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Abstract 

The authors are presenting a novel formulation based on the Differential Quadrature (DQ) method which is 

used to approximate derivatives and integrals. The resulting scheme has been termed strong and weak form 

finite elements (SFEM or WFEM), according to the numerical scheme employed in the computation. Such 

numerical methods are applied to solve some structural problems related to the mechanical behavior of plates 

and shells, made of isotropic or composite materials.  

The main differences between these two approaches rely on the initial formulation – which is strong or weak 

(variational) – and the implementation of the boundary conditions, that for the former include the continuity of 

stresses and displacements, whereas in the latter can consider the continuity of the displacements or both. 

The two methodologies consider also a mapping technique to transform an element of general shape described 

in Cartesian coordinates into the same element in the computational space. Such technique can be implemented 

by employing the classic Lagrangian-shaped elements with a fixed number of nodes along the element edges or 
blending functions which allow an “exact mapping” of the element. In particular, the authors are employing 

NURBS (Not-Uniform Rational B-Splines) for such nonlinear mapping in order to use the “exact” shape of CAD 

designs. 

Keywords: Structural analysis, Numerical methods, Strong formulation finite element method, Weak 

formulation finite element method, Differential and integral quadrature, Numerical stability and accuracy 

 

1. Introduction 

 

It is well-known that a physical phenomenon can be modeled by a system of differential 

equations, which are obtained once the proper hypotheses are introduced [1]-[4]. The solution 

of these complex differential equations cannot be reached analytically, thus a numerical 

method is needed for this purpose. This statement is especially true when a structural problem 

is taken into account, such as the vibrational or static behavior of laminated composite 

structures. 

With reference to the papers by Tornabene et al. [5][6], it should be noted that the numerical 

approaches that can be employed in these circumstances are categorized according to the 

International Journal of Engineering & Applied Sciences (IJEAS) 

Vol.9, Issue 2 (Special Issue: Composite Structures) (2017) 1-21 

http://dx.doi.org/10.24107/ijeas.304376 
Int J Eng Appl Sci 9(2) (2017) 1-21 

 

 

 
 

 
 

 

 

 

   
 

 

 
 
 

 

 

 

mailto:francesco.tornabene@unibo.it
http://dx.doi.org/10.24107/ijeas.304376


F. Tornabene, N. Fantuzzi, and M. Bacciocchi 

2 

 

formulation. In general, the solution of problem governed by a set of differential equations 

can be achieved by solving the strong or the weak form of the equations in hand. The 

governing equations are changed directly into a discrete system if the strong formulation is 

considered, since a numerical technique is introduced to approximate the derivatives. To this 

aim, different techniques can be used, such as some spectral methods for instance [7]-[9]. 

Among them, the Differential Quadrature (DQ) method should be mentioned due to its 

versatility and accuracy features [10]-[13]. A more stable and reliable approach was 

developed by Shu [14], and it is known in the literature as Generalized Differential 

Quadrature (GDQ) method. In this paper, only the main aspects of the DQ and GDQ 

techniques are presented. For the sake of completeness, the reader can find a more complete 

treatise about these methods in the review paper by Tornabene et al. [5]. 

On the other hand, the main aim of solving the weak formulation is to obtain an equivalent 

form of the governing equations by introducing a weighted-integral statement, which allows 

to reduce (or weaken) the order of differentiability of the differential equations. For this 

purpose, a numerical method able to compute integrals must be used. In the present paper, the 

Generalized Integral Quadrature (GIQ) is introduced to this aim [5][14]. Nevertheless, it 

should be mentioned that different weak form-based methods can be employed, as illustrated 

in the book by Reddy [4]. For the sake of completeness, it should be recalled that the weak 

form of the governing equations is solved also in the well-known Finite Element (FE) method 

[4][15]. 

In general, many practical applications require that the reference domain in which the 

governing equations are written is subdivided into several subdomains (or finite elements), 

due to the presence of geometric and mechanical discontinuities. At this point, a peculiar 

mapping technique can be developed to deal with arbitrarily shaped elements. Different 

approaches can be introduced for this purpose [16][17]. Recently, the theoretical framework 

provided by the Isogeometric Analysis (IGA) appears to be one of the most exploited 

approaches to study geometries with arbitrary edges [18][19]. Indeed, the use of blending 

functions based on NURBS (Non-Uniform Rational B-Splines) curves facilitates the analysis 

of generic domains. Both the domain decomposition and the mapping procedure are broadly 

used in classic FE method. Nevertheless, the same processes can be employed also when the 

strong form of the governing equations is considered [20]-[25]. The authors employ the 

names Strong Formulation Finite Element Method (SFEM) and Weak Formulation Finite 

Element Method (WFEM) to classify two different approaches based on the strong and weak 

forms of the governing equations, respectively. 

In this paper, the accuracy, reliability and stability characteristics of SFEM and WFEM are 

discussed and compared by means of some numerical examples related to structural problems. 

A brief theoretical treatise is also presented for the sake of completeness. Further details 

concerning the structural models, as well as the governing equations, can be found in the 

works [26]-[30]. 

 

2. Numerical methods 

 

The main aspects of the numerical methods used in the computations are presented briefly in 

this section. In particular, the fundamentals of DQ are introduced firstly. Then, the 

corresponding technique used to approximate integrals is illustrated starting from the concepts 

employed for the numerical evaluation of derivatives. 
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Approximation of derivatives 

The derivative of a generic function can be approximated numerically by means of the DQ 

method. The key points of this technique are the evaluation of the weighting coefficients and 

the choice of a discrete distribution of grid points within the reference domain. Let us 

consider a one-dimensional function  f x  defined in the closed interval  ,a b . Such domain 

must be preventively discretized by placing 
NI  discrete grid points  ,kx a b , according to 

the following relation 

  k k

b a
x c a

d c



  


  (1) 

for 1, 2,..., Nk I , where  ,k c d   denotes the points of a generic distributions. The most 

typical grid employed in many engineering problems are listed in Table 1, assuming 

 1

1

k
k

N

r r

r r






  (2) 

where not specified. On the other hand, the basis polynomials required to evaluate the 

corresponding distribution will be indicated in the following. A more complete list of discrete 

grid distributions is presented in the books [31][32] and in the review paper by Tornabene et 

al. [5]. 

It should be recalled that a smooth function  f x  can be approximated by a set of basis 

functions  j x , for 1, 2,..., Nj I . From the mathematical point of view, one gets 

    
1

NI

j j

j

f x x


   (3) 

in which 
j  are unknown coefficients. By using a compact matrix form, Eq. (3) can be 

written as follows 

 f Aλ   (4) 

where f  represents the vector of the values that the function assumes in each grid point, 

whereas the vector λ  collects the terms 
j . On the other hand, A  is the coefficient matrix, 

whose elements are given by  ij j iA x , for , 1,2,..., Ni j I . Since the unknown parameters 

j  do not depend on x , the n -th order derivative of  f x  can be computed as 

 
   

1

N
nn I

j

jn n
j

d xd f x

dx dx






   (5) 

for 1, 2,..., 1Nn I  . Analogously, a compact matrix form can be conveniently used 

 
   n n
f A λ   (6) 

where 
 n

f  collects the values of the n -th order derivatives computed at each grid point. The 

coefficients of the matrix 
 n

A  are clearly given by  
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i

n

n j

ij n

x

d x
A

dx


   (7) 

for , 1,2,..., Ni j I . Having in mind Eq. (4), the unknown vector λ  can be computed as 

 1λ A f   (8) 

 

Table 1.  Grid point distributions. The symbol N  denotes the total number of points 

Unifor (Unif) Chebyshev-Gauss-Lobatto (Cheb-Gau-Lob) 

1
, 1,2,...,

1
k

k
k N

N



 


  cos , 1,2,..., , 1,1

1
k

N k
r k N r

N


 
    

 
 

Quadratic (Quad) Chebyshev I kind (Cheb I) 

2

2

1 1
2 , 1,2,...,

1 2

1 1 1
2 4 1, 1,..., 1,

1 1 2

k

k

k N
k

N

k k N
k N N

N N





   
   

  


     
              

 
 

 
2 1

cos , 1,2,..., , 1,1
2

k

N k
r k N r

N


  
     

 

 

Chebyshev II kind (Cheb II) Approximate Legendre (App Leg) 

 
1

cos , 1,2,..., , 1,1
1

k

N k
r k N r

N


  
    

 
 

 

 

2 3

4 31 1
1 cos ,

4 28 8

1,2,..., , 1,1

k

N k
r

NN N

k N r


   

          

  

 

Legendre-Gauss (Leg-Gau) Radau I kind (Rad I) 

     2

1roots of , 1,2,..., , 1,1 1k Nr rr L k N r     
      

 

1roots of  ,

1,2,..., , 1,1

1 N Nk r L r

k N

rr L

r





 

 

 
 

Chebyshev-Gauss (Cheb-Gau) Legendre-Gauss-Lobatto (Leg-Gau-Lob) 

 

 

 

1

2 1
1, 1, cos ,

2 2

2,3,..., 1, 1,1

N k

N k
r r r

N

k N r


  

     
  

   

      2

1roots of , 1,2,..., , 1 1 1 ,k Nr A rr k N r     

Hermite (Her) Laguerre (Lague) 

   1roots of , 1,2,..., ,k Nr H r k N r         1roots of , 1,2,..., , 0,k Nr G r k N r     

Chebyshev-Gauss-Radau (Cheb-Gau-Rad) Non uniform Ding (Ding) 

 
 

2
cos , 1,2,..., , 1,1

2 1
k

N k
r k N r

N


 
      

 
1 1

1 2 cos , 1,2,...,
2 4 2 1

k

k
k N

N

 


  
     

  
 

Legendre (Leg) Chebyshev III kind (Cheb III) 

   1roots of , 1,2,..., , 1,1k Nr L r k N r     
 

 
2 1

cos , 1,2,..., , 1,1
2 1

k

N k
r k N r

N


  
      

 

Chebyshev IV kind (Cheb IV) Lobatto (Lob) 

 
 

2 1
cos , 1,2,..., , 1,1

2 1
k

N k
r k N r

N


  
      

    1roots of , 1,2,..., , 1,  1k Nr A k Nr r     

Legendre-Gauss-Radau (Leg-Gau-Rad) Radau II kind (Rad II) 

     1roots of , 1,2,..., , 1,1N Nk L r L rr k N r      
      

 

1roots of  ,

1,2,..., , 1,1

1 N Nk rr L

k

r L r

N r



  

 
 

Jacobi (Jac) Jacobi-Gauss (Jac-Gau) 

     ,

1roots of , 1,2,..., 1,1k Nr J k N rr
 

            ,2

1roots of  , 1,2,..., , 1,1 1k N NrJrr k r
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Thus, Eq. (8) allows to write the following definition 

 
    1n n f A A f   (9) 

According to the differentiation matrix procedure provided by the DQ method, the n -th order 

derivatives are given by 

 
   n n
f D f   (10) 

in which 
 n

D  is the matrix that collects the so called weighting coefficients for the derivation. 

By comparing Eq. (9) and Eq. (10), it is evident that  

 
    1n n D A A   (11) 

Therefore, it should be noted that the differentiation matrix 
 n

D  can be computed as the 

matrix product between the matrix 
 n

A that collects the n -th order derivatives of the chosen 

basis functions at each discrete point of the domain and the inverse matrix of the operator A  

that includes the values that the basis functions assume in every grid point. For completeness 

purpose, some of the basis functions that can be used for this purpose are listed in Table 2. 

As highlighted in the review paper by Tornabene et al. [5], it is possible also to employ the 

well-known Radial Basis Functions (RBFs) for the functional approximation. Analogously, 

the same approximation can be achieved through the so-called Moving Least Squares (MLS) 

method [5]. For the sake of clarity, Eq. (10) assumes the following aspect 

 
     

1

N

i

n I
n

ij jn
j

x

d f x
D f x

dx 

   (12) 

for 1, 2,..., Ni I , where 
 n

ijD  denotes the elements collected in the differentiation matrix. It 

should be noted that Eq. (12) is analogous to the definition of numerical derivative provided 

by the Generalized Differential Quadrature (GDQ) method 

 
     

1

N

i

n I
n

ij jn
j

x

d f x
f x

dx




   (13) 

where 
 n

ij  are the weighting coefficients that can be collected in the corresponding matrix 

 n
ς , so that one gets 

    n n
f ς f   (14) 

Eq. (14) is equivalent to the definition shown in Eq. (10). The coefficients 
 n

ij  can be 

computed by means of the recursive expressions provided by Shu [5], whereas a matrix 

multiplication and an inversion of a matrix are required to evaluate 
 n

ijD . It should be 

highlighted that the matrix A  could become ill-conditioned if the number of grid points 
NI  is 

increased, since it appears to be similar to the well-known Vandermonde matrix. It is proven 

that this problem happens for 13NI  . It should be observed anyway that the number of 

discrete points is low when the reference domain is subdivided into finite elements, since the 

unknown field is well-approximated by using lower-order basis functions. However, the 

choice of particular basis functions such as Lagrange polynomials, Lagrange trigonometric 

polynomials, or the Sinc function, allows to overcome this issue since the coefficient matrix is 
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equal to the corresponding identity matrix (in other words, one gets A Ι ). Thus, when the 

solution is obtained by using a single element, the unknown field requires higher-order basis 

functions for its approximation. Consequently, the numerical problems related to the ill-

conditioned matrix can be avoided by choosing the aforementioned basis functions. 

 

Table 2.  Basis function employed for the functional approximation 

Lagrange polynomials Lagrange trigonometric polynomials 

 
 

     
 

         

1

1

1 1,

, , , 1, 2,...,

,

j j

j j

N N

k j j k

k k j k

r
l r r j N

r r L r

r r r r r r



  

     


    

L

L L

 

 
 

   

     

1

1

1 1,

, 0,2 , 1,2,...,

sin
2

sin , sin
2 2

j j

j

j

N N
j kk

j

k k j k

r
g r r j N

r r
S r

r rr r
r r

 

  

      
 
 

  
    

   
 

G

G G

 

Bernstein polynomials Lobatto polynomials 

 
 

   
 

 

1
1 !

1
1 ! !

         0,1 ,      1,2,...,

N jj

j j

N
B r r r

j N j

r j N





  

 

 

       1 , 1,1 , 1,2,...,j j j

d
A r L r r j N

dr
       

Exponential functions Monomial polynomials 

     1
, , , 1,2,...,

j r

j jE r e r j N


          1, , , 1,2,...,j

j jZ r r r j N        

Bessel polynomials Sinc functions 

   
 

 

 

1

1 1

0

1 !
1, ,

1 ! ! 2

        , ,      2,3,...,

j k

j j

k

j k r
P r P r

j k k

r j N

 





   
     

   

   

  
 

   
  

 

sin 1
Sinc

1

0,1 ,              1, 2,...,

j

j j j

j

N r r
S r

N r r

r j N






 
  

 

 

 

Fourier functions Boubaker polynomials 

   

 

 

1 1 1, cos for even
2

1
sin for odd

2

    0,2 ,              2,3,...,

j j

j j

j
F r F r r j

j
F r r j

r j N

 





 
     

 

 
   

 

 

 

   

   
 

 
    

1 1

1

1 2

0

1

1,    , , 2,3,...,

1 1 4
1

1

2 1 1 1
1

4

j
k j k

j j

k

j

Q r r j N

j k j k
Q r r

k j k

j
j











 





     

    
    

  

   
 

  

Jacobi Polynomials Legendre polynomials 

   
 

     
    

 

1
1

1 1,

11

1
1 1

2 1 ! 1 1

1,1 , 1,2,..., , , 1

j
j

j j

j j jj

d
J r r r

drj r r

r j N

  

 


 




   




   

  

    

  
 

 
  

 

1
1

1
2

1 1

1
1

2 1 !

1,1 1,2,...,

j
j

j

j j j j

d
L r r

j dr

r j N








 


  



  

 

Chebyshev polynomials (I kind) Chebyshev polynomials (II kind) 

        cos 1 arccos , 1,1 , 1,2,...,j jT r j r r j N         
  
  

 
sin arccos

, 1,1 , 1,2,...,
sin arccos

j j

j r
U r r j N

r
       

Chebyshev polynomials (III kind) Chebyshev polynomials (IV kind) 

 

   

 
 

2 1 arccos
cos

2
, 1,1 , 1,2,...,

arccos
cos

2

j j

j r

V r r j N
r



 
  
 

    
 
  
 

  

   

 
 

2 1 arccos
sin

2
, 1,1 , 1,2,...,

arccos
sin

2

j j

j r

W r r j N
r



 
  
 

    
 
  
 

 

Laguerre polynomials Hermite polynomials 

 
 

   
1

1

1

1
, 0, , 1,2,...,

1 !

j
j r

j j r j

d
G r r e r j N

j e dr



 

 
    


        

2 2
1

1

1
1 , , , 1,2,...,

j
j r r

j j j

d
H r e e r j N

dr
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For the sake of completeness, it should be noted that the following linear coordinate 

transformation is required to define the weighting coefficients in the physical domain 

    1

1

n

n nN
ij ij

N

r r

x x
 

 
  

 
  (15) 

for , 1, 2, , Ni j I  and 1,2, , 1Nn I  , where 
 n

ij  are the weighting coefficients related to 

the physical domain, whereas 
 n

ij  are the ones computed in the definition domain. The values 

of 1, Nr r  can be found using the expressions shown in Table 1. 

This approach can be easily extended to two-dimensional domains, such as the ones that 

characterize the structural problem of plates and shells. Firstly, the reference domain must be 

discretized by placing ,N MI I  grid points along the two principal directions, respectively. 

Then, the same procedure illustrated above should be used to obtain the weighting 

coefficients for the numerical derivatives along both the main coordinates of the domain ,x y . 

In this circumstance, a two-dimensional function  ,f x y  is considered. In order to facilitate 

the implementation of the technique in hand, the values that this function assumes in each 

discrete point of the domain can be conveniently collected according to the following scheme 

 

     

   

   

1 1 2 1 11 2

first column

1 2 21 2

second column

1
1

last column

, , ,

, ,

, ,

N
N

NN N

M N M
N M N N M

I
I

II I

T

I I I
I I I I I

f x y f x y f x y

f x y f x y

f x y f x y



   







f

  (16) 

in which  ,k i j k
f f x y , for 1, 2,..., Ni I  and 1,2,..., Mj I . For the sake of clarity, this 

aspect is depicted graphically in the scheme of Figure 1. 

 
Fig. 1.  DQ implementation for a two-dimensional domain 

 

The weighting coefficients can be computed by using the Kronecker product   as follows 
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M MN M N M N N

n n

x x
I II I I I I I   

 C I D   (17) 

  

   

 

N NN M N M M M

m m

y y
I II I I I I I    

 C D I   (18) 

  

   

   

N NN M N M M M

n m m n

xy y x
I II I I I I I



   

 C D D   (19) 

in which I  represents the identity matrix, whereas 
   

,
n m

x yD D  collect the weighting 

coefficients along the two principal coordinates, which can be evaluated as shown above. The 

size of every operator is indicated under the corresponding matrix for the sake of 

completeness. Once the weighting coefficients related to the current scheme are computed and 

collected in the corresponding matrices 
     

, ,
n m n m

x y xy


C C C , the derivatives of the considered 

function are given by the following matrix products 

    n n

x xf C f   (20) 

 
   m m

y yf C f   (21) 

 
   n m n m

xy xy

 
f C f   (22) 

In particular,  n

xf  collects the n -th order derivatives with respect to x , 
 m

yf  is the vector of 

the m -th order derivatives with respect to y , whereas 
 n m

xy


f  represents  n m -th order 

mixed derivatives. The size of all these vectors, as well as of f , is given by   1N MI I  . 

At this point, it should be mentioned that the present approach is used to obtain and solve the 

strong form of the governing equations. If a subdivision of the reference domain into finite 

elements is required, the technique is termed Strong Formulation Finite Element Method 

(SFEM). It is clear that the vector f  denotes the unknown field of the partial differential 

equations of the fundamental system, which is transformed directly into a system of discrete 

equations by means of the DQ method. 

Approximation of integrals 

Starting from the ideas and definitions illustrated for the numerical evaluation of derivatives, 

a numerical scheme for the computation of integrals can be developed. In this section, the 

main aspects of this integral quadrature are presented briefly. Since the Lagrange polynomials 

are used as basis functions for the functional approximation, the technique at issue is known 

in the literature as Generalized Integral Quadrature (GIQ). Nevertheless, it should be recalled 

that different basis functions can be chosen for the same purpose. 

Let us consider the same one-dimensional function  f x  defined in the closed interval  ,a b  

introduced in the previous section. As shown in Eq. (1), the reference domain is discretized so 

that one gets  ,kx a b . All the grid distributions listed in Table 1 could be employed. By 

definition, the integral of  f x  within the closed interval ,i jx x   , with  , ,i jx x a b , can be 

approximated as follows  

    
1

j
N

i

x I
ij

k k

kx

f x dx w f x


   (23) 
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where 
NI  denotes the total number of discrete points, whereas ij

kw  are the weighting 

coefficients for the integration. It should be noted that the numerical integration in Eq. (23) 

requires to consider all the sampling points of the domain independently from the integration 

limits. Eq. (23) becomes a conventional integral for ix a  and 
jx b . In order to evaluate 

the weighting coefficients, the following quantities must be introduced 

 

   

   

1 1

1 1

for

1
for

i
ij ij

j

ij ii

i

x c
i j

x c

i j
x c

 

 


 



  


  (24) 

for 1, 2,..., Ni I . It is clear that 
 1

ij  stands for the weighting coefficients for the first-order 

derivatives, computable through the recursive formulae provided by Shu as explained in the 

previous section. The arbitrary constant c  should be set equal to 1010c b    to guarantee the 

accuracy and stability of the numerical solution. The coefficients introduced in Eq. (24) can 

be collected in the corresponding matrix  1
ς  of size 

N NI I . At this point, this last matrix 

must be inverted as follows to obtain the matrix of the weighting coefficients for the 

integration 

   
1

1


W ς   (25) 

A generic term of W  is specified by the notation ijw , for , 1,2,..., Ni j I . Finally, the 

weighting coefficients ij

kw  needed in Eq. (23) are given by 

 ij

k jk ikw w w    (26) 

for 1, 2,..., Nk I . These 
NI  coefficients can be conveniently collected in a row vector 

xW , 

whose size is 1 NI . In compact matrix form, the numerical integral I  is computed as a 

vector product 

 xI  W f   (27) 

If the integration limits are set equal to ix a  and 
jx b , or in other words 

1ix x  and 

Nj Ix x , the numerical integration can be performed by using the weighting coefficients 

1 NI

kw , which are defined as follows 

 
1

1
N

N

I

k I k kw w w    (28) 

A transformation of these weighting coefficients must be performed to switch from the 

reference interval  ,   to a generic one  ,a b . The weighting coefficients 
1 NI

kw  in the 

physical interval  ,a b  are given by  

 
1 1N NI I

k k

b a
w w

 





  (29) 



F. Tornabene, N. Fantuzzi, and M. Bacciocchi 

10 

 

where 1 NI

kw  represents the weighting coefficients related to the shifted interval  ,  . It is 

important to underline that this approach can be applied without any restriction on the grid 

point distributions employed to discretize the reference domain. 

As shown above, the two-dimensional counterpart can be easily deducted. Let us consider a 

generic smooth function  ,f x y  defined in a two-dimensional domain, where the main 

coordinates ,x y  are given by  ,x a b  and  ,y c d . The numerical integral performed in 

the whole domain is defined as follows 

    1 1

1 1

, ,
N M

N M

d b I I
I I

i j i j

i jc a

f x y dxdy w w f x y
 

   (30) 

in which the weighting coefficients 
1 1

,N MI I

i jw w  can be evaluated by applying the same 

procedure just illustrated along the two principal coordinates. In order to facilitate the 

implementation process, these coefficients can be collected in the corresponding vectors 

denoted by ,x yW W , respectively. Even in this circumstance, the same scheme used before to 

order the grid points should be used (Figure 1). By using the Kronecker product, the vector of 

the weighting coefficients for the two-dimensional integration is obtained 

 
  11 1 NN M M

xy y x
II I I   

 W W W   (31) 

A simple matrix product is required to evaluate the numerical integration shown in Eq. (30). 

Analogously to the one-dimensional scheme, the integral I  is given by 

 
xyI W f   (32) 

where f  assumes the meaning shown in Eq. (16). The current approach is employed to obtain 

and solve the weak form of the governing equations. When the reference domain is 

decomposed into finite elements, the technique in hand is named Weak Formulation Finite 

Element Method (WFEM). 

 

3. Applications 

 

In this section, some applications related to the structural analysis of plates and shells are 

presented. Both the strong and weak formulations are employed and the numerical results are 

obtained by using different basis functions and grid distributions. 

Isotropic plates 

The numerical tests shown in this paragraph are related to the convergence analysis of simply-

supported plates in terms of the first circular frequency 
1 . The reference solution 

1ex  for this 

structure is shown in the review paper by Tornabene et al. [5]. The square plates of side 

1mL   and thickness 0.1mh   are made of isotropic material ( 70GPaE  , 0.3  , 
32707 kg m  ). In the first applications, the two formulations are employed by varying 

grid distributions and basis functions in the theoretical framework provided by the Reissner-

Mindlin theory, increasing the number of grid points 
N MI I N  . The structural model is 

composed by a sole element due to its regular shape. Figure 2 and Figure 3 show the 

convergence analyses for the weak and strong formulations, respectively. It is easy to note 
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that some grid distributions do not provide accurate results. This aspect is even more evident 

for the strong formulation (Figure 3). In general, the solutions converge by using a reduced 

number of points ( 11 15N   ). On the other hand, the MLS method gives inaccurate results, 

especially for the weak form. For this technique, the Gaussian quadric function is used as 

basis function. 

 

  
a) b) 

  
c) d) 

  
e) f) 

  
g) h) 

Fig. 2.  Relative error for the first frequency of a simply-supported square plate. The weak formulation 
is employed considering different basis functions: a) Bernstein polynomials; b) Bessel polynomials; c) 

Boubaker polynomials; d) Chebyshev (I kind) polynomials; e) Exponential functions; f) Lagrange 

polynomials; g) Fourier basis functions; h) MLS method (Gaussian quadric basis functions) 
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A second set of convergence analyses is performed considering an isotropic rectangular plate 

( 2m, 1.5m, 0.1mx yL L h   ) characterized by the same mechanical properties and 

boundary conditions of the previous tests. 

  
a) b) 

  
c) d) 

  
e) f) 

  

g) h) 

Fig. 3.  Relative error for the first frequency of a simply-supported square plate. The strong 

formulation is employed considering different basis functions: a) Bernstein polynomials; b) 

Bessel polynomials; c) Boubaker polynomials; d) Chebyshev (I kind) polynomials; e) 

Exponential functions; f) Lagrange polynomials; g) Fourier basis functions; h) MLS method 

(Gaussian quadric basis functions) 
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If 
reff  denotes the reference solution in term of natural frequency, the relative error is 

 1n

ref

f

f
     (33) 

where n  stands for the considered vibration mode. For the sake of completeness, the Navier 

type solution can be found in [5]. The same analyses are performed by means of two finite 

element commercial codes (Strand7 and Abaqus) by using several kinds of plate elements, as 

specified in Table 3. A complete description of these elements can be found in the 

corresponding documentation of the software. 

