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tosun@sakarya.edu.tr

Editors

Editor in Chief

Emrah Evren Kara

Department of Mathematics,

Faculty of Science and Arts, Düzce University,
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Uğur Ulusu, Erdinç Dündar 101-105

6 Fractional Ulam-stability of fractional impulsive differential equation involving

Hilfer-Katugampola fractional differential operator

S. Harikrishnan, Rabha W. Ibrahim, K. Kanagarajan 106-112

7 Variational iteration method combined with new transform to solve fractional partial

differential equations

Mountassir Hamdi Cherif, Djelloul Ziane 113-120

8 Scalar characterization in Banach-Jordan algebras

Abdelaziz Maouche 121-124

9 Solvability for a nonlinear third-order three-point boundary value problem

Habib Djourdem, Slimane Benaicha 125-131

10 An approach to neutrosophic ideals
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Abstract

This paper deals with skew ruled surfaces in the Euclidean space E
3 which are equipped

with polar normalizations, that is, relative normalizations such that the relative normal

at each point of the ruled surface lies on the corresponding polar plane. We determine

the invariants of a such normalized ruled surface and we study some properties of the

Tchebychev vector field and the support vector field of a polar normalization. Furthermore,

we study a special polar normalization, the relative image of which degenerates into a curve.

1. Introduction

In 1989 F. Manhart introduced the one-parameter family of relative normalizations (a)y of a hypersurface with non-vanishing Gaussian

curvature K̃ in the Euclidean space E
n+1 which are characterized by the support functions (a)q = |K̃|a, a ∈ R and called Manhart’s

normalizations (see [2]).

G. Stamou and A. Magkos in [9] and G. Stamou, St. Stamatakis and I. Delivos in [10] studied ruled surfaces in the Euclidean space E
3

which are equipped with Manhart’s normalizations. Later, S. Stamatakis and I. Kaffas studied in [5] the asymptotic relative normalizations of

a ruled surface Φ, that is, relative normalizations such that the relative normals at each point P of Φ lie on the corresponding asymptotic

plane of Φ .

Following this idea the authors introduced in [7] three special relative normalizations:

1. the central normalizations, i.e, relative normalizations such that the relative normals at each point P of Φ lie on the corresponding

central plane,

2. the polar normalizations, i.e, relative normalizations such that the relative normals at each point P of Φ lie on the corresponding polar

plane and finally

3. the right normalizations, that is relative normalizations of Φ whose relative images Φ are also ruled surfaces with the additional

property that their generators are parallel to those of Φ . Some of these relative normalizations degenerate into a curve.

The central and the right normalizations were studied thoroughly in [7] and [8], respectively. In this paper we will study the polar

normalizations.

2. Preliminaries

A brief discussion of some definitions, results and formulae of relative Differential Geometry of surfaces and Differential Geometry of ruled

surfaces in the Euclidean space E
3 appears in this section. We refer the reader to [3] and [4].

In the three-dimensional Euclidean space E
3 let Φ = (U,x) be a ruled Cr-surface of nonvanishing Gaussian curvature, r ≥ 3, defined by

an injective Cr-immersion x = x(u,v) on a region U := I ×R (I ⊂ R open interval) of R2. We introduce the so-called standard parameters

u ∈ I,v ∈ R of Φ , such that

x(u,v) = s(u)+ ve(u), (2.1)
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and

|e|= |e′|= 1, 〈s′,e′〉= 0,

where the differentiation with respect to u is denoted by a prime and 〈 ,〉 denotes the standard scalar product in E
3. Here Γ : s = s(u) is the

striction curve of Φ and the parameter u is the arc length along the spherical curve e = e(u).
The distribution parameter δ (u) := (s′,e,e′), the conical curvature κ(u) := (e,e′,e′′) and the function λ (u) := cotσ , where σ(u) := ∢(e,s′)
is the striction of Φ (− π

2 < σ ≤ π
2 , signσ = signδ ), are the fundamental invariants of Φ and determine uniquely the ruled surface Φ up to

Euclidean rigid motions. We also consider the central normal vector n(u) := e′ and the central tangent vector z(u) := e×n. It is known that

the vectors of the moving frame D := {e,n,z} of Φ fulfil the following equations [3, p. 280]

e′ = n, n′ =−e+κ z, z′ =−κ n. (2.2)

Then we have

s′ = δ λ e+δ z. (2.3)

We denote partial derivatives of a function (or a vector-valued function) f in the coordinates u1 := u, u2 := v by f/i, f/i j etc. Then from (2.1)

and (2.3) we take

x/1 = δ λ e+ vn+δ z, x/2 = e, (2.4)

and thus the unit normal vector ξ (u,v) to Φ is given by

ξ =
δ n− vz

w
, where w :=

√
δ 2 + v2.

Let I = gi jduidu j and II = hi jduidu j, i, j = 1,2 be the first and the second fundamental form of Φ , respectively, where

g11 = w2 +δ 2λ 2, g12 = δλ , g22 = 1, (2.5)

h11 =−
κ w2 +δ ′ v−δ 2 λ

w
, h12 =

δ

w
, h22 = 0. (2.6)

The Gaussian curvature K̃(u,v) and the mean curvature H̃(u,v) of Φ are given by (see [3])

K̃ =−
δ 2

w4
, H̃ =−

κw2 +δ ′v+δ 2λ

2w3
. (2.7)

A Cs-relative normalization of Φ is a Cs-mapping y = y(u,v),1 ≤ s < r, defined on U , such that

rank({x/1,x/2,y}) = 3, rank({x/1,x/2,y/i}) = 2, i = 1,2, ∀(u,v) ∈U. (2.8)

The pair (Φ ,y) is called a relatively normalized ruled surface in R
3 and the straight line issuing from a point P ∈ Φ in the direction of y is

called the relative normal of (Φ ,y) at P. The pair Φ = (U,y) is called the relative image of (Φ ,y).
The support function of the relative normalization y is defined by q(u,v) := 〈ξ ,y〉 (see [1]). For q = 1, we have y = ξ , that is, the

normalization is the Euclidean one.

Due to (2.8), q never vanishes on U . Conversely, when a support function q is given, the relative normalization y of the ruled surface Φ is

uniquely determined and can be expressed in terms of the moving frame D as follows [5, p. 179]:

y = y1 e+ y2 n+ y3 z, (2.9)

where

y1 =−w
δq/1 +q/2(κ w2 +δ ′v)

δ 2
, y2 =

δ 2 q−w2 vq/2

δw
, y3 =−

vq+w2 q/2

w
. (2.10)

For the coefficients Gi j(u,v) of the relative metric G(u,v) of (Φ ,y), which is indefinite, we have

Gi j = q−1 hi j. (2.11)

Then, because of (2.6), the coefficients of the inverse relative metric tensor are

G(11) = 0, G(12) =
wq

δ
, G(22) = wq

κ w2 +δ ′v−δ 2 λ

δ 2
. (2.12)

For a function (or a vector-valued function) f we denote by ∇
G
i f the covariant derivatives in the direction of ui, both with respect to the

relative metric. The coefficients Ai jk(u,v) of the Darboux tensor are given by

Ai jk := q−1 〈ξ , ∇
G
k ∇

G
j x/i〉.

Then, by using the relative metric tensor Gi j for “raising and lowering the indices”, the Pick invariant J(u,v) of (Φ ,y) is defined by

J :=
1

2
Ai jk Ai jk.
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As we proved in [7] (see equation (2.2)) the Pick invariant is calculated by

J =
3
(

w2q/2 + vq
)

2δ 2w3 q

{
w2
[
κqv+2δq/1 +q/2

(
κ w2 +δ ′v−δ 2λ

)]
−δ 2q

(
λv−δ ′

)}
. (2.13)

The relative shape operator has the coefficients B
j
i (u,v) given by

y/i =: −B
j
i x/ j. (2.14)

Then, for the relative curvature K(u,v) and the relative mean curvature H(u,v) of (Φ ,y) we have

K := det
(

B
j
i

)
, H :=

B1
1 +B2

2

2
. (2.15)

We conclude this section by mentioning that, among the surfaces of E3 with negative Gaussian curvature the ruled surfaces are characterized

by the relation

3H − J−3S = 0 (2.16)

(see [6]), where S(u,v) is the scalar curvature of the relative metric G of such a surface Φ , which is defined formally as the curvature of the

pseudo-Riemannian manifold (Φ ,G).

3. Polar normalizations

We concentrate now on the main topic of this paper, namely the polar normalizations of a skew ruled surface Φ , i.e., relative normalizations

such that the relative normal at each point P of Φ lies on the corresponding polar plane {P;n,z}. In [7] it was shown that the support function

of y is of the form

q = f (V ), (3.1)

where f (V ) is an arbitrary C2-function of

V = arctan
v

δ
−
∫

κdu. (3.2)

By means of (2.9), (2.10), (3.1) and (3.2) we deduce that the arising relative normalization, i.e., the polar normalization of the given ruled

surface Φ is

y =
δq− q̇v

w
n−

qv+δ q̇

w
z, (3.3)

where the dot denotes the differentiation with respect to V . Then, from (2.2), (2.4), (2.14) and (3.3), we take the coefficients B
j
i of the relative

shape operator of a polar normalization:

B1
1 =−

(κw2 +δ ′v)(q+ q̈)

w3
,

B2
1 =

1

w3

{
− q̇v3 −δ 2q̇v+δ 3 [q(κλ +1)+κλ q̈]+δv

[
q
(
κλv+ v+δ ′λ

)
+λ q̈

(
κv+δ ′

)]}
,

B1
2 =

δ (q+ q̈)

w3
,

B2
2 =−

δ 2λ (q+ q̈)

w3
.

Hence, by using (2.15) and (2.7b), we obtain the relative curvature K and the relative mean curvature H:

K =−δ
(δq− q̇v)(q+ q̈)

w4
, H = H̃ (q+ q̈) . (3.4)

From (3.4a) we deduce that the relative curvature K of a polar normalization vanishes identically iff

δq− q̇v = 0 or q+ q̈ = 0,

or, equivalently, iff

q = ce
δV
v ,c ∈ R

∗ or q = c1 cosV + c2 sinV, c1,c2 ∈ R, c2
1 + c2

2 6= 0.

We reject the first support function since it leads to a non polar normalization. Thus we have the following

Theorem 3.1. Let Φ ⊂ E3 be a polar normalized ruled surface. The relative curvature K of (Φ ,y) vanishes identically iff the support

function is of the form

q = c1 cosV + c2 sinV, c1,c2 ∈ R, c2
1 + c2

2 6= 0.
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By taking (2.7b) and (3.4b) into consideration we arrive at

Theorem 3.2. Let Φ ⊂ E3 be a polar normalized ruled surface. (Φ ,y) is relatively minimal (H = 0) iff one of the following holds true

(a) the support function is of the form

q = c1 cosV + c2 sinV, c1,c2 ∈ R, c2
1 + c2

2 6= 0,

(b) (Φ ,y) is a polar normalized right helicoid (δ = c ∈ R
∗ and κ = λ = 0).

We notice that both the relative curvature K and the relative mean curvature H vanish identically iff the support function is of the form

q = c1 cosV + c2 sinV, c1,c2 ∈ R, c2
1 + c2

2 6= 0. (3.5)

By using (2.7b) and (2.13) we find the Pick invariant

J = (qv+δ q̇)

(
JEUK

v
+

3H̃ q̇

δ q

)
, (3.6)

where

JEUK = 3v
κv3 +δ 2 (κ −λ )v+δ 2δ ′

2δ 2w3
(3.7)

is the Pick invariant of the Euclidean normalization. The Pick invariant vanishes identically iff

qv+δ q̇ = 0 or
JEUK

v
+

3H̃ q̇

δ q
= 0,

or, equivalently, iff

• the support function is of the form

q = c1e
−V v

δ , c1 ∈ R
∗, or

• Φ is not a right helicoid and the support function is of the form

q = c2e

V[κv3+δ2(κ−λ )v+δ2δ ′]
δ [κv2+δ ′v+δ2(κ+λ )] , c2 ∈ R

∗, or

• Φ is a right helicoid.

We reject the two support functions since they are not polar. Hence, we deduce

Theorem 3.3. Let Φ ⊂ E3 be a polar normalized ruled surface. The Pick invariant J of (Φ ,y) vanishes identically iff Φ is a right helicoid.

From (2.16), (3.4b), (3.6) and (3.7) we evaluate the scalar curvature of the relative metric

S =
1

2δ 2w3q

{
−q2

{
κw4 +δ 2

[(
−v2 +δ 2

)
λ +2δ ′v

]}
+δ 2

(
κw2 +δ 2λ +δ ′v

)
q̇2

+δq
{[

2δ 2λv+
(

v2 −δ 2
)

δ ′
]

q̇−δ
(

κw2 +δ ′v+δ 2λ
)

q̈
}}

.

4. The Tchebychev vector field and the support vector field of a polar normalization

In [5] it was shown that the coordinate functions of the Tchebychev vector T (u,v) of (Φ ,y), which is defined by

T := T m x/m, where T m :=
1

2
Aim

i ,

are given by

T 1 =
w2q/2 + vq

δ w
, T 2 =

2δ w2q/1 +δ ′q(δ 2 − v2)

2δ 2 w
+

T 1(κw2 +δ ′v−δ 2λ )

δ
.

Hence, by using (3.1) and (3.2), we deduce that the coordinate functions of the Tchebychev vector of a polar normalization are

T 1 =
qv+δ q̇

δw
, T 2 =

q
(
2κvw2 −2δ 2λv+δ ′w2

)
−2δ 3λ q̇

2δ 2w
. (4.1)

The divergence divI T of T with respect to the first fundamental form I of Φ , which initially reads (see [5])

divI T =

(
wT i

)
/i

w
, (4.2)



78 Universal Journal of Mathematics and Applications

becomes, on account of (4.1),

divI T =
1

2δ 2w3

{
2w2q

[(
3v2 +δ 2

)
κ −δ 2λ

]

+δ
{[

−δ ′v2 +δ 2
(
−2λv+δ ′

)]
q̇−2δ

(
κw2 +δ 2λ +δ ′v

)
q̈
}}

.

The rotation curlI T of T with respect to the first fundamental form I of Φ , which initially reads (see [5])

curlI T =

(
g12T 1 +g22T 2

)
/1
−
(
g11T 1 +g12T 2

)
/2

w
, (4.3)

becomes, by taking (2.5) and (4.1) into consideration,

curlI T =−
1

2δ 3w2

{
2δ ′qv2

(
2κv+δ ′

)
+δ 2q

[
4(κλ +1)v2 +δ ′ (2κ +λ )v+δ ′2

]

+δ 3
{

q̇
[
4v+(κ +λ )

(
2κv+δ ′

)]
−q
(
2κ ′v+δ ′′

)}

+δv
[
2κ2q̇ v2 +3κδ ′q̇ v+δ ′2q̇−qv

(
2κ ′v+δ ′′

)]
+2δ 4

[
q(κλ +1)+ q̈

]}
.

Analogously we calculate the divergence and the rotation of T with respect to the relative metric of Φ :

divG T =
1

δ 2w3q

{
q2
{

κw4 +δ 2
[(

v2 −δ 2
)

λ −2δ ′v
]}

+δ 2q̇2
(

κw2 +δ ′v+δ 2λ
)

+δq
{

q̇
[
2δ 2λv+δ ′

(
v2 −δ 2

)]
−δ q̈

(
κw2 +δ ′v+δ 2λ

)}}
,

curlG T = 0.

Last relation agrees with

T = ∇
G

(
ln

q

qAFF
,x

)

(see [6]), where qAFF = |K̃|1/4 and ∇
G denotes the first Beltrami differential operator with respect to G for which holds ∇

G( f ,g)=G(i j) f/ig/ j .

So, we have

Theorem 4.1. Let Φ ⊂ E3 be a polar normalized ruled surface. The rotation of the Tchebychev vector field with respect to the relative

metric of Φ vanishes identically and its potential is given by

τ (u,v) = ln
wq

|δ |1/2
+ c, c ∈ R.

Now let

Q :=
1

4
▽G
(1

q
,x
)

(4.4)

be the support vector Q(u,v) of (Φ ,y), which is introduced in [5]. By taking (2.12), (3.1) and (3.2) into consideration we find that the

coordinate functions of the support vector field of a polar normalization are

Q1 =−
q̇

4wq
, Q2 =

δλ q̇

4wq
. (4.5)

By means of (2.7b), (4.2) and (4.5), we find the divergence divI Q of Q with respect to the first fundamental form I of Φ

divI Q = H̃
q̇2 −qq̈

2q2
.

Hence, we derive

Theorem 4.2. Let Φ ⊂ E3 be a polar normalized ruled surface. The support vector field is incompressible with respect to the first

fundamental form of Φ (divI Q = 0) iff

(a) the support function is of the form

q = c2ec1V , c1 ∈ R, c2 ∈ R
∗, or

(b) Φ is a right helicoid.
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By taking (2.5), (4.3) and (4.5) into account we deduce that the rotation curlI Q of Q with respect to the first fundamental form I of Φ is

curlI Q =
−δ q̇2 +q(q̇v+δ q̈)

4w2q2
.

By taking (2.11), (4.2) and (4.5) into consideration we find the divergence divG Q of Q with respect to the relative metric of Φ

divG Q =
1

4δw3q2

{
q̇
{

q
[
−δ ′v2 +δ 2

(
−2λv+δ ′

)]
−2δ q̇

(
κw2 +δ ′v+δ 2λ

)}

+δqq̈
(

κw2 +δ 2λ +δ ′v
)}

.

By using (2.6), (2.11), (3.1), (3.2), (4.3) and (4.5) we have the rotation curlG Q of Q with respect to the relative metric of Φ

curlG Q = 0,

which agrees with the relation (4.4). Thus, we have

Theorem 4.3. Let Φ ⊂ E3 be a polar normalized ruled surface. The rotation of the support vector field with respect to the relative metric of

Φ vanishes identically and its potential is given by

τ (u,v) =
1

4q
+ c, c ∈ R.

5. A special polar normalization

In this section we will study the support function of the form (3.5), which arises when the relative curvature K or the relative mean curvature

H vanishes identically (see Sec. 3). By using (3.3) the corresponding relative normalization takes the form

y =

[
c1 cos

(∫
κdu

)
− c2 sin

(∫
κdu

)]
n−

[
c2 cos

(∫
κdu

)
+ c1 sin

(∫
κdu

)]
z,

i.e., the relative normalization degenerates into a curve Γ ∗ with curvature

κ∗ =
1

|c1 cos(
∫

κdu)− c2 sin(
∫

κdu) |

and torsion

σ∗ =
−κ

c1 cos(
∫

κdu)− c2 sin(
∫

κdu)
.

Since

κ∗

σ∗
=±

1

κ
,

we deduce that y is a curve of constant slope iff Φ is a ruled surface of constant slope.

By means of (3.6) and (3.7) we find the Pick invariant of this normalization:

J =
3 [c2 cos(

∫
κdu)+ c1 sin(

∫
κdu)]

2δ 2w(c1 cosV + c2 sinV )

{
cos

(∫
κdu

)[
κ
(

c2v2 +2c1δv− c2δ 2
)

+δ
(
−c2δλ + c1δ ′

)]
+ sin

(∫
κdu

)[
κ
(

c1v2 −2c2δv− c1δ 2
)
−δ

(
c1δλ + c2δ ′

)]}
.

Then by using (2.4) and (4.1) we deduce the Tchebychev vector

T =
w

2δ 2
(c1 cosV + c2 sinV )

(
2κv+δ ′

)
e+

v

δ

[
c2 cos

(∫
κdu

)
+ c1 sin

(∫
κdu

)]
n

+

[
c2 cos

(∫
κdu

)
+ c1 sin

(∫
κdu

)]
z.

Finally, by taking (2.4) and (4.5) into consideration we derive the support vector

Q =
c1 sinV − c2 cosV

4w(c1 cosV + c2 sinV )
(vn+δ z) .
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Abstract

The scator product in 1+n dimensions for n > 1, is associative if all possible product pairs

have a non vanishing additive scalar component. The product is in general, not associative

in the additive representation whenever the additive scalar component of a product pair is

zero. A particular case of this statement is non associativity due to zero products of non

zero factors. These features of scator algebra could be used to model the quantum wave

function evolution and collapse in a unified description.

1. Introduction

Scator algebras are 1+n dimensional algebras endowed with a main involution and an order parameter. The addition operation satisfies

commutative group conditions in R
1+n. The product operation, defined in a subset of R1+n, is always commutative and the conditions when

it fulfills associativity are the matter of this communication. The scator product is not bilinear, thus, it cannot be represented as a matrix -

matrix product. For this same reason, it is in general not distributive over addition [6]. However, the scator set in 1+n dimensions, can be

mapped into a higher dimensional space in order to recover distributivity. This procedure has been expounded for 1+2 dimensional real

scators by extending this set to 1+3 dimensional space [14]. The elements of scator algebra, decorated with an overhead oval, can be written

as an ordered sequence of 1+n real numbers,
o
ϕ =

(
f0; f1, . . . , f j, . . . , fn

)
. The component with subindex zero, separated by a semicolon, has

a distinct nature from the rest. In the additive representation, scator elements are described by a sum of components

o
ϕ =

(
f0; f1, . . . , f j, . . . , fn

)
= f0 +

n

∑
j=1

f je j, (1.1)

where f0, f j ∈ R for j from 1 to n in N and e j /∈ R. The component with subindex zero is labeled the additive scalar component whereas the

subindices 1 to n stand for the additive director components. This representation is similar to the rectangular form of complex numbers

extended to higher dimensions. In some subsets of R1+n, there exists a multiplicative representation of scators that is akin to the polar form

of complex or hyperbolic numbers extended to higher dimensional spaces [11]. This communication is restricted to associativity in the

additive representation.

Product associativity in scator algebra has been loosely addressed in several previous communications [6, 9, 10, 11]. It has been correctly

stated that the scator product in the additive representation is in general not associative if zero product pairs are involved. Zero products are

products of non zero scator factors that yield a zero scator, i.e. a scator with all additive components equal to zero. However, it has been

stated that the product is associative if zero products are avoided. This statement is not correct. When these assertions were made, it was not

foreseen that there exist non associative products in the additive representation even when zero products are not involved. The decisive

parameter in the additive representation is, as we shall presently see, whether the additive scalar component of any product pair is zero.

In diverse graded algebras, notably algebra of physical space (APS) [3], space-time algebra (STA) [13] and commutative quaternions [4], the

scalar component has been used to represent time [5]. We propose that the collapse of the wave function in quantum mechanics may be

Email addresses: mfg@xanum.uam.mx (M. Fernández-Guasti)
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described via the non associativity of the scator product. The reduction occurs when the time variable, represented by the additive scalar

component, is zero. If each director component constitutes a quantum state, when the scalar component of the product becomes null, all but

one (single state) of the director components of the product become zero.

Sufficient conditions for the scator product associativity are addressed in section 2, while section 3, evaluates the necessary conditions for

the lack of associativity. The possibility of scator algebra to describe the wavefunction evolution and collapse is outlined in section 4. The

appendix deals with associativity exceptions. The remaining paragraphs in this introduction establish the necessary algebra prerequisites.

Product operation

We denote the scator set by

S
1+n =

{
o
ϕ ∈ R

1+n : f0 6= 0, if there exists f j fl 6= 0 for j 6= l ∈ n
}

,

the subset of R1+n where the additive scalar is different from zero if two or more director components are not zero. This set is the union of

two disjoint subsets

S
1+n
6=0

=
{

o
ϕ ∈ S

1+n : f0 6= 0
}

, S
1+n
0 =

{
o
ϕ ∈ S

1+n : f0 = 0
}

.

The elements of the set S1+n
0 have at most only one non vanishing director component, that is elements of the form (0;0, . . . , fl , . . . ,0) = flel ,

S
1+n
l =

{
o
ϕ ∈ S

1+n : f0 = 0, f j = 0 for all j 6= l from 1 to n
}

.

The set S1+n
0 can be written as the union of all subsets with at most one non vanishing director component S1+n

0 =
⋃n

l=1 S
1+n
l

. The sets S1+n
l

are not disjoint since the element with zero components everywhere is common to all of them, ∩n
l=1S

1+n
l

= (0;0, . . . ,0, . . . ,0) =
o

0.

In the additive representation, the scator product is defined in the S
1+n set:

The product of two scators
o
α = a0 +∑

n
j=1 a je j and

o

β = b0 +∑
n
j=1 b je j in S

1+n
6=0

is defined by

o
γ =

o
α

o

β = a0b0

n

∏
k=1

(

1∓
akbk

a0b0

)

︸ ︷︷ ︸

g0

+a0b0

n

∑
j=1

n

∏
k 6= j

(

1∓
akbk

a0b0

)(
a j

a0
+

b j

b0

)

︸ ︷︷ ︸

g j

e j; (1.2a)

If
o
α ∈ S

1+n
l

and
o

β ∈ S
1+n
6=0

the product
o
α

o

β is

(alel)
o

β =∓albl +alb0el ∓
n

∑
j 6=l

(

al

blb j

b0

)

e j; (1.2b)

If
o
α ∈ S

1+n
l

and
o

β ∈ S
1+n
m ,

(alel)(bmem) =∓albmδlm, (1.2c)

where δlm is a Kroneker delta.

The scator product defined in the S
1+n set is closed, commutative and there is a multiplicative identity [6]. Existence of an inverse depends

on the signature of the product. Wherever applicable, here and in the rest of this manuscript, the upper ∓ (negative) sign corresponds to the

imaginary scators product while the lower (positive) sign corresponds to the real or hyperbolic scators product. From (1.2c), ě j ě j =−1 for

imaginary scators, we usually label the unit imaginary director components with a check above. When the product is defined with the (upper)

negative sign, the 1+1 dimensional scator sets with scalar component and only one director component, become isomorphic to complex

algebra. In contrast, ê j ê j = 1 for real scators, their director unit components usually labeled with a hat above. Real scators in 1+1 dimensions

are isomorphic to hyperbolic numbers. The check/hat decoration is omitted here in order to cope with both scator sets simultaneously.

2. Associativity in the additive representation

In the proofs that follow, products with three scator factors are evaluated. Products with a larger number of factors can be obtained by

induction.

2.1. Conditions for a product with non vanishing additive scalar component

From the product definition (1.2a), the product of two scators with non zero additive scalar components (a0b0 6= 0), has a non vanishing

scalar component, if and only if

akbk

a0b0
6=±1, (2.1)

for all k from 1 to n. From (1.2b), the product of non zero factors, one with zero scalar component
o
α = alel , times

o

β ∈ S
1+n
6=0

, has a non zero

additive scalar component, if and only if bl 6= 0. If both scator factors have null scalar, from (1.2c), their product has non zero scalar only if

both scators have the same non zero director component, l = m. In the derivations that follow, it is assumed that none of the initial scator

factors is zero.
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2.2. Associative conditions

Theorem 2.1. The scator product in S
1+n is associative in the additive representation if all possible product pairs have a non vanishing

additive scalar component,
( o
α

o

β
) o
ϕ =

o
α
( o

β
o
ϕ
)
=

o

β
( o
α

o
ϕ
)

if
o
α

o

β ,
o

β
o
ϕ,

o
α

o
ϕ ∈ S

1+n
6=0

.

Proof. Case i) Scator factors with non zero additive scalar,
o
α,

o

β ,
o
ϕ ∈ S

1+n
6=0

.

