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Düzce-TÜRKİYE
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fuatusta@duzce.edu.tr

Managing Editor

Merve İlkhan
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Norm-Attainability and Range-Kernel Orthogonality

of Elementary Operators
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Abstract
Various aspects of elementary operators have been characterized by many mathematicians. In this paper,

we consider norm-attainability and orthogonality of these operators in Banach spaces. Characterizations and

generalizations of norm-attainability and orthogonality are given in details. We first give necessary and sufficient

conditions for norm-attainability of Hilbert space operators then we give results on orthogonality of the range and

the kernel of elementary operators when they are implemented by norm-attainable operators in Banach spaces.
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1. Introduction

Studies on Hilbert space operators have been carried out for along period of time with nice results obtained. Norm-attainability

is one of the aspects which has been given attention. Let H be an infinite dimensional separable complex Hilbert space and B(H)
the algebra of all bounded linear operators on H. An operator S ∈ B(H) is said to be norm-attainable if there exists a unit vector

x0 ∈ H such that ‖Sx0‖= ‖S‖. For an operator S ∈ B(H) we define a numerical range by W (S) = {〈Sx,x〉 : x ∈ H, ‖x‖= 1}
and the maximal numerical range by W0(S) = {β ∈ C : 〈Sxn,xn〉 → β , where ‖xn‖ = 1, ‖Sxn‖ → ‖S‖}. The second aspect

in consideration is orthogonality which is a concept that has been analyzed for quite a period of time. Benitez [1] described

several types of orthogonality which have been studied in real normed spaces namely: Robert’s orthogonality, Birkhoff’s

orthogonality, Orthogonality in the sense of James, Isoceles, Pythagoras, Carlsson, Diminnie, Area among others. Some

of these orthogonalities are described as follows. For x ∈ M and y ∈ N where M and N are subspaces of E which is a

normed linear space, we have: (i). Roberts: ‖x−λy‖ = ‖x+λy‖, ∀,λ ∈ R; (ii). Birkhoff: ‖x+ y‖ ≥ ‖y‖; (iii). Isosceles:

‖x− y‖ = ‖x+ y‖; (iv). Pythagorean: ‖x− y‖2 = ‖x‖2 + ‖y‖2; (v). a-Pythagorean: ‖x− ay‖2 = ‖x‖2 + a2‖y‖2, a 6= 0; (vi).

Diminnie: sup{ f (x)g(y)− f (y)g(x) : f , g ∈ S′}= ‖x‖‖y‖ where S′ denotes the unit sphere of the topological dual of E; (vii).

Area: ‖x‖‖y‖= 0 or they are linearly independent and such that x,−x,y,−y divide the unit ball of their own plane (identified

by R
2) in four equal areas. In this paper we will consider the orthogonality of elementary operators when they are implemented

by norm-attainable operators. Consider a normed space A and let TA,B : A → A . T is called an elementary operator if it has

the following representation: T (X) = ∑
n
i=1 AiXBi, ∀ X ∈ A , where Ai, Bi are fixed in A . Let A = B(H). For A, B ∈ B(H) we

define the particular elementary operators: The left multiplication operator LA : B(H)→ B(H) by LA(X) = AX , ∀ X ∈ B(H);
the right multiplication operator RB : B(H)→ B(H) by RB(X) = XB, ∀ X ∈ B(H); the generalized derivation (implemented by

A, B) by δA,B = LA −RB; the basic elementary operator(implemented by A, B) by MA, B(X) = AXB, ∀ X ∈ B(H); the Jordan

elementary operator(implemented by A, B) by UA, B(X) = AXB+BXA, ∀ X ∈ B(H); Regarding orthogonality involving
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elementary operators, Anderson[2] established the orthogonality of the range and kernel of normal derivations. Others who

have also worked on orthogonality include: Kittaneh [3], Mecheri [4] among others. For details see [1-2, 4-31]. We shall

investigate the orthogonality of the range and the kernel of several types of important elementary operators in Banach spaces.

Anderson [2] in his investigations proved that if N and S are operators in B(H) such that N is normal and NS = SN then for all

X ∈ B(H), ‖δN(X)+S‖ ≥ ‖S‖. If S(above) is a Hilbert-Schmidt operator then Kittaneh [3] (see also the references therein)

showed that ‖δN(X)+S‖2
2 = ‖δN(X)‖2

2 +‖S‖2
2. We extend this study to the general Banach spaces.

2. Preliminaries

In this section, we give some preliminary results. We begin by the following proposition.

Proposition 2.1. Let H be an infinite dimensional separable complex Hilbert space. Let S ∈ B(H), β ∈ W0(S) and α > 0.
Then the following conditions hold:

(i). There exists Z ∈ B(H) such that ‖S‖= ‖Z‖, with ‖S−Z‖< α .

(ii). There exists a vector η ∈ H, ‖η‖= 1 such that ‖Zη‖= ‖Z‖ with 〈Zη ,η〉= β .

Proof. Let ‖S‖= 1 and also that 0<α < 2. Let xn ∈H (n= 1,2, ...) be such that ‖xn‖= 1, ‖Sxn‖→ 1 and also limn→∞〈Sxn,xn〉=

β . Let S = GL be the polar decomposition of S. Here G is a partial isometry and we write L =
∫ 1

0 βdEβ , the spectral de-

composition of L = (S∗S)
1
2 . Since L is a positive operator with norm 1, for any x ∈ H we have that ‖Lxn‖ → 1 as n tends

to ∞ and limn→∞〈Sxn,xn〉 = limn→∞〈GLxn,xn〉 = limn→∞〈Lxn,G
∗xn〉. Now for H = Ran(L)⊕KerL, we can choose xn such

that xn ∈ Ran(L) for large n. Indeed, let xn = x
(1)
n ⊕ x

(2)
n , n = 1,2, ... Then we have that Lxn = Lx

(1)
n ⊕Lx

(2)
n = Lx

(1)
n and that

limn→∞ ‖x
(1)
n ‖= 1, limn→∞ ‖x

(2)
n ‖= 0 since limn→∞ ‖Lxn‖= 1. Replacing xn with x

(1)
n

‖x
(1)
n ‖

, we get

lim
n→∞

∥

∥

∥

∥

∥

L
1

‖x
(1)
n ‖

x
(1)
n

∥

∥

∥

∥

∥

= lim
n→∞

∥

∥

∥

∥

∥

S
1

‖x
(1)
n ‖

x
(1)
n

∥

∥

∥

∥

∥

= 1,limn→∞

〈

S 1

‖x
(1)
n ‖

x
(1)
n , 1

‖x
(1)
n ‖

x
(1)
n

〉

= β

Next let xn ∈RanL. Since G is a partial isometry from RanL onto RanS, we have that ‖Gxn‖= 1 and limn→∞〈Lxn,G
∗xn〉= β .

Since L is a positive operator, ‖L‖ = 1 and for any x ∈ H, 〈Lx,x〉 ≤ 〈x,x〉 = ‖x‖2. Replacing x with L
1
2 x, we get that

〈L2x,x〉 ≤ 〈Lx,x〉, where L
1
2 is the positive square root of L. Therefore we have that ‖Lx‖2 = 〈Lx,Lx〉 ≤ 〈Lx,x〉. It is obvious that

limn→∞ ‖Lxn‖= 1 and that ‖Lxn‖
2 ≤ 〈Lxn,xn〉 ≤ ‖Lxn‖

2 = 1. Hence, limn→∞〈Lxn,xn〉= 1 = ‖L‖. Moreover, Since I −L ≥ 0,

we have limn→∞〈(I −L)xn,xn〉 = 0. thus limn→∞ ‖(I −L)
1
2 xn‖ = 0. Indeed, limn→∞ ‖(I −L)xn‖ ≤ limn→∞ ‖(I −L)

1
2 ‖.‖(I −

L)
1
2 xn‖= 0. For α > 0, let γ = [0,1− α

2
] and let ρ = (1− α

2
,1]. We have L =

∫

γ µdEµ +
∫

ρ µdEµ = LE(γ)⊕LE(ρ). Next we

show that limn→∞ ‖E(γ)xn‖ = 0. If there exists a subsequence xni
,(i = 1,2, ...,) such that ‖E(γ)xni

‖ ≥ ε > 0, (i = 1,2, ...,),
then since limi→∞ ‖xni

−Lxni
‖= 0, it follows that

lim
i→∞

‖xni
−Lxni

‖2 = lim
i→∞

(‖E(γ)xni
−LE(γ)xni

‖2 +‖E(ρ)xni
−LE(ρ)xni

‖2) = 0.

Hence, we have that

lim
i→∞

‖E(γ)xni
−LE(γ)xni

‖2 = 0.

Now it is clear that

‖E(γ)xni
−LE(γ)xni

‖ ≥ ‖E(γ)xni
‖−‖LE(γ)‖.‖E(γ)xni

‖ ≥ (I −‖LE(γ)‖)‖E(γ)xni
‖ ≥

α

2
ε > 0.

This is a contradiction. Therefore, limn→∞ ‖E(γ)xn‖= 0. Since limn→∞〈Lxn,xn〉= 1, we have that limn→∞〈LE(ρ)xn,E(ρ)xn〉=
1 and limn→∞〈E(ρ)xn,G

∗E(ρ)xn〉= β . It is easy to see that

lim
n→∞

‖E(ρ)xn‖= 1, lim
n→∞

〈

L
E(ρ)xn

‖E(ρ)xn‖
,

E(ρ)xn

‖E(ρ)xn‖

〉

= 1

and

lim
n→∞

〈

L
E(ρ)xn

‖E(ρ)xn‖
,G∗ E(ρ)xn

‖E(ρ)xn‖

〉

= β
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Replacing x with
E(ρ)xn

‖E(ρ)xn‖
, we can assume that xn ∈ E(ρ)H for each n and ‖xn‖= 1. Let J =

∫

γ µdEµ +
∫

ρ µdEµ = J1 ⊕E(ρ).

Then it is evident that ‖J‖= ‖S‖= ‖L‖= 1,Jxn = xn, and ‖J−L‖ ≤ α
2
. If we can find a contraction V such that V −G ≤ α

2

and ‖V xn‖= 1 and 〈V xn,xn〉= β , for a large n then letting Z =V J, we have that ‖Zxn‖= ‖V Jxn‖= 1, and that

〈Zxn,xn〉= 〈V Jxn,xn〉= 〈V xn,xn〉= β ,

‖S−Z‖= ‖GL−V J‖ ≤ ‖GL−GJ‖+‖GJ−V J‖ ≤ ‖G‖.‖L− J‖+‖G−V‖.‖J‖ ≤
α

2
+

α

2
= α.

Lastly, we now construct the desired contraction V . Clearly, limn→∞〈xn,G
∗xn〉 = β , because limn→∞〈Lxn,G

∗xn〉 = β
and limn→∞ ‖xn − Lxn‖ = 0. Let Gxn = φnxn +ϕnyn, (yn⊥xn, ‖yn‖ = 1) then limn→∞ φn = β , because limn→∞〈Gxn,xn〉 =
limn→∞〈xn,G

∗xn〉= β but ‖Gxn‖
2 = |φn|

2 + |ϕn|
2 = 1, so we have that limn→∞ |ϕn|=

√

1−|β |2. Now without loss of gener-

ality, there exists an integer M such that |φM −β | < α
8
. Choose ϕ0

M such that |ϕ0
M| =

√

1−|β |2, |ϕM −ϕ0
M| < α

8
. We have

that

GxM = φMxM +ϕMyM −βxM +βxM −ϕ0
MyM +ϕ0

MyM = (φ −β )xM +(ϕM −ϕ0
M)yM +βxM +ϕ0

MyM.

Let

qM = βxM +ϕ0
MyM,GxM = (φ −β )xM +(ϕM −ϕ0

M)yM +qM.

Suppose that y⊥xM, then

〈GxM,Gy〉= (φ −β )〈xM,Gy〉+(ϕM −ϕ0
M)〈yM,Gy〉+ 〈qM,Gy〉= 0,

because G∗G is a projection from H to RanL. It follows that

|〈qM,Gy〉| ≤ |φM −β |.‖y‖+ |ϕM −ϕ0
M|.‖y‖ ≤

α

4
‖y‖

If we suppose that

Gy = φqM + y0, (y0⊥qM,)

then y0 is uniquely determined by y. Hence we can define V as followsV : xM → qM, y → y0, φxM +ϕMy → φqM +ϕMy0, with

both φ ,ϕ being complex numbers. V is a linear operator. We prove that V is a contraction. Now,

‖V xM‖2 = ‖qM‖2 = |β |2 = |ϕ0
M|2 = 1,

‖V y‖2 = ‖Gy‖2 −|φy|2 ≤ ‖Gy‖2 ≤ ‖y‖2.

It follows that

‖V φ‖2 = ‖φ‖2‖V xM‖2 + |ϕ |2‖V y‖2 ≤ |φ |2 + |ϕ|2 = 1,

for each x ∈ H satisfying that x = φxM +ϕMy, ‖x‖ = 1, xM⊥y, which is equivalent to that V is a contraction. From the

definition of V , we can show that

‖GxM −V xM‖2 = |φ −β |2 + |ϕM −ϕ0
M|2 ≤

2α2

16
=

1

8
α2.

If y⊥xM, ‖y‖ ≤ 1 then obtain

‖Gy−V y‖= |φ |‖V xM‖= |〈Gy,V xM〉|= |〈qM,Gy〉|<
α

4
.

Hence for any x ∈ H, x = φxM +ϕMy, ‖x‖= 1,

‖Gx−V x‖2 = ‖φ(G−V )xM +ϕ(G−V )y‖2 = |φ |2‖(G−V )xM‖2 + |ϕ|2‖(G−V )y‖2 < |φ |2.
α2

16
+ |ϕ|2.

α2

16
<

α2

8
,

which implies that ‖(G−V )x‖< α
2
, ‖x‖= 1, and hence ‖(G−V )‖< α

2
. Let Z =V J. Then Z is what we want.



Norm-Attainability and Range-Kernel Orthogonality of Elementary Operators — 94/98

The next result gives the conditions for norm-attainability of an inner derivation. We give the following proposition.

Proposition 2.2. Let H be an infinite dimensional separable complex Hilbert space and S ∈ B(H). δS is norm-attainable if

there exists a vector ζ ∈ H such that ‖ζ‖= 1, ‖Sζ‖= ‖S‖, 〈Sζ ,ζ 〉= 0.

Proof. For any x satisfying that x⊥{ζ ,Sζ}, define X as follows X : ζ → ζ , Sζ →−Sζ , x → 0. Since X is a bounded operator

on H and

‖Xζ‖= ‖X‖= 1,‖SXζ −XSζ‖= ‖Sζ − (−Sζ )‖= 2‖Sζ‖= 2‖S‖.

It follows that ‖δS‖= 2‖S‖ via the result in [30, Theorem 1], because 〈Sζ ,ζ 〉= 0 ∈W0(S). Hence we have that ‖SX −XS‖=
2‖S‖= ‖δS‖. Therefore, δS is norm-attainable.

The next result gives the conditions for norm-attainability of a generalized derivation. We give the following proposition.

Proposition 2.3. Let H be an infinite dimensional separable complex Hilbert space. Let S,T ∈ B(H). If there exists vectors

ζ ,η ∈ H such that ‖ζ‖= ‖η‖= 1, ‖Sζ‖= ‖S‖, ‖T η‖= ‖T‖ and 1
‖S‖ 〈Sζ ,ζ 〉=− 1

‖T‖ 〈T η ,η〉, then δS,T is norm-attainable.

Proof. By linear dependence of vectors, if η and T η are linearly dependent, i.e.,T η = φ‖T‖η , then it is true that |φ | = 1

and |〈T η ,η〉| = ‖T‖. It follows that |〈Sζ ,ζ 〉| = ‖S‖ which implies that Sζ = ϕ‖S‖ζ and |ϕ| = 1. Hence
〈

Sζ
‖S‖ ,ζ

〉

= ϕ =

−
〈

T η
‖T‖ ,η

〉

=−φ . Defining X as X : η → ζ , {η}⊥ → 0, we have ‖X‖= 1 and (SX −XT )η = ϕ(‖S‖+‖T‖)ζ , which implies

that

‖SX −XT‖= ‖(SX −XT )η‖= ‖S‖+‖T‖.

By [3], it follows that ‖SX −XT‖= ‖S‖+‖T‖= ‖δS,T‖. That is δS,T is norm-attainable. If η and T η are linearly independent,

then

∣

∣

∣

〈

T η
‖T‖ ,η

〉∣

∣

∣
< 1, which implies that

∣

∣

∣

〈

Sζ
‖S‖ ,ζ

〉∣

∣

∣
< 1. Hence ζ and Sζ are also linearly independent. Let us redefine

X as follows: X : η → ζ , T η
‖T‖ → − Sζ

‖S‖ , x → 0, where x ∈ {η ,T η}⊥. We show that X is a partial isometry. Let
T η
‖T‖ =

〈

T η
‖T‖ ,η

〉

η + τh, ‖h‖= 1, h⊥η . Since η and T η are linearly independent, τ 6= 0. So we have that

X
T η

‖T‖
=

〈

T η

‖T‖
,η

〉

Xη + τXh =−

〈

Sζ

‖S‖
,ζ

〉

ζ + τXh,

which implies that

〈

X
T η

‖T‖
,ζ

〉

=−

〈

Sζ

‖S‖
,ζ

〉

+ τ〈Xh,ζ 〉=−

〈

Sζ

‖S‖
,ζ

〉

.

It follows then that 〈Xh,ζ 〉= 0 i.e., Xh⊥ζ (ζ = Xη). Hence we have that

∥

∥

∥

∥

〈

Sζ

‖S‖
,ζ

〉

ζ

∥

∥

∥

∥

2

+‖τXh‖2 =

∥

∥

∥

∥

X
T η

‖T‖

∥

∥

∥

∥

2

=

∣

∣

∣

∣

〈

T η

‖T‖
,η

〉∣

∣

∣

∣

2

+ |τ|2 = 1,

which implies that ‖Xh‖= 1. Now it is evident that X a partial isometry and ‖(SX −XT )ζ‖= ‖SX −XT‖= ‖S‖+‖T‖, which

is equivalent to ‖δS,T (X)‖= ‖S‖+‖T‖. By Proposition 2.2 and [28], ‖δS,T‖= ‖S‖+‖T‖. Hence δS,T is norm-attainable.

The next result is a consequence of Proposition 2.2 and 2.3. It gives the necessary and sufficient conditions for norm-attainability

of a basic elementary operator.

Corollary 2.4. Let S,T ∈ B(H) If both S and T are norm-attainable then the basic elementary operator MS, T is also norm-

attainable.

Proof. For any pair (S,T) it is known that ‖MS, T‖ = ‖S‖‖T‖. We can assume that ‖S‖ = ‖T‖ = 1. If both S and T are

norm-attainable, then there exists unit vectors ζ and η with ‖Sζ‖ = ‖T η‖ = 1. We can therefore define an operator X by

X = 〈·,T η〉ζ . Clearly, ‖X‖= 1. Therefore, we have ‖SXT‖≥ ‖SXT η‖= ‖‖T η‖2Sζ‖= 1. Hence, ‖MS, T (X)‖= ‖SXT‖= 1,
that is MS, T is also norm-attainable.
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In the next section, we dedicate our work to orthogonality of elementary operators on Banach spaces. From this point

henceforth, all the elementary operators are implemented by norm-attainable operators unless otherwise stated. First we note

that Ω denotes the algebra of all norm-attainable operators. In fact Ω is a Banach algebra. Let T : Ω → Ω be defined by

T (X) = ∑
n
i=1 AiXBi, ∀ X ∈ Ω, where Ai, Bi are fixed in Ω. We define the range of T by RanT = {Y ∈ Ω : Y = T (X), ∀ X ∈ Ω},

and the Kernel of T by KerT = {X ∈ Ω : T (X) = 0, ∀ X ∈ Ω}. It is known [4] that for any of the examples of the elementary

operators defined in Section 1 (inner derivation, generalized derivation, basic elementary operator, Jordan elementary operator),

the following implications hold for a general bounded linear operator T on a normed linear space W , i.e. RanT⊥KerT ⇒
RanT ∩KerT = {0}⇒ RanT ∩KerT = {0}. Here RanT denotes the closure of the range of T and KerT denotes the kernel of

T and RanT⊥KerT means RanT is orthogonal to the Kernel of T in the sense of Birkhoff. Let A ∈ Ω. The algebraic numerical

range V (A) of A is defined by: V (A) = { f (A) : f ∈ Ω′ and ‖ f‖= f (I) = 1} where Ω′ is the dual space of Ω and I is the identity

element in Ω. If V (A)⊆ R, then A is called a Hermitian element. Given two Hermitian elements S and R, such that SR = RS

then D = S+Ri is called normal [29].

3. Main results

Proposition 3.1. Let A,B,C ∈ Ω with CB = I (I is an identity element of Ω). Then for a generalized derivation δA,B =

AX −XB and an elementary operator ΘA,B(X) = AXB−X, RB(RanδA,C ∩KerδA,C) = RanΘA,B ∩KerΘA,B. Moreover, if

RanδA,C ∩KerδA,C = {0} then RanΘA,B ∩KerΘA,B = {0}.

Proof. First, we prove that if CB = I then RBδA,C = ΘA,B. To see this, ∀ X ∈ Ω, RBδA,C(X) = AXB−XCB = AXB−X = ΘA,B.

Suppose that P ∈ RB(RanδA,C ∩KerδA,C). Now, it is a fact that the uniform norm assigns to real- or complex-valued continuous

bounded operator RB defined on any set Ω the nonnegative number ‖RB‖∞ = sup{‖RB(X)‖ : X ∈ Ω}. Since RBδA,C = ΘA,B and

RB is continuous for the uniform norm, then P ∈ RanΘA,B ∩KerΘA,B. Conversely, since RC is continuous for the uniform norm,

then by the same argument we prove that if P ∈ RB(RanΘA,B ∩KerΘA,B) then P ∈ RB(RanδA,C ∩KerδA,C).

It is important to note the following. Let A,B,C ∈ Ω with CB = I (I is an identity element of Ω). Then RB(RanδA,C ∩KerδA,C) =
RanΘA,B ∩KerΘA,B. Indeed, since RanΘA,B ⊆ RanΘA,B, then by Proposition 3.1, the equality holds.

Proposition 3.2. Let S and R be Hermitian elements. Then δS,R is also Hermitian.

Proof. From [22], it is known that if X is a Banach space then V (δS,R) = V (S)−V (R) for all S,R ∈ B(X). Therefore,

V (δS,R)⊆V (LS)−V (LR) =V (S)−V (R)⊆ R.

Corollary 3.3. If D and E are normal elements in Ω then δD,E is also normal.

Proof. Assume D = S+Ri and E = T +Ui where S,R,T,U are Hermitian elements in Ω such that SR = RS and TU =UT.
Then δD,E = δS,T + iδR,U with δS,T δR,U = δR,U δS,T . Since S,R,T,U are Hermitian, then by Proposition 3.2 δR,U and δS,T are

Hermitian and so is δD,E .

Remark 3.4. ([22]) Let X be a Banach space and T ∈ B(X). If T is a normal operator, then RanT⊥KerT . Moreover, if D

and E are normal elements in Ω then RanδD,E⊥KerδD,E . Indeed, assume that D and E are normal elements in Ω. Then by

Corollary 3.3, δD,E is normal and by Proposition 3.2 RanδD,E⊥KerδD,E .

Corollary 3.5. If A,B ∈ Ω are normal and there exists C ∈ Ω such that BC = I then RanΘA,C ∩KerΘA,C = {0}.

Proof. If A,B ∈ Ω are normal and self-adjoint elements, then by Corollary 3.3, RanδA,B⊥KerδA,B. This implies that RanδA,B ∩
KerδA,B = {0}. Using Proposition 2.2, we conclude that RanΘA,C ∩KerΘA,C = {0}.

The next theorem gives a stronger result on power sequences of operators An,Bn ∈ Ω for all n ∈ N.

Theorem 3.6. Let A,B ∈ Ω be normal and self-adjoint with C ∈ Ω such that BC = I and ‖C‖ ≤ 1. If ‖A‖ ≤ 1 and ‖B‖ ≤ 1 for

all n ∈ N then RanδA,B⊥KerδA,B.

Proof. It is well known [2] that AnX −XBn = Σn−1
i=0 An−i−1(AX −XB)Bi and

AnX −XBn −Σn−1
i=0 An−i−1(AX −XB−Y )Bi = nY Bn−1,

where Y ∈ KerδA,B. Multiplying this equality by Cn−1 we obtain

AnXCn−1 −XB−Σn−1
i=0 An−i−1(AX −XB−Y )BiCn−1 = nY Bn−1Cn−1
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which is equivalent to

nY = AnXCn−1 −XB−Σn−1
i=0 An−i−1(AX −XB−Y )BiCn−1.

Now, the assumption that BC = I with ‖C‖ ≤ 1 and ‖B‖ ≤ 1 implies that ‖Cn‖ = ‖Bn‖ = 1, for all n ∈ N. This shows that

dividing both sides by n and taking norms we obtain

‖Y‖ ≤
1

n
{‖An‖‖X‖‖C‖n−1 +‖X‖‖B‖}+

1

n
Σn−1

i=0 ‖A‖n−i−1‖AX −XB−Y‖‖B‖i‖C‖n−1

= 1
n
{‖An‖‖X‖+‖X‖}+ 1

n
Σn−1

i=0 ‖A‖n−i−1‖AX −XB−Y‖.

Hence ‖Y‖ ≤ 2
n
‖X‖+ 1

n
Σn−1

i=0 ‖AX −XB−Y‖. Taking limits as n → ∞, we obtain that ‖Y‖ ≤ ‖AX −XB−Y‖. Therefore,

RanδA,B⊥KerδA,B.

The following theorem from Kittaneh [3] gives a general orthogonality condition for linear operators. The proof is omitted.

Theorem 3.7 (3). Let be Ω a normed algebra with the norm ‖.‖ satisfying ‖XY‖ ≤ ‖X‖‖Y‖ for all X , Y ∈ Ω and let δ : Ω → Ω

be a linear map with ‖δ‖ ≤ 1. If δ (Y ) = Y for some Y ∈ Ω, then ‖δ (X)−X +Y‖ ≥ ‖Y‖, for all X ∈ Ω.

We utilize the Theorem 3.7 to prove some results for general elementary operators. Let T : Ω → Ω be an elementary operator

defined by T (X) =∑
n
i=1 AiXBi, ∀X ∈Ω. Now suppose that T (Y ) =Y for some Y ∈Ω. If ‖T‖≤ 1, then ‖T (X)−X +Y‖≥ ‖Y‖,

for all X ∈ Ω. The following theorem follows immediately.

Theorem 3.8. Suppose that T (Y ) = Y for some normal self-adjoint Y ∈ Ω. If ‖∑
n
i=1 AiA

∗
i ‖

1
2 ‖∑

n
i=1 B∗

i Bi‖
1
2 ≤ 1, then ‖T (X)−

X +Y‖ ≥ ‖Y‖, for all X ∈ Ω.

Proof. We only need to show that ‖T‖ ≤ 1. Let Z1 = [A1, ...,An] and Z2 = [B1, ...,Bn]
T . Taking Z1Z∗

1 and Z∗
2Z2 shows that

‖Z1‖= ‖∑
n
i=1 AiA

∗
i ‖

1
2 and ‖Z2‖= ‖∑

n
i=1 B∗

i Bi‖
1
2 . From [16], it is known that T (X) = Z1(X ⊗ In)Z2, where In is the identity of

Mn(C). Therefore it follows that ‖T (X)‖ ≤ ‖Z1‖‖Z2‖‖X‖. Hence ‖T‖ ≤ 1.

Now, we consider the orthogonality of Jordan elementary operators. We later consider the necessary and sufficient conditions

for their normality. At this juncture a type of norm, called the unitarily invariant norm comes in handy. A unitarily invariant

norm is any norm defined on some two-sided ideal of B(H) and B(H) itself which satisfies the following two conditions. For

unitary operators U,V ∈ B(H) the equality |‖UXV‖| = |‖X‖| holds, and |‖X‖| = s1(X), for all rank one operators X . It is

proved that any unitarily invariant norm depends only on the sequence of singular values. Also, it is known that the maximal

ideal, on which |‖UXV‖| has sense, is a Banach space with respect to that unitarily invariant norm. Among all unitarily invariant

norms there are few important special cases. The first is the Schatten p-norm (p ≥ 1) defined by ‖X‖p = (Σ+∞
j=1s j(X)p)1/p on

the set Cp = {X ∈ B(H) : ‖X‖p <+∞}. For p = 1,2 this norm is known as the nuclear norm (Hilbert-Schmidt norm) and the

corresponding ideal is known as the ideal of nuclear (Hilbert-Schmidt) operators. The ideal C2 is also interesting for another

reason. Namely, it is a Hilbert space with respect to the ‖.‖2 norm. The other important special case is the set of so-called

Ky Fan norms ‖X‖k = Σk
j=1s j(X). The well-known Ky Fan dominance property asserts that the condition ‖X‖k ≤ ‖Y‖ for all

k ≥ 1 is necessary and sufficient for the validity of the inequality |‖X‖| ≤ |‖Y‖| in all unitarily invariant norms. For further

details refer to [20].We state the following theorem from [20] on orthogonality.

Theorem 3.9. Let A,B ∈ B(H) be normal operators, such that AB = BA, and let U (X) = AXB−BXA. Furthermore, suppose

that A∗A+B∗B > 0. If S ∈ KerU , then |‖U (X)+S‖| ≥ |‖S‖|.

We extend Theorem 3.9 to distinct operators A,B,C,D ∈ B(H) in the theorem below.

Theorem 3.10. Let A,B,C,D ∈ B(H) be normal operators, such that AC =CA, BD = DB, AA∗ ≤CC∗ , B∗B ≤ D∗D. For an

elementary operator U (X) = AXB−CXD and S ∈ B(H) satisfying ASB =CSD, then ‖U (X)+S‖ ≥ ‖S‖, for all X ∈ B(H).

Proof. From AA∗ ≤CC∗ and B∗B ≤ D∗D, let A =CU, and B =V D, where U,V are contractions. So we have AXB−CXD =
CUXV D−CXD =C(UXV −X)D. Assume C and D∗ are injective, ASB =CSD if and only if USV = S. Moreover, C and U

commute. Indeed from A =CU we obtain AC =CUC. Therefore, C(A−UC) = 0. Thus since C is injective A =CU. Similarly,

D and V commute. So, ‖U (X)+ S‖ = ‖[AXB−CXD] + S‖ = ‖[U(CXD)V −CXD] + S‖ ≥ ‖S‖,∀X ∈ B(H). Now, under

the condition of Theorem 3.10, A and C have operator matrices A =

(

0 0

0 A0

)

and C =

(

0 0

0 C0

)

with respect to the

space decomposition H = R(C)⊕N (C), respectively. Here, A0 is a normal operator on R(C) and C0 is an injective and



Norm-Attainability and Range-Kernel Orthogonality of Elementary Operators — 97/98

normal operator on R(C). B and D have operator matrices B =

(

B0 0

0 0

)

and D =

(

D0 0

0 0

)

with respect to the space

decomposition H = R(D)⊕N (D), respectively. Here, B0 is a normal operator on R(D) and D0 is an injective and normal

operator on R(D). X and S have operator matrices X =

(

X11 X12

X21 X22

)

and S =

(

S11 S12

S21 S22

)

which are as operator from

the space decomposition H = R(D)⊕N (D) into the space decomposition H = R(C)⊕N (C), respectively.

In this case, U (X) = AXB−CXD =

(

A0X11B0 −C0X11D0 0

0 0

)

and A0S11B0 −C0S11D0 = 0. Therefore, ‖A0X11B0 −

C0X11D0 +S11‖ ≥ ‖S11‖.
Hence,

‖U (X)+S‖ =

∥

∥

∥

∥

(

A0X11B0 −C0X11D0 0

0 0

)

+

(

S11 S12

S21 S22

)∥

∥

∥

∥

=

∥

∥

∥

∥

(

A0X11B0 −C0X11D0 +S11 S12

S21 S22

)∥

∥

∥

∥

≥

∥

∥

∥

∥

(

S11 S12

S21 S22

)∥

∥

∥

∥

.

The result in Theorem 3.10 can be generalized Banach spaces and other complex spaces like operator spaces and function

spaces.

4. Conclusion

We conclude this paper by remarking that these results can be extended to give more results on generalized finite operators in

terms of orthogonality and norm-attainability in C*-algebras.
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1. Introduction

The notion of a generalized topological space was introduced by Császár in [1]. Let X be any non-empty set. A family

µ ⊂ exp(X) is a generalized topology [2] in X if /0 ∈ µ and
⋃

i∈I

Gi ∈ µ whenever {Gi : i ∈ I} ⊂ µ where exp(X) is a power set

of X . We call the pair (X ,µ) as a generalized topological space (GTS) [2]. If X ∈ µ, then the pair (X ,µ) is called a strong

generalized topological space (sGTS) [2].

The elements in µ are called the µ-open sets and the complement of a µ-open set is called the µ-closed sets.

Let (X ,µ) be a GTS and A ⊂ X . The interior of A [2] denoted by iA, is the union of all µ-open sets contained in A and the

closure of A [2] denoted by cA, is the intersection of all µ-closed sets containing A.

In 2013, Korczak-Kubiak et al. introduced the notations µ̃,µ(x) defined by {U ∈ µ : U 6= /0},{U ∈ µ : x ∈U} respectively

[3].

Let (X ,µ) be a GTS and Y ⊆ X . The subspace generalized topology is defined by, µY = {U ∩Y : U ∈ µ}. Then the pair

(Y,µY ) is called the subspace GTS. Furthermore, (X ,µ) is strong GTS if and only if c( /0) = /0 if and only if /0 is closed [4].

