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Abstract 

Thanks to their superior properties, the interest on nanostructures has increased. Among the nanostructures, 

carbon nanotubes have an important place. In this study, the free vibration of Carbon Nanotubes is investigated. 

CNT is modeled as a beam. Four different cross-sections are selected such as circular, rectangular, triangular 

and quadratic for use in the solution. The frequency values of the first five modes of these 4 different cross-

sections with the same area have been gained by using Euler-Bernoulli Beam Theory for simply supported 

boundary condition. The results are compared. In this study, it is aimed to understand how the mode number and 

cross-section change the frequency values. 

Keywords: Carbon nanotube, free vibration, Euler-Bernoulli, frequency. 

1. Introduction 

As a result of rapid developments in technology, nanotechnology emerged and has become 

one of the most important issues of today. Nanotechnology is mainly concerned with particles 

smaller than 100 nm. The nanostructures are defined as structures having at least one 

dimension between 1 and 100 nm [1-2]. One of the most important subjects of 

nanotechnology is carbon nanotubes. Carbon nanotube was discovered by Iijima in 1991 [3]. 

The CNT is the cylindrical shape of the graphene and can be single-layered or multi-layered. 

There are also 3 types of nanotubes depending on the direction of rolling of the graphene 

layer. These are armchair, zigzag and chiral. The properties of CNT vary depending on the 

geometry. The very interesting properties such as mechanical, electrical, optical exhibited by 

CNT attract a lot of attention. It has high Young’s modulus and low mass density [4-8]. 

Analyzes such as buckling, vibration, bending of structures are important. Analysis results 

help to understand the behavior of structures. Analyzes of macro and nano-sized structures are 

studied in various methods [9-14]. In this paper, the vibration of CNT is studied by using 

Euler-Bernoulli Beam Theory. Frequency values of CNT are carried out for 4 different cross-

sections and simply supported boundary condition. 
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2. Vibration of Euler-Bernoulli Beam 

The vibration equation of a beam whose material and cross-sectional properties are 

unchanged is expressed as [15,16]: 
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Where E is Young Modulus, I is moment of inertia,  ρ is mass density, A is cross-sectional 

area, ԝ(x,t) is transverse deflection of beam and f(x,t) is external force. When the equation is 

solved for free vibration and the simple supported boundary condition by using separating of 

variables equations, we obtain the frequency equation 
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Where n is mode number, L is length of beam and ω shows the frequency. 

 

3. Numerical Examples 

In this study, the free vibration of CNT with simple supported boundary condition is 

investigated by using Euler-Bernoulli Beam Theory. Four different cross-sections with same 

area are used. For a better comparison, the width/height (b/h) ratio is taken as the same for 

triangle and rectangle. The Young modulus used in calculations is 1054 GPa and mass density 

is 1.4 g/cm
3
. The results are shown in table 1 and figure 1. 

 

 
Table 1. Frequency values for 20 nm length (10

9
 rad/sn) 

 

A=12.6 nm
2
 , L=20 nm

 

quadratic 

b=3.55 nm
 

h=3.55nm
 

triangular
 

b=4.24 nm
 

h=5.93 nm
 

rectangular 

b=3 nm
 

h=4.2 nm
 

circular 

r=2 nm
 mode numbers

 

693.8005 946.2678 820.8328 677.0115 1 

2775.2018 3785.0712 3283.3313 2708.046 2 

6244.2041 8516.4102 7387.4953 6093.1034 3 

11100.807 15140.285 13133.325 10832.184 4 

17345.012 23656.695 20520.820 16925.287 5 
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Fig. 1. Frequency values for different cross-sections 

4. Conclusions 

In this paper, free vibration analysis of CNT is presented. The frequency values of the first 

five modes of four different cross-sections have been gained by using Euler-Bernoulli Beam 

Theory for simply supported boundary condition. As can be seen from the results, the 

frequency values increase with the mode numbers. Using same cross section area, the highest 

frequency value is seen on the triangular cross-section. Circular cross section has the lowest 

frequency value. 
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Abstract 

Main formulations for free vibration analysis of functionally graded composite shells have been given in 

numerical concept. Equations of motions for conical shells are listed in differential form.  First-order shear 

deformation (FSDT) shell theory is used for obtaining the equations. Then two methods have been applied for 

solution. These methods are differential quadrature (DQ) and discrete singular convolution (DSC). The discrete 

forms of these equations have been given. 

Keywords: Functionally graded composites, frequency, conical shells, annular plates, sector plates, DSC, HDQ. 

 

 

1. Introduction 

 

Functionally graded materials (FGM) are greatly used in different applications in engineering. 

Thus, many papers have been published for beams, plate and shell problems in order to obtain 

reasonable accurate results for design via different numerical methods [1-44]. By using the 

FSDT, the related governing equation for free vibration of conical shell can be written as 
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2. Solution by DSC method  

By DSC method, governing differential equation of motion of truncated conical panel, Eqs. 

(1-5), can be discrete  
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DSC derivation is given as 
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3. Solution by DQ method  

If DQ used above derivation can be define as 
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Cijk are weighting coefficients. The equations of motion are: 
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In FGM material some properties are not constant: 
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For example if four-parameter power law is used then volume fractions are given for two 

cases. 
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4. Conclusion 

These equations can also be used for circular cylindrical shell and panel, annular, circular 

plates, sector and annular sector plates. Each methods have own advantages. But for higher 

modes, the method of DSC is more effective. 
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Abstract 

In this study, bending analysis of silver (Ag) modeled nanowires has been carried out for six-various boundary 

conditions. Silver nanowires have great importance for Nano-electro-mechanical systems (NEMS) technology. 

The displacement, rotation of cross-section and bending moment values of elastic beam models of silver 

nanowires under uniform load have been calculated. Numerical results have been presented as graphics and 

tables. The influence of boundary conditions on deformation and bending moment has been discussed. As the 

boundary conditions become rigid, the values of displacement and cross-sectional rotation under uniform load 

reduce. 

Keywords: Silver nanowires, bending, NEMS, elastic beam.   

1. Introduction 

Nanotechnology is scientific disciplines that have applications that aim all the tools and 

equipment that we use have superior properties. Finding superior properties by processing the 

materials at the nano-scale is the basic concept of this discipline. The general investigation 

area of this discipline is structures with 1 – 100 nm in length.  In the Nanotechnology, the 

physical, electrical, optical, elastic and thermal properties of one-dimensional structures such 

as carbon nanotubes, boron nitride nanotubes, silica carbide nanotubes, zinc oxide nanowire, 

gold nanorod as well as two-dimensional nanostructures such as graphene and silicene have 

been intensively investigated. The discovery of the superior properties of these materials 

enables the production and using of materials with new properties. Carbon nanotubes (CNT) 

material has a very popular research field in nanotechnology. Carbon (C) atoms are arranged 

to form a two-dimensional structure called “Graphene”, one or more of graphene are wrapped 

like cylinder in space. These tubes form the carbon nanotubes structure by intertwining. 

