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Abstract. A sequence (αk) of points in R, the set of real numbers, is called

ρ-statistically p quasi Cauchy if

lim
n→∞

1

ρn
|{k ≤ n : |∆pαk| ≥ ε}| = 0

for each ε > 0, where ρ = (ρn) is a non-decreasing sequence of positive
real numbers tending to ∞ such that lim supn

ρn
n

< ∞, ∆ρn = O(1), and

∆pαk+p = αk+p − αk for each positive integer k. A real-valued function de-

fined on a subset of R is called ρ-statistically p-ward continuous if it preserves
ρ-statistical p-quasi Cauchy sequences. ρ-statistical p-ward compactness is also

introduced and investigated. We obtain results related to ρ-statistical p-ward

continuity, ρ-statistical p-ward compactness, p-ward continuity, continuity, and
uniform continuity.

1. Introduction

The concept of continuity and any concept involving continuity play a very im-
portant role not only in pure mathematics but also in other branches of sciences
involving mathematics especially in computer science, information theory, biological
science.

The idea of statistical convergence was formerly given under the name ”almost
convergence” by Zygmund in the first edition of his celebrated monograph pub-
lished in Warsaw in 1935 in [39]. The concept was formally introduced by Fast
[26] and later was reintroduced by Schoenberg [34], and also independently by
Buck [2]. Although statistical convergence was introduced over nearly the last
eighty years, it has become an active area of research for thirty years with the
contributions by several authors, Salat ([33]), Fridy [27], Caserta and Kocinac [24],
Maio and Kocinac ([28]), Caserta, Maio and Kocinac ([25]), Patterson and Savas
([32],Mursaleen ([29]), Cakalli and Khan ([17]), Yildiz ([37], and [38]).

2010 Mathematics Subject Classification. Primary: 40A05 ; Secondaries: 26A15, 40A30 .
Key words and phrases. 40A05; Statistical convergence, Summability, Quasi-Cauchy se-

quences, Continuity.
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2 H. ÇAKALLI

A sequence (αk) of points in R is called ρ-statistically convergent to an element
ℓ of R if

lim
n→∞

1

ρn
|{k ≤ n : |αk − ℓ| ≥ ε}| = 0

for each ε > 0, where ρ = (ρn) is a non-decreasing sequence of positive real num-
bers tending to ∞ such that lim supn

ρn

n
< ∞, and (∆ρn) is a bounded sequence

([14]). This is denoted by stρ − limk→∞ αk = ℓ. We note that such sequences were
introduced without the assumption of boundedness of the downward difference se-
quence of ρ in [30], and was called quasi statistical convergence. The sequential
method stρ − lim is a regular sequential method since any convergent sequence is
ρ-statistically convergent ([30, page 13].

A sequence (αk) of points in R, the set of real numbers, is called ρ-statistically

quasi Cauchy if

lim
n→∞

1

ρn
|{k ≤ n : |∆αk| ≥ ε}| = 0

for each ε > 0, where ∆αk = αk+1 − αk for each positive integer k ([14]).
Using the idea of continuity of a real function in terms of sequences in the sense

that a function preserves a certain kind of sequences, many kinds of continuities were
introduced and investigated, not all but some of them we recall in the following:
slowly oscillating continuity ([7]), quasi-slowly oscillating continuity ([23]), ward
continuity ([12]), δ-ward continuity ([8]), statistical ward continuity ([10]), and
Nθ-ward continuity ([4]) which enabled some authors to obtain conditions on the
domain of a function for some characterizations of uniform continuity (see [36,
Theorem 6],[3, Theorem 1 and Theorem 2],[23, Theorem 2.3], [3, Theorem 1], and
[21, Theorem 5].

The purpose of this paper is to introduce and investigate the concept of ρ-
statistical p-ward continuity of a real function, and prove interesting theorems.

2. Results

Now we introduce the concept of ρ-statistically p quasi Cauchyness.

Definition 2.1. A sequence (αk) of points in R, the set of real numbers, is called

ρ-statistically p quasi Cauchy if

lim
n→∞

1

ρn
|{k ≤ n : |∆pαk| ≥ ε}| = 0

for each ε > 0, where ∆pαk+p = αk+p − αk for each positive integer k, p is a fixed

positive integer.

Any quasi-Cauchy sequence is ρ-statistically p-quasi-Cauchy, but the converse
is not always true. Any ρ-statistically convergent sequence is ρ-statistically p-
quasi-Cauchy. There are ρ-statistically p-quasi-Cauchy sequences which are not
ρ-statistically convergent. The sum of two ρ-statistical p-quasi-Cauchy sequences is
ρ-statistically p-quasi-Cauchy, but the product of two ρ-statistical p-quasi-Cauchy
sequences need not be ρ-statistically p-quasi-Cauchy.

Now we give the definition of ρ-statistical p-ward compactness.

Definition 2.2. A subset E of R is called ρ-statistically p-ward compact if any

sequence of points in E has a ρ-statistical p-quasi-Cauchy subsequence.
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First, we note that any finite subset of R is ρ-statistically p-ward compact, the
union of two ρ-statistically p-ward compact subsets of R is ρ-statistically p-ward
compact and the intersection of any family of ρ-statistically p-ward compact subsets
of R is ρ-statistically p-ward compact. Any G-sequentially compact subset of R is
ρ-statistically p-ward compact for a regular subsequential method G (see [6], and
[9]). Furthermore any subset of a ρ-statistically p-ward compact set is ρ-statistically
p-ward compact, any bounded subset of R is ρ-statistically p-ward compact, any
slowly oscillating compact subset of R is ρ-statistically p-ward compact (see [7] for
the definition of slowly oscillating compactness). These observations suggest to us
the following.

Theorem 2.1. A subset E of R is bounded if and only if it is ρ-statistically p-ward

compact.

Proof. If E is a bounded subset of R, then any sequence of points in E has a
convergent subsequence which is also ρ-statistically p-quasi-Cauchy. Conversely,
suppose that E is not bounded. If it is not bounded below, then pick an element α1

of E less than 0. Then we can choose an element α2 of E such that α2 < −p−ρ1+α1.
Similarly we can choose an element α3 of E such that α3 < −p− ρ2 + α2. We can
inductively choose αk satisfying αk+1 < −p − ρk + αk for each k ∈ N. Hence
αk−αk+p > p+ρk for each k ∈ N. Thus |αk+p−αk| > p+ρk for each k ∈ N. Then
the sequence (αk) does not have any ρ-statistically p-quasi Cauchy subsequence.
If E is unbounded above, then we can find a β1 greater than 0. Then we can
pick a β2 such that β2 > ρ1 + p + β1. We can successively find for each k ∈ N a
βk+1 such that βk+1 > ρk + p + βk. Then βk+p − βk > p + ρk for each k ∈ N.
Thus |βk+p − βk| > p + ρk for each k ∈ N. Then the sequence (βk) does not have
any ρ-statistical p-quasi Cauchy subsequence. Thus E is not ρ-statistically p-ward
compact. This completes the proof. �

Corollary 2.2. A subset E of R is ρ-statistically p-ward compact if and only if it

is both upward and downward statistically compact.

