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Abstract 

In the present paper, the transfer matrix method based on the Euler-Bernoulli beam theory is exploited to 

originally achieve some exact analytical formulas for classically supported beams under both the concentrated 

and generalized power/sinusoidal distributed loads.   A general solution procedure is also presented to consider 

different loads and boundary conditions. Those closed-form formulas can be used in a variety of engineering 

applications as well as benchmark solutions. 

Keywords: Transfer matrix method, initial value problem, exact solution, Euler-Bernoulli beam, distributed 

loads. 

1. Introduction 

As is well known Euler-Bernoulli beam theory called classical beam theory is founded on the 

following assumptions: i) The cross section of the beam does not significantly deform under 

applied loads and can be assumed as rigid, ii) The cross section of the beam remains planar and 

normal to the deformed axis of the beam during the deformation. Due to the assumptions given 

above, in Euler-Bernoulli beams, which are very good for thin beam applications, transverse 

shear stress is not taken into account contrary to Timoshenko beams, which are good for thick 

beams. In Timoshenko beams the cross-section remains planar but does not remain normal to 

the neutral axis after bending. The basis of Euler-Bernoulli beam theory are well introduced in 

the text books in engineering educational system.  There are also some engineering handbooks 

which cover Euler-Bernoulli exact solutions of many certain types of problems [1-3]. The 

present study aims at adding some remarkable closed-form formulas to the deep open repository 

for Euler-Bernoulli beam bending formulas. To this end the transfer matrix approach which is 

one of the initial value problem (IVP) solver methods is employed [4-6].  

2. Application of the Transfer Matrix Method 

Let x be the beam axis (Fig. 1). The governing homogeneous differential equation set for the 

out-of-plane bending analysis of the beam having uniform section in canonical form is given 

by [4] 
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Fig. 1. A beam under uniformly distributed forces 

 
𝑑𝑤(𝑥)

𝑑𝑥
= −𝜃(𝑥),

𝑑𝜃(𝑥)

𝑑𝑥
=
𝑀(𝑥)

𝐸𝐼
,

𝑑𝑀(𝑥)

𝑑𝑥
= 𝑇(𝑥),

𝑑𝑇(𝑥)

𝑑𝑥
= 0 

 

(1) 

where 𝑤(𝑥) is  the transverse displacement, 𝜃(𝑥) is the rotation, 𝑀(𝑥) is the bending moment, 

and  𝑇(𝑥) is the shear force. By using the prime symbol for the derivative of the related quantity 

with respect to x, Eq. (1) may be written in a compact form as 

 

𝑺′(𝑥) =

[
 
 
 
 0 −1
0 0

0 0
1

𝐸𝐼
0

0 0
0 0

0 1
0 0 ]

 
 
 
 

{

𝑤(𝑥)

𝜃(𝑥)

𝑀(𝑥)

𝑇(𝑥)

} = 𝑫 𝑺(𝑥) 

 

(2) 

where 𝑺(𝑥) is called the state vector which comprises the cross-sectional quantities at a positive 

section, and 𝑫 is the differential matrix. Characteristic equation of the differential matrix is 

 

|𝑫 − 𝜆𝑰| = 𝜆4 = 0 (3) 

where 𝑰 refers the unit matrix. Cayley-Hamilton theorem states that every square matrix 

satisfies its own characteristic equation, and so 𝑫4 = 0. Equation (3) suggests that the higher 

powers of the differential matrix which are equal or greater than four are identically zero. The 

transfer matrix satisfies the similar type of differential equation for the state vector given in Eq. 

(2),  
𝑭′(𝑥) = 𝑫 𝑭(𝑥). If the elements of the differential matrix are constants as in Eq. (2), it is 

possible to get an exact solution to the transfer matrix. In this case, solution of 𝑭′(𝑥) = 𝑫 𝑭(𝑥)  
with the initial conditions, 𝑭(𝑥 = 0) = 𝑰,  gives us the exact transfer matrix in the form of a 

matrix exponential 

 

𝑭(𝑥) = 𝑒𝑥𝑫 = 𝑰 + 𝑥𝑫 +
𝑥2

2!
𝑫2 +

𝑥3

3!
𝑫3 

 

(4) 

In the series solution in Eq. (4), the remaining terms including forth and higher than forth 

powers of the differential matrix are taken as identical to the zero since 𝑫4 = 0.  
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𝑭(𝑥) =

[
 
 
 
 
 1 −𝑥 −

𝑥2

2𝐸𝐼
−
𝑥3

6EI

0 1
𝑥

EI

𝑥2

2EI
0 0 1 𝑥
0 0 0 1 ]

 
 
 
 
 

 

 

 

(5) 

Suppose that a beam is subjected to both a distributed force 𝑞(𝑥) and a distributed couple 

moment m(𝑥) along the beam axis.  together with a concentrated force 𝑃𝑜 and a couple moment  

𝜇𝑜 acting at section 𝑥 = 𝑎. Under this assumption, the overall transfer matrix relates the state 

vectors at both ends of the beam as follows 

𝑺(𝐿) =𝑭(𝐿)𝑺(0) + ∫ 𝑭(𝐿 − 𝜉)𝒌(𝜉) ⅆ𝜉
𝐿

0

+ 𝑭(𝐿 − 𝑎)𝑲(𝑎) 
 

(6) 

where 

𝑺(𝐿) = {

𝑤(𝐿)

𝜃(𝐿)

𝑀(𝐿)

𝑇(𝐿)

} = {

𝑤𝐿
𝜃𝐿
𝑀𝐿
𝑇𝐿

} 

 

(7) 

 

𝑭(𝐿 − 𝜉) =

[
 
 
 
 
 1 𝜉 − 𝐿 −

(𝐿 − 𝜉)2

2𝐸𝐼
−
(𝐿 − 𝜉)3

6𝐸𝐼

0 1
𝐿 − 𝜉

𝐸𝐼

(𝐿 − 𝜉)2

2𝐸𝐼
0 0 1 𝐿 − 𝜉
0 0 0 1 ]

 
 
 
 
 

 

 

 

(8) 

 

𝑺(0) = {

𝑤(0)

𝜃(0)

𝑀(0)

𝑇(0)

} = {

𝑤𝑜
𝜃𝑜
𝑀𝑜
𝑇𝑜

} 

 

(9) 

 

𝒌(𝜉) = {

0
0

−𝑚(𝜉)
−𝑞(𝜉)

} 

 

(10) 

and 

 

𝑲(𝑎) = {

0
0
−𝜇𝑜
−𝑃𝑜

} 

 

(11) 

In Eq. (6), column matrix 𝒌(𝜉) signifies the nonhomogeneous solution due to the distributed 

forces, and 𝑲(𝑎) is referred to as a discontinuity matrix due to the concentrated intermediate 

loads. By letting  
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𝝌 = ∫ 𝑭(𝐿 − 𝜉)𝒌(𝜉) ⅆ𝜉
𝐿

0
,      𝜿 = 𝑭(𝐿 − 𝑎)𝑲(𝑎) 

 

(12) 

Eq. (6) reads 

𝑤𝐿=F(L)1,1𝑤𝑜 + F(L)1,2𝜃𝑜 + F(L)1,3𝑀𝑜 + F(L)1,4𝑇𝑜 + 𝜒1 + 𝜅1 

𝜃𝐿 = F(L)2,1𝑤𝑜 + F(L)2,2𝜃𝑜 + F(L)2,3𝑀𝑜 + F(L)2,4𝑇𝑜 + 𝜒2 + 𝜅2 

𝑀𝐿=F(L)3,1𝑤𝑜 + F(L)3,2𝜃𝑜 + F(L)3,3𝑀𝑜 + F(L)3,4𝑇𝑜 + 𝜒3 + 𝜅3 

𝑇𝐿 = F(L)4,1𝑤𝑜 + F(L)4,2𝜃𝑜 + F(L)4,3𝑀𝑜 + F(L)4,4𝑇𝑜 + 𝜒4 + 𝜅4 

 

 

 

(13) 

Boundary conditions for the beam considered in the present study is given in Table 1. In the 

transfer matrix method, it is necessary to determine all the elements of the initial state vector to 

get a general solution to the problem. Some of elements of the initial state vector may be given 

directly as boundary conditions. To find the remaining unknown ones, the boundary conditions 

given at both ends should be implemented into Eq. (18) by considering Table 1. After 

determining of the full elements of the initial state vector, all sectional quantities at any section 

may be easily computed as follows 

 𝐹𝑜𝑟 (0 ≤ 𝑥 < 𝑎),      𝑺𝑰(x) =𝑭(𝑥)𝑺(0) + ∫ 𝑭(𝑥 − 𝜉)𝒌(𝜉) ⅆ𝜉
𝑥

0
 

 𝐹𝑜𝑟 (𝑎 ≤ 𝑥 ≤ 𝐿),     𝑺𝑰𝑰(x) =𝑭(𝑥)𝑺(0) + ∫ 𝑭(𝑥 − 𝜉)𝒌(𝜉) ⅆ𝜉
𝑥

0
+ 𝑭(𝑥 − 𝑎)𝑲(𝑎) 

 

(14) 

If there are more than one discontinuities along the beam axis the following may be observed 

[4]. 

S(x) =𝑭(𝑥)𝑺(0) + ∫ 𝑭(𝑥 − 𝜉)𝒌(𝜉) ⅆ𝜉
𝑥

0

+∑𝑭(𝑥 − 𝜉𝑖)𝑲(𝜉𝑖)

𝑛

𝑖=1

 

 

(15) 

Table 1. Boundary conditions considered 

 Classically supported beams 𝑥 = 0 𝑥 = 𝐿 

Simple-Simple (S-S) 

  

𝑤𝑜 = 0, 𝑀𝑜 = 0 𝑤𝐿 = 0,𝑀𝐿 = 0 

Clamped-Clamped (C-

C) 

 

 

𝑤𝑜 = 0, 𝜃𝑜 = 0 𝑤𝐿 = 0, 𝜃𝐿 = 0 

Clamped-Free (C-F) 

 
 

𝑤𝑜 = 0, 𝜃𝑜 = 0 𝑇𝐿 = 0, 𝑀𝐿 = 0 

Clamped-Simple (C-S) 

  

𝑤𝑜 = 0, 𝜃𝑜 = 0 𝑤𝐿 = 0,𝑀𝐿 = 0 
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In the following sections the analytical formulas are to be presented for beams under separate 

distributed and concentrated loads. Since small deformations are assumed, the superposition 

principle is hold when necessary.    

3. Solutions for Uniformly Distributed Forces 

For only uniformly distributed forces and couple moments acting along the beam, 

𝑞(𝑥) = −𝑞𝑜,     𝑚(𝑥) = −𝑚𝑑 
 

(16) 

a general solution takes the following form (0 ≤ 𝑥 ≤ 𝐿) 

S(x) =𝑭(𝑥)𝑺(0) + ∫ 𝑭(𝑥 − 𝜉)𝒌(𝜉)𝑑𝜉 = 𝑭(𝑥)𝑺(0) +

{
 
 
 

 
 
 
𝑥3(4𝑚𝑑 + 𝑥𝑞𝑜)

24EI

−
𝑥2(3𝑚𝑑 + 𝑥𝑞𝑜)

6EI

−
1

2
𝑥(2𝑚𝑑 + 𝑥𝑞𝑜)

−𝑥𝑞𝑜 }
 
 
 

 
 
 

𝑥

0

 

 

 

 

(17) 

3.1. S-S Beam under Uniformly Distributed Loads 

Distribution of stress resultants, displacements and rotations in a simply supported beam are 

found as 

𝑺𝑆−𝑆
𝐸 (x) ={

𝑤(𝑥)

𝜃(𝑥)

𝑀(𝑥)
T(x)

}

𝑆−𝑆

=𝑭(𝑥)𝑺(0) +∫ 𝑭(𝑥 − 𝜉)𝒌(𝑥) 𝑑𝜉
𝒙

0

 

= 𝑭(𝑥) 

{
 
 

 
 

0

−
𝐿3𝑞𝑜
24EI
0

𝑚𝑑 +
𝐿𝑞𝑜
2 }
 
 

 
 

+

{
  
 

  
 
𝑥3(4𝑚𝑑 + 𝑥𝑞𝑜)

24EI

−
𝑥2(3𝑚𝑑 + 𝑥𝑞𝑜)

6EI

−
1

2
𝑥(2𝑚𝑑 + 𝑥𝑞𝑜)

−𝑥𝑞𝑜 }
  
 

  
 

= 

{
 
 
 
 

 
 
 
 
𝑥(𝐿3 − 2𝐿𝑥2 + 𝑥3)𝑞𝑜

24EI

−
(𝐿3 − 6𝐿𝑥2 + 4𝑥3)𝑞𝑜

24EI
1

2
𝑥(𝐿 − 𝑥)𝑞𝑜

𝑚𝑑 +
1

2
(𝐿 − 2𝑥)𝑞𝑜 }

 
 
 
 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

(18) 

For the sake of comparison the followings values at specific sections may be used. 

𝑤𝐿 2⁄ =
5𝐿4𝑞𝑜
384EI

 

𝜃𝑜 = −
𝐿3𝑞𝑜
24EI

, 𝜃𝐿 2⁄ = 0, 𝜃𝐿 =
𝐿3𝑞𝑜
24EI

 

𝑀𝐿 2⁄ =
𝐿2𝑞𝑜
8

 

𝑇𝑜 = 𝑚𝑑 +
𝐿𝑞𝑜
2
,      𝑇𝐿 2⁄ = 𝑚𝑑 ,     𝑇𝐿 = 𝑚𝑑 −

𝐿𝑞𝑜
2

 

 

 

 

 

(19a) 

 

 

 

 

(19b) 
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Comparison of Bernoulli-Euler and Timoshenko beam’s dimensionless displacements, 𝑤̅, when 

𝑚𝑑 = 0 is shown in Fig. 2.  

𝑤̅ =
𝐸𝐼

𝑞𝑜𝐿
4
𝑤 

 

(20) 

For 𝐿 ℎ⁄ = 10, 20, 50, anⅆ 100, the maximum displacements in Euler beam remain constant 

as 𝑤̅𝑚𝑎𝑥
𝐸 = 0.0130208 while it takes different values in Timoshenko beams as 𝑤̅𝑚𝑎𝑥

𝑇 =
0.0133458, 0.0131021, 0.0130338, anⅆ 0.0130241 , respectively. The maximum 

displacements in a S-S Euler beam is found as 𝑤̅𝑚𝑎𝑥
𝐸 =0.013130 in Ref. [7],   as 

𝑤̅𝑚𝑎𝑥
𝐸 =0.013152 in Ref. [8], and as 𝑤̅𝑚𝑎𝑥

𝐸 = 0.0130208 in Ref. [9]. 

It is worth noting that there is no difference in the values of rotation, bending moment, and 

shearing force  in S-S beams subjected to a uniform distributed force along the beam based on 

the two beam theories. From Fig. 3, it is observed that Timoshenko’s beam theory gives 

somewhat higher displacements in S-S beams than Euler-Bernoulli beam theory.  

 

Fig. 2. Dimensionless transverse displacements in a S-S beam based on the two beam theories 

3.2. C-S Beam under Uniformly Distributed Loads 

Variations of stress resultants, displacements and rotations in a fixed-simple supported Euler-

Bernoulli beam along the beam axis are  

𝑺𝐶−𝑆
𝐸 (x) ={

𝑤(𝑥)

𝜃(𝑥)

𝑀(𝑥)
T(x)

}

𝐶−𝑆

=𝑭(𝑥)𝑺(0) + ∫ 𝑭(𝑥 − 𝜉)𝒌(𝑥)𝑑𝜉
𝒙

0

 

= 𝑭(𝑥) 

{
 
 

 
 

0
0

−
1

8
𝐿2𝑞𝑜

𝑚𝑑 +
5𝐿𝑞𝑜
8 }
 
 

 
 

+

{
  
 

  
 
𝑥3(4𝑚𝑑 + 𝑥𝑞𝑜)

24EI

−
𝑥2(3𝑚𝑑 + 𝑥𝑞𝑜)

6EI

−
1

2
𝑥(2𝑚𝑑 + 𝑥𝑞𝑜)

−𝑥𝑞𝑜 }
  
 

  
 

=

{
 
 
 
 

 
 
 
 

𝑥2(3𝐿 − 2𝑥)(𝐿 − 𝑥)𝑞𝑜
48EI

−
𝑥(6𝐿2 − 15𝐿𝑥 + 8𝑥2)𝑞𝑜

48EI

−
1

8
(𝐿 − 4𝑥)(𝐿 − 𝑥)𝑞𝑜

𝑚𝑑 +
1

8
(5𝐿 − 8𝑥)𝑞𝑜 }

 
 
 
 

 
 
 
 

 

 

 

(21a) 

 

 

 

 

 

 

 

 

 

 

 

(21b) 
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Some specific values of Eq. (21) are as follows 

𝑤𝐿 2⁄ =
𝐿4𝑞𝑜
192EI

 

𝜃𝑜 = 0, 𝜃𝐿 2⁄ = −
𝐿3𝑞𝑜
192EI

, 𝜃𝐿 =
𝐿3𝑞𝑜
48EI

 

𝑀𝑜  = −
1

8
𝐿2𝑞𝑜,    𝑀𝐿 2⁄ =

𝐿2𝑞𝑜
16

,       𝑀𝐿 = 0 

𝑇𝑜 = 𝑚𝑑 +
5𝐿𝑞𝑜
8

,    𝑇𝐿 2⁄ = 𝑚𝑑 +
𝐿𝑞𝑜
8
,    𝑇𝐿 = 𝑚𝑑 −

3𝐿𝑞𝑜
8

 

 

 

 

 

(22) 

Elementary theory states that the maximum displacement occurs approximately at 𝑥 =
(1 − 0.421535)𝐿 [3]. For 𝐿 ℎ⁄ = 10, 20, 50, 𝑎𝑛𝑑 100, the dimensionless displacements in 

Euler beam at the section of  𝑥 𝐿⁄ = 0.6 remain constant as 𝑤̅𝑥/𝐿=0.6
𝐸 = 0.0054 while it takes 

different values in Timoshenko beams as 𝑤̅𝑥 𝐿⁄ =0.6
𝑇 = 0.00576618, 0.00549162,

0.00541466, anⅆ 0.00540367, respectively. The transverse deflection was found as 

𝑤̅𝑥/𝐿=0.5
𝐸 =  0.00520833 in both the present study and in Ref. [9].  It may be noted that there 

are also differences in the bending moment, shearing force, and the rotation in a C-S beam 

based on the two beam theories. Figure 3 shows the dimensionless transverse displacements in 

a C-S beam based on the two beam theories. In a C-S beam the differences in the results of the 

two beam theories become much clearer than S-S beam. 

 

 

Fig. 3. Dimensionless transverse displacements in a C-S beam based on the two beam theories 

3.3. C-F Beam under Uniformly Distributed Loads 

Stress resultants, displacements and rotations in a fixed-free supported beam vary along the 

beam axis as  

𝑺𝐶−𝐹
𝐸 (x) ={

𝑤(𝑥)

𝜃(𝑥)

𝑀(𝑥)
T(x)

}

𝐶−𝐹

=𝑭(𝑥)𝑺(0) + ∫ 𝑭(𝑥 − 𝜉)𝒌(𝑥) 𝑑𝜉
𝒙

0

 

 

 

(23a) 
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𝑺𝐶−𝐹
𝐸 (x) = 𝑭(𝑥) 

{
 
 

 
 

0
0

𝐿𝑚𝑑 −
𝐿2𝑞𝑜
2

𝐿𝑞𝑜 }
 
 

 
 

+

{
  
 

  
 
𝑥3(4𝑚𝑑 + 𝑥𝑞𝑜)

24EI

−
𝑥2(3𝑚𝑑 + 𝑥𝑞𝑜)

6EI

−
1

2
𝑥(2𝑚𝑑 + 𝑥𝑞𝑜)

−𝑥𝑞𝑜 }
  
 

  
 

 

 =

{
 
 
 

 
 
 
𝑥2(4𝑚𝑑(𝑥 − 3𝐿) + (6𝐿

2 − 4𝐿𝑥 + 𝑥2)𝑞𝑜)

24EI

−
𝑥(3𝑚𝑑(𝑥 − 2𝐿) + (3𝐿

2 − 3𝐿𝑥 + 𝑥2)𝑞𝑜)

6EI
1

2
(𝐿 − 𝑥)(2𝑚𝑑 + (𝑥 − 𝐿)𝑞𝑜)

(𝐿 − 𝑥)𝑞𝑜 }
 
 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

(23b) 

Certain values of sectional quantities in a C-F beam are 

𝑤𝐿 2⁄ =
𝐿3(17𝐿𝑞𝑜 − 40𝑚𝑑)

384EI
,     𝑤𝐿 =

𝐿3(3𝐿𝑞𝑜 − 8𝑚𝑑)

24EI
 

 

𝜃𝐿 2⁄ =
𝐿2(18𝑚𝑑 − 7𝐿𝑞𝑜)

48EI
,      𝜃𝐿 = −

𝐿2(𝐿𝑞𝑜 − 3𝑚𝑑)

6EI
 

𝑀𝑜  = 𝐿𝑚𝑑 −
𝐿2𝑞𝑜
2

,       𝑀𝐿 2⁄ = −
1

8
𝐿(𝐿𝑞𝑜 − 4𝑚𝑑) 

𝑇𝑜 = 𝐿𝑞𝑜,     𝑇𝐿 2⁄ =
𝐿𝑞𝑜
2
, 𝑇𝐿 = 0 

 

 

 

 

 

 

(24) 

 

 

 

Fig. 4. Dimensionless transverse displacements in a C-F beam based on the two beam theories 
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Dimensionless transverse displacements in a C-F beam based on the two beam theories is 

illustrated in Fig. 4 when the beam is subjected only distributed uniform forces. Euler-Bernoulli 

displacements are again independent from  𝐿 ℎ⁄  ratios. The maximum displacement in an Euler-

Bernoulli beam is calculated at the free end as 𝑤̅𝐿
𝐸 = 0.125. In Timoshenko beams, those values 

are to be 𝑤̅𝐿
𝑇 = 0.1263  (𝐿 ℎ⁄ = 10), 0.125325 (𝐿 ℎ⁄ = 20), 0.125052  (𝐿 ℎ⁄ = 50),

anⅆ 0.125013 (𝐿 ℎ⁄ = 100). Similar to the S-S beam, there is no difference between the results 

of two beam theories for the rotations, bending moments and shear forces in a C-F beam. 

3.4. C-C Beam under Uniformly Distributed Loads 

Let’s consider a fixed-fixed beam. Analytical formulas derived are as follows 

𝑺𝐶−𝐶
𝐸 (x) ={

𝑤(𝑥)

𝜃(𝑥)

𝑀(𝑥)
T(x)

}

𝐶−𝐶

=𝑭(𝑥)𝑺(0)∫ 𝑭(𝑥 − 𝜉)𝒌(𝑥) 𝑑𝜉
𝒙

0

 

 = 𝑭(𝑥) 

{
 
 

 
 

0
0

−
1

12
𝐿2𝑞𝑜

𝐿𝑞𝑜
2 }

 
 

 
 

+

{
 
 
 

 
 
 
𝑥3(4𝑚𝑑 + 𝑥𝑞𝑜)

24EI

−
𝑥2(3𝑚𝑑 + 𝑥𝑞𝑜)

6EI

−
1

2
𝑥(2𝑚𝑑 + 𝑥𝑞𝑜)

−𝑥𝑞𝑜 }
 
 
 

 
 
 

=

{
 
 
 
 

 
 
 
 

𝑥2(𝐿 − 𝑥)2𝑞𝑜
24EI

−
𝑥(𝐿 − 2𝑥)(𝐿 − 𝑥)𝑞𝑜

12EI

−
1

12
(𝐿2 − 6𝐿𝑥 + 6𝑥2)𝑞𝑜

𝑚𝑑 +
1

2
(𝐿 − 2𝑥)𝑞𝑜 }

 
 
 
 

 
 
 
 

 

 

 

 

 

 

 

 

 

(25) 

Selected values of sectional quantities in a C-C beam are 

𝑤𝐿 2⁄ =
𝐿4𝑞𝑜
384EI

 

𝜃𝑜 = 𝜃𝐿 2⁄ = 𝜃𝐿 = 0 

𝑀𝑜  = −
1

12
𝐿2𝑞𝑜,  𝑀𝐿 2⁄ =

𝐿2𝑞𝑜
24

,   𝑀𝐿  = −
1

12
𝐿2𝑞𝑜 

𝑇𝑜 = 𝑚𝑑 +
𝐿𝑞𝑜
2
,   𝑇𝐿 2⁄ = 𝑚𝑑 ,   𝑇𝐿 = 𝑚𝑑 −

𝐿𝑞𝑜
2

 

 

 

 

(26) 

Variation of the dimensionless transverse displacement in a C-C beam is demonstrated in Fig. 

5 for 𝑞(𝑥) = 𝑞𝑜. As seen from Fig. 5, the maximum dimensionless transverse displacement in 

a C-C beam occurs at the mid-span of the beam. Based on the Euler-Bernoulli beam theory, the 

maximum displacement is evaluated as 𝑤̅𝑚𝑎𝑥
𝐸 = 0.00260417. In Timoshenko beams, these 

values are to be 𝑤̅𝑚𝑎𝑥
𝑇 = 0.00292917 (𝐿 ℎ⁄ = 10), 0.00268542 (𝐿 ℎ⁄ = 20),

0.00261717 (𝐿 ℎ⁄ = 50), anⅆ 0.00260742(𝐿 ℎ⁄ = 100). Similar to the S-S and C-F beams, 

there is no difference between the results of two beam theories for the rotations, bending 

moments and shear forces in a C-C beam under uniformly distributed forces. 
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Fig. 5. Dimensionless transverse displacements in a C-C beam based on the two beam theories 

4. Solutions for Sinusoidal Distributed Forces 

A generalized sinusoidal distributed force [10] may be in the form of (Fig. 6) 

𝑞(𝑥) = −𝑞𝑜 sin (
𝑛𝜋𝑥

𝐿
) ,        𝑛 ≥ 0 

 

(27) 

 

 

Fig. 6. Generalized sinusoidal loading 

In the case of sinusoidal distributed forces in Eq. (27), the particular solution becomes 
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∫ 𝑭(𝑥 − 𝜉)𝒌(𝜉) 𝑑𝜉
𝑥

0

= 

{
 
 
 
 
 

 
 
 
 
 𝐿𝑞𝑜 (6𝐿

3 sin (
𝜋𝑛𝑥
𝐿
) − 6𝜋𝐿2𝑛𝑥 + 𝜋3𝑛3𝑥3)

6𝜋4EI𝑛4

−
𝐿𝑞𝑜 (2𝐿

2 cos (
𝜋𝑛𝑥
𝐿 ) − 2𝐿2 + 𝜋2𝑛2𝑥2)

2𝜋3EI𝑛3

𝐿𝑞𝑜 (Lsin (
𝜋𝑛𝑥
𝐿
) − 𝜋𝑛𝑥)

𝜋2𝑛2

𝐿𝑞𝑜 (cos (
𝜋𝑛𝑥
𝐿
) − 1)

𝜋𝑛 }
 
 
 
 
 

 
 
 
 
 

 

 

 

 

 

 

(28) 

A general solution takes the form of S(x) =𝑭(𝑥)𝑺(0) + ∫ 𝑭(𝑥 − 𝜉)𝒌(𝜉)𝑑𝜉
𝑥

0
. 

