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Abstract

Document ranking based on probabilistic evaluations of relevance is known to exhibit non-
classical correlations, which may be explained by admitting a complex structure of the event
space, namely, by assuming the events to emerge from multiple sample spaces. The structure
of event space formed by overlapping sample spaces is known in quantum mechanics, they
may exhibit some counter-intuitive features, called quantum contextuality. In this Note
I observe that from the structural point of view quantum contextuality looks similar to
personalization of information retrieval scenarios. Along these lines, Knowledge Revision
is treated as operationalistic measurement and a way to quantify the rate of personalization
of Information Retrieval scenarios is suggested.

1. The evolution of information needs

The notion of information needs was clearly formulated by Tailor [12]. Along with the development of IR systems the very structure of
information needs, of queries was subject to evolution. Briefly, its mainstream can be described as a transition (read upwards)

Knowledge Revision (KR)

Information Retrieval (IR)

Data Retrieval

(1.1

each stage using the previous one as a background. Information Retrieval uses Data Retrieval environment yet modifying the structure of
queries, as formulated by Lancaster “An information retrieval system does not inform (i.e. change the knowledge of) the user on the subject
of his inquiry. It merely informs on the existence (or non-existence) and whereabouts of documents relating to his request” [5]. Then the
next stage is the increasing personalization of search. The user interacts with an IR environment having a goal to update the state of his
knowledge (belief) rather than to retrieve a particular document. This way Information Retrieval serves for Knowledge Revision (KR).

How quantum mechanics comes? The chain (1.1) can be compared with the transition from classical mechanics, dealing with the absolute
character of the values measured, to quantum mechanics, where the result of a measurement is a result of an act of will of an observer rather

Email addresses: Roman.Zapatrin@gmail.com (R. Zapatrin)
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than retrieving a pre-existing value. In both extreme cases, the retrieval act is nothing but a measurement. Similar to the evolution of the
notion of measurement, the retrieval metaphors evolve.
We shall deal and with the general notion of Information Needs (IN), ranging them in four levels [12]

visceral need

conscious need

formalized need

compromised need

(1.2)

with the following meaning

» The visceral need is the actual, but unexpressed, need for information.

* The conscious need is a within-brain description of the need.

* The formalized need is a formal statement of the question.

* The compromised need is the question as presented to the information system.

The chain (1.1) reflects the upwards transition in the above list, and the personalization tightly approaches to the visceral IN. In this Note I
deal with the quantification of personalization — the crucial part of Knowledge Revision — using quantum metaphor. The technical basis for
this quantitative approach is formed of the following research lines:

» Simulation of quantum contextuality effects by finite automata and the evaluation of the amount of memory required for this simulation
[4]. Our basic idea is to revert this argumentation and to evaluate the features of a quantum system, which can be in certain sense
simulated by giver IR environment.

» The evaluations of violations of classical probabilistic laws by index term probabilities, carried out by Melucci [7] and the quantitative
evaluation of the amount of contextuality by Svozil [11]

2. On the nature of non-classical correlations

In general, non-classical correlations appear when Kolmogorovian probability model is no longer applicable. The basic point of Kolmogoro-
vian model is the existence of a (single) sample space Q. The events are subsets of €, while the points of the sample space are elementary
and independent.

In order to test this or that model, we employ Accardi’s statistical invariants [2], they allow to test the applicability of Kolmogorovian model.
Given:

* a family of discrete maximal observables {Aq : @ =1,...T} (T being finite), each observable A, takes the finite number of values

)

* the experimentally measurable conditional probabilities pj, j, (B | @)

labelled by jo =1,...,n

(a
Ao

Pjwjs(Bla) =P (A;s = a_<,-?’ Ag = aﬂ?) Q2.1

(o)

The problem is: does there exist a probability space (Q;.%;P) and T measurable partitions A j

values of each observable is assumed to be the same)

of cardinality n (the number of distinct

such that for any o, = 1,...T one has

P(AP —aP) @) — o) = 2.2)
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In order to get the answer, a linear programming problem is to be solved [1], that is, the problem of the existence of a single sample space is
finitely decidable.

In the sequel we shall need the special case of three observables A, B, C, each taking only two values aj,a; for A, by,b; for B and ¢, c; for
the observable C. The transition probability matrices for each pair of observables, being bistochastic, each has only one numeric parameter,
denote the appropriate matrices as

P(A|B):P:( P I’P)

l-p p
P(B|C)=Q=(lzq 1;‘1) (2.3)
P(C|A):R:(lir l:r)

then these transition probabilities can be described by a Kolmogorovian model (that is, they are produced by a single sample space) if and
only if

lp+q—1<r<1-|p—g 24

3. Melucci operationalistic metaphor

There is a straightforward analogy between IR and the process of measurement, called Melucci metaphor. There is a search machine, which
we may treat to be prepared in certain state, and there is an observer, which performs a measurement. It is typical that the preparation of
query system does not assume a query asked by the user, this causes a mismatch, which is to be handled [7].

The situation when a mismatch between the preparation and measurement occurs is a source of paradoxes and counter-intuitive observable
consequences of quantum mechanics. It results in the possible randomness of single accounts, though previous stages were deterministically
prepared. To deal with it, context translation is introduced as handling the mismatch between state preparation and measurement. In quantum
mechanics this metaphorically looks as follows [10]. Suppose an electron is prepared, using Stern-Gerlach device, in pure spin stat along z
axis, always showing spin up. Then we decide to ask the so-prepared electron a complementary question: “what is direction of spin along the
x axis?” Quantum mechanics tells us that the electron is completely incapable to store more than one bit of information (assuming this is not
so leads to direct experimental contradictions). That is why the electron gives a random reply on this query. This is what makes it different
from deterministic query agents, who are not able to handle improper input, on which they offer no answer.

Modern IR environments are no longer so rigid, they easily handle any kind of input: if you ask them, almost always you get an answer, but
sometimes the relevance of this answer for you personally may be of zero value. To overcome this, search engines are configured to track
user’s requests, or, in other words, to keep the context associated with particular user and his present role. Altogether, each such particular
action I call knowledge revision scenario. In practice this is done by seeding pebbles along the way the user goes through the jungles of
World Wide Web, say, by storing browser’s cookies. These pebbles are, after all, just sequences of bits. Now suppose our task is to judge to
what extent the act of measurement is personalized, let us view it from a perspective of quantum measurement. To do it, recall a series of
recent works summarized in [4].

4. Quantifying the personality in Knowledge Revision scenarios

In brief, quantum contextuality manifests itself as follows: when measuring quantum systems, the result may depend on which other
compatible observables are measured simultaneously. Furthermore, these other observables may be just intended to be measured rather than
really measured. This cloud of potentially co-measurable values is referred to as context. When simulating a quantum system by agents with
internal memory (recall that, as told above, quantum system are so smart that they behave in this way without having internal memory), the
agent will attain different internal states in course of carrying out a sequence of elementary queries. The minimal amount of memory needed
to simulate particular manifestations of quantum contextuality is called memory cost of this quantum effect. The paper [4] explores the
memory cost of simulating quantum contextuality effect observed on singlet states of positronium. It gives a clue to draw a correspondence:

quantum contextuality — its memory cost

In general, the memory cost increases as more and more contextuality constraints are considered. The complexity of contextuality constrains
depends, in its turn, on the dimension of the state space of the system in question.

I suggest the following technical idea. The argumentation of the authors of [4] is reverted. We start with an IR environment and ask how
complex quantum contextual features it may exhibit? Furthermore, we may reduce the answer to just a number (or a string of numbers),
namely, the dimensionality (or a tensor product structure — TPS [13]) of a quantum system demonstrating similar context dependence.

KR scenario — quantum system

How to do this? What is to be simulated? Here, I dwell only on the logical and certain probabilistic aspects of simulation. To do it, the
proper tools to deal with the structure of the collection of properties of a system are introduced.

Overlapping contexts. It was observed by different authors that complex IR systems are not well described by probabilistic models based
on a single sample space. In [9] it was explicitly shown that Bayesian reasoning in its direct for fails and, in order to get adequate evaluations,
when writing conditional probabilities P(A | B) one should take care about specifying the context — a particular sample space, in which these
conditional probabilities are calculated. In the meantime, the small sample spaces are not separated - thy overlap, there are events belonging
to different contexts. It occurs that the classical contingency table
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RETRIEVED | NOT RETRIEVED
RELEVANT ANB ANB A
NON-RELEVANT ANB ANB A
B B

ceases to be adequate. The reason is that even within a single scenario both A and B may belong to different contexts, in particular, A is no
longer uniquely defined by A (the same to B and B). How to capture this structure? A tool of combinatorial nature is needed to describe
overlapping contexts. First note that a single sample space is structureless, all its elements are equally (un)related with each other. In case of
overlapping contexts this is no longer the case. A graphical (and combinatorial) way to capture such relations was suggested by R.Greechie
(see [3] for an overview). The idea is to

(i) consider all the elements of all sample spaces together
(ii) label each element with a tag pointing to appropriate context

The Kolmogorovian probabilities (and hence Bayesian inference) come from the fact that the logic of statements about the appropriate
sample space is Boolean. In case of pasted contexts this is no longer so, the structure of all the statements about the IR environment is no
longer Boolean.

How contextuality effects come? Mainly, in the form of Kochen-Specker reasoning stating that particular hypothetical probability assignments
do not exist such as a total probability distribution on the whole diagram viewed as a single sample space. The consequence of such results is
signaling that the evaluation of conditional probabilities based on standard Bayes model will be no loner adequate. For examples of such
violations in quantum mechanics see [4], in IR this also takes place, see, for instance [7]. Quantitatively it looks as follows.

‘How much contextuality’? So far, only qualitative ideas were provided. The next step is to try to evaluate them, putting the question
‘How much contextuality’? A possible transparent answer was recently proposed in [11]. We take a representative sampling of observables,
and simply check the ratio of the triples, for which Accardi inequalities (2.4) are violated.

Using the ideas of [11], the rate of personalization can be evaluated in a similar way. First, by random sampling, triples of properties, that is,
yes-no queries are picked. Then, for each triple, the transition probability matrices (2.3) are calculated. For each particular sample triple the
inequalities (2.4) are checked. Then the ratio of samples is calculated:

__number of triples violating (2.4)

Pers = “.1)

total number of sampled triples

Conclusions

Vector models of IR become more and more popular, first of all because they make it possible to carry out multi-document actions. In this
paper I dwell on a QIA framework [8]. The basic ingredient of QIA framework is a Hilbert space .7#” called the information need space. In
its simplest form, IN space is linear space of elementary (atomic) topics. In my approach, I suggest to start introducing the IN space to
satisfy the necessary amount of capturing contextuality. The ideology of IN space is the closest to that of quantum mechanics. In QM, the
state space of a system is a space of some internal (in the deepest possible sense) features of a system, while the observables are expressed
in terms of operators and other derived structures on the state space. Similar things happen in QIA approach. The space of information
needs exists per se, we may treat it as spanned on elementary entities, but this will be nothing, but a representation of this space. The source
of emergence of this space lies in the multicontextual structure described in the previous section. Furthermore, as pointed in [6], [7], the
correlations, which occur in IR environment may even be stronger than quantum ones. In this case a straightforward Hilbert space model
may fail to work properly, and we may call *foil quantum theories'” to grip these situations.

So far, I was interested in information retrieval situations, when the result of a particular action may depend on other actions, which the IR
agent could in principle do alongside with the actions actually performed. This phenomenon is called contextuality, we encounter it in IR, we
have to take it into account, to work with it. A similar kind of dependence takes place in quantum mechanics.

Quantum Mechanics Information Retrieval

contextuality personalization

The difference is that in QM contextuality appears by itself, not being originated by some ’internal mechanisms’. The situations where
contextuality occurs depend on the state space of the system the structure of observables involved. In the realm of QM we can quantitatively
evaluate the rate of contextuality [11]. The origin of contextuality effects in IR stems from personalization of query scenarios. The
personalization, in turn, can be quantified by memory resources required to keep tracking the information needs of a particular user (note
that ‘user’ in this context might not be a single person, nor even a ‘person’ at all). The idea of this Note was to demonstrate that using
quantum mechanics formalism, we can quantify the rate of personalization in particular IR environments. To do this, I suggest to reverse the
procedure of estimation of memory cost of quantum contextuality based on simulating quantum systems by finite automata. Instead, a KR
scenario (which as a matter of fact is a sequence of queries upon a finite automaton) is suggested to be simulated by appropriate scenario of
quantum measurement, demonstrating the same contextuality features. As a result, a Hilbert space of appropriate quantum system emerges
together with a collection of observables. This Hilbert space is suggested to play the role of information need space, which is developed
within QIA (quantum information access) framework for Information Retrieval. Technically, the IN space is built starting from Greechie-like
diagrams (pasted overlapping contexts, see Section 4 above, capturing the particular IR environment. QIA framework provides more flexible
machinery to deal with information needs than any classical probabilistic approach by that simple reason that it incorporates the latter. But

Mathematically rigorous constructions, describing ways the world could have been were it not quantum mechanical
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we should be aware that it is not ultimately general. In quantum realm, we have non-classical correlations and the present state of our
knowledge shows that quantum mechanics is enough to explain all them. However, IR may in principle provide stronger-than-quantum
correlations. For them, ‘foils of quantum theory’ - the operational theories, which do not compete with quantum mechanics, but generalize it
to the extent not demanded in modern physics [6, 14], these theories may be of help in Information Processing.

Acknowledgments. [ greatly appreciate Cris Calude, Karl Svozil and Jozef Tkadlec for stimulating discussions on quantum contextuality
during my stay in Technical University of Vienna, supported by the Ausseninstitut and the Institute of Theoretical Physics of the Vienna
University of Technology. A financial support from Russian Basic Research Foundation (grant 10-06-00178a) is appreciated.
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1. Introduction

Let .7# be a Hilbert space with a scalar product (.,.), the norm ||.|| = 1/(.,.) and unit operator /. In addition, Z(.7’) denotes the
algebra of bounded linear operators in .. For an A € #(), A* is the adjoint operator, 6(A) is the spectrum of A, RA := (A+A*)/2,
3A := (A—A*)/2i, ||A|| denotes the operator norm of A.

We consider the equation

du(r)
dt

where A is a constant bounded operator and B(z) : [0,00) — B(5) is a strongly piece-wise continuous function. A solution of (1.1) is a
function u(¢), defined on [0, ) with values in .77, absolutely continuous in ¢ and satisfying the given initial condition and (1.1) almost
everywhere on [0,0). The existence of solutions follows from the a priory estimates proved below. We will say that equation (1.1) is
exponentially stable, if there are positive constants M and &, such that any solution u(z) of (1.1) satisfies ||u(z)|| < Me & ||u(0)|| (r > 0).
Equation (1.1) can be considered as the equation

= (A+B(0)u(r) (1=0), (1.1)

dx(t)
dt

with a variable linear operator C(¢). This identification which is a common device in the theory of concrete differential or integro-differential
equations when passing from a given equation to an abstract evolution equation turns out to be useful also here. Observe that C(¢) in the
considered case has a special form: it is the sum of operators A and B(z). This fact allows us to use the information about the coefficients
more completely than the theory of differential equations (1.2) containing an arbitrary operator C(t).

The basic method for the stability analysis of (1.2) is the direct Lyapunov method, cf. [2]. By that method many very strong results are
obtained, but finding Lyapunov’s functions is often connected with serious mathematical difficulties.

For a selfadjoint operator S put A(S) = sup o(S) and A(S) = inf 6(S). So A(RC(s)) = sup 6(RC(s)) and A (RC(s)) = inf o(RC(s)). The
important tool of the stability analysis is the Wintner inequalities [7, Theorem I11.4.7]:

=C(1)x(1), (1.2

eXp[/SAt/l(giC(sl))dsl] < % < exp[/s’A(mC(sl))dsl} (1>5>0), 13)

for any solution x(¢) of equation (1.2). If C(r) is not dissipative, i.e. if C(r) + C* () is not negative definite for sufficiently large 7, then the
just mentioned inequalities do not give us stability conditions even in the case of a constant operator. In addition, in [14] the stability test
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for (1.2) has been derived for equations whose operator coefficients have “small” derivatives. The approach in [14] is the extension of the
freezing method for ordinary differential equations. In this paper, we suggest a stability test via the commutator K () = AB(t) — B(¢)A, which
in the appropriate situations improves the published results. To the best of our knowledge, our results are new even in finite dimensional case,
cf. [20].

As an illustrative example we consider a class of the so called Barbashin integro-differential equations, which play an essential role in
numerous applications, in particular, in kinetic theory [5], transport theory [18], continuous mechanics [1], radiation theory [4], the dynamics
of populations [21], etc.

2. The main result

Assume that
o(A) :=supRo(A) <0 2.D
and put

W= [Cettear gy =2 [ He""H/He’“IHIeA”Hdsdt

and
_ ] A@®BQ) W[ if ARB(t)) >0,
v(W.B(1)) := { ARBOA(W)  if A(RB(r)) < 0.

Below we suggest estimates for |[W|| and A(W). Furthermore, let [A],A;] = AjA; — AyA; (the commutator of Aj,A; € B()). So

K(t) = [A,B(1)].

Now we are in a position to formulate our main result.

Theorem 2.1. Let the conditions (2.1) and

sup (y(W,B(1)) + [|K(#)[|E(A)) < 1 (22)

t>0
hold. Then equation (1.1) is exponentially stable.

This theorem is proved in the next section. If

] < ce™ (s> 0;¢,v = const > 0), (2.3)
then
(W, v) 2/ A v|2dr < 2¢ / i (ve ).
Consequently,
o0 6‘3
wl << andg ) < 2¢ / V’/ V=) gy dt = / e Vidr = = 2.4)
0 2v2

Now let us estimate A (W). Due to the Wintner inequalities (1.3),
leAv]) = O] (v e 7).
So in view of (2.1), A(RA) is negative. Consequently,
Wo) =2 [P =2 [ yiRar > [P/ M) (v £).
Thus
A(W) = 1/](RA)]. @5)

If A is a normal operator: AA* = A*A, then ||| = e*A)! (¢t > 0), and according to (2.4),

1 1 . .
Wl < m,C(A) = W and, in addition, A (RA) = B(A),

where B(A) := inf Ro(A). Consequently, y(W,B(t)) = wy(A,B(t)), where

ARB(1)
Wo(A,B(1) =4 L&A if A(RB(1)) > 0,
7 ARBU) i A(RB(1)) < 0.

So we arrive at

Corollary 2.2. Let A be a normal operator, and the conditions (2.1) and

K
ap (W80 451 ) <1 ¢o

hold. Then equation (1.1) is exponentially stable.
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Theorem 2.1 is sharp in the following sense: if B(¢) = 0, then y(A,B(r)) = ||K(¢)|| = 0, and (2.2) obviously holds. But condition (2.1) is
necessary in this case.
Traditionally (1.1) is considered as a perturbation of the equation du/dt = Au with stable A. Besides, it is supposed that

e as sup B < 1, @7
0 t

e.g. [2, 14] and references therein. We do not assume this condition. For example, if A and B(r) commute, then takes the form

Sup Yo (A,B(1)) < 1
>0

which is sharper than (2.7).
Moreover, in the contrary to the Wintner inequalities, we do not require the dissipativity of A+ B(t).

3. Proof of theorem 2.1

Lemma 3.1. Let A, B be constant bounded operators and K = [A,B]. Then
'
[ B] = / MKAds (1> 0). (3.1)
0

Proof: For the proof see [15].
Under condition (2.1), the Lyapunov equation

WA+A*W = =21 3.2)
has a unique solution W € Z(.¢) and it can be represented as in Section 2, cf. [7, Theorem 1.5.1] (see also equation (4.12) from Chapter

I of [7]). For two selfadjoint operators S and S; the inequality S < S (S < Sy) means (Sh,h) < (S1h,h) ((Sh,h) < (S1h,h)) (h€ H). In
particular, the inequality S < 0 (S > 0) means that S is strongly negative (strongly positive) definite.

Lemma 3.2. If condition (2.1) holds, then
R(WB(1)) = %(WB(I) +(WB(1))") < (w(W,B(t)) + [|K (1) £ (A))1.
Proof. Making use of (2.1) we can write
R(WB(1)) = %(WB(I) +B ()W) = /0 w(em] ANB(t)+ B (1)eh e ).

But
ANB(1) = B(1)eM + [N B(1)],B (1) = A B (1) + [BF (1), ).

So R(WB(t)) = Ji + J2, where
5= /O T AN (B(1) + B (1)) di and Jy — /O TN B()] + (A A B)) )di.

We have -
Ji < 2A(RB()) /0 A A Gy — A(RB(1)W.

If A(RB(z)) > 0, then J; < A(RB(2))||W||1. If A(RB(¢)) <0, then J; < A(RB(t))A(W)I. So J; < w(W,B(1))I.
In addition, by Lemma 3.1

el <2 [ I e Blan <2 [ 1K [ 1 e as dn

= K@) E(A).

This proves the lemma. [J

Proof of Theorem 2.1: Due to the Lyapunov equation and Lemma 3.2 we have,
RW(A+B(1) < —(1—w(W,B(1)) — [ K(1)[IE(A)I.
So (2.2) implies

W (4+B(1)) < sup(—1+ y(W, B(1)) + K ()] {(4)) <0. (3.3)

Applying the right-hand Wintner inequality (1.3) with the scalar product (.,.)w defined by (h,g)w = (Wh,g) (h,g € S), we can assert that
equation (1.1) is exponentially stable, as claimed. O
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4. Equations with finite dimensional operators

In this section .%#” = C"-the n-dimension complex Euclidean space, A and B(¢) are n X n matrices. Put

g( i 1/2

where 24(A) (k = 1,...,n) are the eigenvalues of A, counted with their multiplicities; N2 (A) = (trace AA*)!'/2 is the Frobenius (Hilbert-

Schmidt) norm of A. The following relations are checked in [12, Section 2.1]: g?(A) < N3(A) — |trace A2,
A N3 (A—A*
g(e"A+zl) = g(A) (T€R,z€ C,) and g*(A) < %

If A is a normal matrix, then g(4) = 0.
It is shown in [12, Example 2.7.3], that

n—1 Zk k A
nef"HSe“W’k;O (,f,)g/z) (1> 0).

So 5
o0 oo n—1 .k _k
"g"(A)
w <2/ o 2dz<2/ 20(A) o 0 dr = xa(A),
Wii<2 [l <2 [ e | 3 T ) di= ),
where |
n— Jj+k 1
_ g (A) (k+))!
B = L S o) R
Put

n—1 lkgk(A)
pn(Ast) = k:ZOW (t=0).

Then ||| < e*A) p,(A,1) and {(A) < {,(A), where

—2/ pnAt/pn p(A,s)ds dt.

Moreover, according to (2.5), w(W,B(t)) < U, (A, B(t)), where

A [ BWAGBG)  if ARB()) >0,
¥n(4,B(1)) { A if A(RB(1)) < 0.

Now Theorem 2.1 and (2.5) imply
Corollary 4.1. Let 77 = C", A be a Hurwitzian matrix (i.e. condition (2.1) holds), and

sup (Y (A, B(1)) + [[K(1)[|Ga(A)) < 1

>0
Then (1.1) is exponentially stable.
5. Equations with infinite dimensional operators

In this section we consider equation (1.1) in the infinite dimensional space assuming that
SA is a Hilbert-Schmidt operator. 5.1)
i.e. N2(SA) = (trace (3A4)%)"/? < oo, Put

a(A) = [2N7(34) ZZIMk AP,
k=

where ik (A),k=1,2,..., are nonreal eigenvalues of A, enumerated with their multiplicities in the decreasing order of the absolute values of
their imaginary parts. Recall the classical Weyl inequality

N3(34) = Y ISA4(4)P,
k=1
cf. [12, p. 98]. So @i(A) < v/2N,(3A). If A is a normal operator, then #(A) = 0, cf. [12, Section 7.7]. As is shown in [12, Example 7.10.3],

oo tkAkA
e Seam”;o#g/ﬁ (t>0),

2
oo = = rkak(A) -
W] <2 /O e |2dr <2 /0 XA (kgo (k,)m) di = %(A),

So
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where ik
- > f72kx (A)(k+ j)!
A) = .
HA= X e k)T
Put ok
) = ki (A)
A.t)= >
pAT) k;) (a7 (r>0)

Then ||e|| < e*(A) p(A, 1) and

Ut

gA) <

Moreover, y(W,B(t)) < ¥(A,B(t)), where

(4) .:2/:8 Ay (tA)/O' 3(t — 5,A) (s, A)ds dr.

_ | X(AA@B(1)) if ARB(1)) >0,
(4, B(1)) { A if A(RB(t)) < 0.

Now Theorem 2.1 and (2.5) imply

Corollary 5.1. If the conditions (2.1), (5.1) and

sup (W(4,B(1) +||K (1) (4) ) <1

t>0

hold, then (1.1) is exponentially stable.
6. Example

Put Q = [0,1] x [0,1]. In this section s# = L?(Q) is the Hilbert spaces of complex square integrable functions defined on Q with the
traditional scalar product and norm.
Consider the equation

1 1
P — ot + [ e sputes,v)ds+ [ haleyshutex s)ds 6.1
ot 0 0

(0<x,y<1;t>0),

where ¢(-) : [0,1] = R is piece-wise continuous, k;(-,-) : [0,1]> = C, ka(-,-,-) : [0,00) x [0,1]> = C, are given functions satisfying the
conditions pointed below. Equation of the type (6.1) is the Barbashin type integro-difterential equation or simply the Barbashin equation, [2].
The stability of (6.1) can also be investigated by perturbations of the simple equation

du(t,x,y) _
at —C()C)M(l,x,y),

cf. [2, Section 2.5], but this approach gives rather rough results if the norm of k; and k, are large enough.
Define the operators A and B(t) by

1
(Aw)(x,y) = c(x)w(x,y) + /0 Ky (x,5)w(s,y)ds
and

(B(t)w)(x,y) = /Olkz(t,x,s)w(x,s)ds (x,ye€[0,1]; we LZ(Q)),

respectively. Under consideration we have [A, B(t)] = 0 for all # > 0. Moreover, assume that

Na(A— A7) = (/01/01 |k1(xa5)—k1(5»x))zdsdx)l/z o

and k provides the boundedness of B(z). Various estimates for ot(A) under considerations can be found in [13]. In particular, if & (x,s) =0
for x <'s, then (A) = sup, c(x). Furthermore, it is not hard to check that

AR ) s s
ARB() veml// (ka0.3,5) + Ko 1,5.3))v(s) 7(9) ds dy
and

A(RA) = 76%1/ / (ki (x,5) + 1 (5,) ) v(s) P(x) dis dx.

Now we can directly apply Corollary 5.1.
Note that the theory of of various classes of integro-differential equations is rather rich, cf. [3, 6], [8]-[11], [16, 17, 19, 22, 23] and references
therein, but the stability conditions in terms of the commutators have not been derived.
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1. Introduction and preliminaries

Among many algebraic structures, algebras of logic form important class of algebras. Examples of these are BCK-algebras [7], BCI-algebras
[8], BCH-algebras [4], KU-algebras [15], SU-algebras [10], UP-algebras [6] and others. They are strongly connected with logic. For
example, BCI-algebras introduced by Iséki [8] in 1966 have connections with BCI-logic being the BCI-system in combinatory logic which
has application in the language of functional programming. BCK and BCl-algebras are two classes of logical algebras. They were introduced
by Imai and Iséki [7, 8] in 1966 and have been extensively investigated by many researchers. It is known that the class of BCK-algebras is a
proper subclass of the class of BCI-algebras.

The isomorphism theorems play an important role in a general logical algebra, which were studied by several researches such as: In 1998,
Jun, Hong, Xin and Roh [9] proved isomorphism theorems by using Chinese Remainder Theorem in BCI-algebras. In 2001, Park, Shim and
Roh [14] proved isomorphism theorems of IS-algebras. In 2004, Hao and Li [3] introduced the concept of ideals of an ideal in a BCI-algebra
and some isomorphism theorems are obtained by using this concept. They obtained several isomorphism theorems of BG-algebras and
related properties. In 2006, Kim [12] introduced the notion of KS-semigroups. He characterized ideals of a KS-semigroup and proved the
first isomorphism theorem for KS-semigroups. In 2007, Dar and Akram [2] introduced the notion of K-homomorphism of K-algebras. In
2008, Kim and Kim [11] introduced the notion of BG-algebras which is a generalization of B-algebras. They obtained several isomorphism
theorems of BG-algebras and related properties. In 2009, Paradero-Vilela and Cawi [13] characterized KS-semigroup homomorphisms and
proved the isomorphism theorems for KS-semigroups. In 2011, Keawrahun and Leerawat [10] introduced the notion of SU-semigroups
and proved the isomorphism theorems for SU-semigroups. In 2012, Asawasamrit [1] introduced the notion of KK-algebras and studied
isomorphism theorems of KK-algebras. In 2015, Iampan [5] studied UP-isomorphism theorems of UP-algebras.

In this paper, we construct the new fundamental theorem of UP-algebras in the meaning of the congruence determined by a UP-homomorphism.
We also give an application of the theorem to the first, second, and third UP-isomorphism theorems in UP-algebras.

Before we begin our study, we will introduce to the definition of a UP-algebra.

Definition 1.1. [6] An algebra A = (A,-,0) of type (2,0) is called a UP-algebra, where A is a nonempty set, - is a binary operation on A,
and 0 is a fixed element of A (i.e., a nullary operation) if it satisfies the following axioms: for any x,y,z € A,

(UP-1) (y-z)-((x-y)-(x-2)) =0,
(UP-2) 0-x=x,

(UP-3) x-0=0,

(UP-4) x-y=y-x=0 implies x =y.

Email addresses: phakawat.mo@gmail.com (P. Mosrijai), akarachai.sa@gmail.com (A. Satirad), aiyared.ia@up.ac.th (A. lampan)
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Example 1.2. [6] Let X be a universal set. Define two binary operations - and * on the power set of X by putting A-B = BNA' and
AxB=BUA' forall A,B € P(X). Then (#(X),-,0) and (P?(X),,X) are UP-algebras and we shall call it the power UP-algebra of type
1 and the power UP-algebra of type 2, respectively.

Example 1.3. [6] Let A ={0,a,b,c} be a set with a binary operation - defined by the following Cayley table:

(1.1)

o " O

[l eNelolle)
Q QO
OO T
oo oao

Then (A,-,0) is a UP-algebra.

In what follows, let A and B denote UP-algebras unless otherwise specified. The following proposition is very important for the study of
UP-algebras.

Proposition 1.4. [6] In a UP-algebra A, the following properties hold: for any x,y,z € A,

(1) x-x=0,

(2) x-y=0andy-z=0impliesx-z=0,
(3) x-y=0implies (z-x)-(z-y) =0,
(4) x-y=0implies (y-z)-(x-z) =0,

(5) x-(y-x) =0,
(6) (y-x)-x=01ifandonly ifx=y-x, and
(7) x-(y-y) =0.

Definition 1.5. [6] Let A be a UP-algebra. A nonempty subset B of A is called a UP-ideal of A if it satisfies the following properties:

(1) the constant 0 of A is in B, and
(2) forany x,y,z € A,x-(y-z) € Bandy € B implies x-z € B.

Definition 1.6. [6] Let A = (A,-,0) be a UP-algebra. A subset S of A is called a UP-subalgebra of A if the constant 0 of A is in S, and
(S,-,0) itself forms a UP-algebra.

Proposition 1.7. [6] A nonempty subset S of a UP-algebra A = (A,-,0) is a UP-subalgebra of A if and only if S is closed under the -
multiplication on A.

Definition 1.8. [6] Let A be a UP-algebra. An equivalence relation p on A is called a congruence if for any x,y,z € A,
xpy implies x-zpy-z and z7-xpz-y.
Lemma 1.9. [6] An equivalence relation p on A is a congruence if and only if for any x,y,u,v € A, xpy and upv imply x -upy-v.
Definition 1.10. /6] Let A be a UP-algebra and B a UP-ideal of A. Define the binary relation ~p on A as follows: for all x,y € A,
x~pyifandonlyifx-ye Bandy-x € B. (1.2)

Proposition 1.11. [6] Let A be a UP-algebra and B a UP-ideal of A with a binary relation ~p defined by (1.2). Then ~p is a congruence
onA.

Let A be a UP-algebra and p a congruence on A. If x € A, then the p-class of x is the (x), defined as follows:
()p ={yeAlypx}.

Then the set of all p-classes is called the quotient set of A by p, and is denoted by A/p. That is,
Alp={(x)p|x€A}.

Theorem 1.12. [6] Let A be a UP-algebra and B a UP-ideal of A. Then (A/ ~p,x,(0)~,) is a UP-algebra under the x multiplication
defined by (x)~y * (¥)~y = (x-¥)~p for all x,y € A, called the quotient UP-algebra of A induced by the congruence ~p.

Definition 1.13. [6] Let (A,-,0) and (A’,-',0') be UP-algebras. A mapping f from A to A’ is called a UP-homomorphism if

fley) = f(x) ! f() for all x,y € A.
A UP-homomorphism f: A — A’ is called a

(1) UP-epimorphism if f is surjective,

(2) UP-monomorphism if f is injective,

(3) UP-isomorphism if f is bijective. Moreover, we say A is UP-isomorphic to A’, symbolically, A = A', if there is a UP-isomorphism from
AtoA'.
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Let f be a mapping from A to A', and let B be a nonempty subset of A, and B' of A'. The set { f(x) | x € B} is called the image of B under f,
denoted by f(B). In particular, f(A) is called the image of f, denoted by Im(f). Dually, the set {x € A | f(x) € B'} is said the inverse image
of B under f, symbolically, f~'(B'). Especially, we say f~1({0'}) is the kernel of f, written by Ker(f). That is,

m(f) ={f(x) €A’ |x €A}

and

Ker(f) = {x€ A | f(x) = 0'}.

