Comhuriyet Universitesi MÜHENDISLIK FAKÜLTESI DERGISt Bulletin of the of Engineering, Cumhuriyet University

SERI. A - Yerbilimleri

Serie, A . Earth Sciences

ICINDEKILER (CONTENTS)
Cafana (Görgü) Malatya Karbonatlı $\mathrm{Zn}-\mathrm{Pb}$ Yatakları
Cafana (Görgü) Malatya Carbonated $\mathrm{Zn}-\mathrm{Pb}$ Deposits

Ahmet SAĞIROĞLU
Ycylagöze (Yıldızeli - Sivas) Fluorit Cevherleșmesi
Fluorite Mineralization of Yaylagöze (Yıldızeli Sivas)
Kursunlu (Ortakent - Koyulhisar - Sivas) Pb-Zn-Cu Yataklarının Jeoloisi, Olussumu ve Kökeni
Geology and Genesis of the Kurșunlu (Ortakent - Koyulhisar - Sivas) Pb-Zn-Cu Ore Deposits
Kursunlu (Ortakent - Koyulhisar - Sivas) Pb-Zn-Cu Yataklarının Jeoloisi, Olussumu ve Kökeni
Geology and Genesis of the Kurșunlu (Ortakent - Koyulhisar - Sivas) Pb-Zn-Cu Ore Deposits

Tecer Kirectașı Formasyonunun Yapısı Hakkında Bir Yorum
An Interpretation On The Structure of The Tecer Limestone-
Kursunlu corakent - Koyulhisar - Sivas) Pb-Zn-Cu Yataklarının Jeoloiisi, Olussumu ve Kökent
Geology and Genesis of the Kurşunlu (Ortakent - Koyulhisar - Sivas) Pb-Zn-Cu Ore Deposits

Orta - Üst Miyosen Kükürtlü (Erzurum) Havzasinin Atüvyon Yelpazesi ve Gölsel Cökelleri Alluvial Fan and Lake Deposits of The Middle - Upper Miocene Așkale - Kükürtlü Basin (Erzurum)

ilyas Erdal KEREY, Cevdet

Kayabașı Formasyonunda Bulunan Triyas Konodontlarının Taksonomik Karakterleri
 The Taxonomic Charecters of Triassic Conodonts From Kayabașı Formation

Fuat ONDER

Sivas Güneydoğusundaki Miyosen Yaşlı Jipsli Çökellerin Stratigrafisi, Yapısal Özellikleri ve Olușumu
 Stratigraphy Structural Features and Genesis of The Miocene Cypsiferous Sediments in Southeastern Sivas (Turkey) Ahmet GÖKÇE, Fuat CEYHAN

CILT : 5 SAYI : 1
VOL : 5 VOL : 1

cumhuriyet üniversitesi MÜHENDISL亡K FAKÜLTESI DERGISt

Bulletin of the of Engineering, Cumhuriyet University

SERi. A - Yerbilimleri

Serie, A - Earth Sciences
IÇINDEKiLER (CONTENTS)Cafana (Görgü) Malatya Karbonatı Zn - Pb YataklarıCafana (Görgü) Malatya Carbonated Zn - Pb DepositsAhmet SAĞIROĞLU3
Yaylagöze (Yaldizeli - Sivas) Fluorit Cevherleșmesi
Fluorite Mineralization of Yaylagöze (Yıldızeli - Sivas)Servet YAMAN15
Kurșunlu (Ortakent - Koyulhisar - Sivas) Pb-Zn-Cu Yataklarının Jeolojisl, Oluşumu ve KökeniGeology and Genesis of the Kurșunlu (Ortakent - Koyulhisar - Sivas) $\mathrm{Pb}-\mathrm{Zn}-\mathrm{Cu}$ Ore DepositsAhmet GÖKÇE, Atilla ÖZGŬNEYLiOĞLU23
Erzurum - Așkale - Tortum Yöresinin Teknotik Gelișimi Tectonic Evolution of the Erzurum - Aşkale - Tortum RegionSelim INAN37
Tecer Kirectașı Formasyonunun Yapısı Hakkında Bir Yorum An Interpretation On The Structure of The Tecer Limestone FormationSelim INAN49
Orta - Ūst Miyosen Kükürtlü (Erzurum) Havzasının Alüvyon Yelpazesi ve Gölsel Çökelleri Alluvial Fan and Lake Deposits of The Middle - Upper Miocene Așkale - Kükürtlü Basin (Erzurum) ilyas Erdal KEREY, Cevdet BOZKUŞ 57
Kayabașı Formasyonunda Bulunan Triyas Konodontlarının Taksonomik Karakterleri The Taxonomic Charecters of Triassic Conodonts From Kayabaşı Formation.Fuat ÖNDER67
Sivas Güneydoğusundaki Miyosen Yaşlı Jipsli Çökellerin Stratigrafisi, Yapısal Özellikleri ve Olușumu
Stratigraphy Structural Features and Genesis of The Miocene Cypsiferous Sediments in Southeastern Sivas (Turkey) Ahmet GÖKCE, Fuat CEYHAN 91

Cafana (Görgü) Malatya Karbonatlı Zn-Pb Yatakları

CAFANA (GÖRGÜ), MALATYA CARBONATED $\mathrm{Zn}-\mathrm{Pb}$ DEPOSITS

Ahmet SAĞIROĞLU, Fırat Ửniversitesi, Jeoloji Müh. Böl. ELAZIĞ.

ÖZ : Cafana, Malatya karbonatlı $\mathrm{Zn}-\mathrm{Pb}$ yataklan Permiyen vaşlı Malatya Metamorfiklerinin faylarla yükselmiş kısımlarında bulunan fay zonları ve bu zonların yakın çevrelerinde bulunmaktadır. Malatya Metamorfikleri çalıșılan sahada alttan üste doğru açık gri kireçtaşları, karışık seri, koyu gri kireçta\$̧ı ve breşik kireçtaşı ile temsil olmaktadır ve herhangi bir metamorfizma izi göstermemektedir. Ayrıca, volkanik kayaçlar da bulunmaktadır.

Cevherleșmeler, karışık seriyi kesen ve yaklaşık K-G doğrultulu üç fay zonu ve yakın çevresine yerleşmiş haldedir .Bu fay zonları cevherleşmeden önce gelişmiş ve cevherli çözeltiler daha sonra bu zonları cevherleştirmişlerdir.

Cevherleşmeler bașlangıçta sülfürlü cevher olarak gelișmiş daha sonra cevherleşmelerin yüzeyden itibaren $30-40 \mathrm{~m}$. derinliğe kadar olan kısımları meteorik suların işlevleri sonucu karbonatlaşmıştır. Karbonatl cevherin asıl bileșenleri smitsonit, limonit ve anglesit-serusittir.

Sülfürlü cevherleşmelerin mineralojik bileşimi sfalerit, galen, pirit ve markazit şeklindedir. Çok dar bir alanda barit cevherleşmesi de bulunmaktadır.

ABSTRACT : The Cafana, Malatya carbonated $\mathrm{Zn}-\mathrm{Pb}$ deposits occur within the fault zones which cut those units of Permian Malatya Metamorphics, which were elevated with faults. In the studied area the Malatya Metamorphics are represented by light gray limestone, intercalated detritics, dark gray limestone and brecciated limestone from bottom to top and do not show any trace of any type of metamorphism. In addition, volcanics are present.

The mineralizations are placed in the three fault zones which occur in intercalated detritics and strike N-S roughly. The fault zones were developed prior to mineralizations and mineralizing solutions mineralized these zones later.

The original mineralization was sphalerite-galena mineralizations. These mineralizations were carbonated from the surface down to $30-40$ metres by the processes of meteoric mineral assemblage of carbonate mineralizations are smithsonite, limonite and waters .The main anglesite-cerussite. The minerals of the sulphide mineralizations are sphalerite, galena, pyrite and marcasite. Baryte mineralizations occur within a limited area.

GİṀ்Ş

Bu çalışmanın konusu olan Cafana (Görgiu) kar bonatlı çinko-kurşun yataklan Malatya il merkezinin yaklaşık 20 km . batısında yeralmaktadır (Şekil 1). Bu yataklar Malatya metamorfikleri içinde bulunmaktadır ve cevherli kütleler fay zonlarına bağlı olarak gelişmiştir. Yataklar halen Çinkur tarafından işletilmekte olup arama ve geliştirme sondajları da yapılmaktadır. Yatakların tarihi devirlerde de ișletildiǧi işletme sırasında rastlanan kuyu, galeri ve tarihi madencilik gereçlerinden anlaşılmaktadır.

Sekil 1: Yer bulduru haritası.
Figure 1 : Location map.

Çalışlanı yataklar daha önce MTA tarafından incelenmisssede bu incelemeler yaymlanmamıstır ve incelemeler sonucu yazılan raporlar gizlilik derecesine sahip olduğundan MTA çalışmaların içerikleri bilinmemektedir.

Malatya metamorfikleri birçok araştırmacı tarafindan incelenmiş olup bu çalışmalardan e_{n} güncel olanları Yazgan ve Asutay (1981), Yazgan (1983), Yazgan (1984) ve Perinçek ve Kozlu (1984) dur. Araştirmacılar Malatya metamorfiklerinin yassinn paleontolojik verilere dayanarak Üst Permiyen olduğu (Perinçek ve Kozlu 1984), yeşilşist fasiyesinde metamorfizmaya uğradığını ve kireçtaşı, kalkssist, mermer, fillit ve nadiren pelitik șistlerden oluştuğunu (Yazgan 1984) belirtmektedirler.

Bu çalışma kapsamında yataklar ve yakın çevre$\operatorname{sinin} 1 / 25.000$ ve $1 / 500$ ölcekte jeolojik haritaları yapuImıs, sondaj karotları incelenerek sondaj litolojik logları çıkarılmış ve bu loglar yüzey jeolojisi ile deneştirilmiş, litolojilerin petroğrafik incelenmeleri yapilmiş yatağın minerolojisi mikroskop ve XRD ile incelenmiştir. Yapılan bu çalışmaların bulguları değerlendirilerek, yatağnn oluşum mekanizması, kökeni ve özellikleri tartıṣlmaktadır.

Litolojí

Çalıṣma alanında bulunan litolojileri iki grupta incelemek mümkündür (Sekil 2 ve 3). Bu guruplar :

A - Malatya Metamorfikleri,
B - Volkaniklerdir.

A - Malatya Metamorfikleri :

Çalışma alanının tamamına yakın bir kısmımı oluşturur. Daha önce bölgede çalışan araştırmacılar (Yazgan ve Asutay 1981, Yazgan 1983 ve 1984, ...) bu litolojiler için «metamorfik» terimini kullanmalarına rağmen çalsṣma alanında bu litolojilerde herhangi bir metamorfizma izi görülmemistir. Fakat bu çalsṣmada da daha önce kullamlan «Malatya Metamorfikleri» aynen benimsenmiştir.

Malatya Metamorfikleri alttan üste doğru su birimlerden olussmaktadır :

1 - açık gri kireçtaşlan,
2 - karışık seri,
3 - koyu gri kireçtaşları,
4 - breșik kireçtaşlan.

1 - Ac̣ık gri kireçtaşları :

Malatya Metamorfiklerinin çalı̧̧ma alanında gözlenen en alt birimidir. Ayrica karışk serinin kırıntılı litolojileri ile ardaşıklı olarak ve karışık serinin üstünde de yer alır. Tabakalı bir yapı gösterir. Her lenen en alt birimidir. Ayrıca karışık serinin kırın-
üç konumda da litolojisi pek farklı değildir. Sadece karışık seri içinde yer yer kum oranı artmaktadır.

2 - Karışık seri :

Açık gri kireçtaşlarının arasında yaklaşık 150 m . kalınlıkta bulunur. Çalıṣma sahasını KB-GD doğrultusunda kateden fayla yuizeylenen bu birim ana cevherleşme sahasında en yaygın olarak bulunan birimdir. Malatya Metamorfikleri ekseni yaklaşık olarak Kurşunlu dere'ye paralel bir antiklinal oluşturdugundan, karışık seri Kurşunlu dere'nin batısında da önemli yayllmlara sahiptir. Karışık seriyi oluşturan litolojiler; kumtaşı, kumlu kireçtaṣı, kireçtaşı, sleyt (? çamurtaşı) grovak ve bitüumlü kireçtaşıdır. Litolojilerin veriliș sırası alttan üstte doğrudur. Fakat kumtaşı ve kumlu kireçtaşı ardalanması birkaç kez tekrarlanmaktadir.
a) Kumtaşı : Genel olarak karışık serinin en altında bulunursada karışık seri içinde kumlu kireçtaşı ile ardaşıklı olarakta bulunur. Gri kahverengi gri renktedir ve oldukça yoğun ve tıkız bir yapıya sahiptir. En belirgin yüzeylenmelerine desandre girişi ile Kurşunlu d. arasında rastlanmaktadır. Tabakalı bir yapıya sahip olan kumtaşlanı yukarı doğru dereceli olarak kumlu kireçtaşlarna geçis göstermektedir.

Mikroskobik incelemeler bu kumtaşlarının ana bileşeninin çok iyi boylanmış kuvars olduğunu göstermektedir. Kayaç parçacığı yok denecek kadar azdır ve karbonat çimentoludur. Herhangi bir metamorfizma izine rastlanmamıştır ki bu Permiyen yaşlı bir kumtaşı için oldukça şaşırtıcıdır.
b - Kumlu kireçtaşı : Desandre girişi, civarında yüzeylenirler. Açık kahverengimsi sarı renktedirler ve belirgin bir yapraklanma gösterirler. Bol fusilin fosili içeren bu birimin üste doğru karbonat bileşeni artarak kireçtaşlarına geçiş gösterdigi görülmektedir.
c - Kireçtaşı : Genellikle açık gri renkte ve karıssık seriyi ïzerleyen kireçtaslarma benzeyen bu kireçtaşları karışık seri içinde kırıntılılarla ardaşıkıı olarak bulunurlar.
d - Sleyt (? Çamurtaşı) : Ciğer kırmızısı renkteki bu birim en belirgin olarak desandrenin güneyinde yüzeylenir. Asıl bileşen olarak kil ve çok az olarakta karbonat çimentodan oluşmaktadır. Submikroskobik tanelidir ve belirgin fakat kuvvetli olmayan bir yapraklanma gösterir. Metamorfizma belirtisi herhangi bir özellik göstermemektedir. Bu nedenle bu birimi çamurtaşı olarakta adlandırmak mümkündür.
e-Bitümliü kireçtaşı : Koyu gri-siyah renkteki bu birim açık işletmede ve sondajlarla saptanmıştır. Sj. 9 da bu birim 19 m . kalınlıkta kesilmiştir. Sondaj 7 de ise kalmnlığı 16 m . dir. Karışık serinin diğer üyelerine uyumlu olarak bulunan bitümlü kireçtaşı bitüm miktarının azalıp çogalması sonucu siyah ve koyu gri lamellerden olussan lamelli bir yapı kazanmıştır. Açık işletmede hemen hemen tamamen cevherleșmiş olarak yüzeylenmektedir.

MALATYA CAFANA (GÖRGÜ) $\mathrm{Zn}-\mathrm{Pb}$ KARBONAT YATAKLARININ JEOLOJisi

GEOLOGY OF THE $\mathrm{Zn}-(\mathrm{Pb})$ CARBONATE DEPOSITS OF MALATYA CAFANA

Ana Cevherlesme Alant

The Main mineratized area
(Açıklamalar Sekit 3 deki gibidir)
(The explanations are the same as in Figure 3.)

Şekil 2 : Cafana (Görgü), Malatya karbonatlı çinko-kurşun yataklarım n jeolojik harita ve kesiti.
Figure 2 : Geological map and crosssection of the Cafana (Görgiu), Malatya carbonated zinc-lead deposits.

ANA CEVHERLESTME ALANININ AYRINTILI JEOLOJi HARITASI

(detailed geologic map of the main mineralized area)

Şekil 3 : Ana cevherleșme alanının ayrıntılı jeolojik harita ve kesiti.

Figure 3 : Detailed geological map and cross section of the main mineralized asea.
f - Grovak : Bitümlü kireçtaşının tabanında $1.5-2 \mathrm{~m}$. kalınlıkta gene karışık serinin diğer üyelerine uyumlu olarak bulunur. Grovak, tane boyu $2-3 \mathrm{~mm}$.'ye ulaşan kireçtaşı parçacıkları, bitümlü kireçtaşı parçacıkları, kuvars taneleri ve bu taneler arasını dolduran karbonat çimentodan oluşmuștur. Gerek kayaç parçacıkları gerekse kuvars çok iyi yuvarlaklaşmışlardır.

B - Volkanik Kayaçlar :

Açık işletme ile desandre arasında yüzeylenen (Bkz. Şekil 3) yaklaşık K 30 B doğrultusunda en faz-
la 10-15 genişliğinde bir alanda yüzeylenirler. Tamamen cevherleşmiş ve altere olmuş halde bulunduğundan arazide cevherleșmiş sleyt veya kumlu kireçtaşı ile kolayca karıştırılmaktadır. Volkanik kayaçlar morumsu gri renkleri ve konsantrik alterasyon zonlanı veya sarımsı krem renkleri ve mangan dendiritleri ile diğer birimlerden ayırtlanabilirler. Bazı yerlerde gaz boşluğuna benzer $1-2 \mathrm{~mm}$. çapinda kïresel boşluklarda içermektedirler. Sahadaki yayılımı, daha sonra ayrintıları verilecek olan fay zonlarından birine yerleşmiş durumda gözlenir. Bu yerleșme cevherleșmeden önce olması gerekir. Çünkü fay zonu ve volkanikler daha sonra tamamen cevherleşmiş ve altere olmuştur.

Mikroskop altında volkanikler tamamen altere ve cevherli olarak gözlenir ve bu nedenle kayaçların cinsini saptamak oldukça zordur. Bağl olarak az altere kısımlarda kayanını ana bileşenin plajiyoklas oldugu tamamen kaolenleşmiş fakat plajiyoklas latalarına benzeyen pseudomorflarla tahmin edilmektedir. Serizitin bulunmaması kuvars bileșenin az olması ve ana bileșenin muhtemelen plajiyoklas olmasindan traki-latif veya traki-andezit türü bir kayaç olduğu düşünülebilir.

YAPISAL JEOLOJİ

Çalışan sahada en fazla alanı kaplayan breșik kireçtaşları genel olarak K40-50B /25-35KD konumundadırlar. Çalışma alanım GD-KB doğrultusunda kateden ve birbirine paralel iki fay arasinda kalan kısımlarda doğrultu ve eğimlerde değişmeler olmus Kurşunlu Derenin batısında ise karışık serinin ve kanin üyeleri $65-70^{\circ}$ ye ulaşan eğimler kazanmıșlardır, Kurşulu Derenin batısında ise karışık serinin ve karışık seriyi üzerleyen açık ve koyu gri kireçtaşlarının eǧim ve doğrultulan değişmiş ve $\mathrm{K} 65 \mathrm{D} / 50-55^{\circ} \mathrm{KB}$ konumlarını almıșlardır. Bu durumda karışık seri eksen doğrultusu yaklaşık Kurşunlu Dere'ye paralel bir antiklinal olușturmaktaymıs gibidir. Böyle bir antiklinal yapısı faylarla yükselmiş kısmın dışında görülmemektedir. Bu karışık serinin plastititesinin bunları üzerleyen kireçtaşlarından farkh olması veya fay atımının fayın orta kısımlarında daha yüksek olmasıyla açıklanabilir.

Cevherli sahada yoğun faylanma nedeniyle eğim ve doğrultularda yerel olarak önemli değișmeler olmuştur.

Çalışılan saha yoğun olarak faylanmıştır. Bu faylanmalardan en önemlileri karışık seriyi yüzeyleyen GD-KB doğrultusundaki faylardır. Bu faylanmaların cevherleşmeden çok sonra gelişmiş olması gerekir. Şöyleki bu iki fay zonunda da cevherleşme veya alterasyona rastlanmamıştır. Şu anda açık ve kapalı işletme yapılan cevherli sahada birbirine paralel 3 fay zonu vardır. Cevherleșme ile yakın ilișkisi olan bu fay zonları ve özellikleri şöyledir (Bkz. Şekil 3) :

1. Fay Zonu : Desandre ve yarmalarda açıkça izlenen bu zon $\mathrm{K} 30 \mathrm{~B} / 75 \mathrm{~GB}$ konumunda ve yaklaș1k 5 m . kalınlığındadır. Fay zonu boyunca kayaçlar ezilmiș ve fay zonu ve yakin çevresi yoğun olarak cevherleşmiss ve altere olmuştur. Cevherlessmenin faylanmadan sonra geliștigi fay breşinin ve ezik zonun cevherleşmesi ve alterasyona uğramasmdan anlaşılmaktadır.
2. Fay Zonu : 1. Fay zonunun 15 m . doğusunda yer alır. Yaklaşık K-G/70B konumunda ve 10 m kalinluktadır. Belirgin bir fay breși vardır ve bu fay breşi sonradan tamamen cevherleşmiştir (Șekil 3).
3. Fay Zonu : Karışık seri ile açık gri kireçtaşları arasında yeralır. Konumu K $15 \mathrm{~B} / 80 \mathrm{KD}$ ve kalınlığ1 güneyde $8-10$ kuzeyde 20 m . kadardır. Volkanikler bu
fay zonuna yerleșmişlerdir ve daha sonra fay zonu ve volkanikler cevherleşmişlerdir.

Bu ana fay zonları dıșında ana cevherli sahada birçok küçük faylar ve kırıklar bulunur ki bunlardan cevherleşmeden önce gelişmiș olanlar cevherleşmenin fay zonları çevresinde daha yaygin bir şekilde gelişmesine neden olmușlardır.

Ana cevherli saha dışında önemli bir fay zonuda Büyükkayak Tepenin güneybatı yamaçlarında izlenmiştir. Bu fay zonu $2-3 \mathrm{~m}$. kalınlıkta fay breşi şeklinde yüzeylenir ve güney ucu cevherli olup son günlerde burada bir arama galerisi açılmıştır. Bu kısımdaki fay breși kireçtaşı parçaları ve bu parçalar arasim dolduran açık pembe renkli ve siyah benekli bir matriksden oluşmaktadır. Bu görünüș, arazide fay zonuna mağmatik bir kayacın yerleşmiș olduğu șeklinde bir kanı uyandırmakta ise de mikroskopta matriksin demir boyamalı kalsit ve siyah beneklerinde demiroksit olduğu açıkça görülmektedir

Kurşunlu Derebatısında kalın bir toprak örtüsü olduğundan bu kısımdaki faylanmaları izlemek olanaksızdır

CEVHERLESMELER

Çalışılan sahada varlığı kesin olarak saptanan tüm cevherleşmeler Kurşunlu Derenin doğusunda karışık seri içinde yeralmaktadır. Açık ve kapalı işletmede bu alanda yapılmaktadır ve şimdiye kadar yapllan tüm sondajlar bu saha içerisindedir.

Bu ana cevherli sahadaki cevherleşmeler yapısal jeoloji bölümünde anlatılan üç fay zonu ve yakın çevresinde gelişmiştir. Bu fay zonlarının birbirine oldukça yakın olması bu üç fay zonunu u_{n} içinde bulunduğu alanın hemen hemen tamamen cevherleşmesine neden olmuștur. Bu alanda sadece $1.5-2 \mathrm{~m}$. kalınlığndaki saf kireçtaşı seviyeleri çok az veya hiç cevherleşme içermektedir.

Bu ana cevherli sahada cevherleşme sarı, kahve-rengi-sarı ve kahverengi renkte limonitçe zengin Zn -karbonat cevherleşmesi şeklindedir. Yer yer ağsıgözenekli smithsonite de rastlanmaktadır. Yüzeyde ender olarak 2-3 cm. kalınlığında damarlar veya 4-5 cm . çaph cepler halinde saf galene de rastlanmaktadir.

Açık işletmenin hemen doğusunda K $15 \mathrm{~B} / 70 \mathrm{KD}$ konumunda $2-3 \mathrm{~m}$. kalinlikta bir barit zonu bulunmaktadır. Bu barit zonu yüzeyden doğrultu boyunca 50 m . kadar takip edilebilmektedir. Iki türlui barit cevheri bulunmaktadır; șisti doku gösteren barit ve masif barit. Şisti doku gösteren barit, barit zonunun ana bileşenini oluşturmaktadır. Șisti doku beyaz, açık mor ve gri renkli seviyelerin sıralanmasiyla olușmuştur. Şisti doku metamorfizma sonucu değilde çamurtaşının ramplese edilmesi sonucu pseudomorf olarak gelişmiștir. Masif barit açık gri renkte olup herhangi bir çizgisellik göstermemektedir.

Șekil 4 : Ana cevherleşme alannonda yapılan bazı sondajlarn litolojileri ve $\mathrm{Zn}-\mathrm{Pb}$ dağlum.

Figure 4 : Lithologies and $\mathrm{Zn}-\mathrm{Pb}$ distributions in some drills of the main mineralized area.

Bu cevherleşmelerin düşey yöndeki uzanımı sondajlarla saptanmaya çalışılmıssada (\$ekil. 4) sondajlar yetersiz sayıdadır ve sondajların çoğunluğu 3 . fay zonunun doğusunda yapıldığından cevherlesmenin boyutlarını saptamak olanaksızdır. Sondajlardan cevherlesmenin düşey yönde en az 40-50 metre devam ettigi ve genellikle $30-40 \mathrm{~m}$. den sonra tamamen sülfürlü cevher halini aldığı görülmektedir. Fakat bu derinlik sj. 1 de 80 m . kadardır. Sülfürlü cevhere daha az kırklı üst seviyelerde de rastlanmaktadır. Bu nedenle cevherleşmenin ilksel olarak sülfür cevherlesmesi olarak geliştigi daha sonra meteorik sularm işlevi sonucu karbonatlaştuğı düşünülebilir. Nitekim bu olguyu sülfürlï zonları kateden aralıklı çatlakların çevresinde görmek olasıdır. Buralarda serbest su dolaşımının olduğu çatlağın hemen çevresi karbonatlaşmıs cevherden oluşmuşken dışa doğru sülfürlü cevhere geçilmektedir. Bu olguya sondaj karotlarında sik sik rastlanmaktadır.

Sülfürlü cevher genellikle koyu gri renkte masif olarak veya kireçtaşı içinde saçımımlı olarak bulunmaktadir.

Yukarıda anlatılan ana cevherli alan dışında en öncmli cevherleşme alanı Kurşunlu Dere'nin batısındaki karışık serinin bulunduğu alandır. Burada kalın toprak örtüsü cevherleșme durumunu saptamayı engellemekte ise de cevher parça ve çakillarımin oldukça yoğun olarak bulunması bu alanda önemli bir cevherleşmenin olduğuna işaret etmektedir. Cevher çakılları çoğunlukla ana cevherleșme alanundaki masif limonitik cevher şeklindedir. Fakat ağs-gözenekli smithsonit cevheri çakıllarda oldukça yoğun olarak bulunmaktadır.

Bir diğer cevherleşmede yapısal jeoloji bölümünde anlatilan Büyükkayak Tepe batı yamacındaki fay zonuna bağlı olarak gelişen 1.5 m . kadınlığinda $\mathrm{K} 60 \mathrm{~B} / 37 \mathrm{KD}$ konumundaki cevherleşmedir.

K $10 \mathrm{D} / 85 \mathrm{GD}$ konumundaki ana fay zonu ile birleşen küçük bir fay zonu dolgusu halinde gelişen bu cevherleşmede tenör ana cevherleşme alanı cevherlerine göre oldukça düşüktür.

MINERALOJİ

Cafana (Görgui) karbonatlı çinko cevherleşmelerinin mineralojisi karbonatlı cevher, zayif karbonat$\mathbf{l l}_{1}$ saçımımlı cevher ve masif sülfid cevherinde farkh özellikler göstermektedir. Bu nedenle mineralojiyi ayrı bölümler halinde incelemek gerekir.

Karbonath Cevher

Cevherli fay zonlarmin yüzeyden $30-40 \mathrm{~m}$. derinliğe kadar veya daha derinlerde meteorik su dolanımının olduğu çatlakların hemen çevresinde bulunurlar.

Mineral bileşimi oldukça basittir ve genellikle smithsonit, limonit, sfalerit ve piritten oluşmaktadır.

Smithsonit genellikle toprağımsı şekilsiz yığışmlar halinde gözlenir. Ender olarak ağsı gözenekli doku veya ritmik kabuklanma dokusu gösterir (Levha 1. Sekil 1). Bu iki dokuda sülfürlü cevherlerin oksidasyon zonunda gelișen ikincil dokuları olarak kabul edilebilir (Bkz. Ramdohr 1980 S. 231-255).

Limonit (bu çalışmada «limonit» sulu demir oksitleri için genel anlam da kullanılmıştır) iki değişik şekilde bulunmaktadır. Yaygın olarak, ritmik kabuk dokusu şeklinde silikat minerallerini veya çatlaklan çevreliyor şekilde bulunur (Levha 1, Şekil 2). Bu tür koyu gri renklidir ve optik özelliklerini incelemek oldukça zordur. Limonit ayrıca pirit pseudomorfları seklinde ve genellikle bir iki küçük pirit kalıntısı içeren şekilde de bulunur. Bu tür limonit açık mavimsi gri rengiyle diğer türden kolayca ayrrtlanabilmektedir.

Sfalerit kenarlan boyunca karbonatlaşmıs iskeletimsi şekillerde gözlenir. Masif sülfürlü zonlardaki sfalerit gibi oldukça yoğun olarak pirit kapanımlarn içermektedir.

Pirit genellikle öz şekilli taneler halinde veya sfalerit içinde küçük kapanımlar halinde bulunur. Öz şekilli olanlar kısmen veya tamamen limonite dönüşmüştür.

Masif Sülfid Cevher

Masif sülfid cevher yüzeyden itibaren $30-40 \mathrm{~m}$, derinlikte başlayarak derinlere doğru devam eder. Ayrica karbonath cevher içinde masif galen damarları veya fay zonu çevresindeki kayaçların boşluklarında $3-5 \mathrm{~cm}$. çaph cepler veya damarlar şeklinde masif sülfid oluşukları bulunmaktadır. Masif sülfid
cevherde mineral topluluğu sfalerit, galen, pirit ve markazit şeklindedir. Bu bileşenlerden biri veya birkaçı yerel olarak baskın durumda olabilmektedir.

Sfalerit genel olarak masif sülfid cevherinde en baskın mineraldir. Mavimsi koyu gri renkte subhedral taneler halinde bulunur. Galen tarafindan ornatıldığından galenden daha yaşlıdır. Galen tarafından ornatıldığ yerlerde $50-100 \mathrm{~m} \mu$ boyutunda taneler sseklinde galen içinde kapanım halinde bulunur (Levha I, Şekil 3). Sfalerit yaygın olarak pirit kapanımları içerir. Bu pirit kapanımları bazı yerlerde sfalerit içinde öbekler halinde bulunmaktadır (Levha I, Şekil 4).

Galen yer yer baskin mineral olabilmektedir. Galen sfaleritten daha genç olup sfaleriti ornatiyor ve kesiyor şekillerde bulunur. Ornatmanın yaygin olduğu kısımlarda sfalerit galen içinde küçük taneli kapanımlar halinde gözlenir. Galen içinde ayrıca genellikle küçük taneli ($50-60 \mathrm{~m} \mu$) pirit ayrılımları bulunmaktadır (Levha I, Şekil 5).

Sfalerit içindeki piritler büyük bir olasılıkla ayrılımlardır. Şöyleki genellikle, yarı öz şekillidirler ve belli doğrultular boyunca dizilmişlerdir. Bu pirit taneleri, ornatım artığı taneler olsalardı sfalerit içinde düzensiz halde dağılmıs olmaları; genellikle ovalımsı ve iskeletimsi yapılar göstermeleri gerekirdi. Galen içinde pirit taneciklerinin öbekler halinde bulunması da bunların ayrilım olduğu şeklinde yorumlañabilir. Bu durumda hidrotermal çözeltilerin gerek sfalleritin gerekse galenin oluşumu surasinda demirce zengin olduğu ortaya çıkar.

Pirit galen içinde yukarıda anlatılan şekilde veya bağmsiz taneler halinde bulunur. Galenden daha genç pirit oluşukları da vardır ve bunlar kuvarsla birlikte küçük damarcıklar halinde sfalerit ve galeni kesmektedirler Böyle damarcıklarda galen-ince taneli markazit-çubuksal markazit-pirit şeklinde bir dizilim gözlenmektedir (Levha I, Şekil 6).

Markazit genç pirit damarcıkları ile birlikte yukarıda anlatıldığı şekilde bulunur.

Limonit, smithsonit ve seruzit ikincil olarak sırastyla pirit, sfalerit ve galen tanelerinin kenarları veya çatlakları boyunca gelişmişlerdir.

Saçınımlı Cevher

Cevherli ana fay zonlanı çevresindeki kayaçlar içerisinde görülür. Bu zonlardaki cevher mineralleri masif sülfid cevherinde olduğu gibi sfalerit, galen ve pirit șeklindedir ve bu mineraller masif sülfid cevher mineralleri ile hemen hemen aym özelliklere sahiptir Sadece sfaleritin galen ve genç pirit tarafından ornatılması olayı burda gelişmemiştir. Ayrıca karbonatlaşma ancak yüzeyden itibaren 1-2 m. derinliğe kadar gözlenmektedir. Bu, serbest su dolaşımımin karbonat ve silikat mineralleri tarafindan engellenmesi sonucudur.

LEVHA I
PLATE I

Sekil 1 : Karbonath cevherin mikroskobik görünümü, büyütme 15×20.

Figure 1 : Microscopic view of the carbonate ore, magnification 15×20.

Sekil 3:Galen(gal) içinde ssfalerit(sph) kalıntıları, büyütme 15×10.

Figure 3 : The Sphalerite(sph) remants in galena(gal) magn, 15x10.

Şekil 5: Galen (gal) içinde bulunan pirit (py) ? ayrilımları, büyütme 15×50.

Figure 5 : Pyrite (py) ? exsolutions in galena (gal) magn. 15x50.

Şekil 2 : Karbonath cevherde limonit (açık gri) oluşumları, büyütme 15x50.

Figure 2 : Limonite (light grey) formations in carbonate Ore, magn, 15×50.

Sekil 4 : Sfalerit (sph) içinde pirit (py) kapanımları, büyütme 15×20.

Figure 4 : Pyrite (py) inclusions in sphalerite (sph), magn. 15x20.

Șekil 6:Genç pirit (py) damarcıkları gevresinde görülen ince taneli markazit (marc I), çubuksu markazit (mare II) ve pirit (py) zonlanması, büyütme 15×10.

Figure 6 : Fine grained marcasite (marc I), rodlake marcasite (mare II) and pyrite (py) zonation around late pyrite veinlets, magn. 15×10.

Barit Zonu

Çalışılan sahada barit çamurtaşı ve ona komş̣ kireçtaşını ramplese ederek geliṣmiştir. Çamurtaşının yapraklanma düzlemlerine yerleșen barit șisti dokuda, kireçtaşını ramplase eden barit masif görünümdedir.

Barit zonunda ana bileşen barit olup bu zonda alman örnekler üzerinde yapılan XRD çalışmaları sölestinin olmadığını göstermiştir. Şisti baritin bazı yapraklanma düzlemlerinde yoğun olarak sfalerit ve galen az olarakta pirit oluşmalarına rastlanmaktadır. Bu mineraller masif cevherindeki özellikleri gösterirler.

CEVHERLERİN KIMYASAL BILEȘIMİ

Cevherleşme alanında yapılan sondajlarda örnekler alınarak XRF yöntemiyle $\mathrm{Zn}, \mathrm{Pb}, \mathrm{Ag}, \mathrm{Cd}, \mathrm{Mn}$ ve Au içın analizler yapılmaktadır. Bu makalenin yayına hazırlandığı zamana kadar sadece dört sondaj için bu analizler yapılmış bulunmaktayd. Bu nedenle tüm cevherleşme sahası için bu analizlerden genel sonuçlar çıkarmak olanaksızdır. Bununla birlikte analizlerden çıkararak kesin olmayan bazı genellemeler yapılabilir: (Bkz. Șekil 4).
$1-\mathrm{Zn}$; karbonatlı ve sülfürlü cevherde ağırlk ça $\% 45$ oranına kadar çıkabilmektedir.
$2-\mathrm{Pb}$; genellikle sülfürlü zonlarda önemli bir tenöre ulaşmakta (ağrlıkça $\% 24$ 'e kadar) karbonatlı zonlarda ağırlıkça \% 1 dolaylarında kalmaktadır. Pb nin oksidasyon ortamındaki hareketliliği (mobility) Zn den daha düşüktür. Bu nedenle Pb nin dağlımın karbonatlaşmanın değilde orjinal cevherleşmenin belirlediği düşünülebilinir.
$3-\mathrm{Cd}$; karbonatlı cevherde en fazla 500 ppm cívarında olan kadmiyum değerleri sülfürlü cevherde 2000 ppm'e kadar çıkabilmektedir. Bu, Cd'nin hareketliliğinin çok yüksek olması nedeniyle oksitli zonlardan yıkanıp taşınması nedeniyledir (Bkz. Rose ve dig. $1979 \mathrm{~s} .18-28$).
$4-\mathrm{Ag} ; \mathrm{Pb}$ nin fazla olarak bulunduğu sülfürlü zonlarda 280 ppm'e kadar çıkmaktadır ki bu yüksek değer bu yataklarn kökeninin hidrotermal - damar tipi olduğunun bir kamtıdır. Şöyle ki bilindiǧi gibi tabakalı (stratiform) ve tabakaya bağl (stratabound) $\mathrm{Pb}-\mathrm{Zn}$ yataklarında Ag bu kadar yüksek değerlere ulaşamamaktadır. (Bkz. Evans 1980). Karbonatlı zonlarda Ag değerleri $25-30 \mathrm{ppm}$ de kalmaktadır. Bunun nedeni yüzeysel koşullarda Ag'nin hareketliginin çok yüksek olmasidır (Bkz, Rose ve diğ. 1979).

Bu bulgulardan çıkarak elementlerin dağılımıda karbonatlaşmanın etkisinin önemli ölçüde olduğu söylenebilirsede bu konunun sondajlardan alman örneklerin analizlerinin tamamlanmasından sonra ayrica incelenmesi gerekir.

SONUÇ VE TARTIŞMALAR :

1 - Cafana, Malatya karbonatlı çinko-kurşun yataklan Malatya Metamorfiklerini kesen fay zonlarında bulunmaktadır. Bölgede çalışan araştırmacılar Malatya Metamorfiklerinin Permiyen yaşl olduğunu ve yeşilşist fasiyesinde metamorfizmaya uğradığın belirtmektedirler. Fakat çalışma alanında bulunan ve Malatya Metamorfiklerine ait kayaçlar herhangi bir metamorfizma izi taşımamaktadırlar.

2 - Cevherlessmeler genel olarak Malatya Metamorfiklerinin detritikleri içindeki fay zonlarında ve yakın çevrelerinde gelişmiştir. Detritiklerin böyle yoğun olarak faylanmasımn nedeni plastititesi çok farklı arakatkılı birimlerden oluşmus olmalarından (kumtaşı, çamurtaşı, kireçtaşı) olabilir; Sahayı etkileyen kuvvetler sonucunda rijid birimler plastititesi yüksek birimler üzerinde kayarak bu fay zonları gelişmis olabilir. Bir diğer açıklama şeklide detritik birimlerin metamorfiklerin tabaninda olması dolayısıyla derinde gelişen fayların üstteki kireçtaşlarına ulaşamamış veya çok az ulaşmıs olması olabilir.

3 - Fay zonlarının gelişmesinden sonra fay zonlarına volkanik kayaçların sokulması bu fay zonlarınun oldukça derinlere kadar devam ettiğini göstermektedir. Büyük bir olasılıla kaynağı mağmatik faaliyet olan hidrotermel çözeltiler bu fay zonları boyunca yükselerek fay zonlarını ve yakın çevresini cevherleştirmişlerdir.

4 - Cevherleşmenin başlangıçta sülfürlü cevherleşme şeklinde geliştigi daha sonra meteorik suların işlevi sonucu karbonatlaştığ gerek saha verileri, gerek sondaj ve gerekse mineralojik çalişma verileri ile hemen hemen kesindir. Karbonatlaşma masif cevherde daha yaygun ve saçımmlı cevherde daha az etkindir.

5 - Cevher minerallerinin oluşum ssrası mineralojik çalışmalar sonucu Şekil 5 de görüldüğiu ssekilde saptanmıştır.

Sekil 5: Cafana yataklarının cevher minerallerinin oluşum surası.

Figure 5 : Paragenesis of the ore minerals of Cafana deposits.

6 - Bölgede incelenen cevherleşmelere benzer cevherleşmelerin bulunma olasılığı vardır. Bu amaçla yapılacak çalışmalarda Malatya Metamorfiklerinin detritiklerinin bu cevherleşmeleri içerme olasılıklarının yüksek olduğu noktası göz önünde bulundurulmalidır.

KATKI BELIRTME

Bu çalıșmanın gerçekleşmesinde önemli yardım ve katkıları olan Jeo. Yük. Müh. Hüsnüi Akyol'a XRD çalışmalarındaki yardımları nedeniyle Prof. Dr. Mümin Köksoy ve Doç. Dr. Niyazi Gündoğdu'ya teşekkür ederim.

DEĞ̇NILEN BELGELER

Evans, M.A., 1980, An Introduction to Ore Geology, Blackwell Scientific Publications, Oxford, 231.

Perinçek, D. ve Kozlu, H., 1984, Stratigraphy and structural relations of the units in the Afsin-Elbistan-Doğanşehir region (Eastern Taurus)
«Geology of Taurus Belt» de Ed. Tekeli O. ve Göncüoğlu, M.C., 181-199, 355 s., MTA, Ankara.

Ramdohr, P., 1980, The Ore minerals and their intergrowths, Pergamon Press, Oxford, 2 V , 1208 s .

Rose, W.A., Hawkes, E.H. and Webb, S.J., 1979, Geochemistry in Mineral Exploration, Academic Press, London, 657 s .
Yazgan, E., 1983; A Geotraverse between the Arabian platform and Munzur nappes. Int. Symp. Geol. Taurus Belt, 26-29 Eylül, Ankara, Guide book for Excursion V.

Yazgan, E., 1984, Geodynamic evolution of the Eastern Taurus region, «Geology of Taurus Belt» de Ed. Tekeli O. and Göncüoğlu, M.C., 199-208, 355 s., MTA, Ankara.

Yazgan, E. ve Asutay, J., 1981, Arap platformu ve Munzur dağları arasındaki yapısal birimlerin tanımı ve bunların bölgenin jeodinamik evrimindeki yeri, 35. TJK Kongresi, özetler 44-45.

6 - Bölgede incelenen cevherleşmelere benzer cevherleşmelerin bulunma olasıliğı vardır. Bu amaçla yapılacak çalıṣmalarda Malatya Metamorfiklerinin detritiklerinin bu cevherleşmeleri içerme olasılıklarının yüksek olduğu noktası göz önünde bulundurulmalidir.

KATKI BELIRTME

Bu çalıșmanın gerçekleşmesinde önemli yardım ve katkılan olan Jeo. Yük. Müh. Hüsnüi Akyol'a XRD çalıșmalarındaki yardımları nedeniyle Prof. Dr. Mümin Köksoy ve Doç. Dr. Niyazi Gündoğdu'ya teşekkür ederim.

DEGİNILEN BELGELER

Evans, M.A., 1980, An Introduction to Ore Geology, Blackwell Scientific Publications, Oxford, 231.

Perinçek, D. ve Kozlu, H., 1984, Stratigraphy and structural relations of the units in the Afsin-Elbistan-Doğanşehir region (Eastern Taurus)
«Geology of Taurus Belt» de Ed. Tekeli O. ve Göncüoğlu, M.C., 181-199, 355 s., MTA, Ankara.

Ramdohr, P., 1980, The Ore minerals and their intergrowths, Pergamon Press, Oxford, 2 V , 1208 s .

Rose, W.A., Hawkes, E.H. and Webb, S.J., 1979, Geochemistry in Mineral Exploration, Academic Press, London, 657 s.

Yazgan, E., 1983; A Geotraverse between the Arabian platform and Munzur nappes. Int. Symp. Geol. Taurus Belt, 26-29 Eylül, Ankara, Guide book for Excursion V.

Yazgan, E., 1984, Geodynamic evolution of the Eastern Taurus region, «Geology of Taurus Belts de Ed. Tekeli O. and Göncüoğlu, M.C., 199-208, 355 s., MTA, Ankara.

