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Approximation by Baskakov-Szász-Stancu Operators
Preserving Exponential Functions

MURAT BODUR*, ÖVGÜ GÜREL YILMAZ, AND ALI ARAL

ABSTRACT. The purpose of this paper is to construct a general class of operators which has known Baskakov-
Szász-Stancu that preserving constant and e2ax, a > 0 functions. We scrutinize a uniform convergence result and
analyze the asymptotic behavior of our operators, as well. Finally, we discuss the convergence of corresponding
sequences in exponential weighted spaces and make a comparison about which one approximates better between
classical Baskakov-Szász-Stancu operators and the recent operators.

Keywords: Baskakov-Szász-Stancu operators, Exponential functions, Quantitative results, Weighted approximation.

2010 Mathematics Subject Classification: 41A25, 41A36.

1. INTRODUCTION

Approximation theory is one of the crucial subjects that is used by researchers. It is separated
into many fields one of which is positive linear operators that play a key role in approximation
theory. It has been the inspiration for so many mathematicians from the past. For years, many
publications related to the approximation theory has made and has still being studied, too.

One of the remarkable work has been done related to the positive linear operators from King
[16] in 2003. King described the modified Bernstein operators which preserve for ei(t) = ti,
i = 0, 2 test functions and examined their approximation properties. He accomplished to take
an attention in a short time from researchers who perform approximation theory. Since that
time, lots of researchers have put forth many relevant studies on this issue. Numerous articles
can be given interrelated with Kings research ( [4–7], [9], [18]).

In 2016 Acar et al. [1] investigated approximation properties of Szász-Mirakyan operators
which preserving constant and e2ax, a > 0. In that paper the rate of convergence of this gener-
alization was obtained by means of the modulus of continuity. They also presented and proved
theorems related on shape preserving properties.

Later this idea was applied to some other well known linear positive operators, such as
Szász-Durrmeyer [8], Szász-Mirakyan-Kantorovich [13], Baskakov-Szász-Mirakyan [12], Philips
Operators [14], Baskakov Operators [19] and the subject is still continue to be relevant.

In this study, inspired by the main paper [1], we constructed a new family of linear positive
operators by using Baskakov-Szász-Stancu operators which is based on preserving exponential
functions.
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2. CONSTRUCTION OF THE OPERATORS

For f ∈ C[0,∞) and k, n ∈ N the Baskakov-Szász type operators was proposed by Gupta
and Srivastava [?] as,

Mn(f ;x) = n

∞
∑

k=0

(

n+ k − 1

k

)

xk

(1 + x)n+k

∞
∫

0

e−nt (nt)
k

k!
f(t)dt.

In 2015, Mishra et al. considered Stancu type generalization of Baskakov-Szász operators
[17] like as,

(2.1) Bα,β
n (f ;x) = n

∞
∑

k=0

(

n+ k − 1

k

)

xk

(1 + x)n+k

∞
∫

0

e−nt (nt)
k

k!
(t)f(

nt+ α

n+ β
)dt.

Here, two parameters α and β satify the condition 0 ≤ α ≤ β. We consider the following
modified form of Baskakov-Szász-Stancu operators

(2.2) Mα,β
n (f ;x) = n

∞
∑

k=0

(

n+ k − 1

k

)

(θn(x))
k

(1 + θn(x))n+k

∞
∫

0

e−nt (nt)
k

k!
f(

nt+ α

n+ β
)dt.

We interest in investigated operators preserving e0 and e2ax. Suppose these operators (2.2)
preserve e2ax, then

Mα,β
n (e2at;x) = n

∞
∑

k=0

(

n+ k − 1

k

)

(θn(x))
k

(1 + θn(x))n+k

∞
∫

0

e−nt (nt)
k

k!
e2a(nt+α)/n+βdt

= ne2aα/n+β
∞
∑

k=0

(

n+ k − 1

k

)

(θn(x))
k

(1 + θn(x))n+k

nk

k!

∞
∫

0

e−nt(n+β−2a)/(n+β)tkdt

=
n+ β

n+ β − 2a
e2aα/n+β

∞
∑

k=0

(

n+ k − 1

k

)(

(n+ β)θn(x)

n+ β − 2a

)k(
1

1 + θn(x)

)n+k

=
n+ β

n+ β − 2a
e2aα/n+β

(

θn(x)
(

1− n+ β

n+ β − 2a

)

+ 1

)−n

.

Taking into account Mα,β
n (e2at;x) = e2ax, then we can find without hesitation

(2.3) θn(x) =
n+ β − 2a

2a

(

1−
(

n+ β − 2a

n+ β
e2a(x(n+β)−α)/n+β

)−1/n)

.

Seemingly the function which is demonstrated θn(x) satisfies the situtation

θn(x) =

(

Mα,β
n (e2at;x)

)−1

◦ e2ax.

3. AUXILIARY RESULTS

In this part, we shall present the moments and the central moments of the operators (2.2)
which will be necessary to prove our main results.
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Lemma 3.1. Let ei (t) := ti, i = 0, 1, 2. Then the Baskakov-Szász-Stancu operators Mα,β
n satisfies

Mα,β
n (e0;x) = 1,

Mα,β
n (e1;x) =

nθn(x) + 1 + α

n+ β
,

Mα,β
n (e2;x) =

n(n+ 1)

(n+ β)2
(θn(x))

2 +
4n+ 2nα

(n+ β)2
θn(x) +

2 + 2α+ α2

(n+ β)2
.

Lemma 3.2. Let µα,β
n,r (x) = Mα,β

n ((t − x)r, x), r = 0, 1, 2, .... Then by considering Lemma (3.1), we
have

µ
α,β
n,0 = 1,

µ
α,β
n,1 =

nθn(x) + 1 + α

n+ β
− x,

µ
α,β
n,2 =

n(n+ 1)

(n+ β)2
(θn(x))

2 +
4n+ 2nα

(n+ β)2
θn(x) +

2 + 2α+ α2

(n+ β)2
− 2x

nθn(x) + 1 + α

n+ β
+ x2.

Respectively, limits hold

lim
n→∞

n

(

nθn(x) + 1 + α

n+ β
− x

)

= −ax(x+ 2)

and

lim
n→∞

n

(

(nθn(x) + 1 + α

n+ β
− x

)2
+

(nθn(x)

n+ β

)2
+ 2nθn(x) + 1

)

= x(x+ 2).

4. MAIN RESULTS

In this main section, we would like to show that the constructed operators are meticulously
discussed linked with a uniform convergence result and a quantitative estimate. We debate the
convergence of corresponding sequences in exponential weighted spaces.

Here, we will take C∗[0,∞) the class of real-valued continuous functions f , possessing finite
limit for x sufficiently large and equipped with the uniform norm.
Theorem A. [15] Take into account a sequence of positive linear operators Ln : C∗[0,∞) → C∗[0,∞)
and set

||Ln(e0)− 1||[0,∞) = α∗
n,

∣

∣

∣

∣Ln(e
−t)− e−x

∣

∣

∣

∣

[0,∞)
= β∗

n,

∣

∣

∣

∣Ln(e
−2t)− e−2x

∣

∣

∣

∣

[0,∞)
= γ∗

n,

then for each f ∈ C∗[0,∞)

||Ln(f)− f ||[0,∞) ≤ α∗
n ||f ||[0,∞) + (2 + α∗

n)ω
∗(f ;

√

α∗
n + 2β∗

n + γ∗
n).

where the modulus of continuity is defined as

ω∗(f ; δ) := sup
x,t≥0

|e−x−e−t|≤δ

|f(t)− f(x)|.

Now, we can apply Theorem A for Baskakov-Szász-Stancu operators.
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Theorem 4.1. For each function f ∈ C∗[0,∞), we possess
∣

∣

∣

∣Mα,β
n f − f

∣

∣

∣

∣

[0,∞)
≤ 2ω∗(f ;

√

2β∗
n + γ∗

n),

where
∣

∣

∣

∣Mα,β
n (e−t)− e−x

∣

∣

∣

∣

[0,∞)
= β∗

n,

∣

∣

∣

∣Mα,β
n (e−2t)− e−2x

∣

∣

∣

∣

[0,∞)
= γ∗

n.

Proof. According the definition of the operators, since they preserve the constants, we reach
∣

∣

∣

∣Mα,β
n (e0)− 1

∣

∣

∣

∣

[0,∞)
= α∗

n = 0

and for f(t) = e−t, we get

Mα,β
n (e−t;x) = n

∞
∑

k=0

(

n+ k − 1

k

)

(θn(x))
k

(1 + θn(x))n+k

∞
∫

0

e−nt (nt)
k

k!
e−(nt+α)/n+βdt

=
n+ β

n+ β + 1
e−α/n+β

∞
∑

k=0

(

n+ k − 1

k

)(

(n+ β)θn(x)

n+ β + 1

)k(
1

1 + θn(x)

)n+k

=
n+ β

n+ β + 1
e−α/n+β

(

θn(x)

n+ β + 1
+ 1

)−n

.(4.4)

Using Maple to make a calculation of the right hand side which is found (4.4), we observe

Mα,β
n

(

e−t;x
)

= e−x +
e−x(2a+ 1)(x2 + 2x)

2n
+O(

1

n2
),

∣

∣

∣

∣Mα,β
n (e−t)− e−x

∣

∣

∣

∣

[0,∞)
=

2(2a+ 1)

ne2
+

2a+ 1

ne
+O(

1

n2
) = β∗

n.

Also, for f(t) = e−2t, we have

Mα,β
n (e−2t;x) = n

∞
∑

k=0

(

n+ k − 1

k

)

(θn(x))
k

(1 + θn(x))n+k

∞
∫

0

e−nt (nt)
k

k!
e−2(nt+α)/n+βdt

=
n+ β

n+ β + 2
e−2α/n+β

∞
∑

k=0

(

n+ k − 1

k

)(

(n+ β)θn(x)

n+ β + 2

)k(
1

1 + θn(x)

)n+k

=
n+ β

n+ β + 2
e−2α/n+β

(

2θn(x)

n+ β + 2
+ 1

)−n

.(4.5)

If the procedure applied for previous equality is performed again, we receive

Mα,β
n

(

e−2t;x
)

= e−2x +
e−2x(a+ 1)(2x2 + 4x)

n
+O(

1

n2
),

∣

∣

∣

∣Mα,β
n (e−2t)− e−2x

∣

∣

∣

∣

[0,∞)
=

2(a+ 1)

n
(
1

e2
+

1

e
) +O(

1

n2
) = γ∗

n.

Here, β∗
n and γ∗

n tend to zero as n → ∞ so this completes the proof. �

Now, we will analyze the asymptotic behavior of given operators Mα,β
n with

Voronovskaya-type theorem.
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Theorem 4.2. Let f, f ′′ ∈ C∗[0,∞) then for any x ∈ [0,∞) we have

∣

∣n[Mα,β
n (f ;x)− f(x)] + ax(x+ 2)f ′(x)− x(x+ 2)

2
f ′′(x)

∣

∣

≤ |pn||f ′(x)|+ |qn||f ′′(x)|+ 2(2qn + x(x+ 2) + rn)ω
∗(f ′′,

1√
n

)

,

where

pn = nµ
α,β
n,1 (x) + ax(x+ 2),

qn = 2−1(nµα,β
n,2 (x)− x(x+ 2)),

rn = n2

√

M
α,β
n ((e−x − e−t)4;x)

√

µ
α,β
n,4 (x).

Proof. By Taylor’s expansion of f for some fixed x,

(4.6) f (t) = f (x) + f ′ (x) (t− x) +
1

2
f ′′ (x) (t− x)

2
+ h(t, x) (t− x)

2
,

where

h(t, x) =
f ′′(η)− f ′′(x)

2

and η is a number lying between x and t. Applying Mα,β
n to both sides of the above identity

and using the linearity of the operators and Lemma (3.2), we get

∣

∣n[Mα,β
n (f ;x)− f(x)] + ax(x+ 2)f ′(x)− x(x+ 2)

2
f ′′(x)

∣

∣

≤ |pn||f ′(x)|+ |qn||f ′′(x)|+ |nMα,β
n (h(t, x)(t− x)2;x)|.

Obviously it is enough to consider the last term of the inequality |nMα,β
n (h(t, x)(t − x)2;x)|.

Taking into consideration of Holhoş’s paper (see [15]), it can be written

|f(t)− f(x)| ≤
(

1 +
(e−x − e−t)2

δ2

)

ω∗(f, δ), δ > 0.

For more details on ω∗(·, δ), we would like to give a reference [15] to the reader. Trivially we
can write,

|h(t;x)| ≤
(

1 +
(e−x − e−t)2

δ2

)

ω∗(f ′′, δ).

And also using the fact that,

|h(t;x)| ≤
{

2ω∗(f ′′, δ) , |e−x − e−t| < δ

2
( (e−x−e−t)2

δ2

)

ω∗(f ′′, δ) , |e−x − e−t| ≥ δ,

we arrive at

|h(t;x)| ≤ 2
(

1 +
(e−x − e−t)2

δ2

)

ω∗(f ′′, δ).

Applying Cauchy-Schwarz inequality, we obtain

|n(Mα,β
n h(t, x)(t− x)2;x)|

≤ 2nω∗(f ′′, δ)µα,β
n,2 (x)

α(x) +
2n

δ2
ω∗(f ′′, δ)

√

M
α,β
n ((e−x − e−t)4;x)

√

µ
α,β
n,4 (x).
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Lastly, choosing δ = 1√
n

and with some simple calculations yield

∣

∣n[Mα,β
n (f ;x)− f(x)] + ax(x+ 2)f ′(x)− x(x+ 2)

2
f ′′(x)

∣

∣

≤ |pn||f ′(x)|+ |qn||f ′′(x)|+ 2ω∗(f ′′,
1√
n

)

(2qn + x(x+ 2) + rn).

Hence, the proof is completed. �

Corollary 4.1. Let f, f ′′ ∈ C∗[0,∞). Then the inequality

(4.7) lim
n→∞

n[Mα,β
n (f ;x)− f(x)] = −ax(x+ 2)f ′(x) +

x(x+ 2)

2
f ′′(x)

holds for any x ∈ [0,∞).

Corollary 4.2. Let f ∈ C2[0,∞) be an decreasing and convex function. Then there exists n0 ∈ N such
that for n ≥ n0, we have f(x) < Mα,β

n (f ;x) for all x ∈ [0,∞).

Presently, we are looking for the behavior of the operators on some weighted spaces. As
reported in Gadziev’s paper [10], set ϕ(x) = 1 + e2ax, x ∈ R

+ and turn the following weighted
spaces over in our mind:

Bϕ(R
+) = {f : R+ → R : |f(x)| ≤ Mfϕ(x), x ≥ 0},

Cϕ(R
+) = {C(R+) ∩Bϕ(R

+)},

Ck
ϕ(R

+) = {f ∈ Cϕ(R
+) : lim

x→∞
f(x)

ϕ(x)
= kf},

where Mf , kf are constants depending on f . All three spaces are normed spaces with the norm

||f ||ϕ = sup
x∈R+

|f(x)|
ϕ(x)

.

For any f ∈ Cϕ(R
+), the inequality

∣

∣

∣

∣Mα,β
n (f)

∣

∣

∣

∣

ϕ
≤ ||f ||ϕ

holds and we complete that Mα,β
n (f) maps Cϕ(R

+) to Cϕ(R
+).

Theorem 4.3. For each function f ∈ Ck
ϕ(R

+)

lim
n→∞

∣

∣

∣

∣Mα,β
n (f)− f

∣

∣

∣

∣

ϕ
= 0.

Proof. Using the general result shown in [10], the following three conditional approximations
are sufficient.

(4.8) lim
n→∞

∣

∣

∣

∣Mα,β
n (eνa.)− eνa.

∣

∣

∣

∣

ϕ
= 0, ν = 0, 1, 2.

We know that for the given operator which is represented with Mα,β
n , Mα,β

n (e0) = 1 and
Mα,β

n (e2at) = e2ax occurs. Presently, if we take into consideration the situation for ν = 1

Mα,β
n (f ;x) = n

∞
∑

k=0

(

n+ k − 1

k

)

(θn(x))
k

(1 + θn(x))n+k

∞
∫

0

e−nt (nt)
k

k!
ea(nt+α)/n+βdt

and also on the assumption that the simple calculations are made, we reach

(4.9) Mα,β
n

(

eat
)

=
n+ β

n+ β − a
eaα/n+β

(

1− −aθn(x)

n+ β − a

)−n

.
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Keeping an account of θn(x) and computing (4.9) with Maple,

Mα,β
n

(

eat
)

= eax +
eax

(

− ax2 − 4a2x2

8 − aα− a
)

+ aαeax + aeax

n
+O(

1

n2
)

= eax − eaxa2x(x+ 2)

2n
+O(

1

n2
).

Conclusively,

Mα,β
n

(

eat
)

− eax = −eaxa2x(x+ 2)

2n
+O(

1

n2
)

and
Mα,β

n (eat)− eax

1 + e2ax
=

−a2x(x+ 2)eax

2n(1 + e2ax)
+O(

1

n2
).

And this circumstance guarantees uniform continuity. Since Mα,β
n (e0) = 1 and Mα,β

n (e2at) =
e2ax, the conditions (4.8) are implemented for ν = 0 and ν = 2. Hence, the proof is completed.

�

Now, we desire to demonstrate that our modified operators approximate better than classi-
cal Baskakov-Szász-Stancu operators. This part, we take into consideration of article which is
Aral et al [3]. Last theorem which would like to be given as below:

Theorem 4.4. Let f ∈ C2[0,∞). Assume that there exists n0 ∈ N, such that

(4.10) f(x) ≤ Mα,β
n (f ;x) ≤ Bα,β

n (f ;x), for all n ≥ n0, x ∈ (0,∞).

Then

(4.11)
x(x+ 2)

2
f ′′(x) ≥ (ax2 + 2ax+ 1)f ′(x) ≥ 0, x ∈ (0,∞).

Particularly f ′(x) ≥ 0 and f ′′(x) ≥ 0.
Contrarily, if (4.11) holds with strict inequalities at a given point x ∈ (0,∞), there exists n0 ∈ N

such that for n ≥ n0

f(x) < Mα,β
n (f ;x) < Bα,β

n (f ;x).

Proof. From (4.10) we have that

0 ≤ n(Mα,β
n (f ;x)− f(x)) ≤ n(Bα,β

n (f ;x)− f(x)), for all n ≥ n0, x ∈ (0,∞).

Considering an asymptotic formula which is held by classical Baskakov-Szász-Stancu opera-
tors [17],

(4.12) lim
n→∞

n(Bα,β
n (f ;x)− f(x)) = (1 + α− βx)f ′(x) +

x(x+ 2)

2
f ′′(x).

Thanks to (4.10), we also accept that 1 + α− βx ≥ 0. Combining (4.7) and (4.12)

0 ≤ (ax2 + 2ax+ 1 + α− βx)f ′(x) ≤ x(x+ 2)

2
f ′′(x),

we can reach (4.11) easily.
Contrarily, if (4.11) holds with strict inequalities for a given x ∈ (0,∞) then

0 < (ax2 + 2ax+ 1 + α− βx)f ′(x) <
x(x+ 2)

2
f ′′(x)

employing asymptotic formulas for modified operators (4.7) and the classical operators (4.12),
we have the desired result. �
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Differences of Operators of Lupaş Type
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ABSTRACT. In the present article, we study the approximation of difference of operators and find the quantitative
estimates for the difference of Lupaş operators with Lupaş-Szász operators and Lupaş-Kantorovich operators in terms
of modulus of continuity. Also, we find the quantitative estimate for the difference of Lupaş-Kantorovich operators
and Lupaş-Szász operators.

Keywords: Difference of operators, Lupaş operators, Lupaş-Szász operators, Lupaş-Kantorovich operators, Modulus
of continuity.
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1. INTRODUCTION

Approximation for linear positive operators to functions in real and complex setting is an
active area of research amongst researchers. Several new operators have been constructed in
last six decades and their approximation behaviours have been studied. Concerning approxi-
mation properties of linear positive operators the convergence is one of the important aspects,
several methods and techniques have been applied to get the direct results in ordinary and
simultaneous approximation, we mention some of the recent work viz. [1–4], [8–10], [12] etc.

Acu-Rasa [5] and Aral et al [7] established some interesting results for the difference of op-
erators in order to generalize the problem posed by A. Lupaş [16] on polynomial differences.
Some of the results on this topic are compiled in the recent book by Gupta et al [14].

Very recently the author in [11], provided a general result for the difference of operators
and applied the result to Szász type operators. We consider here the Lupaş operators and its
variants and find the quantitative estimates for the differences of such operators. A. Lupaş [16]
proposed a discrete operators, which for f ∈ C[0,∞), are defined as

Ln(f, x) :=

∞
∑

k=0

ln,k(x)Fn,k(f),(1.1)

where Fn,k : D → R be positive linear functional defined on a subspace D of C[0,∞) and

ln,k(x) = 2−nx (nx)k
k! 2k

, Fn,k(f) = f

(

k

n

)

It was observed that these operators are linear and positive and preserve linear functions.