Theorem 1.14. [6] Let A be a UP-algebra and B a UP-ideal of A. Then the mapping ng: A — A/ ~p defined by mg(x) = (x)~, for all
x € A is a UP-epimorphism, called the natural projection from A to A/ ~p.

On a UP-algebra A = (4, -,0), we define a binary relation < on A as follows: for all x,y € A,
x<yifandonlyifx-y=0. (1.3)

Proposition 1.15. [6] Let A be a UP-algebra with a binary relation < defined by (1.3). Then (A, <) is a partially ordered set with 0 as the
greatest element.

We often call the partial ordering < defined by (1.3) the UP-ordering on A. From now on, the symbol < will be used to denote the
UP-ordering, unless specified otherwise.

Theorem 1.16. [6] Let (A,-,04) and (B,*,0p) be UP-algebras and let f: A — B be a UP-homomorphism. Then the following statements
hold:

(1) £(04) =0g,

(2) forany x,y €A, if x <y, then f(x) < £(y),

(3) if C is a UP-subalgebra of A, then the image f(C) is a UP-subalgebra of B. In particular, Im(f) is a UP-subalgebra of B,

(4) if D is a UP-subalgebra of B, then the inverse image f! (D) is a UP-subalgebra of A. In particular, Ker(f) is a UP-subalgebra of A,
(5) if Cis a UP-ideal of A such that Ker(f) C C, then the image f(C) is a UP-ideal of f(A),

(6) if D is a UP-ideal of B, then the inverse image {1 (D) is a UP-ideal of A. In particular, Ker(f) is a UP-ideal of A, and

(7) Ker(f) ={04} if and only if f is injective.

2. Main results

In this section, we introduce the congruence determined by a UP-homomorphism and prove the new fundamental theorem of UP-algebras in
the meaning of the congruence determined by a UP-homomorphism. We also prove the first, second, and third UP-isomorphism theorems in
UP-algebras.

Definition 2.1. Let (A,-,04) and (B,®,0p) be UP-algebras, and f: A — B a UP-homomorphism. Define the binary relation ~¢ on A as
follows: for all x,y € A,

x~pyifand only if f(x) = f(y). @D

Theorem 2.2. Let (A,-,04) and (B,e,0p) be UP-algebras, and f: A — B a UP-homomorphism with a binary relation ~ ¢ on A defined by
(2.1). Then ~ is a congruence on A, called the congruence determined by f.

Proof. Reflexive: For all x € A, we have f(x) = f(x). Thus x ~f x.

Symmetric: Let x,y € A be such that x ~¢ y. Then f(x) = f(y), so f(y) = f(x). Thus y ~f x.

Transitive: Let x,y,z be such that x ~ y and y ~ z. Then f(x) = f(y) and f(y) = f(z), so f(x) = f(z). Thus x ~ z.

Therefore, ~ is an equivalence relation on A. Finally, let x,y,u,v € A be such that x ~ ¢ u and y ~¢ v. Then f(x) = f(u) and f(y) = f(v).
Since f is a UP-homomorphism, we get

fley)=fx) o f(y) = f(u)o f(v) = flu-v).
Thus x-y ~¢ u-v. By Lemma 1.9, we have ~ is a congruence on A. O

Theorem 2.3. Let (A,-,04) and (B,,0g) be UP-algebras, and f: A — B a UP-homomorphism. Then (A/ ~,%,(04)~,) is a UP-algebra
under the x multiplication defined by (x)~, * (y)~, = (x-¥)~, for all x,y € A, called the quotient UP-algebra of A induced by the congruence
~F.

Proof. Letx,y,u,v € A be such that (x)~., = (y)~, and (#)~, = (v)~,. Since ~ is an equivalence relation on A, we get x ~¢ y and u ~ v.
By Lemma 1.9, we have x-u ~y y-v. Hence, (x)~, * (u)~, = (x- )y = (V- V)ny = (¥)~; * (v)~,, showing * is well defined.

(UP-1): Let x,3,2 € A. By (UP-1), we have (), % (&), )% (1) * () (5 @) =02 (02D, = 00
(UP-2): Let x € A. By (UP-2), we have (04 )~ * (x) = (04 %)~p = (X)~y

(UP-3): Letx € A. By (UP-3), we have (x)~, *( A)~p = (x:04)~, = (O, ) g

(UP-4): Let x,y € A be such that (x)~, * (y)~, = (y)Nf (X)~, (OA) . Then (x-y)~, = (y:X)~; = (04)~,, it follows that f(x) e f(y) =
F(x-3) = F(0) = £(y-x) = £(3) » £(x). By Theorem 116 (1), we have £(x) o £(3) = £(y) o f(x) = Op. By (UP-4), we have £(x) = £().
Thus x ~ y, 80 (X)~; = (¥)~ -

Hence, (A/ ~f,*,(04)~,) is a UP-algebra. O

Theorem 2.4. Let (A,-,04) and (B,e,0p) be UP-algebras, and f: A — B a UP-homomorphism. Then the mapping np: A — A/ ~r defined
by mtf(x) = (x)~, for all x € A is a UP-epimorphism, called the natural projection from A to A/ ~ .
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Proof. Letx,y € A be such that x = y. Then (x)~, = (¥)~;, s0 7y (x) = 77 (y). Thus 7y is well defined. Note that by the definition of 77, we
have 7y is surjective. Let x,y € A. Then

Tp(x-y) = (X 9)my = () ¥ (V)~y = 7p(x) 5 704 (y).

Thus 7y is a UP-homomorphism. So we conclude that 777 is a UP-epimorphism. O

Theorem 2.5. (Fundamental Theorem of UP-homomorphisms) Let (A,-,04) and (B,e,0p) be UP-algebras, and f: A — B a UP-
homomorphism. Then there exists uniquely a UP-homomorphism ¢ from A/ ~ ¢ to B such that f = @ o ms. Moreover,

(1) 7y is a UP-epimorphism and ¢ a UP-monomorphism, and
(2) fis a UP-epimorphism if and only if ¢ is a UP-isomorphism.

As f makes the following diagram commute,

A~y
Proof. By Theorem 2.3, we have (A/ ~,*,(04)~,) is a UP-algebra. Define a mapping ¢: A/ ~y— B by
O((*)~,) = f(x) forall (x)~, €A/ ~. (2.2)
Indeed, let (x)~,, (y)~, € A/ ~ be such that (x)~, = (y)~,. Then x ~¢ y, so
P((X)~y) = f(x) = f) = o((¥)~))-
For any x,y € A, we see that

Pyt M)~y) = @

(1
pu .l
= ==
¥
P
~

—

<

Thus ¢ is a UP-homomorphism. Also, since

(@oms)(x) = @(mr(x)) = 9((x)~,) = flx) forall x € A,

we obtain f = @ omy. We have shown the existence. Let ¢’ be a mapping from A/ ~ ¢ to B such that f = ¢ o ;. Then for any (x)~, €A/ ~,
we have

¢'(()~) = ¢'(ms(x))

Hence, ¢ = @', showing the uniqueness.

(1) By Theorem 2.4, we have 7y is a UP-epimorphism. Also, let (x)~, (y)~, € A/ ~ be such that @((x)~,) = @((¥)~,). Then f(x) = f(y),
$0 x ~¢ y. Thus (x)~, = (y)~,- Therefore, ¢ a UP-monomorphism.

(2) Assume that f is a UP-epimorphism. By (1), it suffices to prove ¢ is surjective. Let y € B. Then there exists x € A such that f(x) = y.
Thus y = f(x) = ¢((x)~,), so ¢ is surjective. Hence, ¢ is a UP-isomorphism.

Conversely, assume that ¢ is a UP-isomorphism. Then ¢ is surjective. Let y € B. Then there exists (x)~, € A/ ~ such that @((x)~,) = y.
Thus f(x) = @((x)~,) =y, so f is surjective. Hence, f is a UP-epimorphism. O

Theorem 2.6. (First UP-isomorphism Theorem) Let (A,-,04) and (B,,0p) be UP-algebras, and f: A — B a UP-homomorphism. Then
A/ ~y=Im(f).

Proof. By Theorem 1.16 (3), we have Im(f) is a UP-subalgebra of B. Thus f: A — Im(f) is a UP-epimorphism. Applying Theorem 2.5 (2),
we obtain A/ ~ ¢= Im(f). O

Lemma 2.7. Let (A,-,04) and (B,e,0p) be UP-algebras, f: A — B a UP-homomorphism, and H a UP-subalgebra of A. Denote
H.; = Upep(h)~,. Then H., is a UP-subalgebra of A.
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Proof. Clearly, 0 # H., CA. Leta,b € H~,. Then a € (x)~, and b € (y)~, for some x,y € H, 50 (a)~, = (x)~, and (b)~, = (¥)~,-
Theorem 2.3 gives (A/ ~,*,(04)~,) is a UP-algebra, so

(a'b)Nf = (a)’\/f * (b)Nf = (‘x)"’f * (y)Nf = (x'y)Nf'

Thusa-b € (x-y)~,. Since x,y € H, it follows from Proposition 1.7 that x-y € H. Thus a-b € (x-y)~, C H~,. Hence, H.., is a UP-subalgebra
of A. O

Theorem 2.8. (Second UP-isomorphism Theorem) Let (A,-,04) and (B,e,0p) be UP-algebras, f: A — B a UP-homomorphism, and H a
UP-subalgebra of A. Denote H.., [ ~¢={(x)~, | x € H~,}. Then

H/ Nﬂf‘Hg HNf/ ~F

Proof. By Lemma 2.7, we have H.., is a UP-subalgebra of A. Then it is easy to check that H..,/ ~ is a UP-subalgebra of A/ ~, thus
(Hwy/ ~fy%,(04)~,) itself is a UP-algebra. Also, it is obvious that H C H..,, then
(7'L'f|1-1 =)g: H%H,Vf/ Nf,)C'—)(x)Nf, 2.3)

is a mapping. Indeed, g is the restriction of 7y to H. Thus g is a UP-epimorphism. Indeed, H..,/ ~¢= H/ ~y. Theorem 2.6 gives
H/Nﬂf‘HEHNf/Nf. O

Theorem 2.9. Let (A,-,04) and (B,®,0p) be UP-algebras, f: A — B and g: A — B UP-homomorphisms with ~ yC~. Define the binary
relation ~g [ ~f on A/ ~ as follows: for all x,y € A,

(W~ / ~f Oy iFand only ifx g v 4
Then ~g¢ | ~ is a congruence on A/ ~y.

Proof. By Theorem 2.3, we have (A/ ~,*,(04)~,) is a UP-algebra.

Reflexive: For all x € A, we have x ~g x. Thus (x)~, ~g / ~f (X)~;-

Symmetric: Let x,y € A be such that (x)~, ~g / ~f (¥)~,. Then x ~g y,50 y ~ x. Thus (y)~, ~g / ~f (X)~)-

Transitive: Letx,y,z be such that (x)~, ~g / ~¢ (y)~; and (y)~; ~g / ~ (2)~;. Thenx ~gyand y ~g 7,50 x ~g z. Thus (x) ., ~g / ~f (2) )
Therefore, ~¢ / ~ is an equivalence relation on A/ ~ . Finally, let x,y,u,v € A be such that (x)~., ~g / ~f ()~ and (y)~, ~g / ~f (V)~)
Then x ~, u and y ~, v. The binary relation ~, is a congruence on A by Theorem 2.2, that is x-y ~g u-v. Thus (x-y)~, ~g / ~f (U-V)~,,
8O (%)~ ¥ (¥)~y ~g [~y (U)~ % (v)~,. Hence, ~¢ / ~ is a congruence on A/ ~ . O

Theorem 2.10. (Third UP-isomorphism Theorem) Let (A,-,04) and (B, ,0p) be UP-algebras, f: A— Band g: A — B UP-homomorphisms
with ~fCrvg. Then

(Af ~p) /(g [ ~p) =A] ~g
Proof. By Theorem 2.3, we obtain (A/ ~y,%,(04)~,) and (A/ ~g,*',(04)~,) are UP-algebras. By Theorem 2.4, we obtain
Tpr A= Af ~pxe ()~
and
Tg: A= Af ~vg,x = (X)~,
are UP-epimorphisms. Applying Theorem 2.5 (2), there exists a UP-isomorphism
g/fr A~ Al g (X)ny o (X) - (2.5)
Indeed, A/ ~ = A/ ~,. By Theorem 2.9 and 2.3, we have (A/ ~)/ ~, /s is a UP-algebra. By Theorem 2.4, we obtain
Tojpt Af ~op= (A ~p) ] ~grp () = (X))
is a UP-epimorphism. Applying Theorem 2.5 (2), there exists a UP-isomorphism
0: (A ~p)] ~og) 5= Af s (W) )y = (D, 2.:6)
That is,
(A ~p)] g = Al ~g
We shall show that ~ /=~ / ~y. Forany (X)~, (y)~, €A/ ~p,
)~y ~err O~y & @/ (X)~) = (/1) ((V)~f)
& () =)~y
& X~y
& W)y ~g /vy D)y
by (2.1) and (2.4). Thus ~,/ ;=~ / ~r. Hence, (A ~y)/(~g [ ~f) =A) ~g . O
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Corollary 2.11. Let (A,-,04) and (B,e,0p) be UP-algebras, f: A — B a UP-homomorphism, and C a UP-ideal of A. Then
A ~c=Af

As 7p makes the following diagram commute,

Proof. It is straightforward by Theorem 1.12, 1.14, 2.4, and 2.5 (2).
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Lagrangians such that this result is not true.

1. Introduction

The fundamental relation between the horizontal endomorphisms and semisprays was discovered, independently, by M. Crampin [3] and
J. Grifone [6, 7]. The conditions for a system of second order differential equations to be derivable from a Lagrangian are related to
the differential geometry of the tangent bundle of configuration space. These conditions are simply expressed in terms of the horizontal
distribution which is associated with any vector field representing a system of second-order differential equations.

In supergeometry, relationship between nonlinear connections and supersprays structures to be discussed. Also it was shown that there exists
a homogeneous superspray, so called the Euler-Lagrange supervector field, which is induced by a Finsler metric [8, 13]. This superspray can
help us to introduce a horizontal endomorphism which will be used to obtain the main result. So we will show that on a Finsler supermanifold
(A ,F), there is a unique horizontal endomorphism A which is conservative (see theorem 3.6) i.e. d,L = 0. The property d,L = 0 tells us
that the Lagrangian L is constant along the horizontal curves of the nonlinear connection and hence it is constant along the geodesics of
the superspace. This result is not true for an arbitrary Lagrangian L. We will find non homogeneous Lagrangian superfunctions for which
dpL#0.

The paper is organized as follows: Section 2 deals with the vertical and complete lift of supervector fields to the tangent superbundle. It
contains a brief review of the notion of superspray and the relationship between supersprays and nonlinear connections. We also introduce
the notion of Euler-Lagrange supervector field which is an important tool to construct the horizontal endomorphism. In section three, we
introduce a horizontal endomorphism / on a supermanifold .2, such that % is conservative and its torsion vanishes. We consider an example
for a nonhomogeneous Lagrangian such that this result is not true.

2. Preliminary

The basic structure for building up supermanifolds is the Grassmann algebra. With By, = (B)o + (Br)1 we shall denote a real Grassmann
algebra with L generators. If L = oo, By is given a suitable Banach norm, making B.. a Banach-Grassmann algebra as defined in [9]. Here By,
is a graded commutative algebra, namely ,

ab € (BL)MHb" ab = (_1)“1Hb‘ba7
where the element a, b € By, are the homogeneous. A (m,n)—dimensional supermanifold ./ is defined on Blnj’”(see details in [4]). Throughout
this paper, .# will denote an (m,n)-dimensional supermanifold.
The concept of nonlinear connection (N-connection) was introduced in component form in a number of works by Cartan [2], Kawaguchi
[10, 11] and Ehresmann [5]. But the first global definition is due to Barthel [1]. The geometry of N-connection in superspaces are considered
in detail in [16], [14].

Email addresses: eazizpour @gmail.com (E. Azizpour) amir.zarifi.m@gmail.com (M. H. Zarifi)
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Let us consider a vector superbundle & = (E,ng,.# ) whose type fiber is .% and &l : T&—T.# is the superdifferential of the map nz. The
kernel of this vector superbundle morphism being a subbundle of (TE, 1g,E) is called the vertical subbundle over & and is denoted by
V& = (VE,1y,E). Its total space is VE = Uyce Vi, whereV, =kern!, ucé.

A nonlinear connection, N-connection [15, 16], in vector superbundle & is a splitting on the left of the exact sequence

0——VE - TE—TE )V E—0, 2.1)

i.e. a morphism of vector superbundles N : T& — V& such that Noi is the identity on V&'

The kernel of the morphism N is called the horizontal subbundle and is denoted by (HE, Ty, E ). From the exact sequence (2.1) it follows
that N-connection structure can be equivalently defined as a distribution T,E = H,E®V,E, u € E on E defining a global decomposition,
as a Whitney sum,

TE=HEBVE. (2.2)
Locally a nonlinear connection in & is given by its coefficients
N/ (.3.1,0),NF (x,,1,0), N (x.3,1,0). NG (x, .7, 6).
In the tangent superbundle a local basis adapted to the given nonlinear connection N is introduced by

RS
0x;’ 0N’ dy;’ 964"

where
6 0 j J o 0
and
6 _ 9 9 B9
Sne = e~ Meay Mg, 2.4)

LetX = X! % +X“ % be a supervector field in a coordinate neighborhood % of ., then the vertical lift X" and the complete lift X¢ of X
have the form

and

XC

UP) GEL) C |
<J‘Zlyj 9% Y;l yam) 8y,<)

! d Zo0X* & 9dX%)\ 9
+ X% —+ =+ ) O=— |54 |-
ozz—"1< INa <j—1yj 9x; ygﬁ Y3777> aey)

\
agE
/N
o3
=
+

Definition 2.1. A vertical endomorphism on the tangent superbundle T # is a (super) tensor field
J: X(TM)— Z(TMH)
satisfies in ImJ = KerJ, J*=0.

If J is a vertical endomorphism, the vertical differentiation d; is the mapping d; = [iy,d] = ijod — doi;. In particular, for any superfunction
fon.#,wehaved;f=i;df.

Let (xj;M¢) be local coordinates on .# and (x;,y;; N, O ) the corresponding local coordinates on T.# . The Liouville supervector field C
on 2 (T ) defined by

d d

Definition 2.2. A morphismh: Z (T ) — Z (T #) is said to be a horizontal endomorphism on . if it satisfies the following conditions:
(V2 =h

(ii)Kerh = 2V (T .M).

Assume £ is a horizontal endomorphism. The supervector 1-form, or simply the vector 1-form, [A,C] is said to be the tension of 4. The
vector 2-form [J, 4] is said to be the torsion of A.

Let /2 be a horizontal endomorphism. If 2"(T.#) := Imh, then 2 (T.H) = X(T M) S XV (T M) and Z(T.4) is called the
supermodule of horizontal supervector fields. v:= (id —h) : ' (T.# ) — X (T .#), is the vertical projection on 2" (T.# ) along 2" (T .#).
Also, we have hoJ = 0 and Joh = J.

Definition 2.3. A morphism 7 : 2 (T M) — X (T M) is said to be an almost complex structure on M if F> = —1.

Definition 2.4. A supervector field S on T .# is a superspray if

0 0
J(S) :)7i87y+9aﬁ- (2.6)
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When the coefficients of a superspray S are homogeneous of degree 2, we say that S is a homogeneous superspray.

If S is a homogeneous superspray and C the Liouville supervector field, then [C,S] = S. It is not difficult to show that if % is a horizontal
endomorphism on .# and S’ an arbitrary superspray then S := hS’ is also a superspray on ./ . It satisfies the relation h[C,S] = S. So § is
called the superspray associated to /.

A generalized Lagrange superspace is a pair GL™" = (.#,g(x,y,;1n,0)), where g(x,y;7n,0) is a distinguished tensor field on T.7° =
T.# — {0}, supersymmetric of superrank (m,n) . A Lagrange superspace is defined as a particular case of generalize Lagrange superspace
when the distinguished tensor field on .# can be expressed as

1 0%L 1 J%L 1 0%L %L

1
8= 29y0y; 8P T 20y005" 84 T 29649y, 5P T 296,96, @7

where L : T.Z — By, is a superfunction called a Lagrangian on .# (see [15]).
Locally, L is regular if and only if the matrix

_[ & giﬁ}
& {gaj 8apB

is invertible. For example, if L = F2, where F will be defined in the following definition, then L is a regular Lagrangian. In this case L is a
homogeneous superfunction of degree 2.

To define a (super) metric on a supermanifold, We consider the base manifold M of a vector superbundle & = (E, g, .#) to be a connected
and paracompact manifold.

Definition 2.5. A metric structure on the total space E of a vector superbundle & is a supersymmetric, second order, covariant supertensor
field g which in every point u € & is given by nondegenerate supermatrix g,, = g(094,9p) ( with nonvanishing superdeterminant, detg # 0).

Definition 2.6. A function F : T.# — By is called a Finsler metric (see [15]) if the following conditions are satisfied:

(1) The restriction of F to T #° = T .# — {0} is of the class G and F is only supersmooth on the image of the null cross—section in the
tangent supermanifold to M.

(2) F(x,Ay;n,A0) = AF (x,y;1,0), where A is a real positive number.

(3) The restriction of F to the even subspace of T .#° is a positive function.

(4) If we put

1 92F? 1 9%F? 1 9%F? 1 9%F2

gij:im’giBZEM’ gajzim7gaﬁzim (2.8)

then
:{ gij & }
Saj Sap
is invertible .

A pair (.#,F) is called a Finsler Supermanifold.
It is obvious that Finsler superspaces form a particular class of Lagrange superspaces with Lagrangian .2 = F2.

Definition 2.7. The dynamics of a system (T 4 ,®,L), associated to a Lagrangian L € T #, is given by a supervector field X € Z (T )
satisfying the equation

ixw=—dL (2.9)
where @ = ddL.
It is shown that the Euler-Lagrange supervector field is a superspray [13].

Theorem 2.8. ([13]) On any Finsler supermanifold (.4 ,F), there is a homogeneous superspray

d d ; d d
— . Yl . _2GB .
S Yj 8)6] +6ﬁ anﬁ 2G (x7y’n79) 2G (x>y’n79)

3yj 86ﬁ
where
22 22 2
G/ = Leim(y A a*ai)
4 a)CkaYm anaaym Oxp,
1 . 0%F? 92F? oF?
_ o mByi _a
28V 550, t aneae, %~ o, (.10)
and
252 252 2
b = Lpmp 1 0T O,
4 axkaym 377a3ym X
212 202 2
+1 By jaF 0°F oF @.11)

28 Vo a0, anea0,% o,
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We call this superspray the canonical superspray of a Finsler metric.
Let (.# ,F) be a Finsler supermanifold and consider T.#° = T.# — {0} and denote by VT ./ the vertical superbundle over T.Z°. It is
easy to show that a Finsler metric F allows to define a (super) metric g on the vertical superbundle VT.#°, by setting L = F? and

g(JX,JY) = 0(JX,Y) (2.12)

for X,Y € T(TM). So the coefficients of this metric are superfunctions defined in (2.8).
If & is a horizontal endomorphism on .# and v = id — h, g can be extended to 7. by putting

G(X,Y) = g(UX,JY) +g(vX,VY),
where J is the vertical endomorphism.
3. A Horizontal endomorphism
We are now in position to define a horizontal endomorphism which is conservative and torsion-free. To do it we need to define a supervector

1-form [J,X], where J is a vector 1-form and X a supervector field. Since J is a vector form of degree 0, for each supervector field Y on 7.4
we have

i 0 d
_ Xl (yi o
X = ORI (VX e X))
i\ 0 d
— (=Y i a
(-1) (Y(X)ayi+Y(X )aea).
An easy computation shows that
1.x)y = (=X Wy x]— (—n) Xy x]. G.1)

Theorem 3.1. (1) Any superspray S generates a torsion-free horizontal endomorphism
h= %(m 1,5]), (32)
where id is the identity map on T(TM). The horizontal lift of a supervector field X on A is
XM= hx¢ = %(x" +[x7,9)). (3.3)
(2) A superspray associated to h is
5, = %(S+[C,S]). 3.4)

If S is a homogeneous superspray, then S, = S.
(3) The torsion of h vanishes.

Proof. (1) First, we show that / is a horizontal endomorphism. So let X be a homogeneous supervector field on .. Since S is an even
supervector field, thus

) /o, ;0 9G) 9 9GP o
XY = 5<X _J{X(aixi_zayz‘gj_ i E)
2 G 9 9GP 9 oxt 9 9x* 9

ar_~ — R & O __

T G 200, 9y 290590, Y ax; v, T axy 90,
X 90X 9\ I ¥ 2
_ pes v o4 9 — S (xyW_yi Y _yoa Y y__
O g av: " amg ae,ﬂ) R M TR

This shows that X" (T .#) C kerh.
Now, let Y € kerh, then

0="2h(Y) =Y +[JY,S]—J[Y,5],
soY = —[JY,S]+J[Y,S]. If we compute JY, it follows that
JY = —JJY,8] =0.

Thus kerh C XV (T .#) and therefore X" (T . 4') = kerh.
It is clear that for any supervector field X" € 2 (T.#), we have h?(X") = 0. On the other hand

1
R(X¢) = E(hx”+h[1xf,5}—hoJ[xC,s]>
i ‘
- E(hX”+h[X",S}):hX‘.

This shows that on 2 (T.#) we have h*> = h.
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(2) If § is an arbitrary superspray on .# and h is the horizontal endomorphism defined by (3.2), then Joh(S) = C. So S, = h(S) is a
superspray.
Now let § has the local form

- d d d d
S=yi=—+86, —26' — —26%—
Tom T 9y 90,
It is not difficult to show that J [S,S] = —S§+S. If S is a homogeneous superspray, i.e. G and G* are superfunctions of degree two, then

[C,S] =S and
~ 1 - ~ ~
h(S) = E(S+ [JS,S8]—J[S,S]) =S.
(3) We begin this part of proof with the definition of horizontal endomorphism #, thus we have
1 1
ih) = S id]+ 51,1, 8]].

It is clear that [J,id] = 0, so we show that [J,[J,S]] = 0. Note that in this case J is an even 1-vector valued form and S an even supervector
field. From the Bianchi identities for the lie superalgebra of vector-valued forms, we have

(=D)L + (=DM LIS+ (DS, ] = 0.
Apply (3.1) to [S,J], we see that [S,J] = —[J,S]. Since [J,J] = 0, therefore [J,[J,S]] = 0 and the torsion of % is zero. O
Lemma 3.2. If h is the horizontal endomorphism defined by (3.2), then there is a unique almost complex structure % on T .# such that
Fol =h, Foh=—J.

Proof. If we use the above conditions, it is easy to see that .% permutes the vertical and horizontal superspaces if and only if

d d ) ) ) 1)
ar _ _ ]7 o T\ —
o) T e N TN s o TG T
) d 5 g o d 1)
ag(_ Y _ i g2 N__“
(Gna) “a6, Mgy TNogns o 7 Ge) T S
For example .# oJ = h implies that % J( ): SA 0&7( )— Si Similarly, ﬂ(a‘ga) = 6ga.Also Foh = —J implies thatf}(%) =
98} so/(aii):—%—i-ﬂf;/%—i-l\fﬁm‘ O

Definition 3.3. With respect to the (super) metric G on T # , we define the Kahler form
K(X,Y)=G(X,JY)—G(JX,Y). (3.5)
Theorem 3.4. Let h be a horizontal endomorphism defined by (3.2). So
o =K.
Proof. The canonical expression of the vertical projection v =1—h is

)

d P) P) d
v_(NJ—+Nﬁ Y@dxi — (Nl — +NE 2 )@ dng + —

d do
ay; N Gy “Gy %36, ay; LT e, 0
A long but standard computation shows that
. J°L J°L *Y
o= 3y,9y; dexk/\dx, 3,9y, N]dna/\dxl 3y,9y; ———=—dy; Ndx;
J°L 92L 82$
L
- (=1 {39a8 N,f‘dxk/\dx, 7009y, Nadnﬁ/\dxl 2003y dGa/\dx,}

I’L QL ey
_ _1\L i
(1) {ay,ae Nidxj NdNe — .90 NBdTlﬁ/\dTla-i-ayae dy,/\dna}

{a;;eazvfdxi Adng + a;;ﬁzvﬁdnwdna + 93;:922 dey /\dna}
Now, it is easy to check that for two supervector fields X, Y € 2 (T.# ), we have

(L,0)(X,Y) = 0(vX,Y)+ o(X,vY). (3.6)
Since @(X,vY) = — (1)’ o(vX,Y) so

(i,0)(X,Y) gvX,JY) — (=1)XY g(vy,JX) = {g(JvX,JJY)}

g(WX vJY) — (= DXY {g(wY,vJX) +g(JvY,JJX)}
GvX,JY) — (=Y G(vY,JX)

I+l

But G(vX,JY) = G(X,JY), thus (i,@)(X,Y) = K(X,Y). 0
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Definition 3.5. A nonlinear connection is called Lagrangian if the horizontal superspace is Lagrangian with respect to the 2-form @ = dd;L,
ie ifo(hX,hY)=0forany X,Y € Z (T A ).

An easy computation will show that if a nonlinear connection is Lagrangian then i@ = @. So from the above proposition we have
20 =iz = ip®+i,®
therefore K = .

Theorem 3.6. Consider a regular homogeneous Lagrangian L and N a Lagrangian connection. There exist a unique horizontal endomor-
phism h on M such that

(i) h is conservative, i.e. d,L =0,

(ii) h is torsion-free,

(iii) The tension of h is zero, i.e. [h,C] = 0.

Explicitly, h is given by

1
h= E(idHJ,S]) (3.7)
where S is the canonical superspray of a Finsler metric.

Proof. Let (x;;N¢) be local coordinates on .2 and (x;,y;; Mg, Oa ) the corresponding local coordinates on 7.7 . It should be mentioned that
we assume L is a homogeneous Lagrangian superfunction of degree K > 1 with respect to (y, 6). We proved before that & = %(id +1[J,8]) is
a torsion-free horizontal endomorphism. Given the local forms of & = dx; ® % +dNe® % and C = y,'aiy + 0 % and using the method

used in Lemma 3.5, it is easy to see that [h,C] = 0. To complete the proof, we only need to prove that d;L = 0. Let S be the canonical
superspray introduced in theorem 2.8. As we mentioned earlier, S is even supervector field, so for any supervector field X on 7.4, we have
(isw)(X) = o(S,X). Since K = o thus

(isw)(X) = G(S,JX)—G(JS,X)=—g(vC,vX)
= —g(vC,JFX)=—-w(C,FX).

Now, we show that for any homogeneous supervector field X € 2 (T.#), o(X,.FX) = i,dL(X). So if X has a local form X = X' % +

Xia%i +X“ﬁ +XO‘£, then we have

oL /. .
(L)(X) = 2 (Njds ~ N +dyi) (X)
oL
_(_pltl 2L
(1) 76,
L : . _.
= j—yi(N,’(Xk—(—l)mN&Xa—l—X’)
oL . _
o ZE (vaxi oy XiyexB o (1) KIge
(-1 aea(N,Xﬂ XINgxP 4 (1) X).

<Nﬁ‘dx,~ +Ngdng +d9a> (X)

One can easily check that 0(X,.ZX) = i,dL(X). Now, is® = —dL, because S is the canonical superspray and dL = d,L + d,L then
dyL=0. 0

Let & be the horizontal endomorphism (3.2), the horizontal differential operator is defined by

dyL(X) := dL(hX)

where X is a homogeneous supervector field on .Z .

The horizontal covariant derivatives of a Lagrange superfunction L with respect to even or odd coordinates are denoted respectively by
L= g—fl and Ly = % In the following theorem, we use the canonical superspray to have a local expression for the horizontal covariant
derivative of a Lagrange superfunction.

Theorem 3.7. Let h be the horizontal endomorphism (3.2). The horizontal covariant derivatives of a Lagrange superfunction L are

19(5(1))

Li = 3 Iy (3.8)
19(S(L
Lya 3 ((;éa)) (3.9)

Proof. First we compute the right hand of the above formulas. Then we have

as(L) L L ?L oL
dyi B Tﬂ+yjayiaxj+eaaYiana 2Nin
2 2
4G/ oL —2NF"8—L—4G°‘ oL (3.10)

dyidyj ' 06y dyid6q’
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and
asw)y) oL L 9°L ;oL
06a e V36g0x, ®304am; Ny,
2 2
4i 9L B OL s 9L 3.11)

96,dy; % d6g 960,068
If we now replace the superfunctions G' and G% with (2.10) and (2.11) respectively, then some terms of (3.10) and (3.11) cancel with some
terms of the replaced sentences and the only terms that survive are L; = 2% and Ly = 2687%1, and the theorem is proved. O
From the above theorem we found a condition under which the horizontal differential of a Lagrangian L is vanishes. In other words we found
that S(L) = 0 implies d,L = 0.

