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TÜRKİYE
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İbrahim Enam İnan 273-279
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Abstract

In this work, we propose a numerical method based on the generalized sine-cosine wavelets

for solving multi-order fractional differential equations. After introducing generalized

sine-cosine wavelets, the operational matrix of Riemann-Liouville fractional integration is

constructed using the properties of the block-pulse functions. The fractional derivative in

the problem is considered in the Caputo sense. This method reduces the considered problem

to the problem of solving a system of nonlinear algebraic equations. Finally, some examples

are included to demonstrate the applicability of the new approach.

1. Introduction

The notion of the fractional differential equations (FDEs) was first developed as a pure mathematical theory in the middle of the 19th century

[1]. A history of the development of the fractional differential operators can be found in [2, 3]. It has been revealed that many mathematical

modelings contain FDEs. To mention a few, fractional derivatives are used in viscoelastic systems [4], economics [5], continuum and

statistical mechanics [6], solid mechanics [7], electrochemistry [8], biology [9] and acoustics [10]. An important issue to shed light on is the

fact that most of the FDEs do not have exact analytic solutions. Consequently, emphasis of efforts is on the importance of seeking numerical

solutions for these equations. As a result, several numerical methods have been given to solve problems including FDEs, such as Adomian

decomposition method [11], variational iteration method [12], fractional differential transform method [13], operational matrix method

[14], homotopy analysis method [15], power series method [16] and modified homotopy perturbation method [17]. Also, there can be some

classical solution techniques to be fond, e.g. Laplace transform method [18].

One way to solve equations numerically is to use wavelets. The basic idea of wavelets (both: translation and dilation) goes back to the early

1960’s [19]. There are developments concerning the multiresolution analysis (MRA) algorithm based on wavelets [20] and the construction

of compactly supported orthonormal wavelet bases [21]. Wavelets constitute unconditional (Riesz) bases for L2(R), the space of all square

integrable functions on the real line. In other words, a function in L2(R) can be decomposed and stably reconstructed in terms of wavelets

[22]. To illustrate, some wavelets which have been constructed and used for solving FDEs include B-spline wavelets [23], Haar wavelets

[24], Chebyshev wavelets [25], Legendre wavelets [26] and Bernoulli wavelets [27].

Sine-cosine wavelet (SCW) has been used and showed efficient to solve various problems. To indicate this, we can refer to some works.

Razzaghi and Yousefi in [28] have employed SCW to solve variational problems. Tavassoli Kajani et al. [29] have proposed a method based

on SCW for solving integro-differential equations. They also applied this method to solve Fredholm integral equations in [30]. A numerical

evaluation of Hankel transform for seismology has been given in [31] using SCWs approach. The present work introduces the generalized

sine-cosine wavelets (GSCWs) operational matrix of fractional integration which can be used to solve fractional problems.

The organization of this paper is as follows: Section 2 gives a brief preliminaries of fractional calculus followed by orthonormal basis of

GSCWs and their properties in Section 3. Section 4 is devoted to block-pulse functions and their basic properties. Section 5 introduces the

fractional order of operational matrix of integration for GSCWs. A numerical method based on the GSCWs and block-pulse functions in

order to solve multi-order FDEs is given in Section 6. Some examples are included in Section 7 to show the applicability and efficiency of

this method followed by concluding remarks in Section 8.

Email address and ORCID numbers: s.nemati@umz.ac.ir, 0000-0003-1724-6296 (S. Nemati), anashaboobi@gmail.com, 0000-0002-8317-7201 (A. Al-Haboobi)
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2. Preliminaries of fractional calculus

In this section, we briefly give some preliminaries and notations of fractional calculus. Two most important definitions for fractional integral

and derivative operators are Riemann-Liouville integral and Caputo derivative. The Riemann-Liouville fractional integral operator Iα of

order α ≥ 0 is defined as follows [32]:

Iα u(t) =

{

1
Γ(α)

∫ t
0(t − s)α−1u(s)ds, α > 0,

u(t), α = 0,

where Γ(α) is the gamma function defined by

Γ(α) =
∫ ∞

0
tα−1e−tdt.

Also, the Caputo fractional derivative operator Dα of order α is defined as follows [32]:

Dα u(t) =
1

Γ(n−α)

∫ t

0
(t − s)n−α−1u(n)(s)ds, n−1 < α ≤ n, n ∈ N,

where n = ⌈α⌉ is the smallest integer greater than or equal to α .

The following properties are satisfied for the Riemann-Liouville integral operator and Caputo derivative:

Iα tv =
Γ(v+1)

Γ(v+1+α)
tv+α , v >−1,

Iα (Dα u(t)) = u(t)−
⌈α⌉−1

∑
i=0

u(i)(0)
t i

i!
, (2.1)

Iα−β (Dα u(t)) = Dβ u(t)−
⌈α⌉−1

∑
i=⌈β⌉

u(i)(0)
t i−β

Γ(i−β +1)
, 0 ≤ β < α. (2.2)

3. Generalized sine-cosine wavelets

3.1. Definition and function approximation

Wavelets constitute a family of functions constructed from dilation and translation of a single function ϕ(t) which is called the mother

wavelet. When the dilation parameter and the translation parameter vary continuously, we have the following family of continuous wavelets

as [19, 33, 34]

ψa,b(t) = |a|− 1
2 ϕ

(

t −b

a

)

, a,b ∈ R, a 6= 0,

where a and b are the dilation and translation parameters, respectively. If the parameters a and b are restricted to take values a = a0
−k and

b = nb0a0
−k, where a0 > 1, b0 > 0 and n, and k are positive integers, a family of discrete wavelets which forms a wavelet basis for L2(R) is

obtained as

ψk,n(t) = |a0|
k
2 ϕ

(

ak
0t −nb0

)

.

Especially, if a0 = 2 and b0 = 1, then the set {ψk,n(t)} forms an orthonormal basis.

SCWs are usually defined on the interval [0,1). Here, we replace the interval [0,1) by [0,T ) where T > 0 and define GSCWs as

ψn,m(t) =

{

2
k+1

2√
T

fm(2
kt −nT ), n

2k T ≤ t < n+1
2k T,

0, otherwise,

with

fm(t) =











1√
2
, m = 0,

cos( 2mπt
T ), m = 1,2, . . . ,L,

sin(
2(m−L)πt

T ), m = L+1,L+2, . . . ,2L,

where L is any positive integer, n = 0,1,2, . . . ,2k − 1 and k = 0,1,2, · · · . The set of GSCWs forms an orthonormal basis for the space

L2[0,T ). Therefore, a function u(t) in this space may be expanded in a series of GSCWs as

u(t) =
∞

∑
m=0

2k−1

∑
n=0

cn,mψn,m(t), (3.1)
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where

cn,m = 〈u(t),ψn,m(t)〉=
∫ T

0
u(t)ψn,m(t)dt,

in which 〈., .〉 denotes the inner product. If the infinite series in (3.1) is truncated, then an approximation of the function u(t) is obtained as

u(t)≃
2L

∑
m=0

2k−1

∑
n=0

cn,mψn,m(t) =CT Ψω (t), (3.2)

where ω = 2k(2L+1), and C and Ψ(t) are 2k(2L+1)×1 matrices given by

C = [c0,0,c0,1, . . . ,c0,2L,c1,0,c1,1, . . . ,c1,2L, . . . ,c2k−1,0,c2k−1,1, . . . ,c2k−1,2L]
T ,

Ψω (t) = [ψ0,0(t),ψ0,1(t), . . . ,ψ0,2L(t),ψ1,0(t),ψ1,1(t), . . . ,ψ1,2L(t),

. . . ,ψ2k−1,0(t),ψ2k−1,1(t), . . . ,ψ2k−1,2L(t)]
T .

3.2. Convergence analysis

In this section, we get the convergence of the GSCW approximation of a function for all level of resolution k.

Theorem 3.1. Let L → ∞, then the series solution (3.2) converges to u(t).

Proof. Let Sk,M(t) be a sequence of partial sums of cn,mψn,m(t) as

Sk,M(t) =
M

∑
m=0

2k−1

∑
n=0

cn,mψn,m(t),

where M = 2L. We prove that Sk,M is a Cauchy sequence in Hilbert space L2[0,T ) and then we show that Sk,M converges to u(t), when

M → ∞. In order to reach the first aim, let M̂ = 2L̂ with L > L̂, then

‖Sk,M −Sk,M̂‖2 = ‖
M

∑
m=M̂+1

2k−1

∑
n=0

cn,mψn,m(t)‖2

=

〈

M

∑
m=M̂+1

2k−1

∑
n=0

cn,mψn,m(t),
M

∑
m=M̂+1

2k−1

∑
n=0

cn,mψn,m(t)

〉

=
M

∑
m=M̂+1

2k−1

∑
n=0

M

∑
l=M̂+1

2k−1

∑
r=0

cn,mcr,l

〈

ψn,m(t),ψr,l(t)
〉

=
M

∑
m=M̂+1

2k−1

∑
n=0

|cn,m|2.

From Bessel’s inequality, we have
∞

∑
m=0

2k−1

∑
n=0

|cn,m|2 is convergent. So

‖Sk,M −Sk,M̂‖2 → 0 as L → ∞.

This suggests that Sk,M is a Cauchy sequence and hence it converges to a function in L2[0,T ), say, f (t). We need to show that f (t) = u(t),

〈 f (t)−u(t),ψn,m(t)〉= 〈 f (t),ψn,m(t)〉−〈u(t),ψn,m(t)〉
= lim

L→∞

〈

Sk,M(t),ψn,m(t)
〉

− cn,m

= cn,m − cn,m

= 0.

Therefore
2L

∑
m=0

2k−1

∑
n=0

cn,mψn,m(t) converges to u(t) as L → ∞.

Remark 3.2. An error bound for the SCWs approximation of a function u(t) ∈ L2[0,1] can be found in [35].
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4. Block-pulse functions

Consider the interval [0,T ) and divide it into ω subintervals [(i−1)h, ih), i = 1,2, . . . ,ω with h = T
ω . Then the block-pulse functions are

defined by [36]

bi(t) =

{

1, (i−1)h ≤ t < ih,
0, otherwise.

It is clear from the block-pulse functions’ definition that the disjointness property for these functions is satisfied as follows:

bi(t)b j(t) =

{

bi(t), i = j,
0, i 6= j,

i, j = 1,2, . . . ,ω.

Furthermore, we have the orthogonality property as

∫ T

0
bi(t)b j(t)dt =

{

h, i = j,
0, i 6= j,

i, j = 1,2, . . . ,ω.

The block-pulse functions consist a complete orthogonal basis for the space L2[0,T ). Therefore, every real bounded function u(t) which is

square integrable on the interval [0,T ) can be approximated using the block-pulse functions as

u(t)≃
ω

∑
i=1

uibi(t) =UT Bω (t), (4.1)

where

Bω (t) = [b1(t),b2(t), . . . ,bω (t)]
T ,

U = [u1,u2, . . . ,uω ]
T ,

and

ui =
1

h

∫ t

0
u(t)bi(t)dt =

1

h

∫ ih

(i−1)h
u(t)dt.

For the block-pulse vector Bω (t) and the vector U , we have

Bω (t)B
T
ω (t)U ≃ diag(U)Bω (t), (4.2)

where diag(U) is the following diagonal matrix

diag(U) =











u1 0 . . . 0

0 u2 . . . 0

...
...

. . .
...

0 0 . . . uω











.

In [36], the authors have introduced the operational matrix of fractional integration of the block-pulse functions. They proved that

Iα Bω (t)≃ Fα
ω×ω Bω (t), (4.3)

where

Fα
ω×ω =

(

T

ω

)α
1

Γ(α +2)



















1 ξ2 ξ3 ξ4 . . . ξm

0 1 ξ2 ξ3 . . . ξm−1

0 0 1 ξ2 . . . ξm−2

...
...

. . .
. . .

. . .
...

0 0 . . . 0 1 ξ2

0 0 . . . 0 0 1



















.

with ξk = kα+1 −2(k−1)α+1 +(k−2)α+1.
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5. Operational matrix of fractional integration

In this section, we introduce the fractional order operational matrix of integration for the GSCWs. To this aim, first we look for a matrix

Qω×ω such that

Ψω (t)≃ Qω×ω Bω (t), (5.1)

where ω = 2k(2L+1). Using (4.1), we have

ψn,m(t) =
ω

∑
i=1

c
n,m
i bi(t),

with

c
n,m
i =

ω

T

∫ i
ω T

(i−1)
ω T

ψn,m(t)dt.

Using the definition of the GSCWs, c
n,m
i could be nonzero if

n

2k
T ≤ i−1

ω
T <

i

ω
T ≤ n+1

2k
T.

This implies to have

n(2L+1)+1 ≤ i ≤ (n+1)(2L+1). (5.2)

Taking (4.1) and (5.2) into consideration, we get

ψn,m(t) =
(n+1)(2L+1)

∑
i=n(2L+1)+1

c
n,m
i bi(t).

When m = 0, we have

c
n,0
i =

ω

T

∫ i
ω T

(i−1)
ω T

2
k
2

√
T

dt =
2

k
2

√
T
.

For m = 1,2, . . . ,L, we obtain

c
n,m
i =

ω

T

∫ i
ω T

(i−1)
ω T

2
k+1

2

√
T

cos

(

2mπ

T
(2kt −nT )

)

dt

=
2

k−1
2 (2L+1)

mπ
√

T

[

sin

(

2πm

(

2k i

ω
−n

))

− sin

(

2πm

(

2k i−1

ω
−n

))]

,

and for m = L+1,L+2, . . . ,2L, we get

c
n,m
i =

ω

T

∫ i
ω T

(i−1)
ω T

2
k+1

2

√
T

sin

(

2(m−L)π

T
(2kt −nT )

)

dt

=
2

k−1
2 (2L+1)

(m−L)π
√

T

[

cos

(

2π(m−L)

(

2k i−1

ω
−n

))

−cos

(

2π(m−L)

(

2k i

ω
−n

))]

.

Hence, the matrix Qω×ω in (5.1) is obtained as

Qω×ω =















Q0 O O . . . O

O Q1 O . . . O

O O Q2 . . . O

...
...

...
. . .

...

O O O . . . Q2k−1















,

where O is the zero matrix of dimension (2L+1)× (2L+1) and Qn, n = 0,1,2, . . . ,2k −1, are (2L+1)× (2L+1) matrices as

Qn =
[

an
m,i

]

, m = 0,1,2, . . . ,2L, i = 1,2,3, . . . ,2L+1,

with an
m,i = c

n,m
i .

The matrix Qω×ω is an invertible matrix, so we have

Bω (t)≃ Q−1
ω×ω Ψω (t). (5.3)
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Applying the Riemann-Liouville integral operator of order α to (5.1) and then utilizing (4.3) and (5.3), yield

Iα Ψω (t)≃ Qω×ω Iα Bω (t)≃ Qω×ω Fα
ω×ω Bω (t)≃ Qω×ω Fα

ω×ω Q−1Ψω (t).

Therefore we have

Iα Ψω (t)≃ Pα
ω×ω Ψω (t), (5.4)

with

Pα
ω×ω = Qω×ω Fα

ω×ω Q−1
ω×ω .

In particular, for T = 1, k = 1, L = 1 and α = 0.5, the GSCWs operational matrix of fractional order integration Pα
ω×ω is given by

P0.5
6×6 =

















0.5319 −0.0253 −0.2073 0.4407 0.0218 0.0993

−0.0173 0.1651 0.0991 0.0149 0.0061 0.0148

0.1418 −0.0991 0.2243 −0.0679 −0.0148 −0.0449

0. 0. 0. 0.5319 −0.0253 −0.2073

0. 0. 0. −0.0173 0.1651 0.0991

0. 0. 0. 0.1418 −0.0991 0.2243

















.

6. Numerical method

In this section, we use the properties of the GSCWs together with the block-pulse functions to solve a class of nonlinear multi-order FDEs.

Consider the following FDE

Dα u(t) =
r

∑
k=1

ak(t)D
βk u(t)+a0(t)u(t)+a(t) [u(t)]m + f (t), (6.1)

with initial conditions

u(s)(0) = us
0, s = 0,1, . . . ,⌈α⌉−1,

where α > β1 > β2 > .. . > βr, Dα denotes the Caputo fractional derivative of order α , a(t), ak(t), k = 0,1,2, . . . ,r and f (t) are given

known functions, ⌈.⌉ is the ceiling function and u(t) is the unknown function to be determined. In order to obtain a numerical solution for

(6.1), we suppose that

Dα u(t)≃UT Ψω (t), (6.2)

then using (2.1), (5.4) and (6.2), we have

u(t)≃UT Pα
ω×ω Ψω (t)+

⌈α⌉−1

∑
s=0

us
0

ts

s!

≃ (UT Pα
ω×ω +UT

0 )Ψω (t)

= ΛT
0 Ψω (t),

(6.3)

where we have used

⌈α⌉−1

∑
s=0

us
0

ts

s!
≃UT

0 Ψω (t),

and

Λ0 = (UT Pα
ω×ω +UT

0 )T .

Also, taking into consideration (2.2), (5.4) and (6.2), we have

Dβk u(t)≃ (UT P
α−βk

ω×ω +UT
k )Ψω (t) = ΛT

k Ψω (t), (6.4)

where

⌈α⌉−1

∑
s=⌈βk⌉

us
0

ts−βk

Γ(s−βk +1)
≃UT

k Ψω (t),

and

Λk = (UT P
α−βk

ω×ω +UT
k )T .

Now, suppose that

ak(t)≃ AT
k Ψω (t), k = 0,1,2, . . . ,r,

a(t)≃ AT Ψω (t),

f (t)≃ FT Ψω (t).

(6.5)
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Substituting approximations (6.3)-(6.5) into (6.1) yields

UT Ψω (t) =
r

∑
k=0

AT
k Ψω (t)Ψ

T
ω (t)Λk +AT Ψω (t)

[

ΛT
0 Ψω (t)

]m
+FT Ψω (t). (6.6)

By employing (4.2) and (5.1), we get

AT
k Ψω (t)Ψ

T
ω (t)Λk ≃ AT

k Qω×ω Bω (t)B
T
ω (t)Q

T
ω×ω Λk

≃ AT
k Qω×ω diag(QT

ω×ω Λk)Bω (t)
(6.7)

In a similar way, we obtain

AT Ψω (t)
[

ΛT
0 Ψω (t)

]m
≃ AT Qω×ω

[

diag(QT
ω×ω Λ0)

]m
Bω (t) (6.8)

At the end, taking consideration (6.7) and (6.8) into (6.6), we get

UT Qω×ω −
r

∑
k=0

AT
k Qω×ω diag(QT

ω×ω Λk)−AT Qω×ω

[

diag(QT
ω×ω Λ0)

]m
−FT Qω×ω = 0,

which is a system of nonlinear algebraic equations that can be solved using iterative methods. By solving this system, we obtain the

approximate solution u(t) as

u(t)≃UT Pα
ω×ω Ψω (t)+

⌈α⌉−1

∑
s=0

us
0

ts

s!
. (6.9)

Remark 6.1. In the linear case of the equation (6.1) with constant coefficients, i.e.

Dα u(t) =
r

∑
k=1

akDβk u(t)+a0u(t)+ f (t),

the following linear system is resulted from employing our method

UT −
r

∑
k=0

akΛT
k −a0ΛT

0 −FT = 0.

7. Illustrative examples

In this section we present four examples and apply the method presented in the previous section for solving them. The function “FindRoot”

in “Mathematica” software has been employed for solving the final nonlinear systems obtained by the method.

Example 7.1. Consider the Bagley-Torvik equation [37, 38]

aD2u(t) =−bD3/2u(t)− cu(t)+ c(1+ t), t ∈ [0,1], (7.1)

subject to initial conditions u(0) = u′(0) = 1.

The exact solution of this problem is u(t) = 1+ t. By considering k = 0 and L = 1, we employ the present method for this problem with

a = 1, b = 0.5 and c = 0.5. In this case, the basis functions are given by

ψ0,0(t) =

{

1, 0 ≤ t < 1,
0, otherwise,

ψ0,1(t) =

{ √
2cos(2πt), 0 ≤ t < 1,

0, otherwise,

ψ0,2(t) =

{ √
2sin(2πt), 0 ≤ t < 1,

0, otherwise.

Suppose that

D2u(t)≃ u0,0ψ0,0(t)+u0,1ψ0,1(t)+u0,2ψ0,2(t) =UT Ψ3(t), (7.2)

then using the initial conditions of the problem, we get

D3/2u(t)≃UT P
1
2

3×3Ψ3(t), (7.3)

u(t)≃UT P2
3×3Ψ3(t)+1+ t ≃ (UT P2

3×3 +UT
0 )Ψ3(t), (7.4)

where U0 is obtained by approximating the function 1+ t as

U0 =

[

3

2
,0,− 1√

2π

]T

,
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and P
1
2

3×3 and P2
3×3 are given, respectively, by

P
1
2

3×3 =









4
3
√

π
4
27 (

√
2+

√
6−4)

√
π 4

81 (−9
√

2+4
√

3+
√

6)
√

π
√

2+
√

6−4
π3/2

2(−4
√

2+
√

3+5)

3
√

3π

2(8
√

2−3
√

3−5)
9
√

π

9
√

2−4
√

3−
√

6
3π3/2 − 2(8

√
2−3

√
3−5)

9
√

π
2(
√

3+4
√

6−9)
9
√

π









,

P2
3×3 =









1
6

1
81

√

2
3 π − 1

27

(√
2π

)

1

6
√

6π
− 1

54 0

1

2
√

2π
0 − 5

54









.

By substituting (7.2)–(7.4) into (7.1), we obtain

UT Ψ3(t) =−0.5UT P
1
2

3×3Ψ3(t)−0.5(UT P2
3×3 +UT

0 )Ψ3(t)+0.5UT
0 Ψ3(t),

which leads us to have

UT =−0.5UT P
1
2

3×3 −0.5UT P2
3×3.

By solving this linear system, the unknown parameters are computed as

u0,0 = u0,1 = u0,2 = 0.

Thus using (6.9), we get

u(t) = 1+ t,

which is the exact solution.

Example 7.2. Consider the following multi-order FDE [37, 39]:

D3u(t) =−D5/2u(t)− [u(t)]2 + t4,

subject to initial conditions u(0) = u′(0) = 0 and u′′(0) = 2.

The exact solution of this problem is u(t) = t2. The absolute error of the numerical solutions obtained by the present method in this paper is

given in Table 1 and Figure 7.1. We have displayed the numerical results for T = 1 using the GSCWs with L = 1 and k = 2, 4, 6, 8 in Table

1. In Figure 7.1, plot of the absolute error obtained by L = 1 and different values of k are shown. It is seen from Table 1 and Figure 7.1 that

the absolute error decreases as the level of resolution increases.

Table 1: Absolute error at some selected point with L = 1 and different values of k for Example 7.2.

t k=2 k=4 k=6 k=8

0.0 2.06×10−7 1.41×10−11 9.22×10−16 5.81×10−20

0.1 3.71×10−8 2.68×10−10 6.23×10−12 4.52×10−13

0.2 3.83×10−7 2.82×10−9 2.26×10−10 1.31×10−11

0.3 8.76×10−8 2.99×10−8 1.51×10−9 9.87×10−11

0.4 3.87×10−6 9.13×10−8 6.63×10−9 3.97×10−10

0.5 2.21×10−5 4.28×10−7 2.06×10−8 1.21×10−9

0.6 9.09×10−6 8.18×10−7 4.54×10−8 2.91×10−9

0.7 3.57×10−5 1.48×10−6 9.99×10−8 6.12×10−9

0.8 3.98×10−5 3.19×10−6 1.85×10−7 1.18×10−8

0.9 1.15×10−4 5.05×10−6 3.38×10−7 2.07×10−8

1.0 9.37×10−5 7.72×10−6 5.35×10−7 3.44×10−8

Example 7.3. Consider the following multi-order FDE [37, 39]:

D4u(t) =−D3.5u(t)− [u(t)]3 + t9,

subject to initial conditions u(0) = u′(0) = u′′(0) = 0 and u′′′(0) = 6.