Proof. The proof follows from the preceding theorem and [13, Theorem 3.3 and
Theorem 3.6]. �

Theorem 2.3. If a function f is uniformly continuous on a subset E of R, then

(f(αk)) is ρ-statistically p-quasi Cauchy whenever (αk) is a quasi-Cauchy sequence

of points in E.

Proof. Take any p-quasi-Cauchy sequence (αk) of points in E, and let ε be any
positive real number. By uniform continuity of f , there exists a δ > 0 such that
|f(α)−f(β)| < ε whenever |α−β| < δ and α, β ∈ E. Since (αk) is a p-quasi-Cauchy
sequence, there exists a positive integer k0 such that |αk+p − αk| < δ for k ≥ k0.
Thus

|{k ≤ n : |f(αk+p)− f(αk)| ≥ ε}| ≤ k0.

Hence

lim
n→∞

1

ρn
|{k ≤ n : |f(αk+p)− f(αk)| ≥ ε}| = 0

Thus (f(αk)) is a ρ-statistically p-quasi Cauchy sequence. This completes the proof
of the theorem. �
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Definition 2.3. A function defined on a subset E of R is called ρ-statistically p-

ward continuous if it preserves ρ-statistically p-quasi-Cauchy sequences, i.e. (f(αn))
is a ρ-statistically p-quasi-Cauchy sequence whenever (αn) is.

We see that the sum of two ρ-statistically p-ward continuous functions is ρ-
statistically p-ward continuous, and cf is ρ-statistically p-ward continuous whenever
c is a constant real number and f is a ρ-statistically p-ward continuous function.

Theorem 2.4. If f is ρ-statistically p-ward continuous on a subset E of R, then

it is ρ-statistically continuous on E.

Proof. Assume that f is a ρ-statistically p-ward continuous function on E. Let
(αn) be any ρ-statistically convergent sequence with stρ − limk→∞ αk = ℓ. Then
the sequence

(α1, α1, ..., α1, ℓ, ℓ, ..., ℓ, α2, α2, ..., ℓ, ℓ, ..., αn, αn, ..., ℓ, ℓ, ...)

is ρ-statistically convergent to ℓ, where the same terms repeat p times. Hence it is ρ-
statistically quasi-Cauchy, so is ρ-statistically p-quasi-Cauchy. As f is ρ-statistically
p-ward continuous, the sequence

(f(α1), f(α1), ..., f(α1), f(ℓ), f(ℓ), ..., f(ℓ), f(α2), f(α2), ..., f(ℓ), f(ℓ), ..., f(αn), f(αn), ..., f(ℓ), f(ℓ), ...)

is ρ-statistically p-quasi-Cauchy. Hence it follows that the sequence (f(αn)) is
ρ-statistically converges to f(ℓ). This completes the proof of the theorem. �

Related to G-continuity we have the following result.

Corollary 2.5. If f is ρ-statistically p-ward continuous, then it is G-continuous

for any regular subsequential method G.

The preceding corollary ensures that ρ-statistically p-ward continuity implies
either of the following continuities; ordinary continuity, statistical continuity, la-
cunary statistical continuity ([5]), strongly lacunary continuity ([4]), λ-statistical
continuity, I-sequential continuity for any non trivial admissible ideal I of N ([16]).

It is well known that any continuous function on a compact subset E of R is
uniformly continuous on E. For ρ-statistically p-ward continuous functions we have
the following.

Theorem 2.6. Let E be a ρ-statistically p-ward compact subset E of R and let

f : A −→ R be a ρ-statistically p-ward continuous function on E. Then f is

uniformly continuous on E.

Proof. Suppose that f is not uniformly continuous on E so that there exists an
ε0 > 0 such that for any δ > 0 x, y ∈ E with |x − y| < δ but |f(x) − f(y)| ≥ ε0.
For each positive integer n, there are αn and βn such that |αn − βn| <

1
n
, and

|f(αn) − f(βn)| ≥ ε0. Since E is ρ-statistically p-ward compact, there exists a ρ-
statistical p-quasi-Cauchy subsequence (αnk

) of the sequence (αn). It is clear that
the corresponding subsequence (βnk

) of the sequence (βn) is also ρ-statistically p-
quasi-Cauchy, since (βnk+p

− βnk
) is a sum of three ρ-statistical null sequences,

i.e.

βnk+p
− βnk

= (βnk+p
− αnk+p

) + (αnk+p
− αnk

) + (αnk
− βnk

).

Then the sequence

(an1
, an1

, ..., an1
, βn1

, βn1
, ..., βn1

, αn2
, αn2

, ..., αn2
, βn2

, βn2
, ..., βn2

, , ..., αnk
, αnk

, ..., αnk
, βnk

, βnk
, ..., βnk

, ...)
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is ρ-statistical p-quasi-Cauchy since the sequence (αnk
− βnk

) is ρ-statistically con-
vergent to 0. But the transformed sequence is not ρ-statistically p-quasi-Cauchy.
Thus f does not preserve ρ-statistical p-quasi-Cauchy sequences. This contradiction
completes the proof of the theorem. �

Corollary 2.7. If a function f is ρ-statistically p-ward continuous on a bounded

subset E of R, then it is uniformly continuous on E.

Proof. The proof follows from Theorem 2.6 and Theorem 2.1. �

Theorem 2.8. ρ-statistical p-ward continuous image of any ρ-statistically p-ward

compact subset of R is ρ-statistically p-ward compact.

Proof. Assume that f is a ρ-statistically p-ward continuous function on a subset E
of R, andA is a ρ-statistically p-ward compact subset of E. Let (βn) be any sequence
of points in f(A). Write βn = f(αn) where αn ∈ A for each positive integer n. ρ-
statistically ward compactness of A implies that there is a subsequence (γk) = (αnk

)
of (αn) with stρ − limk→∞ ∆γk = 0. Write (tk) = (f(γk)). As f is ρ-statistically p-
ward continuous, (f(γk)) is ρ-statistically p-quasi-Cauchy. Thus we have obtained
a subsequence (tk) of the sequence (f(αn)) with stρ− limk→∞ ∆ptk = 0. Thus f(A)
is ρ-statistically p-ward compact. This completes the proof of the theorem. �

Corollary 2.9. ρ-statistically p-ward continuous image of any compact subset of

R is ρ-statistically ward compact.

The proof follows from the preceding theorem.

Corollary 2.10. ρ-statistically p-ward continuous image of any bounded subset of

R is bounded.

The proof follows from Theorem 2.1 and Theorem 2.8.

Corollary 2.11. ρ-statistical p-ward continuous image of a G-sequentially compact

subset of R is ρ-statistically p-ward compact for any subsequential regular method

G.

It is a well known result that uniform limit of a sequence of continuous functions
is continuous. This is also true in case of ρ-statistical p-ward continuity, i.e. uniform
limit of a sequence of ρ-statistical p-ward continuous functions is ρ-statistically p-
ward continuous.