The product of scators
o
γ =

o
α

o

β with
o
α,

o

β ∈ S
1+n
6=0

is given by (1.2a). Since all product pairs must have non zero scalar,
o
α

o

β ∈ S
1+n
6=0

; then

akbk

a0b0
6=±1 for all k from 1 to n. The subsequent product with

o
ϕ ∈ S

1+n
6=0

is again given by (1.2a),

( o
α

o

β
) o
ϕ = a0b0

n

∏
k=1

(

1∓
akbk

a0b0

)

f0

n

∏
k=1



1∓

(
ak

a0
+ bk

b0

)

(

1∓ akbk

a0b0

)
fk

f0





+a0b0

n

∏
k=1

(

1∓
akbk

a0b0

)

f0

n

∑
j=1

n

∏
k 6= j



1∓

(
ak

a0
+ bk

b0

)

(

1∓ akbk

a0b0

)
fk

f0









(
a j

a0
+

b j

b0

)

(

1∓
a jb j

a0b0

) +
f j

f0



e j.

This expression can be written in a symmetrical form in the coefficients of the three scators,

( o
α

o

β
) o
ϕ = a0b0 f0

n

∏
k=1

(

1∓
akbk

a0b0
∓

ak fk

a0 f0
∓

bk fk

b0 f0

)

+a0b0 f0

n

∑
j=1

n

∏
k 6= j

(

1∓
akbk

a0b0
∓

ak fk

a0 f0
∓

bk fk

b0 f0

)(
a j

a0
+

b j

b0
+

f j

f0
∓

a jb j f j

a0b0 f0

)

e j. (2.2)

The first factor in parenthesis can be grouped back as
(

1∓ bk fk

b0 f0
∓
(

bk

b0
+ fk

f0

)
ak

a0

)

, whereas the last factors are grouped as
(

b j

b0
+

f j

f0
+
(

1∓
b j f j

b0 f0

)
a j

a0

)

.

But
o

β
o
ϕ ∈ S

1+n
6=0

, thus, the terms 1∓ bk fk

b0 f0
6= 0 for all k from 1 to n, can be factored to obtain

( o
α

o

β
) o
ϕ = a0b0 f0

n

∏
k=1

(

1∓
bk fk

b0 f0

)


1∓

(
bk

b0
+ fk

f0

)

(

1∓ bk fk

b0 f0

)
ak

a0





+b0 f0

n

∏
k=1

(

1∓
bk fk

b0 f0

)

a0

n

∑
j=1

n

∏
k 6= j



1∓

(
bk

b0
+ fk

f0

)

(

1∓ bk fk

b0 f0

)
ak

a0









b j

b0
+

f j

f0
(

1∓
b j f j

b0 f0

) +
a j

a0



e j =
o
α
( o

β
o
ϕ
)
.

Since the product is always commutative, the factorization, provided that
ak fk

a0 f0
6=±1, can also be performed to construct

o

β
( o
α

o
ϕ
)
. Therefore,

the product is associative for scator factors with non zero scalar components a0b0 f0 6= 0, if all three possible product pairs have non zero

scalar component
a jb j

a0b0
6=±1,

b j f j

b0 f0
6=±1,

a j f j

a0 f0
6=±1, for all j from 1 to n.

Case ii) Two scator factors have a non zero additive scalar,
o
α,

o

β ∈ S
1+n
6=0

and one factor has zero additive scalar component,
o
ϕ ∈ S

1+n
l

.

Product
( o
α

o

β
) o
ϕ . The product of scators

o
α,

o

β is given by (1.2a), where
o
α

o

β ∈ S
1+n
6=0

since their product must have non zero scalar. The product

with a scator having zero scalar component
o
ϕ = flel , from (1.2b) is then

( o
α

o

β
)

flel =∓ fla0b0

n

∏
k 6=l

(

1∓
akbk

a0b0

)(
al

a0
+

bl

b0

)

+ fla0b0

n

∏
k=1

(

1∓
akbk

a0b0

)

el

∓
n

∑
j 6=l



 fl

a0b0 ∏
n
k 6=l

(

1∓ akbk

a0b0

)(
al

a0
+ bl

b0

)(
a j

a0
+

b j

b0

)

(

1∓
a jb j

a0b0

)



e j. (2.3)

Product
o
α
( o

β
o
ϕ
)
. The product

o

β
o
ϕ is obtained from (1.2b), where flbl should not be zero in order to have

o

β
o
ϕ ∈ S

1+n
6=0

. The product with
o
α is

given by (1.2a) since both factors have non zero scalar. The resulting expression can be simplified to

o
α
( o

β flel

)
=∓ flbla0

n

∏
k 6=l

(

1∓
akbk

a0b0

)(

1+
alb0

bla0

)

∓ flbla0

[
n

∏
k 6=l

(

1∓
akbk

a0b0

)(
al

a0
∓

b0

bl

)]

el

∓ flbla0

n

∑
j 6=l

[
n

∏
k 6= j,l

(

1∓
akbk

a0b0

)(

1+
alb0

bla0

)(
a j

a0
+

b j

b0

)]

e j. (2.4)

Comparison component by component of (2.3) and (2.4) shows that both expressions are identical. Evaluation of
o

β
( o
α

o
ϕ
)

by a similar

procedure shows that the three product associations give the same result.

Case iii) One scator factor has non zero additive scalar,
o
ϕ ∈ S

1+n
6=0

, and two factors have zero scalar component,
o
α ,

o

β ∈ S
1+n
0 .
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The scalar component of the product
o
α

o

β = (alel)(bkek) =∓albkδlk is not zero only if k = l, thus
o

β = blel .

Product
( o
α

o

β
) o
ϕ . The product of

o
α

o

β =∓albl times a scator
o
ϕ ∈ S

1+n
6=0

is
( o
α

o

β
) o
ϕ =∓albl

(

f0 +∑
n
j=1 f je j

)

.

Product
o
α
( o

β
o
ϕ
)
. The product

o

β
o
ϕ , is given by (1.2b), where the scalar component of this product is not zero if fl 6= 0. Multiplication by

o
α = alel , again from (1.2b), gives

o
α
( o

β
o
ϕ
)
= alel

(
blel

o
ϕ
)
= albl

(

∓ f0 +(∓ fl)el ∓
n

∑
j 6=l

(
f0

∓ fl

)(

∓
fl f j

f0

)

e j

)

.

Thus,
( o
α

o

β
) o
ϕ =

o
α
( o

β
o
ϕ
)
. Evaluation of

o

β
( o
α

o
ϕ
)

shows that all three associations are equal.

Case iv) All scator factors have zero scalar,
o
α,

o

β ,
o
ϕ ∈ S

1+n
0 .

The scalar components of the products
o
α

o

β = (alel)(bkek) =∓albkδlk,
o

β
o
ϕ = (bkek)

(
f je j

)
=∓bk f jδk j,

o
α

o
ϕ = (alel)

(
f je j

)
=∓al f jδl j,

are not zero only if k = l = j, thus
( o
α

o

β
) o
ϕ =

o
α
( o

β
o
ϕ
)
=

o

β
( o
α

o
ϕ
)
=∓a jb j f je j.

Notice that associativity holds even if the factors have zero additive scalar provided that all product pairs have non vanishing scalar. Theorem

2.1 establishes sufficient but not necessary conditions for the product associativity in the additive representation. Particular cases where the

product is associative, although there are product pairs with zero scalar component, are examined in the appendix.

3. Lack of associativity in the additive representation

3.1. Conditions for the product to yield a zero additive scalar component

Factors with non vanishing scalar. Consider the product of two factors
o
α,

o

β ∈ S
1+n
6=0

, from (1.2a),

o
α

o

β = a0b0

n

∏
k 6=l

(

1∓
akbk

a0b0

)(

1∓
albl

a0b0

)

+a0b0

n

∏
k 6=l

(

1∓
akbk

a0b0

)(
al

a0
+

bl

b0

)

el

+a0b0

n

∑
j 6=l

[
n

∏
k 6= j,l

(

1∓
akbk

a0b0

)(

1∓
albl

a0b0

)(
a j

a0
+

b j

b0

)]

e j,

where the lth director component has been written out explicitly. Let this product have zero scalar component due to the lth factor,

(

1∓
albl

a0b0

)

= 0,⇐⇒
bl

b0
=±

a0

al

. (3.1)

A necessary condition for this expression to hold is that al and bl should not be zero. Then, the product
o
α

o

β ∈ S
1+n
l

has only one non

vanishing director component given by

o
α

o

β = a0b0

n

∏
k 6=l

(

1∓
akbk

a0b0

)(
al

a0
±

a0

al

)

el . (3.2)

One factor has vanishing scalar. If
o
α ∈ S

1+n
l

and
o

β ∈ S
1+n
6=0

, from (1.2b), this product has zero scalar if albl = 0. Since the factors are

not zero, al 6= 0, then the product has zero scalar component if bl = 0 and is given by
o
α

o

β = (alel)
o

β = alb0el . Notice that this product is

never zero for non zero scator factors, a result that is of paramount importance when evaluating differential quotients [8].

Both factors have vanishing scalar From (1.2c), (alel)
(
b je j

)
=∓alb jδl j. Only if j 6= l, the additive scalar is zero.

Zero products For scator factors with non vanishing scalar, if two or more factors are zero in expression (1.2a),

(

1∓
albl

a0b0

)

= 0,

(

1∓
ambm

a0b0

)

= 0 for l 6= m, (3.3)

the additive scalar and all director components are zero,
o
α

o

β =
o

0 = 0. For scator factors with vanishing scalar, the scator product is zero

only if j 6= l,
o
α

o

β = (alel)
(
b je j

)
= 0. The zero product condition, where non associativity has been asserted before [6, 11, 12], will now be

encompassed in the condition where a scator product pair with zero additive scalar component is involved. Besides the zero products, the

product can also be zero if any of the factors is zero. This trivial case is dismissed since only non zero factors are considered as mentioned

before.
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3.2. Non associative conditions

Theorem 3.1. The scator product in S
1+n is in general not associative for n > 1 in the additive representation, if one or more of the possible

product pairs has a vanishing additive scalar component,
( o
α

o

β
) o
ϕ 6=

o
α
( o

β
o
ϕ
)
6=

o

β
( o
α

o
ϕ
)

if
o
α

o

β or
o

β
o
ϕ or

o
α

o
ϕ ∈ S

1+n
0 .

Proof. Case 1. Product of three factors with non zero scalar component,
o
α,

o

β ,
o
ϕ ∈ S

1+n
6=0

.

Subcase 1.1 Only one product pair has a vanishing scalar component,
o
α

o

β ∈ S
1+n
0 ,

o

β
o
ϕ,

o
α

o
ϕ ∈ S

1+n
6=0

.

Product
( o
α

o

β
) o
ϕ . The

o
γ =

o
α

o

β ∈ S
1+n
l

product is given by (3.2) and its product with a scator
o
ϕ ∈ S

1+n
6=0

is then given by (1.2b),

( o
α

o

β
) o
ϕ = a0b0

n

∏
k 6=l

(

1∓
akbk

a0b0

)(
al

a0
±

a0

al

)(

∓ fl + f0el ∓
n

∑
j 6=l

(
fl f j

f0

)

e j

)

. (3.4)

This result is not symmetric in the three scators variables, thus already indicative of the lack of associativity, but let us not anticipate.

Product
o
α
( o

β
o
ϕ
)
. Evaluate

o

β
o
ϕ ∈ S

1+n
6=0

from (1.2a). The product with
o
α using (1.2a) again, is then

o
α
( o

β
o
ϕ
)
= a0b0 f0

n

∏
k=1

(

1∓
bk fk

b0 f0

)


1∓

(
bk

b0
+ fk

f0

)

(

1∓ bk fk

b0 f0

)
ak

a0





+b0 f0

n

∏
k=1

(

1∓
bk fk

b0 f0

)

a0

n

∑
j=1

n

∏
k 6= j



1∓

(
bk

b0
+ fk

f0

)

(

1∓ bk fk

b0 f0

)
ak

a0









b j

b0
+

f j

f0
(

1∓
b j f j

b0 f0

) +
a j

a0



e j. (3.5)

The product
( o
α

o

β
) o
ϕ given by (3.4) and the product

o
α
( o

β
o
ϕ
)

given by (3.5) are clearly not equal for arbitrary scator coefficients. In appendix

A.1, particular scator coefficients when associativity holds are evaluated in this and subsequent cases. If, in addition to al bl

a0b0
=±1, another

factor ambm

a0b0
=±1, m 6= l, then

o
α

o

β =
o

0 and
( o
α

o

β
) o
ϕ is also zero. However, this condition does not make the product

o
α
( o

β
o
ϕ
)

given by (3.5)

equal to zero. Non associativity due to zero products is a particular case of non associativity due to products with zero scalar component.

Since
o

0 ∈ S
1+n
0 , they need not be treated separately.

Subcase 1.2 Two product pairs have null scalar component,
o
α

o

β ,
o

β
o
ϕ ∈ S

1+n
0 ,

o
α

o
ϕ ∈ S

1+n
6=0

.

Product
o
α
( o

β
o
ϕ
)
. Let the zero scalar in the

o

β
o
ϕ product originate due to the pth factor,

(

1∓
bp fp

b0 f0

)

= 0. The subsequent product with an

arbitrary scator
o
α with non vanishing scalar is then given by (1.2b),

o
α
( o

β
o
ϕ
)
= b0 f0

n

∏
k 6=p

(

1∓
bk fk

b0 f0

)(
bp

b0
+

fp

f0

)(

∓ap +a0ep ∓
n

∑
j 6=p

(
apa j

a0

)

e j

)

. (3.6)

Comparison of Eqs. (3.4) and (3.6) shows that these two expressions are different either for l = p or l 6= p, for otherwise arbitrary scator

coefficients.

Subcase 1.3 All three product pairs have null scalar component,
o
α

o

β ,
o

β
o
ϕ,

o
α

o
ϕ ∈ S

1+n
0 . The derivation involves, in addition to the previous

case, a zero scalar due to the qth factor,
(

1∓
aq fq

a0 f0

)

= 0 of the
o
α

o
ϕ product. The procedure is analogous to the previous subcase.

Case 2. Product of two scator factors with non zero additive scalar,
o
α,

o

β ∈ S
1+n
6=0

, and one factor with zero scalar,
o
ϕ ∈ S

1+n
m .

Subcase 2.1 Only one product pair has a vanishing scalar
o
α

o

β ∈ S
1+n
l

,
o

β
o
ϕ,

o
α

o
ϕ ∈ S

1+n
6=0

.

Product
( o
α

o

β
) o
ϕ . If

o
α ,

o

β ∈ S
1+n
6=0

and
o
α

o

β ∈ S
1+n
l

, the product is given by (3.2). The product of this result times
o
ϕ = fmem ∈ S

1+n
m is from

(1.2c),

( o
α

o

β
) o
ϕ =∓a0b0 fm

n

∏
k 6=l

(

1∓
akbk

a0b0

)(
al

a0
±

a0

al

)

δlm. (3.7)

Product
o
α
( o

β
o
ϕ
)
. The product

o

β
o
ϕ , since bm 6= 0 is obtained from (1.2b). The product with

o
α , if l 6= m, is

o
α
( o

β
o
ϕ
)
=∓a0bm fm

n

∏
k 6=l,m

(

1∓
akbk

a0b0

)(

1+
amb0

a0bm

)(
al

a0
±

a0

al

)

el . (3.8)

This single director component scator differs from (3.7), since the latter has no director component. If l = m,

o
α
( o

β
o
ϕ
)
=∓a0bl fl

(

1±
a2

l

a2
0

)
n

∏
k 6=l

(

1∓
akbk

a0b0

)

∓a0bl fl

(

1±
a2

l

a2
0

)
n

∑
j 6=l

[
n

∏
k 6= j,l

(

1∓
akbk

a0b0

)(
a j

a0
+

b j

b0

)]

e j. (3.9)

This expression also differs from (3.7). Subcases 2.2 where two product pairs have a vanishing scalar
o
α

o

β ,
o

β
o
ϕ ∈ S

1+n
0 ,

o
α

o
ϕ ∈ S

1+n
6=0

and 2.3

where all three product pairs have null scalar component,
o
α

o

β ,
o

β
o
ϕ,

o
α

o
ϕ ∈ S

1+n
0 are similarly tackled.
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Case 3. Product of one scator factor with non zero scalar,
o
ϕ ∈ S

1+n
6=0

, and two factors with zero additive scalar,
o
α,

o

β ∈ S
1+n
0 .

Subcase 3.1 l 6= m

Product
( o
α

o

β
) o
ϕ . The product of two scators

o
α,

o

β ∈ S
1+n
0 with different non zero director component, say

o
α = amem,

o

β = blel , from (1.2c),

is zero. Their product with an arbitrary scator
o
ϕ is zero,

(
amemblel

) o
ϕ = 0.

Product
o
α
( o

β
o
ϕ
)
. The product of

o
ϕ ∈ S

1+n
6=0

times a single director component scator
o

β = blel , obtained from (1.2b), is

blel

o
ϕ = bl

(

∓ fl + f0el ∓

(
fl fm

f0

)

em ∓
n

∑
j 6=l,m

(
fl f j

f0

)

e j

)

,

where the lth and mth terms are shown explicitly. Multiplication by
o
α = amem, recalling that m 6= l, again from (1.2b) is,

o
α
( o

β
o
ϕ
)
= amem

(
blel

o
ϕ
)
= ambl

((
fl fm

f0

)

∓ flem ∓ fmel +
n

∑
j 6=l,m

(

fl fm f j

f 2
0

)

e j

)

. (3.10)

This expression is not zero and thus differs from the product
( o
α

o

β
) o
ϕ .

Subcase 3.2 If l = m, the product
( o
α

o

β
)
=
(
amemblel

)
= albl has non zero scalar component. The product of

o
α

o

β with
o
ϕ ∈ S

1+n
6=0

gives a

scator with non zero scalar component. Thus, a product pair with zero scalar component cannot be achieved in this subcase.

Case 4. Product of three scator factors with zero additive scalar
o
α,

o

β ,
o
ϕ ∈ S

1+n
0 .

If the scator
o
ϕ also has vanishing scalar component, the product definition (1.2c) has to be used throughout. For l 6= m,

( o
α

o

β
) o
ϕ =

(alelbmem)( fmem) = 0 and
o
α
( o

β
o
ϕ
)
= (alel)(bmem fmem) = albm fmem. Therefore, this product is not associative if two director components

have different subindices.

In accordance with Theorems 2.1 and 3.1, non vanishing additive scalar components in all possible product pairs is a sufficient condition for

scator associativity while at least one product pair with vanishing scalar component is a necessary condition for non associativity.

4. Wavefunction collapse

The quantum mechanical wave function, according with the prevailing Copenhagen view, contains probabilistic information regarding the

state of a system. In a simplified scheme, when an observation is made, only one state is detected from the superposition of all possible

states. This process, whereby the probability of all but one state become zero and the remaining state becomes a certainty, is the collapse or

reduction of the wave function. Continuous spectrum operators such as position or momentum do not collapse to a single state, but to a

combination of eigenstates within a spread of eigenvalues given by the nature of the measurement. The wave function reduction, whether to

a single state or a range of closely packed states determines the state of the system up to the precision imposed by the uncertainty principle.

Let us recall the formal description of the two processes involved in the evolution of a quantum system as a preliminary to the scator

description. In the Schrödinger representation, for a time independent Hamiltonian H , the time evolution of the wave function |ψ〉 is

given by a unitary time evolution propagator U , so that |ψ (t)〉 = U |ψ (0)〉. The wave function is written as a superposition of energy

eigenfunctions |ψ〉= ∑
n
j=1 c j

∣
∣ψ j

〉
, such that H

∣
∣ψ j

〉
= E j

∣
∣ψ j

〉
. The set of eigenfunctions and their corresponding propagators in matrix

form are ψ (t) = Uψ (0). If the systems evolves from 0 to t1 and then from t1 to t2 and so on, the evolution may be written as a product of

matrices ψ (t) = U f · · ·U2U1ψ (0), provided that there are no state reductions in the process. This picture is broken down when the operator

R, reduces the wavefunction to a single j state, Rψ (t) =
∣
∣ψ j

〉
. These two distinct procedures U and R, required in order to describe a

quantum system, are referred to as the quantum measurement problem [1]. Different approaches have been proposed to unify these two

mechanisms under the generic name of dynamical reduction models [2]. The aim of the following scator description is to contribute towards

the formalization of a reduction model.

Allow for the quantum wave function to be described by a scator function
o
ψ (t) instead of a column vector. Each eigenfunction

∣
∣ψ j

〉
is

associated with a scator’s director component
∣
∣ψ j

〉
→ e j . The wavefunction eigenstates are described by the director components of a scator

function |ψ〉+ c0 =
o
ψ = c0 +∑

n
j=1 c je j . This is certainly a huge formal leap, and it is not certain that it is possible, but let us continue with

the sketch of the procedure in the scator formalism. Notice, that we must add a scalar function c0 for n ≥ 2, otherwise, the scator is not in

S
1+n. Since all the possible wave eigenfunctions have been ascribed to the director components of the scator, we have freedom to establish

the value of the scalar function. This function can be associated with the time variable. The time evolution of the system is modeled by the

product of unitary scators
o

ϒk times the system’s wavefunction

o
ψ (t) =

o

ϒ f · · ·
o

ϒ2

o

ϒ1
o
ψ (0) ,

where
o

ϒk ∈ S
1+n for all k from the initial to the final time interval f and

o
ψ (0) ∈ S

1+n. Unitary scators are obtained from the main involution

of scator algebra; The conjugate of the scator
o
ϕ = f0 +∑

n
j=1 f je j, is given by

o
ϕ
∗
= f0 −∑

n
j=1 f je j, that is, all its director components

reverse sign while the scalar component remains unaltered. The product
o
ϕ

o
ϕ
∗
=
∥
∥

o
ϕ
∥
∥2

is a real number that establishes a magnitude or order

parameter. Scators of the form
o
ϕ/
∥
∥

o
ϕ
∥
∥ constitute the set of unit magnitude scators [6]. Let the scalar component represent time evolution and

wavefunction reduction, the latter taking place when the scalar component becomes zero, as the reader may have already guessed. When the

scator product yields a zero scalar additive component, all director components must be zero with one possible exception as was shown

in subsection 3.1. Since each director component has been chosen to represent an eigenstate, the product then models a wave function
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collapse, for in this circumstance only one eigenfunction subsists. Depending on which is the lth factor that fulfills condition (3.1), it is the

lth eigenfunction from the 1 to n eigenfunctions that survives. Therefore, an R measurement process is attained.

If the products have a non vanishing additive scalar, all director components prevail and since each represents a wave eigenfunction, a

superposition of all of them is obtained. The products are then associative (Theorem 2.1) and can be performed with any precedence

or grouped together, i.e.
o

ϒ3

(o

ϒ2

(o

ϒ1
o
ψ (0)

))

=
(o

ϒ3

o

ϒ2

o

ϒ1

) o
ψ (0) =

o

ϒi
o
ψ (0) . The way these products are associated, represent an evolution

that can be traced in several steps, grouped with any precedence or the evolution performed in one single step. Whether these products

commute, depend on the operators involved in the scator coefficients. This is analogous to the usual quantum description with complex

algebra. Complex algebra is commutative, but the complex numbers involve operators in quantum mechanics that may or may not commute.

Physically, time evolution U processes are then described when the scator products have non vanishing additive scalar.

The scator product provides a unified description of the U and R processes. For example,
(o

ϒ4

o

ϒi

)
∈ S

1+n
0 represents a collapse and the

product
o

ϒ5

(o

ϒ4

o

ϒi

)
∈ S

1+n
6=0

the subsequent U evolution. When the product is not associative, it reflects the fact that the subsequent evolution

of the system is altered by the measurement or collapse of the wave function. After a collapse, the time evolution of the system is again

described by another wave function, where the initial conditions are given by the state of the collapsed system. Notice that the product of the

collapsed system, say in the
(o

ϒ4

o

ϒi

)
= alel state, regains a finite probability for all possible states when its product is taken with a unitary

evolution scator
o

ϒ5 =
o

β , with arbitrary non vanishing director components (equal to the number of possible states) given by the product

definition (1.2b). Therefore, one and the same mathematical procedure, the scator product, is used to describe the complete time evolution

including the possible wave function reductions of the physical system. This scheme is in the vein of the Penrose proposal [15, Sec.22.1,

p.529] whereby the same mathematical object, the scator product in this approach, describes the U and R processes. It could be argued that

the two distinct procedures have only been deferred to the two definitions of the scator product (1.2a) and (1.2b), depending on whether the

scalar component of
o
α vanishes or not. However, it is possible to obtain the product (1.2b) from (1.2a) through a limit. In order to remain

within the S
1+n set, the limit of all but one of the director components should be taken first and thereafter the scalar component limit should

be taken [7]. The
o
α director component limits from (1.2a) is

lim
ak 6=l→0

( o
α

o

β
)
= (a0b0 ∓albl)+(alb0 +a0bl)el +

n

∑
j 6=l

(a0b0 ∓albl)

(
b j

b0

)

e j.

Thereafter, the scalar component limit is

lim
a0→0

(

lim
ak 6=l→0

( o
α

o

β
))

=∓albl +alb0el ∓
n

∑
j 6=l

albl

(
b j

b0

)

e j.

But this result is identical to (1.2b), thus this latter definition is a removable singularity of the product function (1.2a) with arbitrary but non

vanishing scalar components. Another asset of this formalism is that no ’tails’ are present when the collapse takes place. The tail problem

arises because finite, albeit small, amplitude probabilities for states other than the reduced state are present in some proposals, such as the

GRW scheme [2]. In the present scheme, all states different from the collapsed state are strictly zero. There are other issues that require

careful assessment to confirm whether this proposal is plausible. Two ingredients are essential to achieve a unified dynamical scheme,

nonlinearity and an stochastic process. Here, the nonlinearity is ultimately due to the scator product definition. However, an stochastic

process still needs to be incorporated. Nonetheless, according to this initial assessment, scator algebra seems to be a promising route for a

unified description of quantum dynamics.

5. Conclusions

Product associativity in either real or imaginary scator algebras depends on whether the additive scalar component of any product pair is zero.

The scator product is associative in S
1+n if all possible product pairs have a non vanishing additive scalar component. Recall that the scator

set S1+n where the product is defined in the additive representation, is the subset of R1+n where the additive scalar is different from zero if

two or more director components are not zero. The scator product is in general not associative in the additive representation in S
1+n for

dimensions with n > 1, if one or more of the possible product pairs has a vanishing additive scalar component. At least one product pair with

zero scalar component is a necessary condition for non associativity. These assertions are embodied in theorems 2.1 and 3.1.

The additive scalar component of any product pair is the decisive parameter in order to establish whether the scator product is associative or

not. The stronger condition stated in previous communications for lack of associativity, if all components of any product pair are zero (i.e. a

zero scator), has been included in the zero additive scalar component necessary condition (i.e. a scator with possibly one non vanishing

director component).

The main involution is scator algebras is conjugation [6]. The conjugate of a scator
o
ϕ = f0 +∑

n
j=1 f je j, is defined by the negative of its

director components while the scalar component remains unchanged,
o
ϕ
∗
≡ f0 −∑

n
j=1 f je j. The magnitude of a scator is defined by the

positive square root of the scator times its conjugate
∥
∥

o
ϕ
∥
∥=

√
o
ϕ

o
ϕ
∗
. From the product definition, clearly

∥
∥

o
ϕ
∥
∥2

∈ R.

Corollary 5.1. In S
1+n, the magnitude of two or more scator products is equal to the product of their magnitudes if the products are

associative.

Proof. The square magnitude of the product of two scators
o
α,

o

β , according to the magnitude definition is
∥
∥

o
α

o

β
∥
∥2

=
( o
α

o

β
)( o

α
∗ o

β
∗)

. Since

the scator product is commutative
( o
α

o

β
)( o

α
∗ o

β
∗)

=
( o
α

o

β
)( o

β
∗

o
α
∗)

. If the product is associative
( o
α

o

β
)( o

β
∗

o
α
∗)

=
o
α
( o

β
o

β
∗) o

α
∗
=
( o
α

o
α
∗)( o

β
o

β
∗)

,

thus
∥
∥

o
α

o

β
∥
∥=

∥
∥

o
α
∥
∥
∥
∥

o

β
∥
∥.
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The magnitude of the scator products is equal to the product of the scator magnitudes if all possible product pairs have a non vanishing

additive scalar component. Therefore, the
o
α

o

β 6= 0 condition stated in Lemma 4.1 [12], is now corrected and embraced in the condition stated

in this corollary. Notice that
o
ϕ +

o
ϕ
∗
= 2 f0, thus a scator product with non zero scalar component can be stated in terms of the involution as

o
α

o

β +
o
α
∗ o

β
∗

6= 0.