2. Preliminaries

In this section, we remember some basic definitions and lemmas which will be useful to prove the results in the following

sections.

We already familiar with nowhere dense sets in generalized topological space. In 2013, Korczak - Kubiak et al. defined a

new one namely strongly nowhere dense sets and discussed their properties. Also, they gave a relation between nowhere dense

and strongly nowhere dense sets in generalized topological space [3]. In [5], we analyze properties of strongly nowhere dense

sets in generalized topological spaces. With this terminology, we define a new space namely strongly nodec space and study

some properties of strongly nodec spaces.

Let (X ,µ) be a GTS and A ⊂ X . A is said to be a α-open (resp. α-closed) set if A ⊂ iciA (resp. cicA ⊂ A). The interior of

A [2] denoted by iα A, is the union of all α-open sets contained in A and the closure of A [2] denoted by cα A, is the intersection
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of all α-closed sets containing A. A subset A is said to be µ-nowhere dense [3] (resp. µ-dense, µ-codense [2]) if icA = /0 (resp.

cA = X , c(X −A) = X).

A subset A of a GTS (X ,µ) is said to be µ-strongly nowhere dense [3] if for any V ∈ µ̃ , there exists U ∈ µ̃ such that U ⊂V

and U ∩A = /0. A is said to be a µ-s-meager [3] set if A =
⋃

n∈N
An where each An is a µ-strongly nowhere dense sets for all

n ∈ N where N denote the set of all natural numbers.

Let (X ,µ) be a GTS and A ⊂ X . A is said to be a µ-s-second category (µ-s-II category) [3] set if A is not a µ-s-meager set.

A subset A of a GTS (X ,µ) is said to be a µ-s-residual set if X −A is a µ-s-meager set in X .
In GTS, every µ-strongly nowhere dense set is µ-nowhere dense and every subset of a µ-strongly nowhere dense set is

µ-strongly nowhere dense [3]. Also, every subset of a µ-s-meager set is a µ-s-meager set [3]. If A is a µ-strongly nowhere

dense set, then cA is a µ-strongly nowhere dense set [3].

Let (X ,µ) be a GTS. X is said to be a generalized submaximal space [6] if every µ-dense subset of X is a µ-open set in X .
Throughout this paper µ-strongly nowhere dense, µ-nowhere dense, µ-s-meager, µ-s-residual and etc., we will write

strongly nowhere dense, nowhere dense, s-meager, s-residual and etc., when no confusion can arise.

The following lemmas will be useful in the sequel.

Lemma 2.1. [7, Lemma 2.6] Let (X ,µ) be a GTS and A ⊂ X . Then i(cA−A) = /0.

Lemma 2.2. [6, Theorem 19] Let (X ,µ) be a GTS. The following properties are equivalent:

(a) X is a generalized submaximal space.

(b) Each µ-codense subset A of (X ,µ) is µ-closed.

Lemma 2.3. [2, Lemma 2.3] Let (X ,µ) be a GTS and let A ⊂ S ⊂ X . Then cSA = cA∩S.

Lemma 2.4. [2, Lemma 3.2] Let (X ,µ) be a GTS and let A,U ⊂ X . If U ∈ µ̃ and U ∩A = /0, then U ∩ cA = /0.

Lemma 2.5. [5, Theorem 2.13] Let (X ,µ) be a GTS and A ⊂ X . If A is a µ-strongly nowhere dense set in X , then A is codense.

3. Strongly nodec spaces

In this section, we define strongly nodec space and give the example for the existence of this space in generalized topological

spaces. Further, we discuss the properties of strongly nodec space in generalized topological spaces. Also, we prove product of

two GTS is strongly nodec then each one is a strongly nodec space.

Definition 3.1. Let (X ,µ) be a GTS. A space X is said to be a strongly nodec space if every non-empty µ-strongly nowhere

dense subset of X is µ-closed in X .

Example 3.2 shows the existence of the strongly nodec space and Theorem 3.4 give the necessary condition for a sGTS to

be a strongly nodec space.

Example 3.2. (a) Consider the GTS (X ,µ) where X = {a,b,c,d,e} and µ = { /0,{a,d},{a,e},{b,e},{a,d,e},{a,b,e},{a,b,d,e}}.
Here the µ-strongly nowhere dense set is {c} which is also a µ-closed set in X . Therefore, X is a strongly nodec space.

(b) Consider the GTS (X ,µ) where X = R and µ = { /0}∪{A ⊂ X : A−{x} ⊂ A for some x ∈ X}. Here, there is no µ-strongly

nowhere dense set in X . Therefore, X is a strongly nodec space.

Lemma 3.3. In a GTS (X ,µ), every µ-strongly nowhere dense set does not contains a non-empty µ-open set.

Proof. Let A be a µ-strongly nowhere dense set in X . Suppose there is U ∈ µ̃ such that U ⊂ A. Then there is no V ∈ µ̃ such

that V ⊂U and V ∩A = /0, which is a contradiction to A is µ-strongly nowhere dense in X . This implies U = /0. Therefore, A

does not contains a non-empty µ-open set in X . Hence every µ-strongly nowhere dense set does not contains a non-empty

µ-open set.

Theorem 3.4. Let (X ,µ) be a sGTS. Then X is a strongly nodec space if any one of the following hold.

(a) Every α-closed set is a µ-closed set.

(b) Every α-open set is a µ-open set.

(c) For each A ⊆ X ,cA−A ⊆ cic(A).
(d) For each A ⊆ X ,cA = A∪ cicA.
(e) For each A ⊆ X , iA = A∩ iciA.
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Proof. Assume (a). Let A be a non-empty strongly nowhere dense set in X . Then A is a non-empty nowhere dense set and so

icA = /0. Since X is a sGTS, cicA = /0. This implies cicA ⊂ A which implies A is a α-closed set. By (a), A is a µ-closed set in

X . Hence X is a strongly nodec space.

Assume (b). Similar considerations in (a), we prove X is a strongly nodec space.

Assume (c). Let A be a non-empty strongly nowhere dense set in X . Then A is a non-empty nowhere dense set and so icA = /0.
Since X is a sGTS, cicA = /0. By (c), cA−A = /0. Thus, cA = A. Therefore, A is a µ-closed set in X . Hence X is a strongly

nodec space.

Assume (d). Let A a non-empty strongly nowhere dense set in X . Then by same process in (a), cicA = /0. By (d), cA = A∪ /0 = A.
Therefore, A is a µ-closed set in X . Hence X is a strongly nodec space.

Assume (e). Similar considerations in (d), we prove X is a strongly nodec space.

Definition 3.5. Let (X ,µ) be a GTS and A ⊂ X . Then frontier of A is denoted by Fr(A) and defined by Fr(A) = cA∩c(X −A).
Then frontier of A is a closed set in X .

Example 3.6 shows that the existence of Fr(A) and Lemma 3.7 give some properties of Fr(A) in a generalized topological

space (X ,µ) where A ⊂ X .

Example 3.6. (a) Consider the GTS (X ,µ) where X = [0,5] and µ = { /0, [0,2),(1,3), [2,4), [0,3),(1,4), [0,4)}. Let A = [3,4)
be a subset of X . Then Fr(A) = [3,5]. Also, Fr(A) is a µ-closed set in X .
(b) Consider the GTS (X ,µ) where X = {a,b,c,d} and µ = { /0,{a,b},{b,c},
{a,b,c}}. Let A = {a,b} be a subset of X . Then Fr(A) = {c,d}. Also, Fr(A) is a µ-closed set in X .

Lemma 3.7. Let (X ,µ) be a GTS. Then the following hold.

(a) If B is a strongly nowhere dense set in X , then Fr(B) is a strongly nowhere dense set in X for all B ⊂ X .
(b) If Fr(A) is a strongly nowhere dense set in X , then Fr(iA),Fr(cA) is a strongly nowhere dense set in X for all A ⊂ X .
(c) If A is a strongly nowhere dense set in X , then Fr(A∩B) is a strongly nowhere dense set in X for all A,B ⊂ X .

Proof. (a) Suppose B ⊂ X is a strongly nowhere dense set. Let U ∈ µ̃. Then there exists V ∈ µ̃ such that V ⊂U and V ∩B = /0.
By Lemma 2.4, V ∩ cB = /0. This implies V ∩Fr(B) = /0, since Fr(B)⊂ cB. Therefore, Fr(B) is a strongly nowhere dense set

in X .
(b) Suppose Fr(A) is a strongly nowhere dense set in X . Now Fr(iA) = ciA∩ c(X − iA) = ciA∩ c(X − (X − c(X −A))). This

implies Fr(iA) = ciA∩ c(c(X −A)) = ciA∩ c(X −A) which implies Fr(iA)⊂ cA∩ c(X −A)⊂ Fr(A). Thus, Fr(iA)⊂ Fr(A).
Since subset of a strongly nowhere dense set is strongly nowhere dense, Fr(iA) is a strongly nowhere dense set in X . Now

Fr(cA) = ccA∩ c(X − cA). This implies Fr(cA)⊂ cA∩ c(X −A) which implies Fr(cA)⊂ Fr(A) and hence Fr(cA) is strongly

nowhere dense set X .
(c) Suppose A is a strongly nowhere dense set in X . Since A∩B ⊂ A and subset of a strongly nowhere dense set is strongly

nowhere dense, Fr(A∩B) is a strongly nowhere dense set in X , by (a).

Example 3.8 shows the reverse implication of (a) in Lemma 3.7 is not necessary.

Example 3.8. Consider the GTS (X ,µ) where X = {a,b,c,d,e}and µ = { /0,{a},{a,b},{a,c},{a,b,c}}. Let B= {a,c,d}⊂X .
Then Fr(B) = {b,d,e} and so Fr(B) is a strongly nowhere dense set in X . But B is not strongly nowhere dense set in X .

Proposition 3.9. Let (X ,µ) be a strongly nodec space. If A is a non-empty strongly nowhere dense set in X , then Fr(A)⊂ A

and hence Fr(A) is a strongly nowhere dense set in X .

Proof. Suppose A is a non-empty strongly nowhere dense set in X . By hypothesis, A is a closed set in X . Now Fr(A) =
cA∩ c(X −A) = A∩ c(X −A). Therefore, Fr(A)⊂ A. By Lemma 3.7 (a) and hypothesis, Fr(A) is a strongly nowhere dense

set in X .

Proposition 3.10. Let (X ,µ) be a GTS. If Fr(A) is strongly nowhere dense ⇒ A is closed for all A ⊂ X , then X is a strongly

nodec space.

Proof. Let A be a non-empty strongly nowhere dense set in X . Then by Lemma 3.7 (a), Fr(A) is a strongly nowhere dense set

in X . By hypothesis, A is a closed set in X . Hence X is a strongly nodec space.

Every generalized submaximal space is a strongly nodec space. This implication is not reversible as shown in the following

Example 3.11.
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Example 3.11. Consider the GTS (X ,µ) where X = {a,b,c,d} and µ = { /0,{a,b},{a,d},{b,c},{a,b,d},{a,b,c},X}. Here,

every µ-strongly nowhere dense set is a µ-closed set in X . Therefore, X is a strongly nodec space. Let A = {a,c,d}. Then A is

µ-dense in X but not µ-open in X . Thus, X is not a generalized submaximal space.

Theorem 3.12 gives the necessary condition for a strongly nodec space to be a generalized submaximal space and Example

3.13 shows that frontier of a dense set is strongly nowhere dense set is necessary.

Theorem 3.12. Let (X ,µ) be a sGTS. If every frontier of a dense subset of X is a strongly nowhere dense set in X and X is a

strongly nodec space, then X is a generalized submaximal space.

Proof. Suppose X is a strongly nodec space. Let A be a µ-dense subset of X . By hypothesis, cA− iA is a strongly nowhere

dense set in X . Then X − iA is a strongly nowhere dense set in X , since cA = X and so X −A is a strongly nowhere dense set in

X , since subset of a µ-strongly nowhere dense set is µ-strongly nowhere dense. Suppose X −A = /0. Then X −A is a closed set

in X , that is c( /0) = /0, since X is a sGTS. Therefore, A is a µ-open set in X . Suppose X −A 6= /0. Since X is a strongly nodec

space, X −A is a closed set in X . Therefore, A is a µ-open set in X . Hence X is a generalized submaximal space.

Example 3.13. Consider the GTS (X ,µ) where X = {a,b,c,d} and µ = { /0,{a,b},{a,c},{a,b,c},X}. Here, every µ-strongly

nowhere dense set is a µ-closed set in X . Therefore, X is a strongly nodec space. Let A = {a,c,d}. Then A is a µ-dense subset

of X . But Fr(A) = {b,d} is not a strongly nowhere dense set. For, let U = {a,b} ∈ µ̃. Then there is no V ∈ µ̃ such that V ⊂U

and V ∩Fr(A). Let B = {a,d}. Then B is µ-dense in X but not µ-open in X . Thus, X is not a generalized submaximal space.

Next Example 3.14 shows the existence of a non-generalized submaximal space satisfying the necessary condition in

Theorem 3.12 which is not a strongly nodec space.

Example 3.14. Consider the GTS (X ,µ) where X = {a,b,c,d} and µ = { /0,{a},{b},{a,b},{b,c},{a,c},{a,b,c}}. Here,

A = {c} is a µ-strongly nowhere dense set in X but not µ-closed in X . Thus, X is not a strongly nodec space. Clearly, every

frontier of A is a strongly nowhere dense set where A is a dense subset of X . Let B = {a,b,d}. Then B is µ-dense in X but not

µ-open in X . Thus, X is not a generalized submaximal space.

Theorem 3.15 characterizes strongly nodec space in strong generalized topological space and Theorem 3.16 give one

property of s-meager, s-residual set in strongly nodec space, the essay proof is omitted.

Theorem 3.15. Let (X ,µ) be a sGTS and A ⊆ X . If frontier of A is a strongly nowhere dense set, then the following are

equivalent.

(a) X is a strongly nodec space.

(b) For each A ⊆ X ,cA−A ⊆ cicA.
(c) For each A ⊆ X ,cA = A∪ cicA.
(d) For each A ⊆ X , iA = A∩ iciA.

Proof. (a) ⇒ (b) Suppose X is a strongly nodec space. Let A ⊆ X . By hypothesis, frontier of A is a strongly nowhere dense set

and so A− icA is strongly nowhere dense. Suppose A− icA = /0. Since (X ,µ) is a sGTS, c( /0) = /0 and so A− icA is a closed

set in X . Then d(A− icA) = /0 where the notation d(A− icA) is the derived set of A− icA ⊂ X . Now d(icA) ⊆ cicA and so

d(A)− cicA ⊆ d(A)−d(icA)⊆ d(A− icA) = /0. Thus, d(A)⊆ cicA. Therefore, cA−A ⊆ cicA. Suppose A− icA 6= /0. By (a),

A− icA is a closed set and so d(A− icA)⊂ A− icA. Let x ∈ A− icA. Since A− icA is strongly nowhere dense, i(A− icA) = /0,
by Lemma 2.5 and so i(A− icA−{x}) = /0. Take B = A− icA. Then B is a codense set and so B−{x} is a codense set in X . By

hypothesis and Theorem 3.12, X is a generalized submaximal space. Therefore, B−{x} is a closed set in X . Hence {x}∪(X −B)
is a non-empty open set in X . Let Ux = {x}∪ (X −B). Thus, there is a neighbourhood Ux of x such that Ux ∩ (B−{x}) = /0

and so x /∈ d(B). Therefore, d(A− icA) = /0. Now d(icA)⊆ cicA and so d(A)− cicA ⊆ d(A)−d(icA)⊆ d(A− icA) = /0. Thus,

d(A)⊆ cicA. Therefore, cA−A ⊆ cicA.
(b) ⇒ (c) Let A ⊆ X . By (b), cA ⊆ A∪cicA. Now cicA ⊆ cA. This implies A∪cicA ⊆ A∪cA = cA which implies A∪cicA ⊆ cA.
Therefore, cA = A∪ cicA.
(c) ⇔ (d) it is obvious.

(c) ⇒ (a) Let /0 6= A ⊂ X be a strongly nowhere dense set. Then A is a nowhere dense set in X , and so icA = /0. By (c) and

hypothesis, cA = A∪ /0 = A. Thus, A is a closed set in X . Therefore, X is a strongly nodec space.

Theorem 3.16. Let (X ,µ) be a GTS. If X is a strongly nodec space, then the following hold.

(a) Every s-meager set is a Fσ -set.

(b) Every s-residual set is a Gδ -set.
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In GTS, a subspace of a strongly nodec space need not be a strongly nodec space even if the subspace is either closed or

dense-open as shown by the following Example 3.17.

Example 3.17. (a) Consider the GTS (X ,µ) where X = {a,b,c,d,e} and µ = { /0,{a},{a,b},{a,d},{a,b,d},{b,d,e},
{a,b,d,e}}. Here, every µ-strongly nowhere dense set is a µ-closed set in X . Therefore, X is a strongly nodec space. Let

Y = {b,c,d,e} be a closed subset of X . Then µY = { /0,{b},{d},{b,
d},{b,d,e}}. Let A = {e} ⊂ Y. Then A is a µY -strongly nowhere dense set in Y. But A is not a µY -closed set. Thus, Y is not a

strongly nodec space.

(b) Consider the GTS (X ,µ) where X = {a,b,c,d,e, f} and µ = { /0,{a,b},{b,
c},{d, f},{a,b,c},{c,d, f},{a,b,d, f},{b,c,d, f},{a,b,c,d, f},{b,c,d,e, f},
{a,b,c,d,e},X}. Here, every µ-strongly nowhere dense set is a µ-closed set in X . Therefore, X is a strongly nodec space. Let

Y = {b,c,d,e, f} be a dense-open subspace of X . Then µY = { /0,{b},{b,c},{d, f},{b,d, f},{c,d, f},{b,c,
d, f},{b,c,d,e},Y}. Let A = {c} ⊂Y. Then A is a µY -strongly nowhere dense set in Y. But A is not a µY -closed set. Thus, Y is

not a strongly nodec space.

Next one is the definition for a subspace of a space is strongly nodec with respect to the space and Example 3.19 shows the

existence of this space.

Definition 3.18. Let (X ,µ) be a GTS. A subspace Y of X is said to be strongly nodec with respect to X if every non-empty

µY -strongly nowhere dense set is a µ-closed set. Y is said to be a strongly nodec space if Y is strongly nodec as a subspace.

Example 3.19. Consider the GTS (X ,µ) where X = {a,b,c,d,e} and µ = { /0,{a,d,e},{b,d,e},{a,b,d,e},{a,c,d,e},X}.
Let Y = {a,b,c,e}. Then µY = { /0,{a,e},{b,e},{a,b,e},{a,c,e},Y}. Here, every µY -strongly nowhere dense set is µ-closed.

Thus, Y is a strongly nodec space with respect to X .

In GTS, every subspace strongly nodec with respect to X is a strongly nodec space as a subspace. This implication is not

reversible as shown in Example 3.20.

Example 3.20. Consider the GTS (X ,µ) where X = {a,b,c,d,e, f} and µ = { /0,{a,b,c},{b,c,d},{a,b,c,d},{a,b,c,e},
{b,c,e, f},{a,b,c,d,e},{a,b,c,e, f},X}. Let Y = {a,b,c,e}. Then µY = { /0,{b,c},{a,b,c},{b,c,e},Y}. Here, every µY -

strongly nowhere dense set is a µY -closed set in Y. Therefore, Y is a strongly nodec space. But Y is not strongly nodec with

respect to X . For, let A = {a}. Then A is µY -strongly nowhere dense set but not µ-closed.

Theorem 3.21. Let (X ,µ) be a GTS and Y be a dense subspace of X . If Y is a strongly nodec with respect to X , then X is a

strongly nodec space.

Proof. Suppose X is a strongly nodec space. Let A be a non-empty µ-strongly nowhere dense set in X . Suppose A∩Y = /0.
Then A is a non-empty µY -strongly nowhere dense set. By hypothesis, A is a µ-closed set. Suppose A∩Y 6= /0. Let U ∈ µ̃Y .
Then U =U1 ∩Y where U1 ∈ µ̃. Since A is µ-strongly nowhere dense set, there exists V1 ∈ µ̃ such that V1 ⊂U1 and V1 ∩A = /0.
This implies that V1 ∩Y ∈ µ̃Y , since Y is a dense subspace of X . Take V =V1 ∩Y. Thus, there exists V ∈ µ̃Y such that V ⊂U

and V ∩A = /0. Therefore, A is a non-empty µY -strongly nowhere dense set. By hypothesis, A is µ-closed. Hence X is a strongly

nodec space.

Theorem 3.22. Let (X ,µ) be a generalized submaximal space. Then every subset of X is a strongly nodec with respect to X

and hence a strongly nodec space.

Proof. Let Y be a subset of X and A be a non-empty µY -strongly nowhere dense subset of Y. Then A is a µY -codense set and

so cµY
(Y −A) = Y, by Lemma 2.5. Now cµY

(Y −A) = cµ(Y −A)∩Y , by Lemma 2.3. This implies Y = cµ(Y −A)∩Y which

implies Y ⊆ cµ(Y −A)⊆ cµ(X −A). Thus, Y ⊆ X − iµ A. Therefore, iµ A = /0 and so A is a µ-codense set in X . By hypothesis,

A is a µ-closed set. Hence Y is a strongly nodec with respect to X . By Lemma 2.3, cY A = cA∩Y = A∩Y = A, since A ⊂Y is a

µ-closed set. Therefore, A is a µY -closed set. Hence Y is a strongly nodec space.

Theorem 3.23. Let (X ,µ) be a strongly nodec space. Then every non-empty µ-strongly nowhere dense subspace of X is a

strongly nodec with respect to X and hence a strongly nodec space.

Proof. Let Y be a non-empty µ-strongly nowhere dense subspace of X . Let A be a non-empty µY -strongly nowhere dense

subset of Y. Then A is a non-empty µ-strongly nowhere dense set, since subset of a µ-strongly nowhere dense set is a µ-strongly

nowhere dense set. By hypothesis, A is a µ-closed set. Therefore, Y is a strongly nodec with respect to X . By Lemma 2.3,

cY A = cA∩Y = A∩Y = A, since A ⊂ Y is a µ-closed set. Therefore, A is a µY -closed set. Hence Y is a strongly nodec

space.
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Theorem 3.24. Let (X ,µ) be a strongly nodec space. Then every non-empty frontier of a µ-strongly nowhere dense subspace

of X is a strongly nodec with respect to X and hence a strongly nodec space.

Proof. Let A be a non-empty µ-strongly nowhere dense set in X . By Lemma 3.7, Fr(A) is a non-empty µ-strongly nowhere

dense set in X . Then by Theorem 3.23, Fr(A) is a strongly nodec with respect to X and hence a strongly nodec space. Hence

every non-empty frontier of a µ-strongly nowhere dense subspace of X is a strongly nodec with respect to X and hence a

strongly nodec space.

Lemma 3.25. Let (X ,µX ),(Y,µY ) be a two GTSs. Then the following hold.

(a) If A and B are strongly nowhere dense sets in X ,Y respectively, then A×B is strongly nowhere dense in X ×Y.
(b) If C×D is strongly nowhere dense in X ×Y, then C or D or C and D is strongly nowhere dense set in X or Y respectively.

Proof. (a) Suppose A and B are strongly nowhere dense sets in X ,Y respectively. Let U1 ×U2 ∈ µ̃X×Y . Then U1 ∈ µ̃X and

U2 ∈ µ̃Y . By hypothesis, there exists V1 ∈ µ̃X ,V2 ∈ µ̃Y such that V1 ⊂U1,V2 ⊂U2 and V1 ∩A = /0,V2 ∩B = /0. Thus, there exists

V1 ×V2 ∈ µ̃X×Y such that V1 ×V2 ⊂U1 ×U2 and V1 ×V2 ∩A×B = /0. Therefore, A×B is strongly nowhere dense in X ×Y.
(b) Suppose C×D is strongly nowhere dense in X ×Y. Let G1 ∈ µ̃X ,G2 ∈ µ̃Y . Then G1 ×G2 ∈ µ̃X×Y . By hypothesis, there

exists H1 ×H2 ∈ µ̃X×Y such that H1 ×H2 ⊂ G1 ×G2 and H1 ×H2 ∩C×D = /0. Since H1 ×H2 6= /0 and H1 ×H2 ⊂ G1 ×G2,
H1 ⊂ G1 and H2 ⊂ G2. Now H1 ×H2 ∩C×D = /0,H1 ∩C×H2 ∩D = /0. This implies H1 ∩C = /0 or H2 ∩D or H1 ∩C = /0 and

H2 ∩D = /0. Thus, C is strongly nowhere dense in X or D is strongly nowhere dense in Y or C and D are strongly nowhere

dense sets in X ,Y respectively.

Theorem 3.26. Product of two GTS is strongly nodec, then each one is strongly nodec.

Proof. Let (X ,µX ),(Y,µY ) be a two GTSs. Suppose X ×Y is a strongly nodec space. Let A and B are non-empty strongly

nowhere dense sets in X ,Y respectively. Then by Lemma 3.25, A×B is a non-empty strongly nowhere dense set in X ×Y. By

hypothesis, A×B is a closed set in X ×Y. This implies A is a closed set in X and B is a closed set in Y. Hence X and Y are

strongly nodec space.

4. On T0-strongly nodec spaces

In this section, we define T0-strongly nodec space and give the example for the existence of this space in generalized

topological spaces. Further, we discuss the properties of T0-strongly nodec space in generalized topological spaces by using a

quotient maps. Also, we introduce and give some results for T0-generalized submaximal space in generalized topological space.

Let (X ,µ) be a GTS. We define the binary relation ∼ on X by x ∼ y if and only if c{x}= c{y}. Then ∼ is an equivalence

relation on X and the resulting quotient space T0(X) = X/∼ is the T0-reflection of X and the generalized quotient topology on

T0(X) is defined to be µq = {G ⊂ T0(X) : f−1(G) ∈ µ} where q is a canonical or quotient map from X into T0(X) by setting

x ∈ X to its equivalence class [x] in T0(X). Then the pair (T0(X),µq) is called the generalized quotient space of X .

Let (X ,µ) and (Y,λ ) be two generalized topological spaces. A function f : X →Y is called (µ,λ )-continuous if f−1(V )∈ µ
for each V ∈ λ [2]. A function f : X → Y is called (µ,λ )-open [2] if f (V ) ∈ λ for each V ∈ µ. A function f : X → Y is called

(µ,λ )-closed if f (U) is a λ -closed set for each U is a µ-closed set.

A (µ,λ )-continuous map f : (X ,µ)→ (Y,λ ) is said to be a quasi-homeomorphism if U → f−1(U) (resp. C → f−1(C))
defines a bijection O(Y )→O(X) (resp. F(Y )→ F(X)) where O(X) (resp. F(X)) is the collection of all µ-open (resp. µ-closed)

sets of X .
Equivalently, (µ,λ )-continuous map f : X → Y is a quasi-homeomorphism if for each µ-open subset U of X , there exists

a unique λ -open subset V of Y such that U = f−1(V ) (equivalently, for each µ-closed subset F of X , there exists a unique

λ -closed subset G of Y such that F = f−1(G)).

Lemma 4.1. [2, Lemma 7.3] Let (X ,µ) and (Y,λ ) be two generalized topological spaces. A mapping f : (X ,µ)→ (Y,λ ) is

(µ,λ )-open if and only if f−1(cB)⊂ c( f−1(B)) for any B ⊂ Y.

Proposition 4.2. Let (X ,µ) and (Y,λ ) be two generalized topological spaces. If f : X →Y is a surjective, quasi-homeomorphism

map, then f is a (µ,λ )-open map.

Proof. Let A be a µ-open set in X . Since f is quasi-homeomorphism, there exists a unique λ -open subset V of Y such that

A = f−1(V ). Now f (A) = f ( f−1(V )) = V, since f is a surjective map. Therefore, f (A) is a λ -open set in Y. Hence f is a

(µ,λ )-open map.
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Example 4.3. Consider two GTSs (X ,µ) and (Y,λ ) where X = {a,b,c,d},
µ = { /0,{a,b},{a,c},{b,c},{a,b,c}} and Y = {a,b,c,d,e},λ = { /0,{a,b},{a,
b,e},{a,c,e},{b,c,e},{a,b,c,e}}. Define a map f : X → Y by f (a) = a, f (b) = b, f (c) = c, f (d) = d. Then f is a quasi-

homeomorphism but not a surjective map. Let U = {a,c}. Now f (U) = {a,c}. But f (U) is not a λ -open set. Thus, f is not a

(µ,λ )-open map.

Notations 4.4. Let (X ,µ) be a GTS, a ∈ X and A ⊆ X . We use the following notations:

(1) d0(a) = {x ∈ X : c{x}= c{a}}.
(2) d0(A) =

⋃
[d0(a) : a ∈ A].

Example 4.5 shows the existence of d0(A) in generalized topological space (X ,µ) where A ⊂ X and the next Lemma 4.6

give some properties of d0(A) and the canonical surjective map in generalized topological space.

Example 4.5. (a). Consider the GTS (X ,µ) where X = {a,b,c,d} and µ = { /0,{a},{a,c},{b,c},{a,b,c}}. Let A = {a,c,d}.
Now d0(a) = {a},d0(c) = {c} and d0(d) = {d}. Therefore, d0(A) = A.
(b). Consider the GTS (X ,µ) where X = {a,b,c,d} and µ = { /0,{a},{b,c},{a,
b,c}}. Let A = {a,c,d}. Now d0(a) = {a},d0(c) = {b,c} and d0(d) = {d}. Therefore, d0(A) = X .

Lemma 4.6. Let (X ,µ) be a GTS, A ⊂ X and q : (X ,µ)→ (T0(X),µq) be a canonical surjective map. Then the following hold.

(a) The map q is a quasi-homeomorphism.

(b) The map q is (µ,µq)-open, (µ,µq)-closed map.

(c) A ⊆ d0(A)⊆ cA and consequently c(d0(A)) = cA.
(d) If A is a closed set, then d0(A) = A.
(e) d0(A) = q−1(q(A)).
(f) If {An}n∈N is a collection of subsets of X , then d0(

⋃

n∈N
An) =

⋃

n∈N
d0(An).

Proof. (a) Define a map f : O(T0(X))→O(X) by f (U) = q−1(U). It is enough to prove, f is bijective between µq-open sets and

µ-open sets. Let U1,U2 ∈ µq such that U1 6=U2. Suppose f (U1) = f (U2). Then q−1(U1) = q−1(U2) and so q−1(U1 −U2) = /0.
This implies U1 −U2 = /0. Therefore, U1 = U2, which is not possible. Therefore, f is injective between µq-open sets and

µ-open sets. Let U be a µ-open set in X . Then U = q−1(V ) where V is a µq-open set in T0(X). Now f (V ) = q−1(V ) = U.
Therefore, f is surjective between µq-open sets and µ-open sets. Hence q is a quasi-homeomorphism.

(b) By Proposition 4.2, q is a (µ,µq)-open map. Similar considerations in Proposition 4.2, we get every canonical surjective

map q is a (µ,µq)-closed map.

(c) Obviously, A ⊆ d0(A). Let s ∈ d0(A). Then s ∈ d0(a) and so c({s}) = c({a}) for some a ∈ A. This implies s ∈ c({a})⊆ cA

which implies s ∈ cA. Therefore, d0(A)⊆ cA. Thus, A ⊆ d0(A)⊆ cA and hence c(d0(A)) = cA.
(d) follows from (c).

(e) follows from the definition of d0(A) and a canonical map q.
(f) Let t ∈ d0(

⋃

n∈N
An). Then t ∈ ∪d0(a) for all a ∈

⋃

n∈N
An. This implies c({t}) = c({a}) for some a ∈ A1 or ...... or a ∈ An or

.... which implies t ∈
⋃

n∈N
(d0(An)). Therefore, d0(

⋃

n∈N
An) ⊂

⋃

n∈N
(d0(An)). Conversely, let s ∈

⋃

n∈N
(d0(An)). Then s ∈ d0(A1)

or s ∈ d0(A2) or .... or s ∈ d0(An) or .... and so c({s}) = c({a}) for some a ∈ A1 or c({s}) = c({b}) for some b ∈ A2

or .... or c({s}) = c({c}) for some c ∈ An or .... . Therefore, s ∈ d0(
⋃

n∈N
An). Thus,

⋃

n∈N
(d0(An)) ⊂ d0(

⋃

n∈N
An). Hence

d0(
⋃

n∈N
An) =

⋃

n∈N
d0(An).

Definition 4.7. Let (X ,µ) be a GTS. X is called a T0-strongly nodec space if its T0-reflection is a strongly nodec space, that is

T0(X) is a strongly nodec space.

Example 4.8 shows the existence of a T0-strongly nodec space and Theorem 4.9 is a characterization theorem for a

T0-strongly nodec space in generalized topological space.

Example 4.8. Consider the GTS (X ,µ) where X = {a,b,c,d} and µ = { /0,{a},{b,c},{a,b},{a,b,c},{a,b,d},{a,c,d},X}.
Define a map q : X → T0(X) by x ∈ X to its equivalence class [x] in T0(X), where T0(X) is the T0-reflection of X . This implies

µq = { /0,{a}}. Here, every strongly nowhere dense set is a closed set in T0(X). Therefore, T0(X) is a strongly nodec space.

Theorem 4.9. Let (X ,µ) be a GTS and q : (X ,µ) → (T0(X),µq) be a canonical surjective map. Then the following are

equivalent.

(a) X is a T0-strongly nodec space.