 

Table 3.  Finite elements available in the commercial codes used in the computations 

Strand7 

Quadrangular Triangular 

Quad4 (4 nodes) Tri3 (3 nodes) 

Quad8 (8 nodes) Tri6 (6 nodes) 

Quad9 (9 nodes) - 

Abaqus 

General purpose Thin structures Thick structures 

S4 (quadrangular, 4 nodes) S8R5 (quadrangular, 8 nodes) S8R (quadrangular, 8 nodes) 

S4R (quadrangular, 4 nodes) STRI65 (triangular, 6 nodes) - 

S3 (triangular, 3 nodes) - - 

As far as the present approaches are concerned, the strong formulation is used with the Cheb-

Gau-Lob (CGL) grid, whereas the Leg-Gau-Lob (LGL) is employed for the weak form. The 

Lagrange polynomials are employed for both the formulations. In this example, the reference 

domain is divided into elements and the notations SFEMj  and WFEMj  are introduced. The 

symbol j  stands for the number of elements ( 1,2,4,8,16j  ) used for the computation. The 

results are shown in Figure 4 for the first three mode shapes of the isotropic rectangular plate, 

where the relative error is given as a function of the degrees of freedom of the problem 

( DOFS ). It can be observed that the present approaches show a rapid convergence if 

compared to the commercial codes, independently from the number of finite elements. Thus, 

the current approaches require a reduced number of degrees of freedom to obtain accurate 

results. The strong and the weak based methodologies are characterized by the same level of 

accuracy, when the corresponding structural models are considered. It is important to note that 

both the SFEM and WFEM are able to capture the reference solutions and the machine 

epsilon is reached. This aspect is highlighted by the horizontal lines in the graphs of Figure 4. 

Finally, it should be specified that the theoretical model is provided by the Reissner-Mindlin 

theory [25]. 

Laminated plates 

The same structure is considered in this paragraph to perform the convergence analyses for a 

laminated plate, whose stacking sequence is given by  90 / 0 / 90 / 0 / 90 . The orthotropic 

mechanical properties are the following ones 

 
1

1 2 3 12 13 2

3

23 2 12 13 23

137.9GPa, , G 0.6 ,
40

0.6 , 0.25, 1450kg m

E
E E E G E

G E    

    

    

  (34) 
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As shown above, the results are given in terms of the relative error (33) related to the Navier 

solution specified in [5], for the Reissner-Mindlin theory. The notations and considerations of 

these tests are the same of the previous application. The convergence graphs are depicted in 

Figure 5. 

 
1st mode 

 
2nd mode 

 
3rd mode 

Fig. 4.  Relative error for the first three natural frequencies of a simply-supported isotropic 

rectangular plate increasing the number of degrees of freedom (DOFS). Both the strong and 

weak formulations are employed by dividing the domain into finite elements. The present 

solutions are compared with the ones obtained by different models obtained through several 

plate elements provided by two finite element commercial codes. 
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It should be noted that the machine epsilon is reached in each model for the present solution. 

On the other hand, the accuracy of the commercial codes is decreased if compared to the 

corresponding isotropic case. 

 

 
1st mode 

 
2nd mode 

 
3rd mode 

Fig. 5.  Relative error for the first three natural frequencies of a simply-supported laminated 

rectangular plate increasing the number of degrees of freedom (DOFS). Both the strong and 

weak formulations are employed by dividing the domain into finite elements. The present 

solutions are compared with the ones obtained by different models obtained through several 

plate elements provided by two finite element commercial codes. 
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In the applications just presented there is no need of a mapping procedure, since the domain 

has a regular shape. In the following, a fully clamped circular plate of radius 1mR   and 

thickness h  is analyzed. The lamination scheme is given by  30 / 45  and the two layers have 

the properties shown in (34) and the same thickness. The convergence analyses are shown in 

Figure 6 for two ratios R h  to deal with thick and thin structures, respectively. 

 

 
a) 10R h   

 
b) 100R h   

Fig. 6.  First natural frequency for a fully clamped laminated circular plate increasing the number of 

degrees of freedom (DOFS), for two different thickness values: a) R h = 10 ; b) R h = 100  

 

As shown above, several kinds of plate elements are considered when the solutions are 

obtained by means of the finite element commercial codes. As far as the present approach is 

concerned, only the strong formulation is solved by using different element configurations, as 

specified in the legend of the corresponding graphs, where the number of nodes required for 

the mapping of the curved edges of the structure is indicated too. An isogeometric mapping 

based on NURBS curves is also implemented and compared with the other results. Only for 

the thicker case, a three-dimensional finite element solution (achieved by means of Strand7 

and Abaqus) is computed and taken as a reference. These models are obtained through brick 

elements made of 20 nodes, named Hexa20 and C3D20 respectively. Both the SFEM and 

NURBS graphs tend to this solution with a reduced number of degrees of freedom. On the 

other hand, some types of elements provide convergence plots that are considerably detached 

from the reference ones, since they are not suitable to deal with this particular problem. 

Indeed, a similar tendency is achieved by means of each element for the thin plate. Finally, it 



F. Tornabene, N. Fantuzzi, and M. Bacciocchi 

17 

 

should be specified that the solutions are obtained in the framework of the Reissner-Mindlin 

theory. 

Laminated shells 

The last example is focused on the free vibration analysis of a doubly-curved laminated 

translational shell made of two orthotropic layers of equal thickness, whose geometry is 

widely described in the paper by Tornabene et al. [26]. The stacking sequence is given by 

 30 / 45 , and their mechanical properties are the following ones 

 
1 2 3 12 13

3

23 12 13 23

137.9GPa, 8.96GPa, G 7.1GPa,

6.21GPa, 0.3, 0.49, 1450kg m

E E E G

G    

    

    
  (35) 

The overall thickness is assumed as 0.1mh  . In this case, the first ten natural frequencies 

are obtained by solving only the weak formulation of the governing equations. A unified 

formulation is used to deal with higher-order shear deformation theories, as illustrated in the 

paper [30], where the reader can find a complete treatise about these structural models, as well 

as the nomenclature to denote them. The Leg-Gau-Lob grid distribution is employed by 

setting 30NI   and 60MI   as number of discrete points along the two principal directions. 

The first ten natural frequencies are presented in Table 4, together with the reference solution 

obtained by Abaqus (three-dimensional finite element model). All the numerical solutions are 

in good agreement with the reference one. For the sake of completeness, the first three mode 

shapes are depicted in Figure 7, where it is easy to note also the adopted boundary conditions. 

In particular, only one of the two external edges is fully clamped, whereas the other one is 

free. 

 

Table 4.  First ten frequencies for a doubly-curved laminated panel 

Mode 

[Hz] 
FSDT  TSDT  ED1  ED2  ED3  

3D FEM 

Abaqus 

1f  21.808 21.821 22.134 21.798 21.826 21.811 

2f  22.323 22.347 22.388 22.186 22.207 22.205 

3f  22.576 22.589 22.883 22.557 22.584 22.566 

4f  33.055 33.089 33.013 32.824 32.857 32.854 

5f  43.251 43.287 43.622 43.053 43.109 43.085 

6f  44.870 44.874 45.932 44.957 45.027 44.986 

7f  45.641 45.641 46.774 45.754 45.832 45.783 

8f  52.459 52.489 52.837 52.251 52.308 52.263 

9f  54.176 54.186 54.694 54.570 54.571 54.561 

10f  64.235 64.258 64.290 64.001 64.039 64.006 
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1

st
 mode 2

nd
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rd
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4

th
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th
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th
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Fig. 7.  First six mode shapes for a doubly-curved laminated shell of translation 

 

 

4. Conclusions 

 

The authors have presented two numerical approaches based on the DQ method to 

approximate derivatives and integrals, respectively. These techniques have been applied to 

solve some structural problems related to the mechanical behavior of plates and shells made 

of isotropic and composite materials. In particular, the accuracy and stability features of a 

strong formulation (SFEM) and a weak formulation (WFEM) have been discussed by means 

of some numerical analyses. Several basis polynomials for the functional approximation and 

different discrete grid distributions have been tested and compared. For this purpose, some 

convergence analyses have been performed by increasing the number of sampling points 

within the elements, for both a single element domain and a multi-element domain. The 

present solutions have been compared also with the results obtained through two commercial 

codes. These finite element models have been achieved by using several kinds of plate 

elements available in the software libraries. In general, the present methodologies have 

proven to be more accurate and characterized by a faster convergence ratio than the 

commercial codes. 
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Abstract 

In this study, longitudinal vibration of a carbon nanotube with an attached damper has been investigated using the 

nonlocal stress gradient elasticity theory. Equations of motions have been solved analytically and frequencies of 

clamped-clamped and clamped-free nanotubes have been obtained explicitly in terms of damping coefficient, nonlocal 

parameter, the attachment point of damper and nanotube length. The nonlocal effects have important effects on the 

dynamics of a CNT with an attached damper. 

Keywords: longitudinal vibration; viscously damped; carbon nanotubes; nonlocal elasticity 

1. Introduction 

Discovery of carbon nanotubes (CNTs) by Iijima [1] has important results on nanotechnology. With 

superior properties like electrical and heat conductivity, strength, density etc., scientists have 

considered use of CNTs in many areas: nano-electromechanical devices, nano-pharmaceutical 

products, nano-bearings, nano-sensors, etc. 

Dynamic behavior of CNTs at different areas is very important in design of nano-products. 

Nowadays, scientists try to use CNTs in medical applications [2,3], bearing-like products [4,5], 

electromagnetic damping process [6] and molecular transportation [7,8] etc. 

Generally, two modeling techniques are used in nano-mechanics: continuum model and discrete 

model. Because of the size independence, classical theories are not suitable at nanoscale. Nonlocal 

Elasticity, a modified continuum model, was firstly proposed by Eringen [9,10]. In this theory 

mechanical behavior of materials is size dependent. Also Molecular Dynamics (MD) Simulations are 

used as a discrete model in nano-mechanics. Both models give more acceptable results than the 

classical theory when compared to the lattice dynamics results. 

Recently, wave propagation in SWCNTs has been compared for the nonlocal continuum models and 

MD Simulations [11]. Very close results were obtained between two results. Lattice Dynamic results 

for longitudinal wave propagation in nanotubes have been investigated in previous studies [12]. 

Thermal, concentration or electromagnetic fields can cause a damping effect on CNTs [13] . Wang et 

al. [14] have studied asymmetric vibration of a single-walled carbon nanotubes (SWCNTs) immersed 

in water. Assuming that, water can establish a viscous damping effect on axisymmetric radial, 
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longitudinal and torsional vibration. Rinaldi et al. [15] investigated the fluid conveying micro scale 

pipes with the effects of flow velocity on damping, stability and frequency shift. Vibration and 

instability analysis of CNTs with a fluid flow is studied by Ghavanloo et al. [16] and microtubules in 

surrounding cytoplasm is investigated by Ghavanloo et al. [17]. In plane and flexural vibration of 

fluid conveying CNTs in viscoelastic medium is studied by [18] and in viscous fluid is studied by 

Ghavanloo et al. [19]. Yun et al. [20] have obtained the free vibration and flow-induced flutter 

instability of fluid conveying multi-walled carbon nanotubes (MWCNTs). Vibrations and instability 

of fluid conveying double-walled carbon nanotubes (DWCNTs) is studied using the modified couple 

stress theory by Zeighampour and Tadi Beni [21]. Martin and Houston [22] investigated the gas 

damping effect on CNT based nano-resonator operating in low vacuum conditions. The natural 

frequencies of aligned SWCNT reinforced composite beams were obtained using shear deformable 

composite beam theories by Aydogdu [23]. Chemi et al. [24] investigated elastic buckling of chiral 

DWCNTs under axial compression. Longitudinal forced vibration of nanorods studied by Aydogdu 

and Arda [25] using the nonlocal elasticity theory of Eringen. They considered uniform, linear and 

sinusoidal loads on axial direction. 

One of the possible medical applications of CNTs is the viscous fluid conveying SWCNT embedded 

in biological soft tissue. Transverse vibrational model is studied by Soltani et al. [26]. They 

simulated the viscoelastic behavior of surrounding tissue using Kevin-Voigt model. In addition to 

mentioned work, transverse vibration of fluid conveying DWCNTs embedded in biological soft 

tissue is investigated by Zhen et al. [27]. 

Hoseinzadeh and Khadem [28] studied the thermoelastic vibration and damping of DWCNT upon 

interlayer van der Waals interaction and initial axial stress. Same authors also investigated the 

thermoelastic vibration behavior and damping of DWCNTs using nonlocal shell theory [29]. 

Thermoelastic damping in a DWCNT under electrostatic actuation is obtained through an analytical 

method by Hajnayeb and Khadem [30]. 

Magnetic damping effect on CNTs as a nanoelectromechanical resonators is studied by Schmid et al. 

[31] at cryogenic temperature. Chang and Lee [32] investigated vibration behavior of CNTs using 

non-local viscoelasticity theory including thermal and foundation effects. 

Damping effect on rods for various boundary conditions is investigated at macro scale by [33–35]. 

Viscoelastic properties of SWCNTs are investigated with a semi-analytical approach and associated 

damping mechanism at nano scale by Zhou et al. [36]. Jeong et al. [37] modeled the nonlinear 

damping behavior of micro cantilever-nanotube system and compared with measurement results. 

Adhikari et al. [38] investigated free and forced axial vibrations of strain-rate depended viscous 

damping and velocity dependent viscous damped nonlocal rods. The asymptotic frequencies of four 

kinds of nonlocal viscoelastic damped structures, including an Euler-Bernoulli beam with rotary 

inertia, a Timoshenko beam, a Kirchhoff plate with rotary inertia and a Mindlin plate are studied by 

Lei et al. [39]. Arani et al. [40] investigated the vibration of double viscoelastic CNTs conveying 

viscous fluid coupled by visco-Pasternak medium using the surface nonlocal theory. Karličić et al. 

[41] studied free longitudinal vibration of a nonlocal viscoelastic double-nanorod system as a 

complementary study at nano scale to Erol and Gürgöze’s paper  [42]. 

Mechanical response of a CNT atomic force microscope (AFM) probe tip contact is an important 

problem (Fig.1). This response can be modeled as a spring [43] or damping element according 

continuum mechanics. Damping of a mechanical resonators based on CNTs is studied by Eichler et 

al. [44]. Li et al. [45] investigated the mechanical oscillatory behaviors of MWCNT oscillators in 

gaseous environment using MD simulation. Suspended carbon nanotube resonators behavior over a 

broad range of temperatures to explore the physics of semi flexible polymers in underdamped 
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environments simulated by Barnard et al. [46]. Hüttel et al. [47] observed the transversal vibration 

mode of suspended CNTs at miliKelvin temperatures by measuring the single electron tunneling 

current. The measured magnitude and temperature dependence of the Q factor shown a remarkable 

agreement with the intrinsic damping predicted for a suspended carbon nanotube. According to 

author’s literature knowledge, vibration of a nanorod with an attached viscous damper has not been 

considered in the previous studies. 

 

Fig. 1. SEM Image of a MWCNT Attached to Pyramidal Si Tip [43] 

2. Analysis 

A nanorod of length L and diameter ϕ is considered. A viscous damper is attached at an arbitrary 

point of the rod (Fig. 2). The equation of motion in the longitudinal direction can be expressed as:  

   
   

   
  

   

   
             (1) 

where A is the cross-section area , E is the Young Modulus and m is the mass per unit length. In Fig. 

(2), η defines the attachment point of the viscous damper, L is the length of nanorod, d is the 

damping coefficient of viscous damper and u(x,t) is the displacement in longitudinal direction. 

2.1. Equation of motion of nanorod in nonlocal model 

The nonlocal constitute relation can be given as [9,10] : 

 (     )                                        (2) 

where τkl is the nonlocal stress tensor, εkl is the strain tensor, λ and G are the lame constants, μ=(e0a)
2
. 

µ is called the nonlocal parameter, a is an internal characteristic length and e0 is a constant. In this 

study, μ ≤ 2nm
2
 is accepted for SWCNTs. Using the Nonlocal Elasticity Theory in one dimensional 

form leads following equation of motion: 

   
   

   
 (   

  

   
) 

   

   
            (3) 

If the nonlocal parameter µ is assumed identically zero, Eq. (3) reduces to classical rod model. In 

order to study the equation of motion of a nanorod with an attached viscous damper, the nanorod is 

divided into two parts. The equation of motion for each segment can be written as: 
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 (   
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           (     )           (4) 

where    and    denote displacement of the left and the right segments of the nanorod respectively. 

The corresponding boundary and continuity conditions are written as: 

 

 

Fig. 2 Nanorod model with a viscous damper in a)C-C boundary condition b)C-F boundary condition 

Clamped-Clamped (C-C): 
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Clamped-Free (C-F): 
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The longitudinal displacement ui can be expressed as: 

   (   )    ( )  
            (     )                      (7) 

where Ui(x) and λ is the amplitude function and characteristic value respectively. Inserting Eq.(7) 

into Eq.(4) gives following dimensionless equations of motion: 

 
    

   
                  (     )                       (8) 

where: 

    
   

       
                        (9) 
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The solutions of Eq.(8) are: 

   ( )     
      

             (10) 

   ( )     
      

              (11) 

where C1, C2, C3 and C4 are the undetermined coefficients. For the C-C boundary condition, 

eigenvalue equation is obtained using Eq.(5), Eq.(10) and Eq.(11): 

 [
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and for the C-F boundary condition, eigenvalue equation is obtained using Eq.(6), Eq.(10)  and 

Eq.(11): 
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where 
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For a nontrivial solution the determinant of the coefficient matrix in Eq.(12) and Eq.(14) must be 

zero. If these determinant equations are rearranged, following characteristic equations are obtained 

for each boundary conditions considered: 

  (   )     ( ̅)   (  
 

  
 ̅ )
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where 
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            ̅           (18) 

where α is the dimensionless coefficient, D is the dimensionless damping coefficient, c is the 

velocity of the wave propagation along the nanorod and  ̅ is the dimensionless characteristic 

parameter.  ̅ is a complex number and its imaginary part defines the non-dimensional frequency 

(NDF) and real part defines the non-dimensional damping coefficient (NDD) of nanorod. Damping 

ratio ( ) of nanorod is defined in the following form: 

   
|   |

√         
                      (19) 

3. Numerical Results and Discussion 

In this section, the non-dimensional frequency (NDF) and non-dimensional damping coefficient 

(NDD) of the nanorod are investigated for different dimensionless damping coefficient, nanotube 

length, nonlocal parameter and the attachment point of viscous damper. Geometrical and material 

properties of the CNT are taken from Ref. [48]. The validity of present work is checked in the next 

section. 

3.1. Validation of the Present Results 

By assuming nonlocal parameter is identically zero (µ=0), the local model solutions are obtained. The 

dimensionless characteristic values are compared with local model from Ref. [33] and Ref. [34] for C-

C and C-F boundary conditions in Table 1. Good agreement is observed between two results. 

 
Table 1 Comparison of characteristic values with literature (η = 0.6) 

 Present Work [34] [33] 

 C-C C-F C-C C-F 

  ̅̅̅ -0.020352+3.141619i -0.001439+1.570796i -0.020349+3.141619i -0.001472+1.570796i 

  ̅̅ ̅ -0.007773+6.283168i -0.000210+4.712389i -0.007772+6.283168i -0.000214+4.712389i 

  ̅̅ ̅ -0.007773+9.424794i -0.002200+7.853981i -0.007772+9.424794i -0.002249+7.853981i 

3.2. Dimensionless Damping Effect on NDF and NDD 

In Figs. (3-14) and Tables (2-3), variations of NDF and NDD with dimensionless damping coefficient 

for C-C and C-F boundary condition are depicted. According to these results following conclusions are 

obtained: 

The fundamental NDF value increases but the second and third NDF decrease with increasing D for the 

C-C boundary condition. However, for the C-F boundary condition, variation of NDF depends on η. 

First and second NDF increase whereas third NDF decreases with increasing D when η < 0.5. On the 

other hand, first and second NDF decrease and third NDF increase with increasing D when η > 0.5 

(See Table (2) and (3)). Generally, NDD increases with increasing D except for some cases. For 

smaller nanotube length, nonlocal effect is more pronounced and it reduces the NDD (See Figs. (4) and 

(6)). 

NDF decreases with increasing the nonlocal parameter for both C-C and C-F boundary condition. The 

nonlocal effect decreases with increasing nanotube length. NDD increases with increasing µ for both 

C-C and C-F boundary condition (See Figs. (3-10)). 
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The attachment point of damper has different effects on NDF for C-C and C-F cases. In C-C boundary 

condition, fundamental NDF decreases, however second and third NDF increase when η< 0.5. The 

obtained results for NDF and NDD are symmetric with respect to η = 0.5 (i.e. results of η = 0.1 are 

equal to η = 0.9, etc.). The NDD is maximum at η = 0.5. 

 

Fig. 3. Variation of NDF with dimensionless damping coefficient ξ (η = 0.3 , L = 10 nm) 

 

Fig. 4. Variation of NDD with dimensionless damping coefficient ξ (η = 0.3 , L = 10 nm) 
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Fig. 5. Variation of NDF with dimensionless damping coefficient ξ (η = 0.3 , L = 30 nm) 

 

Fig. 6. Variation of NDD with dimensionless damping coefficient ξ (η = 0.3 , L = 30 nm) 
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Fig. 7. Variation of NDF with dimensionless damping coefficient ξ (η = 0.7 , L = 10 nm) 

  

Fig. 8. Variation of NDD with dimensionless damping coefficient ξ (η = 0.7 , L = 10 nm) 
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Fig. 9. Variation of NDF with dimensionless damping coefficient ξ (η = 0.7 , L = 30 nm) 

 

Fig. 10. Variation of NDD with dimensionless damping coefficient ξ (η = 0.7 , L = 30 nm) 

For the  C-F boundary condition, first and second NDF decreases and third NDF increases with 

increasing η and reaches a maximum value at η = 1 (See Table (2) and (3)). 

Nanotube length has effect on NDF and NDD only for the nonlocal results. The local results (µ=0) are 

not affected by change of nanotube length (See Table (2) and (3)). This is an expected result from the 

classical theory. The NDF increases and the NDD decreases with increasing nanotube length in the 

nonlocal case. 

Damping ratio (ξ) increases with increasing dimensionless damping coefficient (D) generally. 

Attachment point of damper increases damping ratio in C-F case when η is approaching to 1. In C-C 

case, damping ratio reaches maximum value at η = 0.5. For longer nanotube length, local and nonlocal 

damping ratios have very close values, since bigger nanotube length reduces the nonlocal effect. 
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Table 2 Characteristic values of nanorod for C-C boundary condition 

   Dimensionless Damping Coefficient (D) 

   ξ = 0.5 ξ = 1.5 

η 
L 

(nm) 
 µ=0 nm

2
 µ=2 nm

2
 µ=0 nm

2
 µ=2 nm

2
 

0.3 

10 

  ̅̅̅ -0.3326+3.1744i -0.4490+3.1663i -1.1147+3.6824i -1.8652+2.7424i 

  ̅̅ ̅ -0.4647+6.2550i -0.9872+5.8387i -1.9599+5.7909i -0.6720+4.5281i 

  ̅̅ ̅ -0.0478+9.4219i -0.2102+9.3442i -0.1444+9.3969i -0.2031+9.0587i 

      

30 

  ̅̅̅ -0.3326+3.1744i -0.3446+3.1742i -1.1147+3.6824i -1.2340+3.7502i 

  ̅̅ ̅ -0.4647+6.2550i -0.5283+6.2350i -1.9599+5.7909i -2.0674+5.1729i 

  ̅̅ ̅ -0.0478+9.4219i -0.0626+9.4197i -0.1444+9.3969i -0.1875+9.3721i 

       

0.5 

10 

  ̅̅̅ -0.5108+3.1416i -0.6617+3.0680i -1.9459+3.1416i -1.8301+2.2991i 

  ̅̅ ̅ 0+6.2832i 0+6.2832i 0+6.2832i 0+6.2832i 

  ̅̅ ̅ -0.5108+9.4248i -1.6761+8.1626i -1.9459+9.4248i -1.0926+6.6017i 

      

30 

  ̅̅̅ -0.5108+3.1416i -0.5279+3.1356i -1.9459+3.1416i -1.9958+2.9986i 

  ̅̅ ̅ 0+6.2832i 0+6.2832i 0+6.2832i 0+6.2832i 

  ̅̅ ̅ -0.5108+9.4248i -0.6780+9.3988i -1.9459+9.4248i -2.5840+8.4288i 

       

0.7 

10 

  ̅̅̅ -0.3326+3.1744i -0.4490+3.1663i -1.1147+3.6824i -1.8652+2.7424i 

  ̅̅ ̅ -0.4647+6.2550i -0.9872+5.8387i -1.9599+5.7909i -0.6720+4.5281i 

  ̅̅ ̅ -0.0478+9.4219i -0.2102+9.3442i -0.1444+9.3969i -0.2031+9.0587i 

      

30 

  ̅̅̅ -0.3326+3.1744i -0.3446+3.1742i -1.1147+3.6824i -1.2340+3.7502i 

  ̅̅ ̅ -0.4647+6.2550i -0.5283+6.2350i -1.9599+5.7909i -2.0674+5.1729i 

  ̅̅ ̅ -0.0478+9.4219i -0.0626+9.4197i -0.1444+9.3969i -0.1875+9.3721i 

 

 

Fig. 11. Variation of damping ratio (ξ) with dimensionless damping coefficient D (η = 0.3, L = 10 nm) 

 

 



M.Arda and M.Aydogdu 

33 

 

 

Table 3 Characteristic values of nanorod for C-F boundary condition 

   Dimensionless Damping Coefficient (D) 

   ξ = 0.5 ξ = 1.5 

η 
L 

(nm) 
 µ=0 nm2 µ=2 nm2 µ=0 nm2 µ=2 nm2 

0.3 

10 

  ̅̅̅ -0.1034+1.5793i -0.1114+1.5796i -0.3136+1.6625i -0.3472+1.6707i 

  ̅̅ ̅ -0.5029+4.7284i -0.8914+4.5744i -2.1677+4.9632i -1.9622+3.1264i 

  ̅̅ ̅ -0.2527+7.8278i -0.6570+7.4139i -0.7900+7.4916i -0.3603+6.8108i 

      

30 

  ̅̅̅ -0.1034+1.5793i -0.1043+1.5793i -0.3136+1.6625i -0.3171+1.6634i 

  ̅̅ ̅ -0.5029+4.7284i -0.5435+4.7215i -2.1677+4.9632i -2.4331+4.5761i 

  ̅̅ ̅ -0.2527+7.8278i -0.3060+7.8105i -0.7900+7.4916i -0.8028+7.2631i 

       

0.5 

10 

  ̅̅̅ -0.2554+1.5708i -0.2746+1.5637i -0.9730+1.5708i -1.0051+1.4147i 

  ̅̅ ̅ -0.2554+4.7124i -0.4559+4.6657i -0.9730+4.7124i -1.1215+3.7590i 

  ̅̅ ̅ -0.2554+7.8540i -0.9220+7.5255i -0.9730+7.8540i -0.6012+6.3805i 

      

30 

  ̅̅̅ -0.2554+1.5708i -0.2575+1.5701i -0.9730+1.5708i -0.9810+1.5531i 

  ̅̅ ̅ -0.2554+4.7124i -0.2754+4.7100i -0.9730+4.7124i -1.0979+4.6400i 

  ̅̅ ̅ -0.2554+7.8540i -0.3128+7.8492i -0.9730+7.8540i -1.3783+7.5994i 

       

0.7 

10 

  ̅̅̅ -0.4058+1.5368i -0.4298+1.5150i -1.5566+0.9318i -1.3030+0.8760i 

  ̅̅ ̅ -0.0122+4.7120i -0.0212+4.7112i -0.0368+4.7089i -0.0636+4.7006i 

  ̅̅ ̅ -0.2527+7.8801i -1.3054+7.8292i -0.7900+8.2164i -1.4398+5.7877i 

      

30 

  ̅̅̅ -0.4058+1.5368i -0.4086+1.5345i -1.5566+0.9318i -1.5149+0.9222i 

  ̅̅ ̅ -0.0122+4.7120i -0.0132+4.7119i -0.0368+4.7089i -0.0396+4.7083i 

  ̅̅ ̅ -0.2527+7.8801i -0.3095+7.8888i -0.7900+8.2164i -0.9144+8.5625i 

 

  

Fig. 12. Variation of damping ratio (ξ) with dimensionless damping coefficient D (η = 0.3, L = 30 nm) 
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Fig. 13. Variation of damping ratio (ξ) with dimensionless damping coefficient D (η = 0.7, L = 10 nm) 

 

Fig. 14. Variation of damping ratio (ξ) with dimensionless damping coefficient D (η = 0.7, L = 30 nm) 

 

Damping ratio (ξ) increases with increasing dimensionless damping coefficient (D) generally. 