4.1. S-S Beam under Sinusoidal Distributed Loads 

The rotation of the section about y- axis and the shearing force at the initial end is found as 

(𝑤𝑜 = 0,𝑀𝑜 = 0) 

𝜃𝑜 =
𝐿3((𝜋2𝑛2 + 6)sin (𝜋𝑛) − 6𝜋𝑛)𝑞𝑜

6𝜋4EI𝑛4
 

𝑇𝑜 =
𝐿(𝜋𝑛 − sin (𝜋𝑛))𝑞𝑜

𝜋2𝑛2
 

 

 

(29) 

With the help of Eq. (29), the general solution in a closed form is obtained for simply supported 

beam under a general sinusoidal load as follows 

𝑺(𝑥)𝑆−𝑆
𝐸 =

{
 
 
 
 
 
 

 
 
 
 
 
 𝐿𝑞𝑜 (

6𝐿3 sin (
𝜋𝑛𝑥
𝐿 )

+xsin(𝜋𝑛) (𝜋2𝑛2𝑥2 − 𝐿2(𝜋2𝑛2 + 6))
)

6𝜋4EI𝑛4

𝐿𝑞𝑜 (
sin(𝜋𝑛) (𝐿2(𝜋2𝑛2 + 6) − 3𝜋2𝑛2𝑥2)

−6𝜋𝐿2 ncos (
𝜋𝑛𝑥
𝐿 )

)

6𝜋4EI𝑛4

𝐿𝑞𝑜 (Lsin (
𝜋𝑛𝑥
𝐿 ) − xsin(𝜋𝑛))

𝜋2𝑛2

𝐿𝑞𝑜 (𝜋 ncos (
𝜋𝑛𝑥
𝐿 ) − sin(𝜋𝑛))

𝜋2𝑛2 }
 
 
 
 
 
 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

(30) 

As may be guessed, in a S-S beam, the variation of  𝜃(𝑥),𝑀(𝑥), anⅆ 𝑇(𝑥) remain unchanged 

in both beam theories. Some chosen values of the sectional quantities are 

 

𝑤𝐿 2⁄ =

𝐿4 (
16 sin (

𝜋𝑛
2 )

−(𝜋2𝑛2 + 8) sin(𝜋𝑛)
)𝑞𝑜

16𝜋4EI𝑛4
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𝜃𝐿 2⁄ =

𝐿3𝑞𝑜 (
(𝜋2𝑛2 + 24) sin(𝜋𝑛)

−24𝜋 ncos (
𝜋𝑛
2
)

)

24𝜋4EI𝑛4
,     𝜃𝐿=−

𝐿3𝑞𝑜 (
(𝜋2𝑛2 − 3) sin(𝜋𝑛)

+3𝜋 ncos(𝜋𝑛)
)

3𝜋4EI𝑛4
 

 

𝑀𝐿 2⁄ =
4𝐿2sin3 (

𝜋𝑛
4 ) cos (

𝜋𝑛
4 )𝑞𝑜

𝜋2𝑛2
 

 

 𝑇𝐿 2⁄ =
𝐿𝑞𝑜 (𝜋 ncos (

𝜋𝑛
2 ) − sin

(𝜋𝑛))

𝜋2𝑛2
,      𝑇𝐿 =

𝐿𝑞𝑜(𝜋 ncos(𝜋𝑛) − sin(𝜋𝑛))

𝜋2𝑛2
 

 

 

 

(31) 

 

 

 

 

 

 

 

 

If 𝑛 is a positive integer (sin(𝜋𝑛) = 0), then Eq. (30) turns to be 

 

𝑺(𝑥)𝑆−𝑆(𝑛=𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟)
𝐸 =

{
 
 
 
 
 

 
 
 
 
 𝑞𝑜𝐿

4 sin (
𝜋𝑛𝑥
𝐿 )

𝜋4EI𝑛4

−(
𝑞𝑜𝜋𝐿

3 ncos (
𝜋𝑛𝑥
𝐿
)

𝜋4EI𝑛4
)

𝐿2𝑞𝑜 sin (
𝜋𝑛𝑥
𝐿 )

𝜋2𝑛2

𝐿𝑞𝑜𝜋 ncos (
𝜋𝑛𝑥
𝐿 )

𝜋2𝑛2 }
 
 
 
 
 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(32) 

where 𝑤𝑆−𝑆(𝑛=𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟)
𝐸 = 𝑞𝑜𝐿

4 sin (
𝜋𝑛𝑥

𝐿
) 𝜋4EI𝑛4⁄  overlaps with the result in Ref. [10]. 

 

4.2. C-F Beam under Sinusoidal Distributed Loads 

In the case of C-F beam, the unknown elements of the initial state vector becomes (𝑤𝑜 =
0, 𝜃𝑜 = 0) 

 

𝑀𝑜 =
𝐿2𝑞𝑜(𝜋 ncos(𝜋𝑛) − sin(𝜋𝑛))

𝜋2𝑛2
 

 

𝑇𝑜 = −
𝐿(cos(𝜋𝑛) − 1)𝑞𝑜

𝜋𝑛
 

 

 

 

 

(33) 

The general solution may be written with the help of Eq. (33) as 
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𝑺(𝑥)𝐶−𝐹
𝐸 =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

𝐿𝑞𝑜

(

 
 

6𝐿3 sin (
𝜋𝑛𝑥
𝐿
)

+𝜋𝑛𝑥 (
𝜋𝑛𝑥 (

𝜋𝑛(𝑥 − 3𝐿) cos(𝜋𝑛)

+3𝐿 sin(𝜋𝑛)
)

−6𝐿2
)

)

 
 

6𝜋4EI𝑛4

−

𝐿𝑞𝑜 (

𝜋2𝑛2𝑥(𝑥 − 2𝐿) cos(𝜋𝑛)

+2𝐿 (
𝐿 (cos (

𝜋𝑛𝑥
𝐿
) − 1)

+𝜋 nxsin(𝜋𝑛)
)
)

2𝜋3EI𝑛3

𝐿𝑞𝑜 (
𝐿 (sin (

𝜋𝑛𝑥
𝐿 ) − sin(𝜋𝑛))

+𝜋𝑛(𝐿 − 𝑥) cos(𝜋𝑛)
)

𝜋2𝑛2

𝐿𝑞𝑜 (cos (
𝜋𝑛𝑥
𝐿
) − cos(𝜋𝑛))

𝜋𝑛 }
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

(34) 

Solutions for the rotation, bending moment and shearing force are found as the same in two 

beam theories. Some particular values of sectional quantities are 

𝑤𝐿 2⁄ =

𝐿4𝑞𝑜(
6(

8 sin (
𝜋𝑛
2
)

+𝜋𝑛(𝜋 nsin(𝜋𝑛) − 4)
)

−5𝜋3𝑛3 cos(𝜋𝑛)

)

48𝜋4EI𝑛4
,     𝑤𝐿 = −

𝐿4𝑞𝑜 (
2𝜋3𝑛3 cos(𝜋𝑛)

−3(𝜋2𝑛2 + 2) sin(𝜋𝑛)
+6𝜋𝑛

)

6𝜋4EI𝑛4
 

 

𝜃𝐿 2⁄ =

𝐿3𝑞𝑜(
−8 cos (

𝜋𝑛
2
)

+𝜋𝑛 (
3𝜋 ncos(𝜋𝑛)

−4 sin(𝜋𝑛)
) + 8

)

8𝜋3EI𝑛3
,    𝜃𝐿=

𝐿3𝑞𝑜 (
(𝜋2𝑛2 − 2) cos(𝜋𝑛)

−2𝜋 nsin(𝜋𝑛) + 2
)

2𝜋3EI𝑛3
 

 

𝑀𝐿 2⁄ =

𝐿2𝑞𝑜 (
2 sin (

𝜋𝑛
2 )

−2 sin(𝜋𝑛) + 𝜋 ncos(𝜋𝑛)
)

2𝜋2𝑛2
 

 

𝑇𝐿 2⁄ =
𝐿(cos (

𝜋𝑛
2 ) − cos (𝜋𝑛))𝑞𝑜

𝜋𝑛
,        𝑇𝐿 = 0 

 

 

 

 

 

 

 

 

 

 

(35) 

Since sin(𝜋𝑛) = 0  when 𝑛 is a positive integer, Eq. (34) may be cast as follows 
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𝑺(𝑥)𝐶−𝐹(𝑛=𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟)
𝐸 =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝐿𝑞𝑜 (

6𝐿3 sin (
𝜋𝑛𝑥
𝐿
)

+𝜋𝑛𝑥 (
𝜋𝑛𝑥(𝜋𝑛(𝑥 − 3𝐿) cos(𝜋𝑛))

−6𝐿2
)
)

6𝜋4EI𝑛4

−

𝐿𝑞𝑜 (
𝜋2𝑛2𝑥(𝑥 − 2𝐿) cos(𝜋𝑛)

+2𝐿2 (cos (
𝜋𝑛𝑥
𝐿
) − 1)

)

2𝜋3EI𝑛3

𝐿𝑞𝑜 (
𝐿 sin (

𝜋𝑛𝑥
𝐿
)

+𝜋𝑛(𝐿 − 𝑥) cos(𝜋𝑛)
)

𝜋2𝑛2

𝐿𝑞𝑜 (cos (
𝜋𝑛𝑥
𝐿
) − cos(𝜋𝑛))

𝜋𝑛 }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

(36) 

4.3. C-S Beam under Sinusoidal Distributed Loads 

For a fixed-simple supported beam, the elements of the initial state vector are obtained as  

𝑤𝑜 = 0,          𝜃𝑜 = 0 
 

𝑀𝑜 =
𝐿2((𝜋2𝑛2 + 6) sin(𝜋𝑛) − 6𝜋𝑛)𝑞𝑜

2𝜋4𝑛4
 

𝑇𝑜 =
𝐿(2𝜋𝑛(𝜋2𝑛2 + 3) − 3(𝜋2𝑛2 + 2) sin(𝜋𝑛))𝑞𝑜

2𝜋4𝑛4
 

 

 

 

(37) 

The elements of the state vector at any section are found as 
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𝑺(𝑥)𝐶−𝑆
𝐸 =

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

𝐿𝑞𝑜

(

 
 

4𝐿3 sin (
𝜋𝑛𝑥
𝐿 )

−2𝜋𝑛𝑥(2𝐿2 − 3𝐿𝑥 + 𝑥2)

+𝑥2 sin(𝜋𝑛) (
(𝜋2𝑛2 + 2)𝑥

−𝐿(𝜋2𝑛2 + 6)
)
)

 
 

4𝜋4EI𝑛4

𝐿𝑞𝑜

(

 
 

2𝜋𝑛 (
−2𝐿2 cos (

𝜋𝑛𝑥
𝐿
)

+2𝐿2 − 6𝐿𝑥 + 3𝑥2
)

+xsin(𝜋𝑛) (
2𝐿(𝜋2𝑛2 + 6)

−3(𝜋2𝑛2 + 2)𝑥
)
)

 
 

4𝜋4EI𝑛4

𝐿𝑞𝑜(
sin(𝜋𝑛) (

𝐿(𝜋2𝑛2 + 6)

−3(𝜋2𝑛2 + 2)𝑥
)

+2𝜋𝑛 (𝜋 Lnsin (
𝜋𝑛𝑥
𝐿
) − 3𝐿 + 3𝑥)

)

2𝜋4𝑛4

𝐿𝑞𝑜 (
2𝜋3𝑛3 cos (

𝜋𝑛𝑥
𝐿 )

−3(𝜋2𝑛2 + 2) sin(𝜋𝑛)
+6𝜋𝑛

)

2𝜋4𝑛4 }
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

(38) 

Specific values of the elements of the state vector are 

𝑤𝐿 2⁄ = −

𝐿4 (
(𝜋2𝑛2 + 10) sin(𝜋𝑛)

+6𝜋𝑛 − 32 sin (
𝜋𝑛
2
)
)𝑞𝑜

32𝜋4EI𝑛4
 

𝜃𝐿 2⁄ =

𝐿3𝑞𝑜 (
(𝜋2𝑛2 + 18) sin(𝜋𝑛)

−2𝜋𝑛 (8 cos (
𝜋𝑛
2 ) + 1)

)

16𝜋4EI𝑛4
, 𝜃𝐿=−

𝐿3𝑞𝑜 (
(𝜋2𝑛2 − 6) sin(𝜋𝑛)

+2𝜋𝑛 + 4𝜋 ncos(𝜋𝑛)
)

4𝜋4EI𝑛4
 

𝑀𝐿 2⁄ =

𝐿2 (
(6 − 𝜋2𝑛2) sin(𝜋𝑛)

+2𝜋𝑛 (2𝜋 nsin (
𝜋𝑛
2 ) − 3)

)𝑞𝑜

4𝜋4𝑛4
 

𝑇𝐿 2⁄ =

𝐿𝑞𝑜 (
2𝜋3𝑛3 cos (

𝜋𝑛
2 )

−3(𝜋2𝑛2 + 2) sin(𝜋𝑛) + 6𝜋𝑛
)

2𝜋4𝑛4
 

𝑇𝐿 =

𝐿𝑞𝑜 (
2𝜋3𝑛3 cos(𝜋𝑛)

−3(𝜋2𝑛2 + 2) sin(𝜋𝑛) + 6𝜋𝑛
)

2𝜋4𝑛4
 

 

 

 

 

 

 

 

 

 

 

(39) 

In the case of 𝑛 is a positive integer then the followings are obtained from Eq. (38) (sin(𝜋𝑛) =
0  ). 
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𝑺(𝑥)𝐶−𝑆(𝑛=𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟)
𝐸 =

{
 
 
 
 
 
 

 
 
 
 
 
 

𝐿𝑞𝑜 (
4𝐿3 sin (

𝜋𝑛𝑥
𝐿 )

−2𝜋𝑛𝑥(2𝐿2 − 3𝐿𝑥 + 𝑥2)
+

)

4𝜋4EI𝑛4

𝐿𝑞𝑜2𝜋𝑛 (
−2𝐿2 cos (

𝜋𝑛𝑥
𝐿 )

+2𝐿2 − 6𝐿𝑥 + 3𝑥2
)

4𝜋4EI𝑛4

𝐿𝑞𝑜(2𝜋𝑛 (𝜋 Lnsin (
𝜋𝑛𝑥
𝐿
) − 3𝐿 + 3𝑥))

2𝜋4𝑛4

𝐿𝑞𝑜(2𝜋
3𝑛3 cos (

𝜋𝑛𝑥
𝐿 ) + 6𝜋𝑛)

2𝜋4𝑛4 }
 
 
 
 
 
 

 
 
 
 
 
 

 

 

 

 

 

 

 

(40) 

4.4. C-S Beam under Sinusoidal Distributed Loads 

In this case, the initial bending moment and the initial shearing force are found as (𝑤𝑜 = 0, 𝜃𝑜 =
0) 

𝑀𝑜 = −
2𝐿2𝑞𝑜(𝜋𝑛(cos(𝜋𝑛) + 2) − 3 sin(𝜋𝑛))

𝜋4𝑛4
 

𝑇𝑜 =

𝐿𝑞𝑜 (
𝜋𝑛(𝜋2𝑛2 + 6cos(𝜋𝑛) + 6)

−12 sin(𝜋𝑛)
)

𝜋4𝑛4
 

 

 

 

(41) 

The state vector at any section reads 
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𝑺(𝑥)𝐶−𝐶
𝐸 = 

{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

𝐿𝑞𝑜

(

  
 

𝐿3 sin (
𝜋𝑛𝑥
𝐿
)

+𝑥(

𝑥(2𝑥 − 3𝐿) sin(𝜋𝑛)

−𝜋𝑛(𝑥 − 𝐿)(
−𝐿

+xcos(𝜋𝑛)
+𝑥

)
)

)

  
 

𝜋4EI𝑛4

𝐿𝑞𝑜

(

 
 

𝜋𝐿2(−𝑛) cos (
𝜋𝑛𝑥
𝐿
)

+(𝐿 − 𝑥) (
𝜋𝑛(𝐿 − 3𝑥)

+6𝑥 sin(𝜋𝑛)
)

+𝜋𝑛𝑥(3𝑥 − 2𝐿) cos(𝜋𝑛))

 
 

𝜋4EI𝑛4

𝐿𝑞𝑜

(

 
 

6(𝐿 − 2𝑥) sin(𝜋𝑛)

+𝜋𝑛 (
𝜋 Lnsin (

𝜋𝑛𝑥
𝐿
)

−4𝐿 + 6𝑥
)

−2𝜋𝑛(𝐿 − 3𝑥) cos(𝜋𝑛))

 
 

𝜋4𝑛4

𝐿𝑞𝑜 (
𝜋𝑛(

𝜋2𝑛2 cos (
𝜋𝑛𝑥
𝐿 )

+6 cos(𝜋𝑛) + 6
)

−12 sin(𝜋𝑛)

)

𝜋4𝑛4 }
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

(42) 

Some values of the elements of the state vector at sections at  𝑥 = 𝐿 2⁄  anⅆ 𝑥 = 𝐿 are 

𝑤𝐿 2⁄ =

𝐿4𝑞𝑜 (
−𝜋𝑛 + 8 sin (

𝜋𝑛
2 )

−4 sin(𝜋𝑛) + 𝜋 ncos(𝜋𝑛)
)

8𝜋4EI𝑛4
 

𝜃𝐿 2⁄ = −

𝐿3𝑞𝑜(
𝜋𝑛(

4 cos (
𝜋𝑛
2 )

+cos(𝜋𝑛) + 1
)

−6 sin(𝜋𝑛)

)

4𝜋4EI𝑛4
 

𝑀𝐿 2⁄ =
𝐿2𝑞𝑜 (𝜋 nsin (

𝜋𝑛
2 ) + cos

(𝜋𝑛) − 1)

𝜋3𝑛3
,    𝑀𝐿 =

𝐿2𝑞𝑜 (
(𝜋2𝑛2 − 6) sin(𝜋𝑛)

+2𝜋𝑛 + 4𝜋 ncos(𝜋𝑛)
)

𝜋4𝑛4
 

 𝑇𝐿 2⁄ =

𝐿𝑞𝑜 (
𝜋3𝑛3 cos (

𝜋𝑛
2 ) − 12 sin

(𝜋𝑛)

+6𝜋𝑛(cos(𝜋𝑛) + 1)
)

𝜋4𝑛4
,     𝑇𝐿 =

𝐿𝑞𝑜 (
𝜋(𝜋2𝑛2 + 6)ncos(𝜋𝑛)

+6𝜋𝑛 − 12 sin(𝜋𝑛)
)

𝜋4𝑛4
 

 

 

 

 

 

 

 

 

 

(43) 

When 𝑛 is chosen as a positive integer (sin(𝜋𝑛) = 0) then  
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     𝑺(𝑥)𝐶−𝐶(𝑛=𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟)
𝐸 =

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

𝐿𝑞𝑜

(

 
 

𝐿3 sin (
𝜋𝑛𝑥
𝐿 )

−𝑥𝜋𝑛(𝑥 − 𝐿)(
−𝐿

+xcos(𝜋𝑛)
+𝑥

)

)

 
 

𝜋4EI𝑛4

𝐿𝑞𝑜(

𝜋𝐿2(−𝑛) cos (
𝜋𝑛𝑥
𝐿
)

+(𝐿 − 𝑥)(𝜋𝑛(𝐿 − 3𝑥))

+𝜋𝑛𝑥(3𝑥 − 2𝐿) cos(𝜋𝑛)

)

𝜋4EI𝑛4

𝐿𝑞𝑜 (
𝜋𝑛(

𝜋 Lnsin (
𝜋𝑛𝑥
𝐿
)

−4𝐿 + 6𝑥
)

−2𝜋𝑛(𝐿 − 3𝑥) cos(𝜋𝑛)

)

𝜋4𝑛4

𝐿𝑞𝑜𝜋𝑛(
𝜋2𝑛2 cos (

𝜋𝑛𝑥
𝐿
)

+6cos(𝜋𝑛) + 6
)

𝜋4𝑛4 }
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

(44) 

5. Solutions for Parabolically Distributed Forces 

If a generalized power-type distributed force [10] is concerned (Fig. 7) 

𝑞(𝑥) = −𝑞𝑜 (
𝑥

𝐿
)
𝑛

,        𝑛 ≥ 0 

 

(45) 

 

 

Fig. 7. Generalized power distributed loads 
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The inhomogeneous solution reads 

∫ 𝑭(𝑥 − 𝜉)𝒌(𝜉) 𝑑𝜉
𝑥

0

=

{
 
 
 
 

 
 
 
 

𝐿−𝑛𝑥𝑛+4𝑞𝑜
EI(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)

−
𝐿−𝑛𝑥𝑛+3𝑞𝑜

EI(𝑛3 + 6𝑛2 + 11𝑛 + 6)

−
𝐿−𝑛𝑥𝑛+2𝑞𝑜
𝑛2 + 3𝑛 + 2

−
𝐿−𝑛𝑥𝑛+1𝑞𝑜
𝑛 + 1 }

 
 
 
 

 
 
 
 

 

 

 

 

 

(46) 

5.1. S-S Beam under Parabolically Distributed Loads 

In this case the state vector is found as 

𝑺(𝑥)𝑆−𝑆
𝐸 = 𝑭(𝑥)𝑺(0) + ∫ 𝑭(𝑥 − 𝜉)𝒌(𝑥) 𝑑𝜉

𝒙

0

=

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝑥𝑞𝑜(

𝐿3(𝑛 + 1)(𝑛 + 6)

+6𝑥3 (
𝑥
𝐿
)
𝑛

−𝐿(𝑛 + 3)(𝑛 + 4)𝑥2

)

6EI(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)

𝑞𝑜(

−𝐿3(𝑛 + 1)(𝑛 + 6)

−6(𝑛 + 4)𝑥3 (
𝑥
𝐿
)
𝑛

+3𝐿(𝑛 + 3)(𝑛 + 4)𝑥2

)

6EI(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)

𝑥𝑞𝑜 (𝐿 − 𝑥 (
𝑥
𝐿
)
𝑛
)

𝑛2 + 3𝑛 + 2

𝑞𝑜 (𝐿 − (𝑛 + 2)𝑥 (
𝑥
𝐿
)
𝑛
)

(𝑛 + 1)(𝑛 + 2) }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

(47) 

where the initial rotation and the initial shearing force are found as (𝑤𝑜 = 0,𝑀𝑜 = 0) 

𝜃𝑜 = −
𝐿3(𝑛 + 6)𝑞𝑜

6EI(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)
 

𝑇𝑜 =
𝐿𝑞𝑜

𝑛2 + 3𝑛 + 2
 

 

 

 

(48) 

In both theories 𝜃(𝑥),𝑀(𝑥) 𝑎𝑛𝑑 𝑇(𝑥) are the same for the beam with simply supported at both 

ends. In Eq. (47) 𝑛 = 0 offers a uniformly distributed force (See Eq. 18). 

𝑤(𝑆−𝑆)(𝑛=0)
𝐸 =

𝑥(𝐿3 − 2𝐿𝑥2 + 𝑥3)𝑞𝑜
 24EI

=
𝑞𝑜𝐿

4

24EI
((
𝑥

𝐿
) − 2 (

𝑥

𝐿
)
3

+ (
𝑥

𝐿
)
4

) 

𝜃(𝑆−𝑆)(𝑛=0)
𝐸 = −

(𝐿3 − 6𝐿𝑥2 + 4𝑥3)𝑞𝑜
24EI

 

𝑀(𝑆−𝑆)(𝑛=0)
𝐸 =

1

2
𝑥(𝐿 − 𝑥)𝑞𝑜,              𝑇(𝑆−𝑆)(𝑛=0)

𝐸 =
1

2
(𝐿 − 2𝑥)𝑞𝑜 

 

 

 

 

(49) 
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In the above, 𝑤(𝑆−𝑆)(𝑛=0)
𝐸  overlaps with the result in Ref. [9]. In Eq. (47) 𝑛 = 1 proposes a 

linearly distributed force (triangular shape). 

𝑤(𝑆−𝑆)(𝑛=1)
𝐸 =

𝑥 (14𝐿3 +
6𝑥4

𝐿
− 20𝐿𝑥2) 𝑞𝑜

720EI
 

𝜃(𝑆−𝑆)(𝑛=1)
𝐸 =

(−14𝐿3 −
30𝑥4

𝐿
+ 60𝐿𝑥2) 𝑞𝑜

720EI
 

𝑀(𝑆−𝑆)(𝑛=1)
𝐸 =

1

6
𝑥 (𝐿 −

𝑥2

𝐿
)𝑞𝑜 

𝑇(𝑆−𝑆)(𝑛=1)
𝐸 =

1

6
(𝐿 −

3𝑥2

𝐿
)𝑞𝑜 

 

 

 

 

 

(50) 

These formulas coincides with the open literature [3]. 

𝑤(𝑥)𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 =
𝑞𝑜𝐿

3𝑥 (7 + 3
𝑥4

𝐿4
− 10𝐿

𝑥2

𝐿2
)

360EI
 

θ𝑜−𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 =
7𝑞𝑜𝐿

3

360EI
, θ𝐿−𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 =

8𝑞𝑜𝐿
3

360EI
 

𝑀(𝑥)𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 =
𝑞𝑜𝐿𝑥

6
(1 −

𝑥2

𝐿2
) 

 

 

 

 

(51) 

5.2. C-F Beam under Parabolically Distributed Loads 

The non-zero elements of the initial state vector are 

𝑀𝑜 = −
𝐿2𝑞𝑜
𝑛 + 2

, 𝑇𝑜 =
𝐿𝑞𝑜
𝑛 + 1

 

 

(52) 

Longitudinal variation of the sectional quantities are  

𝑺(𝑥)𝐶−𝐹
𝐸 =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝑥2𝑞𝑜(

6𝐿−𝑛𝑥𝑛+2

(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)

+
3𝐿2

𝑛 + 2 −
𝐿𝑥
𝑛 + 1

)

6EI

𝑥𝐿−𝑛𝑞𝑜 (
(𝑛 + 3)𝐿𝑛+1 (

(𝑛 + 2)𝑥
−2𝐿(𝑛 + 1)

)

−2𝑥𝑛+2
)

2EI(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)

𝐿−𝑛𝑞𝑜 (𝐿
𝑛+1 (

(𝑛 + 2)𝑥
−𝐿(𝑛 + 1)

) − 𝑥𝑛+2)

(𝑛 + 1)(𝑛 + 2)

𝐿𝑞𝑜 − 𝐿
−𝑛𝑥𝑛+1𝑞𝑜

𝑛 + 1 }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

(53) 
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In a cantilever beam 𝜃(𝑥),𝑀(𝑥) 𝑎𝑛𝑑 𝑇(𝑥) are the same in both beam theories. A uniformly 

distributed load is obtained with 𝑛 = 0 in Eq. (53) (see Eqn. 23). 

𝑤(𝐶−𝐹)(𝑛=0)
𝐸 =

𝑥2(6𝐿2 − 4𝐿𝑥 + 𝑥2)𝑞𝑜
24EI

=
𝑞𝑜𝐿

4

24EI
(6 (

𝑥

𝐿
)
2

− 4(
𝑥

𝐿
)
3

+ (
𝑥

𝐿
)
4

) 

𝜃(𝐶−𝐹)(𝑛=0)
𝐸 = −

𝑥(3𝐿2 − 3𝐿𝑥 + 𝑥2)𝑞𝑜
6EI

 

𝑀(𝐶−𝐹)(𝑛=0)
𝐸 = −

1

2
(𝐿 − 𝑥)2𝑞𝑜 

𝑇(𝐶−𝐹)(𝑛=0)
𝐸 = (𝐿 − 𝑥)𝑞𝑜 

 

 

 

(54) 

In the above, the deflection formula overlaps by Armagan’s [10] expression. Sectional 

quantities in a cantilever beam under linearly distributed forces is obtained with 𝑛 = 1 in Eq. 

(53) as follows [3]. 

𝑤(𝐶−𝐹)(𝑛=1)
𝐸 =

𝑥2𝑞𝑜
6EI

(𝐿2 +
𝑥3

20𝐿
−
𝐿𝑥

2
) 

𝜃(𝐶−𝐹)(𝑛=1)
𝐸 = −

𝑥(8𝐿3 − 6𝐿2𝑥 + 𝑥3)𝑞𝑜
24EI𝐿

 

𝑀(𝐶−𝐹)(𝑛=1)
𝐸 = −

(𝐿 − 𝑥)2(2𝐿 + 𝑥)𝑞𝑜
6𝐿

 

𝑇(𝐶−𝐹)(𝑛=1)
𝐸 =

(𝐿 − 𝑥)(𝐿 + 𝑥)𝑞𝑜
2𝐿

 

 

 

 

 

(55) 

Peddieson et al. [10] presented the following 

𝑤(𝐶−𝐹)−𝑃𝑒𝑑𝑑𝑖𝑒𝑠𝑜𝑛 𝑒𝑡 𝑎𝑙.[10]
𝐸 =

𝐿4𝑞𝑜 (
(
𝑥
𝐿)

4+𝑛
+
(𝑛 + 1)(𝑛 + 3)(𝑛 + 4)

2 

−
(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)

6 
(
𝑥
𝐿
)
)

EI(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4) 
 

 

 

 

 

(56) 

However, the transverse displacement in Eq. (53) may be rewritten as 

𝑤(𝐶−𝐹)
𝐸 =

𝐿4𝑞𝑜

(

 
 
 

(
𝑥
𝐿)

4+𝑛

+
(𝑛 + 1)(𝑛 + 3)(𝑛 + 4)

2 (
𝑥
𝐿)

2

−
(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)

6 (
𝑥
𝐿)

3

)

 
 
 

EI(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4) 
 

 

 

 

 

(57) 

The author thinks that there must be typographical errors in Peddieson and et al.’s [10] results. 

 

5.3. C-S Beam under Parabolically Distributed Loads 

The bending moment and the shearing force at the initial section are found as (𝑤𝑜 = 0, 𝜃𝑜 = 0) 
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𝑀𝑜 = −
𝐿2(𝑛 + 6)𝑞𝑜

2(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)
 

𝑇𝑜 =
3𝐿(𝑛 + 5)𝑞𝑜

2(𝑛 + 1)(𝑛 + 3)(𝑛 + 4)
 

 

 

(58) 

The state vector is to be 

𝑺(𝑥)𝐶−𝑆
𝐸 = 𝑭(𝑥)𝑺(0) + ∫ 𝑭(𝑥 − 𝜉)𝒌(𝑥) 𝑑𝜉

𝒙

0

=

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
𝑥2𝐿−𝑛𝑞𝑜 (

𝐿𝑛+1 (
𝐿(𝑛 + 1)(𝑛 + 6)

−(𝑛 + 2)(𝑛 + 5)𝑥
)

+4𝑥𝑛+2
)

4EI(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)

𝑥𝐿−𝑛𝑞𝑜 (
𝐿𝑛+1 (

3(𝑛 + 2)(𝑛 + 5)𝑥
−2𝐿(𝑛 + 1)(𝑛 + 6)

)

−4(𝑛 + 4)𝑥𝑛+2
)

4EI(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)

𝐿−𝑛𝑞𝑜 (
𝐿𝑛+1 (

3(𝑛 + 2)(𝑛 + 5)𝑥
−𝐿(𝑛 + 1)(𝑛 + 6)

)

−2(𝑛 + 3)(𝑛 + 4)𝑥𝑛+2
)

2(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)

𝑞𝑜 (
3𝐿(𝑛 + 5)

(𝑛 + 3)(𝑛 + 4)
− 2𝐿−𝑛𝑥𝑛+1)

2(𝑛 + 1) }
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

(59) 

As stated above, a uniformly distributed force is obtained by substituting 𝑛 = 0 in Eq. (59) (see 

Eq. 21) 

𝑤(𝐶−𝑆)(𝑛=0)
𝐸 =

𝑥2(3𝐿 − 2𝑥)(𝐿 − 𝑥)𝑞𝑜
48EI

 

𝜃(𝐶−𝑆)(𝑛=0)
𝐸 = −

𝑥(6𝐿2 − 15𝐿𝑥 + 8𝑥2)𝑞𝑜
48EI

 

𝑀(𝐶−𝑆)(𝑛=0)
𝐸 = −

1

8
(𝐿 − 4𝑥)(𝐿 − 𝑥)𝑞𝑜 

𝑇(𝐶−𝑆)(𝑛=0)
𝐸 =

1

8
(5𝐿 − 8𝑥)𝑞𝑜 

 

 

 

(60) 

To get a linearly distributed force, 𝑛 = 1 should be used in Eq. (59). 

