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A CORRECTION ON TANGENTBOOST ALGORITHM

ONUR TOKA AND MERAL CETIN

Abstract. TangentBoost is a robust boosting algorithm. The method com-
bines loss function and weak classifiers. In addition, TangentBoost gives penal-
ties not only misclassification but also true classification margin in order to
get more stable classifiers. Despite the fact that the method is good one in
object tracking, propensity scores are obtained improperly in the algorithm.
The problem causes mislabeling of observations in the statistical classification.
In this paper, there is a correction proposal for TangentBoost algorithm. After
the correction on the algorithm, there is a simulation study for the new algo-
rithm. The results show that correction on the algorithm is useful for binary
classification.

1. Introduction

Classification, in other words supervised learning, is a procedure that obtain a
classifier based on a training dataset. The observed classifier determines which class
the observation belongs to. High accuracy in the testing dataset means that the
classifier is better one. Risk classification, cancer detection, object detection, outlier
detection, image classification are some applied areas in classification methods.
Over the last decade, many statistical methods have been applied including linear
regression, logistic regression (LR), neural networks (NNet), Naive Bayes (NB),
k-nearest neighbor (kNN), Support Vector Machine (SVM), boosting methods and
other approaches [1, 2]. The methods are usually based on optimization problems
comprised loss functions. While advanced methods minimize misclassification not
only using loss functions but also using the distance between different classes’inputs
such as SVM, boosting methods classify inputs according to sum of some weak
classifiers [3].
Boosting is a general method to improve the performance of weak learners.

Boosting algorithms are iteratively methods and the weak classifiers are obtained
in each iterations. Then, combining weak classifiers is a way of determining the

Received by the editors: May 08, 2017, Accepted: June 27, 2017.
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2 ONUR TOKA AND MERAL CETIN

propensity scores and class labels at the end of the iteration steps [1]. Despite
usefulness, boosting algorithms have some limitations. The common problem is
unbounded growth with negative margin for boosting algorithm. Thus, outliers
and contaminated part in training data can spoil the classifiers in boosting meth-
ods. Great advances have been achieved to make more robust boosting algorithms
in the last decade [4, 5, 6, 7, 8].
In [9], loss functions are argued with regard to give unbounded penalty values.

To solve this problem, they gave some important information between probability
elicitation and bayes consistency and they formalized a new way to obtain bayes
consistent loss function. After arguing that robust loss function should penalize
both large positive and negative margin, they proposed a new loss function, Tangent
loss, and a new boosting algorithm TangentBoost. Although the method is better
one in object tracking, probabilities (p) assign class label improperly because of
p ∈

(
−π2 + .5,

π
2 + .5

)
[10].

In this study, for TangentBoost algorithm, propensity score is redefined in order
to get accurate weights and class labels properly. Section 2 reviewed binary classi-
fication, loss functions and concerned boosting methods in binary case. In Section
3, robust loss properties, Tangent loss function and the correction were given. In
addition, importance of weights and class assign probabilities with the correction
were showed. In Section 4, simulation results were given.

2. Boosting Algorithms in Binary Classification

Binary classification is one of the most encountered methods in applications.
Spam mail detection, pattern characterization, diagnosis, digit recognition, signal
recognition are some application phases of binary classification. The basic logic is to
find classifier that can assign observations to two classifiers well according to inputs.
Let consider g maps a inputs vector x ∈ X to label y ∈ { −1, 1}. The classifier
function f : X→ R is the predictor of class label by the way of g (x) = sign [f (x)].
Loss function is defined as below:

L (f (x) , y) = L (f (x) y) , f (x) ∈ R, y ∈ {−1, 1} (2.1)

The predictor is g (x) = sign [f (x)] and f (x) > 0, case assigns to 1 and -1 oth-
erwise. Combining information f (x) and y from the Equation (2.1), it is seen that
f (x) y < 0 means misclassification and f (x) y > 0 means accurate classification.
The quantity of f (x) identifies the distance from the case to the classifier. There-
fore, minimizing Equation (2.1) is affected not only misclassification but also large
margin from the classifier. To get robust classifier, loss functions, which also give
penalty to large positive margin, have been investigated [8, 9].
Especially in boosting methods, minimizing loss function value is an important

task. The most common loss functions are exponential loss and logistic loss that
are defined as Equation (2.2) and Equation (2.3):



A CORRECTION ON TANGENTBOOST ALGORITHM 3

Figure 1. Exponential and Logistic Loss

LExp (y, f (x)) = exp (−f (x) y) (2.2)
LLog (y, f (x)) = log (1 + exp (−f (x) y)) (2.3)

Changing loss functions in the algorithms is a way of obtaining new boosting
algorithm. The penalty values for misclassification are changed by using different
loss functions. For instance, exponential loss increases penalty values very rapidly
than logistic loss though exponential and logistic losses grow unbounded. Logistic
loss is also unbounded but its increase is not as rapid as the exponential loss. In
addition, exponential loss gives less penalty values than logistic loss in accurate clas-
sification, but both functions’penalty values for large positive loss value are zero.
It is also examined in Figure 1. The mention differences cause different weighting
for training data. Using loss functions, lots of boosting algorithm are proposed.
AdaBoost is popular and the first algorithm that could adapt to the weak learners
(See [11] for algorithm and the method). LogitBoost was proposed similarly. The
main difference is that LogitBoost utilizes logistic loss to weight the data points,
while AdaBoost utilizes exponential loss (See LogitBoost algorithm in [12]). On the
other hand, unbounded increment of penalty value reveals the overfitting problem.
Therefore, bounded loss functions and its boosting algorithms have been proposed
in the few years [13, 14]. TangentBoost is an alternative loss function and the
method has bounded loss function. In the next section, the algorithm and the
correction on the algorithm are given.

3. TangentBoost and the Correction

Robust boosting algorithms obtain classifiers without being affected by outliers.
In training data, some mislabeled (outliers) and contaminated observations may
affect the classifier. It is usually pointed out that outliers may easily spoil classical
boosting algorithms such as AdaBoost, RealBoost [15]. As a result, classifiers can be
improper and their generalization ability may not be good. To make classifiers more
stable, some researchers proposed robust boosting algorithms [13, 14, 16, 17, 18].
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Figure 2. Exponential, Logistic and Tangent Loss

TangentBoost is also robust boosting algorithm that combines squared risk function
and Tangent link function.
The idea behind TangentBoost algorithm is probability elicitation and condi-

tional risk minimization [19]. The connection between risk minimization and prob-
ability elicitation has been studied in [9]. The results showed that if maximal
reward function has equality with the formula J (η) = J (1− η) , the classifier f is
invertible and has symmetry f−1 (−v) = 1 − f−1 (v), then new link function and
reward function are a way of obtaining a new loss function by using Equation (3.1):

φ (v) = −J
[
f−1 (v)

]
−
(
1− f−1 (v)

)
J
′ [
f−1 (v)

]
(3.1)

After theoretical properties, from the tangent link (f (η) = tan (η − .5)) and the
risk function C∗φ = 4η (1− η), tangent loss function is given in Equation (3.2)[9]:

φ (v) =
(
2tan−1 (v)− 1

)−1
(3.2)

Tangent loss function arranges more penalties to positive margin than the other loss
functions. It is clear from the Figure 2, unlike classical loss functions; tangent loss
function penalizes not only negative margin but also positive margin. Penalizing
large positive margin limit the effect of observations which are very far from classifier
though it is accurate classified. TangentBoost algorithm is adapted with the similar
way of LogitBoost (See LogitBoost codes in [20] and [21]). However, probability of
class label is not proper because of p ∈

(
−π2 + .5,

π
2 + .5

)
in TangentBoost algorithm

[10]. To solve this problem, propensity scores are reduced to interval [0, 1] by using

formula p = tan−1(f)−tan−1(−∞)
tan−1(∞)−tan−1(−∞) instead of p = tan−1 (f) − .5. TangentBoost

algorithm with the correction is given as below [22].
In the algorithm, after initialization the values, weights and z(m)i are calculated

by formula obtained Tangent loss function. In the second loop, reweighted least
squares obtain the most important variable for the first iteration. Using the most
important variable and its linear regression prediction, classifier function, weights,
propensity scores are updated. The algorithm continues during the iterations. After
the last iteration, the classifier function describes the class labels.
Probabilities for assigning class label, in another saying propensity scores, are

limited to between zero and one with the correction. When the propensity score
is around zero or one, it means class label of observation is clear and weight of
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observation is around zero. That is, if propensity score is enough to define class
label, the weight starts to decline and concerning observation will not be very im-
portant in the next iteration. On the other hand, if propensity score is around 0.5,
observation is near to classifier. As a result, the weights start to increase and the
observation around the classifier will be more important in the next iteration. Af-
ter defining best variable for each iteration via iteratively reweighted least squares,
then it is easy to find classifiers for all iterations. At the end of the algorithm, sign
of combining classifier or the propensity scores decide class labels. Additionally,
TangentBoost is one of the alternative boosting method that produce propensity
score like logistic regression. Separating propensity scores more than two labels
is aimed to obtain multiclass label [23]. The method becomes comparable to lo-
gistic regression with the statistical correction on propensity scores. Furthermore,
classifying observations will become more stable with the correction.
In summary, correction on TangentBoost can be good process to obtain classifier

that not been affected by outliers in training data. In the simulation design, it will
be seen how TangentBoost can obtain better classifier than classical most-known
methods in the presence of outliers and mislabeled data.
Algorithm: TangentBoost Algorithm with the correction on p

Inputs: Training data set D = {(x1, y1) , (x2, y2) , · · · , (xn, yn)}, where y is class
label {−1, 1}for observations x and number M for weak learners.
Initial Values:Class label probabilities η1 (xi) = .5 and the classifier f̂1 (x) = 0
Loop 1. m = 1, 2, · · · ,M
Calculate the zi(m) and weights for all observations given formula below:
For label y = 1, zi(m) = − (η − 1)

(
1 + tan2 (η − .5)

)
For label y = −1, zi(m) = −η

(
1 + tan2 (η − .5)

)
For the weights, wi(m) = η(m) (xi)

(
1− η(m) (xi)

)
, wi(m) = wi

(m)
/∑

wi
(m)

Loop 2.
Minimize LS problem below to select the most important variable with the given
equation where 〈q (xi)〉m =

∑
i wi

(m)q (xi) for each k = 1, 2, · · · ,K.
aφk =

〈1〉w〈φk(xi)zi〉w−〈φk(xi)〉w〈zi〉w
〈1〉w〈φ2k(xi)〉w−〈φk(xi)〉2w

bφk =
〈φk(xi)2〉w〈zi〉w−〈φk(xi)〉w〈φk(xi)zi〉w

〈1〉w〈φ2k(xi)〉w−〈φk(xi)〉2w
End of Loop 2.
Obtain important variable k∗given formula:

k∗ = arg
min
k

∑
i

w
(m)
i

(
zi − aφkφk (xi)− bφk

)2
Obtain classifier and also probability score for all observation
f̂ (m+1) (xi) = f̂ (m) (xi) +

(
aφkφk (xi) + bφk

)
η(m+1) (xi) =

tan−1(f̂(m)(xi))−tan−1(−∞)
tan−1(∞)−tan−1(−∞)

End of Loop 1.
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Define class label with the given formula below:

h (x) = sgn
(
f̂ (M) (xi)

)
End of Algorithm.

4. Simulation Study

There is a simulation study to compare TangentBoost and classical boosting
algorithms in real datasets. There are three different datasets. The datasets are
obtained from UCI Machine Learning Repository [24] and they are king gaming
[25], qualitative bankruptcy [26] and credit approval datasets [27]. There is some
basic information about datasets in Table 1.
Two of dataset’s labels are completely separable from each other’s. However,

there is only one set, credit approval, which has a linearly inseparable data structure.
These datasets were included to vary number of observations, number of variables
and class label proportions.

Table 1. Some Information about Real Dataset Example

Dataset # of Variable # of Observation Ratio of Class=1
QB 7 250 57.2 %
KG 37 3196 52.2 %
CA 15 690 50.4 %

QB: Qualitative Bankruptcy, KG: King Gaming, CA: Credit Approval

In Table 2, when training part is 70% and 80% of data, when number of itera-
tion is 40, means of overall accuracy in both training and testing parts are given
for 250 repetitions. TangentBoost algorithm had similar results in training and
testing part for all datasets. There were not any dramatically decreasing from
training to testing accuracy scores. On the other hand, while all other boosting
algorithm gave impressive result for completely separable datasets, there were not
any significant differences between classical algorithms and TangentBoost in testing
accuracy scores. Moreover, there were dramatically decreasing all classical boosting
algorithms’scores from training datasets to testing datasets while there was not
any differences in TangentBoost algorithm. To summarize the results, Tangent-
Boost will not useful in completely separable dataset without mislabeling while the
method may be useful almost separable data. Accuracy results of classical boosting
methods easily decreased in testing data when the training data are not completely
separable. Logistic and exponential loss functions are incapable to preserve stability
of general accuracy rate in CA testing data as seen from Table 2 .
To clarify the robustness of TangentBoost in the presence of mislabeled observa-

tions, different proportions of mislabeled observations were obtained on qualitative
bankruptcy and credit approval datasets. In Table 3, when training part is 70%,
when number of iteration is 40, means of overall accuracy in testing parts are given
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Table 2. Mean of the Overall Accuracy in Real Datasets for Tan-
gentBoost and some Classical Boosting Methods

Dataset TB RB-Exp GB-Exp RB-Log GB-Log
Training % of Data
QB 0.7 1.0000 1.0000 1.0000 1.0000 1.0000

0.8 0.9995 1.0000 1.0000 1.0000 1.0000
KG 0.7 0.9386 0.9893 0.9904 0.9913 0.9911

0.8 0.9386 0.9848 0.9857 0.9865 0.9863
CA 0.7 0.8693 0.9207 0.9429 0.9273 0.9393

0.8 0.8697 0.9206 0.9432 0.9346 0.9473
Testing
QB 0.3 0.9961 0.9922 0.9947 0.9947 0.9962

0.2 0.9962 0.9940 0.9954 0.9952 0.9968
KG 0.3 0.9375 0.9844 0.9853 0.9861 0.9858

0.2 0.9374 0.9807 0.9814 0.9824 0.9821
CA 0.3 0.8617 0.8671 0.8665 0.8613 0.8618

0.2 0.8569 0.8620 0.8632 0.8641 0.8634
QB: Qualitative Bankruptcy, KG: King Gaming, CA: Credit Approval
TB: TangentBoost RB-Exp: RealBoost with exponential loss; GB-Exp:

GentleBoost with exponential loss RB-Log: RealBoost with logistic loss; GB-Log:
GentleBoost with logistic loss

for 250 repetitions. TangentBoost was better than the methods in the presence of
mislabeled observations in testing part as seen in Table 3 and Figure 3.

Table 3. Mean of the Overall Accuracy in Real Datasets for Tan-
gentBoost and some Classical Boosting Methods in the presence of
mislabeled data

Dataset TB RB-Exp GB-Exp RB-Log GB-Log
Training % of mislabeled
QB 0.05 0.9934 0.9873 0.9909 0.9894 0.9925
QB 0.10 0.9925 0.9869 0.9893 0.9861 0.9897
QB 0.15 0.9898 0.9852 0.9850 0.9858 0.9867
CA 0.05 0.8617 0.8659 0.8662 0.8651 0.8593
CA 0.10 0.8609 0.8609 0.8585 0.8595 0.8586
CA 0.15 0.8583 0.8542 0.8504 0.8523 0.8523

QB: Qualitative Bankruptcy, CA: Credit Approval
TB: TangentBoost RB-Exp: RealBoost with exponential loss; GB-Exp:

GentleBoost with exponential loss RB-Log: RealBoost with logistic loss; GB-Log:
GentleBoost with logistic loss
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To summarize simulation results, TangentBoost can be good robust procedure
in the presence of outliers in training data. The method cannot been spoiled by
contaminated part in training dataset. However, it is not as well as other classical
methods in separable dataset as been expected. Adding mislabeled in separable
data uncovered that TangentBoost is better than classical ones. Simulation on real
data indicates that the algorithm is a useful method when training data set has
mislabeled observations.

Figure 3. Accuracy scores of the methods according to mislabeled
proportion (Left).Quality Bankruptcy testing data (Right).Credit
Approval testing data

5. Results

In this study, TangentBoost algorithm is given with a correction. Outliers or
contaminated part in training data may be problem in boosting algorithm. Espe-
cially, outliers in boosting algorithms can influence weak classifiers very easily. To
overcome this problem, robust boosting algorithms are effective methods. Tangent-
Boost with the correction is quite useful if there are outliers or contaminated part
near the classifier in almost linearly separable data.
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ON LOCALLY UNIT REGULARITY CONDITIONS FOR
ARBITRARY LEAVITT PATH ALGEBRAS

TUFAN ÖZDIN

Abstract. Let Γ be a graph, K be any field and S be the endomorphism
ring of L := LK(Γ) considered as a right L-module. In this paper, we give
defination of the left locally unit regular ring. We show that (1) if S is locally
unit regular, then L is locally unit regular, (2) if L is morphic and image
projective then S is left morphic, (3) S is a directly finite ring then L is
directly finite, (4) if S is an exchange ring then L is directly finite and if L is
a direct finite ring then L is an exchange ring.

1. Introduction

Throughout this article Γ will denote a directed graph,K will denote an arbitrary
field and the Leavitt path algebras (shortly LPAs) of Γ with coeffi cients in K will
denoted L := LK(Γ).
LPAs can be regarded as the algebraic counterparts of the graph C∗-algebras,

the descendants from the algebras investigated by Cuntz in [6]. LPAs can be viewed
as a broad generalization of the algebras constructed by Leavitt in [11] to produce
rings without the Invariant Basis Number property. LPAs associated to directed
graphs were introduced in [4, 1]. These LK(Γ) are algebras associated to directed
graphs and are the algebraic analogs of the Cuntz-Krieger graph C∗-algebras [15].
Let Γ be a graph and K a field. In [3], G. Abrams and K. M. Rangaswamy

showed how definition of von Neumann regular ring (recall that a ring R is von
Neumann regular if for every a ∈ R there exists b ∈ R such that a = aba) is
extended to locally unit regular ring and in [3, Theorem 2] if Γ is arbitrary graph,
LK(Γ) is locally unit regular if and only if Γ is acyclic. This article is organized
as follows. In Section 2, we recall some preliminaries about LPAs which we need
in the next section. In Section 3, for the ring S of endomorphism ring of LK(Γ)
(viewed as a right LK(Γ)-module), we prove that: (1) if S is locally unit regular,
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then L is locally unit regular, (2) if L is morphic and image projective then S is
left morphic, (3) if S is a directly finite ring then L is directly finite, (4) if S is an
exchange ring then L is directly finite and if L is a direct finite ring then L is an
exchange ring.

2. Definitions and Preliminaries

We recall some graph-theoretic concepts, the definition and standard examples
of LPAs.

Definition 1. A (directed) graph Γ = (V,E, r, s) consist of two set V and E (with
no restriction on their cardinals) together with maps r, s : E → V . The elements of
V are called vertices and the elements of E edges. For e ∈ E, the vertices s(e) and
r(e) are called the source and range of e. If s−1(v) is a finite set for every v ∈ V ,
then the graph is called row-finite. If V is finite and Γ is row finite, then E must
necessarily be finite as well; in this case we say simply that Γ is finite.
A vertex which emits (receives) no edges is called a sink (source). A vertex v is

called an infinite emitter if s−1(v) is an infinite set. A vertex v is a bifurcation if
s−1(v) has at least two elements. A path p in a graph Γ is a finite sequence of edges
p = e1...en such that r(ei) = s(ei+1) for 1 ≤ i ≤ n − 1. In this case, s(p) = s(e1)
and r(p) = r(en) are the source and range of p, respectively, and n is the length of
p. We view the elements of V as paths of length 0.
A path p = e1...en is said to be closed path based at v if s(p) = v = r(p). If p

is an closed path in Γ and s(ei) 6= s(ei) for all i 6= j, then p is said to be a cycle.
A cycle consisting of just one edge is called a loop. A graph which contains no
cycles is called acyclic. A graph Γ is said to be no-exit if no vertex of any cycle is
a bifurcation.

Definition 2. (LPAs of Arbitrary Graph)
For an arbitrary graph Γ and a field K, the Leavitt path K-algebra of Γ, denoted

by LK(Γ), is the K-algebra generated by the set V ∪E∪{e∗|e ∈ E} with the following
relations,

(1) vivj = δvi,vjvi for every vi, vj ∈ V
(2) s(e)e = e = er(e) for all e ∈ E.
(3) r(e)e∗ = e∗ = e∗s(e) for all e ∈ E.
(4) (CK1) e∗f = δe,fr(e) for all e, f ∈ E.
(5) (CK2)v =

∑
{e∈E,s(e)=v} ee

∗ for every v ∈ V that is neither a sink nor an
infinite emitter.

The first three relations are the path algebra relations. The last two are the
so-called Cuntz-Krieger relations. We let r(e∗) denote s(e), and we let s(e∗) denote
r(e). If p = e1...en is a path in Γ, we write p∗ for the element e∗n...e

∗
1 of LK(Γ).

With this notation, the LPA LK(Γ) can be viewed as a K−vector space span of
{pq∗ | p, q are paths in Γ}. (Recall that the elements of V are viewed as paths of
length 0, so that this set includes elements of the form v with v ∈ V .)
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If Γ is a finite graph, then LK(Γ) is unital with
∑

v∈V v = 1LK(Γ); otherwise,
LK(Γ) is a ring with a set of local units consisting of sums of distinct vertices of
the graph.
Many well-known algebras can be realized as the LPAs of a graph. The most

basic graph configuration is shown below (the isomorphism for can be found in [1]).

Example 1. The ring of Laurent polynomials K[x, x−1] is the LPA of the graph
given by a single loop graph.

We will now outline some easily derivable basic facts about the endomorphism
ring S of L := LK(Γ). Let Γ be any graph and K be any field. Denote by S the
unital ring End(LL). Then we may identify L with subring of S, concretely, the
following is a monomorphism of rings:

φ : L→ End(LL)

x 7→ λx

where λx : L→ L is the left multiplication by x, i.e., for every y ∈ L, λx(y) = xy
which is a homomorphism of right L−module. The map φ is also a monomorphism
because given a nonzero x ∈ L there exists an idempotent u ∈ L such that xu = x,
hence 0 6= x = λx(u).

3. Results

According to Abrams and Rangaswamy [3]:
• A (possibly nonunital) ring R is called a ring with local units if, for each finite

subset S of R, there exists an idempotent e of R such that S ⊆ eRe;
• If R is a ring with local units then R is called locally unit regular if for each

a ∈ R there is an idempotent (a local unit) v and local inverses u, u′ such that
uu′ = v = u′u, va = a = av and aua = a (see [3, Definition 6]).

Theorem 1. Let Γ be an arbitrary graph, K be any field and S be the endomorphism
ring of L := LK(Γ).

(1) If S is locally unit regular, then L is locally unit regular. Moreover L is
regular.

(2) If L is locally unit regular, then vLv is locally unit regular for every non
zero idempotent v of L.

Proof. (1) Take x ∈ L. Since S is local unit regular, there exists an idempotent
e ∈ S such that λx ∈ eSe and elements f, g ∈ eSe such that fg = e = gf and
λxfλx = λx. Choose an idempotent u ∈ L such that xλe(u) = x = λe(u)x so
x ∈ λe(u)Lλe(u). Note that,

λf(u)λg(u) = λe(u) = λg(u)λf(u)

and
λx = λxλf(x) = λxλf(ux) = λxλf(u)λx.
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Since f ∈ eSe, there exists h ∈ S such that f = ehe. Then f(u) = e(u)h(u)e(u), so

λf(u) = λe(u)h(u)e(u) = λe(u)λh(u)λe(u)

and we get λf(u) ∈ λe(u)Lλe(u). Similarly λg(u) ∈ λe(u)Lλe(u). Hence L is locally
unit regular.
(2) Take any a ∈ vLv. Since L is locally unit regular, there exist an idempotent

e and local inverses u, u′ such that ea = a = ae, uu′ = e = u′u and aua = a. As
ea = a and av = a which imply vea = va = a = ea and eav = ea respectively, we
get ea = eav = vea. Now ea ∈ vLv, which implies e ∈ vLv. Then ve = e = ev. Let
e∗ = vev, h = vuv and h′ = veu′ev. Note that

e∗e∗ = (vev)(vev) = vevev = veevv = vev = e∗ ∈ vLv

hh′ = (vuv)(veu′ev) = vuveu′ev = vueu′ev = veuu′∗

h′h = (veu′ev)(vuv) = veu′evuv = veu′euv = veu′∗

aha = a(vuv)a = vauav = vav = a,

which imply vLv is locally unit regular. �

Definition 3. A ring R is dependent if, for each a, b ∈ R, there are s, t ∈ R, not
both zero, such that sa+ tb = 0.

Let Γ be an arbitrary graph, K be any field and S be the endomorphism ring
of L := LK(Γ) considered as a right L-module. If S is dependent so is L. In
fact, suppose S is dependent and a, b ∈ L. Then there are elements f, g ∈ S, not
both zero, such that fλa + gλb = 0. If u1 and u2 are local units in L satisfying
u1a = a = au1 and u2b = b = bu2, then

fλa = fλu1a = fλu1λa = λf(u1)λa

and

gλb = gλu2b = gλu2λb = λg(u2)λb.

Now
0 = fλa + gλb

= λf(u1)λa + λg(u2)λb,

and hence L is dependent.
In the literature on von-Neumann regular rings, various conditions have been

shown to characterize the subclass of unit regular rings. In [8, Theorem 6], Ehrlich
showed that every unit regular ring R is dependent. In [10, Corollary 10], Hen-
riksen shows that not all dependent regular rings are unit regular. The following
observation gives one more such condition for dependent rings.

Theorem 2. If LK(Γ) is locally unit regular, then it is dependent.
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Proof. Let LK(Γ) be locally unit regular and let some elements provide locally unit
regular condition in the definition. Take a, b ∈ LK(Γ). If both a and b have local
inverses in LK(Γ), then there exist u1 and u2 in LK(Γ) such that u1a = v and
u2b = v for local unit v in LK(Γ). So, we get sa + tb = 0, where s = u1 and
t = −u2. If one of the elements, say a, has no local inverse in LK(Γ), by definition
of locally unit regularity, then we can write aua = a⇒ aua = va⇒ (au− v)a = 0.
Now we get au−v 6= 0. Assume au−v = 0. So au = v, it is a contradiction. Then,
for s = (au− v) 6= 0 and t = 0, which implies sa+ tb = 0. �

Definition 4. Let R be a ring with local units. We call R left (right) locally unit
regular ring if for each a ∈ R there exist an idempotent v ∈ R and left (right) local
inverses u, u′ such that u′u = v (uu′ = v), va = a (av = a) and aua = a.

Definition 5. ([12]) Let M be a right R-module, and let S = EndR(M). Then M
is called is a d-Rickart (or dual Rickart) module if the image in M of any single
element of S is a direct summand of M . Clearly, RR a d-Rickart module iff R is a
regular ring.

Definition 6. Given paths p, q ∈ Γ, we say that q is an initial segment of p if
p = qm for some path m ∈ Γ. It is well known that, given non-zero paths pq∗ and
mn∗ in LK(Γ), q is an initial segment of m if and only if (pq∗)(mn∗) 6= 0.

Theorem 3. Let Γ be a graph, K be any field and S be the endomorphism ring of
L := LK(Γ) considered as a right L-module. The following conditions are equiva-
lent.

(1) S is left locally unit regular.
(2) S is regular and, for all paths x, y ∈ L, Sx = Sy implies x is an initial

segment of y.
(3) L is dual-Rickart and, for all paths x, y ∈ L, Sx = Sy implies x is an initial

segment of y.

Proof. (1) ⇒ (2) Assume that S is left locally unit regular. Hence S is regular
and L is left locally unit regular by Theorem 1. Let x, y ∈ L be two paths. Then
there exist an idempotent v ∈ L and left local inverses v1, v2 ∈ L such that vy = y,
v2v1 = v and y = yv1y. If Sx = Sy, then x = f(y) for some f ∈ S. Now y = yv1y
implies f(y) = f(yv1y), and so x = f(yv1)︸ ︷︷ ︸

∈L

y. Hence x is an initial segment of y.

(2)⇒ (3) This follows from [17, Corollary 3.2].
(3)⇒ (1) Assume that L is dual-Rickart. Then f(L) is a direct summand of L,

where f ∈ S. Let e be an idempotent in S with f(L) = eL. Let x ∈ L. Then there
exists y ∈ L such that f(x) = e(y). Now

(ef)(x) = e(f(x)) = e(e(y)) = e(y) = f(x),

which implies ef = f . Let h be the left inverse of f and g = fe. Then gh = e and
fhf = f . �
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Definition 7. ([13]) An endomorphism α of a module M is called morphic if
M/Mα ∼= Ker(α), equivalently there exists β ∈ End(M) such that Mβ = Ker(α)
and Ker(β) = Mα by [13, Lemma 1]. The module M is called a morphic module
if every endomorphism is morphic. If R is a ring, an element a in R is called left
morphic if right multiplication ·a :R R →R R is a morphic endomorphism, that is
if R/Ra ∼= l(a). The ring itself is called a left morphic ring if every element is left
morphic, that is if RR is a morphic module.

Note that if S is dependent then LK(Γ) is morphic by [14, Corollary 3.5].

Theorem 4. Let Γ be any graph and let K be any field. If LK(Γ) is left morphic
and regular ring then LK(Γ) is left locally unit regular ring.

Proof. Let LK(Γ) = L be left morphic and regular ring. Then each a ∈ L is both
regular and morphic. So, there exist an x ∈ L such that a = axa and for some
b ∈ L, La = ann(b) and Lb = ann(a). Let u = xax+ b. Then a = aua. To see that
u is left local inverse, since L has local units, choose an idempotent v ∈ L such that
va = a. Then we get, 0 = va− a = va− axa = (v− ax)a, so v− ax ∈ ann(a) = Lb
and there exists an element y ∈ L such that v−ax = yb. We take u′ = a+y(v−ax).
We show that u′u = v:

u′u = (a+ y(v − ax))(xax+ b)
= axax+ ab+ y(v − ax)xax+ y(v − ax)b
= ax+ ab+ yvxax− yxaxax+ yvb− yxab
= ax+ yb = v

Hence L = LK(Γ) is left locally regular ring. �

Theorem 5. Let Γ be a graph, K be any field and S be the endomorphism ring
of L := LK(Γ) considered as a right L-module. If LK(Γ) is morphic and image
projective then S is left morphic.

Proof. Let L := LK(Γ) be morphic and image projective. Given any α ∈ S, since
L is morphic, we may choose an β ∈ S such that, Lα = ker(β) and Lβ = ker(α).
Since αβ = 0, Sα ⊂ annS(β). Conversely, if γ ∈ annS(β) then γβ = 0 so Lγ ⊂
ker(β) = Lα and hence γ ∈ Sα because L is image projective. Thus Sα = annS(β).
We may see Sβ = annS(α) in the same way. Hence S is left morphic. �

Definition 8. ([16, Definition 4.1]) If R is a ring with local units then R is called
directly finite if for each x, y ∈ R there is an idempotent u such that xu = x = ux
and yu = y = uy, we have that xy = u implies yx = u.

Theorem 6. Let Γ be a graph, K be any field and S be the endomorphism ring
of L := LK(Γ) considered as a right L-module. If S is a directly finite ring then
LK(Γ) is directly finite.
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Proof. Take any x, y in LK(Γ). Since S is a direct finite ring, there is an idempotent
ε in S such that λxε = λx = ελx and λyε = λy = ελy, we have that λxλy = ε
implies λyλx = ε. For an idempotent u with xu = x = ux and yu = y = uy,

λxλy = ε⇒ λxλyλx = ελx ⇒ λx = ελuv ⇒ λx = λε(u)λx

λx = ελx = λε(x) = λε(xu) = λε(x)λε(u) = ελxλε(u)

So, λxλε(u) = λx = λε(u)λx. Similarly λyλε(u) = λy = λε(u)λy. Assume that,
λxλy = λε(u). We then see that λyλx = λε(u).

λyλx = λyλε(u)λx = λyλxλε(u) = ελε(u) = λε2(u) = λε(u),

as desired. �

Ones hopes that if LK(Γ) is directly finite then LK(Γ) is locally unit regular
but this is not true. Because K[x, x−1] is a commutative Leavitt path algebra (of
the graph with one vertex and one loop) clearly directly finite. But it is not von
Neumann regular ring.

Corollary 1. Let Γ be a graph, K be any field and S be the endomorphism ring of
L := LK(Γ) considered as a right L-module. If S is a directly finite ring, then Γ is
no exit.

Proof. Let S be a directly finite ring. Then LK(Γ) is a directly finite ring. So, by
[16, Proposition 4.3], Γ is no exit. �

Definition 9. R is said to be a (left) exchange ring if for any direct decomposition
A = M⊕N = ⊕i∈IAi of any left R-module A, where R ∼= M as left R-modules and
I is a finite set, there always exist submodules Bi of Ai such that A = M⊕(⊕i∈IBi).

Theorem 7. Let Γ be an infinite graph, K be any field and S be the endomorphism
ring of L := LK(Γ) considered as a right L-module. Then

(1) If S is an exchange ring then L is directly finite.
(2) If L is a direct finite ring then L is an exchange ring.

Proof. (1) Let S be an exchange ring. Then, by [5, Proposition 2.10], LK(Γ)
is an exchange ring. For every x, y ∈ L and an idempotent u ∈ L such that
xu = x = ux and yu = y = uy we have that xy = u. We show that yx = u. Since
L is an exchange ring, there exist r, s ∈ L such that u = rx = s + x − sx. So,
u = rx⇒ uy = rxy ⇒ y = ru⇒ yx = rux = rx = u, as desired.

(2) Let L be a direct finite ring. For any x, y ∈ L and an idempotent u ∈ L
such that xu = x = ux and yu = y = uy we have that xy = u implies yx = u. We
show that L is an exchange ring. For any x ∈ L taking r = y and s = u, we get
u = rx = s+ x− sx. So, L is an exchange ring. �

Corollary 2. Let Γ be infinite graph, K be any field and S be the endomorphism
ring of L := LK(Γ) considered as a right L-module. Then the following conditions
are equivalent.
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(1) S is an exchange ring.
(2) LK(Γ) is an exchange ring.
(3) LK(Γ) is a directly finite ring.
(4) E is no exit

Proof. (1)⇔ (2) This is [5, Proposition 2.10].
(2)⇔ (3) This follows from Theorem 7 (1) and Theorem 7 (2).
(3)⇔ (4) This is [16, Teorem 4.12]. �
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FIRST AND SECOND ACCELERATION POLES IN
LORENTZIAN HOMOTHETIC MOTIONS

HASAN ES

Abstract. In this paper, using matrix methods, we obtained rotation pole
in one-parameter motion on the Lorentzian plane homothetic motions and
pole orbits, accelerations and combinations of accelerations, first and second
in acceleration poles. Moreover, some new theorems are given.

1. Introduction

In Lorentzian plane, a general planar motion as given by

y1 = x coshϕ+ y sinhϕ+ a (1.1)

y2 = x sinhϕ+ y coshϕ+ b

If θ, a and b are given by the functions of time parameter t, then this motions is
called as one parameter motion [2] . One parameter planar motion given by (1.1)
can be written in the form(

Y
1

)
=

(
A C
0 1

)(
X
1

)
or

Y = AX + C, Y = [y1 y2]T , X = [x y]T , C = [a b]T (1.2)

where A ∈ SO(2), and Y and X are the position vectors of the same point B,
respectively, for the fixed and moving systems, and C is the translation vector [2].
By taking the derivatives with respect to t in (1.2), we get

Ẏ = ȦX +AẊ + Ċ (1.3)

Va = Vf + Vr (1.4)

where the velocities Va = Ẏ , Vf = ȦX + Ċ, Vr = AẊ are called absolute, sliding,
and relative velocities of the points B, respectively [1]. the solution of the equation
Vf = 0 gives us the pole points on the moving plane. The locus of these points is
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called the moving pole curve, and correspondingly the locus of pole points on the
fixed plane is called the fixed pole curve [1]. by taking the derivatives with respect
to t in (1.3),we get

Ÿ = ÄX + 2ȦẊ +AẌ + C̈ (1.5)

ba = br + bc + bf , (1.6)

where the velocities
ba = Ÿ , (1.7)

bf = ÄX + C̈, (1.8)

br = AẌ, (1.9)

bc = 2ȦẊ, (1.10)

are called absolute acceleration, sliding acceleration, relative acceleration and Cori-
olis accelerations, respectively [1]. The solution of the equation

ÄX + C̈ = 0 (1.11)

gives the acceleration pole of the motion [1]

2. HOMOTHETIC MOTION IN LORENTZIAN PLANE

Definition 2.1. The transformation given by the matrix

F =

(
hA C
0 1

)
is called Homothetic motion in L2 here h = hI2 is a scalar matrix, A ∈ SO(2) and
C ∈ R2

1 [1].

Definition 2.2. Let J ⊂ R be an open interval let O ∈ J . The transformation
F (t) : L2 −→ L2 given by

F (t) =

(
h(t)A C(t)

0 1

)
is called one-parameter homothetic motion in L2,where the function h : J −→
R,the matrix A ∈ SO(2) and the 2 × 1 type matrix C are differentiable with
respect to [1].Since h is scalar we have B−1 = h−1A−1 = 1

hA
T for X ∈ L2, the

geometric plane of the points is a curve in L2. We will denote this curve by

Y (t) = B(t)X(t) + C(t) (2.1)

differentiating with respect to t we obtain

dY

dt
=
dB

dt
X +B

dX

dt
+
dC

dt
. (2.2)
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Definition 2.3. Equation of the general motion in L2

Y (t) = B(t)X(t) + C(t) (2.3)

where A = A(t) ∈ SO(2) and C = C(t) ∈ R2
1 [1].Differentiating this equation with

respect to t we have
dY

dt
=
dB

dt
X +B

dX

dt
+
dC

dt
. (2.4)

Here Va = dY
dt , Vr = B dX

dt and Vf = dB
dt X+ dC

dt are called absolute velocity, relative
velocity and sliding velocity of the motion, respectively[3]. We denote motions in
L2 by L

Ĺ
where Ĺ is fixed plane and L is the moving plane with respect to Ĺ. If the

matrix A and C are the functions of the parameter t ∈ R this motion is called a
one parameter motion and denoted by B1 = L

Ĺ
[1].

Definition 2.4. The velocity vector of the point X with respect to the Lorentzian
plane L (moving space) i.e. the vectorial velocity of X while it is drawing its orbit
in L is called relative velocity of the point X and denoted by Vr [1].

Definition 2.5. The velocity vector of the point X with respect to the fixed plane
Ĺ is called the absolute velocity of X and denoted by Va. Thus we obtain the
relation

Va = Vf + Vr

If X is a fixed point in the moving plane L , since Vr = 0, then we have Va = Vf .
The quality (??) is said to be the velocity law the motion B1 = L

Ĺ
[1].

3. POLES OF ROTATING AND ORBIT

The point in which the sliding velocity Vf at each moment t of a fixed point X
in L in the one-parameter homothetic motion B1 = L

Ĺ
are fixed points in moving

and fixed plane. These points are called the pole points of the motion.

Theorem 3.1. In a motion B1 = L
Ĺ
whose angular velocity is non zero, there exists

a unique point which is fixed in both planes at every moment t.

Proof. Since the point X ∈ L is fixed in L then Vr = 0 and since X is also fixed
in Ĺ then Vf = 0. Hence for this type of points if Vf = 0 then

ḂX + Ċ = 0 (3.1)

and
X = −Ḃ−1Ċ (3.2)

Indeed,since

B =

(
h coshϕ h sinhϕ
h sinhϕ h coshϕ

)
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and

Ḃ =

(
ḣ coshϕ+ hϕ̇ sinhϕ ḣ sinhϕ+ hϕ̇ coshϕ

ḣ sinhϕ+ hϕ̇ coshϕ ḣ coshϕ+ hϕ̇ sinhϕ

)
then

C = [a b]T , (3.3)

implies that
Ċ = [ȧ ḃ]T (3.4)

and
detḂ = ḣ2 − h2ϕ̇2 6= 0. (3.5)

Thus Ḃ is regular and

Ḃ−1 =
1

ḣ2 − h2ϕ̇2

(
ḣ coshϕ+ hϕ̇ sinhϕ −(ḣ sinhϕ+ hϕ̇ coshϕ)

−(ḣ sinhϕ+ hϕ̇ coshϕ) ḣ coshϕ+ hϕ̇ sinhϕ

)
Hence there exists a unique solution X of the equation Vf = 0. This point X is
called pole point in moving plane. For this reason (3.2) leads to

X = −Ḃ−1Ċ (3.6)

P = X =
1

h2ϕ̇2 − ḣ2

(
ȧ(ḣ coshϕ+ hϕ̇ sinhϕ)− ḃ(ḣ sinhϕ+ hϕ̇ coshϕ)

−ȧ(ḣ sinhϕ+ hϕ̇ coshϕ) + ḃ(ḣ coshϕ+ hϕ̇ sinhϕ)

)
P =

1

M

(
(ȧḣ− ḃhϕ̇) coshϕ+ (ȧhϕ̇− ḃḣ) sinhϕ

(−ȧhϕ̇+ ḃḣ) coshϕ) + (−ȧḣ+ ḃhϕ̇) sinhϕ

)
where h2ϕ̇2 − ḣ2 = M and the pole point in the fixed plane is

Ṕ = BP + C

setting these values in their planes and calculating we have

Y = Ṕ =
1

M

(
hḣȧ− h2ḃϕ̇

hḣḃ− h2ȧϕ̇

)
+

(
a
b

)
or as a vector

Y = Ṕ = (
1

M
(hḣȧ− h2ḃϕ̇) + a,

1

M
(hḣḃ− h2ȧϕ̇) + b) (3.7)

Here we assume that ˙ϕ(t) 6= 0 for all t. That is, angular velocity is not zero. In
this case there exists a unique pole points in each of the moving and fixed planes
of each moment t.

Corollary 1. If ϕ(t) = t,then we obtain

X = P =
1

h2 − ḣ2

(
(ȧḣ− ḃḣ) coshϕ+ (ȧh− ḃḣ) sinhϕ)

(−ȧh+ ḃḣ) coshϕ) + (−ȧḣ+ ḃh)sinhϕ)

)
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Corollary 2. If ϕ(t) = t and h(t) = 1 ,then we obtain

X = P =

(
ȧ sinhϕ− ḃ coshϕ)

−ȧ coshϕ+ ḃ sinhϕ)

)
Corollary 3. If ϕ(t) = t,then we obtain

Ṕ = (
1

h2 − ḣ2
(hḣȧ− h2ḃϕ̇) + a,

1

h2 − ḣ2
(hḣḃ− h2ȧϕ̇) + b) (3.8)

Corollary 4. If ϕ(t) = t and h(t) = 1, then we obtain

Ṕ = (−ḃ+ a,−ȧ+ b) (3.9)

Definition 3.2. The point P = (p1, p2) is called the instantaneous rotation center
or the pole at moment t of the one parameter Euclidean motion B1 = L

Ĺ
[2]

Theorem 3.3. The following relation exists between the pole ray from the pole P
to the point X, and the sliding velocity vector Vf at each moment t.

h < Vf , Ṕ Y >= ḣ‖Ṕ Y ‖ (3.10)

Proof. The pole point in the moving plane

Y = BX + C. (3.11)

implies that
X = B−1(Y − C) (3.12)

Vf = ḂX + Ċ (3.13)

and
ḂX + Ċ = 0, (3.14)

Leads to
X = P = −Ḃ−1Ċ, (3.15)

Now Let’s find pole points in the fixed plane. Then we have from equation Y =
BX + C

Y = BX + C, (3.16)

Y = Ṕ = B(−Ḃ−1Ċ) + C, (3.17)

Hence, we get
Ṕ − C = −BḂ−1Ċ, (3.18)

Ċ = −ḂB−1(Ṕ − C). (3.19)

If we substitute this values in the equation Vf = ḂX+ Ċ, we have Vf = ḂB−1Ṕ Y .
Now let us calculate the value of ḂB−1Ṕ Y here since Ṕ Y = (y1− p1, y2− p2) then

Vf = (
ḣ

h
(y1 − p1)− ϕ̇(y2 − p2), ϕ̇(y1 − p1) +

ḣ

h
(y2 − p2)), (3.20)
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hence we obtain

< Vf , Ṕ Y >=
ḣ

h
[(y1 − p1)2 − (y2 − p2)2], (3.21)

< Vf , Ṕ Y >=
ḣ

h
‖Ṕ Y ‖2, (3.22)

on the other hand we know that

h < Vf , Ṕ Y >= ḣ‖Ṕ Y ‖2 (3.23)

Corollary 5. The pole ray from the pole P to the point X, when the scalar matrix h
is constant, is perpendicular to the sliding velocity vector Vf at each instant moment
t.

Corollary 6. There is a relation among the pole ray from the pole P to the point
X, the sliding velocity vector Vf , and angular velocity ˙ϕ(t) 6= 0 at each moment t.

h(t) = exp

(∫
< Vf , Ṕ Y >

‖Ṕ Y ‖
dt

)
. (3.24)

Theorem 3.4. The length of the sliding velocity vector Vf is

‖Vf‖ =

√
|(
( ḣ
h

)2

− ϕ̇2)|‖P ′Y ‖ (3.25)

Proof.

Vf = (
ḣ

h
(y1 − p1) + ϕ̇(y2 − p2), ϕ̇(y1 − p1) +

ḣ

h
(y2 − p2)), (3.26)

hence

‖Vf‖ =

√
|(
( ḣ
h

)2

− ϕ̇2)|‖P ′Y ‖. (3.27)

Corollary 7. If the scalar matrix is h is constant, then the length of the sliding
velocity vector is

‖Vf‖ = |ϕ̇|‖P ′Y ‖ (3.28)

Corollary 8. There is a relation among the pole ray from the pole P to the point
X, the sliding velocity vector Vf , and angular velocity ˙ϕ(t) 6= 0 at each moment t.

h(t) = exp

(∫ √
|(
( ‖Vf‖
|‖P ′Y ‖

)2

+ ϕ̇2)|dt
)
. (3.29)

Definition 3.5. In Lorentzian motion B1 = L
Ĺ
, the geometric place of the pole

points P in the moving plane L is called the moving pole curve of the motion
B1 = L

Ĺ
and is denoted by (P ). the geometric place of the pole points P in the

fixed plane Ĺ is called fixed and is denoted by Ṕ [2] .
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Theorem 3.6. The velocity on the curve (P ) and ´(P ) of every moment t of the
rotating pol P which draws the pole curves in the fixed and moving planes are equal
to each other. In other words, two curves are always tangent to each other [2] .

Proof. The velocity of the point X ∈ L while drawing the curve (P ) is Vr and
the velocity of this point while drawing the curve ´(P ) is Va. Since Vf = 0 then
Va = Vr.

Theorem 3.7. If two curves α and ά are tangent to each other of each moment
t and if length of the ways ds and ds′ of the point drawing these two curves at
moment dt on these curves are the same then α and ά are said to be revolving by
sliding on each other. Herehis the coeffi cient of rolling [2].

Theorem 3.8. In the one parameter planer Lorentzian motion B1 = L
Ĺ
the moving

pole curve (P ) of the plane L revolves by sliding on the fixed pole curve ´(P ) of the
plane Ĺ [1] .

Proof. Acording to the definition of ray element of a curve ray of (P ) is ds = ‖Vr‖
and those of (P ) is ds′ = ‖Va‖ .Since for (P ) and ´(P ) , Va = Vr then ds = hds′.
According to this theorem we way define a Lorentzian motion without mentioning
the time. A Lorentzian motion B1 = L

Ĺ
is obtained by a moving pol curve (P ) of

L revolving without sliding on a fixed pol curve ´(P ).

Definition 3.9. Absolute acceleration vector of the point X with respect to the
fixed Lorentzian plane Ĺ is Va. This vector is denoted by ba. Since Va = Ẏ then
ba = V̇ = Ÿ [2].

Definition 3.10. Let X be a fixed point the moving Lorentzian plane L. The
acceleration vector of the point X with respect to the fixed Lorentzian plane Ĺ is
called as sliding acceleration vector and denoted by bf . Since in the acceleration of
the sliding acceleration X is a fixed point of E,then bf = V̇f = B̈X + C̈ [2].

4. ACCELERATIONS AND UNION OF ACCELERATIONS

Assume that the Minkowski motion B1 = L
Ĺ
of the moving Lorentzian plane L

with respect to the fixed Lorentzian plane Ĺ exists. In this motion, let us consider
a point X moving with respect to the plane L,and thus moving respect to the plane
Ĺ . We had obtained the velocity formulas concerning the motion of X, now we
will obtain the acceleration formulas the acceleration of the point X.

Definition 4.1. The vector br = V̇r = B̈X which is obtained by differentiating the
relative velocity vector Vr = BẊ of the point X with respect to the moving plane
L is called the relative acceleration vector of X in L and denote by br.Since when
taking the derivative X is considered as a moving point in L,the matrix A is taken
as constant [2].
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Theorem 4.2. Let X be a point in the moving Lorentzian plane which moves with
respect to a parameter t. Hence we have that

Theorem 4.3.
ba = bf + bc + br (4.1)

Here bc = 2ḂẊ is called Corilois acceleration [1].

Corollary 9. If a point X ∈ L is constant,then the sliding acceleration of the point
X is equal to the absolute acceleration of X.

Proof. Note that
Va = ḂX +BẊ + Ċ (4.2)

differentiating the both sides we have

V̇a = B̈X + 2ḂẊ +BẌ + Ċ (4.3)

since the point X is constant its derivatives zero. Hence

V̇a = B̈X + C̈ = bf . (4.4)

Theorem 4.4. We have the following relation between the Coriolis acceleration
vector bc and relative velocity vector Vr.

< bc, Vr >= 2hḣ(ẋ1
2 − ẋ2

2) (4.5)

Proof. Since bc = 2ḂẊ =, Vr = BẊ. Then

< bc, Vr >= 2hḣ(ẋ1
2 − ẋ2

2) (4.6)

Corollary 10. If h is a constant,then Coriolis acceleration bc is perpendicular to
the relative velocity vector Vr at each instant moment t.

5. FIRST AND SECOND ACCELERATION POLES

The solution of the equation V̇f = 0 gives the first order acceleration pole.
Vf = B̈X + C̈ = 0 implies X = −B̈−1C̈. Now calculating the matrices −B̈−1 and
C̈ and setting these in X = P1 = −B̈−1C̈ we obtain

X = P1 =
−1

k

(
ä(m coshϕ+ n sinhϕ)− b̈(m sinhϕ+ n coshϕ)

−ä(m sinhϕ+ n coshϕ) + b̈(m coshϕ+ n sinhϕ)

)
Let k = (ḧ+ hϕ̇2)2 − (2ḣϕ̇+ hϕ̈)2, k 6= 0, m = ḧ+ hϕ̇2, n = 2ḣϕ̇+ hϕ̈. Here P1

is called first order pole curve in the moving plane. Denoting the pole curve in the
fixed plane by Ṕ1 we get

Ṕ1 = BP1 + C (5.1)

Hence

Ṕ1 = (
1

k
(−ähm+ b̈hn) + a,

1

k
(ähn− b̈hm) + b) (5.2)
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Corollary 11. If ϕ(t) = t,then we obtain

X = P1 =
−1

(ḧ+ h)2 − 4(ḣ)2

(
(äḧ− 2b̈ḣ+ äh) coshϕ− (b̈ḧ− 2äḣ+ b̈h) sinhϕ)

(b̈ḧ− 2äḣ+ b̈h) coshϕ)− (äḧ− 2b̈ḣ+ äh)sinhϕ)

)
Corollary 12. If ϕ(t) = t and h(t) = 1, then we obtain

P1 = (−ä coshϕ+ b̈ sinhϕ,−b̈ coshϕ+ ä sinhϕ) (5.3)

Corollary 13. If ϕ(t) = t, then we obtain

Ṕ1 =
−1

(ḧ+ h)2 − 4(ḣ)2
(−äh(ḧ+ h) + b̈h(2ḣ), äh(2ḧ)− b̈h(ḧ+ h)) + (a, b) (5.4)

Corollary 14. If ϕ(t) = t and h(t) = 1, then we obtain

Ṕ1 = (−ä+ a,−b̈+ b) (5.5)

The solution of the equation V̈f = 0 gives the second order acceleration pole.
V̈f =

...
BX +

...
C = 0 implies X = −

...
B
−1 ...
C . Now calculating the matrices

...
B
−1 and

...
C and setting these in X = −

...
B
−1 ...
C we get

X = P2 =
−1

A2 −B2

( ...
a (A coshϕ+B sinhϕ)−

...
b (A sinhϕ+B coshϕ)...

−a(A sinhϕ+B coshϕ) +
...
b (A coshϕ+B sinhϕ)

)
The pole curve in the fixed plane is obtained as

Ṕ2 = (
−1

A2 −B2
(
...
ahA−

...
b hB) + a,

−1

A2 −B2
(−...ahB +

...
b hA) + b) (5.6)

Let us
A = (3hϕ̇ϕ̈+ 3ḣϕ̇2 +

...
h ), B = (hϕ̇3 + 3ḣϕ̈+ h

...
ϕ + 3ḧϕ̇) (5.7)

Corollary 15. If ϕ(t) = t, then we obtain

X = P2 =
−1

T

(
(
...
a
...
h − 3

...
b ḧ+ 3

...
a ḣ−

...
b h) coshϕ+ (−

...
b
...
h + 3

...
a ḧ− 3

...
b ḣ+

...
ah) sinhϕ

(−...a
...
h + 3

...
b ḧ− 3

...
a ḣ+

...
b h) sinhϕ+ (

...
b
...
h − 3

...
a ḧ+ 3

...
b ḣ−

...
ah) coshϕ)

)
where T = (3ḣ+

...
h )2 − (h+ 3ḧ)2.

Corollary 16. If ϕ(t) = t and h(t) = 1, then we obtain

P2 = (−
...
b coshϕ+

...
a sinhϕ,

...
b sinhϕ− ...a coshϕ) (5.8)

Corollary 17. If ϕ(t) = t, then we obtain

Ṕ2 = (
−1

T
(
...
ah(3ḣ+

...
h )−

...
b h(h+ 3ḧ),−...ah(h+ 3ḧ) +

...
b h(3ḣ+

...
h )) + (a, b) (5.9)

where T = (3ḣ+
...
h )2 − (h+ 3ḧ)2.

Corollary 18. If ϕ(t) = t and h(t) = 1, then we obtain

Ṕ2 = (−
...
b + a,−...a + b) (5.10)
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(WEAKLY) n−NIL CLEANNESS OF THE RING Zm

HANI A. KHASHAN AND ALI H. HANDAM

Abstract. Let R be an associative ring with identity. For a positive integer
n > 2, an element a ∈ R is called n−potent if an = a . We define R to be
(weakly) n−nil clean if every element in R can be written as a sum (a sum
or a difference) of a nilpotent and an n−potent element in R. This concept is
actually a generalization of weakly nil clean rings introduced by Danchev and
McGovern, [6]. In this paper, we completely determine all n,m ∈ N such that
the ring of integers modulo m, Zm is (weakly) n−nil clean.

1. Introduction

Let R be an associative ring with identity. Throughout this text, the notations
U(R), J(R), Id(R) and N(R) will stand for the set of units, the Jacobson radical,
the set of idempotents and the set of nilpotents of R, respectively. Following [14],
we define an element r of a ring R to be clean if there is an idempotent e ∈ R
and a unit u ∈ R such that r = u + e. A clean ring is defined to be one in which
every element is clean. Similarly, an element r in a ring R is said to be nil clean if
r = e + b for some idempotent e ∈ R and a nilpotent element b ∈ R . A ring R is
nil clean if each element of R is nil clean. In [2], Breaz, Danchev and Zhou defined
a ring R to be weakly nil clean if each element r ∈ R can be written as r = b + e
or r = b− e for b ∈ N(R) and e ∈ Id(R). We refer the reader to [8, 1, 3, 5, 7, 4, 2]
for a survey on nil clean and weakly nil clean rings.
For a ∈ R and a positive integer n > 2, we say that a is n−potent if an = a.

Moreover, a is called (weakly) n−nil clean if it is a sum (a sum or a difference)
of n−potent element and a nilpotent element in R. We define R to be (weakly)
n−nil clean if every element in R is (weakly) n−nil clean. Weakly n−clean rings
are defined in a similar way. Obviously, the (weakly) 2−nil clean rings are the same
as the (weakly) nil clean rings. R is called a generalized nil clean if every element
in R is n−nil clean for some n ∈ N. The class of n−nil clean and generalized nil
clean rings were firstly defined and studied in [9] by Hirano, Tominaga and Yaqub
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in 1988. Some Other authors called generalized nil clean rings as weak periodic
rings. A ring R is called periodic if for every x ∈ R, there are distinct integers m
and k such that xm = xk. It is proved that a periodic ring is weak periodic and
that the converse is true if in any expansion r = b+ s for potent s and b ∈ N(R),
we have bs = sb.
In this paper, we focus our attention on the ring Zm of integers modulo a positive

integer m. We use the well Known Hensel’s Lemma to completely determine when
the ring Zm is (weakly) n−nil clean ring for any m,n ∈ N. Moreover, we determine
allm,n ∈ N such that every element r ∈ Zm is of the form r = b±s where b ∈ N(R)
and sn = −s. Next, we apply our results for some special values of m and n.
In the next section, we study weakly n−nil clean rings and introduce some

fundamental facts and examples concerning this class of rings. Among many other
properties, we determine some conditions on n, R and G under which the group
ring RG is (weakly) n−nil clean.

2. Weakly n−Nil Clean Rings

In this section, we study some of the basic properties of weakly n−nil clean rings.
Moreover, we give some necessarily examples.

Definition 1. Let R be a ring and n ∈ N where n > 2. An element r ∈ R is called
weakly n−nil clean if there exist b ∈ N(R) and an n−potent element s of R such
that r = b + s or r = b − s. A ring R is called weakly n−nil clean if all of its
elements are weakly n−nil clean.

For n > 2, let s be an n−potent and b be a nilpotent. For r ∈ R, we write
r = b ± s if r is either a sum b + s or a difference b − s. Obviously, every n−nil
clean ring is weakly n−nil clean. Since the ring Z6 is a weakly nil clean ring that
is not nil clean, then trivially Z6 is a weakly 2−nil clean ring which is not 2−nil
clean. For a non trivial example, one can easily verify that the ring Z3 is weakly
4−nil clean but not 4−nil clean. Moreover, if a ring R is a weakly n-nil clean, then
it is weakly n-clean. Indeed, if we let x ∈ R, then x − 1 = b ± s where b ∈ N(R)
and sn = s. So, x = (b + 1) ± s where b + 1 ∈ U(R). The converse is not true
in general. For example, simple computations show that the ring R = T2(Z3) is
weakly 5-clean which is not weakly 5-nil clean.
Next, we give some properties of the class of weakly n−nil clean rings. The proof

of the following proposition is straightforward.

Proposition 1. Let R and S be two rings, µ : R→ S be a ring epimorphism and
n > 2. If R is weakly n−nil clean, then S is weakly n−nil clean.

The following Properties (2), (3) and (4) in Corollary 1 are direct consequences
of Proposition 1. The proofs of Properties (1) and (5) are similar to that of (weakly)
g(x)-nil clean appeared in [10, 11, 12].

Corollary 1. Let R and S be ring and let n > 2. The following hold:
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(1) If I is an ideal in R and R is weakly n−nil clean, then R/I is weakly n−nil
clean. Moreover, the converse holds if I is nil and potent elements lift modulo I.
(2) If the upper triangular matrix ring Tn(R) is weakly n−nil clean, then R is

weakly n−nil clean.
(3) If the skew formal power series R[[x, α]] (or in particular R[[x]]) over R is

weakly n−nil clean, then R is weakly n−nil clean.
(4) Let M be an (R,S)-bimodule and T =

[
A M
0 B

]
be the formal triangular

matrix ring. If T is weakly n−nil clean, then R and S are weakly n−nil clean.
(5) If R is commutative and M an R-module. Then the idealization R(M) of R

and M is weakly n−nil clean if and only if R is weakly n−nil clean.

Proposition 2. Let R =
∏
i∈I Ri be a direct product of rings with I is finite and

|I| ≥ 2 and let n > 2. R is weakly n−nil clean if and only if there exist k ∈ I such
that Rk is weakly n−nil clean and Rj is n−nil clean for j 6= k.

Proof. ⇒) : For each i ∈ I, Ri is a homomorphic image of
∏
i∈I Ri under the

projection homomorphism. Hence, Ri is weakly n−nil clean by Proposition 1.
Without loss of generality, assume that neither R1 nor R2 are n−nil clean. Then
there exist r1 ∈ R1 and r2 ∈ R2 such that r1 is not a sum of a nilpotent and an
n−potent and r2 is not a difference of a nilpotent and an n−potent. Thus (r1, r2)
is not weakly n−nil clean in R1 ×R2, a contradiction.
⇐) : Assume that Rk is weakly n−nil clean for a fixed index k ∈ I. Thus Rj

is n−nil clean for all j 6= k. Let r = (ri) ∈ R. Then there exist bk ∈ N(Rk) and
an n−potent sk such that rk = bk + sk or rk = bk − sk. If rk = bk + sk, then for
each i ∈ I − {k}, write ri = bi + si where bi ∈ N(Ri) and sni = si. Therefore,
r = (bi) + (si) is a sum of a nilpotent and an n−potent. If rk = bk − sk, then for
each i ∈ I − {k}, write ri = bi − si where bi ∈ N(Ri) and sni = si. Consequently,
r = (bi)−(si) is a difference of a nilpotent and an n−potent. Therefore, R is weakly
n−nil clean. �
Definition 2. Let R be a ring and let m ∈ N. Then R is said to have the nil
m-involution property if for every r ∈ R, we have r = u + v where u ∈ 1 ± N(R)
and vm = 1.

We now justify the relation between weakly n−nil clean rings and rings with nil
(n− 1)-involution property for an odd n ∈ N.

Proposition 3. Let R be a ring and let n be an odd integer with n ≥ 2. If R has
the nil (n − 1)-involution property, then R is (weakly) n−nil clean. If moreover,
aR (or Ra) contains no non trivial idempotent for every non unit a ∈ R, then the
two statements are equivalent.

Proof. Suppose R has the nil (n − 1)-involution property and let r ∈ R. Write
r + 1 = u + v where u ∈ 1 ± N(R) and vn−1 = 1. Then r = (u − 1) + v where
u− 1 ∈ N(R) and v is clearly an n−potent element in R.
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Now, we assume that for every non unit a ∈ R, aR (or Ra) contains no non
trivial idempotents and suppose R is weakly n−nil clean. Let a ∈ R and write
a − 1 = b ± s where b ∈ N(R) and sn = s. Then asn−1 = (b + 1)sn−1 ± s and
so a(1 − sn−1) = (b + 1)(1 − sn−1) = u(1 − sn−1) where u ∈ U(R). Since clearly
u(1 − sn−1)u−1 = a(1 − sn−1)u−1 ∈ aR is an idempotent, then by assumption
u(1 − sn−1)u−1 = 0 or u(1 − sn−1)u−1 = 1. Therefore sn−1 = 1 or sn−1 = 0. In
the last case, we get s = sn = 0 and so a = b+ 1 is a unit, a contradiction. Thus,
a = (b + 1) + (±s) where (±s)n−1 = 1 since n − 1 is even. The case when Ra
contains no non trivial idempotent for every non unit a ∈ R is similar. Therefore,
R has the nil (n− 1)-involution property. �

It is easy to see that the ring Z4 is a (weakly) 4−nil clean ring with aZ4 contains
no non trivial idempotent for every a ∈ Z4. But, Z4 does not have the nil 3-
involution property. Therefore, the equivalence in Proposition 3 need not be hold
for an even integer n.
Let R be a ring and G be a finite cyclic group. In the following Proposition, we

determine conditions under which the group ring RG is (weakly) n−nil clean. We
recall that R is called an n−potent ring if an = a for every a ∈ R.

Proposition 4. Let G any cyclic group of order p (prime).
(1) If R is a Boolean ring, then RG is a 2p−1−potent ring (and so is (weakly)

2p−1−nil clean).
(2) If R is a commutative 3−potent ring of characteristic 3, and p 6= 3, then RG

is a 3p−1−potent ring (and so is (weakly) 3p−1−nil clean).

Proof. (1) See Proposition 3.17 in [10].
(2) Let G =

{
1, g, g2, ..., gp−1

}
where gp = 1 and let x = a0 + a1g + a2g

2 +

... + ap−1g
p−1 ∈ RG. First, we prove by induction that x3k =

p−1∑
i=0

aig
i∗(3k) for all

k ∈ N. Let k = 1. Since R is 3−potent ring of characteristic 3, one can see that

x3 = a0+ a1g
3+ a2g

6+ ...+ ap−1g
3(p−1) =

p−1∑
i=0

aig
3i. Suppose the result is true for

k. Then x3
k+1

= (x3)3
k

=
p−1∑
i=0

ai(g
3)i∗(3

k) =
p−1∑
i=0

aig
i∗(3k+1). By Fermat Theorem,

3p−1 = 1+np for some integer n. Thus, x3
p−1

=
p−1∑
i=0

aig
i∗(3p−1) =

p−1∑
i=0

aig
i∗(1+np) =

p−1∑
i=0

aig
i = x. Therefore, RG is a 3p−1−potent ring. �

By Proposition 4, we conclude that the ring Z2(C3) is (weakly) 4−nil clean and
Z3(C2) is (weakly) 3−nil clean.

Proposition 5. Let R be a ring and let n > 2. If R is (weakly) n−nil clean, then
J(R) is nil.
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Proof. Let a ∈ J(R). Then a = b±s where b ∈ N(R) and sn = s. If a = b−s, then
a+ s ∈ N(R). If we choose m ∈ N such that (a+ s)m = 0, then clearly sm ∈ J(R).
If m � n, then sn−1 ∈ J(R). Since also s(1 − sn−1) = 0 and 1 − sn−1 ∈ U(R),
then s = 0. If m ≥ n, then we can similarly see that s = 0. Hence a = b ∈ N(R).
Similarly, the case a = b+ s gives a ∈ N(R) and so J(R) is nil. �

3. When the ring Zm is (weakly) n−nil clean

In the main Theorem of this section, we completely determine all n,m ∈ N such
that the ring Zm is (weakly) n-nil clean. We recall that for m ∈ N, the set of
all positive integers less than or equal m that are relatively prime to m is a group
under multiplication modulom. it is denoted by Z×m and is called the group of units
modulo m. This group is cyclic if and only if m is equal to 2, 4, pk, or 2pk where
pk is a power of an odd prime. A generator of this cyclic group is called a primitive
root modulo m. The order of Z×m is given by Euler’s totient function ϕ(m). It is
easy to see that for any prime integer p and any k ∈ N, ϕ(pk) = pk−1(p − 1). For
more details one can see [13].

Lemma 1. For any n, k ∈ N, the ring Z2k is n−nil clean.

Proof. For any n ∈ N, at least 0 and 1 are n−potent elements in Z2k . Since
N(Z2k) =

{
0, 2, 4, ..., 2(2k−1 − 1)

}
, then clearly any element in Z2k is a sum of a

nilpotent and an n−potent. �

The following lemma is a special case of the well known Hensel’s Lemma.

Lemma 2. Let n, k ∈ N and p be an odd prime integer. Consider the congruence
f(x) ≡ 0(mod p) where f(x) ∈ Z[x]. If r is a solution of the congruence with
f ′(r) is not congruent to 0(mod p), then there exists a unique integer s such that
f(s) ≡ 0(mod pk) and r ≡ s(mod p).

In particular, for a prime integer p and 1 ≤ m ≤ p − 1, let r be a solution
of xm − 1 ≡ 0(mod p). Then mrm−1 is not congruent to 0(mod p). Hence, r
corresponds to a unique solution s of xm − 1 ≡ 0(mod pk) such that r ≡ s(mod p).
The following Lemma is well known in number theory. However, we give the

proof for the sake of completeness.

Lemma 3. Let n, k ∈ N and p be any prime integer and let d = gcd(n, pk−1(p−1)).
Then
(1) The polynomial xn − 1 ∈ Zpk [x] has d solutions in Zpk .
(2) If p

k−1(p−1)
d is even, then the polynomial xn + 1 ∈ Zpk [x] has d solutions in

Zpk . Otherwise, it has no solutions.

Proof. (1) Consider the cyclic group of units Z×
pk
with order ϕ(pk) = pk−1(p − 1).

Let g be a generator for Z×
pk
and let a = gm ∈ Z×

pk
be a solution of xn ≡ 1(mod pk).

Then an = gmn ≡ 1(mod pk) and so pk−1(p − 1) divides mn. If we let d =
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gcd(n, pk−1(p− 1)), then pk−1(p−1)
d divides m. Therefore, the solution set of xn− 1

in Zpk forms a subgroup generated by g
pk−1(p−1)

d . The result follows since this
subgroup is clearly of order d.
(2) Consider again the generator g of the cyclic group of units Z×

pk
. Since

gp
k−1(p−1) ≡ 1(mod pk), then g must satisfy g

pk−1(p−1)
2 ≡ −1(mod pk). Hence,

x = gm is a solution of xn ≡ −1(mod pk) if and only if pk−1(p − 1) divides 2mn
and so pk−1(p−1)

d must divides 2m. If p
k−1(p−1)

d is not even, then xn ≡ −1(mod pk)
has no solutions. However, if p

k−1(p−1)
d is even, then g

pk−1(p−1)
2d is one solution of

xn ≡ −1(mod pk). The other solutions can be obtained by multiplying by the d
solutions of xn ≡ 1(mod pk). �

Theorem 1. Let n, k ∈ N and p be any odd prime integer. If d = gcd(n−1, pk−1(p−
1)), then Zpk is n−nil clean if and only if d = pt(p− 1) for some 0 ≤ t ≤ k − 1.

Proof. To be brief, let S denotes the set of all zeros of xn−x in Zpk and T denotes
the set of sums of every element in N(Zpk) to every element in S.
⇐) : Suppose d = gcd(n, pk−1(p− 1)) = p− 1. By Lemma 3, The multiplicative

group G of roots of unity modulo pk is of order p−1 and so ap−1 ≡ 1(mod pk) for all
a ∈ G. Now, By Fermat Theorem, any a ∈ G is also a solution of xp−1 ≡ 1(mod p).
By Lemma 2, the p−1 solutions of xp−1 ≡ 1(mod p) correspond uniquely to the p−1
solutions of xp−1 ≡ 1(mod pk). Hence, the p− 1 solutions of xp−1 ≡ 1(mod pk) are
congruent to 1, 2, ..., p− 1 in some order. Now, N(Zpk) =

{
0, p, 2p, ..., (pk−1 − 1)p

}
is of order pk−1. If n1 + a = n2 + b for some a, b ∈ S and n1, n2 ∈ N(Zpk), then
a − b ≡ nn − n1 ≡ 0(mod p). Thus, a ≡ b(mod p) which is true only if a = b = 0.
Therefore, T has exactly ppk−1 = pk distinct elements and Zpk is n−nil clean.
Next, suppose d = pt(p − 1) for some 1 ≤ t ≤ pk. If ap

t(p−1) ≡ 1(mod pk), then
ap−1 ≡ (ap−1)pt ≡ 1(mod p). Again, by Lemma 2, the p− 1 solutions corresponds
uniquely to p− 1 distinct solutions of xpt(p−1) ≡ 1(mod pk). Hence, similar to the
above argument, we conclude that Zpk is n−nil clean.
⇒) : Suppose d = mpt for some m | (p − 1) with m 6= p − 1 and 0 ≤ t ≤ pk−1.

If t = 0, then T has at most (m + 1)pk−1 � pk elements and so Zpk is not n−nil
clean. Let t 	 0 and consider xmpt ≡ 1(mod pk). Then xm ≡ (xm)pt ≡ 1(mod p)
has at most m solutions (mod p). By Lemma 2, any solution of xmp

t ≡ 1(mod pk)
is congruent to one of the m solutions of xm ≡ 1(mod p). Choose 1 ≤ c ≤ p − 1
such that c is not a solution of xm ≡ 1(mod p) and suppose c = a + f for some
a ∈ S and f ∈ N(Zpk). If a = 0, then c ∈ N(Zpk), a contradiction. Suppose
a 6= 0 and let 1 ≤ r ≤ p − 1 such that rm ≡ 1(mod p) and a ≡ r(mod p). Then
c ≡ r + f ≡ r(mod p) which is a contradiction. Hence, again Zpk is not n−nil
clean. �
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Corollary 2. For any even integer n and odd prime p, the ring Zpk is not n−nil
clean.

Definition 3. Let R be a ring and n > 2. R is called (xn+x)-nil clean if for every
r ∈ R, r = b+ s where b ∈ N(R) and sn = −s.

By direct computations one can easily verify that for any even integer n, R is
(xn+x)-nil clean if and only if R is n−nil clean. However for any odd integer n and
odd prime integer p, we prove in the following lemma that Zpk is never (xn+x)-nil
clean.

Lemma 4. For any k ∈ N and n > 2, the ring Z2k is (xn+x)-nil clean if and only
if gcd(n− 1, 2k) 6= 2k.

Proof. The proof follows directly by (2) in Lemma 3. �
Theorem 2. Let p be a prime integer and k, n ∈ N where n is odd. Then Zpk is
never (xn + x)-nil clean.

Proof. ⇐) : By lemma 3, xn−1 ≡ −1(mod pk) has a solution if p
k−1(p−1)

d is even
where d = gcd(n − 1, pk−1(p − 1)). Hence, clearly if d = pt(p − 1) for some 0 ≤
t ≤ k − 1, then Zpk is not (xn + x)-nil clean. Suppose d = mpt for some m | p− 1
with m 6= p− 1 and 0 ≤ t ≤ k − 1. Then xm ≡ (xm)pt ≡ −1(mod p). Clearly, this
congruence has less than p− 1 solutions. Thus, as in the proof of the similar case
in Theorem 1, we conclude that Zpk is not (xn + x)-nil clean. �
Corollary 3. Let m,n, k ∈ N and write m = pr1

1
pr22 ...p

t
t where p1, p2, ..., pt are

distinct prime integers. Then the ring Zm is n−nil clean if and only if for all
i = 1, 2, ..., t, gcd(n− 1, pri−1i (pi − 1)) = pli(pi − 1) for some 0 ≤ l ≤ ri − 1.

Proof. We have Zm ' Zpr11 × Zpr22 × ...× Zprtt . By Proposition (2.6) in [10], Zm is
n−nil clean if and only if Zprii is n−nil clean for all i = 1, 2, ..., t. Hence, the result
follows by Theorem 1 and Lemma 1. �
As special cases, we have

Corollary 4. Let n ∈ N and consider the ring Zn. Then
(1) For any m ∈ N, Zn is 2m−nil clean if and only if n = 2k for k ∈ N ∪ {0}.
(2) Zn is 3−nil clean if and only if n = 2k × 3m for k,m ∈ N ∪ {0}.
(3) Zn is 5−nil clean if and only if n = 2k × 3m × 5l for k,m, l ∈ N ∪ {0}.
(4) Zn is 7−nil clean if and only if n = 2k × 3m × 7l for k,m, l ∈ N ∪ {0}.

For n,m ∈ N, we next clarify when the ring Zm is weakly n−nil clean.

Theorem 3. Let n, k ∈ N, p be any odd prime integer and d = gcd(n−1, pk−1(p−
1)). Then

(1) Zpk is weakly n−nil clean if and only if d = pt(p−1) or d = pt(p−1)
2 for some

0 ≤ t ≤ k − 1.
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(2) Zpk is weakly (xn + x)−nil clean if and only if d = pt(p−1)
2 for some 0 ≤ t ≤

k − 1.

Proof. (1)⇐) : Let 0 ≤ t ≤ k−1. If d = pt(p−1), then Zpk is (weakly) n−nil clean
by Theorem 1. Suppose d = pt(p−1)

2 , then for any solution a of xn−1 ≡ 1(mod pk),
we have a

p−1
2 ≡ (a

(p−1)
2 )p

t

= a
pt(p−1)

2 ≡ 1(mod p). Clearly, the congruence x p−1
2 ≡

1(mod p) has p−12 solutions. By Lemma 2, those p−1
2 solutions correspond uniquely

to p−1
2 solutions of x

pt(p−1)
2 ≡ 1(mod pk). Let T1 (respectivelyT2) be the set of all

sums (respectively, differences) of each of the p−1
2 solutions of x

pt(p−1)
2 ≡ 1(mod pk)

and each nilpotent in Zpk . By imitating the proof of Theorem 1, we can see that T1
(respectivelyT2) has (

p−1
2 )p

k−1 distinct elements. Moreover, if a
pt(p−1)

2 ≡ 1(mod pk)
and b ∈ N(Zpk) such that b + a = b − a, then 2a = 0 which is a contradiction.
Thus, N(Zpk) ∪ T1 ∪ T2 contains exactly (2(p−12 ) + 1)p

k−1 = pk distinct elements
and so Zpk is weakly n−nil clean.
⇒) : Suppose d 6= pt(p− 1) and d 6= pt(p−1)

2 for all 0 ≤ t ≤ k− 1. Then d = mpt

for somem | p−1 wherem 6= p−1. Hence, eitherm = p−1
2 orm � p−1

2 . Ifm = p−1
2 ,

then we get a contradiction. Suppose m � p−1
2 and consider xmp

t ≡ 1(mod pk).
Then xm ≡ (xm)p

t ≡ 1(mod p) has at most m solutions. Since m � p−1
2 , then

similar to the above argument, the set of all sums or difference of each nilpotent
and each solution of xn−x will not cover Zpk . Thus, Zpk is not weakly n−nil clean.
(2) ⇒) : If d = pt(p − 1) for some 0 ≤ t ≤ k − 1, then xn−1 ≡ −1(mod pk) has

no solution and so Zpk is not weakly (xn + x)-nil clean. Suppose d = mpt where
0 ≤ t ≤ k − 1, m 6= p − 1 and m | p − 1. If m � p−1

2 , then similar to the proof of
(1), Zpk is also not weakly (xn + x)-nil clean. Hence, we must have m = p−1

2 and

d = pt(p−1)
2 for some 0 ≤ t ≤ k − 1.

⇐) : Suppose d = pt(p−1)
2 then clearly x

p−1
2 ≡ (x p−1

2 )p
t ≡ −1(mod p) has p−1

2

solutions each of which corresponds uniquely to a solution of x
pt(p−1)

2 ≡ −1(mod pk).
Define T1 and T2 as in (1) for the congruence x

pt(p−1)
2 ≡ −1(mod pk), we can

similarly see that N(Zpk)∪T1∪T2 contains exactly pk distinct elements and so Zpk
is weakly (xn + x)-nil clean. �

Corollary 5. Let n, k ∈ N, p be any odd prime integer and d = gcd(n−1, pk−1(p−
1)). Then Zpk is weakly n−nil clean that is not n−nil clean if and only if d = pt(p−1)

2
for some 0 ≤ t ≤ k − 1.

For example Z5k is a weakly 3−nil clean that is not 3−nil clean for any k ∈ N.
Now, we can use Theorem 3 and Proposition 2 to prove the following corollary.

Corollary 6. Let m,n, k ∈ N and write m = pr1
1
pr22 ...p

t
t where p1, p2, ..., pt are

distinct prime integers. Then the ring Zm is weakly n−nil clean if and only if there
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is at most 1 ≤ j ≤ t such that for some 1 ≤ lj ≤ rj − 1 gcd(n − 1, prj−1j (pj −

1)) = p
lj
j (pj − 1) or

p
lj
j (pj−1)

2 and gcd(n − 1, pri−1i (pi − 1)) = plii (pi − 1) for some
1 ≤ li ≤ ri − 1 for all i 6= j.
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CESÀRO SUMMABILITY OF INTEGRALS OF
FUZZY-NUMBER-VALUED FUNCTIONS

ENES YAVUZ, ÖZER TALO, AND HÜSAMETTİN ÇOŞKUN

Abstract. In the present study, we have introduced Cesàro summability of
integrals of fuzzy-number-valued functions and given one-sided Tauberian con-
ditions under which convergence of improper fuzzy Riemann integrals follows
from Cesàro summability. Also, fuzzy analogues of Schmidt type slow decrease
and Landau type one-sided Tauberian conditions have been obtained.

1. Introduction

Given a locally integrable function f : [0,∞) → C, the Cesàro operator Cf is
defined by

(Cf)(x) :=
1

x

∫ x

0

f(t)dt, x ∈ (0,∞).

