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On the Remainder Term of Some Bivariate Approximation
Formulas Based on Linear and Positive Operators

DAN BĂRBOSU*

ABSTRACT. The paper is a survey concerning representations for the remainder term of Bernstein-Schurer-Stancu
and respectively Stancu (based on factorial powers) bivariate approximation formulas, using bivariate divided differ-
ences. As particular cases the remainder terms of bivariate Bernstein-Stancu, Schurer and classical Bernstein bivariate
approximation formulas are obtained. Finally, one presents some mean value properties, similar to those of the re-
mainder term of classical Bernstein univariate approximation formula.

Keywords: Bernstein-Schurer-Stancu bivariate operator, Stancu bivariate operator, Bivariate divided difference, Bi-
variate approximation formula, Remainder term

2010 Mathematics Subject Classification: 41A80, 41A36.

1. INTRODUCTION

Denote by N the set of positive integers and N0 = N ∪ {0}. Let p ∈ N be given and α, β be
real parameters satisfying the condition 0 ≤ α ≤ β. The Bernstein-Schurer-Stancu operator is
defined [6] for any m ∈ N, any f ∈ C[0, 1 + p] and any x ∈ [0, 1 + p] by:

(1.1) S̃(α,β)
m,p (f ;x) =

m+p∑

k=0

p̃m,k(x)f

(
k + α

m+ β

)

where

(1.2) p̃m,k(x) =

(
m+ p

k

)
xk(1− x)m+p−k,

are the fundamental Schurer polynomials [33].
Note that the multiparameter operator (1.1) contains as particular cases the Schurer operator

[33] (for α = β = 0), the Bernstein-Stancu operator [36] (for p = 0) and of course the classical
Bernstein operator [18] (for p = 0 and α = β = 0). Many of its approximation properties were
investigated in [9].

Let p, q ∈ N0 be given and let α, β, γ, δ be real parameters such that 0 ≤ α ≤ β, 0 ≤ γ ≤ δ.
Using the method of parametric extensions [21], [5], in [7] was introduced the Bernstein-

Schurer-Stancu bivariate operator, given by

(1.3) S̃(α,β,γ,δ)
m,p,n,q (f ;x, y) =

m+p∑

k=0

n+q∑

j=0

p̃m,k(x)p̃n,j(y)f

(
k + α

m+ β
,
j + γ

n+ δ

)

while in [8] was considered its GBS associated operator, given by
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Ũ (α,β,γ,δ)
m,p,n,q (f ;x, y) =(1.4)

m+p∑

k=0

n+q∑

j=0

p̃m,k(x)q̃n,j(y)

{
f

(
k+α

m+β
, y

)
+ f

(
x,

j+γ

n+δ

)
− f

(
k+α

m+β
,
j+ γ

n+ δ

)}
.

Approximation properties of operator (1.3) and (1.4) were established in [7], [9], [13].
In Section 2 we recall the results from [12, 13] regarding the remainder term of the bivariate

Bernstein-Schurer-Stancu bivariate approximation formula. At end of this section, we discuss
about the remainder term of GBS Bernstein approximation formula [11].

Suppose α is a non-negative parameter which may depends only of m ∈ N. In 1968, Stancu

[36] introduced the operator P 〈α〉 : C[0, 1] → C[0, 1] given by

(1.5) P 〈α〉
m (f ;x) =

m∑

k=0

p
〈α〉
m,k(x) f

(
k

m

)
,

where p
〈α〉
n,k(x) are Stancu’s fundamental polynomials expressed by means of factorial power

t[m,h] = t(t− h) . . . (t− (m− 1)h), t[0,h] = 1, by

(1.6) p
〈α〉
m,k(x) =

(
m

k

)
x[k,−α](1− x)[m−k,−α]

1[m,−α]
,

for any x ∈ [0, 1], m ∈ N and k ∈ {0, 1, . . . ,m}.
The operator (1.5) is the Stancu operator (or Stancu operator based on factorial power).
Let m,n ∈ N be given and let α = α(m), β = β(n) be real parameters. Using the method of

parametric extension in [25,26] was obtained the Stancu operator and its GBS-Stancu associated
operator, given respectively by

(1.7) P 〈α,β〉
m,n (f ;x, y) =

m∑

k=0

n∑

j=0

p
〈α〉
m,k(x)p

〈β〉
n,j (y)f

(
k

m
,
i

n

)

and

(1.8) U 〈α,β〉
m,n (f ;x, y)=

m∑

k=0

n∑

j=0

p
〈α〉
m,k(x)p

〈β〉
n,j (y)

{
f

(
i

m
, y

)
+f

(
x,

i

n

)
−f

(
i

m
,
i

n

)}
.

The corresponding approximation formulas were studied in the recently papers [25, 26] due to
Miclăuş, where the remainders of mentioned formula were expressed using bivariate divided
differences.

Coming back to the classical Bernstein operator Bm : C[0, 1] → C[0, 1] given by

(1.9) Bm(f ;x) =

m∑

k=0

pm,kf

(
k

m

)

for any f ∈ C[0, 1], x ∈ [0, 1] and m ∈ N, recall that Aramă [4], proved that the remainder term
of the univariate Bernstein approximation formula

(1.10) f = Bm(f) +Rm(f)

can be represented under the form
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(1.11) Rm(f ;x) = −
x(1− x)

m
[ξ1, ξ2, ξ3; f ]

for any x ∈ [0, 1], where 0 ≤ ξ1 < ξ2 < ξ3 ≤ 1.
In Section 3 we will present analogous results for the remainder terms of bivariate Bernstein-

Schurer-Stancu and respectively Stancu bivariate approximation formulas.

2. THE REMAINDER TERM OF THE BIVARIATE BERNSTEIN-SCHURER-STANCU

APPROXIMATION FORMULA

We start by recalling some results regarding the divided differences which will be used in
the paper. Suppose that I ⊂ R is an interval of the real axis and x1, x2 ∈ I such that x1 6= x2.
The divided difference of f with respect the distinct knots x1, x2 is defined by

(2.12) [x1, x2; f ] =
f(x2)− f(x1)

x2 − x1
.

If x0, x1, . . . , xn ∈ I are distinct knots and f : I → R is given, then the n-th order divided
difference of f with respect the mentioned knots is defined by the recurrence relation

(2.13) [x0, x1, . . . , xm; f ] =
[x1, . . . , xm; f ]− [x0, . . . , xm−1; f ]

xm − x0
.

Note that the divided differences were intensively studied by Popoviciu [30]. Interesting
properties of the divided differences were obtained by Ionescu [22] and Ivan [23].

Let I, J ⊂ R be intervals, f : I × J → R be bounded and (x1, y1), (x2, y2) ∈ I × J such that
x1 6= x2, y1 6= y2. The bivariate divided difference of f with respect the knots (x1, y1), (x2, y2)
is defined [10] by

(2.14)

[
x1, x2

y1, y2
; f

]
=

f(x2, y2)− f(x1, y2)− f(x2, y1) + f(x1, y1)

(x2 − x1)(y2 − y1)
.

Other equivalent definitions were given in the monographs by Ionescu [22] and Ivan [23].
In the definition of the bivariate divided difference the number of abscissas is in general not

equal with the number of coordinates. For example (see [10]), we have that

(2.15)

[
x1, x2

y1
; f

]
=

f(x2, y1)− f(x1, y1)

x2 − x1

and

(2.16)

[
x1, x2, x3

y1
; f

]
=

1

x3 − x2

([
x2, x3

y1
; f

]
−

[
x1, x2

y1
; f

])

where x1, x2, x3 ∈ I are distinct.
For the bivariate divided difference with respect the distinct knots (xi, yj) ∈ I × J (i =

0,m, j = 0, n) the following recurrence formula [10]
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[
x0, x1, . . . , xm

y0, y1, . . . , yn
; f

]
=(2.17)

=

[
x1, . . . , xm

y1, . . . , yn
; f

]
−

[
x0, . . . , xm−1

y1, . . . , yn
; f

]
−

[
x1, . . . , xm

y0, . . . , yn−1
; f

]
+

[
x0, . . . , xn−1

y0, . . . , ym−1
; f

]

(xm − x0)(yn − y0)

holds.
Using the above mentioned properties of the bivariate divided differences, in [13] was es-

tablished the following.

Theorem 2.1. The remainder term of the bivariate Bernstein-Schurer-Stancu approximation formula

(2.18) f = S̃(α,β,γ,δ)
m,p,n,q (f) + R̃(α,β,γ,δ)

m,p,n,q (f)

can be represented under the form

(2.19) R̃(α,β,γ,δ)
m,p,n,q (f ;x, y) = S1 + S2 + S3,

where

S1 =
(β − p)x− α

m+ β

m+p∑

k=0

n+q∑

j=0

p̃m,k(x)p̃n,j(y)

[
x, k+α

m+β

j+γ
n+δ

; f

]
(2.20)

−
x(1− x)(m+ p)

(m+ β)2

m+p−1∑

k=0

n+q∑

j=0

p̃m−1,k(x)p̃n,j(y)

[
x, k+α

m+β
, k+α+1

m+β

j+γ
n+δ

; f

]
;

S2 =
(δ − q)y − γ

n+ δ

m+p∑

k=0

n+q∑

j=0

p̃m,k(x)p̃n,j(y)

[
k+α
m+β

y, j+γ
n+δ

; f

]
(2.21)

−
y(1− y)(n+ q)

(n+ δ)2

m+p∑

k=0

n+q−1∑

j=0

p̃m,k(x)p̃n−1,j(y)

[
k+α
m+β

y, j+γ
n+δ

, j+γ+1
n+δ

; f

]
;

S3 = xy(1− x)(1− y)
(m+ p)(n+ q)

(m+ β)2(n+ δ)2
(2.22)

×

m+p−1∑

k=0

n+q−1∑

j=0

p̃m−1,k(x)p̃n−1,j(y)

[
x, k+α

m+β
, k+α+1

m+β

y, j+γ
n+δ

, j+γ+1
n+δ

; f

]

−
m+ p

(m+ β)2(n+ δ)
x(1− x){(δ − q)y − γ}

×

m+p−1∑

k=0

n+q∑

j=0

p̃m−1,k(x)p̃n,j(y)

[
x, k+α

m+β
, k+α+1

m+β

y, j+γ
n+δ

; f

]

−
n+ q

(m+ β)(n+ δ)2
y(1− y){(β − p)x− α}
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×

m+p∑

k=0

n+q−1∑

j=0

p̃m,k(x)p̃n−1,j(y)

[
x, k+α

m+β

y, j+γ
n+δ

, j+γ+1
n+δ

; f

]

+
1

(m+ β)(n+ γ)
{(β − p)x− α}{(δ − q)y − γ}

×

m+p∑

k=0

n+q∑

j=0

p̃m,k(x)p̃n,j(y)

[
x, k+α

m+β

y, j+γ
n+δ

; f

]
.

Remark 2.1. For α = β = γ = δ = 0 one obtains that the Bernstein-Schurer-Stancu operator
reduces to the Schurer bivariate operator, given by

(2.23) B̃m,p,n,q(f ;x, y) =

m+p∑

k=0

n+q∑

j=0

p̃m,k(x) p̃n,j(y)f

(
k

m+ p
,

j

n+ q

)
.

In this case we get the Schurer bivariate approximation formula

(2.24) f = B̃m,p,n,q(f) + R̃m,p,n,q(f).

Applying the Theorem 2.1 for α = β = γ = δ = 0, it follows

Corollary 2.1. The remainder term of the Schurer bivariate approximation formula (2.18) can be rep-
resented under the form:

(2.25) R̃m,p,n,q(f) = S1 + S2 + S3

where

S1 =−
px

m

m+p∑

k=0

n+q∑

j=0

p̃m,k(x) p̃n,j(y)

[
x, k

m

j
n

; f

]
(2.26)

−
x(1− x)(m+ p)

m2

m+p−1∑

k=0

n+q∑

j=0

p̃m−1,k(x) p̃n,j(y)

[
x, k

m
, k+1

m

j
n

; f

]
;

S2 =−
qy

n

m+p∑

k=0

n+q∑

j=0

p̃m,k(x) p̃n,j(y)

[
k
m

y, j
n

; f

]
(2.27)

−
y(1− y)(n+ q)

n2

m+p∑

k=0

n+q−1∑

j=0

p̃m,k(x) p̃n−1,j(y)

[
k
m

y, j
n
, j+1

n

; f

]
;
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S3 =
xy(1− x)(1− y)

mn

m+p−1∑

k=0

n+q−1∑

j=0

p̃m−1,k(x) p̃n−1,j(y)

[
x, k

m
, k+1

m

y, j
n
, j+1

n

; f

]
(2.28)

+
(m+ p)q

m2n
xy(1− x)

m+p−1∑

k=0

n+q∑

j=0

p̃m−1,k(x) p̃n,j(y)

[
x, k

m
, k+1

m

y, j
n

; f

]

+
(n+ q)p

mn2
xy(1− y)

m+p∑

k=0

n+q−1∑

j=0

p̃m,k(x) p̃n−1,j(y)

[
x, k

m

y, j
n
, j+1

n

; f

]

+
pq

mn
xy

m+p∑

k=0

n+q∑

j=0

p̃m,k(x) p̃n,j(y)

[
x, k

m

y, j
n

; f

]
.

Remark 2.2. For p = q = 0, the bivariate Bernstein-Schurer-Stancu bivariate operator (2.25)
reduces to the bivariate Bernstein-Stancu operator, given by

(2.29) S(α,β,γ,δ)
m,n (f ;x, y) =

m∑

k=0

n∑

j=0

pm,k(x) pn,j(y)f

(
k + α

m+ β
,
j + γ

n+ δ

)
.

Consequently it follows the Bernstein-Stancu bivariate approximation formula

(2.30) f = S(α,β,γ,δ)
m,n (f) +R(α,β,γ,δ)

m,n (f).

Regarding the remainder term of (2.29), applying the Theorem 2.1 for p = q = 0, it follows:

Corollary 2.2. The remainder term of (2.29) can be expressed under the form:

(2.31) R(α,β,γ,δ)
m,n (f ;x, y) = S1 + S2 + S3,

where

S1 =
βx− α

m+ β

m∑

k=0

n∑

j=0

pm,k(x) pn,j(y)

[
x, k+α

m+β

j+γ
n+δ

; f

]
(2.32)

−
mx(1− x)

(m+ β)2

m−1∑

k=0

n∑

j=0

pm−1,k(x) pn,j(y)

[
x, k+α

m+β
, k+α+1

m+β

j+γ
n+δ

; f

]
;

S2 =
δy − γ

n+ δ

m∑

k=0

n∑

j=0

pm,k(x) pn,j(y)

[
k+α
m+β

y, j+γ
n+δ

; f

]
(2.33)

−
ny(1− y)

(n+ δ)2

m∑

k=0

n−1∑

j=0

pm,k(x)pn−1,j(y)

[
k+α
m+β

y, j+γ
n+δ

, j+γ+1
n+δ

; f

]
;
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S3 =
mnxy(1− x)(1− y)

(m+ β)2(n+ δ)2

m−1∑

k=0

n−1∑

j=0

pm−1,k(x) pn−1,j(y)

[
x, k+α

m+β
, k+α+1

m+β

y, j+γ
n+δ

, j+γ+1
n+δ

; f

]
(2.34)

−
m

(m+β)2(n+δ)
x(1−x)(δy−γ)

m−1∑

k=0

n∑

j=0

pm−1,k(x) pn,j(y)

[
x, k+α

m+β
, k+α+1

m+β

y, j+γ
n+δ

; f

]

−
n

(m+β)(n+δ)2
y(1−y)(βx−α)

m∑

k=0

n−1∑

j=0

pm,k(x)pn−1,j(y)

[
x, k+α

m+β

y, j+γ
n+δ

, j+γ+1
n+δ

; f

]

+
1

(m+ β)(n+ γ)
(βx− α)(δy − γ)

m∑

k=0

n∑

j=0

pm,k(x) pn,j(y)

[
x, k+α

m+β

y, j+γ
n+δ

; f

]
.

Remark 2.3. When p = q = 0, α = β = γ = δ = 0, one obtains the classical Bernstein bivariate
operator, namely

(2.35) Bm,n(f ;x, y) =

m∑

k=0

n∑

j=0

pm,k(x) pn,j(y)f

(
k

m
,
j

n

)
.