The exact solution of this problem is u(t) = t3. The absolute error of the numerical solutions obtained by the present method is given in

Table 2 and Figure 7.2. The numerical results for T = 1 using the GSCWs with L = 1 and k = 2, 4, 6, 8 are displayed in Table 2. Plot of the

absolute error obtained by L = 1 and different values of k are shown in Figure 7.2. The results here confirm the convergence of the numerical

solution to the exact solution of this problem.

Example 7.4. As the last example, consider the following linear multi-order FDE [37, 40]:

D2u(t) = 2Du(t)−D0.5u(t)−u(t)+ t3 −6t2 +6t +
16

5
√

π
t2.5,

subject to initial conditions u(0) = u′(0) = 0.

The exact solution is u(t) = t3. Numerical results for this example are presented in Table 3 and Figure 7.3. The absolute errors at some

selected points on the interval [0,1] using the GSCWs with L = 1 and k = 2, 4, 6, 8 are given in Table 3. In Figure 7.3, the exact solution

and numerical solution obtained by L = 1 and different values of k are displayed. The absolute error reported in Table 3 and Figure 7.3 show

the convergence of the numerical solution to the exact solution.
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Figure 7.1: Plot of the absolute error with L = 1 and k = 2,4,6,8 for Example 7.2.

Table 2: Absolute error at some selected point with L = 1 and different values of k for Example 7.3.

t k=2 k=4 k=6 k=8

0.0 1.34×10−11 2.22×10−19 3.51×10−27 5.39×10−35

0.1 4.63×10−12 1.03×10−16 2.16×10−19 0.00

0.2 2.31×10−11 8.25×10−16 8.51×10−16 4.51×10−17

0.3 1.88×10−9 1.68×10−12 5.74×10−14 3.94×10−15

0.4 6.26×10−9 1.78×10−11 1.55×10−12 8.80×10−14

0.5 3.06×10−7 6.39×10−10 1.97×10−11 1.07×10−12

0.6 4.30×10−8 2.47×10−9 1.14×10−10 7.58×10−12

0.7 5.27×10−7 9.09×10−9 6.67×10−10 3.98×10−11

0.8 4.17×10−8 5.11×10−8 2.67×10−9 1.73×10−10

0.9 6.36×10−6 1.42×10−7 1.02×10−8 6.16×10−10

1.0 5.66×10−5 3.81×10−7 2.88×10−8 1.91×10−9
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Figure 7.2: Plot of the absolute error with L = 1 and k = 2,4,6,8 for Example 7.3.
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Table 3: Absolute error at some selected point with L = 1 and different values of k for Example 7.4.

t k=2 k=4 k=6 k=8

0.0 7.57×10−3 1.17×10−4 1.84×10−6 2.87×10−8

0.1 2.14×10−3 3.84×10−4 7.92×10−5 2.04×10−5

0.2 5.85×10−3 1.08×10−3 2.68×10−4 6.68×10−5

0.3 1.08×10−2 2.45×10−3 6.01×10−4 1.50×10−4

0.4 2.49×10−2 5.04×10−3 1.31×10−3 3.24×10−4

0.5 1.48×10−1 2.64×10−2 6.04×10−3 1.47×10−3

0.6 4.36×10−2 1.20×10−2 2.91×10−3 7.33×10−4

0.7 5.55×10−2 1.30×10−2 3.28×10−3 8.18×10−4

0.8 6.78×10−2 1.72×10−2 4.27×10−3 1.07×10−3

0.9 1.14×10−1 2.58×10−2 6.62×10−3 1.64×10−3

1.0 2.88×10−1 8.79×10−2 2.31×10−2 5.83×10−3

Exact solution

Numerical solution (L=1,k=2)
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Figure 7.3: Plot of the exact solution and numerical solutions with L = 1 and k = 2,4,6,8 for Example 7.4.

8. Concluding remarks

This work is devoted to the numerical solution of the multi-order fractional differential equations using the generalized sine-cosine wavelets.

The fractional order operational matrix of integration has been introduced using the properties of the block-pulse functions and generalized

sine-cosine wavelets. Using the properties of sine-cosine wavelets and block-pulse functions, the considered problem is reduced to a system

of nonlinear algebraic equations which can be solved using iterative methods. The numerical results of four examples show that the proposed

method gives high accuracy approximations of the solutions. As it is seen from the tables and figures, the absolute error decreases as the

level of resolution, k, increases.
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Abstract

In the present paper, firstly we express the relation between the semi-symmetric metric con-

nection ∇̃ and the torsion-free connection ∇ and obtain the relation between the curvature

tensors R̃ of ∇̃ and R of ∇. After, we obtain these relations for ∇̃ and the dual connec-

tion ∇∗
. Also, we give the relations between the curvature tensor R̃ of semi-symmetric

metric connection ∇̃ and the curvature tensors R and R∗ of the connections ∇ and ∇∗ on

Sasakian statistical manifolds, respectively. We obtain the relations between the Ricci

tensor (and scalar curvature) of semi-symmetric metric connection ∇̃ and the Ricci tensors

(and scalar curvatures) of the connections ∇ and ∇∗
. Finally, we construct an example of a

3-dimensional Sasakian manifold with statistical structure admitting the semi-symmetric

metric connection in order to verify our results.

1. Introduction

The theory of statistical manifolds, the so called information geometry, has started with a paper of Rao in 1945 [1] and after that, the

information geometry, which is typically deals with the study of various geometric structures on a statistical manifold, has begun as a study of

the geometric structures possessed by a statistical model of probability distributions. Nowadays, the information geometry has an important

application area, such as, information theory, stochastic processes, dynamical systems and times series, statistical physics, quantum systems

and the mathematical theory of neural networks [2], [3].

In 1985, the notion of dual connection (or conjugate connection) in affine geometry, has been first introduced into statistics by Amari [4]. A

statistical model equipped with a Riemannian metric together with a pair of dual affine connections is called a statistical manifold. For more

information about statistical manifolds and information geometry, we refer to [5], [6], [7], [8], [9], [10] and etc.

Also, if Φ is a tensor field of type (1,1), η is a 1-form and ξ is a vector field on a (2n+1)-dimensional differentiable manifold M, then

almost contact structure (Φ,η ,ξ ) which is related to almost complex structures and satisfies the conditions Φ2 =−I +η ⊗ξ , η(ξ ) = 1 has

been determined by Sasaki in 1960 [11]. With the aid of this definition, different types of this manifold such as Sasakian manifold, Kenmotsu

manifold, trans-Sasakian manifold and etc. have been defined and studied by many mathematicians [11], [12], [13] and etc.

According to these notions, the differential geometry of statistical manifolds are being studying by geometers by adding different geometric

structures to these manifolds. For instance, in [14] quaternionic Kähler-like statistical manifold have been studied and in [15], the authors

have introduced the notion of Sasakian statistical structure and obtained the condition for a real hypersurface in a holomorphic statistical

manifold to admit such a structure. In [16], the notion of a Kenmotsu statistical manifold is introduced and they have showed that, a

Kenmotsu statistical manifold of constant Φ-sectional curvature is constructed from a special Kahler manifold, which is an important

example of holomorphic statistical manifold. Also, the projection of a dualistic structure has been defined on a twisted product manifold

induces dualistic structures on the base and the fiber manifolds, and conversely in [3].

This paper is organized as follows:

In Section 2, we recall some basic notions about statistical structures and semi-symmetric metric connection. After Preliminaries, by

expressing the relation between the semi-symmetric metric connection ∇̃ and the torsion-free connection ∇, we obtain the relation between

the curvature tensors R̃ of ∇̃ and R of ∇ in Section 3 and then, we obtain these relations for ∇̃ and the dual connection ∇∗. In Section 4,

Email address and ORCID numbers: sema.bulut@inonu.edu.tr, 0000-0002-8771-9506 (S. Kazan), ahmet.kazan@inonu.edu.tr, 0000-0002-1959-6102 (A. Kazan)
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we give the relations between the curvature tensor R̃ of semi-symmetric metric connection ∇̃ and the curvature tensors R and R∗ of the

connections ∇ and ∇∗ on Sasakian statistical manifolds, respectively. Also, we obtain the relations between the Ricci tensor (and scalar

curvature) of semi-symmetric metric connection ∇̃ and the Ricci tensors (and scalar curvatures) of the connections ∇ and ∇∗
. At the end of

this section, we construct an example of a 3-dimensional Sasakian manifold with statistical structure admitting the semi-symmetric metric

connection in order to verify our results.

2. Preliminaries

In this section, we recall some notions about statistical structures and semi-symmetric metric connection, respectively. Throughout this

paper, we assume that M is a (2n+1)-dimensional manifold, g is a Riemannian metric, ∇̂ is the Levi-Civita connection associated with g

and Γ(T M(p,q)) means the set of tensor fields of type (p,q) on M.

A pair (∇,g) is called a statistical structure on M, if ∇ is torsion-free and

(∇X g)(Y,Z) = (∇Y g)(X ,Z), ∀X ,Y,Z ∈ Γ(T M) (2.1)

holds, where the equation (2.1) is generally called Codazzi equation. In this case, (M,∇,g) is called a statistical manifold.

Let (∇,g) be a statistical structure on M. Then the connection ∇∗ which is defined by

Xg(Y,Z) = g(∇XY,Z)+g(Y,∇∗
X Z)

is called conjugate or dual connection of ∇ with respect to g. If (∇,g) is a statistical structure on M, then (∇∗
,g) is a statistical structure on

M, too.

For a statistical structure (∇,g), one can define the difference tensor field K ∈ Γ(T M(1,2)) as

K(X ,Y ) = ∇XY − ∇̂XY, ∀X ,Y ∈ Γ(T M), (2.2)

where K satisfies

K(X ,Y ) = K(Y,X),

g(K(X ,Y ),Z) = g(Y,K(X ,Z)).

Furthermore, we have

K = ∇̂−∇∗ =
1

2
(∇−∇∗). (2.3)

For a more detailed treatment, we refer to [7], [15] and [17].

On the other hand in [18], Hayden introduced a metric connection with a non-zero torsion on a Riemannian manifold and this connection is

called a Hayden connection. In [19], the authors have introduced the semi-symmetric linear connection in a differentiable manifold. A linear

connection is said to be a semi-symmetric connection if its torsion tensor T is of the form

T (X ,Y ) = w(Y )X −w(X)Y,

where the 1-form w is defined by

w(X) = g(X ,U),

for vector fields X , Y and U on M. Also, a semi-symmetric connection ∇̃ is called a semi-symmetric metric connection if it further satisfies

∇̃g = 0. If ∇̂ is the Levi-Civita connection of a Riemannian manifold M, then the relation between the semi-symmetric metric connection ∇̃

and ∇̂ is

∇̃XY = ∇̂XY +w(Y )X −g(X ,Y )U, (2.4)

where w(Y ) = g(Y,U).

3. Curvature of semi-symetric metric connection on statistical manifolds

In this section, firstly we’ll express the relation between the semi-symmetric metric connection ∇̃ and the torsion-free connection ∇ and

obtain the relation between the curvature tensors R̃ of ∇̃ and R of ∇. After, we’ll obtain these relations for ∇̃ and the dual connection ∇∗.

Let M be an n-dimensional Riemannian manifold and (∇,g) be a statistical structure on M.

From (2.2) and (2.4), we obtain the relation between the connections ∇̃ and ∇ as

∇̃XY = ∇XY +w(Y )X −g(X ,Y )U −K(X ,Y ). (3.1)

The Riemannian curvature tensor R̃ of M with respect to the semi-symmetric metric connection ∇̃ is defined by

R̃(X ,Y )Z = ∇̃X ∇̃Y Z − ∇̃Y ∇̃X Z − ∇̃[X ,Y ]Z, (3.2)

for all X ,Y,Z ∈ Γ(T M). From (3.1), we have

∇̃X ∇̃Y Z = ∇X ∇Y Z +w(∇Y Z)X +w(∇X Z)Y −w(K(X ,Z))Y −w(K(Y,Z))X +w(Z)∇XY −w(Z)K(X ,Y )+w(Y )w(Z)X

−g(X ,Y )w(Z)U −g(Y,Z)w(U)X +g(Y,Z)w(X)U

−g(X ,∇Y Z)U +g(Z,∇XU)Y −g(∇XY,Z)U −g(Y,∇X Z)U −g(Y,Z)∇XU

−g(Z,K(X ,U))Y +g(K(X ,Y ),Z)U +g(Y,K(X ,Z))U +g(X ,K(Y,Z))U

+g(Y,Z)K(X ,U)−K(X ,∇Y Z)−∇X K(Y,Z)+K(X ,K(Y,Z)) (3.3)
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and

∇̃[X ,Y ]Z = ∇[X ,Y ]Z +w(Z)∇XY −w(Z)∇Y X −g(∇XY,Z)U +g(∇Y X ,Z)U −K(∇XY,Z)+K(∇Y X ,Z). (3.4)

Using (3.3) and (3.4) in (3.2), we obtain the Riemannian curvature tensor R̃ of M with respect to the semi-symmetric metric connection ∇̃ as

R̃(X ,Y )Z = R(X ,Y )Z +{w(X)U −w(U)X −∇XU +K(X ,U)}g(Y,Z)−{w(Y )U −w(U)Y −∇YU +K(Y,U)}g(X ,Z)

−g(w(X)U −∇XU +K(X ,U),Z)Y +g(w(Y )U −∇YU +K(Y,U),Z)X

− (∇X K)(Y,Z)+(∇Y K)(X ,Z)+K(X ,K(Y,Z))−K(Y,K(X ,Z)).

Here, R is the Riemannian curvature tensor of M with respect to the torsion-free connection ∇ which is defined by R(X ,Y )Z = ∇X ∇Y Z −
∇Y ∇X Z −∇[X ,Y ]Z.

Similarly, from (2.3) and (2.4), we obtain the relation between the connections ∇̃ and ∇∗ as

∇̃XY = ∇∗
XY +w(Y )X −g(X ,Y )U +K(X ,Y ). (3.5)

for all X ,Y,Z ∈ Γ(T M). From (3.5), we have

∇̃X ∇̃Y Z = ∇∗
X ∇∗

Y Z +w(∇∗
Y Z)X +w(∇∗

X Z)Y +w(K(X ,Z))Y +w(K(Y,Z))X +w(Z)∇∗
XY +w(Z)K(X ,Y )+w(Y )w(Z)X

−g(X ,Y )w(Z)U −g(Y,Z)w(U)X +g(Y,Z)w(X)U

−g(X ,∇∗
Y Z)U +g(Z,∇∗

XU)Y −g(∇∗
XY,Z)U −g(Y,∇∗

X Z)U −g(Y,Z)∇∗
XU

+g(Z,K(X ,U))Y −g(K(X ,Y ),Z)U −g(Y,K(X ,Z))U −g(X ,K(Y,Z))U

−g(Y,Z)K(X ,U)+K(X ,∇∗
Y Z)+∇∗

X K(Y,Z)+K(X ,K(Y,Z)) (3.6)

and

∇̃[X ,Y ]Z = ∇∗
[X ,Y ]Z +w(Z)∇∗

XY −w(Z)∇∗
Y X −g(∇∗

XY,Z)U +g(∇∗
Y X ,Z)U +K(∇∗

XY,Z)−K(∇∗
Y X ,Z). (3.7)

Using (3.6) and (3.7) in (3.2), we obtain the Riemannian curvature tensor R̃ of M with respect to the semi-symmetric metric connection ∇̃ as

R̃(X ,Y )Z = R∗(X ,Y )Z +{w(X)U −w(U)X −∇∗
XU −K(X ,U)}g(Y,Z)−{w(Y )U −w(U)Y −∇∗

YU −K(Y,U)}g(X ,Z)

−g(w(X)U −∇∗
XU −K(X ,U),Z)Y +g(w(Y )U −∇∗

YU −K(Y,U),Z)X

+(∇∗
X K)(Y,Z)− (∇∗

Y K)(X ,Z)+K(X ,K(Y,Z))−K(Y,K(X ,Z)).

Here, R∗ is the Riemannian curvature tensor of M with respect to the dual connection ∇∗ which is defined by R∗(X ,Y )Z = ∇∗
X ∇∗

Y Z −
∇∗

Y ∇∗
X Z −∇∗

[X ,Y ]Z.

Hence, we can give the following Proposition:

Proposition 3.1. Let (∇,g) be a statistical structure on a Riemannian manifold M. Then, the relations between the curvature tensor R̃ of

semi-symmetric metric connection ∇̃ and the curvature tensors R and R∗ of the connections ∇ and ∇∗
, respectively, are

R̃(X ,Y )Z = R(X ,Y )Z +{w(X)U −w(U)X −∇XU +K(X ,U)}g(Y,Z)−{w(Y )U −w(U)Y −∇YU +K(Y,U)}g(X ,Z)

−g(w(X)U −∇XU +K(X ,U),Z)Y +g(w(Y )U −∇YU +K(Y,U),Z)X

− (∇X K)(Y,Z)+(∇Y K)(X ,Z)+K(X ,K(Y,Z))−K(Y,K(X ,Z)) (3.8)

= R∗(X ,Y )Z +{w(X)U −w(U)X −∇∗
XU −K(X ,U)}g(Y,Z)−{w(Y )U −w(U)Y −∇∗

YU −K(Y,U)}g(X ,Z)

−g(w(X)U −∇∗
XU −K(X ,U),Z)Y +g(w(Y )U −∇∗

YU −K(Y,U),Z)X

+(∇∗
X K)(Y,Z)− (∇∗

Y K)(X ,Z)+K(X ,K(Y,Z))−K(Y,K(X ,Z)), (3.9)

for all vector fields X , Y and Z on M.

4. Semi-symmetric metric connection on Sasakian statistical manifolds

A (2n+ 1)-dimensional differentiable manifold M is said to admit an almost contact Riemannian structure (Φ,η ,ξ ,g), where Φ is a

(1,1)-tensor field, ξ is a vector field, η is a 1-form and g is a Riemannian metric on M such that

Φξ = 0, η(ξ ) = 1, g(ξ ,X) = η(X),

Φ2X =−X +η(X)ξ , (4.1)

g(ΦX ,ΦY ) = g(X ,Y )−η(X)η(Y ),

for any vector fields X , Y on M . In addition, if (Φ,η ,ξ ,g) satisfy the equations

dη = 0, ∇̂X ξ = ΦX , (4.2)

(∇̂X Φ)Y = η(Y )X −g(X ,Y )ξ ,

then M is called a Sasakian manifold (for detail, see [15] and [20]).

Also in [15], the authors have defined the notion of Sasakian statistical structure and have obtained the necessary and sufficient conditions for

a statistical structure on an almost contact metric manifold to be a Sasakian statistical structure as follows:
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Definition 4.1. A quadruple (∇,g,Φ,ξ ) is called a Sasakian statistical structure on M, if (∇,g) is a statistical structure, (g,Φ,ξ ) is a

Sasakian structure on M and the formula K(X ,ΦY )+ΦK(X ,Y ) = 0 holds for any vector fields X and Y on M.

Theorem 4.2. Let (∇,g) be a statistical structure and (g,Φ,ξ ) an almost contact metric structure on M. (∇,g,Φ,ξ ) is a Sasakian statistical

structure if and only if the following formulas hold:

∇X ΦY −Φ∇∗
XY = g(Y,ξ )X −g(Y,X)ξ (4.3)

∇X ξ = ΦX +g(∇X ξ ,ξ )ξ . (4.4)

So, we can give the following Example:

Example 4.3. Let (Φ,η ,ξ ,g) be an almost contact Riemannian structure on M. Set the connection ∇̆ as

∇̆XY = ∇̂XY +3η(X)η(Y )ξ , (4.5)

for any X ,Y ∈ Γ(T M). Then, ∇̆ is torsion-free and satisfies the Codazzi equation (2.1). So, (∇̆,g) is a statistical structure on the almost

contact Riemannian manifold (M,Φ,η ,ξ ,g).
Also, from (2.2), (2.3) and (4.5) we have K(X ,Y ) = 3η(X)η(Y )ξ and ∇̆∗

XY = ∇̂XY −3η(X)η(Y )ξ . So, the equations (4.3) and (4.4) hold

for the connection ∇̆. Hence (∇̆,g,Φ,η ,ξ ) is a Sasakian statistical structure on M.

Now, firstly we’ll give the relations between the curvature tensor R̃ of semi-symmetric metric connection ∇̃ and the curvature tensors R and

R∗ of the connections ∇ and ∇∗ on Sasakian statistical manifolds with the aid of Proposition 3.1. For this, we use the equation

∇̃XY = ∇̂XY +η(Y )X −g(X ,Y )ξ , (4.6)

which has been obtained by Yano [21] on almost contact manifolds. Here, ∇̃ is the semi-symmetric metric connection and ∇̂ is the Levi-Civita

connection on (M,g), η is a 1-form and ξ is a vector field defined by w(X) = g(X ,ξ ). If we write η instead of w and ξ instead of U in the

equations (3.8) and (3.9) and use (2.2), (2.3), (4.1) and (4.2), then we have the following Theorem:

Theorem 4.4. Let (M,∇,g,Φ,η ,ξ ) be a (2n+1)-dimensional Sasakian statistical manifold. Then, the relations between the curvature

tensor R̃ of semi-symmetric metric connection ∇̃ and the curvature tensors R and R∗ of the connections ∇ and ∇∗
, respectively, are

R̃(X ,Y )Z = R(X ,Y )Z +{Φ2X −ΦX}g(Y,Z)−{Φ2Y −ΦY}g(X ,Z)

+g(ΦX ,Z)Y −g(ΦY,Z)X −η(X)η(Z)Y +η(Y )η(Z)X

− (∇X K)(Y,Z)+(∇Y K)(X ,Z)+K(X ,K(Y,Z))−K(Y,K(X ,Z)) (4.7)

= R∗(X ,Y )Z +{Φ2X −ΦX}g(Y,Z)−{Φ2Y −ΦY}g(X ,Z)

+g(ΦX ,Z)Y −g(ΦY,Z)X −η(X)η(Z)Y +η(Y )η(Z)X

+(∇∗
X K)(Y,Z)− (∇∗

Y K)(X ,Z)+K(X ,K(Y,Z))−K(Y,K(X ,Z)), (4.8)

for all vector fields X , Y and Z on M.

Corollary 4.5. Let (M,∇,g,Φ,η ,ξ ) be a (2n+1)-dimensional Sasakian statistical manifold. Then, we have

R̃(X ,Y )ξ = R(X ,Y )ξ +η(X)ΦY −η(Y )ΦX − (∇X K)(Y,ξ )+(∇Y K)(X ,ξ ) (4.9)

= R∗(X ,Y )ξ +η(X)ΦY −η(Y )ΦX +(∇∗
X K)(Y,ξ )− (∇∗

Y K)(X ,ξ ) (4.10)

and

R̃(ξ ,X)Y = R(ξ ,X)Y +η(Y )ΦX −g(ΦX ,Y )ξ − (∇ξ K)(X ,Y )+(∇X K)(ξ ,Y )+K(ξ ,K(X ,Y ))−K(X ,K(ξ ,Y )) (4.11)

= R∗(ξ ,X)Y +η(Y )ΦX −g(ΦX ,Y )ξ +(∇∗
ξ K)(X ,Y )− (∇∗

X K)(ξ ,Y )+K(ξ ,K(X ,Y ))−K(X ,K(ξ ,Y )), (4.12)

for all vector fields X and Y on M.