Theorem 2.12. If (fn) is a sequence of ρ-statistically p-ward continuous functions

on a subset E of R and (fn) is uniformly convergent to a function f , then f is ρ-

statistically p-ward continuous on E.

Proof. Let ε be a positive real number and (αk) be any ρ-statistical p-quasi-Cauchy
sequence of points in E. By the tuniform convergence of (fn) there exists a positive
integer N such that |fn(x) − f(x)| < ε

3
for all x ∈ E whenever n ≥ N . As fN is

ρ-statistically p-ward continuous on E, we have

lim
n→∞

1

ρn
|{k ≤ n : fN (αk+p)− fN (αk)| ≥

ε

3
}| = 0.

On the other hand we have
{k ≤ n : |f(αk+p)− f(αk)| ≥ ε} ⊂ {k ≤ n : |f(αk+p)− fN (αk+p)| ≥

ε
3
}

∪{k ≤ n : |fN (αk+p)− fN (αk)| ≥
ε
3
} ∪ {k ≤ n : |fN (αk)− f(αk)| ≥

ε
3
}
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Now it follows from this inclusion that
limn→∞

1
ρn

|{k ≤ n : |f(αk+p)− f(αk)| ≥ ε}|

≤ lim
n→∞

1

ρn
|{k ≤ n : |f(αk+p)− fN (αk+p)| ≥

ε

3
}|+ lim

n→∞

1

ρn
|{k ≤ n : |fN (αk+p)− fN (αk)| ≥

ε

3
}|

+ limn→∞

1
ρn

|{k ≤ n : |fN (αk)− f(αk)| ≥
ε
3
}| = 0 + 0 + 0 = 0.

This completes the proof of the theorem. �

Theorem 2.13. The set of all ρ-statistically p-ward continuous functions on a

subset E of R is a closed subset of the set of all continuous functions on E, i.e.

∆ρpSWC(E) = ∆ρpSWC(E) where ∆ρpSWC(E) is the set of all ρ-statistically p-

ward continuous functions on E, ∆ρpSWC(E) denotes the set of all cluster points

of ∆ρpSWC(E).

Proof. f be any element in ∆ρpSWC(E). Then there exists a sequence of points
in ∆ρpSWC(E) such that limk→∞ fk = f . To show that f is ρ-statistically p-ward
continuous, take any ρ-statistical p-quasi-Cauchy sequence (αk) of points in E. Let
ε > 0. Since (fk) converges to f , there exists an N such that for all x ∈ E and for
all n ≥ N , |f(x)− fn(x)| <

ε
3
. As fN is ρ-statistically p-ward continuous, we have

limn→∞

1
ρn

|{k ≤ n : fN (αk+p)− fN (αk)| ≥
ε
3
}| = 0. On the other hand,

{k ≤ n : |f(αk+p)− f(αk)| ≥ ε} ⊂ {k ≤ n : |f(αk+p)− fN (αk+p)| ≥
ε
3
}

∪{k ≤ n : |fN (αk+p)− fN (αk)| ≥
ε
3
} ∪ {k ≤ n : |fN (αk)− f(αk)| ≥

ε
3
}

Now it follows from this inclusion that
limn→∞

1
ρn

|{k ≤ n : |f(αk+p)− f(αk)| ≥ ε}|

≤ lim
n→∞

1

ρn
|{k ≤ n : |f(αk+p)− fN (αk+p)| ≥

ε

3
}|+ lim

n→∞

1

ρn
|{k ≤ n : |fN (αk+p)− fN (αk)| ≥

ε

3
}|

+ limn→∞

1
ρn

|{k ≤ n : |fN (αk)− f(αk)| ≥
ε
3
}| = 0 + 0 + 0 = 0.

This completes the proof of the theorem. �

Corollary 2.14. The set of all ρ-statistically p-ward continuous functions on a

subset E of R is a complete subspace of the space of all continuous functions on E.

Proof. The proof follows straightforward from the preceding theorem.
�

3. Conclusion

The results in this paper not only generalize results studied in [10], and [11] as
a special case, i.e. ρn = n for each n ∈ N, but also includes results which are also
new for the special case. It turns out that the set of uniformly continuous functions
includes the set of ρ-statistical ward continuous functions on bounded sets. We
suggest to investigate ρ-statistically p-quasi-Cauchy sequences of fuzzy points or
soft points (see [19], for the definitions and related concepts in fuzzy setting, and
see [1] related concepts in soft setting). We also suggest to investigate ρ-statistically
p-quasi-Cauchy double sequences (see for example [18] for the definitions and related
concepts in the double sequences case). For another further study, we suggest to
investigate ρ-statistically p-quasi-Cauchy sequences in abstract metric spaces (see
[22], [31], [20], and [35]).
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[8] H. Çakalli, δ-quasi-Cauchy sequences, Math. Comput. Modelling 53 (2011) 397-401.
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[18] H. Çakalli and R.F. Patterson, Functions preserving slowly oscillating double sequences, An.
Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) Tomul LXII, 2 2 (2016) 531-536.
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LACUNARY STATISTICAL p-QUASI CAUCHY SEQUENCES

ŞEBNEM YILDIZ

AHI EVRAN UNIVERSITY, DEPARTMENT OF MATHEMATICS, KIRSEHIR-TURKEY

Abstract. In this paper, we introduce a concept of lacunary statistically

p-quasi-Cauchyness of a real sequence in the sense that a sequence (αk) is

lacunary statistically p-quasi-Cauchy if limr→∞

1

hr
|{k ∈ Ir : |αk+p − αk| ≥

ε}| = 0 for each ε > 0. A function f is called lacunary statistically p-ward

continuous on a subset A of the set of real numbers R if it preserves lacunary
statistically p-quasi-Cauchy sequences, i.e. the sequence (f(αn)) is lacunary

statistically p-quasi-Cauchy whenever α = (αn) is a lacunary statistically p-
quasi-Cauchy sequence of points in A. It turns out that a real valued function

f is uniformly continuous on a bounded subset A of R if there exists a positive

integer p such that f preserves lacunary statistically p-quasi-Cauchy sequences
of points in A.

1. Introduction

Throughout this paper, N, and R will denote the set of positive integers, and the
set of real numbers, respectively. p will always be a fixed element of N. The boldface
letters such as α, β, ζ will be used for sequences α = (αn), β = (βn), ζ = (ζn),
... of points in R. A function f : R −→ R is continuous if and only if it preserves
convergent sequences. Using the idea of continuity of a real function in this manner,
many kinds of continuities were introduced and investigated, not all but some of
them we recall in the following: ward continuity ([15], [4]), p-ward continuity ([23]),
δ-ward continuity ([18]), δ2-ward continuity ([3]), statistical ward continuity, ([19]),
λ-statistical ward continuity ([36]), ρ-statistical ward continuity ([6], [25]), slowly
oscillating continuity ([12, 59, 35]), quasi-slowly oscillating continuity ([42]), ∆-
quasi-slowly oscillating continuity ([16]), arithmetic continuity ([60], [5]), upward
and downward statistical continuities ([24]), lacunary statistical ward continuity
([7], [66]), lacunary statistical δ ward continuity ([31]), lacunary statistical δ2 ward
continuity ([64]), Nθ-ward continuity ([22], [30], [48], [8], [48], [47]), Nθ-δ-ward
continuity, and ([8]) , which enabled some authors to obtain interesting results.