The associated Bernstein bivariate approximation formula is

(2.36) f = Bm,n(f) +Rm,n(f),

and, as consequence of Theorem 2.1, for its remainder term we have the following:

Corollary 2.3. The remainder term of (2.35) can be represented under the form:

(2.37) Rm,n(f ;x, y) = S1 + S2 + S3,

where

(2.38) S1 = −
x(1− x)

m

m−1∑

k=0

n∑

j=0

pm−1,k(x) pn,j(y)

[
x, k

m
, k+1

m

j
n

; f

]
,

(2.39) S2 = −
y(1− y)

n

m∑

k=0

n−1∑

j=0

pm,k(x) pn−1,j(y)

[
k
m

y, j
n
, j+1

n

; f

]
,

(2.40) S3=
xy(1−x)(1−y)

mn

m−1∑

k=0

n−1∑

j=0

pm−1,k(x) pn−1,j(y)

[
x, k

m
, k+1

m

y, j
n
, j+1

n

; f

]
.

Applying the mean value theorem for bivariate divided differences, in [13] was proved the
following:

Theorem 2.2. Let be f ∈ C(2,2)([0, 1 + p]× [0, 1 + q]). Then there exists a constant M depending on
f , α, β, γ, δ, such that for any (x, y) ∈ [0, 1]× [0, 1] and any m,n ∈ N, the following

(2.41)
∣∣∣R̃(α,β,γ,δ)

m,p,n,q (f ;x, y)
∣∣∣ ≤

(
9m+p

8m2
+

9n+q

8n2
+

(9m+p)(9n+q)

64m2n2

)
M

holds.
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Remark 2.4. From (2.40) similar estimations for the remainders of Schurer, Bernstein-Stancu
and respectively Bernstein bivariate approximation formulas can be derived.

Let now Um,n be the GBS Bernstein operator, given by

Um,p(f ;x, y) =
m∑

k=0

n∑

j=0

pm,k(x)pn,j(y)

{
f

(
k

m
, y

)
+ f

(
x,

j

n

)
− f

(
k

m
,
j

n

)}

(it is obtained from the operator (1.4), for α = β = γ = δ = p = q = 0).
Considering the GBS Bernstein approximation formula

(2.42) f = Um,n(f) +Rm,n(f)

in [12] we proved the following:

Theorem 2.3. The remainder term of (2.42) can be expressed under the form

(2.43) Rm,n(f ;x, y) =
xy(1− x)(1− y)

mn

m−1∑

k=0

n−1∑

j=0

pm−1,k(x) pn−1,j(y)

[
x, k

m
, k+1

m

y, j
n
, j+1

n

; f

]
.

Applying the mean value theorem for, bivariate divided differences, in [12] was proved

Theorem 2.4. Suppose f ∈ C(1,1)([0, 1]× [0, 1]) is a function for which exist ∂4f
∂x2∂y2 on [0, 1]× [0, 1],

bounded on [0, 1]× [0, 1]. Then, the following inequalities

(2.44) |Rm,n(f ;x, y)| ≤
xy(1− x)(1− y)

4mn
M(f) ≤

1

64mn
M(f)

hold, for any (x, y) ∈ [0, 1]× [0, 1], where

(2.45) M(f) = sup
(x,y)∈[0,1]×[0,1]

∣∣∣∣
∂4f

∂x2∂y2
(x, y)

∣∣∣∣ .

3. MEAN VALUE RESULTS FOR THE REMAINDER TERM OF SOME BIVARIATE APPROXIMATION

FORMULAS

We start by recalling some notions regarding the convex functions of higher order.
In his Ph. Thesis (June 1933) Popoviciu [30] introduced the notion of m-th order convexity

for univariate real valued functions as follow:

Definition 3.1. Let I ⊆ R be an interval . The function f ∈ R
I is m-th order convex (non-

concave, polynomial, non-convex, concave) on I if and only if for each (m + 2) distinct points
x1, x2, . . . , xm+2 ∈ I one of the following inequalities hold true

(3.46) [x1, x2, . . . , xm+2; f ] > 0 (≥ 0,= 0,≤ 0, < 0),

where the brackets denote divided difference.
Note that monotonous strictly increasing is convex of 1-th order wheil a strictly convex func-

tion in the usual sense is convex of 2-th order. Among many others, in [30] was established the
following:

Theorem 3.5. Suppose a, b ∈ R such that a < b and A ∈ C#[a, b] is a linear functional defined on
[a, b]. Suppose that

(i) A(1) = A(x) = . . . = A(xm) = 0, A(xm+1) 6= 0;
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(ii) A(g) 6= 0 for each g ∈ C[a, b] convex of m-th order.

Then, for each f ∈ C[a, b] there exist (m + 2) distinct points a ≤ ξ1 < ξ2 < . . . < ξm+2 ≤ b such
that

(3.47) A(f) = K[ξ1, ξ2, . . . , ξm+2; f ],

where K is a constant independently on f .

Applying Popoviciu’s theorem, Aramă [4] established the following mean value result for
the remainder term of Bernstein univariate approximation formula.

Theorem 3.6. Let Bm : C[0, 1] → C[0, 1] be the Bernstein operator. The remainder term of the
Bernstein univariate approximation formula

(3.48) f = Bm(f) +Rm(f),

can be expressed under the form

(3.49) Rm(f ;x) = −
x(1− x)

m
[ξ1, ξ2, ξ3; f ],

where 0 ≤ ξ1 < ξ2 < ξ3 ≤ 1.
Suppose I, J ⊆R are compact intervals, C(I×J)={f ∈ R

I×J | fcontinuos on I × J}, C#(I ×
J) = {A : C(I × J) → R|A− linear}.

Our goal is to obtain a representation of a linear functional A ∈ C#(I × J) associated to
functions f ∈ C[a, b] which satisfy some special conditions.

Let D ⊆ R
2 be a convex set, m,n ∈ N, (xi, yi) ∈ D for each i = 1,m,

j = 1, n and f ∈ RD be a bivariate bounded real valued functions. Recall that the bivariate
divided difference of f on the distinct points (xi, yi) is given by

(3.50)

[
x1, . . . , xm

y1, . . . , yn
; f

]
=

[
y1, . . . , yn; [x1, . . . , xm; f ]

]
.

The notion of (m,n)−th order bivariate divided difference was introduced by Popoviciu [30]
and then studied by many others (see for example [10, 11], [22, 23]).

The notion of (m,n)− th order bivariate convex function was introduced by Popoviciu [30]
in the following:

Definition 3.2. The function f ∈ R
D is (m,n)− th order convex (non concave, polynomial, non

convex, concave) if and only if for each distinct points (xi, yi) (i ∈ {1, . . . ,m+ 2}, j ∈ {1, . . . , n+ 2, })
one of the following inequalities

(3.51)

[
x1, . . . , xm+2

y1, . . . , yn+2
; f

]
> 0 (≥ 0,= 0,≤ 0, < 0),

holds.

Example 3.1. A monotonous increasing function f ∈ R
D is convex of (0, 0)-th order, a strictly

convex function in the usual sense is convex of (1, 1)-th order in the sense of definition (3.47),
etc.

The analogous of Theorem 3.2 for the bivariate case is the following
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Theorem 3.7. Suppose I, J ⊆ R are compact intervals and denote

C#(I, J) = {A : C(I × J) → R|A− linear}.

If the linear functional A satisfies the conditions:

(i) A(xiyj) = 0, (∀) i ∈ {0, 1, . . . ,m}, (∀) j ∈ {0, 1, . . . , n};

(ii) A(xm+1yn+1) 6= 0;

(iii) A(g) 6= 0 for each g ∈ C(I × J) convex of (m,n)− th order, then, for any f ∈ C(I × J) there
exist the distinct points (ξi ηj) (i ∈ {1, . . . ,m+ 2}, j ∈ {1, . . . , n+ 2, }) such that

(3.52) A(f) = K

[
ξ1, . . . , ξm+2

η1, . . . , ηn+2
; f

]
,

where K is a constant independently of f .

Proof. From the hypothesis (iii) it follows that A(g) 6= 0 for each g ∈ C(I × J) concave of
(m,n)-th order. Let f ∈ C(I × J) be arbitrarily chosen and let g ∈ C(I × J) be given by

(3.53) g(x, y) = f(x, y)−
A(f)

A(xm+1gn+1)
xm+1gn+1,

for any (x, y) ∈ I × J .
From (3.53) it follows that A(g) = 0, and consequently g is not convex and not concave of

(m,n)-th order on I×J . According to Definition 3.2, there exist the distinct points (ξi ηj) ∈ I×J

(i ∈ {1, . . . ,m+ 2}, j ∈ {1, . . . , n+ 2, }) such that

(3.54)

[
ξ1, . . . , ξm+2

η1, . . . , ηn+2
; f

]
= 0.

Taking the linearity of bivariate divided difference into account, from (3.53) and (3.54) are
obtains

(3.55)

[
ξ1, ξ2, . . . , ξm+2

η1, η2, . . . , ηn+2
; f

]
−

A(f)

A(xm+1gn+1)

[
ξ1, . . . , ξm+2

η1, . . . , ηn+2
;xm+1gn+1

]
= 0.

But it is well known (see [10] or [29]) that

(3.56)

[
ξ1, . . . , ξm+2

η1, . . . , ηn+2
;xm+1gn+1

]
= 1.

Taking (3.56) into account, from (3.55) one arrives to the desired result with K = A(xm+1gn+1).
�

Application 3.1. Consider the bivariate Bernstein approximation formula

(3.57) f = Bm,n(f) +Rm,n(f),

where Bm,n : C([0, 1]× [0, 1]) → C([0, 1]× [0, 1]) is the Bernstein bivariate operator, i.e.

(3.58) Bm,n(f ;x, y) =

m∑

k=0

n∑

j=0

pm,k(x)pn,j(y)f

(
k

m
,
i

n

)
.
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It is well known (see for example [17]) that Bm,n(f ;x, y) > f(x, y) for any (x, y) ∈ [0, 1]×[0, 1]
and any f ∈ C([0, 1]× [0, 1]), convex of (1, 1)-th order on [0, 1]× [0, 1].

Let (x0, y0) ∈ [0, 1]×[0, 1] be arbitrarily chosen and define the functional A ∈ C#([0, 1]×[0, 1])
by

(3.59) A(f) = f(x0, y0)−Bm,n(f ;x0, y0).

From the properties of the bivariate Bernstein operator it follows

A(xi
0y

j
0) = 0, for i ∈ {0, 1}, j ∈ {0, 1}(3.60)

A(x2
0y

2
0) 6= 0;(3.61)

A(g) 6= 0 for any (1,1)-th order convex function.(3.62)

Applying the Theorem 3.2, there exist the distinct point (ξi ηj) ∈ [0, 1]×[0, 1], i ∈ {1, 2, 3}, j ∈
{1, 2, 3} such that

(3.63) A(f) = A(x2
0y

2
0)

[
ξ1, ξ2, ξ3
η1, η2, η3

; f

]
.

But A(f) = Rm,n(f) and taking into account that

(3.64) A(x2
0y

2
0) = Rm,n(x

2
0y

2
0) =

x0y0(1− x0)(1− y0)

mn
,

from (3.64) one arrives to

(3.65) Rm,n(f ;x0, y0) =
x0y0(1− x0)(1− y0)

mn

[
ξ1, ξ2, ξ3
η1, η2, η3

; f

]
.

Because (x0, y0) ∈ [0, 1] × [0, 1] was arbitrarily chosen, it follows (3.64) holds in each point
(x, y) ∈ [0, 1]× [0, 1]

Application 3.2. Consider the Stancu univariate operator based on factorial powers P
〈α〉
m :

C[0, 1] → C[0, 1] given by

(3.66) P 〈α〉
m (f ;x) =

m∑

k=0

p
〈α〉
m,k(x)f

(
k

m

)
,

where α = α(m) ≥ 0 and

(3.67) p
〈α〉
m,k =

(
m

k

)
x[k,−α](1− x)[m−k,−α]

1[m,−α]
.

In [26] Miclăuş proved that if, f is convex of 1-th order on [0, 1], the sequence {P
〈α〉
m (f ;x)}m∈N

is monotonous decreasing and P
〈α〉
m (f ;x) > f(x), (∀)x ∈ [0, 1]. Using the method of paramet-

ric extension, Miclăuş [27] constructed the bivariate Stancu operator based on factorial powers

P
〈α,β〉
m,n : C([0, 1]×[0, 1]) → C ([0, 1]× [0, 1]), given by
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(3.68) P 〈α,β〉
m,n (f ;x, y) =

m∑

k=0

n∑

j=0

p
〈α〉
m,k(x)p

〈β〉
n,j (y)f

(
k

m
,
j

n

)
.

In the same paper [27] was studied the remainder term of the bivariate Stancu approxima-
tion formula

(3.69) f = P 〈α,β〉
m,n (f) +R〈α,β〉

m,n (f),

and was obtained an representation of the remainder term using bivariate divided differ-
ences.

Let now (x0, y0) ∈ [0, 1] × [0, 1] arbitrarily chosen and define the linear functional A ∈
C# ([0, 1]× [0, 1]) by

(3.70) A(f) = f(x0, y0)− P 〈α,β〉
m,n (f ;x0, y0).

From (3.70) we get the following:

(i) A(xi
0y

j
0) = 0, for i ∈ {0, 1}, j ∈ {0, 1};

(ii) A(x2
0y

2
0) 6= 0;

(iii) A(g) 6= 0 for any g ∈ C ([0, 1]× [0, 1]) convex of (1,1)-th order.

Consequently, from Theorem 3.2 it follows there exist the distinct points (ξi ηj) ∈ [0, 1] ×
[0, 1], i ∈ {1, 2, 3}, j ∈ {1, 2, 3} such that

(3.71) A(f) = A(x2
0y

2
0)

[
ξ1, ξ2, ξ3
η1, η2, η3

; f

]
.

Taking into account that

(3.72) A(x2
0y

2
0) =

1 + αm

m(1 + α)
·

1 + βn

n(1 + β)
x0y0(1− x0)(1− y0)

[
ξ1, ξ2, ξ3
η1, η2, η3

; f

]
,

and (x0, y0) ∈ [0, 1] × [0, 1] was arbitrarily chosen, we get that the remainder term of (3.69)
can be expressed under the form

(3.73) R〈α,β〉
m,n (f ;x, y) =

1 + αm

m(1 + α)
·

1 + βn

n(1 + β)
xy (1− x)(1− y)

[
ξ1, ξ2, ξ3
η1, η2, η3

; f

]
,

for any (x, y) ∈ [0, 1]× [0, 1], where 0 ≤ ξ1 < ξ2 < ξ3 ≤ 1 and 0 ≤ η1 < η2 < η3 ≤ 1.

Remark 3.5. In the case when α = β = 0 one obtains the Bernstein bivariate approximation
formula (3.57) and (3.73) is reduced to (3.65).

Application 3.3. Let p ∈ N0. In 1962, Schurer in [33] introduced the linear operator B̃m,p :
C([0, 1 + p]) → C([0, 1]), given by

(3.74) B̃m,p(f ;x) =

m+p∑

k=0

p̃m,k(x)f

(
k

m

)
,

where p̃m,k(x) are the fundamental Schurer’s polynomials, defined by

(3.75) p̃m,k(x) =

(
m+ p

k

)
xk(1− x)m+p−k.
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Note that the operator (3.74) is positive only on C[0, 1] and the sequence

{B̃m,p(f)}m∈N convergences uniformly to f ∈ C[0, 1 + p] only on [0, 1].
Muraru [28] proved that if f ∈ C[0, 1 + p] is convex of 1-th order, the sequence of Schurer’s

polynomials is monotonous decreasing and Bm(f ;x) > f(x), for any x ∈ [0, 1].
More at this, taking into account that

B̃m,p(1;x) = 1,(3.76)

B̃m,p(t;x) =
(
1 +

p

m

)
x,

it follows (applying Theorem 3.1) that the remainder term of the Schurer approximation for-
mula

(3.77) f = B̃m,p(f) + R̃m,p(f),

can be represented under the form

(3.78) R̃m,p(f) = −
m+ p

x
[ξ1, ξ2; f ],

where 0 ≤ ξ1 < ξ2 < ξ3 ≤ 1.
In [7], using the method of parametric extensions [21], [5] was constructed the bivariate

Schurer operator B̃m,p,n,q : C([0, 1 + p]× [0, 1 + q]) → C([0, 1 + p]× [0, 1 + q]), given by

(3.79) B̃m,p,n,q(f ;x, y) =

m+p∑

k=0

n+q∑

j=0

p̃m,p(x)p̃n,q(y)f

(
k

m
,
j

n

)
.

