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Abstract  

Concrete pavements as concrete road slab, appear as a strong alternative for flexible superstructures especially because 

of their low cost for maintenance and repair and the high performance they show under heavy axle loads. The design of 

these concrete road slabs is quite different from the traditional concrete and reinforced concrete structures’ design. In the 

design for this kind of pavements, traffic conditions should be defined properly and considered an addition to the concrete 

and platform properties. There have been designing methods developed based on both experimental and mechanic 

foundations for concrete pavements. The most important ones of these methods are AASHTO (1993) and PCA (1984). In 

both design methods, it’s significant to know the maximum deflections and maximum strains the vehicles’ loads cause on 

the pavement. The calculation of this maximum deflections and maximum strains can be done via the finite element method 

or the closed formulas which have been developed by Westergaard. In this study, a user-friendly software has been 

developed based on AASHTO 1993, PCA 1984 design methods and Westergaard formulas. Thanks to this software, the 

user who wants to design the concrete pavement as concrete road slab can obtain the essential parameters automatically 

by entering the required data for the design. 

Keywords: PCA1984, AASHTO 1993, Rigid pavement, Westergaard Analysis, Visual Programming 

1. Introduction 

Rigid pavements are built with Portland Cement Concrete. The first concrete pavement was built in 

Bellefontaine, Ohio in 1891 and the pavement was only 3 m wide and 67.1 m long. [1] From the first 

time they were built in Ohio their use is increasing day by day and only in the USA the concrete 

pavement’s length has exceeded 100.000 km. Concrete pavements which meet both public and private 

institutions’ needs with being strong and its durability being high, is a versatile paving implementation. 

Thanks to the high rigidity of the concrete, concrete pavements can transmit the applied loads to the 

sub-grade in larger and homogeneous areas. By this means, it forms an alternative for the flexible 

superstructure [2-3]. 

Concrete pavements are extensively used as a superstructure element as road slab for highways, 

airports, industrial grounds, streets, parking areas etc. If designed correctly and constructed well, they 

are capable to service for dozens of years without any maintenance cost [2]. In terms of cost, concrete 

pavement’s initial cost is higher than pavement but it needs less maintenance throughout its lifetime 

[3]. 
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Sound engineering is considerably important at this point. Because if the pavement’s thickness is 

designated more than it should be, its initial manufacturing cost will increase. [2,3,4] In contrast, if the 

thickness of the pavement is thinner than it should be, its maintenance cost will increase. Therefore, 

maximum effort should be shown for the design of concrete roads.  

Design methods which are used for concrete pavement design are generally based on mechanical and 

experimental sources. Another criterion used in concrete pavement designs is experience. Therefore, 

because of the criteria of concrete pavement designs that have to be taken into consideration come 

from different sources, it’s more complicated than expected. To facilitate this complication, design 

methods that have an experimental and mechanic infrastructure which have been developed by several 

organizations have been presented [6-9]. AASHTO 1993 and PCA 1984 methods are the first of these 

methods. Both methods have been used for long years by both designers and researchers.  

Design methods are intensively based on experimental findings and mechanistic fundamentals. 

Mechanically it is important to know the maximum deflection in vertical direction and maximum stress 

happening in pavement under axle loads and thermal loads in concrete pavements [11,12]. This 

deflection and stress may be found by using the finite element method and also be calculated using the 

closed-form formulation. Westergaard equations which are formed of center, corner, and edge loadings 

according to critical loadings, have still survived until today and are used extensively [1,2,3] 

As a result of edge loading while maximum stress takes place in the pavement, maximum deflection 

occurs when the load is near the corner. It is the key element for design to know the deflections and 

stresses under wheel loads. [9,10,13] 

2. Thickness Design in PCA 1984 Method 

The Portland Cement Association’s (PCA) thickness-design method for concrete pavements was 

published in 1984. This method can be applied to jointed plain concrete pavement (JPCP), jointed 

reinforced concrete pavement (JRCP) and continuously reinforced concrete pavement (CRCP). The 

PCA 1984 method is a design methodology which has a mechanical and experimental infrastructure 

and is based on according to the maximum deflection which occur at vertical direction and the 

maximum stresses which the vehicles’ load creates on the pavement. The maximum stresses and 

deflections which are obtained via mechanical methods are closely associated with the design tables 

and charts which are made by PCA. Fig 1 shows PCA design method’s steps. 

PCA 1984 method consists of erosion and fatigue analysis. For fatigue analysis, the ratio of maximum 

tensile stress of the pavement under repetitive traffic loads and the concrete’s modulus of rupture are 

used. Cumulative damage concept (CDF) is used for the fatigue analysis and if CDF exceeds 1.00, it 

is assumed that the pavement thickness is not sufficient. [8,9] 

In eq. (1) Dr is the cumulative damage ratio which will be caused throughout its lifespan ’s design 

referring to all load groups, is the predicted number of repetitions for each load group and is the 

allowable number of repetitions for each load group. 

 
i

i
r

N

n
D   (1) 

The Cumulative damage concept is used for both fatigue and erosion analysis.  
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Fatigue analysis which is based on edge loading, is the most critical loading situation in terms of stress. 

The maximum stresses that occur for each axle group and the modulus of rupture of the concrete are 

compared and with the help of charts the allowable repetition numbers are specified. Fig 2 shows PCA 

fatigue analysis chart. 

 

 

 

Fig. 1. PCA Flow Chart 
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Fig. 2. PCA fatigue analysis chart (PCA, 1984) 

 

The situation of corner loading is the most critical style of loading in terms of the deformation which 

occur in vertical direction. For this reason, deformation which occurs in the situation of corner loading, 

is used for erosion analysis. In the PCA method whether the dowel bars on the joints is important 

because it blocks the ground erosion and joint deterioration. Also in the tables presented in PCA 1984 

have been prepared considering dowel bar and shoulder support. 

Axle loads depending on fatigue, it’s place and effect in erosion of every load group in the design of 

the PCA 1984 method should be found by looking at the charts one by one. In this situation, as a result 

of a single change in design, the analyses have to be repeated. And this causes a great waste of time 

for designers. Furthermore, the difficulty of using charts and how making a small mistake will have a 

massive effect on the design, makes it harder for designers. 

The details of the PCA method haven’t been specified clearly in literature. For this reason, designers 

have to use the tables and charts that the PCA 1984 design method presents. Lee and the others have 

analyzed the PCA method to eliminate this obligation in their study that they have carried out. As a 

result of this study, they have created several formula sets instead of tables and charts [5]. 
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In Eq. (2) eq is the equivalent stress (psi), h is the thickness of the pavement (in),   is the relative 

stiffness of the subgrade system (in), k is the modulus of subgrade reaction (pci) f1, f2, f3 and f4 are 

the correction factors, SAL is single axle load, TAL is tandem axle load, WS means with shoulder, NS 

means no shoulder, TA and SA means tandem and single axle respectively. 
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In Eq. (3) Nf  is the allowable load repetitions Sc is the concrete modulus of rapture. 

3. Thickness Design in AASHTO 1993  

In the instrument of the AASHTO 1993 method, the thickness of the slab and the reinforcement can 

be calculated for the concrete pavement. Either for its rigid superstructure design or its flexible 

superstructure design, AASHTO has constituted one of the most accepted design specifications by 

superstructure engineers and scientists. Because this constituted design is based on both experimental 

and mechanic foundations, this ensures it to get better results in design.  

The AASHTO design method has published guides in the years 1972, 1986, 1993, 1998 and 2004. 

These guides were formed based on road tests and the data that was attained was stated with empirical 

formula. All these published guides, along with having the same concept with each other, each guide 

was developed with new additions. AASHTO 1993 method uses ESAL (Equivalent Single Axle Load) 

approach which is highly using approach by designers [14]. Figure 3 shows AASHTO design method’s 

steps. 
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Fig. 3. AASHTO Flow Chart 
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As in PCA 1984, in the AASHTO 1993 method a trail thickness is also not wanted. According to the 

equation prepared by AASHTO, the calculation of the thickness of the slab can be done by entering 

the required parameters.  

In the equation of the calculation of thickness presented in the AASHTO 1993 method, the value of 

the thickness of the slab (D) both affects the other values and also is affected from them. To calculate 

the thickness of the slab by using this formula, can only be done by doing iteration. For this reason, 

the solution for this formula is quite difficult. Because of the difficulty of calculating the equation by 

hand, some charts have been developed for designers to make it easy for them. 

According to AASHTO’s 1993 design method, for the calculation of the thickness of the slab, as a 

result of experimental studies, the empirical formula on Eq 4 was obtained and doing the calculation 

of the thickness according to this formula was predicted. 

In Eq (4) S0 is the standard deviation, ZR is the reliability, W18 the 18 kip equivalent single axle loads, 

D is the pavement thickness, Pt is the terminal serviceability index, Cd is the level of drainage, k is the 

effective module of subgrade reaction, Ec is the modulus of elasticity of concrete, J is the load transfer 

coefficient, Sc is the flexural strength of concrete PSI is the total change in serviceability index.  

 ...
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Critical stresses may occur between concrete pavements especially in joint areas during the passage of 

vehicles and due to environmental factors. Because of its concrete structure, it is more prone to cracks. 

These cracks increase with the passage of vehicles and environmental factors and reduces the lifespan 

of the road. Therefore, especially in joint areas, it has a great importance in terms of reinforcement 

crack inspection. 

In the AASHTO 1993 design method, reinforcement designs were prepared separately for 

continuously reinforced concrete pavement and jointed reinforced concrete pavement. Once again 

based on experience, experimental studies and mechanic examinations, several formulas and chats 

were created to calculate the amount of reinforcement to be used in the design and the reinforcement 

measurements. 
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The calculation of transverse reinforcement for continuously reinforced concrete pavements and the 

reinforcement calculations used for jointed reinforced concrete pavements are exactly the same. For 

the reinforcement calculation, the formula in Eq. 5 can be used. 

 

 100x
f2

LF
P

s

S   (5) 

In Eq (5) L is the length of pavement, F is the friction factor, fs is the steel working stress, Ps is the 

percent steel reinforcement for JRCP and transverse reinforcement in CRCP. 

There are 3 different criteria in the longitudinal reinforcement calculation of CRCP. These criteria are 

the criterion of distance between cracks, the criterion of crack width and the criterion of allowable 

reinforcement stress. According to all three criteria, the required reinforcement ratio should be 

calculated and the highest donate ratio should be selected. 

In Eq. (6), Eq. (7) and Eq. (8)X is the crack spacing, ft is the concrete tensile strength, s and c are 

steel and concrete thermal expansion coefficient respectively, is the bar diameter, w is the tensile 

stress due to wheel load, P is the steel percentage, Z is the concrete shrinkage at 28 days. 
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In Eq (7) CW is the crack width. 
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In Eq. (8) s is the steel stress. 
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3. Maximum Principle Stress and Maximum Deflection with Westergaard  

In the studies that Westergaard (1926) has carried out, he developed formulas for the stress and 

deflections which will occur on the result of interior, edge and corner loading applied on the slab along 

with formulas that can also calculate deflections and stresses that will occur with the change of 

temperature. In the analysis of Westergaard, while the pressure between the slab and the ground is 

proportional with the deflection at that point, it is independent from the deflection at the other points. 

It is assumed that the ground and the slab are in full contact and the response of the ground to the slab 

is equal everywhere. This simplified acceptation is named liquid ground or the Winkler Foundation. 

[13] 

For the analysis of the slabs, Westergaard equations, have been used to widely for a very long time to 

calculate the stresses which occur because of traffic loads and thermal loading. AASHTO and 

including PCA methods have also been used in many design methods. 

Westergaard identified the corner, edge and interior loadings as critical loadings and tried to calculate 

the critical stresses which will occur on the slabs according to all three loading situations 

mathematically. Accordingly, considering all three loading situations he formulized the maximum 

stress and maximum deflections. Fig 4 shows critical load positions. 

 

 
 

Fig. 4. Critical load positions 
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For the corner loading situation, after Westergaard the maximum stresses and deflection equations 

which occur in the situation of corner loading were updated by Ioannides (1985). 

In Eq. 9, Eq. 10, Eq. 11, Eq. 12, Eq. 13 and Eq. 14 c andc are the maximum tensile stress and 

maximum deflection due to corner loading respectively, a is the radius of loading area, D is the 

pavement thickness, P is the wheel load, l is the radius of relative stiffness, k is the modulus of subgrade 

reaction. 
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In Eq. 11 and 12 c andc are the maximum tensile stress and maximum deflection due to edge 

loading respectively. 
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In Eq.13 and 14 c andc are the maximum tensile stress and maximum deflection due to interior 

loading respectively. 
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When looked at all three loading situations in terms of deflection, the most critical loading situation 

occurs as a result of corner loading. For this reason, deflections which are attained by corner loading 

are used in erosion analysis in the PCA method. Because of edge loading, maximum principle stresses 

occur. Because stresses that occur by edge loading brings forth maximum stresses, the corner loading 

situation is considered in fatigue analyses. 

4. SDU.Pave.R Software  

The slab thickness design for concrete roads are affected from many properties such as the properties 

of the concrete, traffic loads and expectations from the design. For this reason, different scenarios 

being established and analyses being done for different circumstances are important in terms of finding 

the right thickness of the slab. While slabs which are thicker than they should be increase the cost, 

concrete slabs which are designed thinner than they should be deteriorate earlier, nevertheless causing 

economic loss. For this reason, it is quite important to determine the right thickness of the slab. 

Although design programs which are presented for concrete roads guide the designer with the 

instructions they give, identifying different scenarios to determine the right thickness of the slab and 

making a design of the thickness of the slab according to these scenarios are not always possible. 

Because there are too many detailed calculations in the formulas of the presented design methods. 

Furthermore, charts which are used to determine the thickness and reinforcement, are often misread. 

Designers who do these calculations by hand either have difficulty or make mistakes in determining 

the thickness of the slab. 

In this study, a user-friendly software was developed for overcoming the difficulties of the calculations 

of reinforcements and the thickness of the concrete roads. With the help of this user-friendly software, 

the solutions of the Westergaard equation can be easily done with PCA 1984 and AASHTO 1993. The 

home page of SDU.Pave.R have been shown in Fig 5. 

 

 
 

Fig. 5 Home page of SDU.Pave.R 
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Through this software both the thickness analysis and donate calculations can be done using AASHTO 

1993. The donate calculation is done separately for continuously reinforced concrete pavements and 

separately for jointed reinforced concrete pavements. Moreover, you can see the recommended values 

for the selected input when you click on the question marks buttons in the software. In this way, the 

user can make a more accurate design by getting information about inputs he doesn’t know of. 

For calculate slab thickness and steel percentage according to AASHTO design method with 

SDU.Pave.R software, we used example parameters given in Table 1. Steel percentage calculated for 

JRCP (Jointed Reinforced Concrete Pavement). The results of analyzes which made with SDU.Pave.R 

also given in Table 1 as output. When the results compare with the results obtained from the charts 

given in AASHTO Design Guide, we may see the results are totally overlapping. Instead of using 

AASHTO charts, thickness and steel percentage can easily calculate with SDU.Pave.R.  

 

Table 1. AASHTO Design Example Inputs and Outputs 

Input Value 

)3Reaction (MN/m Modulus of Sub. 20 

Standard Deviation 0.3 

Drainage Coefficient 1 

Elastic Modulus of Concrete (MPa) 35000 

Number of Axle Load (million) 6 

Initial Serviceability Index 4.20 

Terminal Serviceability Index 2.6 

Concrete Modulus of Rupture (MPa) 4.5 

Load Transfer Coefficient 3.2 

Slab Length (m) 12 

Friction Factor 1.5 

Steel Working Stress (MPa) 2000 

Output   

Slab Thickness (cm) 25.7 

Steel Percentage (%) 0.1 

 

In the PCA 1984 method, fatigue and erosion analyses should be done for each axle type and axle 

weight separately. In these analyses, the analyses should be repeated one by one for each load by 

looking at the table and charts. This process is a long and troublesome process. The SDU.Pave.R 

software allows these analyses to be done quite easily and without errors. Furthermore, future traffic 

and truck quantities can be calculated with the help of the traffic option in the PCA 1984 module. The 

AASHTO thickness and reinforcement design page of SDU.Pave.R has been shown in Fig 6. 
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Fig. 6. AASHTO Thickness and Reinforcement Design with SDU.Pave.R 

 

SDU.Pave.R PCA module also can help designers and researchers. Instead of using PCA method’s 

tables and charts, fatigue and erosion analyzes may run easily with SDU.Pave.R software. For an 

example we chose trail pavement thickness as 25.5 cm. We considered doweled joint and no shoulder 

situation. The parameters using for this example presented Table 2. Fatigue analyze result with 

SDU.Pave.R software has been shown in Fig 7. End of the analyzes made with SDU.Pave.R fatigue 

and erosion were calculated as %84.92 and %18.71 respectively. 

 

Table 2. PCA Design Example Inputs and Outputs 

Input  Value 

Trail Pavement Thickness (cm) 25.5 

)3Modulus of Sub. Reaction (MN/m 20 

Concrete Modulus of Rupture (MPa)  4.5 

Elastic Modulus of Concrete (MPa)  35000 

Poisson Ratio of Concrete 0.13 

Load Safety Factor 1.1 

Average Daily Traffic (Both Direction) 3500 

Proportion of Trucks in Right Line 0.75 

Design Period (Years) 30 
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Fig. 7. PCA Fatigue Analyses with SDU.Pave.R 

 

The formulas used in Westergaard analyses are quite complex. Therefore, it takes a long time to repeat 

the analysis according to different loading scenarios. With the SDU.Pave.R software, analyses can be 

performed according to the three critical loading situations (interior, edge, corner). Furthermore, the 

loading format is visualized according to the selected situation, making it easier for users (Fig 8). 

 
 

Fig. 8. Westergaard Solution with SDU.Pave.R 
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5. Concluding Remarks 

In this study, a user-friendly software including the AASHTO 1993 and PCA 1984 methods which are 

the most used methods for concrete slab design and the Westergaard equations has been developed. 

Thanks to this software named SDU.Pave.R, it has been ensured that the design of the concrete slab 

thickness and reinforcement can be done quickly and easily without depending on charts and equations. 

There is no other software offering design methods under the same software. The SDU.Pave.R has 

bridged the gap and has allowed users who want to calculate the concrete slab thickness with different 

design methods. Furthermore, the fact that the software offers both Turkish and English language 

support makes the program easier to use from different countries. In addition, with the choice of the 

American and SI unit system in the software, it allows extensive usage for users in countries using a 

different unit system. 
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Abstract 

This study compared displacement demands obtained from linear and nonlinear time history analyses of 2D and 3D 

models to investigate how 2D models reflect 3-D models. Estimates of 2D and 3D linear and 2D nonlinear models were 

also compared to that of 3D nonlinear model to visualize success of linear and 2D nonlinear models in seismic 

displacement estimates of RC buildings. A total of 288 dynamic analyses were performed with 12 different records taking 

into account two principal directions of 10-, 15- and 20-storey buildings. Outcomes of the current study imply that 2D 

representation of 3D models needs careful modelling. Buildings are usually designed according to related earthquake 

code considering both gravity and seismic loads. Then, an interior frame is used for 2D modelling. The periods of 3D 

and 2D models need to be closer for proper representation. Another observation is that the 2D linear elastic models do 

not properly represent the 3D nonlinear models. Thus, it is recommended to use 3D models when linear modelling is 

preferred. Since 2D nonlinear models represent reasonably well their 3D nonlinear ones, 2D modelling can be preferred 

for buildings with no irregularity due to extensive labor and time required for 3D nonlinear models. 

Keywords: displacement demands, 2D and 3D frame models, linear and nonlinear analyses, time history analysis, 

ground motions with forward directivity effects. 

1. Introduction 

Displacement demand estimates of building stock in earthquake prone countries are essential for 

seismic performance evaluation. Static or dynamic analysis can be used in estimating displacement 

demands of structures. Although nonlinear time history analysis provides precise estimates, it may 

cause labor and time loss. Therefore static (pushover) analyses or nonlinear time-history analyses of 

“equivalent” SDOF system reflecting 3D models are preferred for their simplicity in estimating 

displacement demands of structures. Also, linear time history analyses are used for estimates of 

seismic displacement demands. 

In this study, three structures selected as 10-, 15- and 20-storey are considered to represent mid-rise 

reinforced concrete buildings. These buildings are modelled as three dimensional (3D) frame 

elements without shear walls in SAP2000 [1]. In addition, two dimensional (2D) models were 

derived from the interior frames in two principal directions of 3D models. In total, 27 models as three 

3D and six 2D models for each building were created. 12 past earthquakes records with forward 

directivity are selected for using linear and nonlinear time-history analysis. In part 1 of the study, 

displacement demands obtained from linear and nonlinear time history analyses of 2D and 3D 
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models were compared to investigate how 2D models reflect 3-D models. In part 2 of the study, the 

estimates of 2D and 3D linear and 2D nonlinear models were compared to that of 3D nonlinear 

model in order to visualize success of linear and 2D nonlinear models in seismic displacement 

estimates of RC buildings. A total of 288 dynamic analyses were performed with 12 different 

earthquakes records taking into account the two principal directions of 10-, 15- and 20-storey 

buildings.  The outcomes and findings of the study are useful to better understand the consequences 

and issues in implication of 2D and 3D linear and 2D nonlinear models. 

2. Description of buildings and modeling approach 

10, 15 and 20-storey reinforced concrete buildings were taken into consideration as mid-rise 

buildings for this study. Building models have double symmetry axis; consists of a typical beam-

column RC frame system with no shear walls. The plan view of the 3D models and the 2D models 

derived from the inner axes of this model were given in Fig 1. The selected buildings are designed 

according to modern Turkish Earthquake Code (TEC-2007) considering both gravity and seismic 

loads [2]. A design ground acceleration of 0.40g assuming the highest seismicity zone and soil class 

Z3 that is similar to the class C soil of FEMA-356 is assumed [3]. Compressive concrete strength 

value of 35 MPa is considered while the yield strength of both longitudinal and transverse 

reinforcement is assumed to be 420 MPa. The period values of the dominant vibration mode of the 

models are given in Table 1. Nonlinear models have been developed to investigate how the linear 

models reflect the nonlinear models. Nonlinear behavior was achieved through plastic hinges defined 

at both ends of beams and columns. The plastic hinge length in the critical sections was calculated as 

half (h / 2) of the cross section height in the relevant direction as specified in TEC-2007 for the 

Mander confined concrete model [4-5]. The software SEMAp is used for moment-curvature analyses 

of RC sections reflecting their material properties longitudinal and transverse steel content, and axial 

load level of the critical sections [6]. Using the curvature values obtained as a result of the analyses, 

the rotation values of the critical points given in Figure 2 were calculated [7]. SAP2000 is used for 

linear and nonlinear analyses [1]. Newmark mean acceleration method is used for linear and 

nonlinear time history analyses in SAP2000. Effective stiffness values for all linear and nonlinear 

models are obtained per 2007 Turkish Earthquake Code; 0.4EI for beams and values between 0.4EI 

and 0.8EI depending on axial load level for column elements [2, 8, 9]  

INTERIOR AXIS-Y 

 

 

 

 

          INTERIOR AXIS-X 

 

 

 

Fig.1. Plan view of the considered buildings (Selected frame models are also marked.) 
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)1Table 1. The dominant vibration periods in the relevant direction of the models used in the study (T 

(s) 1T Models s)( 1T Models (s) 1T Models 
2.35 20S-2D-X 2.11 15S-2D-X 1.37 10S-2D-X 
2.15 20S-2D-Y 1.97 15S-2D-Y 1.31 10S-2D-Y 
1.97 20S-3D-X 1.76 15S-3D-X 1.35 10S-3D-X 
1.87 20S-3D-Y 1.71 15S-3D-Y 1.31 10S-3D-Y 

 

 
Fig.2. Typical strength-deformation relation 

3. Ground motions 

A total of 12 earthquake records with forward directivity effect were used in the study. Forward 

directivity produces ground motion which contains large amplitudes and short durations [10-11]. 

Because of this, acceleration records with forward directivity can cause very serious demand 

increases in structures near the fault, as they carry relatively large velocity pulse effects [8, 9, 12]. 

Such acceleration records take part in some sources as earthquakes carrying pulse effect "near 

source" [13]. 