Received: August 13, 2018; In revised form: August 17, 2018; Accepted: August 19, 2018
*Corresponding author: V. Gupta; vijaygupta2001@hotmail.com
DOI: 10.33205/cma.452962
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Remark 1.1. For the Lupaş operators, we have Fn,k(f) = f
(

k
n

)

such that Fn,k(e0) = 1, bFn,k :=

Fn,k(e1) If we denote µ
Fn,k

r = Fn,k(e1 − bFn,ke0)
r, r ∈ N, then by simple computation, we have

µ
Fn,k

2 := Fn,k(e1 − bFn,ke0)
2 = 0

µ
Fn,k

4 := Fn,k(e1 − bFn,ke0)
4 = 0

Remark 1.2. The The moments of Lupaş operators with er(t) = tr, r ∈ N ∪ {0} are given by

Ln(e0, x) = 1,

Ln(e1, x) = x,

Ln(e2, x) = x2 +
2x

n
,

Ln(e3, x) = x3 +
6x2

n
+

6x

n2
,

Ln(e4, x) = x4 +
12x3

n
+

36x2

n2
+

26x

n3
,

Ln(e5, x) = x5 +
20x4

n
+

120x3

n2
+

250x2

n3
+

150x

n4
,

Ln(e6, x) = x6 +
30x5

n
+

300x4

n2
+

1230x3

n3
+

2040x2

n4
+

1082x

n5
·

2. DIFFERENCE OF OPERATORS

Let CB [0,∞) be the class of bounded continuous functions defined on the interval [0,∞)
equipped with the norm ||.|| = supx∈[0,∞) |f(x)| < ∞. Let us consider another operator Vn

having the same Lupaş basis ln,k(x) such that

Vn(f, x) =

∞
∑

k=0

ln,k(x)Gn,k(f),

where Gn,k : D → R. Following [11], we have the following quantitative general result.

Theorem 2.1. [11] Let f (s) ∈ CB [0,∞), s ∈ {0, 1, 2} and x ∈ [0,∞), then for n ∈ N, we have

|(Ln − Vn)(f, x)| ≤ ||f ′′||α(x) + ω(f ′′, δ1)(1 + α(x)) + 2ω(f, δ2(x)),

where

α(x) =
1

2

∞
∑

k=0

ln,k(x)(µ
Fn,k

2 + µ
Gn,k

2 )

and

δ21 =
1

2

∞
∑

k=0

ln,k(x)(µ
Fn,k

4 + µ
Gn,k

4 ), δ22 =

∞
∑

k=0

ln,k(x)(b
Fn,k − bGn,k)2.

We now establish quantitative estimates for the difference of Lupaş operators with the Lupaş-
Kantorovich operators and Lupaş-Szász operators.
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2.1. Lupaş and Lupaş-Kantorovich operators. In [6] Agratini proposed the Kantorovich vari-
ant of the Lupaş operators as

Kn(f, x) :=

∞
∑

k=0

ln,k(x)Gn,k(f) = n

∞
∑

k=0

ln,k(x)

k+1

n
∫

k
n

f(t) dt,(2.2)

where

Gn,k(f) = n

k+1

n
∫

k
n

f(t) dt.

Below, we present the quantitative estimate for difference of Lupaş and Lupaş-Kantorovich
operators.

Theorem 2.2. Let f (s) ∈ CB [0,∞), s ∈ {0, 1, 2} and x ∈ [0,∞), then for n ∈ N, we have

|(Kn − Ln)(f, x)| ≤ 1

24n2
||f ′′||+ ω

(

f ′′,
1

4
√
10n2

)(

1 +
1

24n2

)

+ 2ω

(

f,
1

2n

)

.

Proof. Following Theorem 2.1, by simple computation, we have

bGn,k = Gn,k(e1) =
2k + 1

2n

and

µ
Gn,k

2 := Gn,k(e1 − bGn,ke0)
2

= Gn,k(e2) +

(

2k + 1

2n

)2

− 2Gn,k(e1)

(

2k + 1

2n

)

=
3k2 + 3k + 1

3n2
−
(

2k + 1

2n

)2

=
1

12n2
.

Next, using Remark 1.2, we have

α(x) :=
1

2

∞
∑

k=0

ln,k(x)(µ
Fn,k

2 + µ
Gn,k

2 ) =
1

24n2
.

Further,

µ
Gn,k

4 := Gn,k(e1 − bGn,ke0)
4

= Gn,k(e4)− 4Gn,k(e3)

(

2k + 1

2n

)

+ 6Gn,k(e2)

(

2k + 1

2n

)2

− 4Gn,k(e1)

(

2k + 1

2n

)3

+Gn,k(e0)

(

2k + 1

2n

)4

=
5k4 + 10k3 + 10k2 + 5k + 1

5n4
− 4

4k3 + 6k2 + 4k + 1

4n3

(

2k + 1

2n

)

+ 6
3k2 + 3k + 1

3n2

(

2k + 1

2n

)2

− 3

(

2k + 1

2n

)4

=
1

80n4
.
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Then using Remark 1.1 and above equality, we get

δ21(x) =
1

2

∞
∑

k=0

ln,k(x)(µ
Fn,k

4 + µ
Gn,k

4 ) =
1

160n4
.

and by using Remark 1.2, we have

δ22(x) =

∞
∑

k=0

ln,k(x)(b
Fn,k − bGn,k)2

=

∞
∑

k=0

ln,k(x)

[

k

n
− 2k + 1

2n

]2

=
1

4n2
.

This completes the proof of the theorem. �

2.2. Lupaş and Lupaş-Szász operators. The Lupaş-Szász operators are defined as

Sn(f ;x) = n

∞
∑

k=1

ln,k(x)

∫

∞

0

sn,k−1(t)f(t)dt+ ln,0(x)f(0),(2.3)

where the Szász basis function is defined as sn,k(t) =
e−nt(nt)k

k! .

If we denote

Hn,k(f) = n

∫

∞

0

sn,k−1(t)f(t)dt, 0 ≤ k < ∞, Hn,0(f) = f(0)

then the operators (2.3) take the following form:

Sn(f, x) =

∞
∑

k=0

ln,k(x)Hn,k(f).

We present below the quantitative estimate for difference of Lupaş and Lupaş-Szász opera-
tors.

Theorem 2.3. Let f (s) ∈ CB [0,∞), s ∈ {0, 1, 2} and x ∈ [0,∞), then for n ∈ N, we have

|(Sn − Ln)(f, x)| = ||f ′′|| x
2n

+ ω

(

f ′′,

√

3x2

2n2
+

6x

n3

)

(

1 +
x

2n

)

.

Proof. By simple computation, we have

bHn,k = Hn,k(e1) =
k

n
.

Also, we have

µ
Hn,k

2 := Hn,k(e1 − bHn,ke0)
2

= Hn,k(e2) +

(

k

n

)2

− 2Hn,k(e1)

(

k

n

)

=
k(k + 1)

n2
− k2

n2
=

k

n2
.
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Next, using Remark 1.1, we have

α(x) :=
1

2

∞
∑

k=0

ln,k(x)(µ
Fn,k

2 + µ
Hn,k

2 ) =
x

2n
.

and

µ
Hn,k

4 := Hn,k(e1 − bHn,ke0)
4

= Hn,k(e4)− 4Hn,k(e3)

(

k

n

)

+ 6Hn,k(e2)

(

k

n

)2

− 4Hn,k(e1)

(

k

n

)3

+Hn,k(e0)

(

k

n

)4

=
3k2 + 6k

n4
.

Then by Remark 1.1, we have

δ21(x) =
1

2

∞
∑

k=0

ln,k(x)(µ
Fn,k

4 + µ
Hn,k

4 )

=
∞
∑

k=0

ln,k(x)
3k2 + 6k

2n4

=
3x2

2n2
+

6x

n3
.

and by using above identities, we have

δ22(x) =
∞
∑

k=0

ln,k(x)(b
Fn,k − bHn,k)2 = 0.

This completes the proof of the theorem. �

2.3. Lupaş-Kantorovich and Lupaş-Szász operators.

Theorem 2.4. Let f (s) ∈ CB [0,∞), s ∈ {0, 1, 2} and x ∈ [0,∞), then for n ∈ N, we have

|(Sn −Kn)(f, x)| = ||f ′′||
(

1

24n2
+

x

2n

)

+ 2ω

(

f,
1

2n

)

+ ω

(

f ′′,

√

1

160n4
+

3x2

2n2
+

6x

n3

)

(

1 +
1

24n2
+

x

2n

)

.

Proof. By previous subsections, we have

bGn,k = Gn,k(e1) =
2k + 1

2n
, bHn,k = Hn,k(e1) =

k

n
.

µ
Gn,k

2 =
1

12n2
, µ

Hn,k

2 =
k

n2

and

µ
Gn,k

4 =
1

80n4
, µ

Hn,k

2 =
3k2 + 6k

n4
.
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Thus, we have

α(x) :=
1

2

∞
∑

k=0

ln,k(x)(µ
Gn,k

2 + µ
Hn,k

2 ) =
1

24n2
+

x

2n

δ21(x) =
1

2

∞
∑

k=0

ln,k(x)(µ
Gn,k

4 + µ
Hn,k

4 )

=

∞
∑

k=0

ln,k(x)

[

1

160n4
+

3k2 + 6k

2n4

]

=
1

160n4
+

3x2

2n2
+

6x

n3
.

and by using above identities, we have

δ22(x) =

∞
∑

k=0

ln,k(x)(b
Gn,k − bHn,k)2 =

1

4n2
.

The result follows by combining above estimates as in Theorem 2.1. �

Remark 2.3. In [13] Gupta et al and [15] Gupta-Yadav also considered Lupaş-Beta type operators, the
difference estimates can be obtained analogously, the analysis is different we can discuss them elsewhere.
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ABSTRACT. The aim of this short survey is to collect and combine basic notions and results in the fixed point theory
in the context of b-metric spaces. It is also aimed to show that there are still enough rooms for several researchers in
this interesting direction and a huge application potential.
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1. INTRODUCTION AND PRELIMINARIES

The notion of distance is as old as the history of humanity and it was first properly formu-
lated by Euclid. Basically, Euclidean distance is defined to measure the space (or gap, or inter-
val) between two points as the length of the straight line segment connecting them. Indeed, the
notion of metric, axiomatically formulated by Maurice Fréchet [38], is a generalization form of
the Euclid distance. On the other hand, the name is due to Felix Hausdorff [40].

It is evident that the notion of the metric is the corner stone of the the field of real analy-
sis, complex analysis and functional analysis Taking the key role of the notion of the metric
in mathematics and hence in quantitative sciences, it has been extended and generalized in
several distinct directions by many authors. Consequently, several version, adaptation, exten-
sion and generalization of metric has been reported in the literature, for instance, 2-metric,
D-metric, G-metric, S-metric, set-valued metric, fuzzy metric, symmetric, quasi-metric, partial
metric, b-metric, ultrametric, dislocated metric, modular metric, Hausdorff metric, cone metric,
multiplicative metric, and so on. It is worthy of note that not all these generalizations are real
generalization, see e.g. [4, 9, 36, 37, 46, 55, 76].

Clearly, it is not possible to consider all these notions in a short survey. In this work, we
restrict ourselves on the merging of one of the most interesting generalization of a notion of
metric, namely b-metric. Before state the definition of b-metric, we recall the notion of (stan-
dard) metric for the sake of self-containment.

Definition 1.1. For a nonempty set M , a (standard) metric is a function m :M ×M → R
+
0 = [0,∞)

such that

(M0) m(x, y) ≥ 0 (nonnegativity),
(M1) x = y ⇒ m(x, y) = 0 (self-distance),
(M2) m(x, y) = 0 ⇒ x = y (indistancy),
(M3) m(x, y) = m(y, x) (symmetry), and
(M4) m(x, y) ≤ m(x, z) +m(z, y) (triangularity),

Received: August 13, 2018; In revised form: August 16, 2018; Accepted: August 19, 2018
*Corresponding author: E. Karapınar; erdalkarapinar@yahoo.com
DOI: 10.33205/cma.453034
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for all x, y, z ∈M . Here, the ordered pair (M,m) is called a (standard) metric space.

Indeed, the notion of the metric can be expressed in two axioms, as follows.

(a1) x = y ⇒ m(x, y) = 0 (self-distance),
(a2) m(x, y) ≤ m(x, z) +m(y, z) (triangularity),

for all x, y, z ∈ M . It is clear that (M0)-(M4) are obtained from (a1) and (a2). On the other
hand, we separately state the axioms to explain and emphasize the nature how one can at-
tempt to generalize the notion of standard metric. For instance, the axioms (M0), (M2)-(M4)
yield dislocated metric (also known as metric-like), the axioms (M0)-(M3) provide the notion
of symmetric. It is clear that the removing any conditions from (M0)-(M4) propose a new no-
tion.

In this study, we focus on an interesting generalization of the standard metric, so-called,
b-metric. This metric was popular after the interesting papers of Czerwik [34, 35] and it has
been attracted attention of the several researchers. Indeed, this notion was considered earlier
by different authors, e.g. Bourbaki [29], Bakhtin [17], Heinhonen [44], Berinde [18] and so on.

What follows we recall the notion of b-metric.

Definition 1.2. ( [17], [35]) Let M be a set and let s ≥ 1 be a given real number. A function d :
M ×M → R

+
0 is said to be a b-metric if the following conditions are satisfied:

(bMo) d(x, y) ≥ 0 (nonnegativity),
(bM1) x = y ⇒ d(x, y) = 0 (self-distance),
(bM2) d(x, y) = 0 ⇒ x = y (indistancy),
(bM3) d(x, y) = d(y, x), (symmetry),
(bM4) d(x, z) ≤ s[d(x, y) + d(y, z)], (weakened triangularity).

for all x, y, z ∈ M . Furthermore, the ordered pair (M,d) is called a b-metric space. We abbreviate the
concept of the b-metric space as bMS.

As it is expected that each b-metric forms a metric by letting s = 1. On the other hand, the
converse is not case.

Example 1.1. (See e.g. [29].) Let M = Lp[0, 1] be the collections of all real functions x(t) such that
∫ 1

0
|x(t)|pdt <∞, where t ∈ [0, 1] and 0 < p < 1. For the function d :M ×M → R

+
0 defined by

b(x, y) := (

∫ 1

0

|x(t)− y(t)|pdt)1/p, for each x, y ∈ Lp[0, 1],

the ordered pair (M, b) forms a b-metric space with s = 21/p.

Example 1.2. Let X be a set with the cardinal card(X) ≥ 3. Suppose that M = X1∪X2 is a partition
of X such that card(X1) ≥ 2. Let s > 1 be arbitrary. Then, the functional d : M ×M → [0,∞)
defined by:

d(x, y) :=







0, x = y

2s, x, y ∈M1

1, otherwise.

is a b-metric on X with coefficient s > 1.

Example 1.3. (See e.g. [29].) Let p ∈ (0, 1) and let

M = lp(R) =

{

x = {xn} ⊂ R such that
∞
∑

n=1

|xn|p <∞
}

.
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Define d(x, y) :M ×M → [0,∞) by

d(x, y) =

(

∞
∑

n=1

|xn − yn|p
)1/p

.

Then (X, d) is a b-metric space with s = 21/p.

The special case of the example above can be the following:

Example 1.4. Let M = R. The function d : R× R → [0,∞) defined as

(1.1) d(x, y) = |x− y|2,
is a b-metric on R. Clearly, the first two conditions are satisfied. For the third condition, we have

|x− y|2 = |x− z + z − y|2 = |x− z|2 + 2|x− z||z − y|+ |z − y|2
≤ 2[|x− z|2 + |z − y|2],

since
2|x− z||z − y| ≤ |x− z|2 + |z − y|2.

Example 1.5. Let M={0, 1, 2} and d : M × M → R+ such that d (0, 1) = d (1, 0) = d (0, 2) =
d (2, 0) = 1, d (1, 2) = d (2, 1) = α ≥ 2, d (0, 0) = d (1, 1) = d (2, 2) = 0. Then

d (x, y) ≤ α

2
[d (x, z) + d (z, y)] , for x, y, z ∈M.

Example 1.6. Let E be a Banach space and 0E be the zero vector of E. Let P be a cone in E with
int(P ) 6= ∅ and � be a partial ordering with respect to P . Let X be a non-empty set. Suppose the
mapping d : X ×X → E satisfies:

(M1) 0 � d(x, y) for all x, y ∈ X ,
(M2) d(x, y) = 0 if and only if x = y,
(M3) d(x, y) � d(x, z) + d(z, y), for all x, y ∈ X ,
(M4) d(x, y) = d(y, x) for all x, y ∈ X ,

then d is called cone metric on X , and the pair (X, d) is called a cone metric space (CMS).
Let E be a Banach space and P be a normal cone in E with the coefficient of normality denoted by K.

Let D : X ×X → [0,∞) be defined by D(x, y) = ||d(x, y)||, where d : X ×X → E is a cone metric
space. Then (X,D) is a b-metric space with constant s := K ≥ 1.

The basic topological properties (convergence, completeness, etc.) have been observed by
the mimic of the standard metric versions. Next, we recollect some essential notions together
with the basic observations. Each b-metric d on a non-empty set M have a topology τd that was
generated by the family of open balls

Bd(x, ε) = {y ∈M : |d(x, y)− d(x, x)| < ε, } for all x ∈M and ε > 0.

In the frame of the b-metric (M,d), a given sequence {xn} converges to a point x ∈ M if the
following limit exists

lim
n→∞

d(xn, x) = 0.

As it is expected, a sequence {xn} is said to be Cauchy if the following limit

(1.2) L = lim
n→∞

d(xn, xm) = 0.

Furthermore, a pair (M,d) is called complete b-metric space if for each Cauchy sequence
{xn} is convergent, that is, there is some x ∈M such that

(1.3) lim
n→∞

d(xn, x) = 0 = lim
n→∞

d(xn, xm).
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Let (M,d1) and (K, d2) be b-metric spaces. A mapping T :M → K is called continuous if

lim
n→∞

d1(xn, x) = 0 = lim
n,m→∞

d1(xn, xm),

then we have

lim
n→∞

d2(Txn, Tx) = 0 = lim
n,m→∞

d2(Txn, Txm).

Definition 1.3. Let (M,d) be a b-metric space and S be a subset of M . We say S is open subset of M ,
if for all x ∈ M there exists r > 0 such that Bd(x, r) ⊆ S. Also, F ⊆ X is a closed subset of M if
(M\F ) is a open subset of M .

A mapping ϕ : [0,∞) → [0,∞) is called a comparison function if it is increasing and ϕn(t) → 0,
n → ∞, for any t ∈ [0,∞). We denote by Φ, the class of the comparison function ϕ : [0,∞) →
[0,∞). For more details and examples, see e.g. [20, 71]. Among them, we recall the following
essential result.

Lemma 1.1. (Berinde [20], Rus [71]) If ϕ : [0,∞) → [0,∞) is a comparison function, then:

(1) each iterate ϕk of ϕ, k ≥ 1, is also a comparison function;
(2) ϕ is continuous at 0;
(3) ϕ(t) < t, for any t > 0.

Later, Berinde [20] introduced the concept of (c)-comparison function in the following way.

Definition 1.4. (Berinde [20]) A function ϕ : [0,∞) → [0,∞) is said to be a (c)-comparison function
if

(c1) ϕ is increasing,

(c2) there exists k0 ∈ N, a ∈ (0, 1) and a convergent series of nonnegative terms
∞
∑

k=1

vk such that

ϕk+1(t) ≤ aϕk(t) + vk, for k ≥ k0 and any t ∈ [0,∞).

The notion of a (c)-comparison function was improved as a (b)-comparison function by
Berinde [19] in order to extend some fixed point results to the class of b-metric space.

Definition 1.5. (Berinde [19]) Let s ≥ 1 be a real number. A mapping ϕ : [0,∞) → [0,∞) is called a
(b)-comparison function if the following conditions are fulfilled

(1) ϕ is monotone increasing;

(2) there exist k0 ∈ N, a ∈ (0, 1) and a convergent series of nonnegative terms
∞
∑

k=1

vk such that

sk+1ϕk+1(t) ≤ askϕk(t) + vk, for k ≥ k0 and any t ∈ [0,∞).

We denote by Ψb for the class of (b)-comparison function ϕ : [0,∞) → [0,∞). It is evident
that the concept of (b)-comparison function reduces to that of (c)-comparison function when
s = 1.

The following lemma has a crucial role in the proof of our main result.

Lemma 1.2. (Berinde [18]) If ϕ : [0,∞) → [0,∞) is a (b)-comparison function, then we have the
following

(1) the series
∞
∑

k=0

skϕk(t) converges for any t ∈ R+;
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(2) the function bs : [0,∞) → [0,∞) defined by bs(t) =
∞
∑

k=0

skϕk(t), t ∈ [0,∞), is increasing

and continuous at 0.

Remark 1.1. By the Lemma 1.2, we conclude that every (b)-comparison function is a comparison func-
tion and hence, by the Lemma 1.1, any (b)-comparison function φ satisfies φ(t) < t.

We denote with Ψ the family of nondecreasing functions ψ : [0,∞) → [0,∞) such that
∞
∑

n=1

ψn(t) < ∞ for each t > 0 It is clear that if Ψ ⊂ Φ (see e.g. [43]) and hence, by Lemma 1.1

(3), for ψ ∈ Ψ we have ψ(t) < t, for any t > 0.
In this short survey, we collect the interesting fixed point theorems for single valued map-

ping in the frame of complete b-metric space. This survey can be considered the collection the
attractive results in [3, 11, 24].

2. FIXED POINT OF α-ψ-CONTRACTIVE MAPPINGS

We start this section by recalling the definition of α-ψ-contractive and α-orbital admissible
mappings introduced in [75].