It is immediately that B̃m,p,n,q is monotonous decreasing on [0, 1]×[0, 1] for each f ∈ C([0, 1+

p] × [0, 1 + q]) monotonous strictly increasing and B̃m,p,n,q(f ;x, y) > f(x, y) for any (x, y) ∈
[0, 1]× [0, 1].

Consequently, the remainder term of the Schurer bivariate approximation formula

(3.80) f = B̃m,p,n,q(f ;x, y) + R̃m,p,n,q(f ;x, y),

can be expressed under the form

(3.81) R̃m,p,n,q(f ;x, y) =
(
1 +

p

n

)(
1 +

q

n

)
xy

[
ξ1, ξ2
η1, η2

; f

]
,

for any (x, y) ∈ [0, 1]× [0, 1], where 0 ≤ ξ1 < ξ2 ≤ 1 and 0 ≤ η1 < η2 ≤ 1.
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[23] M. Ivan, Elements of Interpolation Theory, Mediamira Science Publisher, Cluj-Napoca (2004), 61-68
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1. INTRODUCTION AND PRELIMINARIES

Appell polynomials were introduced in 1880 (see [4]). In 1969, Jakimovski and Leviatan
introduced an operators Pn by using Appell polynomials [7]. The Appell polynomials are
defined by the identity as follows:

(1.1) S(u)eux =

∞
∑

k=0

pk(x)u
k,

for an analytic function in the disk |u| < r (r > 1) and pn(x) =
∑n

i=0 ai
xn−i

(n−i)! (n ∈ N) taken
S(u) =

∑∞
n=0 anu

n, S(1) 6= 0. An exponential type the class of functions considerable on
the semi-axis and satisfy the property |f(x)| ≤ κeγx, for some finite constants κ, γ > 0 and
denote the set of such functions by E[0,∞). The sequence of infinite sum of the operators Pn is
convergent and well-defined which are considered by the authors as follows [7]:

(1.2) Pn(f ;x) =
e−nx

S(1)

∞
∑

k=0

pk(nx)f

(

k

n

)

,

for all n ∈ N, where n > α
log r . In case of an

S(1) ≥ 0 for all n ∈ N, Wood [20] proved that the
operator Pn is positive on [0; 1). For more results see also [13], [11] and [6]. They established
that limn→∞ Pn(f ;x) → f(x), uniformly in each compact subset of [0, 1).

If S(1) = 1 in (1.2) we get pn(x) = xn

n! , and we recover the well-known classical Favard-
Szász operators defined in 1950 by

(1.3) Sn(f ;x) = e−nx
∞
∑

k=0

(nx)k

k!
f

(

k

n

)

.
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In the last quarter of twentieth century, the quantum calculus (also known as q- calculus)
was studied in [8, 12] (see [3, 14, 15, 18]).

2. CONSTRUCTION OF OPERATORS AND AUXILIARY RESULTS

In this paper, we define a Beta integral type modification of Jakimovski-Leviatan opera-
tors. We also introduce modified Jakimovski-Leviatan-Stancu type operators and obtain better
approximation results. For x ∈ [0,∞), pr(x) ≥ 0 and S(1) 6= 0, we define

(2.4) J∗
n(f ;x) =

e−nx

S(1)

∞
∑

r=0

Pr(nx)
1

B(r + 1, n)

∫ ∞

0

tr

(1 + t)r+n+1
f(t)dt,

Lemma 2.1. If we take ei = ti−1 for i = 1, 2, 3. Let J∗
n( · ; · ) be the operators given by (2.4). Then for

all x ∈ [0,∞), pr(x) ≥ 0 and S(1) 6= 0, we have the following identities:

(1) J∗
n(e1;x) = 1,

(2) J∗
n(e2;x) =

(

n
n−1

)

x+ 1
n−1

(

S′(1)
S(1) + 1

)

,

(3) J∗
n(e3;x) = n2

(n−2)(n−1)x
2+ 2n

(n−2)(n−1)

(

S′(1)
S(1) + 2

)

x+ 1
(n−2)(n−1)

(

S′′(1)
S(1) + S′(1)

S(1) + 2
)

.

Proof. We can easily see that

(2.5)
∞
∑

r=0

Pr(nx) = S(1)enx,

(2.6)
∞
∑

r=0

rPr(nx) = (S′(1) + nS(1)x) enx,

(2.7)
∞
∑

r=0

r2Pr(nx) =
(

S′′(1) + 2nS′(1)x+ S′(1) + n2S(1)x2
)

enx.

(1) By taking f = e1

J∗
n(e1;x) =

e−nx

S(1)

∞
∑

r=0

Pr(nx)
1

B(r + 1, n)

∫ ∞

0

tr

(1 + t)r+n+1
dt,

=
e−nx

S(1)

∞
∑

r=0

Pr(nx)
B(r + 1, n)

B(r + 1, n)

= 1.

(2) By taking f = e2



90 M. Mursaleen and Md. Nasiruzzaman

J∗
n(e2;x) =

e−nx

S(1)

∞
∑

r=0

Pr(nx)
1

B(r + 1, n)

∫ ∞

0

tr+1

(1 + t)r+n+1
dt,

=
e−nx

S(1)

∞
∑

r=0

Pr(nx)
B(r + 2, n− 1)

B(r + 1, n)

=
r + 1

n− 1

e−nx

S(1)

∞
∑

r=0

Pr(nx)
B(r + 1, n)

B(r + 1, n)

=
1

n− 1
+

1

n− 1

e−nx

S(1)

∞
∑

r=0

rPr(nx)

=
1

n− 1
+

n

n− 1

(

x+
1

n

S′(1)

S(1)

)

.

(3) By taking f = e3

J∗
n(e2;x) =

e−nx

S(1)

∞
∑

r=0

Pr(nx)
1

B(r + 1, n)

∫ ∞

0

tr+2

(1 + t)r+n+1
dt,

=
1

(n− 2)(n− 1)

e−nx

S(1)

∞
∑

r=0

Pr(nx)(r
2 + 3r + 2)

=
2

(n− 2)(n− 1)
+

3

(n− 2)(n− 1)

(

S′(1)

S(1)
+ nx

)

+
1

(n− 2)(n− 1)

(

S′′(1)

S(1)
+ 2nx

S′(1)

S(1)
+
S′(1)

S(1)
+ nx+ n2x2

)

.

�

Lemma 2.2. Take ηj = (ei −x)j for i = 2, j = 1, 2. Let J∗
n( · ; · ) be the operators given by (2.4). Then

for all x ∈ [0,∞), pr(x) ≥ 0 and S(1) 6= 0, we have the following identities:

1◦ J∗
n(η1;x) = x

n + 1
n−1

(

S′(1)
S(1) + 1

)

;

2◦ J∗
n(η2;x)

= (n+2)
(n−2)(n−1)x

2 + 2n
(n−2)(n−1)

(

2
n

(

S′(1)
S(1)

)

+ 1
)

x+ 1
(n−2)(n−1)

(

S′′(1)
S(1) + S′(1)

S(1) + 2
)

x.

Let α, β ∈ R such that 0 ≤ α < β. Then for x ∈ [0,∞), pr(x) ≥ 0, and S(1) 6= 0, we
define

(2.8) Jα,β
n (f ;x) =

e−nx

S(1)

∞
∑

r=0

Pr(nx)
1

B(r + 1, n)

∫ ∞

0

tr

(1 + t)r+n+1
f

(

nt+ α

n+ β

)

dt,

Lemma 2.3. Take ei = ti−1 for i = 1, 2, 3. Let Jα,β
n ( · ; · ) be the operators given by (2.8). Then for all

x ∈ [0,∞), pr(x) ≥ 0 and S(1) 6= 0, we have the following identities:

(1) Jα,β
n (e1;x) = 1

(2) Jα,β
n (e2;x) = n4

(n+β)(n−1)x+ n
(n+β)(n−1)

(

S′(1)
S(1) + 1

)

+ α
n+β

(3) Jα,β
n (e3;x) = n2

(n+β)2(n−2)(n−1)x
2 + 2n2

(n+β)2(n−1)

{

n
n−2

(

S′(1)
S(1) + 2

)

+ α
}

x

+ n2

(n+β)2(n−2)(n−1)

(

S′′(1)
S(1) + S′(1)

S(1) + 2
)

+ 2nα
(n+β)2(n−1)

(

S′(1)
S(1) + 1

)

+ α2

(n+β)2 .
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3. MAIN RESULTS

We obtain the Korovkin type and weighted Korovkin type approximation theorems for
the operators defined by (2.8).

Let CB [0,∞) be the set of all bounded and continuous functions on [0,∞), which is a
linear normed space with

‖f‖CB
= sup

x≥0
|f(x)|.

Let
Cζ [0,∞) :=

{

f ∈ C[0,∞) : |f(t)| ≤M(1 + t)ζ for some M > 0
}

,

and

H :=
{

f ∈ C[0,∞) :
f(x)

1 + x2
is convergent as x→ ∞

}

.

Theorem 3.1. Let x ∈ [0,∞), f ∈ Cζ [0,∞) ∩H with ζ ≥ 2. Then for pr(x) ≥ 0, S(1) 6= 0, the
operators Jα,β

n ( · ; · ) defined by (2.8) satisfy

lim
n→∞

Jα,β
n (f ;x) → f(x)

uniformly on each compact subset of [0,∞).

Proof. The proof is based on Lemma 2.3 and well known Korovkin’s theorem regarding the
convergence of a sequence of linear positive operators. So it is enough to prove the conditions

lim
n→∞

Jα,β
n ((ei;x) = xi−1, i = 1, 2, 3 as n→ ∞

uniformly on [0,∞].
Clearly 1

n → 0, (n→ ∞) we have

lim
n→∞

Jα,β
n (e2;x) = x, lim

n→∞
Jα,β
n (e3;x) = x2.

This completes the proof. �

In the space [0,∞), following Gadžiev [9,10,17], we recall the weighted spaces of the func-
tions for which the analogous of the Korovkin theorem holds (see also [1, 5, 19]) .

Let x → φ(x) be a continuous and strictly increasing function and ̺(x) = 1 + φ2(x),
limx→∞ ̺(x) = ∞. Let B̺[0,∞) be a set of functions defined on [0,∞) and satisfying

|f(x)| ≤Mf̺(x),

whereMf is a constant depending only on f . Its subset of continuous functions will be denoted
by C̺[0,∞), i.e., C̺[0,∞) = B̺[0,∞) ∩ C[0,∞). It is well known that a sequence of linear
positive operators {Jα,β

n }n≥1 maps C̺[0,∞) into B̺[0,∞) if and only if

|Ln(̺;x)| ≤ K̺(x),

where x ∈ [0,∞) and K is a positive constant. Note that B̺[0,∞) is a normed space with the
norm

‖f‖̺ = sup
x≥0

|f(x)|
̺(x)

.

Finally, let C0
̺ [0,∞) be a subset of C̺[0,∞) such that the limit

lim
n→∞

f(x)

̺(x)
= Kf
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exists and is finite.

Let B[0, 1] be the space of all bounded functions on [0, 1] and C[0, 1] be the space of all
functions f continuous on [0, 1] equipped with norm

‖f‖∞ = sup
x∈[0,1]

|f(x)|, f ∈ C[0, 1].

The famous Korovkin’s theorems state as follows:

Theorem 3.2 (cf. [16]). Let {Ln}n≥1 be the sequence of linear positive operators acting from C[0, 1]
into B[0, 1]. Then

lim
n→∞

‖Ln(t
k;x)− xk‖∞ = 0 (k = 0, 1, 2),

if and only if for all f ∈ C[0, 1]

lim
n→∞

‖Ln(f(t);x)− f‖∞ = 0.

Theorem 3.3. Let {Jα,β
n }n≥1 be the sequence of linear positive operators acting from C̺[0,∞) into

B̺[0,∞) satisfies the conditions

lim
n→∞

‖Jα,β
n (ϕi−1(t);x)− ϕi−1(x)‖̺ = 0 (i = 1, 2, 3)

then for any function f ∈ C0
̺ [0,∞),

lim
n→∞

‖Jα,β
n (f(t);x)− f‖̺ = 0.

Proof. For the completeness, we give some sketch of the proof for the version which will be
used in our next result. Consider ϕ(x) = x, ̺(x) = 1 + x2, and

‖Jα,β
n (ei;x)− xi−1‖̺ = sup

x≥0

| Jα,β
n (ei;x)− xi−1 |

1 + x2
.

Then for i = 1, 2, 3 it is easily proved that

lim
n→∞

‖Jα,β
n (ei;x)− xi−1‖̺ = 0.

Hence by using the above Theorem 3.2, for any function f ∈ C0
̺(R

+), we get

lim
n→∞

‖Jα,β
n (f(t);x)− f‖̺ = 0.

�

Theorem 3.4. Let x ∈ [0,∞), f ∈ C0
̺ [0,∞) with ̺(x) = 1 + x2. Then for pr(x) ≥ 0, S(1) 6= 0,

we have

lim
n→∞

‖Jα,β
n (f ;x)− f‖̺ → 0.

Proof. Using Theorem 3.3 for ϕ(x) = x and ̺(x) = 1 + x2, we consider

‖Jα,β
n (ei;x)− xi−1‖̺ = sup

x≥0

| Jα,β
n (ei;x)− xi−1 |

1 + x2
,

for i = 1, 2, 3.
According to Lemma 2.3 for i = 1, it is obvious that | Jα,β

n (e1;x)− 1 |→ 0, and therefore

lim
n→∞

‖Jα,β
n (e1;x)− 1‖̺ = 0.
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For i = 2

sup
x≥0

| Jα,β
n (e2;x)− t |

1 + x2
≤

∣

∣

n2

(n+ β)(n− 1)
− 1
∣

∣ sup
x≥0

x

1 + x2

+
∣

∣

n

(n+ β)(n− 1)

(

S′(1)

S(1)
+ 1

)

+
α

n+ β

∣

∣ sup
x≥0

1

1 + x2
.

Therefore

lim
n→∞

‖Jα,β
n (e2;x)− x‖̺ = 0.

For i = 3

sup
x≥0

Jα,β
n (e3;x)− x2 |

1 + x2
≤

∣

∣

n4

(n+ β)2(n− 2)(n− 1)
− 1
∣

∣ sup
x≥0

x2

1 + x2

+
∣

∣

2n2

(n+ β)2(n− 2)(n− 1)

{

n

n− 2

(

S′(1)

S(1)
+ 2

)

+ α

}

∣

∣ sup
x≥0

x

1 + x2

+
∣

∣

n2

(n+ β)2(n− 2)(n− 1)

(

S′′(1)

S(1)
+
S′(1)

S(1)
+ 2

)

+
2nα

(n+ β)2(n− 1)

(

S′(1)

S(1)

)

+
α2

(n+ β)2
∣

∣ sup
x≥0

1

1 + x2
.

Hence we have

lim
n→∞

‖Jα,β
n (e3;x)− x2‖̺ = 0.

Which completes the proof of Korovkin’s type theorem. �

4. RATE OF CONVERGENCE

Here we calculate the rate of convergence of operators (2.8) by means of modulus of con-
tinuity and Lipschitz type functions.

Let f ∈ CB [0,∞] be the space of all bounded and uniformly continuous functions on
[0,∞) and x ≥ 0. Then for δ > 0, the modulus of continuity of f denoted by ω(f, δ) gives the
maximum oscillation of f in any interval of length not exceeding δ > 0 and it is given by

(4.9) ω(f, δ) = sup
|t−x|≤δ

|f(t)− f(x) |, t ∈ [0,∞).

It is known that limδ→0+ ω(f, δ) = 0 for f ∈ CB [0,∞) and for any δ > 0 one has

(4.10) |f(t)− f(x)| ≤
( |t− x|

δ
+ 1

)

ω(f, δ).