Proof. We know that [15], on a Sasakian statistical manifold, the equation ∇X ξ = ΦX +η(∇X ξ )ξ holds. So, from (2.2) we get K(X ,ξ ) =
η(∇X ξ )ξ . Using this, we have K(X ,K(Y,ξ )) = η(∇X ξ )η(∇Y ξ )ξ and so, we obtain that

K(X ,K(Y,ξ )) = K(Y,K(X ,ξ )). (4.13)

Using (4.1) and (4.13) in (4.7) and (4.8), we reach the equations (4.9)-(4.12) and the proof completes.

Now, let us give the relations between the Ricci tensor S̃ of semi-symmetric metric connection ∇̃ and the Ricci tensors S and S∗ of the

connections ∇ and ∇∗, respectively.

Theorem 4.6. Let (M,∇,g,Φ,η ,ξ ) be a (2n+1)-dimensional Sasakian statistical manifold. Then, the relations between the Ricci tensors

of semi-symmetric metric connection ∇̃ and the connections ∇ and ∇∗
, respectively, are

S̃(X ,Y ) = S(X ,Y )− (2n−1)g(ΦX ,ΦY +Y ) (4.14)

−
2n+1

∑
i=1

g((∇X K)(ei,ei)− (∇ei
K)(X ,ei)−K(X ,K(ei,ei))+K(ei,K(X ,ei)),Y )

= S∗(X ,Y )− (2n−1)g(ΦX ,ΦY +Y ) (4.15)

+
2n+1

∑
i=1

g((∇∗
X K)(ei,ei)− (∇∗

ei
K)(X ,ei)+K(X ,K(ei,ei))−K(ei,K(X ,ei)),Y ),

for all vector fields X and Y on M.
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Proof. Using (4.1) and (4.7) in the equation S̃(X ,Y ) =
2n+1

∑
i=1

g(R̃(X ,ei)ei,Y ), we get (4.14). Similarly, using (4.1) and (4.8) in the equation

S̃(X ,Y ) =
2n+1

∑
i=1

g(R̃(X ,ei)ei,Y ), we get (4.15).

Here, let us give the relations between the scalar curvature τ̃ of semi-symmetric metric connection ∇̃ and the scalar curvatures τ and τ∗ of

the connections ∇ and ∇∗
.

Theorem 4.7. Let (M,∇,g,Φ,η ,ξ ) be a (2n+ 1)-dimensional Sasakian statistical manifold. Then, the relations between the scalar

curvature of semi-symmetric metric connection ∇̃ and the connections ∇ and ∇∗
, respectively, are

τ̃ = τ +2n−4n2 −
2n+1

∑
i, j=1

g((∇e j
K)(ei,ei)− (∇ei

K)(e j,ei)−K(e j,K(ei,ei))+K(ei,K(e j,ei)),e j) (4.16)

= τ∗+2n−4n2 +
2n+1

∑
i, j=1

g((∇∗
e j

K)(ei,ei)− (∇∗
ei

K)(e j,ei)+K(e j,K(ei,ei))−K(ei,K(e j,ei)),e j). (4.17)

Proof. Using (4.14) and (4.15) in the equation τ̃ =
2n+1

∑
j=1

S̃(e j,e j), we get (4.16) and (4.17), respectively.

Finally, let us construct an example of a 3-dimensional Sasakian manifold with statistical structure admitting the semi-symmetric metric

connection in order to verify our results.

Example 4.8. Let us consider the 3-dimensional manifold M = {(x,y,z) ∈ R
3
, z 6= 0}, where (x,y,z) are the standart coordinates in R

3.

We choose the vector fields {e1,e2,e3} as

e1 =
∂

∂x
, e2 =−x

(

∂

∂x
−

∂

∂ z

)

+
∂

∂y
, e3 =

1

2

∂

∂ z
,

which are linearly independent at each point of M.

Let g be the Riemannian metric defined by g(ei,e j) = 0, i 6= j, i, j = 1,2,3 and g(ek,ek) = 1, k = 1,2,3.

Let η be the 1-form defined by η(Z) = g(Z,e3), for any Z ∈ χ(M), where χ(M) is the set of all differentiable vector fields on M.

Let φ be the (1,1)-tensor field defined by

φe1 =−e2, φe2 = e1, φe3 = 0. (4.18)

Using the linearity of φ and g, we have η(e3) = 1, φ 2Z =−Z+η(Z)e3 and g(φZ,φU) = g(Z,U)−η(Z)η(U), for any U,Z ∈ χ(M). Thus,

for e3 = ξ , (φ ,ξ ,η ,g) defines an almost contact metric structure on M.

Now, we have

[e1,e2] =−e1 +2e3, [e1,e3] = 0, [e2,e3] = 0.

The Levi-Civita connection ∇̂ of the metric tensor g is given by Koszul’s formula which is defined as

2g(∇̂XY,Z) = Xg(Y,Z)+Y g(X ,Z)−Zg(X ,Y )−g(X , [Y,Z])−g(Y, [X ,Z])+g(Z, [X ,Y ]).

Taking e3 = ξ and using Koszul’s formula, we get the following

∇̂e1
e1 = e2, ∇̂e1

e2 =−e1 + e3, ∇̂e1
e3 =−e2,

∇̂e2
e1 =−e3, ∇̂e2

e2 = 0, ∇̂e2
e3 = e1, (4.19)

∇̂e3
e1 =−e2, ∇̂e3

e2 = e1, ∇̂e3
e3 = 0.

From the above, it can be easily seen that (φ ,ξ ,η ,g) is a Sasakian structure on M. Consequently, (M,φ ,ξ ,η ,g) is a 3-dimensional Sasakian

manifold.

Now, the components of the curvature tensors, Ricci tensors and scalar curvature with respect to the Levi-Civita connection ∇̂ are obtained

by

R̂(e1,e2)e1 = 4e2, R̂(e1,e2)e2 =−4e1, R̂(e1,e2)e3 = 0,

R̂(e1,e3)e1 =−e3, R̂(e1,e3)e2 = 0, R̂(e1,e3)e3 = e1,

R̂(e2,e3)e1 = 0, R̂(e2,e3)e2 =−e3, R̂(e2,e3)e3 = e2,

Ŝ(e1,e1) =−3, Ŝ(e1,e2) = 0, Ŝ(e1,e3) = 0,

Ŝ(e2,e1) = 0, Ŝ(e2,e2) =−3, Ŝ(e2,e3) = 0,

Ŝ(e3,e1) = 0, Ŝ(e3,e2) = 0, Ŝ(e3,e3) = 2

and

τ̂ =−4,
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respectively.

Here, let us add a statistical structure to this Sasakian manifold. From (2.2) and (4.19), we have

∇e1
e1 = e2 +K(e1,e1), ∇e1

e2 =−e1 + e3 +K(e1,e2), ∇e1
e3 =−e2 +K(e1,e3),

∇e2
e1 =−e3 +K(e2,e1), ∇e2

e2 = K(e2,e2), ∇e2
e3 = e1 +K(e2,e3), (4.20)

∇e3
e1 =−e2 +K(e3,e1), ∇e3

e2 = e1 +K(e3,e2), ∇e3
e3 = K(e3,e3).

So, the components of the curvature tensors, Ricci tensors and scalar curvature with respect to the torsion-free connection ∇ are obtained by

R(e1,e2)e1 = 4e2 +K(e1,e1)−3K(e1,e3)−K(e2,e2)+∇e1
K(e2,e1)−∇e2

K(e1,e1),

R(e1,e2)e2 =−4e1 +2K(e1,e2)−3K(e2,e3)+∇e1
K(e2,e2)−∇e2

K(e1,e2),

R(e1,e2)e3 = K(e1,e1)+K(e1,e3)+K(e2,e2)−2K(e3,e3)+∇e1
K(e2,e3)−∇e2

K(e1,e3),

R(e1,e3)e1 =−e3 −K(e1,e2)−K(e2,e3)+∇e1
K(e3,e1)−∇e3

K(e1,e1),

R(e1,e3)e2 = K(e1,e1)+K(e1,e3)−K(e3,e3)+∇e1
K(e3,e2)−∇e3

K(e1,e2), (4.21)

R(e1,e3)e3 = e1 +K(e2,e3)+∇e1
K(e3,e3)−∇e3

K(e1,e3),

R(e2,e3)e1 =−K(e2,e2)+K(e3,e3)+∇e2
K(e3,e1)−∇e3

K(e2,e1),

R(e2,e3)e2 =−e3 +K(e2,e1)+∇e2
K(e3,e2)−∇e3

K(e2,e2),

R(e2,e3)e3 = e2 −K(e3,e1)+∇e2
K(e3,e3)−∇e3

K(e2,e3),

S(e1,e1) =−3+g(2K(e1,e2)−2K(e2,e3)+∇e1
K(e2,e2)−∇e2

K(e1,e2)+∇e1
K(e3,e3)−∇e3

K(e1,e3),e1),

S(e1,e2) = g(2K(e1,e2)−2K(e2,e3)+∇e1
K(e2,e2)−∇e2

K(e1,e2)+∇e1
K(e3,e3)−∇e3

K(e1,e3),e2),

S(e1,e3) = g(2K(e1,e2)−2K(e2,e3)+∇e1
K(e2,e2)−∇e2

K(e1,e2)+∇e1
K(e3,e3)−∇e3

K(e1,e3),e3),

S(e2,e1) = g(−K(e1,e1)+2K(e1,e3)+K(e2,e2)−∇e1
K(e2,e1)+∇e2

K(e1,e1)+∇e2
K(e3,e3)−∇e3

K(e2,e3),e1),

S(e2,e2) =−3+g(−K(e1,e1)+2K(e1,e3)+K(e2,e2)−∇e1
K(e2,e1)+∇e2

K(e1,e1)+∇e2
K(e3,e3)−∇e3

K(e2,e3),e2), (4.22)

S(e2,e3) = g(−K(e1,e1)+2K(e1,e3)+K(e2,e2)−∇e1
K(e2,e1)+∇e2

K(e1,e1)+∇e2
K(e3,e3)−∇e3

K(e2,e3),e3),

S(e3,e1) = g(K(e3,e2)−∇e1
K(e3,e1)−∇e2

K(e3,e2)+∇e3
K(e1,e1)+∇e3

K(e2,e2),e1),

S(e3,e2) = g(K(e3,e2)−∇e1
K(e3,e1)−∇e2

K(e3,e2)+∇e3
K(e1,e1)+∇e3

K(e2,e2),e2),

S(e3,e3) = 2+g(K(e3,e2)−∇e1
K(e3,e1)−∇e2

K(e3,e2)+∇e3
K(e1,e1)+∇e3

K(e2,e2),e3)

and

τ =−4+g(K(K(e1,e2),e2)−K(e1,K(e2,e2))+K(e3,K(e1,e3))−K(e1,K(e3,e3))

+(∇e1
K)(e2,e2)− (∇e2

K)(e1,e2)+(∇e1
K)(e3,e3)− (∇e3

K)(e1,e3),e1)

+g(K(e1,K(e2,e1))−K(e2,K(e1,e1))−K(e2,K(e3,e3))+K(e3,K(e2,e3))

− (∇e1
K)(e2,e1)+(∇e2

K)(e1,e1)+(∇e2
K)(e3,e3)− (∇e3

K)(e2,e3),e2)

+g(K(e1,K(e3,e1))+K(e2,K(e3,e2))−K(e3,K(e1,e1))−K(e3,K(e2,e2))

− (∇e1
K)(e3,e1)− (∇e2

K)(e3,e2)+(∇e3
K)(e1,e1)+(∇e3

K)(e2,e2),e3), (4.23)

respectively. (Similarly, the above equations can be obtained for the dual connection ∇∗.)

Finally, from (4.6) (or from (3.1) for w = η and U = ξ ) and (4.19), we have

∇̃e1
e1 = e2 − e3, ∇̃e1

e2 =−e1 + e3, ∇̃e1
e3 =−e2 + e1,

∇̃e2
e1 =−e3, ∇̃e2

e2 =−e3, ∇̃e2
e3 = e1 + e2,

∇̃e3
e1 =−e2, ∇̃e3

e2 = e1, ∇̃e3
e3 = 0.

and the curvature tensors, Ricci tensors and scalar curvature with respect to the semi-symmetric metric connection ∇̃ are obtained as follows,

respectively:

R̃(e1,e2)e1 = 5e2, R̃(e1,e2)e2 =−5e1, R̃(e1,e2)e3 = 0,

R̃(e1,e3)e1 =−e3, R̃(e1,e3)e2 =−e3, R̃(e1,e3)e3 = e1 + e2, (4.24)

R̃(e2,e3)e1 = e3, R̃(e2,e3)e2 =−e3, R̃(e2,e3)e3 = e2 − e1,

S̃(e1,e1) =−4, S̃(e1,e2) = 1, S̃(e1,e3) = 0,

S̃(e2,e1) =−1, S̃(e2,e2) =−4, S̃(e2,e3) = 0, (4.25)

S̃(e3,e1) = 0, S̃(e3,e2) = 0, S̃(e3,e3) = 2

and

τ̃ =−6. (4.26)

Hence, one can easily see that, from (4.1), (4.18), (4.21) and (4.24), the equation (4.7) in Theorem 4.4 is verified; from (4.1), (4.18), (4.22)

and (4.25), the equation (4.14) in Theorem 4.6 is verified and from (4.23) and (4.26), the equation (4.16) in Theorem 4.7 is verified for n = 1.

Similarly, obtaining the above equations for dual connection ∇∗, one can easily see that, the equations (4.8), (4.15) and (4.17) are verified,

too.
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Now, by choosing the difference tensor field K as in Example 4.3, we’ll obtain the equations (4.20)-(4.23) in the following Example.

Example 4.9. If we choose the difference tensor field K as K(X ,Y ) = 3η(X)η(Y )ξ , then the equations (4.20)-(4.23) are obtained as

∇e1
e1 = e2, ∇e1

e2 =−e1 + e3, ∇e1
e3 =−e2,

∇e2
e1 =−e3, ∇e2

e2 = 0, ∇e2
e3 = e1,

∇e3
e1 =−e2, ∇e3

e2 = e1, ∇e3
e3 = 3e3,

R(e1,e2)e1 = 4e2, R(e1,e2)e2 =−4e1, R(e1,e2)e3 =−6e3,

R(e1,e3)e1 =−e3, R(e1,e3)e2 =−3e3, R(e1,e3)e3 = e1 −3e2, (4.27)

R(e2,e3)e1 = 3e3, R(e2,e3)e2 =−e3, R(e2,e3)e3 = e2 +3e1,

S(e1,e1) =−3, S(e1,e2) =−3, S(e1,e3) = 0,

S(e2,e1) = 3, S(e2,e2) =−3, S(e2,e3) = 0, (4.28)

S(e3,e1) = 0, S(e3,e2) = 0, S(e3,e3) = 2

and

τ =−4. (4.29)

Here, one can easily see that, from (4.1), (4.18), (4.24)-(4.26) and (4.27)-(4.29), the Theorems 4.4, 4.6 and 4.7 are verified.
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Abstract

In this work, we present a different technique for calculation of Sumudu Integral Transform

(SIT) by considering differential transform method (DTM). By means of our technique,

Sumudu Transform of functions is obtained easily without complicated integration proce-

dures.

1. Introduction

In mathematical calculus, integral transforms are a specific branch that has used various applied area. In 1993, Watugala introduced a new

integral transform called Sumudu Integral Transform (SIT) to solve differential equations and engineering problems [1]. The Sumudu

Transform of the function f (t) is defined over the set of A (seen [1], [2], [3], [4])

A = { f (t) : ∃M,τ1,τ2 > 0, | f (t)|< Me
|t|
τi , i f t ∈ (−1)i × [0,∞)}

as below formula

F(u) = S [ f (t) : u] =
∫ ∞

0
f (ut)e−tdt u ∈ (−τ1,τ2) (1.1)

Also, modified version of (1.1) is presented as

F(u) =
∫ ∞

0

f (t)e−
t
u

u
dt u ∈ (−τ1,τ2) (1.2)

by Watugala [1], [4] and Belgacem [2],[3]. Hereafter, many authors consider the Sumudu Integral Transform to investigate properties,

applications and relations with other transforms [1]-[10].

In recent time, homotopy perturbation, differential transform and adomian decomposition methods are applied to find Laplace transform as

seen [11],[12],[13] respectively. Furthermore, homotopy perturbation method is also applied to Sumudu transform [8].

The goal of this paper is to present a different approach to obtain Sumudu transform of functions. In order to do this, we use the differential

transform method (DTM) and first order initial value problem which has a solution that corresponds to Sumudu transform of desired

functions. DTM is very famous and powerful analytic technique and it does not required complex integration process. So, very accurate and

efficient results are obtained easily.

Email address and ORCID number: mrtgbs@gmail.com, 0000-0002-1876-5218 (M. Gübeş)
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Functions Transformed form of functions

v(t) = eat V (k) = ak

k!

v(t) = cos(at) V (k) = {
ak(−1)

k
2

k! , i f k even

0, i f k odd

v(t) = sin(at) V (k) = {
ak(−1)

k−1
2

k! , i f k odd

0, i f k even

v(t) = cosh(at) V (k) = {
ak

k! , i f k even

0, i f k odd

v(t) = sinh(at) V (k) = {
ak

k! , i f k odd

0, i f k even

Table 1: Basic transformations of DTM for some functions.

2. Basic idea of DTM

The differential transform of the analytical v(t) function is defined (seen [14], [15], [16], [17]) as

V (k) =
1

k!

[

dk

dtk
v(t)

]

t=0

(2.1)

where V (k) is the transformed function of v(t) which is called spectrum function. And the inverse transform of V (k) is defined (seen [14],

[15], [16], [17]) as

v(t) =
∞

∑
k=0

V (k)tk (2.2)

Combining (2.1) and (2.2), we obtain the DTM solution of v(t) as follow

v(t) =
n

∑
k=0

1

k!

[

dk

dtk
v(t)

]

t=0

tk +Rn+1(t) (2.3)

Here Rn+1(t) = ∑
∞
k=n+1 V (k)tk are remaining terms of solution series. Some of the transformed functions are presented in Table 1.

3. Results by using DTM

Theorem 3.1. Let v(t) is an analytic function and r is positive constant. Also, we consider the linear initial value problem as follow

v(t)′ =
1

r
v(t)+

1

r
q(t) (3.1)

v(0) = 0

Then, the Sumudu transform of q(t) is

S [q(t)] =

[

e−
t
r

∞

∑
i=0

V (i)t i

]t=∞

t=0

Here, V (i) is differential transform of v(t).

Proof. First of all, we can write the solution of (3.1) as

v(t) = e
t
r

(

∫

q(t)e−
t
r

r
dt

)

(3.2)

and by rewriting two side of (3.2) from zero to infinity, we obtain the relation between (3.2) and Sumudu transform as follow

[

v(t)e−
t
r

]t=∞

t=0
=

(

∫ ∞

0

q(t)e−
t
r

r
dt

)

(3.3)

It is clearly seen that right hand side of (3.3) is the definition of Sumudu transform of q(t) as seen in (1.2).

In order to find Sumudu transform of q(t), we construct the differential transformed form of (3.1) as
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V (i+1) =
1

r

V (i)

i+1
+

1

r

Q(i)

i+1
(3.4)

V (0) = 0

where V (i), Q(i) are differential transformed functions of v(t) and q(t) respectively. Then, by using the inverse differential transform as in

(2.2), (2.3), we obtain the DTM solution of v(t) as

v(t) =
∞

∑
i=0

V (i)t i (3.5)

Finally, put (3.5) into (3.3), we find the sumudu transform of q(t) as

S [q(t)] =

(

∫ ∞

0

q(t)e−
t
r

r
dt

)

=

[

e−
t
r

∞

∑
i=0

V (i)t i

]t=∞

t=0

(3.6)

This completes the proof.

The following illustrations are given to show accuracy, efficiency and easy applicability of our approach to find Sumudu transform of

functions.

Case 1: In the Theorem 3.1, let q(t) = eat . Then considering (3.4) and transformed form of q(t) = eat , we can write

V (i+1) =
1

r

V (i)

i+1
+

1

r(i+1)

ai

i!

V (0) = 0

Some of the V (i) are obtained as

V (1) =
1

r
V (2) =

1+ar

2!r2
V (3) =

1+ar+a2r2

3!r3

V (4) =
1+ar+a2r2 +a3r3

4!r4
V (5) =

1+ar+a2r2 +a3r3 +a4r4

5!r5
(3.7)

V (6) =
1+ar+a2r2 +a3r3 +a4r4 +a5r5

6!r6

...
...

...

From (3.5) and from (3.7), we have

∞

∑
i=0

V (i)t i =

(

t

r
+

t2

2!r2
+

t3

3!r3
+

t4

4!r4
+

t5

5!r5
+ · · ·

)

+ar

(

t2

2!r2
+

t3

3!r3
+

t4

4!r4
+

t5

5!r5
+

t6

6!r6
+ · · ·

)

(3.8)

+a2r2

(

t3

3!r3
+

t4

4!r4
+

t5

5!r5
+

t6

6!r6
+

t7

7!r7
+ · · ·

)

+a3r3

(

t4

4!r4
+

t5

5!r5
+

t6

6!r6
+

t7

7!r7
+

t8

8!r8
+ · · ·

)

+ · · ·

And the equation (3.8) can be written as equivalently following

∞

∑
i=0

V (i)t i =
(

e
t
r −1

)

+ar
(

e
t
r −1−

t

r

)

+a2r2

(

e
t
r −1−

t

r
−

t2

2r2

)

(3.9)

+a3r3

(

e
t
r −1−

t

r
−

t2

2r2
−

t3

3!r3

)

+a4r4

(

e
t
r −1−

t

r
−

t2

2r2
−

t3

3!r3
−

t4

4!r4

)

+ · · ·

Finally, by using (3.6) and (3.9) we find the Sumudu transform of eat

S
[

eat
]

=

{

e−
t
r

(

e
t
r −1

)

+ar× e−
t
r

(

e
t
r −1−

t

r

)

+a2r2 × e−
t
r

(

e
t
r −1−

t

r
−

t2

2r2

)

+ · · ·

}t=∞

t=0

= 1+ar+a2r2 +a3r3 +a4r4 +a5r5 +a6r6 + · · ·

=
1

1−ar
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Case 2: In the Theorem 3.1, let q(t) = cos(at). Then, from (3.4) and Table 1 we can write

V (i+1) =
1

r

V (i)

i+1
+

1

r(i+1)
{

ai(−1)
i
2

i! , i even

0, i odd

V (0) = 0

Thus, V (i) are obtained as

V (1) =
1

r
V (2) =

1+ar

2!r2
V (3) =

1−a2r2

3!r3
V (4) =

1−a2r2

4!r4

V (5) =
1−a2r2 +a4r4

5!r5
V (6) =

1−a2r2 +a4r4

6!r6
(3.10)

V (7) =
1−a2r2 +a4r4 −a6r6

7!r7
V (8) =

1−a2r2 +a4r4 −a6r6

8!r8

...
...

...