𝑤(𝐶−𝑆)(𝑛=1)
𝐸 =

𝑥2(7𝐿3 − 9𝐿2𝑥 + 2𝑥3)𝑞𝑜
240EI𝐿

 

𝜃(𝐶−𝑆)(𝑛=1)
𝐸 =−

𝑥(14𝐿3 − 27𝐿2𝑥 + 10𝑥3)𝑞𝑜
240EI𝐿

  

𝑀(𝐶−𝑆)(𝑛=1)
𝐸 = −

(7𝐿3 − 27𝐿2𝑥 + 20𝑥3)𝑞𝑜
120𝐿

 

𝑇(𝐶−𝑆)(𝑛=1)
𝐸 =

1

4
(
9𝐿

10
−
2𝑥2

𝐿
)𝑞𝑜 

 

 

 

 

 

(61) 
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5.4. C- C Beam under Parabolically Distributed Loads 

Initial bending moment and shearing force at the initial section of a C-C Euler-Bernoulli beam 

are obtained as (𝑤𝑜 = 0, 𝜃𝑜 = 0) 

𝑀𝑜 = −
2𝐿2𝑞𝑜

𝑛3 + 9𝑛2 + 26𝑛 + 24
 

𝑇𝑜 =
6𝐿𝑞𝑜

𝑛3 + 8𝑛2 + 19𝑛 + 12
 

 

 

(62) 

The state vector at any section is 

𝑺(𝑥)𝐶−𝐶
𝐸 = 𝑭(𝑥)𝑺(0) + ∫ 𝑭(𝑥 − 𝜉)𝒌(𝑥) 𝑑𝜉

𝒙

0

=

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
𝑥2𝐿−𝑛𝑞𝑜 (

𝐿𝑛+1 (
𝐿(𝑛 + 1)

−(𝑛 + 2)𝑥
)

+𝑥𝑛+2
)

EI(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)

𝑥𝐿−𝑛𝑞𝑜 (
𝐿𝑛+1 (

3(𝑛 + 2)𝑥
−2𝐿(𝑛 + 1)

)

−(𝑛 + 4)𝑥𝑛+2
)

EI(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)

𝐿−𝑛𝑞𝑜 (
−2𝐿𝑛+1 (

𝐿(𝑛 + 1)

−3(𝑛 + 2)𝑥
)

−(𝑛 + 3)(𝑛 + 4)𝑥𝑛+2
)

(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)

𝑞𝑜(

6𝐿

𝑛3 + 8𝑛2 + 19𝑛 + 12

−
𝐿−𝑛𝑥𝑛+1

𝑛 + 1

)

}
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

(63) 

In the above 𝑛 = 0 means a uniformly distributed force as follows (see Eq. 25) 

𝑤(𝐶−𝐶)(𝑛=0)
𝐸 =

𝑥2(𝐿 − 𝑥)2𝑞𝑜
24EI

 

𝜃(𝐶−𝐶)(𝑛=0)
𝐸 =−

𝑥(𝐿 − 2𝑥)(𝐿 − 𝑥)𝑞𝑜
12EI

 

𝑀(𝐶−𝐶)(𝑛=0)
𝐸 =−

1

12
(𝐿2 − 6𝐿𝑥 + 6𝑥2)𝑞𝑜 

𝑇(𝐶−𝐶)(𝑛=0)
𝐸 =

1

2
(𝐿 − 2𝑥)𝑞𝑜 

 

 

 

 

 

(64) 

For 𝑛 = 1 the following is achieved  

𝑤(𝐶−𝐶)(𝑛=1)
𝐸 =

𝑥2(𝐿 − 𝑥)2(2𝐿 + 𝑥)𝑞𝑜
120EI𝐿

,    𝜃(𝐶−𝐶)(𝑛=1)
𝐸 =−

𝑥(4𝐿3 − 9𝐿2𝑥 + 5𝑥3)𝑞𝑜
120EI𝐿

 

𝑀(𝐶−𝐶)(𝑛=1)
𝐸 =−

(2𝐿3 − 9𝐿2𝑥 + 10𝑥3)𝑞𝑜
60𝐿

,    𝑇(𝐶−𝐶)(𝑛=1)
𝐸 =(

3𝐿

20
−
𝑥2

2𝐿
) 𝑞𝑜 

 

 

 

(65) 
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It may be noted that, when  𝑛 = 0, 𝜃(𝑥),𝑀(𝑥), anⅆ 𝑇(𝑥) are all the same in both two beam 

theories. However, they are no longer the same for different values of  𝑛. 

6. Solutions for Concentrated Force and Moments 

 

 

Fig. 8. Concentrated force and couple acting at section 𝑥 = 𝑎 

With the help of a discontinuity matrix due to a single couple moment,  𝜇𝑜, and a single force, 

𝑃𝑜, at section  x = 𝑎 in Eq. (11), 𝑲(𝑎) = {0 0 −𝜇𝑜 −𝑃𝑜}
𝑇, the following may be obtained 

for 𝑎 ≤ 𝑥 ≤ 𝐿 (Fig. 8) 

𝑭(𝑥 − 𝑎)𝑲(𝑎) =

{
  
 

  
 
(𝑎 − 𝑥)2((𝑥 − 𝑎)𝑃𝑜 + 3𝜇𝑜)

6EI
(𝑎 − 𝑥)((𝑥 − 𝑎)𝑃𝑜 + 2𝜇𝑜)

2EI
(𝑎 − 𝑥)𝑃𝑜 − 𝜇𝑜

−𝑃𝑜 }
  
 

  
 

 

 

 

 

(66) 

When only concentrated loads are considered, the general solution is defined in two regions, 

which are defined as before and after 𝑥 = 𝑎, as follows (see Eq. 14) 

𝑺(𝑥)𝐼 = 𝑭(𝑥)𝑺(0) 

𝑺(𝑥)𝐼𝐼 = 𝑭(𝑥)𝑺(0) + 𝑭(𝑥 − 𝑎)𝑲(𝑎) 

 

 

(67) 

6.1. S-S Beam under Concentrated Force and Moments 

In this case the non-zero elements of 𝑺(0) are 

𝜃𝑜 =
(3𝑎2 − 6𝑎𝐿 + 2𝐿2)𝜇𝑜 − 𝑎(𝑎 − 2𝐿)(𝑎 − 𝐿)𝑃𝑜

6EI𝐿
 

𝑇𝑜 =
(𝐿 − 𝑎)𝑃𝑜 + 𝜇𝑜

𝐿
 

 

 

 

(68) 

The elements of the state vector are 
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𝑺(𝑥)𝑆−𝑆
𝐼 = 𝑭(𝑥)𝑺(0)=

{
 
 
 
 
 
 

 
 
 
 
 
 
(
𝑥(𝑎 − 𝐿)𝑃𝑜(𝑎

2 − 2𝑎𝐿 + 𝑥2)

−𝑥𝜇𝑜 (
3𝑎2 − 6𝑎𝐿
+2𝐿2 + 𝑥2

)
)

6EI𝐿

(
𝜇𝑜(3𝑎

2 − 6𝑎𝐿 + 2𝐿2 + 3𝑥2)

−(𝑎 − 𝐿)𝑃𝑜 (
𝑎2 − 2𝑎𝐿
+3𝑥2

)
)

6EI𝐿
𝑥((𝐿 − 𝑎)𝑃𝑜 + 𝜇𝑜)

𝐿
(𝐿 − 𝑎)𝑃𝑜 + 𝜇𝑜

𝐿 }
 
 
 
 
 
 

 
 
 
 
 
 

 

𝑺(𝑥)𝑆−𝑆
𝐼𝐼 = 𝑭(𝑥)𝑺(0) + 𝑭(𝑥 − 𝑎)𝑲(𝑎) =

{
 
 
 
 
 

 
 
 
 
 
((𝐿 − 𝑥)(

𝜇𝑜(3𝑎
2 + 𝑥(𝑥 − 2𝐿))

−𝑎𝑃𝑜(𝑎
2 + 𝑥(𝑥 − 2𝐿))

))

6EI𝐿

(
𝜇𝑜(3𝑎

2 + 2𝐿2 − 6𝐿𝑥 + 3𝑥2)

−𝑎𝑃𝑜(𝑎
2 + 2𝐿2 − 6𝐿𝑥 + 3𝑥2)

)

6EI𝐿
(𝐿 − 𝑥)(𝑎𝑃𝑜 − 𝜇𝑜)

𝐿
𝜇𝑜 − 𝑎𝑃𝑜

𝐿 }
 
 
 
 
 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

(69) 

When the beam is only subjected to a single force at the mid-span (𝜇𝑜 = 0, 𝑎 = 𝐿 2)⁄  then Eq. 

(69) becomes 

𝑺(𝑥)𝑆−𝑆
𝐼 =

{
 
 
 
 

 
 
 
 
(3𝐿2𝑥 − 4𝑥3)𝑃𝑜

48EI

−
(𝐿2 − 4𝑥2)𝑃𝑜

16EI
𝑥𝑃𝑜
2
𝑃𝑜
2 }

 
 
 
 

 
 
 
 

,     𝑺(𝑥)𝑆−𝑆
𝐼𝐼 =

{
 
 
 
 

 
 
 
 −

(𝐿 − 𝑥)(𝐿2 − 8𝐿𝑥 + 4𝑥2)𝑃𝑜
48EI

−
(𝐿 − 2𝑥)(3𝐿 − 2𝑥)𝑃𝑜

16EI
1

2
(𝐿 − 𝑥)𝑃𝑜

−
𝑃𝑜
2 }

 
 
 
 

 
 
 
 

 

 

 

 

(70) 

The dimensionless displacement may be defined as 𝑤̅ = 𝐸𝐼𝑤 (𝑃𝑜𝐿
3)⁄  for a point force. From 

Eq. (70) with 𝑥 = 𝐿/2 it is found as 𝑤̅𝑚𝑎𝑥 = 1 48⁄ = 0.020833. Aydoğdu [12] reported it as 

𝑤̅𝑚𝑎𝑥 = 0.022222.  

 

6.2. C-C Beam under Concentrated Force and Moments 

The unknown elements of the initial state vector are  

𝑀𝑜 = −
(𝑎 − 𝐿)((𝐿 − 3𝑎)𝜇𝑜 + 𝑎(𝑎 − 𝐿)𝑃𝑜)

𝐿2
,     𝑇𝑜 =

(𝑎 − 𝐿)((𝑎 − 𝐿)(2𝑎 + 𝐿)𝑃𝑜 − 6𝑎𝜇𝑜)

𝐿3
 

 

(71) 
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With the help of the above, the following is written 

 

𝑺(𝑥)𝐶−𝐶
𝐼 = 𝑭(𝑥)𝑺(0)=

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝑥2(𝑎 − 𝐿)(

3𝜇𝑜(−3𝑎𝐿 + 2𝑎𝑥 + 𝐿
2)

+(𝑎 − 𝐿)𝑃𝑜 (
3𝑎𝐿

−𝑥(2𝑎 + 𝐿)
)
)

6EI𝐿3

−

𝑥(𝑎 − 𝐿)(
2𝜇𝑜(3𝑎(𝑥 − 𝐿) + 𝐿

2)

+(𝑎 − 𝐿)𝑃𝑜 (
2𝑎𝐿

−𝑥(2𝑎 + 𝐿)
)
)

2EI𝐿3

−

(𝑎 − 𝐿)(
𝜇𝑜(−3𝑎𝐿 + 6𝑎𝑥 + 𝐿

2)

+(𝑎 − 𝐿)𝑃𝑜 (
𝑎𝐿

−𝑥(2𝑎 + 𝐿)
)
)

𝐿3

(𝑎 − 𝐿)((𝑎 − 𝐿)(2𝑎 + 𝐿)𝑃𝑜 − 6𝑎𝜇𝑜)

𝐿3 }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

𝑺(𝑥)𝐶−𝐶
𝐼𝐼 = 𝑭(𝑥)𝑺(0) + 𝑭(𝑥 − 𝑎)𝑲(𝑎) =

{
 
 
 
 
 

 
 
 
 
 𝑎(𝐿 − 𝑥)2 (

3𝜇𝑜(𝑎(𝐿 + 2𝑥) − 2𝐿𝑥)

−𝑎𝑃𝑜(𝑎(𝐿 + 2𝑥) − 3𝐿𝑥)
)

6EI𝐿3

−

𝑎(𝐿 − 𝑥) (
𝑎𝑃𝑜(2𝑎𝑥 + 𝐿

2 − 3𝐿𝑥)

−2𝜇𝑜(3𝑎𝑥 + 𝐿
2 − 3𝐿𝑥)

)

2EI𝐿3

𝑎 (
𝑎𝑃𝑜(−𝑎𝐿 + 2𝑎𝑥 + 2𝐿

2 − 3𝐿𝑥)

+𝜇𝑜(3𝑎(𝐿 − 2𝑥) − 4𝐿
2 + 6𝐿𝑥)

)

𝐿3

𝑎(6(𝐿 − 𝑎)𝜇𝑜 + 𝑎(2𝑎 − 3𝐿)𝑃𝑜)

𝐿3 }
 
 
 
 
 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(72) 

When C-C Euler beam is only subjected to a single force at the mid-span (𝜇𝑜 = 0, 𝑎 = 𝐿 2)⁄  

then Eq. (72) becomes 

𝑺(𝑥)𝐶−𝐶
𝐼 =

{
 
 
 
 

 
 
 
 
𝑥2(3𝐿 − 4𝑥)𝑃𝑜

48EI

−
𝑥(𝐿 − 2𝑥)𝑃𝑜

8EI

−
1

8
(𝐿 − 4𝑥)𝑃𝑜

𝑃𝑜
2 }

 
 
 
 

 
 
 
 

,         𝑺(𝑥)𝐶−𝐶
𝐼𝐼 =

{
 
 
 
 

 
 
 
 −

(𝐿 − 4𝑥)(𝐿 − 𝑥)2𝑃𝑜
48EI

−
(𝐿 − 2𝑥)(𝐿 − 𝑥)𝑃𝑜

8EI
1

8
(3𝐿 − 4𝑥)𝑃𝑜

−
𝑃𝑜
2 }

 
 
 
 

 
 
 
 

 

 

 

(73) 

 

6.3. C-F Beam under Concentrated Force and Moments 

For a C-F Euler-Bernoulli beam under concentrated force and moments, the initial state vector 

is determined as 

𝑺(0) = {0 0 (𝜇𝑜 − 𝑎𝑃𝑜) 𝑃𝑜}
𝑇 

 

(74) 
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Variation of the sectional quantities along the beam is 

 

 

𝑺(𝑥)𝐶−𝐹
𝐼 = 𝑭(𝑥)𝑺(0)=

{
 
 

 
 −

𝑥2((𝑥 − 3𝑎)𝑃𝑜 + 3𝜇𝑜)

6EI
𝑥((𝑥 − 2𝑎)𝑃𝑜 + 2𝜇𝑜)

2EI
(𝑥 − 𝑎)𝑃𝑜 + 𝜇𝑜

𝑃𝑜 }
 
 

 
 

 

𝑺(𝑥)𝐶−𝐹
𝐼𝐼 = 𝑭(𝑥)𝑺(0) + 𝑭(𝑥 − 𝑎)𝑲(𝑎) =

{
 
 
 

 
 
 (

3𝑎(𝑎 − 2𝐿)𝜇𝑜
−(𝑎3 − 3𝑎2𝐿 + 3𝑎𝐿2 − 3𝐿3)𝑃𝑜

)

6EI
2𝑎𝜇𝑜 − (𝑎

2 − 2𝑎𝐿 + 2𝐿2)𝑃𝑜
2EI

(𝑎 − 𝐿)𝑃𝑜
0 }

 
 
 

 
 
 

 

 

 

 

 

 

(75) 

If only a single force acts on a C-F Euler-Bernoulli beam at section 𝑥 = 𝐿, solutions in two 

regions become (𝜇𝑜 = 0 𝑎𝑛𝑑   𝑎 = 𝐿) 

𝑺(𝑥)𝐶−𝐹
𝐼 =

{
 
 

 
 
𝑥2(3𝐿 − 𝑥)𝑃𝑜

6EI
𝑥(𝑥 − 2𝐿)𝑃𝑜

2EI
(𝑥 − 𝐿)𝑃𝑜

𝑃𝑜 }
 
 

 
 

 

 𝑺(𝑥)𝐶−𝐹
𝐼𝐼 =

{
 
 

 
 
𝐿3𝑃𝑜
3EI

−
𝐿2𝑃𝑜
2EI
0
0 }

 
 

 
 

 

 

 

 

 

 

 

(76) 

 

6.4. C-S Beam under Concentrated Force and Moments 

Unknown elements of the initial state vector are 

𝑀𝑜 =
(3𝑎2 − 6𝑎𝐿 + 2𝐿2)𝜇𝑜 − 𝑎(𝑎 − 2𝐿)(𝑎 − 𝐿)𝑃𝑜

2𝐿2
 

𝑇𝑜 =
(𝑎3 − 3𝑎2𝐿 + 2𝐿3)𝑃𝑜 − 3𝑎(𝑎 − 2𝐿)𝜇𝑜

2𝐿3
 

 

 

(77) 

For this boundary condition, the whole elements of the state vector at any section are defined 

by 
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𝑺(𝑥)𝐶−𝑆
𝐼 = 𝑭(𝑥)𝑺(0)=

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

𝑥2

(

 
 

3𝜇𝑜 (
𝑎2(𝑥 − 3𝐿)

+2𝑎𝐿(3𝐿 − 𝑥) − 2𝐿3
)

+(𝑎 − 𝐿)𝑃𝑜 (
𝑎2(3𝐿 − 𝑥)

+2𝑎𝐿(𝑥 − 3𝐿) + 2𝐿2𝑥
)
)

 
 

12EI𝐿3

(

 
𝑥𝜇𝑜 (

𝑎2(6𝐿 − 3𝑥)

+6𝑎𝐿(𝑥 − 2𝐿) + 4𝐿3
)

+𝑥(𝑎 − 𝐿)𝑃𝑜 (
𝑥(𝑎2 − 2𝑎𝐿 − 2𝐿2)

−2𝑎𝐿(𝑎 − 2𝐿)
)
)

 

4EI𝐿3

(

 
 

𝜇𝑜 (
3𝑎2(𝐿 − 𝑥)

+6𝑎𝐿(𝑥 − 𝐿) + 2𝐿3
)

−(𝑎 − 𝐿)𝑃𝑜 (
𝑎2(𝐿 − 𝑥)

+2𝑎𝐿(𝑥 − 𝐿) + 2𝐿2𝑥
)
)

 
 

2𝐿3

(
(𝑎3 − 3𝑎2𝐿 + 2𝐿3)𝑃𝑜
−3𝑎(𝑎 − 2𝐿)𝜇𝑜

)

2𝐿3 }
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

𝑺(𝑥)𝐶−𝑆
𝐼𝐼 = 𝑭(𝑥)𝑺(0) + 𝑭(𝑥 − 𝑎)𝑲(𝑎) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝑎(𝐿 − 𝑥)

(

 
𝑎𝑃𝑜 (

−2𝑎𝐿2 + 𝑥2(𝑎 − 3𝐿)

−2𝐿𝑥(𝑎 − 3𝐿)
)

+3𝜇𝑜 (
𝑎(2𝐿2 + 2𝐿𝑥 − 𝑥2)

+2𝐿𝑥(𝑥 − 2𝐿)
)
)

 

12EI𝐿3

𝑎(

𝑎𝑃𝑜 (
−𝐿𝑥(2𝑎 + 3𝑥)

+𝑎𝑥2 − 2𝐿3 + 6𝐿2𝑥
)

+𝜇𝑜 (
6𝐿𝑥(𝑎 + 𝑥) − 3𝑎𝑥2

+4𝐿3 − 12𝐿2𝑥
)
)

4EI𝐿3

𝑎(𝐿 − 𝑥)(3(𝑎 − 2𝐿)𝜇𝑜 − 𝑎(𝑎 − 3𝐿)𝑃𝑜)

2𝐿3

𝑎(𝑎(𝑎 − 3𝐿)𝑃𝑜 − 3(𝑎 − 2𝐿)𝜇𝑜)

2𝐿3 }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(78) 

If 𝜇𝑜 = 0 and  𝑎 = 𝐿/2, Eq. (77) turns to be 

  

𝑺(𝑥)𝐶−𝑆
𝐼 =

{
 
 
 
 

 
 
 
 
𝑥2(9𝐿 − 11𝑥)𝑃𝑜

96EI
𝑥(11𝑥 − 6𝐿)𝑃𝑜

32EI
1

16
(11𝑥 − 3𝐿)𝑃𝑜

11𝑃𝑜
16 }

 
 
 
 

 
 
 
 

,    𝑺(𝑥)𝐶−𝑆
𝐼𝐼 =

{
 
 
 
 

 
 
 
 −

(𝐿 − 𝑥)(2𝐿2 − 10𝐿𝑥 + 5𝑥2)𝑃𝑜
96EI

−
(4𝐿2 − 10𝐿𝑥 + 5𝑥2)𝑃𝑜

32EI
5

16
(𝐿 − 𝑥)𝑃𝑜

−
5𝑃𝑜
16 }

 
 
 
 

 
 
 
 

 

 

 

 

(79) 
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7. Conclusions 

In the present study some remarkable formulas are proposed for the bending behavior of 

classically supported Euler-Bernoulli beams under both distributed and concentrated loads via 

the transfer matrix approach. For classical boundary conditions it is observed that, Euler-

Bernoulli beam solutions are independent from 𝐿/ℎ ratios. This is an expected conclusion. The 

present formulas which also comprise the point and distributed couple moments may be very 

useful to the readers. It is worth noting that sectional quantities at positive sections may be 

obtained by using those formulas. Since the present analysis is a linear elastic, the superposition 

principle is hold under combined loads. 
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Abstract 

In the present study, a numerical model is developed for wheel-snow interaction using finite element method based 

software. For this aim, the model of tire is designed using SolidWorks and ANSYS Design modeler. The analyses 

of the prepared models are performed using ANSYS Explicit Dynamics considering Mooney-Rivilin tire model. 

Frictional relationship between wheel and snow ground is established considering snow erosion as linear, in the 

analyses. Six different mesh sizes are considered, the effect of mesh size and number on the accuracy of the 

obtained results and solution time is discussed. Finally, it is concluded that models with 0.025 m and 0.02 m mesh 

sizes give more accurate results than the others and a strong linear proportion exists between the number of 

iteration and the mesh size. 

Keywords: Finite Element Method; Modelling; Snow; Wheel; Mesh size. 

1. Introduction 

The basic function of the wheel is to ensure contact between the vehicle and the surface of 

coating. This contact is provided by volcanized rubber which is covering of the tread. The 

contact area between tire tread and ground is an average 150cm2. The contact between wheel 

and road surface provides the vehicle driving comfort and road holding. Friction force between 

wheel and snow, vertical force of vehicle, directional and angular velocity are the important 

parameters that effect the performance of the vehicle. At the same time, it has been observed 

that the internal pressure of the wheel is effective in handling, also [1]. 

The numerical analysis of wheel using finite element method is usually performed with three 

different methods, the first one is analyzing the contact area; the second one is designing and 

analyzing the two-dimensional model, and the last one is analyzing the discretized three-

dimensional model. From the results of experimental analyses, it has been found that the third 

method proves more accurate results than the other methods [2-7]. 
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According to previous studies, for isotropic systems the node-centered and triangular mesh cell-

centered approaches presented more accurate results than the other ones. At the same time for 

quadrilateral mesh cell-centered approach is also accurate. Moreover, it should be noted that 

minimum required element number in the forward plastic zone must be equal to sum of the 

number of elements in plastic zone and loading cycles planned to be applied in the [8-10]. 

In recent days, experimental analyses are more costly than numerical ones such as finite element 

analysis, however, in case of unconscious use finite element method may cause loss of time. In 

order to get similar results, it is necessary to select the correct system. Hence, discretization 

known as a part of the system and plays an important role in gaining time [11-13]. 

The purpose of this study is to determine the value of the tire and its sinking on the snow, shear 

stress, strain and stresses occurred on the snow, which is designed by ANSYS software [14] 

based on finite element method. The model of tire is designed by SolidWorks, then in ANSYS 

Design modeler, snow material on the surface contacts, dimensions are prepared in 

1.8×1.4×0.2m. The analysis of the prepared models are done by ANSYS Explicit Dynamics. 

It’s designed for the 195/60 R15 wheel with size specifications to observe its effects on the 

snow, in the model, internal pressure of wheel is defined 200 kPa. In the ANSYS program, for 

the wheel model used, Mooney- Rivilin tire model is utilized. In the structure of radial tires, 

ropes are placed in the wheel’s pattern vertical and steel wires are on the heel connection. At 

the same time, the used wires in body and heel parts are placed parallel in pattern of wheel. 

Frictional relationship between wheel and snow ground is established. And friction coefficient 

of ANSYS program is assumed to be 0.3. Snow erosion is considered linear. A vertical force 

of 4.5 kN was applied to the wheel. To increase the quality of the element of the snow surface, 

element size is defined as 0.02 m. The wheels both perform rotating and displacement 

movement, angular and shift speed, for the forward movement of the wheels from rim center, 

it’s placed in the center of wheel. In this case limit time 0.2 second is given for the solution. 

2. Modeling of Tire on Snow 

ANSYS-Explicit dynamics software is used to analyze the model where the modeling of wheels 

and snow materials is described as well as the 195/60R15 wheel is designed in Solidworks 

software. This model is defined in Step format in ANSYS Design modeler. Fig. 1. shows, snow 

material designed in Design modeler with 1.8m length, 1.4m width and 0.2m height as tangent 

to the wheel tread. Mesh dimensions were selected as 0.015m, 0.02m, 0.025m, 0.03m, 0.035m 

and 0.04 m. 

 

Fig. 1. Solid Works model of wheel and snow 
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The inner liner, tread and sidewall of the wheel are described as Mooney-Rivilin hyper-elastic 

material, hence two parameter Mooney-Rivilin strain energy potential is defined as follow: 

 

                                   (1) 

where, W, I1, I2, C10, C01 and d are strain energy potential, first deviatoric strain invariant, second 

deviatoric strain invariant, material constants characterizing the deviatoric deformation of the 

material and material incompressibility parameter, respectively.  

Besides, the initial shear modulus is defined as: 

                                                               (2) 

The material properties are available in ANSYS material library [14], as C10=150 kPa; C01= 15 

kPa,1000 kg/m3.  

In the structure of radial tires body ply is perpendicular to tread pattern. The body ply model is 

presented in Fig. 2. Here, the following material properties were considered:         Eply=9.87 

GPa; plyply1500 kg/m3.  

 

Fig. 2. The Model of Body Ply 

The belts are placed parallel to tread pattern and the model is illustrated in Fig. 3.  Here, the 

following material properties were considered: Ebelt=172.2GPa; belt belt =5900 kg/m3. 
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Fig. 3. The Model of Belts 

Snow can be regarded as the cellular form in which ice crystals stick together. Here the low-

density snow material is defined as Drucker-Prager model and the considered material 

properties are ED-P=13.79 MPa; D-PD-P=200 kg/m3, D-PkPa                                                          

D-Pwhereandrepresents Drucker-Prager cohesion and Drucker-Prager friction 

angle, respectively.  

The average load for each wheel of vehicles is 4.5 kN. Directional and angular velocities are 

selected as 0.5 m/s and 1 rad/s, respectively, an internal pressure of 200 kPa is defined to the 

wheels and the coefficient of friction of snow is defined as 0.3. 

3. Illustrative Examples 

In this section, six numerical analyses are performed to examine the given problem. Analyses 

were performed ANSYS Explicit dynamics. Here, the wheel moved 0.2 seconds after it is left 

on the snow. During this time the wheel has traveled 10 cm. The type of mesh is automatically 

selected, and the mesh sizes are defined as described in the modeling section.  

Example 1:  

In the first example, sinking on the snow for different mesh sizes is examined and results are 

presented in Fig. 4. It is found that except the mesh size of 0.015 m, all models have shown 

almost similar results. By considering the other mesh sizes in the last part, tire sinkage is 

between 12 and 14 cm on snow. By observing the size as if mesh 0.02 and 0.25 m, nearly the 

same results happened. At the same time, the values in the models of 0.035 and 0.04 m in mesh 

size which are close to each other are exhibited while. The 0.035 m mesh size model exhibited 

values close to 0.030, while the values in the beginning are similar to the 0.04 m mesh size 

model. However, considering the previous studies, the 0.025 and 0.02 m mesh size models 

show more accurate results than the other models. 
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Fig. 4. The variation of tire sinkage on snow for different mesh sizes 

 

Example 2:  

In the second example, the values of shear stress formed on the snow for different mesh sizes 

are investigated and results were plotted in Fig. 5. Similar to the sinking results on snow, 0.015 

m mesh size model showed different results than the others. Here, 0.02 and 0.025 m mesh size 

models values are similar. In the beginning (up to 3 cm travel), the 0.03 m mesh size model 

exhibited values close to the 0.04 m mesh size results; however, between 3 and 7 cm of progress 

the 0.03 m mesh size model showed close values to the 0.02 and 0.025 mesh size models, in 

the last part (7-10 cm travel), 0.03m mesh size model’s shear stress values are between 0.035 

and 0.04 m mesh size models. The 0.035 and 0.04 m mesh size models exhibited different 

results in the first 2 cm of progress, but showed close results in the last 5-10 cm progress. 