Japanese scientist Iijima discovered these materials in 1991 and from this date forward, 

carbon nanotubes have been an intense research topic [1]. Chemical sensors, medical and 

industrial applications, quality control, detection of war and security threats exemplify to its 

potential uses [2]. Another material that is intensively studied in nanotechnologies researches 

is boron nitride nanotubes (BNNT). Similar to structure of carbon nanotubes, they consist of 

equal numbers of boron (B) and nitrogen (N) atoms. They are synthetically produced because 

they are not found naturally. Their production can be grouped under two headings: Synthesis 
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at high temperature such as arc-discharge, and synthesis at medium or low temperatures such 

as carbo-metallic methods and chemical vapor synthesis [3]. Because of strong insulating 

properties, it is an important material for nanocables. These cables are used in complex 

electronic circuits [4]. Optical devices operating with UV-light are another using area [5].   

The element of silver (Ag) is a transition metal in group-1B and period-5 of the periodic table. 

It reflects the light, very well. It shows ductile behavior and high resistance to oxidation. It is 

used intensively in electrical wires [6]. The nanowire structure can be described as a one-

dimensional structure with a diameter of less than 1 nm and its ratio of length-width is 

roughly equal to 1000. Silver nanowires can be used in optical industry, conductive materials, 

anti-bacterial applications [7]. There are several methods about its synthesis: Hard template 

methods and soft template methods. Soft template methods are divided into two. One of the 

methods is typical soft templates, another of methods is the polyol method [8].  It is very 

important to know the behavior of nano-scale material based devices such as micro-processor, 

transistor, sensor, conductor wire structures under external influences. Researchers have 

worked intensely with the mechanical analyses of beam and rod models of one-dimensional 

nanostructures and plate models of two-dimensional nanostructures [25-36]. Because of the 

nanowires are one-dimensional structures, they can be modeled as beams and rods. In this 

study, the analysis of the beams modeled with silver nanowires under the uniform load has 

been carried out and obtained numerical results have been discussed.  

2. Bending Analysis of Nanobeams 

The deformations of one-dimensional bending elements under uniform load constitute a 

continuous function. In the differential geometry, this function is expressed as below   

 

   2/32
1

1

w

w







 (1) 

 

Here, w  is elastic curve of beams, namely geometric locus,   is radius of curvature. Eq. (1) 

which is being seen, can be reduced by two reasons. Firstly, extremely flat curves become 

0w  because elastic curves are extremely flat in applications. On the other hand, second 

derivative of elastic curve become 0w  under positive bending moment. Hereby, Eq. (2) is 

written,  

 

w 


1
 (2) 

 

The curvature expression of one – directional bending according to Euler – Bernoulli beam 

theory, 
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Here, M is bending moment, E is elasticity modulus and I is moment of inertia. If Eq. (3) is 

replaced in the Eq. (2), Bending moment-displacement relation is obtained as below, 

 

wEIM  (4) 

According to differential equilibrium of elastic body under external forces, 
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If Eq. (5) is replaced in the Eq. (4), Eq. (6) is obtained and Eq. (6) is elastic curve equation of 

beams 

 

)()4( zEIwq  (6) 

 

where, q is uniform load in this equation. If Eq. (6) is integrated four times one after another, 

Displacement equation is obtained. First-order derivative of displacement equation is rotation 

equation. These equations are as below, 
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Eq. (7) and Eq. (8) are expresses cross-sectional rotation and displacement, respectively.                 

iC  (i = 1,2,3,4) is constant of indefinite integral and is found with the help of boundary 

conditions. The boundary conditions are as below 

 

 Free end (F)  0w   and   0w  

 

 Simply end (S)  0w   and   0w  

 

 Cantilever end (C)  0w   and   0w  

 

 Guided end (G)  0w   and   0w  
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3. Numerical Examples 

The beam models to be analyzed are as shown in Fig.1. For the all numerical examples, 

elasticity modulus of Ag nanowires is E = 0.102 TPa [9]. The diameter of circular cross-

section has been chosen as d = 5 nm. When we examine the Results in the Table-1, as the 

length of the beam increases, we understand the maximum displacement value increases. On 

the other hand, it is seen the most displacement is in the S-G beam, the least displacement is 

in the C-C beam.  The elastic curves of the beams with different boundary conditions are 

given in Fig.2. The displacements of S-S, C-C and C-S beams are very low alongside other 

beam types. Rotation curves are plotted in Fig.3. S-G beam have made most cross-sectional 

rotation. The least rotation values have been shown in C-C beams. When we look to Results 

of Fig.4, The most bending moment have been shown guided end of S-G beam and cantilever 

end of C-F beams and theirs values are equal. The maximum bending moment of C-S and S-S 

are equal. In addition, C-C beams have the least bending moment.   

 

 

 

 

 
 

 

Fig.1. Nanobeams with various boundary conditions 

 

(a) S – S (b) C – F (c) C – C (d) C – S (e) C – G (f) S – G 

 

 

 

 

Table 1. The displacement values of nanobeams with various boundary conditions under 

q=0.05 nN/nm uniform load along span (nm)  

 

Length (nm) S – S C – F C – C C – S C – G S – G 

10 0.00208 0.01997 0.00080 0.00042 0.03329 0.00666 

20 0.03329 0.31956 0.01278 0.00666 0.53260 0.10652 

30 0.16852 1.61776 0.06471 0.03370 2.69627 0.53925 

40 0.53260 5.11293 0.20452 0.10652 8.52155 1.70431 

50 1.30029 12.48274 0.49931 0.26006 20.80457 4.16091 
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Fig. 2. Plotting the elastic curves of nanobeams with various boundary conditions under     

q=0.1 nN/nm uniform load 

 

 

 

 
 

 

Fig. 3. Plotting the cross-sectional rotations of nanobeams with various boundary conditions 

under q=0.1 nN/nm uniform load 
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Fig. 4.  Plotting the bending moment diagram of nanobeams with various boundary conditions 

under q=0.1 nN/nm uniform load 

 

4. Concluding Remarks 

As the ends of the beam become rigid, the displacement rotation and bending moment values 

have decreased. On the other hand, as the length increases in all beam types, the ratio of 

displacement to length of nanobeam increases. It is hoped that these results will contribute to 

the research on the design problem of nano-scaled elements under bending effect. 