A. Appendix: Associativity exceptions

There are three generic conditions where the scalar component of a product pair is zero but associativity holds: i) The S
1+1 j subsets; ii) Two

scator factors are linearly dependent on all director coefficients except for the two that produce a zero scalar ; iii) All product pairs give zero

products.

The foremost exception are scator sets with only one director component

S
1+1 j =

{
o
ϕ = f0 +

n

∑
k=1

fkek,∈ S
1+n : fk = 0, for any k 6= j

}

.

Numbers in the S
1+1 j subset are of the form

o
ϕ = f0 + f je j, these subsets are isomorphic to the complex field for each j, [10, Proposition

4.12]. The scator product definition (1.2a)-(1.2c) can then be grouped in the usual single product definition for complex numbers (or

hyperbolic numbers). The scator product is thus associative in S
1+1 j even if a product pair has zero scalar component.

In the proof of Theorem 3.1, non associativity was analyzed in various cases where different expressions were obtained depending on the

precedence of evaluation. These expressions are forced here to be equal by imposing the necessary conditions on the scator coefficients.

A.1. Linear dependence except for lth component (Case 1)

The product in subcase 1.1 of Theorem 3.1 is not associative unless
( o
α

o

β
) o
ϕ given by (3.4) and

o
α
( o

β
o
ϕ
)

given by (3.5) are equal. Equating the

scalar terms imposes

n

∏
k 6=l

(

1∓
akbk

a0b0

)

=
n

∏
k 6=l

(

1∓
akbk

a0b0
∓

bk fk

b0 f0
∓

ak fk

a0 f0

)

. (A.1)

The e j components in (3.4) and (3.5) are equal only if, in addition to the above condition,

f j

f0
=

(
a j

a0
+

b j

b0
+

f j

f0
∓

a j

a0

b j f j

b0 f0

)

(

1∓
b j f j

b0 f0
∓

a jb j

a0b0
∓

a j f j

a0 f0

) ,

for all j 6= l from 1 to n. This equality holds provided that i)
a j

a0
+

b j

b0
6= 0 and f 2

j =∓ f 2
0 , but this condition cannot be fulfilled for imaginary

scators except if f j = f0 = 0, but then
o
ϕ ∈ S

1+n
0 , contrary to the initial premise. For real scators f 2

j = f 2
0 , implies that the scator lies in the

null geodesic surface [12]. ii) If
a j

a0
+

b j

b0
= 0, then b j =−b0

a j

a0
. The product of scators

o
α = a0

(

1+
n

∑
j=1

a j

a0
e j

)

,
o

β = b0

(

1−
n

∑
j 6=l

a j

a0
e j ±

a0

al

el

)

,
o
ϕ = f0 +

n

∑
j=1

f je j,

is then associative although
o
α

o

β ∈ S
1+n
0 . The scators

o
α and

o

β are linearly dependent on all e j coefficients except for the el coefficient, where

albl =±a0b0 produces a product
o
α

o

β with zero scalar component. Associativity in subcase 1.2 of Theorem 3.1 is obtained by imposing the

equality of equations (3.4) and (3.6). This equality again requires linear dependence on all but one of the director components.

A.2. Zero product pairs (Cases 2, 3 and 4)

Subcase 2.1 If l 6= m, equations (3.7) and (3.8), require the scalar component to be equal to the director component el , a condition that

can only be satisfied if both coefficients are zero. A factor in the product ∏
n
k 6=l,m

(

1∓ akbk

a0b0

)

of equation (3.8) then has to be zero. Hence

( o
α

o

β
) o
ϕ =

o
α
( o

β
o
ϕ
)
=

o

β
( o
α

o
ϕ
)
= 0. Subcase 2.1 with l = m, as well as subcase 2.2 and cases 3 and 4 are similarly obtained and again

associativity holds when all product pairs are zero.
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Abstract

The present paper deals with the study of Kenmotsu manifolds equipped with a semi-

symmetric metric connection. The properties of η−parallel Ricci tensor, globally symmetric

and φ−symmetric Kenmotsu manifolds with the semi-symmetric metric connection are

evaluated. In the end, we construct an example of a 3−dimensional Kenmotsu manifold

admitting semi-symmetric metric connection and verify our some results.

1. Introduction

The notion of curvatures play a central role in the differential geometry and physics. For instant, the magnitude of a force required to move

an object at constant speed along a curve path is, according to Newton’s laws, a constant multiple of the curvature of the trajectory. The

motion of a body in a gravitational field is determined, according to Einstein, by the curvature of spacetime [1]. The space of constant

curvature also plays a key role in differential geometry and mathematical physics (specially in the theory of relativity and cosmology). In

1926, Cartan ([2], [3]) introduced the notion of a locally symmetric Riemannian manifold which is the natural generalization of manifolds of

constant curvature. The condition of local symmetry is equivalent to the fact that at every point x ∈ M, the local geodesic symmetry F(x) is

an isometry [4]. The idea of locally φ−symmetric Sasakian manifold was introduced by Takahashi [35] in 1977. Since then, the properties

of such manifolds have been studied by several geometers on different spaces.

The study of odd dimensional manifolds with contact and almost contact structures were initiated by Boothby and Wong [5] in 1958 rather

from topological point of view. Sasaki and Hatakeyama [6] re-investigated them using tensor calculus in 1961. In 1972, K. Kenmotsu

studied a class of almost contact metric manifolds and call them Kenmotsu manifold [7]. He proved that if a Kenmotsu manifold satisfies

the condition R(X ,Y ).R = 0, then the manifold is of negative curvature −1, where R is the Riemannian curvature tensor of type (1,3) and

R(X ,Y ) denotes the derivation of the tensor algebra at each point of the tangent space T (M). The properties of Kenmotsu manifolds have

been noticed in ([9] - [17]) and by others.

The notion of a semi-symmetric linear connection on a differentiable manifold has been introduced by Friedmann and Schouten [20] in 1924.

Hayden [21] in 1932, introduced and studied the idea of semi-symmetric linear connection with torsion on a Riemannian manifold. After a

long interval, Yano [22] started the systematic study of a semi-symmetric metric connection on a Riemannian manifold in 1970. Since then

the properties of semi-symmetric metric connection on different spaces have studied in ([27]-[32]) and the references therein.

Motivated from the above studied, authors start the study of the properties of Kenmotsu manifold equipped with a semi-symmetric metric

connection. We organize the present paper as follows: Section 2 contains the basic known results of Kenmotsu manifolds and η−parallel

Ricci tensor. The brief results of the semi-symmetric metric connection on a Kenmotsu manifold are given in section 3. Section 4 deals the

study of η−parallel Ricci tensor with respect to the semi-symmetric metric connection on the Kenmotsu manifold and find some geometrical

results. The properties of concircular and projective curvature tensors endowed with a semi-symmetric metric connection are investigated in

section 5. In last section, we construct an example of Kenmotsu manifold equipped with semi-symmetric connection and verify our results.
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2. Preliminaries

An odd dimensional differentiable manifold M (dimM = n = 2m+1) of class C∞ is said to have a (φ ,ξ ,η)−structure or almost contact

structure if it admits a tensor field φ of endomorphisms of the tangent spaces, a vector field ξ , and a 1−form η satisfying

η(ξ ) = 1 and φ 2 =−I +η ⊗ξ , (2.1)

where I denotes the identity transformation [25]. From (2.1), it can be easily see that φξ = 0, η ◦φ = 0 and rank φ = n−1. A Riemannian

metric g of type (0,2) is said to be compatible with the almost contact structure (φ ,ξ ,η) if the relation

g(X ,Y ) = g(φX ,φY )+η(X)η(Y ) (2.2)

holds for arbitrary vector fields X and Y . An almost contact structure (φ ,ξ ,η) equipped with a compatible Riemannian metric g is known as

almost contact metric structure (φ ,ξ ,η ,g) and the manifold M endowed with the almost contact structure is called an almost contact metric

manifold. If moreover,

∇X ξ = X −η(X)ξ , (2.3)

holds for all X on M(φ ,ξ ,η ,g), then the manifold is said to be Kenmotsu manifold [7]. Here ∇ denotes the Levi-Civita connection of the

metric g. For proving our main results in next sections, we are going to recall some basic known results of Kenmotsu manifold as:

(∇X φ)(Y ) =−η(Y )φX −g(X ,φY )ξ , (2.4)

(∇X η)(Y ) = g(X ,Y )−η(X)η(Y ), (2.5)

S(φX ,φY ) = S(X ,Y )+(n−1)η(X)η(Y ), (2.6)

η(R(X ,Y )Z) = η(Y )g(X ,Z)−η(X)g(Y,Z), (2.7)

R(X ,Y )ξ = η(X)Y −η(Y )X , (2.8)

R(ξ ,X)Y = η(Y )X −g(X ,Y )ξ , (2.9)

S(X ,ξ ) =−(n−1)η(X). (2.10)

A Kenmotsu manifold M is said to be η−Einstein if its Ricci tensor S takes the form

S(X ,Y ) = ag(X ,Y )+bη(X)η(Y ), (2.11)

for arbitrary vector fields X and Y , where a and b are smooth functions on (M,g) [7]. If b = 0, then η−Einstein manifold becomes Einstein

manifold. It is well known that in a Kenmotsu manifold a+b =−(n−1) (see [7], p. 97).

The notion of η−parallelism on a Sasakian manifold was introduced by M. Kon [26]. A Ricci tensor S of an n−dimensional Kenmotsu

manifold M is said to be η−parallel if it satisfies the tensorial relation

(∇X S)(φY,φZ) = 0 (2.12)

for all X , Y , Z ∈ χ(M).

3. Semi-symmetric metric connection

Let M be an n−dimensional Kenmotsu manifold and ∇ denotes the Levi-Civita connection on it. A linear connection ∇̃ on M is said to be a

semi-symmetric if the torsion tensor T̃ of type (1,2) defined as

T̃ (X ,Y ) = ∇̃XY − ∇̃Y X − [X ,Y ]

satisfies

T̃ (X ,Y ) = η(Y )X −η(X)Y (3.1)

for all vector fields X and Y on M. If moreover, the semi-symmetric connection ∇̃ holds the relation

∇̃g = 0 (3.2)
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is called semi-symmetric metric connection. A semi-symmetric connection ∇̃ is said to be non-metric if ∇̃g 6= 0. A relation between a

semi-symmetric metric and Levi-Civita connections is given by the relation

∇̃XY = ∇XY +η(Y )X −g(X ,Y )ξ , (3.3)

for all vector fields X , Y ∈ χ(M) ([22], p. 15). With the help of equations (2.1), (2.2), (2.3), (2.4) and (3.3), we can easily observe that

(∇̃X η)(Y ) = (∇X η)(Y )−η(X)η(Y )+g(X ,Y ) (3.4)

and

(∇̃X φ)(Y ) =−g(X ,φY )ξ −2η(Y )φX . (3.5)

If R and R̃ denote the curvature tensors with respect to the Levi-Civita and semi-symmetric metric connections of the manifold M respectively,

then it is related by the relation

R̃(X ,Y )Z = R(X ,Y )Z +θ(X ,Z)Y −θ(Y,Z)X +g(X ,Z)LY −g(Y,Z)LX (3.6)

for all X , Y , Z ∈ χ(M), where

θ(X ,Y ) = g(LX ,Y ) = (∇X η)(Y )−η(X)η(Y )+
1

2
g(X ,Y ) (3.7)

is a symmetric tensor of type (0, 2) on M. In consequence of (2.1), (2.5) and (3.7), equation (3.6) assumes the form

R̃(X ,Y )Z = R(X ,Y )Z −3g(Y,Z)X +3g(X ,Z)Y +2η(Y )η(Z)X −2η(X)η(Z)Y +2η(X)g(Y,Z)ξ −2η(Y )g(X ,Z)ξ . (3.8)

The contraction of equation (3.8) along the vector field X gives

S̃(Y,Z) = S(Y,Z)− (3n−5)g(Y,Z)+2(n−2)η(Y )η(Z), (3.9)

which is equivalent to

Q̃Y = QY − (3n−5)Y +2(n−2)η(Y )ξ , (3.10)

where Q̃ and Q denote the Ricci operators corresponding to the connections ∇̃ and ∇ respectively and defined as S̃(Y,Z) = g(Q̃Y,Z) and

S(Y,Z) = g(QY,Z). Let {ei, i = 1,2,3, ...,n} be an orthonormal basis of the tangent space at each point of the manifold M. Setting Y = Z = ei

in (3.9) and taking summation over i, 1 ≤ i ≤ n, we get

r̃ = r−n(3n−7)−4, (3.11)

where

r̃ =
n

∑
i=1

S̃(ei,ei) and r =
n

∑
i=1

S(ei,ei)

represent the scalar curvatures with respect to the connections ∇̃ and ∇ respectively. In view of equations (2.1), (2.10) and (3.9), we can find

that

S̃(Y,ξ ) =−2(n−1)η(Y ). (3.12)

With the help of (2.1), (2.8), (2.9) and (3.8), we can easily calculate the following:

R̃(ξ ,Y )Z = 2{η(Z)Y −g(Y,Z)ξ} (3.13)

and

R̃(X ,Y )ξ = 2{η(X)Y −η(Y )X}. (3.14)

The equation (3.14) shows that the manifold M equipped with ∇̃ is regular.

4. η−parallel Ricci tensor with respect to semi-symmetric metric connection

In this section, we study the geometrical properties of η−parallel Ricci tensor with respect to the semi-symmetric metric connection ∇̃. In

[8], authors studied the properties of η−parallel Ricci tensor and proved several results. Analogous to the definition of η−parallelism given

by M. Kon [26] on Sasakian manifolds, we define

Definition 4.1. A Ricci tensor S̃ of an n−dimensional Kenmotsu manifold M endowed with a semi-symmetric metric connection ∇̃ is said to

be η−parallel for ∇̃ if it satisfies the relation (∇̃X S̃)(φY,φZ) = 0, for arbitrary vector fields X, Y and Z.



92 Universal Journal of Mathematics and Applications

From (3.3), it is obvious that

∇̃X (Q̃Y ) = ∇X (Q̃Y )+g(Q̃Y,ξ )X −g(X , Q̃Y )ξ .

With the help of (2.1), (2.5), (3.3) and (3.10), we can find

∇̃X (Q̃Y ) = (∇̃X Q̃)(Y )+Q(∇XY )+2(n−1)g(X ,Y )ξ +η(Y )QX +2(n−2){η(∇XY )−η(X)η(Y )}ξ − (3n−5){∇XY +η(Y )X},

and

∇X (Q̃Y ) = (∇X Q)(Y )+Q(∇XY )− (3n−5)∇XY +2(n−2)[{η(∇XY )−η(X)η(Y )+g(X ,Y )}ξ +η(Y ){X −η(X)ξ}].

From the above results, we obtain

(∇̃X Q̃)(Y ) = (∇X Q)(Y )−η(Y )QX −g(X ,QY )ξ −8(n−2)η(Y )η(X)ξ +(3n−7){η(Y )X +g(X ,Y )ξ}.

In view of (2.1), (2.10) and (∇̃X S̃)(Y,Z) = g((∇̃X Q̃)(Y ),Z), above relation assumes the form

(∇̃X S̃)(Y,Z) = (∇X S)(Y,Z)−η(Y )S(X ,Z)−η(Z)S(X ,Y )+(3n−7){η(Z)g(X ,Y )+η(Y )g(X ,Z)}−8(n−2)η(X)η(Y )η(Z).

Replacing the vector fields Y by φY and Z by φZ in (??) and then using (2.1), we obtain

(∇̃X S̃)(φY,φZ) = (∇X S)(φY,φZ). (4.1)

In view of (2.12), (4.1) and Definition 4.1, we can state the following:

Theorem 4.2. Let M be an n−dimensional Kenmotsu manifold equipped with a semi-symmetric metric connection ∇̃. Then the Ricci

tensor S̃ on M is η−parallel with respect to the connection ∇̃ if and only if the manifold has η−parallel Ricci tensor S for the Levi-Civita

connection ∇.

The straight forward calculations from the equations (2.1), (2.2), (2.6) and (3.9) give

S̃(φY,φZ) = S̃(Y,Z)+2(n−1)η(Y )η(Z) (4.2)

for all X , Y ∈ χ(M). Differentiating (4.2) covariantly along the vector field X , we have

(∇̃X S̃)(φY,φZ) = ∇̃X S̃(φY,φZ)− S̃(∇̃X (φY ),φZ)− S̃(φY, ∇̃X (φZ)).

With the help of equations (2.1), (3.3), (3.4), (3.5), (3.12) and (4.2), last equation assumes the form

(∇̃X S̃)(φY,φZ) = (∇̃X S̃)(Y,Z)+2{η(Y )S̃(X ,Z)+η(Z)S̃(X ,Y )}+4(n−1){η(Y )g(X ,Z)+η(Z)g(X ,Y )}. (4.3)

Let us suppose that the manifold M equipped with a semi-symmetric metric connection ∇̃ has η−parallel Ricci tensor S̃ for the connection

∇̃, i.e. (∇̃X S̃)(φY,φZ) = 0, then from (4.3), we obtain

(∇̃X S̃)(Y,Z) =−2{η(Y )S̃(X ,Z)+η(Z)S̃(X ,Y )}−4(n−1){η(Y )g(X ,Z)+η(Z)g(X ,Y )}. (4.4)

Thus, we can state the following:

Theorem 4.3. An n−dimensional Kenmotsu manifold M endowed with a semi-symmetric metric connection ∇̃ has η−parallel Ricci tensor

for the connection ∇̃ if and only if the relation (4.4) holds on M.

Let {ei, i = 1,2,3, ...,n} be an orthonormal basis of the tangent space at any point of the manifold M. Setting Y = Z = ei in (4.4) and taking

summation over i, 1 ≤ i ≤ n, we get

dr̃(X) = 0

for all X ∈ χ(M). This shows that the scalar curvature r̃ is constant with respect to the connection ∇̃. Hence we state:

Corollary 4.4. If the Ricci tensor S̃ of an n−dimensional Kenmotsu manifold M equipped with a semi-symmetric metric connection ∇̃ is

η−parallel, then the scalar curvature for the connection ∇̃ is constant.

From (3.11) and Corollary 4.4, it is obvious that

dr̃(X) = dr(X) = 0,

∀ X ∈ χ(M), which implies that the scalar curvature with respect to the Levi-Civita connection is constant. Thus we have,

Corollary 4.5. Let an n−dimensional Kenmotsu manifold M equipped with a semi-symmetric metric connection ∇̃ has η−parallel Ricci

tensor S̃. Then the scalar curvature of the manifold is constant.

Moreover, since S̃(Y,Z) = g(Q̃Y,Z), we can find from (3.3) that

∇̃X |Q̃|2 = 2
n

∑
i=1

g((∇̃X Q̃)ei, Q̃ei) = 0,

which implies that |Q̃|2 =constant. Thus we have
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Corollary 4.6. If an n−dimensional Kenmotsu manifold endowed with a semi symmetric metric connection ∇̃ has η−parallel Ricci tensor,

then the length of Ricci operator with ∇̃ is constant on M.

Let us suppose that the Ricci tensor S̃ on an n−dimensional Kenmotsu manifold M equipped with a semi-symmetric metric connection ∇̃ is

Codazzi type, i.e., (∇̃X S̃)(Y,Z) = (∇̃Y S̃)(X ,Z). Thus in view of this definition and equation (4.4), we obtain

η(Y )S̃(X ,Z)−η(X)S̃(Y,Z) = 2(n−1){η(X)g(Y,Z)−η(Y )g(X ,Z)}.

Setting Y = ξ in last expression and using (2.1) and (3.12), we find

S̃(X ,Z) =−2(n−1)g(X ,Z),

which is equivalent to

S(X ,Z) = (n−3)g(X ,Z)−2(n−2)η(X)η(Z). (4.5)

This shows that the manifold M is an η−Einstein manifold with the scalars a = n−3 and b =−2(n−2). It is obvious that a+b =−(n−1)
[For instant, see [7], p-97]. Conversely, if we suppose that the manifold M satisfies (4.5), then we can easily find that the Ricci tensor with

respect to the semi-symmetric metric connection ∇̃ is of Codazzi type. Thus we can state:

Corollary 4.7. Let an n(> 3)−dimensional Kenmotsu manifold M equipped with a semi-symmetric metric connection ∇̃ has η−parallel

Ricci tensor for ∇̃. Then the Ricci tensor S̃ on M to be of Codazzi type if and only if the manifold M is Einstein for ∇̃ or an η−Einstein for

Levi-Civita connection.

Again, we consider that the Ricci tensor S̃ with respect to a semi-symmetric metric connection ∇̃ is cyclic parallel, i.e.,

(∇̃X S̃)(Y,Z)+(∇̃Y S̃)(Z,X)+(∇̃Z S̃)(X ,Y ) = 0.

In view of (4.4), above relation converts into the form

η(X)S̃(Y,Z)+η(Y )S̃(Z,X)+η(Z)S̃(X ,Y )+2(n−1){η(X)g(Y,Z)+η(Y )g(X ,Z)+η(Z)g(X ,Y )}= 0.

Putting Z = ξ in last expression and using (2.1) and (3.12), we get (4.5). Hence we can state:

Corollary 4.8. Let M be an n(> 3)−dimensional Kenmotsu manifold endowed with a semi-symmetric metric connection ∇̃, has η−parallel

Ricci tensor S̃, then the Ricci tensor with respect to the connection ∇̃ to be cyclic parallel if and only if the manifold is η−Einstein.

5. Concircular curvature tensor with semi-symmetric metric connection ∇̃

It is well known that a geodesic circle (a curve whose first curvature is constant and second curvature is identically zero) does not transform

into a geodesic circle by the conformal transformation

gi j = ψ2gi j, (5.1)

where gi j denotes the fundamental tensor. Yano [18] proved that a conformal transformation, defined in (5.1), satisfying the partial differential

equation

ψi; j = φgi j (5.2)

alters a geodesic circle into a geodesic circle. Such a transformation is known as concircular transformation and the geometry deals with such

transformation is called the concircular geometry [18]. A tensor field C of type (1,3) on a Riemannian manifold, which remains invariant

under the concircular transformation, defined by

C(X ,Y )Z = R(X ,Y )Z −
r

n(n−1)
{g(Y,Z)X −g(X ,Z)Y}, (5.3)

where R is the curvature tensor and r denotes the scalar curvature, is known as concircular curvature tensor [19]. Analogous to the definition

of (5.3), we can define

Definition 5.1. Let M be an n−dimensional Kenmotsu manifold equipped with a semi-symmetric metric connection ∇̃. A concircular

curvature tensor C̃ with respect to the connection ∇̃ on M is a tensor field of type (1,3) and satisfies the relation

C̃(X ,Y )Z = R̃(X ,Y )Z −
r̃

n(n−1)
{g(Y,Z)X −g(X ,Z)Y}, (5.4)

for all vector fields X, Y , Z ∈ χ(M). Here R̃ and r̃ are the curvature tensor and scalar curvature of the manifold M corresponding to the

connection ∇̃ respectively.

Definition 5.2. Let M be an n−dimensional Kenmotsu manifold equipped with a semi-symmetric metric connection ∇̃. A projective curvature

tensor P̃ with respect to the connection ∇̃ on M is a tensor field of type (1,3) and satisfies the relation

P̃(X ,Y )Z = R̃(X ,Y )Z −
1

(n−1)
{S̃(Y,Z)X − S̃(X ,Z)Y}, (5.5)

for all vector fields X, Y , Z ∈ χ(M). Here R̃ and S̃ denote the curvature and Ricci tensors of the manifold M corresponding to the connection

∇̃ respectively.
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Let M be an n(> 3)−dimensional Kenmotsu manifold admitting a semi-symmetric metric connection ∇̃ has η−parallel Ricci tensor S̃ for

∇̃. If additionally, Ricci tensor S̃ is either Codazzi type or cyclic parallel, then equation (4.5) holds on M. Let {ei, i = 1,2,3, ...,n} be an

orthonormal basis of the tangent space at any point of the manifold M. Setting Y = Z = ei in (4.5) and taking summation over i, 1 ≤ i ≤ n,

we get r̃ =−2n(n−1). By considering this fact and equations (5.4) and (5.5), we find that

C̃(X ,Y )Z = P̃(X ,Y )Z. (5.6)

Conversely, if the relation (5.6) holds, then from (5.4) and (5.5), we can easily obtain

S̃(X ,Z)Y − S̃(Y,Z)X =
r̃

n
{g(Y,Z)X −g(X ,Z)Y},

which is equivalent to

S̃(X ,Z)η(Y )− S̃(Y,Z)η(X) =
r̃

n
{g(Y,Z)η(X)−g(X ,Z)η(Y )}.

Putting Y = ξ in last equation and using (2.1) and (3.12), we get

S̃(X ,Z)+2(n−1)η(Z)η(X) =
r̃

n
{η(Z)η(X)−g(X ,Z)}.

Let {ei, i = 1,2,3, ...,n} be an orthonormal basis of the tangent space at any point of the manifold M. Setting X = Z = ei in the last equation

and taking summation over i, 1 ≤ i ≤ n, we immediately get r̃ =−2n(n−1) and hence from (5.4) and (5.5), we obtain (4.5). From the above

discussion, we can state the following corollary:

Corollary 5.3. Let M be an n(> 3)−dimensional Kenmotsu manifold equipped with a semi-symmetric metric connection ∇̃ has η−parallel

Ricci tensor for ∇̃. Then the concircular and projective curvature tensors for ∇̃ coincide if and only if the Ricci tensor S̃ is either Codazzi

type or cyclic parallel.

From the Corollaries (4.7), (4.8) and (5.3), we observe the following:

Corollary 5.4. If the Ricci tensor S̃ of an n(> 3)−dimensional Kenmotsu manifold M endowed with a semi-symmetric metric connection ∇̃

is η−parallel . Then the following results on M are equivalent

(i) Ricci tensor S̃ is of Codazzi type,

(ii) Ricci tensor S̃ is cyclic parallel,

(iii) S̃ =−2(n−1)g(Y,Z),
(iv) C̃(X ,Y )Z = P̃(X ,Y )Z,

(v) r̃ =−2n(n−1).

Let us suppose that the manifold M equipped with a semi-symmetric metric connection ∇̃ is either concircularly or projectively flat with

respect to the connection ∇̃, then in consequence of (4.5), (5.4), (5.5) and (5.6), we find that

R̃(X ,Y )Z =−2{g(Y,Z)X −g(X ,Z)Y}, (5.7)

which shows that the manifold M equipped with ∇̃ is of constant curvature. Therefore we have:

Remark 5.5. The idea of constant curvature plays a central role in the theory of relativity and cosmology. The simplest cosmological

model can be constructed by assuming that the universe is isotropic and homogeneous. This is known as cosmological principle. When we

translated this principle to Riemannian geometry, professes that the three dimensional position space is a space of maximal symmetry [24],

i.e., a space of constant curvature whose curvature depends upon time. The cosmological solutions of Einstein equations which contain a

three dimensional space like surfaces of a constant curvature are the Robertson-Walker metric, while four dimensional space of constant

curvature is the de Sitler model of the universe ([23], [24]).

