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SOME INTEGRAL INEQUALITIES FOR FUNCTIONS WHOSE

SECOND DERIVATIVES ARE ϕ−CONVEX BY USING

FRACTIONAL INTEGRALS

M. ESRA YILDIRIM, ABDULLAH AKKURT, AND HÜSEYİN YILDIRIM

Abstract. In this paper, we obtain new estimates on generalization of Hermite-

Hadamard type inequalities for functions whose second derivatives is ϕ−convex
via fractional integrals.

1. Introduction

The following inequality is called the Hermite-Hadamard inequality;

(1.1) f

(
a+ b

2

)
≤ 1

b− a
b∫
a

f(x)dx ≤ f(a) + f(b)

2
,

where f : I ⊆ R→ R is a convex function and a, b ∈ I with a < b. If f is concave,
then both inequalities hold in the reversed direction .

The inequality (1.1) was first discovered by Hermite in 1881 in the Journal
Mathesis. This inequality is known as the Hermite-Hadamard inequality, because
this inequality was found by Mitrinovic Hermite and Hadamard’ note in Mathesis
in 1974.

The inequality (1.1) is studied by many authors, see ([1]-[7], [9]-[11], [12], [15]-
[21]) where further references are listed.

Firstly, we need to recall some concepts of convexity concerning our work.

Definition 1.1. [6] A function f : I ⊂ R→ R is said to be convex on I if inequality

(1.2) f(ta+ (1− t)b) ≤ tf(a) + (1− t)f(b),

holds for all a, b ∈ I and t ∈ [0, 1].
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Definition 1.2. [8] Let s ∈ (0, 1]. A function f : I ⊆ R0 = [0,∞) → R is said to
be s−convex in the second sense if

(1.3) f(ta+ (1− t)b) ≤ tsf(a) + (1− t)sf(b),

holds for all a, b ∈ I and t ∈ [0, 1].

Tunç and Yildirim in [21] introduced the following definition as follows:

Definition 1.3. A function f :I ⊆ R→ R is said to belong to the class of MT (I)
if it is nonnegative and for all x, y ∈ I and t ∈ (0, 1) satisfies the inequality ;

f (tx+ (1− t) y) ≤
√
t

2
√

1− t
f (x) +

√
1− t
2
√
t
f (y) .

Dragomir in [3] introduced the following definition as follows:

Definition 1.4. [3] Let ϕ : (0, 1)→ (0,∞) be a measurable function. We say that
the function f : I → [0,∞) is a ϕ−convex function on the interval I if for x, y ∈ I,
we have

f (tx+ (1− t) y) ≤ tϕ (t) f (x) + (1− t)ϕ (1− t) f (y) .

Remark 1.1. According to definition 4, the followings hold for the special choose of
ϕ (t):

For ϕ(t) ≡ 1, we obtain the definition of convexness in the classical sense,
for ϕ(t) = ts−1, we obtain the definition of s− convexness,

for ϕ(t) =
1

2
√
t(1− t)

, we obtain the definition of MT−convexness.

Now, we give some definitions and notations of fractional calculus theory which
are used later in this paper. Samko et al. in [14] used the following definitions as
follows:

Definition 1.5. [14] The Riemann-Liouville fractional integrals Jαa+f and Jαb−f of
order α > 0 with a ≥ 0 are defined by

(1.4) Jαa+f(x) =
1

Γ (α)

x∫
a

(x− t)α−1
f(t)dt, x > a

and

(1.5) Jαb−f(x) =
1

Γ (α)

b∫
x

(t− x)
α−1

f(t)dt, x < b

where f ∈ L1 [a, b], respectively. Note that, Γ (α) is the Gamma function and
J0
a+f(x) = Jαb−f(x) = f(x).

Definition 1.6. [14] The Euler Beta function is defined as follows:

β (x, y) =

1∫
0

tx−1 (1− t)y−1
dt, x, y > 0.

The incomplete beta function is defined as follows:

β (a, x, y) =

a∫
0

tx−1 (1− t)y−1
dt, x, y > 0, 0 < α < 1.
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In [13], Jaekeun Park established the following lemma which is necessary to prove
our main results:

Lemma 1.1. Let f : I ⊆ R → R be a twice differentiable function on the interior
I0 of an interval I such that f ′′ ∈ L1 [a, b], where a, b ∈ I with a < b. Then, for
any x ∈ [a, b], λ ∈ [0, 1] and α > 0, we have

Sf (x, λ, α; a, b) = (x−a)α+2

b−a
∫ 1

0
t (λ− tα) f ′′ (tx+ (1− t) a) dt

+ (b−x)α+2

b−a
∫ 1

0
t (λ− tα) f ′′ (tx+ (1− t) b) dt.

2. Main results

Throughout this paper, we use Sf as follows;

Sf (x, λ, α; a, b) ≡ (1− λ)
{

(b−x)α+1−(x−a)α+1

b−a

}
f ′ (x)

+ (1 + α− λ)
{

(x−a)α+(b−x)α

b−a

}
f (x)

+λ
{

(x−a)α(f(a)+(b−x)αf(b)
b−a

}
−Γ(α+2)

b−a
{
Jαx−f (a) + Jαx+f (b)

}
,

for any x ∈ [a, b] , λ ∈ [0, 1] and α > 0.

Theorem 2.1. Let ϕ : (0, 1) → (0,∞) be a measurable function. Assume also
that f : I ⊂ [0,∞) → R be a twice differentiable function on the interior I0 of an
interval I such that f ′′ ∈ L1 [a, b], where a, b ∈ I0 with a < b. If |f ′′|q is ϕ−convex
on [a, b] for some fixed q ≥ 1, then for any x ∈ [a, b] , t, λ ∈ [0, 1] and α > 0,

(2.1)

|Sf (x, λ, α, t, ϕ; a, b)| ≤ A1− 1
q

1 (α, λ)
[

(x−a)α+2

b−a
{
A2(α, λ, t, ϕ) |f ′′ (x)|q

+A3 (α, λ, t, ϕ) |f ′′ (a)|q
} 1
q

+ (b−x)α+2

b−a
{
A2 (α, λ, t, ϕ) |f ′′ (x)|q +A3 (α, λ, t, ϕ) |f ′′ (b)|q

} 1
q

]
.

The above inequality for fractional integrals holds, where

A1 (α, λ) = αλ1+ 2
α+1

α+2 − λ
2 ,

A2 (α, λ, t, ϕ) =
∫ 1

0
|t (λ− tα)| tϕ (t) dt,

A3 (α, λ, t, ϕ) =
∫ 1

0
|t (λ− tα)| (1− t)ϕ (1− t) dt.
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Proof. By using Lemma 1.1, the power mean inequality, we get
(2.2)
|Sf (x, λ, α, t, ϕ; a, b)|

≤ (x−a)α+2

b−a

(∫ 1

0
|t (λ− tα)| dt

)1− 1
q
(∫ 1

0
|t (λ− tα)| |f ′′ (tx+ (1− t) a)|q dt

) 1
q

+ (b−x)α+2

b−a

(∫ 1

0
|t (λ− tα)| dt

)1− 1
q
(∫ 1

0
|t (λ− tα)| |f ′′ (tx+ (1− t) b)| dt

) 1
q

= A
1− 1

q

1 (α, λ)

[
(x−a)α+2

b−a

(∫ 1

0
|t (λ− tα)| |f ′′ (tx+ (1− t) a)|q dt

) 1
q

+ (b−x)α+2

b−a

(∫ 1

0
|t (λ− tα)| |f ′′ (tx+ (1− t) b)|q dt

) 1
q

]
,

where

A1 (α, λ) =

∫ 1

0

|t (λ− tα)| dt =

(
αλ1+ 2

α + 1

α+ 2
− λ

2

)
.

Since |f ′′|q is ϕ−convex on [a, b], we have

(2.3)

I1 =
∫ 1

0
|t (λ− tα)| |f ′′ (tx+ (1− t) a)|q dt

≤
∫ 1

0
|t (λ− tα)|

{
tϕ (t) |f ′′ (x)|q + (1− t)ϕ (1− t) |f ′′ (a)|q

}
dt

= A2 (α, λ, t, ϕ) |f ′′ (x)|q +A3 (α, λ, t, ϕ) |f ′′ (a)|q ,

and similarly, we can obtain

(2.4)

I2 =
∫ 1

0
|t (λ− tα)| |f ′′ (tx+ (1− t) b)|q dt

≤
∫ 1

0
|t (λ− tα)|

{
tϕ (t) |f ′′ (x)|q + (1− t)ϕ (1− t) |f ′′ (b)|q

}
dt

= A2 (α, λ, t, ϕ) |f ′′ (x)|q +A3 (α, λ, t, ϕ) |f ′′ (b)|q ,

where

A2 (α, λ, t, ϕ) =
∫ 1

0
|t (λ− tα)| tϕ (t) dt,

A3 (α, λ, t, ϕ) =
∫ 1

0
|t (λ− tα)| (1− t)ϕ (1− t) dt.
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By substituting (2.3) and (2.4) in (2.2), we get

|Sf (x, λ, α, t, ϕ; a, b)|

≤
(
αλ1+ 2

α+1
α+2 − λ

2

)1− 1
q [

(x−a)α+2

b−a

{
|f ′′ (x)|q

∫ 1

0
|t (λ− tα)| tϕ (t) dt

+ |f ′′ (a)|q
∫ 1

0
|t (λ− tα)| (1− t)ϕ (1− t) dt

} 1
q

+ (b−x)α+2

b−a

{
|f ′′ (x)|q

∫ 1

0
|t (λ− tα)| tϕ (t) dt

+ |f ′′ (b)|q
∫ 1

0
|t (λ− tα)| (1− t)ϕ (1− t) dt

} 1
q

]
.

Thus the proof is completed. �

Corollary 2.1. Let ϕ (t) = 1 in Theorem 2.1, then we get the following inequality:

|Sf (x, λ, α; a, b)|

≤
(
αλ1+ 2

α+1
α+2 − λ

2

)1− 1
q [

(x−a)α+2

b−a
{
A2 (α, λ) |f ′′ (x)|q +A3 (α, λ) |f ′′ (a)|q

}
+ (b−x)α+2

b−a {A2 (α, λ) |f ′′ (x)|q +A3 (α, λ) |f ′′ (b)|q}
]
.

Where

A2 (α, λ) =
∫ 1

0
|t (λ− tα)| tdt =

3− (α+ 3)λ+ 2αλ1+ 3
α

3 (α+ 3)

and

A3 (α, λ) =
∫ 1

0
|t (λ− tα)| (1− t) dt

=
αλ1+ 2

α

α+ 2
− 2λ1+ 3

α

3 (α+ 3)
+
αλ

6
− α

(α+ 2) (α+ 3)
.

Corollary 2.2. If we choose ϕ (t) = 1 and x = a+b
2 in Theorem 2.1, we can obtain

the corollary 2.2, 2.3, 2.4 in [13], respectively for λ = 1
3 , λ = 0, λ = 1.

Corollary 2.3. Let ϕ (t) = ts−1 in Theorem 2.1, then we have

|Sf (x, λ, α, t, ϕ; a, b)|

≤
(
αλ1+ 2

α+1
α+2 − λ

2

)1− 1
q [

(x−a)α+2

b−a
{
|f ′′ (x)|q A4 (α, λ, s) + |f ′′ (a)|q A5 (α, λ, t, ϕ)

} 1
q

+ (b−x)α+2

b−a
{
|f ′′ (x)|q A4 (α, λ, s) + |f ′′ (b)|q A5 (α, λ, t, ϕ)

} 1
q

]
.
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Where

A4 (α, λ, s) = 2
λ
s+2
α +1

s+ 2
− 2

λ
s+2
α +1

α+ s+ 2
+

1

α+ s+ 2

A5 (α, λ, t, ϕ) = λβ
(
λ

1
α , 2, s+ 1

)
− β

(
λ

1
α , α+ 2, s+ 1

)
+β
(

1− λ 1
α , α+ 2, s+ 1

)
− λβ

(
1− λ 1

α , 2, s+ 1
)
.

Theorem 2.2. Let ϕ : (0, 1) → (0,∞) be a measurable function. For f : I ⊂
[0,∞) → R be a twice differentiable function on the interior I0 assume also that
f ′′ ∈ L1 [a, b], where a, b ∈ I0 with a < b. If |f ′′|q is ϕ−convex on [a, b] for some
fixed q > 1 with 1

p + 1
q = 1, then for any x ∈ [a, b] , λ ∈ [0, 1] and α > 0 the following

inequality holds

(2.5)

|Sf (x, λ, α, t, ϕ; a, b)|

≤ B
1
p (α, λ, p)

[
(x−a)α+2

b−a

{(
|f ′′ (x)|q + |f ′′ (a)|q

) ∫ 1

0
tϕ (t) dt

} 1
q

+ (b−x)α+2

b−a

{(
|f ′′ (x)|q + |f ′′ (b)|q

) ∫ 1

0
tϕ (t) dt

} 1
q

]
,

where

B (α, λ, p) = λ
1+p+αp

α

α

{
Γ (1 + p) Γ

(
1+p+α
α

) (
2F1

(
1, 1 + p, 2 + p+ 1+p

α , 1
))

+β
(
1 + p,− 1+p+αp

α

)
− β

(
λ, 1 + p,− 1+p+αp

α

)}
,

also, for 0 < b < c and |z| < 1, 2F1 is hypergeometric function defined by

2F1 (a, b, c, z) =
1

β (b, c− b)

∫ 1

0

tb−1 (1− t)c−b−1
(1− zt)−a dt.

Proof. By using Lemma 1.1 and the Hölder inequality, we have the below inequality

(2.6)

|Sf (x, λ, α, t, ϕ; a, b)|

≤ (x−a)α+2

b−a

(∫ 1

0
|t (λ− tα)|p dt

) 1
p
(∫ 1

0
|f ′′ (tx+ (1− t) a)|q dt

) 1
q

+ (b−x)α+2

b−a

(∫ 1

0
|t (λ− tα)|p dt

) 1
p
(∫ 1

0
|f ′′ (tx+ (1− t) b)|q dt

) 1
q

=
(∫ 1

0
|t (λ− tα)|p

) 1
p

[
(x−a)α+2

b−a

(∫ 1

0
|f ′′ (tx+ (1− t) a)|q dt

) 1
q

+ (b−x)α+2

b−a

(∫ 1

0
|f ′′ (tx+ (1− t) b)|q dt

) 1
q

]
.
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Since |f ′′| is ϕ−convex on [a, b], we have

(2.7)

∫ 1

0
|f ′′ (tx+ (1− t) a)|q dt ≤

∫ 1

0
tϕ (t) |f ′′ (x)|q dt

+
∫ 1

0
(1− t)ϕ (1− t) |f ′′ (a)|q dt

=
(
|f ′′ (x)|q + |f ′′ (a)|q

) ∫ 1

0
tϕ (t) dt,

and using same technique, we get

(2.8)

∫ 1

0
|f ′′ (tx+ (1− t) b)|q dt ≤

∫ 1

0
tϕ (t) |f ′′ (x)|q dt

+
∫ 1

0
(1− t)ϕ (1− t) |f ′′ (b)|q dt

=
(
|f ′′ (x)|q + |f ′′ (b)|q

) ∫ 1

0
tϕ (t) dt.

On the other hand, we can obtain the following equality;

(2.9)

B (α, λ, p) =
∫ 1

0
|t (λ− tα)|p dt

=
∫ λ 1

α

0
{t(λ− tα)}p dt+

∫ 1

λ
1
α
{t (tα − λ)}p dt

= C1 (α, λ, p) + C2 (α, λ, p) .

By letting λ− tα = u and tα = u, respectively, we have
(2.10)

C1 (α, λ, p) =
∫ λ 1

α

0
{t (λ− tα)}p dt

= 1
α

∫ λ
0
up (λ− u)

1+p−α
α du

= 1
α

∫ 1

0
λpypλ

1+p−α
α (1− y)

1−α+p
α λdy

=
λ
pα+1+p

α

α

∫ 1

0
yp (1− y)

1+p
α (1− y)

−1
dy

= λ
1+p+αp

α

α Γ (1 + p) Γ
(

1+p+α
α

)
2
F1

(
1, 1 + p, 2 + p+ 1+p

α , 1
)
,

and

(2.11)

C2 (α, λ, p) =
∫ 1

λ
1
α
{t (tα − λ)}p dt

= 1
α

∫ 1

λu
1+p−α
α (u− λ)

p
du

= λ
1+p+αp

α

α

{
β
(
1 + p,− 1+p+αp

α

)
− β

(
λ, 1 + p,− 1+p+αp

α

)}
.
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By substituting (2.7), (2.8), (2.9), (2.10) and (2.11)in (2.6), we get

|Sf (x, λ, α, t, ϕ; a, b)|

≤ B
1
p (α, λ, p)

[
(x−a)α+2

b−a

{(
|f ′′ (x)|q + |f ′′ (a)|q

) ∫ 1

0
tϕ (t) dt

} 1
q

+ (b−x)α+2

b−a

{(
|f ′′ (x)|q + |f ′′ (b)|q

) ∫ 1

0
tϕ (t) dt

} 1
q

]
,

thus, the proof is completed. �

Corollary 2.4. Let ϕ (t) = 1 in Theorem 2.2, then we get the following inequality
for any x ∈ [a, b] , λ ∈ [0, 1] and α > 0;

|Sf (x, λ, α, t, ϕ; a, b)|

≤
(∫ 1

0
|t (λ− tα)|p dt

) 1
p

[
(x−a)α+2

b−a

{
(|f ′′(x)|q+|f ′′(a)|q)

2

} 1
q

+ (b−x)α+2

b−a

{
(|f ′′(x)|q+|f ′′(b)|q)

2

} 1
q

]
.

Corollary 2.5. If we choose ϕ (t) = 1 and x = a+b
2 in Theorem 2.2, we can obtain

the corollary 2.6, 2.7, 2.8 in [13], respectively for λ = 1
3 , λ = 0, λ = 1.

Corollary 2.6. Let ϕ (t) = ts−1 in Theorem 2.2, then we obtain

|Sf (x, λ, α, t, ϕ; a, b)|

≤
(∫ 1

0
|t (λ− tα)|p dt

) 1
p

[
(x−a)α+2

b−a

{
(|f ′′(x)|q+|f ′′(a)|q)

s+1

} 1
q

+ (b−x)α+2

b−a

{
(|f ′′(x)|q+|f ′′(b)|q)

s+1

} 1
q

]
.
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PARTIAL DERIVATIVE EFFECTS IN TWO-DIMENSIONAL

SPLINE FUNCTION NODES

OGUZER SINAN

Abstract. One of the methods is two-dimensional spline functions for to cre-
ate geometrical model of surface. In this study Eligibility of partial derivatives

values for each node was examined. These nodes are projection of creation

aimed surface. Created effects by the chosen values were evaluated. The
results of the application example was provided with a computer software de-

veloped.

1. Introduction

Figure 1. Conversational usage of mechanical spline.

In mathematics, a spline is a numeric function that is piecewise-defined by poly-
nomial functions([5][7]). In dictionary, the word ”spline” originally meant a thin
wood or metal slat in East Anglian dialect. By 1895 it had come to mean a flexible
ruler used to draw curves[10]. These splines were used in the aircraft and ship-
building industries. The successful design was then plotted on graph paper and the
key points of the plot were re-plotted on larger graph paper to full size. The thin
wooden strips provided an interpolation of the key points into smooth curves. The

2000 Mathematics Subject Classification. 41A15, 65D07.
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strips would be held in place at the key points (using lead weights called ”ducks”
or ”dogs” or ”rats”)([6][7]) as shown in figure1. It is commonly accepted that the
first mathematical reference to splines is the 1946 paper by [6], which is probably
the first place that the word ”spline” is used in connection with smooth, piecewise
polynomial approximation([8][7]).

Let T = ( t0, t1, · · · , tn−1 ) and U = ( u0, u1, · · · , un−1 ) here,
t0 < t1 < · · · < tn−1 are distinct ordered real numbers and u0, u1, · · · , un−1

are real numbers that represent each node. It describes a spline function fsp

fsp(t) =



f0 (t) , t0 ≤ t ≤ t1
f1 (t) , t1 < t ≤ t2

...
fn−3 (t) , tn−3 ≤ t ≤ tn−2

fn−2 (t) , tn−2 ≤ t ≤ tn−1

fj (tj) = uj , fj (tj+1) = uj+1, j = 0, 1, · · · , n− 2.

a, b ∈ R, a = t0 < t1 < · · · < tn−2 < tn−1 = b is to be; fj : [tj , tj+1]→ R,
j = 0 , 1 , · · · , n − 2, fsp : [a, b] → R. Each fj function may have any degree
that is polynomial functions. Often the first, second and third order polynomial
functions are used in practice([8][1]).

Figure 2. fj piecewise function.

1.1. Cubic spline functions. Let T = (t0, t1, · · · , tn−1), U = (u0, u1, · · · , un−1)
and G = (g0, g1, · · · , gn−1). fsp : [t0, tn−1] → R, u = fsp (t), t ∈ [t0, tn−1].
fj : [tj , tj+1]→ R, fj (t) = ajt

3 + bjt
2 + cjt + dj , j = 0, 1, · · · , n− 2 which

satisfied the conditions f
′

sp (ti) = gi, i = 0, 1, · · · , n− 1 is unique [9].

f
′

j (tj) = gj and fj (tj) = uj

f
′

j (tj+1) = gj+1 and fj (tj+1) = uj+1

j = 0, 1, · · · , n− 2

Condition can provides, at least third degree spline functions [9]. The cubic spline
function fsp( t ) has following representation [1].

wi =
1

ti − ti−1

(
ui − ui−1

ti − ti−1
− gi−1

)
ai =

1

ti − ti−1

(
gi − gi−1

ti − ti−1
− 2wi

)
bi = − (ti + 2ti−1) ai + wi

ci = gi−1 − 3ait
2
i−1 − 2biti−1
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di = ui−1 − ait3i−1 − bit2i−1 − citi−1

i = 1, 2, . . . , n− 1

1.2. CubicSPL Cubic spline subroutine. The following subroutine representa-
tion have input values that are three vectors establish for cubic spline function and
provision sought value of t. The result of this subroutine is a value that u = fsp(t).

double CubicSPL (double* T, double* U, double* G, double t)

Example 1.1. T = (1, 2, 3, 4, 5), U = (−3, 3, 2, −2, 1) and G = (0, 0, 0, 0, 0)
are vectors representing the values of nodes.

#define TMax 5
T[TMax] = { 1, 2, 3, 4, 5 } ;
U[TMax] = { −3, 3, 2, −2, 1 } ;
G[TMax] = { 0, 0, 0, 0, 0 } ;
double t = 3.7 ;
u = CubicSPL ( T, U, G, t ) ;

u : −1.1359999999998536

u = CubicSPL ( T, U, G, 2.07 ) ;

u : 2.9859860000000111

Graphical representation of the results are also observed at figure 3.

Figure 3. Graphical representation of example 1.1.

2. Two Dimensional Spline

a, b, c, d ∈ R and Ω = [a, b] × [c, d], consider the rectangle on tOx plane as Ω
region.

a = t0 < t1 < · · · < ti < · · · < tm−1 = b; m ≥ 1

c = x0 < x1 < · · · < xj < · · · < xn−1 = d; n ≥ 1

i = 0, 1, · · · , m− 1, j = 0, 1, · · · , n− 1

Ω region divided into (n− 1)× (m− 1)sub regions.

Ωi,j = {(t, x) : ti ≤ t ≤ ti+1, xj ≤ x ≤ xj+1}
i = 0, 1, · · · , m− 2; j = 0, 1, · · · , n− 2. For any Ωi,j sub region have this edge
cardinal points:

ζti, xj
, ζti+1, xj

, ζti+1, xj+1
, ζti, xj+1
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The cardinal points of each Ωi,j sub region defines a grid Ωgrd. Be introduced a
function λ : Ωgrd → R, λ (ti, xj) = u(i,j) on the grid extended on the Ω region [8].

U =
{
u(0,0), u(0,1), · · · , u(0,n−1), u(1,0), · · · , u(m−1,n−1)

}
Gt =

{
gt(0,0), gt(0,1), · · · , gt(0,n−1), gt(1,0), · · · , gt(m−1,n−1)

}
Gx =

{
gx(0,0), gx(0,1), · · · , gx(0,n−1), gx(1,0), · · · , gx(m−1,n−1)

}
u(i,j) ∈ R, gt(i,j) ∈ R, gx(i,j) ∈ R

λ (ti, xj) = u(i,j), λ
′

t (ti, xj) = gt(i,j), λ
′

x (ti, xj) = gx(i,j),

f : Ω→ R, f (ti, xj) = u(i,j), λ (ti, xj) = f (ti, xj)

i = 0, 1, · · · , m− 1, j = 0, 1, · · · , n− 1

The purpose is find f : Ω→ R, f (t, x) derivable real function [8].

H (t0, x) , H (t1, x) , H (t2, x) , . . . , H (tm−1, x) , x0 ≤ x ≤ xm−1

S (t, x0) , S (t, x1) , S (t, x2) , . . . , S (t, xn−1) , t0 ≤ t ≤ tn−1

H (ti, x) , i = 0, 1, · · · , m − 1, x0 ≤ x ≤ xn−1 describe direction of x spline
functions and S (t, xj) , j = 0, 1, · · · , n− 1, t0 ≤ t ≤ tm−1 describe direction
of t spline functions[8].

U, Gx and Gt data sets according with Ωgrd. These sets provides m amounts

U
Xi

=
{
u(i,j)

∣∣ j = 0, 1, · · · , n− 1
}

and G
Xi

=
{
gx(i,j)

∣∣∣ j = 0, 1, · · · , n− 1
}

vectors for each H (ti, x) spline functions direction of x and n amounts

U
T j

=
{
u(i,j)

∣∣ i = 0, 1, · · · , m− 1
}

and G
T j

=
{
gt(i,j)

∣∣∣ i = 0, 1, · · · , m− 1
}

vectors for each S (t, xj) spline functions direction of t. At the end of the m + n
amounts supply one-dimensional spline functions can be calculated.

Figure 4. m+ n amounts one-dimensional spline functions.
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Figure 5. The demonstration will consist of an auxiliary spline
function according to the direction.

3. Any f(t, x) on the Ω

Calculations can be started with the any direction spline functions the direction
of t or direction of x arbitrarily chosen. Let t0 ≤ l ≤ tm−1 and x0 ≤ k ≤ xn−1 .
If t direction spline functions are chosen, a supplementary spline function can create
using these spline functions.The solution is shown below.
Let k ∈ (x0, xn−1) and l ∈ (t0, tm−1). u(tsup, j) = S (l, xj), j = 0, 1, · · · , n−

1, f (l, k) = H (tsup, k). In detail u(tsup, j) = CubicSPL(T, U
T j
, G

T j
, l); for

j = 0, 1, · · · , n − 1 create a new U
Xsup

vector for use in x direction. Therefor

CubicSPL function need a G
Xsup

vector represent x direction derivative values of

H (tsup, x) ti ≤ l ≤ ti+1, G
Xi

and G
Xi+1

vectors represent partial derivative

values relationship H (ti, x) and H (ti+1, x) spline functions on direction x. Get
help these two vectors to determine G

Xsup
. U

Xsup
was obtained. ti ≤ l ≤ ti+1

and j = 0, 1, · · · , n− 1. As shown in figure 6.

Figure 6

(
g
Xsup

)
j

=
(
g
Xi

)
j

|ti+1 − l|
|ti+1 − ti|

+
(
g
Xi+1

)
j

|ti − l|
|ti+1 − ti|

f (l, k) = CubicSPL(X, U
Xsup

, G
Xsup

, k);
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4. Smooth Surface

At the direction of t and the direction of x, partial derivative values can be
arbitrarily chosen on the grid nodes. Nevertheless the created surface able to reach
somewhat smoothness using some basic rules. For spline functions direction of t :

(
g
T j

)
0

=

(
u
T j

)
1
−
(
u
T j

)
0

t1 − t0

(
g
T j

)
m−1

=

(
u
T j

)
m−2

−
(
u
T j

)
m−1

tm−2 − tm−1

(
g
T j

)
i

=


(
u
T j

)
i
−
(
u
T j

)
i−1

ti − ti−1

|ti+1 − ti|
|ti+1−ti−1|

+

(
u
T j

)
i+1
−
(
u
T j

)
i

ti+1−ti
|ti−1−ti|
|ti+1−ti−1|


i = 1, 2, · · · , m− 2, j = 0, 1, · · · , n− 1.

For spline functions direction of x :

(
g
Xi

)
0
=

(
u
Xi

)
1
−
(
u
Xi

)
0

x1−x0

(
g
Xi

)
n−1

=

(
u
Xi

)
n−2
−
(
u
Xi

)
n−1

xn−2−xn−1

(
g
Xi

)
j
=


(
u
Xi

)
j
−
(
u
Xi

)
j−1

xj−xj−1

|xj+1−xj |
|xj+1−xj−1|

+

(
u
Xi

)
j+1
−
(
u
Xi

)
j

xj+1−xj
|xj−1−xj |
|xj+1−xj−1|


i=0, 1,· · ·,m−1, j=1, 2, · · ·,n−2.

5. Results and Discussion

A computer program was developed as a result of this study is. Using the
http://oguzersinan.net.tr web address that is accessible to this computer program.

U =

 3 4 3
4 5 4
3 3 3

, Gx =

 0 0 0
0 0 0
0 0 0

 and Gt =

 0 0 0
0 0 0
0 0 0

 get in that

way. Surface appearance is shown in figure 7. Computer software by the method
described hereinabove, when it determines partial derivatives of nodes is calculated

as Gx =

 1 0 −1
1 0 −1
0 0 0

 and Gt =

 1 1 1
0 0 0
−1 −2 −1

. New surface appearance

is shown in figure 7.
Determine the value of partial derivatives with the weighted arithmetic mean

method on two-dimensional cubic spline functions reveals appropriate results.
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Figure 7. On left side without correction, on right side after
smoothness correction.
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ON RECTIFYING SLANT HELICES IN EUCLIDEAN 3-SPACE

BULENT ALTUNKAYA, FERDA K. AKSOYAK, LEVENT KULA, AND CAHIT AYTEKİN

Abstract. In this paper, we study the position vector of rectifying slant he-

lices in E3. First, we have found the general equations of the curvature and

the torsion of rectifying slant helices. After that, we have constructed a second
order linear differential equation and by solving the equation, we have obtained

a family of rectifying slant helices which lie on cones.

1. Introduction

In classical differential geometry; a general helix in the Euclidean 3-space, is a
curve which makes a constant angle with a fixed direction.

The notion of rectifying curve has been introduced by Chen [2, 3]. Chen showed,
under which conditions, the position vector of a unit speed curve lies in its rectifying
plane. He also stated the importance of rectifying curves in Physics.

On the other hand, the notion of slant helix was introduced by Izuyama and
Takeuchi [4, 5]. They showed, under which conditions, a unit speed curve is a slant
helix. Later, Ahmet T. Ali published a paper in which position vectors of some
slant helices were shown [1]. In [6, 7], L. Kula, et al studied the spherical images
under both tangent and binormal indicatrices of slant helices and obtained that the
spherical images of a slant helix are spherical helices.

The papers mentioned above led us to study on the notion of rectifying slant
helices. We began with finding the equations of curvature and torsion of a rectifying
slant helix. After that, we constructed a second order linear differential equation
to determine position vector of a rectifying slant helix. By solving this equation for
some special cases, we obtained a unit speed family of rectifying slant helices which
lie on cones.

2. Preliminaries

The Euclidean 3-space E3 is the real vector space R3 with the metric

g = dx21 + dx22 + dx23,

2000 Mathematics Subject Classification. 53A04, 53A05.
Key words and phrases. Rectifying Curve, Curvature, Torsion, Slant Helix, Cone.
This research has been supported by Ahi Evran University: PYO-EGF.4001.15.001.
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where (x1, x2, x3) is a rectangular coordinate system of E3.
A curve α : I ⊂ R −→ E3 is said to be parametrized by the arclength parameter

s, if g
(
α

′
(s) , α

′
(s)
)

= 1, where α′ (s) = dα/ds. Then, we call α unit speed.

Consider unit-speed space curve α has at least four continuous derivatives, then α
has a natural frame called Frenet Frame with the equations below,

t
′

= κn

n
′

= −κt+ τb

b
′

= −τn,
where κ is the curvature, τ is the torsion, and {t, n, b} is the Frenet Frame of the
curve α. We denote unit tangent vector field with t, unit principal normal vector
field with n, and the unit binormal vector field with b. It is possible in general, that
t
′
(s) = 0 for some s ∈ I; however, we assume that this never happens.

Definition 2.1. A curve is called a slant helix if its principal normal vector field
makes a constant angle with a fixed line in space.

Theorem 2.1. A unit speed curve α is a slant helix if and only if the geodesic
curvature of the spherical image of the principal normal indicatrix of α which is

σ(s) =

(
κ2

(κ2 + τ2)
3/2

( τ
κ

)′
)

(s)

is constant [4, 5].

A unit speed curve α is called rectifying curve when the position vector of it
always lie in its rectifying plane. So, for a rectifying curve we can write

α (s) = λ (s) t (s) + µ (s) b (s) .

Theorem 2.2. A unit speed curve α is congruent to a rectifying curve if and only
if

τ(s)

κ(s)
= c1s+ c2

for some constants c1 and c2, with c1 6= 0 [2, 3].

3. Rectifying Slant Helices in E3

If the position vector of a unit speed slant helix always lies in its rectifying plane
we call it a rectifying slant helix. For a rectifying slant helix we have the following
theorem.

Theorem 3.1. Let α be a unit speed curve in E3. Then, α(s) is a rectifying slant
helix if and only if the curvature and torsion of the curve satisfies the equations
below;

κ(s) =
c3(

1 + (c1s+ c2)
2
)3/2 , τ(s) =

c3 (c1s+ c2)(
1 + (c1s+ c2)

2
)3/2 ,

where c1 6= 0, c2 ∈ R, θ 6= 0 + kπ/2, k ∈ Z, and c3 ∈ R+.
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Proof. Let α be a unit speed rectifying slant helix in E3, then the equations in
Theorem 2.1, and Theorem 2.2 exists. If we combine them then we have

m =
c1

κ
(

1 + (c1s+ c2)
2
)3/2 .

where m is a constant. So we can write κ as follows

κ(s) =
c3(

1 + (c1s+ c2)
2
)3/2 ,

then, from Theorem 2.2

τ(s) =
c3 (c1s+ c2)(

1 + (c1s+ c2)
2
)3/2 .

where c3 = |c1/m|.
Conversely, it can be easily seen that, the curvature functions as mentioned above

satisfy the equations at Theorem 2.1 and Theorem 2.2. So, α is a rectifying slant
helix.

�

Now, we give another Theorem by using the definitions of slant helix and recti-
fying curve to determine c3.

Theorem 3.2. Let α be a unit speed rectifying slant helix whose principal normal
vector field makes a constant angle with a unit vector u, then the curvature and
torsion of α satisfy the equations below;

κ(s) =
|c1 tan(θ)|(

(c1s+ c2)
2

+ 1
)3/2 , τ(s) =

|c1 tan(θ)| (c1s+ c2)(
(c1s+ c2)

2
+ 1
)3/2

where c1 6= 0, c2 ∈ R.

Proof. Let α be a unit speed rectifying slant helix in E3. Then, from the definition
of slant helix there is a unit fixed vector u with

g(n, u) = cos(θ),

where θ ∈ R+. If we differentiate this equation with respect to s, we have,

g(−κt+ τb, u) = 0.

If we divide both parts of the equation with κ, we get

(3.1) g(−t+ (c1s+ c2)b, u) = 0,

then,

g(t, u) = (c1s+ c2)g(b, u).

While {t, n, b} is a orthonormal frame we can write,

v = λ1t+ λ2n+ λ3b,
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with λ21 + λ22 + λ23 = +1. If we make the neccessary calculations we have,

λ1 = ∓ (c1s+ c2) sin(θ)√
(c1s+ c2)2 + 1

, λ2 = cos(θ), λ3 = ± sin(θ)√
(c1s+ c2)2 + 1

.

By differentiating (3.1) we have,

± c1 sin(θ)

κ
√

(c1s+ c2)2 + 1
− (1 + (c1s+ c2)2) cos(θ) = 0.

Therefore,

κ(s) =
|c1 tan(θ)|(

(c1s+ c2)
2

+ 1
)3/2 ,

and

τ(s) =
|c1 tan(θ)| (c1s+ c2)(
(c1s+ c2)

2
+ 1
)3/2 .

�

Theorem 3.3. Let α(s) be a unit speed rectifying slant helix. Then, the vector v
satisfies the linear vector differential equation of second order as follows;

v′′(s) +
(c1 tan (θ))2(

1 + (c1s+ c2)
2
)2 v(s) = 0,

where v = n′

κ .

Proof. Let α be a unit speed rectifying slant helix then we can write frenet equations
as follows,

(3.2)

t
′

= κn

n
′

= −κt+ fκb

b
′

= −fκn,
where f(s) = c1s+ c2. If we divide second equation by κ we have,

(3.3)
n′

κ
= −t+ fb.

By differentiating (3.3), we have

(3.4) c1b =

(
n′

κ

)′
+ κ(1 + f2)n.

By differentiating (3.4) and using (3.2) we have

(3.5)

(
n′

κ

)′′
+ κ(1 + f2)n′ +

[(
κ(1 + f2)

)′
+ c1fκ

]
n = 0,

with the necessary calculations we easily see(
κ(1 + f2)

)′
+ c1fκ = 0.

So we have (3.5) as follows,

(3.6)

(
n′

κ

)′′
+ κ(1 + f2)n′ = 0.
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Let us denote n′

κ = v. Then (3.6) becomes to

(3.7) v′′ +
(c1 tan (θ))2(

1 + (c1s+ c2)
2
)2 v = 0,

this completes the proof. �

As we know every component of vector v = (v1, v2, v3) must satisfy (3.7). We
can show

v1(s) = −
√(

1 + f2 (s)
)

sin [sec(θ) arctan [f(s)]] ,

v2(s) =

√(
1 + f2 (s)

)
cos [sec(θ) arctan [f(s)]] ,

v3(s) = 0.

We can show v is a solution for (3.7). Therefore, we can write n = (n1, n2, n3) as
follows,

(3.8)
n1(s) =

∫
κ(s)v1(s)ds = A1 |c1| sin(θ) cos [sec(θ) arctan [f(s)]] ,

n2(s) =
∫
κ(s)v2(s)ds = A2 |c1| sin(θ) sin [sec(θ) arctan [f(s)]] ,

n3(s) = cos(θ).

On the other hand, Let α be a unit speed rectifying slant helix, whose principal
normal vector field makes a constant angle θ with e3. Then, for its principal normal
we can write

< n, e3 >= cos(θ).

While n = (n1, n2, n3) is a unit vector, n21+n22+n23 = 1. So, n21+n22 = 1−cos2(θ) =
sin2(θ). Therefore n can be in the form,

(3.9)
n1(s) = sin(θ) cos(h(s))
n2(s) = sin(θ) sin(h(s))

n3(s) = cos(θ),

where h(s) is a differentiable function.
If we take, A1 = 1/ |c1| , A2 = 1/ |c1| , h(s) = sec(θ) arctan [f(s)] at (3.8), (3.8)

and (3.9) coincides. Thus, a unit speed rectifying slant helix α can be in the form;

α1(s) = sin(θ)
∫ (∫

κ(s) cos [sec(θ) arctan (c1s+ c2)] ds
)
ds,

α2(s) = sin(θ)
∫ (∫

κ(s) sin [sec(θ) arctan (c1s+ c2)] ds
)
ds,

α3(s) =
∫ (∫

κ(s) cos(θ)ds
)
ds,

where α = (α1, α2, α3).
Therefore, we find α as follows.

α1(s) = − cos (θ)
c1

√
1 + (c1s+ c2)

2
cos [sec (θ) arctan (c1s+ c2)],

α2(s) = − cos (θ)
c1

√
1 + (c1s+ c2)

2
sin [sec (θ) arctan (c1s+ c2)],

α3(s) = 1
c1

√
1 + (c1s+ c2)

2
sin (θ).

Now, we can write a new lemma;
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Lemma 3.1. Let α(s) : I −→ R3 be a space curve with the equation below,

α(s) = −

√
1 + (c1s+ c2)

2

c1
( cos(θ) cos [sec (θ) arctan (c1s+ c2)] ,

cos(θ) sin [sec (θ) arctan (c1s+ c2)] ,

− sin(θ)),

(3.10)

where θ 6= π
2 + kπ, k ∈ Z, and c1 6= 0, c2 ∈ R. Then, α(s) is a unit speed rectifying

slant helix which lies on the cone

(3.11) tan2(θ)
(
x2 + y2

)
= z2.

Proof. With direct calculations we have g(α′, α′) = 1, g(n, n) = 1, and the curva-
ture functions of α as,

κ(s) = |c1 tan(θ)|
((c1s+c2)2+1)3/2

,

τ(s) = |c1 tan(θ)|(c1s+c2)
((c1s+c2)2+1)3/2

.

with,

κ2(s)

(κ2(s) + τ2(s))
3/2

(
τ(s)

κ(s)

)′

= cot(θ),

and
τ(s)

κ(s)
= c1s+ c2.

So, α is a unit speed spacelike rectifying slant helix. We also have

tan2 (θ)
(
α1

2(s) + α2
2(s)

)
− α3

2(s) = 0,

then, α lies on the cone above. �

Example 3.1. If we take c1 = 1, c2 = 0, and cos(θ) = 1/3 then, tan(θ) = 2
√

2. If
we put these into (3.10) and (3.11), we have the following equations;

α(s) =
(
− 1

3

√
s2 + 1 cos (3 arctan(s)) ,− 1

3

√
s2 + 1 sin (3 arctan(s)) , 2

√
2

3

√
s2 + 1

)
,

κ(s) = 2
√
2

(s2+1)3/2
, τ(s) = 2

√
2s

(s2+1)3/2
,

8
(
x2 + y2

)
= z2.

Figure 1. Rectifying Slant Helix on 8
(
x2 + y2

)
= z2
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Example 3.2. If we take c1 = 1/2, c2 = −1/5, and cos(θ) = 1/10 then, tan(θ) =√
99. If we put these into (3.10) and (3.11), we have the following equations;

β(s) =
1

5

√(
s

2
− 1

5

)2

+ 1

(
− cos

(
10 arctan

(
s

2
− 1

5

))
,

− sin

(
10 arctan

(
s

2
− 1

5

))
,

3
√

11

5

)
,

κ(s) = 1500
√
11(

5s(5s−4)+104

)3/2 , τ(s) = 150
√
11(5s−2)(

5s(5s−4)+104

)3/2 ,

99
(
x2 + y2

)
= z2.

Figure 2. Rectifying Slant Helix on 99
(
x2 + y2

)
= z2

Figure 3. Tangent, Normal,and Binormal indicatrix of β resp.
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ON THE FAMILY OF METRICS FOR SOME PLATONIC AND

ARCHIMEDEAN POLYHEDRA

ÖZCAN GELIŞGEN AND ZEYNEP CAN

Abstract. Convexity is an important property in mathematics and geometry.
In geometry convexity is simply defined as; if every points of a line segment

that connects any two points of the set are in the set then this set is convex. A

polyhedra, when it is convex, is an extremely important solid in 3-dimensional
analytical space. Polyhedra have interesting symmetries. Therefore they have

attracted the attention of scientists and artists from past to present. Thus

polyhedra are discussed in a lot of scientific and artistic works. There are
many relationships between metrics and polyhedra. Some of them are given

in previous studies. For example, in [7] the authors have shown that the unit

sphere of Chinese Checkers 3-space is the deltoidal icositetrahedron. In this
study, we introduce a family of metrics, and show that the spheres of the 3-

dimensional analytical space furnished by these metrics are some well-known

polyhedra.

1. INTRODUCTION

A polyhedron is a geometric solid bounded by polygons. Polygons form the faces
of the solid; an edge of the solid is the intersection of two polygons, and a vertex of
the solid is a point where three or more edges intersect. If all faces of a polyhedron
are identical regular polygons and at every vertex same number of faces meet then
it is called a regular polyhedron. A polyhedron is called semi-regular if all its faces
are regular polygons and all its vertices are equal.

Polyhedra have very interesting symmetries. Therefore they have attracted the
attention of scientists and artists from past to present. Thus mathematicians,
geometers, physicists, chemists, artists have studied and continue to study on poly-
hedra. Consequently, polyhedra take place in many studies with respect to different
fields. As it is stated in [3] and [6], polyhedra have been used for explaining the
world around us in philosophical and scientific way. There are only five regular con-
vex polyhedra known as the platonic solids. These regular polyhedra were known by
the Ancient Greeks. They are generally known as the ”Platonic” or ”cosmic” solids

2000 Mathematics Subject Classification. 51K05, 51K99,51M20.
Key words and phrases. Platonic solids, Archimedean solids, metric, Truncated cube, Cuboc-

tahedron, Truncated octahedron.
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because Plato mentioned them in his dialogue Timeous, where each is associated
with one of the five elements - the cube with earth, the icosahedron with water, the
octahedron with air, the tetrahedron with fire and the dodecahedron with universe
( or with ether, the material of the heavens). The story of the rediscovery of the
Archimedean polyhedra during the Renaissance is not that of the recovery of a ’lost’
classical text. Rather, it concerns the rediscovery of actual mathematics, and there
is a large component of human muddle in what with hindsight might have been
a purely rational process. The pattern of publication indicates very clearly that
we do not have a logical progress in which each subsequent text contains all the
Archimedean solids found by its author’s predecessors. In fact, as far as we know,
there was no classical text recovered by Archimedes. The Archimedean solids have
that name because in his Collection, Pappus stated that Archimedes had discovered
thirteen solids whose faces were regular polygons of more than one kind. Pappus
then listed the numbers and types of faces of each solid. Some of these polyhedra
have been discovered many times. According to Heron, the third solid on Pap-
pus’ list, the cuboctahedron, was known to Plato. During the Renaissance, and
especially after the introduction of perspective into art, painters and craftsmen
made pictures of platonic solids. To vary their designs they sliced off the corners
and edges of these solids, naturally producing some of the Archimedean solids as a
result.For more detailed knowledge, see [3] and [6].

The dual polyhedra of the Archimedean solids are called Catalan solids, and they
are exactly thirteen just like Archimedean solids. Platonic solids are regular and
convex polyhedra and Archimedean solids are semi-regular and convex polyhedra.
The Catalan solids are all convex. They are face-transitive when all its faces are
the same but not vertex-transitive. Unlike Platonic solids and Archimedean solids,
the face of Catalan solids are not regular polygons.

As it is stated in [14], Minkowski geometry is a non-Euclidean geometry in a
finite number of dimensions. Here the linear structure is the same as the Euclidean
one but distance is not uniform in all directions. That is, the points, lines and
planes are the same, and the angles are measured in the same way, but the distance
function is different. Thus, instead of the usual sphere in Euclidean space, the
unit ball is a general symmetric convex set. Some mathematicians studied and
improved metric geometry in plane and space. (Some of these are [1, 4, 5, 8, 9, 10]
) According to studies on polyhedra, there are some Minkowski geometries in which
unit spheres of these spaces furnished by some metrics are associated with convex
solids. For example, unit spheres of maximum space and taxicab space are cubes
and octahedrons, respectively, which are Platonic Solids. And unit sphere of CC-
space is a deltoidal icositetrahedron which is a Catalan solid. Therefore, there
are some metrics in which unit spheres of space furnished by them are convex
polyhedra. That is, convex polyhedra are associated with some metrics. When a
metric is given we can find its unit sphere. Naturally a question can be asked; ”Is
it possible to find the metric when a convex polyhedron is given?”. In this study,
we introduce a family of metrics and show that spheres of 3-dimensional analytical
space furnished by these metrics are some polyhedra. Then we give relationships
between metrics and some of Platonic and Archimedean solids. Some results for
these relationships are already known from previous studies. But we introduce
three metrics and give three new relationships for cuboctahedron, truncated cube
and truncated octahedron.
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2. Archimedean Metric

As it is mentioned in introduction, there are some 3-dimensional Minkowski ge-
ometries which have distance function distinct from Euclidean distance and unit
spheres of these geometries are convex polyhedrons. That is, convex polyhedra are
associated with some metrics. When a metric is given, we can find its unit sphere
in related space geometry. This enforce us to the question ”Are there some metrics
whose unit sphere is a convex polyhedron?”. For this goal, firstly, the related poly-
hedra are placed in the 3-dimensional space in such a way that they are symmetric
with respect to the origin. And then the coordinates of vertices are found. Later one
can obtain metric which always supply plane equation related with solid’s surface.
When we started studying on this question, we firstly handled separately convex
polyhedra. But we noticed a relationship between the metrics. Now, we introduce
a family of distances which include Taxicab distance and maximum distance as
special cases in R3.

Definition 2.1. Let u ∈ [0,∞) , and P1 = (x1, y1z1), P2 = (x2, y2, z2) be two points
in R3. The distance function dAP : R3 × R3 → [0,∞) Archimedean polyhedral
distance between P1 and P2 is defined by

dAP (P1, P2)= max {|x1 − x2| , |y1 − y2| , |z1 − z2| , u (|x1 − x2|+ |y1 − y2|+ |z1 − z2|)} .

Clearly, there are infinitely many different distance functions in the family of
distance functions defined above, depending on value of u. One can think the def-
inition not to be well-defined since the Archimedean polyhedra distance between
two points can also change according to value of u. To remove this confusion, sup-
posing value of u is initially determined and fixed unless otherwise stated. We write
R3

AP = (R3, dAP ) for the 3-dimensional analytical space furnished by Archimedean
polyhedral distance defined above.

Since proof is trivial by the definition of maximum function, we give following
lemma without proof which is required to show that each of dAP distances gives a
metric.

Lemma 2.1. Let P1 = (x1, y1z1) and P2 = (x2, y2, z2) be any distinct points in
R3. Then

dAP (P1, P2) ≥ |x1 − x2| ,
dAP (P1, P2) ≥ |y1 − y2| ,
dAP (P1, P2) ≥ |z1 − z2| ,
dAP (P1, P2) ≥ u (|x1 − x2|+ |y1 − y2|+ |z1 − z2|) .

Theorem 2.1. Every dAP distance determines a metric in R3.

Proof. Let dAP : R3 × R3 → R is Archimedean polyhedral distance function, and
P1=(x1, y1, z1) , P2=(x2, y2, z2) and P3=(x3, y3, z3) are distinct three points in
R3. We have to show that dAP is positive definite, symmetric, and the triangle
inequality holds for dP .

Absolute value gives always non-negative value and u ≥ 0, then dAP (P1, P2) ≥ 0.
Clearly, dAP (P1, P2) = 0 iff P1 = P2. So dP is positive definite.

Since |a− b| = |b− a| for all a, b ∈ R, obviously dAP (P1, P2) = dAP (P2, P1).
That is, dAP is symmetric.

Now, we should prove that dP (P1, P3) ≤ dP (P1, P2) + dP (P2, P3) for all P1, P2,
P3 ∈ R3.
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dP (P1, P3)

= max {|x1 − x3| , |y1 − y3| , |z1 − z3| , u (|x1 − x3|+ |y1 − y3|+ |z1 − z3|)}

= max

{
|x3 − x2+x2 − x1| , |y3 − y2+y2 − y1| , |z3 − z2+z2 − z1| ,
u (|x3 − x2+x2 − x1|+ |y3 − y2+y2 − y1|+ |z3 − z2+z2 − z1|)

}
≤ max

{
|x3 − x2|+ |x2 − x1| , |y3 − y2|+ |y2 − y1| , |z3 − z2|+ |z2 − z1|
u (|x3 − x2|+ |x2 − x1|+ |y3 − y2|+ |y2 − y1|+ |z3 − z2|+ |z2 − z1|)

}
= I

One can easily find that I ≤ dAP (P1, P2) + dAP (P2, P3) from Lemma 2.1. So
dAP (P1, P3) ≤ dAP (P1, P2) + dAP (P2, P3). Consequently, Archimedean polyhedral
distance is a metric in 3-dimensional analytical space. �

According to Archimedean polyhedral metric, distance is one of quantities |x1 − x2|,
|y1 − y2|, |z1 − z2| or u times sum of quantities |x1 − x2|, |y1 − y2|, |z1 − z2| . Ge-
ometrically, there are two different paths between two points in R3

AP . If the line

segment P1P2 is out of cones with apex P1 and square bases which corner points
are all permutations of the three axis components and all possible +/− sign change
of each axis component of (∓1,∓(1− u), 0) , then

dAP (P1, P2) = u (|x1 − x2|+ |y1 − y2|+ |z1 − z2|)
,and the path between P1 and P2 is union of three line segments which is parallel to
a coordinate axis. Otherwise, the path between P1 and P2 is a line segment which
is parallel to a coordinate axis. Thus Archimedean polyhedral distance between
P1 and P2 is u times sum of Euclidean lengths of these three line segments or the
Euclidean length of line segment (See Figure 1).

Figure 1: AP ways from P1 to P2

The following proposition gives an equation which relates the Euclidean distance
to the Archimedean polyhedral distance between the points in R3:

Proposition 2.1. Let l be the line through the points P1 = (x1, y1, z1) and P =
(x2, y2, z2) in the analytical 3-dimensional space and dE denote the Euclidean met-
ric. If l has direction vector (p, q, r), then

dAP (A,B) = µ(AB)dE(A,B)

where

µ(AB) =
max{|p| , |q| , |r| , u (|p|+ |q|+ |r|)}√

p2 + q2 + r2
.
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Proof. Equation of l gives us x1−x2 = λp, y1− y2 = λq, z1− z2 = λr, λ ∈ R \ {0}.
Thus,

dAP (A,B) = |λ| (max{|p| , |q| , |r| , u (|p|+ |q|+ |r|)})

and dE(A,B) = |λ|
√
p2 + q2 + r2 which implies the required result. �

The above lemma says that dAP -distance along any line is some positive constant
multiple of Euclidean distance along same line. Thus, one can immediately state
the following corollaries:

Corollary 2.1. If P1, P2 and X are any three collinear points in R3, then
dE(P1, X) = dE(P2, X) if and only if dAP (P1, X) = dAP (P2, X) .

Corollary 2.2. If P1, P2 and X are any three distinct collinear points in the real
3-dimensional space, then

dAP (X,P1) / dAP (X,P2) = dE(X,P1) / dE(X,P2) .

That is, the ratios of the Euclidean and dAP−distances along a line are the same.

3. Some relations about the Archimedean polyhedral distance and
Polyhedra

The polyhedral metric gives a family of metrics and unit spheres in 3-dimensional
analytical space furnished by Archimedean polyhedral metric which are some poly-
hedra. Of course, polyhedra varies depending on choice of u. Some results of re-
lations between metrics and polyhedra are already known from previous studies.
Here, we especially give three new relations between polyhedra and metrics by using
Archimedean polyhedral metric. Now, according to choice of u, we give five cases
for Archimedean polyhedral metric.

Case 1. Let u ≥ 1. So AP−metric is u times taxicab metric. In particular,
if u = 1, then AP−metric is taxicab metric. In this case the unit sphere is the
octahedron.

Case 2. Set u ∈
(

0,
1

3

)
. Hence, AP−metric is the maximum metric. So the

unit sphere is the hexahedron.

Case 3. Let u =
1

2
. Then Archimedean polyhedral metric gives a new result.

In this case, the unit sphere is cuboctahedron. So we called cuboctahedron metric
which is defined by

dAP (P1, P2)= max{|x1 − x2| , |y1 − y2| , |z1 − z2| ,
1

2
(|x1 − x2|+ |y1 − y2|+ |z1 − z2|)}.

(see Figure 2a).

Case 4. Let u ∈
(

1

3
,

1

2

)
. Then Archimedean polyhedral metric gives a new

result. In particular, if u =
√

2− 1, then the unit sphere is truncated cube. So we
called truncated cube metric which is defined by
dAP (P1, P2)

= max{|x1 − x2| , |y1 − y2| , |z1 − z2| ,
(√

2-1
)

(|x1 − x2|+ |y1 − y2|+ |z1 − z2|)}.
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For u ∈
(

1

3
,

1

2

)
case, the unit sphere is like truncated cube. When u → 1

2
and

u → 1

3
, the unit sphere looks like cuboctahedron and cube, respectively. But for

all values of u, unit sphere has 8-triangular faces and 6-octagonal faces (see Figure
2b).

Case 5. Let u ∈
(

1

2
, 1

)
. Then Archimedean polyhedral metric gives a new

result. In particular, if u =
2

3
, then the unit sphere is truncated octahedron. So we

called truncated octahedron metric which is defined by

dAP (P1, P2)= max{|x1 − x2| , |y1 − y2| , |z1 − z2| ,
2

3
(|x1 − x2|+ |y1 − y2|+ |z1 − z2|)}.

For u ∈
(

1

2
, 1

)
case, the unit sphere is like truncated octahedron. When u → 1

and u→ 1

2
, the unit sphere looks like octahedron and cuboctahedron, respectively.

But for all values of u, unit sphere has 6-square faces and 8-hexagonal faces (see
Figure 2c).

Figure 2a Cuboctahedron Figure 2b Truncated cube Figure 2c Truncated octahedron

One can observe that the Archimedean metric has two parts, one is
max{|x1 − x2| , |y1 − y2| , |z1 − z2|} and the other is u (|x1 − x2|+ |y1 − y2|+ |z1 − z2|) .
In fact, max{|x1 − x2| , |y1 − y2| , |z1 − z2|} and u (|x1 − x2|+ |y1 − y2|+ |z1 − z2|)
indicate the hexahedron and the octahedron, respectively. Thus sphere of Archimedean
polyhedral metric is intersection of hexahedron and octahedron. The cases which
defined above are explicated by this way.

One can take dAP (O,P ) = r. then gets max{|x1 − x2| , |y1 − y2| , |z1 − z2|}=r
and u (|x1 − x2|+ |y1 − y2|+ |z1 − z2|) = r. That is, these are the cube with ver-
tices such that all permutations of (∓r,∓r,∓r) and the octahedron with vertices

such that all permutations of
(
∓ r
u
, 0, 0

)
, respectively. The faces of the cube are on

the planes with equations |x| = r, |y| = r and |z| = r, and the faces of octahedron

are on the planes with equations |x|+ |y|+ |z| = r

u
. The intersection of the faces of

the cube and the octahedron are found by solving the systems of linear equations{
|x|+ |y|+ |z| = r

u
|x| = r

,

{
|x|+ |y|+ |z| = r

u
|y| = r

,

{
|x|+ |y|+ |z| = r

u
|z| = r

.
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For example, we handle the system of equations

{
|x|+ |y|+ |z| = r

u
|x| = r

. Since

|x|=r, it is obtained that |y| + |z| =
r

u
− r. The solution is the taxicab circles

with the center (∓r, 0, 0) and radius
r

u
− r on planes |x| = r. If u ∈

[
1

2
, 1

]
, then

the circle is completely on face of the cube. Thus intersection consist of squares

and hexagons. If u ∈
(

1

3
,

1

2

)
, then the circle is not completely on face of the cube.

Therefore intersection consist of triangles and octagons. If u =
1

2
, then intersection

consist of squares and triangles. Figure 3a,3b,3c illustrate these cases.

Figure 3a Figure 3b Figure 3c 3

Now, we can give some new results:
The truncated cube, or truncated hexahedron, is an Archimedean solid. It has

14 regular faces (6 octagonal and 8 triangular), 36 edges, and 24 vertices (See [16]).
The cuboctahedron is an archimedean solid with eight triangular faces and six

square faces. It has 12 identical vertices, with two triangles and two squares meeting
at each, and 24 identical edges, each separating a triangle from a square (See [15]).

The truncated octahedron is an archimedean solid which has 14 faces (8 regular
hexagonal and 6 square), 36 edges, and 24 vertices. Since each of its faces has point
symmetry the truncated octahedron is a zonohedron (See [17]).

The following corollaries are direct consequences of Proposition 2.1, Corollary
2.1 and Corollary 2.2

Corollary 3.1. The equations of cuboctahedron, truncated cube and truncated oc-
tahedron with center C = (x0, y0, z0) and radius r are

max

{
|x− x0| , |y − y0| , |z − z0| ,

1

2
(|x− x0|+ |y − y0|+ |z − z0|)

}
= r

max
{
|x− x0| , |y − y0| , |z − z0| ,

(√
2− 1

)
(|x− x0|+ |y − y0|+ |z − z0|)

}
= r

max

{
|x− x0| , |y − y0| , |z − z0| ,

2

3
(|x− x0|+ |y − y0|+ |z − z0|)

}
= r

,respectively. The the cuboctahedron, truncated cube and the truncated octahedron
have 14- regular faces with vertices such that all permutations of the three axis com-
ponents and all possible +/- sign changes of each axis component of

(
r, r,

(√
2− 1

)
r
)
,

(r, r, 0) and (r/2, r, 0) , respectively (See Figure 4a,4b,4c).
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Figure 4a Figure 4b Figure 4c

Lemma 3.1. Let l be the line through the points P1 = (x1, y1z1) and P2 =
(x2, y2, z2) in the analytical 3−dimensional space and dE , dTC , dCO and dTO de-
note the Euclidean metric, the truncated metric, the cuboctahedron metric and the
truncated metric respectively. If l has direction vector (p, q, r), then

dCO (P1, P2) =
max

{
|p| , |q| , |r| , 1

2 (|p|+ |q|+ |r|)
}√

p2 + q2 + r2
dE (P1, P2)

dTC (P1, P2) =
max

{
|p| , |q| , |r| ,

(√
2− 1

)
(|p|+ |q|+ |r|)

}√
p2 + q2 + r2

dE (P1, P2)

dTO (P1, P2) =
max

{
|p| , |q| , |r| , 2

3 (|p|+ |q|+ |r|)
}√

p2 + q2 + r2
dE (P1, P2) .

Corollary 3.2. If P1, P2 and X are any three collinear points in R3, then

dE (P1, X) = dE (P2, X) if and only if dCO (P1, X) = dCO (P2, X)

dE (P1, X) = dE (P2, X) if and only if dTC (P1, X) = dTC (P2, X)

dE (P1, X) = dE (P2, X) if and only if dTO (P1, X) = dTO (P2, X) .

Corollary 3.3. If P1, P2 and X are any distinct collinear points in R3, then

dE (P1, X)

dE (P2, X)
=
dCO (P1, X)

dCO (P2, X)
=
dTC (P1, X)

dTC (P2, X)
=
dTO (P1, X)

dTO (P2, X)
.

That is, the ratios of the Euclidean, the cuboctahedron, the truncated cube and
the truncated octahedron distances along a line are the same.
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GRAPHS WHICH ARE DETERMINED BY THEIR SPECTRUM

ALI ZEYDI ABDIAN

Abstract. It is well-known that the problem of spectral characterization is

related to the Hückel theory from Chemistry. E. R. van Dam and W. H.
Haemers [11] conjectured almost all graphs are determined by their spectra.

Nevertheless, the set of graphs which are known to be determined by their

spectra is small. Hence discovering infinite classes of graphs that are deter-
mined by their spectra can be an interesting problem and helps reinforce this

conjecture. The main aim of this work is to characterize new classes of graphs

that are known as multicone graphs. In this work, it is shown that any graph
cospectral with multicone graphs Kw 5 GQ(2, 1) or Kw 5 GQ(2, 2) is de-

termined by its adjacency spectra, where GQ(2, 1) and GQ(2, 2) denote the

strongly regular graphs that are known as the generalized quadrangle graphs.
Also, we prove that these graphs are determined by their Laplacian spectrum.

Moreover, we propose four conjectures for further reseache in this topic.

1. Introduction

All graph considered here are simple and undirected. All notions on graph that
are not defined here can be found in [3, 4, 6, 15]. Let G = (V,E) be a simple graph
with vertex set V = V (G) = {v1, ..., vn} and edge set E = E(G) = {e1, ..., em}.
Denote by d(v) the degree of vertex v. Let A(G) be the (0, 1)-adjacency matrix of
graph G. The characteristic polynomial of G is det(λI−A(G)), and it is denoted by
PG(λ). The roots of PG(λ) are called the adjaceny eigenvalues of G and since A(G)
is real and symmetric, the eigenvalues are real numbers. If G has n vertices, then it
has n eigenvalues in descending order as λ1 ≥ λ2 ≥ ... ≥ λn. Let λ1, λ2, ..., λn be
the distinct eigenvalues of G with multiplicity m1, m2, ... , mn, respectively. The
multi-set of eigenvalues of A(G) is called the adjacency spectrum of G. The matrices
L(G) = D(G)−A(G) and SL(G) = D(G) +A(G) are called the Laplacian matrix
and signless Laplacian matrix of G, respectively, where D(G) is the diagonal matrix
diag {d(v1), ..., d(vn)} and A(G) is the (0, 1) adjacency matrix of G. Two graph with
the same spectrum are called cospectral. A graph G is determined by its spectrum
(DS for short) if every graph cospectral to it is in fact isomorphic to it. About the

2010 Mathematics Subject Classification. 05C50.
Key words and phrases. Adjacency spectrum, Laplacian spectrum, Determined by their spec-

tra, generalized quadrangle .
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background of the guestion ”which graph are determined by their spectrums?”, we
refer to [11, 12]. A spectral characterization of multicone graph is studied in [13].
In [13], Wang, Zhao and Huang investigated on the spectral characterization of
multicone graph and also they claimed that friendship graph Fn( that are special
classes of multicone graph) are DS with respect to their adjacency spectra. In
addition, Wang, Belardo, Huang and Borovićanin [14] proposed such conjecture on
the adjacency spectrum of Fn. This conjecture caused some activity on the spectral
characterization of Fn. Das [5] claims to have a proof, but Abdollahi, Janbaz and
Oboudi [2] found a mistake. In addition, these authors give correct proofs in some
special cases. Abdian and Mirafzal [1] characterized new classes of multicone graph
that were DS with respect to their spectra. In this paper, we present new classes
of multicone graph that are DS with respect to their spectra.
This paper is organized as follows. In Section 2, we review some basic information
and preliminaries. In Subsection 3.1, we show that any graph cospectral with
multicone graph Kw 5 GQ(2, 1) must be bidegreed ( Lemma 3.1 ). In Subsection
3.2, we prove that any graph cospectral with K1 5 GQ(2, 1) is determined by its
adjacency spectra ( Lemma 3.2 ). In Subsection 3.3, we prove that complement
of Kw 5 GQ(2, 1) is DS with respect to their adjacency spectra ( Theorem 3.1
). In Subsection 3.4, we show that graph Kw 5 GQ(2, 1) are DS with respect to
their Laplacian spectra ( Theorem 3.2 ). In Section 4, we characterize multicone
graph Kw 5 GQ(2, 2) and we show that these graph are DS with respect to their
spectra. Subsections 4.1, 4.2 and 4.3 are the similar of Subsections 3.2, 3.3 and 3.4,
respectively. We conclude with final remarks and open problems in Section 5.

2. Some definitions and preliminaries

Lemma 2.1. [1, 9] Let G be a graph. For the adjacency matrix and Laplacian
matrix, the following can be obtained from the spectrum:

(i) The number of vertices,
(ii) The number of edges.
For the adjacency matrix, the following follows from the spectrum:
(iii) The number of closed walks of any length,
(iv) Being regular or not and the degree of regularity,
(v) Being bipartite or not.
For the Laplacian matrix, the following follows from the spectrum:
(vi) The number of spanning trees,
(vii) The number of components,
(viii) The sum of squares of degrees of vertices.

Theorem 2.1. [4] If G1 is r1-regular with n1 vertices, and G2 is r2-regular with
n2 vertices, then the characteristic polynomial of the join G1 5G2 is given by:

PG15G2(y) =
PG1

(y)PG2
(y)

(y − r1)(y − r2)
((y − r1)(y − r2)− n1n2).

Proposition 2.1. [12, Proposition 4] Let G be a disconnected graph that is deter-
mined by the Laplacian spectrum. Then the cone over G, the graph H ; that is,
obtained from G by adding one vertex that is adjacent to all vertices of G, is also
determined by its Laplacian spectrum.
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Theorem 2.2. [1] Let G be a simple graph with n vertices and m edges. Let
δ = δ(G) be the minimum degree of vertices of G and %(G) be the spectral radius of
the adjacency matrix of G. Then

%(G) ≤ δ − 1

2
+

√
2m− nδ +

(δ + 1)2

4
.

Equality holds if and only if G is either a regular graph or a bidegreed graph in
which each vertex is of degree either δ or n− 1.

Theorem 2.3. [8] Let G and H be two graphs with the Laplacian spectrum λ1 ≥
λ2 ≥ ... ≥ λn and µ1 ≥ µ2 ≥ ... ≥ µm, respectively. Then the Laplacian spectrum
of G and G 5 H are n − λ1, n − λ2, ..., n − λn−1, 0 and n + m,m + λ1, ...,m +

λn−1, n+ µ1, ..., n+ µm−1, 0, respectively.

Theorem 2.4. [8] Let G be a graph on n vertices. Then n is one of the Laplacian
eigenvalue of G if and only if G is the join of two graph.

Theorem 2.5. [7, p.163] For a graph G, the following statements are equivalent:

(i) G is d-regular.
(ii) %(G) = dG, the average vertex degree.
(iii) G has v = (1, 1, ..., 1)t as an eigenvector for %(G).

Proposition 2.2. [4] Let G− j be the graph obtained from G by deleting the vertex

j and all edges containing j. Then PG−j(y) = PG(y)
m∑
i=1

α2
ij

y−µi
, where m is the

number of distinct eigenvalues of graph G.

3. Main Results

In this subsection, we show that any graph cospectral with a multicone graph
Kw 5GQ(2, 1) must be bidegreed.

3.1. Connected graph cospectral with a multicone graph Kw 5GQ(2, 1).

Proposition 3.1. Let G be a graph cospectral with a multicone graph Kw 5

GQ(2, 1). Then Spec(G) =

[−1]
w−1

, [−2]
4
, [1]

4
,

[
Ω +
√

Ω2 + 4Γ

2

]1

,

[
Ω−
√

Ω2 + 4Γ

2

]1
,

where Ω = w + 3 and Γ = 5w + 4.

Proof. It is well-known that Spec(GQ(2, 1)) =
{

[−2]
4
, [1]

4
, [4]

1
}

. Now, by Theo-

rem 2.1 the proof is clear. �

Lemma 3.1. Let G be cospectral with a multicone graph Kw 5GQ(2, 1). Then G
is bidegreed in which any vertex of G is of degree w + 4 or w + 8.

Proof. It is obvious that G cannot be regular; since regularity of a graph can be
determined by its spectrum. By contrary, we suppose that the degrees sequence
of graph G consists of at least three number. Hence the equality in Theorem 2.2
cannot happen for any δ. But, if we put δ = w + 4, then the equality in Theorem
2.2 holds. So, G must be bidegreed. Now, we show that ∆ = ∆(G) = w + 8.
By contrary, we suppose that ∆ < w + 8. Therefore, the equality in Theorem 2.2
cannot hold for any δ. But, if we put δ = w + 4, then this equality holds . This is
a contradiction and so ∆ = w+ 8. Now, δ = w+ 4, since G is bidegreed and G has
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w + 9, ∆ = w + 8 and w(w + 8) + 9(w + 4) = w∆ + 9(w + 4) =
w+9∑
i=1

deg vi.

This completes the proof. �

In the following subsection, we prove that the cone of the generalized quadrangle
graph GQ(2, 1) is DS with respect to its adjacency spectra.

3.2. Connected graph cospectral with the multicone graph K15GQ(2, 1).

Lemma 3.2. Any graph cospectral with the multicone graph K1 5GQ(2, 1) is DS
with respect to its adjacency spectrum.

Proof. Let G be cospectral with multicone graph K1 5 GQ(2, 1). By Lemma 3.1,
it is easy to see that G has one vertex of degree 9, say j. Now, Proposition 2.2
implies that PG−j(y) = (y − µ3)3(y − µ4)3[α2

1jF1 + α2
2jF2 + α2

3jF3 + α2
4jF4], where

µ1 =
4 +
√

52

2
, µ2 =

4−
√

52

2
, µ3 = 1 and µ4 = −2.

F1 = (y − µ2)(y − µ3)(y − µ4),
F2 = (y − µ1)(y − µ3)(y − µ4),
F3 = (y − µ1)(y − µ2)(y − µ4),
F4 = (y − µ1)(y − µ2)(y − µ3).
Now, we have:
a+ b+ 4 = −(3µ3 + 3µ4),
a2 + b2 + 16 = 36− (3µ2

3 + 3µ2
4),

where a and b are the eigenvalues of graph G− j. If we solve the above equations,
then a = 1 and b = −2. Hence Spec(G − j) = Spec(GQ(2, 1)) and so G − j ∼=
GQ(2, 1).
This follows the result. �

Until now, we have shown the cone of generalized quadrangle graphK15GQ(2, 1)
is DS. The natural question is; what happens for multicone graph Kw5GQ(2, 1)?
we will respond to this question in the following theorem.

3.3. Connected graph cospectral with multicone graph Kw 5GQ(2, 1).

Theorem 3.1. Multicone graph Kw 5GQ(2, 1) are DS with respect to their adja-
cency spectrums.

Proof. We solve the problem by induction on w. If w = 1, by Lemma 3.3 there is
nothing to prove. Let the claim be true for w; that is, if Spec(G1) = Spec(Kw 5
GQ(2, 1)), then G1

∼= Kw 5 GQ(2, 1), where G1 is an arbitrary graph cospectral
with multicone graph Kw 5 GQ(2, 1). We show that the claim is true for w + 1;
that is, if Spec(G) = Spec(Kw+1 5 GQ(2, 1)), then G ∼= Kw+1 5 GQ(2, 1), where
G is an arbitrary graph cospectral with multicone graph Kw+1 5 GQ(2, 1). It is
clear that G has one vertex and 9 edges more than G1. Also, By Lemma 3.1 and
the spectrums of G and G1, we can conclude that G ∼= K1 5G1.
Now, induction hypothesis follows the result. �

In the following subsection, we prove that multicone graph Kw 5 GQ(2, 1) are
DS with respect to their Laplacian spectrum.
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3.4. Connected graph cospectral with multicone graph Kw5GQ(2, 1) with
respect to Laplacian spectrum.

Theorem 3.2. Multicone graph Kw5GQ(2, 1) are DS with respect to their Lapla-
cian spectrums.

Proof. We solve the problem by induction on w. If w = 1, there is nothing to
prove. Let the claim be true for w; that is, if Spec(L(G1)) = Spec(L(Kw 5
GQ(2, 1))) =

{
[w + 9]

w
, [w + 3]

4
, [w + 6]

21
, [0]

1
}

, then G1
∼= Kw 5 GQ(2, 1).

We show that the problem is true for w + 1; that is, we show that Spec(L(G)) =

Spec(L(Kw+15GQ(2, 1))) =
{

[w + 10]
w+1

, [w + 4]
4
, [w + 7]

21
, [0]

1
}

follows that

G ∼= Kw 5GQ(2, 1), where G is a graph. Theorem 2.4 implies that G1 and G are
the join of two graph. On the other hand, Spec(L(K1 5 G1)) = Spec(L(G)) =
spec(L(Kw+1 5 GQ(2, 1))) and also G has one vertex and w + 9 edges more than
G1. Therefore, we must have G ∼= K1 5 G1. Because, G is the join of two graph
and also according to the spectrum of G, must K1 be joined to G1 and this is only
possibility.

�

Figure 1. Generalized quadrangle GQ(2, 2)

Hereafter, we characterize another new classes of multicone graph that are DS
with respect to their spectra. Our arguments are the similar of the above subsection.
So, we will avoid bringing description before each subsection.
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4. Connected graph cospectral with multicone graph Kw 5GQ(2, 2)

Proposition 4.1. Let G be a graph cospectral with multicone graph Kw5GQ(2, 2).
Then

Spec(G) =

[−1]
w−1

, [−3]
5
, [1]

9
,

[
ϑ+
√
ϑ2 + 4Υ

2

]1

,

[
ϑ−
√
ϑ2 + 4Υ

2

]1
, where

ϑ = 5 + w and Υ = 9w + 6.

Proof. It is well-known that Spec(GQ(2, 2)) =
{

[−3]
5
, [1]

9
, [6]

1
}

. Now, by Theo-

rem 2.1 the proof is clear. �

In the following lemma, we show that any graph cospectral with multicone graph
Kw 5GQ(2, 2) must be bidegreed.

Lemma 4.1. Let G be cospectral with multicone graph Kw5GQ(2, 2). Then G is
bidegreed in which any vertex of G is of degree w + 6 or w + 14.

Proof. It is obvious that G cannot be regular; since regularity of a graph can be
determined by its spectrum. By contrary, we suppose that the sequence of degrees of
vertices of graph G consists of at least three number. Hence the equality in Theorem
2.2 cannot happen for any δ. But, if we put δ = w+6, then the equality in Theorem
2.2 holds. So, G must be bidegreed. Now, we show that ∆ = ∆(G) = w + 14. By
contrary, we suppose that ∆ < w + 14. Therefore, the equality in Theorem 2.2
cannot hold for any δ. But, if we put δ = w+ 6, then this equality holds. This is a
contradiction and so ∆ = w + 14. Now, δ = w + 6, since G is bidegreed and G has

w+15 vertices, ∆ = w+14 and w(w+14)+15(w+6) = w∆+15(w+6) =
w+15∑
i=1

deg vi.

Therefore, the assertion holds. �

4.1. Connected graph cospectral with multicone graph K1 5GQ(2, 2).

Lemma 4.2. Any graph cospectral with a multicone graph K1 5 GQ(2, 2) is iso-
morphic to K1 5GQ(2, 2).

Proof. Let G be cospectral with multicone graph K1 5 GQ(2, 2). By Lemma 4.1,
it is easy to see that G has one vertex of degree 15, say j. Now, Proposition 2.2
implies that PG−j(y) = (y−µ3)4(y−µ4)8[α2

1jN1 +α2
2jN2 +α2

3jN3 +α2
4jN4], where

µ1 =
6 +
√

96

2
, µ2 =

6−
√

96

2
, µ3 = −3 and µ4 = 1.

N1 = (y − µ2)(y − µ3)(y − µ4),
N2 = (y − µ1)(y − µ3)(y − µ4),
N3 = (y − µ1)(y − µ2)(y − µ4),
N4 = (y − µ1)(y − µ2)(y − µ3).

Now, we have:

η + ξ + 6 = −(3µ3 + 3µ4),
η2 + ξ2 + 36 = 90− (3µ2

3 + 3µ2
4),

where η and ξ are the eigenvalues of graph G− j. If we solve above equation, then
η = 1 and ξ = −3. Hence Spec(G− j) = Spec(GQ(2, 2)) and so G− j ∼= GQ(2, 2).
Therefore, the assertion holds. �
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Figure 2. Generalized quadrangle GQ(2, 1)

4.2. Connected graph cospectral with a multicone graph Kw 5GQ(2, 2).

Theorem 4.1. Multicone graph Kw 5GQ(2, 2) are DS with respect to their adja-
cency spectra.

Proof. We solve the problem by induction on w. If w = 1, there is nothing to
prove. Let the claim be true for w; that is, if Spec(G1) = Spec(Kw 5 GQ(2, 2)),
then G1

∼= Kw5GQ(2, 2), where G1 is a graph. We show that the claim is true for
w + 1; that is, if Spec(G) = Spec(Kw+1 5GQ(2, 2)), then G ∼= Kw+1 5GQ(2, 2),
where G is a graph. By Lemma 4.2, G has one vertex, 15 edges and 280 triangle
more than G1. Hence G ∼= K1 5G1.
This follows the result. �

4.3. Multicone graph Kw5GQ(2, 2) are DS with respect to their Laplacian
spectrum.

Theorem 4.2. Multicone graph Kw5GQ(2, 2) are DS with respect to their Lapla-
cian spectrums.

Proof. We solve the problem by induction on w. If w = 1, there is nothing to prove.
Let the claim be true for w; that is, Spec(L(G1)) = Spec(L(Kw 5 GQ(2, 2))) ={

[w + 15]
w
, [w + 5]

9
, [w + 9]

5
, [0]

1
}

follows thatG1
∼= Kw5GQ(2, 2). We show that the claim is true for w+1; that is,

we show that Spec(L(G)) = Spec(L(Kw+15GQ(2, 2))) =
{

[w + 16]
w+1

, [w + 6]
9
, [w + 10]

5
, [0]

1
}

follows that G ∼= Kw+1 5GQ(2, 2), where G is a graph. Theorem 2.4 implies that
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G1 and G are the join of two graph. On the other hand, Spec(L(K1 5 G1)) =
Spec(L(G)) = spec(L(Kw+1 5 GQ(2, 2))) and also G has one vertex and w + 15
edges more than G1. Therefore, we must have G ∼= K1 5 G1. Because, G is the
join of two graph and also according to spectrum of G, must K1 be joined to G1

and this is only available state. �

5. Conclusion remarks and open problems

In this paper, we have shown multicone graph Kw5GQ(2, 1) and Kw5GQ(2, 2)
are DS with respect to their adjacency spectra as well as their Laplacian spectra.
Now, in the following, we pose these conjectures.

Conjecture 1. Graphs Kw 5GQ(2, 1) are DS with respect to their adjacency spec-
tra.

Conjecture 2. Multicone graphs Kw5GQ(2, 1) are DS with respect to their sign-
less Laplacian spectra.

Conjecture 3. Graphs Kw 5GQ(2, 2) are DS with respect to their adjacency spec-
tra.

Conjecture 4. Multicone graphs Kw5GQ(2, 2) are DS with respect to their sign-
less Laplacian spectra.
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ON THE UNIQUENESS OF PRODUCT OF DIFFERENCE

POLYNOMIALS OF MEROMORPHIC FUNCTIONS

RENUKADEVI S. DYAVANAL AND ASHWINI M. HATTIKAL

Abstract. In this paper, we study the uniqueness of product of difference

polynomials fn[
∏d
j=1 f(z + cj)

sj ](k) and gn[
∏d
j=1 g(z + cj)

sj ](k), which are

sharing a fixed point z and f , g share ∞ IM. The result extends the previous
results of Cao and Zhang[1] into product of difference polynomials.

1. Introduction, Definitions and Results

Let C denote the complex plane and f be a non-constant meromorphic function
in C. We shall use the standard notations in the Nevanlinna’s value distribution
theory of meromorphic functions such as T (r, f), N(r, f), N(r, f) and m(r, f), as
explained in Yang and Yi[14], L.Yang[12] and Hayman[8]. The notation S(r, f) is
defined to be any quantity satisfying S(r, f) = o(T (r, f)), as r → ∞ possibly out-
side a set r of finite linear measure. A meromorphic function a(z) is called a small
function with respect to f(z), provided that T (r, a) = S(r, f). A point z0 ∈ C is
called as a fixed point of f(z) if f(z0) = z0.

The following definitions are useful in proving the results.

Definition 1.1. We denote ρ(f) for order of f(z).

ρ(f) = lim sup
r→∞

log T (r, f)

log r

And ρ2(f) is to denote hyper order of f(z), defined by

ρ2(f) = lim sup
r→∞

log log T (r, f)

log r
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Definition 1.2. Let a be a finite complex number and k be a positive integer.
We denote by Nk)(r, 1/(f − a)) the counting function for the zeros of f(z) − a in

|z| ≤ r with multiplicity ≤ k and by Nk)(r, 1/(f − a)) the corresponding one for
which multiplicity is not counted. Let N(k(r, 1/(f − a)) be the counting function

for the zeros of f(z) − a in |z| ≤ r with multiplicity ≥ k and by N (k(r, 1/(f − a))
the corresponding one for which multiplicity is not counted. Then we have

Nk(r, 1/(f − a)) = N (1(r, 1/(f − a)) +N (2(r, 1/(f − a)) + . . .+N (k(r, 1/(f − a))

Definition 1.3. Let f(z) and g(z) be two meromorphic functions in the complex
plane C. If f(z)−a and g(z)−a assume the same zeros with the same multiplicities,
then we say that f(z) and g(z) share the value ′a′ CM, where ′a′ is a complex
number.

In 2010, J.F.Xu, F.Lu and H.X.Yi obtained the following result on meromorphic
function sharing a fixed point.

Theorem A. ([11]) Let f(z) and g(z) be two non-constant meromorphic functions
and let n, k be two positive integers with n > 3k + 10. If (fn(z))(k) and (gn(z))(k)

share z CM, f and g share ∞ IM, then either f(z) = c1e
cz2 , g(z) = c2e

−cz2 ,
where c1, c2 and c are three constants satisfying 4n2(c1c2)nc2 = −1, or f ≡ tg for
a constant t such that tn = 1.

Further, Fang and Qiu investigated uniqueness for the same functions as in the
theorem A, when k = 1.

Theorem B. ([7]) Let f(z) and g(z) be two non-constant meromorphic functions
and let n ≥ 11 be a positive integer. If fn(z)f ′(z) and gn(z)g′(z) share z CM,

then either f(z) = c1e
cz2 , g(z) = c2e

−cz2 , where c1, c2 and c are three constants
satisfying 4(c1c2)n+1c2 = −1, or f(z) ≡ tg(z) for a constant t such that tn+1 = 1.

In 2012, Cao and Zhang replaced f ′ with f (k) and obtained the following theorem.

Theorem C. ([1]) Let f(z) and g(z) be two transcendental meromorphic functions,
whose zeros are of multiplicities atleast k, where k is a positive integer. Let n >
max{2k − 1, 4 + 4/k + 4} be a positive integer. If fn(z)f (k)(z) and gn(z)g(k)(z)
share z CM, and f and g share ∞ IM, then one of the following two conclusions
holds.
(1) fn(z)f (k)(z) = gn(z)g(k)(z)

(2) f(z) = c1e
cz2 , g(z) = c2e

−cz2 , where c1, c2 and c are constants such that
4(c1c2)n+1c2 = −1.

Recently, X.B.Zhang reduced the lower bond of n and relax the condition on mul-
tiplicity of zeros in theorem C and proved the below result.

Theorem D. ([15]) Let f(z) and g(z) be two transcendental meromorphic functions
and n, k two positive integers with n > k+6. If fn(z)f (k)(z) and gn(z)g(k)(z) share
z CM, and f and g share ∞ IM, then one of the following two conclusions holds.
(1) fn(z)f (k)(z) = gn(z)g(k)(z);

(2) f(z) = c1e
cz2 , g(z) = c2e

−cz2 , where c1, c2 and c are constants such that
4(c1c2)n+1c2 = −1.

We define a difference product of meromorphic function f(z) as follows.
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(1.1) F (z) = f(z)n

 d∏
j=1

f(z + cj)
sj

(k)

(1.2) F1(z) = f(z)n
d∏
j=1

f(z + cj)
sj

Where cj ∈ C \ {0}(j = 1, 2, . . . , d) are distinct constants. n, k, d, sj(j =

1, 2, . . . , d) are positive integers and λ =
∑d
j=1 sj .

For j = 1, 2, 3 . . . d, λ1 =
∑d
j=1 αjsj and λ2 =

∑d
j=1 βjsj , where f(z + cj) and

g(z + cj) have zeros with maximum orders αj and βj respectively.

In this article, we prove the theorem on product of difference polynomials sharing
a fixed point as follows.

Theorem 1.1. Let f and g be two transcendental meromorphic functions of hy-
per order ρ2(f) < 1 and ρ2(g) < 1. Let k, n, d, λ be positive integers and n >
max{2d(k+ 2) +λ(k+ 3) + 7, λ1, λ2}. If F (z) and G(z) share z CM and f , g share
∞ IM, then one of the following two conclusions holds.

(1) F (z) = G(z)

(2)
∏d
j=1 f(z+cj)sj = C1e

Cz2 ,
∏d
j=1 g(z+cj)sj = C2e

−Cz2 , where C1, C2 and

C are constants such that 4(C1C2)n+1C2 = −1.

2. Lemmas

We need following Lemmas to prove our results.

Lemma 2.1. ([13]) Let f and g be two non-constant meromorphic functions, ′a′

be a finite non-zero constant. If f and g share ′a′ CM and ∞ IM, then one of the
following cases holds.

(1) T (r, f) ≤ N2

(
r, 1f

)
+N2

(
r, 1g

)
+ 3N(r, f) + S(r, f) + S(r, g).

The same inequality holding for T (r, g);
(2) fg ≡ a2;
(3) f ≡ g.

Lemma 2.2. ([10]) Let f(z) be a transcendental meromorphic functions of hyper
order ρ2(f) < 1, and let c be a non-zero complex constant. Then we have

T (r, f(z + c)) = T (r, f(z)) + S(r, f(z)),

N(r, f(z + c)) = N(r, f(z)) + S(r, f(z)),

N

(
r,

1

f(z + c)

)
= N

(
r,

1

f(z)

)
+ S(r, f(z)).