(b) For any non-empty strongly nowhere dense subset A of X , d0(A) is closed.
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Proof. (a) ⇒ (b). Suppose X is a T0-strongly nodec space. Let A be a non-empty strongly nowhere dense subset of X . Then

cA is a non-empty strongly nowhere dense set in X . Suppose c(q(A)) is not a strongly nowhere dense set in T0(X). Then by

Lemma 3.3, there is a non-empty open set U of T0(X) such that U ⊂ c(q(A)). Since q is a (µ,µq)-continuous map, q−1(U)
is a non-empty open set and q−1(U) ⊆ q−1(c(q(A))). Since q is a (µ,µq)-closed map, c(q(A)) ⊆ c(q(cA)) = q(cA). Then

q−1(U)⊆ q−1(q(cA)) = d0(cA) = cA, which contradict the fact that cA is a strongly nowhere dense subset of X . Therefore,

c(q(A)) is a non-empty strongly nowhere dense set in T0(X). Hence q(A) is a non-empty strongly nowhere dense set in T0(X),
since subset of a strongly nowhere dense set is strongly nowhere dense. Since T0(X) is a strongly nodec space, q(A) is a closed

set in T0(X) and so q−1(q(A)) is a closed set in X , since q is a (µ,µq)-continuous map. By Lemma 4.6(e), d0(A) = q−1(q(A))
and hence d0(A) is a closed set in X .
(b) ⇒ (a). Let B be a non-empty strongly nowhere dense subset of T0(X) and A = q−1(B). Then q(A) = q(q−1(B)) = B, since q

is surjective. Thus, q(A) is a strongly nowhere dense set in T0(X). Since q is a surjective map, q−1(q(A)) = q−1(q(q−1(B))) =A.
By Lemma 4.6(e), d0(A) = A. Suppose A is not a strongly nowhere dense set in X . Then there exists V ∈ µ̃ such that V ⊂ A.
Since q is an (µ,λ )-open map, q(V ) is a non-empty open set in T0(X). This implies q(V )⊂ q(A). By Lemma 3.3, q(A) is not a

strongly nowhere dense set in X , which is not possible. Therefore, A is a non-empty strongly nowhere dense subset of X . By

(b), A is a closed set in X , since d0(A) = A. Since q is a (µ,µq)-closed map, q(A) is closed in X . Hence B is a closed set in

T0(X), since q(A) = B. Hence X is a T0-strongly nodec space.

The following Corollary 4.10 and Corollary 4.11 follows from Lemma 4.6 and Theorem 4.9.

Corollary 4.10. Let (X ,µ) be a sGTS and q : (X ,µ)→ (T0(X),µq) be a canonical surjective map. Then X is a T0-strongly

nodec space if any one of the following hold.

(a) For every A ⊆ X , if cicA ⊆ d0(A), then d0(A) = cA.
(b) For every A ⊆ X , cA−d0(A)⊆ cicA.
(c) For every A ⊆ X , cA = d0(A)∪ cicA.

Corollary 4.11. Let (X ,µ) be a GTS and q : (X ,µ)→ (T0(X),µq) be a canonical surjective map. If X is a T0-strongly nodec

space, then the following hold.

(a) If A ⊂ X is a s-meager set, then d0(A) is a Fσ -set.

(b) If A ⊂ X is a s-residual set, then d0(A) is a Gδ -set.

Corollary 4.12. Let (X ,µ) be a GTS, A ⊂ X and q : (X ,µ)→ (T0(X),µq) be a canonical surjective map. If A is a strongly

nowhere dense set in X , then Fr(q(A)) is a strongly nowhere dense set in T0(X).

Proof. Suppose A is a strongly nowhere dense set in X . Then cA is a non-empty strongly nowhere dense set in X . Suppose

q(A) is not a strongly nowhere dense set in T0(X). By similar considerations in Theorem 4.9 (a) ⇒ (b), we get a contradiction.

Hence q(A) is a non-empty strongly nowhere dense set in T0(X).

Lemma 4.13 shows inverse of a canonical surjective map preserve closure and interior of a subset of a codomain set.

Lemma 4.13. Let (X ,µ) be a GTS and q : (X ,µ)→ (T0(X),µq) be a canonical surjective map. Then the following hold.

(a) For every subset A of T0(X), q−1(cA) = c(q−1(A)).
(b) For every subset A of T0(X), q−1(iA) = i(q−1(A)).
(c) For every subset A of T0(X), q−1(cicA) = cic(q−1(A)).

Proof. (a) Let A ⊂ T0(X). By Lemma 4.6(b), q is an (µ,µq)-open map. Then q−1(cA) ⊂ c(q−1(A)) where A ⊂ T0(X), by

Lemma 4.1. Let a ∈ c(q−1(A)). Then Ua ∩q−1(A) 6= /0 for every Ua ∈ µ(a). Since q is a quasi-homeomorphism, by Lemma

4.6(a), there exists a unique open set Vq(a) in T0(X) such that Ua = q−1(Vq(a)). This implies q−1(Vq(a))∩q−1(A) 6= /0 which

implies q−1(Vq(a)∩A) 6= /0. Thus, Vq(a)∩A 6= /0. Therefore, q(a) ∈ cA and so a ∈ q−1(cA). Thus, c(q−1(A))⊂ q−1(cA). Hence

q−1(cA) = c(q−1(A)).
(b) Since q is a (µ ,µq)-continuous map, q−1 is a (µ,µq)-open map. Then q−1(iB) = i(q−1(iB))⊂ i(q−1(B)) where B ⊂ T0(X).
Therefore, q−1(iA) ⊂ i(q−1(A)). Let b ∈ i(q−1(A)). Then there exists Ub ∈ µ(b) such that Ub ⊂ q−1(A). Since q is a quasi-

homeomorphism, by Lemma 4.6(a), there exists a unique open set Vq(b) in T0(X) such that Ub = q−1(Vq(b)). This implies

q−1(Vq(b))⊂ q−1(A) which implies Vq(b) ⊂ q(q−1(A)) = A, since q is a surjective map. Thus, q(b) ∈ iA and so b ∈ q−1(iA).

Therefore, i(q−1(A))⊂ q−1(iA). Hence q−1(iA) = i(q−1(A)).
(c) Now q−1(cicA)= c(q−1(icA)), by (a). Then q−1(cicA)= c(q−1(icA))= ci(q−1(cA)), by (b) and so q−1(cicA)= cic(q−1(A)),
by (a).

Lemma 4.14. Let (X ,µ) be a GTS, A ⊂ X and q : X → (T0(X),µq) be a canonical bijective map. If Fr(A) is a strongly

nowhere dense set in X , then Fr(q(A)) is a strongly nowhere dense set in T0(X).
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Proof. Let G be a non-empty µq-open set in T0(X). Since q is a (µ,µq)-continuous map, q−1(G) is a non-empty µ-open

set in X . Since Fr(A) is a strongly nowhere dense set in X , there exists V ∈ µ̃ such that V ⊂ q−1(G) and V ∩Fr(A) = /0.
Since q is an (µ,µq)-open map, q(V ) is a non-empty µq-open set. Thus, there exists a non-empty µq-open set q(V ) such

that q(V ) ⊂ q(q−1(G)) ⊆ G and q(V ∩Fr(A)) = /0. Suppose there is an element t ∈ q(V )∩Fr(q(A)). Then t ∈ q(V ) and

t ∈ Fr(q(A)). This implies q−1(t) ∈V, since q is injective. Now, t ∈ c(q(A))∩ c(T0(X)−q(A)). Consider, t ∈ c(q(A)). Since

q is a (µ,µq)-closed map, q(cB) = c(q(cB)), where B ⊂ X . Now B ⊂ cB. This implies c(q(B)) ⊂ c(q(cB)) = q(cB). Thus,

c(q(B))⊂ q(cB). Therefore, t ∈ q(c(A)). Then q−1(t) ∈ cA, since q is injective. Now, t ∈ c(T0(X)−q(A)) = c(q(X)−q(A)),
since q is a surjective map. Then t ∈ c(q(X −A)), since q is injective. Since q is a (µ,µq)-closed map and by same process,

we get t ∈ q(c(X −A)). Then q−1(t) ∈ c(X −A), since q is injective. Therefore, q−1(t) ∈ cA∩ c(X −A) = Fr(A). Thus,

q−1(t) ∈V ∩Fr(A), which is not possible. Therefore, q(V )∩Fr(q(A)) = /0. Hence Fr(q(A)) is a strongly nowhere dense set

in T0(X).

Next Theorem 4.15 is another charecderaization theorem for a T0-strongly nodec space in genearlized topological space.

Theorem 4.15. Let (X ,µ) be a sGTS, q : X → T0(X) be a canonical bijective map and A ⊂ X . If frontier of A is a strongly

nowhere dense set, then the following are equivalent.

(a) X is T0-strongly nodec space.

(b) cA−d0(A)⊆ cic(A).
(c) cA = d0(A)∪ cic(A).

Proof. (a) ⇒ (b) Let A ⊂ X . Since X is T0-strongly nodec, c(q(A))−q(A)⊆ cic(q(A)), by Theorem 3.15. Now q−1(c(q(A))−
q(A)) = q−1(c(q(A)))−q−1(q(A)) = c(q−1(q(A)))−q−1(q(A)) = c(d0(A))−d0(A), by Lemma 4.13 and Lemma 4.6(e). By

Lemma 4.6(c), q−1(c(q(A))−q(A)) = cA−d0(A). This implies cA−d0(A)⊆ q−1(cic(q(A))) = cic(q−1(q(A))), by Lemma

4.13 which implies cA−d0(A)⊆ cic(d0(A)) = cic(A), by Lemma 4.6(c) and (e). Thus, cA−d0(A)⊆ cic(A).
(b) ⇒ (c) Let A be a subset of X . Then cic(A) ⊆ cA and d0(A) ⊆ cA, by Lemma 4.6(c). Therefore, d0(A)∪ cic(A) ⊆ cA.
Conversely, cA = d0(A)∪ (cA−d0(A))⊆ d0(A)∪ cic(A), by (b). Thus, cA = d0(A)∪ cic(A).
(c) ⇒ (a) Let A be a non-empty strongly nowhere dense subset of X . Then A is a nowhere dense set in X and so ic(A) = /0.
By (c) and hypothesis, cA = d0(A). Therefore, d0(A) is a closed set in X . Hence X is a T0-strongly nodec space, by Theorem

4.9.

Definition 4.16. Let (X ,µ) be a GTS. X is called a T0-generalized submaximal space if its T0-reflection is a generalized

submaximal space, that is T0(X) is a generalized submaximal space.

Next Theorem 4.17 is the characterization theorem for a T0-generalized submaximal space in generalized topological space.

Theorem 4.17. Let (X ,µ) be a GTS, q : X → T0(X) be a canonical surjective map and A ⊂ X . Then the following are

equivalent.

(a) X is T0-generalized submaximal.

(b) A is dense in X , then d0(A) is an open set in X .
(c) c(d0(A))−d0(A) is a closed set in X .

Proof. (a) ⇒ (b) Let A ⊂ X be a dense set in X . Then cA = X and so c(d0(A)) = X , by Lemma 4.6 (c). By Lemma 4.6 (e),

c(q−1(q(A))) = X . Since q is a canonical surjective map, q−1(c(q(A))) = X , by Lemma 4.13 (a). Then c(q(A)) = T0(X), since

q is surjective. By (a), q(A) is an open set in T0(X). This implies q−1(q(A)) is an open set in X , since q is (µ,µq)-continuous.

By Lemma 4.6 (e), d0(A) is an open set in X .
(b) ⇒ (a) Let A ⊂ X such that q(A) is a dense subset of T0(X). Then c(q(A)) = T0(X) and so q−1(c(q(A))) = X . By Lemma

4.13, c(q−1(q(A))) = X . This implies c(d0(A)) = X which implies cA = X , by Lemma 4.6 (e) and (c). By (b), d0(A) is an

open set in X . Then q−1(q(A)) is an open set in X and so q(q−1(q(A))) is an open set in T0(X), by Lemma 4.6 (e) and q is a

(µ,µq)-open map. Since q is surjective, q(A) is an open set in T0(X). Therefore, T0(X) is a generalized submaximal space.

Hence X is a T0-generalized submaximal space.

(a) ⇒ (c) Let A be a subset of X , then c(d0(A))−d0(A)= c(q−1(q(A)))−q−1(q(A))= q−1(c(q(A)))−q−1(q(A))= q−1(c(q(A))−
q(A)), by Lemma 4.6 (e) and Lemma 4.13 (a). By Lemma 2.1, i(c(q(A))− q(A)) = /0. Thus, c(q(A))− q(A) is a co-

dense set in T0(X). Since X is a T0-generalized submaximal space, then c(q(A))− q(A) is a closed subset of T0(X). Then

q−1(c(q(A))−q(A)) is a closed subset of X , since q is a (µ,µq)-continuous map. Therefore, c(d0(A))−d0(A) is closed in X .
(c) ⇒ (a) Let B be a subset of T0(X) such that B = c(q(A))−q(A). Then iB = /0, by Lemma 2.1. Let A be a subset of X such

that c(d0(A))−d0(A) is closed in X . Then by above process q−1(c(q(A))−q(A)) is a closed subset of X and so q(q−1(B)) is

a closed subset of T0(X), since q is (µ,µq)-closed map. This implies B is a closed set in T0(X), since q is a surjective map.

Therefore, X is a T0-generalized submaximal space.
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Theorem 4.18. Let (X ,µ) be a GTS and q : X → T0(X) be a canonical surjective map. If X is a generalized submaximal space,

then X is a T0-generalized submaximal space.

Proof. Let A be a dense subset of X . Then A is an open set in X , by hypothesis. Since q is a (µ,µq)-open map, q(A) is an open

set in T0(X). This implies q−1(q(A)) is an open set in X , since q is a (µ ,µq)-continuous map. By Lemma 4.6 (e), d0(A) is an

open set in X . Therefore, X is a T0-generalized submaximal space, by Theorem 4.17.

Theorem 4.19. Let (X ,µ) be a GTS and q : X → T0(X) be a canonical bijective map. If X is a T0-generalized submaximal

space, then X is a generalized submaximal space.

Proof. Let A be a dense subset of X . Then d0(A) is an open set in X , by hypothesis and Theorem 4.17. This implies q−1(q(A))
is an open set in X , by Lemma 4.6 (e). Since q is injective, A is an open set in X . Therefore, X is a X generalized submaximal

space.

Next Theorem 4.20 shows every T0-generalized submaximal space is a T0-strongly nodec space.

Theorem 4.20. Let (X ,µ) be a GTS and q : X → T0(X) be a canonical surjective map. If X is T0-generalized submaximal

space, then X is a T0-strongly nodec space.

Proof. Let q(A) be a non-empty strongly nowhere dense set in T0(X). Then q(A) is a codense set in T0(X), by Lemma 2.5.

Since X is T0-generalized submaximal space, q(A) is a closed set in T0(X). Thus, T0(X) is a strongly nodec space. Therefore,

X is a T0-strongly nodec space.

5. Strongly nodec, T0-strongly nodec spaces by functions

In this section, we discuss the properties of images of a strongly nodec, T0-strongly nodec spaces by a quasi-homeomorphism

function.

Lemma 5.1. Let (X ,µ),(Y,λ ) be two GTSs and f : X → Y be a quasi-homeomorphism map. Then the following hold.

(a) If f is a bijective map and A is strongly nowhere dense in X , then f (A) is strongly nowhere dense in Y.
(b) If B is strongly nowhere dense in Y, then f−1(B) is strongly nowhere dense in X .
(c) If A is of s-II category in X , then f (A) is of s-II category in Y.
(d) If f is a bijective map and B is of s-II category set in Y, then f−1(B) is of a s-II category set in X .

Proof. (a) Suppose A is strongly nowhere dense in X . Let W ∈ λ̃ . Since f is (µ ,λ )-continuous, f−1(W ) ∈ µ̃. By hypothesis,

there exists V ∈ µ̃ such that V ⊂ f−1(W ) and V ∩A = /0. Since f is a quasi-homeomorphism, there exists a unique V1 ∈ λ
such that V = f−1(V1). Thus, V1 ∈ λ̃ and f (V ) =V1, since f is a surjective map. Now V ⊂ f−1(W ) implies f (V )⊂W and so

V1 ⊂W. Since f is injective, f (V ∩A) = f (V )∩ f (A) = /0. Therefore, V1 ∩ f (A) = /0. Hence f (A) is strongly nowhere dense in

Y.
(b) Suppose B is strongly nowhere dense in Y. Let W ∈ µ̃. Since f is a quasi-homeomorphism, there exists a unique V ∈ λ
such that W = f−1(V ). Since V ∈ λ̃ and by hypothesis, there exists V1 ∈ λ̃ such that V1 ⊂ V and V1 ∩B = /0. Since f is a

(µ,λ )-continuous map, there exists f−1(V1) ∈ µ̃ such that f−1(V1) ⊂ W and f−1(V1)∩ f−1(B) = /0. Therefore, f−1(B) is

strongly nowhere dense in X .
(c) Assume that, A is of a s-II category set in X . Suppose f (A) is of a s-meager set in Y. Then f (A) =

⋃
n∈N An where each An is

a strongly nowhere dense set in Y. By (b), each f−1(An) is a strongly nowhere dense set in X . Now f−1( f (A)) = f−1(
⋃

n∈N An).
Then f−1( f (A)) =

⋃
n∈N f−1(An). This implies f−1( f (A)) is a s-meager set in X which implies A is a s-meager set in X , since

subset of a strongly nowhere dense set is strongly nowhere dense set, which is not possible. Therefore, A is of a s-II category

set in Y.
(d) Suppose f is a bijective map and A is of s-II category set in Y. Suppose f−1(A) is of a s-meager set in X . Then f−1(A) =
⋃

n∈N An where each An is a strongly nowhere dense set in X . By (a), each f (An) is a strongly nowhere dense set in Y. Now

f ( f−1(A)) = f (
⋃

n∈N An). Since f is a bijective map, A =
⋃

n∈N f (An). This implies A is a s-meager set in Y, which is not

possible. Therefore, f−1(A) is of a s-II category set in X .

Example 5.2 shows the condition that surjective on f cannot be dropped in Lemma 5.1 (a). Next Theorem 5.3 shows that an

image and inverse-image of a strongly nodec is strongly nodec under a bijective, quasi homeomorphism function in generalized

topological space.
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Example 5.2. (a) Consider the two GTSs (X ,µ) and (Y,λ ) where X = {a,b,c,d},µ = { /0,{b},{c},{b,c},{a,c},{a,b,c}},Y =
{a,b,c,d,e} and λ = { /0,{e},{a,c},{b,e},{c,e},{a,c,e},{b,c,e},{a,b,c,e}}. Define a function f : X → Y by f (a) =
a, f (b) = b, f (c) = c, f (d) = d. Clearly, f is a (µ,λ )-continuous and for each µ-open subset U of X , there exists a unique

λ -open subset V of Y such that U = f−1(V ). Therefore, f is a quasi-homeomorphism but not a surjective map, since f (X) 6=Y .

Let A = {a} ⊂ X . Then A is a strongly nowhere dense set in X . Now f (A) = {a} ⊂ Y. Let G = {a,c} ∈ λ̃ . Then there is no

H ∈ λ̃ such that H ⊂ G and H ∩ f (A) = /0. Therefore, f (A) is not a strongly nowhere dense set in Y.

Theorem 5.3. Let (X ,µ),(Y,λ ) be two GTSs and f : X → Y be a bijective, quasi-homeomorphism map. Then X is a strongly

nodec space if and only if Y is a strongly nodec space.

Proof. Suppose X is a strongly nodec space. Let A be a non-empty strongly nowhere dense set in Y. By hypothesis and Lemma

5.1, f−1(A) is a strongly nowhere dense set in X . By hypothesis, f−1(A) is a closed set in X . Since f is a quasi-homeomorphism,

there exists a unique closed set V in Y such that f−1(A) = f−1(V ). Thus, A is a closed set in Y, since f is a surjective map.

Therefore, Y is a strongly nodec space. Conversely, assume that Y is a strongly nodec space. Let B be a strongly nowhere dense

set in X . By hypothesis and Lemma 5.1, f (B) is a strongly nowhere dense set in Y. By hypothesis, f (B) is a closed set in Y.
Since f is a (µ ,λ )-continuous and bijective map, B is a closed set in X . Therefore, X is a strongly nodec space.

Theorem 5.4. Let (X ,µ) be a sGTS and q : X → T0(X) be a canonical surjective map. Then the following hold.

(a) Every strongly nodec space is a T0-strongly nodec space.

(b) Every generalized submaximal space is a T0-strongly nodec space.

Proof. We will present the proof only for (a). Let X be a strongly nodec space and q(A) be a strongly nowhere dense set in

T0(X). By Lemma 5.1, q−1(q(A)) is a strongly nowhere dense set in X . Since A ⊂ q−1(q(A)) and subset of a strongly nowhere

dense set is strongly nowhere dense, A is a strongly nowhere dense set in X . By hypothesis, A is a closed set in X . Since q is a

closed map, by Lemma 4.6, q(A) is a closed set in T0(X). Therefore, X is a T0-strongly nodec space.

Next Example 5.5 shows that the converse of Theorem 5.4 (a) is not necessary and Theorem 5.6 is the reverse implication

of Theorem 5.4(a).

Example 5.5. Consider the GTS (X ,µ) where X = {a,b,c} and µ = { /0,{a},X}. Define a map f : X → T0(X) by x ∈ X to its

equivalence class [x] in T0(X), where T0(X) is the T0-reflection of X . This implies µ f = { /0,{a}}. Let A = [b] = {b,c}. Then A

is strongly nowhere dense set in T0(X). Now f−1(A) = f−1([b]) = {b,c} is a closed set in X . Then A is a closed set in T0(X).
Therefore, T0(X) is a strongly nodec space. Let A = {b}. Then A is a strongly nowhere dense set in X but not closed in X .
Thus, X is not a strongly nodec space.

Theorem 5.6. Let (X ,µ) be a sGTS and q : X → T0(X) be a canonical surjective map. If q is injective and X is a T0-strongly

nodec space, then it is a strongly nodec space.

Proof. Let A be a non-empty strongly nowhere dense subset of X . By Lemma 5.1, q(A) is a non-empty strongly nowhere dense

set in T0(X). By hypothesis, q(A) is a closed set in T0(X). Since q is a (µ,λ )-continuous map, q−1(q(A)) is a closed set in X .
Since q is injective map, A is a closed set in X . Therefore, X is a strongly nodec space.

Example 5.7 shows the condition injective on q is necessary in Theorem 5.6 and Theorem 5.8 shows a (µ,λ )-open map

from a GTS (X ,µ) into a GTS (Y,λ ) preserve the frontier of B where B ⊂ Y.

Example 5.7. Consider the GTS (X ,µ) where X = {a,b,c,d,e} and µ = { /0,{a},{a,b},{b,c},{a,b,c},{a,b,d,e},{a,c,d,e},X}.
Define a map f : X → T0(X) by x ∈ X to its equivalence class [x] in T0(X), where T0(X) is the T0-reflection of X . Then f is a

canonical surjective but not an injective map and so µ f = { /0,{a}}. Let A = [d] = {d,e}. Then A is strongly nowhere dense

set in T0(X). Now f−1(A) = f−1([d]) = {d,e} is a closed set in X . Then A is a closed set in T0(X). Similarly, every strongly

nowhere dense set in T0(X) is closed set in T0(X). Therefore, T0(X) is a strongly nodec space. Let A = {e}. Then A is a strongly

nowhere dense set in X but not closed in X . Thus, X is not a strongly nodec space.

Theorem 5.8. Let (X ,µ),(Y,λ ) be two GTSs and f : X → Y be a map. If f is (µ ,λ )-open, then f−1(Fr(B)) = Fr( f−1(B))
for all B ⊂ Y.

Proof. Suppose f is a (µ,λ )-open map. Let t ∈ f−1(Fr(B)). Then t ∈ f−1(cB∩ c(Y −B)). This implies t ∈ f−1(cB) and

t ∈ f−1(c(Y −B)). Since f is (µ,λ )-open and by Lemma 4.1, t ∈ c( f−1(B)) and t ∈ c(X − f−1(B)). Therefore, t ∈Fr( f−1(B)).
Hence f−1(Fr(B)) ⊆ Fr( f−1(B)). Let s ∈ Fr( f−1(B)). Then s ∈ c( f−1(B))∩ c(X − f−1(B)). Now s ∈ c( f−1(B)). Then

U ∩ f−1(B) 6= /0 for all U ∈ µ(s). By hypothesis, f (U) ∈ λ̃ . This implies f (U ∩ f−1(B)) 6= /0 for all f (U) ∈ λ ( f (s)). Now

f (U ∩ f−1(B))⊂ f (U)∩ f ( f−1(B))⊂ f (U)∩B, since f ( f−1(B))⊂ B. Then f (U)∩B 6= /0 and so f (s) ∈ cB. Consider, s ∈
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c( f−1(Y −B)). Then V ∩ f−1(Y −B) 6= /0 for all V ∈ µ(s). By hypothesis, f (V )∈ λ ( f (s)). This implies f (V ∩ f−1(Y −B)) 6= /0

for all f (V ) ∈ λ ( f (s)). Now f (V ∩ f−1(Y −B))⊂ f (V )∩ f ( f−1(Y −B))⊂ f (V )∩ (Y −B). Then f (V )∩ (Y −B) 6= /0 and so

f (s) ∈ c(Y −B). Therefore, f (s) ∈ Fr(B). Thus, s ∈ f−1(Fr(B)). Hence Fr( f−1(B))⊂ f−1(Fr(B)).

Theorem 5.9. Let (X ,µ),(Y,λ ) be two GTSs and f : X → Y be a surjective, quasi-homeomorphism map. If B is a strongly

nowhere dense set in Y, then f−1(Fr(B)) is a strongly nowhere dense set in X for all B ⊂ Y.

Proof. Suppose B is a strongly nowhere dense set in Y. By Lemma 5.1, f−1(B) is a strongly nowhere dense set in X . Then

Fr( f−1(B)) is a strongly nowhere dense set in X , by Lemma 3.7 (a). By hypothesis and Proposition 4.2, f is a (µ,λ )-open

map. Therefore, f−1(Fr(B)) = Fr( f−1(B)), by Theorem 5.8. Hence f−1(Fr(B)) is a strongly nowhere dense set in X .

Let (X ,µ) be a GTS. A space X is said to be a weak Baire space (wBS) if every non-empty µ-open set in X is of µ-s-II

category in X [3].

Theorem 5.10. In a GTS, every wBS is of s-II category.

Proof. Let (X ,µ) be a GTS and X is a wBS. Suppose X is a s-meager. Then X =
⋃

n∈N
An where each An is a strongly nowhere

dense set in X . Then each An is a nowhere dense set in X for n ∈ N. This implies cAn has no interior points so any non-empty

open set in X must intersect Gn = X − cAn for all n ∈ N. Take {Gn}n∈N is a collection of non-empty open-dense sets in X . This

implies cGn = X for all n ∈ N which implies cGn is a s-meager set in X . Therefore, Gn is a s-meager set in X for all n ∈ N,
since subset of a s-meager set is s-meager. Thus, a non-empty open set Gn is not s-II category, which is a contradiction to X is a

wBS. Hence X is of s-II category.

Theorem 5.11 and Theorem 5.12 shows the behaviour of wBS under the quasi-homeomorphism and canonical surjective

map in generalized topological space.

Theorem 5.11. Let (X ,µ), (Y,λ ) be two GTSs and f : X → Y be a surjective, quasi-homeomorphism map. Then the following

hold.

(a) If X is a wBS, then Y is of s-II category.

(b) If f is a injective map and Y is a wBS, then X is of s-II category.

Proof. (a) Suppose X is a wBS. It is enough to prove, Y is a wBS, by Theorem 5.10. Let A ∈ λ̃ . Since f is a (µ,λ )-continuous

map, f−1(A) ∈ µ̃. By hypothesis, f−1(A) is of s-II category in X . By Lemma 5.1, f ( f−1(A)) is of s-II category in Y. Since f is

a surjective map, A is of s-II category in Y. Therefore, Y is a wBS. Hence Y is of s-II category.

(b) Suppose f is a injective map and Y is a wBS. It is enough to prove, X is a wBS, by Theorem 5.10. Let A ∈ µ̃. Since f is

a quasi-homeomorphism map, there exists a set A1 ∈ λ̃ such that A = f−1(A1). Since f is a surjective map, f (A) = A1. By

hypothesis, A1 is of s-II category in Y. Thus, f (A) is of s-II category in Y. By Lemma 5.1, A is of s-II category in X . Therefore,

X is a wBS. Hence X is of s-II category.

Theorem 5.12. Let (X ,µ) be a GTS and q : (X ,µ)→ (T0(X),µq) be a canonical surjective map. Then the following hold.

(a) If X is a wBS, then T0(X) is a wBS and hence a s-II category space.

(b) If T0(X) is a wBS and q is a injective map, then X is a wBS and hence a s-II category space.

Proof. (a) Suppose X is a wBS. Let q(A) be a non-empty set in T0(X). Since q is a (µ,µq)-continuous map, q−1(q(A)) ∈ µ̃ .
By hypothesis, q−1(q(A)) is of s-II category in X . By Lemma 5.1, q(A) is of s-II category in T0(X). Therefore, T0(X) is a wBS

and hence a s-II category space, by Theorem 5.10.

(b) Suppose T0(X) is a wBS and q is an injective map. Let A ∈ µ̃. By Lemma 4.6, q is a (µ,µq)-open map, q(A) is a non-empty

open set in T0(X). By hypothesis, q(A) is of s-II category in T0(X). By Lemma 5.1 and q is a injective map, A is of s-II category

in X . Therefore, X is a wBS. Hence X is of s-II category space, by Theorem 5.10.

6. Strongly nodec space in GMS

In this section, we discuss the behaviour of µ-strongly nowhere dense set and strongly nodec space in generalized metric

spaces.

In 2013, Korczak-Kubiak et al. introduced the notion of a generalized metric space [3]. They define the notions kernel and

perfect kernel in GMS and discuss some properties of kernel, perfect kernel and three types of a Baire space in generalized

metric space in [3].



Modifications of Strongly Nodec Spaces — 111/112

Here, we focus only the properties of strongly nowhere dense sets and give some results for strongly nodec space in

generalized metric space by using kernel and perfect kernel. Also, we give one result for wBS in generalized metric space. First

we see the definitions and notation defined in generalized metric space.

Let X 6= /0. The symbol π to denote the family consisting of metrics defined on subsets of X , that is ρ ∈ π then there exists

a non-empty set Aρ ⊂ X such that ρ is a metric on Aρ where Aρ is a domain space of ρ and it will be denoted by dom(ρ). The

pair (X ,π) is called a generalized metric space (GMS) [3].

Denote µπ is the family of π-open sets in a GMS (X ,π), more precisely, V ∈ µπ if and only if for each x ∈V, there exists

ρ ∈ π and ε > 0 such that Bρ(x,ε)⊂V where Bρ(x,ε) = {y ∈ dom(ρ) : ρ(x,y)< ε} [3].

Let (X ,π) be a GMS. A finite family π0 ⊂ π is called a perfect kernel (resp. kernel) [3] of the space X if for any

V1,V2, ...,Vm ∈ µπ such that V1 ∩V2 ∩ ...∩Vm 6= /0 (resp. V ∈ µ̃π ), there exists ρ ∈ π0 such that iρ(V1 ∩V2 ∩ ...∩Vm) 6= /0 (resp.

iρ(V ) 6= /0). The set of all perfect kernels (resp. kernels) of the space (X ,π) will be denoted by Kerp(X ,π) (resp. Ker(X ,π)).
Obviously, if π0 is a perfect kernel of the space (X ,π), then it is a kernel of the space too [3].

Lemma 6.1. If the GMS (X ,π) has a kernel π0 ⊂ π and A is a dense subset of X , then π0|A is a kernel of the GMS (A,π|A).

Proof. Suppose A is dense subset of X . Let V ∈ µ̃π|A and x ∈V. Then there exists ρ ∈ π and ε > 0 such that Bρ|A(x,ε)⊂V.
Since Bρ(x,ε) 6= /0 and π0 is a kernel, there exists ρ0 ∈ π0 such that iρ0

(Bρ(x,ε)) 6= /0. Choose y ∈ iρ0
(Bρ(x,ε)) and ε0 > 0.

Then Bρ0
(y,ε0) ⊂ Bρ(x,ε) and so Bρ0

(y,ε0)∩A ⊂ Bρ(x,ε)∩A. That is, Bρ0|A(y,ε0) ⊂ Bρ|A(x,ε). Also, Bρ0|A(y,ε0) ∈ µ̃π|A ,
since A is dense and Bρ0|A(y,ε0)⊂V. Thus, there exists ρ0|A ∈ π0|A such that iρ0|A(V ) 6= /0. Hence π0|A is a kernel of the GMS

(A,π|A).

Lemma 6.2 shows the properties of strongly noowhere dense sets in subspace generalized metric space.

Lemma 6.2. Let (X ,π) be a GMS with a kernel π0 ⊂ π, U be a dense, µπ0
-open subset of X and A ⊂ U ⊂ X . Then the

following hold.

(a) If A is a strongly nowhere dense set in (U,π|U ), then A is a strongly nowhere dense set in (X ,π).
(b) If A is a s-meager set in (U,π|U ), then A is a s-meager set in (X ,π).
(c) If B is of s-II category in (X ,π), then B is of s-II category in (U,π|U ) where B ⊂ X .