In the previous theorem, we showed that if L is a homogeneous superfunction then there exist a unique horizontal endomorphism % on .#
such that dj,L = 0. In the following, we will show that this result is not true for an arbitrary Lagrangian L. We will find non homogeneous
Lagrangian superfunctions for which d;,L # 0.

Let .# be a Riemannian supermanifold with a supermetric g. In the standard local coordinate system (x,7n) in .#, g is expressed in the form

8 =28ijdxi ®dxj+ giadx; ®dNg + ZaidNa @ dx; + §opdNa @dng
where §ij,§iq and §op are superfunctions on . and §;j = §ji,8up = —§pa>§ia = §ai- The superfunction

Lx,y,n,0) = &ij(x,n)y:iyj + §iaYiOa + §0 00 0p (3.12)

is a regular Lagrangian on 7./ .
Now we are ready to introduce a Lagrangian superfunction which is not homogeneous and its horizontal differential is not zero. To construct
this superfunction, let L be the superfunction (3.12) and ¢ an even homogeneous superfunction on the supermanifold ., then

d d
Ll:L(x7y7n59)+ ¢’('xan)yl+a¢’
Na

o (x,1)60 (3.13)

is a regular Lagrangian on T.#. Using (2.9), it is easy to check that the Cartan 2-forms associated to the superfunctions L and L’ are
equal (see [8]), then the canonical superspray associated to these superfunctions are equal (see (2.10) and (2.11)). On the other hand, in
the definition of the endomorphism (3.7) we see that it depends on the canonical superspray, so we conclude that L and L’ have the same
horizontal endomorphism.

In local coordinates, let X = X! a% +Xi 3% + X ﬁ + X« 3‘%“ be a homogeneous supervector field on T.# . We have showed that d,L = 0,
)

') = a5 it 38 mmen ) ()

- d(j—iw%e&)) (h(x))

2 2
- <8¢ . a(PNk 9”9 0 a(PNB>X]'

8x]-8x,~yl_87xk j+3xj371a “_911;3 j

9%¢ ¢ ;i 9%¢ ¢
—_(—)xl 9V NS 7Y IY NV xB
(=1) (anﬁax,-y’ ax, 8 " amgang 2 T an, e )X

Now we need to get the coefficients of X/ and X B in the last equation to be nonzero. We can do this using a linear type of the superfunction
¢ in x and 711. Then d,,L’ # 0.
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1. Introduction

Many physical phenomena may be modelled by differential equations with nonlocal boundary conditions. Therefore, they have a great
attention for researchers of mathematics and physics. Nonlocal conditions occur when values of a function on the boundary are depended on
values inside the domain or when direct measurements on the boundary are not taken. These problems with nonlocal boundary conditions
are found in many problems such as population dynamics, the process of heat conduction, control theory, theory of elastic stability, evolution
equation for species population densities, image processing, porous media flow and turbulence [1, 2]. Henderson et al[3] considered
uniqueness questions for certain nonlocal boundary value problems for the nth-order linear differential equation. Xue [4] studied the
existence of integral solutions for nonlinear differential equations with nonlocal initial conditions in Banach spaces. Babak [5] investigated
the uniqueness and existence of nonlocal initial problems for a system of nonlinear parabolic equations weakly coupled with ordinary
differential equations. Liang et al [6] established some new theorems about the existence and uniqueness of solutions for semilinear
integrodifferential equations with nonlocal initial conditions. Geng et al [7] gave an effective method for solving nonlocal fractional boundary
value problems based on the reproducing kernel theory. Zhou et al [8] discussed the nonlocal Cauchy problem for the fractional evolution
equations. All methods given here such as, Finite Difference Method (FDM) [9], Shooting Method [10, 11], Adomian Decomposition
Method (ADM) [12], Variational Iteration Method (VIM) [13], Homotopy Analysis Method (HAM) [14], Sinc-Collocation Method (SCM)
[15], Differential Transform Method (DTM) [16], Optimal Homotopy Asymptotic Method (OHAM) [17], combination of the VIM and the
Homotopy Perturbed Method (HPM) [18], Reproducing Kernel Method (RKM) [19, 20], Monotone Iterative [21] and a spectral method
based on operational matrices of Bernstein polynomials using collocation method [22] were used to solve multi-point BVPs. Tzanetis et
al [23] studied a nonlocal problem modelling Ohmic heating with variable thermal conductivity including an analysis of the asymptotic
behaviour and the blow-up of solutions. Bogoya et al [24] studied a nonlocal diffusion model analogous to heat equation with Neumann
boundary conditions and proved an existence and uniqueness of solutions. Pao [25] studied some dynamical property of a reaction-diffusion
equation with nonlocal boundary condition. Pao et al [26, 27] investigated a class of fourth-order nonlinear and semilinear elliptic boundary
value problem with nonlocal boundary condition.

The Legendre and Chebyshev wavelets operational matrixes of integration and product operation matrix have been introduced in [28, 29,
30, 31]. Our analyses show that there are some disadvantages in applying Legendre wavelet and Chebyshev wavelet. In[32, 33], these
disadvantages are eliminated by Celik with the Chebyshev Wavelet Collocation Method.

This study presents a Chebyshev Wavelet Collocation Method for the solution of the rth-order linear and nonlinear BVPs given in the
following form:

Email addresses: i.celik@pau.edu.tr (. Celik)
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1000 = Y C 2 g i
i=1
y(r)(x) =F (x,y()c),y/(x)7 7y(”l)(x)) (1.2)

with the nonlocal boundary conditions

{ y(lil)( ) bl]7 — — (13)

<i<m W 1<j<B
(Xﬁ+1) (xﬁ+2) =

where my, my, ..., mg are positive integers satisfied my +mp+ ... +mg =r—1landa <x; <xz < ... <xg o <b, b;, by are real numbers.
The uniqueness of the BVP in Eqs. (1.1), (1.3) has been discussed in [4].

Chebyshev wavelet collocation method is based on the approximation by the truncated Chebyshev wavelets series. By using the Chebyshev
collocation points, algebraic equation system has been obtained. The coefficients of the Chebyshev wavelet series can be found from the
solution of the algebraic equation system. The method is applied to the linear and nonlinear boundary value problems with nonlocal boundary
conditions. Calculations demonstrated that the accuracy of the Chebyshev wavelet collocation method is quite good even for the case of a
small number of grid points.

2. Chebyshev Wavelet method

Wavelets have been used in many different fields of science and engineering in recent years. They constitute a family of functions constructed
from dilation and translation of a single function called the mother wavelet. If the dilation parameter a and the translation parameter b vary
continuously, the following family of continuous wavelets can be obtained [34]

—b
W(l,b( ) |a| 12 (7)7 a7b€R7 a¢0 (21)
Chebyshev wavelets are written as

Ynm (x) =y (k7 n, m7x)

where k=0, 1,2, ..., n=1, 2, ..., 2k, m is degree of Chebyshev polynomials of the first kind and x denotes the normalized time. They are
defined on the interval [0, 1) by:

0, 252 k+1, nl oy
Yo () = Ve Tn(2"x—2n+1), 5 <x<g, 2.2)
0 otherwise
where
o — V2 m=0
Tl 2 m=1,2, ..

and 7, (2K x — 2n 4 1) are Chebyshev polynomials of the first kind of degree m orthogonal with respect to the weight function wy, (x) =
w(2*x—2n+1) = on [—1, 1] [35].

17(2k+1x72n+1)2

A function f(x) € L2[0, 1] may be expanded as:

f(x) = Z Z Som ‘Ifnm(x) 2.3)
n=1m=0
where
fnm = <f(x)7 Yam (x)> 24

and (., .) denotes the inner product with weight function wy,(x) in Eq. (2.4).
Truncated form of Eq. (2.3) can be written as:

2 M—1
x) = Z Z Fom W (x) = CT P (x) (2.5)
n=1m=0

where C and Y¥(x) are 2¥M x 1 columns vectors given by:

T = 1105 fi1s coos FIM=15 205 coos oM—1+s ey Fok0s -oos Fripg—1 ) (2.6)

‘P(X) = [W107 Yit, - ViM—1, Y20, - YomM—1; - Wzkm weey WZ“M—I }T (27)

The integration of the W, (x) given in Eq. (2.2) can be represented as

Prm(x / W (s (2.8)
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Form=0,m=1and m > 1, pyy,(x) can be obtained as
0 0<x<t
—kf2—1 —
pro)={ P [N a2 D+ v -2 +1)] T <a< g
“k/2
%\Z/E To(2M x—2n+1) 5 <x<1
0 0<x< ”2;,{1
—k[2-3 _
Pl (x) = aﬂﬁ (L2 x—2n+1) - Tp(2F x—2n+1)] ”2—,{1 <x< g
0 2% <x<1
0 0<x<zt
”12,/(/2,2 Tm— —(—1 m+1 7—;"7 —(—1 m—1 _
= | S BB rt] ey
msz/zfz 17(71)m+l 17(71)»1—]
& Nz m+1 T m—1 :| % sx<l
where u = 28"1x — 25+ 1. The integration of the ¥(x) can be represented as
/(:‘P(S)ds =[P10s P11y s PIM-15 D205 ooy P15 s Pakgys -+ Poyg—y ) =P P1(x) (2.9
where
lPl (x) = [l’,107 lI/”? ceey W1M7 WZOa seey lI/21W7 seey IVZ"O? seey II,‘ZI‘M ]T
[ 1 2 0 0 0 0 o 0 ]
V2 1
vz 0 7 O 0 0 0 0
V2 1 1
L=
V2 (=DM (! 1 1
5 (3= ) 0 0 0 B ES) 0 prresy Y
V2 (=DM ()Y 1 1
L T ) 0 0 0 0 T 2M-2) 0 M |
_ » 0 -
0 0 L, F F F F
% 0 0 | 0 Ly F Fr F
e : A= : .
31— (—1)MT (M3 0 0 0 L R
B G T e e I 0 0 0 0 0 L
I—(=)M (=M
| RO o o)

The second integrations of the ¥(x)can be represented as

X X X X
/ /I‘I’(S)dsdxl =/ Py Wy (xy)dxy =P1/ Wy (x1)dx) = P1P¥>(x)
0 Jo 0 0

The r'*integrations of the ¥(x)can be represented as

X X1 X2 Xr—1
/ / / / Y(s)dsdx,_1dx,_p---dx; = PPy - P ¥, (x)
0 J0 0 0

where
[ 1 2 0 0 0 0 0o 0 - 0
V2 1
=2 0o 1o 0 0 0 - 0
-2 —1 1
=2 S 0 |} 0 0 0 - 0
3 (—1)M-3 M1 7.1 1 )
L= %(<M13 - (M)fl ) 0 00 2(M-3) 0 s O 0
2,(=0"2 (=M ~1 1
G -5H) 0 00 O s> O m 0
> 1M-1 M+ 1
%U )71 *(M)H ) 0 0 0 0 0 o 0 0
53 (=13 M1 .
L §(<Mz3+r - (er71 0 0 0 - 0 0 0 0 T 2M=3+r)

2(M—1+r) |
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2 0 0
0 0 0
u2 0 - 0
: 0 0 L F F F, F
NN VLI e LN 0 . 0 L F F, F
F = (- =3 ) P = .
V2 =DM 1 (—1)M2 2k+1 :
B -~z 0 0 0 0 0 L F
51— (—1)M+! 1—(—1)M-1 0 0 0 0 L,
%( s\/1+)1 — 7)1 ) 0 0
: 0 0
V2 l=(=D)MErl (M3
L T( Mr—1 — —M1r—3 ) 0O --- 0 |
and
W (x) = [W10, Vils o WiM4r—15 V205 s YaMAr—1s - Woks s Wokpgir_1 }T (2.10)

Dimensions of the matrices L, and F, are (M +r— 1) x (M +r). Hence P, has the dimension 2K(M +r—1) x 2K(M +r).

3. Chebyshev Wavelet collocation method for BVPs with nonlocal conditions

Consider Eq. (1.1) or Eq. (1.2) with the nonlocal boundary conditions
{ W Gg) =bij, 1<i<mj, 1<j<p
Y(xﬁ+l) —y(xﬁ+2) =b,
We assume that y(") () can be expanded in terms of truncated Chebyshev wavelet series as

28 M—
=Y X fmWam(x) =CT¥(). 3.1)

n=1 m=0

By successively integrating Eq. (3.1) from O to x, the following equations are obtained

/ CTw(s)ds+y"D(0) = T PP, (x) +y"1(0) (3.2)
YW (x) = CT PP (x) + 207D (0) +y2)(0) 33)
2
W) = PR P 3 (x) + 53 (0) +2 2 (0) 43 (0) (3.4)
(mj) _ T N rimii (s4mj—1)
YW (x) =CT P PPy . Pryy ¥y, (X) + Y T (0) 3.5)
s=1 :

Theorem 3.1. Chebyshev wavelet expression for zth-order derivatives of unknown function y(x) satisfying nonlocal boundary conditions

{y(i’l)( N=bij, 1<i<mj, 1<j<B
(%.1) —¥(xg42) = bs
are given as forz=0,1, ...,mj — 1.
y(Z)(x):CT <P1P2...Pr—zlpr 2(x) = Zm/ z ( )> PP .. PV+17Z7hlPr+lfz—h(-xj)>
r—m s—14+m m Z(x x)“ 1 X-j Z+s—u .
+Z (W Z“il (u /1)! (m//fz+s7u)! y(SerJ )(0) (3.6)
- 1
+%y J0)+Xn Z#bﬁw

ylm) (0), ylmj+1) 0), ..., y(’_l)(O) in Eq. (3.6) can be obtained the following algebraic equations system

s—l4m; s—14m; mjts—u

S _ . )i —x: )¢ X " L
Z::;"/ xk—(2571+“::l;r)l! 72’:;1 (2—x)) u!(xk+l x;) (m;+S7u>! y(s+mj 1)(0)
)i — —x)m . R eyl
+ ((xk+2 X)) ’mjgxkﬂ x;) />y(mj)(()) = _br_):;’/’f:l <(Xk+z x;) (W7£;§+1 x;) )bW,j

. )l )l
—CT (Pl ..APrlyr(karz) - P1P2 ~-~Prlpr(xk+l) _ZZZI ((XHZ x/) (hfl(;C;(H x/) PIA..Pr+17h\Pr+17h(.xj)> )

where my +my+ ... +mg =r—1L
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Proof. By successively integrating Eq. (3.5) from x; to x and using boundary conditions
W) =bij, 1<i<my, 1<j<pB
the following expressions are obtained:

y(mj_])(x) :CTP1P2P3~- P mj+1 (‘Pr mj+l( ) lFrY m; +1(xj))
=)y (0) + X157 Sy 6= (0) + by

y<mj72)(x) =c’ (P1~~Pr7m‘+2 (lPr mj +2(x) -¥ 7mj+2(xj)) - (x_xj)Pl~-~Pr7m‘,'+1‘Pr7mj+l(xj))

,
_ el x’“ SR -
L (0) 4 5 (+—1) ) 0D (0) 5 B

y(z)(x):CT <P1P2.,.Pr_z“yr z( ) Zm/ ‘ x— ) P1P2 Pr+lfth\Pr+lfth(xj)>

r—m; s=1+mj—z mj—z (x—x;)"" 1 Xm, 2ts—u ‘ B
+¥i s’ (m*zuil T Y1) (g)
7 w—1
+()C<n:;172z;' D0)+ X Z%bﬁw

where =0, 1, ..., mj — 1. This is Eq. (3.6) given in Theorem 3.1. For z = 0, the following equation can be obtained.

h—
y(x):CT (P1P2,..Prlpr( ) Zh 1 ) P1P2 Pr+17hlpr+17h(xj)>

su
fo»m- — X s—
+Zr > ( (s— l+m/) _ZZZI " u/fj) (m/j‘+s—u)!>y(x+m’ 1)(0)
i w-l
+(x n:;|) j ( )+Zm/ (x—. )c)])Y bw,j

If boundary condition y(xg 1) — y(xg42) = bycan be satisfied, the following equation can be obtained as:

fo»m/- S*]+m/' u u mj+x—u
Zr*mj ey " Tpe1 ij (2 =)= (k1 =x,)" X, (s+mj—1)(0)
5=2 (s—14m;)! u=1 u! (mj+s—u)! y

w—1

B

I

. VLY VRV
—CT (Pl ~--Pr\Pr(xk+2) —P1P2 .-.Prll"r(.karl) _ZZZI ((tz %) (h—l(;;#l %) P14~-Pr+17h\yr+1—h(xj)>)

where my +my + ... +mﬁ:r—1. .

Conclusion 3.2. If § = 1 then j =1 and m; = r — 1 are obtained. Hence

yx)=c" (Ple Wy (x) = L) x ) P1P2 Prii- h‘PrJrl—h(xl))
x—x;)" ! (r— (x—x
+4( r 11))1 y 1 ( )+Z 1)> by,1

is obtained, where y'=1)(0) is obtain as

Xa—x r—1_ Xo—3 r—1 e r— X3 —X w—1__ Xy —X w—1
(%)ﬂ D0) =—b, -} (( 3—x1) (w—f)f 2) )bw,1
h—1

TR By
~CT (P P (x3) = PP P (2) = By (s 1)) )

Replacing (3.1)-(3.6) into Eq. (1.1) or Eq. (1.2), we have linear or nonlinear algebraic equations respectively.
(M+1)—irm
== or

The collocation points can be taken as 2kl i —2n+1=cos A1)

(M+1)—i)m

Xni = (M—l—])

(2n71+cos >,i: 1,2, .., Mn=1,2,.. 2" 3.7

1
2k+1
which are also called the turning points of Tyy1 (28T x — 2n + 1). Substituting the Chebyshev collocation points into linear or nonlinear
algebraic equations, a discretizised form of the vectors ¥ (xp;), ¥ (xn;) and ¥, (xn;) can be obtained. Hence, we obtain linear or nonlinear

algebraic equations systems. By solving linear or nonlinear algebraic equation systems, we can find the coefficients of the Chebyshev wavelet
series that satisfied differential equation and its initial or boundary conditions.
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4. Error analysis

For error analysis of Chebyshev wavelet method, the following Lemma and Theorems are given.

Lemma 4.1. (See [36]) If the Chebyshev wavelet expansion of a continuous function f(x) converges uniformly, then the Chebyshev wavelet
expansion converges to a function f(x) .

Theorem 4.2. (See [36]) A function f(x) € L2 ([0, 1)) with bounded second derivative | f" (x)| < N, can be expanded as an infinite sum of
Chebyshev wavelets, and the series converges uniformly to f(x) . That is

FO=Y Y fumViml).

Since the truncated Chebyshev wavelets series
CT‘P Z Z Coum Wom (X
n=1m=0

is an approximate solution of given problem and y(x) is an exact solution, an error function f(x) can be given as:
Ex) = [y(x) — €T (x)

The error bound of the approximate solution obtained by using truncated Chebyshev wavelets series is given by the following theorem.

Theorem 4.3. (See [37]) Suppose that y(x) € C™[0,1] and CT¥(x) is the approximate solution of problem using the Chebyshev wavelets
method. Then the error bound can be obtained as follows:

2 2
- (m)
El) < H a1 2o b
5. Numerical results
Example 5.1. Consider the forth order linear boundary value problem [19]
y®) (x) — y" (x) + y(x) = 1 — ¢* cosh(x) + 2 sinh(x), 0<x<1
(%) =1+Slnh(z) y/(%) —cosh(4), 5.1)
”(i)—smh( ). »(3)—y(3) =sinh(3) —sinh(3).

with analytic solution y(x) = 1+sinh(x). It is assumed that y*(x) can be expanded in terms of truncated Chebyshev wavelet series as

M—1

2k
vy (x Z Z W (X) = CTW(x) (5.2)
By integrating this equation from 0 to xand using boundary condition,
X
") = [ CTds+5"(0) = P10+ (0) 53

is obtained. By integrating this equation three times from % to x and using boundary conditions, following equations are obtained.

Y'(x) = CT (PPy¥2(x) = PLP¥2(7)) + (x— )y (0) +sinh(3)

(x—3)? .
y’(x) = CTP1P2 (P3‘P3(x) — P3\P3(%) — (x— %)‘Pz(%)) + T“y”’(O) + (x— %) smh(%) +C05h(%)
T 1 1 1 (x—%)2 1
y(x) =C" [ PR3Py (x) — PP P3PyWy(5) — (x— )PP P33 (3) — —5—P W2 (3) 5.4)
_ 13 1y ’
+ 02l gm0y + o2 Gan(1) + (x— Ly cosh(L) + 1+ sinh(1)
By using boundary condition y (%) -y (%) = sinh (%) —sinh (%) y"(0)is obtained as:
yW(O) = %CT (P1P2P3P4‘I"4(%) —P1P2P3P4‘P4(31) +z 1p P2P3l1"3( l ) + %P]Pz‘yz(%)) 5.5)

3§4 (sinh(}) —sinh(3) + %cosh? )+ smh( )

Hence, replacing Eq. (5.5) into the Egs. (5.3) and (5.4), we have



Fundamental Journal of Mathematics and Applications 31
Table 1: Comparisons of the absolute errors of [19] and proposed method for various values of M, k andx
X M=4k=0 | M=4k=1 M=4k=2 M=8k=0 | M=16,k=0 [y —y1011[19]] |y —y151] [19]
0 1.57537 e-8 4.63339e-10 | 2.61472e-11 6.32711 e-15 le-19 0.0000255 1.13356E—6
0.1] 2.38097 e-9 1.04070 e-10 | 5.93744 e-12 | 3.38417 e-15 le-19 4.53581E—6 | 2.01715E—7
0.2] 3.88574 e-11 3.13685e-12 | 2.31892e-13 | 2.12340e-16 | 3e-19 1.32679E—7 | 5.90784E—9
0.3] 5.15129 e-12 1.90014 e-12 1.48048 e-14 | 2.20110e-17 | 2e-19 9.91385E—8 | 4.39712E—9
0.4] 9.21096 e-10 | 2.86581 e-11 8.51610e-13 | 4.11361e-15 | 3e-19 1.90635E—6 | 8.46552E—8
0.5] 5.55451¢9 1.46005 e-10 | 5.70554 e-12 | 8.99446 e-15 le-19 5.92446E—6 | 2.63147E—7
0.6| 1.28454 ¢-8 4.31240 e-10 1.38779 e-11 8.47493 e-15 | 2e-19 9.75828E—6 | 4.33469E—7
0.7| 1.30931 e-8 3.93193 e-10 1.42221 e-11 7.79239 e-15 | 2e-19 9.32982E—6 | 4.14438E—7
0.8] 9.97851 e-9 3.11259 e-10 1.24207 e-11 1.01678 e-14 | 2e-19 5.99989E—7 | 2.67207E—8
0.9] 7.17676 e-8 2.30928 e-9 1.02985 e-10 | 8.93500e-15 | O 0.0000265 1.17736E—6
1.0| 1.81832e-7 6.63219 e-9 3.16336 e-10 | 6.03590e-15 | O 0.0000765 3.39732E—-6
¥'(x) =CT (P¥(x) + 384CT}"ll"z (P3P4‘P4( ) P3P4‘P4( ) z ‘{’3(1)+ S¥(1))) (5.6)
357;4 (smh( ) —sinh(3)+ 1 cosh(}) sinh(1)) ‘
1 | 1y g 1
y(x) _ CT P P2P3P41“P4( ) — P P2P3P4\P4(Z) — (X7 Z)Pl P2P3\P3(Z) — > P leyz(z)
384(
+x74> (PP PsPyY4(%) — PP PsPYY4(3) + %Plell’s‘Ps(};) +5PPY: (1)) (5.7)
13
—% (sinh(i) — sinh(i) +3 cosh(%) + 33—2 sinh(%)) ) smh(%)
+(x— %)cosh(%) +1+ sinh(%)
Replacing Egs. (5.2), (5.6) and (5.7) into Eq. (5.1), we have
Ly
o ‘P(x)+P1P21P3P4 (T4(.X)—‘P4(%)) —(x—%)P1P2P3‘P3(1) 4) Pleqlz(l)—eXPI‘Pl(x)
_ 153
+384 ((x 64) —ex) (PP Ps P4 (3) — PP PsPYY4(3) + S PP W3 (5) + 5 PP Y () 5.8)

_1ys 1
L (% fe"> (sinh(1) — sinh(3) + L cosh(1) + % sinh(1)) — %

—(x— %) cosh() —sinh(1) — e*cosh(x) + 2sinh(x)

sinh(})

Algebraic equation system achieved in Eq. (5.8) by using Chebyshev collocation points can be solved and the coefficients CT in Eq. (5.7)
which is satisfied differential equation and whose boundary conditions can be obtained. Table 1 shows the absolute errors for M =4, k=0,
M=4,k=1,M=4,k=2M=8, k=0and M =16, k = 0. As can be seen in Table 1, the results obtained by the proposed method are
superior from Reproducing Kernel Method [19] for small grid points such as M =4, k= 0.

Example 5.2. Consider the second order nonlinear boundary value problem [21].
0<x<1

5.9
¥(0)=0, o9

It is assumed that ¥" (x) can be expanded in terms of truncated Chebyshev wavelet series as

{ V(@) + () + 592

26 M—1

y'(x) = Z Z Jom W (x) =

n=1 m=0

cTw(x)

Similar process given in Example 5.1, the following equations can be obtained

y(x) = CT (P]Pz‘{'z (x) — 2xP1P2‘~P2(1) =+ 2xP1 Pz‘yz(%)) (5]0)

CT (W) + PP (v) ~ “EPRE (1) + 2 PP () ))
4 (CT (PP (x) — 2xPL P (1) + 2x(x — 1P P (1))

Nonlinear algebraic equation system achieved from Eq. (5.11) by using collocation points can be solved and the coefficients CT in Eq.
(5.10) which is satisfied differential equation and whose boundary conditions are obtained. Table 2 shows the approximate solutions for
M=4k=0M=4,k=1,M=4 k=2 M=8k=0and M =16, k= 0. As can be seen in Table 2 that the results obtained by the
proposed method are satisfied the boundary condition 'y (1) —y (%) = 0. When number of grid points increase, the precisions of approximate
solutions increase. The results obtained by the proposed method for small grid points such as M = 4, k = 0 are also superior from Monotone
Iterative Method [21] not satisfying the boundary condition y (1) —y (%) =0 exactly

n 6 (5.11)
§x2 +3zx=0
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Table 2: Approximate solutions of proposed method for various values of M, k andx and [21]

x | M=4k=0 | M=4k=1 M=4k=2 | M=8k=0 | M=16,k=0 [21] Third Term
0 | 0.260929 0.949067 0.157524 0.260974 0.260974 e-19 | O
e-19 e-21 e-21 e-19
0.1] 0.1035508429 | 0.1035501266 | 0.1035502791 | 0.1035502920 | 0.1035502920 | 0.1040764497
0.2] 0.2019974623 | 0.2019955359 | 0.2019958847 | 0.2019959102 | 0.2019959103 | 0.2027652843
0.3] 0.2908872022 | 0.2908870108 | 0.2908875266 | 0.2908875633 | 0.2908875632 | 0.2916751511
0.4] 0.3664960100 | 0.3664989187 | 0.3664995714 | 0.3664996188 | 0.3664996189 | 0.3671584606
0.5| 0.4258337040 | 0.4258381953 | 0.4258390441 | 0.4258391011 | 0.4258391014 | 0.4263068077
0.6| 0.4666492402 | 0.4666527782 | 0.4666535640 | 0.4666536253 | 0.4666536254 | 0.4669454120
0.7| 0.4874359792 | 0.4874368797 | 0.4874377503 | 0.4874378143 | 0.4874378143 | 0.4876278426
0.8| 0.4874369540 | 0.4874368797 | 0.4874377503 | 0.4874378140 | 0.4874378143 | 0.4876319741
0.9] 0.4666501363 | 0.4666527782 | 0.4666535639 | 0.4666536252 | 0.4666536254 | 0.4669578065
1.0] 0.4258337040 | 0.4258381953 | 0.4258390441 | 0.4258391011 | 0.4258391014 | 0.4263274652
Table 3: Approximate solutions of proposed method for various values of M, k andx and [17]
x | M=4k=0 | M=4k=2 | M=16,k=0 | M=16k=1 [17] OHAM [17] HPM
Second Order | Second Order
0 | 0.188293 0.734306 0.188296 e-19 | 0.129858 e-20 | O 0
e-19 e-23
0.1| 0.0656100870 | 0.0656099762 | 0.0656099772 | 0.0656099772 | 0.0656099707 | 0.0655919115
0.2] 0.1209706322 | 0.1209703634 | 0.1209703654 | 0.1209703653 | 0.1209703640 | 0.1209353047
0.3] 0.1658758980 | 0.1658757275 | 0.1658757303 | 0.1658757303 | 0.1658757339 | 0.1658256598
0.4| 0.2001594201 | 0.2001594622 | 0.2001594656 | 0.2001594656 | 0.2001594697 | 0.2000971743
0.5] 0.2236942481 | 0.2236943874 | 0.2236943913 | 0.2236943913 | 0.2236943923 | 0.2236233202
0.6] 0.2363931859 | 0.2363932068 | 0.2363932109 | 0.2363932109 | 0.2363932086 | 0.2363172683
0.7| 0.2382090332 | 0.2382088205 | 0.2382088245 | 0.2382088245 | 0.2382088217 | 0.2381321777
0.8] 0.2291348258 | 0.2291344944 | 0.2291344982 | 0.2291344982 | 0.2291344982 | 0.2290613518
0.9] 0.2092040768 | 0.2092038847 | 0.2092038882 | 0.2092038882 | 0.2092038920 | 0.2091382608
1.0] 0.1784910170 | 0.1784909168 | 0.1784909199 | 0.1784909199 | 0.1784909250 | 0.1784364302

Example 5.3. Consider the second order nonlinear boundary value problem [17]

18(())+1—0
(D-»(3)=0.

It is assumed that ¥" (x) can be expanded in terms of truncated Chebyshev wavelet series as

0<x<1

{ i’;(x) + gyl )+y (5.12)

0)=0,

2k M-
= Z Z Jom W (x CT"P(X)

Similar process given in Example 5.1, the following equations can be obtained

y(x) =CT (PPY¥,(x) — 3 PIPY (1) + F PP (3)) (5.13)

CT (P(x)+ 3PP (x) —
+ 1089 (CT (P11 (%) —

?%Plpzlpz(l)—l— 16P1P2‘I”2 % ) (5.14)
%P1P2T2(1)+2P1P21P2(§))) +1=0
Nonlinear algebraic equation system achieved from Eq. (5.14) by using collocation points can be solved and the coefficients CT in Eq. (5.13)
satisfied differential equation and whose boundary conditions are obtained. Table 3 shows the approximate solutions for M = 4, k =0,
M=4 k=2 M=16,k=0and M =16, k = 1. As can be seen in Table 3, the precisions of approximate solutions obtained by the
proposed method increase when number of grid points increase. The results obtained by the proposed method for small grid points such as
M =4, k=0 are superior from Homotopy Perturbation Method and Optimal Homotopy Asymptotic Method in [17].

Example 5.4. Consider the forth order nonlinear boundary value problem

y®) (x) — sin(x) y” (x) + y(x) 4 sin(y(x)) = 1 4 sin(1+sin(x)) + (2 + sin(x)) sin(x), 0 <x <1
y(4) =1+sin(}), Y (3) =cos(}), (5.15)
¥ (3) = —sin(g) v(3)=y(3) =sin(3) —sin (3)

with analytic solution y(x) = 1+ sin(x).
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Table 4: The absolute errors of proposed method for various values of M, k andx
x | M=4k=0 M=4k=1 | M=4k=2 | M=8k=0 | M=16,k=0
0 | 1.305827 e-8 | 4.55634¢e-10 | 2.69793 e-11 | 6.48270e-15 | 1.0e-19
0.1 1.889004 e-9 | 9.89746¢e-11 | 596046 e-12 | 3.14499e-15 | 7.0e-21
0.2| 2.754407 e-11 | 2.85912e-12 | 2.25583 e-13 | 1.87940e-16 | 6.0e-20
0.3| 8.825138e-12 | 1.59099 e-12 | 1.50140e-14 | 1.88610e-16 | 1.0e-20
0.4| 8.503094e-10 | 2.02999 e-11 | 8.22951e-13 | 3.39057 e-15 | 3.0e-20
0.5| 4.775323 -9 1.04675e-10 | 5.14514 e-12 | 6.96137 e-15 | 3.0e-20
0.6 1.061068 e-8 | 3.18029e-10 | 1.20212e-11 | 5.91620e-15 | O
0.7 1.058432e-8 | 2.81752e-10 | 1.20549e-11 | 5.57247 e-15 | 1.3 e-19
0.8| 6.632389e-9 | 2.09432¢e-10 | 8.86424 e-12 | 8.34323e-15 | 7.0e-20
09| 4.857164 -8 1.52893 e-9 7.46368 e-11 | 8.29286¢e-15 | 1.4e-19
1.0 1.148666 e-7 | 4.21506 e-9 2.18685e-10 | 8.17725e-15 | 1.5e-19
Similar process given in Example 5.1, the following equations can be obtained
1 1 1 -1 1
W) =T P1P2P3P4‘11’4( ) = PPy Ps Py (3) — (x— 3) PP P33 () — —5— P12 ¥ (3)
384
1 +M (PP P3Py (3) — PP PsPY4(3) 41- 1PIPPsYs(1)+ PP (1)) (5.16)
384(x—7)° ;. . (—g)* .
— T (sin(%) —sin(3) + § cos(}) - %sm(%)) — A sin(d) + (x—1)cos(§) + 1 +sin(d)
384 (- 3)° 1o 1 3 1 1
B A (x— D)sinx) ) (PP P PsP4(L) — PP P4 (3) + s PP P33 (5) + SPIP YL (1))
CT 1 1 1 <x7l> 1
+W(x)+ PP P3Py (Wa(x) — Waly)) — (x— 1) PP P33 () — PiPY5(7)
— sin(x)P] P2 (‘Pz(x) — \Pz(%))
(x— )
cr | PPPsPsa(x) — PP PSP (5) = (x = )PP Ps W3 (3) = = PR ¥a(3)
. 384(x—7)? 1 (5.17)
+sin +T4 ))

1 (PP P3P () — PP PSP, (5 )+4P1P2P3‘P3 1) +32P1P2‘1’2(z

384(—2) . .