Lemma 2.3. ([14]) Let f be a non-constant meromorphic function, let P (f) =
a0 + a1f + a2f

2 + . . . + anf
n, where a0, a1, a2, . . . , an are constants and an 6= 0.

Then

T (r, P (f)) = nT (r, f) + S(r, f).
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Lemma 2.4. ([14]) Let f be a non-constant meromorphic function and p, k be
positive integers. Then

(1) T
(
r, f (k)

)
≤ T (r, f) + kN (r, f) + S(r, f),

(2) Np

(
r,

1

f (k)

)
≤ T (r, f (k))− T (r, f) +Np+k

(
r,

1

f

)
+ S(r, f),

(3) Np

(
r,

1

f (k)

)
≤ Np+k

(
r,

1

f

)
+ kN(r, f) + S(r, f),

(4) N

(
r,

1

f (k)

)
≤ N

(
r,

1

f

)
+ kN(r, f) + S(r, f).

Lemma 2.5. ([8]) Suppose that f is a non-constant meromorphic function, k ≥ 2
is an integer. If

N(r, f) +N

(
r,

1

f

)
+N

(
r,

1

f (k)

)
= S

(
r,
f ′

f

)
,

then f(z) = eaz+b, where a 6= 0, b are constants.

Lemma 2.6. ([14]) Let f be a transcendental meromorphic function of finite order.
Then

m

(
r,
f ′

f

)
= S(r, f)

Lemma 2.7. Let f(z) be a transcendental meromorphic function of hyper order
ρ2(f) < 1 and F1(z) be stated as in (1.2). Then

(n− λ)T (r, f) + S(r, f) ≤ T (r, F1(z)) ≤ (n+ λ)T (r, f) + S(r, f)

Proof : Since f is a meromorphic function with ρ2(f) < 1. From Lemma 2.2 and
Lemma 2.3, we have

T (r, F1(z)) ≤ T (r, f(z)n) + T

r, d∏
j=1

f(z + cj)
sj

+ S(r, f)

≤ (n+ λ)T (r, f) + S(r, f)

On the other hand, from Lemma 2.2 and Lemma 2.3, we have

(n+ λ)T (r, f) = T (r, fnfλ) + S(r, f)

= m(r, fnfλ) +N(r, fnfλ) + S(r, f)

≤ m

(
r,

F1(z)fλ∏d
j=1 f(z + cj)sj

)
+N

(
r,

F1(z)fλ∏d
j=1 f(z + cj)sj

)

+S(r, f)

≤ m(r, F1(z)) +N(r, F1(z)) + T

(
r,

fλ∏d
j=1 f(z + cj)sj

)
+S(r, f)

≤ T (r, F1(z)) + 2λT (r, f) + S(r, f)

(n− λ)T (r, f) ≤ T (r, F1(z)) + S(r, f)

⇒ (n− λ)T (r, f) + S(r, f) ≤ T (r, F1(z))
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Hence we get Lemma 2.7.

3. Proof of theorem

Proof of the theorem 1.1

(3.1) Let, F ∗ =
F

z
and G∗ =

G

z

From the hypothesis of the theorem 1.1, we have F and G share z CM and f, g
share ∞ IM. It follows that F ∗ and G∗ share 1 CM and ∞ IM.

By Lemma 2.1, we arrive at 3 cases as follows.

Case 1. Suppose that case (1) of Lemma 2.1 holds.

(3.2) T (r, F ∗) ≤ N2

(
r,

1

F ∗

)
+N2

(
r,

1

G∗

)
+ 3N(r, F ∗) + S(r, F ∗) + S(r,G∗)

We deduce from (3.2) and obtained the following

(3.3) T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+ 3N(r, F ) + S(r, F ) + S(r,G)

From Lemma 2.2 and Lemma 2.7, we have S(r, F ) = S(r, f) and S(r,G) = S(r, g).
From (3.3), we have

T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+ 3N(r, F ) + S(r, f) + S(r, g)

≤ N2

(
r,

1

fn

)
+N2

r, 1(∏d
j=1 f(z + cj)sj

)(k)
+N2

(
r,

1

gn

)

+N2

r, 1(∏d
j=1 g(z + cj)sj

)(k)
+ 3N(r, fn) + 3N

r,
 d∏
j=1

f(z + cj)
sj

(k)


(3.4) +S(r, f) + S(r, g)
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Using (2) of Lemma 2.4 in (3.4), we have

T (r, F ) ≤ 2N (2

(
r,

1

fn

)
+ T

r,
 d∏
j=1

f(z + cj)
sj

(k)
− T

r, d∏
j=1

f(z + cj)
sj



+Nk+2

(
r,

1∏d
j=1 f(z + cj)sj

)
+ 2N (2

(
r,

1

gn

)
+ T

r,
 d∏
j=1

g(z + cj)
sj

(k)


−T

r, d∏
j=1

g(z + cj)
sj

+Nk+2

(
r,

1∏d
j=1 g(z + cj)sj

)
+ 3N(r, f)

+3N

r, d∏
j=1

f(z + cj)
sj

+ S(r, f) + S(r, g)

T (r, F ) ≤ 2T (r, f) + T

r,
 d∏
j=1

f(z + cj)
sj

(k)
+ T (r, fn)− T (r, fn)

−T

r, d∏
j=1

f(z + cj)
sj

+ (k + 2) d T (r, f) + 2T (r, g)

+T

r, d∏
j=1

g(z + cj)
sj

+ kN

r, d∏
j=1

g(z + cj)
sj


−T

r, d∏
j=1

g(z + cj)
sj

+ (k + 2) d T (r, g)

+3T (r, f) + 3λT (r, f) + S(r, f) + S(r, g)

T (r, F ) ≤ 2T (r, f) + T (r, F )− T (r, F1) + (k + 2) d T (r, f) + 2T (r, g) + kλT (r, g)

+(k + 2) d T (r, g) + (3 + 3λ)T (r, f) + S(r, f) + S(r, g)

T (r, F1) ≤ 2[T (r, f) + T (r, g)] + (k + 2) d [T (r, f) + T (r, g)] + kλT (r, g)

+(3 + 3λ)T (r, f) + S(r, f) + S(r, g)

From Lemma 2.7, we have
(n−λ)T (r, f) ≤ ((k+2)d+2)[T (r, f)+T (r, g)]+kλT (r, g)+(3+3λ)T (r, f)+S(r, f)

(3.5) +S(r, g)

Similarly for T (r, g), we obtain the following

(n−λ)T (r, g) ≤ (2+(k+2)d)[T (r, f)+T (r, g)]+kλT (r, f)+(3+3λ)T (r, g)+S(r, f)

(3.6) +S(r, g)
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From (3.5) and (3.6), we have

(n−λ)[T (r, f)+T (r, g)] ≤ 2(2+(k+2)d))[T (r, f)+T (r, g)]+(kλ+3+3λ)[T (r, f)+T (r, g)]

+S(r, f) + S(r, g)

Which is contradiction to n > 2d(k + 2) + λ(k + 3) + 7.

Case 2. Suppose that FG ≡ z2 holds.

(3.7) i.e fn

 d∏
j=1

f(z + cj)
sj

(k)

gn

 d∏
j=1

g(z + cj)
sj

(k)

≡ z2

Now, (3.7) can be written as

fngn =
z2[∏d

j=1 f(z + cj)sj
](k) [∏d

j=1 g(z + cj)sj
](k)

By using Lemma 2.2, Lemma 2.3 and (4) of Lemma 2.4, we derive

n [N(r, f) +N(r, g)] ≤ λ
[
N

(
r,

1

f

)
+N

(
r,

1

g

)]
(3.8)

+kd[N(r, f) +N(r, g)] + S(r, f) + S(r, g)

From (3.7), we can write

1

fngn
=

[∏d
j=1 f(z + cj)

sj
](k) [∏d

j=1 g(z + cj)
sj
](k)

z2

Similarly, as (3.8), we obtain

(3.9) n

[
N

(
r,

1

f

)
+N

(
r,

1

g

)]
≤ (λ+ kd) [N(r, f) +N(r, g)] + S(r, f) + S(r, g)

From (3.8) and (3.9), deduce

(n−(λ+2kd))[N(r, f)+N(r, g)]+(n−λ)

[
N

(
r,

1

f

)
+N

(
r,

1

g

)]
≤ S(r, f)+S(r, g)

Since n > 2d(k + 2) + λ(k + 3) + 7, we have

N(r, f) +N(r, g) +N

(
r,

1

f

)
+N

(
r,

1

g

)
< S(r, f) + S(r, g)

Hence, we conclude that f and g have finitely many zeros and poles.

Let z0 be a pole of f of multiplicity p, then z0 is pole of fn of multiplicity np, since
f and g share ∞ IM, then z0 is pole of g of multiplicity q.
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If z0 also zero of
[∏d

j=1 f(z + cj)
sj
](k)

and
[∏d

j=1 g(z + cj)
sj
](k)

then we have from

(3.7) that

n(p+ q) ≤
d∑
j=1

αjsj +

d∑
j=1

βjsj − 2k

⇒ 2n < n(p+q) ≤
d∑
j=1

αjsj+

d∑
j=1

βjsj−2k = λ1+λ2−2k < λ1+λ2 ≤ 2 max{λ1, λ2}

⇒ n < max{λ1, λ2}, which is contradiction to n > max{2d(k + 2) + λ(k + 3) +
7, λ1, λ2}. Therefore f has no poles.

Similarly, we can get contradiction for other two cases namely, if z0 is zero of[∏d
j=1 f(z + cj)

sj
](k)

, but not zero of
[∏d

j=1 g(z + cj)
sj
](k)

and other way. There-

fore f has no poles. Similarly, we get that g also has no poles. By this we

conclude that f and g are entire functions and hence
[∏d

j=1 f(z + cj)
sj
](k)

and[∏d
j=1 g(z + cj)

sj
](k)

are entire functions.

Then from (3.7), we deduce that f and g have no zeros.
Therefore,

f = eα(z), g = eβ(z) and

d∏
j=1

f(z + cj)
sj =

d∏
j=1

(eα(z+cj))sj ,

d∏
j=1

g(z + cj)
sj =

d∏
j=1

(eβ(z+cj))sj
(3.10)

where α, β are entire functions with ρ2(f) < 1. Substitute f and g into (3.7), we
get

(3.11) enα(z)

 d∏
j=1

(eα(z+cj))sj

(k)

enβ(z)

 d∏
j=1

(eβ(z+cj))sj

(k)

≡ z2

If k = 1, then

(3.12) enα(z)

 d∏
j=1

(eα(z+cj))sj

′ enβ(z)
 d∏
j=1

(eβ(z+cj))sj

′ ≡ z2

(3.13) ⇒ en(α+β)e
∑d

j=1(α(z+cj)+β(z+cj))sj

d∑
j=1

(α′(z + cj))sj

d∑
j=1

(β′(z + cj))sj ≡ z2

Since α(z) and β(z) are non-constant entire functions, then we have

T

r,
(∏d

j=1 f(z + cj)
sj
)′

∏d
j=1 f(z + cj)sj

 = T

r,
(∏d

j=1 e
α(z+cj)sj

)′
∏d
j=1 e

α(z+cj)sj


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(3.14)

= T

(
r,

∑d
j=1 α

′(z + cj)sj
∏d
j=1 e

α(z+cj)sj∏d
j=1 e

α(z+cj)sj

)
= T

r, d∑
j=1

α′(z + cj)sj



Let nT (r, f) = T (r, fn) = T

(
r,

F

(
∏d
j=1 f(z + cj)sj )(k)

)

≤ T (r, F ) + T

r,
 d∏
j=1

f(z + cj)
sj

(k)
+ S(r, f)

≤ T (r, F ) + T

r, d∏
j=1

f(z + cj)
sj

+ kN

r, d∏
j=1

f(z + cj)
sj


+S(r, f)

nT (r, f) ≤ T (r, F ) + (λ+ kd)T (r, f) + S(r, f)

(3.15) (n− λ− kd)T (r, f) ≤ T (r, F ) + S(r, f)

We obtain from (3.15) that

(3.16) T (r, f) = O(T (r, F ))

as r ∈ E and r →∞, where E ⊂ (0,+∞) is some subset of finite linear measure.

On the other hand, we have

T (r, F ) = T

r, fn
 d∏
j=1

f(z + cj)
sj

(k)
 ≤ nT (r, f) + λT (r, f)

+kN

r, d∏
j=1

f(z + cj)
sj

+ S(r, f)

≤ (n+ kd+ λ)T (r, f) + S(r, f)

(3.17) ⇒ T (r, F ) = O(T (r, f))

as r ∈ E and r →∞, where E ⊂ (0,+∞) is some subset of finite linear measure.

Thus from (3.16), (3.17) and the standard reasoning of removing exceptional set
we deduce ρ(f) = ρ(F ). Similarly, we have ρ(g) = ρ(G). It follows from (3.7) that
ρ(F ) = ρ(G). Hence we get ρ(f) = ρ(g).

We deduce that either both α and β are polynomials or both α and β are transcen-
dental entire functions. Moreover, we have



ON THE UNIQUENESS OF PRODUCT OF DIFFERENCE POLYNOMIALS OF ... 51

(3.18) N

(
r,

1

(
∏d
j=1 f(z + cj)sj )(k)

)
≤ N

(
r,

1

z2

)
= O(log r)

From (3.18) and (3.10), we have

N

r, d∏
j=1

f(z + cj)
sj

+N

(
r,

1∏d
j=1 f(z + cj)sj

)

+N

(
r,

1

(
∏d
j=1 f(z + cj)sj )(k)

)
= O(log r)

If k ≥ 2, then it follows from (3.14),(3.18) and Lemma 2.5 that
∑d
j=1 α

′(z + cj)sj
is a polynomial and therefore we have α(z) is a non- constant polynomial.

Similarly, we can deduce that β(z) is also a non-constant polynomial. From this,
we deduce from (3.10) that d∏
j=1

f(z + cj)
sj

(k)

= e
∑d

j=1 α(z+cj)sj

Pk−1(α′(z + cj)) +

 d∑
j=1

α′(z + cj)sj

k


 d∏
j=1

g(z + cj)
sj

(k)

= e
∑d

j=1 β(z+cj)sj

Qk−1(α′(z + cj)) +

 d∑
j=1

β′(z + cj)sj

k


Where Pk−1 and Qk−1 are difference-differential polynomials in α′(z+ cj) with de-
gree at most k − 1.

Then (3.11) becomes

en(α+β)e
∑d

j=1(α(z+cj)+β(z+cj))sj

 d∑
j=1

α(k)(z + cj)sj +

 d∑
j=1

α′(z + cj)sj

k


(3.19)

 d∑
j=1

β(k)(z + cj)sj +

 d∑
j=1

β′(z + cj)sj

k
 = z2

We deduce from (3.19) that α(z) + β(z) ≡ C for a constant C.
If k = 1, from (3.13), we have

(3.20) en(α+β)+
∑d

j=1(α(z+cj)+β(z+cj))sj

 d∑
j=1

(α′(z + cj))sj

d∑
j=1

(β′(z + cj))sj

 ≡ z2
Next, we let α+ β = γ and suppose that α, β both are transcendental entire func-
tions.

If γ is a constant, then α′ + β′ = 0 and
∑d
j=1 α

′(z + cj) = −
∑d
j=1 β

′(z + cj).
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From (3.20) we have

en(α+β)+
∑d

j=1(α(z+cj)+β(z+cj))sj

−
 d∑
j=1

α′(z + cj)sj

2
 = z2

(3.21) enγ+dγ

−
 d∑
j=1

α′(z + cj)sj

2
 = z2

Which implies that α′ is a non-constant polynomial of degree 1. This together
with α′+ β′ = 0 which implies that β′ is also non-constant polynomial of degree 1.
Which is contradiction to α, β both are transcendental entire functions.

If γ is not a constant, then we have

α+ β = γ and
∑d
j=1 α(z + cj)sj +

∑d
j=1 β(z + cj)sj =

∑d
j=1 γ(z + cj)sj

From (3.20) we have

(3.22)

 d∑
j=1

α′(z + cj)sj

 d∑
j=1

γ′(z + cj)sj −
d∑
j=1

α′(z + cj)sj

 enγ+∑d
j=1 γ(z+cj)sj = z2

Since T

r, d∑
j=1

γ′(z + cj)sj

 = m

r, d∑
j=1

γ′(z + cj)sj

+N

r, d∑
j=1

γ′(z + cj)sj


(3.23) ≤ m

(
r,

(e
∑d

j=1 γ(z+cj)sj )′

e
∑d

j=1 γ(z+cj)sj

)
+O(1) = S

(
r, e

∑d
j=1 γ(z+cj)sj

)
And also we have

T

r, nγ′ + d∑
j=1

γ′(z + cj)sj

 = m

r, nγ′ + d∑
j=1

γ′(z + cj)sj

+N

r, nγ′ + d∑
j=1

γ′(z + cj)sj


(3.24) ≤ m

(
r,

(enγ+
∑d

j=1 γ(z+cj)sj )′

enγ+
∑d

j=1 γ(z+cj)sj

)
+O(1) = S

(
r, enγ+

∑d
j=1 γ(z+cj)sj

)
From (3.22), we have

T
(
r, enγ+

∑d
j=1 γ(z+cj)sj

)
≤ T

r, z2∑d
j=1 α

′(z + cj)sj

[∑d
j=1 γ

′(z + cj)sj −
∑d
j=1 α

′(z + cj)sj

]


+O(1)

≤ T (r, z2)+T

r, d∑
j=1

α′(z + cj)sj

 d∑
j=1

γ′(z + cj)sj −
d∑
j=1

α′(z + cj)sj


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+O(1)

≤ 2 log r + 2T

r, d∑
j=1

α′(z + cj)sj

+O(1)

(3.25) ⇒ T
(
r, enγ+

∑d
j=1 γ(z+cj)sj

)
≤ O

T
r, d∑

j=1

α′(z + cj)sj


Similarly, we have

(3.26) T

r, d∑
j=1

α′(z + cj)sj

 ≤ O (T (r, enγ+∑d
j=1 γ(z+cj)sj

))
Thus, from (3.23)-(3.26) we have

T
(
r, nγ′ +

∑d
j=1 γ

′(z + cj)sj

)
= S

(
r, enγ+

∑d
j=1 γ(z+cj)sj

)
= S

(
r,
∑d
j=1 α

′(z + cj)sj

)
By the second fundamental theorem and (3.22), we have

T

r, d∑
j=1

α′(z + cj)sj

 ≤ N (r, 1∑d
j=1 α

′(z + cj)sj

)

+N

(
r,

1∑d
j=1 α

′(z + cj)sj −
∑d
j=1 γ

′(z + cj)sj

)
+ S

r, d∑
j=1

α′(z + cj)sj


≤ O(log r) + S

r, d∑
j=1

α′(z + cj)sj


This implies

∑d
j=1 α

′(z+cj)sj is a polynomial, which leads to α′(z) is a polynomial.

Which contradicts that α(z) is a trascendental entire function.
Thus α and β are both polynomials and α(z) + β(z) ≡ C for a constant C.
Hence, from (3.19) and using α+ β = C we get

(3.27) (−1)k
(

d∑
j=1

α′(z + cj)sj

)2k

= z2 + P2k−1(α
′(z + cj)sj) for j = 1, 2, . . . , d.

Where P2k−1 is difference-differential polynomial in α′(z + cj)sj of degree at
most 2k − 1. From (3.27), we have

(3.28) 2kT

r, d∑
j=1

α′(z + cj)sj

 = 2 log r + S(r, α′(z + cj)sj)

From (3.28), we can see that
∑d
j=1 α

′(z + cj)sj is a non-constant polynomial of
degree 1 and k = 1.
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Which implies,
d∑
j=1

α′(z + cj)sj = zl1

Since α′ + β′ = 0, we get
∑d
j=1 β

′(z + cj)sj = −
∑d
j=1 α

′(z + cj)sj . Which implies∑d
j=1 β

′(z + cj)sj is also a non-constant polynomial of degree 1. Hence we have

d∑
j=1

β′(z + cj)sj = zl2

Hence, we get
d∏
j=1

f(z + cj)sj = C1e
Cz2

Similarly, we have
d∏
j=1

g(z + cj)sj = C2e
−Cz2

where C1, C2 and C are constants such that 4(C1C2)n+1C2 = −1.

This proves the conclusion (2) of theorem 1.1.

Case 3. If F ≡ G

i.e fn
[∏d

j=1 f(z + cj)
sj
](k)
≡ gn

[∏d
j=1 g(z + cj)

sj
](k)

This proves the conclusion (1) of theorem 1.1.
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ON SOME NEW DIFFERENCE SEQUENCE SPACES DERIVED

BY USING RIESZ MEAN AND A MUSIELAK-ORLICZ

FUNCTION

KULDIP RAJ AND RENU ANAND

Abstract. In this paper we introduce new difference sequence spaces rq(M,
∆m

n , u, p) by using Riesz mean and Musielak-Orlicz function. We also make an

effort to study some topological properties and compute α−, β− and γ− duals

of these spaces. Finally, we study matrix transformations on newly formed
spaces.

1. Introduction and Preliminaries

Let w be the vector space of all real or complex sequences. By l∞, c and c0;
we denote the classes of all bounded, convergent and null sequences; respectively.
Also, we write bs, cs and lp to denote the spaces of all bounded, convergent series
and p-absolutely summable sequences, respectively, where 1 ≤ p <∞. We use the
convention that any term with a negative subscript is equal to zero.
Let X and Y be two sequence spaces and let A = (ank) be an infinite matrix
of real or complex numbers ank, where n, k ∈ N. Then, the matrix A defines the
A−transformation from X into Y, if for every sequence x = (xk) ∈ X the sequence

Ax = {(Ax)n}, the A-transform of x exists and is in Y ; where (Ax)n =
∑
k

ankxk.

By A ∈ (X : Y ) we mean the characterizations of matrices A : X → Y . A sequence
x is said to be A-summable to l if Ax converges to l which is called the A-limit of x.
For a sequence space X, the matrix domain XA of an infinite matrix A is defined
as

(1.1) XA = {x = (xk) ∈ w : Ax ∈ X}.

The theory of matrix transformations is a wide field in summability theory. It deals
with the characterizations of classes of matrix mappings between sequence spaces

2000 Mathematics Subject Classification. 46A45, 40C05, 46J05.
Key words and phrases. sequence space of non-absolute type, Musielak-Orlicz function, para-

norm space, matrix transformations.
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by giving necessary and sufficient conditions on the entries of the infinite matrices.
The classical summability theory deals with a generalization of convergence of se-
quences and series. One original idea was to assign a limit to divergent sequences
or series. Toeplitz [29] was the first to study summability methods as a class of
transformations of complex sequences by complex infinite matrices.
Let A = (ank) be any matrix. Then a sequence x is said to be summable to l, writ-

ten xk → l, if and only if Anx =
∑
k

ankxk exists for each n and Anx→ l (n→∞).

For example, if An = I, the unit matrix for all n, then xk → l(I) means precisely
that xk → l (k →∞), in the ordinary sense of convergence.
An infinite matrix A = (ank) is said to be regular ([11], page:165) if and only if the
following conditions (or Toplitz conditions) hold:

(i) lim
n→∞

∞∑
k=0

ank = 1,

(ii) lim
n→∞

ank = 0, (k = 0, 1, 2, ...)

(iii) sup
n∈N

∞∑
k=0

|ank| <∞.

Let (qk) be a sequence of strictly positive numbers and let us write, Qn =

n∑
k=0

qk

for n ∈ N. Then the matrix Rq = (rqnk) of the Riesz mean (R, qn) is given by

rqnk =


qk
Qn
, if 0 ≤ k ≤ n,

0 if k > n.

The Riesz mean (R, qn) is regular if and only if Qn →∞ as n→∞ (see, Petersen
[22], p.10).
The sequence space rq(u, p) is introduced by Sheikh and Ganie [26] as:

rq(u, p) =
{
x = (xk) ∈ w :

∑
k

∣∣∣ 1

Qk

k∑
j=0

ujqjxj

∣∣∣pk <∞},
where 0 ≤ pk ≤ D <∞.
Let p = (pk) be a bounded sequence of strictly positive real numbers with sup

k
pk =

D and H = max{1, D}. Then, the linear spaces l(p) and l∞(p) were defined by
Maddox [13] (see also, [27],[30]) as follows:

l(p) = {x = (xk) :
∑
k

|xk|pk <∞}

and
l∞(p) = {x = (xk) : sup

k
|xk|pk <∞}

which are complete spaces paranormed by

g1(x) =
[∑

k

|xk|pk
] 1

H

and g2(x) = sup
k
|xk|

pk
H

if and only if inf pk > 0 for all k.
Throughout the paper we shall assume that pk

−1 + {p′

k}−1 = 1 provided 1 <
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inf pk ≤ D <∞ and we denote the collection of all finite subsets of N by F where
N = {0, 1, 2, ...}.

An Orlicz function M is a function, which is continuous, non-decreasing and convex
with M(0) = 0, M(x) > 0 for x > 0 and M(x) −→∞ as x −→∞.
Lindenstrauss and Tzafriri [9] used the idea of Orlicz function to define the follow-
ing sequence space. Let w be the space of all real or complex sequences x = (xk),
then

`M =
{
x ∈ w :

∞∑
k=1

M
( |xk|
ρ

)
<∞, for some ρ > 0

}
which is called as an Orlicz sequence space. The space `M is a Banach space with
the norm

||x|| = inf
{
ρ > 0 :

∞∑
k=1

M
( |xk|
ρ

)
≤ 1
}
.

It is shown in [9] that every Orlicz sequence space `M contains a subspace isomorphic
to `p(p ≥ 1). The ∆2−condition is equivalent to M(Lx) ≤ kLM(x) for all values
of x ≥ 0, k > 0 and for L > 1.
A sequenceM = (Mk) of Orlicz functions is called a Musielak-Orlicz function (see
[14], [19]). A sequence N = (Nk) is defined by

Nk(v) = sup{|v|u−Mk(u) : u ≥ 0}, k = 1, 2, · · ·

is called the complementary function of a Musielak-Orlicz functionM. For a given
Musielak-Orlicz function M, the Musielak-Orlicz sequence space tM and its sub-
space hM are defined as follows

tM =
{
x ∈ w : IM(cx) <∞ for some c > 0

}
,

hM =
{
x ∈ w : IM(cx) <∞ for all c > 0

}
,

where IM is a convex modular defined by

IM(x) =

∞∑
k=1

Mk(xk)

and x = (xk) ∈ tM.
We consider tM equipped with the Luxemburg norm

||x|| = inf
{
k > 0 : IM

(x
k

)
≤ 1
}

or equipped with the Orlicz norm

||x||0 = inf
{1

k

(
1 + IM(kx)

)
: k > 0

}
.

The notion of difference sequence spaces was introduced by Kizmaz [8], who studied
the difference sequence spaces l∞(4), c(4) and c0(4). The notion was further gen-
eralized by Et and Çolak [5] by introducing the spaces l∞(4m), c(4m) and c0(4m).
Let n,m be non-negative integers, then for Z a given sequence space, we have

Z(4mn ) = {x = (xk) ∈ w : (4mn xk) ∈ Z}
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for Z = c, c0 and l∞ where 4mn x = (4mn xk) = (4m−1
n xk−4m−1

n xk+1) and 40xk =
xk for all k ∈ N, which is equivalent to the following binomial representation

∆m
n xk =

m∑
v=0

(−1)v
(
m
v

)
xk+nv.

Taking n = 1, we get the spaces l∞(4m), c(4m) and c0(4m) studied by Et and
Çolak [5]. Taking m = n = 1, we get the spaces l∞(4), c(4) and c0(4) introduced
and studied by Kizmaz [8]. Mursaleen et al. ([15], [16], [17], [18]) used the idea of
Orilcz function and study different sequence spaces. Esi et al. ([1], [3], [4]) work on
these type of sequence spaces. For more details about sequence spaces and matrix
transformations (see [2], [7], [12], [20], [21], [23], [24], [25], [28]) and references there
in.

2. The Riesz Sequence Space rq(M,∆m
n , u, p) of Non-absolute Type

Let X be a linear metric space. A function g : X → R is called paranorm, if

(1) g(x) ≥ 0, for all x ∈ X,
(2) g(−x) = g(x), for all x ∈ X,
(3) g(x+ y) ≤ g(x) + g(y), for all x, y ∈ X,
(4) if (λn) is a sequence of scalars with λn → λ as n→∞ and (xn) is a sequence

of vectors with g(xn−x)→ 0 as n→∞, then g(λnxn−λx)→ 0 as n→∞.

A paranorm g for which g(x) = 0 implies x = 0 is called total paranorm and the
pair (X, g) is called a total paranormed space. It is well known that the metric of
any linear metric space is given by some total paranorm (see [31], Theorem 10.4.2,
P-183).
Let M = (Mj) be Musielak-Orlicz function, u = (uj) be a sequence of strictly
positive real numbers and p = (pk) be a bounded sequence of positive real numbers.
Then we define new difference sequence space rq(M,∆m

n , u, p) as follows:

rq(M,∆m
n , u, p) =

{
x = (xk) ∈ w :

∑
k

∣∣∣ 1

Qk

k∑
j=0

Mj(|ujqj∆m
n xj |)

∣∣∣pk <∞},
where 0 < pk ≤ D <∞.
With the definition of matrix domain (1.1), the sequence space rq(M,∆m

n , u, p)
may be redefined as

rq(M,∆m
n , u, p) = {l(p)}Rq(M,∆m

n ,u)

where Rq(M,∆m
n , u) denotes the matrix Rq(M,∆m

n , u) = rqnk(M,∆m
n , u) defined

by

rqnk(M,∆m
n , u) =



1
Qn

(Mk(ukqk)−Mk+1(uk+1qk+1)), if 0 ≤ k ≤ n− 1

Mn(unqn)
Qn

, if k = n

0, if k > n.
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Define the sequence y = (yk) which will be used by the Rq(M,∆m
n , u)-transform of

a sequence x = (xk), we have

(2.1) yk =
1

Qk

k∑
j=0

Mj(|ujqj∆m
n xj |).

The main purpose of this paper is to study some new difference sequence spaces
generated by Riesz Mean and Musielak-Orlicz function. We shall show that these
spaces are complete and paranormed spaces. We have also discuss the α−, β−duals
of these spaces in section third of this paper. Finally, we discuss the matrix trans-
formations on these spaces in the last section of this paper.

Theorem 2.1. Let M = (Mj) be Musielak-Orlicz function, u = (uj) be a sequence
of strictly positive real numbers and p = (pk) be a bounded sequence of positive real
numbers. Then rq(M,∆m

n , u, p) is a complete linear metric space paranormed by

g(x) =
[∑

k

∣∣∣ 1

Qk

k−1∑
j=0

(Mj(ujqj)−Mj+1(uj+1qj+1))xj +
Mk(ukqk)

Qk
xk

∣∣∣pk] 1
H

with 0 ≤ pk ≤ D <∞ and H = max{1, D}.

Proof. The linearity of rq(M,∆m
n , u, p) follows from the inequality. For x, y ∈

rq(M,∆m
n , u, p) (see [11], p.30)

(2.2)[∑
k

∣∣∣ 1

Qk

k−1∑
j=0

(Mj(ujqj)−Mj+1(uj+1qj+1))(xj + yj) +
Mk(ukqk)

Qk
(xk + yk)

∣∣∣pk] 1
H

≤
[∑

k

∣∣∣ 1

Qk

k−1∑
j=0

(Mj(ujqj)−Mj+1(uj+1qj+1))xj +
Mk(ukqk)

Qk
xk

∣∣∣pk] 1
H

+
[∑

k

∣∣∣ 1

Qk

k−1∑
j=0

(Mj(ujqj)−Mj+1(uj+1qj+1))yj +
Mk(ukqk)

Qk
yk

∣∣∣pk] 1
H

and for any α ∈ R (See [12])

(2.3) |α|pk ≤ max(1, |α|H).

It is clear that g(θ) = 0 and g(x) = g(−x) for all x ∈ rq(M,∆m
n , u, p). Again the

inequality (2.2) and (2.3) yield the subadditivity of g and

g(αx) ≤ max(1, |α|)g(x).

Let {xn} be any sequence of points of the space rq(M,∆m
n , u, p) such that g(xn −

x) → 0 and (αn) is a sequence of scalars such that αn → α. Then since the
inequality,

g(xn) ≤ g(x) + g(xn − x)
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holds by subadditivity of g, {g(xn)} is bounded and we thus have

g(αnx
n − αx) =

[∑
k

∣∣∣ 1

Qk

k∑
j=0

(Mj(ujqj)−Mj+1(uj+1qj+1))(αnx
n
j + αxj)

∣∣∣pk] 1
H

≤ |αn − α|
1
H g(xn) + |α| 1H g(xn − x)

which tends to zero as n→∞. This proves that the scalar multiplication is contin-
uous. Hence g is paranorm on the space rq(M,∆m

n , u, p).

Now we prove the completeness of rq(M,∆m
n , u, p):

Let {xi} be any Cauchy sequence in the space rq(M,∆m
n , u, p), where xi = {xi0, xi1, ...}.

Then, for a given ε > 0 there exists a positive integer n0(ε) such that

(2.4) g(xi − xj) < ε ∀ i, j ≥ n0(ε).

Using definition of g and for each fixed k ∈ N that

|(Rq(M,∆m
n , u)xi)k − (Rq(M,∆m

n , u)xj)k|

≤
[∑

k

|(Rq(M,∆m
n , u)xi)k − (Rq(M,∆m

n , u)xj)k|pk
] 1

H

< ε for i, j ≥ n0(ε)

which yields that {(Rq(M,∆m
n , u)x0)k, (R

q(M,∆m
n , u)x1)k, ...} is a Cauchy se-

quence of real numbers for every fixed k ∈ N. Since R is complete, it converges
say

(Rq(M,∆m
n , u)xi)k → (Rq(M,∆m

n , u)x)k as i→∞.
Using these infinitely many limits (Rq(M,∆m

n , u)x)0, (R
q(M,∆m

n , u)x)1, ..., we de-
fine the sequence {(Rq(M,∆m

n , u)x)0, (R
q(M,∆m

n , u)x)1, ...}. From (2.4) for each
t ∈ N and i, j ≥ n0(ε),

(2.5)

t∑
k=0

|(Rq(M,∆m
n , u)xi)k − (Rq(M,∆m

n , u)xj)k|pk

≤ g(xi − xj)H

< εH .

Take any i, j ≥ n0(ε). First, let j →∞ in (2.5) and then t→∞, we obtain

g(xi − x) ≤ ε.

Finally, taking ε = 1 in (2.5) and letting i ≥ n0(1), we have by Minkowski’s
inequality for each t ∈ N that[ t∑

k=0

|(Rq(M,∆m
n , u)x)k|pk

] 1
H ≤ g(xi − x) + g(xi)

≤ 1 + g(xi)

which implies that x ∈ rq(M,∆m
n , u, p). Since g(x − xi) ≤ ε for all i ≥ n0(ε), it

follows that xi → x as i→∞. Hence, the space rq(M,∆m
n , u, p) is complete. �
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Theorem 2.2. Let M = (Mj) be Musielak-Orlicz function, u = (uj) be a sequence
of strictly positive real numbers and p = (pk) be a bounded sequence of positive real
numbers. Then the sequence space rq(M,∆m

n , u, p) of non-absolute type is linearly
isomorphic to the space l(p), where 0 < pk ≤ D <∞.

Proof. To show that the spaces rq(M,∆m
n , u, p) and l(p) are linearly isomorphic,

we have to prove that there exists a linear bijection between these spaces. Define
a linear transformation T : rq(M,∆m

n , u, p)→ l(p) by x→ y = Tx by using equa-
tion (2.2). The linearity of T is trivial. Further, it is obvious that x = θ whenever
T (x) = T (θ) and hence T is injective. Let y ∈ l(p) and define the sequence x = (xk)
by

xk =

k−1∑
n=0

( 1

Mn(unqn)
− 1

Mn+1(un+1qn+1)

)
Qkyk +

Qk
Mk(ukqk)

yk

for k ∈ N. Then

g(x) =
[∑

k

∣∣∣ 1

Qk

k−1∑
j=0

(Mj(ujqj)−Mj+1(uj+1qj+1))xj +
Mk(ukqk)

Qk
xk

∣∣∣pk] 1
H

=
[∑

k

∣∣∣ k∑
j=0

δkjyj

∣∣∣pk] 1
H

=
[∑

k

∣∣∣yk∣∣∣pk] 1
H

= g1(y) <∞,

where

δkj =

{
1, if k = j
0, if k 6= j.

Thus, we have x ∈ rq(M,∆m
n , u, p). Consequently, T is surjective and paranorm pre-

serving. Hence, T is linear bijection and this shows that the spaces rq(M,∆m
n , u, p)

and l(p) are linearly isomorphic. �

3. Basis and α−, β− and γ− duals of the space rq(M,∆m
n , u, p)

In this section, we compute α−, β− and γ− duals of the space rq(M,∆m
n , u, p)

and finally we give the basis for the space rq(M,∆m
n , u, p).

For the sequence space X and Y , define the set

S(X : Y ) = {z = (zk) : xz = (xkzk) ∈ Y }.

The α−, β− and γ− duals of a sequence space X, respectively denoted by Xα, Xβ

and Xγ which are defined by

Xα = S(X : l1), Xβ = S(X : cs) and Xγ = S(X : bs).

Firstly, we state some lemmas which are required in proving our theorems:
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Lemma 3.1. [6] (i) Let 1 < pk ≤ D <∞. Then A ∈ (l(p) : l1) if and only if there
exists an integer B > 1 such that

sup
k∈F

∑
k

∣∣∣∑
n∈k

αnkB
−1
∣∣∣p′k <∞.

(ii) Let 0 < pk ≤ 1. Then A ∈ (l(p) : l1) if and only if

sup
k∈F

sup
k

∣∣∣∑
n∈k

αnkB
−1
∣∣∣pk <∞.

Lemma 3.2. [10] (i) Let 1 < pk ≤ D < ∞. Then A ∈ (l(p) : l∞) if and only if
there exists an integer B > 1 such that

(3.1) sup
n

∑
k

∣∣∣αnkB−1
∣∣∣p′k <∞.

(ii) Let 0 < pk ≤ 1 for every k ∈ N . Then A ∈ (l(p) : l∞) if and only if

(3.2) sup
n,k

∣∣∣αnk∣∣∣pk <∞.
Lemma 3.3. [8] Let 0 < pk ≤ D <∞ for every k ∈ N . Then A ∈ (l(p) : c) if and
only if (3.1) and (3.2) hold along with

(3.3) lim
n
αnk = βk for k ∈ N

also holds.

Theorem 3.1. Let M = (Mj) be a Musielak-Orlicz function, u = (uj) be a se-
quence of strictly positive real numbers and p = (pk) be a bounded sequence of posi-
tive real numbers. Define the sets D1(M,∆m

n , u, p) and D2(M,∆m
n , u, p) as follows:

D1(M,∆m
n , u, p) =⋃

B>1

{
α = (αk) ∈ w : sup

k∈F

∑
k

∣∣∣∑
n∈k

[( 1

Mk(ukqk)
− 1

Mk+1(uk+1qk+1)

)
Qkαn+

Qn
Mn(unqn))

αn

]
B−1

∣∣∣p′k <∞}
and

D2(M,∆m
n , u, p) =⋃

B>1

{
α = (αk) ∈ w :

∑
k

∣∣∣[( αk
Mk(ukqk)

+
( 1

Mk(ukqk)
− 1

Mk+1(uk+1qk+1)

) n∑
i=k+1

αi

)
Qk

]
B−1

∣∣∣p′k <∞}
Then [

rq(M,∆m
n , u, p)

]α
= D1(M,∆m

n , u, p)
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and [
rq(M,∆m

n , u, p)
]β

= D2(M,∆m
n , u, p) ∩ cs.

Proof. Let us take any α = (αk) ∈ w. We can easily derive with (2.1) that

(3.4) αnxn =

n−1∑
k=0

( 1

Mk(ukqk)
− 1

Mk+1(uk+1qk+1)

)
αnQkyk +

αn
Mn(unqn)

Qnyn

= (Cy)n,

where C = (cnk) is defined as

cnk =



(
1

Mk(ukqk) −
1

Mk+1(uk+1qk+1)

)
αnQk, if 0 ≤ k ≤ n− 1

αn

Mn(unqn)Qn, if k = n

0, if k > n,

for all n, k ∈ N . Thus, we observe by combining (3.4) with (i) of lemma (3.1) that
αx = (αnxn) ∈ l1 whenever x = (xn) ∈ rq(M,∆m

n , u, p) if and only if Cy ∈ l1

whenever y ∈ lp. This gives the result that
[
rq(M,∆m

n , u, p)
]α

= D1(M,∆m
n , u, p).

Further, consider the equation

(3.5)
n∑
k=0

αkxk =

n∑
k=0

[( αk
Mk(ukqk)

+
( 1

Mk(ukqk)
− 1

Mk+1(uk+1qk+1)

) n∑
i=k+1

αi

)
Qk

]
yk

= (Dy)n,

where D = (dnk) is defined as

dnk =


(

αk

Mk(ukqk) +
(

1
Mk(ukqk) −

1
Mk+1(uk+1qk+1)

) n∑
i=k+1

αi

)
Qk, if 0 ≤ k ≤ n

0, if k > n.

Thus, we deduce from Lemma (3.3) with (3.5) that αx = (αnxn) ∈ cs whenever
x = (xn) ∈ rq(M,∆m

n , u, p) if and only if Dy ∈ c whenever y ∈ l(p). Therefore, we
derive from (3.1) that

(3.6)∑
k

∣∣∣[( αk
Mk(ukqk)

+
( 1

Mk(ukqk)
− 1

Mk+1(uk+1qk+1)

) n∑
i=k+1

αi

)
Qk

]
B−1

∣∣∣p′k <∞
and lim

n
dnk exists and hence shows that

[
rq(M,∆m

n , u, p)
]β

= D2(M,∆m
n , u, p)∩cs.

From lemma (3.2) together with (3.5) that αx = (αkxk) ∈ bs whenever x =
(xn) ∈ rq(M,∆m

n , u, p) if and only if Dy ∈ l∞ whenever y = (yk) ∈ l(p). There-

fore, we again obtain the condition (3.6) which means that
[
rq(M,∆m

n , u, p)
]γ

=

D2(M,∆m
n , u, p) ∩ cs and the proof of theorem is complete. �
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Theorem 3.2. Let M = (Mj) be Musielak-Orlicz function, u = (uj) be a sequence
of strictly positive real numbers and p = (pk) be a bounded sequence of positive real
numbers. Define the sets D3(M,∆m

n , u, p) and D4(M,∆m
n , u, p) as follows:

D3(M,∆m
n , u, p) ={

α = (αk) ∈ w : sup
k∈F

sup
k

∣∣∣∑
n∈k

[( 1

Mk(ukqk)
− 1

Mk+1(uk+1qk+1)

)
Qkαn+

Qn
Mn(unqn)

αn

]∣∣∣pk <∞}
and

D4(M,∆m
n , u, p) ={

α = (αk) ∈ w : sup
k

∣∣∣[( αk
Mk(ukqk)

+
( 1

Mk(ukqk)
− 1

Mk+1(uk+1qk+1)

) n∑
i=k+1

αi

)
Qk

]∣∣∣pk <∞}.
Then [

rq(M,∆m
n , u, p)

]α
= D3(M,∆m

n , u, p)

and [
rq(M,∆m

n , u, p)
]β

= D4(M,∆m
n , u, p) ∩ cs.

Proof. This is obtained by proceeding in proof of Theorem (3.1), by using second
parts of lemmas (3.1), (3.2) and (3.3) instead of the first parts so we exclude the
details. �

Theorem 3.3. Let M = (Mj) be Musielak-Orlicz function, u = (uj) be a sequence
of strictly positive real numbers and p = (pk) be a bounded sequence of positive

real numbers. Define the sequence b(k)(q) = {b(k)
n (q)} of the elements of the space

rq(M,∆m
n , u, p) for every fixed k ∈ N by

b(k)
n (q) =


(

1
Mn(unqn) −

1
Mn+1(un+1qn+1)

)
Qn + u−1

n
Qk

Mk(ukqk) , if 0 ≤ n ≤ k − 1

0, if n > k − 1.

Then the sequence {b(k)(q)} is a basis for the space rq(M,∆m
n , u, p) and any x ∈

rq(M,∆m
n , u, p) has a unique representation of the form

(3.7) x =
∑
k

λk(q)b(k)(q),

where λk(q) = (Rq(M,∆m
n , u)x)k for all k ∈ N and 0 < pk ≤ D <∞.

Proof. It is clear that {b(k)(q)} ⊂ rq(M,∆m
n , u, p), since

(3.8) Rq(M,∆m
n , u)b(k)(q) = e(k) ∈ l(p) for k ∈ N

and 0 < pk ≤ D <∞, where e(k) is the sequence whose only non-zero term is 1 in
kth place for each k ∈ N.
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Let x ∈ rq(M,∆m
n , u, p) be given. For every non-negative integer t, we put

(3.9) x[t] =

t∑
k=0

λk(q)b(k)(q).

Then, we obtain by applying Rq(M,∆m
n , u) to (3.9) with (3.8) that

Rq(M,∆m
n , u)x[t] =

t∑
k=0

λk(q)Rq(M,∆m
n , u)b(k)(q) =

t∑
k=0

(Rq(M,∆m
n , u)x)ke

(k)

and

(
Rq(M,∆m

n , u)(x− x[t])
)
i

=

 0, if 0 ≤ i ≤ t

(Rq(M,∆m
n , u)x)i, if i > t,

where i, t ∈ N. Given ε > 0, there exists an integer t0 such that

( ∞∑
i=t

∣∣∣(Rq(M,∆m
n , u)x)i

∣∣∣pk) 1
H

<
ε

2
∀ t ≥ t0.

Hence,

g(x− x[t]) =
( ∞∑
i=t

∣∣∣(Rq(M,∆m
n , u)x)i

∣∣∣pk) 1
H

≤
( ∞∑
i=t0

∣∣∣(Rq(M,∆m
n , u)x)i

∣∣∣pk) 1
H

<
ε

2
< ε,

for all t ≥ t0 which proves that x ∈ rq(M,∆m
n , u, p) is represented as equation

(3.7).
Let us show that the uniqueness of the representation for x ∈ rq(M,∆m

n , u, p) given
by equation (3.6). Suppose, on the contrary that there exists a representation x =∑
k

µk(q)b(k)(q). Since the linear transformation T from rq(M,∆m
n , u, p) to l(p)

used in the Theorem (2.2) is continuous, we have

(Rq(M,∆m
n , u)x)n =

∑
k

µk(q)(Rq(M,∆m
n , u)b(k)(q))n =

∑
k

µk(q)e(k)
n = µn(q)

for n ∈ N, which contradicts the fact that (Rq(M,∆m
n , u)x)n = λn(q) ∀ n ∈ N .

Hence, the representation (3.7) is unique. �

4. Matrix Mappings on the Space rq(M,∆m
n , u, p)

In this section, we characterize the matrix mappings from the space rq(M,∆m
n , u, p)

to the space l∞.
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Theorem 4.1. Let M = (Mj) be Musielak-Orlicz function, u = (uj) be a sequence
of strictly positive real numbers and p = (pk) be a bounded sequence of positive real
numbers.

(i) Let 1 < pk < D < ∞ for k ∈ N. Then A ∈ (rq(M,∆m
n , u, p) : l∞) if and

only if there exists an integer B > 1 such that
(4.1)

C(B) = sup
n

∑
k

∣∣∣[( αnk
Mk(ukqk)

+
( 1

Mk(ukqk)
− 1

Mk+1(uk+1qk+1)

) n∑
i=k+1

αni

)
Qk

]
B−1

∣∣∣p′k <∞
and {αnk}k∈N ∈ cs for each n ∈ N.

(ii) Let 0 < pk ≤ 1 for every k ∈ N. Then A ∈ (rq(M,∆m
n , u, p) : l∞) if and

only if

(4.2) sup
n,k

∣∣∣[( αnk
Mk(ukqk)

+
( 1

Mk(ukqk)
− 1

Mk+1(uk+1qk+1)

) n∑
i=k+1

αni

)
Qk

]∣∣∣pk <∞
and {αnk}k∈N ∈ cs for each n ∈ N.

Proof. We shall prove only (i) and the proof of (ii) will follow on applying simi-
lar argument. Let A ∈ (rq(M,∆m

n , u, p) : l∞) and 1 < pk ≤ D < ∞ for every
k ∈ N. Then Ax exists for x ∈ rq(M,∆m

n , u, p) and implies that {αnk}k∈N ∈
{rq(M,∆m

n , u, p)}β for each n ∈ N. Hence necessity of (4.1) holds. Conversely, sup-
pose that (4.1) holds and x ∈ rq(M,∆m

n , u, p), since {αnk}k∈N ∈ {rq(M,∆m
n , u, p)}β

for every fixed n ∈ N, so the A− transform of x exists. Consider the following equal-
ity obtained by using the relation (3.4) that

(4.3)
t∑

k=0

αnkxk =

t∑
k=0

[( αnk
Mk(ukqk)

+
( 1

Mk(ukqk)
− 1

Mk+1(uk+1qk+1)

) t∑
i=k+1

αni

)
Qk

]
yk.

Taking into account the assumptions, we derive from (3.3) as t→∞ that

(4.4)∑
k

αnkxk =
∑
k

[( αnk
Mk(ukqk)

+
( 1

Mk(ukqk)
− 1

Mk+1(uk+1qk+1)

) ∞∑
i=k+1

αni

)
Qk

]
yk.

Now by combining (4.4) and the inequality which holds for any B > 0 and any
complex numbers a, b

|ab| ≤ B
(
|aB−1|p

′
+ |b|p

)
with p−1 + {p′}−1 = 1 [10], we can see that

sup
n∈N

∣∣∣∑
k

αnkxk

∣∣∣ ≤ sup
n∈N

∑
k

∣∣∣[( αnk
Mk(ukqk)

+
( 1

Mk(ukqk)
− 1

Mk+1(uk+1qk+1)

) ∞∑
i=k+1

αni

)
Qk

]∣∣∣|yk|
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≤ B[C(B) + hB1 (y)]

< ∞.

This shows that Ax ∈ l∞ whenever x ∈ rq(M,∆m
n , u, p). The proof is complete. �
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[17] M. Mursaleen, S. K Sharma, A. Kılıçman, New class of generalized seminormed sequence
spaces, Abstr. Appl. Anal., 2014, Article ID 461081, 7 pages.

[18] M. Mursaleen, S. K Sharma, S. A. Mohiuddine and A. Kılıçman, New difference sequence
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SOME NEW INEQUALITIES OF HERMITE-HADAMARD-FEJÉR

TYPE FOR s−CONVEX FUNCTIONS

ÇETİN YILDIZ

Abstract. In this paper, we establish some new inequalities for differentiable

mappings whose derivatives in absolute value are s−convex in the second sense.
These results are connected with the celebrated Hermite-Hadamard-Fejér type

integral inequality.

1. INTRODUCTION

Let f : I ⊆ R→ R be a convex function defined on an interval I of real numbers,
a, b ∈ I and a < b. The following double inequality is well known in the literature
as Hermite-Hadamard inequality:

(1.1) f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
.

Both inequalities hold in the reversed direction if f is concave.
Many uses of these inequalities have been discovered in a variety of settings.

Moreover, many inequalities of special means can be obtained for a particular choice
of the function f . Due to the rich geometrical significance of Hermite-Hadamard
inequality, there is growing literature providing its new proofs, extensions, refine-
ments and generalizations, see for example ( [3]-[7],[11]-[15],[17]) and the references
therein.

Definition 1.1. Let real function f be defined on a nonempty interval I of real
line R. The function f is said to be convex on I if inequality

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y)

holds for all x, y ∈ I and t ∈ [0, 1].

The class of functions which are s-convex in the second sense has been given as
the following (see [9]).

2000 Mathematics Subject Classification. 26D15, 26D10.
Key words and phrases. Fejér Inequality, Hermite-Hadamard Inequality, s−Convex Functions,

Hölder Inequality.
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Definition 1.2. A function f : [0,∞) → R is said to be s−convex in the second
sense, if

f(tx + (1− t)y) ≤ tsf(x) + (1− t)sf(y)

holds for all x, y ∈ [0,∞), t ∈ [0, 1] and for some fixed s ∈ (0, 1].

Some interesting and important inequalities for s−convex (in the second sense)
functions can be found in [1],[10],[13]-[16]. It can be easily seen that convexity
means just s−convexity when s = 1.

In [8], Fejér established the following Fejér inequality which is the weighted
generalization of Hermite-Hadamard inequality:

Theorem 1.1. Let f : I → R be convex on I and let a, b ∈ I with a < b. Then the
inequality

(1.2) f

(
a + b

2

)∫ b

a

g(x)dx ≤
∫ b

a

f(x)g(x)dx ≤ f(a) + f(b)

2

∫ b

a

g(x)dx

holds, where g : [a, b]→ R is nonnegative and symmetric to a+b
2 .

If g = 1, then we are talking about the Hermite-Hadamard inequalities. More
about those inequalities can be found in a number of papers and monographs.
For recent results and generalizations concerning Fejér inequality (1.2) see ([2],[18]-
[24]).

In [1], Dragomir and Fitzpatrick proved a variant of Hadamard’s inequality which
holds for s−convex functions in the second sense:

Theorem 1.2. Suppose that f : [0,∞) → [0,∞) is an s-convex function in the
second sense, where s ∈ (0, 1) and let a, b ∈ [0,∞), a < b. If f ∈ L1[a, b], then the
following inequalities hold:

(1.3) 2s−1f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

s + 1
.

The constant k = 1
s+1 is the best possible in the second inequality in (1.3).

The main purpose of this paper is to establish new Fejér type inequalities for
the class of functions whose derivatives in absolute value at certain powers are
s−convex in the second sense.

2. MAIN RESULTS

In order to prove our main results, we need the following Lemmas (see [22]):

Lemma 2.1. Let f : I ⊂ R → R be differentiable on I◦ and a, b ∈ I◦ with a < b
and let g : [a, b]→ [0,∞). If f ′, g ∈ L[a, b], then the following identity holds:

f

(
a + b

2

)∫ b

a

g(t)dt−
∫ b

a

f(t)g(t)dt =

∫ b

a

p(t)f ′(t)dt

for each t ∈ [a, b], where

p(t) =


∫ t

a
g(s)ds, t ∈

[
a, a+b

2

)
−
∫ b

t
g(s)ds, t ∈

[
a+b

2 , b
]
.
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Lemma 2.2. Let f : I → R be differentiable on I◦ and a, b ∈ I◦ with a < b and let
g : [a, b]→ [0,∞). If f ′, g ∈ L[a, b], then the following identity holds:∫ b

a

f(u)g(u)du− f(x)

∫ b

a

g(u)du = (b− a)2

∫ 1

0

k(t)f ′(ta + (1− t)b)dt

for each t ∈ [0, 1] and x, u ∈ [a, b], where

(2.1) k(t) =


∫ t

0
g(sa + (1− s)b)ds, t ∈

[
0, b−x

b−a

)
−
∫ 1

t
g(sa + (1− s)b)ds, t ∈

[
b−x
b−a , 1

]
.

Theorem 2.1. Let f : I ⊂ R → R be differentiable mapping on I◦ and a, b ∈ I◦

with a < b and let g : [a, b]→ [0,∞). If f ′, g ∈ L[a, b] and |f ′| is s−convex on [a, b],
for some fixed s ∈ (0, 1], then the following inequality holds:∣∣∣∣∣f

(
a + b

2

)∫ b

a

g(t)dt−
∫ b

a

f(t)g(t)dt

∣∣∣∣∣
≤ (b− a)2

2s+2(s + 1)(s + 2)

{
‖g‖[a, a+b

2 ],∞
[
(2s+2 − (s + 3)) |f ′(a)|+ (s + 1) |f ′(b)|

]
+ ‖g‖[ a+b

2 ,b],∞
[(
s + 1) |f ′(a)|+ (2s+2 − (s + 3)) |f ′(b)|

)]}
.

Proof. By Lemma 2.1 and since |f ′| is s-convex on [a, b], then we have∣∣∣∣∣f
(
a + b

2

)∫ b

a

g(t)dt−
∫ b

a

f(t)g(t)dt

∣∣∣∣∣
≤

∫ a+b
2

a

∣∣∣∣∫ t

a

g(s)ds

∣∣∣∣ |f ′(t)| dt +

∫ b

a+b
2

∣∣∣∣∣
∫ b

t

g(s)ds

∣∣∣∣∣ |f ′(t)| dt
≤ ‖g‖[a, a+b

2 ],∞

∫ a+b
2

a

(t− a) |f ′(t)| dt + ‖g‖[ a+b
2 ,b],∞

∫ b

a+b
2

(b− t) |f ′(t)| dt

≤ ‖g‖[a, a+b
2 ],∞

∫ a+b
2

a

(t− a)

[(
b− t

b− a

)s

|f ′ (a)|+
(
t− a

b− a

)s

|f ′ (b)|
]
dt

+ ‖g‖[ a+b
2 ,b],∞

∫ b

a+b
2

(b− t)

[(
b− t

b− a

)s

|f ′ (a)|+
(
t− a

b− a

)s

|f ′ (b)|
]
dt

=
(b− a)2

2s+2(s + 1)(s + 2)

{
‖g‖[a, a+b

2 ],∞
[
(2s+2 − (s + 3)) |f ′(a)|+ (s + 1) |f ′(b)|

]
+ ‖g‖[ a+b

2 ,b],∞
[(
s + 1) |f ′(a)|+ (2s+2 − (s + 3)) |f ′(b)|

)]}
where use the facts that∫ a+b

2

a

(t− a)

(
b− t

b− a

)s

dt =

∫ b

a+b
2

(b− t)

(
t− a

b− a

)s

dt

=
(b− a)2

(
2s+2 − (s + 3)

)
2s+2(s + 1)(s + 2)
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and ∫ a+b
2

a

(t− a)

(
t− a

b− a

)s

dt =

∫ b

a+b
2

(b− t)

(
b− t

b− a

)s

dt

=
(b− a)2

2s+2(s + 2)
.

which completes the proof. �

Theorem 2.2. Let f : I ⊂ R → R be differentiable mapping on I◦ and a, b ∈ I◦

with a < b and let g : [a, b]→ [0,∞). If f ′, g ∈ L[a, b] and |f ′|q is s-convex on [a, b],
for some fixed s ∈ (0, 1] and p > 1, then the following inequality holds:∣∣∣∣∣f

(
a + b

2

)∫ b

a

g(t)dt−
∫ b

a

f(t)g(t)dt

∣∣∣∣∣
≤ (b− a)2

4(p + 1)1/p

{
‖g‖[a, a+b

2 ],∞

(
(2s+1 − 1) |f ′(a)|q + |f ′(b)|q

2s(s + 1)

) 1
q

+ ‖g‖[ a+b
2 ,b],∞

(
|f ′(a)|q + (2s+1 − 1) |f ′(b)|q

2s(s + 1)

) 1
q

}

≤ (b− a)2

4(p + 1)1/p

(
1

2s(s + 1)

) 1
q

× ‖g‖[a,b],∞
{[

1 + (2s+1 − 1)
1
q

]
(|f ′(a)|+ |f ′(b)|)

}
where 1

p + 1
q = 1.

Proof. Suppose that p > 1. From Lemma 2.1 and using the Hölder inequality, we
obtain ∣∣∣∣∣f

(
a + b

2

)∫ b

a

g(t)dt−
∫ b

a

f(t)g(t)dt

∣∣∣∣∣
≤

∫ a+b
2

a

∣∣∣∣∫ t

a

g(s)ds

∣∣∣∣ |f ′(t)| dt +

∫ b

a+b
2

∣∣∣∣∣
∫ b

t

g(s)ds

∣∣∣∣∣ |f ′(t)| dt
≤

(∫ a+b
2

a

∣∣∣∣∫ t

a

g(s)ds

∣∣∣∣p dt
) 1

p
(∫ a+b

2

a

|f ′(t)|q dt

) 1
q

+

(∫ b

a+b
2

∣∣∣∣∣
∫ b

t

g(s)ds

∣∣∣∣∣
p

dt

) 1
p
(∫ b

a+b
2

|f ′(t)|q dt

) 1
q

≤ ‖g‖[a, a+b
2 ],∞

(∫ a+b
2

a

|t− a|p dt

) 1
p
(∫ a+b

2

a

|f ′(t)|q dt

) 1
q

+ ‖g‖[ a+b
2 ,b],∞

(∫ b

a+b
2

|b− t|p dt

) 1
p
(∫ b

a+b
2

|f ′(t)|q dt

) 1
q

.
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Using the s-convexity of |f ′|q , we have∣∣∣∣∣f
(
a + b

2

)∫ b

a

g(t)dt−
∫ b

a

g(t)f(t)dt

∣∣∣∣∣
≤ ‖g‖[a, a+b

2 ],∞

[
(b− a)p+1

2p+1(p + 1)

] 1
p

(∫ a+b
2

a

[(
b− t

b− a

)s

|f ′ (a)|q +

(
t− a

b− a

)s

|f ′ (b)|q
]
dt

) 1
q

+ ‖g‖[ a+b
2 ,b],∞

[
(b− a)p+1

2p+1(p + 1)

] 1
p

(∫ b

a+b
2

[(
b− t

b− a

)s

|f ′ (a)|q +

(
t− a

b− a

)s

|f ′ (b)|q
]
dt

) 1
q

=
(b− a)2

4(p + 1)1/p

{
‖g‖[a, a+b

2 ],∞

(
(2s+1 − 1) |f ′(a)|q + |f ′(b)|q

2s(s + 1)

) 1
q

+ ‖g‖[ a+b
2 ,b],∞

(
|f ′(a)|q + (2s+1 − 1) |f ′(b)|q

2s(s + 1)

) 1
q

}
.

Let a1 = (2s+1 − 1) |f ′(a)|q , b1 = |f ′(b)|q , a2 = |f ′(a)|q , b2 = (2s+1 − 1) |f ′(b)|q .
Here, 0 < 1

q < 1 for q > 1. Using the fact that

n∑
k=1

(ak + bk)s ≤
n∑

k=1

ask +

n∑
k=1

bsk

for (0 ≤ s < 1), a1, a2, ..., an ≥ 0, b1, b2, ..., bk; we obtain∣∣∣∣∣f
(
a + b

2

)∫ b

a

g(t)dt−
∫ b

a

g(t)f(t)dt

∣∣∣∣∣
≤ (b− a)2

4(p + 1)1/p

(
1

2s(s + 1)

) 1
q

× ‖g‖[a,b],∞
{

(2s+1 − 1)
1
q |f ′(a)|+ |f ′(b)|+ |f ′(a)|+ (2s+1 − 1)

1
q |f ′(b)|

}
=

(b− a)2

4(p + 1)1/p

(
1

2s(s + 1)

) 1
q

× ‖g‖[a,b],∞
{[

1 + (2s+1 − 1)
1
q

]
(|f ′(a)|+ |f ′(b)|)

}
.

Also

‖g‖[a, a+b
2 ],∞ ≤ ‖g‖[a,b],∞

and

‖g‖[ a+b
2 ,b],∞ ≤ ‖g‖[a,b],∞ .

This completes the proof. �

Theorem 2.3. Let f : I◦ ⊂ R→ R be differentiable mapping on I◦ and a, b ∈ I◦

with a < b and g : [a, b] → [0,∞) be differentiable mapping. If |f ′| is s-convex on
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[a, b], for some fixed s ∈ (0, 1], then the following inequality holds:∣∣∣∣∣f(x)

∫ b

a

g(u)du−
∫ b

a

f(u)g(u)du

∣∣∣∣∣
≤ 1

(b− a)s(s + 2)

×
{
‖g‖[0, b−x

b−a ],∞

[
(b− x)s+2 |f ′(a)|+ (b− a)s+2 + (x− a)s+1[(x− b)(s + 1)− (b− a)]

s + 1
|f ′(b)|

]
+ ‖g‖[ b−x

b−a ,1],∞

[
(b− a)s+2 + (b− x)s+1[(a− x)(s + 1)− (b− a)]

s + 1
|f ′(a)|+ (x− a)s+2 |f ′(b)|

]}
.

Proof. Let x ∈ [a, b]. Using Lemma 2.2, we obtain∣∣∣∣∣f(x)

∫ b

a

g(u)du−
∫ b

a

f(u)g(u)du

∣∣∣∣∣
≤ (b− a)2

{∫ b−x
b−a

0

∣∣∣∣∫ t

0

g(sa + (1− s)b)ds

∣∣∣∣ |f ′(ta + (1− t)b)| dt

+

∫ 1

b−x
b−a

∣∣∣∣∫ 1

t

g(sa + (1− s)b)ds

∣∣∣∣ |f ′(ta + (1− t)b)| dt

}

≤ (b− a)2

{
‖g‖[0, b−x

b−a ],∞

∫ b−x
b−a

0

|t| |f ′(ta + (1− t)b)| dt

+ ‖g‖[ b−x
b−a ,1],∞

∫ 1

b−x
b−a

|1− t| |f ′(ta + (1− t)b)| dt

}
.

Since |f ′| is s-convex on [a, b], we obtain∣∣∣∣∣f(x)

∫ b

a

g(u)du−
∫ b

a

f(u)g(u)du

∣∣∣∣∣
≤ (b− a)2

{
‖g‖[0, b−x

b−a ],∞

∫ b−x
b−a

0

t [ts |f ′(a)|+ (1− t)s |f ′(b)|] dt

+ ‖g‖[ b−x
b−a ,1],∞

∫ 1

b−x
b−a

(1− t) [ts |f ′(a)|+ (1− t)s |f ′(b)|] dt

}

=
1

(b− a)s(s + 2)

×
{
‖g‖[0, b−x

b−a ],∞

[
(b− x)s+2 |f ′(a)|+ (b− a)s+2 + (x− a)s+1[(x− b)(s + 1)− (b− a)]

s + 1
|f ′(b)|

]
+ ‖g‖[ b−x

b−a ,1],∞

[
(b− a)s+2 + (b− x)s+1[(a− x)(s + 1)− (b− a)]

s + 1
|f ′(a)|+ (x− a)s+2 |f ′(b)|

]}
.

This completes the proof. �

Theorem 2.4. Let f : I◦ ⊂ R → R be differentiable mapping on I◦ and a, b ∈ I◦

with a < b and let g : [a, b] → [0,∞) be differentiable mapping. If |f ′|q is s-convex
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on [a, b], for some fixed s ∈ (0, 1] and p > 1, then the following inequality holds:∣∣∣∣∣f (x)

∫ b

a

g(u)du−
∫ b

a

f(u)g(u)du

∣∣∣∣∣
≤ 1

(b− a)
s
q (p + 1)

1
p

×

{
‖g‖[0, b−x

b−a ],∞

[
(b− x)2q+s |f ′(a)|q + (b− x)2q−1[(b− a)s+1 − (x− a)s+1] |f ′(b)|q

s + 1

] 1
q

+ ‖g‖[ b−x
b−a ,1],∞

[
(x− a)2q−1[(b− a)s+1 − (b− x)s+1] |f ′(a)|q + (x− a)2q+s |f ′(b)|q

s + 1

] 1
q

}
.

where 1
p + 1

q = 1.

Proof. Using Lemma 2.2, Hölder’s inequality and the s-convexity of |f ′|q, 1
p + 1

q = 1,

we have∣∣∣∣∣f(x)

∫ b

a

g(u)du−
∫ b

a

f(u)g(u)du

∣∣∣∣∣
≤ (b− a)2

×


(∫ b−x

b−a

0

∣∣∣∣∫ t

0

g(sa + (1− s)b)ds

∣∣∣∣p dt
) 1

p
(∫ b−x

b−a

0

|f ′(ta + (1− t)b)|q dt

) 1
q

+

(∫ 1

b−x
b−a

∣∣∣∣∫ 1

t

g(sa + (1− s)b)ds

∣∣∣∣p dt
) 1

p
(∫ 1

b−x
b−a

|f ′(ta + (1− t)b)|q dt

) 1
q


≤ (b− a)2

‖g‖[0, b−x
b−a ],∞

(∫ b−x
b−a

0

tpdt

) 1
p
(∫ b−x

b−a

0

[
ts |f ′(a)|q + (1− t)s |f ′(b)|q

]
dt

) 1
q

+ ‖g‖[ b−x
b−a ,1],∞

(∫ 1

b−x
b−a

(1− t)pdt

) 1
p
(∫ 1

b−x
b−a

[
ts |f ′(a)|q + (1− t)s |f ′(b)|q

]
dt

) 1
q


=

1

(b− a)
s
q (p + 1)

1
p

×

{
‖g‖[0, b−x

b−a ],∞

[
(b− x)2q+s |f ′(a)|q + (b− x)2q−1[(b− a)s+1 − (x− a)s+1] |f ′(b)|q

s + 1

] 1
q

+ ‖g‖[ b−x
b−a ,1],∞

[
(x− a)2q−1[(b− a)s+1 − (b− x)s+1] |f ′(a)|q + (x− a)2q+s |f ′(b)|q

s + 1

] 1
q

}
.

This completes the proof. �

Theorem 2.5. Let f : I◦ ⊂ R → R be differentiable mapping on I◦ and a, b ∈ I◦

with a < b and let g : [a, b] → [0,∞) be differentiable mapping. If |f ′|q is s-convex
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on [a, b], for some fixed s ∈ (0, 1] and p > 1, then the following inequality holds:∣∣∣∣∣f (x)

∫ b

a

g(u)du−
∫ b

a

f(u)g(u)du

∣∣∣∣∣
≤ 1

(p + 1)
1
p

{
‖g‖[0, b−x

b−a ],∞ (b− x)2

[
|f ′(x)|q + |f ′(b)|q

s + 1

] 1
q

+ ‖g‖[ b−x
b−a ,1],∞ (x− a)2

[
|f ′(a)|q + |f ′(x)|q

s + 1

] 1
q

}
.

where 1
p + 1

q = 1.

Proof. From Lemma 2.2 and using the Hölder inequality, we have∣∣∣∣∣f(x)

∫ b

a

g(u)du−
∫ b

a

f(u)g(u)du

∣∣∣∣∣
≤ (b− a)2

×


(∫ b−x

b−a

0

∣∣∣∣∫ t

0

g(sa + (1− s)b)ds

∣∣∣∣p dt
) 1

p
(∫ b−x

b−a

0

|f ′(ta + (1− t)b)|q dt

) 1
q

+

(∫ 1

b−x
b−a

∣∣∣∣∫ 1

t

g(sa + (1− s)b)ds

∣∣∣∣p dt
) 1

p
(∫ 1

b−x
b−a

|f ′(ta + (1− t)b)|q dt

) 1
q


≤ (b− a)2

‖g‖[0, b−x
b−a ],∞

(∫ b−x
b−a

0

tpdt

) 1
p
(∫ b−x

b−a

0

|f ′(ta + (1− t)b)|q dt

) 1
q

+ ‖g‖[ b−x
b−a ,1],∞

(∫ 1

b−x
b−a

(1− t)pdt

) 1
p
(∫ 1

b−x
b−a

|f ′(ta + (1− t)b)|q dt

) 1
q

 .

Since |f ′|q is s-convex, by (1.3) we have∫ b−x
b−a

0

|f ′(ta + (1− t)b)|q dt ≤ b− x

b− a

(
|f ′(x)|q + |f ′(b)|q

s + 1

)
and ∫ 1

b−x
b−a

|f ′(ta + (1− t)b)|q dt ≤ x− a

b− a

(
|f ′(a)|q + |f ′(x)|q

s + 1

)
.

Therefore, ∣∣∣∣∣f (x)

∫ b

a

g(u)du−
∫ b

a

f(u)g(u)du

∣∣∣∣∣
≤ 1

(p + 1)
1
p

{
‖g‖[0, b−x

b−a ],∞ (b− x)2

[
|f ′(x)|q + |f ′(b)|q

s + 1

] 1
q

+ ‖g‖[ b−x
b−a ,1],∞ (x− a)2

[
|f ′(a)|q + |f ′(x)|q

s + 1

] 1
q

}
.

This completes the proof. �
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ON HADAMARD-TYPE INEQUALITIES FOR k-FRACTIONAL

INTEGRALS

GHULAM FARID, ATIQ UR REHMAN, AND MOQUDDSA ZAHRA

Abstract. In this paper we prove Hadamard-type inequalities for k-fractional

Riemann-Liouville integrals and Hadamard-type inequalities for fractional Riemann-

Liouville integrals are deduced. Also we deduced some well known results
related to Hadamard inequality.

1. introduction

Fractional Calculus is a branch of mathematical study that developed from the
established definitions of calculus integral and derived operators [2].

Fractional calculus was mainly a study kept for the finest minds in mathemat-
ics. Fourier, Euler, Laplace are among those mathematicians who showed a casual
interest by fractional calculus and mathematical consequences. A lot of them es-
tablished definitions by means of their own notion and style. Most renowned of
these definitions are the Grunwald-Letnikov and Riemann-Liouville definition [4].

There are many types of fractional integrals have been defined in literature, the
most classical are Riemann-Liouville fractional integrals defined as follows:

Definition 1.1. Let f ∈ L1[a, b], then Riemann-Liouville fractional integrals of
order α > 0 with a ≥ 0 are defined as:

(1.1) Iαa+f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt, x > a

and

(1.2) Iαb−f(x) =
1

Γ(α)

∫ b

x

(t− x)α−1f(t)dt, x < b.

For further details one may see [3, 6, 7].

2010 Mathematics Subject Classification. Primary 26A51, 26A33; Secondary 26D10.
Key words and phrases. Convex functions; Hadamard inequalities; fractional integrals.
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[1] If k > 0, then k-Gamma function Γk is defined as:

Γk(α) = lim
n→∞

n!kn(nk)
α
k − 1

(α)n,k
.

If <(α) > 0 then k-Gamma function in integral form is defined as

Γk(α) =

∫ ∞
0

tα−1e−
tk

k dt,

with the property that

Γk(α+ k) = αΓk(α)

In [5] k-fractional Riemann-Liouville integrals are defined as follows:

Let f ∈ L1[a, b]. Then k-fractional integrals of order α, k > 0 with a ≥ 0 are
defined as

(1.3) Iα,ka+ f(x) =
1

kΓk(α)

∫ x

a

(x− t)αk−1f(t)dt, x > a

and

(1.4) Iα,kb− f(x) =
1

kΓk(α)

∫ b

x

(t− x)
α
k−1f(t)dt, x < b.

For k = 1, k-fractional integrals give Riemann-Liouville integrals.
Besides applications of fractional integrals in applied sciences, now a days many

researchers in the field of pure mathematics, for example mathematical analysis
have studied them extensively see [2, 3, 4, 6].

In [8], Sarikaya et al. proved the following Hadamard-type inequalities for
Riemann-Liouville fractional integrals.

Theorem 1.1. Let f : [a, b] → R be a positive function with 0 ≤ a < b and
f ∈ L1[a, b]. If f is a convex function on [a,b], then the following inequalities for
fractional integrals hold:

(1.5) f

(
a+ b

2

)
≤ 2α−1Γ(α+ 1)

(b− a)α

[
Iα
( a+b2 )+

f(b) + Iα
( a+b2 )−f(a)

]
≤ f(a) + f(b)

2

with α > 0.

Theorem 1.2. Let f : [a, b]→ R be a differentiable mapping on (a,b) with a < b.
If |f ′|q is convex on [a, b] for q ≥ 1, then the following inequality for fractional
integrals holds:

(1.6)

∣∣∣∣2α−1Γ(α+ 1)

(b− a)α
[Iα

( a+b2 )+
f(b) + Iα

( a+b2 )−f(a)]− f
(
a+ b

2

)∣∣∣∣
≤ b− a

4(α+ 1)

(
1

2(α+ 2)

) 1
q [

((α+ 1)|f ′(a)|q + (α+ 3)|f ′(b)|q)
1
q

+ ((α+ 3)|f ′(a)|q + (α+ 1)|f ′(b)|q)
1
q

]
.

Theorem 1.3. Let f : [a, b]→ R be a differentiable mapping on (a,b) with a < b.
If |f ′|q is convex on [a, b] for q > 1, then the following inequality for fractional
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integral holds:

(1.7)

∣∣∣∣2α−1Γ(α+ 1)

(b− a)α
[Iα

( a+b2 )+
f(b) + Iα

( a+b2 )−f(a)]− f
(
a+ b

2

)∣∣∣∣
≤ b− a

4

(
1

αp+ 1

) 1
p

[(
|f ′(a)|q + 3|f ′(b)|q

4

) 1
q

+

(
3|f ′(a)|q + |f ′(b)|q

4

) 1
q

]

≤ b− a
4

(
4

αp+ 1

) 1
p

[|f ′(a)|+ |f ′(b)|],

where 1
p + 1

q = 1.

In this paper we generalize the fractional Hadamard-type inequalities (1.5), (1.6)
and (1.7) via k-fractional integrals and show that these inequalities are special cases
of our results. Also we deduced some well known results.

2. Hadamard-type inequalities for k-fractional integrals

Here we give k-fractional Hadamard-type inequalities.

Theorem 2.1. Let f : [a, b] → R be a positive function with 0 ≤ a < b and
f ∈ L1[a, b]. If f is a convex function on [a, b], then the following inequalities for
k-fractional integrals hold:

(2.1) f

(
a+ b

2

)
≤ 2

α
k−1Γk(α+ k)

(b− a)
α
k

[
Iα,k
( a+b2 )+

f(b) + Iα,k
( a+b2 )−f(a)

]
≤ f(a) + f(b)

2

with α, k > 0.

Proof. From convexity of f we have

(2.2) f

(
x+ y

2

)
≤ f(x) + f(y)

2
.

Putting x = t
2a+ (2−t)

2 b, y = (2−t)
2 a+ t

2b for t ∈ [0, 1]. Then x, y ∈ [a, b] and above
equation gives

(2.3) 2f

(
a+ b

2

)
≤ f

(
t

2
a+

2− t
2

b

)
+ f

(
2− t

2
a+

t

2
b

)
,

multiplying both sides of above inequality with t
α
k−1, and integrating over [0, 1] we

have

2k

α
f

(
a+ b

2

)∫ 1

0

t
α
k−1dt

≤
∫ 1

0

t
α
k−1f

(
t

2
a+

2− t
2

b

)
dt+

∫ 1

0

t
α
k−1f

(
2− t

2
a+

t

2
b

)
dt

=
2
α
k kΓk(α)

(b− a)
α
k

[
Iα,k
( a+b2 )+

f(b) + Iα,k
( a+b2 )−f(a)

]
,

from which one can have

(2.4) f

(
a+ b

2

)
≤ 2

α
k−1Γk(α+ k)

(b− a)
α
k

[
Iα,k
( a+b2 )+

f(b) + Iα,k
( a+b2 )−f(a)

]
.
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On the other hand convexity of f gives

f

(
t

2
a+

2− t
2

b

)
+ f

(
2− t

2
a+

t

2
b

)
≤ t

2
f(a) +

2− t
2

f(b) +
2− t

2
f(a) +

t

2
f(b),

multiplying both sides of above inequality with t
α
k−1, and integrating over [0, 1] we

have ∫ 1

0

t
α
k−1f

(
t

2
a+

2− t
2

b

)
dt+

∫ 1

0

t
α
k−1f

(
2− t

2
a+

t

2
b

)
dt

≤ [f(a) + f(b)]

∫ 1

0

t
α
k−1dt,

from which one can have

(2.5)
2
α
k−1Γk(α+ k)

(b− a)
α
k

[
Iα,k
( a+b2 )+

f(b) + Iα,k
( a+b2 )−f(a)

]
≤ f(a) + f(b)

2
.

Combining inequality (2.4) and inequality (2.5) we get inequality (2.1) . �

Remark 2.1. If we take k = 1, Theorem 2.1 gives inequality (1.5) of Theorem 1.1
and putting α = 1 along with k = 1 in Theorem 2.1 we get the classical Hadamard
inequality.

3. k-fractional inequalities related to Hadamard inequality

For next results we need the following lemma.

Lemma 3.1. Let f : [a, b]→ R be a differentiable mapping on (a, b) with a < b. If

f
′ ∈ L[a, b], then the following equality for k-fractional integrals holds:

(3.1)

2
α
k−1Γk(α+ k)

(b− a)
α
k

[Iα,k
( a+b2 )+

f(b) + Iα,k
( a+b2 )−f(a)]− f

(
a+ b

2

)
=
b− a

4

[∫ 1

0

t
α
k f ′

(
t

2
a+

2− t
2

b

)
dt−

∫ 1

0

t
α
k f ′

(
2− t

2
a+

t

2
b

)
dt

]
.

Proof. One can note that

b− a
4

[∫ 1

0

t
α
k f ′

(
t

2
a+

2− t
2

b

)
dt

]
=
b− a

4

[
t
α
k

2

a− b
f

(
t

2
a+

2− t
2

b

)
|10 −

∫ 1

0

α

k
t
α
k−1

2

a− b
f

(
t

2
a+

2− t
2

b

)]
=
b− a

4

[
− 2

b− a
f

(
a+ b

2

)
− 2α

k(a− b)

∫ a+b
2

b

(
2

b− a
(b− x)

)α
k−1 2

a− b
f(x)dx

]

=
b− a

4

[
− 2

b− a
f

(
a+ b

2

)
+

2
α
k+1Γk(α+ k)

(b− a)
α
k+1

Iα,k
( a+b2 )−f(b)

]
.

(3.2)

Similarly
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− b− a
4

[∫ 1

0

t
α
k f ′

(
2− t

2
a+

t

2
b

)
dt

]
= −b− a

4

[
2

b− a
f

(
a+ b

2

)
− 2

α
k+1Γk(α+ k)

(b− a)
α
k+1

Iα,k
( a+b2 )+

f(a)

]
.(3.3)

Combining (3.2) and (3.3) one can have (3.1). �

Using the above lemma we give the following k-fractional Hadamard-type in-
equality.

Theorem 3.1. Let f : [a, b]→ R be a differentiable mapping on (a,b) with a < b.
If |f ′|q is convex on [a, b] for q ≥ 1, then the following inequality for k-fractional
integrals holds:

(3.4)

∣∣∣∣2αk−1Γk(α+ k)

(b− a)
α
k

[Iα,k
( a+b2 )+

f(b) + Iα,k
( a+b2 )−f(a)]− f

(
a+ b

2

)∣∣∣∣
≤ b− a

4(αk + 1)

(
1

2(αk + 2)

) 1
q
[((α

k
+ 1
)

)|f ′(a)|q +
(α
k

+ 3
)
|f ′(b)|q

) 1
q

+
((α

k
+ 3
)
|f ′(a)|q +

(α
k

+ 1
)
|f ′(b)|q

) 1
q

]
.

with α, k > 0.

Proof. From Lemma 3.1 and convexity of |f ′| and for q = 1 we have∣∣∣∣2αk−1Γk(α+ k)

(b− a)
α
k

[Iα,k
( a+b2 )+

f(b) + Iα,k
( a+b2 )−f(a)]− f

(
a+ b

2

)∣∣∣∣
≤ b− a

4

∫ 1

0

t
α
k

(∣∣∣∣f ′( t2a+
2− t

2
b

)∣∣∣∣ dt+

∣∣∣∣f ′(2− t
2

a+
t

2
b

)∣∣∣∣) dt.
=

b− a
4
(
α
k + 1

) [|f ′(a)|+ |f ′(b)|].

For q > 1 we proceed as follows. Using Lemma (3.1) we have∣∣∣∣2αk−1Γk(α+ k)

(b− a)
α
k

[Iα,k
( a+b2 )+

f(b) + Iα,k
( a+b2 )−f(a)]− f

(
a+ b

2

)∣∣∣∣
≤ b− a

4

[∫ 1

0

t
α
k

∣∣∣∣f ′( t2a+
2− t

2
b

)∣∣∣∣ dt+

∫ 1

0

t
α
k

∣∣∣∣f ′(2− t
2

a+
t

2
b

)∣∣∣∣ dt] .
Using power mean inequality we get∣∣∣∣2αk−1Γk(α+ k)

(b− a)
α
k

[Iα,k
( a+b2 )+

f(b) + Iα,k
( a+b2 )−f(a)]− f

(
a+ b

2

)∣∣∣∣
≤ b− a

4

(
1

α
k + 1

) 1
p

[[∫ 1

0

t
α
k

∣∣∣∣f ′( t2a+
2− t

2
b

)∣∣∣∣q dt]
1
q

+

[∫ 1

0

t
α
k

∣∣∣∣f ′(2− t
2

a+
t

2
b

)∣∣∣∣q dt]
1
q

]
.
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Convexity of |f ′|q gives∣∣∣∣2αk−1Γk(α+ k)

(b− a)
α
k

[Iα,k
( a+b2 )+

f(b) + Iα,k
( a+b2 )−f(a)]− f

(
a+ b

2

)∣∣∣∣
≤ b− a

4

(
1

α
k + 1

) 1
p

[[∫ 1

0

t
α
k

(
t

2
|f ′(a)|q +

2− t
2
|f ′(b)|q

)
dt

] 1
q

+

[∫ 1

0

t
α
k

(
2− t

2
|f ′(a)|q +

t

2
|f ′(b)|q

)
dt

] 1
q

]

=
b− a

4

(
1

α
k + 1

) 1
p

[[
|f ′(a)|q

2(αk + 2)
+
|f ′(b)|q
α
k + 1

− |f
′(b)|q

2(αk + 2)

] 1
q

+

[
|f ′(a)|q
α
k + 1

− |f
′(a)|q

2(αk + 2)

+
|f ′(b)|q

2(αk + 2)

] 1
q

]
,

which after a little computation gives the required result. �

Remark 3.1. If we take k = 1 in Theorem 3.1, we get inequality (1.6) of Theorem
1.2 and if we take α = q = 1 along with k = 1 in Theorem 3.1, then inequality (3.4)
gives inequality the following result.

Corollary 3.1. With assumptions of Theorem 3.1 we have∣∣∣∣∣ 1

b− a

∫ b

a

f(x)dx− f
(
a+ b

2

)∣∣∣∣∣ ≤ (b− a)

8
(|f ′(a)|+ |f ′(b)|) .

Theorem 3.2. Let f : [a, b]→ R be a differentiable mapping on (a,b) with a < b.
If |f ′|q is convex on [a, b] for q > 1, then the following inequality for k-fractional
integral holds:

(3.5)

∣∣∣∣2αk−1Γk(α+ k)

(b− a)
α
k

[Iα,k
( a+b2 )+

f(b) + Iα,k
( a+b2 )−f(a)]− f

(
a+ b

2

)∣∣∣∣
≤ b− a

4

(
1

αp
k + 1

) 1
p

[(
|f ′(a)|q + 3|f ′(b)|q

4

) 1
q

+

(
3|f ′(a)|q + |f ′(b)|q

4

) 1
q

]

≤ b− a
4

(
4

αp
k + 1

) 1
p

[|f ′(a)|+ |f ′(b)|],

with 1
p + 1

q = 1.

Proof. Using Lemma 3.1 we have∣∣∣∣2αk−1Γk(α+ k)

(b− a)
α
k

[Iα,k
( a+b2 )+

f(b) + Iα,k
( a+b2 )−f(a)]− f

(
a+ b

2

)∣∣∣∣
≤ b− a

4

[∫ 1

0

t
α
k

∣∣∣∣f ′( t2a+
2− t

2
b

)∣∣∣∣ dt+

∫ 1

0

t
α
k

∣∣∣∣f ′(2− t
2

a+
t

2
b

)∣∣∣∣ dt] .



ON HADAMARD-TYPE INEQUALITIES FOR k-FRACTIONAL INTEGRALS 85

From Hölder′s inequality we get∣∣∣∣2αk−1Γk(α+ k)

(b− a)
α
k

[Iα,k
( a+b2 )+

f(b) + Iα,k
( a+b2 )−f(a)]− f

(
a+ b

2

)∣∣∣∣
≤ b− a

4

[[∫ 1

0

t
αp
k dt

] 1
p
[∫ 1

0

∣∣∣∣f ′( t2a+
2− t

2
b

)∣∣∣∣q dt]
1
q

+

[∫ 1

0

t
αp
k dt

] 1
p
[∫ 1

0

∣∣∣∣f ′(2− t
2

a+
t

2
b

)∣∣∣∣q dt]
1
q

]
.

Convexity of |f ′|q gives∣∣∣∣2αk−1Γk(α+ k)

(b− a)
α
k

[Iα,k
( a+b2 )+

f(b) + Iα,k
( a+b2 )−f(a)]− f

(
a+ b

2

)∣∣∣∣
≤ b− a

4

(
1

αp
k + 1

) 1
p

[[∫ 1

0

(
t

2
|f ′(a)|q +

2− t
2
|f ′(b)|q

)
dt

] 1
q

+

[∫ 1

0

(
2− t

2
|f ′(a)|q +

t

2
|f ′(b)|q

)
dt

] 1
q

]

=
b− a

4

(
1

αp
k + 1

) 1
p

[[
|f ′(a)|q + 3|f ′(b)|q

4

] 1
q

+

[
3|f ′(a)|q + |f ′(b)|q

4

] 1
q

]
.