Proof. (a) Let W ∈ µ̃π . Then U ∩W ∈ µ̃π|U . Since A is a strongly nowhere dense set in U, there exists V ∈ µ̃π|U such

that V ⊂ U ∩W and V ∩A = /0. By Lemma 6.1, π0|U is a kernel. Then there exists ρ0|U ∈ π|U such that iρ0|U (V ) 6= /0.
Let x ∈ iρ0|U (V ). Then there is ε > 0 such that Bρ0|U (x,ε) ⊂ V. This implies Bρ0|U (x,ε) ⊂ W and Bρ0|U (x,ε)∩A = /0. Now

x ∈ iρ0|U U =U = iρ0
U, since U is a µπ0

-open set in X . Let ε1 > 0 such that ε1 > ε. Then Bρ0
(x,ε1)⊂U and so Bρ0

(x,ε)⊂U.
Therefore, Bρ0|U (x,ε) = Bρ0

(x,ε). Thus, there is Bρ0
(x,ε) ∈ µ̃π such that Bρ0

(x,ε)⊂W and Bρ0
(x,ε)∩A = /0. Hence A is a

strongly nowhere dense set in X .
(b) and (c) follows from (a).

Theorem 6.3 shows every dense-µπ0
-open subspace of a strongly nodec space having kernel is a strongly nodec space.

Theorem 6.3. If GMS (X ,π) has a kernel π0 ⊂ π, U be a dense, µπ0
-open subset of X and if (X ,µπ) is strongly nodec, then

(U,µπ|U ) is strongly nodec.

Proof. Suppose X is a strongly nodec space. Let A be a non-empty strongly nowhere dense subset of U. By hypothesis and

Lemma 6.2, A is a non-empty strongly nowhere dense subset of X . Then A is closed in X . By Lemma 2.3, cU (A) = A. Hence U

is a strongly nodec space.

Theorem 6.4 shows every dense-µπ0
-open subspace of a wBS having perfect kernel is a wBS. Next Lemma 6.5 shows the

properties of strongly nowhere dense sets in generalized metric space.

Theorem 6.4. If GMS (X ,π) has a perfect kernel π0 ⊂ π, U be a dense, µπ0
-open subset of X and if (X ,µπ) is wBS, then

(U,µπ|U ) is wBS and hence a s-II category.

Proof. Suppose X is a wBS. Let V be a non-empty open set in U. Then V =V1 ∩U where V1 is a non-empty µπ -open set in X .
Since V1,U are µπ -open sets and V1 ∩U 6= /0, there is ρ0 ∈ π0 such that iρ0

(V1 ∩U) 6= /0. Take G = iρ0
(V1 ∩U). Then G is a

non-empty µπ -open set in X . By hypothesis, G is of s-II category in X . By Lemma 6.2, G is of s-II category in U. Since G ⊂V,
V is of s-II category in U. For, if V is a s-meager in U. Since subset of a s-meager set is s-meager, G is a s-meager set in U.
Hence U is a wBS. By Theorem 5.10, U is of s-II category.
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Lemma 6.5. Let (X ,π) be a GMS, U be a closed subset of X and A ⊂ X . Then the following hold.

(a) If A is a strongly nowhere dense set in (X ,π), then A is a strongly nowhere dense in (U,π|U ).
(b) If A is a s-meager set in (X ,π), then A is a s-meager set in (U,π|U ).
(c) If A is a s-residual set in (X ,π), then A is a s-residual set in (U,π|U ).
(d) If B is of s-II category in (U,π), then B is of s-II category in (X ,π) where B ⊂U.

Proof. (a) Let A be a strongly nowhere dense subset of X . Suppose A∩U = /0. Then A is a strongly nowhere dense set in U, by

definition of strongly nowhere dense. Assume, A∩U 6= /0. Let W ∈ µ̃π|U and x ∈W. Then there is ρ|U ∈ π|U and ε > 0 such

that Bρ|U (x,ε)⊂W. Since A is a strongly nowhere dense set in X and Bρ(x,ε) ∈ µ̃π , there exists V ∈ µ̃π such that V ⊂ Bρ(x,ε)
and V ∩A = /0. Choose V = Bρ(x,ε1) where ε1 < ε. Since U is closed and x ∈U, V ∩U 6= /0. Thus, there is Bρ|U (x,ε1) ∈ µ̃π|U
such that Bρ |U (x,ε1)⊂ Bρ|U (x,ε)⊂W and Bρ|U (x,ε1)∩A = /0. Therefore, A is a strongly nowhere dense in (U,π|U ).
(b), (c) and (d) follows from (a).

Theorem 6.6. Let (X ,π) be a GMS and U be a closed subset of X . If (U,µπ|U ) is a strongly nodec space, then (X ,µπ) is a

strongly nodec space.

Proof. Suppose (U,µπ|U ) is a strongly nodec space. Let A be a non-empty strongly nowhere dense subset of X . Then by

Lemma 6.5, A is a non-empty strongly nowhere dense set in U. By hypothesis, A is a closed set in U. Then cU A = A and so

A = U ∩ cA, by Lemma 2.1. Since U is a closed subset in X , A is a closed set in X . Therefore, (X ,µπ) is a strongly nodec

space.

Theorem 6.7. Let (X ,π) be a GMS. If frontier of a subspace of X is strongly nodec, then (X ,µπ) is a strongly nodec space.

Proof. Let Y be a subspace of X . Suppose Fr(Y ) is a strongly nodec space. Since every frontier of a subset of X is a closed set

in X , Fr(Y ) is a closed subset of X . Hence X is a strongly nodec space, by Theorem 6.6.
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2Universidad Técnica de Manabı́ Departamento de Matemáticas y Estadı́stica Instituto de Ciencias Básicas Portoviejo, Ecuador.

*Corresponding author:lgmarmol@usb.ve

Received: 20 July 2018, Accepted: 4 October 2018, Available online: 24 December 2018

1. Introduction

In this paper we analyze certain systems of functional differential equations with both delayed and advanced arguments. Such

equations are often referred to in the literature as mixed-type functional differential equations (MTFDE) or forward-backward

equations. The study of this type of equations is less developed compared with other classes of functional equations. As a

consequence, many important questions remain open. Interest in MTFDEs is motivated by problems in optimal control [1] and

applications, for example, in economic dynamics [2] and travelling waves in a spatial lattice [3].

As far as we know, similar studies to the one presented here for this type of equations haven’t been done. This type of

equations are, in general, ill-posed as initial value problems (see for example, [1] and [4]), but there are also cases ([5], [6],

[7], [8], [9] and [10]) where a unique differentiable solution exists. We make the statement of the problem in Section 2. In

section 3, we give our main results. We begin with showing how the system can be rewritten as a classical Cauchy problem in a

suitable Banach space, provided that the initial value problem is well-posed. Then we give the semigroup associated with the

ordinary differential equation and its infinitesimal generator, and prove some important properties of these operators. In section

4 we apply the results obtained in Section 3 to characterize the null controllability for those systems, where the control u is

constrained to lie in a non-empty compact convex subset Ω of Rn, with 0 ∈ Ω.
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2. Statement of the problem

Let Ω be a bounded domain in R
n, 0 < h1 < h2 < · · ·< hq and A0, Ai, Ci ∈ L (Rn), for i = 1, . . . ,q, with Ai 6= 0 for some i. We

will consider the following mixed-type functional differential equation

ẋ(t) = A0x(t)+
q

∑
i

Aix(t −hi)+
q

∑
i

Cix(t +hi)+Bu(t), t > 0 ,

x(0) = Φ(0) = Φ0 , (2.1)

x(s) = Φ(s), s ∈ [−hq,2hq],

where Φ ∈ Lp[[−hq,2hq];R
n], 1 ≤ p ≤ ∞, is defined by

Φ(s) =

{

Φ1(s), s ∈ [−hq,0]
Φ2(s), s ∈ [0,2hq]

,

u : [0,∞)→ R
n is an essentially bounded function and B ∈ L (Rn).

The function Φ is usually found in Hilbert spaces (see, for example, [11] and [12], in the case Ci = 0). It is noteworthy that,

in the present work, we will allow it to be in a Lp -space, for any p belonging to [1,∞].
At this point, some basic facts must be recalled. It is, in fact, well known that, for X a Banach space and f : [0,∞)→ X a

continuously differentiable function, the initial value problem

{

x′(t) =Ax(t)+ f (t), t ≥ 0

x(0) =x0, x0 ∈ D(A)

is well posed if and only if A generates a strongly continuous semigroup (T (t))t≥0 on X . The unique solution can be expressed

in terms of (T (t))t≥0 by the following formula (usually known as mild solution):

x(t) = T (t)x0 +
∫ t

0
T (t − s) f (s)ds.

Working in the frame of a C0-semigroup theory is not always possible for MTFDE, as there are cases where the problem is

not well-posed. As an example, consider the equation ˙x(t) = x(t +1). If λ is such that λ − exp(λ ) = 0, then it is easily seen

that x(t) = exp(λ t)x0 is a solution. Any strongly continuous semigroup is bounded by Meωt for some M and ω , but this fails

in this case. Here, we cannot assume that for initial conditions in a dense set, there exists a classical solution. It also shows

that our condition ”Ai 6= 0 for some i” in a system like (2.1) is truly essential. In other words, we need the presence of delayed

arguments.

Another very interesting example of an ill-posed problem is the following: in [4], Harterich, Sandstede and Scheel consider

the equation

ẋ(t) = x(t −1)+ x(t +1)

with Φ(s) = 1, s ∈ [−m,m], m a natural number. The only possible solution for this initial value problem is x(t) = (−1)k, for

t ∈ (2k−1,2k+1], with k a natural number, which is not even a continuous function.

On the other hand, it is shown in [8] that this same equation has a unique differentiable solution if and only if Φ ∈C∞
[−1,1]

defined by

Φ(s) =

{

Φ1(s), s ∈ [−1,0]
Φ2(s), s ∈ [0,1]

,

satisfies Φ(n+1)(0) = Φ(n)(−1)+Φ(n)(1) for n = 0,1,2, ... . As an example, it is easy to see that Φ(s) = eλ s satisfies this

condition if λ = eλ + e−λ , and it is shown in [13] that there exist, in fact, complex numbers λ such that λ = eλ + e−λ , as

they are the spectrum of a bounded linear operator on suitable Banach Space (the spectrum is always non-empty, as it is well

known). It is also shown that, being det(λ I − eλ − e−λ ) an entire function, then, for every δ ∈ R, it has finitely many zeros in

the compact set C+
δ
∩{λ : |λ | ≤ eδ + e−δ}, and in the rest of C+

δ
there are none. In particular, there are finitely many λ with

Reλ > 0 such that λ = eλ + e−λ , and we have |λ | ≤ 2. Thus the unique solution, given by a strongly continuous semigroup, is

exponentially bounded, as it should be.

Bearing in mind these results, it is characterized in [13] the null controllability for the associated initial value problem,

where the control u is also constrained to belong to a suitable domain Ω of the control space with 0 ∈ Ω.
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The present work is an attempt to see the results in [9] and [13] in a more general context. As we have indicated, there

exist other examples where a unique solution can be found ([5], [6], [7] and [10]). In most of this cases, the function Φ is

supposed to belong to a Banach space of sufficiently smooth functions defined on an interval [a,b]. Such functions are always

in L∞([a,b]), and so those examples can be adapted to our model.

It should be pointed out, therefore, that we are excluding the cases where the problem is ill-posed. We attempt to give

a detailed description of the associated semigroup and its infinitesimal generator for a system like (2.1) whenever a unique

differentiable solution exists. These solutions are often found by some other independent method, as in the examples cited

above.

Bearing in mind this purpose, we will show that (2.1) can be written as an ordinary differential equation in a suitable Banach

space Jp, which will be defined later, as follows:

ω̇(t) = Aω(t)+βu(t), t > 0

ω(0) = Φ0

where β : U → Jp is given by βu =

(

Bu

0

)

and

A

(

Φ0

Φ(s)

)

=

(

A0Φ0 +∑
q
i AiΦ(−hi)+∑

q
i CiΦ(hi)

Φ̇(s)

)

, −hq ≤ s ≤ 2hq,

is the infinitesimal generator of a strongly continuous semigroup {T (t)}t≥0 defined by

T (t)

(

Φ0

Φ(·)

)

=

(

x(t)
x(t + ·)

)

,

where x(·) is the unique solution of the system

ẋ(t) = A0x(t)+Ldx(t)+Lax(t), t > 0

x(0) = Φ0

x(s) = Φ(s), s ∈ [−hq,2hq],

where Ldx(t) = ∑
q
i Aix(t −hi) and Lax(t) = ∑

q
i Cix(t +hi).

Once achieved these results we will give necessary and sufficient conditions to ensure the exact controllability for (2.1).

3. Main results

In the following we will show an alternative representation of the given solution of (2.1), and we will also prove that T (t) (as

given in (??)) is in fact a strongly continuous semigroup with A as its infinitesimal generator.

Theorem 2.4.1 of [11], deals on delay equations and the solution x(·) on [0,∞) is built recursively. This same construction

cannot be done in our case but, as it has been stated, we are supposing that the solution x(·) is previously known.

Theorem 3.1. Suppose that the unique solution x(·) on [0,∞) of (2.2) is known. Then x(·) satisfies the following recursive

formula

x(t) = eA0tΦ0 +
q

∑
i=1

∫ t

0
eA0(t−s)(Aix(s−hi)+Cix(s+hi))ds for t ≥ 0. (3.1)

Proof . Notice first that for t ∈ [0,hq] the term ∑
q
i=1 Aix(t −hi)+Cix(t +hi) equals the function

v(t) :=
q

∑
i=1

AiΦ(t −hi)+CiΦ(t +hi).

So we may reformulate the system (2.2) on [0,hq] as

ẋ(t) = A0x(t)+ v(t), x(0) = Φ0. (3.2)
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It is well known that the unique solution of (3.2) is given by

x(t) = eA0tΦ0 +
∫ t

0
eA0(t−s)v(s)ds

and this equals (3.1).

Let us consider now the case t ≥ hq. We use the hypothesis that x(t) is known for every t, and so, at a given time t, the

function ∑
q
i=1 Aix(t −hi)+Cix(t +hi) is also known. Then we can proceed in a similar way. Applying finite dimensional theory

gives that the unique solution satisfies (3.1).

In the following we will construct the c0-semigroup and its infinitesimal generator associated to the equation (2.2).

Lemma 3.2. If x(t) is the solution of (2.2), then the following inequalities hold:

[i] ||x(t)|| ≤Ct [||Φ0||+ ||Φ(·)||Lp([−hq,2hq];Rn)], 1 ≤ p ≤ ∞

[ii]
∫ 2hq+t

2hq

||x(τ)||pdτ ≤ Dt [||Φ0||
p + ||Φ(·)||p

Lp([−hq,2hq]; Rn)
], 1 ≤ p < ∞

where Ct and Dt are constants depending only on t.

Proof . It is well known that for some positive constants M0, W0, eA0t satisfies ||eA0t || ≤ M0eW0t , t ≥ 0.

Let us define the positive constant M by

M := max(||A1||, · · · , ||Aq||, ||C1||, · · · , ||Cq||,M0).

Then, it is deduced, from the formula of the solution of equation (2.2) that

||x(t)|| ≤ MeW0t ||Φ0||+
q

∑
i=1

M2
∫ t

0
eW0(t−s)(||x(s−hi)||+ ||x(s+hi)||)ds

≤ MeW0t ||Φ0||+SI1

= MeW0t ||Φ0||+M2eW0tSI2, (3.3)

where

SI1 =
q

∑
i=1

M2(
∫ t−hi

−hi

eW0(t−τ−hi)||x(τ)||dτ +
∫ t+hi

hi

eW0(t−τ+hi)||x(τ)||dτ)

and

SI2 =
q

∑
i=1

(
∫ t−hi

−hi

e−W0(τ+hi)||x(τ)||dτ +
∫ t+hi

hi

e−W0(τ−hi)||x(τ)||dτ).

But after a standard estimation we have

SI2 ≤ eW0hqq

∫ 2hq

−hq

||Φ(τ)||dτ +q

∫ t

0
e−W0τ ||x(τ)||dτ

+
q

∑
i=1

∫ t

0
e−W0τ ||x(τ +hi)||dτ (because W0 > 0)

≤C′||Φ(·)||Lp([−hq,2hq]; Rn)+q

∫ t

0
e−W0τ ||x(τ)||dτ

+q

∫ t

0
e−W0τ(max(||x(τ +h1)||, · · · , ||x(τ +hq)||))dτ.

≤C′||Φ(·)||Lp([−hq,2hq]; Rn)+q

∫ t

0
e−W0τ(max(||x(τ +h1)||, · · · , ||x(τ +hq)||, ||x(τ)||)+1)dτ

+q

∫ t

0
e−W0τ(max(||x(τ +h1)||, · · · , ||x(τ +hq)||))dτ.
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Now, if f (τ) is defined as

f (τ) = 1+
max(||x(τ +h1)||, · · · , ||x(τ +hq)||)

max(||x(τ +h1)||, · · · , ||x(τ +hq)||, ||x(τ)||)+1

we have that the former inequality is estimated by

C′||Φ(·)||Lp([−hq,2hq]; Rn)+q

∫ t

0
e−W0τ f (τ)(max(||x(τ +h1)||, · · · , ||x(τ +hq)||, ||x(τ)||)+1)dτ. (3.4)

Combining (3.3) and (3.4) we obtain

||x(t)|| ≤ eW0t [M||Φ0||+M2C′||Φ||Lp([−hq,2hq]; Rn)

+M2q

∫ t

0
e−W0τ f (τ)(max(||x(τ +h1)||, · · · , ||x(τ +hq)||, ||x(τ)||)+1)dτ]

.

Now, if C′′ is constant (depending on t) such that 1 ≤ eW0tM2C′′||Φ||Lp([−hq,2hq]; Rn), we have

||x(t)||+1 ≤ eW0t [M||Φ0||+M2C||Φ||Lp([−hq,2hq]; Rn)

+M2q

∫ t

0
e−W0τ f (τ)(max(||x(τ +h1)||, · · · , ||x(τ +hq)||, ||x(τ)||)+1)dτ]

where C =C′+C′′,

or equivalently

z(t)≤ β +
∫ t

0
a(τ)z(τ)dτ

where

β = M||Φ0||+ M2C||Φ||Lp([−hq,2hq]; Rn), a(τ) = M2q f (τ) and z(τ) is the function defined by z(τ) = e−W0τ(max(||x(τ +
h1)||, · · · , ||x(τ +hq)||, ||x(τ)||)+1). Then, from Gronwall Lemma (see [11], p.639) we conclude that

z(t)≤ β (exp

∫ t

0
a(τ)dτ)

and so

||x(t)|| ≤ β exp(
∫ t

0
a(τ)dτ +W0t)

≤ exp(M2q

∫ t

0
f (τ)dτ +W0t)max[M,M2C][||Φ0||+ ||Φ||Lp([−hq,2hq]; Rn)].

Now, let us note that
∫ t

0 f (τ)dτ ≤ 2t. This shows [i].

In a similar way, we obtain from the former inequality, for p ∈ [1,∞)

||x(t)||p ≤ K(exp{p(qM2ct +W0t)}[||Φ0||
p + ||Φ||p

Lp([−hq,2hq]; Rn)
]),

where K a suitable constant. Integrating this inequality gives [ii].

Now, we are going to construct the c0-semigroup. Let us first recall that, for a pair X ,Y of normed spaces, we can introduce

a normed space X ⊕Y called a direct (topological) sum of X and Y that consists of all ordered pairs (x,y),x ∈ X ,y ∈ Y together

with the norm ‖(x,y)‖= ‖x‖X +‖y‖Y . X and Y are isometric to subspaces {(x,0);x ∈ X} and {(0,y);y ∈ Y} of X ⊕Y . If X

and Y are Banach spaces, so is X ⊕Y . Convergence in X ⊕Y means that (xn,yn) tends to (x,y) if and only if both ‖xn − x‖X

and ‖yn − y‖Y tend to zero as n tends to infinity.

Let us also recall that the elements in Lp([−hq,2hq]; R
n), 1 ≤ p ≤ ∞, are, in fact, equivalence classes of functions, with the

corresponding equivalence relation ℜ defined by f ℜg if and only if f = g a.e.

Let Mp be the closure in Lp([−hq,2hq]; R
n) of the subspace Lp([−hq,2hq]; R

n)∩C([−hq,2hq]; R
n). Mp is a Banach space

with the same norm as Lp([−hq,2hq]; R
n). Let us now consider the Banach space Rn⊕Mp, and let Gp be the linear subspace of

all pairs (r, f ) ∈ R
n ⊕Mp, 1 ≤ p ≤ ∞, such that r = f (0). If f ∈ Lp([−hq,2hq]; R

n), it is well known that there exist functions
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g ∈ Lp([−hq,2hq]; R
n), such that f = g a.e., as we have previously indicated. But in our case the function f is supposed to be

continuous on the whole interval [−hq,2hq] and there is no ambiguity: Gp is thus well defined.

Finally, let Jp be the closure in R
n ⊕Mp of the linear subspace Gp. For 1 ≤ p ≤ ∞, Jp is thus a Banach space.

Since (x, f ) = ( f (0), f )+(x− f (0),0), it is easily seen that J∞ is a topologically complemented subspace of Rn ⊕M∞.

On the other hand, for h ∈ L∞([−hq,2hq]; R
n), there exist a continuous function f ∈ L∞([−hq,2hq]; R

n) such that

h = f a.e. Bearing in mind that (r,h) = (r, f )+ (0,h− f ), we have that Rn ⊕M∞ is also topologically complemented in

R
n ⊕L∞([−hq,2hq]; R

n), and thus so is J∞.

Theorem 3.3. The operator T (t) defined for each t ≥ 0 by (??) satisfies

(1) T (t) ∈ L(Jp) for every t ≥ 0

(2) T (t) is a C0-semigroup in Jp

Proof . (1) First, we suppose p ∈ [1,∞). Note that

(

∫ 2hq

−hq

||x(t + τ)||pdτ

)1/p

=

(

∫ 2hq+t

−hq+t
||x(τ)||pdτ

)1/p

≤

(

∫ 2hq+t

−hq

||x(τ)||pdτ

)1/p

≤ K

(

(
∫ 2hq

−hq

||Φ(τ)||pdτ)1/p +(
∫ 2hq+t

2hq

||x(τ)||pdτ)1/p

)

.

Then, using Lemma 3.2, we have for

(

Φ0

Φ(·)

)

∈ Jp,

||T (t)

(

Φ0

Φ(·)

)

|| = ||x(t)||+

(

∫ 2hq

−hq

||x(t + τ)||pdτ

)1/p

≤ Rt [||Φ0||+ ||Φ(·)||Lp([−hq,2hq];Rn)].

In the case p = ∞, we can suppose x(t) 6= 0 (otherwise the result is trivial), and let us choose t0 such that x(t0) 6= 0. Then,

bearing in mind that for each t, ||x(t + τ)||∞ is a positive real number whose value only depends on t and using Lemma 3.2, we

have

||x(t + τ)||∞ =
||x(t + τ)||∞
||x(t0)||

· ||x(t0)|| ≤Ct [||Φ0||+ ||Φ(·)||Lp([−hq,2hq];Rn)],

where Ct =
||x(t+τ)||∞
||x(t0)||

·Ct0 .

Now, we will prove (2). The semigroup property can be proven similarly as in Theorem 2.4.4 of [11]. We only have to note

that, in this case, it is considered the function g(t) = x(t + s), where x(·) is the solution of system (2.2). Then g(t) satisfies

ġ(t) = A0g(t)+
q

∑
i=1

(Aig(t −hi)+Cig(t +hi)), t ≥ 0

g(0) = x(s)

g(θ) = x(s+θ), θ ∈ [−hq,2hq].

To prove the strong continuity, we begin with the case p ∈ [1,∞). For t < h1 we have

||T (t)

(

Φ0

Φ(·)

)

−

(

Φ0

Φ(·)

)

||=

||eA0tΦ0 +∑
q
i=1

∫ t
0 eA0(t−s)(AiΦ(s−hi)+CiΦ(s+hi))ds−Φ0|| +

(

∫ −t
−hq

||Φ(t + τ)−Φ(τ)||pdτ +
∫ 2hq

−t ||x(t + τ)−Φ(τ)||pdτ
)1/p

.

The first term converges to zero as t → 0, because

eA0t +
q

∑
i=1

∫ t

0
eA0(t−s)(AiΦ(s−hi)+CiΦ(s+hi))ds

is continuous. On the other side, using the triangle inequality and Lemma 3.2, the integral terms tend to zero by Lebesgue’s

Dominated Convergence Theorem.

The case p = ∞ is similar. We only have to note that ||x(t + τ)− x(τ)||∞ → 0 as t → 0.
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Lemma 3.4. Consider the c0−semigroup T (t) defined above and let A be its infinitesimal generator. For sufficiently large

α ∈ R, the resolvent is given by

(αI −A)−1

(

Φ0

Φ(·)

)

=

(

g(0)
g(·)

)

where

g(θ) = eαθ g(0)−
∫ θ

0
eα(θ−s)Φ(s)ds, θ ∈ [−hq,2hq] (3.5)

and

g(0) = (∆(α))−1

(

Φ0 +
q

∑
i=1

∫ 0

−hi

e−α(θ+hi)AiΦ(θ)dθ

)

. (3.6)

where

∆(λ ) = λ I −A0 −

(

q

∑
i=1

e−λhiAi + eλhiCi

)

, λ ∈ C.

Furthermore, g satisfies the following relation

αg(0) = Φ0 +A0g(0)+
q

∑
i=1

Aig(−hi)+Cig(hi). (3.7)

Proof . According to Lemma 2.1.11 in [11], we have for α > ω0 that

(αI −A)−1

(

Φ0

Φ(·)

)

=
∫ ∞

0
e−αtT (t)

(

Φ0

Φ(·)

)

dt =
∫ ∞

0
e−αt

(

x(t)
x(t + ·)

)

dt.

We define

g(θ) =
∫ ∞

0
e−αtx(t +θ)dt, for θ ∈ [−hq,2hq].

Rewriting this function as g(θ) =
∫ ∞

θ e−α(s−θ)x(s)ds it is easy to see that g(·) is a solution of

∂g(θ)

∂θ
= αg(θ)− x(θ), θ ∈ [−hq,2hq].

In [−hq,2hq], the variation of constants formula for this ordinary differential equation shows that g(·) equals (3.5). It only

remains to prove (3.6).

Bearing in mind that, according to Lemma 3.2, Ct

[

||Φ0||+ ||Φ(·)||Lp([−hq,2hq];Rn)

]

is an upper bound for x(t), we have

αg(0) = α

∫ ∞

0
e−αtx(t)dt =−[x(t)e−αt ]∞0 +

∫ ∞

0
e−αt ẋ(t)dt

= Φ0 +
∫ ∞

0
e−αt [A0x(t)+

q

∑
i=1

Aix(t −hi)+Cix(t +hi)]dt

= Φ0 +A0

∫ ∞

0
e−αtx(t)dt +

q

∑
i=1

∫ ∞

0
e−αt(Aix(t −hi)+Cix(t +hi))dt

= Φ0 +A0g(0)+
q

∑
i=1

Aig(−hi)+Cig(hi).

This proves equation (3.7). On the other hand, if we split the integrals in the former equation, we obtain

αg(0) = Φ0 +A0g(0)+
q

∑
i=1

∫ ∞

hi

e−αt(Aix(t −hi)+Cix(t +hi))dt

+
q

∑
i=1

∫ hi

0
e−αt(AiΦ(t −hi)+CiΦ(t +hi))dt

= Φ0 +A0g(0)+
q

∑
i=1

e−αhiAig(0)+
q

∑
i=1

e−αhiCig(0)

−
q

∑
i=1

e−αhi

∫ 2hi

hi

e−αθCiΦ(θ)dθ +
q

∑
i=1

∫ hi

0
e−αt(AiΦ(t −hi)+CiΦ(t +hi))dt
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and so
[

αI −A0 −

(

q

∑
i=1

e−αhiAi + eαhiCi)

)]

g(0) = Φ0 −
q

∑
i=1

eαhi

∫ 2hi

hi

e−αθCiΦ(θ)dθ

+
q

∑
i=1

(

∫ 0

−hi

e−α(θ+hi)AiΦ(θ)dθ +
∫ 2hi

hi

e−α(θ−hi)CiΦ(θ)dθ

)

= Φ0 +
q

∑
i=1

∫ 0

−hi

e−α(θ+hi)AiΦ(θ)dθ

which proves (3.6) for sufficiently large α .

In the following theorem, we first give an explicit formula for the infinitesimal generator A. The second part of the theorem

deals with the spectral properties. Some of the main conclusions of this second part are not true for MTFDE if the problem is

ill-posed ([4]), but for well-posed problems, as in our case, they remain valid.

Theorem 3.5. Consider the c0-semigroup defined as before. Its infinitesimal generator is given by

A

(

Φ0

Φ(·)

)

=





A0Φ0 +∑
q
i=1 AiΦ(−hi)+CiΦ(hi)

∂Φ(·)

∂θ





with domain

D(A) =

{(

Φ0

Φ(·)

)

∈ Jp : Φ is absolutely continuous,
∂Φ

∂θ
∈ Lp([−hq,2hq];R

n)

}

.

Furthermore, the spectrum of A is discrete and is given by

σ(A) = σp(A) = {λ ∈ C : det(∆(λ )) = 0} ,

where ∆(λ ) was defined in Lemma 3.4 and the multiplicity of each eigenvalue is finite for p = 2.

For every δ ∈ R, there are only finitely many eigenvalues in C
+
δ

. If λ ∈ σp(A), then

(

r

eλ ·r

)

, where r 6= 0 satisfies

∆(λ )r = 0, is an eigenvector of A with eigenvalue λ . On the other hand, if ζ is an eigenvector of A with eigenvalue λ , then

ζ =

(

r

eλ ·r

)

with ∆(λ )r = 0.

Proof . We denote by Ã the operator

Ã

(

Φ0

Φ(·)

)

=





A0Φ0 +∑
q
i=1 AiΦ(−hi)+CiΦ(hi)

∂Φ(·)

∂θ





with domain

D(Ã) =

{(

Φ0

Φ(·)

)

∈ Jp : Φ is absolutely continuous,
∂Φ

∂θ
∈ Lp([−hq,2hq];R

n)

}

.

We have to show that the infinitesimal generator A equals Ã. Let α0 be a sufficiently large real number such that the results

of Lemma 3.4 hold. We will show that the inverse of (α0I − Ã) equals (α0I −A)−1. This is enough to show that A = Ã. To this

end, we calculate

(α0I − Ã)(α0I −A)−1

(

Φ0

Φ(·)

)

= (α0I − Ã)

(

g(0)
g(·)

)

(where g is as in Lemma 3.4)

=





α0g(0)−A0g(0)− (∑
q
i=1 Aig(−hi)+Cig(hi))

α0g(·)−
∂g(·)

∂θ



=

(

Φ0

Φ(·)

)

,
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where the last equality holds by differentiating (3.5) from Lemma 3.4. Then, for

(

Φ0

Φ(·)

)

∈ Jp, we have shown that

(α0I − Ã)(α0I −A)−1

(

Φ0

Φ(·)

)

=

(

Φ0

Φ(·)

)

. (3.8)

It remains to show that

(α0I −A)−1(α0I − Ã)

(

Φ0

Φ(·)

)

=

(

Φ0

Φ(·)

)

in D(A).

For

(

Φ0

Φ(·)

)

∈ D(A) we define

(

Φ1

Φ1(·)

)

:= (α0I −A)−1(α0I − Ã)

(

Φ0

Φ(·)

)

.

Then according to (3.8), we have (α0I − Ã)

(

Φ1

Φ1(·)

)

= (α0I − Ã)

(

Φ0

Φ(·)

)

. Then

(

Φ0

Φ(·)

)

=

(

Φ1

Φ1(·)

)

if and only if

(α0I − Ã) is injective. Let us suppose, on the contrary, that there exists

(

Φ2

Φ2(·)

)

∈ D(A) such that

(

0

0

)

= (α0I − Ã)

(

Φ2

Φ2(·)

)

=





α0Φ2(0)−A0Φ2(0)−LdΦ2(0)−LaΦ2(0)

α0Φ2(·)−
∂Φ2(·)

∂θ



 ,

where we have used the definition of Ã and D(Ã) in the last two steps. Then

Φ2(θ) = Φ2(0)e
α0θ and α0Φ2(0)−A0Φ2(0)− (

q

∑
i=1

AiΦ2(−hi)+CiΦ2(hi))

= α0Φ2(0)−A0Φ2(0)− (
q

∑
i=1

AiΦ2(0)e
−α0hi +CiΦ2(0)e

α0hi) = 0.

However, since

α0I −A0 − (
q

∑
i=1

Aie
−α0hi +Cie

α0hi)

is invertible, this implies that Φ2(0) = 0 and thus Φ2(·) = Φ2(0)e
−α0· = 0. This contradiction implies that (α0I− Ã) is injective.

This proves the assertion that A equals Ã.

Now, we calculate the spectrum of A. In Lemma 3.4 we obtained an expression for the resolvent operator for α ∈ R large

enough, in terms of g given by (3.5) and (3.6). Let us denote by Qλ the extension of the resolvent operator to C:

Qλ

(

r

f (·)

)

:=

(

g(0)
g(·)

)

.

A simple calculation shows that if λ ∈ C satisfies

det(λ I −A0 − (
q

∑
i=1

Aie
−λhi +Cie

λhi)) 6= 0,

then Qλ is a bounded linear operator from JpC to JpC , where JpC is the closed linear subspace of pairs

(

r

f (·)

)

in C
n ⊕

Lp([−hq,2hq];C
n) such that r = f (0). Furthermore, for these λ we have (λ I −A)Qλ = I and (λ I −A) is injective. As in the

first part of the proof, we conclude that Qλ = (λ I −A)−1, the resolvent operator of A. We have that

{

λ ∈ C : det(λ I −A0 − (
q

∑
i=1

Aie
−λhi +Cie

λhi)) 6= 0

}

⊂ ρ(A).

On the other hand, if det(∆(λ )) = 0, there exists z ∈ C
n such that

(λ I −A0 − (
q

∑
i=1

Aie
−λhi +Cie

λhi))z = 0.
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The following element of JpC

z0 =

(

z

eλ ·z

)

is in D(A)

and

(λ I −A)z0 =

(

λ z−A0z− (∑
q
i=1 Aie

−λhi +Cie
λhi)z

λeλθ z− ∂
∂θ

eλθ z

)

=

(

0

0

)

.