Consequently, considering the previous studies, the 0.02 and 0.025 m mesh size models showed 

more accurate results than the other models. 

 

Fig. 5. The variation of shear stress for different mesh sizes 
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Example 3:  

In the third example, the values of normal stress formed on the snow for different mesh sizes 

are studied and results are given in Fig. 6. In all models except for the 0.015 m mesh size model, 

first linear increase is observed, then, followed by unregulated change and finally linear 

decrease observed. 0.020 and 0.025 m mesh size models exhibited nearly equal results to each 

other. However, the 0.030, 0.035, and 0.040 m mesh size models showed different values in the 

first 5 cm travel, they showed values close to the 0.02 and 0.025 m mesh size models at the end 

point.  

 

Fig. 6. The variation of normal stress for different mesh sizes 

 

Example 4:  

In the fourth example, the values of strain formed on the snow for different mesh sizes are 

investigated and results were plotted in Fig. 7. First, when the 0.015 m mesh size model is 

examined, two intense changes are observed in the snow deformation curve of this model and 

it is found that it has higher value than the other models. As it can be seen in this graph, 0.02 

and 0.025 m mesh size models displayed close behavior in the last 6 cm progress, but the 0.02 

m mesh size model at the first 4 cm showed a strong increase compared to the 0.025 model. 

When the other models were compared, itis observed that, although they showed similar results 

at the first 0.5 cm progression, they had different values in the following sections. 
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Fig. 5. The variation of strain for different mesh sizes 

Example 5:  

In the fifth example, the relation between mesh size and solution time is studied and results are 

presented in Fig. 8. It is found that, there is a strong linear relationship between exponential of 

the mesh size and the solution time, i.e., the solution time increases as the mesh size gets 

exponentially smaller. 

 

Fig. 6. The variation of time logarithm versus mesh size 
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Example 6:  

In the last example, the relationship between mesh size and number of iteration was discussed 

and results are plotted in Fig. 9. It is concluded that, there is a strong linear proportion between 

the number of solution iteration and the exponential mesh size i.e., the mesh size exponentially 

increases as the number of cycles decreases.  

 

Fig. 9. The variation of number of iteration versus mesh size 

4. Conclusion 

In the present study, a numerical model is developed for wheel-snow interaction using finite 

element method based software. For this aim, the model of tire is designed using SolidWorks 

and ANSYS Design modeler. The analyses of the prepared models are performed using ANSYS 

Explicit Dynamics considering Mooney- Rivilin tire model. Frictional relationship between 

wheel and snow ground is established considering snow erosion as linear, in the analyses. Six 

different mesh sizes are considered, the effect of mesh size and number on the accuracy of the 

obtained results and solution time is discussed. Briefly, it was found that for sinking, shear 

stress, normal stress and strain of the snow 0.025 and 0.02 m mesh size models show more 

accurate results than the other models as well as there is a strong linear proportion between the 

number of solution iteration and the mesh size i.e., the mesh increases as the number of cycles 

decreases.  
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Abstract 

Using the true temperature distribution along the radial coordinate, closed-form formulas are offered for readers 

to study the thermo-mechanical behavior of variable thickness disks having both convergent and divergent 

hyperbolic thickness profiles made of conventional materials. Internal and external pressures, centrifugal forces 

and thermal loads due to the differences in prescribed surface temperatures are all considered with three boundary 

conditions: free-free (a circular annulus), fixed-free (a disk mounted on a rotating shaft at the inner surface), and 

fixed-fixed (a disk mounted on a rotating shaft at the inner surface and cased at the outer surface) boundary 

conditions. A parametric study is also conducted in almost real working environment in which the outer surface 

of the disk has considerably higher temperature rather than the inner surface. The thermomechanical linear elastic 

response of a hyperbolic mounted rotating disk subjected to the external pressure induced by blades is originally 

handled by those proposed formulas.  

Keywords: Variable thickness disk, nonuniform rotating disk, closed-form elasticity solution, exact solution, 

analytical solution, thermomechanical, thermal analysis.  

1. Introduction 

As a rotating machinery element, rotating disks may operate as a circular annulus or as a disk 

attaching a rotating shaft at its center. A rigid casing may exist at the outer surface of such a 

disk. Their thickness may vary along the radial direction linearly, hyperbolically, parabolically, 

exponentially or so on and so forth.  It may be made of any kind of traditional or advanced 

materials. Rotating disks may act in high temperature environments like turbine rotors, 

flywheels and gears and may be subjected to simultaneously external pressures due to the 

existence of the blades. In such cases, the thermo-mechanical analyses come into prominence 

in the design of such structures. It is obvious that the existence of closed-form formulas that 

can be directly used in the design stage in relation to the subject matter is to be of great 

convenience for engineers. 

Thermal-related analyses of uniform disks made of an isotropic and homogeneous materials 

have paid much attention than disks having varying section properties and made of advanced 
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composite materials [1-10].  From those, Güven and Altay [1] investigated the elastic–plastic 

stress distribution of a solid disk due to nonuniform heat source under external pressure. 

Kulkarni and Deshmukh [4] addressed the thermal stresses in a thick annular disk under steady 

temperature field. Nejad and Afshin [6] offered an analytical solution of transient thermoelastic 

behaviors of rotating pressurized disks subjected to arbitrary boundary and initial conditions. 

Kaur et al. [8] observed that thermal effect in the disk increase the value of circumferential 

stress at the internal surface and radial stresses at the external surface for compressible as 

compare to incompressible material. Based on a variational principle considering the radial 

displacement field as unknown, Nayak and Saha [9] evaluated the influence of thermo-

mechanical loading on stresses and deformation states in a rotating disk with varying 

thicknesses. They considered different disk geometries as well as temperature distribution 

profiles to calculate the limit angular speed of the disks under thermo-mechanical loading. 

Yıldırım [10] offered a consistent and an all-in-one analytical study for the determination of 

heat-induced, pressure-induced, and centrifugal force-induced axisymmetric exact deformation 

and stresses in a thick-walled spherical vessel, a cylindrical vessel, and a uniform disk at 

specified constant surface temperatures and at a constant angular velocity. Yıldırım [10] 

included both the inner and outer pressures in the formulation of annular structures made of an 

isotropic and homogeneous linear elastic material. For disks, three different boundary 

conditions were taken into account to consider mechanical engineering applications in the study 

[10].  

Thermal-related analyses of uniform disks made of anisotropic materials [11-19] and 

functionally graded materials [20-28] are other investigation themes. Unfortunately, the number 

of studies on the thermal/thermal related analysis of variable thickness disks made of either 

functionally graded (FG) materials [29-42] or traditional materials [43-46] are not enough. In 

those studies, a variable-thickness disk is generally considered as a combination of multi-

layered uniform disks [29, 30-32, 34, 36, 40]. For example, Chiba [29] assumed the annular 

disk is to be a multilayered one with stepwise thickness variation, where each layer is assumed 

to have constant deterministic material properties. Bayat et al. [30] considered a rotating FG 

disk with either parabolic or hyperbolic thickness under a steady temperature field. The disk 

was assumed to be composed of sub-disks of uniform thicknesses. In another study, Bayat et 

al. [31] analyzed the thermoelastic bending of FGM rotating disks based on the first order shear 

deformation theory.  Bayat et al. [32] studied on a thermo elastic analysis for axisymmetric 

rotating disks made of temperature-dependent power-law FG material with variable thickness.  

It was assumed in Ref. [32] that the temperature field is to be uniformly distributed over the 

disk surface and varied in the radial direction. Bayat et al. [32] presented semi-analytical 

solutions for the displacement field for solid/annular disks under free-free and fixed-free 

boundary conditions. Bayat et al. [33] also offered exact elastic solutions for axisymmetric 

variable-thickness hollow rotating disks with heat source made of functionally power-law-

graded (FG) materials under free-free and fixed-free boundary conditions. They showed that 

the temperature distribution in a hyperbolic disk is the smallest compared with other thickness 

profiles. A hyperbolic-convergent FG disk has smaller stresses because of thermal load 

compared with the uniform disk. Nie and Batra [35] studied axisymmetric stresses in a rotating 

disk made of a rubber-like material that was modeled as isotropic, linear thermoelastic, and 

incompressible. Damircheli and Azadi [36] carried out thermal and mechanical stress analyses 

of a rotating disk having either parabolically or hyperbolically varying thicknesses made of 

functionally graded material by using finite element method (FEM). By utilizing a 2D plane 

stress analysis and assuming a power form temperature distribution of over the disk with the 

higher temperature at the outer surface, Hassani et al. [37] obtained stress and strains of rotating 

disks with non-uniform thickness and material properties subjected to thermo-elastic loading 
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under different boundary conditions. They used semi-exact methods of Liao’s homotopy 

analysis method (HAM), Adomian’s decomposition method and He’s variational iteration 

method (VIM). Hassani et al. [37] compared the results of those three methods with Runge–

Kutta’s solutions. Tütüncü and Temel [38] studied numerically the thermoelastic analysis of 

FG rotating disks of variable thickness. Golmakani [39] scrutinized large deflection 

thermoelastic analysis of FG solid and hollow rotating axisymmetric disk with uniform and 

variable thickness subjected to thermo-mechanical loading. Kurşun and Topçu [40] handled the 

elastic stress analysis of a hollow disk with variable thickness made of FG materials under 

linearly increasing temperature distribution.  Mahdavi et al. [41] worked on the thermoplastic 

analysis of FG rotating hyperbolic disks by dividing the domain into some finite sub-domains 

in the radial direction, in which the properties were assumed to be constant. Recently, Jabbari 

et. al. [42] presented a thermoelastic analysis of rotating disks with different thickness profiles 

made of power-graded and exponential-graded materials subjected to internal pressure. They 

verified the results with finite element method. 

As stated above, there are also relatively less study on the thermal-related analyses of isotropic 

and homogeneous disks with varying thickness. By using hyper-geometric differential equation 

in terms of radial displacement, Vivio and Vullo [43] and Vullo and Vivio [44] introduced an 

analytical procedure for evaluation of elastic stresses and strains in rotating conical disks and 

in non-linear variable thickness rotating disks made of an isotropic and homogeneous material, 

either solid or annular, subjected to thermal loads. In the presence of the linear thermal gradient, 

Garg et al. [45] analyzed the steady state creep in a rotating disk having linearly varying 

thickness and made of composite containing silicon carbide particles (SiC) in a matrix of pure 

aluminium.  Çetin et al. [46] studied analytically an elastic stress analysis of annular isotropic 

and homogeneous bi-material hyperbolic disks subjected to the mechanical and thermo-

mechanical loads. 

As can be seen from the literature survey mentioned above, the realm of the thermal-related 

analyses of such disks having varying thicknesses needs further works.  

In the present study, the exact distribution of the temperature along the radial coordinate in a 

hyperbolic disk is, first, obtained analytically based on the solution of Fourier heat-conduction 

differential equation under thermal boundary conditions defined by specified surface 

temperatures. This closed-form solution for temperature distribution is, then, substitute in the 

Navier equation obtained for the elasto-static response of such disks. Finally, Navier equations 

containing thermal effects are solved by applying mechanical boundary conditions. In the 

solution process of both the heat conduction and Navier equations, both of which are in the 

form of a second order differential equation with constant coefficients, a well-known Euler-

Cauchi technique is employed [47]. Those formulas are compared with those available in the 

open literature. 

2. Formulation of the Thermal Behavior of the Disk  

An accurate solution of the temperature field in the structure is a crucial first step to study the 

thermal-related analyses in an appropriate manner. The rate of the heat flux, q , in a solid object 

is proportional to the temperature gradient, 𝛁𝑇. The Fourier law governing the heat transfer by 

conduction is 

𝒒 = −𝑘𝛁𝑇 = −𝑘 𝑔𝑟𝑎𝑑(𝑇) 
 

(1) 



V. Yıldırım 

76 

 

where k  is the thermal conductivity. Temperature gradient is given in cylindrical coordinates,

),,( zr  , by 

𝛁𝑇 = 𝑔𝑟𝑎𝑑(𝑇) =
𝜕𝑇

𝜕𝑟
𝒆𝑟 +

1

𝑟

𝜕𝑇

𝜕𝜃
𝒆𝜃 +

𝜕𝑇

𝜕𝑧
𝒆𝑧 

 

(2) 

where ( zr eee ,,  ) are the unit vectors in cylindrical coordinates, r  is the radial coordinate,   is 

the circumferential coordinate. By using the first law of thermodynamics, Fourier heat 

conduction equation may be written as follows. 

𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
+ 𝑑𝑖𝑣(𝒒) = 𝑞̇𝑔𝑒𝑛 

 

(3) 

where  is the density, and 𝑐𝑝 is the specific heat capacity, 𝑞̇𝑔𝑒𝑛 is the heat generation per unit 

volume. Using Eq. (1) the following may be written for the divergence of the heat flux as 

𝑑𝑖𝑣(𝒒) = 𝛁. 𝒒 = −𝑘(𝛁. 𝛁𝑇) = −𝑘∆𝑇 = −𝑘∇2𝑇 

 

(4) 

By assuming that there is no heat generation in the structure, 𝑞̇𝑔𝑒𝑛 = 0, and the steady state 

case (𝜕𝑇 𝜕𝑡⁄ = 0) exists, substitution of Eq. (4) into the heat conduction equation (3) gives the 

Laplacian of the temperature that is the divergence of the gradient of the temperature as follows 

𝑘∇2𝑇 = 𝑘 (
1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑇

𝜕𝑟
) +

1

𝑟2
𝜕2𝑇

𝜕𝜃2
+
𝜕2𝑇

𝜕𝑧2
) = 0 

 

(5) 

This is a differential equation governing steady state 3-D temperature distribution for both 

cylinders and discs having uniform thickness and constant thermal conductivity without heat 

generation. As observed from this equation and Eq. (1), both the temperature field and heat flux 

distribution will be the same for both cylinders and disks with uniform thickness. However, a 

disk with variable thickness offers different temperature and heat flux profiles than hollow 

cylinders and uniform disks even for a constant thermal conductivity. For axisymmetric 

problems (derivatives with respect to 𝜃 and 𝑧 are all zero) of a variable thickness disk, Eq. (5) 

takes the form of    

𝑘

𝑟ℎ(𝑟)

𝑑

𝑑𝑟
(𝑟ℎ(𝑟)

𝑑𝑇(𝑟)

𝑑𝑟
)=0 

 

(6) 

It can be concluded from the above that the temperature field is to be the same for all materials 

exhibiting both isotropy and homogeneity properties as in the traditional materials although the 

material type is to be of important in the heat flux calculations. For any thickness profile, ℎ(𝑟), 
defined by a differentiable function, Eq. (6) may also be written as 

𝑑2𝑇(𝑟)

𝑑𝑟2
+ (

1

𝑟
+

𝑑ℎ(𝑟)
𝑑𝑟
ℎ(𝑟)

)
𝑑𝑇(𝑟)

𝑑𝑟
= 0 

 

 

(7) 

Now, consider a hyperbolic disc profile defined by  

ℎ(𝑟) = ℎ𝑜 (
𝑟

𝑎
)
𝑚

 

 

(8) 

https://en.wikipedia.org/wiki/Divergence
https://en.wikipedia.org/wiki/Gradient
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where 𝑎 denotes the inner radius of the disk, 𝑚  is the profile parameter, and ℎ𝑜 is the reference 

thickness (Fig. 1). While  𝑚 > 0 defines divergent hyperbolic profiles, 𝑚 < 0 identifies 

convergent ones. Uniform thickness disks are characterized by 𝑚 = 0 (Fig. 1). 

 
Convergent disc (m<0) 

 
Divergent disc (m>0) 

 
Uniform disc (m=0) 

 

Fig. 1. 3-D view of convergent/divergent hyperbolic and uniform disc profiles 

Substitution of Eq. (8) into Eq. (7) gives  

𝑑2𝑇(𝑟)

𝑑𝑟2
+
(1 +𝑚)

𝑟

𝑑𝑇(𝑟)

𝑑𝑟
=0 

 

(9) 

This is an Euler-Cauchy type differential equation with constant coefficients. Solution of Eq. 

(9) is given by [47] 

21
21)(


rCrCrT   

 

(10) 

where 1  and 2  are the distinct characteristic real roots of the differential equation while 1C  

and 2C  are integration constants. All types of thermal boundary conditions such as Dirichlet’s, 

Neumann’s, Robin’s and mixed boundary conditions may be applied to determine the 

integration constants of the physical problem. In the present study the first kind boundary 

conditions (Dirichlet) are to be considered.   

aTaT )( ,    bTbT )(  
 

(11) 

In the above, aT and bT are the inner surface and outer surface temperatures, respectively. 

Considering Eq. (10) together with Eq. (11), a closed form solution for the temperature 

distribution in a hyperbolic disk along the radial coordinate is obtained as follows 
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𝑇(𝑟)(ℎ𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐) = 𝑟−𝑚 (
𝑎𝑚𝑏𝑚(𝑇𝑏 − 𝑇𝑎)

𝑎𝑚 − 𝑏𝑚
) + (

𝑎𝑚𝑇𝑎 − 𝑏
𝑚𝑇𝑏

𝑎𝑚 − 𝑏𝑚
) = 𝑟−𝑚𝜓1 + 𝜓2 

 

(12) 

As seen from Eq. (12), temperature distribution in a hyperbolic disk becomes indefinite when 

the uniform thickness is concerned with 𝑚 = 0. In this case either a numerical value very close 

to zero but not exactly equal to zero such as 𝑚 = 0.000000000001 may be used directly in 

Eq. (12) or Eq. (9) is resolved for 𝑚 = 0 under the same boundary conditions [11] to get the 

following 

𝑇(𝑟)(𝑢𝑛𝑖𝑓𝑜𝑟𝑚) = (
𝑙𝑛𝑎𝑇𝑏 − 𝑇𝑎𝑙𝑛𝑏

𝑙𝑛𝑎 − 𝑙𝑛𝑏
) + (

𝑇𝑎 − 𝑇𝑏
𝑙𝑛𝑎 − 𝑙𝑛𝑏

) 𝑙𝑛𝑟 = ∅2 + ∅1𝑙𝑛𝑟 

 

(13) 

3. Formulation of the Thermo-mechanical Behavior of the Disk  

Under small deformations and a state of axisymmetric plane stress assumptions for thin plates, 

field equations of a variable thickness rotating disk made of a traditional material in polar 

coordinates (𝑟, 𝜃) are reduced to  

𝜀𝑟(𝑟) =
𝑑𝑢𝑟(𝑟)

𝑟
,      𝜀𝜃(𝑟) =

𝑢𝑟(𝑟)

𝑟
 

 

𝜎𝑟(𝑟) =
𝐸

(1 − 𝜈2)
𝜀𝑟(𝑟) +

𝐸𝜈

(1 − 𝜈2)
𝜀𝜃(𝑟) −

𝐸(1 + 𝜈)

(1 − 𝜈2)
𝛼T 

 

𝜎𝜃(𝑟) =
𝐸𝜈

(1 − 𝜈2)
𝜀𝑟(𝑟) +

𝐸

(1 − 𝜈2)
𝜀𝜃(𝑟) −

𝐸(1 + 𝜈)

(1 − 𝜈2)
𝛼T 

 
 

𝑑

𝑑𝑟
(𝑟ℎ(𝑟)𝜎𝑟(𝑟)) − ℎ(𝑟)𝜎𝜃(𝑟) = −𝜌ℎ(𝑟)𝜔

2𝑟2  

 

(14a) 

 

 

(14b) 

 

 

(14c) 

 

 

(14d) 

 

where 𝑢𝑟(𝑟) is the radial displacement, 𝜀𝑟(𝑟) and  𝜀𝜃(𝑟) are the radial and circumferential 

strains, respectively; 𝜎r(𝑟) is the radial stress, 𝜎𝜃(𝑟)is the hoop stress, 𝜔 is a constant angular 

velocity, 𝜌 is the material density, 𝐸 is Young’s modulus, 𝛼 is  is the coefficient of expansion 

of the disc material and 𝜈 is Poisson’s ratio. 

Equations (14a) are called the strain-displacement relations, Eqs. (14b) and (14c) are referred 

to as linear elastic stress-strain relations, and finally Eq. (14d) is the equilibrium equation under 

the centrifugal forces. Navier equation which is in the form of a second order differential 

equation with variable coefficients is derived from the field equations given in Eq. (14) as 

follows 

𝑑2𝑢𝑟(𝑟)

𝑑𝑟2
+(

1

𝑟
+

𝑑ℎ(𝑟)
𝑑𝑟
ℎ(𝑟)

)  
𝑑𝑢𝑟(𝑟)

𝑑𝑟
 

+(−
1

𝑟2
+
𝜈

𝑟

𝑑ℎ(𝑟)
𝑑𝑟
ℎ(𝑟)

)𝑢𝑟(𝑟)= −
(1 − 𝜈2)

𝐸
𝜌𝜔2𝑟 − 𝛼(1 + 𝜈)

𝑑𝑇(𝑟)

𝑑𝑟
 

 

 

 

 

(15) 
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By using Eqs. (8) and (12), Eq. (15) may be written for a hyperbolic disk as follows 

𝑑2𝑢𝑟(𝑟)

𝑑𝑟2
+ 
(1 + 𝑚)

𝑟

𝑑𝑢𝑟(𝑟)

𝑑𝑟
+
(−1 +𝑚𝜈)

𝑟2
𝑢𝑟(r)= −

(1 − 𝜈2)

𝐸
𝜌𝜔2𝑟 + 𝑟−(1+𝑚)Δ 

 

(16) 

where 

Δ = −𝑚α(1 + 𝜈)𝜓1 
 

(17) 

For a uniform thickness disk, Eq. (15) is rewritten by considering Eq. (13) as follows [10] 

𝑑2𝑢𝑟(𝑟)

𝑑𝑟2
+ 
1

𝑟

𝑑𝑢𝑟(𝑟)

𝑑𝑟
−
1

𝑟2
𝑢𝑟(r)= −

(1 − 𝜈2)

𝐸
𝜌𝜔2𝑟 + 𝛼(1 + 𝜈)

∅1
𝑟

 

 

(18) 

4. Closed-form Solutions of Navier Equations  

The closed-form solutions of both Eqs. (16) and (18) under each mechanical boundary 

conditions presented in Table 1 are to be given in this section. Those formulas may be used by 

recalling that the superposition principle holds. 

𝑢𝑟(𝑟)
(𝑇ℎ𝑒𝑟𝑚𝑜𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙) = 𝑢𝑟(𝑟)

(𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒) + 𝑢𝑟(𝑟)
(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛) + 𝑢𝑟(𝑟)

(𝑇ℎ𝑒𝑟𝑚𝑎𝑙) 

𝜎𝑟(𝑟)
(𝑇ℎ𝑒𝑟𝑚𝑜𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙) = 𝜎𝑟(𝑟)

(𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒) + 𝜎𝑟(𝑟)
(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛) + 𝜎𝑟(𝑟)

(𝑇ℎ𝑒𝑟𝑚𝑎𝑙) 

𝜎𝜃(𝑟)
(𝑇ℎ𝑒𝑟𝑚𝑜𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙) = 𝜎𝜃(𝑟)

(𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒) + 𝜎𝜃(𝑟)
(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛) + 𝜎𝜃(𝑟)

(𝑇ℎ𝑒𝑟𝑚𝑎𝑙) 

 

 

 

 

(19) 

The equivalent von-Mises stresses by an axisymmetric plane stress assumption may be 

computed by 

𝜎𝑒𝑞(𝑟)
(𝑇ℎ𝑒𝑟𝑚𝑜𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙) = (√𝜎𝑟(𝑟)

2 + 𝜎𝜃(𝑟)
2 − 𝜎𝑟(𝑟)𝜎𝜃(𝑟))

(𝑇ℎ𝑒𝑟𝑚𝑜𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙)
 

 

(20) 

 

Table 1. Mechanical boundary conditions  

Free-Free 

(circular annulus) 

Fixed-Free 

(mounted disk) 

Fixed-Fixed 

(mounted and cased disk) 

 

 
   

𝜎𝑟(𝑎) = −𝑝𝑎 

𝜎𝑟(𝑏) = −𝑝𝑏 

𝑢𝑟(𝑎) = 0 

𝜎𝑟(𝑏) = −𝑝𝑏 

𝑢𝑟(𝑎) = 0 

𝑢𝑟(𝑏) = 0 
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4.1. Under Mechanical Pressure Loads 

Elastic fields in a hyperbolic disk subjected to both the internal and external pressures (𝜔 = 0,
𝛼 = 0) are found under free-free conditions as  

𝑢𝑟(𝑟)(𝐹𝑟𝑒𝑒−𝐹𝑟𝑒𝑒)
(𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒)

=

{
 

 

−

2(𝜈2 − 1)𝑝𝑎𝑎
1
2
(𝑚+𝛷+2)𝑟

1
2
(−𝑚−𝛷) (

𝑏𝛷(𝑚 − 2𝜈 − 𝛷)

−𝑟𝛷(𝑚 − 2𝜈 + 𝛷)
)

𝐸(𝑎𝛷 − 𝑏𝛷)(𝑚 − 2𝜈 + 𝛷)(−𝑚 + 2𝜈 + 𝛷)

}
 

 

 

                                              +

{
 

 

−

2(𝜈2 − 1)𝑝𝑏𝑏
1
2
(𝑚+𝛷+2)𝑟

1
2
(−𝑚−𝛷) (

𝑎𝛷(−𝑚 + 2𝜈 + 𝛷)

+𝑟𝛷(𝑚 − 2𝜈 + 𝛷)
)

𝐸(𝑎𝛷 − 𝑏𝛷)(𝑚 − 2𝜈 + 𝛷)(−𝑚 + 2𝜈 + 𝛷)

}
 

 

 

 

 

 

 

 

(21a) 

𝜎𝑟(𝑟)(𝐹𝑟𝑒𝑒−𝐹𝑟𝑒𝑒)
(𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒) = {

𝑝𝑎𝑎
1
2
(𝑚+𝛷+2)(𝑏𝛷 − 𝑟𝛷)𝑟

1
2
(−𝑚−𝛷−2)

𝑎𝛷 − 𝑏𝛷
} 

                                                                  +{
𝑝𝑏(𝑎

𝛷 − 𝑟𝛷)𝑏
1
2
(𝑚+𝛷+2)𝑟

1
2
(−𝑚−𝛷−2)

𝑏𝛷 − 𝑎𝛷
} 

 

 

 

 

(21b) 

𝜎𝜃(𝑟)(𝐹𝑟𝑒𝑒−𝐹𝑟𝑒𝑒)
(𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒)

=

{
 

 𝑝𝑎𝑎
1
2
(𝑚+𝛷+2)𝑟

1
2
(−𝑚−𝛷−2) (

𝑏𝛷(𝑚 − 2𝜈 − 𝛷)(𝜈(𝑚 + 𝛷) − 2)

+𝑟𝛷(𝑚 − 2𝜈 + 𝛷)(−𝑚𝜈 + 𝜈𝛷 + 2)
)

(𝑎𝛷 − 𝑏𝛷)(𝑚 − 2𝜈 − 𝛷)(𝑚 − 2𝜈 + 𝛷)

}
 

 

 

                                     +

{
 

 𝑝𝑏𝑏
1
2
(𝑚+𝛷+2)𝑟

1
2
(−𝑚−𝛷−2) (

𝑎𝛷(𝑚 − 2𝜈 − 𝛷)(𝜈(𝑚 + 𝛷) − 2)

+𝑟𝛷(𝑚 − 2𝜈 + 𝛷)(−𝑚𝜈 + 𝜈𝛷 + 2)
)

(𝑎𝛷 − 𝑏𝛷)(𝑚 − 2𝜈 + 𝛷)(−𝑚 + 2𝜈 + 𝛷)

}
 

 

 

 

 

 

 

(21c) 

under fixed-free conditions as 

𝑢𝑟(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑟𝑒𝑒)
(𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒) = {−

2(𝜈2 − 1)𝑝𝑏(𝑎
𝛷 − 𝑟𝛷)𝑏

1
2
(𝑚+𝛷+2)𝑟

1
2
(−𝑚−𝛷)

𝐸(𝑎𝛷(𝑚 − 2𝜈 + 𝛷) + 𝑏𝛷(−𝑚 + 2𝜈 + 𝛷))
} 

 

 

(22a) 

𝜎𝑟(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑟𝑒𝑒)
(𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒)

=

{
 

 

−

𝑝𝑏𝑏
1
2
(𝑚+𝛷+2)𝑟

1
2
(−𝑚−𝛷−2) (

𝑎𝛷(𝑚 − 2𝜈 + 𝛷)

+𝑟𝛷(−𝑚+ 2𝜈 + 𝛷)
)

𝑎𝛷(𝑚 − 2𝜈 + 𝛷) + 𝑏𝛷(−𝑚 + 2𝜈 + 𝛷)

}
 

 

 

 

 

(22b) 

𝜎𝜃(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑟𝑒𝑒)
(𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒) =

{
 

 

−

𝑝𝑏𝑏
1
2
(𝑚+𝛷+2)𝑟

1
2
(−𝑚−𝛷−2) (

𝑎𝛷(𝜈(𝑚 + 𝛷) − 2)

+𝑟𝛷(−𝑚𝜈 + 𝜈𝛷 + 2)
)

𝑎𝛷(𝑚 − 2𝜈 + 𝛷) + 𝑏𝛷(−𝑚 + 2𝜈 + 𝛷)

}
 

 

 

 

 

(22c) 

In Eqs. (21) and (22) 

𝛷 = √4 +𝑚2 − 4𝑚𝜈 

 

(23) 
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Equation (21) is a special application of formulas derived for functionally graded disks in Ref. 