Definition 2.6. (Samet et al. [75]) Let (M,d) be a metric space and T : M → M be a given mapping.
We say that T is an α-ψ-contractive mapping if there exist two functions α : M ×M → [0,∞) and
ψ ∈ Ψ such that

(2.4) α(x, y)d(T (x), T (y)) ≤ ψ(d(x, y)), for all x, y ∈M.

Remark 2.2. If T : M → M satisfies the Banach contraction principle, then T is an α-ψ-contractive
mapping, where α(x, y) = 1 for all x, y ∈M and ψ(t) = kt for all t ≥ 0 and some k ∈ [0, 1).

Definition 2.7. (Samet et al. [75]) Let T : M → M and α : M ×M → [0,∞). We say that T is
α-admissible if

x, y ∈M, α(x, y) ≥ 1 =⇒ α(T (x), T (y)) ≥ 1.

Let FT (X) be the class of fixed points of a self-mapping T defined on a non-empty set X ,
that is, FT (X) = {x ∈M : T (x) = x}.

Example 2.7. (Samet et al. [75]) Let M = (0,+∞). Define T : M → M and α : M ×M → [0,∞)
by

(1) T (x) = ln(x), for all x ∈M and α(x, y) =

{

2, if x ≥ y;
0, if x < y.

Then T is α-admissible.

(2) T (x) =
√
x, for all x ∈M and α(x, y) =

{

ex−y, if x ≥ y;
0, if x < y.

Then T is α-admissible.

Example 2.8. Let (M,�) be a partially ordered set and d be a metric onX such that (M,d) is complete.
Let T :M →M be a nondecreasing mapping with respect to �, that is x, y ∈M, x � y =⇒ Tx � Ty.
Suppose that there exists x0 ∈M such that x0 � Tx0. Define the mapping α :M ×M → [0,∞) by

α(x, y) =

{

1 if x � y or x � y,

0 otherwise.

Then, T is α-admissible. Since there exists x0 ∈ M such that x0 � Tx0, we have α(x0, Tx0) ≥ 1. On
the other hand, for all x, y ∈M , from the monotone property of T , we have

α(x, y) ≥ 1 =⇒ x � y or x � y =⇒ Tx � Ty or Tx � Ty =⇒ α(Tx, Ty) ≥ 1.
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Thus T is α−admissible.

Theorem 2.1. (Samet et al. [75]) Let (M,d) be a complete metric space and T : M → M be an
α-ψ-contractive mapping satisfying the following conditions:

(i) T is α-admissible;
(ii) there exists x0 ∈M such that α(x0, T (x0)) ≥ 1;

(iii) T is continuous.

Then, T has a fixed point, that is, there exists x∗ ∈ FT (X).

Theorem 2.2. (Samet et al. [75]) Let (M,d) be a complete metric space and T : M → M be an
α-ψ-contractive mapping satisfying the following conditions:

(i) T is α-admissible;
(ii) there exists x0 ∈M such that α(x0, T (x0)) ≥ 1;

(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ M as n → ∞,
then α(xn, x) ≥ 1 for all n.

Then, T has a fixed point, that is, there exists x∗ ∈ FT (X).

In what follows we recollect the concept of triangular α-admissible mapping.

Definition 2.8. [52] A self-mapping T :M →M is called triangular α-admissible if

(T1) T is α− admissible,
(T1) α(x, z) ≥ 1, α(z, y) ≥ 1 =⇒ α(x, y) ≥ 1, x, y, z ∈M.

First of all, we refine the notion of α-admissible mapping by proposing the notion of α-
orbital admissible as follows.

Definition 2.9. [68] Let T : M → M be a self-mapping and α : M ×M → [0,∞) be a function.
Then T is said to be α-orbital admissible if

(T3) α(x, Tx) ≥ 1 ⇒ α(Tx, T 2x) ≥ 1.

Analogously, we refine the notion of triangular α-admissible mapping by proposing the
notion of triangular α-orbital admissible in the following way.

Definition 2.10. [68] Let T : M → M be a self-mapping and α : M ×M → [0,∞) be a function.
Then, T is said to be triangular α-orbital admissible if T is α-orbital admissible and

(T4) α(x, y) ≥ 1 and α(y, Ty) ≥ 1 ⇒ α(x, Ty) ≥ 1.

As it was mentioned in [68], each α-admissible mapping is an α-orbital admissible mapping
and each triangular α-admissible mapping is a triangular α-orbital admissible mapping. The
converse is false, see e.g. ( [68], Example 7).

Definition 2.11. [68] Let (M,d) be a b-metric space and α : X ×M → M be a function. X is said
α-regular, if for every sequence {xn} in X such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ M as
n→ ∞, there exists a subsequence {xn(k)} of {xn} with α(xn(k), x) ≥ 1 for all k.

Lemma 2.3. [68] Let T : M → M be a triangular α-orbital admissible mapping. Assume that there
exists x0 ∈ M such that α(x0, Tx0) ≥ 1. Define a sequence {xn} by xn+1 = Txn for each n ∈ N0.
Then we have α(xn, xm) ≥ 1 for all m,n ∈ N with n < m.

First we give the following definition as a generalization of Definition 2.6.
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Definition 2.12. Let (M,d) be a b-metric space and T :M →M be a given mapping. We say that T is
an α-ψ-contractive mapping of type-(b) if there exist two functions α : M ×M → [0,∞) and ψ ∈ Ψb

such that

(2.5) α(x, y)d(T (x), T (y)) ≤ ψ(d(x, y)), for all x, y ∈ X.

Our first main result is the following.

Theorem 2.3. Let (M,d) be a complete b-metric space with constant s > 1. Let T : M → M be an
α-ψ-contractive mapping of type-(b) satisfying the following conditions:

(i) T is α-admissible;
(ii) there exists x0 ∈M such that α(x0, T (x0)) ≥ 1;

(iii) T is continuous.

Then the fixed point equation (3.15) has a solution, that is, there exists x∗ ∈ Ff (X).

Proof. Let x0 ∈ M such that α(x0, T (x0)) ≥ 1 (such a point exists from condition (ii)). Define
the sequence {xn} in X by

xn+1 = T (xn), for all n ∈ N ∪ {0}.
If xn = xn+1 for some n ∈ N ∪ {0}, then x∗ = xn is a fixed point for T and the proof finishes.
Hence we assume that

(2.6) xn 6= xn+1 for all n ∈ N ∪ {0}.
Since T is α-orbital admissible, we have:

α(x0, x1) = α(x0, T (x0)) ≥ 1 =⇒ α(T (x0), T (x1)) = α(x1, x2) ≥ 1.

By induction, we get

(2.7) α(xn, xn+1) ≥ 1, for all n ∈ N ∪ {0}.
Applying the inequality (2.5) with x = xn−1 and y = xn, and using (2.7), we obtain:

d(xn, xn+1) = d(T (xn−1), T (xn)) ≤ α(xn−1, xn)d(T (xn−1), T (xn)) ≤ ψ(d(xn−1, xn)).

By induction, we get

(2.8) d(xn, xn+1) ≤ ψn(d(x0, x1)), for all n ∈ N ∪ {0}.
From (2.8) and using the triangular inequality, for all p ≥ 1, we have:

d(xn, xn+p) ≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + ...+ sp−2d(xn+p−3, xn+p−2)

+sp−1d(xn+p−2, xn+p−1) + spd(xn+p−1, xn+p)

≤ sψn(d(x0, x1)) + s2ψn+1(d(x0, x1)) + ...+ sp−2ψn+p−3(d(x0, x1))

+sp−1ψn+p−2(d(x0, x1)) + sp−1ψn+p−1(d(x0, x1))

= 1
sn−1 [s

nψn(d(x0, x1)) + sn+1ψn+1(d(x0, x1)) + ...+ sn+p−2ψn+p−2(d(x0, x1))

+sn+p−1ψn+p−1(d(x0, x1))].

Denoting Sn =

n
∑

k=0

skψk(d(x0, x1)), n ≥ 1 we obtain:

(2.9) d(xn, xn+p) ≤
1

sn−1
[Sn+p−1 − Sn−1], n ≥ 1, p ≥ 1.
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Due to the assumption (2.6) together with Lemma 1.2, we conclude that the series
n
∑

k=0

skψk(d(x0, x1))

is convergent. Thus there exists S = lim
n→∞

Sn ∈ [0,∞). Regarding s ≥ 1 and by (2.9), we ob-

tain that {xn}n≥0 is a Cauchy sequence in the b-metric space (M,d). Since (M,d) is complete,
there exists x∗ ∈ M such that xn → x∗ as n → ∞. From the continuity of T , it follows that
xn+1 = T (xn) → T (x∗) as n → ∞. By the uniqueness of the limit, we get x∗ = T (x∗), that is,
x∗ is a fixed point of T . �

In the following theorem, we able omit the continuity hypothesis of T by adding a new
condition.

Theorem 2.4. Let (M,d) be a complete b-metric space with constant s > 1. Let T : M → M be an
α-ψ-contractive mapping of type-(b) satisfying the following conditions:

(i) T is α-orbital admissible;
(ii) there exists x0 ∈M such that α(x0, T (x0)) ≥ 1;

(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ M as n → ∞,
then α(xn, x) ≥ 1 for all n.

Then the fixed point equation (3.15) has a solution.

Proof. Following the proof of Theorem 2.3, we know that {xn} is a Cauchy sequence in the
complete b-metric space (M,d). Then, there exists x∗ ∈ M such that xn → x∗ as n → ∞. On
the other, hand from (2.7) and the hypothesis (iii), we have

(2.10) α(xn, x
∗) ≥ 1, for all n ∈ N.

Now, using the triangular inequality, (2.5) and (2.10), we get

d(T (x∗), x∗) ≤ s[d(T (x∗), T (xn)) + d(xn+1, x
∗)]

≤ s[α(xn, x
∗)d(T (x∗), T (xn)) + d(xn+1, x

∗)]
≤ s[ψ(d(xn, x

∗)) + d(xn+1, x
∗)].

Letting n → ∞, since ψ is continuous at t = 0, we obtain d(T (x∗), x∗) = 0, that is x∗ =
T (x∗). �

To assure the uniqueness of the fixed point, we will consider the following hypothesis.

(H) : for all x, y ∈M, there exists z ∈M such that α(x, z) ≥ 1 and α(y, z) ≥ 1.

Theorem 2.5. Adding condition (H) to the hypotheses of Theorem 2.3 (resp. Theorem 2.4) we obtain
uniqueness of the fixed point of T .

Proof. Suppose that x∗ and y∗ are two fixed point of T . From (H), there exists z ∈M such that

(2.11) α(x∗, z) ≥ 1 and α(y∗, z) ≥ 1.

Since T is α-orbital admissible, from (2.11), we get

(2.12) α(x∗, Tn(z)) ≥ 1 and α(y∗, Tn(z)) ≥ 1.

Using (2.12) and (2.5), we have

d(x∗, Tn(z)) = d(T (x∗), T (Tn−1(z))) ≤ α(x∗, Tn−1(z))d(T (x∗), T (Tn−1(z)))

≤ ψ(d(x∗, Tn−1(z))).

This imply that

d(x∗, Tn(z)) ≤ ψn(d(x∗, z)), for all n ∈ N.



A Short Survey on the Recent Fixed Point Results on b-Metric Spaces 23

Then, letting n→ ∞, we have

(2.13) Tn(z) → x∗.

Similarly, using (2.12) and (2.5), we get

(2.14) Tn(z) → y∗ as n→ ∞.

Using (2.13) and (2.14), the uniqueness of the limit gives us x∗ = y∗. This finishes the proof. �

Remark 2.3. Theorem 2.1 (respectively, Theorem 2.2) can be derived from Theorem 2.3 (respectively,
Theorem 2.4) by taking s = 1. Consequently, all results in [75] can be considered as a corollaries of our
main results.

3. ULAM-HYERS STABILITY RESULTS THROUGH THE FIXED POINT PROBLEMS

Definition 3.13. Let (M,d) be a metric space and T :M →M be an operator. By definition, the fixed
point equation

(3.15) x = T (x)

is called generalized Ulam-Hyers stable if and only if there exists ψ : R+ → R+ which is increasing,
continuous at 0 and ψ(0) = 0 such that for every ε > 0 and for each w∗ ∈M an ε-solution of the fixed
point equation (3.15), i.e. w∗ satisfies the inequality

(3.16) d(w∗, T (w∗)) ≤ ε

there exists a solution x∗ ∈M of the equation (3.15) such that

d(w∗, x∗) ≤ ψ(ε).

If there exists c > 0 such that ψ(t) = c · t, for each t ∈ R+, then the fixed point equation (3.15) is
said to be Ulam-Hyers stable.

For Ulam-Hyers stability results in the case of fixed point problems see M. F. Bota-Boriceanu,
A. Petruşel [23], V. L. Lazăr [60], I. A. Rus [70], I. A. Rus [72].

Regarding the Ulam-Hyers stability problem the ideas given in T. P. Petru, A. Petruşel and
J.-C. Yao [67] allow us to obtain the following result.

Theorem 3.6. Let (M,d) be a complete b-metric space with constant s > 1. Suppose that all the
hypotheses of Theorem 2.5 hold and additionally that the function β : [0,∞) → [0,∞), β(r) :=
r − sψ(r) is strictly increasing and onto. Then

(a) the fixed point equation (3.15) is generalized Ulam-Hyers stable.
(b) Fix(T ) = {x∗} and if xn ∈ M , n ∈ N are such that d(xn, T (xn)) → 0, as n → ∞, then

xn → x∗, as n→ ∞, i.e. the fixed point equation (3.15) is well posed.
(c) If g :M →M is such that there exists η ∈ [0,∞) with

d(T (x), g(x)) ≤ η, for all x ∈M,

then
y∗ ∈ Fix(g) =⇒ d(x∗, y∗) ≤ β−1(s · η).

Proof. (a) Since T :M →M is a Picard operator, so Fix(T ) = {x∗}. Let ε > 0 and w∗ ∈M be a
solution of (3.16), i.e,

d(w∗, T (w∗)) ≤ ε.

Since T is α-ψ-contractive mapping of type-(b) and since x∗ ∈ Fix(T ), from (H) there exists
w∗ ∈M such that α(x∗, w∗) ≥ 1, we obtain:

d(x∗, w∗) = d(T (x∗), w∗) ≤ s[d(T (x∗), T (w∗)) + d(T (w∗), w∗)]
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≤ s[α(x∗, w∗)d(T (x∗), T (w∗)) + ε] ≤ s[ψ(d(x∗, w∗)) + ε].

Therefore,

β(d(x∗, w∗)) := d(x∗, w∗)− sψ(d(x∗, w∗)) ≤ s · ε =⇒ d(x∗, w∗) ≤ β−1(s · ε).
Consequently, the fixed point equation (3.15) is generalized Ulam-Hyers stable.

(b) Since T is α-ψ-contractive mapping of type-(b) and since x∗ ∈ Fix(T ), from (H) there
exists xn ∈M such that α(x∗, xn) ≥ 1, we obtain:

d(xn, x
∗) ≤ s[d(xn, T (xn)) + d(T (xn), x

∗)] = s[d(xn, T (xn)) + d(T (xn), T (x
∗))]

≤ s[d(xn, T (xn)) + α(xn, x
∗)d(T (xn), T (x

∗))] ≤ s[d(xn, T (xn)) + ψ(d(xn, x
∗))].

Therefore

β(d(xn, x
∗)) := d(xn, x

∗)− sψ(d(xn, x
∗)) ≤ sd(xn, T (xn)) → 0 as n→ ∞

=⇒ d(xn, x
∗) → 0 as n→ ∞ =⇒ xn → x∗, as n→ ∞.

So, the fixed point equation (3.15) is well posed.

(c) Since T is α-ψ-contractive mapping of type-(b) and since x∗ ∈ Fix(T ), from (H) there
exists x ∈M such that α(x∗, x) ≥ 1, we obtain:

d(x, x∗) ≤ s[d(x, T (x)) + d(T (x), x∗)] = s[d(x, T (x)) + d(T (x), T (x∗))]

≤ s[d(x, T (x)) + α(x, x∗)d(T (x), T (x∗))] ≤ s[d(x, T (x)) + ψ(d(x, x∗))].

Therefore

β(d(x, x∗)) := d(x, x∗)− sψ(d(x, x∗)) ≤ s · d(x, T (x)).
So, we have the following estimation

(3.17) d(x, x∗) ≤ β−1(s · d(x, T (x))).
Writing (3.17) for x := y∗ we get:

d(x∗, y∗) ≤ β−1(s · d(y∗, T (y∗))) = β−1(s · d(s(y∗), T (y∗))) =⇒ d(x∗, y∗) ≤ β−1(s · η).
�

4. NON UNIQUE FIXED POINTS ON b-METRIC SPACES

In this section, inspired by the well-known non-unique fixed point of Ćirić, we state and
prove some new non-unique fixed point theorems in the setting of b-metric spaces. Our results
improve the existence results in the literature, see e.g. [33,49,50,65]. We shall start to this section
by recalling the notion of orbitally continuous.

Definition 4.14. A mapping T on b-metric space (M,d) is said to be orbitally continuous if limi→∞ Tni(x) =
z implies limi→∞ T (Tni(x)) = Tz. A b-metric space (M,d) is called T -orbitally complete if every
Cauchy sequence of the form {Tni(x)}∞i=1, x ∈M converges in (M,d).

Remark 4.4. It is evident that orbital continuity of T yields orbital continuity of Tm for any m ∈ N.

Theorem 4.7. Let T be an orbitally continuous self-map on the T -orbitally complete b-metric space
(M,d). If there is ψ ∈ Ψ such that

(4.18) min{d(Tx, Ty), d(x, Tx), d(y, Ty)} −min{d(x, Ty), d(Tx, y)} ≤ ψ(d(x, y)),

for all x, y ∈M, then for each x0 ∈M the sequence {Tnx0}n∈N converges to a fixed point of T .
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Proof. For an arbitrary x ∈M , we shall construct an iterative sequence {xn} as follows:

(4.19) x0 := x and xn = Txn−1 for all n ∈ N.

We suppose that

(4.20) xn 6= xn−1 for all n ∈ N.

Indeed, if for some n ∈ N we have the inequality xn = Txn−1 = xn−1, then, the proof is
completed. By substituting x = xn−1 and y = xn in the inequality (4.18), we derive that

(4.21)
min{d(Txn−1, Txn), d(xn−1, Txn−1), d(xn, Txn)}

−min{d(xn−1, Txn), d(Txn−1, xn)} ≤ ψ(d(xn−1, xn)).

It implies that

(4.22) min{d(xn, xn+1), d(xn, xn−1)} ≤ ψ(d(xn−1, xn)).

Since ψ(t) < t for all t > 0, the case d(xn, xn−1) ≤ ψ(d(xn−1, xn)) is impossible. Thus, we have

(4.23) d(xn, xn+1) ≤ ψ(d(xn−1, xn)).

Applying Remark 1.1 recurrently, we find that

(4.24) d(xn, xn+1) ≤ ψ(d(xn−1, xn)) ≤ ψ2(d(xn−2, xn−1)) ≤ · · · ≤ ψn(d(x0, x1)).

By Lemma 1.2, we deduce that

(4.25) lim
n→∞

d(xn+1, xn) = 0.

In what follow we shall prove that the sequence {xn} is Cauchy.
Consider d(xn, xn+k) for k ≥ 1. By using the triangle inequality (b3) again and again, we get

the following approximation

(4.26)

d(xn, xn+k) ≤ s[d(xn, xn+1) + d(xn+1, xn+k)]
≤ sd(xn, xn+1) + s{s[d(xn+1, xn+2) + d(xn+2, xn+k)]}
= sd(xn, xn+1) + s2d(xn+1, xn+2) + s2d(xn+2, xn+k)
...
≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + . . .

+ sk−1d(xn+k−2, xn+k−1) + sk−1d(xn+k−1, xn+k)
≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + . . .

+ sk−1d(xn+k−2, xn+k−1) + skd(xn+k−1, xn+k),

since s ≥ 1. Combining (4.24) and (4.26) we derive that

(4.27)

d(xn, xn+k) ≤ sψn(d(x0, x1)) + s2ψn+1d(x0, x1) + . . .

+ sk−1ψn+k−2(d(x0, x1)) + skψn+k−1(d(x0, x1))

=
1

sn−1
[snψn(d(x0, x1)) + sn+1ψn+1d(x0, x1) + . . .

+ sn+k−2ψn+k−2(d(x0, x1)) + sn+k−1ψn+k−1(d(x0, x1))].

Consequently, we have

(4.28) d(xn, xn+k) ≤
1

sn−1
[Pn+k−1 − Pn−1] , n ≥ 1, k ≥ 1,
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where Pn =
n
∑

j=0

sjψj(d(x0, x1)), n ≥ 1. From Lemma 1.2, the series
∞
∑

j=0

sjψj(d(x0, x1)) is con-

vergent and since s ≥ 1, upon taking limit n→ ∞ in (4.28) we get

(4.29) lim
n→∞

d(xn, xn+k) ≤ lim
n→∞

1

sn−1
[Pn+k−1 − Pn−1] = 0.