Then

σp(A)⊃

{

λ ∈ C : det(λ I −A0 − (
q

∑
i=1

Aie
−λhi +Cie

λhi)) = 0

}

.

The remaining of the proof can be done, mutatis mutandis, as in Theorem 2.4.6 of [11].

4. An application: Controllability

In this section we will apply some of the the results obtained in section 3 to study the null controllability for the system

ẋ(t) = A0x(t)+
q

∑
i=1

Aix(t −hi)+
q

∑
i=1

Cix(t +hi)+Bu(t), t > 0

x(0) = Φ0 (4.1)

x(s) = Φ(s), s ∈ [−hq,2hq],

where as before 0 < h1 < h2 < · · · < hq, Ai,Ci ∈ L (Rn), i = 1, · · · ,q, Ai 6= 0 for some i, Φ0 ∈ R
n, Φ ∈ Lp([−hq,2hq];R

n),
1 ≤ p ≤ ∞.

Also for this case, we will consider B ∈ L (Rn) and u : [0,∞)→ R
n an essentially bounded function.

We have already shown that, if the problem is well-posed, (4.1) can be written equivalently as the following system of

ordinary differential equations in Jp

ẇ(t) = Aw(t)+ B̄u(t), t > 0 (4.2)

w(0) = w0 = (Φ0,Φ(·)),

where A is the infinitesimal generator of the semigroup {T (t)}t≥0 and B̄ : Rn → Jp is given by B̄u =

(

Bu

0

)

.

The mild solution of (4.2) is thus given by

w(t) = T (t)w0 +
∫ t

0
T (t − s)B̄u(s)ds.

Let Ω be a non-empty compact convex subset of Rn. The set

Ω̃r = {u ∈ L∞
Rn [0,r] : u ∈ Ω a.e}

is called the set of admissible controls of (4.2) (or equivalently (4.1)), while the set

Ar(w0) =

{

T (r)w0 +
∫ r

0
T (r− s)B̄u(s)ds : u ∈ Ω̃r

}

is the set of accesible points of (4.2). The system (4.2) is controllable if 0 ∈ Ar(w0).
In a more general context, we have a system similar to (4.2), with X and U Banach spaces, A : X → X the infinitesimal

generator of a strongly continuous semigroup {S(t)}t≥0, B : U → X a bounded linear operator and u : [0,∞)→U a strongly

measurable, essentially bounded function. We suppose that Ω is a non-empty separable, weakly compact subset of U . The

formula for the mild solution is completely similar, Ω̃r = {u ∈ L∞
U [0,r] : u ∈ Ω a.e} is the set of admissible controls, while

Ar(w0) =
{

S(r)w0 +
∫ r

0 S(r− s)Bu(s)ds : u ∈ Ω̃r

}

is the set of accesible points. Analogously, the system is controllable if

0 ∈ Ar(w0).
The controllability map on [0,r] for some r ≥ 0 is the linear map

Br : L∞([0,r] ;U)→ X
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defined by

Bru =
∫ r

0
S(r− s)Bu(s)ds

Now, one says that the system is exactly controllable on [0,r] if every point in X can be reached from the origin at r, i.e., if

ran(Br) = X .

If ran(Br) = X , then 0 ∈ Ar(0). On the other hand, one can prove, using the Open Mapping Theorem, the following: if

0 ∈ interior(Ar(0)), then ran(Br) = X . See ([14])

Next, we recall two results that we will use to characterize the null controllability. The Theorem of Peichl and Schappacher

([15]) is as follows:

Theorem 4.1. Let X and U be reflexive Banach spaces with U separable. Let B : U → X be a bounded linear operator, A be

the infinitesimal generator of a c0-semigroup {S(s)}s≥0 of operators on X and Ω be a weakly compact convex subset of U that

contains 0. Then for each T > 0, 0 ∈ AT (xo) if and only if for each x∗ ∈ X∗

< x∗,S(T )x0 >+
∫ T

0
max
v∈Ω

< x∗,S(t)Bv > dt ≥ 0.

Additionally, we have the Bárcenas-Diestel ([16]) extension

Theorem 4.2. Let X and U be Banach spaces, let B : U → X be a bounded linear operator, and A : X → X be the infinitesimal

generator of a c0-semigroup {S(t)}t≥0 on X whose dual semigroup is strongly continuous on (0,∞). Suppose Ω is a non-empty

separable weakly compact convex subset of U containing 0. Then for each T > 0, 0 ∈ AT (xo) if and only if for each x∗ ∈ X∗

< x∗,S(T )x0 >+
∫ T

0
max
v∈Ω

< x∗,S(t)Bv > dt ≥ 0.

Theorems 4 and 5 show how to set the control problems in a Banach Space context, focusing on the question of accessibility

of controls. For separable reflexive spaces, the elegant result of Peichl-Schappacher proves to be very useful.

The Bárcenas-Diestel Theorem is, on the other hand, an important and recent achievement on exact controllability.

Throughout the literature, hypotheses like ”separable and reflexive” are frequently encountered. By employing techniques from

Banach space theory and the theory of vector measures, the authors show how to remove the hypothesis of reflexivity (thus

giving considerably greater generality to the resulting conclusions) and translate the question of accessibility of controls to a

problem in semigroups of operators, namely, given a c0-semigroup (S(t))t≥0 of operators on a Banach space X , under what

conditions is the dual semigroup strongly continuous on (0,∞)? This is the question we will try to answer for the non-reflexive

cases p = 1 and p = ∞

We recall that a Banach space is a Grothendieck space if every weakly∗-convergent sequence in X∗ is also weakly convergent.

Equivalently, X is a Grothendieck space if every linear bounded operator from X to any separable Banach space is weakly

compact. Among Grothendieck spaces, we will list all reflexive Banach spaces and L∞(Ω,Σ,µ), where (Ω,Σ,µ) is a positive

measure space. A Banach space isomorphic to a complemented subspace of a Grothendieck space is also a Grothendieck space.

The direct sum of two Grothendieck spaces is also a Grothendieck space. Several characterizations of Grothendieck spaces are

found in [17].

A Banach space is said to have the Dunford-Pettis property if every weakly compact operator in L(X) applies relatively

weakly compact sets onto norm compact sets. The most common examples of Banach spaces with this property are L1(µ) and

C(K). Complemented subspaces and the direct sum of any two of such spaces also have the property. For more details, see [18].

If X is a Grothendieck space with the Dunford-Pettis property, Lotz ([19]) has shown that every strongly continuous

semigroup is uniformly continuous, and therefore also is the adjoint semigroup.

We also recall that a bounded linear operator T : X → Y (where X and Y are Banach Spaces) factors through a Banach

space Z if there are bounded linear operators u : X → Z and v : Z → Y such that T = vu

It is proven in [20] that if X is a Banach space and {T (t)}t≥0 a c0-semigroup defined on X such that for every a > 0 there

exists a Grothendieck space Ya such that T (a) factors through Ya, then {T ∗(t)}t≥0 is strongly continuous on (0,∞). This will

prove useful to establish our main result for the case p = 1.

Factoring through Grothendieck spaces is, in general, not easy to verify, but among semigroups satisfying those assumptions

(and, hence, having adjoints which are strongly continuous on (0,∞)) we mention weakly compact semigroups, i.e, semigroups

such that T (t) is weakly compact for each t (see [20] for more details). There are many examples of weakly compact semigroups,

a category that includes all compact semigroups. Moreover, for p= 1 the terms ”weakly compact” and ”compact” are equivalent,

due to the classical Schur theorem.

It is true that those assumptions cannot be verified without any analysis of the semigroup, which is here presented in an

abstract, general form. But provided that x(t) and Φ(·) are known, one can manage to get more precise information about it.
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Finally, one should remember that all those considerations are relevant only for the case p = 1. For all other cases, no additional

assumptions are needed.

Now, we can state the result concerning (4.2)

Theorem 4.3. For each r > 0, 0 ∈ Ar(w0) if and only if for each x∗ ∈ J∗p, 1 < p ≤ ∞,

< x∗,T (r)w0 >+
∫ r

0
max
v∈Ω

< x∗,T (t)B̄v(t)> dt ≥ 0.

If additionally, we suppose that the associated semigroup satisfies that, for every a > 0 there exists a Grothendieck space Ya

such that T (a) factors through Ya, (in particular, if it is compact) then the same holds for p = 1.

Proof . The case p ∈ (1,∞) is an inmediate consequence of Theorem 4.1. We only have to remember that the direct sum of

any two reflexive Banach spaces and every subspace of a reflexive Banach space are also reflexive.

Semigroups which factor through Grothendieck spaces have adjoints {T ∗(t)}t≥0 which are strongly continuous on (0,∞).
Then Theorem 4.2 can be applied for the case p = 1.

Now, let us suppose p = ∞. Note that Rn and L∞([−hq,2hq]; R
n) are Grothendieck spaces with the Dunford-Pettis

property (remember that L∞([−hq,2hq]; R
n) is isomorphic to C(K) for some suitable compact Hausdorff space K, see

[21]). Consequently, Rn ⊕L∞([−hq,2hq]; R
n) is also a Grothendieck space with the Dunford-Pettis property, and so is the

complemented subspace J∞. Therefore, the associated semigroup {T (t)}t≥0 is uniformly continuous, according to the Lotz

Theorem [19]. In particular, the adjoint semigroup {T ∗(t)}t≥0 is uniformly continuous, and we can apply Theorem 4.2 again.

As a conclusion, let us indicate that the results obtained in this work can be applied to certain mixed-type systems of partial

differential equations like the following

∂x(t,y)

∂ t
= D∆x(t,y)+

q

∑
i

Aix(t −hi,y)+
q

∑
i

Cix(t +hi,y)+Bu(t,y),

∂x

∂η
= 0, y ∈ ∂Ω,

x(0,y) = Φ0(y), y ∈ Ω

x(s,y) = Φ(s,y),

where Ω is a bounded domain in R
n, t ∈ (0,r], 0 < h1 < h2 < · · ·< hq, D is an n×n nondiagonal matrix whose eigenvalues are

semi-simple with nonnegative real part, B,Ai,Ci ∈L (Rn), i= 1,2, . . . ,q,Ai 6= 0 for some i, Φ0 ∈R
n, the control u : [0,∞)→R

n

is essentially bounded and Φ ∈ Lp[[−hq,2hq];R
n], 1 ≤ p ≤ ∞, is defined by

Φ(s,y) =

{

Φ1(s,y), s ∈ [−hq,0], y ∈ Ω

Φ2(s,y), s ∈ [0,2hq], y ∈ Ω

The symbol η denotes the normal to ∂Ω, and ∂x
∂η

is the normal derivative, which is defined as the inner product of the

gradient ∇x with the (unit) normal vector η . The condition ∂x
∂η

= 0 for y ∈ ∂Ω and t ∈ (0,r] is thus an homogeneous Neumann

condition.

We would like to finish with a brief note about the particular case of delay equations. Several interesting examples of this

type are found in the literature. Among them we have systems of parabolic equations with delay (including particular cases of

the nD heat equation and systems without diffusion coefficients), and in general a broad class of functional reaction-diffusion

equations (see, for example, [12]). But there is now an important difference: in all those examples the function Φ is supposed

to lie in a Hilbert space, while here it is allowed to belong to a Lp-space, 1 ≤ p ≤ ∞. This in turn allows to study these classical

equations (and, in particular, their null controllability) in a considerably more general context.
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1. Introduction

Difference equations enter as approximations of continuous problems and as models describing life situations in many directions.

Recently, there has been great interest in studying difference equation systems. One of the reasons for this is a necessity for

some techniques that can be used in investigating equations arising in mathematical models describing real-life situations in

population biology, economic, probability theory, genetics and psychology see [1]-[25].

In [1] Alzahrani et al. found the form of solutions for the following systems of rational difference equations

xn+1 =
ynyn−2

±yn−2 ± xn−3
, yn+1 =

xnxn−2

±xn−2 ± yn−3
.

In [2] Asiri et al. studied the form of the solutions and the periodicity of the following third order systems of rational

difference equations

xn+1 =
yn−2

1− yn−2xn−1yn

, yn+1 =
xn−2

±1± xn−2yn−1xn

.

In [14] Elsayed et al. got the form of the solutions of the following difference equation systems of order four

xn+1 =
xn−2yn

yn−3 + yn

, yn+1 =
xnyn−2

±xn−3 ± xn

.

In [4] Cinar studied the solutions of the systems of the difference equations.

xn+1 =
1

yn

, yn+1 =
yn

xn−1yn−1
.
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In [23] Papaschinnopoulos and Schinas studied the oscillatory behavior, the boundedness of the solutions,and the global

asymptotic stability of the positive equilibrium of the system of nonlinear difference equations

xn+1 = A+
yn

xn−p

, yn+1 = A+
xn

yn−q

.

In [13] Elsayed has obtained the solution of the following system of the difference equations

xn+1 =
1

yn−k

, yn+1 =
yn−k

xnyn

.

The behaviour of the positive solution of the following system

xn+1 =
xn−1

1+ xn−1yn

, yn+1 =
yn−1

1+ xnyn−1

has been studied by Kurbanli et al. [19].

In [25] Yalcinkaya investigated the sufficient condition for the global asymptotic stability of the following system of

difference equations

zn+1 =
a+ tnzn−1

tn + zn−1
, tn+1 =

a+ zntn−1

zn + tn−1
.

The aim of this article is to obtain the expressions of the solutions of the following systems of difference equations

xn+1 =
1± (yn + xn−1)

yn−2
, yn+1 =

1± (xn + yn−1)

xn−2
, n = 0,1,2, ...,

where the initial conditions x−2, x−1, x0, y−2, y−1, y0 are arbitrary non zero real numbers. Moreover, we obtain some

numerical simulation to the equation are given to illustrate our results.

Definition (Periodicity)

A sequence {xn}
∞

n=−k is said to be periodic with period p if xn+p = xn for all n ≥−k.

2. On the system xn+1 =
1+yn+xn−1

yn−2
, yn+1 =

1+xn+yn−1

xn−2

In this section, we study the solution of the following system of difference equations

xn+1 =
1+ yn + xn−1

yn−2
, yn+1 =

1+ xn + yn−1

xn−2
, (2.1)

where the initial conditions x−2, x−1, x0, y−2, y−1, y0 are arbitrary non zero real numbers.

2.1 Periodicity of the solutions of system (2.1)
The following theorem is devoted to the periodicity of the solutions of system (2.1).

Theorem 1. Suppose that {xn,yn}
∞

n=1 be a solution of system (2.1). Then all solutions of system (2.1) are periodic with period

eight.

Proof. From Eq.(2.1), we see that

xn+1 =
1+ yn + xn−1

yn−2
, yn+1 =

1+ xn + yn−1

xn−2
,

xn+2 =
1+ yn+1 + xn

yn−1
=

1+ xn−2 + xn + yn−1 + xnxn−2

yn−1xn−2
,

yn+2 =
1+ xn+1 + yn

xn−1
=

yn−2 +1+ yn + xn−1 + yn−2yn

yn−2xn−1
,

xn+3 =
1+ yn+2 + xn+1

yn

=
yn−2xn−1 + yn−2 +1+ yn +2xn−1 + yn−2yn + xn−1yn +(xn−1)

2

yn−2xn−1yn

,

yn+3 =
1+ xn+2 + yn+1

xn

=
yn−1xn−2 +1+ xn−2 + xn +2yn−1 + xnxn−2 + yn−1xn +(yn−1)

2

yn−1xn−2xn

,
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xn+4 =
1+ yn+3 + xn+2

yn+1

=

yn−1xn−2xn + yn−1xn−2 +1+ xn−2 + xn +2yn−1 + xnxn−2

+yn−1xn +(yn−1)
2 + xn(1+ xn−2 + xn + yn−1 + xnxn−2)

(1+xn+yn−1)yn−1xn

=
(1+ xn−2 + xn + yn−1 + xnxn−2)(1+ xn + yn−1)

(1+ xn + yn−1)yn−1xn

=
1+ xn−2 + xn + yn−1 + xnxn−2

yn−1xn

,

yn+4 =
1+ xn+3 + yn+2

xn+1

=

xn−1ynyn−2 + yn−2xn−1 + yn−2 +1+ yn +2xn−1 + yn−2yn

+xn−1yn +(xn−1)
2 + yn(yn−2 +1+ yn + xn−1 + yn−2yn)

xn−1yn(1+yn+xn−1)

=
(1+ yn + xn−1)(yn−2 +1+ yn + xn−1 + yn−2yn)

xn−1yn(1+ yn + xn−1)

=
yn−2 +1+ yn + xn−1 + yn−2yn

xn−1yn

,

xn+5 =
1+ yn+4 + xn+3

yn+2

=

yn−2xn−1yn + yn−2(yn−2 +1+ yn + xn−1 + yn−2yn)+
yn−2xn−1 + yn−2 +1+ yn +2xn−1 + yn−2yn + xn−1yn +(xn−1)

2

yn(yn−2+1+yn+xn−1+yn−2yn)

=
(xn−1 + yn−2 +1)(yn−2 +1+ yn + xn−1 + yn−2yn)

yn(yn−2 +1+ yn + xn−1 + yn−2yn)

=
xn−1 + yn−2 +1

yn

,

yn+5 =
1+ xn+4 + yn+3

xn+2

=

yn−1xn−2xn + xn−2(1+ xn−2 + xn + yn−1 + xnxn−2)+
yn−1xn−2 +1+ xn−2 + xn +2yn−1 + xnxn−2 + yn−1xn +(yn−1)

2

xn(1+xn−2+xn+yn−1+xnxn−2)

=
(1+ yn−1 + xn−2)(1+ xn−2 + xn + yn−1 + xnxn−2)

xn(1+ xn−2 + xn + yn−1 + xnxn−2)

=
1+ yn−1 + xn−2

xn

,

xn+6 =
1+ yn+5 + xn+4

yn+3

=
yn−1xn + yn−1(1+ yn−1 + xn−2)+1+ xn−2 + xn + yn−1 + xnxn−2

(yn−1xn−2 +1+ xn−2 + xn +2yn−1 + xnxn−2 + yn−1xn +(yn−1)
2)

xn−2

= xn−2,

yn+6 =
1+ xn+5 + yn+4

xn+3

=
xn−1yn + xn−1(xn−1 + yn−2 +1)+ yn−2 +1+ yn + xn−1 + yn−2yn

yn−2xn−1 + yn−2 +1+ yn +2xn−1 + yn−2yn + xn−1yn +(xn−1)
2

yn−2

= yn−2,
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xn+7 =
1+ yn+6 + xn+5

yn+4
=

yn + ynyn−2 + xn−1 + yn−2 +1
(yn−2+1+yn+xn−1+yn−2yn)

xn−1

= xn−1,

yn+7 =
1+ xn+6 + yn+5

xn+4
=

xn + xnxn−2 +1+ yn−1 + xn−2

1+xn−2+xn+yn−1+xnxn−2

yn−1

= yn−1,

xn+8 =
1+ yn+7 + xn+6

yn+5

=
1+ yn−1 + xn−2

1+yn−1+xn−2

xn

= xn,

yn+8 =
1+ xn+7 + yn+6

xn+5

=
1+ xn−1 + yn−2

xn−1+yn−2+1

yn

= yn.

Thus, the solutions are periodic with period eight.

2.2 The form of the solutions of system (2.1)
The following theorem describes the form of the solutions of system (2.1).

Theorem 2. Suppose that {xn,yn} are solutions of the system (2.1). Then for n = 0,1,2, ..., we have the following formulas

x8n−2 = c, x8n−1 = b, x8n = a, x8n+1 =
1+d +b

f
,

x8n+2 =
ac+a+ c+ e+1

ec
, x8n+3 =

b2 +bd +b f +d f +2b+d + f +1

f bd
,

x8n+4 =
ac+a+ c+ e+1

ea
, x8n+5 =

1+ f +b

d
,

y8n−2 = f , y8n−1 = e, y8n = d, y8n+1 =
1+a+ e

c
,

y8n+2 =
d f +b+d + f +1

f b
, y8n+3 =

e2 +ac+ae+ ce+2e+a+ c+1

cea
,

y8n+4 =
d f +b+d + f +1

bd
, y8n+5 =

1+ c+ e

a
,

where the initial conditions x−2 = c, x−1 = b, x0 = a, y−2 = f , y−1 = e, y0 = d.

Or equivalently

{xn}
+∞

n=−2 =

{

c,b,a, 1+d+b
f

,

ac+a+c+e+1
ec

,

b2+bd+b f+d f+2b+d+ f+1
f bd

,

ac+a+c+e+1
ea

,

1+ f+b
d

,c,b,a, ...

}

,

{yn}
+∞

n=−2 =

{

f ,e,d, 1+a+e
c

,

d f+b+d+ f+1
f b

,

e2+ac+ae+ce+2e+a+c+1
cea

,

d f+b+d+ f+1
bd

,

1+c+e
a

, f ,e,d, ...

}

.

Proof. For n = 0 the result holds. Suppose that the result holds for n−1.

x8n−10 = c, x8n−9 = b, x8n−8 = a, x8n−7 =
1+d +b

f
,

x8n−6 =
ac+a+ c+ e+1

ec
, x8n−5 =

b2 +bd +b f +d f +2b+d + f +1

f bd
,

x8n−4 =
ac+a+ c+ e+1

ea
, x8n−3 =

1+ f +b

d
,

y8n−10 = f , y8n−9 = e, y8n−8 = d, y8n−7 =
1+a+ e

c
,

y8n−6 =
d f +b+d + f +1

f b
, y8n−5 =

e2 +ac+ae+ ce+2e+a+ c+1

cea
,

y8n−4 =
d f +b+d + f +1

bd
, y8n−3 =

1+ c+ e

a
,
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from system (2.1) we can prove as follow

x8n−2 =
1+ y8n−3 + x8n−4

y8n−5

=
1+ 1+c+e

a
+ ac+a+c+e+1

ea

e2+ac+ae+ce+2e+a+c+1
cea

=
c(ea+ e(1+ c+ e)+ac+a+ c+ e+1)

e2 +ac+ae+ ce+2e+a+ c+1
= c.

Also, we get

x8n−1 =
1+ y8n−2 + x8n−3

y8n−4
=

1+ f + 1+ f+b
d

d f+b+d+ f+1
bd

=
b(d + f d +1+ f +b)

f d +b+d + f +1
= b,

x8n =
1+ y8n−1 + x8n−2

y8n−3
=

1+ e+ c
1+c+e

a

= a,

x8n+1 =
1+ y8n + x8n−1

y8n−2
=

1+d +b

f
,

x8n+2 =
1+ y8n+1 + x8n

y8n−1
=

1+ 1+a+e
c

+a

e
=

1+a+ e+ac+ c

ce
,

x8n+3 =
1+ y8n+2 + x8n+1

y8n

=
1+ d f+b+d+ f+1

f b
+ 1+d+b

f

d

=
f b+d f +b+d + f +1+b(1+d +b)

f bd

=
b2 +bd +b f +d f +2b+d + f +1

f bd
,

x8n+4 =
1+ y8n+3 + x8n+2

y8n+1
=

1+ e2+ac+ae+ce+2e+a+c+1
cea

+ 1+a+e+ac+c
ce

1+a+e
c

=
cea+ e2 +ae+ ce+ e+(ac+ e+a+ c+1)+a(1+a+ e+ac+ c)

ea(1+a+ e)

=
ac+a+ c+ e+1

ea
,

x8n+5 =
1+ y8n+4 + x8n+3

y8n+2
=

1+ d f+b+d+ f+1
bd

+ b2+bd+b f+d f+2b+d+ f+1
f bd

d f+b+d+ f+1
f b

=
b2 +bd +b f +d f +2b+d + f +1+ f (d f +b+d + f +1)+ f bd

d(d f +b+d + f +1)

=
1+ f +b

d
,

y8n−2 =
1+ x8n−3 + y8n−4

x8n−5

=
1+ b+ f+1

d
+ f+1+d+b+d f

bd

b2+bd+b f+d f+2b+d+ f+1
f bd

=
b2+b f+2b+bd+ f+d+1+d f

bd

b2+bd+b f+d f+2b+d+ f+1
f bd

= f ,

y8n−1 =
1+ x8n−2 + y8n−3

x8n−4
=

1+ c+ c+e+1
a

ac+a+c+e+1
ea

=
e(a+ ca+ c+ e+1)

ac+a+ c+ e+1
= e,

y8n =
1+ x8n−1 + y8n−2

x8n−3
=

1+b+ f
1+b+ f

d

= d,

y8n+1 =
1+ x8n + y8n−1

x8n−2
=

1+ e+a

c
,

y8n+2 =
1+ x8n+1 + y8n

x8n−1
=

1+ 1+d+b
f

+d

b
=

f +1+d +b+d f

f b
,
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y8n+3 =
1+ x8n+2 + y8n+1

x8n

=
1+ 1+a+e+ac+c

ce
+ 1+e+a

c

a

=
e2 +ac+ae+ ce+2e+a+ c+1

cea
,

y8n+4 =
1+ x8n+3 + y8n+2

x8n+1
=

1+ b2+bd+b f+d f+2b+d+ f+1
f bd

+ f+1+d+b+d f
f b

1+d+b
f

=
b2 + f bd +b+bd +b f +(d f +b+d + f +1)+d( f +1+d +b+d f )

bd(1+d +b)

=
f +1+d +b+d f

bd
,

y8n+5 =
1+ x8n+4 + y8n+3

x8n+2
=

1+ ac+a+c+e+1
ea

+ e2+ac+ae+ce+2e+a+c+1
cea

1+a+e+ac+c
ce

=
c(ac+a+ c+ e+1)+ e2 + cea+ ce+ae+ e+ac+ e+a+ c+1

a(1+a+ e+ac+ c)

=
c+ e+1

a
.

This completes the proof.

2.3 Numerical examples

For confirming the results of this section, we consider the following numerical example which represent solutions to system

(2.1).

Example 1. We consider interesting numerical example for the difference equations system (2.1) with the initial conditions

x−2 = 2, x−1 =−0.7, x0 = 0.9, y−2 = 3, y−1 =−0.5 and y0 = 11. (See Fig. 2.1).
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The following cases can be proved similarly.

3. On The System xn+1 =
1−(yn+xn−1)

yn−2
, yn+1 =

1+(xn+yn−1)
xn−2

In this section we study the solution of the following system of difference equations

xn+1 =
1− (yn + xn−1)

yn−2
, yn+1 =

1+(xn + yn−1)

xn−2
, (3.1)

where the initial conditions x−2, x−1, x0, y−2, y−1, y0, are arbitrary non zero real numbers.

Theorem 3. Let {xn,yn}
+∞

n=−2 be solutions of system (3.1). Then

1- {xn}
+∞

n=−2 and {yn}
+∞

n=−2 and are periodic with period eight i.e.,

xn+8 = xn, yn+8 = yn

for n ≥−2.

2- We have the following form of the solutions

x8n−2 = c, x8n−1 = b, x8n = a, x8n+1 =−
−1+d +b

f
,

x8n+2 = −
ac+a− c+ e+1

ec
, x8n+3 =

b2 +bd +b f −d f +d − f −1

f bd
,

x8n+4 =
ac+a− c− e+1

ea
, x8n+5 =

1+ f +b

d
,

y8n−2 = f , y8n−1 = e, y8n = d, y8n+1 =
1+a+ e

c
,

y8n+2 = −
−d f +b+d − f −1

f b
, y8n+3 =−

−e2 +ac−ae− ce+a− c+1

cea
,

y8n+4 = −
d f +b−d + f +1

bd
, y8n+5 =−

c+ e−1

a
,

or equivalently

{xn}
+∞

n=−2 =

{

c,b,a,−−1+d+b
f

,− ac+a−c+e+1
ec

,

b2+bd+b f−d f+d− f−1
f bd

,

ac+a−c−e+1
ea

,

1+ f+b
d

,c,b,a, ...

}

,

{yn}
+∞

n=−2 =

{

f ,e,d, 1+a+e
c

,−−d f+b+d− f−1
f b

,−−e2+ac−ae−ce+a−c+1
cea

,

− d f+b−d+ f+1
bd

,− c+e−1
a

, f ,e,d, ...

}

.

where the initial conditions x−2 = c, x−1 = b, x0 = a, y−2 = f , y−1 = e, y0 = d.

Example 2. We consider example for the difference system (3.1) where the initial conditions x−2 =−5, x−1 = 7, x0 = 2, y−2 =
−3, y−1 = 1.3 and y0 = 3. (See Fig. 3.1).
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4. On the system xn+1 =
1+(yn+xn−1)

yn−2
, yn+1 =

1−(xn+yn−1)
xn−2

In this section, we investigate the solution of the following system of difference equations

xn+1 =
1+(yn + xn−1)

yn−2
, yn+1 =

1− (xn + yn−1)

xn−2
, (4.1)

where the initial conditions x−2, x−1, x0, y−2, y−1, y0, are arbitrary non zero real numbers.

Theorem 4. Suppose that {xn,yn} are solutions of the system (4.1). Then for n = 0,1,2, ...

1- {xn}
+∞

n=−2 and {yn}
+∞

n=−2 and are periodic with period eight i.e.,

xn+8 = xn, yn+8 = yn,

for n ≥−2.

2- We have the following formulas

x8n−2 = c, x8n−1 = b, x8n = a, x8n+1 =
1+d +b

f
,

x8n+2 =
ac−a+ c− e+1

ec
, x8n+3 =

b2 +bd +b f −d f −d + f −1

f bd
,

x8n+4 = −
ac−a+ c+ e+1

ea
, x8n+5 =−

f +b−1

d
,

y8n−2 = f , y8n−1 = e, y8n = d, y8n+1 =−
a+ e−1

c
,

y8n+2 = −
d f +b+d − f +1

f b
, y8n+3 =−

−e2 +ac−ae− ce−a+ c+1

cea
,

y8n+4 = −
−d f +b−d + f −1

bd
, y8n+5 =

1+ c+ e

a
.

Or equivalently
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{xn}
+∞

n=−2 =

{

c,b,a, 1+d+b
f

,

ac−a+c−e+1
ec

,

b2+bd+b f−d f−d+ f−1
f bd

,

− ac−a+c+e+1
ea

,− f+b−1
d

,c,b,a, ...

}

,

{yn}
+∞

n=−2 =

{

f ,e,d,− a+e−1
c

,− d f+b+d− f+1
f b

,−−e2+ac−ae−ce−a+c+1
cea

,

−−d f+b−d+ f−1
bd

,

1+c+e
a

, f ,e,d, , ...

}

.

Example 3. We assume x−2 = 1.3, x−1 =−7, x0 = 2, y−2 =−3, y−1 = 9 and y0 =−4 for system (3.1) see Fig. 4.1.

0 5 10 15 20 25 30 35 40 45 50
−8

−6

−4

−2

0

2

4

6

8

10

n

x
(n

),
y
(n

)

plot of x
n+1

=(1+y
n
+x

n−1
)/y

n−2
,y

n+1
=(1−x

n
−y

n−1
)/x

n−2

 

 

x
n

y
n

Figure 4.1

5. On the system xn+1 =
1−(yn+xn−1)

yn−2
, yn+1 =

1−(xn+yn−1)
xn−2

In this section we study the solution of the following system of difference equations

xn+1 =
1− (yn + xn−1)

yn−2
, yn+1 =

1− (xn + yn−1)

xn−2
, (5.1)

where the initial conditions x−2, x−1, x0, y−2, y−1, y0, are arbitrary non zero real numbers.

Theorem 5. Let {xn,yn}
+∞

n=−2 be solutions of system (4.1). Then

1- {xn}
+∞

n=−2 and {yn}
+∞

n=−2 and are periodic with period eight i.e.,

xn+8 = xn, yn+8 = yn,
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2- We have the following form

x8n−2 = c, x8n−1 = b, x8n = a, x8n+1 =−
−1+d +b

f
,

x8n+2 = −
ac−a− c− e+1

ec
, x8n+3 =

b2 +bd +b f +d f −2b−d − f +1

f bd
,

x8n+4 = −
ac−a− c− e+1

ea
, x8n+5 =−

f +b−1

d
,

y8n−2 = f , y8n−1 = e, y8n = d, y8n+1 =−
−1+a+ e

c
,

y8n+2 =
−d f +b+d + f −1

f b
, y8n+3 =

e2 +ac+ae+ ce−2e−a− c+1

cea
,

y8n+4 =
−d f +b+d + f −1

bd
, y8n+5 =−

c+ e−1

a
.

Or equivalently

{xn}
+∞

n=−2 =

{

c,b,a,−−1+d+b
f

,− ac−a−c−e+1
ec

,

b2+bd+b f+d f−2b−d− f+1
f bd

,

− ac−a−c−e+1
ea

,− f+b−1
d

,c,b,a, ...

}

,

{yn}
+∞

n=−2 =

{

f ,e,d,−−1+a+e
c

,

−d f+b+d+ f−1
f b

,

e2+ac+ae+ce−2e−a−c+1
cea

−d f+b+d+ f−1
bd

,− c+e−1
a

, f ,e,d, ...

}

.

Example 4. See Fig. 5.1, if we take system (5.1) with x−2 =−8, x−1 = 5, x0 =−2.8, y−2 =−9, y−1 = 3 and y0 = 4.
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fuzzy metric space including Uniform continuity theorem and Ascoli-Arzela theorem.
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1. Introduction

One of the most important problems in fuzzy topology is to obtain an appropriate concept of fuzzy metric. This problem has

been investigated by many authors [1]-[10] from different points of views. In particular, Park [8] introduced the notion of

intuitionistic fuzzy metric as a generalization of fuzzy metric introduced and studied by George and Veeramani [2].