In classical analysis, the Cesàro operator was investigated from various aspects and
a large number of results have appeared recently [1—5]. Titchmarsh [6] also used
the operator as a convergence method for divergent integrals and introduced the
Cesàro summability of integrals [7, p.11]. Following this introduction, the concept
of Cesàro summability of integrals received considerable attention and Tauberian
conditions under which Cesàro summable improper integrals converge have been
investigated [7—15]. Also, there are studies applying the concept to Fourier integrals
[6,16—19].
In the light of the developments mentioned above, establishment of the concept of

Cesàro summability of integrals for fuzzy analysis is also of importance for handling
divergent integrals of fuzzy-number-valued functions. The concept of integration
of fuzzy-number-valued functions has already been introduced by Dubois et al.
[20] and studied by many mathematicians [21—24]. Also, in particular, Bede and
Gal[25] have proved that there exists a mean value, or a Cesàro sum, for any
almost periodic fuzzy-number-valued function and given some applications of these
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functions to fuzzy differential equations and to fuzzy dynamical systems. At this
point, approaching the concept of ‘mean value’ from perspective of summability
theory, we define Cesàro summability of integrals of fuzzy-number-valued functions
and give various types of convergence conditions for Cesàro summable improper
integrals of fuzzy-number-valued functions.

2. Preliminaries

A fuzzy number is a fuzzy set on the real axis, i.e. u is normal, fuzzy convex,
upper semi-continuous and suppu = {t ∈ R : u(t) > 0} is compact [26]. We denote
the space of fuzzy numbers by E1. α-level set [u]α of u ∈ E1 is defined by

[u]α :=

{
{t ∈ R : u(t) ≥ α} , if 0 < α ≤ 1,

{t ∈ R : u(t) > α} , if α = 0.

Each r ∈ R can be regarded as a fuzzy number r defined by

r(t) :=

{
1 , if t = r,
0 , if t 6= r.

Let u, v ∈ E1 and k ∈ R. The addition and scalar multiplication are defined by
[u+ v]α = [u]α + [v]α = [u−α + v−α , u

+
α + v+α ], [ku]α = k[u]α

where [u]α = [u−α , u
+
α ], for all α ∈ [0, 1].

Lemma 1. [25] The following statements hold:
(i) 0 ∈ E1 is neutral element with respect to +, i.e., u+ 0 = 0 + u = u for all

u ∈ E1.
(ii) With respect to 0, none of u 6= r, r ∈ R has opposite in E1.
(iii) For any a, b ∈ R with a, b ≥ 0 or a, b ≤ 0 and any u ∈ E1, we have

(a+ b)u = au+ bu. For general a, b ∈ R, the above property does not hold.
(iv) For any a ∈ R and any u, v ∈ E1, we have a(u+ v) = au+ av.
(v) For any a, b ∈ R and any u ∈ E1, we have a(bu) = (ab)u.

The metric D on E1 is defined as

D(u, v) := sup
α∈[0,1]

d([u]α, [v]α) := sup
α∈[0,1]

max{|u−α − v−α |, |u+α − v+α |}.

where d is the Hausdorff metric.

Proposition 1. [25] Let u, v, w, z ∈ E1 and k ∈ R. Then,
(i) (E1, D) is a complete metric space.
(ii) D(ku, kv) = |k|D(u, v).
(iii) D(u+ v, w + v) = D(u,w).
(iv) D(u+ v, w + z) ≤ D(u,w) +D(v, z).
(v) |D(u, 0)−D(v, 0)| ≤ D(u, v) ≤ D(u, 0) +D(v, 0).
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Partial ordering relation on E1 is defined as follows:

u � v ⇐⇒ [u]α � [v]α ⇐⇒ u−α ≤ v−α and u+α ≤ v+α for all α ∈ [0, 1].

We say a fuzzy number u is negative if and only if u(t) = 0 for all t ≥ 0 (see
[27]).
Combining the results of Lemma 6 in [28], Lemma 5 in [29], Lemma 3.4, Theorem
4.9 in [30] and Lemma 14 in[31], following Lemma is obtained.

Lemma 2. Let u, v, w, e ∈ E1 and ε > 0. The following statements hold:

(i) D(u, v) ≤ ε if and only if u− ε � v � u+ ε
(ii) If u � v + ε for every ε > 0, then u � v.
(iii) If u � v and v � w, then u � w.
(iv) If u � w and v � e, then u+ v � w + e.
(v) If u+ w � v + w then u � v.

Definition 1. A fuzzy-number-valued function f : [a, b]→ E1 is said to be contin-
uous at x0 ∈ [a, b] if for each ε > 0 there is a δ > 0 such that D(f(x), f(x0)) < ε
whenever x ∈ [a, b] with |x− x0| < δ. If f is continuous at each x ∈ [a, b], then we
say f is continuous on [a, b].

Definition 2. [32] A fuzzy-valued function f : [a, b] → E1 is called Riemann
integrable on [a, b], if there exists I ∈ E1 with the property : ∀ε > 0, ∃δ > 0 such
that for any division of [a, b] d : a = x0 < x1 < · · · < xn = b of norm v(d) < δ, and
for any points ξi ∈ [xi, xi+1] i = 0, n− 1, we have

D

(
n−1∑
i=0

f(ξi)(xi+1 − xi), I
)
< ε.

Then I =
b∫
a

f(x)dx.

Theorem 1. [32] If the fuzzy-number-valued function f : [a, b]→ E1 is continuous
(with respect to the metric D) and for each x ∈ [a, b], f(x) has the parametric
representation

[f(x)]α = [f−α (x), f+α (x)],

then
b∫
a

f(x)dx exists, belongs to E1 and is parametrized by b∫
a

f(x)dx


α

=

 b∫
a

f−α (x)dx,

b∫
a

f+α (x)dx

 .
Using the results of Anastassiou [22] we have

Theorem 2. If f : [a, b]→ E1 and g : [a, b]→ E1 are continuous then
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(i)
b∫
a

(αf(x) + βg(x))dx = α
b∫
a

f(x)dx+ β
b∫
a

g(x)dx where α and β are real numbers.

(ii)
b∫
a

f(x)dx =
c∫
a

f(x)dx+
b∫
c

f(x)dx where a < c < b.

(iii) The function F : [a, b]→ R+ defined by F (x) = D(f(x), g(x)) is continuous on
[a, b] and

D

 b∫
a

f(x)dx,

b∫
a

g(x)dx

 ≤ b∫
a

F (x)dx.

(iv)
x∫
a

f(t)dt is a continuous function in x ∈ [a, b].

(v)
b∫
a

f(x)dx �
b∫
a

g(x)dx whenever f(x) � g(x) for all x ∈ [a, b].

Definition 3. Suppose f(x) is a fuzzy-number-valued function defined on the un-
bounded interval [a,∞). Then we define∫ ∞

a

f(x)dx = lim
t→∞

∫ t

a

f(x)dx

provided the limit on the right-hand side exists in E1, in which case we say the
integral converges and is equal to the value of limit. Otherwise, we say the integral
diverges.

3. Main Results

Definition 4. Let f : [0,∞) → E1 be a continuous fuzzy-number-valued function

and s(t) =
t∫
0

f(x)dx. The Cesàro means of s(t) are defined by

σ(t) =
1

t

∫ t

0

s(u)du, t ∈ (0,∞). (3.1)

The integral ∫ ∞
0

f(x)dx (3.2)

is said to be Cesàro summable to a fuzzy number L if limt→∞ σ(t) = L. The value
of this limit is said to be the Cesàro sum of the integral.

Theorem 3. If the integral (3.2) converges to a fuzzy number L, then (3.1) also
converges to L.

Proof. Let

lim
t→∞

s(t) =

∫ ∞
0

f(x)dx = L
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for some L ∈ E1. Then given any ε > 0 there exists t0 > 0 such that D(s(t), L) < ε
2

whenever t ≥ t0 and there existsM > 0 such that D(s(t), L) < M whenever t < t0.
So we have

D(σ(t), L) = D

(
1

t

∫ t

0

s(u)du, L

)
= D

(
1

t

∫ t

0

s(u)du,
1

t

∫ t

0

Ldu

)
=

1

t
D

(∫ t

0

s(u)du,

∫ t

0

Ldu

)
≤ 1

t

∫ t

0

D(s(u), L)du

=
1

t

∫ t0

0

D(s(u), L)du+
1

t

∫ t

t0

D(s(u), L)du

≤ t0M

t
+
ε

2

(t− t0)
t

<
t0M

t
+
ε

2

Since lim
t→∞

t0M
t = 0, there exists t1 > 0 such that

∣∣ t0M
t

∣∣ < ε
2 whenever t ≥ t1. So

there exists t2 = max{t0, t1} such that
D(σ(t), L) < ε

whenever t ≥ t2. This completes the proof. �
By the following example it can be easily seen that the converse statement of

Theorem 3 is not true in general.

Example 1. Take the fuzzy-number-valued function f : [0,∞)→ E1 such that

(f(x))(t) =


(t− cosx).(x+ 1)2, if cosx ≤ t ≤ cosx+ 1

(1+x)2
,

2− (t− cosx).(x+ 1)2, if cosx+ 1
(1+x)2

≤ t ≤ cosx+ 2
(1+x)2

,

0, otherwise.

Then f is continuous and

f−α (x) = cosx+
α

(x+ 1)2
, f+α (x) = cosx+

2− α

(x+ 1)2∫ t

0

f−α (x)dx = sint+ α

(
1− 1

t+ 1

)
,

∫ t

0

f+α (x)dx = sint+ (2− α)

(
1− 1

t+ 1

)
Obviously

∞∫
0

f(x)dx is divergent. To calculate Cesàro mean, considering (3.1) we

have

σ−α (t) =
1

t

∫ t

0

s−α (u)du =
1

t

∫ t

0

(∫ u

0

f−α (x)dx

)
du = −cos t

t
+
1

t
+ α

(
1− ln(t+ 1)

t

)
σ+α (t) =

1

t

∫ t

0

s+α (u)du =
1

t

∫ t

0

(∫ u

0

f+α (x)dx

)
du = −cos t

t
+
1

t
+ (2− α)

(
1− ln(t+ 1)

t

)
.
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So we get

limt→∞ σ−α (t) = α
limt→∞ σ+α (t) = 2− α

}
=⇒ [L]α = [α, 2− α] and lim

t→∞
D(σ(t), L) = 0

Then
∞∫
0

f(x)dx is Cesàro summable to fuzzy number L such that

L(t) =


t if 0 ≤ t ≤ 1,

2− t if 1 ≤ t ≤ 2,

0 otherwise.

We need the following Lemma for the proofs of our main results.

Lemma 3. If s be a continuous fuzzy-number-valued function then for every λ > 1

1

λt− t

∫ λt

t

s(x)dx+
1

λ− 1
σ(t) = σ(λt) +

1

λ− 1
σ(λt) (3.3)

and for every 0 < ` < 1

1

t− `t

∫ t

`t

s(x)dx+
`

1− `σ(`t) = σ(t) +
`

1− `σ(t). (3.4)

Proof. Let s be a continuous fuzzy-number-valued function. Then for every λ > 1
we have

σ(λt) +
1

λ− 1
σ(λt) =

λ

λ− 1
σ(λt)

=
λ

λ− 1

1

λt

∫ λt

0

s(x)dx

=
1

(λ− 1)t

{∫ t

0

s(x)dx+

∫ λt

t

s(x)dx

}

=
1

λ− 1
σ(t) +

1

t(λ− 1)

∫ λt

t

s(x)dx
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by Lemma 1 and Theorem 2. On the other hand for every 0 < ` < 1, using Lemma
1 and Theorem 2 again, we get

σ(t) +
`

1− `σ(t) =
1

1− `σ(t)

=
1

1− `
1

t

∫ t

0

s(x)dx

=
1

1− `
1

t

{∫ `t

0

s(x)dx+

∫ t

`t

s(x)dx

}

=
`

1− `
1

`t

∫ `t

0

s(x)dx+
1

t(1− `)

∫ t

`t

s(x)dx

=
`

1− `σ(`t) +
1

t− `t

∫ t

`t

s(x)dx.

So equalities (3.3) and (3.4) are satisfied. �

As a result of Lemma 3 we conclude the following lemma.

Lemma 4. If integral (3.2) is Cesàro summable to a fuzzy number L, then for
every λ > 1

lim
t→∞

1

λt− t

∫ λt

t

s(x)dx = L (3.5)

and for every 0 < ` < 1

lim
t→∞

1

t− `t

∫ t

`t

s(x)dx = L. (3.6)

Now we give Tauberian conditions under which convergence of the improper
integral follows from Cesàro summability.

Theorem 4. Let fuzzy-number-valued function f : [0,∞) → E1 be continuous. If
integral (3.2) is Cesàro summable to a fuzzy number L, then it converges to L if
and only if for every ε > 0 there exist t0 ≥ 0 and λ > 1 such that for t > t0

1

λt− t

∫ λt

t

s(x)dx � s(t)− ε (3.7)

and another 0 < ` < 1 such that

1

t− `t

∫ t

`t

s(x)dx � s(t) + ε. (3.8)

Proof. Necessity. Let the integral (3.2) converge to L. Using inequality

D

(
1

λt− t

∫ λt

t

s(x)dx, s(t)

)
≤ D

(
1

λt− t

∫ λt

t

s(x)dx, L

)
+D(L, s(t)),
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if we consider the equality (3.5) in Lemma 4 then for λ > 1 we obtain

lim
t→∞

D

(
1

λt− t

∫ λt

t

s(x)dx, s(t)

)
= 0.

For 0 < ` < 1, validity of (3.8) can also be obtained analogously by using the
equality (3.6) of Lemma 4.
Suffi ciency. Assume that integral (3.2) is Cesàro summable to L and (3.7), (3.8)

are satisfied. By (3.7), there exist t1 ≥ 0 and λ > 1 such that for t > t1

1

λt− t

∫ λt

t

s(x)dx � s(t)− ε

3
·

Besides since

lim
t→∞

D

(
1

λ− 1
σ(t),

1

λ− 1
σ(λt)

)
= 0,

there exists t2 ≥ 0 such that for t > t2

D

(
1

λ− 1
σ(t),

1

λ− 1
σ(λt)

)
≤ ε

3
·

So by (i) of Lemma 2 we get that

1

λ− 1
σ(t)− ε

3
� 1

λ− 1
σ(λt) � 1

λ− 1
σ(t) +

ε

3
.

Also, since lim
t→∞

σ(λt) = L, there exists t3 ≥ 0 such that D(σ(λt), L) ≤ ε
3 for t > t3,

meaning

L− ε

3
� σ(λt) � L+

ε

3
·

Then considering the equality (3.3) , there exists t4 = max{t1, t2, t3} such that for
t > t4

s(t)− ε

3
+

1

λ− 1
σ(t) � L+

ε

3
+

1

λ− 1
σ(t) +

ε

3
·

So by (v) of Lemma 2, for t > t4 we have

s(t) � L+ ε. (3.9)

On the other hand, if we consider the condition (3.8), equality (3.4), Lemma 2 and
proceed in a similar way as that above, we get that there exists a t∗4 ≥ 0 such that
for t > t∗4

s(t) � L− ε. (3.10)

Then combining inequalities (3.9) and (3.10), we obtain

L− ε � s(t) � L+ ε

whenever t > max{t4, t∗4} and this completes the proof. �
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Definition 5. A fuzzy-number-valued function s(x) is said to be slowly decreasing
if for every ε > 0 there exist t0 ≥ 0 and λ > 1 such that

s(x) � s(t)− ε
whenever t0 < t < x ≤ λt.

Remark 1. Fuzzy-number-valued function s(x) is slowly decreasing if and only if
the family of real valued functions {s−α (x) | α ∈ [0, 1]} and {s+α (x) | α ∈ [0, 1]} are
equi-slowly decreasing i.e. ∀ε > 0 there exist t0 ≥ 0 and λ > 1 such that for all
α ∈ [0, 1]

s−α (x)− s−α (t) ≥ −ε and s+α (x)− s+α (t) ≥ −ε whenever t0 < t < x ≤ λt.

Lemma 5. If the fuzzy-number-valued function s(x) is slowly decreasing, then for
every ε > 0 there exist t0 ≥ 0 and 0 < λ < 1 such that for every t > t0

s(t) � s(x)− ε whenever λt < x ≤ t. (3.11)

Proof. The proof of the lemma is done by contradiction method. Assume that the
fuzzy-number-valued function s(x) is slowly decreasing and there exists ε0 > 0 such
that for all 0 < λ < 1 and t0 ≥ 0 there exist real numbers x and t > t0 for which

s(t) � s(x)− ε0 whenever λt < x ≤ t.
Therefore, there exists α0 ∈ [0, 1] such that

s−α0(t) < s−α0(x)− ε0 or s+α0(t) < s+α0(x)− ε0. (3.12)

At this point we recall the reformulated condition of Móricz [9] for a slowly decreas-
ing real valued function f such that

lim
λ→1−

lim inf
t→∞

min
λt≤x≤t

[f(t)− f(x)] ≥ 0. (3.13)

No matter which case we choose in (3.12), one of the real valued functions s−α0(t)
and s+α0(t) does not satisfy the condition (3.13). So at least one of them is not slowly
decreasing which contradicts the hypothesis that fuzzy-number-valued function s(x)
is slowly decreasing. �
It is clear that if function s is slowly decreasing then conditions (3.7) and (3.8)

are satisfied by (i) and (v) of Theorem 2. So next corollary immediately follows:

Corollary 1. If f is a continuous fuzzy-number-valued function such that integral
(3.2) is Cesàro summable to a fuzzy number L and its integral function s(t) is slowly
decreasing, then the integral (3.2) converges to L.

Theorem 5. Let f be a continuous fuzzy-number-valued function on [0,∞). If
there exist negative constant fuzzy number u and a real number x0 ≥ 0 such that

xf(x) � u for x > x0, (3.14)

then fuzzy-number-valued function s(t) =
t∫
0

f(x)dx is slowly decreasing.
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Proof. Let xf(x) � u be satisfied under the given conditions on u and x0 in the
theorem. Then for x > x0 we have

xf−α (x) ≥ u−α ≥ u−0 , xf+α (x) ≥ u+α ≥ u+1 ≥ u−0 .

For the sake of simplicity let take u−0 = −H where H > 0. Then

xf−α (x) ≥ −H ⇒ f−α (x) ≥ −H
x

, xf+α (x) ≥ −H ⇒ f+α (x) ≥ −H
x

are satisfied. Then for x0 < t < x ≤ λt when λ > 1, we have

s−α (x)− s−α (t) =

∫ x

t

f−α (u)du ≥ −H
∫ x

t

du

u
= −H ln

x

t
≥ −H lnλ

and

s+α (x)− s+α (t) =

∫ x

t

f+α (u)du ≥ −H
∫ x

t

du

u
= −H ln

x

t
≥ −H lnλ.

Choosing λ = eε/H , we get the inequalities

s−α (x) ≥ s−α (t)− ε , s+α (x) ≥ s+α (t)− ε

and then s(x) � s(t)− ε holds whenever x0 < t < x ≤ λt. �

Example 2. Let the fuzzy-number-valued function f : [0,∞)→ E1 be given as

(f(x))(t) =


t

2−sin x , if 0 ≤ t ≤ 2− sinx,

2− t
2−sin x , if 2− sinx ≤ t ≤ 2(2− sinx).

Then

f−α (x) = (2− sinx)α , f+α (x) = (2− sinx)(2− α).

Since f±α (x) ≥ 0 holds for each α ∈ [0, 1] and x > 0, we have

xf−α (x) ≥ 0 , xf+α (x) ≥ 0

which means that xf(x) � 0. So s(t) is slowly decreasing.

As a result of Theorem 5 the following one-sided Tauberian condition is obtained.

Corollary 2. If f is a continuous fuzzy-number-valued function such that integral
(3.2) is Cesàro summable to a fuzzy number L and condition (3.14) is satisfied,
then the integral (3.2) converges to L.

We note that one may extend Cesàro summability method to continuous fuzzy-
number-valued functions and give analogs of Theorem 3—4, Corollary 1 for Cesàro
summability of fuzzy-number-valued functions. The proofs are done identically by
replacing integral function s with general continuous fuzzy-number-valued function
in corresponding proofs and hence omitted.
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Definition 6. A continuous fuzzy-number-valued function f : [0,∞)→ E1 is said
to be Cesàro summable to a fuzzy number L if

lim
t→∞

1

t

∫ t

0

f(x)dx = L.

Theorem 6. Let f be a continuous fuzzy-number-valued function. If limt→∞ f(t) =
L, then f is Cesàro summable to fuzzy number L.

Theorem 7. If a continuous fuzzy-number-valued function f is Cesàro summable
to a fuzzy number L, then limt→∞ f(t) = L if and only if for every ε > 0 there exist
t0 ≥ 0 and λ > 1 such that for t > t0

1

λt− t

∫ λt

t

f(x)dx � f(t)− ε

and another 0 < ` < 1 such that

1

t− `t

∫ t

`t

f(x)dx � f(t) + ε.

Theorem 8. If a continuous fuzzy-number-valued function f is Cesàro summable
to a fuzzy number L and f is slowly decreasing, then limt→∞ f(t) = L.
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PORTFOLIO OPTIMIZATION UNDER PARAMETER
UNCERTAINTY USING THE RISK AVERSION FORMULA

SIBEL ACIK KEMALOGLU, GULTAC EROGLU INAN, AND AYSEN APAYDIN

Abstract. The Markowitz portfolio optimization model has certain diffi cul-
ties in practise since real data are rarely certain. The robust optimization is
a recently developed method that is used to overcome the uncertainty situ-
ation. The technique has been recently suggested in the portfolio selection
problems. In this study, two kinds of portfolio optimization problems are pre-
sented: (i) the risk aversion portfolio optimization problem based on the clas-
sical Markowitz framework, and (ii) the max-min counterpart problem based
on the robust optimization framework. In the application, the two models are
performed on a real-world data set obtained from BIST (Borsa Istanbul). Nu-
merical results show that the objective function values of the classical solution
and the robust solution are similar to each other. It can be said that the robust
model, which works as well as the classical model in the uncertainty situations,
can be used instead of the classical model and also that the optimal solution
obtained in the uncertainty situation is robust to parameter perturbation.

1. INTRODUCTION

The main objective of the portfolio optimization problem is to choose the optimal
portfolio with minimum variance from the set of all possible portfolios for any given
level of expected return. Markowitz [22] formulated the first mathematical model
for portfolio selection in the literature. After Markowitz, Sharpe [26] developed the
Capital Asset Pricing Model (CAPM) and then Linter [19] and Mossin [24] used
the Markowitz theory in their studies. In the literature, there are various other
portfolio optimization methods developed in the context of the portfolio theory
besides Markowitz, such as safety-first models, elliptical distributions, value at risk-
based optimization, maximizing the performance measures EVA and RAROC and
modelling the uncertainty of input parameters [10].
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The Markowitz mean-variance portfolio optimization is a well-known investment
theory that is widely used in allocating the assets. Its biggest influence can be seen
on the practice of portfolio management. The theory is focused on evaluating and
managing the risks and returns of a portfolio of investments. This is highly advan-
tageous as the resulting “optimized”portfolio will either have the same expected
return with fewer risks than before or a higher expected return with the same level
of risk. The Markowitz mean-variance optimization problem has several alterna-
tive formulations that are used in practical applications. One of these alternative
formulations is using a risk aversion coeffi cient in the model, which is called the
risk aversion formulation. This study handles the risk aversion formulation of the
classical Markowitz model.
Although the Markowitz model is successful in the theory, there are various

challenges of the model. The parameter uncertainty is an important issue in the
optimization problems. In the Markowitz model, the uncertainty in the market
parameters affects the optimal solution of the problem. Thus, the results cannot
be reliable enough. There are numerous studies in the literature to overcome the
diffi culties of the Markowitz model: Chopra and Ziemba [8] studied the estimated
parameters. Broadie and Chopra [6] used the estimation errors in their study.
Chopra [7] and Frost and Savarino [12, 13] presented a method related to the
portfolio weights. Chopra et al. [9] used the James-Stein estimator for the means,
Klein and Bawa [16], Frost and Savarino [12], and Black and Litterman [5] used the
Bayesian estimation of means and covariances [19].
An underlying assumption of Markowitz’s model is that the precise estimates

of µi and σij have been obtained. Consequently, µi and σij are treated as known
constants; however, asset returns are variable. It is reasonable to conclude that
a model which treats returns as known constants will produce a portfolio whose
realized return is different from the optimal portfolio return given by the objective
function value. In particular, when the realized asset returns are less than the es-
timates used to optimize the model, the realized portfolio return will be less than
the optimal portfolio return given by the objective. Therefore, it is worthwhile ex-
ploring the alternative frameworks, such as the robust optimization, for application
to the portfolio selection problem. Although the distributions of asset returns are
uncertain, in the robust optimization framework, it may be asserted that µand σ,
or both, belong to an uncertainty set, the bounds of which can be defined [15].
The aim of the method is to obtain a solution that is robust to the parameter

uncertainty and estimation errors. In this framework, the robust counterpart of
the original problem is handled. The robust problem is in fact the worst-case
formulation of the original problem.
The first studies in the robust optimization framework are given in the studies of

Ben-Tal and Nemirovski [2], [3], [4]. The first study handled the robust approach
for linear programming. The other studies introduced the robust framework for
convex programming. In these studies, it is assumed that the model parameters are
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unknown, but they are bounded and belong to the specific uncertainty sets defined
by historical knowledge. The aim of the robust (worst-case) approach is to obtain
the optimal solution of the model which is robust to the parameter uncertainty
and the worst-case situation. The robust counterpart of the original problem is
handled in the robust model.
Goldfarb and Iyengar handled various robust portfolio selection problems in

their study, such as the robust mean-variance portfolio selection, the robust mini-
mum variance problem, the robust maximum return problem, the robust maximum
Sharpe Ratio problem, and the robust value at risk problem [14].
There are many latest references in the literature about the robust portfolio

selection problem. Wang and Cheng [28] considered the robust portfolio selection
problem which has a data uncertainty described by the (p, w)-norm in the objective
function. Balbás A., Balbás B. and Balbás R. [1] handled portfolio selection prob-
lems under risk and ambiguity. Yu X. [29] developed a multi-period mean-variance
model where the model parameters change according to a market with Markov
random regime switching. Nalan G. and Canakoglu E. [25] considered a portfo-
lio selection problem under temperature uncertainty. They introduced stochastic
and robust portfolio optimization models using weather derivatives. LotfiS., Salahi
M. and Mehrdoust F. [20] used the robust optimization approach to address the
ambiguity in the conditional value-at-risk minimization model.
The aim of this study is to introduce the risk aversion portfolio selection prob-

lem under the input parameter µ uncertainty. This problem is called the (maxmin)
robust counterpart of the risk aversion problem. Moreover, it is aimed to obtain
the optimal portfolio (the optimal solution of the robust problem) under this un-
certainty and to compare the solution with the classical risk aversion solution.
In Inan [16] and Inan [17], the robust optimization approach is studied on the

portfolio optimization problem. Numerical results showed that the classical optimal
solution and the robust optimal solution gave similar values to the objective func-
tion. As a result, the optimal solution obtained in the uncertainty case is robust to
the uncertainty case. The finding in the study is consistent with these studies.
The rest of this paper is organized as follows: In Section 2, the Markowitz port-

folio optimization model and another alternative model, the risk aversion problem,
is introduced. Section 3 presents the robust portfolio optimization method. The
(max-min) robust counterpart of the problem is given. Finally, the max-min prob-
lem is converted into the classical maximum problem by the Lagrange method. In
Section 4, a numerical example of the model with a real data set is handled. The
data is taken from BIST (Borsa Istanbul). In Section 5, some conclusions in certain
and uncertain situations are given.
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2. MARKOWITZ MEAN-VARIANCE PORTFOLIO OPTIMIZATION
PROBLEM

Harry Markowitz published his study and formed the basis for themean-variance
optimization “Portfolio Selection” in 1952. He suggested that investors should
create the optimal portfolio based on the balance between the expected return and
the risk. In the Markowitz portfolio model, the returns are defined as the mean
vector, and the risk is defined as the variance of return. The model uses the opti-
mization and probability methods together under uncertainty. The model comprises
the return matrix, the mean vector and variance-covariance matrix components.
Suppose that an investor has a portfolio comprised of n risky assets, denoted as

Si The return of the security Si is defined as Ri, and the weight of the i.security
in the portfolio is defined as Xi.
The model can be created in two frameworks: (i) minimizing the risk of the

portfolio for a certain level of expected return, (ii) maximizing the return of the
portfolio for a certain level of risk.
The first model is given as,

minXtΣX

µtX ≥ α
n∑
i=1

Xi = 1

Xi ≥ 0, i = 1, ..., n (2.1)

The second model is given as,

maxµtX

XtΣX ≤ β
n∑
i=1

Xi = 1

Xi ≥ 0, i = 1, ..., n (2.2)

where α, β are constant, which are called the level degree. The descriptions of the
model components are given as follows:

(Rk1, ..., Rkn)
t represents the n kinds of returns at time k (k = 1, ...,m), where

Rki is the return of i.securities, i = 1, ..., n, k = 1, ...,m. The total data matrix is
represented as,  R11 ... R1n

...
...

Rm1 ... Rmn

 (2.3)
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The return vector is denoted as R = [R1...Rn]
t inm period, it contains the expected

value (mean) of each security. The expected vector of R is denoted as;

µ = [µ1...µn]
t

The input parameters µ and Σ are not certain. It is very diffi cult to estimate the
correct values of these parameters. In the Markowitz model, the estimates of these
parameters are used as follows:

µ = [µ1...µn]
t (2.4)

µ =
[∑m

k=1
Rk1
m ...

∑m
k=1

Rkn
m

]t
and the covariance matrix is given by,

Σ =

 σ11 ... σ1N
· · · · · ·
σN1 · · · σNN

 (2.5)

Here; σij is the covariance between asset i and asset j.
The corresponding variance is given as,

σij
2 =

m∑
k=1

(Rki − µi)
(
Rkj − µj

)
m− 1

(2.6)

Thus, the random return vector R is represented by the (µ,Σ), [25].
There are two different definitions of R. One of them is the random vector. In

finance applications, one should use the adjusted (from splits and dividends) stock
prices to make calculations. However, it is diffi cult to obtain the adjusted stock
prices from the splits and dividends, so only the closing prices are used in the study.
The alternative model that combines the risk and the return of the objective

function can be created using the coeffi cient of risk aversion. The risk aversion
formulation problem is defined as,

max
(
µ
′
X − λX

′
ΣX

)
X

′
l = 1, l = [1, 1, ..., 1] (2.7)

where, λ is the risk aversion coeffi cient. When the investor is exposed to the uncer-
tainty situation, the risk aversion coeffi cient can be used to reduce that uncertainty.
If λ is large, the aversion to the risk is high. For example, the risk-averse investor
might make an investment in treasury bonds that have low but guaranteed expected
returns. Otherwise, if λ is small, the aversion to the risk is low. For example, the
risk-loving investor might make an investment in stocks, the options of which have
high expected returns but also high risks.
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3. ROBUST PORTFOLIO OPTIMIZATION PROBLEM

In spite of the theoretical success of the mean-variance model, practitioners have
shied away from this model. The solution of optimization problems is often very
sensitive to perturbations in the parameters of the problem. Since the estimates
of the market parameters are subject to statistical errors, they are very sensitive
to the perturbations in the inputs. The results of the optimization problems may
not be very reliable. There are a number of discussions on how to decrease or
eliminate the possibility of using incorrect inputs for the optimization problem.
Various aspects of this phenomenon have been extensively studied in the literature
on portfolio selection.
Michaud [23] proposed to use the technique of resampling. In his study, he

suggested resampling the input parameters from a confidence region and then aver-
aging the cumulative portfolios that were obtained by each pair of sampling data.
The main idea is that if resampling was performed enough times, the averaged op-
timal portfolio would be more stable and less sensitive to the perturbations in the
inputs. But when the amount of assets becomes large, this method is not useful
and effi cient [21].
The robust optimization is the one of the aspects in the portfolio selection prob-

lems [14]. In the robust approach, the worst-case formulation of the original
optimization problem, called the robust counterpart of the problem, is handled.
The robust counterpart of the classical risk aversion model is used in this study.
In [11], the (maxmin) robust counterpart of the risk aversion model is given

as

max
X

min
µ∈Uδ(µ̂)

(
µ
′
X − λX

′
ΣX

)
X

′
l = 1, l = [1, 1, ..., 1] (3.1)

In the problem, it is assumed that the expected return vector µis unknown but belongs
to the specific uncertainty set Uδ (µ̂). Many special uncertainty sets are defined for
the uncertain parameters in the literature. In this study, the uncertainty set for µ
is taken as

Uδ (µ̂) = {µ/(µ− µ̂)′(Σµ)
−1

(µ− µ̂ ) ≤ δ2} (3.2)

where the parameters of the model are defined as follows:
µ̂ :The estimated expected return vector
µ :The true expected return vector
Σµ = 1

T Σ , Estimation error covariance matrix
T : Return data observations for N assets.
δ : small number (δ > 0)
The aim of the problem is to determine the weight vector X, which is robust to

the uncertainty and the worst-case realization of the µ parameter.
For solving the robust (maxmin) problem easily, the problem is converted to the

standard maximum optimization problem as follows:
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Firstly, the uncertainty set is written as a constraint, then the problem can be
written as

minµ

(
µ
′
X − λX

′
ΣX

)
(µ− µ̂)

′
(Σµ)

−1
(µ− µ̂) ≤ δ2 (3.3)

To solve this problem, the Lagrangian method can be used. The Lagrangian of the
problem takes the form,

L (µ, γ) = µ
′
X − λX

′
ΣX − γ

(
δ2 − (µ− µ̂)

′
(Σµ)

−1
(µ− µ)

)
(3.4)

The optimal values of µ and γ are obtained by the first order condition as

µ∗ = µ̂− 1

2γ
ΣµX (3.5)

γ∗ =
1

2δ

√
X ′ΣµX (3.6)

Finally, by substituting the expressions in the Lagrangian form, the robust problem
is obtained as

max

(
µ
′
X − λX

′
ΣX − δ

√
X ′ΣµX

)
X

′
l = 1. (3.7)

4. APPLICATION

In this section, the robust portfolio selection approach, which was originally
presented in the study by Fabozzi et al., is suggested. The data set is taken as the
daily closing prices of nine securities that cycled in BIST 100 between 20.08.2013
and 20.08.2015. In the study, the daily stock price is chosen instead of the monthly
stock price because the number of monthly stock price, which is 24 (for two years),
may not be enough for the application.
The securities taken from the automotive sector belong to Balat, Asuzu, Daos,

Karsn, Tmsn, Froto, Toaso, Ttrak, and Otkar. The returns of the securities
were calculated according to the expression ln (Pt/Pt−1) of the closing prices. Here;
Pt : Closing prices of t. day
The average vector µ, the variance covariance matrix Σ, and the estimation error

covariance matrix ΣM are calculated on the returns. Here;

ΣM =
1

T
Σ

T :Return data observations for N assets
In this study, T is given as 502 days between the designated dates (20.08.2013—

20.08.2015). The return vector µ, the Σ variance covariance matrix Σ and the
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estimation error covariance matrix Σµ are obtained as follows. Note that the values
in the variance covariance matrix Σµ are multiplied by 1000.

µ =



0.00000620
−0.00157000

0.00088650
0.00018563
0.00063045
0.00069976
0.00043500
0.00091629
0.00054343



Σ=

0.000623 0.000047 0.000363 0.000214 0.000249 0.000291 0.000283 0.000238 0.000200
0.000047 0.000804 0.000076 0.000024 0.000119 0.000047 0.000102 0.000053 0.000039
0.000363 0.000076 0.000869 0.000306 0.000324 0.000338 0.000340 0.000396 0.000213
0.000214 0.000024 0.000306 0.000429 0.000146 0.000216 0.000226 0.000281 0.000137
0.000249 0.000119 0.000324 0.000146 0.000607 0.000254 0.000297 0.000188 0.000158
0.000291 0.000047 0.000338 0.000216 0.000254 0.000674 0.000337 0.000243 0.000213
0.000283 0.000102 0.000340 0.000226 0.000297 0.000337 0.000765 0.000239 0.000177
0.000238 0.000053 0.000396 0.000281 0.000188 0.000243 0.000239 0.000598 0.000149
0.000200 0.000039 0.000213 0.000137 0.000158 0.000213 0.000177 0.000149 0.000378

Σµ=

0.001246 0.000093 0.000725 0.000429 0.000497 0.000582 0.000566 0.000476 0.000400
0.000093 0.001607 0.000152 0.000048 0.000239 0.000094 0.000204 0.000105 0.000077
0.000725 0.000152 0.001739 0.000611 0.000648 0.000676 0.000680 0.000791 0.000426
0.000429 0.000048 0.000611 0.000858 0.000293 0.000433 0.000451 0.000562 0.000275
0.000497 0.000239 0.000648 0.000293 0.001215 0.000507 0.000595 0.000376 0.000315
0.000582 0.000094 0.000676 0.000433 0.000507 0.001348 0.000675 0.000486 0.000426
0.000566 0.000204 0.000680 0.000451 0.000595 0.000675 0.001529 0.000479 0.000354
0.000476 0.000105 0.000791 0.000562 0.000376 0.000486 0.000479 0.001195 0.000298
0.000400 0.000077 0.000426 0.000275 0.000315 0.000426 0.000354 0.000298 0.000756

The classical model and the robust model, which have been defined in Section 2
and Section 3, are handled in the application. The models are given as follows:
The classical risk aversion portfolio optimization problem

max
(
µ
′
X − λX

′
ΣX

)
X

′
l = 1, l = [1, 1, ..., 1]

The robust problem

max

(
µ
′
X − λX

′
ΣX − δ

√
X ′ΣµX

)
X

′
l = 1

In the first case, the problem (2.7) is solved for the different 20 values of λ, which
is chosen by the information given in the Risk Aversion Formula by Fabozzi et al.
[11]. The λ is chosen with an increase of 0.2. The [0,4] interval can be divided into
smaller pieces so the number of λ can be increased.
For the different values of λ, the movement of the expected return, the variance

and the objective function value are seen in the related Figure 1, Figure 2 and
Figure 3.The figures show that when the value of λ increases (The aversion to risk
is high—the risk-aversion investor), the values of the expected return, the variance
and the objective function decrease. For the small values of λ (the aversion to risk
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Figure 1. The movement of E : Expected V alue and V : V ariance

for the classical problem

Figure 2. The movement of E and V for the robust problem

is low—the risk-lover investor), the values of the expected return, the variance and
the objective function increase. In this case, it can be said that if the investor
prefers the high expected return, the high risk must be considered.
In the robust case, when the expected return µ parameter is robust, the aim is

to show the movement of the optimal solution to the parameter uncertainty. For
this aim, the robust problem, which is given in (3.7), is solved for different λ and δ
values.
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Figure 3. The movements of the objective functions for the classical
problem and the robust problem

Table 1. The differences between the objective function values for the classical
and the robust problem

λ f_classical(x)− f_robust(x)
0.2 0.0004380
0.4 0.0004408
0.6 0.0004546
0.8 0.0004869
1.0 0.0003630
1.2 0.0002022
1.4 0.0006047
1.6 0.0006361
1.8 0.0006652
2.0 0.0005666
2.2 0.0007187
2.4 0.0007442
2.6 0.0007688
2.8 0.0007929
3.0 0.0008167
3.2 0.0008400
3.4 0.0008634
3.6 0.0008103
3.8 0.0009110
4.0 0.0009252

If there is a need to compare the solution of the robust problem with the solution
of the classical problem, it is observed that for the same λ values, the expected
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return of the classical problem is larger than that of the robust problem. At the
same time, its variance is smaller than the variance of the robust problem. In this
situation, an investor should prefer the classical model.
On the other hand, the performances of portfolio models are measured by the

Sharpe Ratio (SR) method. The Sharpe Ratio is defined as

SR =
E (rp)√
V ar (rp)

.

High SR values mean high performance. The Sharpe Ratio values obtained for
the classical and the robust problem are presented in Table 2.

Table 2. The Sharpe ratio values for the classical and the robust problem.
Sharpe ratio (Classical) Sharpe ratio (Robust)

0.039004 0.020146
0.039332 0.020146
0.041081 0.020146
0.042440 0.020146
0.042931 0.020017
0.043053 0.018400
0.043017 0.017066
0.042916 0.015955
0.042789 0.015024
0.042655 0.014241
0.042526 0.013568
0.042404 0.012994
0.042285 0.012495
0.042081 0.012059
0.041943 0.011673
0.042081 0.011328
0.041514 0.011022
0.041113 0.010750
0.040747 0.010504
0.040390 0.010279

It is seen that the classical Sharpe Ratio values are higher than the robust Sharpe
Ratio values. Therefore, it can be said that the performance of the classical problem
is better than the performance of the robust problem. However, in the uncertainty
situations, it is recommended that the robust problem be used, which works as well
as the classical problem.

5. CONCLUSION

The portfolio optimization model of Harry Markowitz can be created in two
frameworks, which minimize the risk of the portfolio for a certain level of expected
return and maximize the return of the portfolio for a certain level of risk. In spite
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of the theoretical success of the mean-variance model, practitioners have avoided
this model. The alternative model that combines the risk and the return of the
objective function can be created using the coeffi cient of risk aversion. The solution
of optimization problems is often very sensitive to perturbations in the parameters
of the problem. In the literature, there are many alternative methods suggested to
overcome the parameter perturbations. The robust optimization is one of the most
commonly used models in the uncertainty case.
The results show that when the value of λ increases, the values of the expected

return, the variance and the objective function decrease. It means that the aversion
to risk is high here, so it can be said that the investor is the risk-aversion investor.
For the small values of λ, on the other hand, the values of the expected return, the
variance and the objective function increase. Here, the aversion to risk is low, so it
means that the investor is the risk-lover investor. In this case, it can be said that
if the investor prefers the high expected return, the high risk must be taken into
consideration.
If the solution of the robust problem is to be compared with the solution of the

classical problem, it is observed that for the same λ values, the expected return
of the classical problem is larger than the robust problem. At the same time, its
variance is smaller than the robust problem variance. In this situation, an investor
should prefer the classical model. The classical solution obtained in the certainty
situation and the solution obtained in the uncertainty situation give similar values
at the objective function. Consequently, it can be said that the optimal solution
in the uncertainty situation is robust to ambiguity of the parameter µ. The robust
model, which works as well as the classical model in the uncertainty situations, can
be used instead of the classical model.
Finally, the performances of portfolio models are measured by the Sharpe Ratio

(SR) method. It is seen that the classical Sharpe Ratio values are higher than
the robust Sharpe ratio values; however, the robust problem, which works well to
overcome uncertainty, should be preferred in the uncertainty situations.
In the future studies, the problem can be solved for different values of λand δ.

The data was taken from the automotive sector in this study. In order to improve
the study, it is possible to investigate other sectors. In the modelling part, the
short-selling is forbidden. However, in theory it is possible to allow short-selling.
Hence, allowing the sort-selling will be studied in the future. The solutions can be
compared for all these situations.
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MODIFICATIONS OF KNUTH RANDOMNESS TESTS FOR
INTEGER AND BINARY SEQUENCES

ONUR KOÇAK, FATIH SULAK, ALI DOĞANAKSOY, AND MUHIDDIN UĞUZ

Abstract. Generating random numbers and random sequences that are in-
distinguishable from truly random sequences is an important task for cryptog-
raphy. To measure the randomness, statistical randomness tests are applied to
the generated numbers and sequences. Knuth test suite is the one of the first
statistical randomness suites. This suite, however, is mostly for real number
sequences and the parameters of the tests are not given explicitly.

In this work, we review the tests in Knuth Test Suite. We give test para-
meters in order for the tests to be applicable to integer and binary sequences
and make suggestions on the choice of these parameters. We clarify how the
probabilities used in the tests are calculated according to the parameters and
provide formulas to calculate the probabilities. Also, some tests, like Per-
mutation Test and Max-of-t-test, are modified so that the test can be used
to test integer sequences. Finally, we apply the suite on some widely used
cryptographic random number sources and present the results.

1. Introduction

Random numbers have an important role in various areas. From daily life cryp-
tographic applications like cell phone, SSL [1] to military communication random
numbers are vital. The quality of the random number generator is vital for the
security level of the application. For example, if the key used in an encryption
algorithm is not random, that is some bits of the key can be guessed with a proba-
bility higher than 1

2 , then the complexity for obtaining the ciphertext will be easier
than the claimed security of the algorithm. Therefore, generating random numbers
and random sequences that are indistinguishable from a truly random sequence
is an important task. Random numbers are generated either from a determinis-
tic or an non-deterministic generator. The term random number generator(RNG)
generally refers to the non-deterministic random number generators. There are
various true random number generators actively sold in the market [2, 3]. The
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deterministic random number generators are called pseudo-random number genera-
tors (PRNGs) [4,5]. For some reasons like regenerating the random number or the
effi ciency of the generator, the PRNGs are preferred over RNGs. Among with the
advantages PRNGs are weaker than RNGs in terms of randomness of the output
as they are deterministic. Therefore, the PRNGs should be tested to measure how
their outputs are close to the the outputs of the RNGs. For this purpose, PRNGs
are subject to statistical randomness tests.
A statistical randomness test compares a specific property of the sequence to

that of a truly random sequence and produces an output value which indicates the
randomness of the sequence. For example, in a random bit sequence, the number
of ones and the number of zeros should be equal or close to each other. Frequency
test [6] checks if the number of occurrences of ones and zeros within the sequence
are as expected from a truly random sequence.
A single test is not enough to conclude randomness of a PRNG. The generator

should be tested by various statistical randomness tests, each of which inspects
a different aspect of a random sequence. Therefore, various tests are gathered
together to form a test suite and applied to sequences. Knuth [7], NIST [6], Diehard
[8], Dieharder [9], TestU01 [10] are examples of tests suites in the literature.
Knuth is one of the first researchers who published a test suite consisting of 11

tests in his book [7]. In this suite, the underlying theory of tests for real number
sequences are given. Some of these tests are intended to be applicable to integer
sequences as well. However, assumptions for real number sequences are not suit-
able for integer sequences and causes problems when testing these sequences. For
example, Permutation Test assumes any successive terms cannot be equal and all
the test probabilities are given under this assumption but the equality occurs with
a non-negligible probability for integer sequences. In order to the make the suite
suitable for integer and binary sequences, new combinatorial calculations should
be made. Moreover, even if one tests a real number sequence, the test parameters
like sequence length, alphabet size, block size and the like, are not given for most
of the tests in the suite. Therefore, besides new calculations, corresponding test
parameters should be given for each test for the suite to be applicable.
In this paper, we calculate the test probabilities for binary and integer sequences

by considering the abovementioned problems. Moreover, we calculate χ2 probabil-
ities for all tests to have a similar evaluation approach with Knuth. We also give
test parameters, necessary sequence lengths and corresponding probability values,
regarding effi ciency and applicability. As a result, we modify 9 tests of Knuth Test
Suite so that the modified tests are applicable to binary sequences.
The paper is organized as follows. In Section 2 the notation used in the paper

and preliminary information about the primitives used in the calculations are given.
Then, in Section 3, the details of the tests are given. In Section 4 the application
results are presented. Finally, Section 5 concludes the paper.
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2. Preliminaries

In Knuth Test Suite, integer valued sequences are considered. However, in order
to use Knuth Test suite for cryptographic purposes we consider binary sequences
in the following manner. Assume that a binary sequence, S of length l, and a
block size b are given. Then, partition the sequence into non-overlapping blocks
of size b, and discard the remaining terms, if any. Each block is considered as
base 2 representation of an integer in {0, 1, . . . , 2b − 1}. In this way, we obtain an

integer sequence of length lb =
⌊
l

2b

⌋
where the elements are from an alphabet of

size d = 2b. In other words,

S = s1s2 . . . sl, si ∈ A, for 1 ≤ i ≤ l, and A = {0, 1, . . . , d− 1}.

For instance if the binary sequence

S = 10010100100111101

is given and the alphabet size for the test is 8 (or block size b is 3), then the sequence
should be converted to 3-bit integer sequence:

S′ = (100)2(101)2(001)2(001)2(111)201 = 4, 5, 1, 1, 7.

Note that the partitioning is non-overlapping for all the tests mentioned in this
paper. It is also trivial to convert any integer sequence to the d-bit integer sequence.
Some tests partition the sequence into blocks of t consecutive elements and con-

sider the distribution of the blocks. In this case, n denotes the number of blocks.

S = (s1s2 . . . st)(st+1 . . . s2t) . . . (s(n−1)t+1 . . . snt)

= b1b2 . . . bn

Moreover, some tests need to apply operations on the sequence multiple times.
Knuth evaluates the sequences using χ2 goodness-of-fit test which compares the

observations to the expected values using k bins [7]. The observed number of
elements in each bin is compared to the expected number of elements. In order
to apply χ2 properly, each bin should have at least 5 elements. The test outputs
a p-value which is the probability of getting the observed results given that the
sequence is random. To decide if a sequence passes a test or fails, a limit called
significance level, α, is specified. If the p-value is greater than or equal to α, the
sequence is said to pass the test. In statistical randomness testing, generally, α is
chosen to be 0.01 or 0.05.
In the probability calculations of some tests, the Stirling numbers of the second

kind is used. Stirling numbers of the second kind is the number of ways to partition

a set of g elements into h non-empty subsets and denoted by
{
g
h

}
. The Stirling
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number of the second kind
{
g
h

}
can be computed as

{
g
h

}
=
1

h!

h∑
j=0

(−1)h−j
(
h

j

)
jn.

3. Knuth’s Statistical Randomness Tests

In this chapter, the tests in the Knuth test suite is investigated in details. For
some tests, major changes are proposed without changing the approach followed by
Knuth. Moreover, we propose test parameters that are not given in [7] for all the
tests mentioned in this work.
We cover all the tests in Knuth test suite except the Run Test and the Serial

Correlation Test. In the Run Test, it is assumed that the successive elements
cannot be equal. For real number sequences this assumption is reasonable, however,
for integer sequences the successive elements can be equal with a non-negligible
probability. Without this assumption, the required computations are quite diffi cult
and the modification of run test, unlike other tests, is beyond the scope of this
paper. Yet, there is an ongoing work to modify the run test for integer and binary
sequences. The Serial Correlation Test, on the other hand, does not output a p-
value and the output of this test is not comparable to the outputs of the other
tests.

3.1. Equidistribution (Frequency) Test. Equidistribution test checks if num-
ber of occurrences of each element a ∈ A are as expected from a random sequence.
Knuth proposed two methods to apply this test;

(1) Use the Kolmogorov-Smirnov test with F (x) = x for 0 ≤ x < d.
(2) For each element a, 0 ≤ a < d, count the number of times a appeared in

the sequence and then apply the χ2 test with degree of freedom k = d− 1,
where the expected probability of each bin is pa = 1

d .

In this work, we proceed considering the second method. In [7], no parameters
are given for the alphabet size and the length of the sequence. In order to apply
the χ2 test properly, the size of the alphabet should be chosen accordingly with
the length of the sequence. For example, if S is 128 bits, then d, the size of the
alphabet, should be at most 4. Otherwise, the expected number of elements in each
bin cannot exceed 5 and χ2 test cannot be applied. In fact, for each bin to have
at least 5 elements, we should have l · 1d ≥ 5, ie. l ≥ 5d. Since each element is of
size log2d bit, the length of the sequence should be at least 5d log2d bits. Leaving
a safe distance, Table 1 can be used to decide on the alphabet size d for a given
sequence size.
The following is an example on how to apply the test and calculate the p-value.

Let S = 10001010110111110100100110110010, with lb = 32. According to Table 1,
the alphabet size should be 4 ie. each element is 2-bit. Then, the counters for 2-bit
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lb lb ≤ 20 20 < lb ≤ 80 80 < lb ≤ 240 240 < lb ≤ 640 640 < lb ≤ 1600
d 2 4 8 16 32

Table 1. Sequence Bit Length-Alphabet Size Table for Equidis-
tribution Test

elements are #00 : 3,#01 : 3,#10 : 6,#11 : 4. Alternatively, one can convert the
sequence into a 2-bit integer sequence S′ = 2, 0, 2, 2, 3, 1, 3, 3, 1, 0, 2, 1, 2, 3, 0, 2 and
count the number of occurrences of each element. The test value can be computed
as

χ2 =

k∑
i=1

(Observedi − Expectedi)2
Expectedi

=

4∑
i=1

(Observedi − 4)2
4

= 0.25 + 0.25 + 1 + 0

= 1.5

The p-value for degree of freedom k = 3 and the test value 1.5 is 0.6822. As-
suming the significance level of α = 0.01, the sequence passes the Equidistribution
Test.

3.2. Serial Test. In Knuth test Suite, Serial test is an Equidistribution Test for
pairs and hence it is equivalent of Equidistribution Test with alphabet size d2.
It checks whether the pairs of elements are equally distributed within the tested
sequence or not. The test is proposed as follows: partition the sequence into non-
overlapping subsequences of size two: S2 = (s1, s2), (s3, s4) . . . (s2n−1, s2n). Then,
for each possible pair (q, r) with 0 ≤ q, r < d, count the number of occurrences
of the pair (q, r) and apply χ2 goodness-of-fit test with d2 − 1 degrees of freedom
and 1

d2 expected probability for each bin. Since there are
l
2 pairs and each bin has

the same probability, for χ2 to be applicable, the inequality l
2
1
d2 ≥ 5 should be

satisfied, which gives l ≥ 10d2. Therefore, the length of the sequence should be at
least 10d2 log2d bits.
The suggested parameters for the Serial Test are given in Table 2.

lb lb ≤ 80 80 < lb ≤ 480 480 < lb ≤ 2880 2880 < lb ≤ 15360
d 2 4 8 16
Table 2. Sequence Bit Length-Alphabet Size Table for Serial Test

This test can be extended to triples or quadruples easily, however, l should be
large enough or d should be taken small in order to get reasonable number of
triples/quadruples.
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3.3. Gap Test. This test examines the distribution of the lengths of the gaps
among the elements of a specified set within the sequence. To apply the test, first,
a subset U of A is fixed. Then, the number of gaps between the elements of U in
the sequence S are counted according to their lengths. For example, assume A =
{0, 1, . . . , 7}, S = 7, 2, 4, 6, 2, 5, 2, 7, 4, 5, 6, 0, 7, 4, 1, 1, 7, 0, 4, 1 and let U = {a | a <
4, a ∈ A}. If we mark the elements of U we get S = 7,2, 4, 6,2, 5,2, 7, 4, 5, 6,0, 7, 4,
1,1, 7,0, 4,1, 6. The gaps between the elements of U are of length 2, 1, 4, 2, 0, 1, 1
in order. The number of gaps of size zero is 1, size one is 3, size two is 2 and size four
is 1. Finally, the observed distribution of the length of the gaps are compared to the
expected distribution applying χ2 goodness-of -fit test and a p-value is obtained.
The following algorithm gives the expected probabilities of the length of the

gaps.

Theorem 1. Let A be an alphabet of size d and U be any nonempty subset of A.
Let S be a random sequence of elements of A and let si ∈ U for some i. Then, the
probability that si+k /∈ U for k = 1, 2, .., r is

pr =

(
1− |U|

d

)r |U|
d
.

Proof. In order for a gap of length r to occur, after an element of U, r elements from
the set A\U should follow and to terminate the gap there must follow an element
from U:

u v . . . v︸ ︷︷ ︸
r

u, u ∈ U, v ∈ A\U

Since an element from U will appear in the sequence with probability |U|d the prob-
ability of the length of the gap to be r is (1− pu)rpu. �

For the example above, pu = 4
8 . Therefore, the probabilities of the length of the

gaps being 0, 1, 2 and 3 are 1
2 ,

1
4 ,

1
8 and

1
16 respectively. So, since the number of

total gaps is 7, the expected number of gaps are 7
2 ,

7
4 ,

7
8 and

17
16 for 0, 1, 2 and 3.

Applying the χ2 test with the expected and observed values we get the p-value as
0.183255.
For short sequences as above the probability of long gaps will be very small. On

the other hand, for long sequences the number of lengths will be too many to handle.
Therefore, it is a good idea to limit the number of lengths as r = 0, 1, . . . j − 1 and
r ≥ j for a proper j. The probability of the length of a gap to be greater than or
equal to j is (1 − pu)j as after the first j elements from the set A\U, no matter
next element belongs to U or not the size of the gap will be greater than or equal
to j.
One should choose j, U and l so that, pj and pr, for r = 0, 1, . . . , j−1, enables the

application of χ2 test. That is, the number of gaps of length r, for r = 0, 1, . . . , j−1
and r ≥ j should be at least 5.



70 ONUR KOÇAK, FATIH SULAK, ALI DOĞANAKSOY, AND MUHIDDIN UĞUZ

For example, considering d = 256, if one chooses |U| = 4, then the probability
of a gap of length 0 becomes 4

256 = 0.015625. In order to expect at least 5 gaps
of length 0, the total number of total gaps should be at least 5 · 1

0.015625 = 320. g
gaps require g+1 elements from U, therefore, for 320 gaps one needs 321 elements
from U. Since |U| = 4, on average 4 elements from U will occur in 256 elements in
the sequence. Therefore, for 320 gaps one needs a sequence of 19968 elements that
is 159744 bits. Since the probabilities for longer gaps will be smaller, the required
sequence length will be longer.
However, considering |U| = 16 with d = 256 one gets more applicable results. In

this case

p =
16

256
=
1

16

p0 =
1

16
= 0.062500

p1 =
1

16

240

256
= 0.058593

p2 =
1

16

(240
256

)2
= 0.054931

p3 =
1

16

(240
256

)3
= 0.051498

p4 =
1

16

(240
256

)4
= 0.048279

p>4 =
(240
256

)5
= 0.724196.

Since the lowest probability is p4, about d 5
0.048279e = 104 gaps needed for χ

2 to be
applicable. This makes 1680 elements and a 13440 bit sequence will be long enough
which is more feasible than |U| = 4 case. So, one can use the gap test with d = 256,
l > 13440 bits, |U| = 16, for instance U = {x|x < 16}, and given probabilities
above.
For shorter sequences, one may take |U| larger and consider less χ2 bins. For

instance, for a sequence of 1200 bits, take |U| = 64, and consider the bins for
r = 0, 1, 2, 3 and r > 3.

p =
64

256
=
1

4

p0 =
1

4
= 0.25

p1 =
1

4

192

256
= 0.187500
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p2 =
1

4

(192
256

)2
= 0.140625

p3 =
1

4

(192
256

)3
= 0.105468

p>3 =
(240
256

)4
= 0.316406.

3.4. Poker Test. This test checks if the distribution of the number of distinct
elements in a t-tuple is as expected from a random sequence. In [7], Knuth considers
n groups of non-overlapping t successive elements and counts the number of t-tuples
containing exactly r distinct elements where r = 1, 2, . . . , t. The probability of a
t-tuple to have exactly r distinct elements is as follows.

Theorem 2. Let A be an alphabet of size d and a1a2 . . . at be a randomly chosen
t-tuple from At. Let U = {a1, . . . , at} ⊇ A. Then for each r, 1 < r ≤ t, the
probability that U contains r distinct elements is

Pr(|U| = r) =
d(d− 1) · · · (d− r + 1)

dt

{
t
r

}

where
{
a
b

}
is the Stirling number of the second kind.

Proof.

Pr(|U| = r) =
choosing r distinct elements out of d

All possible t-tuples

Number of ways topartition t-tuple
into r subsets


=

d(d− 1) · · · (d− r + 1)
dt

{
t
r

}
�

One should choose d and t carefully in order for the test to be applicable to variety
of sizes. If we choose d = 256 as the above tests, unless selecting t very large which
will result in need for a very long sequence, the probabilities for r = 1, 2, . . . , t− 2
will be very small. This will lead to small number of bins in χ2 test and, also, will
increase the necessary length of the sequence to have at least 5 elements in each bin.
In that case, for the alphabet size a divisor or a multiple of 8 will be a good choose
for implementation purposes since one byte corresponds to 8 bits. So, we choose
4-bit alphabet, ie. d = 16, with t = 8. Using these parameters, the probabilities pr
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can be calculated as

p1 = 3.7× 10−9 ≈ 0 since the number of blocks will be smaller than 109

p2 = 0.000007

p3 = 0.000756

p4 = 0.017299

p5 = 0.128143

p6 = 0.357091

p7 = 0.375885

p8 = 0.120820.

The χ2 test will be applied with 5 bins where the first bin is “less than 5 distinct
elements”and other “r distinct elements”each composes a bin: second bin covers “5
distinct elements”, third bin is composed of “6 distinct elements”and so on. Since
the least probable case, “less than 5 distinct elements”, has probability 0.018062,
in order to apply χ2 one needs d 5

0.018062e = 277 blocks of 8 4-bit elements which
means one needs at least 8864 bit sequence.

3.5. Coupon Collector Test. Coupon Collector test examines the sequence by
the length of the subsequences that have a complete set of alphabet elements. Start-
ing from the first sequence element, one traces the sequence until all the alphabet
elements are covered and records the length of the subsequence. For example let
A = {0, 1, 2, 3} and S = 1, 0, 2, 1, 2, 0, 3, 3, . . . . Marking the first occurrences of
alphabet elements, S = 1,0, 1,2, 2, 0,3, 3, . . . , it is seen that the length of the
shortest subsequence containing all the alphabet elements is 7. Then, resuming
from the following element, again, finds the length of the subsequence covering all
the alphabet elements and so on. When all the sequence is traced, the length of
the subsequences are compared to those of a random sequence.The expected prob-
ability for a subsequence of length c that covers all the elements in the alphabet is
given below.

Theorem 3. Let A be an alphabet of size d. The probability that all elements of
A appears in a sequence a1a2 . . . ac, but not in a1a2 . . . ac1 is

pc =
d!

dc

{
c− 1
d− 1

}
,

and the probability that the subsequences is of length greater than or equal to c is

p≥c = 1−
d!

dc−1

{
c− 1
d

}
.

Proof. Now notice that, since the last element completes the collection, it should
not appear previously in the subsequence. That is, this element only occurs one and
its the last position. Fixing the last element, we left with a subsequence of length
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c− 1, containing d− 1 distinct elements. The number of distinct such sequences is
equal to the number of onto functions from a set of size c− 1 to a set of size d− 1,
which is (d−1)!

{
c− 1
d− 1

}
. Considering the last element is chosen from a set of size d,

the number of distinct subsequences containing all d elements is d(d− 1)!
{
c− 1
d− 1

}
.

Since there are overall dc subsequences, the probability of such a subsequence is

pc =
d!

dc

{
c− 1
d− 1

}
.

The probability of a subsequence of length greater than or equal to c is the
complement of the probability that a sequence of length c − 1 containing all d
elements in any order. This includes all subsequences containing d distinct elements
from a subsequence of length d to a subsequence of length c − 1. The probability
of a subsequence of length c − 1 containing d distinct elements is equal to the
number of onto functions from a c − 1-element set to a d-element set. So, the
probability of such a subsequence is pc̃ = d!

dc−1

{
c− 1
d

}
. Therefore, the probability

of a subsequence of length greater than or equal to c containing d distinct elements

is 1− pc̃ = 1− d!
dc−1

{
c− 1
d

}
. �

When considering the d = 256 again, computing the Stirling numbers becomes
infeasible. Therefore, we need to decrease the alphabet size. Similar to the Poker
Test case, the best candidate for d is 16. For the case d = 16, the bin values and
the probabilities are given below where pi−j is the probability that the length of
the sequence covering all the alphabet elements is between i and j, inclusive.

p16−34 = 0.107625

p35−38 = 0.085983

p39−42 = 0.100841

p43−46 = 0.104948

p47−50 = 0.100590

p51−54 = 0.090983

p55−59 = 0.096727

p≥60 = 0.312300

One can apply an 8-bin χ2 goodness-of-fit test using the above probabilities.
Since the lowest probability is p35−38 = 0.085983, the number of collections should
be at least d 5

0.085983e = 59. In the worst case, each subsequence containing a
collection is at most 60 elements long, or one can stop searching for a collection
after 60th element as the bin for 60 and any length longer then 60 are the same.
Therefore, the sequence is 3540 elements long which is corresponding to 14160 bits.
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3.6. Permutation Test. The Knuth Permutation Test focuses on the frequencies
of the the arrangements of the elements within a block. Each block can be arranged
in different ways considering the lexicographic ordering. For example, (4 3 0 1)
and (9 7 4 5) have the same lexicographic ordering. Test compares the observed
frequencies of the arrangements to the expected frequencies for a random sequence.
First, the sequence is divided into blocks of size t. In [7], Knuth assumes the

sequence is a real number sequence and it is not expected to have a repetition within
a block. It is assumed that each block can be arranged in one of t! permutations.
Counting the frequencies of each permutation, one can apply a χ2 test with bin
probability 1

t! for each bin. However, it is very likely that in an integer sequence
there will be elements that will appear more than once within a block. In order
to have an integer sequence that does not likely to contain repetitions within t-
element blocks, the elements should be very large which makes the sequence too
long. Another idea is to reduce the size of the blocks which in turn reduce the
sensitivity of the test.s
Here, we propose another method to check the frequencies of the permuta-

tions without changing the notions in [7]. Again consider d = 256 and let t=4.
The probability of occurring 4 distinct elements within a block is 256

256
255
256

254
256

253
256 =

0.976729. Each 24 permutation of 4 distinct elements can occur with probability
p = 0.976729989

24 = 0.040697 and repetition within a block occurs with probability
1 − 0.976729 = 0.023270. So, applying the χ2 test with 25 bins, 24 bins for non-
repeating blocks and one for repeating blocks one can compare the sequence to a
random sequence. To apply the χ2 test one needs at least d 5

0.023270e = 215 blocks of
4 elements, therefore, the length of the sequence must be at least 215 ·4 · log2 256 =
6880 bits.

3.7. Max-of-t Test. In [7], the Max-of-t Test is proposed to test the maximal
elements within blocks of size t in order to check for randomness. The pro-
posed test partitions the sequence into non-overlapping blocsk of t, and applies
the Kol-mogorov-Smirnov test to the maximal elements of the sequences. However,
Kolmogorov-Smirnov test is applied for examining a random sample from some un-
known distribution to see the normality of the sample and it is less powerful than
χ2 goodness-of-fit test. Another option given in [7] is applying the Equidistribution
Test to the maximal elements. Yet, the probabilities of maximal element to be 0 or
d− 1 are not equal. Therefore, one should consider each probability while applying
the Equidistribution Test. Setting the parameters d and t, we find the probabilities
of the maximum element to be exactly m within a block of t and to be smaller than
or equal to m. This way one can apply χ2 test with given probabilities and bin
values.
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Theorem 4. Let A be an alphabet of size d.Then the the probability of maximum
element to be less then or equal to m in a block of t terms is

p(max≤m) =
(m+ 1)t

dt
.

Proof. Including ”0”, there are m + 1 numbers less than or equal to m. In order
for the maximum of t elements to be less than or equal to m, each of t elements
can be one of m + 1 numbers, ie. there are (m + 1)t such blocks of t. Therefore,
the probability of maximum element to be less then or equal to m is

p(max≤m) =
(m+ 1)t

dt
.

�

Moreover, the probability of maximum to be exactly m is

p(max=m) = p(max≤m) − p(max≤m−1)

=
(m+ 1)t −mt

dt

Again considering d = 256 and t = 4, one can use the bin values given in Table 3.
For the χ2-test to be applicable the least probable bin, last bin in this case, should

m Bin Probability
m ≤ 170 0.199078601

171 ≤ m ≤ 203 0.204158801
204 ≤ m ≤ 225 0.204161350
226 ≤ m ≤ 242 0.204431504
243 ≤ m 0.188169744

Table 3. Bin boundaries and probabilities for Max-of-t Test

have at least 5 elements. Therefore, there should be d 5
0.188169744e = 28 blocks of 4

8-bit elements which sums up to 896 bits. So the sequence should be at least 896
bits to apply the Max-of-t test.

3.8. Collision Test. Collision test checks if the number of collisions in predefined
parts of the sequences is as expected from a random sequences. In this test, the
number of collisions are counted and the result is compared to the expected number
of collisions.
The idea is similar to throwing balls into urns: if a ball lands in a nonempty urn,

a collision is said to occur. If there are m urns and n balls then the probability of
c collisions can be calculated as follows.
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Theorem 5. If n balls are thrown into m urns at random, the probability of oc-
curing exactly c collisions is

P{C = c} = m(m− 1) · · · (m− (n− c− 1))
mn

{
n

n− c

}
. (1)

Proof. In order for exactly c collisions to occur, first, n balls should land in n − c
distinct urns guaranteeing the number of collisions does not exceed c. There are
m(m−1) · · · (m−(n−c−1)) ways to choose n−c urns out of mn. Now each of n−c
urns have a single ball in it. Then, the remaining c balls can land in any of these
urns, urns containing a single ball, in any order. For instance all the remaining c
balls can land in the same urn or each ball may land in distinct urns. This is the
partitioning of n balls into nonempty n− c subsets, which is the Stirling number of
the second kind,

{
n

n− c

}
. Therefore, the probability of c collisions is

P{C = c} = m(m− 1) · · · (m− (n− c− 1))
mn

{
n

n− c

}
.

�

For the randomness test, similarly, if the specified portions of two sequences are
equal, a collision is said to occur and the probability in Equation 1 also applies to
the test. In this case, the number of urns is the number of all possible subsequences
in the predefined portion of the sequence. For example, consider the first 10 bits
of the sequences. The number of “urns” is all possible 10 bit subsequences which
is 210. The balls correspond to the distinct sequences to be tested.
Knuth suggests taking m = 220 and n = 214 which means taking 220 sequences

and counting the collisions in the predefined 14 bits of these sequences. For the
sake of simplicity, one can take the first 14 bits or the last 14 bits of the sequence,
but any set of fixed 14 bits of the sequence can be selected to inspect the collisions.
For the suggestions of Knuth, m = 220 and n = 214, the probabilities of collisions

are given in Table 4. After counting the collisions in 220 sequences, if the number
of collisions is less than or equal to 101, the However, in this setting, one can just

# of Collisions ≤ 101 ≤ 108 ≤ 119 ≤ 126 ≤ 134 ≤ 145 ≤ 153
Probability 0.009 0.043 0.244 0.476 0.742 0.946 0.989

Table 4. Bin boundaries and probabilities for Collision Test

get a very inaccurate idea about the sequence by finding the interval in which the
number of collisions lies. Therefore, applying the test on a series of sequences and
getting a convenient result becomes inapplicable. In order to overcome this problem
in a similar way with the previous tests, we calculate the collision probabilities and
construct χ2 bins. Using the bins one can apply χ2 goodness-of-fit test and produce
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a p-value. The boundaries of the bins for m = 220 and n = 214 case are given in
Table 5.
Moreover, taking 220 distinct sequences is outside the scope of testing the ran-

domness of a sequence. In fact, it is in the scope of testing a random number
generator. Therefore, it is more convenient to partition the sequence into blocks
instead of taking distinct sequences. For the given probabilities, in order to apply
a proper χ2 test, the number of experiments should be at least d 5

0.88373e = 56. So,
instead of taking a set of 220 distinct sequences, one needs to partition the sequence
into 56 · 220 blocks of 14 bits which suggests a sequence of 822083584 bits. In this
case, one should divide the sequence into 56 subsequences, partition each subse-
quence into 220 blocks and count the number of collisions in each subsequence. An

# of Collision Probability
0-113 0.106253
114-118 0.109894
119-121 0.088373
122-124 0.100719
125-127 0.106608
128-130 0.104977
131-133 0.096322
124-137 0.106367
138-142 0.091574
143-16384 0.088913

Table 5. Collision Test χ2 bin probabilities for m = 220 and n = 214

alternative case for shorter sequences is taking m = 216 and n = 210. In this case,
to apply the χ2 test, the number of experiments should be at least d 5

0.141034e = 36.
Therefore, one needs 36 · 216 blocks of length 10 bits which makes 23592960 bits.
Table 6 shows the boundaries and the probabilities for m = 216 and n = 210 case.
Birthday Spacing Test

# of Collision Probability
0-5 0.192924
6-7 0.259222
8 0.141034
9-10 0.223346
11-1024 0.177158

Table 6. Collision Test χ2 bin probabilities for m = 216 and n = 210

The Birthday Spacing Test examines the randomness of the sequence by checking
the number of equal differences between selected sequence elements. In this test,
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a number of sequence elements are selected, sorted, and the differences between
each consecutive element are calculated. Then, the number of equal differences
are compared to the expected number of equal differences. For example, let S =
9, 5, 6, 1, 16, 24, 2, 13, 34, 29 and consider the 4th, 5th, 9th and 10th elements: 1, 16,
34, 29. Sorting the elements we get S′=1, 16, 29, 34. The differences between the
elements are G = 16 − 1, 29 − 16, 34 − 29 ie., G = 15, 13, 15. There are two equal
differences, which means one collision occurs in differences. The test resembles the
collision test and throwing balls into urns phenomenon with days of the year as
urns and birthdays as balls. Since the elements of the alphabet are considered as
the days of the year and the sequence elements are the birthdays, the name of the
test is the birthday spacing test.
Knuth suggests to use m = 225 days for n = 512 birthdays. This setting, for bit

sequences, is corresponding to taking 512 elements of 25 bits each, computing the
differences between the consecutive elements. The probabilities for the number of
colliding differences are given in Table 7. Using these probabilities one can apply a
χ2 test for goodness-of-fit.

# of Equal Spacings 0 1 2 3 or more
Probability 0.368801 0.369035 0.183471 0.078692

Table 7. The probabilities for Birthday Spacing Test

Similar to the Collision Test, in order to test the sequence, instead of taking
distinct sequences, we take a sequence and partition the sequence according to the
bit length of the “birthdays”. In order to apply the χ2 test properly, one needs to
make d 5

0.078692e = 64 experiments each needs 2
25 blocks of 9 bits long. Therefore,

one needs 225 · 64 · 9 ≈ 234 bits of data. In [7], advises to repeat the process 1000
times instead of 64 which increases the data size to 240 assuming each sequence is
9 bits long.

4. Application

In this section we present the results of Knuth Test suite on various sequences.
The primary aim of the section is to show the applicability of the suite on integer,
and therefore on binary, sequences.
We applied the suite on π, e,

√
2, log(2) and Riemann Zeta function ζ(3). For

these numbers, we excluded the integer parts and test the sequence of 1.000.000
digits to the right of the decimal point. Moreover, we generate sequences, that
have the same size with the previous sequences, by concatenating the SHA-256
[11] and MD-5 [12] hash values of successive integers starting from 0. Another
sequence is generated by using the “random” utility of C#. Then, we generate
a new sequence by giving a 1% “1” bias to this sequence. This way, test our
parameters for frequency related tests. When testing the suite, we apply some
tests twice with distinct parameters. The test parameters can be found in Table 8.
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The results can be seen in Table 9. According to these results, all the non-biased
sequences can be considered to be random. For the biased sequence, Frequency,
Serial, Gap and Max-of-t tests output p-values less than 0.01 indicating the non-
randomness as expected.

Test Parameters
Frequency 1 d = 256
Frequency 2 d = 224

Serial d = 256
Gap d = 256, |U| = 16
Poker d = 16, t = 4
Coupon Coll d = 16
Max-Of-t 1 d = 256, t = 4
Max-Of-t 2 d = 216, t = 6
Permutation 1 d = 256, t = 4
Permutation 2 d = 216, t = 5
Collision m = 216, n = 210

Birthday Sp. m = 225, n = 512
Table 8. Application Test Parameters

PI E Sqrt(2) Log(2) Golden Ratio Zeta(3) MD5 SHA256 C# Random C# Biased
Frequency 1 0,940520 0,174365 0,401369 0,551351 0,039588 0,046532 0,942153 0,509073 0,261939 0
Frequency 2 0,964781 0,261258 0,030199 0,931099 0,570073 0,506992 0,265583 0,221097 0,847772 0,001599

Serial 0,384719 0,052247 0,702899 0,980707 0,131627 0,024494 0,993911 0,231856 0,752165 0
Gap 0,709093 0,305874 0,440585 0,754035 0,348360 0,661038 0,723083 0,444013 0,979131 0
Poker 0,699648 0,956847 0,741170 0,560399 0,422498 0,957892 0,933983 0,355740 0,385174 0,002392

Coupon Coll 0,325971 0,213433 0,621810 0,853074 0,560253 0,837512 0,228078 0,519568 0,188181 0,139930
Max-Of-t 1 0,055390 0,267757 0,551455 0,599732 0,701230 0,150366 0,264187 0,576693 0,312611 0
Max-Of-t 2 0,101844 0,567233 0,665188 0,657665 0,765619 0,548888 0,351747 0,809745 0,020687 0

Permutation 1 0,118599 0,413592 0,388108 0,901025 0,953106 0,365188 0,347413 0,048359 0,559867 0,715372
Permutation 2 0,123178 0,639895 0,905754 0,937968 0,951257 0,069539 0,182614 0,591102 0,379035 0,214872
Collision 0,230030 0,640728 0,935599 0,769927 0,435727 0,698075 0,042924 0,044239 0,564757 0,343109

Birthday Sp. 0,042169 0,935038 0,249442 0,450414 0,060426 0,934736 0,135028 0,054025 0,764874 0,856611

Table 9. Test results of Knuth Test Suite for some mathematical
constants and sequences

5. Conclusion

Knuth Test Suite [7] is one of the first statistical randomness test suites. The
suite is well formed and the statistical basis of the test is well established. However,
the suite is designed primarily to test real number sequences. The assumption given
in the suite, that the tests could be applied to the integer sequences misses some
points and some tests cannot be applied to integer sequences.
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Moreover, the tester is assumed to have a knowledge over statistics and combina-
torics that the test parameters and probability calculations are not given excluding
one or two exceptions.
In this work, we review all the tests in Knuth Test Suite and excluding the

Run Test and the Serial Correlation Test, we give test parameters in order for the
tests to be applicable to integer sequences and make suggestions on the choice of
these parameters. We clarify how the probabilities used in the tests are calculated
according to the parameters and provide users to calculate the probabilities they
need without any knowledge of statistics or combinatorics.
Also, some tests, like Permutation Test and Max-of-t-test, are reviewed so that

the test can be used for integer sequences.
Finally, we apply the suite on some widely used cryptographic random number

sources and present the results.
As a future work, the relations between Knuth Test Suite and NIST Test Suite

will be investigated.
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GAUSSIAN PADOVAN AND GAUSSIAN PELL- PADOVAN
SEQUENCES

DURSUN TAŞCI

Abstract. In this paper, we extend Padovan and Pell- Padovan numbers to
Gaussian Padovan and Gaussian Pell-Padovan numbers, respectively. More-
over we obtain Binet-like formulas,generating functions and some identities
related with Gaussian Padovan numbers and Gaussian Pell-Padovan numbers.

1. Introduction

Horadam [3] in 1963 and Berzsenyi [2] in 1977 defined complex Fibonacci num-
bers. Horadam introduced the concept the complex Fibonacci numbers as the
Gaussian Fibonacci numbers.
Padovan sequence is named after Richard Padovan [7] and Atasonav K., Dimitrov

D., Shannon A. and Kritsana S. [1, 4, 5, 6] studied Padovan sequence and Pell-
Padovan sequence.
The Padovan sequence is the sequence of integers Pn defined by the initial values

P0 = P1 = P2 = 1 and the recurrence relation

Pn = Pn−2 + Pn−3 for all n ≥ 3.

The first few values of Pn are 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37.
Pell-Padovan sequence is defined by the initial values R0 = R1 = R2 = 1 and

the recurrence relation

Rn = 2Rn−2 +Rn−3 for all n ≥ 3.

The first few values of Pell-Padovan numbers are 1, 1, 1, 3, 3, 7, 9, 17, 25, 43, 67,
111, 177, 289.
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2. Gaussian Padovan Sequences

Firstly we give the definition of Gaussian Padovan sequence.

Definition 2.1. The Gaussian Padovan sequence is the sequence of complex num-
bers GPn defined by the initial values GP0 = 1, GP1 = 1+ i, GP2 = 1+ i and the
recurrence relation

GPn = GPn−2 +GPn−3 for all n ≥ 3.

The first few values of GPn are 1, 1 + i, 1 + i, 2 + i, 2 + 2i, 3 + 2i, 4 + 3i, 5 +
4i, 7 + 5i, 9 + 7i.
The following theorem is related with the generating function of the Gaussian

Padovan sequence.

Theorem 2.2. The generating function of the Gaussian Padovan sequence is

g(x) =
1 + (1 + i) x+ i x2

1− x2 − x3 .

Proof. Let

g(x) =

∞∑
n=0

GPnx
n = GP0 +GP1x+GP2x

2 + · · ·+GPnxn + · · ·

be the generating function of the Gaussian Padovan sequence. On the other hand,
since

x2g(x) = GP0x
2 +GP1x

3 +GP2x
4 + · · ·+GPn−2xn + · · ·

and
x3g(x) = GP0x

3 +GP1x
4 +GP2x

5 + · · ·+GPn−3xn + · · ·
we write

(1− x2 − x3)g(x) = GP0 +GP1x+ (GP2 −GP0)x2 + (GP3 −GP1 −GP0)x3

+ · · ·+ (GPn −GPn−2 −GPn−3)xn + · · ·
Now consider GP0 = 1, GP1 = 1 + i, GP2 = 1 + i and GPn = GPn−2 + GPn−3.
Thus, we obtain

(1− x2 − x3)g(x) = 1 + (1 + i)x+ i x2

or

g(x) =
1 + (1 + i) x+ i x2

1− x2 − x3 .