In consequence of (3.8) and (5.7), we immediately get

R(X ,Y )Z = {g(Y,Z)X −g(X ,Z)Y}+2{η(X)η(Z)Y −η(Y )η(Z)X −η(X)g(Y,Z)ξ +η(Y )g(X ,Z)ξ}, (5.8)

which shows that it is a certain class of generalized Sasakian space form (for instance, see [33], [34]). From (5.8), it is obvious that f1 = 1,

f2 = 0 and f3 = 2. Also, if we suppose that the manifold M equipped with ∇̃ satisfies (5.8), then equations (3.8), (5.4), (5.5) and (5.8) give

C̃ = P̃ = 0. Kim [34] proved that a generalized Sasakian-space form is conformally flat if and only if f2 = 0. Thus from (5.8) and result of

Kim, we have the following theorem:

Theorem 5.6. Let M be an n(> 3)−dimensional Kenmotsu manifold endowed with a semi-symmetric metric connection ∇̃. Then the

manifold is conformally flat if and only if it is either projectively or concircularly flat for ∇̃.

Taking covariant derivative of (5.4) with respect to the semi-symmetric metric connection ∇̃ along the vector field W , we get

(∇̃W C̃)(X ,Y )Z = (∇̃W R̃)(X ,Y )Z −
dr̃(W )

n(n−1)
{g(Y,Z)X −g(X ,Z)Y}. (5.9)

Let us suppose that the Kenmotsu manifold M equipped with a semi-symmetric metric connection ∇̃ has η−parallel Ricci tensor, i.e.,

(∇̃X S̃)(φY,φZ) = 0. Thus from the Corollary 4.4, equation (5.9) assumes the form

(∇̃W C̃)(X ,Y )Z = (∇̃W R̃)(X ,Y )Z. (5.10)

Before going to discuss our results, we define the following definitions as:
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Definition 5.7. An n−dimensional Kenmotsu manifold M equipped with a semi-symmetric metric connection ∇̃ is said to be a global

symmetric Kenmotsu manifold with respect to the connection ∇̃ if its non vanishing curvature tensor R̃ satisfies

(∇̃W R̃)(X ,Y )Z = 0,

for arbitrary vector fields X, Y , Z and W.

Definition 5.8. An n−dimensional Kenmotsu manifold M equipped with a semi-symmetric metric connection ∇̃ is said to be a global

concircularly symmetric Kenmotsu manifold with respect to the connection ∇̃ if its concircular curvature tensor C̃ satisfies

(∇̃W C̃)(X ,Y )Z = 0,

for arbitrary vector fields X, Y , Z and W.

Definition 5.9. An n−dimensional Kenmotsu manifold M equipped with a semi-symmetric metric connection ∇̃ is said to be a globally

φ−symmetric Kenmotsu manifold with respect to the semi-symmetric metric connection ∇̃ if its non vanishing curvature tensor R̃ satisfies

φ 2((∇̃W R̃)(X ,Y )Z) = 0,

for arbitrary vector fields X, Y , Z and W.

Definition 5.10. An n−dimensional Kenmotsu manifold M equipped with a semi-symmetric metric connection ∇̃ is said to be a globally

φ−concircularly symmetric Kenmotsu manifold with respect to the semi-symmetric metric connection ∇̃ if its concircular curvature tensor C̃

satisfies

φ 2((∇̃W C̃)(X ,Y )Z) = 0,

for all X, Y , Z, W ∈ χ(M).

In consequence of equation (5.10) and Definitions 5.7 and 5.8, we can observe the following:

Theorem 5.11. Let M be an n−dimensional Kenmotsu manifold with a semi-symmetric metric connection ∇̃ and the Ricci tensor S̃ of M is

η−parallel. Then M is globally symmetric if and only if it is globally concircularly symmetric with respect to the connection ∇̃.

Operating φ 2 on both sides of (5.10), we have

φ 2(∇̃W C̃)(X ,Y )Z = φ 2(∇̃W R̃)(X ,Y )Z.

Thus, with the help of above equation and Definitions 5.3 and 5.4, we can state:

Theorem 5.12. If an n−dimensional Kenmotsu manifold M equipped with a semi-symmetric metric connection ∇̃ has η−parallel Ricci

tensor S̃, then the manifold M to be globally φ−symmetric if and only if it is globally φ−concircularly symmetric.

It is observed that a globally φ−concircularly symmetric Kenmotsu manifold M equipped with a semi-symmetric metric connection ∇̃ is an

η−Einstein manifold. Thus, by considering this fact and Theorem 5.12, we have

Corollary 5.13. If an n−dimensional Kenmotsu manifold M endowed with a semi-symmetric metric connection ∇̃ has η−parallel Ricci

tensor S̃, then it is an η−Einstein manifold.

6. Example

In this section, we construct an example of the Kenmotsu manifold admitting a semi-symmetric metric connection and after that we validate

our results.

Example 6.1. Let

M3 = {(x,y,z) ∈ R
3 : x,y,z(6= 0) ∈ R},

be a three dimensional smooth manifold, where (x,y,z) denotes the standard coordinate of a point in R
3. Let us suppose that

e1 = ez

(

∂

∂x
+

∂

∂y

)

, e2 = ez ∂

∂y
, e3 =−

∂

∂ z

be a set of linearly independent vector field at each point of the manifold M3 and therefore it form a basis for the tangent space χ(M3). We

also define the Riemannian metric g of the manifold M3 as g(ei,e j) = δi j, where δi j denotes the Kronecker delta and i, j = 1,2,3. Let us

consider the 1−form η defined by η(Z) = g(Z,e3) for any Z ∈ χ(M3) and a tensor field φ of type (1,1) defined by

φ(e1) =−e2, φ(e2) = e1, φ(e3) = 0.

By the linearity properties of φ and g, we can easily verify the following relations

φ 2X =−X +η(X)e3, η(e3) = 1, g(φX ,φY ) = g(X ,Y )−η(X)η(Y )

for arbitrary vector fields X ,Y ∈ χ(M3). This shows that ξ = e3 and the structure (φ ,ξ ,η ,g) defines an almost contact metric structure on

M3. If ∇ represents the Levi-Civita connection with respect to the Riemannian metric g, then with help of above, we can easily calculate that

[e1,e2] = 0, [e1,e3] = e1, [e2,e3] = e2.



96 Universal Journal of Mathematics and Applications

We recall the Koszul’s formula as

2g(∇XY,Z) = Xg(Y,Z)+Y g(X ,Z)−Zg(X ,Y )−g(X , [Y,Z])−g(Y, [X ,Z])+g(Z, [X ,Y ])

for arbitrary vector fields X ,Y,Z ∈ χ(M3). It is obvious from Koszul’s formula that

∇e1
e1 =−e3, ∇e1

e2 = 0, ∇e1
e3 = e1, ∇e2

e1 = 0, ∇e2
e2 =−e3, ∇e2

e3 = e2, ∇e3
e1 = 0, ∇e3

e2 = 0, ∇e3
e3 = 0.

From the above calculations, we can observe that ∇X ξ = X −η(X)ξ , for ξ = e3. Thus the manifold (M3,g) is a Kenmotsu manifold of

dimension 3 and the structure (φ ,η ,ξ ,g) denotes the Kenmotsu structure on the manifold M3.

It is obvious from the above results that

R(e1,e2)e3 = 0, R(e1,e3)e3 =−e1, R(e3,e2)e2 =−e3, R(e3,e1)e1 =−e3, R(e2,e1)e1 =−e2,

R(e2,e3)e3 =−e2, R(e1,e2)e2 =−e1, R(e3,e1)e2 = 0, S(e1,e1) =−2, S(e2,e2) =−2,

S(e3,e3) =−2, S(φe1,φe1) =−2, S(φe2,φe2) =−2, S(φe3,φe3) = 0, S(φei,φe j) = 0, f or all i, j = 1, 2, 3 (i 6= j).

From the above relations, we can easily calculate that (∇X S)(φei,φe j) = 0 for all X ∈ χ(M3) and i, j = 1,2,3. Hence the manifold M3 is

η−parallel.

In consequence of (3.3) and above results, we can find that

∇̃e1
e1 =−2e3, ∇̃e1

e2 = 0, ∇̃e1
e3 = 2e1, ∇̃e2

e1 = 0, ∇̃e2
e2 =−2e3,∇̃e2

e3 = 2e2, ∇̃e3
e1 = 0, ∇̃e3

e2 = 0, ∇̃e3
e3 = 0

and also the components of torsion tensor T̃ are

T̃ (ei,ei) = ∇̃ei
ei − ∇̃ei

ei − [ei,ei] = 0, f or i = 1,2,3 and T̃ (e1,e2) = 0, T̃ (e1,e3) = e1, T̃ (e2,e3) = e2.

These equations show that T̃ 6= 0 and therefore by equation (3.1), we can say that the linear connection defined in (3.3) is a semi-symmetric

connection on (M3,g). By the straight forward calculation, we can also find

(∇̃e1
g)(ei,e j) = 0, (∇̃e2

g)(ei,e j) = 0, (∇̃e3
g)(ei,e j) = 0

for all i, j = 1,2,3. This demonstrates that the equation (3.2) holds on M3 and hence the linear connection defined in (3.3) is a semi-

symmetric metric connection on M3. Thus we can say that the manifold (M3,g) be a three dimensional Kenmotsu manifold equipped with a

semi-symmetric metric connection ∇̃ defined in (3.3).

With the help of above discussions, we can calculate the curvature and Ricci tensors with respect to the semi-symmetric metric connection ∇̃

as

R̃(e1,e2)e3 = 0, R̃(e1,e3)e3 =−2e1, R̃(e3,e2)e2 =−2e3, R̃(e3,e1)e1 =−2e3, R̃(e2,e1)e1 =−4e2, R̃(e2,e3)e3 =−2e2,

R̃(e1,e2)e2 =−4e1, R̃(e3,e1)e2 = 0, S̃(e1,e1) =−6, S̃(e2,e2) =−6, S̃(e3,e3) =−4, r̃ =−16

and other components can be calculated by symmetric and skew-symmetric properties. We can easily observe that the equations [(3.8) -

(3.14)] are verified. Also,

S̃(φe1,φe1) =−6, S̃(φe2,φe2) =−6, S̃(φe3,φe3) = 0, S̃(φei,φe j) = 0, f or all i, j = 1,2,3(i 6= j).

It is clear from the above discussions that (∇̃X S̃)(φei,φe j) = 0 for all X ∈ χ(M3) and i, j = 1,2,3. Hence the manifold M3 equipped with

a semi-symmetric metric connection ∇̃ has η−parallel Ricci tensor for the connection ∇̃. From the above discussions, we come to the

conclusion:

”If the manifold M3 has η−parallel Ricci tensor with respect to Levi-Civita connection ∇, then it contains also η−parallel Ricci tensor with

respect to the semi-symmetric metric connection ∇̃”.

Hence the statement of the Theorem 4.2.

It is obvious from the above relations that r̃ =−16(constant) and hence the Corollary 4.4 is satisfied on M3.
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Abstract

In this paper we introduce and discus a concept of proper UP-filters in UP-algebras. We

present a connection between proper UP-filters and UP-ideals. We expect this concept of

filters to play a significant role in research and understanding of algebras.

1. Introduction

The basic concepts of UP-algebra are taken from the text [3]. The author in his article has introduced and analyzed the concepts of UP-algebra,

UP-subalgebra and UP-ideal. In the article [6] the authors introduced the concept of UP-filters in UP algebra. This latter concept has a

non-standard attitude towards the concept of UP-ideals. That made us confused - we expected the filter to have a standard attitude towards

the ideal. We were interested in why the authors of the concept of UP-filters opted for such definition of the UP-filter. Our first reaction to

such a UP-filter determination was - the offered definition is not correct. Then we thought that the text of the UP-filter definition in the

article [6] was incorrectly written. Viewing the available literature about the concept of filters in BCC-algebra (See [1, 2]) and KU-algebra

([4, 5]), algebras which close to UP-algebra, did not yield the expected results. It was possible to find the term ’deductive system’ some

authors called the filter. But this concept had a non-standard relationship to the concept of the ideal. That was the motive for our research of

UP-algebra. In order to obtain a satisfactory definition of the proper UP-filter, we have permuted the positions of the logical atoms in the

definition of the UP-ideals. In this text one obtained intriguing reflection of these variation is exposed.

Since in each of the previously known algebras the ideals play an important role, this is the case in this UP algebra, too. Filters in algebras,

as substructures these algebras associated with ideals, could also play a significant role in our understanding of algebras.

2. Preliminaries

First, let us recall the definition of UP-algebra.

Definition 2.1 ([3], Definition 1.3). An algebra A = (A, ·,0) of type (2,0) is called a UP- algebra if it satisfies the following axioms:

(UP - 1): (∀x,y,z ∈ A)((y · z) · ((x · y) · (x · z)) = 0),
(UP - 2): (∀x ∈ A)(0 · x = x),
(UP - 3): (∀x ∈ A)(x ·0 = 0),
(UP - 4): (∀x,y ∈ A)((x · y = 0 ∧ y · x = 0) =⇒ x = y).

Second, in the following we give definition of the concept of UP-ideals of UP-algebra.

Definition 2.2 ([3], Definition 2.1). Let A be a UP-algebra. A subset J of A is called a UP-ideal of A if it satisfies the following properties:

(1) 0 ∈ J, and

(2) (∀x,y,z ∈ A)(x · (y · z) ∈ J ∧ y ∈ J =⇒ x · z ∈ J).

For this article, the recognizable feature of the UP-ideal is given in statement (1) of Proposition 2.7 in the article [3]:

Let A be a UP-algebra and B a UP-ideal of A. Then

(∀x,y ∈ A)((x ∈ B ∧ x ≤ y) =⇒ y ∈ B).

Email addresses: bato49@hotmail.com (D. A. Romano)
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The concept of UP-filters is introduced by the following definition.

Definition 2.3 ([6], Definition 1.11). Let A be a UP-algebra. A subset F of A is called a UP-filter of A, if it satisfies the following properties:

(i) 0 ∈ F,

(ii) (∀x,y ∈ A)((x ∈ F ∧ x · y ∈ F) =⇒ y ∈ F).

3. The main results

Our intention in this short notice is to construct a substructure G in UP-algebras that will have the following property

(∀x,y ∈ A)((y ∈ G ∧ x ≤ y) =⇒ x ∈ G)

and has a standard attitude toward the UP-ideal. We can transform this formula into the following formula

(∀x,y ∈ A)((y ∈ G ∧ ¬(x · y ∈ G)) =⇒ x ∈ G).

The previous formula was the basis for us concept of UP-filters. The concept of proper UP-filter in a UP-algebra we introduce by the

following definition.

Definition 3.1. Let A be a UP-algebra. A subset G of A is called a proper UP-filter of A if it satisfies the following properties:

(3) ¬(0 ∈ G), and

(4) (∀x,y,z ∈ A)((¬(x · (y · z) ∈ G) ∧ x · z ∈ G) =⇒ y ∈ G).

Subsets /0 and A0 = {x ∈ A : x 6= 0} are trivial proper UP-filters and UP-algebras A. So, the family of all proper UP-filters of a UP-algebra is

not empty.

Example 3.2. Let A is as in Example 2.2 in [3]. Then the sets {2,4} and {3,4} are proper UP-filters of A.

Example 3.3. Let f : A −→ B be a UP-homomorphism of UP-algebras. Then the set Coker( f ) = {x ∈ A : f (x) 6= 0} is a UP-filter of A. In

addition, if H is a proper UP-filter of B, then f−1(H) is a proper UP-filter of A. Specifically, if H/J is a proper filter in A/J, where J is a

UP-ideal in A, then π
−1(H/J) is a proper UP-filter of A, where π : A −→ A/J is the canonical UP-epimorphism.

This determined substructure of a UP-algebra A has the following property.

Theorem 3.4. Let A be a UP-algebra and G a proper UP-filter of A. Then

(5) (∀x,y ∈ A)((¬(x · y ∈ G) ∧ y ∈ G) =⇒ x ∈ G).
(6) (∀x,y ∈ A)(x · y ∈ G =⇒ y ∈ G).

Proof. The first statement follows directly from definition when we put x = 0, y = x and z = y.

If we put y = z in formula (4), we get ¬(x · (y · y) = x ·0 = 0 ∈ G) and x · y ∈ G. Thus y ∈ G. Therefore, (6) is proved.

Corollary 3.5. Let A be a UP-algebra and G a proper UP-filter of A. Then

(7) (∀x,y ∈ A)((x 6 y ∧ y ∈ G) =⇒ x ∈ G).

Proof. Let x,y ∈ A be arbitrary elements such that x 6 y and y ∈ G. Thus ¬(x · y = 0 ∈ G) and y ∈ G. Then x ∈ G by (5).

Remark 3.6. The usual term used for property (7) of an algebra subset is a ’deductive system’. So, the concept of ’proper filters’, introduced

by definition 3.1, is a deductive system in the UP-algebra A. The important difference between the concept of ’deductive systems’ and our

concept of ’proper UP-filters’ is in the requirement (3).

Theorem 3.7. A subset G of a UP-algebra A is a proper UP-filter of A if and only if the set A\G is a UP-ideal of A.

Proof. Suppose that G is a proper UP-filter in UP-algebra A. It is clear 0 ∈ A\G. Let x,y,z ∈ A be arbitrary elements such that ¬(x ·(y ·z)∈ G)
and ¬(y ∈ G). Thus ¬(x · z ∈ G). Indeed, if it were not, from ¬(x · (y · z) ∈ G) and x · z ∈ G would follow y ∈ G what is in a contradiction

with ¬(y ∈ G). So it have to be ¬(x · z ∈ G). Therefore, the set A\G is a UP-ideal of A.

In opposite, let J be a UP-ideal of UP-algebra A. It is obvious that ¬(0 ∈ A\J) is valid. Let x,y,z ∈ A be arbitrary elements such that

¬(x · (y · z) ∈ A\J) and x · z ∈ A\J. Thus y ∈ A\J. Indeed, if it were y ∈ J, then x · z ∈ J would follow from x · (y · z) ∈ J and y ∈ J, contrary to

the hypothesis ¬(x · z ∈ J). Therefore, the set A\J is a proper UP-filter of A.

Theorem 3.8. The family GA of all proper UP-filters in UP-algebra A forms a completely lattice.

Proof. Let A be a UP-algebra and {Gi∈I} a family of proper UP-filters of A.

(a) Let x,y,z ∈ A be elements such that ¬(x · (y · z) ∈
⋃

i∈I Gi) and x · z ∈
⋃

i∈I Gi. Then there exists an index i ∈ I such that ¬(x · (y · z) ∈ Gi)
and x · z ∈ Gi. Thus y ∈ Gi by (4). Therefore, y ∈

⋃
i∈I Gi.

(b) Let X be a family of all proper UP-filter contained in
⋂

i∈I Gi. Thus, by part (a) of this proof, the union
⋃
X is a proper UP-filter of A.

(c) If we define ⊓i∈IGi =
⋃
X and ⊔i∈IGi =

⋃
i∈I Gi, then (G,⊓,⊔) is a completely lattice.

4. Final observation

In the present paper, we have introduced a new algebraic substructure in UP-algebra, called a proper UP-filter. We present some connections

between proper UP-filters and UP-ideals. This concept of UP-filters has almost a standard connection with the UP-ideal. The author believes

that this new structure enriches the family of substructures in UP-algebras. Of course, while the academic community of researchers algebras

accept this concept of filters in algebras, it can be expected that further research involves relations of the concept of proper UP-filters and

some other concepts, for example as concepts of orders, homomorphisms and congruences in algebras.
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Abstract

In this paper, we defined concepts of asymptotically I -Cesàro equivalence and investigate

the relationships between the concepts of asymptotically strongly I -Cesàro equivalence,

asymptotically strongly I -lacunary equivalence, asymptotically p-strongly I -Cesàro

equivalence and asymptotically I -statistical equivalence of sequences of sets.

1. Introduction

The concept of convergence of sequences of real numbers R has been transferred to statistical convergence by Fast [5] and independently by

Schoenberg [16]. I -convergence was first studied by Kostyrko et al. [9] in order to generalize of statistical convergence which is based

on the structure of the ideal I of subset of the set of natural numbers N. Das et al. [4] introduced new notions, namely I -statistical

convergence and I -lacunary statistical convergence by using ideal.

There are different convergence notions for sequence of sets. One of them handled in this paper is the concept of Wijsman convergence (see,

[1], [3], [11], [21], [22]). The concepts of statistical convergence and lacunary statistical convergence of sequences of sets were studied

in [11, 18] in Wijsman sense. Also, new convergence notions, for sequences of sets, which is called Wijsman I -convergence, Wijsman

I -statistical convergence and Wijsman I -Cesàro summability by using ideal were introduced in [7], [8], [20].

Marouf [10] peresented definitions for asymptotically equivalent and asymptotic regular matrices. This concepts was investigated in

[12, 13, 14]. The concept of asymptotically equivalence of sequences of real numbers which is defined by Marouf [10] has been extended

by Ulusu and Nuray [19] to concepts of Wijsman asymptotically equivalence of set sequences. Moreover, natural inclusion theorems are

presented. Kişi et al. [8] introduced the concepts of Wijsman I -asymptotically equivalence of sequences of sets.

2. Definitions and notations

Now, we recall the basic definitions and concepts (See [1, 2, 6, 7, 8, 9, 10, 11, 15, 19, 20]).

Let (Y,ρ) be a metric space. For any point y∈Y and any non-empty subset U of Y , we define the distance from y to U by d(y,U)= inf
u∈U

ρ(y,u).

Let (Y,ρ) be a metric space and U,Ui be any non-empty closed subsets of Y . The sequence {Ui} is Wijsman convergent to U if for each

y ∈ Y ,

lim
i→∞

d(y,Ui) = d(y,U).

Let (Y,ρ) be a metric space and U,Ui be any non-empty closed subsets of Y . The sequence {Ui} is Wijsman statistical convergent to U if

{d(y,Ui)} is statistically convergent to d(y,U); i.e., for every ε > 0 and for each y ∈ Y,

lim
n→∞

1

n

∣

∣

∣

{

i ≤ n : |d(y,Ui)−d(y,U)| ≥ ε
}

∣

∣

∣
= 0.
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A family of sets I ⊆ 2N is called an ideal if and only if (i) /0 ∈ I , (ii) For each U,V ∈ I we have U ∪V ∈ I , (iii) For each U ∈ I

and each V ⊆U we have V ∈ I .

An ideal is called non-trivial ideal if N /∈ I and non-trivial ideal is called admissible ideal if {n} ∈ I for each n ∈ N.

A family of sets F ⊆ 2N is a filter if and only if (i) /0 /∈ F , (ii) For each U,V ∈ F we have U ∩V ∈ F , (iii) For each U ∈ F and each

V ⊇U we have V ∈ F .

Proposition 2.1. ([9]) I is a non-trivial ideal in N if and only if

F (I ) = {E ⊂ N : (∃U ∈ I )(E = N\U)}

is a filter in N.

Throughout the paper, we let (Y,ρ) be a separable metric space, I ⊆ 2N be an admissible ideal and U,Ui be any non-empty closed subsets

of Y .

The sequence {Ui} is Wijsman I -convergent to U, if for every ε > 0 and for each y ∈ Y , U (y,ε) =
{

i ∈ N : |d (y,Ui)−d (y,U)| ≥ ε
}

belongs to I .

The sequence {Ui} is Wijsman I -statistical convergent to U, if for every ε > 0, δ > 0 and for each y ∈ Y ,

{

n ∈ N :
1

n

∣

∣

∣

{

i ≤ n : |d(y,Ui)−d(y,U)| ≥ ε
}

∣

∣

∣
≥ δ

}

∈ I

and we write Ui
S(IW )
−→ U .

The sequence {Ui} is Wijsman I -Cesàro summable to U , if for every ε > 0 and for each y ∈ Y ,

{

n ∈ N :

∣

∣

∣

1

n

n

∑
i=1

d(y,Ui)−d(y,U)
∣

∣

∣
≥ ε

}

∈ I

and we write Ui
C1(IW )
−→ U .

The sequence {Ui} is Wijsman strongly I -Cesàro summable to U , if for every ε > 0 and for each y ∈ Y ,

{

n ∈ N :
1

n

n

∑
i=1

|d(y,Ui)−d(y,U)| ≥ ε

}

∈ I

and we write Ui
C1[IW ]
−→ U .

The sequence {Ui} is Wijsman p-strongly I -Cesàro summable to U , if for every ε > 0, for each p positive real number and for each y ∈ Y ,

{

n ∈ N :
1

n

n

∑
i=1

|d(y,Ui)−d(y,U)|p ≥ ε

}

∈ I

and we write Ui

Cp[IW ]
−→ U .

By a lacunary sequence we mean an increasing integer sequence θ = {kr} such that k0 = 0 and hr = kr − kr−1 → ∞ as r → ∞. In this paper

the intervals determined by θ will be denoted by Ir = (kr−1,kr] and ratio kr

kr−1
will be abbreviated by qr.

Let θ be a lacunary sequence. The sequence {Ui} is Wijsman strongly I -lacunary summable to U, if for every ε > 0 and for each y ∈ Y ,

{

r ∈ N :
1

hr
∑
i∈Ir

|d(y,Ui)−d(y,U)| ≥ ε

}

∈ I

and we write Ui
Nθ [IW ]
−→ U .

Two nonnegative sequences a = (ai) and b = (bi) are said to be asymptotically equivalent if

lim
i

ai

bi
= 1

and denoted by a ∼ b.

We define d(y;Ui,Vi) as follows:

d(y;Ui,Vi) =















d(y,Ui)

d(y,Vi)
, y 6∈Ui ∪Vi

L , y ∈Ui ∪Vi.

The sequences {Ui} and {Vi} are Wijsman asymptotically equivalent of multiple L , if for each y ∈ Y ,

lim
i→∞

d(y;Ui,Vi) = L .
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The sequences {Ui} and {Vi} are Wijsman asymptotically statistical equivalent of multiple L , if for every ε > 0 and for each y ∈ Y ,

lim
n→∞

1

n

∣

∣

∣

{

i ≤ n : |d(y;Ui,Vi)−L | ≥ ε
}

∣

∣

∣
= 0.

The sequences {Ui} and {Vi} are Wijsman asymptotically I -equivalent of multiple L , if for every ε > 0 and each y ∈ Y
{

i ∈ N : |d(y;Ui,Vi)−L | ≥ ε
}

∈ I

and we write Ui
I L

W∼ Vi and simply Wijsman asymptotically I -equivalent if L = 1.

The sequences {Ui} and {Vi} are Wijsman asymptotically I -statistical equivalent of multiple L , if for every ε > 0, δ > 0 and for each

y ∈ Y ,
{

n ∈ N :
1

n

∣

∣

∣

{

i ≤ n : |d(y;Ui,Vi)−L | ≥ ε
}

∣

∣

∣
≥ δ

}

∈ I

and we write Ui
S(I L

W )
∼ Vi and simply Wijsman asymptotically I -statistical equivalent if L = 1.

Let θ be a lacunary sequence. The sequences {Ui} and {Vi} are said to be Wijsman asymptotically strongly I -lacunary equivalent of

multiple L , if for every ε > 0 and for each y ∈ Y ,
{

r ∈ N :
1

hr
∑
i∈Ir

|d(y;Ui,Vi)−L | ≥ ε

}

∈ I

and we write Ui
Nθ [I

L
W ]

∼ Vi and simply Wijsman asymptotically strongly I -lacunary equivalent if L = 1.

3. Main results

In this section, we defined notions of asymptotically I -Cesàro equivalence of sequences of sets. Also, we investigate the relationships

between the concepts of asymptotically strongly I -Cesàro equivalence, asymptotically strongly I -lacunary equivalence, asymptotically

p-strongly I -Cesàro equivalence and asymptotically I -statistical equivalence of sequences of sets.