Yazgan, E. ve Asutay, J., 1981, Arap platformu ve Munzur dağları arasındaki yapısal birimlerin tanımı ve bunların bölgenin jeodinamik evrimindeki yeri, 35. TJK Kongresi, özetler 44-45.

Yaylagöze (Yıldızeli - Sivas) Fluorit Cevherleșmesi

FLUORITE MINERALIZATION OF YAYLAGÖZE (YILDIZELI - SİVAS)

Servet YAMAN, Çukurova Úniversitesi, Jeoloji Mühendisliği Bölümü, ADANA.
öZ : Yaylagöze (Kavik) yöresinde görülen fluorit cevherleşmesi metamorfik temeli kesen ${ }^{\text {K Kavik so- }}$ kulumu* ve dokanağında oluşan skarnlar içerisinde yer alır. Yörede kalkşist, amfibolit ve mermer ardıșıklı bir metamorfik temel, bunları açısal uyumsuzlukla örten kırmızı rekristalize kireçtaşları bulunmakta ve bunları sıcak dokanaklarla küçük çaplı monzonitik «Kavik» intrüzyonu kesmektedir. Fluorit cevherleşmesi intrüsit içinde damar ağcıkları, skarnlar içerisinde skarnlaşmalar şeklindedir. Skarn zonları granat piroksen ve manyetit içeren silisleșmis bressler halindedir. Bu zonda ayrıca az miktarlarda fluorit, pirit, kalkopirit, kuvars, kalsit ve barit görülmektedir. Koyu menekse siyah renkli skarn fluoritleri genelde oktaedrik şekilleriyle dikkati çekerler. Damar tipteki fluorit benzer iki fazlı homojen dağ1lımlı sıvı kapanımlar ve $150^{\circ} \mathrm{C}$ civarında dekrepitometrik değerler gösterirler. Skarn fluoritleri ise koyu renkleri ve sülfürlü katı kapanımlar ile belirgindirler. Her iki fluoritlerin N.T.E içerikleri ve kondritlere göre normalleştirilmiş dağlımları fluoritin feldispatlı bir kayaçtan kuvars monzonit intrüzyonundan kaynaklandığını göstermektedir.

Fluoritler pirometasomatik hidrotermal kökenlidir. Derindere hidrotermal darnarları ekonomik önem gösterirken skarn fluoritleri ekonomik bakımdan önemsizdir.

Bu çalışmada incelenen fluorit filonları mineraloji ve jeolojik konumlarıyla Orta Anadolu masiflerinde görülen diǧer fluorit filonları ile benzer özellik gösterirler.

Abstract

Fluorlte veins seen at the Yaylagöze (Kavik) environments SW of Yıldizeli, occur probably in the Paleocene aged «Kavik Pluton» which intersects a metamorphic basement. The basement is made of amphibolite, marble and calc schist beds on which the red colored recrystallised limestones lies with angular disconformity. All these older rocks are intersected with the monzonitic Kavik intrusion. Fluorites are seen in two forms; as the veins in the monzonitic rocks, and as the breccia elements in the skarn formations. The veins are $5-15 \mathrm{~cm}$ thickness and green, viclet, colored. They are mostly seen in Derindere locality at N 30 E direction. Skarn zones are made of silisified breccia which contains primarly garnet, pyroxenes and magnetite together with later formed minerals such as fluorite, pyrite, chalcopyrite, quartz, calcite and barite. Dark colored skarnfluorites are distinquished by their octahedric features. Vein type flucrites show similar two phased primary inclusions and decrepitation temperatures $\left(150^{\circ}\right)$. Skarn fluorites are also characterised by their dark colored and solid formed sulfide minerals.

Chandrite normalized R.E.E patterns of both of these flurorites show feldispatic origin due to, probably quartz monzonite intruzion. Fluorites are of hydrothermal and pyrometasomatic origin. Hydrothermal veins of Derindere show an economic importance but those of skarn are considered as gang minerals.

Fluorite veins investigated with this study show similar features with their mineralogy and geological setting, to those of the other fluorite veins occuring in the Central Anatolian Massifs,

GİRİS

Çalışma alanı (Sekil 1), Akdağmadeni metamorfitlerinin kuzeydogu ucunda yer alır. Zuhurlar Yıldızeli ilçesinin 25 km GB'da eski adı Kavik olan Yaylagöze köye civannda bulunurlar. Yozgat, Yıldizeli arasinda yer alan tüm mağmatik ve metamorfik birimler Kırşehir veya Orta Anadolu masifi olarak adlandırılmaktadır (Erkan, 1981) Yöreyi kapsayan ilk bölgesel jeoloji çalışmaları Ketin (1955) tarafından $1 / 500,000$ ölçekli jeoloji harita üzerinde derlenmiștir. Araştırıcı bölgeyi Paleozoyik, Mesozoyik ve Tersiyer birimlerine ayırmıș ve metamorfik temeli Paleozoyik olarak belirtmiştir. Aynı araștırıcının (Ketin, 1966) Orta Anadolu bölgesini kapsayan ge-
nel jeoloji amaçlı çalışmalan bölgenin stratigrafisi ve tektoniğine açıklık getirmiş, özellikle post-tektonik plutonları Alpin intrüzyonları olarak belirtmiştir. Metamorfik temelin metamorfizma koșulları Tülümen (1980) ve Erkan (1981) tarafindan incelenmiştir. Bölge jeolojisine son katkılar Yılmaz (1981) ve Tatar (1981) 'da görülür. Bölge ofiyolitlerinide ayrmthl inceleyen bu çalışmalar bölgesel metamorfizmanin Üst Kretase öncesinde son bulduğunu vurgular.

Akdağmadeni skarn formasyonlarına bağl ola rak gelişmis $\mathrm{Pb}-\mathrm{Zn}$ cevherleşmeleri bölgenin en çok araștırma konusu olarak dikkati çeker. Yatakların pirometasomatik kökenli olduğu Pollak (1958) ve Vacher (1964) tarafından belirtilmiştir. Araştırıcılar
 ritası.
$\mathrm{Pb}-\mathrm{Zn}$ cevherleşmelerinin ve yan kayaçlarin jeolojisini inceleyerek bu yatakların önemini ve bölgesel potansiyelini vurgulamışlardır. Akdağmadeni cevherleșmeleri Tülümen (1980) ve Sağroğlu (1984) tarafindan ayrintilı olarak incelenmiştir. Bölgede Adamellit intrüzyonlari ile oluşan skarn kuşaklarınn birçok evrede, özellikle plutonun yerleşmesinden sonrada devam ettiği Sağıroğlu (1984) tarafindan belirtilmiştir.

Yaylagöze fluorit damarları, hakkinda Zescke (1953) ve Aytuğ (1964) tarafindan hazırlanan yaymlanmamış M.T.A. arşiv raporları dıısında cevherleşme ilk defa inceleme konusu olmaktadır. Inceleme alanı, Kaman, Akçakent (Kırşehir) yörelerinde gözlenen ve hepside siyenit bir temel içerisinde yer alan (Yaman, 1984) fluorit cevherleşmeleri ile benzer özellikler taşımaktadır. Yaylagöze yöresinde fluoritler damar seeklinde veya skarnlar içerisinde bulunurlar. Bu nedenle bölge Paleosen sonrası Orta Anadolu intrüzyonlarnın fluorlu aktivitelerini açıklamada iyi bir veri niteliğindedir. Fluoritlerin jeolojik konum, köken ve oluşum koşullarım n_{n} açıklığa kavuşturulması bu çalışmanın amacını oluşturur. Bu amaçla fluoritlerin bulunduğu yörenin $1 / 10.000$ ölçekli jeoloji harita alımı ile çevre kayaçların petrografik tanımları yapılmıştır. Cevherleşmenin mineral parajenezi mikroskop ve X-lşınları kırımım çallşmaları ile saptanmıştrr. Fluoritlerin oluşum koşullarn ise siv1 kapanım verileri ve Nadir Toprak elementleri spektrumları ile açıklanmaya çalışlmıştır. N.T.E analizleri Treuil ve diğ., (1973)'nin önerdiği protokole göre nötron aktivasyon yöntemi ile yapılmıştır.

JEOLOJİ

Inceleme alanın kapsayan bölgesel jeoloji çalışmaları Ketin (1963) ve Baykal (1963) tarafindan yapılmiștir. Araştrircclar metamorfik ve kristalin temelin yer yer taban konglomeralariyla başlayan transgresif Eosen formasyonları ile örtüldüklerini belirtirler. Neojen ise genelde çakilh, kumlu, killi formasyonlar ve alüvyonlar ile temsil edilirler. Inceleme alanunda tabanda kalkşist, amfibol ve mermerden oluşmus metamorfitler vardır (Sekil 1). Metamorfik seri üzerine Killiktepe civarında belirginleşen bir açısal uyumsuzlukla kirmızı renkli rekristalize kireçtaşlanı gelmektedir. Heriki metamorfik seride «Kavik Plutonus tarafindan kesilmişlerdir. Mermer ve șist elemanları içeren bir taban konglomerası ve bunun üzerine gelen bazalt seviyeleri Yaylagöze'nin kuzeyinde Neojen serilerinin başlangıcın oluştururlar.

Metamorfitler

Çalıșma alanı bölgesel metamorfik kayaçları 0,510 m arasında değişen kalınlıklarda değişik litolojilerde ardalanmah olarak görïliür ve K 80 ' D doğrultulu ve kuzeye 30° eğimlidirler. Kalkșist, amfibolit, mermer ardalanmalı seri yer yer oblik atımlı küçük faylarla kesilmişlerdir.

Kalkșist : Yaylagöze'den Katiralan köyüne doğru uzanan Derindere yatağı boyunca yüzeylenirler. Beyaz gri renkli düzgün bantlaşma ve şistozite gösterirler. Mikroskopta granoblastik bir doku içerisinde esas mineral olarak kalsit, dağınk veya belirli bantlaşma boyunca yan özşekilli albit ve kuvarstan oluşan homojen bir bileşim gözlenir.

Amfibolit : Çalışma alanında Gümbültepe batısında en genis yüzlekleriyle görülür. İyi şistozite gösteren kayaç koyu yeşil renklidir. Yer yer ince kalsit damarları ile kesilmişlerdir. Kalkşistler içerisinde kalınlikları $2-4 \mathrm{~m}$ yi bulan tabakalar oluştururlar. Kayaç hornblend, sfen, epidot, albit, kalsit nadiren biotit ve diopsit içerir. Hornblend esas mineral olup özşekilli kristaller halinde, bazen de iğnemsi taneler şeklinde mükemmel dilinim gösteririer.

Mermer : Mermerler şistler içerisinde kalınlıklan 10 m'yi bulan iki tabaka halinde gözlenir. Beyaz, bol çatlaklı iyi kristalleşmiş bir yapıya sahiptir. Kayaçta ana mineral kalsit, tali mineraller kuvars ve muskovittir. Polisentetik ikizlenme gösteren kalsit kristalleri birbiri ile kenetlenmiş, yer yer bir yönde uzanmıṣlardır.

Rekristalize Kireçtaşı : Killiktepe mevkiinde kur-mızı-pembe renkleri ile dikkati çekerler. K 20 B doğrultulu ve $15^{\prime} \mathrm{KD}$ eğimli genelde masif görünümlü ve bol çatlaklıdır. Kayaçta ana mineral kalkşisttir. Polisentetik ikizler gösteren iri kalsit kristalleri daha küçük boyuttaki kalsit kristalleri ile çimentolanmıştır. Çimentolayan kalsit kristalleri limonit içeriklerinden kaynaklanan kırmızı renge sahiptir. Birim Killikdere civarında granit intrüzyonu ile kesilmiştir. Sanosmandere yatağı içerisinde kalkşistler üzerine açısal bir uyumsuzlukla geldikleri görülür.

Kireçtaşlarında fosil bulunamamıştır. Metamorfik temel üzerinde uyumsuzlukla bulunması ve hafif metamorfizma izleri taşıması birimin metamorfik temelden daha genç olduğunu göstermektedir. Bu da Tülümen (1980) nin mermer olarak nitelendirdiği birimlere uyumludur.

Metamorfik kayaçların orta basınç ve yüksek sıcaklık metamorfizması ürünleri oldukları Erkan (1981) tarafından vurgulanmıştır. Bölgesel metamorfik kayaçlar daha genç granitik intrüzyonlar ile kesilmişlerdir. Çalışma alanında görülen $«$ Kavik Plutonus da bu intrüzyonlar arasinda yer alır.

«Kavik» Plutonu

Pluton, Yaylagöze-Katıralan-Davualan köyleri arasında yüzeylenir. «Kavik» adını yörenin eski adından almıştır. Rengi Pembemsi, gri, açık kahverengi olan kayaç orta taneli holokristalen ve faneritik dokuludur. Tane boyutları homojen bir dağılım gösterir. Pertitik ortoz, plajioklas (An. \% 26) ve az miktarda kuvars içerir. Kuvars öz şekilsiz taneler halindedir. Ayrica çok az miktarda kloritleşme gösteren biotit, sfen, kalsit ve amfibol saptanmıștır. Plajiok-
laslar yer yer bazen ileri derecede kaolenleșme ve serisitleşme gösteren pertitik ortoz ile çevrilmiştir.

Yapilan modal analiz sonucunda incelenen derinlik kayalarını Streckiesen (1976)'e göre düzenlenmiş Q A P diyagramında kuvars monzonit bölgesinde yer aldığı görülmüştür.
«Kavik Plutonu* Kırşehir ve Akdağ masiflerindeki diğer intrüzyonların dağılımı içerisinde mütealâ edilebilir. Nitekim bu küçük masif Kaman yöresinde metamorfik temeli kesen Baranedağ-granadioriti ve Buzlukdağ-siyenitik plutonu (Seymen, 1981), Çiçekdağı masifi siyenitleri (Ketin, 1963).

Akdağ masifi monzogranit ve Adamellit’leri (Tülümen, 1980 ve Sağıroğlu, 1984 a) ile iyi bir uyum gösterir.

Örtii Kayalar

Yaylagöze'nin kuzey doğusunda Killik sırtı'nda gevşek yapili konglomera ve bazalt birimleri ile temsil edilirler. Konglomeralar $15-20 \mathrm{~cm}$ boyutunda az yuvarlanmış metamorfik kayaç parçaları içerir. Elemanları gevşek ince kumlu ve $\mathrm{Fe}_{2} \mathrm{O}_{3}{ }^{\prime} \mathrm{lu}$ çimento ile pekişmiştir. Bunlar $0,5-3 \mathrm{~m}$ kalınlıkta tabakalar halinde açısal uyumsuzlukla metamorfik temel üzerine gelirler ve fosil içermezler. Bazalt konglomera tabakaları arasında küçük bir mostra ile belirgindir. Bazaltlar mor-kırmızı renklidir. Plajioklas feno-kristalleri gözle görülebilir büyüklüktedir. Afanitik bir doku içerisinde mikrolit ve fenokristaller halinde plajioklas (An \% 60) öz șekílsiz ojit klorit, yeșil hornblend, olivin ve kalsit gözlemir. Konglomera ve Bazalt birimleri derecelenme ve istiflenme göstermeyen alüvyal dolgularla yer yer örtülmüşlerdir.

Çalıșma alanı ve yakın civarında bariz tektonizma izleri görülmez. Plutonik masif içerisinden geçen derelerin düșey atımlı faylara tekabül ettiği düșünülebilir. «Kavik Plutonunnun kenar kayaçlarıyla olan dokanakları genelde bres yapisindadır. Bu da sokulmanın termik temastan sonra da devam ettiğine kamit sayılabilir.

Skarnlar

Skarn oluşukları plutonu çevreleyen metamorfik temel ve rekristalize kireçtaşları içerisinde yer yer izlenmektedir. Karataștepe üzerinde 10 m'ye varan siyah, kahverengi kuşaklar halinde belirgin topografya oluşurlar. Skarn oluşuklanı sert breş yapısında olup bol hematit içeren ince kuvars ile çimentolanmıstır. Skarn zonları yakınında kuvars monzonitler içerisinde mineralojik veya dokusal deǧişiklik gözlenmez. Kalkşist-kuvars monzonit daha bariz olarak da mermer-kuvars monzonit dokanaklarında skarn oluşukları daha iyi gelişmiştir.

Mikrogözlemlerde, «Kavik» intrüzyonu içerisinde dokanağa doğru bariz bir alterasyon izlenir. Değişim özellikle feldispatlarda izlenir. Gelişen kataklastik dokunun yanısıra pertitleşme lekeler halinde daha
belirgin olarak ortaya çıkar ve tüm feldispatlarda etkin bir serisitleşme görülür. Yer yer oldukça ileri düzeyde ayrışmış piroksen ve granat'ın varlığı intrüzyonun bir Ca metasomatozundan etkilendiğini göstermektedir .Mermer içerisinde gelişen ve eksoskarn olarak tanımlanan kayaçlar ise manyetit, granat, piroksen, kuvars ve epidot içerir. Kalsit kısmen ayrışma ürünü kısmende dolgu minerali şeklinde görülür. Sfalarit, kalkopirit, pirit, hematit, siderit, barit ve koyu menekşe-siyah renkli fluorit izlenen başlica tali minerallëdir (Şekil 2). Tüm skarn kayaları kırmızı mikrokristalin bir kuvars hamuru içerisinde köşeli veya ayrişmıs ezik elemanlar halinde ve bres yapısında izlenirler (Şekil 3). Skarn zonlarının düzensiz ve breşik yapısı muhtemelen şimdiki mineral zonlanmasını da etkilemiştir.

Şekil 2 : Skarn cevherlerinde parajenez.
Figure 2 : Paragenesis is skarn mineralization.

Şekil 3 : Skarn breşi.
Figure 3 : Skarn breccia.

Çalişma alanının temeliní oluṣturan metamorfik kayaçlar olușumların: Alpin döneminde tamamlamıştir. (Ketin, 1966) Bölgesel çalş̣malarda (Tülü̈men, 1980) Eosen taban konglomeralarimin metamorfitlere ait çakıl içermesi nedeniyle metamorfik temelin Eosen'den önce olușumunu tamamladığını belirtir. Bu bulgular Kavik intrüzyonunun Paleosen yaşlı olabileceğini belirtmektedir. Nitekim benzeri masiflerde yapılan çalışmalarda Çiçekdağı masifi (Ketin, 1955), Kaman yöresi plutonik kayaçlanı (Ayan, 1963), Buzlukdağ plutonu (Seymen, 1981) Akdağmadeni granitleri (Tülümen, 1980), Yıldızeli asit plutonlan (Tatar, 1977), Üst Keratase-Lütesiyen arasında yerlesmis sokulumlar olarak belirtilmiştir.

CEVHERLESME

Yaylagöze fluorit zuhurları ilk defa Zeschke (1953) tarafindan kısa bir inceleme ile duyurulmuştur. $1 / 25.000$ lik harita üzerinde Aytuğ (1964) tarafindan derlenen bölge fluoritleri ilk defa cevherlesme açısından ele alnmış ve çesitli sondaj araştırmaları önerilmiştir. Fluorit damarlarında şu ana kadar bir işletme yapılmamıştır. Çalışma alanı dışında Katıralan köyü Eriklidere içerisindeki damarlardan ilk ve son defa 1970 yılında bir miktar üretim yapilmıştır. Ancak bu üretim çeşitli yarma ve arama çalışmaları sonunda çıkarılmıs tuvenan cevher niteliğindedir.

Bölgede fluorit mineralleşmes iskarn oluşukları ve granitoid içerisinde görülür. Skarn fluoritleri koyu menekse - siyah renkleri ve oktaedrik sekilleri ile belirgindirler. Ekonomik olmayan bu mineralleşme bölgede görülen florlu aktivitenin kökeni açısından önemlidir .Damarların çoğu Derindere içerisinde görülür. Burada ve iki dere kolunun kesiștig̀i yerden menbaya doğru 1'den 9'a kadar numaralanan 3-12 cm kalnlığndaki fluoritler N40E ile N10E doğrultuları arasmda ve başlica dört grup halinde damar ağları oluştururlar (Sekil 4). Damar kalınlıkları, içerikleri ve

Davar 20 Vein So	KKINLIK Theckess	 Biraction	$\begin{aligned} & \text { E02 } \\ & \text { ong } \end{aligned}$	42un ux Lenght	CEMER TBPISI Ore structure
1	; - 4-5) 411 E	65 t	3	Bantl1-bresik Baunded-breccis
7	3-5	\$ 30 E	62 y	2	Bres is-tokard Sreccis-cocardelike
3	2-4	$\times 25 \mathrm{E}$	48 E	-2,5	Sresik Frescia
4	2-3	939	25 H	4	Eresik Treccfa
5	3-10	5351	48 E	30	Bresil areccia
6	, 3-10	$\times 35 \mathrm{E}$	554	10	Santli-bresik Beyrded-brecc is
7	8-10	4 30 E	60 E	25	Kohars-bresik Corandelike-breccia
2	10-12	3 35 E	22 E	\$	Fakard-bresfe Cocardel ike-brectik
9	3-16	310 E	34 E	14	Sresik Ireceis

Șekil 4 : Derindere damarları ve geometrik özellikleri.
Figure 4 : Derindere veins and their geometrical properties.
doğrultuları arasında belirgin bir iliṣki görülmez. Tüm damar dolguları fluorit ve kuvarstan oluṣmuş sade bir parajenez içerir.

Bunlar arasinda ince ve tali nitelikte görülen damarlar daha kalın damarların «uydu damarları" seklinde yüzeylenmiş kollarıdır. Damar dolguları yeşil-mor-beyaz fluorit bantlarından oluşan bantlı yapı veya yer yer kokard yapı gösterirler. Fluorit aynı zamanda altere kuvarslı monzonit parçalarnıda çimentolamıș breşik dolgular şeklinde göriulür. Kalnca damarlar içerisinde her üç yapıyı da bir arada görmek mümkündür (Șekil 5).

Sekil 5: Derindere damar dolgusu.
Figure 5: Derindere vein fill.

Banth fluorit yesil, mor, beyaz fluorit ve kuvars bantlarmm ard arda filon duvarları boyunca dizilimi ile oluşmuștur. Bu bantlaşma her zaman düzenli göruilmez. İnce elemanlı breş veya kayaç parçaları etrafinda yer yer zonlu bir görrünüm alır. Düzensiz, kesikli ve breşik bantlașma fluorit yerleşiminin filonun açılmasıyla birlikte başladığını göstermektedir. Kokard yapı kuvars, feldispat ve kayaç parçalarını çimentolayan fluorit içerisinde görülür (Șekil 3). Bu yapı bazen bantlr fluoritten itibaren gelişmiştir. Kokard fluoritler damar boyunca kesikli ve abudding» benzeri bir dağlım gösterir. Silisleşme fluorit yerlesimine ilk ve son asamada eşlik eder.

Damar içerikleri ile yapısal özellikler arasında belirgin bir iliski bulunamamiştir. Ancak kokard yapils fluoritlerin daha geniş damarlarda K $30-35 \mathrm{D}$ yönünde daha çok yoğunlaştıkları söylenebilir.

Parajenezin son mineralleşmesini olușturan barit, pirit, markasit ve sfalarit dissemine bir sekilde ve eser miktarda breşik yapılar içerisinde gözlenmemiştir. Breşik yapılar ve değişik yapilardaki fluorit dizilimi mineralleșmenin birçok safhada tektonik hareketlerin eslliğinde yerlestiklerini gösterir.

MİNERALLEŞME ORTAMI

Yaylagöze fluorit damarlarin yerleşmesi Paleosen sonrası «Kavik» intrüzyonundan hemen sonra gerçekleșmiştir. Mineralleșmenin jeolojik konumları, yani gerek skarn oluşukları içerisindeki, gerekse damar şeklindeki fluoritlerin aynı cevherleşme sonunda oluştukları kabul edilmektedir. «Kavik plutonunun» bölgesel jeolojik konumu bölgemizde fluorlu aktivitenin Paleosen sonu ile ilk Neojen sedimantasyonu aralığnda yoğun bir şekilde yer aldığını gösterir. Bu nedenle heriki cevherleşme de aynı olay çerçevesinde düşünülebilir.

Skarn oluşukları içerisindeki siyah fluoritler ile yeşil damar fluoritleri arasında kökensel ilişkiyi açıklayabilmek amacıyla fluoritler üzerinde sıvı kapanım çalışmaları yapılmıştır. Aynı örnekler üzerinde Nadir Toprak Elementleri analizleri de yapılarak dağıimları saptanmıştır.

Sıvı Kapanım Verileri : Skarn fluoritlerinin çok koyu renkli olması üzerlerinde termo-optik gözlemler yapılmasına büyük engel oluşturur. Bu nedenle, heriki grup fluorit örneklerinin olușum sıcaklıkları dekrepitografik yöntemle saptanmıştır (Sekil 6). Yapılan ölçümlerde yeşil damar fluoritlerinde $155^{\circ}-170^{\circ} \mathrm{C}$ arasında değişen çıtırdama sıcaklığı saptanmıştır. Elde edilen bu değerler Kırşehir masifinde aym tip diğer fluorit sıvı kapanımlarında Termo-Optik yöntemle elde edilen homojenleşme sıcaklığı (Th)değerlerinden daha yüksek görülmektedir. Akçakent yeşil fluoritlerinde (Yaman, 1985 a) Th değerleri $140-160^{\circ} \mathrm{C}$ arasmda, Kaman fluoritlerinde ise (Yaman, 1984) $110^{\circ}-130^{\circ} \mathrm{C}$ arasında bulunmuştur. Ancak, dekrepitometri ve homojenleştirme çalışmalarının aynı mineral üzerinde uygulanması sonunda birincisinin daha yüksek değerler verdiğı çeșitli araştırıcılar tarafından vurgulanmıștır. Bu değerler $+20^{\circ} \mathrm{C}$ ye kadar çıkabilmektedir. Bu açıdan ele alındığında Yaylagöze fluoritlerinin $135^{\circ}-150^{\circ} \mathrm{C}$ gibi bir sicaklık evresinde oluştukları düşünülebilir.

120 Mepy shll hack	Minerallepen gell Kine of Menceliantion	Tax./atirlau Nalath rex. Soveptutas fusp	teene suatilist (30)
samn Sasen	Scupik Siyut Facrit prowis Jiask Ploorter	$25^{6}+173^{n}$	-
Bmars Mensotic gente heamate	traer Tigi Deail Tlaotit Veas Troe Goom Flawile	50/61790	$-1 / 20 \times 2$

Sekil 6 : Fluoritlerin dekrepitografik değerleri. Figure 6 : Decrepitographic data of fluorites.

Sadece yeşil damar fluoritleri üzerinde yapılabilen krioskopik tayinlerde birincil kapanımlarda da düzgün prometrik şekilleriyle ayırtlanmıştır. Bunlarda ilk buz kristali $-30^{\circ} \mathrm{C}$ altında erimeye başlamıştır. En son buz kristalciğinin kaybolduğunu sicaklık (Tm) -1 ile -4 arasında saptanmıştır. $\mathrm{Na} \mathrm{Cl}-\mathrm{H}_{2} \mathrm{O}$ sisteminde (Roedder, 1979), Bu değerler az tuzlu bir orta-
mı ifade eder. Bu da \% 2-4 Nacl'e eşdeğer tuzluluk olarak ifade edilebilir.
N.T.E. Jeokimyası : Yaylagöze skarn oluşuklarından ve damarlarından oluşmuş iki adet fluorit örneği üzerinde yapılan Nadir Toprak Elementleri analizi (Şekil 7) incelenen örneklerin normal düzeyde N.T.E.

Șekil 7 : Fluoritlerin N.T.E tenörleri (ppm). Figure 7 : R.E.E content of the fluorites (ppm).
içerdiklerin igösterir. Siyah skarn flucritlerinde toplam 57.62 ppm yeşil fluoritlerde ise 89.25 ppm toplam N.T.E saptanmıștır. Heriki fluerite ait degerlerin Coryelle (1963)'e göre kondritlere göre normalleştirerek düzenlenen spektrumlarda (Şekil 8) Eu'ca pozitif

Şekil 8 : Fluoritlerin kondritlere göre normalleştirilmiş N.T.E spektrumu.
Figure 8 : Chondrite normallised R.E.E patterns of the fluorites.
anomali verdikleri görülmektedir .Lu'a doğru gidildikçe yani ağır elementlerde bir azalma görülür. Skarn fluoritlerinde bu durum daha düz bir şekilde görülür. Diyagramlarda görülen Eu'ca pozitif anomali ancak mineralleștirici çözeltiden kaynaklanan bir anomalinin yansıması olarak kabul edilebilir (Grappin, 1979). Eu'ca negatif anomali veren biotit gibi minerallerin ortamda bulunmayışı fluoritlerdeki N.T.E spektrumunun biotit içermeyen feldispatlı bir kayaçtan kaynaklandığı varsaymmin kuvvetlendirmektedir. Eu pozitif anomalisinin yanısıra ağır elementlerce zaynfla-
ması bu fluoritlerdeki lantanid serisi element kayıtlarının daha başka faktörlerden etkilendiğini vurgulamaktadır. Skarn içerisinde önemli bir miktarda kalsit ve kuvars'n devamlı mevcudiyeti böyle bir dağılımın nedeni olabilir. Zira $\mathrm{SiO}_{2}{ }^{\prime} \mathrm{li}$ ortamlarda $\mathrm{CaF}_{2}{ }^{\prime}$ ün çözünürlüğü artmakta (Ellis, A., Mahon, 1964), kalsit ise N.T.E'ni fluoritle birlikte paylașabilen «kompleks yapicı» mineral olarak taninmaktadir (Marchand, 1976). Skarn fluoritleri bu açıdan ele alındığında damar fluoritlerine göre yan kayaçlardan kaynaklanan daha kompleks bir ortamda silisleşme sırasında oluştuklarn kabul edilebilir.

TARTIȘMA VE SONUÇLAR

Jeolojik gözlemler ve jeokimyasal bulgular Yaylagöze fluorit cevherleşmelerinin «Kavik Plutonun» dan kaynaklandıklarım göstermektedir. Yaylagöze yöresi Kırşehir masifinde benzeri jeolojik yapı ve cevherleşmeler gösteren diğer bölgelerle karşılaştırıldığında Kaman ve Akdağmadeni yöresi ile deneștirilebilir. Akdağmadeni yöresinde görülen Adamellit intrüzyonlarına bağlı olarak gelișen skarnlar olușumlarmn $300^{\circ} \mathrm{C}$ altında $0,2 \mathrm{k}$ barlik basınçta kaolinit-muskovit evresi ile tamamlamışlardır. (Sağıroğlu, 1984 b) Tipik hidrotermal koșulları yansıtan bu degerler yoğun kuvars çıkışı ile kendilerini belli ederler. Kavik plutonunu çevreleyen breș yapısindaki skarnlar muhtemelen tektonik hareketlerin eşliğinde benzer koşullarda ortaya çıkan yoğun kuvars ile çimentolanmıştır. Bu aşamalarda ortaya çıkan fluorit, parajenez'de bres elemanları halinde veya çatlak dolguları şeklinde yoğun silisleşmeden önce yer alır. Fluorit mineralleşmesinin ortam koşulları bu çerçeve içerisinde irdelendiǧinde eldeki verilerle beraber fluorlu ortamin $1355^{\circ}-150^{\circ} \mathrm{C}$ civarında az tuzlu ve yaklaşık $0,3 \mathrm{k}$. barlık bir basınç koşullarında gerçekleşmiş olabileceği görülür. Bu durumda paleoyüzeyden itibaren fluorit yerleşiminin yerleşme derinliğini tahmin etmek olasidır. Toplam litostatik ve hidrostatik basinç ortalama $0,2 \mathrm{bar} / \mathrm{m}$ olarak hesaplandığında (Graf, 1982) 0,3 k. barlık basinca yaklaşık 1500 m'lik bir derinlikte ulașılır. Bu derinlik fluorit cevherleșmesinin en alt sınırı olarak kabul edilebilir. Ancak, yörede paleoyüzeyi gösterebilecek bir röper yüzey saptanamamıştır. Termometrik veriler Kaman yöresi fluorit yataklarında yeşil fluoritlerden elde edilen verilerle benzerlik gösterir. (Yaman, 1984) Kaman fluorit damarları oluşumlarındaki son evreler Yaylagöze fluoritlerinde görülmeyen ve yüksek tuz oranı içeren sarı fluoritler ile temsil edilir. Bu durum mineralleşme ortamina deniz suyu filtrasyonu ile açıklanabilmiştir. Tuzlu ortamda gelișen sarı fluoritlerdeki N.T.E kayıtlari da bu durumu belirlemektedir (Yaman, 1985b).
«Kavik Plutonu»nun yerleşim ortamı ve hidrotermal koşullarda gelişen fluorit cevherleşmesi gittikçe azalan basınç ve sıcaklık koşullarının egemen olduğu bir dinamizm içerisinde ifade edilebilir. Jeodinamik açıdan bu koşullar Orta Anadolu masiflerinin Tortoniyen'den sonra başlayan yükseliminin (Șengör, 1981) son evrelerine tekabül ettiği söylenebilir.

Sonuç olarak; Yaylagöze fluorit mineralleşmesi kuvarslı monzonit bileșimindeki «Kavik Plutonu» intrüzyonuna bağlı olarak gelișmiş skarn breşleri arasında ve pluton içerisinde damarlar seklinde yer alır. Intrüzyon kalkşist ve mermerle dokanaklarinda skarn zonları oluşturmuştur. Esas bileşimini granat ve piroksenin oluşturduğu skarn zonları kırmızı ince kuvars ile çimentolanmış breşler halinde görülürler. Fluorit skarn breşleri içerisinde koyu mor renkli ve oktaedrik kristaller șeklinde izlenmektedir. Derindere mevkiinde ise K 30-40 D yönünde gruplanmış yeşil-mor-beyaz damarlar şeklinde görülmektedir. Derindere damarları ekonomik yönden önemli olabilirler.

Fluoritler ortalama $150^{\circ} \mathrm{C}$ sicaklikta, az tuzlu bir ortamda, çeşitli tektonik kırılma ve oynama eşliğinde bantlı veya breşik yapıda yerleşmiștir. Yerleşim sırasinda litostatik basincın en fazla $0,3 \mathrm{k}$. bar olabileceği varsayılabilir. Son tektonik oynamalar ile yönlenen KD-GB yönlü kırık hatları boyunca damarlar lantanid içerikleri düzenli bir spektrum vererek kristalleşirken skarn breşlerindeki fluoritler özellikle yoğun kuvars ve kalsitin mevcut olduğu bir ortamda etkin tektonik oynamalar eşliğinde yerleşmiştir.

Ekonomik yönden önemli olabilecek yeni damarlar, Kavik masifi içerisinde KD-GB yönlerinde gelişmiş, silisleşmiş alterasyon-zonları boyunca aranmalidır.

KATKI BELIRTME

Çalışma mali yönden 270-81 nolu proje kapsamında NATO tarafından desteklenmiștir. Yazar, analizlerin yapıldığ Orléans Universitesinden Prof. J. C. TOURAY ile çalışmalarında yardımcı olan Arş. Gör. Serdar ÖZƯȘ'e teşekkür eder.

DEĞİNILEN BELGELER

Ayan, M., 1963. Contribution a l'étude Pétrographique de la region située au NE de Kaman (Turquie): Maden Tetkik Arama Enst. Yayinlart, 115, 3325.

Aytuğ, G., 1964. Sivas, Yıldızeli, Kavik fluorit zuhuru: M.T.A. End. Ham. Arşiv No. 65 (Yayınlanmamiş).

Baykal, G., 1963. 1/500.000 ölçekli Türkiye Jeoloji Haritast, Sivas paftast. Maden Tetkik Arama Enst. Yayınları, Ankara.

Coryelle, C., Chase, J., Winchester, J., 1963. A procedure for geochemical interpretation of terrestrial eart abondance patterns: Jour. Geophs. Resc. 68, 559-566.

Ellis, A., Mahon,- W.W., 1964. Natural hot hydrothermal systems and expemental hot water/rock interactions: Geochim. Comochim. acta, 28, 1323-1357.

Erkan, Y., 1981. Orta Anadolu metamorfizması üzerine yapılmış çalışmalarda varılan sonuçlar: İç Anadolunun Jeolojisi Simpozyumu, T.J.K. 35. Bilimsel ve Teknik Kurultayı, Ankara, 9-11.

Graf, D.L., 1982. Chemical asmosis, reverse chemical osmosis, and the origin of sub surface brines. Geochim. Cosmochim. acta, 46, 1431-1448.

Grappin, C., Treuil, M., Yaman, S. Touray, J.C., 1979. Le spectre des terres rares de la fluorine en tant que marqueur des propriétés du milieu de dépôt et des interactions entre solution mineralisantes et roches sources: Mineralium Deposita, 14, 298-309.

Ketin, İ., 1955. Yozgat bölgesinin jeolojisi ve Orta Anadolu masifinin tektonik durumu: Türkiye Jeol. Kur. Bült., 1, 1-40.

Ketin, İ., 1963. 1/500.000 ölçekli Türkiye Jeoloji Haritast, Kayseri paftast: Maden Tetkik Arama Enst. Yayınları, Ankara.

Ketin, I., 1966. Anadolunun Tektonik birlikleri: Maden Tetkik Arama Enst. Dergisi, 66, 20-35.

Marchand, L., 1976. Contribution à l'étude de la distribution des Lanthanids dans la fluorine: Thèse Université d'Orléans, 92 s .

Pollak, A., 1958. Akdağmadeni-Yıldızeli sahasında yapulan prospeksiyon hakkinda rapor: Maden Tetkik Arama Enst. Arşiv No. 2321 (yayınlanmamış).

Roedder, E., 1979. Fluid inclusions as samples of ore fluides: Barnes, H.L., Ed., geochemistry of hydrothermal ore deposits de: John Wiley and Sons Inc., New York, 798 p.

Sağıroğlu, A., 1984 a. Akdağmadeni, Yozgat cevherleşmelerinde görülen değişik skarn oluşuklarunun özellikleri ve irdelenmesi: Türkiye Jeol. Kur. Bült., 27, 69-80.

Sağıroğlu, A., 1984 b. Akdağmadeni (Yozgat) konitakt metasomatik yataklarinda svv kapanım çalş̧maları: Türkiye Jeol. Kur. Bült., 27, 141-144.

Seymen, İ., 1981. Kaman (Kurşehir) dolayında Kursehir masifinin stratigrafisi ve metamorfizmast: Türkiye Jeol. Kur. Bült. 24, 7-14.

Streckeisen, A., 1976. To each plutonic rocks its proper name: Earth Sci. Rev. 12, 1-33.

Sengör, A.M.C. ve Yylmaz, Y., 1981. Tethyan evolution of Turkey, A plate tectonic approach: Tectonophysics, 43, 93-102.

Tatar, Y., 1977. Ofiyolitli Çamlubel (YıIdizeli) bölgesinin stratigrafi ve petrografisi: Maden Tetkik Arama Enst. Dergisi, 88, 56-73.

Tatar, Y., 1981. Çamlıbel geçidi (Yıldızeli) yöresindeki ofiyolitik seride metamorfizma: K.T.Ü., Yerbilimleri Derg., 1, 45-61.

Touray, J.C., 1970. Analyse thermo-optique des familles d'inclusion fluides à dépôts salins: Schweiz, Mineral, Petrog. Bült. 50, 67-79.

Treuil, M., Jaffrezic, H., Derschamps, N., Derre, C., Guichard, F., Joron, J. Pelletier, B., Novotny, S., Courtois, C., 1973. Analyse des Lanthanids dans les mineraux et les roches par activation neutronique: Radioannaltical Chemistry, Spec. Issue, 18, 55-68.

Tülümen, E., 1980. Akdağmadeni (Yozgat) yöresinde petrografik ve metallojenik incelemeler: Doktora Tezi, K.T.Ü. Yerbilimleri Fakültesi 157 s .

Vacher, R., 1964. Akdağmaden yakınındaki Çukurmaden ve Çiçekli Pb-Zn-yatakları hakkinda rapor: M.T.A.. Arşiv No: 2679 (yaymlanmamış).

Yaman, S., 1984. Bayınder (Kaman) Fluorit filonlarinin termo-optik analizi: Yerbilimleri, 11, 23-30.

Yaman, S., 1985 a. Akçakent (Çiçekdağ-Kurşehir) yöresi fluorit yataklarının jeolojisi ve stvı kapanim çalışmaları: Türkiye Jeol. Kur. Bult., 28, 73-78.

Yaman, S., 1985 b. Bayınder (Kaman) fluorit filonlarinda Nadir Toprak Elementleri jeokimyast: Jeolö̈ Mühendisliği, 25, 39-44.

Yllmaz, A., 1981. Tokat ili Sivas arastndaki ofiyolit karışığının iç yapısı ve yerleşme yaşı: Türkiye Jeol. Kur. Bült., 24, 31-38.

Zeschke, G., 1953. Yıldızeli fluoritleri: M.T.A. Arşiv No: 215 (yayınlanmamış).

Kurșunlu (Ortakent - Koyulhisar - Sivas) Pb-Zn - Cu Yataklarının Jeolojisi, Olușumu ve Kökeni

GEOLOGY AN DGENESIS OF THE KURȘUNLU (ORTAKENT - KOYULHİSAR - SİVAS) Pb-Zn-Cu ORE DEPOSITS

Ahmet GÖKÇE, Cumhuriyet Univ., Müh. Fak., Jeoloji Müh. Bölümü, SIVAS.
Atilla ÖZGƯNEYLİOGLU, M.T.A. İç Anadolu Bölge Müdürlüğü, SIVAS.

ÖZ : Kurşunlu (Ortakent - Koyulhisar - Sivas) $\mathrm{Pb}-\mathrm{Zn}-\mathrm{Cu}$ yatakları Doğu Karadeniz Bölgesinde, Pontidler Tektonik Birliǧinin Kuzey Bölümü olarak bilinen tektonik kuşağın güney ve batı kesimlerinde yaygın olarak gözlenen damar tipi $\mathrm{Pb}-\mathrm{Zn}-\mathrm{Cu}$ yataklarının tipik örneklerinden birisidir.

Yataklar çevresinde Doğu Karadeniz Bölgesinde yaygın olarak gözlenen Ust Kretase-Kuvaterner arasında değişik yaşlarda volkanik ve volkanotortul kayaçlar ve bunları yer yer kesen plutonik sokulumlar yüzeylemekte olup litostratigrafik dizilimlerinde alttan üste doğru «Kurşunludere Otobres-Andeziti, Geyikkayatepe Dasiti ve Tüfü, Eskiköy Andezit-Aglomerası, Evliyatepe Andeziti, Deliktaş Porfi-ro-Andeziti, Menekşeli Çökelleri, Seğgüneytepe Granitoyiti, Leykün Bazaltı, Yamaç Döküntüsü ve Alüvyon şeklinde adlanmışlardır.

Yöredeki $\mathrm{Pb}-\mathrm{Zn}-\mathrm{Cu}$ yatakları yan kayaçların az da olsa gözlenen tabakalanma düzlemlerini kesen, genellikle K $50^{\circ}-80^{\circ} \mathrm{B} / 75^{\circ}-85^{\circ} \mathrm{KD}$ konumlu cevher damarlanı şeklinde olup, cevher minerali olarak galenit, sfalarit, kalkopirit, pirit, kalkosin ve hematit, gang minerali olarak ise kuvars, kalsit ve az miktarda barit içermektedirler. Sıvı kapanımlanı ile yapılan sıcaklık ölçümlerinde oluşum sıcaklığı ortalama $410^{\circ} \mathrm{C}$ olarak saptanmıştır.

Cevher damarlarını yataklandığ kırıkların Üst Kretase-Eosen arasında Seğgüneytepe Granitoyitinin yerleşimi ile ilişkili olarak geliştiği ve cevher oluşumunun yine bu zaman aralığnda büyük olasılıkla granitoyit kütlesinin hidrotermal çözeltilerinin ürünü olmaktan daha çok bölgesel olarak Pb, Zn ve Cu içeriği yüksek olan andezitik ve dasitik yan kayaçlardan bu elementlerin derinlere indikçe 1 sınmış ve çözücü özelliği artmış yüzey (denizel(?)) sularıncaçözülü̈p, kırık ve faylar boyunca yeniden çökeltilmeleri şeklinde oluştukları söylenebilir. Fakat yüzeysel suların isıtılması bu granitoyit sokulumunca sağlanmis olabilir.

[^0]It is thought that the mineralized fractures and faults were formed in relation to the instrusion of the Seğgüneytepe Granitoid, during a part of Upper Cretaceous-Eocene; and the mineralization was taken place during the same period of time. The mineral bearing solutions seemed to be meteoric waters (seawater(?)) which were heated and activated by circulating down the deeper parts of surrounding andesitic and dasitic rocks (rich in Pb, Zn and Cu), rather than being hydrothermal waters of the Seggüneytepe Granitoid. However, it is possible that the heating of the meteoric waters may be caused by the intrusion of the granitoid.