So, the proof is complete. �

Now we give Binet-like formula for the Gaussian Padovan sequence.

Theorem 2.3. Binet-like formula for the Gaussian Padovan sequence is

GPn =

(
a+ i

a

r1

)
rn1 +

(
b+ i

b

r2

)
rn2 +

(
c+ i

c

r3

)
rn3
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where

a =
(r2 − 1)(r3 − 1)
(r1 − r2)(r1 − r3)

, b =
(r1 − 1)(r3 − 1)
(r2 − r1)(r2 − r3)

, c =
(r1 − 1)(r2 − 1)
(r1 − r3)(r2 − r3)

and r1, r2, r3 are the roots of the equation x3 − x− 1 = 0.

Proof. It is easily seen that

GPn = Pn + iPn−1.

On the other hand, we know that the Binet-like formula for the Padovan sequence
is

Pn =
(r2 − 1)(r3 − 1)
(r1 − r2)(r1 − r3)

rn1 +
(r1 − 1)(r3 − 1)
(r2 − r1)(r2 − r3)

rn2 +
(r1 − 1)(r2 − 1)
(r1 − r3)(r2 − r3)

rn3 .

So, the proof is easily seen. �

Theorem 2.4.
n∑
j=0

GPj = GPn +GPn+1 +GPn+2 − 2(1 + i).

Proof. By the definition of Gaussian Padovan sequence recurrence relation

GPn = GPn−2 +GPn−3

and

GP0 = GP2 −GP−1
GP1 = GP3 −GP0
GP2 = GP4 −GP1

...

GPn−2 = GPn −GPn−3
GPn−1 = GPn+1 −GPn−2
GPn = GPn+2 −GPn−1

Then we have
n∑
j=0

GPj = GPn +GPn+1 +GPn+2 −GP−1 −GP0 −GP1.

Now considering GP−1 = i, GP0 = 1 and GP1 = 1 + i, we write
n∑
j=0

GPj = GPn +GPn+1 +GPn+2 − 2− 2i.

and so the proof is complete. �
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Now we investigate the new property of Gaussian Padovan numbers in relation
with Padovan matrix formula. We consider the following matrices:

Q3 =

 0 1 1
1 0 0
0 1 0

 , K3 =

 1 + i 1 + i 1
1 + i 1 i
1 i 1


and

Mn
3 =

 GPn+2 GPn+1 GPn
GPn+1 GPn GPn−1
GPn GPn−1 GPn−2

 .
Theorem 2.5. For all n∈ Z+,we have

Qn3K3 =Mn
3 .

Proof. The proof is easily seen that using the induction on n. �

Theorem 2.6. If

P =

 0 1 0
0 0 1
1 1 0


then we have  0 1 0

0 0 1
1 1 0

n  1
1 + i
1 + i

 =
 GPn
GPn+1
GPn+2

 .
Proof. The proof can be seen by mathematical induction on n. �

3. Gaussian Pell-Padovan Sequence

As well known Pell-Padovan sequence is defined by the recurrence relation

Rn = 2Rn−2 +Rn−3, n ≥ 3
and initial values are R0 = R1 = R2 = 1.
Now we define Gaussian Pell-Padovan sequence.

Definition 3.1. The Gaussian Pell-Padovan sequence is defined by the recurrence
relation

GRn = 2GRn−2 +GRn−3, n ≥ 3
and initial values are GR0 = 1− i, GR1 = 1 + i, GR2 = 1 + i.

The first few values of GRn are 1−i, 1+i, 1+i, 3+i, 3+3i, 7+3i, 9+7i, 17+9i.

Theorem 3.2. The generating function of Gaussian Pell-Padovan sequence is

f(x) =
1− i+ (1 + i)x+ (−1 + 3i)x2

1− 2x2 − x3 .
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Proof. Let

f(x) =

∞∑
n=0

GRnx
n

be the generating function of the Gaussian Pell-Padovan sequence. In this case, we
have

2x2f(x) = 2GR0x
2 + 2GR1x

3 + 2GR2x
4 + · · ·+ 2GRn−2xn + · · ·

and
x3f(x) = GR0x

3 +GR1x
4 +GR2x

5 + · · ·+GRn−3xn + · · ·
so we obtain

(1− 2x2 − x3)f(x) = GR0 +GR1x+ (GR2 − 2GR0)x2 + (GR3 − 2GR1 −GR0)x3

+ · · ·+ (GRn − 2GRn−2 −GRn−3)xn + · · · .

On the other hand, since GR0 = 1 − i, GR1 = 1 + i, GR2 = 1 + i and GRn =
2GRn−2 +GRn−3, then we have

f(x) =
1− i+ (1 + i)x+ (−1 + 3i)x2

1− 2x2 − x3
which is desired. �

Theorem 3.3. The Binet-like formula of Gaussian Pell-Padovan sequence is

GRn =
2√
5

[
α− 1 + i

(
1− 1

α

)]
αn − 2√

5

[
β − 1 + i

(
1− 1

β

)]
βn + (i− 1)γn

where

α =
1 +
√
5

2
, β =

1−
√
5

2
, γ = 1

are roots of the equation x3 − 2x− 1 = 0.

Proof. The Binet-like formula of Pell-Padovan sequence is given by

Rn = 2
αn+1 − βn+1

α− β − 2α
n − βn

α− β + γn+1.

Now consider
GRn = Rn + iRn−1

so the proof is easily seen. �

Theorem 3.4.
∑n

j=0GRj =
1
2 [(−1− 3i)−GRn+1 +GRn+2 +GRn+3] .

Proof. We find that
n∑
j=0

Rj =
1

2
(−1−Rn+1 +Rn+2 +Rn+3)
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and
n∑
j=0

Rj−1 =
1

2
(−3− 2Rn −Rn+1 +Rn+2 +Rn+3).

Since
GRn = Rn + iRn−1

we have
n∑
j=0

GRj =

n∑
j=0

Rj + i

n∑
j=0

Rj−1

So the theorem is proved. �

Theorem 3.5.
∑n

j=1GR2j = R2n+1 + iR2n − (n+ 1) + i(n− 1).

Proof. If we consider the following equalities, then the proof is seen:
n∑
j=1

R2j = R2n+1 − (n+ 1)

n∑
j=1

R2j−1 = R2n + (n− 1)

and
n∑
j=1

GR2j =

n∑
j=1

R2j + i

n∑
j=1

R2j−1

�

Theorem 3.6.
∑n

j=1

(
n
j

)
GRj = GR2n + (1− i).

Proof. Considering the following equalities:
n∑
j=1

(
n

j

)
Rj = R2n + 1

n∑
j=1

(
n

j

)
Rj−1 = R2n−1 − 1

and
n∑
j=1

(
n

j

)
GRj =

n∑
j=1

(
n

j

)
Rj + i

n∑
j=1

(
n

j

)
Rj−1

then the proof is easily seen. �

Now we shall give the new properties of Gaussian Pell-Padovan numbers relation
with Pell-Padovan matrix.
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Theorem 3.7. If we take the following matrices

Q3 =

 0 2 1
1 0 0
0 1 0

 , K3 =

 1 + i 1 + i 1− i
1 + i 1− i −1 + 3i
1− i −1 + 3i 3− 5i


and

Sn3 =

 GRn+2 GRn+1 GRn
GRn+1 GRn GRn−1
GRn GRn−1 GRn−2

 .
then

Qn3 .K3 = Sn3 for all n ∈ Z+.

Theorem 3.8.

 0 1 0
0 0 1
1 2 0

n  1− i
1 + i
1 + i

 =
 GRn
GRn+1
GRn+2

 for all n ∈ Z+.
We note that for the proofs Theorem 3.7 and Theorem 3.8 are used induction

on n.
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A THEOREM ON WEIGHTED APPROXIMATION BY
SINGULAR INTEGRAL OPERATORS

OZGE OZALP GULLER AND ERTAN IBIKLI

Abstract. In this paper, pointwise approximation of functions f ∈ L1,ϕ(R)

by the convolution type singular integral operators given in the following form:

Lλ(f ;x) =

∫
R

f (t)Kλ (t− x) dt, x ∈ R, λ ∈ Λ ⊂ R+0 ,

is studied. Here, L1,ϕ(R) denotes the space of all measurable functions f

for which
∣∣∣ fϕ ∣∣∣ is integrable on R and ϕ : R → R+ is a corresponding weight

function.

1. Introduction

The purpose of approximation theory is the approximation of functions by simply
calculated functions. This theory is one of the most fundamental and important
arm of mathematical analysis. The Weierstrass approximation theorem says that
every continuous function defined on a closed and bounded interval of real numbers
can be uniformly approximated by polynomials. Also, this well-known theorem
plays significant role in the development of analysis. Then, Bernstein also proved
Weierstrass’s theorem by describing specific approximate polynomials known as
Bernstein polynomials in the literature. Bernstein polynomials were changed by
Kantorovich in order to approximate to the integrable functions. These polynomials
and the generalizations were studied in [2], [8] and [11].
Taberski [21] studied the pointwise approximation of integrable functions and the

approximation properties of derivatives of integrable functions in L1 〈−π, π〉, where
〈−π, π〉 is an arbitrary closed, semi-closed or open interval, by a two parameter
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family of convolution type singular integral operators of the form:

Tλ (f ;x) =

π∫
−π

f (t)Kλ (t− x) dt, x ∈ 〈−π, π〉 , λ ∈ Λ ⊂ R+0 , (1)

where Kλ (t) is the kernel satisfying appropriate assumptions for all λ ∈ Λ and Λ
is a given set of non-negative indices with accumulation point λ0.
Then, based on Taberski’s indicated analysis, Gadjiev [10] and Rydzewska [16]

proved some theorems concerning the pointwise convergence and the order of point-
wise convergence of the operators of type (1) at a generalized Lebesgue point and
µ−generalized Lebesgue point of f ∈ L1 (−π, π), respectively.
Further, the results of Taberski [21], Gadjiev [10] and Rydzewska [16] were ex-

tended by Karsli and Ibikli [12]. They proved some theorems for the more general
integral operators defined by

Tλ (f ;x) =

b∫
a

f (t)Kλ (t− x) dt, x ∈ 〈a, b〉 , λ ∈ Λ ⊂ R+0 .

Here, f ∈ L1 〈a, b〉 , where 〈a, b〉 is an arbitrary interval in R such as [a, b], (a, b),
[a, b) or (a, b]. As concerns the study of integral operators in several settings, the
reader may see also, e.g., [13], [18], [23], [24], [25], [26] and [27].
The main aim of this paper is to investigate the pointwise convergence of convo-

lution type singular integral operators in the following form:

Lλ(f ;x) =

∫
R

f (t)Kλ (t− x) dt, x ∈ R, λ ∈ Λ ⊂ R+0 , (2)

where L1,ϕ(R) is the space of all measurable functions f for which
∣∣∣ fϕ ∣∣∣ is inte-

grable on R and ϕ : R → R+ is a corresponding weight function, at a common
µ-generalized Lebesgue point of fϕ and ϕ. In this paper, we studied a theorem of
the Faddeev type similar to that of Taberski [19].
The paper is organized as follows: First, we introduce the fundamental defini-

tions in the sequel of Introduction part. In Section 2, we prove the existence of the
operators of type (2). Later, we present a theorem concerning the pointwise con-
vergence of Lλ (f ;x) to f (x0) whenever x0 is a common µ−generalized Lebesgue
point of fϕ and ϕ.
Consequently, given that linear integral operators have become important tools

in many areas, including the theory of Fourier series and Fourier integrals, ap-
proximation theory and summability theory, it is possible to use this article in the
mathematical theorem.
Now, we introduce the main definitions used in this paper.
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Definition 1. A point x0 ∈ 〈a, b〉 is called µ−generalized Lebesgue point of the
function f ∈ L1 〈a, b〉, if

lim
h→0

 1

µ(h)

h∫
0

|f(t+ x0)− f(x0)| dt

 = 0,

where the function µ : R → R is increasing and absolutely continuous on [0, b − a]
and µ(0) = 0. Here, also holds when the integral is taken from −h to 0 [12] and
[16].

Definition 2. (Class Aϕ) Let Λ ⊂ R+0 be an index set and λ0 ∈ Λ be an accu-
mulation point of it. Let the weight function ϕ : R → R+ be bounded on arbitrary
bounded subsets of R and satisfies the following inequality:

ϕ(t+ x) ≤ ϕ(t)ϕ(x), x, t ∈ R.

Suppose that there exists a function K∗λ : R→ R+ such that the following conditions
hold there:

a) ‖ϕK∗λ‖L1(R) ≤M <∞, for all λ ∈ Λ.
b) For every ξ > 0,

lim
λ→λ0

sup
ξ≤|t|

[ϕ(t)K∗λ(t)] = 0.

c) For every ξ > 0,

lim
λ→λ0

∫
ξ≤|t|

ϕ(t)K∗λ(t)dt = 0.

d)

lim
(x,λ)→(x0,λ0)

∣∣∣∣∣∣ 1

ϕ(x0)

∫
R

ϕ(t)Kλ(t− x)dt− 1

∣∣∣∣∣∣ = 0.

e) For any λ ∈ Λ,Kλ(t) satisfies the following inequality:

|Kλ(t)| ≤ K∗λ(t)

and there exists δ0 > 0 such that K∗λ(t) is non-decreasing on (−δ0, 0] and non-
increasing on [0, δ0) for any λ ∈ Λ.
If the above conditions are satisfied, then the function Kλ : R → R belongs to

class Aϕ.
Throughout this paper, we suppose that the kernel Kλ(t) belongs to class Aϕ.
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2. Main Theorem

Definition 3. Let L1,ϕ(R) is the space of all measurable functions for which
∣∣∣ f(t)ϕ(t)

∣∣∣
is integrable on R. Here ϕ : R → R+ be a weight function and the norm in this
space is given by the equality:

‖f‖L1,ϕ(R) =

∫
R

∣∣∣∣ f(t)

ϕ(t)

∣∣∣∣ dt.
Throughout this paper we suppose that the weight function ϕ : R→ R+ [13].

The following lemma gives the existence of the operators defined by (2).

Lemma 1. Let ϕ : R → R+ be a weight function. If f ∈ L1,ϕ(R), then Lλ(f ;x)
defines a continuous transformation from L1,ϕ(R) to L1,ϕ(R).

Proof. By the linearity of the operator Lλ(f ;x), it is suffi cient to show that the
expression

‖Lλ‖1 = sup
f 6=0

‖Lλ(f ;x)‖L1,ϕ(R)
‖f‖L1,ϕ(R)

remains bounded. Now, using Fubini’s Theorem (see, e.g., [7]), we can write

‖Lλ(f ;x)‖L1,ϕ(R) =

∫
R

1

ϕ(x)

∣∣∣∣∣∣
∫
R

f(t)
ϕ(t)

ϕ(t)
Kλ(t− x)dt

∣∣∣∣∣∣ dx
≤

∫
R

1

ϕ(x)

∫
R

∣∣∣∣f(t+ x)
ϕ(t+ x)

ϕ(t+ x)
Kλ(t)

∣∣∣∣ dt
 dx

≤
∫
R

|Kλ(t)|

∫
R

∣∣∣∣ f(t+ x)

ϕ(t+ x)

∣∣∣∣ ∣∣∣∣ϕ(t)ϕ(x)

ϕ(x)

∣∣∣∣ dx
 dt

≤
∫
R

ϕ(t)K∗λ(t)dt

∫
R

∣∣∣∣ f(t+ x)

ϕ(t+ x)

∣∣∣∣ dx
≤ M ‖f‖L1,ϕ(R) .

Thus, the proof is completed. �
The following theorem gives a pointwise convergence of the integral operators of

type (2) at a common µ−generalized Lebesgue point of f ∈ L1,ϕ(R) and the weight
function ϕ : R→ R+.

Theorem 1. If x0 is a common µ−generalized Lebesque point of functions f ∈
L1,ϕ(R) and ϕ : R→ R+, then

lim
(x,λ)→(x0,λ0)

Lλ(f ;x) = f(x0),
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on any set Z on which the function

sup
t∈Nδ(x0)

ϕ(t)

2K∗λ(0)µ(|x0 − x|) +

∫
Nδ(x0)

K∗λ(t− x)
∣∣∣{µ(|x0 − t|)}

′

t

∣∣∣ dt


is bounded as (x, λ) tends to (x0, λ0), where Nδ(x0) = (x0 − δ, x0 + δ).

Proof. Suppose that x0 is a µ−generalized Lebesque point of function f ∈ L1,ϕ(R).
Set E = |Lλ(f ;x)− f(x0)| . According to condition (d), we shall write

E = |Lλ(f ;x)− f(x0)|

=

∣∣∣∣∣∣
∫
R

f(t)Kλ(t− x)dt− f(x0)

∣∣∣∣∣∣
≤

∫
R

∣∣∣∣ f(t)

ϕ(t)
− f(x0)

ϕ(x0)

∣∣∣∣ϕ(t) |Kλ(t− x)| dt

+

∣∣∣∣ f(x0)

ϕ(x0)

∣∣∣∣
∣∣∣∣∣∣
∫
R

ϕ(t)Kλ(t− x)dt− ϕ(x0)

∣∣∣∣∣∣
= I1 + I2.

By condition (d) of class Aϕ, I2 → 0 as (x, λ)→ (x0, λ0). Now, we investigate the
integral I1 i.e:

I1 =


∫

R\Nδ(x0)

+

∫
Nδ(x0)


∣∣∣∣ f(t)

ϕ(t)
− f(x0)

ϕ(x0)

∣∣∣∣ϕ(t) |Kλ(t− x)| dt

= I11 + I12.

The following inequality holds for the integral I11 i.e:

I11 =

∫
R\N(x0)

∣∣∣∣ f(t)

ϕ(t)
− f(x0)

ϕ(x0)

∣∣∣∣ϕ(t) |Kλ(t− x)| dt

≤
∫

R\N(x0)

∣∣∣∣ f(t+ x)

ϕ(t+ x)
− f(x0)

ϕ(x0)

∣∣∣∣ϕ(t+ x) |Kλ(t)| dt

≤ sup
ξ≤|t|

[ϕ(t)K∗λ(t)]ϕ(x) ‖f‖L1,ϕ(R) +

∣∣∣∣ f(x0)

ϕ(x0)

∣∣∣∣ϕ(x)

∫
ξ≤|t|

ϕ(t)K∗λ(t)dt.
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According to conditions (c) and (d) of class Aϕ, I11 → 0 as λ→ λ0. Next, we can
show that I12 tends to zero as (x, λ)→ (x0, λ0) on Nδ(x0).

I12 =

∫
Nδ(x0)

∣∣∣∣ f(t)

ϕ(t)
− f(x0)

ϕ(x0)

∣∣∣∣ϕ(t) |Kλ(t− x)| dt

=


x0∫

x0−δ

+

x0+δ∫
x0


∣∣∣∣ f(t)

ϕ(t)
− f(x0)

ϕ(x0)

∣∣∣∣ϕ(t) |Kλ(t− x)| dt

≤ sup
t∈Nδ(x0)

ϕ(t)


x0∫

x0−δ

+

x0+δ∫
x0


∣∣∣∣ f(t)

ϕ(t)
− f(x0)

ϕ(x0)

∣∣∣∣ |Kλ(t− x)| dt

= sup
t∈Nδ(x0)

ϕ(t) {I121 + I122} .

Let us consider first the integral I121. By definition of µ−generalized lebesgue point
for every ε > 0 there exists a δ > 0 such that

x0∫
x0−h

∣∣∣∣ f(t)

ϕ(t)
− f(x0)

ϕ(x0)

∣∣∣∣ dt < εµ(h)

for all 0 < h ≤ δ < δ0. Define the new function as

F (t) =

x0∫
t

∣∣∣∣ f(u)

ϕ(u)
− f(x0)

ϕ(x0)

∣∣∣∣ du. (2.1)

Then, for every t satisfying 0 < x0 − t ≤ δ we have

|F (t)| ≤ εµ(x0 − t). (2.2)

Hence, by (2.1) we can write

|I121| =

∣∣∣∣∣∣
x0∫

x0−δ

∣∣∣∣ f(t)

ϕ(t)
− f(x0)

ϕ(x0)

∣∣∣∣ |Kλ(t− x)| dt

∣∣∣∣∣∣
=

∣∣∣∣∣∣(LS)

x0∫
x0−δ

|Kλ(t− x)| d [−F (t)]

∣∣∣∣∣∣ ,
where (LS) denotes Lebesgue-Stieltjes integral. Applying integration by parts
method to the Lebesgue-Stieltjes integral, we have

|I121| ≤ |F (x0 − δ)| |Kλ(x0 − δ − x)|+
x0∫

x0−δ

|F (t)| |(dt |Kλ(t− x)|)| .
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According to (2.2) and condition (e) of class Aϕ, we obtain

|I121| ≤ εµ(δ)K∗λ(x0 − δ − x) + ε

x0∫
x0−δ

µ(x0 − t) |(dtK∗λ(t− x))| .

Now, we define the variations:

A(t) =


t∨

x0−x−δ
K∗λ(s) , x0 − x− δ < t ≤ x0 − x

0 , t = x0 − x− δ.
(2.3)

Taking above variations and applying integration by parts method to last inequality,
we get

|I121| ≤ εµ(δ)K∗λ(x0 − δ − x) + ε

x0−x∫
x0−x−δ

{µ(x0 − x− t)}
p

tA(t)dt

= ε(i1 + i2).

Let us consider the integral i2. Write

i2 =

x0−x∫
x0−x−δ

{µ(x0 − x− t)}
p

tA(t)dt

=


0∫

x0−x−δ

+

x0−x∫
0

 {µ(x0 − x− t)}
p

tA(t)dt

= i21 + i22.

From (2.3), we shall write

i21 =

0∫
x0−x−δ

[
t∨

x0−x−δ
K∗λ(s)

]
{µ(x0 − x− t)}

p

t dt

=

0∫
x0−x−δ

[K∗λ(t)−K∗λ(x0 − x− δ)] {µ(x0 − x− t)}
p

t dt (2.4)
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and

i22 =

x0−x∫
0

[
t∨

x0−x−δ
K∗λ(s)

]
{µ(x0 − x− t)}

p

t dt

=

x0−x∫
0

[
0∨

x0−x−δ
K∗λ(s) +

t∨
0

K∗λ(s)

]
{µ(x0 − x− t)}

p

t dt

=

x0−x∫
0

(2K∗λ(0)−K∗λ(x0 − x− δ)−K∗λ(t)) {µ(x0 − x− t)}
p

t dt. (2.5)

Combining (2.4) and (2.5), we obtain

i2 = i21 + i22

≤ −2K∗λ(0)µ(x0 − x)−K∗λ(x0 − x− δ)µ(δ)

+

x0−x∫
x0−x−δ

K∗λ(t) {µ(x0 − x− t)}
p

t dt.

Thus

|I121| ≤ ε (i1 + i2)

≤ 2εK∗λ(0)µ(x0 − x) + ε

x0−x∫
x0−x−δ

K∗λ(t) {µ(x0 − x− t)}
p

t dt

≤ 2εK∗λ(0)µ(x0 − x) + ε

x0∫
x0−δ

K∗λ(t− x) {µ(x0 − t)}
p

t dt. (2.6)

We can use a similar method for estimating I122. Then we find the inequality

|I122| ≤ ε
x0+δ∫
x0

K∗λ(t− x) {µ(t− x0)}
p

t dt. (2.7)

Consequently, from (2.6) and (2.7), we can write the following inequality:

I12 ≤ sup
t∈Nδ(x0)

ϕ(t) {I121 + I122}

≤ ε sup
t∈Nδ(x0)

ϕ(t)

2K∗λ(0)µ(x0 − x) +

x0+δ∫
x0−δ

K∗λ(t− x)
∣∣∣{µ(|x0 − t|)}

p

t

∣∣∣ dt
 .
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Note that in the above inequality we used the hypothesis of the theorem, i.e.,
boundedness of the following function:

sup
t∈Nδ(x0)

ϕ(t)

2K∗λ(0)µ(x0 − x) +

x0+δ∫
x0−δ

K∗λ(t− x)
∣∣∣{µ(|x0 − t|)}

p

t

∣∣∣ dt
 .

Since the remaining expression is bounded by the hypothesis, I12 → 0 as (x, λ) →
(x0, λ0). Thus, we obtain

lim
(x,λ)→(x0,λ0)

Lλ(f ;x) = f(x0)

and the proof is completed. �

References

[1] Alexits, G., Konvergenzprobleme der Orthogonalreihen, Verlag der Ungarischen
Akademie der Wissenschaften, Budapest, (1960), 307.

[2] Atakut, Ç., On derivatives of Bernstein type rational functions of two variables, Ap-
plied Mathematics and Computation, Vol. 218, 3, (2011), 673—677.

[3] Bardaro, C. and Gori Cocchieri, C., On the degree of approximation for a class of
singular integrals, (Italian) Rend. Mat. (7) 4, 4 (1984), 481—490.

[4] Bardaro, C., On approximation properties for some classes of linear operators of
convolution type, Atti Sem. Mat. Fis. Univ. Modena 33, 2 (1984), 329—356.

[5] Bardaro, C. and Mantellini, I., Pointwise convergence theorems for nonlinear Mellin
convolution operators, Int. J. Pure Appl. Math., 27, 4 (2006), 431—447.

[6] Bardaro, C., Karsli, H. and Vinti, G., On pointwise convergence of linear Integral
operators with homogeneous kernel, Integral Transforms and Special Functions, Vol.
19, 6(2008), 429-439.

[7] Butzer, P. L. and Nessel, R. J., Fourier Analysis and Approximation, Vol. I. Academic
Press, New York, London, 1971.

[8] Büyükyazıcı, I. and Ibikli, E., The approximation properties of generalized Bernstein
polynomials of two variables, Applied Mathematics and Computation, 156 (2), (2004),
367-380.

[9] Faddeev, D. K., On the representation of summable functions by means of singular
integrals at Lebesgue points. Mat. Sbornik, Vol 1 (43), 3, (1936), 351-368.

[10] Gadjiev, A. D., The order of convergence of singular integrals which depend on two
parameters, in: Special Problems of Functional Analysis and their Appl. to the Theory
of Diff . Eq. and the Theory of Func., Izdat. Akad. Nauk Azerbăıdǎzan. SSR., (1968),
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THE RECURRENCE SEQUENCES VIA POLYHEDRAL GROUPS

ÖMÜR DEVECI, YEŞIM AKÜZÜM, AND COLIN M. CAMPBELL

Abstract. In this paper, we define recurrence sequences by using the relation
matrices of the finite polyhedral groups and then, we obtain some of their
properties. Also, we obtain the cyclic groups and the semigroups which are
produced by the generating matrices when read modulo α and we study the
sequences defined modulo α. Then we derive the relationships between the
orders of the cyclic groups obtained and the periods of the sequences defined
working modulo α. Furthermore, we extend these sequences to groups and
obtain the periods of the sequences extended in the finite polyhedral groups
case.

1. Introduction

The polyhedral group (p, q, r) for p, q, r > 1, is defined by the presentation

〈x, y, z | xp = yq = zr = xyz = e〉
or

〈x, y | xp = yq = (xy)
r
= e〉.

The polyhedral group (p, q, r) is finite if and only if the number

k = pqr

(
1

p
+
1

q
+
1

r
− 1
)
= qr + rp+ pq − pqr

is positive, i.e., in the case (2, 2,m), (2, 3, 3), (2, 3, 4) and (2, 3, 5) . Its order is
2pqr�k. Using Tietze transformations we may show that (p, q, r) u (q, r, p) u
(r, p, q).
For more information on these groups, see [4].
Let G be a finite j-generator group and let

X =

(x1, x2, . . . , xj) ∈ G×G× · · · ×G︸ ︷︷ ︸
j

| 〈x1, x2, . . . , xj〉 = G

 .
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We call (x1, x2, . . . , xj) a generating j-tuple for G.
Let G be the group defined by the finite presentation

G = 〈x1, x2, . . . , xn | r1, r2, . . . , rm〉.

The relation matrix of G is an m×n matrix where the (i, j)th entry of the matrix
is the sum of the exponents of the generator xj in the relator ri.
For detailed information about the relation matrix, see [12].

Example 1.1. The relation matrix of the group defined by the presentation 〈x, y, z |
xm = y2 = z2 = xyz = e〉 is 

m 0 0
0 2 0
0 0 2
1 1 1

 .
Suppose that the (n+ k)th term of a sequence is defined recursively by a linear

combination of the preceding k terms:

an+k = c0an + c1an+1 + · · ·+ ck−1an+k−1
where c0, c1, . . . , ck−1 are real constants. In [13], Kalman derived a number of
closed-form formulas for the generalized sequence by the companion matrix method
as follows:
Let the matrix A be defined by

A = [aij ]k×k =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
c0 c1 c2 ck−2 ck−1


,

then

An


a0
a1
...

ak−1

 =


an
an+1
...

an+k−1

 .
Number theoretic properties such as these obtained from homogeneous linear

recurrence relations relevant to this paper have been studied by many authors
[2, 5, 6, 10, 11, 13, 15, 19, 20, 21, 22]. In Section 2, we develop properties of the
3-step and 4-step polyhedral sequences of the first, second, third, fourth, fifth and
sixth kind which are obtained from the matices defined by the aid of the relation
matrices of the polyhedral groups (m, 2, 2), (2,m, 2), (2, 2,m), (2, 3, 3), (2, 3, 4) and
(2, 3, 5).
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In [5, 6, 7, 17], the authors have produced the cyclic groups and the semigroups
via some special matrices and then, they have studied the orders of these algebraic
structures. In Section 3, we obtain the cyclic groups and the semigroups by using
the generating matrices of the 3-step and 4-step polyhedral sequences of the first,
second, third, fourth, fifth and sixth kind when read modulo α and then, we give
their miscellaneous properties.
The study of recurrence sequences in groups began with the earlier work of Wall

[23] where the ordinary Fibonacci sequences in cyclic groups has been investigated.
In the mid eighties, Wilcox extended the problem to abelian groups [24]. Further,
the theory has been expanded to some special linear recurrence sequences by several
authors; see, for example, [1, 3, 5, 6, 8, 9, 14, 16]. In Section 3, we study the
defined sequences modulo α and then, we derive the relationships among the orders
of the cyclic groups obtained and the periods of these sequences. Also, in this
section, we redefine the 3-step and 4-step polyhedral sequences of the first, second,
third, fourth, fifth and sixth kind by means of the elements of the groups which
have two or three generators and then, we examine these sequences in the finite
groups. Finally, we obtain the lengths of the periods of the 3-step and 4-step
polyhedral sequences of the first, second, third, fourth, fifth and sixth kind in
the polyhedral groups (m, 2, 2), (2,m, 2), (2, 2,m), (2, 3, 3), (2, 3, 4) and (2, 3, 5) by
using the periods of these sequences with respect to a modulus α, where we consider
each one of the sequences in one group such that the sequence is produced by the
aid of the presentation of this group.

2. Polyhedral Sequences

We next define the matrices M1, M2, M3, M4, M5 and M6 by using the pre-
sentations of the polyhedral groups (m, 2, 2), (2,m, 2), (2, 2,m), (2, 3, 3), (2, 3, 4)
and (2, 3, 5) in the two generator cases, that is for generating pair (x, y), as follows,
respectively:

Mu =

 α1 0 1
0 α2 1
α3 α3 1

 , (u = 1, 2, 3, αu = m and αi = 2 if i 6= u)

and

Mv =

 2 0 1
0 3 1

v − 1 v − 1 1

 , (v = 4, 5, 6) .
Similarly, we define the matrices M∗

1 , M
∗
2 , M

∗
3 , M

∗
4 , M

∗
5 and M

∗
6 by the aid of

the presentations of these groups in the three generator cases, that is for generating
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triple (x, y, z), as follows, respectively:

M∗
u =


α1 0 0 1
0 α2 0 1
0 0 α3 1
1 1 1 1

 , (u = 1, 2, 3, αu = m and αi = 2 if i 6= u) .

and

M∗
v =


2 0 0 1
0 3 0 1
0 0 v − 1 1
1 1 1 1

 , (v = 4, 5, 6) .
Note that detM1 = detM2 = −4, detM3 = 4−4m, detM4 = −9, detM5 = −14,

detM6 = −19, detM∗
1 = detM

∗
2 = detM

∗
3 = −4, detM∗

4 = −3, detM∗
5 = −2 and

detM∗
6 = −1.

We now define new sequences from the matrices Mk and M∗
k , (k = 1, . . . , 6) as

shown, respectively:

aun =

 aun−1 + α1a
u
n−3 n ≡ 1 (mod 3) ,

aun−2 + α2a
u
n−3 n ≡ 2 (mod 3) ,

aun−3 + α3a
u
n−4 + α3a

u
n−5 n ≡ 0 (mod 3) ,

(u = 1, 2, 3, αu = m and αi = 2 if i 6= u) ,

avn =

 avn−1 + 2a
v
n−3 n ≡ 1 (mod 3) ,

avn−2 + 3a
v
n−3 n ≡ 2 (mod 3) ,

avn−3 + (v − 1) avn−4 + (v − 1) avn−5 n ≡ 0 (mod 3) ,
(v = 4, 5, 6)

for n ≥ 4, where ak1 = 0, ak2 = 0, ak3 = 1 and

bun =


bun−1 + α1b

u
n−4 n ≡ 1 (mod 4) ,

bun−2 + α2b
u
n−4 n ≡ 2 (mod 4) ,

bun−3 + α3b
u
n−4 n ≡ 3 (mod 4) ,

bun−4 + b
u
n−5 + b

u
n−6 + b

u
n−7 n ≡ 0 (mod 4) ,

(u = 1, 2, 3, αu = m and αi = 2 if i 6= u) ,

bvn =


bvn−1 + 2b

v
n−4 n ≡ 1 (mod 4) ,

bvn−2 + 3b
v
n−4 n ≡ 2 (mod 4) ,

bvn−3 + (v − 1) bvn−4 n ≡ 3 (mod 4) ,
bvn−4 + b

v
n−5 + b

v
n−6 + b

v
n−7 n ≡ 0 (mod 4) ,

(v = 4, 5, 6)

for n ≥ 5, where bk1 = 0, bk2 = 0, bk3 = 0, bk4 = 1.
The sequences

{
akn
}
and

{
bkn
}
for k = 1, . . . , 6 are called the 3-step and 4-

step polyhedral sequences of the first, second, third, fourth, fifth and sixth kind,
respectively.
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By an inductive argument for n ≥ 3 and k = 1, . . . , 6, we may write

(Mk)
n

=

 mk
1 mk

2 ak3n+1
mk
3 mk

4 ak3n+2
λka

k
3n+1 λka

k
3n+2 ak3n+3

 ,
(λ1 = λ2 = 2, λ3 = m, λ4 = 3, λ5 = 4, λ6 = 5)

where

m1
1 = 2a13n−2 +ma

1
3n+1 +m

n−1 +

n−3∑
i=0

mn−2−ia18+3i,

m2
1 = a23n+1 + a

2
3n+3 − 2mn−2 − 2

n−3∑
i=0

mn−3−ia27+3i,

m3
1 =

a33n+2 + a
3
3n+3 + 2

n

2
,

m4
1 = 7.2n−2 + 3

n−3∑
i=0

2n−3−ia47+3i,

m5
1 = 2n+1 +

n−3∑
i=0

2n−1−ia57+3i,

m6
1 = 9.2n−2 + 5

n−3∑
i=0

2n−3−ia67+3i,

m1
2 = 2mn−2 + 2

n−3∑
i=0

mn−3−ia18+3i,

m2
2 = 2mn−2 + 2

n−3∑
i=0

mn−3−ia27+3i,

m3
2 =

a33n+2 + a
3
3n+3 − 2n

2
,

m4
2 = 3n−1 +

n−3∑
i=0

3n−2−ia47+3i,

m5
2 = 2n +

n−3∑
i=0

2n−1−ia57+3i,

m6
2 = 5 · 3n−2 + 5

n−3∑
i=0

3n−3−ia67+3i,

m1
3 = m1

2, m
2
3 = m2

2, m
3
3 = m3

2, m
4
3 = m4

2, m
5
3 = m5

2, m
6
3 = m6

2
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and

m1
4 = a13n+2 + a

1
3n+3 − 2mn−2 − 2

n−3∑
i=0

mn−3−ia18+3i,

m2
4 = 2a23n−1 +ma

2
3n+2 −mn−1 −

n−3∑
i=0

mn−2−ia27+3i,

m3
4 = m3

1,

m4
4 = 3n +

n−2∑
i=0

3n−1−ia45+3i,

m5
4 = 3n + 4

n−2∑
i=0

3n−2−ia55+3i,

m6
4 = 3n + 5

n−2∑
i=0

3n−2−ia65+3i.

Similarly, we obtain the matrices (M∗
k )
n for n ≥ 3 and k = 1, . . . , 6 by using

mathematical induction as shown:
For k = 1, 2, 3,

(M∗
k )
n
=


m∗k
1 m∗k

2 m∗k
3 a∗k4n+1

m∗k
4 m∗k

5 m∗k
6 a∗k4n+2

m∗k
7 m∗k

8 m∗k
9 a∗k4n+3

a∗k4n+1 a∗k4n+2 a∗k4n+3 a∗k4n+4

 ,
where

m∗1
1 = a∗14n−3 +ma

∗1
4n+1 −mn−1 −

n−3∑
i=0

mn−2−ia∗110+4i, m
∗2
1 = a∗24n−3 + 2

n

+

n−3∑
i=0

2n−2−ia∗25+4i,

m∗3
1 = a∗34n−3 + 2

n +

n−3∑
i=0

2n−2−ia∗35+4i,

m∗1
2 = mn−2 +

n−3∑
i=0

mn−3−ia∗110+4i, m
∗2
2 = mn−2 +

n−3∑
i=0

mn−3−ia∗29+4i, m
∗3
2 = a∗34n−3

+

n−3∑
i=0

2n−2−ia∗35+4i,
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m∗1
3 = m∗1

2 , m
∗2
3 = a∗24n−3 +

n−3∑
i=0

2n−2−ia∗25+4i, m
∗3
3 = mn−2 +

n−3∑
i=0

mn−3−ia∗39+4i,

m∗1
4 = m∗1

2 , m
∗2
4 = m∗2

2 , m
∗3
4 = m∗3

2 ,

m∗1
5 = a∗14n−2 + 2

n +

n−3∑
i=0

2n−2−ia∗16+4i, m
∗2
5

= a∗24n−2 +ma
∗2
4n+2 −mn−1 +

n−3∑
i=0

mn−2−ia∗29+4i, m
∗3
5 = m∗3

1 ,

m∗1
6 = a∗14n−2 +

n−3∑
i=0

2n−2−ia∗16+4i, m
∗2
6 = m∗2

2 , m
∗3
6 = m∗3

3 ,

m∗1
7 = m∗1

2 , m
∗2
7 = m∗2

3 , m
∗3
7 = m∗3

3 ,

m∗1
8 = m∗1

6 , m
∗2
8 = m∗2

2 , m
∗3
8 = m∗3

3

and

m∗1
9 = m∗1

5 , m
∗2
9 = m∗2

1 , m
∗3
9 = a∗34n−1 +ma

∗3
4n+3 −mn−1 +

n−3∑
i=0

mn−2−ia∗39+4i.

For k = 4, 5, 6,

(
M

∗
4

)n
=



a∗44n−3 + 2n +

n−3∑
i=0

2n−2−ia∗45+4i a∗44n+2 − a∗44n+1 a∗44n+2 − a∗44n+1 a∗44n+1

a∗44n+2 − a∗44n+1 a∗44n−2 + 3n +

n−3∑
i=0

3n−2−ia∗46+4i a∗44n−2 +
n−3∑
i=0

3n−2−ia∗46+4i a∗44n+2

a∗44n+2 − a∗44n+1 a∗44n−2 +
n−3∑
i=0

3n−2−ia∗46+4i a∗44n−2 + 3n +

n−3∑
i=0

3n−2−ia∗46+4i a∗44n+3

a∗44n+1 a∗44n+2 a∗44n+3 a∗44n+4


,

(
M

∗
5

)n
=



a∗54n−3 + 2n +

n−3∑
i=0

2n−2−ia∗55+4i a∗54n+2 − a∗54n+1 a∗54n−3 +
n−3∑
i=0

4n−2−ia∗55+4i a∗54n+1

a∗54n+2 − a∗54n+1 a∗54n−2 + 3n +

n−3∑
i=0

3n−2−ia∗56+4i a∗54n+3 − a∗54n+2 a∗54n+2

a∗54n−3 +
n−3∑
i=0

4n−2−ia∗55+4i a∗54n+3 − a∗54n+2 a∗54n−1 + 4n +

n−3∑
i=0

4n−2−ia∗57+4i a∗54n+3

a∗54n+1 a∗54n+2 a∗54n+3 a∗54n+4


and

(
M

∗
6

)n
=



a∗64n−3 + 2n +

n−3∑
i=0

2n−2−ia∗65+4i a∗64n+2 − a∗64n+1 a∗64n−1 +
n−3∑
i=0

2n−2−ia∗67+4i a∗64n+1

a∗64n+2 − a∗64n+1 a∗64n−2 + 3n +

n−3∑
i=0

3n−2−ia∗66+4i a∗64n−2 +
n−3∑
i=0

5n−2−ia∗66+4i a∗64n+2

a∗64n−1 +
n−3∑
i=0

2n−2−ia∗67+4i a∗64n−2 +
n−3∑
i=0

5n−2−ia∗66+4i a∗64n−1 + 5n +

n−3∑
i=0

5n−2−ia∗67+4i a∗64n+3

a∗64n+1 a∗64n+2 a∗64n+3 a∗64n+4


.
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It is well-known that the Simpson formula for a recurrence sequence can be
obtained from the determinant of its generating matrix. For example, the Simpson
formula for the sequence

{
a3n
}
is

(4− 4m)n =
(
a33n+2 + a

3
3n+3 + 2

n
) (
−m
2

(
a33n+1

)2 − m

2

(
a33n+2

)2)
+

ma33n+1

((
a33n+2

)2
+ a33n+2a

3
3n+3 − 2na33n+2

)
+ 2na33n+3

(
a33n+3 + a

3
3n+2

)
.

It is easy to see that the characteristic equations of the sequences
{
akn
}
and{

bkn
}
, (k = 1, . . . , 6) do not have multiple roots; that is, each of the eigenvalues of

the matrices Mk and M∗
k is distinct.

Let
{
xk1 , x

k
2 , x

k
3

}
and

{
xk1 , x

k
2 , x

k
3 , x

k
4

}
be the sets of the eigenvalues of the matrices

Mk and M∗
k for k = 1, . . . , 6, respectively and let V (u)k be a (u+ 2) × (u+ 2)

Vandermonde matrix as follows:

V
(u)
k =


(
xk1
)u+1 (

xk2
)u+1 · · ·

(
xku+2

)u+1(
xk1
)u (

xk2
)u · · ·

(
xku+2

)u
...

...
...

1 1 · · · 1


where u = 1, 2. Suppose now that

W i
k =


(
xk1
)n+u+2−i(

xk2
)n+u+2−i
...(

xku+2
)n+u+2−i


and V (u,i)k,j İS a (u+ 2) × (u+ 2) matrix obtained from V

(u)
k by replacing the jth

column of V (u)k by W i
k. This yields the Binet-type formulas for the sequences

{
akn
}

and
{
bkn
}
, namely.

Theorem 2.1. For k = 1, . . . , 6,

m
(k,n)
ij =

detV
(1,i)
k,j

detV
(1)
k

and m∗(k,n)
ij =

detV
(2,i)
k,j

detV
(2)
k

,

where (Mk)
n
= m

(k,n)
ij and (M∗

k )
n
= m

∗(k,n)
ij .

Proof. Since the eigenvalues of the matrices Mk and M∗
k are are distinct, these

matrices are diagonalizable. Let

D(1,k) = diag
(
xk1 , x

k
2 , x

k
3

)
and D(2,k) = diag

(
xk1 , x

k
2 , x

k
3 , x

k
4

)
,

then it is easy to see thatMkV
(1)
k = V

(1)
k D(1,k) andM∗

kV
(2)
k = V

(2)
k D(2,k). Since the

matrices V (1)k and V (2)k are invertible,
(
V
(1)
k

)−1
MkV

(1)
k = D(1,k) and

(
V
(2)
k

)−1
M∗
kV

(2)
k =
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D(2,k). Thus, the matrices Mk and M∗
k are similar to D

(1,k) and D(2,k), respec-
tively. So, we get (Mk)

n
V
(1)
k = V

(1)
k

(
D(1,k)

)n
and (M∗

k )
n
V
(2)
k = V

(2)
k

(
D(2,k)

)n
for

n ≥ 1.
Then we can write the following linear system of equations:

m
(k,n)
i1

(
xk1
)2
+m

(k,n)
i2

(
xk1
)
+m

(k,n)
i3 =

(
xk1
)n+3−i

m
(k,n)
i1

(
xk2
)2
+m

(k,n)
i2

(
xk2
)
+m

(k,n)
i3 =

(
xk2
)n+3−i

m
(k,n)
i1

(
xk3
)2
+m

(k,n)
i2

(
xk3
)
+m

(k,n)
i3 =

(
xk3
)n+3−i , (1 ≤ i, j ≤ 3)

and
m
∗(k,n)
i1

(
xk1
)3
+m

∗(k,n)
i2

(
xk1
)2
+m

∗(k,n)
i3

(
xk1
)
+m

∗(k,n)
i4 =

(
xk1
)n+4−i

m
∗(k,n)
i1

(
xk2
)3
+m

∗(k,n)
i2

(
xk2
)2
+m

∗(k,n)
i3

(
xk2
)
+m

∗(k,n)
i4 =

(
xk2
)n+4−i

m
∗(k,n)
i1

(
xk3
)3
+m

∗(k,n)
i2

(
xk3
)2
+m

∗(k,n)
i3

(
xk3
)
+m

∗(k,n)
i4 =

(
xk3
)n+4−i

m
∗(k,n)
i1

(
xk4
)3
+m

∗(k,n)
i2

(
xk4
)2
+m

∗(k,n)
i3

(
xk4
)
+m

∗(k,n)
i4 =

(
xk4
)n+4−i , (1 ≤ i, j ≤ 4) .

Therefore, we obtain

m
(k,n)
ij =

detV
(1,i)
k,j

detV
(1)
k

and m∗(k,n)
ij =

detV
(2,i)
k,j

detV
(2)
k

for k = 1, . . . , 6. �

3. The Cyclic Groups and The Semigroups via The Matrices Mk and
M∗
k

Given an integer matrix A = [aij ], A (modα) means that all entries of A are
modulo α, that is, A (modα) = (aij (modα)). Let us consider the set 〈A〉α ={
Ai (modα) | i ≥ 0

}
. If gcd (α,detA) = 1, then 〈A〉α is a cyclic group; if gcd (α,detA) 6=

1, then 〈A〉α is a semigroup. Let the notation |〈A〉α| denote the order of the set
〈A〉α.
We next consider the orders of the cyclic groups and the semigroups generated

by the matrices Mk and M∗
k for k = 1, . . . , 6.

Theorem 3.1. Let p be a prime and let 〈G〉pn be any of the cyclic groups of 〈Mk〉pn
and 〈M∗

k 〉pn for k = 1, . . . , 6 and n ∈ N . If i is the largest positive integer such that∣∣∣〈G〉pi∣∣∣ = ∣∣∣〈G〉p∣∣∣, then ∣∣∣〈G〉pj ∣∣∣ = pj−i
∣∣∣〈G〉p∣∣∣. In particular, if ∣∣∣〈G〉p2∣∣∣ 6= ∣∣∣〈G〉p∣∣∣,

then
∣∣∣〈G〉pj ∣∣∣ = pj−1

∣∣∣〈G〉p∣∣∣.
Proof. Let us consider the cyclic group 〈M1〉pn . Then gcd (p, 4) = 1 that is, p is

an odd prime. Suppose that u is positive integer and
∣∣∣〈M1〉pn

∣∣∣ is denoted by ◦ (pn).
Since (M1)

◦(pu+1) ≡ I
(
mod pu+1

)
, (M1)

◦(pu+1) ≡ I (mod pu) where I is a 3 × 3
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identity matrix. Thus, we show that ◦ (pu) divides ◦
(
pu+1

)
. Furthermore, if we

denote

(M1)
◦(pu)

= I +
(
m
(u)
ij · pu

)
,

then by the binomial expansion, we have

(M1)
◦(pu)·p

=
(
I +

(
m
(u)
ij · pu

))p
=

p∑
r=0

(
p

r

)(
m
(u)
ij · pu

)r
≡ I (mod pu) .

So we get that ◦
(
pu+1

)
is divisible by ◦

(
pu+1

)
· p. Then, ◦

(
pu+1

)
= ◦ (pu) or

◦
(
pu+1

)
= ◦

(
pu+1

)
· p. It is clear that the latter holds if and only if there exists

an integer m(u)
ij which is not divisible by p. Since i is the largest positive integer

such that ◦
(
pi
)
= ◦ (p) we have ◦

(
pi+1

)
6= ◦

(
pi
)
, which yields that there exists an

integer m(u)
ij such that p - m(u)

ij . So we find that ◦
(
pi+2

)
6= ◦

(
pi+1

)
. To complete

the proof we use an inductive method on i.
There are similar proofs for the other cyclic groups which are obtained as the

above. �

Theorem 3.2. Let α be an positive integer and let 〈G〉α be any of the cyclic groups

of 〈Mk〉α and 〈M∗
k 〉α for k = 1, . . . , 6. If α has the prime factorization α =

t∏
j=1

p
ej
j ,

(t ≥ 1), then
|〈G〉α| = lcm

[∣∣∣〈G〉pe11 ∣∣∣ , ∣∣∣〈G〉pe22 ∣∣∣ , . . . , ∣∣∣〈G〉pett ∣∣∣] .
Proof. Let us consider the cyclic group 〈M∗

4 〉α, then gcd (α, 3) = 1. Suppose that∣∣∣〈M∗
4 〉pejj

∣∣∣ = vj for j = 1, . . . , t and |〈M∗
4 〉α| = v. Then by (M∗

4 )
n, we can write

a∗44vj−3 + 2
vj +

vj−3∑
i=0

2vj−2−ia∗45+4i ≡ a∗44vj−2 + 3
vj +

vj−3∑
i=0

3vj−2−ia∗46+4i ≡ a∗44vj+4

≡ 1
(
mod pejj

)
,

a∗44vj−2 +

vj−3∑
i=0

3vj−2−ia∗46+4i ≡ a∗44vj+1 ≡ a
∗4
4vj+2 ≡ a

∗4
4vj+3 ≡ 0

(
mod p

ej
j

)
and

a∗44v−3 + 2
v +

v−3∑
i=0

2v−2−ia∗45+4i ≡ a∗44v−2 + 3
v +

v−3∑
i=0

3v−2−ia∗46+4i ≡ a∗44v+4 ≡ 1 (modα) ,

a∗44v−2 +

v−3∑
i=0

3v−2−ia∗46+4i ≡ a∗44v+1 ≡ a∗44v+2 ≡ a∗44v+3 ≡ 0 (modα) .
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This implies that (M∗
4 )
v is of the form λ · (M∗

4 )
vj , (λ ∈ N) for all values of j. Thus

it is verified that v =lcm[v1, v2, . . . , vt].
There are similar proofs for the other cyclic groups which are obtained as the

above. �
We have the following useful results for the orders of the semigroups generated

by the matrices Mk and M∗
k from (Mk)

n and (M∗
k )
n
.

Corollary 3.3. Let α = 2η and m = 2µ such that η, µ ∈ N and 1 ≤ µ ≤ η. Then
the orders of the semigroups 〈Mk〉α for k = 1, 2, 3 are as follows:
(i). If η = µ = 1, then |〈Mk〉α| = 1.
(ii). If η ≥ 2 and µ = η or µ = η − 1, then |〈Mk〉α| = η.
(iii). If η ≥ 3 and µ = η− i such that 2 ≤ i ≤ η−1, then |〈Mk〉α| = η+2i−1−1.

Corollary 3.4. Let m ≡ 1 (mod 4) or m ≡ 2 (mod 4) and let η ∈ N . Then the
orders of the semigroups 〈M3〉2η are as follows:
i. If m ≡ 1 (mod 4), then

|〈M3〉2η | =

 2 for η = 1,
4 for η = 2,

2η−2 + η for η ≥ 3.
ii. If m ≡ 2 (mod 4), then

|〈M3〉2η | =

 1 for η = 1,
2 for η = 2,

2η−2 + η − 1 for η ≥ 3.

Corollary 3.5. Let η ∈ N . Then the orders of the semigroups 〈M4〉3η , 〈M5〉2η ,
〈M5〉7η and 〈M6〉19η are as follows:

|〈M4〉3η | =
{
2 · 3η−1 + η − 1 for η = 1,
2 · 3η−1 + η − 2 for η ≥ 2,

|〈M5〉2η | =
{

1 for η = 1,
2η−1 + η − 1 for η ≥ 2,

|〈M5〉7η | = 48 · 7
η−1 + η − 1

and
|〈M6〉19η | = 20 · 19

η−1 + η − 1.

Corollary 3.6. Let η ∈ N . Then the orders of the semigroups 〈M∗
k 〉2η for k =

1, 2, 3 are as follows:
(i). If m ≡ 0 (mod 4), then

|〈M∗
k 〉2η | =

 3 for η = 1,
7 for η = 2,

2η−1 + 2η−2 + η − 1 for η ≥ 3.
(ii). If m ≡ 2 (mod 4), then

∣∣〈M∗
k 〉2η

∣∣ = 2η−1 + 2η−2 + η − 1.
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(iii). If m is odd, then
∣∣〈M∗

k 〉2η
∣∣ = 3η + 1.

Corollary 3.7. Let η ∈ N . Then the orders of the semigroups 〈M∗
4 〉3η and 〈M∗

5 〉2η
are as follows:

|〈M∗
4 〉3η | = 26 · 3

η−1 + η − 1
and

|〈M∗
5 〉2η | = 4η.

By an inductive argument for n ≥ 1, we obtain

(M1)
n
=

 x1 x2 x3
x2 x4 x5
x6 x7 x8

 , (M2)
n
=

 x4 x2 x5
x2 x1 x3
x7 x6 x8


and

(M∗
1 )
n

=


y1 y2 y2 y3
y2 y4 y5 y6
y2 y5 y4 y6
y3 y6 y6 y7

 , (M∗
2 )
n
=


y4 y2 y5 y6
y2 y1 y2 y3
y5 y2 y4 y6
y6 y3 y6 y7

 ,

(M∗
3 )
n

=


y4 y5 y2 y6
y5 y4 y2 y6
y2 y2 y1 y3
y6 y6 y3 y7

 ,
where xi, yj ∈ N such that i = 1, . . . , 8 and j = 1, . . . , 7. Thus, we have the
following results

a13n+1 = a23n+2, a
1
3n+2 = a23n+1, a

1
3n+3 = a23n+3

and

b14n+1 = b24n+2 = b34n+3, b
1
4n+2 = b24n+1 = b34n+1, b

1
4n+4 = b24n+4 = b34n+4,

b14n+2 = b14n+3, b
2
4n+1 = b24n+3, b

3
4n+1 = b34n+2

and hence
|〈M1〉α| = |〈M2〉α| , | 〈M

∗
1 〉α| = | 〈M

∗
2 〉α| = | 〈M

∗
2 〉α|

for every positive integer α.

4. The Polyhedral Sequences in Groups

It is well-known that a sequence is periodic if, after a certain point, it consists
only of repetitions of a fixed subsequence. The number of elements in the repeating
subsequence is the period of the sequence. A sequence is simply periodic with
period k if the first k elements in the sequence form a repeating subsequence.
Reducing 3-step and 4-step polyhedral sequences of the first, second, third,

fourth, fifth and sixth kind by a modulus α, then we get the repeating sequences,
respectively denoted by{

akn (α)
}
=
{
ak1 (α) , a

k
2 (α) , . . . , a

k
i (α) , . . .

}



POLYHEDRAL SEQUENCES 111

and {
bkn (α)

}
=
{
bk1 (α) , b

k
2 (α) , . . . , b

k
i (α) , . . .

}
,

where aki (α) = aki (modα), b
k
i (α) = bki (modα) and k = 1, . . . , 6. The recurrence

relations in the sequences
{
akn (α)

}
,
{
bkn (α)

}
and

{
akn
}
,
{
bkn
}
are the same, respec-

tively.

Theorem 4.1. For k = 1, . . . , 6, the sequences
{
akn (α)

}
,
{
bkn (α)

}
are periodic.

Proof. Let us consider the 4-step polyhedral sequence of the first kind
{
b1n (α)

}
as

an example. Let X = {(x1, x2, x3, x4, x5, x6, x7) | 0 ≤ xi ≤ α− 1}. Since there are
α7 distinct 7-tuples of elements of Zα, at least one of the 7-tuples appears twice in
the sequence

{
b1n (α)

}
. Therefore, the subsequence following this 7-tuple repeats;

that is the sequence is periodic.
There are similar proofs for the other sequences which are defined as the above.

�
We next denote the periods of the sequences

{
akn (α)

}
and

{
bkn (α)

}
by lak (α)

and lbk (α), respectively.

Example 4.1. For m = 2, the sequence
{
b1n (3)

}
is

{0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, . . .}
and thus lb1 (3) = 8.

Theorem 4.2. Let α be an positive integer and let
{
xkn (α)

}
be any of the sequences

of
{
akn (α)

}
,
{
bkn (α)

}
for k = 1, . . . , 6. If α has the prime factorization α =

t∏
j=1

p
ej
j ,

(t ≥ 1) and (α,detM) = 1 where M is generating matrix of the sequence that is,
M =Mk or M =M∗

k , then

lxk (α) = lcm [lxk (p
e1
1 ) , lxk (p

e2
2 ) , . . . , lxk (p

et
t )] .

Proof. Let us consider the 3-step polyhedral sequence of the fourth kind
{
a4n (α)

}
as an example. Since la4

(
p
ej
j

)
is the length of the period of the sequence

{
akn
(
p
ej
j

)}
,

this sequence repeats only after blocks of length u · la4
(
p
ej
j

)
, (u ∈ N). Since also

la4 (α) is the length of the period of
{
akn (α)

}
, the sequence

{
akn
(
p
ej
j

)}
repeats

after la4 (α) terms for all values j. Thus, la4 (α) is of the form u · la4
(
p
ej
j

)
for

all values j, and since any such number gives a period of la4 (α), we find that
la4 (α) = lcm [la4 (p

e1
1 ) , la4 (p

e2
2 ) , . . . , la4 (p

et
t )].

There are similar proofs for the other sequences which are defined as the above.
�

Since

(Mk)
n

 0
0
1

 =
 ak3n+1
ak3n+2
ak3n+3


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and

(M∗
k )
n


0
0
0
1

 =

bk4n+1
bk4n+2
bk4n+3
bk4n+4

 ,
it is clear that lak (α) = 3 · |〈Mk〉α| and lbk (α) = 4 ·

∣∣〈M∗
k 〉α
∣∣ when (detM,α) = 1

where M =Mk or M =M∗
k for k = 1, . . . , 6.

We next redefine the sequences
{
akn
}
and

{
bkn
}
by means of the elements of the

groups which have two or three generators.

Definition 4.1. Let G be a 2-generator group. For a generating pair (x, y), we
define the polyhedral 3-orbits of the first, second, third, fourth, fifth and sixth kind
by:

sun =


(
sun−3

)α1
sun−1 n ≡ 1 (mod 3) ,(

sun−3
)α2

sun−2 n ≡ 2 (mod 3) ,(
sun−5

)α3 (
sun−4

)α3
sun−3 n ≡ 0 (mod 3) ,

,

(u = 1, 2, 3, αu = m and αi = 2 if i 6= u)

svn =


(
svn−3

)2
svn−1 n ≡ 1 (mod 3) ,(

svn−3
)3
svn−2 n ≡ 2 (mod 3) ,(

svn−5
)v−1 (

svn−4
)v−1

svn−3 n ≡ 0 (mod 3) ,
(v = 4, 5, 6)

for n ≥ 4, with initial conditions sk1 = x, sk2 = y, sk3 = y, (k = 1, . . . , 6).
For a generating pair (x, y), the polyhedral 3-orbits of the first, second, third,

fourth, fifth and sixth kind are denoted byO3,1(x,y) (G), O
3,2
(x,y) (G), O

3,3
(x,y) (G), O

3,4
(x,y) (G),

O3,5(x,y) (G) and O
3,6
(x,y) (G), respectively.

Definition 4.2. Let G be a 3-generator group. For a generating triple (x, y, z), we
define the polyhedral 4-orbits of the first, second, third, fourth, fifth and sixth kind
by:

run =


(
run−4

)α1
run−1 n ≡ 1 (mod 4) ,(

run−4
)α2

run−2 n ≡ 2 (mod 4) ,(
run−4

)α3
run−3 n ≡ 3 (mod 4) ,

run−7r
u
n−6r

u
n−5r

u
n−4 n ≡ 0 (mod 4) ,

(u = 1, 2, 3, αu = m and αi = 2 if i 6= u) ,

rvn =


(
rvn−4

)2
rvn−1 n ≡ 1 (mod 4) ,(

rvn−4
)3
rvn−2 n ≡ 2 (mod 4) ,(

rvn−4
)(v−1)

rvn−3 n ≡ 3 (mod 4) ,
rvn−7r

v
n−6r

v
n−5r

v
n−4 n ≡ 0 (mod 4) ,

(v = 4, 5, 6)

for n ≥ 5, with initial conditions rk1 = x, rk2 = y, rk3 = z, rk4 = z, (k = 1, . . . , 6).
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For a generating triple (x, y, z), the polyhedral 4-orbits of the first, second, third,
fourth, fifth and sixth kind are denoted by O4,1(x,y,z) (G), O

4,2
(x,y,z) (G), O

4,3
(x,y,z) (G),

O4,4(x,y,z) (G), O
4,5
(x,y,z) (G) and O

4,6
(x,y,z) (G), respectively.

Theorem 4.3. The polyhedral 3-orbits and 4-orbits of the first, second, third,
fourth, fifth and sixth kind of a finite group G are periodic.

Proof. Let us consider the polyhedral 3-orbit of the first kind O3,1(x,y) (G) as an
example. Suppose that n is the order of G. Since there are n5 distinct 5-tuples of
elements of G, at least one of the 5-tuples appears twice in the sequence O3,1(x,y) (G).
Therefore, the subsequence following this 5-tuple repeats. Because of the repetition,
the sequence is periodic. �

We denote the lengths of the periods of the orbits O3,k(x,y) (G) and O
4,k
(x,y,z) (G) by

LO3,k(x,y) (G) and LO
4,k
(x,y,z) (G) for k = 1, . . . , 6, respectively.

We will now address the lengths of the periods of the polyhedral 3-orbits and
4-orbits of the first, second, third, fourth, fifth and sixth kind of finite polyhedral
groups as applications of the results obtained.

Theorem 4.4. The orbit O3,1(x,y) ((m, 2, 2)) is a simply periodic sequence and

LO3,1(x,y) ((m, 2, 2)) = 6i where i is the least positive integer such that (−2)i ≡
1 (modm) and[
(−2)i + (−2)i−1 + · · ·+ (−2)3

]
+ 2 ≡ 0 (modm).

Proof. We first note that the polyhedral group (m, 2, 2) of order 2m is presented in
the 2-generator case by 〈

x, y | xm = y2 = (xy)
2
= e
〉
.

The sequence O3,1(x,y) ((m, 2, 2)) is

x, y, y, y, y, x2y, . . . .

Using the above, the sequence becomes:

s11 = x, s12 = y, s13 = y, s14 = y, s15 = y, s16 = x2y, . . . ,

s16i+1 = x(−2)
i

, s16i+2 = s16i+3 = s16i+4 = s16i+5 = x−[(−2)
i+(−2)i−1+···+(−2)3]−2y,

s16i+6 = x−[(−2)
i+1+(−2)i+···+(−2)3]−2y, . . . .

So we need the smallest positive integer i such that

(−2)i = um+ 1 and
[
(−2)i + (−2)i−1 + · · ·+ (−2)3

]
+ 2 = vm for u, v ∈ N.

Thus the proof is complete. �
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Theorem 4.5.

LO3,2(x,y) ((2,m, 2)) = la2 (m) , LO
3,3
(x,y) ((2, 2,m)) = 3, LO

3,4
(x,y) ((2, 3, 3)) = 18,

LO3,5(x,y) ((2, 3, 4)) = 9, LO
3,6
(x,y) ((2, 3, 5)) = 21

and

LO4,1(x,y,z) ((m, 2, 2)) = LO4,2(x,y,z) ((2,m, 2)) =

{
4 if m is odd,
12 if m is even,

LO4,3(x,y,z) ((2, 2,m)) = lb3 (m) , LO
4,4
(x,y,z) ((2, 3, 3)) = 104,

LO4,5(x,y,z) ((2, 3, 4)) = 4, LO
4,6
(x,y,z) ((2, 3, 5)) = 248.

Proof. Let us consider the polyhedral 4-orbit of the third kind of the polyhedral
group (2, 2,m) , O4,3(x,y,z) ((2, 2,m)) as an example. The sequence O

4,3
(x,y,z) ((2, 2,m))

is
x, y, z, z, z, z, z, z, z3, z3, z, z4, z10, z10, z4, z11, . . . .

Using the above, the sequence becomes:

r35 = z = zb
3
5 , r36 = z = zb

3
6 , r37 = z = zb

3
7 , r38 = z = zb

3
8 , . . . ,

r34i+1 = zb
3
4i+1 , r34i+2 = zb

3
4i+2 , r34i+3 = zb

3
4i+3 , r34i+4 = zb

3
4i+4 , . . . .

Since the order of z is m, it is easy to see that the length of the period of the
orbit O4,3(x,y,z) ((2, 2,m)) is lb3 (m).
There are similar proofs for the other orbits. �
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SEMI-SLANT SUBMANIFOLDS OF (k, µ)- CONTACT MANIFOLD

M.S.SIDDESHA AND C.S BAGEWADI

Abstract. In the present paper, we study semi-slant submanifolds of (k, µ)-
contact manifold and give conditions for the integrability of invariant and slant
distributions which are involved in the definition of semi-slant submanifold.
Further, we show the totally geodesicity of such distributions.

1. Introduction

The geometry of slant submanifolds was initiated by Chen [6] as a natural gen-
eralization of both holomorphic and totally real submanifolds. Since then many
geometers have studied such slant immersions in almost Hermitian manifolds. The
contact version of slant immersions was introduced by Lotta [11]. Latter, Cabrerizo
et al., [3] studied and characterized slant submanifolds of K-contact and Sasakian
manifolds and have given several examples of such immersions.
In 1994, Papaghiuc [12] has introduced the notion of semi-slant submanifolds of

almost Hermitian manifolds. Cabrerizo et al., [4] extended the study of semi-slant
submanifolds to the setting of almost contact metric manifolds. They worked out
the integrability conditions of the distributions involved on these submanifolds and
studied the geometrical significance of these distributions. Motivated by these stud-
ies of the above authors [4, 9, 12], in the present paper we extend the study of the
semi-slant submanifolds of (k, µ)-contact manifold, which consist of both Sasakian
as well as non-Sasakian cases and are introduced in 1995 by Blair, Koufogiorgos
and Papantoniou [2]. Hence it is worth studying and is a generalization of [4].
The paper is organized as follows: In section-2, we recall the notion of (k, µ)-

contact manifold and some basic results of submanifolds, which are used for further
study. Section-3 is devoted to study semi-slant submanifolds of (k, µ)-contact man-
ifold. Lastly, in section-4 we consider totally umbilical and totally contact umbilical
semi-slant submanifolds of (k, µ)-contact manifold and find the necessary conditions
to be totally geodesic.
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2. Preliminaries

A contact manifold is a C∞ − (2n+ 1) manifold M̃2n+1 equipped with a global
1-form η such that η ∧ (dη)n 6= 0 everywhere on M̃2n+1. Given a contact form η
it is well known that there exists a unique vector field ξ, called the characteristic
vector field of η, such that η(ξ) = 1 and dη(X, ξ) = 0 for every vector field X on
M̃2n+1. A Riemannian metric g is said to be associated metric if there exists a
tensor field φ of type (1,1) such that

φ2 = −I + η ⊗ ξ, η(ξ) = 1, φξ = 0, η · φ = 0, (2.1)

g(φX, φY ) = g(X,Y )− η(X)η(Y ), g(X, ξ) = η(X), (2.2)

g(X,φY ) = −g(φX, Y ), (2.3)

for all vector fields X,Y ∈ TM̃ . Then the structure (φ, ξ, η, g) on M̃2n+1 is called
a contact metric structure and the manifold M̃2n+1 equipped with such a structure
is called a contact metric manifold [1].
Now we define a (1, 1) tensor field h by h = 1

2Lξφ, where L denotes the Lie dif-
ferentiation, then h is symmetric and satisfies hφ = −φh. Further, a q-dimensional
distribution on a manifold M is defined as a mapping D on M which assigns to
each point p ∈M , a q-dimensional subspace Dp of TpM .
The (k, µ)-nullity distribution of a contact metric manifold M̃(φ, ξ, η, g) is a distri-
bution

N(k, µ) : p→ Np(k, µ) = {Z ∈ TpM : R̃(X,Y )Z

= k[g(Y, Z)X − g(X,Z)Y ] + µ[g(Y, Z)hX − g(X,Z)hY ]},

for all X,Y ∈ TM̃ . Hence if the characteristic vector field ξ belongs to the (k, µ)
nullity distribution, then we have

R̃(X,Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ]. (2.4)

The contact metric manifold satisfying the relation (2.4) is called (k, µ) contact
metric manifold [2]. It consists of both k-nullity distribution for µ = 0 and Sasakian
for k = 1. In (k, µ)-contact manifold the following relation holds:

(∇̃Xφ)(Y ) = g(X + hX, Y )ξ − η(Y )(X + hX), (2.5)

for all X,Y ∈ TM̃ , where ∇̃ denotes the Levi-Civita connection on M̃ . We also
have on (k, µ)-contact manifold M̃

∇̃Xξ = −φX − φhX. (2.6)

Let M be a submanifold of a (k, µ)-contact manifold M̃, we denote by the same
symbol g the induced metric on M . Let TM be the set of all vector fields tangent
to M and T⊥M is the set of all vector fields normal to M . Then, the Gauss and
Weingarten formulae are given by

∇̃XY = ∇XY + σ(X,Y ), ∇̃XV = −AVX +∇⊥XV, (2.7)



118 M.S.SIDDESHA AND C.S BAGEWADI

for any X,Y ∈ TM , V ∈ T⊥M , where ∇ (resp. ∇⊥) is the induced connection on
the tangent bundle TM (resp. normal bundle T⊥M) [7]. The shape operator A is
related to the second fundamental form σ of M by

g(AVX,Y ) = g(σ(X,Y ), V ). (2.8)

Now, for any x ∈M, X ∈ TxM and V ∈ T⊥x M , we put
φX = TX + FX, φV = tV + fV, (2.9)

where TX (resp. FX) is the tangential (resp. normal) component of φX, and tV
(resp. fV ) is the tangential (resp. normal) component of φV . The relation (2.9)
gives rise to an endomorphism T : TxM → TxM whose square (T 2) will be denoted
by Q. The tensor fields on M of type (1, 1) determined by these endomorphisms
will be denoted by the same letters T and Q respectively. From (2.3) and (2.9)

g(TX, Y ) + g(X,TY ) = 0, (2.10)

for each X,Y ∈ TM . The covariant derivatives of the tensor fields T, Q and F are
defined as

(∇XT )Y = ∇XTY − T (∇XY ), (2.11)

(∇XQ)Y = ∇XQY −Q(∇XY ), (2.12)

(∇XF )Y = ∇XFY − F (∇XY ). (2.13)

Using (2.5), (2.6), (2.7), (2.9), (2.11), and (2.12), we obtain

(∇XT )Y = AFYX + tσ(X,Y ) + g(X + hX, Y )ξ − η(Y )(X + hX), (2.14)

(∇XF )Y = −σ(X,TY ) + fσ(X,Y ). (2.15)

3. Semi-slant submanifolds of a (k, µ)-contact manifold

As a generalization of slant and CR-submanifolds, Papaghiuc [12] introduced
the notion of semi-slant submanifolds of an almost Hermitian manifolds. Cabrerizo
et al., [4] gave the contact version of semi-slant submanifold and they obtained
several interesting results. The purpose of the present section is to study semi-slant
submanifolds of a (k, µ)-contact manifold.
A submanifold M of an almost contact metric manifold M̃ is said to be a slant

submanifold if for any x ∈ M and any X ∈ TxM , the Wirtinger’s angle, the angle
between φX and TxM , is constant θ ∈ [0, 2π]. Here the constant angle θ is called
the slant angle of M in M̃ . The invariant submanifolds are slant submanifolds
with slant angle 0 and anti-invariant submanifolds are slant submanifolds with
slant angle π

2 . A slant submanifold is called proper, if it is neither invariant nor
anti-invariant. Recently, we have defined and studied slant submanifolds of a (k, µ)-
contact manifold in [13].
A submanifold M of an almost contact metric manifold M̃ is said to be a semi-

slant submanifold of M̃ [4] if there exist two orthogonal distributions D1 and D2

on M such that:
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(i) TM admits the orthogonal direct decomposition TM = D1 ⊕D2⊕ < ξ >.
(ii) The distribution D1 is an invariant distribution, i.e., φ(D1) = D1.
(iii) The distribution D2 is slant with slant angle θ 6= 0.
In particular, if θ = π

2 , then a semi-slant submanifold reduces to a semi-invariant
submanifold. On a semi-slant submanifold M , for any X ∈ TM , we write

X = P1X + P2X + η(X)ξ, (3.1)

where P1X ∈ D1 and P2X ∈ D2. Now by equations (2.9) and (3.1)

φX = φP1X + TP2X + FP2X. (3.2)

Then, it is easy to see that

φP1X = TP1X, FP1X = 0, TP2X ∈ D2. (3.3)

Thus
TX = φP1X + TP2X and FX = FP2X. (3.4)

Let ν denote the orthogonal complement of φD2 in T⊥M i.e., T⊥M = φD2 ⊕ ν.
Then it is easy to observe that ν is an invariant subbundle of T⊥M .
Now, we are in a position to workout the integrability conditions of the distrib-

utions D1 and D2 on a semi-slant submanifold of a (k, µ)-contact manifold.

Lemma 3.1. Let M be a semi-slant submanifold of a (k, µ)-contact manifold M̃ ,
then

g([X,Y ], ξ) = 2g(φX, Y ) + g(Y, φhX)− g(X,φhY ), (3.5)
for any X,Y ∈ D1 ⊕D2.

The assertion can be proved by using the fact that ∇Xξ = −φX − φhX for
X ∈ D1 and (2.3). Since for any X ∈ D1

g([X,φX], ξ) 6= 0, we have

Corollary 3.1. Let M be a semi-slant submanifold of a (k, µ)-contact manifold M̃
such that dim(D1) 6= 0. Then, the invariant distribution D1 is not integrable.

Now for the slant distribution, we have

Theorem 3.1. Let M be a semi-slant submanifold of a (k, µ)-contact manifold M̃ .
Then the slant distribution D2 is integrable if and only if slant angle of D2 is π

2
i.e., M is semi-invariant submanifold.

Proof. For any Z,W ∈ D2, by (3.5) we have

g([Z,W ], ξ) = 2g(TZ,W ) + g(W,ThZ)− g(Z, ThW ).
If D2 is integrable, then T | D2 ≡ 0 and so θ = π

2 . Hence M is a semi-invariant
submanifold.
Conversely, if sla(D2) =

π
2 , then φZ = FZ for each Z ∈ D2 and by equations (2.5)

and (2.7)

φ∇ZW + φσ(Z,W ) = −AFZW +∇⊥ZFW − g(Z + hZ,W )ξ,
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for each Z,W ∈ D2. Interchanging Z andW in the above equation and subtracting
the obtained relation from the same, we obtain

φ[Z,W ] = AFZW −AFWZ +∇⊥ZFW −∇⊥WFZ − g(hZ,W )ξ + g(hW,Z)ξ. (3.6)
Further, by using equations (2.3), (2.7) and (2.8) in (2.5), it is easy to obtain that

AFZW = AFWZ, (3.7)

for each Z,W ∈ D2. In view of (3.5), (2.1) and (3.7), equation (3.6) yields

[Z,W ] = φ(∇⊥ZFW −∇⊥WFZ). (3.8)

The right hand side of the above lies in D2 because on using equations (2.5), (2.7)
and (2.10), we observe that

g(V,∇⊥WFZ) = −g(AφVW,Z)
for all V ∈ ν and Z,W ∈ D2. This shows that

g(∇⊥ZFW −∇⊥WFZ, V ) = 0.

i.e., ∇⊥ZFW − ∇⊥WFZ lies in FD2 for each Z,W ∈ D2, and thus from equation
(3.8), [Z,W ] ∈ D2. �

Now, for Y ∈ D1 ⊕D2, by equation (2.5), we have

∇̃ξφY = φ∇̃ξY.
In particular, for Y ∈ D1, the above equation yields

∇ξφY = φ∇ξY.
This implies ∇ξY ∈ D1 for any Y ∈ D1.
The above observation together with the fact that σ(X, ξ) = 0 for X ∈ D1 yields

Lemma 3.2. On a semi-slant submanifold M of a (k, µ)-contact manifold M̃ ,

[X, ξ] ∈ D1 and [Z, ξ] ∈ D2

for any X ∈ D1 and Z ∈ D2.

Lemma 3.3. Let M be a semi-slant submanifold of a (k, µ)-contact manifold M̃ .
Then, for any X,Y ∈ TM , we have

P1(∇XφP1Y ) + P1(∇XTP2Y ) = φP1(∇XY ) + P1AFP2YX − η(Y )P1X (3.9)

Proof. By using equations (2.1), (2.7), (3.1), (3.2) and (3.3) we obtain

∇XφP1Y + σ(φP1Y,X) +∇XTP2Y + σ(TP2Y,X)−AFP2YX +∇⊥XFP2Y
= φP1∇XY + TP2∇XY + FP2∇XY + tσ(X,Y ) + fσ(X,Y )
+g(X + hX, Y )ξ − η(Y )P1(X + hX)− η(Y )P2(X + hX)− η(Y )η(X)ξ.

Equating the components of D1 we get (3.9). �
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Proposition 3.2. Let M be a semi-slant submanifold of (k, µ)-contact manifold
M̃ . Then
(i) D1⊕ < ξ > is integrable if and only if

σ(X,φY ) = σ(Y, φX); (3.10)

(ii) D2⊕ < ξ > is integrable if and only if

P1(∇ZTW −ANWZ −∇WTZ +ANZW ) = 0; (3.11)

for any X,Y ∈ D1 and Z,W ∈ D2.

Proof. Now, for any X,Y ∈ D1⊕ < ξ > and V ∈ T⊥M
g(∇̃XφY − ∇̃Y φX, V ) = g(σ(X,φY )− σ(φX, Y ), V ),

after simplification, we get

g((∇̃Xφ)Y − (∇̃Y )φX + φ[X,Y ], V ) = g(σ(X,φY )− σ(φX, Y ), V ).
Now using (2.5) and (3.2), we obtain

g(FP2[X,Y ], V ) = g(σ(X,φY )− σ(φX, Y ), V ).
Removing inner product, we get

FP2[X,Y ] = σ(X,φY )− σ(φX, Y ). (3.12)

Hence, if D1⊕ < ξ > is integrable then (3.10) holds directly from (3.12).
Conversely, by using (3.10), it is easy to prove that

σ(X,φY )− σ(Y, φX) = σ(P1X,φP1Y )− σ(P1Y, φP1X) = 0,
for any X,Y ∈ D1⊕ < ξ >. Thus, by applying (3.12) it follows that FP2[X,Y ] = 0.
So, we can easily deduce that P2[X,Y ] must vanish. Since D2 is a slant distribution
with nonzero slant angle. Hence [X,Y ] ∈ D1⊕ < ξ > and statement (i) holds.
With regards to statement (ii), by virtue of (3.9) we have

φP1[Z,W ] = P1(∇ZTW −∇WTZ −AFWZ +AFZW ).
for any Z,W ∈ D2⊕ < ξ >. Hence (3.11) holds if and only if

φP1[Z,W ] = 0, (3.13)

for any Z,W ∈ D2⊕ < ξ >. But it can be showed that (3.13) is equivalent to
D2⊕ < ξ > being an integrable distribution. �

The Nijenhuis tensor field S of the tensor T is given by

S(X,Y ) = [TX, TY ] + T 2[X,Y ]− T [TX, Y ]− T [X,TY ],
for X,Y ∈ TM . In particular, for X ∈ D1 and Z ∈ D2, the above equation on
simplification takes the form

S(X,Z) = (∇TXT )Z − (∇TZT )X + T (∇ZT )X − T (∇XT )Z.
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Using (2.14) the above equation becomes

S(X,Z) = AFZTX + tσ(TX,Z)− tσ(TZ,X)− T (AFZX). (3.14)

Theorem 3.3. If the invariant distribution D1 on a semi-slant submanifold M of
a (k, µ)-contact manifold M̃ is integrable and its leaves are totally geodesic in M,
then
(i) σ(D1, D1) ∈ ν,
(ii) S(D1, D2) ∈ D2.