 

References 

 

[1]  Iijima, S., Helical microtubules of graphitic carbon, Nature, 354, 56-58, 1991. 

[2]  Meyappan, M., Carbon nanotubes: , CRC Press, 354, 56-58, 2005. 

[3]  Pakdel, A., Zhi, C., Bando, Y., Golberg, D., Low-dimenisonal boron nitride 

nanomaterials, Materials Today, 15, 256–265, 2012. 

[4]  Golberg, D., Bando, Y., Tang, C., Zhi, C., Boron nitride nanotubes, Advanced Materials, 

19, 2413–2432, 2007. 

[5]  Wu, J., Han, W.Q., Walukiewicz, W., Ager, J.W., Shan W., Haller E.E., Zettl, A., Raman 

spectroscopy and time-resolved photoluminescence of BN and BxCyDz nanotubes, 

Nanoletters, 4, 647–650, 2004. 

[6] Silver, (10.04.2018), https://en.wikipedia.org/wiki/Silver, 2018. 

[7] What are Silver Nanowires?, (12.04.2018), 

https://www.azonano.com/article.aspx?ArticleID=3699, 2014. 

https://www.azonano.com/article.aspx?ArticleID=3699
https://en.wikipedia.org/wiki/Silver


H.M. Numanoglu, Ö. Civalek 

19 

 

[8]  Zhang, P., Wyman, I., Hu, J., Lin, S., Zhong, Z., Tu, Y., Huang, Z., Wei, Y., Silver 

nanowires: Synthesis Technologies, growth mechanism and multifunctional applications, 

Materials Science and Engineering B, 223, 1–23, 2017. 

[9]  Wu, B., Heidelberg, A., Boland, J.J., Microstructure-hardened silver nanowires, Nano 

Letters, 6, 468–472, 2006. 

[10] Koochi, A., Farrokhabadi, A., Abadyan, M., Modeling the size dependent instability of 

NEMS sensor/actuator made of nano-wire with circular cross-section, Microsyst Technol, 

21, 355–364, 2014. 

[11] Polat, S., Tigan, D., Synthesis of copper nanowires, Matter, 2, 2125–2128, 2015. 

[12] Jarrett, R., Crook, R., Silver nanowire purification and separation by size and shape using 

multi-pass filtration, Materials Research Innovations, 20, 86–91, 2014. 

[13] Coskun, S., Aksoy, B., Unalan, H.E., Polyol synthesis of silver nanowires: An extensive 

parametric study, Crystal Growth Design, 11, 4963–4969, 2011. 

[14] Singh, M., Movia, D., Mahfoud, O.K., Volkov, Y., Prina-Mello, A., Silver nanowires as 

prospective carriers for drug delivery in cancer treatment: an in vitro biocompatibility 

study on lung adenocarcinoma cells and fibroblasts, European Journal of Nanomedicine, 

5, 195–204, 2013. 

[15] Wang, W., Yi, C., Ma, B., Molecular dynamics simulation on the tensile behavior of gold 

nanowires with diameters between 3 and 6 nm, Journal of Nanoengineering and 

Nanosystems, 227, 135–141, 2013. 

[16] Zhou, Q., Wen, J.Z., Zhao, P., Anderson, W.A., Synthesis of Vertically-Aligned Zinc 

Oxide Nanowires and Their Application as a Photocatalyst, Nanomaterials, 227, 135–

141, 2013. 

[17] Ciofani, G., Raffa, V., Mencissia, A., Cuschieria, A., Boron nitride nanotubes: An 

innovative tool for nanomedicine, Nanotoday, 4, 8–10, 2009. 

[18] Zhou, Q., Wen, J.Z., Zhao, P., Anderson, W.A., Synthesis of Vertically-Aligned Zinc 

Oxide Nanowires and Their Application as a Photocatalyst, Nanomaterials, 227, 135–

141, 2013. 

[19] Mutiso, R.M., Sherrott, M.C., Rathmell, A.R., Wiley, B.J., Winey, K.I., Integrating 

simulations and experiments to predict sheet resistance and optical transmittance in 

nanowire films for transparent conductors, ACS Nano, 7, 7654–7663, 2013. 

[20] Zhang, D., Wang, R., Xiang, Y., Kuai, Y., Kuang, C., Badugu, R., Xu, Y., Wang, P., Liu, 

Xu, Lakowicz, J.R., Silver nanowires for reconfigurable bloch surface waves, ACS Nano, 

11, 10446–10451, 2017. 

[21] Baltacıoğlu, A.K., Akgöz, B., Civalek, O., Nonlinear static response of laminated 

composite plates by discrete singular convolution method, Composite structures, 93, 

153–161, 2010. 

[22] Mercan, K., Civalek, Ö., DSC method for buckling analysis of boron nitride nanotube 

(BNNT) surrounded by an elastic matrix, Composite structures, 143, 300–309, 2016. 

[23] Gürses, M., Civalek , Ö., Korkmaz, A., Ersoy, H.. Free vibration analysis of symmetric 

laminated skew plates by discrete singular convolution technique based on first‐order 

shear deformation theory, International journal for numerical methods in engineering, 

79, 290-313, 2009. 

[24] Demir, Ç., Mercan, K., Civalek, Ö.,  Determination of critical buckling loads of 

isotropic, FGM and laminated truncated conical panel, Composites Part B, 94, 1-10, 

2016. 

[25] Reddy, J.N., Pang, S.D., Nonlocal continuum theories of beams for the analysis of 

carbon nanotubes, Journal of Applied Physics, 103, 1-16, 2008., 

[26] Hosseini, S.A., Rahmani, O., Bending and vibration analysis of curved FG nanobeams 

via nonlocal Timoshenko model, Smart Construction Research, 2, 1-17, 2018. 



H.M. Numanoglu, Ö. Civalek 

20 

 

[27] Kahrobaiyan, M.H., Asghari, M., Rahaeifard, M., Ahmadian, M.T., A nonlinear strain 

gradient beam formulation, International Journal of Engineering Science, 49, 1256-1267, 

2011. 

[28] Radebe, I.S., Adalı, S., Static and sensitivity analysis of nonlocal nanobeams subject to 

load and material uncertainties by convex modeling, Journal of Theoretical and Applied 

Mechanics, 53, 345-356, 2015. 

[29] Sathiyaneelaa, S., Rajendran, M.G., Study on stability behavior of nanobeam with axial 

force using nonlocal elasticity theory, International Journal of Advance Research in 

Science and Engineering, 11, 223-232, 2015. 