GIRIS

Doğu Karadeniz Bölgesi $\mathrm{Cu}-\mathrm{Pb}-\mathrm{Zn}$ cevher yataklarmin yaygın bir şekilde gözlendiği önemli metalojinik provenslerimizden birisidir. Bu bölge Türkiye jeoloji literatüründe Pontidler Tektonik Birliǧinin Kuzey Kuşağı şekilnde adlanmakta olup, kuşak boyunca Alt Kretase'den Kuvaterner'e kadar değișen zamanlarda oluşmuş volkanik ve volkano-tortul birimler içinde litostratigrafik kontrollü masif, saçımımh ve «stockwork» tipi cevherleşmeler gözlenirken, kuşağın güney yarisinda ve batı kesiminde bu kayaçları kesen kırık ve faylar içinde damar tipi cevherleşmeler gözlenmektedir

Kurşunlu (Ortakent-Koyulhisar-Sivas) $\mathrm{Pb}-\mathrm{Zn}-\mathrm{Cu}$ yatakları bu ikinci tip cevherleşmelerin tipik örneklerinden birisi olup, bu çalışmada çeşitli saha ve laboratuvar yöntemleri ile cevherleşme incelenerek yan kayaçlar, yataklanma şekilleri, cevher-yankayaç ilişkileri, iç yapıları, mineralojik bileşim ve mikro yapı-doku özellikleri belirlenmeye, cevherleşmenin oluşumu ve kökeni tartışılmaya çalışılmıştır.

Bu yataklar Ordu ve Sivas illeri arasında, Sivas'a bağlı Koyulhisar ilçesinin kuzeyinde, Ortakent Nahiyesini de içine alan Giresun H40-al paftası içinde yeralmaktadır (Şekil 1).

Bu çalışmanın saha incelemeleri sırasında Giresun H40-al paftası sınırları içinde kalan yaklaşık $144 \mathrm{~km}^{2}$ lik bir sahanın jeolojik haritası hazırlanmıs, alınan kayaç örnekleri ile litolojik birimlerin mine-ralojik-petrografik özellikleri, cevher örnekleri ile ise cevher damarlarmın mineral içerikleri ve mikro yapı ve doku özellikleri incelenmiştir. Ayrica sıvı kapanım incelemesi yapılan 18 adet örnekten yalnızca bir tanesinde sıcaklık ölçümü yapılabilmiştir.

Yataklar ile ilgili ilk jeolojik incelemeler STECHEPINSKY (1945) tarafından başlatılmıs olup günümüze kadar sırasıyla BARUTÇUOĞLU (1952, 1954 ve 1961), WESTRUM (1961), KAADEN (1962), OVALIOGLU (1964), PETRASCHEK (1967), ÖZBAYOGLU 1968), KAPTANOGLU (1967), ÇAVUȘOĞLU (1969), FAITH VE DIG. (1971), TAKASHIMA VE

Şekil 1 : İnceleme alanının coğrafik konum haritasi.
Figure 1 : Geographic location map of the investigated area.

Dİ. (1973), ÖZGÜNEYLİĞLU VE OKABE (1981) ve OZZGUNEYLIOGLU (1988) değişik zamanlarda yataklar çevresinde $1 / 25.000,1 / 5.000$ ve $1 / 2.000$ ölçekli jeoloji haritaları, işletme galerilerinde yeraltı gözlemleri, sondajlı aramalar, rezerv hesaplamaları gihi çeşitli jeolojik incelemeler yapmışlardır.

INCELEME ALANININ JEOLOJİSİ

Bölgesel Jeoloji

Inceleme alanı Türkiye jeoloji literatüründe «Pontidler Tektonik Birliği» olarak bilinen kuşağın kuzey bölümü içinde yer almaktadır. Bölgenin genelleștirilmiş ve yalınlaştırılmış bir dikme kesiti Şekil 2'de görülmektedir.

D- Dasitik egemen bilesimli
(Mostly docitic composition)
A= Andeaitik egemen bileşimli
(Mostly andesitic composition)
B- Bazalik egemen bileşimli (Mostly basaltic composition)

2 : Basitleştirilmiş bölgesel jeoloji dikme kesiti (özellikle Akıncı, 1980 ve 1985' den ve kısmen diğer yayınlardan derlenmiştir).

Figure 2 : Simplified columnar section of the regional geology (Compiled especially after Akinci, 1980 and 1985 and partially after other papers).

Bu şekilden de görüldüğü gibi bölgede Alt Kretase'den Kuvaterner'e kadar degişik yaşlarda volkanik ve volkano-tortul birimler ile yer yer bunları kesen plutonik sokulumlar yüzeylemektedir. Bölgedeki bu volkanik ve volkano-tortul birimlerin «Alt Bazik Seri (Liyas-Turoniyen arası yaşı1), Andezitli ve Dasitli Volkano-tortul Seri (Üst Kretase-Paleosen yaş1), Ust Bazik Seri (Eosen), Genç Bazik Seri ve Genç Dayklar (Oligosen-Pliyosen) seklinde adlanmaları yaygın bir sekilde kullanılmaktadır. TOKEL (1977), TERLEMEZ VE YILMAZ (1980), ÖZSAYAR VE DIG. 1981), TERZIOĞLU (1984-1987) gibi bazı araştırıcılar bu volkanitleri degisisik litostratigrafik ve stratigrafik birimler seklinde ayırıp, adlayarak ayrintil incelemeler yapmışlardır. Ancak, bunlar bu araştrrmanin konusu ile doğrudan ilişkili olmadıklarından ayrintılı anlatımları yapılmamış̧ır. Bu birimleri kesen plütonik sokulumlar genellikle Ust Kretase sonu-Eosen arası yaṣldırlar. Ancak daha yaşlı olanlarının bulunduğu da düşünülmektedir (Akıncl, 1980 ve 1985).

Oluşum ortamları genellikle bir paleo benioff zonunun üzerinde gelişmiş ada yayı bölgesi olarak düsünülen bölge; oldukça kalın ve genellikle piroklastik karakterdeki bilesenleri ve Neojen'deki manto kökenli magmatik ürünleri ile sıkışma tektoniğinden daha çok gevşeme tektoniğinin etkisinde kalmış, genişleyen ve derinleşen bir havza karakteri göstermekte olup ada yayları gerisindeki rift bölgesine özgü özellikler taşımaktadır.

Inceleme alanında gözlenen birimlerin Șekil 2'de belirtilen bölgesel dizilimin A_{2} (?), D_{2} ve B_{2} seviyelerine karşlılı geldiği söylenebilir.

Litolojik Birimler ve Özellikleri

Saha çalş̧maları sırasında inceleme alanındaki litolojik birimler «Kurşunludere Otobreş-Andeziti, Geyikkayatepe Dasiti ve Tưfü, Eskiköy Andezit-Aglomerası, Evliyatepe Andeziti, Deliktas Porfiro-Andeziti, Menekşeli Çökelleri, Seğgüneytepe Granitoyiti, Leykün Bazalti, Yamaç Molozu ve Alüvyonlar şeklinde ayrilmıs olup litostratigrafik dizilimleri șekil 3'de olduğu gibi belirlenmiş, sahadaki dağlımlarl ise Ek l'de olduğu gibi haritalanmıştır.

Kurşunludere Otobreş-Ande Z_{it}; Inceleme alanının orta kesimlerinde Kurşunludere içinde yüzeylemektedir (Ek 1). Litostratigrafik dizilimin en altında bulunmakta olup, tabanı gözlenememektedir. Yer yer Geyikkayatepe Dasiti ve Tüfui ile parmak sekilli geçişler gösterir. Birimin kalınlığı yaklaşık olarak 250 m kadardır. Makroskopik olarak kirli gri, yeşil ve morumsu renk tonlarinda, bol kurklı ve çatlaklı, kolay kırılan ve dağlan bir kayaç türüdür. Birim ileri derecede silisleşmiş olup, yüzleklerine yakından bakıldığnda bozunmuş feldispat fenokristalleri ve degisik renk tonlarında bozunma halleri farkedilebilmektedir, Birimden alman örneklerden hazurlanan ince kesitlerde ileri derecede serisitlesmis ve karbonatlaşıs plajiyoklazlar, tamamen ikincil
kuvarstan oluşmus kristalin bir hamur içinde dağılm §̧ olarak gözlenmektedir. Makroskopik olarak belirgin olan breşleşme, mikroskopik ölçekte parçalanmıs ve aralarn ikincil kuvars ile doldurulmuş plajiyoklaz kristalleri şeklinde izlenmektedir.

Geyikkayatepe Dasiti ve Tüfü; Bu birim en iyi sekli ile inceleme alanmun orta kesimlerinde Geyikkayatepe mevkiinde yïzeylemektedir. Birim yer yer parmak şekilli yanal geçişler de göstererek Kurşunludere Otobreş-Andeziti üzerine gelmekte, üst dokunag̈ında Eskiköy Andezit-Aglomerasınca örtülmektedir. Evliyatepe Andeziti yer yer bu birimi kesmekte yer yer ise üzerine akmıs şekilde gözlenmektedir. Birimin kalınlığ 200 m kadardır. Makroskopik olarak kirli beyazdan yeşilimsi griye kadar değişen renk tonlarmda, dasitli kesimlerinde masif, tüflü kesimlerde ise tabakalı bir şekilde gözlenmektedir. Birimden alnan örneklerden hazırlanan ince kesitlerde yalnuzca kuvarslar tannabilmekte olup plajiyoklaz ve Alkali feldispat fenokristalleri ileri derecede serisitleşmiş ve karbonatlaşmışlardır. Alkali feldispat fenokristallerinin hiç rastlanmadığ bazı ince kesitlerde kuvars andezit adlanması da yapilabilmektedir. Opak minerallerden pirit yer yer yaygın bir şekliłde gözlenmektedir.

Eskiköy Andezit-Aglomerasi; Inceleme alanı içinde oldukça geniş bir alanda yaylım göstermekte olup, yer yer tabakalanma düzlemleri iyi derecede gelişmistir. Birimin kalınlığ1 $150-200 \mathrm{~m}$ arasında degissmektedir. Kurşunludere Otobreş-Andezitini ve Geyikkayatepe Dasitin! örten bu birim yer yer Evliyatepe Andeziti tarafindan kesilmekte ve Deliktas Por-firo-Andeziti, Menekşeli Çökelleri ve Leykün Bazaltı tarafından örtülmektedir. Makroskopik olarak koyu gri-yeşilimsi siyah renk tonlarındadır. Andezit blok ve çakıllarmın büyüklükleri milimetrik mertebeden 10 m'ye kadar degismekte olup $5-20 \mathrm{~cm}$ büyüklükte olanları yaygundır. Çakıl ve blokların arası ince taneli tuifümsü bir malzeme ile doldurulmustur. Bu birimden alnan örneklerden hazurlanan ince kesitlerde yer yer ileri dereced serisitlessmis ve karbonatlaşmıs plajiyoklaz fenokristalleri, plajiyoklaz mikrolitleri ile ikincil kuvarstan oluşmuş, tamamen kristalin bir hamur içinde dağılmış olarak gözlenmektedirler.

Evliyatepe Andeziti; Inceleme alanı içinde oldukça geniş bir alanda yüzeyleyen bu birim en iyi șekliyle Evliyatepe çevresinde yüzeylenmektedir. Birimin kalınlığ bazı yüzleklerde 500 m'den fazladır. Bazı yerlerde lav akıntisı, bazı yerlerde ise intrüzif şeklindedir. Yer yer Eskiköy Andezit-Aglomerasını ve Kurşunludere Otobres-Andezitini kesmekte, yer yer onların üzerine akmaktadır. Deliktas Porfiro-Andeziti, Menekşeli Çökelleri ve Leykün Bazaltı tarafindan örtülmektedir. Makroskopik olarak kirli be-yaz-sar1-gri ve yeşil renklerde gözlenmektedir. Yer yer silisleşme, piritleşme, killeṣme ve alunitleşme şeklinde bozunmalar önemli miktarda gelişmiştir. Bu birimden alınan örneklerin mikroskopik incelemesi sırasında ileri derecede serisitleşmis plajiyok-

Şekil 3 : Inceleme alanının basitleştirilmiş dikme kesiti (ölçeksiz).

Figure 3:Simplifed columnar section of the investigated area (not to scale).
laz fenokristallerinin, plajiyoklaz mikrolitlerinden ibaret, tamamen kristalin bir matriks içinde dağıldığı ve yer yer matriksin önemli miktarda klorit içerdiği gözlenmiştir.

Deliktaş Porfiro-Andeziti; Bu birim özellikle inceleme alanının kuzeydoğu kesiminde yïzeylemektedir. Daha önce anlatılan Eskiköy Andezit-Aglomeras1 ile Evliyatepe Andezitini örtmekte ve Menekşeli Çökelleri ile Leykün Bazaltı tarafindan örtülmektedir. Birimin kalınlığı $150-250 \mathrm{~m}$ arasında deǧişmektedir. Makroskopik olarak koyu gri-siyah renkli, çok iri kristalli hamuru hemen hemen tamamen kristalin bir kayaçtr. Yer yer $1-2 \mathrm{~m}$ kalnnlıkta, daha açık veya koyu renkli, çok daha iri kristalli dayklar tarafindan kesilmektedir. Bu birimden alınan örneklerden hazrrlanan ince kesitlerde çok büyük plajiyoklaz fenokristalleri ve amfibol fenokristalleri hemen hemen tamamen plajiyoklaz mikrolitlerinden oluşmuş bir hamur içinde dağlmış olarak gözlenmektedir. Bozunma diğerlerine göre daha azdır.

Menekşeli Çökelleri; Inceleme alanımn özellikle güney kesiminde Menekşeli Mahallesi çevresinde yüzeylemektedir. Birim genellikle tüf arakatkılı konglomera ve kumtaşları şeklinde olup, yer yer tüf hakim bileşen olmaktadır. Konglomeratik seviyelerde çakillar $5-10 \mathrm{~cm}$ büyüklüklerde olup, genellikle andezit, yer yer ise bazalt ve silis çakılları şeklindedirler. Değişik yerlerde daha önce anlatılan bütün birimlerin üzerinde gözlenen bu birim Leykün Bazaltı tarafından örtülmektedir.

Seğgüneytepe Granitoyiti; En iyi sekilde inceleme alanının güneybatı kesiminde Seğgüney Tepe çevresinde yüzeylemektedir. Bu granitoyit kütlesi daha önce anlatılan birimler içine sokulmuş olup, Leykün Bazaltı, Yamaç Molozu ve Alüvyon tarafindan örtülmektedir. Makroskopik olarak bozunmamıs kesimlerde gri, kurşuni gri renkli olan birim genellikle bozunmus ve kirli beyaz-sarı bir renk almıştır. Bozunmuş kisımlarda piritleşme ve kaolinleşme yaygudır. Yankayaçlar içine doğru incelerek girmiş ve kalnnlkları $0,2-1 \mathrm{~m}$ arasmda değişen kuvars damarları yaygundır. Ancak gerek bozunmuş ve piritleşmiş kesimlerde, gerekse bu kuvars damarları içinde cevher minerallerine rastlanmamaktadır. Birimden alnan örneklerden hazurlanan ince kesitlerde plajiyoklaz, kuvars, amfibol ve az miktarlarda ortoklaz ve biyotit gözlenmiştir. Genellikle öz̧ekilli ve yarı özşekilli kristallerden oluşmuş, holokristalin bir yapı gözlenmektedir. Yer yer porfirik yapil kesimler de bulunmaktadır. Özellikle kenar kısımlardan alınan örneklerde bozunma oldukça fazladır.

Leykïn Bazaltı : Bu birim özellikle inceleme alanının güney kesiminde Leykün Köyü çevresinde yüzeylemekte olup, daha önce anlatilan birimler ïzerinde tabla konumlu örtüler seklindedirler. Yer yer sïtun yapilı kesimlerde bulunmaktadır. Kalınlığı bazı yerlerde 150 m'yi bulmaktadır. Makroskopik olarak bol gaz bozluklu, sert, bozunmamıs kesim-
lerde koyu gri-siyah renkli bir kayaç türüdür. Ince kesitlerde plajiyoklaz ve amfibol fenokristalleri, bu minerallerin mikrolitlerinden oluşmus, tamamen kristalin bir hamur içinde dağılmıs olarak gözlenmektedirler. Plajiyoklazlar bitovnit (\pm Labrodor) birleşimlidirler.

Yamaç Döküntüsü; Inceleme alanunda yüzeyleyen ve genellikle volkanik malzemeden olusan yukardaki birimler oldukça sarp topoğrafik engebeler oluşturmaktadırlar. Ayrica, aglomeratik oluşumlarm kolayca dağlabilmelerinin sonucu olarak genis alanlar kaplayan yamaç döküntüleri gelişmiştir. Yer yer tabakalanma da gösteren bu birim içinde andezit bileşimli blok ve çakıllar çoğunluktadır.

Aüuvyon; Özellikle Melet Çayı vadisi içinde ve yan kollarında birikmiş, pekişmemis, deǧişik büyüklüklerde blok ve çakıllardan oluṣmus yığşıımlardır.

Bozunma (Alterasyon)

Litolojik birimler anlatılırken de değinildiği gibi inceleme alanında yüzeyleyen volkanik ve plütonik birimler ileri derecede bozunmuşlardır.

Bozunma sonucu özellikle andezitli birimler içindeki feldispatlar ileri derecede serisitlesmişler ve karbonatlaşmışlar, mafik mineraller ileri derecede kloritleşmişler ve hamur içinde ikincil kuvars oluşumu hakim duruma gelmiştir. Bu ikincil kuvars oluşumları yeni silis getirimi yoluyla oluşabileceği gibi volkanik cam karakterindeki hamurun yeniden kristalleşmesi sonucu oluşmus ürünler de olabilir.

Bunlara ilave olarak Seğgüneytepe Granitoyitinin diğer birimlerle dokunakları çevresinde hakim bir şekilde, Geyikkayatepe Dasiti ve Tüfü içinde yaygn bir şekilde ve andezitli birimler içinde yer yer olmak üzere propillitlessme, epidotlaşma, alunitles. me ve piritleşme şeklinde bozunmalar da gözlenmektedir.

Cevher damarları çevresinde yapılan saha gözlemleri ve damarlara yakın olarak alınmıs kayaç örneklerinin mikroskopik incelemeleri ssrasinda cevherleşme ile ilgili olarak gelişmiş bozunmanın çok ince (damarlarm iki yanında $15-20 \mathrm{~cm}$) ve yerel olduğu gözlenmiştir.

Inceleme alanundaki litolojik birimlerde gözlenen bu bozunmaların nedeni jeolojik evrim içinde incelendiğinde;
i) Andezitik birimler sıcak bir sekilde su içine püskürtüldü̈kten sonra çözücii özelliǧi ve hareket yeteneği isındikça artan deniz suyunun kayacın kırık, çatlak ve gaz boşlukları boyunca hareketí sonucu kayaçları etkilemesi,
ii) Andezitli birimlere göre daha genç olan $\mathrm{Se}_{\mathrm{g}}^{\mathrm{g}}-$ güneytepe Granitoyiti ve Leykün Bazaltı ile ilgili sıcaklik artış veya hidrotermal faaliyetlerin bu bi-
rimleri etkilemesi şeklinde iki sürecin etkili olduğu düşünülebilir.

Bunlardan birinci süreç andezitli birimlerin her yerinde gözlenen feldispatların serisitleşmesi şeklinde gelişen yaygun bozunmayı, ikinci süreç ise granitoyitik kütle çevresinde gelişen propillitleşme, epidotlaşma ve piritleşme şeklindeki bozunmalar ile, andezitli birimlerin hamurunun kristallenmesi ve ikincil kuvars oluşumunu sonuçlandırmıștır.

Yerel Tektonik

Inceleme alanı içindeki litolojik birimlerden Kurşunludere Otobreş-Andeziti ile Menekşeli Çökelleri arasinda yer alan birimler birbirleri ile uyumlu olup, Leykün Bazaltı bunlar üzerine uyumsuz olarak oturmaktadır.

Tabaka Konumları; Ölçülen tabaka düzlemlerinin konumlan oldukça değiṣken olmakla birlikte K $60^{\circ}-70^{\circ} \mathrm{B}$ değer aralığında bir yoğunlașma gözlenmektedir. Eǧim yönlerinin bu doğrultuya dik yönde olanlarının çoğunlukta olacakları düşünülürse hakim sıkışturicı kuvvet yönünün K $20^{\circ}-30^{\circ}$ D yönlü olduğu söylenebilir. Eǧim değerlerinin büyük çoğunluğu ise $10^{\circ}-40^{\circ}$ arasında deǧişmektedir.

Kıvrımlar; Înceleme alanı içindeki birimlerin tabakalanma düzlemlerinden ölçülen doğrultu ve eğim değerlerinden yararlanılarak $1 / 25,000$ ölçek düzeyinde haritalanabilecek büyüklükte herhangi bir kıvrım ekseni belirlenememiştir.

Kırıklar ve Faylar; Inceleme alanı içindeki kırık ve fayları cevherli ve cevhersiz olmak üzere iki kısma ayırmak yerinde olacaktır. Cevherli kırık ve faylar genellikle K $500-80^{\circ} \mathrm{B} / 75^{\circ}-85^{\circ} \mathrm{KD}$ konumlu olup birbirine paralel kırık zonları seklindedir. Bunlar genellikle atımları çok az (ençok 20 m kadar) veya belirsiz eğim atımlı normal faylar șeklindedirler. Bu nedenle de cevherli kırık ve faylar denmesi uygun görülmüştür. Cevhersiz faylar ise inceleme alaminın çeşitli yerlerine dağılmış olarak gözlenmektedirler. Genellikle yerel, doğrultuları değişken, doğrultu ve eğim atımlı faylar șeklindedirler .

Cevherli kırık ve faylar Leykün Bazaltı ve Seğguneytepe Granitoyitini kesmediklerinden Üst Kre-tase-Eosen arasinda bir zamanda, büyük olasılıkla Seğgüneytepe Granitoyitinin yerleşimi sırasında oluşmuşlardir. Cevhersiz faylar ise hem cevher damarlarms hem de bahsedilen birimleri kestiklerinden Eosen sonrası tektonik olaylar sonucu olușmuşlardır.

Jeolojik Evrim

Yerel olarak düșünüldüğünde inceleme alanında ilk önce Kurşunludere Otobreş-Andeziti lav şeklinde akmıș ve ani soğuma sonucu bol kırıklı ve çatlaklı bir șekil almıștir. Bundan sonra sirasıyla Geyikkayatepe Dasiti ve Tüfü, Eskiköy Andezit-Aglomerası,

Evliyatepe Andeziti, Deliktas Porfiro-Andeziti ve Menekşeli Çökelleri bölgeye yerleşmişlerdir. Büyük olasılıkla bu yerleşimler Üst Kretase sonlarına doğru olmuştur. Bu yerleşimi Seğgüneytepe Granitoyitinin sokuluinu izlemiş ve olasilikla cevherleşmelerin yataklanmasina neden olan kirik zonlari bu sırada gelişmişlerdir. Bu granitoyitin Leykün Bazaltı tarafindan örtüldüğü düşünülürse sokulum Üst KretaseEosen arası bir zamanda bölgeye yerleșmis olmalıdır.

Ayrica bu zamana kadar bölgeye yerleşen birimler Leykün Bazaltının yerleşiminden önce bir deformasyon fazından etkilenmisler ve belirsiz de olsa yerel kıvrımlar oluşturmuşlardır. Leykün Bazaltı anlatılan tüm bu birimleri üzerleyerek yayılmış plato bazaltı özelliğindedir. Doğuya doğru gidildikçe Eosen yaşlı fosiller içeren filiş fasiyesi özelliğindeki kumtaşları ile yanal ve düşey geçiş yaptıklarından bu birim Eosen yaşlı olmalıdır. Konumları deǧişken olan ve yer yer Leykün Bazaltını da kesen kırık hatları ise Eosen sonrası bir zamanda gelişmiş deformasyon evrelerinin ürünü olmalıdır. Yamaç önlerindeki döküntüler ve alüvyonlar ise Kuvarterner boyunca birikmişlerdir.

MADEN JEOLOJISI

Dağlım ve Yataklanma Şekli

Inceleme alanunda ișletilebilir özellikteki tek ve önemli yeraltı zenginliği bu çalışmanin konusunu olușturan $_{n} \mathrm{~Pb}-\mathrm{Zn}-\mathrm{Cu}$ cevherleşmeleridir.

Bu cevherleșmeler Kurşunlu Köyü ile Melet Çayı arasında, Aksu Köyü çevresinde, batıda Taşhane Sırtı üzerinde ve Acıdere Köyü kuzeyinde yoğunlaşmaktadirlar (Ek 1). Damarların toplam sayısı ellinin üzerindedir.

Yataklanma şekli olarak, yankayaçlarla uyumsuz, az da olsa gelişmiş tabaka düzlemlerini kesen, damar tipi bir yataklanma göstermektedirler. Cevher damarları genellikle K $50^{\circ}-80^{\circ} \mathrm{B} / 75^{\circ}-85^{\circ} \mathrm{KD}$ konumludurlar. Cevher damarları doğrultu ve eğim yönlerinde takip edildiklerinde doğrultu ve eğim değerleri ile kalinlıklarının çok sık değiştiǧi gözlenmektedir. Ayrica bazı damarlarin uzanımları boyunca yer yer uçları çatallanmakta, yer yer ise farkIn damarlar birleşmektedir. Yer yer ana damara göre farklı konumda gelişmiş ince devamsız damarcıklar da gözlenmektedir. Kalın cevher damarlarının doğrultuları boyunca devamlilığ 250 m ile 1000 m arasında, kalınlıkları ise 10 cm ile $2,5 \mathrm{~m}$ arasinda değișmektedir.

Cevher damarlarının iç dokuları genellikle aymı olup, damarın iki kenarında, yankayaçla olan sınırında yumuşak, killi bir malzeme bulunmaktadır. Damar içinde değişik büyüklüklerde yan kayaç kırıntiları yaygındır. Yan kayaç kırıntılarının arası büyük ölçüde kuvars ve kalsit tarafından doldurulmuştur. Bu dolgunun içinde kalınlıkları, süreklilikleri, damar
içindeki konumları ve mineral içerikleri sik sik degissen cevher damarciklan yeralmaktadır. Bu damarcıklar yer yer kilcal ağlar seklinde olup, yer yer ise kalınlıkları 20 cm 'yi bulmaktadır. Özellikle yan kayacın Kurşunlu Otobreş-Andeziti olduğu kesimlerde cevher damarları hem daha kalın, hem de daha yüksek tenörlüdürler.

Cevher Mikroskopisi

Alnan cevher örneklerinden hazrrlanan parlatma blokları üstten aydınlatmalı, incekesitler ise alt\tan aydnnlatmalı mikroskop yöntemleri ile incelenmişlerdir.

Bu incelemeler sırasinda gang minerali olarak kuvars, kalsit ve az miktarda barit gözlenmistir. Cevher minerali olarak ise sfalarit, galenit, kalkopirit, kalkosin ve hematit izlenmiştir (Levha 1, Şekil 1). Bu cevher minerallerinden sfalerit, galenit ve pirit ana bileşenlerdir. Kalkopirit yer yer zenginleşmektedir. Hematit ise hemen hemen her örnekte gözlenmektedir.

Sfalerit, galenit ve kalkopirit genellikle özsekilsiz veya yarı özşekilli, pirit genellikle özşekilli, hematitler özsekilli ince uzun çubuksu (spekülarit tipi) kristaller seklindedirler. Kalkosinler kalkopiritler üzerinde özsekilsiz oluşumlar seklindedirler. Sfalerit, galenit ve kalkopirit üçlüsü kristal büyüklükleri bakımından karşılaştırıldığında es büyüklükte tanesel yapı özelliği göstermektedirler.

Sfalerit kristalleri içinde yaygın olarak saçımımlar şeklinde kalkopirit kusmaları gözlenmektedir (Levha 1, Sekil 2). Çoğu parlatma bloklarında kalkopirit ve galenitin sfalerit kristalleri arasın doldurduğu izlenmektedir (Levha 1, Şekil 3 ve 4). Ancak, sfalerit tarafindan kuşatılmıs kalkopirit kristalleri de yok değildir. Piritin cevher içindeki dağlımı oldukça gelişigüzel olup her üç mineral ile birlikte yan yana bulunabilmektedir. Kalkosinler kalkopiritler üzerinde sonradan gelişmişlerdir (Levha 1, Şekil 5). Hematitler ise tüm bu mineraller arasmdaki boşluklarda gang mineralleri ile birlikte gelişmiş olup (Levha 1 , Şekil 6), en son evrenin ürünleri olmalidirlar. Cevherleşmede yer yer breşik yapı da gözlenmektedir.

Bu veriler minerallerin oluşum straları (suksesyon) açısmdan değerlendirildiğinde * (sfalerit + kalkopirit) - (kalkopirit + pirit $)$ - (galenit + pirit) - hematit - kalkosin» seklinde bir sıralama yazılabilir.

Cevherleşmenin oluşum sıcaklığnı belirtmek amacıyla sıvı kapanım çalısmalarına başlanmış, ancak henüz tamamlanamamıştır. Bazı kaynaklarda sfalerit içindeki kalkopirit ayrışımlarının $550^{\circ} \mathrm{C}$ gibi bir sicaklĭa işaret ettiği düşunülmektedir (Smirnov, 1976; s. 230). Ancak, bazı araştriciciar ise bu ayrişımların düşük sıcakliklarda oluşmuş cevherleşmelerde de izlendiğini belirtmektedirler (Ramdohr, 1980; s. 506-519).

Siv Kapanum İncelemesi

Sıvı kapanım incelemesi için seçilen 18 adet kuvarsça zengin örnekten hazrrlanan ince kesitlerden yalnızca bir tanesinde sivi kapanım izlenmis ve bu ince kesitte yapılan bes adet sicaklik ölçümünde; $430^{\circ} \mathrm{C}$, $310^{\circ} \mathrm{C}, 395^{\circ} \mathrm{C}, 455^{\circ} \mathrm{C}$ ve $>460^{\circ} \mathrm{C}$ 'lik sicaklık değerleri bulunmustur. Bu değerlerden oluşum sicaklığını $310^{\circ} \mathrm{C}$ ile $460^{\circ} \mathrm{C}$ arasında degiststigi ve ortalama sıcaklığin $410^{\circ} \mathrm{C}$ olduğu görülmektedir. Ayrica, kapanımlar birincil kapanımlar olup, sıvı ve gaz fazı olmak üzere iki fazlıdırlar. Bu sıcaklık değerleri olağan hidrotermal $\mathrm{Pb}-\mathrm{Zn}$ yataklarında ölçülen sıcaklıklara göre oldukça yüksek olup, cevher damarlarımın plütonik kütleye çok yakın olması nedeniyle geliştiǧi düsünülebilir.

Yataklarn Oluşumu ve Kökeni

Inceleme alanındaki $\mathrm{Pb}-\mathrm{Zn}-\mathrm{Cu}$ yataklarının oluşumuna 1 şık tutabilecek bulgular aşağıda olduğu gibi stralanabilir.

- Yatakların tümü yankayaçların tabakalanma düzlemleri ile uyumsuz, onları kesen kink ve faylar içinde yataklanmıs damar tipi yataklardır.
- Cevherli kırk ve fayların tümü inceleme alanı içinde tanımlanan Űst Kretase yaşlı volkanik ve volka-no-tortul birimler içinde kalmakta olup, Seğgüneytepe Granitoyitini ve Leykün Bazaltını kesmemektedirler. Dolayisiyle bu kirik ve faylar Ûst KretaseEosen arası bir zamanda, büyük olasılıkla Seğgüneytepe Granitoyitinin yerlesimi ile ilişkili olarak gelişmişlerdir. Bu kırık ve fayların cevher ile doldurulması oluşumlarından sonra herhangi bir zaman aralığnda mümkün ise de Eosen yaşl Leykün Bazaltını ve Seğgüneytepe Granitoyitini kesen faylar cevhersiz olduklarından Eosen öncesi bir zamanda dolduruldukları söylenebilir.
- Seğgüneytepe Granitoyitinin diğer birimlerle olan dokunağında bozunma ve pirit oluşumu çok yaygn iken galenit, sfalerit ve kalkopirit gibi cevher damarlarında yaygin olan mineraller hiç gözlenmemektedir. Ayrica, bu sokuluma yaklaşıldıkça cevher damarlarında herhangi bir kalite artışı izlenmemektedir.
- Cevherin içinde bulunduğu andezitik ve dasitik yankayaçlar ileri derecede bozunmus ve hamurları yeniden kristallenerek ikincil kuvars oluşumu gelişmiş olup, bu deǧişimler cevherleşme ile ilişkili göziukmemektedir. Ayrica, cevherleşmeye yaklaştrkça herhangibir artış veya özel bir mineral oluşumu gözlenmemektedir.
- Cevher minerali olarak izlenen sfalerit, galenit, kalkopirit, kalkosin ve hematit gibi mineraller, sicaklık, basınç, köken gibi oluşum koşulların belirtecek özelliklerde degillerdir.

Bu bulguların ş̧ığında cevherleş̣menin büyük olasilkla Ust Kretase-Eosen zaman aralığinda olmak üzere ya Seğgüneytepe Granitoyitinin artçı hid-
rotelmal çözeltilerinin içermiş olabilecekleri $\mathrm{Pb}-\mathrm{Zn}$ ve Cu'yu bu karık ve faylar içinde çökeltmeleri veya bölgesel olarak Pb, Zn ve Cu içeriği yüksek olan yankayaçlardan bu elementlerin derinlere inildikçe
 özelliği artmıș yüzey sularınca çözülüp bu kırık ve faylar içinde yeniden çökeltilmiş olabilecekleri söylenebilir. Ancak Seğgüneytepe Granitoyiti çevresindeki bozunma zonlarında ve yakayaçlar içine doğru girmiş kuvars damarları içinde cevher minerallerinin gözlenmeyişi ve cevher damarlarının kalitesinde granitoyit kütlesine yaklaştıkça herhangibir değişikliğin gözlenmemesi bu yatakların oluşumunda özellikle ikinci sürecin etkili olduğunu düşündürmektedir.

SONUÇLAR VE ONERILER

Sonuçlar

- Inceleme alanı içinde yüzeyleyen ve Ust Kretaseden güncele kadar değișik zamanlarda oluşmus litolojik birimler kayaç türü düzeyinde haritalanmış, en iyi gözlendikleri mevkii isimleri ile adlanmış ve olasıl stretigrafik dizilimleri ve yaşları belirlenmeye çalı̧̧ılmıştır.
- Tanımlanan birimlerden Leykün Bazaltı d1ssında olanlar ileri derecede bozunmuşmuşlar (serisitleșme, propilitleșme, epidotlașma gibi) ve silisleşmisslerdir.
- Inceleme alanı içindeki $\mathrm{Pb}-\mathrm{Zn}-\mathrm{Cu}$ yatakları Üst Kretase yașh volkanik ve volkano-sedimanter birimler içinde gelişmiş, onların tabakalanma düzlemlerini kesen kırık ve faylar içinde yataklanmıs damar tipi yataklardır.
- Eosen yaşlı Leykün Bazaltı ve Seğgüneytepe Granitoyitini kesen krik ve faylar cevhersiz olduklarindan cevher olușumu Ust Kretase-Eosen arası bir zamanda olușmuş olmalıdırlar.
- Seğgüneytepe Granitoyiti çevresinde, kestiği yan kayaçların içine doğru gelişmiş kuvars damarları içinde ve bozunma zonlarında Pb, Zn ve Cu cevher mineralleri gözlenmemektedir.
- Cevher damarlarından alınan örneklerde gang minerali olarak kuvars, kalsit ve az miktarda barit, cevher minerali olarak ise sfalarit, galenit, pirit, kalkopirit, kalkosin ve hematit gözlenmiştir.
- Cevher minerallerinin oluşum sirasi α (sfalarit + pirit) - (kalkopirit + pirit) - (galenit + pirit) - hematit - kalkosin» şeklinde belirlenmiştir.
- Sıvı kapanımlarla yapılan sıcaklık ölçümünde oluşum sicaklığ1 ortalama $410^{\circ} \mathrm{C}$ olarak saptanmiş olup, bu sıcaklık değeri Pz-Zn yataklarında ölçülen olağanı deǧerlere göre oldukça yüksektir. Sfalaritler içinde gözlenen kalkapirit ayrışımlarının da bu yüksek sıcaklık degerini belkili olarak desteklediği söylenebilir.
- Saha ve laboratuar incelemelerinin sonuçları birlikte değerlendirilerek $\mathrm{Pb}-\mathrm{Zn}-\mathrm{Cu}$ cevher damarlarımn Ừst Kretase-Easen arası bir zaman aralığında olmak üzere Seğgüneytepe Granitoyitinin artçı hidrotermal çözeltilerinin içermiş olabilecekleri Pb, Zn ve Cu'yu bu kırık ve faylar içinde çökeltmelerinden daha çok bölgesel olarak Pb, Zn ve Cu içeriği yüksek olan yan kayaçlardan bu elementlerin derinlere indikçe (Seğgüneytepe Grenitoyiti kütlsine yaklaştrkça) $1 s ı n m ı s ̧$ ve çözücüi özelliği artmıs yüzey sularınca çözüluïp bu kırık ve faylar içinde yeniden çökeltilmeleri sonucu olușmuş olabilecekleri sonucuna varılmiştır.

Öneriler

- Cevher damarları çevresinde yapılmış $1 / 2000$ ölçekli jeoloji haritası çalışmalarının genişletilmesi,
- Jeofizik ve sondajlı incelemelerle damarlarin daha derin kesimlerinin ve doğrultuları boyunca uzanimlarinin belirlenmesi,
- Özellikle yankayacin Kurvșunludere OtobreşAndeziti olduğu kesimlerde cevher damarlarinin daha kalın ve zengin tenörlü olduğu gözönünde bulundurularak yukarıda önerilen jeofizik ve sondajlı çailșmaların bu seviyelere kadar indirilmesi ve/veya altta b ulitolojik birimin varlığmin belirlenmesi,
- Bölgesel olarak ayrıntılı bir yapısal jeoloji incelemesi yapılıp, konumları bilinen cevher damarlar1 ile uyuşan ve/veya aynı deformasyon evresinden etkilenmiş kırıkların belirlenmesi ve cevherleşme açısindan incelenmesi,
- Bölgesel olarak önerilen ayrintılı yapısal jeoloji incelemesine paralel olarak derekumu, toprak ve kayaç örnekleri ile jeokimyasal prospeksiyon çalışmasımın yapılması önerilebilir.

KATKI BELİRTME

Yazarlar saha incelemeleri surasındaki yardımlar1 için MENKA TIC. ve SAN. A.Ș. Kurşunlu Maden Ispletmesi yetkililerine laboratuar incelemeleri sirasındaki katkılanı için Yrd. Doç. Dr. Nuri TERZIOGLU (C.Ü.)'na, Yrd. Doç. Dr. Selim INAN (C.U.)'a, Araş. Gör. Osman KOPTAGEL (C.U.)'e, Araş. Gör. Ahmet EFE (C.Ü.)'ye ve sıvı kapanımlarında sıcaklık ölçümü yapan Zeynep AYAN (M.T.A.)'a teşekkürü borç bilirler.

Levha I, Foto 1 : Cevher damarlarinin ana minerallerinden sfalerit (sf), galenit (ga), kalkopirit (kp) ve pirit (pi) kristalleri (mikrofoto, örnek no: KS-8a, parlatma, yağ ortamı, tek nikol, büyütme : 250X).
Plate I, Photo 1 : Main minerals of the ore veins; sphalerite (sf), galena (ga), chalcopyrite (kp), pyrite (pi) (microphoto, sample no: KS-8a, polished section, oil, single nicol, magnification: 250 X).

Levha I, Foto 3 : Sfalerit kristalleri (sf) arasına sonradan yerleşmiş galenit (ga) ve kalkopirit (kp) kristalleri (mikrofoto, örnek no: KS-2b, parlatma, yağ ortamı, tek nikol, büyütme: 500X).
Plate I, Photo 3 : Galena (ga) and chalcopyrite (kp) erystals filling the empty between earlier formed sphalerite (sf) crystals (microphoto, scample no: KS2b, polised section, oil, single nicol, magnification: 500 X).

Levha I, Foto 5 : Kalkopirit (kp) üzerinde gelişmiș kalkosin (ka) kristalleri (mikrofoto, örnek no: KS5 a , parlatma, yağ ortamı, tek nikol, büyütme: 150X).
Plate I, Photo 5 : Chalcocite (ka) crystals grown on chalcopyrite (kp) (microphoto, no: KS-5a, polished section, oil, single nicoI, magnification: 150X).

Levha I, Foto 2 : Sfalerit (gri) içinde kalkopirit (beyaz) ayrışımları (mikrofoto, örnek no: KS-13, parlatma, yağ ortamı, tek nikol, büyütme: 500 X).
Plate I, Photo 2 : Chalcopyrite exsolutions (white) in the sphalerite crystals (gray) (microphoto, sample no: KS-13, polished section, oil, single nicol, magnification: 500X)

Levha I, Foto 4 : Sfalerit kristallerini (sf) kesen ve içine alan galenit (ga) damarcıkları (mikrofoto, örnek no: KS-14, parlatma, yağ ortamı, tek nikol, büyütme: 250X).
Plate I, Photo 4 : Galena (ga) veinlets crossing and surrounding sphalerite (sp) crystals (microphoto, sample no: KS-14, polished section, oil, single nicol, magnification: 250X).

Levha I, Foto 6 : Cevher damarlarinda yaygin gözlenen hematit (h) kristalleri (mikrofoto, örnek no: KS-6, parlatma, yağ ortamı, tek nikol, büyütme: 250X).
Plate I, Photo 6 : Commonly seen hematite (h) crystals within the ore veins (microphoto, sample no: KS-6, polished section, oil, single nicol, magnification: 250X).

LEVHA I
 (Plate I)

FOTO 1
(Photo 1)

FOTO 3
(Photo 3)

FOTO 5
(Photo 5)

FOTO 2
(Photo 2)

FOTO 6
(Photo 6)

$-\frac{8}{8} \frac{8}{8} \frac{7}{4}$ 童

Ek 1 : İnceleme alaminn jeoloji haritası.

Appendix 1: Geologic map of the investigated area.

DEGİNILEN KAYNAKLAR

Akancl, Ö.T., 1980. The major copper metallogenetic units and genetic igneous complexes in Turkey. In: S. Jankovic and R.H. Sillitoe (ads.), European Copper Deposits, 199-208.

Akanct, Ö.T., 1985. The Eastern Pontid volcanosedimentary belt and associated massive sulphide deposits. In: Dixon, J.E. and Robertson, A.H.F. (eds), 1985; The Geological Evolution of the Eastern Mediterranean; Special Publication of the Geological Society No. 17, Blackwell Scientific Publications, Oxford, 848 pp.

Çavusoğlu, H., 1969. Sivas-Koyulhisar-SisortaMuradınkö̀ ve Aksu bölgeleri, Kurşun-Çinko cevheri detay etïd ve sondajl çalışmalarz: M.T.A. Rap. No: M.E-897 (yaymlanmamıs).

Faith, L., Schnierer, K., Irmler, R., Bane, R. ve Bystrica, B., 1972. C. S. Ekibinin 8.8.-22.11.1971 tarihleri arastnda Türkiye'de Muradın Bölgesindeki Pb-Zn-Cu cevherleri zuhurunda yaptıği tetkik gezisi hakkanda rapor: M.T.A. Rap. No: 5088 (yaymlanmamıs).

Kaaden, G.V.D., 1962. Muradın Mahallesi, Kan Köyünün doğu bölgesinde yapulan Kurșun-Çinko prospeksiyon hakkinda rapor: M.T.A. Rap. No: M.E-346 (yayınlanmamı̧̧).

Kaptanoğlu, H., 1967. Sivas-Koyulhisar-SisortaMuradınköy Kurşun-Çinko-Bakur zuhurlarn ve rezerv raporu: M.T.A. Rap. No: 3953 (yayinlanmamış).

Ovalıoğlu, R., 1964. Koyulhisar-Sisorta-Muradinköy Pb-Zn-Cu zuhurlarn detay etïdü: M.T.A. Rap. No: 3799 (yayznlanmamiş).

Özbayoğlu, S., 1968. Kurșunluköy ve civarinda sondajlı arama çalışmalarz: M.T.A. Rap. (yayınlanmamı̧̧).