[48]. Homogeneous solutions of Eq. (18) for free-free disks are (𝜔 = 0, 𝛼 = 0) 

𝑢𝑟(𝑟)(𝐹𝑟𝑒𝑒−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠⁄ )
(𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒)

= {−
𝑎2𝑝𝑎(𝑏

2(𝜈 + 1) − (𝜈 − 1)𝑟2)

𝐸𝑟(𝑎2 − 𝑏2)
} + {

𝑏2𝑝𝑏(𝑎
2(𝜈 + 1) − (𝜈 − 1)𝑟2)

𝐸𝑟(𝑎2 − 𝑏2)
} 

 

 

 

(24a) 

𝜎𝑟(𝑟)(𝐹𝑟𝑒𝑒−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠⁄ )
(𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒)

= {
𝑎2𝑝𝑎(𝑏

2 − 𝑟2)

𝑟2(𝑎2 − 𝑏2)
} + {

𝑏2(𝑎2 − 𝑟2)𝑝𝑏
𝑟2(𝑏2 − 𝑎2)

} 

 

(24b) 

𝜎𝜃(𝑟)(𝐹𝑟𝑒𝑒−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠⁄ )
(𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒)

= −{
𝑎2𝑝𝑎(𝑏

2 + 𝑟2)

𝑟2(𝑎2 − 𝑏2)
} + {

𝑏2(𝑎2 + 𝑟2)𝑝𝑏
𝑟2(𝑎2 − 𝑏2)

} 

 

(24c) 

Closed-form solutions in Eq. (24) overlaps with Roark’s formulas [49]. For a uniform mounted 

disk subjected to the only external pressure, solutions become 

𝑢𝑟(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠⁄ )
(𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒) = {

𝑏2(𝜈2 − 1)𝑝𝑏(𝑎 − 𝑟)(𝑎 + 𝑟)

𝐸𝑟(𝑎2(𝜈 − 1) − 𝑏2(𝜈 + 1))
} 

 

(25a) 

𝜎𝑟(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠⁄ )
(𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒) = {

𝑏2𝑝𝑏((𝜈 + 1)𝑟
2 − 𝑎2(𝜈 − 1))

𝑟2(𝑎2(𝜈 − 1) − 𝑏2(𝜈 + 1))
} 

 

(25b) 

𝜎𝜃(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠⁄ )
(𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒) = {

𝑏2𝑝𝑏(𝑎
2(𝜈 − 1) + (𝜈 + 1)𝑟2)

𝑟2(𝑎2(𝜈 − 1) − 𝑏2(𝜈 + 1))
} 

 

(25c) 

To the best of the author’s knowledge, Eqs. (22) and (25) are offered for the first time in the 

present study. These equations may be directly used to better simulate aero-disks subjected to 

blade pressures.  

4.2. Under Mechanical Centrifugal Forces 

If a disk is assumed to only rotate about an axis passing through its centroid at a constant angular 

velocity, the general solution of Eq. (16) is to be  

𝑢𝑟(𝑟)
(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛) = 𝑟

1
2
(−𝑚−𝛷)(𝐵1 + 𝐵2𝑟

𝛷) + 𝑟3𝛺 

 

(26a) 

𝜎𝑟(𝑟)
(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛) =

1

2
(

𝐸

1 − 𝜈2
) 𝑟

1
2
(−2−𝑚−𝛷)(

−𝐵1(𝑚 − 2𝜈 + 𝛷)

+𝐵2𝑟
𝛷(−𝑚 + 2𝜈 + 𝛷)

+2𝑟
1
2
(6+𝑚+𝛷)(3 + 𝜈)𝛺

) 

 

 

(26b) 

𝜎𝜃(𝑟)
(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛) =

1

2
(

𝐸

1 − 𝜈2
) 𝑟

1
2
(−2−𝑚−𝛷)(

𝐵2𝑟
𝛷(2 − 𝑚𝜈 + 𝜈𝛷)

−𝐵1(−2 + 𝜈(𝑚 + 𝛷))

+2𝑟
1
2
(6+𝑚+𝛷)(1 + 3𝜈)𝛺

) 

 

 

(26c) 

where 

𝛷 = √4 +𝑚2 − 4𝑚𝜈 ,              𝛺 =
(−1 + 𝜈2)𝜌𝜔2

𝐸(8 +𝑚(3 + 𝜈))
 

 

(27) 
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and 

𝐵1
(𝐹𝑟𝑒𝑒−𝐹𝑟𝑒𝑒) =

2(𝜈 + 3)𝛺𝑎𝛷𝑏
1
2
(𝑚+𝛷+6) − 2(𝜈 + 3)𝛺𝑏𝛷𝑎

1
2
(𝑚+𝛷+6)

(𝑎𝛷 − 𝑏𝛷)(𝑚 − 2𝜈 + 𝛷)
 

𝐵2
(𝐹𝑟𝑒𝑒−𝐹𝑟𝑒𝑒)

=
2(𝜈 + 3)𝛺 (𝑎

1
2
(𝑚+𝛷+6) − 𝑏

1
2
(𝑚+𝛷+6))

(𝑎𝛷 − 𝑏𝛷)(𝑚 − 2𝜈 − 𝛷)
 

 

 

 

(28a) 

𝐵1
(𝐹𝑖𝑥𝑒𝑑−𝐹𝑟𝑒𝑒)

=
𝛺𝑏𝛷𝑎

1
2
(𝑚+𝛷+6)(𝑚 − 2𝜈 − 𝛷) + 2(𝜈 + 3)𝛺𝑎𝛷𝑏

1
2
(𝑚+𝛷+6)

𝑎𝛷(𝑚 − 2𝜈 + 𝛷) + 𝑏𝛷(−𝑚+ 2𝜈 + 𝛷)
 

𝐵2
(𝐹𝑖𝑥𝑒𝑑−𝐹𝑟𝑒𝑒) = −

𝛺(𝑎
1
2
(𝑚+𝛷+6)(𝑚 − 2𝜈 + 𝛷) + 2(𝜈 + 3)𝑏

1
2
(𝑚+𝛷+6))

𝑎𝛷(𝑚 − 2𝜈 + 𝛷) + 𝑏𝛷(−𝑚+ 2𝜈 + 𝛷)
 

 

 

 

(28b) 

𝐵1
(𝐹𝑖𝑥𝑒𝑑−𝐹𝑖𝑥𝑒𝑑)

=
𝛺 (𝑏𝛷𝑎

1
2
(𝑚+𝛷+6) − 𝑎𝛷𝑏

1
2
(𝑚+𝛷+6))

𝑎𝛷 − 𝑏𝛷
 

𝐵2
(𝐹𝑖𝑥𝑒𝑑−𝐹𝑖𝑥𝑒𝑑)

= −
𝛺 (𝑎

1
2
(𝑚+𝛷+6) − 𝑏

1
2
(𝑚+𝛷+6))

𝑎𝛷 − 𝑏𝛷
 

 

 

 

(28c) 

Solutions (26) is a special case of the formulas in Refs. [50-51]. If a uniform rotating disk is 

concerned, solutions turn to be [10, 49] 

𝑢𝑟(𝑟)(𝐹𝑟𝑒𝑒−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚⁄ )
(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛)

=
𝜌𝜔2(𝑎2(𝜈 + 3)(𝑏2(𝜈 + 1) − (𝜈 − 1)𝑟2) − (𝜈 − 1)𝑟2(𝑏2(𝜈 + 3) − (𝜈 + 1)𝑟2))

8𝐸𝑟
 

 

 

(29a) 

𝜎𝑟(𝑟)(𝐹𝑟𝑒𝑒−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚⁄ )
(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛) =

(𝜈 + 3)𝜌𝜔2(𝑎2 − 𝑟2)(𝑟2 − 𝑏2)

8𝑟2
 

 

(29b) 

𝜎𝜃(𝑟)(𝐹𝑟𝑒𝑒−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚⁄ )
(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛) =

𝜌𝜔2(𝑎2(𝜈 + 3)(𝑏2 + 𝑟2) + 𝑟2(𝑏2(𝜈 + 3) − (3𝜈 + 1)𝑟2))

8𝑟2
 

 

(29c) 

and  

𝑢𝑟(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚⁄ )
(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛)

=

(𝜈2 − 1)𝜌𝜔2(𝑎 − 𝑟)(𝑎 + 𝑟) (
𝑎2(𝑏2(𝜈 + 1) − (𝜈 − 1)𝑟2)

+𝑏2((𝜈 + 1)𝑟2 − 𝑏2(𝜈 + 3))
)

8𝐸𝑟(𝑎2(𝜈 − 1) − 𝑏2(𝜈 + 1))
 

 

 

 

 

(30a) 

𝜎𝑟(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚⁄ )
(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛) =

𝜌𝜔2(𝑟2 − 𝑏2)(

𝑎4(𝜈2 − 1)

−𝑎2(𝜈 − 1)(𝜈 + 3)(𝑏2 + 𝑟2)

+𝑏2(𝜈 + 1)(𝜈 + 3)𝑟2
)

8𝑟2(𝑎2(𝜈 − 1) − 𝑏2(𝜈 + 1))
 

 

 

 

(30b) 
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𝜎𝜃(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚⁄ )
(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛) =

𝜌𝜔2 (

𝑎4(𝜈2 − 1)(𝑏2 + 𝑟2)

−𝑎2(𝜈 − 1)(𝑏4(𝜈 + 3) + (3𝜈 + 1)𝑟4)

−𝑏2(𝜈 + 1)𝑟2(𝑏2(𝜈 + 3) − (3𝜈 + 1)𝑟2)

)

8𝑟2(𝑎2(𝜈 − 1) − 𝑏2(𝜈 + 1))
 

 

 

 

(30c) 

and 

𝑢𝑟(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑖𝑥𝑒𝑑 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 ⁄ 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠)
(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛)

=
(𝜈2 − 1)𝜌𝜔2(𝑟2 − 𝑎2)(𝑟2 − 𝑏2)

8𝐸𝑟
 

 

(31a) 

𝜎𝑟(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑖𝑥𝑒𝑑 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 ⁄ 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠)
(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛)

=

𝜌𝜔2 (
𝑎2((𝜈 + 1)𝑟2 − 𝑏2(𝜈 − 1))

+𝑟2(𝑏2(𝜈 + 1) − (𝜈 + 3)𝑟2)
)

8𝑟2
 

 

 

(31b) 

𝜎𝜃(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑖𝑥𝑒𝑑 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 ⁄ 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠)
(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛)

=

𝜌𝜔2 (
𝑎2(𝑏2(𝜈 − 1) + (𝜈 + 1)𝑟2)

+𝑟2(𝑏2(𝜈 + 1) − (3𝜈 + 1)𝑟2)
)

8𝑟2
 

 

 

(31c) 

4.3. Under Thermal Loads 

If a disk is assumed to be subjected only thermal loads induced by temperature differences at 

the inner and outer surfaces, the homogeneous plus particular solutions of Eq. (16) are to be  

𝑢𝑟(𝑟)
(𝑇ℎ𝑒𝑟𝑚𝑎𝑙) = 𝑟−𝑚(𝑟

𝑚−𝛷
2 (𝐶1 + 𝐶2𝑟

𝛷) + 𝑟𝜒) 

 

(32a) 

𝜎𝑟(𝑟)
(𝑇ℎ𝑒𝑟𝑚𝑎𝑙) = −

1

2
(
𝐸𝐴

1 − 𝜈2
) 𝑟−1−𝑚−

𝛷
2

(

 
𝐶2𝑟

𝑚
2
+𝛷(𝑚 − 2𝜈 − 𝛷)

+𝐶1𝑟
𝑚 2⁄ (𝑚 − 2𝜈 + 𝛷)

+2𝑟1+
𝛷
2(−1 +𝑚 − 𝜈)𝜒)

 −
𝐸𝛼(𝑟−𝑚𝜓1 + 𝜓2)

1 − 𝜈
 

 

 

(32b) 

𝜎𝜃(𝑟)
(𝑇ℎ𝑒𝑟𝑚𝑎𝑙) =

1

2
(

𝐸

1 − 𝜈2
) 𝑟−1−𝑚−

𝛷
2

(

 
𝐶2𝑟

𝑚
2
+𝛷(2 −𝑚𝜈 + 𝜈𝛷)

−𝐶1𝑟
𝑚 2⁄ (−2 + 𝜈(𝑚 + 𝛷))

−2𝑟1+
𝛷
2(−1 + (−1 +𝑚)𝜈)𝜒)

 

−
𝐸𝛼(𝑟−𝑚𝜓1 + 𝜓2)

1 − 𝜈
 

 

 

 

(32c) 

where 

𝜓1 =
𝑎𝑚𝑏𝑚(−𝑇𝑎 + 𝑇𝑏)

𝑎𝑚 − 𝑏𝑚
,     𝜓2 =

𝑎𝑚𝑇𝑎 − 𝑏
𝑚𝑇𝑏

𝑎𝑚 − 𝑏𝑚
 

𝛥 = −𝑚α(1 + 𝜈)𝜓1, 𝜒 =
𝛥

𝑚(−1 + 𝜈)
,      𝛷 = √4 + 𝑚2 − 4𝑚𝜈   

 

 

(33) 

and 
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𝐶1
(𝐹𝑟𝑒𝑒−𝐹𝑟𝑒𝑒)

=

𝑎
𝛷−𝑚
2 𝑏

𝛷−𝑚
2 (

2𝑎𝑏
𝑚+𝛷
2 (α(𝜈 + 1)(𝜓2𝑎

𝑚 + 𝜓1) + 𝜒(𝑚 − 𝜈 − 1))

−2𝑏𝑎
𝑚+𝛷
2 (α(𝜈 + 1)(𝜓2𝑏

𝑚 + 𝜓1) + 𝜒(𝑚 − 𝜈 − 1))

)

(𝑎𝛷 − 𝑏𝛷)(𝑚 − 2𝜈 + 𝛷)
 

𝐶2
(𝐹𝑟𝑒𝑒−𝐹𝑟𝑒𝑒)

=

𝑎−𝑚 2⁄ 𝑏−𝑚 2⁄ (
2𝑎𝑚 2⁄ 𝑏

𝛷
2
+1
(α(𝜈 + 1)(𝜓2𝑏

𝑚 + 𝜓1) + 𝜒(𝑚 − 𝜈 − 1))

−2𝑎
𝛷
2
+1𝑏𝑚 2⁄ (α(𝜈 + 1)(𝜓2𝑎

𝑚 + 𝜓1) + 𝜒(𝑚 − 𝜈 − 1))
)

(𝑎𝛷 − 𝑏𝛷)(𝑚 − 2𝜈 − 𝛷)
 

 

 

 

 

 

(34a) 

𝐶1
(𝐹𝑖𝑥𝑒𝑑−𝐹𝑟𝑒𝑒)

=

𝑎
𝛷−𝑚
2 𝑏

𝛷−𝑚
2 (

𝑎𝜒𝑏
𝑚+𝛷
2 (𝑚 − 2𝜈 − 𝛷)

−2𝑏𝑎
𝑚+𝛷
2 (α(𝜈 + 1)(𝜓2𝑏

𝑚 + 𝜓1) + 𝜒(𝑚 − 𝜈 − 1))
)

𝑎𝛷(𝑚 − 2𝜈 + 𝛷) + 𝑏𝛷(−𝑚 + 2𝜈 + 𝛷)
 

𝐶2
(𝐹𝑖𝑥𝑒𝑑−𝐹𝑟𝑒𝑒)

=

𝑎−𝑚 2⁄ 𝑏−𝑚 2⁄ (
2𝑎𝑚 2⁄ 𝑏

𝛷
2
+1(α(𝜈 + 1)(𝜓2𝑏

𝑚 + 𝜓1) + 𝜒(𝑚 − 𝜈 − 1))

−𝜒𝑎
𝛷
2
+1𝑏𝑚 2⁄ (𝑚 − 2𝜈 + 𝛷)

)

𝑎𝛷(𝑚 − 2𝜈 + 𝛷) + 𝑏𝛷(−𝑚 + 2𝜈 + 𝛷)
 

 

 

 

 

 

(34b) 

𝐶1
(𝐹𝑖𝑥𝑒𝑑−𝐹𝑖𝑥𝑒𝑑)

= −
𝜒𝑎𝛷𝑏

1
2
(−𝑚+𝛷+2) − 𝜒𝑏𝛷𝑎

1
2
(−𝑚+𝛷+2)

𝑎𝛷 − 𝑏𝛷
 

𝐶2
(𝐹𝑖𝑥𝑒𝑑−𝐹𝑖𝑥𝑒𝑑)

=
𝜒(𝑏

1
2
(−𝑚+𝛷+2) − 𝑎

1
2
(−𝑚+𝛷+2))

𝑎𝛷 − 𝑏𝛷
 

 

 

 

(34c) 

Elastic fields in a uniform disk due to the thermal loads are obtained as 

𝑢𝑟(𝑟)(𝐹𝑟𝑒𝑒−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 ⁄ 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠)
(𝑇ℎ𝑒𝑟𝑚𝑎𝑙) =

(

 
 
 
 

𝑎2(𝜈 + 1)𝑙𝑛𝑎(𝜗 − 2𝛼𝛹2) (
𝑏2(𝜈 + 1)

−(𝜈 − 1)𝑟2
)

−𝑏2(𝜈 + 1)𝑙𝑛𝑏 (
𝑎2(𝜈 + 1)

−(𝜈 − 1)𝑟2
) (𝜗 − 2𝛼𝛹2)

+(𝜈 − 1)𝑟2(𝑎 − 𝑏)(𝑎 + 𝑏) (
2𝛼(𝜈 + 1)𝛹1 − 𝜗

+𝜗(𝜈 + 1)𝑙𝑛𝑟
)
)

 
 
 
 

2(𝜈 − 1)(𝜈 + 1)𝑟(𝑎2 − 𝑏2)
 

 

 

 

 

 

 

(35a) 

𝜎𝑟(𝑟)(𝐹𝑟𝑒𝑒−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 ⁄ 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠)
(𝑇ℎ𝑒𝑟𝑚𝑎𝑙) = −

𝐸(𝜗 − 2𝛼𝛹2)(

𝑏2(𝑟2 − 𝑎2)𝑙𝑛𝑏

+𝑎2𝑙𝑛𝑎(𝑏2 − 𝑟2)

+𝑟2(𝑎2 − 𝑏2)𝑙𝑛𝑟

)

2(𝜈 − 1)𝑟2(𝑎2 − 𝑏2)
 

 

 

 

(35b) 

𝜎𝜃(𝑟)(𝐹𝑟𝑒𝑒−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 ⁄ 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠)
(𝑇ℎ𝑒𝑟𝑚𝑎𝑙) =

𝐸

(

 
 (𝜈 + 1)(𝜗 − 2𝛼𝛹2)(

𝑎2𝑙𝑛𝑎(𝑏2 + 𝑟2)

−𝑏2(𝑎2 + 𝑟2)𝑙𝑛𝑏

+𝑟2(𝑏2 − 𝑎2)𝑙𝑛𝑟

)

−𝜗(𝜈 − 1)𝑟2(𝑎2 − 𝑏2) )

 
 

2(𝜈2 − 1)𝑟2(𝑎2 − 𝑏2)
 

 

 

 

 

(35c) 

and  
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𝑢𝑟(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚⁄ )
(𝑇ℎ𝑒𝑟𝑚𝑎𝑙)

=
(

 
𝑎2𝜗𝑙𝑛𝑎 (

𝑏2(𝜈 + 1)

−(𝜈 − 1)𝑟2
) − 𝜗𝑟2𝑙𝑛𝑟 (

𝑏2(𝜈 + 1)

−𝑎2(𝜈 − 1)
)

−𝑏2(𝑎2 − 𝑟2) (
−2𝛼(𝜈 + 1)𝛹1

+(𝜈 + 1)𝑙𝑛𝑏(𝜗 − 2𝛼𝛹2) + 𝜗
)
)

 

2𝑎2(𝜈 − 1)𝑟 − 2𝑏2(𝜈 + 1)𝑟
 

 

 

 

 

(36a) 

𝜎𝑟(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚⁄  𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠)
(𝑇ℎ𝑒𝑟𝑚𝑎𝑙)

=

𝐸

(

 
 
(𝜈 + 1)(𝜗 − 2𝛼𝛹2) (

𝑏2𝑙𝑛𝑏(𝑎2(𝜈 − 1) − (𝜈 + 1)𝑟2)

+𝑟2𝑙𝑛𝑟(𝑏2(𝜈 + 1) − 𝑎2(𝜈 − 1))
)

+𝑎2(𝜈 − 1)(𝑏2 − 𝑟2)(𝜗 − 2𝛼(𝜈 + 1)𝛹1)

−𝑎2𝜗(𝜈2 − 1)𝑙𝑛𝑎(𝑏2 − 𝑟2) )

 
 

2(𝜈2 − 1)𝑟2(𝑎2(𝜈 − 1) − 𝑏2(𝜈 + 1))
 

 

 

 

 

 

 

 

(36b) 

𝜎𝜃(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 ⁄ 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠)
(𝑇ℎ𝑒𝑟𝑚𝑎𝑙)

=

𝐸

(

 
 

𝑎2(𝜈 − 1)(2𝛼(𝜈 + 1)𝛹1(𝑏
2 + 𝑟2) − 𝜗(𝑏2 + 𝜈𝑟2))

+(𝜈 + 1)(𝜗 − 2𝛼𝛹2) (
𝑟2𝑙𝑛𝑟(𝑏2(𝜈 + 1) − 𝑎2(𝜈 − 1))

−𝑏2𝑙𝑛𝑏(𝑎2(𝜈 − 1) + (𝜈 + 1)𝑟2)
)

+𝑎2𝜗(𝜈2 − 1)𝑙𝑛𝑎(𝑏2 + 𝑟2) + 𝑏2𝜗(𝜈2 − 1)𝑟2 )

 
 

2(𝜈2 − 1)𝑟2(𝑎2(𝜈 − 1) − 𝑏2(𝜈 + 1))
 

 

 

 

 

 

 

(36c) 

and  

𝑢𝑟(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑖𝑥𝑒𝑑 𝑈𝑛𝑖𝑓𝑜𝑟𝑚⁄  𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠)
(𝑇ℎ𝑒𝑟𝑚𝑎𝑙) =

𝜗(

𝑏2(𝑟2 − 𝑎2)𝑙𝑛𝑏

+𝑎2𝑙𝑛𝑎(𝑏2 − 𝑟2)

+𝑟2(𝑎2 − 𝑏2)𝑙𝑛𝑟

)

2𝑟(𝑎2 − 𝑏2)
 

 

 

 

(37a) 

𝜎𝑟(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑖𝑥𝑒𝑑 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠⁄ )
(𝑇ℎ𝑒𝑟𝑚𝑎𝑙) =

𝐸

(

 
 

𝑎2𝜗𝑙𝑛𝑎((𝜈 + 1)𝑟2 − 𝑏2(𝜈 − 1))

+𝑏2𝜗𝑙𝑛𝑏(𝑎2(𝜈 − 1) − (𝜈 + 1)𝑟2)

−𝑟2(𝑎2 − 𝑏2) (
−2𝛼(𝜈 + 1)𝛹1 + 𝜗

+(𝜈 + 1)𝑙𝑛𝑟(𝜗 − 2𝛼𝛹2)
)
)

 
 

2(𝜈2 − 1)𝑟2(𝑎2 − 𝑏2)
 

 

 

 

 

(37b) 

𝜎𝜃(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑖𝑥𝑒𝑑 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠⁄ )
(𝑇ℎ𝑒𝑟𝑚𝑎𝑙) =

𝐸

(

 

𝑎2𝜗𝑙𝑛𝑎(𝑏2(𝜈 − 1) + (𝜈 + 1)𝑟2)

−𝑏2𝜗𝑙𝑛𝑏(𝑎2(𝜈 − 1) + (𝜈 + 1)𝑟2)

−𝑟2(𝑎2 − 𝑏2) (
−2𝛼(𝜈 + 1)𝛹1 + 𝜗𝜈

+(𝜈 + 1)𝑙𝑛𝑟(𝜗 − 2𝛼𝛹2)
)
)

 

2(𝜈2 − 1)𝑟2(𝑎2 − 𝑏2)
 

 

 

 

 

(37c) 

where 

𝛹1 =
𝑇𝑏𝑙𝑛𝑎 − 𝑇𝑎𝑙𝑛𝑏

𝑙𝑛𝑎 − 𝑙𝑛𝑏
,         𝛹2 =

𝑇𝑎 − 𝑇𝑏
𝑙𝑛𝑎 − 𝑙𝑛𝑏

 

𝜗 = 𝛼(1 + 𝜈)𝛹2 

 

 

(38) 
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5. Numerical Examples  

A disk made of a stainless steel (SUS304) is chosen with the following properties in numerical 

examples. 

𝑎 = 0.5 𝑚;  𝑏 = 1 𝑚;  𝜔 = 100 (𝑟𝑎𝑑 𝑠⁄ ) 

𝑝𝑎 = 60 (𝑀𝑃𝑎); 𝑝𝑏 = 30 (𝑀𝑃𝑎);  𝑇𝑏 = 100 ℃;  𝑇𝑎 = 20 ℃ 

𝐸 = 201.04 (𝐺𝑃𝑎);   𝜌 = 7800 (𝑘𝑔 𝑚3⁄ );   𝜈 = 0.3262 

𝛼 = 12.33 10−6 (1 𝐾⁄ );   𝑘 = 15.379 (𝑊/𝑚𝐾)  

Dimensionless elastic fields are defined as follows 

𝑢̅𝑟(r) =
𝐸

(1 − 𝜈2)𝜌𝜔2𝑏3 + (1 + 𝜈)𝛼𝐸𝑇𝑏𝑏 + 𝑏𝑝𝑜
𝑢𝑟(𝑟) 

σ̅𝑟(r) =
(1 − 𝜈)

(1 − 𝜈)𝜌𝜔2𝑏2 + 𝛼𝐸𝑇𝑏 + (1 − 𝜈)𝑝𝑜
σ𝑟(𝑟) 

σ̅𝜃(r) =
(1 − 𝜈)

(1 − 𝜈)𝜌𝜔2𝑏2 + 𝛼𝐸𝑇𝑏 + (1 − 𝜈)𝑝𝑜
𝜎𝜃(𝑟) 

 

 

 

 

 

(39) 

where 𝑝𝑜 = 𝑝𝑎 is used for both free-free and fixed-fixed boundary conditions while 𝑝𝑜 = 𝑝𝑏 

for fixed-free surfaces. 

As a first example, the radial temperature distribution in a hyperbolic disk is investigated 

regarding different profile parameters and aspect ratios defined by (𝑎/𝑏). Solutions are 

illustrated by Fig. 2. As can be seen from Fig. 2 that the differences in the temperature 

distributions in a hyperbolic disk become much obvious as the aspect ratios get smaller. A 

convergent disk profile having 𝑚 = −1  exhibits a linear temperature distribution while the 

other profile parameters offer different curves. The temperatures at the intermediate surfaces of 

a disk having divergent profiles decrease faster than convergent ones towards the inner surface 

and increase slowly towards the outer. It is not suitable the use of a linear temperature profile 

instead of the true one, except 𝑚 = −1, for even uniform disks as seen from Fig. 2.  

 

Fig. 2. Variation of the radial temperature distribution with the aspect ratios and profile parameters 
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As a second example, the radial variations of the elastic fields in a hyperbolic disk with the 

profile parameters are to be examined.  Solutions for three boundary conditions are 

demonstrated by Fig. 3 in a comparative manner. The numerical values of some equivalent 

stresses are presented in Table 2. 

 

 

Fig. 3. The radial variations of the elastic fields in a hyperbolic disk with the profile parameters 

As can be observed from Fig. 3 that, the curves are in accordance with the related boundary 

conditions. Observations from this figure are outlined below: 

i. The maximum radial displacement is located at the outer surface for free-free and fixed-

free boundary conditions while it is in the vicinity of the mid-surface for fixed-fixed 

hyperbolic disks. 

ii. The convergent profiles offer smaller radial displacements than divergent and uniform 

ones under free-free and fixed-free boundary conditions. The radial displacements in 

divergent hyperbolic disks are higher than even uniform profiles under free-free and 

fixed-free boundary conditions. 
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iii. The radial stress in free-free divergent hyperbolic disks is in compression at the vicinity 

of both the inner and outer surfaces while it is in tension at the vicinity of mid-surface. 

However, the radial stresses are all in compression in both uniform and convergent disks 

under free-free conditions. 

iv. The maximum radial stress is at the inner surface under both free-free and fixed-free 

conditions except for 𝑚 = −0.4 in free-free and fixed-fixed disks. 

v. Convergent disk profiles exhibit better response to the radial stress variation than both 

uniform and divergent ones for fixed-free disks.    

vi. Fixed-fixed disks have radial and hoop stresses which are completely in compression. 

Convergent disk profiles exhibit better response to the combined thermal and centrifugal 

loads than uniform and divergent ones under fixed-fixed boundary conditions. 

vii. When the variation of the hoop stresses are concerned, convergent profiles seem to be 

better than divergent ones under free-free and fixed-fixed boundaries. The converse is 

true for fixed-free hyperbolic disks. 

viii. For fixed-free disks, divergent profiles having higher parameter values in absolute 

present better hoop stress distribution. 