Using the (3.5) and (3.10), we have

∞

∑
i=0

V (i)t i =

(

t

r
+

t2

2!r2
+

t3

3!r3
+

t4

4!r4
+

t5

5!r5
+ · · ·

)

−a2r2

(

t3

3!r3
+

t4

4!r4
+

t5

5!r5
+

t6

6!r6
+ · · ·

)

(3.11)

+a4r4

(

t5

5!r5
+

t6

6!r6
+

t7

7!r7
+

t8

8!r8
+ · · ·

)

−a6r6

(

t7

7!r7
+

t8

8!r8
+

t9

9!r9
+

t10

10!r10
+ · · ·

)

±·· ·

The (3.11) can be rewritten as follow

∞

∑
i=0

V (i)t i =
(

e
t
r −1

)

−a2r2

(

e
t
r −1−

t

r
−

t2

2r2

)

+a4r4

(

e
t
r −1−

t

r
−

t2

2r2
−

t3

3!r3
−

t4

4!r4

)

−a6r6

(

e
t
r −1−

t

r
−

t2

2r2
−

t3

3!r3
−

t4

4!r4
−

t5

5!r5
−

t6

6!r6

)

±·· ·

At the end, the Sumudu transform of cos(at)

S [cos(at)] =

(

1−
1

e
t
r

)t=∞

t=0

−a2r2

(

1−
1

e
t
r

−
t

re
t
r

−
t2

2r2e
t
r

)t=∞

t=0

+a4r4

(

1−
1

e
t
r

−
t

re
t
r

−
t2

2r2e
t
r

−
t3

3!r3e
t
r

−
t4

4!r4e
t
r

)t=∞

t=0

−a6r6

(

1−
1

e
t
r

−
t

re
t
r

−
t2

2r2e
t
r

−
t3

3!r3e
t
r

−
t4

4!r4e
t
r

−
t5

5!r5e
t
r

−
t6

6!r6e
t
r

)t=∞

t=0

±·· ·

= 1−a2r2 +a4r4 −a6r6 +a8r8 −a10r10 ±·· ·

=
1

1+a2r2

Case 3: In the Theorem 3.1, let q(t) =
sin(at)

t . Again, by considering (3.4) and Table 1 we can write

V (i+1) =
1

r

V (i)

i+1
+

1

r(i+1)
{

ai(−1)
i
2

(i+1)!
, i even

0, i odd
(3.12)

V (0) = 0

In that case, we can write some of V (i) as

V (1) =
1

r
V (2) =

1

2!r2
V (3) =

3−a2r2

3×3!r3
V (4) =

3−a2r2

3×4!r4

V (5) =
15−5a2r2 +3a4r4

15×5!r5
V (6) =

15−5a2r2 +3a4r4

15×6!r6
(3.13)

V (7) =
105−35a2r2 +21a4r4 −15a6r6

105×7!r7

...
...

...

By considering (3.5) in the Theorem 3.1 and using (3.13), we have
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∞

∑
i=0

V (i)t i = a

(

t

ar
+

t2

2!ar2
+

t3

3!ar3
+

t4

4!ar4
+

t5

5!ar5
+ · · ·

)

−
1

3
a3r2

(

t3

3!ar3
+

t4

4!ar4
+

t5

5!ar5
+

t6

6!ar6
+ · · ·

)

(3.14)

+
1

5
a5r4

(

t5

5!ar5
+

t6

6!ar6
+

t7

7!ar7
+

t8

8!ar8
+ · · ·

)

−
1

7
a7r6

(

t7

7!ar7
+

t8

8!ar8
+

t9

9!ar9
+

t10

10!ar10
+ · · ·

)

±·· ·

The (3.14) can be rewritten equally as below

∞

∑
i=0

V (i)t i = a

[

1

a

(

e
t
r −1

)

]

−
a3r2

3

[

1

a

(

e
t
r −1−

t

r
−

t2

2r2

)]

+
a5r4

5

[

1

a

(

e
t
r −1−

t

r
−

t2

2r2
−

t3

3!r3
−

t4

4!r4

)]

−
a7r6

7

[

1

a

(

e
t
r −1−

t

r
−

t2

2r2
−

t3

3!r3
−

t4

4!r4
−

t5

5!r5
−

t6

6!r6

)]

±·· ·

Finally, by using (3.6) we obtain the Sumudu transform of
sin(at)

t

S

[

sin(at)

t

]

=

[

e−
t
r

∞

∑
i=0

V (i)t i

]t=∞

t=0

= a−
a3r2

3
+

a5r4

5
−

a7r6

7
±·· ·=

tan−1(ar)

r

Case 4: In the Theorem 3.1, let q(t) = sinh(at). Then, considering (3.4) and Table 1 we can write

V (i+1) =
1

r

V (i)

i+1
+

1

r(i+1)
{

ai

i! , i odd

0, i even
(3.15)

V (0) = 0

By means of (3.15), V (i) are obtained following

V (1) = 0 V (2) =
a

2!r
V (3) =

a

3!r2
V (4) =

a(1+a2r2)

4!r3

V (5) =
a(1+a2r2)

5!r4
V (6) =

a(1+a2r2 +a4r4)

6!r5
(3.16)

V (7) =
a(1+a2r2 +a4r4)

7!r6
V (8) =

a(1+a2r2 +a4r4 +a6r6)

8!r7

...
...

...

From (3.5) in the Theorem 3.1 and from (3.16), we have

∞

∑
i=0

V (i)t i = ar

(

t2

2!r2
+

t3

3!r3
+

t4

4!r4
+

t5

5!r5
+ · · ·

)

+a3r3

(

t4

4!r4
+

t5

5!r5
+

t6

6!r6
+ · · ·

)

(3.17)

+a5r5

(

t6

6!r6
+

t7

7!r7
+

t8

8!r8
+ · · ·

)

+a7r7

(

t8

8!r8
+

t9

9!r9
+

t10

10!r10
+ · · ·

)

+ · · ·

And the equation (3.17) can be written as equivalently below

∞

∑
i=0

V (i)t i = ar
(

e
t
r −1−

t

r

)

+a3r3

(

e
t
r −1−

t

r
−

t2

2r2
−

t3

3!r3

)

+a5r5

(

e
t
r −1−

t

r
−

t2

2r2
−

t3

3!r3
−

t4

4!r4
−

t5

5!r5

)

+a7r7

(

e
t
r −1−

t

r
−

t2

2r2
−

t3

3!r3
−

t4

4!r4
−

t5

5!r5
−

t6

6!r6
−

t7

7!r7

)

+ · · ·

As a results, we find the Sumudu transform of sinh(at)

S [sinh(at)] =

[

e−
t
r

∞

∑
i=0

V (i)t i

]t=∞

t=0

= ar+a3r3 +a5r5 +a7r7 +a9r9 + · · ·=
ar

1−a2r2

Case 5: In the Theorem 3.1, let q(t) = cosh(at). Then, considering (3.4) and Table 1 we can write

V (i+1) =
1

r

V (i)

i+1
+

1

r(i+1)
{

ai

i! , i even

0, i odd

V (0) = 0
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Hence, some of the V (i) are obtained as

V (1) =
1

r
V (2) =

1

2!r2
V (3) =

1+a2r2

3!r3
V (4) =

1+a2r2

4!r4

V (5) =
1+a2r2 +a4r4

5!r5
V (6) =

1+a2r2 +a4r4

6!r6
(3.18)

...
...

...

Once again, by using (3.5) in the Theorem 3.1 and from (3.18), we have

∞

∑
i=0

V (i)t i =

(

t

r
+

t2

2!r2
+

t3

3!r3
+

t4

4!r4
+

t5

5!r5
+ · · ·

)

+a2r2

(

t3

3!r3
+

t4

4!r4
+

t5

5!r5
+

t6

6!r6
+ · · ·

)

(3.19)

+a4r4

(

t5

5!r5
+

t6

6!r6
+

t7

7!r7
+

t8

8!r8
+ · · ·

)

+a6r6

(

t7

7!r7
+

t8

8!r8
+

t9

9!r9
+

t10

10!r10
+ · · ·

)

+ · · ·

The (3.19) can be rewritten equally as follow

∞

∑
i=0

V (i)t i =
(

e
t
r −1

)

+a2r2

(

e
t
r −1−

t

r
−

t2

2r2

)

+a4r4

(

e
t
r −1−

t

r
−

t2

2r2
−

t3

3!r3
−

t4

4!r4

)

(3.20)

+a6r6

(

e
t
r −1−

t

r
−

t2

2r2
−

t3

3!r3
−

t4

4!r4
−

t5

5!r5
−

t6

6!r6

)

+ · · ·

Finally, we find the Sumudu transform of cosh(at)

S [sinh(at)] =

[

e−
t
r

∞

∑
i=0

V (i)t i

]t=∞

t=0

= 1+a2r2 +a4r4 +a6r6 +a8r8 + · · ·=
1

1−a2r2

4. Conclusion

As a result, we use the differential transform method (DTM) to find Sumudu Transform of functions as a different way. Moreover, contrary

to the literature we obtain the Sumudu transform of functions easily without complex integration and long calculations.
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Abstract

The generalized complex number system and generalized complex plane were studied by

Yaglom [1, 2] and Harkin [3]. Moreover, Holditch-type theorem for linear points in Cp

were given by Erişir et al. [4]. The aim of this paper is to find the answers of the questions

”How is the polar moments of inertia calculated for trajectories drawn by non-linear points

in Cp?”, ”How is Holditch-type theorem expressed for these points in Cp?” and finally ”Is

this paper a new generalization of [4]?”.

1. Introduction and preliminaries

H. Holditch expressed the Holditch theorem in the article entitled ”Geometrical Theorem” in 1858. Holditch theorem is stated that ”If the

end points of a chord, with constant length a+b, draw any closed curve, any point on this chord draw different closed curve. So, the area

between these curves is always πab”, [5]. The most important point of this classic Holditch theorem in Euclidean plane is that the area

between these curves is independent of the selection of the curves. Thus, this theorem has attracted a lot of attention and been generalized

with various methods and different perspectives. Then, Steiner calculated the area formula of the trajectory in a moving plane drawn by a

point in the fixed plane in terms of Steiner points, [6].

Blaschke and Müller considered trajectories drawn by three points and generalized the Holditch theorem in Euclidean plane, [7]. Then, Hering

expressed the Holditch theorem with respect to the length of the envelope curve with the aid of non-linear three points, [8]. Considering the

above studies, there are many studies concerned with the Holditch theorem, [9, 10, 11].

The polar moment of inertia instead of area in Holditch theorem can be calculated by similar processes. Holditch theorem expressed in terms

of the polar moment of inertia is called as ”Holditch-type theorem”.

Müller calculated the polar moment of inertia of the trajectory drawn by a point in the Euclidean plane. Moreover, Müller gave a conclusion

that the geometric locus of all fixed points on the moving plane which has same polar moment of inertia is the circle with center which is

Steiner point, [12]. Then, considering the study [12], there are lots of studies related to Holditch-type theorem, [13, 14, 15, 16, 17].

In the Euclidean plane, the Cauchy formula of the closed envelope of a family of the straight lines g and the length of the envelope of

trajectories of straight lines were given by Blaschke and Müller, [7]. In the Lorentzian plane, the Cauchy formula for the envelope of a

family of lines was given by Yüce and Kuruoğlu. Moreover, they proved the length of the envelope of trajectories of non-null lines and gave

the Holditch theorem for the length of the envelope of trajectories for Lorentzian motion, [18].

The generalized complex number system is defined as

Cp =
{

x+ iy : x,y ∈ R, i2 = p ∈ R

}

and expressed by Yaglom and Harkins, [1, 2, 3]. This system involves in complex (p =−1), dual (p = 0) and hyperbolic (p =+1) number

systems and also different planes for other values of p.

Considering the studies given by Yaglom and Harkins, some studies were done in the generalized complex plane. Gürses and Yüce considered

the one parameter planar motion in Affine-Cayley Klein planes and p-complex plane CJ =
{

x+ Jy : x,y ∈ R, J2 = p, p ∈ {−1,0,1}
}

⊂
Cp, [19, 20]. Moreover, Erişir et. al. calculated the Steiner area formula and proved Holditch theorem in the generalized complex plane Cp,

Email addresses and ORCID numbers: tulay.erisir@erzincan.edu.tr, 0000-0001-6444-1460 (T. Erişir), agungor@sakarya.edu.tr, 0000-0003-1863-3183 (M. A. Güngör)
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[21]. Then, they calculated the polar moment of inertia of trajectories under the one-parameter planar motion and proved Holditch-type

theorem in Cp, [4]. Moreover, Erişir and Güngör gave the Cauchy-length formula and proved Holditch theorem for non-linear points in Cp,

[22].

Now, using the above studies, we give some operations on this system.

The addition, substraction and product on this generalized complex plane Cp are

Z1 ±Z2 = (x1 + iy1)± (x2 + iy2) = x1 ± x2 + i(y1 ± y2)

and

Mp(Z1,Z2) = (x1x2 +py1y2)+ i(x1y2 + x2y1)

where Z1 = (x1 + iy1), Z2 = (x2 + iy2) ∈ Cp, [2, 3]. In addition, the p−magnitude of Z = x+ iy ∈ Cp is

|Z|p =
√

|Mp (Z, Z̄)|=
√

∣

∣x2 −py2
∣

∣.

The unit circle in Cp is the set of points in the form |Z|p = 1. So, now we consider the special values of p in Cp as follows.

1) Let us consider p < 0. Thus, the generalized complex number system matches up with the elliptical complex number system. For p =−1,

the unit circle in Cp corresponds to the Euclidean unit circle and the plane C−1 matches up with Euclidean plane.

2) If we consider p = 0, the plane C0 matches up with Gallilean plane. The unit circle in Cp corresponds to Gallilean circle.

3) We take p > 0. In this case, the generalized complex number system is equal to the hyperbolic complex number system. If we take p = 1,

the plane C1 corresponds to the Lorentzian plane, (Figure 1.1), [3].

Figure 1.1: Unit Circles in Cp

So, we can give the following definition.

Definition 1.1. Let us consider a circle in the generalized complex plane Cp. This circle has the center M(a,b) and the radius r. So, the

equation of this circle is

∣

∣

∣(x−a)2 −p(y−b)2
∣

∣

∣= r2

where i2 = p ∈ R, [3].

Now, we mention the angle in Cp. Let us consider σ ≡ y
/

x and Z = x+ iy. So, we can write

tanpθp =
sinpθp

cospθp
,

[3]. In addition, the generalized Euler formula

eiθp = cospθp + isinpθp

where i2 = p in Cp. Thus, the polar and exponential forms of the generalized complex number Z is

z = rp(cospθp + isinpθp) = rpeiθp

where θp and rp = |Z|p are p−argument and p−magnitude of generalized complex number Z, respectively. The p−rotation matrix obtained

by eiθp is

A(θp) =

[

cospθp psinpθp

sinpθp cospθp

]

.
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Moreover, the derivatives of the p−trigonometric functions cosp and sinp can be written by

d

dα
(cospα) = psinpα,

d

dα
(sinpα) = cospα ,

[3].

Throughout this study, we consider one-parameter planar motion Kp/K
′
p in generalized complex plane Cp. Moreover, we study in the branch

I of Cp.

Now, we mention Cauchy formula in Cp which is used in this study. This formula in Cp was studied by Erişir and Güngör in [22].

Let g be a line in the branch I of Cp. So, the Hesse form of this line g in Cp is written by

h = x1 cospψp −px2 sinpψp

where
(

h,ψp

)

is the Hesse coordinates in Cp and h = h(ψp) is the distance to the origin O from the right line and the point X (x1,x2) is the

contact point of the line g with the envelope curve (g). Moreover, the Cauchy-length formula in Cp is written by

L =
1

√

|p|

t1
∫

t0

∣

∣ph− ḧ
∣

∣dψp.

Similarly, we give the length of the enveloping curve (g) according to the fixed generalized complex plane K
′
p. So, we can write the Hesse

form of the line g according to the fixed generalized complex plane K
′
p as

h′ = x′1 cospψ ′
p −px′2 sinpψ ′

p

where h′ is the distance to the origin O′ from the right line g. If the necessary operations are considered, it is obtained that

h′ = h−u1 cospψp +pu2 sinpψp.

So, we obtain that

L′ =
1

√

|p|
∣

∣phδp −Acospψp +pBsinpψp

∣

∣

where A =
t1
∫

t0

(pu1 − ü1)dθp and B =
t1
∫

t0

(pu2 − ü2)dθp.

Moreover, we know that

L′ =
√

|p|





t1
∫

t0

q̄dθp +L
g
Q





where L
g
Q = q2 cospψp −q1 sinpψp

∣

∣

∣

t1

t0
is the length of orthogonal projection of the line segment Q1Q2 of the moving pole curve (Q) on the

line g. Moreover, q̄ = h−q1 cospψp +pq2 sinpψp is distance of the pole point Q to the line g in the generalized complex plane in Cp, [22].

In addition, the following theorem can be given.

Theorem 1.2. All the fixed lines with Hesse coordinates (h,ψp) of the generalized moving complex plane Kp whose envelope of trajectories

have the same length L′ = c are tangent to the cycles with center SG =
(

A
pδp

, B
pδp

)

and radius c√
|p|δp

in the generalized moving plane Kp,

[22].

2. Main theorems and proofs

In this section, we prove the Holditch-type theorem for non-linear points in the generalized complex plane Cp for one-parameter planar

motion with S = SG. We firstly express and prove following theorem.

Theorem 2.1. Let the non-linear points X = (0,0), Y = (a+ b,0) and Z = (a,c) be fixed on the generalized moving plane Kp in Cp.

In addition, the points X, Y and Z move along the trajectories kX , kY and kZ on K
′
p with moments TX , TY and TZ , respectively. So, the

relationship between the polar moments of inertia TX , TY and TZ is

TZ =
aTY +bTX

a+b
−δp

(

pc2 +ab
)

−2
√

|p|cLXY

where LXY is the length of the enveloping curve of (XY ).

Proof. Let the points X , Y and Z be non-linear points. Moreover, we consider that these points X = (0,0), Y = (a+b,0) and Z = (a,c). We

know that the polar moments of inertia of any point X in Cp is given

TZ = T0 +δp

(

x1
2 −px2

2 −2x1s1 +2px2s2

)
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in [4]. So, if we use this formula for the points X , Y and Z, we find that

TX = T0 (2.1)

TY = TX +δp

(

(a+b)2 −2(a+b)s1

)

(2.2)

TZ = TX +δp

(

a2 −pc2 −2as1 +2pcs2

)

. (2.3)

From the equations (2.1) and (2.2), we have

s1 =
a+b

2
+

TX −TY

2δp (a+b)
. (2.4)

Moreover, from the equations (2.3) and (2.4), we find that

TZ =
aTY +bTX

a+b
−δp

(

pc2 +ab
)

+2pδpcs2.

The other hand, from S = SG we know that

s2 =
B

pδp
.

Finally, if L′ is written for X = (0,0), Y = (a+b,0) and Z = (a,c) we obtain that

TZ =
aTY +bTX

a+b
−δp

(

pc2 +ab
)

−2
√

|p|cLXY (2.5)

So, the following conclusion can be given.

Conclusion 2.2. Let us take that X ,Y and Z are linear points during the motion with S = SG in Cp. Namely, we have c = 0. From the

equation (2.5) the relation between the polar moments of inertia of trajectory drawn by the points X, Y and Z is

TZ =
aTY +bTX

a+b
−δpab.

This formula is the formula given relationship between polar moments of inertia for the linear three points in [4]. So, the formula (2.5) is

generalization of the formula in [4].

Note: For the value p = 0, the formula (2.5) is obtain that

TZ =
aTY +bTX

a+b
−δpab. (2.6)

This formula is also the formula between polar moments of inertia for the linear three points in [4]. Namely, for p = 0, the formula of polar

moment of inertia for linear three points is same the formula of moment for non-linear three points. The reason of this is the metric in the

plane C0. From the definition of metric in C0 (p = 0) the distance between the points X and R (the orthogonal projection of the point Z on

the line segment XY ), (a), is same the distance between the points X and Z. Similarly, the distance between the points Y and R, (b), is same

the distance between the points Y and Z. So, for p = 0 the equation (2.6) is valid the polar moments of inertia for both linear three points and

non-linear three points.

In addition, we give the following conclusions.

Conclusion 2.3. If the points X and Y move along the same trajectories kX with moment TX , the formula (2.5) is obtained that

TZ = TX −δp

(

pc2 +ab
)

−2
√

|p|cLXY .

Conclusion 2.4. The relationship between the length of envelope curve (g) and the length of the enveloping curve of (XY ) is

L′ =
√

|p|
(

hδp +

(

TY −TX

2δp (a+b)
− a+b

2

)

δp cospψp −
√

|p|LXY sinpψp

)

Finally, we can give the main theorem from the equation (2.5).

Theorem 2.5. Main Theorem (Holditch-Type Theorem): Let us consider motion with S = SG and the points X = (0,0), Y = (a+b,0)
and the point Z = (a,c) non-linear with X and Y fixed on Kp. In a specific time interval, while the points X and Y move along the same

trajectories kX with moment TX , the point Z non-linear with the points X and Y draws different trajectory kZ with the moment TZ . The

moment of section between the curves kX (kY ) and kZ depends on the distances of the point R to the endpoints X and Y , the distance of the

point Z to the line XY, the length of the enveloping curve and the rotation angle of the motion. This moment is independent of the choice of

curves.
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Abstract

In this paper, a combined form of homotopy analysis method with Aboodh transform

method is proposed to solve nonlinear system of partial differential equations. This method

is called the homotopy analysis Aboodh transform method (HAATM). The homotopy

analysis Aboodh transform method can easily be applied to many problems of nonlinear

system, and is capable of reducing the size of computational work.

1. Introduction

The nonlinear evolution equations have attracted the attention of many researchers because of their wide applications in various fields such

as physics, fluid mechanics, bio-mathematics, chemical physics and other areas of science and engineering. The investigation of exact

solutions for the nonlinear evolution equations is a particularly hot topic [1]. So we find that a lot of researchers are working to develop new

methods to solve this kind of equations. These efforts have strengthened this area of research through many methods, among them we find,

homotopy analysis method (HAM). This method was developed in 1992 by Liao Shijun ([2], [3], [4], [5]), and was used by many researchers

to solven nonlinear differential equations ([6], [7], [8]). Then, a new option emerged recently, includes the composition of Laplace transform,

Sumudu transform, Natural transform or Aboodh transform with this method to solve nonlinear differential equations. Among which are the

homotopy analysis method coupled with Laplace transform ([9], [10], [11]), homotopy analysis Sumudu transform method ([12], [13], [14]),

homotopy Natural transform method ([15], [16]) and homotopy analysis Aboodh transform method [17].

The aim of this study is to combine homotopy analysis method and Aboodh transform method in order to obtain a more effective method,

characterized by speed in solution and accuracy in the results obtained. The modified method is called homotopy analysis Aboodh transform

method (HAATM). Three examples of nonlinear partial differential equations are given to re-confirm the strength and effectiveness of this

modified method.

The present paper has been organized as follows: In Section 2 Some basic definitions and properties of the Aboodh transform method. In

section 3 We give an analysis of the proposed method. In section 4 We present three examples explaining how to apply the proposed method.

Finally, the conclusion follows.

2. Definitions and properties of the Aboodh transform

In this section, we give some basic definitions and properties of Aboodh transform which are used further in this paper.

A new transform called the Aboodh transform defined for function of exponential order, we consider functions in the set Ā, defined by [18]:

Ā =
{

f (t) : ∃ M, k1,k2 > 0, | f (t)|< Me−vt
}

.

For given function in the set Ā, the constant M must be finite number, k1,k2 my be finite or infinite.

Email addresses: djeloulz@yahoo.com (D. Ziane), mountassir27@yahoo.fr (M. H. Cherif)
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The Aboodh transform denoted by the operator A(·) defined by the integral equation:

A [ f (t)] = K(v) =
1

v

∫ ∞

0
f (t)e−vtdt, t > 0,k1 6 v 6 k2.