Attachment point of damper increases damping ratio in C-F case when η is approaching to 1. In C-C 

case, damping ratio reaches maximum value at η = 0.5. For longer nanotube length, local and nonlocal 

damping ratios have very close values, since bigger nanotube length reduces the nonlocal effect. 

4. Conclusions 

Free longitudinal vibration of damped nanotube with attached a viscous damper is investigated in the 

present study. Effects of some parameters like dimensionless damping coefficient (D), nonlocal 

parameter (µ), attachment point of damper (η) and nanotube length (L) to the non-dimensional 

frequency (NDF), non-dimensional damping (NDD) and damping ratio (ξ) of nanorod is studied. 

Following results are obtained from the present study: 
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 The dimensionless damping coefficient (D) is effected by NDF differently depending on the 

attachment point of damper (η). NDD always increases with increasing D. 

 The Nonlocal parameter (µ) has a decreasing effect on NDF whereas it has an increasing 

effect on NDD. Also µ is more effective in smaller nanotube length. 

 NDD reaches a maximum value at η = 0.5 in C-C case and η = 1 in C-F case.  

 Nanotube length (L) is effective only in nonlocal case (µ ≠ 0). NDF increases and NDD 

decreases with increasing L. 

 Damping ratio (ξ) increases with increasing dimensionless damping coefficient (D) in C-F 

case. In C-C case, it reaches a maximum value at η = 0.5. Bigger nanotube length reduces 

nonlocal effect. 
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Abstract 

In the present research, vibration and instability of axially moving sandwich plate made of soft core and composite face 

sheets under initial tension is investigated. Single-walled carbon nano-tubes (SWCNTs) are selected as a reinforcement 

of composite face sheets inside Poly methyl methacrylate (PMMA) matrix. Higher order shear deformation theory 

(HSDT) is utilized due to its accuracy of polynomial functions than other plate theories. Based on extended rule of 

mixture, the structural properties of composite face sheets are taken into consideration. Motion equations are obtained 

by means of Hamilton’s principle and solved analytically. Influences of various parameters such as axially moving speed, 

volume fraction of CNTs, pre-tension, thickness and aspect ratio of sandwich plate on the vibration characteristics of 

moving system are discussed in details. The results indicated that the critical speed of moving sandwich plate is strongly 

dependent on the volume fraction of CNTs. Therefore, the critical speed of moving sandwich plate can be improved by 

adding appropriate values of CNTs. The results of this investigation can be used in design and manufacturing of marine 

vessels and aircrafts. 

Keywords: Vibration analysis; Axially moving; sandwich plate; Nanocomposite face sheets, Initial tension. 

1. Introduction 

The use of sandwich structures in the world is increasingly growing. In today's modern engineering, 

sandwich structures are being used successfully for a variety of applications such as aircraft, wind 

turbine blades, spacecraft, train and car structures, boat/ship hulls boat/ship superstructures and many 

others. This is due to the excellent mechanical properties of these structures (High strength to weight 

ratio, high resistance to impact, flexibility and etc.). Most of sandwich structures are composed of 

three layers: the top layer, middle layer that is called the core and the bottom layer. The core is less 

stiff compared to other two-layer. Hence, selecting the appropriate material for the core and the other 

layer is a significant for optimum design of sandwich structures. Carbon nanotube-reinforced 

composite can be an excellent option for the top and bottom layers due to the high stiffness and the 

other supreme properties. In this regard, study on vibration and instability of sandwich structures 

which are reinforced by carbon fibers have been conducted by many researchers that some of them 

are presented below. 

Thostenson and Chou [1] have modelled the elastic properties of carbon nanotube-reinforced 

composite. Investigation of the structure/size influence of carbon nanotubes on the elastic properties 
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of nanotube-based composites is the main objective of their research. Zhou et al. [2] analyzed the 

static and free vibration of carbon nanotube-reinforced composite plates using finite element method 

with first order shear deformation plate theory (FSDT). They have studied on the influences of the 

volume fractions of carbon nanotubes and the edge-to-thickness ratios on the bending responses, 

natural frequencies and mode shapes of the plates. Also, Lei et al. [3] have done similar work before, 

but they used the element free kP-Ritz method in thermal environment. Bending behavior of 

functionally graded carbon nanotube reinforced composite (FG-CNTRC) plate embedded in thin 

piezoelectric layers subjected to mechanical uniform load is investigated by Alibeigloo [4]. He 

applied simply supported boundary conditions on plate and used three-dimensional elasticity theory 

to analyze bending behavior of composite plate. 

In recent years, with the advance of industry, there was a need for structures with multiple 

capabilities simultaneously. One of the requirements was answered by the discovery of sandwich 

structures. Thus, researchers have been working in this field. Nayak et al. [5] investigated free 

vibration analysis of composite sandwich plates based on Reddy’s higher-order theory. Using this 

theory that they have provided, it can be calculated the natural frequencies of isotropic, orthotropic, 

and layered anisotropic composite and sandwich plates. Utilizing radial basis collocation function, 

Ferreira et al. [6] analyzed the static, buckling and vibration responses of the plate. Khalili and 

Mohammadi [7] used improved high-order sandwich plate to analyze the free vibration of sandwich 

plates with FG face sheets. The material properties of FG face sheets and core are considered to be 

temperature-dependent by a third-order function of temperature. Recently, Sahoo and Singh [8] 

proposed a new trigonometric zigzag theory to analyze the static analysis of laminated composite and 

sandwich plates. They assumed shear strain shape function for non-linear distribution of in-plane 

displacement across the thickness. Thai et al. [9] presented a new first-order shear deformation 

theory for functionally graded sandwich plates composed of isotropic core and functionally graded 

face sheets. They approved that the presented theory is accurate in predicting the bending, buckling 

and free vibration responses of FG sandwich plates. In another work, Plagianakos and Papadopoulos 

[10] presented coupled higher-order layerwise piezoelectric laminate mechanics. Their developed 

model was applicable to predict the static electromechanical response of composite and sandwich 

composite plates subjected to static mechanical loads and/or electric voltages. Natarajan et al. [11] 

have attempted to achieve an efficient solution for the bending and free vibration analysis of 

sandwich plates with CNT reinforced composite face sheets. For this purpose, they have used 

QUAD-8 shear flexible element developed based on higher-order structural theory. This theory 

considered the possible discontinuity in slope at the interfaces layers, the realistic variation of the 

displacements through the thickness, and the thickness stretch effects on the transverse deflection. 

Kheirikhah et al. [12] carried out biaxial buckling analysis of soft-core composite sandwich plates. In 

this way, they employed third-order plate theory for face sheets and quadratic and cubic functions for 

transverse and in-plane displacements of the core, respectively. Moreover, analytical solution has 

been presented for sandwich plates with simply supported boundary conditions under biaxial in-

plane compressive loads using Navier’s solution. 

Axially moving beams and plates have attracted many authors. The geometrically nonlinear 

dynamics and stability of an axially moving plate is presented by Ghayesh et al. [13]. In their study, 

plate is placed under an out-of-plane incitement load and the frequency–response curves of the 

system are plotted. Also, Dong Yang et al. [14] have been working on the previous thread. To solve 

the differential equations governing the problem, they have used both the Galerkin method and 

differential quadrature method. In the case of free vibration analysis of axially moving viscoelastic 

plates, Hatami et al. [15] and Marynowski [16] have studied. However, each of them has used 

different models for their work. Marynowski and Grabski [17] have investigated dynamic analysis of 

an axially moving plate subjected to thermal loading using the extended Galerkin method the. In 
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addition, they have been examined the effects of transport speed, the thermal critical loading and 

axial tension on dynamic behavior of axially moving aluminum plate. 

Despite mentioned researches, vibration and instability analysis of axially moving sandwich plate 

under initial tension using HSDT is a novel topic that cannot be found in literature. To the best of 

authors’ knowledge, for the first time, analysis of axially moving sandwich plate with CNT face 

sheets is developed in this paper. Material properties of composite plate are obtained based on 

extended rule of mixture. Motions equations are obtained based on energy method and solved by 

means of analytical approach. Influences of various parameters such as moving speed, volume 

fraction of CNTs, pre-tension load, thickness and aspect ratio on instability and critical speed of 

moving composite sandwich plate are discussed in details. To verify the presented method, the 

natural frequencies for stationary sandwich plate have been compared with previous researches. The 

result of this work can be useful to control and improve the performance of axially moving devices 

which are employed in military equipment. 

2. Potential energies of axially moving sandwich plate 

Consider a rectangular sandwich plate with length (a), width (b) and thickness ( t c bh h h h   ) 

which is shown in Fig.1. The top and bottom layers are made of carbon nanotube-reinforced 

composite plate. The carbon nanotube is distributed uniformly in the x direction. The Cartesian 

coordinate system is selected for this problem. x and y axes are located in the mid-plane and z axis 

located along the thickness direction. Sandwich plate is moving along the x direction with the 

constant velocity V. 

 
Fig. 1. Schematic figure of axially moving sandwich plate with CNT reinforced face sheets. 

The following assumptions have been used to derive motion equations [18 and 19]: 

 The core thickness is larger and softer than the top and bottom layer.  

 The core is fully bonded with the top and bottom layers. Thus, core and the top layer have the 

same displacement in ( / 2cz h  ) as well as the core and the bottom layer in ( / 2cz h  ), 

 No slipping happens at the interfaces between the three layers of the sandwich plate. 

Because the core is made of a soft material, to increase the accuracy of results a higher-order theory 

will be used. According to this theory, the displacement field of the sandwich plate can be expressed 

as [20]: 
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w(x, y, z, t) w (x, y, t)+zw (x, y, t)+z w (x, y, t),







 
 

(1) 

in which, 
ju , 

jv and 
kw  ( 0,1,2,3j  and 0,1,2k  ) are the unknowns of the displacement 

components of the sandwich plate. In this manner, eleven displacements are unknowns. 

The linear von-Karman strain-displacement relations can be defined as: 

 
i 2 3

xx ,x 0,x 1,x 2,x 3,x = u u +zu +z u +z u ,   

i 2 3

yy ,y 0,y 1,y 2,y 3,y = v v +zv +z v +z v ,   

i

zz ,z 1 2 = w w +2zw ,   
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i
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(2) 

 

where 
i

pq ( , , ,p q x y z and , ,i t c b ) is strain of ith layers. It is obvious that all layers have the 

same strain due to considering similar displacement field for all of them. The constitutive equations 

for sandwich plate can be obtained as [12]: 
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where i

pq and i

rsQ  ( , 1,2,3r s  and 44,55,66 ) are stress and the stiffness coefficient matrix of ith 

layers, respectively. In this paper, the stiffness coefficients is defined for plain strain problems with 

isotropic core ( c

rsQ ), orthotropic top and bottom layers ( ,t b

rsQ ). Also, the extended rule of mixture is 

used to calculate mechanical properties of CNTRC face sheets [12]: 

 

11 12 11 21 11 22
11 12 21 22

12 21 12 21 12 21 12 21

, , , ,
1 1 1 1

i i i i i i
i i i i

i i i i i i i i

E E E E
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where: 
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A. Ghorbanpour Arani, E. Haghparast, H. BabaAkbar Zarei 

43 

 

*

2

22 22

,
i

cnt m

i i i

f m

V V

E E E


   (5b) 

*

3

12 12

.
i

cnt m

i i i

f m

V V

G G G


   (5c) 

 

The total potential energy consists of two factors, bending and elongation. Thus, it can be written as: 

 

,i i i

b eU U U   (6) 

 

where i

bU  and 
i

eU  represent potential energy due to bending and elongation, respectively, and 

defined as [21]: 

 

1
[ ( ) ] ,
2i

i i i i i i i i i i i i i

b xx xx yy yy zz zz xy xy xz xz yz yz

V

U dV                  (7a) 

0 2

,

1
( ) ,

2

i

e xx x

V

U w dV   (7b) 

  

in which, 0

xx represent the uniform initial stress along the x direction. Hence, it is neglected the shear 

stress and the normal stress of the uniform initial stress in the y direction. 

3. Kinetic energy 

The velocity vector (V ) for axially moving sandwich plate with constant velocity C can be 

expressed as follows [13]: 

 

, , , , , ,( ) ( ) ( ) .t x t x t xV C u Cu i v Cv j w Cw k        (8) 

 

Thus, the kinetic energy of the sandwich plates is given by: 

 

2 2 2

,t ,x ,t ,x ,t ,x

1
[(C+u +Cu ) (v +Cv ) (w +Cw ) ] ,

2 i

i i

V

K dV    (9) 

 

where iK and i represent kinetic energy and density of ith layers, respectively. 

4. Motion equations based on Hamilton’s principle 

Based on Hamilton’s principle, equations of motion for axially moving sandwich plate are derived as 

[21]: 

 
2

1

( ) 0.

t

i i

t

U K dt      (10) 
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Substituting Eqs. (7a), (7b) and (9) into Eq. (10), the coefficients 

of
0 1 2 3 0 1 2 3 0 1, , , , , , , , ,u u u u v v v v w w           and

2w  can be obtained as follows: 
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where t

iI , 
c

iI and b

iI are defined for  top, core and bottom layers, respectively, as follows: 
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/2 /22

2,4,6 2,4,6 2,4,6

2,4,6 2,4,6 2,4,6

/2 /2
( )

2

, , .

c
t

c c

c c c
b

h
h

h h

t c b

h h h
h

I z dz I z dz I z dz

 


 
 

      (12) 

5. Analytical Solution 

The analytical solution of Eqs. (11) exists for the simply-supported axially moving rectangular 

sandwich plate with composite face sheets. In this approach, the displacements are considered as 

functions which satisfy at least the various geometric boundary conditions. Based on Navier’s 

procedure, the solution of the displacement variables can be expressed in the following forms [15]: 
 (13) 
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Substituting above relations into Eqs. (11) lead to final equations as a matrix form: 

 

0 1 2 3 0 1 2 3 0 1 2
11 11

,
T Tmn mn mn mn mn mn mn mn mn mn mn

ij iS U U U U V V V V W W W N


         
 (14) 

 

in which, ( 1,2,3)iN i   is related to external thermal or mechanical loads. It should be noted that in the 

case of free vibration ( 1,2,3)iN i   are assumed to be zero. The arrays of matrix ijS are obtained from 

Eqs. (11) and (13). 

6. Numerical results and discussion 

In this section, effects of various parameters such as volume fraction of CNTs, axially moving speed, 

aspect ratio and thickness on the vibration characteristics of axially moving sandwich plate with 

composite face sheets are discussed in details. In the present study, Titanium alloy (Ti-6Al-4V) is 

considered for the homogeneous core. Poly methyl methacrylate, referred to as PMMA, is selected 

for the matrix of composite face sheets inside CNTs fibers. The effective material properties of 

CNTs, Ti-6Al-4V and PMMA are presented in Table 1 and 2. It should be noted that 

1 20.137, 1.022   and 3 0.715  for the case of * 0.12CNTV  , 1 20.142, 1.626   and 3 1.138  for the 

case of * 0.17CNTV   , and 1 20.141, 1.585    and 3 1.109  for the case of * 0.28CNTV   . Moreover, it’s 

assumed that 12 13G G  and 23 121.2G G  according to Wang and Shen [22]. 

Table 1. Mechanical properties of SWCNT with 10 [22]. 

Temperature 

(K) 11 ( )CNTE TPa 22 ( )CNTE TPa 12 ( )CNTG TPa CNT 3( / )CNT Kg m 

300 5.6466 7.0800 1.9445 0.19 1400 

500 5.5308 6.9348 1.9643 0.19 1400 

700 5.4744 6.8641 1.9644 0.19 1400 

Table 2. Mechanical properties of PMMA and Ti-6Al-4V [22]. 

Material ( )E GPa 3( / )Kg m  

PMMA 3.52-0.0034T 1150 0.34 

Ti-6Al-4V 4122.56(1 4.586 10 )T  4429 0.29 

Dimensionless parameters are defined to obtain dimensionless results: 
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c c c

Nx y u v w h h a Q
U V W C C P a

a b a b h a b b Q a Q


     



     
           
     

 (15) 

 

Fig. 2 illustrates the influence of volume fractions of CNTs on the dimensionless frequencies of 

axially moving sandwich plate. This figure shows that increasing volume fractions of CNTs leads to 

increase stiffness of sandwich plate and consequently the frequencies of moving system increase. In 

addition, it’s evident that increasing *
CNTV from 0.17 to 0.28 not considerably affected the natural 

frequencies of moving system, especially at lower aspect ratios. Moreover, it can be observed that 

the frequencies moving system increase with increasing aspect ratios of sandwich plate. 
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Fig. 2. Dimensionless frequency versus aspect ratio of sandwich plate for different volume fractions of 

CNTs. 

The real part of dimensionless frequency versus dimensionless axially moving speed for different 

core thickness is depicted in Fig.3. As can be observed, Im( ) diminishes with increasing C . These 

physically proved that the system is stable and the small moving speed does not result in damping 

behavior. For zero resonance frequency, axially moving sandwich plate becomes unstable due to the 

divergence via a pitchfork bifurcation and the corresponding moving speed is called the critical 

speed. Therefore, with increasing moving speed, system stability decreases and became susceptible 

to buckling. It is obvious that increasing core thickness causes to increase strength of sandwich plate 

and consequently the frequencies of system increase. 
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Fig. 3. Dimensionless frequency versus dimensionless moving speed of sandwich plate in different 

values of core and face sheets thickness. 
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The influences of volume fractions of sandwich plate on dimensionless frequencies versus 

dimensionless thickness parameter are demonstrated in Fig.4. This figure approved that increasing 

thickness of sandwich plate leads to increase frequencies of moving system. In addition, the effect of 

CNTs reinforcement is more significant at thicker sandwich plate.  Also, it can be found that the 

frequencies of sandwich plate which is reinforced by 0.17 and 0.28 volume fractions of CNTs are 

similar. So, in this study * 0.17CNTV   is selected for the face sheets of sandwich plate. 
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Fig. 4. The influence of CNTs volume fraction on dimensionless frequency versus dimensionless thickness 

ratio of sandwich plate. 

As mentioned ago, SWCNTs is selected as a reinforcement of face sheets of sandwich plate. The 

mechanical properties of CNTs at different temperatures are adopted from Wang and Shen (2012). 

Fig. 5 presents the effect of temperature on vibration frequencies of moving sandwich plate. As can 

be seen, increasing temperature leads to increase the frequencies of moving composite plate, 

especially at higher thickness of plate. 
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Fig. 5. The effect of temperature on dimensionless frequencies of axially moving sandwich plate versus 

dimensionless thickness ratio of sandwich plate. 

Fig.6 shows the influences of temperature changes and volume fractions on dimensionless 

frequencies versus dimensionless core thickness parameter, simultaneously. This figure approved 
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that volume fractions of CNTs and temperature changes are a significant parameters which are 

changed frequencies of moving sandwich plate, considerably. 
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Fig. 6. Dimensionless frequency versus dimensionless core thickness of sandwich plate in different 

temperature and volume fractions of CNTs. 

 

The effect of moving speed of sandwich plate on dimensionless frequency versus dimensionless 

aspect ratio is demonstrated in Fig. 7. It can be found from this figure that the values of critical speed 

in square plate are lower than rectangular plate. Moreover, increasing moving speed leads to increase 

instability of sandwich plate and consequently the frequencies decrease. 
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Fig. 7. The effect of moving speed on dimensionless frequency versus aspect ratio of sandwich plate. 

Dimensionless frequencies versus dimensionless initial tension in different moving speeds are 

demonstrated in Fig.8. It’s concluded that increasing pre-tension leads to decrease dimensionless 

frequency of sandwich plate. In addition, the influence of initial tension in axially moving plate with 

higher moving speeds is more considerable than stationary plates. 
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Fig. 8. The effect of moving speed on the dimensionless frequency versus dimensionless initial tension. 

Fig.9 illustrates the effect of vibration modes on dimensionless frequencies versus dimensionless 

moving speed of sandwich plate. It is evident that the critical speed and frequencies of sandwich 

plate in third mode are higher than the first mode. 

 

0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

1.5

2

2.5

C

D
im

e
n

si
o

n
le

ss
 f

re
q

u
e
n

c
y

  
( 

)

 

 

m,n=3

m,n=2

m,n=1

 

Fig. 9. The effect of vibration modes on the dimensionless frequency versus dimensionless moving speed of 

sandwich plate. 

In order to examine the reliability of the presented method, the results of this method are compared 

with the work by Wang and Shen (2012). For this purpose, sandwich plate with CNTRC face sheets 

is considered. Non-dimensional natural frequencies are obtained by 2 / /c ca h E  
   

 
 where 

c and cE represents mass density and Young’s module of core layer at T=300 K. As can be seen, 

there are good agreement between the results of present study and their approach.   

Table 3. Comparison between non-dimensional natural frequencies of sandwich plate with CNTRC face 

sheets (C=0, a/b=1, b/h=20) 

T= 300 K 8c

t

h

h
 6c

t

h

h
 4c

t

h

h
 

*
CNTV 

0.17 0.28 0.17 0.28 0.17 0.28 

Present 4.5577 4.5673 4.2701 4.2710 3.7173 3.7203 

Ref. [22] 4.5887 4.5871 4.2642 4.2939 3.7320 3.7378 
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7. Conclusion 

Based on HSDT, vibration analysis of axially moving sandwich plate with composite face sheets was 

developed for the first time. PMMA was selected as a matrix composite face sheets inside CNTs 

fibers.  Extended rule of mixture was utilized to obtain structural properties of composite face sheets. 

Considering simply supported boundary condition, the motion equations were obtained using 

Hamilton’s principle and solved by analytical solution. It was found that vibrating behavior of 

moving sandwich plate was strongly dependent on moving speed, so that, with increasing moving 

speed, system stability decreases and became susceptible to buckling. In addition, increasing small 

amount in volume fraction of fibers led to increase frequencies of sandwich plate, considerably. 

Comparison between natural frequencies of this study and the work which was done by Wang and 

Shen [22] confirmed the accuracy of presented results. The results of this study is hoped to be used in 

optimum design of aircrafts and military equipment. 
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Abstract 

 

Free vibration analysis of orthotropic composite annular plate is investigated. First-order shear deformation 

theory (FSDT) is used for equation of motion. Two different kernels such as Regularized Shannon delta (RSD) 

kernel and Lagrange delta sequence (LDS) kernel are used. The method of discrete singular convolution (DSC) 

is used for numerical simulation of governing equations to obtain the frequency values. It is shown that the 

convergence and accuracy of the DSC method is very good for vibration problem of orthotropic annular plate.  
 

Keywords: Frequency, annular plate, discrete singular convolution, composite laminated. 

 

 

 

1. Introduction 

 

Free vibration analyses of shells and plates have widely studied by this time. Frequencies 

values of shell structures have major importance for their design in different fields. In 

literature, it is possible to find a few books on analysis and design of these structures [1-11]. 

Some important studies have been listed in references [9-42]. 

 

This paper is summarized in a few sections. In section 2, just main formulations for truncated 

conical shells and annular plates are given via Tong’s [43] paper. The method of discrete 

singular convolution (DSC) is given in section 3. DSC solution for free vibration of 

orthotropic annular plates with is briefly defined in section 4. Results are listed in Section 5. 

Finally, a conclusion is located at the end of the paper.  

 

 

2. Fundamental Equations 

 

Geometry and parameters of conical shells and annular plates are depicted in Fig. 1.  
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Fig. 1. Demonstration and notation of conical shell and annular plate 

 

The equations of motion are [43] 
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Moment and forces components can be defined as: 
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For annular plates (α=90; =360) based on the FSDT the differential equations of motion can 

be defined in each direction: 
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3. Discrete Singular Convolution (DSC) 

 

The method is originally introduced by Wei [44-47]. After the Wei’s paper, the method 

of DSC have been used in many problems related to static, dynamic, free vibration and 

buckling analysis of structures [48-74]. A singular convolution F can be formulated as [44] 
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In the study, regularized Shannon kernel (RSK) and Lagrange kernels are used.  

Regularized Shannon kernel (RSK)   

RSK kernel can be listed below [45-47]  
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Gaussian envelope is showed by symbol  .  In discrete form, any derivation can be written as 
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 Lagrange delta sequence (LDS) kernel 

LDS kernel is defined for i = 0,1,…, N-1 and j = -M,…,M is given by [44-50] 
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In this case, the first and second order derivatives are given as 
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4. Results  

 

In this section, two examples are solved via two different kernels such as Regularized 

Shannon delta (RSD) kernel and Lagrange delta sequence (LDS). Frequency values for 

annular and circular plates have been obtained and results are listed in Tables 1-2 for 

orthotropic case. Results are obtained for clamped cases for annular and circular plates. Both 

kernels are useful for numerical discretization via DSC. It is shown that the 9*7 grids are 

efficient for best convergence. 