Proof. By hypothesis, for any X,Y in D1 and Z in D2

g(∇XY,Z) = 0,

and therefore by Gauss formula, we have

g(φ∇̃XY, φZ) = 0.

The above equation on making use of equations (2.5), (2.7) and (2.9) yields

g(σ(X,φY ), FZ) = 0.

This proves statement (i). To prove statement (ii), use (3.14) to get

g(S(X,Z), Y ) = g(AFZTX + tσ(TX,Z)− tσ(TZ,X)− TAFZX,Y ).

The right hand side of the above equation is zero in view of statement (i) and thus
(ii) is established. �

Next for the slant distribution, we have:

Theorem 3.4. If the slant distribution D2 on a semi-slant submanifold M of a
(k, µ)-contact manifold M̃ is integrable and its leaves are totally geodesic in M, then
(i) σ(D1, D2) ∈ ν,
(ii) S(D1, D2) ∈ D1.

Proof. By hypothesis,
g(∇ZW,φX) = 0,

for any Z,W ∈ D2 and X ∈ D1. By applying (2.5), (2.7) and (2.9)

g(σ(X,Z), FW ) = 0.

That proves (i). Now by using equation (3.14)

g(S(X,Z),W ) = g(AFZTX + tσ(TX,Z)− tσ(TZ,X)− TAFZX,W ),

for X ∈ D1 and Z,W ∈ D2. The right hand side of the above equation is zero by
part (i). This proves (ii) and the theorem. �

Example: For any θ ∈ [0, π2 ]

x(u1, u2, u3, u4, u5) = (u1, 0, u3, 0, u2, 0, u4cosθ, u4sinθ, u5)
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defines a five dimensional semi-slant submanifoldM , with slant angle θ, in R9 with
its usual (k, µ)-contact structure (φ0, ξ, η, g) [13]. Further,

e1 = 2(
∂

∂x1
+ x5

∂

∂t
); e2 = 2

∂

∂x5
; e3 = 2(

∂

∂x3
+ x7

∂

∂t
);

e4 = cosθ(2
∂

∂x7
+ sinθ(2

∂

∂x8
); e5 =

∂

∂t
= ξ, (3.15)

form a local orthonormal frame of TM . If we define the distributionD1 =< e1, e2 >
and D2 =< e3, e4 >, then it is easy to check that the distribution D1 is invariant
under φ and D2 is slant with slant angle θ. That is M is semi-slant submanifold.

4. Totally umbilical submanifolds of (k, µ)-contact manifold

Definition 1. A submanifold M is said to be totally umbilical submanifold if
its second fundamental form satisfies

σ(X,Y ) = g(X,Y )H,

for all X,Y ∈ TM , where H is the mean curvature vector.
To investigate totally umbilical submanifolds of a (k, µ)-contact manifold, we

first establish the following preliminary result.

Proposition 4.5. Let M be a semi-slant submanifold of a (k, µ)-contact manifold
M̃ with σ(X,TX) = 0 for each X ∈ D1⊕ < ξ >. If D1⊕ < ξ > is integrable then
each of its leaves are totally geodesic in M as well as in M̃ .

Proof. For X ∈ D1⊕ < ξ >, by equation (2.15)

(∇XF )X = −σ(X,TX) + fσ(X,X),
by using (2.13) and the fact that FX = 0 for each X ∈ D1, we get

F∇XX = fσ(X,X). (4.1)

Now, making use of Proposition 3.2 and the assumption that σ(X,TX) = 0, we
obtain σ(X,TY ) = 0 i.e., σ(X,Y ) = 0 for each X,Y ∈ D1⊕ < ξ >. This proves
that the leaves of D1⊕ < ξ > are totally geodesic in M̃ . Thus by (4.1), we obtain
that ∇XY ∈ D1⊕ < ξ > i.e., the leaves of D1⊕ < ξ > are totally geodesic in
M . �

As an immediate consequence of the above, we have

Corollary 4.2. Let M be a totally umbilical semi-slant submanifold of a (k, µ)-
contact manifold M̃ . If D1⊕ < ξ > is integrable, then each of its leaves are totally
geodesic in M as well as in M̃ .

Definition 2. [10] A submanifold M of an almost contact metric manifold is
said to be totally contact umbilical submanifold if

σ(X,Y ) = g(φX, φY )K + η(Y )σ(X, ξ) + η(X)σ(Y, ξ),
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for all X,Y ∈ TM , where K is a normal vector field onM . If K = 0 thenM is said
to be a totally contact geodesic submanifold. For a submanifold of a (k, µ)-contact
manifold, the condition for totally contact umbilicalness reduces to

σ(X,Y ) = g(φX, φY )K.

Theorem 4.6. Let M be a totally contact umbilical semi-slant submanifold of a
(k, µ)-contact manifold M̃ , with dim(D1) 6= 0. Then the mean curvature vector is
a global section of FD2.

Proof. Let X ∈ D1 be a unit vector field and V ∈ ν, then

g(H,V ) = g(σ(X,X), V ) = g(∇̃XφX, φV ) = g(σ(X,φX, φV )) = 0

=⇒ H ∈ FD2. �

In view of Theorem 4.6, we have the following:

Theorem 4.7. A totally contact umbilical semi-slant submanifold of a (k, µ)-
contact manifold is totally contact geodesic if the invariant distribution D1 is inte-
grable.
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WRONSKIAN SOLUTIONS OF (2+1) DIMENSIONAL
NON-LOCAL ITO EQUATION
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Abstract. In this work, the Wronskian determinant technique is performed to
(2+1)-dimensional non-local Ito equation in the bilinear form. First, we obtain
some suffi cient conditions in order to show Wronskian determinant solves the
(2+1)-dimensional non-local Ito equation. Second, rational solutions, soliton
solutions, positon solutions, negaton solutions and their interaction solutions
were deduced by using the Wronskian formulations

1. Introduction

The nonlinear evolution equations (NLEEs) model abundant physical processes
which occur in the nature. Therefore, investigating and obtaining solutions of
these type equations have an extremely important place in nonlinear science. In
this context, in the literature a plenty of analytic and numerical methods were
developed such as inverse scattering transform, Hirota bilinear method, the Riccati
equation expansion method, the sine—cosine method, the tanh− sech method, G′/G
expansion method, Adomian decomposition method, He’s variational principle, Lie
symmetry method and many more ([1],[3]-[6]-[7], [8],[14], [19]-[20], [22]-[23]).
Nowadays, besides to above aforementioned methods, the Wronskian determi-

nant method ([5], [15]) depending upon Hirota bilinear forms has a wide range of
impact and applicability on the NLEES. Wronskian determinant technique is a im-
portant tool to get exact solutions to the corresponding Hirota bilinear equations
of the NLEE equations.
In [11], we observe that there is a bridge between Wronskian solutions and gen-

eralized Wronskian solutions. It gives us a way to obtain generalized Wronskian
solutions simply from Wronskian determinants. The basic idea was used to gen-
erate positons, negatons and their interaction solutions through the Wronskian
formulation.
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It is demonstrated in [12] that for each type of Jordan blocks of the coeffi cient
matrix J (λij), there exist special sets of eigenfunctions. These functions were used
to generate rational solutions, solitons, positons, negatons, breathers, complexitons
and their interaction solutions. The obtained solution formulas of the representa-
tive systems allow us to construct more general Wronskian solutions than rational
solutions, positons, negatons, complexitons and their interaction solutions.
As stated in [13], integrable equations can have three different kinds of explicit

exact transcendental function solutions: negatons, positons and complexitons. Soli-
tons are usually a specific class of negatons. Roughly speaking, negatons and posi-
tons are solutions which involve exponential functions and trigonometric functions
of space variables, respectively, and they are all associated with real eigenvalues of
the associated spectral problems. But complexitons are different solutions which
involve both exponential and trigonometric functions of space variables, and they
are associated with complex eigenvalues of the associated spectral problems. Inter-
action solutions among negatons, positons, rational solutions and complexitons are
a class of much more general and complicated solutions to soliton equations, in the
category of elementary function solutions.
The generalized (2+1) dimensional non-local Ito equation

utt + uxxxt + 3 (2uxut + uuxt) + 3uxx

(∫
ut dx

)
+ auyt + buxt = 0. (1)

was firstly studied by Ito for generalizing the bilinear Korteweg-de Vries (KdV)
equation [9]. To get rid of the integral operator, we use the transformation

u = vx

to cast (1) into the following equation

vxtt + vxxxxt + 3 (2vxxvxt + vxvxxt) + 3vxxxvt + avxyt + bvxxt = 0. (2)

We observe increasing interest for Eq.(2) in the literature ([2], [4], [18],[21]). For
instance in [21], Wazwaz obtains single soliton solutions and periodic solutions of
Eq.(2) by tanh-coth method. He also constructs multiple-soliton solutions of sech-
squared type by using Hirota bilinear method. In [2], Adem constructs multiple
wave solutions of Eq.(2) by exploiting the multiple exp-function algorithm.
To solve Eq.(2) we can get dependent variable v by

v = α (ln f)x ∼
{
v = αwx
w = ln f

(3)

where f(x, y, t) is an unknown real function which will be determined. Substituting
Eq.(3) into Eq. (2), we have

αwxxtt + αwxxxxxt + 3
(
2α2wxxxwxxt + α2wxxwxxxt

)
+ 3α2wxxxxwxt

+ αawxxyt + αbwxxxt = 0, (4)
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which can be integrated twice with respect to x to give

αwtt + αwxxxt + 3α2wxtwxx + αawyt + αbwxt = C, (5)

where C is the constant of integration.
If we get

6α = 3α2, α = 2,

then (5) can be written as

wtt + wxxxt + 6wxtwxx + awyt + bwxt = C. (6)

Substituting w = ln f into Eq. (6), we get

ftt
f
−f

2
t

f2
+
fxxxt
f
−fxxxft

f2
−3fxxtfx

f2
+

3fxxfxt
f2

+
afyt
f
−afyft

f2
+
bfxt
f
− bfxft

f2
= C. (7)

Substituting C = 0 into Eq. (7) and employing Hitora derivative operators [8] we
obtain the Hitora bilinear form of Eq.(2) as(

D2
t +D3

xDt + aDyDt + bDxDt

)
f.f

= f(fxxxt+ftt+afyt+bfxt)+3fxxfxt−f2t −fxxxft−3fxxtfx−afyft−bfxft. (8)
In this work, our intention is to present the generalized Wronskian solutions of

the Eq. (2). The generalized Wronskian solutions are obtained through Wronskian
solutions. The generalized Wronskian solutions can be viewed as Wronskian solu-
tions. Solitons are examples of Wronskian solutions, and positons and negatons are
examples of generalized Wronskian solutions ([11]-[10]).
The paper is organized as follows. In Section 2, the Wronskian determinant

solution is deduced for Hirota bilinear form corresponding to Eq. (2). In Section
3, using Wronskian formulation rational solutions, solitons, positons, negatons and
their interaction solutions are presented. Lastly, conclusions are given in Section 4.

2. Wronskian formulation

We first present notation to be used and recall the definitions and theorems that
appear in ([5],[15]-[17]).
The solutions determined by v = 2 (ln f)x with f = |N̂ − 1| and

W (φ1, φ2, , , , , φn) = (N̂ − 1; Φ) = |N̂ − 1| =

∣∣∣∣∣∣∣∣∣∣∣

φ
(0)
1 φ

(1)
1 .. φ

(N−1)
1

φ
(0)
2 φ

(1)
2 .. φ

(N−1)
2

.

.
.
.

.

.
.
.

φ
(0)
N φ

(1)
N .. φ

(N−1)
N

∣∣∣∣∣∣∣∣∣∣∣
, N ≥ 1,

(9)
where

Φ = (φ1, φ2, , , , , φn)T , φ
(0)
i = φi , φ

(j)
i =

∂j

∂xj
φi , j ≥ 1 , 1 6 i 6 N . (10)



WRONSKIAN SOLUTIONS OF (2+1) DIMENSIONAL NON-LOCAL ITO EQUATION 129

to the Eq. (2) will be called Wronskian solutions ([5],[15] and [17]). Now, we give
the following important properties on determinants ([17]).
Property 1. If D is N ∗ (N−2) matrix, and a, b, c, d are n-dimensional column

vectors then,

|D, a, b| |D, c, d| − |D, a, c| |D, b, d|+ |D, a, d| |D, b, c| = 0 . (11)

Property 2. If aj(j = 1, ..., n) is an n-dimensional column vector, and bj(j =
1, ..., n) is a real constant different form zero then

N∑
i=1

bi |a1, a2, ...., aN | =
N∑
j=1

|a1, a2, ...., baj , ...., aN | , (12)

where baj = (b1a1j , b2a2j , ....., bNaNj)
T .

Property 3.

|N̂ − 1|
N∑
i=1

λii(t)

(
N∑
i=1

λii(t)|N̂ − 1|
)

= |N̂ − 1|(|N̂ − 5, N − 3, N − 2, N − 1, N |

−|N̂ − 4, N − 2, N − 1, N + 1| − |N̂ − 3, N − 1, N + 2||
+ 2|N̂ − 3, N,N + 1|+ |N̂ − 2, N + 3). (13)

Now, we present a set of suffi cient conditions consisting of systems of linear partial
differential equations which guarantees that the Wronskian determinant solves the
Eq. (2) in the bilinear form (8). Upon solving the linear conditions, the resulting
Wronskian formulations bring solution formulas, which can yield rational solutions,
solitons, negatons, positons and interaction solutions. Also, positons, negatons and
their interaction solutions are called the generalized Wronskian solutions ([11]).

Theorem 1. Assuming that φi = φi (x, y, t) (where i = 1, 2, ..., N) satisfies the
following linear partial differential equations (LPDEs)

φi,xx =

N∑
j=1

λij(t)φj , (14)

φi,t = mφi,x , (15)

φi,y = nφi,xxx + kφi,x (16)

with

n = −4

a
, m = −(b+ ak)

then f = |N̂ − 1| defined by (9) solves the bilinear Eq. (8).

Proof. Considering (9), we can obtain the following derivatives

f = |N̂ − 1|

fx = |N̂ − 2, N |
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fxx = |N̂ − 3, N − 1, N |+ |N̂ − 2, N + 1|
fxxx = |N̂ − 4, N − 2, N − 1, N |+ 2|N̂ − 3, N − 1, N + 1|+ |N̂ − 2, N + 2|.

In addition, keeping in mind the conditions of (15)-(16), we can produce that

ft = m|N̂ − 2, N |

fxt = m(|N̂ − 3, N − 1, N |+ |N̂ − 2, N + 1|)
ftt = m2(|N̂ − 3, N − 1, N |+ |N̂ − 2, N + 1|)

fy = n|N̂ − 4, N−2, N−1, N |−n|N̂ − 3, N−1, N+1|+n|N̂ − 2, N+2|+k|N̂ − 2, N |
fyt = mn|N̂ − 5, N −3, N −2, N −1, N |−mn|N̂ − 3, N,N + 1|+mn|N̂ − 2, N + 3|

+mk|N̂ − 3, N − 1, N |+mk|N̂ − 2, N + 1|
fxxt = m(|N̂ − 4, N − 2, N − 1, N |+ 2|N̂ − 3, N − 1, N + 1|+ |N̂ − 2, N + 2|)

fxxxt = m(|N̂ − 5, N−3, N−2, N−1, N |+3|N̂ − 4, N−2, N−1, N+1|+2|N̂ − 3, N,N+1|
+3|N̂ − 3, N − 1, N + 2|+ |N̂ − 2, N + 3|)

Therefore, we can compute all terms in Eq.(8) such as

3fxxfxt = 3m(|N̂ − 3, N−1, N |+|N̂ − 2, N+1|)(|N̂ − 3, N−1, N |+|N̂ − 2, N+1|)

= 3m(|N̂ − 3, N − 1, N |+ |N̂ − 2, N + 1|)2

= 3m(|N̂ − 2, N + 1| − |N̂ − 3, N − 1, N |+ 2|N̂ − 3, N − 1, N |)2

= 3m(|N̂ − 2, N + 1| − |N̂ − 3, N − 1, N |)2 + 12m|N̂ − 3, N − 1, N ||N̂ − 2, N + 1|,
(17)

ffxxxt = m|N̂ − 1|(|N̂ − 5, N − 3, N − 2, N − 1, N |+ 3|N̂ − 4, N − 2, N − 1, N + 1|
+2|N̂ − 3, N,N + 1|+ 3|N̂ − 3, N − 1, N + 2|+ |N̂ − 2, N + 3|),

fftt = m2|N̂ − 1(|N̂ − 3, N − 1, N |+ |N̂ − 2, N + 1|),
affyt = a|N̂ − 1|(mn|N̂ − 5, N − 3, N − 2, N − 1, N | −mn|N̂ − 3, N,N + 1|

+mn|N̂ − 2, N + 3|+mk|N̂ − 3, N − 1, N |+mk|N̂ − 2, N + 1|),
bffxt = bm|N̂ − 1|(|N̂ − 3, N − 1, N |+ |N̂ − 2, N + 1|),

f(fxxxt + ftt + afyt + bfxt) = |N̂ − 1|((m+ amn) |N̂ − 5, N − 3, N − 2, N − 1, N |
+3m|N̂ − 4, N − 2, N − 1, N + 1|+ (2m− amn) |N̂ − 3, N,N + 1|

+3m|N̂ − 3, N−1, N+2|+(m+ amn) |N̂ − 2, N+3|+
(
m2 + amk + bm

)
|N̂ − 3, N−1, N |

+
(
m2 + amk + bm

)
|N̂ − 2, N + 1|). (18)

We can obtain from Eq. (17) and Eq. (18) (Property 3)

m+ amn = −3m

n = −4

a
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and

m2 + amk + bm = 0

m = −(b+ ak).

Then, Eq. (8) can be rewritten as the following

f(fxxxt + ftt + afyt + bfxt) = −3m|N̂ − 1|(|N̂ − 5, N − 3, N − 2, N − 1, N |

−|N̂ − 4, N − 2, N − 1, N + 1| − 2|N̂ − 3, N,N + 1| − |N̂ − 3, N − 1, N + 2|
+|N̂ − 2, N + 3|)

= −3m(|N̂ − 2, N + 1| − |N̂ − 3, N − 1, N |)2 + 12m|N̂ − 3, N,N + 1||N̂ − 1| (19)
and

−f2t = −m2|N̂ − 2, N |2

−fxxxft = −m|N̂ − 2, N |(|N̂ − 4, N−2, N−1, N |+2|N̂ − 3, N−1, N+1|+|N̂ − 2, N+2|)

−3fxxtfx = −3m|N̂ − 2, N |(|N̂ − 4, N−2, N−1, N |+2|N̂ − 3, N−1, N+1|+|N̂ − 2, N+2|)

−afyft = −am|N̂ − 2, N |(n|N̂ − 4, N−2, N−1, N |−n|N̂ − 3, N−1, N+1|+n|N̂ − 2, N+2|

+k|N̂ − 2, N |)− bfxft = −bm|N̂ − 2, N ||N̂ − 2, N | = −bm|N̂ − 2, N |2

−f2t −fxxxft−3fxxtfx−afyft−bfxft = −12m|N̂ − 3, N−1, N+1||N̂ − 2, N | (20)
After substituting of the Eq. (17),(19) and (20) into (8) we obtain the following

Plücker relation:(
D2
t +D3

xDt + aDyDt + bDxDt

)
ff = 12m|N̂ − 3, N − 1, N ||N̂ − 2, N + 1|

+12m|N̂ − 3, N,N + 1||N̂ − 1| − 12m|N̂ − 3, N − 1, N + 1||N̂ − 2, N |
As result of Property 1, we get

12m|N̂ − 3, N − 1, N ||N̂ − 2, N + 1|+ 12m|N̂ − 3, N,N + 1||N̂ − 1|

− 12m|N̂ − 3, N − 1, N + 1||N̂ − 2, N | = 0.

�

This demonstrates that f = |N̂ − 1| solves the bilinear Eq. (8). The correspond-
ing solution of Eq. (2) is

v = 2 (ln f)x =
2fx
f

= 2
|N̂ − 2, N |
|N̂ − 1|
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3. Wronskian solutions of Eq.(2)

In this section, new exact solutions including rational solutions, soliton solutions,
positon solutions, negaton solutions and their interaction solutions are formally
derived to Eq.(8) ([11]-[10]).
The Jordan form of a real matrix

A =


J (λ1) 0

1 J (λ2)
. .

. .
. .

0 1 J (λm)


nxn

has the following type of block:

J (λi) =


λi 0
1 λi

. .
. .
. .

0 1 λi


kixki

This type of block has the real eigenvalue λi.

3.1. Rational solutions. Let’s assume that J (λ1) is

J (λ1) =


λ1 0
1 λ1

. .
. .
. .

0 1 λ1


k1xk1

If the eigenvalue λ1 = 0, then J (λ1) becomes to the following form:
0 0
1 0

. .
. .
. .

0 1 0


k1xk1

Then the conditions (14)-(16), convert to

φ1,xx = 0 , φi+1,xx = φi , φi,t = −(b+ ak)φi,x,

φi,y = −4

a
φi,xxx + kφi,x , i ≥ 1 (21)
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If we can obtain the functions of φi(i ≥ 1) from Eq.(21) then

v = 2∂x lnW (φ1, φ2, ...., φk1)

is called a rational Wronskian solution of order k1.
After solving

φ1,xx = 0 , φ1,t = −(b+ ak)φ1,x , φ1,y = −4

a
φ1,xxx + kφ1,x

we get

φ1 = c1 (x+ ky − (b+ ak)t) + c2.

where c1, c2 and k 6= 0 are all real constants.
Similarly, by solving

φi+1,xx = φi , φi+1,t = −(b+ ak)φi+1,x , φi+1,y = −4

a
φi+1,xxx + kφi+1,x , i ≥ 1 ,

then zero,first and second order rational solutions can be achieved.
1) Zero-order: When c1 = 1, c2 = 0, φ1 = x + ky − (b + ak)t, we have the

corresponding Wronskian determinant f = W (φ1) = x + ky − (b + ak)t, and the
associated rational Wronskian solution of zero-order:

v = 2∂x lnW (φ1) =
2

x+ ky − (b+ ak)t
(22)

2) First-order: When c1 = 1, c2 = 0, φ1 = x + ky − (b + ak)t, we have

φ2 = (x+ky−(b+ak)t)3
6 − 4y

a and the corresponding Wronskian determinant f =

W (φ1, φ2) = (x+ky−(b+ak)t)3
3 + 4y

a , and the associated rational Wronskian solution
of first-order

v = 2∂x lnW (φ1, φ2) =
2 (x+ ky − (b+ ak)t)

2

(x+ky−(b+ak)t)3
3 + 4y

a

(23)

3) Second-order: When φ1 = x + ky − (b + ak)t, φ2 = (x+ky−(b+ak)t)3
6 − 4y

a ,

we have φ3 = (x+ky−(b+ak)t)5
120 − 2y(x+ky−(b+ak)t)2

a and the corresponding Wronskian

determinant f = W (φ1, φ2, φ3) = (x+ky−(b+ak)t)6
45 + 4y(x+ky−(b+ak)t)3

3a − 16y2

a2 , and
the associated rational Wronskian solution of second-order

v = 2∂x lnW (φ1, φ2, φ3) =
4(x+ky−(b+ak)t)5

15 + 8y(x+ky−(b+ak)t)2
a

(x+ky−(b+ak)t)6
45 + 4y(x+ky−(b+ak)t)3

3a − 16y2

a2

(24)
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3.2. Solitons, negatons and positons. If the eigenvalue λ1 6= 0, J (λ1) becomes
to the following form 

λ1 0
1 λ1

. .
. .
. .

0 1 λ1


k1xk1

We start from the eigenfunction φ1(λ1), which is determined by

(φ1(λ1))xx = λ1φ1(λ1) , (φ1(λ1))t = −(b+ ak) (φ1(λ1))x ,

(φ1(λ1))y = −4

a
(φ1(λ1))xxx + k (φ1(λ1))x (25)

General solutions to this system in two cases of λ1 > 0 and λ1 < 0 are

φ1(λ1) = C1 sinh

(√
λ1

(
x+ ky − (b+ ak) t− 4yλ1

a

))
+C2 cosh

(√
λ1

(
x+ ky − (b+ ak) t− 4yλ1

a

))
(26)

when λ1 > 0,

φ1(λ1) = C3 cos

(√
−λ1

(
x+ ky − (b+ ak) t− 4yλ1

a

))
−C4 sin

(√
−λ1

(
x+ ky − (b+ ak) t− 4yλ1

a

))
(27)

when ak
4 < λ1 < 0 respectively, where C1, C2, C3 and C4 are arbitrary real con-

stants.
1) Solitons: The n−soliton solution is a special n−negaton:

v = 2∂x lnW (φ1, φ2, ....., φn)

with φi given by

φi = cosh

(√
λi

(
x+ ky − (b+ ak) t− 4yλi

a

)
+ γi

)
, i odd,

φi = sinh

(√
λi

(
x+ ky − (b+ ak) t− 4yλi

a

)
+ γi

)
, i even,

where 0 < λ1 < λ2.... < λn and γi (1 ≤ i ≤ n) are arbitrary real constants.
Zero-order:

v = 2∂x lnW (φ1) = 2∂x ln

(
cosh

(√
λ1

(
x+ ky − (b+ ak) t− 4yλ1

a

)
+ γ1

))
= 2

√
λ1 tanh(θ1) (28)
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v = 2∂x lnW (φ1) = 2∂x ln

(
sinh

(√
λ1

(
x+ ky − (b+ ak) t− 4yλ1

a

)
+ γ1

))
= 2

√
λ1 coth(θ1) (29)

where θ1 =
√
λ1

(
x+ ky − (b+ ak) t− 4yλ1

a

)
+ γ1, λ1 > 0

First-order:

v = 2∂x lnW (cosh(φ1), sinh(φ2))

=
2 (λ1 − λ2) (sinh (θ1 + θ2)− sinh (θ1 − θ2))(√

λ1 −
√
λ2
)

cosh (θ1 + θ2)−
(√
λ1 +

√
λ2
)

cosh (θ1 − θ2)
(30)

where θi =
√
λi

(
x+ ky − (b+ ak) t− 4yλi

a

)
+ γi, λi > 0, i = 1, 2.

2) Positons: We obtain two special positon solutions as the following

v = 2∂x lnW (φ, ∂λφ, ....., ∂
k−1
λ φ)

φ(λ) = cos

(√
−λ
(
x+ ky − (b+ ak) t− 4yλ

a

)
+ γ

)
λ < 0,

φ(λ) = sin

(√
−λ
(
x+ ky − (b+ ak) t− 4yλ

a

)
+ γ

)
λ < 0.

Zero-order:

v = 2∂x lnW (φ1) = 2∂x ln

(
cos

(√
−λ1

(
x+ ky − (b+ ak) t− 4yλ1

a

)
+ γ1

))
= −2

√
−λ1 tan(θ3) (31)

v = 2∂x lnW (φ1) = 2∂x ln

(
sin

(√
−λ1

(
x+ ky − (b+ ak) t− 4yλ1

a

)
+ γ1

))
= 2

√
−λ1 cot(θ3) (32)

where θ3 =
√
−λ1

(
x+ ky − (b+ ak) t− 4yλ1

a

)
+ γ1

First-order:

v = 2∂x lnW (cos(θ), ∂λ1 cos(θ)) =
4
√
−λ1 (1 + cos(2θ))

2
√
−λ1

(
x+ ky − (b+ ak) t− 12yλ1

a

)
+ sin(2θ)

(33)

where θ =
√
−λ1

(
x+ ky − (b+ ak) t− 4yλ1

a

)
+ γ1.

3) Negatons: We obtain two special negaton solutions as the following

v = 2∂x lnW (φ, ∂λφ, ....., ∂
k−1
λ φ)

φ = cosh

(√
λ

(
x+ ky − (b+ ak) t− 4yλ

a

)
+ γ

)
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φ = sinh

(√
λ

(
x+ ky − (b+ ak) t− 4yλ

a

)
+ γ

)
where λ > 0 and γ is an arbitrary constant.
First-order:

v = 2∂x lnW (cosh(θ), ∂λ1 cosh(θ)) =
4
√
λ1 (1 + cosh(2θ))

2
√
λ1

(
x+ ky − (b+ ak) t− 12yλ1

a

)
+ sinh(2θ)

(34)

where θ =
√
λ1

(
x+ ky − (b+ ak) t− 4yλ1

a

)
+ γ1

3.3. Interaction solutions. A Wronskian solution v = 2∂x lnW (φ1(λ), φ2(λ), ...,
φk(λ);ψ1(µ), ..., ψl(µ)) will be called as Wronskian interaction solution between two
solutions determined by the two sets of eigenfunctions

(φ1(λ), φ2(λ), ..., φk(λ);ψ1(µ), ..., ψl(µ)) (35)

Moreover, one can generate more general Wronskian interaction solutions for in-
stance using the rational solutions, negatons and positons.
Now, our aim is to demonstrate some special Wronskian interaction solutions.

First, we consider the following eigenfunctions:

φrational = x+ ky − (b+ ak) t

φsoliton = cosh

(√
λ1

(
x+ ky − (b+ ak) t− 4yλ1

a

))
φpositon = cos

(√
−λ2

(
x+ ky − (b+ ak) t− 4yλ2

a

))
where λ1 > 0, λ2 < 0 are constants.
We get the following Wronskian interaction determinants using the rational, a

single soliton and a single positon solutions

W (φrational, φsoliton) =
√
λ1 (x+ ky − (b+ ak) t) sinh(θ1)− cosh(θ1) (36)

W (φrational, φpositon) = −
√
−λ2 (x+ ky − (b+ ak) t) sin(θ2)− cos(θ2) (37)

W (φsoliton , φpositon) = −
√
−λ2 cosh(θ1) sin(θ2)−

√
λ1 sinh(θ1) cos(θ2) (38)

where θ1 =
√
λ1

(
x+ ky − (b+ ak) t− 4yλ1

a

)
, θ2 =

√
−λ2

(
x+ ky − (b+ ak) t− 4yλ2

a

)
Then, the corresponding Wronskian interaction solutions are

v = 2∂x lnW (φrational, φsoliton) =
2
√
λ1 (x+ ky − (b+ ak) t) cosh(θ1)√

λ1 (x+ ky − (b+ ak) t) sinh(θ1)− cosh(θ1)
(39)

v = 2∂x lnW (φrational, φpositon) =
−2λ2 (x+ ky − (b+ ak) t) cos(θ2)√

−λ2 (x+ ky − (b+ ak) t) sin(θ2) + cos(θ2)
(40)
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v = 2∂x lnW (φsoliton , φpositon) =
2 (λ1 − λ2) cosh(θ1) cos(θ2)√

−λ2 cosh(θ1) sin(θ2) +
√
λ1 sinh(θ1) cos(θ2)

(41)

where θ1 =
√
λ1

(
x+ ky − (b+ ak) t− 4yλ1

a

)
, θ2 =

√
−λ2

(
x+ ky − (b+ ak) t− 4yλ2

a

)
The following is one Wronskian interaction determinant and solution involving

the three eigenfunctions.

W (φrational, φsoliton , φpositon) = (x+ ky − (b+ ak) t)

×
(
λ2
√
λ1 sinh(θ1) cos(θ2) + λ1

√
−λ2 cosh(θ1) sin(θ2)

)
+ (λ1 − λ2) cosh(θ1) cos(θ2) = p (42)

v = 2∂x lnW (φrational, φsoliton , φpositon) =
2q

p
(43)

where

q = (x+ ky − (b+ ak) t)
√
−λ1λ2 (λ1 − λ2) sinh(θ1) sin(θ2)+λ1

√
λ1 sinh(θ1) cos(θ2)

+λ2
√
−λ2 cosh(θ1) sin(θ2)

θ1 =
√
λ1

(
x+ ky − (b+ ak) t− 4yλ1

a

)
, θ2 =

√
−λ2

(
x+ ky − (b+ ak) t− 4yλ2

a

)
4. Conclusions

In summary, based on Hirota’s bilinear method, we have used Wronskian de-
terminant method to construct exact solutions of (2+1) dimensional nonlocal Ito
equation. The performance of this method is reliable and effective and gives more
important physical solutions including solitons, negatons and positons. Some of
the results are in agreement with the results obtained in the previous literature,
and also new results are formally developed. We hope that the obtained solutions
can be used in numerical schemes as initial values and they may be of significant
importance for the explanation of some special physical phenomenas.
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ON UNIVALENCE OF INTEGRAL OPERATORS

FATMA SAĞSÖZ

Abstract. In this paper we consider functions of ψλ and we define integral
operators denoted by Fβ,λ and Gβ,λ using by ψλ, then we proved suffi cient
conditions for univalence of these integral operators.

1. Introduction

Let A be the class of functions f of the form

f(z) = z +

∞∑
n=2

anz
n

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}.
We denote by S the subclass of A consisting of the functions f ∈ A which are

univalent in U .
Let ψλ defined by ψλ(z) = (1− λ) f(z)+λzf

′
(z) for z ∈ U, f ∈ A and 0 ≤ λ ≤ 1.

We consider the integral operators

Fβ,λ (z) =

[
β

∫ z

0

uβ−1ψ
′

λ (u) du

] 1
β

(z ∈ U) , (1.1)

Gβ,λ (z) =

∫ z

0

[
ψ
′

λ (u)
]β
du (z ∈ U) (1.2)

for ψλ ∈ A, 0 ≤ λ ≤ 1 and for some complex numbers β. In the present paper, we
obtain new univalence conditions for the integral operators Fβ,λ and Gβ,λ to be in
the class S.
Recently the problem of univalence of some generalized integral operators have

discussed by many authors such as: (see [2]-[8], [10],[14]-[16])
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2. Preliminary Results

To discuss our problems for univalence of integral operators Fβ,λ and Gβ,λ, we
recall here some results.

Theorem 1. Let α ∈ C,Reα > 0 and f ∈ A. If

1− |z|2Reα

Reα

∣∣∣∣∣zf
′′
(z)

f ′ (z)

∣∣∣∣∣ ≤ 1
for all z ∈ U, then for any complex number β, Reβ ≥ Reα, the function

Fβ (z) =

[
β

∫ z

0

uβ−1f
′
(u) du

] 1
β

is in the class S [12].

Theorem 2. Let f ∈ A. If for all z ∈ U(
1− |z|2

) ∣∣∣∣∣zf
′′
(z)

f ′ (z)

∣∣∣∣∣ ≤ 1
then the function f is univalent in U [1].

Theorem 3. If the function g is regular and |g (z)| < 1 in U , then for all η ∈ U
and z ∈ U the following inequalities hold:∣∣∣∣∣ g (η)− g (z)1− g (z)g (η)

∣∣∣∣∣ ≤
∣∣∣∣ η − z1− zη

∣∣∣∣ (2.1)

and ∣∣∣g′ (z)∣∣∣ ≤ 1− |g (z)|2
1− |z|2

.

In here, the equalities hold only in the case g (z) = ε z+u1+uz where |ε| = 1 and |u| < 1
[9].

Remark 1. For z = 0 and all η ∈ U , from inequality (2.1) we obtain∣∣∣∣∣ g (η)− g (0)1− g (0)g (η)

∣∣∣∣∣ ≤ |η|
and, hence

|g (η)| ≤ |η|+ |g (0)|
1 + |g (0)| |η| .

Considering g (0) = a and η = z, then

|g (z)| ≤ |z|+ |a|
1 + |a| |z|

for all z ∈ U [9].
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Theorem 4. Let β be a complex number, Reβ ≥ 1 and f ∈ A, f(z)z 6= 0 for all
z ∈ U . If there exist a constant K ∈ (0,m (r)], where

m (r) =
1− 2 |a2| r

(
1− r2

)
+

√
[1− 2 |a2| r (1− r2)]2 + 8 |a2| r3 (1− r2)
2r2 (1− r2)

r = |z| , r ∈ (0, 1) such that ∣∣∣∣∣f
′′
(z)

f ′ (z)

∣∣∣∣∣ ≤ K
for all z ∈ U∗ = U − {0}, then the function

Fβ (z) =

[
β

∫ z

0

uβ−1f
′
(u) du

] 1
β

is regular and univalent in U∗ [11].

Theorem 5. Let β ∈ C and g ∈ A. If∣∣∣∣∣g
′′
(z)

g′ (z)

∣∣∣∣∣ < 1
for all z ∈ U and the constant |β| satisfies the condition

|β| ≤ 1

max
|z|≤1

[(
1− |z|2

)
|z| |z|+2|a2|1+2|a2||z|

]
then the function

Gβ (z) =

∫ z

0

[
g
′
(u)
]β
du

is univalent in U [13].

3. Main Results

Theorem 6. Let β ∈ C, Reβ ≥ 1 and ψλ a regular function in U ,
ψλ(z)
z 6= 0 for

all z ∈ U. If there exist a constant K ∈ (0,m (r)], where

m (r) =
1− 2 (1 + λ) |a2| r

(
1− r2

)
+

√
[1− 2 (1 + λ) |a2| r (1− r2)]2 + 8 (1 + λ) |a2| r3 (1− r2)

2r2 (1− r2)
(3.1)

r = |z| , r ∈ (0, 1) such that ∣∣∣∣∣ψ
′′

λ (z)

ψ
′

λ (z)

∣∣∣∣∣ ≤ K
for all z ∈ U∗, then the function (1.1) is regular and univalent in U∗.
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Proof. Let’s consider the function g (z) = 1
K
ψ
′′
λ (z)

ψ
′
λ(z)

where K is a real positive con-

stant. Applying Theorem3 and Remark1 to the function g, we obtain∣∣∣∣∣ 1K ψ
′′

λ (z)

ψ
′

λ (z)

∣∣∣∣∣ ≤ |z|+ 2(1+λ)|a2|
K

1 + 2(1+λ)|a2|
K |z|

, z ∈ U∗

and hence, we have(
1− |z|2

) ∣∣∣∣∣zψ
′′

λ (z)

ψ
′

λ (z)

∣∣∣∣∣ ≤ K (1− |z|2) |z| |z|+
2(1+λ)|a2|

K

1 + 2(1+λ)|a2|
K |z|

. (3.2)

Let’s consider the inequality

K ≤ 1(
1− |z|2

)
|z| |z|+

2(1+λ)|a2|
K

1+
2(1+λ)|a2|

K |z|

. (3.3)

Considering |z| = r, r ∈ (0, 1) and 2 |a2| = p, p > 0, the inequality (3.3) becomes

K ≤ K + (1 + λ) pr

(1− r2) r [Kr + (1 + λ) p] . (3.4)

We note that (
1− r2

)
r [Kr + (1 + λ) p] > 0 (3.5)

for every K > 0, p > 0, r ∈ (0, 1) and 0 ≤ λ ≤ 1. Using (3.5) the inequality (3.4)
becomes

r2
(
1− r2

)
K2 +

[
(1 + λ) pr

(
1− r2

)
− 1
]
K − (1 + λ) pr ≤ 0.

Let us consider the equation

r2
(
1− r2

)
K2 +

[
(1 + λ) pr

(
1− r2

)
− 1
]
K − (1 + λ) pr = 0, (3.6)

with the unknown K. From (3.6) we obtain

K1,2 =
1− (1 + λ) pr

(
1− r2

)
±
√
[1− (1 + λ) pr (1− r2)]2 + 4 (1 + λ) pr3 (1− r2)

2r2 (1− r2) .

(3.7)
For every p > 0, r ∈ (0, 1) and 0 ≤ λ ≤ 1 the following inequality holds[

1− (1 + λ) pr
(
1− r2

)]2
+ 4 (1 + λ) pr3

(
1− r2

)
> 0. (3.8)

Using (3.7) and (3.8) it results that K1,K2 are real solutions. Considering a =
1− r2, a ∈ (0, 1) and b = pr, b > 0 from (3.7) we get

K1,2 =
1− (1 + λ) ab±

√
[1− (1 + λ) ab]2 + 4 (1 + λ) ab (1− a)

2a (1− a) . (3.9)

�

We have the following cases:
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Case 1. For |a2| > 1
2(1+λ)r(1−r2) it results that 1− (1 + λ) ab < 0, so that

K1 =
1− (1 + λ) ab−

√
[1− (1 + λ) ab]2 + 4 (1 + λ) ab (1− a)

2a (1− a)
is real negative solution. Clearly,

K2 =
1− (1 + λ) ab+

√
[1− (1 + λ) ab]2 + 4 (1 + λ) ab (1− a)

2a (1− a)
is real positive solution. In this case, for K ∈ (0,K2] the inequality (3.3) is verified.

Case 2. For |a2| < 1
2(1+λ)r(1−r2) it results that 1− (1 + λ) ab > 0.

Let’s prove thatK1 < 0. Supposing thatK1 > 0, we obtain 4 (1 + λ) ab (1− a) <
0 the fact which is false. It results that K1 < 0. We note that K2 > 0, and the
inequality (3.3) is verified for K ∈ (0,K2] .

Case 3. For |a2| = 1
2(1+λ)r(1−r2) using (3.9) we obtain

K1,2 =
±
√
(1 + λ) ab (1− a)
a (1− a)

and the inequality (3.3) is verified only for K ∈ (0,K2] where

K2 =

√
(1 + λ) ab (1− a)

a (1− a) .

Considering equality (3.1) in conclusion for |a2|, r stable and K ∈ (0,m (r)], the
inequality (3.3) is verified and using (3.2) it results that(

1− |z|2
) ∣∣∣∣∣zψ

′′

λ (z)

ψ
′

λ (z)

∣∣∣∣∣ ≤ 1, z ∈ U∗. (3.10)

From (3.10) and Theorem1 in the case α = 1 we obtain that the function Fβ,λ (z)
is regular and univalent in U∗.

Theorem 7. Let β be a complex number and the function ψλ ∈ A,ψλ(z) =

(1− λ) f(z) + λzf ′(z) for f ∈ A and 0 ≤ λ ≤ 1. If∣∣∣∣∣ψ
′′

λ (z)

ψ
′

λ (z)

∣∣∣∣∣ < 1 (3.11)

for all z ∈ U and the constant |β| satisfies the condition

|β| ≤ 1

max
|z|≤1

[(
1− |z|2

)
|z| |z|+2(1+λ)|a2|1+2(1+λ)|a2||z|

] (3.12)

then the function Gβ,λ is univalent in U .
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Proof. The function Gβ,λ defined by (1.2) is regular in U . Let us consider the
function

p (z) =
1

|β|
G

′′

β,λ (z)

G
′
β,λ (z)

(3.13)

where the constant |β| satisfies the inequality (3.12). The function p is regular in
U and from (1.2) and (3.13) we have

p (z) =
β

|β|
ψ
′′

λ (z)

ψ
′

λ (z)
. (3.14)

Using (3.14) and (3.11) we obtain

|p (z)| < 1
for all z ∈ U and |p (0)| = 2 (1 + λ) |a2|. When Remark1 applied to the function p,
it gives

1

|β|
G

′′

β,λ (z)

G
′
β,λ (z)

≤ |z|+ 2 (1 + λ) |a2|
1 + 2 (1 + λ) |a2| |z|

(3.15)

for all z ∈ U . From (3.15) we get(
1− |z|2

) ∣∣∣∣∣zG
′′

β,λ (z)

G
′
β,λ (z)

∣∣∣∣∣ ≤ |β|(1− |z|2) |z| |z|+ 2 (1 + λ) |a2|1 + 2 (1 + λ) |a2| |z|

for all z ∈ U . Hence we have(
1− |z|2

) ∣∣∣∣∣zG
′′

β,λ (z)

G
′
β,λ (z)

∣∣∣∣∣ ≤ |β|max|z|≤1

(
1− |z|2

)
|z| |z|+ 2 (1 + λ) |a2|
1 + 2 (1 + λ) |a2| |z|

. (3.16)

From (3.16) and (3.12) we obtain(
1− |z|2

) ∣∣∣∣∣zG
′′

β,λ (z)

G
′
β,λ (z)

∣∣∣∣∣ ≤ 1
for all z ∈ U . From Theorem2, it follows that the function Gβ,λ defined by (1.2) is
univalent in U . �

Remark 2. Taking λ = 0 in Theorem6 and Theorem7, we obtain Theorem4 and
Theorem5, respectively.

If we take λ = 1 in Theorem6 and Theorem7, we have the following corollaries.

Corollary 1. Let β be a complex number, Reβ ≥ 1 and ψ1 a regular function
in U,ψ1 (z) = zf

′
(z) and ψ1(z)

z 6= 0 for all z ∈ U . If there exist a constant
K ∈ (0,m (r)], where

m (r) =
1− 4 |a2| r

(
1− r2

)
+

√
[1− 4 |a2| r (1− r2)]2 + 16 |a2| r3 (1− r2)
2r2 (1− r2) ,
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r = |z| , r ∈ (0, 1] such that ∣∣∣∣∣ψ
′′

1 (z)

ψ
′

1 (z)

∣∣∣∣∣ =
∣∣∣∣∣f

′′
(z)

f ′ (z)

∣∣∣∣∣ ≤ K
for all z ∈ U∗, then the function

Fβ,1 (z) =

[
β

∫ z

0

uβ−1ψ
′

1 (u) du

] 1
β

is regular and univalent in U∗.

Corollary 2. Let β be a complex number and the function ψ1 (z) = zf
′
(z) where

f ∈ A. If ∣∣∣∣∣ψ
′′

1 (z)

ψ
′

1 (z)

∣∣∣∣∣ < 1
for all z ∈ U and the constant |β| satisfies the condition

|β| ≤ 1

max
|z|≤1

[(
1− |z|2

)
|z| |z|+4|a2|1+4|a2||z|

]
then the function

Gβ,1 (z) =

∫ z

0

[
ψ
′

1 (u)
]β
du

is univalent in U .
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A CONVERGENCE THEOREM IN GENERALIZED CONVEX
CONE METRIC SPACES

BIROL GUNDUZ

Abstract. The aim of this work is to establish convergence theorem of a new
iteration process for a finite family of I-asymptotically quasi-nonexpansive
mappings and a finite family of asymptotically quasi-nonexpansive mappings
in generalized convex cone metric spaces. Our result is valid in the whole space,
whereas the results given in [4, 5] are valid in a nonempty convex subset of a
convex cone metric space. Our convergence results generalize and refine not
only result of Gunduz [6] but also results of Lee [4, 5] and Temir [9].

1. Introduction

Fixed point theory plays an important role in applications of many branches
of mathematics and applied sciences. The study of metric fixed point theory has
been at the centre of vigorous research activity. There has been a number of
generalizations of the usual notion of a metric space. One such generalization is
a cone metric space introduced and studied by Huang and Zhang [2], in 2007.
The idea of cone metric spaces is based on replacing the set of real numbers by
an ordered Banach space in definition of metric spaces. Huang and Zhang [2]
modified definitions of some concepts such as convergence of sequences, Cauchy
sequences, and completeness in this space. They also proved some fixed point
theorems of contractive mappings on complete cone metric spaces using assumption
of the normality of a cone. After that a series of articles have been dedicated to
existence and uniqueness of fixed point of different type mappings in cone metric
spaces. In [4], Lee introduced the concept of convex cone metric spaces by combining
idea of cone metric space and convex metric space defined by Takahashi [1], and
started iterative approximation of fixed points of nonlinear mappings. Gunduz [7]
studied convergence of a new multistep iteration for a finite family of asymptotically
quasi-nonexpansive mappings in convex cone metric spaces. Result of Gunduz [7]
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Key words and phrases. convex metric spaces, cone metric spaces, I-nonexpansive mappings,
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is valid in the whole space, whereas the results of Lee [4, 5] are valid in a nonempty
convex subset of a convex cone metric spaces.
The aim of this work is to study convergence of a new iteration process for a

finite family of I-asymptotically quasi-nonexpansive mappings and a finite family
of asymptotically quasi-nonexpansive mappings in generalized convex cone metric
spaces. Our convergence results generalize and refine not only result of Gunduz [6]
but also result of paper given in his references.
Throughout this article, we use the notation F (T ) for the set of fixed points of

a mapping T and F := (
⋂r
i=1 F (Ti)) ∩ (

⋂r
i=1 F (Ii)) for the set of common fixed

points of two finite families of mappings {Ti : i ∈ J} and {Ii : i ∈ J}, where J is
set of first r natural numbers.

2. Preliminaries

In this section, we need to recall some basic notations, definitions, and necessary
results and examples from existing literature.
In 1970, Takahashi [1] introduced the concept of convexity in a metric space

(X, d) as follows.

Definition 1. [1] A convex structure in a metric space (X, d) is a mapping W :
X2 × [0, 1]→ X satisfying, for all x, y, u ∈ X and all λ ∈ [0, 1] ,

d (u,W (x, y;λ)) ≤ λd (u, x) + (1− λ) d (u, y) .

Let E be a normed vector space, then the following definitions can be found in
[2].

Definition 2. [2] A nonempty subset P of E is called a cone if P is closed, P 6= {θ},
for a, b ∈ R+ = [0,∞) and x, y ∈ P , ax+ by ∈ P and P ∩ {−P} = {θ}. We define
a partial ordering � in E as x � y if y− x ∈ P . x� y indicates that y− x ∈ intP
and x ≺ y means that x � y but x 6= y. A cone P is said to be solid if its interior
intP is nonempty. A cone P is said to be normal if there exists a positive number
k such that for x, y ∈ P , θ � x � y implies ‖x‖ ≤ k ‖y‖ or equivalently, if (∀n)
xn � yn � zn and limn→∞ xn = limn→∞ zn = x imply limn→∞ yn = x. The least
positive number k is called the normal constant of P .

It is clear that k ≥ 1. There exist cones which are not normal.

Example 1. [3] Let E = C1R[0, 1] with ‖x‖ = ‖x‖∞+‖x′‖∞ on P = {x ∈ E : x (t) ≥
0}. This cone is not normal. Consider, for example, xn(t) = tn

n and yn(t) = 1.
Then θ � xn � yn, and limn→∞ yn = θ, but ‖xn‖ = maxt∈[0,1]

∣∣ tn
n

∣∣+maxt∈[0,1]
∣∣tn−1∣∣

= 1
n + 1 > 1; hence xn does not converge to zero. Thus P is a nonnormal cone.

Definition 3. [2] Let X be a nonempty set. A mapping d : X × X → (E,P ) is
called a cone metric if (i) for x, y ∈ X, θ � d (x, y) and d (x, y) = θ iff x = y, (ii)
for x, y ∈ X, d (x, y) = d (y, x) and (iii) for x, y, z ∈ X, d (x, y) � d (x, z) +d (z, y).
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A nonempty set X with a cone metric d : X ×X → (E,P ) is called a cone metric
space denoted by (X, d), where P is a solid normal cone.

Since each metric space is a cone metric space with E = R and P = [0,+∞),
the concept of a cone metric space is more general than that of a metric space.

Example 2. [2]Let E = R2, P =
{

(x; y) ∈ R2 : x ≥ 0, y ≥ 0
}
, X = R and d :

X × X → E defined by d(x, y) = (|x− y| , α |x− y|), where α ≥ 0 is a constant.
Then (X, d) is a cone metric space with normal cone P where k = 1.

Definition 4. A sequence {xn} in a cone metric space (X, d) is said to converge to
x ∈ X and is denoted as limn→∞ xn = x or xn → x (as n→∞) if for any c ∈ intP ,
there exists a natural number N such that for all n > N , c − d (xn, x) ∈ intP . A
sequence {xn} in (X, d) is called a Cauchy sequence if for any c ∈ intP , there exists
a natural number N such that for all n,m > N , c − d (xn, xm) ∈ intP . A cone
metric space (X, d) is said to be complete if every Cauchy sequence converges.

In other words, {xn} is said to converge to x, if there exists a natural number N
such that d (xn, x)� c for all n > N and for any c ∈ E with θ � c. {xn} is called a
Cauchy sequence in X, if there exists a natural number N such that d (xn, xm)� c
for all n,m > N and for any c ∈ E with θ � c.

Proposition 1. [2] Let {xn} be a sequence in a cone metric space (X, d) and P be
a normal cone. Then

(1) {xn} converges to x in X if and only if d (xn, x)→ θ (as n→∞) in E.
(2) {xn} is a Cauchy sequence if and only if d (xn, xm)→ θ (as n,m→∞) in

E.

Definition 5. [4] Let (X, d) be a cone metric space. A mappingW : X2×[0, 1]→ X
is called a convex structure on X if d (W (x, y, λ) , u) � λd (x, u)+(1− λ) d (y, u) for
all x, y, u ∈ X and λ in [0, 1]. A cone metric space (X, d) with a convex structure W
is called a convex cone metric space and denoted as (X, d,W ). A nonempty subset
C of a convex cone metric space (X, d,W ) is said to be convex if W (x, y, λ) ∈ C
for all x, y ∈ C and λ ∈ [0, 1].

Example 3. Let (X, d) be a cone metric space as in Example 2. If W (x, y;λ) =
λx + (1− λ) y, then (X, d) is a convex cone metric space. Hence, this concept is
more general than that of a convex metric space.

Definition 1 can be extended as follows: A mapping W : X3 × [0, 1]
3 → X is

said to be a convex structure on X, if it satisfies the following condition: For any
(x, y, z; a, b, c) ∈ X3 × [0, 1]

3 with a+ b+ c = 1, and u ∈ X:

d (u,W (x, y, z; a, b, c)) ≤ ad (u, x) + bd (u, y) + cd (u, z) .

If (X, d) is a metric space with a convex structure W , then (X, d) is called a
generalized convex metric space. A nonempty subset C of a generalized convex



150 BIROL GUNDUZ

metric space X is said to be convex if W (x, y, z; a, b, c) ∈ C, ∀ (x, y, z) ∈ C3,
∀ (a, b, c) ∈ [0, 1]

3 with a+ b+ c = 1.
Every linear normed space is a generalized convex metric space with a convex

structure W (x, y, z; a, b, c) = ax + by + cz, for all x, y, z ∈ X and a, b, c ∈ [0, 1]
with a + b + c = 1. But there exist some convex metric spaces which can not be
embedded into any linear normed spaces (see, Gunduz and Akbulut [8]).
Considering generalized convex metric space together with cone metric space,

any one can be defined generalized convex cone metric spaces as follow:

Definition 6. [4] Let (X, d) be a cone metric space. A mapping W : X3× [0, 1]
3 →

X is called a convex structure on X if d (u,W (x, y, z; a, b, c)) � ad (u, x)+bd (u, y)+
cd (u, z) for all x, y, z, u ∈ X and a, b, c ∈ [0, 1] with a + b + c = 1. A cone metric
space (X, d) with a convex structure W is called a generalized convex cone metric
space and denoted as (X, d,W ). A nonempty subset C of a generalized convex
cone metric space (X, d,W ) is said to be convex if W (x, y, z; a, b, c) ∈ C for all
x, y, z,∈ C and a, b, c ∈ [0, 1] with a+ b+ c = 1.

Remark 1. If we take E = R, P = [0,+∞) and ‖.‖ = |.|, then generalized convex
cone metric spaces coincide with generalized convex metric spaces.

Now we give definition of some mappings which will be used later.

Definition 7. Let (X, d) be a cone metric space with a solid cone P and T, I :
(X, d)→ (X, d) be two mapping. The mapping T is said to be

(1) asymptotically nonexpansive if there exists un ∈ [1,∞) for all n ∈ N with
limn→∞ un = 1 such that

d (Tnx, Tny) � und (x, y) for all x, y ∈ X and n ∈ N.
(2) asymptotically quasi-nonexpansive if F (T ) 6= ∅ and there exists un ∈ [1,∞)

for all n ∈ N with limn→∞ un = 1 such that

d (Tnx, p) � und (x, p) for all x ∈ X, p ∈ F (T ) and n ∈ N.
(3) I-asymptotically nonexpansive if there exists a sequence {vn} ⊂ [0,∞) with

limn→∞ vn = 0 such that

d (Tnx, Tny) � (1 + vn)d (Inx, Iny)

for all x, y ∈ X and n ≥ 1.
(4) I-asymptotically quasi nonexpansive if F (T ) ∩ F (I) 6= ∅ and there exists a

sequence {vn} ⊂ [0,∞) with limn→∞ vn = 0 such that

d (Tnx, p) � (1 + vn)d (Inx, p)

for all x ∈ X and p ∈ F (T ) ∩ F (I) and n ≥ 1.
(5) I-uniformly Lipschitz if there exists Γ > 0 such that

d (Tnx, Tny) � Γd (Inx− Iny) , x, y ∈ X and n ≥ 1.
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Remark 2. From the above definition, it follows that if F (T ) is nonempty, then an
asymptotically nonexpansive mapping is asymptotically quasi-nonexpansive. Also,
an I-asymptotically nonexpansive mapping is I-uniformly Lipschitz with the Lip-
schitz constant Γ = sup {1 + vn : n ≥ 1} and an I-asymptotically nonexpansive
mapping with F (T ) ∩ F (I) 6= ∅ is I-asymptotically quasi nonexpansive. However,
the converse of these claims are not true in general. It is easy to see that if I is iden-
tity mapping, then I-asymptotically nonexpansive mappings and I-asymptotically
quasi nonexpansive mappings coincide with asymptotically nonexpansive mappings
and asymptotically quasi nonexpansive mappings, respectively.

In [6], Gunduz used the Ishikawa iteration process with error terms to prove
some convergence results in a convex metric space. We can modify his process in
accordance with our purpose as follow:
Let (X, d) be a generalized convex cone metric space with convex structure W ,

{Ti : i ∈ J} : X → X be a finite family of Ii-asymptotically quasi-nonexpansive
mappings and {Ii : i ∈ J} : X → X be a finite family of asymptotically quasi-
nonexpansive mappings. Suppose that {un} and {vn} are two bounded sequences
(with respect to cone metric d) in X and {αn} , {βn} , {γn} , {α̂n} , {β̂n}, {γ̂n} are
six sequences in [0, 1] such that αi + βn + γn = 1 = α̂n + β̂n + γ̂n for n ∈ N. For
any given x1 ∈ X, iteration process {xn} defined by,

xn+1 = W (xn, I
n
i yn, un;αn, βn, γn) , (2.1)

yn = W
(
xn, T

n
i xn, vn; α̂n, β̂n, γ̂n

)
, n ≥ 1,

where n = (k− 1)r+ i, i = i(n) ∈ J is a positive integer and k(n)→∞ as n→∞.
Thus, (2.1) can be expressed in the following form:

xn+1 = W
(
xn, I

k(n)
i(n) yn, un;αn, βn, γn

)
,

yn = W
(
xn, T

k(n)
i(n) xn, vn; α̂n, β̂n, γ̂n

)
, n ≥ 1.

Let’s give with a proposition.

Lemma 1. [10] Let {an}, {bn} and {cn} be three nonnegative sequences satisfying
∞∑
n=0

bn <∞,
∞∑
n=0

cn <∞, an+1 = (1 + bn) an + cn, n ≥ 0.

Then
i) limn→∞ an exists,
ii) if either lim infn→∞ an = 0 or lim supn→∞ an = 0, then limn→∞ an = 0.

3. Main Results

Using the steps in the proof of [6, Proposition 1.9.], we can prove easily the next
proposition which plays a key role in the proof of our main result.
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Proposition 2. Let (X, d) be a generalized convex cone metric space with a solid
cone P and convex structure W , {Ti : i ∈ J} : X → X be a finite family of Ii-
asymptotically quasi-nonexpansive mappings, and {Ii : i ∈ J} : X → X be a finite
family of asymptotically quasi-nonexpansive mappings with F := (

⋂r
i=1 F (Ti)) ∩

(
⋂r
i=1 F (Ii)) 6= ∅. Then, there exist a point p ∈ F and sequences {kn} , {ln} ⊂

[0,∞) with limn→∞ kn = limn→∞ ln = 0 such that

d (Tni x, p) � (1 + kn)d (Ini x, p) and d (Ini x, p) � (1 + ln)d (x, p)

for all x ∈ K, for each i ∈ I.

We now prove convergence theorem of the iterative scheme (2.1) in generalized
convex cone metric spaces.

Theorem 1. Let (X, d,W ) be a generalized convex cone metric space with a cone
metric d : X × X → (E,P ), where P is a solid normal cone with the normal
constant k. Let {Ti : i ∈ J} : X → X be a finite family of Ii-asymptotically quasi-
nonexpansive mappings and {Ii : i ∈ J} : X → X be a finite family of asymp-
totically quasi-nonexpansive mappings with F 6= ∅. Suppose that

∑∞
n=1 kn < ∞,∑∞

n=1 ln <∞ and {xn} is as in (2.1) with {γn} , {γ̂n} satisfying
∑∞

n=1 γn <∞ and∑∞
n=1 γ̂n <∞. (i) If {xn} converges to a point in F, then lim infn→∞ d (xn, F ) = θ.

(ii) {xn} converges to a point in F, if X is complete and lim infn→∞ d (xn, F ) = θ.

Proof. We prove only (ii), since (i) is obvious. Let p ∈ F . Since {un} and {vn} are
bounded sequences with respect to cone metric d in X, there exists M � θ such
that max

{
supn≥1 d(un, p), supn≥1 d(vn, p)

}
� M. Considering Proposition 2 and

(2.1), we have

d (yn, p) = d
(
W
(
xn, T

n
i xn, vn; α̂n, β̂n, γ̂n

)
, p
)

� α̂nd (xn, p) + β̂nd (Tni xn, p) + γ̂nd(vn, p)

� α̂nd (xn, p) + β̂n (1 + kn) d (Ini xn, p) + γ̂nM

� α̂nd (xn, p) + β̂n (1 + kn) (1 + ln) d (xn, p) + γ̂nM

�
(

1 + β̂n (kn + ln + knln)
)
d (xn, p) + γ̂nM (3.1)

and

d (xn+1, p) = d (W (xn, I
n
i yn, un;αn, βn, γn) , p)

� αnd (xn, p) + βnd (Ini yn, p) + γnd (un, p)

� αnd (xn, p) + βn (1 + ln) d (yn, p) + γnM. (3.2)
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Substituting (3.1) into (3.2),

d (xn+1, p) � αnd (xn, p) + βn (1 + ln) d (yn, p) + γnM

� αnd (xn, p) + βn (1 + ln)
(

1 + β̂n (kn + ln + knln)
)
d (xn, p)

+βn (1 + ln) γ̂nM + γnM

� αnd (xn, p) + βn (1 + ln) d (xn, p)

+βn (1 + ln) β̂n (kn + ln + knln) d (xn, p)

+ (βn (1 + ln) γ̂n + γn)M

�
[
1 + βnln + βnβ̂n (1 + ln) (kn + ln + knln)

]
d (xn, p)

+ (βn (1 + ln) γ̂n + γn)M.

Thus we obtain
d (xn+1, p) � [1 + κn] d (xn, p) + tnM (3.3)

where κn = βnln + βnβ̂n (1 + ln) (kn + ln + knln) and tn = (βn (1 + ln) γ̂n + γn)
with

∑∞
n=1 κn <∞ and

∑∞
n=1 tn <∞. Hence, by the normality of P , we have for

the normal constant k > 0

‖d (xn+1, F )‖ ≤ k [1 + κn] ‖d (xn, F )‖+ ktn ‖M‖ (3.4)

Lemma 1 and (3.4) imply that the limn→∞ ‖d (xn, F )‖ exists.
Now lim infn→∞ ‖d (xn, F )‖ = 0 implies limn→∞ ‖d (xn, F )‖ = 0.
Next, we show that the sequence {xn} is a Cauchy sequence. Taking into account
that the inequality 1 + x ≤ ex for all x ≥ 0, and (3.4), therefore we have

‖d (xn+1, p)‖ ≤ k exp {κn} ‖d (xn, p)‖+ k ‖M‖ tn. (3.5)

Hence, for any positive integers n,m, from (3.5) it follows that

‖d (xn+m, p)‖ ≤ k1 exp {κn+m−1} ‖d (xn+m−1, p)‖+ k1tn+m−1 ‖M‖
≤ k1 exp {κn+m−1} [k2 exp {κn+m−2} ‖d (xn+m−2, p)‖

+k2tn+m−2 ‖M‖] + k1tn+m−1 ‖M‖
= k1k2 exp {κn+m−1} exp {κn+m−2} ‖d (xn+m−2, p)‖

+k1k2 exp {κn+m−1} tn+m−2 ‖M‖+ k1tn+m−1 ‖M‖
≤ · · ·

≤
m∏
j=1

kj exp

{
n+m−1∑
i=n

κi

}
‖d (xn, p)‖

+

m∏
j=1

kj exp

{
n+m−1∑
i=n

κi

}
n+m−1∑
i=n

ti ‖M‖

≤ BG ‖d (xn, p)‖+BG

n+m−1∑
i=n

ti ‖M‖ ,
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where B =
∏m
j=1 kj , G = exp

{
n+m−1∑
i=n

κi

}
< ∞ and ki is corresponding normal

constant for i = 1, 2, . . . ,m.
Since limn→∞ ‖d (xn, F )‖ = 0 and

∑∞
n=1 tn <∞, for any given positive real number

ε, there exists a natural number N0 ∈ N such that ‖d (xn, F )‖ ≤ ε
2(1+BG) and∑∞

n=1 tn <
ε

2BG‖M‖ for n ≥ N0. In particular, there exist a point p1 ∈ F such that
‖d (xn, p1)‖ ≤ ε

2(1+BG) for n ≥ N0. Consequently, for any n ≥ n0 and for all m ≥ 1

we have

‖d (xn+m, xn)‖ ≤ ‖d (xn+m, p1)‖+ ‖d (xn, p1)‖

≤ (1 +BG) ‖d (xn, p1)‖+BG

n+m−1∑
i=n

ti ‖M‖

≤ (1 +BG)
ε

2(1 +BG)
+BG

ε

2BG ‖M‖ ‖M‖ = ε.

This implies that {xn} is a Cauchy sequence in X, therefore, it converges to some
point q in the complete space X.
Finally, we show that q ∈ F . Let {qn} be a sequence in F such that qn → q. Since

d(q, Tiq) � d(q, qn) + d(qn, Iiq)

= d(q, qn) + d(Iqn, Iiq)

� d(q, qn) + (1 + ln)d(qn, q),

taking limit in above inequality, we have q ∈
⋂r
i=1 F (Ii) for all i ∈ I. Simi-

larly, q ∈
⋂r
i=1 F (Ti). So q ∈ F , which means that F is closed. Since d(q, F ) =

d(limn→∞ xn, F ) = limn→∞ d(xn, F ) = θ by Propostion 1 (i), we have q ∈ F . In
other words, {xn} converges to a common fixed point in F . �

Remark 3. We get Theorem 2.2. of Gunduz [6] restricting the normed linear space
(E,P ) to a real number system (R, [0,∞)) from Theorem 1. Additionally to this re-
striction taking the metric space (X, d) to a Banach space with W (x, y, z;α, β, γ) =
αx + βy + γz, and γn = γ̂n = 0 for all n ∈ N, we get a generalization of corre-
sponding result of Temir [9].

Remark 4. We want to point out that our theorem generalizes the result of Temir
[9] in two ways: (i) from a closed convex subset of Banach spaces to general setup
of generalized convex cone metric space, (ii) a finite family of Ii-asymptotically
nonexpansive mappings to a finite family of Ii-asymptotically quasi-nonexpansive
mappings.
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SELFADJOINT SINGULAR DIFFERENTIAL OPERATORS FOR
FIRST ORDER

PEMBE IPEK AND ZAMEDDIN I. ISMAILOV

Abstract. The parametrization of all selfadjoint extensions of the minimal
operator generated by first order linear symmetric singular differential-operator
expression in the Hilbert space of vector-functions defined at the right semi-axis
has been given. To this end we use the Calkin-Gorbachuk method. Finally,
the structure of spectrum set of such extensions is researched.

1. Introduction

It is known that fundamental question on the parametrization of selfadjoint ex-
tensions of the linear closed densely defined with equal deficiency indices symmetric
operators in a Hilbert space has been investigated by J. von Neumann [11] and M.
H. Stone [10] firstly. Applications of these results to any scaler linear even or-
der symmetric differential operators and representation of all selfadjoint extensions
in terms of boundary conditions have been investigated by I. M. Glazman-M. G.
Krein- M. A. Naimark (see [5,8]). In mathematical literature there is co-called
Calkin-Gorbachuk method (see [6,9]).
The motivation of this paper originates from the interesting researches of W. N.

Everitt, L. Markus, A. Zettl, J. Sun, D. O’Regan, R. Agarwal [2,3,4,12] in scaler
cases. Throughout this paper A. Zettl’s and J. Suns’s view about these topics is
to be taken into consideration [12]. A selfadjoint ordinary differential operator in
a Hilbert space is generated by two things:
(1) a symmetric ( formally selfadjoint) differential expression;
(2) a boundary condition which consists selfadjoint differential operators.
And also the geometrical place in plane of the spectrum of given selfadjoint differ-
ential operator is one of the important questions of this theory.
In this work in Section 3 the representation of all selfadjoint extensions of

the symmetric singular differential operator, generated by first order symmetric
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differential-operator expression (for the definition see [4]) in the Hilbert spaces of
vector-functions defined at the semi-axis in terms of boundary conditions are de-
scribed. In Section 4 the structure of spectrum of these selfadjoint extensions is
investigated.

2. Statement of the Problem

Let usH is a separable Hilbert space and a ∈ R. In the Hilbert space L2(H, (a,∞))
consider the following differential-operator expression in a form (for scaler case see
[4])

l(u) = iρu′ +
1

2
iρ′u+Au,

where:
(1) ρ : (a,∞)→ (0,∞);
(2) ρ ∈ ACloc(a,∞);
(3)

∞∫
a

ds

ρ(s)
<∞;

(4) A∗ = A : D(A) ⊂ H → H.
By standard way the minimal operator L0 corresponding to differential-operator

expression l( . ) in L2(H, (a,∞)) can be defined (see [7]). The operator L = (L0)∗
is called the maximal operator corresponding to l( . ) in L2(H, (a,∞)) (see [7]).
It is clear that

D(L) = {u ∈ L2(H, (a,∞)) : l(u) ∈ L2(H, (a,∞)},
D(L0) = {u ∈ D(L) : (√ρu)(a) = (√ρu)(∞) = 0}.

In this case the operator L0 is symmetric and is not maximal in L2(H, (a,∞)).
In this paper, firstly the represention of all selfadjoint extensions of the mini-

mal operator L0 will be described. Secondly, structure of the spectrum of these
extensions shall be researched.
In special case when H = C the similar questions was investigated in [4] using

the Glazman-Krein-Naimark method.
In left and right semi-infinitive intervals case the similar problems have been

surveyed in [1].

3. Description of Selfadjoint Extensions

In this section, the general representation of selfadjoint extensions of the minimal
operator L0 will be investigated by using the Calkin-Gorbachuk method.
Firstly, let us prove the following proposition.

Lemma 1. The deficiency indices of the operator L0 is in form (m(L0), n(L0)) =
(dimH, dimH).
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Proof. For the simplicity of calculations it will be taken A = 0. It is clear that the
general solutions of following differential equations

iρ(t)u′±(t) +
1

2
iρ′(t)u±(t)± iu±(t) = 0,

in the L2(H, (a,∞)) are in forms

u±(t) = exp

∓ t∫
c

2± ρ′(s)
2ρ(s)

ds

 f, f ∈ H, t > a, c > a.

From these representations, we have

‖u+‖2L2(H,(a,∞)) =

∞∫
a

‖u+(t)‖2Hdt

=

∞∫
a

exp

− t∫
c

2 + ρ′(s)

ρ(s)
ds

 dt‖f‖2H

=

∞∫
a

ρ(c)

ρ(t)
exp

− t∫
c

2

ρ(s)
ds

 dt‖f‖2H

=
ρ(c)

2

∞∫
a

exp

− t∫
c

2

ρ(s)
ds

 d

 t∫
c

2

ρ(s)
ds

 ‖f‖2H
=

ρ(c)

2

exp
− a∫

c

2

ρ(s)
ds

− exp
− ∞∫

c

2

ρ(s)
ds

 ‖f‖2H <∞.

Consequently m(L0) = dim ker(L+ iE) = dimH.
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On the other hand it is clear that for any f ∈ H the solution

‖u−‖2L2(H,(a,∞)) =

∞∫
a

‖u−(t)‖2Hdt

=

∞∫
a

exp

 t∫
c

2− ρ′(s)
ρ(s)

ds

 dt‖f‖2H

=

∞∫
a

ρ(c)

ρ(t)
exp

 t∫
c

2

ρ(s)
ds

 dt‖f‖2H

=
ρ(c)

2

∞∫
a

exp

 t∫
c

2

ρ(s)
ds

 d

 t∫
c

2

ρ(s)
ds

 ‖f‖2H
=

ρ(c)

2

exp
 ∞∫
c

2

ρ(s)
ds

− exp
 a∫
c

2

ρ(s)
ds

 ‖f‖2H <∞.

It follows from that n(L0) = dim ker(L − iE) = dimH. This completes the
proof of theorem consequently, the minimal operator L0 has at least one selfadjoint
extensions (see [6]).

Definition 1. Let H be any Hilbert space and S : D(S) ⊂ H → H be a closed
densely defined symmetric operator in the Hilbert space H having equal finite or
infinite deficiency indices. A triplet (H, γ1, γ2), where H is a Hilbert space, γ1 and
γ2 are linear mappings from D(S∗) into H, is called a space of boundary values for
the operator S if for any f, g ∈ D(S∗)

(S∗f, g)H − (f, S∗g)H = (γ1(f), γ2(g))H − (γ2(f), γ1(g))H

while for any F1, F2 ∈ H, there exists an element f ∈ D(S∗) such that γ1(f) = F1
and γ2(f) = F2.

Lemma 2. The triplet (H, γ1, γ2),

γ1 : D(L)→ H, γ1(u) =
1√
2
((
√
ρu)(∞)− (√ρu)(a)),

γ2 : D(L)→ H, γ2(u) =
1

i
√
2
((
√
ρu)(∞) + (√ρu)(a)), u ∈ D(L)

is a space of boundary values of the minimal operator L0 in L2(H, (a,∞)).
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Proof. In this case the direct calculations show for arbitrary u, v ∈ D(L) that

(Lu, v)L2(H,(a,∞)) − (u, Lv)L2(H,(a,∞)) = (iρu′ +
1

2
iρ′u+Au, v)L2(H,(a,∞))

−(u, iρv′ + 1

2
iρ′v +Av)L2(H,(a,∞))

= (iρu′, v)L2(H,(a,∞)) +
1

2
(iρ′u, v)L2(H,(a,∞))

−(u, iρv′)L2(H,(a,∞)) − (u,
1

2
iρ′v)L2(H,(a,∞))

= i
[
(ρu′, v)L2(H,(a,∞)) + (ρ

′u, v)L2(H,(a,∞))

+(ρu, v′)L2(H,(a,∞))

]
= i

[
((ρu)′, v)L2(H,(a,∞)) + (ρu, v

′)L2(H,(a,∞))

]
= i ((ρu, v))′L2(H,(a,∞))

= i ((
√
ρu,
√
ρv))′L2(H,(a,∞))

= i
[
((
√
ρu)(∞), (√ρv)(∞))H

− ((√ρ)u(a), (√ρ)v(a))H
]

= (γ1(u), γ2(v))H − (γ2(u), γ1(v))H .

Now for any given elements f, g ∈ H, let us find the function u ∈ D(L) satisfying

γ1(u) =
1√
2
((
√
ρu)(∞)−(√ρu)(a)) = f and γ2(u) =

1

i
√
2
((
√
ρu)(∞) + (√ρu)(a)) = g.

From this

(
√
ρu)(∞) = (ig + f)/

√
2 and (

√
ρu)(a) = (ig − f)/

√
2

is obtained.
If we choose the function u in following form

u(t) =
1√
ρ(t)

(1− ea−t)(ig + f)/
√
2 +

1√
ρ(t)

ea−t(ig − f)/
√
2,

u ∈ D(L), γ1(u) = f and γ2(u) = g.
Finally, using the method given in [6], we can introduce the following result.

Theorem 1. If L̃ is a selfadjoint extension of the minimal operator L0 in L2(H, (a,∞))
, then it is generated by the differential-operator expression l( . ) and boundary con-
dition

(
√
ρu)(∞) =W (

√
ρu)(a),

where W : H → H is a unitary operator. Moreover, the unitary operator W in H
is determined uniquely by the extension L̃, i.e. L̃ = LW and vice versa.

Proof. It is known from [6] or [9] that all selfadjoint extensions of the minimal
operator L0 are described by differential-operator expression l( . ) and the boundary
condition

(V − E)γ1(u) + i(V + E)γ2(u) = 0,
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where V : H → H is a unitary operator. So from Lemma 2, we have

(V − E) ((√ρu)(∞)− (√ρu)(a)) + (V + E) ((√ρu)(∞) + (√ρu)(a)) = 0.

Hence, we obtain

(
√
ρu)(a) = −V (√ρu)(∞).

Choosing W = −V −1 in last boundary condition, we have

(
√
ρu)(∞) =W (

√
ρu)(a).

4. The Spectrum of the Selfadjoint Extensions

In this section the structure of the spectrum of the selfadjoint extensions LW of
the minimal operator L0 in L2(H, (a,∞)) will be investigated.
First of all let us prove the following result.

Theorem 2. The spectrum of any selfadjoint extension LW is in form

σ(LW ) =

λ ∈ C : λ =
 ∞∫
a

ds

ρ(s)

−1 (2nπ − argµ), n ∈ Z, µ ∈ σ
Wexp

−iA ∞∫
a

ds

ρ(s)

 .

Proof. Consider the following problem to spectrum of the extension LW

l(u) = λu+ f, u, f ∈ L2(H, (a,∞)), λ ∈ R,

(
√
ρu)(∞) =W (

√
ρu)(a),

that is,

iρ(t)u′(t) +
1

2
iρ′(t)u(t) +Au(t) = λu(t) + f(t), t > a,

(
√
ρu)(∞) =W (

√
ρu)(a).

The general solution of the last differential equation is in the following form

u(t;λ) =

√
ρ(c)

ρ(t)
exp

i(A− λE) t∫
c

ds

ρ(s)

 fλ

+
i√
ρ(t)

∞∫
t

exp

i(A− λE) t∫
s

dτ

ρ(τ)

 f(s)√
ρ(s)

ds, fλ ∈ H, t > a, c > a.

In this case

‖

√
ρ(c)

ρ(t)
exp

i(A− λE) t∫
c

ds

ρ(s)

 fλ‖2L2(H,(a,∞)) = ρ(c)

∞∫
a

dt

ρ(t)
‖fλ‖2H <∞
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and

‖ i√
ρ(t)

∞∫
t

exp

i(A− λE) t∫
s

dτ

ρ(τ)

 f(s)√
ρ(s)

ds‖2L2(H,(a,∞))

=

∞∫
a

1

ρ(t)
‖
∞∫
t

exp

i(A− λE) t∫
s

dτ

ρ(τ)

 f(s)√
ρ(s)

ds‖2Hdt

≤
∞∫
a

1

ρ(t)

 ∞∫
t

‖ exp

i(A− λE) t∫
s

dτ

ρ(τ)

 ‖H ‖f(s)‖H√
ρ(s)

ds

2 dt
≤

∞∫
a

1

ρ(t)

 ∞∫
t

ds

ρ(s)

 ∞∫
t

‖f(s)‖2Hds

 dt

≤
∞∫
a

1

ρ(t)

 ∞∫
a

ds

ρ(s)

 ∞∫
a

‖f(s)‖2Hds

 dt

=

∞∫
a

dt

ρ(t)

∞∫
a

ds

ρ(s)
‖f(s)‖2L2(H,(a,∞))ds

=

 ∞∫
a

dt

ρ(t)

2

‖f‖2L2(H,(a,∞)) <∞.

Hence for u( . , λ) ∈ L2(H, (a,∞)) for λ ∈ R. From this and boundary condition,
we haveexp

−iλ ∞∫
a

ds

ρ(s)

−Wexp

−iA ∞∫
a

ds

ρ(s)

 exp

iA ∞∫
c

ds

ρ(s)

 exp

−iλ a∫
c

ds

ρ(s)

 fλ

=
i√
ρ(c)

W

∞∫
a

exp

i(A− λ) a∫
s

dτ

ρ(τ)

 f(s)√
ρ(s)

ds

In order to get λ ∈ σ(LW ), the necessary and suffi cient condition is

exp

−iλ ∞∫
a

ds

ρ(s)

 = µ ∈ σ

Wexp

−iA ∞∫
a

ds

ρ(s)


Consequently,

λ

∞∫
a

ds

ρ(s)
= 2nπ − argµ, n ∈ Z,
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that is,

λ =

 ∞∫
a

ds

ρ(s)

−1 (2nπ − argµ), n ∈ Z.
This completes proof of theorem.
Example. All selfadjoint extensions Lϕ of the minimal operator L0 generated by
differential expression

l(u) = it2
∂u(t, x)

∂t
+ itu(t, x) +Au,

A : D(A) ⊂ L2(0, 1)→ L2(0, 1),

where Av(t) = −∂
2v(t)

∂t2
,

D(A) =
{
u ∈W 2

2 (0, 1) : v(0) = v(1), v′(0) = v′(1)
}
,

in the Hilbert space L2((1,∞)×(0, 1)) in terms of boundary conditions are described
by following form

(tu(t, x))(∞) = eiϕ(tu(t, x))(1), ϕ ∈ [0, 2π), x ∈ (0, 1).
Moreover, the spectrum of such extension is

σ(Lϕ) = {λ ∈ C : λ = 2nπ + (ϕ− α), n ∈ Z, α ∈ σ (A)} .
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C*-ALGEBRA-VALUED S-METRIC SPACES

MELTEM ERDEN EGE AND CIHANGIR ALACA

Abstract. In this study, we present the concept of a C*-algebra-valued S-
metric space. We prove Banach contraction principle in this space. Finally,
we prove a common fixed point theorem in C*-algebra-valued S-metric spaces
defining new notions such as L-condition and k-contraction.