[30] Li, Y.S., Pan, E., Static bending and free vibration of a functionally graded piezoelectric 

microplate based on the modified couple-stress theory, International Journal of 

Mechanical Science, 97, 40-59, 2015. 

[31] Numanoglu, H.M., Mercan, K.., Civalek, Ö., Frequency and mode shapes of Au 

nanowires using continuous beam models, International Journal of Engineering and 

Applied Sciences, 4, 55-61, 2017. 

[32] Civalek, Ö., Demir, Ç., Akgöz, B., Static analysis of single walled carbon nanotubes 

(SWCNT) based on Eringen’s nonlocal elasticity theory, International Journal 

Engineering Applied Sciences, 1, 47– 56, 2009. 

[33] Sudak, L.J., Column buckling of multiwalled carbon nanotubes using nonlocal 

continuum mechanics. Journal of Applied Physics, 94, 7281– 1287, 2003. 

[34] Akgöz, B., Civalek, Ö., Free vibration analysis of axially functionally graded tapered 

Bernoulli–Euler microbeams based on the modified couple stress theory, Composite 

Structures, 98, 314-322, 2013. 

[35] Demir, Ç., Mercan, K.., Numanoglu, H.M., Civalek, Ö., Bending response of nanobeams 

resting on elastic foundation, Journal of Applied and Computational Mechanics, 4, 105-

114, 2018. 

[36] Hosseini-Ara, R., Mirdamadi, H.R.., Khademyzadeh, H., Buckling analysis of short 

carbon nanotubes based on a novel Timoshenko beam model, Journal of Theoretical and 

Applied Mechanics, 50, 975-986, 2012. 



© 2018 M. Malikan, S. Dastjerdi  published by  International Journal of Engineering & Applied Sciences. This work is licensed under a 

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 

 

21 

 
 

 
 

 

 

 

   
 

 

 
 
 

 

 

 

Analytical Buckling of FG Nanobeams on The Basis of A New One Variable First-Order 

Shear Deformation Beam Theory 

 

Mohammad Malikan 
a
*, Shahriar Dastjerdi 

 b
 

a
 Department of Mechanical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran 

b
 Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran 

E-mail address: mohammad.malikan@yahoo.com 
a*

, dastjerdi_shahriar@yahoo.com 
b 

 

 
ORCID numbers of authors:  

0000-0001-7356-2168 a, 0000-0003-4256-240X b 

 

Received date: 03.05.2018  

Accepted date: 24.05.2018  

 

Abstract  

In this work, buckling analysis of functionally graded (FG) nanobeams based on a new refined beam theory has 

been analyzed. The beam is modeled as an elastic beam subjected to unidirectional compressive loads. To 

achieve this aim, the new obtained beam theory has only one variable which lead to one equation similar to 

Euler beam theory and also is free of any shear correction factor. The equilibrium equation has been formulated 

by the nonlocal theory of Eringen to predict small-scale effects. The equation has been solved by Navier’s 

approach by which critical buckling loads have been obtained for simple boundaries. Finally, to approve the 

results of the new beam theory, various beam theories have been compared. 

Keywords: Buckling analysis, FG nanobeams, A new refined beam theory, Nonlocal elasticity theory, Navier’s 

approach 

1. Introduction 

Carbon nanotubes (CNTs) are seamless cylinders included one to multi-graphene layers with 

open or close ending that they are called single-walled (SWCNT) or multi-walled carbon 

nanotubes (MWCNT) [1]. Todays, the most manufactured CNTs are used in composite 

materials and thin films [1]. The SWCNT is remarkably strong and hard [2], conducting 

electric current and directing heat [3-5], which has led to the use of these materials in the 

electronics industry [6-7]. The carbon nanotube promises a bright future in cellular 

experiments because they can be used as nano-pipes to distribute very small volumes of fluid 

or gas into living cells or on surfaces [8-10]. 

To exploit the industrial amazing properties of nanostructures, it can be highly recommended 

that the mechanical behavior of them should be analyzed. In last years, this issue has been 

taken into consideration by researchers around the world in order to identify the behavior of 

them under various mechanical conditions. Among these researchers, Reddy [11] 

reformulated beam theories by using nonlocal elasticity theory for vibrations, buckling and 

bending analyses. Civalek et al. [12] analyzed natural frequencies of a skew symmetric 

composite plate using discrete convolution method (DSC). Malikan et al. [13] published 

stability of bi-layer graphene nanoplates subjected to shear and thermal forces on the basis of 

a medium using numerical solutions. Malikan investigated stability analysis of a micro 
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sandwich plate with graphene coating using the refined couple stress theory [14] and buckling 

of graphene sheets subjected to nonuniform compression based on the four-variable plate 

theory using an analytical approach [15]. Yao and Han [16] presented buckling of double-

walled carbon nanotubes with considering thermal influences. They obtained critical buckling 

loads on the basis of Donnell’s equilibrium equation and solved the equation for simply-

supported boundary condition. Ansari et al. [17] studied coupled natural frequency analysis of 

post stability functionally graded micro/nanobeams on the basis of the strain gradient theory. 

Wang et al. [18] presented exact modes for post stability characteristics of nonlocal 

nanobeams in a longitudinal magnetic field. Wang et al. [19] utilized both stress and strain 

gradient continuum theories to consider buckling of nanotube which was embedded in an 

elastic foundation. Timoshenko beam theory and Navier solution method were employed in 

their study. They proved that both stress gradient and strain gradient predict the same results 

if the nonlocal effect is not taken into account. Xiang et al. [20] used nonlocal elasticity 

theory for studying nonlinear free vibration of double-walled carbon nanotubes based on 

Timoshenko beam theory. Ansari et al. [21] developed Rayleigh–Ritz method for buckling of 

carbon nanotubes considering thermal effects. They classical Donnell shell theory was 

incorporated in conjunction with nonlocal elasticity theory of Eringen. Ansari et al. [22] 

employed Timoshenko beam model to consider buckling and postbuckling of nanotubes using 

nonlocal elasticity theory. The equations were solved with generalized differential quadrature 

method and the pseudo arc-length technique for several boundary conditions. Ansari and 

Arjangpay [23] presented using the meshless local Petrov–Galerkin method for various 

boundary conditions to analyze carbon nanotubes under buckling and vibrations. The 

vibration of thermally post-buckled carbon nanotube-reinforced composite beams resting on 

elastic foundations has been examined by Shen et al. [24]. Beni et al. [25] studied vibration of 

shell nanotubes using nonlocal strain gradient theory and molecular dynamics simulation. 