Definition 3.1. The sequences {Ui} and {Vi} are asymptotically I -Cesàro equivalence of multiple L , if for every ε > 0 and for each

y ∈ Y ,
{

n ∈ N :
1

n

n

∑
i=1

|d(y;Ui,Vi)−L | ≥ ε

}

∈ I

and we write Ui
CL

1 (IW )
∼ Vi and simply asymptotically I -Cesàro equivalent if L = 1.

Definition 3.2. The sequences {Ui} and {Vi} are asymptotically strongly I -Cesàro equivalence of multiple L , if for every ε > 0 and for

each y ∈ Y ,
{

n ∈ N :
1

n

n

∑
i=1

|d(y;Ui,Vi)−L | ≥ ε

}

∈ I

and we write Ui
CL

1 [IW ]
∼ Vi and simply asymptotically strongly I -Cesàro equivalent if L = 1.

Theorem 3.3. Let θ be a lacunary sequence. If liminfr qr > 1 then,

Ui
CL

1 [IW ]
∼ Vi ⇒Ui

NL
θ [IW ]
∼ Vi.

Proof. If liminfr qr > 1, then there exists δ > 0 such that qr ≥ 1+δ for all r ≥ 1. Since hr = kr − kr−1, we have

kr

hr
≤

1+δ

δ
and

kr−1

hr
≤

1

δ
.

Let ε > 0 and for each y ∈ Y , we define the set

S =

{

kr ∈ N :
1

kr

kr

∑
i=1

|d(y;Ui,Vi)−L | < ε

}

.

We can easily say that S ∈ F (I ), which is a filter of the ideal I , so we have

1
hr

∑
i∈Ir

|d(y;Ui,Vi)−L | = 1
hr

kr

∑
i=1

|d(y;Ui,Vi)−L |− 1
hr

kr−1

∑
i=1

|d(y;Ui,Vi)−L |

= kr

hr
· 1

kr

kr

∑
i=1

|d(y;Ui,Vi)−L |

− kr−1

hr
· 1

kr−1

kr−1

∑
i=1

|d(y;Ui,Vi)−L |

≤

(

1+δ

δ

)

ε −
1

δ
ε ′
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for each y ∈ Y and for each kr ∈ S. Choose η =

(

1+δ

δ

)

ε +
1

δ
ε ′. Therefore, for each y ∈ Y

{

r ∈ N :
1

hr
∑
i∈Ir

|d(y;Ui,Vi)−L | < η

}

∈ F (I ).

Therefore, Ui

NL
θ [IW ]
∼ Vi.

Theorem 3.4. Let θ be a lacunary sequence. If limsupr qr < ∞ then,

Ui

NL
θ [IW ]
∼ Vi ⇒Ui

CL
1 [IW ]
∼ Vi.

Proof. If limsupr qr < ∞, then there exists K > 0 such that qr < K for all r ≥ 1. Let Ui

NL
θ [IW ]
∼ Vi and for each y ∈ Y , we define the sets T

and R

T =

{

r ∈ N :
1

hr
∑
i∈Ir

|d(y;Ui,Vi)−L | < ε1

}

and

R =

{

n ∈ N :
1

n

n

∑
i=1

|d(y;Ui,Vi)−L | < ε2

}

.

Let

a j =
1

h j
∑
i∈I j

|d(y;Ui,Vi)−L | < ε1

for each y ∈ Y and for all j ∈ T . It is obvious that T ∈ F (I ). Choose n is any integer with kr−1 < n < kr, where r ∈ T . Then, for each

y ∈ Y we have

1
n

n

∑
i=1

|d(y;Ui,Vi)−L | ≤ 1
kr−1

kr

∑
i=1

|d(y;Ui,Vi)−L |

= 1
kr−1

(

∑
i∈I1

|d(y;Ui,Vi)−L | + ∑
i∈I2

|d(y;Ui,Vi)−L |

+ · · ·+ ∑
i∈Ir

|d(y;Ui,Vi)−L |

)

= k1

kr−1

(

1
h1

∑
i∈I1

|d(y;Ui,Vi)−L |

)

+ k2−k1

kr−1

(

1
h2

∑
i∈I2

|d(y;Ui,Vi)−L |

)

+ · · ·+ kr−kr−1

kr−1

(

1
hr

∑
i∈Ir

|d(y;Ui,Vi)−L |

)

= k1

kr−1
a1 +

k2−k1

kr−1
a2 + · · ·+ kr−kr−1

kr−1
ar

≤
(

sup j∈T a j

)

kr

kr−1
< ε1 ·K.

Choose ε2 =
ε1

K and in view of the fact that

⋃

{n : kr−1 < n < kr, r ∈ T} ⊂ R,

where T ∈ F (I ), it follows from our assumption on θ that the set R also belongs to F (I ) and therefore, Ui
CL

1 [IW ]
∼ Vi.

We have the following Theorem by Theorem 3.3 and Theorem 3.4.

Theorem 3.5. Let θ be a lacunary sequence. If 1 < liminfr qr < limsupr qr < ∞ then,

Ui
CL

1 [IW ]
∼ Vi ⇔Ui

NL
θ [IW ]
∼ Vi.

Definition 3.6. The sequences {Ui} and {Vi} are asymptotically p-strongly I -Cesàro equivalence of multiple L if for every ε > 0, for

each p positive real number and for each y ∈ Y ,

{

n ∈ N :
1

n

n

∑
i=1

|d(y;Ui,Vi)−L |p ≥ ε

}

∈ I

and we write Ui

CL
p [IW ]
∼ Vi and simply asymptotically p-strongly I -Cesàro equivalent if L = 1.
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Theorem 3.7. If the sequences {Ui} and {Vi} are asymptotically p-strongly I -Cesàro equivalence of multiple L then, {Ui} and {Vi} are

asymptotically I -statistical equivalence of multiple L .

Proof. Let Ui

CL
p [IW ]
∼ Vi and ε > 0 given. Then, for each y ∈ Y we have

n

∑
i=1

|d(y;Ui,Vi)−L |p ≥
n

∑
i=1

|d(y;Ui ,Vi)−L |≥ε

|d(y;Ui,Vi)−L |p

≥ ε p · |{i ≤ n : |d(y;Ui,Vi)−L | ≥ ε}|

and so

1

ε p ·n

n

∑
i=1

|d(y;Ui,Vi)−L |p ≥
1

n
|{i ≤ n : |d(y;Ui,Vi)−L | ≥ ε}| .

Hence, for each y ∈ Y and for a given δ > 0,

{

n ∈ N :
1

n
|{i ≤ n : |d(y;Ui,Vi)−L | ≥ ε}| ≥ δ

}

⊆

{

n ∈ N :
1

n

n

∑
i=1

|d(y;Ui,Vi)−L |p ≥ ε p ·δ

}

∈ I .

Therefore, Ui
S(IW )
∼ Vi.

Theorem 3.8. Let d(y,Ui) = O
(

d(y,Vi)
)

. If {Ui} and {Vi} are asymptotically I -statistical equivalence of multiple L then, {Ui} and {Vi}
are asymptotically p-strongly I -Cesàro equivalence of multiple L .

Proof. Suppose that d(y,Ui) = O
(

d(y,Vi)
)

and Ui
S(IW )
∼ Vi. Then, there is a K > 0 such that |d(y;Ui,Vi)−L | ≤ K, for all i and for each

y ∈ Y . Given ε > 0 and for each y ∈ Y , we have

1

n

n

∑
i=1

|d(y;Ui,Vi)−L |p =
1

n

n

∑
i=1

|d(y;Ui ,Vi)−L |≥ε

|d(y;Ui,Vi)−L |p +
1

n

n

∑
i=1

|d(y;Ui ,Vi)−L |<ε

|d(y;Ui,Vi)−L |p

≤
1

n
K p |{i ≤ n : |d(y;Ui,Vi)−L | ≥ ε}|+

1

n
ε p |{i ≤ n : |d(y;Ui,Vi)−L |< ε}|

≤
K p

n
|{i ≤ n : |d(y;Ui,Vi)−L | ≥ ε}|+ ε p.

Then, for any δ > 0,

{

n ∈ N :
1

n

n

∑
i=1

|d(y;Ui,Vi)−L |p ≥ δ

}

⊆

{

n ∈ N :
1

n
|{i ≤ n : |d(y;Ui,Vi)−L | ≥ ε}| ≥

δ p

K p

}

∈ I .

Therefore, Ui

CL
p [IW ]
∼ Vi.
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[4] P. Das, E. Savaş and S. Kr. Ghosal, On generalizations of certain summability methods using ideals, Appl. Math. Letters, 24(9) (2011), 1509–1514.
[5] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241–244.
[6] J. A. Fridy and C. Orhan, Lacunary statistical convergence, Pacific J. Math., 160(1) (1993), 43–51.
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[8] Ö. Kişi, E. Savaş and F. Nuray, On asymptotically I -lacunary statistical equivalence of sequences of sets, (submitted for publication).
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Abstract

In this note, we set up existence, uniqueness as well as the stability of a special class

of fractional differential equation (FDE) with Hilfer-Katugampola fractional differential

operator (HKFDO). The outcomes are given by employing the Schaefer’s fixed point

theorem and Banach contraction principle. Moreover, we modify the fractional Ulam

stability (FUS) concept utilizing HKFDO.

1. Introduction

The idea of impulsive differential equations has had attention many investigators. Its developments over more than twenty years in almost all

science. It performed as an essential role in present day in current applied mathematical model of real techniques bobbing up in phenomena

studied in physics, chemical generation, population studies and political economy; one can follow the monograph of Lakshmikantham

et al. [12]. The analysis of impulsive differential equation involving classical derivatives one can refer to [2, 13, 14, 16]. Nowadays the

investigation of FDE involving Hilfer fractional operator introduced by Hilfer [4] is increasing rapidly one can refer to [3, 9, 10]. Later on

the generalized fractional derivative introduced by U.N. Katugampola [11] is unified with Hilfer fractional derivative by Oliveira and E.

Capelas de Oliveira in [15] is named as Hilfer-Katugampola fractional derivative.

The fractional Ulam-Hyers stability (FUHRS) of FDE has been studied in [5, 17] utilizing the classical fractional calculus. While, this

form of stability has been formalized in a complex domain for the Cauchy problem in [6]-[8]. Here, we shall introduce a generalization for

FUHRS involving a multi- power of fractional calculus.

Consider the impulsive differential equation involving Hilfer-Katugampola fractional derivative of the form











ρDα,βv(t) = f (t,v(t)), t ∈ I
′
:= I \{t1, ..., tm} , I := [0,b]

∆ρI1−γv(t)|t=tk = χkv(t
−
k
),

ρI1−γv(0) = v0, γ = α +β −αβ ,

(1.1)

where ρDα ,β is Hilfer-Katugampola fractional differential operator of order α(0<α < 1), β (0≤ β ≤ 1), ρI1−γ is a generalization fractional

integral operator of order 1− γ , ρ > 0, f : I ×R → R is a given continuous function, χk : R → R, and 0 = t0 < t1 < ... < tm < tm+1 = b,

∆ρ I1−γv|t=tk =
ρI1−γv(t+

k
)− ρI1−γv(t−

k
), and ρI1−γv(t+

k
) = limh→0+ v(tk + h), ρI1−γv(t−

k
) = limh→0− v(tk + h) are the right and left

limits of v(t) at t = tk respectively.

The paper constructed as follows: In Section 2, we present the main definitions and preliminaries. In Section 3, we deal with the finding

results. In Section 4, we introduce a generalization of a special class of FUHRS.
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2. Preliminaries

Here, we recall some of well known concepts ( see [1, 13, 15]). Consider the space

PC(I,R) =
{

v : I → R : v(t) ∈C(tk, tk+1],k = 0, ...,m; there exists v(t+k )andv(t−
k
)
}

.

Now we consider the weighted space PCγ (I,R).

PCγ,ρ (I,R) =

{

v :

(

tρ − t
ρ
k

ρ

)γ

v|[tk ,tk+1] ∈C[tk, tk+1],k = 0, ...,m where 0 ≤ γ < 1

}

.

Obviously, it is a Banach space with norm

‖v‖PCγ,ρ
= sup

(tk ,tk+1]

{(

tρ − t
ρ
k

ρ

)γ

v(t)

}

,k = 0, ...,m.

The following spaces are used to solve the problem:

PC
α,β
1−γ,ρ (I,R) =

{

f ∈ PC1−γ,ρ (I,R),
ρDα,β f ∈ PCµ,ρ (I,R)

}

and

PC
γ
1−γ,ρ (I,R) =

{

f ∈ PC1−γ,ρ (I,R),
ρDγ f ∈ PC1−γ,ρ (I,R)

}

.

It is obvious that

PC
γ
1−γ,ρ (I,R)⊂ PC

α,β
1−γ,ρ (I,R).

Definition 2.1. The generalized left-sided fractional integral ρ Iα
a+

f of order α ∈C(ℜ(α)) is defined by

(

ρIα
a+

)

f (t) =
ρ1−α

Γ(α)

∫ t

a
(tρ − sρ )α−1sρ−1 f (s)ds, t > a. (2.1)

The generalized fractional differential operator, corresponding to the generalized fractional integral operator (2.1), is defined for 0 ≤ a < t,

by

(

ρDα
a+ f
)

(t) =
ρα−n−1

Γ(n−α)

(

t1−ρ d

dt

)n ∫ t

a
(tρ − sρ )n−α+1sρ−1 f (s)ds, (2.2)

if the integral exists.

Definition 2.2. The Hilfer-Katugampola fractional derivative with respect to t, with the fractional power ρ > 0, is defined by

(

ρD
α,β
a±

f
)

(t) =

(

±ρIα
a±

(

tρ−1 d

dt

)

ρI
(1−β )(1−α)
a±

)

(t) (2.3)

=
(

±ρIα
a±δρ

ρI
(1−β )(1−α)
a±

)

(t).

• The operator ρD
α,β
a+

can be written as

ρD
α ,β
a+

= ρI
β (1−α)
a+

δρ
ρI

1−γ
a+

= ρI
β (1−α)
a+

ρD
γ
a+
, γ = α +β −αβ .

• The fractional operator ρD
α,β
a+

is considered as interpolation, with the convenient parameters, of the following fractional derivatives,

Hilfer fractional differential operator when (ρ → 1), Hilfer-Hadamard fractional derivative when (ρ → 0), generalized fractional

derivative when (β = 0), Caputo-type fractional derivative when (β = 1), Riemann-Liouville fractional differential operator when

(β = 0,ρ → 1), Hadamard fractional operator when (β = 0,ρ → 0), Caputo fractional operator when (β = 1,ρ → 1). Caputo-

Hadamard fractional operator when (β = 1,ρ → 0), Liouville fractional operator when (β = 0,ρ → 1,a = 0), Hadamard fractional

operator when (β = 0,ρ → 1,a =−∞), We consider the following parameters α,β ,γ satisfying

γ = α +β −αβ , 0 ≤ γ < 1,α > 0, β < 1.

For α > 0, β > 0 and 0 ≤ γ < 1. The properties are given as follows,

1. If f ∈Cγ (I,R), then we have the following semigroup property

(ρIα ρIβ f )(t) = (ρIα+β )(t).

2. If f ∈Cγ (I,R), then

(ρDα ρIα f )(t) = f (t).
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3. If t > 0 then

ρIα

(

tρ

ρ

)β−1

(t) =
Γ(β )

Γ(α +β )

(

tρ

ρ

)α+β−1

,

and

ρDα

(

tρ

ρ

)β−1

(t) = 0.

4. If f ∈ PCγ and ρI1−α f ∈ PC1
γ (I,R), then

(ρIα ρDα )(t) = f (t)−

(

ρI1−α f
)

(0)

Γ(α)

(

tρ

ρ

)α−1

,

5. If α > γ , then ρIα f is continuous on [0,b]

ρIα f (0) = lim
t→0

ρIα f (t) = 0.

6. If f ∈ PC
γ
γ,ρ (I,R), then

ρIγ ρDγ f (t) = ρIα ρDα,β f (t) (2.4)

and

ρDγ ρIα f (t) = ρDβ (1−α) f (t). (2.5)

7. Let f ∈ L1(0,b). If ρDβ (1−α) f occurs on L1(0,b), then

ρDα,β ρIα f (t) = ρIβ (1−α)ρDβ (1−α) f (t).

8. If f ∈ PCγ,ρ (I,R) and ρI1−β (1−α) ∈ PC1
1−γ (I,R), then ρDα,βIα exists on [0,b] and

ρDα,βIα f (t) = f (t).

Lemma 2.3. Let v ∈ PC1−γ (I,R) satisfies the following inequality

|v(t)| ≤ c1 + c2

∫ t

0

(

tρ − sρ

ρ

)α−1

sρ−1 |v(t)|ds+ ∑
0<tk<t

χk |v(tk)| ,

where c1 is a non-negative, continuous and non-decreasing function on I and c2,χi are constants. Then

|v(t)| ≤ c1

(

1+χEα (c2Γ(α)tα )kEα (c2Γ(α)tα
)

f or t ∈ (tk.tk+1],

where χ = sup{χk : k = 1,2,3, ...,}.

Theorem 2.4. (Schaefer’s fixed point theorem) Let P : K →K be completely continuous operator. If set E[P] = {v ∈ K : v= δ (Pv), for some δ ∈ [0,b]}
is bounded, Then P has fixed point.

Lemma 2.5. A function v is the solution of fractional impulsive differential equation











ρDα,βv(t) = f (t,v(t)), t ∈ I
′

∆ρI1−γv(t)t=tk = χkv(t
−
k
),

ρI1−γv(0) = a,

if and only if v achieves the integral equation

v(t) =

(

tρ − t
ρ
k

ρ

)γ−1
1

Γ(γ)

[

a+ ∑
0<tk<t

χkv(tk)+ ∑
0<tk<t

ρI
1−β (1−α)
tk−1

f (tk,v(tk))

]

+ ρIα
tk

f (t,v(t)). (2.6)
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3. Findings

We make the following hypotheses to prove our main results.

(H1) Let f : I×R−→ R be a continuous function and a positive constant L > 0 accomplishing | f (t,v)− f (t,v)| ≤ L |v−v| , for all v,v∈ R.

(H2) Let f : I ×R → R be a completely continuous function and a function µ ∈ L1 fulfilling | f (t,v)| ≤ |µ(t)| , for all t ∈ I, v ∈ R.

(H3) Let the functions χk : R → R be continuous and a constant L∗
k > 0 achieving

∣

∣χk(v(t
−
k
))−χk(v(t

−
k
))
∣

∣≤ L∗
k |v(tk)−v(tk)| , for all v,v ∈ R, k = 1,2, ...,m.

(H4) Let the functions χk : R → R be continuous and a constant µ ∈ L1 satisfying

∣

∣χk(v(t
−
k
))
∣

∣≤ |µ∗(t)| , for all v ∈ R, k = 1,2, ...,m.

(H5) There is an increasing function ϕ ∈ PC1−γ,ρ (I,R) and there occurs λϕ > 0 such that for any t ∈ I

ρIα ϕ(t)≤ λϕ ϕ(t).

Theorem 3.1. Assume that [H1] - [H4] are satisfied. Then, Eq.(1.1) has at least one solution.

Proof. The proof will be given in several steps.

Consider the operator P : PC1−γ,ρ (I,R)→ PC1−γ,ρ (I,R). The equivalent integral Eq. (2.6) which can be written in the operator form

v(t) =Pv(t)

where

Pv(t) =

(

tρ − t
ρ
k

ρ

)γ−1
1

Γ(γ)

[

a+ ∑
0<tk<t

χkv(tk)+ ∑
0<tk<t

ρI
1−β (1−α)
tk−1

f (tk,v(tk))

]

+ ρIα
tk

f (t,v(t)).

(3.1)

We shall show that the operator P is continuous and completely continuous.

Claim 1: P is continuous.

Let vn be a sequence such that vn → v in PC1−γ,ρ (I,R). Then for each t ∈ I,

∣

∣

∣

∣

∣

∣

((Pvn)(t)− (Pv)(t))

(

tρ − t
ρ
k

ρ

)1−γ
∣

∣

∣

∣

∣

∣

≤
1

Γ(γ)

[

∑
0<tk<t

|χk(vn(tk))−χk(v(tk))|+ ∑
0<tk<t

I
1−β (1−α)
tk−1

| f (tk,vn(tk))− f (tk,v(tk))|

]

+

(

tρ − t
ρ
k

ρ

)1−γ

Iα
tk
| f (t,vn(t))− f (t,v(t))| ,

since f is continuous, then we have

‖(Pvn)(t)− (Pv)(t)‖PC1−γ,ρ
→ 0 as n → ∞.

Claim 2: We show that P is the mapping of two bounded set.

For r > 0, there exists a positive constant l such that

Br =
{

v ∈ PC1−γ,ρ (I,R) : ‖v‖PC1−γ
≤ r
}

, we have ‖(Nv)‖PC1−γ,ρ
≤ l.

∣

∣

∣

∣

∣

∣

(Pv)(t)

(

tρ − t
ρ
k

ρ

)1−γ
∣

∣

∣

∣

∣

∣

≤
1

Γ(γ)

[

a+ ∑
0<tk<t

|χk(v(tk))|+ ∑
0<tk<t

I
1−β (1−α)
tk−1

| f (tk,v(tk))|

]

+

(

tρ − t
ρ
k

ρ

)1−γ

Iα
tk
| f (t,v(t))|

≤
1

Γ(γ)



a+m

(

tρ − t
ρ
k

ρ

)γ−1

‖µ∗(t)‖PC1−γ,ρ
+‖µ(t)‖PC1−γ,ρ

(

t
ρ
k
− t

ρ
k−1

ρ

)α
mB(γ,1−β (1−α))

Γ(1−β (1−α))





+

(

tρ − t
ρ
k

ρ

)1−γ
B(γ,α)

Γ(α)

(

tρ − t
ρ
k

ρ

)α+γ−1

‖µ(t)‖PC1−γ,ρ

≤
1

Γ(γ)

[

a+m

(

bρ

ρ

)γ−1

‖µ∗(t)‖PC1−γ,ρ
+

mB(γ,1−β (1−α))

Γ(1−β (1−α))

(

bρ

ρ

)α

‖µ(t)‖PC1−γ,ρ

]

+
B(γ,α)

Γ(α)

(

bρ

ρ

)α

‖µ(t)‖PC1−γ,ρ

= l.
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Claim 3: We show that P maps bounded sets into equicontinuous set.

Let t1, t2 ∈ I, t1 < t2,Br be a bounded set of PC1−γ,ρ (I,R) as in Claim 2, and v ∈ Br. Then,
∣

∣

∣

∣

∣

∣

(Pv)(t1)

(

t
ρ
1 − t

ρ
k

ρ

)1−γ

− (Pv)(t2)

(

t
ρ
2 − t

ρ
k

ρ

)1−γ
∣

∣

∣

∣

∣

∣

≤
1

Γ(γ)

[

a+ ∑
0<tk<t1

χkv(tk)+ ∑
0<tk<t1

ρI
1−β (1−α)
tk−1

f (tk,v(tk))

]

+

(

t
ρ
1 − t

ρ
k

ρ

)1−γ

ρIα
tk

f (t1,v(t1))

−
1

Γ(γ)

[

a+ ∑
0<tk<t2

χkv(tk)+ ∑
0<tk<t2

ρI
1−β (1−α)
tk−1

f (tk,v(tk))

]

−

(

t
ρ
2 − t

ρ
k

ρ

)1−γ

ρIα
tk

f (t2,v(t2))

≤
1

Γ(γ)

[

∑
0<tk<t1−t2

χkv(tk)+ ∑
0<tk<t1−t2

ρ I
1−β (1−α)
tk−1

f (tk,v(tk))

]

+‖ f‖PC1−γ,ρ

B(γ,α)

Γ(α)

∣

∣

∣

∣

∣

(

t
ρ
1 − t

ρ
k

ρ

)α

−

(

t
ρ
2 − t

ρ
k

ρ

)α ∣
∣

∣

∣

∣

As t1 → t2, the right hand side of the above inequality tends to zero. From Claim 1 to 3, together with Arzela-Ascoli theorem, we conclude

that P : PC1−γ,ρ (I,R)→ PC1−γ,ρ (I,R) is continuous and completely continuous.

Claim 4: A priori bounds.

Now we prove that

ω =
{

v ∈ PC1−γ,ρ (I,R) : v= δN(v),0 < δ < 1
}

is bounded set.

Let v ∈ ω, v= δP(v) for some 0 < δ < 1. Thus for each t ∈ I. We have

v(t) = δ





(

tρ − t
ρ
k

ρ

)γ−1
1

Γ(γ)

[

a+ ∑
0<tk<t

χkv(tk)+ ∑
0<tk<t

ρI
1−β (1−α)
tk−1

f (tk,v(tk))

]

+ ρIα
tk

f (t,v(t))



 .

We show this Claim by letting the estimation in Claim 2. Finally, by Theorem 2.4, we deduce that P has a fixed point and it is the solution of

problem (1.1).

Theorem 3.2. Assume that the hypothesis (H1) and (H3) are fulfilled. If
[

1

Γ(γ)

(

mL∗

(

bρ

ρ

)γ−1

+
mLB(γ,1−β (1−α))

Γ(1−β (1−α))

(

bρ

ρ

)α
)

+
LB(γ,α)

Γ(α)

(

bρ

ρ

)α
]

< 1

then, Eq. (1.1) has a unique solution.

Proof. Let v,v ∈ PC1−γ,ρ (I,R) and t ∈ I, then we have
∣

∣

∣

∣

∣

∣

(Pv(t)−Pv(t))

(

tρ − t
ρ
k

ρ

)1−γ
∣

∣

∣

∣

∣

∣

≤
1

Γ(γ)

[

∑
0<tk<t

|χkv(tk)−χkv(tk)|+ ∑
0<tk<t

ρI
1−β (1−α)
tk−1

| f (tk,v(tk))− f (tk,v(tk))|

]

+

(

tρ − t
ρ
k

ρ

)1−γ

ρIα
tk
| f (t,v(t))− f (t,v(t))|

≤
1

Γ(γ)



mL∗

(

tρ − t
ρ
k

ρ

)γ−1

‖v−v‖PC1−γ,ρ
+

mLB(γ,1−β (1−α))

Γ(1−β (1−α))

(

t
ρ
k
− t

ρ
k−1

ρ

)α

‖v−v‖PC1−γ,ρ





+

(

tρ − t
ρ
k

ρ

)1−γ
LB(γ,α)

Γ(α)

(

tρ − t
ρ
k

ρ

)α+γ−1

‖v− y‖PC1−γ,ρ

≤
1

Γ(γ)

[

mL∗

(

bρ

ρ

)γ−1

‖v−v‖PC1−γ,ρ
+

mLB(γ,1−β (1−α))

Γ(1−β (1−α))

(

bρ

ρ

)α

‖v−v‖PC1−γ,ρ

]

+
LB(γ,α)

Γ(α)

(

bρ

ρ

)α

‖v−v‖PC1−γ,ρ

≤

[

1

Γ(γ)

(

mL∗

(

bρ

ρ

)γ−1

+
mLB(γ,1−β (1−α))

Γ(1−β (1−α))

(

bρ

ρ

)α
)

+
LB(γ,α)

Γ(α)

(

bρ

ρ

)α
]

‖v−v‖PC1−γ,ρ

= ‖v−v‖PC1−γ,ρ
.