—%(sm(%)—sm( )+ 1 cos(%)—%sm(%)) ( - 1)
Ly

. (( 64) —(x—%)sin(x)) (sin(§) —sin(3)+ S cos(§) — 55 sm(%)) + (x— 1) cos(

+ (1 + sin(x) — ﬁ) sin(4) —sin(1 +sin(x)) — (2 +sin(x)) sinx = 0

sin cos(1)+

)

Bl—

Nonlinear algebraic equation system achieved from Eq. (5.17) by using collocation points can be solved and the coefficients CT in Eq.
(5.16) satisfied differential equation and whose boundary conditions are obtained. Table 4 shows the absolute errors for M =4, k=0,
M=4 k=1, M=4 k=2 M=8, k=0and M =16, k =0. As can be seen in Table 4 and Fig. 1, absolute errors tend to zero when
number of grid points increase. The results obtained by the proposed method for small grid points such as M = 4, k = 0 are superior.

6. Conclusion

Chebyshev wavelet collocation method has been applied to the one linear and three nonlinear nonlocal boundary value problems. Approximate
and exact solutions of examples are correspondingly compared. For Example 1, the comparisons of the absolute errors given in Table 1, it is
clear that the results obtained by the proposed method are better than Reproducing Kernel Method [19]. Numerical results of Example 2
which is given in Table 2 are stable when number of grid points increase. It can be seen that results of proposed method for small grid points
such as M = 4, k = 0 are superior to the results of Monotone Iterative Method [21] as given in Table 2. Numeric solutions of Example 3 for
various values of M and k are given in Table 3. The precisions of approximate solutions obtained by the proposed method increase when
number of grid points increase as can be seen in Table 3. For small grid points such asM = 4, k = 0, the results of proposed method are
superior to the results of Homotopy Perturbation Method and Optimal Homotopy Asymptotic Method in [17]. Absolute errors of Example 4
are given in Table 4 and Fig 1 for various values of M and k. As can be seen from Table 4 and Fig 1, absolute errors tend to zero when
number of grid points increase and the proposed method is highly efficient and accurate. All of the calculations in this study have been
made by the Maple program. Newton Raphson method has been used to solve nonlinear algebraic equation systems. These calculations
demonstrate that the accuracy of the Chebyshev wavelet collocation method is quite good even for small number of grid points. In proposed
method, there are no complex integrals or methodology. Applications of this method are very simple. It is also very convenient for solving
the initial, boundary and nonlocal boundary value problems since the initial, boundary and nonlocal conditions are automatically taken in
the solution. In addition, it can be concluded that the proposed method is reliable, simple, fast, minimal computation costs, flexible, and
convenient alternative method.
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Figure 5.1: The absolute errors of Example 5.4 for various values of M and k
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1. Preface

Fractional calculus is an emerging field in applied mathematics that deals with derivatives and integrals of arbitrary orders. For their
applications and details note, one can refer to [8, 13, 17]. Due to the properties involved in Hilfer fractional type of derivatives (introduced
by Hilfer [8]) in the sense that it generalizes the Riemann-Liouville (R-L) and Liouville-Caputo (L-C) fractional derivatives, a lot of studies
have been done on it, including the existence and uniqueness of solutions to such differential equations (DEs) involving Hilfer fractional
derivative (HFD); see [4, 7, 20, 21], and references therein.

It is well known that the pantograph equations (PEs) arises in quite different fields of pure and applied mathematics and have been investigated
extensively. Recently, due to its importance in many applied fields and playing an extremely important role in explaining many different
phenomena, for details see [3, 6, 10, 19, 22].

Recently impulsive DEs have been considered by many authors due to their significant applications in various fields of science and technology.
For detail study, see [2, 14, 15, 16, 18, 24]. Due to its large number of applications, this area has been received great importance and
remarkable attention from the researchers.

In 1940, Ulam posed the following problem about the stability of functional equations: Under what conditions does there exist an additive
mapping near an approximately additive mapping? In the following year, Hyers gave an answer to the problem of Ulam for additive functions
defined on Banach spaces, [8]. That is why the name of this stability is Ulam-Hyers (U-H) stability. Later on, Hyers results are extended by
many mathematicians. The stability analysis is extremely helpful in numerous applications, for example, numerical analysis and optimization,
where it is very tough to find the exact solution of a nonlinear problem. The aforementioned stability has very recently attracted the attention
of researchers; we refer the reader to some papers [11, 12, 23]. Because of, fractional order system may have more attractive feature over the
integer order system.

Consider the PEs with impulsive condition given by

DBx(r) = f(1,x(r),x(A1)), te€J =T\{t1,t2,0tm},J = [a,b], t &1,
AV =g, = Wi (x(8)), =15, k=1,2,....m, (1.1)
I Tx()|i=a = %0, y=0+B—ap,

where D%B (0 < ot < 1,0 < B < 1) is the Hilfer fractional derivative of orders o and type 8. Here, 0 < A < 1 the function f : J X R x R — R is
continuous, [ :R— R, anda € R, a =ty <t; < ... <ty <ty =b, AI'" " Vx(t)r=y =" "Vx(t;") — 1" Vx(t), 1" Vx(t]) = limy_, 0 x(tx + 1)
and I'~7x(t,") = limy,_,o_ x(t + h) represent the right and left limits of x(r) at = #;.
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The paper is organized as follows: In Section 2, we present some necessary definitions and preliminary results that will be used to prove our
main results. The proofs of soultion existence and uniqueness are given in Section 3. Finally, stability is proved in Section 4.

2. Prerequisites

In this section, we recall some preliminaries materials required in this paper from. Consider the following space
PCJ,R] = {x:J = R:x(t) € C(ty,tg+1),k =0,...,m; there exists x(1;") and x(1; )} .
Now we consider the weighted space PCy[J,R],
PCyJJ.R] = {x (1= a)"x(0) e ] € Cliksti1] k= 0,.ccom where 0 < 7 < 1 } :
Obviously, which is a Banach space with norm

Hx”PCy: sup {(l_tk)’yx(t)}vk:()w“vm-
1€t tes1)

Definition 2.1. [73] The R-L fractional integral of order ot > 0 of function f : [0,00) — R can be written as

170 = oo [ =% p(0)as.

(a)

Definition 2.2. [13] The R-L fractional derivative of order ot > 0 of a continuous function f : [0,00) — R can be written as

00 = iy () [ =90,

provided that the right side is pointwise defined on [0, o).

Definition 2.3. [13] The L-C fractional derivative of order o > 0 of a continuous function f : [0,00) — R can be written as

“D%f(r) = D

n—1 _k
-y ;‘f"(o)} i>0n—1<a<n.
=0 ¥

Definition 2.4. [8] The HFD of order 0 < o0 < 1 and 0 < 8 <1 of function f(¢) is defined by
p*P f(e) = (PO DUPI 1)) 1),

The GRL fractional derivative is considered as an interpolation between the R-L and L-C fractional derivative and the relations are given
below.

Remark 2.5. (i) Operator D%B aiso can be written as
DB = (FU-)p(=-B)(1=c)y) — (BU-@)pY = g+ B — ap.

(ii) If B = 0, then D%P = D*O s called R-L fractional derivative.
(iii) If B = 1, then DB = ['=%D s called L-C fractional derivative.

Lemma 2.6. [4]If oo > 0 and 3 > 0, there exists

[Ia(t)ﬁfl] (x) _ F(g(f—)a)xlpr(xfl,

and
[Da(t)“—l] (x)=0, 0O<a<l.
Lemma 2.7. [4]Ifa > 0and B > 0and f € L' (a,b), there exists the following properties
190 £ (1) = 1P £ (o),
and
DOIEF (1) = £(0).

Lemma 2.8. [4]Lety= o+ —aff where0 < a < 1and0 < B <1. Let f : J x R — R be a function such that f(-,(-)) € Ci_y|a,b] for
any x € Ci_yla,b]. If x € C}liy[a,b], then x satisfies

D*Bx(t) = f(t.x(r)), 1€ (a,b]
I'""x(a) = x.
if and only if x satisfies
x(t) = 1")26:}/) (t—a)’ '+ ﬁ /at(t —5)% (s, x(s))ds 2.1)
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Lemma 2.9. Let f : J — R be continuous. A function x € PC_y[J,R] is a solution of the fractional differential equation

D*Px(t)y = f), tel
@) = x,
if and only if x is a solution of the integral equation
_ —1 (t—a)’! i N(1-B(1—a))—1 1 ' -1
) =g ="~ R B _a))/a (ti—s) “ f(s)ds+m/a (1 — )% f(s)ds. 2.2)

Next, we shall give the definitions and the criteria of U-H stability and U-H-R stability for PEs with impulsive effect under Hilfer fractional
derivative. Let € be a positive number and ¢ : J — R™ be a continuous function, for every ¢t € J and k = 1,2,...,m, we have the following
inequalities

{ DEBL(r) — f(t,2(0),2(Ar)| < e, 03

AT~ wiel)| < e

{ DEBL(r) ~ f(t,2(0),2(A0)| < e, 04
AT~ wile)] < e0(0),

{ DHB2(1) ~ f(1,2(0),2(A0)| < ), 03)
AT Oy~ w0 < 9),

Definition 2.10. Eq. (1.1) is U-H stable if there exists a real number Cy > 0 such that for each € > 0 and for each solution z € PCy_y[J,R]
of the inequality (2.3) there exists a solution x € PCi_y[J,R] of Eq. (1.1) with

|lz(t) —x(t)| < Cre, tel.

Definition 2.11. Eq. (1.1) is generalized U-H stable if there exist ¢ € PCi_y[J,R"], ¢£(0) = 0 such that for each solution z € PCy_y[J,R]
of the inequality (2.3) there exists a solution x € PCi_y|J,R] of Eq. (1.1) with

lz(r) —x(1)| < @pe, tel.

Definition 2.12. Eq. (1.1) is U-H-R stable with respect to ¢ € PCy_y[J ,RT] if there exists a real number C 't > 0 such that for each solution
7 € PC1_y[J,R] of the inequality (2.4) there exists a solution x € PCy_y|J,R] of Eq. (1.1) with

|z(t) —x(r)| < Cr eq(r), tel.

Definition 2.13. Eq. (1.1) is generalized U-H-R stable with respect to ¢ € PCi_y[J ,RT] if there exists a real number C .9 > 0 such that for
each solution z € PCy_y[J,R] of the inequality (2.5) there exists a solution x € PC\_y[J,R] of Eq. (1.1) with

(1) =x(1)| < Crp0(t), 1€J.

Remark 2.14. A function z € PC1_y|J,R] is a solution of the inequality
DB () = f(1,2(0),2(A1)) | < e,

if and only if there exist a function g € PC\_y[J,R] and a sequence gy, k = 1,2,...,m (which depend on z) such that

(i) lg(r)] <e, || <&
(ii) DPz(1) = f(1,2(1),2(A1)) +(1).
(iii) AI'V2(t)]y, = wi(z(te)) + 8-
(iv) Let 0 < o < 1, 0 < B < 1, if z is solution of the inequality (2.3) then z is a solution of the following integral inequality

Y wzn)

)yfl _ o<n <t
I(y)

1

(t—a) ™' — — /:(z —5)% f(5,2(5),2(As))ds| < € <m+ boa)” ) :

)~ ppy e (@) NCES)

I(y)

Lemma 2.15. [25] Let a(t) be a nonnegative function locally integrable on a <t < b for some b < oo, and let g(t) be a nonnegative,
nondecreasing continuous function defined on a <t < b, such that g(t) < K for some constant K. Further let x(t) be a nonnegative locally
integrable on a <t < b function satisfying

0)| < alt) +06) [ " —5)% x(s)ds, 1 € [a,b)

a

with some o@ > 0. Then

5 @()w()] a(s)ds, a<i<b

w0l <at)+ [ | 3 B

n=1
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Remark 2.16. Under the hypethesis of Lemma 2.15 let a(t) be a nondecreasing function on [0,T). Then y(t) < a(t)Eq(g(t)I'(0)t%), where
Eq is the Mittag-Leffler function defined by

o k
z
E = —_— C, R 0.
«(z) kgbl"(kowrl)’ z€C, Re(at) >

Lemma 2.17. [24] Let x € PCy_y(J,R) satisfies the following inequality

1

KO <erter [ (-9 WOlds+ Y wi(n)],
0 0<te<t

where c| is a nonnegative, continuous and nondecreasing function and c;, ; are constants. Then
(1) < e (1 + VfEa(Czr(a)la)kEa(Czr(a)fa> fort € (titis1],

where w =sup{y; 1 k=1,2,3,....m}.

Theorem 2.18. [5](Schaefer’s Fixed Point Theorem) Let K be a Banach space and let N : K — K be completely continuous operator. If the
set {x € K : x = 8Nx for some & € (0,1)} is bounded, then N has a fixed point.

Theorem 2.19. [5](Banach Fixed Point Theorem) Suppose Q be a non-empty closed subset of a Banach space E. Then any contraction
mapping N from Q into itself has a unique fixed point.

3. Existence of at least one solution

In this section, we investigate the existence and uniqueness of solution to the proposed problem. We need the following lemma to establish
our main results.

Lemma 3.1. Let f:J X R X R — R be continuous. A function x is a solution of the fractional integral equation

Y wix(w) -
x(f) = %(z —a)’ ' 4+ er(iy)(t —a)’ ' 4 m/ (t— )% 1 £(5,x(s), x(As))ds 3.1
if and only if x is a solution of the problem (1.1).

Let us introduce the following assumptions which are used hereafter.
(H1) Let f:J xR xR — Rbe acontinuous function and there exists a positive constant £ > 0, such that

|f(t,x1,20) = f(t,y1,2) < £(]x1 = yi]+ |x2 = y2|), for all x1,x2,y1,y2 € R.
(H2)  Let f:J xR xR — R is completely continuous function and there exists a function p € L! such that

If(t.x, )| < p(t), VtE€T, x,y €ER.
(H3)  Let the functions W : R — R are continuous and there exists a constant £; > 0, such that
[ (x) —wi(y)| < g |x—y|, for allx,y € R, k=1,2,...,m.
(H4)  Let the functions y; : R — R are continuous and there exists a constant p* > 0, such that
lyp(x)| < p*(t), for allxeR, k=1,2,...,m.
(H5) : There exists an increasing finctions ¢ € PCy_y[J ,RT] and there exists Ag > 0 such that for any r € J,
1%@(1) < Apo(t).
Theorem 3.2 (Existence). Assume that [HI1] - [H4] are satisfied. Then, Eq.(1.1) has at least one solution.
Proof. Consider the operator N : PC{_y[J,R] — PC|_y[J,R]. The operator form of integral equation (3.1) is written as follows
x(t) = Nx(t),

where

Y wi(x(w))

Xq o<n <t
I(y) I(y)

First, we prove that the operator N defined by (3.2) verifies the conditions of Theorem 2.18.
Claim 1: The operator N is continuous. Let x,, be a sequence such that x, — x in PC{_y[J,R]. Then for each t € J,

(t—a)" '+ ﬁ / t(z — )%V £(s,x(5), x(As))ds. (3.2)

Nx(t) = (t—a) '+

1
NC) o<§'<t | Wi (e (1)) — Wi (x(2x))|

—a)l- t
% / (t =) f(s5,20(5), % (R5)) = f(s5,x(s), x(As5)) | ds.

(Nan) (1) =N@)0))(t —a)' 77| <

+
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since f is continuous, then we have
INGen) (1) = Nx) (D)l pc, ., =0 as n— oo,

This proves the continuity of N.
Claim 2: The operator N maps bounded sets into bounded sets in PC|_y[J,R]. Indeed, it is enough to show that for r > 0, there exists a
positive constant / such that

By = {x € PCL 41K |xllpe, , <7},

we have ||N(x)HPCH <l

Y vi(x(n))]

%) () (t —a)' =Y [xa| | o0<u<t (t—a)7 — )% s (s).x(As))| ds
W= < Fo T AR ORI
(—ay ' ¥ |- Tp )
|xal 0<z<t (t—a)i7 t — )% p(s)|ds
< fly - Ry L9 Il
Xa m(t —a)?! * —a)l” o+y—
< p M e, + =™ B ) ol
< MH I +L(b_a)ag( o) |l
ST T T e e,

IOl =1

That is N is bounded.
Claim 3:The operator N maps bounded sets into equicontinuous set of PC|_y[J,R]. Lett|,t; € J,t{ > tp, B, be a bounded set of PC|_y[J,R]
as in Claim 2, and x € B,. Then,

Y wx(w) it

(1= T (1) - (0 =) Y Nw))| < |+ R [0 =9)% " fsx(5) x(hs))ds
L owe)

- e i ZF(ZC) /a(tzfs)aflf(s,x(s),x(zs))ds.

As t] — tp, the right hand side of the above inequality tends to zero. As a consequence of Claim 1 - Claim 3 together with Arzeld-Ascoli
theorem, we can conclude that N : PCy_y[J,R] — PCi_y[J,R] is continuous and completely continuous.
It is continuous and bounded from Claim 1 - Claim 3. Now, it remains to show that the set

o={x€PCi_y[J,R]:x=1N(x),0<T<1}

is bounded set.
Let x € @, x = TN(x) for some 0 < 7 < 1. Thus for each ¢ € J. We have

Y wlx(w)

o<y <t

I(y)

1

="+ g [ =9 flox(9) )

x(t)=1 F(“y)(zfa)y—w

This shows that the set @ is bounded. As a consequence of Theorem 2.18, we deduce that N has a fixed point which is a solution of problem
(1.1). O

Theorem 3.3. (Uniqueness) Assume that [H1] and [H3] are satisfied. If
mel* - 20
p=|==0b—-a)""+-—"B(y,a)(b—a “><l, (3.3)
(56" 7+ Frggpralo—a
then, the Eq. (1.1) has a unique solution.

Proof. Consider the operator N : PCy_y[J,R] — PC_y[J,R]. The equivalent integral equation (3.1) which can be written in the operator
form

Y wi(x(w))

0<tr<t

I(y)

1

(—a) ' —— / " )% £(s,x(s), x(As) )ds. (3.4)

Nx(t) = ina(t—a)H + a5 s
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By Lemma 3.2, it is clear that the fixed points of N are solutions of Eq. (1.1).
Let x,y € PCi_y[J,R] and t € J, then we have

_ | (t—a)l=7 rt _
_N\=r _ . _ \t—da) - o1 .
(1= )Y (Nx(r) ~ Ny (1)) < 77, I, o)) — w) -+ 5 [ =92 115,209 x(2) = fs.5(6) 3 A9 ds
_,ml* 20(t —a)'7 _
< -0 RS Il + 2 B - )™ =l
me iy 2t ) -

< (Fis =o' T e Bmae-a ) v,

= plr—llpe,,-
This yields that N has a unique fixed point which is solution of Eq. (1.1). O

4. U-H stability analysis

In this section, we obtain stability results for the proposed problem.

Theorem 4.1. The assumptions [H1], [H3], [H5] and (3.3) hold. Then, Eq.(1.1) is generalized U-H-R stable.

Proof. Let z be solution of inequality (2.5) and by Theorem 3.3 there x is unique solution of the problem

D%Px(r) = f(t,x(1),x(A1)),
All_yx(l‘)‘t:tk = l[/k(X(tk_)),
1" x(a) = 1'"z(a) = x,.

Then, we have

Y wlx(w)

Xa —1 0<tk<l‘
xt)==—~(t—a)" +
I(y) I(y)
By differentiating inequality (2.5), for each € (fy,#+1], we have

Y wiz()

Z(t) X ([ —a)7*1 _ 0<tk<lr(y)

1

(¢ fa)%1 + m /al(t fs)aflf(s,x(s),x(ls))ds

(t—a)’ 1= ﬁ [t — )% £(s,2(s),2(As))ds

Y

0<n <t

< |9 () g [ ) p(0)ds

<m@(t)+Ap@(t)

Hence for each 7 € (., #;11], it follows

Y, wi(x(n)) -
l2(t) —x(1)] < z(t)—r’z“y)a—av-‘—°<’k<’rm - -5 / (t =) fs,x(s),x(As))ds
Y wilz(n) -
< ) - r?w (t—a)?" — W'r(iy)v ~" - / (t—5)% " £(s,2(s),2(As))ds
L vlel0) — v a(e0) oo
<t —a -l — )%V £ (s, x(s), x(As)) — £(s,x(s),x(As s
- e (=)™ gy 9 (5.5(5)5(A8) = F s, (6) xR d
me* _ 20t a—
< A)@(n) + s (1= @)zl ()| + s / (t =) 2(t) — x(1)|ds

By Lemma 2.17, there exists a constant K > 0 independent of Ay ¢(¢) such that

[2(1) =x(1)| < K(m+Ag)@(1) := Cy o 9(1).

Thus, Eq.(1.1) is generalized U-H-R stable. O
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of best proximity point theorems for these contractions in uniformly Banach spaces.

1. Introduction

Let A and B be nonempty subsets of a Banach space E. A map T on AUB into AUB is called a cyclic mapping if T(A) C B and T(B) C A.
Let T : AUB — AUB be a cyclic map. For any nonempty subsets A and B of E, let dist (A, B) = inf{||x—y|| :x €A,y € B}. A point x € AUB
is called to be a best proximity point for 7T if ||x — Tx|| = dist(A, B).

In [2] A. Anthony Eldred and P. Veeramani introduced cyclic contraction mappings and then in a uniformly convex Banach space a theorem
was established which ensures the existence of a best proximity point of cyclic contractions. Afterward, in these spaces, C. Di Bari et al. in
[13] introduced the notion of cyclic Meir-Keeler contractions and proved the existence of a best proximity point for cyclic Meir-Keeler
contractions in the case of two sets. After this, this result was generalized for p sets by S. Karpagam, Sushama Agrawal [11]. In [4] a
new class of maps was introduced, called cyclic ¢-contraction which contains the cyclic contractions maps as a subclass and for this type
of contractive conditions, in uniformly convex Banach spaces, results of best proximity points were obtained. Many authors have been
investigated the existence, uniqueness and convergence of iterates to the best proximity point under weaker assumptions over T'; see [1]-[5],
[8], [10]-[14], [16]-[18], and [22]-[24] and their references. See also [25, 26].

The notion of weak cyclic Kannan contractions (see below definition) was introduced by M. A. Petric [14]; see also [21]-[23].

Definition 1.1. [/4] Let A and B be nonempty subsets of a metric space (X,d). If amap T : AUB — AU B satisfies

(i) T(A) C Band T(B) C A;
(ii) there exists a o € [0, %) such that

d(Tx,Ty) < ald(x,Tx)+d(y, Ty)]+ (1 —2c)dist(A,B) foranyx € Aandy € B,
then T is called a weak cyclic Kannan contraction on AUB.

The existence and convergence theorems of best proximity points in uniformly convex Banach spaces is proved as follows:

Theorem 1.2. []14] Let A and B be nonempty closed convex subsets of a uniformly convex Banach space. Let T : AUB — AUB be a weak
cyclic Kannan contraction map. Then

(i) T has a unique best proximity point 7 in A.

(ii) The sequence {TZ”x} converges to z for any starting point x € A.
(iii) 7 is the unique fixed point of T2.
(iv) Tz is a best proximity point of T in B.

Email addresses: h_lakzian@pnu.ac.ir (H. Lakzian) ijlin@nknu.edu.tw (I-J Lin)
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2. Preliminaries
Definition 2.1. [6, 7, 20] A function @ : [0,00) — [0,1) is said to be a .# T - function if it satisfies Mizoguchi-Takahashi’s condition (i.e.
limsup_,; o @(s) < 1forallt € [0,0)).

Obviously, if @ : [0,00) — [0,1) is a nondecreasing or nonincreasing function, then @ is a .# .7 -function. So, in particular, if ¢ : [0,00) —
[0,1) is defined by ¢@(t) = ¢, where ¢ € [0, 1), then ¢ is a .# .7 -function. It is known that ¢ : [0,00) — [0,1) is a .# .7 -function if and only
if for eacht € [0,0), there exist r; € [0,1) and & > 0 such that ¢(s) < r; for all s € [t,7 + &). For more details, one can see Remark 2.5 in
[71.

Note that if ¢ is a ./ .7 -function then clearly y := % is a ./ 7 -function.

The notion of .# 7 -cyclic contraction with respect to a .# 7 -function ¢ (see below definition) is introduced by W.-S. Du et al [8] that
contain cyclic contractions as a subclass. Some new existence and convergence theorems of iterates of best proximity points for .# .7 -cyclic
contractions has been proved.

Lemma 2.2. [2] Let A be a nonempty closed and convex subset and B be a nonempty closed subset of a uniformly convex Banach space. Let
{xn} and {z,} be sequences in A and {y,} be a sequence in B satisfying:

(@) |lzn — yal| — dist(A,B).

(ii) For every € > 0 there exists Ny such that for all m > n > Ny, ||xm —yul| < dist(A,B) + €.

Then, for every € > O there exists Ny such that for allm >n > Ny, ||xm —za|| <e.

Lemma 2.3. [2] Let A be a nonempty closed and convex subset and B be a nonempty closed subset of a uniformly convex Banach space. Let
{xn} and {z,,} be sequences in A and {y,} be a sequence in B satisfying:

@) ||xn — ynl| — dist(A,B).

(@) ||zn — yn|| — dist(A,B).

Then ||x, — zy|| — 0.

In this paper, we first define weak .# .7 -cyclic Kannan contractions with respect to a .# .7 -function ¢ and then we generalized Theorem P
for these contractions in uniformly convex Banach spaces.

3. Main results

Definition 3.1. Let A and B be nonempty subsets of a metric space (X,d). If amap T : AUB — AU B satisfies

(MTK1) T(A) C B and T(B) C A;
(MTK2) there exists a M T -function @ : [0,00) — [0, 1) such that

d(Tx,Ty) < %(P(d(x,y))[d(x Tx)+d(y,Ty)|+ (1 — @(d(x,y)))dist(A,B) foranyx € Aandy € B,

then T is called a weak # T -cyclic Kannan contraction with respect to ¢ on AUB.

Remark 3.2. [t is obvious that (MTK2) implies that for any x € A and y € B, T satisfies d(Tx,Ty) —dist(A,B) < %(p(d(x,y)) [d(x,Tx)+
d(y,Ty) —2dist(A,B)] <0 and so d(Tx,Ty) < d(x,y), forany x € Aand y € B.

In the case that dist(A, B) = 0, we can obtain the following theorem that generalize Kannan theorem [19] and Theorem 2 in [14].

Theorem 3.3. Let A and B be nonempty closed subsets of a complete metric space (X,d) such that ANB#0and T : AUB — AUB be a
weak M T -cyclic Kannan contraction with respect to @ such that

d(Tx,Ty) < %go(d(x,y))[d(x, Tx)+d(y,Ty)] foranyx€Aandy€B. 3.1)
Then T has a unique fixed point z in AN B.
Proof. Suppose that x is an arbitrary point in A. Then by (3.1), we have
d(T"x, T""'x) < %(p(d(T”_lx7 ")) [d(T" 'x, T"x) +d(T"x, T x)],
SO,
d(T"x, T" %) < w(d(T" %, T"x))d(T" 'x, T"x), (3.2)

where y := %; by Definition 2.1 y is a .# 7 -function, so y(¢) < 1 for any ¢ > 0; therefore we have,

d(T"x, T" x) < d(T" 'x,T"x),

for any n € N. Thus the sequence {d(T"x,T"'x)} is decreasing in [0,c0). Then

1o := lim d(T"x, 7" 'x) = inf d(T"x, T"*'x) > 0. (3.3)
n—yoo n—yoo

Since y is a .# 7 -function, there exist r;, € [0,1) and &, > 0 such that y(s) < ry, for all s € [tg, 79+ &, ). By (3.3), there exists £ € N, such
that



Fundamental Journal of Mathematics and Applications 45

to < d(T"x, T”Hx) <to+&,
for all n € N with n > £. Hence y/(d(T"x,T"*'x)) < ry, for all n > ¢. Let
A i= max{y(d(T"'x,T*x)), w(d(T*x,T3x)), -, w(d(T'"'x,T'x)),r, }.
Then
0 < y(d(T"x,T""'x)) <A <1 for all n€N. (3.4)
Now, by (3.2) and (3.4), we have d(T"x, T"*'x) < Ad(T" 'x,T"x) and by induction, we conclude that d(T"x, T""'x) < A"d(x,Tx), for

any n € N.
Now, if m > n,

d(T"x,T"x) < d(T"x,T" 'x)+-- +d(T" 'x,T"x)
< AMd(x,Tx) 4+ A" d(x, Tx)
ln
<
< 17 d(x,Tx),

Since A € (0,1), lim,_00 A" = 0. Thus, {7"x} is a Cauchy sequence. Since A is closed, there exists z € A such that
lim d(T"x,z) = 0. (3.5)
n—oo

Now, we show that Tz = z.
By (3.2), we have d(Tz, T""'x) < w(d(z,T"x))d(z,T"x), and so

lim d(Tz, 7" 'x) = 0. (3.6)

n—roo
Hence, by (3.5), (3.6) and Lemma 2.3, d(T'z,z) = 0, or Tz = z. We prove z is unique. Let v be another point such that 7v = v. Then by
(3.1),
1
d(v,2) =d(Tv,Tz) < E(p(af(v,z))[d(Tv7 v)+d(z,Tz)] = 0.

So,v=2z O

For the main results of this paper we need the following lemma.

Lemma 3.4. Let A be a nonempty closed and convex subset and B be a nonempty closed subset of uniformly convex Banach space X and
T : AUB — AUB cyclic map with respect to M T -function @ satisfying

17x =T < @(|lx — Tae| ) |x — Tl |+ (1 — (| x — Txl[)dist (4, B) (3.7

forallx e AUB. Then

(§) limy,_yo0 || T"x — T"+1x|| = dist (A, B) for all x € AUB.

(if) limy,_ye0 || T%"x — T?"*2x|| = 0 for all x € AUB.

(iii) z is a best proximity point if and only if z is a fixed point of T2,

Proof. First we prove (i). This proof follows similar patterns as Theorem 2.1 in [8]. We include the proof for completeness reasons.
Let x € AUB be given. Clearly, dist(A,B) < ||T"x — T"+1x|| for all n € N. If there exists j € N such that T/x = T/+!x € ANB, then
limy,—y0 ||T"x — T"+1x|| = 0 and dist(A, B) = 0; therefore (i). So it suffices to consider the case x,,; | # x, for all n € N. By Remark 3.2, it
is easy to see that the sequence {||T"x — T"*!x||} is nonincreasing in (0, o) and so it is convergent. Set

Ti=lim [|T"x — T" x| (3.8)

n—oo

Since @ is a . 7 -function, there exist r; € [0,1) and & > 0 such that @(s) < r;for all s € [f,7+&;). By (3.8), there exists £ € N, such that
T< || T x—T" x| < T+ &
for all n € N with n > ¢. Hence ¢(||T"x— T""x||) < r;foralln > £. Let
A= max{@(||T"x = Tx)), (|| 7% = Tx]), -, (|7 e = T}, ).

Then 0 < @(||T"x—T"Hx||) <A < 1forall n € N. If x € A, then, by (MTK1), we have T?"~!x € A and T?"x € B for all n € N. Notice
first that (M7 K2) implies that

17— T2 < @(||x = Te||)|[x — Tx|| + (1 = @(||x — Txl|))dist (A, B) < A||x— Tx|| +dist (A, B)
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and
1T =T < @(|T%x—Tx||)[|T%x = T x|| + (1 — @(||T*x — T°x||))dist (A, B)
< @(||T%x—Tx||) [Allx — Tx|| + dist (A, B)] + (1 — @(||T*x — T°x||))dist (A, B)
= (p(HT2x— T3x||)7LHx— Tx|| +dist(A,B)
< A%||x—Tx|| +dist(A,B).