1. Introduction

As we have known, Banach contraction principle has very useful structure. For
this reason, it has been used in various areas such as modern analysis, applied
mathematics and fixed point theory. The main goal of researchers is to obtain new
results in different metric spaces. On the other hand, coupled fixed point theorems
have been given in different metric spaces [12, 23, 31].
The notion of S-metric space was presented by Sedghi et al. [24]. Then, Chouhan

[6] proved a common unique fixed point theorem for expansive mappings in S-metric
space. Sedghi and Dung [25] proved a general fixed point theorem in S-metric
spaces.
Hieu et al. [11] gave a fixed point theorem for a class of maps depending on

another map on S-metric spaces. Afra [2] introduced double contractive mappings.
For other important papers related to S-metric spaces, see [1, 7, 8, 9, 10, 26].
After studying the operator-valued metric spaces in [17], Ma et al. [18] intro-

duced the concept of C*-valued metric spaces and give a fixed point theorem for
C*-valued contraction mappings. In [19], C*-algebra-valued b-metric spaces were
presented and some applications related to operator and integral equations were
given. Coincidence and common fixed point theorems for two mappings in com-
plete C*-algebra-valued metric spaces were proved in [22].
Batul and Kamran [5] generalized the notion of C*-valued contraction mappings

and established a fixed point theorem for such mappings. In [29], Caristi’s fixed
point theorem was given for C*-algebra-valued metric spaces. Kamran et al. [14]
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gave the Banach contraction principle in C*-algebra-valued b-metric spaces with
application. Bai [4] presented coupled fixed point theorems in C*-algebra-valued
b-metric spaces. For other works, see [3, 13, 15, 21, 28, 30, 32, 33].
In this work, we introduce C*-algebra-valued S-metric spaces and prove Banach

contraction principle. We also prove a coupled fixed point theorem in C*-algebra-
valued S-metric spaces. For this purpose, we give some definitions such as coupled
fixed point, L-condition and k-contraction.

2. Preliminaries

In this section, we give some basic definitions and theorems from [18] which will
be used later. Throughout this paper, A will denote a unital C*-algebra with a
unit I. An involution on A is a conjugate linear map a 7→ a∗ on A such that

a∗∗ = a and (ab)∗ = b∗a∗

for all a, b ∈ A. The pair (A, ∗) is called a ∗-algebra. A Banach ∗-algebra is a
∗-algebra A together with a complete submultiplicative norm such that

‖a∗‖ = ‖a‖ (∀a ∈ A).

A C*-algebra is a Banach ∗-algebra such that ‖a∗a‖ = ‖a‖2.
Set Ah = {x ∈ A : x = x∗}. An element x ∈ A is said to be a positive element,

denoted by x � θ, if x ∈ Ah and σ(x) ⊂ R+ = [0,∞), where σ(x) is the spectrum
of x. A partial ordering � on Ah can be defined with these positive elements as
follows:

x � y if and only if y − x � θ,
where θ means the zero element in A. The set {x ∈ A : x � θ} will be denoted by
A+.
When A is a unital C*-algebra, then for any x ∈ A+ we have x � I ⇔ ‖x‖ ≤ 1

and |x| = (x ∗ x) 12 .

Definition 2.1. [18]. Let X be a nonempty set. Suppose the mapping d : X×X →
A satisfies the following:

(1) θ � d(x, y) for all x, y ∈ X and d(x, y) = θ ⇔ x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X.
Then d is called a C*-algebra-valued metric on X and (X,A, d) is called a C*-

algebra-valued metric space.

It is obvious that C*-algebra-valued metric spaces generalize the concept of met-
ric spaces, replacing the set of real numbers by A+.

Definition 2.2. [18]. Let (X,A) be a C*-algebra-valued metric space. Suppose
that {xn} ⊂ X and x ∈ X.
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(i) If for any ε > 0, there is N such that for all n > N , ‖d(xn, x)‖ ≤ ε, then
{xn} is said to be convergent with respect to A and {xn} converges to x
and x is the limit of {xn}. We denote it by lim

n→∞
xn = x.

(ii) If for any ε > 0, there is N such that for all n,m > N , ‖d(xn, xm)‖ ≤ ε,
then {xn} is called a Cauchy sequence with respect to A.

(iii) We say that (X,A, d) is a complete C*-algebra-valued metric space if every
Cauchy sequence with respect to A is convergent.

Example 2.3. [18]. Let X = R and A =M2(R). Define

d(x, y) = diag(|x− y|, α|x− y|),

where x, y ∈ R and α ≥ 0 is a constant. d is a C*-algebra-valued metric and
(X,M2(R), d) is a complete C*-algebra-valued metric space by the completeness of
R.

Definition 2.4. [18]. Suppose that (X,A, d) is a C*-algebra-valued metric space.
We call a mapping T : X → X is a C*-algebra-valued contractive mapping on X,
if there exists an A ∈ A with ‖A‖ < 1 such that

d(Tx, Ty) � A∗d(x, y)A

for all x, y ∈ A.

Theorem 2.5. [18]. If (X,A, d) is a complete C*-algebra-valued metric space and
T is a contractive mapping, there exists a unique fixed point in X.

Definition 2.6. [18]. Let X be a nonempty set. We call a mapping T is a C*-
algebra-valued expansion mapping on X, if T : X → X satisfies:

(1) T (X) = X;
(2) d(Tx, Ty) � A∗d(x, y)A, ∀x, y ∈ X,
where A ∈ A is an invertible element and ‖A−1‖ < 1.

Theorem 2.7. [18]. Let (X,A, d) be a complete C*-algebra-valued metric space.
Then for the expansion mapping T , there exists a unique fixed point in X.

Lemma 2.8. [18]. Suppose that A is a unital C*-algebra with a unit I.
(1) If a ∈ A+ with ‖a‖ < 1

2 , then I − a is invertible and ‖a(I − a)
−1‖ < 1;

(2) Suppose that a, b ∈ A with a, b � θ and ab = ba, then ab � θ;
(3) by A′

we denote the set

{a ∈ A : ab = ba, ∀b ∈ A}.

Let a ∈ A′
, if b, c ∈ A with b � c � θ and I − a ∈ A′

+ is an invertible operator,
then

(I − a)−1b � (I − a)−1c.
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Theorem 2.9. [18]. Let (X,A, d) be a complete C*-valued metric space. Suppose
the mapping T : X → X satisfies for all x, y ∈ X

d(Tx, Ty) � A(d(Tx, y) + d(Ty, x)),

where A ∈ A′

+ and ‖A‖ < 1
2 . Then there exists a unique fixed point in X.

On the other hand, we need to recall the definition of S-metric spaces.

Definition 2.10. [24]. Let X be a non-empty set. An S-metric on X is a function
S : X3 → [0,∞) that satisfies the following conditions, for each x, y, z, a ∈ X,

(i) S(x, y, z) ≥ 0;
(ii) S(x, y, z) = 0 if and only if x = y = z;
(iii) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).
The pair (X,S) is called an S-metric space.

3. Main Results

In this section, we introduce C*-algebra-valued S-metric spaces and give some
results on this new space.

Definition 3.1. Let X be a nonempty set. Suppose the mapping S : X×X×X →
A satisfies the following conditions for each x, y, z, a ∈ X:

(i) S(x, y, z) � θ;
(ii) S(x, y, z) = θ if and only if x = y = z;
(iii) S(x, y, z) � S(x, x, a) + S(y, y, a) + S(z, z, a).
Then S is called a C*-algebra-valued S-metric and (X,A, S) is called a C*-

algebra-valued S-metric space.

Example 3.2. Let A = M2(R) be all 2 × 2-matrices with the usual operations of
addition, scalar multiplication and matrix multiplication. It is clear that

‖A‖ = (
2∑

i,j=1

|ai,j |2)
1
2

defines a norm on A where A = (aij) ∈ A. ∗ : A → A defines an involution on A
where A∗ = A. Then A is a C*-algebra [27]. For A = (aij) and B = (bij) in A, a
partial order on A can be given as follows:

A � B ⇔ (aij − bij) ≤ 0 for all i, j = 1, 2.

If we define on A

S(x, y, z) =

[
d(x, z) + d(y, z) 0

0 d(x, z) + d(y, z)

]
,

then it is a C*-algebra-valued S-metric space.

Lemma 3.3. In a C*-algebra-valued S-metric space, we have S(x, x, y) = S(y, y, x).
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Proof. By the condition (iii) of C*-algebra-valued S-metric, we obtain

S(x, x, y) � S(x, x, x) + S(x, x, x) + S(y, y, x) = S(y, y, x)

and

S(y, y, x) � S(y, y, y) + S(y, y, y) + S(x, x, y) = S(x, x, y).

Thus we get S(x, x, y) = S(y, y, x). �

Definition 3.4. Let (X,A, S) be a C*-algebra-valued S-metric space.
(i) A sequence {xn} in X converges to x ∈ X with respect to A if and only if

S(xn, xn, x)→ 0 as n→∞.
(ii) A sequence {xn} in X is called a Cauchy sequence with respect to A if

for each ε > 0, there exists N ∈ N such that S(xn, xn, xm) ≺ ε for each
n,m � N .

(iii) We say that (X,A, S) is a complete C*-algebra-valued S-metric space if
every Cauchy sequence with respect to A is convergent.

Example 3.5. Let X = R, A = R2 and S(x, y, z) = (|x − z| + |y − z|, 0) be a
C*-algebra valued S-metric space. Consider a sequence (xn) = ( 1n ). Since

S(xn, xn, xm) = (2|
1

n
− 1

m
|, 0) ≤ (2

(
| 1
n
|+ | 1

m
|
)
, 0)

n,m→∞→ (0, 0),

(xn) is a Cauchy sequence. On the other hand, (xn) converges to 0 ∈ X because

S(xn, xn, 0) = (2|
1

n
|, 0) n→∞→ (0, 0).

Definition 3.6. Let (X,A, S) be a C*-algebra-valued S-metric space. A map
T : X → X is said to be C*-algebra-valued contractive mapping on X, if there
exists A ∈ A with ‖A‖ < 1 such that

S(Tx, Tx, Ty) � A∗S(x, x, y)A (3.1)

for all x, y ∈ X.

Example 3.7. Let X = [0, 1] and A = M2(R) with ‖A‖ = max{a1, a2, a3, a4},
where ai’s are the entries of A. Then (X,A, S) is a C*-algebra-valued S-metric
space, where

S(x, y, z) =

[
|x− z|+ |y − z| 0

0 |x− z|+ |y − z|

]
,

and partial ordering on A is given by[
a1 a2
a3 a4

]
�
[
b1 b2
b3 b4

]
⇔ ai ≥ bi, for i = 1, 2, 3, 4.
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Define a map T : X → X by T (x) = x
4 . Since

S(Tx, Tx, Ty) = S(
x

4
,
x

4
,
y

4
)

=

[
1
2 |x− y| 0
0 1

2 |x− y|

]
=

[
1√
2

0

0 1√
2

] [
|x− y| 0
0 |x− y|

][ 1√
2

0

0 1√
2

]
= A∗S(x, x, y)A,

where A =

[
1√
2

0

0 1√
2

]
and ‖A‖ = 1√

2
< 1, T is a C*-algebra-valued contractive

mapping.

We now prove the Banach’s contraction principle for C*-algebra-valued S-metric
spaces.

Theorem 3.8. Let (X,A, S) be a complete C*-algebra-valued S-metric space and
T : X → X be a C*-algebra-valued contractive mapping. Then T has a unique fixed
point x0 ∈ X.

Proof. Let’s first prove the existence. We choose x ∈ X and show that {Tn(x)} is
a Cauchy sequence with respect to A. Using induction, we obtain the following:

S(xn, xn, xn+1) = S(Tn(x), Tn(x), Tn+1(x))

� A∗S(Tn−1(x), Tn−1(x), Tn(x))A
� (A∗)2S(Tn−2(x), Tn−2(x), Tn−1(x))A2

...

� (A∗)nS(x, x, T (x))An
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for n = 0, 1, . . .. Therefore for m > n, we get

S(xn, xn, xm) = S(Tn(x), Tn(x), Tm(x))

� 2
m−2∑
i=n

S(T i(x), T i(x), T i+1(x)) + S(Tm−1(x), Tm−1(x), Tm(x))

� 2
m−2∑
i=n

(A∗)iS(x, x, Tx)Ai + (A∗)m−1S(x, x, T (x))Am−1

= 2

m−2∑
i=n

(A∗)iB
1
2B

1
2Ai + (A∗)m−1B

1
2B

1
2Am−1

= 2

m−2∑
i=n

(B
1
2Ai)∗(B

1
2Ai) + (B

1
2Am−1)∗(B

1
2Am−1)

= 2

m−2∑
i=n

|B 1
2Ai|2 + |B 1

2Am−1|2

≤ ‖2
m−2∑
i=n

|B 1
2Ai|2 + |B 1

2Am−1|2‖I

≤ 2
m−2∑
i=n

‖B 1
2 ‖2‖Ai‖2I + ‖B 1

2 ‖2‖Am−1‖2I

≤ 2‖B 1
2 ‖2

m−2∑
i=n

‖A‖2iI + ‖B 1
2 ‖2‖A‖2m−2I

≤ 2‖B 1
2 ‖2 ‖A‖

2n

1− ‖A‖I + ‖B
1
2 ‖2‖A‖2m−2I

m,n→∞−→ θ

where B = S(x, x, Tx). So {Tn(x)} is a Cauchy sequence with respect to A. By the
completeness of (X,A, S), there exists an element x0 ∈ X with lim

n→∞
Tn(x) = x0.

Since
θ � S(Tx0, Tx0, x0)
= S(Tx0, Tx0, Txn) + S(Tx0, Tx0, Txn) + S(x0, x0, xn)

� A∗S(x0, x0, xn)A+A∗S(x0, x0, xn)A+ S(x0, x0, xn)
n→∞→ θ,

we conclude that Tx0 = x0, i.e., x0 is a fixed point of T .
Finally we show the uniqueness. Assume that there exists u, v ∈ X with u = T (u)

and v = T (v). Since T is a C*-algebra-valued contractive mapping, we have

θ � S(u, u, v) = S(Tu, Tu, Tv) � A∗S(u, u, v)A.
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On the other hand, since ‖A‖ < 1, we obtain
0 ≤ ‖S(u, u, v)‖ = ‖S(Tu, Tu, Tv)‖
≤ ‖A∗S(u, u, v)A‖
≤ ‖A∗‖‖S(u, u, v)‖‖A‖
= ‖A‖2‖S(u, u, v)‖
< ‖S(u, u, v)‖.

But this is impossible. So S(u, u, v) = θ and u = v which implies that the fixed
point is unique. �

Example 3.9. Let X, A, S and T be as in Example 3.7. T satisfies the hypothesis
of Theorem 3.8. So 0 is the unique fixed point of T .

Definition 3.10. Let (X,A, S) be a C*-algebra-valued S-metric space. An element
(x, y) ∈ X × X is called a coupled fixed point of a mapping F : X × X → X if
F (x, y) = x and F (y, x) = y.

Definition 3.11. Let (X,A, S) be a C*-algebra-valued S-metric space. An element
(x, y) ∈ X×X is called a coupled coincidence point of the mappings F : X×X → X
and g : X → X if F (x, y) = gx and F (y, x) = gy.

Definition 3.12. [1]. LetX be a nonempty set. We say the mappings F : X×X →
X and g : X → X satisfy the L-condition if gF (x, y) = F (gx, gy) for all x, y ∈ X.

Definition 3.13. Let (X,A, S) be a C*-algebra-valued S-metric space. We say
the mappings F : X ×X → X and g : X → X satisfy the k-contraction if

S(F (x, y), F (x, y), F (z, w)) � kA∗[S(gx, gx, gz) + S(gy, gy, gw)]A (3.2)

with respect to A for all x, y, z, w, u, v ∈ X.

Lemma 3.14. Let (X,A, S) be a C*-algebra-valued S-metric space. Suppose that
F : X ×X → X and g : X → X satisfies the k-contraction for k ∈ (0, 12 ). If (x, y)
is a coupled coincidence point of the mappings F and g, then

F (x, y) = gx = gy = F (y, x).

Proof. We have gx = F (x, y) and gy = F (y, x) because (x, y) is the coupled coin-
cidence point of the mappings F and g. If we assume gx 6= gy, then we obtain

S(gx, gx, gy) = S(F (x, y), F (x, y), F (y, x))

� kA∗[S(gx, gx, gy) + S(gy, gy, gx)]A
= 2kA∗S(gx, gx, gy)A

and
‖S(gx, gx, gy)‖ ≤ 2k‖A‖2‖S(gx, gx, gy)‖

< ‖S(gx, gx, gy)‖
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by (3.2) and Lemma 3.3. But it is a contradiction. Therefore gx = gy and

F (x, y) = gx = gy = F (y, x).

�

Theorem 3.15. Let (X,A, S) be a C*-algebra-valued S-metric space. Suppose
that F : X × X → X and g : X → X are mappings satisfying k-contraction
for k ∈ (0, 12 ) and L-condition. If g(X) is continuous with closed range such that
F (X ×X) ⊂ g(X), then there is a unique x in X such that gx = F (x, x) = x.

Proof. Let x0, y0 ∈ X. By the fact that F (X × X) ⊆ g(X), two elements x1, y1
could be chosen as follows:

gx1 = F (x0, y0) and gy1 = F (y0, x0).

Starting from the pair (x1, y1), two sequences {xn} and {yn} in X can be obtained
such that

gxn+1 = F (xn, yn) and gyn+1 = F (yn, xn).

The inequality (3.2) gives the following for n ∈ N:
S(gxn−1, gxn−1, gxn) � kA∗[S(gxn−2, gxn−2, gxn−1) + S(gyn−2, gyn−2, gyn−1)]A.

(3.3)
On the other hand, we get

F (yn−2, xn−2) = S(gyn−1, gyn−1, gyn) �kA∗[S(gyn−2, gyn−2, gyn−1)
+ S(gxn−2, gxn−2, gxn−1)]A.

(3.4)

If we sum (3.3) and (3.4), we get

S(gxn−1, gxn−1, gxn) + S(gyn−1, gyn−1, gyn) �2kA∗[S(gxn−2, gxn−2, gxn−1)
+ S(gyn−2, gyn−2, gyn−1)]A

for all n ∈ N. If (3.2) is applied adequately,
S(gxn, gxn, gxn+1) � 2k2(A∗)2[S(gxn−2, gxn−2, gxn−1) + S(gyn−2, gyn−2, gyn−1)]A2

. . .

� 1
2
kn(
√
2A∗)n[S(gx0, gx0, gx1) + S(gy0, gy0, gy1)](

√
2A)n.

Using the definition of C*-algebra-valued S-metric space and Lemma 3.3,

S(gxn, gxn, gxm) � 2
m−2∑
i=n

S(gxi, gxi, gxi+1) + S(gxm−1, gxm−1, gxm)

� 2
m−2∑
i=n

1

2
ki(
√
2A∗)i[S(gx0, gx0, gx1) + S(gy0, gy0, gy1)](

√
2A)i

+
1

2
km−1(

√
2A∗)m−1[S(gx0, gx0, gx1) + S(gy0, gy0, gy1)](

√
2A)m−1,
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where m,n ∈ N, m > n+ 2, then we conclude that

‖S(gxn, gxn, gxm)‖ ≤
m−2∑
i=n

ki‖
√
2A‖2i[S(gx0, gx0, gx1) + S(gy0, gy0, gy1)]

+
1

2
km−1‖

√
2A‖2m−2[S(gx0, gx0, gx1) + S(gy0, gy0, gy1)].

Since ‖A‖ < 1√
2
, when n,m → ∞, we get ‖S(gxn, gxn, gxm)‖ → 0. So {gxn}

is a Cauchy sequence. In a similar way, {gyn} is a Cauchy sequence. From the
closedness of g(X), {gxn} and {gyn} are convergent to x ∈ X and y ∈ X. Since g
is continuous, {g(gxn)} is convergent to gx and {g(gyn)} is convergent to gy. Since
F and g satisfy the L-condition, we get

g(gxn+1) = g(F (xn, yn)) = F (gxn, gyn)

g(gyn+1) = g(F (yn, xn)) = F (gyn, gxn).

This shows that the following inequalities:

S(g(gxn+1), g(gxn+1), F (x, y)) � kA∗[S(g(gxn), g(gxn), gx)+S(g(gyn), g(gyn), gy)]A
and

‖S(g(gxn+1), g(gxn+1), F (x, y))‖ ≤ k‖A‖2‖S(g(gxn), g(gxn), gx) + S(g(gyn), g(gyn), gy)‖.

If we take the limit as n→∞,
‖S(gx, gx, F (x, y))‖ ≤ k‖A‖2‖S(gx, gx, gx)‖+ ‖S(gy, gy, gy)‖ = 0.

So gx = F (x, y). Similarly, gy = F (y, x). From Lemma 3.14, (x, y) is a coupled
coincidence point of the mappings F and g. So gx = F (x, y) = F (y, x) = gy. Since

S(gxn+1, gxn+1, gx) = S(F (xn, yn), F (xn, yn), F (x, y))

� kA∗(S(gxn, gxn, gx) + S(gyn, gyn, gy))A
and

S(gyn+1, gyn+1, gy) � kA∗(S(gyn, gyn, gy) + S(gxn, gxn, gx))A,
we have

S(gxn+1, gxn+1, gx)+S(gyn+1, gyn+1, gy) � 2kA∗(S(gxn, gxn, gx)+S(gyn, gyn, gy))A
and

‖S(gxn+1, gxn+1, gx)+S(gyn+1, gyn+1, gy)‖ ≤ 2k‖A∗‖‖S(gxn, gxn, gx)+S(gyn, gyn, gy)‖‖A‖.
Taking the limit as n→∞, we obtain the following:

‖S(x, x, gx) + S(y, y, gy)‖ ≤ 2k‖A∗‖‖S(x, x, gx) + S(y, y, gy)‖‖A‖
= 2k‖A‖2‖S(x, x, gx) + S(y, y, gy)‖.

Since 2k < 1 and ‖A‖ < 1√
2
, we have S(x, x, gx) = 0 and S(y, y, gy) = 0. So gx = x

and gy = y, that is, gx = gy = x = y. As a result, we have gx = F (x, x) = x.
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To show the uniqueness, assume that there is an element z 6= x in X such that
z = gz = F (z, z). We have

S(x, x, z) = S(F (x, x), F (x, x), F (z, z))

� 2kA∗S(gx, gx, gz)A
= 2kA∗S(x, x, z)A.

Since 2k < 1, ‖A‖ < 1√
2
and

‖S(x, x, z)‖ ≤ 2k‖A‖2‖S(x, x, z)‖,
we conclude that S(x, x, z) = 0, that is, x = z. �
The following corollary can be easily deduced from the Theorem 3.15.

Corollary 3.16. Let (X,A, S) be a C*-algebra-valued S-metric space. If a mapping
F : X ×X → X satisfies the following condition

S(F (x, y), F (u, v), F (z, w)) � kA∗[S(x, u, z) + S(y, v, w)]A
with respect to A for all x, y, z, u, v, w ∈ X and k ∈ (0, 12 ), then there exists a unique
element x ∈ X such that F (x, x) = x.

4. Conclusion

In this work, we investigate whether there are correspondences of some metric
and fixed point properties in S-metric spaces taking the domain set of S-metric
function as A which is a C*-algebra-valued set, and first present C*-algebra-valued
S-metric space on the set having this structure using properties of this algebraic
notion. This given structure is important in terms of integrating some metric
constructions of algebraic topology and fixed point theory.
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ON CERTAIN TOPOLOGICAL INDICES OF
NANOSTRUCTURES USING Q(G) AND R(G) OPERATORS

V. LOKESHA, R. SHRUTI, P. S. RANJINI, AND A. SINAN CEVIK

Abstract. The invention of new nanostructures gives a key measurement to
industry, electronics, pharmaceutical and biological therapeutics. By consid-
ering the importance of this key point, in here we compute the 2D-lattice,
nanotube and nanotorus of TUC4C8[p, q] over the graphs Q(G) and R(G)
in terms of certain topological indices, namely first, second and third Zagreb
indices, hyper Zagreb index and forgotten topological index. These indices
are numerical propensity that often characterizes the quantitative structural
activity/property/toxicity relationships, and also correlates physico-chemical
properties such as boiling point, melting point and stability of respective nanos-
tructures.

1. Introduction and Preliminaries

In the fields of chemical graph theory, molecular topology and mathematical
chemistry, a topological index is actually a molecular graph invariant which making
matches the physio-chemical properties of a molecular graph with a number. Fur-
thermore, in some cases, a topological index known as a connectivity index which
is a type of a molecular descriptor and is calculated based on the molecular graph
of a chemical compound. A large amount of chemical experiments require a deter-
mination of the chemical properties of new compounds.
If we enumerate all octagons of TUC4C8[p, q] (any cycle C8) and all quadrangles

(any cycle C4), where p and q denotes number of octagons in a fixed row and
column, respectively, of a 2-dimensional lattice (see Figure 1-(a)), then

• the nanotube is obtained from the lattice by wrapping it up so that each
dangling edge from the left-hand side connects to the right most vertex of
the same row (see Figure 1-(b)), or
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• the nanotorus is obtained from again the lattice by wrapping it up so that
each dangling edge from the left-hand side connects to the right most vertex
of the same row and each dangling edge from up side connects to the down
most vertex of the same row (see Figure 1-(c)).

Figure 1. (a) 2D-lattice of TUC4C8[p, q]; (b) nanotubes of
TUC4C8[p, q]; (c) nanotores of TUC4C8[p, q].

Recently, in [10], Hosamani has been computed the topological properties of
the line graphs of subdivision graphs of certain nanostructures-II, and also ob-
tained upper bounds for Wiener index of 2D-lattice, nanotube and nanotorus of
TUC4C8[p, q]. In [14], V. Lokesha et al. established on model graph structure of
Alveoli in human lungs in terms of graph operators such as subdivision, double
graph, Q(G) and R(G) of certain topological indices. In the same reference, by
using Q(G) and R(G), the authors also exhibited the relation between indices. At
this point let us remind the graph operators Q(G) and R(G) which are directly
related to the main aim of this paper.

• The Q(G) graph is obtained from G by inserting a new vertex into each
edge of G and by joining edges those pairs of new vertices which lie on
adjacent edges of G.

• The R(G) graph is obtained from G by adding a new vertex corresponding
to every edge of G and by joining each new vertex to the end vertices of
the edge corresponding to it.

We note that the first and third authors of this paper utilized these above graph
operators previously (cf. [14, 19]). On the other hand, Diudea et al. considered
the problem of computing topological indices of some chemical graphs related to
nanostructurer in joint works (cf. [3, 4, 12]). In addition to these above studies,
Ashrafiet al. computed some topological indices of nanotubes in [1, 2], and Nadeem
et al. ([16]) obtained the expressions for certain topological indices for the line
graph of subdivision graphs of 2D-lattice, nanotube and nanotorus of TUC4C8[p, q].
Moreover, Lokesha et al. in [15] studied on nanostructurer in terms of SDD, ABC4
and GA5 indices.

Motivated from the above references, in here we aimed to compute the first,
second and third Zagreb indices, the hyper Zagreb index and the forgotten top-
logical index of Q(G) and R(G) graphs of 2D-lattice, nanotube and nanotorus of
TUC4C8[p, q]. To reach the aim, let us recall the following topological indices that
will be needed in our results:
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The first and second Zagreb indices were introduced more than thirty years ago
by I. Gutman and Trinajstic [8] which are defined as

M1(G) =
∑

e=uv∈E(G)

[dG(u) + dG(v)]

and
M2(G) =

∑
e=uv∈E(G)

dG(u).dG(v)

 , (1.1)

where dG(u) denotes the degree of a vertex u in G. We may refer [9, 11, 13, 17, 18,
20] for more detailed works on Zagreb indices. On the other hand, the third Zagreb
index

M3(G) =
∑

e=uv∈E(G)

|dG(u)− dG(v)| (1.2)

was introduced by Fath-Tabar in [5]. Although this modified version of Zagreb
indices has been taken interest since 2011, another modified version, namely the
hyper-Zagreb index (cf. [21]) had to be created depending on the importance of
these indices. The hyper-Zagreb index is defined as

HM(G) =
∑

e=uv∈E(G)

[dG(u) + dG(v)]
2 . (1.3)

Unfortunately another the degree based graph invariant has not attracted any at-
tention in the literature of mathematical chemistry for more than forty years. In
view of this fact, B. Furtula et al. ([6, 7]) named it as forgotten (topological) index
in 2015 and defined it as

F (G) =
∑

e=uv∈E(G)

[dG(u)
2 + dG(v)

2] . (1.4)

Figure 2. Q(G) of 2D-lattice of TUC4C8[p, q].
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Forthcoming two sections, we shall give the results on the topological indices
(indicated in (1.1), (1.2), (1.3) and (1.4)) of the graphs Q(G) and R(G) for 2D-
lattice, nanotube and nanotorus of TUC4C8[p, q], respectively.

2. The case on Q(G)

In this section, by considering Equations (1.1)-(1.4) and the operator Q(G), we
discuss the results on 2D-lattice, nanotube and nanotorus of TUC4C8[p, q].

Theorem 1. Let H be the Q(G) of 2D-lattice of TUC4C8[p, q] (see Figure 2). Then

M1(H) = 4(p+ q) [11(q − 1) + 15] + 9q2(q − 6) + 18p(6q − 5) + 9(q + 2)+
18q(5− q) + 10pq(q − 5) + 20(4p+ q) + 44(p− q)+
(q − 2)[8(q − 3)− 11(2p+ q − 1)(q − 1)]− 188 ,

M2(H) = 18q2(q − 6) + 36p(6q − 5) + 18(q + 2) + 40q(5− q) + 25pq(q − 5)+
50(4p+ q) + 120(p− q) + 100(p+ q) + 16(q − 2)(q − 3)+
(q − 1)[12(p+ q)− 30(2p+ q − 1)(q − 2) + 36q(5p− 6)−
36(q − 2)((p− 1)(p− 2) + 5)]− 416

and
M3(H) = 4(p+ q)[(q − 1) + 5] + 3q2(q − 6) + 6p(6q − 5) + 3(q + 2)+

2q(5− q) + 4(p− q)− (2p+ q − 1)(q − 1)(q − 2)− 28 ,

HM(H) = 4(p+ q)[121(q − 1) + 113] + 81q2(q − 6) + 162p(6q − 5)+
81(q + 2) + 64(q − 2)(q − 3) + 162q(5− q) + 100pq(q − 5)+
200(4p+ q) + 484(p− q) + 144q(q − 1)(5p− 6)−
(q − 1)(q − 2)[121(2p+ q − 1) + (p− 1)(p− 2) + 5]− 1740 ,

F (H) = 90p(6q − 5) + 45(q + 2) + 32(q − 2)(q − 3) + 82q(5− q)+
50pq(q − 5) + 45q2(q − 6) + 100(4p+ q) + 244(p− q)+
252(p+ q) + (q − 1)[244(p+ q)− 61(2p+ q − 1)(q − 2)+
72q(5p− 6)− 72(q − 2)((p− 1)(p− 2) + 5)]− 908.

Proof. For the graph H, there are p2(3q−q2−2)+q2(7p−12)+3q(p+10)+8p−24
number of edges. Among these number of edges;
8 edges are of the type (2, 4),
4[(p+ q)− 2] edges are of type (2, 5),
4[(p+ q)− 2] edges are of the type (3, 5),
[q(q2 − 6q + 12p+ 1)− 10p+ 2] edges are of type (3, 6),
(q2 − 5q + 6) edges are of the type (4, 4),
[2q(5− q)− 4] edges are of the type (4, 5),
[pq2 − 5pq + 2(4p+ q − 4)] edges are of the type (5, 5),
(q(8q − q2 − 13) + 2p(5q − q2 − 2) + 2) edges are of the type (5, 6), and
[pq(8q− 14− pq+3p)+ q(27− 13q)+ 2p(3− p)− 14] edges are of the type (6, 6).

Now, by taking into account of edge partition and then applying Equations (1.1)-
(1.4) to H, we obtain the required results. �
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Theorem 2. Let S be the Q(G) of nanotubes of TUC4C8[p, q] (see Figure 3). Then

M1(S) = 68p+ 12q + 16pq(5− q)− 32(2p− 1) + 44(p− 1)+
(q − 1)[9(16p− pq + q − 2) + 10p(q − 4)− 22p(q − 4)+
12(8p+ 5q + q(p− q)− 10)].

M2(S) = 140p+ 18q + 30pq(5− q)− 60(2p− 1) + 120(p− 1)+
(q − 1)[18(16p− pq + q − 2) + 25p(q − 4)− 60p(q − 4)+
36(8p+ 5q + q(p− q)− 10)].

and
M3(S) = 12p+ 4pq(5− q)− 8(2q − 1) + 4(p− 1)+

(q − 1)[3(16p− pq + q − 2)− 2p(q − 4)].

HM(S) = 596p+ 72q + 128pq(5− q)− 256(2p− 1) + 484(p− 1)+
(q − 1)[81(16p− pq + q − 2)− 142p(q − 4)+
144(8p+ 5q + q(p− q)− 10)].

F (S) = 316p+ 36q + 68pq(5− q)− 136(2p− 1) + 244(p− 1)+
(q − 1)[45(16p− pq + q − 2)− 72p(q − 4)+
72(8p+ 5q + q(p− q)− 10)].

Figure 3. Q(G) of nanotube of TUC4C8[p, q].

Proof. For the graph S, we have total [3pq(13 − q) + q(7q − q2 − 16) − 24p + 12]
number of edges. From Figure 3, it can be observed that there are seven partition
of those edges such that
(2, 5) having 4p edges,
(3, 3) are of 2q edges,
(3, 5) are of [2pq(5− q)− 4(2p− 1)] edges,
(3, 6) are of [17pq − (16p+ 3q) + q2(1− p) + 2] edges,
(5, 5) are of [8p− 5pq + pq2] edges,
(5, 6) are of [2(5pq − pq2 − 2p− 2)] edges, and
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(6, 6) are of [q(6q − 15− q2) + p(7q + q2 − 8) + 10] edges.
Similarly as in the proof of Theorem 1, by considering the edge partition and also
applying Equations (1.1)-(1.4) to S, we get the results. �

Figure 4. Q(G) of nanotorus of TUC4C8[p, q].

Theorem 3. Let K be the Q(G) of nanotorus of TUC4C8[p, q] (see Figure 4).
Then

M1(K) = 252pq − 18(p+ q) , M2(K) = 648pq − 90(p+ q) ,

M3(K) = 6(p+ q + 6pq) , HM(K) = 2700pq − 342(p+ q) ,

F (K) = 1404pq − 162(p+ q) .

Proof. The graph K has 24pq number of edges from Figure 4. The partitions of
edges are of (3, 3), (3, 6) and (6, 6) having 2(p+ q), 2(p+ q+6pq) and 4(3pq−p− q)
edges, respectively. Similarly as in the final parts of the proofs of Theorems 1 and
2, we obtain the results. �

3. The case on R(G)

With a quite parallel approximation as in Section 2, by considering Equations
(1.1)-(1.4) and the operator R(G), we shall present the results on 2D-lattice, nan-
otube and nanotorus of TUC4C8[p, q].
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Figure 5. R(G) of 2D-lattice of TUC4C8[p, q].

Theorem 4. Let H1 be the R(G) of 2D-lattice of TUC4C8[p, q] (see Figure 5).
Then we have the following equations:

M1(H1) = 48(p− q)− 36(p+ q) + 40(p+ q − 2) +
8pq[9− 2(q − 1)(q − 5)] + 80 ,

M2(H1) = 72(p− q)− 148(p+ q) + 96(p+ q − 2) +
24pq[9− (q − 1)(q − 5)] + 208 ,

M3(H1) = 8(p+ q) + 24(p− q)− 8pq(q − 1)(q − 5) + 8(p+ q − 2) ,

HM(H1) = 384(p− q) + 400(p+ q − 2)− 576(p+ q) +
16pq[54− 8(q − 1)(q − 5)] + 832 ,

F (H1) = 208(p+ q − 2) + 16pq[27− 5(q − 1)(q − 5)]− 208(p+ q) +
240(p− q) + 416 .

Proof. The total number of edges for the graphH1 is 3(3p−q)+2pq[3−(q−1)(q−5)].
Among these number of edges, there are
4(p+ q) edges are of type (2, 4),
6(p− q)− 2pq(q − 1)(q − 5) edges are of the type (2, 6),
4 edges are of type (4, 4),
4(p+ q − 2) edges are of the type (4, 6), and
6pq − 5(p+ q) + 4 edges are of the type (6, 6).

As in the proof of Theorem 1, by taking into account of edge partition and then
applying Equations (1.1)-(1.4) to H1, we reached the results as required. �
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Figure 6. R(G) of nanotube of TUC4C8[p, q].

Theorem 5. Let S1 be the R(G) of nanotubes of TUC4C8[p, q] (see Figure 6).
Therefore the following bounds are eligible.

M1(S1) = 64p+ 8[6p(2q − 1) + 2q] + 12(6pq − 5p+ q) ,

M2(S1) = 36(6pq − 5p+ q) + 128p+ 12[6p(2q − 1) + 2q] ,

M3(S1) = 4[6p(2q − 1) + 2q] + 16p ,

HM(S1) = 544p+ 384p(2q − 1) + 144(6pq − 5p) + 272q ,

F (S1) = 40[6p(2q − 1) + 2q] + 72(6pq + q)− 72p .

Proof. By Figure 6, it is easy to observe that the total number of edges for the
graph S1 is 3[q(6p+1)− p]. It can be also observed that there are four partition of
edges such that
(2, 4) having 4p edges,
(2, 6) are of 6p(2q − 1) + 2q edges,
(4, 6) are of 4p edges and (6, 6) are of 6pq − 5p+ q edges.

With a completely same idea as in the final parts of the proofs of previous theorems,
the result follows. �

Theorem 6. Let K1 be the R(G) of nanotorus of TUC4C8[p, q] (see Figure 7).
Then

M1(K1) = 28(p+ q) + 168pq , M2(K1) = 60(p+ q) + 360pq ,

M3(K1) = 8(p+ q) + 48pq , HM(K1) = 272(p+ q) + 1632pq ,

F (K1) = 152(p+ q) + 912pq .

Proof. By Figure 7, the graph K1 has 3p+3q+18pq number of edges. In here, the
partitions of edges are of (2, 6) and (6, 6) having 2(p+q+6pq) and p+q+6pq edges,
respectively. Now, by considering the edge partition and then applying Equations
(1.1)-(1.4) to K1, the correctness of the theorem is shown. �
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Figure 7. R(G) of nanotorus of TUC4C8[p, q].

Conclusion 1. In this paper, we computed the nanostructures through degree-based
topological indices over TUC4C8[p, q]. The topological indices calculated in here
can help us to understand the physical features, chemical reactivity, and biological
activities of these structures. From this view point, topological indices in graph
theory can be regarded as a score function that maps each molecular structure to a
real number, and are used as descriptors of the molecular under testing.
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POTENTIAL OPERATORS ON CARLESON CURVES IN
MORREY SPACES

AHMET EROGLU AND IRADA B. DADASHOVA

Abstract. In this paper we study the potential operator Iα in the Morrey
space Lp,λ and the spaces BMO defined on Carleson curves Γ. We prove that
for 0 < α < 1, Iα is bounded from the Morrey space Lp,λ(Γ) to Lq,λ(Γ) on
simple Carleson curves if (and only if in the infinite simple Carleson curve Γ)
1/p − 1/q = α/(1 − λ), 1 < p < (1 − λ)/α, and from the spaces L1,λ(Γ) to
WLq,λ(Γ) if (and only if in the infinite case) 1− 1

q
= α

1−λ .

1. Introduction

Morrey spaces were introduced by C. B. Morrey [11] in 1938 in connection with
certain problems in elliptic partial differential equations and calculus of varia-
tions. Later, Morrey spaces found important applications to Navier-Stokes and
Schrödinger equations, elliptic problems with discontinuous coeffi cients, and poten-
tial theory.
The main purpose of this paper is to establish the boundedness of potential

operator Iα in Morrey spaces Lp,λ defined on Carleson curves Γ. We prove Sobolev-
Morrey inequalities for the operator Iα. In particular, we get the analog of the
theorem by D.R. Adams [1] regarding the inequality for the Riesz potentials in
Morrey spaces defined on Carleson curves. We emphasize that in the infinite case
of Γ the derived conditions are necessary and suffi cient for appropriate inequalities.
Note that the results we obtain here the potential operators are valid not only on

Carleson curves, but also in a more general context of metric spaces or homogeneous
type spaces at least under the condition µ(B(x, r)) ∼ rd (see [4, 5, 8, 12]).
The paper is organized as follows. In Section 2, we present some definitions

and auxiliary results. In Section 3, we establish the main result of the paper:
We prove that for 0 < α < 1, Iα is bounded from the Morrey space Lp,λ(Γ) to
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Lq,λ(Γ) on simple Carleson curves if (and only if in the infinite simple Carleson
curves) 1/p− 1/q = α/(1− λ), 1 < p < (1− λ)/α, and from the spaces L1,λ(Γ) to
WLq,λ(Γ) if (and only if in the infinite case) 1− 1

q = α
1−λ .

2. Preliminaries

Let Γ = {t ∈ C : t = t(s), 0 ≤ s ≤ l ≤ ∞} be a rectifiable Jordan curve in the
complex plane C with arc-length measure ν(t) = s, here l = νΓ = lengths of Γ. We
denote

Γ(t, r) = Γ ∩B(t, r), t ∈ Γ, r > 0,

where B(t, r) = {z ∈ C : |z − t| < r}.
A rectifiable Jordan curve Γ is called a Carleson curve if the condition

νΓ(t, r) ≤ c0r
holds for all t ∈ Γ and r > 0, where the constant c0 > 0 does not depend on t and
r. Let Lp(Γ), 1 ≤ p < ∞ be the space of measurable functions on Γ with finite
norm

‖f‖Lp(Γ) =

(∫
Γ

|f(t)|pdν(t)

)1/p

.

Let 1 ≤ p <∞,0 ≤ λ ≤ 1. We denote by Lp,λ(Γ) the Morrey space as the set of
locally integrable functions f on Γ with the finite norm

‖f‖Lp,λ(Γ) = sup
t∈Γ, r>0

r−
λ
p ‖f‖Lp(Γ(t,r)).

Note that Lp,0(Γ) = Lp(Γ), and if λ < 0 or λ > 1, then Lp,λ(Γ) = Θ, where Θ is
the set of all functions equivalent to 0 on Γ.
We denote by WLp,λ(Γ) the weak Morrey space as the set of locally integrable

functions f with finite norm

‖f‖WLp,λ(Γ) = sup
β>0

β sup
r>0, t∈Γ

(
r−λ

∫
{τ∈Γ(t,r): |f(τ)|>β}

dν(τ)

)1/p

.

Let f ∈ Lloc1 (Γ). The maximal operatorM and the potential operator Iα on Γ
are defined by

Mf(t) = sup
t>0
|Γ(t, r)|−1

∫
Γ(t,r)

|f(τ)|dν(τ),

and

Iαf(t) =

∫
Γ

f(τ)dν(τ)

|t− τ |1−α , 0 < α < 1,

respectively.
Maximal operators and potential operators in various spaces defined on Carleson

curves has been widely studied by many authors (see, for example [2, 3, 6, 7, 8, 9,
10, 12]).
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N. Samko [12] studied the boundedness of the maximal operator M defined
on quasimetric measure spaces, in particular on Carleson curves in Morrey spaces
Lp,λ(Γ):
Theorem A. Let Γ be a Carleson curve, 1 < p < ∞, 0 < α < 1 and 0 ≤ λ < 1.
ThenM is bounded from Lp,λ(Γ) to Lp,λ(Γ).
V. Kokilashvili and A. Meskhi [9] studied the boundedness of the potential op-

erator defined on quasimetric measure spaces, in particular on Carleson curves in
Morrey spaces and proved the following:
Theorem B. Let Γ be a Carleson curve, 1 < p < q <∞, 0 < α < 1, 0 < λ1 <

p
q ,

λ1
p = λ2

q and 1
p −

1
q = α. Then the operator Iα is bounded from the spaces Lp,λ1(Γ)

to Lq,λ2(Γ).

3. Sobolev-Morrey inequality for potential operator on Carleson
curves

In this section we prove Sobolev-Morrey inequalities for the potential operators
in Morrey space defined on Carleson curves.

Theorem 1. Let Γ be a simple Carleson curve, 0 < α < 1, 0 ≤ λ < 1 − α and
1 ≤ p < 1−λ

α .
1) If 1 < p < 1−λ

α , then the condition 1
p −

1
q = α

1−λ is suffi cient and in the
infinite case also necessary for the boundedness of Iα from Lp,λ(Γ) to Lq,λ(Γ).
2) If p = 1, then the condition 1− 1

q = α
1−λ is suffi cient and in the infinite case

also necessary for the boundedness of Iα from L1,λ(Γ) to WLq,λ(Γ).

Proof. 1) Suffi ciency. Let Γ be a simple Carleson curve, 0 < α < 1, 0 ≤ λ < 1−α,
f ∈ Lp,λ(Γ) and 1 < p < 1−λ

α . Then

Iαf(t) =

(∫
Γ(t,r)

+

∫
Γ\Γ(t,r)

)
f(τ)|t− τ |α−1dν(τ) ≡ A(t, r) + C(t, r). (1)

For A(t, r) we have

|A(t, r)| ≤
∫

Γ(t,r)

|f(τ)||t− τ |α−1dν(τ)

≤
∞∑
j=1

(
2−jr

)α−1
∫

Γ(t,2−j+1r)\Γ(t,2−jr)

|f(τ)|dν(τ)

≤
∞∑
j=1

(
2−jr

)α−1
νΓ(t, 2−j+1r)Mf(t)

≤ 2c0r
αMf(t)

∞∑
j=1

2−jα.
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Hence

|A(t, r)| ≤ C1r
αMf(t) with C1 =

2c0
2α − 1

. (2)

For C(t, r) by the Hölder’s inequality we have

|C(t, r)| ≤
(∫

Γ\Γ(t,r)

|t− τ |−β |f(τ)|pdν(τ)

)1/p

×
(∫

Γ\Γ(t,r)

|t− τ |(
β
p+α−1)p′dν(τ)

)1/p′

= J1 · J2.

Let λ < β < 1− αp. For J1 we get

J1 =
( ∞∑
j=0

∫
Γ(t,2j+1r)\Γ(t,2jr)

|f(τ)|p|t− τ |−βdν(τ)
)1/p

≤ 2
λ
p r

λ−β
p ‖f‖Lp,λ(Γ)

( ∞∑
j=0

2(λ−β)j
)1/p

= C2r
λ−β
p ‖f‖Lp,λ(Γ) , (3)

where C2 =
(

2β

2β−λ−1

)1/p

.

For J2 we obtain

J2 =

 ∞∑
j=1

∫
Γ(t,2j+1r)\Γ(t,2jr)

|t− τ |(
β
p+α−1)p′dν(τ)

1/p′

≤

 ∞∑
j=1

(
2jr
)( βp+α−1)p′

νΓ(t, 2j+1r)

1/p′

≤

c0 ∞∑
j=1

(
2jr
)( βp+α−1)p′+1

1/p′

≤ C3r
β
p+α− 1

p , (4)

where C3 =
c
1
p′
0

1−2
1−β
p
−α
.

Then from (3) and (4) we have

|C(t, r)| ≤ C4r
λ−Q
p +α ‖f‖Lp,λ(Γ) , (5)

where C4 = C2 · C3.
Thus, from (2) and (5) we have

|Iαf(t)| ≤ C1r
αMf(t) + C4r

λ−1
q ‖f‖Lp,λ(Γ) .
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Minimizing with respect to r, at t =
[
(Mf(t))

−1 ‖f‖Lp,λ
]p/(1−λ)

we arrive at

|Iαf(t)| ≤ C5 (Mf(t))
p/q ‖f‖1−p/qLp,λ(Γ) ,

where C5 = C1 + C4.
Hence, by Theorem B, we have∫

Γ(t,r)

|Iαf(t)|q dν(τ) ≤ C5 ‖f‖q−pLp,λ(Γ)

∫
Γ(t,r)

(Mf(t))
p
dν(τ)

≤ C5Cp,λr
λ ‖f‖q−pLp,λ(Γ) ‖f‖

p
Lp,λ(Γ) = C6r

λ ‖f‖qLp,λ(Γ) ,

where C6 = C5 · Cp,λ.
Therefore Iαf ∈ Lq,λ(Γ) and

‖Iαf‖Lq,λ(Γ) ≤ C6‖f‖Lp,λ(Γ).

Necessity. Let Γ be an infinite simple Carleson curve, 1 < p < 1−λ
α and Iα

bounded from Lp,λ(Γ) to Lq,λ(Γ).
Define fr(τ) =: f(rτ). Then

‖fr‖Lp,λ(Γ) = r−
1
p sup
r1>0, τ∈Γ

(
r−λ1

∫
Γ(t,rr1)

|f(τ)|pdν(τ)

)1/p

= r−
1−λ
p ‖f‖Lp,λ(Γ)

and

Iαfr(t) = r−αIαf(rt),

‖Iαfr‖Lq,λ(Γ) = r−α sup
r1>0, t∈Γ

(
r−λ1

∫
Γ(t,r1)

|Iαf(rt)|q dν(t)

)1/q

= r−α−
1
q sup
r1>0, t∈Γ

(
r−λ1

∫
Γ(t,rr1)

|Iαf(t)|q dν(t)

)1/q

= r−α−
1−λ
q ‖Iαf‖Lq,λ(Γ) .

By the boundedness Iα from Lp,λ(Γ) to Lq,λ(Γ)

‖Iαf‖Lq,λ(Γ) ≤ Cp,q,λr
α+ 1−λ

q −
1−λ
p ‖f‖Lp,λ(Γ),

where Cp,q,λ depends only on p, q and λ.
If 1

p <
1
q + α

1−λ , then for all f ∈ Lp,λ(Γ), we have ‖Iαf‖Lq,λ = 0 as r → 0.

Similarly, if 1
p >

1
q + α

1−λ , then for all f ∈ Lp,λ(Γ), we obtain ‖Iαf‖Lq,λ(Γ) = 0
as r →∞
Therefore 1

p = 1
q + α

1−λ .
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2) Suffi ciency. Let f ∈ L1,λ(Γ). We have

ν {τ ∈ Γ(t, r) : |Iαf(τ)| > 2β} ≤ ν {τ ∈ Γ(t, r) : |A(τ , r)| > β}
+ν {τ ∈ Γ(t, r) : |C(τ , r)| > β} .

Taking into account inequality (2) and Theorem A we have

ν {τ ∈ Γ(t, r) : |A(τ , r)| > β} ≤ ν
{
τ ∈ Γ(t, r) : Mf(τ) >

β

C1rα

}
≤ C7r

α

β
· rλ ‖f‖L1,λ(Γ) ,

where C7 = C1 · C1,λ and thus if C4r
λ−1
q ‖f‖L1,λ(Γ) = β, then |C(τ , r)| ≤ β and

consequently, | {τ ∈ Γ(t, r) : |C(τ , r)| > β} | = 0.
Finally

ν {τ ∈ Γ(t, r) : |Iαf(τ)| > 2β} ≤ C7

β
rλrα ‖f‖L1,λ(Γ) = C8r

λ

(
‖f‖L1,λ(Γ)

β

)q
,

where C8 = C7 · Cq−1
4 .

Necessity. Let Iα bounded from L1,λ(Γ) to WLq,λ(Γ). We have

‖Iαfr‖WLq,λ
= sup
β>0

β sup
r1>0, τ∈Γ

(
r−λ1

∫
{τ∈Γ(t,r1) : |Iαfr(τ)|>β}

dν(τ)

)1/q

= r−α sup
β>0

βrα sup
r1>0, τ∈Γ

(
τ−λ

∫
{τ∈Γ(t,r1) : |Iαf(rτ)|>βrα}

dν(τ)

)1/q

= r−α−
1
q sup
β>0

βrα sup
r1>0, τ∈Γ

(
rλ(r1r)

−λ
∫
{τ∈Γ(t,rr1) : |Iαf(τ)|>βrα}

dν(τ)

)1/q

= r−α−
1−λ
q ‖Iαf‖WLq,λ

.

By the boundedness Iα from L1,λ(Γ) to WLq,λ(Γ)

‖Iαf‖WLq,λ
≤ C1,q,λr

α+ 1−λ
q −(1−λ)‖f‖L1,λ(Γ),

where C1,q,λ depends only on q and λ.
If 1 < 1

q + α
1−λ , then for all f ∈ L1,λ(Γ), we have ‖Iαf‖WLq,λ

= 0 as r → 0.

Similarly, if 1 > 1
q + α

1−λ , then for all f ∈ L1,λ(Γ), we obtain ‖Iαf‖WLq,λ
= 0

as r →∞. Therefore 1 = 1
q + α

1−λ .
Thus Theorem 1 is proved. �
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BLENDING TYPE APPROXIMATION BY
BÉZIER-SUMMATION-INTEGRAL TYPE OPERATORS

TUNCER ACAR AND ARUN KAJLA

Abstract. In this note we construct the Bézier variant of summation integral
type operators based on a non-negative real parameter. We present a direct
approximation theorem by means of the first order modulus of smoothness and
the rate of convergence for absolutely continuous functions having a derivative
equivalent to a function of bounded variation. In the last section, we study
the quantitative Voronovskaja type theorem.

1. Introduction

In 1912 Bernstein introduced the most famous algebraic polynomials Bn(f ;x) in
approximation theory in order to give a constructive proof of Weierstrass’s theorem
which is given by

Bn(f ;x) =

n∑
k=0

pn,k(x)f

(
k

n

)
, x ∈ [0, 1],

where pn,k(x) =
(
n

k

)
xk(1− x)n−k and he proved that if f ∈ C[0, 1] then Bn(f ;x)

converges uniformly to f(x) in [0, 1].
The Bernstein operators have been used in many branches of mathematics and
computer science. Since their useful structure, Bernstein polynomials and their
modifications have been intensively studied. Among the other we refer the readers
to (cf. [2, 3, 12, 8, 23, 27]).
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For f ∈ C[0, 1], Chen et al. [10] introduced a generalization of the Bernstein
operators based on a non-negative parameter α (0 ≤ α ≤ 1) as follows:

T (α)n (f ;x) =

n∑
k=0

p
(α)
n,k(x)f

(
k

n

)
, x ∈ [0, 1] (1.1)

where

p
(α)
n,k(x) =

[(n− 2
k

)
(1− α)x+

(n− 2
k − 2

)
(1− α)(1− x) +

(n
k

)
αx(1− x)

]
xk−1(1− x)n−k−1

and n ≥ 2. They proved the rate of convergence, Voronovskaja type asymptotic
formula and Shape preserving properties for these operators. For the special case,
α = 1, these operators reduce the well-known Bernstein operators.
In [19], Kajla and Acar introduced a sequence of summation-integral type operators
as follows:

D(α)
n (f ;x) = (n+ 1)

n∑
k=0

p
(α)
n,k(x)

∫ 1

0

pn,k (t) f(t)dt, (1.2)

where f ∈ L1[0, 1] (the space of all Lebesgue integrable functions on [0, 1]),

pn,k (t) =

(
n

k

)
tk(1 − t)n−k and p(α)n,k(x) is defined as above. In [19], Voronoskaja

type asymptotic formula, rate of convergence, local and global convergence results
were established for these operators (1.2).
The aim of this paper is to introduce Bézier variant of the operators (1.2) and

obtain the direct approximation results. Furthermore we study the rate of con-
vergence for an absolutely continuous function f having a derivative f ′ equivalent
with a function of bounded variation on [0, 1] and quantitative Voronovskaja type
theorem.

A Bézier curve is a parametric curve frequently used in computer graphics and
image processing. These are mainly used in approximation, interpolation, curve
fitting etc. Bézier-Bernstein type operators were established by many mathemati-
cians. The pioneer works in this direction are due to [3, 5, 9, 13, 24, 26, 28, 29, 30].
In these works, the direct approximation results were obtained and the rate of
convergence for functions of bounded variation were established. The order of ap-
proximation of the summation-integral type operators for functions with derivatives
of bounded variation is estimated in [1, 4, 6, 7, 14, 15, 16, 17, 18, 21, 20, 22, 25].

For f ∈ L1[0, 1], we define the Bézier variant of the operators D(α)
n (f ;x) as

S(ρ)n,α(f ;x) = (n+ 1)

n∑
k=0

Q
(ρ)
n,k,α(x)

∫ 1

0

pn,k(t)f(t)dt, x ∈ [0, 1], (1.3)
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where ρ ≥ 1, Q(ρ)n,k,α(x) = [Jn,k,α(x)]
ρ − [Jn,k+1,α(x)]ρ and Jn,k,α(x) =

n∑
j=k

p
(α)
n,j (x),

when k ≤ n and 0 otherwise.
Alternatively we may rewrite the operators (1.3) as

S(ρ)n,α(f ;x) =

∫ 1

0

Mn,α,ρ(x, t)f(t)dt, x ∈ [0, 1], (1.4)

where

Mn,α,ρ(x, t) = (n+ 1)

n∑
k=0

Q
(ρ)
n,k,α(x)pn,k(t).

If ρ = 1 then the operators S(ρ)n,α(f ;x) reduce to the operators D
(α)
n (f ;x).

Throughout this article, C denotes a positive constant independent of n and x, not
necessarily the same at each occurrence.

To express our results we give the following auxiliary results.

Lemma 1. [19] Let ei(t) = ti, i = 0, 4, then we have

(1) D(α)
n (e0;x) = 1;

(2) D(α)
n (e1;x) = x+

1− 2x
(n+ 2)

;

(3) D(α)
n (e2;x) = x2 +

2x2 (α− 3n− 4)
(n+ 2)(n+ 3)

+
2x(2n− α+ 1)
(n+ 2)(n+ 3)

+
2

(n+ 2)(n+ 3)
;

(4) D(α)
n (e3;x) = x3+

6x3 (−n(5 + 2n− α)− 2(1 + α))

(n+ 2)(n+ 3)(n+ 4)
+
3x2 (n(3n− 2α− 1) + 10(α− 1))

(n+ 2)(n+ 3)(n+ 4)

+
18x(n− α+ 1)

(n+ 2)(n+ 3)(n+ 4)
+

6

(n+ 2)(n+ 3)(n+ 4)
;

(5) D(α)
n (e4;x) = x4 +

x4 (−4(n+ 3)(16 + n(3 + 5n)) + 12α(n− 3)(n− 2))
(n+ 2)(n+ 3)(n+ 4)(n+ 5)

+
4x3(n− 2) (n(4n− 3α− 1) + 33(α− 1))

(n+ 2)(n+ 3)(n+ 4)(n+ 5)
+
24x2

(
n+ 3n2 + 14(α− 1)− 4nα

)
(n+ 2)(n+ 3)(n+ 4)(n+ 5)

+
48x(2n− 3α+ 3)

(n+ 2)(n+ 3)(n+ 4)(n+ 5)
+

24

(n+ 2)(n+ 3)(n+ 4)(n+ 5)
.

Hence we get

D(α)
n ((t− x);x) = 1− 2x

n+ 2
<
λ1(1− x)
n+ 1

, ∀x ∈ [0, 1] and ∀n ∈ N (1.5)

with λ1 ≥ 2 and

D(α)
n ((t− x)2;x) = 2x(1− x)(n− α− 2)

(n+ 2)(n+ 3)
+

2

(n+ 2)(n+ 3)
.

From [19], we have

D(α)
n ((t− x)2;x) < 2

(n+ 2)
γ2n(x), ∀x ∈ [0, 1] and ∀n ∈ N
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where γ2n(x) = ϕ2(x) + 1
(n+2) and ϕ

2(x) = x(1− x). Then we can write

D
(α)
n ((t− x)2;x) <

λ2γ2n(x)

n+ 2
, λ2 ≥ 2. (1.6)

D
(α)
n ((t− x)4;x) =

12x3(x− 2) (n(n− 2α− 19) + 46α− 36)
(n+ 2)(n+ 3)(n+ 4)(n+ 5)

+
12x2 (n(n− 2α− 25) + 58α− 38)
(n+ 2)(n+ 3)(n+ 4)(n+ 5)

+
24x(3n− 6α+ 1)

(n+ 2)(n+ 3)(n+ 4)(n+ 5)
+

24

(n+ 2)(n+ 3)(n+ 4)(n+ 5)
(1.7)

Remark 1. We have

S(ρ)n,α(e0;x) =

n∑
k=0

Q
(ρ)
n,k,α(x) = [Jn,0,α(x)]

ρ

=

 n∑
j=0

p
(α)
n,j (x)

ρ = 1, since n∑
j=0

p
(α)
n,j (x) = 1.

Lemma 2. [19] Let f ∈ C[0, 1]. Then for x ∈ [0, 1] we have

‖ D(α)
n (f) ‖≤‖ f ‖ .

2. Direct Estimates

To describe our results, we recall the definitions of the first order modulus of
smoothness and the K-functional [11]. Let ϕ(x) =

√
x(1− x), f ∈ C[0, 1]. The

first order modulus of smoothness is given by

ωϕ(f ; t) = sup
0<h≤t

{ ∣∣∣∣f(x+ hϕ(x)

2

)
− f

(
x− hϕ(x)

2

)∣∣∣∣ , x± hϕ(x)

2
∈ [0, 1]

}
,

and the appropriate Peetre’s K-functional is defined by

Kϕ(f ; t) = inf
g∈Wϕ

{||f − g||+ t||ϕg′||+ t2||g′||} (t > 0),

where Wϕ = {g : g ∈ ACloc, ||ϕg
′ || < ∞, ||g′ || < ∞} and ||.|| is the uniform

norm on C[0, 1]. It is well known that ([11], Thm. 3.1.2 ) Kϕ(f ; t) ∼ ωϕ(f ; t) which
means that there exists a constant M > 0 such that

M−1ωϕ(f ; t) ≤ Kϕ(f ; t) ≤Mωϕ(f ; t). (2.1)

Lemma 3. Let f ∈ C[0, 1]. Then, for x ∈ [0, 1], we have

‖ S(ρ)n,α(f) ‖≤ ρ ‖ f ‖ .
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Proof. Applying the inequality | aρ − bρ |≤ ρ | a− b | with 0 ≤ a, b ≤ 1, ρ ≥ 1 and
from definition of Q(ρ)n,k,α(x), we may write

0 < [Jn,k,α(x)]
ρ − [Jn,k+1,α(x)]ρ ≤ ρ (Jn,k,α(x)− Jn,k+1,α(x))

= ρ p
(α)
n,k(x).

Hence from the definition S(ρ)n,α(f ;x) and Lemma 2, we obtain

‖ S(ρ)n,α(f) ‖≤ ρ ‖ D(α)
n (f) ‖≤ ρ ‖ f ‖ .

�

Now we study a direct approximation theorem for the operators S(ρ)n,α.

Theorem 1. Suppose that f be in C[0, 1] and ϕ(x) =
√
x(1− x) then for every

x ∈ [0, 1), we have

| S(ρ)n,α(f ;x)− f(x) |< Cωϕ

(
f ;

1√
n+ 2

)
, (2.2)

where C is a constant independent of n and x.

Proof. By the definition of Kϕ(f ; t), for fixed n, x, we can choose g = gn,x ∈ Wϕ

such that

||f − g||+ 1√
n+ 2

||ϕg′||+ 1

n+ 2
||g′|| ≤ 2Kϕ

(
f ;

1√
n+ 2

)
. (2.3)

Using Remark 1, we can write

| S(ρ)n,α(f ;x)− f(x) | ≤ | S(ρ)n,α(f − g;x) | +|f − g|+ | S(ρ)n,α(g;x)− g(x) | (2.4)
≤ 2||f − g||+ | S(ρ)n,α(g;x)− g(x) | .

We only need to compute the second term in the above equation. We will have to
split the estimate into two domains, i.e. x ∈ F cn = [0, 1/n] and x ∈ Fn = (1/n, 1).

Using the representation g(t) = g(x) +

∫ t

x

g′(u)du, we get

∣∣∣S(ρ)n,α(g;x)− g(x)
∣∣∣ = ∣∣∣∣S(ρ)n,α

(∫ t

x

g′(u)du;x

)∣∣∣∣ . (2.5)

If x ∈ Fn = (1/n, 1) then γn(x) ∼ ϕ(x). We have∣∣∣∣ ∫ t

x

g′(u)du

∣∣∣∣ ≤ ||ϕg′||∣∣∣∣ ∫ t

x

1

ϕ(u)
du

∣∣∣∣. (2.6)
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For any x, t ∈ (0, 1), we find that∣∣∣∣ ∫ t

x

1

ϕ(u)
du

∣∣∣∣ =

∣∣∣∣ ∫ t

x

1√
u(1− u)

du

∣∣∣∣
≤

∣∣∣∣ ∫ t

x

(
1√
u
+

1√
1− u

)
du

∣∣∣∣
≤ 2

(
|
√
t−
√
x | + |

√
1− t−

√
1− x |

)
= 2|t− x|

(
1√

t+
√
x
+

1√
1− t+

√
1− x

)
< 2|t− x|

(
1√
x
+

1√
1− x

)
≤ 2

√
2 |t− x|
ϕ(x)

. (2.7)

Combining (2.5)-(2.7) and using Cauchy-Schwarz inequality, we obtain

|S(ρ)n,α(g;x)− g(x)| < 2
√
2||ϕg′−1(x)S(ρ)n,α(|t− x|;x)

≤ 2
√
2||ϕg′−1(x)

(
S(ρ)n,α((t− x)2;x)

)1/2
≤ 2

√
2||ϕg′−1(x)

(
ρ D(α)

n ((t− x)2;x)
)1/2

.

From (1.6), we get

|S(ρ)n,α(g;x)− g(x)| <
C||ϕg′||√
n+ 2

. (2.8)

For x ∈ F cn = [0, 1/n], γn(x) ∼
1√
n+ 2

and∣∣∣∣ ∫ t

x

g′(u)du

∣∣∣∣ ≤ ||g′|| |t− x|.
Therefore, using Cauchy-Schwarz inequality we have

|S(ρ)n,α(g;x)− g(x)| ≤ ||g′||S(ρ)n,α(|t− x|;x)

≤ C||g′|| γn(x)√
n+ 2

<
C

n+ 2
||g′||. (2.9)

From (2.8) and (2.9), we have

|S(ρ)n,α(g;x)− g(x)| < C

(
||ϕg′||√
n+ 2

+
1

n+ 2
||g′||

)
. (2.10)

Using Kϕ(f ; t) ∼ ωϕ(f ; t) and (2.3), (2.4), (2.10), we get the desired relation (2.2).
This completes the proof of the theorem. �
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3. Rate of Convergence

In this section we would like to obtain the rate of convergence of the operators
S(ρ)n,α(f ;x) for an absolutely continuous function f having a derivative f ′ equivalent
to a function of bounded variation on [0, 1].
Throughout this section DBV [0, 1] will denote the class of all absolutely continuous
functions f defined on [0, 1] and having on (0, 1), a derivative f

′
equivalent with a

function of bounded variation on [0, 1].We notice that the functions f ∈ DBV [0, 1]
possess a representation

f(x) =

∫ x

0

g(t)dt+ f(0),

where g ∈ BV [0, 1], i.e., g is a function of bounded variation on [0, 1].

Lemma 4. Let x ∈ (0, 1], then for ρ ≥ 1, λ2 ≥ 2 and suffi ciently large n, we have

(1) ϑn,α,ρ(x, y) =
∫ y

0

Mn,α,ρ(x, t)dt <
ρλ2

(n+ 2)

γ2n(x)

(x− y)2 , 0 ≤ y < x,

(2) 1− ϑn,α,ρ(x, z) =
∫ 1

z

Mn,α,ρ(x, t)dt <
ρλ2

(n+ 2)

γ2n(x)

(z − x)2 , x < z < 1.

Proof. (i) From Lemmas 1 and 2, we get

ϑn,α,ρ(x, y) =

∫ y

0

Mn,α,ρ(x, t)dt ≤
∫ y

0

(
x− t
x− y

)2
Mn,α,ρ(x, t)dt

= S(ρ)n,α((t− x)2;x) (x− y)−2 ≤ ρD(α)
n ((t− x)2;x) (x− y)−2

<
ρλ2

(n+ 2)

γ2n(x)

(x− y)2 .

The proof of (ii) is similar to the proof of (i). Hence it is omitted. �

Theorem 2. Let f ∈ DBV (0, 1), ρ ≥ 1 and let υba(f ′x) be the total variation of f ′x
on [a, b] ⊂ [0, 1]. Then for every x ∈ (0, 1) and for suffi ciently large n, we have
∣∣∣S(ρ)n,α(f ;x)− f(x)

∣∣∣ <
1

ρ+ 1

∣∣f ′(x+) + ρf ′(x−)
∣∣√ ρλ2

(n+ 2)
γn(x)

+

√
ρλ2

(n+ 2)
γn(x)

ρ

ρ+ 1

∣∣f ′(x+)− f ′(x−)∣∣
+ρ

λ2γ2n(x)

(n+ 2)
x−1

[
√
n ]∑

k=1

υxx−(x/k)(f
′
x) +

x
√
n
υx
x−(x/

√
n)
(f ′x)

+ρ
λ2γ2n(x)

(n+ 2)
(1− x)−1

[
√
n ]∑

k=1

υ
x+((1−x)/k)
x (f ′x) +

1− x
√
n
υ
x+((1−x)/

√
n)

x (f ′x),
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where λ2 ≥ 2 and the auxiliary function and f ′x is defined by

f ′x(t) =

 f ′(t)− f ′(x−), 0 ≤ t < x
0, t = x

f ′(t)− f ′(x+) x < t ≤ 1.

Proof. Using the fact that
∫ 1

0

Mn,α,ρ(x, t)dt = S(ρ)n,α(e0;x) = 1, we have

S(ρ)n,α(f ;x)− f(x) =

∫ 1

0

[f(t)− f(x)]Mn,α,ρ(x, t)dt

=

∫ 1

0

(∫ t

x

f ′(u)du

)
Mn,α,ρ(x, t)dt. (3.1)

From definition of the function f ′x, for any f ∈ DBV (0, 1), we can write

f ′(t) =
1

ρ+ 1

(
f ′(x+) + ρf ′(x−)

)
+ f ′x(t)

+
1

2

(
f ′(x+)− f ′(x−)

)(
sgn(t− x) + ρ− 1

ρ+ 1

)
+δx(t)

(
f ′(x)− 1

2

(
f ′(x+) + f ′(x−)

))
, (3.2)

where

δx(t) =

{
1 , x = t
0 , x 6= t.

It is clear that∫ 1

0

Mn,α,ρ(x, t)

∫ t

x

[
f ′(x)− 1

2

(
f ′(x+) + f ′(x−)

)]
δx(t)dudt = 0.

By (1.4) and simple computations, we have

P1 =

∫ 1

0

(∫ t

x

1

ρ+ 1

(
f ′(x+) + ρf ′(x−)

)
du

)
Mn,α,ρ(x, t)dt

=
1

ρ+ 1

∣∣∣∣f ′(x+) + ρf ′(x−)∣∣∣∣ ∫ 1

0

|t− x|Mn,α,ρ(x, t)dt

≤ 1

ρ+ 1

∣∣∣∣f ′(x+) + ρf ′(x−)∣∣∣∣ (S(ρ)n,α((t− x)2;x)
)1/2
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and

P2 =

∫ 1

0

(∫ t

x

1

2

(
f ′(x+)− f ′(x−)

)(
sgn(u− x) + ρ− 1

ρ+ 1

)
du

)
Mn,α,ρ(x, t)dt

=
1

2

(
f ′(x+)− f ′(x−)

) [
−
∫ x

0

(∫ x

t

(
sgn(u− x) + ρ− 1

ρ+ 1

)
du

)
Mn,α,ρ(x, t)dt

+

∫ 1

x

(∫ t

x

(
sgn(u− x) + ρ− 1

ρ+ 1

)
du

)
Mn,α,ρ(x, t)dt

]
≤ ρ

ρ+ 1

(
f ′(x+)− f ′(x−)

) ∫ 1

0
|t− x|Mn,α,ρ(x, t)dt

=
ρ

ρ+ 1

(
f ′(x+)− f ′(x−)

)
S(ρ)n,α (|t− x| ;x)

≤ ρ

ρ+ 1

(
f ′(x+)− f ′(x−)

) (
S(ρ)n,α((t− x)2;x)

)1/2
.

By using (1.6) and considering (3.1), (3.2) we obtain the following estimate∣∣∣S(ρ)n,α(f ;x)− f(x)
∣∣∣ < |En,α,ρ(f ′x, x) + Fn,α,ρ(f ′x, x)|

+
1

ρ+ 1
|f ′(x+) + ρf ′(x−)|

√
ρλ2

(n+ 2)
γn(x)

+
ρ

ρ+ 1
|f ′(x+)− f ′(x−)|

√
ρλ2

(n+ 2)
γn(x), (3.3)

where

En,α,ρ(f
′
x, x) =

∫ x

0

(∫ t

x

f ′x(u)du

)
Mn,α,ρ(x, t)dt

and

Fn,α,ρ(f
′
x, x) =

∫ 1

x

(∫ t

x

f ′x(u)du

)
Mn,α,ρ(x, t)dt.

To complete the proof, it is suffi cient to estimate the terms En,α,ρ(f ′x, x), Fn,α,ρ(f
′
x, x).

Since
∫ b
a
dtϑn,α,ρ(x, t) ≤ 1 for all [a, b] ⊆ [0, 1], using integration by parts and ap-

plying Lemma 4 with y = x− (x/
√
n), we have

|En,α,ρ(f ′x, x)| =

∣∣∣∣∫ x

0

(∫ t

x

f ′x(u)du

)
dtϑn,α,ρ(x, t)

∣∣∣∣
=

∣∣∣∣∫ x

0

ϑn,α,ρ(x, t)f
′
x(t)dt

∣∣∣∣
≤

(∫ y

0

+

∫ x

y

)
|f ′x(t)| |ϑn,α,ρ(x, t)| dt

< ρ
λ2γ

2
n(x)

(n+ 2)

∫ y

0

υxt (f
′
x)(x− t)−2dt+

∫ x

y

υxt (f
′
x)dt

≤ ρ
λ2γ

2
n(x)

(n+ 2)

∫ y

0

υxt (f
′
x)(x− t)−2dt+

x√
n
υxx−(x/

√
n)(f

′
x).
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By the substitution of u = x/(x− t), we get

ρ
λ2γ

2
n(x)

(n+ 2)

∫ x−(x/
√
n)

0

(x− t)−2υxt (f ′x)dt = ρ
λ2γ

2
n(x)

(n+ 2)
x−1

∫ √n
1

υxx−(x/u)(f
′
x)du

≤ ρ
λ2γ

2
n(x)

(n+ 2)
x−1

[
√
n ]∑

k=1

∫ k+1

k

υxx−(x/u)(f
′
x)du

< ρ
λ2γ

2
n(x)

(n+ 2)
x−1

[
√
n ]∑

k=1

υxx−(x/k)(f
′
x).

Hence we reach the following result

|En,α,ρ(f ′x, x)| < ρ
λ2γ

2
n(x)

(n+ 2)
x−1

[
√
n ]∑

k=1

υxx−(x/k)(f
′
x) +

x√
n
υxx−(x/

√
n)(f

′
x).

Using integration by parts and applying Lemma 4 with z = x + ((1 − x)/
√
n), we

have

|Fn,α,ρ(f ′x, x)| =

∣∣∣∣ ∫ 1

x

(∫ t

x
f ′x(u)du

)
Mn,α,ρ(x, t)dt

∣∣∣∣
=

∣∣∣∣ ∫ z

x

(∫ t

x
f ′x(u)du

)
dt(1− ϑn,α,ρ(x, t)) +

∫ 1

z

(∫ t

x
f ′x(u)du

)
dt(1− ϑn,α,ρ(x, t))

∣∣∣∣
=

∣∣∣∣[(∫ t

x
f ′x(u)du

)
(1− ϑn,α,ρ(x, t))

]z
x

−
∫ z

x
f ′x(t)(1− ϑn,α,ρ(x, t))dt

+

∫ 1

z

(∫ t

x
f ′x(u)du

)
dt(1− ϑn,α,ρ(x, t))

∣∣∣∣
=

∣∣∣∣ ∫ z

x
f ′x(u)du(1− ϑn,α,ρ(x, z))−

∫ z

x
f ′x(t)(1− ϑn,α,ρ(x, t))dt

+

[ ∫ t

x
f ′x(u)du(1− ϑn,α,ρ(x, t))

]1
z

−
∫ 1

z
f ′x(t)(1− ϑn,α,ρ(x, t))dt

∣∣∣∣
=

∣∣∣∣ ∫ z

x
f ′x(t)(1− ϑn,α,ρ(x, t))dt+

∫ 1

z
f ′x(t)(1− ϑn,α,ρ(x, t))dt

∣∣∣∣
< ρ

λ2γ2n(x)

(n+ 2)

∫ 1

z
υtx(f

′
x)(t− x)−2dt+

∫ z

x
υtx(f

′
x)dt

≤ ρ
λ2γ2n(x)

(n+ 2)

∫ 1

x+((1−x)/
√
n)
υtx(f

′
x)(t− x)−2dt+

(1− x)
√
n

υ
x+((1−x)/

√
n)

x (f ′x).

By the substitution of u = (1− x)/(t− x), we get

ρ
λ2γ2n(x)

(n+ 2)

∫ 1

x+((1−x)/
√
n)
υtx(f

′
x)(t− x)−2dt = ρ

λ2γ2n(x)

(1− x)(n+ 2)

∫ √n
1

υ
x+((1−x)/u)
x (f ′x)du

< ρ
λ2γ2n(x)

(1− x)(n+ 2)

[
√
n ]∑

k=1

∫ k+1

k
υ
x+((1−x)/u)
x (f ′x)du

≤ ρ
λ2γ2n(x)

(1− x)(n+ 2)

[
√
n ]∑

k=1

υ
x+((1−x)/k)
x (f ′x).
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Thus, we get

|Fn,α,ρ(f ′x, x)| < ρ
λ2γ

2
n(x)

(1− x)(n+ 2)

[
√
n ]∑

k=1

υx+((1−x)/k)x (f ′x)

+
1− x√
n
υx+((1−x)/

√
n)

x (f ′x). (3.4)

Collecting the estimates (3.3)-(3.4), we get the required result. This completes the
proof of theorem. �

4. quantitative Voronovskaja-type theorem

Now we are going to study a quantitative Voronovskaja-type result for the op-
erators S(ρ)n,α. This result is given using the first order Ditzian-Totik modulus of
smoothness.

Theorem 3. Let f ∈ C2[0, 1]. Then there hold∣∣∣√n(S(ρ)n,α(f ;x)− f(x)
)∣∣∣ ≤ √

2ρ

{
ϕ2(x) +

1

n+ 2

}
||f ′′||+ ||f ′′|| ρ√

n
ϕ2(x)

+
C√
n
ωϕ(x)

(
f ′′;

2
√
3√
n
ϕ(x)

)
+ ◦(n−1);

∣∣∣√n(S(ρ)n,α(f ;x)− f(x)
)∣∣∣ ≤ √

2ρ

{
ϕ2(x) +

1

n+ 2

}
||f ′′||+ ||f ′′|| ρ√

n
ϕ2(x)

+
C√
n
ωϕ(x)ϕ(x)

(
f ′′;

2
√
3√
n

)
+ ◦(n−1)

Proof. Let f ∈ C2[0, 1] and x, t ∈ [0, 1]. Then Taylor’s expansion, we may write

f(t)− f(x) = (t− x)f ′(x) +
∫ t

x

(t− u)f ′′(u)du.

Thus,

f(t)−f(x) = f ′(x)(t−x)− 1
2
(t−x)2f ′′(x)+

∫ t

x

(t−u)f ′′(u)du−
∫ t

x

(t−u)f ′′(u)du.