Wang et al. [26] presented nonlinear vibration of nonlocal carbon nanotubes placed on the 

visco-Pasternak foundation under excitation frequency. Civalek et al. [27] investigated 

laminated composites in static conditions on the basis of nonlinear first-order shear 

deformation theory. The equations were discretized and solved with the singular convolution 

method (DSC). Reddy [28] developed couple stress theories for functionally graded Euler-

Bernoulli and Timoshenko microbeams. Reddy and Arbind [29] derived a couple stress 

theory for bending analysis of Euler and Timoshenko functionally graded beams. Stability 

analysis of nanotubes made of boron nitride embedded on the elastic matrix using DSC has 

been presented by Mercan and Civalek [30]. Akgöz and Civalek [31] studied nonlocal 

buckling of carbon nanotubes subjected to an axial compressive load sorrounded by Pasternak 

matrix. In their study various beam theories were applied and governing equations were 

analytically solved by Navier solution method. Civalek et al. [32] developed the modified 

couple stress, the strain gradient and nonlocal elasticity theories for buckling of silicon 

carbide nanowires-based Euler beam theory. Akgöz and Civalek [33] considers influences of 

thermal and shear deformations on the vibrations of a functionally graded thick micro 

composite beam.  

In this theoretical work, we report a new beam theory by reducing the unknown variables 

from a regenerated shear deformation theory. The functionally graded (FG) nanobeam is 

modeled as an elastic beam which is subjected to unidirectional compressive load. The 

influence of stress nonlocality is examined by using nonlocal elasticity theory of Eringen 

which leads to a size-dependent equation. Furthermore, Navier’s technique is exerted to solve 

the stability equation by assuming simply-supported boundary condition for both edges of the 

beam. To approve the present formulation, various beam theories have been analyzed resulted 

from several well-known references.  
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2. Mathematical Formulation 

Fig. 1 displays a realistic model for the nanobeam subjected to unidirectional compressive 

loads with length L, outer diameter d and thickness h parallel to x and z-axes, respectively.  

First, according to first-order shear deformation beam (FSDT) theory, the displacement field 

is presented as below [13, 34-36]: 
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Fig. 1. The SWCNT subjected to the unidirectional compressive load 

 

In Eq. (1), the vector quantities of the neutral axis at directions of x and z are u and w, 

respectively. Moreover, for defining of the rotation of beam elements around the x axis, φ is 

used. First off, let us reconsider the simple first-order shear deformation theory (S-FSDT) by 

which the deflections were re-formulated in the following equation [37-39]: 

 
                                                             ( ) ( )w w bending w shear 

                                                          
(2) 

 

Also,   parameter was developed as below: 
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By replacement Eqs. (2-3) in Eq. (1) the displacement field of the S-FSDT was rewritten as 

follows [37-39]: 
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(4a-b) 

 

Use of 
b sw w w  might not be conceptual; Therefore, Eq. 4 would be refined in the 

following: 
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So, we could use bending deflection to find the value of ws: 
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After obtaining Eq. (6) from S-FSDT the stresses can be found and then by substituting Eq. 

(6) in the S-FSDT stress resultants, Eq. 7 will be calculated: 
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Let us use fourth equation of FSDT’s governing equations in order to calculate ws based on 

wb: 
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By imposing Eq. (8) into the stress resultants of Eq. (7): 
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By integrating from Eq. (9) based on x, simplifying and then ignoring the integral constant 

terms, the shear deflection will now be obtained as follows: 
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Term B could be in both positive and negative signs that is explained: 
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where G represents the shear modulus, E is the Young’s modulus, Ic  4 64d  denotes the 

moment of area of the cross-section, A is the cross-sectional area and ν is the Poisson’s ratio 

for isotropic nanobeams. Afterwards, the new beam theory will now be achieved as: 
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(12a-b) 

 

Regarding Hamilton’s principle, the potential energy in the whole domain of the beam (V) is 

made available and is written in the variational form as below [40]:  

 

                                                                             0V S                                                                 (13) 
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In which δS is the variation of strain energy and δV is the variation of works, which are done 

by external forces. The strain energy by variational formulation will be calculated: 
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S dV                                                            (14) 

 

The strain tensor in Eq. (14) is expanded as follows: 
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                            (15a-b) 

 

With applying the variational formulation (δV=0) the nonlinear governing equation of motion 

is derived: 
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In which Mx, Qx, and Nx are nonlocal stress resultants, respectively and q0 is the transverse 

static load which is ignored in this paper. Here, the quantity xN is the resultant with respect to 

the axial applied compressive force. With regard to nonlocal theory of Eringen, the following 

equation is employed [13, 40]: 
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where μ is the nonlocality factor and a is an interior determined length.  

The material property gradation considering power law in the FG nanobeams is expressed as 

[41-43]: 
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Here Ec and Em are the Young׳s modulus corresponding to ceramic and metal, respectively, 

and k is volume fraction exponent or material grading/power law index. Due to insignificant 

variation of the Poisson’s ratio, this variant is assumed to be constant along the thickness (ν 

(z) = ν). From Eq. (18), when k→ ∞, the FG nanobeam reduces to a pure metal one and for 

case k=0, the plate becomes pure ceramic. 

 

The stress resultants in local form are specified by relations below: 
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Now, by substituting Eq. (15) into the Eq. (19) the stress resultants will be given as follows: 
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The compressive force is assumed as follows [40, 44]: 

 

                                                                                x CrN P                                                                        (21) 

 

Now, incorporating Eq. (17, 20-21) and inserting them into Eq. (16) and also some 

manipulating, lead to the stability equation of one variable first-order shear deformation 

theory (OVFSDT) as:  
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Also by using Eq. (4) the S-FSDT equations could be obtained as follows: 

 

                    

4 2 2 4 4

4 2 2 4 4

2 2 2 4 4

2 2 2 4 4

0 0

0 0

b b s b s
b c Cr Cr

s b s b s
s Cr Cr

d w d w d w d w d w
w : EI P P

dx dx dx dx dx

d w d w d w d w d w
w : AG P P

dx dx dx dx dx

 

 

   
        

   

   
        

   

           (23a-b) 

 

On the other hand, by using Eq. (1) the FSDT equations could be obtained as follows: 

 

                                   

2 2 4

2 2 4
0 : 0s Cr Cr

d w d d w d w
w k AG P P

dx dx dx dx


 

 
     

 
                            (24a)

                                                        
2

2
0 : 0c s

d dw
EI k AG

dx dx


 

 
    

 
                                                  (24b) 

 

Furthermore, for CPT the stability equation is obtained in the following form: 

 

                                           

4 2 4

4 2 4
0 0c Cr Cr

d w d w d w
w : EI P P

dx dx dx
                                               (25) 
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3. Navier’s technique 

The Navier solution method has been applied to present simply-supported boundary condition 

according to Eq. (26) [44]. 