Özgüneylioğlu, A. ve Okabe, K., 1981. Sivas-Koyul-hisar-Sisorta-Kurşunluköy ve civaru Kur-şun-Çinko-Bakur madeni, ayrintilu jeoloji ve
sondaj çalışmaları raporu: M.T.A. Rap. No: 3855 (yaymnlanmamış).

Özgüneylioğlu, A., 1988. Kurşunlu (Ortakent-Ko-yulhisar-SiVAS) $\mathrm{Pb}-\mathrm{Zn}-\mathrm{Cu}$ yataklarinun jeolojisi. Cum. Ünv. Fen Bil. Enstitüsï, Yüksek Lisans Tezi, 52 s , (yayınlanmamiş).

Özsayar, T., Pelin, S. ve Gedikoğlu, A., 1981. Doğu Pontidler'de Kretase: K.T.Ü., Yerbilimleri Dergisi, Jeoloji, c: 1, s: 2, s. 65-114.

Petrascheck, W.E., 1967. Sivas ile Giresun arasmdaki Koyulhisar - Sebinkarahisar - Sușehri Kurşun - Çinko cevheri bölgesi isimli rapor: M.T.A. Rap. No: ME1802 (yayınlanmamıs).

Ramdohr, P., 1980. The ore minerals and their 8 intergrowths: 2nd Ed., International series in earth sciences, Pergamon Press, 1200 p.

Seymen, 1., 1975. Kelkit vadisi kesiminde Kuzey Anadolu Fay Zonunun tektonik özelliği: I.T.Ü., Maden Fak., Doktora Tezi, 192 s.

Simirnow, V.I., 1976. Geology of mineral deposits: Mir Publishers, 520 p .

Stchepinsky, V., 1945. Yukart Kelkit Çayı ve Havzasmin Jeolojisi ve mineral varllklart: M.T.A. Rap. No: ME-802 (yayınlanmamış).

Takashima, K., Kawada, K., Hakari, N., Kılıç, M. ve İsler, F., 1974. Menka Madeni etrafindaki sahanin jeolojisi ve mineralizasyonu, Koyulhisar - Sivas ili, kuzey kesmı: M.T.A. Rap. No: M-178 (yayınlanmamış).

Terlemez, İ. ve Yulmaz, A., 1980. Ünye - Ordu Koyulhisar - Reşadiye arasinda kalan yörenin stratigrafisi: T.J.K. Bült., 23, s. 179-191.

Terzioğlu, M.N., 1984. Ordu güneyindeki Eosen yaşll Bakarköy Volkanitlerinin jeokimyast ve petrolö̈si: Cum. Univ. Müh. Fak. Derg., 1, 43-59, Sivas.

Terzioğlu, M.N., 1985a. Reșadiye (Tokat) kuzeyindeki Eosen yaşlu Hasanșeyh Platobazaltinun mineralojik-petrografik ve jeokimyasal incelenmesi: Cum. Ûniv. Müh. Fak. Derg., 2, 105-134, Sivas.

Terzioğlu, M.N., 1985b. Reşadiye (Tokat) kuzeybatsstndaki Hasandede Andezitinin mineralo-jik-petrografik ve jeokimyasal incelemesi: Cum. Univ. Müh. Fak. Derg., 2, 135-149, Sivas.

Terzioğlu, M.N., 1985c. Mesudiye (Ordu) battsundaki Üst Miyosen yaṣl Kuyucak Bazaltinnn petrolojisi ve kökensel yorumu. Yerbilimleri, 12, 53-67.

Terzioğu, M.N. 1986a. Doğu Karadeniz bölgesinde Pliyosen yaşlı Erdembaba Volkanitlerinin petrolojisi ve kökensel yorumu: T.J.K. Bült., 29, 119-132.

Terzioğlu, M.N., 1986b. Resadiye, Gölköy ve Koyul. hisar arasındaki Tersiyer - Kuvaterner yaşlt volkanitlerin genel stratigrafik özellikleri: Cum. Üniv. Müh. Fak. Derg. 3, 3-13, Sivas.

Terzioğlu, M.N., 1987. Doğu Karadeniz Bölgesinde Pliyosen yaşlı Canik Volkanitlerinin mineralojik - petrografik ve jeokimyasal incelenmesi: T.J.K. Bült., 20, 49-54.

Westrum, H.H.S., 1961. Sivas - Koyulhisar - Sisorta Nahiyesi, Kanköy - Muradın Mahallesi Pb-Zn madeni hakkinda ön etüdlere ait rapor: M.T.A. Rap. No: 3413 (yayınlanmamış).

Erzurum - Așkale - Tortum Yöresinin Tektonik Geliș̦̦imi

TECTONIC EVOLUTION OF THE ERZURUM - AŞKALE - TORTUM REGION

Selim INAN, Cumhuriyet Universitesi Jeoloji Mühendisliği Bölümü, SIVAS.

Öz : Inceleme alanının temelini Kuzey Neotetis kolunun kıta kenarında çökelmiş olan Liyas-Alt Kretase yaşlı düzenli bir istif oluşturmaktadır. Bu istif tabanda akarsu ortamı ürünü olan çakıltaşı ve bitki kırıntılı kumtaşlarryla başlar, üste doğru sığ denizel kumtaşı, marn, kireçtaşı, bazik volkanik ve fliş fasiyesinde devam ederek, Calpionella'lı kireçtaşlarıyla sonlanır. Istif, Neotetis ürünü ofiyolitli karışıklar (Kuzey Anadolu Ofiyolitli Karışığ) tarafından tektonik olarak üstlenir.

Ofiyolitli karışığın üzerini, Üst Kretase yaşlı, kumtaşı, marn ve Globotruncana'lı kireçtaşlarıyla temsil edilen Elmalı formasyonu uyumsuz olarak üstler. Bu ilişki Neotetis'in bu yörede Alt KretaseÜst Kretase zaman aralığında kapandığını göstermektedir.

Yukandaki tektonik ve tektonik olmayan istiflerin üzerinde, çakıltaşı-kumtaşı ve killi kireçtaşlarından oluşmus Eosen yaşlı Tavşantepe formasyonu uyumsuz olarak yer alır.

Oligosen bölgede karasal, Miyosen ise karasal-sığ denizel fasiyeste gelișmiştir. Ưst Miyosen sırasında bölge geniş ölçekte sıkışma rejiminin denetiminde yükselmiş, alkalen ve kalkalkalen nitelikli volkanik kayalar tüm birimleri örtmüştür.

Pliyosenden itibaren bölge karasal ortam özelliğini korumuş, yer yer gölsel, yer yer akarsu ortamı ürünü olan Gelinkaya formasyonu diğer birimleri uyumsuzlukla üstlemiştir.

Yörede gözlenen çoğu aktif özellikli sağ ve sol yanal doğrultu atımlı faylar ise Pliyosen ve sonrasinda gelişmiştir.

ABSTRACT : The basement of the studied area is composed Liassic-Lower Cretaceous sequences which are sedimented on the continental margin of the Northern belt of Neo-Tethyan. The fluvial sediments of conglomerate and sandstone with plants are located at the base. There is shallow marine sequences of sandstone ,marl, limestone and basic volcanics, flysch facies above it. At the top, limestone with Calpionella can be observed. These sequential unit is tectonically placed by ophiolitic melange of the Neotethyan.

Ophiolotic melange is unconformably overlain by the rocks of Elmalı formation as Upper Cretaceous sandstone-marl at the base, limestonecontaining Globotruncana at the top. This indicate that Neotethyan in the studied area is closed during Lower Cretaceous-Upper Cretaceous.

The sequences of the tectonic and others are unconformably overlain by Tavșantepe formation which are conglomerate, sandstone and clayeylimestone.

In the area, Oligocene show the characteristic of nonmarine but Miocene non-marine - shallow marine facies. During Upper Miocene, this area shows uplift the regional compressive regime in large scale so that alcaline and calc-alcaline volcanic rocks are covered the others.

During Pliocene and after that the continental characters of the area are continued and locality Gelinkaya formation of the lake sediments and fluvial clastics in unconformably overlain on the other rocks.

Left and right strike-slip faults which are observed in the studied area are evolutied during Pliocene and after it.

GIRIS

Inceleme alanı Kuzeydoğu Anadolu'da ErzurumAşkale - Tortum arasında yaklaşık $3200 \mathrm{~km}^{2} \mathrm{lik}$ bir alanı içine alan 24 adet $1 / 25.000$ öçekli paftaya yayılmaktadır (Sekil 1).

Şekil 1 - Yer bulduru haritası.
Figure 1 - Location map.

Çalışma alanıun öncü jeolojik çalışmalarn daha çok ekonomik amaca yönelik olarak, Roussel (1912), Lahn (1939), Ortynski (1944), Baykal (1950), Erentöz (1953), Gattinger (1956), Brennich (1969) tarafindan yapılmıștr. Özellikle yetmişli ve seksenli yıllarda daha çok bölgenin stratigrafisi, tektoniği, volkanizması ve morfolojisi gibi bilimsel amaçıı çalışmalar arasunda ise, Sür (1965), Arpat (1965), Bingöl ve diğ. (1969), Irrlitz (1971), İhan (1971), Erinç (1973), Acar 1975), Arpat ve diğ. (1977), Atalay (1978, 1982), Șengör ve Kidd (1979), Ardos (1979), Șaroğlu ve Güner (1981), Sengör (1980); Bayraktutan (1982), Sipahioğlu (1983), Bilgin (1983, 1984), Barka ve dig. (1983), Özgül ve diğ. (1983). Koçigit (1983, 1985), Șaroglu ve Yılmaz (1984), Koçyiǧit ve Rojav (1984), Koçyiǧit ve diğ. (1985), Tokel (1984) sayılabilir.

Yukarıda yapılan çok çeşitli çalışmalara rağmen, bölgenin bütününde bugüne kadar, levha tektoniği açısından herhangi bir yapısal evrim modeli ge-
liştirilememiştir. Bu çalişmalar özde küçük ve yerel alanlarda kalmıştır.

Bu çalışmada ise, yukarıda konumu verilen bölgedeki birimlerin $1 / 25.000$ ölceğinde haritalanması, stratigrafik konumları ve yapısal unsurlari incelenerek bölgenin bu güne kadar geçirmiş olduğu yapısal evrimi irdelenmiştir.

Yazar önce bölgenin temel jeolojik özelliklerini daha sonra da yapısal evrimini anlatacaktır.

BÖLGENIN TEMEL JEOLOJİ ÖZELLíILERİ

Çalş̧ma alanı ve yakın yöresinde iyas öncesi yaşta birimler guzlenememistir. Liyas-Ust Pliyosen zaman aralığnda ise, yer yer kesintili olarak çökelmis normal ve tektonik ilişkili çeşitli kayaç birimleri ve formasyonlar yer almaktadır. Bu birimler aşağıda yas sırasına göre anlatilmaktadır (Sekil 2 ve 3).

Rizekent Formasyonu

Inceleme alanınin kuzeybatısinda Serçeme deresi ve yakın yöresinde yüzeyleyen kumtaṣı, çakıltaşı ve seyl ardalanmaları ile temsil edilen birim ilkin Bilgin (1983) tarafindan Rizekent formasyonu olarak adlandirılmıştr. Çalışma alanının temelini oluşturan birim genelde kirli, sarı, kahverenkli kaln katmanh bitki kırıntılanı içeren kumtaşı-çakıtlaşı ve kurşuni gri renkli şeyl ardalanmasından oluşmuştur. Çakıltaşları, metamorfik ve granit çakıllarından oluṣmakta, sparit kalsit ve klorit çimento ile tutturulmus olup, yer yer çapraz katmanlanmalıdır. Kumtaşlan içinde makro ve mikro ölçüde bitki kırıntılarının yamsıra, $0.07 \mathrm{~mm}-0.22 \mathrm{~mm}$ arasında deǧisken boyutlu ksenomorf kuvars kristalleri ile tali plajioklaslar yer almaktadır. Șeyller daha ince katmanlı olup, bolca bitki kırıntıları içerirler. Çalışma alanında toplam 2500 m kalınlığa sahip olan birime, Bilgin (1983) Liyas-Dogger yaşın vermistir. Fakat bu çaliṣmada birime yas verebilecek fosil bulunamamıştir. Ancak, birimin üzerinde yer alan Ust Jura yaşl Akbaba kireçtaşlarına göre, yaşı Liyas-Dogger zaman aralığna karṣılık gelebilir. Birim sığ-karasal ortamda (bitki kırıntıları ve çapraz katmanlanmadan ötürü) depolanmıştır.

Akbabatepe Kireçtaşlan

Serçeme, dere batı yamacında yüzeyleyen, açık gri-krem renkli masif kireçtaşlarn Akbabatepe kireçtaşları adı altında incelenmiştir. Birim altta Rizekent, üstte Alt Kretase yaşl Yesirçölü formasyonlarn ile dereceli geçişlidir. Birimden alnnan örneklerde, boyları 1 mikron- 0.4 cm arasında değisen, bolca kirmizı alg, mercan ve bağlayicı foraminiferlerin yanıstra, mikrit ve mikrosparit kalsit ile bağlanmış bağ-lamtaş-istiftaşı özelliğinde olduğu saptanmıştr. Toplam 600 m kalınlğ̆a sahip olan birimin çeşitli düzeylerinden alnan örneklerde, Trocholina elongata LEUPOLD, Trocholina alpina LEUPOLD, Pscu-

Sekil 3-Inceleme alanmin jeolojik haritası. (Inan 1987 den genişletilerek)

Figure 3 - The geological map of the study area. (madified after İnan, 1987)
docyalammina gaccardi (SCHRODT, Cadosina berzai NAGY, Cadosina parvula NAGY, Thaumatoperalla sp. ve Spirillina sp. fosilleri saptanmıștur. Yukarıdaki fosillere göre birimin yaşı Üst Jura'dır. Kayacin fauna ve litolojik özellikleri, çok hareketli sıcak ve sı⿺辶 denizel bir ortamı yansitmaktadır.

Yesirçölü formasyonu

Alt ve orta düzeyleri bazik volkanik, volkanik kumtaşı ve kireçtaşı ardalanmaları, ïst düzeyleri kireçtaşları ile temsil edilen birime ilk kez Arpat (1965) Yesirçölii formasyonu adını vermiştir. Birim Serçeme deresi ve yakın yöresinde, Akbabatepe kireçtaşları üzerinde uyumlu olup, üstte ise Ekrek ofiyolitli karışığı. ve Lüteslyen yaşlı Tavşantepe formasyonu üzerine şariye olmuṣtur. Tortum kuzeyinde ise birim Ekrek ofiyolitli karısıgıı tarafindan tektonik olarak üstlenir (Sekil 2, 3, 4).

Formasyon alt ve orta düzeylerinde orta kaln katmanlı, yeșil-gri-koyu yeşil renkli bazik volkanik, volkanik kumtaṣı ve kireçtaşı ardalanmaları yer alır. Kumtaşlanı genellikle volkanik parçalardan oluşmakta, köşeli, orta boylanmalı ve kireç çimento ile tutturulmuștur. Kireçtaşları açık gri, yeşil renkli, ince orta katmanlı, iyi gelişmiş eklem takımlıdır. Formasyon üst düzeylere doğru açık gri - esmer renkli, yer yer ince katmanlı kireçtaşlarına geçmektedir. Ça-murtaşı-istiftaşı özelliği gösteren kireçtaşı seviyelerinden alnan kayaç örneklerinde, ekinid, mercan, gastropod ve kavkı kesitlerinin yanısıra, Calpionella eliptica COLOM, Calpionella alpina LORENZ, Tintinopsella carpathica COLOM, Calpionellopsis oblanga CADISH, Valvulina sp. Tcinella sp. ve Reophox sp. fosilleri saptanmıştır. Yukarıdaki fosillere göre birime Alt Kretase yaşı verilmiștir. Birim gerek fauna ve gerekse litolojik özelliklerine göre sı̆̆-derin deniz arasında değişen bir ortamda çökelmiṣtir.

Şekil 4-Inceleme alanının enine jeolojik kesitleri.

Figure 4 - The geological cross section of the study area.

Ekrek Ofiyolitli Kansşığ

Inceleme alanında birbirinden bağımsiz biri kuzeydoğuda (Tortum kuzeyi), digeri güney ve güneybatıda (Palandöken dağlan) ve üçüncüsüde kuzeybatıda (Serçeme deresi) olmak üzere üç ayrı yerde yüzeyleyen ofiyolitli kanışıklar, Ekrek ofiyolitli karışığ adı altında incelenmiştir. Karışık, Tortum kuzeyinde Alt Kretase yaşl Yesirçölü formasyonu üzerinde tektonik olarak yer almakta ve üzerine Lütesiyen yaşlı Tavşantepe formasyonu açılı uyumsuzlukla gelmektedir. Serçeme deresi ve yakın yöresinde ise Alt Kretase yaşlı Yesirçöliu formasyonu tarafindan șariye olmuştur. Ayrica bu kesimde birimin üzerine Ust Kretase yaşlı Elmalı formasyonu uyumsuzlukla gelmektedir (Șekil 2, 3, 4).

Karışık başlıca, serpantin, harzburjit, gabro, yastık lavlar ve komşu kayalardan türemiş olistostromal nitelikli kireçtaş1 bloklarından oluşmaktadır. Harzburjitlerin diş yüzeyleri yeşil, kahverenkli olup, mikroskop incelemelerinde kismen serpantinleştikleri, ikincil klinokrizolit, krizolit ve lizardite dönüştügüu, bolca olivin ve enstatit ile az miktarda diyopsit, tremolit ve kromit içerdiği saptanmıștır. Serpantinitler harzburjitlerin kenar kısımlarında yer almakta ve genellikle antigoritlerden olușmaktadır Gabrolar koyu yeşil renkli, iri kristaller halinde klinopiroksen ve plajioklaslardan oluşmaktadır. Özellikle Tortum-Yusufeli yol yarmasinda geniş yüzlekler veren yastık yapılı lavlar koyu yeşil-siyahımsı yeşil renkli fenokristaller halinde oligoklas, ojit ve camsı malzeme içermektedir. Birim içinde gözlenen yersel ve küçük ölçekte kireçtaşı bloklarından en genç yaş Úst Jura-Alt Kretase yaşını vermektedir.

Yukanda sunulan, kaya topluluklan çoğun birbirleriyle tektonik ilişkili olup, Üst Kretase başında gelişen yitim (subduction) ile birlikte, okyanusal kabuk ve gereçlerinin önemli ölçüde deformasyonu sonucunda oluşmuş ve ilksel ilişkileri bozunmuştur.

Elmali formasyonu

Çalışma alanı kuzeybatısında Serçeme deresi yakın yöresinde yüzeyleyen altta çakıltaşları ile başlayan üste doğru marn ve kireçtaşı ardalanmaları ile devam eden ve en üsttede kireçtaşları ile temsil edilen birimler Elmalı formasyonu adı altında incelenmiştir. Birim altta Ekrek ofiyolitll karışığı üzerinde uyumsuz, üstte ise Tavșantepe formasyonu tarafindan açil uyumsuzlukla üstlenir. Birimin egemen litolojisini gri-krem renkli oldukça kırıklı planktonik foraminifera ve radiolaria içeren kireçtașları olușturmaktadır. Mikroskop incelemelerinde vaketaşı-çamurtaş1 arasında değişen dokuda ve pelajik özellikte olduğu saptanmıştır. Inceleme alanında toplam 700 m kalınlığa sahip olan birimin kireçtaşı seviyelerinden alınan kayaç örneklerinde, Globotruncana linneiana D'ORBIGNY, Globotruncana tricarinata QUERAU, Globotruncana arca CUSHMAN, Giobotruncana bulloides VOGLER, Globigerina cretacea D'ORBIGNY, Orbitoldes sp . Siderolites sp.
ve Radiolaria sp. fosilleri saptanmıştır. Bu fosillere göre birime Üst Kretase yaşı verilmiştir. Birimin litolojik ve fauna içeriği derin deniz ortamını yansitmaktadır.

Tavşantepe formasyonu

Kirli sarı, gri, yer yer kahverenkli, kireçtaşı, kumtaşı, marn ve çakıltaşları ile betimlenen birimler Tavşantepe formasyonu adı altunda incelenmiştir. Birim Tortum kuzeydoğusunda, Ekrek Ofiyolitli Karışığını açılı uyumsuz üstlemektedir. Serçeme deresi boyunca ise birim, Alt Kretase yaşlı Yesirçölü formasyonu tarafından şariye olmuştur. (Șekil 2, 3, 4).

Birim altta, koyu kırmızı-sarabi renkli, genellikle kuvarsit, Jura, Alt Kretase, Üst Kretase, ofiyolit ve kuvars çakıllarından oluşmuş çakıltaşlan ile başlamaktadır. Üste doğru kahverenkli-gri renkli kuvars ve volkanik kayaç parçalarından oluşan kumtaşları ile kirli sarı-gri renkli gevşek yapılh, nummulit fosilleri içeren marn ardlanmalarına geçer. Biri\min üst düzeyleri ise orta-kalnn katmanlı, kirli sar1 renkli, bolca nummulit fosillerinin yanisıra sıcak ve siğ su ortaminı yansitan Quinqueloculina fosilleri içeren kireçtaşları ile temsil edilmektedir. Birimin toplam kalınlığ 300 m olup, çeşitli düzeyerinden alınan kayaç örneklerindeki Nummulites lucasi D'ARCHIAC, Nummulites cf irregularis DESHAYES, Nummulites geuttardi D'ARCHIAC Nummulites cf atacus LEYMERIE, Assilina exponens SOWERBY ve Quinqueloculina sp. fosillerine göre Liitesiyen ya\$ı saptanmıştır. Birim sıcak ve sığ deniz ortamında depolanmıștır.

Dambulut formasyonu

Tortum-Yusufeli yol yarmasinin her iki tarafinda yüzeyleyen alacalı renkli kumtaşı, marn, jips ve tüflerle temsil edilen birime Dambulut formasyonu adı verilmiştir. Birim Lïtesiyen yaşlı Tavşantepe formasyonu üzerinde açılı uyumsuz olarak gelmektedir. Ayrıca bu kesimde (Ördekdüzü sırtında) Ekrek Ofiyolitli Karışığı tarafından tektonik olarak üstlenmektedir (Șekil 2. 3, 4).

Birim tabanda, kireçtaşı, bazalt, andezit ve ofiyolit çakıllarından oluşmuş gevşek yapılı çakıltaşları ile bașlamakta, üzerine yeşil-gri renkli orta-ince katmanlı kumtaşlanı gelmektedir. Birim üst seviyelere doğru kırmızı-gri renkli marn-kumtaşı-tüf ardalanmaları ile devam etmekte ve en üst düzeyinde ise açık kırmızı-gri renkli jipslere geçmektedir. Formasyonun toplam kalınlığ̆ 350 m . dir. Birimde yas verebilecek fosile rastlamlmamis olup, ancak tabanda yer alan çakıltaşlarında en geç yas olarak Lütesiyen bulunmuștur. Ayrica stratigrafik konum göz önüne alındığnda Oligosen yaşında olduğu ve litolojik özelliklerine göre de karasal bir ortamda depolandığ söylenebilir.

Kemerkaya formasyonu

Inceleme alanının batısında (Aşkale ve yakın yöresi) geniş yüzlekler veren sığ deniz-karasal or-
tanda depolanmış Miyosen yaşlı birimler Kemerkaya formasyonu adı altında toplanmıştır. Birim tabanda, Ekrek Ofiyolitli Karışığı üzerinde açılı uyumsuzlukla yer alır. Ưstünü ise Ũst Miyosen-Pliyosen yaşlı Kargapazarı volkanitleri uyumsuzlukla örter. (Şekil 2, 3, 4).

Formasyon çalıșma alanında birbirleriyle yanal ve dikey geçişli 4 üyeye ayrılmaktadır. Tabanda yer alan gri-kirli sari renkli, yer yer ince bantlar halinde kumtaşı arakatkıları içeren bol makro ve mikro fosilli marnlar Kabandağ üyesi olarak adlandırılmıştur. Ulye üste dereceli olarak, kirli sarı-yeșil-gri renkli, yer yer jips mercekleri içeren kumtaşı, marn ve çakiltaşlarından oluşmus Şıhveren üyesi ile geçislidir. Şlhveren üyesinin üzerinde ise bol makro ve mikro kavkı kırıntılı, kirli bej renkli, kalın katman11 killi kireçtaşlarıyla temsil edilen Aşkale üyesi yer alır. Formasyonun en üst seviyesini ise açık gri-kirli sarı renkli, alt seviyeleri sıkı, üst eviyeleri gevșek çimentolu çakıltașlarından oluşmuş Çatveren uyesi ile son bulur (Sekil 2, 3, 4).

Formasyonun özellikle Aşkale ve Kabandağ üyesi içinden alınan kayaç örneklerinde, Flabellipecten lapicus OTTER, Flabellipecten burdigalensis LAMARCH, Chlamys rotunda LAMARCH, Echinolampas acuminatus ASICH, Clypeaster ef lalirstris AGG, Ostrea lamellasa BROCCHI, Miogypsina cf irregularis MICHELOTTI, Lepidocyclina ef fournnueri LEM VE DOUV. gözlenen makro ve mikro fosillerine göre Alt-Orta Miyosen yaşı saptanmıştr. Formasyon sığ denizel, kısmen lagüner ortamda depolanmıştır.

Karpazari Volkanitleri

Erzurum havzasını çevreleyen yüksek dağ silsilelerinin büyük bir kısmını oluşturan, tüf, aglomera, bazalt ve andezit türündeki volkanik kayaçlar Kargapazarı volkanitleri olarak adlandırılmıștır. Volkanikler, Alt-Orta Miyosen yaşlı Kemerkaya formasyonu üzerinde uyumsuz olarak yer almakta, üzerinde ise Ust Pliyosen yaşlı Gelinkaya formasyonu bulunmaktadır. Bu ilişkiye göre birimin yaşı Ust Miyo-sen-Pliyosen'dir (Șekil 2, 3, 4).

Volkanitler çalışma alanında bazalt ağırlıklı ola rak yüzeylerler. Bazaltlar, gri siyahmsi gri ve ince tanelidir. Yarı ofitik intergranular ve porfiritik tip dokulu, bolca olivin, ojit ve çok az plajioklas içerirler. Aglomeralarm hamurunu tüf ve kalsit oluşturmakta, $0.5 \mathrm{~cm}-25 \mathrm{~cm}$ arasında değişen bazalt, trakit ve andezit parçalarından oluşmaktadır. Tüfler, beyaz - gri renkli ve kül boyutunda tanelidir. Ande-
zit ve oligoklas parçalarının yanısıra piroksen ve manyetit mineralleri içermektedirler. Lav, tüf ve aglomeralar arasinda sıkça yanal ve dikey geçişler görülür.

Hinzık Trakitleri

Çalışma alanının kuzeybatısında Serçeme deresi her iki yamacında yüzeylerler. Kargapazarı volkanitlerinin üst kesimini örten trakitler sütunsal soğuma çatlakları gösterirler. Yer yer yönlenmiş $50-100$ mikron boyutunda plajioklas mikrolitlerinin yansira az ortopiroksen içerirler.

Gelinkaya formasyonu

Inceleme alannda karasal ortam ürünü olan, tüf ve bazalt arakatkılı, kumtaşı, çakıltaşı, marn ve beyaz renkli kireçtaşlan ile temsil edilen birimlere ilk kez Arpat(1965) Gelinkaya formasyonu ad1nı vermiştir. Birimin bu çalışmada aglomera ve tüflerle temsil edilen bölümü Magoçar, kumtaşı, çakıltaş, marn ve kireçtaşları ile temsil edilen bölümüde Daphan üyesi olarak tanımlanmıştır (Sekil 2, 3, 4).

Her iki üye birbiriyle yanal ve dikey geçişli olup, özellikle Daphan üyesi içinde yer yer ince kömür bantlan ile bazalt ve tüf arakatkılarina sıkça rastlanılmaktadır. Daphan üyesi içinde yer alan çakıltaşı, marn ve kumtaşlarında çapraz katmanlanma ve akarsu kanal yapıları çok karakteristiktir. Birimin üst seviyelerini oluşturan kireçtaşlarmda Dressensia ve Congerina gibi acı veya tath sularda yaşayan lamellibrans fosilleri gözlenmiş olup, karasal (göl ve akarsu) ortamda depolanmışlardır. Birimin yaşı USt Pliyosen olarak saptanmıştır.

Çobandede bazaltları

Inceleme alanında yüzeyleyen en genç volkanik kayaç grubu olup, Ust Pliyosen yaşlı Gelinkaya formasyonunun üzerini örtmektedir. Plato bazaltı görünümü sunan bazaltlarda, intersertal tekstürlü çok fazla plajioklas mikroçubuklarn ve daha az olivin ojit ve tali olarak da opak mineraller saptanmıştır. Pliyo-Kuvaterner yaşı verilmiştir.

Alüvyonlar

Inceleme alanının en genç oluşuklarını teşkil eden alüvyonlar konumlar ve özellikleri itibariyle eski ve yeni alüvyon olmak üzere ikiye ayrılarak haritalanmıştır. Eski alüvyonlar, kaba çakı1, kaba kum-
kum boyutunda tanelerden, yent alüvyonlar ise ince kum, silt, mil ve killerden oluşmaktadır. Ayrica Erzurum havzasın çevreleyen dağların etekleri boyunca yüzeyleyen 100 lerce metre kalnnlikta çok sayıda 5-7 7° lik eiğme sahip alüvyon yelpazeleri stralanmsstur (Șekil 3).

Şekil 5 - İnceleme alanımın ana fay kuşakları. (Koçyigit ve diğ. 1985. ve İnan 1987' den alınmıştur.)
Figure 5 - The main fault belts of the study area. (After Kocyyiğit onel others 1985, Inan 1987).

BÖLGENIN YAPISAL ÖZELLIKLERRİ

Inceleme alamnin yapisal unsurlari gelisim sirasnna göre Oligosen öncesi, Oligosen-Ǔst Miyosen ve Ǔst Miyosen sonrası olmak üzere üç bölümde irdelenecektir.

Oligosen öncesi yapılar

Bu yapıların en önemlilerini Oligosen öncesi yaşta bindirmeler oluşturmaktadır. Çalışma alanının kuzeydoğusunda Ekrek Ofiyolitli Karnşığ, Alt Kretase yaşl Yesirçölü formasyonu üzerine bindirmelidir. Çalışma alanının kuzeybatısında (Serçeme ve yakın yöresinde) Yesirçölü formasyonu, Ekrek Ofiyolitli Karışığı ile Lütesiyen yaşı Tavşantepe formasyonu üzerine şariye olmuştur. Bu kesimde bindirmenin yaşı Lütesiyen sonrasıdır (Sekil 3).

Oligosen öncesi birimlerde özellikle Jura-Alt Kretase istiflerinde eksenleri genellikle D-B yönünde gelişmiş, büyük kıvrımların yanısıra, bolca küçük ölcekte devrik, yatık ve zikzak kıvrımlar dikkati çekmektedir. Bu tip yapilarda egemen sikışma doğrultusu K-G olarak saptanmıṣtr.

Oligosen-Üst Miyosen Yapulan

Bu dönemin karakteristik yapılarını D-B yönlü bindirmeler ve kıvrımlar oluşturur. Çalişma alanınin kuzeydoğusunda (Tortum KD'su) Ekrek Ofiyolit1i Karışığ Oligosen yaşl Dambulut formasyonu üzerine, kuzeybatıda, Asskale kuzeyinde, karıı̧ık, Alt-Orta Miyosen yaşl Kemerkaya formasyonunun Çatveren üyesi üzerine bindirmiştir. Bunun yanısıra, genellikle D-B yönlü kıvrım eksenlerine sahip simetrik ve kücçük ölçekteki kıvrımlara Alt-Orta Miyosen yas${ }^{\text {li Kemerkaya }}$ formasyonu içinde sikça rastlanilmaktadir. Yukarida anlatılan büyük ölçekli bindirmeler, Úst Miyosen öncesinde gelişimlerini tamamlamıslardır. Çünkü çalışma alanında, daha genç çökeller üzerinde eski yapılara ait birimler gözlenmemiştir.

Üst Miyosen ve sonrast yapılar

Genelde Kuzeydoğu Anadolu ve yerel ölçekte inceleme alanımın Ust Miyosen - Günümüz arasinda yaklaşık K-G yönlü sıkışma rejiminin etkisi altında olduğu ceşitli araştrricllar tarafindan belirtilmektedir (Şengör ve Kidd, 1979; Sengör, 1980; §aroğlu ve Güner, 1979, 1981; Sipahioğlu, 1983, Barka ve dig. 1983; Koçyigit, 1983, 1985; Kocyiğit ve dig. 1985). Bu rejimin etkisiyle bölgede KD-GB yönlü sol ve KB-GD yönlü sağ yanal doğrultu atımlı faylar, K-G yönlü açılma çatlakları ile D-B yönlü ters faylar gelişmiştir (Șekil 3).

Inceleme alanı ve yakın yöresi özellikle Ust Miyosen ve Pliyosen birimlerinide etkileyen çogu aktif sol ve sağ yanal atımlı faylarla çevrelenmistir. Bu faylardan K30-40D ve K50-55D doğrultulu ve sol yanal nitelikli olanlar Dumlu ve Askale; K48B doğrultulu ve sağ yanal nitelikli olanlarda Tabye fay kuşagı adı altında toplanmış ve irdelenmiştir. Pliyosen yapılarını kestiği göz önüne alımrsa faylar Pliyosen ve sonrasında gelişmişlerdir.

D-B yönlü ters faylar ile K-G yönlü açılma çatlaklarna özellikle Usst Pliyosen yaşlı eGlinkaya formasyonu içinde çok sayida ve küçük ölçekte (10 cm 100 m) rastlanılmaktadir (Şekil 5):

BÖLGENIN YAPISAL EVRİMí

İnceleme alanı ve yakın yöresinde Liyas öncesi temele ait birimlere rastlanılmamaktadır, Bu nedenle jeolojik evrim Liyas'tan başlayarak anlatılacaktir. Ancak inceleme alanı dişında geniş ölçekte düşünüldüğünde Liyas öncesi temelin kitasal kabuk kökenli olduğu çeşitil araşttricilar tarafindan benimsenmektedir (Şengör ve dig.. 1980; Bergougnan ve Fourquin, 1982; Şengör ve diğ. 1982).

Liyas-Dogger

Genelde tüm Kuzey Anadolu'da Liyas başında, Pontidlerle Anatolidler (Toridler) arasinda bir okyanusal havzanun (Neotetisin kuzey kolu) oluşmaya
başladığı bugün artık kabul edilen bir görüştür (Şengör, 1980; Yılmaz, 1981; Görür ve dig. 1983; Koçyiğit, 1985). Liyas-Dogger zaman aralığında da çalışma alanında riftleşmenin başladığ benimsenmektedir. Özellikle Kuzey Anadolu'da riftleşmeye ilişkin veriler Görür ve dig. (1983) tarafindan ayrintılı olarak sunulmuştur. Liyas-Dogger birimleri bölgede karasalsığ deniz fasiyesinde gelişmiş ve kuzeyden güneye gidildikçe karasaldan sığ denize geçis göstermektedirler (Șekil 6). Ancak riftleșmenin kesin olarak ne zaman başladığına ilișkin veriler şimdiye kadarki çalıșmalardan elde edilememiștir.

Üst Jura-Alt Kretase

Bu dönemde inceleme alanı giderek derinleşmiştir. Bunun sonucu olarak, self ortamini karakterize eden Ust Jura yaşlı Akbabatepe kireçtaşları ve derin deniz ortamı ürünü olan bazik lav akıntıları ve volkanik kumtaşı ardalanmaları içeren kireçtaşlarından oluşmuş Yesirçölü formasyonu çökelmiştir. İncele-
me alaninda Liyas-Alt Kretase arasinda çökelen bu düzenli istiflerin karasal fasiyesten derin deniz fasiyesine doğru geliştiği ve bu istiflerin Yılmaz (1981) tarafından tanımlanan Atlantik tip kıta kenarının kuzey kenarına karşılık geldiği söylenebilir.

Bu dönemde okyanusal kabuk gelişimini sürdürmüss ve bunun sonucunda ofiyolitler oluşmaya başlamıștır. Çeşitli araştırıcılar tüm kuzey Anadolu'da gözlenen ofiyolitlerin okyanus ortası sirtlarda (Yılmaz, 1980, 1981; Buket, 1982) veya kenar denizinde oluștuklarmı belirtmektedirler (Bektas ve dig., 1984).

Üst Kretase

Bölgede olasıh olarak Liyas'ta başlayan açılma Alt Kretase sonuna kadar devam etmis ve bu devreler arasında etkin olan çekme tektoniğini, yerini gidererek sıkışma tektoniğine bırakmış ve aradaki okyanusal havza kapanmaya başlamıs olmalıdir. Bunun sonucu olarak ofiyolitli karışıklar (Ekrek ofi-

Șekil 6 - Inceleme alanının yapısal evrim
Figure 6 - Structural evolution model of studied area.
yolitli Karışığı $)$ ilk yerleşmelerini gerçekleştirmişlerdir. Inceleme alanında Ekrek Ofiyolitli Karışığınin, Alt Kretase yaşlı Yesirçölii formasyonu üzerinde yer alması ve üstünde Ust Kretase yaşlı Elmalı formasyonunun çökelmesi, kapanmanın Alt Kretase sonunda olasılı olarak Ust Kretase başında başladığna işaret etmektedir.

Bunun dıșında bölgesel ölçekte pek çok yazar, okyanusal havzanin Üst Kretase'de kapandığını belirtmektedir (Yılmaz, 1981c; Șengör ve Yılmaz, 1983; Koçyiǧit, 1983). Ayrıce ofiyolitli karışıklar içinde en genç birimlerin Alt Kretase yaşımı vermesi bu verileri desteklemektedir (Șekil 6).

Eosen ve sonrast

Inceleme alanı ve yakın yöresinde Paleosen yaşil birimlerin gözlenememesi ortamın kısa süreli bir su üstü olduğunu belgelemektedir. Üst Eosen'de tekrar deniz basmasına uğrayan bölgede sığ denizel fasiyeste gelişmiş Tavşantepe formasyonu çökelmiṣtir. Bölge ilkin Üst Eosen'de başlayan Miyosen sonuna kadar etkinlik gösteren kısa süreli deniz ilerlemeleri ve çekilmelerine sahne olmuş ve sıkışıp kalınlaşarak yükselmiştir (Șaroğlu ve Güner, 1981). Bu dönemin özgün kaya türü olarak, birbirleriyle yanal ve düşey geçişli sığ denizel, göl ve akarsu ortaminda gelișmiş egemen olarak kaba kırıntılı ve kalın yığışımlar oluşmuștur (Oligosen yaşlı Dambulut ve Orta Miyosen yaşlı Kemerkaya formasyonları). (Șekil 6).

Orta Miyosen sonuna doğru başlayan genel deniz ̧̧ekilmesiyle bölge tümüyle su üstü olmuş ve bölgeyi yaygın biçimde etkileyen alkali nitelikli bazaltik ve andezitik volkanizme gelișmiștir (Tokel, 1980).

Pliyosen-Günümüz arasında ise karasal niteliğini koruyan bölge, bir taraftan sıkışıp kalınlașarak yükselimini sürdürmüs ve diger taraftanda hizla aşınmıştır. Aynı dönemde volkanik etkinlik tekrar faaliyete geçmiş ve bölge yer yer kalkalkalen nitelikli bazaltik-andezitik örtü lavlarıyla kaplanmıştır. Bunun sonucu olarak, dar ve uzun çöküntuler içinde (Karasu-Erzurum havzası) kömür ve volkanik ara düzeyleri kapsıyan, tümüyle kaba kırıntılılardan oluşmuş, karasal ortam ürünü Gelinkaya formasyonu çökelmiştir. Bu istif altta daha yaşlı birimleri açıl uyumsuz olarak üstlerken, üste doğru Pliyokuvaterner yaşlı bölgenin genç kalkalkalen nitelikli volkanitleriyle (Çobandede bazaltları) yanal ve dikey geçişlidir (Şekil 6).

Aynı dönem içinde (Üst Pliyosen-Günümüz) bölge sıkışma gerilimi altında olmakla beraber faylanma mekaniğindeki değişim nedeniyle bölgede sağ (Tabye fay kuşağı) ve sol yanal (Aşkale ve Dumlu fay kușakları) doğrultu atımlı fayların oluşumu ve etkinliği egemen duruma geçmiş, dolayılı olarak bindirmeler yerel, küçük boyutta ve büyük açıda gelişmis olmalidr.

SONUÇLAR

Yapılan bu çalışma ile aşağıdaki sonuçlara vanilmıștir.

1. Bölgede Liyas-Alt Kretase yaşlı düzenli istiflerin (Rizekent, Akbabatepe ve Yesirçölü formasyonları) varlığ ortaya çıkarılmıs ve bunun Yılmaz (1981)'ın tanımlamış olduğu Neotetis'in kuzey kolunun kuzey kıta kenarına karş̣lık geldiği belirlenmiştir.
2. Bölgedeki ofiyolitli karışıklar, Ekrek Ofiyolitli Karışığı adı altında toplanmış ve bunların okyanusal havza ürunui oldukları ve havzanin kapanmaya başlamasıyla birlikte çeşitli birimler üzerine itildikleri saptanmıştır.
3. Ofiyolitli karışığın, Alt Kretase yaşl birimlerin üzerinde, Ûst Kretase yaşlı birimlerin altında yer aldığ 1 belirlenerek, aradaki okyanusun Alt Kretase somunda kapanmaya başlamış olabileceği savunulmuștur.
4. Bölgedeki alkalen ve kalkalkalen nitelikli volkanizmanın Üst Miyosen'den itibaren başladığ 1 ve Pliyokuvaterner'e kadar devam ettiği saptanmıştır.
5. Bölgede yer alan Oligosen ve Miyosen yaşlı birimlerin genelde kaba kırıntılıardan oluşmuş, sığkarasal ortamda depolandığı, Pliyosen yaşlı birimlerin ise tümüyle karasal ortam ürünü olduklan saptanmıştır.
6. Bölgenin egemen yapısal unsurlarım D-B yönlü ters faylar, K-G yönlü açılma çatlakları ve KD-GB, KB-GD yönlü sol ve sağ yanal doğrultu atımlı faylann oluşturduğunu ve doğrultu atımlı fayların Üst Pliyosen sonunda geliştikleri belirlenmiştir.
7. Bölgenin jeolojik evrimi irdelenerek, tartışmaya açık olasılı jeolojik evrim modeli sunulmuştur.

KATKI BELIRTME

Yazar, çalışmanın maddi desteğini sağlayan $\mathrm{Ba}-$ yındırlık ve Iskan Bakanlığı Deprem Araştırma Genel Müdürlüğu yetkililerine ve yazım sırasında değerli eleștiri ve katkılarından ötürü Prof, Dr. Ali Öztürk ve Doş. Dr. Ali Koçyiğit ile Ögrr. Gör. Halil Gürsoy'a teşekkürü bir borç bilmektedir.

DEGINILEN BELGELER

Acar, A., 1975, Tortum ve çevresinin jeolojisi ve jeomorfolojisi üzerine bir araștırma: Atatürk Univ., Doç. Tezi, Erzurum.

Akyürek, B., Bilginler, E., Catal, E., Değer, Z., Sosyal, Y. ve Sunu, O., 1979, Eldivan-Sabanözï (CTankirı) dolayının ofiyolit yerleşmesine iliskin bulgular: Jeoloji Müh. Derg., 9, 5-11, Ankara.

Ardos, M., 1979, Türkiye Jeomorfolojisinde Neotektonik: İst. Univ. Coğr. Enst. Yayznu, No. 113, İstanbul.

Arpat, E., 1965, Ilıca-Aşkale (Erzurum ili) arasındaki sahanın ve kuzeyinin genel jeolojisipetrol imkânları: M.T.A. Rap. No: 4040, yayınlanmamıs, Ankara.

Arpat, E., Şaroğlu, F. ve İz, H.B., 1977, 1976 Çaldıran Depremi: Yeryuvarı ve İnsan, 2,1, 29-41, Ankara.

Atalay, $\dot{1} ., 1978$, Erzurum ovast ve çevresinin jeolojisi ve jeomorfoloj̈si: Atatürk Üniv., Ed. Fak. Yayın No: 81, Erzurum.

Atalay, I. ve Koçman, A., 1979, Kuzeydoğu Anadolu'nun jeoteltonik ve morfotektonilc evriminin ana çizgileri: Jeomorfoloji Derg. 8, 41-76, Ankara.