Operating S(ρ)n,α(·;x) to both sides of the above relation, we get

|S(ρ)n,α(f ;x)− f(x)| = |f ′(x)|S(ρ)n,α(|t− x|;x) +
1

2
|f ′′(x)|S(ρ)n,α((t− x)2;x)

+S(ρ)n,α

(∣∣∣∣∫ t

x

|t− u| |f ′′(u)− f ′′(x)|du
∣∣∣∣ ;x) . (4.1)
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Therefore, g ∈Wϕ we have

∣∣∣∣∫ t

x

|t− u| |f ′′(u)− f ′′(x)|du
∣∣∣∣ ≤ ||f ′′ − g||(t− x)2 + 2||ϕg′||ϕ−1(x)|t− x|3.

Thus, in view of (4.1), (??), (1.7) and using Cauchy-Schwarz inequality, we may
write

∣∣∣S(ρ)n,α(f ;x)− f(x)
∣∣∣ ≤ |f ′(x)|S(ρ)n,α(|t− x|;x) +

1

2
|f ′′(x)|S(ρ)n,α((t− x)2;x)

+||f ′′ − g||S(ρ)n,α((t− x)2;x) + 2||ϕg′||ϕ−1(x)S(ρ)n,α(|t− x|3;x)

≤ ||f ′||
(
S(ρ)n,α((t− x)2;x)

)1/2
+
1

2
||f ′′||S(ρ)n,α((t− x)2;x) + ||f ′′ − g||S(ρ)n,α((t− x)2;x)

+2||ϕg′||ϕ−1(x)
(
S(ρ)n,α((t− x)2;x)

)1/2 (
S(ρ)n,α((t− x)4;x)

)1/2
=

√
2ρ

(n+ 2)

{
ϕ2(x) +

1

n+ 2

}
||f ′′||+ ||f ′′|| ρ

n+ 2

{
ϕ2(x) +

1

n+ 2

}
+

2ρ

n+ 2

{
ϕ2(x) +

1

n+ 2

}
||f ′′′||ϕ−1(x)

{
ϕ2(x) +

1

n+ 2

}
×
(
ρ

(
12x3(x− 2) (n(n− 2α− 19) + 46α− 36)

(n+ 2)(n+ 3)(n+ 4)(n+ 5)

+
12x2 (n(n− 2α− 25) + 58α− 38)
(n+ 2)(n+ 3)(n+ 4)(n+ 5)

+
24x(3n− 6α+ 1)

(n+ 2)(n+ 3)(n+ 4)(n+ 5)

+
24

(n+ 2)(n+ 3)(n+ 4)(n+ 5)

))1/2
≤

√
2ρ

(n+ 2)

{
ϕ2(x) +

1

n+ 2

}
||f ′′||+ ||f ′′|| ρ

n+ 2
ϕ2(x)

+
2ρ

n+ 2

{
ϕ2(x)||f ′′′||ϕ(x) 2

√
3

√
n

}
+ ◦(n−3/2).

Since ϕ2(x) ≤ ϕ(x) ≤ 1, x ∈ [0, 1], we have

∣∣∣S(ρ)n,α(f ;x)− f(x)
∣∣∣ ≤

√
2ρ

(n+ 2)

{
ϕ2(x) +

1

n+ 2

}
||f ′′||+ ||f ′′|| ρ

n+ 2
ϕ2(x)

+
2ρ

n+ 2

{
||f ′′′||ϕ(x) 2

√
3

√
n

}
+ ◦(n−3/2). (4.2)

∣∣∣S(ρ)n,α(f ;x)− f(x)
∣∣∣ ≤

√
2ρ

(n+ 2)

{
ϕ2(x) +

1

n+ 2

}
||f ′′||+ ||f ′′|| ρ

n+ 2
ϕ2(x)

+
2ρ

n+ 2
ϕ(x)

{
||f ′′′||2

√
3

√
n

}
+ ◦(n−3/2). (4.3)
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By taking the infimum on the right hand side of the above relations over g ∈ Wφ,
we get∣∣∣√n(S(ρ)n,α(f ;x)− f(x)

)∣∣∣ ≤ √
2ρ

{
ϕ2(x) +

1

n+ 2

}
||f ′′||+ ||f ′′|| ρ√

n
ϕ2(x)

+
C√
n
Kϕ

(
f ′′;

2
√
3√
n
ϕ(x)

)
+ ◦(n−1);

∣∣∣√n(S(ρ)n,α(f ;x)− f(x)
)∣∣∣ ≤ √

2ρ

{
ϕ2(x) +

1

n+ 2

}
||f ′′||+ ||f ′′|| ρ√

n
ϕ2(x)

+
C√
n
ϕ(x)Kϕ

(
f ′′;

2
√
3√
n

)
+ ◦(n−1).

Applying Kϕ(f, t) ∼ ωϕ(f, t), the theorem is proved. �
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THE RELATION BETWEEN SOFT TOPOLOGICAL SPACE AND
SOFT DITOPOLOGICAL SPACE

GÜZIDE ŞENEL

Abstract. Conditions related to bounds on the relations between soft spaces
appear to be rare in the literature. In this paper, I study the notion of soft
ditopology relates to the soft topology. Firstly, the soft ditopology via soft
set theory is developed by defining soft ditopological subspace. Secondly,
properties concerning to soft interior and soft closure are presented in soft
ditopological subspace. In conclusion, soft subspaces of soft topology and soft
ditopology being coincident have been proved, whence it is readily inferred that
soft ditopological subspace can be obtained from soft topological subspace.

1. Introduction

In 1999, Molodtsov [14] proposed a new approach, viz. soft set theory for model-
ing vagueness and uncertainties inherent in many related concepts with the theory
and the application of soft sets. After this invention, in 2002 and 2003, very readable
account of this theory has been given by Maji et al. [10, 11] on some mathematical
aspects of soft sets and fuzzy soft sets. However, over the last fifteen years, there
have been many examples are defined by [1], [4], [12] and [19] in the literature re-
lated to soft topology. By using this operations, the theory of soft topological space
defined by Shabir and Naz [18] over an initial universe. There are numerous results
in the literature relating soft topology. In the course of analyzing the theory of
soft topology I learned that the authors [9] and [13] have simultaneously obtained
results similar to each other in certain respects. One of the finest work in them,
Aygünoglu and Aygün [2] introduced the soft product topology and defined the
soft compactness to investigate the behavior of topological structures in soft set
theoretic form. In view of this and also considering the importance of topological
structure in developing soft set theory, I have introduced in this paper a notion of
soft ditopological subspaces. In this connection, it is worth mentioning that some
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significant works have been done on soft ditopological spaces (SDT - Spaces) by
Dizman [6] and Senel [16].
They defined basic notions and concepts of soft ditopological spaces such as

soft open and closed sets, soft interior, soft closure, soft basis, soft complement and
established several properties of these soft notions. Rather than discuss these works
in full generality, let us look at a particular situation of this kind: In the work of
Dizman [6], the concept of soft ditopological space is introduced with two structures
which one related to the property of openness in the space and the other one relayed
on the property of closeness in the space. This is a clear contradiction of the fact
that if we know the soft topology on a soft set, we can easily get soft open and
soft closed sets by complement operation. In that way, in a soft ditopological space
that includes same characteristic properties composed with openness and closeness
of each other.
In order to make a more comprehensive research, I have decided to develop the

theory; considering that rather than studying with the triple structure that is built
by the spaces made through one another, it is more beneficial to study a triple
structure that contains a different and a new space.
The notion of soft ditopology by Senel [16] is more general than that by Dizman

[6]. The concept of soft ditopological (SDT) space on a soft set in [16] with two
structures on it is being introduced - a soft topology and a soft subspace topology.
The first one is used to describe soft openness properties of a soft topological space
while the second one deals with its sub - soft openness properties. This structure
enables to study with all soft open sets that can be obtained on a soft set. Therefore,
I continue investigating the work of Senel [16] and follow this theory’s notations
and mathematical formalism.
In this paper, the detailed analysis of SDT - space is carried out in Section 2.

In this section, I introduce a new concept called soft ditopological subspace in soft
ditopological space by giving two different definitions that are not a consequence of
each other. Although, these definitions run along different lines, I prove that only
one and the same soft ditopological subspace can be established on the same soft
set by giving examples.
I also observe relations of soft ditopological space and soft ditopological subspace

in different cases with soft open and soft closed sets. It shows how soft sets in soft
ditopological space can preserve their properties in soft ditopological subspaces.
In this context, I serve a bridge among soft ditopological space theory and soft
ditopological subspace theory.
In the last section, I analyze the relationship between soft topology and soft

ditopology. The two characteristics, soft subspace and the soft subspace of a soft
subspace, are connected, but the relationship is quite a complex one. Although
individually these systems can still be quite complicated, a possibly more tractable
task is to describe their possible joint distributions. The aim of this article is
to study the relationship between the soft topology and the extent to which soft
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topology to be soft ditopology. In this paper I wish to renew an interest in the
systematic study of the relationships between topological spaces with respect to
soft set theory.

2. Preliminaries

Following the works of Molodtsov [14], Maji et al. [10, 11] and Aktas and Cagman
[3] some definitions and preliminary results are presented in this section. The
following basic properties of soft sets have been given in [2], [5], [14], [15], [16], [17].
Unless otherwise stated, throughout this paper, U refers to an initial universe, E
is a set of parameters and P (U) is the power set of U .

Definition 2.1. [5, 14] A soft set f on the universe U is a set defined by

f : E → P(U) such that f(e) = ∅ if e ∈ E \A then, f = fA

Here f is also called an approximate function. A soft set f on the universe U is a
set defined by

f =
{(
e, f(e)

)
: e ∈ E

}
We will identify any soft set f with the function f(e) and we use that con-

cept as interchangeable. Soft sets are denoted by the letters f , g, h, ... and the
corresponding functions by f(e), g(e), h(e), ...
Throughout this paper, the set of all soft sets over U will be denoted by S. From

now on, for all the undefined concepts about soft sets, we refer to: [5].

Definition 2.2. [5] Let f ∈ S. Then,
If f(e) = ∅ for all e ∈ E, then f is called an empty set, denoted by Φ.
If f(e) = U for all e ∈ E, then f is called universal soft set, denoted by Ẽ.

Definition 2.3. [5] Let f, g ∈ S. Then,
f is a soft subset of g, denoted by f⊆̃g, if f(e) ⊆ g(e) for all e ∈ E.
f and g are soft equal, denoted by f = g, if and only if f(e) = g(e) for all e ∈ E.

Definition 2.4. [5] Let f, g ∈ S. Then, the intersection of f and g, denoted f ∩̃g,
is defined by

(f ∩̃g)(e) = f(e) ∩ g(e) for all e ∈ E
and the union of f and g, denoted f ∪̃g, is defined by

(f ∪̃g)(e) = f(e) ∪ g(e) for all e ∈ E

Definition 2.5. [5] Let f ∈ S. Then, the soft complement of f , denoted f c̃, is
defined by

f c̃(e) = U \ f(e), for all e ∈ E
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Definition 2.6. [5] Let f ∈ S. The power soft set of f is defined by

P̃(f) = {fi⊆̃f : fi ∈ S, i ∈ I}
and its cardinality is defined by

|P̃(f)| = 2
∑

e∈E |f(e)|

where |f(e)| is the cardinality of f(e).

Example 2.7. Let U = {u1, u2, u3} and E = {e1, e2}. f ∈ S and
f =

{
(e1, {u1, u2}), (e2, {u2, u3})

}
Then,

f1 = {(e1, {u1})},
f2 = {(e1, {u2})},
f3 = {(e1, {u1, u2})},
f4 = {(e2, {u2})},
f5 = {(e2, {u3})},
f6 = {(e2, {u2, u3})},
f7 = {(e1, {u1}), (e2, {u2})},
f8 = {(e1, {u1}), (e2, {u3})},
f9 = {(e1, {u1}), (e2, {u2, u3})},
f10 = {(e1, {u2}), (e2, {u2})},
f11 = {(e1, {u2}), (e2, {u3})},
f12 = {(e1, {u2}), (e2, {u2, u3})},
f13 = {(e1, {u1, u2}), (e2, {u2})},
f14 = {(e1, {u1, u2}), (e2, {u3})},
f15 = f,
f16 = Φ

are all soft subsets of f . So |P̃(f)| = 24 = 16.

Definition 2.8. [17] The soft set f is called a soft point in S, if for the parameter
ei ∈ E such that f(ei) 6= ∅ and f(ej) = ∅, for all ej ∈ E \ {ei} is denoted by

(
eif
)
j

for all i, j ∈ N+.

Note that the set of all soft points of f will be denoted by SP (f).

Example 2.9. [17] Let U = {u1, u2, u3, u4, u5} and E = {e1, e2, e3}. f ∈ S and

f =
{(
e1, {u1, u3}), (e2, {u2, u3}), (e3, {u1, u2, u3}

)}
Then the soft points for the parameter e1 are;(

e1f
)
1

=
(
e1, {u1}

)(
e1f
)
2

=
(
e1, {u3}

)(
e1f
)
3

=
(
e1, {u1, u3}

)
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For the the parameter e2 one of three occasions can be chosen as soft point likewise;(
e2f
)
1

=
(
e2, {u2}

)(
e2f
)
2

=
(
e2, {u3}

)(
e2f
)
3

=
(
e2, {u2, u3}

)
The soft points for the parameter e3 are;(

e3f
)
1

=
(
e3, {u1}

)(
e3f
)
2

=
(
e3, {u2}

)(
e3f
)
3

=
(
e3, {u3}

)(
e3f
)
4

=
(
e3, {u1, u2}

)(
e3f
)
5

=
(
e3, {u1, u3}

)(
e3f
)
6

=
(
e3, {u2, u3}

)(
e3f
)
7

=
(
e3, {u1, u2, u3}

)
Definition 2.10. [2] Let f ∈ S. A soft topology on f , denoted by τ̃ , is a collection
of soft subsets of f having the following properties:

i.: f,Φ ∈ τ̃ ,
ii.: {gi}i∈I ⊆ τ̃ ⇒

⋃̃
i∈Igi ∈ τ̃ ,

iii.: {gi}ni=1 ⊆ τ̃ ⇒
⋂̃
n
i=1gi ∈ τ̃ .

The pair (f, τ̃) is called a soft topological space.

Example 2.11. Refer to Example 2.7, τ̃1 = P̃(f), τ̃0 = {Φ, f} and τ̃ = {Φ, f, f2, f11, f13}
are soft topologies on f .

Definition 2.12. [2] Let (f, τ̃) be a soft topological space. Then, every element of
τ̃ is called soft open set. Clearly, Φ and f are soft open sets.

Theorem 2.13. [15] If z̃ is a collection of soft closed sets in a soft topological
space (f, τ̃), then

i.: The universal soft set Ẽ is soft closed.
ii.: Any intersection of members of z̃ belongs to z̃.
iii.: Any finite union of members of z̃ belongs to z̃.

Remark 2.14. [15] Since Ẽ c̃ = Φ ∈ τ̃ , Ẽ is soft closed. But, Φ and f need not to
be soft closed. The following example shows that:

Example 2.15. Consider the topology τ̃ = {Φ, f, f2, f11, f13} is defined in
Example 2.7. Here, f and Φ are not soft closed sets because

f c̃ =
{(
e1, {u3}

)
,
(
e2, {u1}

)}
/∈ τ̃ and Φc̃ = Ẽ /∈ τ̃ .

Theorem 2.16. [15] Let (f, τ̃) be a soft topological space and g⊆̃f . Then, the
collection

τ̃g = {h∩̃g : h ∈ τ̃}
is a soft topology on g and the pair (g, τ̃g) is a soft topological space.
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Definition 2.17. [15] Let (f, τ̃) be a soft topological space and g⊆̃f . Then, the
collection

τ̃g = {h∩̃g : h ∈ τ̃}
is called a soft subspace topology on g and (g, τ̃g) is called a soft topological subspace
of (f, τ̃).

Definition 2.18. [16] Let f be a nonempty soft set over the universe U , g⊆̃f , τ̃
be a soft topology on f and τ̃g be a soft subspace topology on g. Then, (f, τ̃ , τ̃g)
is called a soft ditopological space which is abbreviated as SDT-space.

A pair δ̃ = (τ̃ , τ̃g) is called a soft ditopology over f and the members of δ̃ are
said to be δ̃-soft open in f .

The complement of δ̃-soft open set is called δ̃-soft closed set.

Example 2.19. [16] Let us consider all soft subsets on f in the Example 2.7. Let
τ̃ = {Φ, f, f2, f11, f13} be a soft topology on f . If g = f9, then τ̃g = {Φ, f5, f7, f9},
and (g, τ̃g) is a soft topological subspace of (f, τ̃).
Hence, we get soft ditopology over f as δ̃ = {Φ, f, f2, f5, f7, f9, f11, f13}.

Definition 2.20. [16] Let h⊆̃ f . Then, δ̃ - interior of h, denoted by (g)◦
δ̃
, is defined

by

(h)◦
δ̃

=
⋃̃
{h : k⊂̃h, k is δ̃-soft open}

The δ̃ - closure of h, denoted by (h)δ̃, is defined by

(h)δ̃ =
⋂̃
{k : h⊂̃k, k is δ̃-soft closed}

Note that (h)◦
δ̃
is the biggest δ̃-soft open set that contained in h and (h)δ̃ is the

smallest δ̃-soft closed set that containing h.

3. Soft Ditopological Subspace

In this section, the detailed analysis of SDT - space is carried out by introducing
a new concept called soft ditopological subspace (SDT-subspace) in SDT-space. I
give two different definitions of SDT-subspace that are not a consequence of each
other. Although, these definitions run along different lines, I prove that only one
and the same soft ditopological subspace can be established on the same soft set
using two different definitions.
I also observe relations of soft ditopological space and soft ditopological subspace

in different cases with soft open and soft closed sets. It shows how soft sets in soft
ditopological space can preserve their properties in soft ditopological subspaces.
In this context, I serve a bridge among soft ditopological space theory and soft
ditopological subspace theory.
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Theorem 3.1. Let (f, δ̃) be a SDT-space and t⊆̃f . Then, the collection

δ̃t = {k ∩̃ t : k ∈ δ̃}

is a soft topology on t and the pair (t, δ̃t) is a soft topological space.

Proof: Since Φ∩̃t = Φ and f ∩̃t = t, then t,Φ ∈ δ̃t.
Moreover, ⋂̃n

i=1
(ki∩̃t) =

(⋂̃n

i=1
ki

)
∩̃t

and ⋃̃
i∈I

(ki∩̃t) =
(⋃̃

i∈I
ki

)
∩̃t

for δ̃ = {ki⊆̃f : i ∈ I}. Thus, the union of any number of soft sets in δ̃t belongs to
δ̃t and the finite intersection of soft sets in δ̃t belongs to δ̃t. So, δ̃t is a soft topology
on t.

Definition 3.2. Let (f, δ̃) be a SDT-space and t⊆̃f . Then, the collection

δ̃t = {k ∩̃ t : k ∈ δ̃}

is called a soft subspace ditopology on t and (t, δ̃t) is called a soft ditopological
subspace of (f, δ̃).

In order to carry out the construction, I have to make a judicious choice of soft
ditopological subspace that given in the below example:

Example 3.3. Let us consider the SDT-space (f, δ̃) defined in the Example 2.19.
If t = f8, then,

Φ ∩̃ f8 = Φ
f2 ∩̃ f8 = Φ
f5 ∩̃ f8 = f5
f7 ∩̃ f8 = f1
f9 ∩̃ f8 = f8
f11 ∩̃ f8 = f5
f13 ∩̃ f8 = f1
f ∩̃ f8 = f8

Hence, we get soft subspace ditopology on t as δ̃t = {Φ, f1, f5, f8}.

In the next definition, I state a new characterization of SDT-subspace topology
which seems not to be a consequence of previous SDT-subspace definition made in
Definition 3.2. The reason for my attention to obtain a new different definition, is
that, in certain circumstances, it provides a way to prove results for SDT-subspaces
will be seen in the next section:

Definition 3.4. Let (f, δ̃) be a SDT-space and t⊆̃f . If the collections

δ̃t = {k ∩̃ t : k ∈ τ̃}
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and
(δ̃g)t = {z ∩̃ t : z ∈ τ̃g}

are two soft topologies on t, then a SDT-space (t, δ̃t, (δ̃g)t) is called a SDT-subspace
of (f, δ̃).

This definition is convenient for the induction on soft subspace of a soft subspace
that will be used in the next section.

The usefulness and interest of this correspondence of two different definitions
about SDT-subspaces made above will of course be enhanced if they are coincident.
I now study to get the same soft subspace ditopology on t obtained in Example 3.3
using Definition 3.4:

Example 3.5. Let us consider the SDT-space (f, δ̃) defined in the Example 2.19
where g = f9 and δ̃g = {Φ, f5, f7, f9}. Here we get the collections

δ̃t = {Φ, f1, f5, f8}
and

(δ̃g)t = {Φ, f1, f5, f8}
Hence, we obtain SDT-subspace (t, δ̃t, (δ̃g)t) = {Φ, f1, f5, f8}.

The result above seems appropriate to mention that we obtain the same SDT-
subspace topology with different definitions. Although, these definitions run along
different lines, it is easy to deduce that I obtain exactly only one and the same soft
ditopological subspace on the same soft set.
The reader is cautioned that the notation in Definition 3.2 is coincident with Defi-
nition 3.4 and will be used to serve a bridge among soft topological space and soft
ditopological spaces in the next section.
On the way, I continue to investigate SDT-subspace properties:

Definition 3.6. A soft ditopological property is said to be hereditary if whenever a
soft ditopological space (f, δ̃) has that property, then so does every soft ditopological
subspace of it.

Definition 3.7. Let (t, δ̃t) be a SDT-subspace of a SDT-space (f, δ̃) and z⊆̃t.
z is called a soft open set in SDT-subspace t if z = m∩̃t for m ∈ δ̃.
So, the members of δ̃t are said to be a soft open sets in SDT-subspace (t, δ̃t).

Theorem 3.8. Let (t, δ̃t) be a SDT-subspace of a SDT-space (f, δ̃) and z⊆̃t. If
z ∈ δ̃ then, z ∈ δ̃t.

Proof: Suppose that z ∈ δ̃. Since z⊆̃t, z = z∩̃t. Then, z ∈ δ̃t by assumption
z ∈ δ̃.

Theorem 3.9. Let (t, δ̃t) be a SDT-subspace of a SDT-space (f, δ̃). Then, the
following are equivalent:



SOFT TOPOLOGICAL SPACE AND SOFT DITOPOLOGICAL SPACE 217

i. t ∈ δ̃
ii. δ̃t⊆̃δ̃.

Proof: (i) ⇒ (ii) : Let t ∈ δ̃. Take as given ∀z ∈ δ̃t. From the Definition 3.2,
z = m∩̃t, where ∃m ∈ δ̃. Since t ∈ δ̃ and m ∈ δ̃ then, z ∈ δ̃. Hence δ̃t⊆̃δ̃.
(ii)⇒ (i) : Assume that δ̃t⊆̃δ̃. Since t ∈ δ̃t then, t ∈ δ̃.

Remark 3.10. A δ̃-soft open set in a SDT-subspace is not need to be δ̃-soft open in
the SDT-space which is given in the following example:

Example 3.11. Consider the SDT-subspace (t, δ̃t) defined in the Example 3.3.
Here, f1 ∈ δ̃t but f1 /∈ δ̃.

4. The Relation Between Soft Topological Space and Soft
Ditopological Space

Conditions related to bounds on the relations between soft spaces appear to be
rare in the literature, I study how the notion of soft ditopology relates to the soft
topology.
The two characteristics, soft ditopological subspace and the soft subspace of a

soft topological subspace, are coincided, but the relationship is quite a complex
one. Although individually these systems can still be quite complicated, a possibly
more tractable task is to describe their possible joint distributions. The relationship
between the soft topology and the extent in which soft subspace topology is soft
ditopological subspace is studied, obtained joint distributions.
I now exploit the relation to see what else I can say about the relation between

soft topology and soft ditopology in the view of subspace topology.

Theorem 4.1. Let h⊆̃t⊆̃f , (t, δ̃t) and (h, δ̃h) be SDT-subspaces of SDT-space (f, δ̃)

and (h, (δ̃t)h) be a soft subspace of (t, δ̃t). Then,

δ̃h = (δ̃t)h

Proof: Take as given ∀w ∈ δ̃h. From the definition of SDT-subspace, w = w∩̃h,
where w ∈ δ̃. We obtain that w ∩̃ t ∈ δ̃t. Then, by choosing w ∩̃ t = y, y∩̃h ∈ (δ̃t)h
because of (h, (δ̃t)h) ⊆ (t, δ̃t) and y ∈ δ̃t.
Since y = w ∩̃ t then, y ∩̃h = w ∩̃ t ∩̃h ∈ (δ̃t)h .
h⊆̃t⇔ h = h ∩̃ t then, y∩̃h = w∩̃h ∈ (δ̃t)h .
Since w = w∩̃h ∈ (δ̃t)h then, w ∈ (δ̃t)h .
Hence, we get δ̃h ⊆ (δ̃t)h .
Conversely, assume that ∀z ∈ (δ̃t)h . From the definition of SDT-subspace, z = k∩̃h,
where k ∈ δ̃t. We obtain that k = w∩̃t, where w ∈ δ̃.
z = k∩̃h = w∩̃t∩̃h = w∩̃h ∈ δ̃h, so this completes the proof.

The method of this proof carries over to soft ditopological space satisfying soft
topological space’s properties via soft subspace topology.
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Theorem 4.2. Let (t, δ̃t) and (h, δ̃h) be SDT-subspaces of SDT-space (f, δ̃) and
w ⊆ h∩̃t. Then,

δ̃w = (δ̃t)w = (δ̃h)w

Proof: Since the entire argument is based solely upon the Theorem 4.1, the
conclusion of the theorem must hold.

I underline that all the aforementioned results in this theorem rely on the con-
formality of the underlying construction of a relation between soft topological soft
ditopological spaces.

Using Theorem 4.1, Theorem 4.2 and Definition 3.2, Definition 3.4 about SDT-
subspace and soft topological subspace, I am able to deduce that their soft subtopo-
logical spaces are coincident that is proved below:

Remark 4.3. Let (t, δ̃t) be a SDT-subspace of a SDT-space (f, δ̃) and t, g ⊆̃ f . If
we consider the notation:

(f, δ̃) = (f, τ̃ , τ̃g)

The SDT-subspace of (f, δ̃) is (t, δ̃t) and the SDT-subspace of (f, τ̃ , τ̃g) is (t, τ̃ t, (τ̃g)t).
If we write the equality of SDT-subspaces;

(t, δ̃t) = (t, τ̃ t, (τ̃g)t)

From Theorem 4.1, τ̃ t = (τ̃g)t , then,

(t, δ̃t) = (t, τ̃ t)

Hence, SDT-subspace and soft topological subspace of t are coincident.

I have shown that soft subspaces of soft topology and soft ditopology are over-
lapped, whence it is readily inferred that I can obtain soft ditopological subspace
via soft topological subspace.

5. Conclusion

The aim of this article is to study the relationship between the soft topology
and the extent in which soft topology to be soft ditopology. Also, in this work,
soft ditopological subspace on a soft set is defined and its related properties are
studied. Then, the relation between soft topology and soft ditopology is presented.
The concept of soft topological subspace of soft ditopological subspace have been
introduced. Also, several relations of soft ditopological and soft ditopological sub-
space have been established and their properties with given examples have been
compared. All these results present a bridge among soft topological and soft di-
topological theory. In the last section, I describe how the notion of soft ditopology
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relates to the soft topology. A complete explication of the soft ditopological sub-
space is warranted, as it will likely reveal further clues to the differences between
the soft topology and soft ditopology theories.
It considers some of the new results and consequences, which could be useful from

the point of view of soft set theory, that were not studied at all. All these findings
will provide a base to researchers who want to work in the field of soft ditopology
and will help to strengthen the foundations of the theory of soft ditopological spaces.
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A Q-ANALOG OF THE BI-PERIODIC LUCAS SEQUENCE

ELIF TAN

Abstract. In this paper, we introduce a q-analog of the bi-periodic Lucas
sequence, called as the q-bi-periodic Lucas sequence, and give some identi-
ties related to the q-bi-periodic Fibonacci and Lucas sequences. Also, we give
a matrix representation for the q-bi-periodic Fibonacci sequence which allow
us to obtain several properties of this sequence in a simple way. Moreover,
by using the explicit formulas for the q-bi-periodic Fibonacci and Lucas se-
quences, we introduce q-analogs of the bi-periodic incomplete Fibonacci and
Lucas sequences and give a relation between them.

1. Introduction

It is well-known that the classical Fibonacci numbers Fn are defined by the
recurrence relation

Fn = Fn−1 + Fn−2, n ≥ 2 (1.1)

with the initial conditions F0 = 0 and F1 = 1. The Lucas numbers Ln, which follows
the same recursive pattern as the Fibonacci numbers, but begins with L0 = 2 and
L1 = 1. There are a lot of generalizations of Fibonacci and Lucas sequences. In [6],
Edson and Yayenie introduced a generalization of the Fibonacci sequence, called as
bi-periodic Fibonacci sequence, as follows:

qn =

{
aqn−1 + qn−2, if n is even
bqn−1 + qn−2, if n is odd

, n ≥ 2 (1.2)

with initial values q0 = 0 and q1 = 1, where a and b are nonzero numbers. Note
that if we take a = b = 1 in {qn}, we get the classical Fibonacci sequence. These
sequences are emerged as denominators of the continued fraction expansion of the
quadratic irrational numbers. For detailed information related to these sequences,
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we refer to [6, 19, 8, 11, 12, 17, 18, 15, 16]. Yayenie [19] gave an explicit formula of
qn as:

qn = aξ(n−1)
bn−12 c∑
i=0

(
n− 1− i

i

)
(ab)b

n−1
2 c−i (1.3)

where ξ (n) = n− 2
⌊
n
2

⌋
, i.e., ξ (n) = 0 when n is even and ξ (n) = 1 when n is odd.

Similar to (1.2), by taking initial conditions p0 = 2 and p1 = a, Bilgici [2]
introduced the bi-periodic Lucas numbers as follows:

pn =

{
bpn−1 + pn−2, if n is even
apn−1 + pn−2, if n is odd

, n ≥ 2. (1.4)

It should also be noted that, it gives the classical Lucas sequence in the case of
a = b = 1 in {pn}. In analogy with (1.3), Tan and Ekin [14] gave the explicit
formula of the bi-periodic Lucas numbers as:

pn = aξ(n)
bn2 c∑
i=0

n

n− i

(
n− i
i

)
(ab)b

n
2 c−i , n ≥ 1. (1.5)

On the other hand, there are several different q-analogs for the Fibonacci and
Lucas sequences [3, 4, 5, 13, 7, 1]. Particularly, Cigler [5] gave the (Carlitz-) q-
Fibonacci and q-Lucas polynomials

fn (x, s) = xfn−1 (x, s) + q
n−2sfn−2 (x, s) ; f0 (x, s) = 0, f1 (x, s) = 1, (1.6)

ln (x, s) = fn+1 (x, s) + sfn−1 (x, qs) ; l0 (x, s) = 2, l1 (x, s) = x, (1.7)

respectively.
Additionally, Ramírez and Sirvent [10] introduced a q-analog of the bi-periodic

Fibonacci sequence by

F (a,b)n (q, s) =

{
aF

(a,b)
n−1 (q, s) + q

n−2sF
(a,b)
n−2 (q, s) , if n is even

bF
(a,b)
n−1 (q, s) + q

n−2sF
(a,b)
n−2 (q, s) , if n is odd

, n ≥ 2 (1.8)

with initial conditions F (a,b)0 (q, s) = 0 and F
(a,b)
1 (q, s) = 1. They derived the

following equality to evaluate the q-bi-periodic Fibonacci sequence:

F (a,b)n (q, s) = χnF
(a,b)
n−1 (q, qs)− qsF

(a,b)
n−2

(
q, q2s

)
, (1.9)

where χn := aξ(n+1)bξ(n). Also, they gave the relationship between the q-bi-periodic
Fibonacci sequence and the (Carlitz-) q-Fibonacci polynomials as:

F (a,b)n (q, s) =

(√
a

b

)ξ(n+1)
fn

(√
ab, s

)
. (1.10)
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By using (1.10), they obtained the explicit formula of the q-bi-periodic Fibonacci
sequence as:

F (a,b)n (q, s) = aξ(n−1)
bn−12 c∑
k=0

[
n− k − 1

k

]
(ab)b

n−1
2 c−k qk

2

sk, (1.11)

where
[
n
k

]
:=

[n]q !

[k]q ![n−k]q !
is the q-binomial coeffi cients with [n]q := 1 + q + q2 +

· · ·+ qn−1 and [n]q! := [1]q [2]q · · · [n]q .
Motivated by the Ramirez’s results in [10], here we introduce a q-analog of the bi-

periodic Lucas sequence, called as the q-bi-periodic Lucas sequence, and give some
identities related to the q-bi-periodic Fibonacci and Lucas sequences. Also, we give
a matrix representation for the q-bi-periodic Fibonacci sequence which allow us to
obtain several properties of this sequence in a simple way. Moreover, by using the
explicit formulas for the q-bi-periodic Fibonacci and Lucas sequences, we introduce
q-analogs of the bi-periodic incomplete Fibonacci and Lucas sequences and give a
relation between them.

2. A q-analog of the bi-periodic Lucas sequence

First, we consider the (Carlitz-) q-Lucas polynomials in (1.7), and define the
q-bi-periodic Lucas sequence by means of the (Carlitz-) q-Lucas polynomials.

Definition 1. The q-bi-periodic Lucas sequence is defined by

L(a,b)n (q, s) =

(√
a

b

)ξ(n)
ln

(√
ab, s

)
(2.1)

where ln (x, s) is the (Carlitz-) q-Lucas polynomials.

The terms of the q-bi-periodic Lucas sequence can be given as:

n L
(a,b)
n (q, s)

0 2
1 a
2 ab+ sq + s
3 a2b+ as+ asq + asq2

4 a2b2 + abs+ absq + absq2 + absq3 + s2q2 + s2q4

5 a3b2 + a2bs+ a2bsq + a2bsq2 + a2bsq3 + a2bsq4

+as2q2 + as2q3 + as2q4 + as2q5 + as2q6

...
...

Note that if we take a = b = x, we obtain the (Carlitz-) q-Lucas polynomials
ln (x, s) .
In the following lemma, we state the q-bi-periodic Lucas sequence in terms of

the q-bi-periodic Fibonacci sequence.
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Lemma 1. For any integer n ≥ 0, we have

L(a,b)n (q, s) = F
(a,b)
n+1 (q, s) + sF

(a,b)
n−1 (q, qs) . (2.2)

Proof. By using the definition of the q-bi-periodic Lucas sequence and the relations
(1.7) and (1.10), we have

L(a,b)n (q, s) =

(√
a

b

)ξ(n)
ln

(√
ab, s

)
=

(√
a

b

)ξ(n) (
fn+1

(√
ab, s

)
+ sfn−1

(√
ab, qs

))
=

(√
a

b

)ξ(n)(√
b

a

)ξ(n) (
F
(a,b)
n+1 (q, s) + sF

(a,b)
n−1 (q, qs)

)
which gives the desired result. �

Now we give an another relation between the q-bi-periodic Fibonacci sequence
and q-bi-periodic Lucas sequence.

Theorem 1. For any integer n ≥ 0, we have

χnL
(a,b)
n (q, qs) = F

(a,b)
n+2 (q, s)− qn+1s2F

(a,b)
n−2

(
q, q2s

)
(2.3)

where χn := aξ(n+1)bξ(n).

Proof. By using the definition of the q-bi-periodic Fibonacci sequence in (1.8) and
the relations (2.2) and (1.9), we get

χnL
(a,b)
n (q, qs) = χn

(
F
(a,b)
n+1 (q, qs) + qsF

(a,b)
n−1

(
q, q2s

))
= F

(a,b)
n+2 (q, s)− qsF (a,b)n

(
q, q2s

)
+ χnqsF

(a,b)
n−1

(
q, q2s

)
= F

(a,b)
n+2 (q, s)− qs

(
F (a,b)n

(
q, q2s

)
− χnF

(a,b)
n−1

(
q, q2s

))
= F

(a,b)
n+2 (q, s)− qn+1s2F

(a,b)
n−2

(
q, q2s

)
.

�

If we take a = b = x in (2.3), it reduces to the relation between q-bi-periodic
Fibonacci sequence and Lucas polynomials

xln (x, qs) = fn+2 (x, s)− qn+1s2fn−2
(
x, q2s

)
which can be found in [5, Equation (3.15)].
In the following theorem, we give the explicit expression of the q-bi-periodic

Lucas sequence L(a,b)n (q, s). Since we define the incomplete sequences by using its
explicit formula, the following theorem play a key role for our further study in the
next section.
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Theorem 2. For any integer n ≥ 0, we have

L(a,b)n (q, s) = aξ(n)
bn2 c∑
k=0

[n]

[n− k]

[
n− k
k

]
(ab)b

n
2 c−k qk

2−ksk. (2.4)

Proof. By using the relations (2.2) and (1.11), we have

L(a,b)n (q, s) = F
(a,b)
n+1 (q, s)+sF

(a,b)
n−1 (q, qs)

= aξ(n)
bn2 c∑
k=0

[
n− k
k

]
(ab)b

n
2 c−k qk

2

sk

+ aξ(n−2)
bn2 c−1∑
k=0

[
n− 2− k

k

]
(ab)b

n
2 c−1−k qk

2+ksk+1

= aξ(n)

bn2 c∑
k=0

[
n− k
k

]
(ab)b

n
2 c−k qk

2

sk

+

bn2 c∑
k=1

[
n− k − 1
k − 1

]
(ab)b

n
2 c−k qk

2−ksk



= aξ(n)
bn2 c∑
k=0

(
qk
[
n− k
k

]
+

[
n− k − 1
k − 1

])
(ab)b

n
2 c−k qk

2−ksk.

By using the identity

qk
[
n− k
k

]
+

[
n− k − 1
k − 1

]
=

[n]

[n− k]

[
n− k
k

]
,

we obtain the desired result. �

If we take a = b = x in the above theorem, it reduces to the (Carlitz-) q-Lucas
polynomials

ln (x, s) =

bn2 c∑
k=0

[n]

[n− k]

[
n− k
k

]
qk

2−kskxn−2k

which can be found in [5, Equation (3.14)].
Now we give a matrix representation for the q-bi-periodic Fibonacci sequence

which can be proven by induction. By using matrix formula, one can obtain several
properties of this sequence.
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Theorem 3. For n ≥ 1, let define the matrix C (χn, s) :=
(
0 1
s χn

)
. Then we

have

Mn (χn, s) := C
(
χn, q

n−1s
)
C
(
χn−1, q

n−2s
)
· · ·C (χ2, qs)C (χ1, s)

=

(
sF

(a,b)
n−1 (q, qs)

(
b
a

)ξ(n+1)
F
(a,b)
n (q, s)

sF
(a,b)
n (q, qs)

(
b
a

)ξ(n)
F
(a,b)
n+1 (q, s)

)
. (2.5)

In the following theorem, we give the q-Cassini formula for the q-bi-periodic
Fibonacci sequence by taking the determinant of the both sides of the equation
(2.5).

Theorem 4. For any integer n > 0, we have(
b

a

)ξ(n)
F
(a,b)
n−1 (q, qs)F

(a,b)
n+1 (q, s)−

(
b

a

)ξ(n+1)
F (a,b)n (q, s)F (a,b)n (q, qs)

= (−1)n sn−1q
n(n−1)

2 . (2.6)

Note that by taking a = b = x, we obtain the result in [5, Equation (3.12)].

Theorem 5. For any integer n > 0, we have

F
(a,b)
2n (q, s) =

(a
b

)ξ(n)
qnsF

(a,b)
n−1

(
q, qn+1s

)
F (a,b)n (q, s) + F (a,b)n (q, qns)F

(a,b)
n+1 (q, s) .

(2.7)

Proof. SinceMm+n (χn, s) =Mm (χn, q
ns)Mn (χn, s) , if we equate the correspond-

ing entries of each matrices and take m = n in the resulting equality, we get the
desired result. �
One can get several properties of the q-bi-periodic Fibonacci sequence by taking

proper powers of the matrix in (2.5).

3. q−bi-periodic incomplete Fibonacci and Lucas sequences

In this section, we define q-bi-periodic incomplete Fibonacci and Lucas sequences.
Let n be a positive integer and l be an integer.
Ramirez [9] defined the bi-periodic incomplete Fibonacci numbers by using the

explicit formula of the bi-periodic Fibonacci sequences in (1.3) as:

qn (l) = aξ(n−1)
l∑
i=0

(
n− 1− i

i

)
(ab)b

n−1
2 c−i , 0 ≤ l ≤

⌊
n− 1
2

⌋
Similarly, by using the explicit formula of the bi-periodic Lucas sequence in (1.5),
Tan and Ekin [14] defined the bi-periodic incomplete Lucas numbers as:

pn (l) = aξ(n)
l∑
i=0

n

n− i

(
n− i
i

)
(ab)b

n
2 c−i , 0 ≤ l ≤

⌊n
2

⌋
.
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Analogously, by using the explicit formulas of the q-bi-periodic Fibonacci sequence
in (1.11) and the q-bi-periodic Lucas sequence in (2.4), we define the q-bi-periodic
incomplete Fibonacci and Lucas sequences as follows.

Definition 2. For any non negative integer n, the q-bi-periodic incomplete Fi-
bonacci and Lucas sequences are defined by

F
(a,b)
n,l (q, s) = aξ(n−1)

l∑
k=0

[
n− 1− k

k

]
(ab)b

n−1
2 c−k qk

2

sk, 0 ≤ l ≤
⌊
n− 1
2

⌋
(3.1)

and

L
(a,b)
n,l (q, s) = aξ(n)

l∑
k=0

[n]

[n− k]

[
n− k
k

]
(ab)b

n
2 c−k qk

2−ksk, 0 ≤ l ≤
⌊n
2

⌋
, (3.2)

respectively.

If we take l =
⌊
n−1
2

⌋
in (3.1), we obtain the q-bi-periodic Fibonacci sequence,

and if we take l =
⌊
n
2

⌋
in (3.2), we obtain the q-bi-periodic Lucas sequence.

Next, we give non-homogenous recurrence relation for the q-bi-periodic incom-
plete Fibonacci sequence.

Theorem 6. For 0 ≤ l ≤ n−2
2 , the non-linear recurrence relation of the q-bi-

periodic incomplete Fibonacci sequence is

F
(a,b)
n+2,l+1 (q, s) =

{
aF

(a,b)
n+1,l+1 (q, s) + q

nsF
(a,b)
n,l (q, s) , if n is even

bF
(a,b)
n+1,l+1 (q, s) + q

nsF
(a,b)
n,l (q, s) , if n is odd

. (3.3)

The relation (3.3) can be transformed into the non-homogeneous recurrence relation

F
(a,b)
n+2,l (q, s) = aF

(a,b)
n+1,l (q, s)+q

nsF
(a,b)
n,l (q, s)−a

[
n− 1− l

l

]
(ab)b

n−1
2 c−l qn+l

2

sl+1

(3.4)
for even n, and

F
(a,b)
n+2,l (q, s) = bF

(a,b)
n+1,l (q, s) + q

nsF
(a,b)
n,l (q, s)−

[
n− 1− l

l

]
(ab)b

n−1
2 c−l qn+l

2

sl+1

(3.5)
for odd n.

Proof. If n is even, then
⌊
n+1
2

⌋
=
⌊
n
2

⌋
. By using the Definition (3.1), we can write

the RHS of (3.3) as

a1+ξ(n)
l+1∑
k=0

[
n− k
k

]
(ab)b

n
2 c−k qk

2

sk

+qnsaξ(n−1)
l∑

k=0

[
n− 1− k

k

]
(ab)b

n−1
2 c−k qk

2

sk
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= a

l+1∑
k=0

[
n− k
k

]
(ab)b

n
2 c−k qk

2

sk + qn a

l∑
k=0

[
n− 1− k

k

]
(ab)b

n−1
2 c−k qk

2

sk+1

= a

l+1∑
k=0

[
n− k
k

]
(ab)b

n
2 c−k qk

2

sk

+qn a

l+1∑
k=1

[
n− k
k − 1

]
(ab)b

n
2 c−k q(k−1)

2

sk

= a

l+1∑
k=0

([
n− k
k

]
+ qn−2k+1

[
n− k
k − 1

])
(ab)b

n
2 c−k qk

2

sk (ab)b
n
2 c−k − 0

= a

l+1∑
k=0

[
n− k + 1

k

]
(ab)b

n
2 c−k qk

2

sk (ab)b
n
2 c−k

= F
(a,b)
n+2,l+1 (q, s) .

Also from equation (3.3), we have

F
(a,b)
n+2,l (q, s) = aF

(a,b)
n+1,l (q, s) + q

nsF
(a,b)
n,l−1 (q, s)

= aF
(a,b)
n+1,l (q, s) + q

nsF
(a,b)
n,l (q, s) + qns(F

(a,b)
n,l−1 (q, s)− F

(a,b)
n,l (q, s))

= aF
(a,b)
n+1,l (q, s) + q

nsF
(a,b)
n,l (q, s)− a

[
n− 1− l

l

]
(ab)b

n−1
2 c−l qn+l

2

sl+1.

If n is odd, the proof is completely analogous. �

Note that the q-bi-periodic Lucas sequence does not satisfy a recurrence like (3.3),
since F (a,b)n+1 (q, s) and F

(a,b)
n+1 (q, qs) do not satisfy the same recurrence relation.

Finally we give the relationship between the q-bi-periodic incomplete Fibonacci
and Lucas sequences as follows:

Theorem 7. For 0 ≤ l ≤
⌊
n
2

⌋
, we have

L
(a,b)
n,l (q, s) = F

(a,b)
n+1,l (q, s) + F

(a,b)
n−1,l−1 (q, qs) . (3.6)

Proof. It can be proved easily by using the definitions (3.1) and (3.2). �
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A GENERALIZATION OF THE PEANO KERNEL AND ITS
APPLICATIONS

GÜLTER BUDAKÇI AND HALIL ORUÇ

Abstract. Based on the q-Taylor Theorem, we introduce a more general form
of the Peano kernel (q-Peano) which is also applicable to non-differentiable
functions. Then we show that quantum B-splines are the q-Peano kernels of
divided differences. We also give applications to polynomial interpolation and
construct examples in which classical remainder theory fails whereas q-Peano
kernel works.

1. Introduction

Recent advances in the quantum B-splines, [4, 6, 17] have given us an opportunity
to arise the question if there is a way to link quantum B-splines with a more
general Peano kernel. The quantum B-spline functions are piecewise polynomials
whose quantum derivatives agree at the joins up to some order. The quantum B-
splines are introduced by Simeonov & Goldman [17] to generalize classical B-splines
by replacing ordinary derivatives by quantum derivatives. Their work constructs
not only a new type of de Boor algorithm but also novel identities via blossoms.
Actually the underlying idea in [17] goes back to the work [16] which aimed to find
a new form of blossoms to represent q-Bernstein polynomials. Just like classical
Bernstein polynomials, the q-Bernstein polynomials possesses remarkable geometric
and analytic properties, see [11, 13]. So, our objectives are to extend the Peano
kernel and then relate with the quantum B-splines. This extension is important
because there are functions whose q-derivatives exist but whose classical derivatives
fail to exist. Furthermore it will also lead us to investigate errors in approximations.
The classical Peano kernel theorem provides a useful technique for comput-

ing the errors of approximations such as interpolation, quadrature rules and B-
splines. The errors are represented by a linear functional that operates on functions
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f ∈ Cn+1[a, b] and annihilates all polynomials of degree at most n.

Namely, if L(f) = 0 for all f ∈ Pn, the space of polynomials of degree n, then

L(f) =

b∫
a

f (n+1)(t)K(x, t)dt,

where K(x, t) =
1

n!
L
(
(x− t)n+

)
.

An important application of this result is the Kowalewski’s interpolating poly-
nomial remainder. Let t0, t1, . . . , tn ∈ [a, b] be fixed and distinct, and

L(f) = f(x)−
n∑
k=0

f(tk)lnk(x)

where lnk(x) =
n∏
v=0
v 6=k

x− tv
tk − tv

. If f ∈ Cm+1[a, b], then

L(f) =
1

m!

n∑
k=0

lnk(x)

x∫
tk

(tk − t)mf (m+1)(t)dt, for each m = 0, 1, . . . , n

is the error functional, see [7].
This paper is organized as follows: We begin with definitions and properties

of the quantum calculus needed for this work. In Section 3, we give the q-Taylor
theorem and develop a generalization of the Peano kernel (q-Peano kernel). We
present a simple way to find L(f) under the condition in which the kernel has no
sign change. Moreover, taking L(f) as divided differences we construct a relation
between q-B-splines and q-Peano kernel. Section 4 demonstrates how the q-Peano
kernel is used to find the error of Lagrange interpolation. Finally, the error bounds
of quadrature formula on the remainder involving q-integration is discussed.

2. Preliminaries

Throughout the paper we consider q as a real fixed parameter. Let us give basic
definitions and theorems of the q-calculus that are required in the next sections.
For a fixed parameter q 6= 1, the q-derivatives are defined by,

Dqf(t) =
f(qt)− f(t)
(q − 1)t

Dn
q f(t) = Dq(D

n−1
q f(t)), n > 2.

Note that q-derivatives are approximations to classical derivatives and if f is a
differentiable function, then

lim
q→1

Dqf(x) = Df(x).
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For polynomials the q-derivative is easy to compute. Indeed it follows easily from
the definition of the q-derivative that

Dqx
n = [n]qx

n−1,

where the q-integers [n]q are defined by,

[n]q =

{
(1− qn)/(1− q), q 6= 1,
n, q = 1.

Moreover, the q-factorial is defined by

[n]q! = [1]q · · · [n]q.

Quantum integrals are the analogues of classical integrals for the quantum cal-
culus. Quantum integrals satisfy a quantum version of the fundamental theorem of
calculus, see [9] for details.

Definition 1. Let 0 < a < b. Then the definite q-integral of a function f(x) is
defined by a convergent series∫ b

0

f(x)dqx = (1− q)b
∞∑
i=0

qif(qib)

and ∫ b

a

f(x)dqx =

∫ b

0

f(x)dqx−
∫ a

0

f(x)dqx.

Theorem 1. [Fundamental Theorem of q-Calculus]
If F (x) is continuous at x = 0, then∫ b

a

DqF (x)dqx = F (b)− F (a)

where 0 6 a < b 6∞.

The work [15] gives the mean value theorem in the q-calculus which will be
needed in one of our results.

Theorem 2. If F is continuous and G is 1/q-integrable and is non-negative(or
non-positive) on [a, b], then there exists q̃ ∈ (1,∞) such that for all q > q̃ there
exists ξ ∈ (a, b) for which

b∫
a

F (x)G(x)d1/qx = F (ξ)

b∫
a

G(x)d1/qx.

We also require a q-Hölder inequality and appropriate notions of distance in
q-integrals, see [2, 5, 18].
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Definition 2. We will denote by Lp,q([0, b]) with 1 6 p <∞, the set of all functions
f on [0, b] such that

||f ||p,q :=

 b∫
0

|f |pd1/qt


1
p

<∞.

Furthermore let L∞,q([0, b]) denote the set of all functions f on [0, b] such that

||f ||∞,q := sup
x∈[0,b]

|f(x)| <∞.

Theorem 3. Let x ∈ [0, b], q ∈ [1,∞) and p1, p2 > 1 be such that 1
p1
+ 1

p2
= 1.

Then

x∫
0

|f(x)||g(x)|d1/qt 6

 x∫
0

|f(x)|p1d1/qt

 1
p1
 x∫
0

|g(x)|p2d1/qt

 1
p2

. (2.1)

3. q-Peano Kernel Theorem

In this section we derive a more general form of the Peano kernel theorem based
on a q-Taylor expansion. So we start by giving the q-Taylor Theorem with integral
remainder. A detailed treatment of the classical Peano kernel theorem can be found
in [7, 12, 14].
We use the notation q-Ck[a, b] to denote the space of bounded functions whose

q-derivatives of order up to k are continuous on [a, b].

Theorem 4. (q-Taylor Theorem) Let f be n + 1 times 1/q-differentiable in the
closed interval [a, b]. Then

f(x) =

n∑
k=0

qk(k−1)/2
(Dk

1/qf)(q
ka)

[k]q!
(x− a)k,q +Rn(f), (3.1)

where
(x− t)n,q = (x− qn−1t) · · · (x− qt)(x− t)

and

Rn(f) =
qn(n+1)/2

[n]q!

∫ x

a

(Dn+1
1/q f)(q

nt)(x− t)n,qd1/qt.

Another way to express the remainder Rn(f) is to employ the truncated power
function. That is

Rn(f) =
qn(n+1)/2

[n]q!

∫ b

a

(Dn+1
1/q f)(q

nt)(x− t)n,q+ d1/qt, (3.2)

where
(x− t)n,q+ = (x− qn−1t) · · · (x− qt)(x− t)+.
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Here (x− t)+ is the truncated power function

(x− t)+ =
{
x− t, if x > t
0, otherwise.

Although the latter representation of the remainder Rn(f) associated with our
results is new, we omit the proof since it can be done in a similar way as in [9].
There are other forms of q-Taylor Theorem, see for example [1, 8, 10]. The work
[3] investigates the convergence of q-Taylor series for q-difference operators using
q-Cauchy integral formula.

Theorem 5. Let gt(x) = (x− t)n,q+ and let L be a linear functional that commutes
with the operation of q-integration and also satisfies the conditions: L(gt) exists
and L(f) = 0 for all f ∈ Pn. Then for all f ∈ 1/q − Cn+1[a, b]

L(f) =

∫ b

a

(Dn+1
1/q f)(q

nt)K(x, t)d1/qt,

where

K(x, t) =
qn(n+1)/2

[n]q!
L(gt).

Proof. Recall that here the function (x− t)n,q+ is a function of t and x behaves as a
parameter. When we say L(gt) we mean that L is applied to the truncated power
function, regarded as a function of x with t as a parameter. Hence we find real
number that depends on t. We apply L to the equation (3.1). Since L is linear and
annihilates polynomials, we have

L(f) =
qn(n+1)/2

[n]q!
L

(∫ b

a

(Dn+1
1/q f)(q

nt)(x− t)n,q+ d1/qt

)
.

Since L commutes with the operation of q-integration,

L(f) =
qn(n+1)/2

[n]q!

∫ b

a

(Dn+1
1/q f)(q

nt)L
(
(x− t)n,q+

)
d1/qt.

�
Corollary 1. If the conditions in Theorem 5 are satisfied and also the kernel
K(x, t) does not change sign on [a, b], then

L(f) =

(
Dn+1
1/q f

)
(ξ)

[n+ 1]q!
qn(n+1)/2L(xn+1).

Proof. Since Dn+1
1/q f is continuous and K(x, t) does not change sign on [a, b], we

can apply the Mean Value Theorem 2. Thus we have

L(f) =
(
Dn+1
1/q f

)
(ξ)

b∫
a

K(x, t)d1/qt, a < ξ < b.
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Replacing f(x) by xn+1 gives

L(xn+1) =
[n+ 1]q!

qn(n+1)/2

b∫
a

K(x, t)d1/qt,

so
b∫
a

K(x, t)d1/qt =
qn(n+1)/2

[n+ 1]q!
L(xn+1),

and this completes the proof. �

We now establish a relation between q-B-splines and q-Peano kernels. Recently
q-analogue or quantum B-splines which generalize B-splines have been investigated
in several aspects in [4, 6, 17]. The work [4] finds out that q-B-splines are essentially
divided differences of q-truncated power functions. That is, the q-B-spline of degree
n is given by

Nk,n(t; q) = (tk+n+1 − tk)[tk, . . . , tk+n+1](x− t)n,q+ .

Although classical truncated power function has n multiple zero at t = x, q-
truncated power function has n distinct zeros for q 6= 0 or q 6= 1. This property
drastically alters certain characteristics of the basis functions. For example while
the basis functions forms partition of unity, the non-negativity property is lost. On
the other hand when q is near one, the additional real parameter q provides extra
flexibility to change the shape of basis functions. Sometimes this effect may be
useful and practical to match smoothness of piecewise curves and surfaces up to
some tolerance, see [6].
Now recall the fact that a divided difference f [t0, t1, . . . , tn+1] can be represented

as symmetric sum of f(tj), see [14],

f [t0, t1, . . . , tn+1] =

n+1∑
i=0

f(ti)/

n+1∏
j=0
j 6=i

(ti − tj). (3.3)

Hence we can readily derive

Nk,n(t; q) = (tk+n+1 − tk)
k+n+1∑
i=k

(ti − t)n,q+ /

k+n+1∏
j=k
j 6=i

1

(ti − tj)
.

The following theorem shows that q-B-splines are indeed the q-Peano kernels of
divided differences.

Theorem 6. Let f ∈ 1/q − Cn+1[a, b]. Then

f [t0, t1, . . . , tn+1] =
qn(n+1)/2

[n]q!

∫ b

a

N0,n(t; q)

tn+1 − t0

(
Dn+1
1/q f

)
(qnt)d1/qt.
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Proof. We first set L as

f [t0, t1, . . . , tn+1] =

n+1∑
i=0

f(ti)/

n+1∏
j=0
j 6=i

(ti − tj)

=L(f).

We see that for any fixed and distinct points {ti : i = 0, 1, . . . , n+1}, L is a bounded
linear operator. From the q-Peano Kernel Theorem 5, we have

L(f) =

∫ b

a

K(x, t)(Dn+1
1/q f)(q

nt)d1/qt,

where

K(x, t) =
qn(n+1)/2

[n]q!
L
(
(x− t)n,q+

)
.

This can be written as

K(x, t) =
qn(n+1)/2

[n]q!

n+1∑
i=0

(ti − t)n,q+ /

n+1∏
j=0
j 6=i

(ti − tj).

Thus

K(x, t) =
qn(n+1)/2

[n]q!

N0,n(t; q)

tn+1 − t0
.

Combining the last equation with (3.3) we derive

f [t0, t1, . . . , tn+1] =
qn(n+1)/2

[n]q!

∫ b

a

N0,n(t; q)

tn+1 − t0

(
Dn+1
1/q f

)
(qnt)d1/qt.

�

When q = 1, the above Theorem 3.3 reduces to its classical counterpart which
can be found in [14]. The work [4] extends several classical formulas of B-splines to
quantum B-splines.

4. Application to polynomial interpolation

The main idea in this section is to apply the q-Peano kernel Theorem on the
remainder of polynomial interpolation. Findings demonstrate the advantage of
using the q-Peano kernel Theorem where the classical theorem does not work. The
following theorem has weaker assumption than the classical one and thus gives
stronger results.

Theorem 7. Let f ∈ 1/q−Cn+1[a, b] and suppose t0, t1, . . . , tn ∈ [a, b] are distinct
points. For a fixed x ∈ [a, b], define the corresponding error functional by

L(f) = f(x)−
n∑
k=0

f(tk)lnk(x).
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Then

L(f) =
qm(m+1)/2

[m]q!

n∑
k=0

lnk(x)

x∫
tk

(tk − t)m,q
(
Dm+1
1/q f

)
(qmt)d1/qt, m = 0, 1, . . . , n.

Proof. Since
n∑
k=0

lnk(x) = 1, by the q-Peano kernel Theorem 5 we get,

[m]q!

qm(m+1)/2
K(x, t) = L

(
(x− t)m,q+

)
= (x− t)m,q+ −

n∑
k=0

(tk − t)m,q+ lnk(x)

=

n∑
k=0

[
(x− t)m,q+ − (tk − t)m,q+

]
lnk(x).

It follows that

[m]q!

qm(m+1)/2

b∫
a

K(x, t)
(
Dm+1
1/q f

)
(qmt)d1/qt =

x∫
a

{(
Dm+1
1/q f

)
(qmt)

n∑
k=0

[(x− t)m,q − (tk − t)m,q] lnk(x)
}
d1/qt

+

n∑
k=0

lnk(x)

x∫
tk

(tk − t)m,q
(
Dm+1
1/q f

)
(qmt)d1/qt.

For each m 6 n, since the interpolation operator is a projection operator, it repro-
duces polynomials and hence the term in the first summation of the last equation
vanishes for f(x) = (x− t)m,q. Accordingly,

L(f) =

b∫
a

K(x, t)
(
Dm+1
1/q f

)
(qmt)d1/qt

=
qm(m+1)/2

[m]q!

n∑
k=0

lnk(x)

x∫
tk

(tk − t)m,q
(
Dm+1
1/q f

)
(qmt)d1/qt

for each m = 0, 1, . . . , n. �

Now, we give examples that show how we can find the q-Peano kernel.
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Example: Let

f(x) =



q3x3

6
, 0 6 x < 1

1

6

(
4− 4[3]qx+ 4q[3]qx2 − 3q3x3

)
, 1 6 x < 2

1

6

(
−44 + 20[3]qx− 8q[3]qx2 + 3q3x3

)
, 2 6 x < 3

−1
6
(−4 + x)(−4 + qx)(−4 + q2x), 3 6 x < 4

0, otherwise.

It is obvious that for q 6= 1, f ∈ C[0, 4] but f /∈ C1[0, 4]. However, one may check
that f ∈ 1/q − C2[0, 4]. Classical error functionals cannot work but we may find
the error via the q-Peano kernel theorem. Let t0 = 0, t1 = 2 and t2 = 4. Then it is
appropriate to take the error functional

L(f) = q

2∑
k=0

l2k(x)

x∫
tk

(tk − t)
(
D2
1/qf

)
(qt)d1/qt,

where l20(x) = 1
8 (x−2)(x−4), l21(x) = −

1
4x(x−4) and l22(x) =

1
8x(x−2). Hence

1

q
L(f) = l20(x)

x∫
0

(−t)
(
D2
1/qf

)
(qt)d1/qt+ l21(x)

x∫
2

(2− t)
(
D2
1/qf

)
(qt)d1/qt

+ l22(x)

x∫
4

(4− t)
(
D2
1/qf

)
(qt)d1/qt.

Now we will find the kernel. If 0 6 x < 2, then

K(x, t) =


−l20(x)t, 0 6 t < x

l21(x)(2− t)− l22(x)(4− t), x 6 t < 2

−l22(x)(4− t), 2 6 t < 4.
Similarly, for 2 6 x < 4,

K(x, t) =


−l20(x)t, 0 6 t < 2

−l20(x)t+ l21(x)(2− t), 2 6 t < x

l21(x)(2− t)− l22(x)(4− t), x 6 t < 4.
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One may notice that the function f(x) given above is indeed a cubic q-B-spline.
A more recent work [6] on the q-B-splines demonstrates that these functions prove
useful in several aspects including geometric modelling.

4.1. Trapezoidal rule in q-integration. Consider the 1/q-integral of a function
f on the interval [a, b]. We want to evaluate the q-integral approximately using
linear interpolation formula. Let us define the operator L as

L(f) =

b∫
a

f(x)d1/qx−
b− aq
[2]q

f(a)− bq − a
[2]q

f(b).

Since L(f) = 0 for all functions f ∈ P1 and for all f ∈ 1/q − C2[a, b], we have

L(f) =

b∫
a

(
D2
1/qf

)
(qt)K(x, t)d1/qt

and
K(x, t) = qL((x− t)+).

Thus,

K(x, t) =
q

[2]q
(b− t)(a− t), a 6 t 6 b.

Notice that K(x, t) < 0 on [a, b]. Then by applying Mean Value Theorem 2 we have

L(f) =
D2
1/qf(ξ)

[2]q!
qL(x2),

where

L(x2) =
−(b− a)(bq − a)(b− aq)

[3]q!

Therefore we find that

L(f) =
−q(b− a)(bq − a)(b− aq)

[3]q![2]q!
D2
1/qf(ξ), a < ξ < b.

While q = 1 reduces the above L(f) to the classical error functional of the trape-
zoidal rule, on the other hand it provides extra flexibility on the control of error
functional by changing the parameter q appropriately.

4.2. The remainder on quadrature. We now discuss error bounds of quadrature
formulas on remainders given by

Rn(f ; q) =

b∫
0

f(x)d1/qx−
n∑
k=0

γnkf(tnk).
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For q = 1, this formula is well-known in the context of numerical integration.
Assuming f ∈ 1/q − Cm+1[0, b] and Rn(f ; q) = 0 for all f ∈ Pm,m = 0, 1, . . . , n ,
we can apply the q-Peano kernel theorem. Hence

Rn(f ; q) =

b∫
0

K(x, t)
(
Dm+1
1/q f

)
(qmt)d1/qt.

By applying the q-Hölder inequality (2.1), we have

|Rn(f ; q)| 6

 b∫
0

∣∣∣(Dm+1
1/q f

)
(qmt)

∣∣∣p1 d1/qt


1
p1
 b∫
0

|K(x, t)|p2 d1/qt


1
p2

for all 1 6 p1, p2 6 ∞ and 1
p1
+ 1

p2
= 1. Since the second integral in the last

inequality is independent of f , by choosing coeffi cients and nodes appropriately we
can minimize the remainder Rn(f ; q).

(i) For p1 =∞ and p2 = 1,

|Rn(f ; q)| 6 ||Dm+1
1/q f ||∞

b∫
0

|K(x, t)|d1/qt.

(ii) For p1 = p2 = 2,

|Rn(f ; q)| 6 ||Dm+1
1/q f ||2

 b∫
0

|K(x, t)|2d1/qt


1
2

.

The q-Peano kernel K(x, t) in the latter inequality can be written as

K(x, t) = qm(m+3)/2
(b− t

q )
m+1,q

[m+ 1]q!
− s(t; q),

where s(t; q) =
qm(m+1)/2

[m]q!

n∑
k=0

γnk(tnk − t)
m,q
+ is a quantum spline with the knot

sequence {tn0, . . . , tnn}. Eventually, the problem of minimizing the q-integral[∫ b

0

|K(x, t)|p1d1/qt
] 1
p1

is equivalent to finding the best approximation of the polynomial

qm(m+3)/2
(b− t

q )
m+1,q

[m+ 1]q!

in t by a quantum spline with respect to the norm ||.||p1 .
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5. Conclusion

In this work, we investigated a generalization of classical Peano Kernel theorem
via quantum calculus. Applications to polynomial interpolation, q-integration and
quantum spline functions, and best approximation were also presented. In the
future, we aim to establish relations between q-Peano kernels and Green’s functions
using q-difference equations and quantum calculus.
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ON METALLIC SEMI-SYMMETRIC METRIC F−CONNECTIONS

CAGRI KARAMAN

Abstract. In this article, we generate a metallic semi-symmetric metric F -
connection on a locally decomposable metallic Riemann manifold. Also, we
examine some features of torsion and curvature tensor fields of this connection.

1. Introduction

The topic of connection with torsion on a Riemann manifold has been studied
with great interest in literature. Firstly, Hayden defined the concept of metric
connection with torsion [3]. For a linear connection ∇̃ with torsion on a Riemann
manifold (M, g), if ∇̃g = 0, then linear connection ∇̃ is called a metric connection.
Then, Yano constructed a connection whose torsion tensor has the form: S(X,Y ) =
ω(Y )X − ω(X)Y , where ω is a 1−form, [15] and named this connection as semi-
symmetric connection.
In [11], Prvanovic has defined a product semi-symmetric F−connection on lo-

cally decomposable Riemann manifold and worked its curvature properties. A
locally decomposable Riemann manifold is expressed by the triple (M, g, F ) and
the conditions ∇F = 0 and g(FX, Y ) = g(X,FY ) are provided, where F, g and
∇ are product structure, metric tensor and Riemann connection (or Levi-Civita
connection) of g on manifold respectively. For further references, see [8, 9, 10, 12].
The positive root of the equation x2−x−1 = 0 is the number x1 = 1+

√
5

2 , which
is called golden ratio. The golden ratio has many applications and has played
an important role in mathematics. One of them is a golden Riemann manifold
(M, g, ϕ) endowed with golden structure ϕ and Riemann metric tensor g. The
golden structure ϕ created by Crasmareanu and Hretcanu is actually root of the
equality ϕ2−ϕ− I = 0 [5]. In [2], the authors have defined golden semi-symmetric
metric F−connections on a locally decomposable golden Riemann manifold and ex-
amined torsion, projective curvature, conharmonic curvature and curvature tensors
of this connection. Also, the golden ratio has many important generalizations. One
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of the them is metallic proportions or metallic means family which was introduced
by de Spinadel in [6, 7]. The positive root of the equation x2 − px− q = 0 is called
the metallic means family, where p and q are two positive integer. Also, the solution
of the metallic means family is as follows

σp,q =
p+

√
p2 + 4q

2
.

These numbers σp,q are also named (p, q) metallic numbers. In the last equation,

• if p = q = 1, then the number σ1,1 = 1+
√
5

2 is golden ratio;
• if p = 2 and q = 1, then the number σ2,1 = 1 +

√
2 is silver ratio, which is

used for fractal and Cantorian geometry;
• if p = 3 and q = 1, then the number σ3,1 = 3+

√
13

2 is bronze ratio, which
plays an important role in dynamical systems and quasicrystals and so on.

Inspired by the metallic number family, Hretcanu and Crasmareanu was intro-
duced metallic Riemann structure [4]. Indeed, a metallic structure is polynomial
structure such that F 2 − pF − qI = 0, where F is (1, 1)-tensor field on manifold.
Given a Riemann manifold (M, g) endowed with the metallic structure F , if

g(FX, Y ) = g(X,FY )

or equivalently
g(FX,FY ) = pg(FX, Y ) + qg(X,Y )

for all vector fields X and Y on M , then the triple (M, g, F ) is called a metallic
Riemann manifold.
In [1], For almost product structures J and the Tachibana operator φF , the

authors proved that the manifold (M, g, F ) is a locally decomposable metallic Rie-
mannian manifold iff φJ±g = 0. In this article, we made a semi-symmetric met-
ric F−connection with metallic structure F on a locally decomposable metallic
Riemann manifold. Then we examine some properties related to its torsion and
curvature tensors.

2. Preliminaries

Let M be an n-dimensional manifold. Throughout this paper, tensor fields,
connections and all manifolds are always assumed to be differentiable of class C∞

For a (1, 1)−tensor F and a (r, s)−tensor K, The tensor K is named as a pure
tensor with regard to the tensor F , if the following condition is holds:

Kj1...jr
mi2...is

F m
i1 = Kj1...jr

i1m...is
F m
i2 = ... = Kj1...jr

i1i2...m
F m
is =

Kmj2...jr
i1...is

F j1
m = Kj1m...jr

i1...is
F j2
m = ... = Kj1j2...m

i1...is
F jr
m ,

where Kj1j2...jr
i1i2...is

and F j
i is the components the tensor K and (1, 1)−tensor F re-

spectively. Also, the Tachibana operator applied to a pure (r, s)−tensor K is given
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by

(φFK)
j1...jr
ki1...is

= F m
k ∂mt

j1...jr
i1...is

− ∂k (K ◦ F )
j1...jr
i1...is

(2.1)

+

s∑
λ=1

(∂iλF
m
k ) Kj1...jr

i1...m...is

+

r∑
µ=1

(
∂kF

jµ
m − ∂mF jµ

k

)
Ki1...m...ir
j1...js

,

where

(K ◦ F )
j1...jr
i1...is

= Kj1...jr
mi2...is

F m
i1 = ... = Kj1...jr

i1i2...m
F m
is

= Kmj2...jr
i1...is

F j1
m = ... = Kj1j2...m

i1...is
F jr
m .

The equation (2.1) firstly defined by Tachibana [14] and the applications of this
operator have been made by many authors [13, 16]. For the pure tensor K, if
the condition φFK = 0 holds, then K is called as a φ−tensor. Specially, if the
(1, 1)−tensor F is a product structure, then K is a decomposable tensor [14].
A metallic Riemannian manifold is a manifold M equipped with a (1, 1)−tensor

field F and a Riemannian metric g which satisfy the following conditions:

F 2 − pF − qI = 0 (2.2)

and
g(FX, Y ) = g(X,FY ) (2.3)

Also, the equation (2.3) equal to g(FX,FY ) = pg(FX, Y ) + qg(X,Y ), where p, q
are positive integers. The last two equations in local coordinates are as follows:

F k
i F

j
k = pF j

i + qδji (2.4)

and
F k
i gkj = F k

j gik, (2.5)

It is obvious that F k
i Fkj = pFij + qgij and Fij = Fji (symmetry) from (2.4) and

(2.5). The almost product structure J and metallic structure F on M are related
to each other as follows [4],

J± =
p

2
I ± (

2σp,q − p
2

)F (2.6)

or conversely

F± = ±
(

2

2σp,q − p
J − p

2σp,q − p
I

)
, (2.7)

where σp,q =
p+
√
p2+4q

2 which is the root of the (2.2). Also, it is obvious from (2.7)
that a Riemann metric g is pure with regard to a metallic structure F if and only
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if the Riemann metric g is pure with regard to the almost product structure J . By
using (2.7) and (2.1), we have

φFK = ± 2

2σp,q − p
φJK (2.8)

for any (r, s)−tensor K. We note that a metallic Riemann manifold (M, g, F ) is a
locally decomposable metallic Riemann manifold if and only if the Riemann metric
g is a decomposable tensor, i.e., (φJg)kij = 0 and the condition (φJg)kij = 0 is

equivalent to ∇kJ j
i = 0 [1].

3. The Metallic Semi-Symmetric metric F−connection

Let (M, g, F ) be a locally decomposable metallic Riemann manifold. We consider
an affi ne connection ∇̃ on M . If the affi ne connection ∇̃ holds

i) ∇̃hgij = 0 (3.1)

ii) ∇̃hF j
i = 0,

then it is called a metric F−connection. In the special case, when the torsion tensor
S̃kij of ∇̃ is as following shape

S̃kij = ωjδ
k
i − ωiδkj +

1

q

(
ωtF

t
j F

k
i − ωtF t

i F
k
j

)
, (3.2)

where ωi are local ingredients of an 1−form, we say that the affi ne connection ∇̃ is
a metallic semi-symmetric metric connection.
Let Γ̃kij be the ingredients of the metallic semi-symmetric metric connection ∇̃.

If we put

Γ̃kij = Γkij + T kij , (3.3)

where Γkij and T kij are the ingredients of the Riemann connection ∇ of g and

(1, 2)−tensor field T on M respectively, then the torsion tensor S̃kij of ∇̃ is as
following form

S̃kij = Γ̃kij − Γ̃kji = T kij − T kji.
When the connection (3.3) provides the condition (i) of (3.1), by applying the
method in [3], we get

T kij = ωjδ
k
i − ωkgij +

1

q

(
ωtF

t
j F

k
i − ωtF ktFij

)
,

where ωk = ωig
ik, F kt = F t

i g
ik and Fij = F k

j gik. Hence the connection (3.3)
becomes the following form

Γ̃kij = Γkij + ωjδ
k
i − ωkgij +

1

q

(
ωtF

t
j F

k
i − ωtF ktFij

)
. (3.4)
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Also, by using the connection (3.4), we obtain the following equation with a simple
calculation:

∇̃kF j
i = gki(ω

tF j
t − ωtF jt) = 0.

Therefore, the connection ∇̃ given by (3.4) is named metallic semi-symmetric metric
F−connection.

4. Curvature and Torsion properties of the Metallic Semi-Symmetric
metric F−connection

In this section, we examine some properties associated with the torsion and
curvature tensor of the connection (3.4).

Let (M, g, F ) be a locally decomposable metallic Riemann manifold endowed
with the connection (3.4). We say easily that the torsion tensor S̃ of the connection
(3.4) is pure. Indeed, by using (2.4) and (3.2), we get

S̃kimF
m
j = S̃kmjF

m
i = S̃mij F

k
m .

In [13], the author prove that a F−connection is pure iff torsion tensor of that
connection is pure. Thus, the connection (3.4) provides the following condition:

Γ̃kmjF
m
i = Γ̃kimF

m
j = Γ̃mijF

k
m .

Theorem 4.1. Let (M, g, F ) be a locally decomposable metallic Riemann manifold
endowed with the connection (3.4). If the 1−form ω is a φ−tensor,then the torsion
tensor S̃ of the connection (3.4) is a φ−tensor and holds following equation:

F m
k (∇mS̃lij) = F m

i (∇kS̃lmj) = F m
j (∇kS̃lim). (4.1)

Proof. Let (M, g, F ) be a locally decomposable metallic Riemann manifold. Since
a zero tensor is pure, a F−connection with torsion-free is always pure. Hence, we
can say that the Levi-Civita connection ∇ of g on M is always pure with respect
to F .
If we implement the Tachibana operator φF to the torsion tensor S̃ of the con-

nection (3.4), then we have

(φF S̃) l
kij = F m

k (∂mS̃
l
ij)− ∂k(S̃lmjF

m
i )

= F m
k (∇mS̃lij + ΓsmiS̃

l
sj + ΓsmjS̃

l
is − ΓlmsS̃

s
ij)

−F m
i (∇kS̃lmj + ΓskmS̃

l
sj + ΓskjS̃

l
ms − ΓlksS̃

s
mj).

When the torsion tensor S̃ and Levi-Civita connection ∇ are pure, the above rela-
tion reduces to

(φF S̃) l
kij = F m

k (∇mS̃lij)− F m
i (∇kS̃lmj). (4.2)
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Substituting (3.2) into (4.2), we get

(φF S̃) l
kij = [(∇mωj)F m

k − (∇kωm)F m
j ]δli (4.3)

−[(∇mωi)F m
k − (∇kωm)F m

i ]δlj

+[
1

q
(∇mωs)F m

k F s
j −

p

q
(∇kωs)F s

j −∇kωj ]F l
i

−[
1

q
(∇mωs)F m

k F s
i −

p

q
(∇kωs)F s

i −∇kωi]F l
j .

Also, for the 1−form ω, we calculate

(φFω)kj = F m
k (∂mωj)− ∂k(F m

j ωm)

= F m
k (∇mωj + Γsmjωs)− F m

j (∇kωm + Γskmωs)

= F m
k (∇mωj)− F m

j (∇kωm).

From last equation, we can say that the 1−form ω is a φ−tensor iff

Fmk (∇mpj) = Fmj (∇kpm). (4.4)

Assuming that the 1−form ω is a φ−tensor, thanks to (2.4) the relation (4.3)
becomes (φF S̃) l

kij = 0, i.e., the torsion tensor S̃ is a φ−tensor. Also, from the
equation (4.2) we get

F m
k (∇mS̃lij) = F m

i (∇kS̃lmj) = F m
j (∇kS̃lim).

The proof is complete. �

From the equation (2.8), it is obvious that the torsion tensor S̃ of the connection
(3.4) and the 1−form ω are hold following equality

φJ S̃ = 0 and φJω = 0,

i.e., they are decomposable tensors, where J is the product structure associated
with the metallic structure F . From on now, we shall consider 1−form ω is a
φ−tensor (or decomposable tensor), i.e., the following conditions are provided:

F m
k (∇mωj) = F m

j (∇kωm)

and

J m
k (∇mωj) = J m

j (∇kωm).

It is well known that the curvature tensor R̃ l
ijk of the connection (3.4) is as

follows:

R̃ l
ijk = ∂iΓ̃

l
jk − ∂jΓ̃lik + Γ̃limΓ̃mjk − Γ̃ljmΓ̃mik.
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Then, the curvature tensor R̃ l
ijk can be expressed

R̃ l
ijk = Rijk

l + δljAik − δ
l
iAjk + gikA l

j − gjkA l
i (4.5)

+
1

q
(F l
j F

t
k Ait − F

l
i F

t
k Ajt + FikF

ltAjt − FjkF ltAit),

where Rijk
l are the ingredients of the Riemann curvature tensor of the Riemann

connection ∇ and

Ajk = ∇jωk − ωjωk +
1

2
ωmωmgkj −

1

q
ωmωtF

t
k F

m
j +

1

2q
ωmωtF

t
mFjk. (4.6)

It is clear that the tensor A provide Ajk−Akj = ∇jωk−∇kωj = 2(dω)jk, where
the operator d is exterior differential on M . Thus, we say that Ajk − Akj = 0 if
and only if 1−form ω is closed.
Also, from the equation (4.5), we obtain

R̃ijkl = Rijkl + gjlAik − gilAjk + gikAjl − gjkAil (4.7)

+
1

q
(FjlF

t
k Ait − FilF

t
k Ajt + FikF

t
l Ajt − FjkF

t
l Ait).

It is clear that the curvature tensor satisfies R̃ijkl = −R̃jikl and R̃ijkl = −R̃ijlk.
For Ricci tensors of the connection (3.4) R̃jk, contracting (4.5) with respect to i

and l, we have

R̃jk = Rjk + (4− n)Ajk − traceAgjk (4.8)

+
1

q

(
2p− F l

l

)
F t
k Ajt −

1

q
FjkF

t
lAlt,

where Rjk is Ricci tensors of the Riemann connection ∇ of g and

traceA = A l
l = ∇lω

l + (
n− 4

2
)ωlω

l − 1

q
ωtω

mF t
m(p−1

2
F l
l ).

Contracting the last equation with gjk, for the scalar curvature τ of the connections
(3.4), we get

τ = τ + 2 (2− n) traceA+
2

q

(
p− F l

l

)
F tlAlt, (4.9)

where τ is scalar curvature of Levi-Civita connection ∇ of g. From the equation
(4.8), we can have

R̃jk − R̃kj = (n− 4) (Akj −Ajk) +
1

q

(
2p− F l

l

)
F t
k (Ajt −Atj) . (4.10)

From the equation (4.10), we easily say that if the 1−form ω is closed, then R̃jk −
R̃kj = 0.
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Lemma 4.2. Let (M, g, F ) be a locally decomposable metallic Riemann manifold
endowed with the connection (3.4). Then the tensor A given by (4.6) is a φ−tensor
(or decomposable tensor) and thus the following relation holds:

(∇mAij)F m
k = (∇kAmj)F m

i = (∇kAim)F m
j .