 

Table 1. Frequency values rr EρωRΩ /)1(( 1 
 ) for orthotropic annular plate with C-C 

edges (R1/R2=2; R1/h=1000; E=70 GPa, c=0.3, c=5700 kg/m3, Er=1400 GPa, r=0.3,  

=7850 kg/m3)  

 

Modes Present DSC Results- RSD kernel  

(=2.8) 7×7(M=14) 9×7(M=14) 9×9(M=14) 11×9(M=14) 

1 4.52420 4.52413 4.52413 4.52413 

2 4.74045 4.74038 4.74038 4.74038 

3 5.31453 5.31449 5.31442 5.31442 

4 6.10096 6.10090 6.10085 6.10085 

5 7.04989 7.04978 7.04976 7.04976 

Present DSC Results- LDS kernel 

(=2.8) 7×7(M=14) 9×7(M=14) 9×9(M=14) 11×9(M=14) 

1 4.52443 4.52438 4.52438 4.52438 

2 4.74059 4.74053 4.74051 4.74051 

3 5.31504 5.31493 5.31493 5.31493 

4 6.10103 6.10098 6.10094 6.10094 

5 7.05068 7.05016 7.05003 7.05003 
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Table 2. Frequency values rr EρωRΩ /)1(( 1 
 ) for orthotropic circular plate with 

clamped edges (R1/h=1000; E=70 GPa, c=0.3, c=5700 kg/m3, Er=2800 GPa, r=0.3,  

 =7850 kg/m3)  

 

Modes Present DSC Results- RSD kernel  

(=2.8) 9×9(M=14) 9×7(M=14) 11×9(M=14) 11×11(M=14) 

1 2.72081 2.72081 2.72081 2.72081 

2 3.37236 3.37236 3.37236 3.37236 

3 4.50756 4.50753 4.50753 4.50753 

4 4.98188 4.98182 4.98182 4.98182 

5 5.60235 5.60227 5.60227 5.60227 

Present DSC Results- LDS kernel 

(=2.8) 9×9(M=14) 9×7(M=14) 11×9(M=14) 11×11(M=14) 

1 2.72086 2.72086 2.72086 2.72086 

2 3.37244 3.37240 3.37240 3.37240 

3 4.50767 4.50760 4.50760 4.50760 

4 4.98195 4.98190 4.98188 4.98188 

5 5.60242 5.60236 5.60234 5.60234 

 

 

5. Discussions 

 

In this paper discrete singular convolution method via FSDT shell theory is used for free 

vibration of annular and circular plates with orthotropic case. Two kernels namely 

Regularized Shannon delta (RSD) kernel and Lagrange delta sequence (LDS) kernel are used. 

The effects of grid numbers and kernel types on results have been investigated.  
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Abstract 

Heat-induced, pressure-induced, and centrifugal force-induced axisymmetric exact deformation and stresses in a thick-walled 

spherical vessel, a cylindrical vessel, and a uniform disc are all determined analytically at a specified constant surface 

temperature and at a constant angular velocity. The inner and outer pressures are both included in the formulation of annular 

structures made of an isotropic and homogeneous linear elastic material. Governing equations in the form of Euler-Cauchy 

differential equation with constant coefficients are solved and results are presented in compact forms.  For discs, three different 

boundary conditions are taken into account to consider mechanical engineering applications. The present study is also 

peppered with numerical results in graphical forms.  

Keywords: Thermo-Mechanical, Elasticity solution, Exact solution, Rotating disc, Pressure vessel, Linear elastic 

1. Introduction 

 

 

Annular structures such as cylindrical or spherical vessels including discs are essential structural elements 

mainly made of an isotropic and homogeneous material. (Fig. 1). From those vessels may store gases, 

vapors, and liquids at various pressures and temperatures. The pressure is obtained from an external 

source, or by the application of heat from an indirect or direct source. That is a pressure vessel is mostly 

subjected simultaneously to both the mechanical and thermal loads. In a pressure vessel design 

determination of both the displacements and stresses is of great importance. If the material of the vessel 

is isotropic and homogeneous then those may be calculated analytically. By choosing appropriate 

parameters, an analytical solution also allows the optimization of the design parameters of a vessel 

structure.  

 

Apart from vessels, a rotating disc is also one of the essential annular structural component. They are 

commonly used in a wide variety of engineering applications including space structures, electronic 

components and rotating machinery. Axisymmetric elasticity solutions to the both mechanical and thermal 

stress analysis of rotating discs have long been studied in the available literature.  However, most of those 

studies modelled the thermo-elastic behavior of a disc with boundary condition which commonly proper 
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for the cylindrical vessel having stress-free surfaces (Fig. 1c). But, in mechanical engineering applications 

rotating discs are commonly attached a rigid shaft at the center (Figs. 1d-e). 

 

 

 

 

 

 
 

(a) Sphere 

 

 

 

 

 

b) Infinite cylinder c) Disc / Circular annulus 

 

 

 

 

 

 

d) Disc having rigid case at the outer 

surface 

e) Disc mounted a shaft at its 

center 

 

Fig. 1. Rotating annular structural geometries 
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As is well known in the thin-walled structure analysis the uniform stress distribution along the thickness 

is taken for granted. Apart from this, the effect of the radial stress on the equivalent stress is neglected. 

That is the radial stress due to either/both inner or/and outer pressures are assumed to be virtually zero.  

 

However, in thick-walled structures, both the radial and hoop stresses play a role in the vessel design. It 

is obvious that the distribution of the stresses along the radial coordinate are no further uniform in thick-

walled annular structures.  

 

In the literature, the most number of studies are conducted with such structures subjected to just internal 

pressure. However, there are some types of structures such as submarine structures and vacuum tanks for 

which the predominant pressure is assumed to be the outer pressure and just the effect of this external 

pressure is considered in their analysis. In the present study effects of both the inner and the outer pressures 

are formulated analytically for each type of annular structures. 

 

In some thermal studies, for the aim of simplicity, the distribution of the temperature along the radial 

coordinate is assumed to be linear without solving related Fourier heat conduction differential equation in 

thick-walled annular structures. As might be expected, this not reflects the true thermal behavior of such 

structures. The appropriate temperature distribution, which is obtained in terms of a logarithmic function,   

is identically the same but not linear for discs and cylindrical structures (Fig. 2). The temperature 

distribution in spheres shows a hyperbolic variation.  In the present study, the exact temperature 

distributions obtained by the solution of Fourier heat conduction differential equation are used to study 

the thermo-elastic behaviors of such structures. 

 
Fig. 2. Temperature distribution in thick-walled annular structures 



V. Yıldırım 

69 

 

 

 

 

 

 

Apart from the above, one may also be confused undoubtedly when studying the disc and cylindrical 

geometries. Discs are modeled in the case of plane stress assumption while the cylinders are modeled 

under plane-strain assumptions. The strain-displacement relations together with the equilibrium equation 

are identically the same under axisymmetric conditions for two annular structural types. As stated above, 

the temperature distribution of two types of structures are also one and the same. In spite of those, there 

are differences in their stress-strain relations that is in Hooke’s law. This, sometimes, may cause some 

misperceptions in the formulation. In the present study the main differences in the formulation are 

demonstrated clearly.   

 

Finally, one may spend relatively much time to obtain formulas with the same notation for thermo-

mechanical behavior of such structures. In this respect, this study offers a concise and a complete study. 

  

The subject of the present work is to form an infallible all-in-one source for the linear elastic behavior of 

such structures made of an isotropic and homogeneous material under thermal and mechanical loads (Fig. 

1).  Centrifugal forces, internal and external pressure forces are all classified as mechanical loads. To do 

so, governing equations which are second degree order non-homogeneous differential equations of 

constant coefficients are first derived from the elasticity field equations, and then they are solved 

analytically to obtain thermal and mechanical deformation and stresses.  In this study exact thermo- 

mechanical analysis of this types of structures are carried out according to the superposition principle since 

small displacements are assumed. That is, each elastic quantity, either displacement or stress, is first 

determined separately for the related loading type. The resultant elastic quantity is then determined as a 

sum of each contributions. 

 (��)����	
�	������� = (��)�������� + (��)�������� + (��)�������  (!�)����	
�	������� = (!�)�������� + (!�)�������� + (!�)�������                      (1) 

 (��)����	
�	������� = (��)�������� + (��)�������� + (��)������� 
2. Spherical Vessels  

In a spherical coordinate system, (", $, ∅), relations between the strain and displacement components for 

spherically symmetric case are as follows (see Notations) 

 

)(')( rur rr =ε  

r

ru
rr r )(
)()( == φθ εε                                                                (2) 
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0)()()( === rrr rr θφφθ γγγ  

 

 

where prime symbol denotes the first derivative of the quantity with respect to the radial coordinate. It 

may be noted that the properties in $ and ∅ directions are identical for axisymmetric hollow spheres. 

Denoting the rise in temperature with respect to the temperature where stress value in the material is zero 

by ∞−= TTrT )(∆ , Hooke’s law for a sphere made of an isotropic and homogeneous material is given by 

 

                         
)()2()()()()( 1211121211 rTCCrCrCr Cr rr ∆αεεεσ φθ +−++=

 

                                   
)(

21
)(2)( 1211 rT

E
rCr C r ∆α

ν
εε θ
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−+=

 

                                         
)()21()(2)( 111111 rTCrCr C r ∆αλελε θ +−+=
 

(3) 
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)()()( 121112 rT

E
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ν
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( ) )()21()(1)( 111111 rTCrC rC r ∆αλελελ θ +−++=

 
Where 

 

)1)(21(

)1(
11

νν

ν

+−

−
=

E
C  ;    111112

1)1)(21(
CC

E
C λ

ν

ν

νν

ν
=

−
=

+−
=                                      (4) 

 

Equilibrium equation for a spherical vessel rotating at a constant angular velocity is 

 

r
r

r rr
2)(

2
)(' ρωσσσ θ −=−+                                                                (5) 

 

Eqs. (2), (3), and (5) are referred to as the field equations of the elasticity. Substituting Eq. (2) into Eq. 

(3), and then successive substitution of Eq. (3) together with the first derivative of the radial stress into the 

equilibrium equation (5), the governing equation called Navier equation in terms of radial displacement is 

obtained as follow 

 !�''(r) + &� !�' (") − &�) !�(") = − *+)��,, + (1 + 2/)01'(") = − *+)��,, + (234)(2�4) 01'(")                   (6) 

 

This is a second order non-homogeneous Euler-Cauchy type differential equation with constant 

coefficient. Its solution consists of the sum of its homogeneous and particular solutions. Since small 

displacements are assumed, the superposition principle holds. 

 

To consider just mechanical loads due to either internal or external pressures, the following (5 =  61 =0) is solved with the boundary conditions [1]:  ��(8) = −9�, and ��(:) = −9;. 
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!� ''(r) + &� !�' (") − &�) !�(") = 0                                                        (7) 

 

In order to account for just the rotation as a mechanical load (9� = 9; = 0;  61 = 0) , Eq. (8) is solved 

under the boundary conditions:  ��(8) = 0  and  ��(:) = 0. 

 !� ''(r) + &� !�' (") − &�) !�(") = − *+)��,,                                                          (8) 

 

After determination of the temperature distribution along the thickness of the sphere, the thermo-elastic 

analysis is merely taken into consideration by the following [2-6] under the boundary conditions: ��(8) =0 ; ��(:) = 0. 

 !� ''(r) + &� !�' (") − &�) !�(") = (234)(2�4) 01'(")                                                  (9) 

 

As stated above, before conducting the thermo-elastic analysis, a thermal analysis which defines the 

distribution of the temperature along the radial coordinate is required. Under the steady-state condition, in 

the absence of heat generation, temperature distribution along the thickness of the spherical vessel is found 

from the solution of the following heat conduction equation (Fourier’s equation) with the first kind 

boundary conditions (Dirichlet):   aTaT =)(  and bTbT =)( . 

 

0)(
2

)( =′+′′ rT
r

rT                                                                   (10) 

Solution of the above is found as 
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Eq. (9), now, takes the following form with Eq. (11)  

 !� ''(r) + &� !�' (") − &�) !�(") = �;(�?��@)A(234)(��;)�)(2�4) = B�)                                       (12) 

 

Solution of the above inhomogeneous equation with the boundary conditions, ��(8) = 0 , and ��(:) = 0, 

gives the following   

2
)( 12

2 Ψ
−+= rB

r

B
rur                                                               (13a) 

 C2 = D(4�2)B(��;)(�3;)�A(432)(�E�?�;E�@)(&D32)(4�2)(�E�;E)     (13b) 
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C& = �);)(D(4�2)B(��;)3�;A(432)(�?��@))&(D�2)(4�2)(�E�;E)     (13c) 

 

 

Compact forms of the thermo-elastic radial displacement, radial and hoop stresses are 

 !�(") = F2(G − 1)"&(8H − :H) 

 F = 0I8HI:H(G + 1)I−(1� − 1;)J + :(G + 1)"&(1� − 1;) + 2(G − 1)"H1�J+ 8&:"&(1� − 1;)(:G + : − 2G") + 8:&"&(1� − 1;)(:G + : − 2G")− 2:H(G − 1)"H1;J   
)14( ��(r)= 

8:0K(8 − ")(: − ")(1� − 1;)(8(: + ") + :")(G − 1)"H(8H − :H)  

 ��(") = − 8:0K(1� − 1;)("&(8& + 8: + :&) + 8&:& − 2"H(8 + :))2(G − 1)"H(8H − :H)  

 

Nayak et al. [4] offered the following thermal stresses for hollow spheres. 

 

��(r)= 
− 0K(1� − 1;)(1 − G) L :" − 1:8 − 1 − :H"H − 1:H8H − 1 M = ���������� (�N.2P) 

  

)15(  

��(r)= 
− 0K(1� − 1;)(1 − G) L :2" − 1:8 − 1 + :H2"H + 1:H8H − 1  M = ���������� (�N.2P) 

 

Nayak et al. [4] stated that from References [5-6] one can easily verify that Eq. (15) is indeed the 

expression for radial and tangential stresses for an isotropic and homogeneous thick spherical vessel. It is 

also readily verified that Nayak et al.’s [4] equations in (15) and present equations in (14) are identical. 

For the mechanical load due to internal and external pressures, analytical solution is found as 

 !�(") = Q&"& + Q2" 

 ��  = Q22(2Q&(−1 + /) + Q2"H(1 + 2/))"H  

 ��  = Q22(Q& − Q&/ + Q2"H(1 + 2/))"H  

 (16) Q2 = − I&4)34�2JI�ER?�;ER@J�(&D32)(4�2)(�E�;E)  ; Q& = �E;E(&4)34�2)(R?�R@)&�(D�2)(4�2)(�E�;E) 
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Compact forms of the above in which radial and hoop stresses coincide with Roark’s formulas [2] are. 

 !�(") = − 8H9�(:H(G + 1) + 2(1 − 2G)"H)2"&(8H − :H)K + :H9;(8H(G + 1) + 2(1 − 2G)"H)2"&(8H − :H)K  
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Fig. 3. Displacements and stresses induced by mechanical loads 
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Fig. 4. Displacements and stresses induced by thermal loads 
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Fig. 5.  Total and equivalent stresses for thermo-mechanical loads  

 

Analytical solutions for mechanical load due to just rotation at a constant angular velocity is  
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For a numerical example, geometrical and material properties together with boundary conditions of the 

sphere are assumed to be [4]: 

 

C
o

/11058.10
6
  

−=α;  MPayield 700=σ;    29.0=ν;    GPaE 2.209= 

mb 0.1=;ma 8.0=; srad /100=ω; 0=bp ;MPapa 200=; CTb
ο0=; CTa

ο27= 

 

Variation of the displacements and stresses induced by separate mechanical and thermal loads are 

illustrated in Figs. 3-4. From these figures it is observed that the radial displacement and hoop stresses 

which are tension in nature decrease with increasing ab /  ratios for each individual mechanical loads. The 

maximum radial stress which is compression in nature is observed at the inner surface for mechanical 

pressure loads, and at the vicinity of the middle surface as being tension in nature for mechanical rotational 

loads. Variation of the displacements and stresses induced by thermal loads is illustrated in Fig. 4 at 

different temperatures of the inner surface. From the figure it is observed that the radial displacement 

increases with increasing ab /  ratios and with increasing inner surface temperature. The maximum radial 

stress in compression is observed at the vicinity of the middle surface and increases with increasing surface 

temperature differences.  Tangential stress varies from compressive to tensile for thermal load, from inside 

surface to outside. Considering superposition principle, variation of the thermo-mechanical stresses and 

equivalent stress in Eq. (19) which is given by [4] based on the Von-Mises criteria is illustrated in Fig. 5. 

It is observed that the equivalent stress gradually decreases in the radial direction, from inside surface to 

outside for thermo- mechanical loads and sets up tensile stresses. From this figure it is also observed that 

the equivalent stress exceeds the yield strength at the inner surface, 5.3/ =ayield pσ . 

 

)(2 req σσσ θ −=                                                                            (19) 

3. Cylindrical Vessels 

 

In a polar coordinate system, (", $), axisymmetric relations between the strain and displacement 

components are as follows (Fig. 1) 

 

)(')( rur rr =ε  ;      
r

ru
r r )(
)( =θε   ;          0)( =rrθγ                                        (20) 

 

Stress-strain relations for a cylindrical structure are given in the form of 
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Equilibrium equation for a cylindrical vessel or a disc rotating at a constant angular velocity, is 

 

r
r

r rr
2)(

1
)(' ρωσσσ θ −=−+                                                            (22) 

 

Substituting Eqs. (20) into Eqs. (21), and then successive substitution of Eqs. (21) with the first derivative 

of radial stress into the equilibrium equation in (22), a second order non-homogeneous Navier differential 

equation which governs the thermo-mechanical behavior of a cylindrical vessel is obtained as follows 

 !� ''(r) + 2� !�' (") − 2�) !�(") = − *+)��,, + (1 + 2/)01'(")                                (23) 

 

In order to study thermo-elastic analysis alone of such structures, let’s neglect the rotation together with 

inner/outer pressures  

 !� ''(r) + 2� !�' (") − 2�) !�(") = (1 + 2/)01'(")                                      (24) 

 

Solution of the above equation consists of the sum of its homogeneous and particular solutions. To get the 

particular solution, first, the temperature distribution due to the temperature difference between the 

cylinder surfaces at specific temperatures is required. Let’s consider the Fourier heat conduction equation 

in polar coordinates for cylinders or discs 

 

=








dr

rdT

dr

d

r

)(1
0)(

1
)( =′+′′ rT

r
rT                                                     (25) 

 

Temperature distribution along the thickness of a cylinder or a disc is found from the solution of the 

above equation with the first kind boundary conditions: aTaT =)(     and   bTbT =)( .   

 1�S���T��(") = 1U��V(") = WX"Y2 + Y& 

(26) Y2= 
�?��@Z[��Z[;      ;  Y& = �Z[;�?3Z[��@Z[��Z[;  

 

It may be noted that the temperature distribution in both cylinder and disc is govern by the same differential 

equation under the same boundary conditions. Considering the temperature distribution in Eq. (26) and its 

derivative, Navier equation for the thermo-elastic analysis of a cylindrical vessel made of a homogeneous 

and isotropic material is achieved as follows 

 !� ''(r) + 2� !�' (") − 2�) !�(") = (1 + 2/)01'(") = (1 + 2/) A� \ �?��@Z[��Z[; ]                     (27) 

 

In the present work, the above differential equation is solved for the boundary conditions: ��(a)=0  and  ��(b)=0 .  Solution of Eq. (27) is obtained as follows 
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!�(r)= − ^2(G − 1)"(8 − :)(8 + :)(W_`(8) − W_`(:)) 

 ^ = a(G + 1)0 \1�(8& log(8) (:& − 2G"& + "&) − :& log(:) (8& − 2G"& + "&)+ (G − 1)"&(8 − :)(8 + :) + 2(G − 1)"&(8 − :)(8 + :) log(:)+ "&(8 − :)(8 + :) log("))+ 1;I8& log(8) I−(:& − 2G"& + "&)J + :& log(:) (8& − 2G"& + "&)+ "&(:& − 8&) log(") − (G − 1)"&(8 − :)(8 + :)− 2(G − 1)"&(8 − :)(8 + :) log(8)J]e 

(28) 
 ��(r) = (1� − 1;)0K(:&("& − 8&)ln: + 8&ln8(: − ")(: + ") + "&(8 − :)(8 + :)ln")2(G − 1)"&(8 − :)(8 + :)(ln8 − ln:)  

 ��(r) = (1� − 1;)0K(8&ln8(−(:& + "&)) + :&(8& + "&)ln: + "&(8 − :)(8 + :)(ln" + 1))2(G − 1)"&(8 − :)(8 + :)(ln8 − ln:)  

 

In equations (28) stress formulas coincides with the literature [7]. However an error is found in the 

definitions of those stresses in Reference [8]. Solutions in Reference [8] is unfortunately employed in 

Reference [9]. The analytical formulas, again derived in the present study, for the radial displacements 

and stresses due to mechanical loads such as internal/external pressure and rotation at a constant angular 

velocity are presented below for the sake of the completeness of the study. 

 !�(") =   g− 8&(G + 1)9�(:& − 2G"& + "&)"(8& − :&)K h + g:&(G + 1)9;(8& − 2G"& + "&)"(8& − :&)K h 

 ��(r)= g8&9�(:& − "&)"&(8& − :&) h + g:&(8 − ")(8 + ")9;"&(:& − 8&) h (29) ��(r)= g− 8&9�(:& + "&)"&(8& − :&) h + g:&(8& + "&)9;"&(8& − :&) h    !�(r)= g(G + 1)5&jI8&(2G − 3)(:& + (1 − 2G)"&) − (2G − 1)"&(:&(2G − 3) + "&)J8(G − 1)"K h 

 ��(r)= g(2G − 3)5&(8 − ")(8 + ")("& − :&)j8(G − 1)"& h (30) ��(r)= g5&jI8&(2G − 3)(:& + "&) + "&(:&(2G − 3) + (2G + 1)"&)J8(G − 1)"& h  
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Table 1. Material properties for cylinders 

 

 METALS E (GPa) )3ρ(kg/m ν  k (W/mK) α (1/K) 

Metals Titanium (Ti-6Al-4V) 122.557 2370 0.29 13.723 6-7.579x10 

Aluminum (Al) 70 2700 0.3 204 6-23x10 

Nickel (Ni) 199.5 8900 0.3 90.7 6-13.3x10 

Stainless-Steel (SUS304) 201.04 7800 0.3262 15.379 6-12.33x10 

Ceramics )4N3Nitride (Si-Silicon 348.43 4429 0.24 1.209 6-5.8723x10 

)2Oxide (ZrO-Zirconium 116.4 3657 0.3 1.78 6-8.7x10 

)3O2(Al Oxide-Aluminum 393 3970 0.3 30.1 6-8.8x10 

 

For numerical example, geometrical and material properties of the cylindrical vessel are assumed to be:

ma 8.0= ; mb 0.1= . Variation of the displacements and stresses induced by thermal loads at different 

temperature differences is illustrated in Figs. 6-7 for both ceramics and metallic materials whose properties 

are given in Table 1. From these figures it is observed that the characteristics of the curves of the elastic 

quantities are similar for both ceramics and metals since they are both isotropic and homogeneous: The 

radial displacement gradually increases with increasing radial coordinate. The maximum thermo-elastic 

radial displacement is observed at the vicinity of the middle surface. The thermo-elastic radial stresses are 

compression in nature. The maximum hoop stresses are observed at the inner surface of the cylindrical 

vessel. The thermo-elastic hoop stresses are gradually changed their signs from inside surface to the outer 

surface. The numerical values of the hoop stresses are 10-times more than radial stresses. So the hoop 

stresses become leading in the thermo-elastic analysis.  

 

 
 

Fig. 6. Thermo-elastic radial displacement and the radial and hoop stresses for cylindrical vessels 

made of different metallic materials 
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Fig. 7. Thermo-elastic radial displacement and the radial and hoop stresses for cylindrical vessels 

made of different ceramic materials 

 

As expected, in a thermo-elastic analysis, the ceramic materials are more strength to the metallic materials. 

However, thermo-elastic behavior of a titanium-alloy is very similar to a zirconia.  The titanium-alloy 

offers smaller displacements than the zirconia.  

 

  
  

  
  

BC=3 {!�(a)=0 and !�(b)=0} 

BC=2 {!�(a)=0  and  ��(b)=0}  

BC=1 
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Fig. 8. Boundary conditions considered for discs  
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4. Discs at Different Boundary Conditions 

In a polar coordinate system, (", $), axisymmetric field equations are as follows 

0)( =rrθγ;            
r

ru
r r )(
)( =θε;       )(')( rur rr =ε 

)()1()()( 111111 rTCrCr C r ∆αλελε θ +−+=)()()()()( 12111211 rTCCrCr Cr rr ∆αεεσ θ +−+= 

)31( 

)()1()()( 111111 rTCrC rC r ∆αλεελ θ +−+=)()()()()( 12111112 rTCCrC rCr r ∆αεεσ θθ +−+=    

111112 CC C λν == ;      
211

)1( ν−
=

E
C 

 

From the above field equations, the following Navier differential equation which governs the thermo-

mechanical behavior of the uniform disc is obtained.  

 !� ''(r) + 2� !�' (") − 2�) !�(") = − *+)��,, + (1 + /)01'(")                                (32) 

 

As stated above, temperature distribution for both discs and cylindrical vessels obey the same 

differential equations. So, from Eq. (26) the following is rewritten under the first kind boundary 

conditions 

 1(")�S���T�� ��T U��n = WX"Y2 + Y& = WX" �?��@Z[��Z[; + �Z[;�?3Z[��@Z[��Z[;                       (33) 

 

In order to study thermo-elastic analysis alone of such structures, the rotation is omitted in Eq. (32).  

 !� ''(r) + 2� !�' (") − 2�) !�(") = (1 + G)0 o,�   = (1 + G) A� \ �?��@Z[��Z[; ]                        (34) 

 

In the present work, the above differential equation is solved for each boundary condition given in Fig. 

8 and the results are presented in Table 2. As ease of reference, the analytical formulas in Reference 

[10] for the uniform discs subjected to the mechanical loads are presented for different boundary 

conditions in the Appendix.  

 

For a numerical study, geometrical and material properties of the disc are assumed to be: ma 1.0= ; 

mb 0.1= , GPaE 2.209= ; 29.0=ν ; MPayield 700=σ ; C  o/11058.10 6−=α . Variation of the 

displacements and stresses induced by thermal loads is illustrated in Fig. 9 under different boundary 

conditions and for different temperature differences. From Fig. 9 it is observed that the radial 

displacement gradually increases with increasing ab / ratios for BC=1 and BC=2. The maximum 

radial displacement is observed at the outer surface for both BC=1 and BC=2 while it is at the vicinity 

of the middle surface for BC=3. BC=1 and BC=3 present radial stress as compression in nature while 

BC=2 offers radial stress in tension. The maximum radial stress is observed at the inner surface for 

BC=2, at the close to the inner surface for the others. From Fig. 9, for all types of boundary conditions, 

maximum hoop stress is observed at the inner surface of the disc.  Hoop stresses are gradually changed 

their signs from inside surface to the outer surface. 
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Fig. 9. Thermo-elastic behavior of a rotating disc at different boundary conditions 

 

As stated above, some existing formulas in the literature contain some errors. Poworoznek [8] 

conducted an analytical study for cylindrical pressure vessels based on the theory proposed by 

Timoshenko [11]. He suggested some analytical formulas for both hollow cylinders (plain strain) and 

hollow discs (plain stress) for BC=1. 

 (��)��p���q��V/U�s� = K01�2(1 − G) WX \:8] (− WX t:"u − 8&:& − 8& (1 − :&"&) WX t:8u) 

(��)��p���q��V/U�s�3�v���U�� = �A�?& ��\@?] \1 − WX \;�] − �);)��) \1 + ;)�)] WX \;�]]            (35) 

(��)��p���q��V/�v���U�� = K01�2 WX \:8] (− WX t:"u − 8&:& − 8& (1 − :&"&) WX t:8u) 

 

Let’s re-consider analytical formulas derived in this study for the radial and hoop stresses for discs 

(Table 2) and cylinders (Eq. (28)) under BC=1. Comparison shows that there are some syntax errors 

in those formulas suggested by Poworoznek [8] as follows 

 (��)�������/U�s� = (1 − G)(��)��p���q��V/U�s� 

 (��)�������/U�s� =  (��)��p���q��V/U�s� 

(36) (��)�������/�v���U�� = 1(1 − G) (��)��p���q��V/�v���U�� 

   (��)�������/�v���U�� = 1(1 − G) (��)��p���q��V/�v���U�� 
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Before anything else, it is not proper to get the identical result for the hoop stresses in both plane strain 

and plane stress conditions as in Reference [8] while the radial stresses are found somewhat different 

for cylinders and discs.   The author thinks that there must be some typing errors or some confusion 

between the elastic constants of plane stress and plain stress cases in those formulas in Reference [8]. 