Barka, A., Şaroğlu, F. ve Güner, Y., 1983, Hora-san-Narman depremi ve bu depremin Doğu Anadolu neotektoniğindelci yeri: Yeryuvart ve İnsan, 8, 16-20 .Ankara.

Baykal, F., 1950, Şerafettin ve Çatela dağları dolayznda jeolojik görüş̧ler (Dŏ̆и Anadolu): İst. Üniv. Fen Fak. Mecmuast. 15-12, İs tanbul.

Bayraktutan, S., 1982, Narman (Erzurum) Havzasintn Miyosen'deki sedimantolojilc evrimi: Atatürk Univ. Fen Ed. Fak. Doktora tezi, 282 s. Erzurum.

Bergougnan, H., 1976 b, Doğu Anadolu'da Avrupa ve Arabistan bloklarınin çarpısmasi (çev. O. Yulmaz): Yerbilimleri, TMMOB Jeolö̈ Mühendisleri Odası yayını, 1, 31-41, Ankara.

Bergougnan, H. ve Fourquin, C., 1982, Remmants of a Pre-Late Jurassic ocean in Northern Turkey: Fragmants of Permian-Triassic

Paleo-Tethys? (Discussion): Geological Society of America Bulletin, V. 93, 929-932.

Bilgin, A., 1983, Serçeme (Erzurum) Dèresi ve Dolaynnin Stratigrafisi: Jeoloji Müh. Dergisi, 18, 35-44, Ankara.

Bilgin, A., 1984, Serçeme Deresi Ultramafitlerinin mineraloji ve Petrografisi: Jeoloji Müh. Derg., 19, 81-87, Ankara.

Bingöl, E., Baydar, O., Erdoğan, B., Akyürek, B., Topçam, B., Kengil ,A., Korkmazer, B., Kaynar, A. ve Selim, M., 1969, YusufeliÖğdem : Madenköy - Tortum Gölii ve Ersis arasında kalan bölgenin jeolojisi: M.T.A. Der. Rap. No: 5202, Ankara.

Brennich, G., 1967, Erzurum vilayeti jips yataklart: M.T.A. Derl. Rap. No: 4862, Ankara.

Erentöz, C., 1953, Aras havzasinin jeolojisi: Türkiye Jeol. Kur. Bült., 5, 1-54, Ankara.

Ering, S., 1973, Türkiye'nin şekillenmesinde neotektoniğin rolü ve jeomorfoloji-jeodinamik ilişkileri: Jeomorfoloji Dergisi, 5, 11-25, Ankara.

Gattinger, T.G., 1956, Trabzon, Rize, Gümüşhane, Erzurum, Artvin, Kars jeoloj̈k löve, ikmal ve revizyon çalı̧̧aları; M.T.A. Derleme Rap. No: 2380, Ankara.

Görür, N., Şengör, A.M.C., Akkök, R. ve Yıimaz, Y., 1983, Pontidlerde Neotetis'in kuzey kolunun açulmasına ilişkin sedimantolojik veriler: Türkiye Jeol. Kur. bült., 26/1, 11-20, Ankara.

Ithan, E., 1971, Earthquakes in Turkey: Geology and History of Turkey (Ed. by A.B. Campbell), Tripoli, Libya.

Irrlitz, W., 1971, Newsl. Stratigr.: 1,3, 33-36.
Ketin, İ., 1983, Türkiye Jeolojisine Genel Baktş: İstanbul Telnik Üniv. yayın, No. 1259, 595 s. İstanbul.

Koçyiğit, A., 1983, Doğu Anadolu Bölgesinin depremselliği ve gerekili çalşmalar: Yeryvarı ve İnsaun, 8,3, 25-29, Ankara.

Koçyiğit, A., 1985, Çatalçal (Zevker)-Erzincan arasında Kuzey Anadolu fay kuşağının sismotelctonik incelemesi: O.D.T.U. Jeoloji Müh. Bölümü. Ankara.

Koçyiğit, A. ve Rojay, B., 1984, Doğu Anadolu Bölgesinin yeni tektonik çatsst ve Horasan Narman Depremi - 1983: Kuzeydoğu Anadolu I. Ulusal Deprem Simpozyumunda: Atatürk Univ. Fen Ed. Fak. 248-265, Erzurum.

Koçyiğit, A., Öztürk, A., İnan, S. ve Gürsoy, 1985, Karasu Havzasinin (Erzurum) Tektonostratigrafisi ve Mekanik Yorumu: Cum. Üniv., Müh. Fak. Yerbilimleri Derg. 2, 2-15, Sivas.

Lahn, E., 1939, Karasu-Çoruh nehri arasindaki mintıkada yaplan jeolojik araştrma: M.T.A. Derl. Rap. No: 838, Ankara.

Ortynski, I.I., 1944, Kars ve Erzurum vilayetlerine yaptlan bir seyahat üzerine jeolojik rapor: M.T.A. Der. Rap. No: 1634, Ankara.
$\ddot{O}_{z g}$ ül, N., Seymen, I. ve Arpat, E., 1983, Hora-san-Narman Depreminin makrosismik ve tektonil özellikleri: Yeryuvarı ve İnsan, 8,3, 21-24, Ankara.

Roussel, J., 1912, Erzurum vilayeti linyitleri: M.T.A. Der. Rap. No: 58, Ankara,

Sipahioğlu, S., 1983, Horasan-Narman depreminden önce yörenin deprem etkinlik özellikléri hakkanda yapula nbir değerlendirme: Yeryuvart ve Insan, 8,3, 12-15, Ankara.

Sïr, Ö., 1964, Pasinler ovast ve çevresinin jeomorfolojisi :Ankara Üniv. Dil ve Tarih Coğr. Fak. yaymu, 154, Ankara.

Saroğlu, F. ve Güner, Y., 1981, Doğu Anadolu'nun jeomorfolojik gelişimine etki eden ögeler; jeomorfolö̈, tektonik, volkanizma ilişkileri: Türkiye Jeol. Kur. Bült. 24,2, 39-50, Ankara.

Şengör, A.M.C. ve Kidd, W.S.F., 1979, Post esaslart: Türkiye Jeoloji Kurumu Yaymn, Ankara.

Sengör, A.M.C. ve Kidd, W.S.F., 1979, oPst collision tectonics of the Turkish-Iranian plateau and a comparison with Tibet: Tectonophysics, 55, 361-376.

Sengör, A.M.C., Yılmaz, Y. ve Ketin, İ., 1980, Remnannts of a Pre-Late Jurassic ocean in northern Turkey: Fragments of Permian Triassic Palaeo-Tethys?: Geological Society of America Bulletin, V. 91, s. 599-609.

Șengör, A.M.C., Yılmaz, Y. ve Ketin, I.., 1982, Remnannts of a Pre-Late Jurassic ocean in northern Turkey: Fragments of Permian Triassic Palaeo-Tethys? (Reply): Geological Society of America Bulletin, V. 93, s. 932 936.

Sengör, A.M.C. ve Yulmaz, Y., 1983, Türkiye'de Tetis'in Evrimi: Levha tektoniği aģssindan bir yaklaşım: Türkiye Jeol. Kur. Yerbilimleri özel dizisi, 75 s., Ankara.

Tokel, S., 1980, Orta Anadolu'da Neojen volkanizmasmin jeokimyas: 34. Türkiye Jeol. Bilimsel ve Teknik Kurultayi Bildiri Özetleri, Ankara.

Tokel, S., 1984, Doğu Anadol'da kabuk deformasyonu mekanizmast ve genç volkanitlerin petrojenezi: Türkiye Jeol. Kur. Ketin Simpozyumu'nda 121-130. Ankara.

Yılmaz, Y., 1981, Atlantik tip kuta kenarmin Pasifik tip kuta kenarına dönüşümüne Türkiye'den örnek: Türkiye Jeol. Kur. Konf. serisi, 27 s. Ankara.

Tecer Kireçtașı Formasyonunun Yapisı Hakkında Bir Yorum

AN INTERPRETATION ON THE STRUCTURE OF THE TECER LIMESTONE FORMATION

Selim INAN, Cumhuriyet Universitesi, Jeoloji-Mühendisliği Bölümü, Sivas,
$\mathbf{O Z}: \mathrm{Bu}$ çalışmada, Sivas ili güneydoğusunda yer alan GB-KD uzanımh Tecer dağlanını oluşturan Tecer kireçtaşı formasyonunun yapısal özellikleri incelenmiştir. Üst Krestase-Paleosen geçişinin litolojik olarak belirlenemediği Tecer kireçtaşı formasyonunda Ust Maestrihtiyen-Tanesiyen katlarını temsil eden biyofasiyeslérin ölçülü késitlerde, tabandan tavana doğru sık sık tekrarlandığ1 görülmüştür. Tecer kireçtaşınn, Tecer dağlarım kuzey yamaçlan boyunca Oligosen ve Eosen yaşl birimler üzerinde yer aldığı, dolayısı ilede bu birimler üzerine devrik olduğuda göz önüne alınarak, Tecer kireçtaşlarındaki tekrarlanmaların, güneyden kuzeye devrik çok sayıda antiklinal ve senklinal yapılarını varlığ ile açıklanabileceği belirlenmiştir.

ABSTRACT : In this study the structural characteristics of the Tecer limestone formation of the Tecer Mountains located in the southeast of Sivas, extending in the northeastern and southwestern directions have been studied. Biyofacies representing the Upper Maastrichtian-Thanetian ages have been obseryed in the measured sections frequently repeated from bottom to top in the Tecer limestone formation in which the Upper Cretaceous-Paleocene passage have not been determined. In addition, the Tecer limestones overlap the Oligocene and Eocene age units along the northern slopes of the Tecer Mountain. Taking these relations into interpretation, the numerous and overlapping anticlinal and senclinal structures form the south to the north may account for the repetion of the facies in the Tecer limestone formation.

GIRIS

Çalıșmanın konusunu oluşturan Tecer Dağlan, Ulas (Sivas) ilçesi doğusunda, yaklaşık GB-KD doğrultusunda uzanmakta ve 1/25.000 ölcekli Sivas-J38-al, Sivas-J38-a2, ve Sivàs-J38b1 paftalarına yaylmaktadre (Sekil 1).

Inceleme alam ve yakin yöresinde en eski çalısmalar Blumenthal (1937) ve Stchepinsky (1939) tarafından yapılmıștır. Bölgede, daha sonrada Jeolojik ve petrol aramalarına yönelik pekçok çalışma ya-
pılmıştır. Bunlar arasında Yalçınlar (1955), Kurtman (1963), Arpat (1964), Ilker ve Özyeğin (1971), Artan ve Sestini (1971), Kurtman (1973), Meşhur ve Aziz (1980), Gürsoy (1986), Inan ve Inan (1987) ve Inan (1987)'ın çalıșmaları sayılabilir.

Bu çalı̧̧ma, Tecer Dağlarının tamamında yüzeyleyen Tecer kireçtaşı formasyonunun (Inan ve Inan, 1987) biyofasiyes özelliklerine dayanılarak ,yapısal konumunu ortaya çıkarmayı amaçlamaktadır. Bu

anacla, ikj hat boypnca birimin , tabomudanctaivanına kadar seri örnekleme yapılmış, enine jeolojik kesitler hazırlanmıştır. Ayrıca, çok sayıda alınan nokta ve seri örneklerin foraminifer içerigine dayanılarak yapılan genel kronostratigrafi haritası (Inan, 1987) yapısal olarak yorumlanmıştır.

GENES STRATIGRAFI

Inceleme alanının temelini allokton konumlu, lerzolit, harzburgit, amfibolit ve serpantinlerden oluşan Günes ofiyolitik karışığı (Bayhan, 1980) oluşturmak-
 Maestrihtiyen-Tanesiyen yaşl Tecer kireçtaşı formasyonu yer alır (Inan ve Inan, 1987), Kumtaşı şeyl, silttaşı ardalanmasindan oluşan Lütesiyen yaşl Bozbel Ne: toy formasyonu (Kurtman, 1973) bu iki birimi açlı uyum-
\qquad sईぃun suzlukla üsteler, Kirmıza yesil renkli gevsek cimen-
 (10) ex:şan, yer yer f̈ps mercékleri içẽren Oligosen yaşh:Sesivug limiye formasyonu, Bózbel formasyonu'tuzerinde açılı 2rah uyumsuzlukla bulunmakta, uzerinde ise yine açılı uyumsuz olarak Miyosen yaşlı kırmızı-gri renkli çakıl$x_{n} \rightarrow 2$, tassi, marn, kumtaşive yer yersjips mercekleri iceren 1z: , 3Karacaören formasyona yen almaktadro (Kurtman,
 2ofcisatérner yaşl travertenler ile Kuvaterner yaşli alüveg azoroflar oluşturur (\$̦ekil 2)

TECER KIREÇTAŞI FORMASYONONUN Ta29T YAPISAL DURUMU

Çalişmanin konusunu oluşturan Tecer kireçtaşi, formasyonu, genellikle mavi-gri, yer yer siyahımsı gri renkli, kalın katmanlı, kısmen masif, sert, çatlaklı ve çatlakları kalsit damarları ile doldurulmus kirectaslari ile temsil edilmektedir. Birim içinde yer yer killi, kumlu, dolomitik ye bresik kireçtası seviyeleri gözlenix Genel katmán duxumu K 70-80 D, 20-40 GD dur. Formasyon, Tecer Dağları̀ kuzey eteği boyunca Lütesiyen yaşh Bozbel ve Oligosen yasl Selimiye formasyonlar izerine devriktir (Sekil, 3). Güneyde ise normal faylarla diger birimlerle tektonik dokanakladar (\$ekli 4)

Şekil 2:Tecer Dağı yöresinin genelleştirilmiş dikme kesiti. (İnan ye İnan 1987)

Figure 2: Generalized columnar section of the Tecer Dağı area. (İnan and İnan 1987)

Sekil 3 : Üst Maestrihtiyen - Tanesiyen yaşlı Te cer kireçtaşlarının (Kt) kuzeyde Oligosen yaşlı Selimiye formasyonu (Ts) üzerine devrik yapiss.

Figure 3 : In the North Tecer Limestone (Kt) of Upper Maastrichtion-Thanetian aged overlap structure on the Selimiye formation (Ts) of Oligocene aged.

Şekil 4: Tecer kireçtaşının (Kt) güneyde Miyosen yaşlı Karacaören formasyonu (Tk) tektonik dokanağı.
Figure 4 : In the South, tectonic contact between 3. Tecer Limestone (Kt) and Käracaören : formation (Tk) of Miocene aged.

Formasyonun degisisik kesimlerinden yapılan 10 adet ölüçlü sfratigrafi kesitinde, Úst Maestrihtiyen, Daniyen, Monsiyen, Tanesiyen katlarm temsil eden biyofasiyesler belirlenmis (Inan ve Inan, 1987) ve bu biyofasiyeslerin birimin tabanundan tavanuna doğru değişik kalinlıklarda tekrarlandığı saptanmıştır. Bu tekrarlanmaların en iyi gözlendiği yerlerden seri örnekleme yapilmıştır (\$ekil 5,6). Bunlardan Bentbaṣı enine jeolojik kesiti, inceleme alanmun batisinda, Demircilik köyünün 2 km doğusundan başlar. $1 / 25.000$ ölçekli Sivas-J38-a2 paftasında başlangıç koordinatı $39^{\circ} 27^{\prime} 50^{\prime \prime}$, enlem, $37^{\circ 008^{\prime} 16^{\prime \prime}}$ boylamindadır. KB-GD doğrultusunda 4375 m devam ederek fay engeliyle son bulur. Aym paftadaki bitis koordinatı $39025^{\prime} 34^{\prime \prime}$ enlem, $37009^{\prime} 06^{\prime \prime}$ boylamidır. Kesitde, 7,11, 16-26 nolu örneklerde Ust Maestrihtiyen; 1,2,6,8,10, 12 ve 15 nolu örneklerde Daniyen ve $3,4,5,9,13,14$ nolu örneklerde Tanesiyen yaşın veren foraminiferler saptanmıştir (Inan ve Inan, 1987).. Kabak tepe enine jeolojik kesiti (Sekil 6), 1/25.000 ölçekli Sivas-J38-a 2 paftasında başlangıç koordinatı $39028^{\prime} 42^{\prime \prime}$ enlem, $37009^{\circ} 32^{\prime \prime}$ boyamındadır. Yaklaşık KB-GD doğrultusunda 1750 m (Kabak tepe yakinı) devam ederek, K-G doğrultusunda 4500 m (İzli mağarası yaknns) ilerledikten sonra fay engeliyle son bulur. Aynı paftadaki bitiş koordinatı $39025^{\prime} 42^{\prime \prime}$ enlem, $37^{\circ} 09^{\prime} 57^{\prime \prime}$ b boylamindadır. Kesitde, 16, 19, 22, 26, 31, 41-44, 48 nolu örneklerde Daniyen, $1-9,15,20,21$, $23-25,27,30,32,37,45,47$ ve 49 nolu örnekler Monsiyen, $10-14,28,29,33-36,46,50$ ve 51 nolu örnekler Tanesiyen yaşın veren foraminiferler içermektedirler. Sonuçta, görülüyorki, Bentbaşı enine jeolojik kesitinde Üst Maestrihtiyen 3, Daniyen 6 ve Monsiyen 10 ve Tanesiyen 5 kere (Sekil 6) tekrarlanmaktadir. Daha önce, güneyden-kuzeye devrik yapıda olduğunu belirlediğimiz formasyonda, katmanların genellikle güneye eğimli olduğu göz önüne alınarak, bu tekrarlanmaların, kuzeye devrik çok sayıda antiklinal ve senklinallerin varlığı ile açıklanabileceği ortaya çıkmaktadır. Formasyonun, foraminiferlerinin dağlımına göre çizilmiş genel kronostratigrafik haritasida (Inan, 1987) bu göriüşü desteklemektedir. Haritada, kabaca K65-75 D doğrultulu devrik antiklinal ve senklinal eksenlerinin varlığı açıkça görülmektedir.

Şekil 5 : Bentbaşı enine jeoloji kesiti.
Figure 5 : Geological section of the Bentbaşı.

Sekil 6 : Kabak Tepe enine jeolojik kesiti.
Figure 6 : Geological section of the Kabak Tepe.

SONUÇLAR

Bu çalışma ile, daha önce Kretase-Paleosen yaşı veriten ve Kretasenin, yaklaşık olarak Tecer Dağrhin B-D ekseni boyunca Paleosen üzerine şariye olduğu savunulan Tecer kireçtaşı formasyonunun, Ust Maestrihtiyen-Tanesiyen yaşında, kuzeye devrik çok sayıda antiklinal ve senklinaller içerdiği ortaya çıkanimiştur.

KATKI BELIRTME

Yazar, degerli katkı ve yardımlarından dolayı Yard. Doç. Dr. Nurdan INAN'a çok teşekkür eder.

Sekil

7 : Tecer kireçtaşı formasyonunun genel Krononstratigrafisi haritasınn (İnan, 1987) yapisal yorumu.

Figure 7 : Structural interpretation of general limestone formation. (Inan 1987)

DEGİNILEN BELGELER

Arpat, E., 1964, Gürlevik Dağı bölgesinin genel jeoloj̈si ve petrol olanaklart. 1/25.000 ölçekli İ39-d1 ve İ39-d4 paftalart: M.T.A. Rap. No. 4180, Ankara (Yayınlanmamış).
Artan, Ü. ve Sestini, G., 1971, Sivas-Zara-Beyptnart bölgesinin jeolojisi: M.T.A. Ens. Derg., 76, 80-97, Ankara.

Bayhan, H., 1980, Güneş-Soğucak (Divriği-Sivas) yöresinin jeoloj̈k, mineralojik, petrografik, petroloj̈k ve metalojenik incelemesi: H.U., Yerbilimleri Ens., Doktora Tezi, 206 s., Ankara (Yayznlanmamss).

Blumenthal, M.M., 1937, Kangal ile Divrik arastndaki muntıkanın başlıca jeolojik hatları (Sivas vilayeti): M.T.A. Derl. Rap. No: 568, Ankara, (yayınlanmamis).
Gürsoy, H., 1986, Örenlice-Eskiköy (Sivas) yöresinin stratigrafik ve tektonik özellikleri: C. \dot{U}. chronostratigraphic map of Tecer Müh. Fak., Jeoloji Müh. Anabilim Dalı Yüksek Lisans Tezi, 48 s., Sivas, (yayınlanmas).

İlker, S. ve Özyeğin, G., 1971, Sivas havzast hakkında jeolojik rapor: T.P.A.O. Derl. Rap. No: 537, Ankara, (yayınlanmamış).

İnan, S. ve İnan, N. 1987, Tecer kireçtaşı formasyonunun stratigrafik tanmmlamast: C.U.U. Mühendislik Fak. Derg. Seri A - Yerbilimleri, c. 4, S. 1, Sivas.

İnan, N., 1987, Bentik foraminiferlerle Tecer kireģtaşı formasyonunun Kronostratigrafik incelemesi: C.Ü. Mühendislik Fak. Derg., Seri A - Yerbilimleri, C. 4, S. I, s. 23-28, Sivas.

Kurtman, F., 1963, Tecer dağlarının jeolojïsi ve alacalt seri hakkında bazı müşahedeler: T.J.K. Bült., 8, 12/2, 19-26, Ankara.

Kurtman, F., 1973, Sivas-Hafik-Zara ve İmranlt bölgesinin jeolojik ve tektonik yapısı: M.T.A. Derg. 80, 132, Ankara.

Meşhur, M. ve Aziz, A., 1980, Sivas baseni jeolojisi ve hidrokarbon olanaklart, T.P.A.O. Rap. No. 1530, Ankara, (yayınlanmamis).

Stchepinsky, V., 1939, Sivas vilayeti merkezi kısmunin umumi jeolojisi hakkinda rapor: M.T.A. Derl. Rap. No. 868, Ankara, (yayinlanmamis).

Yalçınlar, İ., 1955, Sivas 61/1, 61/2, 61/4 paftalarina ait jeolojik rapor: M.T.A. Derl. Rap. No. 2577, Ankara, (yayınlanmamı̧).

Orta - Üst Miyosen Kükürtlü (Erzurum) Havzasının Alüvyon Yelpazesi ve Gölsel C̦̈̈kelleri

alluvial fan and lake deposits of the middle - upper miocene aşkale KÜKÜRTLÜ BASİN (ERZURUM).

İlyas Erdal KEREY, F. U. M. F. Jeoloji Mühendisliği Bölümü, Elazığ.
Cevdet BOZKUŞ, A. U. Mühendislik Fakültesi, Erzurum.

ÖZ : Aşkale-Kükürtlü havzası Erzurum batısında KKD-GGB yönünde uzanıp, ofiyolitik melanj birimleri ile çevrilmiştir. Havza yapılanı, bunların sıkıșmalar sonucunda oluştuğuni göstermektedir. Dağarası göllerin içine yakın civardaki allokton ofiyolitlerden türeyen kırıntıh karasal sedimentler bu istifi oluşturmaktadır. Genelde bu istif alüvyon yelpazesinin rraksak kısımlarında çökelen sublitik arenitten, çakillı kumtaşına doğru geçer. Bazı yerlerde dağınk matriks destekli konglomeralar tane akması ile çökelmiştir. Istifin üstüne doğru kama şekilli yapılar, fyi boylanmış ve kaba taneli kumtaşları görülür.

Gölsel istifin güney sektörü iki kısıma ayrılabilir. Doğu kısmında, istif başlıca derin su, çamurtaşı ve silttaşı fasiyeslerinden ibaret olup, genelde üste doğru tane büyümesi gösteren bir istiftir. Bu istifin tabanında dalga hareketlerinin bulunmayışı, suyun fırtına dalga tabanından daha derin olduğunu göstermektedir. Bu sedidentler çapraz laminalı kırışıklara, yatay laminalara ve dar açılı levhamsı çapraz tabaklı ince kum tanelerine geçer. Kaba kum taneleri ise, nehrin ağzına yakın yerlerde birikmişlerdir. Batı kısmında, istifler çoğunlukla üste doğru irileşen çamur taşı, kumtaşı ve çakıllı kumtaşlarından oluşmuştur. Fluvial dağıtım kanalları arası körfezler, delta önü barlardaki hayvan eşelemeleri sahil boyu delta ortaminı temsil etmektedir.

Son olarak, göl havzası yavaşça üzerinde linyitli şeyl veya kömür tabakalarınm oluştuğu fluviyal düzlüğe dönüşmüştür.

Abstract

The Aşkale-Kükürtlü basin is elongate NNE-SSW and surrounded by ophiolitic melange units in the west of the Erzurum. The basin structures suggest that they are formed by compressional setting.

The succession comprises dominantly terrigenous clastic sediments derived from nearby allochtonous ophiolites into the intermountain lake. In general, this sequence passes upward into sub-litnic arenite and pebbly sandstone deposited on the distal part of alluvial fans. In some places disorganized matrixsupported conglomerates are deposited by debris flow. The wedge-shaped bodies of well sorted pebbly sandstone and coarse sandstone occur towards the top of the succession.

In the southern sector of the lake, the sequence, can be divided into two parts: the eastern part, consists in general of an upward-coarsening progradation. At the bottom of this succession, the lack of wave activity suggests that the water was deeper than the base of the storm wave. These sediments grade into ripple cross-laminated, horizontally laminated and low-angle planar cross-stratified fine sandstones. The coarse-grained sandstones are deposited close to the river outflows. In the western part, they consist mainly of an upwardly ocarsening sequence formed from mudstone, sandstone and pebbly sandstone. Fluvial distributary channels, delta plain muds and coal layers, crevasse splays, interdistributary bays, bioturbated delta front bars represent the shoreline-deltaic environment.

In the final stage, the lake basin is gradually converted into fluvial plains which form lignite shale or coal layers. The deposition of this delta is fault controlled.

GIRiș

Çalışılan alan Erzurum-Erzincan (E 23) karayolu üzerinde, Aşkale'den Erzincan yönünde gidildiǧinde 13, km'de Kükürtlü köyü civarında bulunmaktadır (Şekil 1).

Sekil 1 - Çalı̧̧ma alanın yer bulduru haritası Figure 1 - Location map of the studied area

Incelenen alanda kömüre yönelik çalışmalar 19. yüzyıla kadar dayanmaktadır. Bölgede yapılan ilk jeolojik araştırmalar ise sonralaridır. Ilk olarak Lahn (1940), Erzurum-Aşkale arasında yeralan alanin, Stchepinsky (1940) ise Erzincan bölgesinin $1 / 100,000$ ölçekli jeoloji haritalarını tamamlamışlardır. Genel amaçıı bu çalıșmaları özel amaçlı çalışmalar takip etmiştir. Wedding (1965)'te Kükürtlü kömür sahasını detaylı olarak incelemiş ve jeoloji haritasını yapmıştır. Daha sonraki çalışmalar, daha çok bölgenin stratigrafisi, tektoniği, volkanizması ve morfolojisi gibi konulara yönelik olup başlıcaları, Irlittz (1972), Şaroglu ve Güner (1981), Bayraktutan (1982), Bozkus (1983), Kerey ve Bozkus (1984, Tokel (1984) ve Koçyiğit ve diğerleri (1985), gösterilebilir.

Kuzey Doğu Anadoluda havza tipleri, sedimentasyon ve tektonik arasındaki ilişkiye ise çok az değinilmiştir. Bu tür çalışmalara Şengör ve Kidd (1979), Șengör (1980), Saroğlu ve Güner (1981), Bayraktutan (1982), Kerey ve Bozkus (1984), Tokel (1984), Koçyiğit ve diğerleri (1985) ve Şaroğlu ve Yılmaz (1986), örnek olarak gösterilebilir. Ancak söz konusu ilişkinin salt sedimentoloji ile irdelenmesi pek az çalsşmada yapılmıştır, Bu araştırmada ise Erzurum, AşkaleKükürtlü kömür havzasının yorumu, sedimentolojisinin detayli incelenmesi sonucunda havza modeli ortaya çikarılarak havza gelişimi ile birlikte, genel tektonik çatı içerisinde irdelenmiștir.

STRATIGRAFI VE TEKTONIK

Doğu Anadolu'nun jeolojik evriminde dört yapısal dönem ayırt edilebilmektedir (Şaroğlu ve Güner, 1981, Şaroğlu ve Yılmaz, 1984). Çalışılan alanda bu dönemlerden birincisi yer almamakta olup, ikinci dönem kayaları ofiyolitik melanjdan oluşmakta ve temeli oluşturmaktadır. Ofiyolitik topluluk, Demirtaşlı ve Pisoni (1965), Ketin (1977) ve Yılmaz ve diğerleri (1981)'ne göre, birinci dönem kayaları üzerine Ust Kretasede tektonik dokanakla yerleşmiştir.

Ofiyolitler çalısma alanının güneyinde, Erli tepe bölgesinde yüzlek vermektedir. Genellikle serpantinler, kırmızi renkli sert killi volkanik kayaçlarla temsil edilmişlerdir. Birim içerisinde derin deniz ürünü olan Radyolaritlerde yaygındır. Bütün bu karmaşık, yapılan jeolojik haritaya melanj olarak işlenmiştir (Şekil 2). Ofiyolitli karmaşığın içerisinde ve yer yer üstünde açık gri-beyaz renkli kristalize kireçtaşı blokları yer almaktadır. Bu birimleri Wedding (1965), Tersiyer tabakaları üzerine şarye olmuş klipler olarak kabul eder.

Şaroğlu ve Yılmaz (1986) ya göre, üçüncii dönem kayaları alttaki kaya topluluklarnı uyumsuz olarak örten bir çökel istif olup, Eosen-Alt Miyosen yaşlıdır. Inceleme alanının doğusunda Yeniköy dolaylarında yüzlek veren üçüncü dönem kayaları sığ deniz fasiyesindeki, bol makro fosilli genellikle resifal karakterdeki karbonatlarla temsil edilmişlerdir. Doğu Anadolunun çeșitli yörelerinde yüzlek veren bu birime çeşitli araştrıcılar çeşitli formasyon adlamasında bulunmuşlardır. Bu çalışmada ise ilk defa Adilcevaz yöresinde Demirtaşlı ve Pisoni (1965) tarafindan tanımlaması yapılan aynı fasiyesteki Burdigaliyen yaşlı karbonatlar için kullanılan Adilcevaz Kireçtaşı adlaması kullanılmıștır. Bu birimler üzerine çalışılan alanın dışında dereceli geçişli olarak evaporitler gelmektedir (Sekil 3).

Orta-Ust Miyosende başlayıp, günümüze kadar devam eden dörduincii dönem kayaları ise karasal ortamlarda gelişmiş çökellerle temsil edilen, etkin tektonik ve volkanizma ile karakterize edilen istif olup, Doğu Anadoluda yaygındır (Şaroğlu ve Yılmaz, 1986). Aşkale-Kükürtlü kömür havzasıda bu tür havzalara örnektir. Çalışılan alanun doğusunda, Evaporitlerin üzerine Çakıltaşları ile başlayan karasal bir istif, uyumsuz olarak gelmektedir. Irlittz (1972) ise tamamen stratigrafik olan bu ilişkiyi görmezlikten gelerek, Benda (1971) in Türkiye Neojeninin Palino-

Sekil 2 - Aşkale doğusunda yer alan çalışma alanmm jeoloji haritast.

Figure 2 - Geological map of the studied area in the east of Aspale.

$\underset{\sim}{\infty}$				AGIKIANALAR
		$\begin{gathered} 5 \\ 0 \\ 0 \\ 8 \\ \hline 5 \\ 0 \\ \hline 2 \end{gathered}$		Aluvyon m5:Kiltage-barn m4:Ince plaketli kiltaglarn n13:Çakillı kuatag, kuntag2, Kırıntı fosilli kiltaglara ve kümur damarlarz. ni2:Yegilinasi, gakaltagn, kuntaģ ve E61sel fosilli kiltaglari. misK2rmzaman, gokiltags-kustag 1 , ofiyolitten titreme, tane ve yer yer matrike destekli, intte paleosol2u.
		8		Kireçtagn, agak renkli, kaln tabokalı ve masif; bol makroforilli, resifal, troamanda gerkillx ve kunlu, tust sovir.leri evaporitli.
				ariyodithor, radyolurit, ģurt, serpantinitier, biziji-ultrobazik kayaçinr.

Sekil 3 - Aşkale-Kükürtlü yöresinin genelleştirilmiş stratigrafik kesiti.

Figure 3 - Generalized stratigraphical section of the Aşkale-Kükürtlü area.
lojik alt bölümlenmesi ilkelerin edayanarak, konglomera birimini Oligosene dahil etmistir. Dolayısı ile yapilan jeolojik haritada bazı net normal stratigrafik ilişkiler mecburen faylı gösterilmiştir.

Çahşllan alanda Penek Köyünün kuzeyinde yer alan bindirme ile Ust Kretase yaşl Ofiyolitler, Or-ta-Üst Miyosen (m_{1}) yaşlı konglomeralar üzerine itilmişlerdir. Gerçekte bu fay hattı oblik doğrultu atuml fay karakterinde olup, sol yönlüdür. Çalışılan alamın güneyinde de bindirme faylarmin etkin olduğu Irlittz (1972) tarafindan belirtilmiştir. Çalışlan alanın doğusunda ise Koçyiğit ve diğerleri (1985), Karasu havzasının mekanik yorumunu yaparlarken, Askale'nin güneyinden geçen Serçeme 3 faymin sol yönlü doğrultu atımlı fay olduğunu belirtmişlerdir. Olasılıkla bu fay ile yukarıda belirtilen oblik doğrultu atmin fay ile üstelemektedir. Dolayss ile bu fayın paleo fay olduğu söylenilebilir. Daha açık bir ifade ile, Ofiyolitler Orta Miyosen (m_{1}) yaşl konglomeralara gereç sağladıklarından ve bu fay boyuncada bir alüvyon yelpazesi olușturduklarından yola çıkarsak fayın yaşımın en azından Orta-Ust Miyosen olduğunu söyleyebiliriz.

Orta-Ust Miyosen yaşl gölsel ortamın başlangıcın oluşturan konglomeraların (m_{1}) üzerine ise, başlica kumtaşı-çamurtaşi ve kömür damarlarından oluşmuş, diğer tortul birimler $\left(m_{2}, m_{3}, m_{4}\right)$ gelmektedir (Şekil 3), Bu birimler Kükürtlï Köyü'nün doğusunda Șehriban Tepeye kadar uzanmasina rağmen, Kömür içeren gri masif kiltaşları Kükürtlü Köyü doğusunda sona ermektedir. Gerçekten de Hacı Hamza Komu dolayinda yapilan Sedimentolojik kesitte de (Șekil 5) görüldüğiu gibi gölsel ortam bu bölgede derinleşmekte ve kömür damarları oluşması için gerekli sığlaşmay ${ }_{1}$ göstermektedir.

SEDIMENTOLOJI

Çalışlan alanda 4 adet Sedimentolojik kesit ölçülmüş, bunlardan ikisi: Batıdaki Kükürtlü kesiti (Sekil 4) ile, doğudaki Hacı Hamza kesitleri (Șekil 5) ortamı yorumlamak açısından tipik kesitler olduklarından burada verilmis yorumlamaları yapılmıştır.

Kükürtlü Kesiti : Kesite, Erzincan karayolundan başlanarak güneye Kükürtlü Köyü yönünde devam edilmiştir. Kesitin başlangıç yerine kırmızı renkli konglomeralar yer almakta olup, ölçülen kalnlık konglomera biriminin gerçek kalınlığını vermektedir. Dolayısiyla yaklaşık $700-800 \mathrm{~m}$ kalınlğında olan bu birimin üst seviyelerinde, kanal dolgusu ast fasiyesinde, aşındırmalı tabanh, yer yer teknemsi çapraz tabakal,, ofiyolitik gereçten türeme yer yer tane destekli, yer yer de kum matriksli olan tekçe birimler üste doǧru tane incelmesi göstermektedir. Tane akmas1 strasında yer yer oturmalarında olduğu yol yarması yüzleklerinde gayet iyi gözlenebilmektedir. Tanelerin elipsoidal küresellikte olması ve yuvarlaklaşmanın iyi gelişmesi, tane destek haricinde yer yer de matriks destekli olmaları, çakılların uzun eksenlerinin tabakalanma düzlemine paralel olması, konglomeraların e_{n} azından bir akışan ile getirildiğini düşündürtmektedir. Birimlerin ince taneli kumtaşlarına geçmesi ve yer yer de kaliş içermesi, paralel laminalı kiltaslarından yapılmış olması, kırmızı renk göstermesi, bu üst düzeylerin de eski toprak olduklarını göstermektedir (Allen, 1974, Leeder, 1975 ve Kraus, 1987).

Genelde Alüvyon yelpazesi olarak yorumlanan bu istifler, yelpazenin raksak kısımlarına vergili sedimenter özellikler sunarlar. Alüvyon yelpazelerinin yakınsak kısımlarına vergili kütle akması, elek çökelleri vs., gibi sedimenter istifler bu kesimde saptanamamıştrr. Ayrica rrmak çökellerini karakterize eden sedimenter yapılarada rastlanmamıştır.

Ölçülen kesitin 20. metresinde ise bu birimlerin 50 cm kalınlğ̆nda, beyazımsı bej renkli, karbonath, bitki kırntill, iz fosilli, dalga ripıllı kumtaşları ile sona erdiğt görülmüsstür. Bu veriler bize raksak yelpazeden, Allen (1981b) de belirtildiği gibi, düzlüğe geçtiǧimizi ve sığ bir gölün oluştuğunu düşündürür.

Şekil 4 - Kükürtlü Sedimentolojik Kesiti.
Figure 4 - Kükürtlü Sedimentological Section.
$20-85 \mathrm{~m}$ arasında ise, aşındırmalı tabanlı, teknemsi çapraz tabakalı, çakıllı kumtaşları ile (kanal dolgusu ast fasiyesi), yer yer karbonath kiltaşları ile sona eren, orta-ince taneli kumtaşlarınin ardalanması gözlenmiştir. Kumtaşindan kiltaşına doğru geçis dereceli olup, volkanik kırıntı hakimdir, bu nedenle renkleri de yer yer morumsudur.
$85-100 \mathrm{~m}$ arasında ise ince taneli kumtaslan ile mor renkli çamurtaşlarının ardalanması gözlenmektedir.
$100-150 \mathrm{~m}$ arasındaki litolojiler, yeşilimsi-mor renkli, yer yer aşmmalı tabanlı, volkanik çakilli kumtaşları ile siltli çamurtaslarının ardalanımı gö-
rülmekte, üst seviyelere doğru tane incelmesi göstermekte, yer yer de Siderit nodülleri kapsamaktadır.
$150-170 \mathrm{~m}$ arasında kaba çakıllı, aşınmalı tabanh1, kum matriksli teknemsi çapraz tabakalı konglomeralar merceksel geometrili olup, kanal dolgusu ast fasiyesindedir. Birimler yesilimsi, orta taneli kumtaşlarina geccmekte olup, birim olası fayl bir zon ile bitmektedir.
$170-210 \mathrm{~m}$ arası mor renkli, ince taneli kumtasları ile silttaşlarımn ardalanması şeklinde olup, yeşil renkli ince taneli kumtaşları yaygı kumlarını karak. terize etmektedir.
$210-235 \mathrm{~m}$ arasında ise çamurtaşlar1 yoğun olmakla birlikte ince taneli kum bantlarına da rastlanmaktadır. Süspansiyon halindeki sedimanların fazlalığ 1 sakin bir sedimantasyonu gösterir. Bu birimler dağtim kanallarımn kaba sedimanları ile kesilmiştir. Çok ince taneli sedimanlar göliün içerisine giren bir deltanın dağtım kanalları arasında kalan körfez çökelleri olarak yorumlanmıştrr (Elliot, 1974).
$235-250 \mathrm{~m}$ arasindaki birimler, ince taneli, bitki kirıntılı, yeşilimsi kumtaşları ile başlamakta, üste doğru silttaşlarına geçmekte ve 1.40 m kalmlığında karbonath kiltaşları ile devam etmektedir. Bu istif ise, sığ bir gölün içerisine doğru ilerleyen deltanın üst fasiyesleri olarak yorumlanmıştır (Allen, 191 a).
$250-350 \mathrm{~m}$ arası ise birimler, genelde altta aşındirmalı tabanl, yer yer merceksel geometrili, teknemsi çapraz tabakalanmalı (kanal dolgusu), yeşilimsi renkli, çakıllı kumtaşları ile başlamakta, üste doğru tane incelmesi göstermekte, bazen organik kirmntilı (kömürlii) çamurtaşları ile bazende karbonath hafif beyaz renkli, yer yer dalga ripllh, ince birimlerle son bulmaktadr. Ortalama her tekrarlanan istif $5-10 \mathrm{~m}$ kalnnlk göstermektedir. Birimler, Elliot (1976)'da belirtildiǧi gibi, ırmak etmenliǧinde gelişmiş, delta üstü çökellerini yansıtmaktadır. Kanal dolgularıda dağıtım kanalları olarak yorumlanabilir. Yalnız burada gelişen delta bir gölün içerisine doğrudur.

350 m den daha yukarısinda ise, ince taneli kumtaşı ve çamurtaşının hakim olduğu litolojilerin üst seviyeleri yer yer bol Gastropod Indet., Lithoglyphus, Micromelenis fosilli olup, bazen beyazımsı gri renkli çamurtaşları, bazende siderit yumrulu, bitki kırıtilh ve ince kömürlï zonlarla sona eren istifler sunmaktadır. Kömürlü seviyelerin alt düzeylerinde eski toprak katmanının bulunması, bu kömürlerin otokton olduklarını göstermektedir.

Kesitin Yorumu : Istif başlca çevredeki allokton ofiyolitik birimlerden türeme kirntulardan oluşmuştur. Tabandaki konglomera tipi bölgede küçük bir alüvyon yelpazesinin oluştuğunu ,başlica kuzeyden gelen gerecin yer yer tane destekliden, çoğunlukla matriks (kum) destekli (debris flow) birimlerine
geçmesi üste doğru sub-lithic arenit ve çakıllı kumtaşlarn kapsaması, Heward (1978)'de belirtildiği gibi alüvyon yelpazesinin distal (ıraksak) kısımlarını göstermektedir. Ancak havzanm güney tarafindanda, havza içine az da olsa bir beslenme söz konusudur. Özellikle Akbaba tepe eteklerinde beslenmenin bu sefer kuzeye doğru olduğu ve kırıntilı gerecin genellikle kireçtaşlarindan oluştuğunu gözlemekteyiz.

Kesitte tabanda ölçülen konglomeraları izleyen kumtaşlarıın üst seviyelerinde gözlenen dalga ripıllar1, dağlar arasında oluşan küçük bir göle taşınmamin devam ettigini göstermektedir. Daha sonra gölün karadan taşınan kırıntilı gereçlerle dolduğu, yer yerde su seviyesinin değiştiǧi görülmektedir. Diğer bir deyimle yaklaşık 250 m'ye kadar saptanan sedimenter özellikler fan delta tipi bir sedimentasyonu göstermektedir. 250-350 metreler arasında ise gölün iyice dolduğu ve karasal ortama geçtiği anlaşılmaktadır. Özellikle, teknemsi çapraz tabakalı, aşındırmah tabanlı, $5-10 \mathrm{~m}$ kalınlığında, çakıllı kumtaşı ile başlayan üste doǧru tane incelmesi gösteren istifler, flüvyatif karakterde olup, olasllikla delta üstünde gelişen düşük sinüslü kumtaşı ve çamurtaşınm baskın olduğu litolojiler, yer yer bitki kirıntilh ve ince kömür bantları ile son bulmakta ve bazende karbonatlı silttaşları ile örtülmektedir. Gölsel Gastropodların varlığından gölsel rejimin zaman zaman baskın olduğu, kömür bantları ise bir sığlaşmanın olduğunu ve bataklik rejiminin geliserek bir turbiyerin oluştuğunu göstermektedir. Bu tür havzadaki sığlaşma ve derinleşme olayları sadece su seviyesinin deǧişimi sonucunda geliṣmeyip bölgenin tektonik bir kontrol altunda olduğunu, böylece zaman zaman su seviyesinin deǧistiǧini vurgulayabiliriz. Ancak buradaki tektonik kontrol Horasan Havzasındaki (Kerey ve Bozkuş, 1984) kadar bariz olmadığınıda belirtmekte yarar görüyoruz.