We conclude that the sequence {xn} is Cauchy in (M,d).
Owing to the construction xn = Tnx0 and the fact that (X, p) is T -orbitally complete, there

is z ∈ M such that xn → z. Due to the orbital continuity of T, we conclude that xn → Tz.
Hence z = Tz which terminates the proof. �

Corollary 4.1. Let T be an orbitally continuous self-map on the T -orbitally complete b-metric space
(M,d). If there exists k ∈ [0, 1) such that

(4.30) min{d(Tx, Ty), d(x, Tx), d(y, Ty)} −min{d(x, Ty), d(Tx, y)} ≤ kd(x, y),

for all x, y ∈M, then for each x0 ∈M the sequence {Tnx0}n∈N converges to a fixed point of T .

If we take s = 1 in the previous corollary, we get the famous non-unique fixed point theorem

of Ćirić.

Corollary 4.2. [Non-unique fixed point theorem of Ćirić [33]] Let T be an orbitally continuous
self-map on the T -orbitally complete standard metric space (M,d). If there is k ∈ [0, 1) such
that

min{d(Tx, Ty), d(x, Tx), d(y, Ty)} −min{d(x, Ty), d(Tx, y)} ≤ kd(x, y),

for all x, y ∈M, then for each x0 ∈M the sequence {Tnx0}n∈N converges to a fixed point of T .

Remark 4.5. Regarding the Example 1.6, we deduce that the analog of Ćirić non-unique fixed point
theorem, Corollary 4.2, in the setting of cone metric space with normal cone, is still valid (see e.g. [50]).

Theorem 4.8. Let T be an orbitally continuous self-map on the T -orbitally complete b-metric space
(M,d).

Suppose there exist real numbers a1, a2, a3, a4, a5 and a self mapping T : M → M satisfies the
conditions

(4.31) 0 ≤ a4 − a2

a1 + a2
< 1, a1 + a2 6= 0, a1 + a2 + a3 > 0 and 0 ≤ a3 − a5

(4.32) a1d(Tx, Ty)+a2
[

d(x, Tx)+d(y, Ty)
]

+a3[d(y, Tx)+d(x, Ty)] ≤ a4d(x, y)+a5d(x, T
2x)

hold for all x, y ∈M . Then, T has at least one fixed point.

Proof. Take x0 ∈M be arbitrary. Construct a sequence {xn} as follows:

(4.33) xn+1 := Txn n = 0, 1, 2, ...

When we substitute x = xn and y = xn+1 on the inequality (4.32), it implies that
(4.34)

a1d(Txn, Txn+1) + a2
[

d(xn, Txn) + d(xn+1, Txn+1)
]

+ a3[d(xn+1, Txn) + d(xn, Txn+1)]
≤ a4d(xn, xn+1) + a5d(xn, T

2xn)

for all a1, a2, a3, a4, a5 that satisfy (4.31). Due to (4.33), the statement (4.34) turns into
(4.35)

a1d(xn+1, xn+2) + a2
[

d(xn, xn+1) + d(xn+1, xn+2)
]

+ a3[d(xn+1, xn+1) + d(xn, xn+2)]
≤ a4d(xn, xn+1) + a5d(xn, xn+2).
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By a simple calculation, one can get

(4.36) (a1 + a2)d(xn+1, xn+2) + (a3 − a5)d(xn, xn+2) ≤ (a4 − a2)d(xn, xn+1)

which implies

(4.37) d(xn+1, xn+2) ≤ kd(xn, xn+1),

where k = a4−a2

a1+a2
. Due to (4.31), we have 0 ≤ k < 1. Taking account of (4.37), we get inductively

(4.38) d(xn, xn+1) ≤ kd(xn−1, xn) ≤ k2d(xn−2, xn−1) ≤ · · · ≤ knd(x0, x1).

We shall prove that (xn)n∈N is a Cauchy sequence.

d(xn, xn+p) ≤ s · d(xn, xn+1) + s2 · d(xn+1, xn+2) + . . .+ sp−2 · d(xn+p−3, xn+p−2)+

+ sp−1 · d(xn+p−2, xn+p−1) + sp · d(xn+p−1, xn+p)

≤ s · kn · d(x0, x1) + s2 · kn+1 · d(x0, x1) + . . .+

+ sp−2 · kn+p−3 · d(x0, x1) + sp−1 · kn+p−2 · d(x0, x1)+
+ sp · kn+p−1 · d(x0, x1)

=
1

sn · k ·
[

sn+1 · kn+1 · d(x0, x1) + . . .+ sn+p−1 · kn+p−1 · d(x0, x1)+

+sn+p · kn+p · d(x0, x1)
]

≤ 1

sn · k ·
[

sn+1 · kn+1 · d(x0, x1) + . . .+ sn+p · kn+p · d(x0, x1)
]

=
1

sn · k ·
n+p
∑

i=n+1

si · ki · d(x0, x1)

<
1

snk
·

∞
∑

i=n+1

si · ki · d(x0, x1).

The precedent inequality is

d(xn, xn+p) <
1

snk
·

∞
∑

i=n+1

si · ki · d(x0, x1). −→ 0 as n −→ ∞.

Thus (xn)n∈N is a Cauchy sequence.
As in the proof of previous theorem, regarding the construction xn = Tnx0 together with the

fact that (X, p) is T -orbitally complete, there is z ∈ M such that xn → z. Again by the orbital
continuity of T, we deduce that xn → Tz. Hence z = Tz. �

Theorem 4.8 is still valid in the context of standard metric space.

Corollary 4.3. (See [49]) Let T be an orbitally continuous self-map on the T -orbitally complete standard
metric space (M,d).

Suppose there exist real numbers a1, a2, a3, a4, a5 and a self mapping T : M → M satisfies the
conditions

(4.39) 0 ≤ a4 − a2

a1 + a2
< 1, a1 + a2 6= 0, a1 + a2 + a3 > 0 and 0 ≤ a3 − a5

(4.40) a1d(Tx, Ty)+a2
[

d(x, Tx)+d(y, Ty)
]

+a3[d(y, Tx)+d(x, Ty)] ≤ a4d(x, y)+a5d(x, T
2x)

hold for all x, y ∈M . Then, T has at least one fixed point.
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Remark 4.6. As we discuss in Remark 4.5, we obtain the analog of Theorem 4.8 in the context of cone
metric spaces. More precisely, again taking Example 1.6 into account, one can derive that Corollary 4.3
is also still fulfilled in the setting of cone metric space with normal cone (see e.g. [49]).

Theorem 4.9. Let T be an orbitally continuous self-map on the T -orbitally complete b-metric space
(M,d). Suppose that there exists ψ ∈ Ψ such that

(4.41) P (x,y)−Q(x,y)
R(x,y) ≤ ψ(d(x, y)),

for all x, y ∈M, where

P (x, y) = min{d(Tx, Ty)d(x, y), d(x, Tx)d(y, Ty)},
Q(x, y) = min{d(x, Tx)d(x, Ty), d(y, Ty)d(Tx, y)},
R(x, y) = min{d(x, Tx), d(y, Ty)}.

with R(x, y) 6= 0. Then, for each x0 ∈M the sequence {Tnx0}n∈N converges to a fixed point of T .

Proof. As in the proof of Theorem 4.7, we shall construct an iterative sequence {xn}, for an
arbitrary initial value x ∈M :

(4.42) x0 := x and xn = Txn−1 for all n ∈ N.

As it is discussed in the proof of Theorem 4.7, we suppose

(4.43) xn 6= xn−1 for all n ∈ N.

By substituting x = xn−1 and y = xn in the inequality (4.41), we derive that

(4.44) P (xn−1,xn)−Q(xn−1,xn)
R(xn−1,xn)

≤ ψ(d(xn−1, xn)),

where

P (xn−1, xn) = min{d(Txn−1, Txn)d(xn−1, xn), d(xn−1, Txn−1)d(xn, Txn)},
Q(xn−1, xn) = min{d(xn−1, Txn−1)d(xn−1, Txn), d(xn, Txn)d(Txn−1, xn)},
R(xn−1, xn) = min{d(xn−1, Txn−1), d(xn, Txn)}.

Due to axioms of b-metric space , we find that

(4.45)
d(xn, xn+1)d(xn−1, xn)

min{d(xn−1, xn), d(xn, xn+1)}
≤ ψ(d(xn−1, xn)),

If R(xn−1, xn) = d(xn, xn+1), then, the inequality (4.45) turns into

(4.46) d(xn−1, xn) ≤ ψ(d(xn−1, xn)) < d(xn−1, xn),

which is a contraction, since ψ(t) < t for all t > 0. Accordingly, we deduce that

(4.47) d(xn, xn+1) ≤ ψ(d(xn−1, xn)).

Applying Remark 1.1 recurrently, we find that

(4.48) d(xn, xn+1) ≤ ψ(d(xn−1, xn)) ≤ ψ2(d(xn−2, xn−1)) ≤ · · · ≤ ψn(d(x0, x1)).

By Lemma 1.2, we deduce that

(4.49) lim
n→∞

d(xn+1, xn) = 0.

The rest of the proof is a verbatim repetition of the related lines in the proof of Theorem 4.7.
�
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Corollary 4.4. Let T be an orbitally continuous self-map on the T -orbitally complete b-metric space
(M,d). Suppose that there exists k ∈ [0, 1) such that

(4.50) P (x,y)−Q(x,y)
R(x,y) ≤ kd(x, y),

for all x, y ∈M, where

P (x, y) = min{d(Tx, Ty)d(x, y), d(x, Tx)d(y, Ty)},
Q(x, y) = min{d(x, Tx)d(x, Ty), d(y, Ty)d(Tx, y)},
R(x, y) = min{d(x, Tx), d(y, Ty)}.

with R(x, y) 6= 0. Then, for each x0 ∈M the sequence {Tnx0}n∈N converges to a fixed point of T .

Corollary 4.5. [Nonunique fixed point of Achari [1]] Let T be an orbitally continuous self-map
on the T -orbitally complete standard metric space (M,d). Suppose that there exists k ∈ [0, 1)
such that

(4.51) P (x,y)−Q(x,y)
R(x,y) ≤ kd(x, y),

for all x, y ∈M, where

P (x, y) = min{d(Tx, Ty)d(x, y), d(x, Tx)d(y, Ty)},
Q(x, y) = min{d(x, Tx)d(x, Ty), d(y, Ty)d(Tx, y)},
R(x, y) = min{d(x, Tx), d(y, Ty)}.

with R(x, y) 6= 0. Then, for each x0 ∈M the sequence {Tnx0}n∈N converges to a fixed point of
T .

Theorem 4.10. Let T be an orbitally continuous self-map on the T -orbitally complete b-metric space
(M,d). Suppose that there exists k ∈ [0, 1) such that

(4.52) m(x, y)− n(x, y) ≤ kd(x, Tx)d(y, Ty),

for all x, y ∈M, where

m(x, y) = min{[d(Tx, Ty)]2, d(x, y)d(Tx, Ty), [d(y, Ty)]2},
n(x, y) = min{d(x, Tx)d(y, Ty), d(x, Ty)d(y, Tx)}

with R(x, y) 6= 0. Then, for each x0 ∈M the sequence {Tnx0}n∈N converges to a fixed point of T .

Proof. By following the lines in the proof of Theorem 4.7, we shall formulate an recursive se-
quence {xn}, for an arbitrary initial value x ∈M :

(4.53) x0 := x and xn = Txn−1 for all n ∈ N.

Regarding the analysis in the proof of Theorem 4.7, we assume that

(4.54) xn 6= xn−1 for all n ∈ N.

By replacing x = xn−1 and y = xn in the inequality (4.52), we observe that

(4.55) m(xn−1, xn)− n(xn−1, xn) ≤ kd(xn−1, Txn−1)d(xn, Txn),

where

m(xn−1, xn) = min{[d(Txn−1, Txn)]
2, d(xn−1, xn)d(Txn−1, Txn), [d(xn, Txn)]

2},
n(xn−1, xn) = min{d(xn−1, Txn−1)d(xn, Txn), d(xn−1, Txn)d(xn, Txn−1)}.

By utilizing the above inequality, we get that

(4.56) m(xn−1, xn) ≤ kd(xn−1, xn)d(xn, xn+1),
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wherem(xn−1, xn) = min{[d(xn, xn+1)]
2, d(xn−1, xn)d(xn, xn+1)}.Notice that the casem(xn−1, xn) =

d(xn−1, xn)d(xn, xn+1) is impossible. Indeed, in this case, since ψ(t) < t for all t > 0, the in-
equality (4.56) turns into

(4.57) d(xn−1, xn)d(xn, xn+1) ≤ kd(xn−1, xn)d(xn, xn+1)

It is a contradiction since k < 1. Appropriately, we infer that

(4.58) [d(xn, xn+1)]
2 ≤ kd(xn−1, xn)d(xn, xn+1)

which is equivalent to

(4.59) d(xn, xn+1) ≤ kd(xn−1, xn).

Recurrently, we find that

(4.60) d(xn, xn+1) ≤ knd(x0, x1).

The rest of the proof is a verbatim repetition of the related lines in the proof of Theorem 4.8. �

Theorem 4.8 is still valid in the context of standard metric space.

Corollary 4.6. [Nonunique fixed point of Pachpatte [65]] Let T be an orbitally continuous
self-map on the T -orbitally complete standard metric space (M,d). Suppose that there exists
k ∈ [0, 1) such that

(4.61) m(x, y)− n(x, y) ≤ kd(x, Tx)d(y, Ty),

for all x, y ∈M, where

m(x, y) = min{[d(Tx, Ty)]2, d(x, y)d(Tx, Ty), [d(y, Ty)]2},
n(x, y) = min{d(x, Tx)d(y, Ty), d(x, Ty)d(y, Tx)}

with R(x, y) 6= 0. Then, for each x0 ∈M the sequence {Tnx0}n∈N converges to a fixed point of
T .

Remark 4.7. One can deduce the analog of Theorem 4.10 in the context of cone metric spaces as it
mentioned in Remark 4.5.

5. ON GENERALIZED α− ψ-GERAGHTY CONTRACTIVE MAPPING

Now, we are ready to state and prove our main results. Let Ψ be set of all increasing and
continuous functions ψ : [0,∞) → [0,∞) with ψ−1({0}) = {0}. Let F be the family of all
nondecreasing functions β : [0,∞) → [0, 1s ) which satisfy the condition

(5.62) lim
n→∞

β(tn) =
1

s
implies lim

n→∞
tn = 0,

for some s ≥ 1.

Definition 5.15. Let (M,d) be a b-metric space and T : M → M be a self-map. We say that T is a
generalized α−ψ-Geraghty contractive mapping whenever there exist α :M ×M → [0,∞) and some
L ≥ 0 such that for

(5.63) E(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty) + d(y, Tx)

2s
}

(5.64) and N(x, y) = min{d(x, Tx), d(y, Tx)},
we have

α(x, y)ψ(s3d(Tx, Ty)) ≤ β(ψ(E(x, y)))ψ(E(x, y)) + Lφ(N(x, y)),(5.65)

for all x, y ∈M , where β ∈ F and ψ, φ ∈ Ψ.
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Remark 5.8. Since the functions belonging to F are strictly smaller than 1
s , the expression β(ψ(E(x, y)))

in (5.65) can be estimated as

β(ψ(E(x, y))) <
1

s
for any x, y ∈M with x 6= y.

Theorem 5.11. Let (M,d) be a complete b-metric space and T : M → M be a generalized α − ψ-
Geraghty contractive mapping such that
(i) T is triangular α-orbital admissible;
(ii) there exists x0 ∈M such that α(x0, Tx0) ≥ 1;
(iii) T is continuous.
Then T has a fixed point.

Proof. Let x0 ∈ M be such that α(x0, Tx0) ≥ 1. We construct an iterative sequence {xn} such
that

xn+1 = Txn, n ∈ N0.

If there exists an n0 such that Txn0
= xn0

for some n0, then xn0
is a fixed point of T which

completes the proof. Thus, without loss of generality, we assume that

(5.66) xn 6= xn+1 for all n ∈ N0.

The mapping T is triangular α-orbital admissible, by Lemma 2.3, we have

α(xn, xn+1) ≥ 1, for all n ∈ N0.(5.67)

By taking x = xn−1 and y = xn in the inequality (5.65) together with the inequality (5.67) and
regarding that ψ is an increasing function, we obtain

ψ(d(xn, xn+1)) = ψ(d(Txn−1, Txn)) ≤ α(xn−1, xn)ψ(s
3d(Txn−1, Txn))(5.68)

≤ β(ψ(M(xn−1, xn)))ψ(M(xn−1, xn)) + Lφ(N(xn−1, xn)),

for all n ∈ N, where

M(xn−1, xn) = max{d(xn−1, xn), d(xn−1, Txn−1), d(xn, Txn),
d(xn−1, Txn) + d(xn, Txn−1)

2s
}

= max{d(xn−1, xn), d(xn−1, xn), d(xn, xn+1),
d(xn−1, xn+1) + d(xn, xn)

2s
}

= max{d(xn−1, xn), d(xn, xn+1),
d(xn−1, xn+1)

2s
}

and

N(xn−1, xn) = min{d(xn−1, Txn−1), d(xn, Txn−1)}(5.69)

= min{d(xn−1, xn), d(xn, xn)} = 0.

Since

d(xn−1, xn+1)

2s
≤ s[d(xn−1, xn) + d(xn, xn+1)]

2s
≤ max{d(xn−1, xn), d(xn, xn+1)},

then we get

M(xn−1, xn) ≤ max{d(xn−1, xn), d(xn, xn+1)}.(5.70)

Taking (5.70) and (5.69) into account, (5.68) yields that

ψ(d(xn, xn+1)) ≤ ψ(s3d(xn, xn+1)) ≤ α(xn−1, xn)ψ(s
3d(xn, xn+1))(5.71)

≤ β(ψ(M(xn−1, xn))ψ(max{d(xn−1, xn), d(xn, xn+1)}).
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If for some n ∈ N, we have max{d(xn−1, xn), d(xn, xn+1)} = d(xn, xn+1), then by (5.71) and
Remark 5.8, we get

ψ(d(xn, xn+1)) ≤ β(ψ(M(xn−1, xn))ψ(d(xn, xn+1) <
1

s
ψ(d(xn, xn+1) < ψ(d(xn, xn+1),(5.72)

which is a contradiction. Thus, from (5.71) we conclude that

ψ(d(xn, xn+1)) ≤ β(ψ(M(xn−1, xn)))ψ(d(xn−1, xn)) <
1

s
ψ(d(xn−1, xn)) < ψ(d(xn−1, xn)),

(5.73)

for all n ∈ N. Hence {ψ(d(xn, xn+1))} is a non-negative decreasing sequence. Since ψ is increas-
ing, so the sequence {d(xn, xn+1)} is non-increasing. Consequently, there exists δ ≥ 0 such that
lim
n→∞

d(xn, xn+1) = δ. We claim that δ = 0. Suppose, on the contrary that

lim
n→∞

d(xn, xn+1) = δ > 0.(5.74)

Since s ≥ 1, the inequality (5.73) can be estimated as

1

s
ψ(d(xn, xn+1)) ≤ ψ(d(xn, xn+1)) ≤ β(ψ(M(xn−1, xn)))ψ(d(xn−1, xn)).(5.75)

Regarding (5.66), the inequality (5.75) implies that

1

s

ψ(d(xn, xn+1))

ψ(d(xn−1, xn))
≤ β(ψ(M(xn−1, xn))) <

1

s
.

It yields that lim
n→∞

β(ψ(M(xn−1, xn))) =
1

s
. Since β ∈ F , then lim

n→∞
ψ(M(xn−1, xn)) = 0. We

deduce that

lim
n→∞

ψ(d(xn, xn+1)) = 0.

Thus, regarding the fact that d(xn, xn+1) → δ and the continuity of ψ, we derive that ψ(δ) = 0.
Since ψ−1({0}) = {0}, soδ = 0, which is a contradiction. Thus, we have

lim
n→∞

d(xn, xn+1) = 0.(5.76)

Now, we claim that

lim
m,n→∞

d(xn, xm) = 0.