Take µj = (ei − x)j for i = 2, j = 1, 2 and in the sequel we use the following notations:

(4.11) δα,βn =

√

J
α,β
n (µ2;x),
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Here

Jα,β
n (µj ;x) =











































































































































(

n2

(n+ β)(n− 1)
− 1

)

x+
n

(n+ β)(n− 1)

(

S′(1)

S(1)
+ 1

)

+
α

n+ β

for j = 1, 0 < α < β, α, β ∈ R

(

n4

(n+ β)2(n− 2)(n− 1)
− 2n2

(n+ β)(n− 1)
+ 1

)

x2

+

[

2n2

(n+ β)2(n− 1)

{

n

n− 2

(

S′(1)

S(1)
+ 2

)

+ α

}

− 2n

(n+ β)(n− 1)

(

S′(1)

S(1)
+ 1

)

+
2α

n+ β

]

x

+
n2

(n+ β)2(n− 2)(n− 1)

(

S′′(1)

S(1)
+
S′(1)

S(1)
+ 2

)

+
2nα

(n+ β)2(n− 1)

(

S′(1)

S(1)
+ 1

)

+
α2

(n+ β)2

for j = 2, 0 < α < β, α, β ∈ R

when α = β = 0, then δα,βn is reduced to δ∗n =
√

J∗
n (η2;x).

Theorem 4.5. For x ∈ [0,∞), f ∈ CB [0,∞) the operators Jα,β
n ( · ; · ) defined by (2.8) satisfying:

(4.12) |Jα,β
n (f ;x)− f(x)| ≤ 2ω

(

f ; δα,βn

)

,

where n ∈ N, pr(x) ≥ 0, S(1) 6= 0 and δα,βn is defined in (4.11).

Proof. For our sequence of positive linear operators {Jα,β
n (.; .)} we have

Jα,β
n (f ;x)− f(x) = Jα,β

n (f ;x)− f(x)Jα,β
n (1;x)

= Jα,β
n (f(t)− f(x);x)

≤ Jα,β
n (| f(t)− f(x) |;x) ,

since Jα,β
n (1;x) = 1. From (4.9) and (4.10) easily we get

|Jα,β
n (f ;x)− f(x)| ≤ Jα,β

n

(

1 +
| t− x |

δ
;x

)

ω(f ; δ)

=

(

1 +
1

δ
Jα,β
n (| t− x |;x)

)

ω(f ; δ).

Cauchy-Schwarz inequality give us

Jα,β
n (| t− x |;x) ≤ Jα,β

n (1;x)
1
2 Jα,β

n

(

(t− x)2;x
)

1
2

so that

(4.13) | Jα,β
n (f ;x)− f(x) |≤

(

1 +
1

δ
Jα,β
n

(

(t− x)2;x
)

1
2

)

ω(f ; δ).

Finally, putting δ = δα,βn =

√

J
α,β
n (µ2;x) we get the assertion. �
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Remark 4.1. Choosing δ = 1
n+β in (4.13) we obtain the following estimate

(4.14) |Jα,β
n (f ;x)− f(x)| ≤

(

1 + (n+ β)δα,βn

)

ω

(

f ;
1

n+ β

)

,

where δ∗n defined in (4.11).

Remark 4.2. For α = β = 0 the corresponding estimate for the sequence of positive linear operators
{Jα,β

n } is reduced to {J∗
n} defined by (2.4) which can take the form as

(4.15) |J∗
n(f ;x)− f(x)| ≤ 2ω (f ; δ∗n) ,

where δ∗n =
√

J∗
n (η2;x)).

Now we give the rate of convergence of the operators Jα,β
n (f ;x) defined in (2.8) in terms

of the elements of the usual Lipschitz class LipM (ν). Let f ∈ CB [0,∞), M > 0 and 0 < ν ≤ 1.
The class LipM (ν) is defined as

(4.16) LipM (ν) =
{

f : |f(ζ1)− f(ζ2)| ≤M |ζ1 − ζ2|ν (ζ1, ζ2 ∈ [0,∞))
}

.

Theorem 4.6. Suppose x ∈ [0,∞), f ∈ LipM (ν) with (M > 0, 0 < ν ≤ 1). Then operators
Jα,β
n ( · ; · ) defined by (2.8) satisfying:

|Jα,β
n (f ;x)− f(x)| ≤M

(

δα,βn

)ν/2
,

where δα,βn is defined in (4.11).

Proof. Use (4.16) and apply Hölder’s inequality

|Jα,β
n (f ;x)− f(x)| ≤ |Jα,β

n (f(t)− f(x);x) |
≤ Jα,β

n (|f(t)− f(x)|;x)
≤ MJα,β

n (|t− x|ν ;x) .
Therefore

|Jα,β
n (f ;x)− f(x)|

≤ M
e−nx

S(1)

∞
∑

r=0

Pr(nx)
1

B(r + 1, n)

∫ ∞

0

tr

(1 + t)r+n+1
|t− x|νdt

= M
e−nx

S(1)

(

∞
∑

r=0

Pr(nx)
1

B(r + 1, n)

)

2−ν
2

×
(

Pr(nx)
1

B(r + 1, n)

)
ν
2
∫ ∞

0

tr

(1 + t)r+n+1
|t− x|νdt

≤ M

(

e−nx

S(1)

∞
∑

r=0

Pr(nx)
1

B(r + 1, n)

∫ ∞

0

tr

(1 + t)r+n+1
dt

)

2−ν
2

×
(

e−nx

S(1)

∞
∑

r=0

Pr(nx)
1

B(r + 1, n)

∫ ∞

0

tr

(1 + t)r+n+1
|t− x|2dt

)
ν
2

= MJα,β
n (µ2;x)

ν
2 .

This completes the proof. �
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Let

(4.17) C2
B [0,∞) =

{

g ∈ CB [0,∞) : g′, g′′ ∈ CB [0,∞)
}

,

with the norm

(4.18) ‖g‖C2
B [0,∞) = ‖g‖CB [0,∞) + ‖g′‖CB [0,∞) + ‖g′′‖CB [0,∞),

where

(4.19) ‖g‖CB [0,∞) = sup
x∈[0,∞)

| g(x)|.

Theorem 4.7. Let x ∈ [0,∞) and Jα,β
n ( · ; · ) be the operator defined by (2.8). Then for any g ∈

C2
B [0,∞), we have

|Jα,β
n (f ;x)− f(x)| ≤ 1

2
δα,βn (2 + δα,βn )‖g‖C2

B [0,∞),

where n ∈ N, pr(x) ≥ 0, S(1) 6= 0 and δα,βn is defined in (4.11).

Proof. Let g ∈ C2
B [0,∞). Then by using the generalized mean value theorem in the Taylor series

expansion we have

g(t) = g(x) + g′(x)(t− x) + g′′(ψ)
(t− x)2

2
,

which follows

|g(t)− g(x)| ≤M1|t− x|+ 1

2
M2(t− x)2,

where by using the result of (4.18) and (4.19) we have

M1 = sup
x∈[0,∞)

|g′(x)| = ‖g′‖CB [0,∞) ≤ ‖g‖C2
B [0,∞),

M2 = sup
x∈[0,∞)

|g′′(x)| = ‖g′′‖CB [0,∞) ≤ ‖g‖C2
B [0,∞),

again from 4.18, we have

|g(t)− g(x)| ≤
(

|t− x|+ 1

2
(t− x)2

)

‖g‖C2
B [0,∞).

Since

|Jα,β
n (g, x)− g(x)| = |Jα,β

n (g(t)− g(x);x)| ≤ Jα,β
n (|g(t)− g(x)|;x),

and also

Jα,β
n (|t− x|;x) ≤ Jα,β

n

(

(t− x)2;x
)

1
2 = δα,βn

we get

|Jα,β
n (g;x)− g(x)| ≤

(

Jα,β
n (|t− x|;x) + 1

2
Jα,β
n ((t− x)2;x)

)

‖g‖C2
B [0,∞)

≤ 1

2
δα,βn (2 + δα,βn )‖g‖C2

B [0,∞).

This completes the proof. �
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The Peetre’s K-functional is defined by

(4.20) K2(f, δ) = inf
C2

B [0,∞)

{(

‖f − g‖CB [0,∞) + δ‖g′′‖C2
B [0,∞)

)

: g ∈ W2
}

,

where

(4.21) W2 = {g ∈ CB [0,∞) : g′, g′′ ∈ CB [0,∞)} .
There exits a positive constant C > 0 such that K2(f, δ) ≤ Cω2(f, δ

1/2), δ > 0, where the
second order modulus of continuity is given by

(4.22) ω2(f, δ
1/2) = sup

0<h<δ1/2
sup
x∈R+

|f(x+ 2h)− 2f(x+ h) + f(x)|.

Theorem 4.8. Suppose x ∈ [0,∞), n ∈ N and f ∈ CB [0,∞). Then the operators Jα,β
n ( · ; · ) defined

by (2.8) satisfying

|Jα,β
n (f ;x)− f(x)| ≤ 2M

{

ω2

(

f ;

√

∆α,β
n

)

+min(1,∆α,β
n )‖f‖CB [0,∞)

}

,

where M is a positive constant, pr(x) ≥ 0, S(1) 6= 0 and ∆α,β
n =

(2+δα,β
n )δα,β

n

4 .

Proof. As previous we easily conclude that

|Jα,β
n (f ;x)− f(x)| ≤ |Jα,β

n (f − g;x) | + | Jα,β
n (g;x)− g(x) | +|f(x)− g(x)|,

≤ 2‖f − g‖CB [0,∞) +
δα,βn

2
(2 + δα,βn )‖g‖C2

B [0,∞),

≤ 2

(

‖f − g‖CB [0,∞) +
δα,βn

4
(2 + δα,βn )‖g‖C2

B [0,∞)

)

.

By taking infimum over all g ∈ C2
B [0,∞) and by using (4.20), we get

|Jα,β
n (f ;x)− f(x)| ≤ 2K2

(

f ;
δα,βn (2 + δα,βn )

4

)

.

Now for an absolute constant M > 0 in [2] we use the relation

K2(f ; δ) ≤M{ω2(f ;
√
δ) + min(1, δ)‖f‖}.

This completes the proof. �
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ABSTRACT. In the present paper, we introduce the Bézier variant of the Srivastava-Gupta operators, which preserve
constant as well as linear functions. Our study focuses on a direct approximation theorem in terms of the Ditzian-Totik
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1. INTRODUCTION

Srivastava-Gupta [19] presented the following summation-integral type operators defined
as follows:

Gn,c(f ;x) = n

∞
∑

k=1

pn,k(x, c)

∫ ∞

0

pn+c,k−1f(t)dt+ pn,0(x, c)f(0),(1.1)

where

pn,k(x, c) =
(−x)k

k!
φ(k)
n,c(x),

with the following special cases:

(1) If c = 0 and φn,c(x) = e−nx, then we get pn,k(x, 0) = e−nx (nx)
k

k!
,

(2) c = N and φn,c(x) = (1 + cx)−n/c, then we obtain pn,k(x, 0) =
(n/c)k
k!

(cx)k

(1 + cx)
n

c
+k

,

(3) If c = −1 and φn,c(x) = (1− x)n, then pn,k(x,−1) =
(

n
k

)

xk(1− x)n−k.

Gupta [12] introduced the general class of Durrmeyer type operators and studied some di-
rect results. In [16], the authors considered the Bézier variant of the operators (1.1) and es-
tablished the estimate of the rate of convergence of these operators for functions of bounded
variation. Kajla and Acar [17] constructed mixed hybrid operators and established quantita-
tive Voronovskaja type theorems, local approximation theorems and weighted approximation
properties for these operators. Verma and Agrawal [23] presented the generalized form of the
operators (1.1) and obtained some approximation properties for these operators. Acar et al. [3]
proposed Stancu type generalization of the operators (1.1) and studied the rate of convergence
for functions having derivatives of bounded variation and also discussed the simultaneous ap-
proximation for these operators. Recently, Neer et al. [18] introduced the Bézier variant of the
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operators which is proposed by Yadav [22] and obtained several approximation properties.

Gupta [11] introduced a modification of the operators (1.1) as

Un,c(f ;x) = (n+ 2c)

∞
∑

k=1

pn+c,k(x, c)

∫ ∞

0

pn+3c,k−1(t, c)f(t)dt

+ pn+c,0(x, c)f(0).(1.2)

It is important to note here that these operators preserve constant as well as linear functions.
The rth(r ∈ N) order moments are given by

Un,c(er, x) =



















xΓ ((n/c)− r + 2)Γ(r + 1)

Γ ((n/c) + 1) cr−1 2F1

(

n
c + 2, 1− r; 2;−cx

)

, for c = N ∪ {−1},

(nx)r!

nr 1F1 (1− r; 2;−nx) , for c = 0.

Srivastava and Gupta [20] got the rate of convergence for the Bézier variant of the Bleimann
Butzer and Hahn operators for functions with bounded variation. In 2007, Guo et al. [15] stud-
ied Baskakov-Bézier operators and established direct, inverse and equivalence approximation
theorems with the help of Ditzian-Totik modulus of smoothness. Very recently, Agrawal et
al. [5] introduced mixed hybrid operators for which they got direct results and the rate of con-
vergence for differentiable functions whose derivatives are of bounded variation. Many other
interesting Bézier type operators were studied by several researchers, cf. [1,2,4,6,7,9,10,13,14,
21, 24, 25].

For θ ≥ 1, we present the Bézier variant of the operators Un,cf defined by

U (θ)
n,c(f ;x) = (n+ 2c)

∞
∑

k=1

Q
(θ)
n,k(x, c)

∫ ∞

0

pn+3c,k−1(t, c)f(t)dt

+Q
(θ)
n,0(x, c)f(0),(1.3)

where Q
(θ)
n,k(x, c) = (Jn,k(x, c))

θ − (Jn,k+1(x, c))
θ, with Jn,k(x, c) =

∞
∑

j=k

pn+c,j(x, c). For θ = 1,

the operators U
(θ)
n,cf reduce to the operators Un,cf .

Alternatively we may rewrite the operators (1.3) as

U (θ)
n,c(f ;x) =

∞
∫

0

Pn,θ,c(x, t)f(t)dt, x ∈ [0,∞),(1.4)

where

Pn,θ,c(x, t) = (n+ 2c)

∞
∑

k=1

Q
(θ)
n,k(x, c)pn+3c,k−1(t, c) +Q

(θ)
n,0(x, c)δ(t),

δ(t) being the Dirac-delta function.

The aim of this paper is to introduce the Bézier variant (1.3) of the Srivastava-Gupta oper-
ators, which preserve linear functions. Our further study focuses on a direct approximation
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theorem in terms of the Ditzian-Totik modulus of smoothness, respectively the rate of con-
vergence for differential functions whose derivatives are of bounded variation on every finite
subinterval of (0,∞), for the presented operators (1.3).

2. AUXILIARY RESULTS

Throughout this paper, C denotes a positive constant independent of n and x, not necessarily
the same at each occurrence. For these new operators (1.3) we establish some auxiliary results.
The monomials ek(x) = xk, for k ∈ N0 called test functions play an important role in uniform
approximation by linear positive operators.

Lemma 2.1. For any n ∈ N, the images of test functions by Gupta operators (1.2) are given by

Un,c(e0;x) = 1, Un,c(e1;x) = x, Un,c(e2;x) = x2 +
2x(1 + cx)

n
.

Consequently,

Un,c

(

(t− x)2;x
)

=
2x(1 + cx)

n
.(2.5)

Lemma 2.2. Let f be a real-valued function continuous and bounded on [0,∞), with ‖f‖ = sup
x∈[0,+∞)

|f(x)|,

then |Un,c(f)| ≤ ‖f‖.

Lemma 2.3. Let f be a real-valued function continuous and bounded on [0,∞) and θ ≥ 1, then

|U (θ)
n,c(f)| ≤ θ‖f‖.

Proof. Applying the well known property |aα − bα| ≤ α|a− b|, with 0 ≤ a, b ≤ 1, α ≥ 1 and the

definition of Q
(θ)
n,k(x, c), we have

0 < (Jn,k(x, c))
θ − (Jn,k+1(x, c))

θ ≤ θ(Jn,k(x, c)− Jn,k+1(x, c)) = θpn+c,k(x).(2.6)

Hence, from the definition of U
(θ)
n,c(f) operators and Lemma 2.2, we get

|U (θ)
n,c(f)| ≤ θ|Un,c(f)| ≤ θ‖f‖.

�

Remark 2.1. We have

U (θ)
n,c(f ;x)(e0;x) =

∞
∑

k=0

Q
(θ)
n,k(x, c) = [Jn,0(x, c)]

θ

=





∞
∑

j=0

pn+c,j(x)





θ

= 1.