 
Table 2. Earthquake acceleration records used in the study and their characteristics  

Vs30 
(m/s) 

PGV 
(mm/s) 

PGA 
(g) 

Component Station Date Earthquake No 

712.8 897 0.662 090 Petrolia 25.04.1992 Cape Men. 1 

326.0 621 0.822 090 Bolu 12.11.1999 Duzce 2 
274.5 643 0.496 EW Erzincan10 13.03.1992 Erzincan 3 

208.7 389 0.220 315 Brawley Air 15.10.1979 Imperial V. 4 

256.0 1207 0.616 090 Takatori 16.01.1995 Kobe 5 
276.0 464 0.358 270 Duzce 17.08.1999 Kocaeli 6 

792.0 503 0.244 000 Gebze 17.08.1999 Kocaeli 7 

684.9 976 0.721 275 Lucerne 28.06.1992 Landers 8 

1070.3 728 0.508 090 Los Gatos Lex 18.10.1989 Loma Pri. 9 
597.1 808 1.298 285 C. Lake Dam 24.04.1984 Morgan Hill 10 

269.1 972 0.590 360 Newhall F. 17.01.1994 Northridge 11 

440.5 782 0.604 090 Sylmar Ol 17.01.1994 Northridge 12 

 

The characteristics of earthquake records used in this study are given in Table 2 [14]. Although there 

is a limited number of records with forward directivity in the literature, ground motion records with 

considerably large PGA band have been used. Elastic acceleration spectrum for the 5% damping 

ratio of the selected records are given in Figure 3. In addition, the average of acceleration records and 

response spectrum provided in Turkish Earthquake Code-2007 according to design earthquake with 

10% probability of exceedance in 50 years for Z3 type soil was plotted. Despite the fact that the 
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selected records have a very broad scatter, it seems that it is very close to the spectrum plotted 

according to TEC-2007. 
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Fig.3. Elastic acceleration spectrum for 5% damping of earthquake acceleration records used in the 

study 

4. Evaluation seismic demand 

 

Seismic demand estimates of 288 linear and nonlinear time history analyses are compared. Building 

models used in the study are labeled as number of floor, type of model (2D or 3D), type of behavior 

(L: linear or N: nonlinear), and direction taken into account for analysis. For example, 10S-2DL-X 

and 10S-2DN-X represent the x-direction analysis result of a 10-storey two-dimensional linear and 

nonlinear model, respectively. Roof level displacement and interstory drift demands are used as 

seismic evaluation parameters.  

Roof displacements are normalized by building height and called “roof drift ratio” while interstory 

displacement demands are normalized by story heights and called “interstory drift ratio”. Roof and 

interstory drift ratio demands are provided Tables 3 and 4, respectively. 

 
Table 3. Roof drift ratio demands of 10-, 15- and 20-storey linear building models (%) 

20-storey building 15-storey building 10-storey building 

Earthquake 3D-L 2D-L 3D-L 2D-L 3D-L 2D-L 

Y X Y X Y X Y X Y X Y X 

0.07 0.06 0.07 0.07 0.09 0.09 0.09 0.09 0.15 0.15 0.16 0.16 Cap-Pet090 

0.63 0.67 0.61 0.54 0.52 0.55 0.88 0.92 1.05 1.03 1.05 1.03 Dzc-Bolu090 

0.71 0.77 0.82 0.93 0.58 0.61 1.03 1.18 0.86 0.88 0.86 0.89 Erz-Ew 
0.29 0.28 0.28 0.25 0.32 0.31 0.38 0.36 0.46 0.49 0.46 0.50 Impvall-Bra315 

1.80 1.86 2.15 2.02 1.67 1.78 2.47 2.82 3.28 3.12 3.31 3.01 Kobe-Tak090 

0.77 0.80 0.83 0.77 0.76 0.78 1.04 1.05 1.31 1.39 1.32 1.44 Koc-Dzc270 
0.21 0.20 0.23 0.28 0.24 0.23 0.28 0.29 0.28 0.32 0.28 0.34 Koc-Gbz000 

0.65 0.70 0.84 0.91 0.69 0.72 0.92 1.06 1.02 1.07 1.00 1.09 Landers-Lcn275 

0.87 0.91 0.99 1.04 0.92 0.96 1.22 1.33 1.40 1.45 1.40 1.48 Lomap-Lex090 

0.47 0.46 0.46 0.41 0.57 0.57 0.62 0.60 0.99 0.97 0.98 0.95 Morgan-Cyc285 
0.96 0.95 0.94 0.88 0.99 1.02 1.27 1.19 1.86 1.96 1.86 2.00 Northr-Nwh360 

0.94 1.04 1.19 1.36 0.73 0.81 1.39 1.59 1.05 1.07 1.07 1.05 Northr-Syl090 

1.80 1.86 2.15 2.02 1.67 1.78 2.47 2.82 3.28 3.12 3.31 3.01 Maximum 
0.07 0.06 0.07 0.07 0.09 0.09 0.09 0.09 0.15 0.15 0.16 0.16 Minimum  

0.70 0.72 0.78 0.79 0.67 0.70 0.97 1.04 1.14 1.16 1.14 1.16 Average 
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Table 4. Interstory drift ratio demands of 10-, 15- and 20-storey linear building models (%) 

20-storey building 15-storey building 10-storey building 

Earthquake 3D-L 2D-L 3D-L 2D-L 3D-L 2D-L 

Y X Y X Y X Y X Y X Y X 

0.16 0.17 0.21 0.23 0.27 0.22 0.28 0.33 0.29 0.31 0.35 0.37 Cap-Pet090 

0.82 0.94 1.07 1.22 0.96 0.94 1.07 1.46 1.47 1.42 1.48 1.37 Dzc-Bolu090 

1.19 1.34 1.51 1.39 0.94 1.12 1.82 1.85 1.17 1.18 1.18 1.20 Erz-Ew 
0.40 0.38 0.42 0.46 0.53 0.53 0.52 0.56 0.58 0.62 0.57 0.64 Impvall-Bra315 

2.31 2.60 2.72 2.58 2.36 2.44 3.43 3.87 4.49 4.20 4.54 3.93 Kobe-Tak090 

1.10 1.20 1.20 1.11 1.10 1.13 1.66 1.63 1.73 1.79 1.73 1.78 Koc-Dzc270 
0.35 0.33 0.33 0.45 0.38 0.41 0.43 0.48 0.43 0.49 0.43 0.51 Koc-Gbz000 

0.60 0.69 1.05 1.35 0.81 1.01 1.28 1.43 1.23 1.50 1.56 1.49 Landers-Lcn275 

1.12 1.18 1.37 1.48 1.31 1.36 1.67 1.80 1.84 1.87 1.86 1.85 Lomap-Lex090 
0.93 0.95 1.16 1.32 1.10 1.27 1.27 1.74 1.43 1.38 1.47 1.37 Morgan-Cyc285 

1.34 1.42 1.47 1.40 1.48 1.71 1.70 2.09 2.69 2.68 2.66 2.69 Northr-Nwh360 

1.21 1.33 1.62 2.00 1.00 1.08 1.81 2.11 1.45 1.52 1.45 1.55 Northr-Syl090 

2.31 2.60 2.72 2.58 2.36 2.44 3.43 3.87 4.49 4.20 4.54 3.93 Maximum 
0.16 0.17 0.21 0.23 0.27 0.22 0.28 0.33 0.29 0.31 0.35 0.37 Minimum  

0.96 1.04 1.18 1.25 1.02 1.10 1.41 1.61 1.57 1.58 1.61 1.56 Average 

 

Roof drift ratios of each building subjected to 12 earthquake records for linear elastic analyses are 

plotted in Figure 4. It is obvious that 10-storey models have higher scatters for both 2D and 3D 

models. The comparison of 3D and 2D models shown in Figures 4a and 4b clearly points out that the 

2D models have higher scatters. The ratios of maximum and minimum roof drifts are 21.6, 31.3 and 

30.3 for 10-, 15- and 20-storey buildings, respectively. The difference in demands is an indication of 

different damage levels caused by ground motion records on the same buildings. 
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a) b) 

Fig.4. Roof drift ratios of 10-, 15- and 20-storey buildings as linear modelled 3D and 2D (%) 

 

When the average roof drift ratios are considered, the highest seismic risk is seen in 10-storey 

buildings. As shown in Figure 5, the spectral acceleration values corresponding to the period values 

of 10-storey buildings are higher than that of the other buildings in most of earthquake records, 

especially for strong ones (for example: Kobe-Tak090, Northr-Nwh360, Lomap-Lex090). The higher 

seismic acceleration demand for 10-storey buildings explains their higher displacement demands.  
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Fig.5. The spectral acceleration values corresponding to the period values of 10-, 15- and 20- storey 

buildings 

 

Figure 6 plots interstory drift ratios of each building subjected to 12 earthquake records for linear 

elastic analyses. The scatter in 2D models is more apparent than that of 3D models. Among the 

building sets, the highest scatter for the interstory drifts is observed in the 10-storey buildings. 

 

0.0

1.0

2.0

3.0

4.0

5.0

In
te

rs
to

ry
 D

ri
ft

 R
a
ti

o
(%

)

Cap-Pet090

Dzc-Bolu090

Erz-Ew

Impvall-Bra315

Kobe-Tak090

Koc-Dzc270

Koc-Gbz000

Landers-Lcn275

Lomap-Lex090

Morgan-Cyc285

Northr-Nwh360

Northr-Syl090

Average

 

0.0

1.0

2.0

3.0

4.0

5.0

In
te

rs
to

ry
 D

ri
ft

 R
a
ti

o
 (

%
)

Cap-Pet090

Dzc-Bolu090

Erz-Ew

Impvall-Bra315

Kobe-Tak090

Koc-Dzc270

Koc-Gbz000

Landers-Lcn275

Lomap-Lex090

Morgan-Cyc285

Northr-Nwh360

Northr-Syl090

Average

 
a) b) 

Fig.6. Interstory drift ratios of 10-, 15- and 20-storey buildings as linear modelled 3D and 2D (%) 

 

Figure 7 compares the average roof and interstory drift ratios of 2D and 3D models to see how 2D 

linear models reflect 3D linear models. The figure obviously indicates that the 2D linear models of 

10-storey buildings perfectly represent their 3D models. Although the 2D models of 20-storey 

models are quite reasonable, the 2D models of 15-storey estimate about 40% higher demands 

compared to the 3D models. The comparison of 2D and 3D model estimates obviously shows that the 

2D linear models reflect their 3D models for 10- and 20-storey buildings. However, it is difficult to 

say similar observation for 15-storey buildings.  
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Fig.7. Comparison of roof and interstory drift ratios of 10-, 15- and 20-storey buildings for linear 2D 

and 3D models 
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The floors at which the maximum interstory drift ratios (IDR) were determined for linear 2D and 3D 

models of 10-, 15- and 20-storey buildings. In this context, primarily the models were represented by 

5-story groups and then the frequency of occurrence for the floor where the maximum IDR occurs is 

calculated in percent as shown in Figure 8. These values were given as the ratio that the number of 

occurrences of the maximum relative displacement in the mentioned group to the number of the 

earthquake records used. Figure 8 illustrates that the 2D and 3D models have similar results 

indicating good representation of 2D models for their 3D models. When the buildings are evaluated 

separately, it is seen that the maximum IDR is concentrated in the lower floors of the 10-story 

buildings, in the middle floors of the 15-story buildings, and in the lower and upper floors of the 20-

story buildings. The maximum IDR observed at the upper stories for the buildings with no shear 

walls can be explained with the reduction in column sizes at the upper stories, the decrease in 

effective section stiffness due to lower column axial loads and forward directivity effect of the 

ground motion records used in the study [8, 9]. 
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Fig.8. Location of maximum interstory drift ratio for linear 10-, 15- and 20-storey building models  

 

The results of linear and nonlinear time history dynamic analyses are compared for the roof and 

interstory drift ratios in order to visualize success of linear models in estimating nonlinear demands 

of RC buildings. Tables 5 and 6 lists nonlinear roof and interstory drift ratio demands for 2D and 3D 

models. Figure 9a compares the average roof drift ratio of linear and nonlinear models. The average 

roof drift demands obtained with linear models are normalized by that obtained using corresponding 

nonlinear models. It is obvious that linear models provide higher demand estimates than their 

corresponding nonlinear models. The 2D linear 10-storey building model represents reasonably well 

its nonlinear model while the 3D linear 15- and 20-storey building models provides better demand 

estimates. It should be kept in mind that the dominant vibration periods of 2D and 3D models of 10-

storey building are very close while there are differences in dominant vibration periods of 2D and 3D 

models of 15- and 20-storey buildings. The better representation of nonlinear model for 10-storey 

buildings can be attributed to having closer vibration periods. Similar trends are also observed for the 

interstory drift ratios as seen in Figure 9b. 
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Fig.9. Comparison of average roof and interstory drift ratio demands for linear and nonlinear models 
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The estimates of 2D and 3D linear and 2D nonlinear models were also compared to that of 3D 

nonlinear model in order to visualize success of linear and 2D nonlinear models in seismic demand 

estimates of RC buildings as shown in Figure 11. It is obvious that the 2D linear models gives higher 

demand estimates having 30 to 50% higher estimates compared to the 3D nonlinear models. In 

general, 2D nonlinear models are the best representation of 3D nonlinear models.  

 
Table 5. Roof drift ratio demands of 10-, 15- and 20-storey nonlinear building models (%) 

20-storey building 15-storey building 10-storey building 

Earthquake 3D-N 2D-N 3D-N 2D-N 3D-N 2D-N 

Y X Y X Y X Y X Y X Y X 

0.07 0.06 0.08 0.07 0.09 0.09 0.09 0.09 0.16 0.15 0.16 0.16 Cap-Pet090 

0.43 0.45 0.29 0.32 0.50 0.54 0.61 0.64 0.75 0.66 0.68 0.62 Dzc-Bolu090 
0.60 0.62 0.52 0.51 0.60 0.60 0.85 0.88 0.84 0.88 1.02 0.92 Erz-Ew 

0.28 0.26 0.23 0.24 0.30 0.31 0.35 0.34 0.39 0.46 0.35 0.43 Impvall-Bra315 

0.90 0.87 0.78 0.80 1.03 1.09 1.18 1.19 1.95 1.70 1.39 1.41 Kobe-Tak090 
0.62 0.52 0.46 0.41 0.74 0.76 0.71 0.69 0.87 1.18 1.11 1.24 Koc-Dzc270 

0.21 0.20 0.23 0.19 0.24 0.24 0.28 0.29 0.21 0.32 0.27 0.34 Koc-Gbz000 

0.65 0.81 0.77 1.16 0.57 0.60 0.94 1.12 0.95 1.07 1.07 1.11 Landers-Lcn275 

0.84 0.78 0.80 0.67 0.57 0.99 1.11 1.11 1.20 1.19 1.54 1.68 Lomap-Lex090 
0.46 0.44 0.46 0.44 0.56 0.57 0.61 0.59 0.88 0.87 1.12 0.93 Morgan-Cyc285 

0.76 0.79 0.75 0.82 0.83 0.84 1.08 1.13 0.86 0.85 1.11 1.18 Northr-Nwh360 

0.63 0.61 0.51 0.58 0.94 0.95 0.81 0.88 0.92 0.89 1.56 1.57 Northr-Syl090 

0.90 0.87 0.80 1.16 1.03 1.09 1.18 1.19 1.95 1.70 1.56 1.68 Maximum 

0.07 0.06 0.08 0.07 0.09 0.09 0.09 0.09 0.16 0.15 0.16 0.16 Minimum  

0.54 0.53 0.49 0.52 0.58 0.63 0.72 0.75 0.83 0.85 0.95 0.97 Average 

 
Table 6. Interstory drift ratio demands of 10-, 15- and 20-storey nonlinear building models (%) 

20-storey building 15-storey building 10-storey building 

Earthquake 3D-N 2D-N 3D-N 2D-N 3D-N 2D-N 

Y X Y X Y X Y X Y X Y X 

0.16 0.16 0.19 0.17 2.93 2.53 0.29 0.33 0.31 0.31 0.35 0.37 Cap-Pet090 
0.94 1.02 0.74 0.85 1.24 1.21 1.56 1.67 1.38 1.22 1.27 1.52 Dzc-Bolu090 

1.45 1.45 1.39 1.30 1.38 1.45 1.91 1.90 1.34 1.52 1.66 1.70 Erz-Ew 

0.39 0.38 0.39 0.48 0.52 0.53 0.57 0.60 0.58 0.63 0.54 0.62 Impvall-Bra315 
1.63 1.45 1.52 1.83 2.33 2.48 2.37 2.34 3.11 2.63 2.08 2.37 Kobe-Tak090 

1.02 0.86 0.85 0.85 1.44 1.43 1.52 1.42 1.45 1.86 1.63 1.99 Koc-Dzc270 

0.36 0.36 0.33 0.48 0.38 0.40 0.43 0.49 0.29 0.51 0.45 0.56 Koc-Gbz000 

1.54 3.55 2.60 5.98 0.98 0.97 1.21 1.35 1.58 1.73 1.71 1.77 Landers-Lcn275 
1.46 1.29 1.57 1.48 0.98 1.91 2.41 2.39 1.93 2.05 2.19 2.55 Lomap-Lex090 

0.85 0.88 0.98 1.18 1.21 1.17 1.34 1.30 1.50 1.55 1.81 1.80 Morgan-Cyc285 

1.41 1.85 2.00 2.86 1.73 1.67 2.42 2.37 1.58 1.59 1.60 1.98 Northr-Nwh360 
1.45 2.29 1.75 2.60 1.71 1.65 1.89 2.17 1.39 1.49 2.37 2.25 Northr-Syl090 

1.63 3.55 2.60 5.98 2.93 2.53 2.42 2.39 3.11 2.63 2.37 2.55 Maximum 

0.16 0.16 0.19 0.17 0.38 0.40 0.29 0.33 0.29 0.31 0.35 0.37 Minimum  

1.06 1.30 1.19 1.67 1.40 1.45 1.49 1.53 1.37 1.42 1.47 1.62 Average 
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Fig.11. The ratio of displacement demands obtained from models to 3D nonlinear displacement 

demand 

5. Observations and results 

 

This study compared displacement demands obtained from linear and nonlinear time history analyses 

of 2D and 3D models to investigate how 2D models reflect 3-D models. The estimates of 2D and 3D 

linear and 2D nonlinear models were also compared to that of 3D nonlinear model in order to 

visualize success of linear and 2D nonlinear models in seismic displacement estimates of RC 

buildings. A total of 288 dynamic analyses were performed with 12 different earthquakes records 

taking into account the two principal directions of 10-, 15- and 20-storey buildings. The observations 

and outcomes are summarized below: 

 The roof and interstory drift demands illustrate that the 10-storey building models have 

the highest demand ratios and scatter. The comparison of 3D and 2D models clearly 

points out that the 2D models have higher scatters. 

 The comparison of average roof and interstory drift ratios for 2D and 3D models 

obviously indicates that the 2D linear models reflects their 3D models reasonably well for 

10- and 20-storey buildings. However, it is difficult to say similar observation for 15-

storey buildings. The differences between 2D and 3D models in demands estimates are 

about 0%, %50 and 12% for 10-, 15- and 20-storey buildings, respectively. 

 The maximum interstory drift ratios were concentrated at lower floors of 10-storey 

buildings, at the middle floors of 15-storey buildings, and at the lower or upper floors of 

20-storey buildings. This observation indicates that as the number of storey increases, it is 

difficult to estimate location of the floor with maximum interstory drift. 

 The results of linear and nonlinear time history dynamic analyses are compared for the 

roof and interstory drift ratios in order to visualize success of linear models in estimating 

nonlinear demands of RC buildings. The average roof and interstory drift demands 

obtained with linear models are normalized by that obtained using corresponding 

nonlinear models. The results show that linear models provide higher demand estimates 

than their corresponding nonlinear models. The 2D linear 10-storey building model 

represents reasonably well its nonlinear model while the 3D linear 15- and 20-storey 

building models provides better demand estimates. It should be kept in mind that the 

dominant vibration periods of 2D and 3D models of 10-storey building are very close 

while there are differences in dominant vibration periods of 2D and 3D models of 15- and 

20-storey buildings. The better representation of nonlinear model for 10-storey buildings 

can be attributed to having closer vibration periods. 
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In general, the outcomes of the current study imply that 2D representation of 3D models needs 

careful modelling. The buildings are usually designed according to the related earthquake code 

considering both gravity and seismic loads. Then, an interior frame is used for 2D modelling. The 

periods of 3D and 2D models need to be closer in order to have proper representation. Another 

observation is that the 2D linear elastic models do not properly represent the 3D nonlinear models. 

Thus, it is recommended to use 3D models when linear modelling is preferred. Since the 2D 

nonlinear models represent reasonably well their 3D nonlinear ones, the 2D modelling can be 

preferred for the buildings with no irregularity due to extensive labor and time required for 3D 

nonlinear models.  
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Abstract 

In this work the exact free axisymmetric pure radial vibration of hollow infinite cylinders made of hypothetically 

functionally power-graded materials having identical inhomogeneity indexes for both Young’s modulus and the material 

density is addressed. The equation of motion is obtained as a linear second-order Bessel’s ordinary differential equation 

with constant coefficients based on the axisymmetric linear elasticity theory.  For traction free boundaries, a closed form 

frequency equation is offered. After verifying the present results for cylinders made of both isotropic and homogeneous 

materials, and isotropic functionally graded materials, an extensive parametric study is carried out to investigate the 

influences of both the thickness and inhomogeneity indexes on the natural frequencies. Results are presented in both 

graphical and tabular forms. It was revealed that the fundamental frequency in the radial mode is principally affected from 

the inhomogeneity parameters than the higher ones. However, the natural frequencies except the fundamental ones are 

dramatically affected from the thickness of the cylinder. As the thickness decreases, the natural frequencies considerably 

increase.  It is also revealed that, there is a linear relationship between the fundamental frequency and others in higher 

modes. 

Keywords: Free vibration, natural frequency, thick-walled hollow cylinder, functionally graded. 

1. Introduction 

Vibration of thin/thick-walled cylinders is of great significance in many engineering applications such 

as pressure vessel, heat exchangers, nuclear reactor containments, various pipes and tubes. Pioneering 

studies concerning the vibration of cylinders date back late of 1800s.  One of the earliest works on the 

vibration of cylinders was carried out by Chree [1]. Using the linear three dimensional elasticity theory, 

Greenspon [2] studied the flexural vibrations of infinitely long traction free hollow thick-walled 

cylinders. Gazis [3] studied the vibration of infinitely long traction free hollow cylinders on the basis 

of three dimensional elasticity theory. Gladwell and Tahbildar [4] solved the problem of axisymmetric 

vibrations of cylinders with the help of the finite-element method. Gladwell and Vijay [5] also analyzed 

the vibration of free finite length circular cylinders based on the finite element approach. Hutchinson 

[6] first handled the vibrations of finite length rods and solid cylinders on the basis of linear 3D 

elasticity and offered a semi-analytical highly accurate method to solve the problem. Then, Hutchinson 

and El-Azhari [7] applied the same method for the vibrations of free hollow finite length circular 

cylinders. By employing the energy method based on the 3D theory of elasticity, Singal and Williams 

[8] studied theoretically and experimentally the vibrations of thick hollow cylinders and rings. The 

axisymmetric stress-free vibration of a thick elastic cylinder has been studied under plane strain 

conditions by Gosh [9]. Gosh [9] obtained the solution for forced vibration by using the Laplace 

transform and presented natural frequency and dynamic stresses for various types of loading, Poisson’s 
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ratio and aspect ratios of the cylinder. Leissa and So [10], and So and Leissa [11] studied three-

dimensional analysis of the vibrations of free and cantilevered solid cylinders using simple algebraic 

polynomials in the Ritz method. Liew et al. [12] investigated the free vibrations of stress free hollow 

cylinders of arbitrary cross-section based on the three dimensional energy displacement expressions. 

Hung et al. [13] considered the free vibration of cantilevered cylinders. Wang and Williams [14] 

presented vibrational modes of thick-walled cylinders of finite length based on the finite element 

method. On the basis of linear 3D theory of elasticity, and by using the Ritz method and Chebyshev 

polynomials, Zhou et al. [15] worked on the vibration analysis of solid and hollow circular cylinders 

including rods and curved panels. In this general semi-analytical series solution having high accuracy 

and good convergence, offered by Zhou et al. [15], the technique of variables separation is developed 

for  various boundary conditions. Mofakhami et al. [16] studied the free vibration of cylinders with 

finite length under fixed-fixed and free-free boundaries based on the solutions of infinite cylinders and 

the technique of separation of variables. Abbas [17] treated with the free vibration of a poroelastic 

hollow cylinder. Yahya and Abd-Alla [18] considered pure radial vibrations in an isotropic elastic 

hollow cylinder with rotation.  

As time progresses and engineers familiarize themselves with new advanced materials such as 

anisotropic, functionally graded, carbon nanotube composites, studies have focused on the vibration 

problems of cylinders made of such advanced materials. From those Nelson et al. [19] worked on 

vibration and waves in laminated orthotropic circular cylinders. Vibration of anisotropic composite 

cylinders is addresses by Huang and Dong [20]. Yuan and Hsih [21] investigated three dimensional 

wave propagation in composite cylindrical shells. By using the Ritz method, Kharouf and Heyliger 

[22] presented a numerical method for finding approximate solutions to static and axisymmetric 

vibration problems for piezoelectric cylinders, including those composed of more than one material. 