Assume on the contrary that exist ε > 0 and subsequences {xmi
}, {xni

} of {xn} with ni > mi ≥
i such that

d(xmi
, xni

) ≥ ε.(5.77)

Additionally, corresponding to mi, we may choose ni such that it is the smallest integer satis-
fying (5.77) and ni > mi ≥ i. Thus, we have

d(xmi
, xni−1) < ε.(5.78)

From (5.77) and the triangle inequality, we obtain

ε ≤ d(xni
, xmi

) ≤ sd(xni
, xni+1

) + sd(xni+1
, xmi

)

≤ sd(xni
, xni+1

) + s2d(xni+1
, xmi+1

) + s2d(xmi+1
, xmi

).(5.79)

Letting i→ ∞ and regarding (5.76), the inequality (5.79) yields that

ε

s2
≤ lim sup

i→∞
d(xni+1

, xmi+1
).(5.80)
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By Lemma 2.3, recall that

α(xmi
, xni

) ≥ 1.(5.81)

Consequently, by (5.65) we have

ψ(d(xni+1
, xmi+1

)) = ψ(d(Txni
, Txmi

))(5.82)

≤ ψ(s3 d(Txni
, Txmi

)) ≤ α(xmi
, xni

)ψ(s3d(Txni
, Txmi

))

≤ β(ψ(M(xni
, xmi

)))ψ(M(xni
, xmi

)) + Lφ(d(xmi
, Txni

))),

where

M(xni
, xmi

) = max{d(xni
, xmi

), d(xni
, Txni

), d(xmi
, Txmi

),
d(xni

, Txmi
) + d(xmi

, Txni
)

2s
}

(5.83)

= max{d(xni
, xmi

), d(xni
, xni+1

), d(xmi
, xmi+1

),
d(xni

, xmi+1
) + d(xmi

, xni+1
)

2s
},

and

N(xni
, xmi

) = min{d(xni
, Txni

), d(xmi
, Txni

)} = min{d(xni
, xni+1), d(xmi

, xni+1)}.
Notice that

d(xni
, xmi+1

) + d(xmi
, xni+1

)

2s
≤ s[d(xni

, xmi
) + d(xmi

, xmi+1
)] + s[d(xmi

, xni
) + d(xni

, xni+1
)]

2s

(5.84)

and

d(xni
, xmi

) ≤ s[d(xni
, xni−1) + d(xni−1, xmi

)] < sd(xni
, xni−1) + sε.(5.85)

Taking (5.78), (5.84) and (5.85) into account, we find that

lim sup
i→∞

M(xni
, xmi

) ≤ sε, and(5.86)

lim
i→∞

N(xni
, xmi

) = 0.(5.87)

By taking the upper limit as i→ ∞ and regarding the condition (T4) together with the expres-
sions (5.80), (5.86) and (5.87), the inequality (5.82) becomes

1

s
ψ(sε) ≤ ψ(sε) ≤ lim sup

i→∞
ψ(s3 d(xni+1

, xmi+1
))

≤ lim sup
i→∞

α(xmi
, xni

))ψ(s3d(xni+1
, xmi+1

))

= lim sup
i→∞

α(xmi
, xni

)ψ(s3d(Txni
, Txmi

))

≤ lim sup
i→∞

[β(ψ(M(xni
, xmi

)))ψ(M(xni
, xmi

)) + Lφ(N(d(xni
, xmi

)))]

≤ ψ(sε) lim sup
i→∞

β(ψ(M(xni
, xmi

)))

≤ 1

s
ψ(sε).

Then lim sup
i→∞

β(ψ(M(xni
, xmi

))) =
1

s
. Due to the fact β ∈ F , we have

lim sup
i→∞

ψ(M(xni
, xmi

)) = 0.
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Thus, we conclude that

lim
i→∞

ψ(d(xni
, xmi

)) = 0.

Therefore, by continuity of ψ and the fact that ψ−1({0}) = {0}, so

lim
i→∞

d(xni
, xmi

) = 0,(5.88)

which is a contradiction with respect to (5.77). We deduce that {xn} is a Cauchy sequence in
(M,d). Since (M,d) is a complete b-metric space, there exists x∗ ∈ M such that lim

n→∞
xn = x∗.

The mapping T is continuous and it is obvious that Tx∗ = x∗. �

We replace the continuity of the mapping T in the above theorem by a suitable condition on
X .

Theorem 5.12. Let (M,d) be a complete b-metric space and T : M → M be a generalized α − ψ-
Geraghty contractive mapping such that
(i) T is triangular α-orbital admissible;
(ii) there exists x0 ∈M such that α(x0, Tx0) ≥ 1;
(iii) X is α-regular.
Then T has a fixed point.

Proof. Following the lines in the proof of Theorem 5.11, we conclude that lim
n→∞

xn = x∗. If X is

α-regular, then since α(xn, xn+1) ≥ 1, so there exists a subsequence {xnk
} of {xn} such that

α(xnk
, x∗) ≥ 1,(5.89)

for all k. By triangular inequality

d(x∗, Tx∗) ≤ sd(x∗, xnk+1) + sd(xnk+1, Tx
∗)

= sd(x∗, xnk+1) + sd(Txnk
, Tx∗).

Letting k tends to infinity

d(x∗, Tx∗) ≤ lim inf
k→∞

sd(Txnk
, Tx∗).(5.90)

Having ψ ∈ Ψ, (5.89) and (5.90), so

ψ(s2d(x∗, Tx∗)) ≤ lim
k→∞

ψ(s3d(Txnk
, Tx∗)) ≤ lim

k→∞
α(xnk+1

, x∗)ψ(s3d(Txnk
, Tx∗))

≤ lim
k→∞

[β(ψ(M(xnk
, x∗)))ψ(M(xnk

, x∗)) + Lφ(N(xnk
, x∗))].(5.91)

We have

M(xnk
, x∗) = max{d(xnk

, x∗), d(xnk
, Txnk

), d(x∗, Tx∗),
d(xnk

, Tx∗) + d(x∗, Txnk
)

2s
}

= max{d(xnk
, x∗), d(xnk

, xnk+1
), d(x∗, Tx∗),

d(xnk
, Tx∗) + d(x∗, xnk+1

)

2s
},

and

N(xnk
, x∗) = min{d(xnk

, Txnk
), d(x∗, Txnk

)}
= min{d(xnk

, xnk+1
), d(x∗, xnk+1

)}.
Recall that

d(xnk
, Tx∗) + d(x∗, xnk+1

)

2s
≤ sd(xnk

, x∗) + sd(x∗, Tx∗) + d(x∗, xnk+1
)

2s
.
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Then, by (5.76), we get that

lim sup
k→∞

d(xnk
, Tx∗) + d(x∗, xnk+1

)

2s
≤ d(x∗, Tx∗)

2
.

When k tends to infinity, we deduce

lim
k→∞

M(xnk
, x∗) = d(x∗, Tx∗),

and

lim
k→∞

N(xnk
, x∗) = 0.

Since β(ψ(M(xnk
, x∗))) ≤ 1

s
, ∀k ∈ N so by (5.91)

ψ(s2d(x∗, Tx∗)) ≤ 1

s
ψ(d(x∗, Tx∗)) ≤ ψ(d(x∗, Tx∗)).

Since ψ ∈ Ψ, so the above holds unless d(x∗, Tx∗) = 0, that is, Tx∗ = x∗ and x∗ is a fixed point
of T . �

For the uniqueness of a fixed point of a generalized α − ψ contractive mapping, we will
consider the following hypothesis.

(H) For all x, y ∈ Fix(T ), either α(x, y) ≥ 1 or α(y, x) ≥ 1.

Here, Fix(T ) denotes the set of fixed points of T .

Theorem 5.13. Adding condition (H) to hypotheses of Theorem 5.11 (respectively, Theorem 5.12 ), we
obtain uniqueness of the fixed point of T .

Proof. Suppose that x∗ and y∗ are two fixed points of T . Then we have, it is obvious that
M(x∗, y∗) = d(x∗, y∗) and N(x∗, y∗) = 0. So

ψ(d(x∗, y∗)) ≤ ψ(s3d(Tx∗, T y∗))

≤ α(x∗, y∗)ψ(s3d(Tx∗, T y∗))

≤ β(ψ(M(x∗, y∗)))ψ(M(x∗, y∗)) + Lφ(N(x∗, y∗))

<
1

s
ψ(d(x∗, y∗)) ≤ ψ(d(x∗, y∗)),

which is contradiction. �

Definition 5.16. Let (M,d) be a b-metric space and T : M → M be a self-map. We say that T is a
generalized α−ψ-Geraghty contractive mapping of type (B) whenever there exists α :M×M → [0,∞)
such that for

(5.92) E(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty) + d(y, Tx)

2s
}

we have

α(x, y)ψ(s3d(Tx, Ty)) ≤ β(ψ(E(x, y)))ψ(E(x, y))(5.93)

for all x, y ∈M , where β ∈ F and ψ ∈ Ψ.

By verbatim of the proofs of Theorem 5.11, Theorem 5.12 and Theorem 5.13, we get the
following results:
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Theorem 5.14. Let (M,d) be a complete b-metric space and T : M → M be a generalized α − ψ-
Geraghty contractive mapping of type (B) such that
(i) T is triangular α-orbital admissible;
(ii) there exists x0 ∈M such that α(x0, Tx0) ≥ 1;
(iii) either T is continuous or X is α-regular.
Then T has a fixed point.

Theorem 5.15. Adding condition (H) to hypotheses of Theorem 5.14, we obtain uniqueness of the fixed
point of T .

Example 5.9. Let X be the set of Lebesgue measurable functions on [0, 1] such that
∫ 1

0

|x(t)|dt < 1.

Define d :M ×M → [0,∞) by

d(x, y) = (

∫ 1

0

|x(t)− y(t)|dt)2.

Then, d is a b-metric on X with s = 2.
The operator T :M →M is defined by

Tx(t) =
1

4
ln(1 + |x(t)|).

Consider the mappings α :M ×M → [0,∞), β : [0,∞) → [0, 12 ) and
ψ : [0,∞) → [0,∞) defined by

α(x, y) =

{

1 if x(t) ≥ y(t), ∀t ∈ [0, 1],
0 otherwise.

ψ(t) = t and β(t) =
(ln(1 +

√
t))2

2t
.

Evidently, ψ ∈ Ψ and β ∈ F . Moreover, T is a triangular α-orbital admissible mapping and α(1, T1) ≥
1.
Now, we shall prove that T is a generalized α − ψ-Geraghty contractive mapping. In fact, for all
t ∈ [0, 1], we have

√

α(x(t), y(t))ψ(s3d(Tx(t), T y(t))) ≤
√

23(

∫ 1

0

|Tx(t)− Ty(t)|dt)2

≤ 2
√
2

∫ 1

0

|1
4
ln(1 + |x(t)|)− 1

4
ln(1 + |y(t)|)|dt

=
1√
2

∫ 1

0

|ln(1 + |x(t)|
1 + |y(t)| )|dt

=
1√
2

∫ 1

0

|ln(1 + |x(t)| − |y(t)|
1 + |y(t)| )|dt

≤ 1√
2

∫ 1

0

|ln(1 + |x(t)| − |y(t)|)|dt
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By Lemma 8.4 (given in Appendix), we get
∫ 1

0

|ln(1 + |x(t)| − |y(t)|)|dt ≤ ln(

∫ 1

0

(1 + |x(t)− y(t)|)dt) = ln(1 +

∫ 1

0

|x(t)− y(t)|dt).

Therefore

√

α(x(t), y(t))ψ(s3d(Tx(t), T y(t))) ≤ 1√
2
ln(1 +

∫ 1

0

|x(t)− y(t)|dt)

≤ 1√
2
ln(1 +

√

d(x, y)).

So, we obtain

α(x(t), y(t))ψ(s3d(Tx(t), T y(t))) ≤ 1

2
(ln(1 +

√

d(x, y)))2

≤ 1

2
(ln(1 +

√

E(x, y)))2

=
(ln(1 +

√

E(x, y)))2

2E(x, y)
E(x, y)

= β(ψ(E(x, y))) ψ(E(x, y)).

Thus, by Theorem 5.14, we see that T has a fixed point.

6. CONSEQUENCES

In this section, we shall demonstrate that several existing results in the literature can be
easily concluded from Theorem 5.13.

6.1. Standard fixed point theorems in b-metric. By taking α(x, y) = 1 in Theorem 5.13, for all
x, y ∈M , we obtain immediately the following fixed point theorem.

Corollary 6.7. Let (M,d) be a complete b-metric space with s ≥ 1 and T : M → M be a mapping on
X . If there exists L ≥ 0 such that for all x, y ∈M ,

ψ(s3d(Tx, Ty)) ≤ β(ψ(E(x, y)))ψ(E(x, y)) + Lφ(N(x, y)),(6.94)

where β ∈ F , ψ, φ ∈ Ψ and

(6.95) E(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty) + d(y, Tx)

2s
},

(6.96) and N(x, y) = min{d(x, Tx), d(y, Tx)},
then T has a unique fixed point.

By taking α(x, y) = 1 in Theorem 5.15, for all x, y ∈M , we obtain immediately the following
fixed point result.

Corollary 6.8. Let (M,d) be a complete b-metric space with s ≥ 1 and T : M → M be a mapping on
X such that for all x, y ∈M ,

ψ(s3d(Tx, Ty)) ≤ β(ψ(E(x, y)))ψ(E(x, y))(6.97)

where β ∈ F , ψ ∈ Ψ and

(6.98) E(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty) + d(y, Tx)

2s
}.
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Then T has a unique fixed point.

If we put α(x, y) = 1, ∀x, y ∈ M , L = 0 and ψ(t) = t in Theorem 5.13, we may state the
following result.

Corollary 6.9. Let (M,d) be a complete b-metric space with s ≥ 1 and T : M → M be a mapping on
X such that for all x, y ∈M ,

s3d(Tx, Ty) ≤ β(E(x, y))E(x, y)

where β ∈ F and

(6.99) E(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty) + d(y, Tx)

2s
}.

Then, T has a unique fixed point.

If we take s = 1 and β(t) = 1
t+1 for t > 0 in Corollary 6.9, we deduce the following result.

Corollary 6.10. Let (M,d) be a complete metric space and T : M → M be a mapping on X such that
for all x, y ∈M ,

d(Tx, Ty) ≤ E(x, y)

1 + E(x, y)
.

Then T has a unique fixed point.

6.2. Fixed point theorems on b-metric spaces endowed with a partial order. On the last decade,
several exciting developments have been reported in the field of existence of fixed point on met-
ric spaces endowed with partial orders see e.g. [64, 69, 81]. In this section, from Theorem 5.13
(and also from Theorem 5.15), we shall easily conclude some fixed point results on a b-metric
space endowed with a partial order. First of all, we recall some basic concepts:

Definition 6.17. Let (M,�) be a partially ordered set and T : M → M be a given mapping. We say
that T is nondecreasing with respect to � if

x, y ∈M, x � y =⇒ Tx � Ty.

Definition 6.18. Let (M,�) be a partially ordered set. A sequence {xn} ⊂ X is said to be nondecreas-
ing with respect to � if xn � xn+1 for all n.

Definition 6.19. Let (M,�) be a partially ordered set and d be a b-metric on X . We say that (M,�, d)
is regular if for every nondecreasing sequence {xn} ⊂ X such that xn → x ∈ M as n → ∞, there
exists a subsequence {xn(k)} of {xn} such that xn(k) � x for all k.

We have the following result.

Corollary 6.11. Let (M,�) be a partially ordered set and d be a b-metric on X such that (M,d) is
complete . Let T : M → M be a nondecreasing mapping with respect to �. Suppose that there exist
functions β ∈ F , ψ ∈ Ψ such that

ψ(s3d(Tx, Ty)) ≤ β(ψ(E(x, y)))ψ(E(x, y))(6.100)

and

(6.101) E(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty) + d(y, Tx)

2s
},

for all x, y ∈M with x � y. Suppose also that the following conditions hold:

(i) there exists x0 ∈M such that x0 � Tx0;
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(ii) T is continuous or (M,�, d) is regular.

Then T has a fixed point. Moreover, if for all x, y ∈ Fix(T ) either x � y or y � x, we have uniqueness
of the fixed point.

Proof. Define the mapping α :M ×M → [0,∞) by

α(x, y) =

{

1 if x � y or x � y,

0 otherwise.

Clearly, T is a generalized α− ψ contractive mapping, that is,

α(x, y)ψ(s3d(Tx, Ty)) ≤ β(ψ(E(x, y)))ψ(E(x, y)),

for all x, y ∈ M . From condition (i), we have α(x0, Tx0) ≥ 1. On the other hand, for all
x, y ∈M , from the monotone property of T , we have

α(x, y) ≥ 1 =⇒ x � y or x � y =⇒ Tx � Ty or Tx � Ty =⇒ α(Tx, Ty) ≥ 1.

So T is α−admissible. In case of T is continuous, the existence of a fixed point is concluded
from Theorem 5.14. Now, assume that (M,�, d) is regular. Let {xn} be a sequence in X such
that α(xn, xn+1) ≥ 1 for all n and xn → x ∈M as n→ ∞. From the regularity hypothesis, there
exists a subsequence {xn(k)} of {xn} such that xn(k) � x for all k. It yields from the definition of
α that α(xn(k), x) ≥ 1 for all k. In this case, the existence of a fixed point follows from Theorem
5.14. To prove the uniqueness, let x, y ∈ M . Due to the hypothesis, we have α(x, y) ≥ 1 and
α(y, x) ≥ 1. Hence, by Theorem 5.15, we conclude the uniqueness of the fixed point. �

The following results are immediate consequences of Corollary 6.11.

Corollary 6.12. Let (M,�) be a partially ordered set and d be a b-metric on X such that (M,d) is
complete . Let T : M → M be a nondecreasing mapping with respect to �. Suppose that there exist
functions β ∈ F and ψ ∈ Ψ such that

ψ(s3d(Tx, Ty)) ≤ β(ψ(d(x, y)))ψ(d(x, y))(6.102)

for all x, y ∈M with x � y. Suppose also that the following conditions hold:

(i) there exists x0 ∈M such that x0 � Tx0;
(ii) T is continuous or (M,�, d) is regular.

Then T has a fixed point. Moreover, if for all x, y ∈ Fix(T ) either x � y or y � x, we have uniqueness
of the fixed point.

Remark 6.9. In fact, in all results above, one can take s = 1 to conclude the existing results in the
literature.

7. APPLICATION

As an application, we consider the following integral equation

x(t) = h(t) +

∫ 1

0

k(t, ξ)T (ξ, x(ξ))dξ, ∀ t ∈ [0, 1].(7.103)

Let Ω denote the class of non-decreasing functions ω : [0,∞) → [0,∞) verifying

(ω(t))r ≤ tr ω(tr), for all r ≥ 1 and ∀t ≥ 0.

We will analyze equation (7.103) under the following assumptions:

(a1) h : [0, 1] → R is a continuous function,
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(a2) T : [0, 1]× R → R is a continuous function, T (t, x) ≥ 0 and there exists ω ∈ Ω such that
for all x, y ∈ R,

|T (t, x)− T (t, y)| ≤ ω(|x− y|)
with w(tn) → 1

2r−1 as n→ ∞ implies that lim
n→∞

tn = 0,

(a3) k : [0, 1] × [0, 1] → R is continuous in t ∈ [0, 1] for every ξ ∈ [0, 1] and is measurable in
ξ ∈ [0, 1] for all t ∈ [0, 1] such that k(t, x) ≥ 0 and

∫ 1

0

k(t, ξ)dξ ≤ 1

23−
3
r

.

Consider the space M = C([0, 1]) of continuous functions with the standard metric given by

ρ(x, y) = sup
t∈[0,1]

|x(t)− y(t)|, ∀x, y ∈ C([0, 1]).

Now, for r ≥ 1, we define

d(x, y) = (ρ(x, y))r = ( sup
t∈[0,1]

|x(t)− y(t)|)r = sup
t∈[0,1]

|x(t)− y(t)|r, ∀x, y ∈ C([0, 1]).

Note that (M,d) is a complete b-metric space with s = 2r−1.

Theorem 7.16. Under assumptions (a1)−(a3), the equation (7.103) has a unique solution inC([0, 1]).

Proof. We consider the operator T :M →M defined by

T (x)(t) = h(t) +

∫ 1

0

k(t, ξ)T (ξ, x(ξ))dξ, t ∈ [0, 1].

By virtue of our assumptions, T is well defined (this means that if x ∈ M then Tx ∈ M ). Also,
for x, y ∈M , we have

|T (x)(t)− T (y)(t)| = |h(t) +
∫ 1

0

k(t, ξ)T (ξ, x(ξ))dξ − h(t)−
∫ 1

0

k(t, ξ)T (ξ, x(ξ))dξ|

≤
∫ 1

0

k(t, ξ)|T (ξ, x(ξ))− T (ξ, y(ξ))|dξ

≤
∫ 1

0

k(t, ξ)ω(|x(ξ)− y(ξ)|)dξ.

Since the function ω is non-decreasing, so

ω(|x(ξ)− y(ξ)|) ≤ ω( sup
t∈[0,1]

|x(ξ)− y(ξ)|) = ω(ρ(x, y)).

Therefore

|T (x)(t)− T (y)(t)| ≤ 1

23−
3
r

ω(ρ(x, y)).

Now, we have

d(Tx, Ty) = sup
t∈[0,1]

|T (x)(t)− T (y)(t)|r

≤ [
1

23−
3
r

ω(ρ(x, y))]r ≤ 1

23r−3
d(x, y)ω(d(x, y))

≤ 1

23r−3
ω(E(x, y))E(x, y),

that is,
s3d(Tx, Ty) ≤ β(E(x, y))E(x, y),
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where s = 2r−1 and β(t) = ω(t). Notice that, if ω ∈ F , so β ∈ F . By Corollary 6.9, equation
(7.103) has a unique solution in C[0, 1] and the proof is completed. �

8. APPENDIX

Lemma 8.4. Let (X,µ) be a measure space such that µ(X) = 1. Take f ∈ L1(X,µ) satisfying the
condition T (x) > 0 for all x ∈M . Then, ln(f) ∈ L1(X,µ) and

∫

ln(f)dµ ≤ ln(

∫

f dµ).

Proof. Put g(t) := t − 1 − ln(t) and h(t) := 1 − 1
t − ln(t) for t > 0. Then, g′(t) = 1 − 1

t and

h′(t) = 1
t2 − 1

t . Clearly, notice that

g(t) ≥ g(1) = 0 and h(t) ≤ h(1) = 0 ∀ t > 0.

We deduce

(8.104) t− 1 ≥ ln(t) ≥ 1− 1

t
∀ t > 0.