In [45] Fridy and Orhan introduced the concept of lacunary statistically conver-
gence in the sense that a sequence (αk) of points in R is called lacunary statisti-
cally convergent, or Sθ-convergent, to an element L of R if limr→∞

1
hr
|{k ∈ Ir :

|αk−L| ≥ ε}| = 0 for every positive real number ε where Ir = (kr−1, kr] and k0 = 0,

2010 Mathematics Subject Classification. Primary: 40A05 ; Secondaries: 26A15, 40A30 .
Key words and phrases. Lacunary statistical convergence, Summability, Quasi-Cauchy se-

quences, Continuity.
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hr = kr − kr−1 → ∞ as r → ∞ and θ = (kr) is an increasing sequence of positive
integers (see also [46], [56] [11], [57], and [44]). In this case we write Sθ−limαk = L.
The set of lacunary statistically convergent sequences of points in R is denoted by
Sθ. In the sequel, we will always assume that lim infr qr > 1. A sequence (αk) of
points in R is called lacunary statistically quasi-Cauchy if Sθ − lim∆αk = 0, where
∆αk = αk+1 − αk for each positive integer k. The set of lacunary statistically
quasi-Cauchy sequences will be denoted by ∆Sθ.

The purpose of this paper is to introduce lacunary statistically p-quasi-Cauchy
sequences, and prove interesting theorems.

2. Variations on lacunary statistical ward compactness

The concept of a Cauchy sequence involves far more than that the distance
between successive terms is tending to 0 and lacunary statistically tending to zero,
and more generally speaking, than that the distance between p-successive terms is
lacunary statistically tending to zero, by p-successive terms we mean αk+p and αk.
Nevertheless, sequences which satisfy this weaker property are interesting in their
own right.

Before giving our main definition we recall basic concepts. A sequence (αn)
is called quasi Cauchy if limn→∞ ∆αn = 0, where ∆αn = αn+1 − αn for each
n ∈ N ([4], [15]). The set of all bounded quasi-Cauchy sequences is a closed sub-
space of the space of all bounded sequences with respect to the norm defined for
bounded sequences ([51]). A sequence (αk) of points in R is slowly oscillating if
limλ→1+ limn maxn+1≤k≤[λn] |αk − αn| = 0, where [λn] denotes the integer part
of λn ([41]). A sequence (αk) is quasi-slowly oscillating if (∆αk) is slowly oscil-
lating. A sequence (αn) is called statistically convergent to a real number L if
limr→∞

1
hr
|{k ∈ Ir : |αk − L| ≥ ε}| = 0 for each ε > 0 ([43], [14], [32], and [9]).

Recently in [23] it was proved that a real valued function is uniformly continuous
whenever it is p-ward continuous on a bounded subset of R. Now we introduce the
concept of a lacunary statistically p-quasi-Cauchy sequence.

Definition 2.1. A sequence (αk) of points in R is called lacunary statistically p-
quasi-Cauchy if Sθ − limk→∞∆pαk = 0, i.e. limr→∞

1
hr
|{k ∈ Ir : |∆pαk| ≥ ε}| = 0

for each ε > 0, where ∆pαk = αk+p − αk for every k ∈ N.

We will denote the set of all lacunary statistically p-quasi-Cauchy sequences by
∆θ

p. The sum of two lacunary statistically p-quasi-Cauchy sequences is lacunary
statistically p-quasi-Cauchy, the product of a lacunary statistically p-quasi-Cauchy
sequence and a constant real number is lacunary statistically p-quasi-Cauchy, so
that the set of all lacunary statistically p-quasi-Cauchy sequences ∆θ

p is a vector
space. We note that a sequence is lacunary statistically quasi-Cauchy when p = 1,
i.e. lacunary statistically 1-quasi-Cauchy sequences are lacunary statistical quasi-
Cauchy sequences. It follows from the inclusion
{k ∈ Ir : |αk+p − αk| ≥ ε} ⊆
⊆ {k ∈ Ir : |αk+p − αk+p−1| ≥

ε
p
} ∪ {k ∈ Ir : |αk+p−1 − αk+p−2| ≥

ε
p
} ∪ ...

∪ {k ∈ Ir : |αk+2 − αk+1| ≥
ε
p
} ∪ {k ∈ Ir : |αk+1 − αk| ≥

ε
p
}

that any lacunary statistically quasi-Cauchy sequence is also lacunary statistically
p-quasi-Cauchy, but the converse is not always true as it can be seen by considering
the the sequence (αk) defined by (αk) = (0, 1, 0, 1, ..., 0, 1, ...) is lacunary statistically
2-quasi Cauchy which is not lacunary statistically quasi Cauchy. More examples
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can be seen in [51, Section 1.4]. It is clear that any Cauchy sequence is in
⋂p=1

∞ ∆θ
p,

so that each ∆θ
p is a sequence space containing the space C of Cauchy sequences. It

should also be noted that C is a proper subset of ∆θ
p for each p ∈ N.

Definition 2.2. A subset A of R is called lacunary statistically p-ward compact if

any sequence of points in A has a lacunary statistically p-quasi-Cauchy subsequence.

We note that this definition of lacunary statistically p-ward compactness cannot
be obtained by any summability matrix in the sense of [13] (see also [10], and [20]).

Since any lacunary statistically quasi-Cauchy sequence is lacunary statistically
p-quasi-Cauchy we see that any lacunary statistically ward compact subset of R
is lacunary statistically p-ward compact for any p ∈ N. A finite subset of R is
lacunary statistically p-ward compact, the union of finite number of lacunary sta-
tistically p-ward compact subsets of R is lacunary statistically p-ward compact, and
the intersection of any family of lacunary statistically p-ward compact subsets of R
is lacunary statistically p-ward compact. Furthermore any subset of a lacunary sta-
tistically p-ward compact set of R is lacunary statistically p-ward compact and any
bounded subset of R is lacunary statistically p-ward compact. These observations
above suggest to us the following.

Theorem 2.1. A subset A of R is bounded if and only if there exists a p ∈ N such

that A is lacunary statistically p-ward compact.