Hence, by induction, one can obtain
dist(A,B) < ||T"'x — T"2x|| < A"||x — Tx|| + dist (A, B) foralln € N (3.9)

Since A € (0,1), lim, .. A" = 0. Using (3.8) and (3.9), we obtain lim,,_, || T"x — T"+'x|| = dist(A, B). So (i) is proved.
To see (ii), let x € AUB. By using (i), we have limy, e ||T%"x — 72"~ Lx|| = dist(A, B) and lim,_. || T?"~2x — T~ x|| = dist(A, B). Lemma
2.3 concludes that

lim ||7%"x — T?"2x|| = 0,
n—oo

for any x € AU B. In the same way, from lim, . ||[T?"x — T?"*1x|| = dist(A, B), lim, . || T?"2x — T?"1x|| = dist(A, B) and Lemma 2.3
we can obtain

lim ||T%"x — T?"+2x|| = 0,
n—oo

for any x € AUB.
Now we prove (iii). Let z be a fixed point of T2 but it is not a best proximity point of T, i.e. dist(A,B) < ||z — Tz||. Then by (3.1) we have

le=Tzll = |IT%2—Tzl| < (|lz—Tz|)llz— Tzl + (1 — (|2 — T=||) dist (A, B)
< (llz=TzDllz =Tzl + (1 = @(llz = Tzl[)||lz = Tzl = |lz— T=l|,

a contradiction.
Now, if z is a best proximity point of T i.e. ||z — Tz|| = dist(A, B) then from (3.1) we have ||T%z — Tz|| = dist(A,B). So by Lemma 2.3,
T2z = z which shows that (i) is true. O

The following lemma can be obtained immediately from Lemma 3.4.

Lemma 3.5. Let A be a nonempty closed and convex subset and B be a nonempty closed subset of uniformly convex Banach space X and
T : AUB — AUB cyclic map. Suppose that there exists a nondecreasing (or nonincreasing) function T : [0,00) — [0, 1) such that

[|Tx—T2x|| < 7(|]x — Tx||)||x — Tx||+ (1 — ©(||x — Tx||))dist (A, B) foranyx € A andy € B.

Then (i) limy, e ||T"x — T"+1x|| = dist (A, B) for all x € AUB.
(i) limyy_so0 || T?"x — T?"*2x|| = 0 for all x € AUB.

iii) z is a best proximity point if and only if 7 is a fixed point of T2.
(iii) p Y P y p

The following result is indeed proved in [8], but we give the proof for the sake of completeness.

Theorem 3.6. /8] Let A and B be nonempty subsets of a metric space X and T : AUB — AUB be a cyclic map. Let x| € A be given. Define
an iterative sequence {x, }pen by X1 = Txy for n € N. Suppose that

(i) d(Tx,Ty) <d(x,y) foranyx €A andy € B;
(ii) {x2n—1} has a convergent subsequence in A;
(iii) limy—yeod(Xp,xp11) = dist(A,B).

Then there exists v € A such that d(v,Tv) = dist(A,B).

Proof. Since T is a cyclic map and x| € A, x,—1 € A and xp, € B for all n € N. By (ii), {x2,—1 } has a convergent subsequence {x2,, 1 }
and xp,, 1 — v as k — oo for some v € A. Since

dist(A,B) < d(v,xpp,) < d(v,x2p,—1) +d(x2p,—1,%2p,) forallk € N,
it follows from limy,seo d (v, X2, —1) = 0 and the condition (iii) that lim,_sco d (v, X2y, ) = dist(A,B). By (i), we have
dist(A,B) <d(Tv,xop+1) < d(v,x2,) forall k €N,
which implies d(v, Tv) = dist(A,B). O
In the following theorem we prove a new existence theorem for weak .# .7 -cyclic Kannan contractions.

Theorem 3.7. Let (X,d) be a metric space, let A and B be nonempty subsets of X. Let T : AUB — AUB be a weak .# 7 -cyclic Kannan
contraction with respect to a M T -function . Let x € A such that the sequence {T*'x} has a convergent subsequence in A. Then there
exists a unique point z € A such that d(z,Tz) = dist(A,B).
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Proof. The existence of best proximity point z by using of Lemma 3.4 and Theorem 3.3 is concluded. We prove z is unique. Let v be another
point such that d(v, Tv) = dist(A, B). Then by Lemma 3.4 we have v = T?v. If d(v,Tz) > dist(A, B), then by (MTK?2) we have

d(vTz) = d(T*,Tz)
< SO T2)A(Tr,v) +d( T2)] + (1 9d(Tv,T2)))dist (A, B
< @(d(Tv,Tz))dist(A,B)+ (1 — @(d(Tv,Tz)))dist(A,B) = dist(A,B).
So, d(v,Tz) = dist(A,B). On the other hand d(z,Tz) = dist(A, B). Hence by Lemma 2.3 we have d(z,v) =0 or z =v. O
For weak .# 7 -cyclic Kannan contractions, we establish the following convergence theorem, which is our main result in this paper.

Theorem 3.8. Let A and B be nonempty closed convex subsets of a uniformly convex Banach space. Let T : AUB — AUB be a weak
M T -cyclic Kannan contraction with respect to a M 7 -function @. Then

(i) T has a unique best proximity point 7 in A.

(ii) The sequence {T2”x} converges to z for any starting point x € A.
(iii) z is the unique fixed point of T?.
(iv) Tz is a best proximity point of T in B.

Proof. We divide the proof of theorem into two cases:

case 1: dist(A,B) = 0.

For proof of this case see Theorem 3.6.

case 2: dist(A,B) # 0. Let x be an arbitrary point in A. Since T is a weak .# .7 -cyclic Kannan contraction, by part (i) of Lemma 3.4,
limy, oo ||T2"x — T2+ x|| = dist (A, B).

Now, we claim that for every € > 0 there exists Ny € N such that for m > n > Ny,

|T2"x — T2 x|| < dist(A,B) +&.
Hence by Lemma 2.3 and for given € > 0 there exists N; € N such that for n > Ny,
||[T2"x —T?x|| < e;

it follows that {Tz”x} is a Cauchy sequence and so there exists z € A such that 72"x — z as n — oo. Using Theorem 3.6, z is a unique best
proximity point of 7" in A.

Lemma 3.4-(iii) concludes that z is a unique fixed point of T 2, since z is unique.

Now, we prove the claim. Suppose not. Then there exists € > 0 such that for any k € N there exists my > ny > k such that

||T2m1<x_ T2”k+1x‘| >dist(A,B) + €.

We can assume that nz; is minimal index such that || T2"x — T2 1x|| > dist(A, B) +& but || T"x— T2 x|| < dist(A,B)+&,h € {2nyq, -+, 2my —
1}. We have

dist(A,B) +& < ||T?Mkx — TP x|| < ||[T2™Mx — T2 2x| | 4+ || T2 2 — T2 1y

Using part of (ii) in Lemma 3.4 concludes that ||T?"™x — T2"~2x|| — 0 as k — oo this implies limy || 72"x — T2+ x|| = dist(A,B) + €.
Now,

HTkax _ T2nk+1x” < HTkax _ T2mk+2xH + \|T2m"+2x _ T2nk+3x” + HT2nk+3X7 T2nk+le _ ‘|T2mk+ZX7 T2nk+3x”.
So, dist(A,B) + € < limsup,,_,., ||T¥™2x — T2 3||. But,

|\T2m"+2x—T2"k+3x|| < %(P(HTZmﬁ-lx_T2nk+2x||)[”T2mk+1x_T2mk+2xH

IR = 2] (1 - (|| T2 e — 72042 |)) st (A, B).

Hence, by ”limsup” from the above inequality, as (n — o), we conclude that dist(A,B) + € < dist(A,B) and so € < 0, a contradiction.
Now we prove (iv). z is best proximity point of 7 and so ||z —T'z|| = dist(A,B). Since T is a weak .# .7 -cyclic Kannan contraction, we have

1 .
ITz—T2|| < 5@z =Tzl)lllz— Tzl + 17222+ (1 - 9(||z— T<l|) dist (4, B),

and so
, ¢(llz—Tz)) 2-20(lz=T2ll) . ,
dist(A,B) < ||Tz—T%|| < =~ "2V ||z — Tg|| + =~ dist(A,B) = dist(A, B).
2= 9(|lz—=Tl]) 2= 9(|lz—=Tl])
Therefore ||Tz — T?z|| = dist (A, B), i.e. Tz is best proximity point of T in B. This complete the proof. O

The following theorem can be obtain immediately from Lemma 3.5 and Theorem 3.7.
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Theorem 3.9. Let A and B be nonempty closed convex subsets of a uniformly convex Banach space. Let T : AUB — AUB be a a cyclic

map.

Then

Suppose that there exists a nondecreasing (or nonincreasing) function 7 : [0,00) — [0, 1) such that

1 .
7= 731] < 52—yl b=l + (1 = (| be—yI]))dist (4,B) for any x & A and y € B.

(i) T has a unique best proximity point 7 in A.

(ii) The sequence {T2”x} converges to z for any starting point x € A.
(iii) z is the unique fixed point of T?.
(iv) Tzis a best proximity point of T in B.

Remark 3.10. In Theorems 3.6 and 3.8 if we define ¢(t) = ¢, where ¢ € [0,1) and for all t € [0,0), then ¢ is a M T -function and so we
can obtain Theorems P [12] as the special cases.
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helix or slant helix in Minkowski 3-space.

1. Introduction

There are several studies in literature examining methodology to use spherical curves to construct some specialized curves. For example,
Izuyama and Takeuchi [7], defined a way to construct Bertrand curves from the spherical curve whose spherical evolute coincides with the
spherical Darboux image of the Bertrand curve. In addition to this paper, Encheva and Georgiev [4] showed a way to construct all Frenet
curves (k > 0) by the following formula

o(s) = b/efk(s)ds}/(s)ds +a

where b is a constant number, a is a constant vector, ¥ is a unit speed curve on $2 with the Sabban frame and k: I — R is a function of
class C'. Moreover, they showed that the spherical curve ¥ is a circle if and only if the corresponding Frenet curves are cylindrical helices.
Previously, we have found some characterizations to construct spherical helices and slant helices in Euclidean space by using these methods
[2].

This paper is organized in the following way. In section 2 basic concepts of Minkowski 3-space R? are given. In section 3, spherical helices
in R? are discussed by indicating some examples. Similarly, in section 4, slant helices in R? are examined.

2. Basic Concepts

Let us consider the Minkowski 3-space R? with the Lorentzian inner product

(x,y) =x1y1 +X%2y2 — X3y3

where x = (x1,X2,x3) and y = (y1,¥2,y3) € R;>. The pseudo-norm of a vector x is given by ||x|| = 1/](x,)].
In the space R3, the Lorentzian cross-product is defined as follows

ey ey —e3
XAy=|x1 X2 X3 |=(X2y3—X3y2, X3y1 —X1¥3, X2y| —X1)2).
Yy Y2 )3
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It’s clearly seen that the cross-product has the following properties [3],

(i) xAy=—(Ax)

(i) (xAy,z)y =det(x,y,2)

(@ii) xA(yAzZ)=(xy)z—{x,2)y

() ARXAY) = ((63))7 = (6.2) (1)
() (xApx)=0 , (xAyy) =0

where x,y,z € R
A vector x € Ry is called spacelike if {x,x) > 0 or x = 0, timelike if (x,x) < 0, lightlike if (x,x) = 0 and x # 0 [8].
In [8], the hyperbolic plane (resp. pseudosphere) center g € R? and of radius r > 0 are defined by,

Hz(r;q) = {X: (x17x27x3) GR% : <xiq>xiq> = 7r25x3 —q3 > 0}7

S%(r;q) = {(xl,x27x3) S R% H{x—gqx—q) = rz}.

When r = 1 and p is the origin, the hyperbolic plane is denoted by H? and the pseudosphere is denoted by S%. ,

In this paper, when a helix lies on H?(r;q) or S3(r;q), we call it spherical curve.

Given a regular curve o/ (t) : I CR — R?. We say that « is spacelike (resp. timelike, lightlike) at ¢ if o (¢) is a spacelike (resp. timelike,
lightlike) vector. The curve o is called spacelike (resp. timelike, lightlike) if it is for any ¢ € I [8].

A non-lightlike curve o : I € R — E;? is said to be parametrized by the pseudo arclength parameter s, if | (o’ (s), o’ (s)) | = 1. In this case,
we call o is a unit speed curve.

For a unit speed non-lightlike curve o with a spacelike or timelike normal vector N (s), the Frenet formulae are given in [8]. It’s easy to
calculate the formulae for arbitrary speed non-lightlike curves as follows.

If o is a timelike curve,

T 0 «xv O0]][T
N|l=|xkv 0 1v||N 2.1)
B 0 —-tv O||B

If « is a spacelike curve with a spacelike normal vector N (¢),

T 0 kv 0] [T
N|=|-xv 0 7zv||N 2.2)
B 0 v 0] |B

If « is a spacelike curve with a timelike normal vector N (¢),

T’ 0 xv O] [T
N|=|xv 0 =zv||N (2.3)
B 0 v O] |B
where
B e o det (o, ", ")

— ! oyl
ET N T A oo

In the formulae above, we denote unit tangent vector with 7 (¢), unit binormal vector with B (¢), unit normal vector with N (7).

A regular timelike or spacelike curve « is a helix, if T/ is a constant function.

For a unit speed curve ¢ in R3, slant helix characterization is given in [1]. Also, some characterizations of Lorentzian unit speed curves
which lies on H? or S% were investigated in [9, 10, 11, 12]. With the help of these papers, we easily have the Lemmas for arbitrary speed
curves below.

Lemma 2.1. Let o be a timelike curve in R?. Then, o is a slant helix if and only if either one of the next two functions
K'2 2

W(%) or WG) 2.5)

2

is constant everywhere T2 — k2 does not vanish.

Lemma 2.2. Let o be a spacelike curve in R? with a spacelike normal vector. Then, & is a slant helix if and only if either one of the next
two functions

2 / 2 /
WG) 7 m(%) 2.6)

is constant everywhere T2 — x* does not vanish.
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Lemma 2.3. Let o be a spacelike curve in R? with a timelike normal vector. Then, o is a slant helix if and only if the function

)3/2 (%), .7

v (7% + K2

K2

is constant.

Lemma 2.4. Let a be a spacelike curve in R? with a spacelike normal vector. Image of @ lies on the pseudosphere (resp. hyperbolic plane)
of radius r and center q if and only if

2

1 11\,
2= (W (;) > = tr°(resp.) (2.8)

Lemma 2.5. Let o be a timelike curve in R?. Image of « lies on the pseudosphere of radius r and center q if and only if

where r >0 € Rk # 0,7 # 0.

2

1 1 /1Y
e () =7 e

Lemma 2.6. Let o be a spacelike curve in R? with a timelike normal vector. Image of @ lies on the hyperbolic plane of radius r and center
q if and only if

where r >0 € Rk # 0,7 # 0.

2

-1 1 /1Y
(i) = 210

Let y be a non-lightlike unit speed spherical curve with the arc-length parameter s and denote y/ =t where )/ =dvy/ds. If we set a vector
p = YAt, by definition we have an orthonormal frame {7,, p}. This frame is called the pseudo-Sabban frame of ¥ [5, 6]. Thus, we have the
following Lemma .

wherer >0 € Rk #0,7#0.

Lemma 2.7. Let y(s) be a unit speed spherical curve in R3, then
(i) If v is a timelike curve on S% then,

!

Y =t
t :,kgp—o—y (2.11)
p = kgt
(ii) If v is a spacelike curve on S2, then
Y=t
(= —kep—y (2.12)
p/ = —kgt
(iii) If v is a spacelike curve on H?, then
Y=t
t /:kgp+7/ (2.13)
p = —kgt
where kg = det <y,t, t’) the geodesic curvature of curve 7.
. . 2 (e 2(
3. Spherical helices on S7(r;p) and H*(r; p)
Let us take the curve
o(s)=b / el )5y (5)ds +a (3.1)

at [4]. If we make the neccessary calculations, we have

o (s) = bel K6)dsy (s),
o (s) = bel K04 (k(s) y(5) +7 (5)) (32)

/

o' (s) = bel KI5 (12 (5) 4K () 7(5) + 2k ()Y (5) +7 ().

If we calculate «, 7, and v of the curve ¢ by using the equations at (2.4) and (3.2), we find

o) k(s
ke(s) (3.3)
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It’s easy to see

(o (5), 0/ (s)) = B2 KI (y(5)  y(s))
T(s)=7(s), B34
T (s) =t(s).

So, we can say if Y is a unit speed spacelike curve which lies on S%, then ¢ is a spacelike curve with a spacelike normal vector N.
If ¥ is a unit speed spacelike curve which lies on H2, then o is a timelike curve with a spacelike normal vector N.

If 7 is a unit speed timelike curve which lies on S% then « is a spacelike curve with a timelike normal vector N.

Now, we want to show, under which circumstances the curve @ at equation (3.1) is a spherical helix on S%(r; p).

Theorem 3.1. If the curve v is a unit speed spacelike curve with a constant geodesic curvature, which lies on S, the curve o defined
by (3.1) is a spherical helix which lies on the pseudosphere of the radius |bd| and of the center origin if and only if the function
k(s) = kgtanh [ (kg) (s—c)] where b,c,d €R.

Proof. From (3.2), (3.3), and (3.4), we know the curve
os)= b/efk(s)dsy(s)ds +a
is a spacelike curve with a spacelike normal vector N(s). So we need to use (2.8). Let’s take the derivate of (2.8) with respect to s. Then, we

have

!

()] 2o

(it 4o

K (5)+K2 (5) = kg?.

By putting (3.3) in this equation, we have

If we solve this differential equation, we have
k(s) = kgtanh [ (kg) (s —c)]
Conversely, if we take k (s) = kgtanh [ (kg) (s —c)] in (14), then

/k(s) ds = /kgtanh [(kg) (s—c)] ds.

Let u = kg (s — ¢) = kg5 — kgc then kyds = du, by using these equations

/k(s)ds: /tanhudu
=Incoshu+Ind
=In[dcosh (kg (s—c))]

we have
als)=b /efk(s)dsy(s)dera
—b /’eln [deosh (ks (=)l (5)ds +a
=b /dcosh (kg (s—c))y(s)ds+a
where ¢,d € R.

Now, we must show that curve o is spherical. If we use (2.8) to do it, we have
1 1))
2 __ I Y
" <K2 (vr(x) )) (s)
kds K
_ <b282jkda (1 _ k§>> (S)

= b?d? cosh? (kg (s —¢)) <1>

cosh? (kg (s—c))
=b*d*.

Therefore, it can be said that the curve « lies on S% which has a radius |bd|. O
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Now, we can give another theorem.

Theorem 3.2. [f the curve vy is a unit speed spacelike curve with a constant geodesic curvature, which lies on HZ, the curve o defined
by (3.1) is a spherical helix which lies on the pseudosphere of the radius |bd| and of the center origin if and only if the function
k(s) = kgtan [(kg) (s —c)] where b,c,d € R.

Proof. By using (2.9) instead of (2.8) in Theorem 3.1, the proof is similar. O

Theorem 3.3. If the curve v is a unit speed timelike curve with a constant geodesic curvature, which lies on $2, the curve a defined
by (3.1) is a spherical helix which lies on the hyperbolic plane of the radius |bd| and of the center origin if and only if the function
k(s) = kgtanh [ (kg) (s—c)| where b,c,d € R.

Proof. By using (2.10) instead of (2.8) in Theorem 3.1, the proof is similar. O

Example 3.4. Let’s take y(s) = {ﬁ cos (s / ﬁ) R V/2sin <s / ﬁ) ,1 } we know that 7y is a spacelike curve on S% with the geodesic curvature
ﬁ. Then due to Theorem 3.1,

k(s) = kgtanh [ (kg) (s —c)]

and
o(s)= b/dcosh (kg (s—c))y(s)ds+a
where b,c,d € R. If we take b=2,c = 0,d = 1, then, we have
o (s) =2cosh (s/\/i) sin (s/ﬂ) +2cos (s/ﬂ) sinh (s/ﬁ)
o (s) = —2cos (s/ﬂ) cosh (v/ﬁ) —2sin <s/ﬂ) sinh (s/x/i)

o3 (s) = 2+/2sinh (s/ﬁ)

where o (s) = (o (s), 00 (s), 03 (s)) and a = (0,0,0)

Example 3.5. Let’s take y(s) = {cos (s),sin(s), ﬁ} we know that 7 is a spacelike curve on H? with the geodesic curvature \/2. Then,
due to Theorem 3.2,

k(s) = kgtan [(kg) (s —c)]
and
os)= b/dcos (kg (s—c))v(s)ds+a
where b,c,d € R. If we take b=2,c = 0,d = 1, then, we have
oy (s) = —2cos (\/is) sin (s) +2v/2 cos (s) sin <\/§s)
o (s) =2cos(s)cos (ﬂs) +24/2sin (s)sin (ﬂs)
0 (s) = 2sin (ﬂs)
where o (s) = (o (s), 00 (s),03(s)) and a = (0,0,0)

Example 3.6. Let’s take y(s) = {L cosh (\/gs), %, —_sinh (\/gs) } we know that y is a timelike curve on S% with the geodesic curvature

3 3 3
/2. Then, due to Theorem 3.3,

k(s) = kgtanh [ (kg) (s —c)]

and

als) :b/dcosh (ke (s — ) ¥ (s)ds +a
where b,c,d € R. If we take b=2,c = 0,d = 1; then, we have

ay (s) = —2\/gcosh (v/3s) sinh (ﬁs) +2cosh (ﬂs) sinh (v/3s)

o (s) = Lnt/(gﬁ‘)

o3 (s) = 2cosh (\/is) cosh (v/3s) — 2\/gsinh <\/§s) sinh (1/3s)

where o (s) = (o (s), 0 (s), a3 (s)) and a = (0,0,0)
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Figure 3.1: Spherical Helices (Resp. Example 1,2, and 3)

4. Constructing slant helices from unit speed spherical curves

In this section, we want to give some characterizations about slant helices.

Theorem 4.1. Ler y(s) be a unit speed spacelike curve on S%; b,m,n be constant numbers; and a be a constant vector. The geodesic
curvature of ¥ (s) satisfies

2
e (5) =
1+ (ms+n)
if and only if

o(s) = b/efk(s)dsy(s)ds +a
is a spacelike slant helix with a spacelike normal vector.
Proof. Let, for y

2
ng (S) _ (ms+n)

=—— 7 4.1
1+ (ms+n)? @D

From (3.2), (3.3), and (3.4), we know « is a spacelike curve with a spacelike normal vector N. So; from (2.6), the geodesic curvature of the
spherical image of the principal normal indicatrix of ¢ is as follows

2

K T\’
ols) = (v (2 _1,2)3/2 (E) ) (s)

So, we have
G(s) = 5 v/ “4.2)

Now, let’s take u (s) = ms + n, then we have (4.1)

i (s)

= I—I—Tz(s) (4.3)

kg2 (s)
If we take the derivates of the both sides of (4.3) with respect to s, we have

!

Yy (s) kg (5) = 2uul (1 +u2) — (2qu) u?

(14—142)2

(s)

’ MM, M2
() ()
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where € = £1. Putting (4.3) and (4.4) in (4.3), we have
kg (s)
o(s) = g e

(1 _kgz (S))
1+ u2uu 3/2
= <8|u| (1 +M2)2 <1 +u2> ) (S)

ms+n
=& ——m

|ms + n|
=E&m

which is constant.
Conversely, let ¢ (s) be a spacelike slant helix, then the geodesic curvature of the spherical image of the principal normal indicatrix of « is a
constant function. So, we can take

where m € R. Therefore, from (4.2)

_ kg (s)
(1 kg2 (s))3/ 2
If we solve this differential equation, we have
ke () =ms+n
1- kg2 ()
where n € R. Then,
2 (s) = (ms—i—n)2 .
¢ 1+ (ms—+n)?

O

Theorem 4.2. Let y(s) be a unit speed spacelike curve on H*; b,m,n be constant numbers; and a be a constant vector. The geodesic
curvature of ¥ (s) satisfies

ms +n)>
kgz ()= 1 J(r (m—l"_Jr)rl)2

if and only if
o(s)=b / eI K45y ($Vds +a
is a timelike slant helix with a spacelike normal vector.
Proof. By using (2.5) instead of (2.6) in Theorem 4.1, the proof is similar. O

Theorem 4.3. Let y(s) be a unit speed timelike curve on S%; b,m,n be constant numbers; and a be a constant vector. The geodesic curvature

of v(s) satisfies

ms+n)?
k()= 1 E (mJ;—l-)n)2

if and only if
o(s) = b/efk(s)dsy(s)ds +a
is a spacelike slant helix with a timelike normal vector.

Proof. By using (2.7) instead of (2.6) in Theorem 4.1, the proof is similar. O
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1. Introduction

There are at least two mathematically rigorous algebraic formulations for the notion of ‘quantum (noncommutative) metric space’ in the
literature. The famous one is due to Rieffel, and the other has been recently introduced by G. Kuperberg and N. Weaver. Following some
ideas from Connes [1, Chapter VI] in noncommutative Riemannian geometry [2], Rieffel has introduced the notions of ‘compact quantum
metric space’ and ‘quantum Hausdorff-Gromov distance’ [6, 7, 8]. In his theory, a compact quantum metric space q is identified with the
state space of a unital C*-algebra .« (or more generally, with the state space of an order unit space) together with a weak*-compatible metric
which must be induced by a ‘Lipschitz seminorm’ on .7 via Monge-Kantorovich’s formula. Thus, in the Rieffel theory, the role of quantum
metrics is played by Lipschitz seminorms. In Kuperberg-Weaver theory [4] the noncommutative space is distinguished by a von Neumann
algebra .# C L(¢) and the role of quantum metric is played by a specific one-parameter family {%;},>0 of weak closed operator systems
in L(#) such that ¥ = .#’. This construction also can be characterized by a specific “quantum distance function” between projections of
the von Neumann algebra . @L(£?).

The notion of ‘quantum metric’ recently has been considered by many authors. See [5, 9, 10, 11] and references therein. In this note, we
introduce two new models for ‘quantum metrics on noncommutative spaces’. Our formulations are natural translations of the concept of
‘(ordinary) metric’ into noncommutative geometric language. In Section 2, we give our first model for quantum metrics based on ‘atomic
representation’ of C*-algebras. We also consider some basic properties of this model. In Section 3, we show that there is no quantum metric
of the first model on ‘noncommutative two point space’. In Section 4, we consider a relation between our first model and the Rieffel’s model
of quantum metrics. In Section 5, we introduce our second model of quantum metrics.

2. The first new model of quantum metrics

For preliminaries on C* and von Neumann algebras we refer the reader to [3] or [12]. Let 2" be a compact metrizable space. A function p is
a compatible metric on 2" if and only if p € C(2°%) = C(2")&C(Z") and the following five conditions are satisfied for x,y,z € Z .

(1) p(x,y) >0.

@) p(x,x)=0.

(3) If p(x,y) =0, thenx =y.
@ p(x,y) = p»x).

(5) p(x,y) <p(x,2) +p(z,y)-

Let <7 be a unital C*-algebra. Suppose that an element p € &7 @./ deserves to be called a compatible metric on q.<7. Then, p must satisfy
the following analogues of (1),(4),(5).

(1) p e (dSA)*.
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@) F(p) =p, where § : @7 — o/ %o/ denotes the flip.
(5" MP)<pR1+1®p, where M : @ — o @9 %7 denotes the *-morphism that puts 1 in the mid position, i.e. M(a @ b) :=
a®1®b (a,be o).

There are many ways to state the noncommutative analogues of (2) and (3). But, it seems that the most effective and applicable way is
as follows. Let 7 : &7 — L(J¢) denote a representation for .7 by bounded operators on a Hilbert space .7°. We say that 7 is an atomic
representation if there is a family {7; : & — L(J%)} of pairwise inequivalent irreducible representations of .27 such that 7 = ®;. (Note that
our atomic representations are special cases of the atomic representations defined in [12].) Then, it follows from [3, Corollary 10.3.9] that the
enveloping von Neumann algebra 71(.7)" is equal to &;L(5%). Let 7 : & — L(.5#’) be a faithful atomic representation of /. We consider
o/ as a subalgebra of L(#) and write &” for (/)" The characteristic function of the diagonal (w.rt. ) of q</ x q.</ is denoted by Ps
and defined to be the supremum of the family of all projections of the form p® p in " @& = (o @a/ )" C L(H#’' @) such that p € o7"
is a minimal projection. (In the classical case that .7 = C(.2"), if we choose 7 to be the reduced atomic representation then £(C(2"))" is
isomorphic to £ (Z2") and Py is identified with the usual characteristic function of the diagonal of 2~ x 2.) The analogues of (2) and (3)
are as follows.

(2') pPs =Psp =0.
(3") Let 75 denote the the image of the projection Pg in S#®.5#. Then, 0 is not an eigenvalue of the operator p| A € L(j‘fgl).

Definition 2.1. Let <7 be a unital C*-algebra and let T : of — L(.3¢) be a faithful atomic representation. A (compatible) quantum metric
w.rt. T on q</ is an element p € o/ Q.o satisfying (1')-(5'). In this case, we call (</,p,Tt) a compact quantum metric space.

Let («7,p, ) be a compact quantum metric space. Comparing with the classical case, it is natural that we consider the value ||p|| as the
diameter of p. It is clear that if (2", p) is an ordinary compact metric space then (C(2"),p, ) is a compact quantum metric space where 7
is an arbitrary atomic representation of C(2"). (Indeed, it is easily checked that for any of such representation 7(C(.2"))” is isomorphic to
02(Z0) where 2 is a dense subspace of Z".)

Similar to the case of ordinary metric spaces, we have the following three theorems.

Theorem 2.2. Let p| and p; be quantum metrics on </ w.r.t. the same representation T of </. Then, for every positive real number r,
p1+ rp2 is a quantum metric on q.</ w.rt. .

Proof. Straightforward. O

Theorem 2.3. Let (<7, p1,71) and (3, P2, Ta) be compact quantum metric spaces and let r be a real number not less than 2~ max (|| p1 ||, ||o2])-
Then, (2] ® 2h,p, T B M) is a compact quantum metric space where p = py + P2 + o T lpsm-

Proof. The conditions (1’) and (4’) are trivial for p. (2') and (3’) follows from the fact that any minimal projection in (7; @ ) () ® @4)" =
7 (27)" @ my ()" is a minimal projection of 7y (e7])” or of my(e5)”. Let M, M, 9N, denote the corresponding morphisms as in (5)
respectively for &/ @ <, ,4%. With the notation 1;j := 1 At W have,

M(p1) <Mi(p1)+2rlipr,  M(p2) < Mo (p2) +2rlai.

It follows that,

2
>
|

M(p1) +M(p2) +rlip+rlip+rla +rlag

M(p1) +Ma(p2) +2rlia1 +2rlp1p +rlip+rlion + 1l +rlpng

P11 +11®p1+p2 @12+ 1@ p2+2rlip1 +2rlapp +rliz +rliza +rlag +rlao
PRI+ ®@1a+pr @11 +p2 @1y +rlipp +rling+ 1l +rlapn
Lepi+Lhepi+11®@p2+12@pa+rlinn+rlaz+rliar +rla

pR1+1®p.

+ IN IAN A

O

Theorem 2.4. Let (o/,p1,71) and (%, P2, M) be compact quantum metric spaces. Then, (2 &.95,p,T @ ) is a compact quantum
metric space where

P =(P1 @10 + Ly @P2) € (H 0O AHO) = (o G.0) (et Go.tp).

Proof. Straightforward. O

3. A non-example

In this section, we show that there is no quantum metric on the two-point noncommutative space qMj. Let o7 = M, be the algebra of
complex 2 x 2 matrices. Then, 7 = id is an atomic representation of &7 on % = C2. Let {e1, e} (resp. {f1,---, f4}) denote the Euclidean
basis of C2 (resp. CH. We identify C2®C? with C* via e; ® ¢] — fl.ea®ex — fi1, e1 Qex — fr, e2 @ep — f3. Then, My @ M, is
identified with My via,

M Mz Ao A

Mz Az Ao A
Aijrelij @ 1ge —
L Aijurtiy @ lie Mt A2 Ao Ao

vy
M1 A Aot Ao
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With these identifications, Py is the projection onto the linear subspace generated by f1, f1, f> + f3, and hence,

1 0 0 0
b0 12 12 0
571 0 1/2 1/2 0
0 0 0 1
Suppose that p € My satisfies (1')-(4"). Then, p must be of the form,
0 0 0 0
10 A -2 0
P=l o -2 2 o |’
0 O 0 o0

for some real number A > 0. The 8 x 8 matrix M = p® 1+ 1®p —M(p) is equal to,

0 O 0 0 0 0 0 O
o 0 -1 o0 1 0 0 O
0o -1 2 0o -1 0 0 0
0 O 0 0 0 -1 1 0
M=2 0 1 -1 0 0 0 0 0
0 O o -1 0 2 -1 0
0 0 0 1 o -1 0 O
0 O 0 0 0 0 0 O
For any vector X = (xi,---,x3) € R® we have,

A7HMX X)) = (x3 — x5 —x5)> 4+ (63 =23 —x3) + (x6 — x4 —x7)> + (X2 —xF —x3).

Thus M is not positive and hence p does not satisfy (5').
Although we just mentioned a negative result on the existence of quantum metrics but it seems that there must be a huge class of quantum
metrics on qM,, for n > 3.

Question 3.1. Does there exist a quantum metric on qM,, for some n > 3?