 

                                                                      
1

, sin i t

m

m

m
w x t W x e

L





 
  

 
                                                    (26a) 

                                                                      
1

, cos i t

m

m

m
x t x e

L








 
   

 
                                                    (26a) 

 

where m is the half-wave number as a integer one, Wm and Φm are the unknown terms which 

should be determined and also ω is the natural frequency in vibrational analysis. Substituting 

Eq. (26) into Eqs. (22-25), the algebraic equation is obtained from which the critical buckling 

load equation is calculated as follows: 

 

 OVFSDT: 

         

 
24 6

2 26 4 2 8 6 4
2 2

c
c

Cr

c c c c

EIm m
EI

L AG L
P

EI EI EI EIm m m m m m

AG L AG L L AG L AG L L

 

     


   
   

   


               
                                   

     (27) 

 

 CPT: 

                                                                

4

2 4

c

Cr

m
EI

L
P

m m

L L



 


 
 
 

   
   

   

                                                          (28) 

 

 S-FSDT: 

        

4 2 4 2 4

2 4 2 2 4
0

c Cr Cr Cr Cr
b

s

Cr Cr Cr Cr

m m m m m
EI P P P P

wL L L L L

wm m m m m
P P AG P P

L L L L L

    
 

    
 

          
            

           
  

                                  

   (29) 

 

 FSDT: 

              

2 2 4

2
0

s Cr Cr s

s c s

m m m m
k AG P P k AG

wL L L L

m m
k AG EI k AG

L L

   


 

        
          

                      
     

     (30) 
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If determinant of coefficients of Eqs. (29) and (30) is set to zero, the critical buckling load of 

S-FSDT and FSDT can be calculated. 

4. Numerical results 

In the first glance it is required to consider the precision of the numerical results obtained 

from the proposed beam theory with other theories. Hence, as can be seen in Tables 1 and 2, 

references [45-47] are employed. In [45] a nano rod was based on the both Euler and 

Timoshenko (Table 1) beam theories and the equations were solved by using an explicit 

analytical method and differential transform method. On the other hand, in ref. [47] Euler and 

Timoshenko nano rods were modeled and Navier solution method was utilized in order to 

obtain numerical results. In fact, both thin and moderately thick beams are compared and 

carried out with both ends simple boundaries. It is worth noting that with increasing length to 

diameter ratio of the nano rod the results in the Tables are becoming closer to one another. 

This means that for thin beams the proposed theory makes same predictions with Euler beam 

theory which is an acceptable conclusion. Because thin beam theories like Euler can predict 

appropriate results only for thin beams due to lack of considering transverse strain influences 

in such a theory. This strain is fundamentally required for response of moderately thick beams 

which is embedded in proposed theory. It can be seen that for lower values of length to 

diameter ratio which the rod goes into moderately thick and thick cases the results of Euler 

beam theory are in a major difference with present formulation. Furthermore, increasing 

small-scale parameter decreases the gap between the results of current beam theory and 

others. It is interesting to note that the results of S-FSDT and OVFSDT are corresponded to 

each other completely. Note that the shear correction factor used in Timoshenko theory can be 

a serious defect in light of the approximate quantity of it (ks=5/6). Although this value has 

been applied for moderately thick models, it cannot be an exact value to analyze several cases, 

in particular nanostructures. But in the proposed beam theory this extra factor is vanished 

from the governing equation leads to further accurate results. 

To have further comparison, Table 3 is presented in which the proposed theory is compared 

with ref. [48] within which a functionally graded nanobeam was analyzed with both Euler and 

Timoshenko beam theories and the equations were solved by Navier solution method. This 

Table approved the results of previous Tables for thin beams in light of the proximity of all of 

the beam theories to one another. Moreover, it can be seen that by an increase in the material 

grading index the difference of the present theory with others will be increased; however, this 

difference for moderately thick beams is further than thin ones. Generally, Tables 1 to 3 show 

the close numerical results between the present theory and others from which the theory can 

be confirmed. Although the new theory of beam which is used could not be a complete 

theory, by carrying out the errors and refining them the more appropriate numerical results 

will be obtained.  
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Table 1. Results of critical buckling load (nN) developed from several theories for a rod 

(E=1TPa, υ= 0.19, d=1nm) 

PCr (nN) 

L 

(nm) 

e0a=0 nm e0a=0.5 nm e0a=1 nm e0a=1.5 nm e0a=2 nm 

EB
*
 

[45-

46],  

TB
** 

[45] 

OVFSDT 

FSDT
***

 

S-FSDT 

EB
*
 

[45-

46],  

TB
** 

[45] 

OVFSDT 

FSDT
***

 

S-FSDT 

EB
*
 

[45-

46],  

TB
** 

[45] 

OVFSDT 

FSDT
***

 

S-FSDT 

EB
*
 

[45-

46],  

TB
** 

[45] 

OVFSDT 

FSDT
***

 

S-FSDT 

EB
*
 

[45-

46],  

TB
** 

[45] 

OVFSDT 

FSDT
***

 