This yields that P admits a unique fixed point, which is a solution of Eq. (1.1).
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4. FUS Analysis

In this section, we exam the FUS for our FDE (1.1). Let ϕ : I → R+ be a continuous function and ε > 0. We need the following inequalities:

{

|ρDαu(t)− f (t,u(t))| ≤ ε,
∣

∣∆ρI1−γu(t)t=tk −χk(u(t
−
k
))
∣

∣ ≤ ε,
(4.1)

{

|ρDαu(t)− f (t,u(t))| ≤ εϕ(t),
∣

∣∆ρI1−γu(t)t=tk −χk(u(t
−
k
))
∣

∣ ≤ εϕ(t),
(4.2)

{

|ρDαu(t)− f (t,u(t))| ≤ ϕ(t),
∣

∣∆ρI1−γu(t)t=tk −χk(u(t
−
k
))
∣

∣ ≤ ϕ(t),
(4.3)

Definition 4.1. The Eq. (1.1) is FUS if there finds a real number C f > 0 such that for each ε > 0 and for each solution u ∈ PC1−γ,ρ (I,R) of

the inequality (4.1) there exists a solution v ∈ PC1−γ,ρ (I,R) of Eq. (1.1) with

|u(t)−v(t)| ≤C f ε, t ∈ I.

Definition 4.2. The Eq. (1.1) is FUS if there occurs a function ϕ ∈ PC1−γ,ρ (I,R), ϕ f (0) = 0 satisfying that for each solution u ∈
PC1−γ,ρ (I,R) of the inequality (4.1) there occurs a solution v ∈ PC1−γ,ρ (I,R) of Eq. (1.1) with

|u(t)−v(t)| ≤ ϕ f ε, t ∈ I.

Definition 4.3. The Eq. (1.1) is FUHR stable with respect to ϕ ∈ PC1−γ,ρ (I,R) if there occurs a real number C f ,ϕ > 0 such that for each

ε > 0 and for each solution u ∈ PC1−γ,ρ (I,R) of the inequality (4.2) there exists a solution v ∈ PC1−γ,ρ (I,R) of Eq. (1.1) with

|u(t)−v(t)| ≤C f ,ϕ εϕ(t), t ∈ I.

Definition 4.4. The Eq. (1.1) is FUHRS with respect to ϕ ∈ PC1−γ,ρ (I,R) if there finds a real number C f ,ϕ > 0 such that for each solution

u ∈ PC1−γ,ρ (I,R) of the inequality (4.3) there occurs a solution v ∈C1−γ,ρ (I,R) of Eq. (1.1) with

|u(t)−v(t)| ≤C f ,ϕ ϕ(t), t ∈ I.

Remark 4.5. A function u ∈ PC1−γ,ρ (I,R) is a solution of the inequality (4.1) if and only if there finds a function g ∈ PC1−γ,ρ (I,R) such

that

(i) |g(t)| ≤ ε, |gk|< ε, t ∈ I.

(ii) ρDα,βu(t) = f (t,u(t))+g(t), t ∈ I
′
.

(iii) ∆ρI1−γu(t)t=tk = χku(t
−
k
)+gk.

Remark 4.6. If u is a solution of the inequality (4.1), then u is a solution of the following integral inequality
∣

∣

∣

∣

∣

∣

u(t)−

(

tρ − t
ρ
k

ρ

)γ−1
1

Γ(γ)

[

a+ ∑
0<tk<t

χku(tk)+ ∑
0<tk<t

ρ I
1−β (1−α)
a+ f (tk,u(tk))

]

− ρ Iα
a+

f (t,u(t))

∣

∣

∣

∣

∣

∣

≤ ε

[

(

b

ρ

)γ−1
1

Γ(γ)

(

m+
m

Γ(2−β (1−α))

(

b

ρ

)1−β (1−α)
)

+
1

Γ(α +1)

(

b

ρ

)α−1
]

.

Moreover, by Remark 4.5, one can realize that

ρDα,βu(t) = f (t,u(t))+g(t), t ∈ I

∆ρI1−γu(t)t=tk = χku(t
−
k
)+gk.

Then

u(t) =

(

tρ − t
ρ
k

ρ

)γ−1
1

Γ(γ)

[

a+ ∑
0<tk<t

χku(tk)+ ∑
0<tk<t

ρI
1−β (1−α)
a+ f (tk,u(tk))

]

+ ρIα
a+

f (t,u(t)).

From this it follows that
∣

∣

∣

∣

∣

∣

u(t)−

(

tρ − t
ρ
k

ρ

)γ−1
1

Γ(γ)

[

a+ ∑
0<tk<t

χku(tk)+ ∑
0<tk<t

ρI
1−β (1−α)
a+ f (tk,u(tk))

]

− ρIα
a+

f (t,u(t))

∣

∣

∣

∣

∣

∣

≤

(

tρ − t
ρ
k

ρ

)γ−1
1

Γ(γ)

[

∑
0<tk<t

|gk|+ ∑
0<tk<t

ρI
1−β (1−α)
a+ |g(tk)|

]

+ ρIα
a+

|g(t)|

≤ ε

[

(

b

ρ

)γ−1
1

Γ(γ)

(

m+
m

Γ(2−β (1−α))

(

b

ρ

)1−β (1−α)
)

+
1

Γ(α +1)

(

b

ρ

)α
]

.

We have similar remarks for the inequality (4.2) and (4.3).

Now, we give the main results, FUHRS results.
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Theorem 4.7. The hypothesis [H1], [H3] and [H5] holds. Then Eq.(1.1) is FUHRS.

Proof. Let u be solution of 4.3 and by Theorem 3.2 there v is unique solution of the problem

ρDα,βv(t) = f (t,v(t),v(λ t)), t ∈ I,

∆ρI1−γu(t)t=tk = χku(t
−
k
)+gk,

ρI1−γv(0) = ρI1−γu(0).

Then, we have

v(t) =

(

tρ − t
ρ
k

ρ

)γ−1
1

Γ(γ)

[

a+ ∑
0<tk<t

χkv(tk)+ ∑
0<tk<t

ρI
1−β (1−α)
a+ f (tk,v(tk))

]

+ ρIα
a+

f (t,v(t)).

By differentiating inequality (4.3), we have
∣

∣

∣

∣

∣

∣

u(t)−

(

tρ − t
ρ
k

ρ

)γ−1
1

Γ(γ)

[

a+ ∑
0<tk<t

χku(tk)+ ∑
0<tk<t

ρI
1−β (1−α)
a+ f (tk,u(tk))

]

− ρIα
a+

f (t,u(t))

∣

∣

∣

∣

∣

∣

≤

(

(

bρ

ρ

)γ−1
m

Γ(γ)
(1+λϕ )+λϕ

)

ϕ(t).

Hence, it follows

|u(t)−v(t)| ≤

∣

∣

∣

∣

∣

∣

u(t)−

(

tρ − t
ρ
k

ρ

)γ−1
1

Γ(γ)

[

a+ ∑
0<tk<t

χkv(tk)+ ∑
0<tk<t

ρI
1−β (1−α)
a+ f (tk,v(tk))

]

− ρIα
a+

f (t,v(t))

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

u(t)−

(

tρ − t
ρ
k

ρ

)γ−1
1

Γ(γ)

[

a+ ∑
0<tk<t

χku(tk)+ ∑
0<tk<t

ρI
1−β (1−α)
a+ f (tk,u(tk))

]

− ρIα
a+

f (t,u(t))

∣

∣

∣

∣

∣

∣

+

(

tρ − t
ρ
k

ρ

)γ−1
1

Γ(γ)

(

|χku(tk)−χkv(tk)|+
ρI

1−β (1−α)
a+ | f (tk,u(tk))− f (tk,v(tk))|

)

+ ρIα
a+

| f (t,u(t))− f (t,v(t))|

≤

(

(

bρ

ρ

)γ−1
m

Γ(γ)
(1+λϕ )+λϕ

)

ϕ(t)+

(

bρ

ρ

)γ−1 L∗
k

Γ(γ)
|u(tk)−v(tk)|

+

[

m

Γ(γ)

(

bρ

ρ

)α
mL

Γ(2−β (1−α))
+

L

Γ(α)

(

bρ

ρ

)α]

|u(t)−v(t)| .

By the properties, there occurs a constant M∗ > 0 independent of λϕ ϕ(t) such that

|u(t)−v(t)| ≤ M∗λϕ ϕ(t) :=C f ,ϕ ϕ(t).

Thus, Eq.(1.1) is FUHRS.
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Abstract

The aim of this paper is to combined the variational iteration method with Aboodh transform

method to solve linear and nonlinear fractional partial differential equations. Some illustra-

tive examples are given as the linear and nonlinear fractional Klein-Gordon equations and

the time fractional diffusion equation. The results reveal that this method is very effective,

simple and can be applied to other physical differential equations with fractional order. The

fractional derivative is taken in the Caputo sense.

1. Introduction

Fractional calculus has successfully been used to study the mathematical and physical problems arising in science and engineering. Fractional

differential equations are applied to describe the dynamical systems in physics and engineering. It is one of the hot topics for finding the

solutions for the fractional differential equations for scientists and engineers. Due to the importance of knowledge of the solutions of these

type of equations, we find that many researchers have done and are still doing great efforts to find methods to solve this type of equations.

These efforts resulted in the consolidation of this research field in many methods, among them we find the homotopy analysis method

([28], [29]), Adomian decomposition method ([7], [8]), variational iteration method (VIM) ([12], [14]) and homotopy perturbation method

([13], [15]), which have become known in a large number of researchers in this area. Recently, a new option has appeared, including the

composition of some transform methods with the previously mentioned methods to facilitate and improve the resolution speed of this type of

equations. For example, we only mention some of these transform methods, such as Laplace transform method [11], sumudu transform

method [2] or Aboodh transform method [20]. Among wich are the Laplace homotopy analysis method [25], Adomian decomposition

method coupled with Laplace transform method [27], variational iteration method coupled with Laplace transform method [4], homotopy

perturbation transform method [30], homotopy analysis Sumudu transform method [31], modified fractional homotopy analysis transform

method [21], Sumudu decomposition method for nonlinear equations [5], variational iteration Sumudu transform method [3], homotopy

perturbation Sumudu transform method [16], Aboodh decomposition method [26], fractional Aboodh decomposition method [22], Aboodh

transform homotopy perturbation method [19].

The objective of this study is to combine two powerful methods, the first method is ” variational iteration method”, the second is called

”the Aboodh transform method”, for solving linear and nonlinear fractional partial differential equations, thus, we get the modified method

”fractional variational iteration Aboodh transform method” (FVIATM). Several examples are given to re-confirm the effeciency of the

suggested algorithm, the fractional derivative is described in this study in the sense of Caputo.

2. Preliminaries

In this section, we give some basic notions about fractional calculus, Aboodh transform and Aboudh transform of fractional derivatives

which are used further in this paper.

Email addresses: mountassir27@yahoo.fr (M. H. Cherif), djeloulz@yahoo.com (D. Ziane)
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2.1. Fractional calculus

We give some basic definitions and properties of the fractional calculus theory as the Riemann-Liouville fractional integrals and Caputo

fractional derivative (see [10], [17]).

Definition 2.1. Let Ω = [a,b] (−∞ < a < b <+∞) be a finite interval on the real axis R. The Riemann–Liouville fractional integral Iα
0+ f

of order α ∈ R (α > 0) is defined by

(Iα
0+ f )(τ) =

1

Γ(α)

∫ τ

0

f (ς)dς

(τ − ς)1−α
, τ > 0, α > 0

(I0
0+ f )(τ) = f (τ)

Here Γ(·) is the gamma function.

Theorem 2.2. Let α ≥ 0 and let n = [α]+1. If f (τ) ∈ ACn [a,b] , then the Caputo fractional derivative (cDα
0+ f )(τ) exist almost evrywhere

on [a,b] . If α /∈ N, (cDα
0+

f )(τ) is represented by

(cDα
0+ f )(τ) =

1

Γ(n−α)

∫ τ

0

f (n)(ς)dς

(τ − ς)α−n+1
, (2.1)

where D = d
dr and n = [α]+1.

Remark 2.3. In this paper, we consider the time-fractional derivative in the Caputo’s sense. When α ∈ R
+, the time-fractional derivative is

defined as

(cDα
τ u)(r,τ) =

∂ α u(r,τ)

∂τα

=

{

1
Γ(m−α)

∫ τ
0 (τ − ς)m−α−1 ∂ mu(r,ς)dς

∂ς m , m−1 < α < m,
∂ mu(r,τ)

∂τm , α = m,

where m ∈ N
∗.

2.2. Definitions and properties of the Aboodh transform

The Aboodh transform was defined by K. S. Aboodh [20] in 2013. In this section, we give some basic definitions and properties of this

transform (see [1], [18], [20]).

2.2.1. Definitions

The Aboodh transform is defined for functions of exponential order. We consider functions belonging to a class B, where B defined by

B =
{

u(τ) : |u(τ)|< Mek j |τ|, i f τ ∈ (−1) j × [0, ∞, j = 1,2;M, k1,k2 > 0
}

.

Definition 2.4. The Aboodh integral transform of the function u in B is defined by the integral equation

A [u(τ)] =U(v) =
1

v

∫ ∞

0
u(τ)e−vτ dτ; τ ≥ o, v ∈ (k1,k2). (2.2)

The variable v in this transform is used to factor the variable τ in the argument of the function u.

Proposition 2.5. The Aboodh transform of the time-fractional derivative in the Caputo’s sense is defined as

A
[

(cDα
0+u)(τ);v

]

= vα A[u(τ)]−
n−1

∑
k=0

u(k)(0)

v2−α+k
, n−1 < α ≤ n, n = 1,2, . . . (2.3)

And the Aboodh transform of the function u(r,τ) with Caputo fractional derivative of order α is given by

A
[

(cDα
0+u)(r,τ);v

]

= vα A[u(r,τ)]−
n−1

∑
k=0

u(k)(r,0)

v2−α+k
, n−1 < α ≤ n, n = 1,2, . . . (2.4)
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2.2.2. Somme properties of the Aboodh transform

1. The Aboodh transform of the nth derivative of u(τ) is given by

A[u(n)(τ)] =Un(v) = vnA[u(τ)]−
n−1

∑
k=0

u(k)(0)

v2−n+k
(2.5)

2. Some elementary functions and their transformations

u(τ) A [u(τ)]

1 1
v2

τ 1
v3

τn n!
vn+2 , n = 0,1,2, . . .

τα Γ(α+1)
vα+2 , α ≥ 0.

3. Analysis of fractional variational iteration Aboodh transform method (FVIATM)

To illustrate the basic idea of this method, we consider a general nonlinear partial differential equation of fractional order

cDα
τ U(r,τ)+RU(r,τ)+NU(r,τ) = g(r,τ), (3.1)

where m−1 < α ≤ m, m = 1,2, . . . and the initial conditions

[

∂ m−1U(r,τ)

∂τm−1

]

τ=0

= hm−1(r), (3.2)

where cDα
τ = ∂ α

∂τα is the Caputo fractional derevative, R is the linear differential operator, N represents the general nonlinear differential

operator, and g(r,τ) is the source term.

Applying Aboodh transform on both sides of (3.1), we obtain

A [cDα
τ U(r,τ)]+A [RU(r,τ)]+A [NU(r,τ)] = A [g(r,τ)] . (3.3)

Using the differentiation property of Aboodh transform, we have

A [U(r,τ)] =
1

vα

n−1

∑
k=0

U (k)(r,0)

v2−α+k
+

1

vα
A [g(r,τ)]−

1

vα
A [RU(r,τ)+NU(r,τ)] . (3.4)

Operating with the inverse Aboodh transform on both sides of (3.4), we obtain

U(r,τ) = H(r,τ)−A−1

(

1

vα
A [RU(r,τ)+NU(r,τ)]

)

, (3.5)

where H(r,τ), represents the term arising from the source term and the prescribed initial conditions.

Applying ∂
∂τ

on both sides of (3.5), we have

∂U(r,τ)

∂τ
+

∂

∂τ
A−1

(

1

vα
A [RU(r,τ)+NU(r,τ)]

)

−
∂H(r,τ)

∂τ
= 0. (3.6)

According to the variational iteration method ([12], [14]), we can construct a correct functional as follows

Un+1(r,τ) = Un(r,τ)−
∫ τ

0

[

∂Un(r,ς)

∂ς
+

∂

∂ς
A−1

(

1

vα
A [RUn(r,ς)+NUn(r,ς)]

)

−
∂H(r,ς)

∂ς

]

dς . (3.7)

Recall that U(r,τ) = lim
n→∞

Un(r,τ).

That may give the exact solution if a closed form one exists, or we can use the (n+ 1)th approximation for numerical purposes. The

convergence of the variational iteration method is introduit by Tatari et all. in [24]. Though the variational iteration method leads to fast

convergent solutions, unnecessary calculation arises in the solution procedure.
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4. Applications

To illustrate the efficiency of the fractional variational iteration Aboodh transform method, we apply this method to solve some linear and

nonlinear time-fractional partial differential equations with Caputo fractional derivative.

Example 4.1. Consider the following time fractional diffusion equation

cDα
τ U(r,τ) = r2

2 Urr(r,τ), 0 < α ≤ 1,
U(r,0) = r2.

(4.1)

and which subject to the boundary conditions U(0,τ) = 0 and U(1,τ) = f (τ).
Applying Aboodh transform on both sides of (4.1) and using its differentiation property, we obtain

A [U(r,τ)] =
1

v2
r2 +

1

vα
A

[

r2

2
Urr(r,τ)

]

. (4.2)

Taking the inverse Aboodh transform of (4.2), we have

U(r,τ) = r2 +A−1

(

1

vα
A

[

r2

2
Urr(r,τ)

])

. (4.3)

Applying ∂
∂τ

on both sides of (4.3), we get

∂U(r,τ)

∂τ
=

∂

∂τ
A−1

(

1

vα
A

[

r2

2
Urr(r,τ)

])

. (4.4)

According to the variational iteration method, we can construct a correct functional as follows

Un+1(r,τ) = Un(r,τ)−
∫ τ

0

[

∂Un(r,ς)

∂ς
−

∂

∂ς
A−1

(

1

vα
A

[

r2

2
(Un)rr(r,τ)

])]

dς . (4.5)

By using the iteration formula (4.5), the first terms are given by

U0(r,τ) = r2,

U1(r,τ) = r2 + r2 τα

Γ(α+1)
,

U2(r,τ) = r2 + r2 τα

Γ(α+1)
+ r2 τ2α

Γ(2α+1)
,

U3(r,τ) = r2 + r2 τα

Γ(α+1)
+ r2 τ2α

Γ(2α+1)
+ r2 τ3α

Γ(3α+1)
...

Un(r,τ) = ∑
n
k=0

r2τkα

Γ(kα+1)
.

(4.6)

Recall that the solution is given by

U(r,τ) = lim
n→∞

Un(r,τ) = lim
n→∞

n

∑
k=0

r2τkα

Γ(kα +1)
= r2Eα (τ

α ), (4.7)

which is the exact solution of time fractional diffusion equation (4.1) obtained by fractional variational iteration method in [9], but with less

calculations. In the case α = 1, it is given by U(r,τ) = r2eτ .

Example 4.2. Consider the linear fractional Klein-Gordon equation

cDα
τ U(r,τ) =Urr(r,τ)−U(r,τ), 1 < α ≤ 2, (4.8)

with the initial conditions

U(r,0) = 0, Uτ (r,0) = r. (4.9)

By applying the Aboodh transform on both sides of (4.8), we get

A [U(r,τ)] =
1

v3
r+

1

vα
A [Urr(r,τ)−U(r,τ)] . (4.10)
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(a) (b)

Figure 4.1: (a) The exact solution, (b) The approximate solution when α = 1 of (4.1).

(c) (d)

Figure 4.2: (c) and (d) The approximate solutions of (4.1) when α = 0.5 and α = 0.9 respectively.

Taking the inverse Aboodh transform of (4.10), we have

U(r,τ) = rτ +A−1

(

1

vα
A [Urr(r,τ)−U(r,τ)]

)

. (4.11)

Applying ∂
∂τ

on both sides of (4.11), we get

∂U(r,τ)

∂τ
= r+

∂

∂τ
A−1

(

1

vα
A [Urr(r,τ)−U(r,τ)]

)

. (4.12)

According to the variational iteration method, we can construct a correct functional as follows

Un+1(r,τ) = Un(r,τ)−
∫ τ

0

[

∂Un(r,ς)

∂ς
− r−

∂

∂ς
A−1

(

1

vα
A [Unrr(r,τ)−Un(r,τ)]

)]

dς . (4.13)

Consequently, the first terms are obtained by

U0(r,τ) = rτ,

U1(r,τ) = rτ − r τα+1

Γ(α+2)
,

U2(r,τ) = rτ − r τα+1

Γ(α+2)
+ r τ2α+1

Γ(2α+2)
,

U3(r,τ) = rτ − r τα+1

Γ(α+2)
+ r τ2α+1

Γ(2α+2)
− r τ3α+1

Γ(3α+2)
,

...

Un(r,τ) = r ∑
n
k=0(−1)k τkα+1

Γ(kα+2)

(4.14)

The approximate solution in a series form of (4.8)-(4.9) when α −→ 2, is given by

U(r,τ) = lim
n→∞

Un(r,τ) = r sinτ, (4.15)

which is the exact solution of linear Klein-Gordon equation presented in [23].
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(a’) (b’) (c’)

Figure 4.3: (a’) The exact solution and (b’) The approximate solution in the case α = 2, (c’) The approximate solution when α = 1.5 of (4.8)-(4.9).

Example 4.3. We consider the nonlinear fractional Klein-Gordon equation of the form

cDα
τ U(r,τ) =Urr(r,τ)−U2(r,τ)+ r2τ2, 1 < α ≤ 2,

U(r,0) = 0, Uτ (r,0) = r.
(4.16)

Applying Aboodh transform on both sides of (4.16), we have

A [U(r,τ)] =
1

v3
r+2r2 1

vα+4
+

1

vα
A
[

Urr(r,τ)−U2(r,τ)
]

. (4.17)

By inverse Aboodh transform and derivative, we get

∂U(r,τ)

∂τ
= r+2(α +2)r2 τα+1

Γ(α +3)
+

∂

∂τ
A−1

(

1

vα
A
[

Urr(r,τ)−U2(r,τ)
]

)

. (4.18)

Now, applying the variational iteration method, we obtain

Un+1(r,τ) = Un(r,τ)−
∫ τ

0

[

∂Un(r,ς)

∂ς
− r−2(α +2)r2 τα+1

Γ(α +3)
−

∂

∂ς
A−1

(

1

vα
A
[

Unrr(r,τ)−U2
n (r,τ)

]

)]

dς . (4.19)

The first terms of approximate solution are obtained successively

U0(r,τ) = rτ + 2r2

Γ(α+3)
τα+2,

U1(r,τ) = rτ + 4
Γ(α+3)Γ(2α+3)

τ2α+2

−
4r3Γ(α+4)

Γ(α+3)Γ(2α+4)
τ2α+3 −

4r4Γ(2α+5)
Γ2(α+3)Γ(3α+5)

τ3α+4,

...

(4.20)

and so on. Therefore the solution of (4.16) in series form when α = 2, is given by

U(r,τ) = lim
n→∞

Un(r,τ) = rτ. (4.21)

Example 4.4. We consider the following nonlinear time-fractional partial differential equation

cDα
τ U −

3

8

[

(Urr)
2
]

r
=

3

2
τ, 2 < α ≤ 3, (4.22)

with the initial conditions

U(r,0) =
1

2
r2, Uτ (r,0) =

1

3
r3, Uττ (r,0) = 0. (4.23)

According to the formula (3.7), we can construct the following iteration formula

Un+1(r,τ) =−
1

2
τ2 +

1

3
r3τ +

3

2

τα+1

Γ(α +2)
−A−1

(

1

vα
A

[

−
3

8

[

(Unrr)
2
]

r

])

. (4.24)
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Using the iteration formula (4.24), we obtain

U0(r,τ) =− 1
2 r2 + 1

3 r3τ,

U1(r,τ) =− 1
2 r2 + 1

3 r3τ +6r τα+2

Γ(α+3)
,

U2(r,τ) =− 1
2 r2 + 1

3 r3τ +6r τα+2

Γ(α+3)
,

U3(r,τ) =− 1
2 r2 + 1

3 r3τ +6r τα+2

Γ(α+3)
,

...

(4.25)

The approximate solution in a series form, is given by

U(r,τ) =−
1

2
r2 +

1

3
r3τ +6r

τα+2

Γ(α +3)
. (4.26)

As α −→ 3, we get

U(r,τ) =−
1

2
r2 +

1

3
r3τ +

1

20
rτ5.

which is an exact solution of the nonlinear partial differential equation of order three (4.22)-(4.23) obtained by the modified homotopy

analysis method in [6].

(a”) (b”) (c”)

Figure 4.4: (a”) The exact solution, (b”) and (c”) The approximate solutions in the case α = 2.9 and α = 1.5 respectively of (4.22)-(4.23).

5. Conclusion

In this work, a variational iteration method (VIM) and new transform method called ”Aboodh transform” are successfully combined to form

a powerful analytical method for solving fractional partial differential equations. The new analytical method gives a series solution which

converges rapidly to the exact solution. The simplicity and high precision of the new analytical method are clearly illustrated, for example,

by the resolution of some equations such as the time fractional diffusion equation, the linear and nonlinear fractional Klein-Gordon equation

of order 2 and an example of nonlinear time fractional partial differential equation of order three.

References

[1] A. K. Hassan Sedeeg and M. M. Abdelrahim Mahgob, Comparison of New Integral Transform Aboodh Transform and Adomain Decomposition Method,
Int. J. Math. And its Appl. 4 (2)-B (2016), 127-135.

[2] A. Kiliçman and H. Eltayeb, On a New Integral Transform and Differential Equations, Math. Problems in Eng. A. ID 463579, (2010), 13 pp.
[3] A. S. Abedl-Rady, S. Z. Rida, A. A. M. Arafa and H. R. Abedl-Rahim,Variational Iteration Sumudu Transform Method for Solving Fractional Nonlinear

Gas Dynamics Equation, Int. J. Res. Stu. Sci. Eng. Tech. 1 (2014), 82-90.
[4] A. S. Arife and A. Yildirim, New Modified Variational Iteration Transform Method (MVITM) for solving eighth-order Boundary value problems in one

Step, W. Appl. Sci. J. 13 (2011), 2186 -2190.
[5] D. Kumar, J. Singh and S. Rathore, Sumudu Decomposition Method for Nonlinear Equations, Int. Math. For. 7 (2012), 515-521.
[6] D. Ziane and M. Hamdi Cherif, Modified homotopy analysis method for nonlinear fractional partial differential equations, Int. J. Anal. Appl. 14 (1),

(2017), 77-87.
[7] G. Adomian, Nonlinear Stochastic Systems Theory and Applications to Physics, Kluwer Academic Publishers, Netherlands, 1989.
[8] G. Adomian, Solution of physical problems by decomposition, Comput. Math. Appl. 27 (1994), 145-154.
[9] G. Wu and E. W. M. Lee, Fractional variational iteration method and its application, Phys. Letters A. 374 (2010), 2506-2509.

[10] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, CA, 1999, 1-365.
[11] I. Podlubny, The Laplace Transform Method for Linear Differential Equations of the Fractional Order, Slovak Acad. Sci. Inst. Exp. Phys, 1997.
[12] J. H. He, A new approach to nonlinear partial differential equations, Comm. Nonlinear. Sci. Numer. Simul. 2 (1997), 203-205.
[13] J. H. He, A new perturbation technique which is also valid for large parameters, J. Sound Vib. 229 (2000), 1257-1263.
[14] J. H. He, A variational iteration approach to nonlinear problems and its applications, Mech. Appl. 20 (1), (1998), 30-31.
[15] J. H. He, Homotopy perturbation technique, Comput. Meth. Appl. Mech. Eng. 178 (1999), 257-262.



120 Universal Journal of Mathematics and Applications

[16] J. Singh, D. Kumar and Sushila,Homotopy Perturbation Sumudu Transform Method for Nonlinear Equations, Adv. Theor. Appl. Mech. 4 (2011),
165-175.