 

To study the thermo-elastic behavior of the uniform discs under plane stress assumption the following 

differential equation should be used (See Eq. (32)). 

 !�''(r) + 1" !�' (") − 1"& !�(") = (1 + /������s�����)01'(") 

(37) 

νλ =−StressPlane  

 

Under plane strain assumption, the following differential equation governing the thermo-elastic 

behavior of the cylindrical structures should be used. 

 !�''(r) + 2� !�' (") − 2�) !�(") = (1 + 2/������s�����)01'(")     
(38) 

ν

ν
λ

−
=−

1
StrainPlane  

 

Temperature distributions along the radial direction for both cylinders and uniform discs are identical. 

 

 1(")�S���T�� ��T U��n = WX"Y2 + Y&                                            (39) 

 

From the above it is revealed that it is possible to confuse easily with the elasticity constants in the 

formulation. The present results for cylinders exactly coincides with the literature [7].  

 

To gain insight into the issue in question, an additional numerical example is performed for both the 

discs and cylindrical vessels having the same inner and outer radii (a=0.5m, b=1m) for BC=1. The 

results are shown in Fig. 10 in a comparative manner by using the same axis-scales. From the overall 

picture the characteristics of the curves are similar to each other. However numerical values of the 

quantities are not the same. For example, the same temperature difference results in higher stresses in 

cylinders than discs. 

 

Finally, it is possible to obtain plane-stress formulas from the plane strain formulas by using 

appropriate coefficients. The converse is also true. In the elementary elasticity theory those coefficients 

are given for    mechanical loads such as rotation and internal/external pressures. For instance, if one 

replace formally G with 
42�4, and  E with 

�2�4) he may get the results for the plain-strain case from the 

plane stress solutions. As it is known G should be replaced formally with 
4234, and E is to be replaced 

with 
�(23&4)(234))  to get the plane stress results from the plain strain solutions. However this does not work 

alone for thermo-elastic analysis. 
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Fig. 10. Comparison of results for discs and cylinders (a=0.5m, b=1m) under BC=1 
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5. Conclusions 

 

In this study thermo-mechanical analysis of annular structures made of a homogeneous and isotropic 

linear elastic material is handled analytically under different boundary conditions. The closed form 

formulas for the radial stress, hoop stress and the radial displacement are derived for each boundary 

condition and for each structural type.  Apart from those, some muddles in the formulation of both 

cylinders and discs are clarified.   

 

For the spherical rotating vessel with 9� = 200 ��8, 5 = 100 ��T� , 1� = 300F, 1; = 273F, it is 

observed from Figs. 3-5 that  

 

• Maximum radial displacement occurs at the inner surface for both pressure and centrifugal 
loads while it is located at the outer surface for thermal loads. For the given problem, thermal 

radial displacement are much excessive than mechanical load induced radial displacements. 

 

• If radial stresses are considered, its maximum value is at the inner surface as in compression 
under pressure loading, at the mid-surface for both centrifugal force and thermal loads. 

 

• As to the hoop stress, it reaches its maximum value at the inner surface as in tension for 

mechanical loads and it is also maximum at the inner surface as in compression for thermal 

loads. This contributes the almost uniform distribution of the total hoop stress along the 

thickness. 

 

• The equivalent maximum stress is located at the inner surface due to all loadings, namely 

pressure, centrifugal force and thermal loads.  

  

For the cylinders it is observed from Fig. 6 that the radial displacement progressively increases with 

increasing radial coordinate. The maximum thermo-elastic compressional radial displacement is 

examined at the vicinity of the middle surface. The maximum hoop stresses are watched at the inner 

surface of the cylindrical vessel. The thermo-elastic hoop stresses are in compression at the inner 

surface while they are in tension at the outer surface. The numerical values of the hoop stresses are 

nearly 10-times more than radial stresses. So the hoop stresses are guiding stresses in the thermo-elastic 

analysis.  

 

The thermo-elastic behavior of stress-free discs is very similar to cylindrical vessels. However the 

same inner and outer radius together with the same temperature difference yield higher stresses in 

cylinders than stress-free discs. For other types of discs attached a shaft at its center (for BC=2 and 

BC=3) have much higher hoop stresses at the inner surface as in compression due to thermal loads.  

 

By using the closed-form formulas offered in the present study, such structures may be tailored to the 

user’s need. The author also hopes that this study may form an infallible all-in-one source for the 

readers studying the linear elastic behavior of such structures made of an isotropic and homogeneous 

material under thermal and mechanical loads. 
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APPENDIX: Displacement and stresses of uniform isotropic and homogeneous discs 

subjected to mechanical loads [10] (9� = �XX�" 9"���!"�,  9; = �!��" 9"���!"�)    
 

 

 ��(8) = −9� ��(:) = −9; 

 !�= − 8&9�(:&(G + 1) − (G − 1)"&)K"(8& − :&) + :&9;(8&(G + 1) − (G − 1)"&)K"(8& − :&)  

 ��= 
8&9�(:& − "&)"&(8& − :&) + :&9;(8 − ")(8 + ")"&(:& − 8&)   �� = − 8&9�(:& + "&)"&(8& − :&) + :&9;(8& + "&)"&(8& − :&)  

 

 

 

 ��(8) = 0 ��(:) = 0 

 !� = j5&(8&(G + 3)(:&(G + 1) − (G − 1)"&) − (G − 1)"&(:&(G + 3) − (G + 1)"&))8K"  

 ��= 
j5&(G + 3)(8& − "&)("& − :&)8"&   �� = j5&(8&(G + 3)(:& + "&) + "&(:&(G + 3) − (3G + 1)"&))8"&  

 

 
 

 !�(8) = 0 ��(:) = 0 

 !�=
5&jI8&(G + 3)(:&(G + 1) − (G − 1)"&) − (G − 1)"&(:&(G + 3) − (G + 1)"&)J8"K  

 ��=
(G + 3)5&(8 − ")(8 + ")("& − :&)j8"&  

 ��= 
5&jI8&(G + 3)(:& + "&) + "&(:&(G + 3) − (3G + 1)"&)J8"&  

 

 
 

 !�(8) = 0 !�(:) = 0 

 !�= 
(G& − 1)5&("& − 8&)("& − :&)j8"K  

 

��= 
5&j \8&I(G + 1)"& − :&(G − 1)J + "&(:&(G + 1) − (G + 3)"&)]8"&  

 ��= 
5&jI8&(:&(G − 1) + (G + 1)"&) + "&(:&(G + 1) − (3G + 1)"&)J8"&  
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Notations 

a, b Inner radius and outer radius, respectively 

21 , CC  Integration constants 

ijC  elastic constants in Hooke’s law 

E  Young’s modulus 9�, 9; Pressures at inner and outer surfaces, respectively 

r radial coordinate 

aT , bT  temperature at the inner and outer surfaces, respectively 

ru  radial displacement 

rε  radial strain 

θε
 

tangential strain 

α  thermal expansion coefficient 

θφφθ γγγ   rr ,,
 

engineering shear strain components ∅ Azimuthal coordinate 

ν Poisson’s ratio j density of the vessel material 

     rσ  radial stress 

     θσ  hoop stress $ tangential coordinate 5 constant angular velocity (rad/s) 
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Abstract 

In the current study, the size dependent free vibration of shear deformable functionally graded (FG) nanotubes 
is investigated. The nanotube is modeled as cylindrical shell which contains small scale effects by using the 
nonlocal strain gradient theory. Material properties of the FG nanotube are assumed to be variable along 
thickness direction according to power law distribution. The Hamilton’s principle is implemented to derive the 
governing equations and boundary conditions. The numerical results are presented for simply supported FG 
nanotube and the influence of different parameters, such as nonlocal parameter, length scale parameter, length, 
thickness and power law index on frequency of FG nanotube are extensively studied. The results reveal that the 
frequency is significantly size dependent.  

Keywords: Nonlocal strain gradient theory, Nanotube, Vibration, Size-dependent, first order shear deformation 
theory.  

1. Introduction 

Offering unique benefits compared to conventional materials, functionally graded materials 
have been found tremendous amount of interest among researchers. The material properties of 
FG materials are changed smoothly in one or more directions to overcome stress 
concentration, as a common problem in usual composite materials [1]. Since they include two 
different components, FG materials are able to utilize the desirable properties of each 
constituent and as a result they can be designed for specific functions and applications. The 
static and dynamic behavior of FG beams, plats and shells are studied by many researchers.  
For example, Tadi et al. studied the free vibration of FG nanoshells and the effects of different 
parameters on frequency was shown as well [2]. The bending, buckling and vibration 
behaviors of axially FG nanobeams were investigated by Li et al and the critical buckling 
force and natural frequency were shown size dependent [3]. Ebrahimi et al. examined the 
wave propagation of FG nanoplate under nonlinear thermal loading and the influence of 
different parameters such as gradient index, temperature distribution and length scale 
parameter on the wave dispersion was presented [4]. The buckling of cylindrical and conical 
panels and shells of laminated composite, FGM and carbon nanotube reinforced functionally 
graded cases were examined by Civalek and the effects of material and geometrical 
parameters on buckling response were shown [5]. Akgöz et al. studied the longitudinal free 
vibration of axially FG microbars for different boundary conditions and the effect of material 
and geometrical parameters on natural frequency was shown [6]. 
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In recent years, the increasing growth of nanotechnology leads to inspiring innovations in 
electrical, magnetic, and optical devices at the nanoscale and nanotubes are surely the most 
exciting nanostructure playing an important role in nanotechnology today [7]. The research on 
nanotubes has illustrated their prominent mechanical and electronic properties which are 
expected to result in revolutionary new devices. The more accurate realization of nanotubes 
behavior, however has so far been limited because of their dimensions, which are often equal 
or smaller than the characteristics length scales [8]. Modified continuum theories, which are 
developed as analytical methods producing more accurate results as such being comparable to 
those of atomistic models, are utilized in many studies. For example, Mehralian et al. studied 
the buckling of FG piezoelectric nanoshell under pressure based on the new modified couple 
stress theory and the critical buckling pressure was shown significantly size dependent by 
increase in thickness and decrease in length [9]. Size-dependent first order shear deformable 
shell model on the basis of modified strain gradient theory was utilized by Gholami et al. to 
study the axial buckling of functionally graded cylindrical shell [10]. The effect of material 
property gradient index was illustrated significant on the buckling load. Mehralian et al. 
studied the free vibration of FG truncated conical shell in thermal environment based on the 
modified couple stress theory and natural frequency was shown significantly size dependent 
particularly by decreasing apex angle and increasing gradient index [11]. The size dependent 
buckling behavior of silicon carbide nanotubes were investigated by Mercan et al. on the basis 
of Eringen’s nonlocal elasticity and surface elasticity and the influence of geometrical 
parameters on critical buckling load was indicated [12]. Akgöz et al. studied the buckling of 
single walled carbon nanotubes using modified couple stress theory and strain gradient theory 
[13]. 
Nonlocal strain gradient theory, as higher order continuum theory, which is able to predict the 
stiffens-hardening effects besides stiffness-softening ones, is introduced by Lim et al. [14]. In 
this theory, the stress field accounts nonlocal stress field besides strain gradients stress filed 
and two material length scale parameters beside two Lame constants are introduced [14]. 
There are many studies in which the static and dynamic behaviors of nanobeams and 
nanoplates are investigated based on this theory. For example, Ebrahimi et al. examined the 
buckling of curved FG nanobeam based on the nonlocal strain gradient theory for simply 
supported and clamped boundary conditions and the effect of different parameters such as 
length scale parameters, power law exponent and boundary conditions were indicated [15]. 
The wave propagation in a viscoelastic SWCNT are studied based on the nonlocal strain 
gradient theory using Timoshenko beam model by Tang et al. and the effects of tube size on 
the wave dispersion was shown [16]. 
Motivated by the mentioned discussion, this paper examines the vibration of FG nanotube 
based on the nonlocal strain gradient theory using the first order shear deformation shell 
model. The governing equations and boundary conditions are derived using Hamilton’s 
principle. The free vibration of simply supported cylindrical shell, as a case study, is 
investigated. The effects of different parameters such as material length scale parameters, 
thickness ratio and length ratio are illustrated on the frequency. 

2. Theoretical development 

Consider a FG nanotube modeled as cylindrical shell in Fig. 1, in which geometrical 
parameters of length, L, radius, R and thickness h are also indicated. FGM is usually made by 
the combination of two components (e.g. ceramics and metal) and the material properties of 
FG cylindrical shell varies continuously and consistently from the material properties of 
ceramics on the inner surface of the cylindrical shell to the properties of the metal on the outer 
surface as a function of constituent’s volume fraction.  Variation in volume fraction of metal 
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and ceramic according to power law distribution along cylindrical shell thickness is expressed 
in the following equations: 
 

ˆ
m

zV
h

β
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 
(1) 

1c mV V= −  
 
In the above equation, β stands for power index which varies in the 0 β≤ ≤ ∞  interval, and as 
illustrated by Fig. 1,	 ẑ  stands for the arbitrary surface distance from the inner ones of the 
cylindrical shell. Therefore, the material properties of this cylindrical shell are expressed as: 
 

( ) ( ) ˆˆ m c c
zE z E E E
h

β
⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 

(2) ( ) ( ) ˆˆ m c c
zz
h

β

ρ ρ ρ ρ⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 

( ) ( ) ˆˆ m c c
zz
h

β

ν ν ν ν⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 

 
where Ec , ρc and νc are obtained in ˆ 0z = , and Em , ρm and νm are obtained in ẑ h= , which 
respectively represent Young’s modulus, density and Poisson’s ratio of ceramics and metal.  
As displayed by Fig. 1, the displacement field of cylindrical shell based on first order shear 
deformation theory along the three directions of x, θ and z is expressed as: 
 

( ) ( ) ( ), , , , , , ,xU x z t u x t z x tθ θ ψ θ= +  

(3) ( ) ( ) ( ), , , , , , ,V x z t v x t z x tθθ θ ψ θ= +  

( ) ( ), , , , ,W x z t w x tθ θ=  
 
In the above equation, u(x,θ,t), v(x,θ,t)  and w(x,θ,t)  are considered as neutral axis 
displacement, and ( ), ,x x tψ θ  and ( ), ,x tθψ θ  as rotation of a transverse normal about the 
circumferential and axial directions. Besides, the position of the neutral axis is expressed as 
follows [2]: 
 

( )
( )
( )
( )

2

2

ˆ
ˆ

ˆ1
ˆ

ˆ
ˆ1

A
c

A

E z
z dA

z
z

E z
dA

z

ν

ν

−
=

−

∫

∫
 (4) 

 
To extract the governing equations of FG nanotubes, Hamilton’s principle is utilized as 
below:   
 

( ) 0s e
t

U T W dtδ δ δ
Δ

− + =∫  (5) 
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where δT represents kinetic energy variation, δUs  stands for  strain energy variation, and δWe  
is variation in the work of external loads acting on the cylindrical shell, which is neglected in 
this study .  
The kinetic energy is obtained from time derivation on the displacement variables, as follows: 
 

 
Fig. 1. Coordinate system and geometry of the FG nanotube. 

 
( ) 2 2 2ˆ
2 V

z
T V WU dVρ

⎡ ⎤+ +⎣ ⎦= ∫∫∫  (6) 

 
and the variation of kinetic energy is obtained as: 
 

( )
2 2 21 ˆ

2
x

V

u v wT z z z Rdxd dz
t t t t t

θδψ δδψδ δ δ
δ ρ θ

⎡ ⎤∂ ∂∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
∫  (7) 

 
Based on the nonlocal strain gradient theory proposed by Lim et al. the strain energy is given 
by [9]: 
 

( )(1)1
2 ij ij ij ij

V
sU dVσ ε σ ε+ ∇= ∫∫∫  (8) 

 
where 
 

( ), ,
1
2ij i j j iu uε = +  (9) 

ij ijkl klCσ ε=  (10) 
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which, εij, σij are the components of strain and stress tensor respectively and Cijkl represents 
the elasticity tensor for cylindrical shell. Also, the non-zero components of strain field are 
obtained by substituting Eq. (3) into (9) and using the assumption ( )1 1z R+ ≈ . 
 

x
xx

u z
x x
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ε

∂∂
= +
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(11) 

1 v w z
R

θ
θθ

ψ
ε

θ θ
∂∂⎛ ⎞= + +⎜ ⎟∂ ∂⎝ ⎠

 

1 1
2

x
x

u v z z
R x R x

θ
θ

ψ ψ
ε

θ θ
∂ ∂∂ ∂⎛ ⎞= + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 

1
2zx x

w
x

ε ψ
∂⎛ ⎞= +⎜ ⎟∂⎝ ⎠

 

1 1
2z

w v
R Rθ θε ψ

θ
∂⎛ ⎞= + −⎜ ⎟∂⎝ ⎠

 

 
Given the assumption of plane stress in the shear deformation shell theory, the stress tensor 
can be defined as: 
 

11 12

12 22

66

0
0

0 0 2

xx xx

x x

C C
C C

C
θθ θθ

θ θ

σ ε

σ ε

σ ε

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎭ ⎣ ⎦ ⎩ ⎭⎩

 

(12) 

44

55

0 2
0 2

xz xz

z z

C
Cθ θ

σ ε

σ ε
⎧ ⎫ ⎡ ⎤ ⎧ ⎫

=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎩ ⎭ ⎣ ⎦ ⎩ ⎭

 

 
In Eq. (12), elastic constants are defined as: 
 

( )
( )

( ) ( )
( )

( )11 22 12 33 44 552 2

ˆ ˆ ˆ
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− −
 (13) 

 
In the above equation, ( )ˆE z  and ( )ẑν  respectively represent Young’s modulus and 
Poisson’s ratio for FG cylindrical shell. Also, by substituting Eqs. (11) and (12) into Eq. (8), 
the variation of strain energy is obtained: 
 

(1)

0s ij ij ij ij
dV dV dA

L
U dV t dV dAδ δε σ δε⎡ ⎤⎡ ⎤= +⎣ ⎦ ⎣ ⎦∫ ∫ ∫  (14) 

 
where 
 

(1)
ij ij ijt σ σ= −∇  

(15) 
 
According to nonlocal strain gradient theory, its constitutive equation is as follows: 
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2 21 ij i ijkl kl jkl klt C Cηµ ε ε⎡ ⎤⎣ ⎦− ∇ = − ∇  (16) 
 
In the above equation, µ is equal to square of nonlocal scale parameter (e0a). Furthermore, η is 
equal to square of material length scale parameter (l).  
Consequently, by substituting Eqs. (7,14) into Eq. (5) and calculating multiple integral by 
parts, the governing equations of FG nanotube are extracted as: 
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The boundary conditions are given in Appendix A. 
In order to solve the governing equations, the following approximate solutions, satisfied 
differential equations and boundary conditions, are utilized: 
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where m, n stand for axial and circumferential wave numbers. 
Therefore, by substituting Eq. (22) into the equations of motion, the equations are written in 
the matrix form as follows: 
 

[ ]{ } [ ]{ } 0k d M d+ =  (23) 
 
where 
 

{ } { }0 i td d e ω=  (24) 
 
Now, by substituting Eq. (24) into (23), we have  
 

[ ] [ ]( ){ }2
0 0k M dω− =  (25) 

 
whereω stands for natural frequency,{ } { }0

T
mn mn mn xmn mnd U V W θψ ψ= is displacement 

amplitude vector. To obtain the non-trivial solution to Eq. (25), one must consider the 
determinant of coefficients equivalent to zero from which the shell frequency equation is 
derived and solved.  

3. Results 

For the sake of predicting the vibration behavior of nanotubes more accurately using nonlocal 
strain gradient theory, since the efficiency of the nonlocal strain gradient shell model is 
strongly dependent on the recognition of the proper values of small length scale parameters, µ 
= (e0a)2 and η = l2 are also calibrated using MD results of a (5,5) armchair CNT, due to 
lacking of the values of small length scale parameters of FG nanotubes. Also the values of µ 
and η are considered to be (3.3)2 to (3.5)2 nm2 and (0.1)2 to (0.4)2 nm2, respectively, for 
different length ratios. The following material parameters are considered for FG nanotube 
[17]: 
 

Table 1. Material properties of FG cylindrical shell. 
 E (GPa) υ ρ (kg/m3) 

Aluminum 70 0.3 2702 
Ceramics 427 0.17 3100 

  
In the following, the vibration response of nanotubes under different material and geometrical 
parameters is indicated to illustrate the applications of nonlocal strain gradient theory.  
In order to show the influences of small length scale parameters on frequency of nanotubes, 
Figs. 2 and 3 are presented. It is seen that increasing nonlocal parameter (µ) at a certain scale 
factor (η) decreases frequency which reveals the softening effect of nonlocal parameter (see 
Fig. 2); while, increasing scale factor in the case of certain nonlocal parameter increases 
frequency and it means that the effective stiffness of nanotube becomes larger with increasing 
scale factor (see Fig. 3). These phenomena illustrate that by using nonlocal strain gradient 
theory, the nanotube exerts the softening and stiffening behavior by increasing the nonlocal 
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parameter and scale factor, respectively. Besides, due to the higher elastic modulus of 
ceramics compared to aluminum, with the increase in the gradient index in the shell, where β 
= 0 is for the aluminum shell and β = ∞ for the ceramic shell, the frequency increases as well. 

 
Fig. 2. Effect of nonlocal parameter on frequency for different power law index. 

 

 
Fig. 3. Effect of scale factor on frequency for different power law index. 

 
Fig. 4 is indicated the influences of thickness ratio on frequency of nanotubes. Regarding Fig. 
4, it is witnessed that the increase in thickness ratio contributes to the higher frequency for 
various values of power law index because of ascending the stiffness of nanotube; besides, the 
more increase in the frequency is occurred when the power law index goes up. Also, it is 
found that the higher frequency takes place at high power law index and thickness ratio. This 
is regarded as evidence that the power law index makes nanotube stiffer.  
In order to see the effects of thickness ratio more clearly, Figs. 5 and 6 illustrate the effects of 
thickness ratio on frequency of nanotubes, particularly on different scale factors and nonlocal 
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parameters. It is shown that, the high frequency appears at high scale factor and low nonlocal 
parameter. It is clear that the trends of the frequency variation versus thickness ratio for 
various scale factors and nonlocal parameters are similar to Fig. 4 and similar conclusion can 
be drawn. It should be noted that, the influence of the transverse shear deformation is 
significant when thick and short nanotubes are investigated and since the first order shear 
deformation theory is used in this study, there is no limitation on choosing the values of 
thickness parameter.  

 

 
Fig. 4. Effect of thickness ratio on the frequency for different power law index (µ = (3.3e-9)2, η = 

(0.4e-9)2). 
 

 
Fig. 5. Effect of thickness ratio on the frequency for different scale factors (β = 2, µ = (3.3e-9)2). 
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Fig. 6. Effect of thickness ratio on the frequency for different nonlocal parameters (β = 2, η = 

(0.4e-9)2). 
 
Variation of frequency versus length ratio for different power law index is illustrated in Fig. 
7. As is evident from Fig. 7, the frequency is shown to be decreasing with increasing length 
ratio and this effect is more significant by increasing power law index which depicting stiffer 
nanotubes. In other words, the effects of length ratio on the frequency with greater power law 
index are relatively more than those of ones with small power law index.  
In order to have a deeper insight into the influence of length ratio, Figs. 8 and 9 are also 
illustrated for various scale factors and nonlocal parameters. According to these figures, the 
decreasing procedure of frequency with respect to the increase in length ratio for various scale 
factors and nonlocal parameters is the same as Fig. 7. Moreover, from these figures it can be 
seen that the influence of scale factor and nonlocal parameter is more evident when length 
ratio is small. Also, according to Figs. 8 and 9, at high length ratio the results of the present 
model approach to those of classical ones which shows the capability of classical model to 
predict the vibration response of large-scale structures.  
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Fig. 7. Effect of length ratio on frequency for different power law index (µ = (3.3e-9)2, η = (0.4e-9)2). 

 

 
Fig. 8. Effect of length ratio on frequency for different scale factors (β = 2, µ = (3.3e-9)2). 
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Fig. 9. Effect of length ratio on frequency for different nonlocal parameters (β = 2, η = (0.4e-9)2). 

 

 

4. Conclusion 

In this study, the free vibration of FG nanotube is studied based on the nonlocal strain 
gradient theory and first order shear deformable theory. The material properties are 
considered to be variable through thickness direction according to power law distribution. The 
governing equations and boundary conditions are derived based on the Hamilton’s principle 
and the free vibration of simply supported FG nanotube is studied as well. The effects of 
various parameters such as material length scale parameters, thickness, length and power law 
index are investigated on the frequency. It was revealed that increase in power law index 
intensifies the influence of nonlocal parameter and scale factors on the FG nanotube 
frequency. Moreover, the higher frequency appears at higher thickness ratios and lower length 
ratios. Furthermore, the effects of length ratio and thickness ratio are relatively intense for 
greater scale factors and lower nonlocal parameters. 
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Due to the stress distribution along thickness of the shell, stress resultants are introduced as 
follows: 
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Abstract  

In this study, the static behavior of nanobeams subjected to end concentrated loads is theoretically investigated in the 
Laplace domain. A closed form of solution for the title problem is presented using Euler-Bernoulli beam theory.  
Nonlocal elasticity theory proposed by Eringen is used to represent small scale effect. A system of differential 
equations containing a small scale parameter is derived for nanobeams. Laplace transformation is applied to this system 
of differential equations containing a small scale parameter. The exact static response of the nanobeam with end 
concentrated loads is obtained by applying inverse Laplace transform. The calculate results are plotted in a series of 
figures for various combinations of concentrated loads. 

Keywords: Nonlocal elasticity theory, nanobeam, Laplace transform, static response. 

1. Introduction 

   Single walled carbon nanotubes (nanobeams) are non-classical nanomaterials of current interest in 
several applicative sectors, such as electronics, medicine and engineering. They have superior 
mechanical and electrical properties and their potential applications in optics, electronics and other 
fields of nanotechnology. Classical continuum theory is size-free theory and this theory lacks the 
accountability of the size effects arising from the small-size.  There have been different non classical 
continuum theories used to overcome small size effects. Integral type, differential equation type or 
gradient nonlocal elasticity type models abandon the classical elasticity assumption of local model, 
and stated that stress depends not only on the strain at that point.  

Eringen [1] proposed the new higher order continuum theory known as “nonlocal elasticity theory” 
in 1970s. In this theory small size effect can be considered in the constitutive equations simply as a 
material scale parameter. Nonlocal elasticity theory based nano sized structures are new materials 
(nanomaterials) which are designed to achieve a higher performance in physical and mechanical 
properties.  The nonlocal continuum theory has been widely applied to many mechanical problems of 
a wide range of interest, including the  bending, buckling, and vibration of beam-like structures [2-4] 
and plate-like structures [5-7]  and elements in nano and micro sized structures. Many research 
papers correlated to nonlocal continuum theories have been addressed the small scale effects in 
nanostructures and apply these higher order elasticity theories to determine the mechanical behavior 
of nanostructures, see Refs. [8-25]. 