Since T is measurable and ln is continuous, then ln(f) is measurable. Now, for all x ∈ M let

t = T (x)
‖f‖1

in (8.104). So, we have

1− ‖ f ‖1
T (x)

≤ ln(T (x))− ln(‖ f ‖1) ≤
T (x)

‖ f ‖1
− 1.

Since both right hand and left hand of [ln(T (x)) − ln(‖ f ‖1)] is integrable, so ln(T (x)) − ln(‖
f ‖1) is integrable. We also have

∫

(ln(T (x))− ln(‖ f ‖1)dµ ≤
∫

(
T (x)

‖ f ‖1
− 1)dµ = 0.

Therefore,
∫

ln(f) dµ ≤ ln(

∫

f dµ).

�
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ABSTRACT. In the present work, our aim of this study is generalization and extension of the theory of interpolation
of two dimensional functions to functionals or operators by means of Urysohn type nonlinear operators. In accordance
with this purpose, we introduce and study a new type of Urysohn type nonlinear operators. In particular, we investi-
gate the convergence problem for nonlinear operators that approximate the Urysohn type operator in two dimensional
case. The starting point of this study is motivated by the important applications that approximation properties of cer-
tain families of nonlinear operators have in signal-image reconstruction and in other related fields. We construct our
nonlinear operators by using a nonlinear form of the kernels together with the Urysohn type operator values instead
of the sampling values of the function.
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1. INTRODUCTION

For a function defined on the interval [0, 1], the Bernstein operators (Bnf) , n ≥ 1, are defined
by

(1.1) (Bnf) (x) =
n
∑

k=0

f

(

k

n

)

pn,k(x) , n ≥ 1,

where pn,k(x) =
(

n

k

)

xk(1− x)n−k is the well-known Binomial distribution and called Bern-

stein basis (0 ≤ x ≤ 1). These polynomials were introduced by Bernstein [9] in 1912 to give the
first constructive proof of the Weierstrass approximation theorem.

For detailed approaches to this operator see the fundamental book of G.G. Lorentz [27].

In his Ph.D. thesis [12] written under the direction of G.G. Lorentz and afterwards in the pa-
per [11] , the famous German mathematician P.L. Butzer considered two dimensional Bernstein
polynomials on the square � := {(x, y) : 0 ≤ x, y ≤ 1} as follows:

Bn,m(f ;x, y) =

n
∑

k=0

m
∑

j=0

f

(

k

n
,
j

m

)

pn,k (x) pm,j (y)

where pn,k(t) =
(

n

k

)

tk(1− t)n−k.

At the beginning, the theory of approximation is strongly related with the linearity of the
operators. But, thanks to the approachs of the Polish mathematician Julian Musielak, see [29],
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and continuous works of C.Bardaro, G. Vinti and their research group, this theory can be ex-
tended to the nonlinear type operators, under some specific assumptions on its kernel func-
tions, see the fundamental book due to Bardaro, Musielak and Vinti [6]. For further reading
please see [1]- [5], [13], [14] as well as the monographs [33].

In view of the approaches due to Musielak [29], recently, Karsli-Tiryaki and Altin [23] intro-
duced the following type nonlinear counterpart of the well-known Bernstein operators (1.1);

(1.2) (NBnf)(x) =

n
∑

k=0

Pn,k

(

x, f

(

k

n

))

, 0 ≤ x ≤ 1 , n ∈ N,

acting on bounded functions f on the interval [0, 1] , where Pn,k satisfy some suitable assump-
tions. They proved some existence and approximation theorems for the nonlinear Bernstein
operators.

Many problems in engineering and mechanics can be transformed into two-dimensional in-
tegral equations and corresponding two dimensional integral operators. Especially the integral
operators of Fredholm, Volterra, Hammerstein and Urysohn type are used frequently when
describing real problems which arise from different sciences, such as physics, engineering, me-
chanics, theory of elasticity, signal-image reconstruction and in the applications of mathemati-
cal physics. So, integral operators of various types form an important and unavoidable part of
linear and nonlinear functional analysis.

In 2000, Demkiv [15] and [16] defined and investigated some properties of the following
type one and two dimensional Bernstein operators, which are linear with respect to F defined
by (2.4);

(BnF )x (t) =

1
∫

0

n
∑

k=0

f

(

t, s,
k

n

)

pn,k (x(s)) ds,

and

(Bn,mF ) (x (.) , y(.)) =

1
∫

0

1
∫

0

n
∑

i=0

m
∑

j=0

f

(

t, z1, z2,
i

n
,
j

m

)

pn,i (x(z1)) pn,j (y(z2)) dz1dz2.

In 2017, the author [24] defined the following Urysohn type Meyer-König and Zeller operators;

(MnF )x(t) =

1
∫

0

[

∞
∑

k=0

f

(

t, s,
k

k + n

)

mn,k (x(s))

]

ds

(MnF )1(t) = F1(t) = F (1),

where

mn,k (x(s)) =

(

n+ k − 1
k

)

(x(s))
k
(1− x(s))n,

n is a non-negative integer and 0 ≤ x(s) < 1, and obtained some positive results about the
convergence problem.
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Very recently in [25] and [26], the author defined and investigated the Urysohn type nonlin-
ear Bernstein operators, having the form

(NBnF )x (t) =

1
∫

0

[

n
∑

k=0

Pk,n

(

x(s), f

(

t, s,
k

n

))

]

ds , 0 ≤ x(s) ≤ 1 , n ∈ N.

The central issue of this paper is to extend the theory of interpolation to functionals and oper-
ators by introducing the Urysohn type nonlinear counterpart of the two dimensional Bernstein
operators. Afterwards, we investigate the convergence problem for these nonlinear operators.

Due to this importance, in this paper we will deal with integral operators of the two dimen-
sional Urysohn type:

U (x(t), y(t)) =

b
∫

a

b
∫

a

k(t, s, z, x(s), y(z))dsdz, t ∈ [a, b] ,

where k is a known function and x and y are the unknown functions to be determined.

Let us consider a sequence NBF = (NBnF ) of operators, which we call it Urysohn type
nonlinear counterpart of the two dimensional Bernstein operators, having the form:

(NBnF ) (x (t) , y(t)) =

1
∫

0

1
∫

0

[

n
∑

k=0

n
∑

i=0

Pk,i,n

(

x(s), y(z), f

(

t, s, z,
k

n
,
i

n

))

]

dsdz,

0 ≤ x(s), y(z) ≤ 1, n ∈ N,

acting on bounded functions f on [0, 1]
5
= [0, 1] ∗ [0, 1] ∗ [0, 1] ∗ [0, 1] ∗ [0, 1] , where Pk,i,n satisfy

some suitable assumptions. In particular, we will put Dom NBF =
⋂

n∈N

Dom NBnF, where

Dom NBnF is the set of all functions f : [0, 1]
5 → R for which the operator is well defined.

2. PRELIMINARIES AND AUXILIARY RESULTS

This section is devoted to collecting some definitions and results which will be needed fur-
ther on.

Here we consider the following type two dimensional Urysohn integral operator,

(2.3) F (x(t), y(t)) =

1
∫

0

1
∫

0

f(t, s, z, x(s), y(z))dsdz, t ∈ [0, 1]

with unknown kernel f : If such a representation exists, then the kernel function f(t, s, z, x(.), y(.))
is called the two dimensional Green’s function, which is strongly related to the functions x and
y.

Note that in the univariate case, the solution of the following differential equation

DG(x, y) = δ(x− y),

represents a Green function G(x, y), here D is a differential operator, δ is the Dirac Delta func-
tion and satisfying a boundary condition. Note that

δ(x) =
dH(x)

dx
,
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is true, where

H(x) =

{

1 , x ≥ 0
0 , x < 0

is the Heaviside function.

In view of the above relations, we assume that the two dimensional continuous interpolation
conditions hold:

(2.4) F (xi(t), yj(t)) =

1
∫

0

1
∫

0

f(t, s, z, xi(s), yj(z))dsdz, t ∈ [0, 1]

where

xi(s) =
i

n
H(s− ξ); ξ ∈ [0; 1],(2.5)

yj(z) =
j

n
H(z − ς); ς ∈ [0; 1]

and i, j = 0, 1, 2, ...n .

Taking into account (2.4) and (2.5), by a straightforward calculation the stated identities follow.

F

(

i

n
H(s− ξ),

j

n
H(z − ς)

)

=

1
∫

0

1
∫

0

f(t, s, z,
i

n
H(s− ξ),

j

n
H(z − ς))dsdz

=

1
∫

ς

1
∫

ξ

f(t, s, z,
i

n
,
j

n
)dsdz +

ς
∫

0

1
∫

ξ

f(t, s, z,
i

n
, 0)dsdz

+

ς
∫

0

ξ
∫

0

f(t, s, z, 0, 0)dsdz +

1
∫

ς

ξ
∫

0

f(t, s, z, 0,
j

n
)dsdz(2.6)

and hence

∂F
(

i
nH(s− ξ), j

nH(z − ς)
)

∂ς
= −

1
∫

ξ

f(t, s, ς,
i

n
,
j

n
)ds+

1
∫

ξ

f(t, s, ς,
i

n
, 0)ds

+

ξ
∫

0

f(t, s, ς, 0, 0)ds−
ξ
∫

0

f(t, s, ς, 0,
j

n
)ds,

∂2F
(

i
nH(s− ξ), j

nH(z − ς)
)

∂ξ∂ς
= f(t, ξ, ς,

i

n
,
j

n
)− f(t, ξ, ς,

i

n
, 0)

+ f(t, ξ, ς, 0, 0)− f(t, ξ, ς, 0,
j

n
).

Say

(2.7) F1

(

t, ξ, ς,
i

n
,
j

n

)

:=
∂2F

(

i
nH(s− ξ), j

nH(z − ς)
)

∂ξ∂ς
.
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According to the above definition together with (2.6) and (2.7), it is possible to construct an ap-
proximation operator in order to generalize and extend the theory of interpolation of functions
to operators.

In view of (1.2) and (2.4), we introduce the following Urysohn type nonlinear Bernstein
operators;

(2.8) (NBnF ) (x (t) , y(t)) =

1
∫

0

1
∫

0

[

n
∑

k=0

n
∑

i=0

Pk,i,n

(

x(s), y(z), f

(

t, s, z,
k

n
,
i

n

))

]

dsdz

where n is a non-negative integer, Pk,i,n satisfy some suitable assumptions.and 0 ≤ x(s), y(z) ≤
1.

Now, we assemble the main definitions and notations which will be used throughout the
paper.

Let X be the set of all bounded Lebesgue measurable functions f : [0, 1]5 → R
+
0 = [0,∞).

Let Ψ be the class of all functions ψ : R+
0 → R

+
0 such that the function ψ is continuous and

concave with ψ(0) = 0, ψ(u) > 0 for u > 0.

We now introduce a sequence of functions. Let {Pk,i,n}n∈N
be a sequence of functions Pk,i,n :

[0, 1] x [0, 1] xR→ R defined by

(2.9) Pk,i,n (t, l, u) = pk,n(t)pi,n(l)Hn(u)

for every t, l ∈ [0, 1], u ∈ R, where Hn : R → R is such that Hn(0) = 0 and pk,n(•) is the
Bernstein basis. For simplicity we will write

Pk,i,n (t, l) := pk,n(t)pi,n(l).

In what follows, throughout the paper, we assume that µ : N → R
+ is an increasing and

continuous function such that lim
n→∞

µ(n) = ∞.

First of all we assume that the following conditions hold:

a ) Hn : R → R is such that
|Hn(u)−Hn(v)| ≤ ψ (|u− v|) ,

holds for every u, v ∈ R, for every n ∈ N. That is, Hn satisfies a (L−Ψ) Lipschitz condition.

b ) Denoting by rn(u) := Hn(u)− u, u ∈ R and n ∈ N, such that for n sufficiently large

sup
u

|rn(u)| = sup
u

|Hn(u)− u| ≤ 1

µ(n)
,

holds.

Following our announced aim, in this part we recall results regarding the univariate and
linear case of the celerated Bernstein polynomials.

Lemma 2.1. For (Bnt
s)(x, y), s = 0, 1, 2, one has

(Bn1)(x, y) = 1

(Bnt)(x, y) = x

(Bnt
2)(x, y) = x2 +

x(1− x)

n
.
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For proof of this Lemma see [27].

By direct calculation, we find the following equalities:

(Bn (t− x)
2
)(x, y) =

x(1− x)

n
, (Bn (t− x))(x, y) = 0 .

Lemma 2.2. For the central moments of order m ∈ N0

Tn,m(x) :=

n
∑

k=0

(k − nx)
m
pk,n (x) ,

for each m = 0, 1, ... there is a constant Am such that

0 ≤ Tn,2m(x) ≤ Amn
m.

The presented well-known inequality can be found in [17].

3. CONVERGENCE PROPERTY

We now introduce some notations and structural hypotheses, which will be fundamental in
proving our convergence theorems.

Let C[0, 1] the Banach space of continuous functions u : [0, 1] → R endowed with the norm

‖u‖ = sup{|u(x)| : x ∈ [0, 1]}.

Definition 3.1. Let f ∈ C
(

[a, b]
5
)

and δ > 0 be given. Then the complete modulus of continuity is

given by;

(3.10) ω (δ) = sup√
(u1−u2)

2+(v1−v2)
2≤δ

|f(t, s, z, u1, v1)− f(t, s, z, u2, v2)| .

Further on, the first and second partial modulus of continuity are given by

ω1(δ1, 0) = sup
|u1−u2|≤δ1

|f(t, s, z, u1, v1)− f(t, s, z, u2, v1)| ,

ω2(0, η) = sup
|v1−v2|≤η

|f(t, s, z, u1, v1)− f(t, s, z, u1, v2)| .

Recall that ω (f ; δ) has the following properties;

(i) Let λ ∈ R
+, then ω (f ;λδ) ≤ (λ+ 1)ω (f ; δ) ,

(ii) lim
δ→0+

ω (f ; δ) = 0,

(iii) |f(t, s, z, u1, v1)− f(t, s, z, u2, v2)| ≤ ω (δ)

(

1 +

√
(u1−u2)

2+(v1−v2)
2

δ

)

,

Note that the same properties also hold for partial moduli of continuity.

We are now ready to establish one of the main results of this study:

Theorem 3.1. Let F be the Urysohn integral operator with 0 ≤ x(s), y(z) ≤ 1. Then (NBnF )
converges to F uniformly in x, y ∈ C[0, 1]. That is

lim
n→∞

‖(NBnF ) (x (t) , y(t))− F (x (t) , y(t))‖C([0,1]2) = 0.
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Proof. In view of the definition of the operator (2.8), by considering (2.4), (2.9), (2.6) and (2.7),
we have

|(NBnF ) (x (t) , y(t))− F (x (t) , y(t))|

=

∣

∣

∣

∣

∣

∣

1
∫

0

1
∫

0

[

n
∑

k=0

n
∑

i=0

Pk,i,n

(

x(s), y(z), f

(

t, s, z,
k

n
,
i

n

))

]

dsdz − F (x (t) , y(t))

∣

∣

∣

∣

∣

∣

≤
1
∫

0

1
∫

0

n
∑

k=0

n
∑

i=0

Pk,i,n (x, y)

∣

∣

∣

∣

Hn

(

f

(

t, s, z,
k

n
,
i

n

))

−Hn (f (t, s, z, x(s), y(z)))

∣

∣

∣

∣

dsdz

+

1
∫

0

1
∫

0

n
∑

k=0

Pk,i,n (x, y) |Hn (f (t, s, z, x(s), y(z)))− f(t, s, z, x(s), y(z))| dsdz

:= I1 + I2.

By assumption b) I2 tends to zero as n→ ∞. In fact

I2 =

1
∫

0

1
∫

0

n
∑

k=0

n
∑

i=0

Pk,i,n (x, y) |Hn (f (t, s, z, x(s), y(z)))− f(t, s, z, x(s), y(z))| dsdz

≤
1
∫

0

1
∫

0

n
∑

k=0

n
∑

i=0

Pk,i,n (x, y)
1

µ (n)
dsdz

=
1

µ (n)
,

which tends to zero as n → ∞. Now, it is sufficient to evaluate the term I1. Using the defi-
nition of the function F1 (t, s, z, x(s), y(z)) , by concavity of the function ψ, and using Jensen
inequality, we obtain

I1 ≤
1
∫

0

1
∫

0

n
∑

k=0

n
∑

i=0

Pk,i,n (x, y)ψ

(∣

∣

∣

∣

f

(

t, s, z,
k

n
,
i

n

)

− f (t, s, z, x(s), y(z))

∣

∣

∣

∣

)

dsdz

≤ ψ





1
∫

0

1
∫

0

n
∑

k=0

n
∑

i=0

Pk,i,n (x, y)

∣

∣

∣

∣

f

(

t, s, z,
k

n
,
i

n

)

− f (t, s, z, x(s), y(z))

∣

∣

∣

∣

dsdz




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≤ ψ







1
∫

0

1
∫

0

n
∑

k=0

n
∑

i=0

Pk,i,n (x, y)

∣

∣

∣

∣

F1 (t, s, z, x(s), y(z))− F1

(

t, s, z,
k

n
,
i

n

)∣

∣

∣

∣

dsdz

+

1
∫

0

1
∫

0

∣

∣

∣

∣

∣

f (t, s, z, x(s), 0)−
n
∑

k=0

pk,n (x(s)) f

(

t, s, z,
k

n
, 0

)

∣

∣

∣

∣

∣

dsdz

+

1
∫

0

1
∫

0

∣

∣

∣

∣

∣

f (t, s, z, 0, y(z))−
n
∑

i=0

pi,n (y(z)) f

(

t, s, z, 0,
i

n

)

∣

∣

∣

∣

∣

dsdz







:≤ I1,1 + I1,2 + I1,3.

Let us divide the first term into four parts as;

I1,1 = ψ





1
∫

0

1
∫

0

n
∑

k=0

n
∑

i=0

Pk,i,n (x, y)

∣

∣

∣

∣

F1 (t, s, z, x(s), y(z))− F1

(

t, s, z,
k

n
,
i

n

)∣

∣

∣

∣

dsdz





:≤ I1,1,1 + I1,1,2 + I1,1,3 + I1,1,4,

where

I1,1,1

= ψ







1
∫

0

1
∫

0

∑

| kn−x(s)|<δ1

∑

| i

n
−y(z)|<δ2

Pk,i,n (x, y)

∣

∣

∣

∣

F1 (t, s, z, x(s), y(z))− F1

(

t, s, z,
k

n
,
i

n

)∣

∣

∣

∣

dsdz






,

I1,1,2

= ψ







1
∫

0

1
∫

0

∑

| kn−x(s)|<δ1

∑

| i

n
−y(z)|≥δ2

Pk,i,n (x, y)

∣

∣

∣

∣

F1 (t, s, z, x(s), y(z))− F1

(

t, s, z,
k

n
,
i

n

)∣

∣

∣

∣

dsdz






,

I1,1,3

= ψ







1
∫

0

1
∫

0

∑

| kn−x(s)|≥δ1

∑

| i

n
−y(z)|<δ2

Pk,i,n (x, y)

∣

∣

∣

∣

F1 (t, s, z, x(s), y(z))− F1

(

t, s, z,
k

n
,
i

n

)∣

∣

∣

∣

dsdz






,

and

I1,1,4

= ψ







1
∫

0

1
∫

0

∑

| kn−x(s)|≥δ1

∑

| i

n
−y(z)|≥δ2

Pk,i,n (x, y)

∣

∣

∣

∣

F1 (t, s, z, x(s), y(z))− F1

(

t, s, z,
k

n
,
i

n

)∣

∣

∣

∣

dsdz






.
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Since x, y ∈ C[0, 1], then there exist δ1, δ2 > 0 such that
∣

∣

∣

∣

F1 (t, s, z, x(s), y(z))− F1

(

t, s, z,
k

n
,
i

n

)∣

∣

∣

∣

< ǫ

holds true when
∣

∣

k
n − x(s)

∣

∣ < δ1 and
∣

∣

i
n − y(z)

∣

∣ < δ2. So one can easily obtain

I1,1,1 < ψ (ǫ) .

As to the other terms
∣

∣

∣

∣

F1 (t, s, z, x(s), y(z))− F1

(

t, s, z,
k

n
,
i

n

)∣

∣

∣

∣

≤ 2M

holds true for some M > 0, when
∣

∣

k
n − x(s)

∣

∣ ≥ δ1 or
∣

∣

i
n − y(z)

∣

∣ ≥ δ2.

In view of Lemma 2, we obtain

I1,1,2 = ψ







1
∫

0

1
∫

0

∑

| kn−x(s)|<δ1

∑

| i

n
−y(z)|≥δ2

Pk,i,n (x, y)

∣

∣

∣

∣

F1 (t, s, z, x(s), y(z))− F1

(

t, s, z,
k

n
,
i

n

)∣

∣

∣

∣

dsdz







≤ ψ






2M

1
∫

0

1
∫

0

∑

| kn−x(s)|<δ1

∑

| i

n
−y(z)|≥δ2

(

i− ny(z)

δ2

)2

Pk,i,n (x, y) dsdz







≤ ψ






2M

1
∫

0

1
∫

0

∑

| kn−x(s)|<δ1

∑

| i

n
−y(z)|≥δ2

(

i− ny(z)

δ2

)2

Pk,i,n (x, y) dsdz







≤ ψ

(

2M

δ22

A1

n

)

.