Table 2. Equivalent stresses in a hyperbolic disk 

 𝑚 

 -0.4 -0.3 -0.2 0 (1.× 10−11) 0.2 0.3 0.4 

 
Fixed-Fixed  (thermal + rotation) (𝑝𝑜 = 𝑝𝑎) 

 

0.5 0.916974 0.783478 0.785315 0.788975 0.792691 0.794532 0.796368 

0.6 0.980805 0.802161 0.803402 0.805805 0.808167 0.809306 0.810422 

0.7 1.02596 0.819335 0.820365 0.822386 0.824401 0.825389 0.826369 

0.8 1.06088 0.834924 0.835901 0.83786 0.839837 0.840827 0.84182 

0.9 1.08956 0.849215 0.85022 0.852247 0.854303 0.855335 0.856372 

1. 1.11416 0.862506 0.86359 0.865748 0.867921 0.868999 0.870072 

 
Fixed-Free  (thermal + rotation+ external pressure) (𝑝𝑜 = 𝑝𝑏) 

 

0.5 0.489025 0.510427 0.531227 0.593047 0.68397 0.740794 0.805348 

0.6 0.412551 0.413534 0.418865 0.440813 0.479528 0.505501 0.535931 

0.7 0.364721 0.356252 0.353188 0.35219 0.359343 0.366401 0.375932 

0.8 0.332283 0.319776 0.312241 0.298309 0.286529 0.281748 0.277884 

0.9 0.309015 0.295211 0.285512 0.265198 0.243728 0.232593 0.221237 

1. 0.291673 0.277947 0.267494 0.245311 0.221319 0.208593 0.195358 

 
Free-Free (thermal + rotation+ internal and external pressures) (𝑝𝑜 = 𝑝𝑎) 

 

0.5 0.337384 0.212439 0.0952687 0.162293 0.41535 0.545674 0.678143 

0.6 0.299193 0.200208 0.10746 0.0890103 0.285386 0.386576 0.48942 

0.7 0.274373 0.192891 0.11637 0.0435495 0.204567 0.287646 0.372081 

0.8 0.257063 0.188267 0.123151 0.0145655 0.149327 0.219918 0.291667 

0.9 0.244496 0.185281 0.128545 0.0161429 0.109388 0.170738 0.233149 

1. 0.235186 0.18336 0.133007 0.033027 0.0805358 0.134429 0.189562 
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ix. For free-free disks, convergent profiles having smaller parameter values in absolute 

offer better hoop stress variations than divergent ones. For this boundary condition, the 

uniform disks exhibit the best response to the circumferential stresses together with  

𝑚 = −0.2. 

x. As to the equivalent von-Misses stresses, fixed-free and fixed-fixed boundaries need 

convergent disks having higher parameter values in absolute while free-free disks 

require convergent disk having smaller parameter values. 

xi. Convergent profiles may exhibit almost uniform equivalent stresses under free-free 

boundary conditions. According to Fig. 3, 𝑚 = −0.2 is the best for the distribution of 

equivalent von-Misses stresses under free-free conditions. 

6. Conclusions 

Closed-form formulas were proposed for hyperbolic disks made of traditional materials under 

free-free, fixed-free, and fixed-fixed boundary conditions to obtain the exact thermo-

mechanical fields. Combined thermal loads, internal and external pressures, and centrifugal 

forces were considered as thermo-mechanical loads. Those formulas are to be very helpful tools 

in the pre-design stage of such disks.  

To the best of the author’s knowledge, formulas for the hyperbolic fixed-free disks subjected 

to the external pressure induced by the existence of the blades have been originally offered in 

the present study.  
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Abstract 

In this study, a mathematical model in form ODEs system examined the dynamics among populations of 
susceptible bacteria and resistant bacteria to antibiotic, antibiotic concentration and hosts immune system cells 
in an individual (or host), received antibiotic therapy in the case of a local bacterial infection, was proposed. 
For equilibrium points of this model, both local and global stability analysis have been also performed. In 
addition that, results of these analysis have been supported by numerical simulations. 

Keywords: Mathematical model, Stability analysis, Numerical simulation, Immune system, Antibiotic. 
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1. Introduction 

Infections are shown as the main cause of diseases throughout human history and bacterial 
ones among these are more noticeable [1]. The first respond of host to such infections is 
through its immune system [2]. In this sense, the different host reactions to fight the same 
infection may be different due to hosts immune system response. If the host can not provide 
the respond required to destroy or limit the infection, then additional procedures can be 
needed. The most prevalent method for struggling bacterial infection is by way of antibiotic 
therapy. Howeover, the most important problem derived from this therapy is the development 
of the bacteria resistance ability against the used antibiotic. Resistance to antimicrobial agents 
is both the reasonable and expected result of the use of these agents to treat human infections 
[3]. In this respect, the dynamics among antibiotic therapy, immune cells and bacteria in case 
of bacterial infection in host are significant to find out the character of the infection. 

Mathematical models used in analyzed of biological applications are significant tools used not 
only in researching the spread of infectious diseases of individuals in a population, but also in 
estimating the timing and expansion of infection and possible reinfection processes in an 
individual [4,5]. Discovering the early dynamics of acute infections and foreseeing the time of 
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occurrence and magnitude of the maximum load of the bacteria and the immune system cells 
can be vital in choice of the efficient interference schemes [6]. 
In this study, it has been formed a continuous time model considering immune system 
response of host against bacteria causing infection and the main functions of bacterial 
resistance occuring due to effect of antibiotic. In this context, the aim of proposed model is to 
get the specific circumstances connected on the bacteria growth under the pressure of immune 
cells and antibiotic. 

 

2. Mathematical Model 

It has constituted this study by considering within-host models. Many of existing 
mathematical models, which assume that resistance development as a consequence of 
antibiotic use is in the host, are investigate how antibiotic treatment methods can both cause 
and be focused to avoid the occurrence of antibiotic resistance [7,8]. In addition that, the 
influences of the hosts immune system response due to the bacterial infection are often either 
ignored or presumed at a constant rate. In here, it has been generated the mathematical model 
comprising the effects of cell-mediated immune response. Also, treatment forms containing 
antibiotic have implemented in most bacterial infections. The effects of antibiotic therapy by 
using Holling function is examined. In this sense, it has been investigated the changes in 
concentrations of the bacteria and immune cells in a host receiving antibiotic treatment to 
fight off infectious bacteria by mathematical modelling.  
It has presumed that 𝑆 𝑡  and 𝑅 𝑡  symbolize the population sizes of susceptible and resistant 
bacteria to antibiotic at time 𝑡, respectively. In addition that, it has assumed that 𝐵 𝑡  and 
𝐴 𝑡  denote the population sizes of immune cells and the antibiotic concentration at time 𝑡, 
respectively. By aforementioned assumptions, it has obtained the following system of four 
ODE: 

 

 

&'
&(
= 𝛽'𝑆 1 − '-.

/
− 𝜂𝑆𝐵 − 𝑆 12345

167-5
− 𝜇𝑆𝐴 − 𝜎𝑆𝑅

&.
&(
= 𝛽.𝑅 1 − '-.

/
− 𝜂𝑅𝐵 + 𝜇𝑆𝐴 + 𝜎𝑆𝑅

&;
&(
= 𝛽;𝐵 1 − ;

<
− 𝜆𝐵 𝑆 + 𝑅

&5
&(
= −𝛼𝐴

 (1) 

 
where 𝑆 ≡ 𝑆 𝑡 , 𝑅 ≡ 𝑅 𝑡 , 𝐵 ≡ 𝐵 𝑡  and 𝐴 ≡ 𝐴 𝑡  and the system (1) has to be finished 
with positive initial conditions 𝑆 𝑡@ = 𝑆@ , 𝑅 𝑡@ = 𝑅@ , 𝐵 𝑡@ = 𝐵@  and 𝐴 𝑡@ = 𝐴@ . In 
addition, the expressions of these parameters are as follows: it is presumed that bacteria have 
a logistic growth rule and its the carrying capacity is 𝑇. The parameters 𝛽'  and 𝛽.  are the 
growth rate of susceptible and resistant bacteria, respectively. Specific mutations emerging 
resistance to chemical control often include an inherent fitness cost which may be outcomed 
through reduced reproductive capacity and/or competitive ability [6]. Therefore, it is 

 

 𝛽' > 𝛽. (2) 
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In the same mind in the bacteria growth, immune cells produce by logistic growth rule, and 
so, they are recruited to the site of infection at rate 𝛽; and its carrying capacity is 𝛬 [9,10]. 
Immune cells are lost through pathogen-induced apoptosis (at rate 𝜆). In the presence of the 
pathogen, this is biological meaningful when proliferation of immune cells is considered. 
These interacts among bacteria, immune cells and antibiotic have depicted a generalised 
mathematical model of a local bacterial infection, such as wound infection or tuberculosis. 
The above scenario related to the parameters used in the model (1) has been graphically 
described in Fig.1. 

 

 

Fig.1. In the model (1), schematic representation of the main interactions involved in an infection 
treated by antibiotics with S (antibiotic-susceptible bacteria), R (antibiotic-resistant bacteria), B 

(immune cells, e.g. phagocytes or B cells), A (antibiotic concentration) 

 

It is assumed that antibiotic has administered in dose 𝛼 [11,12]. Through the administration of 
the antibiotic, a number of resistant bacteria to this antibiotic can emerge due to mutations of 
susceptible bacteria exposed to such antibiotic and this case is modelled by 𝜇𝑆𝐴 where the 
mutation rate of susceptible bacteria due to exposure to antibiotic is 𝜇. In addition that, the 
most common form of resistance acquisition to antibiotic is the conjugation including the 
transfer of genes between susceptible and resistant bacteria [13,14]. Since this transfer occurs 
between adjacent bacteria in a well mixed population [15,16], we have represented that this 
interaction through mass action kinetics with a conjugation rate, 𝜎, being proportional to the 
levels of susceptible and resistant bacteria to antibiotic in the population [17,18]. 

Moreover, bacteria have per capita rates of death due to immune cells response of host, and so 
this rate in (1) is 𝜂. In addition that, susceptible bacteria die due to the antibiotic effect. It has 
supposed that the effect of the antibiotic on susceptible bacteria is modelled by using a 
saturating response. This response is 12345

167-5
 where 𝐸EFG and 𝐸H@ are the maximum killing rate 

and the antibiotic concentration needed for half maximum effect, respectively [11,17,19,20]. 
For the parameters used in the model, it has satisfied 
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 𝛽', 𝛽., 𝛽;, 𝑇, 𝛬, 𝜇, 𝜂, 𝐸EFG, 𝐸H@, 𝜎, 𝜆, 𝛼 > 0. (3) 
For the ease analyze of the model (1), it has changed the variables as folows 

 

 𝑠 = '
/
, 𝑟 = .

/
, 𝑏 = ;

<
, 𝑎 = 5

PQ
R

. (4) 

 

By (4), the model (1) transforms to following system:  

 

 

&S
&(
= 𝜂 𝑘U𝑠 1 − 𝑠 + 𝑟 − 𝑏𝑠 − 1234

167V-WF
+ 1 𝑎𝑠 − 𝑘X𝑠𝑟

&Y
&(
= 𝜂 𝑘Z𝑟 1 − 𝑠 + 𝑟 − 𝑏𝑟 + 𝑎𝑠 + 𝑘X𝑠𝑟

&[
&(
= 𝛽;𝑏 1 − 𝑏 − 𝑘\ 𝑠 + 𝑟

&F
&(
= −𝛼𝑎

 (5) 

 

where 

 

 
]^
W<
= 𝑘U,

]_
W<
= 𝑘Z,

`/
]a
= 𝑘\,

b/
W<
= 𝑘X, 	𝜂𝛬 = 𝜂,

𝑘U, 𝑘Z, 𝑘\, 𝑘X, 𝜂 > 0
 (6) 

 

Moreover, it is obtained  

 

 𝑘U > 𝑘Z (7) 
 

by (2) and (6). The studied region as biological is given by the set 

 

 𝛺 = 𝑠, 𝑟, 𝑏, 𝑎 ∈ 𝑅X: 0 ≤ 𝑠, 𝑟, 0 ≤ 𝑠 + 𝑟 ≤ 1, 0 ≤ 𝑏 ≤ 1, 0 ≤ 𝑎 ≤ 𝑎(0) .	 (8) 
 

where 𝑎(0) is positive initial condition of 𝑎. 

Proposition 2.1. The region 𝛺 definiting in (8) is positively invariant for the system (5). 
Proof: From the first and second equations in the system (5), it is 

 

 &S
&(
+ &Y

&(
= 𝑘U𝑠 + 𝑘Z𝑟 𝜂 1 − 𝑠 + 𝑟 − 𝑏𝜂 𝑠 + 𝑟 − 𝑎𝑠 W1234

167V-WF
 (9) 
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Considering the region 𝛺, it has reached the following inequality; 

 

 & S-Y
&(

≤ 𝑘U𝜂 𝑠 + 𝑟 1 − 𝑠 + 𝑟 . (10) 
 

By the solution according to 𝑠 + 𝑟  of inequality (10), it has followed that 0 ≤ 𝑠 + 𝑟 ≤ 1 for 
all 𝑡 ≥ 0. In the same mind, we have 

 

 &[
&(
≤ 𝛽;𝑏 1 − 𝑏  (11) 

 

from third equation in system (5). Therefore, it has obtained 0 ≤ 𝑏 ≤ 1 for all 𝑡 ≥ 0 by (11). 

Furthermore, the solution of the last equations of system (5) is 

 

 𝑎 𝑡 = 𝑎(0)𝑒mn( (12) 
 

with positive initial conditions, 𝑎(0). From (12), it is obtained that 0 ≤ 𝑎 ≤ 𝑎(0) for all 𝑡 ≥
0. Let consider the vector field of the system (5) limited to the boundary of 𝛺. This field does 
not includes a point at the exterior of it. Thereby, the solutions starting there is in the region 𝛺 
for all 𝑡 ≥ 0 and these solutions have biological meaning. 

 

3. Qualitative Analysis of System (5) 

In here, the equilibrium points of system (5) is founded. Lastly, the analyze of both the local 
stability and global stability of these equilibrium points is done. 

3.1. Equilibrium Points  

We have accepted that the general terms of equilibria contained in 𝛺 of the system (5) show 
as 𝐸o = 𝑠, 𝑟, 𝑏, 𝑎  for 𝑗 = 1,2, … ,6. 

Proposition 3.1. The system (5) always has the infection-free equilibrium points 𝐸@ =
0,0,0,0  and 𝐸U = 0,0,1,0 , and other points 𝐸Z = 0,1,0,0  and 𝐸\ = 1,0,0,0 . If 𝑘\ <
1 < 𝑘Z or 𝑘Z < 1 < 𝑘\, then 𝐸X = 0, tumU

tumtv
, tu Umtv
tumtv

, 0  exists.  Likewise, when 𝑘\ < 1 <

𝑘U 	or 𝑘U < 1 < 𝑘\ , then 𝐸H =
twmU
twmtv

, 0, tw Umtv
twmtv

, 0
 
reveals in 𝛺 . Moreover, if 𝑘Z <

Umtv twmtu
tx

+ 1 < 𝑚𝑖𝑛 𝑘U,
twmtu
tx

+ 1 , then 𝐸| =
U
tx
−

tu-
}v
}x

twmtu

twmtu-tx
,
tw-

}v
}x

twmtu

twmtu-tx
− U

tx
, 1 −

𝑘\
twmtu

twmtu-tx
, 0  exists as another equilibrium points. 
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Proof: The equilibrium points the system (5) in 𝛺 are obtained by solving the following 
system: 

 

 

𝜂𝑠 𝑘U 1 − 𝑠 + 𝑟 − 𝑏 − 1234
167V-WF

+ 1 𝑎 − 𝑘X𝑟 = 0

𝜂𝑟 𝑘Z 1 − 𝑠 + 𝑟 − 𝑏 + 𝑎 S
Y
+ 𝑘X𝑠 = 0

𝛽;𝑏 1 − 𝑏 − 𝑘\ 𝑠 + 𝑟 = 0
−𝛼𝑎 = 0.

 (13) 

 

From the last equation of system (13), we have 𝑎 = 0  for all of the equilibrium points. 
Therefore, (13) transforms to 

 

 
𝑠 𝑘U 1 − 𝑠 + 𝑟 − 𝑏 − 𝑘X𝑟 = 0
𝑟 𝑘Z 1 − 𝑠 + 𝑟 − 𝑏 + 𝑘X𝑠 = 0
𝑏 1 − 𝑏 − 𝑘\ 𝑠 + 𝑟 = 0.

 (14) 

 

By solving (14), it is obtained the equilibrium points following: 

 

 

𝐸~ = U
mtw-tumtx

𝑘Z, −
U

mtw-tumtx
𝑘U, 0,0 ,

𝐸@ = 0,0,0,0 , 𝐸U = 0,0,1,0 , 𝐸Z = 0,1,0,0 , 𝐸\ = 1,0,0,0 ,
𝐸X = 0, tumU

tumtv
, tu Umtv
tumtv

, 0 , 𝐸H =
twmU
twmtv

, 0, tw Umtv
twmtv

, 0 ,

𝐸| =
U
tx
−

tu-
}v
}x

twmtu

twmtu-tx
,
tw-

}v
}x

twmtu

twmtu-tx
− U

tx
, 1 − 𝑘\

twmtu
twmtu-tx

, 0 .

 (15) 

 

Altought the equilibrium points 𝐸@ ,𝐸U ,𝐸Z  and 𝐸\ , on the orijin, 𝑏 -axis, 𝑟-axis and 𝑠-axis 
respectively, always exist in 𝛺 , the equilibrium point 𝐸~  in which signs of 𝑠  and 𝑟  are 
opposite due to (6), is not biological meaning. Thereby, 𝐸~ is not in 𝛺. If 0 < tumU

tumtv
< 1 and 

0 < tu Umtv
tumtv

< 1, that is, 𝑘\ < 1 < 𝑘Z or 𝑘Z < 1 < 𝑘\, then an interior planar equilibrium 𝐸X 

occuring in the 	𝑟 − 𝑏  plane exists in 𝛺 . In the same mind, when 0 < twmU
twmtv

< 1  and 0 <
tw Umtv
twmtv

< 1 , that is, 𝑘\ < 1 < 𝑘U  or 𝑘U < 1 < 𝑘\ , 𝐸H  occurs in the 𝑠 − 𝑏  plane in 𝛺 . 

Moreover, if 0 < 1 − tv twmtu
twmtu-tx

< 1 , 0 < U
tx
−

tu-
}v
}x

twmtu

twmtu-tx
< 1  and 0 <

tw-
}v
}x

twmtu

twmtu-tx
− U

tx
<

1 , that is, 	𝑘Z <
Umtv twmtu

tx
+ 1 < 𝑚𝑖𝑛 𝑘U,

twmtu
tx

+ 1 , then 𝐸| , the interior equilibrium 
occuring in the 𝑠 − 𝑟 − 𝑏 plane, exists in 𝛺. 
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In table 1, proposition 3.1 is summarized. 

 

Table 1. Biological meaning conditions for the equilibrium points founded in proposition 3.1. 

The Equilibrium Point The Biological Existence Condition 

𝐸@ = 0,0,0,0  Always exists 

𝐸U = 0,0,1,0  Always exists 

𝐸Z = 0,1,0,0  Always exists 

𝐸\ = 1,0,0,0  Always exists 

𝐸X = 0,
𝑘Z − 1
𝑘Z − 𝑘\

,
𝑘Z 1 − 𝑘\
𝑘Z − 𝑘\

, 0  𝑘\ < 1 < 𝑘Z		or		𝑘Z < 1 < 𝑘\ 

𝐸H =
𝑘U − 1
𝑘U − 𝑘\

, 0,
𝑘U 1 − 𝑘\
𝑘U − 𝑘\

, 0  𝑘\ < 1 < 𝑘U		or		𝑘U < 1 < 𝑘\ 

𝐸| =
1
𝑘X
−
𝑘Z +

tv
tx

𝑘U − 𝑘Z
𝑘U − 𝑘Z + 𝑘X

,
𝑘U +

tv
tx

𝑘U − 𝑘Z
𝑘U − 𝑘Z + 𝑘X

−
1
𝑘X
, 1 − 𝑘\

𝑘U − 𝑘Z
𝑘U − 𝑘Z + 𝑘X

, 0  

𝑘Z <
1 − 𝑘\ 𝑘U − 𝑘Z

𝑘X
+ 1

< 𝑚𝑖𝑛 𝑘U,
𝑘U − 𝑘Z
𝑘X

+ 1  

 

3.2. The Analysis of Locally Asymtotically Stability of Equilibrium Points  

Theorem 3.1. Let &�
&(
= 𝐹 𝑋  as a nonlinear first-order autonomous system with its 

equilibrium point 𝑋. In addition that, it is assumed that the Jacobian matrix of 𝐹 evaluated at 
𝑋 is 𝐽 𝑋 .  If the characteristic equation of 𝐽 𝑋 , 

 

𝜆� + 𝑎U𝜆�mU + 𝑎Z𝜆�mZ+. . . +𝑎�mU𝜆 + 𝑎� = 0, 

 

meets the Routh-Hurwitz criteria, that is, the determinants of all of the Hurwitz matrices are 
positive, then 𝑋  is locally asimptotically stable. If the determinants of the some Hurwitz 
matrices are negative, then 𝑋 is unstable point [21].	In this sense, the Routh-Hurwitz criteria 
for polynomial of degree 𝑛 = 2, 3, 4	 and 5  of the above characteristic equation are 
summarized as following : 
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𝑛 = 2:		𝑎U, 𝑎Z > 0,
𝑛 = 3:		𝑎U, 𝑎\ > 0		and		𝑎U𝑎Z > 𝑎\,
𝑛 = 4:		𝑎U, 𝑎\, 𝑎X > 0		and		𝑎U𝑎Z𝑎\ > 𝑎\Z + 𝑎UZ𝑎X,
𝑛 = 5:		𝑎U, 𝑎Z, 𝑎\, 𝑎X, 𝑎H > 0, 𝑎U𝑎Z𝑎\ > 𝑎\Z + 𝑎UZ𝑎X
														and	 𝑎U𝑎X − 𝑎H 𝑎U𝑎Z𝑎\ − 𝑎\Z − 𝑎UZ𝑎X > 𝑎H 𝑎U𝑎Z − 𝑎\ Z + 𝑎U𝑎HZ.

 

 

Locally asimptotically stability (LAS) conditions of equilibrium points in the Table 1 have 
examined in the following proposition. 

Proposition 3.2. For the equilibrium points in proposition 3.1, the followings are provided. 

(i) 𝐸@ and 𝐸\  are always unstable points. 
(ii) If 𝑘U < 1, then 𝐸U is LAS. 
(iii) If 1 < 𝑘\, then 𝐸Z is LAS.  
(iv) Let 𝑘\ < 1 < 𝑘Z or 𝑘Z < 1 < 𝑘\. If 1 < Umtv twmtu

tx
+ 1 < 𝑘Z, then 𝐸X is LAS. 

(v) Let 𝑘\ < 1 < 𝑘U or 𝑘U < 1 < 𝑘\. If 1 < 𝑘U <
Umtv twmtu

tx
+ 1, then 𝐸H is LAS. 

(vi) Let 𝑘Z <
Umtv twmtu

tx
+ 1 < 𝑚𝑖𝑛 𝑘U,

twmtu
tx

+ 1 . If 𝑘\ < 1, then 𝐸| is LAS. 

Proof: For the stability analysis, the functions of the right side of the system (5) are adjusted 
as the following: 

 

 

𝜑U 𝑠, 𝑟, 𝑏, 𝑎 = 𝜂 𝑘U𝑠 1 − 𝑠 + 𝑟 − 𝑏𝑠 − 1234
167V-WF

+ 1 𝑎𝑠 − 𝑘X𝑠𝑟

𝜑Z 𝑠, 𝑟, 𝑏, 𝑎 = 𝜂 𝑘Z𝑟 1 − 𝑠 + 𝑟 − 𝑏𝑟 + 𝑎𝑠 + 𝑘X𝑠𝑟
𝜑\ 𝑠, 𝑟, 𝑏, 𝑎 = 𝛽;𝑏 1 − 𝑏 − 𝑘\ 𝑠 + 𝑟
𝜑X 𝑠, 𝑟, 𝑏, 𝑎 = −𝛼𝑎

 (16) 

 

That jacobian matrix obtained from (16) is 

 

 𝐽 =

𝜂
𝑘U 1 − 𝑠 + 𝑟 − 𝑘U𝑠 − 𝑏

−𝑘X𝑟 −
1234

167V-WF
+ 1 𝑎

−𝜂𝑠 𝑘U + 𝑘X −𝜂𝑠 −𝜂𝑠 1234167V
167V-WF u + 1

𝜂 𝑎 + 𝑘X𝑟 − 𝑘Z𝑟 𝜂 𝑘Z 1 − 𝑠 + 𝑟
−𝑏 + 𝑘X𝑠 − 𝑘Z𝑟

−𝜂𝑟 𝜂𝑠

−𝑘\𝑏𝛽; −𝑘\𝑏𝛽; 𝛽;
1 − 2𝑏

−𝑘\ 𝑠 + 𝑟
0

0 0 0 −𝛼

 (17) 

 

Since 𝑎 = 0 in all equilibria of the system (5), the jacobian matrix showed in (17) can be 
rewritten as follows: 
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 𝐽 =

𝜂 𝑘U 1 − 𝑠 + 𝑟
−𝑘U𝑠 − 𝑏 − 𝑘X𝑟

−𝜂𝑠 𝑘U + 𝑘X −𝜂𝑠 −𝜂𝑠 1234
167V

+ 1

𝜂𝑟 𝑘X − 𝑘Z 𝜂 𝑘Z 1 − 𝑠 + 𝑟
−𝑏 + 𝑘X𝑠 − 𝑘Z𝑟

−𝜂𝑟 𝜂𝑠

−𝑘\𝑏𝛽; −𝑘\𝑏𝛽; 𝛽; 1 − 2𝑏−𝑘\ 𝑠 + 𝑟 0
0 0 0 −𝛼

 (18) 

 

For ease of examination, we have assumed that the 𝜏-th eigenvalue of the equilibrium point 
𝐸t is displayed as 𝜆t,� for 𝜏 = 1,2,3,4 and 𝑘 = 0,1,2, … ,6. 

(i) For 𝐸@,  the jacobian matrix evaluated in (18) is 𝐽 𝐸@ =

𝜂𝑘U 0 0 0
0 𝜂𝑘Z 0 0
0 0 𝛽; 0
0 0 0 −𝛼

. 

Therefore, the eigenvalues are obtained as 𝜆@,U = 𝜂𝑘U , 𝜆@,Z = 𝜂𝑘Z , 𝜆@,\ = 𝛽;  and 
𝜆@,X = −𝛼. From Theorem 3.1, 𝐸@ is unstable point, since all of the eigenvalues have 
not lie in the left half of the complex plane due to (6). 
In the same mind, the jacobian matrix for 𝐸\  is 𝐽 𝐸\ =
−𝜂𝑘U −𝜂 𝑘U + 𝑘X −𝜂 −𝜂 1234

167V
+ 1

0 𝜂𝑘X 0 𝜂
0 0 𝛽; 1 − 𝑘\ 0
0 0 0 −𝛼

, and so,  the eigenvalues are  

𝜆\,U = −𝜂𝑘U , 𝜆\,Z = 𝜂𝑘X , 𝜆\,\ = 𝛽; 1 − 𝑘\  ve 𝜆\,X = −𝛼 . All of these is not 
negative due to (6).  From Theorem 3.1, it can be seen that 𝐸\ is unstable point. 

(ii) Jacobian matrix evaluated at the equilibrium point 𝐸U  is 𝐽 𝐸U =
𝜂 𝑘U − 1 0 0 0
0 𝜂 𝑘Z − 1 0 0
−𝑘\𝛽; −𝑘\𝛽; −𝛽; 0
0 0 0 −𝛼

. Therefore, eigenvalues are 𝜆U,U = 𝜂 𝑘U − 1 , 

𝜆U,Z = 𝜂 𝑘Z − 1 , 𝜆U,\ = −𝛽;  and 𝜆U,X = −𝛼 . By (6), 𝜆U,\  and 𝜆U,X  are negative. If 
𝑘U < 1 (already 𝑘U > 𝑘Z in (7)), then 𝜆U,U and 𝜆U,Z are negative from (6). Considering 
Theorem 3.1, if 𝑘U < 1, then 𝐸U is LAS. 

(iii) Jacobian matrix in (18) for 𝐸Z is 𝐽 𝐸Z =

−𝜂𝑘X 0 0 0
𝜂 𝑘X − 𝑘Z −𝜂𝑘Z −𝜂 0
0 0 𝛽; 1 − 𝑘\ 0
0 0 0 −𝛼

. 

So, the eigenvalues are founded as 𝜆Z,U = −𝜂𝑘X, 𝜆Z,Z = −𝜂𝑘Z, 𝜆Z,\ = 𝛽; 1 − 𝑘\  and 
𝜆Z,X = −𝛼 . Due to (6),  𝜆Z,U, 𝜆Z,Z  and  𝜆Z,X  are negative. Moreover, when 1 < 𝑘\ , 
𝜆Z,\ < 0 (already 𝛽; > 0 in (3) and 𝜂 > 0 in (6)). By Theorem 3.1, if 1 < 𝑘\, then 𝐸Z 
is LAS. 