Proof. The bounded subsets of R are lacunary statistically p-ward compact, since
any bounded sequence of points in a bounded subset of R is bounded and any
bounded sequence has a convergent subsequence which is lacunary statistically p-
quasi-Cauchy for any p ∈ N. To prove the converse, suppose that A is not bounded.
If it is unbounded above, pick an element α1 of A greater than p. Then we can
find an element α2 of A such that α2 > 2p + α1. Similarly, choose an element α3

of A such that α3 > 3p + α2. So we can construct a sequence (αj) of numbers in
A such that αj+1 > (j + 1)p + αj for each j ∈ N. Then the sequence (αj) does
not have any lacunary statistically p-quasi-Cauchy subsequence. If A is bounded
above and unbounded below, then pick an element β1 of A less than −p. Then
we can find an element β2 of A such that β2 < −2p + β1. Similarly, choose an
element β3 of A such that β3 < −3p+ β2. Thus one can construct a sequence (βi)
of points in A such that βi+1 < −(i + 1)p + βi for each i ∈ N. Then the sequence
(αi) does not have any lacunary statistically p-quasi-Cauchy subsequence. Thus
this contradiction completes the proof of the theorem. �

It follows from Theorem 2.1 that lacunary statistically p-ward compactness of a
subset of A of R coincides with either of the following kinds of compactness: p-ward
compactness ([23, Theorem 2.3]), statistical ward compactness ([19, Lemma 2]),
λ-statistical ward compactness ([36, Theorem 1]), ρ-statistical ward compactness
([6, Theorem 1]), strongly lacunary ward compactness ([22, Theorem 3.3]), slowly
oscillating compactness ([17, Theorem 3]), lacunary statistical ward compactness
(see [7]), and [17, Theorem 3]), ideal ward compactness ([29, Theorem 8]), Abel
ward compactness ([?, Theorem 5]).

If a closed subset of R is lacunary statistically p-ward compact for a positive in-
teger p, then any sequence of points in A has a (Pn, s)-absolutely almost convergent
subsequence (see [27], [37], [52], [62], [2], [65], and [63]).
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Corollary 2.2. A subset of R is statistically p-ward compact if and only if it is
statistically q-ward compact for any p, q ∈ N.

Corollary 2.3. A subset of R is statistically p-ward compact if and only if it is
both statistically upward half compact and statistically downward half compact.

Proof. The proof follows from [24, Corollary 3.9], so is omitted. �

Corollary 2.4. A subset of R is lacunary statistically p ward compact for a p ∈ N

if and only if it is both lacunary statistically upward half compact and lacunary
statistically downward half compact.

Proof. The proof follows from [33, Theorem 1.3 and Theorem 1.9], so is omitted. �

3. Variations on lacunary statistical ward continuity

In this section, we investigate connections between uniformly continuous func-
tions and lacunary statistically p-ward continuous functions. A function f : R −→ R

is continuous if and only if it preserves lacunary statistically convergent sequences.
Using this idea, we introduce lacunary statistical p-ward continuity.

Definition 3.1. A function f is called lacunary statistically p-ward continuous

on a subset A of R if it preserves lacunary statistically p-quasi-Cauchy sequences,

i.e. the sequence (f(αn)) is lacunary statistically p-quasi-Cauchy whenever (αn) is
lacunary statistically p-quasi-Cauchy of points in A.

We see that this definition of lacunary statistically p-ward continuity can not be
obtained by any summability matrix A (see [10]).

We note that the sum of two lacunary statistically p-ward continuous functions
is lacunary statistically p-ward continuous, and for any constant c ∈ R, cf is lacu-
nary statistically p-ward continuous whenever f is a lacunary statistically p-ward
continuous function, so that the set of all lacunary statistically p ward continuous
functions is a vector space. The composite of two lacunary statistically p-ward
continuous functions is lacunary statistically p-ward continuous, but the product of
two lacunary statistically p-ward continuous functions need not be lacunary statis-
tically p-ward continuous as it can be seen by considering product of the lacunary
statistically p-ward continuous function f(x) = x with itself. If f is a lacunary sta-
tistically p-ward continuous function, then |f | is also lacunary statistically p-ward
continuous since

|{k ∈ Ir : |f(αk+p)− f(αk)| ≥ ε}| ⊆ |{k ∈ Ir : ||f(αk+p)| − |f(αk)|| ≥ ε}|

which follows from the inequality ||f(αk+p)| − |f(αk)|| ≤ |f(αk+p) − f(αk)|. If f ,
and g are lacunary statistically p-ward continuous, then max{f, g} is also lacunary
statistically p-ward continuous, which follows from the equalitymax{f, g} = 1

2{|f−
g|+ |f + g|}.

Theorem 3.1. If f is lacunary statistically p-ward continuous on a subset A of R

for some p ∈ N, then it is lacunary statistically ward continuous on A.

Proof. If p = 1, then it is obvious. So we would suppose that p > 1. Take any
lacunary statistically p-ward continuous function f on A. Let (αk) be any lacunary
statistical quasi-Cauchy sequence of points in A. Write

(ξi) = (α1, α1, ..., α1, α2, α2, ..., α2, ..., αn, αn, ..., αn, ...),
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where the same term repeats p times. The sequence

(α1, α1, ..., α1, α2, α2, ..., α2, ..., αn, αn, ..., αn, ...)

is also lacunary statistically quasi-Cauchy so it is lacunary statistically p-quasi-
Cauchy. By the lacunary statistically p-ward continuity of f , the sequence

(f(α1), f(α1), ..., f(α1), f(α2), f(α2), ..., f(α2), ..., f(αn), f(αn), ..., f(αn), ...)

is lacunary statistically p-quasi-Cauchy, where the same term repeats p-times. Thus
the sequence

(f(α1), f(α1), ..., f(α1), f(α2), f(α2), ..., f(α2), ..., f(αn), f(αn), ..., f(αn), ...)

is also lacunary statistically p quasi-Cauchy. It is easy to see that Sθ−lim(f(αn+p)−
f(αn)) = 0, which completes the proof of the theorem.

�

Corollary 3.2. If f is lacunary statistically p-ward continuous on a subset A of

R, then it is continuous on A in the ordinary case.

Proof. The proof follows immediately from [19, Theorem 3] so is omitted. �

Theorem 3.3. Lacunary statistical p-ward continuous image of any lacunary sta-

tistically p-ward compact subset of R is lacunary statistically p-ward compact.

Proof. Let f be a lacunary statistically p-ward continuous function, and A be a
lacunary statistically p-ward compact subset of R. Take any sequence β = (βn)
of terms in f(E). Write βn = f(αn) where αn ∈ E for each n ∈ N, α = (αn).
Lacunary statistically p-ward compactness of A implies that there is a lacunary
statistically p-quasi-Cauchy subsequence ξ = (ξk) = (αnk

) of α. Since f is lacunary
statistically p-ward continuous, (tk) = f(ξ) = (f(ξk)) is lacunary statistically p-
quasi-Cauchy. Thus (tk) is a lacunary statistically p-quasi-Cauchy subsequence of
the sequence f(α). This completes the proof of the theorem. �

Corollary 3.4. Lacunary statistical p-ward continuous image of any G-sequentially

connected subset of R is G-sequentially connected for a regular subsequential method

G.