Markus and Mead [23-24] studied both axisymmetric and asymmetric wave motion in orthotropic 

cylinders. Ding et al. [25-26] studied elasto-dynamic and thermoelastic-dynamic problems of a non-

homogeneous orthotropic hollow cylinders. 

As to the functionally graded materials (FGM), Heyliger and Jilani [27] studied the free vibrations of 

inhomogeneous elastic cylinders and spheres. By using strains-displacement relations from Love’s 

shell theory and the eigenvalue governing equation from Rayleigh-Ritz method, Loy et al. [28] 

presented a study on the vibration of cylindrical shells made of a functionally graded material (FGM) 

composed of stainless steel and nickel. The properties are graded in the thickness direction according 

to a volume fraction power-law distribution in Loy et al’s [28] study. Their results showed that the 

frequency characteristics are similar to that observed for homogeneous isotropic cylindrical shells and 

the frequencies are affected by the constituent volume fractions and the configurations of the 

constituent materials. Han et al. [29] presented an analytical-numerical method for analyzing 

characteristics of waves in a cylinder composed of functionally graded material (FGM) by dividing the 

FGM cylinder into a number of annular elements with three-nodal-lines in the wall thickness. Han et 

al. [29] assumed a linear variation of material properties along the thickness direction and used the 

Hamilton principle to develop the dispersion equations for the cylinder. Their numerical results 

demonstrated that the ratio of radius to thickness has a stronger influence on the frequency spectra in 

the circumferential wave than on that in the axial wave. Patel et al. [30] studied the free vibration 

analysis of functionally graded elliptical cylindrical shells based on the higher-order theory. Pelletier 

and Vel [31] studied analytically the steady-state thermoelastic response of functionally graded 

orthotropic cylindrical shells. Arciniega and Reddy [32] considered a large deformation analysis of 

functionally graded shells. Yang and Shen [33] investigated the free vibration of shear deformable 

functionally graded cylindrical panels. Jianqiao et al. [34] dealt with wave propagation in non-

homogeneous magneto-electro-elastic hollow cylinders. Abd-Alla et al. [35] studied influences of the 

inhomogeneity on the composite infinite cylinder of isotropic material. Based on the first-order shear 

http://www.sciencedirect.com/science/article/pii/0020768392901127
http://www.sciencedirect.com/science/article/pii/0020768392901127
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deformation theory and linear elasticity, Tornabene et al. [36] studied the dynamic behavior of 

functionally graded moderately thick conical, cylindrical shells and annular plates via the generalized 

differential quadrature (GDQ) method. They considered two different power-law distributions for the 

ceramic volume fraction.  Keleş and Tutuncu [37] analytically performed free and forced vibration 

analyses of power-law graded hollow cylinders and spheres. Although their subject matters are out of 

the present study, it may be useful to cite some studies concerning the vibration of cylinders and 

cylindrical shells which are functionally graded with state-of-the-art technological structural materials 

[38-40] in the open literature. 

As seen from the above literature survey, vibration problems of solid/hollow cylinders made of 

functionally graded materials are not studied widely over the time. This was the motivation to the 

author. As a fundamental work, the present study may be thought of as an extension of Gosh’s [9] 

study to traction free cylinders made of isotropic functionally graded materials. In the present study, 

to achieve an analytical solution for natural frequencies in purely radial modes, the inhomogeneity 

indexes of both elasticity modulus and Poisson’s ratio are assumed to be identical by necessity. As 

stated in the related section, otherwise, it is not possible to get a closed form solution. In these cases, 

the employment of any numerical procedure becomes compulsory. One of the aims of the present study 

is to have a rough idea about the general response of such cylinders to the free vibration before 

numerically treatment of the problem. In the parametric study, almost all the variables which 

substantially influence on the natural frequencies are considered except the effect of Poisson’s ratio. 

In Gosh’s study [9] the effect of Poisson’s ratios on the natural frequencies was clearly disclosed. The 

numerical results given here may also be served as a benchmark solution to some advanced numerical 

studies. 

2. Clarification of the Problem 

 
 

Fig. 1. Geometry of a cylinder 

Let’s consider a thick-walled hollow cylinder with inner radius 𝑎  and outer radius 𝑏   (Fig. 1). Under 

axisymmetric conditions, relationships between strain and displacement are written in polar 

coordinates as 

dr

dur
r      ;     

r

ur                                                               (1) 
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 where the radial unit strain and the circumferential unit strain are symbolized by r  , and 
 , 

respectively. In Eq. (1), the radial displacement is represented by ru . If  r  , and   signify the radial 

stress and the hoop stress, respectively, then Hooke’s law for an infinite cylinder made of an isotropic 

and homogeneous linear elastic material  is given by 

   )()( 1211 rCrC rr 
 

  (2)                                                                       

     )()( 1112 rCrC r 
 

Where under plain strain assumptions  

𝐶11(𝑟) = 𝐸(𝑟)
(1 − 𝜈)

(1 + 𝜈)(1 − 2𝜈)
 

       (3) 

𝐶12(𝑟) = 𝐸(𝑟)
𝜈

(1 + 𝜈)(1 − 2𝜈)
 

For an isotropic but non-homogeneous FGM material, the material grading rule in the radial direction 

is assumed to obey the following simple power rule 

𝐸(𝑟) = 𝛦𝑏 (
𝑟

𝑏
)

𝜂

 

 (4) 

𝜌(𝑟) = 𝜌𝑏(
𝑟

𝑏
)𝜂 

where  is the material density. The material inhomogeneity index is denoted by 𝜂;  𝛦𝑏 and 𝜌𝑏 are the 

reference values of the mixture of the material at the outer surface. Poisson’s ratios of both graded 

materials are assumed to be unaffected along the radial direction as in the most of the related realm.  

In Eq. (4) those properties do not completely correspond to a physical material since both Young’s 

modulus and density are assumed to have the same inhomogeneity index. To get an analytical solution 

to the problem, as seen later, taking both inhomogeneity indexes as if they are identical is going to be 

inevitable because it is not possible to find a closed-form solution in other choices which require 

exactly numerical solution techniques.  

If the body forces are neglected, the equation of motion in the radial direction is written as follows 
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where t  is the time. Substitution both Eq. (1) and (2) together with Eq. (4) into Eq. (5) gives  
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By assuming a harmonic motion, 
ti

rr erutru 
 )(),( * , with an angular velocity )/( srad  , Eq. (6) gives 

way to Bessel’s differential equations [41-43].  
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− (
1 − 𝜂 (

𝜈
1 − 𝜈

)

𝑟2
+ 𝛺2) 𝑢𝑟

∗ + (
1 + 𝜂

𝑟
)

𝑑𝑢𝑟
∗

𝑑𝑟
+

𝑑2𝑢𝑟
∗

𝑑𝑟2
 = 0                            (7)      

where 

𝛺 = √
𝜌(𝑟)

𝐶11(𝑟)
𝜔 = √

(1 − 2𝜈)(1 + 𝜈)𝜌𝑏

(1 − 𝜈)𝛦𝑏
𝜔 = √

(1 − 𝜈 − 2𝜈2)𝜌𝑏

(1 − 𝜈)𝛦𝑏
𝜔 =

𝛽

𝑎
                           (8)      

           

and 𝛽 is the dimensionless natural frequency. The solution to this equation, Eq. (7), is going to be in 

the form of [41-43] 

𝑢𝑟
∗(r) = 𝑟−𝜂 2⁄ (𝐶1𝐽𝜉

2

(𝑟𝛺) + 𝐶2𝑌𝜉

2

(𝑟𝛺))                                            (9) 

where 𝐶1 and 𝐶2  are arbitrary constants and 𝐽𝜉

2

(𝑟𝛺)    and   𝑌𝜉

2

(𝑟𝛺) denote Bessel’s functions of the first 

and second kind of order  
𝜉

2
, respectively, and  𝜉   is                                                                                 

𝜉 = √4 + η2 − 4η (
ν

1−ν
) = √

(−4−𝜂2+(2+𝜂)2𝜈)

(𝜈−1)
                                      (10) 

The first derivative of the solution of the radial displacement, 𝑢𝑟
∗ , and the radial stress, 𝜎𝑟

∗, may be 

obtained in terms of integration constants, 𝐶1 and 𝐶2, as follows 

𝑑𝑢𝑟
∗

𝑑𝑟
= 𝑟−𝜂 2⁄ (

1

2
𝐶1𝛺 (𝐽𝜉

2
−1

(𝑟𝛺) − 𝐽𝜉
2

+1
(𝑟𝛺)) + 𝐶2𝛺 (𝑌𝜉

2
−1

(𝑟𝛺) − 𝑌𝜉
2

+1
(𝑟𝛺)))

−
1

2
𝜂𝑟−

𝜂
2

−1 (𝐶1𝐽𝜉
2

(𝑟𝛺) + 𝐶2𝑌𝜉
2

(𝑟𝛺)) 

(11) 

𝜎𝑟
∗(𝑟) =

𝛦𝑏𝑟−
𝜂
2

−1 (
𝑟
𝑏

)
𝜂

2(2𝜈2 + 𝜈 − 1)
(𝐶1(𝜂 − (𝜂 + 2)𝜈)𝐽𝜉

2

(𝑟𝛺) + 𝐶1(𝜈 − 1)𝑟𝛺𝐽𝜉−2
2

(𝑟𝛺) − 𝐶1(𝜈 − 1)𝑟𝛺𝐽𝜉+2
2

(𝑟𝛺)

+ 𝐶2(𝜂 − (𝜂 + 2)𝜈)𝑌𝜉
2

(𝑟𝛺) + 𝐶2(𝜈 − 1)𝑟𝛺𝑌𝜉−2
2

(𝑟𝛺) − 𝐶2(𝜈 − 1)𝑟𝛺𝑌𝜉+2
2

(𝑟𝛺)) 

Eqs. (9) and (11) are used when applying the boundary conditions given at both surfaces. The radial 

displacement vanishes,  𝑢𝑟
∗ = 0, at the fixed surface while the radial stress becomes zero, 𝜎𝑟

∗ = 0,  at 

the free surface. For instance, if surface-free boundaries are considered then one may obtain   

{
𝜎𝑟

∗(𝑎)

𝜎𝑟
∗(𝑏)

} = [
𝐴1,1 𝐴1,2

𝐴2,1 𝐴2,2
] {

𝐶1

𝐶2
} = 𝑨 {

𝐶1

𝐶2
} = {

0
0

}                                         (12) 

To get non-trivial solutions, natural frequencies are determined from the frequencies which make the 

determinant of the characteristic coefficient matrix, 𝑨, zero.  Considering traction-free boundary 

conditions for a hollow infinite cylinder made of a hypothetically functionally power-graded material, 

elements of the coefficient matrices are found in closed forms as follows 
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𝐴1,1 =

𝑎−
𝜂
2

−1 (
𝑎
𝑏

)
𝜂

(𝑎(𝜈 − 1)𝛺𝐽𝜉−2
2

(𝑎𝛺) + (𝜂 − (𝜂 + 2)𝜈)𝐽𝜉
2

(𝑎𝛺) − 𝑎(𝜈 − 1)𝛺𝐽𝜉+2
2

(𝑎𝛺)) 𝛦𝑏

2(2𝜈2 + 𝜈 − 1)
 

 

𝐴1,2 =

𝑎−
𝜂
2

−1 (
𝑎
𝑏

)
𝜂

(𝑎(𝜈 − 1)𝛺𝑌𝜉−2
2

(𝑎𝛺) + (𝜂 − (𝜂 + 2)𝜈)𝑌𝜉
2

(𝑎𝛺) − 𝑎(𝜈 − 1)𝛺𝑌𝜉+2
2

(𝑎𝛺)) 𝛦𝑏

2(2𝜈2 + 𝜈 − 1)
 

 (13) 

𝐴2,1 =

𝑏−
𝜂
2

−1 (𝑏(𝜈 − 1)𝛺𝐽𝜉−2
2

(𝑏𝛺) + (𝜂 − (𝜂 + 2)𝜈)𝐽𝜉
2

(𝑏𝛺) − 𝑏(𝜈 − 1)𝛺𝐽𝜉+2
2

(𝑏𝛺)) 𝛦𝑏

2(2𝜈2 + 𝜈 − 1)
 

 

𝐴2,2 =

𝑏−
𝜂
2

−1 (𝑏(𝜈 − 1)𝛺𝑌𝜉−2
2

(𝑏𝛺) + (𝜂 − (𝜂 + 2)𝜈)𝑌𝜉
2

(𝑏𝛺) − 𝑏(𝜈 − 1)𝛺𝑌𝜉+2
2

(𝑏𝛺)) 𝛦𝑏

2(2𝜈2 + 𝜈 − 1)
 

3. Authentication of the Formulation 

To confirm the present dimensionless frequencies, as a first example, a hollow infinite thin-walled 

cylinder made of an isotropic and homogeneous material is considered. The first ten natural frequencies 

are listed in Table 1. As seen from this table there is full agreement with those of Gosh’s [9] 

frequencies. 

As a second example a hollow infinite cylinder made of a hypothetically power-law graded material is 

taken into account. Results, which are all based on the similar procedure, are tabulated in Table 2 in a 

comparative manner. In this table, 𝜂 = 0 corresponds a cylinder made of an isotropic and homogeneous 

material. It is seen from Table 2 that present results are in good harmony with the others. Figure 2 

shows also the determinant-dimensionless frequency curve for 𝜂 = −5, and b/a=2. 

 
Table 1. Comparison of the present non-dimensional results with the open literature for thin-walled 

cylinder made of an isotropic and homogeneous material (𝜈 = 0.3; 
𝑏

𝑎
= 1.02) 

  
Present     [9] 

𝛽1 0.894602 0.89 

𝛽2 157.082 157.10 

𝛽3 314.161 314.20 

𝛽4 471.24 471.20 

𝛽5 628.319 628.30 

𝛽6 785.399 785.40 

𝛽7 942.478 942.50 

𝛽8 1099.56 1100.00 

𝛽9 1256.64 1257.00 

𝛽10 1413.72 1414.00 
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Table 2. Comparison of the present FGM results with the open literature (b/a=2, 𝜈 = 0.3 ). 

 
 𝜂 = −5 𝜂 = −2 𝜂 = 0 𝜂 = 2 𝜂 = 5  

Present [37] Present [37] Present  [9]  [37] Present [37] Present  [37] 

𝛽1 0.752017 0.77435 0.684418 0.69407 0.633263 0.6335 0.63563 0.586987 0.58309 0.537493 0.52547 

𝛽2 3.4389 3.43985 3.20038 3.20181 3.21655 3.218 3.21793 3.3714 3.37244 3.81843 3.81886 

𝛽3 
6.44741 6.44802 6.31288 6.31356 6.3193 6.319 6.31999 6.40267 6.40331 6.66528 6.66578 

𝛽4 
9.53654 9.53698 9.44462 9.44508 9.44864 9.449 9.44910 9.50494 9.50538 9.6854 9.68579 

𝛽5 
12.6508 12.65115 12.5813 12.58161 12.5842 12.58 12.58455 12.6266 12.62695 12.7634 12.76368 

𝛽6 
15.7758 15.77602 15.7199 15.72016 15.7222 15.72 15.72249 15.7562 15.75647 15.8661 15.86638 

𝛽7 
18.9062 18.90638 18.8595 18.85972 18.8614 18.86 18.86165 18.8898 18.89000 18.9816 18.98183 

𝛽8 
22.0397 22.03991 21.9997 21.99987 22.0013 22.00 22.00151 22.0256 22.02583 22.1045 22.10466 

𝛽9 
25.1753 25.17544 25.1402 25.14037 25.1416 25.14 25.14180 25.1629 25.16309 25.232 25.23214 

𝛽10 
28.3122 28.31231 28.281 28.28112 28.2822 28.28 28.28239 28.3012 28.30131 28.3626 28.36273 

 

 
Fig. 2. Determinant-dimensionless frequency curve for 𝜂 = −5,  and b/a=2 

 

4. Effects of the Aspect Ratios and Material Gradients on the Natural Frequencies 

In this section a FGM cylinder of 𝜈 = 0.3 is considered. The functionally graded material (FGM) is 

taken to be a hypothetical one exhibiting significant inhomogeneity.  

Variation of the natural frequencies with the aspect ratio, which is defined as the ratio of the outer and 

inner radii, and inhomogeneity indexes is presented in Tables 3 and 4. Table 3 indicates the influence 

of the aspect ratios and inhomogeneity indexes, which is defined in Eq. (4), on the first ten natural 

frequencies of a FGM free-free infinite cylinder for 𝜂 = −5, 𝜂 = 0, 𝜂 = 7, and 𝜂 = 10. Table 4 shows 

the influence of the aspect ratios and inhomogeneity indexes on the first three natural frequencies of a 

FGM free-free infinite cylinder for some inhomogeneity indexes whose values are changed from 𝜂 =

−4  to 𝜂 = 5 with an increase by the unit, except 𝜂 = 0. 
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Table 3. The influence of the aspect ratios and inhomogeneity indexes on the first ten natural frequencies of a 

FGM free-free infinite cylinder (𝜈 = 0.3) for 𝜂 = −5, 𝜂 = 0, 𝜂 = 7, and 𝜂 = 10 

 

𝑏/𝑎 

 

1.02 1.03 1.04 1.05 1.075 1.10 1.25 1.50 1.75 2.00 

 𝜂 = −5 

𝛽1 0.894748 0.890568 0.886514 0.882583 0.873263 0.864622 0.82422 0.785036 0.764088 0.752017 

𝛽2 157.093 104.74 78.566 62.8643 41.9354 31.4778 12.7008 6.49988 4.45582 3.4389 

𝛽3 314.166 209.449 157.093 125.68 83.7996 62.8628 25.2007 12.6787 8.52027 6.44741 

𝛽4 471.243 314.166 235.628 188.506 125.68 94.2684 37.7445 18.9249 12.6628 9.53654 

𝛽5 628.322 418.884 314.166 251.336 167.564 125.679 50.2996 25.1894 16.8278 12.6508 

𝛽6 785.401 523.603 392.704 314.166 209.449 157.092 62.8591 31.4613 21.0022 15.7758 

𝛽7 942.48 628.322 471.243 376.997 251.335 188.506 75.421 37.737 25.1813 18.9062 

𝛽8 1099.56 733.041 549.782 439.828 293.222 219.92 87.9841 44.0147 29.3632 22.0397 

𝛽9 1256.64 837.761 628.322 502.659 335.109 251.335 100.548 50.2939 33.5468 25.1753 

𝛽10 1413.72 942.48 706.861 565.49 376.996 282.75 113.112 56.5739 37.7316 28.3122 

 𝜂 = 0 

𝛽1 0.894602 0.890244 0.885946 0.881708 0.871366 0.861367 0.807616 0.736002 0.67955 0.633263 

𝛽2 157.082 104.724 78.5453 62.8386 41.8978 31.4289 12.595 6.33146 4.25189 3.21655 

𝛽3 314.161 209.442 157.082 125.667 83.7808 62.8383 25.147 12.5902 8.40834 6.3193 

𝛽4 471.24 314.161 235.621 188.498 125.667 94.2521 37.7086 18.8654 12.5868 9.44864 

𝛽5 628.319 418.88 314.161 251.329 167.554 125.667 50.2726 25.1446 16.7704 12.5842 

𝛽6 785.399 523.6 392.7 314.161 209.441 157.082 62.8375 31.4254 20.9562 15.7222 

𝛽7 942.478 628.319 471.24 376.992 251.329 188.498 75.403 37.707 25.1429 18.8614 

𝛽8 1099.56 733.039 549.779 439.824 293.217 219.913 87.9687 43.9891 29.3302 22.0013 

𝛽9 1256.64 837.759 628.319 502.656 335.104 251.329 100.535 50.2714 33.5179 25.1416 

𝛽10 1413.72 942.478 706.859 565.487 376.992 282.745 113.1 56.5539 37.7059 28.2822 

 𝜂 = 7 

𝛽1 0.894397 0.88979 0.885153 0.880487 0.868724 0.856851 0.785445 0.676595 0.587642 0.517028 

𝛽2 157.133 104.799 78.6447 62.9616 42.0777 31.6628 13.0978 7.11859 5.18815 4.22088 

𝛽3 314.186 209.479 157.132 125.729 83.8709 62.9557 25.4038 13.0114 8.93897 6.92433 

𝛽4 471.257 314.186 235.654 188.539 125.727 94.3304 37.8805 19.1498 12.9492 9.8673 

𝛽5 628.332 418.899 314.185 251.36 167.599 125.726 50.4017 25.3589 17.0445 12.9023 

𝛽6 785.409 523.615 392.72 314.185 209.478 157.129 62.9409 31.5972 21.1763 15.9782 

𝛽7 942.487 628.332 471.256 377.013 251.359 188.537 75.4891 37.8503 25.3268 19.0754 

𝛽8 1099.57 733.05 549.794 439.842 293.243 219.947 88.0425 44.112 29.488 22.1851 

𝛽9 1256.64 837.768 628.332 502.671 335.127 251.358 100.599 50.379 33.6561 25.3026 

𝛽10 1413.72 942.487 706.87 565.501 377.012 282.771 113.158 56.6496 37.8288 28.4255 

 𝜂 = 10 

𝛽1 0.89431 0.889597 0.884814 0.879968 0.86761 0.854972 0.777305 0.66029 0.568707 0.498278 

𝛽2 157.178 104.866 78.733 63.0709 42.2372 31.8695 13.5291 7.74807 5.88568 4.9228 

𝛽3 314.209 209.513 157.176 125.783 83.9511 63.06 25.6302 13.3752 9.38644 7.42197 

𝛽4 471.272 314.208 235.684 188.575 125.781 94.4001 38.0328 19.3995 13.2639 10.2267 

𝛽5 628.343 418.916 314.208 251.387 167.639 125.778 50.5163 25.5481 17.2851 13.1796 

𝛽6 785.418 523.628 392.738 314.207 209.51 157.171 63.0327 31.7493 21.3705 16.203 

𝛽7 942.494 628.343 471.271 377.031 251.386 188.572 75.5657 37.9774 25.4894 19.2641 

𝛽8 1099.57 733.059 549.806 439.857 293.265 219.977 88.1082 44.2211 29.6278 22.3475 

𝛽9 1256.65 837.776 628.343 502.685 335.147 251.385 100.657 50.4746 33.7787 25.4452 

𝛽10 1413.73 942.494 706.88 565.513 377.03 282.794 113.209 56.7346 37.9379 28.5524 
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Table 4. The influence of the aspect ratios and inhomogeneity indexes on the first three natural frequencies of 

a FGM free-free infinite cylinder (𝜈 = 0.3) for 𝜂 = −4, −3, −2, −1, 1, 2, 3, 4, and  5 

 

𝑏/𝑎 

 

1.02 1.03 1.04 1.05 1.075 1.10 1.25 1.50 1.75 2.00 

 𝜂 = −4 

𝛽1 0.894719 0.890503 0.8864 0.882408 0.872884 0.863973 0.820964 0.775819 0.748964 0.731791 

𝛽2 157.088 104.732 78.5558 62.8516 41.9168 31.4536 12.6484 6.41608 4.35369 3.32657 

𝛽3 314.163 209.446 157.088 125.674 83.7903 62.8507 25.1741 12.6348 8.46472 6.38368 

 𝜂 = −3 

𝛽1 0.89469 0.890438 0.886287 0.882233 0.872505 0.863323 0.81766 0.766172 0.732559 0.709067 

𝛽2 157.084 104.726 78.5486 62.8427 41.9037 31.4366 12.6114 6.35679 4.28103 3.24623 

𝛽3 314.161 209.443 157.084 125.669 83.7837 62.8422 25.1554 12.604 8.42558 6.33871 

 𝜂 = −2 

𝛽1 0.89466 0.890373 0.886173 0.882058 0.872125 0.862671 0.814323 0.756219 0.715205 0.684418 

𝛽2 157.082 104.723 78.5444 62.8375 41.8962 31.4268 12.5902 6.32271 4.23937 3.20038 

𝛽3 314.16 209.441 157.082 125.667 83.78 62.8373 25.1447 12.5862 8.40307 6.31288 

 𝜂 = −1 

𝛽1 0.894631 0.890308 0.88606 0.881883 0.871746 0.862019 0.81097 0.746108 0.697358 0.658769 

𝛽2 157.081 104.722 78.5433 62.8362 41.8943 31.4242 12.5847 6.31423 4.22961 3.19044 

𝛽3 314.16 209.441 157.081 125.666 83.779 62.836 25.1419 12.5816 8.39732 6.30639 

 𝜂 = 1 

𝛽1 0.894573 0.890179 0.885833 0.881534 0.870986 0.860715 0.804279 0.726062 0.662312 0.609035 

𝛽2 157.085 104.728 78.5503 62.8448 41.9069 31.4407 12.6209 6.37414 4.30563 3.2776 

𝛽3 314.162 209.443 157.085 125.67 83.7853 62.8443 25.16 12.6119 8.43609 6.35149 

 𝜂 = 2 

𝛽1 0.894543 0.890114 0.885719 0.881359 0.870607 0.860065 0.800975 0.71644 0.646107 0.586987 

𝛽2 157.089 104.734 78.5584 62.8549 41.9216 31.4598 12.6626 6.44176 4.38954 3.3714 

𝛽3 314.164 209.447 157.089 125.675 83.7927 62.8538 25.181 12.6466 8.48039 6.40267 

 𝜂 = 3 

𝛽1 0.894514 0.890049 0.885606 0.881184 0.870228 0.859416 0.797719 0.707266 0.631274 0.567654 

𝛽2 157.095 104.742 78.5695 62.8686 41.9418 31.4861 12.7197 6.5335 4.50181 3.49505 

𝛽3 314.167 209.451 157.094 125.682 83.8028 62.867 25.2099 12.6943 8.54101 6.47243 

 𝜂 = 4 

𝛽1 0.894485 0.889984 0.885492 0.88101 0.86985 0.85877 0.794525 0.698641 0.618006 0.5512 

𝛽2 157.102 104.753 78.5837 62.8862 41.9675 31.5196 12.792 6.64832 4.64025 3.64521 

𝛽3 314.17 209.456 157.102 125.691 83.8156 62.8838 25.2466 12.7548 8.61761 6.56019 

 𝜂 = 5 

𝛽1 0.894456 0.88992 0.885379 0.880835 0.869474 0.858127 0.791408 0.690634 0.606359 0.537493 

𝛽2 157.111 104.766 78.601 62.9076 41.9987 31.5602 12.8794 6.78502 4.80243 3.81843 

𝛽3 314.175 209.463 157.11 125.702 83.8313 62.9041 25.2912 12.828 8.70979 6.66528 
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Fig. 3. Variation of the first three natural frequencies with the inhomogeneity indexes  

for 1.1 ≤ 𝑏/𝑎 ≤ 2 and −5 ≤ η ≤ 10. 
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Fig. 4. Variation of the second and the third natural frequencies with the inhomogeneity indexes for 

1.5 ≤ 𝑏/𝑎 ≤ 2 and −5 ≤ 𝜂 ≤ 10. 