4. Some relation between our first model and Rieffel’s model of quantum metrics

In this section, we consider some relations between our first model of ‘compact quantum metric space’ and the model introduced by Rieffel
[7]. Let («7,p,7) be a compact quantum metric space. We are able to define a new seminorm on & which generalizes the Lipschitz
seminorm for continuous functions on an ordinary metric space. Let % denote the Hilbert space of 7 and let % be as in (3'). Let p!
denote the inverse of the operator p| - € L(t%”ﬁi). For any a € ./, the Lipschitz seminorm ||a||1;, are defined to be the (possibly infinite)

value ||[(a®1—1®a)p~!|, that is the operator norm of (a® 1 — 1 ®a)p~! as an operator from the image of p\%y into SR . For
a,b € o/ with ab = ba the Leibnitz rule is satisfied:

lablziy = lla@b@1—1@ab)p~"||

= |(@b®1—a®@b+acb—1xab)p”!|
(a2 )(bol-10b)+(@x1-10a)(1b)p™ |
@2 1)(be1—1b)p | +](1eb)(a®1—1ca)p™!|
lallllolzip + llallzip 2]

IN A

Also, it is clear that for any normal element a we have ||a||zi, = ||a*||1ip- The seminorm || - ||z, gives rise to a semimetric on the state space
S(&7) of &7 via Monge-Kantorovich formula:

d(‘PW) = sup |<¢_W7a>‘ (¢7W€S(d))

ar=a||al|rip=<1

We give an upper bound for d(¢, y) in the case that ¢ and y are some special pure states of <7: Let 7 be the direct sum of {x; : & —
L(s4)}. Suppose that i # j, and let v and w be two unit vectors respectively in ¢ and ;. Let ¢ and y be pure states on &/ defined
respectively by a — (m;(a)v,v) and a — (7;(a)w,w). Let a be a self-adjoint element of ./ with ||a||z;, < 1. Since v w € %‘3{ we have
la(v) @ w—v@a(w)]| < [lp(v&w)]. Thus,

(0 —w.a)f?

IN
o~~~
a
~
<
NN
2
~
<
=
=
+
—~
o
= =
=
=
o
~
=
=
=
I
[}
= XS
a
~
<
=
<
=
=
o
~
=
=
=

This shows that d(¢, y) < ||p(vew)].
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5. The second new model of quantum metrics

As we saw above, the most problematic part of the definition of a quantum metric is the translation of conditions (2) and (3). We now translate
these conditions in another way where there is no using of enveloping von Neumann algebras. Let .27 be a unital spatially continuous
multiplication C*-algebra, that means the multiplication of .7, m : a ® b +— ab, is continuous w.r.t. spatial tensor norm (e.g. .7 is abelian or
finite dimensional). For p € &/ &.«/ satisfying (1), consider the following conditions.

@") m(p)=0.
(3") For every positive element v € &7 @/ with m(v) = 1 and F(v) = v, the element p + V is invertible in &7 .57

In the case that &7 = C(Z"), it is easily checked that these conditions coincide with (2),(3).

Definition 5.1. Let o7 be a unital spatially continuous multiplication C*-algebra. An element p € o/ @</ which satisfies (1'),(2"),
(3"),(4'),(5') is called an algebraic (compatible) quantum metric on q.<. In this case, (<, p) is called an algebraic compact quantum metric
space.

Theorem 5.2. Let (o7),p1) and (o, p2) be algebraic compact quantum metric spaces. Then, (/) ® gb,p) is an algebraic compact
quantum metric space where p is as in Theorem 2.3.

Proof. We only show that p satisfies (3”). The other conditions are easily checked. Let <7 := o] ® 2%. Let m,my,m, denote respectively
the multiplications of .27, .7, o, and let §,$1, 3> denote the corresponding flips as in (4'). We have &/ @4/ = @,-_’jjlyzgfié)btzfj. Let v be
a positive element of /&7 with m(v) = 1 and F(v) = v. Let v;; € &7, be such that v = ¥ v;;. Then, V;; is positive and we have
m;(Vii) = 14 and §;(vi;) = vj;. It follows that p; + v;; is invertible in #7®.9%, and rl o ® 1.7, +vjj is invertible in @t for i # j. Thus,
p + Vv is invertible in &7 .7 . O

Theorem 5.3. Let (<71, p1) and (a5, p2) be algebraic compact quantum metric spaces such that o is commutative. Then, (\&h,p) is
an algebraic compact quantum metric space where p is as in Theorem 2.4.

Proof. We only show that p satisfies (3"). The other conditions are easily checked. Let m,m, denote respectively the multiplications
of o, .o/, and let §,§, denote the corresponding flips as in (4). Let 2° denote the Gelfand spectrum of .27;. Thus, & = C(2") and
Qe = C(X ,a%), the algebra of % valued continuous functions on 2". Let v € C(Z x 2, w5 %.4%) be a positive element with
m(v) =1 and F(v) = v. Then, for every x,y € 2, v(x,y) is positive, my(v(x,y)) = 1., and F»(v(x,y)) = v(x,y). Thus, py + v(x,y) is
invertible in .o &.c%. It follows that 1 o e, @ P2+ vV (which is equal to the function (x,y) = p2 + Vv(x,y)) is invertible. Thus, p + v is also
invertible. O

The main gap in our work is the lack of a nonclassical example:

Problem 5.4. Give an example of a nonclassical (algebraic) quantum metric.
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it is proved that the spaces p«, p. and pg are linearly isomorphic to the spaces /., ¢ and
co respectively. Afterward, o-, B- and y-duals of these spaces p. and pg are computed
and their bases are consructed. Finally, matrix the classes (p. : ) and (p. : ¢) have been
characterized.

1. Preliminaries, background and notation

By w, we shall denote the space all real or complex valued sequences. Any vector subspace of w is called a sequence space. We

shall write l.., ¢, and cq for the spaces of all bounded, convergent and null sequence are given by l. = {x = (xx) €w: sup |xg| < oo},
k—>oo

c= {x = (x) Ew: klimxk exists} and ¢g = {x = (x) Ew: klimxk = O}. Also by bs, cs, I and I, we denote the spaces of all bounded,
—oo —re0

convergent, absolutely convergent and p-absolutely convergent series, respectively.

A sequence space A with a linear topology is called an K-space provided each of the maps p; : A — C defined by p; (x) = x; is continuous
for all i € N; where C denotes the set of complex field and N = {0,1,2,...}. An K-space A is called an FK- space provided A is a complete
linear metric space. An F K-space provided whose topology is normable is called a BK- space [1].

Let X, Y be any two sequence spaces and A = (a,) be an infinite matrix of real numbers a,;, where n, k € N. Then, we write Ax = ((Ax),),
the A-transform of x, if A, (x) = Yy axx converges for each n € N. If x € X implies that Ax € Y, then we say that A defines a matrix
transformation from X into ¥ and denote it by A : X — Y. By (X : Y) we denote the class of all infinite matrices A such that A : X — Y. For
simplicity in notation, here and in what follows, the summation without limits runs from O to eo.

Let F denote the collection of all finite subsets on N and K, N C F. The matrix domain X4 of an infinite matrix A in a sequence space X is
defined by

Xg={x=(x)ew:Axe X} (1.1)

which is a sequence space.

The approach constructing a new sequence space by means of the matrix domain of a particular limitation method was used by authors
[2,3,4,5,6,7,8]. They introduced the sequence spaces (co)- =1 and (c)pr =1t/ in [2], (co) - = epy and (c)gr = e in [3], (co)¢ = €o and
cc=cin[4], (Ip) g =€), in[5], (lw) g = rh, cg = ri. and (co)g = 1 in [6], (1) - = X, in [7] and (I,)y, in [8] where T", E”, C, R and
N, denote the Taylor, Euler, Cesaro, Riesz and Norlund means, respectively.

Following [2, 3, 4, 5, 6, 7, 8], this way, the purpose of this paper is to introduce the new Pascal sequence spaces p, p. and pg and derive
some results related to those sequence spaces. Furthermore, we have constructed the basis and computed the a-, 3- and y-duals of the spaces
Pss» Pc and pg. Finally, we have characterized the matrix mappings from the space p. to [, and from the space p to c.

Email addresses: h.polat@alparslan.edu.tr (H. Polat)
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2. The Pascal matrix of inverse formula and Pascal sequence spaces

Let P denote the Pascal means defined by the Pascal matrix [9] as is defined by

P=[pu] = { (”f"g: (((,)( i I;)S " nken)

and the inverse of Pascal’s matrix P, = [p,] [10] is given by

_1\n—k( n n
Pfl:[””"rl:{ o éf}i);(g)gkg " mken, )

There is some interesting properties of Pascal matrix. For example; we can form three types of matrices: symmetric, lower triangular, and
upper triangular, for any integer n > 0. The symmetric Pascal matrix of order # is defined by

. i+j—2\. .
Sn:(s,-]):( jj_] )1,]:1,27...,,11. 2.2)

We can define the lower triangular Pascal matrix of order n by

i—1 .

; 0<j<i)
L,=(l;j)= (-/—')’( N 2.3
=) { 0. (>0 =

and the upper triangular Pascal matrix of order » is defined by

7D,0<i<j)
Uy = () =4 (21 0<i<] 24
n (utj) { 07 (] > i) ( )

We notice that U, = (L,)7, for any positive integer n.

i. Let S, be the symmetric Pascal matrix of order n defined by (2.1), L,, be the lower triangular Pascal matrix of order n defined by (2.3), and
U, be the upper triangular Pascal matrix of order n defined by (2.4), then S,, = L,U, and det(S,) =1 [11].

ii. Let A and B be n x n matrices. We say that A is similar to B if there is an invertible n x n matrix P such that P l'AP=B [12].

iii. Let S, be the symmetric Pascal matrix of order n defined by (2.2), then S, is similar to its inverse S,; L.

iv. Let L, be the lower triangular Pascal matrix of order n defined by (2.3), then L, ' = ((—1)"~7J; ) [13].

We wish to introduce the Pascal sequence spaces pe, p. and py, as the set of all sequences such that P-transforms of them are in the spaces

I, ¢ and cq, respectively, that is
Z " Xp| < oo o,
= \n— k

. xw n .
pe= {x (xx) Ew: ’}gr;k;)(nik)xk ex1sts}

Doo = {x:(xk)éw:sup

n

and

. n
Po= {x: (xx) Ew:nlgl;kzb(n_k)xkzo}.

With the notation of (1.1), we may redefine the spaces p, p. and pg as follows:

Po = (le)p, pe = (¢)p and po = (co)p- (25)

If A is an normed or paranormed sequence space, then matrix domain Ap is called an Pascal sequence space. We define the sequence y = (y,)
which will be frequently used, as the P-transform of a sequence x = (x,) i.e.,

w=Y (nf k)xk, (neN). 2.6)

k=0

It can be shown easily that p.., p. and pg are linear and normed spaces by the following norm:
x5, = llxllp, = llxll ., = 1Pl - @7

Theorem 2.1. The sequence spaces pe, p. and py endowed with the norm (2.7) are Banach spaces.
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Proof. Let sequence {x'} = {xg) ,xgt) ,xg), ...} at p. a Cauchy sequence for every fixed ¢ € N. Then, there exists an ny = ng(€) for every
€ > 0 such that ||/ —x"||., < & for all ¢, r > ng. Hence, |P(x' —x")| < € for all ¢, r > ny and for each k € N.
Therefore, {Px;} = {(Px°) o (Px") o (Px?) 4o} is @ Cauchy sequence in the set of complex numbers C. Since C is complete, it is
convergent say tle (Px'), = (Px); and ligl (Px™); = (Px),, for each k € N. Hence, we have
o =00
i — M = ! x) — — < > ng.
n%l_I)I:l)JP)gk Xy ‘ }P (xk xk) P(x} xk)‘ < eforalln>ng

This implies that ||x’ — x™|| — oo for 7, m — oo. Now, we should that x € pe.. We have
i=o\n—k ‘

< sup P (= xi) |+ sup | P
n n

n

¥ (") oot

¥l = 1P|, = sup
n k=0

= sup
n

< W =l [P < o0

for ¢, k € N. This implies that x = (x;) € pe. Thus, p. the space is a Banach space with the norm (2.7). It can be shown that pg and p,
are closed subspaces of p.. which leads us to the consequence that the spaces py and p. are also the Banach spaces with the norm (2.7).
Furthermore, since po. is a Banach space with continuous coordinates, i.e., ||P (x} —x)|| , — oo imples |P (x} —x;)| — oo for all k € N, it is
also a BK-space. O

Theorem 2.2. The sequence spaces p«, p. and pg are linearly isomorphic to the spaces lw, ¢ and cq respectively, i.e Poo = lo, pc = ¢ and
Po = cp.

Proof. To prove the fact pg = ¢, we should show the existence of a linear bijection between the spaces pg and c. Consider the transformation
T defined, with the notation (2.6), from pg to c¢g. The linearity of T is clear. Further, it is trivial that x = 0 whenever 7x = 0 and hence T is
injective.

Let y € cg. We define the sequence x = (x;) as follows:

Xp = ﬁ‘,(*l)k_i <kk .)yi~

Then

n n k
i po, = im 3 (")

Thus, we have that x € pg. In addition, note that

IR A

0 i=0

[[x[| 5, = sup = sup |yu| = [[¥ll¢, <o
po neN neN ! ©

Consequently, T is surjective and is norm preserving. Hence, T is a linear bijection which therefore says us that the spaces pg to cq are
linearly isomorphic. In the same way, it can be shown that p. and p.. are linearly isomorphic to ¢ and /., respectively, and so we omit the
detail. O

Before giving the basis of of the sequence spaces p. and pg, we define the Schauder basis. A sequence (b, ), in a normed sequence space
A is called a Schauder basis (or briefly basis) [14], if for every x € A there is a unique sequence (as,) of scalars such that

im [l = (@oxo + a1xi + ... + opxn) || = 0.

In the following theorem, we shall give the Schauder basis for the spaces p. and pg.

Theorem 2.3. Let k € N a fixed natural number and pk) = { S,k) } N where
ne

® [0, (0<n<k)
= { (=", (n=k

Then the following assertions are true:
i. The sequence {bgk)} is a basis for the space po and every x € py has a unique representation of the from x =Y lkb(k) where

M = (Px) forall k € N.

it. The set {e,b(o),b(]),...,b(k),...} is a basis for the space p. and every x € p. has a unique representation of the form x = le +
Y (A —1)b®) where | = klim (Px);, and A = (Px); for all k € N.
— o0
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3. The a—, B — and y— duals of the spaces p.., p. and pg

In this section, we state and prove the theorems determining the -, 3- and y-duals of the sequence spaces pe, pc and pg. For the sequence
spaces X and Y define the set S(X,Y) by

SX,Y)={z=(zx) ew:xz=(xz) €Y forallx € X}.

The a-, B- and y-duals of the sequence spaces A, which are respectively denoted by A%, AP and A7 are defined by Garling [15] , by
A% =S8(A,1}), AP =S(A,cs) and AT = S(A,bs). We shall begin with the Lemmas due to Stieglitz and Tietz [16], which are needed in the
proof of the Theorems 3.4-3.6.

Lemma 3.1. A€ (co:11)=(c:1) ifand only if

sup Z Z Q| < . 3.1)
KeF pn kek
Lemma 3.2. A € (cq : ¢) if and only if
sup ) |a| < oo, (3.2
nok
nlgjl.a”k = O, (k S N) (3.3)

Lemma 3.3. A € (cg : l») if and only if (3.2) holds.

Theorem 3.4. The a— dual of the sequence spaces pw, pc and py is the set

x ("o

kek

<w}.

Proof. Let a = (a,) € w and consider the matrix B whose rows are the products of the rows of the matrix P~! and sequence a = (a;).
Bearing in mind the relation (2.3), we immediately derive that

D:{az(ak)ew:supz

KeF n

i — z<—1>"—k( n )anyk: Y buyi = (By), . (n € N). (3.4)
n—k P

k=0

Therefore by (3.4) we observe that that ax = (anx,) € [} whenever x € pe, pc and py if and only if By € I; whenever y € lw, ¢, and ¢q. Then,
we derive by Lemma 3.1 that

—k n
sup —1)" ( )a < oo
B )
which yields the consequences that {p..}* = {p.}* = {po}* = D. O

Theorem 3.5. Consider the sets D, D, and D3 defined as follows:

n

Dl—{a—wk)ew: sup )" g((—l)i*k(ijk)ai

neN k=0

<w},

Dy = {a— (ax) Ew: Z(—l)’;k(. ! )ai exists for each k € N},
i—k

i=k
and

n n :
Y T i—k( ! i
D3 = {a(ak)EW.JLrEOZZ(—I)’ (ifk)a’ exzsts}.

k=0i=k
Then {po}* =D ND,, {p:}f =D\ ND>ND; and {p..}} = D, NDs.

Proof. We give the proof only for the space pg. Since the proof may be given by a similar way for the spaces p, and p., we omit it. Consider
the equation

l

ké)akxk -y {i(—l)""‘ (I._ik)yz} a :;gi) [jk(—l)i‘k (l._ik>al} = (DY), (3.5)

k=0 |i=k

where
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D= (dy) = { ?zkg—l)i’k (i_lk)af’(5<0>§nl; <) (mkeN). (3.6)

Thus, we deduce from Lemma 3.2 with (3.5) that ax = (agx;) € cs whenever x = (x;) € p if and only if Dy € ¢ whenever y = (y;) €
co- Therefore, using relations (3.2) and (3.3), we conclude that lim,,_,. d,;, exists fo each k € N and

n

sup Y lg{(fl)"’k <i—ik) aj

neNg=0

which shows that {po}? = D, N D,. O
Theorem 3.6. The y— dual of the sequence spaces pe, p. and pg are Dj.

Proof. We give the proof only for the space py. Consider the equality

n
Y awx
k=0

IA
™

Taking supremum over n € N, we get

n
Z arXr

k=0

sup
neN

IN N
SR
5= =5
< N
@ =
=1
£ I-
£
-

This means that a = (a;) € {po}". Hence,

D; C {po}". 3.7

Conversely, let a = (a;) € {po}" and x € py. Then one can easily see that

(k):o |:iik(_1)i_k (l_’ k)al] yk> €l

whenever ax = (axy) € bs. This implies that the matrix D given at the (3.6) is in the class (g : /). Hence, the condition

) <

p ( »

o \k=0

Yot

i=k

is satisfied, which implies that a = (a;) € D;. In other words,

{po}’ Cc D;. (3.8)

Therefore, by combining inclusions (3.7) and (3.8), we estahlish that the y-dual of the sequence spaces pg is D, which completes the
proof. O
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4. Some matrix mappings related to Pascal sequence spaces

Lemma 4.1. [16, p. 57] The matrix mappings between BK-spaces are continuous.
Lemma4.2. [16, p. 128] A€ (c:1,) ifand only if

P
<o, 1< p<on @.1)

sup Z

KeF n

Z An

kek

Theorem 4.3. A € (pc : l,,) if and only if the following conditions are satisfied: For 1 < p < oo,

n . p
k(! | <o 4.2
T B R Ja] <= “
C ikf i -
Y (1) iy )i exists forallk, neN, 4.3)
i=k -
n ) i
Z Z(—l)“k ( )am- converges for all n € N, 4.4)
k i=k i~k
m m . l
sup Y (—1)i* (i k)am- <oo,neN, 4.5)
meN k=0 |i=k -
and for p = oo, conditions (4.3) and (4.5) are satisfied and
n n ik l
1)~ | < oo, 4.6
slellr\;];) ;{( ) (i -~ k) Ani (4.6)

Proof. Let 1 < p < +oo. Assume that conditions (4.2) - (4.6) are satisfied and take any x € p.. Then (a,;) € (pc)ﬁ for all k, n € N, which
implies that Ax exists. We define the matrix G = (g,) with

Snk = i(—l)l;k( ik)am'

i—k 1=

for all k,n € N. Then, since condition (4.1) is satisfied for the matrix G, we have G € (c 1l p). Now consider the following equality obtained
from the s. th partial sum of the series Y ; a,;xy:

N s s X .
Z An X = Z Z(—l)kk ( ' k) aniyk, m,n € N. 4.7
k=0 k=0i=k 1=

Therefore, we derive from (4.7) as s — oo that

w0 w .
_ i~k 1 .
k;)ankxk = ég(—l)’ (l_ik) anivi- n € N, (4.8)

Whence taking /,-norm we get

laxl, = Gyl <. 4.9)

This means that A € (p, : [). Now let p = co. Assume that conditions (4.2) - (4.6) are satisfied and take any x € p.. Then (a,x) € (pc)ﬁ for
all k, n € N, which implies that Ax exists. Whence taking /.-norm (4.8)

1Ax]|,, = sup {3 gue| < ¥, sup Y[l < .
neN | nenN

Then, we have A € (p; : ).
Conversely, assume that A € (pc 2l ,,) . Then, since p. and I, are BK-spaces, it follows from Lemma 4 that there exists a real constant K > 0
such that

1Ax]l;, = K |xI, (4.10)
for all x € p,. Since inequality (4.10) also holds for the sequence

x=(w) =Y ¥ ep,

keF
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where

for every fixed k € N. We have

Jaxll, = {Z

n |keF i=k

£y (L Ja

i—

which shows the necessity of (4.2). O

Theorem 4.4. A € (p. : ¢) if and only if conditions (4.3), (4.5) and (4.6) are satisfied,

L ol i .
r}l_r)rolo;c(q)’ "(i_k)amzakforaUkeN (4.11)
and
n X k l
1 1— Jp—
,}E}}o ] i;c(q) (i—k)“’” =a. 4.12)

Proof. Assume that A satisfies conditions (4.3), (4.5), (4.6), (4.11) and (4.12). Let us take an arbitrary an x = (x;) in p, such that x; — [ as
k — oo. Then Ax exists, and it is trivial that the sequence y = (yy) associated with the sequence x = (x;) by relation (2.3) belongs to ¢ and is
such that y, — [ as k — co. At this stage, it follows from (4.11) and (4.6) that

k n ) .
¥ Jos| < supX ¥ 0 Jan
j=0 neN " ;

i li=k !

for every n € N. This yield ¢, € /1. Considering (4.8), we write
n . l n . l
Lo =LY 0 4(, L Jawoe-0+E L 04(, L o @13
3 k i=k = k i=k 1=

In this situation, letting n — oo in (4.13), we establish that the first term on the right-hand side tends to Y o (yx — /) by (4.6) and(4.11), and
the second term tends to /o by (4.11). Taking these facts into account, we deduce from (4.13) as n — oo that

(Ax), = Y o (e — 1) + 1ot
3

which shows that A € (p; : ¢).
Conversely, assume that A € (p. : ¢). Then, since the inclusion ¢ C /. holds the necessity of (4.3), (4.5) and (4.6) is immediately obtained
from

< oo,

supz
nok

i(_l)i_k <._ik>am'

i=k !

To prove the necessity of (4.11) consider the sequence x = k) = {b,(lk) } N in p.. Where
ne

M“:%VW={(4$gfifg2k

for every fixed k € N. Since Ax exists and belongs to ¢ for every x € p., one can easily see that

b = {i(—l)f-" (l._” k)am}
i=k

for each k € N, which yields the necessity of (4.11).
Similarly, by setting x = e = (1, 1,...) in (4.8), we obtain

Ax= { ) izn‘;((—l)"k(l_ik)am}

which belongs to the space c, and this shows the necessity of (4.12). This step conludes the proof.

neN

neN
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coefficients. The method transforms the system of differential equations and the condi-
tions given by matrix equations with constant coefficients a new system of equations that
corresponds to the system of linear algebraic equations which can be solved . Numerical
problems are given to illustrate the validity and applicability of the method. For obtaining
the approximate solution Maple software is used.

1. Introduction

Legendre polynomials are one of the most important special functions, which are widely used in numerical analysis[6]. The Legendrre
polynomials are orthogonal with respect to the weight function 1 on the interval [—1; 1] and the recurrence relations is

2n+1 n

Lo(x)=1,Li(x) =x, L1 (x) = P n(x) — an,l(x), n>l1.

One of the applications of Legendre polynomials is the solution of ordinary differential equations with boundary conditions with collocation
points. Under a transformation that maps the interval [—1; 1] into a semi-infinite domain [0;e<), we applied spectral methods to solve
problems on semi-infinite intervals[3, 1, 8, 9]. In their studies, the basis functions called exponential Legendre (EL) functions E,(¢) are
orthogonal in [—1;1]. The EL functions are defined as

Eo([) =1, E; ([) =1-2e"!

n

241
"t B (0)n> 1.

n+1

Ep1(t) = (1=2e7")En(t) -

Recently, we reported a new operational matrix of derivatives of EL functions for solving ODEs in semi infinite domains. In this paper we
applied the matrix of derivative mentioned in [3] to solve systems of ordinary differential equations defined on the whole range by means of
collocation method. The organization of this paper is as follows. In Section 2, Preliminaries introduced while in Section 3 Properties of the
exponential Legendre (EL) functions are presented. In Section 4, we formulated the fundamental matrix relation based on collocation Points.
In Section 5, method of solution is presented. Section 6 contains numerical illustrations.

Email addresses: mohamed.benattia74 @yahoo (M. E. Benattia), belghaba@yahoo.fr (K. Belghaba), bouteraa-27 @hotmail (N. Bouteraa)
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2. Preliminaries

In this paper, we considered a system of & linear differential equations with variable coefficients of the mth order in the form

m k

Y Y oy @) = fie), i=1.2, k. @.1)
n=0j=1
This system can be written as follow
Y ROYO () =F(), (22)
i=0

where the py/;(t) and f;(t) are well defined functions on the interval [0,0) where the matrices P;(r), Y (@ (z) and F(t) on the form

plill Plilz Pik ygl,)(’) fi(t)

Ph Py o Py yé’) (1) ()
ro=|: =+ = |, yOn=| |, Fo)=| :

P Pia P y,(f) (1) i)

We consider the above system under the mixed condition defined as
Y a¥D(a) + by D(b) +ciyD(c) =1, 0<a<c<b< oo, 2.3)
n=0

where a;, b;, ¢; and A are real valued vectors, and a — 0, b — .

3. The exponential Legendre functions
In this section we list some properties of the EL functions.
3.1. Orthogonality of EL functions

The weight function @(¢) corresponding to the EL function, such that they are orthogonal in the interval [0,00) is given by 2e~!, with
orthogonal condition

where 8, is the Kronecker function.
3.2. Function expansion in terms of EL functions

A function f(r) is well defined over the interval [0,00) and can be expanded in terms of EL functions as

ft) = ianEn(t), (3.1
n=0
where
41
@ = "2+ { E.() (1) (t)dr.

If the summation in expression (3.1) is truncated to N where N < oo it takes the following form

N
flt)= ;)anEn(f)»

the (k)th—order derivative of f() can be written as

N
FO@) 2 Y an(Ealr)®, (3.2)
n=0
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3.3. The operational matrix
The new representation of EL functions is presented as follows.
If we use the expression v(z) = 1 —2¢™" in the EL functions, we can express it explicitly in terms of powers of v(z) as
(2] )
E, (l‘) _ Zq}({n vn—2k ([)7
k=0
where
(n) _ ¢l (n\ (2n—2k
qk _(71) on (k) ( n ) >2k7
and [n2] denotes the integer part of the value %
From previous relation with simple modification we can define:
if n is even number
i .
i1 21 2[+2 i
_ _\=Jj J 2j
Fal) = L' () (5 ) o,
if n is odd number
i .
_i 1 2041\ [2142j+2 i
_ _ 1\ 2j+1
Fan)= L i G ()
Form above relations we can deduce general matrix form of EL functions as
E(t)=V()LT, (3.3)
where E(t) and V() are two matrices of the form:
E(t) = [Eo(r) Ei(t) - En(1)],
V(ey=[%) v(e) e W(r)],
and O() =1, vi()=1-2¢", V(@t)=(1-2e")2---- () = (1 =27V,
and L is a matrix given by
()() ° ’ ’
’ 1o () ’ ’
1016 ’ £0)0) °
L 00 ’ 500
o (%) : o () () : n
0 (’l)lﬁ (2171) @ﬁ) 0 (—pi-1 2% (’31]> (212+IA>
Now, from (3.3) we can obtain the k' derivative of matrix E (1) as:
O =v)L”
EW@)=v () LT
E@ @) =v@)L"
then, by induction the k”*-order derivative of the matrix E(r) defined as:
EO@) =vO )L’ (3.4)

the equation (3.4) represents the new operational matrix of derivatives of the EL functions.
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4. Fundamental matrix relations
Let us define the collocation points, so that 0 < #; < oo, as

1+ cos(5F)
Y/4

s

STI- cos(%7)

and at the boundaries(s =0, s=N), ) —> oo, fy — 0, since the EL functions are convergent at both boundaries 0 and oo, namely their
values are +1, the appearance of infinity in the collocation points does not cause a loss or divergence in the method.
We assume that the solution y;(#) of (2.1) can be expressed in the form (3.2), which is a truncated Legendre series in terms of EL functions.

()

Then y;(7) and its derivative y;”’ (r) can be written in the matrix form as

yi(t) = E(t)Aj,
and
Wy =ED®A;, =12k, j=0,1,2,m. 4.1)
where
Ai = [aj0, a1 eeeneenn 7a,-N]T.

By substituting relation (3.4) into (4.1), we obtain
Wiy =vO@)La;, j=0,12,.....m.

So, the matrix y(i> (t) defined as a column matrix that is formed of i derivatives of unknown functions, can be expressed by

YO @) =vO@)LTA (4.2)
where V) (), LT are two size matrix k x k,
v () 0 0 r 0 0 Ay
0o v 0 o LT 0 A
vi() = = A=
0 0 v (1) 0 0 L A/ ki

By putting the collocation points # in (4.2), we have the system

y(l) (tx) — V(I) (ts)LTA7 (43)
the system (4.3) can be written in the matrix form as
Y@ =v@pTa
where
v (1)
v
) _ .( 1) 7
VO (1)
then, the equation (2.2) becomes as follows
m ~
Y AVOLTA=F. (4.4)
i=0

Next, we can obtain the corresponding matrices form for the conditions by using the relation (2.3), we have the fundamental matrix equation
corresponding to the mixed conditions (2.3) as

m—1
Y [aiV(i) (@) + bV (B)+civD(e)| LTA = a. 4.5)
i=0
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5. Collocation method

The fundamental matrix (4.4) for equation (2.1) corresponding to system of (N + 1) algebraic equations for the (N + 1) unknown coefficients
ap,,ai,....,ay. We can write equation (4.4) as

HA=M. 5.1

We can obtain the matrix form for the mixed conditions by means of (4.5)
RA = [ai], (5.2)

and
m—1 . . .
R=Y [a,-v@ (@) + bV (b) + ;v (c)] L.
i=0
To obtain the solution of Eq(2.1) under the conditions (2.3) we replace the rows of matrices(5.2) by the last m rows of the matrix (5.1) Then,
we have the required augmented matrix as

i hi2 I k(N1 s fi()
ha. 1 ha o e ha g1 1) 5 falto)
By 1 hic» 2 P g(N+1) 5 fi(o)
11 his12 o hae s )
[ﬁ, ﬁ} _ . . . . .
MN-mi)1 Mv-min2 0 Mvemr ey 5 Se(tn-m)
1,1 2 T k(N+1) ; (%1}
2,1 2 T 72 k(N+1) ; (2%}
Tk, 1 Tmk,2 o Tk Je(N+1) ; Gk
or the corresponding matrix equation
RA=F,
then we can write
A=@®)'F

6. Illustrative examples

In this section, we demonstrate the effectiveness of the proposed Legendre exponential function method with numerical examples.