[17] K. Diethelm, The Analysis Fractional Differential Equations, Springer-Verlag Berlin Heidelberg, 2010, 1-262.
[18] K. S. Aboodh, A. Idris and R. I. Nuruddeen, On the Aboodh Transform Connections with Some Famous Integral Transforms, Int. J. Engin. Info. Syst.

1(9), (2017), 143-151.
[19] K. S. Aboodh, Solving Fourth Order Parabolic PDE with Variable Coefficients Using Aboodh Transform Homotopy Perturbation Method, Pure. Appl.

Math. J. 4(5), (2015), 219-224.
[20] K. S. Aboodh, The New Integral Transform ”AboodhTransform, Glob. J. Pure. Appl. Math. 9 (1), (2013), 35-43.
[21] K. Wang and S. Liu, Application of new iterative transform method and modified fractional homotopy analysis transform method for fractional

Fornberg-Whitham equation, J. Nonlinear Sci. Appl. 9 (2016), 2419-2433.
[22] M. Hamdi Cherif and D. Ziane, A New Numerical Technique for Solving Systems of Nonlinear Fractional Partial Differential Equations, Int. J. Anal.

Appl. 15(2), (2017), 188-197.
[23] M. Khalid, M. Sultana, F. Zaidi and A. Uroosa,Solving linear and nonlinear Klein-Gordan equations by new perturbation iteration transform method, J.

App. Eng. Math. 6(1), (2016), 115-125.
[24] M. Tatari and M. Dehghan, On the convergence of He’s variational iteration method, J. Comp. Appl. Math. 207(1), (2007), 121-128.
[25] M. Zurigat, Solving Fractional Oscillators Using Laplace Homotopy Analysis Method, Annals of the University of Craiova, Math. Comp. Sci. Series. 38

(2011), 1-11.
[26] R. I. Nuruddeen and A. M Nass, Aboodh Decomposition Method and its Application in Solving Linear and Nonlinear Heat Equations, Europ. J.

Advances in Engin. Techn. 3(7), (2016), 34-37.
[27] S. A. Khuri, A Laplace decomposition algorithm applied to a class of nonlinear differential equations, J. Math. Annl. Appl. 4 (2001), 141-155.
[28] S. J. Liao, On the homotopy analysis method for nonlinear problems, Appl. Math. Comput. 147 (2004), 499-513.
[29] S. J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. Thesis, Shanghai Jiao Tong University, 1992.
[30] S. Kumara, A. Yildirim, Y. Khan and L. Weid, A fractional model of the diffusion equation and its analytical solution using Laplace transform, Scientia

Iranica B. 19 (2012), 1117-1123.
[31] S. Rathore, D. Kumar, J. Singh and S. Gupta, Homotopy Analysis Sumudu Transform Method for Nonlinear Equations, Int. J. Industrial Math. 4 (2012),

301-314.



Universal Journal of Mathematics and Applications, 1 (2) (2018) 121-124

Universal Journal of Mathematics and Applications

Journal Homepage: www.dergipark.gov.tr/ujma

ISSN: 2619-9653

Scalar characterization in Banach-Jordan algebras

Abdelaziz Maouchea*

aDepartment of Mathematics and Statistics Faculty of Science, Sultan Qaboos University, Oman
*Corresponding author E-mail: maouche@squ.edu.om

Article Info

Keywords: Jordan-Banach algebra,

Lipschitzian, Scalar element

2010 AMS: 46H70, 17A15

Received: 28 February 2018

Accepted: 06 April 2018

Available online: 26 June 2018

Abstract

Using a Diagonalization Theorem obtained when the spectrum is Lipschitzian, we extend

a result of G. Braatvedt on scalar characterization in Banach algebras to Banach-Jordan

algebras. We also establish that any element of a semisimple Banach-Jordan algebra with

the property that all elements in some neighbourhood of the identity are spectrally invariant

under multiplication by the quadratic U operator, has analogs with the identity.

1. Preliminaries

A unital Banach-Jordan algebra is a vector space with a binary product

(x,y) 7→ x · y

satisfying the identities:

x · y = y · x, (x · y)2 = x2 · (y · x2) ∀x,y ∈ A,

and endowed with a complete norm ‖ · ‖ such that, for all x,y ∈ A,

‖ x · y ‖≤‖ x ‖‖ y ‖ .

N. Jacobson introduced the notion of invertibility in Jordan algebras, which generalizes the notion of invertibility in associative algebras.

Given x in A we say that x is invertible in A if there exists y in A such that x · y = 1 and x2 · y = x. This element y is unique and is usually

denoted by x−1. It turns out that this notion of inverse is intimalely related to the quadratic map U : A 7→ BL (A) defined by

Uxy = 2x · (x · y)− x2 · y

for any x,y ∈ A. Keeping in mind that the mapping x 7→ Ux from A into BL (A) is continuous, the invertible elements Ω = {a ∈ A :

Ua is invertible} form an open subset of A; in particular, Ω is locally connected as shown by O. Loos in [7], so its connected components are

open. Also, the space C[x] spanned by all powers of x is a commutative associative subalgebra with respect to the linear Jordan product. By

continuity, the same holds for its closure C in A. We refer the reader to Chapter 4 of [6] for more details on spectral theory in Banach-Jordan

algebras. For general theory of Jordan algebras see [8] and [10].

Theorem 1.1. An element x of A is invertible if and only if Ux is invertible in L (A), the algebra of linear operators on A, in which case

Ux−1 = U−1
x . If x, y ∈ A, then they are both invertible if and only if Ux(y) is invertible in A. In particular, x is invertible if and only if xn is

invertible for every integer n ≥ 1.

This theorem implies that the set of invertible elements Ω(A) is invariant when taking powers, but unfortunately, it is not stable for the

product. For x ∈ A we denote respectively by Sp(x) = {λ1− x /∈ Ω(A)} and ρA(x) = sup{|λ | : λ ∈ Sp(x)} the spectrum and spectral radius

of x.
In what follows, an important tool will be the theory of subharmonic functions, based essentially on the celebrated result of Aupetit and

Zraibi, which allow us to use analytic tools in Banach-Jordan algebras.
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Theorem 1.2 (Aupetit-Zraibi). Let f : D → A be a holomorphic function from a domain D of C into a Banach-Jordan algebra. Then the

mapping λ → Sp( f (λ )) is an analytic multifunction. Consequently, λ 7−→ ρ( f (λ )) and λ 7−→ logρ( f (λ )) are subharmonic on D.

We will require the following fundamental result from the theory of subharmonic functions [1].

Theorem 1.3 (Maximum Principle for Subharmonic Functions). Let f be a subharmonic function on a domain D of C. If there exists λ0 ∈ D

such that f (λ )≤ f (λ0) for all λ ∈ D, then f (λ ) = f (λ0) for all λ in D.

Another important ingredient is Aupetit’s characterization of the McCrimmon radical Rad(A) of A (see [3]) and its corollaries.

Theorem 1.4 (Aupetit). Let a be an element of a Banach-Jordan algebra A. Then a is in the McCrimmon radical of A if and only if

sup{ρ(x+ ta) : t ∈ C}< ∞ for every x in A.

Corollary 1.5. An element a of a Banach-Jordan algebra A is in the McCrimmon radical of A if and only if supρ(Uxa) = 0 for every x in A.

Corollary 1.6. An element a of a Banach- Jordan algebra A is in the McCrimmon radical of A if and only if there exists C ≥ 0 such that

ρ(x)≤ C ‖ x−a ‖ for every x in a neighborhood of a.

2. Some results under the condition of a Lipschitzian spectrum

The next lemma is a spectral characterization of the Jacobson radical in terms of the Lipshitzian behaviour of the spectrum. It was obtained

by Aupetit in [3] for Banach algebras and we extend it here to Banach-Jordan algebras.

Lemma 2.1. Let q ∈ A be a quasi-nilpotent element. Suppose that there exists r,C > 0 such that ρ(x)≤C ‖ x−q ‖, for ‖ x−q ‖< r, then

q ∈ Rad(A).

Proof. Let y ∈ A be arbitrary. For |λ |>
‖y‖

r , we have ρ(q+ y
λ
)≤C

‖y‖
|λ |

, consequently ρ(y+λq)≤C ‖ y ‖ . Hence the upper semi-continuous

function λ 7→ ρ(y+λq) is bounded on the complex plane. Being subharmonic, it is constant by Liouville’s Theorem for subharmonic

functions. Thus ρ(y+q) = ρ(y), for every y ∈ A and by Aupetit’s characterization of the radical [3], we obtain q ∈ Rad(A).

We recall that the spectrum is said to be Lipschitzian at an element a of a Banach-Jordan algebra if there exists two positive constants r and

C such that ∆(Sp(x),Sp(a))≤C ‖ x−a ‖ for all x satisfying ‖ x−a ‖< r, where ∆ represents the Hausdorff distance on compact sets of the

complex plane defined by

∆(σ1,σ2) = max{ sup
λ∈σ2

{dist(λ ,σ1)}, sup
λ∈σ1

{dist(λ ,σ2)}}

where dist(λ ,σ) = inf{|λ −µ| : µ ∈ σ} is the distance of the point λ to the compact set σ (see [1]). Using the previous lemma, we obtained

the following theorem in [9].

Theorem 2.2. Let A be a semisimple complex Banach-Jordan algebra and let a ∈ A have finite spectrum, Sp(a) = {α1, · · · ,αn}. Suppose

that the spectral mapping x 7→ SpA(x) is Lipschitzian at a. Then there exist n nonzero orthogonal projections p1, · · · , pn whose sum is 1 and

such that a = α1 p1 + · · ·+αn pn.

The next theorem obtained in [5] for Banach algebras is in fact a particular case to our theorem quoted above. We extend here this theorem to

Jordan algebras along with a new proof.

Theorem 2.3. Let A be a semisimple complex Banach-Jordan algebra and let a ∈ A. If the spectrum is Lipschitzian at a and Sp(a) = {α},
then a = α1.

Proof. Since the spectrum is Lipschitzian at a, it follows that there exists two positive constants r and C such that

∆(Sp(x),Sp(a))≤C ‖ x−a ‖

for all x satisfying ‖ x−a ‖< r. Clearly,

∆(Sp(x),Sp(a)) = ∆(Sp(x−α),Sp(a−α)) .

Since Sp(a−α) = {0}, taking x−α1 = y, we get from our assumption

ρ(y) = ∆(Sp(y),{0})

= ∆(Sp(y),Sp(a−α1))

≤C ‖ x−a ‖

=C ‖ y− (a−α1) ‖

for all ‖ y− (a−α1) ‖< r. It follows from Corollary 2 of Aupetit’s characterization of the radical, that a−α1 ∈ Rad(A) = {0}. Thus

a = α1.
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3. Scalar characterization in a Banach-Jordan algebra

Another result obtained in [5] is the following multiplicative scalar characterization of elements in a Banach algebra.

Theorem 3.1. Let A be a semisimple complex Banach algebra and let a ∈ A. Then a = 1 if and only if Sp(ax) = Sp(x) for all x in a

neighborhood of 1.

We extend this result to Banach-Jordan algebras with a slightly different conclusion. It is clear that if a = 1 then Sp(Uax) = Sp(x) for all x in

A. But the converse is not exactly as for Banach algebras. Indeed, instead of using the linear Jordan product as an analogue of multiplication

in Banach algebras, we consider multiplication by the quadratic U operator in the situation of Banach-Jordan algebras. Precisely, we

prove that if an element a in a semisimple Banach-Jordan algebra has the property that multiplication by Ua leaves all elements in some

neighbourhood of the identity spectrally invariant, then clearly that element squares to the identity.

Theorem 3.2. Let A be a complex semisimple Banach-Jordan algebra and a nonzero element a of A. If Sp(Uax) = Sp(x) for all x in a

neighborhood of 1 then a2 = 1. In particular, a is invertible and a−1 = a.

Proof. Note that if a = 1 then Sp(Uax) = Sp(x). We are interested by the converse. Suppose that Sp(Uax) = Sp(x) for all x in a neighborhood

V (1) of 1. Let x = 1, then Sp(Ua1) = Sp(a2) = Sp(1) = {1}. So Sp(a) ⊆ {−1,1}, hence a is invertible. Let y ∈ A arbitrary. Take λ

sufficiently small, say λ ∈ B(0,ε), such that

Sp(λy+a2) = Sp(Ua(λUa−1 y+1)) = Sp(λUa−1 y+1) = Sp(λUa−1 y)+1.

So,

Sp(λy+a2 −1) = Sp(λUa−1 y)

and

ρ(y+
1

λ
(a2 −1)) = ρ (Ua−1 y)

for all 0 6= λ ∈ B(0,ε). Furthermore,

ρ(y+
1

λ
(a2 −1))≤‖ y+

1

λ
(a2 −1)) ‖

≤‖ y ‖+|
1

λ
| ‖ a2 −1 ‖

≤‖ y ‖+
1

ε
‖ a2 −1 ‖

for all λ ∈ C\B(0,ε).
Hence, there exists M > 0 such that

ρ(y+
1

λ
(a2 −1))≤ M

for all λ ∈ C\{0}. Furthermore,

limsup
λ→0

ρ

(

y+
1

λ
(a2 −1)

)

≤ M.

Hence, taking µ = 1
λ

it follows that the subharmonic function

φ : µ 7→ ρ
(

y+µ(a2 −1)
)

is bounded on C, and

limsup
µ→∞

φ(µ) ≤ M.

By Liouville’s theorem for subharmonic functions, φ is constant. Hence,

ρ
(

y+µ(a2 −1)
)

= ρ(y)

for all µ ∈ C. By Aupetit’s characterization of the radical, we obtain

a2 −1 ∈ Rad(A) = {0},

that is a2 = 1.

Our last result concerns bounded elements in a finite dimensional Banach-Jordan algebra. Exactly as for Banach algebras, we get the

following theorem which extends another result of G. Braatvedt from associative Banach algebras to Non-associative Banach algebras. The

proof follows the same arguments as the associative one. Recall that an element a of a Banach-Jordan algebra is said to be power bounded if

there exists a positive constant M such that ‖ an ‖≤ M for all n ∈ N (more details on powers of elements in Banach-Jordan algebras can be

found in [5]).
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Theorem 3.3. Let A be a finite-dimensional Banach-Jordan algebra and a ∈ A. If Sp(a) = {1} and a is power bounded, then a = 1.

Proof. Note that since Sp(a) = {1}, then Sp(a− 1) = {0}. Hence, (a− 1) is quasi-nilpotent and therefore nilpotent since A is finite-

dimensional. Thus (a−1)N = 0 for some N ∈ N. Hence for all n ≥ N, we get

an = ((a−1)+1)n =
n

∑
k=0

(

k

n

)

(a−1)k =
N−1

∑
k=0

(

k

n

)

)(a−1)k.

Since a is power bounded, for some M > 0 and all n ∈ N we have ‖ an ‖≤ M. Hence for all n ∈ N,

‖
N−1

∑
k=0

(

k

n

)

(a−1)k ‖≤ M =⇒‖
N−2

∑
k=0

(

k

n

)

(a−1)k +

(

n

N −1

)

(a−1)N−1 ‖≤ M

Dividing both sides by
(

n
N−1

)

gives

‖
N−2

∑
k=0

(N −1)!

(n− k)(n− (k+1)) · · ·(n− (N −2))k!
(a−1)k +(a−1)N−1 ‖≤

M
(

n
N−1

)

(because k ≤ N − 2 < N − 1). Now considering the limit as n → ∞ gives 0 ≤‖ (a− 1)N−1 ‖≤ 0, and so (a− 1)N−1 = 0. It follows by

induction that (a−1) = 0 that is a = 1.

Remark 3.4. The previous theorem is valid for Banach-Jordan algebras because the proof takes place in a subalgebra generated by 1 and

a, that is a full subalgebra of a Banach-Jordan algebra. In that case everything works as in classical Banach algebras as described and well

explained in Chapter 4 of [6].
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Abstract

In this article, the existence of positive solutions for a nonlinear third-order three-point

boundary value problem with integral condition is investigated. By using Leray-Schauder

fixed point theorem, sufficient conditions for the existence of at least one positive solution

are obtained. Illustrative examples are also presented to show the applicability of our results.

1. Introduction

This paper is devoted to the existence of positive solutions for the following third-order nonlocal integral boundary value problem (BVP):

u′′′ (t)+a(t) f (t,u(t)) = 0, 0 < t < T, (1.1)

u(0) = u′′ (0) = 0, u(T ) = α

∫ η

0
u(s)ds, (1.2)

where 0 < η < T , 0 < α <
2T
η2 and

(H1) f ([0,T ]× [0,+∞) , [0,+∞));

(H2) a ∈C ([0,T ] , [0,+∞)) and there exists t0 ∈ [η ,T ] such that a(t0)> 0.

Set

f0 = lim
u→0+

f (t,u)

u
, f∞ = lim

u→∞

f (t,u)

u
,

then f0 = 0 and f∞ = ∞ correspond to the superlinear case, f0 = ∞ and f∞ = 0 correspond to the sublinear case.

Third-order boundary-value problems for differential equations arise in variety of different areas of applied mathematics and physics. They

have been many scholars’ research object. For example, heat conduction, chemical engineering, underground water flow, thermoelasticity,

and plasma physics can produce boundary-value problems with integral boundary conditions; see [3, 9, 11]. They include two, three,

multipoint, and nonlocal boundary-value problems as special cases. By using the Krasnoselskii’s fixed point theorem, Liu and Ma [19]

studied the problem

u′′′ (t)+ f (u(t)) = 0, 0 < t < 1, (1.3)
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subject to integral boundary condition of the form

u′ (0) = 0, u′ (1) = 0, u(0) =
∫ 1

0
k (s)u(s)ds. (1.4)

Benaicha and Haddouchi [17] considered the fourth-order two-point boundary value problem

u′′′′ (t)+ f (u(t)) = 0, t ∈ (0,1) , (1.5)

u′ (0) = u′ (1) = u′′ (0) = 0, u(0) =
∫ 1

0
a(s)u(s)ds. (1.6)

We quote also the reasearchs of [2, 4, 5, 6, 7, 8, 12, 13, 14, 15, 16, 18, 20] which concern the differential equations under various boundary

conditions and by different approaches.

Motivated by the works mentioned above, we obtain the existence results for the problem (1.1)-(1.2) by using the Leray-Shauder fixed point

theorem if f0 = 0 ( condition f∞ = ∞ being unnecessary ) , as well as, for f∞ = 0 ( condition f0 = ∞ being unnecessary ). In this way we

remove the half of the assumptions to prove the existence of a solution when using Krasnoselskii’s fixed point theorem.(See [10, 17, 19]).

Moreover, we establish our results for t in [0,T ].
Our main tool is the following Leray-Schauder fixed point theorem.

Theorem 1.1. [1] Let Ω be the convex subset of Banach space E, 0 ∈ Ω, Φ : Ω → Ω be completely continuous operator. Then, either

(i) Φ has at least one fixed point in Ω;

or

(ii) the set {x ∈ Ω | u = λΦu, 0 < λ < 1} is unbounded.

2. Background

To prove the main existence results we will employ several straightforward lemmas.

Lemma 2.1. Let 2T 6= αη2. Then for y ∈C ([0,T ] , [0,∞)), the problem

u′′′ (t)+ y(t) = 0, (2.1)

u(0) = u′′ (0) = 0, u(T ) = α

∫ η

0
u(s)ds, η ∈ (0,T ) , α > 0, (2.2)

has a unique solution given by

u(t) =
t

2T −αη2

∫ T

0
(T − s)2

y(s)ds− αt

3
(

2T −αη2
)

∫ η

0
(η − s)3

y(s)ds

− 1

2

∫ t

0
(t − s)2

y(s)ds.

Proof. From equation (2.1) we have u′′′ (t) =−y(t). Then, integrating from 0 to t we obtain

u′′ (t) =−
∫ t

0
y(s)ds.

For t ∈ [0,T ] we have, by integrating in t and using integration by parts,

u′ (t) = u′ (0)−
∫ t

0

(

∫ x

0
y(s)ds

)

dx

= u′ (0)−
∫ t

0
(t − s)y(s)ds

u(t) = u′ (0) t −
∫ t

0

(

∫ x

0
(x− s)y(s)ds

)

dx

= u′ (0) t − 1

2

∫ t

0
(t − s)2

y(s)ds.

(2.3)

Thus, for t = T we find

u(T ) = u′ (0)T − 1

2

∫ T

0
(T − s)2

y(s)ds. (2.4)

Integrating again from 0 to η the expression (2.3), where η ∈ (0,T ), we obtain

∫ η

0
u(s)ds =

1

2
u′ (0)η2 − 1

2

∫ η

0

(

∫ x

0
(x− s)2

y(s)ds

)

dx

=
1

2
u′ (0)η2 − 1

6

∫ η

0
(η − s)3

y(s)ds.

(2.5)
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From (2.2) and (2.4) we have

∫ η

0
u(s)ds =

1

α
u(T ) = u′ (0)

T

α
− 1

2α

∫ T

0
(T − s)2

y(s)ds.

Then, using (2.5) we see that

u′ (0)
T

α
− 1

2α

∫ T

0
(T − s)2

y(s)ds =
1

2
u′ (0)η2 − 1

6

∫ η

0
(η − s)3

y(s)ds.

Thus,

u′ (0)
(

2T −αη2

2α

)

=
1

2α

∫ T

0
(T − s)2

y(s)ds− 1

6

∫ η

0
(η − s)3

y(s)ds

or

u′ (0) =
1

(

2T −αη2
)

∫ t

0
(T − s)2

y(s)ds− α

3
(

2T −αη2
)

∫ η

0
(η − s)3

y(s)ds.

Therefore, the BVP (2.1)–(2.2) has a unique solution

u(t) =
t

2T −αη2

∫ T

0
(T − s)2

y(s)ds− αt

3
(

2T −αη2
)

∫ η

0
(η − s)3

y(s)ds

− 1

2

∫ t

0
(t − s)2

y(s)ds.

The existence of positive solutions of the problem (2.1)–(2.2) is given in the next result.

Lemma 2.2. . Let 0 < α <
2T
η2 . If y ∈C ([0,T ] , [0,+∞)), then the unique solution of the problem (2.1)–(2.2) satisfies u(t)≥ 0 for t ∈ [0,T ].

Proof. From u′′′ (t) =−y(t), t ∈ [0,T ], we get that u′′ (t) is decreasing on [0,T ]. Then, the condition u′′ (0) = 0 ensures that have u′′ (t)≤ 0,

t ∈ [0,T ], which implies u(t) is concave. Observe also that if u(T )≥ 0, the concavity of u and the fact that u(0) = 0 imply that u(t)≥ 0 for

t ∈ [0,T ].
Since the graph of u is concave down (0,T ), we get

∫ η

0
u(s)ds ≥ 1

2
ηu(η) (2.6)

where 1
2 ηu(η) is the area of triangle under the curve u(t) from t = 0 to t = η for η ∈ (0,T ).

If we assume that u(T )< 0, then from 2.2 we have

∫ η

0
u(s)ds < 0. (2.7)

By concavity of u and
∫ η

0 u(s)ds < 0, it implies that u(η)< 0.

Hence

u(T ) = α

∫ η

0
u(s)ds ≥ 2T

η2
× 1

2
ηu(η) =

T

η
u(η) ,

which contradicts the concavity of u.

Lemma 2.3. Let α >
2T
η2 . If y ∈C ([0,T ] , [0,+∞)), then the problem (2.1)-(2.2) has no positive solution.

Proof. Suppose that the problem (2.1)-(2.2) has a positive solution u.

If u(T )> 0, then
∫ η

0 u(s)ds > 0. It implies that u(η)> 0 and

u(T )

T
=

α

T

∫ η

0
u(s)ds >

2

η2

(

1

2
ηu(η)

)

=
u(η)

η

This contradicts the concavity of u.

If u(T ) = 0, then
∫ η

0 u(s)ds = 0, this is u(t)≡ 0 for all t ∈ [0,η ]. If there exists t0 ∈ (η ,T ) such that u(t0)> 0, then u(0) = u(η)< u(t0),
which contradicts the concavity of u. Therefore, no positive solutions exist.

Lemma 2.4. . Let 0 < α <
2T
η2 . If y ∈C ([0,T ] , [0,+∞)), then the unique solution of the problem (2.1)–(2.2) satisfies

min
t∈[η ,T ]

u(t)≥ γ ‖u‖ , ‖u‖= max
t∈[0,T ]

|u(t)| , (2.8)

where

γ := min

{

η

T
,

αη2

2T
,

αη (T −η)

2T −αη2

}

. (2.9)
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Proof. Set u(τ) = ‖u‖. We consider three cases.

Case 1. If η ≤ τ ≤ T and mint∈[η ,T ] u(t) = u(η), then the concavity of u implies that

u(η)

η
≥ u(τ)

τ
≥ u(τ)

T

Thus,

min
t∈[η ,T ]

u(t)≥ η

T
‖u‖ .

Case 2. If η ≤ τ ≤ T and mint∈[η ,T ] u(t) = u(T ), then (2.2)-(2.6) and the concavity of u implies

u(T ) = α

∫ η

0
u(s)ds ≥ α

η2

2

[

u(η)

η

]

≥ α
η2

2

[

u(τ)

τ

]

)≥ αη2

2T
u(τ) .

Therefore,

min
t∈[η ,T ]

u(t)≥ αη2

2T
‖u‖ .

Case 3. If τ ≤ η ≤ T , then mint∈[η ,T ] u(t) = u(T ). Using the concavity of u and (2.2)-(2.6), we have

u(τ)−u(T )

τ −T
≥ u(T )−u(η)

T −η

u(τ)≤ u(T )+
u(T )−u(η)

T −η
(τ −T )

u(τ)≤ u(T )+
u(T )−u(η)

T −η
(0−T )

≤ u(T )

[

1−T
1− 2

αη

T −η

]

= u(T )

[

2T −αη2

αη (T −η)

]

.

(2.10)

This implies that

min
t∈[η ,T ]

u(t)≥ αη (T −η)

2T −αη2
‖u‖ .

This completes the proof.

3. Main results

In this section, we establish the existence of positive solution for the (BVP) (1.1)-(1.2).

Let

E =C [0,T ] , β =
∫ T

0
(T − s)2

a(s)ds

Theorem 3.1. Assume (H1) and (H2) hold and 0 < α <
2T
η2 . If f0 = 0, then the problem (1.1)-(1.2) has at least one positive solution.

Proof. From Lemma 2.1, u is a solution to the boundary value problem (1.1)-(1.2) if and only if u is a fixed point of operator A, where A is

defined by

Au(t) =
t

2T −αη2

∫ T

0
(T − s)2

a(s) f (s,u(s))ds

− αt

3
(

2T −αη2
)

∫ η

0
(η − s)3

a(s) f (s,u(s))ds− 1

2

∫ t

0
(t − s)2

a(s) f (s,u(s))ds.

(3.1)

Denote that

Ω =

{

u | u ∈C ([0,T ] ,R) , u ≥ 0, min
t∈[η ,T ]

u(t)≥ γ ‖u‖
}

,

where γ is defined in (2.9). Then Ω is the convex subset of E.

We choose ε > 0 and ε ≤ 2T−αη2

T β
. By f0 = 0, it there exists constant M > 0, such that f (u)< εu for 0 < u < M. For u ∈ Ω, from Lemma

2.2 and Lemma 2.4, we have Au(t)≥ 0 and mint∈[η ,T ] Au(t)≥ γ ‖Au‖.
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On the other hand,

Au(t)≤ t

2T −αη2

∫ T

0
(T − s)2

a(s) f (u(s))ds

≤ t

2T −αη2

∫ T

0
(T − s)2

a(s)εu(s)ds

≤ ‖u‖ T ε

2T −αη2

∫ T

0
(T − s)2

a(s)ds

≤ ‖u‖ ≤ M.