Both Table 3 and Table 4 suggest that as the thickness increases, the dimensionless natural frequencies 

decrease. This response is slightly observed for fundamental frequencies. However, there is sharply 

decrease in frequencies of higher modes as the thickness build up. 

 
Fig. 5. The relationship between the frequencies of the same cylinder 
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For the dimensionless frequencies, the degree of to be influenced from the change of inhomogeneity 

indexes is rather slow. This is demonstrated in Figs. 3 and 4. Figure 3 shows the variation of the first 

three natural frequencies with the inhomogeneity indexes for 1.1 ≤ 𝑏/𝑎 ≤ 2  and −5 ≤ 𝜂 ≤ 10. 

Variation of the second and the third natural frequencies with the inhomogeneity indexes for 1.5 ≤
𝑏/𝑎 ≤ 2 and −5 ≤ 𝜂 ≤ 10 is illustrated in Fig. 4. As seen from Fig. 3, the fundamental frequencies 

are more affected from the change in the inhomogeneity index. In the interval of the aspect ratio, 1.1 ≤
𝑏/𝑎 ≤ 1.5, it is almost impossible to observe the variation of natural frequencies in higher modes with 

the change in the inhomogeneity index. However, as in Fig. 4, this may be clearly observed for 1.5 ≤
𝑏/𝑎 ≤ 2 for the second and third frequencies. 

In this study, it is also revealed that, there is a linear relationship between the pure radial fundamental 

frequency and others in higher modes of the same cylinder for all inhomogeneity indexes and aspect 

ratios as seen from Fig. 5.  

5. Concluding Remarks 

In the present study, the free vibration of hypothetically power-law graded hollow infinite stress-free 

cylinders is analytically studied to investigate the influences of inhomogeneity indexes and aspect 

ratios, whose figures are chosen in the broadest possible range of values that can be used in practice, 

on the natural frequencies.  The following conclusions are drawn: 

 The fundamental frequency is mainly affected from the variation of the inhomogeneity index 

than those of other higher frequencies. This may be acceptable as plausible because of huge 

differences between the fundamental and higher frequencies. For example, for b/a=1.02 the 

natural frequency in the second mode is more than 150 times the fundamental frequency, 

however it is around four times the first one for b/a=2 (see Tables 3-4). 

 The effects on the frequencies of the changes in thickness of the cylinder are clearly observed. 

Increasing thickness produce a substantial decrease in dimensionless frequencies which are 

particularly in frequencies in higher modes. 

 There is also a linear relationship between the frequencies of fundamental and higher modes of 

the same cylinder.   

As stated before, the present results pertaining to the cylinders made of hypothetically FGM materials 

are obtained by using the same inhomogeneity index for both elasticity modulus and material density. 

It is a great possibility that there is no such a physical material that provides this feature. For this sense, 

it may be useful to confirm the present conclusions with physical materials. As mentioned above, this 

requires the putting numerical solution techniques into practice.  
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Abstract  

The main goal of this study is to estimate the hydrologic parameters of Kocanaz watershed located in Western Black Sea 

Region, using a semi-distributed hydrologic model, Hydrologic Engineering Center – Hydrologic Modelling System 

(HEC-HMS). In this study, the hydrologic model was set up for two flood events occurred in 2002 and 2013, in which one 

was used for calibration while the other one was used for validation of the calibrated hydrologic parameters. The 

watershed was introduced into the model as a single basin. Hydrologic parameters used for transformation from rainfall 

to runoff and base flow estimations were searched using Nelder and Mead method and calibrated using the peak-

weighted root mean square error. The model results were deliberated by statistical indicators such as Nash-Sutcliffe 

efficiency coefficient (ENS), coefficient of determination (R2), mass balance error (MBE) and peak flow rate error (PE). 

The model results were found to be very good for calibration and satisfactory for validation while the peak flow rate was 

under estimated for both calibration and validation. It can be concluded that small watersheds such as Kocanaz might be 

modelled as a single basin without sacrificing the estimation capability of the model and increasing the model simulation 

time. Though, slightly improved peak discharge estimations were obtained in case of using sub basins.   

Keywords: Kocanaz, HEC-HMS, calibration, validation, hydrologic model  

 

1. Introduction  

A sound design and operation philosophy of hydraulic structures requires either determination of a 

peak flow rate or a runoff hydrograph to estimate the maximum runoff volume in a catchment area 

using rainfall data and flood history of the area. In order to improve the understanding of complex 

hydrologic processes between the amount of rainfall on a basin and the amount of runoff from that 

basin, many variable parameters such as meteorological, drainage basin and stream channel 

characteristics need to be considered. Hence, many studies have been carried out to assess these 

hydrologic processes and try to relate these parameters quantitatively to the discharge. One area of 

such research includes the usage of hydrologic modelling software such as Precipitation Runoff 

Modeling System (PRMS), Hydrologic Simulation Model (HYSIM), Model for Urban Stormwater 

Improvement Conceptualization (MUSIC), Storm Water Management Model (SWMM), Soil and 

Water Assessment Tool (SWAT), MIKE - SHE and HEC-HMS which is chosen for this research [1-

3].  

In the process of hydrologic modeling of a basin, firstly calibration of hydrologic parameters are 

carried out using the rainfall data obtained from meteorological stations situated in or around the 

basin and the stream discharge values obtained from stream gaging stations for a rainfall event. Then, 
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those calibrated hydrologic parameters are validated using data of another rainfall or storm data. 

Hydrological analysis can be performed for short or long term time intervals. Short term hydrological 

analysis is used to understand the event based hydrological process, such as flooding in the 

watershed while long term hydrological analysis considers a long time span to estimate probable 

flooding events occurred in that time span [4, 5].  

In the literature, there are many applications of HEC-HMS and other such hydrologic models for 

both short and long term calibration of hydrologic parameters. For instance, Chu and Steinman [6] 

investigated the implementation of an effective and accurate hydrologic modeling in case of using 

fine-scale and coarse-scale hydrologic modeling. HEC-HMS and Watershed Modeling System 

(WMS) were applied to Mona Lake watershed in west Michigan. The model parameters were first 

calibrated with fine scale event data adopting 5 minute time steps which was supplied by intensive 

field data and these calibrated parameters were then used in the continuous hydrologic model with 

coarser scale of hourly time step. In both hydrologic modeling, surface runoff was simulated and the 

relationship between the two rainfall-runoff models was analyzed. Outputs of those simulations 

suggested that fine – scale event modeling was efficient in improving the continuous modeling by 

providing more accurate and well calibrated parameters. Laouacheria and Mansouri [7] used 

Watershed Bounded Network Model (WBNM) and HEC-HMS to test the effect of catchment size 

and time steps on runoff hydrograph shape and to evaluate the catchment reaction to a given rainfall 

event in the Azzaba City located in the North East of Algeria. Characteristics of the simulated 

hydrographs were compared with the same characteristics of the same observed hydrographs and 

statistically analyzed. The results suggested that HEC-HMS provided acceptable simulations in the 

flood events where WBNM failed to simulate. Kaffas and Hrissanthou [8] also applied HEC-HMS to 

the basin of Kosynthos River in Norteastern Greece and compared the simulated runoff results with 

the field discharge measurements. The hydrologic modeling was performed for a relatively long 

period of time and the parameters of base flow component were determined by calibration. The 

model outputs showed that this approach for base flow component provided a more realistic 

assumption for the time variation of base flow. Zhang et al. [2] calibrated the hydrologic parameters 

for two storm events in Clear Creek, Iowa, USA and then cross validated the parameters using these 

two storm data to demonstrate the behavior of parameters under different flood conditions. Shahid et 

al. [9] calibrated hydrologic parameters for different storms and cross validated parameters using 

those of calibrated hydrologic parameters. Authors found the results with a significant range of 

reasonable to good. Though studies about improving existing engineering hydrology curricula has 

been emphasized especially in hydrologic modeling area with increasing availability of hydrologic 

data over a wide range of scales like remote sensing, only in the last decade application of various 

hydrologic models to watersheds in Turkey has begun to accelerate. For example Yilmaz et al. [10] 

used HEC-HMS and Large Basin Runoff Model (LBRM) to simulate snowmelt runoffs of Upper 

Euphrates Basin in Eastern Turkey for a relatively longer time period by using available data and 

basin properties. The performance of both models was found to be quite similar so the use of both 

models was recommended for the investigation of climate change influences on hydrology of the 

Euphrates Basin. Baloch et al. [11] used Hydrologic Simulation Program-Fortran (HSPF) model for 

the hydrologic modeling of Koycegiz Watershed in Turkey to investigate the effect of land-use and 

climate change on the hydrologic regime of the Namnam stream passing through that watershed. 

Findings of the study suggested that potential land-use changes and climate variability in the 

watershed would significantly modify the hydrologic regime of Namnam Stream. Akiner and 

Akkoyunlu [12], used SWAT model to calibrate the hydrologic parameters in Melen Creek and to 

forecast the flow hydrograph. The results of hydrologic simulations suggested the long term 

projection of the watershed characteristics. Baduna Kocyigit et al. [3] evaluated the effect of number 

of sub basins in the estimation of hydrologic parameters and hydrograph at basin outlet and its 

neighboring ungauged basin. The authors calibrated and cross-validated two flood events dividing 

the basin into seven different configurations. They used the calibrated hydrologic parameters of two 
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storms and their averages to validate other four storms. Moreover, the authors estimated the 

hydrologic parameters of the neighboring ungauged basin. Then, they evaluated sub basin divisions 

giving the best results. They found that parameters of the whole sub basin estimated the hydrographs 

of donor and neighboring basins the best and the individual calibrations were more compatible with 

the hydrographs than those of cross validation.  

 

In this study, HEC-HMS was used for hydrologic modeling of Kocanaz basin located in 

Northwestern of Turkey to investigate the validation of the calibrated hydrologic parameters to 

predict the runoff hydrograph of the basin. Hence, the hydrologic parameters of Kocanaz basin are 

calibrated using a storm data and then validated for another storm event by substituting the calibrated 

parameters into the validated model.  

 

 

2. Study Area 

 

In this study, a small basin, Kocanaz, located in the Western Black Sea Region Basin which has 

30000 km2 drainage areas; having 811 mm of annual average rainfall with 9.93 km3 flow volume is 

chosen as the study area [13]. Kocanaz Creek which collects water drained from Bartin and Ulus 

counties is a tributary of Bartin Creek passing through Bartin city center. The maximum and 

minimum altitudes of Kocanaz Creek considered in this study are 1755 m and 130 m, respectively. 

The drainage area, basin perimeter and longest flow path are 322.4 km2, 115.26 km and 37.05 km, 

respectively. The watershed is generally mountainous and forestry, and consists of agricultural land, 

pasture, meadow and grasslands. The watershed is very steep with an average slope of 39.4% where 

the gradient might exceed 360% at several locations. Due to this steep slope, downstream of the 

basin frequently experiences flash flooding causing agricultural lands to be inundated, motorways to 

be closed to traffic and infrastructures of the town seriously damaged. Hydrologic soil groups of the 

basin are determined as C and D using land use and soil maps of the basin. The average curve 

number of the basin is about 78.5 and this value typically ranges from 70 to 98 locally. These values 

show that the major part of the rainfall continues as runoff in the watershed. In the basin, there is 

Kocanaz stream gaging station which is taken as the outlet of the basin in the model study (Fig. 1).   

 

 
Fig. 1. General sketch of Kocanaz watershed and its main channel, longest flow path, stream gauge and 

meteorological stations 
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3. Method 

 

Topographic maps with a scale of 1/25,000 resolution were introduced into ArcGIS 10.1 so digital 

elevation model (DEM) of the basin was established. The terrain model was created with ArcHydro 

toolbar and the basin model was produced with HECGeo-HMS 10.1. Of using the terrain model, sub-

basins, slope of the basin and the tributaries can be specified. Basin and terrain models were then 

exported to HEC-HMS to set up the hydrologic model. Precipitation model for the hydrologic model 

can be obtained using precipitation data in or around the basin operated by State Meteorological 

Works. Kocanaz stream gauge with D13A039 local name operated by State Water Works (DSI) was 

taken as the outlet of the basin. Flow data provided by DSI was used to estimate the hydrologic 

parameters of the basin in hydrologic modeling.  

4. Hydrologic Model 

 

HEC-HMS was originally developed to simulate the precipitation-runoff processed of dendritic 

watershed systems. Later, it was improved to solve significant hydrologic problems including large 

river basin water supply, flood hydrology and small urban or natural watershed runoff [10]. HEC-

HMS includes loss, flow transformation, base flow components for basins and routing processes for 

streams in the basis of semi-distributed hydrologic model. Furthermore, the model is capable of 

creating a meteorological model of the basin using precipitation, evaporation, temperature, humidity 

and radiation data for each sub basin. In the literature, there are many studies about the effect of 

number of sub basin on the estimation of flow data. Zhang et al. [2], Baduna Kocyigit et al. [3], Ao et 

al. [14] and Rouhani et al. [15] noted that as the number of sub basins increase, the model results are 

inversely affected. So, in this study Kocanaz basin was modeled as a single basin in the basin model 

in HECGeo-HMS. 

Precipitation model was created using data of Bartin Meteorological Observation Station located near 

the basin as shown in Fig. 1. In this model, loss component was ignored as this is thought to be the 

worst scenario for the watershed, which frequently faces flash flooding. Thus, all the precipitation 

was assumed to be transformed to runoff. Clark’s unit hydrograph and recession method were chosen 

as the transformation from rainfall to runoff and base flow components, respectively. In Clark’s unit 

hydrograph method, transformation to runoff is calculated using time of concentration (Tc) and 

storage coefficient (Sc) parameters. In base flow recession method, base flow is computed using 

initial discharge (Q0), recession constant (k) and threshold discharge (Qts). Direct runoff can be 

computed by subtracting base flow from storm hydrograph.  

In this study, values of Tc and Sc for Clark’s unit hydrograph method and k and Qts values were 

calibrated. Seven target functions and two different search methods were used for optimization of 

parameters during calibration of HEC-HMS [2]. In this study, parameters were calibrated according 

to the peak - weighed root mean squared error (PWRMSE) and Nelder – Mead method as objective 

function and search method, respectively (Eq. 1). 
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where Qobs, Qsim and Qobs,av represent the observed, simulated and average values of the observed 

discharges, respectively.  

Initial values of the parameters to be calibrated in the model must also be introduced into the model. 

Tc initial value was calculated by SCS (Soil Conservation Service) method (Eq. 2). 
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where L represents the main channel length (m), CN the curve number, S the basin average slope 

(%). While L and S values were obtained from basin model, CN values were obtained from 

hydrologic soil groups and land use maps provided by Republic of Turkey Ministry of Food, 

Agriculture and Livestock General Directorate of Agricultural Reform.  

Sc value can be estimated by Eq. 3. where c is the proportionality coefficient and its value ranges 

from 8 to 12 for densely forested areas, 1.5–2.8 for predominantly agricultural areas, and 1.1–2.1 for 

urban areas [9]. In this study the initial value of c was taken to be 1. 

 

                                                               cc cTS                                                                                  (3) 

 

Base flow recession values (Qb) were computed as in the form of Eq. 4. The observed discharge 

value at the start of each event was input as Q0, while the recession constant value was initialized as 

0.8, for Qts, the minimum observed discharge value for the month in which the event occurred [9]. 

 

                                                                kt

b eQQ  0
                                                                           (4) 

 

Model results were deliberated by means of certain criteria used for the evaluation of the outputs 

obtained in both calibration and validation processes. These criteria may generally be used for all 

output results, or for their average and maximum values. The Nash-Sutcliffe efficiency coefficient 

(ENS), coefficient of determination (R2), mass balance error (MBE) and peak flow rate error (PE) 

were used to evaluate the statistical indicators (SI) of the model outputs (Eq. 5 – 8). The ENS ranges 

between -∞ and 1 while values between 0 and 1 are generally viewed as acceptable levels of 

performance. If the ENS value is less than 0.50, 0.65 and 0.75, the model performance is evaluated as 

unsatisfactory, satisfactory and good, respectively. However, if the ENS value is greater than 0.75, the 

model performance is said to be very good [16]. The model results are stated as acceptable by Joo et 

al. [17] if -30%≤PE≤+30% while by Moriasi et al. [16] if -30%≤MBE≤ +30%.  
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where Qs,av, Qsp and Qop represent the average of simulated, peak of the simulated and peak of the 

observed discharge values, respectively.  
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In this study, the hydrologic parameters of the flood event occurred during 16 October – 06 

November 2013 were calibrated using semi-distributed hydrologic model, HEC-HMS. Calibrated 

hydrologic parameters were validated using daily precipitation-runoff data for another flood event 

occurred in 17 June – 02 July 2002 (Table 1). 

 
 

Table 1. Flood event characteristics for both calibration and validation processes 

Flood duration Qp (m
3/s) Flood volume (103 m3) 

17.06-02.07.2002 68.40 15903.65 

16.10-06.11.2013 152.00 24947.14 

 5. Hydrologic Model Results 

 

The initial and the calibrated values of the hydrologic parameters are presented in Table 2.  

 
Table 2. Initial and calibrated values of hydrologic parameters 

Hydrologic parameters Initial values Calibrated values 

Tc (hr) 4.10 4.41 

Sc (hr) 4.10 3.13 

k (1/hr) 0.80 1.00 

Qts (m
3/s) 1.16 3.63 

  

 

The calibration of hydrologic parameters was performed for the period of 16 October – 06 November 

2013, while the validation of hydrologic parameters was performed for 17 June – 02 July 2002. The 

calibrated and validated hydrographs are presented in Fig. 2. and the SI for both the calibration and 

the validation are presented in Table 3. 
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Fig. 2. Calibrated and validated flood hydrographs 

 

 

Table 3. SI for both calibration and validation 

Flood duration ENS R2 MBE (%) PE (%) 

16.10-06.11.2013 0.76 0.63 1.3 -28.7 

17.06-02.07.2002 0.64 0.65 11.3 -29.9 

a) b) 
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It can be seen from the model outputs that calibrated hydrograph gave better results than validated 

hydrograph. While ENS value for calibration can be accepted as very good, it can be evaluated as 

satisfactory for the validated hydrograph [16]. In both cases, the hydrograph is over estimated while 

the peak discharge is under estimated. Furthermore, the hydrograph estimation for calibration is 

closer to zero than for that of validation. All calibrated and validated hydrograph estimations are 

found to be in acceptable range. However, it should be noted that the model failed to reproduce the 

second peak discharge in the validated hydrograph. This anomaly can be explained by an error in the 

discharge data where the discharge reading might have been performed before the rain started. If the 

data discharge had been read after the precipitation, the model results would have been improved. As 

a result, MBE value would have been decreased and the ENS and R2 values would have been 

improved better. 

6. Conclusions 

In this study, the hydrologic parameters of Kocanaz watershed, a small basin in Western Black Sea 

Region, were estimated using a semi-distributed hydrologic model, HEC-HMS. The watershed was 

modelled as a single basin without dividing into sub basins. The hydrologic parameters of the model 

was calibrated by data of a flood event occurred in 2013 and then those calibrated parameters were 

validated by another flood event occurred in 2002. It is found out from model outputs that all 

calibrated and validated hydrograph estimations were in acceptable range. 

Previous studies have shown that results obtained by modeling the whole basin as a single unit 

without dividing into sub basins gave improved results than using sub basins when they were 

evaluated according to the SI [3]. Increasing the number of sub basins would have a limited effect on 

peak flow, thereby resulting in some improvement in PE value. On the other hand, the disadvantage 

of increasing the number of sub basins is to calibrate more hydrologic parameters. Thus, 

determination of a large number of parameters would increase the uncertainty of the parameters 

determined by the model. 

In this study, base flow values were determined by using the recession method. During calibration, 

the base flow values were kept constant while for validation process, they had two constant values 

forming one step. It is thought that the base flow increases with the change in flow in the rising limb 

of the hydrograph and possible errors arising from this increase are also affected in the results. 
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Notations 

 

c                     Proportionality constant 

CN                 Curve number 

DSI                State Water Works 

ENS                 Nash-Sutcliffe efficiency coefficient 

HEC-HMS     Hydrologic Engineering Center-Hydrologic Modelling System 

hr                   Hour 

IMD               Indian Meteorological Department 

k                     Recession constant 

L                     Main channel length 
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LBRM            Large Basin Runoff Model 

MBE               Mass balance error 

MUSIC           Model for Urban Stormwater Improvement Conceptualization 

PE                  Peak flow rate error 

PWRMSE       Peak-weighted root mean square error 

Q0                   Initial discharge 

Qb                              Base flow 

Qobs                Observed discharge 

Qobs,av             Average od observed discharge 

Qop                 Peak of observed discharge 

Qs,av                 Average of simulated discharge 

Qsim                 Simulated discharge 

Qsp                  Peak of simulated discharge 

Qts                  Threshold discharge 

R2                   Coefficient of determination 

S                     Basin average slope 

Sc                    Storage coefficient 

SI                    Statistical indicators 

SCS                Soil Conservation Service   

SWAT            Soil Water Assessment Toll 

SWMM          Storm Water Management Model 

Tc                   Time of concentration 

USA               United States of America 
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Abstract  

In this paper, fifth order predictor-corrector method is presented for solving quadratic Riccati differential 

equations. First, the interval is discretized and then the method is formulated by using the Newton’s backward 

difference interpolation formula. The stability and convergence of the method have been investigated. To 

validate the applicability of the proposed method, three model examples with exact solutions have been 

considered and numerically solved by using MATLAB software. The numerical results are presented in tables 

and figures for different values of mesh size h. Pointwise absolute errors and maximum absolute errors are also 

estimated. Concisely, the present method gives better result than some existing numerical methods reported in 

the literature.   

Keywords: Predictor-corrector method, Riccati differential equations, Stability analysis   

 

1. Introduction 

Problems arising in many physical phenomena, engineering and scientific applications are 

modeled with nonlinear differential equations. Riccati differential equation is applicable in 

engineering science applications such as stochastic realization theory, optimal control, robust 

stabilization, network synthesis, diffusion problems, and the newer applications include such 

areas as financial mathematics, Allahviranlooa and Behzadib [1]. The solution of Riccati 

differential equations has so much importance in numerical methods due to the fact that even 

higher order partial differential equations can be transformed into first order ordinary 

differential equation and solved, Baba [2]. Thus, methods of solution of such differential 

equations have attracted attention of researchers for a very long time.  