Example 6.1. Consider the system

15 6.1)

{ ¥ —x—8y=—12¢"%
Y —2x—y= T—9e*’—%e*2’ , 0<r<o

with the conditions x(0) = 4, y(e0) = %, where the exact solution
x(t)=—-2+6¢""

yt)=1-3e"+3e7

for this example we have

k:27 m:17 f](t):flze_m’ fz(l)zige 796_t+7a

-1 -8 10
(5 3) =)

Then, for N = 2, the collocation points are ty — oo, t| — 1, tp — 0, and the fundamental matrix is

and

[135\7@ +131W1>]LTA —F,

where ﬁ), 1;1, VO and VD are matrices of order (6 x 6) given as:
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-1 -8 0 0 0 0 1 00000 1o -3 0o 3 o0
-2 -1 0 0 0 0 0100 00 o1 0 -3 o B
s o o -1 -8 0 0| 5 (oo 1000 (00 3 0o -8 o0
By = P = , L' = 5 35
0 0 -2 -1 0 0 000 1 00 oo o 3 o -%
o 0 0 0 -1 -8 000010 00 0 0 33 o0
0 o o0 0 -2 -1 00 0 0 0 1 00 0 0 0 %
1 1 1 0 0 0
0 0 0 1 1 1
7o _ |1 (1-2¢71) (1—-2e712 0 0 0
0 0 0 1 (1=21 (1=2H2 |
1 -1 1 0 0 0
0 0 0 1 -1 1
0 0 0 0 0 0
0 0 0 0 0 0
g _ |0 (2¢71) (4e71—8e72) 0 0 0
0 0 0 0 (2¢7') (4e7'—8e72) |’
0o 2 —4 0 0 0
0 0 0 0o 2 —4
andF:[O 14—5 —12¢72 —2672—96714-% —-12 —%],andtheaugmentedmatrixforthe conditions with N = 2 is [1 -

1 1 0 0 0 ;4]forthefirst condition x(0) =4, and for the other condition y(so) = %, the augmented matrixis [0 0 0 1 1 1 ; }1]
After the augmented matrices of the system and condition are computed, we obtain the solution

1
A=1|1 -3 0 0 0 -
4

therefore, we find the approximate solutions as

x(t) =Ey—3E; =1-3(1-2¢)=1-3+6e" = —2+6¢"

{ Y(t) =0Eg+0E + fEr =} [3(1-2e7")2 = 3] =1 =3¢+ 3%
Example 6.2. Consider the second order system of two equations
{ VY 4x —x=90e3 —24e 2% 4 Bt _3
Y —2x' =90e 3 — 108 ¥ + e~ | 0<t< oo

with the conditions x(0) =3, y(e0) =3, x(o0) = %, y(0) = %.
Where the exact solutions x(t) =3 — 12 +12¢ ™2 and y(t) = § + Ze™ — 15¢7% + 10e 7.
In this system, we have

23 119
k=2, m=2, fi(t)=90e"¥ —24e"% + Te*’ —3,  fot) =90e™3 —108e~% + Te*’

-1 0 00 11
(o o) n=n) meo)

Then, for N = 4, the collocation points are ty — oo, 1] = 34+2v/2, th = 1, 13 = 3—2v/2, 14 — 0, and the fundamental matrix is

and

[13[)‘7(0) +AvM +ﬁ2x7(2)]LTA —F,

where Py, Py, Py, VO, VD) and V) gre matrices of order (10 x 10)

10 0 0 0 0 0 0 0 O 0000 O0O0TO OO OO 0O
00 00 00 0 0 0 O 2000000000
0 0 -1 0 0 0 0 0 0 O 00000 O0ODOTO OO 0O
00 0 0 00O 0 0 0 O 0020000000
s_[0 0o 0 0 -10 0 0 0 0f 5 0000 0O OO OO 0O
10 o o0 o o0 o0 0o 0 o o|’"7]o 00 0200000
00 0 0 0 0 -1 0 0 O 00000 O0OOTO OO 0O
00 00 00 0 0 0 0 0000002000
00 00 00 0 0 —1 0 00000 OOTG OO 0O
00 0 0 00 0 0 0 O 00000 OO 020
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1 100000000
01 00O0O0O0O0O0O
001 1000000
000100000 0O0
5_|0 0001 10000
*“loo o001 000 O
00000O0TI 100
0000O0O0O0T1 00
00000O0O0GO0 1 1
00000O0O0GO0O0 1
1o -4 o 3 o - o = 0
o1 o0 -3 o ¥ o - 0 %
oo 3 o - o 1 o -2 0
o0 0o 3 o -¥ o 3P 0o -4
A U N fad 0
oo o o o % o -8 9 s
oo o o o o ZE o -9 9
00 o o o o0 o % 0 L0
00 0 0O 0 0 O 0 35 0
00 0 0O 0 0 0 0 0 12155

and the augmented matrix for the conditions with N = 4 is [1 -1 1 -1 1 0 0 0 0 O 3} for the first condition x(0) =

1

3, and y(e) = 3, the augmented matrix is [0 0 0 0 0 1 1 1 1 1;3], and for the other condition x(e) = 5 we have
1 1 1 1 1 00 0 0 0;21]andy(0)=3 wehave the augmented matrix [0 0 0 0 0 1 —1 1 —1 1;3].
After the augmented matrices of the system and condition are computed, we obtain the solution

A:{lOZOOOlO—%O}

Finally, we find the approximate solutions as

x(t) = Ey+2E, = 1+2[%(1 —2e )2 - %] =3(1—2¢1)?

{

7. Conclusion

Systems of high order linear differential equations are generally difficult to solve analytically under mixture conditions. In many cases,
obtaining approximate solutions is necessary especially if the problem is defined in semi-infinite domain. For this reason, the Legendre
exponential collocation method is proposed to obtain an approximate solution of high order linear differential equation. The new definition
of EL functions is studied and introduced to solve the system of high order linear ordinary differential equations with constant coefficients. In
addition, an interesting feature of this method is to find the exact solutions if the system has an exact solution that is a polynomial exponential
function. Examples of problems are used to demonstrate the applicability and effectiveness of the proposed technique.
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maximal accretive, self adjoint and other extensions of such operators.

1. Introduction

The theory of symmetric extensions of a symmetric operator in a Hilbert space developed by J. von Neumann [27]. Especially, it plays a
central role in spectral problems associated with formally self-adjoint linear differential operators. The problem on the description of all self
adjoint extensions of a symmetric operator in terms of abstract boundary conditions was given by Calkin [25]. Later, Rofe- Beketov [28]
described self adjoint extensions of a symmetric operator in terms of abstract boundary conditions with aid of linear relations. Bruk [24]
and Kochubei [12] are introduced the notion of a space of boundary values. They described all maximal dissipative, accretive, self adjoint
extensions of symmetric operators. This problem has been investigated by many mathematicians (see [13]-[20]). For a more comprehensive
discussion of extension theory of symmetric operators, the reader is referred to [26].

The theory of time scales unifies continuous and discrete analysis. It was introduced by Hilger (see [1]). Recently, it has received a lot
of attention. The study of dynamic equations on time scales has several important applications, e.g., in the study of heat transfer, insect
population models, epidemic models stock market, and neural networks (see [1]-[5]).

On the other hand, transverse vibration of nonuniform beams is one of the important problems in mechanical and civil engineering. It has led
to several applications in modern engineering, e.g., turbine blade, helicopter blades, satellites structure, even robotic arms etc. It has been
studied by many investigators (see [29]-[43]).

In this article, we consider Euler-Bernoulli dynamic equation of transverse vibrations of nonuniform beans on bounded time scales. A space
of boundary value is constructed for this operator. It is given a description all maximal dissipative, accretive, self adjoint and other extensions
of such operators in terms of boundary conditions.

2. Preliminaries

Now, we recall some necessary fundamental concepts of time scales, and we refer to [8], [9] for more detail.

Definition 2.1. Let T be a time scale, i.e., a non-empty closed subset of real numbers R. The forward jump operator ¢ : T — T is defined by
o(t)=inf{s€T:s>t} wheret €T
and the backward jump operator p : T — T is defined by

p(t)=sup{seT:s<t} wheret €T.
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It is convenient to have graininess operators g : T — [0,00) and pp : T — (—o0,0] defined by us (t) = 6 (t) —t and pp (t) = p (t) — t,
respectively. A point t € T is left scattered if pp (t) # 0 and left dense if up (t) = 0. A point t € T is right scattered if Uus (t) # 0 and
right dense if g (t) = 0. We introduce the sets TK, Ty, T* which are derived from the time scale T as follows. If T has a left scattered
maximu]:n 11, then T* =T — {1, }, otherwise TF = T. If T has a right scattered minimum t», then Ty, = T — {t,} , otherwise Ty = T. Finally,
T* = T* O T,

Definition 2.2. A function f on T is said to be A-differentiable at some point t € T if there is a number fA(t) such that for every € > 0 there
is a neighborhood U C T of't such that

[f(a(6) = f(s) = fA(0)(0(1) —s)| < e|o(t) 5| wheres € U.
Analogously one may define the notion of V-differentiability of some function using the backward jump p. One can show (see [11])

AO=rYew), o= rew)
for continuously differentiable functions.

Example 2.3. If T =R, then we have

If T = Z, then we have

1) =141, A1) = AF(E) = F(1+1)— £ (1).
IfT =g :{qk:q> 1, kENO},thenwehave
flat) =)

o) =ar. )=

Definition 2.4. Let f : T — R be a function, and a,b € T. If there exists a function F : T — R such that F (t) = f (¢) for all t € T, then F
is a A-antiderivative of f. In this case the integral is given by the formula

/bf(z)At:F(b)—F(a) fora,beT.

Analogously one may define the notion of V-antiderivative of some function.

Let L% (T*) be the space of all functions defined on T* such that

1Al = (/a'b|f<t>|2m)”2 e

The space Li (T*) is a Hilbert space with the inner product (see [23])
b -
(f.8)= [ f(Oz@0A. figeR(T).
Ja

3. Main results
Let us consider Euler-Bernoulli dynamic expression of transverse vibrations of nonuniform beams
sk AV va 2 4% *
I(y) = (EI (1)y ) (1) — pow?A* (1) y(), t € Ty = T* N (a,b) ,a < b, G.1)
where y is the transverse displacement, E, py and w are Young modulus, mass density, and natural frequency, respectively, A* (¢) and I* (¢)
are the area and moment of inertia of current cross-section, respectively; ¢ is the current longitudinal coordinate of the beam, and a and b are

the coordinates of the fixed end and the free end of the beam, respectively.
For simplicity of notation, we have

YO =y,
Y= )4
W= Er)yW,
v
W= (6B
A
W= *posz*(t)y*(ym) :

Lety;, 1 <i <4, be solutions of Eq. (3.1). The Wronskian of y;,y;,y3 and y4 is defined to be (see [6])

YioY2 ¥3 o 4
y[ll y[l] yll] y[l]
Wy =| b B P b
o
y[l] y[z Y3 Y
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We will denote by Dompay the set of all functions y (¢) in Li (T}) such that first three A derivatives are locally A absolutely continuous in
Ty, and [ (y) € Li (T}). We define the maximal operator Lyax on Dommax by the equality Lmaxy = Iy.
For every y,z € Dompyax, we have Green’s formula

b - b
|t @z0a = [ 0T 0 = b= bedle 32

where [y,zJr := 3101281 (1) — yB ()29 (1) + 1 (1)22 (1) — 2 (1)21) 1) (see T61).
Let Domyy,;, denote the linear set of all vectors y € Dompmax satisfying the conditions
W = @=2@=)
Whpy =yl () =yP (n) =y

If we restrict the operator Lyax to the set Doy, then we obtain the minimal operator Ly, It is clear that LY. = Lmnax, and Ly, is a
closed symmetric operator (see [6] ). Now we recall the following definitions.

0
0

Definition 3.1. A linear operator M (with dense domain D (M) ) acting on some Hilbert space H is called dissipative (accumulative) if
SMf,f)>0(3(Mf,f) <0)forall f € D(M) and maximal dissipative ( maximal accumulative) if it does not have a proper dissipative
(accumulative) extension (see [14], [16]-[19]).

Definition 3.2. A triplet (H, @, D,) is called a space of boundary values of a closed symmetric operator M on a Hilbert space H if ®| and
D, are linear maps from D (M*) to H, with equal deficiency numbers and such that:

i) For every f,g € D(M*) we have
M f,8)y = (f;M7g)y = (P1f, Pog)yy — (Pof P18

ii) For any F,F> € H there is a vector f € D (M*) such that ®; f = F} and &, f = F, (see [10]).
Let’s define by @, ®, the linear maps from D to C* by the formula

o) -

—y'(a) _| ¥

D1y = y[()] (b) , @y = y[3] ® | 3.3)
Y(p) Y (b)

Now we will state and prove a theorem.

Theorem 3.3. The triple ((C4, D, 7<13'2) defined by (3.3) is a boundary spaces of the operator L.
Proof. For every y,z € Domp,x, we have

(@13, ®20)ci — (P12, 00) s = (@) (@) 3! (@)2P) (@)
) (B) 431 ()27 (1)
— (=% )Pl (@) — 2" (@)yP (@)
— )y )+ )y (1))
= O eBe) -2 o)

)28 6) -2 (0)y? (0)

From Green’s formula (3.2), we obtain the following equation

(@1, P2z) s — (P12, P2y) s = [1:2] (B) — [1,2] (@) = (Lmaxy»2) — (V, Lmax2) -

So, we proved the first requirement of the definition of a space of boundary values.
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uy Vi
. . . u v
Now, we will prove the second requirement of the definition of a space of boundary values. Let u = u2 V= v2 € C*. Then the
3 3
uq 2

vector-valued function

y(t) = o (t)ur +ap (1) v + oz (t)ug + 0 (t)va + 05 (1 )uz + 6 (1) v3 + 07 (¢ )ug + g (t)va,

where @; (1) € H (i =1,...,8) satisfy the conditions

oa)=1 d@=0 d?@=0 @) =0
aa)=0 &'@=0 a@)=0 o@)=1
a%;’j (a)=0 a;ﬂl@) =—1 d@=0 d@)=0
dl@)=0 d'@=0 oP@=1 o@=0
oc% (a)=0 (x?[ﬂ (@)=0 (x% (@)=0 ag (@)=0
a?o] (@)=0 Oc?l] (@)=0 Ot?z] (@)=0 a?s] (@)=0
ao](a)zo l](a):0 2](a):O 3](a):0
og'(a)=0 og'(a)=0 a5 (a)=0 o5 (a)=0
and
oclg (b)=0 aﬁ (b) =0 a% (b)=0 oclg (b)=0
ocz[o] (b)=0 (x%l} (b)=0 (x%z] (b)=0 (xz[S] (b)=0
a3[0] (b)=0 a3m (b)y=0 a3[2] (b)=0 a3[3] (b)=0
O[C(‘)‘} (b)=0 azm (b)=0 a?zl (b)=0 a?s] (b)=0
a;' (b)=—-1 a5 (b)=0 as (b)=0 a5 (b)=0
=0 alp) =0 ol? (b)=0 ol b) =1
aj"] (b) =0 ail] b) =1 aizl (b) =0 053] (b) =0
a)=0 o'p)=0 o p)=1 «’®)=0

belongs to the set Domp,x and @1y = u, $ry=v
Corollary 3.4. For any contraction T in C* the restriction of the operator Luax to the set of functions y € Dompyay satisfying either
(T-1)®1y+i(T+I1)Pry=0 (3.4)
or
(T-1)®1y—i(T+I1)Pry=0 (3.5)

is respectively the maximal dissipative and accretive extension of the operator Ly;,. Conversely, every maximal dissipative (accretive)
extension of the operator Ly, is the restriction of Lmax to the set of functions y € Dompax satisfying (3.4) ( (3.5) ), and the extension uniquely
determines the contraction T. If T is an isometry in C* | then the conditions (3.4) ( (3.5) ) describe the maximal symmetric extensions of Lyin
T2
in Ly (Ty).

A

The general form of dissipative and accretive extensions of an operator L is given by the conditions

T (®y+idyy) = @y—iPry, ®1y+idPsry € Dom(T), (3.6)
T (®y—idyy) = @y+idPry, ®1y—idPory € Dom(T),

respectively, where 7 is a linear operator with
ITI <IN, f € Dom(T).
4. Conclusion
In this paper, we have considered Euler-Bernoulli equation of transverse vibrations of nonuniform beams on bounded time scales T.. In this

context, we have constructed a space of boundary values of the minimal operator and described all maximal dissipative, maximal accretive,
self-adjoint extensions of of such operators.

References

—_——
N —

Hilger S., Analysis on measure chains—a unified approach to continuous and discrete calculus, Results in Math., (1990),1818 — 1856.

Agarwal R. P., Bohner M., and Li W.-T., Nonoscillation and Oscillation Theory for Functional Differential Equations, vol. 267 of Monographs and
Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 2004.

Jones M. A., Song B. and Thomas D. M., “Controlling wound healing through debridement,” Mathematical and Computer Modelling, vol. 40, no. 9-10,
pp. 1057-1064, 2004.

[4] Spedding V., “Taming nature’s numbers,” New Scientist, vol. 179, no. 2404, pp. 28-31, 2003.

[5] Thomas D. M., Vandemuelebroeke L. and Yamaguchi K., “A mathematical evolution model for phytoremediation of metals,” Discrete and Continuous
Dynamical Systems. Series B, vol. 5, no. 2, pp. 411-422, 2005 .ker, Florida, 2004.

[3



Fundamental Journal of Mathematics and Applications 81

[6

=

[7

—

[8]
[9]
[10

[11]
[12]

[13]
[14]

[15]
[16]
[17]
[18]
[19]
[20]

[21]
[22]
[23]
[24]
[25]
[26]

[27]
[28]

[29]
[30]

[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]

Anderson D. R. , Guseinov Gusein Sh., and Hoffacker J. , Higher-order self-adjoint boundary-value problems on time scales, J. Comput. Appl. Math.,
194 ,2,(2006) 309 —342.

Atici Merdivenci F. and Guseinov Gusein Sh., On Green’s functions and positive solutions for boundary value problems on time scales, J. Comput. Appl.
Math., 141,1—2,(2002) 75-99 .

Bohner M. and Peterson A., Dynamic Equations on Time Scales, Birkhduser, Boston, 2001.

Bohner M. and Peterson A., (Eds.), Advances in Dynamic Equations on Time Scales, Birkhéduser, Boston, 2003.

Gorbachuk M. L. and Gorbachuk V.I., Boundary Value Problems for Operator Differential Equations, Naukova Dumka, Kiev, 1984; English transl.
1991 ,Birkhauser Verlag.

Guseinov Gusein Sh., Self-adjoint boundary value problems on time scales and symmetric Green’s functions, Turkish J. Math., 29 (4), (2005) 365 — 380.
Kochubei A. N., Extensions of symmetric operators and symmetric binary relations, Mat. Zametki 17, (1975) 41 — 48; English transl. in Math. Notes
17,(1975) 25 —28.

M.G. Krein, On the indeterminate case of the Sturm-Liouville boundaryvalue problem in the interval (0,%)’, Akad. Nauk SSSR Ser. Mat.
16,(1952),292 — 324.

F.G. Maksudov and B.P. Allahverdiev, On the extensions of Schrodinger operators with a matrix potentials, Dokl. Akad. Nauk 332, no.1,(1993),18 —
20;English transl. Russian Acad. Sci. Dokl. Math. 48 (1994), no.2, 240 —243.

M. M. Malamud and V. I. Mogilevskiy, On extensions of dual pairs of operators, Dopov. Nats Akad. Nauk. Ukr. (1997) ,no. 1,30 — 37.

B.P. Allahverdiev, Extensions of symmetric singular second-order dynamic operators on time scales. Filomat 30 (2016), no. 6, 1475-1484.

B.P. Allahverdiev, Extensions of symmetric infinite Jacobi operator. Linear Multilinear Algebra 62 (2014), no. 9, 1146-1152.

B.P. Allahverdiev, Extensions of symmetric second-order difference operators with matrix coefficients. J. Difference Equ. Appl. 19 (2013), no. 5,
839-849.

A.9Canc?g1u and B.P. Allahverdiev, Selfadjoint and dissipative extensions of a symmetric Schrodinger operator. Math. Balkanica (N.S.) 17 (2003), no.
1-2, 113-120.

H. Tuna and B. P. Allahverdiev, Dissipative Extensions of Fourth Order Differential Operators, Thai Journal of Mathematics, Vol. 16 (1), (2018),

275-285.
Lakshmikantham V., Sivasundaram S. and Kaymakcalan B., Dynamic Systems on Measure Chains, Kluwer Academic Publishers, Dordrecht, 1996.

Naimark M. A., Linear Differential Operators, 2nd edn., 1968, Nauka, Moscow, English transl. of 1st. edn., 1,2, 1969, New York.

Rynne B. P., L? spaces and boundary value problems on time-scales, J. Math. Anal. Appl. 328, (2007) 1217 — 1236.

V.M. Bruk, On a class of boundary —value problemswith a spectral parameter in the boundary conditions, Mat. Sb.,100, (1976),210 — 216.

J. W. Calkin, Abstract boundary conditions, Trans. Amer. Math. Soc.,Vol 45,No. 3,(1939),369 — 442.

M.L. Gorbachuk, V.I. Gorbachuk and A.N. Kochubei, 1989. The theory of extensions of symmetric operators and boundary-value problems for
differential equations’, Ukrain. Mat. Zh. 41,(1989),1299 — 1312; English transl. in Ukrainian Math. J. 41(1989),1117 — 1129.

J. von Neumann, Allgemeine Eigenwertheorie Hermitischer Functionaloperatoren, Math. Ann. 102, (1929),49 — 131.

E.S. Rofe-Beketov, Self-adjoint extensions of differential operators in a space of vector valued functions’, Dokl. Akad. Nauk SSSR 184, (1969),1034 —
1037;English transl. in Soviet Math. Dokl. 10(1969),188 — 192

H.D. Conway, J.F. Dubil, Vibration frequencies of truncated wedge and cone beam, Journal of Applied Mechanics 32E (1965) 932-935.

J.J. Mabie, C.B. Rogers, Traverse vibrations of tapered cantilever beams with end support, Journal of Acoustical Society of America

44 (1968) 1739-1741.

M.A. De Rosa, N.M. Auciello, Free vibrations of tapered beams with flexible ends, Computers & Structures 60 (2) (1996) 197-202.

H.D. Conway, E.C.H. Becker, J.F. Dubil, Vibration frequencies of tapered bars and circular plates, Journal of Applied Mechanics June (1964) 329-331.
E.T. Cranch, A. Adler, Bending vibrations of variable section beams, Journal of Applied Mechanics March (1956) 103-108.

N.M. Auciello, G. Nole, Vibrations of a cantilever tapered beam with varying section properties and carrying a mass at the free end, Journal of Sound
and Vibration, 214 (1) (1998) 105-119.

H.C. Wang, Generalized hypergeometric function solutions on the transverse vibrations of a class of non-uniform beams, Journal of

Applied Mechanics 34E (1967) 702-708.

D. Storti, Y. Aboelnaga, Bending vibrations of a class of rotating beams with hypergeometric solutions, Journal of Applied Mechanics, 54 (1987)
311-314.

D.I. Caruntu, On nonlinear vibration of nonuniform beam with rectangular cross-section and parabolic thickness variation, Solid Mechanics and its
Applications, Vol. 73, Kluwer Academic Publishers, Dordrecht, Boston, London, 2000, pp. 109-118.

D.I. Caruntu, Relied studies on factorization of the differential operator in the case of bending vibration of a class of beams with variable cross-
section,Revue Roumaine des Sciences Techniques, Série de Mecanique Appliquee, 41 (5-6) (1996) 389-397.

D.I. Caruntu, Dynamic modal characteristics of transverse vibrations of cantilevers of parabolic thickness. Mechanics Research Communications 36:
(2009)391-404

S. Naguleswaran, The vibration of a “complete” Euler—Bernoulli beam of constant depth and breadth proportional to axial co-ordinate raised to a
positive exponents, Journal of Sound and Vibration, 187 (2) (1995) 311-327.

S. Naguleswaran, A direct solution for the transverse vibration of Euler—Bernoulli wedge and cone beams, Journal of Sound and Vibration, 172 (3)
(1994) 289-304.

A.D. Wright, C.E. Smith, R.W. Thresher, J.L.C. Wang, Vibration modes of centrifugally stiffened beam, Journal of Applied Mechanics, 49 (1982)

197-202.
Q. Wang, Sturm-Liouville equation for free vibration of a tube-in-tube tall building, Journal of Sound and Vibration, 191 (3) (1996), 349-355.



Fundamental Journal of Mathematics and Applications, 1 (1) (2018) 82-87

Fundamental Journal of Mathematics and Applications
% FuimMa

Journal Homepage: www.dergipark.gov.tr/fujma

Differential bubordinations and argument inequalities for
certain multivalent functions defined by convolution structure

Mohamed Kamal Aouf?, Rabha El-Ashwah® and Ekram Elsayed Ali¢*

2Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
Department of Mathematics, Faculty of Science, Damietta University, New Damiette, 34517, Egypt
€Department of Mathematics and Computer Science, Faculty of Science, Port-Said University, Port-Said, 42521, Egypt
*Corresponding author E-mail: ekram_008eg @yahoo.com

Article Info Abstract

Keywords: Multiplier transformation , The main object of the present paper is to investigate certain interesting argument inequalities
Hadamard product, Subordination and differential subordinations properties of multivalent functions associated with a linear
2010 AMS: 30C45 operator D} (f+g)(z) defined by Hadamard product

Received: 12 March 2018
Accepted: 5 June 2018
Available online: 30 June 2018

1. Introduction

Let A(p) denote the class of functions of the form:
f@=2+Y a7 (peN={1,2,...}), (1.1)
k=1

which are analytic and p-valent in the open unit disc U = {z:z € C and |z] < 1}. If f and g are analytic in U, we say that f is subordinate to
g, written symbolically as follows:

f<gor f(z) <g(z),

if there exists a Schwarz function w, which (by definition) is analytic in U with w(0) =0 and |w(z)| < 1 (z € U) such that f(z) = g(w(z)) (z €
U). In particular, if the function g(z) is univalent in U, then we have the following equivalence (cf., e.g., [4], [13]; see also [14, p. 4]:

f(z) < g(z) & f(0) =¢(0) and f(U) C g(U).

For functions f(z) € A(p) given by (1.1), and g(z) € A(p) defined by

gR) =2+ Y b7 (peN), (12)
f=1
The Hadamard product (or convolution) of f(z) and g(z) is given by
(f#8)@) =2+ Y arspbrsp? P = (g5 f)(z) (pENiZEU). (1.3)

k=1

For functions f,g € A(p), we define the following differential operator:

Email addresses: mkaouf127 @yahoo.com (M. K. Aouf) r_elashwah@yahoo.com (R. M. El-Ashwah) ekram_008eg @yahoo.com (E. E. Ali)
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D}, (f+8)) = (f*8)() (14)
D) ,(f*8)(z) = Dz,p(f*g)(Z)=(lfl)(f*g)(Z)Jr%(f*g)’(Z) (2 >0),

(1.5)
and (in general)
Dy (f8)() = Dy, (D} (f+8)()
= '+ Z (p—‘—/lk) ak+pbk+pzk+”
f=1 P
(A > 0;peN;neNy=NU{0}). (1.6)
From (1.6) it is easy to verify that
A .
D20 () @) = Dy ()0~ (1= )D] (£ *8)@) (A > 0in € No). (L.7)

The operator D” ( f*g)(z), when p = 1, was introduced and studied by Aouf and Mostafa [3].

We observe that the linear operator Dﬁ_p( f*g)(z) reduces to several interesting operators for different choices of n, A, p and the function

g(2):

(i) ForA =1and g(z) = (or biyp=1), D} ,(f+g)(z) =D}, f(z), where DY is the p-valent Salagean operator introduced and studied
by Kamali and Orhan [9], Orhan and Kiziltunc [17] (see also [2]);

(ii) For g(z) = 1=; (or by = 1), we have

= (pHAk\"
300 =0 pr@) =2+ ¥ (Y o e 0y
k=1
for p = 1, the operator D’} is the generalized Sildgean operator introduced and studied by Al-Oboudi [1]) which in turn contains as special
case the Saldgean operator see [20];
(iii) For n =0 and

d L+ 2k
g =2+Y [7p+ + } &P (A >0;peN;t,meNy),
p+¢

we see that Dg_p( f*8)(2) = (f*8)(z) =I}(A,0)f(z), where I]'(4,¢) is the generalized multiplier transformation which was introduced

and studied by Citag [5], the operator I;,”(?L,E), contains as special cases, the multiplier transformation 121(8) (see Kumar et al. [11] and
Srivastava et al. [23]);

(iv) For n =0,
v ()i (G 207 1.8
B g kﬁs)k'k! a9
(0 €Csi=1,...,q;B; €C\Zy ={0,—1,-2,..};j=1,....5
g<s+1;q,seNy,peN;zeU)
and
0) :F(0+v): 1 (v=0;6 € C* =C\{0}),
v r(6) 060 —1)...(6+v—1) (veN;0 ),

we have Dg_’p( f8)(z) = (f*g)(z) =Hpgs (1) f(z), where Hp 4 (0t ) is the Dziok-Srivastava operator introduced and studied by Dziok
and Srivastava [8]. The operator Hp, 4 (@) contains in turn many interesting operators such as, Carlson and Shaffer linear operator (see
[19]), the Ruscheweyh derivative operator (see [10] ), the Choi-Saigo-Srivastava operator (see [7]), the Cho-Kwon-Srivastava operator (see
[6]), the differeintegral operator (see Srivastava and Aouf [22] and Patel and Mishra [18]) and the Noor integral operator (see Liu and Noor
[12]);

(v) For p = 1 and g(z) of the form (1.8), the operator D)} (f *g)(z) inroduced and studied by Selvaraj and Karthikeyan [21].

For f,g € A(p),A > 0,6 > 0,p € Nand n € Ny, we define a function H(z) by

HE) =Hj ,5(/+)@) = [1=8 (142 =p) | D} (£ +0) () +8 5. D11 (/1 +8)(2). (1.9)

We note that:
(i) For A = 1 and g(z) = 1 in (1.9), we obtain
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Hy

25 (% %)(Z) =G} 5/(2) = G(2) = (1-8)Dy f(2) + 8pD} ™ f(2);

(if) For g(z) = lz—fz in (1.9), we obtain

)@

Hﬁ,pﬁ(f* 1—z

Ky p5/(2) =K()

[1 -5 <1 + % —p)] Dy f(2) +8%Di;1f(z).

(1.10)

(1.11)

In this paper, we investigate some interesting argument inequalities and differential subordinations properties of the function H(z) given by

(1.9). The following lemma will be required in our investigation.

Lemma 1.1. [15], [16] Let a function ¢(z) = 1 +b1z+ ... be analytic in U and §(z) # 0 (z € U). If there exists a point zo € U such that

jarg9(3) < 5B (1 < |ol) and fargd(z0)| = B (0<B<1),

then we have 209 (z0) /¢ (z0) = ikB, where

k> %(a—k%) (wherearg(l)(Zo):?)7
oS —alat ) (where ol =~ 2).

and ((P(Zo))% = +ia (a > 0).

2. Main results

Unless otherwise mentioned, we shall assume in the reminder of this paper that L > 0,6 > 0, p € N,n € Ny and g(z) is given by (1.2).

Theorem 2.1. Let f,g € A(p) and let H be defined by (1.9). If

(@)
’arg (FIZ,?(,IZ)) ’ < gﬁ (zeU),

then

(03, (7+0@) "

arg =, < gﬁ (zeU),
where 0 < <1land0<qg<p.
Proof. Let
(2)
Dn
4(2) = (p—q)! < ;L,,,(f*g)(Z)) -

P! ]

Then ¢(z) is analytic in U, ¢ # 0 for all z € U and ¢ (z) can be written as ¢(z) = 1+bjz+ ... . Since

(=0, r+000) )

we have from (1.7), (1.9) and (2.3) that

(9)

I

—q (D;L"p(f*g)(z» @ +z (Dﬁ,,,(f*g)(z))(qﬂ)

H9(z)

2)| (03, +00@) " +57 (051 r20)(0))

[1—8(1

+2-
[1-8(1+7-7)] (05, r+0)0) " +5 (Z (D%p(f*g)(z)y) "

1820 (D, (0))
(1—8+8q)(D} ,(f%8)(2) @ +82Dj ,(f*8)(2) .

Q2.1

2.2)

(2.3)
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2.4)
It is easy to see from (2.4) and (2.2) that
H@(z) (D) (Fx8)(@)W 2Dy (f*g)(2) T+
o (1-6+68q)—=L = +6 d o
(1-6+0 op! /
= 2 ((p_;;! 9 ¢(z)+ (p_pq)! ((p—q)¢(1) +z2¢9 (Z))
(1-06+06 1) /
= % (¢(Z) + mw (Z)) . (2.5)

Suppose there exists a point zp € U such that

argg(3)| < 5B (2] < )
and

Jarg (o) = 3B

Then, by using Lemma 1.1, we can write that 200 (z9)/¢(z0) = ik and (q)(zo))% = =ia (a > 0). Therefore, if arg¢(z9) = 58, then by
using (2.5), we have

HD (z) p!(1—6+6p>¢<z0)<1+ 5 zw’(zo))

2 (-9 1-5+8p 0(z0)

pi(1-8+3p) ¢ mﬁ/z( s >
= £ - 7 1 kB | .
(p—q)! ae Jrl—5—0—3plB
This shows that

(2) i
arg(HZ_(EO)) = gﬁﬁ—arg(lﬁ-%)

T 1 ok
= = t: ——r
5 Ptan ( 1-6+0p
1 1
> gﬁ, (where k > E(a—i— 5) >1),
which contradicts the condition (2.1). Similarly, if arg¢(z9) = _T"B then we obtain

H9 () b
arg [ ————= | < —=f,
( 3! 2

which also contradicts the condition (2.1). Thus, the function ¢(z) satisfies |arg ¢ (z)| < % (z € U). This shows that

(9)
D (fx8)(z)
arg ( A.p Zpigq Z> <gB (ZEU)

This completes the proof of Theorem 2.1. O

Putting n =0 and A = 1 in Theorem 2.1, we obtain the following corollary.

Corollary 2.2. Let f,g € A(p) and let Q be defined by

0(2) = (1-8)(f*8)(2) +6§ (f+2)(2) - 2.6)
If
(9)
arg (QZZ({IZ)>‘ < gﬁ (zeU),
then
arg(W) <§[3 (zel),

where 0 < B <1and0<gq<p.
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Theorem 2.3. Let f,g € A(p) and let H be defined by (1.9). If

(9)
D (f+8)(2) ‘ _
A.p p! 1+(1 2(1)2
= el). 2.7
=4 (p—q)! 1—z (zel) 27
Then
H9 ()  pl(1—8+8p) 1+ (1 —2a)z
| <p), 2.8
e, =) 1 (el <p) 2.8)
where 0 < g < p,0<a<1,and
8 ok 8
p= 1+(1—5+5p>} T1-6+op 29)
The bound p € (0,1) is the best possible.
Proof. Set
@=(-Ny=+r7—ms G€U)
Yz Y 12 ?’(1_Z)2 )
where Y= % > 0. We need to show that
vipz)| _ 1
Re{ P }>2 (zeU), (2.10)

wherep:(1+7/2)% —yand0<p < 1. Letl%Z:Reie and |z] = r < 1. In view of

14+R%(1—71%) rs !