Proof. The tensor A is pure with regard to F . Indeed

F t
k Ait − F

t
i Atk = (∇iωt)F t

k − (∇tωk)F t
i = 0.

If the Tachibana operator is applied to the tensor A, then we get

(φFA)kij = F m
k (∂mAij)− ∂k(AmjF m

i )

= F m
k

(
∇mAij + ΓsmiAsj + ΓsmjAis

)
−F m

i (∇kAmj + ΓskmAsj + ΓskjAms).

From the purity of the Riemann connection ∇ and the tensor A , we have

(φFA)
kij

= (∇mAij)F m
k − (∇kAmj)F m

i . (4.11)

Substituting (4.6) into (4.11), standard calculations give

(φFA)
kij

= (∇m∇iωj)F m
k − (∇k∇mωj)F m

i . (4.12)

When we apply the Ricci identity to the 1−form ω, we get

(∇m∇iωj)F m
k = (∇i∇mωj)F m

k − 1

2
ωsR

s
mijF

m
k

and

(∇k∇mωj)F m
i = (∇k∇iωm)F m

j

= (∇i∇kωm)F m
j − 1

2
ωsR

s
kimF

m
j

= (∇i∇mωk)F m
j − 1

2
ωsR

s
kimF

m
j

With the help of the last two equation, from (4.12), the equation (4.12) becomes
as follows,

(φFA)
kij

= −1

2
ωs(R

s
mijF

m
k −R s

kimF
m
j ).

In a locally decomposable metallic Riemann manifold (M, g, F ), the Riemann cur-
vature tensor R is pure [1]. This instantly gives (φFA)

kij
= 0. Hence, from (4.11)

we can write
(∇mAij)F m

k = (∇kAmj)F m
i = (∇kAim)F m

j .

Also, with help of (2.8), we can say that φJA = 0, i.e., the tensor A is decom-
posable, where J is the product structure associated with the metallic structure
F. �
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By using the purity of the tensor A, standard calculations give
R̃ l
imkF

m
j = R̃ l

ijmF
m
k = R̃ m

ijk F
l
m = R̃ l

mjkF
m
i ,

i.e., the curvature tensor R̃ is pure with respect to metallic structure F .
If Tachibana operator φF is applied to the curvature tensor R̃, then we get

(φF R̃)
t

kijl = F m
k (∂mR̃

t
ijl )− ∂k(R̃ t

mjlF
m
i ) (4.13)

= F m
k (∇mR̃ t

ijl + ΓsmiR̃
t

sjl + ΓsmjR̃
t

isl + ΓsmlR̃
t

ijs − ΓtmsR̃
m

ijl )

−F m
i (∇kR̃ t

mjl + ΓskmR̃
t

sjl + ΓskjR̃
t

msl + ΓsklR̃
t

mjs − ΓtksR̃
s

mjl)

= (∇mR̃ t
ijl )F m

k − (∇kR̃ t
mjl)F

m
i

from which, by (4.5), we find

(φF R̃)
t

kijl = (φFR)
t

kijl + [(∇kAjm)F m
l − (∇mAjl)F m

k ]δti

+[(∇mAil)F m
k − (∇kAim)F m

l ]δ tj

+[(∇mAtj)F m
k − (∇kAmj )F t

m]gil

+[(∇kAmi )F t
m − (∇mAti)F m

k ]gjl.

In a locally decomposable metallic Riemann manifold (M, g, F ), since the Riemann
curvature tensor R is a φ−tensor [1], considering Lemma 4.2, the last relation
becomes φF R̃ = 0. Also, from the equation (2.8), we can say that φJ R̃ = 0, where
J is the product structure associated with the metallic structure F. Thus we obtain
the following theorem:

Theorem 4.3. Let (M, g, F ) be a locally decomposable metallic Riemann manifold
endowed with the connection (3.4). The curvature tensor R̃ of the connection (3.4)
is a φ−tensor (or decomposable tensor).
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SOME NEW SIMPSON TYPE INEQUALITIES FOR THE
p-CONVEX AND p-CONCAVE FUNCTIONS

İMDAT İŞCAN, NİHAN KALYONCU KONUK, AND MAHİR KADAKAL

Abstract. In this paper, we establish some new Simpson type inequalities for
the class of functions whose derivatives in absolute values at certain powers
are p-convex and p-concave.

1. INTRODUCTION

A function f : I ⊆ R→ R is said to be convex if the inequality

f (tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

is valid for all x, y ∈ I and t ∈ [0, 1]. If this inequality reverses, then f is said to
be concave on interval I 6= ∅. This definition is well known in the literature.
It is well known that theory of convex sets and convex functions play an impor-

tant role in mathematics and the other pure and applied sciences. In recent years,
the concept of convexity has been extended and generalized in various directions
using novel and innovative techniques. For some inequalities, generalizations and
applications concerning convexity see [1, 2, 4, 5, 6, 16, 20].
In [9], the author gave definition harmonically convex and concave functions as

follow.

Definition 1. Let I ⊂ R\ {0} be a real interval. A function f : I→ R is said to be
harmonically convex, if

f

(
xy

tx+ (1− t)y

)
≤ tf(y) + (1− t)f(x)

for all x, y ∈ I and t ∈ [0, 1]. If this inequality is reversed, then f is said to be
harmonically concave.
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Definition 2. Let I ⊂ (0,∞) be a real interval and p ∈ R\ {0}. A function
f : I→ R is said to be a p-convex function, if

f
(
[txp + (1− t)yp]1/p

)
≤ tf(x) + (1− t)f(y)

for all x, y ∈ I and t ∈ [0, 1]. If this inequality is reversed, then f is said to be
p-concave.

According to Definition 2, It can be easily seen that for p = 1 and p = −1,
p-convexity reduces to ordinary convexity and harmonically convexity of functions
defined on I ⊂ (0,∞), respectively.
Hermite-Hadamard inequality for the p-convex function is following:

Theorem 1. Let f : I ⊂ (0,∞)→ R be a p-convex function, p ∈ R\ {0}, and
a, b ∈ I with a < b. If f ∈ L [a, b] then we have

f

([
ap + bp

2

] 1
p

)
≤ p

bp − ap

b∫
a

f(x)

x1−p
dx ≤ f(a) + f(b)

2
.

These inequalities are sharp [5, 8]. If these inequalities are reversed, then f is
said to be p-concave.
Many papers have been written by a number of mathematicians concerning in-

equalities for different classes of harmonically convex and p-convex functions see
for instance the recent papers [3, 7, 8, 9, 10, 11, 12, 17, 18, 19, 21, 22, 24] and the
references within these papers.
The following integral inequality, named Simpson’s integral inequality, is one of

the best known results in the literature.

Theorem 2. (Simpson’s Integral Inequality). Let f : I = [a, b] ⊂ R→ R be a four
time continuously differentiable on I◦, where I◦ is the interior of I and

∥∥f (4)∥∥∞ <
∞. Then

∣∣∣∣∣∣13
[
f(a) + f(b)

2
+ 2f

(
a+ b

2

)]
− 1

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ 1

2880

∥∥∥f (4)∥∥∥
∞
(b− a)4 .

There are substantial literature on Simpson type integral inequalities. Here we
mention the result of [13, 14, 15] and the corresponding references cited therein.



254 İMDAT İŞCAN, NİHAN KALYONCU KONUK, AND MAHİR KADAKAL

Throughout this paper we will use the following notations. Let 0 < a < b and
p ∈ R\ {0}.

Ap = Ap (a, b) =
ap + bp

2
, A1 = A = A (a, b) =

a+ b

2

Mp = Mp (a, b) = A
1
p
p =

[
ap + bp

2

] 1
p

, H = H (a, b) =
2ab

a+ b

It (x,Ap;u, v) =

∣∣t− 1
3

∣∣u
[(1− t)xp + tAp]v−

v
p
,

Jt (x,Ap;u, v) =

∣∣t− 1
3

∣∣u (1− t)
[(1− t)xp + tAp]v−

v
p
,

Kt (x,Ap;u, v) =

∣∣t− 1
3

∣∣u t
[(1− t)xp + tAp]v−

v
p
.

where t ∈ [0, 1] and u, v ≥ 0.

2. MAIN RESULTS

In this section, we will use the following Lemma for we obtain the main results:

Lemma 1. Let f : I ⊂ (0,∞)→ R be a differentiable mapping on I◦(interior of I)
and a, b ∈ I◦ with a < b and p ∈ R\ {0}. If f ′ ∈ L[a, b], then the following equality
holds:

1

6
[f (a) + 4f (Mp) + f (b)]−

p

bp − ap
∫ b

a

f (x)

x1−p
dx

=
bp − ap
4p

[∫ 1

0

t− 1
3

[(1− t) ap + tAp]1−
1
p

f ′
(
[(1− t) ap + tAp]

1
p

)
dt

+

∫ 1

0

t− 2
3

[(1− t)Ap + tbp]1−
1
p

f ′
(
[(1− t)Ap + tbp]

1
p

)
dt

]
.

Proof. Firstly, let’s calculate the following integral:

bp − ap
4p

[∫ 1

0

t− 1
3

[(1− t) ap + tAp]1−
1
p

f ′
(
[(1− t) ap + tAp]

1
p

)
dt

+

∫ 1

0

t− 2
3

[(1− t)Ap + tbp]1−
1
p

f ′
(
[(1− t)Ap + tbp]

1
p

)
dt

]
.
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For shortness, we will use the notations

I1 =

∫ 1

0

(
t− 1

3

)
df
(
[(1− t) ap + tAp]

1
p

)
,

I2 =

∫ 1

0

(
t− 2

3

)
df
(
[(1− t)Ap + tbp]

1
p

)
.

Using the partial integration method and the method of changing variables re-
spectively for the integrals I1 and I2 as following, we get

I1 =

∫ 1

0

(
t− 1

3

)
df
(
[(1− t) ap + tAp]

1
p

)
=

(
t− 1

3

)
f
(
[(1− t) ap + tAp]

1
p

)∣∣∣1
0
−
∫ 1

0

f
(
[(1− t) ap + tAp]

1
p

)
dt

=
2

3
f (Mp) +

1

3
f (a)− 2p

bp − ap
∫ Ap

a

f (x)

x1−p
dx (2.1)

I2 =

∫ 1

0

(
t− 2

3

)
df
(
[(1− t)Ap + tbp]

1
p

)
=

(
t− 2

3

)
f
(
[(1− t)Ap + tbp]

1
p

)∣∣∣1
0
−
∫ 1

0

f
(
[(1− t)Ap + tbp]

1
p

)
dt

=
1

3
f (b) +

2

3
f (Mp)−

2p

bp − ap
∫ b

Ap

f (x)

x1−p
dx. (2.2)

Summing up side by side (2.1) and (2.2), we have

I1 + I2 =
1

3
[f(a) + f(b)] +

4

3
f (Mp)−

2p

bp − ap
∫ b

a

f (x)

x1−p
dx,

I1 + I2
2

=
1

6
[f (a) + 4f (Mp) + f (b)]−

p

bp − ap
∫ b

a

f (x)

x1−p
dx.

�

Theorem 3. Let f : I ⊂ (0,∞)→ R be a differentiable mapping on I◦ (the interior
of I) and a, b ∈ I◦ with a < b and p ∈ R\ {0}. If f ′ ∈ L[a, b] and |f ′|q is p-convex
on I for q ≥ 1, then the following inequality holds:∣∣∣∣∣16 [f (a) + 4f (Mp) + f (b)]−

p

bp − ap
∫ b

a

f (x)

x1−p
dx

∣∣∣∣∣
≤ bp − ap

4p
[Cp (a, b)]

1− 1
q
[
|f ′ (a)|qDp (a, b) + |f ′ (Mp)|q Ep (a, b)

] 1
q

+
bp − ap
4p

[Fp (a, b)]
1− 1

q
[
|f ′ (Mp)|q Gp (a, b) + |f ′ (b)|qHp (a, b)

] 1
q



256 İMDAT İŞCAN, NİHAN KALYONCU KONUK, AND MAHİR KADAKAL

where

Cp (a, b) =

∫ 1

0

It (a,Ap; 1, 1) dt, Dp (a, b) =

∫ 1

0

Jt (a,Ap; 1, 1) dt,

Ep (a, b) =

∫ 1

0

Kt (a,Ap; 1, 1) dt, Fp (a, b) =

∫ 1

0

I1−t (b, Ap; 1, 1) dt,

Gp (a, b) =

∫ 1

0

K1−t (b, Ap; 1, 1) dt, Hp (a, b) =

∫ 1

0

J1−t (b, Ap; 1, 1) dt.

Proof. Using Lemma 1 and the power mean inequality, we have∣∣∣∣∣16 [f (a) + 4f (Mp) + f (b)]−
p

bp − ap
∫ b

a

f (x)

x1−p
dx

∣∣∣∣∣
≤ bp − ap

4p

[∫ 1

0

∣∣t− 1
3

∣∣
[(1− t) ap + tAp]1−

1
p

∣∣∣f ′ ([(1− t) ap + tAp] 1p)∣∣∣ dt]

+
bp − ap
4p

[∫ 1

0

∣∣t− 2
3

∣∣
[(1− t)Ap + tbp]1−

1
p

∣∣∣f ′ ([(1− t)Ap + tbp] 1p)∣∣∣ dt]

≤ bp − ap
4p

(∫ 1

0

∣∣t− 1
3

∣∣
[(1− t) ap + tAp]1−

1
p

dt

)1− 1
q

×
(∫ 1

0

∣∣t− 1
3

∣∣
[(1− t) ap + tAp]1−

1
p

∣∣∣f ′ ([(1− t) ap + tAp] 1p)∣∣∣q)
1
q

dt

+
bp − ap
4p

(∫ 1

0

∣∣t− 2
3

∣∣
[(1− t)Ap + tbp]1−

1
p

dt

)1− 1
q

×
(∫ 1

0

∣∣t− 2
3

∣∣
[(1− t)Ap + tbp]1−

1
p

∣∣∣f ′ ([(1− t)Ap + tbp] 1p)∣∣∣q)
1
q

dt

≤ bp − ap
4p

(∫ 1

0

It (a,Ap; 1, 1) dt

)1− 1
q

×
(∫ 1

0

∣∣t− 1
3

∣∣ [(1− t) |f ′ (a)|q + t |f ′ (Mp)|q
]

[(1− t) ap + tAp]1−
1
p

) 1
q

dt

+
bp − ap
4p

(∫ 1

0

I1−t (b, Ap; 1, 1) dt

)1− 1
q

×
(∫ 1

0

∣∣t− 2
3

∣∣ [(1− t) |f ′ (Mp)|q + t |f ′ (b)|q
]

[(1− t)Ap + tbp]1−
1
p

) 1
q

dt
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=
bp − ap
4p

[∫ 1

0

It (a,Ap; 1, 1) dt

]1− 1
q

×
[
|f ′ (a)|q

∫ 1

0

Jt (a,Ap; 1, 1) dt+ |f ′ (Mp)|q
∫ 1

0

Kt (a,Ap; 1, 1) dt

] 1
q

+
bp − ap
4p

[∫ 1

0

I1−t (b, Ap; 1, 1) dt

]1− 1
q

×
[
|f ′ (Mp)|q

∫ 1

0

K1−t (b, Ap; 1, 1) dt+ |f ′ (b)|q
∫ 1

0

J1−t (b, Ap; 1, 1) dt

] 1
q

≤ bp − ap
4p

[Cp (a, b)]
1− 1

q
[
|f ′ (a)|qDp (a, b) + |f ′ (Mp)|q Ep (a, b)

] 1
q

+
bp − ap
4p

[Fp (a, b)]
1− 1

q
[
|f ′ (Mp)|q Gp (a, b) + |f ′ (b)|qHp (a, b)

] 1
q .

This completes the proof of theorem. �

Corollary 1. Under conditions of Theorem 3
i. If we take p = 1, then we obtain the following inequality for convex function:∣∣∣∣∣16

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣
≤ b− a

4

(
5

18

)1− 1
q
[
8

81
|f ′ (a)|q + 29

162

∣∣∣∣f ′(a+ b2
)∣∣∣∣q]

1
q

+
b− a
4

(
5

18

)1− 1
q
[
29

162

∣∣∣∣f ′(a+ b2
)∣∣∣∣q + 8

81
|f ′ (b)|q

] 1
q

which is the same of the inequality [6, Corollary 10] for s = 1.
ii. If we take p = −1, then we obtain the following inequality for harmonically

convex function:∣∣∣∣∣16
[
f (a) + 4f

(
2ab

a+ b

)
+ f (b)

]
− ab

b− a

∫ b

a

f (x)

x2
dx

∣∣∣∣∣
≤ b− a

4ab
[C−1 (a, b)]

1− 1
q

[
|f ′ (a)|qD−1 (a, b) +

∣∣∣∣f ′( 2ab

a+ b

)∣∣∣∣q E−1 (a, b)]
1
q

+
b− a
4ab

[F−1 (a, b)]
1− 1

q

[∣∣∣∣f ′( 2ab

a+ b

)∣∣∣∣q G−1 (a, b) + |f ′ (b)|qH−1 (a, b)]
1
q

.

Theorem 4. Let f : I ⊂ (0,∞)→ R be a differentiable mapping on I◦ (the interior
of I) and a, b ∈ I◦ with a < b and p ∈ R\ {0}. If f ′ ∈ L[a, b] and |f ′|q is p-convex
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on I for q > 1, 1r +
1
q = 1, then∣∣∣∣∣16 [f (a) + 4f (Mp) + f (b)]−

p

bp − ap
∫ b

a

f (x)

x1−p
dx

∣∣∣∣∣
≤ bp − ap

4p

[
N

1
r
p,r (a, b)A

1
q
(
|f ′ (a)|q , |f ′ (Mp)|q

)
+O

1
r
p,r (a, b)A

1
q
(
|f ′ (Mp)|q , |f ′ (b)|q

)]
,

where

Np,r (a, b) =

∫ 1

0

It (a,Ap; r, r) dt,

Op,r (a, b) =

∫ 1

0

I1−t (b, Ap; r, r) dt.

Proof. From Lemma 1, Hölder’s integral inequality and the p-convexity of |f ′|q on
[a, b], we have,∣∣∣∣∣16 [f (a) + 4f (Mp) + f (b)]−

p

bp − ap
∫ b

a

f (x)

x1−p
dx

∣∣∣∣∣
≤ bp − ap

4p
N

1
r
p,r (a, b)

(∫ 1

0

∣∣∣f ′ (((1− t) ap + tAp) 1p)∣∣∣q dt) 1
q

+
bp − ap
4p

O
1
r
p,r (a, b)

(∫ 1

0

∣∣∣f ′ (((1− t)Ap + tbp) 1p)∣∣∣q dt) 1
q

≤ bp − ap
4p

[
N

1
r
p,r (a, b)

(∫ 1

0

(
(1− t) |f ′ (a)|q + t |f ′ (Mp)|q

)
dt

) 1
q

+ O
1
r
p,r (a, b)

(∫ 1

0

(
(1− t) |f ′ (Mp)|q + t |f ′ (b)|q

)
dt

) 1
q

]

=
bp − ap
4p

[
N

1
r
p,r (a, b)

(
|f ′ (a)|q + |f ′ (Mp)|q

2

)
+O

1
r
p,r (a, b)

(
|f ′ (Mp)|q + |f ′ (b)|q

2

)]
=

bp − ap
4p

[
N

1
r
p,r (a, b)Mq (|f ′ (a)| , |f ′ (Mp)|) +O

1
r
p,r (a, b)Mq (|f ′ (Mp)| , |f ′ (b)|)

]
.

This completes the proof of theorem. �
Corollary 2. Under conditions of Theorem 4,
i. If we take p = 1, then we obtain the following inequality for convex function:∣∣∣∣∣16

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣
≤ b− a

12

[
1 + 2r+1

3 (r + 1)

] 1
r
[
Mq

(
|f ′ (a)| ,

∣∣∣∣f ′(a+ b2
)∣∣∣∣)+Mq

(∣∣∣∣f ′(a+ b2
)∣∣∣∣ , |f ′ (b)|)]



SIMPSON TYPE INEQUALITIES 259

which is the same as the inequality in [22, Theorem 8] for s = 1.
ii. If we take p = −1, then we obtain the following inequality for harmonically

convex function:

∣∣∣∣∣16
[
f (a) + 4f

(
2ab

a+ b

)
+ f (b)

]
− ab

b− a

∫ b

a

f (x)

x2
dx

∣∣∣∣∣
≤ b− a

4ab

[
N

1
r
−1,r (a, b)Mq (|f ′ (a)| , |f ′ (H)|) +O

1
r
−1,r (a, b)Mq (|f ′ (H)| , |f ′ (b)|)

]
.

Theorem 5. Let f : I ⊂ (0,∞)→ R be a differentiable mapping on I◦ (the interior
of I) and a, b ∈ I◦ with a < b and p ∈ R\ {0}. If f ′ ∈ L[a, b] and |f ′|q is p-convex
on I for q > 1, 1r +

1
q = 1, then

∣∣∣∣∣16 [f (a) + 4f (Mp) + f (b)]−
p

bp − ap
∫ b

a

f (x)

x1−p
dx

∣∣∣∣∣
≤ bp − ap

12p

[
1 + 2r+1

3 (r + 1)

] 1
r {[

Qp,q (a, b) |f ′ (a)|q +Rp,q (a, b) |f ′ (Mp)|q
] 1
q

+
[
Sp,q (a, b) |f ′ (b)|q + Tp,q (a, b) |f ′ (Mp)|q

] 1
q

}
,

where

Qp,q (a, b) =

∫ 1

0

Jt (a,Ap; 0, q) dt, Sp,q (a, b) =

∫ 1

0

K1−t (b, Ap; 0, q) dt,

Rp,q (a, b) =

∫ 1

0

Kt (a,Ap; 0, q) dt, Tp,q (a, b) =

∫ 1

0

J1−t (b, Ap; 0, q) dt.
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Proof. From Lemma 1, Hölder’s integral inequality and the p-convexity of |f ′|q on
[a, b], we obtain,∣∣∣∣∣16 [f (a) + 4f (Mp) + f (b)]−

p

bp − ap
∫ b

a

f (x)

x1−p
dx

∣∣∣∣∣
≤ bp − ap

4p

∫ 1

0

∣∣∣∣t− 13
∣∣∣∣
∣∣∣∣∣ 1

[(1− t) ap + tAp]1−
1
p

f ′
(
[(1− t) ap + tAp]

1
p

)∣∣∣∣∣ dt
+
bp − ap
4p

∫ 1

0

∣∣∣∣t− 23
∣∣∣∣
∣∣∣∣∣ 1

[(1− t)Ap + tbp]1−
1
p

f ′
(
[(1− t)Ap + tbp]

1
p

)∣∣∣∣∣ dt
≤ bp − ap

12p

[
1 + 2r+1

3 (r + 1)

] 1
r

(∫ 1

0

1

[(1− t) ap + tAp]q−
q
p

∣∣∣f ′ ([(1− t) ap + tMp
p

] 1
p

)∣∣∣q dt) 1
q

+
bp − ap
12p

[
1 + 2r+1

3 (r + 1)

] 1
r

(∫ 1

0

1

[(1− t)Ap + tbp]q−
q
p

∣∣∣f ′ ([(1− t)Mp
p + tb

p
] 1
p

)∣∣∣q dt) 1
q

≤ bp − ap
12p

[
1 + 2r+1

3 (r + 1)

] 1
r {[

Qp,q (a, b) |f ′ (a)|q +Rp,q (a, b) |f ′ (Mp)|q
] 1
q

+
[
Sp,q (a, b) |f ′ (b)|q + Tp,q (a, b) |f ′ (Mp)|q

] 1
q

}
.

This completes the proof of theorem. �

Corollary 3. Under conditions of Theorem 5,
i. If we take p = 1, then we obtain the following inequality for convex function:∣∣∣∣∣16

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣
≤ b− a

12

[
1 + 2r+1

3 (r + 1)

] 1
r
[
Mq

(
|f ′ (a)| ,

∣∣∣∣f ′(a+ b2
)∣∣∣∣)+Mq

(∣∣∣∣f ′(a+ b2
)∣∣∣∣ , |f ′ (b)|)]

which reduce the inequality in Corollary 2 (i).
ii. If we take p = −1, then we obtain the following inequality for harmonically

convex function:∣∣∣∣∣16
[
f (a) + 4f

(
2ab

a+ b

)
+ f (b)

]
− ab

b− a

∫ b

a

f (x)

x2
dx

∣∣∣∣∣
≤ b− a

12ab

[
1 + 2r+1

3 (r + 1)

] 1
r {[

Q−1,q (a, b) |f ′ (a)|q +R−1,q (a, b) |f ′ (H)|q
] 1
q

+
[
S−1,q (a, b) |f ′ (b)|q + T−1,q (a, b) |f ′ (H)|q

] 1
q

}
.
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Theorem 6. Let f : I ⊂ (0,∞)→ R be a differentiable mapping onI◦ (the interior
of I) and a, b ∈ I◦ with a < b and p ∈ R\ {0}. If f ′ ∈ L[a, b] and |f ′|q is p-concave
on I for q > 1, 1r +

1
q = 1, then∣∣∣∣∣16 [f (a) + 4f (Mp) + f (b)]−

p

bp − ap
∫ b

a

f (x)

x1−p
dx

∣∣∣∣∣
≤ bp − ap

4p

[
N

1
r
p,r (a, b)

∣∣∣∣∣f ′
([
3ap + bp

4

] 1
p

)∣∣∣∣∣+O 1
r
p,r (a, b)

∣∣∣∣∣f ′
([
ap + 3bp

4

] 1
p

)∣∣∣∣∣
]
.

Proof. From Lemma 1, Hölder’s integral inequality and the p-concavity of|f ′|q on
[a, b], we have,∣∣∣∣∣16 [f (a) + 4f (Mp) + f (b)]−

p

bp − ap
∫ b

a

f (x)

x1−p
dx

∣∣∣∣∣
≤ bp − ap

4p
N

1
r
p,r (a, b)

(∫ 1

0

∣∣∣f ′ (((1− t) ap + tAp) 1p)∣∣∣q dt) 1
q

+
bp − ap
4p

O
1
r
p,r (a, b)

(∫ 1

0

∣∣∣f ′ (((1− t)Ap + tbp) 1p)∣∣∣q dt) 1
q

≤ bp − ap
4p

[
N

1
r
p,r (a, b)

∣∣∣∣∣f ′
([
3ap + bp

4

] 1
p

)∣∣∣∣∣+O 1
r
p,r (a, b)

∣∣∣∣∣f ′
([
ap + 3bp

4

] 1
p

)∣∣∣∣∣
]
.

This completes the proof of theorem. �

Corollary 4. Under conditions of Theorem 6,
i. If we take p = 1, then we obtain the following inequality for concave function:∣∣∣∣∣16

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣
≤ b− a

12

[
1 + 2r+1

3 (r + 1)

] 1
r
[∣∣∣∣f ′(3a+ b4

)∣∣∣∣+ ∣∣∣∣f ′(a+ 3b4

)∣∣∣∣]
This is the same of the inequality in [6, Corollary 28] for s = 1.
ii. If we take p = −1, then we obtain the following inequality for harmonically

concave function:∣∣∣∣∣16
[
f (a) + 4f

(
2ab

a+ b

)
+ f (b)

]
− ab

b− a

∫ b

a

f (x)

x2
dx

∣∣∣∣∣
≤ b− a

4ab

[
N

1
r
−1,r (a, b)

∣∣∣∣f ′( 4ab

a+ 3b

)∣∣∣∣+O 1
r
−1,r (a, b)

∣∣∣∣f ′( 4ab

3a+ b

)∣∣∣∣] .
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3. CONCLUSION

The paper deals with Simpson type inequalities for p-convex and p-concave func-
tions. Firstly, we give a new identity for differentiable functions and get some new
integral inequalities for the p-convex and p-concave functions by using this identity.
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[17] Kunt, M. İşcan, İ., Hermite-Hadamard-Fejer type inequalities for p-convex functions, Arab
Journal of Mathematical Sciences, vol.23, pp.215-230, 2017.



SIMPSON TYPE INEQUALITIES 263
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ON THE GEOMETRY OF PSEUDO-SLANT SUBMANIFOLDS OF
A NEARLY SASAKIAN MANIFOLD

SÜLEYMAN DIRIK, MEHMET ATÇEKEN, AND ÜMİT YILDIRIM

Abstract. In this paper, we study the pseudo-slant submanifolds of a nearly
Sasakian manifold. We characteterize a totally umbilical properpseudo-slant
submanifolds and find that a necessary and suffi cient condition for such sub-
manifolds totally geodesic. Also the integrability conditions of distributions of
pseudo-slant submanifolds of a nearly Sasakian manifold are investigated.

1. Introduction

The differential geometry of slant submanifolds has shown an increasing develop-
ment since B.Y. Chen defined slant submanifolds in complex manifolds as a natural
generalization of both the invariant and anti-invariant submanifolds [3], [4]. Many
research articles have been appeared on the existence of these submanifolds in dif-
ferent knows spaces. The slant submanifolds of an almost contact metric manifolds
were defined and studied by A. Lotta [2]. After, such submanifolds were studied
by J.L Cabrerizo et. al[6], in Sasakian manifolds . Recently, in [9],[10],[11],[13]
M. Atçeken studied slant and pseudo-slant submanifold in (LCS)n−manifold and
other manifolds. The notion of semi-slant submanifolds of an almost Hermitian
manifold was introduced by N. Papagiuc [12]. Recently, A. Carrizo [5],[6] defined
and studied bi-slant immersions in almost Hermitian manifolds and simultaneously
gave the notion of pseudo-slant submanifolds in almost Hermitian manifolds. The
contact version of pseudo-slant submanifolds has been defined and studied by V.
A. Khan and M. A Khan [16].

The present paper is organized as follows.

In section 1, the notions and definitions of submanifolds of a Riemannian mani-
fold were given for later use. In this paper, we study pseudo-slant submanifolds of
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a nearly Sasakian manifold. In section 2, we review basic formulas and definitions
for a nearly Sasakian manifold and their submanifolds. In section 3, we recall the
definition and some basic results of a pseudo-slant submanifold of almost contact
metric manifold. We study characterization of totally umbilical proper-slant sub-
manifolds and find that a necessary and suffi cient condition for such submanifolds
is to be totally geodesic. In section 4, the integrability conditions of distributions
of pseudo-slant submanifolds of a nearly Sasakian manifold are investigated.

2. Preliminaries

In this section, we give some notations used throughout this paper. We recall
some necessary fact and formulas from the theory of nearly Sasakian manifolds and
their submanifolds.

Let M̃ be an (2m + 1)−dimensional almost contact metric manifold with an
almost contact metric structure (ϕ, ξ, η, g), that is, ϕ is a (1, 1) tensor field , ξ is a
vector field; η is 1-form and g is a compatible Riemanian metric such that

ϕ2X = −X + η(X)ξ, (2.1)

ϕξ = 0, η(ξ) = 1, η ◦ ϕ = 0, η(X) = g(X, ξ) (2.2)

and

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ), g(ϕX, Y ) = −g(X,ϕY ) (2.3)

for any vector fields X,Y ∈ Γ(TM̃), where Γ(M̃) denotes the set of all vector fields
on M̃ . If in addition to above relations,

(∇̃Xϕ)Y = g(X,Y )ξ − η(Y )X (2.4)

then M̃ is called a Sasakian manifold, where ∇̃ is the Levi-Civita connections of g.

The almost contact metric manifold M̃ is called a nearly Sasakian manifold if it
satisfy the following condition

(∇̃Xϕ)Y + (∇̃Y ϕ)X = 2g(X,Y )ξ − η(Y )X − η(X)Y (2.5)

for any X,Y ∈ Γ(TM̃).

Now, let M be a submanifold of an almost contact metric manifold M̃ , we
denote the induced connections on M and the normal bundle T⊥M by ∇ and ∇⊥,
respectively, then the Gauss and Weingarten formulas are given by

∇̃XY = ∇XY + h(X,Y ) (2.6)

and

∇̃XV = −AVX +∇⊥XV, (2.7)
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for any X,Y ∈ Γ(TM), V ∈ Γ(T⊥M), where h is the second fundamental form
and AV is the Weingarten map associated with V as

g(AVX,Y ) = g(h(X,Y ), V ). (2.8)

for all X,Y ∈ Γ(TM) and V ∈ Γ(T⊥M).

The mean curvature vector H of M is given by

H =
1

m

m∑
i=1

h(ei, ei), (2.9)

where m is the dimension of M and {e1, e2, ..., em} is a local orthonormal frame of
M . A submanifold M of a Riemannian manifold M̃ is said to be totally umbilical
if

h(X,Y ) = g(X,Y )H, (2.10)

for any X,Y ∈ Γ(TM). A submanifold M is said to be totally geodesic if h = 0
and M is said to be minimal if H = 0.

Let M be a submanifold of an almost contact metric manifold M̃. Then for any
X ∈ Γ(TM), we can write

ϕX = TX +NX, (2.11)

where TX is the tangential component and NX is the normal component of ϕX.
Similarly, for V ∈ Γ(T⊥M), we can write

ϕV = tV + nV, (2.12)

where tV is the tangential component and nV is the normal component of ϕV.

Thus by using (2.1), (2.2), (2.11) and (2.12 ), we obtain

T 2 + tN = −I + η ⊗ ξ, NT + nN = 0, (2.13)

Tt+ tn = 0, n2 +Nt = −I (2.14)

and

Tξ = 0 = Nξ, η ◦ T = 0 = η ◦N. (2.15)

Furthermore, for any X,Y ∈ Γ(TM), we have g(TX, Y ) = −g(X,TY ) and
V,U ∈ Γ(T⊥M), we get g(U, nV ) = −g(nU, V ). These show that T and n are also
skew-symmetric tensor fields. Moreover, for any X ∈ Γ(TM) and V ∈ Γ(T⊥M),
we have

g(NX,V ) = −g(X, tV ) (2.16)

which gives the relation between N and t.
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The covariant derivatives of the tensor field T, N, t and n are, respectively,
defined by

(∇XT )Y = ∇XTY − T∇XY, (2.17)

(∇XN)Y = ∇⊥XNY −N∇XY, (2.18)

(∇Xt)V = ∇XtV − t∇⊥XV (2.19)

and

(∇Xn)V = ∇⊥XnV − n∇⊥XV (2.20)

for any X,Y ∈ Γ(TM) and V ∈ Γ(T⊥M).

Now, for any X,Y ∈ Γ(TM), let us denote the tangential and normal parts of
(∇̃Xϕ)Y by PXY and FXY , respectively. Then we decompose

(∇̃Xϕ)Y = PXY + FXY (2.21)

thus, by an easy computation, we obtain the formulae

PXY = (∇XT )Y −ANYX − th(X,Y ) (2.22)

and

FXY = (∇XN)Y + h(X,TY )− nh(X,Y ). (2.23)

Similarly, for any V ∈ Γ(T⊥M), denoting tangential and normal parts of (∇̃Xϕ)V
by PXV and FXV, respectively, we obtain

PXV = (∇Xt)V −AnVX + TAVX (2.24)

and

FXV = (∇Xn)V + h(tV,X) +NAVX. (2.25)

Now, for any X,Y ∈ Γ(TM), from (2.5), we have

(∇̃Xϕ)Y + (∇̃Y ϕ)X = 2g(X,Y )ξ − η(Y )X − η(X)Y (2.26)

that is,

(∇̃Xϕ)Y + (∇̃Y ϕ)X = ∇̃XϕY − ϕ∇̃XY + ∇̃Y ϕX − ϕ∇̃YX.
By using (2.6), (2.7), (2.11) and (2.12), we get

(∇̃Xϕ)Y + (∇̃Y ϕ)X = ∇̃XTY + ∇̃XNY − ϕ(∇XY + h(X,Y ))

+∇̃Y TX + ∇̃YNX − ϕ(∇YX + h(X,Y )).

= ∇XTY + h(X,TY )−ANYX +∇⊥XNY
−T∇XY −N∇XY − th(X,Y )− nh(X,Y )

+∇Y TX + h(Y, TX)−ANXY +∇⊥YNX − T∇YX
−N∇YX − th(X,Y )− nh(X,Y ). (2.27)
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Making use of (2.27) and (2.26), we obtain

∇XTY + h(X,TY )−ANYX +∇⊥XNY − T∇XY −N∇XY
−th(X,Y )− nh(X,Y ) +∇Y TX + h(Y, TX)−ANXY
+∇⊥YNX − T∇YX −N∇YX − th(X,Y )− nh(X,Y )

−2g(X,Y )ξ + η(Y )X + η(X)Y = 0.

By taking tangential and normal parts of the above equation, respectively, we have
equation

(∇XT )Y + (∇Y T )X = ANXY +ANYX + 2th(X,Y )

+2g(X,Y )ξ − η(Y )X − η(X)Y (2.28)

and

(∇XN)Y + (∇YN)X = −h(X,TY )− h(Y, TX) + 2nh(X,Y ) . (2.29)

On the other hand, for Y = ξ in (2.5) and by using (2.2), (2.6) and (2.7), we see

T [X, ξ] = (∇ξT )X − T∇ξX − 2th(X, ξ)−ANXξ +X − η(X)ξ (2.30)

and

N [X, ξ] = (∇ξN)X −N∇ξX − 2nh(X, ξ) + h(TX, ξ). (2.31)

In contact geometry, A. Lotta introduced slant submanifolds as follows [2]:

Definition 2.1. Let M be a submanifold of an almost contact metric manifold
(M̄, ϕ, ξ, η, g). Then M is said to be a slant submanifold if the angle θ(X) between
ϕX and TM (p) is constant at any point p ∈ M for any X linearly independent
of ξ. Thus the invariant and anti-invariant submanifolds are special class of slant
submanifolds with slant angles θ = 0 and θ = π

2 , respectively. If the slant angle θ is
neither zero nor π2 , then slant submanifold is said to be proper slant submanifold.

If M is a slant submanifold of an almost contact metric manifold, then the
tangent bundle TM of M can be decomposed as

TM = Dθ ⊕ ξ,

where ξ denotes the distribution spanned by the structure vector field ξ and Dθ is
the complementary distribution of ξ in TM, known as the slant distribution on M.

For a slant submanifold M of an almost contact metric manifold M̃, the normal
bundle T⊥M of M is decomposed as

T⊥M = N(TM)⊕ µ

where µ is the invariant normal subbundle with respect to ϕ orthogonal to N(TM).



PSEUDO-SLANT SUBMANIFOLDS OF A NEARLY SASAKIAN MANIFOLD 269

In an almost contact metric manifold. In fact, J. L Cabrerizo obtained the fol-
lowing theorem[6].

Theorem 2.2. [6]. Let M be a slant submanifold of an almost contact metric
manifold M̃ such that ξ ∈ Γ(TM). Then M is slant submanifold if and only if
there exists a constant λ ∈ [0, 1] such that

T 2 = −λ(I − η ⊗ ξ) (2.32)

Furthermore, the slant angle θ of M satisfies λ = cos2θ.

Hence, for a slant submanifold M of an almost contact metric manifold M̃, the
following relations are consequences of the above theorem.

g(TX, TY ) = cos2 θ {g(X,Y )− η(X)η(Y )} (2.33)

and

g(NX,NY ) = sin2 θ {g(X,Y )− η(X)η(Y )} . (2.34)

for any X,Y ∈ Γ(TM).

Lemma 2.3. [6]. Let Dθ be a distribution on M , orthogonal to ξ. Then, Dθ is a
slant if and only if there is a constant λ ∈ [0, 1] such that

(TP2)
2X = −λX (2.35)

for all X ∈ Γ(Dθ), where P2 denotes the orthogonal projection on Dθ. Furthermore,
the slant angle θ of M satisfies λ = cos2 θ.

3. Pseudo-slant submanifolds of a nearly Sasakian manifold

In this section, we will obtain the integrability condition of the distributions of
pseudo-slant submanifold of a nearly Sasakian manifold.

Definition 3.1. We say thatM is a pseudo-slant submanifold of an almost contact
metric manifold (M̄, ϕ, ξ, η, g) if there exists two orthogonal distributions Dθ and
D⊥ on M such that
i. TM admits the orthogonal direct decomposition TM = D⊥ ⊕Dθ, ξ ∈ Γ(Dθ)
ii. The distribution D⊥ is anti-invariant(totally-real) i.e., ϕD⊥ ⊂ (T⊥M),
iii. The distribution Dθ is a slant with slant angle θ 6= 0, π2 , that is, the angle
between Dθ and ϕ(Dθ) is a constant θ[16].

From the definition, it is clear that if θ = 0, then the pseudo-slant submanifold
is a semi-invariant submanifold. On the other hand, if θ = π

2 , submanifold becomes
an anti- invariant.
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We suppose that M is a pseudo-slant submanifold of an almost contact metric
manifold M̃ and we denote the dimensions of distributions D⊥and Dθ by d1 and
d2, respectively, then we have the following cases:
i. If d2 = 0 then M is an anti-invariant submanifold,
ii. If d1 = 0 and θ = 0, then M is an invariant submanifold,
iii. If d1 = 0 and θ ∈ (0, π2 )then M is a proper slant submanifold
with slant angle θ,
iv. If θ = π

2 , then M is an anti-invariant submanifold,

v. If d1.d2 6= 0 and θ = 0, then M̃ is a semi-invariant submanifold,
vi. If d1.d2 6= 0 and θ ∈ (0, π2 ), then M is a proper pseudo-slant submanifold.

If we denote the projections on D⊥and Dθ by P1 and P2, respectively, then for
any vector field X ∈ Γ(TM), we can write

X = P1X + P2X + η(X)ξ. (3.1)

On the other hand, applying ϕ on both sides of equation (3.1), we have

ϕX = ϕP1X + ϕP2X

and

TX +NX = NP1X + TP2X +NP2X, TP1X = 0, (3.2)

from which

TX = TP2X, NX = NP1X +NP2X

and

ϕP1X = NP1X, TP1X = 0, ϕP2X = TP2X +NP2X (3.3)

TP2X ∈ Γ(Dθ).

For a pseudo-slant submanifold M of a nearly Sasakian manifold M̃ , the normal
bundle T⊥M of a pseudo-slant submanifold M is decomposable as

T⊥M = ϕ(D⊥)⊕N(Dθ)⊕ µ ϕ(D⊥) ⊥ N(Dθ) (3.4)

where µ is an invariant subbundle of T⊥M .
Now, we construct an example of a pseudo-slant submanifold in an almost contact

metric manifold.

Example 3.2. Let M be a submanifold of R7 defined by

χ(u, v, s, z, w) = (
√

3u, v, v sin θ, v cos θ, s cos z,−s cos z, w).

We can easily to see that the tangent bundle ofM is spanned by the tangent vectors

e1 =
√

3
∂

∂x1
, e2 =

∂

∂y1
+ sin θ

∂

∂x2
+ cos θ

∂

∂y2
, e5 = ξ =

∂

∂w
,

e3 = cos z
∂

∂x3
− cos z

∂

∂y3
, e4 = −s sin z

∂

∂x3
+ s sin z

∂

∂y3
.
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For the almost contact structure of ϕ of R7, choosing

ϕ(
∂

∂xi
) =

∂

∂yi
, ϕ(

∂

∂yj
) = − ∂

∂xj
, ϕ(

∂

∂w
) = 0, 1 ≤ i, j ≤ 3

and ξ = ∂
∂w , η = dw. For any vector field W = µi

∂
∂xi

+ νj
∂
∂yj

+ λ ∂
∂w ∈ T (R7),

then we have

ϕZ = µi
∂

∂yj
− νj

∂

∂xi
, g(ϕZ,ϕZ) = µ2i + ν2j ,

g(Z,Z) = µ2i + ν2j + λ2, η(Z) = g(Z, ξ) = λ

and

ϕ2Z = −µi
∂

∂xi
− νj

∂

∂yj
− λ ∂

∂w
+ λ

∂

∂w
= −Z + η(Z)ξ

for any i, j = 1, 2, 3. It follows that g(ϕZ,ϕZ) = g(Z,Z)− η2(Z). Thus (ϕ, ξ, η, g)
is an almost contact metric structure on R7. Thus we have

ϕe1 =
√

3
∂

∂y1
, ϕe2 = − ∂

∂x1
+ sin θ

∂

∂y2
− cos θ

∂

∂x2

ϕe3 = cos z
∂

∂y3
+ cos z

∂

∂x3
, ϕe4 = −s sin z

∂

∂y3
− s sin z

∂

∂x3
.

By direct calculations, we can infer Dθ = span{e1, e2} is a slant distribution with
slant angle cos θ = g(e2,ϕe1)

‖e2‖‖ϕe1‖ =
√
2
2 , θ = 45◦. Since

g(ϕe3, e1) = g(ϕe3, e2) = g(ϕe3, e4) = g(ϕe3, e5) = 0,

g(ϕe4, e1) = g(ϕe4, e2) = g(ϕe4, e3) = g(ϕe4, e5) = 0.

Thus e3 and e4 are orthogonal to M , D⊥ = span{e3, e4} is an anti-invariant dis-
tribution. Thus M is a 5-dimensional proper pseudo-slant submanifold of R7 with
its usual almost contact metric structure.

Theorem 3.3. Let M be a pseudo-slant of a nearly Sasakian manifold M̃. Then
the anti-invariant distribution D⊥ is integrable if and only if

ANXY = ANYX (3.5)

for any X,Y ∈ Γ (D⊥).

Proof. By using (2.3), (2.6) and (2.8), we can write

2g(AϕYX,Z) = g(h(Z,X), ϕY ) + g(h(Z,X), ϕY )

= g(∇̃XZ,ϕY ) + g(∇̃ZX,ϕY )

= −g(ϕ∇̃XZ, Y )− g(ϕ∇̃ZX,Y )

= −g(∇̃XϕZ, Y )− g(∇̃ZϕX, Y )

+g((∇̃Xϕ)Z + (∇̃Zϕ)X,Y )
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for any X,Y ∈ Γ (D⊥) and Z ∈ Γ(TM). By using (2.5), (2.7) and (2.16) we have

2g(ANYX,Z) = −g(∇̃XϕZ, Y )− g(∇̃ZϕX, Y )

+g(2g(Z,X)ξ − η(Z)X − η(X)Z, Y )

= g(∇̃XY, ϕZ) + g(ANXZ, Y )− η(Z)g(X,Y )

= g(∇̃XY, ϕZ) + g(ANXY,Z)− g(X,Y )g(ξ, Z)

= g(∇XY, TZ) + g(h(X,Y ), NZ)

+g(ANXY, Z)− g(X,Y )g(ξ, Z)

= −g(T∇XY,Z) + g(−th(X,Y ), Z)

+g(ANXY,Z)− g(X,Y )g(ξ, Z).

This implies that

2ANYX = ANXY − T∇XY − th(X,Y )− g(X,Y )ξ (3.6)

interchanging X by Y in (3.6) , we have

2ANXY = ANYX − T∇YX − th(X,Y )− g(X,Y )ξ (3.7)

then from (3.6) and (3.7), we can derive.

2ANYX − 2ANXY = ANXY −ANYX + T∇YX − T∇XY
= ANXY −ANYX + T (∇YX −∇XY )

here
3(ANYX −ANXY ) = T [X,Y ] .

For [X,Y ] ∈ Γ(D⊥), ϕ [X,Y ] = N [X,Y ]. Since the tangent component of
ϕ [X,Y ] is the zero, the anti- invariant distribution D⊥ is integrability if and only
if (3.5) is satisfied. �

Theorem 3.4. Let M be a pseudo-slant of a nearly Sasakian manifold M̃. Then
the anti-invariant distribution D⊥ is integrable if and only if

ANXY + T∇XY + th(Y,X) + g(X,Y )ξ = 0 (3.8)

for any X,Y ∈ Γ (D⊥).

Proof. For any X,Y ∈ Γ (D⊥), from (2.5), we have

(∇̃Xϕ)Y + (∇̃Y ϕ)X = 2g(X,Y )ξ

which is equivalent to

∇̃XϕY − ϕ∇̃XY + ∇̃Y ϕX − ϕ∇̃YX − 2g(X,Y )ξ = 0.

By using (2.6), (2.7), (2.11) and (2.12), we can write

−ANYX +∇⊥XNY − T∇XY −N∇XY − 2th(Y,X)−ANXY
+∇⊥YNX − T∇YX −N∇YX − 2nh(Y,X)− 2g(X,Y )ξ = 0.
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Then from the tangent components of the last equation and (3.5), we conclude that

2ANXY + T∇XY + T∇YX + 2th(Y,X) + 2g(X,Y )ξ = 0,

which implies

T [X,Y ] = 2ANXY + 2T∇XY + 2th(Y,X) + 2g(X,Y )ξ.

This proves our assertion. �

Theorem 3.5. Let M be a pseudo-slant submanifold of a nearly Sasakian manifold
M̃ . Then the slant distribution Dθ is integrable if and only if

−2(∇YN)X +∇⊥YNX −∇⊥XNY + h(Y, TX)− h(X,TY ) + 2nh(X,TY ) ∈ µ⊕N(Dθ)

for any Y,X ∈ Γ(Dθ).

Proof. For any Y,X ∈ Γ(Dθ) and Z ∈ Γ(D⊥), we have

g([Y,X] , Z) = g(∇̃YX,Z)− g(∇̃XY, Z)

= g(ϕ∇̃YX,ϕZ)− g(ϕ∇̃XY, ϕZ).

Since of η(Z) = 0 and ϕZ = NZ for any Z ∈ Γ(D⊥), we obtain

g([Y,X] , Z) = g(∇̃Y ϕX,NZ)− g( ∇̃XϕY,NZ)

+g((∇̃Xϕ)Y − (∇̃Y ϕ)X,NZ)

= g(∇̃Y ϕX,NZ)− g(∇̃XϕY,NZ)

+g((∇̃Xϕ)Y + (∇̃Y ϕ)X,NZ)− 2g((∇̃Y ϕ)X,NZ).

By using (2.5) in this equation, we have

g([Y,X] , Z) = g(∇̃Y ϕX,NZ)− g(∇̃XϕY,NZ)− 2g((∇̃Y ϕ)X,NZ)

+g(2g(Y,X)ξ − η(Y )X − η(X)Y,NZ).

Also using (2.11) in this equation, we have

g([Y,X] , Z) = g(∇̃Y TX,NZ) + g(∇̃YNX,NZ)− g(∇̃XTY,NZ)

−g(∇̃XNY,NZ)− 2g((∇̃Y ϕ)X,NZ).

From the Gauss and Weingarten formulas, the above equation takes the form

g([Y,X] , Z) = −2g((∇̃Y ϕ)X,NZ) + g(∇⊥YNX,NZ)− g(∇⊥XNY,NZ)

+g(h(Y, TX), NZ)− g(h(X,TY ), NZ). (3.9)

Substituting 2g((∇̃Y φ)X,NZ) into the (3.9), we get

2g((∇̃Y ϕ)X,NZ) = 2g((∇Y T )X −ANXY − th(Y,X), NZ)

+2g((∇YN)X + h(Y, TX)− nh(X,TY ), NZ)

= 2g((∇YN)X + h(Y, TX)− nh(X,TY ), NZ). (3.10)
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Substituting (3.10) in the equation (3.9), we have

g([Y,X] , Z) = g(−2(∇YN)X − 2h(Y, TX) + 2nh(X,TY ), NZ)

+g(∇⊥YNX −∇⊥XNY + h(Y, TX)− h(X,TY ), NZ),

= g(−2(∇YN)X +∇⊥YNX −∇⊥WNY
+h(Y, TX)− h(X,TY ) + 2nh(X,TY ), NZ).

Thus we conclude [Y,X] ∈ Γ(Dθ) if and only if

−2(∇YN)X+∇⊥YNX−∇⊥XNY +h(Y, TX)−h(X,TY )+2nh(X,TY ) ∈ µ⊕N(Dθ).

�

Theorem 3.6. Let M be a pseudo-slant submanifold of a nearly Sasakian manifold
M̃. Then the slant distribution Dθ is integrable if and only if

P1{(∇Y T )X +∇XTY − T∇YX −ANXY −ANYX
−2th(X,Y ) + η(Y )X + η(X)Y } = 0 (3.11)

for any X,Y ∈ Γ(Dθ).

Proof. For any X,Y ∈ Γ(Dθ) and we denote the projections on D⊥ and Dθ by P1
and P2, respectively, then for any vector fields X,Y ∈ Γ(Dθ), by using equation
(2.5), we obtain

(∇̃Xϕ)Y + (∇̃Y φ)X = 2g(X,Y )ξ − η(Y )X − η(X)Y,

that is,

∇̃XϕY − ϕ∇̃XY + ∇̃Y ϕX − ϕ∇̃YX = 2g(X,Y )ξ − η(Y )X − η(X)Y.

By using equations (2.6), (2.7), (2.11) and (2.12), we can write

∇XTY + h(X,TY )−ANYX +∇⊥XNY − T∇XY −N∇XY
−th(X,Y )− nh(X,Y ) +∇Y TX + h(Y, TX)−ANXY
+∇⊥YNX − T∇YX −N∇YX − th(X,Y )− nh(X,Y )

−2g(X,Y )ξ + η(Y )X + η(X)Y = 0

From the tangential components of the last equation, we conclude that

∇XTY − T∇XY + (∇Y T )X −ANXY −ANYX
−2th(X,Y )− 2g(X,Y )ξ + η(Y )X + η(X)Y = 0

which implies that

T [X,Y ] = ∇XTY − T∇YX + (∇Y T )X −ANXY −ANYX
−2th(X,Y )− 2g(X,Y )ξ + η(Y )X + η(X)Y. (3.12)

Applying P1 to (3.12), we get (3.11) �
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Theorem 3.7. Let M be a proper pseudo-slant submanifold of a nearly Sasakian
manifold M̃ . Then Dθ is integrable if and only if

2g(∇XY,Z) =
{
g(ANZX,TY ) + g(ANZY, TX) + g(∇⊥XNY,NZ) + g(∇⊥YNX,NZ)

}
for any X,Y ∈ Γ(Dθ) and Z ∈ Γ(D⊥).

Proof. For any X,Y ∈ Γ(Dθ) and Z ∈ Γ(D⊥), by using (2.3), we have

g(∇XY,Z) = g(∇̃XY,Z) = g(ϕ∇̃XY, ϕZ) + η(∇̃XY )η(Z).

Since η(Z) = 0, we get

g(∇XY,Z) = g(ϕ∇̃XY,NZ),

from which
g(∇XY,Z) = g(∇̃XϕY,NZ)− g((∇̃Xϕ)Y,NZ).

From the Gauss and Weingarten formulas and structure equation (2.5), we get

g(∇XY,Z) = g(∇̃XTY,NZ) + g(∇̃XNY,NZ)− g((∇̃Xϕ)Y,NZ)

= g(h(X,TY ), NZ) + g(∇⊥XNY,NZ) + g((∇̃Y ϕ)X,NZ)

−2g(X,Y )g(ξ,NZ) + η(X)g(Y,NZ) + η(Y )g(X,NZ)

= g(h(X,TY ), NZ) + g(∇⊥XNY,NZ) + g((∇̃Y ϕ)X,NZ)(3.13)

Interchanging X by Y in (3.13), we have

g(∇YX,Z) = g(h(Y, TX), NZ) + g(∇⊥YNX,NZ) + g((∇̃Xϕ)Y,NZ). (3.14)

From (3.13) and (3.14), we can derive

g(∇XY, Z) + g(∇YX,Z) = g(h(X,TY ), NZ) + g(∇⊥XNY,NZ) + g((∇̃Y ϕ)X,NZ)

+g(h(Y, TX), NZ) + g(∇⊥YNX,NZ) + g((∇̃Xϕ)Y,NZ)

= g(h(X,TY ), NZ) + g(h(Y, TX), NZ)

+g(∇⊥YNX,NZ) + g(∇⊥XNY,NZ)

+g((∇̃Y ϕ)X + (∇̃Xϕ)Y,NZ)

By using (2.5), we obtain

g(∇XY, Z) + g(∇YX,Z) = g(h(X,TY ), NZ) + +g(h(Y, TX), NZ)

+g(∇⊥YNX,NZ) + g(∇⊥XNY,NZ)

Using the property of Lie bracket, we derive

2g(∇XY, Z) + g([Y,X] , Z) = g(h(X,TY ), NZ) + g(h(Y, TX), NZ)

+g(∇⊥YNX,NZ) + g(∇⊥XNY,NZ),
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which implies that

2g(∇XY,Z) =
{
g(ANZX,TY ) + g(ANZY, TX) + g(∇⊥XNY,NZ) + g(∇⊥YNX,NZ)

}
.

This proves our assertion.

Theorem 3.8. Let M be a totally umbilical proper pseudo-slant submanifold of a
nearly Sasakian manifold M̃ . Then the endomorphism T is parallel on M if and
only if M is anti-invariant submanifold of M̃ .

Proof. If T is parallel, then from (2.10) and (2.28), we have

ANXX + th(X,X) + g(X,X)ξ − η(X)X = 0 (3.15)

Interchanging X by TX in (3.15), we drive

ANTXTX + th(TX, TX) + g(TX, TX)ξ = 0. (3.16)

Taking the inner product of (3.16) by ξ, we get

0 = g(ANTXTX + th(TX, TX) + g(TX, TX)ξ, ξ)

= g(h(TX, ξ), NTX) + g(TX, TX)

= g(g(TX, ξ)H,NTX) + g(TX, TX)

= g(TX, TX) = cos2 θ{g(X,X)− η(X)η(X)}
for any vector field X on M . This implies that M is an anti-invariant submanifold.
If M is an anti-invariant submanifold, then it is obvious that ∇T = 0. �

Theorem 3.9. Let M be totally umbilical proper pseudo-slant submanifold of a
nearly Sasakian manifold M̃. Then M is a totally geodesic submanifold if H,
∇⊥XH ∈ Γ(µ).

Proof. For any X,Y ∈ Γ(TM), we have

∇̃XϕY = (∇̃Xϕ)Y + ϕ∇̃XY. (3.17)

Making use of (2.6), (2.7), (2.10), (2.11) and (3.17) equation takes the form

∇XTY + g(X,TY )H −ANYX +∇⊥XNY = (∇̃Xϕ)Y + T∇XY
+N∇XY + g(X,Y )ϕH.

Taking the inner product with ϕH the last equation, we obtain

g(∇⊥XNY,ϕH) = g((∇̃Xϕ)Y, ϕH) + g(N∇XY, ϕH) + g(X,Y ) ‖H‖2

by using (2.7), we get

g(∇̃XNY,ϕH) = g((∇̃Xϕ)Y, ϕH) + g(X,Y ) ‖H‖2 . (3.18)

In same way, we have

g(∇̃YNX,ϕH) = g((∇̃Y ϕ)X,ϕH) + g(X,Y ) ‖H‖2 . (3.19)
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Then from (3.18) and (3.19), we can derive

g(∇̃XNY + ∇̃YNX,ϕH) = g((∇̃Xϕ)Y + (∇̃Y ϕ)X,ϕH) + 2g(X,Y ) ‖H‖2 .
From (2.5), we obtain

g(∇̃XNY + ∇̃YNX,ϕH) = g(2g(X,Y )ξ − η(Y )X − η(X)Y, ϕH) + 2g(X,Y ) ‖H‖2 .
Hence

g(∇̃XNY + ∇̃YNX,ϕH) = 2g(X,Y ) ‖H‖2 . (3.20)

Now, for any X ∈ Γ(TM), we have

∇̃XϕH = (∇̃Xϕ)H + ϕ∇̃XH
by means of (2.6), (2.7), (2.11), (2.12), ( 2.24) and (2.25), we obtain

−AϕHX +∇⊥XϕH = PXH + FXH − TAHX −NAHX + n∇⊥XH. (3.21)

Taking the inner product with NY and taking into account that n∇⊥XH ∈ Γ(µ),
we see that

g(∇⊥XϕH,NY ) = g(FXH,NY )− g(NAHX,NY ). (3.22)

From (2.8), (2.10), (2.34) and (3.22), we obtain

g(∇⊥XϕH,NY ) = − sin2 θ
{
g(X,Y ) ‖H‖2 − η(AHX)η(Y )

}
+g(FXH,NY ).

Since ∇ is metric connection, NY and ϕH are mutually orthogonal, by using (2.2),
(2.7), (2.8) and (2.10), we get

g(∇̃XNY,ϕH) = sin2 θ {g(X,Y )− η(X)η(Y )} ‖H‖2

−g(FXH,NY ). (3.23)

Similarly, we have

g(∇̃YNX,ϕH) = sin2 θ {g(X,Y )− η(X)η(Y )} ‖H‖2

−g(FYH,NX). (3.24)

From (3.23) and (3.24), we obtain

g(∇̃XNY + ∇̃YNX,ϕH) = 2 sin2 θ {g(X,Y )− η(X)η(Y )} ‖H‖2

−g(FXH,NY )− g(FYH,NX). (3.25)

Thus (3.20) and (3.25) imply

2g(X,Y ) ‖H‖2 = 2 sin2 θ {g(X,Y )− η(X)η(Y )} ‖H‖2

−g(FXH,NY )− g(FYH,NX).

Thus we have

cos2 θg(X,Y ) ‖H‖2 + sin2 θη(X)η(Y ) ‖H‖2 = −1

2
{g(FXH,NY ) + g(FYH,NX)} .
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In view of (2.20) and (2.25) the fact that H ∈ Γ(µ), then the above equation takes
the form

cos2 θg(X,Y ) ‖H‖2 + sin2 θη(X)η(Y ) ‖H‖2 = − sin2 θg(X,Y ) ‖H‖2

+ sin2 θη(X)η(Y ) ‖H‖2 . (3.26)
From (3.26), we conclude that g(X,Y ) ‖H‖2 = 0, ∀X,Y ∈ Γ(TM). Since M is a
proper-slant, we obtain H = 0. This tells us that M is totally geodesic in M̃. �

�
Theorem 3.10. Let M be a totally umbilical pseudo-slant submanifold of a nearly
Sasakian manifold M̃ . Then at least one of the following statements is true;
i. dim(D⊥) = 1,
ii. H ∈ Γ(µ),
iii. M is a proper pseudo-slant submanifold.

Proof. For any X ∈ Γ(D⊥) from (2.5), we have

(∇̃Xϕ)X = g(X,X)ξ,

or,

∇̃XNX − ϕ(∇XX + h(X,X))− ‖X‖2 ξ = 0.

From the last equation, we have

−ANXX +∇⊥XNX −N∇XX − th(X,X)− nh(X,X)− ‖X‖2 ξ = 0.

The tangential components of (3.27), we obtain

ANXX + th(X,X) + ‖X‖2 ξ = 0

Taking the inner product by Y ∈ Γ(D⊥), we have

g(ANXX + th(X,X), Y ) = 0.

This implies that

g(h(X,Y ), NX) + g(th(X,X), Y ) = 0.

Since M is totally umbilical submanifold, we obtain

g(g(X,Y )H,NX) + g(g(X,X)tH, Y ) = 0

or,

g(X,Y )g(H,NX) + g(X,X)g(tH, Y ) = 0,

which implies that

g(tH, Y )X − g(tH,X)Y = 0.

Here, tH is either zero or X and Y are linearly dependent. If tH 6= 0, then the
vectors X and Y are linearly dependent and dim(D⊥) = 1.
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On the other hand, tH = 0, i.e., H ∈ Γ(µ). Since dim (Dθ) 6= 0, M is a
pseudo-slant submanifold. Since θ 6= 0 and d1.d2 6= 0, M is a proper pseudo-slant
submanifold. �

Theorem 3.11. Let M be totally umbilical proper pseudo-slant submanifold of a
nearly Sasakian manifold M̃. Then following conditions are equivalent
i. H ∈ Γ(µ),
ii. ϕ2X = −∇TXξ ,
iii. M is an anti-invariant submanifold,
for any X ∈ Γ(TM).

Proof. For any X ∈ Γ(TM), from (2.5), we have

(∇̃Xϕ)X = g(X,X)ξ − η(X)X.

By means of (2.6), (2.7), (2.11) and (2.12), we obtain

0 = ∇̃XTX + ∇̃XNX − ϕ(∇XX + h(X,X))− g(X,X)ξ + η(X)X

= ∇XTX + h(X,TX)−ANXX +∇⊥XNX − T∇XX −N∇XX
−th(X,X)− nh(X,X)− g(X,X)ξ + η(X)X. (3.27)

The tangential components of (3.27), we obtain

∇XTX − T∇XX − th(X,X)−ANXX − g(X,X)ξ + η(X)X = 0.

Since M is a totally umbilical submanifold, we can derive ANXX = g(H,NX)X,
then we have

∇XTX − T∇XX − g(X,X)tH − g(H,NX)X

−g(X,X)ξ + η(X)X = 0. (3.28)

If H ∈ Γ(µ), then from (3.28), we conclude that

∇XTX − T∇XX − g(X,X)ξ + η(X)X = 0. (3.29)

Taking the inner product of (3.29) by ξ, we get

g(∇XTX, ξ) = g(X,X)− η2(X). (3.30)

Interchanging X by TX in (3.30) and making use of (2.33), we derive

g(∇TXT 2X, ξ) = g(TX, TX),

or,

g(∇TXξ, T 2X) = − cos2 θg(φX,ϕX),

g(∇TXξ,− cos2 θ(X − η(X)ξ)) = − cos2 θg(ϕX,ϕX),

that is,

cos2 θ{g(ϕX,ϕX)− g(∇TXξ, (X − η(X)ξ)} = 0.
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Since M is a proper pseudo-slant submanifold, we have

g(ϕX,ϕX)− g(∇TXξ, (X − η(X)ξ)) = 0,

that is,

g(ϕX,ϕX)− g(∇TXξ,X) + η(X)g(∇TXξ, ξ) = 0. (3.31)

Taking the covariant derivative of above equation with respect to TX for any X ∈
Γ(TM), we obtain g(∇TXξ, ξ) + g(ξ,∇TXξ) = 0, which implies g(∇TXξ, ξ) = 0
and then (3.31) becomes

g(X,X)− η2(X)− g(∇TXξ,X) = 0. (3.32)

This proves ii. of the Theorem. So if (3.32) is satisfied, then (3.28) impliesH ∈ Γ(µ).
Now, interchanging X by TX in (3.32), we derive

g(TX, TX)− g(∇T 2Xξ, TX) = 0,

that is,

cos2 θg(ϕX,ϕX) + cos2 θg(∇(X−η(X)ξ)ξ, TX) = 0,

from which

cos2 θg(ϕX,ϕX) + cos2 θg(∇Xξ, TX)− cos2 θη(X)g(∇ξξ, TX) = 0.

Since ∇ξξ = 0, we obtain

cos2 θ{g(ϕX,ϕX) + g(∇Xξ, TX)} = 0. (3.33)

We note

g(ϕX,ϕX) + g(∇Xξ, TX) 6= 0

from (3.33, we can derive if cos θ = 0, then M is an anti-invariant submanifold. �
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ON CONHARMONIC CURVATURE TENSOR OF SASAKIAN
FINSLER STRUCTURES ON TANGENT BUNDLES

NESRIN CALISKAN

Abstract. The content of this paper is made up of conharmonic curvature
tensorK of Sasakian Finsler structures on tangent bundles. In this manner,
quasi-conharmonically flat, ξ -conharmonically flat, ϕ-conharmonically flat
Sasakian Finsler structures are studied. Some structure theorems including
Einstein Sasakian Finsler manifolds satisfying R(XH , Y H).K = 0 are clari-
fied.

1. Introduction

Sinha and Yadav, constructed almost contact Finsler structure ϕ on the to-
tal space of a vector bundle in [15], then Hasegawa, Yamauchi and Shimada dis-
cussed Sasakian structures on Finsler manifolds in chapter 6 in [9]. In Yaliniz and
Caliskan’s paper, Sasakian Finsler manifolds and their principal curvature proper-
ties are studied [17]. In this study, Sasakian Finsler structures’conharmonic cur-
vature tensor properties are characterized by using the tangent bundle approach.
Conharmonic curvature tensor is defined by Ishii [10] then studied for several

manifold structures in differential geometry: such as Riemannian, almost Hermite,
Kahler and nearly Kahler manifolds by Mishra [14], Doric et al. [6], Krichenko
et al. [12], [13], for K-contact, Sasakian, Kenmotsu and LP- Sasakian manifolds
by Khan [11], Dwivedi and Kim [7] , Asghari and Taleshian, Taleshian et al., [4]
[16], for Sasakian space forms by De et al. [5] , for N(k)-contact metric manifolds
by Ghosh et al. [8], for C(λ) manifolds by Akbar and Sarkar [1]. In this paper,
conharmonic curvature tensor is studied for Sasakian Finsler structures on tangent
bundles. In order to examine this; some characteristics of such kind of structures
are given:
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Assume, M be an m = (2n+1)-dimensional smooth manifold. TMx denotes the
tangent space to M at x where x = (x1, . . . , x(2n+1)) ∈M and y = yi ∂

∂xi ∈ TMx .
TM is notated as the tangent bundle of the manifold M . Thus u = (x, y) ∈ TM .
Suppose F : TM → [0,∞[ be a Finsler function with the following properties:
(1) F is differentiable of class C1 on TM and differentiable of class C∞on

TM0 = TM\{(x, 0)},
(2) F (x, λy) = |λ|F (x, y), (x, y) ∈ TM, λ ∈ R,
(3) gij(x, y) = 1

2 [
∂2F 2

∂yi∂yj ] is positive definite on TM0,
then g is called a Finsler metric tensor with gij coeffi cients and Fm =
(M,F ) is a Finsler manifold [2].

If (xi, yi) are the local coordinates of TM , then { ∂
∂xi ,

∂
∂yi } denote natural bases of

TTM|u| at u ∈ TM . Thus, the complete vector fieldX = Xi ∂
∂xi+X

j ∂
∂yj ∈ TTM|u|.

Suppose that, π : TM →M is the bundle projection, then π = (TM, π,M) of rank
m is called Finsler tangent bundle. So, the differential map π : TTM|u| → TMπ(u)

generates the vertical distribution V TM of TTM0 where HTM and V TM are
complementary distributions of each other for TTM0.
The horizontal distribution HTM = (N j

i (x, y)) of TTM0 is the non-linear con-
nection on TM where N j

i =
∂Nj

∂yi are obtained via the spray coeffi cients notated

N j = 1
4g
jk( ∂2F 2

∂yk∂xh
yh − ∂F 2

∂xk
). By using the linear connection O on V TM , the pair

(HTM,O) is called a Finsler connection onM [3]. So, X = Xi( ∂
∂xi−N

j
i (x, y)

∂
∂yj )+

(N j
i (x, y)X

i + X̃j) ∂
∂yj = Xi δ

δxi + Xj ∂
∂yj is obtained. Here,

δ
δxi and

∂
∂yj are the

bases of HTM|u| and V TM|u|, respectively. Besides, their dual bases are dxi and
δyj = dyj +N j

i dx
i, respectively where TTM|u| = HTM|u| ⊕ V TM|u|.

The Riemannian metric G with Finsler coeffi cients, is called the Sasaki-Finsler
metric on TM0 and its distributions are as follows:
G(X,Y ) = G(XH , Y H)+G(XV , Y V ) = GH(X,Y )+GV (X,Y ) for tangent vec-

tors X,Y ∈ TTM|u| at u ∈ TM and XH , Y H ∈ HTM|u| and XV , Y V ∈ V TM|u|.

GH and GV are Riemannian metrics of type
(
0 0
2 0

)
and

(
0 0
0 2

)
on hTM and

vTM , respectively. Thus, following properties are satisfied:
G( δ

δxi ,
δ
δxj ) = G( ∂

∂yi ,
∂
∂yj ) = gij and G( δ

δxi ,
∂
∂yj ) = 0. (ϕH , ξH , ηH , GH) and

(ϕV , ξV , ηV , GV ) are (2n+1)-dimensional Sasakian Finsler structures on hTM and
vTM , respectively and the following relations hold [17]:

ϕ2 = −I + ηH ⊗ ξH + ηV ⊗ ξV (1.1)

ηH(ξH) = 1 = ηV (ξV ) (1.2)

ϕH(ξH) = 0 = ϕV (ξV ) (1.3)

ηH ◦ ϕH = 0 = ηV ◦ ϕV (1.4)
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G(XH , Y H) = G(ϕHXH , ϕHY H) + ηH(XH)ηH(Y H)

G(XV , Y V ) = G(ϕVXV , ϕV Y V ) + ηV (XV )ηV (Y V ) (1.5)

G(XH , ϕHY H) = −G(ϕHXH , Y H), G(XV , ϕV Y V ) = −G(ϕVXV , Y V ) (1.6)

G(XH , ξH) = ηH(XH), G(XV , ξV ) = ηV (XV ) (1.7)

G(XH , ϕHY H) = dηH(XH , Y H), G(XV , ϕV Y V ) = dηH(XH , Y H) (1.8)

OHXξH = −
1

2
ϕHXH ,OVXξV = −

1

2
ϕVXV (1.9)

(OHXϕH)Y H =
1

2
[G(XH , Y H)ξH − ηH(Y H)XH ]

(OVXϕV )Y V =
1

2
[G(XV , Y V )ξV − ηV (Y V )XV ] (1.10)

R(XH , Y H)ξH =
1

4
[ηH(Y H)XH − ηH(XH)Y H ]

R(XV , Y V )ξV =
1

4
[ηV (Y V )XV − ηV (XV )Y V ] (1.11)

R(ξH , XH)Y H =
1

4
[G(XH , Y H)ξH − ηH(Y H)XH ]

R(ξV , XV )Y V =
1

4
[G(XV , Y H)ξV − ηV (Y V )XV ] (1.12)

S(XH , ξH) =
n

2
ηH(XH), S(XV , ξV ) =

n

2
ηV (XV ) (1.13)

S(ξH , ξH) =
n

2
, S(ξV , ξV ) =

n

2
(1.14)

R(XH , ξH)ξH = −1
4
, R(XV , ξV )ξV = −1

4
(1.15)

For all XH , Y H ∈ HTM|u| and XV , Y V ∈ V TM|u|. Additionally, ϕ denotes the

tensor field of type
(
1 1
1 1

)
, ξ is the structure vector field of type

(
0 0
1 1

)
, η is the

1-form of type
(
1 1
0 0

)
, G is the Sasaki-Finsler metric structure of type

(
0 0
2 2

)
,

O is the Finsler connection with respect to G on TM , R is the Riemann curvature

tensor field of type
(
1 1
3 3

)
, S is the Ricci tensor field of type

(
0 0
2 2

)
.

As it is seen from above-mentioned preliminaries, Sasakian Finsler structures can
be founded either on hTM or vTM . In this paper, hTM is considered on behalf
of briefness.
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Definition 1.1. For m-dimensional (hTM,ϕH , ξH , ηH , GH), conharmonic curva-
ture tensor is described as follows:

K(XH , Y H)ZH = R(XH , Y H)ZH +
1

2n− 1 [S(Y
H , ZH)XH − S(XH , ZH)Y H

+G(Y H , ZH)QXH −G(XH , ZH)QY H ](1.16)

for XH , Y H , ZH ∈ HTM|u|.

2. QUASI-CONHARMONICALLY FLAT SASAKIAN FINSLER
STRUCTURES

Definition 2.1. If (ϕH , ξH , ηH , GH) is the Sasakian Finsler metric structure on
hTM , then hTM is quasi-conharmonically flat when the below relation is verified:

G(K(XH , Y H)ZH , ϕWH) = 0 (2.1)

for XH , Y H , ZH ,WH ∈ HTM|u|.

For a Sasakian Finsler manifold, because of the scalar curvature tensor r = 0,
with the help of (1.13), it is possible to get the below relation:

S(Y H , ZH) = −1
4
G(Y H , ZH) + (

n

2
+
1

4
)ηH(Y H)ηH(ZH) (2.2)

for Y H , ZH ∈ HTM|u| and that means hTM is the η-Einstein.

Theorem 2.2. For a Sasakian Finsler manifold (hTM,ϕH , ξH , ηH , GH) necessary
and suffi cient condition to be quasi-conharmonically flat is: the below relation holds:

R(XH , Y H)ZH = − 1

2(2n− 1) [G(Y
H , ZH)XH −G(XH , ZH)Y H ]

+
(2n+ 1)

4(2n− 1) [η
H(Y H)ηH(ZH)XH − ηH(XH)ηH(ZH)Y H ]

+
(2n+ 1)

4(2n− 1) [G(Y
H , ZH)ηH(XH)ξH −G(XH , ZH)ηH(Y H)ξH ] (2.3)

for XH , Y H , ZH ∈ HTM|u|.

Proof. Due to the Sasakian Finsler manifold is quasi-conharmonically flat with
dimension (2n + 1), using (1.16) and (2.1), it is known that r = 0 and taking
WH = ϕWH , the equality is herein below:

G(R(XH , Y H)ZH , ϕ2WH) =
1

2(2n− 1) [G(Y
H , ZH)G(ϕXH , ϕWH)

−G(XH , ZH)G(ϕY H , ϕWH)]

+(
1

4
+
n

2
)[G(ϕY H , ϕWH)ηH(XH)ηH(ZH)−G(ϕXH , ϕWH)ηH(Y H)ηH(ZH)](2.4)

for XH , Y H , ZH ,WH ∈ HTM|u|.
By using (1.16) and (2.1) in (2.4), it is possible to get (2.3). �
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3. ξ-CONHARMONICALLY FLAT SASAKIAN FINSLER
STRUCTURES

Definition 3.1. Assume that, (ϕH , ξH , ηH , GH) is the Sasakian Finsler metric
structure on hTM , then it is called ξ-conharmonically flat if the following relation
holds:

K(XH , Y H)ξH = 0 (3.1)

for XH , Y H ∈ HTM|u| .

Theorem 3.2. For a Sasakian Finsler manifold (hTM,ϕH , ξH , ηH , GH) necessary
and suffi cient condition to be ξ-conharmonically flat is: hTM is an η-Einstein
manifold.

Proof. For a (2n+ 1)-dimensional (n > 1) Sasakian Finsler manifold hTM , (1.13)
holds. By using this in (2.4), it is possible to get

S(XH ,WH) = −1
4
G(XH ,WH) + (

n

2
+
1

4
)ηH(XH)ηH(WH) (3.2)

for XH ,WH ∈ HTM|u|. Namely, the Sasakian Finsler manifold is η-Einstein and
vice versa. �

4. ϕ-CONHARMONICALLY FLAT SASAKIAN FINSLER
STRUCTURES

Definition 4.1. Let (hTM,ϕH , ξH , ηH , GH) be a Sasakian Finsler manifold, then
hTM is said to be ϕ-conharmonically flat when the below equality is satisfied:

G(K(ϕXH , ϕY H)ϕZH , ϕWH) = 0 (4.1)

for XH , Y H , ZH ,WH ∈ HTM|u|.

Theorem 4.2. For an m-dimensional Sasakian Finsler manifold necessary and
suffi cient condition to be ϕ -conharmonically flat is: following relation holds:

G(R(ϕXH , ϕY H)ϕZH , ϕWH) = − 1

2(2n− 1){G(ϕY
H , ϕZH)

G(ϕXH , ϕWH)−G(ϕXH , ϕZH)G(ϕY H , ϕWH)}. (4.2)

Proof. For a (2n + 1)-dimensional hTM with the help of (1.16), it is possible to
have the below relation:

S(ϕXH , ϕWH) = G(Q(ϕXH), ϕWH). (4.3)

In consequence of this relation, the equality herein below can be written:

G(K(ϕXH , ϕY H)ϕZH , ϕWH) = G(R(ϕXH , ϕY H)ϕZH , ϕWH)

− 1

2n− 1{S(ϕY
H , ϕZH)G(ϕXH , ϕWH)− S(ϕXH , ϕZH)G(ϕY H , ϕWH)

+G(ϕY H , ϕZH)S(ϕXH , ϕWH)−G(ϕXH , ϕZH)S(ϕY H , ϕWH)}. (4.4)
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Owing to the fact that {EHi } is orthonormal basis of HTM|u|, {ϕEHi } is ortho-
normal basis either. By taking summation over i = 1, 2, . . . , (2n + 1) in (4.4) and
changing XH =WH = EHi , it takes the following form:

G(K(ϕEHi , ϕY
H)ϕZH , ϕEHi ) = G(R(ϕEHi , ϕY

H)ϕZH , ϕEHi )

− 1

2n− 1{S(ϕY
H , ϕZH)G(ϕEHi , ϕE

H
i )− S(ϕEHi , ϕZH)G(ϕY H , ϕEHi )

+G(ϕY H , ϕZH)S(ϕEHi , ϕE
H
i )−G(ϕEHi , ϕZH)S(ϕY H , ϕEHi )} (4.5)

for Y H ∈ HTM|u|. Due to HTM is ϕ-conharmonically flat, (4.1) holds and by
virtue of (4.5),

S(ϕY H , ϕZH) = (r − 1
4
)G(ϕY H , ϕZH) (4.6)

the above equality holds for Y H , ZH ∈ HTM|u|. Also, if we take summation over
i = 1, 2, . . . , 2n + 1 in (4.6) and changing Y H = ZH = EHi , it is obtained that
r = 0. Using (4.1) in (4.4),we have (4.2). �

Theorem 4.3. For a (2n + 1)-dimensional (n > 1) Sasakian Finsler manifold
hTM , following items are equal to each other:

(1) hTM is conharmonically flat.
(2) hTM is ϕ-conharmonically flat.
(3) The below relation holds:

G(R(XH , Y H)ZH ,WH) =
1

2(2n− 1) [G(Y
H , ZH)G(XH ,WH)

−G(XH , ZH)G(Y H ,WH)]

− (2n+ 1)
4(2n− 1) [−G(X

H ,WH)ηH(Y H)ηH(ZH)

+G(Y H ,WH)ηH(XH)ηH(ZH)

−G(Y H , ZH)ηH(XH)ηH(WH) +G(XH , ZH)ηH(Y H)ηH(WH)] (4.7)

for XH , Y H , ZH ,WH ∈ HTM|u|.