  

Recently, some researchers have been tried to find the approximate solution of first order 

nonlinear ordinary differential equations. For example; Gashu and Habtamu [3] considered 

the comparison of higher order Taylor’s method and fifth order Runge-Kutta method; 

Gemechis and Tesfaye [4] presented fourth order Runge-Kutta for solving quadratic Riccati 

differential equations; Vinod and Dimple [5] presented Newton-Raphson based modified 

Laplace Adomian decomposition method for solving quadratic Riccati differential equations; 
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Fateme and Esmaile [6] presented approximate solution for quadratic Riccati differential 

equations. Other authors [7-13] also discussed the quadratic Riccati differential equations. 

However, some of these methods are not more accurate. Thus in this paper, we present a 

stable and more accurate numerical method for solving quadratic Riccati differential 

equations.       

      

 

2. Description of the Methods  

 

Consider the quadratic Riccati differential equation of the form:   

 

    2( ) ( ) ( )
dy

p x q x y x r x y x
dx

       (1) 

 

with initial condition, 

 

 0y x          (2) 

 

where,  ,  ( ),   ( )p x q x r x  are continuous functions, ( )  0r x   and   is arbitrary constant. 

To describe the methods, denote Eq. (1) as:   

 

 ,
dy

f x y
dx

        (3) 

 

Now, divide the interval  0[ , ]x L  into N equal subintervals of mesh length h and the mesh 

points given by 0 ,  1,  2, , .ix x ih i N     Then, 0L x
h

N


 , where N  is a positive integer.    

Integrating Eq. (3)
 
on the interval  1,i ix x 

, we obtain:    

 

 

1 1

( , )
i i

i i

x x

x x

dy
dx f x y dx

dx

 

         

   
1

1  ( , ) 
i

ix

i i

x

y x y f x y dxx


         (4) 

 

To derive the methods, we approximate  ,f x y
 
by a suitable interpolation polynomials.  
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2.1. Description of Predictor Method 

 

Let us take k data values    1 1 k 1 1, ,  , , ,( , )i i i i i i kx f x f x f      . For this data, we fit the 

Newton’s backward difference interpolating polynomial of degree 1k   and we get:  

 

       
 

 

    

 
 

2

1

1

1

2!

1 2 2

1 !

k i i i i

k p

i k

s s
p x f x sh f x s f x f x

s s s s k
f x T

k






       

    
  



  (5) 

 

where  

 

ix x
s

h


  and 

   ( )
1 2 ( 1)

( )
!

p k k

k

s s s s k
T h f

k


    
    (6) 

 

 is the error term, when  lies in some interval containing the points 
1, , 1,  i i i kx x x   

and  x.   

The limits of integration in Eq. (4) becomes:  

 

   0ix x s   , 1    1ix x s     and dx hds .   (7) 

 

Thus, replacing  ,f x y
 
by  1kP x  

in Eq. (4) and using Eq. (5) in Eq. (4), we get:    

 

    
1

2 3

1

0

1 1
1 1 2

2 6
i i i i i iy y h f s f s s f s s s f ds

 
            

 
   (8) 

 

Now, on integrating term by term in Eq. (8) with respect to  s, we obtain:  

 
1
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2
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6
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1

0

475
( 1)( 2)( 3)( 4)

12
s s s s s ds      

 

Hence, from Eq. (8), we get: 

 

2 3 5

1

41 5 3 251 475

2 12 8 720 144
 

0
i i i i ii ii f f fy y h f f f

 
            





  (9) 

 

 

We obtain the error term as: 
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where 

 

      
1

1 2 ( 1 )
!

p s s s s
k

g ks          (11) 

 

By choosing different values for k, we get different methods. But for this particular study, we 

choose the value for 5k   which is of order five method. Thus, we get:   
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(13) 

 

is the local truncation error. Hence, Eq. (12) is called fifth order predictor method.    

 

2.2. Description of Corrector Method 

 

Consider the 1k   data values,         1 1 1 1 1 1, , , , , , , ,i i i i i i i k i kx f x f x f x f       
 
which include 

the current data point. For this data, we fit the Newton’s backward difference interpolating 

polynomial of degree k and we get:  
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where 
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is the error term, when  𝜉 lies in some interval containing the points 1 1 1, , , ,i i i i kx x x x     and 

x. 

 

The limit of integration in Eq. (4) becomes: 

 

 0ix x s   , 1 1ix x s  
 
and dx hds .     (16) 

 

Thus, replacing  ,  f x y by ( )kp x  in Eq. (4) and using Eq. (14) in Eq. (4), we get:    
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Here,   
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Hence, from Eq. (17), we get: 
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Using Eq. (15), we obtain the error term as:  
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where  
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By choosing different values for k, different corrector methods will be obtained. So, as we 

have discussed before we choose k  for fifth order, which implies 4k  .  
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i.e, by choosing 4k  , we get the method: 

 

2 3 4

1 1 1 1 1 1 4

1 1 1 19

2 12 24 720
i i i i i i iy y h f f f f f T     

 
           

 
 

     

     1 1 1 1 1 1 2

1 1 2 3 4

1 1 1
  2 3 3

2 12 24

19
( 4 6 4 )

720

i i i i i i i i i i i

i i i i i

y h f f f f f f f f f f

f f f f f T

      

   


          




     



 

      
 1 1 2 3 4251 646 264 106 19

720
i i i i i i

h
y f f f f f T                       (22) 

 

where  

 

   5 66 6

4 44

9 9
( ) ( )

480 480
T h f h y 

 
       (23) 

 

is the local truncation error. Hence Eq. (22) is called fifth order corrector method. So that, we 

use Eqs. (12) and (22) for solving quadratic Riccati differential equation in Eq. (1) with Eq. 

(2).    

 

Remarks: 

 

1. For using the methods, we require the starting values 2 30 1  , , , y y y y .  

2. The required starting values for the application of predictor-corrector methods are 

obtained by using any single step method like Euler’s method, Taylor series method or 

Runge-Kutta methods.  

 

3. Stability and Convergence Analysis 

 

Definition 1: Let 1 2,  , , k    are the (not necessarily distinct) roots of the characteristic 

equation given by: 

 

  1

1 1 0 0k k

kp a a a   

         (24) 

 

associated with the multistep difference method of Eqs. (12) and (22) given as:   

 

 1 1 2 1 0 1 1 1, , , , ,i k i k i i k i i i i ky a y a y a y x h y y yhF            , 

0 1 1 1 1,  , , k ky y y       , for each   1, , , 1i k k N    ,   (25) 

 

where 0 1 1,  , , ka a a   are constants.   
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If 1,i   for 1,2, , ,i k  and all roots with absolute value 1 are simple roots, then the 

difference method is said to satisfy the root condition.  

 

Definition 2 (Stability) [14]:  

     

i. Methods that satisfy the roots condition in which λ = 1 is the only root of the 

characteristic equation with magnitude one are called strongly stable. 

ii. Methods that satisfy the root condition and have more than one distinct root with 

magnitude one are called weakly stable.  

iii. Methods that do not satisfy the root condition are called unstable. 

 

Theorem 1: The fifth order predictor method in Eq. (12) is strongly stable.   

  

Proof: The fifth order predictor method in Eq. (12) can be expressed as:   

 

 1 1 3 4, , , , , ,  i i i i i i iy y hF x h y y y y          (26) 

 

where 

 

       

  

1 3 4 1 1 2 2

3 3 4 4

1
, , , , , ,  1901 , 2774 , 2616 ,

720

1274 , 251 ( , )

i i i i i i i i i i i

i i i i

F x h y y y y f x y f x y f x y

f x y f x y

      

   

   

 

(27) 

 

In this case, we have: 0 1 2 3 45,  0,  and   1k a a a a a      .  

 

The characteristic equation for the method becomes:   

 

   5 4 4 1 0p           

1 2 3 4 51,  0             (28) 

 

 are the roots of the polynomial. 

 

Therefore, it satisfies the root condition and is strongly stable by Definition 2 (i).  

 

Theorem 2: The fifth order corrector method in Eq. (22) is also strongly stable. 

 

Proof: The fifth order corrector method in Eq. (22) can be expressed as:  

  

 1 1 3, , , , ,i i i i i iy y hF x h y y y         (29) 
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where 

 

       

  

1 3 1 1 1 1

2 2 3 3

1
. ,  , , , 251 , 646 , 264 ,

720

106 , 19 ( , )

i i i i i i i i i i

i i i i

F x h y y y f x y f x y f x y

f x y f x y

     

   

   

 

  

(30) 

 

Following the similar procedure as we have done in Theorem 1, here,  

 

 0 1 2 34,  0,   1k a a a a         (31)  

 

The characteristic equation for the method becomes:   

 

   4 3 3 1 0p              (32) 

 

Thus, this polynomial has roots  

 

1 2 3 41,   0 .            (33)
 

 

Therefore, it satisfies the root condition and is strongly stable by Definition 2 (i).   

 

Definition 3 (Consistency): The method is consistent, if the local truncation error 

  0 as  0.kT h h   

 

From Eqs. (13) and (23), we have:  

 

              

 6

4

6

4

9
( )

480
T h y 




  
and  66

5 5

475
( )

1440
yT h     (34)

 
 

Thus,   0 as   0 for   4, 5kT h h k   .  

 

Therefore, the methods in Eq. (12) and (22) are consistent by Definition 3. Hence, they are 

convergent of fifth order. Since, consistency + stability   convergence.        

 

4. Numerical Examples and Results  

 

To validate the applicability of the methods, three model examples of quadratic Riccati 

differential equations with initial conditions have been considered. Since all predictor-

corrector methods are not a self-starter, we take the classical Runge-Kutta (RK4) method for 

the first four nodal points. For each number of nodal points N , the pointwise absolute errors 

are approximated by the formula, ( )i iE y x y  , for 0,1,2, ,i N , where ( )iy x  and iy  
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are the exact and computed approximate solution of the given problems respectively, at the 

nodal point ix . Numerical examples are given to illustrate the efficiency and convergence of 

the methods.   

 

Example 1. Consider the following quadratic Riccati differential equation, Vinod and Dimple 

[5]; Khalid et al. [12], 

 
2( ) 1 ( ), 0 1,

(0) 0

y x y x x

y

    


     (35) 

 

where the exact solution of this equation is ( ) tany x x . 

 

Table 1. Pointwise absolute errors for Example 1 with different values of N. 

 

x  

 

Vinod and 

Dimple [5] 

Present Method 

N 100  N 100  
Refinement 

N 200  N 300  N 400  N 500  

0.01 2.5001250e-07 8.3330e-13 8.3330e-13 5.2076e-14 1.0285e-14 3.2543e-15 1.0651e-15 

0.02 2.0004001e-06 1.6657e-12 1.6657e-12 1.0409e-13 1.3538e-14 3.1954e-15 1.0443e-15 

0.03 6.7530387e-06 2.4961e-12 2.4961e-12 1.0114e-13 1.3108e-14 3.0809e-15 1.0131e-15 

0.04 1.6012809e-05 3.3232e-12 2.3825e-12 9.6610e-14 1.2476e-14 2.9421e-15 9.7145e-16 

0.05 3.1289104e-05 3.1598e-12 3.1590e-12 9.0469e-14 1.1616e-14 2.7339e-15 9.0206e-16 

0.06 5.4097349e-05 2.9452e-12 2.9438e-12 8.2712e-14 1.0547e-14 2.4772e-15 8.2573e-16 

0.07 8.5960526e-05 2.6789e-12 2.6768e-12 7.3316e-14 9.2426e-15 2.1788e-15 7.3552e-16 

0.08 1.2841072e-04 2.3600e-12 2.3571e-12 6.2270e-14 7.7161e-15 1.8319e-15 6.2450e-16 

0.09 1.8299066e-04 1.9876e-12 1.9836e-12 4.9488e-14 5.9674e-15 1.4155e-15 4.8572e-16 

0.1 2.5125533e-04 1.5604e-12 1.5553e-12 3.4958e-14 3.9829e-15 9.4369e-16 3.3307e-16 

Table 2. The maximum absolute errors for Example 1 with different values of  N. 

N 50  N 100  N 200  N 300  N 400  N 500  

1.6183e-07 6.6504e-09 2.3871e-10 3.2945e-11 8.0336e-12 2.6552e-12 

Refinement 

1.7156e-07 6.7519e-09 2.3963e-10 3.3001e-11 8.0413e-12 2.6570e-12 
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Fig. 1. Numerical solution versus exact solution for Example 1 when N = 10. 
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Example 2. Consider the following quadratic Riccati differential equation, Gemechis and 

Tesfaye [4]; Fateme and Esmaile [6],   

 
3 2 2( ) 2 ( ) ( ) , 0 1,

(0) 1

x x x xy x e e e y x e y x x

y

      


   (36) 

 

The exact solution of the given problem is given by ( ) xy x e . 

 

Table 3. Pointwise absolute errors for Example 2 with different values of  N. 

x  N 10  N 40  N 70  N 100  N 200  N 400  

Present Method  

0.1 1.1153e-07 4.5427e-10 2.5490e-11 4.1438e-12 1.2457e-13 4.6629e-15 

0.2 2.6297e-07 4.3364e-10 2.4216e-11 3.9286e-12 1.1813e-13 4.8850e-15 

0.3 4.6838e-07 4.1083e-10 2.2808e-11 3.6910e-12 1.1036e-13 4.8850e-15 

0.4 7.4674e-07 3.8563e-10 2.1253e-11 3.4284e-12 1.0236e-13 4.8850e-15 

0.5 7.2073e-07 3.5778e-10 1.9533e-11 3.1379e-12 9.3259e-14 4.6629e-15 

0.6 6.9197e-07 3.2699e-10 1.7632e-11 2.8164e-12 8.3489e-14 1.1102e-15 

0.7 6.6020e-07 2.9297e-10 1.5530e-11 2.4616e-12 7.2387e-14 3.5527e-15 

0.8 6.2508e-07 2.5537e-10 1.3208e-11 2.0699e-12 6.0396e-14 7.1054e-15 

0.9 5.8627e-07 2.1382e-10 1.0642e-11 1.6369e-12 4.6185e-14 1.3323e-14 

1.0  5.4337e-07 1.6790e-10 7.8062e-12 1.1582e-12 3.1530e-14 1.9096e-14 

 

Gemechis and Tesfaye [4] 

0.1 3.8296e-07 4.5427e-10 4.8711e-11 1.1722e-11 7.3475e-13 4.5963e-14 

0.2 2.6297e-07 1.0710e-09 1.1484e-10 2.7633e-11 1.7317e-12 1.0880e-13 

0.3 4.6838e-07 1.9073e-09 2.0451e-10 4.9211e-11 3.0835e-12 1.9384e-13 

0.4 7.4674e-07 3.0404e-09 3.2600e-10 7.8447e-11 4.9163e-12 3.0909e-13 

0.5 1.1237e-06 4.5748e-09 4.9051e-10 1.1803e-10 7.3965e-12 4.6496e-13 

0.6 1.6338e-06 6.6511e-09 7.1312e-10 1.7160e-10 1.0753e-11 6.7191e-13 

0.7 2.3239e-06 9.4596e-09 1.0142e-09 2.4406e-10 1.5293e-11 9.5124e-13 

0.8 3.2569e-06 1.3257e-08 1.4214e-09 3.4203e-10 2.1432e-11 1.3305e-12 

0.9 4.5182e-06 1.8390e-08 1.9717e-09 4.7445e-10 2.9730e-11 1.8439e-12 

1.0  6.2225e-06 2.5327e-08 2.7154e-09 6.5340e-10 4.0941e-11 2.5673e-12 

 

Table 4. Pointwise absolute errors for Examples 2 with different values of  N. 

x  Fateme and 

Esmaile [6] 

Present Method 

N 10  N 300  

0.0 0.0000000000000 0.0 0.0 

0.1 0.00034681435605 1.1153e-07 1.6209e-14 

0.3 0.00067436472882 4.6838e-07 1.4655e-14 

0.5 3.8747  ×  10-10 7.2073e-07 1.3989e-14 

0.7 0.00067437189321 6.6020e-07 7.1054e-15 

0.9 0.00034682221170 5.8627e-07 2.2204e-15 

1.0 0.000000000000 5.4337e-07 6.2172e-15 

Table 5. The maximum absolute errors for Examples 2 with different values of  N. 

N 50  N 100  N 200  N 300  N 400  N 500  

1.4455e-10 4.2630e-12 1.2945e-13 1.9096e-14 1.6875e-14 4.4409e-15 

Refinement 

1.4327e-10 4.2437e-12 1.2923e-13 1.9096e-14 1.6875e-14 4.4409e-15 
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Fig. 2. Pointwise absolute errors of Example 2 for different values of h . 

 

Example 3. Consider the following quadratic Riccati differential equation, Gemechis and 

Tesfaye [4]; Fateme and Esmaile [6],  

 
2( ) 1 2 ( ) ( ) , 0 1,

(0) 0

y x y x y x x

y

     


     (37) 

 

where the exact solution of this equation is   

 

2 1
( ) 1 2 tanh 2 0.5ln

2 1
y x x

  
        

    (38) 
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Fig. 3. Numerical solution versus exact solution of Example 3 when N = 10. 
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Table 6. Pointwise absolute errors for Example 3 with different values of  N. 

x  N 10  N 40  N 70  N 100  N 200  N 400  

Present Method  

0.1 2.2551e-06 9.8491e-09 6.5613e-10 1.1501e-10 3.7895e-12 1.2192e-13 

0.2 4.7763e-06 1.0576e-08 6.8253e-10 1.1788e-10 3.8127e-12 1.2154e-13 

0.3 7.3083e-06 7.5309e-09 4.4688e-10 7.4441e-11 2.3045e-12 7.2109e-14 

0.4 9.5635e-06 9.9895e-11 6.4516e-11 1.5673e-11 6.6713e-13 2.2982e-14 

0.5 2.7825e-06 9.6406e-09 6.8248e-10 1.2102e-10 4.0088e-12 1.2823e-13 

0.6 6.9705e-06 1.6943e-08 1.0936e-09 1.8762e-10 5.9928e-12 1.9307e-13 

0.7 1.5393e-05 1.7084e-08 1.0377e-09 1.7402e-10 5.4168e-12 1.7675e-13 

0.8 1.6632e-05 9.0960e-09 5.1689e-10 8.4664e-11 2.5677e-12 9.0150e-14 

0.9 7.1404e-06 3.1027e-09 1.9362e-10 3.2240e-11 9.8810e-13 1.6209e-14 

1.0  1.0444e-05 1.3554e-08 7.5227e-10 1.2112e-10 3.5889e-12 9.3703e-14 

 

Gemechis and Tesfaye [4] 

0.1 2.2551e-06 9.8491e-09 1.0669e-09 2.8533e-10  1.6233e-11 1.0184e-12 

0.2 4.7763e-06 2.0641e-08 2.2327e-09 5.3915e-10  3.3923e-11 2.1275e-12 

0.3 7.3083e-06 3.1235e-08 3.3731e-09    8.1402e-10 5.1180e-11 3.2087e-12 

0.4 9.5635e-06 4.0441e-08 4.3607e-09   1.0517e-09 6.6078e-11 4.1415e-12 

0.5 1.1301e-05 4.7374e-08 5.1021e-09  1.2299e-09 7.7230e-11 4.8390e-12 

0.6 1.2408e-05 5.1724e-08 5.5661e-09  1.3414e-09 8.4199e-11 5.2707e-12 

0.7 1.2940e-05 5.3815e-08 5.7892e-09  1.3949e-09 8.7546e-11 5.4756e-12 

0.8 1.3100e-05 5.4419e-08 5.8528e-09  1.4101e-09 8.8489e-11 5.5316e-12 

0.9 1.3141e-05 5.4381e-08 5.8450e-09  1.4079e-09 8.8322e-11 5.5178e-12 

1.0  1.3245e-05 5.4260e-08 5.8236e-09  1.4019e-09 8.7889e-11 5.5029e-12 

 

Table 7. Pointwise absolute errors for Examples 3 with different values of  N. 

x  Fateme and Esmaile [6] Present Method 

N 10  N 300  

0.0 9.6780 × 10-11 0.0 0.0 

0.1 0.000248944564121 2.2551e-06 5.0812e-13 

0.3 0.0004481946615024 7.3083e-06 3.0248e-13 

0.5 2.89441  ×  10-10 2.7825e-06 5.3524e-13 

0.7 0.000374115023553 1.5393e-05 7.1365e-13 

0.9 0.00017849475908 7.1404e-06 1.2368e-13 

1.0 3.2516  ×  10-10 1.0444e-05 4.5808e-13 

 

Table 8. The maximum absolute errors for Examples 3 with different values of  N. 

N 50  N 100  N 200  N 300  N 400  N 500  

6.0022e-09 1.9281e-10 6.1084e-12 8.0802e-13 1.9695e-13 6.1950e-14 

Refinement 

6.0007e-09 1.9281e-10 6.1084e-12 8.0802e-13 1.9695e-13 6.1950e-14 
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Fig. 4. Pointwise absolute errors of Example 3 for different values of h. 

 

 

5. Discussion and Conclusion   

 

In this paper, fifth order predictor-corrector method is presented for solving quadratic Riccati 

differential equations. The stability and convergence of the method have been investigated. 

The study is implemented on three model examples with exact solutions by taking different 

values for N, and the computational results are presented in the Tables (1–8). The results 

obtained by the present method are compared with the results of Gemechis and Tasfaye [4], 

Vinod and Dimple [5], Fateme and Esmaile [6] and shows betterment.     

Furthermore, from the Tables (1–5) it is significant that all of the absolute errors decrease 

rapidly as h decreases, which in turn shows the convergence of the computed solution. Figs. 

(1, 3) shows that the present method approximates the exact solution very well. Figs. (2, 4) 

show that, as h  decreases the absolute error goes to zero. This shows that the small step size 

provides the better approximation. Briefly, the present method is stable, more accurate and 

effective method for solving quadratic Riccati differential equations.    
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Abstract 

A novel weak form quadrature element method (QEM) is presented for free vibration analysis of hybrid nonlocal Euler-

Bernoulli beams with general boundary conditions. For demonstrations, the stiffness and mass matrices of a beam 

element with Gauss-Lobatto-Legendre (GLL) nodes are explicitly given by using the nodal quadrature method together 

with the differential quadrature (DQ) law. Convergence studies are performed and comparisons are made with exact 

solutions to show the excellent behavior of the proposed beam element. Case studies on hybrid nonlocal Euler-Bernoulli 

beams with different length scale parameters have been conducted. Accurate frequencies of the beams with different 

combinations of boundary conditions are obtained and presented. 

Keywords: Weak form quadrature element method, hybrid nonlocal Euler-Bernoulli beam, multiple boundary 

conditions, free vibration. 

1. Introduction 

Due to its efficiency, the continuous mechanics approach is frequently used by researchers to study 

the behavior of free vibration of micro/nano-sized structures [1]. The nonlocal continuum theory [2-

6] and the strain gradient elasticity theory [7-9] are the widely used theories of modeling the micro/ 

nano-scaled structures. 

The hybrid nonlocal Euler-Bernoulli beam models, proposed very recently by Lim et al. [10], possess 

two or more independent small length-scale parameters and may model the micro/nano-structures 

more accurately. However, it is difficult to get analytical solutions for hybrid nonlocal Euler-

Bernoulli beams with general boundary conditions. Therefore, numerical methods should be resorted 

to for solutions. 

Various efficient numerical methods [4,9,11-22] can be employed to get accurate solutions of hybrid 

nonlocal Euler-Bernoulli beams. The discrete singular convolution (DSC) [11-14], the differential 

quadrature method (DQM) and differential quadrature element method (DQEM) [15-18] belong to 

the strong form methods. The finite element method (FEM) [4,9] and the weak form quadrature 

element method (QEM) [18-22] belong to the weak form methods. If the boundary conditions are not 

appropriately applied, the DQM may result spurious complex eigen-values [15]. Being a high order 

FEM, applying multiple boundary conditions by the QEM is very simple. The QEM possesses the 

accuracy of the global methods such as the DSC, DQM and DQEM as well as the flexibility of the 
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local methods such as the FEM [20] and thus is used in present investigation. Up to dated research 

work related to the QEM has been well documented by Wang, Yuan and Jin [20]. 