We will summarize here some results of simple functions related to Aboodh transform in the following table [18]:

f (t) A [ f (t)] f (t) A [ f (t)]

1 1
v2 sinat a

v(v2+a2)

t 1
v3 cosat 1

v2+a2

tn n!
vn+2 sinhat a

v(v2−a2)

eat 1
v2−av

coshat 1
v2−a2

Theorem 2.1. Let K(v) is the Aboodh transform of f (t), then one has:

A
[

f ′(t)
]

= vK(v)−
f (0)

v
,

A
[

f
′′

(t)
]

= v2K(v)−
f ′(0)

v
− f (0),

A
[

f
(n)

(t)
]

= vnK(v)−
n−1

∑
k=0

f (k)(0)

v2−n+k
.

Proof. (see [18]).

Aboodh transform of partial derivative: To obtain Aboodh transform of partial derivative, we use integration by parts, and then we have:

A

[

∂u(x, t)

∂ t

]

= vK(x,v)−
u(x,0)

v
,

A

[

∂ 2u(x, t)

∂ t2

]

= v2K(x,v)−
1

v

∂u(x,0)

∂ t
−u(x,0),

For the proof of these formulas, you can see [19].

Theorem 2.2. Let K(x,v) is the Aboodh transform of u(x, t), then one has:

A

[

∂ nu(x, t)

∂ tn

]

= vnK(x,v)−
n−1

∑
k=0

1

v2−n+k

∂ ku(x,0)

∂ tk
.

Proof. (see [17]).

3. Homotopy analysis Aboodh transform method (HAATM)

To illustrate the basic idea of this method, we consider a general non-homogeneous, nonlinear partial diffrential equation

Lt [V (x, t)]+R [V (x, t)]+N [V (x, t)] = f (x, t), (3.1)

where Lt denotes a first-order partial diffrential operator, R is the general linear operators, N is the nonlinear operator and f (x, t) is the

source terms.

Taking the Aboodh transform on both sides of (3.1), we get

A(Lt [V (x, t)])+A(R [V (x, t)]+N [V (x, t)]) = A [ f (x, t)]

Using the property of the Aboodh transform, we have

A [V (x, t)]−
1

v2
V (x,0)+

1

v
(A [R(V (x, t))+N (V (x, t))− f (x, t)]) = 0

Define the nonlinear operators

N[φ(x, t; p)] = A [ φ(x, t; p)]−
1

v2
V (x,0; p)+

1

v
(A [R(φ(x, t; p))+N (φ(x, t; p))− f (x, t; p)])
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By means of homotopy analysis method ([2], [3], [4], [5]), we construct the so-called the zero-order deformation equation

(1−q)A [φ(x, t; p)−V0(x, t)] = phH(x, t)N[φ(x, t; p)], (3.2)

where p is an embedding parameter and p ∈ [0, 1], H(x, t) 6= 0 is an auxiliary function, h 6= 0 is an auxiliary parameter, A is an auxiliary

linear Aboodh operator. When p = 0 and p = 1, we have

{

φ(x, t;0) =V0(x, t),
φ(x, t;1) =V (x, t).

When P increases from 0 to 1, the φ(x, t, p) various from V0(x, t) to V (x, t). Expanding φ(x, t; p) in Taylor series with respect to p, we have

φ(x, t; p) =V0(x, t)+
+∞

∑
m=1

Vm(x, t)pm
, (3.3)

where

Vm(x, t) =
1

m!

∂ mφ(x, t; p)

∂ pm

∣

∣

p=0

When p = 1, the formula (3.3) becomes

V (x, t) =V0(x, t)+
+∞

∑
m=1

Vm(x, t).

Define the vectors

−→
V = {V0(x, t),V1(x, t),V2(x, t), . . . ,Vm(x, t)}.

Differentiating (3.2) m−times with respect to p, then setting p = 0 and finally dividing them by m!, we obtain the so-called mth order

deformation equation

A[Vm(x, t)−χmVm−1(x, t)] = hH(x, t)ℜm(
−→
V m−1(x, t)), (3.4)

where

ℜm(
−→
V m−1(x, t)) =

1

(m−1)!

∂ m−1N(x, t; p)

∂ pm−1

∣

∣

p=0 ,

and

χm =

{

0, m 6 1,

1, m > 1.

Applying the inverse Aboodh transform on both sides of (3.4), we can obtain

Vm(x, t) = χmVm−1(x, t)+hA−1
[

H(x, t)ℜm(
−→
V m−1(x, t))

]

. (3.5)

The mth deformation equation (3.5) is a linear which can be easily solved. So, the solution of (3.1) can be written into the following form

V (x, t) =
N

∑
m=0

Vm(x, t),

when N → ∞, we can obtain an accurate approximation solution of (3.1).

For the proof of the convergence of the homotopy analysis method see [3].
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4. Application of this method

In this section, we apply the homotopy analysis method (HAM) coupled with Aboodh transform method for solving system of nonlinear

partial differential equations.

Example 4.1. We consider the following system of nonlinear coupled Burgers partial differential equations

{

Ut −Uxx −2UUx +(UV )x = 0

Vt −Vxx −2VVx +(UV )x = 0
, (4.1)

with the initial conditions

U(κ,0) = sinx, V (x,0) = sinx.

The nonlinear operators are















N[φ(x, t, p)] = A [φ(x, t; p)]− 1
v2 sinx

+ 1
v A [−φxx(x, t; p)−2φ(x, t; p)φx(x, t; p)+(φ(x, t; p)ϕ(x, t; p))x]

N[ϕ(x, t, p)] = A [ϕ(x, t; p)]− 1
v2 sinx

+ 1
v A [−ϕxx(x, t; p)−2ϕ(x, t; p)ϕx(x, t; p)+(φ(x, t; p)ϕ(x, t; p))x]

.

Thus, we obtain the mth order deformation equations given by

{

Um(x, t) = χmUm−1(x, t)+hA−1[ℜm(
−→
U m−1(x, t))]

Vm(x, t) = χmVm−1(x, t)+hA−1[ℜm(
−→
V m−1(x, t))]

. (4.2)

with























ℜm(
−→
U m−1(x, t)) = A [Um−1(x, t)]−

1
v2 (1−χm)sinx

+ 1
v A

[

∑
m−1
i=0 (UiVm−1−i)κ −2∑

m−1
i=0 Ui(Um−1−i)κ −∑

m−1
i=0 (Ui)xx

]

,

ℜm(
−→
V m−1(x, t)) = A [Vm−1(x, t)]−

1
v2 (1−χm)sinx

+ 1
v A

[

∑
m−1
i=0 (UiVm−1−i)κ −2∑

m−1
i=0 Vi(Vm−1−i)κ −∑

m−1
i=0 (Vi)xx

]

,

(4.3)

and

χm =

{

0, m 6 1,

1, m > 1.

According to (4.2) and (4.3), the formulas of the first terms is given by

U1(x, t) = hA−1
(

1
v A [(U0V0)x −2U0(U0)x − (U0)xx]

)

,

U2(x, t) = (1+h)U1(x, t)

+hA−1
(

1
v A [(U0V1 +U1V0)x −2(U0U1x +U1U0x)− (U1)xx]

)

,

U3(x, t) = (1+h)U2(x, t)

+hA−1
(

1
v A [(U0V2 +U1V1 +U2V0)x −2(2U0U2x +U1U1x)− (U2)xx]

)

,

...

(4.4)

and

V1(x, t) = hA−1
(

1
v A [(U0V0)x −2V0(V0)x − (V0)xx]

)

,

V2(x, t) = (1+h)V1(x, t)

+hA−1
(

1
v A [(U0V1 +U1V0)x −2(V0V1x +V1V0x)− (V1)xx]

)

,

V3(x, t) = (1+h)V2(x, t)

+hA−1
(

1
v A [(U0V2 +U1V1 +U2V0)x −2(2V0V2x +V1V1x)− (V2)xx]

)

,

...

(4.5)

From the equations (4.4) and (4.5), the first solution terms of homotopy analysis Aboodh transform method of the system (4.1), is given by
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U0(x, t) = sinx,

V0(x, t) = sinx,

U1(x, t) = (h)sin(x)t,
V1(x, t) = (h)sin(x)t,

U2(x, t) = (h)(1+h)sin(x)t +(h2)sin(x) t2

2! ,

V2(x, t) = (h)(1+h)sin(x)t +(h2)sin(x) t2

2! ,

U3(x, t) = (h)(1+h)2 sin(x)t +2(1+h)(h2)sin(x) t2

2! +(h3)sin(x) t3

3! ,

V3(x, t) = (h)(1+h)2 sin(x)t +2(1+h)(h2)sin(x) t2

2! +(h3)sin(x) t3

3! ,

...

and so on.

The other components of the (HAATM) can be determined in a similar way. Finally, the approximate solution (U,V ) of the system (4.1)in a

series form, is given by







U(x, t) = sinx
(

1+h(3+3h+h2)t +(3+2h)h2 t2

2! +h3 t3

3! + · · ·
)

V (x, t) = sinx
(

1+h(3+3h+h2)t +(3+2h)h2 t2

2! +h3 t3

3! + · · ·
)

Substiting h = −1 in (??), the approximate solution of the system (4.1) is given as follows







U(x, t) = sinx
(

1− t + t2

2! −
t3

3! + · · ·
)

V (x, t) = sinx
(

1− t + t2

2! −
t3

3! + · · ·
)

And in the closed form, the solution (U,V ) is given by

{

U(x, t) = sin(x)e−t

V (x, t) = sin(x)e−t .

(a) (b)

Figure 4.1: (a) Exact solution for U(x, t) and V (x, t), (b) Approximate solution U(x, t) and V (x, t) when h −→−0.99.

Example 4.2. Consider the nonlinear system of inhomogeneous partial differential equations [20]

{

Ut +UxV +U = 1

Vt −UVx −V = 1
. (4.6)

with the initial conditions

U(κ,0) = ex
, V (x,0) = e−x

.

The nonlinear operators are

{

N[φ(x, t, p)] = A [φ(x, t; p)]− 1
v2 ex + 1

v A [φx(x, t; p)ϕ(x, t; p)+φ(x, t; p)−1]

N[ϕ(x, t, p)] = A [ϕ(x, t; p)]− 1
v2 e−x + 1

v A [−φ(x, t; p)ϕx(x, t; p)−ϕ(x, t; p)−1]
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Thus, we obtain the mth order deformation equations given by

{

Um(x, t) = χmUm−1(x, t)+hA−1[ℜm(
−→
U m−1(x, t))]

Vm(x, t) = χmVm−1(x, t)+hA−1[ℜm(
−→
V m−1(x, t))]

. (4.7)

with























ℜm(
−→
U m−1(x, t)) = A [Um−1(x, t)]−

1
v2 (1−χm)ex

+ 1
v A

[

∑
m−1
i=0 (Ui)xVm−1−i +∑

m−1
i=0 Ui −1

]

,

ℜm(
−→
V m−1(x, t)) = A [Vm−1(x, t)]−

1
v2 (1−χm)e−x

+ 1
v A

[

−∑
m−1
i=0 Ui(Vm−1−i)κ −∑

m−1
i=0 Vi −1

]

,

(4.8)

and

χm =

{

0, m 6 1,

1, m > 1.

According to (4.7) and (4.8), the formulas of the first terms is given by

U1(x, t) = hA−1
(

1
v A [(U0)xV0 +U0 −1]

)

,

U2(x, t) = (1+h)U1(x, t)+hA−1
(

1
v A [(U0)xV1 +(U1)xV0 +U1]

)

,

U3(x, t) = (1+h)U2(x, t)

+hA−1
(

1
v A [(U0)xV2 +(U1)xV1 +(U2)xV0 +U2]

)

,

...

(4.9)

and

V1(x, t) = hA−1
(

1
v A [−U0(V0)x −V0 −1]

)

,

V2(x, t) = (1+h)V1(x, t)+hA−1
(

1
v A [−U0(V1)x −U1(V0)x −V1]

)

,

V3(x, t) = (1+h)V2(x, t)

+hA−1
(

1
v A [−U0(V2)x −U1(V1)x −U2(V0)x −V2]

)

,

...

(4.10)

From the equations (4.9) and (4.10), the first solution terms of homotopy analysis Aboodh transform method of the system (4.6), is given by

U0(x, t) = ex,

V0(x, t) = e−x,

U1(x, t) = (h)ext,

V1(x, t) = (−h)e−xt,

U2(x, t) = (h)(1+h)ext +(h2)ex t2

2! ,

V2(x, t) = (−h)(1+h)e−xt +(h2)e−x t2

2! ,

U3(x, t) = (h)(1+h)2ext +2(1+h)(h2)ex t2

2! +(h3)ex t3

3! ,

V3(x, t) = (−h)(1+h)2e−xt +2h2(1+h)e−x t2

2! +(−h3)e−x t3

3! ,

...

and so on.

The other components of the (HAATM) can be determined in a similar way. Finally, the approximate solution (U,V ) of the system (4.6)in a

series form, is given by







U(x, t) = ex
(

1+h(3+3h+h2)t +(3+2h)h2 t2

2! +h3 t3

3! + · · ·
)

V (x, t) = e−x
(

1+(−h)(3+3h+h2)t +(3+2h)h2 t2

2! +(−h3) t3

3! + · · ·
) ,

and in the case h = −1, the approximate solution is given as follows







U(x, t) = ex
(

1− t + t2

2! −
t3

3! + · · ·
)

V (x, t) = e−x
(

1+ t + t2

2! +
t3

3! + · · ·
)

And in the closed form, the solution (U,V ) is given by

{

U(x, t) = ex−t

V (x, t) = e−x+t
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(a) (b)

Figure 4.2: (a) Exact solution U(x, t). (b) Approximate solution U(x, t) when h −→−1.09.

(c) (d)

Figure 4.3: (c) Exact solution V (x, t). (d) Approximate solution V (x, t) when h −→−1.09.

Example 4.3. Consider the system of nonlinear coupled partial differential equations [21]







Ut(x,y, t)−Vx(x,y, t)Wy(x, ,y, t) = 1

Vt(x,y, t)−Wx(x,y, t)Uy(x, ,y, t) = 5

Wt(x,y, t)−Ux(x,y, t)Vy(x, ,y, t) = 5

, (4.11)

with the initial conditions

U(κ,y,0) = x+2y, V (x,y,0) = x−2y, W (x,y,0) =−x+2y.

The nonlinear operators are











N[φ(x, t, p)] = A [φ(x, t; p)]− 1
v2 (x+2y)− 1

v A
[

ϕx(x, t; p)ψy(x, t; p)+1
]

N[ϕ(x, t, p)] = A [ϕ(x, t; p)]− 1
v2 (x−2y)− 1

v A
[

ψx(x, t; p)φy(x, t; p)+5
]

N[ψ(x, t, p)] = A [ψ(x, t; p)]− 1
v2 (−x+2y)− 1

v A
[

φx(x, t; p)ϕy(x, t; p)+5
]

Thus, we obtain the mth order deformation equations given by











Um(x, t) = χmUm−1(x, t)+hA−1[ℜm(
−→
U m−1(x, t))]

Vm(x, t) = χmVm−1(x, t)+hA−1[ℜm(
−→
V m−1(x, t))]

Wm(x, t) = χmWm−1(x, t)+hA−1[ℜm(
−→
W m−1(x, t))]

(4.12)
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with,















































ℜm(
−→
U m−1(x, t)) = A [Um−1(x, t)]−

1
v2 (1−χm)(x+2y)

− 1
v A

[

∑
m−1
i=0 (Vi)x(Wm−1−i)y +1

]

,

ℜm(
−→
V m−1(x, t)) = A [Vm−1(x, t)]−

1
v2 (1−χm)(x−2y)

− 1
v A

[

∑
m−1
i=0 (Wi)x(Um−1−i)y +5

]

,

ℜm(
−→
W m−1(x, t)) = A [Wm−1(x, t)]−

1
v2 (1−χm)(−x+2y)

− 1
v A

[

∑
m−1
i=0 (Ui)x(Vm−1−i)y +5

]

,

(4.13)

χm =

{

0, m 6 1,

1, m > 1.

According to (4.12) and (4.13), the formulas of the first terms is given by

U1(x, t) =−hA−1
(

1
v A

[

(V0)x(W0)y +1
])

,

U2(x, t) = (1+h)U1(x, t)−hA−1
(

1
v A

[

(V0)x(W1)y +(V1)x(W0)y

])

,

U3(x, t) = (1+h)U2(x, t)

−hA−1
(

1
v A

[

(V0)x(W2)y +(V1)x(W1)y +(V2)x(W0)y

])

,

...

V1(x, t) =−hA−1
(

1
v A

[

(W0)x(U0)y +5
])

,

V2(x, t) = (1+h)V1(x, t)−hA−1
(

1
v A

[

(W0)x(U1)y +(W1)x(U0)y

])

,

V3(x, t) = (1+h)V2(x, t)

−hA−1
(

1
v A

[

(W0)x(U2)y +(W1)x(U1)y +(W2)x(U0)y

])

,

...

and

W1(x, t) =−hA−1
(

1
v A

[

(U0)x(V0)y +5
])

,

W2(x, t) = (1+h)W1(x, t)−hA−1
(

1
v A

[

(U0)x(V1)y +(U1)x(V0)y

])

,

W3(x, t) = (1+h)W2(x, t)

−hA−1
(

1
v A

[

(U0)x(V2)y +(U1)x(V1)y +(U2)x(V0)y

])

,

...

From the equations (4.4) and (4.5), the first solution terms of homotopy analysis Aboodh transform method of the system (4.1), is given by

U0(κ,y, t) = x+2y, V0(x,y, t) = x−2y,

W0(x,y, t) =−x+2y,

U1(x,y, t) =−3(h)t, V1(x,y, t) =−3(h)t,
W1(x,y, t) =−3(h)t,

U2(x,y, t) =−3h(1+h)t, V2(x,y, t) =−3h(1+h)t,
W2(x,y, t) =−3h(1+h)t,

U3(x, t) =−3h(1+h)2t, V3(x, t) =−3h(1+h)2t,

W3(x, t) =−3h(1+h)2t,

...

and so on.

The other components of the (HAATM) can be determined in a similar way. Finally, the approximate solution (U,V,W ) of the system (4.11)in

a series form, is given by







U(x,y, t) = x+2y−3(h)t −3h(1+h)2t −3h(1+h)3t + · · ·
V (x,y, t) = x−2y−3(h)t −3h(1+h)2t −3h(1+h)3t + · · ·

W (x,y, t) =−x+2y−3(h)t −3h(1+h)2t −3h(1+h)3t + · · ·

Substiting h = −1 in (??), the exact solution of the system (4.11) is given by







U(x,y, t) = x+2y+3t

V (x,y, t) = x−2y+3t

W (x,y, t) =−x+2y+3t

(4.14)
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(a) (b)

Figure 4.4: (a) Exact solution U(x,y, t) at the moment t = 1. (b) Approximate solution U(x,y, t) at the moment t = 1 when h −→−0.99.

(c) (d)

Figure 4.5: (c) Exact solution V (x,y, t) at the moment t = 1. (d) Approximate solution V (x,y, t) at the moment t = 1 when h −→−0.99.

(e) (f)

Figure 4.6: (e) Exact solution W (x,y, t) at the moment t = 1. (f) Approximate solution W (x,y, t) at the moment t = 1 when h −→−0.99.

5. Conclusion

In this paper, we have seen that the coupling of homotopy analysis method (HAM) and the Aboodh transform method, proved very effective

to solve nonlinear system of partial differential equations. The proposed algorithm (HAATM) is suitable for such problems and is very user

friendly. The advantage of this method is its ability to combine two powerful methods to obtain exact solutions of nonlinear system of
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partial differential equations. The results obtained in the examples presented shows that this modified method is very powerful and efficient

technique in finding exact solutions for wide classes of problems.
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Abstract

In this paper, we establish the following results: Let M be an m−dimensional compact totally

real minimal submanifold immersed in a locally symmetric Bochner-Kaehler manifold M̃

with Ricci curvature bounded from below. Then either M is a totally geodesic or

infr ≤ 1

2

(

1

2
m(m−1) k̃− 1

3
(m+1) c̃

)

,

where r is the scalar curvature of M.

1. Introduction

The Bochner tensor was originally introduced in 1948 by S. Bochner as a Kaehler analogue of the Weyl conformal curvature tensor. Kaehler

manifolds with vanishing Bochner tensor are known as Bochner-Kaehler manifolds, [1]. The Bochner tensor has interesting connections to

several areas of mathematics and Bochner-Kaehler manifolds have been studied quite intensively in the last two decades, see for instance,

[1, 2, 3].

In this work, we make us of Yau’s [4] maximum principle to compact study totally real minimal submanifold with Ricci curvature bounded

from below and obtain the following results:

Main Theorem. Let M be an m−dimensional compact totally real minimal submanifold immersed in a locally symmetric Bochner-Kaehler

manifold M̃ with Ricci curvature bounded from below. Then either M is totally geodesic or infr ≤ 1
2

(

1
2 m(m−1) k̃− 1

3 (m+1) c̃
)

where r is

the scalar curvature of M.
We use the same notation and terminologies as in [5] unless otherwise stated.

Let M̃ be an n−dimensional Kaehler manifold and denote by gAB, FAB, K̃ABCD and K̃, the metric tensor, the complex structure tensor, the

curvature tensor, the Ricci tensor and the scalar curvature of M̃, respectively. Suppose that the Boechner curvature tensor of M̃ vanishes, then

we have

K̃ABCD =−gADLBC +gBDLAC −LADgBC +LBDgAC −FADMBC (1.1)

+FBDMAC −MADFBC +MBDFAC +2(MABFCD +FABMCD),

where

LBC = K̃BC/(2n+4)− K̃gBC/2(2n+2)(2n+4) , K̃BC = gADK̃ABDC,

K̃ = gBCK̃BC, MBC =−LBDFD
C , FD

C = gBDFCB .

LBC are components of a hybrid tensor of type (0,2) . That is

LBCFB
A FC

D = LAD .

In order to avoid repetitions it will be agreed that our indices have the following ranges throughout this paper:

A,B,C,D, ...= 1,2, ...,m,1∗,2∗, ...,m∗,

i, j,k, l, ...= 1,2, ...,m;α,β ,γ, ...= 1∗,2∗, ...,m∗.

Email addresses and ORCID numbers: mbektas@firat.edu.tr, 0000-0002-5797-4944 (M. Bektaş), zuhal2387@yahoo.com.tr, 0000-0001-7630-5490 (Z. Küçükarslan

Yüzbaşı), myildirim@firat.edu.tr, 0000-0003-1278-3981 (M. Yıldırım Yılmaz)



Universal Journal of Mathematics and Applications 255

In the following sections, M̃ is always supposed to be a Bochner-Kaehler manifold, that is, M̃ is a Kaehler manifold with curvature tensor

K̃ABCD given by (1.1).

2. Totally real submanifolds in M̃

We call M as a totally real submanifold of M̃ if M admits an isometric immersion into M̃ such that for all x ∈ M, F (Tx (M))⊂ vx, where

Tx (M) denotes the tangent space of M at x and F the complex structure of M̃. If the real dimension of M is m, then m ≤ n, n is the complex

dimension of M̃. We choose a local field of orthonormal frames

e1, ...,em,em+1, ...,en ; e1∗ = Fe1,...,em∗ = Fem,...,en∗ = Fen,

in M̃ in a such a way that, restricted to M, e1, ...,em are tangents to M. With respect to this frame field, F and g have the components

(FAB) =

(

0 −In

In 0

)

, (gAB) = (I2n) ,

where Ik denotes the identity matrix of degree k.

We consider the case n = m only in this paper.