International Journal of Engineering & Applied Sciences (IJEAS) 
Vol.9, Issue 2 (Special Issue: Composite Structures) (2017) 103-111 
http://dx.doi.org/10.24107/ijeas.314635 
Int J Eng Appl Sci 9(2) (2017) 103-111 

 

 

 
 

 
 

 

 

 

  
 

 

  
  



M. Ö. Yaylı, S. Y. Kandemir 

104 
 

In this work, a Laplace transformation is introduced for the bending analysis of the cantilever 
nanobeams with end concentrated loads (initial value problems). A systems of differential equations 
is derived with initial and boundary conditions. Laplace transformation is applied to this systems of 
differential equations containing nonlocal elasticity parameter with known initial conditions. The 
closed form of solutions of the nanobeam with end concentrated loads is derived by applying inverse 
Laplace transform. 

2. Formulation of the problem 

The constitutive relation, the equations of equilibrium and geometrical compatibility condition of a 
nanobeam in the two dimensional plane are [26].  
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where M and T are the bending moment and the shear force, w and ϕ are the lateral displacement and 
the slope of the beam. On the other hand, Eq. (2) takes a different form in nonlocal elasticity [27]. 
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above relation takes the following form 

 

 
2

0 1( )
) ,(1

e a PM d

EI EI dx

ϕ
= −  (6) 

then according to nonlocal elasticity theory, the system of differential equations is given by [26]. 
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where EI  is the flexural rigidity of the nanobeam, E  is Young's modulus, I  is the moment of inertia 
of the cross-sectional area A, P1  the axial concentrated force, P2  the lateral concentrated force,  a the 
internal characteristic length and e0 is a constant. The initial conditions can be calculated as follows; 
 

 
 Fig. 1. A cantilever nanobeam with end concentrated forces 

 
 0,(0)w =  (8) 

 
 0,(0)ϕ =  (9) 

 
 2(0) ,M P L= −  (10) 

 
 2 .(0)T P=  (11) 

 
The following systems of differential equations can be derived from the Eq. (7): 
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3. Closed form of solutions 

By applying Laplace transform to these equations: 
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then using the initial conditions given in Eqs. (8-11), following equations are derived in Laplace 
domain: 
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Inverse Laplace transforms of above equations give the closed form of solutions: 
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4. Numerical results 
 

 To evaluate the significance of end loads on the static analysis of nonlocal beams, this section 
considers a nano-sized beam with the end concentrated forces. Here we assume E*I = 1 nN.m2, e0a=1 
nm.  In order to investigate the significances of end axial concentrated forces on the mechanical 
behaviors of the nanobeam, its bending behaviors are compared. The significances of the end axial 
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and lateral forces on the linear bending deflection of the cantilever nanobeam are investigated by 
using the nonlocal elastic Euler-Bernoulli beam model.  Figs. 2 and 3 reveal the effect of the end 
concentrated forces on the deflection with end lateral force and the deflection with end axial force of 
a cantilever nanobeam, respectively. 
 

                          
                       Fig. 2. Static deflection for different concentrated forces (P1 =1.2 nN). 

                             
                            Fig. 3. Static deflection for different axial forces (P2 =1.0 nN). 

 

The effects of end forces on the slope of cantilever nanobeams are presented in Figs. 4 and 5. The 
figures show increase and decrease in the slope with increase in distance from fixed end which 
highlights the significance of end concentrated forces. So, it can be concluded that the lateral 
deflection is highly increased with higher values of the end lateral concentrated forces. 
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Fig. 4. Slope for different concentrated forces ( P1 =1.2 nN). 

 

                               
Fig. 5. Slope for different axial forces (P2 =1.0 nN). 

 
The effects of end forces on the bending of cantilever nanobeams are presented in Figs. 6 and 
7.  Again the influences of the axial force and the lateral force on the bending moment are 
quite obvious. 

                                
Fig. 6. Moment diagram for zero axial force (P1 =0.0 nN). 
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Fig. 7. Moment diagram for constant axial force (P1 =5.0 nN). 

  
 

 

5. Conclusions 

In present work, It has been shown that the Laplace transform could be applied to solve nonlocal 
initial value problem that contains homogeneous linear differential equations. The single walled 
carbon nanotube is modeled as beam via Euler-Bernoulli theory. Nonlocal elasticity theory is used 
for small scale effect. One can easily transform the system of differential equations with constant 
coefficients into a system of (algebraic) equations with constant coefficients. Then these systems of 
algebraic equations can be solved and takes the inverse Laplace transform to get closed form 
solutions of the original equations.  
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Abstract 

Thermal analyses of radially functionally graded (FG) thick-walled a spherical vessel and an infinite cylindrical vessel or 

a circular annulus are conducted analytically by the steady-state 1-D Fourier heat conduction theory under Dirichlet’s 

boundary conditions. By employing simple-power material grading pattern the differential equations are obtained in the 

form of Euler-Cauchy types. Analytical solution of the differential equations gives the temperature field and the heat flux 

distribution in the radial direction in a closed form. Three different physical metal-ceramic pairs first considered to study 

the effect of the aspect ratio, which is defined as the inner radius to the outer radius of the structure, on the temperature 

and heat flux variation along the radial coordinate. Then a parametric study is performed with hypothetic inhomogeneity 

indexes for varying aspect ratios.                                                                                                                                                                                        

Keywords: Thermal analysis; functionally graded; exact solution; axisymmetric; cylindrical vessel, spherical vessel, 

inhomogeneity index, aspect ratio, thick-walled, circular annulus. 

1. Introduction 

As is well known, a temperature difference results in the heat conduction and the heat transfer in 

structures. Manufacturing processes in factories generally include thermal processes.  So the thermal 

analysis is an important issue in industry related to mechanical, chemical, automotive, petroleum, 

nuclear engineering and living tissues. A thermal analysis is also the back-bone for the thermal-related 

analyses such as thermo-mechanical, thermo-electro-mechanical etc. So an accurate solution to the 

temperature field in the structure is always be very helpful for understanding the real physical thermal 

response of the structure under consideration at both the manufacturing phase and during its life-time. 

To explore the question a number of studies were performed analytically, numerically and 

experimentally up to now. Chang and Tsou [1-2] used the Green's functions for heat conduction in an 

anisotropic medium for both steady state and unsteady state cases. Oato et al. [3] studied axisymmetric, 

transient, thermal stress analysis of a hollow cylinder composed of multilayered composite laminates 

with temperature changes in the radial and axial directions due to axisymmetric heating from the outer 

and/or the inner surfaces. They used Fourier cosine transform and Laplace transform for the 

temperature field and the thermo-elastic potential function and apply Love's displacement function to 

the thermo-elastic field. They then obtained the exact solutions for the temperature and thermal stress 

distributions in a transient state. Obata and Noda [4] studied the steady thermal stresses in a hollow 

cylinder and a hollow sphere made of a functionally gradient material (FGM) and compared their 

results with those of a FGM plate. Zimmerman and Lutz [5] derived an exact solution for the problem 
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of the uniform heating of FG circular cylinder whose modulus of elasticity and thermal expansion 

coefficient vary linearly with radius. Tarn [6] found an exact solution for FG anisotropic cylinders 

subjected to thermal and mechanical loads. Awaji and Sivakumar [7] presented a numerical technique 

for analyzing one dimensional transient temperature distributions in a circular hollow cylinder that was 

composed of functionally graded ceramic–metal-based materials, with considering the temperature-

dependent material properties. A 1-D steady state mechanical and thermal stress analysis of a thick 

hollow cylinder under axisymmetric and non-axisymmetric loads was studied by Jabbari et al. [8-10]. 

Liew et al. [11] sectioned the FGM cylinder into a number of homogeneous sub-cylinders. 

Displacements and stresses within the homogeneous sub-cylinders are obtained from the homogeneous 

solutions in Reference [11]. Tarn and Wang [12] worked the end effects of heat conduction in circular 

cylinders of functionally graded materials and laminated composites. Ruhi et al. [13] presented a semi 

analytical thermo-elasticity solution for thick-walled finite-length cylinders made of power-graded 

materials. The stress distribution in a power-graded orthotropic cylindrical body was investigated 

analytically by Oral and Anlaş [14]. Eslami et al [15] offered a general solution for the one-dimensional 

steady-state thermal and mechanical stresses in a hollow thick sphere made of a simple-power graded 

material. By using the Laplace transformation and a series expansion of Bessel functions, Ootao and 

Tanigawa [16] analyzed one-dimensional transient thermoelastic problem with power-law graded 

material properties. Pelletier and Vel [17], by using an arbitrary variation of orthotropic material 

properties in the radial direction, studied analytically the steady-state response of a functionally graded 

thick cylindrical shell subjected to thermal and mechanical loads and simply supported at the edges by 

the power series method. Birman and Byrad [18] reviewed related studies published in 2000-2007.   

After 2007s, one-dimensional studies are focused especially on the transient thermal analysis, the stress 

and deformation analyses under steady state case etc. Kayhani et al. [19] presented an exact solution 

of conductive heat transfer in a cylindrical composite laminate in the radial and azimuthal directions. 

Kayhani et al. [20] further obtained a general analytical solution for heat conduction in cylindrical 

multilayered composite laminates in the radial and axial directions. Hosseini and Abolbashari [21] 

presented a unified formulation to analyze of temperature field in a thick hollow cylinder made of 

functionally graded materials with various grading patterns. Bayat et al. [22] carried out a thermo-

mechanical analysis of functionally graded hollow sphere subjected to mechanical loads and one-

dimensional steady-state thermal stresses. Lee and Huang [23] developed an analytic solution method, 

without integral transformation, to find the exact solutions for the transient heat conduction in 

functionally graded (FG) circular hollow cylinders with time-dependent boundary conditions. By 

introducing suitable shifting functions, the governing second-order regular singular differential 

equation with variable coefficients and time-dependent boundary conditions is transformed into a 

differential equation with homogenous boundary conditions. In Lee and Huang’s [23] study, while the 

density has a constant value, the variation of specific heat is considered.  Wang [24] developed an 

effective approach to analyze the transient thermal analysis in a functionally graded hollow cylinder 

based on the laminate approximation theory. The heat conductivity, mass density and specific heat are 

assumed to vary along the radial direction with arbitrary grading pattern as in the study. Wang [24] 

divided the transient solution into two parts. He obtained the quasi-static solution by the state space 

method and the dynamic solution by the initial parameter method in the time domain. By dividing the 

cylinder into some homogeneous sub-cylinders, an arbitrarily-graded circular hollow cylinder is 

studied analytically under arbitrarily non-uniform loads on the inner and outer surfaces by Li and Liu 

[25]. Delouei and Norouzi [26] presented an exact analytical solution for unsteady conductive heat 

transfer in multilayer spherical fiber-reinforced composite laminates for the most generalized linear 

boundary conditions consisting of the conduction, convection, and radiation. Arefi [27] performed a 

nonlinear thermal analysis of a hollow functionally graded cylinder by employing a semi-analytical 

method of successive approximations. A power function distribution is used for the simulation of non-

homogeneity of the material used. A temperature dependence is employed for only the thermal 
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conductivity. Based on the two-points Hermite approximations for integrals, Chen and Jian [28] 

proposed an improved lumped parameter model for the transient thermal analysis of multilayered 

composite pipeline with active heating. Daneshjou et .al. [29] presented a non-Fourier heat conduction 

analysis of infinite 2-D functionally graded (FG) hollow cylinders subjected to a time-dependent heat 

source. In Daneshjou et .al.’s study [29], a new augmented state space method considering laminate 

approximation theory is introduced. All material properties are assumed to vary continuously within 

the cylinder along the specified directions following an arbitrary law.  

As seen from the literature survey that the thermal-related analyses are of great importance for both 

cylindrical and spherical structures. However, most of those studies focused on the computation of 

thermal stresses in the structure. That is, although they implemented the temperature distribution in 

their analyses, the thermal behavior of such structures were not studied in a detailed manner. In the 

present study, because of these reasons, the thermal analysis of such structures is addressed 

individually for both spherical and cylindrical vessels made of functionally power-law-graded non-

homogeneous materials. It may be noted that the heat conduction equations are identical for both a 

cylindrical structure and a uniform discs or a circular annulus.  

2. Derivation and Solution of Heat Conduction Equations 

The rate of the heat flux in a solid object is directly proportional to the temperature gradient. The 

Fourier law governing the heat transfer by conduction is 

)(TgradkTk    q                                                          (1) 

where the temperature gradient is given in cylindrical coordinates, ),,,( tzrT  , by 
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By using the first law of thermodynamics, the heat conduction equation is written as follows  
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This equation takes the following form without heat generation in the structure [30]. 
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Where Laplacian of the temperature is derived in cylindrical coordinates as 
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and in spherical coordinates as follows 
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In recent years functionally graded metal-ceramic composites gain considerable attention due to their 

attractive properties such as heat resisting, erosion and corrosion resistant, and fracture toughness. For 

the one-dimensional axisymmetric conditions, 
𝜕

𝜕𝜃
= 0,

𝜕

𝜕𝜑
= 0,

𝜕

𝜕𝑧
= 0 , the non-steady heat 

conduction equation of such materials in which the thermal conductivity, density, and the specific heat  

change along the radial direction becomes (Fig. 1) 

t

trT
trctr

r

trT
trkr

rr
p




















 ),(
),(),(

),(
),(

1 2

2
  (sphere)                                      (6a) 

t

trT
trctr

r

trT
trrk

rr
p




















 ),(
),(),(

),(
),(

1
  (cylinder/circular annulus)                           

(6b) 

 

Fig.1. A characteristic section of the structure 

After re-arranging of the equations given above, one may get the followings for the spherical structure 
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for the cylindrical structure or a disk of uniform thickness or a circular annulus 
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By using prime symbol for derivatives with respect to the radial coordinate, for the steady state case (

0




t

T
) one may get the followings.    
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In the above equations, the material grading pattern may be chosen arbitrarily. Solution method to be 

adopted strictly depends on the material grading pattern considered. Some limited grading rules such 

as a simple power material grading rule permit to get the differential equation with constant coefficients 

and offer an analytical solution. For arbitrary grading patterns, the differential equations with variable 

coefficients are confronted. Consequently in the thermal analysis with arbitrary material grading 

patterns, it is necessary to use an appropriate numerical technique in the solution process. The material 

gradation may also be done as full-ceramic at the inner surface and full-metal at the outer surface, or 

vise-verse, or metal-ceramic mixtures at both surfaces by considering the real working conditions of 

the structure. Finally, all types of boundary conditions such as Dirichlet’s, Neumann’s, Robin’s and 

mixed boundary conditions may be applied to the solution of equations (8). 

To get exact solutions, in the present study, it is assumed that the thermal conductivity is changed 

outwardly between the inner and outer surfaces as follows  
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where the inhomogeneity index of a physical material may be determined by 
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Equation (8) becomes homogeneous Euler-Cauchy type differential equation with constant coefficients 

under assumptions given in Eq. (9). The solution will be in the form of 

21

21)(


rCrCrT                                                                    (11)                                                                                                   

Equation (8) is solved with the first kind boundary conditions (Dirichlet)   

aTaT )(   ; bTbT )(                                                (12) 

The solutions for each homogeneous/inhomogeneous material types are presented in Tables 1 and 2 

for cylindrical and spherical vessels, respectively. 

 



V. Yıldırım 

117 

 

3. Examples with Physical Materials 

 

Metal-ceramic pairs considered in the present study and their material properties are presented in Table 

3.  It is assumed that the inner surface is to be full-metal, and the outer surface is to be full-ceramic. 

Between the inner and the outer surfaces the material gradation obeys Eq. (9). The boundary conditions 

are determined as: CTa

220 , and CTb

20 . The geometrical properties of the structures are chosen 

as follows: ma 5.0 , mb 0.1 . 
 

} arkrk a /)( {Differential equations and their solutions for cylinders or uniform discs  .Table 1 

Cylinder /Uniform Disc Made of a Homogeneous and Isotropic Material 
 
 
 
 
 
 

𝑇′(𝑟)

𝑟
+ 𝑇′′(𝑟)=0 

 
 

 
𝑇(𝑟) = 𝐶2 + 𝐶1𝑙𝑛𝑟 

 

𝐶1 =
𝑇𝑎 − 𝑇𝑏

𝑙𝑛𝑎 − 𝑙𝑛𝑏
 

 

𝐶2 =
𝑙𝑛𝑎𝑇𝑏 − 𝑇𝑎𝑙𝑛𝑏

𝑙𝑛𝑎 − 𝑙𝑛𝑏
 

 

𝑇(𝑟) =
(−𝑙𝑛𝑏 + 𝑙𝑛𝑟)𝑇𝑎 + (𝑙𝑛𝑎 − 𝑙𝑛𝑟)𝑇𝑏

𝑙𝑛𝑎 − 𝑙𝑛𝑏
 

 

          =
𝑇𝑏𝑙𝑛𝑎 − 𝑇𝑎𝑙𝑛𝑏 + (𝑇𝑎 − 𝑇𝑏)𝑙𝑛𝑟

𝑙𝑛𝑎 − 𝑙𝑛𝑏
 

 

𝑞r(𝑟) =
𝑘𝑜(−𝑇𝑎 + 𝑇𝑏)

𝑟(𝑙𝑛𝑎 − 𝑙𝑛𝑏)
 

 
Cylinder/Uniform Disc Made of a Power-Law-Graded  

Isotropic and Non-homogeneous Material 
 
 
 
 
 
 
 
 

(1 + 𝛾)𝑇′(𝑟)

𝑟
+ 𝑇′′(𝑟) = 0 
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𝑎𝛾 − 𝑏𝛾
 

 

          =
𝑟−𝛾(−𝑏𝛾𝑟𝛾𝑇𝑏 + 𝑎𝛾(𝑟𝛾𝑇𝑎 + 𝑏𝛾(−𝑇𝑎 + 𝑇𝑏)))

𝑎𝛾 − 𝑏𝛾
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} arkrk a /)( { spherical vesselsDifferential equations and their solutions for . 2Table  

 

Sphere Made of a Homogeneous and Isotropic Material 
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Sphere Made of a Power-Law-Graded Isotropic and Non-homogeneous Material 
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𝑇(𝑟) =
𝑟−1−𝛾(−𝑏1+𝛾𝑟1+𝛾Tb + 𝑎1+𝛾(𝑟1+𝛾Ta + 𝑏1+𝛾(−Ta + Tb)))

𝑎1+𝛾 − 𝑏1+𝛾
 

 

 

𝑞𝑟(r) = {−
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Table 3. Metal-ceramic pairs considered in the present study 

 


 
 

Metal/Ceramic pair 
𝑘 (

𝑊

𝑚𝐾
) 

 

−6.22922 FGM-1 

)4N3(Ni/Si 

90.7 Nickel (Ni) 

1.209 )4N3Silicon Nitride (Si 

−2.76073 FGM-2 

)3O2(Al/Al 

204 Aluminum (Al) 

30.1 )3O2Aluminum Oxide (Al 

−3.11101 FGM-3 

)2304/ZrO-(SUS 

15.379 SUS-304 (Stainless Steel) 

1.78 )2Zirconium Oxide (ZrO 

 

 

Fig. 2. Temperature variations in physical FGMs with the aspect ratio. 
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Fig. 3. Heat flux variations in physical FGMs with the aspect ratio. 
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Figs. 2 and 3 show the temperature and the heat flux variation in FGM-1, FGM-2 and FGM-3 metal-

ceramic pairs for different aspect ratios. It is seen from Fig. 2 that the temperature change occurs 

somewhat rapid in spheres than cylinders. As the aspect ratio increases, that is when the thickness 

decreases, the temperature distribution differences between a cylinder and a sphere are facing 

disappearance. The temperature varies slowly in FGM-1 than the others. Heat flux in a sphere is higher 

than a cylinder as seen Fig. 3. An increase in the aspect ratio results much heat flux in the structure. 

The maximum heat flux occur at the inner surface of both structural geometries. FGM-2 offers the best 

metal-ceramic pair regarding the heat flux. 

 

 

Fig. 4. Variation of temperature with hypothetic inhomogeneity indexes and aspect ratios for both 

cylinders and spheres (𝑘𝑎 = 20 W/mK) 
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4. A Parametric Study with Hypothetic Inhomogeneity Indexes 

In this section, a parametric study is carried out to investigate the temperature variation along the radial 

direction with both aspect ratios and hypothetic inhomogeneity indexes which vary from 10  

towards 10 . Results are given in Table 4 and Figs. 4 and 5. 

 

Fig. 5. Variation of heat flux with hypothetic inhomogeneity indexes and aspect ratios for both 

cylinders and spheres (𝑘𝑎 = 20 W/mK) 
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Table 3. Radial variation of temperature and heat flux with hypothetic inhomogeneity indexes for 

both cylinders and spheres having   
𝑎

𝑏
= 0.5 and 𝑘𝑎 = 20 W/mK. 

 10 7 4 2 2 4 7 10 

𝑇𝑠𝑝ℎ𝑒𝑟𝑒(𝑟) 

0.5 373. 373. 373. 373. 373. 373. 373. 373. 

0.55 372.787 372.02 369.217 365. 350.263 341.695 330.153 321.014 

0.6 372.349 370.478 364.68 357. 334.481 323.607 311.365 303.733 

0.65 371.496 368.141 359.32 349. 323.187 312.661 302.532 297.427 

0.7 369.922 364.709 353.069 341. 314.891 305.774 298.128 294.937 

0.75 367.138 359.806 345.857 333. 308.661 301.294 295.82 293.886 

0.8 362.398 352.965 337.617 325. 303.893 298.295 294.556 293.416 

0.85 354.591 343.619 328.28 317. 300.181 296.235 293.838 293.194 

0.9 342.102 331.08 317.777 309. 297.248 294.79 293.415 293.085 

0.95 322.638 314.529 306.04 301. 294.901 293.754 293.159 293.03 

1. 293. 293. 293. 293. 293. 293. 293. 293. 

𝑇𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟(𝑟) 

0.55 372.875 372.402 370.525 367.4 354.488 345.95 333.746 323.795 

0.6 372.594 371.373 367.274 361.267 340.407 328.819 314.872 305.855 

0.65 372. 369.677 363.101 354.6 329.45 317.544 305.22 298.731 

0.7 370.816 366.99 357.845 347.4 320.755 309.88 300.019 295.69 

0.75 368.569 362.867 351.333 339.667 313.741 304.523 297.089 294.31 

0.8 364.48 356.721 343.381 331.4 308. 300.688 295.374 293.65 

0.85 357.313 347.782 333.789 322.6 303.242 297.884 294.335 293.319 

0.9 345.157 335.065 322.346 313.267 299.255 295.796 293.687 293.146 

0.95 325.132 317.323 308.829 303.4 295.881 294.215 293.272 293.052 

𝑞𝑟−𝑠𝑝ℎ𝑒𝑟𝑒(𝑟) 

0.5 56.3601 304.762 1371.43 3200. 10971.4 16516.1 25700.4 35217.2 

0.55 46.5786 251.869 1133.41 2644.63 9067.3 13649.7 21240. 29105.1 

0.6 39.1389 211.64 952.381 2222.22 7619.05 11469.5 17847.5 24456.4 

0.65 33.3492 180.332 811.496 1893.49 6491.97 9772.86 15207.3 20838.6 

0.7 28.7551 155.491 699.708 1632.65 5597.67 8426.6 13112.4 17968. 

0.75 25.0489 135.45 609.524 1422.22 4876.19 7340.5 11422.4 15652.1 

0.8 22.0157 119.048 535.714 1250. 4285.71 6451.61 10039.2 13756.7 

0.85 19.5018 105.454 474.543 1107.27 3796.34 5714.92 8892.87 12185.9 

0.9 17.3951 94.0623 423.28 987.654 3386.24 5097.57 7932.22 10869.5 

0.95 15.6122 84.4216 379.897 886.427 3039.18 4575.1 7119.22 9755.46 

1. 14.09 76.1905 342.857 800. 2742.86 4129.03 6425.1 8804.3 

𝑞𝑟−𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟(𝑟) 

0.5 31.2805 176.378 853.333 2133.33 8533.33 13653.3 22576.4 32031.3 

0.55 28.4369 160.344 775.758 1939.39 7757.58 12412.1 20524. 29119.3 

0.6 26.0671 146.982 711.111 1777.78 7111.11 11377.8 18813.6 26692.7 

0.65 24.062 135.675 656.41 1641.03 6564.1 10502.6 17366.4 24639.4 

0.7 22.3432 125.984 609.524 1523.81 6095.24 9752.38 16126. 22879.5 

0.75 20.8537 117.585 568.889 1422.22 5688.89 9102.22 15050.9 21354.2 

0.8 19.5503 110.236 533.333 1333.33 5333.33 8533.33 14110.2 20019.6 

0.85 18.4003 103.752 501.961 1254.9 5019.61 8031.37 13280.2 18841.9 

0.9 17.3781 97.9878 474.074 1185.19 4740.74 7585.19 12542.4 17795.2 

0.95 16.4634 92.8305 449.123 1122.81 4491.23 7185.96 11882.3 16858.6 

1. 15.6403 88.189 426.667 1066.67 4266.67 6826.67 11288.2 16015.6 
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As seen from Table 3, metals have much greater thermal conductivities than ceramics. If Eq. (10) is 

considered, that is if a metal is placed on the inner surface, this produces negative inhomogeneity 

indexes. The converse is true if a ceramic is on the inner surface. When the inhomogeneity index is 

changed from 10  to 10 , the temperature declines faster at the vicinity of the inner surface 

(Fig. 4). Maximum heat flux is at the inner surface for all conditions since the inner surface has greater 

temperature than the outer. Heat flux decreases with negative inhomogeneity indexes (Fig. 5).  

5. Conclusions 

This study offers compact expressions in closed forms for the temperature and the heat-flux 

distributions in radial direction for hollow cylindrical and spherical structures made of radially 

functionally graded materials. A simple power material grading rule is used to get a differential 

equation with constant coefficients.  

The derived formula for the temperature distribution becomes indefinite at 1  in spheres and 0  

in cylinders. This disadvantage may be overcome numerically by using real numbers instead integers 

for those inhomogeneity indexes as seen in Fig. 2.  

The formulas in Tables 1 and 2 may be used directly in some thermal and optimization problems. They 

may also be served as sound benchmark results for advanced studies.  

 

Notations 

 

a radius at the inner surface 

b radius at the outer surface 

pc  specific heat capacity  )/(kgKJ  

21,CC  integration constants 

zr eee ,,   unit vectors in cylindrical coordinates 

 eeer ,,  unit vectors in spherical coordinates 

k  thermal conductivity   )/(mKW  

rqorq     Heat flux component in radial direction 

 q   the rate of heat flux vector )/( 2mW  

genq


 
heat generation per unit volume  

r radial coordinate 

t time 

T temperature 
  inhomogeneity constant for simple-power grading rule 

k

c p
   thermal diffusion coefficient )/( 2 sm  

21,  characteristic roots of the differential equation 

  density )/( 3mkg  

  Azimuthal angle 
  Zenith angle 

   gradient operator 
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 2
 Laplacian operator  

)'()(   
dr

d
 

derivative with respect to the radial coordinate 

subscripts  

a value at the inner surface 

b value at the outer surface 

 

References 

 

[1] Chang, Y.P., Tsou, R.C.H., Heat conduction in an anisotropic medium homogeneous in 

cylindrical regions—steady state. ASME J. Heat Transfer, 99(1), 132–134. 1977. 