Similarly one has

I1,1,3 ≤ ψ

(

2M

δ2
A1

n

)

,

and

I1,1,4 ≤ ψ

(

2M

δ21δ
2
2

A2
1

n2

)

.

Collecting these estimates we have

|(NBnF ) (x (t) , y(t))− F (x (t) , y(t))| ≤ ψ (ǫ)+ψ

(

2MA1

nδ21

)

+ψ

(

2MA1

nδ22

)

+ψ

(

2M

δ21δ
2
2

A2
1

n2

)

+
1

µ (n)
.

That is
lim

n→∞
‖(NBnF ) (x (t) , y(t))− F (x (t) , y(t))‖C([0,1]2) = 0.

This completes the proof. �

Theorem 3.2. Let F be the Urysohn integral operator with x, y ∈ C[0, 1], and 0 ≤ x(s), y(z) ≤ 1.
Then

|(NBnF ) (x (t) , y(t))− F (x (t) , y(t))| ≤ 2ψ (ω (f ; δ)) +
1

µ (n)

holds true, where δ =
√

2A1

n .
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Proof. Clearly one has

|(NBnF ) (x (t) , y(t))− F (x (t) , y(t))|

≤
1
∫

0

1
∫

0

n
∑

k=0

n
∑

i=0

Pk,i,n (x, y)

∣

∣

∣

∣

Hn

(

f

(

t, s, z,
k

n
,
i

n

))

−Hn (f (t, s, z, x(s), y(z)))

∣

∣

∣

∣

dsdz

+
1

µ (n)

: = In,1 (x) +
1

µ (n)
,(3.11)

say. Since x, y ∈ C[0, 1] we can re-write (3.11) as follows

In,1 (x) ≤
1
∫

0

1
∫

0

n
∑

k=0

n
∑

i=0

Pk,i,n (x, y)ψ

(∣

∣

∣

∣

f

(

t, s, z,
k

n
,
i

n

)

− f (t, s, z, x(s), y(z))

∣

∣

∣

∣

)

dsdz

≤
1
∫

0

1
∫

0

n
∑

k=0

n
∑

i=0

Pk,i,n (x, y)ψ (ω (f ; δ)) dsdz

≤ ψ





1
∫

0

1
∫

0

n
∑

k=0

n
∑

i=0

Pk,i,n (x, y)ω (f ; δ) dsdz





≤ ψ





1
∫

0

1
∫

0

n
∑

k=0

n
∑

i=0

Pk,i,n (x, y)





√

(

k
n − x(s)

)2
+
(

i
n − y(z)

)2

δ
+ 1



ω (f ; δ) dsdz





= ψ



ω (f ; δ)

1
∫

0

1
∫

0

n
∑

k=0

n
∑

i=0

Pk,i,n (x, y)

√

(

k
n − x(s)

)2
+
(

i
n − y(z)

)2

δ
dsdz





+ ψ



ω (f ; δ)

1
∫

0

1
∫

0

n
∑

k=0

n
∑

i=0

Pk,i,n (x, y) dsdz





≤ ψ





ω (f ; δ)

δ

1
∫

0

1
∫

0

(

n
∑

k=0

n
∑

i=0

Pk,i,n (x, y)

[

(

k

n
− x(s)

)2

+

(

i

n
− y(z)

)2
])1/2

dsdz





+ ψ (ω (f ; δ))

≤ ψ

(

ω (f ; δ)

δ

[

2A1

n

]1/2
)

+ ψ (ω (f ; δ)) .

Taking into account that ω (f ; δ) is the modulus of continuity defined as (3.10). If we choose

δ =

√

2A1

n
,

then one can obtain the desired estimate, namely,

|(NBnF ) (x (t) , y(t))− F (x (t) , y(t))| ≤ 2ψ (ω (f ; δ)) +
1

µ (n)
.

Thus the proof is now complete. �
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Theorem 3.3. Let F be the Urysohn integral operator with x, y ∈ C[0, 1], and 0 ≤ x(s), y(z) ≤ 1.
Then

|(NBnF ) (x (t) , y(t))− F (x (t) , y(t))| ≤ 2

[

ψ

(

ω1

(

f ;

[

A1

n

]1/2
))

+ ψ

(

ω2

(

f ;

[

A1

n

]1/2
))]

+
1

µ (n)

holds true.

Proof. Clearly one has

|(NBnF ) (x (t) , y(t))− F (x (t) , y(t))|

≤
1
∫

0

1
∫

0

n
∑

k=0

n
∑

i=0

Pk,i,n (x, y)

∣

∣

∣

∣

Hn

(

f

(

t, s, z,
k

n
,
i

n

))

−Hn (f (t, s, z, x(s), y(z)))

∣

∣

∣

∣

dsdz +
1

µ (n)

=

1
∫

0

1
∫

0

n
∑

k=0

n
∑

i=0

Pk,i,n (x, y)

∣

∣

∣

∣

Hn

(

f
(

t, s, z, kn ,
i
n

))

−Hn

(

f
(

t, s, z, x(s), i
n

))

+Hn

(

f
(

t, s, z, x(s), i
n

))

−Hn (f (t, s, z, x(s), y(z)))

∣

∣

∣

∣

dsdz +
1

µ (n)

≤
1
∫

0

1
∫

0

n
∑

k=0

n
∑

i=0

Pk,i,n (x, y)

∣

∣

∣

∣

Hn

(

f

(

t, s, z,
k

n
,
i

n

))

−Hn

(

f

(

t, s, z, x(s),
i

n

))∣

∣

∣

∣

dsdz

+

1
∫

0

1
∫

0

n
∑

k=0

n
∑

i=0

Pk,i,n (x, y)

∣

∣

∣

∣

Hn

(

f

(

t, s, z, x(s),
i

n

))

−Hn (f (t, s, z, x(s), y(z)))

∣

∣

∣

∣

dsdz

+
1

µ (n)

:= In,1 (x) + In,2 (x) +
1

µ (n)
,

say. Since x, y ∈ C[0, 1] we can re-write (3.11) as follows: By concavity of the function ψ, and
using Jensen inequality, we obtain

In,1 (x) =

1
∫

0

1
∫

0

n
∑

k=0

n
∑

i=0

Pk,i,n (x, y)

∣

∣

∣

∣

Hn

(

f

(

t, s, z,
k

n
,
i

n

))

−Hn

(

f

(

t, s, z, x(s),
i

n

))∣

∣

∣

∣

dsdz

≤
1
∫

0

1
∫

0

n
∑

k=0

n
∑

i=0

Pk,i,n (x, y)ψ

(

ω1

(

f ;

∣

∣

∣

∣

k

n
− x(s)

∣

∣

∣

∣

))

dsdz

≤ ψ





1
∫

0

1
∫

0

n
∑

k=0

n
∑

i=0

Pk,i,n (x, y)ω1

(

f ;

∣

∣

∣

∣

k

n
− x(s)

∣

∣

∣

∣

)

dsdz




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Since ψ is non decreasing, then one has

In,1 (x) ≤ ψ





1
∫

0

1
∫

0

n
∑

k=0

n
∑

i=0

Pk,i,n (x, y)





√

(

k
n − x(s)

)2

δ1
+ 1



ω1 (f ; δ1) dsdz





≤ ψ

(

ω1 (f ; δ1)

δ1

[

A1

n

]1/2
)

+ ψ (ω1 (f ; δ1)) .

Similarly

In,1 (x) ≤ ψ

(

ω2 (f ; η)

η

[

A1

n

]1/2
)

+ ψ (ω2 (f ; η)) .

If we choose δ = η =
[

A1

n

]1/2
, so we get the desired estimate. �
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ABSTRACT. In this paper, we introduce Kantorovich type modification of (p, q)-Meyer-König-Zeller operators. We
estimate rate of convergence of proposed operators using modulus of continuity and Lipschitz class functions. Further,
we obtain the statistical convergence and local approximation results for these operators. In the last section, we esti-
mate the rate of convergence of (p, q)-Meyer-König-Zeller Kantorovich operators by means of Matlab programming.
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1. INTRODUCTION

In 1960, Meyer-König and Zeller [22] defined the operators known as Meyer-König-Zeller
(MKZ) operators, as follows:

Mn(f ;x) =

∞
∑

k=0

f

(

k

n+ k

)(

n+ k
k

)

xk(1− x)n+1 , if x ∈ [0, 1),

Mn(f ; 1) = f(1), if x = 1, n ∈ N.

Further, Cheney and Sharma [3] modified these operators and introduced a new form of the
Meyer-König-Zeller operators, as follows:

Mn(f ;x) =

∞
∑

k=0

f

(

k

n+ k + 1

)(

n+ k
k

)

xk(1− x)n+1 , if x ∈ [0, 1),

Mn(f ; 1) = f(1), if x = 1, n ∈ N.

In 2000, T. Trif [21] introduced the q-Meyer-König-Zeller operators for f ∈ C[0, 1], as follows:

Mn,q(f ;x) =

∞
∑

k=0

f

(

[k]q
[n+ k]q

)[

n+ k
k

]

q

xk(1− x)n+1
q , if x ∈ [0, 1),

Mn,q(f ; 1) = f(1), if x = 1, n ∈ N.

Further, with a slight modification in these operators, Dŏgru and Duman [5] defined the q-
Meyer-König-Zeller operators for f ∈ C[0, a], a ∈ (0, 1), as follows:

Mn,q(f ;x) =

n
∏

s=0

(1− qsx)

∞
∑

k=0

f

(

qn[k]q
[n+ k]q

)[

n+ k
k

]

q

xk , q ∈ (0, 1), n ∈ N.
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Recently, Gupta and Sharma [9] introduced the Kantorovich type modification of q-Meyer-
König-Zeller operators and studied some of their approximation properties. For detail studies
of Meyer-König and Zeller operators, one may refer to [6, 7, 10, 16, 17, 20].
In the recent years, (p, q)-analogue of various linear positive operators were introduced and
studied by many researchers [1, 8, 12, 15, 19].
In 2016, Mursaleen et al. [11] introduced the (p, q)-Meyer-König-Zeller operators as follows:

Mn,p,q(f ;x) =
1

pn(n+1)/2

∞
∑

k=0

[

n+ k
k

]

p,q

xkp−kn
n
∏

s=0

(ps − qsx) f

(

pn[k]p,q
[n+ k]p,q

)

.

Motivated by the above mentioned studied on Meyer-König and Zeller operators, in this pa-
per, we introduced Kantorovich type modification of (p, q)-Meyer-König-Zeller operators and
discus their approximation properties.
We begin by recalling certain notations of (p, q)-calculus (for more details, see [2, 18]).
Let 0 < q < p ≤ 1. The (p, q)-integer [n]p,q and (p, q)-factorial [n]p,q! are defined by

[n]p,q =
pn − qn

p− q
, n = 0, 1, 2....

[n]p,q! =

{

[1]p,q[2]p,q.........[n]p,q, n ≥ 1

1, n=0
.

For integers 0 ≤ k ≤ n, (p, q)-binomial coefficient is defined as
[

n
k

]

p,q

=
[n]p,q!

[k]p,q![n− k]p,q!
.

The (p, q)-binomials expansion is expressed as:

(x+ y)np,q =
n−1
∏

j=0

(pjx+ qjy).

For a function f : R → R, the (p, q)-analogue of derivative is defined as

Dp,q(f(x)) =
f(px)− f(qx)

(p− q)x
, x 6= 0

and

Dp,q(f(0)) = lim
x→0

Dp,q(f(x)),

provided the limit exists.

Let f : C[0, a] → R, the (p, q)-integration of a function f is defined as

∫ a

0

f(t)dp,qt = (q − p)a
∞
∑

k=0

pk

qk+1
f(

pk

qk+1
a), when |p

q
| < 1,

and
∫ a

0

f(t)dp,qt = (p− q)a
∞
∑

k=0

qk

pk+1
f(

qk

pk+1
a), when |p

q
| > 1.
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2. CONSTRUCTION OF OPERATORS

In this section, we introduce the Kantorovich type modification of (p, q)-Meyer-König-Zeller
operators. We estimate moments and obtain the uniform convergence of operators.
For 0 < q < p ≤ 1 and f ∈ C[0, 1], Kantorovich variant of (p, q)-Meyer-König-Zeller operators
are defined as follows:

M̃n,p,q(f ;x) =
[n+ 1]p,q
pn(n−1)/2

∞
∑

k=0

mp,q
n,k(x)

∫

[k+1]p,q
[n+k+1]p,q

[k]p,q
[n+k]p,q

f(pn−1t)dp,qt,

where

mp,q
n,k(x) =

[

n+ k + 1
k

]

p,q

p−knq−kxkPn−1(x),

here, Pn(x) =
∏n

s=0(p
s − qsx).

Remark 2.1. It can be easily verified that for p → 1, above operators reduces to q-Meyer-König-Zeller-
Kantorovich operators defined in [9].

By using mathematical induction on n, one can verify the following identity:

(2.1)
Pn(x)

pn(n+1)/2

∞
∑

k=0

[

n+ k
k

]

p,q

xkp−kn = 1.

Further, by using simple computation, we can obtain the following identity:

(2.2)
[k + 1]p,q

[n+ k + 1]p,q
− [k]p,q

[n+ k]p,q
=

(pq)
k
[n]p,q

[n+ k]p,q[n+ k + 1]p,q
.

Lemma 2.1. For r = 0, 1, 2, ... and n > r, we have

Pn−1(x)

∞
∑

k=0

[

n+ k − 1
k

]

p,q

xkp−k(n−r−1)

[n+ k − 1]
r
p,q

=

∏r
j=1(p

n−j − qn−jx)

[n− 1]
r
p,q

p(n−r)(n−r−1)/2,

where [n− 1]
r
p,q = [n− 1]p,q[n− 2]p,q....[n− r]p,q .

Proof. By using identity (2.1), lemma can be proved as similar to [9, Lemma 2]. �

Lemma 2.2. For r ≥ 0, we have the following inequality

1

[n+ k + r]p,q
≤ 1

qr+1[n+ k − 1]p,q
.

Lemma 2.3. Let I(f(t)) =
∫

[k+1]p,q
[n+k+1]p,q

[k]p,q
[n+k]p,q

f(pn−1t)dp,qt and ei = ti for i = 0, 1, 2, we have following

identities:

I(e0) =
(pq)

k
[n]p,q

[n+ k]p,q[n+ k + 1]p,q
,

I(e1) =
pn−1

[2]p,q

(pq)
k
[n]p,q

[n+ k]p,q[n+ k + 1]p,q

(

[k]p,q

(

q

[n+ k + 1]p,q
+

1

[n+ k]p,q

)

+
pk

[n+ k + 1]p,q

)

,

I(e2) =
p2(n−1)

[3]p,q

(pq)
k
[n]p,q

[n+ k]p,q[n+ k + 1]p,q

(

[k]2p,qS2(n, k) + [k]p,qS1(n, k) + S0(n, k)

)

.
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Here,

S2(n, k) =
q2

[n+ k + 1]2p,q
+

q

[n+ k + 1]p,q[n+ k]p,q
+

1

[n+ k]2p,q
,

S1(n, k) =
2pkq

[n+ k + 1]2p,q
+

pk

[n+ k + 1]p,q[n+ k]p,q
,

S0(n, k) =
p2k

[n+ k + 1]2p,q
.

Proof. By using definition of (p, q)-integral and identity (2.2), we have

I(e2) =

∫

[k+1]p,q
[n+k+1]p,q

[k]p,q
[n+k]p,q

(pn−1t)2 dp,qt

= p2(n−1)(p− q)

((

[k + 1]p,q
[n+ k + 1]p,q

)3

−
(

[k]p,q
[n+ k]p,q

)3) ∞
∑

j=0

(

qj

pj+1

)3

=
p2(n−1)

[3]p,q

(pq)
k
[n]p,q

[n+ k]p,q[n+ k + 1]p,q
(

[k + 1]2p,q
[n+ k + 1]2p,q

+
[k + 1]p,q[k]p,q

[n+ k + 1]p,q[n+ k]p,q
+

[k]2p,q
[n+ k]2p,q

)

=
p2(n−1)

[3]p,q

(pq)
k
[n]p,q

[n+ k]p,q[n+ k + 1]p,q
(

(pk + q[k]p,q)
2

[n+ k + 1]2p,q
+

(pk + q[k]p,q)[k]p,q
[n+ k + 1]p,q[n+ k]p,q

+
[k]2p,q

[n+ k]2p,q

)

=
p2(n−1)

[3]p,q

(pq)
k
[n]p,q

[n+ k]p,q[n+ k + 1]p,q

(

(p2k + 2pkq[k]p,q + q2[k]2p,q)

[n+ k + 1]2p,q
+

(pk[k]p,q + q[k]2p,q)

[n+ k + 1]p,q[n+ k]p,q
+

[k]2p,q
[n+ k]2p,q

)

=
p2(n−1)

[3]p,q

(pq)
k
[n]p,q

[n+ k]p,q[n+ k + 1]p,q

(

[k]2p,qS2(n, k) + [k]p,qS1(n, k) + S0(n, k)

)

.

Similarly, we can get result for e0 and e1. �

Lemma 2.4. For ei = ti, here i = 0, 1, 2, moments estimate of proposed operators are as follows:

M̃n,p,q(e0;x) = 1,

M̃n,p,q(e1;x) ≤
1

[2]p,qq

(

2x+
(pn−1 − qn−1x)

q[n− 1]p,q

)

,

M̃n,p,q(e1;x) ≥
2x

[2]p,qq2

(

1− (1 + q)

pn−1

(

pn−1 − qn−1x

[n− 1]p,q

))

,

M̃n,p,q(e2;x) ≤
1

[3]p,qq

(

3x2 +

(

3x

q
+

3

q2
+

p

q3
(pn−2 − qn−2x)

[n− 2]p,q

)

(pn−1 − qn−1x)

[n− 1]p,q

)

.
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Proof. By using definition of (p, q)-Meyer-König-Zeller Kantorovich operators, identity (2.1),
Lemma 2.2 and Lemma 2.3, moments of sequence of the opeartors can be estimated as follows:
For e0 = 1, we have

M̃n,p,q(e0;x) =
[n+ 1]p,q
pn(n−1)/2

Pn−1(x)
∞
∑

k=0

mp,q
n,k(x)

(pq)
k
[n]p,q

[n+ k]p,q[n+ k + 1]p,q

=
[n+ 1]p,q
pn(n−1)/2

Pn−1(x)
∞
∑

k=0

[

n+ k + 1
k

]

p,q

xkp−knq−k

(pq)
k
[n]p,q

[n+ k]p,q[n+ k + 1]p,q

=
Pn−1(x)

pn(n−1)/2

∞
∑

k=0

[

n+ k − 1
k

]

p,q

xkp−k(n−1)

= 1.

For e1 = t, upper bound of moment can be obtained as follows:

M̃n,p,q(e1;x) ≤ [n+ 1]p,q
pn(n−1)/2

Pn−1(x)

∞
∑

k=0

[

n+ k + 1
k

]

p,q

xkp−knq−k

pn−1

[2]p,q

(pq)
k
[n]p,q

[n+ k]p,q[n+ k + 1]p,q

(

[k]p,q
q

2

[n+ k − 1]p,q
+

pk

q2[n+ k − 1]p,q

)

=
pn−1

[2]p,qqpn(n−1)/2

(

2Pn−1(x)
∞
∑

k=0

[

n+ k − 1
k

]

p,q

xkp−k(n−1) [k]p,q
[n+ k − 1]p,q

+
Pn−1(x)

q

∞
∑

k=0

[

n+ k − 1
k

]

p,q

xkp−k(n−2)

[n+ k − 1]p,q

)

=
pn−1

[2]p,qqpn(n−1)/2

(

2Pn−1(x)
∞
∑

k=1

[

n+ k − 2
k − 1

]

p,q

xkp−k(n−1)

+
Pn−1(x)

q

∞
∑

k=0

[

n+ k − 1
k

]

p,q

xkp−k(n−2)

[n+ k − 1]p,q

)

=
pn−1

[2]p,qqpn(n−1)/2

(

2x

p(n−1)
Pn−1(x)

∞
∑

k=0

[

n+ k − 1
k

]

p,q

xkp−k(n−1)

+
Pn−1(x)

q

∞
∑

k=0

[

n+ k − 1
k

]

p,q

xkp−k(n−2)

[n+ k − 1]p,q

)

=
1

[2]p,qq

(

2x+
pn−1 − qn−1x

q[n− 1]p,q

)

.
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Lower bound of moment for e1 can be obtained as follows:

M̃n,p,q(e1;x) =
pn−1Pn−1(x)

[2]p,qpn(n−1)/2

∞
∑

k=0

[

n+ k − 1
k

]

p,q

xkp−k(n−1)

(

[k + 1]p,q
[n+ k + 1]p,q

+
[k]p,q

[n+ k]p,q

)

=
pn−1Pn−1(x)

[2]p,qpn(n−1)/2

∞
∑

k=1

[

n+ k − 2
k − 1

]

p,q

xkp−k(n−1)

[n+ k − 1]p,q
[k]p,q

(

[k + 1]p,q
[n+ k + 1]p,q

+
[k]p,q

[n+ k]p,q

)

=
pn−1Pn−1(x)

[2]p,qpn(n−1)/2

∞
∑

k=0

[

n+ k − 1
k

]

p,q

xk+1p−(k+1)(n−1)

[n+ k]p,q
[k + 1]p,q

(

[k + 2]p,q
[n+ k + 2]p,q

+
[k + 1]p,q

[n+ k + 1]p,q

)

≥ x Pn−1(x)

[2]p,qpn(n−1)/2

∞
∑

k=0

[

n+ k − 1
k

]

p,q

xkp−k(n−1)

[n+ k]p,q

(

1

[n+ k + 2]p,q
+

1

[n+ k + 1]p,q

)

≥ 2x Pn−1(x)

[2]p,qpn(n−1)/2

∞
∑

k=0

[

n+ k − 1
k

]

p,q

xkp−k(n−1)

(

[n+ k]p,q
[n+ k + 2]p,q

)

=
2x Pn−1(x)

[2]p,qpn(n−1)/2

∞
∑

k=0

[

n+ k − 1
k

]

p,q

xkp−k(n−1)

(

[n+ k + 2]p,q − qpn+k − pn+k+1

q2[n+ k + 2]p,q

)

≥ 2x Pn−1(x)

[2]p,qpn(n−1)/2

∞
∑

k=0

[

n+ k − 1
k

]

p,q

xkp−k(n−1)

(

1

q2
− pk

q[n+ k − 1]p,q
− pk

q2[n+ k − 1]p,q

)

=
2x Pn−1(x)

[2]p,qpn(n−1)/2

∞
∑

k=0

[

n+ k − 1
k

]

p,q

xkp−k(n−1)

(

1

q2
−

(

1

q
+

1

q2

)

pk

[n+ k − 1]p,q

)

=
2x

[2]p,qq2pn(n−1)/2
Pn−1(x)

∞
∑

k=0

[

n+ k − 1
k

]

p,q

xkp−k(n−1)

− 2(1 + q)x

[2]p,qq2pn(n−1)/2
Pn−1(x)

∞
∑

k=0

[

n+ k − 1
k

]

p,q

xkp−k(n−2) 1

[n+ k − 1]p,q
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=
2x

[2]p,qq2
− 2(1 + q)x

[2]p,qq2pn−1

(

pn−1 − qn−1x

[n− 1]p,q

)

=
2x

[2]p,qq2

(

1− (1 + q)

pn−1

(

pn−1 − qn−1x

[n− 1]p,q

))

.