The equation of Gauss of M in M̃ is written as

Ki jkl = K̃i jkl +∑
α

(

hα
ikhα

jl −hα
il hα

jk

)

. (2.1)

Ki jkl is the curvature tensor and hα
i j is the second fundamental tensor of M. Since M is a totally real submanifold in M̃, with respect to

the above frame we have the relation hi∗
jk = h

j∗

ik
. Let K̃ be the curvature tensor field of M̃ so that K̃ABCD = g

(

K̃ (eC,eD)eB,eA

)

. Then (1.1) is

equivalent to

K̃ (X ,Y )Z = L(Y,Z)X −L(X ,Z)Y + 〈Y,Z〉NX −〈X ,Z〉NY (2.2)

+M (Y,Z)FX −M (X ,Z)FY + 〈FY,Z〉PX

−〈FX ,Z〉PY −2(M (X ,Y )FZ + 〈FX ,Y 〉PZ) ,

where NX ,PX are defined by g(NX ,Y ) = L(X ,Y ) , g(PX ,Y ) = M (X ,Y ) and 〈,〉 denotes the inner product with respect to g. Let K̃ (X) be

the holomorphic sectional curvature spanned by a unit vector X and FX . By (1.1) or (2.2) we have

K̃ (X) = K̃ (X ,FX ,FX ,X) =
〈

K̃ (X ,FX)FX ,X
〉

= 8L(X ,X) ,

Let ρ̃ (X ,Y ) denote the sectional curvature of M̃ determined by section {X ,Y} spanned by two orthonormal vector {X ,Y} . If X ,Y are both

tangent to the totally real submanifold M then we have

ρ̃ (X ,Y ) = L(X ,X)+L(Y,Y ) =
1

8

(

K̃ (X)+ K̃ (Y )
)

. (2.3)

The equation of (2.3) has been obtained by Iwasaki and Ogitsu, [6].

Let ρ (X ,Y ) denote the sectional curvature of M determined by orthonormal tangent vectors {X ,Y} of M. Then the equation of Gauss (2.1)

and (2.3) imply

ρ (X ,Y ) =
1

8

(

K̃ (X)+ K̃ (Y )
)

+ 〈σ (X ,X) ,σ (Y,Y )〉−‖σ (X ,Y )‖2 ,

where σ is the second fundamental form which is related to hα
i j by g(σ (X ,Y ) ,ξ ) = hi∗

jkX jY kξ i∗ for any normal ξ = ξ i∗ei∗ .

Let S be the Ricci tensor of M and r the scalar curvature of M. Then

S (X ,Y ) = (m−2)L(X ,Y )+
1

8
mk̃ 〈X ,Y 〉−∑

α

g(hα X ,hαY ) ,

r =
1

4
m(m−1) k̃−‖σ‖2 .

Let M̃ is locally symmetric. Let ∆ denote the Laplacian, ▽′denote the covariant differentiation with respect to connection in (tangent bundle)

⊕ (normal bundle) of M in M̃. If M is a minimal submanifold of M̃ the following holds (see [5] for example). Since M̃ is assumed to be

locally symmetric:

1

2
∆‖σ‖2 =

∥

∥▽′σ
∥

∥

2
+

1

4
(m+1) c̃‖σ‖2 +∑ tr

(

hi∗h j∗ −h j∗hi∗
)2 −∑ tr

(

hi∗h j∗
)2

, (2.4)

where c̃ is a function on M defined by h
j∗

lk
h

j∗

ik
K̃li =

1

2
(m+1) c̃‖σ‖2 .

In order to prove the main theorem, we need the following lemmas.
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Lemma 2.1. Let Hi, i ≥ 2 be symmetric n×n matrices, Si = trH2
i , S = ∑

i
Si. Then

∑
i, j

tr
(

HiH j −H jHi

)2 −∑
i, j

tr
(

HiH j

)2 ≥−3

2
‖σ‖4 , (2.5)

and the equality holds if and only if either all Hi = 0 or there exists two of Hi different from zero. Moreover, if H1 6= 0,H2 6= 0, Hi = 0, i 6= 1,2,
then S1 = S2 and there exists an orthogonal n×n matrices T such that

T Ht
1T =













√
S1

2 0 . . . 0

0 −
√

S1

2 . . . 0
...

...
. . .

...

0 0 . . . 0













, T Ht
2T =













0
√

S1

2 . . . 0√
S1

2 0 . . . 0
...

...
. . .

...

0 0 . . . 0













,

[7, 8].

Lemma 2.2. Let N be a complete Riemannian manifold with Ricci curvature bounded from below and let f be a C2−function bounded from

above on N, then for all ε > 0, there exists a point x ∈ N at which ,

i) sup f − ε < f (x) ,
ii) ‖▽ f (x)‖< ε,
iii) ∆ f (x)< ε, in [9].

3. Proof of the main theorem

In this section, the method proof used by Ximin in [9] is applied totally real minimal submanifold immersed in a Bochner-Kaehler manifold.

From (2.4) and (2.5), we obtain

1

2
∆‖σ‖2 ≥ ‖σ‖2 (

1

4
(m+1) c̃− 3

2
‖σ‖2). (3.1)

We know that ‖σ‖2 =
1

4
m(m−1) k̃− r. By the condition of the theorem, we conclude that ‖σ‖2 is bounded. We define f = ‖σ‖2 and

F = ( f +a)
1
2 (where a > 0 is any positive constant number). F is bounded. We have

dF =
1

2
( f +a)−

1
2 d f ,

∆F =
1

2

(

−1

2
( f +a)−

3
2 ‖d f‖2 +( f +a)−

1
2 ∆ f

)

,

=
1

2

(

−2‖dF‖2 +∆ f
)

( f +a)−
1
2 ,

i.e.,

∆F =
1

2

(

−2‖dF‖2 +∆ f
)

.

Hence, F∆F =−‖dF‖2 +
1

2
∆ f or

1

2
∆ f = F∆F +‖dF‖2 . Applying Lemma 2.2 to F, we have for all ε > 0, there exists a point x ∈ M such

that at x

‖dF (x)‖ ≤ ε, (3.2)

∆F (x)< ε, (3.3)

F (x)> supF − ε. (3.4)

From (3.2),(3.3) and (3.4), we have

1

2
∆ f < ε2 +Fε = ε (ε +F) . (3.5)

We take a sequence {en} such that εn → 0(n → ∞) and for all n, there exists a point xn ∈ M such that (3.2), (3.3) and (3.4) hold. Therefore,

εn (εn +F (xn))→ 0(n → ∞) (Because F is bounded). From (3.4), we have F (xn)> supF − εn. Because {F (xn)} is a bounded sequence.

So we get F (xn)→ F0 (If necessary, we can choose a subsequence). Hence, F0 ≥ supF. So we have

F0 = supF.

From the definition of F, we get

f (xn)→ f = sup f .
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(3.1) and (3.5) imply that

f

(

1

4
(m+1) c̃− 3

2
f

)

≤ 1

2
∆ f ≤ ε (ε +F) ,

and

f (xn)

(

1

4
(m+1) c̃− 3

2
f (xn)

)

< ε2
n + εnF (xn)≤ ε2

n + εnF0,

let n → ∞, then εn → 0 and f (xn)→ f0. Hence,

f0

(

1

4
(m+1) c̃− 3

2
f0

)

≤ 0.

i) If f0 = 0, we have f = ‖σ‖2 = 0. Hence M is a totally geodesic.

ii) If f0 > 0, we have 1
4 (m+1) c̃− 3

2 f0 ≤ 0 and

f0 ≥
1

6
(m+1) c̃,

that is, sup‖σ‖2 ≥ 1
6 (m+1) c̃. Therefore,

infr ≤ 1

2

(

1

2
m(m−1) k̃− 1

3
(m+1) c̃

)

.

This completes the proof.
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Abstract

In this study, finite element method (FEM) with Galerkin Formula is applied to find the

numerical solution of a time-dependent heat-like Lane-Emden equation. An example is

solved to assess the accuracy of the method. The numerical results are obtained for different

values (n) of equation. The results indicate that Galerkin method is effectively implemented.

It is seen that results are compatible with exact solutions and consistent with other existing

numerical methods.

1. Introduction

In this paper, we consider heat-type equation for physical problems

uxx +
r

x
ux +ag(x, t)u+h(x, t) = ut , (1.1)

for 0 < x ≤ L, 0 < t < T , r > 0, a ∈ Z, subject to the boundary conditions

u(0, t) = v(t), ux(0, t) = 0.

where g(x, t)y(u)+h(x, t) is nonlinear heat source, u(x, t) is the temperature, and t is the dimensionless time variable.

Some researchers dealed with this type of models. The analytic solutions to several forms of the above problem were presented by [1],

Wazwaz used the Adomian decomposition method [2]. Chowdhury, He and Noorani solved these problems using homotopy-perturbation and

variational iteration methods, Momani applied the method to the time fractional heat-like equation with variable coefficient, Ucar applied

non-polynomial spline method to this equation [3, 4, 5, 6, 7].

In this study, we construct so-called finite element approximations to solutions to time-dependent heat-like equations. The term ”finite

element method” has come to be associated with using piecewise polynomials in one, two, and three dimensions together with so-called

Rayleigh-Ritz method and its more general counter part, the Galerkin method, to approximate solutions to operator equations. In this study,

we concentrate on Galerkin method with splines.

The paper is organized as follows: Galerkin method is described and solution of equation (1.1) is presented in Section 2 briefly. In Section 3

some numerical results that are illustrated using MATLAB programme are given to clarify the method. Concluding remarks are given in

Section 4.

2. Galerkin method

A usual scalar product for two real valued functions u(x) and v(x) is defined by < u,v >=
∫ T

0 u(x)v(x)dx, u(x) and v(x) are orthogonal if

< u,v >= 0. And a norm associated with this scalar product is defined by

Email address and ORCID number: f.ucar@iku.edu.tr, 0000-0002-5542-2222 (M. F. Uçar)
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‖u‖=√
< u,u >= (

∫ T
0 |u(x)|2dx)

1
2 . Let

i. Th : 0 = x0 < x1 < ... < xM < xM+1 = 1 be a partition of (0,1), h j = x j − x j−1

ii.Vh = v : v, continuous and piecewise linear function on Th with v(0) = v(1) = 0

iii.
{

ϕ j

}

, j = 1, ..M be a basis function for Vh where

ϕ j(x) =











x−x j−1

h j
, x j−1 ≤ x ≤ x j

x j+1−x

h j+1
, x j ≤ x ≤ x j+1

0 , otherwise











.

Firstly, we should modify the equation (1.1) by applying finite difference to the right-hand side of the equality to solve it by using Galerkin

method:

u′′i +
r

x
u′i +ag(xi, t)ui +h(xi, t) =

ui − f (xi)

k

where f (xi) = u(xi,0). From algebraic manipulations we obtain

ku′′i +
rk

x
u′i +akg(xi, t)ui −ui + kh(xi, t)+ f (xi) = 0. (2.1)

Now the Galerkin method for the equation (2.1) is formulated as follows:

Find the approximate solution U(x) ∈Vh such that

∫ 1

0
W

(

kU ′′+
rk

x
U ′+akg(x, t)U −U + kh(x, t)+ f (x)

)

dx = 0, (∀W (x) ∈Vh)

so we get

∫ 1

0

(

kWU ′′+
rk

x
WU ′+(akg(x, t)−1)WU

)

dx =−
∫ 1

0
(Wkh(x, t)+W f (x))dx.

∫ 1

0
WU

′′
dx =

[

[U
′
W ]

]1

0
−

∫ 1

0
W ′U ′dx

and since W (0) =W (1) = 0 for W (x) ∈Vh we get

∫ 1

0

(

−kW ′U ′+
rk

x
WU ′+(akg(x, t)−1)WU

)

dx =−
∫ 1

0
(Wkh(x, t)+W f (x))dx. (2.2)

We may find the approximate solution U(x) ∈Vh by using basis functions ϕ j(x) as

U(x) =
M

∑
j=1

c jϕ j(x), U ′(x) =
M

∑
j=1

c jϕ
′
j(x), W (x) =

M

∑
i=1

siϕi(x).

If we use these identities in equation (2.2), then we get

∫ 1

0

[

M

∑
i=1

siϕ
′
i (x)

M

∑
j=1

kc jϕ
′
j(x)+

M

∑
i=1

siϕi(x)
M

∑
j=1

rk

x
c jϕ

′
j(x)+

M

∑
i=1

siϕi(x)
M

∑
j=1

(akg(x, t)−1)c jϕ j(x)

]

dx

=−
∫ 1

0

[

M

∑
i=1

siϕi(x)( f (x)+ kh(x, t))

]

dx

M

∑
i=1

si

∫ 1

0

M

∑
j=1

c j

(

kϕ
′
i (x)ϕ

′
j(x)+

rk

x
ϕi(x)ϕ

′
j(x)+(akg(x, t)−1)ϕi(x)ϕ j(x)

)

dx =−
M

∑
i=1

si

∫ 1

0
ϕi(x)( f (x)+ kh(x, t))dx.

For |i− j|> 1 we have
∫ 1

0 ϕ ′
jϕidx = 0 and

∫ 1
0 ϕ jϕidx = 0 , since if so then we have that ϕ j and ϕi have non-overlapping supports.

The method is described in matrix form in the following way:

for i = 2, j = 1, ..,M

α21 =
∫ 2h

h

(

kϕ
′
2(x)ϕ

′
1(x)+

rk

x
ϕ2(x)ϕ

′
1(x)+(akg(x, t)−1)ϕ2(x)ϕ1(x)

)

dx

α22 =
∫ 3h

h

(

kϕ
′
2(x)ϕ

′
2(x)+

rk

x
ϕ2(x)ϕ

′
2(x)+(akg(x, t)−1)ϕ2(x)ϕ2(x)

)

dx

α23 =
∫ 3h

2h

(

kϕ
′
2(x)ϕ

′
3(x)+

rk

x
ϕ2(x)ϕ

′
3(x)+(akg(x, t)−1)ϕ2(x)ϕ3(x)

)

dx

for i = n, j = 1, ..,M

αn(n−1) =
∫ nh

(n−1)h

(

kϕ
′
n(x)ϕ

′
n−1(x)+

rk

x
ϕn(x)ϕ

′
n−1(x)+(akg(x, t)−1)ϕn(x)ϕn−1(x)

)

dx
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αnn =
∫ (n+1)h

(n−1)h

(

kϕ
′
n(x)ϕ

′
n(x)+

rk

x
ϕn(x)ϕ

′
n(x)+(akg(x, t)−1)ϕn(x)ϕn(x)

)

dx

αn(n+1) =
∫ (n+1)h

nh

(

kϕ
′
n(x)ϕ

′
n+1(x)+

rk

x
ϕn(x)ϕ

′
n+1(x)+(akg(x, t)−1)ϕn(x)ϕn+1(x)

)

dx

for i = M−1, j = 1, ..,M

α(M−1)(M−2) =
∫ (M−1)h

(M−2)h

(

kϕ
′
M−1(x)ϕ

′
M−2(x)+

rk

x
ϕM−1(x)ϕ

′
M−2(x)+(akg(x, t)−1)ϕM−1(x)ϕM−2(x)

)

dx

α(M−1)(M−1) =
∫ (M)h

(M−2)h

(

kϕ
′
M−1(x)ϕ

′
M−1(x)+

rk

x
ϕM−1(x)ϕ

′
M−1(x)+(akg(x, t)−1)ϕM−1(x)ϕM−1(x)

)

dx

α(M−1)M =
∫ Mh

(M−1)h

(

kϕ
′
M−1(x)ϕ

′
M(x)+

rk

x
ϕM−1(x)ϕ

′
M(x)+(akg(x, t)−1)ϕM−1(x)ϕM(x)

)

dx

so we get the matrices

A =

























1 0 0 0 ... 0 0

α21 α22 α23 0 ... 0 0

0 α32 α33 α34 0 ... 0

. . . . . . .

. . . . . . .

. . . . . . .

0 ... 0 0 α(M−1)(M−2) α(M−1)(M−1) α(M−1)M

. . . . 0 0 1

























,

B =



























u(0, t) = esin t

∫ 3h
h ϕ2(x)( f (x)+ kh(x, t))
∫ 4h

2h ϕ3(x)( f (x)+ kh(x, t))
.

.

.
∫ (M+1)h
(M−1)h

ϕM(x)( f (x)+ kh(x, t))

u(1, t) = e1+sin t



























,

C = [c1,c2, ...,cM ]′.

AC = B. (2.3)

Finally the approximate solution U is obtained by solving C from equation (2.3) using Matlab programme.

3. Numerical example

In this section, we test our scheme on an example. We consider the numerical results obtained by applying the scheme discussed above to the

following equation

u
′′
+

2

x
u
′ − (6+4x2 − cos t)u = ut 0 < x < 1, t > 0

with initial condition

u(x,0) = ex2

and boundary conditions

u(0, t) = esin t
, ux(0, t) = 0.

The exact solution of the above problem is u(x, t) = ex2+sin t . The problem is solved by using the scheme above in this paper. The maximum

absolute errors are listed in Table 1. Also, numerical results given by scheme are shown in Figure 1.

Table 1: Maximum absolute errors, k = 0.01

n Spline method[3] Galerkin method

11 6.8863e-03 2.3842e-03

21 1.9090e-03 6.7890e-04

41 7.8276e-04 1.8533e-04

61 5.9650e-04 7.6553e-05

121 5.2565e-05 3.8863e-05



Universal Journal of Mathematics and Applications 261

4. Conclusion

In this paper, finite element method with Galerkin formula is applied for the numerical solution of the heat-like time-dependent Lane-Emden

equation and the maximum absolute errors have shown in Table 1, which shows that this method approximate the exact solution very well.

The implementation of the present method is more computational than the existing methods.
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Abstract

Here existence and stability results of ψ-Hilfer fractional differential equations on time

scales is obtained. Here sufficient condition for existence and uniqueness of solution by

using Schauder’s fixed point theorem (FPT) and Banach FPT is produced. In addition,

generalized Ulam stability of the proposed problem is also discussed. problem.

1. Introduction

In the past decade, fractional differential equations(FDEs) appeared as rich and beautiful field of research due to their applications to the

physical and life sciences and it is witnessed by blossoming literature, for instance see [1]-[6].

Consider the dynamic equation on time scales with ψ-Hilfer fractional derivative (HFD) of the form
{

T∆α,β ;ψu(t) = g(τ,u(τ)), τ = [0,b] := J ⊆ T,
TI1−γ;ψu(0) = u0, γ = α +β −αβ ,

(1.1)

where T∆α,β ;ψ is ψ-HFD defined on T, α ∈ (0,1), β ∈ [0,1] and I1−γ;ψ is ψ-fractional interal of order 1− γ(γ = α +β −αβ ). Let T be a

time scale, that is nonempty subset of Banach space and g : J×T→ R is a right-dense function.

Time scales calculus allows us to study the dynamic equations, which include both difference and differential equations, both of which are

very important in implementing applications; for further information about the theoretical and potential applications of time scales, refer

[7]-[9]

The dynamical behaviour of FDEs on time scales is currently undergoing active investigations. Several authors deliberate the existence

and uniqueness solutions for problems involving classical fractional derivative [10, 11]. Motivated by the above works here we discuss the

existence theory and stability criteria of FDEs on times scale. In order to solve the proposed problem ψ-HFD is utilized. The emergent

and properties of ψ-HFD and the qualitative analysis is briefly studied in [12]-[14]. Further considerable attention paid to Ulam stability

results for FDEs. For Ulam-Hyers stability theory of FDEs and its recent development, one can refer to [15]-[17]. Further the solution of

generalized Ulam-Hyers-Rassias(UHR) is obtained.

2. Preliminaries

Throughout this study, let C(J) be continuous function with norm

‖u‖C = max{|u(τ)| : τ ∈ J} .

We denote the space Cγ (J) as follows

Cγ (J) :=
{

g(τ) : J → R|(ψ(τ)−ψ(0))γ
g(τ) ∈C(J)

}

,0 ≤ γ < 1

the weighted space Cγ (J) of the functions g on the interval J.Thus, Cγ (J) is the Banach space provided the norm

‖g‖Cγ
=
∥

∥(ψ(τ)−ψ(0))γ
g(τ)

∥

∥

C
.

Email addresses and ORCID numbers: hkkhari1@gmail.com (S. Harikrishnan), rabhaibrahim@yahoo.com, 0000-0001-9341-025X (R. W. Ibrahim), kanagara-

jank@gmail.com (K. Kanagarajan)
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Definition 2.1. Let time scale be T. The forward jump operator σ : T→ T is defined by σ(τ) := inf{s ∈ T : s > τ}, while the backward

jump operator ρ : T→ T is defined by ρ(τ) := sup{s ∈ T : s < τ}.

Proposition 2.2. Suppose T is a time scale and [a,b]⊂ T, g is increasing continuous function on [a,b]. If the extension of g is given in the

following form:

G (s) =

{

g(s); s ∈ T

g(τ); s ∈ (τ,σ(τ)) /∈ T.

Then we have

∫ b

a
g(t)∆t ≤

∫ b

a
G (t)dt.

Definition 2.3. Let T be a time scale, J ∈ T. The left-sided R-L fractional integral of order α ∈ R+ of function g(τ) is defined by

(

TIαg
)

(τ) =
∫ τ

0
ψ

′

(s)
(ψ(τ)−ψ(s))α−1

Γ(α)
g(s)∆s.

Definition 2.4. Suppose T is a time scale, [0,b] is an interval of T. The R-L fractional derivative of order α ∈ [n−1,n), n ∈ Z
+ of function

g(τ) is defined by

(

T∆αg
)

(τ) =

(

1

ψ
′
(τ)

d

dτ

)n ∫ τ

0
ψ

′

(s)
(ψ(τ)−ψ(s))n−α−1

Γ(n−α)
g(s)∆s.

Definition 2.5. [2] The ψ-HFD of order α and type β of function g(τ) is defined by

T∆α,β ;ψg(t) =
(

TIβ (1−α);ψ T∆(TI(1−β )(1−α);ψg)
)

(τ),

where T∆ := d
dτ .

Remark 2.6. 1. Here T∆α,β ;ψ is also written as

T∆α,β ;ψ = TIβ (1−α);ψ T∆TI(1−β )(1−α);ψ = TIβ (1−α);ψ T∆γ;ψ , γ = α +β −αβ .

2. Let β = 0, it transfers into R-L derivative given by T∆α := T∆α,0.

3. Let β = 0, it turns to be Caputo fractional derivative given by T
c ∆α := TI1−α T∆.

Next, we review some lemmas which will be used to extabilish our existence results.

Lemma 2.7. If α > 0 and β > 0, there exist

[

TIα (ψ(s)−ψ(0))β−1
]

(τ) =
Γ(β )

Γ(β +α)
(ψ(τ)−ψ(0))β+α−1

Lemma 2.8. Let α ≥ 0, β ≥ 0 and g ∈ L1(J). Then

TIα TIβ g(τ)
a.e
= TIα+βg(τ).

Lemma 2.9. If g ∈Cγ (J) and TI1−αg ∈C1
γ (J), then

TIα T∆αg(τ) = g(τ)−

(

TI1−αg
)

(0)

Γ(α)
(ψ(τ)−ψ(0))α−1 .

Lemma 2.10. Suppose α > 0, a(τ) is a nonnegative function locally integrable on 0 ≤ τ < b (some b ≤ ∞), and let g(τ) be a nonnegative,

nondecreasing continuous function defined on 0 ≤ τ < b, such that g(τ)≤ K for some constant K. Further let u(τ) be a nonnegative locally

integrable on 0 ≤ τ < b function with

|u(τ)| ≤ a(τ)+g(τ)
∫ τ

0
ψ

′

(s)(ψ(τ)−ψ(s))α−1
u(s)∆s,

with some α > 0. Then

|u(τ)| ≤ a(τ)+
∫ τ

0

[

∞

∑
n=1

(g(τ)Γ(α))n

Γ(nα)
ψ

′

(s)(ψ(τ)−ψ(s))nα−1

]

u(s)∆s.