For second inequality of (3.5) we use Minkowski’s inequality as

∣∣∣∣2αk−1Γk(α+ k)

(b− a)
α
k

[Iα,k
( a+b2 )+

f(b) + Iα,k
( a+b2 )−f(a)]− f

(
a+ b

2

)∣∣∣∣
≤ b− a

16

(
4

αp
k + 1

) 1
p [

[|f ′(a)|q + 3|f ′(b)|q]
1
q + [3|f ′(a)|q + |f ′(b)|q]

1
q

]
≤ b− a

16

(
4

αp
k + 1

) 1
p

(3
1
q + 1)(|f ′(a)|+ |f ′(b)|)

≤ b− a
16

(
4

αp
k + 1

) 1
p

4(|f ′(a)|+ |f ′(b)|).

�

Remark 3.2. For k = 1 in above theorem we get inequality (1.7). If we take
α = k = 1 we get the following result.

Corollary 3.2. With assumptions of Theorem 3.2 we have∣∣∣∣∣ 1

b− a

∫ b

a

f(x)dx− f
(
a+ b

2

)∣∣∣∣∣
≤ b− a

16

(
4

p+ 1

) 1
p [

(|f ′(a)|q + 3|f ′(b)|q)
1
q + (3|f ′(a)|q + |f ′(b)|q)

1
q

]
.
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ON ALMOST IDEAL CONVERGENCE WITH RESPECT TO AN

ORLICZ FUNCTION

EMRAH EVREN KARA, MAHMUT DAŞTAN, AND MERVE İLKHAN

Abstract. In this article, we define new classes of ideal convergent and ideal

bounded sequence spaces combining an infinite matrix, an Orlicz function and

invariant mean. We investigate some linear topological structures and alge-
braic properties of the resulting spaces. Also we find out some relations related

to these spaces.

1. Introduction

By ω and `∞, we denote the space of all complex valued sequences and bounded
sequences, respectively. N and C stand for the set of natural numbers and complex
numbers and e = (1, 1, 1, ...).

The notion of ideal convergence which is a generalization of statistical conver-
gence (see [1, 2]) was introduced by Kostyrko et al. [3].

A family I of subsets of a non-empty set X is called an ideal on X if for each
A,B ∈ I, we have A ∪ B ∈ I and for each B ∈ I and B ⊆ A, we have B ∈ I. If
X /∈ I, it is called a non-trivial ideal. A non-trivial ideal is said to be admissible if
it contains all the finite subsets of X.

A sequence x = (xk) in R is called ideal convergent to a real number l if for
every ε > 0 the set {k ∈ N : |xk − l| ≥ ε} belongs to the ideal [3].

A sequence x = (xk) of real numbers is said to be ideal bounded if there is a
K > 0 such that {k ∈ N : |xk| > K} ∈ I [4].

Later, many authors studied on ideal convergence. See for example [5, 6, 7].
Also, ideal convergence is studied on normed spaces and topological spaces in [8, 9,
10, 11, 12].

Let σ be an injective mapping from the set of the positive integers to itself such
that σp(n) 6= n for all positive integers n and p, where σp(n) = σ(σp−1(n)). An
invariant mean or a σ-mean is a continuous linear functional defined on the space
`∞ such that for all x = (xn) ∈ `∞:

(1) If xn ≥ 0 for all n, then ϕ(x) ≥ 0,

2000 Mathematics Subject Classification. 40A05, 40A35, 46A45.
Key words and phrases. Invariant means; ideal convergence; Orlicz functions.
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(2) ϕ(e) = 1,
(3) ϕ(Sx) = ϕ(x), where Sx = (xσ(n)).

Vσ denotes the set of bounded sequences all of whose invariant means are equal
which is also called as the space of σ-convergent sequences. In [13], it is defined by

Vσ = {x ∈ `∞ : lim
k
tkn(x) = l, uniformly in n, l = σ − limx},

where tkn(x) =
xn+xσ1(n)+...+xσk(n)

k+1 .
σ-mean is called a Banach limit if σ is the translation mapping n → n + 1. In

this case, Vσ becomes the set of almost convergent sequences which is denoted by
ĉ and defined in[14] as

ĉ = {x ∈ `∞ : lim
k
dkn(x) exists uniformly in n},

where dkn(x) = xn+xn+1+...+xn+k

k+1 .
The space of strongly almost convergent sequences was introduced by Maddox

[15] as follow:

[ĉ] = {x ∈ `∞ : lim
k
dkn(|x− le|) exists uniformly in n for some l}.

A function M : [0,∞) → [0,∞) is called an Orlicz function if M is continuous,
nondecreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and M(x) → ∞
as x → ∞. By convexity of M and M(0) = 0, we have M(λx) ≤ λM(x) for all
λ ∈ (0, 1).

It is said that M satisfies ∆2-condition for all x ∈ [0,∞) if there exists a constant
K > 0 such that M(Lx) ≤ KLM(x), where L > 1 (see [16]).

By using the idea of Orlicz function, Lindenstrauss and Tzafriri [17] defined
Orlicz sequence space

`M =

{
x ∈ ω :

∞∑
k=1

M

(
|xk|
ρ

)
<∞, for some ρ > 0

}
which is a Banach space with the norm

‖x‖ = inf

{
ρ > 0 :

∞∑
k=1

M

(
|xk|
ρ

)
≤ 1

}
.

Several authors used the concept of an Orlicz function to define a new sequence
space. For some of the related papers, one can see [19, 20, 21, 22].

Let p = (pk) be a sequence of positive real numbers such that 0 < h = inf pk ≤
pk ≤ H = sup pk <∞. For each k ∈ N the inequalities

(1.1) |αk + βk|pk ≤ D {|αk|pk + |βk|pk}
and

|α|pk ≤ max{1, |α|H}
hold, where α, αk, βk ∈ C and D = max

{
1, 2H−1

}
.

Let A = (aij) be an infinite matrix of complex numbers aij , where i, j ∈ N. We

write Ax = (Ai(x)) if Ai(x) =
∞∑
j=1

aijxj converges for each i ∈ N. Throughout the

text, by tkn(Ax), we mean

tkn(Ax) =
An(x) +Aσ1(n)(x) + ...+Aσk(n)(x)

k + 1
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for all k, n ∈ N.
A sequence space X is called as solid (or normal) if (γkxk) ∈ X whenever

(xk) ∈ X and (γk) is a sequence of scalars such that |γk| ≤ 1 for all k ∈ N.
Let X be a sequence space and K = {k1 < k2 < ...} ⊆ N. The sequence space

ZXK = {(xkn) ∈ ω : (xn) ∈ X} is called K-step space of X.
A canonical preimage of a sequence (xkn) ∈ ZXK is a sequence (yn) ∈ ω defined

by

yn =

{
xn, if n ∈ N,
0, otherwise.

A sequence space X is monotone if it contains the canonical preimages of all its
step spaces.

Lemma 1.1. ([18],p.53) If a sequence space X is solid, then X is monotone.

Recently, strongly almost ideal convergent sequence spaces in 2-normed spaces
defined via an Orlicz function was introduced by Esi [23]. Quite recently, Hazarika
[24] defined a new class of strongly almost ideal convergent sequence spaces using an
infinite matrix, Orlicz functions and a new generalized difference matrix in locally
convex spaces and proved some results about this notion. Further in [25, 26, 27],
the authors defined new spaces by combining ideal convergence, Orlicz functions
and infinite matrices.

The purpose of this paper is to introduce and study some new ideal convergent
sequence spaces with respect to an Orlicz function and an infinite matrix.

2. Main results

In this section, by combining ideal convergence, an infinite matrix, an Orlicz
function and invariant means, we define some new sequence spaces.

From now on, by I, we denote an admissible ideal of N.
Let M be an Orlicz function, A be an infinite matrix and p = (pk) be a bounded

sequence of positive real numbers.
For every ε > 0 and some ρ > 0, we introduce the spaces as follows:

I−cσ0 (M,A, p) =

{
u ∈ ω :

{
k ∈ N :

[
M

(
|tkn(Au)|

ρ

)]pk
≥ ε
}
∈ I for all n ∈ N

}
,

I−cσ(M,A, p) =

{
u ∈ ω :

{
k ∈ N :

[
M

(
|tkn(Au− le)|

ρ

)]pk
≥ ε
}
∈ I for all n ∈ N and some l ∈ C

}
,

I−`σ∞(M,A, p) =

{
u ∈ ω : ∃K > 0 such that

{
k ∈ N :

[
M

(
|tkn(Au)|

ρ

)]pk
> K

}
∈ I for all n ∈ N

}
.

If we take pk = 1 for all k ∈ N, then the above spaces are denoted by I−cσ0 (M,A),
I − cσ(M,A), I − `σ∞(M,A), respectively.

Theorem 2.1. The spaces I − cσ0 (M,A, p), I − cσ(M,A, p) and I − `σ∞(M,A, p)
are linear spaces.

Proof. The result will be proved only for I−cσ0 (M,A, p). The others follow similarly.
Take any u, v ∈ I − cσ0 (M,A, p). Then for given ε > 0 the sets

S1 =

{
k ∈ N :

[
M

(
|tkn(Au)|

ρ1

)]pk
≥ ε

2D

}
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and

S2 =

{
k ∈ N :

[
M

(
|tkn(Av)|

ρ2

)]pk
≥ ε

2D

}
are contained in I for some ρ1, ρ2 > 0.

By using the inequality (1.1) and the fact that M is nondecreasing and convex,
one can see the following inequality:[
M

(
|tkn(A(λu+ µv)|

ρ

)]pk
≤
[
M

(
|tkn(A(u)|

ρ1

)
+M

(
|tkn(A(v)|

ρ2

)]pk
≤ D

{[
M

(
|tkn(A(u)|

ρ1

)]pk
+

[
M

(
|tkn(A(v)|

ρ2

)]pk}
,

where ρ = max{2|λ|ρ1, 2|µ|ρ2} and λ, µ ∈ C.
If we choose a positive integer k′ from N\S1 ∪ S2, we obtain[

M

(
|tkn(A(λu+ µv)|

ρ

)]pk
< ε.

Hence the set {
k ∈ N :

[
M

(
|tkn(A(λu+ µv))|

ρ

)]pk
≥ ε
}

belongs to the ideal which implies λu + µv ∈ I − cσ0 (M,A, p). This completes the
proof.

�

Theorem 2.2. The inclusions

I − cσ0 (M1, A, p) ∩ I − cσ0 (M2, A, p) ⊆ I − cσ0 (M1 +M2, A, p),

I − cσ(M1, A, p) ∩ I − cσ(M2, A, p) ⊆ I − cσ(M1 +M2, A, p),

I − `σ∞(M1, A, p) ∩ I − `σ∞(M2, A, p) ⊆ I − `σ∞(M1 +M2, A, p)

hold for any Orlicz functions M1 and M2.

Proof. Let u belong to the intersection of I − cσ0 (M1, A, p) and I − cσ0 (M2, A, p).
Since the inequality[
(M1 +M2)

(
|tkn(A(u)|

ρ

)]pk
=

[
M1

(
|tkn(A(u)|

ρ

)
+M2

(
|tkn(A(u)|

ρ

)]pk
≤ D

{[
M1

(
|tkn(A(u)|

ρ

)]pk
+

[
M2

(
|tkn(A(u)|

ρ

)]pk}
holds, the result is obvious.

The other inclusions can be shown similarly. �

Theorem 2.3. Let M2 satisfy ∆2 condition. Then the inclusions

I − cσ0 (M1, A, p) ⊆ I − cσ0 (M1 ◦M2, A, p),

I − cσ(M1, A, p) ⊆ I − cσ(M1 ◦M2, A, p),

I − `σ∞(M1, A, p) ⊆ I − `σ∞(M1 ◦M2, A, p)

hold for any Orlicz functions M1 and M2.
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Proof. We prove the theorem in two parts. Firstly, let M1

(
|tkn(A(u)|

ρ

)
> δ. By us-

ing the properties of an Orlicz function and the fact that M2 satisfies ∆2 condition,
we have[

M2

(
M1

(
|tkn(Au)|

ρ

))]pk
≤ (Kδ−1M2(2))pk

[
M1

(
|tkn(Au)|

ρ

)]pk
≤ max

{
1, (Kδ−1M2(2))H

} [
M1

(
|tkn(Au)|

ρ

)]pk
,

where K ≥ 1 and δ < 1. From the last inequality, the inclusion{
k ∈ N :

[
M2

(
M1

(
|tkn(Au)|

ρ

))]pk
≥ ε
}
⊆
{
k ∈ N :

[
M1

(
|tkn(Au)|

ρ

)]pk
≥ ε

max {1, (Kδ−1M2(2))H}

}
is obtained. If u ∈ I − cσ0 (M1, A, p), then the set in the right side of the above

inclusion belongs to the ideal and so
{
k ∈ N :

[
M2

(
M1

(
|tkn(Au)|

ρ

))]pk
≥ ε
}
∈ I.

Secondly, Suppose that M1

(
|tkn(A(u)|

ρ

)
≤ δ. Since M2 is continuous, we have

M2

(
M1

(
|tkn(Au)|

ρ

))
< ε for all ε > 0 which implies I−limk

[
M2

(
M1

(
|tkn(Au)|

ρ

))]pk
=

0 as ε→ 0. This completes the proof.
The other inclusions can be shown similarly. �

Theorem 2.4. If supk[M(t)]pk <∞ for all t > 0, then we have

I − cσ(M,A, p) ⊆ I − `σ∞(M,A, p).

Proof. Let x ∈ I − cσ(M,A, p). The inequality[
M

(
|tkn(A(u)|

ρ

)]pk
≤ D

{[
M

(
|tkn(Au− le)|

ρ1

)]pk
+

[
M

(
|tkn(le)|
ρ1

)]pk}
holds by (1.1), where ρ = 2ρ1. Hence we have{

k ∈ N :

[
M

(
|tkn(Au)|

ρ

)]pk
≥ K

}
⊆
{
k ∈ N :

[
M

(
|tkn(Au− le)|

ρ1

)]pk
≥ ε
}

for all n and some K > 0. Since the set in the right side of the above inclusion
belogs to the ideal, all of its subsets are in the ideal. So{

k ∈ N :

[
M

(
|tkn(Au)|

ρ

)]pk
≥ K

}
∈ I

which completes the proof. �

Theorem 2.5. Let 0 < pk ≤ qk < ∞ for each k ∈ N and ( qkpk ) be bounded. Then

we have
I −W (M,A, q) ⊆ I −W (M,A, p),

where W = cσ0 , c
σ.

Proof. Suppose that u ∈ I − cσ0 (M,A, q). Write αk = pk
qk

. By hypothesis, we have

0 < α ≤ αk ≤ 1. If
[
M
(
|tkn(Au)|

ρ

)]qk
≥ 1, the inequality

[
M
(
|tkn(Au)|

ρ

)]pk
≤[

M
(
|tkn(Au)|

ρ

)]qk
holds. This implies the inclusion{

k ∈ N :

[
M

(
|tkn(Au)|

ρ

)]pk
≥ ε
}
⊆
{
k ∈ N :

[
M

(
|tkn(Au)|

ρ

)]qk
≥ ε
}
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and so the result is obvious. Conversely, if
[
M
(
|tkn(Au)|

ρ

)]qk
< 1, we obtain the

following inclusion{
k ∈ N :

[
M

(
|tkn(Au)|

ρ

)]pk
≥ ε
}
⊆
{
k ∈ N :

[
M

(
|tkn(Au)|

ρ

)]qk
≥ ε1/α

}
since then the inequality

[
M
(
|tkn(Au)|

ρ

)]pk
≤
([
M
(
|tkn(Au)|

ρ

)]qk)α
holds. Hence

we conclude that u ∈ I − cσ0 (M,A, p). �

Theorem 2.6.

(1) If 0 < inf pk ≤ pk ≤ 1 for each k ∈ N, then I−W (M,A, p) ⊆ I−W (M,A),
where W = cσ0 , c

σ.
(2) If 1 ≤ pk ≤ sup pk < ∞ for each k ∈ N, then I − W (M,A) ⊆ I −

W (M,A, p), where W = cσ0 , c
σ.

Proof.

(1) Let u ∈ I−cσ0 (M,A, p). Suppose that k /∈
{
k ∈ N :

[
M
(
|tkn(Au)|

ρ

)]pk
≥ ε
}

for 0 < ε < 1. By hypothesis, the inequalityM
(
|tkn(Au)|

ρ

)
≤
[
M
(
|tkn(Au)|

ρ

)]pk
holds. Then we have k /∈

{
k ∈ N : M

(
|tkn(Au)|

ρ

)
≥ ε
}

which implies{
k ∈ N : M

(
|tkn(Au)|

ρ

)
≥ ε
}
⊆
{
k ∈ N :

[
M

(
|tkn(Au)|

ρ

)]pk
≥ ε
}
.

Hence u ∈ I − cσ0 (M,A) since the set
{
k ∈ N : M

(
|tkn(Au)|

ρ

)
≥ ε
}

in I.

(2) The proof is similar to the first part.

�

Theorem 2.7. The spaces I − cσ0 (M,A, p) and I − `σ∞(M,A, p) are solid.

Proof. Let u ∈ I−cσ0 (M,A, p). Then we have
{
k ∈ N :

[
M
(
|tkn(Au)|

ρ

)]pk
≥ ε
}
∈ I

for all n. If γ = (γk) is a sequence of scalars such that |γk| ≤ 1 for all k ∈ N, then
the following holds:[

M

(
|tkn(Aγu)|

ρ

)]pk
≤
[
M

(
|tkn(Au)|

ρ

)]pk
.

Hence we obtain
{
k ∈ N :

[
M
(
|tkn(Aγu)|

ρ

)]pk
≥ ε
}
⊆
{
k ∈ N :

[
M
(
|tkn(Au)|

ρ

)]pk
≥ ε
}

and so
{
k ∈ N :

[
M
(
|tkn(Aγu)|

ρ

)]pk
≥ ε
}
∈ I which means γu ∈ I − cσ0 (M,A, p).

We conclude that the space I − cσ0 (M,A, p) is solid.
�

Corollary 2.1. The spaces I − cσ0 (M,A, p) and I − `σ∞(M,A, p) are monotone.

Proof. The proof follows from Lemma 1.1. �

Theorem 2.8. If limk pk > 0 and u→ u0(I − cσ(M,A, p)), then u0 is unique.
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Proof. Let limk pk = p0 > 0. We assume that u → u0(I − cσ(M,A, p)) and
u→ v0(I − cσ(M,A, p)). Then there exist ρ1, ρ2 > 0 such that{

k ∈ N :

[
M

(
|tkn(Au− u0e)|

ρ1

)]pk
≥ ε

2D

}
∈ I

and {
k ∈ N :

[
M

(
|tkn(Au− v0e)|

ρ2

)]pk
≥ ε

2D

}
∈ I

for all n ∈ N. Put ρ = max{2ρ1, 2ρ2}. Then the inequality[
M

(
|u0 − v0|

ρ

)]pk
≤ D

{[
M

(
|tkn(Au− u0e)|

ρ1

)]pk
+

[
M

(
|tkn(Au− v0e)|

ρ2

)]pk}
holds. Hence we have for all n ∈ N{
k ∈ N :

[
M

(
|u0 − v0|

ρ

)]pk
≥ ε
}
⊆
{
k ∈ N :

[
M

(
|tkn(Au− u0e)|

ρ1

)]pk
≥ ε

2D

}
∪
{
k ∈ N :

[
M

(
|tkn(Au− v0e)|

ρ2

)]pk
≥ ε

2D

}
.

By this inclusion, we obtain
{
k ∈ N :

[
M
(
|u0−v0|

ρ

)]pk
≥ ε
}
∈ I which means

I − lim
[
M
(
|u0−v0|

ρ

)]pk
= 0. Also we have[

M

(
|u0 − v0|

ρ

)]pk
→
[
M

(
|u0 − v0|

ρ

)]p0
as k → ∞ since the limit of the sequence (pk) is p0 and so

[
M
(
|u0−v0|

ρ

)]p0
= 0.

This implies that u0 = v0.
�
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[9] M. Gürdal, On ideal convergent sequences in 2-normed spaces, Thai J. Math. 4(1) (2006),
85–91.
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E-mail address: mahmutdastan@duzce.edu.tr

DEPARTMENT OF MATHEMATICS, DUZCE UNIVERSITY, DÜZCE, TURKEY
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BLASCHKE APPROACH TO EULER-SAVARY FORMULAE FOR

ONE PARAMETER DUAL HYPERBOLIC SPHERICAL MOTION

ZEHRA EKİNCİ AND H. HÜSEYİN UḠURLU

Abstract. In this paper, we have introduced one parameter dual hyperbolic
spherical motions in the dual Lorentzian space. This examination is given

using Blaschke frame of axodes corresponding to the curves on the unit dual

hyperbolic sphere. By considering Disteli axis on the Blaschke frame we have
obtained Euler Savary formulae for one parameter dual hyperbolic spherical

motions. At the end of this study, by obtaining orthogonal rotation matrices

in the sense of dual Lorentzian type, we have found real and dual invariants
of fixed and moving axodes.

1. Introduction

Line trajectories have an important place in the kinematic design and mecha-
nism. In spatial motions, trajectories of directed lines connected in a moving rigid
body are ruled surface. Differential geometry of ruled surfaces has been widely
used in spatial mechanism, Computer Aided Geometric Design (CAGD), kinematic
modeling of analytical tools of robot science and manufacturing of mechanical prod-
ucts. On dual geometry, many applications of ruled surfaces is studied by using
transference principle or E. Study mapping. By this transfer, ruled surfaces can be
represented by dual spherical curves lying on unit dual sphere of dual space. Then,
a motion of a line in the 3-dimensional space can be studied by the motion of a
unit dual vector of dual space and the properties of this motion can be obtained
[2,3,4,12,19,20,30,32]. On the one parameter spatial motion, instantaneous screw
axis ISA which a pair of ruled surface generates moving axode in the moving space
and fixed axode in the fixed space. Kinematics and geometry of these axodes with
corresponding to dual curves have investigated by some mathematician [2,3,4,14,19].
In the planar kinematics, there exists only one curvature circle and the position of
point is given in the moving plane, then the radius and center of this circle can be
determined by the famous Euler-Savary formulae. Euler-Savary formulae of a line
trajectory were studied. This formula have introduced on the spherical kinematics
[2, 3,14,30]. Furthermore, Lorentzian space kinematics is more different and more

2010 Mathematics Subject Classification. 53A17, 53B30.
Key words and phrases. Euler-Savary formulae, Lorentzian geometry, Motion geometry.
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interesting than the Euclidean case. Differential geometry of curves and surfaces
in the Lorentzian space are studied [1,13,17,21,23,26,27,28,29]. In this space, the
spherical motions are studied according to the Lorentzian casual characters of the
lines. Then, the spherical motion is called hyperbolic spherical motion if the mo-
tion is determinated by moving and fixed unit hyperbolic spheres and the spherical
motion is called Lorentzian spherical motion if it is determinate by moving and
fixed unit Lorentzian spheres [16,22]. Similar to the Euclidean case, by considering
the E. Study mapping of timelike and spacelike lines, the motions of these lines are
studied in dual Lorentzian space and the properties of these motions are obtained
[25]. One parameter spherical motion have investigated at reel and dual Lorentzian
spaces [5,8,16,24,25]. The purpose of this paper is to introduce one parameter dual
hyperbolic spherical motions on the dual Lorentzian space. By considering Disteli
axis on the Blaschke frame we have obtained Euler Savary formulae for one param-
eter dual hyperbolic spherical motions. At the end of this study, we have found
real and dual invariants of fixed and moving axodes by using orthogonal rotation
matrices in the sense of dual Lorentzian type 3× 3.

2. Lorentz Space

Let R3
1 be a 3-dimensional Minkowski space over the field of real numbers R with

the Lorentzian inner product 〈 , 〉 given by〈
~a,~b
〉

= −a1b 1 + a2b 2 + a3b3,

where ~a = ( a 1, a 2, a 3), ~b = ( b 1 , b2 , b3) ∈ R3. A vector ~a = ( a 1, a 2, a 3)
of IR3

1 is said to be timelike if 〈~a,~a〉 < 0, spacelike if 〈~a,~a〉 > 0 or ~a = 0, and
lightlike (null) if 〈~a,~a〉 = 0 and ~a 6= 0. Similarly, an arbitrary curve ~α(s) in R3

1 is
spacelike, timelike or lightlike (null), if all of its velocity vectors ~α′(s) are spacelike,
timelike or lightlike (null), respectively [15]. The norm of a vector ~a is defined by

‖~a‖ =
√
| 〈~a,~a〉 |. Now, let ~a = ( a 1, a 2, a 3) and ~b = ( b1, b2, b3 ) be two vectors

in IR3
1. Then the Lorentzian cross product of ~a and ~b is given by

~a × ~b = ( a2b 3 − a3b 2 , a1b 3 − a 3b1, a2 b1 − a 1b2 ) .

The sets of the unit timelike and spacelike vectors are called hyperbolic unit
sphere and Lorentzian unit sphere and denoted by

H2
0 =

{
~a = ( a 1, a 2, a 3) ∈ R3

1 : 〈~a,~a〉 = −1
}
,

and

S2
1 =

{
~a = ( a 1, a 2, a 3) ∈ R3

1 : 〈~a,~a〉 = 1
}
,

respectively [28].

3. Dual Space

A dual number has the form λ̄ = λ+ ελ∗, where λ and λ∗ are real numbers and
ε is called dual unit which is subject to following rules:

ε 6= 0 , ε2 = 0, 0ε = ε 0 = 0, 1 ε = ε 1 = ε .

We denote the set of all dual numbers by D:



ONE PARAMETER DUAL HYPERBOLIC SPHERICAL MOTION 97

D =
{
λ̄ = λ + ελ∗ : λ , λ∗ ∈ R , ε2 = 0

}
.

Equality, addition and multiplication are defined in D by
(i) λ+ ελ∗ = β + εβ∗ if and only if λ = β and λ∗ = β∗.
(ii)(λ+ ελ∗) + (β + εβ∗) = (λ+ β) + ε(λ∗ + β∗).
(iii) (λ+ ελ∗)(β + εβ∗) = (λβ) + ε(λ∗β + β∗λ).
respectively. Then it is easy to show that (D , + , . ) is a commutative ring with

unity [20].
The dual number ā = a+ εa∗ divide by dual number b̄ = b+ εb∗, with b 6= 0, is

defined by

ā

b̄
=
a

b
+ ε

a∗b− ab∗

b2
.

Let f be a differentiable function with dual variable x̄ = x + εx∗. Then the
Maclaurin series generated by f is

f (x̄) = f (x + ε x∗) = f (x ) + ε x∗f ′ (x ),

where f ′ (x ) is the derivative of f with respect to x.
Let D3 be the set of all triples of dual numbers, i.e.

D3 = { ã = (ā1, ā2 , ā3) | āi ∈ D, 1 ≤ i ≤ 3} .
The elements of D3 are called dual vectors. A dual vector ã may be expressed

in the form ã = ~a + ε~a∗, where ~a and ~a∗ are the vectors of R 3. Let ã = ~a + ε~a∗,

b̃ = ~b+ ε~b∗ ∈ D3 and λ̄ = λ+ ε λ∗ ∈ D. Then we define

ã + b̃ = ~a + ~b + ε (~a∗ + ~b∗),
λ̄ ã = λ~a+ ε(λ~a∗ + λ∗~a) .

By these operations, D3 becomes a unitary module and it is called D-module or
dual space (See [7,9]).

For any dual vectors ã = ~a+ε~a∗ and b̃ = ~b+ε~b∗ in D3, scalar product and vector
product are defined by〈

ã, b̃
〉

=
〈
~a,~b
〉

+ ε
(〈
~a,~b∗

〉
+
〈
~a∗,~b

〉)
,

and

ã× b̃ = ~a×~b+ ε
(
~a×~b∗ + ~a∗ ×~b

)
,

respectively, where
〈
~a,~b
〉

and ~a × ~b are inner product and vector product of the

vectors ~a and ~b in R3, respectively.
The norm of a dual vector ã is given by

‖ã‖ =
√
〈ã, ã〉 = ‖~a‖+ ε

〈~a,~a∗〉
‖~a‖

,~a 6= ~0.

Definition 3.1 (7,30). The set of all unit dual vectors is called unit dual sphere,

and is denoted by S̃2 and this sphere is defined by

S̃2 =
{
ã ∈ D3

∣∣ ||ã|| = (1, 0)
}
.
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Theorem 3.2. (E. Study’s Mapping): There exists a one-to-one correspondence

between the points of unit dual sphere S̃2 and the directed lines of the space R3 [7].

4. Dual Lorentzian Space

The Lorentzian inner product of two dual vectors ã = ~a + ε~a∗, b̃ = ~b+ε~b∗ ∈ D3

is defined by 〈
ã, b̃

〉
=
〈
~a , ~b

〉
+ ε

(〈
~a , ~b∗

〉
+
〈
~a∗, ~b

〉)
,

where
〈
~a , ~b

〉
is the Lorentzian inner product of the vectors ~a and~b in the Minkowski

3-space R3
1. Then, a dual vector ã = ~a + ε~a∗ is said to be dual timelike if ~a is

timelike, dual spacelike if ~a is spacelike or ~a = 0 and dual lightlike (null) if ~a is
lightlike (null) and ~a 6= 0 [25].

The set of all dual Lorentzian vectors is called dual Lorentzian space and it is
denoted by

D3
1 =

{
ã = ~a + ε~a∗ : ~a , ~a∗ ∈ R3

1

}
.

The Lorentzian cross product of dual vectors ã,b̃ ∈ D3
1 is defined by

ã × b̃ = ~a ×~b + ε (~a∗ × ~b + ~a × ~b∗) ,
where ~a × ~b is the Lorentzian cross product in R3

1.
Let ã = ~a+ ε~a∗ ∈ D3

1 . Then ã is said to be unit dual timelike (resp. spacelike)
vector if the vectors ~a and ~a∗ satisfy the following equations:

< ~a,~a >= −1 (resp. < ~a,~a >= 1), < ~a , ~a∗ > = 0.

The set of all unit dual timelike vectors is called dual hyperbolic unit sphere,
and is denoted by H̃2

0 . Similarly, the set of all unit dual spacelike vectors is called

dual Lorentzian unit sphere, and is denoted by S̃2
1 and these spheres are defined by

H̃2
0 =

{
ã ∈ D3

1 : 〈ã, ã〉 = −1
}
, S̃2

1 =
{
ã ∈ D3

1 : 〈ã, ã〉 = 1
}

respectively (See [21,25,28]).

Definition 4.1 (18,31). (i) Dual hyperbolic angle: Let ã and b̃ be dual timelike

vectors in D3
1. Then the dual angle between ã and b̃ is defined by < ã, b̃ >=

−‖ã‖
∥∥∥b̃∥∥∥ cosh θ̄. The dual number θ̄ = θ + εθ∗ is called the dual hyperbolic angle.

The geometric interpretation of dual hyperbolic angle is that θ is the real hyperbolic
angle between timelike lines L1, L2 corresponding to the dual timelike unit vectors
ã, b̃, respectively, and θ∗ is the shortest distance between those lines.

(ii) Dual central angle: Let ã and b̃ be dual spacelike vectors in D3
1 that span

a dual timelike vector subspace. The dual angle between ã and b̃ is defined by∣∣∣< ã, b̃ >
∣∣∣ = ‖ã‖

∥∥∥b̃∥∥∥ cosh θ̄. The dual number θ̄ = θ+ εθ∗ is called the dual central

angle. The geometric interpretation of dual central angle is that θ is the real
central angle between spacelike lines L1, L2 corresponding to the dual spacelike
unit vectors ã, b̃ in D3

1 that span a dual timelike vector subspace, respectively, and
θ∗ is the shortest distance between those lines.
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(iii) Dual spacelike angle: Let ã and b̃ be dual spacelike vectors in D3
1 that span

a dual spacelike vector subspace. Then the angle between ã and b̃ is defined by

< ã, b̃ >= ‖ã‖
∥∥∥b̃∥∥∥ cos θ̄. The dual number θ̄ = θ + εθ∗ is called the dual spacelike

angle. The geometric interpretation of dual spacelike angle is that θ is the real
spacelike angle between spacelike lines L1, L2 corresponding to the dual spacelike
unit vectors ã, b̃ in D3

1 that span a dual spacelike vector subspace, respectively,
and θ∗ is the shortest distance between those lines.

(iv) Dual timelike angle: Let ã be a dual spacelike vector and b̃ be a dual

timelike vector in D3
1. Then the angle between ã and b̃ is defined by

∣∣∣< ã, b̃ >
∣∣∣ =

‖ã‖
∥∥∥b̃∥∥∥ sinh θ̄. The dual number θ̄ = θ+ εθ∗ is called the dual timelike angle. The

geometric interpretation of dual timelike angle is that θ is the real timelike angle
between spacelike line L1 and timelike line L2 corresponding to the dual spacelike
unit vector ã and timelike unit vector b̃, respectively, and θ∗ is the shortest distance
between those lines.

Theorem 4.2 (E. Study’s Mapping for Lorentzian Space). : The dual timelike
(respectively spacelike) unit vectors of the dual hyperbolic (respectively Lorentzian)

unit sphere H̃2
0 (respectively S̃2

1) are in one-to-one correspondence with the directed
timelike (respectively spacelike) lines of the Minkowski 3-space IR3

1 [25].

5. Differential Geometry of Dual Hyperbolic Spherical Curves

q̃ = ~q(t)+ε~q∗(t) be a unit dual timelike vector is connected to a real parameter t ,

this vector draws a curve on the unit dual hyperbolic sphere H̃2
0 . Applying Study’s

map, this curve represents a timelike ruled surface M . If the ruling ~q is timelike,
then the ruled surface M is said to be of type M1

− [11]. Therefore, differential
geometry of dual hyperbolic spherical curves corresponds to differential geometry
of timelike ruled surface M1

−.

Let dθ̄ = dθ + εdθ∗ dual arc-length of dual hyperbolic spherical curve q̃ = q̃(t).
Thus, we have

(5.1) dθ̄2 = 〈d~q, d~q〉+ 2ε 〈d~q, d~q∗〉

Hence we obtain

(5.2) dθ2 = 〈d~q, d~q〉 , dθdθ∗ = 〈d~q, d~q∗〉 .

Therefore, differential invariant of timelike ruled surface M1
− given by

(5.3) δq =
dθ∗

dθ
=
〈d~q, d~q∗〉
〈d~q, d~q〉

=

〈
~q′, ~q∗′

〉
〈~q′, ~q′〉

.

The invariant δq is said to be distribution parameter (or drall) of the timelike

ruled surface. If
〈
~q′, ~q′

〉
= 0, the ruled surface is said to be timelike cylindrical and

we except this case [17,21].
We now give an orthonormal moving frame of a dual hyperbolic spherical curve

as follows:
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(5.4) q̃ = q̃(t), h̃ =
q̃′

‖q̃′‖
, ã = −q̃ × h̃.

This frame is called the Blaschke frame, and the corresponding lines intersect
at the striction point of timelike ruled surface M1

−. The set of the striction points
constitute a curve C = C(t) lying on the timelike ruled surface M1

− and is called

striction curve. h̃ and ã are known as the central tangent and the central normal
of the timelike ruled surface M1

−. So, Blaschke formula is given by

(5.5)


q̃′ = k̄1h̃, k̄1 =

√
〈q̃′, q̃′〉

h̃′ = k̄1q̃ + k̄2ã, k̄2 = − (q̃,q̃′,q̃′′)
〈q̃′,q̃′〉

ã′ = −k̄2h̃

and

(5.6)
dC

dt
= cosh φ̄q̃ + sinh φ̄ã

where k̄1, k̄2 are called the Blaschke’s invariants. From (5.5) for dual vector ψ̃ =
~ψ + ε~ψ∗ = −k̄2q̃ − k̄1ã we can write

q̃′ = ψ̃ × q̃, h̃′ = ψ̃ × h̃, ã′ = ψ̃ × ã,
where dual vector ψ̃ = ~ψ + ε~ψ∗ = −k̄2q̃ − k̄1ã is called the dual instantaneous
Pfaffian vector. The pole vector and the Steiner vector of the motion are given by

(5.7) ψ̃ =
∥∥∥ψ̃∥∥∥ P̃ , d̃ =

∮
ψ̃,

respectively [17,21].

6. One Parameter Dual Hyperbolic Spherical Motions

Let two coordinate systems
{
O′; ~qf ,~hf ,~af

}
and

{
O; ~qm,~hm,~am

}
be orthonor-

mal coordinate systems which one represents fixed space L2 and which one repre-
sents moving space L3 in R3

1 , respectively, where ~qf and ~qm are assumed as timelike
vectors. In order to introduce the motion L3/L2 let take the coordinate system{
Q; ~q,~h,~a

}
as an orthonormal relative system which represent the relative space

L1. Let Σ1, Σ2 and Σ3 be unit dual hyperbolic spheres with same center O. Accord-
ing to the E. Study mapping, the points of unit dual hyperbolic spheres Σ1, Σ2 and

Σ3 can be represented by dual orthogonal systems
{
O; q̃, h̃, ã

}
,
{
O; q̃f , h̃f , ãf

}
and{

O; q̃m, h̃m, ãm

}
, respectively. Therefore, the motions L1/L2, L1/L3 and L3/L2

can be considered as dual hyperbolic spherical motions Σ1/Σ2, Σ1/Σ3 and Σ3/Σ2,
respectively.

Let Af and Am be a unit dual Lorentzian orthogonal matrices of type 3× 3 and
we can write

(6.1) Σ1 = AfΣ2, Σ1 = AmΣ3,
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where

Σ1 =

 q̃

h̃
ã

 , Σ2 =

 q̃f
h̃f
ãf

 , Σ3 =

 q̃m
h̃m
ãm


are dual column matrices. The elements of the matrices Af and Am are continuous
and differentiable functions of dual parameter t̄ = t + εt∗. In order to introduce
one parameter hyperbolic motion we assume that t∗ = 0.

Differential of the relative orthonormal coordinate frame Σ1 with respect to unit
dual fixed and moving hyperbolic spheres Σ2 and Σ3 are

(6.2) dΣ1f = dAfΣ2 = dAf (Af )−1Σ1, dΣ1m = dAmΣ3 = dAm(Am)−1Σ1.

By choosing Ω̃f = dAf (Af )−1, Ω̃m = dAm(Am)−1 Eq. (6.2) can be rewritten
as follows

(6.3) dΣ1f = Ω̃fΣ1, dΣ1m = Ω̃mΣ1

where Ω̃f and Ω̃m matrices are anti-symmetric in the sense of Lorentzian.
During the one parameter dual hyperbolic motion Σ3/Σ2 the differential velocity

vector of a fixed dual hyperbolic point X̃i = ~xi + ε~x∗i (1 ≤ i ≤ 3) on Σ3 is

(6.4)
dX̃

dt
= Ω̃× X̃

where Ω̃ = ~ω+ε~ω∗ is called the instantaneous dual hyperbolic Pfaffian vector of the
motion Σ3/Σ2. The Pfaffian dual vector Ω̃ of the motion Σ3/Σ2, at the instant t, is
like to the Darboux vector of space curves in the differential geometry. In this case
ω and ω∗ correspond to instantaneous rotational differential velocity vector and the
instantaneous translational differential velocity vector of corresponding hyperbolic

motion L3/L2, respectively. The dual number
∥∥∥Ω̃
∥∥∥ = Ω̄ = ω + εω∗ is said to be

dual angular speed of the one parameter dual hyperbolic motion Σ3/Σ2.
We consider the following identification

(6.5) Ω̄ =

 0 Ω̄3 −Ω̄2

Ω̄3 0 −Ω̄1

−Ω̄2 Ω̄1 0

⇔
 Ω̄1

Ω̄2

Ω̄3

 = Ω̃.

Lemma 6.1. For a one parameter dual hyperbolic spherical motion the following
conditions are provided:

(i) The skew-symmetric in the sense of Lorentzian matrix of type 3 × 3 deter-

mined by Ω̃m(t) = A−1A′ is called the moving polode.
(ii) The skew-symmetric in the sense of Lorentzian matrix of type 3× 3 deter-

mined by Ω̃f (t) = A′A−1 is called the fixed polode.

(iii) The moving and fixed polodes are related by Ω̃f (t) = adA(t)Ω̃m(t), where

adAΩ̃m = AΩ̃mA
−1.

(iv)
∥∥∥Ω̃f

∥∥∥ =
∥∥∥Ω̃m

∥∥∥.
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(v) q̃f (t) =
Ω̃f (t)

‖Ω̃f (t)‖ and q̃m(t) = Ω̃m(t)

‖Ω̃m(t)‖ are called the fixed axode and moving

axodes of the one parameter dual hyperbolic motion Σ3/Σ2, respectively.

(vi)
dq̃f
dt = adAdq̃m

dt ⇔
dq̃f
dt = Adq̃m

dt A
−1 [5].

During the dual hyperbolic motion Σ3/Σ2, the differentiable curve

(6.6) t ∈ R→ q̃m(t) ∈ Σ3

states a differentiable family of straight lines on the moving axode. Now give an
orthonormal moving frame along curve q̃m(t) ;

(6.7) q̃m = q̃m(t) (timelike), h̃m =

(
dq̃m
dt

)∥∥∥∥dq̃mdt
∥∥∥∥−1

, ãm = −q̃m × h̃m.

This frame is called the Blaschke frame, and the corresponding lines intersect at
the striction point of the axode q̃m = q̃m(t) . ãm and h̃m are described as the central
tangent and central normal of the timelike ruled surface q̃m = q̃m(t) , respectively.

Let Σm
1 be a dual unit hyperbolic sphere generated by the set

{
O; q̃m, h̃m, ãm

}
.

Therefore, the motion Σm
1 /Σ3 is given by

(6.8)

 dq̃m
dh̃m
dãm

 =

 0 k̄1m 0
k̄1m 0 k̄2m

0 −k̄2m 0

 q̃m
h̃m
ãm


where dual functions

(6.9) k̄1m = k1m + εk∗1m =

∥∥∥∥dq̃mdt
∥∥∥∥ , k̄2m = k2m + εk∗2m = −

det
(
q̃m,

dq̃m
dt ,

d2q̃m
dt2

)
k̄2

1m

are called Blaschke invarians of the moving axode. Striction curve is given by

(6.10)
dCm

dt
= k̄∗2mq̃m + k̄∗1mãm.

In this case dual functions in Eq. (6.9) abide by

(6.11) k̄1m = k1m + ε sinh σ̄m, k̄2m = k2m + ε cosh σ̄m

where σ̄m is the striction angle measuring the derivation of the generating lines of
q̃m(t) from the striciton curve. The distribution of timelike moving axode is

(6.12) λm =
k∗1m
k1m

=
sinh σ̄m
k1m

.

During the one parameter dual hyperbolic motion Σ3/Σ2, the ISA on fixed hy-
perbolic sphere Σ2 generates the fixed polode which accepts the Blaschke frame

(6.13) q̃f = q̃f (t)(timelike), h̃f =

(
dq̃f (t)

dt

)∥∥∥∥dq̃fdt
∥∥∥∥−1

, ãf = −q̃f × h̃f .

Similarly, the set
{
O; q̃f , h̃f , ãf

}
describes a unit dual hyperbolic sphere Σf

1 , and

the hyperbolic spherical motion Σf
1/Σ2 is given by
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(6.14)

 dq̃f
dh̃f
dãf

 =

 0 k̄1f 0
k̄1f 0 k̄2f

0 −k̄2f 0

 q̃f
h̃f
ãf


where the dual functions

(6.15) k̄1f = k1f + εk∗1f =

∥∥∥∥dq̃fdt
∥∥∥∥ , k̄2f = k2f + εk∗2f = −

det
(
q̃f ,

dq̃f
dt ,

d2q̃f
dt2

)
k̄2

1f

are the Blaschke invariants of fixed polode. Striction curve is given by

(6.16)
dCf

dt
= k̄∗2f q̃f + k̄∗1f ãf .

Likewise the dual functions in (6.15) are

(6.17) k̄1f = k1f + ε sinh σ̄f , k̄2f = k2f + ε cosh σ̄f ,

where σ̄f is the striction angle between the lines of q̃f (t) and the striction curve.
Therefore, the distribituon parameter of the fixed axode is

(6.18) λf =
k∗1f
k1f

=
sinh σ̄f
k1f

.

Theorem 6.2. Relations between Blaschke invariants of the timelike axodes are
given by the equalities

(6.19) k̄1m = k̄1f , k̄2m − k̄2f =
∥∥∥Ω̃
∥∥∥ .

Proof. Using (6.8) and (6.14) and Lemma (6.1) can be easily proved. �

Consequently, the following corollary can be given.

Corollary 6.3. During the one parameter hyperbolic spherical motion Σ3/Σ2, the
moving polode is contact with the fixed polode along ISA in the first order at any
instant t. The common distribution parameter of timelike axodes is

(6.20) λ := λm = λf =
k∗1
k1
.

Let Σ1 be unit dual hyperbolic sphere generated by the system{
O; q̃(timelike), h̃, ã

}
. In this system, ã(t) = a(t) + εa∗(t) is the common per-

pendicular of q̃(t) and q̃(t + dt) and ã(t) = a(t) + εa∗(t) = −q̃ × h̃ and; q̃, h̃ and
ã correspond to orthogonal lines in the Minkowski 3-space R3

1. Then, the deriva-
tive equations of the one parameter dual hyperbolic spherical motions Σ1/Σ3 and
Σ1/Σ2 are

(6.21)
dq̃

dt

∣∣∣∣
m

= C(M)q̃(t), q̃(t) =

 q̃

h̃
ã

 , C(M) =

 0 k̄1 0
k̄1 0 k̄2m

0 −k̄2m 0

 ,
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and

(6.22)
dq̃

dt

∣∣∣∣
f

= C(F )q̃(t), q̃(t) =

 q̃

h̃
ã

 , C(F ) =

 0 k̄1 0
k̄1 0 k̄2f

0 −k̄2f 0

 ,
respectively,where

(6.23) k̄1 = k1 + εk∗1 , k̄2m = k2m + εk∗2m, k̄2f = k2f + εk∗2f

are the Blaschke invariants of the one parameter dual hyperbolic spherical motion.

7. The approach to a timelike ruled surface with axodes

In this section, we introduce geometrical and kinematic meanings of dual invari-
ants of hyperbolic polodes. In order to this analysis we consider a timelike point X̃
on the unit dual hyperbolic sphere such that its coordinates are

(7.1) −X̄2
1 + X̄2

2 + X̄2
3 = −1, X̃ = XT q̃ X̃ =

 X̄1

X̄2

X̄3

 .
If X̃ is a function of t, the velocity of X̃ at the instant t with according to the

moving unit dual hyperbolic sphere Σ3 and fixed unit dual hyperbolic sphere Σ2

are

(7.2)
dX̃

dt

∣∣∣∣∣
m

=
dX̃T

dt
q̃ + X̃T dq̃

dt

∣∣∣∣
m

and

(7.3)
dX̃

dt

∣∣∣∣∣
f

=
dX̃T

dt
q̃ + X̃T dq̃

dt

∣∣∣∣
f

respectively. From (6.21) and (6.22), we get

(7.4)
dX̃

dt

∣∣∣∣∣
m

=

(
dX̃T

dt
+ X̃TC(M)

)
q̃

and

(7.5)
dX̃

dt

∣∣∣∣∣
f

=

(
dX̃T

dt
+ X̃TC(F )

)
q̃ .

If the line X̃ is fixed relative to the moving unit dual hyperbolic sphere, then

the derivative dX̃
dt

∣∣∣
m

= 0. That is we have

(7.6)
dX̃T

dt
= −X̃TC(M).
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Now, assume that X̃ is fixed according to the moving unit dual hyperbolic sphere
Σ3 and let us compute its velocity according to the fixed unit dual hyperbolic sphere
Σ2. Then we obtain equation

(7.7)
dX̃

dt
= X̃T (C(F )− C(M))q̃.

Let us define a matrix C(R) by

(7.8) C(R) = C(F )− C(M).

Then (7.7) can be rewritten as

(7.9)
dX̃

dt
= X̃T (C(R))q̃.

We have an axial dual vector D̃r = d+ εd∗ such that

(7.10) C(R)X̃ = D̃r × X̃.
Therefore (7.9) can be stated as

(7.11)
dX̃

dt
= D̃r × X̃, D̃r = D̃f − D̃m = −Ω̄q̃,

where
∥∥∥Ω̃
∥∥∥ = Ω̄ = ω + εω∗. Then from Theorem 6.2 and (7.11) we have

(7.12)
dX̃

dt
= (−X̄3Ω̄)h̃+ (X̄2Ω̄)ã.

From (7.11) and (7.12), it follows that the acceleration of X̃ is given by

(7.13)
d2X̃

dt2
= (−Ω̄k̄1X̄3)q̃ + (−Ω̄′X̄3 − Ω̄2X̄2)h̃+ (−Ω̄k̄1X̄1 + Ω̄′X̄2 − Ω̄2X̄3)ã.

8. Line complex during one parameter hyperbolic spherical motion

In this section, we investigate timelike ruled surface generated by the timelike line
X̃. Now we describe a frame moving along the curve X̃(t) on the unit hyberbolic
sphere Σ2. According to transference principle, this curve corresponds to a timelike
ruled surface in the fixed Lorentzian space L2. The Blaschke frame along X̃(t) is
defined as follows:

(8.1) Ẽ1 = X̃ = X̄1q̃ + X̄2h̃+ X̄3ã, (time)

(8.2) Ẽ2 =
X̃ ′∥∥∥X̃ ′∥∥∥ =

−X̄3h̃+ X̄2ã√
X̄2

2 + X̄2
3

(8.3) Ẽ3 = −(Ẽ1 × Ẽ2) = −

(
(1 + X̄2

1 )q̃ + X̄1X̄2h̃+ X̄1X̄3ã√
X̄2

2 + X̄2
3

)
.
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The unit dual timelike vector Ẽ1 is one-to-one correspondence with the directed
timelike line of the Minkowski 3-space IR3

1 and dual spacelike unit vectors Ẽ2, Ẽ3

are one-to-one correspondence with the directed spacelike lines of the Minkowski
3-space. The Blaschke derivative formulas are

(8.4)
d

dt

 Ẽ1

Ẽ2

Ẽ3

 =

 0 k̄1x 0
k̄1x 0 k̄2x

0 −k̄2x 0

 Ẽ1

Ẽ2

Ẽ3


where

(8.5)

k̄1x = k1x + εk∗1x =
∥∥∥dX̃

dt

∥∥∥ = Ω̄
√
X̄2

2 + X̄2
3 ,

k̄2x = k2x + εk∗2x = −det(X̃,X̃′,X̃′′)

(k̄1x)2
= −(Ω̄X̄1 + k̄1xX̄3

X̄2
2+X̄2

3
)

are Blaschke invariants of the timelike curve X̃(t).

Theorem 8.1. During the one parameter dual hyperbolic spherical motion Σ3/Σ2,
consider a set of lines are contact with the timelike moving axode and these lines
are generators of timelike ruled surfaces having the same distribution parameter in
the fixed Lorentzian space L2. Therefore this set of lines belongs to a quadratic line
complex.

Proof. The distribution parameter of the timelike ruled surface generated by the
line X̃ from (8.5) can be stated by

(8.6) λx =
k̄∗1x
k̄1x

=
x2x
∗
2 + x3x

∗
3 + h(x2

2 + x2
3)

(x2
2 + x2

3)
.

This equation can be applied to determine those lines of timelike moving axode
that trace timelike ruled surfaces having the same distribution parameter. This set
of timelike lines is called a line complex and is stated by the equation

(8.7) x2x
∗
2 + x3x

∗
3 + (h− λx)(x2

2 + x2
3) = 0.

This equation shows a quadratic line complex. �

Now let p(x, y, z) be the position vector of an arbitrary point on the timelike line

X̃. In order to introduce (8.7) If we use Lorentzian cross product then,

x∗ = p× x

(8.8) (x∗1, x
∗
2, x
∗
3) =

 ~e1 −~e2 −~e3

x y z
x1 x2 x3

 = (yx3 − zx2, xx3 − zx1, yx1 − xx2).

After that, substituting (8.8) into (8.7) we have

(8.9) x1x3y − x1x2z + (h− λx)(x2
2 + x2

3) = 0.
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This equation represent that the timelike lines X̃ of timelike moving axode that
trace timelike ruled surfaces with the same distribution parameter lie on a plane
parallel to the ISA of the one parameter Lorentzian spatial motion L3/L2.

From (8.9), we have two different cases: In the case of λx = h the distribution
parameter is associated with the lines in planes passing through the ISA. In the case
of λx = 0, the timelike line X̃ of the timelike moving axode, generate a developable
timelike ruled surface, (8.9) reduces to

(8.10) x1x3y − x1x2z + h(x2
2 + x2

3) = 0.

Now, kinematic investigation of Blaschke frame is given by using Blaschke in-
variants k̄1x = k1x + εk∗1x and k̄2x = k2x + εk∗2x . To realize this, we define dual
vector

(8.11) D̃x = −k̄2xẼ1 − k̄1xẼ3

known as Darboux’s vector.
∥∥∥D̃∥∥∥ =

√
k̄2

1x − k̄2
2x = ωx + εω∗x is the angular speed

of timelike line Ẽ1 about the Darboux vector.

(8.12) ωx =
√
|k2

1x − k2
2x| , ω∗x =

k1xk
∗
1x − k2xk

∗
2x√

|k2
1x − k2

2x|
are the rotational angular speed and translational angular speed of timelike line
Ẽ1, respectively. The pitch of Ẽ1 along the Darboux vector is

(8.13) hx =
ω∗x
ωx

=
k1xk

∗
1x − k2xk

∗
2x

k2
1x − k2

2x

.

Disteli axis is axis of hyperbolic motion of the timelike line Ẽ1 and it’s defined
by

(8.14) Ũ =
D̃x∥∥∥D̃x

∥∥∥ =
−k̄2xẼ1 − k̄1xẼ3√

k̄2
1x − k̄2

2x

.

From (8.14), the Disteli axis is parallel to tangent plane of timelike ruled surface

X̃ = X̃(t), and is unit dual timelike vector. Then the ISA of one parameter
hyperbolic spherical motion Σ3/Σ2 and the Disteli axis lie on a single great dual

hyperbolic circle determined by the intersection of Ẽ1Ẽ3-plane and the unit dual
hyperbolic sphere Σ2. Now let ∆ = δ + εδ∗ be the dual hyperbolic angle between
the Disteli axis and the timelike line X̃; then we have

(8.15) Ũ = − cosh ∆ Ẽ1 − sinh ∆ Ẽ3,

where ∆ = δ+ εδ∗ is dual hyperbolic spherical radius of curvature. For differential
of (8.15) we have

(8.16) Ũ ′ = (−sinh∆ Ẽ1 − cosh ∆ Ẽ3)∆′ + (k̄2x sinh ∆− k̄1x cosh ∆)Ẽ2

and
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(8.17) coth ∆ =
k̄2x

k̄1x
.

This equation shows that the relationship between the dual hyperbolic spherical
curvature ρ̄ and the dual hyperbolic spherical radius of curvature is

(8.18) ρ̄ = ρ+ ερ∗ = coth ∆.

9. During one parameter hyperbolic spherical motion line
trajectories and Euler Savary formulae

In this section, by using dual hyperbolic angle we give a different method for
deriving a new Euler-Savary formula of Lorentzian spatial kinematics. This means
that we investigate an oriented timelike line in the moving Lorentzian space L3 with
a fixed hyperbolic angle with respect to a given timelike line in the fixed Lorentzian
space L2.

Theorem 9.1. Let Σ3/Σ2 be the one parameter dual hyperbolic motion. In this
case, the relation between the spherical radii of curvature of the pole curves is given
by

(9.1) (coth θ̄c − coth θ̄) sin φ̄ = ρ̄ =
Ω̄

k̄1
= coth γ̄f − coth γ̄m,

where γ̄f and γ̄m are the dual hyperbolic spherical curvatures, Ω̄ is the dual screw
velocity and k̄1m = k̄1f are dual invariants.

Proof. For instantaneous fixed timelike line X̃ of the hyperbolic motion Σ3/Σ2, we
present the dual hyperbolic angle θ̄ = θ+ εθ∗ and dual spacelike angle φ̄ = φ+ εφ∗

to determine the direction of timelike line X̃. Because X̃ is a unit dual timelike
vector, we can give the components of X̃ in the following form:

(9.2) X̃ = cosh θ̄q̃ + sinh θ̄L̃, L̃ = cos φ̄h̃+ sin φ̄ã.

The dual hyperbolic angle θ̄ = θ + εθ∗ describes the position of timelike line X̃
relative to the ISA of the one parameter dual hyperbolic spherical motion Σ3/Σ2.

A similar set of coordinates may be used to determine the timelike Disteli axis
Ũ of the timelike ruled surface X̃ = X̃(t). Since central normal Ẽ2 is also normal
to the timelike Disteli axis, it is determined by the same dual central angle ϕ̄ about
the ISA of the hyperbolic motion Σ3/Σ2. Describing its dual hyperbolic angle with
the ISA by θ̄c = θc + εθ∗c , we can write

(9.3) Ũ = cosh θ̄c q̃ + sinh θ̄c cos ϕ̄ h̃+ sinh θ̄c sin ϕ̄ ã.

From (9.2) and (9.3) we have

(9.4)
〈
X̃, Ũ

〉
= − cosh(θ̄c − θ̄).

This equation describes a hyperbolic circle on the dual hyperbolic unit sphere
Σ2 where (θ̄c − θ̄) a given dual hyperbolic spherical radius is and Ũ is a fixed dual
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Figure 1. The moved timelike line X̃ and its timelike Disteli axis Ũ

unit timelike vector which identifies the hyperbolic circle’s center. According to
E. Study’s map (9.4) defines the set of all oriented timelike lines X̃. Like this a
set of timelike lines depends on two parameters and is called linear timelike line
congruence. Since osculating hyperbolic circle should have contact of at least second
order with the curve, timelike Disteli axis Ũ and (θ̄c − θ̄) remain constant up to
second order at t = t0, that is

(9.5)
d(θ̄c − θ̄)

dt

∣∣∣∣
t=t0

= 0,
dŨ

dt

∣∣∣∣∣
t=t0

= 0

and

(9.6)
d2(θ̄c − θ̄)

dt2

∣∣∣∣
t=t0

= 0,
d2Ũ

dt2

∣∣∣∣∣
t=t0

= 0.

From differentiation of (9.4) and equation (9.5) we have

(9.7)

〈
dX̃

dt
, Ũ

〉
= 0.

We have second order

(9.8)

〈
d2X̃

dt2
, Ũ

〉
= 0.

We substitute from (7.13) and (9.3) into (9.8) and obtain:
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(9.9) (coth θ̄c − coth θ̄) sin φ̄ =
Ω̄

k̄1
.

This equation is dual hyperbolic Euler-Savary equation of one parameter dual
hyperbolic spherical motion Σ3/Σ2 [24]. By using (8.18) we can rewrite Euler-
Savary equation the form as desired

(9.10) (coth θ̄c − coth θ̄) sin φ̄ = ρ̄.

If this equation separate real and dual part then we have

(9.11) (coth θc − coth θ) sinφ = ρ

and

(9.12) (coth θc − coth θ)φ∗ cosφ−
(

θ∗c
sinh2 θc

− θ∗

sinh2 θ

)
sinφ = ρ∗.

Lorentzian Euler-Savary Eq. (9.11) together with (9.12) is called Disteli formulae
of axode of dual hyperbolic spherical motion. (9.11) is Euler-Savary equation for
axode of real hyperbolic spherical motion in the Lorentzian space. In order to Eq.
(9.12) simplified to reduce by using (9.11) we have

(9.13) ρφ∗ cotφ−
(

θ∗c
sinh2 θc

− θ∗

sinh2 θ

)
sinφ = ρ∗.

�

10. Example

In this section we display the use of dual Lorentzian vectors for denoting the ISA
of the one parameter dual hyperbolic spherical motion Σ3/Σ2. The one parameter
dual hyperbolic spherical motion Σ3/Σ2 can be denoted analytically by the matrix
equation

(10.1) x̃f (t) = A(t)x̃m(t) + m̃f (t) , x̃m(t) = A−1(t)x̃f (t) + m̃m(t)

where x̃f , x̃m are vectors of a same point, with respect to the orthonormal frames of
the moving space and fixed space, respectively, and m̃f , m̃m and A are differentiable
functions of a dual parameter t̄ = t+εt∗ , since we study one parameter hyperbolic
spherical motion we consider the case t∗ = 0. Also we know that

(10.2) m̃f = −Am̃m , m̃m = −A−1 m̃f

where A and A−1 matrices are anti-symmetric in the sense of Lorentzian.
The velocity of a fixed point x̃m ∈ Σ3 is

(10.3) x̃′f = A′x̃m + m̃′f .

From (10.1) we get

(10.4) x̃′f = A′A−1x̃f + (m̃′f −A′A−1m̃f ).



ONE PARAMETER DUAL HYPERBOLIC SPHERICAL MOTION 111

If we consider matrix ω = A′A−1 is anti-symmetric in the sense of Lorentzian,
then Eq. (10.4) can be rewritten in the form

(10.5) x̃′f = ω x̃f + (m̃′f − ω m̃f ).

As a consequence of this equation, there is a dual vector

(10.6) Ω̃(t) = ω(t) + ε ω∗(t)

such that

(10.7) ωxf = ω × xf ; ω∗ = (m′ − ω ×m).

Now we give a simple example using by above statement. First we consider
the one parameter dual hyperbolic spherical motion Σ3/Σ2 denoting by the dual
Lorentzian orthogonal matrix

(10.8) A = R1 ·R2 =

 cosh2 φ − sinhφ − coshφ sinhφ

− sinhφ coshφ coshφ sinh2 φ
− sinhφ 0 coshφ


such that

(10.9) R1 =

 cosh θ̄ − sinh θ̄ 0
− sinh θ̄ cosh θ̄ 0
0 0 1

 , R2 =

 cosh φ̄ 0 − sinh φ̄
0 1 0
− sinh φ̄ 0 cosh φ̄


where we assume that θ̄ = φ̄, θ∗ = φ∗ = 0. Also we consider an anti-symmetric in
the sense of Lorentzian matrix

(10.10) m(φ) =

 0 0 µ sinhφ
0 0 −µ coshφ
µ sinhφ µ coshφ 0

 ,

where we assume that µ > 1. Since q̃, q̃m, q̃f are timelike vectors we can write

(10.11) m(φ) =

 µ coshφ
µ sinhφ
0

 .

If we substitute the (10.8) and (10.10) in (10.7), we have

(10.12) ω(φ) =

 − sinhφ
− coshφ
1

 , ω∗(φ) =

 2µ sinhφ
2µ coshφ
µ

 .

Therefore the dual hyperbolic Pfaffian dual vector Ω̃ at the instant φ of the one
parameter dual hyperbolic spherical motion Σ3/Σ2 is
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(10.13) Ω̃(φ) = ω (φ) + εω∗(φ) =

 − sinhφ+ 2εµ sinhφ
− coshφ+ 2εµ coshφ
1 + εµ

 .

Fixed axode is given by

(10.14) q̃f (φ) =
Ω̃∥∥∥Ω̃
∥∥∥ =

1√
2− 2εµ

 − sinhφ+ 2εµ sinhφ
− coshφ+ 2εµ coshφ
1 + εµ

 .

Moving polode on Σ3 is denoted by

(10.15) Ωm =
dM−1

dφ
·M ; M = (A+ εmA)

where

M =

 cosh2 φ+ εµ(− sinh2 φ) − sinhφ − sinhφ coshφ+ εµ(sinhφ coshφ)

− sinhφ coshφ+ εµ(sinhφ coshφ) coshφ sinh2 φ− εµ(cosh2 φ)
− sinhφ εµ coshφ

 .

Therefore the moving axode is given by

(10.16) q̃m(φ) =
Ω̃m∥∥∥Ω̃m

∥∥∥ =
1√

2− 2εµ

 sinhφ
1− εµ
− coshφ

 .

Now we introduce the Blaschke invariants of the fixed axode q̃ = q̃f (φ). For the
one parameter hyperbolic spherical motion Σ3/Σ2, from (10.14), we can give

(10.17) Ω̃f (φ) = Ω̄ q̃(φ); Ω̄ =
√

2− 2εµ.

For differential of (10.17) with respect to φ, we have

(10.18)
dΩ̃f

dφ
= Ω̃′f = Ω̄′q̃ + k̄1Ω̄h̃

and by writing the (6.22) in the differentiation of (10.18)we obtain

(10.19) Ω̃′′f = (Ω̄′′ + k̄2
1Ω̄)q̃ + (2k̄1Ω̄′ + k̄′1Ω̄)h̃+ (k̄1Ω̄k̄2f )ã.

Further, if we consider Lorentzian vectorial product of (10.18) and (10.19) we
find

(10.20) Ω̃f (φ)× Ω̃′f (φ) = −k̄1Ω̄2ã.

And then by using following Lorentzian property

(10.21)∥∥∥Ω̃f (φ)× Ω̃′f (φ)
∥∥∥ = −

〈
Ω̃f (φ), Ω̃f (φ)

〉〈
Ω̃′f (φ), Ω̃′f (φ)

〉
+
(〈

Ω̃f (φ), Ω̃′f (φ)
〉)2
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we find that

(10.22) −
〈
Ω̄q̃, Ω̄q̃

〉 〈
Ω̄′q̃ + k̄1Ω̄h̃ , Ω̄′q̃ + k̄1Ω̄h̃

〉
+
(〈

Ω̄q̃, Ω̄′q̃ + k̄1Ω̄h̃
〉)2

= k̄2
1Ω̄4.

Finally, we have

(10.23) det(Ω̃f , Ω̃
′
f , Ω̃

′′
f ) = k̄2

1Ω̄3k̄2f .

From (10.13) we can give

(10.24) Ω̃′f (φ) =

 − coshφ+ 2εµ coshφ
− sinhφ+ 2εµ sinhφ
0


and

(10.25) Ω̃′′f (φ) =

 − sinhφ+ 2εµ sinhφ
− coshφ+ 2εµ coshφ
0

 .

From (10.13) and (10.14) we obtain

(10.26)
〈

Ω̃f (φ), Ω̃′f (φ)
〉

= 0

and so

(10.27)
(〈

Ω̃f (φ), Ω̃′f (φ)
〉)2

= 0.

Besides, we have

(10.28)
〈

Ω̃′f (φ), Ω̃′f (φ)
〉

= −1 + 4εµ.

Substituting the (10.13), (10.27) and (10.28) in (10.22), we find

(10.29) −(2− 2εµ)(−1 + 4εµ) = k̄2
1Ω̄4.

If we separate the real and dual parts the (10.29), we have

(10.30) k1 = ± 1√
2
, k∗1 = −3

√
2µ

4
.

By using (6.20) we find that the common distribution parameter of the axodes
is given by

(10.31) λ =
3µ

2
.

From (10.13), (10.23), (10.24) and (10.25), we find that

(10.32) det(Ω̃f , Ω̃
′
f , Ω̃

′′
f ) = 1− 3εµ = k̄2

1Ω̄3k̄2f .
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If we separate that the real and dual parts of above equations, we have

(10.33) k2f =

√
2

2
, k∗2f = µ

3
√

2

4
.

By means of (6.19) and (10.33) we get

(10.34) k2m =
3
√

2

2
, k∗2m = µ

√
2

4
.

Therefore we obtain real and dual parts of the integral invariants of the axodes.

11. Conclusion

In this paper, we have introduced one parameter dual hyperbolic spherical mo-
tions in the dual Lorentzian space. By considering Disteli axis on the Blaschke
frame we have obtained Euler Savary formulae of dual hyperbolic spherical mo-
tions. At the end of study, for given orthogonal rotation matrices in the sense of
dual Lorentzian type 3 × 3, we have found real and dual invariants of fixed and
moving axodes.

References

[1] Abdel-All N.H., Abdel-Baky R. A., Hamdoon F. M.,Ruled Surfaces with Timelike Rulings,
App. Math. And Comp., 147 (2004) 241-253.

[2] Abdel-Baky, R.A., Al-Solamy, F. R., A New Geometrical Approach to One-Parameter Spatial

Motion, J. Eng. Math., 60 (2008) 149-172.
[3] Abdel-Baky, R.A., Al-Ghefari, R.A.,On the One Parameter Dual Spherical Motions, Comp.

Aided Geom. Design, 28 (2011) 23-37.

[4] Angeles, J., The Application of Dual Algebra to Kinematic Analysis, In J. Angeles, E. Za-
khariev (eds): Computational Methods in Mechanical Systems, volume 161, pages 3-31,

Heidelberg, Springer- Verlag, 1998.

[5] Aydogmus, O.H.,Lorentz Uzay Hareketleri ve Lie Grupları, Ankara Üniverisitesi Fen Bilimleri
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Bilimleri Enstitüsü, Doktora Tezi, 2006.
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Yüzeyler Geometrisi”, Celal Bayar Üniversitesi Yayınları, Yayın No: 0006, 2012.
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THE ANALYSIS OF THE EFFECT OF THE NORMS IN THE

STEP SIZE SELECTION FOR THE NUMERICAL INTEGRATION

GÜLNUR ÇELİK KIZILKAN, AHMET DUMAN, AND KEMAL AYDIN

Abstract. In scientific studies involving norm calculations, the choice of the

norm affects the obtained results. We have aimed to examine the behavior of
the step sizes using different norms and norm inequalities in step size strategy

obtained in [1] for linear Cauchy problems.

1. Introduction

Selection of step size is an important concept for the convergence of the numerical
solution to exact solution in numerical integration of differential equation systems.
For the use constant step size, it must be investigated how should be selected the
step size in the first step of numerical integration. Also, if the solution is changing
slowly in some regions and it is changing rapidly in some another regions then it
is not practical to use constant step size in numerical integration. So, we should
use small step sizes in the region where the solution changes rapidly and we should
choose larger step size in the region where the solution changes slowly. In literature,
step size strategies have been given for the numerical integration. Consider the
Cauchy problem

X ′ = F (t,X), X(t0) = X0

on the region D = {(t,X) : |t − t0| ≤ T, |xj − xj0| ≤ bj}, where X(t) = (xj(t)),
X0 = (xj0); xj0 = xj(t0), F (t,X) = (fj); fj = fj(t, x1, x2, ..., xN ), F (t,X) ∈
C1([t0−T, t0 +T ]×RN ), X(t), X0 and b = (bj) ∈ RN . In [1, 2] a step size strategy
for F (t,X) = AX is proposed by

(1.1) hi ≤
1

α
4
√
N5

(
2δL
βi−1

)
1
2

such that the local error ||LEi|| ≤ δL. Strategy given in (1.1) is the generalization
of the strategy in [3, 4].

2010 Mathematics Subject Classification. 67F35, 67L05, 97N30.
Key words and phrases. Step size strategy, linear systems, norms.
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The above-mentioned step size strategies are based on matrix and vector norms.
As in all the scientific studies involving norm calculations, the choice of the norm
affects the obtained results in step size strategies.

The aim of this paper to examine the behavior of the step sizes using different
norms and norm inequalities in step size strategy obtained in [1] for linear Cauchy
problems. In section 2, we have introduced the step size strategy based on error
analysis for the linear systems (SSS). We have reminded commonly used vector and
matrix norms. In section 3, we have investigated the effects of choice of the norms
on step size strategy. Finally, we have analyzed the all strategies with numerical
examples.

2. The step size strategy and norms

2.1. The Step Size Strategy (SSS). Let us consider the Cauchy problem

(2.1) X ′ = AX,X(t0) = X0.

Following inequality is given

(2.2) ||LEi|| ≤
h2
i

2
||A||2||Z(τi)||, τi ∈ [ti−1, ti)

for the local error of the Cauchy problem (2.1) in i -th step of the numerical inte-
gration. According to equation (2.2), the upper bound of local error for the system
(2.1) is given by

(2.3) ||LEi|| ≤ (
1

2
α2βi−1)

√
N5h2

i ,

where

||A|| ≤ N maxi,j |aij | = Nα,

||Z|| ≤
√
N maxj |zj | ≤

√
N maxj(supτi |zj(τi)|) ≤

√
Nβi−1.

From the inequality(2.3)in the stepi, the step size is calculated by

(2.4) hi ≤ (
1

α
4
√
N5

)(
2δL
βi−1

)
1
2

such that the local error ||LEi|| ≤ δL where δL is the error level that is determined
by user ([1, 2]).

While formulating the step sizes (2.4), a more practical way is obtained for
calculations by using the upper bound (2.3) instead of the upper bound (2.2) of
the local error. The effects of the calculation errors resulting from floating point
arithmetic are reduced in doing so.

2.2. Vector and Matrix Norms and Relations between Matrix Norms. A
norm is a real valued function that provides a measure of the size of vectors and
matrices. For X = (xj) ∈ RN , some commonly used norms are given below. The
l2 norm (Euclidean norm) is defined by

||X||2 = (
∑N
j=1 x

2
j )

1
2 .

The l1 norm (sum norm) is given as

||X||1 =
∑N
j=1 |xj |.

Another norm is formulated by

||X||∞ = maxj |xj |,
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which is called as l∞ norm (maximum norm).
For A = (aij) ∈ RM×N , the most frequently used matrix norms are the l1

(maximum column) norm

||A||1 = maxj
∑M
i=1 |aj |,

the l∞ ( maximum row) norm

||A||∞ = maxi
∑N
j=1 |aj |,

the l2 (spectral) norm

||A||2 =
√
λmax(ATA),

where λmax(ATA) is the maximum eigenvalue of the matrix ATA, Frobenius norm

||A||F = (
∑M
i=1

∑N
j=1 |aij |2)

1
2 ,

and the maximum norm

||A||max = maxi,j |aij |.
We have used in our study the relations

||A||2 ≤ ||A||F , ||A||F ≤
√
N ||A||2, ||A||2 ≤ N ||A||max, ||A||2 ≤

√
||A||1||A||∞

which hold for all matrices A = (aij) ∈ RN×N . And we have also used the com-
patible norms in this study.

For all information about norms in this section, you can see for example [5, 6, 7,
8, 9, 10].

3. An Analysis on the Effect of the Norms in the Step Size Selection

3.1. The Effect of Choice of Norm to Step Size Strategy. The inequality
(2.4) given in [1, 2] gives step sizes based on matrix and vector norms in the i -th
step of numerical integration of the Cauchy problem (2.1) such that local error is
smaller than δL error level. Different formulations are obtained for the step size
according to the choice of the norms in the inequality (2.2). Changes that occur in
step sizes may be significant. Now, let investigate the effect of the norms to step
sizes. In calculations consider that

||Z(τi)||k ≤ supτi ||Z(τi)||k ≤ βk,i−1, k = 1, 2,∞.

Strategy 1 (SSS1)The step sizes given by

(3.1) hi ≤
1

||A||2
(

2δL
β2,i−1

)
1
2 , τi ∈ [ti−1, ti)

are obtained from the inequality (2.2) according to l2 norm.
Strategy 2 (SSS2) The step sizes given by

(3.2) hi ≤
1

||A||1
(

2δL
β1,i−1

)
1
2 , τi ∈ [ti−1, ti)

are obtained from the inequality (2.2) according to l1 norm.
Strategy 3 (SSS3) The step sizes given by

(3.3) hi ≤
1

||A||∞
(

2δL
β∞,i−1

)
1
2 , τi ∈ [ti−1, ti)

from the inequality (2.2) according to l∞ norm.
Strategy 4 (SSS4) The step sizes given by

(3.4) hi ≤
1

||A||F
(

2δL
β2,i−1

)
1
2 , τi ∈ [ti−1, ti)
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Table 1. Step number with the strategies in numerical integration

from the inequality (2.2) according to l2 norm.

Strategy 5 (SSS5) By using inequality ||A||2 ≤ ||A||F ≤
√
N ||A||2, the step

sizes are calculated by

(3.5) hi ≤
1

||A||2
(

2δL
Nβ2,i−1

)
1
2 , τi ∈ [ti−1, ti)

from the inequality (2.2) according to l2 norm.
Strategy 6 (SSS6)By using inequality ||A||2 ≤ N ||A||max, the step sizes ob-

tained by

(3.6) hi ≤
1

N ||A||max
(

2δL
β2,i−1

)
1
2 , τi ∈ [ti−1, ti)

from the inequality (2.2).
Strategy 7 (SSS7)The step sizes are given as follows

(3.7) hi ≤
1

||A||1||A||∞
(

2δL
β2,i−1

)
1
2 , τi ∈ [ti−1, ti)

by considering the inequality ||A||2 ≤
√
||A||1||A||∞.

3.2. Analysis of the Strategies with Numerical Examples. Consider X ′(t) =
AX(t), X(t0) = X0 on the region D = {(t,X) : |t − t0| ≤ T, |xj − xj0| ≤ bj}. Let
t0 = 0, bj = 5, xj0 = 1 and δL = 10−1.

Following figures give us an idea about the step sizes obtained from strategies.
The values and numbers of the step sizes depend on the choice of norm.

The main strategy SSS usually generates little step sizes which cause an expensive
computation as shown in Figure 1 and Figure 3. However, no matter how the
matrix, SSS provides ease of calculation for the step sizes. Because, calculation the
parameters α and βi−1 of SSS in inequalities (2.4) is easier to obtain the parameters
of the other strategies.

As we can see from Figure 1, Figure 2 and Figure 3, SSS1 gives the largest step
sizes than other strategies. But, in this case local errors may occur very close to
error level δL in calculations (see, Figure 4.(b)). The calculation errors may cause
to be ||LEi|| > δL on some steps in numerical integration because of the effects of
the floating-point arithmetic (Remark 3.1. in [2], and Remark 1. in [1]). If the
situation that the occurred errors exceeds desired error level is not so important,
then SSS1 is the most suitable strategy for the numerical integration. Because it
always provides quite cheap computations.
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Figure 1. Step sizes and iteration numbers for Example 1.

For SSSk (k=2,3,4,5), almost similar results have been obtained as SSS1. So, we
think that it will be enough to comment only SSS1.

Figure 2. Step sizes and iteration numbers for Example 2.
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Figure 3. Step sizes and iteration numbers for Example 3.

SSS6 completes the calculation process a little less step when compared with
SSS. The step sizes are partially calculated more easily with SSS6 than SSSk
(k=1,2,3,4,5,7) because of the term ||A||max. But the calculation of the step sizes
with SSS is easiest of among all the strategies.

It is not practical to compare SSS7 directly with the other strategies regarding
largeness of calculated step sizes and the number of iterations. For instance, it-
eration has taken 2986 steps in Example 2, but it has taken 43 steps in Example
3 as we can see in Figure 2 and Figure 3. That is, it may calculate the largest
or the smallest step sizes according to given coefficient matrix. Even one of the
elements of the coefficient matrix is large, the number of iterations increases in the
calculation. The term ||A||1||A||∞ in SSS7 causes the becoming smaller of the step
sizes. So, if the elements of the matrix is not very large, SSS7 should be used.

Figure 4 shows the local errors calculated by the strategies for Example 1, Ex-
ample 2 and Example 3.

4. Conclusion

In this paper, the effects of choice of the norms have been examined in the
calculation of the step sizes. It has been seen that some norms and norm inequalities
provide ease of calculation for step size.

SSS1 gives the larger step sizes than other strategies. So, SSS1 completes the
numerical integration in less time and fewer steps. It provides quite cheap compu-
tations. Although it is advantageous with this aspect, local errors may occur very
close to error level δL in calculations. As all computations are done with floating-
point arithmetic on computer, the calculation errors may cause to be ||LEi|| > δL
on some steps in numerical integration. If this situation is unimportant, users
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(a) (b)

(c)

Figure 4. Local errors for Example 1, Example 2 and Example 3.

should prefer SSS1 (or SSSk (k=2,3,4,5) that have similar properties) for cheap
computations.

However the effects of floating point arithmetic does not considered in this study,
it has emphasized that SSS is given to reduce these effects. SSS usually generates
little step sizes which cause an expensive computation, but even so, it allows us to
easier calculations for the step sizes. SSS should be used for ease of calculations.

SSS4 may be suggested if the elements of the matrix is not very large. If the
coefficient matrix has at least one large element, it may calculate too small step
sizes according to coefficient matrix.

Consequently, the choice of the norm should be considered as an important part
of the step size strategy.
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[4] Çelik Kızılkan, G. and Aydın, K.,Step Size Strategy Based on Error Analysis, SUFEFD, Vol:

25 (2005), 79-86 (in Turkish).

[5] Golub, G. H. and Van Loan, C.F., Matrix Computations, third edition, The Johns Hopkins
University Press, London, 1996.

[6] Quarteroni, A., Sacco, R. and Saleri, F.,Numerical Mathematics, Springer Verlag, New York,

2000.
[7] Bulgak, A. and Bulgak, H.,Linear Algebra, Seluk University Applied Mathematics Research

Center Publications, Konya, 2001.
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ON FANO CONFIGURATIONS OF THE LEFT HALL PLANE OF

ORDER 9

Z. AKÇA, S. EKMEKÇİ, AND A. BAYAR

Abstract. In this paper, we introduce Fano subplanes of the projective plane

of order 9 coordinatized by elements of a left nearfield of order 9. We give an

algorithm for checking Fano subplanes of this projective plane and apply the
algorithm (implemented in C#) to determine and classify Fano subplanes.

1. Introduction

It is shown that the projective plane of order 2, 3, 4, 5, 7 and 8 are unique and
projective plane of order 9 is not unique. There are four known projective planes of
order 9: the Desarguesian plane, a nearfield plane, the dual of the nearfield plane
and the Hughes plane of order 9, [4]. The last three planes of order 9 are called
”miniquaternion planes” because they can be coordinatized by the miniquaternion
near field. O. Veblen and J. M. Wedderburn discovered these miniquaternion planes
in 1907, [6].

The regular near field of order q2, for q an odd prime power, are defined taking
the elements of GF (q2), using the field addition and definition a new multiplication
on the elements in terms of the field multiplication. This gives an algebraic system
in which the non-zero elements form a group under the multiplication and the right
or left distributive laws hold. The near field can be used to define and coordinatize
the near field plane of order 9.

In the first section, we give the left near field of order 9 by taking the elements
of GF (3) and using the field addition and a new multiplication on the elements
in terms of the left near field multiplication, . In the second section, we identify
the non-homegeneous coordinates of the points and lines and then homegeneous
coordinates of the points and lines in this left near field plane of order 9. In third
section, we investigate the Fano subplanes imbedded in this projective plane. It is
shown that there are 18 complete quadrangles which generate Fano plane. Finally,

2000 Mathematics Subject Classification. 51E12, 51E15, 51E30.

Key words and phrases. Near field, Projective plane, Fano plane.
This work was supported by the Eskişehir Osmangazi University under the project number
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we write a computer program C# that determine the complete quadrangles which
generate Fano plane in this plane.

2. The left nearfield system of order 9

We give a near field of order 9 which is not left disributive.

Definition 2.1. A left nearfield is a system (S,⊕,�), where ⊕ and � are binary
operations on the set S and

(1) S is finite
(2) (S,⊕) is a group, with identity 0
(3) (S\{0},�) is a group, with identity 1
(4) 0� x = 0 for all x ∈ S
(5) � is left distributive over ⊕, that is x� (y ⊕ z) = (x� y)⊕ (x� z) for all

x, y, z ∈ S
(6) Given m,n, k ∈ S with m 6= n, there exists a unique x ∈ S such that

−m� x⊕ n� x = k.

Let (F3,+, .) be the Galois field of order 3.We now construct (S,⊕,�), using F3,
a left nearfield of order 9.

The nine elements of S are a+ λb, a,b ∈ F3, λ /∈ F3. Addition in S is defined by
the rule

(1) (a+ λb)⊕ (c+ λd) = (a+ c) + λ(b+ d)

and multiplication by

(2) (a+ λb)� (c+ λd) =

{
ac+ λ(ad), if b = 0
ac− b−1df(a) + λ(bc− (a− 1)d), if b 6= 0

where, a, b, c, d ∈ F3, λ /∈ F3 and f(t) = t2 + 1 is a irreducible polynom on F3, [5].
For the sake of sorthness if we use ab instead of a+ λb in equation (1) and (2),

then addition and multiplication tables are obtained as follows:

⊕ 00 01 02 10 11 12 20 21 22
00 00 01 02 10 11 12 20 21 22
01 01 02 00 11 12 10 21 22 20
02 02 00 01 12 10 11 22 20 21
10 10 11 12 20 21 22 00 01 02
11 11 12 10 21 22 20 01 02 00
12 12 10 11 22 20 21 02 00 01
20 20 21 22 00 01 02 10 11 12
21 21 22 20 01 02 00 11 12 10
22 22 20 21 02 00 01 12 10 11

Table 1 .
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� 00 01 02 10 11 12 20 21 22
00 00 00 00 00 00 00 00 00 00
01 00 20 10 01 21 11 02 22 12
02 00 10 20 02 12 22 01 11 21
10 00 01 02 10 11 12 20 21 22
11 00 12 21 11 20 02 22 01 10
12 00 22 11 12 01 20 21 10 02
20 00 02 01 20 22 21 10 12 11
21 00 11 22 21 02 10 12 20 01
22 00 21 12 22 10 01 11 02 20

Table 2.

If we use the following equlities

0 = (0, 0)
1 = (1, 0)
2 = (2, 0)
3 = (0, 1)
4 = (1, 1)
5 = (2, 1)
6 = (0, 2)
7 = (1, 2)
8 = (2, 2),

the addition and multiplication tables in (S,⊕,�) can be arranged as follows :

⊕ 0 1 2 3 4 5 6 7 8
0 0 1 2 3 4 5 6 7 8
1 1 2 0 4 5 3 7 8 3
2 2 0 1 5 3 4 8 6 7
3 3 4 5 6 7 8 0 1 2
4 4 5 3 7 8 6 1 2 0
5 5 3 4 8 6 7 2 0 1
6 6 7 8 0 1 2 3 4 5
7 7 8 6 1 2 0 4 5 3
8 8 6 7 2 0 1 5 3 4

� 0 1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8
2 0 2 1 6 8 7 3 5 4
3 0 3 6 2 5 8 1 4 7
4 0 4 8 7 2 3 5 6 1
5 0 5 7 4 6 2 8 1 3
6 0 6 3 1 7 4 2 8 5
7 0 7 5 8 3 1 4 2 6
8 0 8 4 5 1 6 7 3 2

The system (S,⊕,�) satisfies the conditions of Definition 2.1 and therefore a left
nearfield of order 9.

3. The Projective Plane P2S

Definition 3.1. While N and D are two distinct sets whose elements are called as
the points and the lines, respectively and o is the incidence relation between N and
D ; then the ordered triple (N,D, o) is called as geometrical structure. (N,D, o)
satisfying the following three axioms is called a projective plane and denoted by
P . If N is finite, projective plane P is called as finite projective plane. P1. Any
distinct two points are incident with just one line.

P2. Any two lines are incident with at least one point.
P3. There exists four points of which no three are collinear.
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The order of P is defined to be the number of points on any line of projective
plane P = (N,D, o). If the order of a finite projective plane is q, total number of
its points and lines is equal and q2 + q + 1.

It is well known that every projective plane has also an algebraic structure ob-
tained by coordinazation. Conversely, certain algebraic structures can be used to
construct projective planes.

In this section, we will construct projective plane order 9. The projective plane
whose the points and the lines are coordinatized by the elements of (S,⊕,�).

The 91 points of P2S are the elements of the set

{ (x, y)| x, y ∈ S} ∪ {(m) : m ∈ S} ∪ {(∞)}.
The points of the form (x, y) are called proper points, and the unique point (∞) and
the points of the form (m) are called ideal points. The 91 lines of P2S are defined
to be set of points satisfying one of the three conditions:

[m, k] = { (x, y) ∈ S2
∣∣ y = m� x⊕ k} ∪ {(m)}

[a] = { (x, y) ∈ S2
∣∣ x = a} ∪ {(∞)}

[∞] = {(m) ∈ S} ∪ {(∞)}
The 81 lines having form y = m � x ⊕ k and 9 lines having equation of the form
x = λ are called the proper lines and the unique line [∞] is called the ideal line.

The system of points, lines and incidence relation given above defines a projective
plane of order 9, which is the left nearfiled plane.