In order to present our further results, we recall from [8] the definitions of the Ditizian-Totik

modulus of smoothness. Let ϕ(x) =
√

x(1 + cx), then

ωϕ(f, t) = sup
0<h≤t

sup
x±hϕ(x)/2≥0

{
∣

∣

∣

∣

f

(

x+
hϕ(x)

2

)

− f

(

x− hϕ(x)

2

)
∣

∣

∣

∣

}

,

and the appropriate Peetre’s K-functional is defined by

Kϕ(f, t) = inf
g∈Vϕ

{‖f − g‖+ t‖ϕg′‖}, t > 0,
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where Vϕ = {g ∈ C[0,+∞) | g ∈ ACloc[0,+∞), ‖ϕg′‖ < ∞}. According to Th. 3.1.2, [8], it is

well known that Kϕ(f, t) ∼ ωϕ(f, t), which means that there exists a constant M > 0, such that

M−1ωϕ(f, t) ≤ Kϕ(f, t) ≤ Mωϕ(f, t).(2.7)

3. DIRECT THEOREM

Now we are able to prove the following direct approximation theorem in terms of Ditzian-
Totik modulus of smoothness.

Theorem 3.1. Let f ∈ CB [0,∞) and θ ≥ 1, then for any x ∈ [0,∞), we have
∣

∣

∣
U (θ)
n,c(f ;x)− f(x)

∣

∣

∣
≤ Cωϕ

(

f,
ϕ(x)√

n

)

,(3.8)

where C is an absolute constant.

Proof. By the definition of Kϕ(f, t) and the relation (2.7), for fixed n, x, we can choose g =
gn,x ∈ Vϕ such that

||f − g||+ 1√
n
||ϕg′||+ 1

n
||g′|| ≤ ωϕ

(

f,
1√
n

)

.(3.9)

Using Remark 2.1, we can write

| U (θ)
n,c(f)− f | ≤ | U (θ)

n,c(f − g;x) | +|f − g|+ | U (θ)
n,c(g;x)− g(x) |

≤ C||f − g||+ | U (θ)
n,c(g;x)− g(x) | .(3.10)

We only need to estimate the second term in the above relation. We will have to split the
estimate into two domains, i.e. x ∈ F c

n = [0, 1/n] and x ∈ Fn = (1/n,∞).

Using the representation g(t) = g(x) +
∫ t

x
g′(u)du, we get

∣

∣

∣
U (θ)
n,c(g;x)− g(x)

∣

∣

∣
=

∣

∣

∣

∣

U (θ)
n,c

(
∫ t

x

g′(u)du;x

)
∣

∣

∣

∣

.(3.11)

If x ∈ Fn = (1/n,∞), then U
(θ)
n,c

(

(t− x)2;x
)

∼ 2θ
n ϕ2(x). We have

∣

∣

∣

∣

∫ t

x

g′(u)du

∣

∣

∣

∣

≤ ||ϕg′||
∣

∣

∣

∣

∫ t

x

1

ϕ(u)
du

∣

∣

∣

∣

.(3.12)

For any x, t ∈ (0,∞), we find that
∣

∣

∣

∣

∫ t

x

1

ϕ(u)
du

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

x

1
√

u(1 + cu)
du

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ t

x

(

1√
u
+

1
√

(1 + cu)

)

du

∣

∣

∣

∣

≤ 2

(√
t−

√
x+

√

(1 + ct)−
√

(1 + cx)

c

)

= 2|t− x|
(

1√
t+

√
x
+

1
√

(1 + ct) +
√

(1 + cx)

)

< 2|t− x|
(

1√
x
+

1
√

(1 + cx)

)

≤ 2(c+ 1)
√

c(c− 1)

|t− x|
ϕ(x)

.(3.13)
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Combining (3.11)-(3.13) and using Cauchy-Schwarz inequality, we obtain

|U (θ)
n,c(g;x)− g(x)| <

2(c+ 1)
√

c(c− 1)
||ϕg′||ϕ−1(x)U (θ)

n,c(|t− x|;x)

≤ 2(c+ 1)
√

c(c− 1)
||ϕg′||ϕ−1(x)

(

U (θ)
n,c((t− x)2;x)

)1/2

≤ 2(c+ 1)
√

c(c− 1)
||ϕg′||ϕ−1(x)

(

θ Un,c((t− x)2;x)

)1/2

.

Now applying the relation (2.5), we get

|U (θ)
n,c(g;x)− g(x)| < C

||ϕg′||√
n

.(3.14)

For x ∈ F c
n = [0, 1/n], U

(θ)
n,c

(

(t− x)2;x
)

∼ 2θ
n2 and

∣

∣

∣

∣

∫ t

x

g′(u)du

∣

∣

∣

∣

≤ ||g′|| |t− x|.

Therefore, using Cauchy-Schwarz inequality we have

|U (θ)
n,c(g;x)− g(x)| ≤ ||g′||U (θ)

n,c(|t− x|;x) ≤ C||g′||
√
2θ√
n

<
C

n
||g′||.(3.15)

From (3.14) and (3.15), we have

|U (θ)
n,c(g;x)− g(x)| < C

( ||ϕg′||√
n

+
1

n
||g′||

)

.(3.16)

Using Kϕ(f, t) ∼ ωϕ(f, t) and (3.9), (3.10), (3.16), we get the desired relation (3.8). This com-
pletes the proof of the theorem.

�

4. RATE OF CONVERGENCE

Let f ∈ DBVγ(0,∞), γ ≥ 0, be the class of differentiable functions defined on (0,∞), whose
derivatives f ′ are of bounded variation on every finite subinterval of (0,∞) and |f(t)| ≤ Mtγ ,
for all t > 0 and some M > 0. The functions f ∈ DBVγ(0,∞), could be represented as

f(x) =

∫ x

0

g(t)dt+ f(0),

where g is a function of bounded variation on each finite subinterval of (0,∞).

Lemma 4.4. Let x ∈ (0,∞), then for θ ≥ 1 and sufficiently large n, we have

i) ζn,θ,c(x, y) =

∫ y

0

Pn,θ,c(x, t)dt ≤
θρ

n

ϕ2(x)

(x− y)2
, 0 ≤ y < x,

ii) 1− ζn,θ,c(x, z) =

∫ ∞

z

Pn,θ,c(x, t)dt ≤
θρ

n

ϕ2(x)

(z − x)2
, x < z < ∞,

where ρ ≥ 2.

Proof.
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i) Using Lemma 2.3 and (2.5), we get

ζn,θ,c(x, y) =

y
∫

0

Pn,θ,c(x, t)dt ≤
y

∫

0

(

x− t

x− y

)2

Pn,θ,c(x, t)dt

≤ U (θ)
n,c((t− x)2;x) (x− y)−2 ≤ θUn,c((t− x)2;x)(x− y)−2

≤ θρ

n

ϕ2(x)

(x− y)2
, 0 ≤ y < x.

ii) The second relation can be proved analogously. �

Theorem 4.2. Let f ∈ DBVγ(0,∞), θ ≥ 1 and
∨b

a(f
′
x) be the total variation of f ′

x on [a, b] ⊂ (0,∞).
Then, for every x ∈ (0,∞) and sufficiently large n, we have

∣

∣

∣
U (θ)
n,c(f ;x)− f(x)

∣

∣

∣
≤

√
θ

θ + 1

∣

∣

∣

∣

f ′(x+) + θf ′(x−)

∣

∣

∣

∣

√

ρ

n
ϕ(x) +

√

ρ

n
ϕ(x)

θ3/2

θ + 1

∣

∣

∣

∣

f ′(x+)− f ′(x−)

∣

∣

∣

∣

+
θρ(1 + cx)

n

[
√
n ]

∑

k=1

x
∨

x−x/k

(f
′

x) +
x√
n

x
∨

x−x/
√
n

(f
′

x)

+
θρ(1 + cx)

n

[
√
n ]

∑

k=1

x+x/k
∨

x

(f
′

x) +
x√
n

x+x/
√
n

∨

x

(f
′

x),

where ρ ≥ 2 and the auxiliary function f ′
x is defined by

f
′

x(t) =







f
′

(t)− f
′

(x−), 0 ≤ t < x
0, t = x

f
′

(t)− f
′

(x+), x < t ≤ 1.

Proof. Since

∫ ∞

0

Pn,θ,c(x, t)dt = U (θ)
n,c(e0;x) = 1, we can write

U (θ)
n,c(f ;x)− f(x) =

∫ ∞

0

(f(t)− f(x))Pn,θ,c(x, t)dt

=

∫ ∞

0

(
∫ t

x

f
′

(u)du

)

Pn,θ,c(x, t)dt.(4.17)

Using definition of the function f ′
x, for any f ∈ DBVγ(0,∞), it follows

f ′(t) =
1

θ + 1

(

f ′(x+) + θf ′(x−)

)

+ f ′
x(t) +

1

2

(

f ′(x+)− f ′(x−)

)(

sgn(t− x) +
θ − 1

θ + 1

)

+ δx(t)

(

f ′(x)− 1

2

(

f ′(x+) + f ′(x−)

))

,(4.18)

where

δx(t) =

{

1 , x = t
0 , x 6= t.

It is clear that

∫ ∞

0

Pn,θ,c(x, t)

t
∫

x

(

f ′(x)− 1

2

(

f ′(x+) + f ′(x−)

))

δx(u)dudt = 0.
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Using the definition of operators (1.4), then simple computations lead us to

E1 =

∫ ∞

0

(
∫ t

x

1

θ + 1

(

f ′(x+) + θf ′(x−)

)

du

)

Pn,θ,c(x, t)dt

=
1

θ + 1

∣

∣

∣

∣

f ′(x+) + θf ′(x−)

∣

∣

∣

∣

∫ ∞

0

|t− x|Pn,θ,c(x, t)dt

≤ 1

θ + 1

(

f ′(x+) + θf ′(x−)

)

(

U (θ)
n,c((e1 − x)2;x)

)1/2

≤
√
θ

θ + 1

∣

∣

∣

∣

f ′(x+) + θf ′(x−)

∣

∣

∣

∣

√

ρ

n
ϕ(x)

(4.19)

and

E2 =

∫ ∞

0

(
∫ t

x

1

2

(

f ′(x+)− f ′(x−)

)(

sgn(u− x) +
θ − 1

θ + 1

)

du

)

Pn,θ,c(x, t)dt

≤ θ

θ + 1

∣

∣

∣

∣

f ′(x+)− f ′(x−)

∣

∣

∣

∣

∫ ∞

0

|t− x|Pn,θ,c(x, t)dt =
θ

θ + 1

∣

∣

∣

∣

f ′(x+)− f ′(x−)

∣

∣

∣

∣

U (θ)
n,c (|t− x| ;x)

≤ θ

θ + 1

∣

∣

∣

∣

f ′(x+)− f ′(x−)

∣

∣

∣

∣

(

U (θ)
n,c

(

(e1 − x)2;x
)

)1/2

≤ θ3/2

θ + 1

∣

∣

∣

∣

f ′(x+)− f ′(x−)

∣

∣

∣

∣

√

ρ

n
ϕ(x).

(4.20)

Involving the relations (4.17)–(4.20), we obtain the following estimate

∣

∣

∣
U (θ)
n,c(f ;x)− f(x)

∣

∣

∣
≤ |An,θ,c(f

′
x, x) +Bn,θ,c(f

′
x, x)|+

√
θ

θ + 1

∣

∣

∣

∣

f ′(x+) + θf ′(x−)

∣

∣

∣

∣

√

ρ

n
ϕ(x)

+
θ3/2

θ + 1
|f ′(x+)− f ′(x−)|

√

ρ

n
ϕ(x),(4.21)

where

An,θ,c(f
′
x, x) =

∫ x

0

(
∫ t

x

f ′
x(u)du

)

Pn,θ,c(x, t)dt

and

Bn,θ,c(f
′
x, x) =

∫ ∞

x

(
∫ t

x

f ′
x(u)du

)

Pn,θ,c(x, t)dt.

For a complete proof of the theorem, it remains to estimate the terms An,θ,c(f
′
x, x) and Bn,θ,c(f

′
x, x).

Since
∫ b

a
dtζn,θ,c(x, t) ≤ 1, for all [a, b] ⊆ (0,∞), using integration by parts and applying Lemma

4.4 with y = x− (x/
√
n), it follows

|An,θ,c(f
′
x, x)| =

∣

∣

∣

∣

∫ x

0

(
∫ t

x

f ′
x(u)du

)

dtζn,θ,c(x, t)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ x

0

ζn,θ,c(x, t)f
′
x(t)dt

∣

∣

∣

∣

≤
(
∫ y

0

+

∫ x

y

)

|f ′
x(t)| |ζn,θ,c(x, t)| dt

≤ θ
ρϕ2(x)

n

∫ y

0

x
∨

t

(f ′
x)(x− t)−2dt+

∫ x

y

x
∨

t

(f ′
x)dt

≤ θ
ρϕ2(x)

n

∫ y

0

x
∨

t

(f ′
x)(x− t)−2dt+

x√
n

x
∨

x−x/
√
n

(f ′
x).
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Taking u = x/(x− t) into account, we get

θ
ρϕ2(x)

n

∫ x−x/
√
n

0

(x− t)−2
x
∨

t

(f ′
x)dt = θ

ρ(1 + cx)

n

∫

√
n

1

x
∨

x−x/u

(f ′
x)du

≤ θ
ρ(1 + cx)

n

[
√
n ]

∑

k=1

∫ k+1

k

x
∨

x−x/u

(f ′
x)du ≤ θ

ρ(1 + cx)

n

[
√
n ]

∑

k=1

x
∨

x−x/k

(f ′
x).

Hence, we reach the following estimation

|An,θ,c(f
′
x, x)| ≤ θ

ρ(1 + cx)

n

[
√
n ]

∑

k=1

x
∨

x−x/k

(f ′
x) +

x√
n

x
∨

x−x/
√
n

(f ′
x).(4.22)

Using again the integration by parts and applying Lemma 4.4 with z = x+ x/
√
n, it follows

|Bn,θ,c(f
′

x, x)| =
∣

∣

∣

∣

∫ ∞

x

(
∫ t

x

f ′
x(u)du

)

Pn,θ,c(x, t)dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ z

x

(
∫ t

x

f ′
x(u)du

)

dt(1− ζn,θ,c(x, t)) +

∫ ∞

z

(
∫ t

x

f ′
x(u)du

)

dt(1− ζn,θ,c(x, t))

∣

∣

∣

∣

=

∣

∣

∣

∣

[(
∫ t

x

f ′
x(u)du

)

(1− ζn,θ,c(x, t))

]z

x

−
∫ z

x

f ′
x(t)(1− ζn,θ,c(x, t))dt

+

∫ ∞

z

(
∫ t

x

f ′
x(u)du

)

dt(1− ζn,θ,c(x, t))

∣

∣

∣

∣

=

∣

∣

∣

∣

(
∫ z

x

f ′
x(u)du

)

(1− ζn,θ,c(x, z))−
∫ z

x

f ′
x(t)(1− ζn,θ,c(x, t))dt

+

[(
∫ t

x

f ′
x(u)du

)

(1− ζn,θ,c(x, t))

]∞

z

−
∫ ∞

z

f ′
x(t)(1− ζn,θ,c(x, t))dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ z

x

f ′
x(t)(1− ζn,θ,c(x, t))dt+

∫ ∞

z

f ′
x(t)(1− ζn,θ,c(x, t))dt

∣

∣

∣

∣

< θ
ρϕ2(x)

n

∫ ∞

z

t
∨

x

(f ′)x(t− x)−2dt+

∫ z

x

t
∨

x

(f ′
x)dt

≤ θ
ρϕ2(x)

n

∫ ∞

x+x/
√
n

t
∨

x

(f ′
x)(t− x)−2dt+

x√
n

x+x/
√
n

∨

x

(f ′
x).(4.23)

Taking u = x/(t− x) into account, we get

θ
ρϕ2(x)

n

∫ ∞

x+x/
√
n

t
∨

x

(f ′
x)(t− x)−2dt = θ

ρϕ2(x)

xn

∫

√
n

0

x+x/u
∨

x

(f ′
x)du

≤ θ
ρ(1 + cx)

n

[
√
n ]

∑

k=1

∫ k+1

k

x+x/u
∨

x

(f ′
x)du ≤ θ

ρ(1 + cx)

n

[
√
n ]

∑

k=1

x+x/k
∨

x

(f ′
x).(4.24)

Using the relations (4.23)-(4.24), we get the following estimation

|Bn,θ,c(f
′

x, x)| ≤ θ
ρ(1 + cx)

n

[
√
n ]

∑

k=1

x+x/k
∨

x

(f ′
x) +

x√
n

x+x/
√
n

∨

x

(f ′
x).(4.25)
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The relations (4.21), (4.22) and (4.25) lead us to the desired result. �
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ABSTRACT. In several recent papers, attempts have been made to apply Wardowski’s method of F -contractions in
order to obtain fixed point results for single and multivalued mappings in b-metric spaces. In this article, it is shown
that in most cases the conditions imposed on respective mappings are too strong and that the results can be obtained
directly, i.e., without using most of the properties of auxiliary function F .
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1. INTRODUCTION AND PRELIMINARIES

b-metric spaces, as a generalization of metric spaces, were introduced by Bakhtin [3] and
Czerwik [6]. If X is a nonempty set and s ≥ 1 is a fixed real number, a function b : X ×X →
[0,+∞) is called a b-metric on X with parameter s if the following holds for all x, y, z ∈ X :

(1) b(x, y) = 0 if and only if x = y,
(2) b(x, y) = b(y, x),
(3) b(x, z) ≤ s[b(x, y) + b(y, z)].