The objective of this paper is to propose a novel weak form quadrature beam element for the free 

vibration analysis of the hybrid nonlocal Euler-Bernoulli beams. The stiffness and mass matrices of a 

beam element with Gauss-Lobatto-Legendre (GLL) nodes are explicitly given for the first time via 

the nodal quadrature method together with the differential quadrature (DQ) law. The rate of 

convergence of the proposed quadrature beam element is studied. Free vibration of hybrid nonlocal 

Euler-Bernoulli beams with different combinations of boundary conditions is analyzed. Some 

conclusions are drawn at the end of this paper. 

2. Higher-order nonlocal strain gradient theory 

Denote x the longitudinal coordinate measured from the middle point of the hybrid nonlocal Euler-

Bernoulli beam. Denote I, A, E,  and w the second moment of the cross-sectional area, the cross 

sectional area, Young’s modulus, the mass density, and the transverse displacement, respectively. 

For the free vibration analysis, the simplified higher-order nonlocal strain gradient theory of the 

hybrid nonlocal Euler-Bernoulli beam is given by [10,17] 

 
4 6 2

2 2 2 2

4 6 2
( )

d w d w d w
EI l EI A w ea A

dx dx dx
                                          (1) 

 

where symbols l and ea represent the independent length-scale parameters, and is the circular 

frequency. 

The shear force, bending moment and high order bending moment are defined as [10,17] 
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dx dx EI dx
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   

 
                                            (2) 

2 4
2

2 4
 x

d w d w
M EI l

dx dx

 
  

 
                                                                    (3) 

3
2

3
 xx

d w
M l EI

dx
                                                                                   (4) 

 

To obtain the solutions by the weak form quadrature element method (QEM), the expressions of 

strain energy and kinetic energy are needed for derivations of the stiffness and mass matrices of the 

quadrature beam element. For free vibration analysis, the corresponding strain energy of the hybrid 

nonlocal Euler-Bernoulli beam element is given by 

 
2 2

2 3
/ 2

2

2 3/ 22

L

L

EI d w d w
U l dx

dx dx

    
     

     
                                                   (5) 

 

where symbol L is the length of the beam element. 

The corresponding kinetic energy of the hybrid nonlocal Euler-Bernoulli beam element is given by 

 

   
22
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It was pointed out early [17] that the hybrid nonlocal Euler-Bernoulli beam has totally twenty-

one combinations of boundary conditions. For the QEM, however, only essential boundary 

conditions are needed and given. Adopt the notations presented in [17], the essential boundary 

conditions of the hybrid nonlocal Euler-Bernoulli beam are 

(a) Simply supported end-a (Sa): 

 
2

2
0,   0  

d w
w

dx
                                                                     (7) 

 

(b) Simply supported end-b (Sb): 

 

0w                                                                                        (8) 

 

(c) Clamped end-a (Ca): 

 
2

2
0

dw d w
w

dx dx
                                                                    (9) 

 

(d) Clamped end-b (Cb): 

 

0 
dw

w
dx

                                                                       (10) 

 

(e) Free end-a (Fa): 

 
2

2
0 

d w

dx
                                                                          (11) 

 

(f) Free end-b (Fb): all three boundary conditions are natural ones.  

3. Formulation of the weak form quadrature beam element 

Consider an N -node weak form quadrature beam element. The non-dimensional coordinates of the 

element node are denoted by  ( 1,2,..., )k k N  , where 2 /x L  . In present investigation, Gauss-

Lobatto-Legendre (GLL) points are used as element nodes for simplicity considerations, and 

( 1, 2,..., )k k N 
 
are the roots of the following equation, 

 

 2 1( )
1 0NdP

d





                                                          (12) 

 

where 
1( )NP 

is the (N-1)th order Legendre polynomial. 

The weights of nodal quadrature corresponding to integration point k , i.e., kH , are given by 
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    
2

1

2 2
( 1, ),  ( 2,3,..., 1)

1 1 ( )
k k

N k

H k N H k N
N N N N P 

    
 

             (13) 

 

Since no explicit formulas exist to compute k and kH , the short subroutine listed in reference [20] is 

used to calculate the GLL points and their corresponding weights conveniently with any N. 

The displacement function within the quadrature beam element is assumed as 
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               (14) 

 

where the shape function ( )jh x is also called Hermite function and its order is (N+3), 

  1,2,...,j jw j N   , (1)

1 1N w   , (1)

2N Nw   , (2)

3 1N w   , (2)

4N Nw   , 1 1Nh   , 2N Nh   , 

3 1Nh    , 4N Nh    , and   1,2,...,j jh j N  , respectively. 

The thk order derivative of the displacement function ( )w x with respect to x at point i is given by 
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where ( )k

ijQ is called the weighting coefficient of the thk order derivative with respect to x. 

Let ( )jl x be the Lagrange interpolation function defined by 
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Then the shape functions of the quadrature beam element are given by [17] 
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The strain energy of the beam element is obtained by substituting Eq. (14) into Eq. (5) and then 

integrated numerically using the nodal quadrature method, i.e., the N-point GLL quadrature. After 

doing so, U is given by 
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Elements in the stiffness matrix of the quadrature beam element ˆ[ ]k are given by 
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By the same token, the kinetic energy of the beam element is obtained by substituting Eq. (14) into 

Eq. (6) and then integrated numerically using the nodal quadrature. After doing so, T is given by 
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Elements in the consistent mass matrix of the quadrature beam element ˆ[ ]m are given by 
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In Eq. (23) and Eq. (24), 
kih and

kjh are defined as 
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And (1) (1) (2) (2) (3) (3), , , , ,ki kj ki kj ki kjQ Q Q Q Q Q are the weighting coefficients of the first, second and third order 

derivatives with respect to x. 

The weighting coefficients of k-th order derivative, ( )k

ijQ , can be explicitly computed by [17] 
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In Eqs. (26)-(29), (0) ( ) ( )j i j i ijl x l x   , ( ) ( )n

j il x should be dropped when 0n  since the coefficient 

associated with it is zero, where 1 1( ),  ( 1,2,3)n k i i   . Since nodal quadrature is used, ( ) ( )k

j il x  

( 1,2,3k  ) can be computed explicitly by using the formulas of the DQM as follows [18], 
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m i m
m i

x x
i j

x x x x

l x A i j N

i j
x x








  


  

 
 






                    (30) 

And 

 

(2) (3)

1 1

( ) ; ( )
N N

j i ij im mj j i ij im mj

m m

l x B A A l x C A B
 

                                          (31) 

 

It is easy to see that ( ) 0k

ijQ  when k>N+3, since ( )jh x is a (N+3)th order polynomial. 

If only one element is used to model the entire beam, the equation of motion can be symbolically 

written as 

 

    2ˆ ˆ[ ]k m                                                                                     (32) 

 

Eliminating the rows and columns in ˆ[ ]k and ˆ[ ]m  in Eq. (32) which correspond to the zero 

displacements (i.e., the essential boundary conditions) yields 

 
2[ ]{ } [ ]{ }k m                                                                          (33) 

 

Solving Eq. (33) by a generalized eigen-solver yields the frequencies of the hybrid nonlocal Euler-

Bernoulli beam. 

If more beam elements are used to model the entire beam structure, the assemblage procedures are 

exactly the same as the ones of the finite element method [20]. 

It is worth notice that the problem of spurious complex eigen-values will never occur since both 

stiffness matrix and mass matrix are symmetric matrices. It is also worth notice that both stiffness 

and mass matrices are not fully integrated, since the nodal quadrature is only exact for a polynomial 

of (2N-3)th degrees and less. If fully integrated stiffness and mass matrices are required, then Gauss 

quadrature should be used for efficiency considerations and ( ) ( 1,2,3)k

ijQ k   at Gauss integration points 

should be computed differently. More precisely, ( ) ( )k

j il x in Eqs. (26)-(29) should be computed 

differently since the DQ law cannot be directly employed. The method proposed by author’s group 

[19-22] should be used to compute ( ) ( 1,2,3)k

ijQ k  explicitly and conveniently. 

4. Results and discussion 

 

For convenience in presentation, three non-dimensional parameters are introduced, i.e., /l L  , 

/ea L   and 2 /A EI   . One N-node element is used to model the entire beam for simplicity. 

For the Sa-Sa beam, the exact solution of the frequency parameter can be easily obtained by using 

Navier solution method [17]. The exact non-dimensional frequency parameter is given by 

 

 
2 2 2 2 2

2 2 2

1
 ( 1,2,...)

1

n n
n

n

  


 


 


                                                   (34) 
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where n is the mode number. 

Convergence studies are performed first. The number of nodes N varies from 7 to 19. Figure 1 shows 

the convergence rate of the proposed element. The Sa-Sa beam with 0.16   and 0.1  is considered. 

The absolute differences between the QEM data and analytical solutions are presented. It is seen that 

the proposed QEM exhibits the exponential rate of convergence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Convergence rate of the proposed beam element 

To demonstrate the high accuracy of the QEM further, the Sb-Sb beam with 0.2  and 0.14  is 

analyzed. Since analytical solution is not available, thus the results obtained by the DQEM [17] with 

N=119 are served as the reference data. Figure 2 shows the variation of the first five frequency 

parameters with the number of nodes. It is seen that the rate of convergence is high and the QEM 

with N=13 can yield accurate first five frequency parameters. It was reported early [17] that the 

DQEM with N=13 can yield accurate first five frequency parameters for the hybrid nonlocal Euler-

Bernoulli beam. This indicates that the QEM possesses the same accuracy of the DQEM. 

 

 

 

 

 

 

 

 
Fig. 2. Convergence of the first five frequency parameters 
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The variations of the first six frequency parameters of a Ca-Fa beam with one of the small length-

scale parameter are shown in Fig. 3. One of the two small length-scale parameters is fixed and the 

other varies from 0.008 to 0.2. 

 

 
Fig.3. Effect of small length-scale parameters on the frequencies of the Ca-Fa beam 

To ensure the solution accuracy, the QEM results are obtained by using one 19-node beam element. 

It is clearly seen that the first six frequency parameters increase with the increase of   but decreases 

with the increase of  , and the effect of  and on frequencies is appreciated and opposite. The 

influence degree is quite different and also increases with the increase of mode numbers. It is easy to 

get accurate frequencies for beams with other boundary conditions and small length-scale parameter 

by the proposed QEM. Results are omitted to save the space.  

5. Conclusions 

A novel weak form quadrature element method is presented for free vibration analysis of hybrid 

nonlocal Euler-Bernoulli beams. Explicit formulas to compute the element stiffness and mass 

matrices are given via nodal quadrature and the DQ law. It is shown that the QEM has exponential 

rate of convergence. Numerical results show that the proposed QEM is computationally efficient and 

capable of obtaining accurate solutions of the hybrid nonlocal Euler-Bernoulli beams with any 

combination of boundary conditions and length-scale parameters. It is seen that the effect of the two 

length-scale parameters on the frequency of the beam is opposite. It is demonstrated that the QEM 

possesses advantages of the flexibility of the FEM and high accuracy of the DQEM. Present research 

extends the application range of the weak form quadrature element method. 
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Abstract 

In this study, effects of operator splitting methods to the solution of advection-diffusion equation are examined. 

Within the context of this work two operator splitting methods, Lie-Trotter and Strang splitting methods were used 

and comparisons were made through various Courant numbers. These methods have been implemented to 

advection-diffusion equation in one-dimension. Numerical solutions of advection and dispersion processes were 

carried out by a characteristics method with cubic spline interpolation (MOC-CS) and Crank-Nicolson (CN) finite 

difference scheme, respectively. Obtained results were compared with analytical solutions of the problems and 

available methods in the literature. It is seen that MOC-CS-CN method has lower error norm values than the other 

methods. MOC-CS-CN produces accurate results even while the time steps are great. 

Keywords: Advection-diffusion equation, Operator splitting methods, Method of characteristics, Finite difference 

1. Introduction 

Rivers, lakes and other natural waters have been the drain place of urban and industrial wastes 

since the early days of civilization. In the early days, the amount and composition of these 

wastes were not at very important levels, so they did not have a negative effect on aquatic 

environments. However, rapid population growth, rising living standards and the development 

of the industry have led to an increase in the amount of pollution discharged into the aquatic 

environment. In order to reduce or eliminate this pollution, the pollutant transport processes 

represented by the advection-diffusion equation should be well understood and the processes to 

be carried out should be adapted to the nature of these processes [1]. The one-dimensional 

mathematical expression of the advection-diffusion equation without the source term is as 

follows 

𝜕𝐶

𝜕𝑡
+ 𝑈

𝜕𝐶

𝜕𝑥
= 𝐷𝑥

𝜕2𝐶

𝜕𝑥2
 (1) 

Where 𝑡 is time, 𝑥 is spatial coordinate, 𝐶 is concentration of substance, 𝑈 is velocity of the 

flow and 𝐷 is diffusion coefficient. We denote the spatial and temporal step sizes by ∆𝑥 and 

∆𝑡, respectively. Also Courant number, Cr, is computed as 𝑈∆𝑡/∆𝑥 and the Peclet number, Pe, 

is obtained as 𝑈∆𝑥/𝐷𝑥. 
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Although advection and diffusion are simultaneous processes, they have very different effects 

on mass transport. The advection process is only influenced by the past, and it occurs along the 

characteristic line. However, the diffusion process takes place between the characteristic lines, 

which will be influenced by both the past and present conditions. This means that there is a 

need for a numerical method that simultaneously solves both hyperbolic term (advection) and 

parabolic term (dispersion). There is no numerical method that can completely overcome of this 

problem [2]. So the great effort has been made on developing the efficient and stable numerical 

techniques. 

Holly and Usseglio-Polatera [3] developed a sensitive numerical method to model the 

contaminant dispersion in two-dimensional tidal currents. This method uses the approach of 

high-order bi-cubic Hermite interpolation with characteristics in the solution of the advection 

part. The Crank-Nicolson scheme was used for the diffusion part in the study. Chen and 

Falconer [4] used a modified QUICK finite difference scheme for water quality modeling in 

rivers and coastal waters. Also, they did stability analysis of the modified method. Szymkiewicz 

[5] solved advection-diffusion equation with the help of Lie-Trotter operator splitting method. 

Cubic spline interpolation and standard Galerkin finite element method were used for advection 

and diffusion processes, respectively. Ahmad and Kothyari [6] proposed a new numerical 

scheme for the solution of the pure advection process. The basis of the proposed method is 

based on the backward time-line characteristics approach. Tsai et al. [7] investigated effects of 

the endpoint constraints which are used in the characteristics method with cubic spline 

interpolation, on the solution of advection process. Verma et al. [8], with the help of Lie-Trotter 

operator splitting method, used the MacCormack scheme and the Crank-Nicolson finite 

difference scheme for the solution of the advection and diffusion processes, respectively. Tian 

and Ge [9] have developed an exponential fourth-order compact alternating direction implicit 

method in which Crank-Nicolson scheme used for time discretization and an exponential 

fourth-order compact difference formula used for spatial discretization. Sari et al. [10] proposed 

high-order finite difference schemes for the solution of a one-dimensional advection-diffusion 

equation. Schemes are derived from Taylor series expansion. To get the solutions, they have 

integrated the fourth-order Runge-Kutta scheme in time with the finite difference schemes up 

to the tenth order in space. Gurarslan et al. [11] have produced numerical solutions to a one-

dimensional advection-diffusion equation using a Runge-Kutta scheme of fourth-order and a 

compact finite difference scheme of sixth-order in space. In the study by Gurarslan [12], 

numerical simulations of the advection-dispersion equation were performed with high-order 

compact finite difference schemes. Compact finite difference schemes were used in conjunction 

with MacCormack and Runge-Kutta schemes to obtain solutions with the accuracy of sixth-

order. 

In this study, appropriate schemes will be used for the physical structures of the advection-

diffusion problem. Advection process and diffusion process will be solved by characteristics 

method with cubic spline interpolation (MOC-CS) and the Crank-Nicolson scheme (CN), 

respectively. These two different methods will be combined through operator splitting methods. 

For this purpose, first-order Lie-Trotter and second-order Strang-Marchuk operator splitting 

methods which are frequently used in the literature were chosen and effects of them on the 

solution will be examined for a one-dimensional problem with sharp structure. The obtained 

results will be compared with the analytical solution of the test problem and the results in the 

literature. 
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2. Solution Procedures with Different Operator Splitting Methods 

The mathematical representations of Lie-Trotter and Strang-Marchuk operator splitting 

methods and when they are applied to advection-diffusion equation, solution procedures will 

be explained in the next sections. 

2.1. Lie-Trotter Operator Splitting Method 

The Lie-Trotter operator splitting method is a first-order operator splitting method and named 

as a sequential splitting method. By applying this method to the advection-diffusion equation, 

the problem is divided into two sub-problems: advection and diffusion. The application of the 

Lie-Trotter separation method to Eq. (1) is as follows 

𝜕�̂�1

𝜕𝑡
+ 𝑈

𝜕�̂�1

𝜕𝑥
= 0, �̂�1(𝑡𝑛, 𝑥) = 𝐶(𝑡𝑛, 𝑥), 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1] (2) 

𝜕�̂�2

𝜕𝑡
= 𝐷𝑥

𝜕2�̂�2

𝜕𝑥2
, �̂�2(𝑡𝑛, 𝑥) = �̂�1(𝑡𝑛+1, 𝑥), 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1] (3) 

Where �̂�1  is the concentration in the advection process and �̂�2  is the concentration in the 

diffusion process. Eq. (2) and Eq. (3) represents the pure advection equation and diffusion 

equation, respectively. In the solution process, Eq. (2) will be solved for a time interval of ∆𝑡 

using the initial condition of Eq. (1). The result obtained from there will be the initial condition 

of Eq. (3). Then Eq. (3) will be solved for a time interval of ∆𝑡 and the solution of Eq. (1) will 

be obtained for a time interval ∆𝑡 . Thus, the problems will be solved consecutively by 

combining them with the initial conditions [13]. 

2.2. Strang-Marchuk Operator Splitting Method 

The Strang-Marchuk operator splitting method is a second-order operator splitting method. By 

applying this method to Eq. (1), the problem will be divided into two sub-problems, namely 

advection and diffusion, similar to the Lie-Trotter operator splitting method. But this time these 

sub-problems will be solved in three steps in total. The application of the Strang-Marchuk 

opeator splitting method to Eq. (1) is as follows 

𝜕�̂�1

𝜕𝑡
+ 𝑈

𝜕�̂�1

𝜕𝑥
= 0, �̂�1(𝑡𝑛, 𝑥) = 𝐶(𝑡𝑛, 𝑥), 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1/2] (4) 

𝜕�̂�2

𝜕𝑡
= 𝐷𝑥

𝜕2�̂�2

𝜕𝑥2
, �̂�2(𝑡𝑛, 𝑥) = �̂�1(𝑡𝑛+1/2, 𝑥), 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1] (5) 

𝜕�̂�1

𝜕𝑡
+ 𝑈

𝜕�̂�1

𝜕𝑥
= 0, �̂�1(𝑡𝑛+1/2, 𝑥) = �̂�2(𝑡𝑛+1, 𝑥), 𝑡 ∈ [𝑡𝑛+1/2, 𝑡𝑛+1] (6) 

Where Eq. (4) will be solved for a time interval of ∆𝑡/2 using the initial condition of Eq. (1). 

The solution of Eq. (4) will be used as the initial condition of Eq. (5) and Eq. (5) will be solved 

for a time interval of ∆𝑡. The obtained result of Eq. (5) will be the initial condition of Eq. (6). 

Lastly, Eq. (6) will solved for a time interval of ∆𝑡/2. Thus, the solution of Eq. (1) will be 

obtained for a time interval of ∆𝑡 [13]. 



E. Bahar, G. Gurarslan 

 

79 
 

3. Method of Characteristics for Advection Process 

The method of characteristics approach is frequently used in the solution of advection process. 

This is because as the other schemes it does not have time and spatial discretization errors but 

only the error of the interpolation method. This is achieved by converting the pure advection 

equation in Eq. (2) into two ordinary differential equations. If both sides of Eq. (2) are 

multiplied by 𝑑𝑡, this equation can be written in total derivative form. In this case, Eq. (2) can 

be represented by the following two ordinary differential equations. 

 
Fig. 1. Finite difference grid structure and trajectory of concentration particle in one-dimension 

 

𝑑�̂�1

𝑑𝑡
= 0 (7) 

𝑑𝑥

𝑑𝑡
= 𝑈 (8) 

 

Integration of the Eq. (7) and Eq. (8) yields 

 

�̂�1|
�̂�,𝑛

= �̂�1|
𝑖+1,𝑛+1

 (9) 

 

Along 

𝑥𝑖+1 − �̂� = 𝑈∆𝑡 = 𝐶𝑟∆𝑥 (10) 

 

When the finite difference grid structure is generated for solution domain as can be seen from 

Fig. 1, each node representing concentration value can be taken as a concentration particle. We 

know the concentration particle moves with the velocity of the flow in the advection process, 

so we can follow its trajectory which is given by Eq. (8) and can be seen in Fig. 1. �̂�1|
𝑖+1,𝑛+1

 is 

the concentration value that needs to be calculated. �̂�1|
�̂�,𝑛

 is the concentration value at point �̂� 

between nodes. As we know from Eq. (9) those values are equal. Therefore we need an 

interpolation method to calculate the concentration value at �̂� by using the concentration values 

at all nodal points at time level 𝑛. The accuracy of the solution depends on the order of the 

 

2i   1i  i  1i  2i   

1n  

n  

t  

x  x̂  



E. Bahar, G. Gurarslan 

 

80 
 

interpolation method. In this study cubic spline interpolation method is picked because of its 

high-order accuracy [22]. 

Cubic splines use third-order polynomials generated at each interval for interpolation. Suppose 

there are 𝑀 + 1 data points (𝑥1, �̂�1|
1,𝑛

) , … , (𝑥𝑀+1, �̂�1|
𝑀+1,𝑛

) so that there are 𝑀 intervals and 

thus 𝑀 cubic polynomials. The general expression a cubic polynomial is as follows 

 

𝑃𝑖(𝑥) = 𝛼𝑖 + 𝛽𝑖(𝑥 − 𝑥𝑖) + 𝛾𝑖(𝑥 − 𝑥𝑖)
2 + 𝜃𝑖(𝑥 − 𝑥𝑖)3,     𝑖 = 1,2, … , 𝑀 (11) 

 

Where 𝛼𝑖 , 𝛽𝑖, 𝛾𝑖, 𝜃𝑖  are the coefficients that should be calculated. Since we have 𝑀  cubic 

polynomials and there are 4 unknown coefficients in each polynomial, we need 4𝑀 equations 

so that these coefficients can be calculated. These equations derived based on the adjacent 

splines agree at interior knots and also first and second derivatives of the adjacent splines agree 

at interior knots. 

𝑃𝑀(𝑥𝑀+1) = �̂�1|
𝑀+1,𝑛

 (12) 

𝑃𝑖(𝑥𝑖) = �̂�1|
𝑖,𝑛

, 𝑖 = 1,2, … , 𝑀 (13) 

The established polynomials must provide the concentration values at those points as stated in 

Eq. (12) and Eq. (13). 

 

𝑃𝑖(𝑥𝑖+1) = 𝑃𝑖+1(𝑥𝑖+1), 𝑖 = 1,2, … , 𝑀 − 1 (14) 

𝑃𝑖
′(𝑥𝑖+1) = 𝑃𝑖+1

′ (𝑥𝑖+1), 𝑖 = 1,2, … , 𝑀 − 1 (15) 

𝑃𝑖
′′(𝑥𝑖+1) = 𝑃𝑖+1

′′ (𝑥𝑖+1), 𝑖 = 1,2, … , 𝑀 − 1 (16) 

 

Eqs. (14-16) represent the equality of the concentration values and first and second derivatives 

of polynomials at interior knots of adjacent splines. In this way 4𝑀 − 2 equations are created. 

The last 2 equations that we need will be obtained from the boundary condition. As we know 

there are various boundary conditions, the natural boundary condition will be used in this study. 