Theorem 2.11. (Schauder FPT) Let E be a Banach space and Q be a nonempty bounded convex and closed subset of E and N : Q → Q

is compact, and continuous map. Then N has at least one fixed point in Q.
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3. Existence results

Lemma 3.1. Here u is solution of (1.1) if and only if u satisfies the following integral equation

u(τ) =
u0

Γ(γ)
(ψ(τ)−ψ(0))γ−1 +

1

Γ(α)

∫ t

0
ψ

′

(s)(ψ(τ)−ψ(s))α−1
g(s,u(s))∆s, t > 0. (3.1)

For further investigation, we give the following assumptions:

(H1) The function g : J×R → R is a rd-continuous.

(H2) There exists a positive constants L > 0 such that

|g(τ,u)−g(τ,v)| ≤ L |u−v| .

(H3) There exists an increasing function ϕ ∈C1−γ (J) and there exists λϕ > 0such that for any τ ∈ J,

TIα ϕ(τ)≤ λϕ ϕ(τ).

Theorem 3.2. Assume that (H1)-(H2) are fulfilled. Then, equation (1.1) has at least one solution.

Proof. Consider the operator P : C1−γ,ψ (J) → C1−γ,ψ (J). The equivalent Volterra integral equation (3.1) which can be written in the

operator form

(Pu)(τ) = u0(τ)+
1

Γ(α)

∫ τ

0
ψ

′

(s)(ψ(τ)−ψ(s))α−1
g(s,u(s))∆s

with

u0(τ) =
u0

Γ(γ)
(ψ(τ)−ψ(0))γ−1 .

Define Br =
{

u ∈C1−γ,ψ (J) : ‖u‖C1−γ,ψ
≤ r

}

.

Set g̃(s) = g(s,0),

σ =
|u0|

Γ(γ)
+

B(γ,α)

Γ(α)
(ψ(b)−ψ(0))α ‖g̃‖C1−γ,ψ

and

ω =
LB(γ,α)

Γ(α)
(ψ(b)−ψ(0))α .

To verify Theorem 2.11, we divide the proof into three steps.

Step 1: We check that P(Br)⊂ Br.

∣

∣

∣
(ψ(τ)−ψ(0))1−γ (Pu)(τ)

∣

∣

∣

≤
|u0|

Γ(γ)
+

(ψ(τ)−ψ(0))1−γ

Γ(α)

∫ τ

0
ψ

′

(s)(ψ(τ)−ψ(s))α−1 |g(s,u(s))|∆s

≤
|u0|

Γ(γ)
+

(ψ(τ)−ψ(0))1−γ

Γ(α)

∫ τ

0
ψ

′

(s)(ψ(τ)−ψ(s))α−1 |g(s,u(s))−g(s,0)|∆s

+
(ψ(τ)−ψ(0))1−γ

Γ(α)

∫ τ

0
ψ

′

(s)(ψ(τ)−ψ(s))α−1 |g(s,0)|∆s

≤
|u0|

Γ(γ)
+

(ψ(τ)−ψ(0))1−γ

Γ(α)

∫ τ

0
ψ

′

(s)(ψ(τ)−ψ(s))α−1
L |u|∆s

+
(ψ(τ)−ψ(0))1−γ

Γ(α)

∫ τ

0
ψ

′

(s)(ψ(τ)−ψ(s))α−1 |g̃|∆s

≤
|u0|

Γ(γ)
+

B(γ,α)

Γ(α)
(ψ(b)−ψ(0))α ‖g̃‖C1−γ,ψ

+
LB(γ,α)

Γ(α)
(ψ(b)−ψ(0))α ‖u‖C1−γ,ψ

.

Hence

‖(Pu)‖ ≤ σ +ωr ≤ r.

Which yields that P(Br)⊂ Br.

Next, the completely continuous of operator P is proved.

Step 2: The operator P is continuous.
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Let un be a sequence such that un → u in C1−γ,ψ (J).
∣

∣

∣
(ψ(τ)−ψ(0))1−γ ((Pun)(t)− (Pu)(τ))

∣

∣

∣

≤
(ψ(τ)−ψ(0))1−γ

Γ(α)

∫ τ

0
ψ

′

(s)(ψ(τ)−ψ(s))α−1 |g(s,un(s))−g(s,u(s))|∆s

≤
(ψ(τ)−ψ(0))1−γ

Γ(α)

∫ τ

0
ψ

′

(s)(ψ(τ)−ψ(s))α−1 sup
s∈J

|g(s,un(s))−g(s,u(s))|∆s

≤
(ψ(τ)−ψ(0))1−γ

Γ(α)

∫ τ

0
ψ

′

(s)(ψ(τ)−ψ(s))α−1 |g(s,un(s))−g(s,u(s))|ds, (by Proposition 2.2)

≤
B(γ,α)

Γ(α)
(ψ(b)−ψ(0))α ‖g(·,un(·))−g(·,u(·))‖C1−γ,ψ

,

Since g is continuous, Lebesgue dominated convergence theorem implies

‖Pun −Pu‖C1−γ,ψ
→ 0 as n → ∞.

Step 3: P(Br) is relatively compact.

Thus P(Br) is uniformly bounded. Let τ1,τ2 ∈ J, τ1 < τ2, then
∣

∣

∣
(Pu)(τ2)(ψ(τ2)−ψ(0))1−γ − (Pu)(τ1)(ψ(τ1)−ψ(0))1−γ

∣

∣

∣

≤

∣

∣

∣

∣

∣

(ψ(τ2)−ψ(0))1−γ

Γ(α)

∫ τ2

0
ψ

′

(s)(ψ(τ2)−ψ(s))α−1
g(s,u(s))∆s

−
(ψ(τ1)−ψ(0))1−γ

Γ(α)

∫ τ1

0
ψ

′

(s)(ψ(τ1)−ψ(s))α−1
g(s,u(s))∆s

∣

∣

∣

∣

∣

≤
1

Γ(α)

∫ τ1

0
ψ

′

(s)
∣

∣

∣
(ψ(τ2)−ψ(0))1−γ (ψ(τ2)−ψ(s))α−1 − (ψ(τ1)−ψ(0))1−γ (ψ(τ1)−ψ(s))α−1

∣

∣

∣
|g(s,u(s))|∆s

+
(ψ(t2)−ψ(0))1−γ

Γ(α)

∫ τ2

τ1

ψ
′

(s)(ψ(τ2)−ψ(s))α−1 |g(s,u(s))|∆s

≤
1

Γ(α)

∫ τ1

0
ψ

′

(s)
∣

∣

∣
(ψ(τ2)−ψ(0))1−γ (ψ(τ2)−ψ(s))α−1 − (ψ(τ2)−ψ(0))1−γ (ψ(τ1)−ψ(s))α−1

∣

∣

∣
|g(s,u(s))|ds

+
(ψ(τ2)−ψ(0))1−γ

Γ(α)
(ψ(τ2)−ψ(τ1))

α+γ−1
B(γ,α)‖g‖C1−γ,ψ

.

Thus, right-hand part tends to zero. Hence along with the Arzëla-Ascoli theorem and from Step 1-3, it is concluded that P is completely

continuous. Thus the proposed problem has at least one solution.

Lemma 3.3. Assume that (H1) and (H3) are fulfilled. If
(

LB(γ,α)

Γ(α)
(ψ(b)−ψ(0))α

)

< 1 (3.2)

then there exists unique solution for Eq. (1.1).

Proof. Define the operator P : C1−γ,ψ (J)→C1−γ,ψ (J).

(Pu)(τ) = u0(τ)+
1

Γ(α)

∫ t

0
ψ

′

(s)(ψ(τ)−ψ(s))α−1
g(s,u(s))∆s

with u0(τ) =
u0

Γ(γ)
(ψ(τ)−ψ(0))γ−1.

Let u1,u2 ∈C1−γ,ψ (J) and τ ∈ J, then
∣

∣

∣
(ψ(τ)−ψ(0))1−γ ((Pu1)(τ)− (Pu2)(τ))

∣

∣

∣

≤
(ψ(τ)−ψ(0))1−γ

Γ(α)

∫ τ

0
ψ

′

(s)(ψ(τ)−ψ(s))α−1 |g(s,u1(s))−g(s,u2(s))|∆s

≤
(ψ(τ)−ψ(0))1−γ

Γ(α)

∫ τ

0
ψ

′

(s)(ψ(τ)−ψ(s))α−1 |g(s,u1(s))−g(s,u2(s))|ds

≤
L(ψ(τ)−ψ(0))1−γ

Γ(α)

∫ τ

0
ψ

′

(s)(ψ(τ)−ψ(s))α−1 |u1(s)−u2(s)|ds

≤
LB(γ,α)

Γ(α)
(ψ(b)−ψ(0))α ‖u1 −u2‖C1−γ,ψ

.

Then,

‖Pu1 −Pu2‖C1−γ,ψ
≤

LB(γ,α)

Γ(α)
(ψ(b)−ψ(0))α ‖u1 −u2‖C1−γ,ψ

.

From (3.2), it follows that P has a unique fixed point which is solution of problem (1.1).
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4. Stability analysis

Next, we shall give the definitions and the criteria generalized UHR stability.

Definition 4.1. Equation (1.1) is generalized UHR stable with respect to ϕ ∈C1−γ (J) if there exists a real number cg,ϕ > 0 such that for

each solution v ∈C1−γ (J) of the inequality

∣

∣

∣

T∆α,βv(τ)−g(τ,v(τ))
∣

∣

∣
≤ ϕ(t), (4.1)

there exists a solution u ∈C
γ
1−γ (J) of equation (1.1) with

|v(τ)−u(τ)| ≤ cg,ϕ ϕ(τ).

Theorem 4.2. Assume that (H1), (H3), (H4) and (3.2) are satisfied. Then, the problem (1.1) is generalized UHR stable.

Proof. Let v∈C1−γ (J) be solution of the following inequality (4.1) and let u∈C1−γ (J) be the unique solution of the ψ-Hilfer type dynamics

equation (1.1). By Lemma 3.1,

u(τ) = u0(τ)+
1

Γ(α)

∫ τ

0
ψ

′

(s)(ψ(τ)−ψ(s))α−1
g(s,u(s))∆s.

By integration of (4.1) we obtain

∣

∣

∣

∣

v(τ)−v0(τ)−
1

Γ(α)

∫ τ

0
ψ

′

(s)(ψ(τ)−ψ(s))α−1
g(s,v(s))∆s

∣

∣

∣

∣

≤ λϕ ϕ(τ).

On the other hand, we have

|v(τ)−u(τ)| ≤

∣

∣

∣

∣

v(τ)−v0(τ)−
1

Γ(α)

∫ τ

0
ψ

′

(s)(ψ(τ)−ψ(s))α−1
g(s,v(s))∆s

∣

∣

∣

∣

+
1

Γ(α)

∫ τ

0
ψ

′

(s)(ψ(τ)−ψ(s))α−1 |g(s,v(s))−g(s,u(s))|∆s

≤

∣

∣

∣

∣

v(τ)−v0(τ)−
1

Γ(α)

∫ τ

0
ψ

′

(s)(ψ(τ)−ψ(s))α−1
g(s,v(s))∆s

∣

∣

∣

∣

+
L

Γ(α)

∫ t

0
ψ

′

(s)(ψ(τ)−ψ(s))α−1 |v(s)−u(s)|ds

≤ λϕ ϕ(τ)+
L

Γ(α)

∫ t

0
ψ

′

(s)(ψ(τ)−ψ(s))α−1 |v(s)−u(s)|ds.

By applying Lemma 2.10, we obtain

|v(τ)−u(τ)| ≤
[

(1+ν1Lλϕ )λϕ

]

ϕ(τ),

where ν1 = ν1(α) is a constant,then for any τ ∈ J:

|v(τ)−u(τ)| ≤ cgεϕ(τ),

Thus, the proof is complete.
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Abstract

In this paper, our goal is to introduce some new Cauchy sequence spaces. These spaces

are defined by Cauchy transforms. We shall use notations C∞ (s, t), C (s, t) and C0 (s, t) for

these new sequence spaces. We prove that these new sequence spaces C∞ (s, t), C (s, t) and

C0 (s, t) are the BK−spaces and isomorphic to the spaces l∞, c and c0, respectively. Besides

the bases of these spaces, α−, β− and γ− duals of these spaces will be given. Finally, the

matrix classes (C (s, t) : lp) and (C (s, t) : c) have been characterized.

1. Preliminaries, background and notation

By w, we shall denote the space of all real or complex valued sequences. Any vector subspace of w is called as a sequence space. We shall

write l∞, c, c0 and lp for the spaces of all bounded, convergent, null and absolutely p−summable sequences which are given by

l∞ =

{

x = (xk) ∈ w : sup
k→∞

|xk|< ∞

}

,

c =

{

x = (xk) ∈ w : lim
k→∞

xk exists

}

,

c0 =

{

x = (xk) ∈ w : lim
k→∞

xk = 0

}

and

lp =

{

x = (xk) ∈ w :
∞

∑
k=0

|xk|
p
< ∞,1 ≤ p < ∞

}

.

Also by bs, cs and l1, we denote the spaces of all bounded, convergent and absolutely convergent series, respectively.

A sequence space λ with a linear topology is called an K− space provided of the maps pi : λ →C defined by pi (x) = xi is continuous for all

i ∈ N; where C denotes the set of complex number and N= {0,1,2, ...}. Let λ be an K− space. Then λ is called an FK− space provided

λ is a complete linear metric space. An FK− space provided whose topology is normable is called a BK− space [1].

Let X , Y be any two sequence spaces and A = (ank) be an infinite matrix of real numbers, where n, k ∈ N. Then, we write Ax = ((Ax)n), the

A−transform of x, if An (x) = ∑k ankxk converges for each n ∈ N. If for every sequence x = (xk) ∈ X , A−transform of x sequence Ax is in Y .

Then we say that A defines a matrix transformation from X into Y and denote it by A : X → Y . By (X : Y ) we mean the class of all infinite

matrices such that A : X → Y .

Let F denote the collection of all finite subsets on N and K, N⊂ F . The matrix domain XA of an infinite matrix A in a sequence space X is

defined by

XA = {x = (xk) ∈ w : Ax ∈ X} (1.1)

Email address: h.polat@alparslan.edu.tr (H. Polat)
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which is a sequence space.

The approach constructing a new sequence space by means of the matrix domain of a particular limitation method has been employed by

many authors recently. They introduced the sequence spaces (c0)T r = tr
0 and (c)T r = tr

c in [2], (c0)Er = er
0 and (c)Er = er

c in [3], (c0)C = c0

and cC = c in [3],
(

lp

)

Er = er
p in [4], (l∞)Rt = rt

∞, cRt = rt
c and (c0)Rt = rr

0 in [5],
(

lp

)

C
= Xp in [6] and (lp)Nq

in [7] where T r, Er, C, Rt

and Nq denote the Taylor, Euler, Cesaro, Riesz and Nörlund means, respectively. In recent years, constructing a new sequence space by

means of the domain of an infinite matrix was used by Candan [8, 9], Altay [10], Altay and Başar [11], Aydın and Başar [12], Başar [13, 14],

Başar, Altay and Mursaleen [15], Polat and Başar [16].

Following [2]-[7], [17] by the same way, to introduce the new Cauchy sequence spaces C∞ (s, t), C (s, t) and C0 (s, t) is the purpose of this

paper.

2. The Cauchy matrix of inverse formula and Cauchy sequence spaces

Given two vectors s and t such that si 6=−t j for all i and j , the n×n matrix C =C(s, t) is a Cauchy (generalized Hilbert) matrix [18] where

C(s, t) = ci j = [ 1
si+t j

]n−1
i, j=0. The inverse of Cauchy’s Matrix [19] is given by

C−1(s, t) = c−1
i j =

∏
1≤k≤n

(

s j + tk
)

(sk + ti)

(

s j + ti
)





 ∏
1≤k≤n

j 6=k

(

s j − sk

)











 ∏
1≤k≤n

i 6=k

(ti − tk)







. (2.1)

C(s, t) denotes the Cauchy mean defined by the matrix C(s, t) = (ci j), ci j = [ 1
si+t j

]ni, j=1 for each n ∈ N.

We introduce the Cauchy sequence spaces,

C∞ (s, t) =

{

x = (xk) ∈ w : sup
n

∣

∣

∣

∣

∣

n

∑
k=1

1

sn + tk
xk

∣

∣

∣

∣

∣

< ∞

}

,

C (s, t) =

{

x = (xk) ∈ w : lim
n→∞

n

∑
k=1

1

sn + tk
xk exists

}

and

C0 (s, t) =

{

x = (xk) ∈ w : lim
n→∞

n

∑
k=1

1

sn + tk
xk = 0

}

.

By means of the notation (1.1), we may redefine the spaces C0 (s, t) and C (s, t) as follows:

C0 (s, t) = (c0)C(s,t) and C (s, t) = (c)C(s,t) . (2.2)

If λ is any arbitrary normed or paranormed sequence space, then we call the matrix domain λC(s,t) as the Cauchy sequence space. We define

the sequence y = (yk) which will be frequently used, as the C (s, t)− transform of a sequence x = (xk) i.e.,

yn =
n

∑
k=1

1

sn + tk
xk. (2.3)

It can be shown easily that C∞ (s, t), C (s, t) and C0 (s, t) are linear and normed spaces by the following norm:

‖x‖C0(s,t)
= ‖C (s, t)‖C∞(s,t)

= sup
n

∣

∣

∣

∣

∣

n

∑
k=1

1

sn + tk
xk

∣

∣

∣

∣

∣

. (2.4)

Theorem 2.1. The sequence spaces C∞ (s, t), C (s, t) and C0 (s, t) are Banach spaces with the norm (2.4).

Proof. Let (xp) =
(

x
(p)
0 ,x

(p)
1 ,x

(p)
2 , ...

)

be a Cauchy sequence in C∞ (s, t) for all p ∈ N. Then, there exists n0 = n0(ε) for every ε > 0 such

that ‖xp − xr‖∞ < ε for all p, r > n0. Hence, |C (s, t) (xp − xr)|< ε for all p, r > n0 and for each k ∈ N.

Therefore, (C (s, t)x
p
k
) = (

(

C (s, t)x0
)

k
,
(

C (s, t)x1
)

k
,
(

C (s, t)x2
)

k
, ...) is a Cauchy sequence in the set of complex numbers C. Since C

is complete, it is convergent we write lim
p→∞

(C (s, t)xp)k = (C (s, t)x)k and lim
m→∞

(C (s, t)xm)k = (C (s, t)x)k for each k ∈ N. Hence, we have

lim
m→∞

∣

∣C (s, t)x
p
k
− xm

k

∣

∣=
∣

∣C (s, t)
(

x
p
k
− xk

)

−C (s, t)
(

xm
k − xk

)∣

∣≤ ε for all n ≥ n0. This implies that ‖xp − xm‖→ ∞ for p, m → ∞. Now, we

should show that x ∈C∞ (s, t). We have

‖x‖∞ = ‖C (s, t)x‖∞ = sup
n

∣

∣

∣

∣

∣

n

∑
k=1

1

sn + tk
xk

∣

∣

∣

∣

∣

= sup
n

∣

∣

∣

∣

∣

n

∑
k=1

1

sn + tk
(xk − x

p
k
+ x

p
k

∣

∣

∣

∣

∣

≤ sup
n

∣

∣C (s, t)
(

x
p
k
− xk

)∣

∣+ sup
n

∣

∣C (s, t)x
p
k

∣

∣≤ ‖xp − x‖∞ +
∣

∣C (s, t)x
p
k

∣

∣< ∞

for p, k ∈ N. This implies that x = (xk) ∈C∞ (s, t). Thus, C∞ (s, t) the space is a Banach space with the norm (2.4).
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It can be shown that C0 (s, t) and C (s, t) are closed subspaces of C∞ (s, t) which leads us to the consequence that the spaces are also the

Banach spaces with the norm (2.4). Furthermore, since C∞ (s, t) is a Banach space with continuous coordinates, i.e.,
∥

∥C (s, t)
(

x
p
k
− x

)∥

∥

∞
→ 0

imples
∣

∣C (s, t)
(

x
p
k
− xk

)∣

∣→ 0 for all k ∈ N, it is also a BK− space.

Theorem 2.2. The sequence spaces C∞ (s, t), C (s, t) and C0 (s, t) are linearly isomorphic to the spaces l∞, c and c0 respectively, i.e.,

C∞ (s, t)∼= l∞, C (s, t)∼= c and C0 (s, t)∼= c0.

Proof. To prove the fact C0 (s, t)∼= c0, we should show the existence of a linear bijection between the spaces C0 (s, t) and c0. Consider the

transformation F defined, with the notation (2.3), from C0 (s, t) to c0. The linearity of F is clear. Further, it is trivial that x = 0 whenever

Fx = 0 and hence F is injective.

Let y ∈ c0 and define the sequence x = (xk) by xk =
k

∑
j=1

c−1
k j

y j for each k ∈ N. Wherein c−1
k j

is as defined in (2.1). Then

lim
n→∞

(C (s, t)x)n = lim
n→∞

n

∑
k=1

cnkxk = lim
n→∞

n

∑
k=1

1

sn + tk

k

∑
j=1

c−1
k j y j = lim

n→∞
yn = 0.

Thus, we have that x ∈C0 (s, t) .In addition, note that

‖x‖C0(s,t)
= sup

n∈N

∣

∣

∣

∣

∣

n

∑
k=1

1

sn + tk

k

∑
j=1

c−1
k j y j

∣

∣

∣

∣

∣

= sup
n∈N

|yn|= ‖y‖c0
< ∞.

Consequently, F is surjective and is norm preserving. Hence, F is a linear bijection therefore we say that the spaces C0 (s, t) to c0 are linearly

isomorphic. In the same way, it can be shown that C (s, t) and C∞ (s, t) are linearly isomorphic to c and l∞, respectively, and so we omit the

detail.

Theorem 2.3. The sequence space C∞ (s, t), C (s, t) and C0 (s, t) includes the sequence spaces l∞, c and c0 respectively i.e. l∞ ⊂C∞ (s, t), c ⊂
C (s, t) and c0 ⊂C0 (s, t).

Proof. We only prove the conclusion l∞ ⊂C∞ (s, t) and the rest follows in a similar way. Let x ∈ l∞. Then, using (2.3) and (2.4), we obtain

that

‖x‖= ‖C (s, t)x‖∞ = sup
n

∣

∣

∣

∣

∣

n

∑
k=1

1

sn + tk
xk

∣

∣

∣

∣

∣

≤ sup
n

|xk|sup
n

|C (s, t)|= ‖x‖C∞(s,t)

it means that x ∈C∞ (s, t).

3. The basis for the spaces C (s, t) and C0 (s, t)

Firstly, let us define the Schauder basis. A sequence (bn)n∈N in a normed sequence space λ is called a Schauder basis (or briefly basis) [20],

if for every x ∈ λ there is a unique sequence (αn) of scalars such that

lim
n→∞

‖x− (α0x0 +α1x1 + ...+αnxn)‖= 0.

In this section, we shall give the Schauder basis for the spaces C (s, t) and C0 (s, t).

Theorem 3.1. Let k ∈ N be a fixed natural number and b(k) =
{

b
(k)
n

}

n∈N
where b

(k)
n =

[

c−1
nk

]n

k=1
, (n ∈ N). Wherein c−1

nk
is as defined in

(2.1). Then the following assertions are true:

i. The sequence
{

b
(k)
n

}

is a basis for the space C0 (s, t) and every x ∈C0 (s, t) has a unique representation of the form x = ∑k λkb(k) where

λk = (C (s, t)x)k for all k ∈ N. For simplicity, here and thereafter an unlimited sum symbol runs from zero to infinity.

ii. The set
{

e,b(0),b(1), ...,b(k), ...
}

is a basis for the space C (s, t) and every x ∈ C (s, t) has a unique representation of the form x =

le+∑k (λk − l)b(k) where l = limk→∞ (C (s, t)x)k and λk = (C (s, t)x)k for all k ∈ N.