Thus ‖Au‖ ≤ ‖u‖. u ∈ K ∩∂Ω1. Hence AΩ ⊂ Ω. It easy to check that A : Ω → Ω is completely continuous. For u ∈ Ω and 0 < λ < 1 , we

have u(t) = λAu(t)< Au(t)≤ M, which implies ‖u‖ ≤ M. So {u ∈ Ω | u = λAu, 0 < λ < 1} is bounded. By Theorem 1.1 the operator A

has at least one fixed point in Ω. Thus the problem (1.1)-(1.2) has at least one positive solution. The proof is complete.

Theorem 3.2. Assume (H1) and (H2) hold, and 0 < α <
2T
η2 . If f∞ = 0, then the problem (1.1)-(1.2) has at least one positive solution.

Proof. Choose ε <
2T−αη2

2T β
. By f∞ = 0, we know there exists Constant N, such that f (u)< εu for u > N.

Select

M ≥ N +1+
2T β

2T −αη2
max

0≤u≤N
f (u)

Let

Ω =

{

u | u ∈C [0,T ] , u ≥ 0, ‖u‖ ≤ M, min
t∈[η ,T ]

u(t)≥ γ ‖u‖
}

,

then Ω is the convex subset of E. For u ∈ Ω, by Lemma 2.2 and Lemma 2.4 we know Au(t)≥ 0 and mint∈[η ,T ] Au(t ()≥ γ ‖Au‖).
On the other hand,

Au(t)≤ t

2T −αη2

∫ T

0
(T − s)2

a(s) f (u(s))ds

≤ T

2T −αη2

∫ T

0
(T − s)2

a(s)εu(s)ds

=
T

2T −αη2

∫

I1={s∈[0,T ],u(s)>N}
(T − s)2

a(s) f (u(s))ds+
T

2T −αη2

∫

I2={s∈[0,T ],u(s)≤N}
(T − s)2

a(s) f (u(s))ds

≤ T

2T −αη2

∫ T

0
(T − s)2

a(s)εu(s)ds+
T

2T −αη2

∫ T

0
(T − s)2

a(s)ds. max
0≤u≤N

f (u)

≤ T ε

2T −αη2
‖u‖

∫ T

0
(T − s)2

a(s)ds+
T

2T −αη2

∫ T

0
(T − s)2

a(s)ds. max
0≤u≤N

f (u)

≤ T ε

2T −αη2
M

∫

(T − s)2
a(s)ds+

T

2T −αη2

∫ T

0
(T − s)2

a(s)ds. max
0≤u≤N

f (u)

≤ T ε

2T −αη2
Mβ +

T

2T −αη2
β max

0≤u≤N
f (u)

≤ 1

2
M+

1

2
M = M.

Thus ‖Au‖ ≤ M. Hence, AΩ ⊂ Ω. IT easy to check that A : Ω → Ω is completely continuous.

For u ∈ Ω and u = λAu, 0 < λ < 1, we have u(t) = λAu(t)< Au(t)≤ M, which implies ‖u‖ ≤ M. So, {u ∈ Ω : u = λAu, 0 < λ < 1} is

bounded. By Theorem 1.1, we know the operator A has at least one fixed point in Ω. Thus the problem (1.1)-(1.2) has at least one positive

solution. The proof is complete.

Theorem 3.3. Assume (H1) and (H2) hold, and 0 < α <
2T
η2 . If there exists constant ρ1 > 0, such that f (u)≤ (2T−αη2)ρ1

T β
T β for 0 < u < ρ1,

then the problem (1.1)-(1.2) has at least one positive solution.

Proof. Let Ω =
{

u | u ∈C [0,1] , u ≥ 0, ‖u‖ ≤ ρ1, mint∈[η ,T ] u(t)≥ γ ‖u‖
}

, then Ω is the convex subset of E.

For u ∈ Ω, by Lemma 2.2 and Lemma 2.4, we have

Au(t)≥ 0 and mint∈[η ,T ] Au(t)≥ γ ‖Au‖ . (3.2)

On the other hand

Au(t)≤ t

2T −αη2

∫ T

0
(T − s)2

a(s) f (u(s))

≤ t

2T −αη2

∫ T

0
(T − s)2

(

2T −αη2
)

ρ1

T β
ds = ρ1.

Then ‖Au‖ ≤ ρ1. Hence, AΩ ⊂ Ω. It easy to check yhat A : Ω → Ω is completely continuous.

For u ∈ Ω and u = λAu, 0 < λ < 1, we have u(t) = λAu(t) < Au(t) ≤ ρ1, which implies ‖u‖ ≤ d. So {u ∈ Ω : u = λAu, 0 < λ < 1} is

bounded. By Theorem 1.1, we know the operator A has at least one fixed point in Ω. Thus the problem (1.1)-(1.2) has at least one positive

solution. The proof is complete.
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Theorem 3.4. Assume (H1) and (H2) hold, and 0 < α <
2T
η2 . If there exists constant ρ2 > 0, such that f (u)≤ (2T−αη2)ρ2

T β
for 0 < u < ρ1,

then the problem (1.1)-(1.2) has at least one positive solution.

Proof. Choose

d > 1+ρ2 +
T β

2T −αη2
. max
0≤u≤ρ2

f (u) .

Let

Ω =

{

u | u ∈C [0,T ] , u ≥ 0, ‖u‖ ≤ d, min
t∈[η ,T ]

u(t)≥ γ ‖u‖
}

,

then Ω is the convex subset of E.

For u ∈ Ω, by Lemma 2.2 and Lemma 2.4, we know Au(t)≥ 0 and mint∈[η ,T ] Au(t)≥ γ ‖Au‖.

On the other hand,

Au(t)≤ t

2T −αη2

∫ T

0
(T − s)2

a(s) f (u(s))ds

≤ T

2T −αη2

∫ T

0
(T − s)2

a(s) f (u(s))ds

=
T

2T −αη2

∫

I1={s∈[0,T ],u(s)>ρ2}
(T − s)2

a(s) f (u(s))ds+
T

2T −αη2

∫

I2={s∈[0,T ],u(s)≤ρ2}
(T − s)2

a(s) f (u(s))ds

≤ T

2T −αη2

∫ T

0
(T − s)2

a(s)

(

2T −αη2
)

ρ2

T β
ds+

T

2T −αη2

∫ T

0
(T − s)2

a(s) . max
0≤u≤ρ2

f (u)ds

≤ ρ2 +
T β

2T −αη2
. max
0≤u≤ρ2

f (u)< d.

Thus ‖Au‖ ≤ d. Hence AΩ ⊂ Ω. It easy to check that the operator A is completely continuous. For u ∈ Ω and u = λAu, 0 < λ < 1, we have

u(t) = λAu(t)< Au(t)≤ d, which implies ‖u‖ ≤ d. So {u ∈ Ω : u = λAu, 0 < λ < 1} is bounded. By Theorem 1.1, we know the operator

A has at least one fixed point in Ω. Thus the problem (1.1)-(1.2) has at least one positive solution. The proof is complete.

4. Examples

Example 4.1. Consider the boundary value problem

u′′′ (t)+
t2u

t + eu
= 0, 0 < t <

5

4
, (4.1)

u(0) = 0, u′′ (0) = 0, u

(

5

4

)

= 35

∫ 1
4

0
u(s)ds, (4.2)

where α = 35, η = 1
4 , T = 5

4 , 0 < α = 35 < 40 = 2T
η2 , f (t,u) = u

t+eu ∈ C ([0,T ]× [0,∞) , [0,∞)) and a(t) = t2 > 0 for t ∈
[

1
4 ,

5
4

]

. Since

f∞ = 0 and from Theorem 3.2, we can get that the (4.1)- (4.2) has at least one positive solution. Consequently, we cannot apply the

Krasnoselskii’s fixed point theorem like in [10, 17, 19]

Example 4.2. Consider the boundary value problem

u′′′ (t)+ et

(

u− u√
1+u

)

= 0, 0 < t <
3

4
, (4.3)

u(0) = 0, u′′ (0) = 0, u

(

3

4

)

= 15

∫ 0,2

0
u(s)ds, (4.4)

where α = 15, η = 0,2 = 1
5 , T = 3

4 , 0 < α = 15 < 37,5 = 2T
η2 , f (t,u) = u− u√

1+u
∈ C ([0,T ]× [0,∞) , [0,∞)) and a(t) = et > 0 for

t ∈
[

1
5 ,

3
4

]

. Obviously f0 = 0. From Theorem 3.1, the (4.3)-(4.4) has at least one positive solution. On the other hand, we have f0 = 1 , then

the function f is not superlinear. Consequently, we cannot apply the Krasnoselskii’s fixed point theorem like in [10, 17, 19]
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Abstract

In this paper, we aim to introduce an approach to single-valued neutorosophic ideals over a

given classical ring and over a given neutrosophic subring, respectively, as a continuation

of our researches on algebraic structures over single-valued neutrosophic sets. We first

propose the two types of neutrosophic ideals and then present their elementary properties.

1. Introduction

In many practical situations and in many complex systems like biological, behavioral and chemical etc., different types of uncertainties

are encountered. Since the classical set is invalid to handle the described uncertainties, Zadeh [17] first gave the definition of a fuzzy set.

According to this definition, a fuzzy set is a function described by a membership value takes degrees in the real unit interval. But, later it

has been seen that this definition is inadequate by consideration not only the degree of membership but also the degree of nonmembership.

So, Atanassov [2] described a set which is called an intuitionistic fuzzy set to handle mentioned ambiguity. Since this set have some

problems in applications,Smarandache [15] introduced neutrosophy to deal with the problems involves indeterminate and inconsistent

information. ”It is a branch of philosophy which studies the origin, nature and scope of neutralities, as well as their interactions with different

ideational spectra”[15]. Neutrosophic set is a generalization of the fuzzy set and intuitionistic fuzzy set, where the truth-membership,

indeterminacy-membership, and falsity-membership are represented independently. Wang et al.[16] specified the definition of a neutrosophic

set, named as a single valued neutrosophic set to make more applicable the theory to real life problems. The single valued neutrosophic

set is a generalization of a classical set, fuzzy set, intuitionistic fuzzy set and paraconsistent set etc. Vasantha Kandasamy and Florentin

Smarandache [9] studied the concept of neutrosophic algebraic structures.

In addition, single valued neutrosophic set is applied to algebraic and topological directions (see [1, 3, 4, 11, 13, 14]). Liu [10] defined the

concept of a fuzzy ring and fuzzy ideal. Later, Martinez [12] and Dixit et al.[6] studied on fuzzy ring and obtain certain ring theoretical

analogous. Hur et al.[7] proposed the notion of an intuitionistic fuzzy subring. Vasantha Kandasamy and Florentin Smarandache [8] studied

the neutrosophic rings. In this work, in a different direction from [8], we give an approach to a single valued neutrosophic ideal of a classical

ring as a continuation of neutrosophic algebraic structures discussed in [4, 5]. We define neutrosophic ideal and study some properties of this

structure. Moreover, we examine homomorphic image and preimage of a neutrosophic ideal. By this way, we obtain the generalized form of

the fuzzy ideal and intuitionistic fuzzy ideal of a classical ring.

2. Preliminaries

In this chapter, we recall the concepts of a neutrosophic set and a single valued neutrosophic set. Throughout this section, X denotes the

universal set which is nonempty.

Definition 2.1. [15] A neutrosophic set N on X is defined by : N = {< x, tN(x), iN(x), fN(x)>,x ∈ X} where tN , iN , fN : X →]−0,1+[ are

functions satisfy the inequality −0 ≤ tN(x)+ iN(x)+ fN(x)≤ 3+.

From philosophical point of view, the neutrosophic set takes the value from real standard or non standard subsets of ]−0,1+[. But it is hard

to consider the degree which belongs to a real standard or a non-standard subset of ]−0,1+[, in real world applications, especially in medical,

Email address: vildan.cetkin@kocaeli.edu.tr (V. Çetkin), halis@kocaeli.edu.tr (H. Aygün)
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engineering and statistical problems etc. Hence throughout this work, we deal with the following specified definition of a neutrosophic set

which is called a single valued neutrosophic set.

Definition 2.2. [16] A single valued neutrosophic set (SVNS) N on X is characterized by the truth-membership function tN , the indeterminacy-

membership function iN and the falsity-membership function fN . For each point x in X , the values tN(x), iN(x), fN(x) take place in the real

unit interval [0,1].
A neutrosophic set N can be written as

N =
n

∑
i=1

< tN(xi), iN(xi), fN(xi)> /xi, xi ∈ X .

Since the membership functions tN , iN , fN are defined from the universal set X into the unit interval [0,1] as tN , iN , fN : X → [0,1], a (single

valued) neutrosophic set N will be denoted by a mapping described by N : X → [0,1]× [0,1]× [0,1] and where, N(x) = (tN(x), iN(x), fN(x)),
for simplicity. The family of all single-valued neutrosophic sets on X is denoted by SNS(X).

Definition 2.3. [13, 16] Let N,M ∈ SNS(X). Then

(1) N is contained in M, denoted as N ⊆ M, if and only if N(x)≤ M(x). This means that tN(x)≤ tM(x), iN(x)≤ iM(x) and fN(x)≥ fM(x).
Two sets N,M are called equal, i.e., N = M iff N ⊆ M and M ⊆ N.
(2) the union K = N ∪M is defined as K(x) = N(x)∨M(x) where N(x)∨M(x) = (tN(x)∨ tM(x), iN(x)∨ iM(x), fN(x)∧ fM(x)), for each

x ∈ X . This means that tK(x) = max{tN(x), tM(x)}, iK(x) = max{iN(x), iM(x)} and fK(x) = min{ fN(x), fM(x)}.
(3) the intersection K = N ∩M is defined as K(x) = N(x)∧M(x) where N(x)∧M(x) = (tN(x)∧ tM(x), iN(x)∧ iM(x), fN(x)∨ fM(x)), for

each x ∈ X . This means that tK(x) = min{tN(x), tM(x)}, iK(x) = min{iN(x), iM(x)} and fK(x) = max{ fN(x), fM(x)}.
(4) the complement of N is denoted by Nc and it is defined as Nc(x) = ( fN(x),1− iN(x), tN(x)), for each x ∈ X . Here (Nc)c = N.

The details of the set theoretical operations can be found in [13, 16].

Definition 2.4. Let g : X1 → X2 be a function and N,M be the neutrosophic sets of X1 and X2, respectively. Then the image of N is a

neutrosophic set of X2 and it is defined as follows:

g(N)(y) = (tg(N)(y), ig(N)(y), fg(N)(y)) = (g(tN)(y),g(iN)(y),g( fN)(y)),∀y ∈ X2 where

g(tN)(y) =

{

∨

tN(x), if x ∈ g−1(y);

0, otherwise
, g(iN)(y) =

{

∨

iN(x), if x ∈ g−1(y);

0, otherwise
,

g( fN)(y) =

{

∧

fN(x), if x ∈ g−1(y);

1, otherwise.

And the preimage of M is a neutrosophic set of X1 and it is defined as follows:

g−1(M)(x) = (tg−1(M)(x), ig−1(M)(x), fg−1(M)(x)) = (tM(g(x)), iM(g(x)), fM(g(x))) = M(g(x)),∀x ∈ X1.

Definition 2.5. [4] Let N ∈ SNS(X) and β ∈ [0,1]. Define the β -level sets of N as follows:

(tN)β = {x ∈ X | tN(x)≥ β},(iN)β = {x ∈ X | iN(x)≥ β}, and ( fN)
β = {x ∈ X | fN(x)≤ β}.

Following properties are easily proved by using the definitions.

(1) If N ⊆ M and β ∈ [0,1], then (tN)β ⊆ (tM)β ,(iN)β ⊆ (iM)β , and ( fN)
β ⊇ ( fM)β .

(2) β ≤ γ implies (tN)β ⊇ (tN)γ ,(iN)β ⊇ (iN)γ , and ( fN)
β ⊆ ( fN)

γ .

Definition 2.6. [5] Let R = (R,+, ·) be a classical ring and N be a neutrosophic set on R. Then N is called a neutrosophic subring of R if

the following properties are satisfied: for each r,s ∈ R,
(R1) N(r+ s)≥ N(r)∧N(s).
(R2) N(−r)≥ N(r).
(R3) N(r · s)≥ N(r)∧N(s).

From now on, R denotes a classical ring, unless otherwise specified.

Example 2.7. [5] Let us take into consideration the classical ring R = Z4 = {0,1,2,3} with the operations ⊕ and ⊙ defined as x⊕y = x+ y

and x⊙ y = x · y for all x,y ∈ Z4, respectively. Define the neutosophic set N on R as follows:

N = {< 0.8,0.4,0.1 > /0+< 0.5,0.3,0.5 > /1+< 0.7,0.4,0.3 > /2+< 0.5,0.3,0.5 > /3}.
It is clear that the neutrosophic set N is a neutrosophic subgring of R.

Theorem 2.8. [5] Let R be a classical ring and N ∈ SNS(R). Then N ∈ NSR(R) if and only if the following properties are satisfied for all

r,s ∈ R;

(1) N(r− s)≥ N(r)∧N(s).
(2) N(r · s)≥ N(r)∧N(s).

3. Neutrosophic ideals

In this section, we propose two definitions as neutrosophic ideal of a neutrosophic subring and a neutrosophic ideal of a classical ring. We

investigate some properties and characterizations of a neutrosophic ideal of a given classical ring.

Definition 3.1. Let R be a classical ring and I be a neutrosophic set on R. Then I is called a neutrosophic left ideal over R if the followings

are satisfied for each r,s ∈ R,

(LI1) I(r− s)≥ I(r)∧ I(s).
(LI2) I(r · s)≥ I(s).
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Definition 3.2. Let R be a classical ring and I be a neutrosophic set on R. Then I is called a neutrosophic right ideal over R if the followings

are satisfied for each r,s ∈ R,

(RI1) I(r− s)≥ I(r)∧ I(s).

(RI2) I(r · s)≥ I(r).

Definition 3.3. Let R be a classical ring and I be a neutrosophic set on R. Then I is called a neutrosophic ideal over R if the followings are

satisfied for each r,s ∈ R,

(I1) I(r− s)≥ I(r)∧ I(s).

(I2) I(r · s)≥ max{I(r), I(s)}.

Remark 3.4. Each neutrosophic ideal over a classical ring R is a neutrosophic subring of R, but the converse is not true in general. For

instance, let R be a ring and let C = {c ∈ R | cr = rc for all r ∈ R} denote the center of R. Define a neutrosophic set N on R as follows:

N(s) =

{

(1,1,0), i f s ∈C

(0,0,1), otherwise

It is clear that N is a neutrosophic subring of R, but may not be an ideal.

Theorem 3.5. Let I and J be two neutrosophic left (respectively, right) ideals of a classical ring R. Then the intersection I ∩ J is a

neutrosophic left (respectively, right) ideal of R.

Proof. Let r,s ∈ R be arbitrary and I,J be the left ideals of R. Let us show that

(I ∩ J)(r− s)≥ (I ∩ J)(r)∧ (I ∩ J)(s), and (I ∩ J)(r · s)≥ (I ∩ J)(s). First consider the truth-membership degree of the intersection for the

first condition,

tI∩J(r− s) = tI(r− s)∧ tJ(r− s)
≥ (tI(r)∧ tI(s))∧ (tJ(r)∧ tJ(s))
= (tI(r)∧ tJ(r))∧ (tI(s)∧ tJ(s)) = tI∩J(r)∧ tI∩J(s).

The other inequalities iI∩J(r− s)≥ iI∩J(r)∧ iI∩J(s) and fI∩J(r− s)≤ fI∩J(r)∨ fI∩J(s) are similarly proved for each r,s ∈ R. For the second

condition, let us consider the falsity degree of the intersection,

fI∩J(r · s) = fI(r · s)∨ fJ(r · s)≤ fI(s)∨ fJ(s) = fI∩J(s).

The other inequalities tI∩J(r · s)≥ tI∩J(s) and iI∩J(r · s)≥ iI∩J(s) are similarly proved for each r,s ∈ R.

Consequently, I ∩ J is a neutrosophic ideal of R, as desired.

Theorem 3.6. Let R be a classical ring and I be a neutrosophic set on R. Then I is a neutrosophic (respectively, left, right) ideal over R if

and only if for arbitrary β ∈ [0,1], if β -level sets of I are nonempty, then (tI)β ,(iI)β and ( fI)
β are all classical (respectively, left, right)

ideals of R.

Proof. Let I be a neutrosophic left ideal of R, β ∈ [0,1] and r,s ∈ (tI)β ( similarly r,s ∈ (iI)β ,( fI)
β ). By the assumption,

tI(r− s)≥ tI(r)∧ tI(s)≥ β ∧β = β (and similarly, iI(r− s)≥ β and fI(r− s)≤ β ). Hence r− s ∈ (tI)β , (and similarly r− s ∈ (iI)β ,( fI)
β )

for each β ∈ [0,1]. In a similar way, we obtain r ·s∈ (tI)β (respectively, r ·s∈ (iI)β and r ·s∈ ( fI)
β ), for each r ∈ R and s∈ (tI)β (respectively,

s ∈ (iI)β and s ∈ ( fI)
β ). These mean that (tI)β (and similarly (iI)β ,( fI)

β ) is a classical ideal of R for each β ∈ [0,1].

Conversely, suppose (tI)β ,(iI)β and ( fI)
β are classical ideals of R. Let r,s ∈ R and β = tI(r)∧ tI(s), then r,s ∈ (tI)β . Since (tI)β is a left

ideal of R, then r− s ∈ (tI)β . This means that tI(r− s)≥ β = tI(r)∧ tI(s).

Now let r ∈ (tI)β and s ∈ R such that β = tI(s). This shows that tI(r · s)≥ β = tI(s).

In similar computations, we obtain the desired inequalities as follows.

iI(r− s)≥ iI(r)∧ iI(s), i(r · s)≥ iI(s) and fI(r− s)≤ fI(r)∨ fI(s), fI(r · s)≤ fI(s).

This completes the proof.

Theorem 3.7. Let I be a neutrosophic (left, right) ideal of R and XI = {r ∈ R | I(r) = I(0)}, where 0 is the unit of the sum operation of R.
Then the classical subset XI of R is an (left, right) ideal of R.

Proof. Let I be a neutrosophic ideal of R and take r,s ∈ XI . First we need to show that the set XI is a subgroup of R under sum operation. By

the assumption, I(r) = I(0) = I(s) and by the condition (I1), the following inequality is true

I(r− s)≥ I(r)∧ I(s) = I(0)∧ I(0) = I(0).

Since, the inequality I(0)≥ I(r− s) is always satisfied, we obtain that I(r− s) = I(0). So, r− s ∈ XI .

Now take r ∈ XI and s ∈ R. Second we need to show r · s ∈ XI , i.e., I(r · s) = I(0).

Since I(r) = I(0) and by the condition (I2),

I(r · s)≥ max{I(r), I(s)}= max{I(0), I(s)}= I(0).

Since always I(0)≥ I(r · s), then I(r · s) = I(0). Hence, r · s ∈ XI . Similarly, s · r ∈ XI .

In conclude, XI is an ideal of R.

Let N and M be two neutrosophic sets on R, then N♦M is a neutrosophic set on R and it is defined by

(N♦M)(z) = ( sup
z=x·y

min{tN(x), tM(y)}, sup
z=x·y

min{iN(x), iM(y)}, inf
z=x·y

max{ fN(x), fM(y)}),

otherwise, (N♦M)(z) = (0,0,1), where x,y,z ∈ R.

Theorem 3.8. Let R be a ring and I be a neutosophic left (right) ideal over R iff the followings are satisfied:

(1) I(r− s)≥ I(r)∧ I(s), for each r,s ∈ R.

(2) χR♦I ≤ I (respectively, I♦χR ≤ I), where if r ∈ R, then χR(r) = (1,1,0).
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Proof. Suppose I is a neutrosophic left ideal over R and take z ∈ R, then

(χR♦I)(z) = ( sup
z=r·s

min{tχR
(r), tI(s)}, sup

z=r·s
min{iχR

(r), iI(s)}, inf
z=r·s

max{ fχR
(r), fI(s)})

= ( sup
z=r·s

tI(s), sup
z=r·s

iI(s), inf
z=r·s

fI(s))

≤ I(r · s) = I(z).
Hence, χR♦I ≤ I.
Conversely, let I be a neutrosophic set on R which satisfies the corresponding two conditions.

(1) I(r− s)≥ I(r)∧ I(s) (2) χR♦I ≤ I.
Take arbitrary r,s ∈ R, then

I(r · s) ≥ (χR♦I)(r · s)
= ( sup

r·s=p·q
min{tχR

(p), tI(q)}, sup
r·s=p·q

min{iχR
(p), iI(q)}, inf

r·s=p·q
max{ fχR

(p), fI(q)})

≥ (min{tχR
(r), tI(s)},min{iχR

(r), iI(s)},max{ fχR
(r), fI(s)})

= (tI(s), iI(s), fI(s)) = I(s).
This implies the neutrosophic set I is a neutrosophic left ideal over R.
The other situations are proved similarly.

Theorem 3.9. Let R1,R2 be the classical rings and g : R1 → R2 be a homomorphism of rings. If J is a left (respectively, right) ideal of R2,

then the preimage g−1(J) is a left (respectively, right) ideal of R1.

Proof. Suppose that J is a neutrosophic left ideal of R2 and r1,r2 ∈ R1. Since g is a homomorphism of rings, the following inequality is

obtained.
g−1(J)(r1 − r2) = (tJ(g(r1 − r2)), iJ(g(r1 − r2)), fJ(g(r1 − r2)))

= (tJ(g(r1)−g(r2)), iJ(g(r1)−g(r2)), fJ(g(r1)−g(r2)))
≥ (tJ(g(r1))∧ tJ(g(r2)), iJ(g(r1))∧ iJ(g(r2)), fJ(g(r1))∨ fJ(g(r2)))
= (tJ(g(r1)), iJ(g(r1)), fJ(g(r1)))∧ (tJ(g(r2)), iJ(g(r2)), fJ(g(r2)))
= g−1(J)(r1)∧g−1(J)(r2).

In similar computations, it is clear that g−1(J)(r · s)≥ g−1(J)(s), for each r,s ∈ R.
Therefore, g−1(J) is a neutorosophic left ideal of R1.

Theorem 3.10. Let R1,R2 be the classical rings and g : R1 → R2 be a homomorphism of rings. If I is a neutrosophic left (respectively, right)

ideal of R1, then g(I), the image of I, is a neutrosophic left (respectively, right) ideal of R2.

Proof. The proof is obtained by using the definitions of a left (respectively, right) ideal of a classical ring, and the image of a neutrosophic

set.

In the following, we introduce the neutrosophic ideal of a neutrosophic subring.

Definition 3.11. Let N be a neutrosophic subring of a classical ring R. A non-null neutrosophic set M is called a neutrosophic ideal of N, if

the following conditions are valid for each r,s ∈ R,

(1) M(r− s)≥ M(r)∧M(s).
(2) M(r · s)≥ M(r)∧M(s).
(3) M(r)≤ N(r).

Theorem 3.12. Let M1 and M2 be the neutrosophic ideals of the neutrosophic subrings of N1 and N2, respectively. Then the intersection

M1 ∩M2 is a neutrosophic ideal of N1 ∩N2.

Proof. Similar to the proof of Theorem 3.5.

4. Conclusion

Just as normal subgroups played a crucial role in the theory of groups, so ideals play an analogous role in the study of rings. A single

valued neutrosophic set is a kind of neutrosophic set which is suitable to use in real world applications. Therefore, the study of single

valued neutrosophic sets and their properties have a considerable significance in the sense of applications as well as in understanding the

fundamentals of uncertainty. So, we decided to propose the definitions of a neutrosophic ideals of a classical ring and of a neutrosophic

subring, in the sense of [4, 5], and observe their fundamental properties. For further research one can handle cyclic (respectively, symmetric,

abelian) neutrosophic group structure, and some of other algebraic structures.
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