Now, we are considering the projective plane of order 9 homogeneous coordi-
natized by elements of the above left nearfield. We notice that the homogeneous
coordinates of a point are not unique. Two triples that are multiples of each other
specify are the same point. Thus the same point has many sets of homogeneous
coordinates: (x, y, z) and (x′, y′, z′) represent the same point if and only if there is
some λ 6= 0, λ ∈ S such that x′ = λ� x, y′ = λ� y, z′ = λ� z. We convert a point
expressed in Cartesian coordinates to homogeneous coordinates in left nearfield
plane of order 9. We have seen that a point (x, y) in the P2S has homogeneous
coordinates λ � (x, y, 1) = (λ � x, λ � y, λ � 1), λ 6= 0, λ ∈ S. Homogeneous coor-
dinates of the form λ � (m, 1, 0) do correspond to all ideal points (m), m, λ ∈ S∗
in the P2S. Homogeneous coordinates of the form (λ, 0, 0) do correspond to the
unique point at infinity in the P2S .

We have seen that a line [m, k] in the P2S has homogeneous coordinates µ �
[m,−1, k] = [µ � m,µ � (−1), µ � k], µ 6= 0, µ ∈ S. Homogeneous coordinates
of the form µ � [x, 0, 1] do correspond to all lines [a], a 6= 0, a ∈ S in the P2S.
Homogeneous coordinates of the form [0, 0, µ] do correspond to the unique line [∞]
at infinity in the P2S .

A line in the P2S has general equation y = m�x⊕k. Suppose (x1, x2, x3), x3 6= 0
are the homogeneous coordinates of a point (x, y) on the line; hence x = x−1

3 �x1

and y = x−1
3 � x2. Substituting for x and y in the line equation and multiply-

ing through by x3, yields the conditions for (x1, x2, x3) to be the homogeneous
coordinates of a point on the line:

m� x1 ⊕ (−1)� x2 ⊕ k � x3 = 0.

The following table lists all homogeneous coordinates of the 91 points and lines in
the projective plane of order 9 coordinatized by elements of the above left nearfield.
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3.1. Fano Subplanes of P2S. The completion of a regular quadrangle has got the
important role in many investigations of the structure of projective planes. In a
projective plane of order 9, the non-projective subplanes can have orders 2 or 3. An
order 2 affine subplane is a quadrangle, so projective affine subplane of order 2 are
quadrangles which generate Fano configurations. We search for the Fano subplanes
in P2S by starting with a quadrangle.
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Definition 3.2. A regular quadrangle in a projective plane is a set of four points
of which no three are collinear. If OIXP is a regular quadrangle, the six lines OX,
OI, OP, IX, PX, PI are called the sides of the quadrangle, and the three points
OP ∩ IX = U , OI ∩XP = V , OX ∩ IP = W are called the diagonal points of the
quadrangle.

The Fano plane occurs as a subplane of many larger planes. Therefore, the
discovery of the Fano plane has played an important role in the improvement of the
theory of finite geometries. Fano subplanes in some projective planes have been
examined by many authors. For instance, Taş [7]Room-Kirpatrick [5], Calişkan
and Moorhouse [2], Çifçi-Kaya [3], Akça-Günaltılı-Güney [1] ext. A Fano plane is
a configuration of 7 points and 7 lines with 3 points on a line and 3 lines through
a point. In Fano plane the diagonal points of any regular quadrangle are collinear.

Now, in this part of the study we will determine all Fano planes in P2S by
choosing a regular quadrangle OIXPi with O = 11 = (0, 0, 1), I = 21 = (1, 1, 1),
X = 1 = (1, 0, 0) and Pi = (a, b, 1), a, b ∈ S.

A regular quadrangle OIXPi can be completed to a Fano plane if and only if
the diagonal points OI ∩XPi = Vi, OPi ∩ IX = Ui, OX ∩ IPi = Wi are collinear.

Theorem 3.1. There are exactly six Fano subplanes of P2S which are completions
of the regular quadrangles OIXPi with Pi = (0, b, 1), b ∈ S.

Proof. If b ∈ F3 then OIXPi do not the regular quadrangles. Consider the quad-
rangles OIXPi with O,I, X and Pi = (0, b, 1), b ∈ S\F3. Then OIXPi is a regular
quadrangle with the diagonal points (0, 1, 1), (b, b, 1), and (c, 0, 1). If b, c ∈ S\F3

and b⊕ c = 2 then the diagonal points are collinear and the completion of OIXPi

is a Fano plane. There are six classes of Fano subplanes which are completions of
OIXPi. These are represented by:
{11, 21, 1, 38, 41, 20, 19} ,
{11, 21, 1, 47, 51, 20, 18} ,
{11, 21, 1, 56, 61, 20, 17} ,
{11, 21, 1, 65, 71, 20, 16} ,
{11, 21, 1, 74, 81, 20, 15}
and
{11, 21, 1, 83, 91, 20, 14} �

Theorem 3.2. There are exactly six Fano subplanes of P2S which are completions
of the regular quadrangles OIXRi with Ri = (1, b, 1), b ∈ S.

Proof. If b ∈ F3 then OIXRi do not the regular quadrangles. Consider the quad-
rangles OIXRi with O, I, X and Ri = (1, b, 1), b ∈ S\F3. Then OIXRi is a regular
quadrangle with the diagonal points (1, 0, 1), (b, b, 1), and (c, 1, 1). If b, c ∈ S\F3

and b⊕ c = 0 then the diagonal points are collinear and the completion of OIXRi

is a Fano plane. There are six classes of Fano subplanes which are completions of
OIXRi. These are represented by:
{11, 21, 1, 39, 41, 26, 12},
{11, 21, 1, 48, 51, 28, 12},
{11, 21, 1, 57, 61, 27, 12} ,
{11, 21, 1, 66, 71, 23, 12} ,
{11, 21, 1, 75, 81, 25, 12}
and
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{11, 21, 1, 84, 91, 24, 12} �

Theorem 3.3. There are exactly six Fano subplanes of P2S which are completions
of the regular quadrangles OIXSi with Si = (2, b, 1), b ∈ S.

Proof. If b ∈ F3 then OIXRi do not the regular quadrangles. Consider the quad-
rangles OIXSi with O, I, X and Si = (2, b, 1), b ∈ S\F3. Then OIXSi is a regular
quadrangle with the diagonal points (b, 0, 1), (b, b, 1), and (b, 1, 1). If b ∈ S\F3 then
the diagonal points are collinear and the completion of OIXSi is a Fano plane.
There are six classes of Fano subplanes which are completions of OIXSi. These
are represented by:
{11, 21, 1, 40, 41, 23, 14} ,
{11, 21, 1, 49, 51, 24, 15} ,
{11, 21, 1, 58, 61, 25, 16} ,
{11, 21, 1, 67, 71, 26, 17} ,
{11, 21, 1, 76, 81, 27, 18}
and
{11, 21, 1, 85, 91, 28, 19} �

4. Algorithm

In this section, we will give an algorithm for checking Fano subplanes in projec-
tive plane P2S.

Steps of algorithm
Read the Incidence matrice of projective plane P2S from Excell File of table 5

and assign to array variable
Input the points Ai, i = 1, 2, 3, 4 and Ai ∈ {1, 2, ..., 91}
Begin
S1 ← the row on A1, A2

S2 ← the row on A3, A4

D1 ← the same point on S1and S2

S3 ← the row on A1, A3

S4 ← the row on A2, A4

D2 ← the same point on S3and S4

S5 ← the row on A1, A4

S6 ← the row on A2, A3

D3 ← the same point on S5and S6

S7 ← the row on D1, D2

if D3 on S7 then
print ”the set of points {A1, A2A3, A4, D1, D2, D3} is Fano plane”
else
print ”it is not Fano plane”
go to Begin
end
Conclusion: We attempted to construct Fano subplanes to contain a regular

quadrangle with one ideal point X. There are just 18 Fano subplanes containing
O, I, X namely the completions of the regular quadrangles O, I, X, (a, b, 1), with
a ∈ F3, b ∈ S\F3. Every Fano subplane of P2S contains precisely diagonal point
(b, b, 1), b ∈ S\F3. There are 18 Fano pairs determined by taking from two different
classes which have contained one comman diagonal point. These are represented
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by three classes. Two classes have one comman diagonal point. These are checked
once again, with computer program in C#, the same results are obtained.
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Eskişehir Osmangazi University, Faculty of Science and Arts, Department of Mathematics-

Computer, Eskişehir-TURKEY
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ON THE PARANORMED TAYLOR SEQUENCE SPACES

HACER BILGIN ELLIDOKUZOG̃LU AND SERKAN DEMIRIZ

Abstract. In this paper, the sequence spaces tr0(p), trc(p) and tr(p) of non-

absolute type which are the generalization of the Maddox sequence spaces
have been introduced and it is proved that the spaces tr0(p), trc(p) and tr(p)

are linearly isomorphic to spaces c0(p), c(p) and `(p), respectively. Further-

more, the α−, β− and γ−duals of the spaces tr0(p), trc(p) and tr(p) have been
computed and their bases have been constructed and some topological proper-

ties of these spaces have been investigated. Besides this, the class of matrices

(tr0(p) : µ) has been characterized, where µ is one of the sequence spaces `∞, c
and c0 and derives the other characterizations for the special cases of µ.

1. Introduction

By w, we shall denote the space of all real-valued sequences. Any vector subspace
of w is called a sequence space. We shall write `∞, c and c0 for the spaces of
all bounded, convergent and null sequences, respectively. Also by bs, cs, `1 and
`p, we denote the spaces of all bounded, convergent, absolutely and p−absolutely
convergent series, respectively, where 1 < p <∞.

A linear topological space X over the real field R is said to be a paranormed
space if there is a subadditive function g : X → R such that g(θ) = 0, g(x) = g(−x)
and scalar multiplication is continuous, i.e., |αn−α| → 0 and g(xn− x)→ 0 imply
g(αnxn − αx) → 0 for all α’s in R and all x’s in X, where θ is the zero vector in
the linear space X.

Assume here and after that (pk) be a bounded sequences of strictly positive
real numbers with sup pk = H and L = max{1, H}. Then, the linear spaces
`∞(p), c(p), c0(p) and `(p) were defined by Maddox [12] (see also Simons [14] and
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Nakano [13]) as follows:

`∞(p) = {x = (xk) ∈ w : sup
k∈N
|xk|pk <∞},

c(p) = {x = (xk) ∈ w : lim
k→∞

|xk − l|pk = 0 for some l ∈ R},

c0(p) = {x = (xk) ∈ w : lim
k→∞

|xk|pk = 0},

`(p) =

{
x = (xk) ∈ w :

∑
k

|xk|pk <∞

}
,

which are the complete spaces paranormed by

g1(x) = sup
k∈N
|xk|pk/L ⇐⇒ inf pk > 0 and g2(x) =

(∑
k

|xk|pk
)1/L

,

respectively. For simplicity in notation, here and in what follows, the summation
without limits runs from 0 to ∞. By F and Nk, we shall denote the collection of
all finite subsets of N and the set of all n ∈ N such that n ≥ k, respectively. We
shall assume throughout that p−1k + (p′k)−1 = 1 provided 1 < inf pk ≤ H <∞.

Let λ, µ be any two sequence spaces and A = (ank) be an infinite matrix of real
numbers ank, where n, k ∈ N. Then, we say that A defines a matrix mapping from
λ into µ, and we denote it by A : λ → µ, if for every sequence x = (xk) ∈ λ, the
sequence Ax = {(Ax)n}, the A−transform of x, is in µ, where

(Ax)n =
∑
k

ankxk, (n ∈ N).(1.1)

By (λ : µ), we denote the class of all matrices A such that A : λ → µ. Thus,
A ∈ (λ : µ) if and only if the series on the right-hand side of (1.1) converges for
each n ∈ N and every x ∈ λ, and we have Ax = {(Ax)n}n∈N ∈ µ for all x ∈ µ. A
sequence x is said to be A−summable to α if Ax converges to α which is called the
A−limit of x.

2. The Sequence Spaces tr0(p), trc(p) and tr(p) of Non-Absolute Type

In this section, we define the sequence spaces tr0(p), trc(p) and tr(p), and prove
that tr0(p), trc(p) and tr(p) are the complete paranormed linear spaces.

For a sequence space λ, the matrix domain λA of an infinite matrix A is defined
by

XA = {x = (xk) ∈ w : Ax ∈ X}.(2.1)

In [5], Choudhary and Mishra have defined the sequence space `(p) which consists
of all sequences such that S−transforms are in `(p), where S = (snk) is defined by

snk =

{
1 , 0 ≤ k ≤ n,
0 , k > n.

Başar and Altay [3] have studied the space bs(p) which is formerly defined by Başar
in [4] as the set of all series whose sequences of partial sums are in `∞(p).

More recently, Altay and Başar have studied the sequence spaces rt(p), rt∞(p) in
[1] and rtc(p), r

t
0(p) in [2] which are derived by the Riesz means from the sequence

spaces `(p), `∞(p), c(p) and c0(p) of Maddox, respectively.
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With the notation of (2.1), the spaces `(p), bs(p), rt(p), rt∞(p), rtc(p) and rt0(p)
may be redefined by

`(p) = [`(p)]S , bs(p) = [`∞(p)]S , r
t(p) = [`(p)]tR

rt∞(p) = [`∞(p)]tR, r
t
c(p) = [c(p)]tR, r

t
0(p) = [c0(p)]tR.

In [6], Demiriz and Çakan have defined the sequence spaces er0(u, p) and erc(u, p)
which consists of all sequences such that Er,u- transforms are in c0(p) and c(p),
respectively Er,u = {ernk(u)} is defined by

ernk(u) =

{ (
n
k

)
(1− r)n−krkuk , (0 ≤ k ≤ n),

0 , (k > n)

for all k, n ∈ N and 0 < r < 1.
In [9], the Taylor sequence spaces tr0 and trc of non-absolute type, which are

the matrix domains of Taylor mean T r of order r in the sequence spaces c0 and
c, respectively, are introduced, some inclusion relations and Schauder basis for
the spaces tr0 and trc are given, and the α−, β− and γ− duals of those spaces are
determined. The main purpose of this paper is to introduce the sequence spaces
tr0(p), trc(p) and tr(p) of nonabsolute type which are the set of all sequences whose
T r−transforms are in the spaces c0(p), c(p) and `(p), respectively; where T r denotes
the matrix T r = {trnk} defined by

trnk =

{ (
k
n

)
(1− r)n+1rk−n , (k ≥ n),

0 , (0 ≤ k < n)

where 0 < r < 1. Also, we have constructed the basis and computed the α−, β−
and γ−duals and investigated some topological properties of the spaces tr0(p), trc(p)
and tr(p).

Following Choudhary and Mishra [5], Başar and Altay [3], Altay and Başar [1, 2],
Demiriz [6], Kirişçi [9], we define the sequence spaces tr0(p), trc(p) and tr(p), as the
sets of all sequences such that T r−transforms of them are in the spaces c0(p),c(p)
and `(p), respectively, that is,

tr0(p) =

{
x = (xk) ∈ w : lim

n→∞

∣∣∣∣∣
∞∑
k=n

(
k

n

)
(1− r)n+1rk−nxk

∣∣∣∣∣
pn

= 0

}
,

trc(p) =

{
x = (xk) ∈ w : lim

n→∞

∣∣∣∣∣
∞∑
k=n

(
k

n

)
(1− r)n+1rk−nxk − l

∣∣∣∣∣
pn

= 0 for some l ∈ R

}
and

tr(p) =

{
x = (xk) ∈ w :

∑
n

∣∣∣∣∣
∞∑
k=n

(
k

n

)
(1− r)n+1rk−nxk

∣∣∣∣∣
pn

<∞

}
.

In the case (pn) = e = (1, 1, 1, ...), the sequence spaces tr0(p), trc(p) and tr(p)
are, respectively, reduced to the sequence spaces tr0 and trc which are introduced by
Kirişçi [9] and tr(p) is reduced to the sequence space trp. With the notation of (2.1),
we may redefine the spaces tr0(p), trc(p) and tr(p) as follows:

tr0(p) = [c0(p)]T r , trc(p) = [c(p)]T r and tr(p) = [`(p)]T r .(2.2)
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Define the sequence y = {yk(r)}, which will be frequently used, as the T r−transform
of a sequence x = (xk), i.e.,

yk(r) :=

∞∑
k=n

(
k

n

)
(1− r)n+1rk−nxk for all k ∈ N.(2.3)

Now, we may begin with the following theorem which is essential in the text.

Theorem 2.1. tr0(p) and trc(p) are the complete linear metric space paranormed by
g, defined by

g(x) = sup
k∈N

∣∣∣∣∣∣
∞∑
j=k

(
j

k

)
(1− r)k+1rj−kxj

∣∣∣∣∣∣
pk/L

.

Also, trp(p) is the complete linear metric space paranormed by h, defined by

h(x) =

 ∞∑
k=0

∣∣∣∣∣∣
∞∑
j=k

(
j

k

)
(1− r)k+1rj−kxj

∣∣∣∣∣∣
pk1/M

.(2.4)

Proof. Since the proof is similar for tr0(p) and trc(p), we give the proof only for the
space tr0(p). The linearity of tr0(p) with respect to the co-ordinatewise addition and
scalar multiplication follows from the following inequalities which are satisfied for
x, z ∈ tr0(p) (see Maddox [11, p.30])

sup
n∈N

∣∣∣∣∣∣
∞∑
j=k

(
j

k

)
(1− r)k+1rj−k(xj + zj)

∣∣∣∣∣∣
pk/L

≤ sup
k∈N

∣∣∣∣∣∣
∞∑
j=k

(
j

k

)
(1− r)k+1rj−kxj

∣∣∣∣∣∣
pk/L

+ sup
k∈N

∣∣∣∣∣∣
∞∑
j=k

(
j

k

)
(1− r)k+1rj−kzj

∣∣∣∣∣∣
pk/L

(2.5)

and for any α ∈ R (see [14])

|α|pk ≤ max{1, |α|L}.(2.6)

It is clear that g(θ) = 0 and g(x) = g(−x) for all x ∈ tr0(p). Again the inequalities
(2.5) and (2.6) yield the subadditivity of g and

g(αx) ≤ max{1, |α|L}g(x).

Let {xn} be any sequence of the points xn ∈ tr0(p) such that g(xn − x)→ 0 and
(αn) also be any sequence of scalars such that αn → α. Then, since the inequality

g(xn) ≤ g(x) + g(xn − x)

holds by the subadditivity of g, {g(xn)} is bounded and we thus have

g(αnxn − αx) = sup
k∈N

∣∣∣∣∣∣
∞∑
j=k

(
j

k

)
(1− r)k+1rj−k(αnxnj − αxj)

∣∣∣∣∣∣
pk/L

≤ |αn − α|g(xn) + |α|g(xn − x),

which tends to zero as n → ∞. This means that the scalar multiplication is con-
tinuous. Hence, g is paranorm on the space tr0(p).
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It remains to prove the completeness of the space tr0(p). Let {xi} be any Cauchy

sequence in the space tr0(p), where xi = {x(i)0 , x
(i)
1 , x

(i)
2 , . . .}. Then, for a given ε > 0

there exists a positive integer n0(ε) such that

g(xi − xj) < ε

2

for all i, j > n0(ε). Using the definition of g we obtain for each fixed k ∈ N that

|(T rxi)k − (T rxj)k|pk/L ≤ sup
k∈N
|(T rxi)k − (T rxj)k|pk/L <

ε

2
(2.7)

for every i, j > n0(ε) which leads to the fact that
{(T rx0)k, (T

rx1)k, (T
rx2)k, . . .} is a Cauchy sequence of real numbers for every

fixed k ∈ N. Since R is complete, it converges, say (T rxi)k → (T rx)k as i →
∞. Using these infinitely many limits (T rx)0, (T

rx)1, . . ., we define the sequence
{(T rx)0, (T

rx)1, . . .}. From (2.7) with j →∞, we have

|(T rxi)k − (T rx)k|pk/L ≤
ε

2
(i, j > n0(ε))(2.8)

for every fixed k ∈ N. Since xi = {x(i)k } ∈ tr0(p) for each i ∈ N, there exists
k0(ε) ∈ N such that

|(T rxi)k|pk/L <
ε

2
(2.9)

for every k ≥ k0(ε) and for each fixed i ∈ N. Therefore, taking a fixed i > n0(ε) we
obtain by (2.8) and (2.9) that

|(T rx)k|pk/L ≤ |(T rx)k − (T rxi)k|pk/L + |(T rxi)k|pk/L <
ε

2

for every k > k0(ε). This shows that x ∈ tr0(p). Since {xi} was an arbitrary Cauchy
sequence, the space tr0(p) is complete and this concludes the proof.

Now, tr(p) is the complete linear metric space paranormed by h defined by (2.4).
It is easy to see that the space tr(p) is linear with respect to the coordinate-wise
addition and scalar multiplication. Therefore, we first show that it is a paranormed
space with the paranorm h defined by (2.4).

It is clear that h(θ) = 0 where θ = (0, 0, 0, ...) and h(x) = h(−x) for all x ∈ tr(p).



ON THE PARANORMED TAYLOR SEQUENCE SPACES 137

Let x, y ∈ tr(p); then by Minkowski’s inequality we have

h(x+ y) =

 ∞∑
k=0

∣∣∣∣∣∣
∞∑
j=k

(
j

k

)
(1− r)k+1rj−k(xj + yj)

∣∣∣∣∣∣
pk1/M

=

 ∞∑
k=0


∣∣∣∣∣∣
∞∑
j=k

(
j

k

)
(1− r)k+1rj−k(xj + yj)

∣∣∣∣∣∣
pk/M


M


1/M

≤

 ∞∑
k=0

∣∣∣∣∣∣
∞∑
j=k

(
j

k

)
(1− r)k+1rj−kxj

∣∣∣∣∣∣
pk1/M

+

 ∞∑
k=0

∣∣∣∣∣∣
∞∑
j=k

(
j

k

)
(1− r)k+1rj−kyj

∣∣∣∣∣∣
pk1/M

= h(x) + h(y)(2.10)

Let {xn} be any sequence of the points xn ∈ tr(p) such that h(xn − x)→ 0 and
(λn) also be any sequence of scalars such that λn → λ. We observe that

h(λnxn − λx) ≤ h[(λn − λ)(xn − x)]

+ h[λ(xn − x)](2.11)

+ h[(λn − λ)x].

It follows from λn → λ(n→∞) that |λn − λ| < 1 for all sufficiently large n; hence

lim
n→∞

h[(λn − λ)(xn − x)] ≤ lim
n→∞

h(xn − x) = 0.(2.12)

Furthermore, we have

lim
n→∞

h[λ(xn − x)] ≤ max{1, |λ|M} lim
n→∞

h(xn − x) = 0.(2.13)

Also, we have

lim
n→∞

h[(λn − λ)x)] ≤ lim
n→∞

|λn − λ|h(x) = 0.(2.14)

Then, we obtain from (2.11), (2.12), (2.13) and (2.14) that h(λnxn − λx) → 0, as
n→∞. This shows that h is a paranorm on tr(p).

Furthermore, if h(x) = 0, then
(∑∞

k=0

∣∣∣∑∞j=k (jk)(1− r)k+1rj−kxj

∣∣∣pk)1/M = 0.

Therefore
∣∣∣∑∞j=k (jk)(1− r)k+1rj−kxj

∣∣∣pk = 0 for each k ∈ N. Since 0 < r < 1, we

have
(
j
k

)
(1− r)k+1rj−k > 0. Then, we obtain xk = 0 for all k ∈ N. That is, x = θ.

This shows that h is a total paranorm.
Now, we show that tr(p) is complete. Let {xn} be any Cauchy sequence in the

space tr(p), where xn = {x(n)0 , x
(n)
1 , x

(n)
2 , ...}. Then, for a given ε > 0, there exists

a positive integer n0(ε) such that h(xn − xm) < ε for all n,m > n0(ε). Since for
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each fixed k ∈ N that

|(T rxn)k − (T rxm)k| ≤

[∑
k

|(T rxn)k − (T rxm)k|pk
] 1

M

= h(xn − xm) < ε(2.15)

for every n,m > n0(ε), {(T rx0)k, (T
rx1)k, (T

rx2)k, ...} is a Cauchy sequence of real
numbers for every fixed k ∈ N. Since R is complete, it converges, say (T rxn)k →
(T rx)k as n→∞. Using these infinitely many limits (T rx)0, (T

rx)1, ..., we define
the sequence {(T rx)0, (T

rx)1, ...}. For each K ∈ N and n,m > n0(ε)[
K∑
k=0

|(T rxn)k − (T rxm)k|pk
] 1

M

≤ h(xn − xm) < ε.(2.16)

By letting m,K →∞, we have for n > n0(ε) that

h(xn − x) =

[∑
k

|(T rxn)k − (T rx)k|pk
] 1

M

< ε.(2.17)

This shows that xn − x ∈ tr(p). Since tr(p) is a linear space, we conclude that
x ∈ tr(p); it follows that xn → x, as n→∞ in tr(p), thus we have shown that tr(p)
is complete. �

Note that the absolute property does not hold on the spaces tr0(p), trc(p) and
tr(p), since there exists at least one sequence in the spaces tr0(p), trc(p) and tr(p)
and such that g(x) 6= g(|x|), where |x| = (|xk|). This says that tr0(p), trc(p) and
tr(p) are the sequence spaces of non-absolute type.

Theorem 2.2. The sequence spaces tr0(p), trc(p) and tr(p) of non-absolute type are
linearly isomorphic to the spaces c0(p), c(p) and `(p), respectively, where 0 < pk ≤
H <∞.

Proof. To avoid repetition of similar statements, we give the proof only for tr0(p).
We should show the existence of a linear bijection between the spaces tr0(p) and
c0(p). With the notation of (2.3), define the transformation T from tr0(p) and c0(p)
by x 7→ y = Tx. The linearity of T is trivial. Furthermore, it is obvious that x = θ
whenever Tx = θ, and hence T is injective.

Let y ∈ c0(p) and define the sequence

xk(r) :=

∞∑
j=k

(
j

k

)
(−r)j−k(1− r)−(j+1)yj ; k ∈ N.

Then, we have

g(x) = sup
k∈N

∣∣∣∣∣∣
∞∑
j=k

(
j

k

)
(1− r)k+1rj−kxj

∣∣∣∣∣∣
pk/L

= sup
k∈N
|yk|pk/L = g1(y) <∞.

Thus, we have that x ∈ tr0(p) and consequently T is surjective. Hence, T is a
linear bijection and this says that the spaces tr0(p) and c0(p) are linearly isomorphic,
as was desired.

�

Theorem 2.3. Convergence in tr(p) is stronger than coordinate-wise convergence.
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Proof. First we show that h(xn − x) → 0, as n → ∞ implies xnk → xk; as n → ∞
for every k ∈ N. We fix k, then we have

lim
n→∞

∣∣∣∣∣
∞∑
n=k

(
n

k

)
(1− r)k+1rn−k[x

(n)
k − xk]

∣∣∣∣∣
pk

≤ lim
n→∞

∑
k

∣∣∣∣∣
∞∑
n=k

(
n

k

)
(1− r)k+1rn−k[x

(n)
k − xk]

∣∣∣∣∣
pk

= lim
n→∞

[h(xn − x)]M = 0.(2.18)

Hence, we have for k = 0 that

lim
n→∞

∣∣∣∣∣
∞∑
n=0

(1− r)rn[x
(n)
0 − x0]

∣∣∣∣∣ = 0

which gives the fact that |x(n)0 − x0| → 0, as n→∞. Similarly, for each k ∈ N, we
have xnk → xk; as n→∞.

A sequence space λ with a linear topology is called a K-space provided each
of the maps pi : λ → C defined by pi(x) = xi is continuous for all i ∈ N, where
C denotes the complex field. A K-space λ is called an FK-space provided λ is
complete linear metric space. An FK-space whose topology is normable is called
a BK-space. Given a BK-space λ ⊃ φ, we denote the n th section of a sequence
x = (xk) ∈ λ by x[n] :=

∑n
k=0 xke

(k), and we say that x = (xk) has the property

AK if limn→∞ ||x− x[n]||λ = 0. If AK property holds for every x ∈ λ, then we say
that the space λ is called AK-space (cf. [7]). Now, we may give the following. �

Theorem 2.4. The space tr(p) has AK.

Proof. For each x = (xk) ∈ tr(p), we put

x<m> =

m∑
k=0

xke
(k),∀m ∈ {1, 2, . . .}.(2.19)

Let ε > 0 and x ∈ tr(p) be given. Then, there is N = N(ε) ∈ N such that

∞∑
k=N

∣∣∣∣∣∣
∞∑
j=k

(
j

k

)
(1− r)k+1rj−kxj

∣∣∣∣∣∣
pk

< εM .(2.20)

Then we have for all m ≥ N ,

h(x− x<m>) = h

(
x−

m∑
k=0

xke
(k)

)

=

 ∞∑
k=m+1

∣∣∣∣∣∣
∞∑
j=k

(
j

k

)
(1− r)k+1rj−kxj

∣∣∣∣∣∣
pk1/M

≤

 ∞∑
k=N

∣∣∣∣∣∣
∞∑
j=k

(
j

k

)
(1− r)k+1rj−kxj

∣∣∣∣∣∣
pk1/M

< ε.(2.21)

This shows that x =
∑
k xke

(k).
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Now, we have to show that this representation is unique. We assume that x =∑
k λke

(k). Then for each k,∣∣∣∣∣∣
∞∑
j=k

(
j

k

)
(1− r)k+1rj−kλj −

∞∑
j=k

(
j

k

)
(1− r)k+1rj−kxj

∣∣∣∣∣∣
pk1/M

≤

∑
k

∣∣∣∣∣∣
∞∑
j=k

(
j

k

)
(1− r)k+1rj−kλj −

∞∑
j=k

(
j

k

)
(1− r)k+1rj−kxj

∣∣∣∣∣∣
pk1/M

= h(x− x) = 0(2.22)

Hence,
∑∞
j=k

(
j
k

)
(1 − r)k+1rj−kλj =

∑∞
j=k

(
j
k

)
(1 − r)k+1rj−kxj for each j. Then,

λj = xj for each j. Therefore, the representation is unique. �

3. The Basis for the Spaces tr0(p), trc(p) and tr(p)

Let (λ, h) be a paranormed space. Recall that a sequence (bk) of the elements of
λ is called a basis for λ if and only if, for each x ∈ λ, there exists a unique sequence
(αk) of scalars such that

h

(
x−

n∑
k=0

αkbk

)
→ 0 as n→∞.

The series
∑
αkbk which has the sum x is then called the expansion of x with

respect to (bn), and written as x =
∑
αkbk. Since it is known that the matrix

domain λA of a sequence space λ has a basis if and only if λ has a basis whenever
A = (ank) is a triangle (cf. [8, Remark 2.4]), we have the following. Because of the
isomorphism T is onto, defined in the proof of Theorem 2.2, the inverse image of
the basis of those spaces c0(p), c(p) and `(p) are the basis of the new spaces tr0(p),
trc(p) and tr(p), respectively. Therefore, we have the following:

Theorem 3.1. Let λk(r) = (T rx)k for all k ∈ N and 0 < pk ≤ H <∞. Define the
sequence b(k)(r) = {b(k)(r)}k∈N of the elements of the space tr0(p), trc(p) and tr(p)
by

b(k)(r) =

{ (
k
n

)
(1− r)−(k+1)(−r)k−n , k ≥ n

0 , 0 ≤ k < n

for every fixed k ∈ N. Then

(a): The sequence {b(k)(r)}k∈N is a basis for the space tr0(p), and any x ∈ tr0(p)
has a unique representation of the form

x =
∑
k

λk(r)b(k)(r),

(b): The set e, b(1)(r), b(2)(r), ... is a basis for the space trc(p), and any x ∈
trc(p) has a unique representation of the form

x = le+
∑
k

[λk(r)− l]b(k)(r),

where l = limk→∞(T rx)k.



ON THE PARANORMED TAYLOR SEQUENCE SPACES 141

(c): The sequence {b(k)(r)}k∈N is a basis for the space tr(p), and any x ∈ tr(p)
has a unique representation of the form

x =
∑
k

λk(r)b(k)(r).

4. The α−, β− and γ−Duals of the Spaces tr0(p), trc(p) and tr(p)

In this section, we state and prove the theorems determining the α−, β− and
γ−duals of the sequence spaces tr0(p), trc(p) and tr(p) of non-absolute type.

We shall firstly give the definition of α−, β− and γ−duals of sequence spaces
and after quoting the lemmas which are needed in proving the theorems given in
Section 4.

The set S(λ, µ) defined by

S(λ, µ) = {z = (zk) ∈ w : xz = (xkzk) ∈ µ for all x = (xk) ∈ λ}(4.1)

is called the multiplier space of the sequence spaces λ and µ. One can eaisly observe
for a sequence space ν with λ ⊃ ν ⊃ µ that the inclusions

S(λ, µ) ⊂ S(ν, µ) and S(λ, µ) ⊂ S(λ, ν)

hold. With the notation of (4.1), the alpha-, beta- and gamma-duals of a sequence
space λ, which are respectively denoted by λα, λβ and λγ are defined by

λα = S(λ, `1), λβ = S(λ, cs) and λγ = S(λ, bs).

The alpha-, beta- and gamma-duals of a sequence space are also referred as Köthe-
Toeplitz dual, generalized Köthe-Toeplitz dual and Garling dual of a sequence space,
respectively.

For to give the alpha-, beta- and gamma-duals of the spaces tr0(p), trc(p) and
tr(p) of non-absolute type, we need the following Lemma:

Lemma 4.1. [7] Let A = (ank) be an infinite matrix. Then, the following state-
ments hold

(i): A ∈ (co(p) : `(q)) if and only if

sup
K∈F

∑
n

∣∣∣∣∣∑
k∈K

ankM
−1/pk

∣∣∣∣∣
qn

<∞, ∃M ∈ N2.(4.2)

(ii): A ∈ (c(p) : `(q)) if and only if (4.2) holds and∑
n

∣∣∣∣∣∑
k

ank

∣∣∣∣∣
qn

<∞.(4.3)

(iii): A ∈ (c0(p) : c(q)) if and only if

sup
n∈N

∑
k

|ank|M−1/pk <∞, ∃M ∈ N2,(4.4)

∃(αk) ⊂ R 3 lim
n→∞

|ank − αk|qn = 0 for all k ∈ N,(4.5)

∃(αk) ⊂ R 3 sup
n∈N

N1/qn
∑
k

|ank − αk|M−1/pk <∞, ∃M ∈ N2 and ∀N ∈ N1.(4.6)
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(iv): A ∈ (c(p) : c(q)) if and only if (4.4), (4.5), (4.6) hold and

∃α ∈ R 3 lim
n→∞

|
∑
k

ank − α|qn = 0.(4.7)

(v): A ∈ (co(p) : `∞(q)) if and only if

sup
n∈N

(∑
k

|ank|M−1/pk
)qn

<∞, ∃M ∈ N2.(4.8)

(vi): A ∈ (`(p) : `1) if and only if
(a): Let 0 < pk ≤ 1 for all k ∈ N. Then

sup
N∈F

sup
k∈N

∣∣∣∣∣∑
n∈N

ank

∣∣∣∣∣
pk

<∞.(4.9)

(b): Let 1 < pk ≤ H < ∞ for all k ∈ N. Then, there exists an integer
M > 1 such that

sup
N∈F

∑
k

∣∣∣∣∣∑
n∈N

ankM
−1

∣∣∣∣∣
p
′
k

<∞.(4.10)

Lemma 4.2. [10] Let A = (ank) be an infinite matrix. Then, the following state-
ments hold

(i): A ∈ (`(p) : `∞) if and only if
(a): Let 0 < pk ≤ 1 for all k ∈ N. Then,

sup
n,k∈N

|ank|pk <∞.(4.11)

(b): Let 1 < pk ≤ H < ∞ for all k ∈ N. Then, there exists an integer
M > 1 such that

sup
n∈N

∑
k

∣∣ankM−1∣∣p′k <∞.(4.12)

(ii): Let 0 < pk ≤ H <∞ for all k ∈ N. Then, A = (ank) ∈ (`(p) : c) if and
only if (4.11) and (4.12) hold, and

lim
n→∞

ank = βk, ∀k ∈ N.(4.13)

Theorem 4.1. Let K ∈ F and K∗ = {k ∈ N : n ≥ k} ∩K for K ∈ F . Define the
sets T r1 (p), T r2 , T3(p) and T4(p) as follows:

T r1 (p) =
⋃
M>1

{
a = (ak) ∈ w : sup

K∈F

∑
n

∣∣∣∣∣ ∑
k∈K∗

cnkM
−1/pk

∣∣∣∣∣
qn

<∞

}
,

T r2 =

{
a = (ak) ∈ w :

∑
n

∣∣∣∣∣
n∑
k=0

cnk

∣∣∣∣∣ exists for each n ∈ N

}
,

T3(p) =
⋃
M>1

a = (ak) ∈ w : sup
N∈F

∑
k

∣∣∣∣∣∑
n∈N

cnkM
−1

∣∣∣∣∣
p
′
k

<∞,

 ,

T4(p) =

{
a = (ak) ∈ w : sup

N∈F
sup
k∈N

∣∣∣∣∣∑
n∈N

cnk

∣∣∣∣∣
pk

<∞

}
,
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where the matrix C(r) = (crnk) defined by

crnk =

{ (
k
n

)
(−r)k−n(1− r)−(k+1)an , (k ≥ n),

0 , (0 ≤ k < n).
(4.14)

Then, [tr0(p)]α = T r1 (p), [trc(p)]
α = T r1 (p) ∩ T r2 and

[tr(p)]α =

{
T3(p) , 1 < pk ≤ H <∞,∀k ∈ N,
T4(p) , 0 < pk ≤ 1,∀k ∈ N.(4.15)

Proof. We chose the sequence a = (ak) ∈ w. We can easily derive that with the
(2.3) that

anxn =

∞∑
k=n

(
k

n

)
(−r)k−n(1− r)−(k+1)anyk = (Cry)n, (n ∈ N).(4.16)

for all k, n ∈ N, where Cr = (crnk) defined by (4.14). It follows from (4.16) that
ax = (anxn) ∈ `1 whenever x ∈ tr0(p) if and only if Cy ∈ `1 whenever y ∈ c0(p).
This means that a = (an) ∈ [tr0(p)]α if and only if C ∈ (c0(p) : `1). Then, we derive
by (4.2) with qn = 1 for all n ∈ N that [tr0(p)]α = T r1 (p).

Using the (4.3) with qn = 1 for all n ∈ N and (4.16), the proof of the [trc(p)]
α =

T r1 (p) ∩ T2 can also be obtained in a similar way. Also, using the (4.9),(4.10) and
(4.16), the proof of the

[tr(p)]α =

{
T3(p) , 1 < pk ≤ H <∞,∀k ∈ N,
T4(p) , 0 < pk ≤ 1,∀k ∈ N,

can also be obtained in a similar way. �

Theorem 4.2. The matrix D(r) = (drnk) is defined by

drnk =

{ ∑n
k=0

(
n
k

)
(−r)n−k(1− r)−(n+1)ak , (0 ≤ k ≤ n)

0 , (k > n)
(4.17)

for all k, n ∈ N. Define the sets T r5 (p), T r6 , T r7 , T8(p), T9(p) and T10(p) as follows:

T r5 (p) =
⋃
M>1

{
a = (ak) ∈ w :

∑
k

∣∣∣drnkM−1/pk ∣∣∣ <∞
}
,

T r6 =
{
a = (ak) ∈ w : lim

n→∞
|drnk| exists for each k ∈ N

}
,

T r7 =

{
a = (ak) ∈ w : lim

n→∞

n∑
k=0

|drnk| exists

}
,

T8(p) =
⋃
M>1

{
a = (ak) ∈ w : sup

n∈N

∑
k

∣∣dnkM−1∣∣p′k <∞} ,
T9(p) = {a = (ak) ∈ w : dnk <∞} ,

T10(p) =

{
a = (ak) ∈ w : sup

n,k∈N
|dnk|pk <∞

}
.

Then, [tr0(p)]β = T r5 (p) ∩ T r6 , [trc(p)]
β = [tr0(p)]β ∩ T r7 and

[tr(p)]β =

{
T8(p) ∩ T9(p) , 1 < pk ≤ H <∞,∀k ∈ N,
T9(p) ∩ T10(p) , 0 < pk ≤ 1,∀k ∈ N.(4.18)
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Proof. We give the proof again only for the space tr0(p). Consider the equation

n∑
k=0

akxk =

n∑
k=0

 ∞∑
k=j

(
k

j

)
(−r)k−j(1− r)−(k+1)yk

 ak
=

n∑
k=0

 k∑
j=0

(
k

j

)
(−r)k−j(1− r)−(k+1)aj

 yk = (Dry)n,(4.19)

where Dr = (drnk) defined by (4.17). Thus, we decude from (4.19) that ax =
(akxk) ∈ cs whenever x = (xk) ∈ tr0(p) if and only if Dry ∈ c whenever y = (yk) ∈
c0(p). That is to say that a = (ak) ∈ [tr0(p)]β if and only if Dr ∈ (c0(p) : c).
Therefore, we derive from (4.4),(4.5) and (4.6) with qn = 1 for all n ∈ N that
[tr0(p)]β = T r5 (u, p) ∩ T r6 (u).

Using the (4.4),(4.5), (4.6) and (4.7) with qn = 1 for all n ∈ N and (4.19), the
proofs of the [trc(p)]

β = [tr0(p)]β ∩ T r7 can also be obtained in a similar way. Also,
using the (4.11),(4.12), (4.13) and (4.19), the proofs of the

[tr(p)]β =

{
T8(p) ∩ T9(p) , 1 < pk ≤ H <∞,∀k ∈ N,
T9(p) ∩ T10(p) , 0 < pk ≤ 1,∀k ∈ N.

can also be obtained in a similar way. �

Theorem 4.3. Define the set T r6 (u) by

T r11(u) =

a = (ak) ∈ w :


k∑
j=0

(
k

j

)
(−r)k−j(1− r)−(k+1)aj

 ∈ bs
 .

Then, [tr0(p)]γ = T r5 (p) ∩ T r6 , [trc(p)]
γ = [tr0(p)]γ ∩ T r11 and

[tr(p)]γ =

{
T8(p) , 1 < pk ≤ H <∞,∀k ∈ N,
T10(p) , 0 < pk ≤ 1,∀k ∈ N.

Proof. This is obtained in the similar way used in the proof of Theorem 4.2. �

5. Certain Matrix Mappings on the Sequence Spaces tr0(p), trc(p) and
tr(p)

In this section, we characterize some matrix mappings on the spaces tr0(p), trc(p)
and tr(p).

We known that, if tr0(p) ∼= c0(p), trc(p)
∼= c(p) and tr(p) ∼= `(p), we can say: The

equivalence “x ∈ tr0(p), trc(p) or tr(p) if and only if y ∈ c0(p), c(p) or `(p)” holds.
In what follows, for brevity, we write,

ãnk :=

n∑
k=0

(
n

k

)
(−r)n−k(1− r)−(n+1)ank

for all k, n ∈ N.

Theorem 5.1. Suppose that the entries of the infinite matrices A = (ank) and
E = (enk) are connected with the relation

enk := ãnk(5.1)

for all k, n ∈ N and µ be any given sequence space. Then,
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(i): A ∈ (tr0(p) : µ) if and only if {ank}k∈N ∈ {tr0(p)}β for all n ∈ N and
E ∈ (c0(p) : µ).

(ii): A ∈ (trc(p) : µ) if and only if {ank}k∈N ∈ {trc(0)}β for all n ∈ N and
E ∈ (c(p) : µ).

(iii): A ∈ (tr(p) : µ) if and only if {ank}k∈N ∈ {tr(p)}β for all n ∈ N and
E ∈ (`(p) : µ).

Proof. We prove only part of (i). Let µ be any given sequence space. Suppose
that (5.1) holds between A = (ank) and E = (enk), and take into account that the
spaces tr0(p) and c0(p) are linearly isomorphic.

Let A ∈ (tr0(p) : µ) and take any y = (yk) ∈ c0(p). Then ET (r) exists and
{ank}k∈N ∈ T r5 (p) ∩ T r6 which yields that {enk}k∈N ∈ c0(p) for each n ∈ N. Hence,
Ey exists and thus ∑

k

enkyk =
∑
k

ankxk

for all n ∈ N.
We have that Ey = Ax which leads us to the consequence E ∈ (c0(p) : µ).
Conversely, let {ank}k∈N ∈ {tr0(p)}β for each n ∈ N and E ∈ (c0(p) : µ) hold,

and take any x = (xk) ∈ tr0(p). Then, Ax exists. Therefore, we obtain from the
equality

∞∑
k=0

ankxk =

∞∑
k=0

 k∑
j=0

(
j

k

)
(−r)j−k(1− r)−(j+1)anj

 yk
for all n ∈ N, that Ey = Ax and this shows that A ∈ (tr0(p) : µ). This completes
the proof of part of (i). �

Theorem 5.2. Suppose that the elements of the infinite matrices A = (ank) and
B = (bnk) are connected with the relation

bnk :=

∞∑
j=n

(
j

n

)
(1− r)n+1r(j−n)ajk for all k, n ∈ N.(5.2)

Let µ be any given sequence space. Then,

(i): A ∈ (µ : tr0(p)) if and only if B ∈ (µ : c0(p)).
(ii): A ∈ (µ : trc(p)) if and only if B ∈ (µ : c(p)).
(iii): A ∈ (µ : tr(p)) if and only if B ∈ (µ : `(p)).

Proof. We prove only part of (i). Let z = (zk) ∈ µ and consider the following
equality.

m∑
k=0

bnkzk =

∞∑
j=n

(
j

n

)
(1− r)n+1rj−n

(
m∑
k=0

ajkzk

)
for all m,n ∈ N

which yields as m → ∞ that (Bz)n = {T (r)(Az)}n for all n ∈ N. Therefore, one
can observe from here that Az ∈ tr0(p) whenever z ∈ µ if and only if Bz ∈ c0(p)
whenever z ∈ µ. This completes the proof of part of (i). �

Of course, Theorems 5.1 and 5.2 have several consequences depending on the
choice of the sequence space µ. Whence by Theorem 5.1 and Theorem 5.2, the
necessary and sufficient conditions for (tr0(p) : µ), (µ : tr0(p)), (trc(p) : µ), (µ : trc(p))
and (tr(p) : µ), (µ : tr(p)) may be derived by replacing the entries of C and A
by those of the entries of E = C{T (r)}−1 and B = T (r)A, respectively; where
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the necessary and sufficient conditions on the matrices E and B are read from the
concerning results in the existing literature.

The necessary and sufficient conditions characterizing the matrix mappings be-
tween the sequence spaces of Maddox are determined by Grosse-Erdmann [7]. Let
N and K denote the finite subset of N, L and M also denote the natural numbers.
Prior to giving the theorems, let us suppose that (qn) is a non-decreasing bounded
sequence of positive numbers and consider the following conditions:

lim
n
|ank|qn = 0, for all k(5.3)

∀L,∃M 3 sup
n
L1/qn

∑
k

|ank|M−1/pk <∞,(5.4)

sup
n
|
∑
k

ank|qn <∞,(5.5)

lim
n
|
∑
k

ank|qn = 0,(5.6)

∀L, sup
n

sup
k∈K1

|ankL1/qn |pk <∞,(5.7)

∀L,∃M 3 sup
n

∑
k∈K2

|ankL1/qnM−1|p
′
k <∞,(5.8)

∀M, lim
n

(
∑
k

|ankM1/pk)qn = 0,(5.9)

∀M, sup
n

∑
k

|ank|M1/pk <∞,(5.10)

∀M, ∃(αk) 3 lim
n

(
∑
k

|ank − αk|M1/pk)qn = 0,(5.11)

∀M, sup
K

∑
n

|
∑
k∈K

ankM
1/pk |qn <∞.(5.12)

Lemma 5.1. Let A = (ank) be an infinite matrix. Then

(i): A = (ank) ∈ (c0(p) : `∞(q)) if and only if (4.8) holds.
(ii): A = (ank) ∈ (c(p) : `∞(q)) if and only if (4.8) and (5.5) hold.
(iii): A = (ank) ∈ (`(p) : `∞) if and only if (4.11) and (4.12) hold.
(iv): A = (ank) ∈ (c0(p) : c(q)) if and only if (4.4), (4.5) and (4.6) hold.
(v): A = (ank) ∈ (c(p) : c(q)) if and only if (4.4), (4.5), (4.6) and (4.7) hold.
(vi): A = (ank) ∈ (`(p) : c) if and only if (4.11), (4.12) and (4.13) hold.
(vii): A = (ank) ∈ (c0(p) : c0(q)) if and only if (5.3) and (5.4) hold.
(viii): A = (ank) ∈ (c(p) : c0(q)) if and only if (5.3), (5.4) and (5.6) hold.
(ix): A = (ank) ∈ (`(p) : c0(q)) if and only if (5.3), (5.7) and (5.8) hold.
(x): A = (ank) ∈ (`∞(p) : c0(q)) if and only if (5.9) holds.
(xi): A = (ank) ∈ (`∞(p) : c(q)) if and only if (5.10) and (5.11) hold.
(xii): A = (ank) ∈ (`∞(p) : `(q)) if and only if (5.12) holds.
(xiii): A = (ank) ∈ (c0(p) : `(q)) if and only if (4.2) holds.
(xiv): A = (ank) ∈ (c(p) : `(q)) if and only if (4.2) and (4.4) hold.

Corollary 5.1. Let A = (ank) be an infinite matrix. The following statements
hold:
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(i): A ∈ (tr0(p) : `∞(q)) if and only if {ank}k∈N ∈ {tr0(p)}β for all n ∈ N and
(4.8) holds with ãnk instead of ank with q = 1.

(ii): A ∈ (tr0(p) : c0(q)) if and only if {ank}k∈N ∈ {tr0(p)}β for all n ∈ N and
(5.3) and (5.4) hold with ãnk instead of ank with q = 1.

(iii): A ∈ (tr0(p) : c(q)) if and only if {ank}k∈N ∈ {tr0(p)}β for all n ∈ N and
(4.4), (4.5) and (4.6) hold with ãnk instead of ank with q = 1.

Corollary 5.2. Let A = (ank) be an infinite matrix. The following statements
hold:

(i): A ∈ (trc(p) : `∞(q)) if and only if {ank}k∈N ∈ {trc(p)}β for all n ∈ N and
(4.8) and (5.5) hold with ãnk instead of ank with q = 1.

(ii): A ∈ (trc(p) : c0(q)) if and only if {ank}k∈N ∈ {trc(p)}β for all n ∈ N and
(5.3), (5.4) and (5.6) hold with ãnk instead of ank with q = 1.

(iii): A ∈ (trc(p) : c(q)) if and only if {ank}k∈N ∈ {trc(p)}β for all n ∈ N and
(4.4), (4.5), (4.6) and (4.7) hold with ãnk instead of ank with q = 1.

Corollary 5.3. Let A = (ank) be an infinite matrix. The following statements
hold:

(i): A ∈ (tr(p) : `∞) if and only if {ank}k∈N ∈ {tr(p)}β for all n ∈ N and
(4.11) and (4.12) hold with ãnk instead of ank.

(ii): A ∈ (tr(p) : c0(q)) if and only if {ank}k∈N ∈ {tr(p)}β for all n ∈ N and
(5.3), (5.7) and (5.8) hold with ãnk instead of ank with q = 1.

(iii): A ∈ (tr(p) : c) if and only if {ank}k∈N ∈ {tr(p)}β for all n ∈ N and
(4.11), (4.12) and (4.13) hold with ãnk instead of ank.

Corollary 5.4. Let A = (ank) be an infinite matrix and bnk be defined by (5.2).
Then, following statements hold:

(i): A ∈ (`∞(q) : tr0(p)) if and only if (5.9) holds with bnk instead of ank with
q = 1.

(ii): A ∈ (c0(q) : tr0(p)) if and only if (5.3) and (5.4) hold with bnk instead of
ank with q = 1.

(iii): A ∈ (c(q) : tr0(p)) if and only if (5.3), (5.4) and (5.6) holds with bnk
instead of ank with q = 1.

Corollary 5.5. Let A = (ank) be an infinite matrix and bnk be defined by (5.2).
Then, following statements hold:

(i): A ∈ (`∞(q) : trc(p)) if and only if (5.10) and (5.11) hold with bnk instead
of ank with q = 1.

(ii): A ∈ (c0(q) : trc(p)) if and only if (4.4), (4.5) and (4.6) hold with bnk
instead of ank with q = 1.

(iii): A ∈ (c(q) : trc(p)) if and only if (4.4), (4.5), (4.6) and (4.7) hold with
bnk instead of ank with q = 1.

Corollary 5.6. Let A = (ank) be an infinite matrix and bnk be defined by (5.2).
Then, following statements hold:

(i): A ∈ (`∞(q) : tr(p)) if and only if (5.12) holds with bnk instead of ank
with q = 1.

(ii): A ∈ (c0(q) : tr(p)) if and only if (4.2) holds with bnk instead of ank with
q = 1.

(iii): A ∈ (c(q) : tr(p)) if and only if (4.2) and (4.4) hold with bnk instead of
ank with q = 1.
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A MESH-FREE TECHNIQUE OF NUMERICAL SOLUTION OF

NEWLY DEFINED CONFORMABLE DIFFERENTIAL

EQUATIONS

FUAT USTA

Abstract. Motivated by the recently defined conformable derivatives pro-
posed in [2], we introduced a new approach of solving the conformable ordinary

differential equation with the mesh-free numerical method. Since radial basis

function collocation technique has outstanding feature in comparison with the
other numerical methods, we use it to solve non-integer order of differential

equation. We subsequently present the results of numerical experimentation

to show that our algorithm provide successful consequences.

1. Introduction

Until quite recently, the question of how to take non-integer order of derivative or
integration was phenomenon among the mathematicans. However together with the
development of mathematics knowledge, this question was answered via fractional
differentiation and integration [8], [9], [11], [12]. Although there are a number
of different type of definition of fractional derivatives or integrations, Riemann-
Liouville and Caputo are the most popular ones among them. Then Abdeljawad
[1] and Khalil et. al. [7] defined the limit based conformable derivative which
is another type of fractional derivative and integrations. In more recent times,
Anderson and Ulness [2] have described another precise definition of conformable
derivatives motivated by a proportional derivative controller. As a result of this new
definition of conformable derivatives, its differential equations need to be handled.

In this paper, we develop a meshless algorithm for the numerical solution of the
conformable differential equations by taking advantageous of radial basis function
(RBF) interpolation [3], [5], [10]. The goal of this approach is to acquire approxi-
mate solution of conformable differential equations with RBF collocation method.
Of course this approach would provide an insight the solution of more complex
cases.

2000 Mathematics Subject Classification. 65L60, 26A33.
Key words and phrases. Conformable derivative, mesh-less method, radial basis functions,

collocation technique.

149



150 FUAT USTA

The remainder of this work is organized as follows: In Section 2, the conformable
derivatives are summarised, along with the newly defined type. In Section 3, the
RBF interpolation method is reviewed while in Section 4 the numerical scheme of
solving conformable ordinary differential equation using mesh-free method is intro-
duced and we also reviewed the RBF collocation technique. Numerical examples
are given in Section 5, while some conclusions and further directions of research are
discussed in Section 6.

2. A class of conformable derivatives

In [7] and [1], a new version of limit based fractional derivative called conformable
derivative have been defined via

(2.1) Dαu(x) = lim
ξ→0

u(x+ ξx1−α)− u(x)

ξ
,

on condition that limit exists. Another proposed limit based fractional derivative
is

(2.2) Dαu(x) = lim
ξ→0

u(xeξx
−α

)− u(x)

ξ
,

in [6]. For both approaches the conformable derivative can be summarised via

(2.3) Dαu(x) = x1−α
d

dx
u(x),

where d
dx denotes the classical derivative operators. In addition to this, Anderson

and Ulness [2] introduced a new class of conformable derivatives via proportional-
derivative controller.

Definition 2.1. [2] Let α ∈ [0, 1]. The conformable derivative operator Dα de-
scribe as

(2.4) Dαu(x) = κ1(α, x)u(x) + κ0(α, x)
d

dx
u(x)

where κ1, κ0 : [0, 1]× R→ [0,∞) are continuous function such that

lim
α→0+

κ1(α, x) = 1, lim
α→0+

κ0(α, x) = 0, for all x ∈ R,

lim
α→1−

κ1(α, x) = 0, lim
α→1−

κ0(α, x) = 1, for all x ∈ R,

κ1(α, x), κ0(α, x) 6= 0, α ∈ (0, 1], for all x ∈ R.

So, for instance, one can define the conformable derivative operator

(2.5) Dαu(x) = (1− α)eαu(x) + αe1−α
d

dx
u(x),

or

(2.6) Dαu(x) = cos(απ/2)eαu(x) + sin(απ/2)e1−α
d

dx
u(x).

This new definition of conformable derivative enables to compute the non-integer
order of derivatives via classical derivative operator. Thus, conformable differential
equations can be solved with the numerical methods after this transformation has
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been applied. In next section, we will summarised the RBF methods which is one
of the mesh-free techniques and then applied it to solve conformable differential
equations.

3. Radial basis function interpolation method

The history of the RBF approximation goes back to 1968 with Hardy who in-
troduced the multiquadric RBFs in academia [4]. Thereafter RBF method become
increasingly popular interpolation technique as it provides us delicately and accu-
rately results with no mesh. Not only interpolation or quadrature of any function,
but also solving partial differential equations is also an application area of RBFs
technique.

One can define the RBF interpolation as follows:

Definition 3.1. Consider a given data set f = (f1, ..., fN )T ∈ RN of function
values, taken from an unknown function f : Rd → R at scattered data points
xk ∈ Rd, k = 1, ..., N such that fk = f(xk) and d ≥ 1. The RBF interpolation is
given by

(3.1) Pf (x) =

N∑
k=1

akϕ(‖x− xk‖),

where ϕ(·) is a radial function and ‖ · ‖ is the Euclidean distance. The coefficient
aj can be determined from interpolation requirements Pf (xj) = fj by solving the
following symmetric linear system:

(3.2) Aa = f,

where the matrix A(N×N) is constructed for ϕjk such that ϕjk = ϕ(‖xj − xk‖),
j, k = 1, . . . , N .

Here the basis function ϕ must be choose as a positive definite function. Ad-
ditionally, radial basis functions can be divided into two major groups: piecewise
smooth and infinitely smooth which are given in Table 1 and Table 2. The rate
of convergence in the infinitely smooth RBFs is quicker in comparison with the
piecewise smooth RBFs which cause to an algebraical rate of convergence.

Piecewise Smooth RBFs ϕ(r)

Piecewise Polynomial (Rn) |r|n , n odd

Thin Plate Spline (TPSn) |r|nln|r| , n even

Table 1. Piecewise Smooth

Additionally, RBFs can be expressed by using a scaling parameter named the
shape parameter ε. This can be done in the manner that ϕ(r) is replaced by ϕ(εr).
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Infinitely Smooth RBFs ϕ(r)

Multiquadric (MQ)
√

1 + r2

Inverse Multiquadric (IMQ)
1√

1 + r2

Inverse Quadratic (IQ)
1

1 + r2

Gaussian (GA) e−r
2

Bessel (BE) J0(2r)

Table 2. Infinitely Smooth

In general shape parameter have been chosen arbitrarily since there are no exact
results about how to choose best shape parameter.

4. Numerical scheme using mesh-free technique

Together with the development of derivative concept, the question of how to
solve non-integer order differential equations have arisen in the scientific area. One
of the similar problem has been faced for the conformable differential equations
since it contains the non-integer order derivative terms. However through the defi-
nition of conformable derivative operator one can transform it to classical ordinary
differential equations that there are huge amount of literature about it. Thus by
applying the mesh-free numerical methods, we can find an approximation results of
conformable differential equations. The conformable ordinary differential equation
can be expressed via

(4.1) Dαu(x) + ϑ(x)u(x) = v(x), u0(x) = u(x0).

Then by substituting of equation (2.4) into equation (4.1), we get

(4.2) κ1(α, x)u(x) + κ0(α, x)
d

dx
u(x) + ϑ(x)u(x) = v(x).

Then by rearranging of equation (4.2), we obtain the below classical ordinary dif-
ferential equation, that is

(4.3)
d

dx
u(x) +A(α, x)u(x) = B(α, x), u0(x) = u(x0),

where

(4.4) A(α, x)u(x) =
κ1(α, x) + ϑ(x)

κ0(α, x)
and B(α, x) =

v(x)

κ0(α, x)
.
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Now the above equation can be solved easily by applying the RBF collocation
method which will present next section.

4.1. RBF collocation technique. In order to solve equation (4.3) by numerically
we use the RBF collocation method which is quite popular method in the engineer-
ing and applied mathematics. Let xNk=1 be the collocation points for interior and
boundary region. Then by using definition of RBF interpolation, we get

(4.5)

N∑
k=1

ak

[
d

dx
u(x) +A(α, x)

]
ϕ(‖x− xk‖) = B(α, x),

with the boundary condition

(4.6)

N∑
k=1

akϕ(‖x0 − xk‖) = u(x0).

Then by using the points xNk=1, we can collocate the equations (4.5) and (4.6) to
determine the unknown coefficients ak’s. Thus the unknown function value u(x)
can be calculated by using the determined coefficients with collocation method.

An algorithm for RBF collocation of conformable differential equation is as fol-
lows:

Algorithm 1: RBF collocation method for conformable differential equation

Require: Equally spaced grid data decomposition for 0,M .
1: Initialize the matrix A and f via collocation points xNk=1.
2: Construct and solve the matrix equality Aa = f to determine the unknown

values of ak’s.
3: By using the value of ak’s, calculate the solution of equation for each collocation

points.
4: return Approximation value

5. Numerical experiments

In this section, we presents some numerical results to verify proposed algorithm.
To do that, we take the first order conformable ODE which is solved by RBF
collocation technique.

5.1. Numerical solution of conformable ODE. For this example, we take the
below conformable ODE [2] to solve it via RBF method,

(5.1) Dαu(x) + u(x) = v(x)

with the boundary condition

(5.2) u0(x) = u(x0)
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Let xi be equally spaced grid points in the interval 0 ≤ xi ≤M such that 1 ≤ i ≤ N ,
x1 = 0 and xN = M . Additionally, because collocation approach has been used we
not only require an expression for the value of the function

(5.3) u(x) =

N∑
k=1

ajϕ(‖x− xk‖)

but also for the conformal derivative given in (5.1). Thus, by conformal differenti-
ating (5.3), we get

(5.4) Dαu(x) =
N∑
k=1

ajD
αϕ(‖x− xk‖)

where Dαdenotes the conformable derivative the with respect to x. In a particular
case of Multiquadric and Gaussian basis functions, we have

Dαϕ(‖x− xk‖) = κ1(α, x)
√
‖x− xk‖2 + ε2 + κ0(α, x)

x− xk√
‖x− xk‖2 + ε2

Dαϕ(‖x− xk‖) = κ1(α, x)e−‖x−xk‖
2/ε2 − κ0(α, x)

2(x− xk)

ε2
e−‖x−xk‖

2/ε2(5.5)

where κ0 and κ1 are given in Definition 3.1. So in order to determine the value of
aj ’s in equation (5.3), we need to solve

(5.6)

N∑
k=1

ajD
αϕ(‖xj − xk‖) +

N∑
k=1

ajϕ(‖xj − xk‖) = v(x)

by using

(5.7)

N∑
k=1

ajϕ(‖x1 − xk‖) = u(x0)

where j = 2, . . . , N . If we put the equations (5.5) into equation (5.6), we get the
classical ODE which can be solved easily. In other words, one need to solve below
algebraic systems

(5.8) φ[N×N ]a[N×1] = ν[N×1]

where
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φ =


Dαϕ1,1 + ϕ1,1 . . . Dαϕ1,N + ϕ1,N

Dαϕ2,1 + ϕ2,1 . . . Dαϕ2,N + ϕ2,N

...
. . .

...
DαϕN,1 + ϕN,1 . . . DαϕN,N + ϕN,N

 , a =


a1
a2
...
aN

 , ν =


v1
v2
...
vN


to determine ai’s. Then one can obtain the numerical solution using ai’s into RBF
method. The numerical experiment results has been presented for different left hand
side functions such as v1(x) = x

√
x + 1/2x2

√
x + x2, v2(x) = e−x(x +

√
x/2) and

v3(x) = (1−
√
x/2) cos(4

√
x)− sin(4

√
x) in Figures 1, 2 and 3 respectively. These

results confirm that RBF method converge the solution of ordinary conformable
differential equations.

Function Alpha ε Number of Nodes Max-Error RMS-Error

v1(x) 0.5 5 500 3.829195e-006 5.527372e-008
v2(x) 0.5 5 500 2.352912e-005 3.757950e-007
v3(x) 0.5 5 500 2.267579e-004 3.500312e-006

Table 3. Numerical results of conformable ordinary differential
equation via RBF using Multiquadric on the domain [0, 10].
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Numerical Solution

Figure 1. u(x) versus x using Multiquadric basis function with
ε = 5 for v1(x) = x

√
x+ 1/2x2

√
x+x2: Exact solution (Blue) and

Numerical solution (Red circle) on equally spaced evaluation grid.

In the numerical experiments, Max-Error represents the maximum modulus er-
ror, i.e., ‖f−g‖∞ and Rms-Error represents the standard root mean squared error,
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i.e.

(5.9)

√∑Neval
i=1 |fi − gi|2

Neval
,

where f is the exact solution, g is the approximate solution, and Neval is the
number of the test points.
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Figure 2. u(x) versus x using Multiquadric basis function with
ε = 5 for v2(x) = e−x(x +

√
x/2): Exact solution (Blue) and

Numerical solution (Red circle) on equally spaced evaluation grid.

0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5

x

u(
x)

 

 
Exact Solution
Numerical Solution

Figure 3. u(x) versus x using Multiquadric basis function with
ε = 5 for v3(x) = (1 −

√
x/2) cos(4

√
x) − sin(4

√
x): Exact solu-

tion (Blue) and Numerical solution (Red circle) on equally spaced
evaluation grid.
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6. Concluding remark

A new radial basis function collocation technique to solve conformable ordinary
differential equation is proposed and tested in this paper. To do that Gaussian or
Multiquadric basis functions can be used. In order to verify this methods stability,
we have presented some numerical results. Thus this study would help to solve
modelled non-integer order of differential equations.
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PERIODIC SOLUTIONS FOR THIRD ORDER DELAY

DIFFERENTIAL EQUATION IMPULSES WITH FREDHOLM

OPERATOR OF INDEX ZERO

S.BALAMURALITHARAN

Abstract. In this paper the periodic solutions for third order delay differen-

tial equation of the form

x′′′(t) + f(t, x′′(t)) + g(t, x′(t)) + h(x(t− τ(t)) = p(t), t ≥ 0, t 6= tk,

is investigated. We derive a third order delay differential equation with Fred-

holm operator of index zero and periodic solution. We obtain the existence of

periodic solution and Mawhin’s continuation theorem. The delay conditions
for the Schwarz inequality of the periodic solutions are also obtained. An ex-

ample is also furnished which demonstrates validity of main result. Some new
positive periodic criteria are given. Therefore it has at least one 2π-periodic

solution.

1. Introduction

The theory of impulsive delay differential equations is promising as an impor-
tant role of investigation, since it is better than the corresponding theory of delay
differential equation without impulse effects. Furthermore, such equations may
demonstrate several real-world phenomena in physics,chemistry, biology, engineer-
ing, etc. In the last few years the theory of periodic solutions and delay differential
equations with impulses has been studied by many authors, respectively [3, 5, 7, 8].
There are several books and a lot of papers dealing with the periodic solution of
delay differential equations [1, 2, 4, 6, 9]. Periodic solutions of impulsive delay dif-
ferential equations is a new research area and there are many publications in this
field. The paper deals with impulsive equations with constant delay and Fredholm
operator of index zero. We obtain the theorems of existence of periodic solution
based on the following Mawhin’s continuation theorem.

Let PC(R,R) = {x : R → R, x(t) be continuous everywhere except for some tk
at which x(t+k ) and x(t−k ) exist and x(t−k ) = x(tk)},

2000 Mathematics Subject Classification. 34K13, 34K45.
Key words and phrases. third order delay differential equations; Impulses; Periodic solutions;

Mawhin’s continuation theorem; Fredholm operator of index zero.
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PC1(R,R) = {x : R → R, x(t) is continuous everywhere except for some tk at
which x′(t+k ) and x′(t−k ) exist and x′(t−k ) = x′(tk)}.
PC2(R,R) = {x : R → R, x(t) is continuous everywhere except for some tk at
which x′′(t+k ) and x′′(t−k ) exist and x′′(t−k ) = x′′(tk)}.
Let X = {x(t) ∈ PC1(R,R), x(t+ T ) = x(t)} with norm ‖x‖ = max{|x|∞, |x′|∞},
where |x|∞ = supt∈[0,T ] |x(t)|,
Y = PC(R,R)×Rn×Rn, with norm ‖y‖ = max{|u|∞, |c|}, where u ∈ PC(R,R), c =
(c1, . . . c2n) ∈ Rn × Rn, |c| = max1≤k≤2n{|ck|}.
Z = PC(R,R)×Rn×Rn, with norm ‖z‖ = max{|v|∞, |d|}, where v ∈ PC(R,R), d =
(d1, . . . d2n) ∈ Rn × Rn, |d| = max1≤k≤2n{|dk|}.
Then X, Y and Z are Banach spaces. L : D(L) ⊂ X → Y and L : D(L) ⊂ Y → Z
are a Fredholm operator of index zero, where D(L) denotes the domain of L.
P : X → X,Q : Y → Y,R : Z → Z are projectors such that

ImP = kerL, kerQ = ImL, kerR = ImL,

X = kerL⊕ kerP, Y = ImL⊕ ImQ, Z = ImL⊕ ImR.

It continues that

L|D(L)∩kerP : D(L) ∩ kerP → ImL

is invertible and we assume the inverse of that map by Kp. Let Ω be an open

bounded subset of X, D(L)∩Ω 6= ∅, the map N : X → Y will be called L-compact
in Ω, if QN(Ω) is bounded and Kp(I −Q)N : Ω→ X is compact.
Similarly it follows that

L|D(L)∩kerQ : D(L) ∩ kerQ→ ImL

is invertible and we assume the inverse of that map by Kq. Let Ω be an open

bounded subset of Y , D(L)∩Ω 6= ∅, the map N : Y → Z will be called L-compact
in Ω, if RN(Ω) is bounded and Kq(I −R)N : Ω→ Y is compact.

2. Preliminaries

This paper obtains the existence of periodic solutions for the third-order delay
differential equations with impulses

(2.1)

x′′′(t) + f(t, x′′(t)) + g(t, x′(t)) + h(x(t− τ(t)) = p(t), t ≥ 0, t 6= tk,

∆x(tk) = Ik,

∆x′(tk) = Jk,

∆x′′(tk) = Kk.

where ∆x(tk) = x(t+k )−x(t−k ), x(t+k ) = limt→t+k
x(t), x(t−k ) = limt→t−k

x(t), x(t−k ) =

x(tk);
∆x′(tk) = x′(t+k )− x′(t−k ), x′(t+k ) = limt→t+k

x′(t), x′(t−k ) = limt→t−k
x′(t), x′(t−k ) =

x′(tk);
∆x′′(tk) = x′′(t+k ) − x′′(t−k ), x′′(t+k ) = limt→t+k

x′′(t), x′′(t−k ) = limt→t−k
x′′(t),

x′′(t−k ) = x′′(tk).

We assume that the following conditions:

(H1) f ∈ C(R2,R) and g(t + T, x) = g(t, x), h ∈ C(R,R), p, τ ∈ C(R,R) with
τ(t+ T ) = τ(t), p(t+ T ) = p(t);



160 S.BALAMURALITHARAN

(H2) {tk} satisfies tk < tk+1 and limk→±∞ tk = ±∞, k ∈ Z,
Ik(x, y), Jk(x, y),Kk(x, y) ∈ C(R2,R), and there is a positive n such that
{tk} ∩ [0, T ] = {t1, t2, . . . , tn}, tk+n = tk + T ,
Ik+n(x, y) = Ik(x, y), Jk+n(x, y) = Jk(x, y),Kk+n(x, y) = Kk(x, y).

(H3) There are constants σ, β ≥ 0 such that

|f(t, x)| ≤ σ|x|, ∀(t, x) ∈ [0, T ]× R,(2.2)

xf(t, x) ≥ β|x|2, ∀(t, x) ∈ [0, T ]× R;(2.3)

(H4) There are constants σ, β ≥ 0 such that

|g(t, x)| ≤ σ|x|, ∀(t, x) ∈ [0, T ]× R,(2.4)

x2g(t, x) ≥ β|x|2, ∀(t, x) ∈ [0, T ]× R;(2.5)

(H5) there are constants βi ≥ 0 (i = 1, 2, 3) such that

|h(x)| ≥ β1 + β2|x|,(2.6)

|h(x)− h(y)| ≤ β3|x− y|;(2.7)

(H6) there are constants γi > 0 (i = 1, 2, 3), such that |
∫ x+λJk(x,y)
x

h(s)ds| ≤
|Jk(x, y)|(γ1 + γ2|x|+ γ3|Jk(x, y)|), ∀λ ∈ (0, 1);

(H7) there are constants ak, a
′
k, a
′′
k ≥ 0 such that |Kk(x, y)| ≤ ak|x|2 +a′k|x|+a′′k ;

(H8) zKk(x, y) ≤ 0 and there are constants bk ≥ 0 such that |Kk(x, y)| ≤ bk.

Lemma 2.1. Let L be a Fredholm operator of index zero and let N be L-compact
on Ω. We assume that the following conditions are satisfied:

(i) Lx 6= λNx, ∀x ∈ ∂Ω ∩D(L), λ ∈ (0, 1);
(ii) RNx 6= 0, for all x ∈ ∂Ω ∩ kerL;

(iii) deg{KRNx,Ω
⋂

kerL, 0} 6= 0, where K : ImR→ kerL is an isomorphism.

Then the abstract equation Lx = Nx has at least one solution in Ω
⋂
D(L).

We assume the operators L : D(L) ⊂ X → Y and L : D(L) ⊂ Y → Z by

(2.8) Lx = (x′′′,∆x(t1), . . . ,∆x(tn),∆x′(t1), . . . ,∆x′(tn),∆x′′(t1), . . . ,∆x′′(tn)),

and N : X → Y , N : Y → Z by

Nx = (−f(t, x′′(t))− g(t, x′(t))− h(x(t− τ(t))) + p(t),

I1(x(t1)), . . . , In(x(tn)), J1(x′(t1)), . . . , Jn(x′(tn)),K1(x′′(t1)), . . . ,Kn(x′′(tn))).

(2.9)

Lemma 2.2. L is a Fredholm operator of index zero with

(2.10) kerL = {x(t) = c, t ∈ R},

and

ImL(y, z, a1, . . . , an, b1, . . . , bn)

=

∫ T

0

(y(s) + z(s))ds+

n∑
k=1

bk(T − tk) +

n∑
k=1

ak + x′(0)T = 0.
(2.11)

Let the linear operators P : X → X, Q : Y → Y and R : Z → Z be defined by

(2.12) Px = x(0),
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Q(y, a1, . . . , an, b1, . . . , bn)

=
2

T 2
[

∫ T

0

(T − s)y(s)ds+

n∑
k=1

bk(T − tk) +

n∑
k=1

ak + x′(0)T ], 0, . . . , 0),
(2.13)

and

R(z, a1, . . . , an, b1, . . . , bn)

=
2

T 2
[

∫ T

0

(T − s)z(s)ds+

n∑
k=1

bk(T − tk) +

n∑
k=1

ak + x′(0)T ], 0, . . . , 0).
(2.14)

Lemma 2.3. If α > 0, x(t) ∈ PC2(R,R) with x(t+ T ) = x(t), then

(2.15)

∫ T

0

∫ t

t−α
|x′(s)|2 ds dt = α

∫ T

0

|x′(t)|2dt

and

(2.16)

∫ T

0

∫ t+α

t

|x′(s)|2 ds dt = α

∫ T

0

|x′(t)|2dt.

Let

A1(t, α) =
∑

t−α≤tk≤t

ak, A2(t, α) =
∑

t≤tk≤t+α

ak,

B1(t, α) =
∑

t−α≤tk≤t

a′k, B2(t, α) =
∑

t≤tk≤t+α

a′k,

C1(t, α) =
∑

t−α≤tk≤t

a′′k , C2(t, α) =
∑

t≤tk≤t+α

a′′k ,

I1 =
(∫ T

0

A2
1(t, α)dt

)1/2
+
(∫ T

0

A2
2(t, α)dt

)1/2
,

I2 =
(∫ T

0

B2
1(t, α)dt

)1/2
+
(∫ T

0

B2
2(t, α)dt

)1/2
,

I3 =

∫ T

0

A2
1(t, α)dt+

∫ T

0

A2
2(t, α)dt,

I4 =

∫ T

0

A1(t, α)B1(t)dt+

∫ T

0

A2(t, α)B2(t)dt,

I5 =

∫ T

0

B2
1(t, α)dt+

∫ T

0

B2
2(t, α)dt

The following Lemma is important for us to the delay τ(t).

Lemma 2.4. Suppose τ(t) ∈ C(R,R) with τ(t + T ) = τ(t) and τ(t) ∈ [−α, α] for
all t ∈ [0, T ], x(t) ∈ PC1(R,R) with x(t+ T ) = x(t) and there is a positive n such
that {tk}∩ [0, T ] = {t1, t2, . . . , tn}, ∆x(tk) = λIk(x(tk), x′(tk)) for all λ ∈ (0, 1) and
tk+n = tk +T, Ik+n(x, y) = Ik(x, y). Furthermore there exist nonnegative constants



162 S.BALAMURALITHARAN

ak, ak such that |Ik(x, y)| ≤ ak|x|+ a′k. Then∫ T

0

|x(t)− x(t− τ(t))|2dt

≤ 2α2

∫ T

0

|x′(t)|2dt+ 2αI1|x(t)|∞
(∫ T

0

|x′(t)|2dt
)1/2

+ 2αI2

(∫ T

0

|x′(t)|2dt
)1/2

+ I3|x(t)|2∞ + I4|x(t)|∞ + I5.

(2.17)

3. Main results

We establish the theorems of existence of periodic solution based on the following
two conditions.

Theorem 3.1. We assume that (H1)–(H8) hold. Then (3.3) has at least one T -
periodic solution and

n∑
k=1

ak < 1,(3.1)

[
γ2(

n∑
k=1

ak) + γ3(

n∑
k=1

a2k)
]
M2 + β3

[
2|τ(t)|2∞

+ 2|τ(t)|∞I1(|τ(t)|∞)M + I3(|τ(t)|∞)M2
]1/2

< β,

(3.2)

where

M =
1

1−
∑n
k=1 ak

(
σ

β2T 1/2
+ T 1/2).

Proof. Consider the abstract equation Lx = λNx, with λ ∈ (0, 1), where L and N
are given by (2.8) and (2.9). Let

Ω1 = {x ∈ D(L) : kerL,Lx = λNx for some λ ∈ (0, 1)} .
For x ∈ Ω1, we get

(3.3) x′′′(t) + f(t, x′′(t)) + g(t, x′(t)) + h(x(t− τ(t)) = p(t), t ≥ 0, t 6= tk,

Integrating the interval on [0, T ], using Schwarz inequality, we get

|
∫ T

0

h(x(t− τ(t))dt|

= |
∫ T

0

p(t)dt−
∫ T

0

f(t, x′′(t))dt−
∫ T

0

g(t, x′(t))dt+

n∑
k=1

Kk(x(tk), x′′(tk))|

≤ T |p(t)|∞ + σ

∫ T

0

|x′′(t)|dt+

n∑
k=1

bk

≤ σT 1/2
(∫ T

0

|x′′(t)|2dt
)1/2

+ T |p(t)|∞ +

n∑
k=1

bk.

From the above formula, there is a interval on t0 ∈ [0, T ] such that

|h(x(t0 − τ(t0))| ≤ σ

T 1/2
(

∫ T

0

|x′′(t)|2dt)1/2 + |p(t)|∞ +
1

T

n∑
k=1

bk.
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From (2.6),we get

β1 + β2|x(t0 − τ(t0))| ≤ σ

T 1/2
(

∫ T

0

|x′′(t)|2dt)1/2 + |p(t)|∞ +
1

T

n∑
k=1

bk.

Then

|x(t0 − τ(t0))| ≤ σ

β2T 1/2

(∫ T

0

|x′′(t)|2dt
)1/2

+ d,

where d =
(
||p(t)|∞+ 1

T

∑n
k=1 bk−β1|

)
/β2. So there is an integer m and an interval

t1 ∈ [0, T ] such that t0 − τ(t0) = mT + t1. Therefore

|x(t1)| = |x(t0 − τ(t0))| ≤ σ

β2T 1/2

(∫ T

0

|x′′(t)|2dt
)1/2

+ d,

x(t) = x(t1) +

∫ t

t1

x′′(s)ds+
∑

t1≤tk<t

Kk(x(tk), x′′(tk)).

Thus

|x(t)|∞ ≤ |x(t1)|+
∫ t

t1

|x′′(s)|ds+
∑

t1≤tk<t

|Kk(x(tk))|

≤ σ

β2T 1/2
(

∫ T

0

|x′′(t)|2dt)1/2 + d+

∫ T

0

|x′′(t)|dt+

n∑
k=1

ak|x|∞ +

n∑
k=1

a′k +

n∑
k=1

a′′k

≤ |x|∞
n∑
k=1

ak + (
σ

β2T 1/2
+ T 1/2)

(∫ T

0

|x′′(t)|2dt
)1/2

+ d+

n∑
k=1

a′k +

n∑
k=1

a′′k .

It continues that

|x(t)|∞ ≤
d+

∑n
k=1 a

′′
k

1−
∑n
k=1 ak

+
1

1−
∑n
k=1 ak

(
σ

β2T 1/2
+ T 1/2)(

∫ T

0

|x′′(t)|2dt)1/2

= c1 +M(

∫ T

0

|x′′(t)|2dt)1/2,
(3.4)

where c1 is a positive constant. On the other hand, multiplying both side of (3.3)
by x′(t), we have∫ T

0

x′′′(t)x′′(t)dt+ λ

∫ T

0

f(t, x′′(t))x′(t)dt +λ

∫ T

0

g(t, x′(t))x′(t)dt+ λ

∫ T

0

h(t, x(t− τ(t))x′(t)dt

= λ

∫ T

0

p(t)x′(t)dt.

Since ∫ T

0

x′′′(t)x′′(t)dt = −1

2

n∑
i=1

[(x′′(t+k ))2 − (x′′(tk))2],
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Our assumption (H7) that

(x′(t+k ))2 − (x′(tk))2

= (x′(t+k ) + x′(tk))(x′(t+k )− (x′(tk))

= ∆x′(tk)(2x′(tk) + ∆x′(tk))

= λKk(x(tk), x′(tk))(2x′(tk) + λKk(x(tk), x′(tk))

= 2λKk(x(tk), x′(tk))x′(tk) + [λKk(x(tk), x′(tk))]2 ≤ b2k.

In (2.5), by use Schwarz inequality

β

∫ T

0

|x′′(t)|2dt

≤ −
∫ T

0

h(x(t− τ(t))x′(t)dt+

∫ T

0

p(t)x′(t)dt+
1

2

n∑
k=1

b2k

=

∫ T

0

[h(x(t)− h(x(t− τ(t))]x′(t)dt−
∫ T

0

h(x(t))x′(t)dt

+

∫ T

0

p(t)x′(t)dt+
1

2

n∑
i=1

b2k

≤
∫ T

0

|h(x(t))− h(x(t− τ(t))||x′(t)|dt+ |p(t)|∞
∫ T

0

|x′(t)|dt

+ |
∫ T

0

h(x(t))x′(t)dt|+ 1

2

n∑
i=1

b2k

≤
[( ∫ T

0

|h(x(t))− h(x(t− τ(t)))|2dt
)1/2

+ |p(t)|∞T 1/2
]( ∫ T

0

|x′(t)|2dt
)1/2

+ |
∫ T

0

h(x(t))x′(t)dt|+ 1

2

n∑
i=1

b2k.

(3.5)
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From (H5) and (H6), we get

|
∫ T

0

h(x(t))x′(t)dt|

= |
∫ x(t1)

x(0)

h(s)ds+

∫ x(t2)

x(t+1 )

h(s)ds+ · · ·+
∫ x(T )

x(t+n )

h(s)ds|

= |
∫ x(T )

x(0)

h(s)ds−
n∑
k=1

∫ x(t+k )

x(tk)

h(s)ds|

≤
n∑
k=1

|
∫ x(tk)+λKk(x(tk),x

′(tk))

x(tk)

h(s)ds|

≤
n∑
k=1

[|Kk(x(tk), x′(tk))|(γ1 + γ2|x(tk)|+ γ3|Kk(x(tk), x′(tk))|)]

≤ [γ2(

n∑
k=1

ak) + γ3(

n∑
k=1

a2k)]|x(t)|2∞ + c2|x(t)|∞ + c3,

where c2, c3 are constants. From (3.4), we get

|
∫ T

0

h(x(t))x′(t)dt|

≤ [γ2(

n∑
k=1

ak) + γ3(

n∑
k=1

a2k)]M2

∫ T

0

|x′(t)|2dt+ c4(

∫ T

0

|x′(t)|2dt)1/2 + c5,

(3.6)

where c4, c5 are constants. From Lemma 2.4, we get∫ T

0

|h(x(t)− h(x(t− τ(t)))|2dt

≤ β2
3

∫ T

0

|x(t)− x(t− τ(t))|2dt

≤ β2
3 [2|τ(t)|2∞

∫ T

0

|x′(t)|2dt+ 2|τ(t)|∞I1(|τ(t)|∞)|x(t)|∞
(∫ T

0

|x′(t)|2dt
)1/2

+ 2|τ(t)|∞I2(|τ(t)|∞)
(∫ T

0

|x′(t)|2dt
)1/2

+ I3(|τ(t)|∞)|x(t)|2∞

+ I4(|τ(t)|∞)|x(t)|∞ + I5(|τ(t)|∞)].

Substituting (3.4) into the above inequality, we get∫ T

0

|h(x(t)− h(x(t− τ(t)))|2dt

≤ β2
3 [2|τ(t)|2∞ + 2|τ(t)|∞I1(|τ(t)|∞)M

+ I3(|τ(t)|∞)M2]

∫ T

0

|x′(t)|2dt+ c6

(∫ T

0

|x′(t)|2dt
)1/2

+ c7,

where c6, c7 are constants. From above inequality

(3.7) (a+ b)1/2 ≤ a1/2 + b1/2 for a ≥ 0, b ≥ 0,
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we get(∫ T

0

|h(x(t))− h(x(t− τ(t)))|2dt
)1/2

≤ β3[2|τ(t)|2∞ + 2|τ(t)|∞I1(|τ(t)|∞)M

+ I3(|τ(t)|∞)M2]1/2
(∫ T

0

|x′(t)|2dt
)1/2

+ c
1/2
6

(∫ T

0

|x′(t)|2dt
)1/4

+ c
1/2
7 .

Substituting the above formula and (3.6) in (3.5), we get{
β − [γ2(

n∑
k=1

ak) + γ3(

n∑
k=1

a2k)]M2 − β3[2|τ(t)|2∞

+ 2|τ(t)|∞I1(|τ(t)|∞)M + I3(|τ(t)|∞)M2]1/2
}∫ T

0

|x′(t)|2dt

≤ c8(

∫ T

0

|x′(t)|2dt) 3
4 + c9(

∫ T

0

|x′(t)|2dt)1/2 + c10,

where c8, c9, c10 are constants. There is a constant M1 > 0 such that

(3.8)

∫ T

0

|x′(t)|2dt ≤M1.

From (3.4), we get

|x(t)|∞ ≤ d+M(

∫ T

0

|x′(t)|2dt)1/2 ≤ d+M(M1)1/2.

Then there is a constant M2 > 0 such that |x(t)|∞ ≤ M2. Therefore, integrating
(3.3) on the interval [0, T ], using Schwarz inequality, we get∫ T

0

|x′′′(t)|dt =

∫ T

0

| − f(t, x′′(t))− g(t, x′(t))− h(x(t− τ(t))) + p(t)|dt

≤
∫ T

0

|f(t, x′′(t))|dt+

∫ T

0

|g(t, x′′(t))|dt+

∫ T

0

|h(x(t− τ(t)))|dt+

∫ T

0

|p(t)|dt

≤ σ
∫ T

0

|x′′(t)|dt+ hδT + T |p(t)|∞

≤ σT 1/2(

∫ T

0

|x′′(t)|2dt)1/2 + hδT + T |p(t)|∞

≤ σT 1/2(M1)1/2 + hδT + T |p(t)|∞,

where hδ = max|x|≤δ |g(x)|. Then there is a constant M3 > 0 such that

(3.9)

∫ T

0

|x′′(t)|dt ≤M3.

From (3.8),then there are t2 ∈ [0, T ] and c > 0 such that |x′(t2)| ≤ c for t ∈ [0, T ]

(3.10) |x′(t)|∞ ≤ |x′(t2)|+
∫ T

0

|x′′(t)|dt+

n∑
k=1

bk.