[2] Chang, Y. P., Tsou, R.C.H., Heat conduction in an anisotropic medium homogeneous in 

cylindrical coordinates-unsteady state. ASME J. Heat Transfer, 99(1), 41–46, 1977. 

[3] Ootao, Y., Tanigawa, Y., Fukuda T., Axisymmetric transient thermal stress analysis of a 

multilayered composite hollow cylinder. J. Therm. Stresses, 14(2), 201-213, 1991. 

[4] Obata, Y., Noda, N., Steady thermal stresses in a hollow circular cylinder and a hollow 

sphere of a functionally gradient material. J. Therm. Stresses, 17(3), 471–487, 1994. 

[5] Zimmerman, R.W., Lutz, M.P., Thermal stresses and thermal expansion in a uniformly 

heated functionally graded cylinder. J. Therm. Stresses, 22 (2), 177–188, 1999. 

[6] Tarn, J.Q., Exact solutions for functionally graded anisotropic cylinders subjected to 

thermal and mechanical loads. Int. J. Solids Struct., 38, 8189–8206, 2001. 

[7] Awaji, H., Sivakuman, R., Temperature and stress distributions in a hollow cylinder of 

functionally graded material: the case of temperature-dependent material properties. 

Journal of American Ceramic Society, 1059-1065, 2001. 

[8] Jabbari, M., Sohrabpor, S., Eslami, M.R., Mechanical and thermal stresses in a 

functionally graded hollow cylinder due to radially symmetric loads. Int. J. Pressure 

Vessels Piping, 79, 493–497, 2002. 

[9] Jabbari, M., Sohrabpour, S., Eslami, M.R., General solution for mechanical and thermal 

stresses in a functionally graded hollow cylinder due to nonaxisymmetric steady-state 

loads. ASME J. Appl. Mech., 70 , 111–118, 2003. 

[10] Jabbari, M., Bahtui, A., Eslami, M.R., Axisymmetric mechanical and thermal stresses in 

thick long FGM cylinders.  J. Therm. Stresses, 29 (7), 643–663, 2006. 

[11] Liew, K.M., Kitipornchai, S., Zhang, X.Z., Lim, C.W., Analysis of the thermal stress 

behaviour of functionally graded hollow circular cylinders. Int. J. Solids Struct., 40, 

2355–2380, 2003. 

[12] Tarn, J.Q., Wang, Y.M., End effects of heat conduction in circular cylinders of 

functionally graded materials and laminated composites. Int. J. Heat Mass Transfer, 47, 

5741–5747, 2004. 

[13] Ruhi, M., Angoshtari, A., Naghdabadi, R., Thermoelastic analysis of thick-walled finite-

length cylinders of functionally graded materials. J. Therm. Stresses, 28 (4), 391-408, 

2005. 

[14] Oral, A., Anlas, G., Effects of radially varying moduli on stress distribution of 

nonhomogeneous anisotropic cylindrical bodies. International Journal of Solids and 

Structures, 5568–5588, 2005. 

[15] Eslami, M.R., Babai, M.H., Poultangari, R., Thermal and mechanical stresses in a 

functionally graded thick sphere. Int. J. Pressure Vessels Piping, 82 (7), 522–527, 2005. 

[16] Ootao, Y., Tanigawa, Y., Transient thermoelastic analysis for a functionally graded 

hollow cylinder. J. Therm. Stresses, 29(11), 1031–1046, 2006. 



V. Yıldırım 

126 

 

[17] Pelletier, J.L., Vel, S.S., An exact solution for the steady-state thermoelastic response of 

functionally graded orthotropic cylindrical shells. Int. J. Solids Struct., 43,  1131–1158, 

2006. 

[18] Birman, V., Byrd., L.W., Modeling and analysis of functionally graded materials and 

structures. Applied Mechanics Reviews, 60, 195-216, 2007. 

[19] Kayhani, M.H., Shariati, M., Nourozi, M., Demneh, M.K., Exact solution of conductive 

heat transfer in cylindrical composite laminate. Heat Mass Transfer, 46, 83–94, 2009. 

[20] Kayhani, M.H., Norouzi, M., Delouei, A.A., A general analytical solution for heat 

conduction in cylindrical multilayer composite laminates. Int. J. Therm. Sci., 52, 73–82, 

2012. 

[21] Hosseini, S.M., Abolbashari, M.H., A unified formulation for the analysis of temperature 

field in a thick hollow cylinder made of functionally graded materials with various 

grading patterns. Heat Transfer Eng., 33, 261–271, 2012. 

[22] Bayat, Y., Ghannad, M., Torabi, H., Analytical and numerical analysis for the FGM thick 

sphere under combined pressure and temperature loading. Archive of Applied Mechanics, 

229-242, 2012. 

[23] Lee, S.Y., Huang, C.C., Analytic solutions for heat conduction in functionally graded 

circular hollow cylinders with time-dependent boundary conditions. Mathematical 

Problems in Engineering, Article ID 816385, 1-8. 2013.  

[24] Wang, H.M., An effective approach for transient thermal analysis in a functionally graded 

hollow cylinder. International Journal of Heat and Mass Transfer, 67, 499-505, 2013.  

[25] Li, H., Liu, Y., Functionally graded hollow cylinders with arbitrary varying material 

properties under non-axisymmetric loads. Mechanics Research Communications, 55, 1-

9, 2014. 

[26] Delouei, A.A., Norouzi, M., Exact analytical solution for unsteady heat conduction in 

fiber-reinforced spherical composites under the general boundary conditions. Journal of 

Heat Transfer, 137, 1-8. 2015. 

[27] Arefi, M., Nonlinear thermal analysis of a hollow functionally graded cylinder with 

temperature-variable material properties. Journal of Applied Mechanics and Technical 

Physics, 56(2), 267-273, 2015. 

[28] Chen, A., Jian, S., Lumped models for transient thermal analysis of multilayered 

composite pipeline with active heating. Applied Thermal Engineering, 87, 749–759, 

2015. 

[29] Daneshjou, K., Bakhtiari,  M., Parsania H., Fakoor, M., Non-Fourier heat conduction 

analysis of infinite 2D orthotropic FG hollow cylinders subjected to time-dependent heat 

source. Applied Thermal Engineering, 98, 582–590, 2016. 

[30] Hetnarski, B., Eslami, M.R., Thermal Stresses-Advanced Theory and Applications, 

Springer. Chap. 4-ISBN: 978-1-4020-9246-62009. 

 

http://ascelibrary.org/author/bayat%2C+y
http://ascelibrary.org/author/ghannad%2C+m
http://ascelibrary.org/author/torabi%2C+h
http://www.hindawi.com/58297304/
http://www.hindawi.com/98437179/
https://www.researchgate.net/journal/0017-9310_International_Journal_of_Heat_and_Mass_Transfer
http://link.springer.com/journal/10808
http://link.springer.com/journal/10808
http://www.sciencedirect.com/science/journal/13594311
http://www.sciencedirect.com/science/journal/13594311


© 2017 M. Avcar, H. H. A. Alwan published by  International Journal of Engineering & Applied Sciences. This work is licensed under a 

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 

127 

 

 

Free Vibration of Functionally Graded Rayleigh Beam 

 

Mehmet Avcara*, Hiyam Hazim AlSaid Alwanb 

 

 
aDepartment of Civil Engineering, Faculty of Engineering, Suleyman Demirel University, Cunur, Isparta, Turkey 

bGraduate School of Natural and Applied Sciences, Suleyman Demirel University, Cunur, Isparta, Turkey 

*E-mail address: mehmetavcar@yahoo.com 

Received date: June 2017  

Accepted Date: July 2017 

 

Abstract  

In the present study, free vibration of Rayleigh beam composed of functionally graded materials (FGMs) is investigated. For 

this purpose, the equation of the motion of functionally graded (FG) beam derived according to Rayleigh beam theory. The 

material properties are assumed to vary continuously through the thickness of the beam according to the power-law form. 

Resulting equations are solved for simply supported boundary conditions. In order to validate the results, a comparison is 

carried out with available results for homogeneous beam. The effects of varying material properties on the dimensionless free 

vibration frequency parameters are examined. It is seen that varying material properties have significant effects on 

dimensionless free vibration frequency parameters of FG Rayleigh beam 

Keywords: Beam, Free Vibration, Rayleigh beam theory, Functionally Graded Materials (FGMs). 

1. Introduction 

FGMs are extensively used in machinery, space, nuclear and civil engineering; high temperature exposed 

building components, space vehicles, microelectronics, and industrial applications. These types of 

materials were first introduced by Japanese scientists in 1984 as thermal barrier materials. FGM is 

typically a mixture of a ceramic and a metal so that the metal can withstand high temperatures in the 

thermal environment as well as reduce the tensile stresses that would otherwise occur on the ceramic 

surface during the first stages of cooling [1-4]. 

Beam structures have large applications in engineering field and studying the vibration behavior of this 

kind of structural components are important for understanding the behavior of more complex and real 

structures subjected similar conditions. Therefore, researchers have been focused on the vibration analysis 

of beam structures using different theories and several solution methods [5-13].  

Due to the advantages and increasing use of FGMs and importance of the beam structures in the 

engineering field, many studies have been performed on the vibration problems of FG beams [14-22].  
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From the search of open literature, it is seen although there are numerous studies on the vibration analysis 

of FG beams using different beam theories, the number of works depending on Rayleigh beam theory is 

still limited. An attempt is made to address this problem. For this purpose, the equation of the motion of 

FG beam derived using Rayleigh beam theory. The functionally graded material properties are assumed 

to vary continuously through the thickness direction of the beam according to power law form. Resulting 

equations are solved for simply supported boundary conditions. In order to validate the results, a 

comparison is carried out with available results for homogeneous beam. The effects of varying material 

properties on the dimensionless free vibration frequency parameters are examined.  

2. Effective material properties of FGMs 

Consider a FGM beam consist of ceramic–metal, which has length, L, width b, and thickness, h, as shown 

in Fig. 1.  

 

 

Fig. 1. Geometry of a functionally graded beam  

 

The effective material properties of the FG beam, i.e., Young’s modulus E  and mass density  , vary 

continuously through the thickness direction according to a function of the volume fractions of the 

constituents while Poisson’s ratio   is taken to be constant.   

According to the rule of mixture, the effective material properties, P , can be expressed as 

 

 ccmm VPVPP    (1) 

 

where mP , cP , mV  and cV  are the material properties and the volume fractions of the metal and the 

ceramic constituents respectively. 

The total volume fraction of the metal and ceramic as follows  
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 1VV cm    (2) 

 

The power law of volume fraction of the ceramic constituent of the beam as follows 

 

 

d

c
2

1

h

z
V 








   (3) 

 

where d is a non-negative number (  d 0 ) called power law or volume fraction index, and z is the 

distance from the mid-plane of the beam. Note that, FG beam becomes a fully ceramic one as 0 d  while 

it becomes a fully metallic one as  d .  

The variation of the volume fraction of the ceramic constituent, cV , through the thickness direction of the 

FG beam versus various values of power law index, d, is illustrated in Fig. 2. It is clear that the cV  changes 

rapidly near the bottom surface for 1 < d  while it changes rapidly near the top surface for 1 d  . 

 

 

Fig. 2. Variation of volume fraction of the ceramic constituent along thickness of FG beam versus 

various values of power law index 
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3. Governing Equation 

 

Using Kirchoff-Love hypothesis, displacements at any point of a FG beam can be expressed as  

 

 

)t,x(w)t,z,x(w

z)t,x(u)t,z,x(u

0

0





  (4) 

 

where )t,x(u 0  and )t,x(w 0  are the displacements at mid-surface in the x, and z directions, respectively, 

and   is the rotation of the cross section at the mid-plane.  

 

The normal strain and shear strain are 
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Rayleigh beam theory neglects the shear strain, 0xz  , hence we have 

 

   
2

0

2

0

x

w
z

x

u
)t,z,x(









   (7) 

 

According to the Hooke’s law, the normal stress is defined as 

 

 























2

0

2

0

x

w
z

x

u
)z(E)z(E)t,z,x(   (8) 

 

The stress resultants in terms of axial force, Nx, bending moment, Mx, and transverse shear force Qx, can 

be written as 
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where 11 B,A  and 1D  are the material stiffness components of FG beam and defined as follow 
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Taking into account the axial and rotary inertias, using Hamilton’s Principle and after some mathematical 

operations, the governing equation of FG Rayleigh beam is derived as follows 
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where the following definitions apply 
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here 10 I,I  and 2I  are the moment of inertia components of FG beam and defined as follow 
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4. Solution of Governing Equation 

FG Rayleigh beam is assumed to have simply supported boundary conditions in both ends. Hence, the 

following boundary conditions are satisfied:  
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Governing Eq.(13) can be rearranged as follows:  
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where the following parameters applied  
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The solution of Eq. (18) satisfying the boundary conditions (17) is assumed as [23]: 
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Substituting the Eq.(20) into Eq. (18) yields  
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Finally, the formula for free vibration frequency of FG Rayleigh beam is obtained as follows 
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5. Numerical Results 

In this section examples are given to examine the present problem. At first, a comparison has been 

performed to show the accuracy of the present formulation. Then, an example is exhibited to show the 

effect of power law index on the dimensionless free vibration frequency parameters of FG Rayleigh beam.  

 

5.1. Comparison Study  

To confirm the formulation given in Eq. (22), the values of natural frequencies of homogeneous beam, 

)sn/rad( , are compared with results of Rao [23] in Table 1. Here the following beam characteristics 

and material properties are taken into account:  

 

 
339 m/N105.76,Pa10207E

,0d

,m15.0h,m05.0b,m1L







  (23) 

 

 

Table 1. Comparison of the values of natural frequencies of homogeneous beam with results of Rao [23] 

 

Source 
)sn/rad(  

n=1 n=2 n=3 

Present Study 696.5834 2713.3651 5857.9512 

Rao [23] 696.5987 2713.4221 5858.0654 

 

As it is seen in Table 1, the results are in good agreement and so the accuracy of the formulation 

is validated.  
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5.2. Illustrative example  

 

Fig. 3 shows the variation of dimensionless free vibration frequency parameters of FG Rayleigh beam, 

 , for the first three modes versus power law index, d. Here, FG Rayleigh beam is assumed to be 

composed of Alumina (Al2O3), and Aluminum (Al). Hence, the following beam characteristics and 

material properties are considered:  
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   (24) 
 

The dimensionless free vibration frequency parameter of Rayleigh beam is defined as follow: 

 

 m

m

2

Eh

L 


  (25) 

 

It is obvious from Fig. 3 that, the highest dimensionless free vibration frequency parameters are found for 

Al2O3 while the lowest ones are found for Al. Furthermore, dimensionless free vibration frequency 

parameters decrease with increasing power law index, d. As a result, it is concluded that the dimensionless 

free vibration frequency parameters decrease as the material property of FG Rayleigh beam varies from 

ceramic to metal component.  
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Fig. 3. Variation of dimensionless frequency parameters of FG Rayleigh beam versus power law 

index, d. 

 

6. Conclusions 

In the present study the free vibration of the beam composed of FGMs is investigated using Rayleigh 

beam theory. The material properties are assumed to vary continuously through the thickness direction of 

the beam according to the power-law form. Resulting equations are solved considering simply supported 

boundary conditions. In order to validate the results, a comparison is carried out with available results for 

homogeneous beam. It is seen that varying material properties have significant effects on dimensionless 

free vibration frequency parameters of FG Rayleigh beam. Present analysis can be served as a comparative 

study or data for the different solution methods of future works.  
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Abstract: 

Aorta artery is the most vital artery in humans and almost all animals. Aorta artery is also the largest artery in human 

body. This artery is the first artery coming out from the left ventricle of the heart and extending down to the abdomen, 

where it splits into two smaller iliac arteries. Aorta artery conveys oxygenated blood to all parts of the body so that this 

artery is the one, which is under the influence of the highest blood pressure. It is well known that aorta artery consists of 

three main layers, which cover five sub-layers. In this paper, we aimed to show the difference between functionally graded 

material (FGM) and laminated composite material and to show which model fits to the structure of aorta artery. 

Keywords: Aorta artery, composite materials, functionally graded materials, laminated composite materials. 

 

 

1. Introduction 

The mechanic model of aorta artery has a long history and variety in literature. For example, a 

fundamental paper about mechanic model of aorta artery presented by Gozna et al. in 1974 with the 

effect of age in man [1]. Gozna et al. have found regression equations between aging and aorta artery 

mechanic behavior. These equations have showed that there is a linear relation between aging and 

aorta artery mechanic behavior. More recently, the stability of aorta artery has been investigated in 

case of buckling under blood pressure by Han in 2007 [2]. Further researches of Han et al. proved 

that arteries may buckle and become turtous due to reduced axial strain, hypertensive pressure, and 

weakened artery wall [3-9]. In 2013, Han et al. has introduced new phenotypes, models, and 

applications of aorta artery [10]. In the review, Han et al. summarized the common forms of buckling 

that occurs in blood vessels including cross-sectional collapse, longitudinal twist buckling, and bent 

buckling. Also the phenomena, model analyses, experimental measurements, effect on blood flow, 

and clinical relevance have been discussed. From this and further works Han et al. clearly showed 

that mechanical buckling of aorta artery is an important issue for vasculature, in addition to wall 

stiffness and strength, and requires further studies [11-20]. 
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2. Anatomy of Aorta Artery 

It is well known that aorta artery is composed of three main layers like most of other arteries [21]. 

These layers are “intima”, “media”, and “adventitia” respectively from inner layer to outermost layer. 

Intima is the innermost layer of the artery which is covering the lumen side of vessels and it is 

composed of endothelial cells and lines the entire circulatory system, from the heart and the large 

arteries all the way down to the very tiny capillary beds. The intima layer also contains extracellular 

matrix and a supporting layer of collagenous tissue. Endothelial cells sorted in a single layer along 

the lumen side. Media is the muscular middle layer of the arteries and veins. It is composed of smooth 

muscle layers. Adventitia is outermost layer of vessels surrounding the media layer. It is mainly 

composed of collagen and, in arteries, is supported by external elastic lamina . The demonstration of 

these three main layers have been shown in Fig. 1. 

 

 

Fig. 1. Main layers of aorta artery 

 

More specifically, these three main layers “intima”, “media”, and “adventitia” consist of five sub-

layers. These sub-layers are Endotel, internal elastic layer, smooth muscle, external elastic layer, 

collagens and elastic tendons from inside to outside of aorta artery respectively as it is shown in Fig. 

2. 
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Fig. 2. Sub-layers of aorta artery 

 

In 2005, Holzapfel et al. have made an experimental research to determine the material properties of 

the layers of aorta artery separately [22]. Within these experiments, 13 nonstenotic human aorta artery 

have been harvested at autopsies. The age of human were mean 71.5±7.3 years old. The artery 

samples have been subjected to cyclic quasi-static uniaxial tension tests from the individual layers in 

axial and circumferential directions. The outer diameter to total wall thickness ratio was 0.189±0.014 

and the ratios of intima, media, and adventitia to total thickness were 0.27±0.02, 0.36±0.03, 0.4±0.03 

respectively. The axial stretch was 1.044±0.06 and decreased with age of humans. Holzapfel et al. 

have found that the stress-stretch responses for the individual tissues performed pronounced 

mechanical heterogeneity. According to researches and experiments, intima have been found to be 

the stiffest layer and media the softest. Although intima and media have been found the stiffest and 

softest layers, these two layers have performed similar ultimate tensile stresses. These values have 

been found three times smaller than ultimate tensile stresses which have been calculated for adventitia 

(1430±604 kPa circumferential and 1300±692 kPa longitudinal). This study have clearly showed that 

aorta artery need to be modelled as composite structure which consist of three solid mechanically 

relevant layers with different material properties. The innermost layer “intima” have performed 

significant thickness, load-bearing capacity, and mechanical strength compared with other main 

layers “adventitia and media”. In order to calculate the material properties of the layers of aorta artery, 

Holzapfel et al.  harvested thirteen hearts from ten men and three women within 24 hour of their 

death. A scalpel has been used in order to separate three main layers. After separating layers, uniaxial 

tensile tests with bidimensional measurements were performed with the aid computer controlled, 

screw-driven high-precision tensile testing machine. According to Holzapfel et al., the mean density 

of adventitia, media, and intima have been calculated dimensionless as 0.55±0.18, 0.25±0.09, 

0.51±0.14 and the average stiffness have been calculated as 7.56±4.66 kPa, 1.27±0.63 kPa, 

27.90±10.59 kPa respectively  [22]. 
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Fig. 3. FGM, single layered, and laminated models of aorta artery 

In Fig. 3, different mechanical models of aorta artery have been demonstrated. Functionally graded 

material (FGM) and laminated composite materials have been chosen to be applied to aorta artery. 

As it can be seen in the middle, also single layered model have been demonstrated. In vivo, aorta 

artery is embedded in tissue and this tissue can be modeled as elastic matrix. In literature many paper 

can be found about static and dynamic analysis of beams and shells with composite materials [23-

25]. 

 

3. Functionally Graded Materials (FGM) 

 

Functionally graded materials (FGM) are relatively new advanced composite materials compared 

other composite materials. After the invasion of this composite materials, great deals of research have 

been made on the production and applications process of this new material concept. Functionally 

graded materials are characterized by gradually changed physical properties. 

 

p = p0 [1 +
p−1

T
+ p1T + p2T2 + p3T3]    (1) 

 

In Eq. (1) pi are the coefficients of temperature defined in the unit of Kelvin and them are unique to 

the constituent materials. 

 

p = ∑ pjVf
k
j=1        (2) 

 

In Eq. (2) pj and Vf are the material property and volume fraction of the constituent material j, 

respectively. The sum of volume fraction can be stated as 

 

∑ Vf = 1k
j=1        (3) 

 

To adopt the aorta artery as functionally graded material, a shell model with uniform thickness can 

be used. The volume fraction of the shell can be stated as 
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Vf = (
z

h
+

1

2
 )

N

      (4) 

 

The power-law exponent is defined by N. The material properties for a two-constituent functionally 

graded can be stated as [26] 

 

E(z) = (E1 − E2) (
z

h
+

1

2
 )

N

+ E2    (5) 

v(z) = (v1 − v2) (
z

h
+

1

2
 )

N

+ v2    (6) 

ρ(z) = (ρ1 − ρ2) (
z

h
+

1

2
 )

N

+ ρ2    (7) 

 

4. Laminated Composite Materials 

 

Laminated composite materials have attracted much attention due to their higher resistance, lighter 

weight when compared with traditional materials. Laminated composite materials have been widely 

used in aerospace industry, automotive industry and material engineering. Many researches have been 

published papers aimed to investigate the applications of laminated composite materials to shells, 

plates, and beams in case of static and dynamic analyses [27-35]. 

General equations of laminated composite materials can be stated as follows 

 

σi1 =
Ei1

1−vi12vi21
(εi1 + vi21εi12)     (8) 

σi2 =
Ei2

1−vi12vi21
(vi12εi1 + εi2)     (9) 

 

τi12 = Gi12γi12 = 2Gi12εi12     (10) 

 

Where Ei1 and Ei2 are the Young’s modulus in longitudinal “1” and transverse “2” direction 

respectively. On the other hand, vi12 is the Poisson’s ratio for which strains are in longitudinal 

direction “1” and stress in transverse direction “2”. Similarly, Gi12 is the shear modulus. 

Eqs. (8-10) can be written in matrix form as follows 

 

{

σ1

σ2

τ12

} = [
Q11 Q12 0
Q21 Q22 0

0 0 Q66

] {

ε1

ε2

γ12

}    (11) 

 

By simplifying Eq. (11) we obtain 
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{σ} = [Q]{ε}      (12) 

 

Where 

 

Q11 =
E1

1−v12v21
      (13) 

Q12 = Q21 = v21
E1

1−v12v21
= v12

E1

1−v12v21
   (14) 

Q22 =
E2

1−v12v21
      (15) 

Q66 = G12      (16) 

 

According to Betty-Maxwell theorem the Young’s modulus and Poisson’s ratios should fulfil the 

following equation 

E1v21 = E2v12      (17) 

 

5. Concluding remarks 

 

In present paper the most convenient mechanical model of aorta artery have been investigated. Two 

of most used composite materials types have been analyzed. Functionally graded materials and 

laminated composite materials models fundamental equations have been given. As it can be seen from 

Fig. 2, aorta artery has a layered structure which is composed of three main layers which consist of 

five sub-layers. Each layer has their own material properties (density, Young’s modulus etc.). To 

conclude it is possible to say that aorta artery can be modelled by using laminated composite material 

theories. Three main layers can be adapted in laminated composite theories or to have more accurate 

result, five sub-layers can be adapted in laminated composite theories in order to investigate the 

mechanical behavior of aorta artery. 
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Abstract 

This paper presents stability analysis of a non-homogeneous plate with porosity effect. Material properties of the plate 

vary in the thickness direction and depend on the porosity. In the solution of the problem, the Generalized Differential 

Quadrature method is used. In the porosity model, uniform porosity distribution is considered. The effects of the porosity 

and material distribution parameters on the critical buckling of the non-homogeneous plate are investigated. 

Keywords: Non-Homogeneous Plate; Porosity; Generalized Differential Quadrature Method. 

1. Introduction 

Non-homogeneous structures, namely functionally graded structures are a type of composites where 

the volume fraction of the materials constituents vary gradually, giving a non-uniform microstructure 

with continuously graded macro properties such as elasticity modulus, density, heat conductivity, etc.. 

Typically, in non-homogeneous structures, one face of a structural component is ceramic that can resist 

severe thermal corrosion effects and the other face is metal which has excellent structural strength.  

Non-homogeneous structures have been an area of intensive research over the last decade. Because of 

the wide material variations and applications, it is important to study the static and dynamic analysis 

of Non-homogeneous structures, such as plates. Therefore, an intensive study has been conducted 

recently on vibration of structures made of FGMs (i.e., [1–42]). 

In the literature, some studies about the porosity effect in the Non-homogeneous structures are; 

Wattanasakulpong and Ungbhakorn [43] investigated vibration analysis of porous  FG beams. Mechab 

et al. [44,45] examined free vibration analysis of a FG nano-plate resting on elastic foundations with 

the porosities effect. Şimşek and Aydın [46] examined forced vibration of FG microplates with 

porosity effects based on the modified couple stress theory. Jahwari and Naguib [47] investigated FG 

viscoelastic porous plates with a higher order plate theory and statistical based model of cellular 

distribution. Vibration characteristics of FG beams with porosity effect and various thermal loadings 

are investigated by [48-49]. Linear/ nonlinear analysis of buckling and vibration of FG beams 
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reinforced porous nanocomposite are investigated by Chen et al. [50] and Kitipornchai et al. [51]. 

Akbaş [52] investigated static and vibration of FG porous plates by using Navier solution. 

Stability analysis of a simply supported non-homogeneous plate is investigated with porosity effect by 

using Generalized Differential Quadrature Method based on the classical plate theory. The effects of 

the porosity and material distribution parameters on the critical buckling loads of the non-

homogeneous plate are examined.  

2. Formulations 

A simply supported rectangular non-homogeneous porous plate with thickness h in X3 direction, the 

lengths of LX and LY the in X1 and X2 directions, respectively as shown in Figure 1. The non-

homogeneous plate is subjected to biaxial plane compressive loads N  in both  X1 and X2 directions, 

respectively.  

 

 
Fig. 1. A non-homogeneous plate subjected biaxial compressive loads with porosity. 