S-FSDT 

10 
4.8447 

4.7670 

4.7609 

4.7609 

4.7609 

4.7281 

4.654 

4.7985 

4.6462 

4.7985 

4.4095 

4.3450 

4.4752 

4.3332 

4.4752 

3.9644 

3.9121 

4.0234 

3.8957 

4.0234 

3.4735 

3.4333 

3.5252 

3.4133 

3.5252 

12 
3.3644 

3.3267 

3.3991 

3.3237 

3.3991 

3.3077 

3.2713 

3.3418 

3.2677 

3.3418 

3.1486 

3.1156 

3.181 

3.1105 

3.181 

2.9149 

2.8865 

2.9449 

2.8797 

2.9449 

2.6405 

2.6172 

2.6677 

2.6086 

2.6677 

14 
2.4718 

2.4514 

2.4905 

2.4498 

2.4905 

2.4411 

2.4212 

2.4595 

2.4193 

2.4595 

2.3533 

2.3348 

2.3711 

2.3323 

2.3711 

2.2202 

2.2038 

2.237 

2.2005 

2.237 

2.0574 

2.0432 

2.0729 

2.0391 

2.0729 

16 
1.8925 

1.8805 

1.9034 

1.8795 

1.9034 

1.8744 

1.8626 

1.8852 

1.8616 

1.8852 

1.8222 

1.8111 

1.8327 

1.8098 

1.8327 

1.7414 

1.7313 

1.7515 

1.7295 

1.7515 

1.6396 

1.6306 

1.6491 

1.6284 

1.6491 

18 
1.4953 

1.4878 

1.5021 

1.4872 

1.5021 

1.484 

1.4766 

1.4907 

1.476 

1.4907 

1.4511 

1.4440 

1.4577 

1.4432 

1.4577 

1.3994 

1.3928 

1.4057 

1.3918 

1.4057 

1.3329 

1.3269 

1.3389 

1.3257 

1.3389 

20 
1.2112 

1.2063 

1.2156 

1.2059 

1.2156 

1.2038 

1.1989 

1.2082 

1.1985 

1.2082 

1.182 

1.1773 

1.1864 

1.1768 

1.1864 

1.1475 

1.1431 

1.1517 

1.1424 

1.1517 

1.1024 

1.0983 

1.1064 

1.0975 

1.1064 
*
 Euler beam (EB). 

**
 Timoshenko beam (TB), ks=5/6. 

***
 Timoshenko beam (FSDT), Navier, ks=5/6. 

Note that in [45] an explicit solution and in [46] differential transform method (DTM) were applied, 

respectively. Also for EB in ref. [45-46] for e0a=0, 1 and 2 nm only the validation was existed, but others are 

appeared by solving CPT in this paper. 
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Table 2. Results of dimensionless critical buckling load developed from several theories for a rod 

(E=1TPa, υ= 0.3, d=1nm,

2

Cr
Cr

c

P L
P

EI
 ) 

CrP  

L/d 

µ=0 nm2 µ=1 nm2 µ=2 nm2 µ=3 nm2 µ=4 nm2 

EB[47],  

TB[47] 

OVFSDT 

FSDT 

S-FSDT 

CPT 

EB[47],  

TB[47] 

OVFSDT 

FSDT 

S-FSDT 

CPT 

EB[47],  

TB[47] 

OVFSDT 

FSDT 

S-FSDT 

CPT 

EB[47],  

TB[47] 

OVFSDT 

FSDT 

S-FSDT 

CPT 

EB[47],  

TB[47] 

OVFSDT 

FSDT 

S-FSDT 

CPT 

 

10 

 

 

9.8696 

9.6227 

 

 

10.0305 

9.6832 

10.0305 

9.8696 

 

 

8.9830 

8.7583 

 

 

9.1294 

8.8134 

9.1294 

8.9830 

 

 

8.2426 

8.0364 

 

 

8.3769 

8.0869 

8.3769 

8.2426 

 

 

7.6149 

7.4244 

 

 

7.739 

7.4711 

7.739 

7.6149 

 

 

7.0761 

6.8990 

 

 

7.1914 

6.9424 

7.1914 

7.0761 

 

20 

 

9.8696 

9.8067 

 

9.9093 

9.8223 

9.9093 

9.8696 

 

9.6319 

9.5705 

 

9.6707 

9.5858 

9.6707 

9.6319 

 

9.4055 

9.3455 

 

9.4433 

9.3604 

9.4433 

9.4055 

 

9.1894 

9.1308 

 

9.2263 

9.1453 

9.2263 

9.1894 

 

8.9830 

8.9258 

 

9.0191 

8.94 

9.0191 

8.9830 

 

50 
9.8696 

9.8595 

9.8759 

9.8620 

9.8759 

9.8696 

9.8308 

9.8207 

9.8371 

9.8232 

9.8371 

9.8308 

9.7923 

9.7822 

9.7985 

9.7847 

9.7985 

9.7923 

9.7541 

9.7440 

9.7603 

9.7466 

9.7603 

9.7541 

9.7161 

9.7062 

9.7224 

9.7087 

9.7224 

9.7161 

Table 3. Results of dimensionless critical buckling load developed from several theories for a FG 

nanobeam (E1=1TPa, E2=0.25TPa, υ= 0.3,

2

Cr
Cr

c

P L
P

EI
 ) 

CrP  

k 

e0a=0 nm e0a=0.5 nm e0a=1 nm e0a=1.5 nm e0a=2 nm 

EB[48],  

TB[48] 

OVFSDT 

FSDT 

S-FSDT 

CPT 

EB[48],  

TB[48] 

OVFSDT 

FSDT 

S-FSDT 

CPT 

EB[48],  

TB[48] 

OVFSDT 

FSDT 

S-FSDT 

CPT 

EB[48],  

TB[48] 

OVFSDT 

FSDT 

S-FSDT 

CPT 

EB[48],  

TB[48] 

OVFSDT 

FSDT 

S-FSDT 

CPT 

L/h=10 

 

0 

 

 

 

2.4674 

2.4056 

 

 

2.5213 

2.4056 

2.5213 

2.4674 

 

2.4079 

2.3477 

 

2.4606 

2.3477 

2.4606 

2.4079 

 

2.2457 

2.1895 

 

2.2948 

2.1895 

2.2948 

2.2457 

 

2.0190 

1.9685 

 

2.0631 

1.9685 

2.0631 

2.0190 

 

1.7690 

1.7247 

 

1.8076 

1.7247 

1.8076 

1.7690 

 

0.3 

 

4.0925 

3.9921 

 

4.1820 

3.9901 

4.1820 

4.0925 

 

3.9940 

3.8959 

 

4.0813 

3.8941 

4.0813 

3.9940 

 

3.7249 

3.6335 

 

3.8063 

3.6317 

3.8063 

3.7249 

 

3.3488 

3.2667 

 

3.4219 

3.2650 

3.4219 

3.3488 

 

2.9341 

2.8621 

 

2.9982 

2.8607 

2.9982 

2.9341 

 

1 

 

5.4282 

5.3084 

 

5.5468 

5.2924 

5.5468 

5.4282 

 

5.2975 

5.1805 

 

5.4133 

5.1650 

5.4133 

5.2975 

 

4.9406 

4.8315 

 

5.0485 

4.8170 

5.0485 

4.9406 

 

4.4418 

4.3437 

 

4.5389 

4.3307 

4.5389 

4.4418 

 

3.8918 

3.805 

 

3.9769 

3.7944 

3.9769 

3.8918 

 

3 

 

6.8176 

6.6720 

 

6.9666 

6.6470 

6.9666 

6.8176 

 

6.6534 

6.5113 

 

6.7988 

6.4870 

6.7988 

6.6534 

 