Then there is a constant M4 > 0 such that

(3.11) |x′(t)|∞ ≤M4.
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It follows that there is a constant I2 > max{M2,M4} such that ‖x‖ ≤ I2, Thus Ω1

is bounded.
Let Ω2 = {x ∈ kerL,RNx = 0}. If x ∈ Ω2, then x(t) = c ∈ R and satisfies

(3.12) RN(x, 0) = (− 2

T 2

∫ T

0

[f(t, 0) + g(t, 0) + h(c)− p(t)]dt, 0, . . . , 0) = 0.

we get

(3.13)

∫ T

0

[f(t, 0) + g(t, 0) + h(c)− p(t)]dt = 0.

In (3.13),there must be a interval t0 ∈ [0, T ] such that

(3.14) h(c) = −f(t0, 0)− g(t0, 0) + p(t0).

From (3.14) and assumption (H3), (H4), we get

(3.15) β1 + β2|c| ≤ |h(c)| ≤ |f(t0, 0)|+ |g(t0, 0)|+ |p(t0)| ≤ σ × 0 + |p(t)|∞.

Then

(3.16) |c| ≤ ||p(t)|∞ − β1|
β2

which implies Ω2 is bounded. Let Ω be a non-empty open bounded subset of X
such that Ω ⊃ Ω1 ∪ Ω2 ∪ Ω3, where Ω3 = {x ∈ X : |x| < ||p(t)|∞ − β1|/β2 + 1}.
By Lemmas 2.2, we can see that L is a Fredholm operator of index zero and N is
L-compact on Ω. Then by the above argument,

(i) Lx 6= λNx for all x ∈ ∂Ω ∩D(L), λ ∈ (0, 1);
(ii) RNx 6= 0 for all x ∈ ∂Ω ∩ kerL.

Finally we prove that (iii) of Lemma 2.1 is satisfied. We take H(x, µ) : Ω× [0, 1]→
X,

H(x, µ) = µx+
2(1− µ)

T 2

∫ T

0

[−f(t, x′′(t))− g(t, x′(t)) + h(x(t− τ(t)) + p(t)]dt.

From assumptions (H3) and (H4), we can easily verify H(x, µ) 6= 0, for all (x, µ) ∈
∂Ω ∩ kerL× [0, 1], which results in

deg{KRNx,Ω ∩ kerL, 0} = deg{H(x, 0),Ω ∩ kerL, 0}
= deg{H(x, 1),Ω ∩ kerL, 0} 6= 0,

where K(x, 0, . . . , 0) = x. Therefore, by Lemma 2.1, Equation (3.3) has at least
one T -periodic solution. �

Example 1. Consider the third order delay differential equation with impulses

(3.17)

x′′′(t) +
1

3
x′′(t) +

1

6
x′(t) +

1

21
x(t− 1

10
cos t) = sin t, t 6= k,

Ik(x, y) =
sin kπ

3

120
x+

y

1 + y2
,

Jk(x, y) = − 2x2y

1 + x4y2
,

Kk(x, y) = − 4x4y

1 + x8y2
,
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where tk = k, f(t, x) = 1
3x

2,g(t, x) = 1
6x, h(y) = 1

21y, p(t) = sin t, τ(t) = 1
10 cos t,

it is easy to see that |τ(t)|∞ = 1
10 , T = 2π, {k} ∩ [0, 2π] = {1, 2, 3, 4, 5, 6, 7, 8},

σ = β = 1
3 , β1 = 0, β2 = β3 = 1

21 . Since |Ik(x, y)| ≤ 1
120 |x|+

1
2 ,

|Jk(x, y)| ≤ 1,|
∫ x+Ik(x,y)
x

h(s)ds| ≤ |Ik(x, y)|( 1
21 |x|+

1
42 |Ik(x, y)|),

|Kk(x, y)| ≤ 1,|
∫ x+Jk(x,y)
x

h(s)ds| ≤ |Jk(x, y)|( 1
21 |x|+

1
42 |Jk(x, y)|),

then we take ak = 1
120 , a′k = 1

2 , b′k = 1 (k = 1, 2, 3, 4, 5, 6, 7, 8), γ1 = 0, γ2 = 1/21,
γ3 = 1/42.

8∑
k=1

ak =
1

20
< 1,

M =
1

1−
∑n
k=1 ak

(
σ

β2T 1/2
+ T 1/2) =

1

1− 1
20

(
1
3

1
21 (2π)1/2

+ (2π)1/2) < 8.

By Theorem 3.1, Equation (3.17) has at least one 2π-periodic solution.
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SOME SPACES OF A-IDEAL CONVERGENT SEQUENCES

DEFINED BY MUSIELAK-ORLICZ FUNCTION

SELMA ALTUNDAG AND MERVE ABAY

Abstract. We introduce basic properties of some sequence spaces using ideal

convergent and Musielak Orlicz function M = (Mk). Including relations re-

lated to these spaces are investigated in this paper.

1. Introduction, Definitions and Notations

Throughout this article w, c, c0, l∞, lp denote the spaces of all, convergent,
null, bounded and p -absolutely summable sequences, where 1 ≤ p <∞.

Firstly, the notion of I -convergence was introduced by Kostryrko et all [1] and
it is the generalization of statistical convergence.
A = (ank) be an infinite matrix of complex entries ank and x = (xk) be a sequence

in w. If An(x) =
∞∑
k=1

ankxk converges for each, then we write n ∈ N.

Definition 1.1. If X is a non-empty set then a family of sets I ⊆ 2X is ideal if
and only if for each A,B ∈ I we have A∪B ∈ I and for each A ∈ I and each B ⊂ A
we have B ∈ I.[1]

Definition 1.2. A non-empty family of sets F ⊂ 2X is said to be a filter on X if
and only if ∅ /∈ F , for each A,B ∈ F we have A ∩ B ∈ F and for each A ∈ F and
each B ⊃ A we have B ∈ F .[1]

Definition 1.3. An ideal I 6= ∅ is called non-trivial if I 6= ∅ and X /∈ I.[1]

Definition 1.4. A non-trivial I ⊆ 2X is called admissible ideal if and only if
{{x} : x ∈ X} ⊂ I.[1]

Definition 1.5. A sequence x = (xn) ∈ w is said to be I -convergent to L if there
exists L ∈ C such that for all ε > 0 , the set {n ∈ N : |xn − L| ≥ ε} ∈ I. We say x,
I − convergent to L and we write I − limx = L. The number L is called I − limit
of x.[2]

2010 Mathematics Subject Classification. 40A05, 46A45, 46E30.
Key words and phrases. ideal; I-convergence; paranorm space; Musielak-Orlicz function.
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170 SELMA ALTUNDAG AND MERVE ABAY

Definition 1.6. An Orlicz function M is a function which is continuous, nonde-
creasing, and convex with M(0) = 0, for x > 0 and M(x)→∞ as x→∞.
Lindenstrauss and Tzafriri [4] used the idea of Orlicz function to construct the
sequence space

lM =

{
x ∈ w :

∞∑
k=1

M

(
|xk|
ρ

)
<∞ for some ρ> 0

}
which is called an Orlicz sequence space. The space lM becomes a Banach space
with the norm

‖x‖ = inf

{
ρ > 0 :

∞∑
k=1

M

(
|xk|
ρ

)
≤ 1

}
.

The space lM is closely related to the space lp which is an Orlicz sequence space
with M(x) = xp for 1 ≤ p <∞. Orlicz sequence spaces were introduced and studied
by Parashar and Choudhary [5], Bhardwaj and Singh [6] and many others. It is
well known that since M is a convex function and M(0) = 0 then M(tx) ≤ tM(x)
for all t with 0 < t < 1. Dutta and Bas.ar [18] have recently introduced and stud-

ied the Orlicz sequence spaces l
′

M (C,Λ) and hM (C,Λ) generated by Cesàro mean
of order one associated with a fixed multiplier sequence of non-zero scalars. The
readers may refer to [17] for relevant terminology and details on the algebraic and
topological properties on sequence spaces. An Orlicz function M is said to sat-
isfy ∆2 − condition for all values of u, if there exists constant K > 0 such that
M(2u) ≤ KM(u) (u ≥ 0). The ∆2 − condition is equivalent to the inequality
M(Lu) ≤ KLM(u) satisfying for all values of u and for L > 1 [7]. A sequence
M = (Mk) of Orlicz function is called a Musielak-Orlicz function see [8], [9]. The
sequence N = (Nk) defined by

Nk(v) = sup {|v|u− (Mk) : u ≥ 0} , k = 1, 2, ...

is called the complementary function of a Musileak-Orlicz functionM = (Mk). For
a given Musileak-Orlicz function M = (Mk), the Musileak-Orlicz sequence space
tM and its subspace hM are defined as follows:

tM = {x ∈ ω : IM(cx) <∞ for some c > 0} ,
hM = {x ∈ ω : IM(cx) <∞ for all c > 0} ,

where IM is a convex modular defined by

IM(x) =

∞∑
k=1

Mk(xk), x = (xk) ∈ tM.

We consider tM equipped with the Luxemburg norm

‖x‖ = inf

{
ρ > 0 : IM

(
x

ρ

)
≤ 1

}
or equipped with the Orlicz norm
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‖x‖0 = inf

{
1

ρ
(1 + IM (ρx)) : ρ > 0

}
.

The following inequality will be used throughout this paper. Let p = (pk) be a
sequence of positive real numbers with 0 < h = inf pn ≤ pn ≤ H = sup pn < ∞
and let D = max

{
1, 2H−1

}
. Then for ak, bk ∈ C, the set of complex numbers for

all k ∈ N, we have

(1.1) |ak + bk|pk ≤ D {|ak|pk + |bk|pk} .

Also, |a|pk ≤ max
{

1, |a|H
}

for all a ∈ C.

The notion of paranormed space was introduced by Nakano [10] and Simons [11]
and many others.

Definition 1.7. Let X be a linear metric space. A function g : X → R is called
paranorm if
(1) g (x) ≥ 0, for all x ∈ X,
(2) g (−x) = g (x), for all x ∈ X,
(3) g (x+ y) ≤ g (x) + g (y), for all x, y ∈ X,
(4) if (λn) be a sequence of scalars with λn → λ as n→∞ and (xn) is a sequence
of vectors with g (xn − x)→ 0 as n→∞, then g (λnxn − λx)→ 0 as n→∞.

Definition 1.8. A sequence space X is solid (or normal) if (αnxn) ∈ X whenever
(xn) ∈ X for all sequences (αn) of scalars with |αn| ≤ 1 for all n ∈ N.

Definition 1.9. A sequence space X is said to be monotone if it contains the
canonical preimages of its step spaces.[19]

Lemma 1.1. If a sequence space X is solid, then X is monotone.[12]

Definition 1.10. A sequence space X is sequence algebra if xy = (xnyn) ∈ X
whenever x = (xn) , y = (yn) ∈ X.

We define the following sequence spaces in this article,

cI(M,A, p) =

{
x ∈ w : I − lim

k

[
Mk

(
|Ak(x)− L|

ρ

)]pk
= 0 for some L and ρ > 0

}
,

cI0(M, A, p) =

{
x ∈ w : I− lim

k

[
Mk

(
|Ak(x)|

ρ

)]pk
= 0 for some ρ > 0

}
,

l∞(M, A, p) =

{
x ∈ w : sup

k

[
Mk

(
|Ak(x)|

ρ

)]pk
<∞ for some ρ > 0

}
.

Also we write
mI(M, A, p) = cI(M, A, p) ∩ l∞(M, A, p)

mI
0(M, A, p) = cI0(M, A, p) ∩ l∞(M, A, p).

If we take A = λ, these spaces are respectively reduced to the spaces cI0(M, λ, p),
cI(M, λ, p), l∞(M, λ, p), mI

0(M, λ, p), mI(M, λ, p) defined by Mursaleen and Sharma
[19]. If we take pk = 1 for all k,M(x) = M(x) and A = I, we get the spaces cI0(M),
cI(M), l∞(M), mI

0(M), mI(M) which were studied by Tripathy and Hazarika [14].

Our aim is to define the paranormed space of ideal convergent sequence space
with matrix transformation and Musielak-Orlicz function.
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2. Main Results

Theorem 2.1. Let M = (Mk) be a Musielak-Orlicz function and p = (pk) be a
bounded sequence of positive real numbers. Then, the spaces cI(M, A, p), cI0(M, A, p),
mI(M, A, p) and mI

0(M, A, p) are linear.

Proof. Let x, y ∈ cI (M, A, p) and α, β be scalars. So, there exist positive numbers
ρ1, ρ2 and for given ε > 0, we have

A1 =

{
k ∈ N :

[
Mk

(
|Ak(x)− L1|

ρ1

)]pk
≥ ε

2D

}
∈ I,

A2 =

{
k ∈ N :

[
Mk

(
|Ak(x)− L2|

ρ2

)]pk
≥ ε

2D

}
∈ I.

Let ρ3 = max {2 |α| ρ1, 2 |β| ρ2}. Since M = (Mk) is nondecreasing and convex
function, we can obtain

Mk

(
|Ak (αx+ βy)− (αL1 + βL2)|

ρ3

)
< Mk

(
|Ak(x)− L1|

ρ1

)
+Mk

(
|Ak(y)− L2|

ρ2

)
.

So, we have[
Mk

(
|Ak (αx+ βy)− (αL1 + βL2)|

ρ3

)]pk
< D

{[
Mk

(
|Ak(x)− L1|

ρ1

)]pk
+

[
Mk

(
|Ak(y)− L2|

ρ2

)]pk}
.

Suppose that k /∈ A1 ∪A2. So,
[
Mk

(
|Ak(αx+βy)−(αL1+βL2)|

ρ3

)]pk
< ε and hence

k /∈
{
k ∈ N :

[
Mk

(
|Ak (αx+ βy)− (αL1 + βL2)|

ρ3

)]pk
≥ ε
}
⊂ A1 ∪A2.

Therefore, I−lim
k

[
Mk

(
|Ak(αx+βy)−(αL1+βL2)|

ρ3

)]pk
= 0. Hence αx+βy ∈ cI (M, A, p)

and so cI (M, A, p) is a linear space. Similarly, we can prove that cI0(M, A, p),
mI

0(M, A, p) and mI(M, A, p) are linear spaces. �

Theorem 2.2. l∞(M, A, p) is a paranormed space with the paranorm g defined by

g(x) = inf

{
ρ
pk
S : sup

k

[
Mk

(
|Ak(x)|

ρ

)] pk
S

≤ 1, k = 1, 2, ...

}
,

where S = max {1, H}.

Proof. It is clear that g (x) = g (−x). Since Mk(0) = 0, we get g(0) = 0. Let us
take x = (xk) and y = (yk) in l∞(M, A, p). We denote,

B(x) =

{
ρ1 : sup

k

[
Mk

(
|Ak (x)|
ρ1

)] pk
S

≤ 1

}

B(y) =

{
ρ2 : sup

k

[
Mk

(
|Ak (y)|
ρ2

)] pk
S

≤ 1

}
.

Let ρ = ρ1 +ρ2. Then using the convexity of Mursielak-Orlicz functionM = (Mk),
we obtain

Mk

(
|Ak (x+ y)|

ρ

)
≤ ρ1

ρ
Mk

(
|Ak (x)|
ρ1

)
+
ρ2
ρ
Mk

(
|Ak (x)|
ρ2

)
≤ ρ1

ρ
+
ρ2
ρ

= 1.
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Therefore,

sup
k

[
Mk

(
|Ak (x+ y)|

ρ

)] pk
S

≤ 1.

We can see that

g (x+ y) = inf
{

(ρ1 + ρ2)
pk
S : ρ1 ∈ B (x) , ρ2 ∈ B (y)

}
≤ inf

{
(ρ1)

pk
S : ρ1 ∈ B (x)

}
+ inf

{
(ρ2)

pk
S : ρ2 ∈ B (y)

}
= g (x) + g (y) .

LetB(xn) =

{
ρ : sup

k

[
Mk

(
|Ak(xn)|

ρ

)] pk
S ≤ 1

}
, B(xn−x) =

{
ρ : sup

k

[
Mk

(
|Ak(xn−x)|

ρ

)] pk
S ≤ 1

}
and ρn ∈ B (xn), ρ′n ∈ B (xn − x). We can obtain,

Mk

(
|Ak(γnxn−γx)|
ρn|γn−γ|+ρ′n|γ|

)
≤ |γn−γ|ρn

ρn|γn−γ|+ρ′n|γ|
Mk

(
|Ak(xn)|

ρn

)
+

|γ|ρ′n
ρn|γn−γ|+ρ′n|γ|

Mk

(
|Ak(xn−x)|

ρ′n

)
≤ |γn−γ|ρn

ρn|γn−γ|+ρ′n|γ|
+

|γ|ρ′n
ρn|γn−γ|+ρ′n|γ|

= 1.

Taking supremum over k on both sides,

sup
k

[
Mk

(
|Ak (γnx

n − γx)|
ρn |γn − γ|+ ρ′n |γ|

)] pk
S

≤ 1

and so,

{ρn |γn − γ|+ ρ′n |γ| : ρn ∈ B(xn), ρ′n ∈ B(xn − x)} ⊂
{
ρ > 0 : sup

k

[
Mk

(
|Ak (γnx

n − γx)|
ρ

)]pk
≤ 1

}
.

Therefore,

g (γnx
n − γx) = inf

{
(ρn |γn − γ|+ ρ′n |γ|)

pk
S : ρn ∈ B(xn), ρ′n ∈ B(xn − x)

}
≤ |γn − γ|

pk
S inf

{
(pn)

pk
S : ρn ∈ B(xn), k = 1, 2, ...

}
+ max {1, |γ|s} inf

{
(ρ′n)

pk
S : ρ′n ∈ B(xn − x), k = 1, 2, ...

}
where s = sup

k

(
pk
S

)
= min {1, H}. Since |γn − γ| → 0 and g (xn − x) → 0 as

n→∞, we obtain that g (γnx
n − γx)→ 0 as n→∞. �

Theorem 2.3. Let (Mk) and (M ′k) be Musielak-Orlicz functions that ∆2−condition
satisfies. Then,
(i) W (Mk, A, p) ⊆W (M ′k ◦Mk, A, p)
(ii) W (Mk, A, p) ∩W (M ′k, A, p) ⊆W (Mk +M ′k, A, p)
where W = cI0, c

I,mI
0,m

I.

Proof. (i) Since W ∈
{
cI,mI

0,m
I
}

can be proved similarly, we give the prove only

for W = cI0. Let x ∈ cI0 (M, A, p). So, we have ρ > 0 for every ε > 0,

B =

{
k ∈ N :

(
Mk

(
|Ak (x)|

ρ

))pk
≥ ε
}
∈ I.

Since (M ′k) is continuous, given for ε > 0 chosen δ with 0 < δ < 1 such that

M ′k(t) < ε for 0 ≤ t ≤ δ. We define yk = Mk

(
|Ak(x)|

ρ

)
. For yk > δ,

yk <
yk
δ
< 1 +

yk
δ

Therefore;

(2.1) M ′k (yk) < M ′k

(
1 +

yk
δ

)
= M ′k

(
1

2
2 +

1

2

yk
δ

2

)
≤ 1

2
M ′k (2) +

1

2
M ′k

(yk
δ

2
)
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Since (M ′k) satisfies ∆2 − condition, we can write that

(2.2) M ′k

(yk
δ

2
)
≤ Kyk

δ
M ′k (2) forK ≥ 1.

From (2.1) and (2.2), we have

M ′k (yk) < 1
2M

′
k (2) + 1

2K
yk
δ M

′
k (2)

≤ 1
2K

yk
δ M

′
k (2) + 1

2K
yk
δ M

′
k (2)

= K yk
δ M

′
k (2) .

Hence;[M ′k (yk)]
pk <

[
K 1
δM
′
k (2)

]pk (yk)
pk ≤ max

{
1,
(
K 1
δM
′
k (2)

)H}
(yk)

pk . Since

yk = Mk

(
|Ak(x)|

ρ

)
, we have I − lim

k
(yk)

pk = 0. So,

C =

k : (yk)
pk ≥ ε

max
{

1,
(
K yk

δ M
′
k (2)

)H}
 ∈ I.

Suppose that k /∈ C. Then, (yk)
pk < ε

max
{
1,(K yk

δ M
′
k(2))

H
} . Hence,

(M ′k (yk))
pk < max

{
1,
(
K
yk
δ
M ′k (2)

)H} ε

max
{

1,
(
K yk

δ M
′
k (2)

)H} = ε.

Therefore, k /∈
{
k : (M ′k (yk))

pk ≥ ε, yk > δ
}

= D. Thus D ⊆ C and D ∈ I. Since
M ′k(yk) < ε for yk ≤ δ, we have

[Mk(yk)]
pk < εpk ≤ max

{
εh, εH

}
.

From this inequality, we have I− lim [M ′k(yk)]
pk = 0 for yk ≤ δ. Therefore

E =
{
k : (M ′k(yk))

pk ≥ ε, yk ≤ δ
}
∈ I. So D ∪ E ∈ I and x ∈ cI0 (M ′k ◦Mk, A, p).

(ii) Let x ∈ cI0 (Mk, A, p) ∩ cI0 (M ′k, A, p). So, there exists ρ > 0 such that

B =

{
k ∈ N :

(
Mk

(
|Ak (x)|

ρ

))pk
≥ ε

2D

}
∈ I,

C =

{
k ∈:

(
M ′k

(
|Ak (x)|

ρ

))pk
≥ ε

2D

}
∈ I.

Let k /∈ B ∪ C. Hence k /∈
{
k :
(

(Mk +M ′k)
(
|Ak(x)|

ρ

))pk
≥ ε
}

. Therefore{
k :
(

(Mk +M ′k)
(
|Ak(x)|

ρ

))pk
≥ ε
}
∈ I. This completes the proof. �

Corollary 2.1. Let M= (Mk) be a Musielak-Orlicz functions which satisfies ∆2 −
condition. Then W (A, p) ⊆W (M, A, p) where W = cI0, c

I,mI
0,m

I.

Proof. We can obtain W (A, p) ⊆W (M, A, p) from Theorem 2.3 by taking
Mk(x) = x and M′k(x) = Mk (x) for all x ∈ [0,∞). �

Theorem 2.4. The spaces cI0 (M, A, p) and mI
0 (M, A, p) are solid for A = I.
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Proof. We will prove for the space cI0 (M, A, p).
Let x ∈ cI0 (M, A, p). So, for every ε > 0

B =

{
k ∈ N :

(
Mk

(
|Ak (x)|

ρ

))pk
≥ ε
}
∈ I (ρ > 0) .

Let α = (αk) be a sequence of scalars with |αk| ≤ 1 for all k ∈ N. Suppose that
k /∈ B. Therefore, we obtain[

Mk

(
|Ak(αx)|

ρ

)]pk
=
[
Mk

(
|Ik(αx)|

ρ

)]pk
=
[
Mk

(
|αkxk|
ρ

)]pk
≤
[
Mk

(
|xk|
ρ

)]pk
=
[
Mk

(
|Ik(x)|
ρ

)]pk
=
[
Mk

(
|Ak(x)|

ρ

)]pk
.

Hence, k /∈
{
k ∈ N :

(
Mk

(
|Ak(αx)|

ρ

))pk
≥ ε
}

. Therefore, we obtain

I− lim
k

(
Mk

(
|Ak(αx)|

ρ

))pk
= 0. �

Corollary 2.2. The spaces cI0 (M, A, p) and mI
0 (M, A, p) are monotone for A = I.

Proof. This is clear from Lemma 1.1. �

Theorem 2.5. The spaces cI0 (M, A, p) and cI (M, A, p) are sequence algebra for
A = I.

Proof. Let x, y ∈ cI0 (M, A, p) . Then there exists ρ1, ρ2 > 0 such that for every
ε > 0, we have

A1 =

{
k ∈ N :

[
Mk

(
|xk|
ρ1

)]pk
≥ ε

2D

}
∈ I,

A2 =

{
k ∈ N :

[
Mk

(
|yk|
ρ2

)]pk
≥ ε

2D

}
∈ I.

Let ρ = ρ2 |xk|+ ρ1 |yk| > 0. By using this fact one can see that

Mk

(
|xkyk|
ρ

)
≤ ρ2 |xk|

2ρ
Mk

(
|yk|
ρ2

)
+
ρ1 |yk|

2ρ
Mk

(
|yk|
ρ2

)
< Mk

(
|yk|
ρ2

)
+Mk

(
|yk|
ρ2

)
,

which shows that A3 =
{
k ∈ N :

[
Mk

(
|xkyk|
ρ

)]pk
≥ ε
}
∈ I.

Thus (xkyk) ∈ cI0 (M,A, p) for A = I. �
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SOME ESTIMATES FOR THE GENERALIZED FOURIER-DUNKL

TRANSFORM IN THE SPACE L2
α,n

R. DAHER AND S. EL OUADIH

Abstract. Some estimates are proved for the generalized Fourier-Dunkl trans-

form in the space L2
α,n on certain classes of functions characterized by the

generalized continuity modulus.

1. Introduction

In [5], Abilov et al. proved two useful estimates for the Fourier transform in the
space of square integrable functions on certain classes of functions characterized by
the generalized continuity modulus, using a translation operator.
In this paper, we consider a first-order singular differential-difference operator Λ
on R which generalizes the Dunkl operator Λα, we prove some estimates in cer-
tain classes of functions characterized by a generalized continuity modulus and
connected with the generalized Fourier-Dunkl transform associated to Λ in L2

α,n

analogs of the statements proved in [5]. For this purpose, we use a generalized
translation operator.
In section 2, we give some definitions and preliminaries concerning the generalized
Fourier-Dunkl transform. The some estimates are proved in section 3.

2. Preliminaries

In this section, we develop some results from harmonic analysis related to the
differential-difference operator Λ. Further details can be found in [1] and [6]. In all
what follows assume where α > −1/2 and n a non-negative integer.
Consider the first-order singular differential-difference operator on R defined by

Λf(x) = f ′(x) +

(
α+

1

2

)
f(x)− f(−x)

x
− 2n

f(−x)

x
.

2000 Mathematics Subject Classification. 42B37.
Key words and phrases. Differential-difference operator, Generalized Fourier-Dunkl transform,

Generalized translation operator.
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For n = 0, we regain the differential-difference operator

Λαf(x) = f ′(x) +

(
α+

1

2

)
f(x)− f(−x)

x
,

which is referred to as the Dunkl operator of index α+ 1/2 associated with the re-
flection group Z2 on R. Such operators have been introduced by Dunkl (see [3], [4])
in connection with a generalization of the classical theory of spherical harmonics.
Let M be the map defined by

Mf(x) = x2nf(x), n = 0, 1, ...

Let Lpα,n, 1 ≤ p <∞, be the class of measurable functions f on R for which

‖f‖p,α,n = ‖M−1f‖p,α+2n <∞,
where

‖f‖p,α =

(∫
R
|f(x)|p|x|2α+1dx

)1/p

.

If p = 2, then we have L2
α,n = L2(R, |x|2α+1).

The one-dimensional Dunkl kernel is defined by

eα(z) = jα(iz) +
z

2(α+ 1)
jα+1(iz), z ∈ C,(2.1)

where

jα(z) = Γ(α+ 1)

∞∑
m=0

(−1)m(z/2)2m

m!Γ(m+ α+ 1)
, z ∈ C,(2.2)

is the normalized spherical Bessel function of index α. It is well-known that the
functions eα(λ.), λ ∈ C, are solutions of the differential-difference equation

Λαu = λu, u(0) = 1.

In the terms of jα(x), we have (see [2])

1− jα(x) = O(1), x ≥ 1,(2.3)

1− jα(x) = O(x2), 0 ≤ x ≤ 1,(2.4)
√
hxJα(hx) = O(1), hx ≥ 0,(2.5)

where Jα(x) is Bessel function of the first kind, which is related to jα(x) by the
formula

jα(x) =
2αΓ(α+ 1)

xα
Jα(x), x ∈ R+.(2.6)

For λ ∈ C, and x ∈ R, put

ϕλ(x) = x2neα+2n(iλx),

where eα+2n is the Dunkl kernel of index α+ 2n given by (1).

Proposition 2.1. (i) ϕλ satisfies the differential equation

Λϕλ = iλϕλ.

(ii) For all λ ∈ C, and x ∈ R

|ϕλ(x)| ≤ |x|2ne|Imλ||x|.
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The generalized Fourier-Dunkl transform we call the integral transform

FΛf(λ) =

∫
R
f(x)ϕ−λ(x)|x|2α+1dx, λ ∈ R, f ∈ L1

α,n.

Let f ∈ L1
α,n such that FΛ(f) ∈ L1

α+2n = L1(R, |x|2α+4n+1dx). Then the inverse
generalized Fourier-Dunkl transform is given by the formula

f(x) =

∫
R
FΛf(λ)ϕλ(x)dµα+2n(λ),

where

dµα+2n(λ) = aα+2n|λ|2α+4n+1dλ, aα =
1

22α+2(Γ(α+ 1))2
.

Proposition 2.2. (i) For every f ∈ L2
α,n,

FΛ(Λf)(λ) = iλFΛ(f)(λ).

(ii) For every f ∈ L1
α,n ∩ L2

α,n we have the Plancherel formula∫
R
|f(x)|2|x|2α+1dx =

∫
R
|FΛf(λ)|2dµα+2n(λ).

(iii) The generalized Fourier-Dunkl transform FΛ extends uniquely to an isometric
isomorphism from L2

α,n onto L2(R, µα+2n).

The generalized translation operators τx, x ∈ R, tied to Λ are defined by

τxf(y) =
(xy)2n

2

∫ 1

−1

f(
√
x2 + y2 − 2xyt)

(x2 + y2 − 2xyt)n

(
1 +

x− y√
x2 + y2 − 2xyt

)
A(t)dt

+
(xy)2n

2

∫ 1

−1

f(−
√
x2 + y2 − 2xyt)

(x2 + y2 − 2xyt)n

(
1− x− y√

x2 + y2 − 2xyt

)
A(t)dt,

where

A(t) =
Γ(α+ 2n+ 1)√
πΓ(α+ 2n+ 1/2)

(1 + t)(1− t2)α+2n−1/2.

Proposition 2.3. Let x ∈ R and f ∈ L2
α,n. Then τxf ∈ L2

α,n and

‖τxf‖2,α,n ≤ 2x2n‖f‖2,α,n.

Furthermore,

FΛ(τxf)(λ) = x2neα+2n(iλx)FΛ(f)(λ).(2.7)

The generalized modulus of continuity of function f ∈ L2
α,n is defined as

w(f, δ)2,α,n = sup
0<h≤δ

‖τhf(x) + τ−hf(x)− 2h2nf(x)‖2,α,n, δ > 0.
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3. Main Results

The goal of this work is to prove some estimates for the integral

J2
N (f) =

∫
|λ|≥N

|FΛf(λ)|2dµα+2n(λ),

in certain classes of functions in L2
α,n.

Lemma 3.1. For f ∈ L2
α,n, we have,

‖τhf(x) + τ−hf(x)− 2h2nf(x)‖22,α,n = 4h4n

∫
R
|jα+2n(λh)− 1|2|FΛf(λ)|2dµα+2n(λ),

where r = 0, 1, 2, ...

Proof. By using the formulas (2.1), (2.2) and (2.7), we conclude that

FΛ(τhf + τ−hf − 2h2nf)(λ) = 2h2n(jα+2n(λh)− 1)FΛf(λ).(3.1)

Now by formula (3.1) and Plancherel equality, we have the result. �

Theorem 3.1. Given f ∈ L2
α,n. Then there exist a constant C > 0 such that, for

all N > 0,

JN (f) = O(N2nω(f, CN−1)2,α,n).

Proof. Firstly, we have

J2
N (f) ≤

∫
|λ|≥N

|j|dµ+

∫
|λ|≥N

|1− j|dµ,(3.2)

with j = jp(λh), p = α+ 2n and dµ = |FΛf(λ)|2dµα+2n(λ). The parameter h > 0
will be chosen in an instant.
In view of formulas (2.5) and (2.6), there exist a constant C1 > 0 such that

|j| ≤ C1(|λ|h)−p−
1
2 .

Then ∫
|λ|≥N

|j|dµ ≤ C1(hN)−p−
1
2 J2

N (f).

Choose a constant C2 such that the number C3 = 1− C1C
−p− 1

2
2 is positif.

Setting h = C2/N in the inequality (3.2), we have

C3J
2
N (f) ≤

∫
|λ|≥N

|1− j|dµ.(3.3)

By Hölder inequality the second term in (3.3) satisfies∫
|λ|≥N

|1− j|dµ =

∫
|λ|≥N

|1− j|.1.dµ

≤

(∫
|λ|≥N

|1− j|2dµ

)1/2(∫
|λ|≥N

dµ

)1/2

≤

(∫
|λ|≥N

|1− j|2dµ

)1/2

JN (f).
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From Lemma 3.1, we conclude that∫
|λ|≥N

|1− j|2dµ ≤ h−4n‖τhf(x) + τ−hf(x)− 2h2nf(x)‖22,α,n.

Therefore∫
|λ|≥N

|1− j|dµ ≤ h−2n‖τhf(x) + τ−hf(x)− 2h2nf(x)‖2,α,nJN (f).

For h = C2/N , we obtain

C3J
2
N (f) ≤ C−2n

2 N2nw(f, C2/N)2,α,nJN (f).

Consequently

C2n
2 C3JN (f) ≤ N2nw(f, C2/N)2,α,n.

for all N > 0. The theorem is proved with C = C2. �

Theorem 3.2. Let f ∈ L2
α,n. Then, for all N > 0,

ω(f,N−1)2,α,n = O

N−2(n+1)

(
N−1∑
l=0

(l + 1)3J2
l (f)

) 1
2

 .

Proof. From Lemma 3.1, we have

‖τhf(x)+τ−hf(x)−2h2nf(x)‖22,α,n = 4h4n

∫
R
|jα+2n(λh)−1|2|FΛf(λ)|2dµα+2n(λ).

This integral is divided into two∫
R

=

∫
|λ|≤N

+

∫
|λ|≥N

= I1 + I2,

where N = [h−1]. We estimate them separately.
From (2.3), we have the estimate

I2 ≤ C4

∫
|λ|≥N

|FΛf(λ)|2dµα+2n(λ) = C4J
2
N (f).

Now, we estimate I1. From formula (2.4), we have

I1 ≤ C5h
4

∫
|λ|≤N

λ4|FΛf(λ)|2dµα+2n(λ) = C5h
4
N−1∑
l=0

∫
l≤|λ|≤l+1

λ4|FΛf(λ)|2dµα+2n(λ)

= C5h
4
N−1∑
l=0

al
(
J2
l (f)− J2

l+1(f)
)
,

with al = (l + 1)4.
For all integers m ≥ 1, the Abel transformation shows

m∑
l=0

al
(
J2
l (f)− J2

l+1(f)
)

= a0J
2
0 (f) +

m∑
l=1

(al − al−1) J2
l (f)− amJ2

m+1(f)

≤ a0J
2
0 (f) +

m∑
l=1

(al − al−1) J2
l (f),
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because amJ
2
m+1(f) ≥ 0.

Hence

I1 ≤ C5h
4

(
J2

0 (f) +
N−1∑
l=1

(
(l + 1)4 − l4

)
J2
l (f)−N4J2

N (f)

)
.

Moreover by the finite increments theorem, we have (l+ 1)4− l4 ≤ 4(l+ 1)3. Then

I1 ≤ C5N
−4

(
J2

0 (f) + 4
N−1∑
l=1

(l + 1)3J2
l (f)−N4J2

N (f)

)
,

since N ≤ 1
h . Combining the estimates for I1 and I2 gives

‖τhf(x) + τ−hf(x)− 2h2nf(x)‖22,α,n = O

(
N−4−4n

N−1∑
l=0

(l + 1)3J2
l (f)

)
,

which implies

ω(f,N−1)2,α,n = O

N−2(n+1)

(
N−1∑
l=0

(l + 1)3J2
l (f)

) 1
2

 ,

and this ends the proof. �
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I-LIMIT SUPERIOR AND I-LIMIT INFERIOR FOR SEQUENCES

OF FUZZY NUMBERS

ÖZER TALO AND ERDİNÇ DÜNDAR

Abstract. The statistical limit inferior and limit superior for sequences of
fuzzy numbers have been introduced by Aytar, Pehlivan and Mammadov [Sta-

tistical limit inferior and limit superior for sequences of fuzzy numbers, Fuzzy

Sets and Systems, 157(7) (2006) 976–985]. In this paper, we extend concepts
of statistical limit superior and inferior to I-limit superior and I-inferior for a

sequence of fuzzy numbers. Also, we prove some basic properties.

1. Introduction

The definition of convergence for sequences of fuzzy numbers has been firstly
presented by Matloka [21] and the Cauchy Criterion for sequences of fuzzy numbers
is defined by Nanda [22].

The notions of limit superior and limit inferior for a bounded sequence of fuzzy
numbers is introduced by Aytar et al. [4]. Afterwards, some properties of these
concepts have been obtained by Hong et al. [15], Talo and C. akan [29], Talo [30].

The notion of statistical convergence was defined by Nuray and Savaş [23] for
sequences of of fuzzy numbers. Also, Aytar et al. [5] introduced the characterization
of statistical limit superior and limit inferior for statistically bounded sequences of
fuzzy numbers and proved some fuzzy-analogues of properties of statistical limit
superior and limit inferior.

The idea of I-convergence was introduced by Kostyrko et al. [16]. Kostyrko
et al. [17] and Aytar et al. [6] proved some of basic properties of I-convergence.
Also, Demirci [10] presented the notions of I-limit superior and inferior of a real
sequence and gave some properties.

Kumar and Kumar [18] studied the concepts of I-convergence, I∗-convergence
and I-Cauchy sequence for sequences of fuzzy numbers. Kumar et al. [19] intro-
duced the concepts of I-limit points and I-cluster points for sequences of fuzzy num-
bers. Dündar and Talo [11] presented the notions of I2-convergence, I∗2 -convergence

2010 Mathematics Subject Classification. Primary 03E72 ; Secondary 40A35.
Key words and phrases. Fuzzy numbers, sequences of fuzzy numbers, Ideal convergence, Ideal

limit superior and inferior.
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for double sequences of fuzzy numbers and proved their some properties and rela-
tions. Recently, various types of I-convergence for sequences of fuzzy numbers have
been studied by many authors [13, 14, 25, 27, 33]

In this paper, we extend the concepts of I-limit superior and I-limit inferior to
fuzzy numbers space and prove several basic properties.

2. Preliminaries, Background and Notation

First, we recall basics of fuzzy numbers.
Let E1 denote the set of fuzzy subsets of the real line, if u : R→ [0, 1], satisfying

the following properties:
(i) u is normal, i.e., there exists an x0 ∈ R such that u(x0) = 1;
(ii) u is fuzzy convex, i.e.,

u[λx+ (1− λ)y] ≥ min{u(x), u(y)} for all x, y ∈ R and for all λ ∈ [0, 1];
(iii) u is upper semi-continuous;
(iv) The set [u]0 := cl{x ∈ R : u(x) > 0} is compact.
Then u is called a fuzzy number and E1 is called fuzzy number space. λ-level

set [u]λ of u ∈ E1 is defined by

[u]λ :=

{
{x ∈ R : u(x) ≥ λ} , (0 < λ ≤ 1),

{x ∈ R : u(x) > 0} , (λ = 0).

Obviously, [u]λ is closed, bounded and non-empty interval for each λ ∈ [0, 1] and
denoted as [u]λ := [u−(λ), u+(λ)]. For any r ∈ R, define a fuzzy number r̂ by

r̂(x) :=

{
1 , (x = r),
0 , (x 6= r),

for any x ∈ R.
Let u, v, w ∈ E1 and k ∈ R, the addition, scalar multiplication and product are

defined by

u+ v = w ⇐⇒ [w]λ = [u]λ + [v]λ for all λ ∈ [0, 1]

[ku]λ = k[u]λ for all λ ∈ [0, 1]

and

uv = w ⇐⇒ [w]λ = [u]λ[v]λ for all λ ∈ [0, 1].

LetW = {A = [A−, A+] : A is closed bounded intervals on the real line R}. Define

d(A,B) := max{|A− −B−|, |A+ −B+|}
as the metric on W .

Hausdorff metric D between fuzzy numbers defined by

D(u, v) = sup
λ∈[0,1]

d([u]λ, [v]λ) = sup
λ∈[0,1]

max{|u−(λ)− v−(λ)|, |u+(λ)− v+(λ)|}.

The partial ordering relation on E1 is defined as follows:

u � v ⇐⇒ [u]λ � [v]λ ⇐⇒ u−(λ) ≤ v−(λ) and u+(λ) ≤ v+(λ) for all λ ∈ [0, 1].

u ≺ v means u � v and at least one of u−(α) < v−(α) and u+(α) < v+(α) holds
for some α ∈ [0, 1].

Two fuzzy numbers u and v are said to be incomparable if neither u � v nor
v � u holds. In this case we write u 6∼ v .
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Combining the results of Lemma 6 in [5], Lemma 5 in [3], Lemma 3.4, Theorem
4.9 in [20] and Lemma 14 in [31], following Lemma is obtained.

Lemma 2.1. Let u, v, w, e ∈ E1 and ε̂ > 0. The following statements hold:

(i) D(u, v) ≤ ε if and only if u− ε̂ � v � u+ ε̂
(ii) If u � v + ε̂ for every ε > 0, then u � v.
(iii) If u � v and v � w, then u � w
(iv) If u ≺ v, v � w, then u ≺ w.
(v) If u � w and v � e, then u+ v � w + e.
(vi) if u ≺ w and v � e, then u+ v ≺ w + e.

(vii) If u � 0 and v � w , then uv � uw.
(viii) If u+ w � v + w then u � v.

Wu and Wu [28] defined boundness of a set of fuzzy numbers according to relation
� and proved that if a set A of E1 is bounded, then supremum and infimum of A
exist.

We denote the set of all sequences of fuzzy numbers by w(F ).
A sequence (un) ∈ w(F ) is called convergent with limit u ∈ E1, if and only if

for every ε > 0 there exists an n0 = n0(ε) ∈ N such that

D(un, u) < ε for all n ≥ n0.

A sequence (un) of fuzzy numbers is said to be bounded if there exists M > 0

such that D(un, 0̂) ≤M for all n ∈ N. By `∞(F ), we denote the set of all bounded
sequences of fuzzy numbers.

The statistical convergence of sequences of fuzzy numbers defined as follows:
For a subset K of natural numbers N, the natural density of K is given by

δ(K) = lim
n→∞

1

n
|{k ≤ n : k ∈ K}|

if this limit exists, where |A| denotes the number of elements in A.
A sequence u = (uk) of fuzzy numbers is said to be statistically convergent to

some fuzzy number µ0, if for every ε > 0 we have

lim
n→∞

1

n

∣∣{k ≤ n : D(uk, µ0) ≥ ε}
∣∣ = 0.

The statistical boundedness of a sequence of fuzzy numbers was introduced and
studied by Aytar and Pehlivan [3]. The sequence u = (uk) is said to be statistically
bounded if there exists a real number M such that the set {k ∈ N : D(uk, 0) > M}
has natural density zero.

Aytar et al. [5] defined the concepts of statistical limit superior and limit inferior
of statistically bounded sequences of fuzzy numbers.

Let u = (uk) be statistically bounded and let us define the following sets:

Au =
{
µ ∈ E1 : δ ({k ∈ N : uk ≺ µ}) 6= 0

}
,

Au =
{
µ ∈ E1 : δ ({k ∈ N : uk � µ}) = 1

}
,

Bu =
{
µ ∈ E1 : δ({k ∈ N : uk � µ}) 6= 0

}
,

Bu =
{
µ ∈ E1 : δ({k ∈ N : uk ≺ µ}) = 1

}
.
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The statistical limit superior and limit inferior are defined as follows:

st− lim inf uk = inf Au = supAu,

st− lim supuk = supBu = inf Bu.

For more result on sequences of fuzzy numbers we refer to [1, 2, 7, 9, 26, 32] and
[8, Section 8].

Now, we recall the concept of ideal and ideal convergence of sequences of fuzzy
numbers.

Let X 6= ∅. A class I of subsets of X is said to be an ideal in X provided:

(i) ∅ ∈ I,
(ii) A,B ∈ I implies A ∪B ∈ I,

(iii) A ∈ I, B ⊂ A implies B ∈ I.

I is called a nontrivial ideal if X 6∈ I.
Let X 6= ∅. A non empty class F of subsets of X is said to be a filter in X

provided:

(i) ∅ 6∈ F ,
(ii) A,B ∈ F implies A ∩B ∈ F ,
(iii) A ∈ F , A ⊂ B implies B ∈ F .

Lemma 2.2. [16] If I is a nontrivial ideal in X, X 6= ∅, then the class

F(I) = {M ⊂ X : (∃A ∈ I)(M = X\A)}
is a filter on X, called the filter associated with I.

A nontrivial ideal I in X is called admissible if {x} ∈ I for each x ∈ X.

Lemma 2.3. [24, Lemma 2.5] K ∈ F (I) and M ⊆ N. If M /∈ I then M ∩K /∈ I.

Throughout this paper we take I as a nontrivial admissible ideal in N.

Definition 2.1. Let u = (un) be a sequences of fuzzy numbers.
(i)[18] u = (un) is said to be I-convergent to a fuzzy number u0, if for any ε > 0

we have

A(ε) = {n ∈ N : D(un, u0) ≥ ε} ∈ I.
In this case we say that u is I-convergent and we write I − limn→∞ un = u0.

(ii)[19] The fuzzy number µ is said to be I-limit point of u = (un) if there exits
a subset K = {k1 < k2 < k3 < · · · } 6∈ I such that limn→∞ ukn = µ. The set of all
I-limit points of the sequence u = (un) will be denoted by I(Λu).

(iii)[19] The fuzzy number µ is said to be the I-cluster point of u = (un) if for
each ε > 0, {n ∈ N : D(un, µ) < ε} 6∈ I. The set of all I-cluster points of the fuzzy
number sequence u = (un) will be denoted by I(Γu).

The propose of this paper is to present the notions of ideal limit superior and
inferior for a sequence of fuzzy numbers and give some ideal analogues of properties
of the statistical limit superior and inferior of sequences of fuzzy numbers.

3. The Main Results

Definition 3.1. u = (uk) ∈ w(F ) is said to be I-bounded above if there exists a
fuzzy number µ such that

{k ∈ N : uk � µ} ∪ {k ∈ N : uk 6∼ µ} ∈ I.
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Similarly, u = (uk) is said to be I-bounded below if there exists a fuzzy number ν
such that

{k ∈ N : uk ≺ ν} ∪ {k ∈ N : uk 6∼ ν} ∈ I.
If u = (uk) is both I-bounded above and below, then it is said to be I-bounded.

This definition can be stated as follows:
u = (uk) ∈ w(F ) is said to be I-bounded if there is a real number M such that

{k ∈ N : D(uk, 0̂) > M} ∈ I.

Since I is an admissible ideal in N, if u = (uk) is bounded, then u is I-bounded.
We give a generalization of notions of st−lim inf u and st−lim supu of a sequence

u = (uk) of [5]. Given I-bounded sequence u = (uk) ∈ w(F ), we define the following
sets:

Au =
{
µ ∈ E1 : {k ∈ N : uk ≺ µ} 6∈ I

}
,

Au =
{
µ ∈ E1 : {k ∈ N : uk � µ} ∈ F(I)

}
,

Bu =
{
µ ∈ E1 : {k ∈ N : uk � µ} 6∈ I

}
,

Bu =
{
µ ∈ E1 : {k ∈ N : uk ≺ µ} ∈ F(I)

}
.

It is evident that if the sequence u = (uk) is I-bounded, then the sets Au, Au, Bu
and Bu are non-empty. It is also evident that the sets Au and Bu have lower
bounds, and the sets Au and Bu have upper bounds. Hence, we obtain that inf Au,
supAu, supBu and inf Bu exist.

Now, we prove the main results in line of Theorem 2, Theorem 3, Theorem 5
and Theorem 7 in [5]. Our proofs are similar to those in [5].

Theorem 3.1. If u = (uk) ∈ w(F ) is I-bounded, then inf Au = supAu and
supBu = inf Bu.

Proof. We prove only for inf Au = supAu. Denote ν := inf Au and µ := supAu.
Then, we have ν � ν̃ for all ν̃ ∈ Au, and µ � µ̃ for all µ̃ ∈ Au. Since ν̃ ∈ Au,
{k ∈ N : uk ≺ ν̃} 6∈ I. On the other hand, from µ̃ ∈ Au, we have {k ∈ N : uk �
µ̃} ∈ F(I). Therefore,

{k ∈ N : uk ≺ ν̃} ∩ {k ∈ N : uk � µ̃} 6∈ I

that is, {k ∈ N : uk ≺ ν̃} ∩ {k ∈ N : uk � µ̃} 6= ∅. Then, there is a number k ∈ N
such that µ̃ ≺ uk ≺ ν̃. This implies that

µ̃ ≺ ν̃ for all ν̃ ∈ Au, µ̃ ∈ Au.(3.1)

From (3.1), it is immediate that µ̃ is a lower bound of the set Au. Then, we have
µ̃ � ν = inf Au. This inequality is valid for all µ̃ ∈ Au. Then, we get µ � ν. Now,
we show that the case µ ≺ ν is impossible.

To the contrary, assume that µ ≺ ν. This means that, there is a number α ∈ [0, 1]
such that

µ−(α) < ν−(α) or µ+(α) < ν+(α).

Without of loss of generality, we take into account the case µ−(α) < ν−(α) and
show that it leads to a contradiction.

Denote b := ν(µ−(α)). It is obvious that b < α (b may be zero). Furthermore,
the inequality µ−(λ) < ν−(λ) holds, for all λ ∈ (b, α]. Since the functions µ(x) and
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ν(x) are upper semi-continuous, there is a point (z, β) such that z ∈ (µ−(α), ν−(α)),
β ∈ (b, α) and

µ−(λ) < z, ν−(λ) > z for all λ ∈ [β, α].(3.2)

We define the numbers γ1, γ2 ∈ E1 by

γ1(t) :=


0 , t < t−(0),
β , t ∈ [t−(0), z] ,
1 , t = z,
0 , t > z,

and γ2(t) :=


0 , t < z,
β , t ∈ [z, t+(0)] ,
1 , t = t+(0),
0 , t > t+(0),

where the numbers t−(0) = I − lim inf u−k (0)− 1 and t+(0) = I − lim supu+
k (0) + 1

are finite.
From (3.2), it is easily seen that

µ−(β) ≥ I − lim inf u−k (β) ≥ I − lim inf u−k (0) > t−(0) = γ−1 (β),

µ−(α) < z = γ−1 (α)

and

ν−(b) ≤ µ−(α) < z = γ−2 (b), ν−(β) > z = γ−2 (β).

This means that

µ 6∼ γ1 and ν 6∼ γ2.(3.3)

Let

C1 :=
{
k ∈ N : u−k (λ) ≤ z for some λ ∈ (β, α]

}
,

C2 :=
{
k ∈ N : u−k (λ) ≥ z for some λ ∈ (β, α]

}
.

Clearly, we have

C1 ∪ C2 = N.(3.4)

First we assume that C1 6∈ I. Considering γ2 and t+(0), we have

uk ≺ γ2, for all k ∈ C1\K1,

where K1 :=
{
k ∈ N : u+

k (λ) > t+(0), for some λ ∈ [0, 1]
}

. This means that

{k ∈ N : uk ≺ γ2} ⊇ C1 \K1.

It is evident that K1 ∈ I and C1 \K1 6∈ I. For this reason, {k ∈ N : uk ≺ γ2} 6∈ I.
This means that γ2 ∈ Au and therefore, from the definition of inf Au we get γ2 �
ν = inf Au. This contradicts to (3.3), that is, ν 6∼ γ2.

Hence, we have shown that C1 ∈ I. In this case, from (3.4), it follows that the
set C2 ∈ F(I). Considering γ1 and t−(0), we have

uk � γ1 for all k ∈ C2\(C1 ∪K2),

where K2 :=
{
k ∈ N : u−k (λ) < t−(0) for some λ ∈ [0, β]

}
. This means that

{k ∈ N : uk � γ1} ⊇ C2\(C1 ∪K2).

It is obvious that the set K2 ∈ I and consequently we have C2\ (C1 ∪K2) ∈ F(I).
Therefore

{k ∈ N : uk � γ1} ∈ F(I).

This implies that γ1 ∈ Au. Thus, γ1 � µ = supAu. This contradicts to (3.3), that
is, µ 6∼ γ1. This completes the proof. �
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Definition 3.2. If u = (uk) is a I-bounded sequence of fuzzy numbers, then

I − lim inf uk := inf Au,

and

I − lim supuk := supBu.

Example 3.1. We will give some example of ideals.

1. Let If be the family of all finite subsets of N. Then If is a non-trivial ad-
missible ideal and If limit superior and inferior coincides with the ordinary
limit superior and inferior of sequences of fuzzy numbers [4],[15].

2. Let Iδ = {A ⊂ N : δ(A) = 0} where δ(A) denotes the natural density of the
set A. Then Iδ is a non-trivial admissible ideal and Iδ limit superior and
inferior coincides with the statistical limit superior and inferior of sequences
of fuzzy numbers [5].

3. A set K ⊂ N has C-density if δC(K) := limn→∞
∑
k∈K cnk exists, where

C = (cnk) is a non-negative regular matrix [12]. If IδC = {A ⊂ N :
δC(A) = 0}, then IδC is a non-trivial admissible ideal and IδC limit superior
and inferior coincides with the C-statistical limit superior and inferior of
sequences of fuzzy numbers, which is also mentioned in [5].

Theorem 3.2. For any I-bounded sequence of fuzzy numbers u = (uk),

I − lim inf u � I − lim supu.

Proof. Let µ ∈ Au. Then {k : uk � µ} ∈ F(I). Since I is a nontirvial ideal of
N, we get {k : uk � µ} 6∈ I. Therefore µ ∈ Bu. This implies Au ⊆ Bu. Hence
supAu � supBu. This means that I − lim inf u � I − lim supu. �

Since I is an admissible ideal, the inclusion If ⊂ I holds. Therefore, the in-
equalities

Lim inf u � I − lim inf u � I − lim supu � Lim supu

hold for every bounded sequence (uk) of fuzzy numbers.

Theorem 3.3. Let u = (uk) be a I-bounded sequence of fuzzy numbers.
(i) If ν := I − lim inf uk, then

(3.5) {k ∈ N : uk ≺ ν − ε̂} ∈ I, {k ∈ N : uk ≺ ν + ε̂} ∪ {k ∈ N : uk 6∼ ν + ε̂} 6∈ I

for every ε > 0.
(ii) If µ := I − lim supuk, then

{k ∈ N : uk � µ+ ε̂} ∈ I and {k ∈ N : uk � µ− ε̂} ∪ {k ∈ N : uk 6∼ µ− ε̂} 6∈ I

for every ε > 0.

Proof. We prove (i). To the contrary, we assume that there exists ε > 0 such that
{k ∈ N : uk ≺ ν − ε̂} 6∈ I. This means that ν − ε̂ ∈ Au. Since ν = inf Au, we get
ν � ν − ε̂ which is a contradiction.

Now, let us show that (3.5) holds. Suppose that it is not true, that is, there
exists ε > 0 such that

{k ∈ N : uk ≺ ν + ε̂} ∈ I and {k ∈ N : uk 6∼ ν + ε̂} ∈ I.
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For each k ∈ N, only the following three cases are possible: uk ≺ ν + ε̂, uk 6∼ ν + ε̂
and uk � ν + ε̂. Then,

{k ∈ N : uk ≺ ν + ε̂} ∪ {k ∈ N : uk 6∼ ν + ε̂} ∪ {k ∈ N : uk � ν + ε̂} = N.

Thus, from (3.6), we have {k ∈ N : uk � ν+ ε̂} ∈ F(I). This means that ν+ ε̂ ∈ Au.
Hence, we can write ν + ε̂ � supAu = ν, which is a contradiction. �

Theorem 3.4. If u = (uk) ∈ w(F ) is I convergent to µ, then

I − lim inf uk = I − lim supuk = µ.

Proof. First suppose that I − limuk = µ and ε > 0. Then, {k ∈ N : D(xk, µ) ≥
ε} ∈ I, so we have {k ∈ N : D(xk, µ) < ε} ∈ F(I). By Lemma 2.1, we get
{k ∈ N : µ− ε̂ ≺ uk ≺ µ+ ε̂} ∈ F(I),
{k ∈ N : µ− ε̂ ≺ uk} ∩ {k ∈ N : uk ≺ µ+ ε̂} ∈ F(I). Therefore,

1) {k ∈ N : µ − ε̂ ≺ uk} ∈ F(I). This means that µ − ε̂ ∈ Au. Then,
I − lim inf uk = supAu � µ− ε̂.

2) {k ∈ N : uk ≺ µ + ε̂} ∈ F(I). This means that µ + ε̂ ∈ Bu. Then,
I − lim supuk = inf Bu � µ+ ε̂.

By these inequalities and Theorem 3.4, we obtain

µ− ε̂ � I − lim inf uk � I − lim supuk � µ+ ε̂.(3.6)

Since ε > 0 is an arbitrary, we obtain I − lim inf uk = I − lim supuk = µ. �

Example 3.2. We decompose the set N into countably many disjoint sets

Np = {2p−1(2k − 1) : k ∈ N}, (j = 1, 2, 3, ...).

It is obvious that N =
⋃∞
p=1Np and Ni ∩ Nj = ∅ for i 6= j. Denote by I the

class of all A ⊆ N such that A intersects only a finite number of Np. It is easy
to see that I is an admissible ideal. Define (un) as follows: for n ∈ Np we put
un = vp (p = 1, 2, 3, ...), where

vp(x) :=

{
1− px , if 0 ≤ x ≤ 1

p ,

0 , otherwise.

Then, for n ∈ Np, D(un, 0̂) = 1/p (p = 1, 2, 3, . . . ). Then, obviously I−limD(un, 0̂)

= 0 that is I − limun = 0̂.
Now, consider the ideal Iδ. It can be easily shown that the natural density of

Np is δ(Np) = 1/2p (p = 1, 2, 3, ...). Then, it is clear that a ∈ Au for each a ∈ E1

with a � 0̂ and b ∈ Bu for each with b ∈ E1 with b � v1. So, we obtain

Iδ − lim inf u = 0̂ and Iδ − lim supu = v1.

The converse of Theorem 3.4 is not valid in general as shown Example 2 in [5].
The following theorem gives a sufficient condition for a sequence of fuzzy numbers
to be I−onvergent.

Theorem 3.5. Assume that I − lim supuk = I − lim inf uk = µ and there is a
number ε0 > 0 such that for each ε ∈ (0, ε0) the sets {k ∈ N : uk 6∼ µ + ε̂} and
{k ∈ N : uk 6∼ µ− ε̂} belong to I. Then, we have I − limuk = µ.
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Proof. Take any number ε ∈ (0, ε0). Since I − lim inf xk = I − lim supxk = µ, by
Theorem 3.3 we have

{k ∈ N : uk ≺ µ− ε̂} ∈ I and {k ∈ N : uk � µ+ ε̂} ∈ I,
for all ε > 0. From {k ∈ N : uk 6∼ µ − ε̂} ∈ I and {k ∈ N : uk 6∼ µ + ε̂} ∈ I, we
conclude that

{k ∈ N : uk � µ+ ε̂} ∈ F(I) and {k ∈ N : uk � µ− ε̂} ∈ F(I).

By Lemma 2.1, we obtain {k ∈ N : uk � µ + ε̂} ∩ {k ∈ N : uk � µ − ε̂} ∈ F(I),
{k ∈ N : µ − ε̂ � uk � µ + ε̂} ∈ F(I), {k ∈ N : D(uk, µ) ≤ ε} ∈ F(I). Therefore,
{k ∈ N : D(uk, µ) > ε} ∈ I. Since ε > 0 is an arbitrary number, we conclude that
I − limuk = µ. �

The proofs of following theorems are clear and omitted.

Theorem 3.6. If u = (uk) and v = (vk) are I-bounded sequences of fuzzy numbers
such that {k ∈ N : uk 6= vk} ∈ I, then we have:

(i) I − lim supuk = I − lim sup vk,
(ii) I − lim inf uk = I − lim inf vk.

Theorem 3.7. Let u = (uk) ∈ w(F ) be I-bounded from above. Assume that
I − lim supuk = µ and there is a number ε0 > 0 such that for each ε ∈ (0, ε0), the
sets

{k ∈ N : uk 6∼ µ+ ε̂} and {k ∈ N : uk 6∼ µ− ε̂}
belong to I. Then, µ ∈ I(Γu).

Theorem 3.8. Let u = (uk) ∈ w(F ) be I-bounded from below. Assume that
I − lim inf uk = ν and there exists a number ε0 > 0 such that for each ε ∈ (0, ε0),
the sets

{k ∈ N : uk 6∼ ν + ε̂} and {k ∈ N : uk 6∼ ν − ε̂}
belong to I. Then, ν ∈ I(Γu).

Theorem 3.9. Let u = (uk) ∈ w(F ) be I-bounded. If γ ∈ I(Γu), then I-lim inf u �
γ � I − lim supu.
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BIOPERATIONS ON α-SEMIOPEN SETS

ALIAS B. KHALAF AND HARIWAN Z. IBRAHIM

Abstract. The aim of this paper is to introduce and study the concept of

α
[γ,γ

′
]
-semiopen sets. Using this set, we introduce and study the concept of

(α
[γ,γ

′
]
, α

[β,β
′
]
)-semicontinuous and (α

[γ,γ
′
]
, α

[β,β
′
]
)-irresolute functions.

1. Introduction

The notion of semiopen sets is an important concept in general topology. In
1963, Levine [4] defined semiopen sets in a space X and discussed many of its
properties. Njastad [3] introduced α-open sets in a topological space and studied
some of its properties. Ibrahim [2] defined the concept of an operation on αO(X, τ)
and introduced αγ-open sets in topological spaces and studied some of their basic
properties. Khalaf, et. al. [1] introduced the notion of αO(X, τ)[γ,γ′ ], which is

the collection of all α[γ,γ′ ]-open sets in a topological space (X, τ). In this paper,

we introduce and study the notion of αSO(X, τ)[γ,γ′ ] which is the collection of all

α[γ,γ′ ]-semiopen by using operations γ and γ
′

on a topological space αO(X, τ). We

also introduce (α[γ,γ′ ], α[β,β′ ])-semicontinuous and (α[γ,γ′ ], α[β,β′ ])-irresolute func-

tions and investigate some important properties of these functions.

2. Preliminaries

Throughout this paper, (X, τ) and (Y, σ) represent nonempty topological spaces
on which no separation axioms are assumed, unless otherwise mentioned. The
closure and the interior of a subset A of X are denoted by Cl(A) and Int(A),
respectively.

Definition 2.1. A subset A of a topological space (X, τ) is called α-open [3] (resp.,
semiopen [4]) if A ⊆ Int(Cl(Int(A))) (resp., A ⊆ Cl(Int(A))). The complement of
an α-open (resp., semiopen) set is called α-closed (resp., semiclosed) set.

The family of all α-open (resp., semiopen) sets in a topological space (X, τ) is
denoted by αO(X, τ) or αO(X) (resp.,SO(X, τ) or SO(X)).

2000 Mathematics Subject Classification. Primary: 54A05, 54A10; Secondary: 54C05.
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]
-open set, α
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Definition 2.2. [2] Let X be a topological space. An operation γ on the topology
αO(X) is a mapping from αO(X) into the power set P (X) of X such that V ⊆ V γ
for each V ∈ αO(X), where V γ denotes the value of γ at V . It is denoted by
γ : αO(X)→ P (X).

Definition 2.3. [2] An operation γ on αO(X) is said to be α-regular if for every α-
open sets U and V containing x ∈ X, there exists an α-open set W of X containing
x such that W γ ⊆ Uγ ∩ V γ .

Definition 2.4. [1] A subset A of X is said to be α[γ,γ′ ]-open if for each x ∈ A,

there exist α-open sets U and V of X containing x such that Uγ ∩ V γ′ ⊆ A. A
subset F of (X, τ) is said to be α[γ,γ′ ]-closed if its complement X \F is α[γ,γ′ ]-open.

The family of all α[γ,γ′ ]-open sets of (X, τ) is denoted by αO(X, τ)[γ,γ′ ].

Definition 2.5. [1] Let (X, τ) be a topological space and A be a subset of X, then:

(1) The intersection of all α[γ,γ′ ]-closed sets containing A is called the α[γ,γ′ ]-

closure of A and denoted by α[γ,γ′ ]-Cl(A).

(2) The union of all α[γ,γ′ ]-open sets contained in A is called the α[γ,γ′ ]-interior

of A and denoted by α[γ,γ′ ]-Int(A).

Definition 2.6. [5] A nonempty subset A of (X, τ) is said to be [γ, γ
′
]-open if for

each x ∈ A there exist open sets U and V of X containing x such that Uγ∩V γ′ ⊆ A.

The family of all [γ, γ
′
]-open sets of (X, τ) is denoted by τ[γ,γ′ ].

Definition 2.7. [1] A function f : (X, τ) → (Y, σ) is said to be (α[γ,γ′ ], α[β,β′ ])-

closed if for α[γ,γ′ ]-closed set A of X, f(A) is α[β,β′ ]-closed in Y .

3. α[γ,γ′ ]-Semiopen Sets

Definition 3.1. Let (X, τ) be a topological space and γ, γ
′

be two operations
on αO(X, τ). A subset A of X is said to be α[γ,γ′ ]-semiopen, if there exists an

α[γ,γ′ ]-open set U of X such that U ⊆ A ⊆ α[γ,γ′ ]-Cl(U).

The family of all α[γ,γ′ ]-semiopen sets of a topological space (X, τ) is denoted by

αSO(X, τ)[γ,γ′ ]. Also, the family of all α[γ,γ′ ]-semiopen sets of (X, τ) containing x

is denoted by αSO(X,x)[γ,γ′ ].

Theorem 3.1. If A is an α[γ,γ′ ]-open set in (X, τ), then it is α[γ,γ′ ]-semiopen set.

Proof. The proof follows from the definition. �

The following example shows that the converse of the above theorem is not true
in general.

Example 3.1. Let X = {a, b, c} and τ = {φ,X, {a}, {c}, {a, b}, {a, c}} be a topol-

ogy on X. For each A ∈ αO(X, τ), we define two operations γ and γ
′
, respectively,

by

Aγ = Aγ
′

=

{
X if c ∈ A
A if c /∈ A.

Now, αO(X, τ)[γ,γ′ ] = {φ,X, {a}, {a, b}}. Let A = {a, c}, then there exists an

α[γ,γ′ ]-open set {a} such that {a} ⊆ A ⊆ α[γ,γ′ ]-Cl({a}) = X. Thus, A is α[γ,γ′ ]-

semiopen but not α[γ,γ′ ]-open.
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Theorem 3.2. If A is a [γ, γ
′
]-open set in (X, τ), then it is α[γ,γ′ ]-semiopen set.

Proof. The proof follows from [[1], Proposition 3.14] and Theorem 3.1. �

The converse of the above theorem need not be true. The subset {a, b} in [[1],

Example 3.15.], is an α[γ,γ′ ]-semiopen set but it is not [γ, γ
′
]-open.

Also by Theorem 3.1 and [[1], Proposition 3.14], we obtain the following inclu-
sion
τ[γ,γ′ ] ⊆ αO(X, τ)[γ,γ′ ] ⊆ αSO(X, τ)[γ,γ′ ].

The following examples show that the concept of semiopen and α[γ,γ′ ]-semiopen

sets are independent.

Example 3.2. Let X = {a, b, c} and τ = {φ,X, {a}, {b}, {a, b}, {b, c}} be a topol-

ogy on X. For each A ∈ αO(X, τ), we define two operations γ and γ
′
, respectively,

by

Aγ = Aγ
′

=

{
A if a ∈ A
Cl(A) if a /∈ A.

Calculations give αO(X, τ)[γ,γ′ ] = {φ,X, {a}, {a, b}}. Then, A = {a, c} is α[γ,γ′ ]-

semiopen but not a semiopen set.

Example 3.3. Let X = {a, b, c} and τ = {φ,X, {a}, {b}, {a, b}, {a, c}} be a topol-

ogy on X. For each A ∈ αO(X, τ), we define two operations γ and γ
′
, respectively,

by

Aγ = Aγ
′

=

{
A if b ∈ A
Cl(A) if b /∈ A.

Calculations give αO(X, τ)[γ,γ′ ] = {φ,X, {b}, {a, b}, {a, c}}. Then, A = {a} is

semiopen but not an α[γ,γ′ ]-semiopen set.

Theorem 3.3. A subset A is α[γ,γ′ ]-semiopen if and only if A ⊆ α[γ,γ′ ]-Cl(α[γ,γ′ ]-

Int(A)).

Proof. Let A ⊆ α[γ,γ′ ]-Cl(α[γ,γ′ ]-Int(A)). Take U = α[γ,γ′ ]-Int(A). Then, by [[1],

Proposition 3.44 (1)], U is α[γ,γ′ ]-open and we have U = α[γ,γ′ ]-Int(A) ⊆ A ⊆
α[γ,γ′ ]-Cl(U). Hence, A is α[γ,γ′ ]-semiopen.

Conversely, suppose that A is an α[γ,γ′ ]-semiopen set in X. Then, U ⊆ A ⊆
α[γ,γ′ ]-Cl(U), for some α[γ,γ′ ]-open sets U in X. Since U ⊆ α[γ,γ′ ]-Int(A). Thus,

we have α[γ,γ′ ]-Cl(U) ⊆ α[γ,γ′ ]-Cl(α[γ,γ′ ]-Int(A)). Hence, A ⊆ α[γ,γ′ ]-Cl(α[γ,γ′ ]-

Int(A)). �

Theorem 3.4. Let A be an α[γ,γ′ ]-semiopen set in a space X and B a subset of

X. If A ⊆ B ⊆ α[γ,γ′ ]-Cl(A), then B is α[γ,γ′ ]-semiopen.

Proof. Since A is an α[γ,γ′ ]-semiopen set in X, then there exists an α[γ,γ′ ]-open set

U of X such that U ⊆ A ⊆ α[γ,γ′ ]-Cl(U). Since A ⊆ B, so U ⊆ B. But α[γ,γ′ ]-

Cl(A) ⊆ α[γ,γ′ ]-Cl(U), then B ⊆ α[γ,γ′ ]-Cl(U). Hence U ⊆ B ⊆ α[γ,γ′ ]-Cl(U).

Thus, B is α[γ,γ′ ]-semiopen. �

Theorem 3.5. If Ai is α[γ,γ′ ]-semiopen for every i ∈ I, then ∪{Ai : i ∈ I} is
α[γ,γ′ ]-semiopen.
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Proof. Since Ai is an α[γ,γ′ ]-semiopen set for every i ∈ I, so there exist an α[γ,γ′ ]-

open set Ui of X such that Ui ⊆ Ai ⊆ α[γ,γ′ ]-Cl(Ui) this impies that
⋃
i∈I Ui ⊆⋃

i∈I Ai ⊆ α[γ,γ′ ]-Cl(
⋃
i∈I Ui). By [[1], Proposition 3.2],

⋃
i∈I Ui is α[γ,γ′ ]-open.

Therefore, ∪i∈IAi is an α[γ,γ′ ]-semiopen set of (X, τ). �

If A and B are two α[γ,γ′ ]-semiopen sets in (X, τ), then the following example

shows that A ∩B need not be α[γ,γ′ ]-semiopen.

Example 3.4. Let X = {a, b, c} and τ = {φ,X, {a}, {c}, {a, b}, {a, c}} be a topol-

ogy on X. For each A ∈ αO(X, τ), we define two operations γ and γ
′
, by

Aγ =

{
Cl(A) if c ∈ A,
X if c /∈ A,

and

Aγ
′

=

{
A if A 6= {a},
X if A = {a}.

Then, it is obvious that the sets {a, b} and {a, c} are α[γ,γ′ ]-semiopen, however their

intersection {a} is not α[γ,γ′ ]-semiopen.

Remark 3.1. From the above example we notice that the family of all α[γ,γ′ ]-

semiopen subsets of a space X is a supratopology and need not be a topology
in general.

Theorem 3.6. Let γ and γ
′
be α-regular operations on αO(X). If A is a subset

of X, then for every α[γ,γ′ ]-open set G of X, we have:

(1) α[γ,γ′ ]-Cl(A) ∩G ⊆ α[γ,γ′ ]-Cl(A ∩G).

(2) α[γ,γ′ ]-Cl(A ∩G) = α[γ,γ′ ]-Cl(α[γ,γ′ ]-Cl(A) ∩G).

Proof. (1) Let x ∈ α[γ,γ′ ]-Cl(A)∩G and V be any α[γ,γ′ ]-open set containing x.

Then by [[1], Proposition 3.4], V ∩G is also an α[γ,γ′ ]-open set containing

x. Since x ∈ α[γ,γ′ ]-Cl(A), implies that (V ∩G) ∩A 6= φ, this implies that

V ∩ (A∩G) 6= φ and hence by [[1], Proposition 3.31], x ∈ α[γ,γ′ ]-Cl(A∩G).

Therefore α[γ,γ′ ]-Cl(A) ∩G ⊆ α[γ,γ′ ]-Cl(A ∩G).

(2) By (1), α[γ,γ′ ]-Cl(A) ∩ G ⊆ α[γ,γ′ ]-Cl(A ∩ G) and so α[γ,γ′ ]-Cl(α[γ,γ′ ]-

Cl(A) ∩ G) ⊆ α[γ,γ′ ]-Cl(A ∩ G). But A ∩ G ⊆ α[γ,γ′ ]-Cl(A) ∩ G implies

that α[γ,γ′ ]-Cl(A ∩ G) ⊆ α[γ,γ′ ]-Cl(α[γ,γ′ ]-Cl(A) ∩ G). Therefore, α[γ,γ′ ]-

Cl(A ∩G) = α[γ,γ′ ]-Cl(α[γ,γ′ ]-Cl(A) ∩G).
�

Theorem 3.7. Let γ and γ
′
be α-regular operations on αO(X). If A is α[γ,γ′ ]-open

and B is α[γ,γ′ ]-semiopen, then A ∩B is α[γ,γ′ ]-semiopen.

Proof. Since B is α[γ,γ′ ]-semiopen, there exists an α[γ,γ′ ]-open set G such that

G ⊆ B ⊆ α[γ,γ′ ]-Cl(G) and so A ∩ G ⊆ A ∩ B ⊆ A ∩ α[γ,γ′ ]-Cl(G). By [[1],

Proposition 3.4], A∩G is α[γ,γ′ ]-open and so A∩G = α[γ,γ′ ]-Int(A∩G). By Theorem

3.6 (1), A ∩ α[γ,γ′ ]-Cl(G) ⊆ α[γ,γ′ ]-Cl(A ∩ G). Therefore, A ∩ B ⊆ A ∩ α[γ,γ′ ]-

Cl(G) ⊆ α[γ,γ′ ]-Cl(A ∩ G) = α[γ,γ′ ]-Cl(α[γ,γ′ ]-Int(A ∩ G)) ⊆ α[γ,γ′ ]-Cl(α[γ,γ′ ]-

Int(A ∩B)). By Theorem 3.3, A ∩B is α[γ,γ′ ]-semiopen.
�
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Proposition 3.1. The set A is α[γ,γ′ ]-semiopen in X if and only if for each x ∈ A,
there exists an α[γ,γ′ ]-semiopen set B such that x ∈ B ⊆ A.

Proof. Suppose that A is an α[γ,γ′ ]-semiopen set in the space X. Then for each

x ∈ A, put B = A which is an α[γ,γ′ ]-semiopen set such that x ∈ B ⊆ A.

Conversely, suppose that for each x ∈ A, there exists an α[γ,γ′ ]-semiopen set B

such that x ∈ B ⊆ A. Thus A = ∪x∈ABx, where Bx ∈ αSO(X, τ)[γ,γ′ ]. Therefore,

by Theorem 3.5, A is an α[γ,γ′ ]-semiopen set. �

Proposition 3.2. Let (X, τ) be a topological space and γ, γ
′
be operations on

αO(X). A subset A of X is α[γ,γ′ ]-semiopen if and only if α[γ,γ′ ]-Cl(A) = α[γ,γ′ ]-

Cl(α[γ,γ′ ]-Int(A)).

Proof. Let A ∈ αSO(X)[γ,γ′ ]. Then, we have A ⊆ α[γ,γ′ ]-Cl(α[γ,γ′ ]-Int(A)), which

implies that α[γ,γ′ ]-Cl(A) ⊆ α[γ,γ′ ]-Cl(α[γ,γ′ ]-Int(A)) ⊆ α[γ,γ′ ]-Cl(A) and hence

α[γ,γ′ ]-Cl(A) = α[γ,γ′ ]-Cl(α[γ,γ′ ]-Int(A)).

Conversely, since by [[1], Proposition 3.44 (1)] and Theorem 3.1, α[γ,γ′ ]-Int(A)

is an α[γ,γ′ ]-semiopen set such that α[γ,γ′ ]-Int(A) ⊆ A ⊆ α[γ,γ′ ]-Cl(A) = α[γ,γ′ ]-

Cl(α[γ,γ′ ]-Int(A)) and hence A is α[γ,γ′ ]-semiopen.
�

Proposition 3.3. If A is a nonempty α[γ,γ′ ]-semiopen set in X, then α[γ,γ′ ]-

Int(A) 6= φ.

Proof. Since A is α[γ,γ′ ]-semiopen, by Proposition 3.2, we have α[γ,γ′ ]-Cl(A) =

α[γ,γ′ ]-Cl(α[γ,γ′ ]-Int(A)). Suppose that α[γ,γ′ ]-Int(A) = φ. Then, we have α[γ,γ′ ]-

Cl(A) = φ and hence A = φ. This contradicts the hypothesis. Therefore, α[γ,γ′ ]-

Int(A) 6= φ. �

Proposition 3.4. Let (X, τ) be a topological space and γ, γ
′
be operations on

αO(X). Then a subset A of X is α[γ,γ′ ]-semiopen if and only if A ⊆ α[γ,γ′ ]-

Cl(α[γ,γ′ ]-Int(α[γ,γ′ ]-Cl(A))) and α[γ,γ′ ]-Int(α[γ,γ′ ]-Cl(A)) ⊆ α[γ,γ′ ]-Cl(α[γ,γ′ ]-Int(A)).

Proof. Let A be an α[γ,γ′ ]-semiopen set. Then, we have A ⊆ α[γ,γ′ ]-Cl(α[γ,γ′ ]-

Int(A)) ⊆ α[γ,γ′ ]-Cl(α[γ,γ′ ]-Int(α[γ,γ′ ]-Cl(A))). Moreover, α[γ,γ′ ]-Int(α[γ,γ′ ]-Cl(A)) ⊆
α[γ,γ′ ]-Cl(A) ⊆ α[γ,γ′ ]-Cl(α[γ,γ′ ]-Int(A)).

Conversely, since α[γ,γ′ ]-Int(α[γ,γ′ ]-Cl(A)) ⊆ α[γ,γ′ ]-Cl(α[γ,γ′ ]-Int(A)). Thus,

we obtain that α[γ,γ′ ]-Cl(α[γ,γ′ ]-Int(α[γ,γ′ ]-Cl(A))) ⊆ α[γ,γ′ ]-Cl(α[γ,γ′ ]-Int(A)).

By hypothesis, we haveA ⊆ α[γ,γ′ ]-Cl(α[γ,γ′ ]-Int(α[γ,γ′ ]-Cl(A))) ⊆ α[γ,γ′ ]-Cl(α[γ,γ′ ]-

Int(A)). Hence, A is an α[γ,γ′ ]-semiopen set. �

Definition 3.2. Let A be a subset of a topological space (X, τ) and γ, γ
′

be oper-
ations on αO(X). Then, a subset A of X is said to be α[γ,γ′ ]-semiclosed if and only

if X \A is α[γ,γ′ ]-semiopen. The family of all α[γ,γ′ ]-semiclosed sets of a topological

space (X, τ) is denoted by αSC(X, τ)[γ,γ′ ].

The following theorem gives characterizations of α[γ,γ′ ]-semiclosed sets.

Theorem 3.8. Let A be a subset of X and γ, γ
′
be operations on αO(X). Then,

the following statements are equivalent:
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(1) A is α[γ,γ′ ]-semiclosed.

(2) α[γ,γ′ ]-Int(α[γ,γ′ ]-Cl(A)) ⊆ A.
(3) α[γ,γ′ ]-Int(α[γ,γ′ ]-Cl(A)) = α[γ,γ′ ]-Int(A).

(4) There exists an α[γ,γ′ ]-closed set F such that α[γ,γ′ ]-Int(F ) ⊆ A ⊆ F .

Proof. (1)⇒ (2): Since A ∈ αSC(X, τ)[γ,γ′ ], then we have X\A ∈ αSO(X, τ)[γ,γ′ ].

Hence, by Theorem 3.3 and [[1], Proposition 3.45], X\A ⊆ α[γ,γ′ ]-Cl(α[γ,γ′ ]-Int(X\
A)) = X \ (α[γ,γ′ ]-Int(α[γ,γ′ ]-Cl(A))). Therefore, we obtain α[γ,γ′ ]-Int(α[γ,γ′ ]-

Cl(A)) ⊆ A.

(2) ⇒ (3): Since α[γ,γ′ ]-Int(α[γ,γ′ ]-Cl(A)) ⊆ A implies that α[γ,γ′ ]-Int(α[γ,γ′ ]-

Cl(A)) ⊆ α[γ,γ′ ]-Int(A) but α[γ,γ′ ]-Int(A) ⊆ α[γ,γ′ ]-Int(α[γ,γ′ ]-Cl(A)) and so

α[γ,γ′ ]-Int(α[γ,γ′ ]-Cl(A)) = α[γ,γ′ ]-Int(A).

(3) ⇒ (4): Let F = α[γ,γ′ ]-Cl(A), then F is an α[γ,γ′ ]-closed set such that α[γ,γ′ ]-

Int(F ) = α[γ,γ′ ]-Int(α[γ,γ′ ]-Cl(A)) = α[γ,γ′ ]-Int(A) ⊆ A ⊆ F , which proves (4).

(4)⇒ (1): If there exists an α[γ,γ′ ]-closed set F such that α[γ,γ′ ]-Int(F ) ⊆ A ⊆ F ,

then X \ F ⊆ X \ A ⊆ X \ α[γ,γ′ ]-Int(F ) = α[γ,γ′ ]-Cl(X \ F ). Since X \ F is

α[γ,γ′ ]-open, then X \A is α[γ,γ′ ]-semiopen and so A is α[γ,γ′ ]-semiclosed. �

Theorem 3.9. Let (X, τ) be a topological space and γ, γ
′
be operations on αO(X).

Arbitrary intersection of α[γ,γ′ ]-semiclosed sets is always α[γ,γ′ ]-semiclosed.

Proof. Follows from Theorem 3.5. �

Lemma 3.1. Let A ∈ αSC(X, τ)[γ,γ′ ] and suppose that α[γ,γ′ ]-Int(A) ⊆ B ⊆ A.

Then, B ∈ αSC(X, τ)[γ,γ′ ].

Proof. Let A ∈ αSC(X, τ)[γ,γ′ ], then by Theorem 3.8, there exists an α[γ,γ′ ]-closed

set F such that α[γ,γ′ ]-Int(F ) ⊆ A ⊆ F . Since B ⊆ A and A ⊆ F . Thus, B ⊆ F

also α[γ,γ′ ]-Int(F ) ⊆ α[γ,γ′ ]-Int(A) and α[γ,γ′ ]-Int(A) ⊆ B. This implies that

α[γ,γ′ ]-Int(F ) ⊆ B. Hence, α[γ,γ′ ]-Int(F ) ⊆ B ⊆ F , where F is α[γ,γ′ ]-closed in X.

This proves that B ∈ αSC(X, τ)[γ,γ′ ].
�

Proposition 3.5. Let (X, τ) be a topological space and γ, γ
′
be operations on

αO(X). Then, a subset A of X is α[γ,γ′ ]-semiclosed if and only if α[γ,γ′ ]-Int(α[γ,γ′ ]-

Cl(α[γ,γ′ ]-Int(A))) ⊆ A and α[γ,γ′ ]-Int(α[γ,γ′ ]-Cl(A)) ⊆ α[γ,γ′ ]-Cl(α[γ,γ′ ]-Int(A)).

Proof. Let A be an α[γ,γ′ ]-semiclosed set. Then, by Theorem 3.8 (2), we have

α[γ,γ′ ]-Int(α[γ,γ′ ]-Cl(α[γ,γ′ ]-Int(A))) ⊆ α[γ,γ′ ]-Int(α[γ,γ′ ]-Cl(A)) ⊆ A. Moreover,

by Theorem 3.8 (3), α[γ,γ′ ]-Int(α[γ,γ′ ]-Cl(A)) = α[γ,γ′ ]-Int(A) ⊆ α[γ,γ′ ]-Cl(α[γ,γ′ ]-

Int(A)).
Conversely, since α[γ,γ′ ]-Int(α[γ,γ′ ]-Cl(A)) ⊆ α[γ,γ′ ]-Cl(α[γ,γ′ ]-Int(A)). Thus,

we obtain that α[γ,γ′ ]-Int(α[γ,γ′ ]-Cl(A)) ⊆ α[γ,γ′ ]-Int(α[γ,γ′ ]-Cl(α[γ,γ′ ]-Int(A))).

By hypothesis, we have α[γ,γ′ ]-Int(α[γ,γ′ ]-Cl(A)) ⊆ α[γ,γ′ ]-Int(α[γ,γ′ ]-Cl(α[γ,γ′ ]-

Int(A))) ⊆ A. Hence, by Theorem 3.8, A is an α[γ,γ′ ]-semiclosed set. �
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Definition 3.3. Let A be a subset of a topological space (X, τ) and γ, γ
′

be oper-
ations on αO(X). Then:

(1) The α[γ,γ′ ]-semiclosure of A is defined as the intersection of all α[γ,γ′ ]-

semiclosed sets containing A. That is, α[γ,γ′ ]-sCl(A) =
⋂
{F : F is α[γ,γ′ ]-

semiclosed and A ⊆ F}.
(2) The α[γ,γ′ ]-semiinterior of A is defined as the union of all α[γ,γ′ ]-semiopen

sets contained in A. That is, α[γ,γ′ ]-sInt(A) =
⋃
{U : U is α[γ,γ′ ]-semiopen

and U ⊆ A}.
(3) The α[γ,γ′ ]-semiboundary of A, denoted by α[γ,γ′ ]-sBd(A) is defined as

α[γ,γ′ ]-sCl(A) \ α[γ,γ′ ]-sInt(A).

(4) The set denoted by α[γ,γ′ ]-sD(A) and defined by {x : for every α[γ,γ′ ]-

semiopen set U containing x, U ∩ (A \ {x}) 6= φ} is called the α[γ,γ′ ]-

semiderived set of A.

The proofs of the following theorems are obvious and therefore are omitted.

Theorem 3.10. Let A,B be subsets of a topological space (X, τ) and γ, γ
′
be op-

erations on αO(X). Then:

(1) α[γ,γ′ ]-sCl(A) is the smallest α[γ,γ′ ]-semiclosed subset of X containing A.

(2) A ∈ αSC(X, τ)[γ,γ′ ] if and only if α[γ,γ′ ]-sCl(A) = A.

(3) α[γ,γ′ ]-sCl(α[γ,γ′ ]-sCl(A)) = α[γ,γ′ ]-sCl(A).

(4) A ⊆ α[γ,γ′ ]-sCl(A).

(5) If A ⊆ B, then α[γ,γ′ ]-sCl(A) ⊆ α[γ,γ′ ]-sCl(B).

(6) α[γ,γ′ ]-sCl(A ∩B) ⊆ α[γ,γ′ ]-sCl(A) ∩ α[γ,γ′ ]-sCl(B).

(7) α[γ,γ′ ]-sCl(A ∪B) ⊇ α[γ,γ′ ]-sCl(A) ∪ α[γ,γ′ ]-sCl(B).

(8) x ∈ α[γ,γ′ ]-sCl(A) if and only if V ∩A 6= φ for every V ∈ αSO(X,x)[γ,γ′ ].

Theorem 3.11. Let A,B be subsets of a topological space (X, τ) and γ, γ
′
be op-

erations on αO(X). Then:

(1) α[γ,γ′ ]-sInt(A) is the largest α[γ,γ′ ]-semiopen subset of X contained in A.

(2) A is α[γ,γ′ ]-semiopen if and only if A = α[γ,γ′ ]-sInt(A).

(3) α[γ,γ′ ]-sInt(α[γ,γ′ ]-sInt(A)) = α[γ,γ′ ]-sInt(A).