Proof. The proof follows from the preceding theorem, so is omitted (see [21] and
[50] for the definition of G-sequential connectedness and related concepts). �

Theorem 3.5. If f is uniformly continuous on a subset A of R, then (f(αn)) is

lacunary statistically p-quasi-Cauchy whenever (αn) is a p-quasi-Cauchy sequence

of points in A.

Proof. Let (αn) be any p-quasi-Cauchy sequence of points in A. Take any ε > 0.
Uniform continuity of f on A implies that there exists a δ > 0, depending on
ε, such that |f(x) − f(y)| < ε whenever |x − y| < δ and x, y ∈ A. For this
δ > 0, there exists an N = N(δ) such that |∆pαn| < δ whenever n > N . Hence
|∆pf(αn)| < ε if n > N . Thus {k ∈ Ir : |∆pf(αk)| ≥ ε} ⊆ {1, 2, ..., N}. Therefore
limr→∞

1
hr
|{k ∈ Ir : |∆pf(αk)| ≥ ε}| ≤ limn→∞

1
n
|{k ≤ N : k ∈ N}| = 0. It follows

from this that (f(αn)) is a lacunary statistically p-quasi-Cauchy sequence. This
completes the proof of the theorem. �
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Corollary 3.6. If f is slowly oscillating continuous on a bounded subset A of R,

then (f(αn)) is lacunary statistically p-quasi-Cauchy whenever (αn) is a p quasi-

Cauchy sequence of points in A.

Proof. If f is a slowly oscillating continuous function on a bounded subset A of R,
then it is uniformly continuous on A by [38, Theorem 2.3]. Hence the proof follows
from Theorem 3.5. �

It is well-known that any continuous function on a compact subset A of R is
uniformly continuous on A. We have an analogous theorem for a lacunary statisti-
cally p-ward continuous function defined on a lacunary statistically p-ward compact
subset of R.

Theorem 3.7. If a function is lacunary statistically p-ward continuous on a lacu-

nary statistically p-ward compact subset of R, then it is uniformly continuous on

A.

Proof. Suppose that f is not uniformly continuous on A so that there exist an
ǫ0 > 0 and sequences (αn) and (βn) of points in A such that |αn − βn| < 1/n
and |f(αn) − f(βn)| ≥ ǫ0 for all n ∈ N. Since A is lacunary statistically p-ward
compact, there is a subsequence (αnk

) of (αn) that is lacunary statistically p-quasi-
Cauchy. On the other hand, there is a subsequence (βnkj

) of (βnk
) that is lacunary

statistically p-quasi-Cauchy as well. It is clear that the corresponding sequence
(ankj

) is also lacunary statistically p-quasi-Cauchy, since

{j ∈ Ir : |αnkj+p
− αnkj

| ≥ ε} ⊆ {j ∈ Ir : |αnkj+p
− βnkj+p

| ≥ ε
3} ∪ {j ∈ Ir :

|βnkj+p
− βnkj

| ≥ ε
3} ∪ {j ∈ Ir : |βnkj

− αnkj
| ≥ ε

3}

for every n ∈ N, and for every ε > 0. Hence it is easy to establishe a contradiction.
thus this completes the proof of the theorem. �

Corollary 3.8. If a function defined on a bounded subset of R is lacunary statis-

tically p-ward continuous, then it is uniformly continuous.

We note that when the domain of a function is restricted to a bounded subset
of R, lacunary statistically p-ward continuity implies not only ward continuity, but
also slowly oscillating continuity.

4. Conclusion

In this paper, we introduce lacunary statistically p-quasi Cauchy sequences, and
investigate conditions for a lacunary statistically p ward continuous real function
to be uniformly continuous, and prove some other results related to these kinds
of continuities and some other kinds of continuities. It turns out that lacunary
statistically p-ward continuity implies uniform continuity on a bounded subset of
R. The results in this paper not only involves the related results in [7] as a special
case for p = 1, but also some interesting results which are also new for the special
case p = 1. The lacunary statistically p-quasi Cauchy concept for p > 1 might find
more interesting applications than statistical quasi Cauchy sequences to the cases
when statistically quasi Cauchy does not apply. For a further study, we suggest
to investigate lacunary statistically p-quasi-Cauchy sequences of soft points and
lacunary statistically p-quasi-Cauchy sequences of fuzzy points. However due to
the change in settings, the definitions and methods of proofs will not always be
analogous to those of the present work (for example see [1], [28], [40], and [49]). We



LACUNARY STATISTICAL p-QUASI CAUCHY SEQUENCES 15

also suggest to investigate lacunary statistically p-quasi-Cauchy double sequences
of points in R (see [55], [54], [39], and [34] for the related definitions in the double
case). For another further study, we suggest to investigate lacunary statistically
p-quasi-Cauchy sequences in abstract metric spaces (see [26], [53], [35], [58], and
[61]).
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[9] A. Caserta, and Ljubisa. D. R. Kočinac, On statistical exhaustiveness, Appl. Math. Lett. 25,

10, 1447-1451, (2012).

[10] J.Connor, K.-G.Grosse-Erdmann, Sequential definitions of continuity for real functions,
Rocky Mountain J. Math. 33, 1, 93-121, (2003).

[11] Cakalli, H., Lacunary statistical convergence in topological groups, Indian J. Pure Appl.

Math., 26 2, 113-119 (1995)
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[16] H. Çakallı, On ∆-quasi-slowly oscillating sequences, Comput. Math. Appl. 62, 9, 3567-3574,

(2011).
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[24] H. Çakallı, Upward and downward statistical continuities, Filomat, 29, 10, 2265-2273, (2015).
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Abstract. In this paper, we investigate the concept of Abel statistical delta
quasi Cauchy sequences. A real function f is called Abel statistically delta
ward continuous it preserves Abel statistical delta quasi Cauchy sequences,

where a sequence (αk) of points in R is called Abel statistically delta quasi
Cauchy if lim

x→1− (1−x)
∑

k:|∆2αk|≥ε
xk = 0 for every ε > 0, where ∆2αk =

αk+2 − 2αk+1 + αk for every k ∈ N. Some other types of continuities are also
studied and interesting results are obtained.

1. Introduction

Throughout this paper, N, and R will denote the set of positive integers, and the
set of real numbers, respectively. The boldface letters such as α, β, ζ will be used
for sequences α = (αn), β = (βn), ζ = (ζn), ... of points in R. A real function f is
continuous if and only if it preserves Abel statistical convergence, i.e. for each point
ℓ in the domain, Abelst − limn→∞ f(αn) = f(ℓ) whenever Abelst − limn→∞ αn = ℓ.