(iv) Let 
 

 𝑘\ < 1 < 𝑘Z	or	𝑘Z < 1 < 𝑘\. (19) 
 
In this case,  𝐸X is in 𝛺. Evaluating 𝐸X in 	𝐽, we have 
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 𝐽 𝐸X =

𝜂 Umtv twmtu mtx tumU
tumtv

0 0 0

−𝜂 tumtx tumU
tumtv

−𝜂 tu tumU
tumtv

−𝜂 tumU
tumtv

0

−𝛽;
tvtu Umtv
tumtv

−𝛽;
tvtu Umtv
tumtv

−𝛽;
tu Umtv
tumtv

0

0 0 0 −𝛼

. (20) 

 
 
That two eigenvalues obtained from (20) are 𝜆X,U = 𝜂 Umtv twmtu mtx tumU

tumtv
 and 

𝜆X,Z = −𝛼. If  
 

 Umtv twmtu mtx tumU
tumtv

< 0, (21) 
 
then 𝜆X,U is negative. Also, 𝜆X,Z is negative by (3). The other eigenvalues are founded 
from the following matrix;  
 

 𝐽; 1x =
−𝜂 tu tumU

tumtv
−𝜂 tumU

tumtv

−𝛽;
tvtu Umtv
tumtv

−𝛽;
tu Umtv
tumtv

 (22) 

 
where 𝐽; 1x  is the block matrix of 𝐽 𝐸X . Hence, characteristic equation of (22) is  
 

 𝜆Z + 𝜆 𝜂 𝑘Z − 1 + 𝛽; 1 − 𝑘\
tu

tumtv
+ 𝜂 𝑘Z − 1 𝛽; 1 − 𝑘\

tu
tumtv

= 0. (23) 
 
from (19), let  
 

 𝑘Z > 1 > 𝑘\. (24) 
 
In case of (24), all of the roots of polynomial in (23) are negative or have negative real 
parts by Theorem 3.1 (𝑛 = 2), that is, 𝑅𝑒 𝜆X,\, 𝜆X,X < 0. Thus, if (21) and (24) are 
held, that is,  1 < Umtv twmtu

tx
+ 1 < 𝑘Z, then all of the eigenvalues evaluated at 𝐸X 

are negative or have negative reel parts. In this respect, it is LAS. 
(v) In analogy to (iv), if 1 < 𝑘U <

Umtv twmtu
tx

+ 1, then 𝐸H is LAS. 
(vi) Lastly, when 

 

 𝑘Z <
Umtv twmtu

tx
+ 1 < 𝑚𝑖𝑛 𝑘U,

twmtu
tx

+ 1 . (25) 
 
𝐸| is revealed in 𝛺. That eigenvalues of jacobian matrix evaluated at 𝐸| are 𝜆|,U =
−𝛼, 𝜆|,Z, 𝜆|,\  and 𝜆|,X . The 𝜆|,U  is negative due to (3). Also,  𝜆|,Z ,	𝜆|,\  and 𝜆|,X  are 
founded from following block matrix; 
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 𝐽; 1� =
−𝜂𝑘U𝑠 −𝜂𝑠 𝑘U + 𝑘X −𝜂𝑠
𝑟𝜂 𝑘X − 𝑘Z −𝜂𝑘Z𝑟 −𝜂𝑟
−𝑘\𝑏𝛽; −𝑘\𝑏𝛽; −𝑏𝛽;

 (26) 

 
where 
 

 
𝐸| = 𝑠, 𝑟, 𝑏, 𝑎 = U

tx
−

tu-
}v
}x

twmtu

twmtu-tx
,
tw-

}v
}x

twmtu

twmtu-tx
− U

tx
, 1 − tv twmtu

twmtu-tx
, 0 ,

𝑠, 𝑟, 𝑏 > 0.
 (27) 

 
Characteristic equation of (26) is obtained as follows: 
 

 𝜆\ + 𝑃U𝜆Z + 𝑃Z𝜆 + 𝑃\ = 0 (28) 
 
where 
 

 

𝑃U = 𝜂 𝑘U𝑠 + 𝑘Z𝑟 + 𝑏𝛽;
𝑃Z = 𝜂 𝜂𝑠𝑟𝑘X 𝑘U − 𝑘Z + 𝑘X + 𝑏𝛽; 𝑘U𝑠 + 𝑘Z𝑟 − 𝑘\ 𝑠 + 𝑟

𝑃\ = 𝛽;𝑏𝜂Z𝑠𝑟𝑎X 𝑘U − 𝑘Z + 𝑘X

 (29) 

 
In (29), 
 

 𝑃U > 0 (30) 
 
due to (3), (6) and (27) and 
 

 𝑃\ > 0 (31) 
 

due to (3), (6), (7) and (27). In addition that, it is 
 

𝑃U𝑃Z − 𝑃\ =
𝜂 𝑘U𝑠 + 𝑘Z𝑟 +

𝑏𝛽;

𝑘U − 𝑘Z + 𝑘X 𝑘X𝑟𝜂𝑠 +
𝑘U𝑠 + 𝑘Z𝑟 − 𝑘\ 𝑠 + 𝑟 𝑏𝛽;

− 𝑘U − 𝑘Z + 𝑘X 𝑘X𝜂𝜂𝑠𝑟𝑏𝛽;, 

 
and so, 
 

 𝑃U𝑃Z − 𝑃\ = 𝜂 𝑘U𝑠 + 𝑘Z𝑟
𝑘U − 𝑘Z + 𝑘X 𝑘X𝑟𝜂𝑠 +

𝑘U𝑠 + 𝑘Z𝑟 − 𝑘\ 𝑠 + 𝑟 𝑏𝛽;
+ 𝑘U𝑠 + 𝑘Z𝑟 −

𝑘\ 𝑠 + 𝑟
𝑏𝛽;𝑏𝛽;𝜂 (32) 

 
By (27), the expression 𝑘U𝑠 + 𝑘Z𝑟 − 𝑘\ 𝑠 + 𝑟  in (32) can be writing as 
 

= 𝑘U −
𝑘Z

𝑘U − 𝑘Z + 𝑘X
+
1
𝑘X
𝑏 + 𝑘Z

𝑘U
𝑘U − 𝑘Z + 𝑘X

−
1
𝑘X
𝑏 − 𝑘\

𝑘U − 𝑘Z
𝑘U − 𝑘Z + 𝑘X
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= 𝑘U − 𝑘Z
U
tx
𝑏 − 𝑘\

U
twmtu-tx

= twmtu
tx

1 − twmtu tv
twmtu-tx

− tvtx
twmtu-tx

. 

 
and so,  
 

 𝑘U𝑠 + 𝑘Z𝑟 − 𝑘\ 𝑠 + 𝑟 = twmtu
tx

1 − 𝑘\  (33) 
 
(already 𝑘U > 𝑘Z due to (7)). If 
 

 𝑘\ < 1, (34) 
 
then 𝑘U𝑠 + 𝑘Z𝑟 − 𝑘\ 𝑠 + 𝑟 > 0, that is, 
 

 𝑃U𝑃Z − 𝑃\ > 0 (35) 
 
By considering (30), (31) and (35), if (25) and (34) are satisfied, then it is 

 

 𝑅𝑒 𝜆|,Z, 𝜆|,\, 𝜆|,X < 0 (36) 
 
from Theorem 3.1 (𝑛 = 3). In this respect, we have that 𝐸| is LAS. 
 

In table 2, proposition 3.2 are summarized. 

 

Table 2. The LAS conditions of the equilibria of system (5). 

Equilibrium Points LAS Conditions 

𝐸U = 0,0,1,0  𝑘U, 𝑘Z < 1 

𝐸Z = 0,1,0,0  1 < 𝑘\ 

𝐸X = 0,
𝑘Z − 1
𝑘Z − 𝑘\

,
𝑘Z 1 − 𝑘\
𝑘Z − 𝑘\

, 0  1 <
1 − 𝑘\ 𝑘U − 𝑘Z

𝑘X
+ 1 < 𝑘Z < 𝑘U  

𝐸H =
𝑘U − 1
𝑘U − 𝑘\

, 0,
𝑘U 1 − 𝑘\
𝑘U − 𝑘\

, 0  1 < 𝑘U <
1 − 𝑘\ 𝑘U − 𝑘Z

𝑘X
+ 1 

𝐸| =
1
𝑘X
−
𝑘Z +

tv
tx

𝑘U − 𝑘Z
𝑘U − 𝑘Z + 𝑘X

,
𝑘U +

tv
tx

𝑘U − 𝑘Z
𝑘U − 𝑘Z + 𝑘X

−
1
𝑘X
, 1 − 𝑘\

𝑘U − 𝑘Z
𝑘U − 𝑘Z + 𝑘X

, 0  

𝑘\ < 1		and		𝑘Z <
1 − 𝑘\ 𝑘U − 𝑘Z

𝑘X
+ 1

< 𝑚𝑖𝑛 𝑘U,
𝑘U − 𝑘Z
𝑘X

+ 1  

 



B. Daşbaşı, İ. Öztürk 
 

	
	

105	

3.3. The Analysis of Globally Asymptotically Stability of Equilibrium Points  

In here, it has been focused on globally asymtotically stability (GAS) of equilibrium points in 
Table 2. Let 

 

 𝑘U < 1 < 𝑘\ (37) 
 

(already 𝑘Z < 𝑘U  in (7)). When inequality (37) is satisfied, it is clear that the equilibrium 
points 𝐸U = 0,0,1,0  and 𝐸Z = 0,1,0,0  are LAS in the same sub-region of 𝛺. Description 
of this case is shown in Fig.2. For the variables 𝑠 = 𝑎 = 0 and the parameters 𝛽; = 𝜂 = 1, 
𝑘\ = 2 𝑘Z =

U
\
< 𝑘U = 1/2 in the system (5), Fig.2 is plotted via the program pplane.jar. In 

here, the points 0,1  and 1,0  in plane represent the equilibrium points 𝐸U  and 𝐸Z 
respectively. Therefore, they are LAS. 

 

 

Fig.2. In case of 𝑠 = 𝑎 = 0, 𝛽; = 𝜂 = 1 , 𝑘\ = 2 𝑘Z =
U
\
< 𝑘U = 1/2 in system (5), The LAS of the 

equilibrium points 𝐸U and 𝐸Z. 

 

Except for this inequality is held, there is no same sub-region of 𝛺 where at least two of the 
equilibrium points 𝐸U, 𝐸Z, 𝐸X, 𝐸H and 𝐸| are LAS. In this section, it has been assumed that 
inequality (37) is not provided because of this reason. 

Proposition 3.3. Let us denote by 𝛤� the LAS region of the equilibrium point 𝐸� in 𝛺 for 𝑖 =
1,2,4,5,6. Then 𝛤� ∩ 𝛤o = ∅ for 𝑖 ≠ 𝑗 and 𝑗 = 1,2,4,5,6. 

Proof: This situation is evidently in Table 2. 

Proposition 3.4. It is assumed that 𝐸U is LAS. In this case, it is GAS. Similarly, if  𝐸Z is LAS, 
then it is GAS. 
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Proof: In the system (5), each variable in absence of the others has logistic form. Therefore, 
the GAS analysis of the equilibrium points 𝐸U and 𝐸Z can be examined in a similar manner to 
each other. 
For 𝐸U, it is investigated as the following. Let us consider the region 𝛺U = 𝑏 ∈ 𝑅:	0 ≤ 𝑏 ≤
1  given by  
 
 &[

&(
= 𝛽;𝑏 1 − 𝑏 , (38) 

 
where 𝛽; > 0 is the intrinsic growth rate of immune cells and 𝑏 = 1 is the carrying capacity 
of immune cells. There are two equilibria  𝑏 = 0,1 . If (38) is solved by separation of 
itsvariables, then it is obtained that 𝑏 𝑡 = [ @

[ @ - Um[ @ ���a�
. It can be seen lim

(→�
𝑏 𝑡 = 1. 

Thus, 𝑏 = 1 (namely, 𝐸U) is GAS. 
Proposition 3.5. It is assumed that 𝐸X is LAS. Then it is GAS. Similarly, if  𝐸H is LAS, then it 
is GAS. 
Proof: Since 𝐸X and 𝐸H are present in 𝑅Z, we have benefited from Bendixon-Dulac criteria for 
analysis of GAS.  

Firstly, let us examine the 𝐸X  in the region 𝛺Z = 𝑟, 𝑏 ∈ 𝑅Z: 0 < 𝑟 < 1, 0 < 𝑏 < 1 . 
Moreover, let 𝐻 𝑟, 𝑏 = U

Y[
. It is obviously 𝐻 𝑟, 𝑏 > 0 and functions 𝐹U 𝑟, 𝑏  and 𝐹Z 𝑟, 𝑏  

obtained from system (5) are denote as 

 

 
𝐹U 𝑟, 𝑏 = 𝜂𝑟 𝑘Z 1 − 𝑟 − 𝑏
𝐹Z 𝑟, 𝑏 = 𝛽;𝑏 1 − 𝑏 − 𝑘\𝑟 .

 (39) 

 
Considering 𝐻 𝑟, 𝑏 , divergence obtained from these functions in (39) is founded as 
 
𝛥 𝑟, 𝑏 = ¢

¢Y
𝐹U𝐻 + ¢

¢[
𝐹Z𝐻 = ¢

¢Y
𝜂𝑟 𝑘Z 1 − 𝑟 − 𝑏 U

Y[
+ ¢

¢[
𝛽;𝑏 1 − 𝑏 −

𝑘\𝑟
U
Y[

= ¢
¢Y

𝜂 tu UmY m[
[

+ ¢
¢[

𝛽;
Um[ mtvY

Y
, 

 
and so, 
 
 𝛥 𝑟, 𝑏 = − 𝜂 tu

[
+ 𝛽;

U
Y
. (40) 

 
From (3), (6) and (8), the 𝛥 𝑟, 𝑏  in (40) is negative. In this respect, by the Bendixon-Dulac 
criteria, there is not periodic orbit in the 𝑟 − 𝑏 plane. Because 𝐸X is LAS in the above plane 
(namely 𝛺Z and so, 𝛺), it is GAS. In the same way, it can be seen that 𝐸H is GAS. 
Definition 3.1. (LaSalle's extension of the direct method of Lyapunov): The system is of the 
form 

 

 &G£
&(
= 𝑥

.
� = 𝑥�𝐹� 𝑥U, 𝑥Z, . . . , 𝑥� ,				𝑖 = 1,2, . . . , 𝑛 (41) 

 
where 𝑥�  is the density of the 𝑖 − 𝑡ℎ	 species in the community at time 𝑡 . Each 𝐹�  is a 
continuous function from 𝑅-�, the nonnegative cone in 𝑅�, to 𝑅 and is sufficiently smooth to 
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guarantee that initial value problems associated with (41) have unique solutions in the 
population orthant, 𝑅-�. 
Thus, the positive steady-state 𝑥∗ of (41) is a globally asymptotically stable, if 𝐹 𝑥 > 0 for 
all 𝑥 ∈ 0, 𝑥∗  and 𝐹 𝑥 < 0 for all 𝑥 ∈ 𝑥∗,∞  [22].  

Let us consider as 𝐹� 𝑥U, 𝑥Z, . . . , 𝑥� = 𝑞� + 𝑤�t𝑥t,				𝑖 = 1,2, . . . , 𝑛.�
tªU  

here 𝑞�, −𝑤�� are positive constants and 𝑤�t, 𝑖 ≠ 𝑘 are constants with any sign. If we define 
𝑤�t  and 𝑞 = 𝑞U, 𝑞Z, . . . , 𝑞� , then it can be shown that 𝑥∗ = −𝑊mU𝑞(  is a steady-state of 
system. Let us suppose that 𝑥∗ ∈ 𝑅-�  is positive and 𝐶 = 𝑑𝑖𝑎𝑔 𝑐U, 𝑐Z, . . . , 𝑐� . Function 
𝑉 𝑥 = 𝑐��

�ªU 𝑥� − 𝑥�∗ − 𝑥�∗𝑙𝑛
G£
G£
∗  can be used as a Lyapunov function. Clearly, 𝑉 𝑥  

satisfied the conditions 𝑉 𝑥∗ = 0 , 𝑉 𝑥 > 0	for all 𝑥 ∈ 𝑅-� , 𝑥 ≠ 𝑥∗ , 𝑉 𝑥 → ∞  as 𝑥 → ∞ 
and 𝑥 → 0. We have 

 

𝑉
.
𝑥 = 𝑐� 𝑥� − 𝑥�∗

�

�ªU

𝑞� + 𝑤�t𝑥t

�

tªU

= 𝑐� 𝑥� − 𝑥�∗
�

�ªU

𝑤�t 𝑥t − 𝑥t∗
�

tªU

											=
1
2
𝑥 − 𝑥∗ ( 𝐶𝑊 +𝑊(𝐶 𝑥 − 𝑥∗ .

 

 

From LaSalle's extension of the direct method of Lyapunov, we have the following 

Theorem 3.2. The steady-state 𝑥∗ of (41) is GAS, if there exists a positive diagonal matrix 𝐶 
such that 𝐶𝑊 +𝑊(𝐶 is a negative semidefinite and the function  

 

𝑉
.
𝑥 =

1
2
𝑥 − 𝑥∗ ( 𝐶𝑊 +𝑊(𝐶 𝑥 − 𝑥∗  

 

does not vanish identically along a nontrivial solution [21,22]. 

Proposition 3.6. Let 𝐸|  is LAS. If 0 < 4 𝑘U + 𝑘X 𝑘Z − 𝑘X < 𝑘U𝑘Z, 4𝑘\ < 𝑘Z , then it	
 is GAS.  

Proof: When the last equation of system (5) are separated, their solutions approach to 𝑎 = 0. 
Replacing this value in the first three equations of system (5), we have attained that the 
asymptotically equivalent system in the region 

 

 𝛺\ = 𝑠, 𝑟, 𝑏 ∈ 𝑅\: 0 < 𝑠 < 1, 0 < 𝑟 < 1, 0 < 𝑠 + 𝑟 < 1, 0 < 𝑏 < 1 . (42) 
 

given by 
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&S
&(
= 𝑠 𝑘U𝜂 − 𝑘U𝜂𝑠 − 𝑘U + 𝑘X 𝜂𝑟 − 𝜂𝑏

&Y
&(
= 𝑟 𝑘Z𝜂 − 𝑘Z𝜂 − 𝑘X𝜂 𝑠 − 𝑘Z𝜂𝑟 − 𝜂𝑏

&[
&(
= 𝑏 𝛽; − 𝑘\𝛽;𝑠 − 𝑘\𝛽;𝑟 − 𝛽;𝑏 .

 (43) 

 

By Definition 3.1, we have presumed that the Lyapunov function of system (43) definited in 
the region (42) is 

 

 𝑉 𝑥 = 𝑐�\
�ªU 𝑥� − 𝑥�∗ − 𝑥�∗𝑙𝑛

G£
G£
∗  (44) 

 

where each 𝑥�∗ for 𝑖 = 1,2,3 are component at equilibrium point. Derivative of 𝑉 𝑥  in (44) is 

 

 𝑉
.
𝑥 = 𝑐� 𝑥� − 𝑥�∗\

�ªU 𝑞� + 𝑤�t𝑥t\
tªU , (45) 

 

By Theorem 3.2, (45) can be writing as following 

 

 𝑉
.
𝑥 = U

Z
𝑥 − 𝑥∗ ( 𝐶𝑊 +𝑊(𝐶 𝑥 − 𝑥∗  (46) 

 

where 

 

 

𝑥 =
𝑠
𝑟
𝑏
, 𝑥∗ =

𝑠
𝑟
𝑏

, 𝑞 = 𝑘U𝜂 𝑘Z𝜂 𝛽; , 𝐶 =
𝑐U 0 0
0 𝑐Z 0
0 0 𝑐\

𝑊 =
𝑤UU 𝑤UZ 𝑤U\
𝑤ZU 𝑤ZZ 𝑤Z\
𝑤\U 𝑤\Z 𝑤\\

= −
𝑘U𝜂 𝜂 𝑘U + 𝑘X 𝜂
𝜂 𝑘Z − 𝑘X 𝑘Z𝜂 𝜂
𝑘\𝛽; 𝑘\𝛽; 𝛽;

,

 (47) 

 

In addition that, 𝑞U�, −𝑤��  for 𝑖, 𝑘 = 1,2,3 are positive constants, 𝑤�t  for 𝑖 ≠ 𝑘 are constants 
with any sign and 𝐶  is a positive diagonal matrix and 𝑠, 𝑟  and	𝑏 	are in (23). Moreover,  
𝑠
𝑟
𝑏

= 𝑥∗ = −𝑊mU𝑞( such that 𝑑𝑒𝑡𝑊 ≠ 0.  

By (47), it is obtained that 
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 𝐶𝑊 +𝑊(𝐶 = − 𝜂
2𝑐U𝑘U𝜂 𝑐U + 𝑐Z 𝜂 𝑘U + 𝑘X 𝑐U𝜂 + 𝑐\𝑘\𝛽;
𝑐Z 𝑘Z − 𝑘X + 𝑐U 𝑘U + 𝑘X 2𝑐Z𝑘Z𝜂 𝑐Z𝜂 + 𝑐\𝑘\𝛽;
𝑐U𝜂 + 𝑐\𝑘\𝛽; 𝑐Z𝜂 + 𝑐\𝑘\𝛽; 2𝑐\𝛽;

. (48) 

 

If 

 

 𝑘Z > 𝑘X,	 (49) 
 

then the matrix 𝐶𝑊 +𝑊(𝐶 in (48) is negative-definite.   

Moreover, the function 𝑉
.
𝑥  in (46) is 

 

 
𝑉
.
𝑥 = 𝑐U𝑤UU 𝑥U − 𝑥U∗ Z + 𝑐U𝑤UZ + 𝑐Z𝑤ZU 𝑥U − 𝑥U∗ 𝑥Z − 𝑥Z∗

											+𝑐Z𝑤ZZ 𝑥Z − 𝑥Z∗ Z + 𝑐U𝑤U\ + 𝑐\𝑤\U 𝑥U − 𝑥U∗ 𝑥\ − 𝑥\∗

											+ 𝑐Z𝑤Z\ + 𝑐\𝑤\Z 𝑥Z − 𝑥Z∗ 𝑥\ − 𝑥\∗ + 𝑐\𝑤\\ 𝑥\ − 𝑥\∗ Z.
 (50) 

 

(50) can be more clearly written as following 

 

 
𝑉
.
𝑥 = U

Z
𝑐U𝑤UU 𝑥U − 𝑥U∗ Z + 𝑐U𝑤UZ + 𝑐Z𝑤ZU 𝑥U − 𝑥U∗ 𝑥Z − 𝑥Z∗ + U

Z
𝑐Z𝑤ZZ 𝑥Z − 𝑥Z∗ Z

											+ U
Z
𝑐Z𝑤ZZ 𝑥Z − 𝑥Z∗ Z + 𝑐Z𝑤Z\ + 𝑐\𝑤\Z 𝑥Z − 𝑥Z∗ 𝑥\ − 𝑥\∗ + U

Z
𝑐\𝑤\\ 𝑥\ − 𝑥\∗ Z

											+ U
Z
𝑐U𝑤UU 𝑥U − 𝑥U∗ Z + 𝑐U𝑤U\ + 𝑐\𝑤\U 𝑥U − 𝑥U∗ 𝑥\ − 𝑥\∗ + U

Z
𝑐\𝑤\\ 𝑥\ − 𝑥\∗ Z .

 (51) 

 

In this sense, (51) does not vanish identically along a nontrivial solution, if the following 
conditions are met; 

 

 
𝛥U = 𝑐U𝑤UZ + 𝑐Z𝑤ZU Z − 𝑐U𝑐Z𝑤UU𝑤ZZ < 0
𝛥Z = 𝑐Z𝑤Z\ + 𝑐\𝑤\Z Z − 𝑐Z𝑐\𝑤ZZ𝑤\\ < 0
𝛥\ = 𝑐U𝑤U\ + 𝑐\𝑤\U Z − 𝑐U𝑐\𝑤UU𝑤\\ < 0

 (52) 

 

where 𝛥U, 𝛥Z and 𝛥\ are the discriminant during each of the statement (51). If the elements of 
a positive diagonal matrix 𝐶 are selected, for example, as follows 

 

 
𝑐Z =

²ww²uumZ²wu²uw
Z²uwu

𝑐U, 𝑐\ =
²uu²vvmZ²uv²vu

Z²vuu
𝑐Z,

𝑐U =
²ww²vvmZ²vw²wv

Z²wvu
𝑐\, 𝑐\ > 0,

 (53) 

 

then it can be seen that inequalities in (52) have provided. From (52) and (53), we have 
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𝛥U = 4𝑤UZ𝑤ZU − 𝑤UU𝑤ZZ < 0
𝛥Z = 4𝑤Z\𝑤\Z − 𝑤ZZ𝑤\\ < 0
𝛥\ = 4𝑤\U𝑤U\ − 𝑤UU𝑤\\ < 0.

 (54) 

 

After the elements of the 𝑊  matrix in (47) have written its places in (54), we have the 
following conditions: 

 

 4 𝑘U + 𝑘X 𝑘Z − 𝑘X < 𝑘U𝑘Z, 4𝑘\ < 𝑘Z. (55) 
 

Therefore, if inequalities (55) is satisfied, the function 𝑉
.
𝑥  does not vanish identically along 

a nontrivial solution. By (49) and (55), if  

 

 0 < 4 𝑘U + 𝑘X 𝑘Z − 𝑘X < 𝑘U𝑘Z, 4𝑘\ < 𝑘Z, (56) 
 

then 𝐸| is GAS. 

In the following discussion, we have demonstrated some of the contributions our 
mathematical modelling to the study of complex problems in host-microbe interactions.  

4. Numerical study 

In our numerical study, the datas of different species of bacteria including Staphylococcus 
aureus, Mycobacterium tuberculosis, Acinetobacter baumannii and E. coli in host have used. 
In this sense, each bacterial species has been evaluated separately in the model. By this study, 
dynamics of interactions among size of the bacteria population, concentration of the antibiotic 
and immune cells in host have examined. The parameter values used for numerical studies are 
given in the following Table 3. 
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Table 3. Interpretation and considered values of the parameters used in (1). Data are deduced from the 
literature (references). 

Parameter Description Unit Value 1 Reference 1 Value 2 Reference 2 Value 3 Reference 3 Value 4 Reference 4 

𝛽' 
Growth rate of 
susceptible 
bacteria 

days−1 24 [23] 0.8 [1] 1.2 
[24] 

0.6 
[25] 

𝛽. Growth rate of 
resistant bacteria days−1 21.6 [26] 0.5 [1] 0.9 Hypothesis 0.4 Hypothesis 

𝛽; Growth rate of 
immune cells days−1 3 [26] 0.6 [27] 0.6 [27] 0.6 [27] 

𝜂 
Rate of bacteria 
destroyed by 
immune cells 

cells−1 
days−1 2.4 10-4 [28] 10-6 Hypothesis 10-6 Hypothesis 10-6 Hypothesis 

𝛬 
Carrying 
capacity of 
immune cells 

cells 1.8 105 [28] 1.8 105 [28] 106 [16] 106 [16] 

𝑇 
Carrying 
capacity of 
bacteria 

cells 109 [23] 109 [29] 108 [30] 107 [31] 

𝛼 

Elimination rate 
of antibiotic 
under distinct 
doses days 

days−1 3.6 [23] 3.6 [23] 3.6 [23] 3.6 [23] 

𝜇 
Mutation rate of 
susceptible 
bacteria due 
antibiotic 

days−1 9.8 10-5 [30] 5.1 10-9 [32] 9 10-6 Hypothesis 9.3 10-6 [33] 

𝜆 
Bacterial 
induced death of 
immune cells 

cells−1 
days−1 6 10−6 [28] 6 10−6 [28] 6 10−6 [28] 6 10−6 [28] 

𝜎 Conjugation rate 
constant days−1 10−5 [26] 10-7 Hypothesis 10-7 Hypothesis 10-4 Hypothesis 

𝐸EFG 
Maximum 
killing rate of 
susceptible 
bacteria 

days−1 36 [23] 36 [23] 36 [23] 36 [23] 

𝐸H@ 

Antibiotic 
concentration 
for half 
maximum effect 
on susceptible 
bacteria 

µg/ml 0.25 [23] 0.25 [23] 0.25 [23] 0.25 [23] 

To some specific diseases causing of Staphylococcus aureus, Mycobacterium tuberculosis, Acinetobacter baumannii and E. coli, respectively, values of 
parameters used in the system (2) is obtained from the literature. Antibiotic used is Ciprofloxacin. In addition that, it has showed 
by  1, values and references for Staphylococcus aureus, 
by  2, values and references for Mycobacterium tuberculosis, 
by  3, values and references for Acinetobacter baumannii and 
by  4, values and references for E. coli. 

 

Taking into consideration values of the parameters in Table 3, qualitative analysis of the 
system (5) are supported by numerical simulations. Moreover, it has obtained the following 
figures in compliance with the results founded in Table 2.  

The antibiotic concentration for equilibria of the system (5) is eliminated completely from the 
body after a while. This circumstance is biological meaning with respect to the antibiotic 
excreted from body, and it can be seen in Table 2 and in these figures obtained from different 
positive initial conditions. 
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Fig.3. In case of 1 < 𝑘\ = 2000, Temporal course of bacteria population, immune cells and antibiotic 
by using the parameter values given in Table 3 for the Staphylococcus aureus. 

 

In the Fig.3, it is founded the results relating to stability of 𝐸Z 0,1,0,0  for Staphylococcus 
aureus. Also, it has observed that other variables except for resistant bacteria have eliminated 
completely from the body after a while. In here antibiotic concentration has excreted in one 
day. Within about one week,  the resistant bacteria reaches a positive equilibrium point, that 
is, its carrying capacity, and susceptible bacteria and immune cells are removed completely 
from the body. In this sense, immune cells do not respond resistant bacteria to antibiotic. 