(4) α[γ,γ′ ]-sInt(A) ⊆ A.
(5) If A ⊆ B, then α[γ,γ′ ]-sInt(A) ⊆ α[γ,γ′ ]-sInt(B).

(6) α[γ,γ′ ]-sInt(A ∪B) ⊇ α[γ,γ′ ]-sInt(A) ∪ α[γ,γ′ ]-sInt(B).

(7) α[γ,γ′ ]-sInt(A ∩B) ⊆ α[γ,γ′ ]-sInt(A) ∩ α[γ,γ′ ]-sInt(B).

(8) X \ α[γ,γ′ ]-sInt(A) = α[γ,γ′ ]-sCl(X \A).

(9) X \ α[γ,γ′ ]-sCl(A) = α[γ,γ′ ]-sInt(X \A).

(10) α[γ,γ′ ]-sInt(A) = X \ α[γ,γ′ ]-sCl(X \A).

(11) α[γ,γ′ ]-sCl(A) = X \ α[γ,γ′ ]-sInt(X \A).

Theorem 3.12. Let A,B be subsets of a topological space (X, τ) and γ, γ
′
be op-

erations on αO(X). Then:

(1) α[γ,γ′ ]-sCl(A) = α[γ,γ′ ]-sInt(A) ∪ α[γ,γ′ ]-sBd(A).

(2) α[γ,γ′ ]-sInt(A) ∩ α[γ,γ′ ]-sBd(A) = φ.

(3) α[γ,γ′ ]-sBd(A) = α[γ,γ′ ]-sCl(A) ∩ α[γ,γ′ ]-sCl(X \A).

(4) α[γ,γ′ ]-sBd(A) = α[γ,γ′ ]-sBd(X \A).
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(5) α[γ,γ′ ]-sBd(A) is an α[γ,γ′ ]-semiclosed set.

Theorem 3.13. Let A,B be subsets of a topological space (X, τ) and γ, γ
′
be op-

erations on αO(X). Then:

(1) If x ∈ α[γ,γ′ ]-sD(A), then x ∈ α[γ,γ′ ]-sD(A \ {x}).
(2) α[γ,γ′ ]-sD(A ∪B) ⊇ α[γ,γ′ ]-sD(A) ∪ α[γ,γ′ ]-sD(B).

(3) α[γ,γ′ ]-sD(A ∩B) ⊆ α[γ,γ′ ]-sD(A) ∩ α[γ,γ′ ]-sD(B).

(4) α[γ,γ′ ]-sD(α[γ,γ′ ]-sD(A)) \A ⊆ α[γ,γ′ ]-sD(A).

(5) α[γ,γ′ ]-sD(A ∪ α[γ,γ′ ]-sD(A)) ⊆ A ∪ α[γ,γ′ ]-sD(A).

(6) α[γ,γ′ ]-sCl(A) = A ∪ α[γ,γ′ ]-sD(A).

(7) A is α[γ,γ′ ]-semiclosed if and only if α[γ,γ′ ]-sD(A) ⊆ A.

Remark 3.2. Let A be subset of a topological space (X, τ) and γ, γ
′

be operations
on αO(X). Then:
α[γ,γ′ ]-Int(A) ⊆ α[γ,γ′ ]-sInt(A) ⊆ A ⊆ α[γ,γ′ ]-sCl(A) ⊆ α[γ,γ′ ]-Cl(A).

Theorem 3.14. Let (X, τ) be a topological space, γ, γ
′
operations on αO(X) and

A a subset of X. Then, the following statements are equivalent:

(1) A = α[γ,γ′ ]-sCl(A).

(2) α[γ,γ′ ]-sInt(α[γ,γ′ ]-sCl(A)) ⊆ A.
(3) (α[γ,γ′ ]-Cl(X \(α[γ,γ′ ]-Cl(A)))\(X \(α[γ,γ′ ]-Cl(A)))) ⊇ (α[γ,γ′ ]-Cl(A)\A).

Proof. (1)⇒ (2): If A = α[γ,γ′ ]-sCl(A), then α[γ,γ′ ]-sInt(α[γ,γ′ ]-sCl(A)) = α[γ,γ′ ]-

sInt(A) ⊆ A.

(2) ⇒ (1): Suppose that α[γ,γ′ ]-sInt(α[γ,γ′ ]-sCl(A)) ⊆ A. Now, by Theorem 3.10

(1), α[γ,γ′ ]-sCl(A) is an α[γ,γ′ ]-semiclosed set and so, by Theorem 3.8, there is an

α[γ,γ′ ]-closed set F such that α[γ,γ′ ]-Int(F ) ⊆ α[γ,γ′ ]-sCl(A) ⊆ F . Since α[γ,γ′ ]-

Int(F ) is α[γ,γ′ ]-semiopen, then α[γ,γ′ ]-sInt(α[γ,γ′ ]-Int(F )) = α[γ,γ′ ]-Int(F ). There-

fore, α[γ,γ′ ]-Int(F ) = α[γ,γ′ ]-sInt(α[γ,γ′ ]-Int(F )) ⊆ α[γ,γ′ ]-sInt(α[γ,γ′ ]-sCl(A))

and hence α[γ,γ′ ]-Int(F ) ⊆ A. But A ⊆ α[γ,γ′ ]-sCl(A) ⊆ F . Thus, α[γ,γ′ ]-

Int(F ) ⊆ A ⊆ F , where F is α[γ,γ′ ]-closed. Hence by Theorem 3.8, A is α[γ,γ′ ]-

semiclosed and by Theorem 3.10 (2), A = α[γ,γ′ ]-sCl(A).

(3)⇔ (1): We have (α[γ,γ′ ]-Cl(X\(α[γ,γ′ ]-Cl(A)))\(X\(α[γ,γ′ ]-Cl(A)))) ⊇ (α[γ,γ′ ]-

Cl(A) \A)
⇔ α[γ,γ′ ]-Cl(A) \ (α[γ,γ′ ]-Cl(X \ (α[γ,γ′ ]-Cl(A))) \ (X \ (α[γ,γ′ ]-Cl(A)))) ⊆ A
⇔ α[γ,γ′ ]-Cl(A)∩ [X \ (α[γ,γ′ ]-Cl(X \ (α[γ,γ′ ]-Cl(A))) \ (X \ (α[γ,γ′ ]-Cl(A))))] ⊆ A
⇔ α[γ,γ′ ]-Cl(A) ∩ [X \ (α[γ,γ′ ]-Cl(X \ (α[γ,γ′ ]-Cl(A))) ∩ (α[γ,γ′ ]-Cl(A)))] ⊆ A
⇔ α[γ,γ′ ]-Cl(A)∩ [(X \(α[γ,γ′ ]-Cl(X \(α[γ,γ′ ]-Cl(A)))))∪(X \(α[γ,γ′ ]-Cl(A)))] ⊆ A
⇔ [α[γ,γ′ ]-Cl(A) ∩ (X \ (α[γ,γ′ ]-Cl(X \ (α[γ,γ′ ]-Cl(A)))))] ∪ [α[γ,γ′ ]-Cl(A) ∩ (X \
(α[γ,γ′ ]-Cl(A)))] ⊆ A
⇔ α[γ,γ′ ]-Cl(A) ∩ α[γ,γ′ ]-Int(α[γ,γ′ ]-Cl(A)) ⊆ A
⇔ α[γ,γ′ ]-Int(α[γ,γ′ ]-Cl(A)) ⊆ A
⇔ A is α[γ,γ′ ]-semiclosed

⇔ A = α[γ,γ′ ]-sCl(A). �
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Theorem 3.15. If A is a subset of a nonempty space X and γ, γ
′
are operations

on αO(X), then the following statements are equivalent:

(1) α[γ,γ′ ]-Cl(A) = X.

(2) α[γ,γ′ ]-sCl(A) = X.

(3) If B is any α[γ,γ′ ]-semiclosed subset of X such that A ⊆ B, then B = X.

(4) Every nonempty α[γ,γ′ ]-semiopen set has a nonempty intersection with A.

(5) α[γ,γ′ ]-sInt(X \A) = φ.

Proof. (1) ⇒ (2): Suppose x /∈ α[γ,γ′ ]-sCl(A). Then, by Theorem 3.10 (8), there

exists an α[γ,γ′ ]-semiopen set G containing x such that G ∩ A = φ. Since G is a

nonempty α[γ,γ′ ]-semiopen set, then there is a nonempty α[γ,γ′ ]-open set H such

that H ⊆ G and so H ∩ A = φ which implies that α[γ,γ′ ]-Cl(A) 6= X, a contradic-

tion. Hence α[γ,γ′ ]-sCl(A) = X.

(2) ⇒ (3): If B is any α[γ,γ′ ]-semiclosed set such that A ⊆ B, then X = α[γ,γ′ ]-

sCl(A) ⊆ α[γ,γ′ ]-sCl(B) = B and so B = X.

(3) ⇒ (4): If G is any nonempty α[γ,γ′ ]-semiopen set such that G ∩ A = φ, then

A ⊆ X \ G and X \ G is α[γ,γ′ ]-semiclosed. By hypothesis, X \ G = X and so

G = φ, a contradiction. Therefore, G ∩A 6= φ.

(4) ⇒ (5): Suppose that α[γ,γ′ ]-sInt(X \ A) 6= φ. Then, by Theorem 3.11 (1),

α[γ,γ′ ]-sInt(X \ A) is a nonempty α[γ,γ′ ]-semiopen set such that α[γ,γ′ ]-sInt(X \
A) ∩A = φ, a contradiction. Therefore, α[γ,γ′ ]-sInt(X \A) = φ.

(5)⇒ (1): Since α[γ,γ′ ]-sInt(X \A) = φ implies that X \ α[γ,γ′ ]-sInt(X \A) = X

by Theorem 3.11 (11), implies that α[γ,γ′ ]-sCl(A) = X. By Remark 3.2, α[γ,γ′ ]-

sCl(B) ⊆ α[γ,γ′ ]-Cl(B) for every subset B of X. Therefore, α[γ,γ′ ]-sCl(A) = X

implies that α[γ,γ′ ]-Cl(A) = X. �

Proposition 3.6. Let γ and γ
′
be α-regular operations on αO(X). If A is a subset

of X and α[γ,γ′ ]-sCl(A) = X, then for every α[γ,γ′ ]-open set G of X, we have

α[γ,γ′ ]-Cl(A ∩G) = α[γ,γ′ ]-Cl(G).

Proof. The proof follows from Theorem 3.15 and Theorem 3.6 (2). �

Definition 3.4. Let (X, τ) be a topological space and γ, γ
′

be operations on
αO(X). A subset Bx of X is said to be an α[γ,γ′ ]-semineighborhood (resp. α[γ,γ′ ]-

neighborhood) of a point x ∈ X if there exists an α[γ,γ′ ]-semiopen (resp. α[γ,γ′ ]-

open) set U such that x ∈ U ⊆ Bx.

Theorem 3.16. Let (X, τ) be a topological space and γ, γ
′
be operations on αO(X).

A subset G of X is α[γ,γ′ ]-semiopen if and only if it is an α[γ,γ′ ]-semineighborhood

of each of its points.

Proof. Let G be an α[γ,γ′ ]-semiopen set of X. Then, by Definition 3.4, it is clear

that G is an α[γ,γ′ ]-semineighborhood of each of its points, since for every x ∈
G, x ∈ G ⊆ G and G is α[γ,γ′ ]-semiopen.
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Conversely, suppose that G is an α[γ,γ′ ]-semineighborhood of each of its points.

Then, for each x ∈ G, there exists Sx ∈ αSO(X,x)[γ,γ′ ] such that Sx ⊆ G. Then,

G =
⋃
{Sx : x ∈ G}. Since each Sx is α[γ,γ′ ]-semiopen, hence by Theorem 3.5, G is

α[γ,γ′ ]-semiopen in (X, τ). �

Proposition 3.7. For any two subsets A,B of a topological space (X, τ) and A ⊆
B, if A is an α[γ,γ′ ]-semineighborhood of a point x ∈ X, Then, B is also α[γ,γ′ ]-

semineighborhood of the same point x.

Proof. Obvious. �

4. Some New Functions

Throughout this section, let γ, γ
′

: αO(X) → P (X) and β, β
′

: αO(Y ) → P (Y )
be operations on αO(X) and αO(Y ), respectively.

Definition 4.1. A function f : (X, τ) → (Y, σ) is said to be (α[γ,γ′ ], α[β,β′ ])-

semicontinuous if for each x ∈ X and each α[β,β′ ]-open set V of Y containing f(x),

there exists an α[γ,γ′ ]-semiopen set U of X such that x ∈ U and f(U) ⊆ V .

Theorem 4.1. For a function f : (X, τ) → (Y, σ) the following statements are
equivalent:

(1) f is (α[γ,γ′ ], α[β,β′ ])-semicontinuous.

(2) The inverse image of each α[β,β′ ]-open set in Y is α[γ,γ′ ]-semiopen in X.

(3) The inverse image of each α[β,β′ ]-closed set in Y is α[γ,γ′ ]-semiclosed in X.

(4) For each subset A of X, f(α[γ,γ′ ]-sCl(A)) ⊆ α[β,β′ ]-Cl(f(A)).

(5) For each subset B of Y , α[γ,γ′ ]-sCl(f
−1(B)) ⊆ f−1(α[β,β′ ]-Cl(B)).

(6) For each subset B of Y , f−1(α[β,β′ ]-Int(B)) ⊆ α[γ,γ′ ]-sInt(f
−1(B)).

Proof. (1) ⇒ (2): Let f be (α[γ,γ′ ], α[β,β′ ])-semicontinuous. Let V be any α[β,β′ ]-

open set in Y . To show that f−1(V ) is an α[γ,γ′ ]-semiopen set in X, if f−1(V ) = φ,

then f−1(V ) is an α[γ,γ′ ]-semiopen set in X, if f−1(V ) 6= φ, then there exists

x ∈ f−1(V ) which implies f(x) ∈ V . Since f is (α[γ,γ′ ], α[β,β′ ])-semicontinuous,

there exists an α[γ,γ′ ]-semiopen set U in X containing x such that f(U) ⊆ V . This

implies that x ∈ U ⊆ f−1(V ). This shows f−1(V ) is α[γ,γ′ ]-semiopen.

(2) ⇒ (3): Let F be any α[β,β′ ]-closed set of Y . Then Y \ F is an α[β,β′ ]-open

set of Y . By (2), f−1(Y \ F ) = X \ f−1(F ) is an α[γ,γ′ ]-semiopen set in X and

hence f−1(F ) is an α[γ,γ′ ]-semiclosed set in X.

(3) ⇒ (4): Let A be any subset of X. Then, f(A) ⊆ α[β,β′ ]-Cl(f(A)) and α[β,β′ ]-

Cl(f(A)) is an α[β,β′ ]-closed set in Y . Hence A ⊆ f−1(α[β,β′ ]-Cl(f(A))). By (3),

we have f−1(α[β,β′ ]-Cl(f(A))) is an α[γ,γ′ ]-semiclosed set in X. Therefore, α[γ,γ′ ]-

sCl(A) ⊆ f−1(α[β,β′ ]-Cl(f(A))). Hence, f(α[γ,γ′ ]-sCl(A)) ⊆ α[β,β′ ]-Cl(f(A)).

(4) ⇒ (5): Let B be any subset of Y . Then f−1(B) is a subset of X. By (4),
we have f(α[γ,γ′ ]-sCl(f

−1(B))) ⊆ α[β,β′ ]-Cl(f(f−1(B))) ⊆ α[β,β′ ]-Cl(B). Hence,

α[γ,γ′ ]-sCl(f
−1(B)) ⊆ f−1(α[β,β′ ]-Cl(B)).



BIOPERATIONS ON α-SEMIOPEN SETS 203

(5) ⇔ (6): Let B be any subset of Y . Then apply (5) to Y \ B we obtain
α[γ,γ′ ]-sCl(f

−1(Y \ B)) ⊆ f−1(α[β,β′ ]-Cl(Y \ B)) ⇔ α[γ,γ′ ]-sCl(X \ f−1(B)) ⊆
f−1(Y \ α[β,β′ ]-Int(B)) ⇔ X \ α[γ,γ′ ]-sInt(f

−1(B)) ⊆ X \ f−1(α[β,β′ ]-Int(B)) ⇔
f−1(α[β,β′ ]-Int(B)) ⊆ α[γ,γ′ ]-sInt(f

−1(B)). Therefore, f−1(α[β,β′ ]-Int(B)) ⊆ α[γ,γ′ ]-

sInt(f−1(B)).

(6)⇒ (1): Let x ∈ X and V be any α[β,β′ ]-open set of Y containing f(x). Then, x ∈
f−1(V ) and f−1(V ) is a subset of X. By (6), we have f−1(α[β,β′ ]-Int(V )) ⊆ α[γ,γ′ ]-

sInt(f−1(V )). Since V is an α[β,β′ ]-open set, then f−1(V ) ⊆ α[γ,γ′ ]-sInt(f
−1(V )).

Therefore, f−1(V ) is an α[γ,γ′ ]-semiopen set in X which contains x and clearly

f(f−1(V )) ⊆ V . Hence, f is (α[γ,γ′ ], α[β,β′ ])-semicontinuous. �

Theorem 4.2. Let f : (X, τ) → (Y, σ) be an (α[γ,γ′ ], α[β,β′ ])-semicontinuous

function. Then, for each subset B of Y , f−1(α[β,β′ ]-Int(B)) ⊆ α[γ,γ′ ]-Cl(α[γ,γ′ ]-

Int(f−1(B))).

Proof. Let B be any subset of Y . Then, α[β,β′ ]-Int(B) is α[β,β′ ]-open in Y and so by

Theorem 4.1, f−1(α[β,β′ ]-Int(B)) is α[γ,γ′ ]-semiopen in X. Hence, Theorem 3.3, we

have f−1(α[β,β′ ]-Int(B)) ⊆ α[γ,γ′ ]-Cl(α[γ,γ′ ]-Int(f
−1(α[β,β′ ]-Int(B)))) ⊆ α[γ,γ′ ]-

Cl(α[γ,γ′ ]-Int(f
−1(B))). �

Corollary 4.1. Let f : (X, τ)→ (Y, σ) be an (α[γ,γ′ ], α[β,β′ ])-semicontinuous func-

tion. Then, for each subset B of Y , α[γ,γ′ ]-Int(α[γ,γ′ ]-Cl(f
−1(B))) ⊆ f−1(α[β,β′ ]-

Cl(B)).

Proof. The proof is obvious. �

Theorem 4.3. Let f : (X, τ)→ (Y, σ) a bijective function. Then, f is (α[γ,γ′ ], α[β,β′ ])-

semicontinuous if and only if α[β,β′ ]-Int(f(A)) ⊆ f(α[γ,γ′ ]-sInt(A)) for each subset

A of X.

Proof. Let A be any subset of X. Then, by Theorem 4.1, f−1(α[β,β′ ]-Int(f(A))) ⊆
α[γ,γ′ ]-sInt(f

−1(f(A))). Since f is a bijective function, then α[β,β′ ]-Int(f(A)) =

f(f−1(α[β,β′ ]-Int(f(A)))) ⊆ f(α[γ,γ′ ]-sInt(A)).

Conversely, let B be any subset of Y . Then, α[β,β′ ]-Int(f(f−1(B))) ⊆ f(α[γ,γ′ ]-

sInt(f−1(B))). Since f is a bijection, so, α[β,β′ ]-Int(B) = α[β,β′ ]-Int(f(f−1(B))) ⊆
f(α[γ,γ′ ]-sInt(f

−1(B))). Hence, f−1(α[β,β′ ]-Int(B)) ⊆ α[γ,γ′ ]-sInt(f
−1(B)). There-

fore, by Theorem 4.1, f is (α[γ,γ′ ], α[β,β′ ])-semicontinuous. �

Proposition 4.1. A function f : (X, τ)→ (Y, σ) is (α[γ,γ′ ], α[β,β′ ])-semicontinuous

if and only if α[γ,γ′ ]-sBd(f−1(B)) ⊆ f−1(α[β,β′ ]-Cl(B) \ α[β,β′ ]-Int(B)), for each

subset B in Y .

Proof. Let B be any subset of Y . By Theorem 4.1 (2) and (5), we have f−1(α[β,β′ ]-

Cl(B)\α[β,β′ ]-Int(B)) = f−1(α[β,β′ ]-Cl(B))\f−1(α[β,β′ ]-Int(B)) ⊇ α[γ,γ′ ]-sCl(f
−1(B))\

f−1(α[β,β′ ]-Int(B)) = α[γ,γ′ ]-sCl(f
−1(B))\α[γ,γ′ ]-sInt(f

−1(α[β,β′ ]-Int(B))) ⊇ α[γ,γ′ ]-

sCl(f−1(B)) \ α[γ,γ′ ]-sInt(f
−1(B)) = α[γ,γ′ ]-sBd(f−1(B)), and hence f−1(α[β,β′ ]-

Cl(B) \ α[β,β′ ]-Int(B)) ⊇ α[γ,γ′ ]-sBd(f−1(B)).
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Conversely, let V be α[β,β′ ]-open in Y and F = Y \V . Then by (2), we obtain α[γ,γ′ ]-

sBd(f−1(F )) ⊆ f−1(α[β,β′ ]-Cl(F )\α[β,β′ ]-Int(F )) ⊆ f−1(α[β,β′ ]-Cl(F )) = f−1(F )

and hence by Theorem 3.12 (1), α[γ,γ′ ]-sCl(f
−1(F )) = α[γ,γ′ ]-sInt(f

−1(F )) ∪
α[γ,γ′ ]-sBd(f−1(F )) ⊆ f−1(F ). Thus, f−1(F ) is α[γ,γ′ ]-semiclosed and hence

f−1(V ) is α[γ,γ′ ]-semiopen inX. Therefore, by Theorem 4.1 (2), f is (α[γ,γ′ ], α[β,β′ ])-
semicontinuous. �

Proposition 4.2. A function f : (X, τ)→ (Y, σ) is (α[γ,γ′ ], α[β,β′ ])-semicontinuous

if and only if f(α[γ,γ′ ]-sD(A)) ⊆ α[β,β′ ]-Cl(f(A)), for any subset A of X.

Proof. Let A be any subset of X. By Theorem 4.1 (4), and by the fact that α[γ,γ′ ]-

sCl(A) = A∪α[γ,γ′ ]-sD(A), we get f(α[γ,γ′ ]-sD(A)) ⊆ f(α[γ,γ′ ]-sCl(A)) ⊆ α[β,β′ ]-

Cl(f(A)).

Conversely, let F be any α[β,β′ ]-closed set in Y . By (2), we obtain f(α[γ,γ′ ]-

sD(f−1(F ))) ⊆ α[β,β′ ]-Cl(f(f−1(F ))) ⊆ α[β,β′ ]-Cl(F ) = F . This implies α[γ,γ′ ]-

sD(f−1(F )) ⊆ f−1(F ). Hence, by Theorem 3.13 (7), f−1(F ) is α[γ,γ′ ]-semiclosed

in X. Therefore, by Theorem 4.1 (3), f is (α[γ,γ′ ], α[β,β′ ])-semicontinuous. �

Definition 4.2. A function f : (X, τ) → (Y, σ) is said to be (α[γ,γ′ ], α[β,β′ ])-

semiopen if and only if for each α[γ,γ′ ]-open set U in X, f(U) is α[β,β′ ]-semiopen
set in Y .

Theorem 4.4. A function f : (X, τ) → (Y, σ) is (α[γ,γ′ ], α[β,β′ ])-semiopen if and

only if for every subset E ⊆ X, we have f(α[γ,γ′ ]-Int(E)) ⊆ α[β,β′ ]-Cl(α[β,β′ ]-

Int(f(E))).

Proof. Let f be (α[γ,γ′ ], α[β,β′ ])-semiopen. Since f(α[γ,γ′ ]-Int(E)) ⊆ f(E), and

f(α[γ,γ′ ]-Int(E)) is α[β,β′ ]-semiopen. Then, f(α[γ,γ′ ]-Int(E)) ⊆ α[β,β′ ]-Cl(α[β,β′ ]-

Int(f(α[γ,γ′ ]-Int(E)))) ⊆ α[β,β′ ]-Cl(α[β,β′ ]-Int(f(E))).

Conversely, let G be any α[γ,γ′ ]-open set in X. Then, α[β,β′ ]-Int(f(G)) ⊆ f(G) ⊆
f(α[γ,γ′ ]-Int(G)) ⊆ α[β,β′ ]-Cl(α[β,β′ ]-Int(f(G))). Therefore, f(G) is α[β,β′ ]-semiopen

and consequently f is (α[γ,γ′ ], α[β,β′ ])-semiopen. �

Theorem 4.5. Let f : (X, τ) → (Y, σ) be an (α[γ,γ′ ], α[β,β′ ])-semiopen function,

then for every subset G of Y , α[γ,γ′ ]-Int(f
−1(G)) ⊆ α[γ,γ′ ]-Cl(f

−1(α[β,β′ ]-Cl(G))).

Proof. Let f be (α[γ,γ′ ], α[β,β′ ])-semiopen. By Theorem 4.4, we have f(α[γ,γ′ ]-

Int(f−1(G))) ⊆ α[β,β′ ]-Cl(α[β,β′ ]-Int(f(f−1(G)))) ⊆ α[β,β′ ]-Cl(α[β,β′ ]-Int(G)) ⊆
α[β,β′ ]-Cl(G) implies that α[γ,γ′ ]-Int(f

−1(G)) ⊆ f−1(α[β,β′ ]-Cl(G)) ⊆ α[γ,γ′ ]-Cl(f
−1(α[β,β′ ]-

Cl(G))). �

Theorem 4.6. A function f : (X, τ) → (Y, σ) is (α[γ,γ′ ], α[β,β′ ])-semiopen if and

only if for every x ∈ X and for every α[γ,γ′ ]-neighborhood U of x, there exists an

α[β,β′ ]-semineighborhood V of f(x) such that V ⊆ f(U).

Proof. Let U be an α[γ,γ′ ]-neighborhood of x ∈ X. Then, there exists an α[γ,γ′ ]-

open set O such that x ∈ O ⊆ U . By hypothesis, f(O) is α[β,β′ ]-semineighborhood

in Y such that f(x) ∈ f(O) ⊆ f(U).
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Conversely, let U be any α[γ,γ′ ]-open set in X. For each y ∈ f(U), by hypothesis

there exists an α[β,β′ ]-semineighborhood Vy of y in Y such that Vy ⊆ f(U). Since

Vy is α[β,β′ ]-semineighbourhood of y, there exists an α[β,β′ ]-semiopen set Ay in Y

such that y ∈ Ay ⊆ Vy. Therefore, f(U) = ∪{Ay : y ∈ f(U)} is an α[β,β′ ]-semiopen

in Y . This shows that f is an (α[γ,γ′ ], α[β,β′ ])-semiopen function.
�

Theorem 4.7. The following statements are equivalent for a bijective function
f : (X, τ)→ (Y, σ):

(1) f is (α[γ,γ′ ], α[β,β′ ])-semiopen.

(2) f(α[γ,γ′ ]-Int(A)) ⊆ α[β,β′ ]-sInt(f(A)), for every A ⊆ X.

(3) α[γ,γ′ ]-Int(f
−1(B)) ⊆ f−1(α[β,β′ ]-sInt(B)), for every B ⊆ Y .

(4) f−1(α[β,β′ ]-sCl(B)) ⊆ α[γ,γ′ ]-Cl(f
−1(B)), for every B ⊆ Y .

(5) α[β,β′ ]-sCl(f(A)) ⊆ f(α[γ,γ′ ]-Cl(A)), for every A ⊆ X.

(6) α[β,β′ ]-sD(f(A)) ⊆ f(α[γ,γ′ ]-Cl(A)), for every A ⊆ X.

Proof. (1) ⇒ (2): Let A be any subset of X. Since f(α[γ,γ′ ]-Int(A)) is α[β,β′ ]-

semiopen and f(α[γ,γ′ ]-Int(A)) ⊆ f(A), and thus f(α[γ,γ′ ]-Int(A)) ⊆ α[β,β′ ]-

sInt(f(A)).
The proof of the other implications are obvious. �

Theorem 4.8. Let f : (X, τ) → (Y, σ) be (α[γ,γ′ ], α[β,β′ ])-semicontinuous and

(α[γ,γ′ ], α[β,β′ ])-semiopen and let A ∈ αSO(X)[γ,γ′ ]. Then, f(A) ∈ αSO(Y )[β,β′ ].

Proof. Since A is α[γ,γ′ ]-semiopen, then there exists an α[γ,γ′ ]-open set O in X such

that O ⊆ A ⊆ α[γ,γ′ ]-Cl(O). Therefore, f(O) ⊆ f(A) ⊆ f(α[γ,γ′ ]-Cl(O)) ⊆ α[β,β′ ]-

Cl(f(O)). Thus, by Theorem 3.4, f(A) ∈ αSO(Y )[β,β′ ]. �

Theorem 4.9. Let π and π
′
be operations on αO(Z). If f : X → Y is a func-

tion, g : Y → Z is (α[β,β′ ], α[π,π′ ])-semiopen and injective, and gof : X → Z is

(α[γ,γ′ ], α[π,π′ ])-semicontinuous. Then, f is (α[γ,γ′ ], α[β,β′ ])-semicontinuous.

Proof. Let V be an α[β,β′ ]-open subset of Y . Since g is (α[β,β′ ], α[π,π′ ])-semiopen,

g(V ) is α[π,π′ ]-semiopen subset of Z. Since gof is (α[γ,γ′ ], α[π,π′ ])-semicontinuous

and g is injective, then f−1(V ) = f−1(g−1(g(V ))) = (gof)−1(g(V )) is α[γ,γ′ ]-

semiopen in X, which proves that f is (α[γ,γ′ ], α[β,β′ ])-semicontinuous. �

Definition 4.3. A function f : (X, τ) → (Y, σ) is said to be (α[γ,γ′ ], α[β,β′ ])-

irresolute if the inverse image of every α[β,β′ ]-semiopen set of Y is α[γ,γ′ ]-semiopen
in X.

Proposition 4.3. Every (α[γ,γ′ ], α[β,β′ ])-irresolute function is (α[γ,γ′ ], α[β,β′ ])-semicontinuous.

Proof. Straightforward. �

The converse of the above proposition need not be true in general as it is shown
below.

Example 4.1. Let X = {a, b, c} and τ = σ = {φ, {a}, {b}, {a, b}, X} be a topology

on X. For each A ∈ αO(X), define the operations γ : αO(X, τ) → P (X), γ
′

:
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αO(X, τ)→ P (X), β : αO(X,σ)→ P (X) and β
′

: αO(X,σ)→ P (X), respectively,
by

Aγ = Aγ
′

=

{
A if A = {a, b}
X if A 6= {a, b}

and

Aβ = Aβ
′

=

{
A if A = {b}
X if A 6= {b}.

Define a function f : (X, τ)→ (X,σ) as follows:

f(x) =

 a if x = a
a if x = b
c if x = c.

Then, f is (α[γ,γ′ ], α[β,β′ ])-semicontinuous, but not (α[γ,γ′ ], α[β,β′ ])-irresolute be-

cause {b, c} is an α[β,β′ ]-semiopen set of Y but f−1({b, c}) = {c} is not α[γ,γ′ ]-
semiopen in X.

Theorem 4.10. If f : (X, τ) → (Y, σ) is (α[γ,γ′ ], α[β,β′ ])-semicontinuous and

f−1(α[β,β′ ]-Cl(V )) ⊆ α[γ,γ′ ]-Cl(f
−1(V )) for each subset V ∈ αO(Y )[β,β′ ], then

f is (α[γ,γ′ ], α[β,β′ ])-irresolute.

Proof. LetB be any α[β,β′ ]-semiopen subset of Y . Then, there exists V ∈ αO(Y )[β,β′ ]

such that V ⊆ B ⊆ α[β,β′ ]-Cl(V ). Therefore, we have f−1(V ) ⊆ f−1(B) ⊆
f−1(α[β,β′ ]-Cl(V )) ⊆ α[γ,γ′ ]-Cl(f

−1(V )). Since f is (α[γ,γ′ ], α[β,β′ ])-semicontinuous

and V ∈ αO(Y )[β,β′ ], then f−1(V ) is an α[γ,γ′ ]-semiopen set of X. Hence, by Theo-

rem 3.4, f−1(B) is an α[γ,γ′ ]-semiopen set ofX. This shows that f is (α[γ,γ′ ], α[β,β′ ])-

irresolute. �

Theorem 4.11. A function f : (X, τ)→ (Y, σ) is (α[γ,γ′ ], α[β,β′ ])-irresolute if and

only if for each x ∈ X and each α[β,β′ ]-semiopen set V of Y containing f(x), there

exists an α[γ,γ′ ]-semiopen set U of X containing x such that f(U) ⊆ V .

Proof. Let x ∈ X and V be any α[β,β′ ]-semiopen set of Y containing f(x). Set

U = f−1(V ), then by f is (α[γ,γ′ ], α[β,β′ ])-irresolute, U is an α[γ,γ′ ]-semiopen subset

of X containing x and f(U) ⊆ V .
Conversely, let V be any α[β,β′ ]-semiopen set of Y and x ∈ f−1(V ). By hypoth-

esis, there exists an α[γ,γ′ ]-semiopen set U of X containing x such that f(U) ⊆ V .

Thus, we have x ∈ U ⊆ f−1(f(U)) ⊆ f−1(V ). By Proposition 3.1, f−1(V ) is
α[γ,γ′ ]-semiopen of X. Therefore, f is (α[γ,γ′ ], α[β,β′ ])-irresolute. �

Theorem 4.12. A function f : (X, τ)→ (Y, σ) is (α[γ,γ′ ], α[β,β′ ])-irresolute if and

only if for every α[β,β′ ]-semiclosed subset H of Y , f−1(H) is α[γ,γ′ ]-semiclosed in
X.

Proof. Let f be (α[γ,γ′ ], α[β,β′ ])-irresolute, then for every α[β,β′ ]-semiopen subset

Q of Y , f−1(Q) is α[γ,γ′ ]-semiopen in X. Let H be any α[β,β′ ]-semiclosed subset

of Y , then Y \ H is α[β,β′ ]-semiopen. Thus, f−1(Y \ H) is α[γ,γ′ ]-semiopen, but

f−1(Y \H) = X \ f−1(H) so that f−1(H) is α[γ,γ′ ]-semiclosed.



BIOPERATIONS ON α-SEMIOPEN SETS 207

Conversely, suppose that for all α[β,β′ ]-semiclosed subset H of Y , f−1(H) is

α[γ,γ′ ]-semiclosed in X and let Q be any α[β,β′ ]-semiopen subset of Y , then Y \Q is

α[β,β′ ]-semiclosed. By hypothesis, X \ f−1(Q) = f−1(Y \ Q) is α[γ,γ′ ]-semiclosed.

Thus, f−1(Q) is α[γ,γ′ ]-semiopen. �

Theorem 4.13. Let f : (X, τ) → (Y, σ) be function. Then, the following state-
ments are equivalent:

(1) f is (α[γ,γ′ ], α[β,β′ ])-irresolute.

(2) α[γ,γ′ ]-sCl(f
−1(B)) ⊆ f−1(α[β,β′ ]-sCl(B)), for each subset B of Y .

(3) f(α[γ,γ′ ]-sCl(A)) ⊆ α[β,β′ ]-sCl(f(A)), for each subset A of X.

Proof. (1) ⇒ (2): Let B be any subset of Y . Then, B ⊆ α[β,β′ ]-sCl(B) and

f−1(B) ⊆ f−1(α[β,β′ ]-sCl(B)). Since f is (α[γ,γ′ ], α[β,β′ ])-irresolute, so, f−1(α[β,β′ ]-

sCl(B)) is an α[γ,γ′ ]-semiclosed subset of X. Hence, α[γ,γ′ ]-sCl(f
−1(B)) ⊆ α[γ,γ′ ]-

sCl(f−1(α[β,β′ ]-sCl(B))) = f−1(α[β,β′ ]-sCl(B))

(2) ⇒ (3): Let A be any subset of X. Then, f(A) ⊆ α[β,β′ ]-sCl(f(A)) and

α[γ,γ′ ]-sCl(A) ⊆ α[γ,γ′ ]-sCl(f
−1(f(A))) ⊆ f−1(α[β,β′ ]-sCl(f(A))). This implies

that f(α[γ,γ′ ]-sCl(A)) ⊆ f(f−1(α[β,β′ ]-sCl(f(A)))) ⊆ α[β,β′ ]-sCl(f(A)).

(3)⇒ (1): Let V be an α[β,β′ ]-semiclosed subset of Y . Then, f(α[γ,γ′ ]-sCl(f
−1(V ))) ⊆

α[β,β′ ]-sCl(f(f−1(V ))) ⊆ α[β,β′ ]-sCl(V ) = V . This implies that α[γ,γ′ ]-sCl(f
−1(V )) ⊆

f−1(f(α[γ,γ′ ]-sCl(f
−1(V )))) ⊆ f−1(V ). Thus, f−1(V ) is an α[γ,γ′ ]-semiclosed sub-

set of X and consequently f is an (α[γ,γ′ ], α[β,β′ ])-irresolute function. �

Theorem 4.14. A function f : (X, τ)→ (Y, σ) is (α[γ,γ′ ], α[β,β′ ])-irresolute if and

only if f−1(α[β,β′ ]-sInt(B)) ⊆ α[γ,γ′ ]-sInt(f
−1(B)) for each subset B of Y .

Proof. LetB be any subset of Y . Then, α[β,β′ ]-sInt(B) ⊆ B. Since f is (α[γ,γ′ ], α[β,β′ ])-

irresolute, f−1(α[β,β′ ]-sInt(B)) is an α[γ,γ′ ]-semiopen subset ofX. Hence, f−1(α[β,β′ ]-

sInt(B)) = α[γ,γ′ ]-sInt(f
−1(α[β,β′ ]-sInt(B))) ⊆ α[γ,γ′ ]-sInt(f

−1(B)).

Conversely, let V be an α[β,β′ ]-semiopen subset of Y . Then, f−1(V ) = f−1(α[β,β′ ]-

sInt(V )) ⊆ α[γ,γ′ ]-sInt(f
−1(V )). Therefore, f−1(V ) is an α[γ,γ′ ]-semiopen subset

of X and consequently f is an (α[γ,γ′ ], α[β,β′ ])-irresolute function. �

Proposition 4.4. A function f : (X, τ) → (Y, σ) is (α[γ,γ′ ], α[β,β′ ])-irresolute if

and only if α[γ,γ′ ]-sBd(f−1(B)) ⊆ f−1(α[β,β′ ]-sBd(B)), for each subset B of Y .

Proof. LetB be any subset of Y . Then, α[γ,γ′ ]-sBd(f−1(B)) = α[γ,γ′ ]-sCl(f
−1(B))\

α[γ,γ′ ]-sInt(f
−1(B)) ⊆ f−1(α[β,β′ ]-sCl(B)) \ α[γ,γ′ ]-sInt(f

−1(B)) used Theorem

4.13. Therefore, by Theorem 4.14, we have α[γ,γ′ ]-sBd(f−1(B)) ⊆ f−1(α[β,β′ ]-

sCl(B))\f−1(α[β,β′ ]-sInt(B)) = f−1(α[β,β′ ]-sCl(B))\α[β,β′ ]-sInt(B)) = f−1(α[β,β′ ]-

sBd(B)).
Conversely, let V be α[β,β′ ]-semiopen in Y and F = Y \ V . Then, by hy-

pothesis, we obtain α[γ,γ′ ]-sBd(f−1(F )) ⊆ f−1(α[β,β′ ]-sBd(F )) = f−1(α[β,β′ ]-

sCl(F ) \ α[β,β′ ]-sInt(F )) ⊆ f−1(α[β,β′ ]-sCl(F )) = f−1(F ) and hence by Theo-

rem 3.12 (1), α[γ,γ′ ]-sCl(f
−1(F )) = α[γ,γ′ ]-sInt(f

−1(F )) ∪ α[γ,γ′ ]-sBd(f−1(F )) ⊆
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f−1(F ). Thus, f−1(F ) is α[γ,γ′ ]-semiclosed and hence f−1(V ) is α[γ,γ′ ]-semiopen

in X. Therefore, f is (α[γ,γ′ ], α[β,β′ ])-irresolute. �

Corollary 4.2. Let f : (X, τ)→ (Y, σ) be a function. If f is (α[γ,γ′ ], α[β,β′ ])-closed

and (α[γ,γ′ ], α[β,β′ ])-irresolute, then f(α[γ,γ′ ]-sCl(A)) = α[β,β′ ]-sCl(f(A)) for every

subset A of X.

Proof. Since for any subset A of X, A ⊆ α[γ,γ′ ]-sCl(A). Therefore, f(A) ⊆
f(α[γ,γ′ ]-sCl(A)). Since f is (α[γ,γ′ ], α[β,β′ ])-closed, then α[β,β′ ]-sCl(f(A)) ⊆ α[β,β′ ]-

sCl(f(α[γ,γ′ ]-sCl(A))) = f(α[γ,γ′ ]-sCl(A)). Hence, f(α[γ,γ′ ]-sCl(A)) ⊇ α[β,β′ ]-

sCl(f(A)) and by Theorem 4.13, we have f(α[γ,γ′ ]-sCl(A)) = α[β,β′ ]-sCl(f(A)).
�

Corollary 4.3. Let f : (X, τ) → (Y, σ) be a bijective function. Then, f is
(α[γ,γ′ ], α[β,β′ ])-semiopen and (α[γ,γ′ ], α[β,β′ ])-irresolute if f−1(α[β,β′ ]-sCl(V )) =

α[γ,γ′ ]-sCl(f
−1(V )) for every subset V of Y .

Proof. The proof is follows from Remark 3.2, Theorems 4.7 and 4.13. �

Theorem 4.15. If f : X → Y is (α[γ,γ′ ], α[β,β′ ])-irresolute and g : Y → Z is

(α[β,β′ ], α[δ,δ′ ])-irresolute, then g(f) : X → Z is (α[γ,γ′ ], α[δ,δ′ ])-irresolute.

Proof. IfA ⊆ Z is α[δ,δ′ ]-semiopen, then g−1(A) is α[β,β′ ]-semiopen and f−1(g−1(A))

is α[γ,γ′ ]-semiopen. Thus, (g(f))−1(A) = f−1(g−1(A)) is α[γ,γ′ ]-semiopen and

hence g(f) is (α[γ,γ′ ], α[δ,δ′ ])-irresolute. �
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COVARIENT DERIVATIVES OF ALMOST CONTACT

STRUCTURE AND ALMOST PARACONTACT STRUCTURE

WITH RESPECT TO XC AND XV ON TANGENT BUNDLE T (M)

HAŞIM ÇAYIR

Abstract. The differential geometry of tangent bundles was studied by sev-
eral authors, for example: D. E. Blair [1], V. Oproiu [4], A. Salimov [5], Yano

and Ishihara [8] and among others. It is well known that differant structures
deffined on a manifold M can be lifted to the same type of structures on its

tangent bundle. Several authors cited here in obtained result in this direction.

Our goal is to study covarient derivatives of almost contact structure and al-
most paracontact structure with respect to XC and XV on tangent bundle

T (M). In addition, this covarient derivatives which obtained shall be studied

for some special values in almost contact structure and almost paracontact
structure.

1. Introduction

Let M be an n−dimensional differentiable manifold of class C∞ and let Tp(M)
be the tangent space of M at a point p of M . Then the set [8]

(1.1) T (M) = ∪
p∈M

Tp(M)

is called the tangent bundle over the manifold M. For any point p̃ of T (M), the
correspondence p̃ → p determines the bundle projection π : T (M) → M , Thus
π(p̃) = p, where π : T (M) → M defines the bundle projection of T (M) over M.
The set π−1(p) is called the fibre over p ∈M and M the base space.

Suppose that the base space M is covered by a system of coordinate neighbour-
hoods

{
U ;xh

}
, where (xh) is a system of local coordinates defined in the neighbour-

hood U of M. The open set π−1(U) ⊂ T (M) is naturally differentiably homeomor-
phic to the direct product U ×Rn, Rn being the n−dimensional vector space over
the real field R, in such a way that a point p̃ ∈ Tp(M)(p ∈ U) is represented by an
ordered pair (P,X) of the point p ∈ U , and a vector X ∈ Rn ,whose components are
given by the cartesian coordinates (yh) of p̃ in the tangent space Tp(M) with respect

2000 Mathematics Subject Classification. 53C05; 53C15.
Key words and phrases. Covarient Derivative,Almost Contact Structure,Almost Paracontact

Structure.
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to the natural base {∂h}, where ∂h = ∂
∂xh . Denoting by (xh) the coordinates of

p = π(p̃) in U and establishing the correspondence (xh, yh)→ p̃ ∈ π−1(U), we can
introduce a system of local coordinates (xh, yh) in the open set π−1(U) ⊂ T (M).
Here we cal (xh, yh) the coordinates in π−1(U) induced from (xh) or simply, the
induced coordinates in π−1(U).

We denote by =r
s(M) the set of all tensor fields of class C∞and of type (r, s) in

M . We now put =(M) =
∞∑

r,s=0
=r

s(M), which is the set of all tensor fields in M .

Similarly, we denote by =r
s(T (M)) and =(T (M)) respectively the corresponding

sets of tensor fields in the tangent bundle T (M).

1.1. Vertical lifts. If f is a function in M , we write fv for the function in T (M)
obtained by forming the composition of π : T (M)→M and f : M → R, so that

(1.2) fv = foπ

Thus, if a point p̃ ∈ π−1(U) has induced coordinates (xh, yh), then

(1.3) fv(p̃) = fv(x, y) = foπ(p̃) = f(p) = f(x).

Thus the value of fv(p̃) is constant along each fibre Tp(M) and equal to the value
f(p). We call fv the vertical lift of the function f [8].

Let X̃ ∈ =1
0(T (M)) be such that X̃fv = 0 for all f ∈ =0

0(M). Then we say

that X̃ is a vertical vector field. Let
(
X̃h

X̃h̄

)
be components of X̃ with respect to the

induced coordinates. Then X̃ is vertical if and only if its components in π−1(U)
satisfy

(1.4)

(
X̃h

X̃ h̄

)
=

(
0

X h̄

)
.

Suppose that X ∈ =1
0(M), so that is a vector field in M . We define a vector field

Xv in T (M) by

(1.5) Xv(ι ω) = (ωX)v

ω being an arbitrary 1−form in M. We cal Xv the vertical lift of X [8].
Let ω̃ ∈ =0

1(T (M)) be such that ω̃(X)v = 0 for all X ∈ =1
0(M). Then we say

that ω̃ is a vertical 1−form in T (M). We define the vertical lift ωv of the 1−form
ω by

(1.6) ωv = (ωi)
v(dxi)v

in each open set π−1(U), where (U ;xh) is coordinate neighbourhood in M and ω is
given by ω = ωidx

i in U . The vertical lift ωv of ω with lokal expression ω = ωidx
i

has components of the form

(1.7) ωv : (ωi, 0)

with respect to the induced coordinates in T (M).
Vertical lifts to a unique algebraic isomorphism of the tensor algebra =(M) into

the tensor algebra =(T (M)) with respect to constant coefficients by the conditions

(1.8) (P ⊗Q)V = PV ⊗QV , (P +R)V = PV +RV
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P,Q and R being arbitrary elements of T (M). The vertical lifts FV of an element
F ∈ =1

1(M) with lokal components Fh
i has components of the form [8]

(1.9) FV :

(
0 0
Fh
i 0

)
.

Vertical lift has the following formulas [3, 8]:

(fX)
v

= fvXv, IvXv = 0, ηv (Xv) = 0(1.10)

(fη)
v

= fvηv, [Xv, Y v] = 0, ϕvXv = 0

Xvfv = 0, Xvfv = 0

hold good, where f ∈ =0
0(Mn), X, Y ∈ =1

0(Mn), η ∈ =0
1(Mn), ϕ ∈ =1

1(Mn), I =
idMn

.

1.2. Complete lifts. If f is a function in M , we write f c for the function in T (M)
defined by

f c = ι(df)

and call f c the comple lift of the function f . The complete lift f c of a function f
has the lokal expression

(1.11) f c = yi∂if = ∂f

with respect to the induced coordinates in T (M), where ∂f denotes yi∂if.
Suppose that X ∈ =1

0(M). Then we define a vector field Xc in T (M) by

(1.12) Xcf c = (Xf)c,

f being an arbitrary function in M and call Xc the complete lift of X in T (M)
[2, 8]. The complete lift Xc of X with components xh in M has components

(1.13) Xc =

(
Xh

∂Xh

)
with respect to the induced coordinates in T (M).

Suppose that ω ∈ =0
1(M), then a 1−form ωc in T (M) defined by

(1.14) ωc(Xc) = (ωX)c

X being an arbitrary vector field in M . We call ωc the complete lift of ω. The
complete lift ωc of ω with components ωi in M has components of the form

(1.15) ωc : (∂ωi,ωi)

with respect to the induced coordinates in T (M) [2].
The complete lifts to a unique algebra isomorphism of the tensor algebra =(M)

into the tensor algebra =(T (M)) with respect to constant coefficients, is given by
the conditions

(1.16) (P ⊗Q)C = PC ⊗QV + PV ⊗QC , (P +R)C = PC +RC ,

where P,Q and R being arbitrary elements of T (M). The complete lifts FC of an
element F ∈ =1

1(M) with lokal components Fh
i has components of the form

(1.17) FC :

(
Fh
i 0

∂Fh
i Fh

i

)
.

In addition, we know that the complete lifts are defined by [3, 8]:
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(fX)
c

= f cXv + fvXc = (Xf)c,(1.18)

Xcfv = (Xf)
v
, ηv (xc) = (η (x))

v
,

Xvf c = (Xf)
v
, ϕvXc = (ϕX)

v
,

ϕcXv = (ϕX)
v
, (ϕX)

c
= ϕcXc,

ηv (Xc) = (η (X))
c
, ηc (Xv) = (η (X))

v
,

[Xv, Y c] = [X,Y ]
v
, Ic = I, IvXc = Xv, [Xc, Y c] = [X,Y ]

c
.

Let Mn be an n−dimensional diferentiable manifold. Differantial transformation
of algebra T (Mn), defined by

D = ∇X : T (Mn)→ T (Mn), X ∈ =1
0(Mn),

is called as covariant derivation with respect to vector field X if

∇fX+gY t = f∇Xt+ g∇Y t,

∇Xf = Xf,

where ∀f, g ∈ =0
0(Mn),∀X,Y ∈ =1

0(Mn),∀t ∈ =(Mn).
On the other hand, a transformation defined by

∇ : =1
0(Mn)×=1

0(Mn)→ =1
0(Mn),

is called as affin connection [5, 8].
We now assume that Mn is a manifold with an affine connection ∇. Then there

exist a unique affine connection ∇c in =(Mn) which satisfies

(1.19) ∇c
XcY c = (∇XY )c

for any X,Y ∈ =1
0(Mn). This affine connection is called the complete lift of the

affine connection ∇ to T (Mn) and denoted by ∇c [8].

Proposition 1.1. For any X ∈ =1
0(Mn), f ∈ =0

0(Mn) and ∇c is the complete lift
of the affine connection ∇ to T (Mn) [8]

i) ∇c
Xvfv = 0,

ii) ∇c
Xvf c = (∇Xf)v,

iii) ∇c
Xcfv = (∇Xf)v,

ıv) ∇c
Xcf c = (∇Xf)c.

Proposition 1.2. For any X,Y ∈ =1
0(Mn) and ∇c is the complete lift of the affine

connection ∇ to T (Mn) [8]

i) ∇c
XvY v = 0,

ii) ∇c
XvY c = (∇XY )v,

iii) ∇c
XcY v = (∇XY )v,

ıv) ∇c
XcY c = (∇XY )c.

2. Main Results

Let an n−dimensional differentiable manifold Mn be endowed with a tensor
field ϕ of type (1, 1), a vector field ξ, a 1−form η, I the identity and let them
satisfy

(2.1) ϕ2 = −I + η ⊗ ξ, ϕ(ξ) = 0, ηoϕ = 0, η(ξ) = 1.
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Then (ϕ, ξ, η) define almost contact structure on Mn [3, 6, 8]. From (2.1), we get
on taking complete and vertical lifts

(ϕc)2 = −I + ηv ⊗ ξc + ηc ⊗ ξv,(2.2)

ϕcξv = 0, ϕcξc = 0, ηvoϕc = 0,

ηcoϕc = 0, ηv(ξv) = 0, ηv(ξc) = 1,

ηc(ξv) = 1, ηc(ξc) = 0.

We now define a (1, 1) tensor field J on T (Mn) by

(2.3) J = ϕc − ξv ⊗ ηv + ξc ⊗ ηc.
Then it is easy to show that J2Xv = −Xv and J2Xc = −Xc, which give that J is
an almost contact structure on T (Mn). We get from (2.3)

JXv = (ϕX)v + (η(X))vξc,

JXc = (ϕX)c − (η(X))vξv + (η(X))cξc

for any X ∈ =1
0(Mn) [3].

Theorem 2.1. For ∇X the operator covarient derivation with respect to X, J ∈
=1

1(T (Mn)) defined by (2.3) and η(Y ) = 0, we have

i) (∇c
XvJ)Y v = 0,

ii) (∇c
XvJ)Y c = ((∇Xϕ)Y )v + ((∇Xη)Y )vξc,

iii) (∇c
XcJ)Y v = ((∇Xϕ)Y )v + ((∇Xη)Y )vξc,

ıv) (∇c
XcJ)Y c = ((∇Xϕ)Y )c − ((∇Xη)Y )vξv + ((∇Xη)Y )cξc,

where X,Y ∈ =1
0(Mn), a tensor field ϕ ∈ =1

1(Mn), a vector field ξ and a 1−form
η ∈ =0

1(Mn).

Proof. For J = ϕc − ξv ⊗ ηv + ξc ⊗ ηc and η(Y ) = 0, we get

i) (∇c
XvJ)Y v = ∇c

Xv (ϕc − ξv ⊗ ηv + ξc ⊗ ηc)Y v − (ϕc − ξv ⊗ ηv + ξc ⊗ ηc)∇c
XvY v

= ∇c
Xv (ϕY )v −∇c

Xv (ηv(Y )v)ξv +∇c
Xv (η(Y ))vξc

= 0,

ii) (∇c
XvJ)Y c = ∇c

Xv (ϕc − ξv ⊗ ηv + ξc ⊗ ηc)Y c − (ϕc − ξv ⊗ ηv + ξc ⊗ ηc)∇c
XvY c

= ∇c
XvϕcY c −∇c

Xv (ηY )vξv +∇c
Xv (η(Y ))cξc − ϕc∇c

XvY c

+ηv(∇XY )vξv − (η(∇XY ))vξc

= (∇c
Xvϕc)Y c + ϕc(∇c

XvY c)− ϕc∇c
XvY c − (∇X(η(Y )))vξc

+((∇Xη)Y )vξc

= (∇Xϕ)Y )v + ((∇Xη)Y )vξc,

iii) (∇c
XcJ)Y v = ∇c

Xc(ϕc − ξv ⊗ ηv + ξc ⊗ ηc)Y v − (ϕc − ξv ⊗ ηv + ξc ⊗ ηc)∇c
XcY v

= ∇c
XcϕcY v −∇c

Xc(ηv(Y )v)ξv +∇c
Xc(η(Y ))vξc − ϕc∇c

XcY v

+ηv(∇XY )vξv − (η(∇XY ))vξc

= (∇c
Xcϕc)Y v + ϕc(∇c

XcY v)− ϕc∇c
XcY v − (∇X(η(Y )))vξc

+(∇Xη)Y )vξc

= (∇Xϕ)Y )v + ((∇Xη)Y )vξc,
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ıv) (∇c
XcJ)Y c = ∇c

Xc(ϕc − ξv ⊗ ηv + ξc ⊗ ηc)Y c − (ϕc − ξv ⊗ ηv + ξc ⊗ ηc)∇c
XcY c

= ∇c
XcϕcY c −∇c

Xc((ηY )v)ξv +∇c
Xc(η(Y ))cξc − ϕc∇c

XcY c

+(η(∇XY ))vξv − (η(∇XY ))cξc

= (∇c
Xcϕc)Y c + ϕc(∇c

XcY c)− ϕc∇c
XcY c + (∇X(η(Y )))vξv

−((∇Xη)Y )vξv − (∇X(η(Y )))cξc + ((∇Xη)Y )cξc

= (∇Xϕ)Y )c − ((∇Xη)Y )vξv + ((∇Xη)Y )cξc.

�

Corollary 2.1. If we put Y = ξ, i.e. η(ξ) = 1 and ξ has the conditions of (2.1),
then we get different results

i) (∇c
XvJ)ξv = (∇Xξ)

v,

ii) (∇c
XvJ)ξc = ((∇Xϕ)ξ)v + (((∇Xη))ξ)vξc,

iii) (∇c
XcJ)ξv = ((∇Xϕ)ξ)v + (∇Xξ)

c + ((∇Xη)ξ)vξc,

ıv) (∇c
XcJ)ξc = (∇Xϕ)ξ)c − (∇Xξ)

v − ((∇Xη)ξ)vξv + ((∇Xη)ξ)cξc.

Let an n−dimensional differentiable manifold Mn be endowed with a tensor
field ϕ of type (1, 1), a vector field ξ, a 1−form η, I the identity and let them
satisfy

(2.4) ϕ2 = I − η ⊗ ξ, ϕ(ξ) = 0, ηoϕ = 0, η(ξ) = 1.

Then (ϕ, ξ, η) define almost paracontact structure on Mn [3, 6]. From (2.4), we get
on taking complete and vertical lifts

(ϕc)2 = I − ηv ⊗ ξc − ηc ⊗ ξv,(2.5)

ϕcξv = 0, ϕcξc = 0, ηvoϕc = 0,

ηcoϕc = 0, ηv(ξv) = 0, ηv(ξc) = 1,

ηc(ξv) = 1, ηc(ξc) = 0.

We now define a (1, 1) tensor field J̃ on T (Mn) by

(2.6) J̃ = ϕc − ξv ⊗ ηv − ξc ⊗ ηc.

Then it is easy to show that J̃2Xv = Xv and J̃2Xc = Xc, which give that J̃ is an
almost product structure on T (Mn). We get from (2.6)

J̃Xv = (ϕX)v − (η(X))vξc,

J̃Xc = (ϕX)v − (η(X))vξv − (η(X))cξc

for any X ∈ =1
0(Mn).

Theorem 2.2. For ∇X the operator covarient derivation with respect to X, J̃ ∈
=1

1(T (Mn)) defined by (2.6) and η(Y ) = 0, we have

i) (∇c
Xv J̃)Y v = 0,

ii) (∇c
Xv J̃)Y c = ((∇Xϕ)Y )v − ((∇Xη)Y )vξc,

iii) (∇c
Xc J̃)Y v = ((∇Xϕ)Y )v − ((∇Xη)Y )vξc,

ıv) (∇c
Xc J̃)Y c = ((∇Xϕ)Y )c − ((∇Xη)Y )vξv − ((∇Xη)Y )cξc,

where X,Y ∈ =1
0(Mn), a tensor field ϕ ∈ =1

1(Mn), a vector field ξ ∈ =1
0(Mn)

and a 1−form η ∈ =0
1(Mn).
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Proof. For J̃ = ϕc − ξv ⊗ ηv − ξc ⊗ ηc and η(Y ) = 0, we get

i) (∇c
Xv J̃)Y v = ∇c

Xv (ϕc − ξv ⊗ ηv − ξc ⊗ ηc)Y v − (ϕc − ξv ⊗ ηv − ξc ⊗ ηc)∇c
XvY v

= ∇c
Xv (ϕY )v −∇c

Xv (ηv(Y )v)ξv −∇c
Xv (η(Y ))vξc

= 0,

ii) (∇c
Xv J̃)Y c = ∇c

Xv (ϕc − ξv ⊗ ηv − ξc ⊗ ηc)Y c − (ϕc − ξv ⊗ ηv − ξc ⊗ ηc)∇c
XvY c

= ∇c
XvϕcY c −∇c

Xv (ηY )vξv −∇c
Xv (η(Y ))cξc − ϕc∇c

XvY c

+ηv(∇XY )vξv + (η(∇XY ))vξc

= (∇c
Xvϕc)Y c + ϕc(∇c

XvY c)− ϕc∇c
XvY c + (∇X(η(Y )))vξc

−((∇Xη)Y )vξc

= (∇Xϕ)Y )v − ((∇Xη)Y )vξc,

iii) (∇c
Xc J̃)Y v = ∇c

Xc(ϕc − ξv ⊗ ηv − ξc ⊗ ηc)Y v − (ϕc − ξv ⊗ ηv − ξc ⊗ ηc)∇c
XcY v

= ∇c
XcϕcY v −∇c

Xc(ηv(Y )v)ξv −∇c
Xc(η(Y ))vξc − ϕc∇c

XcY v

+ηv(∇XY )vξv + (η(∇XY ))vξc

= (∇c
Xcϕc)Y v + ϕc(∇c

XcY v)− ϕc∇c
XcY v + (∇X(η(Y )))vξc

−(∇Xη)Y )vξc

= (∇Xϕ)Y )v − ((∇Xη)Y )vξc,

ıv) (∇c
Xc J̃)Y c = ∇c

Xc(ϕc − ξv ⊗ ηv − ξc ⊗ ηc)Y c − (ϕc − ξv ⊗ ηv − ξc ⊗ ηc)∇c
XcY c

= ∇c
XcϕcY c −∇c

Xc((ηY )v)ξv −∇c
Xc(η(Y ))cξc − ϕc∇c

XcY c

+(η(∇XY ))vξv + (η(∇XY ))cξc

= (∇c
Xcϕc)Y c + ϕc(∇c

XcY c)− ϕc∇c
XcY c + (∇X(η(Y )))vξv

−((∇Xη)Y )vξv + (∇X(η(Y )))cξc − ((∇Xη)Y )cξc

= (∇Xϕ)Y )c − ((∇Xη)Y )vξv − ((∇Xη)Y )cξc.

�

Corollary 2.2. If we put Y = ξ, i.e. η(ξ) = 1 and ξ has the conditions of (2.4),
then we have

i) (∇c
Xv J̃)ξv = −(∇Xξ)

v,

ii) (∇c
Xv J̃)ξc = ((∇Xϕ)ξ)v − (((∇Xη))ξ)vξc,

iii) (∇c
Xc J̃)ξv = ((∇Xϕ)ξ)v − (∇Xξ)

c − ((∇Xη)ξ)vξc,

ıv) (∇c
Xc J̃)ξc = (∇Xϕ)ξ)c − (∇Xξ)

v − ((∇Xη)ξ)vξv − ((∇Xη)ξ)cξc.
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GRONWALL TYPE INEQUALITIES FOR CONFORMABLE

FRACTIONAL INTEGRALS

MEHMET ZEKI SARIKAYA

Abstract. In this paper, some new generalized Gronwall-type inequalities are

investigated for conformable differential equations. The established results are

extensions of some existing Gronwall-type inequalities in the literature.

1. Introduction

Fractional Calculus is a generalization of ordinary differentiation and integration
to arbitrary (non-integer) order. The subject is as old as the calculus of differenti-
ation and goes back to times when Leibniz, Gauss, and Newton invented this kind
of calculation. During three centuries, the theory of fractional calculus developed
as a pure theoretical field, useful only for mathematicians, we refer to [10], see also
[11]. Recently a new local, limit-based definition of a conformable derivative has
been formulated [1], [4], [8], with several follow-up papers [2], [3], [5]-[9]. In this
paper, we use the Katugampola derivative formulation of conformable derivative of
order for α ∈ (0, 1]and t ∈ [0,∞) given by

(1.1) Dα (f) (t) = lim
ε→0

f
(
teεt

−α
)
− f (t)

ε
, Dα (f) (0) = lim

t→0
Dα (f) (t) ,

provided the limits exist (for detail see, [8]). If f is fully differentiable at t, then

(1.2) Dα (f) (t) = t1−α
df

dt
(t) .

A function f is α−differentiable at a point t ≥ 0 if the limit in (1.1) exists and is
finite. This definition yields the following results;

Theorem 1.1. Let α ∈ (0, 1] and f, g be α−differentiable at a point t > 0. Then
i. Dα (af + bg) = aDα (f) + bDα (g) , for all a, b ∈ R,
ii. Dα (λ) = 0, for all constant functions f (t) = λ,
iii. Dα (fg) = fDα (g) + gDα (f) ,

Key words and phrases. Gronwall’s inequality, confromable fractional integrals.
2010 Mathematics Subject Classification 26D15, 26A51, 26A33, 26A42.
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iv. Dα

(
f

g

)
=
fDα (g)− gDα (f)

g2

v. Dα (tn) = ntn−α for all n ∈ R
vi. Dα (f ◦ g) (t) = f ′ (g (t))Dα (g) (t) for f is differentiable at g(t).

Definition 1.1 (Conformable fractional integral). Let α ∈ (0, 1] and 0 ≤ a < b. A
function f : [a, b]→ R is α-fractional integrable on [a, b] if the integral∫ b

a

f (x) dαx :=

∫ b

a

f (x)xα−1dx

exists and is finite. All α-fractional integrable on [a, b] is indicated by L1
α ([a, b])

Remark 1.1.

Iaα (f) (t) = Ia1
(
tα−1f

)
=

∫ t

a

f (x)

x1−α
dx,

where the integral is the usual Riemann improper integral, and α ∈ (0, 1].

We will also use the following important results, which can be derived from the
results above.

Lemma 1.1. Let the conformable differential operator Dα be given as in (1.1),
where α ∈ (0, 1] and t ≥ 0, and assume the functions f and g are α-differentiable
as needed. Then

i. Dα (ln t) = t−α for t > 0

ii. Dα
[∫ t
a
f (t, s) dαs

]
= f(t, t) +

∫ t
a
Dα [f (t, s)] dαs

iii.
∫ b
a
f (x)Dα (g) (x) dαx = fg|ba −

∫ b
a
g (x)Dα (f) (x) dαx.

In this paper, some new generalized Gronwall-type inequalities are investigated
for conformable differential equations. The established results are extensions of
some existing Gronwall-type inequalities in the literature.

2. Main Results

Troughout this paper, all the functions which appear in the inequalities are
assumed to be real-valued and all the integrals involved exist on the respective
domains of their definitions, and C (M,S) and C1 (M,S)denote the class of all
continuous functions and the first order conformable derivative, respectively, defined
on set M with range in the set S.

Firstly, we start with the following definition, which is a generalization of the
limit definition of the derivative for the case of a function with many variables.

Definition 2.1. Let f be a function with n variables t1, ..., tn and the conformable
partial derivative of f of order α ∈ (0, 1] in xi is defined as follows

(2.1)
∂α

∂tαi
f(t1, ..., tn) = lim

ε→0

f(t1, ..., ti−1, tie
εt−αi , ..., tn)− f (t1, ..., tn)

ε
.

The first result is the generalization of Theorem 2.10 of [3].

Theorem 2.1. Assume that f(t, s) is function for which ∂αt
[
∂βs f(t, s)

]
and ∂βs [∂αt f(t, s)]

exist and are continuos over the domain D ⊂ R2, then

(2.2) ∂αt
[
∂βs f(t, s)

]
= ∂βs [∂αt f(t, s)] .
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Proof. By using the (1.1), it follows that

∂αt
[
∂βs f(t, s)

]
= ∂αt

 lim
ε→0

f
(
t, seεs

−β
)
− f (t, s)

ε


= ∂αt

[
lim
ε→0

f
(
t, s+ εs1−β +O(ε2)

)
− f (t, s)

ε

]
.

Making the change of variable k = εs1−β (1 +O(ε)) , we get

∂αt
[
∂βs f(t, s)

]
= ∂αt

[
lim
k→0

f (t, s+ k)− f (t, s)
ksβ−1

1+O(ε)

]
.

Since f is diffentiable in s-direction, we obtain

(2.3) ∂αt [∂αs f(t, s)] = s1−β∂αt

[
∂

∂s
f(t, s)

]
.

Again by definition (1.1), it follows that

∂αt [∂αs f(t, s)] = s1−β lim
ε→0

∂
∂sf

(
teεt

−α
, s
)
− ∂

∂sf(t, s)

ε
.

Similarly, after making the change of variable, we have

∂αt [∂αs f(t, s)] = s1−βt1−α lim
h→0

∂
∂sf (t+ h, s)− ∂

∂sf(t, s)

ε
.

Since f is diffentiable in t-direction, we obtain

(2.4) ∂αt [∂αs f(t, s)] = s1−βt1−α
∂2

∂t∂s
f(t, s).

Since f is continuous, by using the Clairaut’s theorem for partial derivatives, it
follows that

∂2

∂s∂t
f(t, s) =

∂2

∂t∂s
f(t, s).

Therefore the equation (2.4) becomes

∂αt [∂αs f(t, s)] = s1−βt1−α
∂2

∂t∂s
f(t, s) = s1−βt1−α lim

k→0

∂
∂tf (t, s+ k)− ∂

∂tf (t, s)

k
.

Thus, taking k = εs1−β (1 +O(ε)) and laler h = εt1−α (1 +O(ε)) we arrive at

∂αt [∂αs f(t, s)] = ∂αs

[
lim
k→0

∂
∂tf (t, s+ k)− ∂

∂tf (t, s)

k

]
= ∂αs [∂αt f(t, s)]

which completes the proof. �

Theorem 2.2. Let k ∈ C (R+,R+) , y ∈ C (R+ × R+,R+) , r ∈ C1 (R+,R+) with
(t, s)→ ∂αt y(t, s) ∈ C (R+ × R+,R+) . Assume in additional that r is nondecreasing
and r(t) ≤ t for t ≥ 0. If u ∈ C (R+,R+) satisfies

(2.5) u(t) ≤ k(t) +

∫ r(t)

0

y (t, s)u(s)dαs, t ≥ 0,
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then
(2.6)

u(t) ≤ k(t)+e
∫ r(t)
0 y(t,s)dαs

∫ t

0

e−
∫ r(τ)
0 y(τ,s)dαs

∂α

∂τα

(∫ r(τ)

0

y (τ, s) k(s)dαs

)
dατ, t ≥ 0.

Proof. If we set

z(t) =

∫ r(t)

0

y (t, s)u(s)dαs

then our assumptions on y and r imply that z is nondecreasing on R+. Thus, for
t ≥ 0, by using Lemma 1.1 (ii), we get

Dαz(t) = y (t, r(t))u(r(t))Dαr(t) +

∫ r(t)

0

[
∂α

∂tα
y (t, s)

]
u(s)dαs

≤ y (t, r(t)) [k(r(t)) + z(r(t))]Dαr(t) +

∫ r(t)

0

[
∂α

∂tα
y (t, s)

]
[k(s) + z(s)] dαs

≤ y (t, r(t)) [k(r(t)) + z(t)]Dαr(t) +

∫ r(t)

0

[
∂α

∂tα
y (t, s)

]
k(s)dαs+ z(t)

∫ r(t)

0

∂α

∂tα
y (t, s) dαs

or, equivalently

Dαz(t)− z(t) ∂
α

∂tα

(∫ r(t)

0

y (t, s) dαs

)
≤ ∂α

∂tα

(∫ r(t)

0

y (t, s) k(s)dαs

)
.

Multiplying the above inequality by e−
∫ r(t)
0 y(t,s)dαs, we obtain that

∂α

∂tα

(
z(t)e−

∫ r(t)
0 y(t,s)dαs

)
≤ e−

∫ r(t)
0 y(t,s)dαs

∂α

∂tα

(∫ r(t)

0

y (t, s) k(s)dαs

)
.

Integrating this from 0 to t yields

z(t) ≤ e
∫ r(t)
0 y(t,s)dαs

∫ t

0

e−
∫ r(τ)
0 y(τ,s)dαs

∂α

∂τα

(∫ r(τ)

0

y (τ, s) k(s)dαs

)
dατ.

Combine the above inequality with u(t) ≤ k(t) + z(t) this imply (2.4). The proof
is complete. �

Corollary 2.1. Assume y, r are as in Theorem 2.2 and k(t) = k > 0. If u ∈
C (R+,R+) satisfies (2.5), then

u(t) ≤ ke
∫ r(t)
0 y(t,s)dαs, t ≥ 0

Proof. Applying Theorem 2.2 for k(t) = k and , we arrive at

u(t) ≤ k + ke
∫ r(t)
0 y(t,s)dαs

∫ t

0

e−
∫ r(τ)
0 y(τ,s)dαs

∂α

∂τα

(∫ r(τ)

0

y (τ, s) dαs

)
dατ

= k + ke
∫ r(t)
0 y(t,s)dαs

(
1− e−

∫ r(t)
0 y(t,s)dαs

)
= ke

∫ r(t)
0 y(t,s)dαs, t ≥ 0.

�
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Remark 2.1. If we take r(t) = t in Corollary 2.1, then the inequality given by
Corollary 2.1 reduces to Gronwall’s inequality for conformable integrals in [1].

Theorem 2.3. Let k, y, x ∈ C (R+,R+) , r ∈ C1 (R+,R+) and assume that r is
nondecreasing with r(t) ≤ t for t ≥ 0. If u ∈ C (R+,R+) satisfies

(2.7) u(t) ≤ k(t) + y(t)

∫ r(t)

0

x(s)u(s)dαs, t ≥ 0,

then

(2.8) u(t) ≤ k(t) + y(t)

∫ t

0

e
∫ r(t)
r(τ)

x(s)y(s)dαsx (r(τ)) k(r(τ))Dαr(τ)dατ, t ≥ 0.

Proof. If we set

z(t) =

∫ r(t)

0

x(s)u(s)dαs

then, by using conformable rules we see that

Dαz(t) = x (r(t))u(r(t))Dαr(t)

≤ x (r(t)) [k(r(t)) + y (r(t)) z(r(t))]Dαr(t)

≤ x (r(t)) [k(r(t)) + y (r(t)) z(t)]Dαr(t).

Thus, we have

Dαz(t)− x (r(t)) y (r(t)) z(t)Dαr(t) ≤ x (r(t)) k(r(t))Dαr(t).

Multiplying the above inequality by e−
∫ r(t)
0 x(s)y(s)dαs, we obtain that

∂α

∂tα

(
z(t)e−

∫ r(t)
0 x(s)y(s)dαs

)
≤ e−

∫ r(t)
0 x(s)y(s)dαsx (r(t)) k(r(t))Dαr(t).

Integrating this from 0 to t yields

z(t) ≤ e
∫ r(t)
0 x(s)y(s)dαs

∫ t

0

e−
∫ r(τ)
0 x(s)y(s)dαsx (r(τ)) k(r(τ))Dαr(τ)dατ

=

∫ t

0

e
∫ r(t)
r(τ)

x(s)y(s)dαsx (r(τ)) k(r(τ))Dαr(τ)dατ

and hence the claim follows because of u(t) ≤ k(t)+y(t)z(t). The proof is complete.
�

Corollary 2.2. Assume y, x, k are as in Theorem 2.3 and r(t) = t. If u ∈ C (R+,R+)
satisfies (2.7), then

u(t) ≤ k(t) + y(t)

∫ t

0

e
∫ t
τ
x(s)y(s)dαsx (τ) k(τ)dατ, t ≥ 0.

Remark 2.2. If we take y(t) = t in Corollary 2.2, then the inequality given by
Corollary 2.2 reduces to Gronwall’s inequality for conformable integrals in [2].
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AN EXAMINATION ON THE MANNHEIM FRENET RULED

SURFACE BASED ON NORMAL VECTOR FIELDS IN E3

ŞEYDA KILIÇOĞLU

Abstract. In this paper we consider six special Frenet ruled surfaces along to
the Mannheim pairs {α∗, α}. First we define and find the parametric equations

of Frenet ruled surfaces which are called Mannheim Frenet ruled surface,

along Mannheim curve α, in terms of the Frenet apparatus of Mannheim curve
α. Later, we find only one matrix gives us all nine positions of normal vector

fields of these six Frenet ruled surfaces and Mannheim Frenet ruled surface

in terms of Frenet apparatus of Mannheim curve α too. Further using that
matrix we have some results such as; normal ruled surface and Mannheim

normal ruled surface of Mannheim curve α have perpendicular normal vector

fields along the curve ϕ2 (s) = α+ tan θ
k1 tan θ−k2

V2, under the condition tan θ 6=
k2
k1

.

1. Introduction and Preliminaries

Mannheim curve was firstly defined by A. Mannheim in 1878. A curve is called
a Mannheim curve if and only if k1

(k21+k22)
is a non-zero constant, k1 is the curvature

and k2 is the torsion, respectively. Recently, a new definition of the associated
curves was given by Liu and Wang in [7]. According to this new definition, if
the principal normal vector of first curve and binormal vector of second curve
are linearly dependent, then first curve is called Mannheim curve, and the second
curve is called Mannheim partner curve. As a result they called these new curves
as Mannheim partner curves.

The quantities {V1, V2, V3, k1, k2} are collectively Frenet-Serret apparatus of the
curve α : I → E3. The Frenet formulae are also well known as V̇1

V̇2

V̇3

 =

 0 k1 0
−k1 0 k2

0 −k2 0

 V1

V2

V3

 .
Let α : I → E3 be the C2 differentiable unit speed and α∗ : I → E3 be second curve
and let V1 (s) , V2 (s) , V3 (s) and V ∗

1 (s∗) , V ∗
2 (s∗) , V ∗

3 (s∗) be the Frenet frames of

2010 Mathematics Subject Classification. 53A04, 53A05.
Key words and phrases. Mannheim curve, Frenet ruled surface.
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the curves α and α∗, respectively. If the principal normal vector V2 of the curve
α is linearly dependent on the binormal vector V ∗

3 of the curve α∗, then the pair
{α, α∗} is said to be Mannheim pair, then α is called a Mannheim curve and
α∗ is called Mannheim partner curve of α where 〈V1, V

∗
1 〉 = cos θ and besides the

equality k1
k21+k22

= constant; is known the offset property, for some non-zero constant.

Mannheim partner curve of α can be represented α(s∗) = α∗(s∗) +λ(s∗)V ∗
3 (s∗) for

some function λ, since V2 and V3 are linearly dependent, Equation can be rewritten
as [8]

α∗ (s) = α (s)− λV2 (s)

where

λ =
−k1

k2
1 + k2

2

.

Frenet-Serret apparatus of Mannheim partner curve α∗, based in Frenet-Serret
vectors of Mannheim curve α are

V ∗
1 = cosθ V1 − sinθ V3

V ∗
2 = sinθ V1 + cosθ V3

V ∗
3 = V2.

The curvature and the torsion have the following equalities,

k∗1 = − dθ

ds∗
=

θ̇

cos θ
and

k∗2 =
k1

λk2
.

we use dot to denote the derivative with respect to the arc-length parameter of the
curve α. For more detail see in [8]

Also we can write

ds

ds∗
=

1√
1 + λk2

or

ds

ds∗
=

1

cos θ

and since d (α (s) , α∗ (s)) = ‖α (s)− α∗ (s)‖ = ‖λV2 (s)‖ = |λ| we have |λ| is the
distance between the curves α and α∗.

By using the similiar method we produce a new ruled surface based on the other
ruled surface. A ruled surface is one which can be generated by the motion of a
straight line in Euclidean 3 − space, ([1]). To illustrate the current situation, we
bring here the famous example of L. K. Graves, so called the B − scroll, in [3].
A Frenet ruled surface is a ruled surfaces generated by Frenet vectors of the base
curve. Involute B − scroll is defined in [5]˙The differential geometric elements of

the involute D̃ scroll are examined in [10]. The positions of Frenet ruled surfaces
along Bertrand pairs are examined based on their normal vector fields in [6]. Also
in [9] Mannheim offsets of ruled surfaces are defined and characterized
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Definition 1.1. In the Euclidean 3−space, let α(s) be the arc-length of a parametrized
curve. The equations 

ϕ1 (s, u1) = α (s) + u1V1 (s)

ϕ2 (s, u2) = α (s) + u2V2 (s)

ϕ3 (s, u3) = α (s) + u3V3 (s)

are the parametrization of Frenet ruled surfaces which are called V1 − scroll (
tangent ruled surface), V2 − scroll (normal ruled surface), V3 − scroll (binormal
ruled surface), respectively in [2].

Theorem 1.1. In the Euclidean 3− space, let η1, η2, η3 be the normal vector fields
of ruled surfaces ϕ1, ϕ2, ϕ3 recpectively, along the curve α.They can be expressed by
the following matrix;

[η] = [A] [V ]

[η] =

 η1

η2

η3

 =

 0 0 −1
a 0 b
c d 0

 V1

V2

V3


where

a =
−u2k2√

(u2k2)
2

+ (1− u2k1)
2
, c =

−u3k2√
(u3k2)

2
+ 1

b =
(1− u2k1)√

(u2k2)
2

+ (1− u2k1)
2
, d =

−1√
(u3k2)

2
+ 1

.

Proof. The normal vector fields η1, η2, η3 of ruled surfaces ϕ1, ϕ2, ϕ3 can be ex-
pressed as in the following four equalities

η1 = −V3

η2 =
−u2k2V1 + (1− u2k1)V3√

(u2k2)
2

+ (1− u2k1)
2

η3 =
−u3k2V1 − V2√

(u3k2)
2

+ 1

for more detail see in [4]. Same way some results on Frenet Ruled Surfaces along
the evolute-involute curves, based on normal vector fields are given in [4]. �

2. Mannheim Frenet ruled surfaces

In this section, we found eight special Frenet ruled surfaces along to the Bertrand
pairs {α∗, α}. First we define and find the parametric equations of Frenet ruled
surfaces which are called Bertrandian Frenet ruled surface, along Bertrand curve
α, in terms of the Frenet apparatus of of Bertrand curve α. Later we found only
one matrix gives us all sixteen positions of normal vector fields of eight Frenet ruled
surfaces and Bertrandian Frenet ruled surface in terms of Frenet apparatus of
Bertrand curve α too. Further using that matrix we have some results such as;
normal ruled surface and Bertrandian tangent ruled surface have perpendicular
normal vector fields along the curve.
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Definition 2.1. Let {α∗, α} be Mannheim curve pair with k1 6= 0 and k2 6= 0. The
equations of the ruled surfaces

ϕ∗
1 (s, v1) = α∗ (s) + v1V

∗
1 (s) ,

ϕ∗
2 (s, v2) = α∗ (s) + v2V

∗
2 (s) ,

ϕ∗
3 (s, v3) = α∗ (s) + v3V

∗
3 (s) ,

are the parametrization of Frenet ruled surface of Mannheim pairs α∗ (s) .

Further we can give these surface equations as in the following way;
ϕ∗

1 (s, v1) = α∗ (s) + v1V
∗
1 (s) = α (s)− λV2 (s) + v1 (cosθ V1 − sinθ V3)

ϕ∗
2 (s, v2) = α∗ (s) + v2V

∗
2 (s) = α (s)− λV2 (s) + v2 (sinθ V1 + cosθ V3) ,

ϕ∗
3 (s, v3) = α∗ (s) + v3V

∗
3 (s) = α (s)− λV2 (s) + v3V2 = α (s) + (v3 − λ)V2,

are the parametrization of Frenet ruled surface which are called Mannheim Tangent
ruled surface, Mannheim Normal ruled surface, and Mannheim Binormal ruled
surface respectively. They are called collectively Mannheim Frenet ruled surface in
this study.

Theorem 2.1. The normal vector fields η∗1 , η
∗
2 , η

∗
3 , of ruled surfaces ϕ∗

1, ϕ
∗
2, ϕ

∗
3 ,

recpectively, along the curve Mannheim partner α∗, can be expressed by the fol-
lowing matrix;

[η∗] =

 η∗1
η∗2
η∗3

 =

 0 0 −1
a∗ 0 b∗

c∗ d∗ 0

 V ∗
1

V ∗
2

V ∗
3

 .
where

a∗ =
−v2k∗2√

(v2k∗2)
2
+(1−v2k∗1)

2
c∗ =

−v3k∗2√
(v3k∗2)

2
+1

b∗ =
(1−v2k∗1 )√

(v2k∗2)
2
+(1−v2k∗1)

2
d∗ = −1√

(v3k∗2)
2
+1

Proof. It is trivial �

Theorem 2.2. In the Euclidean 3 − space, the product matrix of the position of
the unit normal vector fields η1, η2, η3, and η∗1 , η

∗
2 , η

∗
3 of Frenet ruled surfaces, along

the Mannheim pairs α and α∗ is

[η] [η∗]
T

=
〈η1, η

∗
1〉 〈η1, η

∗
2〉 〈η1, η

∗
3〉

〈η2, η
∗
1〉 〈η2, η

∗
2〉 〈η2, η

∗
3〉

〈η3, η
∗
1〉 〈η3, η

∗
2〉 〈η3, η

∗
3〉

... (I)

Proof. It is easy from the matrix product;

[η] [η∗]
T

=

 η1

η2

η3

 [ η∗1 η∗2 η∗3
]
.

�

Theorem 2.3. In the Euclidean 3− space, the product matrix of the unit normal
vector fields η1, η2, η3 and η∗1 , η

∗
2 , η

∗
3 of Frenet ruled surfaces, along the Mannheim

pairs α and α∗,can be given by the following matrix

[η] [η∗]
T

=

 0 a∗ sin θ c∗ sin θ − d∗ cos θ
0 a∗ (a cos θ − b sin θ) c∗ (a cos θ − b sin θ) + d∗ (a sin θ + b cos θ)
−d a∗c cos θ + db∗ c∗c cos θ + d∗c sin θ

 ... (II)
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Proof. Let [η] = [A] [V ] and [η∗] = [A∗] [V ∗] hence

[η] [η∗]
T

= [A] [V ] ([A∗] [V ∗])
T

= [A]
(

[V ] [V ∗]
T
)

[A∗]
T
.

Where the matrix product of Frenet vector fields of the Mannheim partner α∗, and
Mannheim curve α has the following matrix form; V1

V2

V3

 [ V ∗
1 V ∗

2 V ∗
3

]
=

 cos θ sin θ 0
0 0 1

− sin θ cos θ 0


Hence

[η] [η∗]
T

= [A]

 cos θ sin θ 0
0 0 1

− sin θ cos θ 0

 [A∗]
T

=

 0 a∗ sin θ c∗ sin θ − d∗ cos θ
0 a∗ (a cos θ − b sin θ) c∗ (a cos θ − b sin θ) + d∗ (a sin θ + b cos θ)
−d a∗c cos θ + db∗ c∗c cos θ + d∗c sin θ


this product give us the result. �

In the Euclidean 3− space, the position of six surface, basicly, can be examined
by the position of their unit normal vector fields. We can examine the nine positions
of six surfaces, basicly, according to the position of their unit normal vector fields
in a matrix. Since the equality of the last two matrice (I) and (II), we have nine
interesting results according to the normal vector fields with the following results.

There are two pairs of normal vector fields perpendicular to each other of Frenet
ruled surface along the Mannheim pairs {α∗, α} as in the following corollary;

Corollary 2.1. Tangent ruled surface and Mannheim Tangent ruled surface
curve α have perpendicular normal vector fields. Normal ruled surface and Mannheim
Tangent ruled surface of Mannheim curve α have perpendicular normal vector
fields.

Proof. It is trivial since 〈η1, η
∗
1〉 = 0 and since 〈η2, η

∗
1〉 = 0. �

Corollary 2.2. Tangent ruled surface and Mannheim normal ruled surface of
Mannheim curve α have not perpendicular normal vector fields.

Proof. Since 〈η1, η
∗
2〉 = a∗ sin θ and v2k

∗
2 sin θ 6= 0 it is trivial. �

Corollary 2.3. Tangent ruled surface and Mannheim binormal ruled surface
of Mannheim curve α have not perpendicular normal vector fields, along the curve

ϕ∗
3 (s) = α (s) + λ

(
k2

k1 tan θ − 1
)
V2.

Proof. Since 〈η1, η
∗
3〉 = c∗ sin θ−d∗ cos θ and under the condition c∗ sin θ−d∗ cos θ =

0

−v3k
∗
2 sin θ√

(v3k∗2)
2

+ 1
+

cos θ√
(v3k∗2)

2
+ 1

= 0

−v3k
∗
2 sin θ + cos θ = 0
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and

v3 =
λk2

k1 tan θ

it is trivial. �

Corollary 2.4. Normal ruled surface and Mannheim normal ruled surface of
Mannheim curve α α have perpendicular normal vector fields along the curve ϕ2 (s) =
α (s) + tan θ

k1 tan θ−k2V2 (s) , tan θ 6= k2
k1
.

Proof. Since 〈η2, η
∗
2〉 = a∗ (a cos θ − b sin θ) and under the orthogonality condition

−v2k
∗
2 (a cos θ − b sin θ) = 0, and v2k

∗
2 6= 0. Hence

a cos θ = b sin θ

tan θ =
−u2k2

(1− u2k1)

or

u2 =
tan θ

k1 tan θ − k2
,

this completes the proof. �

Corollary 2.5. Normal ruled surface and Mannheim binormal ruled surface
of Mannheim curve α α have perpendicular normal vector fields along the curve

ϕ∗
3 (s) = α (s)+

(
k2(−u2k2 tan θ−u2k1+1)

(k21+k22)(u2k1 tan θ−tan θ−u2k2)
+ k1

(k21+k22)

)
V2 where tan θ 6= u2k2

(u2k1−1) .