In this paper, we define L-fuzzy invariant metric space, study completeness and observe that a compact L-fuzzy invariant

metric space is separable. Further, we introduce the notion of uniform continuity and equicontinuity. Finally, we prove Uniform

continuity theorem and Ascoli-Arzela theorem.

2. L-fuzzy invariant metric space

Lemma 2.1. [11] Consider the set L∗ and operation ≤L∗ defined by L∗ = {(x1,x2) : (x1,x2) ∈ [0,1]2 and x1 + x2 ≤ 1} and

(x1,x2)≤L∗ (y1,y2)⇐⇒ x1 ≤ y1 and x2 ≥ y2 for every (x1,x2) ,(y1,y2) ∈ L∗. Then (L∗,≤L∗) is a complete lattice.

Definition 2.2. [9] An intuitionistic fuzzy set Aζ ,η in a universe U is an object Aζ ,η = {(ζA(u),ηA(u)) : u ∈U} where, for all

u ∈U, ζA(u) ∈ [0,1] and ηA(u) ∈ [0,1] are called the membership degree and non-membership degree, respectively, of u in

Aζ ,η , and furthermore they satisfy ζA(u)+ηA(u)≤ 1.

For every zi = (xi,yi)∈ L∗, if ci ∈ [0,1] such that Σn
j=1c j = 1 then c1(x1,y1)+c2(x2,y2)+ ...+cn(xn,yn) = Σn

j=1c j(x j,y j) =
(

Σn
j=1c jx j,Σ

n
j=1c jy j

)

∈ L∗.

We denote its units by 0L∗ = (0,1) and 1L∗ = (1,0). Classically, a triangular norm (shortly t-norm) ∗= T on [0,1] is defined

as an increasing, commutative and associative mapping T : [0,1]2 → [0,1] satisfying T (1,x) = 1∗ x = x for all x ∈ [0,1]. A

triangular conorm (shortly t-conorm) ♦= S is defined as an increasing, commutative and associative mapping S : [0,1]2 → [0,1]
satisfying S(0,x) = 0♦x = x for all x ∈ [0,1]. Using the lattice (L∗,≤L∗), these definitions can be extended.

Definition 2.3. [12] A triangular norm ℑ on L∗ is a mapping ℑ : (L∗)2 → L∗ satisfying the following conditions, for every

x,y,z, t ∈ L∗ :
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(a) ℑ(x,1L∗) = x,

(b) ℑ(x,y) = ℑ(y,x),

(c) ℑ(x,ℑ(y,z)) = ℑ(ℑ(x,y),z),

(d) x ≤L∗ z and y ≤L∗ t imply ℑ(x,y)≤L∗ ℑ(z, t).

Definition 2.4. [11, 12]

A continuous t-norm ℑ on L∗ is called continuous t-representable if and only if there exist a continuous t-norm ∗ and a

continuous t-conorm ♦ on [0,1] such that ℑ(x,y) = (x1 ∗ y1,x2♦y2) for all x = (x1,x2) ,y = (y1,y2) ∈ L∗.

Now define a sequence ℑn recursively by ℑ1 = ℑ and

ℑ
n(x1, ...,xn+1) = ℑ(ℑn−1(x1, ...,xn),xn+1)

for n ≥ 2 and xi ∈ L∗.

Definition 2.5. [11, 12]

A negator N on L∗ is any decreasing mapping N : L∗ → L∗ satisfying N (0L∗)= 1L∗ and N (1L∗)= 0L∗ . If N (N (x))= x

for all x ∈ L∗ then N is called an involutive negator. A negator N on [0,1] is a decreasing mapping N:[0,1]→ [0,1] satisfying

N(0) = 1 and N(1) = 0. NS denotes the standard negator on [0,1] defined as NS(x) = 1− x for all x ∈ [0,1].

Next, using fundamental notions above, we give a metric generalization on vector space in the sense of George and

Veeramani [2].

Definition 2.6. Let µ and ν are fuzzy sets from X × (0,∞) to [0,1] such that µ(x, t)+ν(x, t)≤ 1 for all x ∈ X and t > 0. The

3-tuble (X ,Mµ,ν ,ℑ) is said to be an L-fuzzy invariant metric space if X is a vector space, ℑ is a continuous t-representable and

Mµ,ν is a mapping from X × (0,∞) to L∗ satisfying the following conditions, for every x,y ∈ X and t,s > 0

(a) Mµ,ν(x, t)>L∗ 0L∗ ,

(b) Mµ,ν(x, t) = 1L∗ if and only if x = 0,

(c) Mµ,ν(x− y, t) = Mµ,ν(y− x, t),

(d) Mµ,ν(x+ y, t + s)≥L∗ ℑ(Mµ,ν(x, t),Mµ,ν(y,s)),

(e) Mµ,ν(x, .) : (0,∞)→ L∗ is continuous.

In this case, Mµ,ν is said to be an L-fuzzy invariant metric on X . Here Mµ,ν(x, t) = (µ(x, t),ν(x, t)).

Example 2.7. Let (X ,‖.‖) be a normed space. Denote ℑ(a,b) = (a1b1,min(a2 +b2,1)) for all a = (a1,a2),b = (b1,b2) ∈ L∗

and let µ ,ν be fuzzy sets on X × (0,∞) defined as follows:

Mµ,ν(x, t) = (µ(x, t),ν(x, t)) =

(

htn

htn +m‖x‖
,

m‖x‖

htn +m‖x‖

)

for all t,h,m,n ∈ R
+. Then (X ,Mµ,ν ,ℑ) is an L-fuzzy invariant metric space. If h = m = n = 1 then (X ,Mµ,ν ,ℑ) is a standard

L-fuzzy invariant metric space. Also, if we define

Mµ,ν(x, t) = (µ(x, t),ν(x, t)) =

(

t

t +m‖x‖
,

‖x‖

t +‖x‖

)

in which m > 1, then (X ,Mµ,ν ,ℑ) is an L-fuzzy invariant metric space in which Mµ,ν(x, t)<L∗ 1L∗ for all x ∈ X.

Definition 2.8. Let (X ,Mµ,ν ,ℑ) be an L-fuzzy invariant metric space.

For t > 0, define the open ball B(x,r, t) with center x ∈ X and radius r ∈ (0,1) as

B(x,r, t) = {y ∈ X : Mµ,ν(x− y, t)>L∗ (NS(r),r)}.

A subset A ⊆ X is called open if for each x ∈ A, there exist r ∈ (0,1) and t > 0 such that B(x,r, t) ⊆ A. Let τMµ,ν denote the

family of all open subsets of X. τMµ,ν is called the topology induced by L-fuzzy invariant metric Mµ,ν .
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Definition 2.9. A sequence {xn} in an L-fuzzy invariant metric space (X ,Mµ,ν ,ℑ) is said to be Cauchy if for each ε ∈ (0,1)
and t > 0, there exists n0 ∈ N such that

Mµ,ν(xn − xm, t)>L∗ (NS(ε),ε)

for each n,m ≥ n0. The sequence {xn} is said to be convergent to x ∈ X in X and denoted by xn

Mµ,ν
−→ x if Mµ,ν(xn − x, t)→ 1L∗

whenever n → ∞ for every t > 0. An L-fuzzy invariant metric space is said to be complete if and only if every Cauchy sequence

is convergent.

The proofs of following two lemmas are similar from classical cases and omitted [2, 3].

Lemma 2.10. Let Mµ,ν be an L-fuzzy invariant metric. Then, for any t > 0, Mµ,ν(x, t) is non-decreasing with respect to t in

(L∗,≤L∗) for all x ∈ X.

Lemma 2.11. Let (X ,Mµ,ν ,ℑ) be an L-fuzzy invariant metric space. Then Mµ,ν is continuous function on X × (0,∞).

Theorem 2.12. Every L-fuzzy invariant metric space is normal.

Proof. Let (X ,Mµ,ν ,ℑ) be an L-fuzzy invariant metric space and F,G be two disjoint closed subsets of X . Let x ∈ X . Then

x ∈ Gc since Gc is open there exist tx > 0 and rx ∈ (0,1) such that B(x,rx, tx)∩G = ∅ for all x ∈ F . Similarly, there exist

ty > 0 and ry ∈ (0,1) such that B(x,ry, ty)∩F =∅ for all y ∈ G. Let s = min
{

rx, tx,ry, ty
}

. Then we can find a s0 ∈ (0,s) such

that ℑ((NS(s0),s0),(NS(s0),s0))>L∗ (NS(s),s). Define U = ∪x∈F B(x,s0,s/2) and V = ∪y∈GB(y,s0,s/2). Clearly U and V are

open sets such that F ⊂U and G ⊂V . Now, we claim that U ∩V =∅. Let z ∈U ∩V . Then there exist x ∈ F and y ∈ G such

that z ∈ B(x,s0,s/2) and z ∈ B(y,s0,s/2). Therefore, we have

Mµ,ν(x− y,s) ≥ L∗ℑ(Mµ,ν(x− z,s/2),Mµ,ν(z− y,s/2)

≥ L∗ℑ((NS(s0),s0),(NS(s0),s0))>L∗ (NS(s),s).

Hence y∈B(x,s,s). Since s< tx,rx we have B(x,s,s)⊂B(x,rx, tx). Thus B(x,rx, tx)∩G is nonempty which is a contradiction.

Therefore U ∩V =∅. Hence X is normal.

Remark 2.13. From the above theorem, we can easily deduce that every metrizable space is normal. Since every L-fuzzy

invariant metric space is normal, Urysohn’s lemma and Tietze extension theorem are true in the case of L-fuzzy invariant metric

space.

Definition 2.14. A function f from an L-fuzzy invariant metric space X to an other L-fuzzy invariant metric space Y is said to be

uniformly continuous if for given t > 0 and r ∈ (0,1), there exist t0 > 0 and r0 ∈ (0,1) such that Mµ,ν(x−y, t0)>L∗ (NS(r0),r0)
implies Mµ,ν( f (x)− f (y), t)>L∗ (NS(r),r).

As usual by a compact L-fuzzy invariant metric space we mean an L-fuzzy invariant metric space (X ,Mµ,ν ,ℑ) such that

(X ,τMµ,ν ) is a compact topological space.

Theorem 2.15 (Uniform continuity theorem). If f is a continuous function from a compact L-fuzzy invariant metric space X to

an other L-fuzzy invariant metric space Y , then f is uniformly continuous.

Proof. Let t > 0 and s ∈ (0,1). Then we can find r ∈ (0,1) such that ℑ((NS(r),r), (NS(r),r)) >L∗ (NS(s),s). Since f :

X → Y is continuous, for each x ∈ X we can find tx > 0 and rx ∈ (0,1) such that Mµ,ν(x− y, t) >L∗ (NS(rx),rx) implies

Mµ,ν( f (x)− f (y), t
2
)>L∗ (NS(r),r). But rx ∈ (0,1) and then we can find sx ∈ (0,rx) such that ℑ((NS(sx),sx),(NS(sx),sx))>L∗

(NS(rx),rx). Since X is compact and {B(x,sx,
tx
2

: x ∈ X} is an open covering of X , there exist x1,x2, ...,xk in X such that

X = ∪k
i=1B(xi,sxi

,
txi
2
). Put s0 = minsxi

and t0 = min
txi
2

, i = 1,2, ...,k. For any x,y ∈ X , if Mµ,ν(x− y, t0)>L∗ (NS(s0),s0), then

Mµ,ν( f (x)− f (y),
txi
2
)>L∗ (NS(sxi

),sxi
). Since x ∈ X , there exists a xi such that Mµ,ν(x− xi,

txi
2
)>L∗ (NS(sxi

),sxi
). Hence we

have Mµ,ν( f (x)− f (xi),
t
2
)>L∗ (NS(r),r). Now

Mµ,ν(xi − y, txi
) ≥ L∗ℑ(Mµ,ν(xi − x,

txi

2
),Mµ,ν(x− y,

txi

2
))

≥ L∗ℑ((NS(sxi
),sxi

),(NS(sxi
),sxi

))>L∗ (NS(rxi
),rxi

).

Therefore Mµ,ν( f (xi)− f (y), t
2
)>L∗ (NS(r),r). Now we have

Mµ,ν( f (x)− f (y), t) ≥ L∗ℑ(Mµ,ν( f (x)− f (xi),
t

2
),Mµ,ν( f (xi)− f (y),

t

2
)

≥ L∗ℑ((NS(r),r),(NS(r),r))>L∗ (NS(s),s).

Hence f is uniformly continuous.
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Remark 2.16. Let f be a uniformly continuous function from the L-fuzzy invariant metric space X to an other L-fuzzy invariant

metric space Y . If {xn} is a Cauchy sequence in X, then { f (xn)} is also a Cauchy sequence in Y .

Theorem 2.17. Every compact L-fuzzy invariant metric space is separable.

Proof. Let (X ,Mµ,ν ,ℑ) be the given compact L-fuzzy invariant metric space and t > 0, r ∈ (0,1). Since X is compact, there

exist x1,x2, ...,xn in X such that X = ∪n
i=1B(xi,r, t). In particular, for each n ∈ N, we can find a finite subset An such that

X = ∪a∈AB(a,rn,
1
n
) in which rn → 0L∗ . Let A = ∪n∈NAn. Then A is countable. Now, we claim that X ⊂ A. For that let x ∈ X ,

then, for each n, there exists an ∈ An such that x ∈ B(an,rn,
1
n
). Thus an is converges to x. Since an ∈ An for all n then x ∈ A.

Therefore A is dense in X , thus X is separable.

Definition 2.18. Let X be any nonempty set and (Y,Mµ,ν ,ℑ) be an L-fuzzy invariant metric space. Then a sequence { fn} of

functions from X to Y is said to be converge uniformly to a function f from X to Y if for given r ∈ (0,1) and t > 0, there exists

n0 ∈ N such that Mµ,ν( fn(x)− f (x), t)>L∗ (NS(r),r) for all n ≥ n0 and x ∈ X.

Definition 2.19. A family F of functions from an L-fuzzy invariant metric space X to a complete L-fuzzy invariant metric space

Y is said to be equicontinuous if for given r ∈ (0,1) and t > 0, there exists r0 ∈ (0,1) and t0 > 0 such that Mµ,ν(x− y, t0)>L∗

(NS(r0),r0) implies Mµ,ν( f (x)− f (y), t)>L∗ (NS(r),r) for all f ∈ F.

Lemma 2.20. Let { fn} be an equicontinuous sequence of functions from an L-fuzzy invariant metric space X to a complete

L-fuzzy invariant metric space Y . If { fn} converges for each point of a dense subset D of X, then { fn} converges for each point

of X and the limit function is continuous.

Proof. Let s∈ (0,1) and t > 0 be given. Then we can find r ∈ (0,1) such that ℑ2((NS(r),r),(NS(r),r), (NS(r),r))>L∗ (NS(s),s).
Since F = { fn} is an equicontinuous family, for given r ∈ (0,1) and t > 0, there exist r1 ∈ (0,1) and t1 > 0 such that for each

x,y ∈ X , Mµ,ν(x− y, t1) >L∗ (NS(r1),r1) implies Mµ,ν( fn(x)− fn(y),
t
3
) >L∗ (NS(r),r) for all fn ∈ F . Since D is dense in X ,

there exists y ∈ B(a,r1, t1)∩D and { fn(y)} converges for that y. Since { fn(y)} is a Cauchy sequence, for given r ∈ (0,1) and

t > 0, there exists n0 ∈ N such that Mµ,ν( fn(y)− fm(y),
t
3
)>L∗ (NS(r),r) for all m,n ≥ n0. Now for any x ∈ X , we have

Mµ,ν( fn(x)− fm(x), t) ≥ L∗ℑ
2(Mµ,ν( fn(x)− fn(y),

t

3
),

Mµ,ν( fn(y)− fm(y),
t

3
),Mµ,ν( fm(x)− fm(y),

t

3
))

≥ L∗ℑ
2((NS(r),r),(NS(r),r),(NS(r),r))

> L∗(NS(s),s)

Hence { fn(x)} is a Cauchy sequence in Y . Since Y is complete, fn(x) converges. Let f (x) = limn→∞ fn(x). We claim that

f is continuous. Let s0 ∈ (0,1) and t0 > 0 be given. Then we can find that r0 ∈ (0,1) such that ℑ2((NS(r0),r0),(NS(r0),r0),
(NS(r0),r0)) >L∗ (NS(s0),s0). Since F is equicontinuous, for given r0 ∈ (0,1) and t0 > 0, there exist r2 ∈ (0,1) and t2 > 0

such that Mµ,ν(x−y, t2)>L∗ (NS(r2),r2) implies Mµ ,ν( fn(x)− fn(y),
t0
3
)>L∗ (NS(r0),r0) for all fn ∈ F . Since fn(x) converges

to f (x), for given r0 ∈ (0,1) and t0 > 0, there exists n1 ∈ N such that Mµ,ν( fn(y)− f (x), t0
3
) >L∗ (NS(r0),r0) for all n ≥ n1.

Also since fn(y) converges to f (y), for given r0 ∈ (0,1) and t0 > 0, there exists n2 ∈ N such that Mµ,ν( fn(y)− f (y), t0
3
)>L∗

(NS(r0),r0) for all n ≥ n2. Now for all n ≥ max{n1,n2}, we have

Mµ,ν( f (x)− f (y), t0) ≥ L∗ℑ
2(Mµ,ν( f (x)− fn(x),

t0

3
),

Mµ,ν( fn(x)− fn(y),
t0

3
),Mµ ,ν( fn(y)− f (y),

t0

3
))

≥ L∗ℑ
2((NS(r0),r0),(NS(r0),r0),(NS(r0),r0))

> L∗(NS(s0),s0).

Hence f is continuous.

Theorem 2.21 (Ascoli-Arzela theorem). Let X be a compact L-fuzzy invariant metric space and Y be a complete L-fuzzy

invariant metric space. Let F be an equicontinuous family of functions from X to Y . If { fn} is a sequence in F such that

{ fn(x) : n ∈ N} is a compact subset of Y for each x ∈ X, then there exists a continuous function f from X to Y and a subsequence

{gn} of { fn} such that gn converges uniformly to f on X.
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Proof. Since X is compact L-fuzzy invariant metric space, by Theorem 2.17, X is separable. Let D = {xi : i = 1,2, ...} be a

countable dense subset of X . By hypothesis, for each i, { fn(xi) : n ∈ N} is compact subset of Y . Since every L-fuzzy invariant

metric space is first countable space, every compact subset of Y is sequentially compact. Thus by standard argument, we have a

subsequence {gn} of { fn} such that {gn(xi)} converges for each i = 1,2, ... By Lemma 2.20, there exists a continuous function

f from X to Y such that gn(x) converges to f (x) for all x ∈ X . Now we claim that gn converges to f on X . Let s ∈ (0,1) and t > 0

be given. Then we can find r ∈ (0,1) such that ℑ2((NS(r),r),(NS(r),r),(NS(r),r))>L∗ (NS(s),s). Since F is equicontinuous,

there exist r1 ∈ (0,1) and t1 > 0 such that Mµ,ν(x− y, t1) >L∗ (NS(r1),r1) implies Mµ,ν(gn(x)− gn(y),
t
3
) >L∗ (NS(r),r) for

all n. Since X is compact, by Theorem 2.15, f is uniformly continuous. Hence for given r ∈ (0,1) and t > 0, there exists

r2 ∈ (0,1) and t2 > 0 such that Mµ,ν(x−y, t2)>L∗ (NS(r2),r2) implies Mµ,ν( f (x)− f (y), t
3
)>L∗ (NS(r),r) for all x,y ∈ X . Let

r0 = min{r1,r2} and t0 = min{t1, t2}. Since X is compact and D is dense in X , X = ∪k
i=1B(xi,r0, t0) for some finite k. Thus for

each x ∈ X , there exists i,1 ≤ i ≤ k, such that Mµ,ν(x− xi, t0)>L∗ (NS(r0),r0). But since r0 = min{r1,r2} and t0 = min{t1, t2},

we have, by the equicontinuity of F , Mµ,ν(gn(x)−gn(xi),
t
3
) >L∗ (NS(r),r) and also we have, by the uniform continuity of

f , Mµ,ν( f (x)− f (xi),
t
3
) >L∗ (NS(r),r). Since gn(x j) converges to f (x j), r ∈ (0,1) and t > 0, there exists n0 ∈ N such that

Mµ,ν(gn(x j)− f (x j),
t
3
)>L∗ (NS(r),r) for all j = 1,2, ...,n. Now, for each x ∈ X , we have

Mµ,ν(gn(x)− f (x), t) ≥ L∗ℑ
2(Mµ,ν(gn(x)−gn(xi),

t

3
),

Mµ,ν(gn(xi)− f (xi),
t

3
),Mµ,ν( f (xi)− f (x),

t

3
))

≥ L∗ℑ
2((NS(r),r),(NS(r),r),(NS(r),r))

> L∗(NS(s),s).

Hence gn converges uniformly to f on X .

3. Conclusion

The aim of this paper is to introduce L-fuzzy invariant metric space, and to generalize Uniform continuity theorem and

Ascoli-Arzela theorem for this space. Aside from their numerous applications to Partial Differential Equations such as existence

theorems in differential and integral equations, and Lorentzian Geometry such as guaranteing convergence to isometry using

Lorentzian analogues, these results can be also used as a tool in obtaining Functional Analysis results such as compactness for

duals of compact operators, conformal mapping and extremal problems in complex variable theory.
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1. Introduction

Bicomplex numbers were introduced by Corrado Segre in 1892 [1]. G. Baley Price (1991), presented bicomplex numbers based

on multi-complex spaces and functions in his book [2]. In recent years, fractal structures of these numbers have also been

studied [3] . The set of bicomplex numbers can be expressed by the basis {1 , i , j , i j} as,

C2 = {q = q1 + iq2 + jq3 + i jq4 | q1,q2,q3,q4 ∈ R} (1.1)

or

C2 = {q = (q1 + iq2)+ j(q3 + iq4) | q1,q2,q3,q4 ∈ R} (1.2)

where i, j and i j satisfy the conditions

i2 =−1, j2 =−1, i j = j i.

Thus, any bicomplex number q is introduced as pairs of typical complex numbers with the additional structure of

commutative multiplication (Table 1).

A set of bicomplex numbers C2 is a real vector space with addition and scalar multiplication operations. The vector space

C2 equipped with bicomplex product is a real associative algebra. Also, the vector space together with the properties of

multiplication and the product of the bicomplex numbers are a commutative algebra. Furthermore, three different conjugations

can operate on bicomplex numbers [3], [4], [5] as follows:
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Table 1. Multiplication scheme of bicomplex numbers

x 1 i j i j

1 1 i j i j

i i -1 i j -j

j j i j -1 -i

i j i j -j -i 1

q = q1 + iq2 + j q3 + i j q4 = (q1 + iq2)+ j (q3 + iq4), q ∈ C2

qi
∗ = q1 − iq2 + jq3 − i jq4 = (q1 − iq2)+ j (q3 − iq4),

q j
∗ = q1 + iq2 − jq3 − i jq4 = (q1 + iq2)− j (q3 + iq4),

qi j
∗ = q1 − iq2 − jq3 + i jq4 = (q1 − iq2)− j (q3 − iq4).

and properties of conjugation

1)(q∗)∗ = q,

2)(q1 q2)
∗ = q2

∗ q1
∗
, q1,q2 ∈ C2,

3)(q1 +q2)
∗ = q1

∗+q2
∗
,

4)(λ q)∗ = λ q∗,

5)(λ q1 ± µ q2)
∗ = λ q1

∗± µ q2
∗
, λ ,µ ∈ R.

Therefore, the norm of the bicomplex numbers is defined as

Nqi
= ‖q×qi

∗‖=
√

∣

∣q2
1 +q2

2 −q2
3 −q2

4 +2 j (q1q3 +q2q4)
∣

∣

,

Nq j
=
∥

∥q×q j
∗∥
∥=

√

∣

∣q2
1 −q2

2 +q2
3 −q2

4 +2 i(q1q2 +q3q4)
∣

∣

,

Nqi j
=
∥

∥q×qi j
∗∥
∥=

√

∣

∣q2
1 +q2

2 +q2
3 +q2

4 +2 i j (q1q4 −q2q3)
∣

∣

.

Pell numbers were invented by John Pell but, these numbers are named after Edouard Lucas. Pell and Pell-Lucas numbers

have important parts in mathematics. They have fundamental importance in the fields of combinatorics and number theory

[6],[7],[8],[9].

The sequence of Pell numbers

1 , 2 , 5, 12, 29, 70, 169, 408, 985, 2378, . . . ,Pn, . . .

is defined by the recurrence relation

Pn = 2Pn−1 +Pn−2 , (n ≥ 2),

with P0 = 0,P1 = 1.

The sequence of Pell - Lucas numbers

2 , 6 , 14, 34, 82, 198, 478, 1154, 2786, 6726, . . . ,Qn, . . .

is defined by the recurrence relation

Qn = 2Qn−1 +Qn−2 , (n ≥ 2),
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with Q0 = 2 ,Q1 = 1.

Also, the sequence of modified Pell numbers

1 , 3 , 7, 17, 41, 99, 329, 577, 1393, 3363, . . . ,qn, . . .

is defined by the recurrence relation

qn = 2qn−1 +qn−2 , (n ≥ 2),

with q0 = 1 ,q1 = 1.

Furthermore, we can see the matrix representations of Pell and Pell-Lucas numbers in [1]-[3],[5], [8]. In 2018, Catarino defined

bicomplex k-Pell quaternions in [10].

Also, for Pell, Pell-Lucas and modified Pell numbers the following properties hold:[6],[7],[8],[9]

PmPn+1 + Pm−1Pn = Pm+n ,

PmPn+1 −Pm+1Pn = (−1)n Pm−n ,

PmPn −Pm+rPn−r = (−1)n−r Pm+r−n Pr ,

QmQn −Qm+rQn−r = 8(−1)n−r+1 Pm+r−n Pr ,

Pn−1Pn+1 −P2
n = (−1)n

,

P2
n + P2

n+1 = P2n+1 ,

P2
n+1 − P2

n−1 = 2P2n ,

2Pn+1 Pn −2P2
n = P2n ,

P2
n + P2

n+3 = 5P2n+3 ,

P2n+1 +P2n = 2P2
n+1 −2P2

n − (−1)n
,

P2
n + Pn−1Pn+1 =

Q2
n

4
,

Pn+1 +Pn−1 = Qn ,

Pn Qn = P2n ,

Qn = 2qn ,

Pn+1 −Pn = qn ,

Pn+1 +Pn = qn+1,

and for nega Pell and pell-Lucas numbers the following properties hold,

P−n = (−1)n+1 Pn,

Q−n = (−1)n Qn.

In this paper, the bicomplex Pell and bicomplex Pell-Lucas numbers will be defined. The aim of this work is to present in a

unified manner a variety of algebraic properties of both the bicomplex numbers as well as the bicomplex Pell and Pell-Lucas

numbers and the negabicomplex Pell and Pell-Lucas numbers. In particular, using three types of conjugations, all the properties

established for bicomplex numbers are also given for the bicomplex Pell and Pell-Lucas numbers. In addition, d’Ocagne’s

identity, Binet’s formula, Cassini’s identity and Catalan’s identity for these numbers are given.
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2. The bicomplex Pell and Pell-Lucas numbers

The bicomplex Pell and Pell-Lucas numbers BPn and BPLn are defined by the basis {1 , i , j , i j} as follows

C
P
2 = {BPn =Pn + iPn+1 + j Pn+2 + i j Pn+3 |Pn,

n− thPell number,n = 0,1, ...}.
(2.1)

and

C
PL
2 = {BPLn =Qn + iQn+1 + j Qn+2 + i j Qn+3 |Qn,

n− thPell −Lucas number, ,n = 0,1, ...}
(2.2)

where i, j and i j satisfy the conditions

i2 =−1, j2 =−1, i j = j i.

The bicomplex Pell and bicomplex Pell-Lucas numbers starting from n = 0 , can be written respectively as;

BP0 = 0+1 i+2 j+5 i j , BP1 = 1+2 i+5 j+12 i j , BP2 = 2+5 i+12 j+29 i j , . . .

BPL0 = 2+2 i+6 j+14 i j , BPL1 = 2+6 i+14 j+34 i j ,

BPL2 = 6+14 i+34 j+82 i j , . . .

Let BPn and BPm be two bicomplex Pell numbers such that

BPn = Pn + iPn+1 + j Pn+2 + i j Pn+3

and

BPm = Pm + iPm+1 + j Pm+2 + i j Pm+3.

Then, the addition and subtraction of these numbers are given by

BPn ±BPm = (Pn + iPn+1 + j Pn+2 + i j Pn+3)
±(Pm + iPm+1 + j Pm+2 + i j Pm+3)

= (Pn ±Pm)+ i(Pn+1 ±Pm+1)+ j (Pn+2 ±Pm+2)
+i j (Pn+3 ±Pm+3).

The multiplication of a bicomplex Pell number by the real scalar λ is defined as

λBPn = λPn + iλPn+1 + j λPn+2 + i j λPn+3.

The multiplication of two bicomplex Pell numbers is defined by

BPn × BPm = (Pn + iPn+1 + j Pn+2 + i j Pn+3)
(Pm + iPm+1 + j Pm+2 + i j Pm+3)

= (PnPm −Pn+1Pm+1 −Pn+2Pm+2 +Pn+3Pm+3)
+i(PnPm+1 +Pn+1Pm −Pn+2Pm+3 −Pn+3Pm+2)
+ j (PnPm+2 +Pn+2Pm −Pn+1Pm+3 −Pn+3Pm+1)
+i j (PnPm+3 +Pn+3Pm +Pn+1Pm+2 +Pn+2Pm+1)

= BPm × BPn .

The conjugation of the bicomplex Pell numbers is defined in three different ways as follows

(BPn)
∗
i = Pn − iPn+1 + j Pn+2 − i j Pn+3, (2.3)

(BPn)
∗
j = Pn + iPn+1 − j Pn+2 − i j Pn+3, (2.4)
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(BPn)
∗
i j = Pn − iPn+1 − j Pn+2 + i j Pn+3. (2.5)

Theorem 2.1. Let BPn and BPm be two bicomplex Pell numbers. In this case, we can give the following relations between the

conjugates of these numbers:

(BPn ×BPm)
∗
i = (BPm)

∗
i × (BPn)

∗
i = (BPn)

∗
i × (BPm)

∗
i ,

(BPn ×BPm)
∗
j = (BPm)

∗
j × (BPn)

∗
j = (BPn)

∗
j × (BPm)

∗
j ,

(BPn ×BPm)
∗
i j = (BPm)

∗
i j × (BPn)

∗
i j = (BPn)

∗
i j × (BPm)

∗
i j .

Proof. It can be proved easily by using (2.3)-(2.5).

In the following theorem, some properties related to the conjugations of the bicomplex Pell numbers are given.

Theorem 2.2. Let (BPn)
∗
i , (BPn)

∗
j and (BPn)

∗
i j be three kinds of conjugation of the bicomplex Pell numbers. The following

relations hold:

BPn × (BPn)
∗
i = 2(−Q2n+3 + j P2n+3 ), (2.6)

BPn × (BPn)
∗
j = (P2

n − P2
n+1 +P2

n+2 − P2
n+3)

+4 i(P2n+3 +Pn Pn+1),
(2.7)

BPn × (BPn)
∗
i j = 6P2n+3 +4 i j (−1)n+1

, (2.8)

BPn × (BPn)
∗
i + BPn−1 × (BPn−1)

∗
i = −2(8P2n+2 + j Q2n+2), (2.9)

BPn × (BPn)
∗
j + BPn−1 × (BPn−1)

∗
j = 12(−P2n+2 + iP2n+2), (2.10)

BPn × (BPn)
∗
i j + BPn−1 × (BPn−1)

∗
i j = 6Q2n+2. (2.11)

Proof. (2.6): Using (2.1) and (2.3) we get,

BPn × (BPn)
∗
i = (P2

n +P2
n+1 −P2

n+2 −P2
n+3)

+2 j (Pn Pn+2 +Pn+1 Pn+3)
= P2n+1 −P2n+5 +2 j P2n+3

= 2(−Q2n+3 + j P2n+3 ).

(2.7): Using (2.1) and (2.4) we get,

BPn × (BPn)
∗
j = (P2

n −P2
n+1 +P2

n+2 −P2
n+3)

+2 i(Pn Pn+1 +Pn+2 Pn+3)
= (P2

n −P2
n+1 +P2

n+2 −P2
n+3)

+4 i(P2n+3 +Pn Pn+1).

(2.8): Using (2.1) and (2.5) we get,

BPn × (BPn)
∗
i j = (P2

n +P2
n+1 +P2

n+2 +P2
n+3)

+2 i j (Pn Pn+3 −Pn+1 Pn+2)
= (P2n+1 +P2n+5)+4 i j (−1)n+1

= 6P2n+3 +4 i j (−1)n+1
.
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(2.9): Using (2.6) we get,

BPn × (BPn)
∗
i + BPn−1 × (BPn−1)

∗
i = −2 [ (Q2n+3 + Q2n+1)

− j (P2n+3 +P2n+1) ]
= −2(8P2n+2 − j Q2n+2).

(2.10): Using (2.7) we get,

BPn × (BPn)
∗
j + BPn−1 × (BPn−1)

∗
j = (P2

n−1 −P2
n+3)

+4 i(Pn Qn +Q2n+2)
= −12P2n+2 +4 i(3P2n+2)
= −12(P2n+2 − iP2n+2).

(2.11): Using (2.8) we get,

BPn × (BPn)
∗
i j + BPn−1 × (BPn−1)

∗
i j = 6(P2n+3 +P2n+1)

+4 i j [(−1)n+1 +(−1)n]
= 6Q2n+2.