0 —
cos 2R IR g

we have

1
2Re{M - 5} = 2(1—7Y)RcosO+2yR*cos26 — 1

= RY(1-2 4R ((1-7)(1-r) —297)

R(y(1-r+ 1=y (1—r) 277
= R2(1 727r7r2) >0

(A%

for |z| = r < p, which gives (2.10). Thus the function y has the integral representation

v(pz) _ du(xi (zeU), (2.11)

where 1(x) is a prabability measure on |x| = 1.
Now letting ¢(z) be in the form (2.2), we see that ¢(z) = 1+ bz + ... is analytic in U and it follows from (2.7) that

Regp(z) >a (0<a<l;zelU). (2.12)

Since we can write

it follows from (2.11) that

Re{o(pe) 1020 (pe) ) =re { (V122 ) o0

=Re / d(xz)du(x) p >a (zeU). (2.13)
Ixi=1
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Thus, from (2.3) and (2.13), we conclude that (2.8)) holds. To show that the bound p is sharp we take f,g € A(p) defined by

—a (P2, 0+9)0)"”

fa+(1—a)ﬂ
(P)q P4 - Iz’
Since
(p—9q)! H)(z) 1+z 1+z)
= l—a)—= 1— <
(p)g(1—=064+6p) zP—4 o+ a)l—erﬂ @)z 1-z
1+2yz—22
= o+ (1- =
(1-a) e
for z = —p, it follows that p is sharp. O

Remark 2.4. (i) Puiting A = 1 and g(z) = lz—jz in the above results we obtain the results for function G(z) defined by (1.10).
(ii) Putting g(z) = lz—fz in the above results we obtain the results for function K(z) defined by (1.11).

3. Conclusion

In this paper, three subclasses H;'L‘p s(f*8)(2), GZ sf (z) and K} ot (z) are introduced and certain interesting argument inequalities and
differential subordinations properties are investigated.
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1. Introduction

IVPs arise in any field of science and engineering education such as mechanics, geotechnics, dynamics, chemical kinetics, optimization
and stability, et cetera. There are computing approaches; exact solution method and numerical methods for solving these IVPs. Numerical
methods are both applicable and practical in solving IVPs in many engineering problems because of the existence of complicated problems
in engineering and limitations of exact solution method [1, 2]. Numerical methods yield approximate the solutions of the IVPs, particularly
for the nonlinear [VPs.

This study mainly has focussed on numerical solutions followed by Euler and various Runge-Kutta methods for solving single IVPs. These
methods progress the solution over step starting from some given initial condition at the initial starting point. To simplify the steps in solving
IVPs by RK methods, a tool is used. This tool is a prevalent spreadsheet application, fundamentally called as Excel, also commonly used by
professionals for diverse applications in business [3], engineering and science [4]-[6].

Numerical methods in science and engineering may also be implemented in by use of Excel and also VBA. Use of VBA in explicit form
Visual Basic for Applications programming capability lurks in the background behind Excel handled in the texts like Lilley and Chapra [2, 7].
In addition to this, a series of studies in literature employed spreadsheet as a calculator or solver to focus on design of solver and calculator
for polynomial interpolation [8, 9], solution for systems of linear and nonlinear equations [10, 11], computation of eigenvalues [12, 13],
design of spreadsheet calculator for numerical differentiation [14]-[16], spreadsheet solver for solution of partial differential equations [17],
a spreadsheet solution of system of initial value problems using fourth-order RK method [18], and fourth-order RK method by spreadsheet
[19]. Only the works of Tay et al. [20, 21] include design of spreadsheet calculator for solving system of IVPs using fourth-order RK method
and also solving IVPs using fourth-order RK method with use of VBA programming.

In this study, a spreadsheet solver is designed to solve both IVPs by all RK methods and also exact solution method in the spreadsheet
environment based on VBA programming. Microsoft Excel 2010 and Microsoft Visual Basics for Applications 7.0 are used during this study.
The generation of VBA programming includes three steps. The first step is to develop an user interface input form is designed to acquire the
needed information such as initial conditions of independent and dependent variables for each RK method, step size and number of steps.
Then a general VBA code for any IVPs is created behind the Solve button in user interface input form. The third step is to generate function
files depending on the related IVP and its analytical solution. Once the SOLVE button in user interface input form is clicked, the complete
numerical and analytical solutions of the IVP and corresponding true percent relative error will be computed automatically for each order of
RK method.

Email addresses: cdinckal @cankaya.edu.tr (C. Dinckal)
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Examples are presented from various fields of engineering to demonstrate the merits of this unconventional solver design which shields
the tedious algorithmic implementation details from the user (such as students and educators) and greatly simplifies solving an IVP using
RKSOLVER.

This spreadsheet solver is user-friendly such that users only require to enter initial conditions of independent and dependent variables for each
RK method, step size and number of steps at the first step to compute the complete solution of the IVPs automatically without typing any
commands in the spreadsheet cells. Here, complete solution of the IVPs means solutions from each order of RK method, exact solutions and
also true percent relative errors in terms of comparison with each RK method and exact solutions. So users as educators have an oppurtunity
to elucidate students the differences and similarities that exist between each order of RK method and also exact solutions at the same time and
be able to comment on the solution of any engineering problem including IVPs correctly. There is no need to know the various derivations of
RK methods and memorize the complicated formulations of RK methods. The solver is general and standard for any engineering problem.
The main aim of this paper is to design a tool in other words spreadsheet solver which employes both numerical methods: RK methods with
fifth order and also analytical methods giving exact solutions with automatically calculated true percent relative errors in solving IVPs at the
same time. Therefore this solver is called as IVP spreadsheet solver.

2. Runge Kutta (RK) methods

This section is devoted to solving IVPs of the form given below:

dy

2 = o) @

with the initial value y(xg) = yo for the number of points n within the interval xo < x < x,,. Here x is the independent variable, y is the
dependent variable, f is the function of derivation (in other words slope) and 4 is the fixed step size. n, the number of steps can be found as
(xn —x0)/h [1].

1) First-Order RK Method

Euler’s Method:
Yit1 =yi+hk; (2.2)
where k; = f(x,y)
2) Second-Order RK Methods
a) Heun’s Method:
k1 +k;
yiet = yith(F5) 23)
where ky = f(x; + h,y; + hky)
b) Midpoint (Improved Polygon) Method:
Vi1 =Yi+hk; (24)
where ky = f(x; + 2, y; + 42)
¢) Ralston’s Method:
ki + 2k
yier =it (F5 ) @5)
where ky = f(x; + %,yi-i- 3’%)
3) Third-Order RK Method
ky+4ky +k
Yiet =it (F— =)k 2.6)

where ky = f(xi+ 8,y +841), k3 = f(x;+h,yi — kih+ 2kah)

4) Fourth-Order RK Method

ki +2ky +2k3 +ky

6 ) 2.7)

Yig1 =Yi+(
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Function f(x, y0, h)
f=y0/0.2254
End Function

Table 1: Function module for stress-strain relationship IVP

Function fexact(x, y0, h, i)
fexact = Exp((h * i) / 0.2254)
End Function

Table 2: Function module for exact solution of stress-strain relationship
where ky = f(xi+ 8.y + 80, k= foa+ B+, k= fOu+hyi+ksh)
5) Fifth-Order RK Method

Tk + 32k3 + 12ky + 32ks + Tkg
90

Yir1 =yi+( )h (2.8)

where ky = f(xi+ %3+ 9%), k= fla+5y+%+%), k=fo+4yi—% +kh), ks =flu+3yi+ 200+ 24,
and kg — £(xi-+hyyi — B4 4 2gh 4 1260 120h . Boh

It should be noted that k’s are recurrence relationships. In other words, kjappears in the equation for k which appears in the equation for k3
and so on. Since each £ is a functional evaluation, this recurrence makes RK methods efficient for computations [1].

In this work, fifth-order RK method yields the superior results in terms of less error than the other order of RK methods. As the order of RK
method increases, convergence to the exact results also increases in terms of less errors.

3. Numerical examples

Numerical examples are presented from various engineering applications.

1) Geotechnical Engineering

To mIVPI the the behavior of soil under the effect of load, it is required to formulate the stress and strain relationship and this is achieved by
the following IVP:

do o

— = 3.1

de cc @D
The exact solution for equation (3.1) is

o =eic (32

where o is the stress, € is the strain of soil and c¢ is the compression index and it is 0.2254 for this soil type. Initial conditions are, &; is 0 for
independent variable and oy is 1 kPa for dependent variable. Final € is 1.2 and step size (h) is 0.1. This means that number of steps (n) is 12.
At first, for each numerical example, function modules are prepared for both IVP and exact solution of it respectively. These modules change
from example to example. The functions for IVP and exact solution are illustrated in the following tables.

Here x is the independent variable, yO is the initial dependent variable, i is the counter of steps.

Then equations (2.2) to (2.8) are applied to obtain the solutions by each order of RK method respectively. Besides exact solution of the IVP
with true percent relative error for each RK method are also incorporated in the computations.

Finally IVP spreadsheet solver is applied which is discussed in the next section to obtain the complete solutions.

2) Mechanical Engineering

To determine the change in velocity in other words acceleration of a free-falling body to the forces acting on it with considering the air
resistance, the following IVP is used:

dv c
—g_ = 33
PTERE A (3.3)

The exact solution for equation (3.3), which also gives velocity of the object, is

v(0) = 21—l (3:4)
where v is the velocity (dependent variable y), ¢ is the time in seconds (indepedent variable x), g is the gravitational constant, 9.8 m/s?, m is
the mass of the object, 68.1 kg and c is the drag coefficient, 12.5 kg/s. Initial conditions are, #y is O s and vg is O m/s [1]. Final value of time
is 5 s and step size (h) is 0.5. This means that number of steps (n) for computation is 10.

At first, for this example, function modules are written for both IVP and exact solution of it respectively. These functions are illustrated in
Table 3 and Table 4 respectively.
Here x is the independent variable corresponding to time, y0 is the initial dependent variable corresponding to velocity.
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Function f(x, y0, h)
f=9.8-((12.5/68.1) * y0)
End Function

Table 3: Function module for exact solution yielding velocity

Function fexact(x, y0, h,i)
fexact = ((9.8 * 68.1) / 12.5) * (1 - Exp((-12.5/ 68.1) * (h * 1)))
End Function

Table 4: Function module for exact solution yielding velocity

Like geotechnical engineering example, equations (2.2) to (2.8) are employed to find the solutions by each order of RK method respectively.
Besides exact solution of the IVP with true percent relative error for each RK method are also inserted in the computations.

Finally IVP spreadsheet solver is used which is mentioned in the next section to obtain the complete solutions.

3) Chemical Engineering: Mixture Problem

The mixture problem related to a tank containing 1000 L of brine with 15 kg of dissolved salt. Pure water enters the tank at a rate of 10
L/min. The solution is kept thoroughly mixed and drains from the tank at the same time. In this problem, it is required to determine the
amount of salt after t minutes in this tank. For this reason, the following IVP is employed:

dA A
= __Z 3.5
dt 100 35)
A(t)  is the amount of salt after t minutes in tank, also the dependent variable is obtained by the following exact solution:
A(t) = 15¢(70) (3.6)

Initial conditions are, g is 0 min and A is 15 kg. Final value of time is 0.96 min and step size (h) is 0.02. Number of steps (n) for computation
is 49.

At first, function modules are formed for both IVP and exact solution of the problem respectively. These functions are displayed in Table 5
and Table 6 respectively.

Here x is the independent variable corresponding to time, y0 is the initial dependent variable corresponding to amount of salt after t minutes
in the tank.

Then, equations (2.2) to (2.8) are used to determine the solutions by writing codes for each order of RK method respectively. These codes are
standard and valid for any scince and engineering problem including IVP. So there is no need to write cIVP for various problems. Besides
exact solution of the IVP with true percent relative error for each RK method are also included in the computations. True percent relative
error is in the following form:

e ExactResult — ApproximateResult
= ExactResult

x 100 (3.7)

Where Exact Result in other words true result represents the solution obtained by analytically. Approximate Result corresponds with the
corresponding solution obtained by numerical methods, any order of RK methods.
Finally IVP spreadsheet solver is employed which is argued in the next section to obtain the complete solutions.

4. IVP spreadsheet solver

Using this IVP spreadsheet solver leads to a macro named RKSOLVER which solves the whole IVP at once completely.

The general procedure for obtaining complete solution of an IVP is composed of some steps. These steps are standard and applicable for any
type of IVP.

The first step is to design an user interface input form (userform) called as UserForm4 to enable users to enter required data for solving an
IVP completely. The standard form of UserForm4 for any problem is illustrated in Figure 4.1.

The second step is to generate a new tab name as [VP Solver with RKSOLVER macro including codes for solving IVP by both numerically
(by each order of RK method) and analytically (gives exact solution). RKSOLVER also provides user to compute true percent relative error
for each RK method.

Figure 4.2 illustrates the standard IVP Solver tab with RKSOLVER button. One more variation is to add a button assigned RKSOLVER
macro in the spreadsheet. So user is able to run the macro simply by clicking this button. It is sufficient to start the complete solution
procedure of IVPs.

Function f(x, y0, h)
f=-y0/100
End Function

Table 5: Function module for IVP of the problem
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Function fexact(x, y0, h, i)
fexact = 15 * Exp(-(h * i) / 100)
End Function

Table 6: Function module for exact solution of the problem

2 Microsoft Visual Basic for s - design] - sm - e
i#8% File Edit View Insert Format Debug Run JTools Add-Ins Window Help

B &= - Fa - o @ (] B O @
| UserFormd

: Define Inputs.

Initial value of Independent
V. :

Initial valus of Dependent Variables:
l— For Euler's Method
T For Heun's Method
For Midpoint's Method

For Ralston's Method

For Third Oder Runge Kutta Method

Figure 4.1: The standard userform for all examples

I A Samples - Microsor xce T T——
File Home  Insert  Pagelayout  Formulas  Data  Review  View  Developer  Developer | ODESolver
o

Add-Ins Macros RKSolver

New Group
[ 610 - k|
A B & D E IF G H 1 i
k1 k2_Heun k2_Midpoint, Third and Fourth order k2_Ralston's  k2_fifth order  k3_Third order  k3_Fourthorder k3_Fifth order

RKSOLVER

1
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Figure 4.2: The standard IVP Solver tab with RKSOLVER button
TiH 9 o - T T —_—_—— |

“_Home Insert Page Layout Formulas Data Review View Developer Developer QDE Solver '

¢ H &

Add-Ins Macros RKSolver

New Group
\ 610 2 k|

A B c ) E F [ H i K L M N
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" K1 K2Heun k2 Midpoint, ThirdandFourthorder k2 Relston's Kfithorder K3 Thirdorder k3 Fouthorder K3 Fithorder k4 Fouthorder W Fithoder K& 46

S S il = = T N B Y o e o v

Figure 4.3: The standard blank spreadsheet image with k’s (recurrence relationships) titles
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— — — — 1
examples - Microsoft Excel =al0)
e Layout Formulas Data Review View Developer Developer ODE Solver [~) @ =]
[ 3 a R s T u v W X [ z a4 26 AT
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Figure 4.4: The standard blank spreadsheet image with RK results, exact results and error titles

B Microsoft Wisual Basic for Applications - ex_geotechical engineering.xism - [UserFormd (Userformi] e
{88 File Edit View Insert Format Debug Run Tools Add-Ins  Window Help

EEl 6 - bl % o G @ » om @k S S O @

erForma
Define Inputs

| 1nitial value of Independent | Number of Steps (n): Il Step Size (h): e
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! Initial value of Dependent Variables:

S i ForEuler's Method
[ rerHeunsmethod
{ [ Formdpomtsmethed

: For Ralston's Method

: Iii For Third Oder Rungs Kutta Method

I Feor Fourth Oder Rungs Kutta Method

© For Fifth Oder Runge Kutta Method

Figure 4.5: Userform for geotechnical engineering example

Then the only thing is to specify sufficient place in spreadsheet cells to make macro fill them with solutions for any IVP examples. For this
reason, the titles for k’s, RK results, exact results and error titles are written as is the case with Figure 4.3 and Figure 4.4 respectively.

The working procedure for IVP solver namely RKSOLVER is described for each numerical examples (geotechnical engineering, mechanical
engineering and chemical engineering). The steps for geotechnical engineering example are illustrated in the Figure 4.5- Figure 4.11.

The first step is to call userform by clicking run in the toolbar or simply clicking RKSOLVER button. The image of this userform for
geotechnical engineering example is given in Figure 4.5. This userform is standard for any IVP example.

Due to the fact that initial conditions are different for all IVPs, the filled userform is distinctive for all problems. As is the case with
geotechnical engineering example. Userform is filled with initial conditions of the problem in Figure 4.6. Then by clicking SOLVE button in
UserForm4; k’s, numerical solutions obtained form all RK methods, exact solutions (true solutions) and true percent relative errors can be
obtained and displayed as the spreadsheet images in Figure 4.7 to Figure 4.11 respectively.

To Figure 4.10 and Figure 4.11, fifth-order RK method gives the best solution in terms of the least error and best convergence to exact
solutions.

Similarly for mechanical engineering, userform is invoked by clicking RKSOLVER in Figure 4.12. Then this form is filled with necessary
data as it is shown in Figure 4.13.

By clicking the SOLVE button in userform, computations are performed and given in the spreadsheet images of Figure 4.14 to Figure 4.18.
To Figure 4.17 and Figure 4.18, the worst solution is obtained by Euler’s method while fifth-order RK method is the best one with the least
error and best convergence to the exact solution.

For mixture problem, userform is called by clicking RKSOLVER button in spreadsheet. Figure 4.19 illustrates this process.

Then this userform is filled by entering initial conditions as given in Figure 4.20. Clicking the SOLVE button in userform leads to complete
solution of the problem. These solutions are displayed in Figure 4.21 to Figure 4.25.

To Figure 4.24 and Figure 4.25, all RK methods give quite well solutions with convergence to exact results in terms of less errors.

5. Conclusion

An IVP solver with use of RK methods including also the highest order; fifth order has been generated by VBA for the first time in literature.
Emphasis was on all types of RK methods usable simultaneously and the solver generated applicable to IVPs for science and engineering
problems.
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Figure 4.8: Computation results for each RK method for geotechnical engineering example
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Figure 4.9: Computation results for exact results (true results) and true percent relative errors of each RK method for geotechnical engineering example
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Figure 4.11: The spreadsheet image of full computation results for geotechnical engineering
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Figure 4.14: Computation results for k’s for mechanical engineering example
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Figure 4.15: Computation results for each RK method for mechanical engineering example
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Figure 4.16: Computation results for exact results (true results) and true percent relative errors of each RK method for mechanical engineering example
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Figure 4.17: Graphical display of the computation results for mechanical engineering example
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Figure 4.20: Filled userform for mixture problem
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This spreadsheet solver is so user-friendly that users (students, educators and also beginner users of Excel and VBA) only require to click
RKSOLVER button and enter relevant information in userform to perform all computations for the complete solution of IVPs efficiently
without typing any commands in the spreadsheet.

It is hoped that this spreadsheet solver can be used as a marking scheme for users who need the complete solutions of IVPs numerically and
analytically with comparison of them in terms of error at the same time. Lastly, it is hoped that this spreadsheet solver could serve as not
only a numerical IVP tool but also an analytical IVP tool with a comparison of them that is convenient for the community of engineering
educators and students.
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ential equations with time-fractional derivative. This document also includes illustrative
examples show us how to apply this method, we also show the interest of combining these
two methods is the speed of the calculates the terms, and not calculating the Lagrange
multipliers.

1. Introduction

The nonlinear differential equations are a type of equations which are difficult to solve with respect to linear differential equations. Therefore,
we find that a lot of researchers are working to discover new methods to enable us to solve this kind of equations. These efforts made,
which is still ongoing, resulted in the promotion of this research in many methods, among them, we find the homotopy analysis method,
Adomian decomposition method, variational iteration method [7, 8, 9] and homotopy perturbation method, which have become known
in a large number of researchers in this area. A new option emerged recently, includes the composition of Laplace transform, Sumudu
transform, natural transform or Elzaki transform with these methods. Among wich are the Laplace homotopy analysis method [15], homotopy
analysis Sumudu transform method [18], modified fractional homotopy analysis transform method [11], Adomian decomposition method
coupled with Laplace transform method [16], Sumudu decomposition method for nonlinear equations [5], Elzaki transform decomposition
algorithm [13], natural decomposition method [14], variational iteration method coupled with Laplace transform method [4], variational
iteration Sumudu transform method [3], Elzaki variational iteration method [21], homotopy perturbation transform method [17], homotopy
perturbation Sumudu transform method [10], homotopy perturbation Elzaki transform method [12].

The motivation of this article is to make a change on the method proposed by Elzaki and suggested in [21], and then extend it to solve
nonlinear partial differential equations with time-fractional derivative.

The present paper has been organized as follows: In Section 2 some basic definitions of ELzaki transform are montioned. In section 3 we
will propose an analysis of the modified method. In section 4 it was presented three examples of application of this method (FEVIM). Finally,
the conclusion follows

2. Basic definitions

2.1. Fractional calculus

In this section, we present some basic definitions and properties of fractional calculus [1, 6], and we focus specifically on the definitions of
the following concepts: Riemann-Liouville fractional, Caputo fractional derivative, some important results, definition of Elzaki transform
and Elzaki transform of fractional derivatives which are used further in this paper.

Email addresses: djeloulz@yahoo.com (D. Ziane), Tarig.alzaki@gmail.com (T. M. Elzaki), mountassir27 @yahoo.fr (M. H. Cherif)
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Definition 2.1. Let Q = [0, f] (—o0 < a0 < B < +o0) be a finite interval on the real axis R. The Riemann-Liouville fractional integral IP h
of order p € R (p > 0) is defined by

_ b7 h()dd
(IPh)(T) = r(p)/o R 7>0,p>0, @1
(°n)(7) = h(o),

where I'(x) = [ v le=Tdt, x > 0, is called the gamma function of Euler.

Theorem 2.2. Let p > 0 and let m = [p]+ 1. If h(T) € AC™ [, B], then the Caputo fractional derivative (CDg 1)(7) exist almost evrywhere
on [aB].
Ifp ¢ N, (°DRh)(t) is represented by

1 T pm)(O)d
DI = iy | o 22)

where D = %andm =[p]+1.
Proof. (see [1]). O

Remark 2.3. The time-fractional derivative in the Caputo’s sense, is given by

: 3Pw(,7)
cnP _ ’
( DTW)(%7T) - an
1t pyk—p—19Pw(sl) g
Mgyl (Fme) e ks p <k @3
2D, p—k,

where k € N* and p € RT.
(1) Let p > 0 and let m = [p]+ 1 form ¢ N,m = p form € N. If h(t) € AC" |, B], then

m=1 p(j) )
(I8,°D 1)(%) = h(z) - ;) . j,-.(o) v
&

(2) (I§ x*1)(z) = %rﬂp*l, p>0,1>0.

(3) (°D§, P+ 1)(1) = %M*ﬁ*l, >0, >m.

(4) (CD8+C)(T) =0, where C is constant.
2.2. Definitions of Elzaki transform

A new integral transform called Elzaki transform [20] defined for functions of exponential order, is proclaimed. They consider functions in
the set G defined by

G= {h(T) : 3Q7 P1,D2 >07 |h(T)| < Qegv ifTE (_1)i>< [07 oo)}

Definition 2.4. If h(7) is function defined for all T > 0, its Elzaki transform is defined by E[h]

E[h(t)]=T(s) = s/:h(r)e—fdr. (2.4)

Theorem 2.5. Elzaki transform amplifies the coefficients of the power series function

h(t) = i a,T", 2.5)
n=0

on the new integral transform ”Elzaki transform”, given by

E[h(t) =T() = Y nla,2. (2.6)
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Theorem 2.6. Let h(t) be in G and Let Ty, (v) denote Elzaki transform of nth derivative h") (t) of h(7), then for n > 1,

n—1
Ty(v) = Tv(nv) = Y v R o). 2.7
j=0

By using the integration by parts, Elzaki transform of partial derivative is given as

E(2520) = 17(,v) — vh(56,0),
@.8)

J12 T

E (92}1(;{,‘5)> _ ‘}TT(%, V) _ h(%, 0) _ vahf_;:,o)

2.3. Elzaki transform of fractional derivatives

To give the formula of Elzaki transform of Caputo fractional derivative, we use the Laplace transform formula for the Caputo fractional
derivative [6]

n—1

L{ (DER)(t);u} = uP F(u) = Y 21 f0(0),
i=0
where n—1<p <n,neN*.
Theorem 2.7. [19] Let G defined as above. With Laplace transform F (u), then the Elzaki transform T (v) of h(7) is given by
1
T(v)=vF(-).
() =vF ()

Theorem 2.8. Suppose T (v) is the Elzaki transform of the function h(t) then

n—1
ECEDP(@)0) = T Y im0 o), 29)
i=0
Proof. (see [2]). O

3. Fractional Elzaki Variational Iteration Method (FEVIM)

The work that we will do in this paragraph, is to make a change to the method proposed in [21], and we extend to solve nonlinear partial
differential equations of order p, (n—1 < p <n,n=1,2,...). For this cause, we consider a general nonlinear partial differential equation
with time-fractional derivative

“DRZ(3,7) + RZ(,7) + NZ(¢,7) = f(3,7), (€B))
subject to the initial conditions
9" Z(5,7)
{7(%",1 } T gn—1(50), (3.2)

where CDQ = % is the Caputo fractional derevative, R is the linear differential operator, N represents the general nonlinear differential

operator, and g(¢, ) is the source term.
Applying Elzaki transform on both sides of (3.1), we obtain

E [D?Z(5¢,7)] +E[RZ(5,7)| + E [NZ(5,7)] = E [f (52,7)]. (3.3)

Depending on the properties of Elzaki transform, the equation (3.3) becomes
n—1
E[Z(5,7)] = Z Vit2gi(5¢) +VPE [f(5¢,7)] — VP E [RZ(52,T) + NZ(¢,7)] . 3.4
i=0

Operating with the inverse Elzaki transform on both sides of (3.4), we obtain

Z(3,7) = K(5,7) —E" ' (WE[RZ(5,7) + NZ(5¢,7)]). (3.5)

where K (¢,7) = Y1 viT2g;(3¢) + VP E [ f(52,7)].
Applying % on both sides of (3.5), we have
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IZ641) 9 bt (0 E Rz () + N2, ) — 2K

According to the variational iteration method [8], we can construct a correct functional as follows

=0. (3.6)

T[0Zw D oK
Zon1(56,7) = Zn(5, r)f/o [a—c+xE NOPERZy +NZy) ~ G| dC. 3.7)
Or alternately
Zyi1(54,7) = K(56,7) = E~ (WE [RZyn(5,7) + NZn(,7))).. (3.8)

Recall that Z(3¢,T) = lim Z,, (5, 7).

m—eo
According to the preceding limit, we can obtain the exact solution if it exists, or we obtain an approximate solution for the considered
equation.

4. Applications

In the following examples, we’ll apply the method proposed in the previous paragraph to solve nonlinear time-fractional partial differential
equations.

Example 4.1. First, we consider the nonlinear time-fractional partial differential equation

‘DRZ+77,-7,=0, 0<p<I1, “.1
subject to the initial condition
Z(52,0) =3 +1. 4.2)
If p =1, we obtain
Zi+272,,—Z,,=0. (4.3)
The exact solution of (4.3), is
»
Z(, 1) =14 —. 4.4
(s,7) =1+ e 4.4)

According to (3.8), we can construct the folowing formula

Zyi1(56,0) = e+ 1= E~ (WE [(Zn —1) (Zn)s]) - 4.5)
Using the iteration formula (4.5), we get

Z()(%7T) =x+1,

Z1(36,7) = 1+%7%r<;7’;1),

_ i i L(2p+1) 7
Zy(36,7) = L 3¢ = st 509y + 2 Fp 1) ~ # T (p4T) TP HT) “)
P P .
Z3(5,7) = 1+ 30— %F(gﬂ) +2%1_(27p+1> — a1 2P + ap 3T — a3 3¢7P

+ay 2t — a53TP

where
_ 4 1 L(2p+1) _ 4 20 (2p+1) L(3p+1)
ar= [r<2p+1> + ﬁ(pﬂ)] TGpt+1) 2= [r<p+1>r<2p+1> + r2<p+1>r<3p+1>] Tap+1)’
_ 2I(2p+1) 4 I'(4p+1) _ 4 I'(5p+1)
a3 = [F3(p+1)1"(3p+1) + 1"2(2p+1)} TGp+1)’ %= i nrGerl) < Tep+l)’
2(2p+1) L(6p+1)

45 = T+ )2 Gp+) < T(7p+1)"
Recall that, the exact solution of Eq.(4.1) is calculated by

Z(5¢,7) = lim Z, (5, 7).

Mm—oo

From (4.6), the approximate solution of (4.1), is
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z 1 A
Gat) = Iy Y2 T )

+a4%‘r6p —a5%177p (XN

—aj 3TP + a2%14p —aj 7P

and in the special case p =1, is

2 1 1 1
7 -1 1— 2 B3 c tos e LT )
(5,7) +%< T+1°—1T +3r 37 +91 &’ +

When m — +oo, we get the following exact solution

Z(3,7) =1

R

+ 4
1+71

which is an exact solution to the nonlinear partial differential equation.

0 0.05 0.10 0.15 020
3

—— 2pha=0.97 —— Alpha-1

Exact]

(a) (b) (©)

Figure 4.1: (a) Exact solution, (b) The approximate solution in the case p = 1, (c) The exact solution and approximate solutions to (4.1) for different values of
p when 3 = 1. From (c) noted that the graphics have changed his position based on p values, if p took values closer to 1, we see that the graph corresponding
to this value is barely graphical representation of the exact solution.

Example 4.2. Next, we consider the nonlinear time-fractional partial differential equation

2
CD?Z+%ZZ%:O, >0, %#0, 1<p<2, 4.7)

with

1
Z(5,0) =0, Z(5,0)=—. (4.8)
>
If p =2, we obtain
2
ZH—;ZZ%:O, >0, %##0 4.9)
The exact solution of (4.9), is
T
Z(5,7) = tan(;). 4.10)
According to (3.8), we can construct the iteration formula as follows
T 1 2
Zpi1=——E " \VE | ZZw(Zn)s| | - 4.11)
> T

Using the iteration formula (4.11), we obtain
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Zo(3,7) = 7,
x
_ T, 2 1t
Z1(5,7) = Py 3B TpT2)
2 gpt! 16 %! 24r'(2p+2) g+t

T JLA—
L(7) = S+ o) A TTopr) A T R Ge)

The approximate solution is giveb by

T 2 gl 16 12l

T+ 58 "Tapr2)
24T (2p+2) P!

IZ(p+2)L(3p+2) s’

Z(5,7)

4.12)

As p — 2, we obtain

And in closed form, is given by

we get the exact solution of (4.7) when p =2.

0
iﬁ'@‘,:.:

&5

S oo

0,952078,0506 245

4 o:O::‘o’o". o %o 04
5

54 258455

LA
ST

St

e

—— Mpha=1.85 —— Alpha=2 Exact

(@) (®7) ()

Figure 4.2: (a’) Exact solution, (b’) the approximate solution in the case p =2, (c’) The exact solution and approximate solutions to (4.7) for different
values of p when s = 2. From (c’) noted that the graphics have changed his position based on p values, if p took values closer to 2, we see that the graph
corresponding to this value is barely graphical representation of the exact solution.

Example 4.3. finally, we consider the nonlinear time-fractional partial differential equation

Dz [(20)] =3r 2<p<s, (4.13)
8 x 2
with
1, 1 3
Z(5,0) = EM , Zz(5,0) = 5% , Zrr(5,0)=0. (4.14)
If p =3, we obtain
3 13
Zee— 3 [(ZW) L =>r. (4.15)

According to (3.8), we can construct the following iteration formula

1 1 5 3 ¥l ifp 3 5
Zm+1_—5%+§%r+5m—E vE—g[(Zm%%)L{ . (4.16)
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Use the (4.16) to get

Zo(%,r):f%%2+%%3r,
+2
Zl(%‘r):—%%2+%%3T+6%r(1";+3),
+2
Zz(%r):_%%z%,{%%%%, (4.17)
2
Z3(%7r):—%z2+%%31+6%$:_3),
The approximate solution in a series form, is given by
1, 1 4 TP+2
Z(,7) =—= =T+ 06— 4.18
(5,7) 5% +3% + %F(p+3) (4.18)

As p — 3, we obtain the following exact solution

1 1 1
Z(%, T) = %%75 + §H3T— 5%2

That gives the exact solution of (4.13) when p = 3.

03 1 13 2 25
¢

—— Alpha=2.70 —— Alpha=2 90 —— Alpha=2 50
Exact

(@) (®”) (€7

Figure 4.3: (a”) Exact solution, (b”)the approximate solution in the case p = 2.90, (c¢”’) The exact solution and approximate solutions to (4.13) for different
values of p when s = 1. From (c”) noted that the graphics have changed his position based on p values, if p took values closer to 3, we see that the graph
corresponding to this value is barely graphical representation of the exact solution.

5. Conclusion

Coupling of Variational Iteration Method and Elzaki Transform, to be an effective method for solving nonlinear partial differential equations
with time-fractional derivative. The proposed algorithm is suitable for such problems and is very efficient. From the results, it is clear that
the FVIETM yields very accurate approximate solutions using only a few iterates. It provides a solution as a more realistic series, which
converges rapidly to the exact solution.
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