Then, (X, b, s) is called a b-metric space.
Further on, several researchers obtained a lot of fixed point and common fixed point results,

both for single and multivalued mappings in such spaces.
On the other hand, F -contractions were introduced by Wardowski [19] and several genuine

generalizations of Banach Contraction Principle were produced using this concept. In [19], the
class F of all functions F : (0,+∞) → R was used, satisfying the conditions:

(F1) F is strictly increasing,
(F2) limt→+0 F (t) = −∞,
(F3) for each sequence {tn} of positive reals with limn→∞ tn = 0 there exists k ∈ (0, 1) such

that limn→∞ tknF (tn) = 0.

In the paper [5], Cosentino et al. attempted to apply Wardowski’s method in the context of b-
metric spaces, by using the following additional assumption for the class of auxiliary functions
that are used (they denoted the new class by Fs):

(F4) if tn is a sequence of positive reals satisfying τ + F (stn) ≤ F (tn−1) for some τ > 0 and
each n ∈ N, then τ + F (sntn) ≤ F (sn−1tn−1) for each n ∈ N.

Further, their approach was used in the papers [1, 2, 8, 10, 11, 12, 13, 14, 15, 16] to obtain various
fixed point results, mostly for multivalued mappings.
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However, as we are going to show using the following result, most of the conditions used in
all these articles are too strong. In fact, with these conditions, just the property (F1) of functions
F ∈ F is sufficient to obtain the desired results.

Lemma 1.1. [18, 9] Let (X, b, s) be a b-metric space and let {xn} be a sequence in X . If there exists
r ∈ [0, 1) satisfying

b(xn, xn+1) ≤ rb(xn−1, xn) for all n ∈ N,

then {xn} is a Cauchy sequence.

Moreover, we will show that some conditions of admissibility, used in [12] and some other
papers, can be replaced by easier ones.

2. MAIN RESULTS

We will assume in this section that s > 1 (otherwise, the results are already known).
The notion of α-admissibility of mappings was introduced and used in fixed point results by

Samet et al. in [17]. It can be used as a unified approach to problems in spaces endowed with
partial order, graph and alike. The notion was modified in several papers; we will use here the
following version.

Definition 2.1. [4, Definitions 1.4 and 1.7] Let X be a non-empty set and f, g, h : X → X be
mappings such that f(X)∪g(X) ⊆ h(X), and let α : X×X → [0,+∞) be a function. The pair (f, g)
is said to be

(1) partially weakly α-admissible with respect to h if α(fx, gy) ≥ 1 for all y ∈ X with hy = fx,
(2) triangular partially weakly α-admissible with respect to h if, moreover, α(x, z) ≥ 1 and α(z, y) ≥

1 imply that α(x, y) ≥ 1 for all x, y, z ∈ X .

In [12], the authors modified the previous definition, putting s2 instead of 1 on the right-
hand sides of the respective inequalities (the idea was to use them for mappings acting in

b-metric spaces with parameter s). However, it is clear that if one puts α1(x, y) =
1

s2
α(x, y),

all of their definitions reduce to the ones from [4]. In particular, [12, Definition 7] reduces to
Definition 2.1. Similarly, instead of [12, Definitions 8, 9 and 10], it is enough to use the following
ones.

Definition 2.2. Let (X, b, s) be a b-metric space, α : X × X → [0,+∞) be a function, and f, g be
self-mappings on X .

(1) [7] The space (X, b, s) is called α-complete if every Cauchy sequence {xn} in X with α(xn, xn+1) ≥
1 for all n ∈ N converges in X .

(2) [4] The space (X, b, s) is called α-regular if

lim
n→∞

xn = x and α(xn, xn+1) ≥ 1 for all n ∈ N imply that α(xn, x) ≥ 1 for all n ∈ N.

(3) [7] The mapping f is α-b-continuous if, for given x and sequence {xn} in X ,

lim
n→∞

xn = x and α(xn, xn+1) ≥ 1 for all n ∈ N implies that lim
n→∞

fxn = fx.

(4) [4] The pair (f, g) is α-compatible if limn→∞ b(fgxn, gfxn) = 0, whenever {xn} is a sequence
in X such that α(xn, xn+1) ≥ 1 for all n ∈ N and limn→∞ fxn = limn→∞ gxn.

As a sample, we formulate and prove first of all an improved version of [12, Theorems 1
and 2] (since the conditions (F2)–(F4) for functions F ∈ F will not be assumed and conditions
of admissibility will be formulated in an easier way); moreover the proof will be much shorter
than in [12].
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Theorem 2.1. Let (X, b, s) be an α-complete b-metric space, f, g, S, T be self-mappings on X such that
f(X) ⊆ T (X), g(X) ⊂ S(X) and let α : X ×X → [0,+∞). Suppose that

(1) there exist τ > 0 and F : (0,+∞) → R satisfying (F1) such that

(2.1) τ + F (sb(fx, gy)) ≤ F (M(x, y))

holds for all x, y ∈ X with α(x, y) ≥ 1 and b(fx, gy) > 0, where

M(x, y) = max

{

b(Sx, Ty), b(fx, Sx), b(gy, Ty),
b(Sx, gy) + b(fx, Ty)

2s

}

,

(2) the pairs (f, S) and (g, T ) are α-compatible,
(3) the pairs (f, g) and (g, f) are triangular partially weakly α-admissible with respect to T and S,

respectively.

If

(4′) f, g, S, T are α-b-continuous, or
(4′′) T (X) and S(X) are closed subsets of X and X is α-regular,

then the pairs (f, S), (g, T ) have a common coincidence point z ∈ X . If, moreover, α(Sz, Tz) ≥ 1, then
z is a common fixed point of the mappings f, g, S, T .

Proof. Take an arbitrary point x0 ∈ X . Since f(X) ⊆ T (X) and g(X) ⊆ S(X), we can form
Jungck sequences {xn}, {yn} in a standard way, satisfying

y2n+1 = f(x2n) = T (x2n+1) and y2n+2 = g(x2n+1) = S(x2n+2)

for n = 0, 1, 2, . . . Moreover, using the assumption (3), we have that

α(Tx2n+1, Sx2n+2) = α(y2n+1, y2n+2) ≥ 1 and α(Sx2n+2, Tx2n+3) = α(y2n+2, y2n+3) ≥ 1,

i.e., α(yn, yn+1) ≥ 1 for n = 0, 1, 2, . . .
Assume that b(yn, yn+1) > 0 for each n = 0, 1, 2, . . . (otherwise the conclusions follow eas-

ily). As α(Sx2n, Tx2n+1) ≥ 1 and b(fx2n, gx2n−1) > 0, we get by (2.1) that

(2.2) τ + F (sb(y2n, y2n+1)) ≤ F (M(y2n−1, y2n)),

and, similarly,

(2.3) τ + F (sb(y2n−1, y2n)) ≤ F (M(y2n−2, y2n−1)).

It follows from (2.2) and (2.3) that

(2.4) τ + F (sb(yn, yn+1)) ≤ F (M(yn−1, yn)),

for n = 1, 2, . . . However, in a standard way, we have that, in this case, M(yn−1, yn) = b(yn−1, yn).
Hence, from (2.4), we have

F (sb(yn, yn+1)) < τ + F (sb(yn, yn+1)) ≤ F (b(yn−1, yn)),

i.e., since F is strictly increasing,

b(yn, yn+1) <
1

s
b(yn−1, yn) for all n ∈ N.

Since s > 1, applying Lemma 1.1, we get that {yn} is a Cauchy sequence in X with α(yn, yn+1) ≥
1. Thus, there exists z ∈ X such that

lim
n→∞

b(y2n+1, z) = lim
n→∞

b(Tx2n+1, z) = lim
n→∞

b(fx2n, z) = 0

and
lim

n→∞

b(y2n, z) = lim
n→∞

b(Sx2n, z) = lim
n→∞

b(gx2n−1, z) = 0.
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Hence, Sx2n → z and fx2n → z as n → ∞.
The rest of the proof is the same as for [12, Theorems 1 and 2] (note that it does not use

further properties of the function F ). �

Corollaries 1–6 of the paper [12], formulated in an easier way, follow similarly. The same is
true for Theorem 3 of that paper, as well as for the results in ordered b-metric spaces and for
b-metric spaces endowed with a graph.

Further on, we will formulate and prove an improved version of [5, Theorem 3.4] (since
again just the condition (F1) of function F will be assumed); moreover the proof will again be
much shorter than in [5]. First, we recall the following notions.

If (X, b, s) is a b-metric space, CB(X) will denote the family of all non-empty, closed and
bounded subsets of X . The Pompeiu-Hausdorff b-metric H on CB(X) is defined by

H(C,D) = max{sup
c∈C

b(c,D), sup
d∈D

b(d, C)},

for C,D ∈ CB(X), where b(x,A) = infa∈A b(x, a) for x ∈ X and A ∈ CB(X).

Theorem 2.2. Let (X, b, s) be a complete b-metric space and let T : X → CB(X). Assume that there
exist τ > 0 and a continuous from the right function F : (0,+∞) → R satisfying (F1) such that

(2.5) 2τ + F (sH(Tx, Ty)) ≤ F (b(x, y))

for all x, y ∈ X , Tx 6= Ty. Then T has a fixed point.

Proof. As in the proof of [5, Theorem 3.4] (this part of the proof does not use the conditions
(F2)–(F4)), starting from arbitrary x0 ∈ X , we can form a sequence {xn} in X such that xn ∈
Txn

−
1, xn /∈ Txn and

τ + F (sb(xn+1, xn+2)) ≤ F (b(xn, xn+1))

for all n = 0, 1, 2, . . . , and hence

F (sb(xn+1, xn+2)) < F (b(xn, xn+1)).

Using the condition (F1), we get that

b(xn+1, xn+2) <
1

s
b(xn, xn+1).

Since 1

s
< 1, applying Lemma 1.1, we conclude that {xn} is a Cauchy sequence in X and, hence,

it converges to some z ∈ X . The proof that z ∈ Tz is the same as in [5, Theorem 3.4] (this part
again does not use any other conditions of function F ). �

Open question 1. Does Theorem 2.1 remain valid if the condition (2.1) is replaced by

τ + F (b(fx, gy)) ≤ F (b(Sx, Ty))

(which is the case for s = 1)? Similarly for Theorem 2.2.
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1. INTRODUCTION

In the recent years the differences of positive linear operators have been investigated from
several points of view. The aim of this paper is to survey some of the known results and to
present some new ones.

In Section 2 we recall the definitions of some classical operators used in Approximation
Theory and some general results concerning their differences. These results are illustrated with
the corresponding classical operators. Section 3 is devoted to the differences of the operators
constructed with the same fundamental functions, only the functionals in front of them being
different. In Section 4 we consider differences of operators from the family Uρ

n . The case of
operators on unbounded intervals is discussed in Section 5. Operators and their derivatives
are considered in Section 6, while Section 7 is devoted to discrete operators versus integral
operators. Finally, new results concerning operators and their inverses are presented in Section
8.

Throughout the paper C[0, 1] stands for the space of all continuous real-valued functions,
endowed with the supremum norm and usual ordering.

2. SOME GENERAL RESULTS

The classical Bernstein operators introduced by Bernstein [5] in order to prove Weierstrass’s
fundamental theorem are given by

Bn : C[0, 1] → C[0, 1], Bn(f ;x) =

n
∑

k=0

f

(

k

n

)

pn,k(x), where

pn,k(x) =

(

n

k

)

xk(1− x)n−k, x ∈ [0, 1].
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Let n = 1, 2, 3, . . . and f ∈ C[0, 1]. The Beta-type operators Bn were introduced by Lupaş in his
German thesis [19] as follows

Bn(f ;x) :=



















f(0), x = 0,

1

B(nx, n− nx)

∫ 1

0

tnx−1(1− t)n−1−nxf(t)dt, 0 < x < 1,

f(1), x = 1,

where B(·, ·) is the Euler’s Beta function.
The genuine Bernstein-Durrmeyer operators were introduced by Chen [6] and Goodman

and Sharma [13] as a composition of Bernstein operators and Beta operators, namely Un :=

Bn ◦ Bn. These are given in explicit form by

Un(f ;x)=(1−x)nf(0)+ xnf(1)+(n−1)

n−1
∑

k=1

(
∫ 1

0

f(t)pn−2,k−1(t)dt

)

pn,k(x), f ∈C[0, 1].

Denote by Sn := Bn ◦Bn the Stancu-type operator investigated in [20] and defined as

Sn(f ;x) =
1

(n)n

n
∑

k=0

(

n

k

)

(nx)k(n− nx)kf

(

k

n

)

,

where the rising factorial (x)k is given by (x)k = x(x+ 1)(x+ 2) . . . (x+ k − 1) with (x)0 = 1.
Let

ωk(f ;h) := sup







∣

∣

∣

∣

∣

∣

k
∑

j=0

(−1)k−j

(

k

j

)

f(x+ jδ)

∣

∣

∣

∣

∣

∣

: |δ| ≤ h, x, x+ jδ ∈ I







be the classical kth order modulus of smoothness given for a compact interval I and h ∈ R+

and ω̃ is the least concave majorant of the first order modulus ω1 given by

ω̃(f ; t) = sup

{

(t− x)ω1(f ; y) + (y − t)ω1(f ;x)

y − x
: 0 ≤ x ≤ t ≤ y ≤ b− a, x 6= y

}

.

The study of differences of certain positive and linear operators has as starting point the
problem proposed by Lupaş [18], namely the question raised by him was to give an estimate
for the difference Un − Sn. A solution for the problem proposed by Lupaş in a more general
case was given by Gonska et al. [10] and we recall their results below:

Theorem 2.1. [10] Let A,B : C[0, 1] → C[0, 1] be positive linear operators such that

(A−B)
(

(e1 − x)i;x
)

= 0 for i = 0, 1, 2, 3 and x ∈ [0, 1].

Then for f ∈ C3[0, 1] there holds

|(A−B)(f ;x)| ≤ 1

6
(A+B)

(

|e1 − x|3;x
)

ω̃

(

f ′′′;
1

4

(A+B)
(

(e1 − x)4;x
)

(A+B) (|e1 − x|3;x)

)

.

Theorem 2.2. [10] If A and B are given as in Theorem 2.1, satisfying Ae0 = Be0 = e0, then for all
f ∈ C[0, 1], x ∈ [0, 1] we have

|(A−B)(f ;x)| ≤ c1ω4

(

f ;
4

√

1

2
(A+B) ((e1 − x)4;x)

)

.

Here c1 is an absolute constant independent of f, x, A and B.

Using the above result the following solution to Lupaş’ problem was given in [10]:
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Proposition 2.1. The Beta operators and the Bernstein operators verify

|(Un − Sn)(f ;x)| ≤ c1ω4

(

f ; 4

√

3x(1− x)

n(n+ 1)

)

.

Here c1 is an absolute constant independent of n, f and x.

Gonska et al. have continued their research on the differences of positive linear operators in
[8]-[9]. The inequality of Theorem 2.1 was extended for a more general case as follows:

Theorem 2.3. [9] Let A,B : C[0, 1] → C[0, 1] be positive operators such that

(A−B)
(

(e1 − x)i;x
)

= 0 for i = 0, 1, . . . , n and x ∈ [0, 1].

Then for f ∈ Cn[0, 1] there holds

|(A−B)(f ;x)| ≤ 1

n!
(A+B) (|e1 − x|n;x) ω̃

(

f (n);
1

n+ 1

(A+B)
(

|e1 − x|n+1;x
)

(A+B) (|e1 − x|n;x)

)

.