 

 

Fig.4. In case of 1 < Umtv twmtu
tx

+ 1 = 1.02829 < 𝑘Z = 2.7778, Temporal course of bacteria 
population by using the parameter values given in Table 3 for the Mycobacterium tuberculosis. 

 

Stability of the equilibrium point 𝐸X = 0,0.6534,0.9627,0  for Mycobacterium tuberculosis 
is observed in the Fig.4. Also, while the susceptible bacteria is eleminated, resistant bacteria 
to antibiotic and immune cells are persist in host. In this Figure, it is seen that the 
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concentration of the antibiotic and susceptible bacteria have excreted from the body within 
one day and resistant bacteria and immune cells reach to their positive equilibrium values 
within 25 days. 

 

 

Fig.5. In case of 𝑘\ = 0.57 < 1		and		𝑘Z = 0.9 < Umtv twmtu
tx

+ 1 = 1,00129 < 𝑚𝑖𝑛 𝑘U =

1.2, twmtu
tx

+ 1 = 1.003 , Temporal course of bacteria population, immune cells and antibiotics by 
using the parameter values given in Table 3 for the Acinetobacter baumannii. 

 

In the Fig.5, it has used that the datas obtained for Acinetobacter baumannii and we have 
observed that stability of 𝐸| = 0.001009870389,0.00198115653,0.998295114656,0  
which the sub-populations of susceptible and resistant bacteria to antibiotic and immune cells 
persist. In this respect, the antibiotic concentration excreted within 2 days and immune cells 
reaches a positive equilibria within ten days. Therefore, susceptible and resistant bacteria to 
antibiotic reach to their a very small positive equilibrium values after a long time under the 
specific level of immune system cells. 
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Fig.6. In case of 𝑘U = 0.6 < 1, Temporal course of bacteria population, immune cells and antibiotics 
by using the parameter values given in Table 3 for the E. coli. 

 

Finally, the results relating to stability of 𝐸U = 0,0,1,0  have shown in the Fig.6. by using the 
datas for E. coli. In this sense, antibiotic concentration and susceptible bacteria have 
eleminated within 24 hours. In 7-10 days, the resistant bacteria has disappeared and the 
immune cells has reached to it’s carrying capacity. 

In this study, the effects of antibiotics and immune system cells in case of bacterial infection 
have been assessed in certain intervals of time. 

 

5. Results and Discussions 

In this study, the values 𝑘U, 𝑘Z, 𝑘\ and 𝑘X have stated the conditions identifying the changes 
in the population sizes of the infectious bacteria, hosts immune cells and antibiotic. With 
regards to the biological meaning of the parameters describing these statements, the parameter 
𝑘U	can be comment as the number of bacteria generated by the fraction of susceptible bacteria 
surviving under pressure of immune cells independently from both the effect of antibiotic and 
the conjugation including the transfer of genes between susceptible and resistant bacteria. 
Analogously, 𝑘Z 	represents the bacteria generated by resistant bacteria surviving under 
pressure of immune cells. The parameter 1𝑘3 can be expressed as	 the number of cells generated 
by the fraction of immune cells surviving under pressure of bacteria. Moreover, taking into 
consideration tw

tx-U
= ]^

b/-W<
	in (6), the parameter tw

tx-U
	can be comment as the number of 

bacteria generated by the fraction of susceptible bacteria surviving under both the pressure of 
immune cells and the conjugation including the transfer of genes between susceptible and 
resistant bacteria independently from the effect of antibiotic. Hence, the biological existence 
and stability conditions of the equilibria of system (5) obtained from Table 2 have 
independent from the effect of antibiotic. 

Let us held not the inequality (37). In case of  1𝑘3 < 1, the state expressed only the existence of 
resistant bacteria independently from the status of all other variables is revealed. When 1 <
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, the status of the other equilibrium point is taken into account.  In this sense, the effect of 
the immune response of the host is very important in terms of the development of the 
infection. 
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Abstract 

During gas turbine operation, the vibration that occurs at high speed, hot gases entering the combustion chamber 
and other operational factors affect the longevity of gas turbine blade. This paper is focused on the selection of 
suitable materials that can withstand the severe working condition and thermo-structural analysis using Finite 
Element method (FEM) to determine the behaviour of each material under service condition. Cambridge 
Engineering Software (CES) was employed in the material selection process where GTD111, U500 and IN 738 
were identified prior to analyzing U500 and IN 738 due to desired mechanical properties over GTD111. 
Employing ANSYS R15.0 in the steady state thermal analysis, maximum service temperature of 736.49oC and 
maximum Total heat flux of 4.345x105 W/m2 was obtained for IN 738 material while maximum service temperature 
of 728.29oC and maximum Total heat flux of 4.1746x105 W/m2 was obtained for U500 blade material. For 
structural static analysis, maximum von-mises stress of 454 MPa and total deformation of 0.16221 obtained for 
IN 738 while maximum von-mises stress of 416 MPa and total deformation of 0.12125 was obtained for U500 
blade material. While the FEA analytical results for both materials exhibited less variations between each other, 
IN 738 displayed better thermal characteristics, whereas, U500 presented satisfactory structural static results and 
above all, von-mises stresses obtained for both materials was below their yield strength and melting temperature. 
Hence, gas turbine blade materials should be assessed thoroughly for structural and thermal conditions before 
manufacturing. 

Keywords: Gas turbine, Turbine blade, Temperature, Material properties, Stress, Deformation. 

1. Introduction 

The gas turbine engines are more critical to the operation of power plants, aircraft and heavy 
duty vehicles. A typical gas turbine engine consists of three major parts namely; compressor, 
combustion chamber and the turbine in addition to the generator [1]. Gas turbine blades are the 
specific component responsible for extracting energy from the high temperature and high 
pressure gas produced from the combustion chamber. The combustible gas in the process 
converts potential energy of the stationary blade to kinetic energy of the blade which in turn 
generates electrical power. During the operation of gas turbine engine, the turbine blades are 
subjected to high temperatures and stresses [2]. Turbine blades are exposed to loads that can 
cause failure during operation, therefore, the gas turbine blade component must be design with 
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in-depth consideration of vibration and thermal stresses induced on the blade in service 
condition [3]. A major cause of turbine blade failure is High Cycle Fatigue (HCF) caused by 
repeated cyclic loads on the rotor blade [4].  Gas temperatures at the turbine inlet is between 
1200oC to 1600oC, but some as a result of over loading have increased inlet temperatures as 
high as 1600oC which may cause fatigue and fracture of the blades/discs [5]. Boyce [6] reported 
that the 5th stage of the low pressure turbine operates at a temperature of about 800°C, while 
the 1st stage intermediate pressure turbine operates at a temperature of about 1100°C and the 
1st stage high pressure turbine operates at a temperature of about 1500°C respectively. 
According to Ikpe et al. [7], the high pressure turbine is exposed to the most intensed 
temperature (450o-1300o) and pressure while the Low Pressure (LP) turbine is exposed to lower 
temperature (80o-400o) air pressure.  Hot gases from the combustor are accelerated prior to 
entering the gas turbine and this significantly lowers the turbine maximum temperature from 
approximately 1800°C to approximately about 1100°C while entering the first turbine stage [8]. 
These challenges can be unravelled through the use of materials with relatively high melting 
point (such as material with temperature above the operating condition of the gas turbine 
engine), surface coating and cooling techniques which are the areas that will be addressed in 
this paper. Choi and Lee [19] studied a gas turbine failure scenario by investigating the broken 
surface of the blade and stress analysis of the blade and was observed that the maximum stress 
occurred due to the pressure profiles developed during operation. Umamaheswararao and 
Mallikarjunarao [10] conducted a structural static analysis on three potential gas turbine blade 
materials which included mild steel, N-155 and Inconel 718. It was found that displacement is 
less for INCONEL 718 compared to mild steel and N- 155, while the von-misses stress was 
within the yield strength of the material with optimum deformation compared to mild steel and 
N-155. Kumar and Pandey [11] investigated the potentials of super alloy X, Nimonic 80A and 
Inconel 625 as possible turbine blade materials at three different speeds viz; 20000, 40000 and 
60000 RPM and found out that the bent profile of Inconel 625 is the best combination for all 
the speeds. Sushila et al. [12] carried out failure analysis on first stage IN738 gas turbine blade 
tip cracking to determine the causes of gas turbine blade failure of 30MW thermal power plant. 
It was found that surface degradation due to overheating, oxidation, fatigue, degradation of 
coatings, hot corrosion, sulphidation, embrittlement and thermal aging are the major causes. 
Difference in operating condition of the HP and LP turbine has over the years resulted in the 
design of HP and LP turbine blades which are greatly different in material and cooling options 
despite the same thermodynamic and aerodynamic principles In this study, thermal-structural 
FEA was carried out on potential turbine blade materials to check their suitability. 

2. Materials and Method 

The Initial search was performed using fatigue strength and density as the basis in Cambridge 
Engineering Software (CES) Edupack to determine the materials with maximum fatigue 
strength and minimum density under service temperature between 800oC and 1300oC without 
failure, and possible materials were captured as presented in Fig. 1.  
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Fig. 1. Graph of Fatigue Strength against Density 

Further search was performed using maximum yield strength and density as the basis in CES 
Edupack to determine the materials with reference service temperature (between 500oC and 
950oC) according to existing literatures [13]. The box method was applied for optimization and 
selection of possible materials suitable for gas turbine blade as shown in Fig. 2. 

 
Fig. 2. Graph of Yield Strength against Density 

As shown in Fig. 2, the three materials (GTD111, U500 and IN 738) were indicated in the 
second search which were also captured in the initial search indicated with broken arrow as 
shown in Fig. 1. These three super alloy materials are in agreement with studies on gas turbine 
blade materials by Nageswara [14]. These blade material properties were created with ANSYS 
by double clicking on the engineering material data located in ANSYS workbench. A new page 
having engineering materials data opened right next to project. The default material on ANSYS 
was structural steel. A list of several possible properties found on ANSYS was found in the 
Toolbox. After selecting the appropriate properties for the material intended to be created, the 



A. Ikpe, O. Efe-Ononeme, G. Ariavie 

121 
 

material properties then displayed. Properties of the three possible gas turbine blade materials 
selected in Fig. 2 are summarized in Table 1. Nominal composition of the various blade material 
are provided in the Table 2. 

Table 1. Material Properties of possible Gas Turbine Blade 
Materials GTD 111 U 500 IN 738 
Specific Heat (J/KgK) 460 500 510 
Young’s Modulus (GPa) 130 190-210 149 
Density (kg/m3) 8870 8027 8550 
Poison’s ratio 0.33 0.27-0.30 0.30 
Thermal conductivity (W/mk) 16 16.2 14.3 
Thermal expansion (0C) 9x10-6 17.5x10-6 12.5x10-6 
Yield strength (MPa) 564.32 500 792 
Melting temperature (0C) 1699 1360 1400 
Bulk Modulus (Pa) 1.0833x10^11 1.583x10^11 1.247x10^10 
Shear Modulus (Pa) 5x10^10 7.307x10^10 5.730x10^10 

Table 2. Nominal Composition of Possible Gas Turbine Blade Material 
Materials Composition (Alloying Elements) 

Ni Cr Co Ti Al C W Mo B Nb Ta Fe 
IN 738 Bal 16 8.3 3.4 3.4 0.10 2.6 1.75 0.001 0.9 1.75 0.2 
GTD111 Bal 14 9.5 4.9 3 0.10 3.8 4.5 0.01 - 2.8 - 
U500 Bal 17.5 16.5 3.9 2.9 - 0.8 4 0.01 -  4 

 

2.1. FEA of Gas Turbine Blade 

The FEA configured the turbine blade model for analysis using a complex system of points or 
nodes connected into a grid known as mesh. The nodes were arranged at a specific density 
throughout the model. The geometry of the gas turbine blade is modeled in SOLIDWORKS 
and then imported into ANSYS for meshing. The aero foil profile of the rotor blade was 
generated on the XZ plane with the help of key points defined by the coordinates. Then a 
number of splines were fitted through the key points, creating the 2D aero foil shape. The 
geometry of the blade was meshed with 8 nodded tetrahedral brick element but the element type 
used for this purpose was Tetrahedron 10. It has 3 degrees of freedom per node, that is, 
translation in X, Y and Z directions were used. The element has plasticity, creep, swelling, 
stress stiffening, large deflection, and large strain capabilities etc. The blade dimensions are 
given in Table 3, while Fig. 3 represents the gas turbine blade geometrical models created in 
SOLIDWORKS and meshed gas Turbine blade using ANSYS. The steps employed in the 
course of the analysis are as follows;  

i. Creating a three dimensional model in SOLIDWORKS software 2016 
ii. Import the SOLIDWORKS model in ANSYS 15.0 software 

iii. Mesh the imported model in ANSYS 
iv. Apply boundary conditions and,  
v. Solve the system equations to find out the unknowns  

vi. Validation of solutions obtained with the operating conditions 
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Table 3. Gas Turbine Blade Dimensions 
Parameter Value 
Name  NACA6409 9% 
Blade Span (mm) 120mm 
Blade Axial Chord Length (mm) 68.30mm 
Blade Root Length (mm) 60mm 
Thickness (%) 100 
Pitch (deg) 14 

 

 
Fig. 3. Gas Turbine Blade Geometries in SOLIDWORKS and Meshed Blade using ANSYS 

2.2. Thermal Analysis 

Heat transfer in fluids occurs by means of conduction as well as convection. Force convection 
is the dominant phenomena in turbine flows. The boundary conditions for steady state thermal 
analysis as applied to the turbine blade in the analysis are indicated in Table 4. Operational 
Parameters of the Gas Turbine Blade are presented in Table 5. 

Table 4. Steady-state Boundary Condition for the Thermal Analysis 
Parameters Value 
Turbine Inlet Temperature (0C) 950 
Convective Heat Transfer Coefficient On Tip (W/M2K) 800 
Convective Heat Transfer Coefficient On Pressure Side (W/M2K) 1000   
Convective Heat Transfer Coefficient On Suction Side (W/M2K) 1300 
Turbine Exit Temperature (0C) 480 

Table 5. Operational Parameters of the Gas Turbine Blade 
Pressure (bar) 8 
Speed (rpm) 5100 
Tangential force (N) 177.48 
Axial force (N) 0.3439 
Centrifugal (N) 40,680 
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3. Results and Discussion 

Results obtained from the thermal-structural analysis in this study are presented in this section. 

3.1. Steady-state Thermal Analysis  

In a gas turbine blade, boundary layer develops on the blade surface and the free stream 
temperature are of interest. This layer acts as a buffer between the solid blade and the hot free 
stream, and offers resistance to heat transfer. Heat transfer occurs in this viscous layer between 
the blade and the fluid through both conduction and convection. After inputting the boundary 
conditions presented in Table 4 and applying it on the gas turbine blade, the following results 
were obtained for IN 738 and U500 blade materials as shown in Figs. 4-7. This boundary 
condition caused convective heat transfer to occur through one or more flat or curved faces (in 
contact with a fluid). Exhaust gases from the combustor are directed through the turbine in such 
a manner that the hottest gases impinge on turbine blades. It was observed that the maximum 
temperature is experienced at the leading edge of the blade, however, there was a temperature 
fall from the leading edge to the trailing edge of the blade. Since heat is transferred from the 
region of high temperature to a region of low temperature, the maximum heat flux was observed 
at the trailing edge. 

 

 
Fig. 4. Temperature distribution on IN738 Turbine Blade Material 
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Fig. 5. Heat Flux on IN 738 Turbine Blade Material 

 
Fig. 6. Temperature distribution on U500 Turbine Blade Material	

 
Fig. 7. Heat Flux on U500 Turbine Blade Material 
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From Fig. 8, it can be observed that the maximum temperature of the various blade material fall 
below their corresponding melting temperature. The maximum temperature and heat flux were 
closely varying between the two turbine blade materials. IN 738 a higher temperature and heat 
flux characteristics compared to U500. Variations in maximum temperature and heat flux 
between the two blade materials is due to their differences in material properties. 

 
Fig. 8. Maximum Temperature and Heat Flux for Turbine Blade Materials 

The temperatures observed were below the melting temperature of the blade materials, as both 
IN738 and U500 turbine blade materials exhibited high temperatures of 736oC and 728oC as 
shown in Fig 8. Depending on the severity of heat flux in the gas turbine engine, the temperature 
can have significant effects on the overall turbine blade performance. The non-uniform 
temperature distribution from the tip to the root of the blade materials may induce thermal 
stresses on the turbine blade, while thermal stresses along with the mechanical stresses set up 
in the turbine blade during service condition may reduce the life of blade material. Figs. 9-11 
represent the results obtained when static structural analysis was performed on IN 738 turbine 
blade material while Figs. 12-14 represent the results obtained when static structural analysis 
was performed on U500 turbine blade material. 

 

 
Fig. 9. Von-mises Stress on IN738 Turbine Blade Material 
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Fig. 10. Elastic Strain on IN738 Turbine Blade Material 

 
Fig. 11. Total Deformation on IN738 Turbine Blade Material 

 
Fig. 12. Von-mises stress on U500 Turbine Blade Material 
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Fig. 13. Elastic Strain on U500 Turbine Blade Materia 

 
Fig. 14. Total Deformation on U500 Turbine Blade Material 

A summary of results obtained from the static structural analysis for both IN738 and U500 
turbine blade materials is presented in the in Fig. 15. The results presented in Fig. 15 were 
extracted from the results of stress, strain and deformation from the structural analysis in Figs. 
12-14 respectively. The maximum stress exhibited by IN738 blade material and U500 is below 
their corresponding yield strength. For failure not to occur, the stresses exhibited by the blade 
materials must be below their yield strength. Therefore, IN738 and U500 are safe under the 
specified boundary conditions in this study.  
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Fig. 15. Variations of Structural Parameters across Different Materials 

Static-Structural analysis was performed on the turbine blade to analyze the stress, strain and 
deformation on the turbine blade. A pre-stress from the steady state thermal analysis in addition 
to the structural load was performed on the blade to determine the failure criteria on the blade 
material. The yield criteria was used to relate multi-axial stress state with the uniaxial stress 
state. Von-mises (Equivalent stress) is part of the maximum equivalent stress failure theory 
used to predict yielding in a ductile material. The actual structure usually exhibits multi-axial 
stress state. The yield criterion provides a scalar invariant measure of the stress state of the 
material which is compared with the uniaxial stress state. Generally, a stress state possesses two 
components namely; 

i. Hydrostatic stress: which generates change in volume. 
ii. Deviatoric stress: which generates angular distortion (change in shape). 

The von Mises yield criterion states that yielding will occur whenever the distortion energy in 
a unit volume equals the distortion energy in the same volume when uni-axially stressed to the 
yield strength. Therefore, if von Mises equivalent stress exceeds the uniaxial material yield 
strength, yielding will occur. The blade root has more strength when compared to the blade 
span (free end of the blade). After incorporating the boundary conditions and various forces 
acting on the blade from Table 4 and 5, color profile on the turbine blade model indicated areas 
of maximum and minimum stress, strain and deformation. The red contours represents 
maximum values while the blue contours represents minimum values. It was found that 
maximum stress and strain developed at the joint sections of root and blade volumes (trailing 
edge), while maximum deformation is found at the blade tip. Variation of deformation, stress, 
and strain for the two materials were examined from the structural analysis. Maximum 
deformation was observed at the top blade tip sections and minimum elongations at the root of 
the blade as shown in Figs. 11 and 14. To avoid failure of the gas turbine blade due to creep, 
deformation on the blade must be as less as possible. Comparing the maximum deformation 
under the same load condition for both materials, total deformation for IN738 was 0.16221mm 
whereas, the total deformation obtained for U500 blade material was 0.12125mm as illustrated 
in Fig. 15. Deformation values obtained by Bhupendra et al. [15] from super alloy (N-155 nickel 
based alloy) in the category of IN738 and U500 ranged between 0.000177mm and 0.000274mm 
which are less compared to deformation values obtained in this study. This may have been due 
to the variations in material properties and compositions. Maximum stresses and strains were 
observed on the trailing edge, at the joint between the blade span and the root. The maximum 
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von-mises stress for U500 (yield strength of 500 MPa) and IN738 (yield strength of 7920) was 
below the corresponding yield strength of the materials. Comparing the maximum von-mises 
stresses for both materials under same loading condition, the von-mises stress on IN738 was 
454MPa while von-mises stress of 416MPa was obtained for U500 blade material as shown in 
Figs. 9 and 12. Also, comparing the results obtained for maximum strain across the various 
materials, strain on IN738 was 0.003273 while the strain value obtained for U500 was 
0.0022454 as shown in Figs. 10 and 13 respectively. The gas turbine blade is prone to failure 
when the maximum stress at the trailing edge near the root of the blade exceeds the yield stress 
of the blade material. From the result obtained from the thermal analysis, variations in the 
temperature of the two material indicated that maximum temperatures prevailed at the leading 
edge of the blade, while temperatures distribution below the maximum temperature was 
observed at the trailing edge and along the blade root. Hence, both turbine blade materials 
investigated in this study are safe as potential gas turbine blade materials, as their maximum 
service temperatures were below their melting temperature, also, as their yield strengths 
obtained in the course of the analysis were below their yield strength. 

4. Conclusion 

Turbine Blades are one of the most important components in the gas turbine engine. The blades 
are operated in harsh environmental condition at elevated temperature, high pressure and large 
centrifugal forces that hampers the performance and longevity of the blade material in service 
condition. The turbine blade material is exposed to unforeseen failure depending on the 
severity, and this necessitated the thermal and structural static analysis carried out in this study. 
From the analysis of the results, it was observed that the temperature on the turbine blades for 
both materials was below the melting temperature of the blade materials. Maximum 
temperatures were observed at the leading edge of the blade and decreased towards the trailing 
edge and blade root. Maximum von-mises stresses and strains were observed near the root of 
the turbine blade and upper surface along the blade roots. Total deformation obtained from each 
blade analysis were negligible, as 0.16221mm was obtained for IN 738 and 0.12125 mm 
obtained for U 500. This report serves as a guideline for the selection of suitable materials for 
minimal gas turbine blade failure and optimal working scenario. 
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Abstract 

In the present paper, a new nonlocal formulation for vibration derived for nano beam lying on elastic matrix. 
The formulation is based on the cubic shape polynomial functions via finite element method. The size effect on 
finite element matrix is investigated using nonlocal elasticity theory. Finite element formulations and matrix 
coefficients have been obtained for nano beams. Size-dependent stiffness and mass matrix are derived for Euler-
Bernoulli beams.  

Keywords: Size-depended vibration, cubic shape functions, Nonlocal elasticity, Euler-Bernoulli beam, new 
mass and stiffness matrix.  

 

1. Introduction 

It is known that the nanotechnology has enabled the opening of a new era in many areas in 
nano optics, microcomputers and micro devices, chemical, medicine, engineering, electronics. 
For keep up with technology fast, the correct solution method which considers the size effect 
is the most important factor. Experimental research is very difficult and expensive. Some 
methods such as Hybrid atomistic–continuum mechanics and related to the atomic modeling; 
molecular dynamics [1-3], tight-binding molecular dynamics, the density functional theory 
take into account the size effect. Therefore, various theories have been developed that gives 
importance to effects of small scale such as strain gradient theory [4,5], modified couple 
stress theory [6-9], couple stress elasticity theory [10-13], nonlocal elasticity theory [14-15]. 
Nonlocal elasticity theory of Eringen is the most widely used among them. According to the 
nonlocal elasticity theory of Eringen [14-15],  the stress at any reference point is effecting the 
whole body which not depends only on the strains at this point but also on strains at all points 
of the body. This definition of the Eringen’s nonlocal elasticity is based on the atomic theory 
of lattice dynamics, and some experimental observations on phonon dispersion. Nonlocal 
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theory considers long-range interatomic interaction and yields to results dependent on the size 
of a body [14-16]. Applying first the nonlocal elasticity theories to nanotechnology is by 
Peddieson et al. [17] and Sudak [18]. Nanostructures with nonlocal elasticity theory have been 
studied for different type ( numerical and analytical) solution with contributions continuum 
mechanics by finite element method [19-25], by finite difference method [26-27] by 
differential transform method [28-30], by differential quadrature method [31-34], and by 
analytical solution [35-43].  

 

2.  Size dependent formulation 

The main equations for a homogenous and isotropic elastic continuum body can be stated as 
[14,15,16]:  
 
 

,0, =jijσ       (1) 

),()(),()(, xdVxCχxxαxσ
V

ijklji ʹʹʹ−= ∫ ε      (2) 

( ),
2
1)( ,, ijjiij uuxε +=ʹ      (3) 

where ijσ is the nonlocal stress tensor, ρ is the mass density of the body, u is the displacement 
vector at a reference point x in the body, )(xCijkl ʹ is the classical (Cauchy) or local stress 
tensor at any point xʹ in the body, )(xεij ʹ is the linear strain tensor at point xʹ  in the body, t is 

denoted as time, V is the volume occupied by the elastic body, xxα ʹ−  is the distance in 

Euclidean form, λ and µ are the Lame constants. xxα ʹ−  is the nonlocal kernel which defines 
the impact of strain at point xʹ  on the stress at point x in body. The nonlocal constitutive 
formulation is 
 

ijklij Cσae =∇− ])(1[ 22
0      (4) 

 
The displacement components based on the Euler-Bernoulli beam theory may be written as 
[36-37]:  
 

x
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∂
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where ‘w ‘ is the transverse displacement. The strain-displacement equations for Euler-
Bernoulli beam is given by 
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Consider the stress-strain relation for Euler-Bernoulli beam is given by 

),(2
2

tx
x
wEzxx ∂

∂
−=σ  0===== yzxzxyzzyy τττσσ     (7) 

According to Eq. (4), the nonlocal stress-strain equations for beam can be written as [36-37] 
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The generalized Hamilton’s principle has the form 
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The strain and kinetic energies of the classic Euler-Bernoulli beam are equal to 
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The work done by the axial compressive force, Winkler foundation modulus   ( wk )	 and	

Pasternak foundation modulus ( gk ) can be expressed as 
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Substitution of Eqs.(10)-(11) into Eq.(9), acquired 
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When Eq.(13) under the double integral equal to zero under the double integral, differential 
equations of motion, 
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The nonlocal moment resultants for beam can be obtained via (8a) as 
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Substitution of Eq.(14) in to Eq. (15) leads to 
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Finally, by substituting Eq.(16) into Eq.(13), we obtained governing equations for nonlocal  
Euler-Bernoulli beam [21,22,28,34] 
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The Euler-Bernoulli beam element is a beam with four degrees of freedom (DOF) and has two 
end nodes: 1 and 2. The node displacement vector 
 

[ ]2211 θθ wwwe =      (18) 

By multiplying shape function (φ  ) and discretized displacements at nodes ([ ]netw )( ) of an 
element we obtain the displacement of element ( etxw ),( ) 
 

[ ][ ]nee twtxw )(),( φ=    [ ][ ]nee twtxw )(),( !!!! φ=     (19) 

To solve the equations the ‘Hermitian cubic shape functions’ are used. Dimensionless natural 
coordinate can be stated as below 

12
−=

L
x

ξ       (20) 

where L is the element length. By using the shape functions (Eq.(21)) and dimensionless 
natural coordinates (Eq.(20)) , the stiffness matrix becomes (ignoring the axial load) 
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Similarly 
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Also, the mass matrix can be given as 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−

−

−

=

3232

22

3232

22

1

422313
221561354
313422
135422156

420
LLLL
LLLL
LLLL
LLLL

AM ρ

                       

(22a)      

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−−−

−−

−

=

22

222
02

433
336336

343
336336

30
)(

LLLL
LL
LLLL
LL

L
AaeM ρ

                    

(22b)      

	
54321 KKKKKK ++++= ,				

21 MMM += 	 	 (22c)     	
 

 
Finally, the vibration of Euler-Bernoulli beam can be expressed as 
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0det 2 =− MK ω       (23)  

  

3. Results 

As numerical results, non-dimensional frequency values of boron nitride nanotube with 
clamped supports at both have been obtained and results listed in Table 1. The results 
obtained by discrete singular convolution are also given in this table. It is shown that, the 
frequency values are increased with the increasing value of nonlocal parameter. 

 

Table 1. Dimensionless Frequency values of C-C boron nitride nanotube 

e0a/L 
  Foundation parameters (Kw=10, Kg=50) 
ω1 ω2 ω3 
FEM DSC FEM DSC FEM DSC 

0.0 33.3266 33.3485 78.0638 78.0873 139.862 139.8836 
0.1 34.9378 34.9403 74.1135 74.1205 116.255 116.2673 
0.2 37.7969 37.8041 69.3394 69.3593 99.5596 99.5701 
0.3 40.0275 40.0359 66.8639 66.8704 93.7733 93.7937 
0.4 41.4571 41.4691 65.6397 65.6491 91.529 91.5383 
0.5 42.3505 42.3712 64.9805 64.9907 90.5076 90.5214 

 

4. Concluding remarks 

Experimental studies have shown that the mechanical behaviors of nano-scaled systems are 
completely different from structures having conventional dimensions (centimeters, meter 
dimensions). Experimental study on nanostructures and nanostructures is both costly and time 
consuming. For this reason, by using higher-order elasticity theories, the results have been 
theoretically tried to be obtained closer and many higher order theories taking the size effect 
into account have been emerged. In this paper, nonlocal elasticity theory was used to 
investigate the dimensional effect for nano beams. Using the nonlocal elasticity theory, 
equation of free vibration of beams on elastic matrix has been obtained. Obtained differential 
equation is solved using the finite element methods. 
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