Hacı Hamza Kesiti : Kesite Hacı Hamza Komu'nun (köyünün) güney doğusundaki kuru dere yatağından başlanarak, tabakalara dik yönde Sehriban Tepe'ye doğru ölçülmüştür. Kesitin tabanı göriülmemekle birlikte ilk 40 m'de, paralel laminal, yesilimsi boz çamurtaşları içerisinde ince, yer yer merceksel karbonathı silttaşı bantları kapsamaktadır. Ölçülen en üst seviyesini ise sert zemin (hard ground) olarak yorumlanan biyotürbasyonlu dolomitik kireçtaşı oluşturmaktadır.
$40-115 \mathrm{~m}$ arasında ise, genelde çamurtaşı-silttaşı yapılışlı paralel laminal, bitki kirıntılı ve balik pullarına rastlanmaktadır. Yer yer de karbonat içeren silttaşlarında dalga ripılları gözlenebilmektedir. Ölçülen en üst seviyede ise 80 cm kalınlğgnda polijenik cakill konglomeralarda, taneler arasinda herhangi bir yönlenme görülmemekle birlikte, başlica kireçtaşı ve bazalt çakılları baskındır.
$115-200 \mathrm{~m}$ arasında ise, başlıca kiltașı-silttaşı ardalanmasından oluṣmuş olup, sıkça dalga ripillan kapsayan ince taneli kumtaşı tabakalarinda ara seviyeler halindedir. Kiltaşları, bitki kırıntıh, balık
pullu, paralel laminalı olup, yer yer üzerlerinde silttaşlarının oluştuğu oygu ve dolgular yer almaktadır. Uste doğru kum oranında bir artı̧ görülmekte, orta taneli bu kumtaşı seviyelerinin tabanında çamurtaşlarından türeme parçalar bulunmakta, volkanik kırintı ve dalga rippilarn kapsamaktadır.
$200-240 \mathrm{~m}$ arasında ise litolojiler assmmalı tabanIı top ve yastik yapılı çakılı kumtaşları ile başlamakta, üste doğru tane incelmesi göstermektedir. Bazende düşük açıl çapraz tabakalanma göstermek-

Şekil 5 - Hacrhamza Sedimentolojik Kesiti.
Figure 5 - Hacihamza Sedimentological Section.
te, tabanda dal izleri gözlenmektedir. Ince taneli kumtaslarında ise bitki kırıntıları ve balık pulları bulunmustur.

240 m ve daha yukarida ise, litolojiler aşınmalı tabanlı, çakıllı, teknemsi çapraz tabakalı kumtaşları ile başlamakta, üste dogru bitki kırıntılı dalga ripılh, ince taneli kumtaşına, sonrada paralel laminalı silttaşlarına geçmekte ve bu tür birimler üste doğru tekrarlanmaktadır. Tane boyunda gözle görülür bir artss vardir.

Kesitin Yorumu : Kesitin tabanunda yeralan litofasiyesler bize gölsel bir ortamda olduğumuzu göstermektedir. Başlıca çamurtaşı ve karbonat bantlı silttaşlarından oluşmuş olan taban fasiyesleri prodelta olarak yorumlanmıştır. Karakteristik olarak bir sert zeminden sonra silttaşları ince taneli kumtaşlarına dereceli olarak değişmekte, bitki kirıntıları, balık pulları ve dalga ripılları gözlenebilmektedir. Yerel olarak gözlenen konglomera merceği ise bir dağtım kanalı olarak yorumlanabilir. Dolayısı ile fasiyeslerdeki üste dogrru tane boyunda bariz artıs, bize bu fasiyes grubunun delta önü çökellerine ait olduğunu göstermektedir. 200. metreden sonra ise aşınmalı tabanh, top ve yastık yapıl, üste doğru tane incelmesi gösteren ve dalga ripill seviyeler ise, delta içerisinde yer alan dağıım kanalları olarak yorumlanabilir. Kesitin üst kısımlarımın ise artık gölün en üst kısımlarına karşılık geldiği ve akıntı etmenliğinin fazlalaştığı anlaşılmaktadır.

Kükürtlü kesiti çek-ayır havzasımin faylı kenarında geliştiǧinden bol çakiltaṣlı ve kumlu litofasiyesler baskın olduğu halde, Hacı Hamza kesitinde, çamurtaşi, silttaşı ve karbonat bantlı litofasiyesler baskındır. Bu durum bize çek-ayır havzalarının iç kısmunda gelisen gölsel fasiyesleri göstermektedir.

SONUÇLAR

Doğu Anadolunuun genç tektonik çatısı altında (Șengör ve Kidd, 1979; Barka ve diğerleri., 1983; Hempton ve diğerleri., 1983; Kerey ve Bozkuş., 1984; Barka, 1985; Şaroğlu ve Yllmaz., 1984; Koçyigit ve diğerleri., 1985; \$̧aroğlu ve Yılmaz., 1986) bölgeyi yorumladığımızda karşımıza tipik olarak dağlar arasında oluşan küçik bir çek-ayır havzası çıkmaktadır. Havzanın kuzey kenarını olusturan oblik-doğrultu atumli fay (Şekil 2), Koçyigit ve diğerlerinde (1985) belirtilen, Serçeme 3 fayı ile birlestirilebilir. Havzanın bu kenarında, hızlı fasiyes değişimleri görülmekte, özellikle Alüvyon yelpazesi tipi fasiyes toplulukları yer almaktadr. Havza içersine doğru, Reading (1980)'de belirtilen transtansiyon egemenligini yansitan normal faylar ve gölsel fasiyes toplulukları ile karakterize edilmektedir. Özellikle havza-
nın doğu kesiminde gölü̈n derinleştiği, ölçülen Hacı Hamza kesitinde (\$ekil 5), belirgin olarak görülmektedir. Havzanın daha sonraki jeolojik devirlerde transpresyon rejimine uğradiğnn, güneydeki fayların bindirme ve ters fay haline dönüştüğĭnü görmekteyiz. Ayrica bu seferde havzann güneyden, özellikle Mesozoyik karbonatlarından beslendigǐini Akbaba tepe eteklerinde görmekteyiz, Bu tür havzalara örnek olarak, Nardin ve Henyes (1978)in çalıştığı San Andreas fay sistemi Miyosende transtansiyon, Geç Pliyosende ve Pleyistosende transpresyon rejiminden etkilenmesi gösterilebilir. Miyo-Pliyosen yaşlı Ridge havzasinda (Crowell, 1975; Link ve Osborne 1978), özellikle transpresyonun egemen olduğu kita sınırı doğrultu atımlı fay zonunda, iklim denetiminde, yükselmis dağlardan kaynaklanan akarsu ve akarsu arası çökellerinin oluşturduğu geniş alüvyon düzlükleri meydana gelmiştir. Bu tür havzaların en güzel örneği Steel ve Gloppen (1980) çaliştığı Hornelen havzası olup, Batı Norveçte, Devoniyen yaşlı, Lapetus Okyanusunun kapanması ve kıtasal çarpışmanın en genç aşamasından doğan doğrultu atımlı faylar boyunca gelişmiştir.

Aşkale-Kükürtlii havzasında yukarndaki örneklerde olduğu gibi, kuzey kenarında Alüvyon yelpazesinin gelişmis olmas1, Heward ve Reading (1980)'te belirtildiǧi gibi faym bağıl olarak yükseldiğini göstermektedir. Havza içersine doğru gölsel fasiyeslere geçmesi ve üste doğru akarsu etmenliğinin fazlalaşarak gölün dolması, bataklık rejimine geçerek kömürlü̆ seviyelerin görülmesi bize tipik bir çek-ayır havzasında olduğumuzu göstermektedir.

Yapılan çalışmadan çıkarılan diğer bir sonuç ise kömürlü havzanın yaşı ile ilgilidir. Bu havzada çalışan Wedding (1965)'e göre yaş, olasillkla Miyosen, Irlittz (1971)'e göre ise Úst Oligosen-Alt Miyosendir. Burada yanılticı unsur, havzanın batisinda yizlek veren kırmızı renkli konglomeraların Oligosen olarak kabul edilmesinden doğmaktadır. Bu çalışmada ise, Asskalenin batisinda yer alan Alt Miyosen platform karbonatlairnin üzerine uyumlu olarak, evaporitler gelmekte ve bu birimleri de karasal konglomeralar izlemektedir. Dolayisiyla, konglomeralarin en azından Alt Miyosenden genç (Orta-Üst Miyosen) oldukları kabul edilmiştir.

TEŞEKKÜR

Bu araştırma MTA Enstitüsü Enerji Hammaddeler Dairesinin yardımları ile gerçekleştirilmiş olup arazi çalışmaları 1984 yaz aylarında gerçekleștirilmiştir. Araştricicilar bașta MTA olmak üzere Doğu Linyitleri işletmesi, Aşkale Bölge Müdürlüğüne özellikle teşekkürui bir borç bilirler.

DEGINILEN BELGELER

Allen, J.R.L., 1974, Studies in fluviatile sedimentation : implications of pedogenic units, Lower Old Red Sandstone, AngloWelsh outcrop, Geol. Jour. 3, 181-208.

Allen, P.A., 1981 a, Devonian lake margin environments and processes $S E$ Shetland, Scotland, J. Geol. Soc., London, 133 (1), 1-14.

Allen, P.A., 1981 b, Sediments and processes on a small stream-flow dominated, Devonian alluvial fan, Shetland Islands, Sediment. Geol., 29, 31-66.

Benda, L., 1971, Principles of the palynologic subdivision of the Turkish Neogene, Newsl. Stratigr., 1,3, 23-26.

Barka, A.A., 1985, Kuzey Anadolu fay zonundaki bazt Neojen - Kuvarterner havzalarmin jeolojisi ve tektonik evrimi, Ketin Simpozyumu, Ankara, T.J.K. 209-227.

Barka, A.A., Șaroğlu, F. ve Güner, Y., 1983, Horasan - Narmandepremi ve bu depremin Doğu Anadolu Neotektoniğindeki yeri, Yeryuvart ve Insan, 8, 16-21.

Bayraktutan, S., 1982, Narman (Erzurum) Havzassmin Miyosendeki Sedimentolojik evrimi, Atatürk Üniv. Fen Ed. Fak., Doktora tezi, 282 s .

Bozkus, C., 1983, Doğu Anadolu Bölgesi Kömür envanteri, M.T.A. Genel Müdürlüğ̈̈ Doğu Anadolu Bölge Yayınlarından 1, 43, Van.

Crowell, J.C., 1975, The San Gabriel fault and Ridge Rassin, southern California, Spec. Publ. California Div. Mines eol., 118, 208-233.

Demirtaşl, E. ve Pisoni, C., 1966, Ahlat-Adilcevaz bölgesinin jeolojisi (Van Gölü kuzeyi), M.T.A. Derg., 64, 22-36.

Elliot, T., 1974, Interdistributary bay sequence and their genesis, Sedimentology, 21, 611-622.

Elliot, T., 1976, UPper Carboniferous Sedimentary cyclcles produced by river dominated, elongate deltas, Jour. Geol. Soc., London, 132, 199-208.

Hempton, M.R., Dunne, L.A., and Dewey, J.F., 1983, Sedimentation in an active strike-slip basin, Southeastern Turkey, Journal of Geology, 91, 401-412.

Heward, A.P., 1978, Alluvial fan Sequence and megasequence models, with examples from Westphalian D. Stephanian B coal fields, Northern Spain, Can. Soc. Petrol. Geologists Memoire 5, 669-702.

Heward, A.P. and Reading, H.G., 1980, Deposits associated with a Hercynian to late Hercynian continental strike-slip system. Cantabrian Mountains northern Spain. In : Sedimentation in Obliqueslip Mobile Zoned (ed. P.F. Ballence and H.G. Reading). Spec. Publ. Int. Asso. Sediment, 4, 105-125.

Irritz, W., 1972, Lithostratigraphie und tektonische Entwicklung des Neogenes in Nordostanatolien, Beitiefte zum Geologischen Jahrbuch, 120, 111.

Ketin, İ., 1977, Van gölü ile İran stnuř arasindaki bölgede yaplan jeoloji gözlemlerinin sonuçları hakkında kasa bir açıklama, T.J.K. Bült., 20/2, 79-85.

Kerey, İE. ve Bozkus, C., 1984, Erzurum - Horasan Pasinler havzasindaki kömür seviyeli Horasan Formasyonunun stratigrafik, sedimentoloj̈k ve tektonik özellikleri, T.J.K. Kurultayı Bull., 5, 87-91.

Koçyiğit, A., Öztürk, A., İnan, S. ve Gürsoy, H., 1985, Karasu Havzasmin (Erzurum) Tektonomorfolojisi ve mekanik yorumu, C. \ddot{U}. Müh. Fak. Yerbilimleri Derg. 2, 1, 3-15.

Kraus, M.J., 1987, Integration of Channel and Floodplain Suites, 11. Vertical Relations of Alluvial Paleosols, Jour, of Sed., Petrology, 57, 4, 602-613.

Lahn, E., 1940, Erzurum Havalisinin Jeolojik Bünyeleri, M.T.A. Büll., 2/19, 233-239.

Leeder, M.R., 1975, Pedogenic carbonates and flood sediment accretion rates: A quantitative model for alluvial arid-zone lithofacies, Geol. Mag., 112, 257-270.
Link, M.H. and Osborne, R.H., 1978, Lacustrine facies in the Pliocene Ridge Basin Group : Ridge Basin, California. In: Modern and

Ancient Lake Sediments (ed. A. Matter and M.E. Tucker). Spec. Publ. Int. Ass. Sediment., 2, 169-187.

Nardin, T.R. and Henyen, T.H., 1978, PliocenePleistocene diastrophism of Santa Monica and Sand Pedro shelves, California Contienental Borderland, Bull. Am. Ass. Petrol. Geol., 62, 247-272.

Reading, H.G., 1980, Characteristics and recognition of strike-slip fault Systems, In: Sedimentation in oblique-slip mobile zones (ed. P.F. Ballance and H.C. Reading). Spec. Publ. Int. Ass. Sediment, 4, 7-26.

Steel, R. and loppen, U.G., 1980, Allüvial sand deposition in a rapidly subsiding bassin (Devonian, Norway). Signe of strike slip tectonics during infilling. In: Sedimentation in oblique-slip Mobile zones (ed. P.F. Ballance and H.G. Reading). Spec. Publ. Int. Ass. Sediment., 4, 79-103.

Saroğlu, F. ve Güner, Y., 1981, Doğu Anadolunun jeomorfolojik gelişimine etki eden ögeler, jeormorfoloji, tektonik, volkanizma ilișkileri, T.J.K. Büll. 24, 39-50.

Saroğlu, F. ve Yılmaz, Y., 1984, Dŏ̆u Anadolu'nun neotektoniği ve ilgili magmatizmast, Ketin simpozyumu bildirileri, 149-162.

Saroğlu, F. ve Yulmaz, Y., 1986, Doğu Anadolu'da neotektonik dönemdeki jeolojik evrim ve havza modelleri M.T.A. Büll., 107, 73-95.

Şengör, A.M.C., 1980, Türkiye'nin neotektoniğinin esaslant, T.J.K. Konferans Serisi, 2, 40.
Sengör, A.M.C., and Kidd, W.S.F., 1979, Postcollisional tectonics of the Turkish-Iranian Plateau and comprasion with Tibet, Tectonophysics, 55, 361-376.

Sengör, A.M.C., Görür, N., and Saroğlu, F., 1985, Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study, In: Strike-slip deformation, Basin Formation and Sedimentation, SEPM Spec., Publ., 37, 227-264.

Stchepinsky, V., 1940, Erzincan mıntıkastndaki rusubi yatakları, M.T.A. Bull., 2/19, 212-222.

Tokel, S., 1984, Doğu Anadolu'da kabuk deformasyonu mekanizmast ve genç volkanitlerin petrojenezi, T.J.K. Ketin Sympozyumu, 121-130.

Yılmaz, Y., Dilelc, Y. ve Iş̧lk, H., 1981, Gevaş (Van) ofiyolitinin jeolojisi ve sinkinemetik bir makaslama zonu, T.J.K. Bült., 24/1, 37-44.

Wedding, H., 1965, Divriği ve Oltu (Kuzeydoğu Anadolu) arasındaki kömür zuhurlarinin ya\$l, M.T.A. Bull., 64, 42-52.

Kayabașı Formasyonu'nda Bulunan Triyas Konodontlarının Taksonomik Karakterleri

THE TAXONOMIC CHARECTERS OF TRIASSIC CONODONTS FROM KAYABASI FORMATION

Fuat ÖNDER, Cumhuriyet Universitesi Müh. Fak., Jeo. Müh. Böl. SIVAS.

Abstract

ÖZ : Bu çalışmada kuzeybatı Pontid'lerde Göynükdağ1 - Kayabaşı yöresinde yüzeyleyen kırmızı-gri lekeli kireçtaşlan incelenmiş olup makro kavkı parçalarınca zengin ve çok az foraminifer içeren bu rekristalize biyomikritlerin Orta-Úst Triyas yaşında oldukları saptanmıştır. Alp tipi karbonatlara benzeyen bu kayalar sığ epikontinental denizlerde çökelmiş ve Orta-Űst Triyas yaşını veren zengin «Konodont» mikrofosillerini içerirler. Bu araștırma ile ilk defa tespit edilmiş olan konodont türleri; Cypridodella, Gladigondolella, Neogondolella, Neohindeodella, Prioniodella, Prioniodina ve Xaniognathus cinslerine ait olup bu çalışmada taksonomik özellikleri ortaya konmaya çalışılmıştır.

ABSTRACT : The Early Mesozoic rocks studied here outcrop surrounding the Göynükdaği - Kayabaşı area located south of the towns of Bozkurt and Abana of Kastamonu. The rocks are grey-red mottled limestone rich in shells of macrofossils but poor in foraminifers. They are recrystalized biomicrite containing Middle-Upper Triassic conodonts. Their taxonomic charecters are given in this study. These firstly recovered genera of conodonts are : Cypridodella, Gladigondolella, Neogondolella, Neohindeodella, Prioniodella, Prioniodina and Xaniognathus. Kayabaşı Formation generally resemble the Alpine type of the Early Mesozoic rocks deposited in shallow epicontinental seas.

GİRIS

Bu çalışmayı konu alan kayalar Kuzeybatı Pontidler'de Kastamonu ili Göynükdağı civarında yüzeyleyen Orta-Ûst Triyas yaşlı kireçtaşlarıdır. Yöredeki bu kireçtaşlarının (Șekil 1) Triyas yaşlı makrofosiller içerdiğini ilk olarak Stchepinsky, 1942 ve Blumenthal, 1948 konu eder. Bu araştırmacılar Muzrup köyiu batısında Devrekani ile Abana arasında yer alan Triyas yaşlı gri-kırmızı lekeli kireçtaşlarında zengin Ammonoid ve Brachipod'a rastlandığını söylerler. Bunlar arasinda tayin edilenler ise; Arcestes sp., Ceratites sp., Orthoceras sp., Spiriferina sp., Spiriferina (Menzelina) menzeli Dunk, Coenothyris vulgaris Schloth, Rhynchonella sp.'lerdir (Stchepinsky, 1942). Geiss (1954) ise Zirma yakmında yüzeyleyen Kireçtaşlan içerisinde Involutina liassica Terquem bulmus ve bu istifin Alt Liyas'a kadar devam ettigini söylemiştir. Daha sonra ise gerek bu kayalar ve gerekse Jura yaşl istifler üzerinde çeşitli jeolojik araştırmalar yapılmıştır (Ketin ve Gümüş 1962; Ataman ve dig. 1977; Yllmaz, 1980). Yörede ilk defa «Konodont» elde etmek amacryla başlatılan çalışmada Kayabaşı Tepe'de yüzeyleyen kireçtaşlarını içeren bölgenin jeolojik haritası (Sekil 1) ve bu kayaçların stratigrafik, jeolojik ve ortamsal karekterleri ayrı olarak yayınlanmıștır (Önder ve diğ., 1988). Burada ise bu kayaçlardan ilk defa elde edilen ko-
nodontların taksonomik özellikleri verilecektir. Birime kesin yaş veren ve ilk defa tanımlanan bu mikrofosiller Ingiltere'de Southampton Üniversitesinde Elektron Mikroskopta çalışlmış ve resimlenmiştir (Levha 1-6). Ornekler halen Cumhuriyet Üniversitesi Jeoloji Mühendisliği bölümünde korunmaktadır.

JEOLOJIK KONUM

Göyniikdağı Kuzey Pontid'lerde, Kastamonu'nun Abana ve Bozkurt Ilccelerinin 30 km , kadar güneyinde yer almaktadır. Erken Mesozoyik yaşlı kayalar Kayabaşı Tepe ve çevresinde yüzeylenmekte olup Börümce köyünün 2 km . kadar kuzeydoğusu ile Göynükdağının 15 km . kadar güneyinde gözlenebilir (Şekil 1). Triyas kireçtaşları Kayabaşı Tepe'de bir antiklinalin çekirdeğinde çıkma vermekte olup yerel olarak kıvrima ve faylanmalarla sarp bir topoğrafya arz eder. Gri-kırmızı lekeli kireçtaşlarından ibaret olan Triyas kayaları ince kesitlerinde biyomikrit olarak adlandırılabilir ve ammonoid, ekinoid, gastropod ve belemnit gibi makrofosillerin kavkı parçalar1 ile zengin konodont ve foraminiferler içerirler. Tayin edilebilen foraminiferler Involutina ve Opthalmidium cinslerine ait türlerdir. Bu çalışmada konodontların tanımlanmalan yapılmıs olup kayaçlara

Figure 1. Geologic map of the Early Mosozoic rocks around Göynüukdağ1 area, taken with some modifications from Yilmaz and Boztuğ (1986, 1987). Asteriks represent the sample locations collected from the Triassic Kayabaşı Formation. As for other explanations, please see Fig. 2 (Önder ve diğ. 1988).

Şekil 1. Göynükdağ1 ve çevresinde yüzeyleyen Erken Mesozoyik kayalarım gösteren jeolojik harita. Yilmaz ve Boztuğ (1986,1987)' den bazı düzeltmeler yapılarak kullanılmıştrr (Önder ve diğ. 1988). Yıldzlar örneklenen lokasyonları göstermektedir. Kayabaşı Formas: yonu ile ilgili diğ̣er açıklamalar için Şekil 2 'ye bakınız.

Orta - Ulst Triyas yaşını verebilmektedir; Bu karbonath kayalar Alp tipi slğg epikontinental denizlerde çökelmişlerdir (Zankl, 1971 ve Bernoulli and Jenkyns, 1974).

Kayabaşı Formasyon'u uyumlu olarak kireçli kiltaşı, silttaşı ve kumtaşı ardalanmasından oluşan Börümce Formasyonu'na ait flişel çökellerle üzerlenirler (Şekil 2). Daha önce bazı çalışmalarda bu, iki formasyona ait kayaçlar Akgöl Formasyonu adı altında toplanmıșlardır (Ketin ve Gümüş, 1962; Tüysüz, 1986; Aydın ve diğ., 1986). Fakat litolojik karekterlere, fosil içeriklerine ve depolanma koșullarina bağlı olarak bu birimlerin «Kayabașı Formasyonu* ve «Börümce Formasyonu» olarak ayrilması gerekmektedir (Ataman ve diğ., 1977; Yılmaz, 1980; Yilmaz ve Boztuğ, 1986, 1987). Bu nedenlerle yazar yörede daha önce kullanılmıș olan «Aköl» adının «Akgöl Grubu* olarak kullanılmasinın uygun olacağ kanısındadır.

PALEONTOLOJİ

Araştrrma Teknikleri

Çalıșma alanında konodontlara dayalı paleontolojik bir araştırma daha önce yapılmamis olup bu çalışma ilk bulguları kapsamaktadır. Toplam 18 adet örnek Kayabaşı Tepe ve civarındaki iki aynı lokasyondan alınmis olup ince kesitler yaptırılarak petrografik ve mikropaleontolojik amaçlı çalıșılmıștır. Ayrica aynı örnekler (ki her biri $2-3 \mathrm{~kg}$. ağırlığında) laboratuvarda bilinen tekniklerle eritilmisstir (Collinson, 1963; Austin, ed., 1987). 10 örnekten konodont elde edilmemesine karşın diğerlerinden 100^{\prime} ün üzerinde element bulunmuștur. Konodont elde edilebilen örnekler genellikle rekristalize biyomikritlerdir. Ayrica konodontlar CAI deger göstermekte ve bu hafif açık kahverengimsi renk değişimi ortamda $150-200^{\circ} \mathrm{C}$. 1 s 1 etkisinin söz konusu olduğunu açıklamaktadir (Epstein et al., 1977, Rejebian et al., 1987). Laboratuvarda kayaç örnekleri eritildikten sonra tane olarak bulunan bu elementler binoküler steryo mikroskoplarda çalışılmışlardır. Daha sonra Southampton Universitesi laboratuvarlarinda SEM' ile fotografları çekilmiștir.

Ust Paleozoik ve Alt Mesozoik yaşlı denizel kayaçlarda konodontların varlığmin 50 yıldır bilinmesine ve son ynllarda Triyas konodontlan üzerindeki yoğun ilgiye karşın bunlar üzerindeki taksonomik adlamalarda bir çok problem mevcuttur. Bu nedenle en yaygon olarak kullanılan, elde edilebilir ve degerli adlar bu çalışmada tercih edilmiş olup Uluslararası Zooloji Komisyonu'nun kuralları (ICZN) takip edilmeye çalışılmıştır, Bu arada en son yayınlarda (Farabegoli, E. et al., 1984; Papsova, J. and Goal, L., 1984; Orchard, M.J., 1985; Bagnoli, G., 1982; Wardlow, B.R., Collinson, W.J., 1984; Bagnoli, G. et al., 1984; Krystyn, L., 1983) taranarak deneștirmeler yapılmıştır.

Sekil 2. Haritalanan sahanın genel stratigrafik dikme kesiti (Önder ve diğ. 1988).

Figure 2. Generalized stratigraphic column section of mapped area (Önder ve diğ. 1988).

Sistematik Paleontoloji

Ladiniyen-Karniyen Konodontları

Ayrı Element Taksonomisi

Takım CONODONTOPHORIDA Eichenberg 1930
Cins CYPRIDODELLA Mosher 1968
Tip Tür Cypridodella conflexa Mosher 1968

```
Cypridodella cf. venusta (Huckriede 1958)
    pl. II figs. 8
```

1958 Lonchodina venusta Huckriede, p. 152, pl. 11, fig. 25

1968 Cypridodella venusta (Huckriede), Mosher, p. 922 , pl. 114 , fig. 1,7,13

1971 Prioniodin ${ }_{\mathrm{a}}$ (Cypridodella) venusta (Huckriede); Kozur and Mostler, pl. 1, fig. 4

1972 Prioniodina (Cypridodella) venusta (Huckriede); Kozur and Mostler, p. 32, pl. 11, fig. 16, 24; pl. 12, fig. 11; pl. 15, fig. 3

1975 Prioniodina venusta (Huckrede); Catalov and Budurov, p. 1248, pl. 1, fig. 12

1975 Cypridodella venusta (Huckriede); Gedik, p. 115. pl. 7, fig. $16-18$

1977 Prioniodina venusta (Huckriede); Sudar, pl. 5, fig. 9

1979 Prioniodina venusta (Huckriede); Budurov, pl. 2, fig. 3

1982 Cypridodella venusta (Huckriede) Koike, p. 23, pl. 7, fig. 47

1984 Cypridodella venusta (Huckriede); Önder, p. 78, pl. 22, fig. 5,6

Bu türün yeniden tanmlanması Mosher (1968) tarafindan verilmis olup tablasiz elementler (nonplatform) ölçü olarak oldukça iridir. Uzunca bir dah (posterior bar) mevcut olan ve karekteristik olarak çok ince olan birimi nüzerinde çok sayıda ve biribirlerinden ayrık dişler (denticles) bulunmaktadr.

Cypridodella sp. A-B-C

Pl. III figes. $7,8,9,10 \mathrm{a}-\mathrm{b}, 12,11$
Tür tayini kırık oldukları için yapılmayan bazı Cypridodella cinsine ait elementler buraya dahil edilmişlerdir.

Cins GLADIGONDOLELLA Müller 1962

Tip Tür Polygnathus tethydis Huckriede 1958
Gladigondolella tethydis (Huckriede 1958)

$$
\text { pl. IV } \quad \text { figs. } 7,8,9,10,11,12
$$

1958 Polygnathus tethydis Huckriede, p. 157, pl. 11, fig. $39-40$; pl. 12, fig. 1,38 ; pl. 13, fig. 2-5

1960 Polygnathus tethydis Huckriede; Budurov, p. 117, pl. 2, fig. 28, 30, 33

1965 Polygnathus tethydis Huckriede; Mosher ve Clark, p. 563 , pl. 66 , fig. 13

1968 Gladigondolella tethydis (Huckriede); Hayashi, p. 69, pl. 3, fig. 8a-b

1968 Gladigondolella tethydis (Huckriede); Mosher, pl. 119, figs. 7-10

1973 Gladigondolella tethydis (Huckriede); Budurov, p. 802, pl. 1, figs 4-7

1975 Gladigondolella tethydis (Huckriede); Gedik, p. 120 , pl. 3 , figs. $15-17$

1979 Gladigondolella tethydis (Huckriede); Budurov, pl. 2, fig. 6

1980 Gladigondolella tethydis (Huckriede); Kovacs ve Kozur, pl. 3, figs. 5,6

1982 Gladigondolella tethydis (Huckriede); Koike, p. 29 , pl. 4 , figs. $26-32$

1982 Gladigondolella tethydis (Huckriede); Matsuda, pl. 5, figs. 1,2
1984 Gladigondolella tethydis (Huckriede); Önder, p. 97, pl. 26, figs. 14a, b; $15,16,17$

Bir çok eski çalışmacı tarafından tanımlanması verilmiş ve çok iyi bilinen bir türdür (Mosher 1968, Gedik 1975, vs.). Bu türün üyeleri tablalı (platform conodonts) olup en önemli özellikleri ise uzun ve kıvrılmıs tablasının genişleyen bir arka bölgeye (posterior part) sahip oluşudur.

Gladigondolella sp. Olgunlaşmamış evre.
pl. I figs. 1,2,3,4
Olasılıkla G.tethydis türüne ait olan bazıları kırok, bazılan ise olgunlaşmamış safhaya ait örnekler tür tayinine gidilmeden bu grub içerisinde toplanmıştır.

Cins NEOGONDOLELLA Bender ve Stoppel 1965
Tip Tür Gondolella mombergensis Tatge 1956
Neogondolella bifurcata (Budurov ve Stefanov, 1972).
pl. IV.
figs. 13,14
1972 Paragondolella bifurcata Budurov ve Stefanov, p. 843, pl. 1, figs. 1-25; pl. 2, figs. 1-9; text-fig. 8

1975 Gondolella bifurcata (Budurov ve Stefanov); Zawidzka, pl. 40, fig. 2,3; pl. 43, fig. 1

1975 Neogondolella bifurcata (Budurov ve Stefanov); Zeigler, p. 219

1979 Paragondolella bifurcata Budurov ve Stefanov; Budurov et al., pl. 1, figs. 1,2

1980 Gondolella bifurcata (Budurov ve Stefanov); Kovacs ve Kozur, pl. 2, fig. 5-7

1984 Neogondolella bifurcata (Budurov ve Stefanov); Önder, p. 101, pl. 27, fig. 3,4

Ilk olarak tanms Budurov ve Stefanov (1972) tarafından verilen türün en karekteristik özelliği tablanin arka ucunun (posterior end) alt sahasının (basal field) üç köşemsi şekilde genişlemesidir.

Neogondolella bulgarica (Budurov ve Stefanov 1975)
pl. IV
figs. 4,5,6
1958 Gondolella navicula Huckriede, p. 147, pl. 11, figs. 1,14

1962 Gondolella navicula Huckriede; Budurov, p. 116, pl. 1, figs. 34-38

1974 Paragondolella bulgarica Budurov ve Stefenov, pl. 2, fig. 27

1975 Paragondolella bulgarica Budurov ve Stefanov; p. 15, pl. 2, fig. 1-15

1977 Neogondolella bulgarica (Budurov ve Stefanov); Nicora, p. 100, pl. 5, figs. 8-14

1980 Gondolella bulgarica (Budurov ve Stefanov); Kovacs ve Kozur, pl. 2, figs. 1,2

1981 Neogondolella bulgarica (Budurov ve Stefanov); Koike, pl. 2, fig. 1-3

1982 Neogondolella bulgarica (Budurov ve Stefanov); Koike, p. 32, pl. 4, figs. 1-19, 22-24

1984 Neogondolella bulgarica (Budurov ve Stefanov); Önder, p. 101, pl. 27, figs, 5a; b, c; 6

Bir çok eski çalışmacı tarafından ve detaylı olarak sinonimleri verilmiş olup burada tablalı örnekler Nicora (1977)'nin tanımlamaları ile paralellik göstermektedir. En karakteristik özellikleri tablanın hafif kıvrik oluşu ile yine kıvrık ve dişli blade'in bulunuşudur.

Neogondolella excelsa (Mosher 1968)
 pl. IV figs. 1,2,3

1960 Gondolella navicula Huckriede; Budurov, pl. 1, figs. 24a, b, c, d

1968 Paragondolella excelsa Mosher, p. 938, pl. 118, figs. 1-8

1972 Paragondolella excelsa Mosher; Budurov ve Stefanov, p. 844, pl. 2, fig. 15-26

1973 Metapolygnathus excelsa (Mosher); Mosher, p. 164 , pl. 120 , fig. 8

1973 Neogondolella excelsa (Mosher); Zeigler, p. 135, Neogondo. levha 1 , fig. 10

1975 Metapolygnathus excelsus (Mosher); Gedik, p. 129, pl. 3, figs. 1-9

1980 Gondolella excelsa (Mosher); Kovacs ve Kozur, pl. 3, fig. 7

1981 Neogondolella excelsa (Mosher); Koike, pl. 2, figs. 4-6

1984 Neogondolella excelsa (Mosher); Önder, p. $102, \mathrm{pl} .27$, figs. $11,12,13$

Mosher (1968) ve Gedik (1975) gibi bir çok çalışmacı tarafından tanımı verilen türün en önemli özelliği tablanın (platform) arka uca (posterior end) doğru en geniş halini alması ve ön bölgede (anterior part) yüksek karinasının bulunuşudur.

Neogondolella foliata foliata (Budurov 1975) pl. VI
figs. $6,7,8 \mathrm{a}, 8 \mathrm{~b}$

1975 Paragondolella foliata Budurov, p. 79, pl. 1, figs, $2,10,12,14,16,19-22$

1976 Paragondolella foliata Budurov; Budurov, p. 97, pl. 2, figs. 18, 35

1981 Neogondolella foliata (Budurov); Koike, pl. 2, figs. 16,17

1983 Gondolella foliata foliata (Budurov); Kovacs, p. 108, pl. 2, figs. 1-2, pl. 3, fig. 1

1984 Neogondolella foliata (Budurov); Önder; p. 103, pl. 27, figs. $14 \mathrm{a}, \mathrm{b}, \mathrm{c}$

Budurov (1975) tarafından ilk defa tür seviyesinde tanımlanan element Kovacs (1983) tarafindan iki alt tür olarak ayırtlanmıștır. Bu yazar karina'da ki dişlerin dike yakın oluṣu ve taban kenarımın taban çukurluğundan (basal pit) önce düzleşmesi ile boyuna daha düz bir görünüm vermesi nedeniyle bu alt türü N. foliata inclinata Kovacs alt türünden ayırır.

```
Neogondolella of foliata inclinata Kovacs 1983
    pl. VI
    figs. 9,10
```

1958 Gondolella navicula Huckriede, pl. 12, figs. 3,4,8,17,19

1960 Gondolella navicula Huckriede; Budurov, pI . 1, figs. 21, 22a-c, 24a-d

1975 Gondolella excelsa (Mosher); Kristan-Tollmain ve Krystyn, pl, 3, figs. 7a-b:

1975 Paragondolella foliata. Budurov, p. 79, pl. 1, figs, 3-8, 13,17,18

1977 Gondolella foliata (Budurov); Kovacs, p. 80, pl. 6 , figs. 2a-b, 3a-c

1980 Gendolella foliata (Budurov); Kovacs ve Kozur, pl: 6, figs. 3,5

1983 Gondolella foliata inclinata Kovacs, p. 110, pl., 1, figs. 1-4; pl. .3, figs. :2-4

Kovacs (1983) tarafından alt tür olarak tanımı verilmiş olup Üst Ladiniyen - Alt Karniyen'de bulunduğu işaret edilmiştir.

Neogondolella hanbulogi (Sudar ve Budurov 1979) pl. V
figs. 6,7
1962 Gondolella mombergensis Tatge; Budurov, p. 116 , pl. 1, figs. $39-42$, pl. 2, fig. 21

1979 Paragondolella hanbulogi Sudar ve Budurov; p. 50, pl. 1, figs. 9,10; pl. 2, figs. 1-9; pl. 3, figs. 1-12

1984 Neogondolella cf. hanbulogi (Sudar ve Budurov); Önder, p. 103, pl. 28, fig. 1a,b

Sudar ve Budurov (1979) tarafindan verilen tanumlamaya uyan elementler tablaları (platform) ile karekteristiktirler. Bu tabla merkezi bölü̈nde geniṣçe olup arka bölge (posterior part) yuvarlaklaşarak son bulur.

Neogondolella kozuri Gedik 1981
 pl. V figs. 8a, 8b

1980 Gondolella sp. Isozoki ve Matsuda, plate-fig. 11
1981 Neogondolella kozuri Gedik, p. 4, pl, 1, figs. 1-3
1984 Neogondolella kozuri Önder. p. 103, pl. 28, figs. 2a,b,c

Ilk olarak Gedik (1981) tarafindan tanmlanan tür \mathbf{N}.mombergensis grubuna ait olup kıvrık tabla kenarlra, ana-diş ve taban çukurluğunun en arkada yerlesmis olmasi, ayrricı özellikleridir.

Neogondolella longa Budurov ve Stefanov 1973 pl. V figs. $9,10,11,12$

1973 Neogondolella longa Budurov ve Stefanov, p. 805 , pl: 1 , figs. $16-22$

1974 Neogondolella longa Budurov ve Stefanov; Budurov ve Stefanov, pl, 2, figs. 20,21

1975 Neogendolella Ienga Budurov ve Stefanov; Budurov ve Stefanov; pl. 2, figs. 9-13 .

1979 Neogondolella longa Budurov ve Stefanov; Budurov et al., pl. 2, figs. 3,4,13,14

1984 Neogondolella longa Budurov ve Stefanov; Önder, p. 103, pl. 28, figs. 3a,b,c, 4

Bu türe ait elementler uzun, dar, silindirik ve kenarları iyi yuvarlaklaşmıș tablası (platform) ile karekteristiktirler .15-18 adet yüksekce diṣli ve serbest blade ise diğer bir ayırıcı özelligidir.

Neogondolella mombergensis (Tatge 1956)

$$
\text { pl. V figs. } 1,2,3,4,5
$$

1956 Gondolella mombergensis Tatge, p. 132, pl. 6, figs. 1,2

1965 Gondolella mombergensis Tatge; Mosher ve Clark, p. 560, pl. 65, figs. 20,23,26-29

1968 Gondolella mombergensis Tatge; Mosher, p. 937, pl. 116, figs. $6,9,12,14$

1970 Neogondolella mombergensis (Tatge); Bender, p. 517, pl. 4, fig. 3

1971 Neogondolella mombergensis (Tatge); Sweet et al., pl. 1, fig. 24

1973 Neogondolella mombergensis (Tatge); Mosher, p. 167, pl. 19, figs. 4-6,8

1975 NeogondoleHia mombergensis (Tatge); Gedik, p. 131, pl. 1, figs. 1-3.

1979 Neogondolella mombergensis (Tatge); Clark et al., pl. 1, fig. 8

1980 Gondolella mombergensis Tatge; Kovacs ve Kozur, pl. 4, figs. 4-6

1981 Neogondolella mombergensis (Tatge); Koike, pl. 2, figs. 8,9.

1984 Neogondolella mombergensis (Tatge); Önder; p. 104, pl. 28, figs. 5a,b,c

Bir çok eski çalışmacı tarafından tanımlanması verilmiş (Mesher 1968, Gedik 1975 v.s.) olup arka uca doğru (posteriorly) yuvarlaklaşmıs geniş tablaS1 (platform) ile karekteristiktirler.

Neogondolella navicula navicula (Huckriede 1958) pl. VI
figs. 1,2,3,4,5
1959 Gondolella navicula Huckriede. p. 147, pl. 11, figs. 2-4, 13,15-17,27,35; pl. 12, fig. 10

1965 Gonodolella navicula Huckriede; Mosher ve Clark, p. 560, pl. 66, figs. 14,16

1966 Gondolella navicula Huckriede; Clark ve Mosher, p. 391, pl. 47, fig. 20

1968 Paragondolella navicula navicula (Huckriede); Mosher, p. 939, pl. 116, figs. 20-27; pl. 117, figs. 1-5

1972 Paragondolella navicula navicula (Huckriede); Budurov ve Stefanov, p. 884, pl. 2, figs. 10-14

1973 Neogondolella navicula navicula (Huckriede); Mosher, p. 168, pl. 20, figs. 11,18

1975 Neogondolella navicula navicula (Huckriede); Gedik, p. 132, pl. 1, figs. 7-8; pl. 2, figs. 19-24 figs. 19-24

1980 Gondolella navicula Huckriede; Kovacs ve Kozur, pl. 13, fig. 2

1984 Neogonodolella navicula navicula (Huckriede);
Önder, p. 105, pl. 28, figs. 6a-b, 7a-b
Çok iyi tanınan bir alt tür olup arka yönde (posteriorly) diș bulunduran geniș tablası (platform) ve üzerinde bir çok diş bulunduran düşük karinası ile karekteristiktir.

Neogondolella polygnathiformis (Budurov ve pl. VI figs. 11,12

1965 Gondolella polygnathiformis Budurov ve Stefanov, p. 118, pl. 3, figs. 3-7

1968 Paragondolella polygnathiformis (Budurov ve Stefanov); Mosher, p. 939, pl. 118, figs. 9-17,19

1968 Metapolygnathus communisti Hayashi, p. 72, pl. 3, fig. 11

1970 Neogondolella palata Bender, p. 519, pl. 4, figs. $6,7,11,17$

1971 Paragondolella polygnathiformis (Budurov ve Stefanov); Sweet et al., pl. 1, fig. 50

1973 Metapolygnathus polygnathiformis (Budurov ve Stefanov); Mosher, p. 164, pl. 20, figs. 7,12

1974 Paragondolella polygnathiformis (Budurov ve Stefanov); Budurov ve Stefanov, p. 301, pl. 1, figs. $11,12,27,28$

1977 Metapolygnathus polygnathiformis (Budurov ve Stefanov); Gedik, p. 42, pl. 3, fig. 15

1979 Neogondolella polygnathiformis (Budurov ve Stefanov); Clark et al., pl. 1, fig. 7

1981 Neogondolella polygnathiformis (Budurov ve Stefanov): Koike, pl. 2, figs. 15, 22-24

1981 Neogondolella polygnathiformis (Budurov ve Stefanov); Ishida, pl. 5, figs. 1,2,3

1984 Neogondolella polygnathiformis (Budurov ve Stefanov); Önder, p. 106, pl. 29, figs. 1-6

Iyi taninan bu tür (Mosher 1968) ise kisa ve geniş tablası (platform) ve orta kesimde büzülme göstermesi en ayırıcı özelligidir. Arka yönde (posteriorly) tabla karemsi bir şekilde biter.

Neogondolella Sp

Tür seviyesinde tanmları yaplamayan elementler bu kategoride toplanmışlardır.

Cins NEOHINDEODELLA Kozur 1968

Tip Tür Nechindeodella triassica (Müller 1956)
Neohindeodella triassica (Müller 1956) pl. III figs. 5

1956 Hindeodella triassica Müller, p. 826, pl. 96, figs. 4,5

1968 Hìndeodella triassica Müller; Mosher, p. 929, pl. 114, fig. 22
1968 Hindeodella (Neohindeodella) triassica triassica (Müller); Kozur, p. 10, pl. 2, figs. 10,11.

1972 Neohindeodella triassica triassica (Müller); Kozur ve Mostler p. 24, pl. 1, fig. 24; pl. 4, fig. 13; pl. 7, figs. 12,13; pl. 8, fig. 30; pl. 13, figs. 10,13

1973 Nechindeodella triassica (Müller); Kozur ve Mook, pl. 1, fig. 11

1975 Neohindeodella triassica (Müller); Gedik, p. 136 , pl. 6, figs. $12,16,23$

1977 Neohindeodella triassica (Müller); Sudar, pl. 2 fig. 5; pl. 5, fig. 8

1977 Neohindeodella triassica (Müller) Gedik, p. 43, pl. 4, figs. 14,15

1981 Neohindeodella triassica (Müller); Koike, pl. 1, fig. 25

1982 Neohindeodella triassica (Müller); Koike, p. 35, pl. 8 , figs. 21-30

1984 Neohindeodella triassica (Müller); Önder, p. 83, pl. 23, fig. 6

Tablasiz (non-platform) konodontlardan olup iyi tanınan bir türdür. Önceki çalışmacılar tarafından (Gedik 1975, Koike 1982 v.s.) tanimlamaları verilmiş ve ince yapısı, ön ucda (anterior end) genis bir serbest ana dişin bulunuşu ve dişlerin arka uçtan (posterior end) ölçü olarak artarak gelip ana diş yakınında eşit ölçüde oluşları türün ayırıcı özellikleridir.