Proof. 1⇒ 2 : Due to the Sasakian Finsler manifold hTM is conharmonically flat,
K(XH , Y H)ZH = 0 for XH , Y H , ZH ∈ HTM|u|. Therefore (4.1) holds, namely
G(K(ϕXH , ϕY H)ϕZH , ϕWH) = 0. Then manifold is ϕ-conharmonically flat.
2⇒ 3 : If the Sasakian Finsler manifold hTM is ϕ -conharmonically,(4.1) holds.

By using (1.11) and (1.12) in (4.1),

G(R(ϕ2XH , ϕ2Y H)ϕ2ZH , ϕ2WH) = G(R(XH , Y H)ZH ,WH)

+
1

4
{−G(XH ,WH)ηH(Y H)ηH(ZH) +G(Y H ,WH)ηH(XH)ηH(ZH)

−G(Y H , ZH)ηH(XH)ηH(WH) +G(XH , ZH)ηH(Y H)ηH(WH)} (4.8)



288 NESRIN CALISKAN

the above relation can be calculated for XH , Y H , ZH ,WH ∈ HTM|u|. Changing
XH , Y H , ZH ,WH with ϕXH , ϕY H , ϕZH , ϕWH respectively, following relation is
obtained:

G(R(ϕXH , ϕY H)ϕZH , ϕWH) = − 1

2(2n− 1){G(Y
H , ZH)G(XH ,WH)

−G(XH , ZH)G(Y H ,WH)−G(XH ,WH)ηH(Y H)ηH(ZH)

+G(Y H ,WH)ηH(XH)ηH(ZH)

−G(Y H , ZH)ηH(XH)ηH(WH) +G(XH , ZH)ηH(Y H)ηH(WH)}. (4.9)

With the help of (4.8) and (4.9),

G(R(XH , Y H)ZH ,WH) = − 1

2(2n− 1) [G(Y
H , ZH)G(XH ,WH)

−G(XH , ZH)G(Y H ,WH)]

− (2n+ 1)
4(2n− 1) [−G(X

H ,WH)ηH(Y H)ηH(ZH) +G(Y H ,WH)ηH(XH)ηH(ZH)

−G(Y H , ZH)ηH(XH)ηH(WH) +G(XH , ZH)ηH(Y H)ηH(WH)](4.10)

is obtained for XH , Y H , ZH ,WH ∈ HTM|u|. Thereby (4.7) holds.
3⇒ 1 : Accept that (4.7) holds for Sasakian Finsler manifold hTM . By taking

summation over i = 1, 2, . . . , 2n + 1 in (4.7) and taking XH = WH = EHi , the
below relation is satisfied:

S(Y H , ZH) = −1
4
G(Y H , ZH) + (

n

2
+
1

4
)ηH(Y H)ηH(ZH) (4.11)

for Y H , ZH ∈ HTM|u|. If (4.11) and (4.7) are used in (1.16), K(XH , Y H)ZH = 0 is
obtained. Namely the Sasakian Finsler manifold hTM is conharmonically flat. �

5. EINSTEIN SASAKIAN FINSLER STRUCTURES SATISFYING
R(XH , Y H).K = 0

Theorem 5.1. Let hTM be a (2n+ 1)-dimensional conharmonically flat Einstein
Sasakian Finsler manifold and the relation R(XH , Y H).K = 0 is satisfied, then it
is locally isometric to Sm(1).

Proof. Due to Sasakian Finsler manifold hTM is Einstein, with the help of (1.16)

K(XH , Y H)ZH = R(XH , Y H)ZH +
2λ

2n− 1 [G(Y
H , ZH)XH −G(XH , ZH)Y H ]

(5.1)
holds for XH , Y H , ZH ∈ HTM|u| and λ ∈ R. Then the below equality is satisfied:

ηH(K(XH , Y H)ZH) = [
2λ

2n− 1 −
1

4
][G(XH , ZH)ηH(Y H)−G(Y H , ZH)ηH(XH)]

(5.2)
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for XH , Y H , ZH ∈ HTM|u|. Taking XH = ξH in (5.2),

ηH(K(ξH , Y H)ZH) = [
2λ

2n− 1 −
1

4
][ηH(Y H)ηH(ZH)−G(Y H , ZH)] (5.3)

is obtained. Changing ZH = ξH in (5.2), it is possible to get

ηH(K(XH , Y H)ξH) = 0 (5.4)

for XH , Y H ∈ HTM|u|. If R(XH , Y H) is considered as the derivation of the tensor
algebra at each point of the Sasakian Finsler manifold hTM for XH and Y H ,
following relation holds for conharmonic curvature tensor:

[R(XH , Y H)K](UH , V H)WH = R(XH , Y H)[K(UH , V H)WH

−K(R(XH , Y H)UH , V H)WH −K(UH , R(XH , Y H)V H)WH

−K(UH , V H)R(XH , Y H)WH . (5.5)

Owing to R(XH , Y H).K = 0, by taking XH = ξH in the last equality,

G([R(ξH , Y H)K](UH , V H)WH , ξH) = −G(K(R(ξH , Y H)UH , V H)WH , ξH)

−G(K(UH , R(ξH , Y H)V H)WH , ξH)−G(K(UH , V H)R(ξH , Y H)WH , ξH) (5.6)

the above relation holds for the tangent vector fields that are orthogonal to ξH . By
using (1.11) and (1.12) in (5.6),

0 =
1

4
{G(Y H ,K(UH , V H)WH)− ηH(Y H)ηH(K(UH , V H)WH)

−G(Y H , UH)ηH(K(ξH , V H)WH) + ηH(UH)ηH(K(Y H , V H)WH)

−G(Y H , V H)ηH(K(UH , ξH)WH) + ηH(V H)ηH(K(UH , Y H)WH)

−G(Y H ,WH)ηH(K(UH , V H)ξH) + ηH(WH)ηH(K(UH , V H)Y H)}
(5.7)

is obtained. With the help of (5.2), it is possible to get

G(K(UH , V H)WH , Y H) = [
2λ

2n− 1 −
1

4
][G(Y H , V H)G(UH ,WH)

−G(Y H , UH)G(V H ,WH)] (5.8)

for UH , V H ,WH , Y H ∈ HTM|u|. By using (5.1) in (5.8), the below relation is
obtained:

G(R(UH , V H)WH , Y H) =
1

4
[G(Y H , UH)G(V H ,WH)−G(Y H , V H)G(UH ,WH)]

(5.9)
for UH , V H ,WH , Y H ∈ HTM|u|. �
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OSCILLATION OF NONLINEAR FOURTH-ORDER DIFFERENCE
EQUATIONS WITH MIDDLE TERM

M. EMRE KAVGACI

Abstract. In this article, we study oscillatory properties of the fourth-order
difference equation with middle-term

∆4xm − am∆2xm+1 + bmf(xm+σ) = 0,

in case when the corresponding second-order difference equation ∆2hm −
amhm+1 = 0 is nonoscillatory.

1. Introduction

Consider the fourth-order nonlinear difference equation

∆4xm − am∆2xm+1 + bmf(xm+σ) = 0, (1.1)

where σ ∈ N is a deviating argument and {am}, {bm} are real sequences for m ∈ N.
Function f : R→ R, is continuous such that uf(u) > 0 for u 6= 0 where R denotes
the set of real numbers.
Throughout the paper we assume

amam+1 > 0, bm > 0, m ∈ N

and
∞∑
m=1

m|am| <∞. (1.2)

By a solution of the equation (1.1), we mean a real sequence {xm} satisfying equa-
tion (1.1) form ∈ N. A nontrivial solution {xm} of (1.1) is said to be nonoscillatory
if it is either eventually positive or eventually negative, and it is oscillatory other-
wise. Equation (1.1) is said to be oscillatory if all its solutions are oscillatory.
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In the recent years, a great importance has been paid to the study of oscillatory
behavior of fourth-order differential equations [6, 7] and difference equations [2, 3,
4, 5, 14, 16, 19], see also the monograph [1] and [15].
In the continuous case, the fourth-order differential equation

x(4)(t) + q(t)x(2)(t) + r(t)f(x(ϕ(t))) = 0

can be written as (
h2(t)

(x′′(t)
h(t)

)′)′
+ h(t)r(t)f(x(t)) = 0

h′′(t) + q(t)h(t) = 0 is nonoscillatory and h is its eventually positive solution, see
e.g. [7].
Došlá and Krejcova [11, 12] have investigated a class of fourth-order nonlinear

difference equations of the form

∆
(
an

(
∆bn (∆cn (∆xn)

γ
)
β
)α)

+ dnx
λ
n+τ = 0, (1.3)

and Jankowski, Schmeidel and Zonenberg [14] have generalized the some results of
[11] for neutral equation

∆
(
an

(
∆bn (∆cn (∆ (xn + pnxn−δ))

γ
)
β
)α)

+ dnf(xn−τ ) = 0, (1.4)

where α, β and γ are the ratios of odd positive integers, integers τ , δ are deviating
arguments.
In this paper we investigate oscillatory properties of the equation (1.1). Our

approach is based on the transformation of (1.1) to the two-terms equation of
the form (1.3) and to application of oscillation results for equation (1.3) stated in
[11, 12].

2. Preliminaries

Consider second order linear equation

∆2hm − amhm+1 = 0. (2.1)

Let (2.1) be nonoscillatory. The following definition is given by Patula [17].

Definition 2.1. If there exist two linearly independent solutions v and w of (2.1)
such that v/w → 0 , as n → ∞, then v is recessive solution and w is dominant
solution of (2.1).

We remark that the recessive solution always exist and is unique up to a constant
factor, see [17, Theorem 1].

Lemma 2.1. If (2.1) is nonoscillatory, there exist a recessive solution h such that
∞∑
m=1

1

hmhm+1
=∞.
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Proof. See [17, Theorem 1] and [1, Theorem 6.3.1]. �
Lemma 2.2. If

∑∞
m=1m|am| < ∞, then (2.1) has recessive solution which tends

to positive constant.

Proof. Let am > 0 for m ≥ 1. Then the conclusion follows from [10, Theorem 4].
In case am < 0 for m ≥ 1, the statement follows from [13, Theorem 4.2]. �
From Lemma 1 and Lemma 2 we have the following Lemma.

Lemma 2.3. If
∑∞
m=1m|am| <∞, then recessive solution h of (2.1) provides

∞∑
m=m0

1

hmhm+1
=∞,

∞∑
m=m0

hm =∞. (2.2)

Proof. See [1, Theorem 6.3.8] and [13, Theorem 4.2]. �
Now, we consider equation (1.1) and we write it as a two-terms equation.

Lemma 2.4. Let the equation (2.1) be nonoscillatory and let h be its solution such
that hm > 0 for m ≥ 1. Then, we have for m ≥ 1

∆4xm − am∆2xm+1 =
1

hm+1
∆

[
hmhm+1∆

(
1

hm
∆2xm

)]
. (2.3)

Consequently, x is solution of equation (1.1) if and only if it is a solution of equation
in the disconjugate form

∆

[
hmhm+1∆

(
1

hm
∆2xm

)]
+ bmhm+1f(xm+σ) = 0. (2.4)

Proof. Assume that ym ≡ hmum, where u = (um) is any sequence. Firstly, we show
that

hm+1(∆
2ym − amym+1) = ∆(hmhm+1∆um). (2.5)

Using the definition of difference operator, we can easily obtain that

∆(hmhm+1∆um) = hm+1(hm+2∆um+1 − hm∆um) (2.6)

and
∆2ym = hm+2um+2 − 2hm+1um+1 + hmum. (2.7)

From equation (2.1), we can write amhm+1 = ∆2hm and

amym+1 = um+1∆
2hm = um+1(hm+2 − 2hm+1 + hm). (2.8)

From (2.7) and (2.8)

hm+1(∆
2ym − amym+1) = hm+1(hm+2∆um+1 − hm∆um). (2.9)

Then, right side of equation (2.6) is equal to right side of equation (2.9) and we
obtain,

∆2ym − amym+1 =
1

hm+1
∆(hmhm+1∆um)

where um = ym
hm

and ym = ∆2xm. �
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Remark 2.1. If h is recessive solution of (2.1), then by Lemma 3, (2.2) holds and
equation (2.4) is said to be in the canonical form.

Let x be a solution of (2.4) and denote the quasi-differences of x as

x[1] = ∆xm, x
[2] = 1

hm
∆x[1], x[3] = hmhm+1∆x

[2].

Lemma 2.5. If (2.2) holds, then any eventually positive solution {xm} of (2.4) is
one of the following types:
type (a): xm > 0, x[1] > 0, x[2] > 0, x[3] > 0 for large m,
type (b): xm > 0, x[1] > 0, x[2] < 0, x[3] > 0 for large m.

Proof. We consider (2.4) as a four-dimensional system
∆xm = ym

∆ym = hmzm

∆zm = 1
hmhm+1

wm

∆wm = −bmhm+1f(xm+σ),

(2.10)

where
(x, y, z, w) = (x, x[1], x[2], x[3]).

Proceeding by the similar way as in [11], proof of Lemma 2, we obtain the conclu-
sion. The details are omitted here. �

3. Oscillation results

In this section, we give oscillation results for equation (1.1). During this section
we assume that equation (2.1) is nonoscillatory and h is a solution of (2.1) such
that hm > 0 for m ≥ 1.
Solution x of (1.1) is called quickly oscillatory, if it is of the form

xm = (−1)mpm, pm > 0 for m ∈ N.

The following result can be seen as a necessary condition for existence of quickly
oscillatory solutions.

Lemma 3.1. If σ is even, then equation (1.1) has no quickly oscillatory solutions.

Proof. Let xm = (−1)mpm be a quickly oscillatory solution of (1.1). By Lemma 4,
xm is solution of (2.4) and system (2.10). Then, the proof is the similar way as in
[11], proof of Theorem 1 and [14], proof of Theorem 3.1. �

Theorem 3.1. Let (1.2) holds. If
∑∞
i=1 bi =∞, then (1.1) is oscillatory.

Proof. By Lemma 4, we can transform equation (1.1) to equation (2.4). The proof
follows from [14], proof of Theorem 4.4. �
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Theorem 3.2. Let (1.2) holds and there exist λ > 0 such that

lim
u→∞

f(u)

uλ
> 0. (3.1)

Equation (1.1) with σ ≥ 1 is oscillatory if any of the following conditions holds:
(i) λ < 1,

∑∞
m=1 bmm

λ =∞;

(ii) λ > 1,
∑∞

m=1 bmm =∞.

Proof. For the sake of contradiction, let (1.1) have a nonoscillatory solution and
let h be recessive solution of (2.4) such that limm→∞hm = 1. Without loss of
generality assume xm > 0 for m ≥ 1. By Lemma 4, x is nonoscillatory solution of
(2.4). By Lemma 5, x is type (a) or type (b).

(i) Let x be of type (a) such that xm > 0 for m ≥ 1. Then, limm→∞ xm = ∞.
Consider equation

∆

[
hmhm+1∆

(
1

hm
∆2υm

)]
+ bmhm+1

f(xm+σ)

xλm+σ
υλm+σ = 0. (3.2)

This equation has a solution υ = x of type (a). Using (3.1), we have that there
exist K > 0 such that f(xm+σ)

xλm+σ

≥ K. We apply to (3.2), lemma in [11, Lemma 4]

with α = β = γ = 1 and σ ≥ 1. We have

bmhm+1
f(xm+σ)

xλm+σ
≥ K

2
bm, for large m.

Thus,
∞∑
m=1

bmhm+1
f(xm+σ)

xλm+σ
mλ =∞,

and by [11, Lemma 4 and Corollary 1], equation (3.2) is oscillatory. This is a
contradiction with the fact that (3.2) has a nonoscillatory solution υ = x.

(ii) Let x be of type (b). Then, there exist limm→∞ xm. Because of the continuity
of f there exist K > 0 such that

lim
m→∞

f(xm+σ)

xλm+σ
≥ K, for large m,

and proceeding the similar way as in (i), we get that (3.2) has no nonoscillatory
solution of type (b). This completes the proof. �

Theorem 3.3. Let (1.2) holds and there exist λ > 0 such that

lim
u→∞

f(u)

uλ
> 0.

Equation (1.1) with σ ≥ 3 is oscillatory if any of the following conditions hold:
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(i) λ > 1 and
∞∑

m=m0

m2
∞∑

k=m−2
bk =∞, (3.3)

(ii) λ = 1 and

lim
m→∞

sup

(
m3

∞∑
k=m−3

bk

)
=∞. (3.4)

Proof. (i) λ > 1, by [12, Corollary 2-(i)] equation (1.1) with σ ≥ 3 has no solution
of type (a) or type (b) if

∞∑
m=m0

m2
∞∑

k=m−2
bk =∞.

(ii) λ = 1, by [12, Corollary 2-(ii)] equation (3.4) implies

lim
m→∞

sup
(
m

∞∑
m=m0

bkk
2
)
> 1.

This completes the proof. �
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THE VORONOVSKAJA TYPE ASYMPTOTIC FORMULA FOR
q-DERIVATIVE OF INTEGRAL GENERALIZATION OF

q-BERNSTEIN OPERATORS

VISHNU NARAYAN MISHRA AND PRASHANTKUMAR PATEL

Abstract. The Voronovskaja type asymptotic formula for function having q-
derivative of the integral generalization Bernstein operators based on q-integer
is discussed. The same formula for Stancu type generalization of this operators
is mentioned.

1. Introduction

The classical Bernstein-Durrmeyer operators Dn introduced by Durrmeyer [1] is
associated with an integrable function f on the interval [0, 1] and is defined as

Dn(f ;x) = (n+ 1)

n∑
k=0

pn,k(x)

∫ 1

0

pn,k(t)f(t)dt, x ∈ [0, 1], (1.1)

where pn,k(x) =
(
n

k

)
xk(1− x)n−k.

These operators have been studied by Derriennic [2] and many others. For the
last 30 years, q-calculus has been an active area of research in approximation theory.
In 1987, the q-analogues of Bernstein operators was introduced by Lupas [3] and in
[4], q-generalization of the operators (1.1) was introduced as

Dn,q(f ;x) = [n+ 1]q

n∑
k=0

q−kpn,k(q;x)

∫ 1

0

f(t)pn,k(q; qt)dqt, (1.2)

where pn,k(q;x) =
(
n

k

)
q

xk(1− x)n−kq .

The rate of convergence of the operators (1.2) was discussed by Zeng et al.
[5]. In 2014, Mishra and Patel [6, 7] introduced the generalization due to Stancu
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and proved Voronovskaja type asymptotic formula and various other approxima-
tion properties of the q-Durrmeyer-Stancu operators. Here, in this manuscript, we
establish Voronovskaja type asymptotic formula for function having q-derivative.

2. Estimation of moments and Asymptotic formula

In the sequel, we shall need the following auxiliary results:

Theorem 1 ([8]). If m-th (m > 0,m ∈ N) order moments of operator (1.2) is
defined as

Dq
n,m(x) = Dn,q(t

m, x) = [n+ 1]q

n∑
k=0

q−kpn,k(q;x)

∫ 1

0

pn,k(q; qt)t
mdqt, x ∈ [0, 1],

then Dq
n,0(x) = 1 and for n > m+ 2, we have the following recurrence relation,

[n+m+2]qD
q
n,m+1(x) = ([m+1]q+q

m+1x[n]q)D
q
n,m(x)+x(1−x)qm+1Dq(D

q
n,m(x)).

To establish asymptotic formula for functions having q-derivative, it is necessary
to compute moments of first to fourth degree. Using above theorem one can have
first, second, third and fourth order moments. The first three moments of Lemma
1 was also established in [4].

Lemma 1 ([4, 8]). For all x ∈ [0, 1], n = 1, 2, . . . and 0 < q < 1, we have
• Dn,q(1, x) = 1;

• Dn,q(t, x) =
1+qx[n]q
[n+2]q

;

• Dn,q(t
2, x) =

q3x2[n]q
(
[n]q−1

)
+(1+q)2qx[n]q+1+q

[n+3]q [n+2]q
;

• Dn,q(t
3, x) =

q9x3[n]q [n−1]q [n−2]q+x2q4[3]2q [n]q [n−1]q+xq[2]q [3]
2
q [n]q+[3]q [2]q

[n+4]q [n+3]q [n+2]q
;

• Dn,q(t
4, x) =

q16x4[n]q [n−1]q [n−2]q [n−3]q+q9x3[4]2q [n]q [n−1]q [n−2]q
[n+5]q [n+4]q [n+3]q [n+2]q

+
q4x2[2]q [3]

2
q(1+q

2)2[n]q [n−1]q+qx[2]q [3]q [4]2q [n]q+[2]q [3]q [4]q
[n+5]q [n+4]q [n+3]q [n+2]q

Lemma 2. For all x ∈ [0, 1], n = 1, 2, . . . and 0 < q < 1, we have

• Dn,q
(
(t − x)q, x

)
=

1−
(
1+qn+1

)
x

[n+2]q
;

• Dn,q

(
(t − x)2q, x

)
=
qx2[2]q

(
[n]2q(1−q)

2q2+[n]q(2q
3−[3]q)+[3]q

)
−x[2]q([3]q+q[n]q(−1−q+q2))+[2]q

[n+3]q [n+2]q
;

• Dn,q

(
(t − x)3q, x

)
= q2x3

{
q7[n]q [n−1]q [n−2]q
[n+2]q [n+3]q [n+4]q

−
q2[3]q [n]q [n−1]q
[n+2]q [n+3]q

+
[2]q [n]q−q[n+2]q

[n+2]q [n+3]q [n+4]q

}

+ qx2

 q3[3]2q [n]q [n−1]q
[n+2]q [n+3]q [n+4]q

−
[2]2q [3]q [n]q

[n+2]q [n+3]q
+

[2]q
[n+2]q


+ x[2]q [3]q

{
q[3]q [n]q−[n+4]q

[n+2]q [n+3]q [n+4]q

}
+

[3]q [2]q
[n+2]q [n+3]q [n+4]q

;

• Dn,q

(
(t − x)4q, x

)
= q4x4

 q12[n]q [n−1]q [n−2]q [n−3]q[n+5]q [n+4]q [n+3]q [n+2]q
−
q5[4]q [n]q [n−1]q [n−2]q
[n+4]q [n+3]q [n+2]q

+
q
(
[5]q+q

2
)
[n]q [n−1]q

[n+3]q [n+2]q
−

[4]q [n]q
[n+2]q

+ q2


+ x3q2

 q7[4]2q [n]q [n−1]q [n−2]q
[n+5]q [n+4]q [n+3]q [n+2]q

−
q2[3]2q [4]q [n]q [n−1]q
[n+4]q [n+3]q [n+2]q

+

(
[5]q+q

2
)
[2]2q [n]q

[n+3]q [n+2]q
−

q[4]q
[n+2]q


+ qx2

 q
3[2]q [3]

2
q(1+q

2)[n]q [n−1]q
[n+5]q [n+4]q [n+3]q [n+2]q

−
[2]q [3]

2
q [4]q [n]q

[n+4]q [n+3]q [n+2]q
+

[2]q

(
[5]q+q

2
)

[n+3]q [n+2]q


+ x

{
[2]q [3]q [4]q

(
q[4]q [n]q−[n+5]q

)
[n+5]q [n+4]q [n+3]q [n+2]q

}
+

[2]q [3]q [4]q
[n+5]q [n+4]q [n+3]q [n+2]q

.
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Theorem 2. Let f be bounded and integrable on the interval [0, 1] and (qn) denote
a sequence such that 0 < qn < 1, qn → 1 and qnn → c as n→∞, where c is arbitrary
constant. Then we have for a point x ∈ (0, 1),
lim
n→∞

[n]qn [Dn,qn(f ;x)− f(x)] = (1− 2x) lim
n→∞

Dqnf(x) + x(1− x) lim
n→∞

D2
qnf(x).

Proof: By q-Taylor formula [9] for f , we have

f(t) = f(x) +Dqnf(x)(t− x) +
1

[2]qn
D2
qnf(x)(t− x)

2
qn + θqn(x; t)(t− x)

2
qn ,

for 0 < q < 1, where

θqn(x; t) =


f(t)− f(x)−Dqnf(x)(t− x)− 1

[2]qn
D2
qnf(x)(t− x)

2
qn

(t− x)2qn
if x 6= t

0, if x = t.

(2.1)
We know that for n large enough

lim
t→x

θqn(x; t) = 0. (2.2)

That is for any ε > 0, there exists a δ > 0 such that

|θqn(x; t)| ≤ ε; (2.3)

for |t− x| < δ and n suffi ciently large. Using (2.1), we can write

Dn,qn(f ;x)−f(x) = Dqnf(x)Dn,qn((t−x)qn ;x)+
D2
qnf(x)

[2]qn
Dn,qn((t−x)2qn ;x)+E

qn
n (x),

where

Eqn(x) = [n+ 1]qn

n∑
k=0

q−kpn,k(qn;x)

∫ 1

0

θqn(x; t)pn,k(qn; qnt) (t− x)
2
qn
dqnt.

By Lemma 2, we have

lim
n→∞

[n]qnDn,qn((t−x)qn ;x) = (1−2x) and lim
n→∞

[n]qnDn,qn((t−x)2qn ;x) = 2x(1−x).

In order to complete the proof of the theorem, it is suffi cient to show that
limn→∞[n]qnE

qn
n (x) = 0. We proceed as follows: Let

P qnn,1(x) = [n]qn [n+1]qn

n∑
k=0

qn
−kpn,k(qn;x)

∫ 1

0

θqn(x; t)pn,k(qn; qnt) (t− x)
2
qn
χx(t)dqnt

and

P qnn,2(x) =

[n]qn [n+ 1]qn

n∑
k=0

qn
−kpn,k(qn;x)

∫ 1

0

θqn(x; t)pn,k(qn; qnt) (t− x)
2
qn
(1− χx(t)) dqnt,
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so that
[n]qnE

qn
n (x) ≤ P

qn
n,1(x) + P

qn
n,2(x),

where χx(t) is the characteristic function of the interval {t : |t− x| < δ}.
It follows from (2.3) that

P qnn,1(x) = 2εx(1− x) as n→∞.

If |t− x| ≥ δ, then |θqn(x; t)| ≤ M
δ2
(t− x)2, where M > 0 is a constant. Since

(t− x)2 =
(
t− q2nx+ q2nx− x

) (
t− q3nx+ q3nx− x

)
=

(
t− q2nx

) (
t− q3nx

)
+ x(q3n − 1)

(
t− q2nx

)
+ x(q2n − 1)

(
t− q2nx

)
+x2(q2n − 1)(q2n − q3n) + x2(q2n − 1)(q3n − 1),

we have

|P qnn,2(x)| ≤
M

δ2
{
[n]qnDn,qn((t− x)4qn ;x) + x(2− q

2
n − q3n)[n]qnDn,qn((t− x)3qn ;x)

+x2(q2n − 1)2[n]qnDn,qn((t− x)2qn ;x)
}
.

Using Lemma 2, we have

Dn,qn((t−x)4qn ;x) ≤
C1
[n]3qn

, Dn,qn((t−x)3qn ;x) ≤
C2
[n]2qn

and Dn,qn((t−x)2qn ;x) ≤
C3
[n]qn

,

and the desired result is obtained.

Corollary 1. Let f be bounded and integrable on the interval [0, 1] and (qn) denote
a sequence such that 0 < qn < 1, qn → 1 and qnn → c as n→∞, where c is arbitrary
constant. Suppose that the first and second derivatives f ′(x) and f ′′(x) exist at a
point x ∈ (0, 1). Then, we have, for a point x ∈ (0, 1)

lim
n→∞

[n]qn [Dn,qn(f ;x)− f(x)] = (1− 2x)f ′(x) + x(1− x)f ′′(x).

3. Asymptotic formula for the Durrmeyer-Stancu Operators

In the year 1968, Stancu [10] generalized Bernstein operators and discussed its
approximation properties. After that many researchers gave Stancu type general-
ization of several operators on finite and infinite intervals. We refer the readers to
[11, 12, 13, 14, 15, 16, 17, 18, 19, 20] and the references there in. As mention in the
introduction, Stancu generalization of q-Durrmeyer operators (1.2) was discussed
by Mishra and Patel [6], which is defined as follows:

Dα,β
n,q = [n+ 1]q

n∑
k=0

q−kpn,k(q;x)

∫ 1

0

f

(
[n]qt+ α

[n]q + β

)
pn,k(q; qt)dqt, (3.1)

where 0 ≤ α ≤ β and pn,k(q;x) as same as defined in (1.2). We shall need the
following lemmas for proving our results.
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Lemma 3 ([7]). We have Dα,β
n,q (1;x) = 1, D

α,β
n,q (t;x) =

[n]q+α[n+2]q+qx[n]
2
q

[n+2]q([n]q+β)
,

Dα,β
n,q (t

2;x) =
q3[n]3q([n]q−1)x

2+((q(1+q)2+2αq4)[n]3q+2αq[3]q [n]
2
q)x

([n]q+β)2[n+2]q [n+3]q

+ α2

([n]q+β)2
+

(1+q+2αq3)[n]2q+2α[3]q [n]q
([n]q+β)2[n+2]q [n+3]q

.

Lemma 4 ([7]). We have

Dα,β
n,q (t− x, x) =

(
q[n]2q

[n+2]q([n]q+β)
− 1
)
x+

[n]q+α[n+2]q
[n+2]q([n]q+β)

,

Dα,β
n,q ((t− x)2, x) =

q4[n]4q−q
3[n]3q−2q[n]

2
q [n+3]q([n]q+β)+[n+2]q [n+3]q([n]q+β)

2

([n]q+β)2[n+2]q [n+3]q
x2

+
q(1+q)2[n]3q+2qα[n]

2
q [n+3]q−(2[n]q+2α[n+2]q)[n+3]q([n]q+β)
([n]q+β)2[n+2]q [n+3]q

x

+
(1+q)[n]2q+2α[n]q [n+3]q
([n]q+β)2[n+2]q [n+3]q

.

Remark 1 ([7]). For all m ∈ N∪ {0}, 0 ≤ α ≤ β, we have the following recursive
relation for the images of the monomials tm under Dα,β

n,q in terms of Dn,q, j =
0, 1, 2, . . . ,m, as

Dα,β
n,q (t

m;x) =

m∑
j=0

(
m

j

)
[n]jqα

m−j

([n]q + β)m
Dn,q(t

j , x).

Now, let us compute the moments and central moments of order 3 and 4 for the
operators (3.1) in the following manner:

Dα,βn,q (t3;x) =
q9[n]4q [n− 1]q [n− 2]q

([n]q + β)3[n+ 4]q [n+ 3]q [n+ 2]q
x3 +

q4[n]3q [n− 1]q
(
[3]2q [n]q + α[n+ 4]q

)
([n]q + β)3[n+ 4]q [n+ 3]q [n+ 2]q

x2

+
q[n]2q

(
[2]q [3]2q [n]2q + α[2]2q [n]q [n+ 4]q + α2[n+ 4]q [n+ 3]q

)
([n]q + β)3[n+ 4]q [n+ 3]q [n+ 2]q

x

+
[n]3q [3]q [2]q + α[2]q [n]2q [n+ 4]q +

(
α2[n]q + α3[n+ 2]q

)
[n+ 4]q [n+ 3]q

([n]q + β)3[n+ 4]q [n+ 3]q [n+ 2]q
.

Also,

D
α,β
n,q (t

4
; x) =

q16[n]5q [n − 1]q [n − 2]q [n − 3]q

([n]q + β)4[n + 5]q [n + 4]q [n + 3]q [n + 2]q
x
4
+
q9[n]4q [n − 1]q [n − 2]q

(
[4]2q [n]q + α[n + 5]q

)
([n]q + β)4[n + 5]q [n + 4]q [n + 3]q [n + 2]q

x
3

+ q
4
[n]

3
q [n − 1]q

 [2]q [3]
2
q(1 + q2)2[n]2q + α[3]2q [n]q [n + 5]q + α2[n + 4]q [n + 5]q

([n]q + β)4[n + 5]q [n + 4]q [n + 3]q [n + 2]q

 x2

+
q[n]2q

(
[2]q [3]q [4]

2
q [n]

3
q + [2]q [3]

2
qα[n]

2
q [n + 5]q + [2]2qα

2[n]q [n + 4]q [n + 5]q + α3[n + 3]q [n + 4]q [n + 5]q

)
([n]q + β)4[n + 5]q [n + 4]q [n + 3]q [n + 2]q

x

+
[4]q [3]q [2]q [n]

4 + α[3]q [2]q [n]
3
q [n + 5]q + α2[2]q [n]

2
q [n + 4]q [n + 5]q

([n]q + β)4[n + 5]q [n + 4]q [n + 3]q [n + 2]q
+
α3[n]q + α4[n + 2]q

([n]q + β)4[n + 2]q
.
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Now, using the identity (t − x)3q = t3 − [3]qxt2 + q[2]qx
2t − q3x3 and linear

properties of the operators Dα,β
n,q , we get

D
α,β
n,q

(
(t − x)

3
q ; x

)
= q

2

 q7[n]4q [n − 1]q [n − 2]q

([n]q + β)3[n + 4]q [n + 3]q [n + 2]q
−

q2[3]q [n]
3
q [n − 1]q

([n]q + β)2[n + 2]q [n + 3]q
+

[2]q [n]
2
q

[n + 2]q
(
[n]q + β

) − q

 x3

+q

 q3[n]3q [n − 1]q

(
[n]q [3]

2
q + α[n + 4]q

)
([n]q + β)3[n + 4]q [n + 3]q [n + 2]q

−
[3]q

((
[2]2q + 2αq3

)
[n]3q + 2α[3]q [n]

2
q

)
([n]q + β)2[n + 2]q [n + 3]q

+
[2]q([n]q + α[n + 2]q)

[n + 2]q
(
[n]q + β

)
 x2

+

 q[n]2q
(
[2]q [3]

2
q [n]

2
q + [2]2qα[n]q [n + 4]q + α2[n + 4]q [n + 3]q

)
([n]q + β)3[n + 4]q [n + 3]q [n + 2]q

−
[3]qα

2

([n]q + β)2
−

(1 + q + 2αq3)[3]q [n]
2
q + 2α[3]2q [n]q

([n]q + β)2[n + 2]q [n + 3]q

 x
+

[n]3q [3]q [2]q + α[2]q [n]
2
q [n + 4]q

([n]q + β)3[n + 4]q [n + 3]q [n + 2]q
+

[n]qα
2 + α3[n + 2]q

[n + 2]q([n]q + β)3
.

Finally, using identity (t−x)4q = t4− [4]qxt3+q
(
[5]q + q

2
)
x2t2−q3x3[4]qt+

q6x4, we have

D
α,β
n,q

(
(t − x)

4
q ; x

)
= q

4

 q12[n]5q [n − 1]q [n − 2]q [n − 3]q

([n]q + β)4[n + 5]q [n + 4]q [n + 3]q [n + 2]q
−

q5[4]q [n]
4
q [n − 1]q [n − 2]q

([n]q + β)3[n + 4]q [n + 3]q [n + 2]q

+
q
(
[5]q + q2

)
[n]3q [n − 1]q

([n]q + β)2[n + 2]q [n + 3]q
−

[4]q [n]
2
q

[n + 2]q
(
[n]q + β

) + q
2

 x4

+q
2

 q7[n]4q [n − 1]q [n − 2]q

(
[4]2q [n]q + α[n + 5]q

)
([n]q + β)4[n + 5]q [n + 4]q [n + 3]q [n + 2]q

−
q2[4]q [n]

3
q [n − 1]q

(
[3]2q [n]q + α[n + 4]q

)
([n]q + β)3[n + 4]q [n + 3]q [n + 2]q

+

(
[5]q + q2

) ((
[2]2q + 2αq3

)
[n]3q + 2α[3]q [n]

2
q

)
([n]q + β)2[n + 2]q [n + 3]q

−
q[4]q

(
[n]q + α[n + 2]q

)
[n + 2]q

(
[n]q + β

)
 x3

+q

q3[n]3q [n − 1]q

 [2]q [3]
2
q(1 + q2)2[n]2q + α[3]2q [n]q [n + 5]q + α2[n + 4]q [n + 5]q

([n]q + β)4[n + 5]q [n + 4]q [n + 3]q [n + 2]q


−
[4]q [n]

2
q

(
[2]q [3]

2
q [n]

2
q + [2]qα[n]q [n + 4]q + α2[n + 4]q [n + 3]q

)
([n]q + β)3[n + 4]q [n + 3]q [n + 2]q

+
α2

(
[5]q + q2

)
([n]q + β)2

+

(
[5]q + q2

)
(1 + q + 2αq3)[n]2q + 2α[3]q [n]q

([n]q + β)2[n + 2]q [n + 3]q

 x2

+

 q[n]2q
(
[2]q [3]q [4]

2
q [n]

3
q + α[2]q [3]

2
q [n]

2
q [n + 5]q + α2[2]2q [n]q [n + 4]q [n + 5]q + α3[n + 3]q [n + 4]q [n + 5]q

)
([n]q + β)4[n + 5]q [n + 4]q [n + 3]q [n + 2]q

−
[n]3q [4]q [3]q [2]q

([n]q + β)3[n + 4]q [n + 3]q [n + 2]q
−

α[4]q [2]q [n]
2
q

([n]q + β)3[n + 3]q [n + 2]q
−

[4]q [n]qα
2 + α3[4]q [n + 2]q

[n + 2]q([n]q + β)3

 x
+
[4]q [3]q [2]q [n]

4 + α[3]q [2]q [n]
3
q [n + 5]q + α2[2]q [n]

2
q [n + 4]q [n + 5]q

([n]q + β)4[n + 5]q [n + 4]q [n + 3]q [n + 2]q
+
α3[n]q + α4[n + 2]q

([n]q + β)4[n + 2]q
.

Theorem 3. Let f be bounded and integrable on the interval [0, 1] and let
(qn) denote a sequence such that 0 < qn < 1, qn → 1 and qnn → c as n→∞,
where c is arbitrary constant. Then, we have, for a point x ∈ (0, 1)

lim
n→∞

[n]qn [D
α,β
n,qn(f ;x)−f(x)] = (1+α−(2+β)x) limn→∞

Dqnf(x)+x(1−x) limn→∞
D2
qnf(x).

The proof of the above lemma follows along the lines of the proof of
Theorem 2, using Lemma 4 and Remark 1; thus, we omit the details.
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Corollary 2 ([6]). Let f be bounded and integrable on the interval [0, 1]
and let (qn) denote a sequence such that 0 < qn < 1, qn → 1 and qnn → c
as n→∞, where c is arbitrary constant. Suppose that the first and second
derivatives f ′(x) and f ′′(x) exist at a point x ∈ (0, 1). Then, we have, for a
point x ∈ (0, 1),
lim
n→∞

[n]qn [D
α,β
n,qn(f ;x)− f(x)] = (1 + α− (2 + β)x)f

′(x) + x(1− x)f ′′(x).

Remark 2. Theorem 2 and Theorem 3, give asymptotic formula for q-
Durrmeyer operators and q-Durrmeyer-Stancu operators respectively. If f
has first and second derivatives, then lim

n→∞
Dqnf(x) = f ′(x) and lim

n→∞
D2
qnf(x) =

f ′′(x). We obtain the results of Mishra and Patel [6, Theorem 5], which are
mentioned in Corollary 2. So our results are more general than the existing
ones.
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FIXED POINTS FOR GENERALIZED
(F , h, α, µ)− ψ−CONTRACTIONS IN b−METRIC SPACES

VILDAN OZTURK, DURAN TURKOGLU, AND ARSLAN HOJAT ANSARI

Abstract. In this paper, we defined (F , h, α, µ)− ψ−contractions using pair
of (F , h) upper class functions for α−admissible and µ−subadmissible map-
pings.We proved some fixed point theorems for this type contractive mappings
in b−metric spaces. Our results generalize α−admissible results in the litera-
ture.

1. Introduction

Definition 1. ([9]) Let X be a nonempty set and s ≥ 1 be a given real number.
A function d : X × X → [0,∞) is a b-metric if, for all x, y, z ∈ X, the following
conditions are satisfied:

(i) d (x, y) = 0 if and only if x = y,
(ii) d (x, y) = d (y, x) ,
(iii) d (x, z) ≤ s [d (x, y) + d (y, z)] .

In this case, the pair (X, d) is called a b-metric space.

It should be noted that, the class of b-metric spaces is effectively larger than that
of metric spaces, every metric is a b-metric with s = 1.

Example 1. ([1]) Let (X, d) be a metric space and ρ (x, y) = (d (x, y))
p, where

p > 1 is a real number. Then ρ is a b−metric with s = 2p−1.

However, if (X, d) is a metric space, then (X, ρ) is not necessarily a metric space.
For example, if X = R is the set of real numbers and d (x, y) = |x− y| is usual

Euclidean metric, then ρ (x, y) = (x− y)
2 is a b−metric on R with s = 2.But is not

a metric on R.

Definition 2. ([7]) Let {xn} be a sequence in a b-metric space (X, d).
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(a) {xn} is called b−convergent if and only if there is x ∈ X such that d (xn, x)→
0 as n→∞.

(b) {xn} is a b−Cauchy sequence if and only if d (xn, xm)→ 0 as n,m→∞.
A b-metric space is said to be complete if and only if each b−Cauchy sequence

in this space is b−convergent.

Proposition 1. ([7]) In a b−metric space (X, d) , the following assertions hold:

(p1) A b−convergent sequence has a unique limit.
(p2) Each b−convergent sequence is b−Cauchy.
(p3) In general, a b−metric is not continuous.
On the other hand the notion of α−ψ-contractive type mapping was introduced

by Samet et al. [11],[17]. Also, see ([10],[12],[13-15])
Now we give some definitions that will be used throughout this paper.
A mapping ψ : [0,∞)→ [0,∞) is called a comparison function if it is increasing

and limn→∞ ψn (t) = 0 for all t > 0.

Lemma 1. ([5]) Let ψ : [0,∞)→ [0,∞) is a comparison function then

(a) each iterate ψn of ψ, n ≥ 1, is also a comparison function,
(b) ψ is continuous at t = 0,
(c) ψ (t) < t for all t > 0.

Definition 3. ([5]) A function ψ : [0,∞) → [0,∞) is said to be a (c)-comparison
function if

(c1) ψ is increasing,
(c2) there exists k0 ∈ N, a ∈ (0, 1) and a convergent series of nonnegative terms

∞∑
k=1

vk, such that ψ
k+1 (t) ≤ aψk (t) + vk, for k ≥ k0 and any t ∈ [0,∞) .

Definition 4. ([6]) Let s ≥ 1 be a real number. A function ψ : [0,∞)→ [0,∞) is
said to be a (b)-comparison function if

(b1) ψ is monotonically increasing,
(b1) there exists k0 ∈ N, a ∈ (0, 1) and a convergent series of nonnegative

terms
∞∑
k=1

vk, such that sk+1ψ
k+1 (t) ≤ askψk (t) + vk, for k ≥ k0 and any

t ∈ [0,∞) .

When s = 1, (b)-comparison function reduces to (c)-comparison function.
We denote by Ψb for the class of (b)-comparison function.

Lemma 2. ([4]) If ψ : [0,∞)→ [0,∞) is a (b)-comparison function then one has
the following:

(i)
∞∑
k=0

skψk (t) converges to any t ∈ R+,
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(ii) the function bs : [0,∞) → [0,∞) defined by bs (t) =
∞∑
k=0

skψk (t) , t ∈ R+,

increasing and continuous at 0.

Any (b)-comparison function is a comparison function.

Definition 5. ([17])For any nonempty set X, let T : X → X and α : X × X →
[0,∞) be mappings. T is called α-admissible if for all x, y ∈ X,

α (x, y) ≥ 1⇒ α (Tx, Ty) ≥ 1.

Definition 6. ([16])Let T : X → X, µ : X × X → R+. We say T is an µ-
subadmissible mapping if

x, y ∈ X, µ(x, y) ≤ 1 =⇒ µ(Tx, Ty) ≤ 1.

Bota et. al. in ([8]) gave the definition of α − ψ− contractive mapping of type
(b) in b−metric space which is a generalization of Definition 9.
Definition 7. Let (X, d) be a b−metric space and T : X → X be a given mapping.
T is called an α− ψ−contractive mapping of type (b), if there exists two functions
α : X ×X → [0,∞) and ψ ∈ Ψb such that

α (x, y) d (Tx, Ty) ≤ ψ (d (x, y)) , ∀x, y ∈ X.
Definition 8. ([2],[3])We say that the function h : R+ × R+ → R is a function of
subclass of type I, if x ≥ 1 =⇒ h(1, y) ≤ h(x, y) for all y ∈ R+.
Example 2. ([2],[3])Define h : R+ × R+ → R by:

(a) h(x, y) = (y + l)x, l > 1;
(b) h(x, y) = (x+ l)y, l > 1;
(c) h(x, y) = xny, n ∈ N;
(d) h(x, y) = y;
(e) h(x, y) = 1

n+1

(∑n
i=0 x

i
)
y, n ∈ N;

(f) h(x, y) =
[

1
n+1

(∑n
i=0 x

i
)

+ l
]y
, l > 1, n ∈ N

for all x, y ∈ R+. Then h is a function of subclass of type I.
Definition 9. ([2],[3]) Let h,F : R+ × R+ → R, then we say that the pair (F , h)
is an upper class of type I, if h is a function of subclass of type I and: (i) 0 ≤ s ≤
1 =⇒ F(s, t) ≤ F(1, t), (ii) h(1, y) ≤ F(1, t) =⇒ y ≤ t for all t, y ∈ R+.
Example 3. ([2],[3]) Define h,F : R+ × R+ → R by:

(a) h(x, y) = (y + l)x, l > 1 and F(s, t) = st+ l;
(b) h(x, y) = (x+ l)y, l > 1 and F(s, t) = (1 + l)st;
(c) h(x, y) = xmy, m ∈ N and F(s, t) = st;
(d) h(x, y) = y and F(s, t) = t;
(d) h(x, y) = 1

n+1

(∑n
i=0 x

i
)
y, n ∈ N and F(s, t) = st;

(e) h(x, y) =
[

1
n+1

(∑n
i=0 x

i
)

+ l
]y
, l > 1, n ∈ N and F(s, t) = (1 + l)st
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for all x, y, s, t ∈ R+. Then the pair (F , h) is an upper class of type I.

Definition 10. ([2],[3])We say that the function h : R+ × R+ × R+ → R is a
function of subclass of type II, if x, y ≥ 1 =⇒ h(1, 1, z) ≤ h(x, y, z) for all z ∈ R+.

Example 4. ([2],[3])Define h : R+ × R+ × R+ → R by:
(a) h(x, y, z) = (z + l)xy, l > 1;
(b) h(x, y, z) = (xy + l)z, l > 1;
(c) h(x, y, z) = z;
(d) h(x, y, z) = xmynzp,m, n, p ∈ N;
(e) h(x, y, z) = xm+xnyp+yq

3 zk,m, n, p, q, k ∈ N
for all x, y, z ∈ R+. Then h is a function of subclass of type II.

Definition 11. ([2],[3])Let h : R+ × R+ × R+ → R and F : R+ × R+ → R, then
we say that the pair (F , h) is an upper class of type II, if h is a subclass of type II
and: (i) 0 ≤ s ≤ 1 =⇒ F(s, t) ≤ F(1, t), (ii) h(1, 1, z) ≤ F(s, t) =⇒ z ≤ st for all
s, t, z ∈ R+.

Example 5. ([2],[3]) Define h : R+ × R+ × R+ → R and F : R+ × R+ → R by:
(a) h(x, y, z) = (z + l)xy, l > 1,F(s, t) = st+ l;
(b) h(x, y, z) = (xy + l)z, l > 1,F(s, t) = (1 + l)st;
(c) h(x, y, z) = z, F (s, t) = st;
(d) h(x, y, z) = xmynzp,m, n, p ∈ N,F(s, t) = sptp

(e) h(x, y, z) = xm+xnyp+yq

3 zk,m, n, p, q, k ∈ N,F(s, t) = sktk

for all x, y, z, s, t ∈ R+. Then the pair (F , h) is an upper class of type II.

2. Main results

Definition 12. ([13])Let (X, d) be a b−metric space and T : X → X be a given
mapping. T is called generalized α − ψ−contractive mapping of type (I), if there
exists two functions α : X ×X → [0,∞) and ψ ∈ Ψb such that for all x, y ∈ X

α (x, y) d (Tx, Ty)) ≤ ψ(Ms (x, y))

where,

Ms (x, y) = max

{
d (x, y) , d (Tx, x) , d (Ty, y) ,

d (Tx, y) + d (x, Ty)

2s

}
.

Theorem 1. ([13])Let (X, d) be a complete b−metric space. Suppose that T : X →
X be a generalized α− ψ−contractive mapping of type (I) and satisfies:

(i) T is α−admissible
(ii) there exists x0 ∈ X such that α (x0, Tx0) ≥ 1
(iii) T is continuous.

Then T has a fixed point.
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Definition 13. ([13])Let (X, d) be a b−metric space and T : X → X be a given
mapping. T is called generalized α − ψ−contractive mapping of type (II), if there
exists two functions α : X ×X → [0,∞) and ψ ∈ Ψb such that for all x, y ∈ X

α (x, y) d (Tx, Ty)) ≤ ψ(Ns (x, y))

where,

Ns (x, y) = max

{
d (x, y) ,

d (Tx, x) + d (Ty, y)

2s
,
d (Tx, y) + d (Ty, x)

2s

}
.

Definition 14. Let (X, d) be a b−metric space and T : X → X be a given mapping.
T is called generalized (F , h, α, µ)−ψ−contractive mapping of type (I), if there exists
two functions α, µ : X ×X → [0,∞) and ψ ∈ Ψb such that for all x, y ∈ X

h(α (x, y) , d (Tx, Ty)) ≤ F(µ (x, y) , ψ(Ms (x, y))) (2.1)

where,pair (F , h) is an upper class of type I and

Ms (x, y) = max

{
d (x, y) , d (Tx, x) , d (Ty, y) ,

d (Tx, y) + d (x, Ty)

2s

}
.

Theorem 2. Let (X, d) be a complete b−metric space. Suppose that T : X → X
be a generalized (F , h, α, µ)−ψ−contractive mapping of type (I) and satisfies:

(i) T is α−admissible and µ-subadmissible
(ii) there exists x0 ∈ X such that α (x0, Tx0) ≥ 1, µ (x0, Tx0) ≤ 1
(iii) T is continuous.

Then T has a fixed point.

Proof. By assumption (ii), there exists x0 ∈ X such that α (x0, Tx0) ≥ 1, µ (x0, Tx0) ≤
1. Define the sequence {xn} in X by xn+1 = Txn for all n ∈ N. If xn = xn+1 for
some n ∈ N, then xn is a fixed point of T.
Assume that xn 6= xn+1 for all n ∈ N.
Since T is α−admissible, then

α (x0, x1) = α (x0, Tx0) ≥ 1 =⇒ α (Tx0, Tx1) = α (x1, x2) ≥ 1.

µ (x0, x1) = µ (x0, Tx0) ≤ 1 =⇒ µ (Tx0, Tx1) = µ (x1, x2) ≤ 1.

By induction, we get for all n ∈ N,
α (xn, xn + 1) ≥ 1 , µ (xn, xn + 1) ≤ 1. (2.2)

Using (2.1) and (2.2)

h(1, d (xn, xn+1)) = h(1, d (Txn−1, Txn))

≤ h(α (xn−1, xn) , d (Txn−1, Txn))

≤ F(µ (xn−1, xn) , ψ(Ms (xn−1, xn)))

≤ F(1, ψ(Ms (xn−1, xn)))

=⇒
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d (xn, xn+1) ≤ ψ(Ms (xn−1, xn)). (2.3)
where

Ms (xn−1, xn) = max

{
d (xn−1, xn) , d (Txn−1, xn−1) , d (Txn, xn) ,

d(Txn−1,xn)+d(Txn,xn−1)
2s

}
,

= max

{
d (xn−1, xn) , d (xn, xn−1) , d (xn+1, xn) ,

d(xn,xn)+d(xn+1,xn−1)
2s

}
,

= max

{
d (xn−1, xn) , d (xn+1, xn) ,
s[d(xn+1,xn)+d(xn,xn−1)]

2s

}
≤ max {d (xn−1, xn) , d (xn+1, xn)} .

If Ms (xn−1, xn) = d (xn, xn+1) , then from (2.3) and definition of ψ,

d (xn, xn+1) ≤ ψ (d (xn, xn+1)) < d (xn, xn+1)

a contradiction. Thus Ms (xn−1, xn) = d (xn−1, xn). Hence,

d (xn, xn+1) ≤ ψ (d (xn−1, xn)) < d (xn−1, xn)

for all n ≥ 1. If operations are continued in this way,

d (xn, xn+1) ≤ ψn (d (x0, x1)) . (2.4)

Thus, for all p ≥ 1,

d (xn, xn+p) ≤ sd (xn, xn+1) + s2d (xn+1, xn+2) + ...

+sp−1d (xn+p−2, xn+p−1) + spd (xn+p−1, xn+p)

≤ sψn (d (x0, x1)) + s2ψn+1 (d (x0, x1)) + ...

+sp−1ψn+p−2 (d (x0, x1)) + spψn+p−1 (d (x0, x1))

=
1

sn−1
[snψn (d (x0, x1)) + sn+1ψn+1 (d (x0, x1)) + ...

+sp−n−2ψp−n−2 (d (x0, x1)) + sp+n−1ψp+n−1 (d (x0, x1))].

Denoting Sn =
∞∑
k=n

skψk (d (x0, x1)) , n ≥ 1, we obtain

d (xn, xn+p) ≤
1

sn−1
[Sn+p−1 − Sn−1] (2.5)

for n ≥ 1, p ≥ 1. From Lemma 2, we conclude that the series
∞∑
k=0

skψk (d (x0, x1))

is convergent. Thus, there exists

S = limn→∞ Sn ∈ [0,∞) .

Regarding s ≥ 1 and by (2.5) {xn} is a Cauchy sequence in b−metric space (X, d) .
Since (X, d) is complete, there exists x∗ ∈ X such that xn → x∗ as n→∞. Using
continuity of T ,

xn+1 = Txn → Tx∗



312 VILDAN OZTURK, DURAN TURKOGLU, AND ARSLAN HOJAT ANSARI

as n → ∞. By the uniqueness of the limit, we get x∗ = Tx∗. Hence x∗ is a fixed
point of T. �

Definition 15. Let (X, d) be a b−metric space and T : X → X be a given mapping.
T is called generalized (F , h, α, µ)−ψ−contractive mapping of type (II), if there
exists two functions α : X ×X → [0,∞) and ψ ∈ Ψb such that for all x, y ∈ X

h(α (x, y) , d (Tx, Ty)) ≤ F(µ (x, y) , ψ(Ns (x, y))) (2.6)

where,pair (F , h) is an upper class of type I and

Ns (x, y) = max

{
d (x, y) ,

d (Tx, x) + d (Ty, y)

2s
,
d (Tx, y) + d (Ty, x)

2s

}
.

Theorem 3. Let (X, d) be a complete b−metric space. Suppose that T : X → X
be a generalized (F , h, α, µ)−ψ−contractive mapping of type (II) and satisfies:

(i) T is α−admissible,µ-subadmissible
(ii) there exists x0 ∈ X such that α (x0, Tx0) ≥ 1, µ (x0, Tx0) ≤ 1
(iii) T is continuous.

Then T has a fixed point.

Proof. By assumption (ii), there exists x0 ∈ X such that α (x0, Tx0) ≥ 1, µ (x0, Tx0) ≤
1. Define the sequence {xn} in X by xn+1 = Txn for all n ∈ N. If xn = xn+1 for
some n ∈ N, then xn is a fixed point of T.
Assume that xn 6= xn+1 for all n ∈ N.
Since T is α−admissible, then

α (x0, x1) = α (x0, Tx0) ≥ 1 =⇒ α (Tx0, Tx1) = α (x1, x2) ≥ 1,

µ (x0, x1) = µ (x0, Tx0) ≤ 1 =⇒ µ (Tx0, Tx1) = µ (x1, x2) ≤ 1.

By induction, we get for all n ∈ N,
α (xn, xn + 1) ≥ 1 , µ (xn, xn + 1) ≤ 1.

Using (2.6)

h(1, d (xn, xn+1)) = h(1, d (Txn−1, Txn))

≤ h(α (xn−1, xn) , d (Txn−1, Txn))

≤ F(µ (xn−1, xn) , ψ(Ns (xn−1, xn)))

≤ F(1, ψ(Ns (xn−1, xn)))

=⇒

d (xn, xn+1) ≤ ψ(Ns (xn−1, xn)) ≤ ψ(Ms (x, y)).

The rest of proof is evident due to Theorem 2. �

In the following two theorems we are able to remove the continuity condition for
the α− ψ− contractive mappings of type (I) and type (II).



(F, h, α, µ)− ψ−CONTRACTIONS IN b−METRIC SPACES 313

Theorem 4. Let (X, d) be a complete b−metric space. Suppose that T : X → X
be a generalized α− ψ−contractive mapping of type (I) and satisfies:

(i) T is α−admissible,
(ii) there exists x0 ∈ X such that α (x0, Tx0) ≥ 1
(iii) if {xn} is a sequence in X such that α (xn, xn+1) ≥ 1 for all n and xn →

x ∈ X,as n → ∞, then there exists a subsequence
{
xn(k)

}
of {xn} such

that α
(
xn(k), x

)
≥ 1, for all k.

Then T has a fixed point.

Proof. Following the proof of Theorem 2 , we know that the sequence {xn} defined
by xn+1 = Txn for all n ≥ 0, is Cauchy and converges to some u ∈ X.
We shall show that Tu = u. Suppose on the contrary that d (Tu, u) > 0. From

(2.2) and (iii), there exists a subsequence
{
xn(k)

}
of {xn} such that α

(
xn(k), u

)
≥ 1

for all k. By (2.1)

h(1, d
(
xn(k)+1, Tu

)
) = h(1, d

(
Txn(k), Tu

)
)

≤ h(α
(
xn(k), u

)
, d
(
Txn(k), Tu

)
)

≤ F(µ
(
xn(k), u

)
, ψ(Ms

(
xn(k), u

)
))

≤ F(1, ψ(Ms

(
xn(k), u

)
))

=⇒

d
(
xn(k)+1, Tu

)
≤ ψ

(
Ms

(
xn(k), u

))
, (2.7)

where

Ms

(
xn(k), u

)
= max

{
d
(
xn(k), u

)
, d
(
Txn(k), xn(k)

)
, d (Tu, u) ,

d(Txn(k),u),d(Tu,xn(k))
2s

}
.

As k →∞, limk→∞ Ms

(
xn(k), u

)
= d (Tu, u) .

In (2.7), as k →∞

d (u, Tu) ≤ ψ (d (u, Tu)) < d (u, Tu)

which is a contradiction. Hence, u = Tu and u is a fixed point of T. �

Theorem 5. Let (X, d) be a complete b−metric space. Suppose that T : X → X
be a generalized α− ψ−contractive mapping of type (II) and satisfies:

(i) T is α−admissible,
(ii) there exists x0 ∈ X such that α (x0, Tx0) ≥ 1,
(iii) if {xn} is a sequence in X such that α (xn, xn+1) ≥ 1 for all n and xn →

x ∈ X,as n → ∞, then there exists a subsequence
{
xn(k)

}
of {xn} such

that α
(
xn(k), x

)
≥ 1, for all k.

then T has a fixed point.
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Proof. Following the proof of Theorem 2.5, we know that the sequence {xn} defined
by xn+1 = Txn , for all n ≥ 0, is Cauchy and converges to some u ∈ X.
We shall show that Tu = u. Suppose on the contrary that d (Tu, u) > 0. From

(2.2) and (iii), there exists a subsequence
{
xn(k)

}
of {xn} such that α

(
xn(k), u

)
≥ 1

for all k. Applying (2.6),

h(1, d
(
xn(k)+1, Tu

)
) = h(1, d

(
Txn(k), Tu

)
)

≤ h(α
(
xn(k), u

)
, d
(
Txn(k), Tu

)
)

≤ F(µ
(
xn(k), u

)
, ψ(Ns

(
xn(k), u

)
))

≤ F(1, ψ(Ns
(
xn(k), u

)
))

=⇒

d
(
xn(k)+1, Tu

)
≤ ψ

(
Ns
(
xn(k), u

))
(2.8)

where

Ns
(
xn(k), u

)
= max

 d
(
xn(k), u

)
,
d(Txn(k),xn(k))+d(Tu,u)

2s ,
d(Txn(k),u),d(Tu,xn(k))

2s

 .

As k →∞, limk→∞ Ns
(
xn(k), u

)
= d(Tu,u)

2s , for s ≥ 1.
In (2.8), as k →∞

d (u, Tu) ≤ ψ
(
d (Tu, u)

2s

)
<
d (Tu, u)

2s

which is a contradiction. Hence, u = Tu and u is a fixed point of T. �

Example 6. Let X = (0,∞) endowed with b−metric

d : X ×X → R+, d (x, y) = (x− y)
2

with constant s = 2. (X, d) is a complete b−metric space. Let the functions T :
X → X , α : X ×X → [0,∞) and η : X ×X → [0,∞) be defined by

T (x) =

{
x+1
4 , x ∈ (0, 1]

2x, x > 1
,

α (x, y) =

{
1, x ∈ (0, 1]

0, otherwise
,

η (x, y) =

{ 1
2 , x ∈ (0, 1]

1, otherwise
.

Clearly, T is α−admissible, continuous and η−subadmissible. Let h,F : R+×R+ →
R be defined by;

h(x, y) = (y+ l)x, l > 1 and F(s, t) = st+ l. (F ,h, α, η)−ψ−contraction of type
(I) is satisfied with ψ (t) = t

2 , for all t ≥ 0.
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Let x, y ∈ X if α (x, y) ≥ 1 and η (x, y) ≥ 1, then x, y ∈ (0, 1] .Thus

h (α (x, y) d (Tx, Ty)) = h

(
1,

(
x+ 1

4
− y + 1

4

)2)
=

1

16
(x− y)

2
+ l

≤ 1

2
.
1

2
(x− y)2 + l = F (η (x, y) , ψ (d (x, y)))

≤ F(η (x, y) , ψ (Ms (x, y)) .

Then all conditions of Theorem 5 are satisfied. 13 is fixed point of T .

Corollary 1. Let (X, d) be a complete b−metric space and T : X → X be contin-
uous mapping. Suppose that there exists a function ψ ∈ Ψb such that

d (Tx, Ty) ≤ ψ (Ms (x, y))

for all x, y ∈ X, then T has a fixed point.

Similarly, be taken α (x, y) = 1 in Theorem 4, the following result is obtained.

Corollary 2. Let (X, d) be a complete b−metric space and T : X → X be contin-
uous mapping. Suppose that there exists a function ψ ∈ Ψb such that

d (Tx, Ty) ≤ ψ (Ns (x, y))

for all x, y ∈ X, then T has a fixed point.
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NONLINEAR SELF ADJOINTNESS AND EXACT SOLUTION OF
FOKAS—OLVER—ROSENAU—QIAO (FORQ) EQUATION

FILIZ TAŞCAN, ÖMER ÜNSAL, ARZU AKBULUT, AND SAIT SAN

Abstract. Based on Lie’s symmetry approach, conservation laws are con-
structed for Fokas—Olver—Rosenau—Qiao(FORQ) equation and exact solution
is obtained. Nonlocal conservation theorem is used to carry out the analysis of
conservation process. Nonlinear self adjointness concept is applied to FORQ
equation, it is proved to be strict self adjoint. Characteristic equation and
similarity variable help us find exact solution of FORQ equation. Compared
with solutions found in previous papers, our solution is new and important,
since it is not possible to find exact solution of FORQ equation quite easily.

1. Introduction

In recently past years, more works has been conducted on conservation laws. The
existence of conservation laws makes important progress in understanding given in
many physical models. The determination of conservation laws, particularly local
ones, offers rich knowledge on the mechanism of physical phenomena modeled by
nonlinear evolution equations. An effective and impressive way of constructing
conservation laws is by means of well known Noether’s theorem [1]. This theorem
provides explicit formulae for construction conservation laws for Euler-Lagrange
differential equations once their Noether symmetries are known. Choosing a proper
Lagrangian provides a chance of applying Noether’s theorem to related equation.
So as to remove this restriction, some methods have been developed in recent years,
such as partial Lagrangian, Nonlocal conservation theorem, multiplier approach and
so on [2]-[14].
In recent years, there has been an increasing interest in integrable non-evolutionary

partial differential equation of the form(
1−D2

x

)
ut = F (u, ux, uxx, uxxx, ...) , u = u(x, t), Dx =

∂

∂x
(1)
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where F is a function of u and its derivatives with respect to x. The most famous
example of this type of equations is the Camassa-Holm equation [15, 16].(

1−D2
x

)
ut = 3uux − 2uxuxx − uuxxx. (2)

The integrability of Camassa-Holm type equations was shown by inverse scattering
transform, infinity hierarchy of local conservation laws, bi-Hamiltonian structure
and other remarkable properties of integrable equations [17]. We consider the fol-
lowing form of (1) [18](
1− ε2D2

x

)
ut = c1u

2ux + ε
[
c2u

2uxx + c3uu
2
x

]
+ ε2

[
c4u

2uxxx + c5uxuxxu+ c6u
3
x

]
+ε3

[
c7u

2uxxxx + c8uxuxxxu+ c9u
2
xxu+ c10u

2
xuxx

]
+ε4

[
c11u

2uxxxxx + c12uxuxxxxu+ c13uxxuxxxu+ c14u
2
xuxxx + c15uxu

2
xx

]
(3)

Here, ε and ci are the complex parameters and ε 6= 0. This equation is homoge-
neous differential polynomials of weight 1. Supposing that weight of ui is i, weight
of ε equals −1 and weight of ut is 1. Particularly, choosing the coeffi cients in (3)
appropriately, we get the (3) in the form of

ut − uxxt + 3u2ux − u3x − 4uuxuxx + 2uxu2xx − u2uxxx + u2xuxxx = 0 (4)

which is given as FORQ equation in [19].
In this paper, we concentrate on FORQ equation which was derived by Olver

and Rosenau [20], Fuchssteiner [21], and Qiao [22]. Our main motivation in this
study is to obtain Lie symmetry generators of FORQ equation with Maple package
program. Taking w = ϕ(x, t, u), the construction of nonlinear self adjointness and
conservation laws of the FORQ equation is presented. Furthermore, using the
similarity variables and reduced equation, exact solution is obtained.

2. Conservation laws for the FORQ equation

We briefly present notation to be used and recall basic definitions and theorems
that appear in [23]-[25].
Consider the kth order system of PDEs of n independent variables x = (x1, x2, ..., xn)

and m dependent variables u = (u1, u2, ..., um)

Eα
(
x, u, u(1), ..., u(k)

)
= 0, α = 1, ...,m. (5)

where u(i) is the collection of ith-order partial derivatives and the total differenti-
ation operator with respect to xi given by

Di =
∂

∂xi
+ uαi

∂

∂uα
+ uαij

∂

∂uαj
+ ..., i = 1, ..., n (6)

in which the summation convention is used. Suppose A is the universal space of
all differential functions of finite orders, clearly it is a vector space and forms an
algebra. The Lie-Backlund generator is the following vector field operator:

X = ξi
∂

∂xi
+ ηα

∂

∂uα
, ξi, ηα ∈ A (7)
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The operator (7) is an abbreviated form of the infinite formal sum

X = ξi
∂

∂xi
+ ηα

∂

∂uα
+
∑
k≥1

ζαi1i2...ik
∂

∂uαi1i2...ik
, (8)

where the additional coeffi cients can be determined from the prolongation formulae

ζαi = Di (η
α) + ξjuαji

ζαi1...ik = Di1 . . . Dik

(
ζαi1...ik−1

)
+ ξjuαji1...ik , k > 1.

(9)

The Noether operators associated with a Lie—Bäcklund operator X are

N i = ξi +Wα δ

δuαi
+
∞∑
k≥1

Di1 . . . Dik

∂

∂uαi1...ik
, i = 1, 2, ..., n

in which Wα is the Lie characteristic function

Wα = ηα − ξjuαj . (10)

A conserved vector of (5) is an n-tuple vector T =
(
T 1, T 2, ..., Tn

)
, T jεA, j =

1, ..., n

DiT
i
|(1) = 0. (11)

holds for all solutions of (5).
Then we define the adjoint equation to Eq(5) in the form of

Eα∗(x, u, w, u(1), w(1), ..., u(k), w(k)) = 0, α = 1, ...,m

with

Eα∗(x, u, w, u(1), w(1), ..., u(k), w(k)) =
δL

δuα
(12)

where L is formal Lagrangian for Eq( 5) defined by

L = wαEα ≡
m∑
α=1

wαEα. (13)

Here, so-called non local variables are wα = (w1, ..., wm), their derivatives are

wα(1), ..., w
α
(k) . Here

δ

δu
is the Euler-Lagrange operator and given by

δ

δuα
=

∂

∂uα
+
∞∑
k≥1

(−1)kDi1 . . . Dik

∂

∂uαi1...ik
, α = 1, ...,m. (14)

so that

δL

δuα
=
δ(wαEα)

δuα
=
∂(wαEα)

∂uα
−Di

(
∂(wαEα)

∂uαi

)
+DiDk

(
∂(wαEα)

∂uαik

)
− ...
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Definition 1. The differential equation ( 5) is said to be nonlinearly self-adjoint
if there exists a function

wα = ϕα(x, t, u) 6= 0 (15)

such that it satisfy

Eα∗(x, u, ϕ(x, u), ..., u(k), ϕ(k)) = λβαE
α(x, u, ...u(k)), α = 1, ..,m, (16)

for some undetermined coeffi cient λ = λβα(x, t, u). If we take w = ϕ(u) in ( 16)
the equation ( 5) is called quasi self-adjoint. If we take w = u, we say that the
equation ( 5) is strictly self-adjoint.

Theorem 2 ([23]). Every Lie point, Lie-Bäcklund and non-local symmetry of equa-
tion (5) gives a conservation law for the considered equation. The conserved vector
components are

T i = ξiL+Wα
[
∂L
∂ui
−Dj(

∂L
∂uij

) +DjDk(
∂L
∂uijk

)
]

+Dj (W
α)
[
∂L
∂uij
−Dk(

∂L
∂uijk

)
]
+DjDk (W

α)
∂L

∂uijk
(17)

and ξi, ηα are the coeffi cient functions of the associated generator (7) .

The conserved vectors obtained from (17) involve the arbitrary solutions wα of
the adjoint equation (12) and hence one obtains an infinite number of conservation
laws for (5) by choosing wα.
Now we use the nonlocal conservation theorem method given by Ibragimov. We

consider the following sub-algebra with infinitesimal generators of symmetries given
by,

X1 =
∂

∂x
, X2 =

∂

∂t
, X3 = t

∂

∂t
− 1
2
u
∂

∂u
. (18)

Then the corresponding formal Lagrangian of Eq(4) is given by

L =
(
ut − uxxt + 3u2ux − u3x − 4uuxuxx + 2uxu2xx − u2uxxx + u2xuxxx

)
w(x, t).
(19)

The adjoint equation for Eq(4) is

E∗(t, x, u, w, ..., wxxx) =
δ

δu
[w(x, t)

×
(
ut − uxxt + 3u2ux − u3x − 4uuxuxx

+2uxu
2
xx − u2uxxx + u2xuxxx

)]
= −wt + wtxx − 3wxu2 + wxu2x + wxxxu2 − wxxxu2x

+2wxuuxx − 2wxxuxuxx + 2wxxuux
(20)

where w is the adjoint variable.
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If we take w = ϕ(t, x, u) and necessary derivatives:

w = ϕ(t, x, u),

wt = ϕuut + ϕt,

wx = ϕuux + ϕx,

wxx = ϕuuxx + ϕuuu
2
x + 2ϕuxux + ϕxx,

wxxx = ϕxxx + 3ϕxxuux + 3ϕxuuu
2
x + 3ϕxuuxx + ϕuuuu

3
x + 3ϕuuuxuxx + ϕuuxxx,

wxxt = ϕuuutuxx + ϕutuxx + ϕuuxxt + ϕtuuu
2
x + 2ϕuuuxuxt + ϕuuuutu

2
x

+2ϕuuxuxut + 2ϕuxtux + 2ϕuxuxt + ϕxxuut + ϕxxt,

with the self-adjointness condition (16), Eq(20) as follows:

E∗(t, x, u, w, ..., wxxx) = −ϕuut − ϕt − 3(ϕuux + ϕx)u2 + ϕuu3x + u2xϕx +
(u2 − u2x)(ϕxxx + 3ϕxxuux + 3ϕxuuu2x + 3ϕxuuxx + ϕuuuu3x
+3ϕuuuxuxx + ϕuuxxx)

+2(ϕuux + ϕx)uxxu− 2(ϕuuxx + ϕuuu2x + 2ϕuxux + ϕxx)uxuxx
+2(ϕuuxx + ϕuuu

2
x + 2ϕuxux + ϕxx)uxu

= λ
(
ut − uxxt + 3u2ux − u3x − 4uuxuxx + 2uxu2xx − u2uxxx + u2xuxxx

)
(21)

The comparison of the coeffi cients of all derivatives yields ϕ = C1u + C2 where
C1, C2 are constants. Therefore we can take two different values of w, namely
w = 1 and w = u.
The conserved components of Eq(4), associated with a Lie symmetry, can be

obtained from (17) as follows:

T t = ξtL+W

[
∂L

∂ut
+D2

x

(
∂L

∂uxxt

)]
+Dx (W )

[
−Dx

(
∂L

∂uxxt

)]
+D2

x (W )

[
∂L

∂uxxt

]
T x = ξxL+W

[
∂L

∂ux
−Dx

(
∂L

∂uxx

)
+D2

x

(
∂L

∂uxxx

)
+D2

xt

(
∂L

∂uxxt

)]
+Dx(W )

[
∂L

∂uxx
−Dx

(
∂L

∂uxxx

)
−Dt

(
∂L

∂uxxt

)]
+Dt (W )

[
−Dx

(
∂L

∂uxxt

)]
+D2

x (W )

(
∂L

∂uxxx

)
+D2

xt(W )

(
∂L

∂uxxt

)
.

(22)
where W = η − uxξx − utξt is Lie characteristic function.
Now, we will find conservation laws of Eq(4) with the help of formulae (22).
i) Firstly, we will construct conservation laws with w = 1.
Case 1:
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We consider X1 =
∂
∂x with W = −ux, corresponding conserved vectors are

T t1 = −ux

T x1 = ut.
(23)

Case 2:
If we use X2 =

∂
∂t with W = −ut, we obtain conserved vectors

T t2 = 3u2ux − u3x − 4uuxuxx + 2uxu2xx − u2uxxx + u2xuxxx

T x2 = −3u2ut + utu2x + 2uutuxx + 2uuxuxt − 2uxuxtuxx + u2uxxt − u2xuxxt.
(24)

Obtained conservation laws in case1,2 satisfyDt (T
t
2)+Dx (T

x
2 ) = 0, so these vectors

are trivial.
Case 3:
For the Lie-point symmetry generator

X3 = t
∂

∂t
− 1
2
u
∂

∂u
,

we have
W = − 12u− tut.

If we use (22) , obtained conserved vectors are

T t3 = 3tu2ux − tu3x − 4tuuxuxx + 2tuxu2xx − tu2uxxx + tu2xuxxx −
1

2
u+

1

2
uxx

T x3 = −3
2
u3 +

3

2
uu2x +

3

2
u2uxx − 3tutu2 + tutu2x + 2tutuuxx −

3

2
u2xuxx

+2tuuxuxt − 2tuxuxxuxt + tu2uxxt − tu2xuxxt +
3

2
uxt + tuxtt.

(25)
Divergence condition can be expressed for these conservation laws as follows:

Dt (T
t
3) +Dx (T

x
3 ) =

3

2
uxxt + tuxxtt

= Dx

(
3

2
uxt + tuxtt

)
.

(26)

In Eq(26) , since there are some terms leftover, we should find modified conservation
laws to satisfy divergence condition. Therefore, modified conservation laws are

∼
T t3 = T t3

∼
T x3 = T x3 − tuxtt −

3

2
uxt.

(27)

ii) We will find conservation laws with w = u.
Case 4:
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According to generator X1 =
∂
∂x , we get trivial conserved vectors

T t1 = −uux
T x1 = uut.

(28)

Case 5:
Using the symmetry generator X2 =

∂
∂t , we obtain following trivial conserved

vectors

T t2 = 3u3ux − uu3x − 4u2uxuxx + 2uuxu2xx − u3uxxx + uu2xuxxx + utuxx − uuxxt

T x2 = −3u3ut + uutu2x + 3u2utuxx − utu2xuxx + u2uxuxt
−2uuxuxtuxx + u3xuxt − uxutt + u3uxxt − uu2xuxxt + uuxtt.

(29)
Case 6:
Finally, using the following Lie-point symmery generator

X3 = t
∂

∂t
− 1
2
u
∂

∂u
, (30)

conserved vectors are

T t3 = 3tu3ux − tuu3x − 4tu2uxuxx + 2tuuxu2xx − tu3uxxx + tuu2xuxxx
−1
2
u2 + uuxx + tutuxx −

1

2
u2x − tuxuxt

T x3 = −2tuuxuxxuxt + u2u2x + 2u3uxx + 2uuxt − 2uxut + tuxtu3x − tuxutt
+tu3uxxt + tuutu

2
x + 3tutu

2uxx − tutu2xuxx + tu2uxuxt − tuu2xuxxt
−3
2
u4 − 2uu2xuxx + tuuxtt +

1

2
u4x − 3tutu3.

(31)
If we look at divergence condition, we get

Dt (T
t
3) +Dx (T

x
3 ) = Dt

(
tuuxxt − u2x − tuxuxt

)
+Dx (uuxt) .

(32)

Again, there are some terms leftover. To satisfy divergence condition modified
conservation laws are obtained as follows

∼
T t3 = T t3 − tuuxxt + u2x + tuxuxt

∼
T x3 = T x3 − uuxt.

(33)

3. Exact Solution

Now we can find the exact solution of Eq(4) with Lie-point symmetry generator

X3 = t
∂

∂t
− 1
2
u
∂

∂u
.
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Using this generator, we find characteristic equation

dt

t
= −2du

u
, dx = 0.

Since similarity variables are c1 = ut
1
2 and c2 = x, then, solution f(c2) = c1 implies,

u = t−1/2f(x) (34)

where f is arbitrary function of x. Through (34), reduced ODE reads

−f
2
+
f
′′

2
+ 3f2f ′ −

(
f
′
)3
− 4ff

′
f ′′ + 2f

′
(
f
′′
)2
− f2f

′′′
+ f

′′′
(
f
′
)2
= 0 (35)

where f ′ = df
dx . If we solve the above ODE, we obtain

f (x) = aex + be−x (36)

where a and b are arbitrary constants. Therefore exact solution of the Eq(4) is

u(x, t) = t−1/2
(
aex + ce−x

)
. (37)

4. Conclusion

It is well known that Lie symmetry analysis is widely used in finding conserva-
tion laws and reduction of given PDE’s, ODE’s. In this paper, we have examined
FORQ equation, by obtaining new families of conservation laws and exact solution.
Nonlocal conservation theorem was employed to construct conservation laws, while
reduced ODE was being employed to obtain exact solution. The concept of self ad-
joint and quasi self adjoint equations were introduced by Ibragimov in [25]. With
the same idea, taking nonlocal variable w = ϕ(x, t, u), the self adjointness of FORQ
equation was investigated. We have expressed each generator with corresponding
conservation law in detail. We hope that obtained conservation laws and exact
solution could further assist in understanding and identifying FORQ equation in
previous and future works.
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