Proof. Since 〈η2, η
∗
3〉 = c∗ (a cos θ − b sin θ) + d∗ (a cos θ + b sin θ) and under the or-

thogonality condition

−v3k
∗
2√

(v3k∗2)
2

+ 1
(a cos θ − b sin θ) +

−1√
(v3k∗2)

2
+ 1

(a sin θ + b cos θ) = 0

−v3k
∗
2 (a cos θ − b sin θ) = (a sin θ + b cos θ)

v3 =
k2 (−u2k2 tan θ − u2k1 + 1)

(k2
1 + k2

2) (u2k1 tan θ − tan θ − u2k2)

tan θ 6= u2k2

(u2k1 − 1)

we have the proof. �

Corollary 2.6. Binormal ruled surface and Mannheim tangent ruled surface of
Mannheim curve α have not perpendicular normal vector fields.

Proof. Since 〈η3, η
∗
1〉 = −d and −1√

(u3k2)2+1
6= 0 it is trivial. �

Corollary 2.7. Binormal ruled surface and Mannheim normal ruled surface of
Mannheim curve α have perpendicular normal vector fields along ϕ∗

2 (s) = α (s) +

cos θ sin θ

−u3(k21+k22) cos2 θ+θ̇
V1 + k1

(k21+k22)
V2 + cos2 θ

−u3(k21+k22) cos2 θ+θ̇
V3, except u3 =

(k21+k22) cos2 θ

θ̇
.
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Proof. Since〈η3, η
∗
2〉 = a∗c cos θ+db∗ and under the orthogonality condition 〈η3, η

∗
2〉 =

0 we have

−v2k
∗
2c cos θ + d (1− v2k

∗
1) = 0

−v2k
∗
2c cos θ − dv2k

∗
1 = −d

v2 =
cos θ

−u3 (k2
1 + k2

2) cos2 θ + θ̇

where k∗1 = − dθ
ds∗ = θ̇

cos θ and k∗2 = k1
λk2

. �

Corollary 2.8. Binormal ruled surface and Mannheim binormal ruled surface
Mannheim curve α, have perpendicular normal vector fields along the curve ϕ∗

3 (s) =
α (s) + k2 tan θ+k1

k21+k22
V2

Proof. Since 〈η3, η
∗
3〉 = c∗c cos θ + d∗c sin θ and 〈η3, η

∗
3〉 = 0,we have

−v3k
∗
2√

(v3k∗2)
2

+ 1
c cos θ =

1√
(v3k∗2)

2
+ 1

c sin θ

−v3k
∗
2c cos θ = c sin θ

v3 =
k2 tan θ

k2
1 + k2

2

hence we have the proof. �
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COMPARATIVE GROWTH ESTIMATES OF DIFFERENTIAL

MONOMIALS DEPENDING UPON THEIR RELATIVE ORDERS,

RELATIVE TYPE AND RELATIVE WEAK TYPE

SANJIB KUMAR DATTA AND TANMAY BISWAS

Abstract. In this paper the comparative growth properties of composition of

entire and meromorphic functions on the basis of their relative orders (relative
lower orders), relative types and relative weak types of differential monomials

generated by entire and meromorphic functions have been investigated.

1. Introduction, Definitions and Notations

Let f be an entire function defined in the open complex plane C. The maximum
modulus function relating to entire f is defined as Mf (r) = max {|f (z)| : |z| = r}.
If f is non-constant then it has the following property:
Property (A) ([2]) : A non-constant entire function f is said have the Property

(A) if for any σ > 1 and for all sufficiently large values of r, [Mf (r)]
2 ≤ Mf (rσ)

holds. For examples of functions with or without the Property (A), one may see
[2].

When f is meromorphic, Mf (r) can not be defined as f is not analytic. In this
situation one may define another function Tf (r) known as Nevanlinna’s Character-
istic function of f, playing the same role as Mf (r) in the following manner:

Tf (r) = Nf (r) +mf (r) .

Given two meromorphic functions f and g the ratio
Tf (r)
Tg(r) as r → ∞ is called

the growth of f with respect to g in terms of their Nevanlinna’s Characteristic
functions.

When f is entire function, the Nevanlinna’s Characteristic function Tf (r) of f
is defined as

Tf (r) = mf (r) .

2010 Mathematics Subject Classification. 30D20, 30D30, 30D35.
Key words and phrases. Entire function, meromorphic function, order (lower order ), relative

order (relative lower order ), relative type, relative weak type, Property (A), growth, differential
monomials.
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We called the function Nf (r, a)

(
−
Nf (r, a)

)
as counting function of a-points

(distinct a-points) of f . In many occasions Nf (r,∞) and
−
Nf (r,∞) are denoted by

Nf (r) and
−
Nf (r) respectively. We put

Nf (r, a) =

r∫
0

nf (t, a)− nf (0, a)

t
dt+

−
nf (0, a) log r ,

where we denote by nf (r, a)
(
−
nf (r, a)

)
the number of a-points (distinct a-points)

of f in |z| ≤ r and an ∞ -point is a pole of f . Also we denote by nf |=1(r, a) ,the
number of simple zeros of f − a in |z| ≤ r. Accordingly, Nf |=1(r, a) is defined in
terms of nf |=1(r, a) in the usual way and we set

δ1(a; f) = 1− lim sup
r→∞

N(r, a; f |= 1)

Tf (r)
{cf. [17]} ,

the deficiency of ‘a’ corresponding to the simple a- points of f i,e. simple zeros of
f − a. In this connection Yang [16] proved that there exists at most a denumerable
number of complex numbers a ∈ C ∪ {∞} for which

δ1(a; f) > 0 and
∑

a∈C∪{∞}

δ1(a; f) ≤ 4.

On the other hand, m
(
r, 1
f−a

)
is denoted by mf (r, a) and we mean mf (r,∞)

by mf (r) , which is called the proximity function of f . We also put

mf (r) =
1

2π

2π∫
0

log+
∣∣f (reiθ)∣∣ dθ, where

log+ x = max (log x, 0) for all x > 0 .

Further we denote Θ(∞; f) as

Θ(∞; f) = 1− lim sup
r→∞

Nf (r)

Tf (r)
.

However, a meromorphic function b = b (z) is called small with respect to f if

Tb (r) = Sf (r) where Sf (r) = o {Tf (r)} i.e.,
Sf (r)
Tf (r) → 0 as r → ∞. Moreover for

any transcendental meromorphic function f , we call P [f ] = bfn0(f (1))n1 ...(f (k))nk ,

to be a differential monomial generated by it where
k∑
i=0

ni ≥ 1 ( all ni | i = 0, 1, ..., k

are non-negative integers) and the meromorphic function b is small with respect to

f. In this connection the numbers γP [f ] =
k∑
i=0

ni and ΓP [f ] =
k∑
i=0

(i+ 1)ni are called

the degree and weight of P [f ] respectively {cf. [5]}.
If f is a non-constant entire function then Tf (r) is rigorously increasing and

continuous function of r and its inverse T−1
f : (Tf (0) ,∞) → (0,∞) exist where

lim
s→∞

T−1
f (s) =∞. Also the ratio

Tf (r)
Tg(r) as r →∞ is known as growth of f with re-

spect to g in terms of the Nevanlinna’s Characteristic functions of the meromorphic
functions f and g. Further in case of meromorphic functions, the growth markers
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such as order and lower order which are traditional in complex analysis are defined
in terms of their growth with respect to the exp z function in the following way:

ρf = lim sup
r→∞

log Tf (r)

log Texp z (r)
= lim sup

r→∞

log Tf (r)

log
(
r
π

) = lim sup
r→∞

log Tf (r)

log (r) +O(1)(
λf = lim inf

r→∞

log Tf (r)

log Texp z (r)
= lim inf

r→∞

log Tf (r)

log
(
r
π

) = lim inf
r→∞

log Tf (r)

log (r) +O(1)

)
,

and the growth of functions is said to be regular if their lower order coincides with
their order.

In this connection the following two definitions are also well known:

Definition 1.1. The type σf and lower type σf of a meromorphic function f are
defined as

σf = lim sup
r→∞

Tf (r)

rρf
and σf = lim inf

r→∞

Tf (r)

rρf
, 0 < ρf <∞ .

If f is entire then

σf = lim sup
r→∞

logMf (r)

rρf
and σf = lim inf

r→∞

logMf (r)

rρf
, 0 < ρf <∞ .

Definition 1.2. [7] The weak type τf and the growth indicator τf of a meromorphic
function f of finite positive lower order λf are defined by

τf = lim sup
r→∞

Tf (r)

rλf
and τf = lim inf

r→∞

Tf (r)

rλf
, 0 < λf <∞ .

When f is entire then

τf = lim sup
r→∞

logMf (r)

rλf
and τf = lim inf

r→∞

logMf (r)

rλf
, 0 < λf <∞ .

However, extending the thought of relative order of entire functions as initiated
by Bernal {[1], [2]} , Lahiri and Banerjee [13] introduced the definition of relative
order of a meromorphic function f with respect to another entire function g, sym-
bolized by ρg (f) to avoid comparing growth just with exp z as follows:

ρg (f) = inf {µ > 0 : Tf (r) < Tg (rµ) for all sufficiently large r}

= lim sup
r→∞

log T−1
g Tf (r)

log r
.

The definition coincides with the classical one if g (z) = exp z {cf. [13] }.
Similarly, one can define the relative lower order of a meromorphic function f

with respect to an entire function g denoted by λg (f) as follows :

λg (f) = lim inf
r→∞

log T−1
g Tf (r)

log r
.

To compare the relative growth of two entire functions having same non zero
finite relative order with respect to another entire function, Roy [14] introduced
the notion of relative type of two entire functions in the following way:
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Definition 1.3. [14] Let f and g be any two entire functions such that 0 < ρg (f) <
∞. Then the relative type σg (f) of f with respect to g is defined as :

σg (f)

= inf
{
k > 0 : Mf (r) < Mg

(
krρg(f)

)
for all sufficiently large values of r

}
= lim sup

r→∞

M−1
g Mf (r)

rρg(f)
.

Likewise, one can define the relative lower type of an entire function f with
respect to an entire function g denoted by σg (f) as follows :

σg (f) = lim inf
r→∞

M−1
g Mf (r)

rρg(f)
, 0 < ρg (f) <∞ .

Analogously, to determine the relative growth of two entire functions having
same non zero finite relative lower order with respect to another entire function,
Datta and Biswas [8] introduced the definition of relative weak type of an entire
function f with respect to another entire function g of finite positive relative lower
order λg (f) in the following way:

Definition 1.4. [8] The relative weak type τg (f) of an entire function f with
respect to another entire function g having finite positive relative lower order λg (f)
is defined as:

τg (f) = lim inf
r→∞

M−1
g Mf (r)

rλg(f)
.

Also one may define the growth indicator τg (f) of an entire function f with respect
to an entire function g in the following way :

τg (f) = lim sup
r→∞

M−1
g Mf (r)

rλg(f)
, 0 < λg (f) <∞ .

In the case of meromorphic functions, it therefore seems reasonable to define
suitably the relative type and relative weak type of a meromorphic function with
respect to an entire function to determine the relative growth of two meromorphic
functions having same non zero finite relative order or relative lower order with
respect to an entire function. Datta and Biswas also [8] gave such definitions of
relative type and relative weak type of a meromorphic function f with respect to an
entire function g which are as follows:

Definition 1.5. [8] The relative type σg (f) of a meromorphic function f with
respect to an entire function g are defined as

σg (f) = lim sup
r→∞

T−1
g Tf (r)

rρg(f)
where 0 < ρg (f) <∞.

Similarly, one can define the lower relative type σg (f) in the following way:

σg (f) = lim inf
r→∞

T−1
g Tf (r)

rρg(f)
where 0 < ρg (f) <∞.

Definition 1.6. [8] The relative weak type τg (f) of a meromorphic function f
with respect to an entire function g with finite positive relative lower order λg (f)
is defined by

τg (f) = lim inf
r→∞

T−1
g Tf (r)

rλg(f)
.
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In a like manner, one can define the growth indicator τg (f) of a meromorphic
function f with respect to an entire function g with finite positive relative lower
order λg (f) as

τg (f) = lim sup
r→∞

T−1
g Tf (r)

rλg(f)
.

Considering g = exp z one may easily verify that Definition 1.3 , Definition 1.4,
Definition 1.5 and Definition 1.6 coincide with the classical definitions of type (lower
type) and weak type of entire are meromorphic functions respectively.

For entire and meromorphic functions, the notion of their growth indicators
such as order, type and weak type are classical in complex analysis and during
the past decades, several researchers have already been continuing their studies in
the area of comparative growth properties of composite entire and meromorphic
functions in different directions using the same. But at that time, the concept of
relative order and consequently relative type as well as relative weak type of entire
and meromorphic functions with respect to another entire function was mostly
unknown to complex analysists and they are not aware of the technical advantages
of using the relative growth indicators of the functions. In this paper we wish
to prove some newly developed results based on the growth properties of relative
order, relative type and relative weak type of differential monomials generated by
entire and meromorphic functions. We do not explain the standard definitions and
notations in the theory of entire and meromorphic functions as those are available
in [11] and [15].

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1. [3] Let f be meromorphic and g be entire then for all sufficiently large
values of r,

Tf◦g (r) 6 {1 + o(1)} Tg (r)

logMg (r)
Tf (Mg (r)) .

Lemma 2.2. [4] Let f be meromorphic and g be entire and suppose that 0 < µ <
ρg ≤ ∞. Then for a sequence of values of r tending to infinity,

Tf◦g(r) ≥ Tf (exp (rµ)) .

Lemma 2.3. [12] Let f be meromorphic and g be entire such that 0 < ρg <∞ and
0 < λf . Then for a sequence of values of r tending to infinity,

Tf◦g(r) > Tg (exp (rµ)) ,

where 0 < µ < ρg .

Lemma 2.4. [6] Let f be a meromorphic function and g be an entire function such
that λg < µ <∞ and 0 < λf ≤ ρf <∞. Then for a sequence of values of r tending
to infinity,

Tf◦g(r) < Tf (exp (rµ)) .

Lemma 2.5. [6] Let f be a meromorphic function of finite order and g be an entire
function such that 0 < λg < µ <∞. Then for a sequence of values of r tending to
infinity,

Tf◦g(r) < Tg (exp (rµ)) .
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Lemma 2.6. [9] Let f be an entire function which satisfy the Property (A), β > 0,
δ > 1 and α > 2. Then

βTf (r) < Tf
(
αrδ
)
.

Lemma 2.7. [10] Let f be a transcendental meromorphic function of finite order
or of non-zero lower order and

∑
a∈C∪{∞}

δ1(a; f) = 4. Also let g be a transcendental

entire function of regular growth having non zero finite order and
∑

a∈C∪{∞}
δ1(a; g) =

4. Then the relative order and relative lower order of P [f ] with respect to P [g] are
same as those of f with respect to g.

Lemma 2.8. [10] If f be a transcendental meromorphic function of finite order
or of non-zero lower order and

∑
a∈C∪{∞}

δ1(a; f) = 4 and g be a transcendental

entire function of regular growth having non zero finite type and
∑

a∈C∪{∞}
δ1(a; g) =

4. Then the relative type and relative lower type of P [f ] with respect to P [g] are(
ΓP [f]−(ΓP [f]−γP [f])Θ(∞;f)

ΓP [g]−(ΓP [g]−γP [g])Θ(∞;g)

) 1
ρg

times that of f with respect to g if ρg (f) is positive

finite.

Lemma 2.9. [10] Let f be a transcendental meromorphic function of finite order
or of non-zero lower order and

∑
a∈C∪{∞}

δ1(a; f) = 4 and g be a transcendental en-

tire function of regular growth having non zero finite type and
∑

a∈C∪{∞}
δ1(a; g) = 4.

Then τP [g] (P [f ]) and τP [g] (P [f ]) are(
ΓP [f]−(ΓP [f]−γP [f])Θ(∞;f)

ΓP [g]−(ΓP [g]−γP [g])Θ(∞;g)

) 1
ρg

times that of f with respect to g if λg (f) is positive

finite i.e.,

τP [g] (P [f ]) =

(
ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

ΓP [g] − (ΓP [g] − γP [g])Θ(∞; g)

) 1
ρg

.τg (f) and

τP [g] (P [f ]) =

(
ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

ΓP [g] − (ΓP [g] − γP [g])Θ(∞; g)

) 1
ρg

.
−
τg (f) .

3. Main Results

In this section we present the main results of the paper.

Theorem 3.1. Let f be a transcendental meromorphic function of finite order or of
non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a transcendental

entire function of regular growth having non zero finite order with
∑

a∈C∪{∞}
δ1(a;h) =

4, 0 < ρh (f) < ∞, ρh (f) = ρg, σg < ∞ and 0 < σh (f) < ∞. Also let h satisfy
the Property (A). Then for any δ > 1,

lim inf
r→∞

log T−1
h Tf◦g (r)

T−1
M [h]TM [f ] (r)

≤
(
δ · ρh (f) · σg

σh (f)

)(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.
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Proof. From (3.9) , we get for all sufficiently large values of r that

(3.1) log T−1
h Tf◦g (r) 6 δ (ρh (f) + ε) logMg (r) +O(1) .

Using Definition 1.1, we obtain from (3.1) for all sufficiently large values of r that

(3.2) log T−1
h Tf◦g (r) 6 δ (ρh (f) + ε) (σg + ε) · rρg +O(1) .

Now in view of condition (ii) , we obtain from (3.2) for all sufficiently large values
of r that

(3.3) log T−1
h Tf◦g (r) 6 δ (ρh (f) + ε) (σg + ε) · rρh(f) +O(1) .

Again in view of Definition 1.5, we get for a sequence of values of r tending to
infinity that

T−1
M [h]TM [f ] (r) ≥

(
σM [h] (M [f ])− ε

)
rρM[h](M [f ]) .

Therefore in view of Lemma 2.7 and Lemma 2.8, we obtain for a sequence of values
of r tending to infinity that

T−1
M [h]TM [f ] (r)

≥

(
σh (f)

(
ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

) 1
ρh

− ε

)
rρh(f) .(3.4)

Therefore from (3.3) and (3.4) , it follows for a sequence of values of r tending to
infinity that

log T−1
h Tf◦g (r)

T−1
M [h]TM [f ] (r)

≤ δ (ρh (f) + ε) (σg + ε) · rρh(f) +O(1)(
σh (f)

(
ΓP [f]−(ΓP [f]−γP [f])Θ(∞;f)

ΓP [h]−(ΓP [h]−γP [h])Θ(∞;h)

) 1
ρh − ε

)
rρh(f)

.

Since ε (> 0) is arbitrary, it follows from above that

lim inf
r→∞

log T−1
h Tf◦g (r)

T−1
M [h]TM [f ] (r)

≤
(
δ · ρh (f) · σg

σh (f)

)(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Hence the theorem follows. �

Using the notion of lower type and relative lower type, we may state the following
theorem without its proof as it can be carried out in the line of Theorem 3.1 :

Theorem 3.2. Let f be a transcendental meromorphic function of finite order or of
non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a transcendental

entire function of regular growth having non zero finite order with
∑

a∈C∪{∞}
δ1(a;h) =

4, 0 < ρh (f) < ∞, ρh (f) = ρg, σg < ∞ and 0 < σh (f) < ∞. Also let h satisfies
the Property (A). Then for any δ > 1,

lim inf
r→∞

log T−1
h Tf◦g (r)

T−1
M [h]TM [f ] (r)

≤ δ · ρh (f) · σg
σh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Similarly using the notion of type and relative lower type, one may state the
following two theorems without their proofs because those can also be carried out
in the line of Theorem 3.1 :
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Theorem 3.3. Let f be a transcendental meromorphic function of finite order or of
non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a transcendental

entire function of regular growth having non zero finite order with
∑

a∈C∪{∞}
δ1(a;h) =

4, 0 < λh (f) ≤ ρh (f) < ∞, ρh (f) = ρg, σg < ∞ and 0 < σh (f) < ∞. Also let h
satisfies the Property (A). Then for any δ > 1,

lim inf
r→∞

log T−1
h Tf◦g (r)

T−1
M [h]TM [f ] (r)

≤ δ · λh (f) · σg
σh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Theorem 3.4. Let f be a transcendental meromorphic function of finite order or of
non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a transcendental

entire function of regular growth having non zero finite order with
∑

a∈C∪{∞}
δ1(a;h) =

4, 0 < ρh (f) < ∞, ρh (f) = ρg, σg < ∞ and 0 < σh (f) < ∞. Also let h satisfies
the Property (A). Then for any δ > 1,

lim sup
r→∞

log T−1
h Tf◦g (r)

T−1
M [h]TM [f ] (r)

≤ δ · ρh (f) · σg
σh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Similarly, using the concept of weak type and relative weak type, we may state
next four theorems without their proofs as those can be carried out with the help of
Lemma 2.9 and in the line of Theorem 3.1, Theorem 3.2, Theorem 3.3 and Theorem
3.4 respectively.

Theorem 3.5. Let f be a transcendental meromorphic function of finite order or of
non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a transcendental

entire function of regular growth having non zero finite order with
∑

a∈C∪{∞}
δ1(a;h) =

4, 0 < λh (f) ≤ ρh (f) <∞, λh (f) = λg, τg <∞ and 0 < τh (f) <∞. Also let h
satisfies the Property (A). Then for any δ > 1,

lim inf
r→∞

log T−1
h Tf◦g (r)

T−1
M [h]TM [f ] (r)

≤ δ · ρh (f) · τg
τh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Theorem 3.6. Let f be a transcendental meromorphic function of finite order or of
non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a transcendental

entire function of regular growth having non zero finite order with
∑

a∈C∪{∞}
δ1(a;h) =

4, 0 < λh (f) ≤ ρh (f) < ∞, λh (f) = λg, τg < ∞ and 0 < τh (f) < ∞. Also let h
satisfies the Property (A). Then for any δ > 1,

lim inf
r→∞

log T−1
h Tf◦g (r)

T−1
M [h]TM [f ] (r)

≤ δ · ρh (f) · τg
τh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Theorem 3.7. Let f be a transcendental meromorphic function of finite order or of
non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a transcendental

entire function of regular growth having non zero finite order with
∑

a∈C∪{∞}
δ1(a;h) =
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4, 0 < λh (f) < ∞, λh (f) = λg, τg < ∞ and 0 < τh (f) < ∞. Also let h satisfies
the Property (A). Then for any δ > 1,

lim inf
r→∞

log T−1
h Tf◦g (r)

T−1
M [h]TM [f ] (r)

≤ δ · λh (f) · τg
τh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Theorem 3.8. Let f be a transcendental meromorphic function of finite order or of
non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a transcendental

entire function of regular growth having non zero finite order with
∑

a∈C∪{∞}
δ1(a;h) =

4, 0 < λh (f) ≤ ρh (f) < ∞, λh (f) = λg, τg < ∞ and 0 < τh (f) < ∞. Also let h
satisfies the Property (A). Then for any δ > 1,

lim sup
r→∞

log T−1
h Tf◦g (r)

T−1
M [h]TM [f ] (r)

≤ δ · ρh (f) · τg
τh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Theorem 3.9. Let f be a transcendental meromorphic function of finite order or of
non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a transcendental

entire function of regular growth having non zero finite order with
∑

a∈C∪{∞}
δ1(a;h) =

4, 0 < λh (f) ≤ ρh (f) < ρg ≤ ∞ and σh (f) <∞. Then

lim sup
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [f ] (r)

≥ λh (f)

σh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Proof. Since ρh (f) < ρg and T−1
h (r) is a increasing function of r, we get from

Lemma 2.2 for a sequence of values of r tending to infinity that

log T−1
h Tf◦g(r) ≥ log T−1

h Tf (exp (rµ))

i.e., log T−1
h Tf◦g(r ≥ (λh (f)− ε) · rµ

i.e., log T−1
h Tf◦g(r) ≥ (λh (f)− ε) · rρh(f) .(3.5)

Again in view of Definition 1.5, we get for all sufficiently large values of r that

T−1
M [h]TM [f ] (r) ≤

(
σM [h] (M [f ]) + ε

)
rρM[h](M [f ]) .

Therefore in view of Lemma 2.7 and Lemma 2.8, we obtain for a sequence of values
of r tending to infinity that

T−1
M [h]TM [f ] (r)

≤

(
σh (f)

(
ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

) 1
ρh

+ ε

)
rρh(f) .(3.6)

Now from (3.5) and (3.6) , it follows for a sequence of values of r tending to infinity
that

log T−1
h Tf◦g(r)

T−1
M [h]TM [f ] (r)

≥ (λh (f)− ε) rρh(f)(
σh (f)

(
ΓP [f]−(ΓP [f]−γP [f])Θ(∞;f)

ΓP [h]−(ΓP [h]−γP [h])Θ(∞;h)

) 1
ρh + ε

)
rρh(f)

.
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Since ε (> 0) is arbitrary, it follows from above that

lim sup
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [f ] (r)

≥ λh (f)

σh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Thus the theorem follows. �

In the line of Theorem 3.9, the following theorem can be proved and therefore
its proof is omitted:

Theorem 3.10. Let f be a meromorphic function, g a transcendental entire func-
tion of finite order or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; g) = 4 and h a

transcendental entire function of regular growth having non zero finite order with∑
a∈C∪{∞}

δ1(a;h) = 4, 0 < λh (f) , 0 < ρh (g) < ρg ≤ ∞ and σh (g) <∞. Then

lim sup
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [g] (r)

≥ λh (f)

σh (g)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [g] − (ΓP [g] − γP [g])Θ(∞; g)

) 1
ρh

.

The following two theorems can also be proved in the line of Theorem 3.9 and
Theorem 3.10 respectively and with help of Lemma 2.3. Hence their proofs are
omitted.

Theorem 3.11. Let f be a transcendental meromorphic function of finite or-
der or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a

transcendental entire function of regular growth having non zero finite order with∑
a∈C∪{∞}

δ1(a;h) = 4, 0 < λh (g) , 0 < λf , 0 < ρh (f) < ρg < ∞ and σh (f) < ∞.

Then

lim sup
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [f ] (r)

≥ λh (g)

σh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Theorem 3.12. Let f be a meromorphic function, g a transcendental entire func-
tion of finite order or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; g) = 4 and h a

transcendental entire function of regular growth having non zero finite order with∑
a∈C∪{∞}

δ1(a;h) = 4, 0 < λh (g) , 0 < λf , 0 < ρh (g) < ρg < ∞ and σh (g) < ∞.

Then

lim sup
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [g] (r)

≥ λh (g)

σh (g)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [g] − (ΓP [g] − γP [g])Θ(∞; g)

) 1
ρh

.

Now we state the following four theorems without their proofs as those can be
carried out with the help of Lemma 2.9 and in the line of Theorem 3.9, Theorem
3.10, Theorem 3.11 and Theorem 3.12 and with the help of Definition 1.6:

Theorem 3.13. Let f be a transcendental meromorphic function of finite or-
der or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a
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transcendental entire function of regular growth having non zero finite order with∑
a∈C∪{∞}

δ1(a;h) = 4, 0 < λh (f) < ρg ≤ ∞ and τh (f) <∞. Then

lim sup
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [f ] (r)

≥ λh (f)

τh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Theorem 3.14. Let f be a meromorphic function, g a transcendental entire func-
tion of finite order or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; g) = 4 and h a

transcendental entire function of regular growth having non zero finite order with∑
a∈C∪{∞}

δ1(a;h) = 4, 0 < λh (f) , 0 < λh (g) < ρg ≤ ∞ and τh (g) <∞. Then

lim sup
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [g] (r)

≥ λh (f)

τh (g)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [g] − (ΓP [g] − γP [g])Θ(∞; g)

) 1
ρh

.

Theorem 3.15. Let f be a transcendental meromorphic function of finite or-
der or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a

transcendental entire function of regular growth having non zero finite order with∑
a∈C∪{∞}

δ1(a;h) = 4, 0 < λh (g) < ρg <∞, 0 < λf and τh (f) <∞. Then

lim sup
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [f ] (r)

≥ λh (g)

τh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Theorem 3.16. Let f be a meromorphic function, g a transcendental entire func-
tion of finite order or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; g) = 4 and h a

transcendental entire function of regular growth having non zero finite order with∑
a∈C∪{∞}

δ1(a;h) = 4, 0 < λh (g) < ρg <∞, 0 < λf and τh (g) <∞. Then

lim sup
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [g] (r)

≥ λh (g)

τh (g)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [g] − (ΓP [g] − γP [g])Θ(∞; g)

) 1
ρh

.

Theorem 3.17. Let f be a transcendental meromorphic function of non zero finite
order and lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a transcendental

entire function of regular growth having non zero finite order with
∑

a∈C∪{∞}
δ1(a;h) =

4, 0 < λg < ρh (f) <∞ and σh (f) > 0. Then

lim inf
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [f ] (r)

≤ ρh (f)

σh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Proof. As λg < ρh (f) and T−1
h (r) is a increasing function of r, it follows from

Lemma 2.4 for a sequence of values of r tending to infinity that

log T−1
h Tf◦g(r) < log T−1

h Tf (exp (rµ))

i.e., log T−1
h Tf◦g(r < (ρh (f) + ε) · rµ

i.e., log T−1
h Tf◦g(r) < (ρh (f) + ε) · rρh(f) .(3.7)
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Further in view of Definition 1.5, we obtain for all sufficiently large values of r that

T−1
M [h]TM [f ] (r) ≥

(
σM [h] (M [f ])− ε

)
rρM[h](M [f ]) .

Therefore in view of Lemma 2.7 and Lemma 2.8, we get from above that
(3.8)

T−1
M [h]TM [f ] (r) ≥

(
σh (f)

(
ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

) 1
ρh

− ε

)
rρh(f) .

Since ε (> 0) is arbitrary, therefore from (3.7) and (3.8) we have for a sequence of
values of r tending to infinity that

log T−1
h Tf◦g(r)

T−1
M [h]TM [f ] (r)

≤ (ρh (f) + ε) · rρh(f)(
σh (f)

(
ΓP [f]−(ΓP [f]−γP [f])Θ(∞;f)

ΓP [h]−(ΓP [h]−γP [h])Θ(∞;h)

) 1
ρh − ε

)
rρh(f)

i.e., lim inf
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [f ] (r)

≤ ρh (f)

σh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Hence the theorem is established. �

In the line of Theorem 3.17, the following theorem can be proved and therefore
its proof is omitted:

Theorem 3.18. Let f be a meromorphic function with non zero finite order and
lower order, g a transcendental entire function of finite order or of non-zero lower
order with

∑
a∈C∪{∞}

δ1(a; g) = 4 and h a transcendental entire function of regular

growth having non zero finite order with
∑

a∈C∪{∞}
δ1(a;h) = 4, ρh (f) < ∞, 0 <

λg < ρh (g) <∞ and σh (g) > 0. Then

lim inf
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [g] (r)

≤ ρh (f)

σh (g)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [g] − (ΓP [g] − γP [g])Θ(∞; g)

) 1
ρh

.

Moreover, the following two theorems can also be deduced in the line of Theorem
3.9 and Theorem 3.10 respectively and with help of Lemma 2.5 and therefore their
proofs are omitted.

Theorem 3.19. Let f be a transcendental meromorphic function of finite or-
der or of non zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a

transcendental entire function of regular growth having non zero finite order with∑
a∈C∪{∞}

δ1(a;h) = 4, ρh (g) <∞, 0 < λg < ρh (f) <∞ and σh (f) > 0. Then

lim inf
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [f ] (r)

≤ ρh (g)

σh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Theorem 3.20. Let f be a meromorphic function with finite order, g a transcen-
dental entire function of finite order or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; g) =
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4 and h a transcendental entire function of regular growth having non zero finite
order with

∑
a∈C∪{∞}

δ1(a;h) = 4, 0 < λg < ρh (g) <∞ and σh (g) > 0. Then

lim inf
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [g] (r)

≤ ρh (g)

σh (g)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [g] − (ΓP [g] − γP [g])Θ(∞; g)

) 1
ρh

.

Finally we state the following four theorems without their proofs as those can be
carried out in view of Lemma 2.9 and in the line of Theorem 3.17, Theorem 3.18,
Theorem 3.19 and Theorem 3.20 using the concept of relative weak type:

Theorem 3.21. Let f be a transcendental meromorphic function of non zero finite
order and lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a transcendental

entire function of regular growth having non zero finite order with
∑

a∈C∪{∞}
δ1(a;h) =

4 0 < λg < λh (f) ≤ ρh (f) <∞ and τh (f) > 0. Then

lim inf
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [f ] (r)

≤ ρh (f)

τh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Theorem 3.22. Let f be a meromorphic function with non zero finite order and
lower order, g a transcendental entire function of finite order or of non-zero lower
order with

∑
a∈C∪{∞}

δ1(a; g) = 4 and h a transcendental entire function of regular

growth having non zero finite order with
∑

a∈C∪{∞}
δ1(a;h) = 4, ρh (f) < ∞, 0 <

λg < λh (g) <∞ and τh (g) > 0. Then

lim inf
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [g] (r)

≤ ρh (f)

τh (g)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [g] − (ΓP [g] − γP [g])Θ(∞; g)

) 1
ρh

.

Theorem 3.23. Let f be a transcendental meromorphic function of finite or-
der or of non zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a

transcendental entire function of regular growth having non zero finite order with∑
a∈C∪{∞}

δ1(a;h) = 4, ρh (g) <∞, 0 < λg < λh (f) <∞ and τh (f) > 0. Then

lim inf
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [f ] (r)

≤ ρh (g)

τh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Theorem 3.24. Let f be a meromorphic function with finite order, g a transcen-
dental entire function of finite order or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; g) =

4 and h a transcendental entire function of regular growth having non zero finite
order with

∑
a∈C∪{∞}

δ1(a;h) = 4, 0 < λg < λh (f) ≤ ρh (g) < ∞ and τh (g) > 0.

Then

lim inf
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [g] (r)

≤ ρh (g)

τh (g)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [g] − (ΓP [g] − γP [g])Θ(∞; g)

) 1
ρh

.
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Theorem 3.25. Let f be a transcendental meromorphic function of finite or-
der or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a

transcendental entire function of regular growth having non zero finite order with∑
a∈C∪{∞}

δ1(a;h) = 4, 0 < λh (f) ≤ ρh (f) < ∞ and σg < ∞. Also h satisfy the

Property (A). Then for any δ > 1,

lim sup
r→∞

log T−1
h Tf◦g (r)

log T−1
M [h]TM [f ] (exp rρg )

≤ δ · σg · ρh (f)

λh (f)
.

Proof. Let us suppose that α > 2.
Since T−1

h (r) is an increasing function r, it follows from Lemma 2.1, Lemma 2.6
and the inequality Tg (r) ≤ logMg (r) {cf. [11]} for all sufficiently large values of r
that

T−1
h Tf◦g (r) 6 T−1

h [{1 + o(1)}Tf (Mg (r))]

i.e., T−1
h Tf◦g (r) 6 α

[
T−1
h Tf (Mg (r))

]δ
i.e., log T−1

h Tf◦g (r) 6 δ log T−1
h Tf (Mg (r)) +O(1)(3.9)

i.e.,
log T−1

h Tf◦g (r)

log T−1
M [h]TM [f ] (exp rρg )

≤
δ log T−1

h Tf (Mg (r)) +O(1)

log T−1
M [h]TM [f ] (exp rρg )

=
δ log T−1

h Tf (Mg (r)) +O(1)

logMg (r)
·

logMg (r)

rρg
· log exp rρg

log T−1
M [h]TM [f ] (exp rρg )

(3.10)

i.e., lim sup
r→∞

log T−1
h Tf◦g (r)

log T−1
M [h]TM [f ] (exp rρg )

≤ lim sup
r→∞

δ log T−1
h Tf (Mg (r)) +O(1)

logMg (r)
· lim sup
r→∞

logMg (r)

rρg
·

lim sup
r→∞

log exp rρg

log T−1
M [h]TM [f ] (exp rρg )

i.e., lim sup
r→∞

log T−1
h Tf◦g (r)

log T−1
M [h]TM [f ] (exp rρg )

≤ δ · ρh (f) · σg ·
1

λM [h] (M [f ])
.

Therefore in view of Lemma 2.7, we obtain from above that

lim sup
r→∞

log T−1
h Tf◦g (r)

log T−1
M [h]TM [f ] (exp rρg )

≤ δ · σg · ρh (f)

λh (f)
.

Thus the theorem is established. �

In the line of Theorem 3.25 the following theorem can be proved :

Theorem 3.26. Let f be a meromorphic function, g a transcendental entire func-
tion of finite order or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; g) = 4 and h a

transcendental entire function of regular growth having non zero finite order with
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a∈C∪{∞}

δ1(a;h) = 4, λh (g) > 0, ρh (f) < ∞, σg < ∞ and also h satisfy the

Property (A). Then for any δ > 1,

lim sup
r→∞

log T−1
h Tf◦g (r)

log T−1
M [h]TM [g] (exp rρg )

≤ δ · σg · ρh (f)

λh (g)
.

Using the notion of lower type, we may state the following two theorems without
their proofs because those can be carried out in the line of Theorem 3.25 and
Theorem 3.26 respectively.

Theorem 3.27. Let f be a transcendental meromorphic function of finite or-
der or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a

transcendental entire function of regular growth having non zero finite order with∑
a∈C∪{∞}

δ1(a;h) = 4, 0 < λh (f) ≤ ρh (f) < ∞, σg < ∞ and also h satisfy the

Property (A). Then for any δ > 1,

lim inf
r→∞

log T−1
h Tf◦g (r)

log T−1
M [h]TM [f ] (exp rρg )

≤ δ · σg · ρh (f)

λh (f)
.

Theorem 3.28. Let f be a meromorphic function, g a transcendental entire func-
tion of finite order or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; g) = 4 and h a

transcendental entire function of regular growth having non zero finite order with∑
a∈C∪{∞}

δ1(a;h) = 4, λh (g) > 0, ρh (f) < ∞, σg < ∞ and also h satisfy the

Property (A). Then for any δ > 1,

lim inf
r→∞

log T−1
h Tf◦g (r)

log T−1
M [h]TM [g] (exp rρg )

≤ δ · σg · ρh (f)

λh (g)
.

Using the concept of the growth indicators τg and τg of an entire function g,
we may state the subsequent four theorems without their proofs since those can be
carried out in the line of Theorem 3.25, Theorem 3.26, Theorem 3.27 and Theorem
3.28 respectively.

Theorem 3.29. Let f be a transcendental meromorphic function of finite or-
der or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a

transcendental entire function of regular growth having non zero finite order with∑
a∈C∪{∞}

δ1(a;h) = 4, 0 < λh (f) ≤ ρh (f) < ∞, τg < ∞ and also h satisfy the

Property (A). Then for any δ > 1,

lim sup
r→∞

log T−1
h Tf◦g (r)

log T−1
M [h]TM [f ] (exp rλg )

≤ δ · τg · ρh (f)

λh (f)
.

Theorem 3.30. Let f be a meromorphic function, g a transcendental entire func-
tion of finite order or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; g) = 4 and h a

transcendental entire function of regular growth having non zero finite order with∑
a∈C∪{∞}

δ1(a;h) = 4, λh (g) > 0, ρh (f) < ∞, τg < ∞ and also h satisfy the



COMPARATIVE GROWTH ESTIMATES OF DIFFERENTIAL MONOMIALS...... 245

Property (A). Then for any δ > 1,

lim sup
r→∞

log T−1
h Tf◦g (r)

log T−1
M [h]TM [g] (exp rλg )

≤ δ · τg · ρh (f)

λh (g)
.

Theorem 3.31. Let f be a transcendental meromorphic function of finite or-
der or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a

transcendental entire function of regular growth having non zero finite order with∑
a∈C∪{∞}

δ1(a;h) = 4, 0 < λh (f) ≤ ρh (f) < ∞, τg < ∞ and also h satisfy the

Property (A). Then for any δ > 1,

lim inf
r→∞

log T−1
h Tf◦g (r)

log T−1
M [h]TM [f ] (exp rλg )

≤ δ · τg · ρh (f)

λh (f)
.

Theorem 3.32. Let f be a meromorphic function, g a transcendental entire func-
tion of finite order or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; g) = 4 and h a

transcendental entire function of regular growth having non zero finite order with∑
a∈C∪{∞}

δ1(a;h) = 4, λh (g) > 0, ρh (f) < ∞, τg < ∞ and also h satisfy the

Property (A). Then for any δ > 1,

lim inf
r→∞

log T−1
h Tf◦g (r)

log T−1
M [h]TM [g] (exp rλg )

≤ δ · τg · ρh (f)

λh (g)
.
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TRIVARIATE FIBONACCI AND LUCAS POLYNOMIALS

E. GOKCEN KOCER AND HATICE GEDIKCE

Abstract. In this article, we study the Trivariate Fibonacci and Lucas poly-

nomials. The classical Tribonacci numbers and Tribonacci polynomials are the
special cases of the trivariate Fibonacci polynomials. Also, we obtain some

properties of the trivariate Fibonacci and Lucas polynomials. Using these

properties, we give some results for the Tribonacci numbers and Tribonacci
polynomials.

1. Introduction

In [4], the Tribonacci sequence originally was studied in 1963 by M. Feinberg.
For any integer n > 2, the Tribonacci numbers Tn were defined by the recurrence
relation

Tn = Tn−1 + Tn−2 + Tn−3; T0 = 0, T1 = 1, T2 = 1.

In [2], the author derived the different recurrence relations on the Tribonacci
numbers and their sums and got some identities of the Tribonacci numbers and their
sums by using the companion matrices and generating matrices. In [5], the authors
defined the generalized Tribonacci numbers and derived an explicit formula for the
generalized Tribonacci numbers with negative subscripts. In [6], Lin obtained the
Binet’s formula and De Moivre types identities for the Tribonacci Numbers. In [7],
the author got a formula for Tribonacci numbers by using an analytic method. In
[8], the author obtained some identities for the Tribonacci numbers. Also, Pethe
defined the complex Tribonacci numbers at Gaussian integers. In [10], Spickerman
got the Binet’s formula and generating function for the Tribonacci sequence and
obtained an application for the Tribonacci numbers.

In [1], the authors got the Tribonacci Numbers from Tribonacci triangles and
discussed the properties of functions related to Tribonacci Numbers. Also, Alladi

2000 Mathematics Subject Classification. 11B39, 11B83.
Key words and phrases. Tribonacci Numbes, Tribonacci Polynomials, Binet Formula.
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and Hoggatt defined the Tribonacci triangle as follows

n�i 0 1 2 3 4 5 . . .
0 1
1 1 1
2 1 3 1
3 1 5 5 1
4 1 7 13 7 1
5 1 9 25 25 9 1
...

Table1: Tribonacci Triangle

It is interesting to note that, the sum of the elements on the rising diagonal lines in
the Tribonacci triangle is 1, 1, 2, 4, 7, 13, 24, . . .which are the Tribonacci numbers.

In 1973, the Tribonacci polynomials was defined by Hoggatt and Bicknell [3].
For any integer n > 2, the recurrence relation of the Tribonacci polynomials is as
follows

tn (x) = x2tn−1 (x) + xtn−2 (x) + tn−3 (x)

where t0 (x) = 0, t1 (x) = 1, t2 (x) = x2.
Some of Tribonacci polynomials are 0, 1, x2, x4 + x, x6 + 2x3 + 1, x8 + 3x5 +

3x2, x10 + 4x7 + 6x4 + 2x, . . .. It’s clear that tn (1) = Tn, where Tn is n − th
Tribonacci number.

In [3], the authors gave the generating matrices for the Tribonacci, quadranacci
and r− bonacci polynomials. Also, they obtained the interesting determinantal
properties for these polynomials. In [11], the authors defined the bivariate and
trivariate Fibonacci polynomials and obtained the some properties of these poly-
nomials.

There are different studies associated with the Tribonacci numbers and poly-
nomials. One of them is incomplete Tribonacci numbers and polynomials in [9].
Ramirez and Sirvent defined the Tribonacci polynomial triangle as follows

n�i 0 1 2 3 4 5 . . .
0 1
1 x2 x
2 x4 2x3 + 1 x2

3 x6 3x5 + 2x2 3x4 + 2x x3

4 x8 4x7 + 3x4 6x6 + 6x3 + 1 4x5 + 3x2 x4

5 x10 5x9 + 4x6 10x8 + 12x5 + 3x2 10x7 + 12x4 + 3x 5x6 + 4x3 x5

...
Table 2: Tribonacci Polynomial Triangle

In this study, based on the definition of Tan and Zhang [11], we make a new
genaralization of the Tribonacci polynomials.

2. Trivariate Fibonacci and Lucas Polynomials

Definition 2.1. Let n > 2 be integer. The recurrence relation of the trivariate
Fibonacci and Lucas polynomials are as follows

(2.1) Hn (x, y, z) = xHn−1 (x, y, z) + yHn−2 (x, y, z) + zHn−3 (x, y, z)
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with the initial conditions

H0 (x, y, z) = 0, H1 (x, y, z) = 1, H2 (x, y, z) = x

and

(2.2) Kn (x, y, z) = xKn−1 (x, y, z) + yKn−2 (x, y, z) + zKn−3 (x, y, z)

with the initial conditions

K0 (x, y, z) = 3, K1 (x, y, z) = x, K2 (x, y, z) = x2 + 2y

respectively.

It is not difficult to see that Hn (1, 1, 1) = Tn, where Tn is n − th Tribonacci
number and Hn

(
x2, x, 1

)
= tn (x), where tn (x) is n − th Tribonacci polynomial,

are special cases of the trivariate Fibonacci polynomials.
The characteristic equation of the recurrences in (2.1) and (2.2) is as

(2.3) λ3 − xλ2 − yλ− z = 0.

The Binet’s formula for the trivariate Fibonacci and Lucas polynomials are as
follows

Hn (x, y, z) =
αn+1

(α− β) (α− γ)
+

βn+1

(β − α) (β − γ)
+

γn+1

(γ − α) (γ − β)

and

Kn (x, y, z) = αn + βn + γn

where α, β and γ are roots of the characteristic equation (2.3), respectively.
Now, we show that some of trivariate Fibonacci and Lucas polynomials in Table

3.
n Hn (x, y, z) Kn (x, y, z)
0 0 3
1 1 x
2 x x2 + 2y
3 x2 + y x3 + 3xy + 3z
4 x3 + 2xy + z x4 + 4x2y + 4xz + 2y2

5 x4 + 3x2y + 2xz + y2 x5 + 5x3y + 5xy2 + 5x2z + 5yz
6 x5 + 4x3y + 3xy2 + 3x2z + 2yz x6 + 6x4y + 9x2y2 + 6x3z + 12xyz + 2y3 + 3z2

...
...

...
Table 3:Trivariate Fibonacci and Lucas Polynomials

The generating functions of the trivariate Fibonacci and Lucas poynomials are
as follows

(2.4) h (t) =

∞∑
n=0

Hn (x, y, z) tn =
t

1− xt− yt2 − zt3

and

(2.5) k (t) =

∞∑
n=0

Kn (x, y, z) tn =
3− 2xt− yt2

1− xt− yt2 − zt3
.

Taking x = y = z = 1 in (2.4), we obtain the generating function of the Tri-
bonacci numbers. Writing x2 instead of x, x instead of y and taking z = 1 in (2.4),
we have the generating function of the Tribonacci polynomials.
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Theorem 2.1. Let Hn (x, y, z) and Kn (x, y, z) be n− th trivariate Fibonacci and
Lucas polynomials, respectively. Then, we get

(2.6) Kn (x, y, z) = xHn (x, y, z) + 2yHn−1 (x, y, z) + 3zHn−2 (x, y, z) .

Proof. Using the generating function of the trivariate Lucas polynomials, we have

∞∑
n=0

Kn (x, y, z) tn =
3− 2xt− yt2

1− xt− yt2 − zt3

= 3
1

1− xt− yt2 − zt3
− 2x

t

1− xt− yt2 − zt3
− y t2

1− xt− yt2 − zt3

= 3

∞∑
n=0

Hn+1 (x, y, z) tn − 2x

∞∑
n=0

Hn (x, y, z) tn − y
∞∑

n=0

Hn−1 (x, y, z) tn

=

∞∑
n=0

(3Hn+1 (x, y, z)− 2xHn (x, y, z)− yHn−1 (x, y, z)) tn.

From the recurrence relation in (2.1), we can write

∞∑
n=0

Kn (x, y, z) tn =

∞∑
n=0

(xHn (x, y, z) + 2yHn−1 (x, y, z) + 3zHn−2 (x, y, z)) tn.

Comparing of the coefficients of tn, we have the desired result. �

Theorem 2.2. The sum of the trivariate Fibonacci and Lucas polynomials are as
follows

(2.7)

n∑
s=0

Hs (x, y, z) =
Hn+2 (x, y, z) + (1− x)Hn+1 (x, y, z) + zHn (x, y, z)− 1

x+ y + z − 1

and
(2.8)
n∑

s=0

Ks (x, y, z) =
Kn+2 (x, y, z) + (x− 1)Kn+1 (x, y, z) + zKn (x, y, z)− (3− 2x− y)

x+ y + z − 1

for x+ y + z 6= 1, respectively.

Proof. Using the Binet’s formulas, it can be proved. �

Taking x = y = z = 1 in (2.7), we have the sum of the Tribonacci numbers as

n∑
s=0

Ts =
Tn+2 + Tn − 1

2
.

Similarly, we obtain the sum of the Tribonacci polynomials as

n∑
s=0

ts (x) =
tn+2 (x) +

(
1− x2

)
tn+1 (x) + tn (x)− 1

x2 + x
.

Similar to Table 1 and Table 2, we can give the trivariate Fibonacci polynomial
triangle as follows
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n�i 0 1 2 3 4 . . .
0 1
1 x y
2 x2 2xy + z y2

3 x3 3x2y + 2xz 3xy2 + 2yz y3

4 x4 4x3y + 3x2z 6x2y2 + 6xyz + z2 4xy3 + 3y2z y4

...
Table 4: Trivariate Fibonacci Polynomial Triangle

G (n, i, x, y, z) is the element in the n− th row and i− th column of the trivariate
Fibonacci polynomial triangle. Then, we get

(2.9) G (n, i, x, y, z) =

i∑
j=0

(
i

j

)(
n− j
i

)
xn−i−jyi−jzj

and

G (n+ 1, i, x, y, z) = xG (n, i, x, y, z)+yG (n, i− 1, x, y, z)+zG (n− 1, i− 1, x, y, z)

where

G (n, 0, x, y, z) = xn, G (n, n, x, y, z) = yn.

The sum of elements on the rising diagonal lines in the trivariate Fibonacci
polynomial triangle is the trivariate Fibonacci polynomial Hn (x, y, z) . Thus, we
have

Hn (x, y, z) =

bn−1
2 c∑

i=0

G (n− i− 1, i, x, y, z) .

Consequently, we obtain an explicit formula for the trivariate Fibonacci polynomial
Hn (x, y, z) as

(2.10) Hn (x, y, z) =

bn−1
2 c∑

i=0

i∑
j=0

(
i

j

)(
n− i− j − 1

i

)
xn−2i−j−1yi−jzj .

Taking x = y = z = 1 in (2.10), we obtain the explicit formula for the Tribonacci
numbers as

Hn (1, 1, 1) =

bn−1
2 c∑

i=0

i∑
j=0

(
i

j

)(
n− i− j − 1

i

)
Also, we have

Hn

(
x2, x, 1

)
=

bn−1
2 c∑

i=0

i∑
j=0

(
i

j

)(
n− i− j − 1

i

)
x2n−3(i+j)−2

which is the explicit formula for the Tribonacci polynomials in [9].
Similarly, we have an explicit formula for the trivariate Lucas polynomials as

follows

(2.11) Kn (x, y, z) =

bn
2 c∑

i=0

i∑
j=0

n

n− i− j

(
i

j

)(
n− i− j

i

)
xn−2i−jyi−jzj .
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Theorem 2.3. Let Hn (x, y, z) and Kn (x, y, z) be n− th trivariate Fibonacci and
Lucas polynomials, respectively. Then, we get

x
∂Kn (x, y, z)

∂x
+ y

∂Kn (x, y, z)

∂y
+ z

∂Kn (x, y, z)

∂z
= nHn+1 (x, y, z) .

Proof. Using partial derivations of the explicit formula of the trivariate Lucas poly-
nomial Kn (x, y, z) , we have

∂Kn (x, y, z)

∂x
=

∂

∂x

bn
2 c∑

i=0

i∑
j=0

n

n− i− j

(
i

j

)(
n− i− j

i

)
xn−2i−jyi−jzj


=

bn
2 c∑

i=0

i∑
j=0

n

n− i− j
(n− 2i− j)

(
i

j

)(
n− i− j

i

)
xn−2i−j−1yi−jzj

= n

bn−1
2 c∑

i=0

i∑
j=0

(
i

j

)(
n− i− j − 1

i

)
xn−2i−j−1yi−jzj

= nHn (x, y, z) .

Similarly, we obtain
∂Kn (x, y, z)

∂y
= nHn−1 (x, y, z)

and
∂Kn (x, y, z)

∂z
= nHn−2 (x, y, z) .

Using the recurrence relation (2.1), we have

x
∂Kn (x, y, z)

∂x
+ y

∂Kn (x, y, z)

∂y
+ z

∂Kn (x, y, z)

∂z
= nHn+1 (x, y, z) .

�

The generating matrix of the Tribonacci polynomials was introduced in [3, 4].
Similarly, the trivariate Fibonacci polynomials are generated by the matrix Q,where

Q =

 x 1 0
y 0 1
z 0 0


with the help of mathematical induction on n, we get

Qn =

 Hn+1 Hn Hn−1
yHn + zHn−1 yHn−1 + zHn−2 yHn−2 + zHn−3

zHn zHn−1 zHn−2

 ,

where Hn is n− th trivariate Fibonacci polynomial, namely Hn (x, y, z) = Hn.

Theorem 2.4. Let m and n be positive integers. Then, we get

Hm+n (x, y, z) = Hm+1 (x, y, z)Hn (x, y, z) +Hm (x, y, z)Hn+1 (x, y, z)

+zHm−1 (x, y, z)Hn−1 (x, y, z)

−xHm (x, y, z)Hn (x, y, z) .(2.12)

Proof. It can be proved by using the identity Qn+m = QnQm and matrix equality.
�
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The identity in (2.12) is similar to Honsberger formula for the Fibonacci like
sequences. From the special cases of (2.12), we obtain some identities for the
trivariate Fibonacci polynomials. Therefore, taking m = n in (2.12), we have

H2n (x, y, z) = zH2
n−1 (x, y, z)− xH2

n (x, y, z) + 2Hn+1 (x, y, z)Hn (x, y, z)

Writing n+ 1 instead of m in (2.12), and using the recurennce relation in (2.1), we
obtain

H2n+1 (x, y, z) = H2
n+1 (x, y, z) + yH2

n (x, y, z) + 2zHn (x, y, z)Hn−1 (x, y, z) .

Theorem 2.5. Let Hn (x, y, z) be n − th trivariate Fibonacci polynomial. Then,
we get

(2.13)

∣∣∣∣∣∣
Hn+2 (x, y, z) Hn+1 (x, y, z) Hn (x, y, z)
Hn+1 (x, y, z) Hn (x, y, z) Hn−1 (x, y, z)
Hn (x, y, z) Hn−1 (x, y, z) Hn−2 (x, y, z)

∣∣∣∣∣∣ = −zn−1.

Proof. It’s note that det (Q) = z, det (Qn) = zn. Using the determinants of the
matrices Q and Qn , we obtain∣∣∣∣∣∣

Hn+1 Hn Hn−1
yHn + zHn−1 yHn−1 + zHn−2 yHn−2 + zHn−3

zHn zHn−1 zHn−2

∣∣∣∣∣∣ = zn.

Multiplying the first row of Qn by x and then adding to second row, then, exchang-
ing rows 1 and 2, we have∣∣∣∣∣∣

Hn+2 (x, y, z) Hn+1 (x, y, z) Hn (x, y, z)
Hn+1 (x, y, z) Hn (x, y, z) Hn−1 (x, y, z)
zHn (x, y, z) zHn−1 (x, y, z) zHn−2 (x, y, z)

∣∣∣∣∣∣ = −zn

From the properties of determinant, we obtain∣∣∣∣∣∣
Hn+2 (x, y, z) Hn+1 (x, y, z) Hn (x, y, z)
Hn+1 (x, y, z) Hn (x, y, z) Hn−1 (x, y, z)
Hn (x, y, z) Hn−1 (x, y, z) Hn−2 (x, y, z)

∣∣∣∣∣∣ = −zn−1.

�

In this way, we obtain the interesting determinantal property for the trivariate
Fibonacci polynomials. The result of the determinant in (2.13) is similar to the
Cassini like identity for the trivariate Fibonacci polynomials. Taking x = y = z = 1
in (2.13), we obtain the determinantal property for the Tribonacci numbers. Writing
x2 instead of x, x instead of y and taking z = 1, we have the determinantal property
for the Tribonacci polynomials in [3].
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ON SHERMAN’S TYPE INEQUALITIES FOR n-CONVEX

FUNCTION WITH APPLICATIONS

M. ADIL KHAN, S. IVELIĆ BRADANOVIĆ, AND J. PEČARIĆ

Abstract. New generalizations of Sherman’s inequality for convex functions
of higher order are obtained by using Hermite’s interpolating polynomials and

Green’s function. The Ostrowski and Grüss type bounds for the identity re-

lated to generalized Sherman’s inequality are established. Some applications
are discussed.

1. Introduction

Let I ⊂ R be an interval and x = (x1, ..., xm), y = (y1, ..., ym) ∈ Im, where
m ≥ 2. Let x[i] and y[i] denote the elements of x and y sorted in decreasing order.
We say that x majorizes y or y is majorized by x and write y ≺ x if

(1.1)

k∑
i=1

y[i] ≤
k∑
i=1

x[i], k = 1, ....,m− 1,

and the equation holds for k = m.
In majorization theory, the next result, well known as Majorization theorem,

plays a very important role (see [15]).

Theorem 1.1. Let φ : I → R be a convex continuous function on an interval I
and x = (x1, ..., xm), y = (y1, ..., ym) ∈ Im. If y ≺ x, then

m∑
i=1

φ(yi) ≤
m∑
i=1

φ(xi).

Recently some generalizations of majorization theorem with applications are
obtained (see [1]-[5], [12]).
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S. Sherman [16], considering a weighted relation of majorization

k∑
i=1

viyi ≤
l∑

j=1

ujxj ,

for nonnegative weights uj and vi, proved the general result which include the row
stochastic k × l matrix, i.e. matrix A = (aij) ∈Mkl(R) such that

aij ≥ 0 for all i = 1, ..., k, j = 1, ..., l,

l∑
j=1

aij = 1 for all i = 1, ..., k,

and holds under relations

yi =
l∑

j=1

xjaij , for i = 1, ..., k,(1.2)

uj =
k∑
i=1

viaij , for j = 1, ..., l.

His result can be formulated as the following theorem.

Theorem 1.2. Let x ∈ [α, β]l, y ∈ [α, β]k, u ∈ [0,∞)l and v ∈ [0,∞)k be such
that (1.2) holds for some row stochastic matrix A ∈Mkl(R). Then for every convex
function φ : [α, β]→ R we have

(1.3)

k∑
q=1

vqφ(yq) ≤
l∑

p=1

upφ(xp).

From Sherman’s theorem we can easily get Majorization theorem by setting k = l
and v = (1, ..., 1). Specially, when k = l and all weights vi = uj are equal, the
condition (1.2), i.e. u = vA, assures the stochasticity on columns, so in that case
we deal with doubly stochastic matrices. It is well known that for x,y ∈ Rl is valid

y ≺ x if and only if y = xA

for some doubly stochastic matrix A ∈Mll(R).
The aim of this paper is to establish generalizations of Sherman’s result which

hold for real, not necessary nonnegative vectors u, v and matrix A and for convex
functions of higher order. Recently some related results are obtained (see [6], [10]).

The class of convex functions of higher order, i.e. the notion of n-convexity was
defined in terms of divided differences by T. Popoviciu. A function φ : [α, β] → R
is n-convex, n ≥ 0, if its nth order divided differences [x0, ..., xn;φ] are nonnegative
for all choices of (n + 1) distinct points xi ∈ [α, β], i = 0, ..., n. Thus, a 0-convex
function is nonnegative, 1-convex function is nondecreasing and 2-convex function
is convex in the usual sense. If φ(n) exists, then φ is n-convex iff φ(n) ≥ 0 (see [15]).

At the end we point definition and some basic facts about exponential convexity.
For more details see [6], [11]. Here I denotes an open interval in R.

Definition 1.1. [14] For a fixed n ∈ N, a function φ : I → R is n-exponentially
convex in the Jensen sense on I if

n∑
i,j=1

pipjφ

(
xi + xj

2

)
≥ 0
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holds for all choices pi ∈ R and xi ∈ I, i = 1, ..., n. A function φ : I → R is
n-exponentially convex on I if it is n-exponentially convex in the Jensen sense and
continuous on I.

Remark 1.1. Let φ : I → R be a given function.

• φ is exponentially convex in the Jensen sense on I, if it is n-exponentially
convex in the Jensen sense for all n ∈ N.
• A positive function φ is log-convex, i.e. log φ is convex, in the Jensen sense

on I iff it is 2-exponentially convex in the Jensen sense on I.
• A positive function φ is log-convex on I if it is continuous and log-convex

in the Jensen sense on I
• A positive exponentially convex function φ on I is also log-convex on I.

2. Preliminaries

We use notations and terminology from [7].
Let −∞ < α < β < ∞ and let α ≤ a1 < a2 · · · < ar ≤ β be r (r ≥ 2) distinct

points. For φ ∈ Cn([α, β]) (n ≥ r) a unique polynomial ρH(s) of degree (n − 1)
exists, such that Hermite conditions hold

(H) ρ
(i)
H (aj) = φ(i)(aj); 0 ≤ i ≤ kj , 1 ≤ j ≤ r,

where
r∑
j=1

kj + r = n.

Specially, for r = 2, 1 ≤ m ≤ n − 1, k1 = m − 1 and k2 = n −m − 1 we have
type (m,n−m) conditions:

ρ
(i)
(m,n)(α) = φ(i)(α), 0 ≤ i ≤ m− 1,

ρ
(i)
(m,n)(β) = φ(i)(β), 0 ≤ i ≤ n−m− 1.

For n = 2m, r = 2 and k1 = k2 = m−1 we have two-point Taylor conditions:

ρ
(i)
2T (α) = φ(i)(α), ρ

(i)
2T (β) = φ(i)(β), 0 ≤ i ≤ m− 1.

Theorem 2.1. Let −∞ < α < β <∞ and α ≤ a1 < a2 · · · < ar ≤ β be r (r ≥ 2)
distinct points and φ ∈ Cn([α, β]). Then

(2.1) φ(t) = ρH(t) +RH,n(φ, t),

where ρH(t) is the Hermite inrepolating polynomial, i.e.

ρH(t) =

r∑
j=1

kj∑
i=0

Hij(t)φ
(i)(aj),

Hij are fundamental polynomials of the Hermite basis defined by

(2.2) Hij(t) =
1

i!

ω(t)

(t− aj)kj+1−i

kj−i∑
k=0

1

k!

dk

dtk

(
(t− aj)kj+1

ω(t)

)∣∣∣∣∣
t=aj

(t− aj)k,

with

(2.3) ω(t) =

r∏
j=1

(t− aj)kj+1
,
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and the remainder is given by

RH,n(φ, t) =

∫ β

α

GH,n(t, s)φ(n)(s)ds,

where GH,n(t, s) is defined by

(2.4) GH,n(t, s) =


l∑

j=1

kj∑
i=0

(aj−s)n−i−1

(n−i−1)! Hij(t); s ≤ t,

−
r∑

j=l+1

kj∑
i=0

(aj−s)n−i−1

(n−i−1)! Hij(t); s ≥ t,

for all al ≤ s ≤ al+1; l = 0, . . . , r with a0 = α and ar+1 = β.

Remark 2.1. For type (m,n−m) conditions, from Theorem 2.1 we have

φ(t) = ρ(m,n)(t) +R(m,n)(φ, t)

where ρ(m,n)(t) is (m,n−m) interpolating polynomial, i.e.

ρ(m,n)(t) =

m−1∑
i=0

τi(t)φ
(i)(α) +

n−m−1∑
i=0

ηi(t)φ
(i)(β),

with

τi(t) =
1

i!
(t− α)i

( t− β
α− β

)n−m m−1−i∑
p=0

(
n−m+ p− 1

p

)( t− α
β − α

)p
,(2.5)

ηi(t) =
1

i!
(t− β)i

( t− α
β − α

)m n−m−1−i∑
p=0

(
m+ p− 1

p

)( t− β
α− β

)p
,(2.6)

and the remainder is given by

R(m,n)(φ, t) =

∫ β

α

G(m,n)(t, s)φ
(n)(s)ds

with

(2.7) G(m,n)(t, s) =



m−1∑
j=0

[m−1−j∑
p=0

(
n−m+p−1

p

)(
t−α
β−α

)p]
×

(t−α)j(α−s)n−j−1

j!(n−j−1)!

(
β−t
β−α

)n−m
, α ≤ s ≤ t ≤ β

−
n−m−1∑
i=0

[ n−m−i−1∑
q=0

(
m+q−1

q

)(
β−t
β−α

)q]
×

(t−β)i(β−s)n−i−1

i!(n−i−1)!

(
t−α
β−α

)m
, α ≤ t ≤ s ≤ β.

For Type Two-point Taylor conditions, from Theorem 2.1 we have

φ(t) = ρ2T (t) +R2T (φ, t)

where ρ2T (t) is the two-point Taylor interpolating polynomial i.e,

ρ2T (t) =

m−1∑
i=0

m−1−i∑
p=0

(
m+ p− 1

p

)[ (t− α)i

i!

( t− β
α− β

)m( t− α
β − α

)p
φ(i)(α)

+
(t− β)i

i!

( t− α
β − α

)m( t− β
α− β

)p
φ(i)(β)

]
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and the remainder is given by

R2T (φ, t) =

∫ β

α

G2T (t, s)φ(n)(s)ds

with

(2.8) G2T (t, s) =


(−1)m

(2m−1)!p
m(t, s)

m−1∑
j=0

(
m−1+j

j

)
(t− s)m−1−jqj(t, s), s ≤ t;

(−1)m

(2m−1)!q
m(t, s)

m−1∑
j=0

(
m−1+j

j

)
(s− t)m−1−jpj(t, s), s ≥ t;

where p(t, s) = (s−α)(β−t)
β−α , q(t, s) = p(s, t), ∀ t, s ∈ [α, β].

The following lemma describes the positivity of GH,n(t, s) (see [8], [13]).

Lemma 2.1. The function GH,n(t, s), defined by (2.4), has the following properties:

(i)
GH,n(t,s)
ω(t) > 0, a1 ≤ t ≤ ar, a1 < s < ar;

(ii) GH,n(t, s) ≤ 1
(n−1)!(β−α) |ω(t)|;

(iii)
∫ β
α
GH,n(t, s)ds = ω(t)

n! .

Green’s function of Lagrange type is defined on [α, β]× [α, β] by

(2.9) G(t, s) =

{
(t−β)(s−α)

β−α , α ≤ s ≤ t
(s−β)(t−α)

β−α , t ≤ s ≤ β
.

It is convex and continuous in both variables (see [17]).

3. Main results

The next identity related to generalized Sherman’s inequality holds.

Theorem 3.1. Let n ≥ 4 and φ ∈ Cn([α, β]), α ≤ a1 < a2 · · · < ar ≤ β (r ≥ 2) be

the given points and k1, ..., kr ∈ N with
r∑
j=1

kj + r = n. Let x ∈ [α, β]l, y ∈ [α, β]k,

u ∈ Rl and v ∈ Rk be such that (1.2) holds for some matrix A ∈ Mkl(R) whose

entries satisfy the condition
l∑

j=1

aij = 1, i = 1, ..., k. Then

l∑
p=1

upφ(xp)−
k∑
q=1

vqφ(yq)

=

∫ β

α

[
l∑

p=1

upG(xp, t)−
k∑
q=1

vqG(yq, t)

]
r∑
j=1

kj∑
i=0

Hij(t)φ
(i+2)(aj)dt

+

∫ β

α

∫ β

α

[
l∑

p=1

upG(xp, t)−
k∑
q=1

vqG(yq, t)

]
GH,n−2(t, s)φ(n)(s)dsdt,

(3.1)

where G, Hij and GH,n−2 are defined as in (2.9), (2.2) and (2.4), respectively.

Proof. For any function φ ∈ C2([α, β]), we can show integration by parts that the
following identity holds

(3.2) φ(x) =
β − x
β − α

φ(α) +
x− α
β − α

φ(β) +

∫ β

α

G(x, t)φ′′(t)dt,
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where G is defined by (2.9).

By an easy calculation, applying (3.2) in
l∑

p=1
upφ(xp)−

k∑
q=1

vqφ(yq) and using (1.2),

we get

l∑
p=1

upφ(xp)−
k∑
q=1

vqφ(yq)

=

∫ β

α

[
l∑

p=1

upG(xp, t)−
k∑
q=1

vqG(yq, t)

]
φ′′(t)dt.(3.3)

By Theorem 2.1, the function φ′′(t) can be expressed as

(3.4) φ′′(t) =
r∑
j=1

kj∑
i=0

Hij(t)φ
(i+2)(aj) +

∫ β

α

GH,n−2(t, s)φ(n)(s)ds.

Now, combining (3.3) and (3.4), we get (3.1). �

Using the previous identity we get the following generalization of Sherman’s
theorem which hold for real, not necessary nonnegative vectors u, v and matrix A.

Theorem 3.2. Let n ≥ 4 and φ ∈ Cn([α, β]) be n-convex on [α, β], α = a1 <

a2 · · · < ar = β (r ≥ 2) be the given points and k1, ..., kr ∈ N with
r∑
j=1

kj + r = n.

Let x ∈ [α, β]l, y ∈ [α, β]k, u ∈ Rl and v ∈ Rk be such that (1.2) holds for some

matrix A ∈Mkl(R) whose entries satisfy the condition
l∑

j=1

aij = 1, i = 1, ..., k and

(3.5)

l∑
p=1

upG(xp, t)−
k∑
q=1

vqG(yq, t) ≥ 0, t ∈ [α, β].

(i) If kj is odd for each j = 2, .., r, then

l∑
p=1

upφ(xp)−
k∑
q=1

vqφ(yq)(3.6)

≥
∫ β

α

[
l∑

p=1

upG(xp, t)−
k∑
q=1

vqG(yq, t)

]
r∑
j=1

kj∑
i=0

Hij(t)φ
(i+2)(aj)dt.

(ii) If kj is odd for each j = 2, .., r−1 and kr is even, then the reverse inequality
in (3.6) holds.

Proof. (i) Since φ ∈ Cn([α, β]) is n-convex, then φ(n) ≥ 0.

Clearly, (t− a1)
k1+1 ≥ 0 for any t ∈ [α, β] and if kj is odd for each j = 2, .., r, then

the function ω, defined by (2.3), satisfied ω(t) ≥ 0 for any t ∈ [α, β]. Therefore, by
Lemma 2.1 (i) it follows that GH,n−2(t, s) ≥ 0. Hence, we can apply Theorem 3.1
to obtain (3.6).
(ii) This part we can prove similarly. �

Under Sherman’s assumptions of non-negativity of vectors u, v and matrix A
the following generalizations hold.
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Theorem 3.3. Let n ≥ 4 and φ ∈ Cn([α, β]) be n-convex on [α, β], α = a1 <

a2 · · · < ar = β (r ≥ 2) be the given points and k1, ..., kr ∈ N with
r∑
j=1

kj + r = n.

Let x ∈ [α, β]l, y ∈ [α, β]k, u ∈ [0,∞)l and v ∈ [0,∞)k be such that (1.2) holds for
some row stochastic matrix A ∈Mkl(R).

(i) If kj is odd for each j = 2, .., r, then (3.6) holds.
(ii) If kj is odd for each j = 2, .., r−1 and kr is even, then the reverse inequality

in (3.6) holds.
(iii) If (3.6) holds and the function

(3.7) F̄ (·) =

r∑
j=1

kj∑
i=0

∫ β

α

G(·, t)Hij(t)φ
(i+2)(aj)dt

is convex on [α, β], then (1.3) holds.

Proof. (i) Since the functionG(., t), t ∈ [α, β], is convex, then by Sherman’s theorem
we have

l∑
p=1

upG(xp, t)−
k∑
q=1

vqG(yq, t) ≥ 0, t ∈ [α, β].

Applying Theorem 3.2 and Lemma 2.1 (i) we get (3.6).
(ii) Similarly we can prove this part.
(iii) If (3.6) holds, the right hand side of (3.6) can be rewriting in the form

l∑
p=1

upF̄ (xp)−
k∑
q=1

vqF̄ (yq),

where F̄ is defined by (3.7). If F̄ is convex, then by Sherman’s theorem we have

l∑
p=1

upF̄ (xp)−
k∑
q=1

vqF̄ (yq) ≥ 0,

i.e. the right hand side of (3.6) is nonnegative, so (1.3) immediately follows. �

As a direct consequence of the previous result, considering particular case of Her-
mite interpolating polynomial with type (m,n−m) conditions, we get the following
corollary.

Corollary 3.1. Let n ≥ 4, 1 ≤ m ≤ n − 1 and φ ∈ Cn([α, β]) be n-convex. Let
x ∈ [α, β]l, y ∈ [α, β]k, u ∈ [0,∞)l and v ∈ [0,∞)k be such that (1.2) holds for
some row stochastic matrix A ∈Mkl(R).

(i) If n−m is even, then

l∑
p=1

upφ(xp)−
k∑
q=1

vqφ(yq)

(3.8)

≥
β∫
α

[
l∑

p=1

upG(xp, t)−
k∑
q=1

vqG(yq, t)

](
m−1∑
i=0

τi(t)φ
(i+2)(α) +

n−m−1∑
i=0

ηi(t)φ
(i+2)(β)

)
dt,

where G, τi and ηi are defined as in (2.9), (2.5) and (2.6), respectively.
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(ii) If n−m is odd, then the reverse inequality in (3.8) holds.
(iii) If (3.8) holds and the function

(3.9) F̃ (·) =

∫ β

α

G(·, t)

(
m−1∑
i=0

τi(t)φ
(i)(α) +

n−m−1∑
i=0

ηi(t)φ
(i)(β)

)
dt

is convex on [α, β], then (1.3) holds.

Considering particular case of Hermite interpolating polynomial with two-point
Taylor conditions we get the next generalizations.

Corollary 3.2. Let m ≥ 2 and φ ∈ C2m([α, β]) be 2m-convex. Let x ∈ [α, β]l,
y ∈ [α, β]k, u ∈ [0,∞)l and v ∈ [0,∞)k be such that (1.2) holds for some row
stochastic matrix A ∈Mkl(R).

(i) If m is even, then

(3.10)

l∑
p=1

upφ(xp)−
k∑
q=1

vqφ(yq) ≥
∫ β

α

[
l∑

p=1

upG(xp, t)−
k∑
q=1

vqG(yq, t)

]
F (t)dt,

where

F (t) =

m−1∑
i=0

m−1−i∑
p=0

(
m+ p− 1

p

)[
(t− α)i

i!

(
t− β
α− β

)m(
t− α
β − α

)p
φ(i+2)(α)

+
(t− β)i

i!

(
t− α
β − α

)m(
t− β
α− β

)p
φ(i+2)(β)

]
.

(ii) If m is odd, then the reverse inequality in (3.10) holds.
(iii) If (3.10) holds and the function

F̂ (·) =

∫ β

α

G(·, t)F (t)dt

is convex on [α, β], then (1.3) holds.

4. Grüss and Ostrowski type inequalities related to generalized
Sherman’s inequality

P. Cerone and S. S. Dragomir [9], considering the Čebyšev functional

T (f, g) :=
1

β − α

∫ β

α

f(t)g(t)dt− 1

β − α

∫ β

α

f(t)dt · 1

β − α

∫ β

α

g(t)dt

for Lebesgue integrable functions f, g : [α, β]→ R, proved the following two results
which contain the Grüss and Ostrowski type inequalities.

Theorem 4.1. Let f : [α, β] → R be Lebesgue integrable and g : [α, β] → R be
absolutely continuous with (· − α)(β − ·)(g′)2 ∈ L[α, β]. Then

(4.1) |T (f, g)| ≤ 1√
2

[T (f, f)]
1
2

1√
β − α

(∫ β

α

(x− α)(β − x)[g′(x)]2dx

) 1
2

.

The constant 1√
2

in (4.1) is the best possible.
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Theorem 4.2. Let g : [α, β] → R be monotonic nondecreasing and f : [α, β] → R
be absolutely continuous with f ′ ∈ L∞[α, β]. Then

(4.2) |T (f, g)| ≤ 1

2(β − α)
‖f ′‖∞

∫ β

α

(x− α)(β − x)dg(x).

The constant 1
2 in (4.2) is the best possible.

To avoid many notations, under assumptions of Theorem 3.1, we define the
function B : [α, β]→ R by

(4.3) B(s) =

∫ β

α

[
l∑

p=1

upG(xp, t)−
m∑
q=1

vqG(yq, t)

]
GH,n−2(t, s)dt.

Then T (B,B) denotes the Čebyšev functional

T (B,B) =
1

β − α

∫ β

α

B2(s)ds−

(
1

β − α

∫ β

α

B(s)ds

)2

.

Theorem 4.3. Suppose that all the assumptions of Theorem 3.1 hold. Additionally,
let φ(n) be absolutely continuous on [α, β] with (· −α)(β− ·)(φ(n+1))2 ∈ L[α, β] and
B be defined as in (4.3). Then the following representation holds

l∑
p=1

upφ(xp)−
k∑
q=1

vqφ(yq)

=

∫ β

α

[
l∑

p=1

upG(xp, t)−
k∑
q=1

vqG(yq, t)

]
r∑
j=1

kj∑
i=0

Hij(t)φ
(i+2)(aj)dt

+
φ(n−1)(β)− φ(n−1)(α)

β − α

∫ β

α

B(s)ds+R(φ;α, β)(4.4)

and the remainder R(φ;α, β) satisfies the estimation

(4.5) |R(φ;α, β)| ≤
√
β − α√

2
[T (B,B)]

1
2

∣∣∣∣∣
∫ β

α

(s− α)(β − s)[φ(n+1)(s)]2ds

∣∣∣∣∣
1
2

Proof. Applying Theorem 4.1 for f → B and g → φ(n), we get∣∣∣∣∣ 1

β − α

∫ β

α

B(s)φ(n)(s)ds− 1

β − α

∫ β

α

B(s)ds · 1

β − α

∫ β

α

φ(n)(s)ds

∣∣∣∣∣
≤ 1√

2
[T (B,B)]

1
2

1√
β − α

(∫ β

α

(s− α)(β − s)[φ(n+1)(s)]2ds

) 1
2

.

Therefore, we have∫ β

α

B(s)φ(n)(s)ds =

(
φ(n−1)(β)− φ(n−1)(α)

)
β − α

∫ β

α

B(s)ds+R(φ;α, β),

where the remainder R(φ;α, β) satisfies the estimation (4.5).
Now from the identity (3.1) we obtain (4.4). �
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Theorem 4.4. Suppose that all the assumptions of Theorem 3.1 hold. Additionally,
let φ(n+1) ≥ 0 on [α, β] and B be defined as in (4.3). Then the representation (4.4)
holds and R(φ;α, β) satisfies the estimation

(4.6) |R(φ;α, β)| ≤ ‖B′‖∞
{
φ(n−1)(β) + φ(n−1)(α)

2
− φ(n−2)(β)− φ(n−2)(α)

β − α

}
.

Proof. Applying Theorem 4.2 for f → B and g → φ(n), we get∣∣∣∣∣ 1

β − α

∫ β

α

B(s)φ(n)(s)ds− 1

β − α

∫ β

α

B(s)ds · 1

β − α

∫ β

α

φ(n)(s)ds

∣∣∣∣∣
≤ 1

2(β − α)
‖B′‖∞

∫ β

α

(s− α)(β − s)φ(n+1)(s)ds.(4.7)

Since ∫ β

α

(s− α)(β − s)φ(n+1)(s)ds =

∫ β

α

[2s− (α+ β)]φ(n)(s)ds

= (β − α)
[
φ(n−1)(β) + φ(n−1)(α)

]
− 2

[
φ(n−2)(β)− φ(n−2)(α)

]
,

using identity (3.1) and the inequality (4.7) we deduce (4.6). �

Theorem 3.2 gives the lower bound for the expression

l∑
p=1

upφ(xp)−
k∑
q=1

vqφ(yq)

−
∫ β

α

[
l∑

p=1

upG(xp, t)−
k∑
q=1

vqG(yq, t)

]
r∑
j=1

kj∑
i=0

Hij(t)φ
(i+2)(aj)dt.

The upper bound is presented in the next theorem.

Theorem 4.5. Suppose that all the assumptions of Theorem 3.1 hold. Additionally,
let 1 ≤ p, q ≤ ∞, 1/p + 1/q = 1,

∣∣φ(n)
∣∣p ∈ Lp [α, β] and B be defined as in (4.3).

Then ∣∣∣∣∣
l∑

p=1

upφ(xp)−
k∑
q=1

vqφ(yq)

−
∫ β

α

[
l∑

p=1

upG(xp, t)−
k∑
q=1

vqG(yq, t)

]
r∑
j=1

kj∑
i=0

Hij(t)φ
(i+2)(aj)dt

∣∣∣∣∣∣
≤
∥∥∥φ(n)

∥∥∥
p
‖B‖q .(4.8)

The constant ‖B‖q is sharp for 1 < p ≤ ∞ and the best possible for p = 1.
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Proof. Applying Hölder’s inequality to the identity (3.1) we obtain∣∣∣∣∣
l∑

p=1

upφ(xp)−
k∑
q=1

vqφ(yq)(4.9)

−
∫ β

α

[
l∑

p=1

upG(xp, t)−
k∑
q=1

vqG(yq, t)

]
r∑
j=1

kj∑
i=0

Hij(t)φ
(i+2)(aj)dt

∣∣∣∣∣∣
=

∣∣∣∣∣
∫ β

α

B(s)φ(n)(s)ds

∣∣∣∣∣ ≤ ∥∥∥φ(n)
∥∥∥
p
‖B‖q .

For the proof of the sharpness of the constant ‖B‖q let us find a function φ for

which the equality in (4.9) holds.
For 1 < p <∞ take φ to be such that

φ(n)(s) = sgnB(s) |B(s)| .

For p =∞ take φ(n)(s) = sgnB(s).
For p = 1 we prove that

(4.10)

∣∣∣∣∣
∫ β

α

B(s)φ(n)(s)ds

∣∣∣∣∣ ≤ max
s∈[α,β]

|B(s)|

(∫ β

α

∣∣∣φ(n)(s)
∣∣∣ ds)

is the best possible inequality.
Assume that |B(s)| attains its maximum at s0 ∈ [α, β]. First we assume that B(s0) >
0. For ε small enough we define φε(s) by

φε(s) =


0, α ≤ s ≤ s0,

1
ε n! (s− s0)n, s0 ≤ s ≤ s0 + ε,
1
n! (s− s0)n−1, s0 + ε ≤ s ≤ β.

Then for ε small enough we have∣∣∣∣∣
∫ β

α

B(s)φ(n)(s)ds

∣∣∣∣∣ =

∣∣∣∣∫ s0+ε

s0

B(s)
1

ε
ds

∣∣∣∣ =
1

ε

∫ s0+ε

s0

B(s)ds.

Now from (4.10) we have

1

ε

∫ s0+ε

s0

B(s)ds ≤ B(s0)

∫ s0+ε

s0

1

ε
ds = B(s0).

Since

lim
ε→0

1

ε

∫ s0+ε

s0

B(s)ds = B(s0)

then the statement follows.
In case B(s0) < 0, we define φε(s) by

φε(s) =


1
n! (s− s0 − ε)n−1, α ≤ s ≤ s0,

− 1
εn! (t− t0 − ε)

n, s0 ≤ s ≤ s0 + ε,

0, s0 + ε ≤ s ≤ β,

and the rest of the proof is the same as above. �
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5. Some applications

Motivated by the inequality (3.6), under the assumptions of Theorems 3.2, we
define the linear functional Λ : Cn([α, β])→ R by

Λ(φ) =

l∑
p=1

upφ(xp)−
k∑
q=1

vqφ(yq)

−
∫ β

α

[
l∑

p=1

upG(xp, t)−
k∑
q=1

vqG(yq, t)

]
r∑
j=1

kj∑
i=0

Hij(t)φ
(i+2)(aj)dt.(5.1)

Remark 5.1. Note that if φ ∈ Cn([α, β]) is n-convex, then by Theorem 3.2 we have

Λ(φ) ≥ 0.

Using the linearity and positivity of defined functional we derive mean-value
theorems of the Lagrange and Cauchy type.

Theorem 5.1. Let φ ∈ Cn([α, β]) and Λ : Cn([α, β])→ R be the linear functional
defined by (5.1). Then there exist ξ ∈ [α, β] such that

Λ(φ) = φ(n)(ξ)Λ(ϕ),

where ϕ(x) = xn

n! .

Proof. Similar to the proof of Theorem 4.1 in [11]. �

Theorem 5.2. Let φ, ψ ∈ Cn([α, β]) and Λ : Cn([α, β]) → R be the linear func-
tional defined by (5.1). Then there exists ξ ∈ [α, β] such that

(5.2)
Λ(φ)

Λ(ψ)
=
φ(n)(ξ)

ψ(n)(ξ)
,

provided that the denominators are non-zero

Proof. Similar to the proof of Corollary 4.2 in [11]. �

Remark 5.2. If φ(n)

ψ(n) is an invertible function, then we get

ξ =

(
φ(n)

ψ(n)

)−1(
Λ(φ)

Λ(ψ)

)
which is exactly mean of Chauchy type of the segment [α, β].

Applying Exponential convexity method [11], we may interpret our results in the
form of exponentially convex functions or in the special case log convex functions.
In order to obtain such results, we define the families of functions as follows.

For every choice of l+ 1 mutually different points x0, x1, ..., xl ∈ [α, β] we define

• F1 = {φt : [α, β] → R : t ∈ I and t 7→ [x0, x1, ..., xl;φt] is n-exponentially
convex in the Jensen sense on I}
• F2 = {φt : [α, β] → R : t ∈ I and t 7→ [x0, x1, ..., xl;φt] is exponentially

convex in the Jensen sense on I}
• F3 = {φt : [α, β] → R : t ∈ I and t 7→ [x0, x1, ..., xl;φt] is 2-exponentially

convex in the Jensen sense on I}

Theorem 5.3. Let Λ be the linear functional defined as in (5.1) associated with
family F1. Then the following statements hold:
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(i) The function t 7→ Λ(φt) is n-exponentially convex in the Jensen sense on
I.

(ii) If the function t 7→ Λ(φt) is continuous on I, then it is n-exponentially
convex on I.

Proof. (i) We define the function h : [α, β]→ R by

h(x) =

n∑
j,k=1

pjpkφsjk(x),

where pj , sj ∈ R, j = 1, ..., n, sjk =
sj+sk

2 , 1 ≤ j, k ≤ n, and φsjk ∈ F1.
Since t 7→ [x0, x1, ..., xl;φt] is n-exponentially convex in the Jensen sense on I, then

[x0, x1, ..., xl;h] =

n∑
j,k=1

pjpk
[
x0, x1, ..., xl;φsjk

]
≥ 0,

i.e. h is l-convex. Therefore, we have

Λ(h) =

n∑
j,k=1

pjpkΛ
(
φsjk

)
≥ 0.

Hence, the function t 7→ Λ(φt) is n-exponentially convex in the Jensen sense on I.
(ii) Follows from (i) and Definition 1.1. �

The following corollary is an easy consequence of the previous theorem.

Corollary 5.1. Let Λ be the linear functional defined as in (5.1) associated with
family F2. Then the following statements hold:

(i) The function t 7→ Λ(φt) is exponentially convex in the Jensen sense on I.
(ii) If the function t 7→ Λ(φt) is continuous on I, then it is exponentially convex

on I.

Corollary 5.2. Let Λ be the linear functional defined as in (5.1) associated with
family F3. Then the following statements hold:

(i) If the function t 7→ Λ(φt) is continuous on I, then it is 2-exponentially
convex on I. If t 7→ Λ(φt) is additionally positive, then it is also log-convex
on I. Furthermore, for every choice r, s, t ∈ I, such that r < s < t, it holds

[Λ(φs)]
t−r ≤ [Λ(φr)]

t−s
[Λ(φr)]

s−r
.