Neohindeodella sp. A-B

$$
\text { pl. 1, figs. } 9,10,11 \text {; pl. III, figs. } 6
$$

Bazı kırık ve tam olmayan elementler tür seviyesinde tayin edilemedikleri için bu cins altında toplanmışlardır.

Cins PRIONIODELLA Bassler 1925

Tip Tür Prioniodella normalis Bassler 1925
Prioniodella decrescens Tatge 1956

$$
\text { pI. III } \quad \text { figs. } 1,2,4
$$

1956 Prioniodella decrescens Tatge, p. 111
1958 Prioniodella decrescens Tatge; Huckriede, p. 158, pl. 11, figs. $43,48,49$; pl, 14, figs, $37-39$
1960 Prioniodella decrescens Tatge; Budurov, p. 118 , pl. 2, fig. 32; pl. 3, figs. 9,10,13; pl. 4, figs. 21-23

1968 Prioniodella decrescens Tatge; Mosher, p. 933, pl. 114, fig. 27
1973 Prioniodella decrescens Tatge; Mosher, p. 175, pl. 17, fig. 29

1984 Prioniodella decrescens Tatge; Önder, p. 84, pl. 23, fig. 8

Bu türün üyeleri tablasız ve sblade* tipi elementler olup dişlerin ön uçtan (anterior) arka uca (posterior) doğru dereceli olarak yükseliṣlerin azalması ile tanmmrlar.

Prioniodella sp.

Pl. II figes, $9,10,11,12$
Prioniodella cinsine ait bazi elementler bu taksomik grub altında toplanmiştir.

Cins PRIONIODINA Bassler 1925

Tip Tür Prioniodina subcurvata Bassler 1925
Prioniodina petrae-viridis (Huckriede 1958) pl. II figs. 1,2,6

1958 Prioniodina petrae-viridis Huckriede, p. 149, pl. 11, fig. 26 ; pl. 13, figs. $7-9,11,12,14$; pl. 14 , fig. 6

1960 Hindeodella petrae-viridis Huckriede; Budurov, p. 112, pl. 3, fig. 17; pl. 4, figs. 1a,b,2,3,7,8,9a,b,10; pl. 5 fig. 34

1968 Prioniodina petrae-viridis (Huckriede); Mosher, p. 934, pl. 116, figs. 28-31

1970 Parachirognathus petrae-viridis (Huckriede); Bender, p. 524, pl. 5, figs. 1-6

1971 Enantiognathus petrae-viridis (Huckriede); Kozur ve Mostler, pl. 1, fig. 14

1981 Diplododella petrae-viridis (Huckriede); Koike, pl. 1, fig. 26

1984 Prioniodina petrae-viridis (Huckriede); Önder, p. 86 , pl. 23 , figs. $16-21$

Taksonomisi henüz netleşmemesine karşın iyi çalışılmış tablasız (non-Platform) bir türdür. Bu türe ait elementler ön tarafta, uzunca ve üzerinde bir kaç diş ile bunlara yakın genişçe bir ana diş bulunduran bir dal (anterior bar) ve arka kesimde pürüzsüz veya üzerinde bir iki ufak diş bulunan bír dal (posterior bar) ile karakteristiktirler.

Prioniodina sp.

Pl. II, fig 4; P1 III, fig. 3

Tür seviyesinde tanınamayan bazı elementler bu gruba dahil edilmişlerdir.

Cins XANIOGNATHUS Sweet 1970

Tip Tür Xaniognathus curvatus Sweet 1970
Xaniognathus tortilis (Tatge)

$$
\text { pl. I : figs. } 5,6,8
$$

1956 Ozarkodina tortilis Tatge, p. 138, pl. 5, figs. 10, 11

1960 Ozarkodina tortilis Tatge; Budurov, p. 115, pl. 2, figs. 20-22; pl. 4 figs. 25, 26

1962 Ozarkodina tortilis Tatge; Budurov, p. 120, pl. 1, figs. 28-33

1968 Ozarkodina tortilis Tatge; Mosher, p. 922, pl. 115 , fig. 23

1968 Ozarkodina tortilis Tatge; Kozur, pl. 3, figs. 12,13

1970 Ozarkodina tortilis Tatge; Bender, p. 521, pl. 4, figs. $12,14,18,19,21,22$

1972 Ozarkodina tortilis Tatge; Kozur ve Mostler, p. 26, pl. 5, fig. 11, pl. 6, Figs. 5,6

1973 Xaniognathus tortilis (Tatge); Koike, p. 110, pl. 16, figs. 19,20

1977 Ozarkodina tortilis Tatge; Gedik, p. 43, pl. 4, figs. 3,16

1981 Xaniognathus tortilis (Tatge); Koike, pl. 1, fig. 20

1984 Xaniognathus tortilis (Tatge); Önder, p. 87, pl. 23 , fig. 4

Tablasız (non-platform), ince ve enli görünümde (blade like) üzerinde bir kaç diş bulunan uzun ön dalı (anterior process) ile kıvrik ve kisa bir arka dala (posterior bar) sahip ve ana dișin altında ufak bir oyuk bulunan (basal cavity) elementler olup bu cinsin üyeleri genellikle tek tip morfoloji arz ederler

Xaniognathus sp.
Pl. I figs. 7
Tür düzeyinde ayrilmayan ancak cins özelliklerini yansitan tablasiz (non-platform) elementler bu katagoriye dahil edilmişlerdir.

Gen, et. spec. indet.
Pl. I, figs. 12,13
Cins ve tür ayrım yapılmıan iki element levha 1'de gösterilmektedir.

KATKI BELIRTME

Bu çalışmada araziyi ilk defa tanıstıran ve saha incelemelerinde katkıda bulunan Prof. Dr. Osman Yılmaz'a (I.Ư.) ve Dr. Durmus Boztuğ'a teşekkürü bir borç bilirim. Ayrica İngiltere'de Southampton Úniversitesi Jeoloji Bölümü laboratuvar olanaklarını benden esirgemeyen Dr. RL. Austin ile fotoğrafların çekiminde katkıları olan teknisyenlerden C. Hawkins, R. Sounder, T. Benham ve B. Marsh'a teşekkür ederim.

LEVHA - I

Șek. 1,2,3,4 Gladiogondolella sp.: Olgunlaşmamıs evre: Boyuna görünümler, 80X.

Şek. 7 Xaniognathus sp. : Boyuna görünüm, 90X.

Şek. 5,6,8 Xaniognathus tortilis (Tatge) : Boyuna görünümler, 100X.

Șek. 9 Neohindeodella sp. A: Boyuna görünüm, 90 X .

Șek. 10,11 Neohindeodella sp. B: İçden görünümler, 90X.

Şek 12,13 Cins ve tür olarak tanmamiyor. Íçden görünümler, 90 X .

PLATE I I

Fig. 1,2,3,4 Gladigondolella sp. Immature stage: Lateral views, 80X.

Fig. 7 Xaniognathus sp. : Lateral view, 90X.
Fig. 5,6,8 Xaniognathus tortilis (Tatge): Lateral ivews, 100 X .

Fig. 9 Neohindeodella sp. A: Lateral view, 90X.

Fig. 10,11 Neohindeodella sp. B: Inner views, 90X.
Fig 12,13 Gen. et, spec. indet: Inner views, 90X.

All figures are Scanning Electron Micropraphs.

Bütün resimler Scanning Elektron Mikroskoptaçekilmiṣtir.

LEVHA - II

Şek. 1,2,6 Prioniodina petrae-viridis
(Huckriede): Boyuna içten görünümler, 100 X .

Şek. 3,5,7 Prioniodina petrea-viridis
(Huckriede): Boyuna dıştan görünümler, Șek. 3-80X; Şek. 5,7-100X.

Sek. 4 Prioniodina sp.: Boyuna görünüm, 80X.

Şek. 8
Cypridodella cf, venusta (Huckriede): Boyuna görünüm, 100 X .

Sek. 9,10,11,12 Prioniodella sp: Boyuna görünümler, Șek. 12-200X; sek. 9,10,11 100 X .

Bütün resimler SEM ile çekilmiştir.

PLATE - II

Fig. 1,2,6 Prioniodina petrae-viridis
(Huckriede): Inner lateral views, 100X.

Fig. 3,5,7 Prioniodina petrae-viridis
(Huckriede): Outer lateral views, fig. $3-80 \mathrm{X}$; fig. $5,7-100 \mathrm{X}$.

Fig. 4 Prioniodina sp.: Lateral view, 80X.
Fig. 8 Cypridodella ef. venusta (Huckriede): Lateral view, 100X.
Fig. 9,10,11,12 Prioniodella sp.: lateral views, fig. $12-200 \mathrm{X}$; fig. 9,10,11-100X.

All figures are SEM

PLATE II

LEVHA II

LEVHA - III

Sek. 1,2,4 Prioniodella devrescens Tatge: Boyuna görünümler. 100 X .

Şek. 3 Prioniodina sp.: Boyuna görünüm, 90X.

Sek. 5 Neohindeodella triassica (Müller): içden boyuna görünüm, 100X

Sek. 6 Neohindeodella sp. : Boyuna görünüm, 85 X .

Şek. 7,8,9 Cypridodella sp. A: İçten görünümler 90X.

Şek. 10a-b,12 Cypridodella sp. B: Boyuna görünümler, 90X.

Şek. 11 Cypridodella? sp. C: İçten görünüm, 140X.

Bütün resimler SEM ile ģekilmiştir.

PLATE - III

Fig. 1,2,4 Prioniodella decrescens Tatge: Lateral views, 100X.

Fig. 3 Prioniodina sp.: Lateral view, 90X.
Fig. 5 Neohindeodella triassica (Müller) : Inner Lateral view, 100 X .
Fig. 6 Neohindeodella sp.: Lateral view, 85X.
Fig. 7,8,9 Cypridodella sp. A: Lateral view, 90X.
Fig. 10a-b,12 Cypridodella sp. B: Lateral views, 90 X .

Fig. 11 Cypridodella sp. C: Inner view, 140X. All figures are SEM

PLATE III
LEVHA III

LEVHA - IV

Sek. 1 Neogondolella excelsa (Mosher): Arka görünüm, 80 X .
Șek. 2 Neogondolella excelsa (Mosher): Arka görünüm, 85 X .
Șek. 3 Neogondolella excelsa (Mosher): boyuna üst görünüm, 100X.

Şek. 4 Neogondolella bulgarica (Budurov ve Stefanov): Arka görünüm, 100X.

Şek. 5 Neogondolella bulgarica (Budurov ve Stefanov): Boyuna üst görünüm 100X.
Sek. 6 Neogondolella bulgarica (Budurov ve Stefanov): Boyuna görünüm 100X.
Șek. 7 Gladigondolella tethydis (Huckriede): Üst görünüm 80X.
Șek. 8 Gladigondolella tethydis (Huckriede): Üst görünüm, 90X.
Șek. 9 Gladigondolella tethydis (Huckriede): Boyuna üst görünüm, 50X.

Șek. 10 Gladigondolella tethydis (Huckriede): Üst görünüm, 100 X .
Șek. 11 Gladigondolella tethydi s(Huckriede): Arka görünüm, 85X.
Şek. 12 Gladigondolella tethydis (Huckriede): Arka görünüm, 80X.

Şek. 13 Neogondolella bifuracata (Budurov ve Stefanov): Arka görünüm, 50X.
Sek. 14 Neogondolella bifurcata (Budurov ve Stefanov): Ön görünüm, 50X.

* Bütün resimler SEM ile çekilmiştir.

PLATE - IV

Fig. 1 Neogondolella excelsa (Mosher): Aboral, view, 80X.

Fig. 2 Neogondolella excelsa (Mosher): Aboral view, 85X.
Fig. 3 Neogondolella excelsa (Mosher): OralLateral view, 100X.

Fig. 4 Neogondolella bulgarica (Budurov and Stefanov): Aboral view, 100X.
Fig. 5 Neogondolella bulgarica (Budurov and Stefanov): Oral - lateral, 100w.
Fig. 6 Neogondolella bulgarica (Budurov and Stefanov): Lateral view, 100X

Fig. 7 Gladigondolella tethydis (Huckriede) : Oral view, 80X.

Fig. 8 Gladigondolella tethydis (Huckriede): Oral view, 90X.
Fig. 9 Gladigondolella tethydis (Huckriede): OralLateral view, 50X.

Fig. 10 Gladigondolella tethydis (Huckriede): Oral view, 100X.
Fig. 11 Gladigondolella tethydis (Huckriede): Aboral view, 85X.

Fig. 12 Gladigondolella tethydis (Huckriede): Aboral view, 80X.

Fig. 13 Neogondolella bifurcata (Budurov and Stefanov): Aboral view, 50X.

Fig. 14 Neogondolella bifurcata (Budurov and Stefanov): Oral view, 50X.

All figures are SEM

LEVHA - V

Sek. 1 Neogondolella mombergensis (Tatge): Arka görünüm, 100X.
Șek. 2 Neogondolella mombergensis (Tatge): Arka görünüm, 100X.
Şek. 3 Neogondolella mombergensis (Tatge): Ön görünüm, 90 X .

Şek. 4 Neogondolella mombergensis (Tatge): Ön görünüm, 80X.

Sek. 5 Neogondolella mombergensis (Tatge): Boyuna görünüm, 80X.
Șek. 6 Neogondolella hanbulogi (Sudar and Budurov): Üstten boyuna görünüm, 100X
Șek. 7 Neogondolella hanbulogi (Sudar and Budurov): Arka görünüm, 100X.
Șek. 8a,b Neogondolella kozuri (Gedik): Arka ve boyunca gör. 100X.

Şek. 9 Neogondodella longa (Budurov ve Stefanov): Arka görünüm, 80X.

Șek. 10 Neogondolella longa (Budurov veStefanov) : Arka görünüm, 70X.

Sek. 11 Neogondolella longa (Budurov ve Stefanov): Ön görünüm.

Şek. 12 Neogondolella longa (Budurov ve Stefanov): Ön görünüm, 70X.
Bütün resimler SEM ile gekilmiştir.

PLATE. V

Fig. 1 Neogondolella mombergensis (Tatge): Aboral view, 100X.

Fig. 2 Neogondolella mombergensis (Tatge): Aboral view, 100X.
Fig. 3 Neogondolella mombergensis (Tatge): Oral view, 90X.

Fig. 4 Neogondolella mombergensis (Tatge): Oral view, 80X.

Fig. 5 Neogondolella mombergensis (Tatge): Lateral view, 50X.
Fig. 6 Neogondolella hanbulogi (Sudar and Budurov): Oral-lateral view, 100 X .

Fig. 7 Neogondolella hanbulogi (Sudar and Budurov): Aboral view, 100X.

Fig. 8a,b Neogondolella kiozuri (Gedik): Aboral and Lateral view, 100X.

Fig. 9 Neogondolella longa (Budurov and Stefanov): Aboral view, 80X.

Fig. 10 Neogondolella longa (Budurov and Stefanov): Aboral view, 70X.

Fig. 11 Neogondolella longa (Budurov and Stenov) : Oral view, 70X.
Fig. 12 Neogondolella longa (Budurov and Stefanov): Oral view, 70X.

All figures are SEM

LEVHA - VI

Sek. 1 Neogondolella navicula navicula (Huckriede): Arka görünüm, 100X.

Sek. 2 Neogondolella navicula navicula (Huckriede): Arka görünüm, 100X.

Sek. 3 Neogondolella navicula navicula (Huckriede): Ön görünüm, 100X.

Sek. 4 Neogondolella navicula navicula
(Huckriede): Boyuna görünüm, 120X.
Șek. 5 Neogondolella navicula navicula (Hcckriede): Ön görünüm, 110X.

Șek. 6 Neogondolella foliata foliata (Budurov): Arka görünüm, 100 X .

Sek. 7 Neogondolella foliata foliata (Budurov): Boyuna görünüm, 110X.

Şek. 8a,b Neogondolella foliata foliata (Budurov): Boyuna görünüm, 110X.

Sek. 9 Neogondolella ef. foliata inclinata (Kovacs): Ön görünüm, 100X.

Șek. 10 Neogondolella ef. foliata inclinata (Kovacs): Arka görünüm, 80X.

Şek. 11 Neogondolella polygnatyformis (Budurov ve Stefanov) Ön görünüm, 50X.

Sek. 12 Neogondolella polygnatyformis (Budurov ve Stefanov) Arka görünüm, 100X.

Bütün resimler SEM ile gekilmiştir.

PLATE - VI

Fig. 1 Neogondolella navicula navicula (Huckriede): Aboral view, 100X.

Fig. 2 Neogondolella navicula navicula (Huckriede): Aboral view, 100X.
Fig. 3 Neogondolella navicula navicula (Huckriede): Oral view, 50X.

Fig. 4 Neogondolella navicula navicula (Huckriede): Lateral view, 120X.

Fig. 5 Neogondolella navicula navicula (Huckriede): Oral view, 110X.
Fig. 6 Neogondolella foliata foliata (Budurov): Aboral view, 100X.

Fig. 7 Neogondolella foliata foliata (Budurov): Lateral view, 110X.

Fig. 8a,b Neogondolella foliata foliata (Budurov): Lateral view, 110X.
Fig. 9 Neogondolella cf. foliata inclinata (Kovacs): Oral view, 100X.

Fig. 10 Neogondodella cf. foliata inclinata (Kovacs): Aboral view, 80X.

Fig. 11 Neogondolella polygnatyformis (Budurov and Stefanov): Oral view, 50X.

Fig. 12 Neogondolella polygnathyformis (Budurov and Stefanov): Aboral view, 100 X .

All figures are SEM

DEĞINILEN BELGELER

Ataman, G., Yılmaz, O, ve Ertürk, O., 1977, Diyajenez - ankimetamorfizma geģişinin illit kristallik derecesi ile araştırılması (Batı Pontidlerde bir deneme): Yerbilimleri, 3.
Austin, R.L. (ed), 1987, Conodonts - Investigative Techniques and Applications: The British Micropaleontological Society Series, London.
Aydın, M., Şahintürk, Ö., Serdar, H.S., Özçelik, Y., Akarsu, İ., Üngör, A., Çokuğras, R. ve Kasar, S., 1986, Ballıdağ-Çangaldağı (Kastamonu) arasındaki bölgenin Jeoloj̈si: TJK. Bült. 29 (2).
Bagnoli, G., 1982, Ladinian platform conodonts from Punta Bianca: Atti Soc. Tosc. Sci. Nat., Nem., Serie A, 89.

Bagnoli, G., Perri M.C., Gandin, A., 1984, Ladinian conodont apparatuses from Nortwestern Sardinian, Italy: Bull. Soc. Paeo. Italiana, 23(2); 311-323.
Bassler, B., 1925, In Catalogue of conodonts volumes (Ziegler, W.ed), Schwizerbatt, Stuttgart.

Bender, H., 1970, Zur Glienderung der Mediterranen Trias 11. Die conodontenchronologie der Mediterranen: Trias Ann. geol. Pays Hellen. 19:465-540, 9 text - figs, 4 tab., 5 pls.
Bernoulli, D. and Jenkyns, H.C., 1974 - Alpine Mediterranean and Atlantic Mesozoic facies in relation to the early avolution of the Tethys: Soc. Econ. Paleont. Miner. Sepc. Publ. 19.

Blumenthal, M., 1948, Un apercu de la geologie des chaines nord-anatoliennes centre I ' ova de Bolu et le Kuzulurmak inferieur: MTA. Publ. Ser. B, No. 13, Ankara.
Budurov, K., 1960, Karnische Conodonten aus der Umgebung der Stadt Kotel : Ann. Direct. Gen. Rech. Goel., 10; 109-130, 5 Taf.
Budurov, K., 1962, Conodonten aus dem Anis beim Dorfe Granitovo, Bezirk Vidin: Rev. Bulg. Geol. Soc., 23: 113-129, 2 Taf.
Budurov, K., 1973, Carinella n. gen. und Revision der Gattung Gladigondolella (Conodonta): C.R. Acad. Bulg. Sci., 26(6): 799-802, Taf. 1.

Budurov, K., 1975, Paragondolella foliata sp. n. (Conodonta) von der Trias des Ostbalkans: Rev. Bulg. Geol. Soc., 36(1): 79-81, Taf. 1.

Budurov, K., 1976, Die triassischen Conodonten des Ostbalkans: Geologica Bale., 6(2): 95-104, Taf. 1-5.
Budurov, K., 1979, Conodont stratigraphy of the Balkanide Triassic: Riv. Ital. Paleont., 85(3-4): 767.780.
Budurov, K., Ganev, M. and Stefanov, S., 1979, Conodontenstratigraphie der Anis - Ladin Grenzschicten in der Trias des Elena Tvardica - passes (Zentrabalkan): Geol. Balcan. 9 (2): $105-110,2$ pls.
Budurov, K. and Stefanov, S., 1965, Gattung Gondolella aus der Trias Bulgariens. Acad Bulg. Sci. Trav. Géol. Bulgarie, s. Paléont., 7, 115-127, 3 pls.
Budurov, K. and Stefanov, S., 1972, PlatformConodonten und ihre zonen in der Mitteren Trias Bulgariens. Mitt. Ges. Bergbau. stud.,21, 829-852, 4 pls.

Budurov, K and Stefanov, S. 1973, Etliche neus platformConodonten aus der Mettleren Trias Bugariens. C.R.Acad. Bulg. Sci., 26,6; 803806.

Budurov, K. and Stefanov, S., 1974, Die ZahreihenConodonten aus der Trias des Golo-BardoGebirges. Bull. Geol, Inst. Ser. Paleont. 23: 89-104, 2 pls.

Budurov, K. and Stefanov, S., 1975, Middle Triassic conodonts from drillings near the town of Knezha. Paleont. Stratigr. and Lithol. 3: $11-18,3$ pls.
Catalov, G. and Budurov, K., 1975, Üper petrographie und conodonten Iriassischer Kalke aus dem Gebiet des Dorfes Vizica, Strandza Gebirge : Dokl. Bolg. AN, 28(9): 1245-1248, I Taf.., Sofia.
Clark, D.L., and Mosher, L.C., 1966, Stratigraphic, geographic and evolutionary devolopment of the conodont of the genus (Gondolella: J, Paleont. $40(2)$: 376-394, 45-478 pls.
Clark, D.L., Paull, R., Solien, M. and Morgen, W., 1979, Triassic conodont biostratigraphy in the Great Basin: In: Sandberg, C. and Clark, D.L. eds. Conodont biostratgraphy of the Great Basin and Rocky Mountains: Brigham Young Univ. Geol. Studies 26(3): 179-183.

Collinson, C.W., 1963, Tecniques for the collecting and processing of conodonts. III. State Geol. Surv. Circ. 343: 1-16.

Epstein, A.G., Epstein, J.B. and Harris. L.D., 1977, Conodont colour alteration. - An Index to organic metamorphism: U.S. Geol. Surv. Prof. Pap. 995:27.
Farabegoli, E:, Lovanti, D., Perri, M.C. and Veneri, P., 1984, M. Bivera Formation: an atypical Middle Triassic «Rosso Ammonotico» facies from Southern Alps (Italy): Giornale di Geol., ser. 3, 46(2): 33-46, Bologna.
Gedik, I. 1975, Die conodonten der Trias auf der Kocaeli Halbinsel (Turkey): Paleontographica, A, 150.

Geditc, I., 1977, Conodont biostratigraphy in the Middle Taurus: Bull. Geol، Soc. Turkey, 20.
Gedik, I. 1981, Conodont provinces in the Triassic of Turkey and their tectonic-paleogeographic significance. KTU - Yerb. Derg. Jeol. 1(1): 1-14.

Geiss, H.P., 1954, Karadeniz taşkömürü prospelcsiyon dahilinde İnebolu - Küre - Abana sahastnda yaplan jeolojik löve neticeleri: MTA. Rap. No. 2973, Ankara.
Hayashi, S., 1968, The Permian conodonts in chert of the Adoyama Formation, Ashio Mountains, Centrol Japan: Earth Sci. 22(2): 63-77, 4 pls.
Huckriede, R., (1958), Die conodonten der Mediterranen Trias und ihr stratigraphischer Wert: Pal. Zeitschr. 32(3-4): 141-175.
Ishida, K., (1981), Fine stratigraphy and conodont biostratig:aphy of a bedded chert member of the Nakagawa Group - Studies of the south zone of the Chichibu belt in Shikoku, Part 3: Jour. Geosci. Osaka City Univ. 14: 107. 137, 7 pls.
Isozaki, Y. and Matsuda, I., 1980, Age of the Tamba Group along the Hozugama «Antincline», Western Hills of Kyoto, South west Japan: Jour. Geosci. Osaka City Univ. 23: 115-134.
Ketin, İ. ve Gümüs, A., 1962, Sinop, Ayancık ve güneyinde III. Bölgeye dahil sahaların jeolojisi hakkinda rapor, 1, 11: TPAO. Rapor No: 213-218, Ankara.
Koike, T., 1973, Triassic conodonts from Kedah and Pahang Malaysia. Geol. Paleont. Southeast Asia. 12: 91-113, 3 pls.
Koike, T., 1981, Biostratigraphy of Triassic conodonts in Japan: Scie. Repts. Yokohama Natl. Univ. Sec. 2. 28: 25-42, 2 pls.

Koike, T., 1982, Triassic conodont biostratgraphy in Kedah, West Malaysia: Geol. Palaeont. Southeast Asia. 13: 9-51, 7 pls.

Kovacs, S., 1977, New conodont from the north Hungarian Triassic: Acta mineral. Petr. 23(1): 77-90, 8 pls.

Kovacs, S., 1983, On the evolution of excelsa-stock in the Upper Ladinian-Carnian Conodont, genus Gondolella, Triassic: Schriftenr. Erdwiss. Komm. Österr. Akad. Wins., 5:107-119, 1 Abb., 6 Taf., Wien.

Kovacs, S. and Kozur, H., 1980, Some remarks on Middle and Uper Triassic platform conodonts: Bull. Indian eol. Assoc. 6: 541-581, 5 pls.
Kozur, H., 1968, Neue conodonten aus dem Oberen Muschelkalk des grmanischen Binnenbeckens: Monatsber. deutsch. Akad. Wiss., Berlin, $10(2), 130-142,1$ taf., Berlin.
Kozur, H. and Mock R., 1973, Die bedeutung der Trias-conodonten für die stratigraphie und tektonik der Trias in den Westkarpaten: Geol. Paleont. Mitt. Innsburck, 3(2): 1-14, 1 Abb., 1 Taf., Inssburck.
Kozur, H. and Mostler, H., 1971, Probleme der Conodonten forschung in der Trias. Geol. Paleont. Mitt. Innsburck. 1(4): 1-19.

Kozur, H. and Mostler, H., 1972, Die conodonten der Trias und ihr stratigraphischer Wert. I. Die "Zahnreihen-conodonten» der Mittelund Obertrias: Abh. Geol.A 28(1), 1-53, 1 abb., 15 Taf., Wien.

Kristan - Tollmann, E. and Krystyn, L., 1975, Die mikrofauna der Ladintisch-Karnischen Hallstatter Kalke von Saklibeli (Taurus Gebirge, Turkei): Sitzungsber. Österr. Akad. Wiss. math. naturw. Abt. 1-184 259-340. 259-340.

Krystyn, L., 1983, Das Epidaurus - Profil (Griechenland) - ein Beitrag zur conodontenstandardzonierung des tethylen Ladin und Unterkarn: Schriftenr. Erdwiss. Komm. 5.231-258, 4 Abb. 8 Taf.

Matsuda, T., 1982, Early Triassic conodonts from Kashmir, India: Part 2. Neospathodus 1: Jour. Geosci. Osaka City Univ. 25: 87-102.

Mosher, L.C., 1968, Triassic conodonts from Western North America and Europe and their
correlation: J. Paleont. 42(4): 895-946, 6 pls.

Mosher, L.C., 1973, Triassic conodonts from British Columbia and the Northern Arctic Island: Geol. Surv. Canada Bull. 222:141-L92, 5 pls.

Mosher, L.C. and Clark, D.L., 1965, Middle Triassic conodonts from the Prida Formation of Nortwestern Nevada: J. Paleont. 39(4): 351-365.

Müller, K. J., 1956, Triassic conodonts from Nevada: J. Paleont. 30: 818-830, 2 pls.

Nicora, A., 1977-Lower Anisian platform-conodonts from the Tethys and Nevada: Taxonomic and stratigraphic revision: Paleontographica Abt. A. $157(1-3): 88-107$.

Orchard, M. J., 1985, Carboniferous, Permian and Triassic conodonts from the central Kootenay Arc, British Columbia: constraints on the age of the Milbord. Koslo and Slocan groups: in Current Research, Part A, Geol. Surv. Canada, 85 (1A) 287-300.

Önder, F., 1984a, Revision of conodont taxonomy in Triassic rocks of the Central Tausus Mountain, Antalya-Turkey: Bull. of Earth Sciences, Cumhuriyet Univ., I. 73-132.

Önder, F., 1984b, Conodont biostratigraphy of the Triassic rocks, Southwest of Antalya-Turkey: Bull. Geol. Soc. Turkey, 27(1). 81-84.

Önder, F., Boztuğ, D. and Yılmaz, D., 1987, New paleontological data (Conodont) on the Lower Mesozoic rocks of Göynükdağъ-Kastamonu, Western Pontides, Turkey: Abstracts Book of Melih Tokay Geol. Sym. ODTU̇. Ankara (press 1988).

Papsova, J. and Goal, L., 1984, Conodonts from Pelsonian - Cordevolian basinal limestones of Choc and Silica nappes: Zapadne Karpaty, Paleont., 9:155-164, Bratislava.

Rejebian, V. A., Harris, G. A. and Huebner, J. S., 1987, Conodont color and textural alteration: An index to regional metamorphism, contact metamorphism and hydrothermal alteration: Geol. Soc. Am. Bull. 99.

Stchepinsy, V., 1942, Contribution à l'étude de la faune Créace'e de la Turquie. Publ. MTA. Memoires. No. 7. Ankara.

Sudar, M., 1977, On the Triassic microfacies of the Uvas canyon: Ann. Geol.Penins. Balk., 41: 281-291, 1-6 Pls.
Sudar, M. N. and Budurov, K., 1979, New conodonts from the Triassic in Yugoslavia and Bulgaria: Geol. Balcanica 9(3):47-52.
Sweet, W.C., 1970, Permian and Triassic conodonts from a section at Guryul Ravine, Vihl district, Kashmir: Univ. Kansas Paleont. Cont. Pap. 49: 1-10.

Sweet, W.C., Mosher, L.C., Clark, D.L., Collinson, J.W. and Hansenmueller, W.A., 1971, Conodont biostratigraphy of the Triassic: Gel. Soc. America Mem. 127:441-465.
Tatge, U., 1956, Conodonten aus dem Germenischen Muschelkalk: Palaont. Z., 30:106-147, 12 Abb., 2 Taf., Stuttgart.

Tüysüz, O., 1986, Anadolu'da iki farklı ofiyolit topluluğu: Esfri ve yeni Tetisin artıklart: DoğaTU. Müh. ve Cev. D. 10 (2):172-179.

Wardlaw, B.R. and Collinson J.W., 1984, Conodont paleoecology of the Permian Phoshoria Formation and related rocks of Wyoming and adjacent areas: Geol. Soc. America, 196:263282.

Yılmaz, O., 1980, Daday-Devrekani masifi kuzeydoğu kesimi lithostratigrafi birimleri ve tektoniği: Yerbilimleri, 5-6.

Yılmaz, O. and Boztuğ, D., 1986, Kastamonu granitoid belt of Northern Turkey: First arc plutonism product related to the subduction of the Paleo-Tethys: Geol. 14. 179-183.
Yılmaz, O. ve Boztuğ, D., 1987, Göynülidağィ (Kastamonu) yöresinin jeoloj̈k ve mineralojik petrografik incelemesi: Doğa TU Müh. ve Çev. D. 11 .

Zankl, H., 1971, Upper Triassic carbonate facies in the Northern Limestone Alps: Int. Sed. Congr. Guidebook vin.
Zawidzka, K., 1975, Conodont stratigraphy and sedimentary environment of the Muschelkalk in Upper Silesia: Acta. Geol. Polonica 25(2): 217-256.
Zeigler, W. (ed)., 1973, Catalogue of conodonts: 1. 504 pp. E. Schweizerbartsch Verlagbus chandlung, Stuttgart.
Zeigler, W. (ed)., 1975, Catalogue of conodonts; 2:404 pp. 25 Pls., Schweizerbart, Stuttgart.

 - Co

 tancil thimem

Sivas Güneydoğusundaki Miyosen Yașıı Jipsli Çökellerin Stratigrafisi, Yapısal Özellikleri ve Oluşumu

STRATIGRAPHY, STRUCTURAL FEATURES AND GENESIS OF THE MIOCENE GYPSIFEROUS SEDIMENTS IN THE SOUTHEASTERN SIVAS (TURKEY)

A. GÖKÇE, Cumhuriyet Üniv. Jeoloji Müh. Bölïmü, SIVAS,
F. CEYHAN Cumhuriyet Üniv. Jeoloji Müh. Bölümü, SIVAS.

ÖZ : Sivas çevresinde jipsli seviyeler içeren Miyosen yaşlı birimler oldukça geniş bir yaylım göstermektedirler. Bu birimler Sivas-Malatya Karayolu ile Celalli arasinda kalan sahada Haciali ve Karayuin Formasyonları seklinde iki litostratigrafik birime ayrılmışlardır.

Bunlardan Hacıali Formasyonu Boynuzözü, Göbeklitarla, Aktaş ve Purtepe Üyelerine, Karayün Formasyonu ise Șahbey, Fadlım ve Bingöl Uyelerine ayrılmıslardır.

Jipsli seviyeler Göbeklitarla, Purtepe ve Fadlım Üyeleri içinde bulunmaktadırlar. Iipsler üyelerin alt ve üst kesimlerinde jips-marn ve jips-kiltaşı ardalanması şeklinde, orta seviyelerde ise massif jips kütleleri şeklindedirler. Yer yer yumrulu kesimler de gözlenmektedir.

Mikroskopik incelemeler strasında alabastrin, porfiroblastik ve stain-spar yapı özellikleri, kalintı (relikt) anhidrit kristalleri ve mikro jips yumruları gözlenmiştir. Bu özellikler yöredeki jipslerin anhidritlerin hidrasyonuyla oluşmuş ikincil jipsler olduklarını göstermektedir.

Gözlenen stratiğrafik, makroskopik ve mikroskopik özelliklere göre yöredeki jipsli seviyelerin çökelme ortamı karasaldan denizele veya denizelden karasala dönüşürken gelişen sabkha ortamı koşullarında 3 ayrı evrede çökeldikleri, gömülme sırasında jipslerin dehidrasyon sonucu anhidrite dönüştükleri, daha sonra yükselme ssrasında anhidritlerin hidrasyon sonucu yeniden jipse dönüştükleri ve ikincil karakterli jipslerin oluştukları söylenebilir.

Abstract

The gypsiferous Miocen series are widely observed in Sivas and surraunding of it. These series are divided into two Lithostratigraphic unites as Haciali and Karayün Formations in the area of Sivas - Malatya Highroad and Celalli Town.

Hacıali Formation is divided into four members as Boynuzözü, Göbeklitarla, Aktaş and Purtepe; Karayün Formation is divided into three members as Șahbey, Fadim and Bingöl.

Gypsum is seen in Göbeklitarla, Purtepe and Fadlım Members which are composed of gypsum-marl and gypsum-claystone alternation at the bottom and at the top; but massive gypsum mass at the middle. The gypsum nodüls are also seen from place to place.

Under microscope alabastrine, porphyroblastic and stainspar structures, relict anhydrite crystals and microgypsum micronodüls of gypsum are usually observable. These observations show that the gypsum in the area is secondary formation which is formed by hydration of anhyrite.

According to the results of stratigraphic, macroscopic and microscopic investigations, it is thought to be that the gypsiferous sediments of the area is deposited under the sabkha condition which is developped in three different episodes, by changing of the basin deepness going to deeper or shallower, and the gypsum is transformed to the anhydrite and the anhydrite is tansformed to the gypsum by the dehydration and hydration processes which are developped during the burial and uplifting of the gypsiferous sediments.

GiRIS

Bu yayın Sivas cevresinde yaygın bir şekilde yüzeyleyen Miyosen yaşlı evaporitli seriler içindeki jips, kayatuzu ve sölestin gibi ekonomik özellikleri olan yeraltı zenginliklerinin stratigrafik konumlarını, oluşum ortamlarını, oluşum süreçlerini ve kökenlerini incelemek amacıyla başlatılmış bir çalışmanın (Gökçe, 1988) ilk sonuçları olup Sivas Malatya Karayolu ile Celalli Nahiyesi arasında kalan sahada çalışılmıştir (Şekil 1). Yayın kapsamında bölgedeki jipsli seviyelerin stratigrafik konumlari, makroskopik ve mikroskopik özellikleri, oluşum ve kökenleri tartışılmaya çalişllmıştır.

Șekil 1 : Inceleme alanmın coğrafik konum haritass.

Figure 1 : Geographic Location map of the investigated area.

Inceleme alan içinde ilk çalsṣmalar Stchepinsky (1939) tarafindan yapılmıștır. Daha sonraki yillarda inceleme alanı içinde ve yakın çevresinde Alpay (1948), Ezgui (1948), Nebert (1956), Kurtman (1961a, 1961b, 1963, 1973), Arpat (1964), Bulut (1965), Baykal ve Erentöz (1966), Artan ve Sestini (1971), łlker ve Özyeğin (1971), Çelik (1977), Baysal ve Ataman (1980), Bayhan (1980), Meşhur ve-Aziz (1980), Gökçen (1981, 1982), Bayhan ve Baysal (1981), Yilmaz (1981, 1984), Tatar (1982), Gökçen ve Kelling (1985), Inan (1987) tarafindan çeşitli jeolojik incelemeler yapılmıştr. Birinci yazar tarafından yöredeki jips, sölestin ve kayatuzu yataklarını özellikleri incelenmiş (Gökçe, 1988) ve incelemelerin bir kismı ikinci yazar tarafindan yüksek lisans tezi olarak sunulmuştur (Ceyhan, 1987).

Yerel stratigrafi ve Jipslí SEVIYELERIN KONUMU

Yerel Stratigrafi

Inceleme alanı içinde gözlenen birimlerin stratigrafik dizilimleri Şekil 2 'de olduğu gibi belirlenmiş ve sahadaki dağlımları Ek 1'de olduğu gibi haritalanmıştrr. Incelemenin asıl konusunu oluşturan Miyosen yaşl birimleri ayırabilmek ve daha ayrıntil bilgiler sunabilmek için stratigrafik birimler «Miyosen Öncesi Birimler, Miyosen Yaşlı Birimler ve Miyosen Sonrası Birimler» şeklinde üç ana kısma ayrilarak anlatulmışlardır.

Miyosen Öncesi Birimler

Önceki çalışmalarda inceleme alanı içinde gözlenen Ust Kretase (veya öncesi) yerleşim yaşlı ofiyolitler (Günes Ofiyoliti (Bayhan, 1980, Bayhan ve Baysal 1981) ve Tekelidağ Karmaşığ1 (Yılmaz, 1981)), Ust Kretase Paleosen yaşh kireçtaşları (Tecer Kireçtaşı Formasyonu (Inan 1987)), Eosen yaşlı, filiş fasiyesi özelliǧindeki kumtaşları (Bozbel Formasyonu (Kurtman, 1973)), Oligosen yaşlı şarabi renkli kumtaşı kiltaşımarn ve kireçtaşı ardalanımı (Selimiye Formasyonu (Kurtman, 1961a)), Miyosen yaṣl birimlerin çökeldiği havzanın tabanını ve kenarlarımı oluşturmaktadırlar. Bu birimler hakkinda ayrntilh bilgiler ilgili yayınlarda bulunmaktadır.

Miyosen Yaşlı Birimler

Inceleme alanı içinde gözlenen Miyosen yaşlı birimler kayaç türleri ve çökelme ortamınn sedimantolojik evrimi göz önünde buulndurularak, Hacıali ve Karayün Formasyonları şeklinde iki formasyona ayrilmslardır. Bu adlamalar daha önce Kurtman (1961b, 1963 ve 1973) tarafından yapılan, tedrici geçisli biri karasal diğeri denizel Hafik ve Karacaören Formasyonu adlamalarından farkli olup, tanimlanan yeni formasyonlar aşağıda olduğu gibi kaya türü bazinda üyelere ayrilarak incelenmişlerdir.

Hactali Formasyonu

a. Genel Tanm

Bu formasyon inceleme alanınu güneydoğu kesiminde Akçamescit ve Boynuzözü Köyleri çevresinde yüzeylemektedir. Bu formasyon, Oligosen yaşlı Selimiye Formasyonu üzerine açısal uyumsuzlukla gelmekte ve Karayün Formasyonu tarafindan uyumlu olarak örtülmektedir. Formasyonun toplam kalınlığ 875 m kadardır.

Hacrali Formasyonu kayaç türleri ve çökelme ortammen sedimantolojik erimi dikkate almarak genelleştirilmiş ve basitleștirilmiş dikme kesitinden de görüldüği gibi Boynuzözü, Göbeklitarla, Aktaş ve Purtepe adlarıyla dört üyeye ayrılmıștır (Șekil 3). Bu formasyonun yaşı Aktaş Uyesi içinde saptanan fosillere göre Alt-Orta Miyosen olarak belirlenmiştir.

b. Ưyelerin Özellikleri

Boynuzözü Üyesi (Thb); Üye en iyi şekli ile Boynuzözü Köyü güneyinde gözlenmektedir. Kırmızı kahverengi renkli olan birim alt seviyelerde kaba tanell çakıltaşı, üst seviyelerde ise taneleri tedrici olarak incelen kumtaşı, çamurtaşı ve marn ardalanmasından oluşmaktadır. Çakıltaşı seviyelerinde çakıllarm büyliklükleri $3-50 \mathrm{~cm}$ arasinda değismekte olup, tanelerde herhangibir yönlenme ve boylanma izlenememektedir. Çimentolanma yer yer oldukça tıkızdır. Taneler kireçtaşı, ofiyolit, radyolarit, çört ve Bozbel Formasyonundan türemiş kumtaşı çakılları şeklindedirler. Kumtaşı seviyelerinden alnan örneklerden hazırlanan ince kesitlerde de aymı kökenli taneler gözlenmişlerdir. Üye içinde fosil bulunamamıştır. Uyyenin kalnnlığı 275 m olarak ölçülmüştür.

Göbeklitarla Uyesi (Thg); Bu üye en iyi șekliyle
Boynuzözii Köyünün batısında Göbeklitarla Mevkiisinde ve Çoban Tepe'de gözlenmektedir. Alt seviyelerde marn-jips ardalanmasindan, orta seviyelerde kalın tabakalı katkisız jipslerden, üst seviyelerde ise jips arakatkılı marnlardan meydana gelmiștir. Marnjips ardalanmalı kesimlerde yaklașık her 10 m'de kalinliğı $0,30-100 \mathrm{~cm}$ arasında değișen jips bandı gözlenmektedir. Bantlar içinde jipsler genellikle yumruludur. Masif jips seviyesinin kalınlığı Boynuzözü Köyünün batısmda 160 m kadar olup, üyenin en üst seviyelerinde marnlar içinde gözlenen jipsler oldukça ince (5-10 cm kalınlıkta) bantlar şeklindedirler. Uye, jipsli seviyelerde beyaz renkli olup, tabandaki marnlar kirmszl, üst seviyelerdekiler ise yeşil renklidir. Üye, Aktaş Üyesi tarafından uyumlu olarak örtülmektedir. Göbeklitarla üyesinin kalmlığı 260 m olarak ölçülmüştür.