 
𝑃1

′′(𝑥1) = 0

𝑃𝑀
′′(𝑥𝑀+1) = 0

 (17) 

 

Eq. (17) represents the assumptions made in the natural boundary condition. The second 

derivative in the first and last points equals to zero. Thus 4M equations are obtained. First, 

𝑃𝑖(𝑥𝑖) = 𝛼𝑖 (𝑖 = 1,2, … , 𝑀) found from Eq. (11). By integrating this with Eq. (13) 

 

𝛼𝑖 = �̂�1|
𝑖,𝑛

, 𝑖 = 1,2, … , 𝑀 
(18) 

 

Eq. (18) obtained. We define the distance between the nodes as ℎ𝑖 = 𝑥𝑖+1 − 𝑥𝑖 (𝑖 = 1,2, … , 𝑀) 

and the following equations are obtained when all unknown coefficients are written in 𝛾. 
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𝛾1 = 0

𝛾𝑖−1ℎ𝑖−1 + 2𝛾𝑖(ℎ𝑖 + ℎ𝑖−1) + 𝛾𝑖+1ℎ𝑖 = 𝐾1 − 𝐾2,   𝑖 = 2,3, … , 𝑀
𝛾𝑀+1 = 0

 (19) 

Where 

 

𝐾1 =
3 (�̂�1|

𝑖+1,𝑛
− �̂�1|

𝑖,𝑛
)

ℎ𝑖
 (20) 

𝐾2 =
3 (�̂�1|

𝑖,𝑛
− �̂�1|

𝑖−1,𝑛
)

ℎ𝑖−1
 (21) 

 

As seen in Eq. (19), the first and last 𝛾  coefficients are calculated by natural boundary 

condition. The 𝛾 coefficients at the other points form a tri-diagonal matrix system consisting of 

𝑀 − 1 equations. As this system can effectively be solved by the Thomas algorithm, the 𝛾 

coefficients at all points are calculated easily. The values of 𝛼 coefficients are given in Eq. (18). 

The calculations of the remaining 𝛽 and 𝜃 coefficients with the help of the 𝛾 coefficients are as 

follows 

 

𝛽𝑖 =
�̂�1|

𝑖+1,𝑛
− �̂�1|

𝑖,𝑛

ℎ𝑖
−

1

3
(2𝛾𝑖 + 𝛾𝑖+1)ℎ𝑖 , 𝑖 = 1,2, … , 𝑀 (22) 

𝜃𝑖 =
𝛾𝑖+1 − 𝛾𝑖

3ℎ𝑖
, 𝑖 = 1,2, … , 𝑀 (23) 

 

Thus, a total of 𝑀 cubic polynomials are obtained. A detailed description of the arrangements 

is available from the work of Esfandiari [14]. 

4. Crank-Nicolson Scheme for Diffusion Process 

The Crank-Nicolson scheme is an implicit scheme and gives quite accurate results in the 

solution of the diffusion equation. The application to the diffusion equation given in Eq. (3) is 

as follows 

 

�̂�2|
𝑖,𝑛+1

− �̂�2|
𝑖,𝑛

∆𝑡

=
𝐷

2(∆𝑥)2
(�̂�2|

𝑖+1,𝑛
− 2�̂�2|

𝑖,𝑛
+ �̂�2|

𝑖−1,𝑛
)

+
𝐷

2(∆𝑥)2
(�̂�2|

𝑖+1,𝑛+1
− 2�̂�2|

𝑖,𝑛+1
+ �̂�2|

𝑖−1,𝑛+1
) 

(24) 
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The values at time level 𝑛 are known and the values at time level 𝑛 + 1 are unknown. By 

gathering the known values to the right side and the unknown values to the left side in the Eq. 

(24), the following equation is obtained. 

 

𝑎𝑖�̂�2|
𝑖−1,𝑛+1

+ 𝑏𝑖�̂�2|
𝑖,𝑛+1

+ 𝑐𝑖�̂�2|
𝑖+1,𝑛+1

= 𝑓𝑖 (25) 

 

The coefficients in Eq. (25) 

 

𝑎𝑖 =
𝐷∆𝑡

2(∆𝑥)2
 (26) 

𝑏𝑖 = −
𝐷∆𝑡

(∆𝑥)2
− 1 (27) 

𝑐𝑖 =
𝐷∆𝑡

2(∆𝑥)2
 (28) 

𝑓𝑖 = −�̂�2|
𝑖,𝑛

−
𝐷∆𝑡

2(∆𝑥)2
(�̂�2|

𝑖+1,𝑛
− 2�̂�2|

𝑖,𝑛
+ �̂�2|

𝑖−1,𝑛
) (29) 

 

Eq. (25) forms a tridiagonal system of equations. This system can be solved effectively by the 

Thomas algorithm [15]. 

5. Numerical Application 

In this section, a sharp structure one-dimensional advection-diffusion equation will be solved 

with different operator splitting methods which combine MOC-CS and CN. Effects of operator 

splitting methods will be examined for various Courant numbers. Obtained results will be 

compared with solutions available in the literature and exact solution. In addition, the accuracy 

of the methods will be evaluated by calculating the error norms. The error norms are calculated 

as follows. 

 

𝐿∞ = max
𝑖

|𝐶𝑖
𝑒𝑥𝑎𝑐𝑡 − 𝐶𝑖

𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙| 
(30) 

𝐿2 = √ ∑ |𝐶𝑖
𝑒𝑥𝑎𝑐𝑡 − 𝐶𝑖

𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙|
2

𝑀+1

𝑖=1

 (31) 

 

Example: Velocity of the flow and diffusion coefficient are taken as 𝑈 = 0.01 𝑚/𝑠 and 𝐷 =
0.002 𝑚2/𝑠  in this experiment. Length of the channel picked as 𝐿 = 100 𝑚 . The analytic 

solution of this problem can be obtained by solving the following equation [5]. 

 

𝐶(𝑥, 𝑡) =
1

2
𝑒𝑟𝑓𝑐 (

𝑥 − 𝑈𝑡

√4𝐷𝑡
) +

1

2
𝑒𝑥𝑝 (

𝑈𝑥

𝐷
) 𝑒𝑟𝑓𝑐 (

𝑥 + 𝑈𝑡

√4𝐷𝑡
) (32) 
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The used boundary conditions in the solution are as follows 

 

𝐶(0, 𝑡) = 1 (33) 

−𝐷 (
𝜕𝐶

𝜕𝑥
) (𝐿, 𝑡) = 0 (34) 

 
Fig. 2. Comparison of the exact and the numerical solution obtained with MOC-CS-CN method for 

∆𝑥 = 1 𝑚 and ∆𝑡 = 10 𝑠 

Initial condition of the problem can be obtained from the exact solution. In all calculations 

spatial step size picked as ∆𝑥 = 1 𝑚. Fig. 2 shows that comparison of exact solution and 

numerical solution with MOC-CS-CN method for time interval of ∆𝑡 = 10. As it clearly can 

be seen there is an excellent agreement between numerical solution and exact solution. As 

shown in Fig. 2, when the maximum calculation time is 3000 𝑠, the critical concentration 

values are between 18 and 42 𝑚. Therefore, the values at these points will be compared. 

Since the problem has a sharp structure, obtaining close results to the analytical solution is very 

difficult. For this reason, calculations start from a small time interval. The calculations in Table 

1 were made for ∆𝑡 = 1. Almost all of the methods have found the same values as the analytical 

solution. There is also no visible difference between operator splitting methods. For this reason, 

the time interval will be gradually enlarged until this difference appears to be clear. 

The calculations in Table 2 were made for ∆𝑡 = 10. This small change in time interval is 

enough for other methods to start to get away from the analytical solution. When the calculated 

concentration values are compared it seems clear that the MOC-CS-CN method has the closest 
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results to the analytical solution and lowest error norms for both operator splitting methods. 

Thus, it has become clear how effective is the MOC-CS-CN method in sharp problems. In 

addition, the effect of operator splitting methods on the solution seems to appear. 

Table 1. Comparison of obtained solution with exact and numerical solutions in the literature 

(∆𝑡 = 1 𝑠)  

x (m) 

[12] 

MC-

CD6 

[11] 

RK4-CD6 

[16] 

CuTBSM 

MOC-CS-CN 

Exact 
Lie-Trotter Strang 

0 1.000 1.000 1.000 1.000 1.000 1.000 

18 1.000 1.000 1.000 1.000 1.000 1.000 

19 0.999 0.999 0.999 0.999 0.999 0.999 

20 0.998 0.998 0.998 0.998 0.998 0.998 

21 0.996 0.996 0.996 0.996 0.996 0.996 

22 0.991 0.991 0.991 0.990 0.990 0.991 

23 0.982 0.982 0.982 0.981 0.981 0.982 

24 0.964 0.964 0.964 0.963 0.963 0.964 

25 0.935 0.934 0.934 0.933 0.933 0.934 

26 0.889 0.889 0.888 0.888 0.888 0.889 

27 0.824 0.823 0.822 0.823 0.823 0.823 

28 0.739 0.738 0.736 0.738 0.738 0.738 

29 0.637 0.636 0.635 0.635 0.635 0.636 

30 0.523 0.523 0.522 0.522 0.522 0.523 

31 0.408 0.408 0.408 0.408 0.408 0.408 

32 0.301 0.301 0.301 0.301 0.301 0.301 

33 0.208 0.208 0.208 0.209 0.209 0.208 

34 0.135 0.135 0.136 0.137 0.137 0.135 

35 0.082 0.082 0.082 0.084 0.084 0.082 

36 0.047 0.046 0.046 0.048 0.048 0.046 

37 0.025 0.024 0.024 0.026 0.026 0.024 

38 0.012 0.012 0.012 0.013 0.013 0.012 

39 0.005 0.005 0.005 0.006 0.006 0.005 

40 0.002 0.002 0.002 0.003 0.003 0.002 

41 0.001 0.001 0.001 0.001 0.001 0.001 

42 0.000 0.000 0.000 0.000 0.000 0.000 

L2 0.0017 0.0017 - 0.0046 0.0046 - 

L∞ 0.0008 0.0008 - 0.0019 0.0019 - 

 

The calculated 𝐿∞ error values are compared with other errors in the literature for different time 

intervals in Table 3. Except for the error of extended cubic B-spline collocation method at ∆𝑡 =
1 𝑠, MOC-CS-CN always has smaller error values. In addition, the increase of the time interval 

makes the effect of the operator splitting method more noticeable. It is clear that the Strang 

splitting method improves the quality of the solution. 
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Table 2. Comparison of obtained solution with exact and numerical solutions in the literature 

(∆𝑡 = 10 𝑠)  

x (m) 

[12] 

MC-

CD6 

[11] 

RK4-CD6 

[16] 

CuTBSM 

MOC-CS-CN 

Exact 
Lie-Trotter Strang 

0 1.000 1.000 1.000 1.000 1.000 1.000 

18 1.000 1.000 1.000 1.000 1.000 1.000 

19 0.999 0.999 0.999 0.999 0.999 0.999 

20 0.998 0.998 0.998 0.998 0.998 0.998 

21 0.996 0.996 0.996 0.996 0.996 0.996 

22 0.991 0.992 0.991 0.991 0.991 0.991 

23 0.982 0.982 0.982 0.981 0.981 0.982 

24 0.965 0.965 0.963 0.963 0.963 0.964 

25 0.936 0.936 0.933 0.934 0.934 0.934 

26 0.891 0.891 0.885 0.889 0.889 0.889 

27 0.827 0.827 0.818 0.824 0.824 0.823 

28 0.743 0.743 0.732 0.739 0.739 0.738 

29 0.642 0.641 0.631 0.637 0.637 0.636 

30 0.529 0.528 0.517 0.525 0.524 0.523 

31 0.414 0.413 0.404 0.410 0.410 0.408 

32 0.306 0.306 0.298 0.303 0.302 0.301 

33 0.213 0.212 0.207 0.211 0.210 0.208 

34 0.138 0.138 0.134 0.138 0.138 0.135 

35 0.084 0.084 0.081 0.085 0.084 0.082 

36 0.048 0.048 0.045 0.049 0.049 0.046 

37 0.025 0.025 0.023 0.026 0.026 0.024 

38 0.012 0.012 0.011 0.013 0.013 0.012 

39 0.006 0.006 0.005 0.006 0.006 0.005 

40 0.002 0.002 0.002 0.003 0.003 0.002 

41 0.001 0.001 0.001 0.001 0.001 0.001 

42 0.000 0.000 0.000 0.000 0.000 0.000 

L2 0.0148 0.0142 - 0.0073 0.0064 - 

L∞ 0.0060 0.0055 - 0.0028 0.0025 - 

 

Table 3. Comparison of 𝐿∞ error norms (∆𝑥 = 1 𝑚) 

∆t (s) 

[17] MOC-CS-CN 

BSCM ECuBSCM 
Lie-

Trotter 
Strang 

60 0.04330 0.04250 0.01942 0.01180 

30 0.01962 0.01961 0.00828 0.00567 

20 0.01270 0.01260 0.00512 0.00376 

10 0.00685 0.00608 0.00284 0.00251 

5 0.00409 0.00307 0.00222 0.00212 

1 0.00224 0.00127 0.00188 0.00187 
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The calculations in Table 4 were made for ∆𝑡 = 60. Examining Table 4, it can be seen that 

none of the methods have found close results to the exact solution. This indicates that selected 

time interval is quite large. When the results of the operator splitting methods are compared, 

the improvement provided by the Strang operator splitting method is clearly visible. But this 

improvement was not enough. 

Table 4. Comparison of obtained solution with exact and numerical solutions in the literature 

(∆𝑡 = 60 𝑠)  

x (m) 
[18] 

MOCS 

[5] 

MOCG 

[19] 

CBSG 

[20] [21] MOC-CS-CN 
Exact 

FEMLSF FEMQSF TC TG Lie-Trotter Strang 

0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

19 1.000 0.999 1.000 1.000 1.000 0.999 0.999 0.999 0.999 0.999 

20 1.000 0.998 0.999 0.999 1.000 0.999 0.998 0.998 0.998 0.998 

21 1.000 0.996 0.996 0.997 0.999 0.999 0.996 0.996 0.996 0.996 

22 1.000 0.990 0.991 0.993 0.996 0.998 0.991 0.992 0.991 0.991 

23 1.000 0.978 0.981 0.985 0.989 0.994 0.980 0.983 0.982 0.982 

24 1.000 0.957 0.961 0.970 0.974 0.987 0.960 0.967 0.965 0.964 

25 1.000 0.922 0.927 0.943 0.946 0.972 0.926 0.940 0.937 0.934 

26 0.996 0.870 0.874 0.902 0.900 0.945 0.874 0.897 0.893 0.889 

27 1.013 0.799 0.800 0.842 0.832 0.902 0.800 0.836 0.830 0.823 

28 1.047 0.708 0.706 0.763 0.743 0.838 0.705 0.754 0.747 0.738 

29 0.897 0.602 0.596 0.666 0.638 0.755 0.595 0.654 0.647 0.636 

30 0.457 0.488 0.479 0.556 0.524 0.653 0.479 0.542 0.535 0.523 

31 0.067 0.375 0.366 0.442 0.411 0.541 0.366 0.427 0.420 0.408 

32 -0.036 0.272 0.265 0.332 0.306 0.427 0.264 0.318 0.312 0.301 

33 -0.010 0.185 0.181 0.235 0.218 0.320 0.181 0.222 0.218 0.208 

34 0.002 0.118 0.118 0.156 0.147 0.227 0.117 0.146 0.143 0.135 

35 0.000 0.070 0.072 0.096 0.095 0.152 0.072 0.090 0.088 0.082 

36 0.000 0.038 0.042 0.055 0.058 0.096 0.041 0.052 0.051 0.046 

37 0.000 0.020 0.023 0.030 0.034 0.057 0.023 0.028 0.027 0.024 

38 0.000 0.009 0.012 0.015 0.019 0.032 0.012 0.014 0.014 0.012 

39 0.000 0.004 0.006 0.007 0.010 0.017 0.006 0.007 0.006 0.005 

40 0.000 0.002 0.003 0.003 0.005 0.008 0.002 0.003 0.003 0.002 

41 0.000 0.001 0.001 0.001 0.003 0.004 0.001 0.001 0.001 0.001 

42 0.000 0.000 0.001 0.000 0.001 0.001 0.000 0.001 0.000 0.000 

L2 - - - - - - - 0.0479 0.0300 - 

L∞ - - - - - - - 0.0194 0.0118 - 

 

6. Conclusions 

This paper deals with the solution of advection-diffusion equation based on operator splitting 

approach. Two different operator splitting methods were used such as Lie-Trotter and Strang-

Marchuk. The solutions of advection process and diffusion process were obtained by the 

method of characteristics with cubic spline and Crank-Nicolson scheme, respectively. These 

two different methods integrated through operator splitting methods and effects of them on the 

solution examined by a one-dimensional advection-diffusion problem which has a sharp 
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structure. The examination has been done by comparing error norm values and comparison with 

other results available in the literature. As a result, the MOC-CS-CN method achieved very 

good results. It has almost identical results when ∆𝑡 is small. Also it has been observed that the 

Strang operator splitting method improves the quality of the result when the time interval 

increases. In future studies, it is considered to extend this method to multi-dimensional 

problems by operator splitting methods. 
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Abstract 

In this study, buckling analysis of a nano sized beam has been performed by using Timoshenko beam theory and 

Eringen’s nonlocal elasticity theory. Timoshenko beam theory takes into account not only bending moment but also shear 

force. Therefore, it gives more accurate outcomes than Euler Bernoulli beam theory. Moreover, Eringen’s nonlocal 

elasticity theory takes into account the small scale effect. Thus, these two theories are utilized in this study. The vertical 

displacement function is chosen as a Fourier sine series.  Similarly, the rotation function is chosen as a Fourier cosine 

series. These functions are enforced by Stokes’ transformation, and higher order derivatives of them are obtained. These 

derivatives are written in the governing equations for the buckling of nonlocal Timoshenko beams. Hence Fourier 

coefficients are acquired.  Subsequently boundary condition of established beam model is identified with Timoshenko 

beam and Eringen’s nonlocal elasticity theories, and the linear equations are obtained.  A coefficients matrix is created 

by utilizing these linear systems of equations. When determinant of this coefficient matrix is calculated, the critical 

buckling loads are acquired. Finally, achieved outcomes are compared with other studies in the literature.  Calculated 

results are also presented in a series of figures and tables 

Keywords: Timoshenko beam theory, Eringen’s nonlocal elasticity theory, elastic buckling analysis, Stokes’ 

transformation, Fourier series. 

1. Introduction 

Nano derives from a Greek word meaning dwarf. A nanometer is a unit of length equal to one 

billionth of a meter. Nanotechnology being with manipulation of substance on an atomic, molecular, 

and supramolecular scale is a new science. This new science aims to create a lot of new materials 

which occurs from many different atoms combined. Therefore the emphasis of nanotech. is 

increasing step by step. A lot of researches being associated with nanotech. are made in the literature. 

These researches are made by three methods. These are synthesis, simulation and theoretical. Cost of 

synthesis and simulation are utmost large. Hence theoretical method is utilized commonly. In this 

study, buckling analysis of nano sized beams has examined by theoretically. Thus Timoshenko beam 

and Eringen’s nonlocal elasticity theories are utilized together. Timoshenko beam theory is more 

advanced a version of Euler Bernoulli beam theory. In the Euler Bernoulli beam theory, influence of 

shear on bending deformation is considered negligible compared to bending moment. Therefore 

plane sections remain plane and normal to the longitudinal axis during bending deformation. 

However, in the reality, influence of shear on bending deformation cannot be neglected. Thus 

Timoshenko beam theory regarding not solely moment but also shear effect gives more realistic 
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outcomes than Euler Bernoulli beam theory. Moreover Eringen’s nonlocal elasticity theory takes into 

account the small scale effect. 

Once the literature is investigated closely, it is observed that. There are a lot of studies being 

associated with nonlocal elasticity theory. Studies regarding nonlocal elasticity theory found in the 

literature are compiled and presented in this part. In order to explain the small scale effect, the 

nonlocal continuum mechanics has been utilized in [1-3]. Moreover Atomistic simulations and 

experimental findings have proved a significant small scale effect in the mechanic performance of 

material at micro and nano scale [4-6]. The long term repercussions of these studies on engineering 

and science have been felt. Thus many investigators have implemented nonlocal elasticity theory for 

their studies being associated with bending, buckling and vibration [7-36]. 

In this study, on the basis of the higher order elasticity theory known as nonlocal elasticity theory, an 

analytical method is presented for the buckling analysis of nano sized Timoshenko beams with 

rotational restraints. The vertical displacement function is sought as a Fourier cosine series and the 

slope of the beam is represented as Fourier sine series. Then Stokes’ transformation is used to take 

care of the rotational restraints. A coefficient matrix including shear correction factor and rotational 

spring parameters is obtained. The eigen values of this matrix gives the buckling loads. Present 

results are compared with the similar problem solutions available in the literature. 

2. Formulation of the Problem 

According to the nonlocal Timoshenko beam theory, governing equations are given [7]; 

 

 

(1) 

 

(2) 

where, E is modulus of elasticity, I is moment of inertia of beam, G is modulus of elasticity in shear, 

A is cross sectional area, ʁs is Timoshenko shear coefficient, P is critical buckling load, γ is small-

scale effect coefficient φ is the vertical displacement function, θ is the rotation function.  

In Ref. [7] and [8], the solution of above equations has been presented for rigid boundary conditions. 

On the other hand, difference of this study from the other studies is that. This study allows to make 

solution for non-rigid boundary conditions. Therefore the long term repercussions of this study on 

engineering and science will be felt. 

2.1. Fourier Series 

The displacement and rotation functions can be indicated as following Fourier series. 

 

 

(3) 

 

(4) 
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Where 

 

 

(5) 

In which L is length of beam, An and Bn is Fourier coefficients.  

2.2. Stokes’ Transformation 

In order to include non-rigid boundary conditions in the solution of problem a mathematical 

transform is necessary. Therefore, in this study, Fourier series and Stokes‘ transformations are 

utilized together and included to the solution of the problem with the deformable boundary 

conditions.  

 

 

(6) 

The first derivative of the displacement function yields; 

 

 

(7) 

The above function can be exhibited as a Fourier cosine series;  

 

 

(8) 

In the equation (8), f0 and fn coefficients are indicated as follows. 

 

 

(9) 

 

(10) 

Finally, if partial integration is applied;  

 

 

(11) 

 

(12) 

The steps followed above are recognized as Stokes‘ transformations. Higher order derivatives can be 

found out similarly. Up until the fourth order, resulting derivatives of the displacement function are 

obtained to be as following. 
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(13) 

  

 

(14) 

  

 

(15) 

  

 

(16) 

  

The first derivative of the rotation function yields; 

 

 

(17) 

In order to display the above function as a Fourier cosine series, the second derivative of the rotation 

function is necessary to be calculated; 

 

(18) 

If the steps followed for the displacement function are similarly applied for the rotation function up 

until the third order, resulting derivatives of the rotation function are obtained to be as following. 

 

 

(19) 

 

(20) 

 

(21) 

2.3. Fourier Coefficients 

Taking the first derivative of the equation (1);  

 

 

(22) 
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If the equations (14), (16), (19) and (21) are written in the equations (2) and (22); 

 

 
 

(23) 

  

 

(24) 

  

An and Bn are derived from these equations when φ0 and φL are equal to zero. 

 

 
 

(25) 

  

 

(26) 

2.4. Boundary Conditions 

Flexural moment function M(x) of nonlocal Timoshenko beams is shown as following [7]. 

 

 

(27) 

If the equation (27) is written in the equations (25) and (26); 

 

 

 

(28) 

 

 

 

(29) 

 

 
Fig. 1. The figure, displaying boundary conditions. 
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Flexural moment function M(x) can be shown in the form; 

 
 

, (30) 

where R is stiffness of the rotational springs. 

2.5. Construction of Coefficients Matrix 

If z=0 and αn=nπ/L are written in the equation (30); 

 

 
 

(31) 

If z=L and αn=nπ/L are written in the equation (30); 

 

 

(32) 

Two equations are obtained dependent on M0 and ML. Thus coefficients matrix is composed.  

 

 
(33) 

Where Φ11, Φ12, Φ21 and Φ22  parameters are given the below. 

 

 

(34) 

  

 

(35) 

  

 

(36) 

  

 

(37) 
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3. Numerical results  

The equation (33) is an eigenvalue problem. The critical buckling loads can be calculated by setting 

the determinant of the coefficient matrix to zero. The characteristic equation can be achieved by 

assigning the proper values of (R1) and (R2) corresponding to the restrained boundary condition. If 

R1=0 and R2=0, the beam is pinned ended beam. If R1=0 and R2=∞, the beam is clamped pinned 

beam. If R1=∞ and R2=∞, the beam is clamped ended beam. κs =0.9 for Timoshenko beam, κs =∞ for 

Euler Bernoulli beam. 

With the theoretical formulation proposed in this study, different numerical examples are solved in 

this part. Firstly, accuracy and validity of the present mathematical approach is validated. Validation 

study is given in Tables 1-2. 

Several numerical examples are solved numerically. Tabulated values given in the Table 1 are 

plotted in the Figs 2-4. The Fourier sine and cosine series are truncated for 50 terms of infinite series. 

It can be seen from these figures, the nonlocal effects are more pronounced for higher buckling 

modes. 
 