Using the idea of continuity of a real function in this manner, many kinds of
continuities were introduced and investigated, not all but some of them we recall in
the following: ward continuity ([12], [5]), p-ward continuity ([19]), δ-ward continu-
ity ([15]), δ2-ward continuity ([4]), statistical ward continuity, ([16]), λ-statistical
ward continuity ([29]), ρ-statistical ward continuity ([6], [21]), slowly oscillating
continuity ([10, 44, 28]), quasi-slowly oscillating continuity ([31]), ∆-quasi-slowly
oscillating continuity ([13]), upward and downward statistical continuities ([20]),
lacunary statistical ward continuity ([7], [47], and [48]), lacunary statistical δ ward
continuity ([25]), lacunary statistical δ2 ward continuity ([46]), Nθ-ward continuity
([18], [24], [36], [8], [36], [37]), and Nθ-δ-ward continuity ([8]), which enabled some
authors to obtain interesting results.

The purpose of this paper is to introduce and investigate the concept of Abel
statistical δ-ward continuity of a real function, and prove interesting theorems.

2010 Mathematics Subject Classification. Primary: 40A05 ; Secondaries: 26A15, 40A30.
Key words and phrases. Abel statistical convergence, summability, quasi-Cauchy sequences,

continuity.
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2. Abel statistical δ quasi Cauchy sequences

A sequence (αk) is called statistically convergent to an element ℓ of R if limn→∞
1
n
|{k ≤

n : |αk − ℓ| ≥ ε}| = 0 for each ε > 0 (see [34], [14], [21], and [26]).
A sequence (αk) of real numbers is called Abel convergent (or Abel summable)

to ℓ if the series
Σ∞

k=0αkx
k

is convergent for 0 ≤ x < 1 and limx→1−(1−x)
∑∞

k=0 αkx
k = ℓ ([1], [3], and [35]). In

this case, we write Abel−limαk = ℓ. The concept of a Cauchy sequence involves far
more than that the distance between successive terms is tending to 0 and specially
speaking, than that the distance between successive terms is Abel convergent to
zero. Nevertheless, sequences which satisfy this weaker property, i.e. Abel quasi
Cauchy sequences satisfying Abel− lim∆ αk = 0, are interesting in their own right.
In other words, a sequence (αk) of points in R is called Abel quasi-Cauchy if (∆αk)
is Abel convergent to 0, i.e. the series

∞∑

k=0

∆αkx
k

is convergent for 0 ≤ x < 1 and

lim
x→1−

(1− x)

∞∑

k=0

∆αkx
k = 0

where ∆αk = αk+1 − αk.
Recently the concept of Abel statistical convergence of a sequence is investigated

in [43] in the sense that a sequence (αk) is called Abel statistically convergent to a
real number L if 4 limx→1−(1−x)

∑
k:|αk−L|≥ε x

k = 04 for every ε > 0, and denoted

by Abelst − lim αk = L.
A sequence (αk) of points in R is called Abel statistically quasi Cauchy if

lim
x→1−

(1− x)
∑

k:|∆αk|≥ε

xk = 0

for every ε > 0 ([30]).
Now we introduce the concept of Abel statistically δ quasi Cauchyness in the

following:

Definition 2.1. A sequence of points in a subset A of R is called Abel statistically

δ quasi Cauchy if

lim
x→1−

(1− x)
∑

k:|∆2αk|≥ε

xk = 0

for every ε > 0, where ∆2αk = αk+2 − 2αk+1 + αk for every k ∈ N.

Any Abel statistically quasi-Cauchy sequence is Abel statistically δ quasi Cauchy,
but the converse is not always true. Any quasi-Cauchy sequence is Abel statisti-
cally δ quasi Cauchy, but the converse is not always true. Any Abel statistically
convergent sequence is Abel statistically δ quasi Cauchy. There are Abel statisti-
cally δ quasi Cauchy sequences which are not Abel statistically quasi Cauchy. Since
the set of all convergent sequences c is a proper subset of Abelδst, and Abelst is a

proper subset of Abelδ
2

st , the set of Abel statistical δ quasi Cauchy sequences, one

can easily find that c ⊂ ∆ ⊂ Abelδst ⊂ Abelδ
2

st , where c, ∆, ∆Abelst, and ∆2Abelst,
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denote the set of convergent sequences, the set of quasi Cauchy sequences, the set of
Abel statistically quasi Cauchy sequences, and the set of Abel statistically δ quasi
Cauchy sequences.

Theorem 2.1. The sum of two Abel statistical δ quasi-Cauchy sequences is Abel

statistical δ quasi-Cauchy.

Proof. Let (αk) and (βk) be Abel statistical δ quasi-Cauchy sequences of of points
in A. Then limx→1−(1−x)

∑
k:|∆2αk|≥ε x

k = 0 and limx→1−(1−x)
∑

k:|∆2βk|≥ε x
k =

0 for every ε > 0. Then limx→1−(1 − x)
∑

k:|∆2(αk+βk)|≥ε x
k ≤ limx→1−(1 −

x)
∑

k:|∆2αk|≥ε x
k + limx→1−(1 − x)

∑
k:|∆2βk|≥ε x

k. This completes the proof of

the theorem. �

Now we give the definition of Abel statistical δ ward compactness.

Definition 2.2. A subset A of R is called Abel statistically δ ward compact if any

sequence of points in A has an Abel statistical δ quasi-Cauchy subsequence.

First, we note that any finite subset of R is Abel statistically δ ward compact,
the union of two Abel statistically δ ward compact subsets of R is Abel statistically
δ ward compact and the intersection of any family of Abel statistically δ ward
compact subsets of R is Abel statistically δ ward compact. Any G-sequentially
compact subset of R is Abel statistically δ ward compact for a regular subsequential
method G (see [11], [17]). Furthermore any subset of an Abel statistically δ ward
compact set is Abel statistically δ ward compact, any bounded subset of R is
Abel statistically δ ward compact, any slowly oscillating compact subset of R is
Abel statistically δ ward compact (see [10] for the definition of slowly oscillating
compactness).

Theorem 2.2. If a function f is uniformly continuous on a subset A of R, then

(f(αk)) is Abel statistical δ quasi-Cauchy whenever (αk) is a quasi-Cauchy sequence

of points in A.

Proof. Take any quasi-Cauchy sequence (αk) of points in A, and let ε be any positive
real number. By uniform continuity of f , there exists a δ > 0 such that
|f(α)− f(β)| < ε whenever |α− β| < δ and α, β ∈ E. Since (αk) is a quasi-Cauchy
sequence, there exists a positive integer k0 such that |αk+1 − αk| < δ for k ≥ k0.
Thus

lim
x→1−

(1− x)
∑

k:|∆2αk|≥ε

xk = 0.

This completes the proof of the theorem. �

Definition 2.3. A function defined on a subset A of R is called Abel statistically

δ ward continuous if it preserves Abel statistical δ quasi-Cauchy sequences, i.e.

(f(αn)) is an Abel statistical δ quasi-Cauchy sequence whenever (αn) is.

We note that Abel statistical δ ward continuity cannot be obtained by any se-
quential method G ( [9], [17]). The composition of two Abel statistical δ ward
continuous functions is Abel statistical δ ward continuous.