Therefore, the norm of the bicomplex Pell number BPn is defined in three different ways as follows

NBPn i = ‖BPn × BP∗
ni‖=

√

2 |− Q2n+3 + j P2n+3 |,

NBPn j = ‖BPn × BP∗
n j‖

=
√

|(P2
n − P2

n+1 +P2
n+2 − P2

n+3)+4 i(P2n+3 +Pn Pn+1)|,
(2.12)

NBPn i j = ‖BPn × BP∗
ni j‖=

√

|6Q2n+3 +4 i j (−1)n+1 |. (2.13)

Theorem 2.3. Let BPn and BPLn be the bicomplex Pell and bicomplex Pell-Lucas numbers, respectively.The following relations

hold:

BPm BPn +BPm+1 BPn+1 = 4(Qm+n+4 − iQm+n+4

− j Pm+n+4 + i j Pm+n+4 ),
(2.14)

(BPn)
2 = 4P2n+3 −4 iP2n+3 +2 j (P2n+1 −6P2

n+1)
+2 i j (6Pn Pn+1 +2P2n+1),

(2.15)

(BPn)
2 +(BPn+1)

2 = 4(Q2n+4 − iQ2n+4 − j P2n+4

+i j P2n+4 ),
(2.16)

(BPn+1)
2 − (BPn−1)

2 = −4(P2n+1 +2 iQ2n+3 +2 j P2n+3

+2 i j P2n+3 )
(2.17)

BPn − iBPn+1 + j BPn+2 − i j BPn+3 = 4(−4Pn+3 + j qn+3 ), (2.18)

BPn − iBPn+1 − j BPn+2 − i j BPn+3 = 2(qn+1 −Pn+5 + iPn+5

+ j Pn+4 − i j Pn+3 ).
(2.19)
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Proof. (2.14): By the equation (2.1) we get,

BPm BPn +BPm+1 BPn+1 = (Pm+n+1 −Pm+n+3 −Pm+n+5

+Pm+n+7)
+2 i(Pm+n+2 −Pm+n+6)
+2 j (Pm+n+3 −Pm+n+5)
+2 i j (2Pm+n+4)

= 4(Qm+n+4 − iQm+n+4 − j Pm+n+4

+i j Pm+n+4).

(2.15): By the equation (2.1) we get,

(BPn)
2 = (P2

n −P2
n+1 −P2

n+2 +P2
n+3)+2 i(Pn Pn+1 −Pn+2 Pn+3)

+2 j (Pn Pn+2 −Pn+1 Pn+3)+2 i j (Pn Pn+3 +Pn+1 Pn+2)
= 4P2n+3 −4 iP2n+3 +2 j (P2n+1 −6P2

n+1)
+2 i j (6Pn Pn+1 +2P2n+1).

(2.16): By the equations (2.1) and (2.14) we get,

(BPn)
2 + (BPn+1)

2 = (P2
n −P2

n+2 +P2
n+4 −P2

n+2)
+2 i(P2n+2 −P2n+6)+2 j (P2n+3 −P2n+5)
+2 i j (2P2n+4)

= 4(Q2n+4 − iQ2n+4 − j P2n+4 + i j P2n+4 ).

(2.17) By the equations (2.1) and (2.14) we get,

(BPn+1)
2 − (BPn−1)

2 = (P2
n+1 −P2

n−1 +P2
n −P2

n+2)
+2 i [2(P2n+1 −P2n+5)]
+2 j (P2n+3 −5P2n+3)
+2 i j [4(q2n+2 +P2n+2)]

= 2(P2n −P2n+2)+2 i(−4Q2n+3)
+2 j (−4P2n+3)+2 i j (4P2n+3)

= −4(P2n+1 +2 iQ2n+3 +2 j P2n+3

+2 i j P2n+3 )

(2.18): By the equation (2.1) we get,

BPn − iBPn+1 − j BPn+2 − i j BPn+3 = (Pn +Pn+2 +Pn+4 −Pn+6)
+2 i(Pn+5)+2 j (Pn+4)
−2 i j (Pn+3)

= −(4Pn+1 +Pn)+2 iPn+5

+2 j Pn+4 −2 i j Pn+3.

(2.19): By the equation (2.1) we get,

BPn − iBPn+1 − j BPn+2 − i j BPn+3 = (Pn +Pn+2 +Pn+4 −Pn+6)
+2 i(Pn+5)+2 j (Pn+4)
−2 i j (Pn+3)

= −(4Pn+1 +Pn)+2 iPn+5

+2 j Pn+4 −2 i j Pn+3.

.

Theorem 2.4. (d’Ocagne’s identity). For n,m ≥ 0 d’Ocagne’s identity for bicomplex Pell numbers BPn and BPm is given by

BPm BPn+1 −BPm+1 BPn = 12(−1)n Pm−n ( j + i j ). (2.20)
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Proof. (2.20): By the equation (2.1) we get,

BPm BPn+1 −BPm+1 BPn = (−1)nPm−n (0)
+i(−1)n(Pm−n−1 (0)
+2 j (−1)n(Pm−n−2 +Pm−n+2)
+i j (−1)n[ (−Pm−n−3 +Pm−n+3

+Pm−n−1 −Pm−n+1 ) ]
= 2 j (−1)n (6Pm−n )

+i j (−1)n 6(Pm−n−1 −Pm−n+1 )
= 12(−1)n Pm−n ( j+ +i j ).

Theorem 2.5. Let BPn and BPLn be the bicomplex Pell number and the bicomplex Pell-Lucas numbers respectively. The

following relations are satisfied

BPn+1 + BPn−1 = BPLn , (2.21)

BPn+1 −BPn−1 = 2BPn, (2.22)

BPn+2 + BPn−2 = 6BPn. (2.23)

BPn+2 −BPn−2 = 2BPLn, (2.24)

BPn+1 +BPn =
1

2
BPLn+1, (2.25)

BPn+1 −BPn =
1

2
BPLn, (2.26)

BPLn+1 +BPLn−1 = 4BPn, (2.27)

BPLn+1 −BPLn−1 = 2BPLn, (2.28)

BPLn+2 +BPLn−2 = 6BPLn, (2.29)

BPLn+2 −BPLn−2 = 8BPn, (2.30)

BPLn+1 +BPLn = 4BPn+1, (2.31)

BPLn+1 −BPLn = 4BPn. (2.32)
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Proof. (2.21):By the equation (2.1) we get,

BPn+1 + BPn−1 = (Pn+1 +Pn−1)+ i(Pn+2 +Pn)
+ j (Pn+3 +Pn+1)+ i j (Pn+4 +Pn+2)

= (Qn + iQn+1 + j Qn+2 + i j Qn+3 )
= BPLn ,

(2.22): By the equation (2.1) we get,

BPn+1 −BPn−1 = (Pn+1 −Pn−1)+ i(Pn+2 −Pn)
+ j (Pn+3 −Pn+1)+ i j (Pn+4 −Pn+2)

= 2(Pn + iPn+1 + j Pn+2 + i j Pn+3)
= 2BPn.

(2.23): By the equation (2.1) we get,

BPn+2 +BPn−2 = (Pn+2 +Pn−2)+ i(Pn+3 +Pn−1)
+ j (Pn+4 +Pn)+ i j (Pn+5 +Pn+1)

= 6(Pn + iPn+1 + j Pn+2 + i j Pn+3)
= 6BPn.

(2.24): By the equation (2.1) we get,

BPn+2 − BPn−2 = (Pn+2 −Pn−2)+ i(Pn+3 −Pn−1)
+ j (Pn+4 −Pn)+ i j (Pn+5 −Pn+1)

= 2(Qn + iQn+1 + j Qn+2 + i j Qn+3)
= 2BPLn .

(2.25): By the equation (2.1) we get,

BPn+1 +BPn = (Pn+1 +Pn)+ i(Pn+2 +Pn+1)
+ j (Pn+3 +Pn+2)+ i j (Pn+4 +Pn+3)

= (qn+1 + iqn+2 + j qn+3 + i j qn+4)
= 1

2
(Qn+1 + iQn+2 + j Qn+3 + i j Qn+4)

= 1
2

BPLn+1

where the property (1.17) of the modified Pell number is used.

(2.26): By the equation (2.1) we get,

BPn+1 −BPn = (Pn+1 −Pn)+ i(Pn+2 −Pn+1)
+ j (Pn+3 −Pn+2)+ i j (Pn+4 −Pn+3)

= (qn + iqn+1 + j qn+2 + i j qn+3)
= 1

2
(Qn + iQn+1 + j Qn+2 + i j Qn+3)

= 1
2

BPLn

where the property (1.17) of the modified Pell number is used.

(2.27): By the equation (2.2) we get,

BPLn+1 +BPLn−1 = (Qn+1 +Qn−1)+ i(Qn+2 +Qn)
+ j (Qn+3 +Qn+1)+ i j (Qn+4 +Qn+2)

= 4(Pn + iPn+1 + j Pn+2 + i j Pn+3)
= 4BPn.

(2.28): By the equation (2.2) we get,

BPLn+1 −BPLn−1 = (Qn+1 −Qn−1)+ i(Qn+2 −Qn)
+ j (Qn+3 −Qn+1)+ i j (Qn+4 −Qn+2)

= 2(Qn + iQn+1 + j Qn+2 + i j Qn+3)
= 2BPLn



On Bicomplex Pell and Pell-Lucas Numbers — 151/155

(2.29): By the equation (2.2) we get,

BPLn+2 +BPLn−2 = (Qn+2 +Qn−2)+ i(Qn+3 +Qn−1)
+ j (Qn+4 +Qn)+ i j (Qn+5 +Qn+1)

= 6(Qn + iQn+1 + j Qn+2 + i j Qn+3)
= 6BPLn.

(2.30): By the equation (2.2) we get,

BPLn+2 −BPLn−2 = (Qn+2 −Qn−2)+ i(Qn+3 −Qn−1)
+ j (Qn+4 −Qn)+ i j (Qn+5 −Qn+1)

= 8(Pn + iPn+1 + j Pn+2 + i j Pn+3)
= 8BPn.

(2.31): By the equation (2.2) we get,

BPLn+1 +BPLn = (Qn+1 +Qn)+ i(Qn+2 +Qn+1)
+ j (Qn+3 +Qn+2)+ i j (Qn+4 +Qn+3)

= 4Pn+1 + iPn+2 + j Pn+3 + i j Pn+4

= 4BPn+1.

(2.32): By the equation (2.2) we get,

BPLn+1 −BPLn = (Qn+1 −Qn)+ i(Qn+2 −Qn+1)
+ j (Qn+3 −Qn+2)+ i j (Qn+4 −Qn+3)

= 4Pn + iPn+1 + j Pn+2 + i j Pn+3

= 4BPn.

Theorem 2.6. If BPn and BPLn are bicomplex Pell and bicomplex Pell-Lucas numbers, respectively. For n ≥ 0, the identities

of negabicomplex Pell and negabicomplex Pell-Lucas numbers are

BP−n = (−1)n+1 BPn +(−1)n Qn ( i +2 j +5 i j ). (2.33)

and

BPL−n = (−1)n BPLn +8(−1)n+1 Pn ( i +2 j +5 i j ). (2.34)

Proof. (2.33): Using the identity of negapell numbers P−n = (−1)n+1 Pn we get

BP−n = P−n + iP−n+1 + j P−n+2 + i j P−n+3

= P−n + iP−(n−1)+ j P−(n−2)+ i j P−(n−3)

= (−1)n+1 Pn + i(−1)n Pn−1 + j (−1)n−1 Pn−2

+i j (−1)n−2 Pn−3

= (−1)n+1 (Pn + iPn+1 + j Pn+2 + i j Pn+3)
−i(−1)n+1 Pn+1 − j (−1)n+1 Pn+2 − i j (−1)n+1 Pn+3

+i(−1)n Pn−1 + j (−1)n+1 Pn−2 + i j (−1)n Pn−3

= (−1)n+1 BPn +(−1)n (Pn+1 +Pn−1) i

+(−1)n (Pn+2 −Pn−2) j+(−1)n (Pn+3 +Pn−3) i j

= (−1)n+1 BPn +(−1)n Qn ( i +2 j +5 i j )

(2.34): Using the identity of negapell-Lucas numbers Q−n = (−1)n Qn we get
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BPL−n = Q−n + iQ−n+1 + j Q−n+2 + i j Q−n+3

= Q−n + iQ−(n−1)+ j Q−(n−2)+ i j Q−(n−3)

= (−1)n Qn + i(−1)n−1 Qn−1 + j (−1)n−2 Qn−2

+i j (−1)n−3 Qn−3

= (−1)n+1 (Qn + iQn+1 + j Qn+2 + i j Qn+3)
−i(−1)n Qn+1 − j (−1)n Qn+2

−i j (−1)n Qn+3

+i(−1)n−1 Qn−1 + j (−1)n Qn−2

+i j (−1)n−1 Qn−3

= (−1)n+1 BPLn +(−1)n+1 (Qn+1 +Qn−1) i

+(−1)n+1 (Qn+2 −Qn−2) j

+(−1)n+1 (Qn+3 +Qn−3) i j

= (−1)n BPLn +8(−1)n+1 Pn ( i +2 j +5 i j )

Theorem 2.7. Binet’s Formula. Let BPn and BPLn be the bicomplex Pell and bicomplex Pell-Lucas numbers respectively. For

n ≥ 1, Binet’s formula for these numbers are as follows:

BPn =
1

α −β
(α̂ αn − β̂ β n) (2.35)

and

BPLn = α̂ αn + β̂ β n (2.36)

where α̂ = 1+ iα + j α2 + i j α3, α = 1+
√

2 and β̂ = 1+ iβ + j β 2 + i j β 3, β = 1−
√

2.

Proof. (2.35):

BPn = Pn + iPn+1 + j Pn+2 + i j Pn+3

= αn−β n

α−β
+ i

αn+1−β n+1

α−β
+ j

αn+2−β n+2

α−β
+ i j

αn+3−β n+3

α−β

= αn (1+iα+ j α2+i j α3 )−β n (1+iβ+ j β 2+i j β 3 )
α−β

= α̂ αn−β̂ β n

α−β

and (2.36):

BPLn = Qn + iQn+1 + j Qn+2 + i j Qn+3

= αn +β n + i(αn+1 + β n+1)+ j (αn+2 + β n+2)+ i j (αn+3 + β n+3)
= αn (1+ iα + j α2 + i j α3 )+β n (1+ iβ + j β 2 + i j β 3 )

= α̂ αn + β̂ β n
.

Binet’s formula of the bicomplex Pell number is the same as Binet’s formula of the Pell number [7].

Theorem 2.8. Cassini’s Identity Let BPn and BPLn be the bicomplex Pell and bicomplex Pell-Lucas numbers, respectively.

For n ≥ 1, Cassini’s identities for BPn and BPLn are as follows:

BPn−1 BPn+1 −BP2
n = 12(−1)n ( j+ i j) (2.37)

and

BPLn−1 BPLn+1 −BPL2
n = 8.12(−1)n+1 ( j+ i j). (2.38)
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Proof. (2.37): Using (2.1) we get

BPn−1 BPn+1 − (BPn)
2 = (Pn−1 + iPn + j Pn+1 + i j Pn+2)

(Pn+1 + iPn+2 + j Pn+3 + i j Pn+4)
−[Pn + iPn+1 + j Pn+2 + i j Pn+3 ]

2

= [(Pn−1Pn+1 −P2
n )

−(PnPn+2 +P2
n+1)

−(Pn+1Pn+3 −P2
n+2)

+(Pn+2Pn+4 −P2
n+3) ]

+i [ (Pn+2Pn−1 −Pn+1Pn)
−(Pn+4Pn+1 −Pn+3Pn+2) ]

+ j [ (Pn+1Pn+1 −PnPn+2)
−(Pn+2Pn+2 −Pn+1Pn+3)
+(Pn+3Pn−1 −Pn+2Pn)
−(Pn+4Pn −Pn+3Pn+1) ]

+i j (Pn+4Pn−1 −Pn+3Pn)
= 12(−1)n ( j+ i j).

(2.38): Using (2.2) we get

BPLn−1 BPLn+1 − (BPLn)
2 = (Qn−1 + iQn + j Qn+1 + i j Qn+2)

(Qn+1 + iQn+2 + j Qn+3 + i j Qn+4)
−[Qn + iQn+1 + j Qn+2 + i j Qn+3]

2

= [(Qn−1Qn+1 −Q2
n)

+(Q2
n+1 −Qn+2Qn)

+(Q2
n+2 −Qn+3Qn+1)

+(Qn+4Qn+2 −Q2
n+3) ]

+i [(Qn+2Qn−1 −Qn+1Qn)
+(Qn+3Qn+2 −Qn+4Qn+1) ]

+ j [ (Qn+1Qn+1 −QnQn+2)
+(Qn+1Qn+3 − (Qn+2Qn+2)
+(Qn+3Qn−1 −Qn+2Qn)
+(Qn+3(Qn+1 −Qn+4Qn) ]

+i j (Qn+4Qn−1 −Qn+3Qn)
= 8.12(−1)n+1 ( j+ i j).

where the identities of the Pell and Pell-Lucas numbers Pm Pn+1 − Pm+1 Pn = (−1)nPm−n and Qm Qn+1 − Qm+1Qn =
8(−1)n+1 Pm−n are used.

Theorem 2.9. Catalan’s Identity. Let BPn and BPLn be the bicomplex Pell and bicomplex Pell-Lucas numbers, respectively.

For n ≥ 1, Catalan’s identities for BPn and BPLn are as follows

(BPn)
2 −BPn+r BPn−r = 12(−1)n−r Pr

2 ( j+ i j ), (2.39)

and

(BPLn)
2 −BPLn+r BPLn−r = 8 .12(−1)n−r Pr

2 ( j+ i j ). (2.40)

respectively.
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Proof. (2.39): Using (2.1) we get

BP2
n −BPn+r BPn−r = [(P2

n −Pn+r Pn−r)
−(P2

n+1 −Pn+r+1 Pn−r+1)
−(P2

n+2 −Pn+r+2 Pn−r+2)
+(P2

n+3 −Pn+r+3 Pn−r+3) ]
+i [ (Pn Pn+1 −Pn+r Pn−r+1)
−(Pn+2 Pn+3 −Pn+r+2 Pn−r+3)
+(Pn+1 Pn −Pn+r+1 Pn−r)
−(Pn+3 Pn+2 −Pn+r+3 Pn−r+2) ]

+ j [ (Pn Pn+2 −Pn+r Pn−r+2)
−(Pn+1 Pn+3 −Pn+r+1 Pn−r+3)
+(Pn+2 Pn −Pn+r+2 Pn−r)
−(Pn+3 Pn+1 −Pn+r+3 Pn−r+1) ]

+i j [ (Pn Pn+3 −Pn+r Pn−r+3)
+(Pn+1 Pn+2 −Pn+r+1 Pn−r+2)
+(Pn+3 Pn −Pn+r+3 Pn−r)
+(Pn+2 Pn+1 −Pn+r+2 Pn−r+1) ]

= (−1)n−r P2
r (0+0i+12 j+12 i j)

= 12(−1)n−r P2
r ( j+ i j).

(2.40): Using (2.2) we get

(BPLn)
2 −BPLn+r BPLn−r = [(Q2

n −Qn+r Qn−r)
−(Q2

n+1 −Qn+r+1 Qn−r+1)
−(Q2

n+2 −Qn+r+2 Qn−r+2)
+(Q2

n+3 −Qn+r+3 Qn−r+3) ]
+i [ (Qn Qn+1 −Qn+r Qn−r+1)

−(Qn+2 Qn+3 −Qn+r+2 Qn−r+3)
+(Qn+1 Qn −Qn+r+1 Qn−r)
−(Qn+3 Qn+2 −Qn+r+3 Qn−r+2) ]

+ j [ (Qn Qn+2 −Qn+r Qn−r+2)
−(Qn+1 Qn+3 −Qn+r+1 Qn−r+3)
+(Qn+2 Qn −Qn+r+2 Qn−r)
−(Qn+3 Qn+1 −Qn+r+3 Qn−r+1) ]

+i j [ (Qn Qn+3 −Qn+r Qn−r+3)
+(Qn+1 Qn+2 −Qn+r+1 Qn−r+2)
+(Qn+3 Qn −Qn+r+3 Qn−r)
+(Qn+2 Qn+1 −Qn+r+2 Qn−r+1) ]

= 8(−1)n−r P2
r (0+0i+12 j+12 i j)

= 8.12(−1)n−r P2
r ( j+ i j).

where the identities of the Pell and Pell-Lucas numbers are used as follows,

PmPn −Pm+rPn−r = (−1)n−rPm+r−n Pr,

Pn Pn −Pn−r Pn+r = (−1)n−r P2
r ,

QmQn −Qm+rQn−r = (−1)n−r+1Pm+r−n Pr,

Qn Qn −Qn−r Qn+r = (−1)n−r+1 P2
r .

3. Conclusion

In this study, a number of new algebraic results on bicomplex Pell and bicomplex Pell-Lucas numbers are derived. Also,

negabicomplex Pell and negabicomplex Pell-Lucas numbers are given. Furthermore, d’Ocagne’s identity, Binet’s formula,

Cassini’s identity and Catalan’s identity for these numbers are generated.
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The regular, real-valued solutions of the second-order elliptic partial differential equation

∂ 2F

∂x2
+

∂ 2F

∂y2
+

2α +1

x

∂F

∂y
+

2β +1

y

∂F

∂x
= 0,α,β >

−1

2

are known as generalized bi-axially symmetric potentials (GBSP’s). McCoy [1] has showed that the rate at which

approximation error E
p

2n
2n (F ;D),(p ≥ 2,D is parabolic-convex set) tends to zero depends on the order of GBSP F

and obtained a formula for finite order. If GBSP F is an entire function of infinite order then above formula fails to
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p

2n
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1. Introduction

The linear second order elliptic partial differential equation is given in the form

∂ 2F

∂x2
+

∂ 2F

∂y2
+

2α +1

x

∂F

∂y
+

2β +1

y

∂F

∂x
= 0,α,β >

−1

2
, (1.1)

which are in x and y cf. Gilbert [2]. A polynomial of degree n which is even in x and y is said to be a GBSP polynomial of

degree n if it satisfies (1.1). A GBSP F that is regular about origin can be expanded as

F(x,y) =
∞

∑
n=0

anR
(α,β )
n (x,y),

where

R
(α,β )
n (x,y) = (x2 + y2)nP

(α,β )
n ((x2 − y2)/(x2 + y2))/P

(α,β )
n (1),n = 0,1,2, . . .



On Growth and Approximation of Generalized Biaxially Symmetric Potentials on Parabolic-Convex Sets — 157/162

and P
(α,β )
n (t) are Jacobi polynomials. Various authors such as Srivastava [3], McCoy [4], Kumar and Basu [5], Kumar and

Bishnoi [6], Harfaoui [7], Kumar [8], Kadiri and Harfaoui [9], Kasana and Kumar [10]-[12] and Kapoor and Nautiyal [13]

studied the growth and Lp-approximation of regular real-valued solutions of certain elliptic partial differential equations but our

results are different from these authors.

There are so many applications of the solutions of (1.1) in several areas of mathematical physics, for example, its solutions

arise in the Maxwell system for the modelling of electric or magnetic n-poles, potential scattering, in quasi-stationary (time

independent)diffusion processes and as the initial data for parabolic partial differential equations.

Let D be a certain open set that is symmetric about the origin with Jordan boundary. We define the p-norm on D as:

‖.‖p = (
1

A

∫ ∫

D
|.|pdxdy)

1
p , p ∈ [1,∞),‖.‖∞ = sup

D

|.|,‖1‖p = 1.

The space Lp(D) of real-valued GBSP given by (1.2) is regular and even on D with finite p-norm and the space lp(D) of

associated functions

f (z) =
∞

∑
n=0

anzn, (1.2)

where

R
(α,β )
n (z,0) = z2n,n = 0,1,2, . . .

is analytic on D with finite p-norm. McCoy [1] developed a pair of integral transforms that are one to one maps between the

space Lp(D) of real-valued GBSP F and the space lp(D) of associated f as:

F(x,y) = Kα,β ( f ) =
∫ π

0

∫ 1

0
f (τ)kα,β (t,s)dtds,

τ2 = τ2(x,y, t,s) = x2 − y2t2 +2ixyt coss,

f (z) = K−1
α,β (F) =

∫ +1

−1
F(r,ξ ,r(1−ξ 2)

1
2 jα,β (zr−1,ξ )dξ ,

where

kα,β (t,s) = να,β (1− t2)α−β−1t2β+1(sins)2α

and

jα,β (τ,ξ ) = ηα,β
(1− τ)

(1+ τ)α+β+2
×F [

α +β +2

2
;

α +β +3

2
;β +1;

2τ(1+ξ )

(1+ τ)2
].

Let us consider the set D which is parabolic-convex, that is,

(x+ iy)2 ∈ D ⇔{(ξ ,η) : 4x2(x2 −η2)≤ ξ ≤ x2 − y2} D

or equivalently,

(x+ iy)2 ∈ D ⇔{(ξ ,η) : ξ + iη = τ2(x,y, t,s),0 ≤ t ≤ 1,0 ≤ s ≤ π} D.

For example:D = ∆ : x2 + y2 < 1orD = {(ξ ,η) : |ξ |< 1, |η |< (1+ξ 2)
1
2 }.

Now we define optimal approximation errors as :

E
p
2n = E

p
2n(F ;D) = min{‖F −H‖p : H ∈ P2n},

e
p
2n = e

p
2n( f ;D) = min{‖ f −h‖p : h ∈ p2n},n = 0,1,2, . . . ,

where P2n = {Kα,β (h) : h ∈ p2n}, and p2n = {∑
n
k=0 akz2k : ak(real),0 ≤ k ≤ n}.
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McCoy [1, p.465] proved that

lim
n→∞

E
p

2n
2n (F ;D) = 0 (1.3)

if and only if, F is the restriction of an entire GBSP (analytic) function to D. McCoy [14] showed that a GBSP F is the

restriction of an entire GBSP (analytic) function to D if and only if the Kα,β associate f is the restriction of an entire (analytic)

function to D. And when the growth of an entire GBSP function with associate f is measured by order ρ = ρ(F) and type

T = T (F) which are defined as in analytic function theory by

ρ = limsup
r→∞

log logMr(F)

logr
,T = limsup

r→∞

logMr(F)

rρ
,

where

Mr(F) = sup{|F(x,y)| : x2 + y2 < r2},

then ρ(F) = ρ( f ) and T (F) = T ( f ).

For an entire F , (1.3) does not give any clue as to the rate at which E
p

2n
2n (F ;D) tends to zero. McCoy [1, p.467] has showed

that this rate depends on the order of GBSP F. Moreover, he proved that

limsup
n→∞

2n logn

log[ 1

E
p
2n(F)

]
= ρ(F) (1.4)

where ρ(F) is the nonnegative real number if and only if, F is the restriction of an entire GBSP (analytic) function to D of order

ρ .

However, if GBSP F is an entire function of infinite order, then (1.4) fails to give satisfactory information about the rate of

decrease of E
p

2n
2n (F ;D). The purpose of the present work is to refine the result of McCoy [1, p.467] by using the concept of

index of an entire function introduced by Sato [15, p.412] to the function of infinite order.

Thus, if

ρ(q) = limsup
r→∞

log[q] Mr(F)

logr
,q ≥ 2

where log[0] Mr(F) = Mr(F) and log[q] Mr(F) = log(log[q−1] Mr(F)), then GBSP F is said to be of index-q if ρ(q− 1) = ∞

while ρ(q)< ∞. If GBSP F is of index-q we shall call ρ(q) the q-order of F. Analogous to lower order, the concept of lower

q-order can be introduced. Thus GBSP F, that is an entire function of index-q, is said to be lower q-order λ (q) if

λ (q) = liminf
r→∞

log[q] Mr(F)

logr
,q ≥ 2.

2. Auxiliary results

In this section we shall prove some lemmas which will be useful in the sequel.

Lemma 2.1. Let f (z) = ∑
∞
n=0 anzn be an entire function of index-q(≥ 2) and lower q-order λ (q) and let ν(r) denote the rank

of the maximum term µ(r) for |z|= r,i.e. µ(r) = maxn≥0{|an|r
n} and ν(r) = max{n : µ(r) = |an|r

n}.

Then

λ (q) = liminf
r→∞

log[q−1] ν(r)

logr
= liminf

r→∞

log[q] µ(r)

logr
.

Proof. The proof follows on the lines of Whittaker [16, Thm. 1] for q = 2, so we omit the proof.

Lemma 2.2. Let f (z) = ∑
∞
n=0 anzn be an entire function of index-q(≥ 2) and lower q-order λ (q) and let {nk} denote the range

of the step function ν(r), then

λ (q) = liminf
r→∞

log[q−1] nk

logξ (nk+1)

where the ξ (nk) denote the jump points of ν(r).
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Proof. For q = 2, the proof is due to Gray and Shah [17, Lemma 1].

Lemma 2.3. Let f (z)=∑
∞
k=0 akznk be an entire function of index-q(≥ 2) and lower q-order λ (q) such that ϕ(k)= | ak

ak+1
|

1
(nk+1−nk)

forms an increasing function of k for k > ko; then

λ (q) = liminf
k→∞

(nk+1 −nk) log[q−1] nk

log | ak
ak+1

|
.

Proof. For q = 2, the proof is due to Juneja and Kapoor [18]. So we omit the proof.

Lemma 2.4. Let {nk} be an increasing sequence of positive integers and let {an} be a sequence of complex numbers such that

|ank
|< 1 for k > ko; then for q ≥ 2

liminf
k→∞

nk log[q−1] nk

log |ank
|−1

≥ liminf
k→∞

(nk −nk−1) log[q−1] nk−1

log |
ank−1

ank
|

.

Proof. The proof follows on the lines of Juneja [21, Lemma 2] for q = 2, so we omit the proof.

3. Main results

Theorem 3.1. For fixed p ≥ 2, let the F ∈ Lp(D) be the restriction of an entire GBSP (analytic) function to D of index-q(≥ 2).
Then F is of q-order ρ(q) if and only if

ρ(q) = limsup
n→∞

2n logn

log[ 1

E
p
2n(F)

]
. (3.1)

Proof. The proof follows on the lines of [1, Thm. 2(i)], so we omit the details.

However, the result corresponding to (3.1) does not always hold for the lower q-order. The following theorem is corre-

sponding to (3.1) for the lower q-order of a GBSP F.

Theorem 3.2. For fixed p ≥ 2, let the F ∈ Lp(D) be the restriction of an entire GBSP (analytic) function to D of index q(≥ 2).
Then F is of lower q-order λ (q) if and only if

λ (q) = max
{nk}

liminf
k→∞

2nk log[q−1] nk−1

− logE
p
2nk

(F)
,

where maximum is taken over all increasing sequence {nk} of natural numbers.

Proof. Let F ∈ Lp(D) be the restriction of an entire GBSP (analytic) function to D of index-q(≥ 2) and lower q-order λ (q).
Following Bernstein’s [19, p.176] and A.Giroux [20, p.52], it follows that for

e
p
2n( f )≤ e∞

2n( f )≤
2B(r)

r2n(r−1)
(3.2)

for any r > 1, where B(r) = maxz∈ℑr
| f (z)| and ℑr with r > 1 denotes the closed interior of the ellipse with foci ±1, with

half-major axis (r2 + 1)/2r and half-minor axis (r2 − 1)/2r. The closed disks D1(r) and D2(r) bound the ellipse ℑr in the

sense that

D1(r) = {z : |z| ≤
r2 −1

2r
} ℑr  D2(r) = {z : |z| ≤

r2 +1

2r
}.

From above it follows that

M(
r2 −1

2r
)≤ B(r)≤ M(

r2 +1

2r
)for all r > 1. (3.3)

Consequently, (3.2) and (3.3) give for any sequence {nk} of positive integers that

M(
r2 +1

2r
)≥ e

p
2nk

( f )r2nk (3.4)
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for any r > 3 and k = 1,2, . . . . Now using the optimal approximates [1, eq.12]

E
p

2n
2n (F)≤ w

1
2np e

p
2n
2n ( f ),w = w(α,β , p : D)

in (3.4) we obtain

M(
r2 +1

2r
)≥ w

−1
p E

p
2nk

r2nk . (3.5)

Now let

liminf
k→∞

2nk log[q−1] nk−1

− logE
p
2nk

(F)
= η∗({2nk})≡ η∗. (3.6)

Since GBSP F is an entire function, (3.6) gives 0 ≤ η∗ ≤ ∞. First, let 0 < η∗ < ∞, then for

E
p
2nk

(F)> [log[q−1] nk−1]
−

2nk
(η∗−ε)

for k > ko = ko(ε). Let rk = e(log[q−2] nk−1)
1

(η∗−ε) for k = 1,2,3, . . . . If rk ≤ r ≤ rk+1,k > ko then (3.5) gives

logM(
r2 +1

2r
) ≥

{

logE
p
2nk

(F)+2nk logr−
1

p
logw

}

≥ logE
p
2nk

(F)+2nk logrk −
1

p
logw

> 2nk

= 2exp[q−2](
rk+1

e
)(η

∗−ε).

So

log[q] M(
r2 +1

2r
) > (η∗− ε) logrk+1 − (η∗− ε)

≥ (η∗− ε) logr− (η∗− ε)

or

λ (q) = liminf
r→∞

log[q] Mr(F)

logr
≥ η∗

which obviously holds for every increasing sequence {nk} of positive integers, we have

λ (q)≥ max
{nk}

η∗({2nk}) = η∗∗. (3.7)

Now for each n ≥ 0 there exists a unique h ∈ p2n such that

‖ f − p2n‖p = e
p
2n( f ),n = 0,1, . . . .