6.2051 

6.0727 

 

6.3407 

6.0498 

6.3407 

6.2051 

 

5.5787 

5.4596 

 

5.7006 

5.4391 

5.7006 

5.5787 

 

4.8879 

4.7835 

 

4.9947 

4.7656 

4.9947 

4.8879 

 

10 
8.3176 

8.1289 

8.4993 

8.1095 

8.4993 

8.3176 

8.1173 

7.9332 

8.2947 

7.9142 

8.2947 

8.1173 

7.5704 

7.3987 

7.7358 

7.3810 

7.7358 

7.5704 

6.8062 

6.6518 

6.9549 

6.6359 

6.9549 

6.8062 

5.9633 

5.8281 

6.0936 

5.8141 

6.0936 

5.9633 
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L/h=30 

 

0 

 

 

 

2.4674 

2.4603 

 

 

2.4732 

2.4603 

2.4732 

2.4674 

 

2.4606 

2.4536 

 

2.4665 

2.4536 

2.4665 

2.4606 

 

2.4406 

2.4336 

 

2.4464 

2.4336 

2.4464 

2.4406 

 

2.4079 

2.4011 

 

2.4137 

2.4011 

2.4137 

2.4079 

 

2.3637 

2.3569 

 

2.3693 

2.3569 

2.3693 

2.3637 

 

0.3 

 

4.0925 

4.0811 

 

4.1022 

4.0808 

4.1022 

4.0925 

 

4.0813 

4.0699 

 

4.0910 

4.0697 

4.0910 

4.0813 

 

4.0481 

4.0368 

 

4.0577 

4.0366 

4.0577 

4.0481 

 

3.9940 

3.9828 

 

4.0035 

3.9826 

4.0035 

3.9940 

 

3.9205 

3.9096 

 

3.9298 

3.9094 

3.9298 

3.9205 

 

1 

 

 

5.4282 

5.4146 

 

 

5.4412 

5.4128 

5.4412 

5.4282 

 

5.4134 

5.3998 

 

5.4263 

5.3980 

5.4263 

5.4134 

 

5.3694 

5.3559 

 

5.3821 

5.3541 

5.3821 

5.3694 

 

5.2975 

5.2843 

 

5.3101 

5.2824 

5.3101 

5.2975 

 

5.2001 

5.1871 

 

5.2124 

5.1853 

5.2124 

5.2001 

 

3 

 

 

6.8176 

6.8011 

 

 

6.8338 

6.7982 

6.8338 

6.8176 

 

6.7989 

6.7825 

 

6.8151 

6.7796 

6.8151 

6.7989 

 

6.7436 

6.7273 

 

6.7596 

6.7244 

6.7596 

6.7436 

 

6.6534 

6.6373 

 

6.6693 

6.6345 

6.6693 

6.6534 

 

6.5311 

6.5153 

 

6.5466 

6.5125 

6.5466 

6.5311 

 

10 
8.3176 

8.2962 

8.3374 

8.2939 

8.3374 

8.3176 

8.2949 

8.2735 

8.3147 

8.2713 

8.3147 

8.2949 

8.2274 

8.2062 

8.2470 

8.2040 

8.2470 

8.2274 

8.1173 

8.0964 

8.1366 

8.0942 

8.1366 

8.1173 

7.9681 

7.9476 

7.9871 

7.9454 

7.9871 

7.9681 

L/h=100 

 

0 

 

 

2.4674 

2.4667 

 

2.4679 

2.4667 

2.4679 

2.4674 

 

2.4667 

2.4661 

 

2.4673 

2.4661 

2.4673 

2.4667 

 

2.4649 

2.4643 

 

2.4654 

2.4643 

2.4654 

2.4649 

 

2.4619 

2.4613 

 

2.4624 

2.4613 

2.4624 

2.4619 

 

2.4576 

2.4570 

 

2.4582 

2.4570 

2.4582 

2.4576 

 

0.3 

 

4.0925 

4.0915 

 

4.0934 

4.0914 

4.0934 

4.0925 

 

4.0915 

4.0905 

 

4.0924 

4.0905 

4.0924 

4.0915 

 

4.0885 

4.0874 

 

4.0894 

4.0874 

4.0894 

4.0885 

 

4.0834 

4.0824 

 

4.0842 

4.0823 

4.0842 

4.0834 

 

4.0764 

4.0754 

 

4.0773 

4.0753 

4.0773 

4.0764 

 

1 

 

5.4282 

5.4270 

 

5.4294 

5.4268 

5.4294 

5.4282 

 

5.4269 

5.4257 

 

5.4281 

5.4255 

5.4281 

5.4269 

 

5.4229 

5.4217 

 

5.4241 

5.4215 

5.4241 

5.4229 

 

5.4162 

5.4150 

 

5.4173 

5.4148 

5.4173 

5.4162 

 

5.4069 

5.4057 

 

5.4080 

5.4055 

5.4080 

5.4069 

 

3 

 

6.8176 

6.8161 

 

6.8191 

6.8159 

6.8191 

6.8176 

 

6.8159 

6.8144 

 

6.8173 

6.8141 

6.8173 

6.8159 

 

6.8108 

6.8094 

 

6.8123 

6.8090 

6.8123 

6.8108 

 

6.8025 

6.8010 

 

6.8039 

6.8007 

6.8039 

6.8025 

 

6.7908 

6.7893 

 

6.7922 

6.7890 

6.7922 

6.7908 

 

10 
8.3176 

8.3157 

8.3194 

8.3155 

8.3194 

8.3176 

8.3155 

8.3136 

8.3173 

8.3134 

8.3173 

8.3155 

8.3094 

8.3075 

8.3111 

8.3072 

8.3111 

8.3094 

8.2992 

8.2972 

8.3010 

8.2971 

8.3010 

8.2992 

8.2849 

8.2830 

8.2867 

8.2828 

8.2867 

8.2849 

6. Conclusions 

This article investigated stability of functionally graded nanobeams exposed to the axial 

compressive loads. To obtain this, a novel beam approach was re-formulated to present 

governing equations. Nanoscale influences were evaluated by use of a non-classical elasticity 

theory. Moreover, to calculate the numerical results the Navier’s approach was used. The 

greatness outcomes proved that the Euler beam theory has not satisfactory results for 

moderately thick and thick beams. On the other hand, although the impacts of transverse shear 

strains has been taken into account by Timoshenko beam, the used shear correction factor 
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deviates outcomes of this beam approach slightly. The appropriate amount of this factor for 

nanostructures has not been already calculated and the used value cannot be appropriate at all. 
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