Finally for e2 = t2, moments of the operators can be obtained as follows:

M̃n,p,q(e2;x) = A+B + C.

Here,

A =
p2(n−1)

[3]p,qpn(n−1)/2
Pn−1(x)

∞
∑

k=0

[

n+ k − 1
k

]

p,q

xkp−k(n−1)[k]2p,qS2(n, k),

B =
p2(n−1)

[3]p,qpn(n−1)/2
Pn−1(x)

∞
∑

k=0

[

n+ k − 1
k

]

p,q

xkp−k(n−1)[k]p,qS1(n, k),

C =
p2(n−1)

[3]p,qpn(n−1)/2
Pn−1(x)

∞
∑

k=0

[

n+ k − 1
k

]

p,q

xkp−k(n−1)S0(n, k).

Using Lemma 2.2, we have

S2(n, k) ≤ 3

q3[n+ k − 1]
2
p,q

,(2.3)

S1(n, k) ≤ 3pk

q4[n+ k − 1]
2
p,q

,(2.4)

S0(n, k) ≤ p2k

q5[n+ k − 1]
2
p,q

.(2.5)

Using the inequality (2.3), we have

A ≤ 3p2(n−1)

[3]p,qq3pn(n−1)/2
Pn−1(x)

∞
∑

k=0

[

n+ k − 1
k

]

p,q

xkp−k(n−1)
[k]2p,q

[n+ k − 1]
2
p,q

=
3p2(n−1)

[3]p,qq3pn(n−1)/2
Pn−1(x)

∞
∑

k=1

[

n+ k − 2
k − 1

]

p,q

xkp−k(n−1) [k]p,q
[n+ k − 2]p,q

=
3p2(n−1)

[3]p,qq3pn(n−1)/2
Pn−1(x)

∞
∑

k=0

[

n+ k − 1
k

]

p,q

xk+1p−(k+1)(n−1) [k + 1]p,q
[n+ k − 1]p,q

=
3p2(n−1)

[3]p,qq3pn(n−1)/2
Pn−1(x)

( ∞
∑

k=0

[

n+ k − 1
k

]

p,q

xk+1p−(k+1)(n−1) pk

[n+ k − 1]p,q

+
∞
∑

k=0

[

n+ k − 1
k

]

p,q

xk+1p−(k+1)(n−1) q[k]p,q
[n+ k − 1]p,q

)
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=
3p2(n−1)

[3]p,qq3pn(n−1)/2

(

xp−(n−1)Pn−1(x)
∞
∑

k=0

[

n+ k − 1
k

]

p,q

xkp−k(n−2)

[n+ k − 1]p,q

+ qp−2(n−1)x2Pn−1(x)

∞
∑

k=0

[

n+ k − 1
k

]

p,q

xkp−k(n−1)

)

=
3p2(n−1)

[3]p,qq3pn(n−1)/2

(

xp−(n−1)p(n−1)(n−2)/2 (p
n−1 − qn−1x)

[n− 1]p,q
+ qp−2(n−1)pn(n−1)/2x2

)

=
3x

[3]p,qq3
(pn−1 − qn−1x)

[n− 1]p,q
+

3x2

[3]p,qq2
.

Again, using the inequality (2.4), we have

B ≤ 3p2(n−1)

[3]p,qq4pn(n−1)/2
Pn−1(x)

∞
∑

k=1

[

n+ k − 2
k − 1

]

p,q

xkp−k(n−1) pk

[n+ k − 2]p,q

=
3p2(n−1)

[3]p,qq4pn(n−1)/2
Pn−1(x)

∞
∑

k=0

[

n+ k − 1
k

]

p,q

xk+1p−(k+1)(n−1) pk+1

[n+ k − 1]p,q

=
3p2(n−1)

[3]p,qq4pn(n−1)/2

(

xp−(n−1)p(n−1)(n−2)/2 (p
n−1 − qn−1x)

[n− 1]p,q

)

=
3

[3]p,qq4
(pn−1 − qn−1x)

[n− 1]p,q
.

Further, using the inequality (2.5), we have

C ≤ p2(n−1)

[3]p,qq5pn(n−1)/2
Pn−1(x)

∞
∑

k=0

[

n+ k − 1
k

]

p,q

xkp−k(n−3)

[n+ k − 1]
2
p,q

=
p

[3]p,qq5

∏2
j=1(p

n−j − qn−jx)

[n− 1]
2
p,q

.

Finally,

M̃n,p,q(e2;x) ≤
1

[3]p,qq2

(

3x2 +

(

3x

q
+

3

q2
+

p

q3
(pn−2 − qn−2x)

[n− 2]p,q

)

(pn−1 − qn−1x)

[n− 1]p,q

)

.

Hence the lemma. �

Lemma 2.5. For all x ∈ [0, 1] and 0 < q < p ≤ 1, central moments of the operators are given by:

M̃n,p,q((t− x);x) ≤ 1

[2]p,qq

(

(2− [2]p,qq)x+
(pn−1 − qn−1x)

q[n− 1]p,q

)

,

M̃n,p,q((t− x)2;x) ≤
(

1 +
3

[3]p,qq2
− 4

[2]p,qq2

)

x2 +
pn−1 − qn−1x

[n− 1]p,qq2
(

3x

[3]p,q
+

3

[3]p,qq2
+

4x2(1 + q)

[2]p,qpn−1
+

p

q3
pn−2 − qn−2x

[n− 2]p,q

)

.

Now, we give the result for the uniform convergence of operator by means of Bohman-
Korovkin type theorem.
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Remark 2.2. For 0 < q < p ≤ 1, by simple computations limn→∞[n]p,q = 1/(p − q). In order
to obtain results for order of convergence of the operator, we take qn ∈ (0, 1), pn ∈ (qn, 1] such that
limn→∞ pn = limn→∞ qn = 1, limn→∞ pnn = a and limn→∞ qnn = b, so that limn→∞

1
[n]pn,qn

= 0.

Such a sequence can always be constructed for example, we can take qn = 1− 1/n and pn = 1− 1/2n,

clearly limn→∞ pnn = e−1/2, limn→∞ qnn = e−1 and limn→∞
1

[n]pn,qn
= 0.

Theorem 2.1. Let {pn}n and {qn}n be the sequence as defined in Remark 2.2. Then for each f ∈
C[0, 1], M̃n,pn,qn(f ;x) converges uniformly to f on [0, 1].

Proof. By the Bohman-Korovkin theorem [13], to prove uniform convergence of the operators,
it is sufficient to show that following equality holds for i = 0, 1, 2:

(2.6) lim
n→∞

‖M̃n,pn,qn(ei; .)− ei‖ = 0.

By using moment estimates obtained in Lemma 2.4, equality (2.6) holds directly for i = 0. Also,

‖M̃n,pn,qn(e1; .)− e1‖ ≤ 1

[2]pn,qnqn

(

|2− [2]pn,qnqn|+
∣

∣

∣

∣

(pn−1
n − qn−1

n x)

qn[n− 1]pn,qn

∣

∣

∣

∣

)

,

‖M̃n,pn,qn(e2; .)− e2‖ ≤ 1

[3]pn,qnq
2
n

(

|3− [3]pn,qnq
2
n|

+

∣

∣

∣

∣

(

3

qn
+

3

q2n
+

pn
q3n

(pn−2
n − qn−2

n x)

[n− 2]pn,qn

)

(pn−1
n − qn−1

n x)

[n− 1]pn,qn

∣

∣

∣

∣

)

.

For n → ∞ and Remark 2.2, equality (2.6) holds for i = 0, 1, 2. Hence the theorem. �

3. RATE OF CONVERGENCE

In this section, we estimate the rate of convergence of proposed operator by means of mod-
ulus of continuity and Lipschitz class functions. We also show the statistical convergence of
the operator.
Recall the concept of modulus of continuity, the modulus of continuity of f(x) ∈ [0, a], denoted
by ω(f, δ), is defined by

ω(f, δ) = sup
|x−y|≤δ;x,y∈[0,a]

|f(x)− f(y)|.

A function f ∈ LipM (α), (M > 0 and 0 < α ≤ 1), if the inequality

|f(t)− f(x)| ≤ M |t− x|α,
holds for all t, x ∈ [0, 1].

Theorem 3.2. Let {pn}n and {qn}n be the sequence as defined in Remark 2.2. Then

|M̃n,pn,qn(f ;x)− f | ≤ 2ω(f,
√
δn),

for all f ∈ C[0, 1], here δn = M̃n,pn,qn

(

(t− x)2;x
)

.

Proof. By the linearity and monotonicity of the operators, we get

|M̃n,pn,qn(f ;x)− f | ≤ M̃n,pn,qn(|f(t)− f(x)|;x),
also, by property of modulus of continuity (see [14])

|f(t)− f(x)| ≤ ω(f, δ)

(

1 +
1

δ2
(t− x)2

)

,
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therefore,

|M̃n,pn,qn(f ;x)− f | ≤ ω(f, δ)

(

1 +
1

δ2
M̃n,pn,qn((t− x)2;x)

)

.

By Lemma 2.5 and Remark 2.2, we can find

lim
n→∞

M̃n,pn,qn

(

(t− x)2;x
)

= 0.

So, letting δn = M̃n,pn,qn

(

(t− x)2;x
)

and take δ =
√
δn, we finally get the result. �

In the following theorem, we compute the rate of convergence by means of the Lipschitz
class.

Theorem 3.3. Let {pn}n and {qn}n be the sequence as defined in Remark 2.2. Then for all f ∈
LipM (α), we have

|M̃n,pn,qn(f ;x)− f(x)| ≤ Mδn(x)
α/2,

here δn(x) = M̃n,pn,qn(|t− x|2;x).

Proof. By using definition of Lipschitz class functions and applying Hölder’s inequality with
p = 2

α , q = 2
2−α , we get

|M̃n,pn,qn(f ;x)− f(x)| ≤ M̃n,pn,qn(|f(t)− f(x)|;x)
≤ MM̃n,pn,qn(|t− x|α;x)
≤ MM̃n,pn,qn(|t− x|2;x)α/2.

Taking δn = M̃n,pn,qn(|t− x|2;x), we get the result. �

A sequence (xn)n is said to be statistically convergent to a number L, denoted by st −
lim
n

xn = L if, for every ε > 0,

δ{n ∈ N : |xn − L| ≥ ε} = 0,

where

δ(S) :=
1

N

N
∑

k=1

χS(j)

is the natural density of set S ⊆ N and χS is the characteristic function of S.
Let CB(D) represents the space of all continuous functions on D and bounded on entire real
line, where D is any interval on real line. It can be easily shown that CB(D) is a Banach space
with supreme norm.

Theorem A. ([5]) Let {Ln}n be a sequence of positive linear operators from CB([a, b]) into B([a, b]),
satisfying the condition that

st− lim
n→∞

‖Lnei − ei‖ = 0∀i = 0, 1, 2.

Then,

st− lim
n→∞

‖Lnf − f‖ = 0∀f ∈ CB([a, b]).
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Theorem 3.4. Let {pn}n, {qn}n be sequences such that

st− lim
n→∞

qn = 1, st− lim
n→∞

qn
n = a,

st− lim
n→∞

pn = 1, st− lim
n→∞

pn
n = b.

. Then, we have
st− lim

n→∞
‖M̃n,pn,qnf − f‖ = 0 for all f ∈ CB [0, 1].

Proof. We use moment estimates obtained in Lemma 2.4, to prove that operator converges sta-
tistically for ei, i = 0, 1, 2. For first moment result is trivial.
For i = 1, 2, we have

|M̃n,pn,qn(e1; .)− e1| ≤ 1

[2]pn,qnqn

(

|2− [2]pn,qnqn|x+

∣

∣

∣

∣

(pn−1
n − qn−1

n x)

qn[n− 1]pn,qn

∣

∣

∣

∣

)

,

|M̃n,pn,qn(e2; .)− e2| ≤ 1

[3]pn,qnq
2
n

(

|3− [3]pn,qnq
2
n|x2 +

∣

∣

∣

∣

(

3x

qn
+

3

q2n

)

(pn−1
n − qn−1

n x)

[n− 1]pn,qn

∣

∣

∣

∣

+

∣

∣

∣

∣

pn
q3n

(pn−1
n − qn−1

n x)(pn−2
n − qn−2

n x)

[n− 1]pn,qn [n− 2]pn,qn

∣

∣

∣

∣

)

.

By taking supremum over x ∈ [0, 1] in above inequalities and using st − limn→∞
1

[n]pn,qn
= 0,

we get

st− lim
n→∞

‖M̃n,pn,qn(e1; .)− e1‖ = 0,

st− lim
n→∞

‖M̃n,pn,qn(e2; .)− e2‖ = 0.

By Theorem A, we obtain statistical convergence of the operator. �

4. LOCAL APPROXIMATION

The Peetre’s K-functional is defined by

K2(f, δ) = inf
g∈W 2

{‖f − g‖+ δ‖g′′‖},

here W 2 = {g ∈ C[0, 1] : g′, g′′ ∈ C[0, 1]} and norm ‖.‖ denotes the uniform norm on C[0, 1].
Further, we have a well-known inequality given by DeVore and Lorentz [4, p. 177, Theorem

2.4], there exists a positive constant C > 0 such that K2(f, δ) ≤ Cω(f, δ
1
2 ), δ > 0, where ω2 is

known as the second order modulus of continuity, given by

ω2(f, δ
1
2 ) = sup

0<h<δ
1
2 ,x∈[0,1]

|f(x+ 2h)− 2f(x+ h) + f(x)|.

Here, we give some local result for the operators.

Theorem 4.5. Let {pn}n and {qn}n be the sequence as defined in Remark 2.2. Then for all f ∈ C[0, 1],
there exists an absolute constant C > 0 such that

|M̃n,pn,qn(f ;x)− f | ≤ Cω2(f, δn(x)) + ω(f, αn(x)),

Here,

δn(x) =

√

M̃n,pn,qn((t− x)2;x) +

(

1

[2]pn,qnqn

(

2x+
(pn−1

n − qn−1
n x)

qn[n− 1]pn,qn

)

− x

)2

,

αn(x) =

∣

∣

∣

∣

1

[2]pn,qnqn

(

(2− [2]pn,qnqn)x+
(pn−1

n − qn−1
n x)

qn[n− 1]pn,qn

)
∣

∣

∣

∣

.
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Proof. For f ∈ C[0, 1], we consider

Mn,pn,qn(f ;x) = M̃n,pn,qn(f ;x) + f(x)− f

(

1

[2]pn,qnqn

(

2x+
(pn−1

n − qn−1
n x)

qn[n− 1]pn,qn

))

.

Now, using Lemma 2.4, we immediately get

Mn,pn,qn(1;x) = M̃n,pn,qn(1;x) = 1

and

Mn,pn,qn(t;x) = M̃n,pn,qn(t;x) + x− 1

[2]pn,qnqn

(

2x+
(pn−1

n − qn−1
n x)

qn[n− 1]pn,qn

)

≤ x.

By Taylor’s formula g(t) = g(x) + (t− x)g′(x) +
∫ t

x
(t− u)g′′(u)du, we get

Mn,pn,qn(g(t);x) = g(x) + g′(x)Mn,pn,qn((t− x);x) +Mn,pn,qn

(
∫ t

x

(t− u)g′′(u)du;x

)

≤ g(x) + M̃n,pn,qn

(
∫ t

x

(t− u)g′′(u)du;x

)

−
∫ 1

[2]pn,qnqn

(

2x+
(pn−1

n −qn−1
n x)

qn[n−1]pn,qn

)

x
(

1

[2]pn,qnqn

(

2x+
(pn−1

n − qn−1
n x)

qn[n− 1]pn,qn

)

− u

)

g′′(u)du.

Further, we have

|Mn,pn,qn(g(t);x)− g(x)| ≤ M̃n,pn,qn

(∣

∣

∣

∣

∫ t

x

(t− u)g′′(u)du

∣

∣

∣

∣

;x

)

+

∣

∣

∣

∣

∣

∣

∣

∫ 1
[2]pn,qnqn

(

2x+
(pn−1

n −qn−1
n x)

qn[n−1]pn,qn

)

x

∣

∣

∣

∣

1

[2]pn,qnqn

(

2x+
(pn−1

n − qn−1
n x)

qn[n− 1]pn,qn

)

− u

∣

∣

∣

∣

|g′′(u)| du

∣

∣

∣

∣

∣

∣

∣

≤ M̃n,pn,qn((t− x)2;x) ‖g′′(x)‖+
(

1

[2]pn,qnqn

(

2x+
(pn−1

n − qn−1
n x)

qn[n− 1]pn,qn

)

− x

)2

‖g′′(x)‖

= δ2n(x)‖g′′‖.

Now, by boundedness of M̃n,pn,qn , we get

|Mn,pn,qn(f ;x)| ≤
∣

∣

∣
M̃n,pn,qn(f ;x)

∣

∣

∣
+ |f(x)|

+

∣

∣

∣

∣

f

(

1

[2]pn,qnqn

(

2x+
(pn−1

n − qn−1
n x)

qn[n− 1]pn,qn

))
∣

∣

∣

∣

,

≤ 3 ‖f‖ .
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Finally, we obtain
∣

∣

∣
M̃n,pn,qn(f ;x)− f(x)

∣

∣

∣

=

∣

∣

∣

∣

Mn,pn,qn(f ;x)− f(x) + f

(

1

[2]pn,qnqn

(

2x+
(pn−1

n − qn−1
n x)

qn[n− 1]pn,qn

))

− f(x)

∣

∣

∣

∣

≤ |Mn,pn,qn(f − g;x)|+ |Mn,pn,qn(g;x)− g(x)|+ |g(x)− f(x)|

+

∣

∣

∣

∣

f

(

1

[2]pn,qnqn

(

2x+
(pn−1

n − qn−1
n x)

qn[n− 1]pn,qn

))

− f(x)

∣

∣

∣

∣

≤ 4 ‖f − g‖+ δ2n(x) ‖g′′(x)‖

+ω

(

f,

∣

∣

∣

∣

1

[2]pn,qnqn

(

(2− [2]pn,qnqn)x+
(pn−1

n − qn−1
n x)

qn[n− 1]pn,qn

)∣

∣

∣

∣

)

.

By taking the infimum on the right hand side over all g ∈ W
2, we get

∣

∣

∣
M̃n,pn,qn(f ;x)− f(x)

∣

∣

∣
≤ 4K2(f, δ

2
n(x)) + ω(f, αn(x)).

Finally, by using the property of K-functional, we obtain
∣

∣

∣
M̃n,pn,qn(f ;x)− f(x)

∣

∣

∣
≤ Cω2(f, δn(x)) + ω(f, αn(x)).

Hence the proof is completed. �

5. GRAPHICAL EXAMPLES

In this section, we estimate approximation for functions f(x) = sin(x) (Figure (1)), f(x) =
(x−4/5)(x−2/3)(x−1/4) (Figure (2)), f(x) = (x−2/3)(x−1/4) (Figure (3)) and f(x) = exp(x)
(Figure (4)), by (p, q)-Meyer-König-Zeller Kantrovich operators using Matlab programming.

FIGURE 1. f(x) = sin(x)
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FIGURE 2. f(x) = (x− 4/5)(x− 2/3)(x− 1/4)

FIGURE 3. f(x) = (x− 2/3)(x− 1/4)

FIGURE 4. f(x) = exp(x)
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