(ii) If the function t 7→ Λ(φt) is positive and differentiable on I, then for all
r, s, u, v ∈ I such that r ≤ u, s ≤ v, we have

(5.3) µr,s (Λ,F3) ≤ µu,v (Λ,F3) ,

where

(5.4) µr,s (Λ,F3) =


(

Λ(φr)
Λ(φs)

) 1
r−s

, r 6= s,

exp
(

d
dr (Λ(φr))

Λ(φr)

)
, r = s.

Proof. (i) The first part of statement is an easy consequence of Theorem 5.3 and
the second one of Remark 1.1.
Since t 7→ Λ(φt) is log-convex on I, i.e. t 7→ log Λ(φt) is convex on I, then by
definition we have

(r − t) log Λ(φt) + (t− s) log Λ(fr) + (s− r) log Λ(fr) ≥ 0
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for every choice r, s, t ∈ I, such that r < s < t. Therefore, we have

[Λ(φs)]
t−r ≤ [Λ(φr)]

t−s
[Λ(φr)]

s−r
.

(ii) Since t 7→ log Λ(φt) is convex on I, by definition we have

(5.5)
log Λ(φr)− log Λ(φs)

r − s
≤ log Λ(φu)− log Λ(φv)

u− v

for r ≤ u, s ≤ v, r 6= u, s 6= v. Therefore, we have

µr,s (Λ,F3) ≤ µu,v (Λ,F3) .

Case r = s, u = v follows from (5.5) as limiting case. �

Using obtained mean-valued theorems and results regarding the exponential con-
vexity, we may deduce some new classes of two-parameter Cauchy-type means.

For example, consider the family of functions

Ω = {ϕt : (0,∞)→ (0,∞) : t ∈ (0,∞)}

defined by

ϕt(x) =
e−x
√
t(

−
√
t
)n .

Since dnϕt
dxn (x) = e−x

√
t > 0, the function ϕt is n-convex function for every t > 0.

Moreover, the function t 7→ dnϕt
dxn (x) is exponentially convex. Therefore, using

the same arguments as in proof of Theorem 5.3, we conclude that the function
t 7→ [x0, x1, ..., xl;ϕt] is exponentially convex (and so exponentially convex in the
Jensen sense ). Then from Corollary 5.1 it follows that t 7→ Λ(ϕt) is exponentially
convex in the Jensen sense. It is easy to verify that the function t 7→ Λ(ϕt) is
continuous, so it is exponentially convex.

For this family of functions, with assumption that [α, β] ⊂ (0,∞) and t 7→ Λ(ϕt)
is positive, (5.4) becomes

µη,ζ =

ζnηn .
l∑

p=1
upe
−xp
√
η −

k∑
q=1

vqe
−yq
√
η −A1

l∑
p=1

upe−xp
√
ζ −

k∑
q=1

vqe−yq
√
ζ −B1


1

η−ζ

, η 6= ζ,

µη,η = exp


k∑
q=1

vqyqe
−yq
√
η −

l∑
p=1

upxpe
−xp
√
η +A2

2
√
η

(
l∑

p=1
upe−xp

√
η −

k∑
q=1

vqe−yq
√
η −A1

) − n

η

 ,
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where

A1 =

∫ β

α

(
l∑

p=1
upG(xp, t)−

k∑
q=1

vqG(yq, t)

)
r∑
j=1

kj∑
i=0

Hij(t)(−1)i+2η1+ i
2 e−aj

√
ηdt,

A2 =

∫ β

α

(
l∑

p=1
upG(xp, t)−

k∑
q=1

vqG(yq, t)

)
r∑
j=1

kj∑
i=0

Hij(t)
di+2

dxi+2
(xe−x

√
η)|x=ajdt,

B1 =

∫ β

α

(
l∑

p=1
upG(xp, t)−

k∑
q=1

vqG(yq, t)

)
r∑
j=1

kj∑
i=0

Hij(t)(−1)i+2ζ1+ i
2 e−aj

√
ζdt.

Using Theorem 5.2 it follows that

µη,ζ (Λ,Ω) = −
(√

η +
√
ζ
)

logµη,ζ (Λ,Ω)

satisfies

α ≤ µη,ζ (Λ,Ω) ≤ β,
i.e. µη,ζ (Λ,Ω) is mean. By Corollary 5.2, using (5.3), it follows that this mean is
monotonic.
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[12] N. Latif, J. Pečarić and I. Perić, On Majorization, Favard and Berwald’s inequalities, Annals

of Functional Analysis, 2 (2011), no. 1, 31-50.
[13] A. Yu. Levin, Some problems bearing on the oscillation of solutions of linear differential

equations, Soviet Math. Dokl., 4 (1963), 121-124.
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10000 Zagreb, Croatia
E-mail address: pecaric@hazu.hr



Konuralp Journal of Mathematics
Volume 4 No. 2 pp. 271–281 (2016) c©KJM

SCREEN SEMI-INVARYANT HALF-LIGHTLIKE

SUBMANIFOLDS OF A SEMI-RIEMANNIAN PRODUCT

MANIFOLD WITH QUARTER-SYMMETRIC CONNECTION

OGUZHAN BAHADIR

Abstract. In this paper, we study half-lightlike submanifolds of a semi-

Riemannian product manifold. We introduce a classes half-lightlike subman-

ifolds of called screen semi-invariant half-lightlike submanifolds. We defined
some special distribution of screen semi-invariant half-lightlike submanifold.

We give some equivalent conditions for integrability of distributions with re-
spect to the Levi-Civita connection of semi-Riemannian manifolds and quarter-

symmetric non-metric connection of semi-Riemannian manifolds and some re-

sults.

1. Introduction

The theory of degenerate submanifolds of semi-Riemannian manifolds is one of
a important topics of diferential geometry. The geometry of lightlike submanifolds
a semi-Riemannian manifold was presented in [7] (see also [8]) by K.L. Duggal
and A. Bejancu. Differential Geometry of Lightlike Submanifolds was presented
in [17] by K. L. Duggal and B. Sahin. In [12],[13], [14], [15], K. L. Duggal and
B. Sahin introduced and studied geometry of classes of lightlike submanifolds in
indefinite Kaehler and indefinite Sasakian manifolds which is an umbrella of CR-
lightlike, SCR-lightlike, Screen real GCR-lightlie submanifolds. In [16], M. Atceken
and E. Kilic introduced semi-invariant lightlike submanifolds of a semi-Riemannian
product manifold. In [18], E. Kilic and B. Sahin introduced radical anti-invariant
lightlike submanifolds of a semi-Riemannian product and gave some examples and
results for lightlike submanifolds. In [19] E. Kilic and O. Bahadir studied light-
like hypersurfaces of a semi-Riemannian product manifold with respect to quarter
symmetric non-metric connection. In [20] O. Bahadir give some equivalent con-
ditions for integrability of distributions with respect to Levi Civita connection of
semi-Riemannian manifolds and some results.
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In this paper, we study half-lightlike submanifolds of a semi-Riemannian product
manifold. In Section 2, we give some basic concepts. In Section 3, we introduce
screen semi-invariant half-lightlike submanifolds. We defined some special distribu-
tion of screen semi-invariant half-lightlike submanifold. In Section 4, we consider
half-lightlike submanifolds of a semi-Riemannian product manifold with quarter
symmetric non-metric connection determined by the product structure. We com-
pute some results with respect to the quarter-symmetric non-metric connection.

2. Half-lightlike submanifolds

Let (M̃, g̃) be an (m + 2)-dimensional (m > 1) semi-Riemannian manifold of

index q ≥ 1 and M a submanifold of codimension 2 of M̃ . If g̃ is degenerate on

the tangent bundle TM on M , then M is called a lightlike submanifold of M̃ [17].
Denote by g the induced degenerate metric tensor of g̃ on M . Then there exists
locally (or globally) a vector field ξ ∈ Γ(TM), ξ 6= 0, such that g(ξ,X) = 0 for any
X ∈ Γ(TM). For any tangent space TxM , (x ∈M), we consider

TxM
⊥ = {u ∈ TxM̃ : g̃(u, v) = 0,∀v ∈ TxM},(2.1)

a degenerate 2-dimensional orthogonal (but not complementary) subspace of TxM̃ .
The radical subspace Rad TxM = TxM ∩ TxM⊥ depends on the point x ∈ M . If
the mapping

Rad TM : x ∈M −→ Rad TxM(2.2)

defines a radical distribution on M of rank r > 0, then the submanifold M is called

r−lightlike submanifold. If r = 1, then M is called half-lightlike submanifold of M̃
[17]. Then there exist ξ, u ∈ TxM⊥ such that

g̃(ξ, v) = 0, g̃(u, u) 6= 0,∀v ∈ TxM⊥.(2.3)

Furthermore, ξ ∈ Rad TxM , and

g̃(ξ,X) = g̃(ξ, v) = 0,∀X ∈ Γ(TM), v ∈ Γ(TM⊥).(2.4)

Thus, Rad TM is locally (or globally) spanned by ξ. By denote the complementary
vector bundle S(TM) of Rad TM in TM which is called screen bundle of M . Thus
we have the following decomposition

TM = Rad TM⊥S(TM),(2.5)

where⊥ denotes the orthogonal-direct sum. In this paper, we assume thatM is half-
lightlike. Then there exists complementary non-degenerate distribution S(TM⊥)
of Rad TM in TM⊥ such that

TM⊥ = Rad TM⊥S(TM⊥).(2.6)

Choose u ∈ S(TM⊥ as a unit vector field with g̃(u, u) = ε = ±1. Consider the

orthogonal complementary distribution S(TM)⊥ to S(TM) in TM̃ . We note that
ξ and u belong to S(TM)⊥. Thus we have

S(TM)⊥ = S(TM⊥)⊥S(TM⊥)⊥,
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where S(TM⊥)⊥ is the orthogonal complementary to S(TM⊥) in S(TM)⊥. For
any null section ξ of Rad TM on a coordinate neighborhood U ⊂ M , there exists
a uniquely determined null vector field N ∈ Γ(ltr(TM)) satisfying

g̃(ξ,N) = 1, g̃(N,N) = g̃(N,X) = g̃(N, u) = 0,∀X ∈ Γ(TM),(2.7)

where N , ltr(TM) and tr(TM) = S(TM⊥)⊥ltr(TM) are called the lightlike
transversal vector field, lightlike transversal vector bundle and transversal vector
bundle of M with respect to S(TM), respectively. Then we have the following
decomposition:

TM̃ = TM ⊕ tr(TM) = S(TM)⊥{Rad TM ⊕ ltr(TM)}⊥S(TM⊥).(2.8)

Let ∇̃ be the Levi-Civita connection of M̃ and P the projection of TM on S(TM)
with respect to the decomposition (2.5). Thus, for any X ∈ Γ(TM), we can write
X = PX + η(X)ξ, where η is a local differential 1-form on M given by η(X) =
g̃(X,N). Then the Gauss and Weingarten formulas are given by

∇̃XY = ∇XY +D1(X,Y )N +D2(X,Y )u,(2.9)

∇̃XU = −AUX +∇tXU,(2.10)

∇̃XN = −ANX + p1(X)N + p2(X)u,(2.11)

∇̃Xu = −AuX + ε1(X)N + ε2(X)u,(2.12)

∇XPY = ∇∗XPY + E(X,PY )ξ,(2.13)

∇Xξ = −A∗ξX − p1(X)ξ,(2.14)

for any X,Y ∈ Γ(TM), u ∈ s(TM⊥), U ∈ Γ(tr(TM)), where ∇, ∇∗ and ∇t are
induced linear connections on M , S(TM) and tr(TM), respectively, D1 and D2 are
called the lightlike second fundamental and screen second fundemental form of M
respectively, E is called the local second fundamental form on S(TM). AU , AN ,
A∗ξ and Au are linear operators on TM and τ , ρ and φ are 1−forms on TM . We
note that, the induced connection ∇ is torsion-free but it is not metric connection
on M and satisfies

(2.15) (∇Xg)(Y,Z) = D1(X,Y )η(Z) +D1(X,Z)η(Y ),

for any X,Y, Z ∈ Γ(TM). However the connection ∇∗ on S(TM) is metric. From
the above statements, we have

D1(X,PY ) = g(A∗ξX,PY ), g(A∗ξX,N) = 0, D1(X, ξ) = 0,(2.16)

g̃(ANX,N) = 0,

E(X,PY ) = g(ANX,PY ),(2.17)

εD2(X,Y ) = g(AuX,Y )− ε1(X)η(Y ),

ερ(X) = g̃(AuX,N), p1(X) = −η(∇Xξ), p2(X) = εη(AuX),(2.18)

ε1(X) = −εD2(X, ξ),

for any X,Y ∈ Γ(TM). From (2.17) and (2.18), A∗ξ and AN are Γ(S(TM))−valued
shape operators related to D1 and E, respectively and A∗ξξ = 0.
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Using torsion free linear connection ∇and (2.13) we have

[X,Y ] = {∇∗XPY −∇∗Y PX + η(X)A∗ξY − η(Y )A∗ξX}
+{E(X,PY )− E(Y, PX) +X(η(Y ))

−Y (η(X)) + η(X)p1(Y )− η(Y )p1(X)}ξ.

The last equation and (2.17)

g(∇∗XPY, PZ)− g(∇∗XPZ, PY )− g([X,Y ], PZ)

= η(Y )D1(X,PZ)− η(X)D1(Y, PZ),

2dη(X,Y ) = E(Y, PX)− E(X,PY )

+p1(X)η(Y )− p1(Y )η(X).(2.19)

From the second equation (2.19) we have

η([PX,PY ]) = E(PX,PY )− E(PY, PX).(2.20)

From (2.18) and (2.20), we have the following theorem.

Theorem 2.1. Let M be a half-lightlike submanifold of a semi-Riemannian man-

ifold M̃ . Then the following assertions are equivalent:.
(1) The screen distribution S(TM) is integrable.
(2) The second fundamental form of S(TM) is symmetric on Γ(s(TM).

(3) The shape operator AN of the immersion of M in M̃ is symmetric with respect
to g on Γ(s(TM).

Next by using (2.14), (2.15), (2.17) and (2.18) we obtain

Theorem 2.2. Let M be a half-lightlike submanifold of a semi-Riemannian man-

ifold M̃ . Then the following assertions are equivalent:
(1)The induced connection ∇ on M is a metric connection.
(2) D1 vanishes identically on M .
(3) A∗ξ vanishes identically on M .

(4) ξ is a Killing vector field.
(5) TM⊥ is a parallel distribution with respect to ∇.

Theorem 2.3. Let (M, g) be a proper totally umbilical half-lightlike submanifold

of a semi-Riemannian product manifold (M̃(c), g̃) of constant sectional curvature
c. Then the following assertions are equivalent:
(i) The screen distribution s(TM) is integrable.
(ii) Each 1− form p1 is closed on s(TM), i.e., dp1 = 0
(iii) Each 1− form p2 induced by s(TM) satisfies

2dp2(X,Y ) = p1(X)p2(Y )− p2(X)p1(Y ), ∀X,Y ∈ Γ(TM).

For basic information on the geometry of lightlike submanifolds, we refer to [7],
[17].

Let (M̃ be an n− dimensional diferentiable manifold with a tensor field F of

type (1, 1) on M̃ such that F 2 = I. Then M is called an almost product manifold
with almost product structure F . If we put π = 1

2 (I + F ), σ = 1
2 (I − F ) then we

have

π + σ = I, π2 = π, σ2 = σ, πσ = σπ = 0, F = π − σ.
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Thus π and σ define two complementary distributions and the eigenvalue of F are

∓1. If an almost product manifold M̃ admits a semi-Riemannian metric g̃ such
that

g̃(FX,FY ) = g̃(X,Y ), g̃(FX, Y ) = g̃(X,FY ),∀X,Y ∈ Γ(M̃),

then (M̃, g̃) is called semi-Riemannian almost product manifold. If, for any X,Y

vector fields on M̃ , (∇̃XF )Y = 0, that is

∇̃XFY = F ∇̃XY,
then M is called an semi-Riemannian product manifold, where ∇̃ is the Levi-Civita

connection on M̃ .

3. Screen Semi-Invariant Lightlike Submanifolds

Let (M, g) be a half-lightlike submanifold of a semi-Riemannian product manifold

(M̃, g̃) For any X ∈ Γ(TM) we can write

(3.1) FX = fX + wX,

where f and w are the projections on of Γ(TM̃) onto TM and trTM , respectively,
that is, fX and wX are tangent and transversal components of FX. From (2.8)
and (3.1), we can write

(3.2) FX = fX + w1(X)N + w2(X)u,

where w1(X) = g̃(FX, ξ), w2(X) = εg̃(FX, u).

Definition 3.1. Let (M, g) be a half-lightlike submanifold of a semi-Riemannian

product manifold (M̃, g̃). If FRad TM ⊂ S(TM), Fltr(TM) ⊂ S(TM) and
F (S(TM⊥)) ⊂ S(TM) then we say that M is a screen semi-invaryant (SSI) half-
lightlike submanifold.

If FS(TM) = S(TM), then we say that M is a screen invaryant half-lightlike
submanifold.

Now, let M be a screen semi-invariant half-lightlike submanifold of a semi-

Riemannian product manifold (M̃, g̃). If we set L1 = FRad TM , L2 = Fltr(TM)
and L3 = F (S(TM⊥)), then we can write

S(TM) = L0⊥{L1 ⊕ L2}⊥L3,(3.3)

where L0 is a (m − 4)−dimensional distribution. Hence we have the following
decompositions:

TM = L0⊥{L1 ⊕ L2}⊥L3⊥Rad TM,(3.4)

TM̃ = L0⊥{L1 ⊕ L2}⊥L3⊥S(TM⊥)⊥{Rad TM ⊕ ltr(TM)}.(3.5)

Let (M, g) be a screen semi-invariant half-lightlike submanifold of a semi-Riemannian

product manifold (M̃, g̃). If we set

L = L0⊥L1⊥Rad TM L⊥ = L2⊥L3,

then we can write

TM = L⊕ L⊥.
We note that the distribution L is a invariant distribution and the distribution L⊥

is anti-invariant distribution with respect to F on M .
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4. Quarter-symmetric Non-metric Connections

Let (M, g, F ) be a semi-Riemannian product manifold and ∇̃ be the Levi-Civita
connection on M . If we set

(4.1) D̃XY = ∇̃XY + π(Y )FX

for any X,Y ∈ Γ(TM̃), then D̃ is a linear connection on M̃ , where u is a 1-form

on M̃ with U as associated vector field, that is

π(X) = g̃(X,U).

The torsion tensor of D̃ on M̃ denoted by T̃ . Then we obtain

(4.2) T̃ (X,Y ) = π(Y )FX − π(X)FY,

and

(4.3) (D̃X g̃)(Y,Z) = −π(Y )g̃(FX,Z)− π(Z)g̃(FX, Y ),

for any X,Y ∈ Γ(TM̃). Thus D̃ is a quarter-symmetric non-metric connection on

M̃ . From (4.1) we have

(4.4) (D̃XF )Y = π(FY )FX − π(Y )X.

Replacing X by FX and Y by FY in (4.4) we obtain

(4.5) (D̃FXF )FY = π(Y )X − π(FY )FX.

Thus we have

(4.6) (D̃XF )Y + (DFXF )FY = 0.

If we set

(4.7) ′F (X,Y ) = g̃(FX, Y )

for any X,Y ∈ Γ(TM), from (4.1) we get

(4.8) (D̃X
′F )(Y,Z) = (∇̃X ′F )(Y, Z)− π(Y )g̃(X,Z)− π(Z)g̃(X,Y ).

From (4.1) the curvature tensor R̃D of the quarter-symmetric non-metric connection

D̃ is given by

R̃D(X,Y )Z = R̃(X,Y )Z + λ̃(X,Z)FY − λ̃(Y, Z)FX,(4.9)

for any X,Y, Z ∈ Γ(TM̃), where λ̃ is a (0, 2)-tensor given by λ̃(X,Z) = (∇̃Xπ)(Z)−
π(Z)π(FX). If we set R̃D(X,Y, Z,W ) = g̃(R

D
(X,Y )Z,W ), then, from (4.9), we

obtain

R̃D(X,Y, Z,W ) = −R̃D(Y,X,Z,W ).

We note that the Riemannian curvature tensor R̃D of D̃ does not satisfy the other
curvature-like properties. But, from (4.9), we have

R̃D (X,Y )Z + R̃D (Y,Z)X + R̃D (Z,X)Y = (λ̃(Z, Y )− λ̃(Y,Z))FX

+ (λ̃(X,Z)− λ̃(Z,X))FY

+ (λ̃(Y,X)− λ̃(X,Y ))FZ.

Thus we have the following proposition.
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Proposition 4.1. Let M be a half-lightlike submanifold of a semi-Riemannian

product manifold M̃ . Then the first Bianchi identity of the quarter-symmetric non-

metric connection D̃ on M is provided if and only if λ̃ is symmetric.

Let M be a half-lightlike submanifold of a semi-Riemannian product manifold(
M̃, g̃

)
with quarter-symmetric non-metric connection D̃. Then the Gauss and

Weingarten formulas with respect to D̃ are given by, respectively,

D̃XY = DXY + D̃1(X,Y )N + D̃2(X,Y )u,(4.10)

D̃XN = −ÃNX + p̃1(X)N + p̃2(X)u,(4.11)

D̃Xu = −ÃuX + ε̃1(X)N + ε̃2(X)u.(4.12)

for anyX,Y ∈ Γ(TM), whereDXY, ÃNX, ÃuX ∈ Γ(TM), D̃1(X,Y ) = g̃(D̃XY, ξ),

D̃2(X,Y ) = εg̃(D̃XY, u), p̃1(X) = g̃(D̃XN, ξ), p̃2(X) = εg̃(D̃XN, u), ε̃1(X) =

g̃(D̃Xu, ξ), ε̃2(X) = εg̃(D̃Xu, u). Here, D̃1 and D̃2 the lightlike second fundamental

form and the screen second fundamental form of M with respect to D̃ respectively.

Both ÃN and Ãu are linear operators on Γ(TM). From (2.9), (2.11), (2.12), (4.1),
(4.10), (4.11) and (4.12) we obtain

DXY = ∇XY + π(Y )fX,(4.13)

D̃1(X,Y ) = D1(X,Y ) + π(Y )w1(X),(4.14)

D̃2(X,Y ) = D2(X,Y ) + π(Y )w2(X),(4.15)

ÃNX = ANX − π(N)fX,(4.16)

p̃1(X) = p1(X) + π(N)w1(X),(4.17)

p̃2(X) = p2(X) + π(N)w2(X),(4.18)

ÃuX = AuX − π(u)fX,(4.19)

ε̃1(X) = ε1(X) + π(u)w1(X),(4.20)

ε̃2(X) = ε2(X) + π(u)w2(X).(4.21)

for any X,Y ∈ Γ(TM). From (2.15), (4.1) we get

(Dxg)(Y,Z) = D1(X,Y )η(Z) +D1(X,Z)η(Y )

−π(Y )g(fX,Z)− π(Z)g(fX, Y ),(4.22)

On the other hand, the torsion tensor of the induced connection D is

(4.23) TD(X,Y ) = π(Y )fX − π(X)fY.

From last two equations we have the following proposition.

Proposition 4.2. Let M be a half-lightlike submanifold of a semi-Riemannian

product manifold
(
M̃, g̃

)
with quarter-symmetric non-metric connection D. Then

the induced connection D is a quarter-symmetric non-metric connection on the
half-lightlike submanifold M .

From (4.2), (4.14) and (4.15) we have the following theorem
For any X,Y ∈ Γ (TM), ξ ∈ Γ(RadTM) we can write

DXPY = D∗XPY + E∗(X,PY )ξ,(4.24)

DXξ = −Ã∗ξX − p̃1(X)ξ,(4.25)
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where D∗XPY Ã∗ξX ∈ Γ (S (TM)), E∗(X,PY ) = g̃ (DX PY,N) and p̃1(X) =

−g̃ (DXξ,N). From (2.13), (2.14), (4.24) and (4.25), we obtain

D∗XPY = ∇∗XPY + π(PY )PfX,(4.26)

E∗(X,PY ) = E(X,PY ) + π(PY )η(fX),(4.27)

Ã∗ξX = A∗ξX − π(ξ)PfX,(4.28)

ũ1(X) = u1(X) + π(ξ)η(fX).(4.29)

Proposition 4.3. Let M be a half-lightlike submanifold of a semi-Riemannian

product manifold
(
M̃, g̃

)
. Then D∗ the induced connection is quarter-symmetric

non-metric connection on s(TM)
Proof. For any X,Y, Z ∈ Γ(s(TM)), we know that ∇∗ is metric connection. Thus
from (4.26), we get

(D∗Xg)(Y,Z) = −π(Y )g(PfX,Z)− π(Z)g(Y, PfX).(4.30)

Let TD
∗

be torsion tensor with respect to D∗. From (4.26), we obtain

TD
∗
(X,Y ) = π(Y )PfX − π(X)PfY.(4.31)

Then from (4.30) and (4.31), we have proof.

We know that ∇̃F = 0. From (4.1) and (4.13) we obtain

(D̃XF )Y = π(FY )FX − π(Y )X,(4.32)

and

(DXf)Y = (∇Xf)Y + π(fY )fX − π(Y )f2X.(4.33)

From (4.32) and (4.33) we have the following propositions.

Proposition 4.4. Let M be a half-lightlike submanifold of a semi-Riemannian

product manifold
(
M̃, g̃

)
. F is not parallel with respect to quarter-symmetric non-

metric connection D̃.

Proposition 4.5. Let M be a half-lightlike submanifold of a semi-Riemannian

product manifold
(
M̃, g̃

)
. f is not parallel with respect to quarter-symmetric non-

metric connection D.

From (4.14) we have

D̃1(X,Y )− D̃1(Y,X) = D1(X,Y )−D1(Y,X) + g(π(Y )FX − π(X)FY, ξ)

= g(T̃ (X,Y ), ξ).(4.34)

Similarly from (4.15) we obtain

D̃2(X,Y )− D̃2(Y,X) = g(T̃ (X,Y ), u).(4.35)

From the (4.34) and (4.35) we have the following theorems

Theorem 4.1. Let M be a half-lightlike submanifold of a semi-Riemannian prod-

uct manifold
(
M̃, g̃

)
. Then the lightlike second fundemental form D̃1 of quarter

symmetric non-metric connection is symmetric if and only if there is no ltrTM

component of the torsion T̃ .
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Theorem 4.2. Let M be a half-lightlike submanifold of a semi-Riemannian product

manifold
(
M̃, g̃

)
. Then the screen second fundemental form D̃2 of quarter sym-

metric non-metric connection D̃ is symmetric if and only if there is no s(TM⊥)

component of the torsion T̃ .

Theorem 4.3. Let M be a screen semi-invariant half-lightlike submanifold of a

semi-Riemannian product manifold
(
M̃, g̃

)
. Then the second fundemental form of

s(TM) is symmetric with respect to quarter symmetric non-metric connection if
and only if there is no RadTM component of the torsion tesor TD.
Proof. For any X,Y ∈ Γ(s(TM)), since E is symmetric, from (4.27) we obtain

E∗(X,Y )− E∗(Y,X) = π(Y )η(fX)− π(X)η(fY ) = g(TD(X,Y ), N).

Thus proof is completed.

Lemma 4.1. Let M be a half-lightlike submanifold of a semi-Riemannian product

manifold
(
M̃, g̃

)
. Then we have the following equation;

D̃i(X,Y ) = Di(X,Y ), i ∈ {1, 2}, ∀X ∈ Γ(L0) and Y ∈ Γ(TM)

.
Proof. For any X ∈ Γ(L0), we know that wX = 0. Then from (4.14) and (4.15)
proof is completed.

From the above lemma we have the following theorem.

Theorem 4.4. Let M be a half-lightlike submanifold of a semi-Riemannian product

manifold
(
M̃, g̃

)
. Then M is L0− totally geodesic with respect to quarter symmetric

non-metric connection if and only if M is L0− totally geodesic with respect to
connection ∇.

Theorem 4.5. Let M be a screen semi-invariant half-lightlike submanifold of a

semi-Riemannian product manifold
(
M̃, g̃

)
. Then the following equivalent;

(i) L⊥ is integrable.

(ii) ÃFYX = ÃFXY , X,Y ∈ Γ(L⊥)
(iii) E∗1 second fundemental form of s(TM) with quarter symmetric non-metric
connection is symmetric on L⊥.
Proof. For any X,Y ∈ Γ(L⊥) we obtain

g([X,Y ], FN) = g(F [X,Y ], N)

= g(∇̃XFY − ∇̃Y FX,N)

= g(AFXY −AFYX,N).

and for any Z ∈ Γ(L0) we get

g([X,Y ], Z) = g(F [X,Y ], FZ)

= g(∇̃XFY − ∇̃Y FX,FZ)

= g(AFXY −AFYX,FZ).

From (4.16) ve (4.19) we know that

ÃFYX = AFYX.
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Thus we get (i)⇔ (ii).
From (4.27) we know that E∗1 (X,Y ) = E1(X,Y ) and since teorem (2.1), we get

(i)⇔ (iii).

For any X,Y, Z ∈ Γ(L⊥) from (2.15) and (4.22) we obtain

(∇Xg)(Y,Z) = 0.(4.36)

and

(DXg)(Y, Z) = 0.

Thus we have the following proposition

Proposition 4.6. Let M be a screen semi-invariant half-lightlike submanifold of a

semi-Riemannian product manifold
(
M̃, g̃

)
. Then we have

∇Xg = 0 and DXg = 0, for any X, Y ∈ Γ(L⊥).

Corollary 4.1. Let M be a screen semi-invariant half-lightlike submanifold of

a semi-Riemannian product manifold
(
M̃, g̃

)
. Then the following assertions are

equivalent:

(i) D̃i(X,Y ) = Di(X,Y ), i = 1, 2, X,Y ∈ Γ(L)

(ii) D̃1 and D̃2 is symmetric on L.
(iii) If M is L− totally geodesic then M is L− totally geodesic with respect to
quarter symmetric non-metric connection.
(iv) If M is L− totally umbilic then M is L− totally umbilic with respect to quarter
symmetric non-metric connection.
Proof. For any X,Y ∈ Γ(L)
since w1(X) = 0 = w2(X), we obtain

D̃1(X,Y ) = D1(X,Y ),

D̃2(X,Y ) = D2(X,Y ).

Thus proof is completed.

Theorem 4.6. Let M be a mixed geodesic semi-invariant half-lightlike submanifold

of a screen semi-Riemannian product manifold
(
M̃, g̃

)
. Then for any X ∈ Γ(L)

and Y ∈ Γ(L⊥) we have

D̃i(X,Y ) = 0, i = 1, 2.

Proof. For any X ∈ Γ(L) and Y ∈ Γ(L⊥) we obtain

D̃1(X,Y ) = g̃(D̃XY, ξ) = g̃(∇̃XY, ξ) = D1(X,Y ),

and

D̃2(X,Y ) = g̃(D̃XY, u) = g̃(∇̃XY, u) = D2(X,Y ).

thus proof is completed.
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ON THE STRICTION CURVES OF INVOLUTIVE FRENET

RULED SURFACES IN E3

ŞEYDA KILIÇOĞLU, SÜLEYMAN ŞENYURT, AND ABDUSSAMET ÇALIŞKAN

Abstract. In this article we conceive eight ruled surfaces related to the evo-

lute curve α and involute α∗. They are called as Frenet ruled surface and
involutive Frenet ruled surfaces, cause of their generators are Frenet vector

fields of evolute curve α. First we give tangent vector fields of striction curves

of all Frenet ruled surfaces and the tangent vector fields of striction curves
of involutive Frenet ruled surfaces are given according to Frenet apparatus of

evolute curve α. Further we give only one matrix in which we can see sixteen

position of these tangent vector fields, such that we can say there is six position
the tangent vector fields are perpendicular.

1. General Information

Deriving curves based on the other curves is a subject in geometry. Bertrand
curves, involute-evolute curves are this kind of curves. By using the analogous
means we generate ruled surface based on the other ruled surface. The properties
of the B-scroll are also examined in Euclidean 3-space, Lorentzian 3-space and n-
space with time-like directrix curve and null rulings (see [2], [5], [6] ). Differential

geometric elements of the involute D̃ scroll are examined in [10]. Let Frenet vector
fields be V1 (s) , V2 (s) , V3 (s) of α and let first and second curvatures of the curve
α(s) be k1 (s) and k2 (s) , respectively. The quantities {V1, V2, V3, k1, k2} are Frenet-
Serret elements of the curves. Frenet formulae are,

(1.1)

 V̇1

V̇2

V̇3

 =

 0 k1 0
−k1 0 k2

0 −k2 0

 V1

V2

V3

 .
The Darboux vector makes a path of curvature k1 and torsion k2, curvature is the
measuring of the rotation of the Frenet frame on the binormal unit vector, and
torsion is the measurement of the rotation of the Frenet frame on the tangent unit

2000 Mathematics Subject Classification. 53A04, 53A05.
Key words and phrases. Involute curve, Striction curves, Ruled surfaces, Frenet ruled surface,

Involutive Frenet ruled surface.
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vector. For any unit speed curve α, according to the Frenet-Serret elements, the
Darboux vector can be defined

(1.2) D(s) = k2(s)V1 (s) + k1(s)V3 (s)

where curvature functions are defined by k1(s) = ‖V1(s)‖ and k2(s) = −
〈
V2, V̇3

〉
.

The Darboux vector field of α and it has the bellowing symmetrical properties, [3].

(1.3) D̃(s) =
k2

k1
(s)V1 (s) + V3 (s)

throughout α(s) under the condition that k1(s) 6= 0 and it is called the modified
Darboux vector field of α [8].
Let unit speed regular curve α : I → E3 and α∗ : I → E3 be given. For ∀s ∈ I,
then the curve α∗ is called the involute of the curve α, if the tangent at the point
α(s) to the curve α passes through the tangent at the point α∗(s) to the curve α∗,
then we can write that

α∗ (s) = α (s) + (c− s)V1 (s) , c = const.

The distance between corresponding points of the involute curve in E3 is d
(
α(s), α∗(s)

)
=

|c− s|, c is constant ,∀s ∈ I, ([4],[9]). The Frenet vector fields of the involute α∗,
based on the its evolute curve α are

(1.4)


V ∗1 = V2,

V ∗2 = −k1
(k21+k22)

1
2
V1 + k2

(k21+k22)
1
2
V3

V ∗3 = k2

(k21+k22)
1
2
V1 + k1

(k21+k22)
1
2
V3

and

(1.5) D̃∗ =
k2

(k2
1 + k2

2)
1
2

V1 −
k′1k2 − k1k

′

2

(k2
1 + k2

2)
3
2

V2 +
k1V3

(k2
1 + k2

2)
1
2

.

The first curvature and second curvature of involute α∗ are, respectively [9],

(1.6) k∗1 =

√
k2

1 + k2
2

(c− s)k1
, k∗2 =

−k2
2

(
k1
k2

)′
(c− s)k1 (k2

1 + k2
2)
.

Since η = k2
1 + k2

2 6= 0, and µ =
(
k2
k1

)′
, we have

η∗ = k∗21 + k∗22 =

(√
k2

1 + k2
2

λk1

)2

+

(
k
′

2k1 − k
′

1k2

λk1 (k2
1 + k2

2)

)2

=
η3 + k4

1µ
2

λ2η2k2
1

,(1.7)

µ∗ =

(
k∗2
k∗1

)′
ds

ds∗
=

k
′
2k1−k

′
1k2

λk1(k21+k22)√
k21+k22
λk1

1

λk1
=

k
′

2k1 − k
′

1k2

λk1 (k2
1 + k2

2)
3
2

=
µk1

λη
3
2

,(1.8)

(
k∗1
η∗

)′
=


√
k21+k22
λk1

(k21+k22)
3
+(k′2k1−k

′
1k2)

2

λ2k21(k21+k22)
2


′

1

λk1
=

(
η

5
2λk1

η3 + k2
1µ

)′
1

λk1
·(1.9)
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A ruled surface is generated by a one-parameter family of straight lines and it
possesses a parametric representation ,

(1.10) ϕ(s, v) = α(s) + vx(s),

where α and x are curves in E3. We call ϕ a ruled patch. The curve α is called the
directrix or base curve of the ruled surface, and x is called the director curve, [1].
The striction point on a ruled surface is the foot of the common normal between
two consecutive generators. The set of striction points defines the striction curve
given by [1]

(1.11) c(s) = α(s)− 〈αs, xs〉
〈xs, xs〉

x(s).

2. On the striction curves of Involutive Frenet ruled surfaces in E3

Theorem 2.1. The striction curves of Frenet ruled surfaces are, [7]

(2.1)


c1 − α
c2 − α
c3 − α
c4 − α

 =


0 0 0

0 k1
k22+k22

0

0 0 0
−k2

k1
(
k2
k1

)′ 0 −1(
k2
k1

)′


 V1

V2

V3

 .
Theorem 2.2. Tangent vector fields T1, T2, T3, and T4 of striction curves
along Frenet ruled surface are given by

T1

T2

T3

T4

 =


1 0 0

k22
η‖c′2(s)‖

( k1η )
′

‖c′2(s)‖
k1k2

η‖c′2(s)‖
1 0 0

µ−µ′− k2k1
µ‖c′4(s)‖ 0 µ′

µ2‖c′4(s)‖


 V1

V2

V3



where k2
1 + k2

2 = η,
(
k2
k1

)′
= µ.

Proof. It is given this matrix, so we get equalyties as follows:

T1 (s) = T3 (s) = α′ (s) = V1

Since c2(s) = α(s) + k1
k21+k22

V2 and

T2 (s) =
k2

2

(k2
1 + k2

2) ‖c′2(s)‖
V1 +

(
k1
η

)′
(k2

1 + k2
2) ‖c′2(s)‖

V2 +
k1k2

(k2
1 + k2

2) ‖c′2(s)‖
V3.

Also

T4 (s) =

((
k2
k1

)′)2

−
(
k2
k1

)′ (
k2
k1

)′′
− k2

k1

(
k2
k1

)′
((

k2
k1

)′)2

‖c′4(s)‖
V1 −

−1
(
k2
k1

)′′
((

k2
k1

)′)2

‖c′4(s)‖
V3,

T4 (s) =
µ2 − µµ′ − k2

k1
µ

µ2 ‖c′4(s)‖
V1 +

µ′

µ2 ‖c′4(s)‖
V3.

�
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Definition 2.1. Let α∗ (s) be involute of α(s) with arc-lenght parameter s. The
equations 

ϕ∗1 (s, v1) = α∗ (s) + v1V
∗
1 (s)

ϕ∗2 (s, v2) = α∗ (s) + v2V
∗
2 (s)

ϕ∗3 (s, v3) = α∗ (s) + v3V
∗
3 (s)

ϕ∗4 (s, v4) = α∗ (s) + v4D̃
∗(s)

are the parametrization of Frenet ruled surface of involute curve α∗ (s) .

The above definition can be written as follows.

ϕ∗1 (s, v1) = α (s) + (σ − s)V1 (s) + v1V2 (s) ,

ϕ∗2 (s, v2) = α (s) + (σ − s)V1 (s) + v2

(
−k1V1+k2V3

(k21+k22)
1
2

)
,

ϕ∗3 (s, v3) = α (s) + (σ − s)V1 (s) + v3

(
k2V1+k1V3

(k21+k22)
1
2

)
,

ϕ∗4 (s, v4) = α (s) + (σ − s)V1 (s)

+v4

(
k2√
k21+k22

V1 − k′1k2−k1k
′
2

(k21+k22)
3
2
V2 + k1V3√

k21+k22

)
Theorem 2.3. The equations of the striction curves of involutive Frenet ruled
surfaces on the evolute curve α according to Frenet elements of evolute curve α, [7]

(2.2)


c∗1 − α
c∗2 − α
c∗3 − α
c∗4 − α

 =


λ 0 0

λ
(

1− k21
η(1+m)

)
0 λ k1k2

η(1+m)

λ 0 0

λ− k2

m′ η
1
2

− m
m′

k1

m′η
1
2


 V1

V2

V3

 .
Theorem 2.4. Tangent vector fields T1

∗, T2
∗, T3

∗, T4
∗ of striction curves of in-

volutive Frenet ruled surface according to Frenet elements by themselves are given
by

(2.3)


T1
∗

T2
∗

T3
∗

T4
∗

 =



0 1 0
−b∗k1 + c∗k2

(k2
1 + k2

2)
1
2

a∗
b∗k2 + c∗k1

(k2
1 + k2

2)
1
2

0 1 0
e∗k2

(k2
1 + k2

2)
1
2

d∗
e∗k1

(k2
1 + k2

2)
1
2


 V1

V2

V3

 .

where

a∗ =
k∗2

2

η∗
∥∥c∗2′(s)∥∥ , b∗ =

(
k∗1
η∗

)′∥∥c∗2′(s)∥∥ , c∗ =
k∗1k
∗
2

η∗
∥∥c∗2′(s)∥∥

d∗ =
µ∗ − µ∗′ − k∗2

k∗1

µ∗‖c∗4
′(s)‖

, e∗ =
µ∗′

µ∗2
∥∥c∗4′(s)∥∥

and k∗1
2 + k∗2

2 = η∗,
(
k∗2
k∗1

)′
= µ∗.
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Proof. Tangent vector fields T1
∗, T2

∗, T3
∗, T4

∗ of striction curves of involutive Frenet
ruled surface matrix form as follows;


T ∗1
T ∗2
T ∗3
T ∗4

 =


1 0 0
a∗ b∗ c∗

1 0 0
d∗ 0 e∗


 V ∗1
V ∗2
V ∗3

 .

In the above matrix by using the equation (1.2), we can write


T ∗1
T ∗2
T ∗3
T ∗4

 =


1 0 0
a∗ b∗ c∗

1 0 0
d∗ 0 e∗




0 1 0
−k1

(k21+k22)
1
2

0 k2

(k21+k22)
1
2

k2

(k21+k22)
1
2

0 k1

(k21+k22)
1
2


 V1

V2

V3



or


T1
∗

T2
∗

T3
∗

T4
∗

 =



0 1 0
−b∗k1 + c∗k2

(k2
1 + k2

2)
1
2

a∗
b∗k2 + c∗k1

(k2
1 + k2

2)
1
2

0 1 0
e∗k2

(k2
1 + k2

2)
1
2

d∗
e∗k1

(k2
1 + k2

2)
1
2


 V1

V2

V3

 .

�

Theorem 2.5. The product of tangent vector fields T ∗1 , T ∗2 , T ∗3 , T ∗4 and tan-

gent vector fields T1, T2, T3, T4, of striction curves belonging to Frenet ruled
surfaces and involutive Frenet ruled surfaces are given by,

(2.4) [T ] [T ∗]
T

=
1

η
1
2


0 −k1b

∗ + k2c
∗ 0 k2e

∗

bη
1
2 X bη

1
2 bη

1
2 d∗ + (ak2 + ck1) e∗

0 −k1b
∗ + k2c

∗ 0 k2e
∗

0 Y 0 e∗ (dk2 + ek1)



where X = bη
1
2 a∗ + (−ak1 + ck2) b∗ + (ak2 + ck1) c∗ and Y = b∗ (−dk1 + ek2) +

c∗ (dk2 + ek1)
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Proof. By using matrices (2.3) and (2.4), we can write
T1

T2

T3

T4



T ∗1
T ∗2
T ∗3
T ∗4


T

=


1 0 0
a b c
1 0 0
d 0 e


 V1

V2

V3





1 0 0
a∗ b∗ c∗

1 0 0
d∗ 0 e∗


 V ∗1
V ∗2
V ∗3




T

=


1 0 0
a b c
1 0 0
d 0 e



 V1

V2

V3

 V ∗1
V ∗2
V ∗3

T



1 0 0
a∗ b∗ c∗

1 0 0
d∗ 0 e∗


T

=


1 0 0
a b c
1 0 0
d 0 e


 1

η
1
2

 0 −k1 k2

η
1
2 0 0

0 k2 k1




1 0 0
a∗ b∗ c∗

1 0 0
d∗ 0 e∗


T

=
1

η
1
2


0 −k1b

∗ + k2c
∗ 0 k2e

∗

bη
1
2 X bη

1
2 bη

1
2 d∗ + (ak2 + ck1) e∗

0 −k1b
∗ + k2c

∗ 0 k2e
∗

0 Y 0 e∗ (dk2 + ek1)

 .
�

The position of the unit tangent vector field T ∗1 , T
∗
2 , T

∗
3 , T

∗
4 of ruled surfaces

ϕ∗1, ϕ
∗
2, ϕ
∗
3, ϕ
∗
4, respectively, on the curve α∗, can be expressed by the bellowing

matrix;

(2.5) [T ] [T ∗]
T

=


〈T1, T

∗
1 〉 〈T1, T

∗
2 〉 〈T1, T

∗
3 〉 〈T1, T

∗
4 〉

〈T2, T
∗
1 〉 〈T2, T

∗
2 〉 〈T2, T

∗
3 〉 〈T2, T

∗
4 〉

〈T3, T
∗
1 〉 〈T3, T

∗
2 〉 〈T3, T

∗
3 〉 〈T3, T

∗
4 〉

〈T4, T
∗
1 〉 〈T4, T

∗
2 〉 〈T4, T

∗
3 〉 〈T4, T

∗
4 〉

 ,
here [T ∗]

T
is the tranpose matrix of [T ∗] .

The six pairs of Frenet ruled surface and involutive Frenet ruled surface have stric-
tion curves with orthogonal tangent vector fields, these are
Tangent and involutive tangent ruled surfaces of the α,
involutive binormal and tangent ruled surface of the α,
involutive tangent and binormal ruled surface of the α,
Binormal and involutive binormal ruled surfaces of the α,
Darboux and involutive tangent ruled surfaces of an α,
Darboux and involutive binormal ruled surfaces of an α.

Theorem 2.6. Tangent vector fields of striction curves on tangent ruled surface
and involutive normal ruled surface and binormal ruled surface have orthogonal

under the condition are
k2

k1
=

(
k∗1
η∗

)′
η∗

k∗1k
∗
2

·

Proof. Since the equations (2.4) and (2.5), we have

〈T1, T
∗
2 〉 = 〈T3, T

∗
2 〉 =

−k1b
∗ + k2c

∗

η
1
2

= 0 =⇒ k2

k1
=

(
k∗1
η∗

)′
η∗

k∗1k
∗
2

,

this completes the proof. �
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Theorem 2.7. Tangent vector fields of striction curves on tangent ruled surface
and binormal ruled surface and involutive Darboux ruled surface have orthogonal

under the condition are
k
′

2k1 − k
′

1k2

λk1 (k2
1 + k2

2)
3
2

= constant.

Proof. From the equations (2.4) and (2.5), we have

〈T1, T
∗
4 〉 = 〈T3, T

∗
4 〉 =

1

η
1
2

k2e
∗ = 0 =⇒ k2e

∗ = 0, k2 6= 0

e∗ = 0 =⇒ (µ∗)′ = 0 =⇒ k
′

2k1 − k
′

1k2

λk1 (k2
1 + k2

2)
3
2

= const.,

this completes the proof. �

Theorem 2.8. i) Tangent vector fields of striction curves on normal and involutive

tangent ruled surfaces have orthogonal under the condition are
(

k1
k21+k22

)′
= 0.

ii) Tangent vector fields of striction curves on normal and involutive binormal ruled

surfaces have orthogonal under the condition are
(

k1
k21+k22

)′
= 0.

Proof. i) By using the equations (2.4) and (2.5), we can write

〈T2, T
∗
1 〉 = b =

(
k1

k21+k22

)′
‖c′2(s)‖

= 0 =⇒
( k1

k2
1 + k2

2

)′
= 0,

this completes the proof.
ii) Since 〈T2, T

∗
3 〉 = b, it is trivial. �

Theorem 2.9. Tangent vector fields of striction curves along normal and involutive
normal ruled surfaces are orthogonal under the condition

bη
1
2 a∗ + (−ak1 + ck2) b∗ + (ak2 + ck1) c∗ = 0.

Proof. Since the equations (2.4) and (2.5), we have

〈T2, T
∗
2 〉 =

X

η
1
2

= 0 =⇒ X = bη
1
2 a∗ + (−ak1 + ck2) b∗ + (ak2 + ck1) c∗ = 0,

this completes the proof. �

Theorem 2.10. Tangent vector fields of striction curves along normal and invo-
lutive Darboux ruled surfaces are orthogonal under the condition

bη
1
2 d∗ + (ak2 + ck1) e∗ = 0.

Proof. Since 〈T2, T
∗
4 〉 =

bη
1
2 d∗ + (ak2 + ck1) e∗

η
1
2

in the equations (2.4) and (2.5) and

under the orthogonality condition bη
1
2 d∗ + (ak2 + ck1) e∗ = 0. �

Theorem 2.11. Tangent vector fields of striction curves along Darboux ruled sur-
face and involutive normal ruled surface are orthogonal under the condition

k1

k2
=

(dc∗ + eb∗)

(db∗ − ec∗)
·
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Proof. Since the equations (2.4) and (2.5), we have

〈T4, T
∗
2 〉 =

Y

η
1
2

= 0 =⇒ Y = b∗ (−dk1 + ek2) + c∗ (dk2 + ek1) = 0

=⇒ k1

k2
=

(dc∗ + eb∗)

(db∗ − ec∗)
,

this completes the proof. �

Theorem 2.12. Tangent vector fields of striction curves on involutive Darboux
ruled surface and Darboux ruled surface are orthogonal under the condition (dk2 + ek1) =

0 or

(
k∗2
k∗1

)′
= const.

Proof. By using the equations (2.4) and (2.5), we can write

〈T4, T
∗
4 〉 =

e∗ (dk2 + ek1)

η
1
2

= 0 =⇒ (dk2 + ek1) = 0 ore∗ = 0

e∗ = 0 =⇒ µ∗ = const. =⇒
(
k∗2
k∗1

)′
= const.

this completes the proof. �
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SPHERICAL PRODUCT SURFACES IN THE GALILEAN SPACE

MUHITTIN EVREN AYDIN AND ALPER OSMAN OGRENMIS

Abstract. In the present paper, we consider the spherical product surfaces

in a Galilean 3-space G3. We derive a classification result for such surfaces of

constant curvature in G3. Moreover, we analyze some special curves on these
surfaces in G3.

1. Introduction

The tight embeddings of product spaces were investigated by N.H. Kuiper (see
[17]) and he introduced a different tight embedding in the (n1 + n2 − 1)−dimensional
Euclidean space Rn1+n2−1 as follows: Let

c1 : Mm −→ Rn1 ,

c1 (u1, ..., um) = (f1 (u1, ..., um) , ..., fn1 (u1, ..., um))

be a tight embedding of a m−dimensional manifold Mm satisfying Morse equality
and

c2 : Sn2−1 −→ Rn2 ,

c1 (v1, ..., vn2−1) = (g1 (v1, ..., vn2−1) , ..., gn2
(v1, ..., vn2−1))

the standard embedding of (n2 − 1)−sphere in Rn2 , where u = (u1, ..., um) and
v = (v1, ..., vn2−1) are the local coordinate systems on Mm and Sn2−1, respectively.
Then a new tight embedding is given by

x = c1 ⊗ c2 : Mm × Sn2−1 −→ Rn1+n2−1,

(u, v) 7−→ (f1 (u) , ..., fn1−1 (u) , fn1
(u) g1 (v) , ..., fn1

(u) gn2
(v)) .

Such embeddings are obtained from c1 by rotating Rn1 about Rn1−1 in Rn1+n2−1

(cf. [4]).
B. Bulca et al. [6, 7] called such embeddings rotational embeddings and consid-

ered the spherical product surfaces in Euclidean spaces, which are a special type

2000 Mathematics Subject Classification. 53A35, 53B25, 53C42.
Key words and phrases. Galilean plane, spherical product surface, Gaussian curvature, geo-

desic line, asymptotic line.
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of the rotational embeddings as taking m = 1, n1 = 2, 3 and n2 = 2 in above
definition.

The surfaces of revolution in R3 can be considered as simplest models of spherical
product surfaces as well as the quadrics and the superquadrics [5].

On the other hand, the Galilean geometry is one model of the real Cayley-Klein
geometries which has projective signature (0, 0,+,+). In particular, the Galilean
plane G2 is one of three Cayley-Klein planes (including Euclidean and Lorentzian
planes) with a parabolic measure of distance. This projective-metric plane has an
absolute figure {f, P} for an absolute (ideal) line f and an absolute point P on f .

Many kind of surfaces in the (pseudo-) Galilean 3-space G3 (further details of
G3 see Section 2) have been studied in [3], [8]-[10], [15, 16], [22]-[28] such as ruled
surfaces, translation surfaces, tubular surfaces, etc.

In the present paper, we consider the spherical product surfaces of two Galilean
plane curves in G3. We obtain several classifications for the spherical product sur-
faces of constant curvature in G3. Then some special curves on such surfaces are
also analyzed.

2. Preliminaries

For later use, we provide a brief review of Galilean geometry from [12, 13], [18]-
[28].

The Galilean 3-space G3 can be defined in three-dimensional real projective
space P3 (R) and its absolute figure is an ordered triple {ω, f, I}, where ω is the
ideal (absolute) plane, f a line in ω and I is the fixed elliptic involution of the
points of f . The homogeneous coordinates in G3 is introduced in such a way that
the ideal plane ω is given by x0 = 0, the ideal line f by x0 = x1 = 0 and the elliptic
involution by

(0 : 0 : x2 : x3) −→ (0 : 0 : x3 : −x2) .

By means of the affine coordinates defined by (x0 : x1 : x2 : x3) = (1 : x : y : z) ,
the similarity group H8 of G3 has the following form

x̄ = a+ bx

ȳ = c+ dx+ r (cos θ) y + r (sin θ) z

z̄ = e+ fx+ r (− sin θ) y + r (cos θ) z,

where a, b, c, d, e, f, r and θ are real numbers. In particular, for b = r = 1, the group
becomes the group of isometries (proper motions), B6 ⊂ H8, of G3.

A plane is called Euclidean if it contains f , otherwise it is called isotropic, i.e.,
the planes x = const. are Euclidean, in particular the plane ω. Other planes are
isotropic.

We introduce the metric relations with respect to the absolute figure. The
Galilean distance between the points Pi = (ui, vi, wi) (i = 1, 2) is given by

d (P1, P2) =

{
|u2 − u1| , if u1 6= 0 or u2 6= 0,√

(v2 − v1)
2

+ (w2 − w1)
2
, if u1 = 0 and u2 = 0.

The Galilean scalar product between two vectors X = (x1, x2, x3) and Y =
(y1, y2, y3) is given by

X ·Y =

{
x1y1, if x1 6= 0 or y1 6= 0,
x2y2 + x3y3, if x1 = 0 and y1 = 0.
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In this sense, the Galilean norm of a vector X is ‖X‖ =
√
X ·X. A vector X =

(x1, x2, x3) is called isotropic if x1 = 0, otherwise it is called non-isotropic.
The cross product in the sense of Galilean space is

X×G Y =

(
0,−

∣∣∣∣x1 x3
y1 y3

∣∣∣∣ , ∣∣∣∣x1 x2
y1 y2

∣∣∣∣) .
Let D be an open subset of R2 and M2 a surface in G3 parametrized by

r : D −→ G3, (u1, u2) 7−→ (r1 (u1, u2) , r2 (u1, u2) , r3 (u1, u2)) ,

where rk is a smooth real-valued function on D, 1 ≤ k ≤ 3. Denote

(rk)ui
= ∂rk/∂ui and (rk)uiuj

= ∂2rk/∂ui∂uj , 1 ≤ k ≤ 3 and 1 ≤ i, j ≤ 2.

Then such a surface is admissible (i.e., without Euclidean tangent planes) if and
only if (r1)ui

6= 0 for some i = 1, 2.
Let us introduce

gi = (r1)ui
, hij = (r2)ui

(r2)uj
+ (r3)ui

(r3)uj
, i, j = 1, 2.

Hence the first fundamental form of M2 is

I =ds21 + εds22,

where

ds21 = (g1du1 + g2du2)
2

, ds22 = h11du
2
1 + 2h12du1du2 + h22du

2
2

and

ε =

{
0 if the direction du1 : du2 is non-isotropic,
1 if the direction du1 : du2 is isotropic.

Define the function w as

w =

√(
(r1)u2

(r3)u1
− (r1)u1

(r3)u2

)2
+
(
(r1)u1

(r2)u2
− (r1)u2

(r2)u1

)2
.

Thus a side tangential vector S in the tangent plane of M2 is defined by

(2.1) S =
1

w

(
0, (r1)u2

(r2)u1
− (r1)u1

(r2)u2
, (r1)u2

(r3)u1
− (r1)u1

(r3)u2

)
.

The unit normal vector field U of M2 is an isotropic vector field given by

(2.2) U =
1

w

(
0, (r1)u2

(r3)u1
− (r1)u1

(r3)u2
, (r1)u1

(r2)u2
− (r1)u2

(r2)u1

)
.

In the sequel, the second fundamental form II of M2 is

II = L11du
2
1 + 2L12du1du2 + L22du

2
2,

where

Lij =
1

g1

(
g1

(
0, (r2)uiuj

, (r3)uiuj

)
− (gi)uj

(
0, (r2)u1

, (r3)u1

))
·U

=
1

g2

(
g2

(
0, (r2)uiuj

, (r3)uiuj

)
− (gi)uj

(
0, (r2)u2

, (r3)u2

))
·U.

A surface is called totally geodesic if its second fundamental form is identically zero.
The third fundamental form of M2 is

III = P11du
2
1 + 2P12du1du2 + P22du

2
2,

where

(2.3) P11 = Uu1
·Uu1

, P12 = Uu1
·Uu2

, P22 = Uu2
·Uu2

.
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The Gaussian curvature K and the mean curvature H of M2 are of the form

(2.4) K =
L11L22 − L2

12

w2
and H =

g22L11 − 2g1g2L12 + g21L22

2w2
.

A surface in G3 is said to be minimal (resp. flat) if its mean curvature (resp.
Gaussian curvature) vanishes.

3. Spherical product surfaces of constant curvature in G3

Let ci : Ii ⊂ R −→ G2, i = 1, 2, be two Galilean plane curves given by

c1 (u) = (p1 (u) , p2 (u)) and c2 (v) = (q1 (v) , q2 (v)) ,

where pi and qi (i = 1, 2) are respectively smooth real-valued non-constant functions
on the intervals I1 and I2. Thus the spherical product surface M2 of the two plane
curves in G3 is defined by

(3.1) r : = c1 ⊗ c2 : I1 × I2 −→ G3, (u, v) 7−→ (p1 (u) , p2 (u) q1 (v) , p2 (u) q2 (v)) .

We call the curves c1 and c2 generating curves. Denote p′i = dpi

du , q
′
i = dqi

dv , etc.

Since pi and qi are non-constant, M2 is always admissible.
It follows from (2.1) , (2.2) and (3.1) that the side tangent vector field S is

(3.2) S =
1√

(q′1)
2

+ (q′2)
2

(0,−q′1,−q′2)

and the unit normal vector field U becomes

(3.3) U =
1√

(q′1)
2

+ (q′2)
2

(0,−q′2, q′1) .

Remark 3.1. The equality (3.3) immediately implies from (2.3) that a spherical
product surface in G3 has degenerate third fundamental form, i.e., P11P22−P 2

12 = 0.

For the coefficients of the first fundamental form, we have g1 = p′1 and g2 = 0.
Also the coefficients of the second fundamental form are

(3.4) L11 = − (p′1) (q1)
2√

(q′1)
2

+ (q′2)
2
α′β′, L12 = 0, L22 =

p2 (q′1)
2√

(q′1)
2

+ (q′2)
2
γ′,

where

(3.5) α =
p′2
p′1

, β =
q2
q1
, γ =

q′2
q′1
.

Remark 3.2. It is easy to see that when c2 is a line passing through the origin, then
β = const. and hence the spherical product surface is totally geodesic.

Therefore, the next results classify the spherical product surfaces in G3 with
constant mean curvature and null Gaussian curvature.

Theorem 3.1. There does not exist a spherical product surface in G3 with constant
mean curvature except isotropic planes.
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Proof. Let M2 be a spherical product surface given by (3.1) in G3 with constant
mean curvature H0. From (2.4) , we have

(3.6) 2H0 =
(q′1)

2

p2

(
(q′1)

2
+ (q′2)

2
) 3

2

γ′.

Then differentiating of (3.6) with respect to u yields that

(3.7) 0 =
p′2 (q′1)

2

− (p2)
2
(

(q′1)
2

+ (q′2)
2
) 3

2

γ′.

Since the functions pi and qi are non-constant functions, it follows from (3.7) that
γ′ = 0 and thus H0 = 0. Considering γ = const. in (3.5) , then it turns to

(3.8) q2 = λ1q1 + λ2, λ1 6= 0,

which implies that c2 is a line. Moreover, from (3.3) , we have the constant unit
normal vector field U as

(3.9) U =
1√

1 + (λ1)
2

(0,−λ1, 1) , λ1 6= 0.

This means that the spherical product surface is an open part of an isotropic plane,
which proves the theorem. �

Theorem 3.2. A spherical product surface of the curves c1 and c2 in G3 is flat if
and only if either it is an isotropic plane or the generating curve c1 is a line.

Proof. Assume that M2 is a flat spherical product surface of the curves c1 and c2
in G3. For the Gaussian curvature K, by using (2.4) , we get

0 = K =
(q1)

2
(q′1)

2

p′1p2

(
(q′1)

2
+ (q′2)

2
)2α′β′γ′.

Thus three cases occur:
Case (A) α = const. Then, we deduce

p1 = λ3p2 + λ4, λ3 6= 0,

which implies that c1 is a line.
Case (B) β = const. Hence q2

q1
= const. for all v ∈ I2 and the generating curve

c2 is a line passing through the origin. This gives that M2 is a totally geodesic
surface and an open part of an isotropic plane.

Case (C) γ = const. This case was already analyzed via (3.8) and in this case
M2 is an open part of an isotropic plane.

Therefore the proof is completed. �

By using Theorem 3.1 and Theorem 3.2, we have the following classification
result.

Corollary 3.1. (Classification) For a spherical product surface M2of the curves
c1 and c2 in G3, the following statements hold:

(A) If c1 is a line, then M2 is flat but not minimal,
(B) If c2 is a line passing through the origin, then M2 is a totally geodesic surface

and an open part of an isotropic plane,
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(C) If c2 is a line of the form y = mx + n, m, n 6= 0, then M2 is an open part
of an isotropic plane,

(D) There does not exist a spherical product surface with constant mean curvature
except isotropic planes.

Example 3.1. Let us consider the spherical product surface of the Euclidean ellipse
x2

4 + y2

9 = 1 and the line y = 0.5x+ 2.5. Thus we parametrize the surface being flat
but not minimal as follows

r (u, v) = (u− 3, (0.5u+ 1) (2 sin v) , (0.5u+ 1) (3 cos v)) , 0 ≤ u, v ≤ 2π.

We plot it as in Fig. 1.

Figure 1. The flat spherical product surface of an Euclidean el-
lipse and a line, K = 0.

4. Curves on spherical product surfaces in G3

There exist a frame field, also called the Darboux frame field, for the curves
lying on surfaces apart from the Frenet frame field. For details, see [11, 14]. Let
γ be a curve lying on the surface M2 with unit normal vector field U. By taking
T = γ∗

(
d
dt

)
one can get a new frame field {T,T×U,U} which is the Darboux

frame field of γ with respect to M2.
On the other hand, the second derivative γ̈ of the curve γ on M2 has a component

perpendicular to M2 and a component tangent to M2, i.e.,

(4.1) γ̈ = tan (γ̈) + nor (γ̈) ,

where the dot ” · ” denotes the derivative with respect to the parameter of the
curve. The norms ‖tan (γ̈)‖ and ‖nor (γ̈)‖ are called the geodesic curvature and the
normal curvature of γ on M2, respectively. The curve γ is called geodesic (resp.
asymptotic line) if and only if its geodesic curvature κg (resp. normal curvature
κn) vanishes.

Let us consider the spherical product surface r = c1 ⊗ c2 in G3 given by (3.1).
As in the previous section, put

c1 (u) = (p1 (u) , p2 (u)) and c2 (v) = (q1 (v) , q2 (v)) .

The geodesic curvatures of the u−parameter curves and v−parameter curves on
r = c1 ⊗ c2 are respectively given by (see [10])

(4.1) κug = S · ruu =


0, if p1 is non-linear
−p′′

2 (q1q′1+q2q
′
2)√

(q′1)
2
+(q′2)

2
, if p1 is linear
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and

(4.2) κvg = S · rvv =
−p2 (q′1q

′′
1 + q′2q

′′
2 )√

(q′1)
2

+ (q′2)
2
.

By considering (4.1) and (4.2), we derive the following result.

Theorem 4.1. Let M2 be a spherical product surface of the curves c1 (u) =
(p1 (u) , p2 (u)) and c2 (v) = (q1 (v) , q2 (v)) in G3. Then we have

(A) If p1 is a non-linear function, then the u−parameter curves are geodesic
lines. Otherwise (when p1 is a linear function) the u− parameter curves are geodesic
lines if and only if either

(A.1) p2 is a linear function, or
(A.2) c2 is an Euclidean circle.
(B) The v− parameter curves are geodesic lines if and only if c2 is curve satis-

fying the equation

q1 = ±
∫ √

λ2 − (q′2)
2
dv.

Proof. From (4.1), the statement (A) of the theorem is clear. Now let assume that
p1 is a linear function. Then, by (4.1) , we deduce that the u−parameter curves
are geodesic lines (i.e. κug vanishes) if and only if either p2 is a linear function (this
implies the statement (A.1) of the theorem) or

(4.3) q1q
′
1 + q2q

′
2 = 0.

From (4.3) , we conclude q21 + q22 = λ1 for some constant λ1 > 0. It means that
c2 is an Euclidean circle with radius

√
λ1 and centered at origin. This proves the

statement (A.2) of the theorem.
If κvg is equivalently zero, then we have from (4.2) that q′1q

′′
1 + q′2q

′′
2 = 0, i.e.,

q1 = ±
∫ √

λ2 − (q′2)
2
dv,

which completes the proof. �

The normal curvatures of the parameter curves on r = c1 ⊗ c2 (see [10]) are
respectively given by

(4.4) κun = U · ruu =


0, if p1 is non-linear
−p′′

2 (q1q′2−q
′
1q2)√

(q′1)
2
+(q′2)

2
, if p1 is linear

and

(4.5) κvn = U · rvv =
p2 (q′1q

′′
2 − q′′1 q′2)√

(q′1)
2

+ (q′2)
2
.

Theorem 4.2. Let M2 be a spherical product surface of the curves c1 (u) =
(p1 (u) , p2 (u)) and c2 (v) = (q1 (v) , q2 (v)) in G3. Then we have the following:

(A) If p1 is a non-linear function, then the u−parameter curves are asymptotic
lines. Otherwise (when p1 is a linear function) the u− parameter curves are as-
ymptotic lines if and only if either

(A.1) p2 is a linear function, or
(A.2) M2 is a totally geodesic surface.
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(B) The v− parameter curves are asymptotic lines if and only if M2 is an open
part of an isotropic plane.

Proof. From (4.4) , the statement (A) of the theorem is obvious. If p1 is a linear
function, then by (4.4) we derive that the u−parameter curves are asymptotic lines
if and only if either p2 is a linear function (it gives the proof of the statement (A.1)
of the theorem), or

(4.6) q1q
′
2 − q′1q2 = 0.

It follows from (4.6) that q2 = λ1q1 for nonzero constant λ1. Considering Remark
3.2 implies that M2 is totally geodesic surface, which proves the statement (A.2).

Also, in case when v−parameter curves are asymptotic lines, from (4.5) , the
following satisfies

(4.7) q2 = λ2q1 + λ3, λ2 6= 0.

From (3.3) , the equality (4.7) implies the statement (B) of the theorem.
Thus the proof is completed. �

A curve γ on a regular surface M2 is called a principal curve if and only if the
its velocity vector field always points in a principal direction. Moreover, a surface
M2 is called a principal surface if and only if its parameter curves are principal
curves (cf. [14]).

A principal curve γ on a surface in G3 is determined by the following formula

(4.8) det
(
γ̇,U, U̇

)
= 0,

where U is the unit normal vector field of the surface (see [10]). Considering (3.1) ,
(3.3) and (4.8) , we immediately derive

det (ru,U,Uu) = 0 and det (rv,U,Uv) = 0,

which yields the following.

Corollary 4.1. The spherical product surfaces in G3 are principal ones.
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THE CHARACTERIZATIONS OF SPACELIKE CURVES IN R4
1

M. AYKUT AKGUN, A. IHSAN SIVRIDAG, AND EROL KILIC

Abstract. In this paper, we study the geometry of position vectors of a
spacelike curve in the Minkowski 4-space. We give some characterizations

for spacelike curves to lie on some subspaces of R4
1.

1. Introduction

The Frenet frames for spacelike, timelike and null curves have been studied and
developed by several authors [5], [3], [11], [1] and [2]. A. Fernandez, A. Gimenez
and P. Lucas introduced a Frenet frame with curvature functions for a null curve
in a Lorentzian manifold and studied null helices in Lorentzian space forms [2]. C.
Coken and U. Ciftci studied null curves in the 4-dimensional Minkowski space R4

1

, and give some results for psoudospherical null curves and Bertrand null curves.
K. Ilarslan and O. Boyacioglu studied position vectors of a timelike and a null

helice in R3
1 [5]. K. Ilarslan and E. Nesovic gave some characterizations for null

curves in R4
1 and they obtained some relations between null normal curves and

null osculating curves as well as between null rectifying curves and null osculating
curves [6].

K. Ilarslan studied spacelike normal curves in Minkowski space E3
1 and gave some

characterizations of spacelike normal curves with spacelike, timelike and null prin-
cipal normal [6]. K. Ilarsalan, E. Nesovic and M. Petrovic-Torgasev characterized
non-null and null rectifying curves, lying fully in the Minkowski 3-space [7].

A. T. Ali and M. Onder characterize rectifying spacelike curves in terms of their
curvature functions in Minkowski spacetime [3]. M. Onder, H. Kocayigit and M.
Kazaz gave some characterizations for spacelike helices in Minkowski spacetime and
found the differential equations characterizing the spacelike helices in Minkowski
4-space [11].

M. A. Akgun and A. I. Sivridag studied null Cartan curves in Minkowski 4-space
and give some theorems for null Cartan curves to lie on some subspaces of R4

1 [13].
M. A. Akgun and A. I. Sivridag studied spacelike and timelike curves to lie on

some subspaces of R4
1 and give some theorems in [14] and [15].

2000 Mathematics Subject Classification. 53A35, 53B30.
Key words and phrases. Spacelike curve, Frenet frame, Minkowski spacetime.
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This paper organized following: In section 2 we give some basic knowledge related
with curves in Minkowski space-time. Section 3 is the original part of this paper.
In this section we investigate the conditions for spacelike curves to lie on some
subspaces of R4

1 and we give some characterizations and theorems for these curves.

2. Preliminaries

Let R4
1 denote Minkowski space together with a flat Lorentz metric 〈, 〉 of sig-

nature (−,+,+,+). A vector X is said to be timelike if 〈X,X〉 < 0, spacelike if
〈X,X〉 > 0 or X = 0 and null(lightlike) if 〈X,X〉 = 0 and X 6= 0. The norm of a

vector X ∈ R4
1 is denoted by ‖X‖ and defined by ‖X‖ =

√
|〈X,X〉|.

A curve α in R4
1 is called a null curve if 〈α′(s), α′(s)〉 = 0 and α′(s) 6= 0, timelike

curve if 〈α′(s), α′(s)〉 < 0 and spacelike curve if 〈α′(s), α′(s)〉 > 0 for all s ∈ R.
Let α be a spacelike curve in R4

1 with the Frenet frame {T,N,B1, B2} and let
N be null vector and B1 be null vector. In this case there exists only one Frenet
frame {T,N,B1, B2} for which α(s) is a spacelike curve with Frenet equations

∇TT = k1N

∇TN = k2B2

∇TB1 = −k1T + k3B2

∇TB2 = −k3N − k2B1

where T , N , B1 and B2 are mutually orthogonal vectors satisfying the equations

〈B1, B1〉 = 〈N,N〉 = 0, 〈T, T 〉 = 〈B2, B2〉 = 1, 〈N,B1〉 = 1

[12]

3. The Characterizations of Spacelike Curves in R4
1

In this section we will investigate some characterizations of spacelike curves to
lie on some subspaces of R4

1.
Let α be a spacelike curve in R4

1 with the Frenet frame {T,N,B1, B2}. Then, the
subspaces of R4

1 spanned by {T,N}, {T,B1}, {T,B2}, {N,B1}, {N,B2}, {B1, B2},
{T,N,B1}, {T,N,B2}, {T,B1, B2} and {N,B1, B2}.

Case 1) First we will investigate the conditions under which the spacelike
curve α lies on the subspace spanned by {T,N}. In this case we can write

α(s) = λ(s)T + µ(s)N(3.1)

for some differentiable functions λ and µ of s, which is the arc-length parameter of
α(s) . Differentiating (3.1) with respect to s and by using the Frenet equations we
find that

α′(s) = λ′(s)T + (λ(s)k1(s) + µ′(s))N + µ(s)k2(s)B2

where α′ = T . Since {T,N,B1, B2} is a Frenet frame we have the following equa-
tions.  λ′(s) = 1

λ(s)k1(s) + µ′(s) = 0
µ(s)k2(s) = 0

If µ(s) = 0 we find k1(s) = 0 and λ(s) = s+ c. So we have

α(s) = (s+ c)T
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If k2(s) = 0,then we find µ(s) = −
∫

(s+ c)k1(s)ds. So we have

α(s) = (s+ c)T − (

∫
(s+ c)k1(s)ds)N.

Thus we have the following theorem.

Theorem 3.1. A spacelike curve α in R4
1 lies on the subspace spanned by {T,N}

if and only if it is in the form

α(s) = (s+ c)T

where k1(s) = 0 or

α(s) = (s+ c)T − (

∫
(s+ c)k1(s)ds)N

where k2(s) = 0

Case 2) We will investigate the conditions under which the spacelike curve α
lies on the subspace spanned by {T,B1}. In this case we can write

α(s) = λ(s)T + µ(s)B1(3.2)

for some differentiable functions λ and µ. Differentiating (3.2) with respect to s
and by using the Frenet equations we find that

α′(s) = (λ′(s)− µ(s)k1(s))T + λ(s)k1(s)N + µ′(s)B1 + µ(s)k3(s)B2.

Since {T,N,B1, B2} is a Frenet frame we have the following equations.
λ′(s)− µ(s)k1(s) = 1

λ(s)k1(s) = 0
µ(s)k3(s) = 0
µ′(s) = 0

From the equation λ(s)k1(s) = 0, if λ(s) = 0 then we can write µ(s) = − 1
k1(s)

=

cons. and k3(s) = 0. So we have

α(s) = − 1

k1(s)
B1.

If k1(s) = 0 and µ(s) = 0 we find λ(s) = s+ c. So we have

α(s) = (s+ c)T.

If k1(s) = k3(s) = 0 then we find µ(s) = c2 and λ(s) = s+ c1. So we have

α(s) = (s+ c1)T + c2B1.

Thus we have the following theorem.

Theorem 3.2. A spacelike curve α in R4
1 lies on the subspace spanned by {T,B1}

if and only if it is in the form

α(s) = − 1

k1(s)
B1

where k3(s) = 0 or

α(s) = (s+ c)T

where k1(s) = 0 or

α(s) = (s+ c1)T + c2B1
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where k1(s) = k3(s) = 0 and c, c1 and c2 are constants.

Case 3) We will investigate the conditions under which the spacelike curve α
lies on the subspace spanned by {T,B2}. In this case we can write

α(s) = λ(s)T + µ(s)B2,(3.3)

for some differentiable functions λ and µ of the parameter s. Differentiating (3.3)
with respect to s and by using the Frenet equations we find that

α′(s) = λ′(s)T + (λ(s)k1(s)− µ(s)k3(s))N − µ(s)k2(s)B1 + µ′(s)B2.

Since {T,N,B1, B2} is a Frenet frame we have the following equations.
λ′(s) = 1

λ(s)k1(s)− µ(s)k3(s) = 0
µ(s)k2(s) = 0
µ′(s) = 0

(3.4)

From (3.4) if µ(s) = 0 then we find λ(s) = s+ c and k1(s) = 0. So we have

α(s) = (s+ c)T.

If k2(s) = 0 then we find λ(s) = s+ c1 and µ(s) = c2. So we have

α(s) = (s+ c1)T + c2B2.

Thus we have the following theorem.

Theorem 3.3. A spacelike curve α in R4
1 lies on the subspace spanned by {T,B2}

if and only if it is in the form

α(s) = (s+ c)T.

where k1(s) = 0 or

α(s) = (s+ c1)T + c2B2.

where k2(s) = 0 and the curvature functions satisfy the equation k1(s)
k3(s)

= c2
s+c1

.

Case 4) We will investigate the conditions under which the spacelike curve α
lies on the subspace spanned by {N,B1}. In this case we can write

α(s) = λ(s)N + µ(s)B1(3.5)

for some differentiable functions λ and µ of the parameter s. Differentiating (3.5)
with respect to s and by using the Frenet equations we find that

α′(s) = −µ(s)k1(s)T + λ′(s)N + µ′(s)B1 + (λ(s)k2(s) + µ(s)k3(s))B2.

Since {T,N,B1, B2} is a Frenet frame we have the following equations.
−µ(s)k1(s) = 1

λ′(s) = 0
µ′(s) = 0

λ(s)k2(s) + µ(s)k3(s) = 0

(3.6)

From (3.6) we can write λ(s) = c1 and µ(s) = − 1
k1(s)

= c2. . So we have

α(s) = c1N −
1

k1(s)
B1.

Thus we have the following theorem.
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Theorem 3.4. A spacelike curve α in R4
1 lies on the subspace spanned by {N,B1}

if and only if it is in the form

α(s) = c1N −
1

k1(s)
B1

where c1, c2 are constants and the curvature functions satisfy the equation c1k2(s)+
c2k3(s) = 0.

Case 5) We will investigate the conditions under which the spacelike curve α
lies on the subspace spanned by {N,B2}. In this case we can write

α(s) = λ(s)N + µ(s)B2(3.7)

for some differentiable functions λ and µ of the parameter s. Differentiating (3.7)
with respect to s and by using the Frenet equations we find that

α′(s) = (λ′(s)− µ(s)k3(s))N − µ(s)k2(s)B1 + (λ(s)k2(s) + µ′(s))B2.(3.8)

Since α(s) is a spacelike curve from (3.8) there is a contradiction. Thus we have
the following theorem.

Theorem 3.5. A spacelike curve α in R4
1 does not lie on the subspace spanned by

{N,B2}.

Case 6) We will investigate the conditions under which the spacelike curve α
lies on the subspace spanned by {B1, B2}. In this case we can write

α(s) = λ(s)B1 + µ(s)B2(3.9)

for some differentiable functions λ and µ of the parameter s. Differentiating (3.9)
with respect to s and by using the Frenet equations we find that

α′(s) = −λ(s)k1(s)T − µ(s)k3(s)N + (λ′(s)− µ(s)k2(s))B1 + (λ(s)k3(s) + µ′(s))B2.

Since {T,N,B1, B2} is a Frenet frame we have the following equations.
−λ(s)k1(s) = 1
µ(s)k3(s) = 0

λ′(s)− µ(s)k2(s) = 0
λ(s)k3(s) + µ′(s) = 0

(3.10)

From (3.10) if µ(s) = 0 then we can write λ(s) = − 1
k1(s)

. So we have

α(s) = − 1

k1(s)
B1.

If k3(s) = 0 we find µ(s) =
k′1(s)

k21(s)k2(s)
= cons. So we have

α(s) = (− 1

k1(s)
)B1 + (

k′1(s)

k21(s)k2(s)
)B2.

Theorem 3.6. A spacelike curve α in R4
1 lies on the subspace spanned by {B1, B2}

if and only if it is in the form of

α(s) = − 1

k1(s)
B1

or

α(s) = (− 1

k1(s)
)B1 + (

k′1(s)

k21(s)k2(s)
)B2



304 M. AYKUT AKGUN, A. IHSAN SIVRIDAG, AND EROL KILIC

where k3(s) = 0.

Case 7) We will investigate the conditions under which the spacelike curve α
lies on the subspace spanned by {T,N,B1}. In this case we can write

α(s) = λ(s)T + µ(s)N + γ(s)B1(3.11)

for some differentiable functions λ, µ and γ of the parameter s. Differentiating
(3.11) with respect to s and by using the Frenet equations we find that

α′(s) = (λ′(s)− γ(s)k1(s))T + (λ(s)k1(s) + µ′(s))N + γ′(s)B1

+(µ(s)k2(s) + γ(s)k3(s))B2.

Since {T,N,B1, B2} is a Frenet frame we have the following equations.
λ′(s)− γ(s)k1(s) = 1
λ(s)k1(s) + µ′(s) = 0

γ′(s) = 0
µ(s)k2(s) + γ(s)k3(s) = 0

(3.12)

From (3.12) we can write γ(s) = c1. If we use the equation µ(s)k2(s)+γ(s)k3(s) = 0

we find µ(s) = −c1 k3(s)k2(s)
. From the equation λ(s)k1(s) + µ′(s) = 0 we obtain

λ(s) = c1
k′3(s)k2(s)−k3(s)k

′
2(s)

k22(s)k1(s)
. So we have

α(s) = (c1
k′3(s)k2(s)− k3(s)k′2(s)

k22(s)k1(s)
)T − (c1

k3(s)

k2(s)
)N + c1B1.

Thus we have the following theorem.

Theorem 3.7. A spacelike curve α in R4
1 lies on the subspace spanned by {T,N,B1}

if and only if it is in the form

α(s) = (c1
k′3(s)k2(s)− k3(s)k′2(s)

k22(s)k1(s)
)T − (c1

k3(s)

k2(s)
)N + c1B1.

where c1 is a constant.

Case 8) We will investigate the conditions under which the spacelike curve α
lies on the subspace spanned by {T,N,B2}. In this case we can write

α(s) = λ(s)T + µ(s)N + γ(s)B2(3.13)

for some differentiable functions λ, µ and γ of the parameter s. Differentiating
(3.13) with respect to s and by using the Frenet equations we find that

α′(s) = λ′(s)T + (λ(s)k1(s) + µ′(s)− γ(s)k3(s))N + γ(s)k2(s)B1

+(γ′(s) + µ(s)k2(s))B2.

Since {T,N,B1, B2} is a Frenet frame we have the following equations:
λ′(s) = 1

λ(s)k1(s) + µ′(s)− γ(s)k3(s) = 0
γ(s)k2 = 0

γ′(s) + µ(s)k2(s) = 0

(3.14)

From (3.14) we find λ(s) = s+ c. If γ(s) = 0 we can write the equations

µ(s)k2(s) = 0(3.15)

λ(s)k1(s) + µ′(s) = 0
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From (3.15) if µ(s) = 0 then we can write λ(s) = s+ c1 and k1(s) = 0. So we have

α(s) = (s+ c1)T.

If k2(s) = 0 then we can write

µ(s) = −
∫

(s+ c1)k1(s)ds+ c2.

So we have

α(s) = (s+ c1)T + (−
∫

(s+ c1)k1(s)ds+ c2)N.

From (3.14) if k2(s) = 0 then we can write γ(s) = c2 and µ(s) = c2
∫
k3(s)ds −∫

k1(s)(s+ c1)ds+ c. So we have

α(s) = (s+ c1)T + (c2

∫
k3(s)ds−

∫
k1(s)(s+ c1)ds+ c)N + c2B2.

Thus we have the following theorem.

Theorem 3.8. A spacelike curve α in R4
1 lies on the subspace spanned by {T,N,B2}

if and only if it is in the form

α(s) = (s+ c1)T

where k1(s) = 0 or

α(s) = (s+ c1)T + (−
∫

(s+ c1)k1(s)ds+ c2)N

where k2(s) = 0 or

α(s) = (s+ c1)T + (c2

∫
k3(s)ds−

∫
k1(s)(s+ c1)ds+ c)N + c2B2

where k2(s) = 0.

Case 9) We will investigate the conditions under which the spacelike curve α
lies on the subspace spanned by {T,B1, B2}. In this case we can write

α(s) = λ(s)T + µ(s)B1 + γ(s)B2(3.16)

for some differentiable functions λ, µ and γ of the parameter s. Differentiating
(3.16) with respect to s and by using the Frenet equations we find that

α′(s) = (λ′(s)− µ(s)k1(s))T + (λ(s)k1(s)− γ(s)k3(s))N + (µ′(s)− γ(s)k2(s))B1

+ (µ(s)k3(s) + γ′(s))B2.

Since {T,N,B1, B2} is a Frenet frame we have the following equations.
λ′(s)− µ(s)k1(s) = 1

λ(s)k1(s)− γ(s)k3(s) = 0
µ′(s)− γ(s)k2(s) = 0
µ(s)k3(s) + γ′(s) = 0

(3.17)

From the equation λ′(s)− µ(s)k1(s) = 1 we can write dλ(s)
ds + k1(s)

k3(s)
γ′(s) = 1. From

the last equation we have

d

ds
(
k3(s)

k1(s)
γ(s)) +

k1(s)

k3(s)

dγ(s)

ds
= 1(3.18)
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By using exchange variable t =
∫ s
0
k3(s)
k1(s)

ds in (3.18) we have

2
dγ(s)

ds
= 1(3.19)

The solution of (3.19) is γ(s) = t
2 + c. Replacing variable t =

∫ k3(s)
k1(s)

ds in the last

equation we find

γ(s) =
1

2

∫ s

0

k3(s)

k1(s)
ds+ c.(3.20)

If we use (3.20) in (3.17) we find µ(s) = − 1
2k1(s)

and

λ(s) =
k3(s)

k1(s)
(
1

2

∫ s

0

k3(s)

k1(s)
ds+ c)

So we have

α(s) = (
k3(s)

k1(s)
(
1

2

∫ s

0

k3(s)

k1(s)
ds+ c))T − (

1

2k1(s)
)B1 + (

1

2

∫ s

0

k3(s)

k1(s)
ds+ c)B2.

Thus we have the following theorem.

Theorem 3.9. A spacelike curve α in R4
1 lies on the subspace spanned by {T,B1, B2}

if and only if it is in the form

α(s) = (
k3(s)

k1(s)
(
1

2

∫ s

0

k3(s)

k1(s)
ds+ c))T − (

1

2k1(s)
)B1 + (

1

2

∫ s

0

k3(s)

k1(s)
ds+ c)B2.

Case 10) We will investigate the conditions under which the spacelike curve α
lies on the subspace spanned by {N,B1, B2}. In this case we can write

α(s) = λ(s)N + µ(s)B1 + γ(s)B2(3.21)

for some differentiable functions λ, µ and γ of the parameter s. Differentiating
(3.21) with respect to s and by using the Frenet equations we find that

α′(s) = −µ(s)k1(s)T + (λ′(s)− γ(s)k3(s))N + (µ′(s)− γ(s)k2(s))B1

+ (λ(s)k2(s) + µ(s)k3(s) + γ′(s))B2.

Since {T,N,B1, B2} is a Frenet frame we have the following equations.
−µ(s)k1(s) = 1

λ′(s)− γ(s)k3(s) = 0
µ′(s)− γ(s)k2(s) = 0

λ(s)k2(s) + µ(s)k3(s) + γ′(s) = 0

(3.22)

From (3.22) we can write µ(s) = − 1
k1(s)

. From the equation γ(s) =
k′1(s)

k21(s)k2(s)
and

from the equation λ(s)k2(s) + µ(s)k3(s) + γ′(s) = 0 we obtain

λ(s) =
k3(s)

k1(s)k2(s)
− k′′1 (s)k1(s)k2(s)− k′1(s)(2k′1(s)k2(s) + k1(s)k′2(s))

(k1(s)k2(s))3

So we have

α(s) = (
k3(s)

k1(s)k2(s)
− k′′1 (s)k1(s)k2(s)− k′1(s)(2k′1(s)k2(s) + k1(s)k′2(s))

(k1(s)k2(s))3
)N

− (
1

k1(s)
)B1 + (

k′1(s)

k21(s)k2(s)
)B2.

Thus we have the following theorem.
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Theorem 3.10. A spacelike curve α in R4
1 lies on the subspace spanned by {N,B1, B2}

if and only if it is in the form

α(s) = (
k3(s)

k1(s)k2(s)
− k′′1 (s)k1(s)k2(s)− k′1(s)(2k′1(s)k2(s) + k1(s)k′2(s))

(k1(s)k2(s))3
)N

− (
1

k1(s)
)B1 + (

k′1(s)

k21(s)k2(s)
)B2.
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