Table 1. Critical buckling loads Pcr(nN) for pinned, clamped–pinned and clamped beams with diverse 

small scale coefficients γ(nm) and length-to-diameter ratios L/d in this study.  

d=1nm, A= 2/4 nm2,  I=  /64 nm4, E=1000kPa, G=420.168kPa 

γ(nm) 0 0.5 1 1.5 2 

L/d T EB T EB T EB T EB T EB 

Pinned ended beam 

10 4.7670 4.8447 4.6540 4.7281 4.3450 4.4095 3.9121 3.9644 3.4333 3.4735 

12 3.3267 3.3644 3.2713 3.3077 3.1156 3.1486 2.8865 2.9149 2.6172 2.6405 

14 2.4514 2.4718 2.4212 2.4411 2.3348 2.3533 2.2038 2.2202 2.0432 2.0574 

16 1.8805 1.8925 1.8626 1.8744 1.8111 1.8222 1.7313 1.7414 1.6306 1.6396 

18 1.4878 1.4953 1.4766 1.4840 1.4440 1.4511 1.3928 1.3993 1.3269 1.3329 

 

Clamped-pinned beam 

10 9.6851 10.01 9.2298 9.5258 8.0890 8.3155 6.7074 6.8624 5.4130 5.5135 

12 6.7934 6.9525 6.5662 6.7147 5.9675 6.0899 5.1803 5.2723 4.3727 4.4381 

14 5.0215 5.1079 4.8963 4.9784 4.5555 4.6685 4.0820 4.1388 3.5643 3.6067 

16 3.8599 3.9107 3.7855 3.8343 3.5785 3.6221 3.2796 3.3163 2.9363 2.9656 

18 3.0581 3.0899 3.0112 3.0421 2.8788 2.9069 2.6821 2.7066 2.4481 2.4684 

 

Clamped ended beam 

10 18.542 19.777 16.942 17.967 13.458 14.097 10.023 10.373 7.3846 7.5729 

12 13.127 13.734 12.304 12.836 10.357 10.731 8.1958 8.4284 6.3426 6.4810 

14 9.7591 10.090 9.2970 9.5974 8.1406 8.3700 6.7428 6.8995 5.4361 5.5374 

16 7.5298 7.7256 7.2517 7.4332 6.5283 6.6751 5.5977 5.7053 4.6665 4.7410 

18 5.9813 6.1042 5.8045 5.9202 5.3316 5.4291 4.6943 4.7696 4.0213 4.0765 
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Table 2. In Ref. [7], critical buckling loads Pcr(nN) for pinned, clamped–pinned and clamped beams 

with diverse small scale coefficients γ(nm) and length-to-diameter ratios L/d.  

d=1nm, A= 2/4 nm2,  I=  /64 nm4, E=1000kPa, G=420.168kPa 

γ 0 0.5 1 1.5 2 

L/d T EB T EB T EB T EB T EB 

Pinned ended beam 

10 4.7670 4.8447 4.6540 4.7281 4.3450 4.4095 3.9121 3.9644 3.4333 3.4735 

12 3.3267 3.3644 3.2713 3.3077 3.1156 3.1486 2.8865 2.9149 2.6172 2.6405 

14 2.4514 2.4718 2.4212 2.4411 2.3348 2.3533 2.2038 2.2202 2.0432 2.0574 

16 1.8805 1.8925 1.8626 1.8744 1.8111 1.8222 1.7313 1.7414 1.6306 1.6396 

18 1.4878 1.4953 1.4766 1.4840 1.4440 1.4511 1.3928 1.3993 1.3269 1.3329 

 

Clamped-pinned beam 

10 9.5605 9.9155 9.1179 9.4349 8.0055 8.2461 6.6520 6.8151 5.3782 5.4830 

12 6.7118 6.8858 6.4904 6.6496 5.9059 6.0363 5.1348 5.2321 4.3410 4.4096 

14 4.9638 5.0589 4.8416 4.9297 4.5086 4.5844 4.0448 4.1052 3.5355 3.5811 

16 3.8168 3.8715 3.7441 3.7967 3.5418 3.5885 3.2490 3.2880 2.9120 2.9431 

18 3.0248 3.0603 2.9789 3.0121 2.8493 2.8795 2.6567 2.6828 2.4270 2.4489 

 

Clamped ended beam 

10 18.192 19.379 16.649 17.638 13.273 13.894 9.9200 10.263 7.3283 7.5137 

12 12.874 13.458 12.082 12.594 10.199 10.562 8.0964 8.3233 6.2829 6.4187 

14 9.5687 9.8872 9.1240 9.4132 8.0077 8.2296 6.6514 6.8038 5.3765 5.4756 

16 7.3818 7.5699 7.1143 7.2889 6.4168 6.5585 5.5155 5.6199 4.6092 4.6819 

18 5.8631 5.9811 5.6931 5.8043 5.2375 5.3315 4.6212 4.6942 3.9675 4.0212 

 
                                                                                                        

 
Fig. 2. Variations of critical buckling load for clamped ended beam. 
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Fig. 3. Variations of critical buckling load for clamped pinned beam. 

  
Fig. 4. Variations of critical buckling load for pinned ended beam. 
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4. Conclusions 

The critical buckling loads are found by using nonlocal elasticity theory for the Timoshenko and 

Euler Bernoulli beams. If the critical buckling loads of the Timoshenko and Euler Bernoulli beams 

are compared between each other, it is observed that. Once length-to-diameter ratios decline, results 

diverge from each other. Once length-to-diameter ratios increase, results converge to each other. 

Even if the results converge to each other. The critical buckling loads of the Timoshenko beams are 

always lower than the Euler Bernoulli beams. Because, in the Timoshenko beams, influence of shear 

on bending deformation is taken into account. Moreover, if the value of the small effect scale rises, 

the critical buckling loads decrease. 

The results are compared to other studies found in the literature which led to the conclusion that a 

great deal of similarity exists between them, which additionally proves the accuracy of this method. 

Moreover, this method allows calculation with non-rigid boundary conditions. It is this reason that 

makes this study a significant contribution with a potential to pave the way for further and more 

advanced studies on this topic.  
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Abstract 

Glass fiber reinforced concrete (GFRC) is a cementitious composite reinforced by the addition of alkali-resistant glass 

fibers. GFRC is widely used for various types of precast products in civil engineering industries. GRFC mixes generally 

include silica sand to produce precast concrete elements; however, silica sand was replaced with barite sand at the 

ratios of 5%, 10 % and 15 % of wt. in order to reveal its applicability and potential for different engineering purposes. 

The flexural strength and the freeze-thaw(F&T) resistance of the composites were studied. The experimental results 

showed that the replacement of silica sand with barite sand up to 15 % of wt. enhances the mechanical properties of the 

composites in respect to flexural strength and F&T resistance properties. 

Keywords: Glass fiber, silica sand, barite sand, silica sand replacement, glass fiber reinforced concrete. 

1. Introduction 

Fiber addition into the matrix significantly enhances the mechanical properties of the concretes. 

Engineering properties of the concrete such as flexural strength, toughness, abrasion resistance and 

impact can be increased with the addition of various types of fibers according to the results of many 

literature studies [1-3]. Various types of fibers such as basalt, carbon, aramid and glass have been 

commonly used for reinforcing cementitious matrixes [4, 5].   

Some academics reported that glass fiber addition increase the flexural and splitting tensile strength 

of the composites up to 20 %. Flexural toughness and shear toughness properties can also be 

increased by inclusion of a certain amount of fibers as per the results of the studies [6,7]. 

Barite mineral is commonly used as aggregates for producing heavyweight concrete. Barite 

aggregate added concrete mixes are generally selected to minimize the effect of radiations such as 

gamma rays. The addition of this mineral in small quantities can enhance the concrete behavior 

against the radiation waves compared to the conventional concrete mixes [8,9]. Some researches 

results showed that addition of barite mineral can not enhance the mechanical properties of the 

ordinary concrete [10, 11].   

Barite mineral is more sensitive to abrasion compared to the other types of aggregates. In addition, 

due to massive usage of barite minerals for the radiation shielding purposes, it becomes difficult to 

find coarse graded barite aggregates [12].  
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In this study, the aim was to investigate the potential usage of barite aggregates as silica sand 

replacement materials in GFRC applications. 

2. Materials and Experimental Details 

 

CEM I type white cement complying the TS EN 197-1 standard was used as a binding material. 

Some physical and chemical properties of the white cement can be found in Table 1. 

Table 1. The chemical and physical properties of CEM I 52.5 R cement 
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)3Specific weight (t/m 3.06 

3O2Al 4.05 /g)2Specific surface (cm 4600 

3O2Fe 0.26 Whiteness (%) 85.5 

CaO 65.7 Initial Setting time (min.) 100 

MgO 1.30 Final Setting time (min.) 130 

O2Na 0.30 Water for standard consistency (%) 30 

O2K 0.35 Volume constancy (mm) 1 

3SO 3.30 0.045 Sieve Residue (%) 1 

Free CaO 1.6 0.090 Sieve Residue (%) 0.1 

Chloride (Cl) 0.01 Compressive Strength at 2 days (MPa) 37 

Insoluble 0.18 Compressive Strength at 7 days (MPa) 50 

Loss on Ignition 3.20 Compressive Strength at 28 days (MPa) 60 

Silica sand and barite mineral were selected as aggregates. Particle size distribution of silica sand is 

given in Fig. 1. And chemical and mineralogical properties of the aggregates can be found in Table 2. 

 

 

Fig.1. Silica sand particle size distribution 
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Table 2. Aggregates chemical and mineralogical properties 

Chemical and mineralogical composition 

 SiO2 Fe2O3 MgO CaO K2O Na2O Al2O3 

Silica sand 98.60 0.13 0.03 0.01 0.09 0.02 1.12 

Barite 0.4 0.06 0.10 0.36 - - - 

Polycarboxylate based plasticizer was used as the chemical agent. The water used during the 

experimental works was potable. Alkali resistant glass fibers were chosen as reinforcing fiber 

material, and mechanical and physical properties of the glass fiber are given in Table 3. Fiber ratio 

was kept constant as 3 % of wt. Mix proportions of the composite can be found in Table 4. 

 

Table 3. Physical and mechanical properties of the alkali resistant glass fibers 

Mechanical and physical properties of the glass fibers 
Ultimate strength, bending (MOR, MPa) 20-28 
Elastic limit, bending (LOP, MPa) 7-11 
Ultimate strength, tensile (MOR, MPa) 8-11 
Elastic limit, tensile (LOP, MPa) 5-7 
Compressive Strength (Mpa) 50-80 
Elastic Modulus (GPa) 10-20 

3Dry density t/m 1.9-2.1 

 

Table 4. Experimental sets 

Mixture 

Code 

Silica 

Sand(kg) 

Barite Sand 

(kg) 

Fiber 

ratio  

White cement 

(kg)  

W/C Superplasticizer 

(kg) 

R1 50 0 

3
 %

 

50 0.34 0.50 

M1 47.5 2.5 50 0.34 0.52 

M2 45 5 50 0.34 0.55 

M3 42.5 7.5 50 0.34 0.58 

The reference mix was composed of silica sand, white cement, glass fiber and superplasticizer. The 

specimens with the dimensions of 160 x 40 x 40 mm were made for the mechanical tests. Flexural 

strength tests were conducted with four-point bending test machine. All specimens were kept under 

the laboratory conditions for 24 hours. Flexural strength tests were conducted as per the requirements 

of TS EN 1170-4,5. F&T resistance of the specimens were determined in comply with the ASTM C 

666 standard. 

3. Results and Discussions 

Flexural test results at 7, 15 and 28 days are given in Fig. 2. Flexural test results showed that strength 

values enhance with the increasing barite sand content. 
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Fig.2. Flexural strength test results 

Maximum flexural strength value was recorded as 25.77 MPa at 28 days and it was belonged the 

mixture M3. Silica sand replacement with the barite sand at the ratios of 15 % of wt. significantly 

increased the strength values of the specimens.  

The strength test results and strength losses of the composites can be found in Fig. 3. Barite added 

mixes have lower strength loss values compared to the reference mix. The minimum strength loss 

value after F&T cycles was obtained as 22.27 % belonged to the M3 mix. Decrease in strength losses 

may be attributed to the increased durability of the mixes with the increasing barite content. 

 

 

Fig.3. Flexural strength losses after F-T cycles 
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4. Conclusions 

The effects of barite addition to glass fiber reinforced concrete were studied within the scope of this 

experimental research. A good synergy between the barite aggregate addition and conventional 

GFRC composition was obtained with the light of the results of the tests. The main findings can be 

summarized as follows: 

 The increase in barite aggregate content in GFRC composites increases the flexural strength 

values. 

 In replacement of 15 % of wt. silica sand with barite aggregates showed the best performances 

both for the flexural strength and F&T test results. 

 Barite aggregates can be used in GFRC mixes for specific purposes such as radiation protection. 

 As the amount of barite increased in GFRC, the durability property was also increased according 

to the F&T test results. Strength losses of the composites can be limited against the F&T effects 

with the addition of barite aggregates. 

 Future studies should be conducted on possible aging effects. 
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Abstract 

Prediction of wave parameters is important for the planning, designing, construction and maintenance of coastal 

structures. In this study, significant wave heights (Hs) for Konyaaltı coast, located in Antalya at Mediterranean Sea 

coastline of Turkey is predicted. Significant wave height estimation is performed based on the wind data set which is 

obtained from The European Centre for Medium-Range Weather Forecasts (ECMWF) and Turkish State Meteorological 

Service (TSMS) by numerical and parametric methods in literature including WAM, CEM, Wilson and SMB method. While 

13 years of wind data obtained from ECMWF is used for WAM and CEM method, 30 years of wind data provided from 

TSMS is used for SMB and Wilson method. The accuracy of these methods is investigated by comparing the Gumbel 

distribution results with Wind and Deep Water Wave Atlas for Turkish Coast for Konyaaltı Coast. Consequently, CEM 

method provides more consistent results for the study area compare to other significant wave height prediction methods. 

Keywords: Wave hindcasting, Significant wave height, SMB, Wilson, CEM, WAM 

1. Introduction 

Significant wave height which has an important role in coastal activities such as planning, designing 

of coastal structures, sediment transport and coastal erosion can be predicted by different methods 

including artificial intelligence techniques, numerical models, parametric methods etc. [1-8]. There are 

many studies in literature related to significant wave height estimation. While Duan et al. (2016) use a 

hybrid Empirical Model Decomposition (EMD) Support Vector Regression (SVR) model for short 

term, Altunkaynak (2015) uses spatial function for significant wave height prediction [9, 10]. 

Classification and regression trees are used by Mahjoobi and Etemad-Shahidi, an enhanced Takagi-

Sugeno-based fuzzy methodology is used by Hashim et al., and also genetic algorithm is used by Elbisy 

[11-13]. Moreover, while Wang proposes transformed linear simulation method, Rusu and Raileanu 

uses a wave modelling system based on the simulating waves nearshore for significant wave height 

prediction [14, 15]. 

Wind wave characteristic is necessary for wave hindcasting. Since numerical modelling which solves 

the energy balance equation along the area where active wave generation occurs requires the 

bathymetric, meteorological and oceanographic data. Since numerical modelling is expensive and 

difficult in the absence of these data , several simplified methods including SMB (Sverdrup, Munk and 

Bretschneider) (Bretschneider 1970), Wilson (Wilson 1965), JONSWAP (Haselman et al. 1973), 
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Donelan (Donelan 1980), SPM (Shore Protection Manual) (U.S. Army 1984), CEM (Coastal 

Engineering Manual) (U.S. Army 2006) are used [16]. 

The studies on significant wave height estimation by parametric models including Wilson, SPM, 

JONSWAP, and CEM for the south of Black Sea indicate that although CEM method provides better 

results than the others, parametric methods are unable to provide sufficient result. However, ANFIS 

models provide more accurate results than the parametric methods [17, 18]. Dubey and Das (2013) 

indicates that after significant wave height for Indian Coast is estimated by CEM and Wilson method 

the extreme wave analysis is done by Gumbel, Weibull and log-normal distribution methods [19]. 

Balas et al. (2013) present significant wave height prediction by CEM method and Gumbel distribution 

for Edremit, Balıkesir by use of HYDROTAM-3D [20]. Etemad-Shahidi et al. compare the results of 

CEM, Wilson and SMB methods with the measured wave heights for Great Lakes and investigate the 

accuracy of each model for different conditions [16]. 

The aim of this study is to compare extreme value analysis with Gumbel distribution obtained from 

four different significant wave height prediction methods including WAM (A third generation ocean 

wave prediction model), CEM, Wilson and SMB methods. 

2. Material and Methods 

2.1. Study Area and Dataset Description 

The data set for Konyaaltı coast, located in Antalya at Mediterranean Sea coastline of Turkey at 

30.70°E 36.84°N, 30.66°E (Fig. 1) is obtained from both ECMWF and Turkish State Meteorological 

Service. 

 

 
Fig. 1. Location of study area 

Approximately 30 years of hourly wind data acquired from Turkish State Meteorological Service. The 

data set is composed of station 17300 (from June, 1981 to December, 2006) and station 17302 wind 

data (from January, 2012 to March, 2016). 13 years of 6 hourly wind data (from 2000 to 2013) is 

obtained from ECMWF. While 13 years of ECMWF wind data is used for WAM and CEM method, 

30 years of wind data provided from TSMS is used for SMB and Wilson method. 
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2.2. Methodology 

While WAM model is numerical, the other methods are parametric methods. All methods can be used 

for wave hindcast or forecast. Also the comparative results obtained from WAM, CEM, Wilson and 

SMB methods are presented. 

First of all, fetch length and wind duration are needed to determine whether the fully developed state 

occurs or not. If wind transfers maximum energy to wave, then fully developed sea condition occurs. 

Otherwise, duration limited condition occurs when wind duration is smaller than tmin or fetch limited 

condition occurs when fetch length is smaller than Fmin. Since fetch or duration is inadequate to that 

wind is able to impart maximum energy to wave, sea is non-fully developed state for both duration and 

fetch limited condition. 

The effective fetch length (Feff) which is commonly used in literature is determined according to the 

location of study area. For each wind direction, fetch lengths (Fi) are measured extend over 45º range 

either side of wind direction for each 7,5º interval (αi). By this way, measured 12 fetch lengths and 12 

angles for the wind direction are used to calculate effective fetch length [21] : 

 

(1) 

   

Since wind velocity higher than 3m/s is considered for Wilson and SMB method, wind duration is 

determined according to duration of wind blowing that velocity of wind is higher than 3m/s. And wind 

speed at 10 m above the sea (U10) is used for the methods presented in the following parts. If wind 

speed is observed at any elevation up to 20 m Eq. (2) can be used [22]: 

 

(2) 

 

Additionally, stability correction due to the air-sea temperature difference Eq. (3) and location effect 

due to surface roughness Eq. (4) proposed by Resio and Vincent (1977) can be used where needed 

[22]: 

(3) 

 (4) 

 

After gathering the U10 values, significant wave heights are calculated. First of all, it should be 

determined that the case is fetch limited, duration limited or fully developed. So significant wave height 

are calculated according to formulation that differs in these cases. Since results obtained from SMB, 

Wilson, CEM, and WAM methods indicate the extreme value analysis for Konyaaltı coast, the 

comparative results are shown by Gumbel distribution for each method. 
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2.2.1. SMB 

If wind duration is greater than tmin , Hs is calculated by Eq. (5) in case fetch limited condition. 

Otherwise, case is duration limited and Eq. (6) is used to find corresponding fetch for duration limited 

cases, and then Hs is calculated by Eq. (6). 

 

 

(5) 

 

 

(6) 

 

where g is  acceleration due to gravity (m/s2), F is the fetch length (m), U10 is the wind speed at 10 m 

above the sea surface (m/s), tmin is the minimum duration (hr),  

2.2.2. Wilson 

In this method, minimum duration (tmin, hr) and minimum fetch length (Fmin, km) are calculated by the 

Eq. (7) and Eq. (8): 

 

 (7) 

 (8) 

 

where, F is the fetch length (km), U10 is the wind speed at 10 m above the sea surface (m/s), t is wind 

duration (hr).  

The significant wave height is calculated by Eq. (9) in the fetch limited condition: 

 

  

(9) 

 

where g is  acceleration due to gravity (m/s2). 

Otherwise, in the duration limited condition significant wave height is calculated with equivalent 

fetch which is defined by replacing tmin by t in Eq. (7) 

0,73 0,46

min 101,0t F U

0,5
2

min

2 2 2

10 10 10

6,5882exp 0,0161 ln 0,3692 ln 2,2024 0,8798 ln
gt gF gF gF

U U U U

                                          

1,37 0,63

min 101,0F t U

0,42

2 2

10 10

0,283tanh 0,0125sgH gF

U U

  
   
   

2
0,5

2 2

10 10

0,30 1 1 0,004sgH gF

U U

              



R. Tür, D. Soylu Pekpostalci, Ö. Arlı Küçükosmanoğlu, A. Küçükosmanoğlu 

 

110 

 

2.2.3. CEM 

In the CEM method [23] the minimum wind duration (tmin , s) formulation is expressed by Eq. (10): 

 

  

(10) 

 

where F is the fetch length (m), U10 is the wind velocity above 10 m from the sea surface (m/s), g is 

the acceleration of gravity (m/s2). 

For fetch limited condition Hs is calculated by Eq. (11): 

 

  

(11) 

 

where u⁎ is the friction velocity (m/s) estimated by Eq. (12): 

 

  

(12) 

 

where, CD is the drag coefficient which is calculated by Eq. 13 

 

(13) 

 

In duration limited condition equivalent fetch length is calculated by: 

 

 

(14) 

 

 2.2.4. WAM 

WAM which is a third generation wave model is presented by The Wave Model Development and 

Implementation Group (WAMDI Group); is the first model that solves the energy balance equation, 

including non-linear wave interactions [23-25]. Wave forecast with WAM model is proceeded as 

follows [24]:  

Evolution equation for action density N(k) is presented by Eq. (15): 
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 (15) 

 

where F(k) is wave number spectrum, k is the wave number and σ is calculated by Eq. (16): 

 

(16) 

 

where D is the water depth and g is the acceleration of gravity,. 

Wave number spectrum is normalized with Eq. (17): 

 

 (17) 

 

where η is the surface elevation and m0 is the wave variance. 

Significant wave height is calculated by Eq. (18): 

 

 

 (18) 

 

The frequency spectrum is defined as: 

 

 (19) 

 

where θ is the wave direction. 

The one dimensional frequency spectrum is defined by Eq. (20): 

 

 (20) 

 

For fully developed waves Eq. (21) is used: 

 

 (21) 

For fetch limited conditions Eq. (22) is used: 

 

 (22) 

where F is the fetch length. 
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3. Application and Results 

Parametric methods SMB, Wilson, CEM and numerical method WAM are used to predict significant 

wave height for Konyaaltı Coast. While 30 years of hourly wind data provided from TSMS is used for 

SMB and Wilson method, 13 years of 6 hourly ECMWF wind data is used for WAM and CEM 

methods. Table 1 indicates the significant wave heights (m/s) corresponding to return period (year) for 

each method. 

Table 1. Significant Wave Heights (m/s) 

Tr (year) 5 10 20 50 100 

SMB 3,6 4,24 4,86 5,66 6,26 

GODA 1,98 2,37 2,74 3,23 3,59 

CEM 4,57 5,23 5,86 6,67 7,28 

WAM 3,26 3,67 4,06 4,57 4,95 

Gumbel distribution for each model is presented in Fig. 2 in order to indicate the comparative results. 

Gumbel distribution for Konyaaltı Coast (36.75ºN, 30.70°E) obtained from Wind and Deep Water 

Wave Atlas for Turkish Coast[26] is also presented to investigate the performance of the models (Fig. 

2). “q” in Fig. 2 which indicates the non-exceedance probability of significant wave height is calculated 

by Eq. (23).  

 (23) 

 

 
Fig. 2. Gumbel Distribution 
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The results of CEM method and Wind and Deep Water Wave Atlas for Turkish Coast are closer 

compare to other methods. It can be easily seen that CEM method provides more consistent result 

with of Wind and Deep Water Wave Atlas for Turkish Coast for study area. 

4. Conclusions 

This study indicates the significant wave height prediction results of parametric and numerical methods 

including SMB, Wilson, CEM, and WAM. After significant wave heights are predicted, extreme value 

analysis with Gumbel distribution is done for each method. Gumbel distributions are presented in the 

same graph (Fig. 2) in order to examine similarities between results. Gumbel distribution of Wind and 

Deep Water Wave Atlas for Turkish Coast for Konyaaltı Coast is given to investigate the performance 

of methods used. Consequently, CEM method provides more consistent results with Wind and Deep 

Water Wave Atlas for Turkish Coast for study area as compared to the other significant wave height 

prediction methods. Also, 13 years of wind data gives higher significant wave height values compared 

to 30 years of wind data considering the gumbel distributions of these data sets. This situation can be 

result from climate change. 
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