Further, since ‖p2n+1 − p2n‖p is bounded above by 2e
p
2n( f ), we have by [20, p.42];

|p2n+1 − p2n| ≤ 2e
p
2n( f )r2n+1 (3.8)

for all z ∈ ℑr for any r > 1. Thus we can write

f (z) = p0(z)+
∞

∑
i=0

(p2i+1(z)− p2i(z))

and this series converges uniformly in any bounded domain of the complex plane. So, (3.8) gives

| f (z)| ≤ |p0(z)|+2
∞

∑
i=0

e
p
2i( f )r2i+1
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for any z ∈ ℑr and from the definition of B(r)

B(r)≤ Ao +2
∞

∑
i=0

e
p
2i( f )r2i+1.

So (3.3) gives

M(
r2 −1

2r
)≤ Ao +2

∞

∑
i=0

e
p
2i( f )r2i+1. (3.9)

Using the optimal approximate [1, eq.(13)]

e
p

2n
2n ( f )≤ δ

1
2np E

p
2n

2n (F),δ = δ (α,β , p : D)

in (3.9) we get

M(
r2 −1

2r
)≤ Ao +2

∞

∑
i=0

δ
1
p E

p
2i(F)r2i+1. (3.10)

Obviously, the function g(z) = ∑
∞
n=0 E

p
2n(F)δ

1
p z2n+1 is an entire function. Let {nk} denote the range of ν(r) for this function.

Consider the function g̃(z) = ∑
∞
k=0 E

p
2nk

(F)δ
1
p z2nk+1. It is easily seen that g̃(z) is also an entire function and that g(z) and g̃(z)

have the same maximum term for every z. It follows that both have same lower q-order. If we denote this by λo(q) then since

g̃(z) satisfies the hypothesis of Lemma 2.3, we have

λ0(q) = liminf
k→∞

2(nk −nk−1) log[q−1] nk−1

log(
E

p
2nk−1

(F)

E
p
2nk

(F)
)

≤ liminf
k→∞

2nk log[q−1] nk−1

− logE
p

2nk(F)

≤ maxliminf
k→∞

2nk log[q−1] nk−1

− logE
p

2nk(F)

= η∗∗

. (3.11)

Thus (3.10) and (3.11) give

M(
r2 −1

2r
)≤ Ao +2g(r)

≤ O(1)+2exp[q−1](rη∗∗+ε)

for a sequence r1,r2, . . .→ ∞. Hence, it gives that

λ (q)≤ η∗∗

which shows that the lower q-order of GBSP F does not exceed η∗∗. Thus, if GBSP F is of lower q-order λ (q), then (3.7)

shows that η∗∗ < λ (q). If η∗∗ < λ (q), then the above arguments show that GBSP F would be of lower q-order less than η∗∗, a

contradiction. Thus, we must have η∗∗ = λ (q).

The following theorem depicts the influence of λ (q) on the rate of decrease of E
p
2n(F).

Theorem 3.3. For fixed p ≥ 2, let the F ∈ Lp(D) be the restriction of an entire GBSP (analytic) function to D of index q. Then,

F is of lower q-order λ (q) if and only if

λ (q) = max{nk} liminfk→∞
2(nk−nk−1) log[q−1] nk−1

log(
E

p
2nk−1

(F)

E
p
2nk

(F)
)

,

where maximum is taken over all increasing sequences {nk} of natural numbers.

Proof. In view of Lemma 2.3 and Lemma 2.4 with above arguments the proof is immediate.
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1. Introduction

In this paper we first establish the fixed point property of certain generalized multivalued mappings which are almost contractions

and satisfy some admissibility conditions and then establish that these multivalued mappings have stable fixed point sets. We

use rational terms in the contraction inequalities which are considered here.

Our theorems are deduced in the domain of setvalued analysis which is an extension of the ordinary mathematical analysis.

Aubin et al. [1] in their book has described several aspects of this study. Banach’s contraction mapping principle was extended

to the domain of setvalued analysis by Nadler [2], which was followed by several other works in the same direction. Today

multivalued fixed point theory has a large literature and can be regarded as a subject by itself. Some recent references from this

area of study are [3]-[9].

Admissibility map was introduced in the work of Samet et al. [10]. After which in fixed point theory several other such

conditions were introduced by many authors for the purpose of obtaining new fixed point results in metric spaces. The essence

of such efforts is to restrict the contractive condition to appropriate subsets of X ×X , rather than assuming to be valid between

arbitrary pairs of points from the metric space. This is the development which is parallel to the emergence of fixed point theory

in partially ordered metric spaces where the introduction and use of the partial order in metric space also serves the same

purpose [4], [11]-[16].

Almost contractions are generalizations of the contractive conditions by introducing an additional additive term in the

contractive inequality. It was first introduced by Berinde in [17, 18] in which a generalization of the Banach’s contraction

mapping principle was established by using this idea. Almost contractions and its generalizations were further considered in

several works like [3], [19]-[22].

The concept of stability of fixed point sets appeared first in the work of Nadler [2], i.e, in the same work though which the
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study of setvalued fixed point theory was initiated. There has been wide interest on these problems of stability which is related

to limiting behaviors of sequence of multivalued mappings. Some of the several important works which appeared on the topic

in recent times are noted in [4], [5], [12], [23]-[26].

Rational terms were used in problems of fixed point theory in a good number of papers. Such uses were initiated by Dass et

al. [27] and were subsequently made in several works on fixed point theory of which some recent references are [12], [28],

[29]-[32].

The purpose of this paper is to establish the existence of fixed points of multivalued cyclic (α −β )- admissible mappings in

metric spaces, a condition which we define here. The mappings are assumed to satisfy certain rational type generalized almost

contractions which are also defined in this work. In Section 2, we describe some mathematical preliminaries which we use in

our results in Sections 3 and 4. In Section 3, we prove a fixed point result for multivalued mapping satisfy certain rational type

generalized almost contractions. In Section 4, we investigate the stability of fixed point sets of above mentioned setvalued

contractions which is derived without continuity assumption.

2. Mathematical preliminaries

The following are the concepts from setvalued analysis which we use in this paper. Let (X , d) be a metric space. Let N(X) :=
the collection of all nonempty subsets of X ; CB(X) := the collection of all nonempty closed and bounded subsets of X ; and

C(X) := the collection of all nonempty compact subsets of X . Now for x ∈ X and A, B ∈CB(X), the functions D(x, B) and

H(A, B) are defined as follows:

D(x, B) = inf {d(x, y) : y ∈ B} and H(A, B) = max {sup
x∈A

D(x, B), sup
y∈B

D(y, A)}.

H is known as the Hausdorff metric induced by d on CB(X) [2]. Further, if (X , d) is complete then (CB(X), H) is also

complete.

Lemma 2.1 ([6]). Let (X , d) be a metric space and B ∈C(X). Then for every x ∈ X there exists y ∈ B such that d(x, y) =
D(x, B).

Definition 2.2. Let X be a nonempty set, f : X → X be a singlevalued mapping and T : X → N(X) be a multivalued mapping.

A point x ∈ X is called a fixed point of f (resp. T ) if and only if x = f x (resp. x ∈ T x).

The set of all fixed points of f and T are denoted respectively by F( f ) and F(T ).
In [10] Samet et al. introduced the concept of α- admissible mappings and utilized these mappings to prove some fixed

point results in metric spaces.

Definition 2.3 ([10]). Let X be a nonempty set, T : X −→ X and α : X ×X −→ [0, ∞). T is said to be an α-admissible mapping

if for x, y ∈ X , α(x, y)≥ 1 =⇒ α(T x, Ty)≥ 1.

In the following we define cyclic (α −β ) admissibility for multivalued mappings.

Definition 2.4. Let X be a nonempty set, T : X −→ N(X) be a multivalued mapping and α, β : X −→ [0, ∞). Then T is said

to be a cyclic (α, β )- admissible mapping if for x, y ∈ X ,

(i) α(x)≥ 1 =⇒ β (u)≥ 1 for all u ∈ T x,

(ii) β (y)≥ 1 =⇒ α(v)≥ 1 for all v ∈ Ty.

Definition 2.5. Let (X , d) be a metric space and γ : X −→ [0, ∞). Then X is said to have γ- regular property if {xn} is a

sequence in X with γ(xn)≥ 1 for all n and xn −→ x as n −→ ∞, then γ(x)≥ 1.

Let Θ be the collection of all mappings θ : [0, ∞)6 −→ [0, ∞) such that (i) θ is continuous and nondecreasing in each

coordinate; (ii) ∑
∞
n=1 ψn(t)< ∞ and ψ(t)< t for each t > 0, where ψ(t) = θ(t, t, t, t, t, t).

It is to be noted that the properties of θ imply that θ(0, 0, 0, 0, 0, 0) = 0.

Let Ω be the collection of all mappings ϕ : [0, ∞)4 −→ [0, ∞) such that (i) ϕ is continuous and nondecreasing in each

coordinate; (ii) ϕ(t1, t2, t3, t4) = 0 if t1t2t3t4 = 0.

Definition 2.6. Let (X , d) be a metric space, T : X −→ X and α, β : X −→ [0, ∞). Let µ, ν ≥ 0, θ ∈ Θ and ϕ ∈ Ω. We say

that T is generalized almost contraction if for x, y ∈ X with α(x) β (y)≥ 1 or α(y) β (x)≥ 1,

d(T x, Ty)≤ M(x, y)+N(x, y),
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where

M(x, y) = θ
(

d(x, y), d(x, T x), d(y, Ty),
1

2
[d(y, T x)+d(x, Ty)],

d(y, Ty) [1+d(x, T x)µ ]

1+d(x, y)µ
,

d(y, T x) [1+d(x, Ty)ν ]

1+d(x, y)ν

)

and

N(x, y) = ϕ
(

d(x, T x), d(y, Ty), d(x, Ty), d(y, T x)
)

.

Definition 2.7. Let (X , d) be a metric space, T : X −→C(X) be a multivalued mapping and α, β : X −→ [0, ∞). Let µ, ν ≥ 0,

θ ∈ Θ and ϕ ∈ Ω. We say that T is generalized almost contraction if for x, y ∈ X with α(x) β (y)≥ 1 or α(y) β (x)≥ 1,

H(T x, Ty)≤ M(x, y)+N(x, y), (2.1)

where

M(x, y) = θ
(

d(x, y), D(x, T x), D(y, Ty),
1

2
[D(y, T x)+D(x, Ty)],

D(y, Ty) [1+D(x, T x)µ ]

1+d(x, y)µ
,

D(y, T x) [1+D(x, Ty)ν ]

1+d(x, y)ν

)

and

N(x,y) = ϕ
(

D(x, T x), D(y, Ty), D(x, Ty), D(y, T x)
)

.

3. Main results

Theorem 3.1. Let (X , d) be a complete metric space, T : X −→C(X) be a multivalued mapping and α, β : X −→ [0, ∞).
Suppose that (i) X is regular with respect to α and β ; (ii) T is a cyclic (α, β )- admissible mapping; (iii) there exists x0 ∈ X such

that α(x0)≥ 1 or β (x0)≥ 1 and (iv) there exist µ, ν ≥ 0, θ ∈ Θ and ϕ ∈ Ω such that T is a generalized almost contraction.

Then T has a fixed point in X.

Proof. By the assumption (iii), suppose there exists x0 ∈ X such that α(x0) ≥ 1 (the proof is similar if β (x0) ≥ 1). Let

x1 ∈ T x0. By the assumption (ii), β (x1) ≥ 1. Now by Lemma 2.1, there exists x2 ∈ T x1 such that d(x1, x2) = D(x1, T x1).
As β (x1) ≥ 1 and x2 ∈ T x1, by the assumption (ii), we have α(x2) ≥ 1. Also by Lemma 2.1, there exists x3 ∈ T x2 such

that d(x2, x3) = D(x2, T x2). Since x3 ∈ T x2 and α(x2)≥ 1, by the assumption (ii), β (x3)≥ 1. Continuing this process, we

construct a sequence {xn} such that for all n ≥ 0,

xn+1 ∈ T xn, d(xn, xn+1) = D(xn, T xn) and α(x2n)≥ 1, β (x2n+1)≥ 1. (3.1)

By (3.1) either α(xn)β (xn+1)≥ 1 or α(xn+1)β (xn)≥ 1. Applying the assumption (iv), we have

d(xn+1, xn+2) = D(xn+1, T xn+1)≤ H(T xn, T xn+1)≤ M(xn, xn+1)+N(xn, xn+1). (3.2)

Now,

M(xn,xn+1) = θ
(

d(xn,xn+1), D(xn,T xn), D(xn+1,T xn+1),

D(xn+1,T xn)+D(xn,T xn+1)

2
,

D(xn+1, T xn+1) [1+D(xn, T xn)
µ ]

1+d(xn, xn+1)µ
,

D(xn+1, T xn) [1+D(xn, T xn+1)
ν ]

1+d(xn, xn+1)ν

)

≤ θ
(

d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2),

d(xn+1, xn+1)+d(xn, xn+2)

2
,

d(xn+1, xn+2) [1+d(xn, xn+1)
µ ]

1+d(xn, xn+1)µ
,

d(xn+1, xn+1) [1+d(xn, xn+2)
ν ]

1+d(xn, xn+1)ν

)

≤ θ
(

d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2),
d(xn, xn+2)

2
, d(xn+1, xn+2), 0

)

Since
d(xn, xn+2)

2
≤

d(xn, xn+1)+d(xn+1, xn+2)

2
≤ max {d(xn, xn+1), d(xn+1, xn+2)}, it follows from the property of θ that

M(xn, xn+1)≤ θ
(

max {d(xn, xn+1), d(xn+1, xn+2)}, max {d(xn, xn+1), d(xn+1, xn+2)},

max {d(xn, xn+1), d(xn+1, xn+2)}, max {d(xn, xn+1), d(xn+1, xn+2)},

max {d(xn,xn+1), d(xn+1,xn+2)}, max {d(xn,xn+1), d(xn+1,xn+2)}
)

= ψ
(

max {d(xn, xn+1), d(xn+1, xn+2)}
)

. (3.3)
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Also,

N(xn, xn+1) = ϕ
(

D(xn,T xn), D(xn+1,T xn+1), D(xn,T xn+1), D(xn+1,T xn)
)

≤ ϕ
(

d(xn, xn+1), d(xn+1, xn+2), d(xn, xn+2), d(xn+1, xn+1)
)

= 0. (3.4)

Suppose that d(xn, xn+1)< d(xn+1, xn+2). Then d(xn+1, xn+2)> 0 and it follows from (3.2), (3.3), (3.4) and a property of θ
that

d(xn+1, xn+2)≤ ψ(d(xn+1, xn+2))< d(xn+1, xn+2),

which is a contradiction. Hence d(xn+1, xn+2)≤ d(xn, xn+1). Then by (3.2), (3.3) and (3.4), we have

d(xn+1, xn+2)≤ ψ(d(xn, xn+1)). (3.5)

By repeated application of (3.5) and the monotone property of θ , we have

d(xn+1, xn+2)≤ ψ(d(xn, xn+1))≤ ψ2(d(xn−1, xn))≤ ...≤ ψn+1(d(x0, x1)).

By a property of θ , we have

∑
n

d(xn, xn+1)≤ ∑
n

ψn(d(x0, x1))< ∞.

This shows that {xn} is a Cauchy sequence. From the completeness of X , there exists z ∈ X such that

xn −→ z as n −→ ∞. (3.6)

Now {x2n+1} is a subsequence of {xn} which, by (3.1) and (3.6), satisfies β (x2n+1)≥ 1 for all n and x2n+1 −→ z as n −→ ∞.

By β - regular property of X , we have β (z)≥ 1. Also by (3.1), α(x2n)≥ 1 for all n ≥ 0. Applying the assumption (iv), we have

D(x2n+1, T z)≤ H(T x2n, T z)≤ M(x2n, z)+N(x2n, z). (3.7)

Now,

M(x2n,z) = θ
(

d(x2n,z), D(x2n,T x2n), D(z,T z),
D(z,T x2n)+D(x2n,T z)

2
,

D(z, T z) [1+D(x2n, T x2n)
µ ]

1+d(x2n, z)µ
,

D(z, T x2n) [1+D(x2n, T z)ν ]

1+d(x2n, z)ν

)

≤ θ
(

d(x2n, z), d(x2n, x2n+1), D(z, T z),
d(z, x2n+1)+D(x2n, T z)

2
,

D(z, T z) [1+d(x2n, x2n+1)
µ ]

1+d(x2n, z)µ
,

d(z, x2n+1) [1+D(x2n, T z)ν ]

1+d(x2n, z)ν

)

.

Taking limit supremum on both sides of the above inequality, using (3.6) and the continuity of θ , we have

lim M(x2n, z)≤ θ
(

0, 0, D(z, T z),
D(z, T z)

2
, D(z, T z), 0

)

≤ θ
(

D(z,T z), D(z,T z), D(z,T z), D(z,T z), D(z,T z), D(z,T z)
)

= ψ(D(z, T z)). (3.8)

Also

N(x2n, z) = ϕ
(

D(x2n, T x2n), D(z, T z), D(x2n, T z), D(z, T x2n)
)

≤ ϕ
(

d(x2n, x2n+1), D(z, T z), D(x2n, T z), d(z, x2n+1)
)

.
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Taking limit supremum and using the property of ϕ , we have

lim N(x2n, z)≤ ϕ
(

0, D(z, T z), D(z, T z), 0
)

= 0. (3.9)

Taking limit supremum on both sides of (3.7) and using (3.8) and (3.9), we have

D(z, T z)≤ ψ(D(z, T z)).

Suppose that D(z, T z) 6= 0. From the above inequality and using a property of θ , we have

D(z, T z)≤ ψ(D(z, T z))< D(z, T z),

which is a contradiction. Hence D(z, T z) = 0. Since T z ∈C(X), T z is compact and hence T z is closed, that is, T z = T z, where

T z denotes the closure of T z. Now, D(z, T z) = 0 implies that z ∈ T z = T z, that is, z is a fixed point of T .

Note. The conclusion of the above theorem is still valid if in its assumptions the condition that the space X is regular with

respect to α and β is replaced by the continuity of T . The proof remains the same except for minor modifications which is not

separately shown here.

Example 3.2. Let X = [0, ∞) and “d” be the usual metric on X . Then (X ,d) is a complete metric space. Let T : X −→C(X)
be defined as T x = [0, x

256
], for x ∈ X and α, β : X −→ [0, ∞) be defined as

α(x) =

{

ex, if x ∈ [0, 1],
1

10
, otherwise,

β (x) =

{

x+1, if x ∈ [0, 1],
1

100
, otherwise.

Let θ : [0, ∞)6 −→ [0, ∞) and ϕ : [0, ∞)4 −→ [0, ∞) be defined respectively as follows:

θ(t1, t2, t3, t4, t5, t6) =
1

4
max {t1, t2, t3, t4, t5, t6}

and

ϕ(t1, t2, t3, t4) = log
(

1+ t1 t2 t3 t4

)

.

Take µ, ν ≥ 0 be any real numbers.

(i) Suppose that {xn} is a sequence in X converging to x ∈ X such that α(xn)≥ 1 and β (xn)≥ 1 for all n. Then {xn} is a

sequence in [0, 1] and also x ∈ [0, 1]. Then it follows that α(x)≥ 1 and β (x)≥ 1. Therefore, X is regular with respect to α
and β .

(ii) Suppose that x ∈ X and α(x)≥ 1. Then x ∈ [0, 1] and T x = [0, x
256

]⊆ [0, 1]. It follows that β (u)≥ 1 for all u ∈ T x.

Similarly, if y ∈ X and β (y) ≥ 1, it can be shown that α(v) ≥ 1 for all v ∈ Ty. Therefore, T is a cyclic (α, β )- admissible

mapping.

(iii) α(x)≥ 1 and β (x)≥ 1 for every x ∈ [0, 1].
(iv) Here θ ∈ Θ and ϕ ∈ Ω. Let x, y ∈ X . Now, α(x) β (y)≥ 1 (or α(y) β (x)≥ 1) implies that x, y ∈ [0, 1]. So we require

to check the validity of the inequality (2.1) for x, y ∈ [0, 1]. Now H(T x, Ty) =
| x− y |

256
and M(x, y)≥

| x− y |

4
for x, y ∈ [0, 1].

Then (2.1) is satisfied for all x, y ∈ X with α(x) β (y)≥ 1 or α(y) β (x)≥ 1. Therefore, T is a generalized almost contraction.

Hence all the conditions of Theorem 3.1 are satisfied and 0 is a fixed point of T .

In Theorem 3.1, considering ψ(x1, x2, x3, x4,x5, x6)= k max {x1, x2, x3, x4, x5, x6}, where k∈ [0, 1) and ϕ(t1, t2, t3, t4)=
L min {t1, t2, t3, t4}, where L ≥ 0 be any real number, we have the following corollary.

Corollary 3.3. Let (X , d) be a complete metric space, T : X −→C(X) be a multivalued mapping and α, β : X −→ [0, ∞).
Suppose that (i) X is regular with respect to α and β ; (ii) T is a cyclic (α , β )- admissible mapping; (iii) there exists x0 ∈ X

such that α(x0)≥ 1 or β (x0)≥ 1 and (iv) there exist µ, ν ≥ 0, L ≥ 0 and k ∈ [0, 1) such that for x, y ∈ X with α(x) β (y)≥ 1

or α(y) β (x)≥ 1,

H(T x, Ty)≤ k M(x, y)+L N(x, y),

where

M(x, y)=max
{

d(x, y), D(x, T x), D(y, Ty),
1

2
[D(y, T x)+D(x, Ty)],

D(y, Ty) [1+D(x, T x)µ ]

1+d(x, y)µ
,

D(y, T x) [1+D(x, Ty)ν ]

1+d(x, y)ν

}

and N(x, y) = min
{

D(x, T x), D(y, Ty), D(y, T x), D(x, Ty)
}

. Then T has a fixed point.
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The following theorem is the special case of Theorem 3.1 when we treat T : X → X as a multivalued mapping in which case

T x can be treated as a singleton set for every x ∈ X .

Theorem 3.4. Let (X , d) be a complete metric space, T : X → X and α, β : X → [0, ∞). Suppose that (i) X is regular with

respect to α and β ; (ii) T is a cyclic (α, β )- admissible mapping; (iii) there exists x0 ∈ X such that α(x0)≥ 1 or β (x0)≥ 1;

and (iv) there exist µ, ν ≥ 0, θ ∈ Θ and ϕ ∈ Ω such that T is a generalized almost contraction. Then T has a fixed point.

Proof. We know that {x} is compact in X for every x ∈ X . We define a multivalued mapping S : X −→ C(X) as Sx =
{T x} for x ∈ X .

Let x, y ∈ X such that α(x)≥ 1 and β (y)≥ 1. Then by cyclic (α −β ) - admissibility of T , we have

β (T x)≥ 1, that is, β (u)≥ 1 where u ∈ Sx = {T x} and α(Ty)≥ 1, that is, α(v)≥ 1 where v ∈ Sy = {Ty}.

Therefore, for x, y ∈ X ,

α(x)≥ 1 =⇒ β (u)≥ 1 for all u ∈ Sx and β (y)≥ 1 =⇒ α(v)≥ 1 for all v ∈ Sy,

that is, S is a cyclic (α −β )- admissible mapping.

Let x, y ∈ X with α(x)β (y)≥ 1 or α(y)β (x)≥ 1. Then

H(Sx, Sy) = d(T x, Ty)

≤ θ
(

d(x, y), d(x, T x), d(y, Ty),
d(y, T x)+d(x, Ty)

2
,

d(y, Ty) [1+d(x, T x)µ ]

1+d(x, y)µ
,

d(y, T x) [1+d(x, Ty)ν ]

1+d(x, y)ν

)

+ϕ
(

d(x, T x), d(y, Ty), d(x, Ty), d(y, T x)
)

= θ
(

d(x, y), D(x, Sx), D(y, Sy),
D(y, Sx)+D(x, Sy)

2
,

D(y, Sy) [1+D(x, Sx)µ ]

1+d(x, y)µ
,

D(y, Sx) [1+D(x, Sy)ν ]

1+d(x, y)ν

)

+ϕ
(

D(x, Sx), D(y, Sy), D(x, Sy), D(y, Sx)
)

,

that is, S is a generalized almost contraction. So, all the conditions of Theorem 3.1 are satisfied and hence S has a fixed point z

in X . Then z ∈ Sz = {T z}, that is, z = T z, that is, z is a fixed point of T .

4. Stability of fixed point sets

In this section, we investigate the stability of fixed point sets of the setvalued contractions mentioned in Section 3.

Theorem 4.1. Let (X , d) be a complete metric space, Tl : X −→ C(X), l = 1, 2 be two multivalued mappings and α, β :

X −→ [0, ∞). Suppose the assumptions (i), (ii) (for each Tl), (iii) and (iv) (for each Tl), of Theorem 3.1 are satisfied. Then

F(Tl) 6= /0, for l = 1, 2. Also suppose that α(x) ≥ 1 or β (x) ≥ 1 for any x ∈ F(Tl), (l = 1, 2). Then H(F(T1), F(T2)) ≤
Φ(M), where M = supx∈X H(T1x, T2x) and Φ(M) = ∑

∞
n=1 ψn(M).

Proof. By Theorem 3.1, the set of fixed points of Tl (l = 1, 2) are nonempty, that is, F(Tl) 6= /0, for l = 1, 2. Let y0 ∈ F(T1),
that is, y0 ∈ T1y0. Without loss of generality we assume that α(y0)≥ 1 (the proof is similar if β (y0)≥ 1). By Lemma 2.1, there

exists y1 ∈ T2y0 such that

d(y0, y1) = D(y0, T2y0). (4.1)

By the condition (ii) on T2, β (y1)≥ 1. Hence α(y0)β (y1)≥ 1. By Lemma 2.1, there exists y2 ∈ T2y1 such that d(y1, y2) =
D(y1, T2y1). As β (y1)≥ 1 and y2 ∈ T2y1, by the condition (ii) on T2, we have α(y2)≥ 1. Hence α(y2)β (y1)≥ 1. Again by

Lemma 2.1, there exists y3 ∈ T2y2 such that d(y2, y3) = D(y2, T2y2). Then arguing similarly as in the proof of Theorem 3.1,

we construct a sequence {yn} such that for all n ≥ 0,

yn+1 ∈ T2yn; α(y2n)≥ 1, β (y2n+1)≥ 1; d(yn+1, yn+2)≤ ψ(d(yn, yn+1))

and

d(yn+1, yn+2)≤ ψ(d(yn, yn+1))≤ ψ2(d(yn−1, yn))≤ ...≤ ψn+1(d(y0, y1)). (4.2)
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Arguing similarly as in the proof of Theorem 3.1, we prove {yn} is a Cauchy sequence in X and there exists u ∈ X such that

yn −→ u as n −→ ∞, (4.3)

also u is a fixed point of T2, that is, u ∈ T2u. From (4.1) and the definition of M, we have

d(y0, y1) = D(y0, T2y0)≤ H(T1y0, T2y0)≤ M = sup
x∈X

H(T1x, T2x). (4.4)

Using (4.2), we have

d(y0, u)≤
n

∑
i=0

d(yi, yi+1)+d(yn+1, u)≤
n

∑
i=0

ψ i(d(y0, y1))+d(yn+1, u).

Taking limit as n −→ ∞ in the above inequality, using (4.3), (4.4) and the properties of θ , we have

d(y0, u)≤
∞

∑
i=0

ψ i(d(y0, y1))≤
∞

∑
i=0

ψ i(M) = Φ(M).

Thus given arbitrary y0 ∈ F(T1), we have u ∈ F(T2) for which d(y0, u) ≤ Φ(M). Similarly, we can prove that for arbitrary

z0 ∈ F(T2), there exists w ∈ F(T1) such that d(z0, w)≤ Φ(M). Hence we conclude that H(F(T1), F(T2))≤ Φ(M).

Lemma 4.2. Let (X , d) be a complete metric space, {Tn : X →C(X) : n ∈N} be a sequence of multivalued mappings uniformly

convergent to a multivalued mapping T : X →C(X) and α, β : X → [0, ∞). Suppose that the assumptions (i), (ii) (for each Tn)

and (iv) (for each Tn), of Theorem 3.1 are satisfied. Then T satisfies the conditions (ii) and (iv) of Theorem 3.1.

Proof. First, we prove that T satisfies the condition (ii) of Theorem 3.1, that is, T is cyclic (α, β )- admissible. Let α(x)≥ 1

( or β (x)≥ 1), x ∈ X . Suppose y ∈ T x is arbitrary. Since Tn −→ T uniformly, there exists a sequence {xn} in {Tnx} such that

xn −→ y as n −→ ∞. Since α(x)≥ 1 ( or β (x)≥ 1) and each Tn is cyclic (α, β ) - admissible, it follows from Definition 2.4

that β (xn)≥ 1, ( or α(xn)≥ 1 ) for every n ∈ N. Then by regular property of the space with respect to β ( or α ), it follows that

β (y)≥ 1 ( or α(y)≥ 1 ). Hence T is cyclic (α, β )-admissible, that is, T satisfies the condition (ii) of Theorem 3.1.

Let x, y ∈ X with α(x)β (y)≥ 1 or α(y)β (x)≥ 1. As for every n ∈ N, Tn satisfies the condition (iv) of Theorem 3.1, we

have

H(Tnx, Tny)≤ θ
(

d(x, y), D(x, Tnx), D(y, Tny),
D(y, Tnx)+D(x, Tny)

2
,

D(y, Tny) [1+D(x, Tnx)µ ]

1+d(x, y)µ
,

D(y, Tnx) [1+D(x, Tny)ν ]

1+d(x, y)ν

)

+ϕ
(

D(x, Tnx), D(y, Tny), D(x, Tny), D(y, Tnx)
)

.

Since the sequence {Tn} is uniformly convergent to T and θ and ϕ are continuous, taking limit as n −→ ∞ in the above

inequality, we get

H(T x, Ty)≤ θ
(

d(x, y), D(x, T x), D(y, Ty),
D(y, T x)+D(x, Ty)

2
,

D(y, Ty) [1+D(x, T x)µ ]

1+d(x, y)µ
,

D(y, T x) [1+D(x, Ty)ν ]

1+d(x, y)ν

)

+ϕ
(

D(x, T x), D(y, Ty), D(x, Ty), D(y, T x)
)

,

which shows that T satisfies the condition (iv) of Theorem 3.1.

Now we present our stability result.

Theorem 4.3. Let (X , d) be a complete metric space, {Tn : X −→ C(X) : n ∈ N} be a sequence of multivalued mappings

uniformly convergent to a mapping T : X −→C(X) and α, β : X −→ [0, ∞). Suppose the assumptions (i), (ii) (for each Tn),
(iii) and (iv) (for each Tn), of Theorem 3.1 are satisfied. Then F(Tn) 6= /0 for all n and F(T ) 6= /0. Let Φ(t) −→ 0 as

t −→ 0, where Φ(t) = ∑
∞
n=1 ψn(t). If β (x) ≥ 1 or α(x) ≥ 1 for any x belonging to F(Tn), [n = 1,2,3, ..] or F(T ). Then

limn−→∞ H(F(Tn), F(T )) = 0, that is, the fixed point sets of Tn are stable.

Proof. By Lemma 4.2 and Theorem 3.1, we have F(Tn) 6= /0 for all n and F(T ) 6= /0. Let Mn = supx∈X H(Tnx, T x). Since

the sequence {Tn} is uniformly convergent to T on X ,

lim
n−→∞

Mn = lim
n−→∞

sup
x∈X

H(Tnx, T x) = 0. (4.5)
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By Theorem 4.1, we get

H(F(Tn), F(T ))≤ Φ(Mn), for every n ∈ N.

Since Φ is continuous and Φ(t)−→ 0 as t −→ 0, using (4.5), we have

lim
n−→∞

H(F(Tn), F(T ))≤ lim
n−→∞

Φ(Mn) = 0,

that is, limn−→∞ H(F(Tn), F(T )) = 0, that is, the fixed point sets of Tn are stable.

Example 4.4. We take the metric space (X , d) and the mappings α , β , θ and ϕ as taken in Example 3.2. Let T : X −→C(X)
be defined as T x = [0, x

256
], for x ∈ X and Tn : X −→C(X) be defined as Tnx = [0, x

256
+ 1

1024 n
], for x ∈ X . Here the sequence

{Tn} uniformly converges to T . Let µ, ν ≥ 0 be any real numbers. Now for every n, Tnx = [0, x
256

+ 1
1024 n

]⊆ [0, 1] for every

x ∈ [0, 1] and H(Tnx, Tny) =
| x− y |

256
for x, y ∈ [0, 1]. Then as explained in Example 3.2, we can show that the assumptions (i),

(ii) (for each Tn), (iii) and (iv) (for each Tn), of Theorem 3.1 are satisfied. Here F(Tn) = [0, 1
1020n

], for each n and F(T ) = {0}.

Here Φ(t)→ 0 as t → 0, where Φ(t) = ∑
∞
n=1 ψn(t), and also β (x)≥ 1 and α(x)≥ 1 for any x belonging to F(Tn), [n= 1,2,3, ..]

or F(T ). So we see all the conditions of Theorem 4.3 are satisfied. Here limn−→∞ H(F(Tn), F(T )) = 0, that is, the fixed point

sets of Tn are stable.
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[28] M. Abbas, V. Ć. Rajić, T. Nazir, S. Radenović, Common fixed point of mappings satisfying rational inequalities in ordered

complex valued generalized metric spaces, Afrika Mat., 26 (2015), 17–30.

[29] I. Cabrera, J. Harjani, K. Sadarangani, A fixed point theorem for contractions of rational type in partially ordered metric

spaces , Ann. Univ. Ferrara, 59 (2013), 251–258.

[30] S. Chandok, J. K. Kim, Fixed point theorem in ordered metric spaces for generalized contractions mappings satisfying

rational type expressions, J. Nonlinear Funct. Anal. Appl., 17 (2012), 301–306.
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