Aktas Üyesi (Tha); Üye en iyi șekliyle Ağlkaya Köyünün güneybatısinda Aktaş Tepede gözlenmektedir. Göbeklitarla Üyesi üzerine uyumlu olarak gelmektedir. Açık yeşil, bej renkli kumtaşı, çamurtașı, kiltaşı, kumlu kireçtaşı ve kireçtaşı ardalanması ile
yer yer gözlenen marn arakatkılarından oluşmaktadır. Kumtaşları ana bileşen olarak kuvars içeren kuvars kumtașları şeklinde olup, kuvarsın yanısıra az miktarda ofiyolit, kireçtaşı ve çörtten türemiş kayaç parçaları ile glokonit, biyotit, klorit, zirkon ve epidot gibi mineralleri de içermektedir. Kumlu kireçtaşı seviyeleri kum boyu tanelerden ve fosil kavkılarından oluşmus biyomikrit bileşimlidirler. Kireçtaşları algal kireçtaşı özelliğindedirler. Bu üye içinde Miyogypsina sp, Miolepidocyclina sp, Tereblaria bidendata GRATELOUP, Tympenotonus calcaratus GRATELOUP fosilleri gözlenmiştir. Uyyenin kalınlğg 280 m olarak ölçülmüştür.

Purtepe Ưyesi (Thp); Uye en iyi şekliyle Tahtakement Köyü batısinda Purtepe'de gözlenmektedir. Aktaş Üyesi üzerine uyumlu olarak melktedir. Alt seviyelerinde yeşil, sarmmsı yeşil renkli marn-jips ardalanmasindan, orta seviyelerinde genellikel masif, yer yer kil bantlı jipslerden, üst seviyelere dogrru ise jips yumrulan içeren kırmızı renkli marnlardan oluşmaktadır. Üyenin alt seviyelerinde mercekler şeklinde sölestin zenginleşmeleri gözlenmektedir. Uye içinde fosil gözlenemmeiştir. Uyenin kalınlığı Purtepe'de 60 m kadar ölçülmüştür.

c. Çökelme Ortammin Özellikleri

Üyelerin kayaç türleri, fosil içerikleri, renkleri ve benzer özelliklerine göre Hacıali Formasyonunun çökelme ortamı bașlangıçta Boynuzözü üyesi çökelirken atmosferle teması fazla, fiziki enerjisi yüksek karasal-sığsulu bir ortam, daha sonra Göbeklitarla Üyesi çökelirken fiziksel enerjisi azalmış, kimyasal enerjisi yükselmiş, tuzluluğu artmış, sığ sulu, sabkha karakterli bir deniz kıyısı ortamı, Aktaş Üyesinin çökelimi sırasında derinliği artmıs ve denizel özellik kazanmış bir ortam, Purtepe Uyesinin çökelimi sırasında ise tekrar sığlaşarak sabkha karakteri kazanmış bir sığ sulu ortam özelliǧinde olmak üzere değişik özellikler gösteren bir ortam özelliğindedir. Çökelme ortamı derinleșirken ve sığlaşırken gelişen sabkha ortamı koșullarında Göbeklitarla ve Purtepe Ưyelerinin jipsli çökellerinin oluşturduğu söylenebilir. Purtepe Üyesinin çökeliminden sonra havzada tekrar kinetik enerjisi yüksek, yarıkarasal (akarsu/ delta) bir ortam gelişmiş ve Purtepe Üyesi üzerine uyumlu olarak Karayün Formasyonunun Șahbey Üyesi çökelmeye başlamıştır.

Karayün Formasyon \boldsymbol{u}

a. Genel Tanım

Bu formasyon inceleme alanı içinde oldukça geniş bir yayılım göstermektedir. Altında bulunan Hacuali Formasyonu üzerine uyumlu olarak gelmekte, Pliyusen yaşi Karatepe Formasyonu tarafindan uyumsuz olarak örtülmektedir. Formasyonun toplam kalınlığı deǧisken olup yer yer 3100 m'yi bulmaktadır.

Ölcek (Scale): 1/5000

Sekil 3 : Haciali Formasyonunun dikme kesiti.
Figure 3 : Colomner section of the Hacialin Formation.

Karayün Formasyonu kayaç türleri ve çökelme ortammın sedimantolojik evrimi dikkate alınarak Şahbey, Fadlım ve Bingöl adlarıyla üç üyeye ayrılmıştrr. Bu üyelerin genelleştirilmiş ve basitleştirilmis dikme kesiti Șekil 4'de olduğu gibi belirlenmisstir. Bu Formasyonun yaşı Bingöl Uyesi içinde gözlenen Austrotrillina sp fosilinin varlğ̆ı ve Hactali Formasyonu üzerinde uyumlu olarak bulunuş birlikte değerlendirilerek Orta-Ûst Miyosen olarak belirlenmiştir.

b. Üyelerin Özellikleri

Şahbey Üyesi (Tkş); Bu üye en iyi şekliyle eski Sivas-Malatya karayolunun Cumhuriyet Universitesi Kampüsü ile Sivas Demir-Çelik Tesisleri arasında kalan bölümde Gedik Tepe boyunca yüzeylemektedir. Uye, koyu kahverengi-kırmızı renkli çakıltaşı, kumtaşı ve çamurtaşından oluşmaktadır. Alt seviyelerinde çakıltaşı, üst seviyelerinde ise kumtaşı ve çamurtaşı daha hakimdir. Üyenin tabanında yer yer (Budaklı-Doğanca Köyleri arasında Körtuzla Mevkiinde ve Tahtakement Köyünün batisinda Kabak Tepede ve Hasbey Köyünün doğusunda) Hacıali Formasyonunun Purtepe Üyesine ait jipsli seviyeler üzerine gelen açık renkli (bej-yeşil) kumtaş1-siltta§1 ardalanması seklinde bir seviye yeralmaktadır. Diğer yerlerde Purtepe Uyesi üzerine doğrudan kirmızı renkli çakıltaşları gelmektedir.

Çakıltaşı seviyelerinde çakılların büyüklükleri $0,5-20 \mathrm{~cm}$ arasında deǧismekte olup, genellikle kireçtaşı, jips, volkanik ve derinlik kayaçlarıyla ofiyolitlerden türemişlerdir. Kumtaşı ve çamurtaşından oluşmus üst seviyelerde teknemsi çapraz tabakalanmalar, kama şekilli geçisler, bitki kırıntılan ve canh izleri, yük-çökme yapıları yaygın gözlenen özelliklerdir. Kumtaşlarının bileşiminde kuvars, feldispat, biyotit, muskovit, opak mineraller ve kayaç kırıntıları (ofiyolit, kireçtaşı ve metamorfik kayaç) yer almaktadır. Uyenin en üst seviyelerinde ince taneli, krrmızı renkli kumtaşı-çamurtaşı ve marn ardalanım ile ince jips bantları gözlenmektedir. Uye içinde bitki kalntilarınn yanisıra üst seviyelerde bazı Gastropoda ve Pelecyopoda fosilleri bulunmuştur. Ũyenin kalınlığı 2460 m olarak ölçülmüştür.

Fadlm Uyesi (Tkf); Bu üye en iyi şekliyle Fadlm Irmağını Fadlım Tuzlası yakınlarında yüzeylemektedir. Sahbey Üyesi üzerinde uyumlu olarak gözlenmektedir. Üye, alt seviyelerinde marn-jips ardalanmasından, orta seviyelerinde kalın masif jips merceklerinden ve/veya içleri ince kil laminalı kalın jips tabakalarından, üst seviyelerinde ise jips arakatkılı marnlardan oluşmaktadır. Ust seviyelerdeki jipsler genellikle yumrular şeklindedirler. Bu seviye içinde ayrıca kayatuzu tabakaları ve saçımmları gözlenmektedir. Işletilmekte olan tüm tuzlaların tuzlu su kaynakları bu seviye içinde yer almaktadır. Uyenin taban seviyelerindeki marnlar kırmızı, üst seviyelerindekiler ise yesil renklidir. Uye içinde fosil bulunamamıştrr. Uyenin kalınlığı 250 m olarak ölçülmüştür.

Bingöl Üyesi (Tkb); Bu üye en iyi sekilde Karayün Nahiyesinin Kuzeyinde Sarhacı Köyü çevresinde yüzeylemektedir. Alt seviyelerde kumtaşı bantlı kiltaşı-çamurtaşı ardalanımı, üst seviyelerde ise marn-kumlu kireçtaş1 seklindedir. Uye genellikle yeşil renklidir. Üyenin üst seviyelerinde Austrotrillina sp, Austrotrillina howchini (SCHLUMBERGER, 1893), Miogypsina sp, Boralis sp, Ostrea, Miliolidae gibi foraminiferler ile koral, kırmızı alg, ekinid dikeni , gastropod ve pelecyopod gibi fosillere rastlanmıstrr. Uyeni nkalınlığı 420 m olarak ölçülmüştür.

c. Cökelme Ortammin Özellikleri

Üyelerin kayaç türleri ve renklerinden yararlanılarak Karayün Formasyonunun çökelme ortamını başlangıçta Şahbey Uyesi çökelirken atmosferle teması fazla, fiziksel enerjisi yüksek, karasal-sığsulu (akarsu ortamı?) bir ortam özelliğin de, daha sonra Fadlım Üyesi çökelirken fiziksel enerjisi azalmış, kimyasal enerjisi ve tuzluluğu yükselmiş, sığı sulu sabkha karakterli bir deniz kıyısı ortamı özelliǧinde, Bingöl Üyesi çökelirken ise yavas yavas derinlesmis, daha sonra tamamen denizel özellik kazanmıs bir ortam özelliğinde olmak üzere değişik özellikler gösterdiği söylenebilir. Ortam karasaldan - denizele geçerken gelişen sabkha ortamı koşullarında Fadlım Ûyesi içinde gözlenen jipsli ve kayatuzlu seviyeler çökelmişlerdir.

Miyosen Sonrası Birimler

Inceleme alanı içindeki Miyosen yaşlı birimler Pliyosen yaşlı, açık kahverengi-gri renkli, iyi tabakah, çakiltaşı ve marnlı seviyelerden oluşmuş, kalınlığı $100-150 \mathrm{~m}$ arasında değisen Karatepe Formasyonu ve Kızilırmak ve bu irmağa karışan küçük akarsu vadilerinde gözlenen pekişmemiş güncel alüvyonlar tarafindan örtülmektedir.

Jipsli Seviyelerin Konumu

Yukarida tanımlanan formasyonlar ve üyeler gözden geçirildiğinde 3 üyenin önemli miktarda jipsli seviyeler içerdiği gözlenmektedir. Bunlar Hacıali Formasyonunun Göbeklitarla ve Purtepe Uyeleri ile Karayün Formasyonunun Fadlım üyesidir.

Bu üyelerden Göbeklitarla ve Fadlım Üyeleri çökelme ortamı karasaldan denizele dönüsürken, Purtepe Uyysi ise çökelme ortamı denizelden karasala dönüşürken gelişen sığ sulu, kimyasal enerjisi ve tuzluluğu yüksek sabkha karakterli deniz kryısı ortamı koşullarında oluşmuşlardır.

TEKTONIK

Stratigrafi bölümünde yöredeki uyumsuzluklar belirtilmiş olup Ust Kretase ve Ust Paleosen yaşl birimler Laramiyen, Eosen yaşlı birimler Pireniyen, Oligosen yaşlı birimler Saviyen, Miyosen yaşlı birimler Rodaniyen fazlarıyla kıvrımlanmışlar ve bu

		$\begin{array}{r} 8 \\ \hdashline \\ \hline \\ \hline \end{array}$					Kayce Türleri (Lithology)	Agiklamalar (Explanations)	Fosiller (Fossils)	Jeolojik Olaylar (Geological events)
$\begin{aligned} & w \\ & z \\ & w \\ & 0 \\ & 0 \\ & w \\ & z \\ & z \\ & z \\ & w \\ & 2 \\ & 0 \\ & w \\ & z \end{aligned}$		\square		$\begin{aligned} & : \bar{O} \\ & \underset{\sim}{\tau} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\boxed{E}}{\underline{E}} \\ & \stackrel{\hat{0}}{\underline{E}} \end{aligned}$	$\stackrel{\circ}{\mathrm{N}}$		Konglomera (Conglomerate) Kumtası (Sandstone) UYUM SUZ LUK (Unconformity) Kireçtas। (Limestone) Kumlukireçası (Sandy timestone) Marn (Marl) Kumtası Sandstone)	Austroritillina spp. A. Hovcihini Miogypsina sp. Borellis sp. Miliolidae Ostrea Ekinoid dikeni Koral Pelecypoda Gastropoda	Kivrimlanma (Oragonez) Tonesel Çäkelme Detritic and chemical sedi_ mantation)
	$\begin{aligned} & w \\ & 2 \\ & u \\ & u \\ & 0 \\ & \hdashline z \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\frac{\xi}{0}$	$\stackrel{E}{y}$	$\begin{aligned} & \text { in } \\ & \text { N } \end{aligned}$		Marn-Yumrulu Jips (Marl-Nodullar Gypsum) Masif Jips (Compoct Gypsum Jips - Marn (Gypsum-Marl)	Fosilsiz (Non fossiliferous)	Kimyasal C̣zkeme (Chemical sedimantation) Kimyasal ve Tane_ sel Cokelme (Chem and det sed.
	$\begin{aligned} & \sum \\ & z \\ & w \\ & w \\ & 0 \\ & \vdots \\ & \vdots \\ & \Sigma \end{aligned}$		$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & x \end{aligned}$	$\begin{aligned} & \text { 20 } \\ & \stackrel{0}{0} \\ & \text { in } \end{aligned}$	$\frac{\stackrel{\rightharpoonup}{x}}{\stackrel{1}{E}}$	$\stackrel{\circ}{\circ}$		Camurtası (Mudstone) Kumtası (Sandstone) Konglomera (Conglomerate)	Gostropoda Palecypoda Bitki fosili (Plant fossil) Bitki ve yaprak fosih (Plant and leaf fossil)	Tanesel Çökelme (Detritic sediman tation)
			$\begin{aligned} & \overline{0} \\ & \text { 믐 } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \frac{0}{2} \\ & \frac{4}{2} \end{aligned}$	$\begin{aligned} & \text { a } \\ & \stackrel{a}{E} \end{aligned}$	8		Jips - Marn (Gypsum-Marl)		

Şekil 4: Karayün Formasyonunun dikme kesiti.
Figure 4 : Colomner section of the Karayün Formation.
uyumsuzluklarin nedeni olmuslardır. Aynca; Ust Kretaṣe, U'st Paleosen ve Eosen yaşl birimler Oligosen yash Selimiye Formasyonu uizerine bindirmişlerdir.

Incelemenin assıl konusunu oluşturan Hactali ve Karayün Formasyonlanı, K-G yönlü sıkıştırma kuvvetléri ile kivrilmışlar ve eksen doğrultulan yaklasik D-B olan antiklinal ve senklinaller olusturmuslardır. Bunlarm pek çogu $1 / 25.000$ ölçek boyutunda haritalanabilir büyüklükte olmadikları için haritalanamamışlardır. Ayrica, jipslerin su alması sırasında gelişen hacim genişlemesi ve diyapirik yükselmelerin neden olduğu deformasyonlar da yaygındır. Kıvrımlanmanın ileri evrelerinde KB-GD dogrultu: lu ve sol yanal doğrultu atumlı faylar gelişmiştir.

JIPSLERIN MAKROSKOPIK VE

MİRROSKOPIK ÖZELLİKLERİ

Makroskopik Özellikleri

Jipsli seviyelerde makroskopik olarak yumrulu (nodüler) ve ince laminalı yapısal özellikler yaygın bir şekilde gözlenmektedirler (Levha I, Foto 1 ve 2).

Göbeklitarla Uyesinin jipsleri alt seviyelerde marn-jips ardalanmasi, orta seviyelerde kalin tabakalı ve katkistz jipsler, üst seviyelerde ise jips arakatkilı marnlar seklindedirler. Alt seviyelerdeki marn-jips ardalanması içinde jipsler yumrular seklindedirler. Yumrularnn küresellikleri genellikle bozulmuştur. Yumrular arasinda kil ve daha küçük boyutlu jips yumrularindan oluşmus bir dolgu bulunmaktadır. Bu dolgunun bağlayıcı özelliği oldukça zayiftur, Bu ardalanmanın üst seviyelerine doğru yumrular azalmakta ve ince bantlı jipsler gözlenmektedir. Jips bantları küçük boyutlu kıvrımlar ve ondülasyonlar göstermektedirler. Orta seviyelerdeki kalın tabakalı ve katkıssz jipsler kümes teli (chicken wire) yapısı olarak tanımlanan ve çekiçle vurulduğunda baklava dilimine benzer şekilde parçalanan bir yapısal özellik göstermektedirler. Bu parçalanma düzlemlerinin içi, kil ve küçük jips kristalleri ile doldurulmus kical damarlar şeklindedir. Ust seviyelerdeki jips arakatkil marnlar içindeki jipsler ince bantlar seklindedirler. Bantlar içinde yer yer az miktarda jips yumruları da gözlenmektedir. Uyenin en üst seviyelerine doğru jips bantlar ${ }_{1}$ tamamen kaybolmaktadır.

Purtepe Üyesi içinde jipsler altta marn-jips ardalanması seklinde, orta seviyelerde genellikle masif yer yer kil banth jipsler, üst seviyelerde ise marnlar içerisinde jips yumrularından oluşmus arakatkılar
seklindedirler Daha önce belirtildieg gibi alt seviyelerdeki marnlar yeşil renkli, uist seviyelerdekiler ise kırmızı renklidir. Tabandaki ardalanma-içinde gözlenen jipsler ince bantlar seklinde olup kivrımlar ve dalgalanmalar göstermektedirler. Jips bantları içinde çok ince kil bantları gözlenmektedir. Orta seviyelerdeki masif jipslerde yer yer kümes teli yapısı izlenmektedir. Sölestin zenginleṣmeleri özellikle taban kesiminde bulunmaktadır.

Fadlım Üyesinin jipsleri genel olarak Göbeklitar1a Üyesinin jipslerini andirmaktadir, Jipsler taban seviyelerde marnlar ile ardalanmalar, orta seviyelerde katkisız kaln jips tabakalarn ve ince kil laminalı jipsler, en üstte ise marnlar içinde arakatkilar şeklindedirler. Alttaki jipsler genellikle yumrulu, orta seviyedekiler laminal,, ince bantl ve kümes teli yapilh, üst seviyelerdekiler ise yine yumrulu özelliktedirler. Jips yumrulan birbirlerinden tamamen bağımsız olup, küresellikleri oldukça iyidir. Yumruların arası daha küçük boyutlu jips yumruları ve krem renkli marnlarla doldurulmuştur. Bu üst seviye içinde ayrica kayatuzu tabakaları ve saçınımları da gözlenmektedir.

Mikroskopik Özellikleri

Inceleme alanı içindeki jipsli üyelerden alınan örneklerde jipslerin genellikle kalıntı (relikt) anhidrit kristalleri içeren ikincil jipsler oldukları gözlenmistir. Ikincil jipsler anhidritlerin bünyelerine su alması (hidrasyon) sonucu olusmus jipslerdir. Bu su alma olaynnn gelisimi strasında ikincil jipslerde porfiroblastik, alabastrin ve stain-spar seklinde tanımlanan yapısal özellikler gelişmektedir.

Alabastrin yapı terimi küçük kristali, sımılanı belirsiz, optik özellikleri incelenemeyen ve herhangi bir yönlenme göstermeyen jips kristalleri için kullamımaktadır. Su alma olayımin hzzlı gelistiği ve su ile temasin çok fazla olduğu koşullarda doğrudan anhidritlerin hidrasyonu ile oluşabildikleri gibi güncel olarak yüzey suları ile temas halindeki porfirobblastik yapilı jipslerin bozunması sonucunda da oluşabildikleri düşünülmektedir (Holiday, 1970).

Porfiroblastik yapı terimi iri kristalli, smırları belirgin, optik özellikleri incelenebilen jips kristalleri için kullanılmaktadır. Su alma olaymın çok yavas ve derinlerde geliştiǧi kesimlerde doğrudan anhidritlerden dönüşüm yoluyla oluṣabildikleri gibi, alabastrin yapil jipslerin yeniden kristallenmesi sonucunda da oluşabilecekleri düşünülmektedir.

Stain-spar yapı terimi kırık ve çatlaklar içinde gelişmis ince uzun iğnemsi kristaller için kullanılmaktadır. Ǐ̌nemsi kristaller genellikle damarın kenar düzlemlerine dik yönde uzanmaktadırlar. Yarık ve çatlaklar boyunca dolasan yüzey sularmea olusturulmuş olduklaṛ düşünülebilir.

Șeffaf, mikamś levhalar seklindeki büyük jips kristalleri ise selenit olarak adlanmakta olup birincil olușumlar oldukları düşünülmektedir.

Porfiroblastik yapılı ikincil jipsler içinde yaygun bir şekilde, alabastrin yapılı ikincil jipsler içinde ise daha az miktarda kalntn (relikt) anhidrit kristalleri gözlenebilmektedir. Bu kristaller kenarlarından itibaren kemirilmiş çubuksu kristaller şeklindedirler.

Inceleme alanı içinde tanımlanan jipsli üyelerden alman örneklerde bu yapısal özelliklerin hepsi gözlenmekte olup, birer adet örnek görünüm Levha I, Foto 3,4 ve 5'de görülmektedir. Ayrica makroskopik ölçekte yaygın olan yumrulu yapıya mikroskopik incelemeler sırasında da yaygın bir sekilde rastlanmıştr (Levha I, Foto 6).

Göbeklitarla Üyesi jipslerinde alabastrin yapılı ikincil jipsler hakimdir. Yer yer porfiroblastik yapı1 l kesimler de gözlenmektedir. Makroskopik ölçekte tanımlanan jips yumrularına mikroskopik ölçekte de sık bir sekilde rastlanmaktadır. Ayrica, az miktarda anhidrit kristalleri özellikle porfiroblastik yapill kesimlerde bulunmaktadirlar.

Purtepe Uyesi jipslerinde porfiroblastik yapı hakim olup, alabastrin yapı da gözlenmektedir. Porfiroblast yapill ikincil jipsler içerisinde bol miktarda kalıntı (relikt) anhidrit kristalleri bulunmaktadır. Makroskopik ölçekte tanımlanan jips yumrularma mikroskopik ölçekte de rastlanmaktadır. Porfiroblastik yapı bu mikro yumruların merkezlerinde, alabastrin yapı ise kenar kısimlarında yer almaktadır.

Fadlım Üyesi jipslerinde porfiroblast ve alabastrin yapil ikincil jipsler hakimdir. Yer yer stainspar yapılı kesimler de gözlenmektedir. Makroskopik ölçekte rastlanan jips yumrularına mikroskopik ölçekte de rastlanmaktadır.

JİPLERİN OLUŞUMU VE KÖKENI

Jipsler, evaporit ortamlar olarak isimlendirilen sedimanter ortamların olağan bileşenleridir. Su içinde $\mathrm{Ca}++$ ve SO_{4}^{-}iyonlarımı konsantrasyonları cökelim için yeterli doygunluğa eriştiğinde kimyasal sedimanter olarak CaSO_{4} çökelimi gerçekleşir. Ortamın fizikokimyasal koşullarına bağlı olarak anhidrit $\left(\mathrm{CaSO}_{4}\right)$ veya $\mathrm{jips}\left(\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ kristalleri oluşur.

Evaporitler, derin denizel ortamlardan mevsimsel yağş̣̣̆ kurak çöl ortamlarına kadar her türlü çökelme ortamında oluşabilirler. Ancak, büyük çoğunluğu deniz kıylarında, açık denizlerden bir bariyer ile kısmen ayrilmıs, yarı kapalı, az derin, zaman zaman çok sığlaşan ve sabkha ortamı olarak adlanan ortamlarda oluşmaktadırlar.

Evaporitlerle ilgilt yaymlarda, evaporitlerin; olusum ortamları bakımından (1) denizel, (2) denizel olma-
yan; suyun kökeni bakımından (1) deniz suyu, (2) yiizey suyu. (3) hidrotermal su, (4) diyajenetik su, (5) volkanik su, (6) karıṣmışs su; ilksel durum ${ }^{-}$ larına göre (1) birincil, (2) ikincil; taşınma durumuna göre ise (1) yerli (otokton), (2) tasinmıs (allokton) seklinde simflara ayrıldikları görülmektedir (Hardie, 1984 gibi). Oluşum ortamlarının tanımlanmasında özellikle paleontolojik ve diğer sedimantolojik veriler değerlendirilirken, suyun kökeninin tanımlanmasinda eser element ve izotop jeokimyası yöntemleri kullanılmaktadır.

Evaporitlerin çökelebilmesi için yukarıda sıralanan doğal suların yoğunluklarının ve tuzluluklarını çeşitli süreçlerle artması gerekmektedir. Bu artıs sırasunda su içinde farkl yoğunlukta katlar (en derinde en çok yoğun, en üstte en az yoğun su olacak şekilde) gelişmekte ve ilerleyen süre içinde bu katların yoğunlukları daha da artmaktadır. Bu , yoğunluğu artmıs sulardan itibaren buharlaşma ile kristallenme, scaklik artışı ile kristallenme ve farklı yoğunluktaki sıvıların karışımı gibi mekanizmalarla evaporitler çökelmektedir. Buhariaşma ve çökelme nedeniyle ortamda azalan tuzlu suyun yerine açık denizden yeni tuzlu su gelmekte ve ortamin tuz beslenmesi devam etmektedir.

Çökelme sırasında mineraller çözünürlüklerine göre (az olan önce çok olan daha sonra) sırayla çökelmektedirler. Olağan deniz suyunun yoğunluğu $1,025 \mathrm{gr} / \mathrm{cm}^{3}$ olup, bu artıs surasinda ilk cökelen mineral CaCO_{3} tür. Yoğunluk $1,1 \mathrm{gr} / \mathrm{cm}^{3} \mathrm{e}$ çıktığında jips-anhidrit, $1,215 \mathrm{gr} / \mathrm{cm}^{3} \mathrm{e}$ çıktığında NaCl , $1,26 \mathrm{gr} / \mathrm{cm}^{3} \mathrm{den}$ sonra ise çözünürlüğiu fazla olan K ve Mg'lu tuzlarin çökeldiǧi, diğer yandan jips çökelirken suyun derişikliğinin 5 kat, anhidrit çökelirken 8 kat, halit çökelirken 10 kat, diğer tuzlar çökelirken ise 1000 kat artmasmın gerektiği düşünülmektedir (Schmalz, 1969).

Ç̈kelecek CaSO_{4} mineralinin jips mi yoksa anhidrit mi olacağını ortamin tuzluluğu ve sıcaklğ̌ belirlemektedir. Yukarıda belirtildiği gibi, sudaki derişim ilksel durumuna göre 5 kat arttığnda jips, 8 kat arttuğnda ise anhidrit çökelmektedir. Olağan deni zsuyunda $34{ }^{\circ} \mathrm{C}$ sıcaklğa kadar jipsin daha sonra ise anhidritin çökelebileceği düşunülmektedir (Murray, 1964). Ayrica oluşan jipsler sicaklığın $42^{\circ} \mathrm{C}$ 'nin üzerine çıkmasıyla anhidrite dönüṣmektedirler, Ortamm NaC1 konsantrasyonunun anhidrit çökelmeni artırdığı ve jips-anhidrit dönüşüm sıcaklığm $25^{\circ} \mathrm{C}$ 'ye kadar düş̈rdüğü de belirtilmektedir (Sonnenfeld, 1975).

Diğer yandan gömülme strasında oluşan litostatik basmen jipsin suyunu kaybederek anhidrite dönnüsmesine neden olduğu ve jipsin en fazla 650 m derinliğe kadar kararlı olabileceği, daha derinlerde ise anhidritin gözleneceǧ, gömülmüs anhidrit kü̈tlelerinin yükselerek yüzeye çıkmalari halinde yüzey sularının etkisinde kalarak tekrar jipse dönnüştükleri kabul edilmektedir (Murray, 1964):

Inceleme alaninda jipslerin altında ve üstünde bulunan kayaç türleri ve fosil durumu dikkate alındığnda Göbeklitarla Uyesi jipslerinin ortam karasaldan denizele dönüșürken, Purtepe Üyesi jipslerinin ortam denizelden karasala dönüşürken, Fadlım Uyesi jipslerinin ortam karasaldan denizele dönüşürken gelișen sığ sulu çökelme ortamlarında çökeldikleri anlaşılmaktadır. Bingöl jipsleri ise biraz daha derinleşmiş bir ortamın çökelme ürünleri veya taşınmıs jips yumruları şeklindedirler.

Marnlarda yapılan karbonat testlerinde karbonat içerikleri yer yer \% 40'a kadar çıkmış olmakla birlikte, inceleme alanında jipslerin çökeliminden daha önce çökelmiş olması gereken karbonat çökelleri gözlenememektedir. Ayrica jipslerin çökeldiği sabkha ortamını açık denizden ayıran bir bariyer oluşunu da izlenememektedir. Bu nedenle havzada gelisen sabkha ortamını taban topoğrafyası oldukça düz ve genis alanlı, doğrudan açık denize bağlı sığ sulu bir deniz kıyısı ortamı olarak yorumlamak mümkündür.

Inceleme alanındaki jipslerde makroskopik olarak yumrulu ve bantlı yapı özellikleri yaygındır. Bantl yapil kesimlerin sakin sulu, yumrulu yapilı kesimlerın ise çalkantılı sulu evrelerin ürünleri oldukları düşünülebilir. Ancak, çökelme ortamının NaCl içeriğinin de yumrulu yapının gelişmesini artırdığı ve yumruların büyümesine katkıda bulunduğu da düșünülmektedir (Ali ve West, 1983).

Inceleme alanindaki jipslerde mikroskopik olarak yumrulu, alabastrin, porfiroblastik ve stain-spar yapı özellikleri gözlenmiştir. Bu yapısal özellikler inceleme alanındaki jipslerin anhidritlerin hidrasyonu sonucu oluşmuş ikincil jipsler olduklarını göstermektedir. Bu ikincil jipsler içinde bol miktarda kenarları kemirilmis anhidrit kristalleri gözlenmektedir.

Inceleme alanındaki jipslerle ilgili diğer önemli özellikler ise yalnızca Purtepe Üyesi içinde gözlenen sölestin zenginleşmeleri ve yalnızca Bingöl Uyesi içinde gözlenen halit zenginleşmeleridir. Daha önce belirtildiği gibi Purtepe Uyesi jipsleri kurumakta olan bir denizin çökelme ürünleri olup, bu kuruma sırasında deniz suyu içindeki stronsiyumu ${ }_{n}$ konsantre olduğu ve sölestin çökeliminin geliştiği düşünülebilir. Fadım Üyesi içinde gözlenen halit zenginleşmeleri ise ortamda buharlaşmanin oldukça ilerlediǧini ve derişimin önemli derecede arttığını göstermektedir.

Baysal ve Ataman (1980), yöredeki evaporitlerin jips ve kil fraksiyonlarında Li, F ve Sr içeriklerinin literatürde denizel evaporitler için belirlenmiş degerlere göre oldukça düșük olduğunu ve bu evaporitlerin olağan denizel evaporitler olmaktan daha çok ya ileri derecede işlenmiş (reworked) ya yeniden çökeltilmiş veya Kızıldeniz benzeri bir ortamda çökelmis evaporitler olduklarını belirtmektedirler. Ancak bu araştırıcılarca alınan örnekler stratigrafik
konum olarak değerlendirildiklerinde tarafımızdan tanımlanan Karayün Formasyonunun Fadlım ve özellikle Bingöl Uyeleri içinde kalmaktadırlar. Oysa Hacrali Formasyonunun Purtepe Uyesi stronsiyum bakımindan oldukça zengin bir üyedir. Ayrıca tarafimızdan yapılan kimyasal analizlerde bu araştırmada belirtilen değerlere göre daha yüksek değerler bulunmuştur.

SONUÇLAR

- Sivas güneydoğusundaki Miyosen yaşlı birimler Hacıali ve Karayün Formasyonlan şeklinde iki litostratigrafik birime ayrılmışlardır.
- Hacıali Formasyonu alttan üste doğru Boynuzözü (karasal kaba taneli detritikler), Göbeklitarla (jips - marn ardalanması), Aktaş (denizel kumtaşı, marn, kumlu kireçtaşı kireçtaşı ve kireçtaş1) ve Purtepe (jips-marn ardalanması) Uyelerine ayrılmıștır.
- Karayün Formasyonu alttan üste doğru Şahbey (karasal kaba taneli detritikler), Fadlım (jipsmarn ardalanması) ve Bingöl (denizel kumtaşı, marn, kumlu kireçtaşı ve kireçtaşı) Uyelerine ayrılmiştur.
- Inceleme alanında, Jipsler Göbeklitarla, Purtepe ve Fadlım Üyeleri içinde olmak üzere üç farklı seviyede gözlenmektedirler.
- Göbeklitarla Uyesinin jipsleri ortam karasaldan denizele dönüşürken, Purtepe Uyesi jipsleri ortam denizelden karasala dönüşürken, Fadlım Üyesi jipsleri ise yine ortam karasaldan denizele dönüşürken gelişen sabkha ortamlarında çökelmişlerdir.
- Yöredeki jipslerde makroskopik olarak yumrulu ve bantl yapı özellikleri, mikroskopik olarak ise yumrulu, alabastrin, porfiroblastik ve stain-spar yapı özellikleri gözlenmektedir.
- Yöredeki jipsler bugünkü durumları ile anhidritlerin hidrasyonu sonucu oluşmus ikincil jipsler olup, içlerindle kenarları kemirilmiş anhidrit kalintı kristalleri yaygen bir şekilde gözlenmektedir.

KATKI BELİRTME

Bu yayın Cumhuriyet Üniversitesi Araştırma Fonunca desteklenmiş bir proje çalışmasından hazırlanmıştır. Saha çalışmaları sirasında Tekel Sivas Bașmüdürlüği ve Barit Maden Türk A.Ş. katkıda bulunmușlardır. Ayrica laboratuvar incelemeleri sirasında Araş. Gör. Osman KOPTAGEL ve Uzman Umit OZZEN (C.U.) yardımcı olmuşlardır. Yazarlar bu kurum ve kişilere teşekkür ederler.

DEGGINIEEN KAYNAKLAR

Ali, Y.A. and West, I., 1983. Relationships of modern gypsum nodules in sabkhas of loess the compositions of brines and sediments in northern Egyipt: Journal of sedimentary petrology, Vol. 53, No: 4, p. 1151-1168.

Alpay, B., 1948, Tuzhisar tuzlası hakkinda jeolojik rapor: M.T.A. Rap. No: 3480 (yaymlanmamiş).

Arpat, E., 1964. Gürlevik Dağı bölgesinin ve kuzeyinin genel jeolojisi ve petrol imkânlart: M.T.A. Rap. No: 4180 (yayınlanmamış).

Artan, Ü. ve Sestini, G., 1971. Sivas-Żara-Beypinart bölgesinin jeolojisi: M.T.A. Dergisi, No: 76, s. $80-97$.

Bayhan, H., 1980. Güneş-Soğucak (Divriği-Sivas) yöresinin jeolojik, mineralojik, petrografikpetrolojik ve metalojenik incelemesi: Hacettepe Üniversitesi Yerbilimleri Enstitüsü, Doktora Tezi 206 s. (yaymlanmamış).

Bayhan, H. ve Baysal, O., 1981. Güneş-Soğucak (Divriği-Sivas) yöresindeki sülfür cevherlesmelerinin mineralojik ve jenetik incelenmesi: Yerbilimleri, H. Ü. Yay., 8, s. 41-52.

Baykal, F. ve Erentöz, C., 1966. T.J.H. Sivas paftasi izahnamesi: M.T.A. Yay., 116 s.

Baysal, O. ve Ataman, C., 1980. Sedimentology, mineralogy and geochemistry of a sulfate series (Sivas-Turkey): Sedimentary geology, Vol. 25, p. 67-81.

Bulut, C., 1965. Sivas İ38-c3 paftast detaj jeolojisi ve petrol imkânlart raporu: M.T.A. Rap. No: 4449 (yayınlanmamış).

Ceyhan, F., 1987. Sivas güneydoğusundaki tuz ve j̈ps yataklarman jeolojisi, oluşumu, kökeni ve ekonomik özellikleri: Cumhuriyet Üniv., Fen Bil. Enst., Yüksek Lisans Tezi (yaymlanmamış), 107 S .

Çelif, E., 1977. Ulas̃ (Sivais) sölestit zuhurlart ön etüd raporu: M.T.A. Rap No. 1333 (yaymlanmamiş) 7 S., Ankara.

Ezgû, M., 1948. Yetice Tuzlast Fakkinda Jeolojik rapor: M.T.A. Derleme Rap. No: 3489 (ya. yımlanmamis), Ankara:

Gökçe, A., 1988. Sivas güneydoğusundaki j̈ps, sölestin ve kayatuzu yataklarınin jeolojisi, oluşumu ve Kökeni: Cumhuriyet Üniv. Araşterma Fonu Projesi, 64 s., Sivas.

Gökçen, S.L., 1981. Zara-Hafik güneyindeki Paleojen istifinin sedimantolojisi ve paleocağrafik evrimi: Yerbilimleri, H.U. yay. C. 8., S. 121 , Ankara.

Gökçen, S.L., 1982. Zara-Hafik (SE-Sivas) ve Re fahiye (SW-Erzincan) Bölgeleri Eosen Flişinin sedimanter petrolojilc karşllaştirılmast; Yerbilimleri, H. ̈. yay., C. 8, S. 141-148, Ankara.

Gökçen, S.L. and Kelling, G., 1985. Oligocene deposits of the Zara-Hafik region (Sivas, Central Turkey): Evolution from storminfluenced shelf to evaporitic basin: Geologische Rundschau, Band 74, Hefit I, P. 139-153, Stuttgart.

Hardie, L.A., 1984. Evaporites: Marine or nonmarine? American Journal of Science, Vol. 284, P. 193-240.

Holliday, D.W., 1970. The petrology of secondary gypsum rocks: A Review, Journal of Sedimentary Petrology, Vol. 40, No. 2, P. 734-744.

Ilker, S. ve Özyeğin, G., 1971. Sivas Havzast hakkinda Jeolojik rapor: T.P.A.O. Rap. No: 537 (yayimlanmamı彑), Ankara.

Inan, N., 1987. Tecer Dağınin (Sivas) Jeolö̈k özellikleri ve Foraminiferlerinin sistematik incelenmesi: Cumhuriyet Univ. Fen Bilim-
leri Enstitüsü, Doktora Tezi (yaymlanmamış), 127 S., Sivas.

Kurtman, F., 1961 a. Sivas-Divriği arastndaki sahanun jeolojisi ve jipsli seri hakkanda müşahadeler: M.T.A. Dergisi, S. 56, s. 14-25, Ankara.

Kürtmañ, Fi, 1961 b: Sivas Civarnndaki jipsli seri4 nin stratigrafik durumu: M.T.A. Dergisi द. 2 Stian S. 56 , s. 26 -30, Ankära.

Kurtman, F., 1963, Tecer Dağlarinin jeolojisi ve alacali seri hakktnda bazı müsahadeler: T.J.T. Bült. C. VIII, S. 2, s. 19-26, Ankara.

Kurtman, F., 1973. Sivas-Hafik-Zaia ve İranlı bölgesinin Jeolojik ve tektonik yapist: M.T.A. Dergisi S. 80, s. 1-32, Ankara.

Meşhur, M. ve Aziz, A., 1980. Sivas baseni jeolojisi ve hidrokarbon olanaklan: T.P.A.O. Rap. No: 1530 (yayımlanmamıs), Ankara.

Murray, R.C., 1964. Origin and Diagenesis of gypsum an anhydrite: Jour. of Sed. Pet. V. 34, No: 3, p. 512-523.

Nebert, K., 1956. Sivas pilayetinin Zara-Imranlu mintikastndaki jupsli serinin stratigrafik durumu hakkinda: M.T.A. Dergisi S. 48, s. 76-82, Ankara.

Schmalz, F.R., 1969. Deap-Water Evaporite Deposition: A Genetic model. A.A.P.G. V. 53 , No: 4, p. 798-823.

Sonnenfeld, P., 1975. The significance of Upper Miocene (Messinian) evaporites in the Mediterranean Sea. The Journal of Geology, Vol. 83, p. 287-311.

Stchepinsky, V., 1939. Sivas vilayeti merkezi kisminin umumi jeolojisi hakkinda rapor: M.T.A. Rap. No: 868 (yayımlanmamıs), Ankara.

LEVHA - I

Foto 1 : Ince bantli ve kil arakatkılı jipslerin yakından bir görünümü (Fadlım Ưyesi orta seviyelerinden sekilmiştir; Sivritepe güneyinde bir yüzleğe yakından bakış).

Photo 1:A close up view from the thin banded gypsum with clay interbeds (Photographied from the middle level of Fadlum Member; Southern slope of the Sivritepe).

Foto 3 : Alabastrin ve porfiroblast yapil ikincil jipslerden mikroskopik bir görünüm (mikrofoto, örnek no: SS-95 (Fadlım Üyesinden), ince kesit, çift nikol, büyütme: 10X).
Photo 3 : A photomicrograph showing the secondary gypsun with alabastrine and porphyroblastic structure (microphoto, sample no: SS-95 (from the Fadlum Member), thin section, crossed nichol, magnification: 10X).

Foto 5: İkincil jipsler içinde gözlenen kalıntı anhidrit kristallerinden mikroskopik bir görünüm (mikrofoto, örnek no: SS.63, (Purtepe Uyesinden), incekesit, çift nikol, büyütme: 10X).
Photo 5 : A photomicrograph showing the relict anhydrite crystals in the secondary gypsum (microphoto, sample no: SS-63 (from the Purtepe Member), thin section, crossed nichol, magnification: 10X).

PLATE 1

Foto 2: Nodüler jipslerin yakından bir görünüşü (Fadlım Üyesi taban seviyelerinden sekilmiştir; Ardıçlıboynu Tepe batısında bir yüzleğe yakından bakış).

Photo 2 : A close up view from the nodullar gypsum (Photographied from the lower level of the Fadlum Member; Western slope of the Ardiçliboynu Tepe).

Foto 4 : Stain-spar yaplı jipslerden mikroskopik bir görünüm (mikrofoto, örnek no: SS.76 (Fadlım Üyesinden), ince kesit, çift nikol, büyütme: 60 X).
Photo 4:A photomicrograph showing the secondary gypsum with stain-spar structure (microphoto, sample no: SS-76 (from the Fadlım Member), thin section, crossed nichol, magnification: 60 X).

Foto 6 : Nodüler jipslerde mikronodüller ile aralarındaki ikincil jips dolgularınn mikroskopik görünümü (mikrofoto, örnek no: SS-102 (Bingöl Üyesinden), ince kesit, tek nikol, büyütme: 10X).
Photo 6 : A photomicrograph showing the micronoduls and secondary gypsiferous matrix of the nodullar gypsum (microphoto, sample no: SS-102 (Bingöl Member), thin section, single nichol, magnification: 10X).

LEVHA I
(Plate I)

FOTO 1
(Photo 1)

FOTO 3
(Photo 3)

FOTO 5
(Photo 5)

FOTO 2
(Photo 2)

FOTO 4
(Photo 4)

FOTO 6
(Photo 6)

[^0]: ABSTRACT : The Kurşunlu (Ortakent-Koyulhisar-Sivas) $\mathrm{Pb}-\mathrm{Zn}-\mathrm{Cu}$ Deposits are the typical examples of the vein type mineralizations which are widly seen all over the southern and weastern parts of the Northern Pontid Tectonic Unit.

 The surrounding area of the deposits is covered by volcanic and volcano-sedimentary units of Upper Cretacecus-Quaternary age, out by Tertiary Granitoids. According to their lithologic composition, main structural, and textural features, and lithostratigraphic columnar section; these rocks are mapped and named as «Kurşuludere Autobrecciated Andesite, Geyikkayatepe Dacite and Tuff, Eskiköy AndesiteAgglomerate, Evliyatepe Andesite, Deliktas Porphyro-Andesite, Menekșeli Sediments, Seğgüneytepe Granitoid, Leykün Basalt, Colluvium and Alluvium».

 The $\mathrm{Pb}-\mathrm{Zn}-\mathrm{Cu}$ deposits of the investigated area are deposited as ore veins which cut the bedding surface. The attitude of the ore veins N $500^{\circ}-80^{\circ} \mathrm{W}$ strike and $75^{\circ}-85^{\circ} \mathrm{NE} \mathrm{dip}$, and galena, sphalerite, chalcopyrite, pyrite, chalcocite and hematite are the ore minerals, together with quartz, calcite and locally barite as gangue minerals. Fluid inclusion study shows that the average formation temperature was $410{ }^{\circ} \mathrm{C}$. This observation is supported by the existance of chalcopyrite exsolutions in sphalerite crystals.