4. The α−, β− and γ− Duals of the Spaces C∞ (s, t) , C (s, t) and C0 (s, t)

In this section, we state and prove the theorems determining the α−, β − and γ− duals of the sequence spaces C∞ (s, t), C (s, t) and C0 (s, t).
For the sequence spaces λ and µ, we define the set S (λ ,µ) by

S (λ ,µ) = {z = (zk) ∈ w : xz = (xkzk) ∈ µ for all x ∈ λ} .

The α−, β − and γ− duals of the sequence spaces λ , which are respectively denoted by λ α , λ β and λ γ are defined by Garling [21], by

λ α = S (λ , l1) , λ β = S (λ ,cs) and λ γ = S (λ ,bs). We shall begin with the lemmas due to Stieglitz and Tietz [22], which are needed in the

proof of the Theorems 4.4-4.6.
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Lemma 4.1. A ∈ (c0 : l1) = (c : l1) if and only if, for (αk)⊂ R

sup
K∈F

∑
n

∣

∣

∣

∣

∣

∑
k∈K

ank

∣

∣

∣

∣

∣

< ∞ (4.1)

Lemma 4.2. A ∈ (c0 : c) if and only if

sup
n

∑
k

|ank|< ∞ (4.2)

and

lim
n→∞

ank = αk, (k ∈ N).

Lemma 4.3. A ∈ (c0 : l∞) if and only if (4.2) holds.

In the following theorems, we denote by K and F finite subsets of N.

Theorem 4.4. Let a = (ak) ∈ w and define the matrix B =
(

c−1
nk

an

)

for all k, n ∈ N. The α− dual of the sequence spaces C∞ (s, t),

C (s, t) and C0 (s, t) is the set D =
{

a = (ak) ∈ w : supK∈F ∑n

∣

∣

∣∑k∈K c−1
nk

an

∣

∣

∣
< ∞

}

. Wherein c−1
nk

is as defined in (2.1) for each k, n ∈ N.

Proof. Let a = (an) ∈ w and consider the matrix B whose rows are the products of the rows of the matrix C−1 (s, t) and sequence a = (an) .
Bearing in mind the relation (2.3), we immediately derive that

anxn =
n

∑
k=1

c−1
nk anyk = (By)n , ( n ∈ N) . (4.3)

We therefore observe by (4.3) that ax = (anxn) ∈ l1 whenever x ∈C∞ (s, t), C (s, t) and C0 (s, t) if and only if By ∈ l1 whenever y ∈ l∞, c, and

c0. Then, by means of Lemma 4.1, we get supK∈F ∑n

∣

∣

∣∑k∈K c−1
nk

an

∣

∣

∣
< ∞ which yields the consequences that {C∞ (s, t)}α = {C (s, t)}α =

{C0 (s, t)}
α = D.

Theorem 4.5. Let us consider the sets B1, B2, B3 and B4 defined as follows:

B1 =

{

a = (ak) ∈ w : sup
n

n

∑
k=1

∣

∣

∣

∣

∣

n

∑
j=k

c−1
jk a j

∣

∣

∣

∣

∣

< ∞

}

,

B2 =

{

a = (ak) ∈ w :
∞

∑
j=k

c−1
jk a j exists f or each k ∈ N

}

,

B3 =

{

a = (ak) ∈ w : lim
n→∞

n

∑
k=1

∣

∣

∣

∣

∣

n

∑
j=k

c−1
jk a j

∣

∣

∣

∣

∣

=
n

∑
k=1

∣

∣

∣

∣

∣

lim
n→∞

n

∑
j=k

c−1
jk a j

∣

∣

∣

∣

∣

}

and

B4 =

{

a = (ak) ∈ w : lim
n→∞

n

∑
k=1

n

∑
j=k

c−1
jk a j exists

}

.

Wherein c−1
jk

is as defined in (2.1) for each j, k ∈ N. Then {C0 (s, t)}
β = B1 ∩B2, {C (s, t)}β = B1 ∩B2 ∩B4 and {C∞ (s, t)}β = B2 ∩B3.

Proof. We only give the proof for the space C0 (s, t). Since the proof may give by a similar way for the spaces C (s, t) and C∞ (s, t), we omit

others. Consider the equation

n

∑
k=1

akxk =
n

∑
k=1

[

k

∑
j=1

c−1
k j y j

]

ak =
n

∑
k=1

[

n

∑
j=k

c−1
k j a j

]

yk = (By)n ,

where B = (bnk) is defined by bnk = ∑
n
j=k c−1

n j a j, (n, k ∈ N). Thus, we deduce from Lemma 4.2 with (4.2) that ax = (akxk) ∈ cs whenever

x = (xk ∈)C0 (s, t) if and only if By ∈ c whenever y = (yk) ∈ c0. Therefore, we observe using relations (4.1) and (4.2), we conclude that

limn→∞ c−1
nk

exists for each n, k ∈ N and supn∈N

∣

∣

∣∑
n
k=1 c−1

nk

∣

∣

∣
< ∞. Thus, we obtain {C0 (s, t)}

β = B1 ∩B2.

Theorem 4.6. The γ− dual of the sequence spaces C∞ (s, t), C (s, t) and C0 (s, t) is the set B1.

Proof. This theorem can be proved using the same technique as in the proof of Theorem 4.4 with Lemma 4.3 instead of Lemma 4.2. So, we

omit the details.
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5. Some matrix mappings related to Cauchy sequence spaces

Lemma 5.1. [22, p. 57] The matrix mappings between BK− spaces are continuous.

Lemma 5.2. [22, p. 128] A ∈
(

c : lp

)

if and only if

sup
K∈F

∑
n

∣

∣

∣

∣

∣

∑
k∈K

ank

∣

∣

∣

∣

∣

p

< ∞, (1 ≤ p < ∞) (5.1)

Theorem 5.3. A ∈
(

C (s, t) : lp

)

if and only if the following conditions are satisfied

sup
n∈N

n

∑
k=0

|gnk|< ∞ , (5.2)

lim
n→∞

gnk exists for all k ∈ N, (5.3)

lim
n→∞

n

∑
k=0

gnk converges for all n ∈ N, (5.4)

sup
K∈F

∑
n

∣

∣

∣

∣

∣

∑
k∈K

gnk

∣

∣

∣

∣

∣

p

< ∞ ,(1 ≤ p < ∞) (5.5)

and

sup
n∈N

n

∑
k=0

|gnk|
p
< ∞, (p = ∞) (5.6)

where gnk = ∑
n
j=k c−1

k j
an j and c−1

k j
is defined by (2.1).

Proof. Let 1 ≤ p <+∞. Assume that conditions (5.2)-(5.6) are satisfied and take any x ∈C (s, t). Then (ank) ∈ (C (s, t))β for all k, n ∈ N,

which implies that Ax exists. We define the matrix G = (gnk) for all n, k ∈ N. Then, since condition (5.1) is satisfied for the matrix G, we

have G ∈
(

c : lp

)

. Now consider the following equality obtained from the s th partial sum of the series ∑k ankxk:

s

∑
k=1

ankxk =
s

∑
k=1

s

∑
j=k

c−1
jk an jyk

(s, n ∈ N). Therefore, we derive from that as s → ∞ that

∞

∑
k=1

ankxk =
∞

∑
k=1

gnkyk (5.7)

(n ∈ N). Whence taking lp− norm we get

‖Ax‖lp
= ‖Gy‖lp

< ∞.

This means that A ∈
(

C (s, t) : lp

)

. Now let p = ∞. Assume that conditions (5.2)-(5.6) are satisfied and take any x ∈ C (s, t). Then

(ank) ∈ (C (s, t))β for all k, n ∈ N, which implies that Ax exists. Whence taking l∞− norm (5.7)

‖Ax‖l∞
= sup

n∈N

∣

∣

∣

∣

∣

∑
k

gnk

∣

∣

∣

∣

∣

≤ ‖y‖l∞
sup
n∈N

∑
k

|gnk|< ∞.

Then, we have A ∈ (C (s, t) : l∞).

Conversely, assume that A ∈
(

C (s, t) : lp

)

. Then, since C (s, t) and lp are BK− spaces, it follows from Lemma 5.1 that there exists a real

constant K > 0 such that

‖Ax‖lp
= K ‖x‖C(s,t)

for all x ∈C (s, t). Since inequality ?? also holds for the sequence x = (xk) = ∑k∈F b(k) ∈C (s, t) where b
(k)
n =

[

c−1
nk

]n

k=1
, (n ∈ N). Wherein

c−1
nk

is as defined in 2.1. We have ‖Ax‖lp
= [∑n |∑k∈F gnk|

p]
1
p ≤ K ‖x‖C(s,t) = K which shows the necessity of 5.5.
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Theorem 5.4. A ∈ (C (s, t) : c) if and only if conditions are satisfied

gnk exists for all n, k ∈ N, (5.8)

sup
n

∑
k

|gnk|< ∞ for all n, k ∈ N, (5.9)

lim
n

gnk = αk for all k ∈ N (5.10)

and

lim
n

∑
k

gnk = α (5.11)

where gnk = ∑
n
j=k c−1

k j
an j and c−1

k j
is defined by (2.1).

Proof. Assume that A satisfies conditions (5.8)-(5.11). Let us take an arbitrary an x = (xk) in C (s, t) such that xk → l as k → ∞. Then Ax

exists and it is trivial that the sequence y = (yk) associated with the sequence x = (xk) by relation (2.3) belongs to c and is such that yk → l

as k → ∞. At this stage, it follows from (5.4) and (5.6) that

k

∑
i=0

|αi| ≤ sup
n

∑
i

|gni|< ∞

for every k ∈ N. This yield αk ∈ l1. Considering ∑k ankxk = ∑k gnkyk we write

∑
k

ankxk = ∑
k

gnk (yk − l)+ l ∑
k

gnkyk (5.12)

In this situation, letting n → ∞ in (5.6), we establish that the first term on the right-hand side tends to ∑k αk (yk − l) by (5.3) and (5.4) and

the second term tends to lα by (5.12). Taking these facts into account, we deduce from (5.12) as n → ∞ that (Ax)n = ∑k αk (yk − l)+ lα

which shows that A ∈ (C (s, t) : c).
Conversely, assume that A ∈ (C (s, t) : c) . Then, since the inclusion c ⊂ l∞ holds the necessity of (5.10), (5.12) is immediately obtained from

supn ∑k |bnk|< ∞. To prove the necessity of (5.11) consider the sequence x = b(k) =
{

b
(k)
n

}

n∈N
in C (s, t) which defined above for every

fixed k ∈ N. Since Ax exists and belongs to c for every x ∈C (s, t), one can easily see that Ab(k) =
{

b
(k)
n

}

n∈N
for each k ∈ N, which yields

the necessity of (5.11). Similarly, by setting x = e in (5.7), we obtain Ax = {∑k gnk}n∈N, which belongs to the space c, and this shows the

necessity of (5.12). Where gnk = ∑
n
j=k c−1

k j
an j and c−1

k j
is defined by (2.1). This step conludes the proof.
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[14] F. Başar, f–conservative matrix sequences, Tamkang J. Math., 22(2) (1991), 205–212.
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Abstract

In this paper, we implemented an improved tanh function method for multiple soliton

solutions of new coupled Konno-Oono equation and extended (3+1)-dimensional KdV-type

equation.

1. Introduction

Nonlinear partial differential equations (NPDEs) have an important place in applied mathematics and physics [1], [2]. Many analytical

methods have been found in literature [3]-[11]. Besides these methods, there are many methods which reach to solution by using an auxiliary

equation. Using these methods, partial differential equations are transformed into ordinary differential equations. These nonlinear partial

differential equations are solved with the help of ordinary differential equations. These methods are given in [12]-[39].

We used the improved tanh function method to find the multiple soliton solutionsof new coupled Konno-Oono equation and extended

(3+1)-dimensional KdV-type equationin this study. This method is presented by Chen and Zhang [15].

2. Analysis of method

Let’s introduce the method briefly. Consider a general partial differential equation of two variables,

ϕ (v,vt ,vx,vxx, . . .) = 0. (2.1)

and transform equation (2.1) with

v(x, t) = v(∅) , ∅= k (x−wt)

where k, w are constants. With this conversion, we obtain a nonlinear ordinary differential equation for v(∅)

ϕ ′
(

v′,v′′,v′′′, . . .
)

= 0. (2.2)

We can express the solution of equation (2.2) as below,

v(∅) =
n

∑
i=0

aiF
i (∅) ,

here n is a positive integer and is found as the result of balancing the highest order linear term and the highest order nonlinear term found in

the equation.

Email address: ieinan@yahoo.com, (İ. E. İnan)
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If we write these solutions in equation (2.2), we obtain a system of algebraic equations for F (∅) , F2 (∅) , . . . ,F i (∅) , after, if the coefficients

of F (∅) , F2 (∅) , . . . ,F i (∅) are equal to zero, we can find the k,w,a0,a1, . . . ,an constants. The basic step of the method is to make full use

of the Riccati equation satisfying the tanh function and to use F (∅) , solutions. The Riccati equation required in this method is given below

F
′

(∅) = A+BF (∅)+CF2 (∅)

where, F ′ (∅) =
dF(∅)

d∅ and A, B and C are constants. The authors expressed the solutions [15].

Example 2.1. Example 1. Weconsider the new coupled Konno-Oono equation,

vt +2uux = 0

uxt −2uv = 0. (2.3)

Using the wave variable v(x, t) = v(∅) and u(x, t) = u(∅) , ∅= k (x−wt) , the equation (2.3) turns into an ordinary differential equation,

−kwv′+2kuu′ = 0

−k2wu′′−2uv = 0. (2.4)

When balancing v′ with uu′ and u′′ with uv then n1 = 1 and n2 = 2 gives. The solution is as follows:

u = a0 +a1F (∅)

v = b0 +b1F (∅)+b2F2 (∅) (2.5)

(2.5) are substituted in equations (2.4) , a system of algebraic equations for k,w,a0,a1,b0,b1,b2 are obtained. The obtained systems of

algebraic equations are as follows

2Aka0a1 −Akwb1 = 0,

2Bka0a1 +2Aka2
1 −Bkwb1 −2Akwb2 = 0,

2Cka0a1 +2Bka2
1 −Ckwb1 −2Bkwb2 = 0,

2Cka2
1 −2Ckwb2 = 0−ABk2wa1 −2a0b0 = 0,

−B2k2wa1 −2ACk2wa1 −2a1b0 −2a0b1 = 0,

−3BCk2wa1 −2a1b1 −2a0b2 = 0,

−2C2k2wa1 −2a1b2 = 0.

Solving the above system with the help of Mathematica, the coefficients are found as two cases:

Case 1:

a0 = 0,B = 0,b1 = 0,A 6= 0,b2 =
Cb0

A
,k =

ib0

Aa1
,w =

a2
1

b2
,a1 6= 0,b2 6= 0.

Case 2:

a0 = 0, B = 0, b1 = 0, A = 0, b2 6= 0, k =
ib2

Ca1
, w =

a2
1

b2
, b0 = 0, Ca1 6= 0.

After these procedures, the solutions:

Solution 1:

u1 (x, t) = a1

[

Coth

(

2ib0

a1
x+2ia1t

)

±Cosech

(

2ib0

a1
x+2ia1t

)]

v1 (x, t) = b0 −b0

[

Coth

(

2ib0

a1
x+2ia1t

)

±Cosech

(

2ib0

a1
x+2ia1t

)]2

u2 (x, t) = a1

[

Tanh

(

2ib0

a1
x+2ia1t

)

± iSech

(

2ib0

a1
x+2ia1t

)]
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v2 (x, t) = b0 −b0

[

Tanh

(

2ib0

a1
x+2ia1t

)

± iSech

(

2ib0

a1
x+2ia1t

)]2

Solution 2:

u3 (x, t) = a1

[

Sec

(

2ib0

a1
x−2ia1t

)

±Tan

(

2ib0

a1
x−2ia1t

)]

v3 (x, t) = b0 +b0

[

Sec

(

2ib0

a1
x−2ia1t

)

±Tan

(

2ib0

a1
x−2ia1t

)]2

u4 (x, t) = a1

[

Cosec

(

2ib0

a1
x−2ia1t

)

±Cot

(

2ib0

a1
x−2ia1t

)]

v4 (x, t) = b0 +b0

[

Cosec

(

2ib0

a1
x−2ia1t

)

±Cot

(

2ib0

a1
x−2ia1t

)]2

u5 (x, t) = a1

[

Sec

(

−
2ib0

a1
x+2ia1t

)

±Tan

(

−
2ib0

a1
x+2ia1t

)]

v5 (x, t) = b0 +b0

[

Sec

(

−
2ib0

a1
x+2ia1t

)

±Tan

(

−
2ib0

a1
x+2ia1t

)]2

u6 (x, t) = a1

[

Cosec

(

−
2ib0

a1
x+2ia1t

)

±Cot

(

−
2ib0

a1
x+2ia1t

)]

v6 (x, t) = b0 +b0

[

Cosec

(

−
2ib0

a1
x+2ia1t

)

±Cot

(

−
2ib0

a1
x+2ia1t

)]2

Solution 3:

u7 (x, t) = a1

[

Tanh

(

ib0

a1
x+ ia1t

)]

v7 (x, t) = b0 −b0

[

Tanh

(

ib0

a1
x+ ia1t

)]2

u8 (x, t) = a1

[

Coth

(

ib0

a1
x+ ia1t

)]

v8 (x, t) = b0 −b0

[

Coth

(

ib0

a1
x+ ia1t

)]2

Solution 4:

u9 (x, t) = a1

[

Tan

(

ib0

a1
x− ia1t

)]

v9 (x, t) = b0 +b0

[

Tan

(

ib0

a1
x− ia1t

)]2

Solution 5:

u10 (x, t) = a1

[

Cot

(

−
ib0

a1
x+ ia1t

)]



276 Universal Journal of Mathematics and Applications

v10 (x, t) = b0 +b0

[

Cot

(

−
ib0

a1
x+ ia1t

)]2

Solution 6:

u11 (x, t) =−
a1

(

ib2

a1
x− ia1t

)

+ c0

v11 (x, t) = b2



−
1

(

ib2

a1
x− ia1t

)

+ c0





2

Example 2.2. Now let’s get the extended (3+1)-dimensional KdV-type equation,

ut +6uxuy +uxxy +uxxxxz +60u2
xuz +10uxxxuz +20uxuxxz +6uxuz +uxxz = 0, (2.6)

Using the wave variable u(x,y,z, t) = u(∅) and, ∅= k (x+αy+β z−wt), the equation (2.6) turns into an ordinary differential equation,

−wu′+6kα
(

u′
)2

+ k2αu′′′+ k4βu(5)+60k2β
(

u′
)3

+30k3βu′u′′′+6kβ
(

u′
)2

+ k2βu′′′ = 0, (2.7)

When balancing u(5) with u′u′′′ then n = 1 gives. The solution is as follows:

u = a0 +a1F (∅) (2.8)

If (2.8) is substituted in equation (2.7), a system of algebraic equations for k,w,α ,β ,a0,a1 can be obtained. The obtained systems of

algebraic equations are as follows

−Awa1 +AB2k2αa1 +2A2Ck2αa1 +AB2k2βa1 +2A2Ck2βa1 +AB4k4βa1 +22A2B2Ck4βa1

+16A3C2k4βa1 +6A2kαa2
1 +6A2kβa2

1 +30A2B2k3βa2
1 +60A3Ck3βa2

1 +60A3k2βa3
1 = 0,

−Bwa1 +B3k2αa1 +8ABCk2αa1 +B3k2βa1 +8ABCk2βa1 +B5k4βa1 +52AB3Ck4βa1 +136A2BC2k4βa1

+12ABkαa2
1 +12ABkβa2

1 +60AB3k3βa2
1 +300A2BCk3βa2

1 +180A2Bk2βa3
1 = 0,

−Cwa1 +7B2Ck2αa1 +8AC2k2αa1 +7B2Ck2βa1 +8AC2k2βa1 +31B4Ck4βa1+
292AB2C2k4βa1 +136A2C3k4βa1 +6B2kαa2

1 +12ACkαa2
1 +6B2kβa2

1 +12ACkβa2
1+

30B4k3βa2
1 +480AB2Ck3βa2

1 +300A2C2k3βa2
1 +180AB2k2βa3

1 +180A2Ck2βa3
1 = 0,

If the system is solved, the coefficients are found as

B = 0, a1 =
1

2

√

C

A
, a1 6= 0, A 6= 0, k =−

1

4Aa1
, α =−w, β 6= 0.

with the help of the Mathematica program. After these operations, the solutions of equation (2.6) as follow:

Solution 1:

u1 (x, t) =
i

2
[Coth(ix− iwy+ iβ z− iwt)±Cosech(ix− iwy+ iβ z− iwt)]

u2 (x, t) =
i

2
[Tanh(ix− iwy+ iβ z− iwt)± iSech(ix− iwy+ iβ z− iwt)]

Solution 2:

u3 (x, t) =
1

2
[Sec(−x+wy−β z+wt)+Tan(−x+wy−β z+wt)] (2.9)

u4 (x, t) =
1

2
[Cosec(−x+wy−β z+wt)−Cot (−x+wy−β z+wt)]

u5 (x, t) =
1

2
[Sec(x−wy+β z−wt)−Tan(x−wy+β z−wt)] (2.10)
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u6 (x, t) =
1

2
[Cosec(x−wy+β z−wt)+Cot (x−wy+β z−wt)] (2.11)

Solution 3:

u7 (x, t) =
i

2

[

Tanh

(

i

2
x−

i

2
wy+

i

2
β z−

i

2
wt

)]

(2.12)

u8 (x, t) =
i

2

[

Coth

(

i

2
x−

i

2
wy+

i

2
β z−

i

2
wt

)]

(2.13)

Solution 4:

u9 (x, t) =
1

2

[

Tan

(

−
1

2
x+

1

2
wy−

1

2
β z+

1

2
wt

)]

(2.14)

Solution 5:

u10 (x, t) =
1

2

[

Cot

(

1

2
x−

1

2
wy+

1

2
β z−

1

2
wt

)]

(2.15)

3. Explanations and graphical presentments of some of the solutions obtained

The graphical demonstrations of some obtained solutions are shown in Figures 1-3.

Figure 3.1: a)The 3D surfaces of Eq.(2.9)for the values y = 1, z = 0 and w = 5 within the interval−5 ≤ x ≤ 5, −1 ≤ t ≤ 1. b) The 2D surfaces of Eq.(2.9)for
thevalues y = 1, z = 0, w = 5 and t = 1 within the interval−5 ≤ x ≤ 5.
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Figure 3.2: a) The 3D surfaces of Eq.(2.14)for the values y = 1, z = 0 and w = 5 within the interval −5 ≤ x ≤ 5, − 1 ≤ t ≤ 1. b) The 2D surfaces of
Eq.(2.14)for the values y = 1, z = 0, w = 5 and t = 1 within the interval−5 ≤ x ≤ 5.

Figure 3.3: a)The 3D surfaces of Eq.(2.15)for the values and within the interval b) The 2D surfaces of Eq.(2.15) for the values and within the interval

4. Conclusion

We used the improved tanh function method to find the multiple soliton solutions of new coupled Konno-Oono equation and extended

(3+1)-dimensional KdV-type equation. This method has been successfully applied to solve some nonlinear wave equations and can be used

to many other nonlinear equations or coupled ones.
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