The result from Theorem 2.2 was extended in [9] as follows:

Theorem 2.4. [9] If A and B are given as in Theorem 2.3, satisfying Ae0 = Be0 = e0, then for all
f ∈ C[0, 1], x ∈ [0, 1] we have

|(A−B)(f ;x)| ≤ c1ωn+1

(

f ;
n+1

√

1

2
(A+B) (|e1 − x|n+1;x)

)

.

Here c1 is an absolute constant independent of f, x, A and B.

In [8] Gonska, Piţul and Raşa applied the above results for some known positive linear op-

erators as the Bernstein operators Bn, the Beta operators Bn, the genuine Bernstein-Durrmeyer

operators Un = Bn ◦ Bn and the composition of two Bernstein operators Dn = Bn ◦Bn+1.

Proposition 2.2. [9] The Bernstein operators and the Beta-type operators verify the following relations:

i)|(Bn+1−Bn)(f ;x)| ≤
x(1−x)

n+ 1
ω̃

(

f ′′;

√

(n+ 1)(6nx(1−x)+7)

18n2

)

, f ∈ C2[0, 1]

≤ x(1− x)

3n
√
n+ 1

√

6nx(1− x) + 7

2n
‖f ′′′‖, f ∈ C3[0, 1];

ii)|(Bn+1 − Bn)(f ;x)| ≤ cω3

(

f ;
3

√

1

2
(Bn+1 + Bn)(|e1 − x|3;x)

)

≤ cω3

(

f ;
6

√

x2(1− x)2

n3
· 6nx(1− x) + 7

n

)

.

Proposition 2.3. [9] The Bernstein operators and the genuine Bernstein-Durrmeyer operators verify
the following relation:

|(Bn − Un)(f ;x)| ≤ cω2

(

f ;

√

3x(1− x)

2n

)

.
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Proposition 2.4. [9] The composition of two Bernstein operators Dn = Bn ◦ Bn+1 and the genuine
Bernstein-Durrmeyer operators Un verify the following relations:

i)|(Dn−Un)(f ;x)|≤
2x(1−x)

n+ 1
ω̃

(

f ′′;

√

(n+1)(8nx(1−x)+13)

12n3

)

, f ∈ C2[0, 1],

≤ x(1− x)

n
√
n+ 1

√

8nx(1− x) + 13

3n
‖f ′′′‖, f ∈ C3[0, 1];

ii)|(Dn − Un)(f ;x)| ≤ cω3

(

f ;
3

√

1

2
(Dn + Un)(|e1 − x|3;x)

)

≤ cω3

(

f ; 6

√

x2(1− x)2

(n+ 1)n3
(24nx(1− x) + 39)

)

.

3. DIFFERENCES OF POSITIVE LINEAR OPERATORS WITH THE SAME FUNDAMENTAL

FUNCTIONS

The results mentioned in the previous section are based on the fact that A and B have the
same moments up to a certain order. The approach presented in this section involves operators
constructed with the same "fundamental functions", but with different functionals in front of
them (see [2]). So the difference A−B is controlled by the differences of these functionals.

Let I ⊂ R be an interval and E(I) a space of real-valued continuous functions on I contain-
ing the polynomials. Eb(I) will be the space of all f ∈ E(I) with

‖f‖ := sup{|f(x)| : x ∈ I} < ∞.

For i ∈ N let ei(x) := xi, x ∈ I . Let F : E(I) → R be a positive linear functional such that
F (e0) = 1. Set bF := F (e1) and

µF
i :=

1

i!
F (e1 − bF e0)

i, i ∈ N.

Then µF
0 = 1, µF

1 = 0, µF
2 =

1

2

(

F (e2)− (bF )2
)

≥ 0.

Lemma 3.1. [2] Let f ∈ E(I) with f ′′ ∈ Eb(I). Then

(3.1) |F (f)− f(bF )| ≤ µF
2 ‖f ′′‖.

Lemma 3.2. [2] Let f ∈ E(I) with f IV ∈ Eb(I). Then

(3.2)
∣

∣F (f)− f(bF )− µF
2 f

′′(bF )− µF
3 f

′′′(bF )
∣

∣ ≤ µF
4 ‖f IV ‖.

Proposition 3.5. [2] Let I = [0, 1], f ∈ C[0, 1], λ ≥ 2
√

µF
2 > 0. Then

(3.3)
∣

∣F (f)− f(bF )
∣

∣ ≤ 3

2
ω2

(

f,

√

µF
2

λ

)

(1 + λ2).

Let K be a set of non-negative integers and pk ∈ C(I), pk ≥ 0, k ∈ K, such that
∑

k∈K

pk = e0.

For each k ∈ K let Fk : E(I) → R and Gk : E(I) → R be positive linear functionals such that

Fk(e0) = Gk(e0) = 1. Let D(I) be the set of all f ∈ E(I) for which
∑

k∈K

Fk(f)pk ∈ C(I) and

∑

k∈K

Gk(f)pk ∈ C(I).
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Consider the positive linear operators V : D(I) → C(I) and W : D(I) → C(I) defined, for
f ∈ D(I), by

V (f ;x) :=
∑

k∈K

Fk(f)pk(x) and W (f ;x) :=
∑

k∈K

Gk(f)pk(x).

Denote σ(x) :=
∑

k∈K

(

µFk

2 + µGk

2

)

pk(x) and δ := sup
k∈K

∣

∣bFk − bGk

∣

∣.

Theorem 3.5. [2] Let f ∈ D(I) with f ′′ ∈ Eb(I). Then

(3.4) |(V −W )(f ;x)| ≤ ‖f ′′‖σ(x) + ω1(f, δ).

Theorem 3.6. [2] Suppose that bFk = bGk = bk, k ∈ K. Let f ∈ D(I) with f ′′, f ′′′, f IV ∈ Eb(I).
Then for each x ∈ I ,

(3.5) |(V −W )(f ;x)| ≤ ‖f ′′‖α(x) + ‖f ′′′‖β(x) + ‖f IV ‖γ(x),
where

α(x) :=
∑

k∈K

|µFk

2 − µGk

2 |pk(x), β(x) :=
∑

k∈K

|µFk

3 − µGk

3 |pk(x),

γ(x) :=
∑

k∈K

(µFk

4 + µGk

4 )pk(x).

Theorem 3.7. [2] Let I = [0, 1], f ∈ C[0, 1], 0 < h ≤ 1

2
, x ∈ [0, 1]. Then

(3.6) |(V −W )(f ;x)| ≤ 3

2

(

1 +
σ(x)

h2

)

ω2(f, h) +
5δ

h
ω1(f, h).

Theorem 3.8. [2] Let I = [0, 1], f ∈ C[0, 1], 0 < h < 1, x ∈ [0, 1] and bFk = bGk , k ∈ K. Then

(3.7) |(V −W )(f ;x)| ≤ c

[(

2 +
γ(x)

h4

)

ω4(f, h) +
β(x)

h3
ω3(f, h) +

α(x)

h2
ω2(f, h)

]

,

where c is an absolute constant.

The classical Durrmeyer operators are defined as

Mn(f ;x) = (n+ 1)

n
∑

k=0

pn,k(x)

∫ 1

0

pn,k(t)f(t)dt, x ∈ [0, 1],

where pn,k(x) =
(

n
k

)

xk(1− x)n−k and f is an integrable function on [0, 1].

Proposition 3.6. [2] For Bernstein operators and Durrmeyer operators the following relations hold:

i) |(Bn −Mn)(f ;x)| ≤ σ(x)‖f ′′‖+ ω1

(

f,
1

n+ 2

)

, for f ′′ ∈ C[0, 1];

ii) |(Bn−Mn)(f ;x)|≤3ω2(f,
√

σ(x))+
5

(n+ 2)
√

σ(x)
ω1

(

f,
√

σ(x)
)

, for f ∈C[0, 1],

where σ(x) =
1

2(n+ 3)(n+ 2)2
{x(1− x)n(n− 1) + n+ 1} ≤ 1

8(n+ 3)
.

Proposition 3.7. [2] The Bernstein operators and the genuine Bernstein-Durrmeyer operators verify
the following relations

i) |(Bn − Un)(f ;x)| ≤ σ(x)‖f ′′‖, f ′′ ∈ C[0, 1],

ii) |(Bn − Un)(f ;x)| ≤ 3ω2(f,
√

σ(x)), f ∈ C[0, 1],

where σ(x) =
x(1− x)(n− 1)

2n(n+ 1)
≤ 1

8(n+ 1)
.
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Proposition 3.8. [2] The composition of two Bernstein operators Dn := Bn ◦ Bn+1 and genuine
Bernstein-Durrmeyer operators Un verify

i) |(Dn − Un)(f ;x)| ≤
n− 1

n(n+ 1)
x(1− x)‖f ′′‖, f ′′ ∈ C[0, 1];

ii) |(Dn − Un)(f ;x)| ≤
x(1− x)

2(n+ 1)2

(

1

3
‖f (3)‖+ 1

8
‖f (4)‖

)

, f (4) ∈ C[0, 1];

iii) |(Dn − Un)(f ;x)| ≤ 3ω2

(

f,

√

(n− 1)x(1− x)

n(n+ 1)

)

, f ∈ C[0, 1];

iv) |(Dn − Un)(f ;x)| ≤ c

[

33

16
ω4

(

f, 4

√

x(1− x)

(n+ 1)2

)

+
4
√

x(1− x)

6
√
n+ 1

ω3

(

f, 4

√

x(1− x)

(n+ 1)2

)]

, f ∈

C[0, 1], where c is an absolute constant and n ≥ 6.

Let Kn be the Kantorovich operators defined in [17] as follows

(3.8) Kn(f ;x) = (n+ 1)

n
∑

k=0

pn,k(x)

∫
k+1

n+1

k

n+1

f(t)dt.

Proposition 3.9. [2] The Bernstein operators and the Kantorovich operators verify the following rela-
tions

i) |(Kn −Bn)(f ;x)| ≤
1

24(n+ 1)2
‖f ′′‖+ ω1

(

f,
1

2(n+ 1)

)

, f ′′ ∈ C[0, 1];

ii) |(Kn −Bn)(f ;x)| ≤ 3ω2

(

f,
1

2
√
6(n+ 1)

)

+ 5
√
6ω1

(

f,
1

2
√
6(n+ 1)

)

, f ∈ C[0, 1].

This result can be extended for a generalized class of Kantorovich-type operators. Let Cb[0,∞)
be the space of all real-valued continuous functions on [0,∞) with ‖f‖ < ∞ and Vn : Cb[0,∞) →

Cb[0,∞), Vn(f ;x) =

∞
∑

k=0

f

(

k

n

)

ϕn,k(x) be a positive linear operator, where (ϕn,k)k≥0 is a se-

quence of real-valued functions which verify:

i) ϕn,k(x) ≥ 0, k ≥ 0, x ∈ [0,∞),
ii) ϕn,k ∈ C[0,∞);

iii)
∞
∑

k=0

ϕn,k(x) = 1.

Let Wn : Cb[0,∞) → Cb[0,∞) be the Kantorovich generalized variant of the operator Vn.
Therefore,

(3.9) Wn(f ;x) = n

∞
∑

k=0

ϕn,k(x)

∫
k+1

n

k

n

f(t)dt.

Proposition 3.10. [2] With the above notation,

|Wn(f ;x)− Vn(f ;x)| ≤
1

24n2
‖f ′′‖+ ω1

(

f,
1

2n

)

, f (i) ∈ Cb[0,∞), i ∈ {0, 1, 2}.

4. DIFFERENCES OF Uρ
n OPERATORS

The class of operators Uρ
n was introduced in [26] by Păltănea and further investigated by

Păltănea and Gonska in [11] and [12].
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Let ρ > 0 and n ∈ N. The operators Uρ
n : C[0, 1] →

∏

n are defined by

Uρ
n(f ;x) :=

n
∑

k=0

F
ρ
k (f)pn,k(x)

:=

n−1
∑

k=1

(
∫ 1

0

tkρ−1(1− t)(n−k)ρ−1

B(kρ, (n− k)ρ)
f(t)dt

)

pn,k(x) + f(0)(1− x)n + f(1)xn,

for f ∈ C[0, 1], x ∈ [0, 1].

Remark 4.1. For ρ = 1 and f ∈ C[0, 1], we obtain the genuine Bernstein-Durrmeyer operators, while
for ρ → ∞, for each f ∈ C[0, 1] the sequence Uρ

n(f ;x) converges uniformly to the Bernstein polynomial
Bn(f ;x).

H. Gonska et al. [12] proved that for n ≥ 1 and f ∈ C[0, 1],

(4.10) lim
ρ→0+

Uρ
nf = B1f, uniformly on [0, 1].

Moreover, the following result was obtained:

Theorem 4.9. [12] For Uρ
n, 0 < ρ < ∞, n ≥ 1, we have

|Uρ
nf(x)−B1f(x)| ≤

9

4
ω2

(

f ;

√

nρ− ρ

nρ+ 1
x(1− x)

)

.

The following result was obtained with the method presented in [9].

Proposition 4.11. ([28], [30]) Let f ∈ C[0, 1], n ≥ 1, ρ, r > 0, x ∈ [0, 1]. The following inequality is
verified

|(Uρ
n − Ur

n)(f ;x)| ≤ c1ω2

(

f ;

√

1

2
(Uρ

n + Ur
n)(|e1 − x|2;x)

)

≤ c1ω2

(

f ;

√

1

2

2nρr + (n+ 1)(ρ+ r) + 2

(nρ+ 1)(nr + 1)
x(1− x)

)

.

Here c1 is an absolute constant independent of f, x, ρ and r.

Another result in this direction was obtained in [28] and [30]:

Theorem 4.10. ([28], [30]) Let f ∈ C[0, 1], n ≥ 1, ρ, r > 0, x ∈ [0, 1]. Then

|(Uρ
n − Ur

n)(f ;x)| ≤
9

4
ω2

(

f ;

√

(n− 1)|ρ− r|
(nρ+ 1)(nr + 1)

x(1− x)

)

.

In the next statement we give some estimates of the difference Uρ
n − Ur

n using the results
proved in Section 3:

Proposition 4.12. The following properties hold

i) |(Uρ
n − Ur

n)(f ;x)| ≤
(n− 1)[2 + (ρ+ r)n]

2n(1 + ρn)(1 + rn)
x(1− x)‖f ′′‖, f ′′ ∈ C[0, 1];
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ii) |(Uρ
n − Ur

n)(f ;x)| ≤
(n− 1)|r − ρ|

2(1 + ρn)(1 + rn)
x(1− x) ‖f ′′‖

+
1

3
x(1− x)(n− 1)

|r − ρ|[3 + n(r + ρ)]

(1 + ρn)(2 + ρn)(1 + rn)(2 + rn)
‖f ′′′‖

+
1

32
x(1− x)

n2(ρ2+r2)+4n(ρ+r)+6

(1+ρn)(3+ρn)(1+rn)(3+rn)
‖f IV ‖, f (4) ∈ C[0, 1],

nρ ≥ 6, nr ≥ 6;

iii) |(Uρ
n − Ur

n)(f ;x)| ≤ 3ω2

(

f,

√

2 + (ρ+ r)n

2(1 + ρn)(1 + rn)
x(1− x)

)

, f ∈ C[0, 1].

Denote by [A;B] := AB −BA the commutator of two positive linear operators A and B. In
[28] the following result concerning the comutator [U̺

n;U
σ
n ] was obtained:

Theorem 4.11. [28] For each f ∈ C6[0, 1] one has

lim
n→∞

n3(Uρ
nU

r
n − Ur

nU
ρ
n)f(x) =

(r − ρ)(ρ+ 1)(r + 1)

ρ2r2
x(1− x)f (4)(x),

uniformly with respect to x ∈ [0, 1].

5. DIFFERENCES OF LINEAR POSITIVE OPERATORS DEFINED ON UNBOUNDED INTERVAL

Most of the results presented in the previuos sections are given for operators defined over
bounded intervals. Very recently, Aral et al.[4] obtained some quantitative results in terms of
weighted modulus of continuity for differences of certain positive linear operators defined on
unbounded intervals.

Let C[0,∞) be the set of all continuous functions f defined on [0,∞) and B2[0,∞) the set of
all functions f defined on [0,∞) satisfying the condition |f(x)| ≤ M(1 + x2) for some positive
constant M , which may depend only on f . C2[0,∞) denotes the subspace of all continuous
functions in B2[0,∞). Let C∗

2 [0,∞) be the closed subspace of C2[0,∞) formed by the functions

f for which the limit lim
x→∞

f(x)

1 + x2
exists and is finite. B2[0,∞) is a linear normed space with the

norm

‖f‖2 = sup
x≥0

|f(x)|
1 + x2

.