 

The effective material properties of the non-homogeneous plate, P, such as, Young’s modulus E, 

Poisson’s ratio ν, and shear modulus G vary continuously in the thickness direction (X3 axis) according 

to a power-law function. In the porosity model, the porosity spread uniformly though height direction. 

According to the power law distribution, the effective material property with porosity can be expressed 

as follows: 

 

                                      (1) 

 

where a (a<<1) is the volume fraction of porosities. When a=0, the plate becomes perfect non-

homogeneous plate. 

 

According to classical plate theory, the strain- displacement relations are expressed as  

 

                                  𝜀𝑋1
=

𝜕𝑢

𝜕𝑋1
= 𝜀𝑋1

0 − 𝑋3
∂2v

∂𝑋1
2                                                              (2a)      

          

     3

3
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2 2

 
      

 

k

T B B T B

X a
P X P P P P P

h



Ş.D. Akbaş 

149 

 

                                 𝜀𝑋2
=

𝜕𝑣

𝜕𝑋2
= 𝜀𝑋2

0 − 𝑋3
∂2v

∂𝑋2
2                                                              (2b)     

 

                                            𝛾𝑋1𝑋2
=

1

2
(𝜀𝑋1𝑋2

0 −
∂2v

𝜕𝑋1𝜕𝑋2
)                                                             (2c)   

where u, v, w are X1, X2 and X3 components of the displacements respectively. The constitutive 

equations of the non-homogeneous plate are as follows:  

 

                            𝜎ij(𝑋3,𝑎) =
𝐸(𝑋3,𝑎)

(1−𝜈2)
[𝜈𝜀𝑘𝑙𝛿𝑖𝑗 + (1 − 𝜈)𝜀𝑖𝑗]                                                               (3) 

 

The stress resultants of the non-homogeneous plate are given as follows; 

 

                𝑁𝑖𝑗 = ∫ 𝜎ij
0.5ℎ

−0.5ℎ
𝑑𝑋3   𝑖 = 𝑗,  𝑀𝑖𝑗 = ∫ 𝜎ij

0.5ℎ

−0.5ℎ
𝑋3 𝑑𝑋3,  𝑄𝑖𝑗 = ∫ 𝜎ij

0.5ℎ

−0.5ℎ
𝑑𝑋3   𝑖 ≠ 𝑗              (4) 

 

where 𝑁𝑖𝑗, 𝑀𝑖𝑗 and 𝑄𝑖𝑗 are normal force, moment and shear forces, respectively. The stability equation 

of the non-homogeneous plate is given as follows: 

 

                                   𝛻4𝜈 −
𝐴1(1−𝜈2)

𝐴1𝐴3−𝐴2
2  (𝑁1

0 ∂2v

∂𝑋1
2 + 𝑁2

0 ∂2v

∂𝑋2
2) = 0                                                (5) 

 

where 𝑁1
0 and  𝑁2

0 are the pre-buckling force resultants, 𝐴1, 𝐴2, 𝐴3 are  expressed as follows: 

 

                                 (𝐴1, 𝐴2, 𝐴3) = ∫ 𝐸(𝑋3, 𝑎)(1, 𝑋3, 𝑋3
2)

0.5ℎ

−0.5ℎ
𝑑𝑋3                                             (6) 

The boundary conditions at the simple supported plate ends are as follows; 

                        𝑣(𝑋1, 0) = 𝑣(𝐿𝑋 , 0) = 𝑤(0, 𝑋2) = 𝑤(0, 𝐿𝑌) = 0                                          (7a) 

          𝑀(𝑋1, 0) = 𝑀(𝐿𝑋 , 𝑋2) = 𝑀(𝑋1, 𝐿𝑌) = 𝑀(0, 𝑋2) = 0              (7b) 

In the solution of the governing equations, the Generalized Differential Quadrature Method is 

used. In the differential quadrature method, the derivatives of a function are written as linear 

summation of the values at all points in the domain [53-56]; 

𝑑(𝑝)𝑤(𝑥𝑗)

𝑑𝑥(𝑝) ≈ ∑ 𝐵𝑗𝑖
(𝑝)𝑛

𝑖=1 𝑤(𝑥𝑖)                                                                (8) 

where n is the number of the points in the domain, p is the order of derivative in the function, 

𝐵𝑗𝑖
(𝑝)

 is the weighting coefficient with pth derivative of the function with respect to x. The weight 

coefficients for first-order derivative (p=1) are as follows [53,54]; 

                                   𝐵𝑗𝑖
(1)

= {

∏ (𝑥𝑗−𝑥𝑖)𝑛
𝑗=1

(𝑥−𝑥𝑗) ∏ (𝑥𝑖−𝑥𝑗)𝑛
𝑗=1

− ∑ 𝐵𝑗𝑖
(1)𝑛

𝑗=1,𝑖≠𝑗       𝑖 = 𝑗       

𝑖 ≠ 𝑗                                         (9) 

   For the higher order derivatives, the weight coefficient is expressed as follows: 

                                           𝐵𝑗𝑖
(𝑝)

= ∑ 𝐵𝑗𝑟
(1)

𝐵𝑟𝑖
(𝑝−1)𝑛

𝑟=1      (i,j=1,n)                                            (10) 
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For determined the sampling points in the domain, Chebyshev–Gauss–Lobatto grid points is 

employed[53,54]; 

                                          𝑥𝑗 =
1

2
[1 − 𝑐𝑜𝑠 (

𝑗−1

𝑛−1
𝜋)]      (j=1,nx1)                                         (11a) 

                                          𝑥𝑖 =
1

2
[1 − 𝑐𝑜𝑠 (

𝑖−1

𝑛−1
𝜋)]      (i=1,nx2)                                         (11b) 

where nx1 and nx2 are the number of the grid points in X1 and X2 direction, respectively. 

Substituting eqs. (8-11) into eq. (5), and then using Generalized Differential Quadrature 

discretization, the governing equations of the problem can be obtained as follows; 

 

(∑ 𝐵𝑗𝑘
(4)𝑛𝑥1

𝑘=1 𝑣𝑘𝑗 + 2 ∑ ∑ 𝐵𝑗𝑘
(2)𝑛𝑥2

𝑚=1
𝑛𝑥1
𝑘=1 𝐵𝑖𝑚

(2)
𝑣𝑘𝑚 + ∑ 𝐵𝑖𝑘

(4)𝑛𝑥2
𝑘=1 𝑣𝑘𝑖) −

𝐴1(1−𝜈2)

𝐴1𝐴3−𝐴2
2  (𝑁1

0 ∑ 𝐵𝑗𝑘
(2)𝑛𝑥1

𝑘=1 𝑣𝑘𝑗 + 𝑁2
0 ∑ 𝐵𝑖𝑘

(2)𝑛𝑥2
𝑘=1 𝑣𝑘𝑖) = 0  (j=1,nx1), (i=1,nx2), (k=1,p+1)      (12) 

 

The dimensionless critical buckling load can be expressed as follows; 

                                                     �̅�cr = 𝑁𝑐𝑟
 𝐿𝑋

2

𝐸𝐵 ℎ3                                       (13)  

3. Numerical Results 

In the numerical results, the dimensionless critical buckling loads �̅�cr are presented in figures for 

different porosity parameters and material distributions. The rectangular non-homogeneous porous 

plate considered in numerical examples is made of Zirconia (E=151GPa, ν=0.3) and Steel (E=210GPa, 

ν=0.3). The top surface material of the non-homogeneous plate is Zirconia, the bottom surface material 

of the non-homogeneous plate is Steel. When k=0 and k=∞, the material of the plate gets homogeneous 

Zirconia and homogeneous  Steel, respectively, according to Eq. (1). The dimensions of the non-

homogeneous plate are considered as follows: h = 0.2 m, LX =3 m, LY=3 m in the numerical examples. 

In the numerical calculations, the numbers of the grid points are taken as nx1=nx2=20.  

In figure 2, the effect of the material distribution parameter k on the dimensionless critical buckling 

loads of the porous non-homogeneous plate is presented for a=0. As seen from figure 2, the 

dimensionless critical buckling loads increase with increase in the power-law exponents k. With 

increase in the k, the plate gets to fully Steel. The Young's modulus of Steel is bigger than Zirconia’s. 

As it is expected, with increase the k, the Young's modulus and bending rigidity of the plate increase 

according to equation (1). So, the strength of material increases and the critical buckling loads increases 

naturally.  
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Fig. 2. The effect of the material distribution parameter k on the dimensionless critical buckling loads �̅�cr. 

 

Figure 3 displays the relationship between of porosity parameter a and the dimensionless critical 

buckling loads of the non-homogeneous porous plate for different the material distribution parameters. 

It is seen from figure 3 that the dimensionless critical buckling loads decrease with increase with 

increase porosity parameter a. This is because, with increase in the porosity, the strength of the material 

decreases. So, the critical buckling loads decreases naturally. It shows  that Porosity parameters play 

an important role on the stability of the non-homogeneous porous plates. 

 

 
Fig. 3. The effect of the porosity parameter a on the dimensionless critical buckling loads �̅�cr for different the 

material distribution parameters. 
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4. Conclusions 

 

In this paper, stability analysis of a simply supported porous non-homogeneous plate is studied by 

using Generalized Differential Quadrature Method. Material properties of the plate depend on both 

position and porosity. The Classical plate theory is used in the kinematic model of the plate. The effects 

of the porosity and material distribution parameters on the critical buckling loads of the non-

homogeneous plate are presented in figures. Numerical results show that the porosity has important 

role on the stability of the non-homogeneous plate. 
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Abstract 

Over the past few years there has been sustainable development in the steel and composite construction technology. One of 

the recent additions to such developments is the I-girders with corrugated web beams. The use of these new generation beams 

results in a range of benefits, including flexible, free internal spaces and reduced foundation costs. Corrugated web beams are 

built-up girders with a thin-walled, corrugated web and wide plate flanges. The thin corrugated web affords a significant 

weight reduction of these beams, compared with hot-rolled or welded ones. In this paper, optimum design of corrugated 

composite beams is presented. A recent stochastic optimization algorithm coded that is based on hunting search is used for 

obtaining the solution of the design problem. In the optimization process, besides the thickness of concrete slab and studs, web 

height and thickness, distance between the peaks of the two curves, the width and thickness of flange are considered as design 

variables. The design constraints are respectively implemented from BS EN1993-1:2005 (Annex-D, Eurocode 3) BS-8110 and 

DIN 18-800 Teil-1. Furthermore, these selections are also carried out such that the design limitations are satisfied and the 

weight of the composite corrugated web beam is the minimum.  

Keywords: Composite structures; corrugated beams; optimum design; structural optimization; stochastic search methods; 

hunting search algorithm. 

1. Introduction 

 

The use of long span steel beams results in a range of benefits, including flexible, free internal spaces and 

reduced foundation costs. Many large clear-span design solutions are also well adapted to simplify the 

integration of mechanical or utility services. Corrugated steel web beams provide economical solution and 

pleasing appearance for space structures. In steel construction applications, the web part of beam usually 

carries the compressive stress and transmits shear in the beam while the flanges support the applied external 

loads. By using greater part of the material for the flanges and thinner web, materials saving could be 

achieved without weakening the load-carrying capability of the beam. In this case, the compressive stress 

in the web has exceeded the critical point prior to the occurrence of yielding, the flat web loses its stability 
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and deforms transversely. Corrugated web beams shown in Figure 1 are built-up girders with a thin-walled, 

corrugated web and plate flanges. 

 

 

Fig. 1 Geometric properties of Corrugated Web Beam 

 

Corrugated structure of the web cross-section not only increases the resistance of the beam against to shear 

force and other possible local effects, but also prevents the buckling due to loss of moment of inertia before 

the plastic limit. This specific structure of the web leads to a decrease in the beam unit weight and increase 

in the load carrying capacity. These efficient construction materials, commonly used in developed countries 

over years, can be utilized at the roofs as an alternative to space truss and roof truss, at the slabs as floor 

beams or columns under axial force. Although the designers are aware of the advantages of the composite 

systems to be produced with that beams, there is still not a detailed technical specification about their design 

and behavior. The first studies on the corrugated web beams were focused on the vertically trapezoidal 

corrugation. Elgaaly investigated the failure mechanisms of trapezoidal corrugation beams under different 

loading conditions, namely shear mode [1], bending mode [2]. They found that the web could be neglected 

in the beam bending design calculation due to its insignificant contribution to the beam’s load-carrying 

capability. Besides that, the two distinct modes of failure under the effect of patch loading were dependent 

on the loading position and the corrugation parameters. These are found agreeable to the investigation by 

Johnson and Cafolla and were further discussed in their writings [3]. In addition, the experimental tests 

conducted by Li et al. [4] demonstrated that the corrugated web beam has 2 times higher buckling resistance 

than the plane web type. According to Pasternak et al., [5], the buckling resistance of presently used 

sinusoidal corrugated webs is comparable with plane webs. 

 

In the present study, the ultimate load carrying capacities of optimally designed steel corrugated web beams 

are tested in a self-reacting frame to perform critical loads for all tested specimens. For this purpose, six 

corrugated beams are tested in a self-reacting frame to determine the ultimate load carrying capacities of 

mentioned beams under different loading conditions. The tested specimens are designed by using one of 

the stochastic search techniques called hunting search optimization method. This meta-heuristic algorithm 

is successfully applied to the optimum design problems of steel cellular beams where the design constraints 
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are implemented from BS EN1993-1:2005 (Annex-D, Eurocode 3) BS-8110 and DIN 18-800 Teil-1 

provisions [6-10]. In this formulation, the thickness of concrete slab and studs, web height and thickness, 

distance between the peaks of the two curves, the width and thickness of flange in the composite corrugated 

web beams are considered as design variables. The computational steps of the optimization algorithm and 

the design process are not demonstrated in the paper due to space limitations, yet the detailed 

implementation specifics of the hunting search method and optimum design process of corrugated web 

beams can be found in Erdal et al. [11] with parameter sets. 

 

2. The Design of Composite Corrugated Web Beams 

 

The ultimate state design of a steel beam necessitates check of its strength and serviceability. The 

computation of the strength of a corrugated web beam is determined by considering the interaction of 

flexure and shear at the sinusoidal web. Consequently, the constraints to be considered in the design of a 

corrugated web beam include the displacement limitations, transverse force load carrying capacity of webs, 

normal force load carrying capacity of flanges, lateral torsional buckling capacity of the entire span, rupture 

of the welded joint, formation of a flexure mechanism and practical restrictions for corrugated web and 

flanges [9-11].  

 

2.1. Stochastic Optimization Techniques 

 

A combinatorial optimization problem requires exhaustive search and effort to determine an optimum 

solution which is computationally expensive and in some cases may even not be practically possible. Meta-

heuristic search techniques are established to make this search within computationally acceptable time 

period. Amongst these techniques are simulated annealing [12], evolution strategies [13], particle swarm 

optimizer [14], tabu search method [15], ant colony optimization [16], harmony search method [17], genetic 

algorithms [18] and others [19-22]. All of these techniques implement particular meta-heuristic search 

algorithms that are developed based on simulation of a natural phenomenon into numerical optimization 

procedure. They have gained a worldwide popularity recently and have proved to be quite robust and 

effective methods for finding solutions to discrete programming problems in many disciplines of science 

and engineering, including structural optimization.  

 

2.1.1. Hunting Search Algorithm 

 

Hunting search method based optimum design algorithm has six basic steps, which is outlined in the 

following [23-24]. 
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Step 1 Initializing design algorithm and parameters: HGS defines the group size which is the number of 

solution vectors in hunting group, MML represents the maximum movement toward the leader and HGCR 

is hunting group consideration rate which varies between 0 and 1.  

 

Step 2 Generation of hunting group: On the basis of the number of hunters (HGS), hunting group is 

initialized by selecting randomly sequence number of steel sections (Ii) for each group. 

                                  n1,....,iIIrIINTI minmaxmini                                          (1) 

where; the term r represents a random number between 0 and 1, Imin is equal to 1 and Imax is the total number 

of values in the discrete set respectively. n is the total number of design variables. 

Step 3 Moving toward the leader: New hunters’ positions are generated by moving toward the leader hunter. 

                                n1,....,iIIMMLrII i

L

ii

'

i                                           (2) 

where; Ii 
L is the position value of the leader for the i-th variable. 

 

Step 4 Position correction-cooperation between hunters: After moving toward the leader, hunters tend to 

choose another position to conduct the `hunt' efficiently, i.e. better solutions. Position correction is 

performed in two ways, one of which is real value correction and the other is digital value. In this study, 

real value correction is employed for the position correction of hunters. 
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Step 5 Reorganizing the hunting group: Hunters must reorganize themselves to get another chance to find 

the global optimum. If the difference between the objective function values obtained by the leader and the 

worst hunter in the group becomes smaller than a predetermined constant (ε1) and the termination criterion 

is not satisfied, then the group reorganized. By employing the Eq. 6, leader keeps its position and the others 

randomly select positions. 

                              )ENβ()I(min)I(maxrII ii

L

i

'

i                                               (4) 

Where; Ii 
L is the position value of the leader for the i-th variable, r represents the random number between 

0 and 1, min(Ii) and max(Ii) are min. and max. values of variable Ii, respectively, EN refers to the number 

of times that the hunting group has trapped until this step. α and β are determine the convergence rate of 

the algorithm. 
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Step 6 Termination: The steps 3 and 5 are repeated until a pre-assigned maximum number of cycles is 

reached. 

 

3. Optimum Design Problem 

 

The design of a composite corrugated web beam requires the selection of width and thickness of a plate 

from which the corrugated web is to be produced, distance between the peak points of each corrugate, the 

length of corrugate web, the selection of width and thickness of a plate for upper and lower flanges in the 

beam, thickness of the concrete slab and connection members between the concrete slab and corrugated 

beam are considered as design variables. For this purpose, a design pool is prepared. The optimum design 

problem formulated considering the design constraints explained in the previous sections yields the 

following mathematical model [6-11]. Find a integer design vector    T
IIIIIIII 765,4321 ,,,,,, where 

1I  is the sequence number of for the width of upper and lower flanges, 2I  is the sequence number for the 

thickness values of upper and lower flanges, 3I  is the thickness of corrugated web, 4I is distance between 

the peak points of each corrugate web and 5I the height of corrugate web, 6I  thickness of the concrete slab 

and 7I is the connection members between the concrete slab and corrugated beam. Hence the design 

problem turns out to be minimize the weight of the composite corrugated web beam ( komW ). 

 

               
       stustubetbetdüzwffskom NALALthLtbW   2                         (5) 

 

where, s  density of steel, fb  the width of flange, ft  thickness of flange,  L span of beam, h height of 

corrugated web, wt  thickness of corrugated web ve düzL  span of beam before corrugation process. bet the 

density of concrete class, betA  the section area of the concrete slab, stuA  the net section are of connection 

members between the concrete slab and corrugated beam and stuN  the number of connection members 

between the concrete slab and corrugated beam along beam span. The demonstration of composite 

corrugated web beams under loading conditions is given in Figure 2 with more detail.  
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Fig. 2. The demonstration of Composite Corrugated Web Beam 

 

Design of a corrugated beam requires the satisfaction of some geometrical restrictions that are formulated 

through Eqns. (6-9). 

Web dimensions: 

mmhmm 1500333                         (6)                 mmtmm w 0.55.1                          (7) 

Flange dimensions: 

mmbmm f 450120                         (8)                 mmtmm f 0.300.6                        (9) 

 

3.1. Transverse load carrying capacity of corrugated webs 

 

Based upon the experimental tests and finite element analysis results, the following design procedure has 

been suggested: The corrugated web is regarded as an orthotropic plate with rigidities Dx and Dy. According 

to [5], the following formula therefore applies to the corrugated web: 

                                          
s

twE
Dx
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  for yx DD                                   (10) 

For transverse buckling stress of corrugated web; 
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For slenderness parameter of corrugated web;    
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With the buckling coefficient of corrugated web; 

                                                                          
2/3)(

1
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BK


                                                (13) 

the transverse force load carrying capacity for the corrugated web finally results in: 

                                                          
3

wyB

MAXTK

thfK
V


                                             (14) 

3.2. Normal load carrying capacity of flanges 

 

In determining the normal bearing force of the flanges, a distinction must be made between tensile and 

compressive stresses. In the case of tensile stress, the load carrying capacity of the flange is derived as 

follows: 

                                                          
ff

MAXT
ALLOW

tb

N


                                                            (15) 

Reformulation of the expression for ψ = 1 leads to the following elastic limit stress: 

                                                             
 2

4000

ff

EL
tb 

                                                           (16) 

Therefore the reduced normal force on the flange: 

                                                          
ffELNORMAL tbN                                                   (17)                 

Global failure of stability - lateral buckling of the flange - is equivalent to the verification against torsional-

flexural buckling. If the restraining effect of the web is ignored, the torsional-flexural verification is carried 

out as the buckling verification for the “isolated” flange in accordance with [5]. The following condition 

for the distance between lateral supports is obtained:  

                                                 
ck

tb
fE

c

ff

yEG





2

34


                                                  (18)            

      

3.3. Behavioral and Geometrical Restrictions of Composite Beam 
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The moment capacity of composite corrugated web beam with sinusoidal web function ( RDM ) has been 

defined as following equations.  

 

For the neutral axis on concrete slab; 

                                          
a

y

AD

f
AT


              and          
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For the neutral axis on steel profile; 

                                cc

c
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CD tb
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                                   ))2/(()( tfcCDctADRD ydhtCyydCM                        (22) 

 

In these equations, d  height of steel section, 1d  distance between the centre of steel section and upper part, 

cy  distance between the centre of pressure region of steel section and upper part, ty  distance between the 

centre of tension region of steel section and lower part, ct  height of concrete slab, cb  effective slab width, 

Fh  height of steel deck,  yf  yield strength of steel, ckf  compressive strength of concrete,  a and c are 

coefficients for steel and concrete materials stuN . 

 

3.4. The Design of Concrete Slab for Corrugated Web Beams 

 

The effective length of concrete slab and number of shear connectors have been calculated for OGK_330 

corrugated web beams according to EC4, BS-5950 Part-3, Section 3-1. 

                                                  𝑏𝑒𝑓𝑓=
𝑙0

4
=

470𝑐𝑚

4
= 117,5𝑐𝑚                                                        (23) 
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                                                     𝑅𝑆 = 0,95𝑓𝑦𝐴𝑎                                                                    (24) 

 

In these equations, beff is effective length of concrete slab and l0 is span of beam. 

 

                                                        𝑅𝐶 = 0,45𝑓𝑐𝑢𝑏𝑒𝑓𝑓ℎ𝑐                                                                  (25) 

 

In the equation 25, Rc is compressive force of concrete, hc the depth of the concrete slab, Aa is section area 

of steel, h height of steel section, hp the depth of concrete slab at tab of the deck. If plastic neutral axis is 

on the upper flange of steel section, moment is defined as;  

                                                𝑀𝑝𝑙,𝑅𝑑 = 𝑅𝑆
ℎ

2
+ 𝑅𝐶 (

ℎ𝑐

2
+ ℎ𝑝)                                                          (26) 

 

The calculation of shear connectors for composite corrugated web beams has been defined in equations 41, 

42 and 43. In these equations, fu maximum tensile stress of steel shear connectors, h the height of shear 

connectors, d the diameter of shear connectors, γv safety factor, and α is constant. 

                                               𝑃𝑅𝑑 = 0,29𝛼𝑑2
√𝑓𝑐𝑘𝐸𝑐

𝛾𝑣
                                                              (27) 

                                                   𝑃𝑅𝑑 = 0,8𝑓𝑢
𝜋𝑑2

4𝛾𝑣
                                                                    (28)                                  

                                                 𝛼 = 0,2 (
ℎ

𝑑
+ 1) ≤ 1 →                                                           (29) 

 

The depth of concrete slab (hc) and forces (Rs, Rc and Mpl,Rd ) are calculated for OGK_330 corrugated web 

beam under point loading. 

 

Rs=0,95x355x16x160=863,36 kN 

 

∑Y=0 ; Rs=Rc=0,45x20x1175xhc ; hc<=81,64 mm ;hc=8cm. 
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Rc=0,45x20x1175x80=846 kN 

 

Mpl,Rd=863,36x173+846x70=208,58kNm=21,262 tm 

 

 

 

4. Design Example 

 

Optimum design algorithms presented are used to design a corrugated steel web beam (OGK_330) with 5-

m span shown in Fig. 3. The beam is subjected to point loading. The upper flange of the beam is laterally 

supported by the floor system that it supports. The maximum displacement is limited to 17 mm. The 

modulus of elasticity is 205 kN/mm2. 

 

Fig. 3. Loading of 5-m span Corrugated Web beam 

The design example is solved by hunting search algorithm (HSA). The maximum number of generations is 

taken as 5000 (Table 1).  

Table 1. The Parameters of HAS and FFO Techniques 

Technique             The values of parameters 

 HSA    

           90HGS  002.0MML 90.0HGCR  Ramax = 0.01,  

          Ramin = 0 45.0par  α =0.9,β=0.02,IE=25, 50000cycN  

 

The result of the sensitivity analysis carried out for the HSA parameters is given in Table 2.  In steel 

construction applications, the web part of beam usually carries the compressive stress and transmits shear 

in the beam while the flanges support the applied external loads. By using greater part of the material for 

the flanges and thinner web, materials saving could be achieved without weakening the load-carrying 
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capability of the beam. In this case, the compressive stress in the web has exceeded the critical point prior 

to the occurrence of yielding, the flat web loses its stability and deforms transversely. 

 

Table 2. Optimum Design of Corrugated Beam with 5-m Span 

Optimum 

Section 

Conrete Part Steel Part Minimum 

Weight 

(kg) 
ch (mm) 

effb (mm) 
ns  wt (mm) h(mm) ft  (mm) Hc (mm) Lc (mm) 

OGK_330 80 1175 44 5 330 9 43 155 1317.38 

 

The optimum corrugated web beam should be produced such that it should have 5 mm web thickness 330 

mm web height, 9 mm flange thickness and 160 mm flange width for steel part and 80 mm slab depth, 1175 

mm effective length of slab, 44 shear connectors for concrete part. HSA produces 1317.38 kg weight for 

composite corrugated web beam OGK_330. The dimensions of OGK_330 and OGK_500 beam are also 

given in Table 2. The maximum value of the strength ratio is 0.98 which is almost upper bound. This reveals 

the fact that the strength constraints are dominant in the problem. The design history curve for HSA 

techniques is shown in Fig. 4. It is apparent from the figure that HSA method performs good convergence 

rate and acceptable solution in this design problem.  

 

 

 

Fig. 4. Design History Graphic of 5-m Corrugated Web Beam 

 

5. Conclusion 
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This study concerns with the application of a hunting search algorithm to demonstrate the robustness of the 

proposed algorithm and to find the optimum design of composite corrugated web beams. The design 

algorithm is mathematically simple but effective in finding the solutions of optimization problems. Fly-

back mechanism is employed for handling the problem constraints and feasible ones being candidate 

solutions to give the minimum weight are determined. A composite corrugated web beam example is 

designed to illustrate the efficiency of the algorithm. In the optimization process, besides the thickness of 

concrete slab and studs, web height and thickness, distance between the peaks of the two curves, the width 

and thickness of flange are considered as design variables. The optimum design attained by HSA method 

clearly shows that the proposed method give good solution. In view of the results obtained, it can be 

concluded that the HAS method is an efficient and robust technique that can successfully be used in 

optimum design of corrugated web beams. 
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