈ Γ(TM).

Proof. For any X,Y ∈ Γ(TM), using (3.1) in (3.6) we get

R̃(X,Y )ξi = R(X,Y )ξi −AB(Y,ξi)X +AB(X,ξi)Y + (∇XB)(Y, ξi)− (∇YB)(X, ξi)

= R(X,Y )ξi −B(Y,∇Xξi) +B(X,∇Y ξi)
= R(X,Y )ξi + αϕ2B(Y,X)− αϕ2B(X,Y ) + ϕB(Y, hiX)− ϕB(X,hi, Y )

= R(X,Y )ξi.

�

Corollary 4.1. Let M be an invariant submanifold of the almost α-cosymplectic

f -manifold M̃ . Then R̃(X,Y )ξi is tangent to M for any X,Y ∈ Γ(TM) and
i = 1, ..., s.
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Proposition 4.2. Let M be an invariant submanifold of the almost α-cosymlectic

f - manifold M̃ . Then, we have

R̃(ξj , X)ξi = R(ξj , X)ξi,(4.2)

R̃(X, ξj)ξi = R(X, ξj)ξi,(4.3)

R̃(ξk, ξj)ξi = R(ξk, ξj)ξi = 0,(4.4)

R̃(ξj , X)Y = R(ξj , X)Y(4.5)

for any X,Y ∈ Γ(TM).

Proof. Using (4.1), we obtain (4.2), (4.3), (4.4) and (4.5). �

Proposition 4.3. Let M be an invariant submanifold of the almost α-cosymlectic

f -manifold M̃ . Then, following relations hold

(4.6) ϕ(ANX) = AϕNX = −ANϕX
for any X ∈ Γ(TM),

Proof. For any X,Y ∈ Γ(TM), using (3.3) and (3.9) we have

g(ϕ(ANX), Y ) = −g(ANX,ϕY )

= −g(B(X,ϕY ), N)

= −g(B(ϕX, Y ), N)

= −g(ANϕX, Y )

and then,

ϕ(ANX) = −ANϕX.
Moreover, we have

g(ϕ(ANX), Y ) = −g(B(X,ϕY ), N)

= −g(ϕB(X,Y ), N).

On the other hand, using (3.3) we have

g(AϕNX,Y ) = g(B(X,Y ), ϕN) = −g(ϕB(X,Y ), N)

and then we get

ϕ(ANX) = AϕNX.

�

Proposition 4.4. Let M be an invariant submanifold of the almost α-cosymplectic

f -manifold M̃ . Then we have

g(R(X,ϕX)ϕX,X) = g(R̃(X,ϕX)ϕX,X)

− 2g(B(X,X), B(X,X)).(4.7)

for any X ∈ Γ(TM).

Proof. In (3.6), if we take Z = Y = ϕX and W = X, then we obtain (4.7). �

Proposition 4.5. Let M be an invariant submanifold of the almost α-cosymplectic

f -manifold M̃ . And let M̃ be of constant ϕ sectional curvature [2]. Then M is
totally geodesic if only if M has constant ϕ sectional curvature.
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Proof. Let M be totally geodesic then from (4.7), the sectional curvature of M is

the same as M̃ . Vice versa we suppose that the sectional ϕ-curvature determined

by {X,ϕX} is the same for M and M̃ for any X ∈ Γ(TM). Hence from (4.7), we
get that B(X,X) = 0 and B = 0. �

Proposition 4.6. Let M be an invariant submanifold of the almost α cosymplectic

f -manifold M̃ and let α = 0. Then B is parallel if only if M is totally geodesic.

Proof. An easy calculation, we get

(∇XB)(Y, ξi) = −αB(Y,X) + hiϕB(Y,X).

for any X,Y ∈ Γ(TM). Hence, if B is parallel, then B(Y,X) = 0, for any X,Y ∈
Γ(TM). Vice versa, it is clear that if B = 0, then ∇B = 0, so B is parallel. �

Let M be a submanifold of a Rieamannian manifold M̃ . An isometric immersion
i : M −→ M̃ is semi- parallel if

R̃(X,Y )B = ∇̃X(∇̃YB)− ∇̃Y (∇̃XB)− ∇̃[X,Y ]B = 0

where R̃ is the curvature tensor of ∇̃ [3], where R̃ curvature tensor of the Van der

Waerden-Bortolotti connection ∇̃ and B the second fundamental from. In([1]), K.
Arslan et al. defined and studied 2-semi parallel submanifold if

R(X,Y )∇B = 0

for any X,Y ∈ Γ(TM).

Theorem 4.1. Let M be an invariant submanifold of the α-cosymplectic f -manifold.

If M̃ is semi-parallel, then

1) When α = 0, M totally geodesic and M̃ is a locally decomposable Riemannian
manifold which is locally the product of a kaehler manifold M2n

1 and an Abelian Lie
group Ms

2 .
2) When α 6= 0, M totally geodesic.

Proof. ∇̃ is the connection in TM⊕TM⊥ built with ∇ and ∇⊥, where R (resp.R⊥)
denotes curvature tensor of the connection ∇(resp.∇⊥). If R⊥ denotes the curva-
ture tensor of ∇⊥ then we have

(R̃(X,Y )B)(Z,U) = R⊥(X,Y )B(Z,U)(4.8)

−B(R(X,Y )Z,U)

−B(Z,R(X,Y )U)

for any X,Y, Z, U ∈ Γ(TM). Now, we suppose that M is semi-parallel. Then

R̃(X,Y )B = 0 for any X,Y ∈ Γ(TM). Using (4.8), we get

R⊥(X,Y )B(Z,K)−B(R(X,Y )Z,K)−B(Z,R(X,Y )K) = 0.

If we take X = ξi, K = ξj , then we obtain,

R⊥(ξi, Y )B(Z, ξj)−B(R(ξi, Y )Z, ξj)−B(Z,R(ξi, Y )ξj) = 0.

From (3.12), we have
B(Z,R(ξi, Y )ξj) = 0

and from the above equation, we arrive

α2B(Z, Y ) = 0.
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So, we get α = 0 or B = 0. �
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