In 2001, Ispir [16] introduced the weighted modulus of continuity as follows:

Ω(f ; δ) = sup
|h|<δ,x∈[0,∞)

|f(x+ h)− f(x)|
(1 + h2)(1 + x2)

, for f ∈ C2[0,∞).

Let ei(x) = xi, x ∈ [0,∞), i ∈ N and F : D → R be a positive linear functional defined on
a linear subspace D of C[0,∞) which contains C2[0,∞) and the polynomials up to degree 6,
such that F (e0) = 1, bF := F (e1) and

µF
i = F (e1 − bF e0)

i, i ∈ N, 0 ≤ i ≤ 6.

Therefore, µF
0 = 1, µF

1 = 0 and µF
2 = F (e2)− (bF )2 ≥ 0.

The next estimate concerning the functional F was given in [4].

Lemma 5.3. [4] Let f ∈ C2[0,∞) with f ′′ ∈ C∗
2 [0,∞) and 0 < δ ≤ 1. Then we have

∣

∣F (f)− f(bF )
∣

∣ ≤ 1

2

∣

∣f ′′(bF )
∣

∣µF
2 + 8

(

1 + (bF )2
)

Ω(f ′′; δ)

(

µF
2 +

µF
6

δ4

)

.
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Let K be a set of non-negative integers and consider pk : [0,∞) → [0,∞), k ∈ K. Denote

U(f ;x) =
∑

k∈K

Fk(f)pk(x) and V (f ;x) =
∑

k∈K

Gk(f)pk(x),

where U, V : D → B2[0,∞) and Fk, Gk : D → R are positive linear functionals such that
Fk(e0) = 1 and Gk(e0) = 1. Applying Lemma 5.3 for the functionals Fk and Gk the following
result was obtained by Aral et al. [4]:

Theorem 5.12. [4] Let f ∈ C2[0,∞) with f ′′ ∈ C∗
2 [0,∞). Then

|(U − V )(f ;x)| ≤ 1

2
‖f ′′‖2β(x) + 8Ω(f ′′; δ1)(1 + β(x)) + 16Ω(f ; δ2)(γ(x) + 1),

where

β(x) =
∑

k∈K

pk(x)
{

[

1 + (bFk)2
]

µFk

2 +
[

1 + (bGk)2
]

µGk

2

}

,

γ(x) =
∑

k∈K

pk(x)
[

1 + (bFk)2
]

,

δ1(x) =

{

∑

k∈K

pk(x)
{

[

1 + (bFk)2
]

µFk

6 +
[

1 + (bGk)2
]

µGk

6

}

}1/4

,

δ2(x) =

{

∑

k∈K

pk(x)
(

1 + (bFk)2
)

(bFk − bGk)4

}1/4

,

and we suppose that δ1(x) ≤ 1, δ2(x) ≤ 1.

In [4] this result was applied for the sequences of Szász-Mirakyan [31] and Szász-Mirakyan-
Durrmeyer operators [23] defined as

Sn(f ;x) =

∞
∑

k=0

f

(

k

n

)

sn,k(x),

Dn(f ;x) = n

∞
∑

k=0

sn,k(x)

∫ ∞

0

f(t)sn,k(t)dt, x ∈ [0,∞),

where sn,k(x) = e−nx (nx)
k

k!
.

Proposition 5.13. [4] Let f ∈ C2[0,∞) with f ′′ ∈ C∗
2 [0,∞) and x ≥ 0 is given. Then, for each n ≥ 1

such that

δ41(x) :=
2

2n8

(

3n5x5 + 71n4x4 + (3n4 + 479n3)x3 + (44n4 + 1064n2)x2

+ (123n3 + 651n)x+ 53n2 + 53
)

≤ 1,

δ42(x) :=
x(nx+ 1) + n

n5
≤ 1,

we have

|(Sn − Dn)(f ;x)| ≤
1

2
‖f ′′‖2β(x) + 8Ω(f ′′; δ1(x))(1 + β(x)) + 16Ω(f ; δ2(x))

(

x(nx+ 1) + n

n

)

,

where β(x) =
n3x3 + 6n2x2 + n3x+ 7nx+ n2

n4
.
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6. ESTIMATES FOR THE DIFFERENCES OF POSITIVE LINEAR OPERATORS AND THEIR

DERIVATIVES

It is well-known that de la Vallée-Poussin operator commutes with the derivative. Certainly,
this property is not available for the Bernstein operators Bn. This remark motivated us to esti-

mate in terms of moduli of continuity the differences (Lnf)
(k) −Ln−k(f

(k)) for certain positive
linear operators. In the following we will exemplify for Bernstein operators and Durrmeyer
operators.

Theorem 6.13. [3] For Bernstein operators the following property holds:
∥

∥

∥
(Bnf)

(r) −Bn−r

(

f (r)
)∥

∥

∥
≤ (r − 1)r

2n
‖f (r)‖+ ω

(

f (r),
r

n

)

, f ∈ Cr[0, 1], r = 0, 1, . . . n.

Theorem 6.14. [3] The Kantorovich operators verify
∥

∥

∥
(Knf)

(r) −Kn−r

(

f (r)
)∥

∥

∥
≤ (r + 1)r

2(n+ 1)
‖f (r)‖+ ω

(

f (r),
r + 1

n+ 1

)

, f ∈ Cr[0, 1], r = 0, 1, . . . n.

7. DISCRETE OPERATORS ASSOCIATED WITH CERTAIN INTEGRAL OPERATORS

In 2011, I. Raşa [27] constructed discrete operators associated with certain integral operators
using a probabilistic approach.

Let In : C[a, b] → C[a, b], n ≥ 1, be a sequence of positive linear operators of the form

In(f ;x) =

n
∑

k=0

hn,k(x)An,k(f), f ∈ C[a, b], x ∈ [a, b],

where hn,k ∈ C[a, b], hn,k ≥ 0 and

An,k(f) =

∫ b

a

f(t)dµn,k(t),

with µn,k probability Borel measures on [a, b], n ≥ 1, k = 0, 1, . . . , n.
Raşa [27] introduced the following discrete operator associated with the sequence (In)

Dn(f ;x) =

n
∑

k=0

hn,k(x)f(xn,k),

where xn,k =

∫ b

a

tdµn,k(t).

For example, the associated operators of the genuine Bernstein-Durrmeyer operators are
Bernstein operators.

D. Mache intoduced the sequence of positive linear operators (see [21], [22])

Pn(f ;x) :=
n
∑

k=0

pn,k(x)Tn,k(f), n ≥ 1,

where

Tn,k(f) :=

∫ 1

0
f(t)tck+a(1− t)c(n−k)+bdt

B(ck + a+ 1, c(n− k) + b+ 1)
,

for a, b > −1, α ≥ 0, c := cn := [nα] and B is the Beta function.

Remark 7.2. [27] The sequence of positive linear operators (Pn) represents a link between the Dur-
rmeyer operators with Jacobi weights (α = 0) and the Bernstein operators (α → ∞).
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The sequence of positive linear operators (Vn) defined as follows

Vn(f ;x) :=

n
∑

k=0

pn,k(x)f

(

ck + a+ 1

cn+ a+ b+ 2

)

, f ∈ C[0, 1], x ∈ [0, 1]

is associated with the sequence (Pn) (see [27]).

Remark 7.3. [27] For a = b = −1, or α → ∞, we get the classical Bernstein operators. For α = 0, the
operators Vn reduce to the operators considered by D.D. Stancu in [29].

Theorem 7.15. [27] For n ≥ 1, x ∈ [0, 1], and f ∈ C2[0, 1] we have

|Pn(f ;x)− Vn(f ;x)| ≤

c2n(n− 1)x(1− x) + cn(b− a)x+ cn(a+ 1) + (a+ 1)(b+ 1)

2(cn+ a+ b+ 2)2(cn+ a+ b+ 3)
‖f ′′‖.

The study on this topic was continued by Heilmann et al. [15]. They associated to an integral
operator a discrete one which is conceptually simpler, and study the relations between them.

Let I ⊂ R be an interval, H a subspace of C(I) containing ei, i = 0, 1, 2 and L : H → C(I)
be a positive linear operator such that Le0 = e0. For f ∈ H and Aj : H → R positive linear

functionals such that Aj(e0) = 1 and pj ∈ C(I), pj ≥ 0,
∞
∑

j=0

pj = e0, the following operator was

defined in [15]:

Lf :=
∞
∑

j=0

Aj(f)pj .

The discrete operator associated with L is defined by

D : H → C(I), Df :=

∞
∑

j=0

f(bj)pj ,

where bj := Aj(e1). The point evaluation functional at bj is conceptually simpler than Aj . So,
from this point of view, D is simpler than L.

Let V arAj := Aj(e2) − b2j , j ≥ 0. V arAj shows how far is Aj from the point evaluation at
bj . Define by

E(L)(x) :=

∞
∑

j=0

(V arAj)pj(x), x ∈ I.

The following relation between L and D was obtained in [15]:

|Lf(x)−Df(x)| ≤ 1

2
‖f ′′‖∞E(L)(x), x ∈ I.

In the above relation E(L)(x) shows how far is L from D.
The discrete operators associated with Baskakov type operators, genuine Baskakov-Durrmeyer

type operators, and their Kantorovich modifications were constructed and the above general
result was applied in this context.
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8. DIFFERENCES OF INVERSES OF POSITIVE LINEAR OPERATORS

The Voronovskaya type result for the Bernstein operators is well known:

lim
n→∞

n(Bn(f ;x)− f(x)) =
x(1− x)

2
f (2)(x), f ∈ C2[0, 1].

Moreover, Abel and Ivan [1] obtained the following result

lim
n→∞

n

[

n(Bn(f ;x)− f(x))− x(1− x)

2
f (2)(x)

]

=
x(1− x)

24

(

3x(1− x)f (4)(x) + 4(1− 2x)f (3)(x)
)

, f ∈ C4[0, 1].

Similarly, Voronovskaya type results for Beta operators were proved by Gonska et al. [7] as
follows

lim
n→∞

n(Bn(f ;x)− f(x)) =
x(1− x)

2
f (2)(x), f ∈ C2[0, 1]

lim
n→∞

n

[

n(Bn(f ;x)− f(x))− x(1− x)

2
f (2)(x)

]

=
x(1− x)

24

(

3x(1− x)f (4)(x) + 8(1− 2x)f (3)(x)− 12f (2)(x)
)

, f ∈ C4[0, 1].

Voronovskaja type formulas are usually established for sequences of positive linear opera-
tors. Nasaireh et al. [24] obtained some general formulas concerning compositions of oper-
ators on Banach spaces, without any assumption of positivity. Let X be a Banach space and
W ⊂ Z ⊂ Y linear subspaces of X. Let A,B : Y → X; U, V : Z → X be linear operators. Con-
sider also two sequences of linear operators Pn : X → X, Qn : Y → X, n ≥ 1, and suppose
that each Pn is bounded.

Theorem 8.16. [24] (i) Suppose that

(8.11) lim
n→∞

Pnx = x, x ∈ X

and

(8.12) lim
n→∞

n(Pny − y) = Ay, lim
n→∞

n(Qny − y) = By, y ∈ Y.

Then

(8.13) lim
n→∞

n(PnQny − y) = Ay +By, y ∈ Y.

ii) In addition to (8.11) and (8.12), suppose that

Bz ∈ Y, z ∈ Z,

lim
n→∞

n[n(Pnz − z)−Az] = Uz; lim
n→∞

n[n(Qnz − z)−Bz] = V z, z ∈ Z.

Then

lim
n→∞

n [n(PnQnz − z)−Az −Bz] = Uz + V z +ABz, z ∈ Z.

Very recently, this result was extended for a more general case by Heilmann et al. [14].
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Using Theorem 8.16, Voronovskaya type results for genuine Bernstein-Durrmeyer operators
were proved by Nasaireh et al. [24] as follows

lim
n→∞

n(Un(f ;x)− f(x)) = x(1− x)f (2)(x), f ∈ C2[0, 1]

lim
n→∞

n
[

n(Un(f ;x)− f(x))− x(1− x)f (2)(x)
]

=
x(1− x)

2

(

x(1− x)f (4)(x) + 2(1− 2x)f (3)(x)− 2f (2)(x)
)

, f ∈ C4[0, 1].

Let Πn be the space of all polynomial functions of degree at most n, defined on R, and
Π = ∪n≥0Πn. Nasaireh et al. [24] expressed the inverse of Beta operator as follows:

B
−1

n : Π → Π, n ≥ 1, B
−1

n (p;x) =

m
∑

k=0

(n)k
nk

[

0,− 1

n
, . . . ,−k

n
; p

]

xk, p ∈ Πm.

Using Theorem 8.16 the following Voronovskaya type results for inverses of Beta operators,
Bernstein operators and genuine Bernstein-Durrmeyer operators can be obtained (see [24, 25])

Theorem 8.17. Let m ≥ 0 and pn ∈ Πm, n ≥ 1. Suppose that the sequence (pn) is uniformly
convergent on [0, 1] to p ∈ Πm. Then

i) lim
n→∞

n
(

B
−1

n (pn;x)− pn(x)
)

= −x(1− x)

2
p′′(x),

ii) lim
n→∞

n

[

n
(

B
−1

n (pn;x)− pn(x)
)

+
x(1− x)

2
p′′n(t)

]

=
x(1− x)

24

{

3x(1− x)p(4)(x) + 4(1− 2x)p(3)(x)
}

.

Theorem 8.18. Let m ≥ 0 and pn ∈ Πm, n ≥ 1. Suppose that the sequence (pn) is uniformly
convergent on [0, 1] to p ∈ Πm. Then

i) lim
n→∞

n
(

B−1
n (pn;x)− pn(x)

)

= −x(1− x)

2
p′′(x),

ii) lim
n→∞

n

[

n
(

B−1
n (pn;x)− pn(x)

)

+
x(1− x)

2
p′′n(t)

]

=
x(1− x)

24

{

3x(1− x)p(4)(x) + 8(1− 2x)p(3)(x)− 12p′′(x)
}

.

Theorem 8.19. Let m ≥ 0 and pn ∈ Πm, n ≥ 1. Suppose that the sequence (pn) is uniformly
convergent on [0, 1] to p ∈ Πm. Then

i) lim
n→∞

n
(

U−1
n (pn;x)− pn(x)

)

= −x(1− x)p′′(x),

ii) lim
n→∞

n
[

n
(

U−1
n (pn;x)− pn(x)

)

+ x(1− x)p′′n(x)
]

=
x(1− x)

2

[

x(1− x)p(4)(x) + 2(1− 2x)p(3)(x)− 2p′′(x)
]

.

From the above results one can obtain new estimates concerning certain operators and their
inverses.

Proposition 8.14. Let p ∈ Π. Then

lim
n→∞

n
(

Bn(p;x)−B−1
n (p;x)

)

= x(1− x)p′′(x).

Proposition 8.15. Let p ∈ Π. Then

lim
n→∞

n
[

n
(

Bn(p;x)−B−1
n (p;x)

)

− x(1− x)p′′(x)
]

=
x(1− x)

6

[

3p′′(x)− (1− 2x)p(3)(x)
]

.
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Proposition 8.16. Let p ∈ Π. Then

lim
n→∞

n
(

Bn(p;x)− B
−1

n (p;x)
)

= x(1− x)p′′(x).

Proposition 8.17. Let p ∈ Π. Then

lim
n→∞

n
[

n
(

Bn(p;x)− B
−1

n (p;x)
)

− x(1− x)p′′(x)
]

=
x(1− x)

6

[

(1− 2x)p(3)(x)− 3p(2)(x)
]

.

Proposition 8.18. Let p ∈ Π. Then

lim
n→∞

n
[

Un(p;x)− U−1
n (p;x)

]

= 2x(1− x)p′′(x).

Proposition 8.19. Let p ∈ Π. Then

lim
n→∞

n
[

n
(

Un(p;x)− U−1
n (p;x)

)

− 2x(1− x)p′′(x)
]

= 0.

Proposition 8.20. Let p ∈ Π. Then

lim
n→∞

n2
(

B
−1

n (p;x)−B−1
n (p;x)

)

=
x(1− x)

6

{

3p′′(x)− (1− 2x)p(3)(x)
}

.

Other results of this type can be obtained in a similar way.
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