Theorem 2.3. If f is Abel statistically δ ward continuous on a subset A of R, then

it is Abel statistically ward continuous on A.
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Proof. Let (αn) be any sequence with Abelst−limk→∞ ∆αk = 0. Then the sequence

(α1, α1, α2, α2, ..., αn, αn, ...)

is Abel statistical δ quasi-Cauchy hence, by the hypothesis, the sequence

(f(α1), f(α1), f(α2), f(α2), ..., f(αn), f(αn), ...)

is Abel statistical δ quasi-Cauchy . It follows from this that

(f(α1), f(α2), ..., f(αn), ...)

is Abel statistical quasi-Cauchy. This completes the proof of the theorem. �

Corollary 2.4. Any Abel statistically δ ward continuous on a subset A of R is

ordinary continuous on A.

Theorem 2.5. The sum of two Abel statistical δ ward continuous functions is Abel

statistical δ ward continuous.

Proof. The proof of this theorem follows easily, so is omitted. �

If c is a constant real number and f is an Abel statistically δ ward continuous
function, then cf is Abel statistically δ ward continuous. Thus the set of Abel
statistical δ ward continuous functions is a vector subspace of the vector space of
continuous functions. Maximum of two Abel statistical δ ward continuous func-
tions is Abel statistical δ ward continuous, and minimum of two Abel statistical δ
ward continuous functions is Abel statistical δ ward continuous, which follow from
max{f, g} = 1

2 (f + g + |f − g|) and min{f, g} = 1
2 (f + g − |f − g|), respectively.

Theorem 2.6. Abel statistically δ ward continuous image of any Abel statistically

δ ward compact subset of R is Abel statistically δ ward compact.

Proof. Assume that f is a Abel statistically δ ward continuous function on a subset
A of R, and B is an Abel statistically δ ward compact subset of A. Let (βn)
be any sequence of points in f(B). Write βn = f(αn) where αn ∈ A for each
positive integer n. Abel statistically δ ward compactness of B implies that there is
a subsequence (γk) = (αnk

) of (αn) with Abelst− limk→∞ ∆2γk = 0. Write (tk) =
(f(γk)). As f is Abel statistically δ ward continuous, (f(γk)) is Abel statistically δ

quasi-Cauchy. Thus f(B) is Abel statistically δ ward compact. This completes the
proof of the theorem. �

Corollary 2.7. Abel statistically δ ward continuous image of any compact subset

of R is Abel statistically δ ward compact.

Corollary 2.8. Abel statistically δ ward continuous image of a G-sequentially com-

pact subset of R is Abel statistically δ ward compact for any subsequential regular

method G.

3. Conclusion

In this paper, we obtain results related to Abel statistically δ ward continuity,
Abel statistically δ ward compactness, ward continuity, continuity, and uniform
continuity. We suggest to investigate Abel statistically δ quasi-Cauchy sequences
of fuzzy points or soft points (see [23], [38] for the definitions and related concepts
in fuzzy setting, and see [2], and [33] for the soft setting). We also suggest to
investigate Abel statistically δ quasi-Cauchy double sequences (see for example [27],
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[32], and [40] for the definitions and related concepts in the double sequences case).
For another further study, we suggest to investigate Abel statistically δ Cauchy
sequences of points in an abstract metric space ([39], [45], [44], [22], [41], and [28]).
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[17] H. Çakallı, On G-continuity, Comput. Math. Appl. 61, 2, 313-318, (2011).
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[43] M. Ünver, Abel summability in topological spaces, Monatsh Math 178 (2015) 633-643.

https://doi.org/10.1007/s00605-014-0717-0
[44] R.W. Vallin, Creating slowly oscillating sequences and slowly oscillating continuous func-

tions, With an appendix by Vallin and H. Cakalli, Acta Math. Univ. Comenianae, 25, 1,

71-78, (2011).
[45] T. Yaying, B. Hazarika, H. Cakalli, New results in quasi cone metric spaces, J. Math. Com-

puter Sci. 16, 435-444, (2016).
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Abstract. We define and study an equivalence relation in the class Tr(SVs)

of translationally slowly varying positive real sequences and its relations with
selection principles and game theory. We also prove a game-theoretic result

for translationally rapidly varying sequences.

1. Introduction

Throughout the paper N will denote the set of natural numbers, R the set of real
numbers, S the set of sequences of positive real numbers.

The theory of regular variation, including in particular slow variation, was ini-
tiated in 1930 by J. Karamata [8]. Nowadays this branch of asymptotic analysis of
divergent processes is known as Karamata’s theory of regular variation. Another
kind of variation, called rapid variation, was introduced and first studied in 1970 by
de Haan [7]. These two theories are developed for functions and sequences and have
various applications in several mathematical disciplines: number theory, differen-
tial and difference equations, probability theory, q-calculus, and so on. For more
information about the theory of regular variation and the theory of rapid variation
we refer the reader to the book [1]. In this article we are interested in two classes
of sequences related to slow and rapid variations.

We recall first the definitions of slowly and rapidly varying sequences.

Definition 1.1. ([1, 2, 12]) A sequence c = (cn)n∈N ∈ S is slowly varying (re-
spectively, rapidly varying) if for each λ > 0 (respectively, λ > 1) the following is
satisfied:

lim
n→∞

c[λn]

cn
= 1, (1.1)

(respectively,

lim
n→∞

c[λn]

cn
= ∞), (1.2)

where for x ∈ R, [x] denotes the greatest integer part of x.
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The classes of slowly varying and rapidly varying sequences are denoted by SVs

and Rs,∞, respectively.
In what follows we work with the following two classes of sequences.

Definition 1.2. ([3, 11]) A sequence c = (cn)n∈N ∈ S is translationally slowly

varying (respectively, translationally rapidly varying) if for each λ ≥ 1 the following
asymptotic condition is satisfied:

lim
n→∞

c[n+λ]

cn
= 1 (1.3)

(respectively,

lim
n→∞

c[n+λ]

cn
= ∞). (1.4)

Tr(SVs) denotes the class of translationally slowly varying sequences, and Tr(Rs,∞)
denotes the class of translationally rapidly varying sequences (see [2, 3, 4, 5]).

Observe that Rs,∞ ∩ Tr(SVs) 6= ∅, Rs,∞ \ Tr(SVs) 6= ∅, Tr(SVs) \ Rs,∞ 6= ∅, and
Tr(Rs,∞) ⊂ Rs,∞.

In this paper we define and study a new equivalence relation in the class Tr(SVs),
in particular its relations with selection principles and game theory. We also provide
a game-theoretic result concerning the class Tr(Rs,∞).

2. Results

We begin this section with definitions of concepts we use in this article.

Definition 2.1. Sequences c = (cn)n∈N and d = (dn)n∈N from S are mutually

translationally slowly equivalent, denoted by

cn
ts
∼ dn, as n → ∞,

if

lim
n→∞

c[n+λ]

dn
= 1 and lim

n→∞

d[n+λ]

cn
= 1 (2.1)

hold for each λ ≥ 1.

Definition 2.2. Sequences c = (cn)n∈N and d = (dn)n∈N from S are mutually

translationally rapidly equivalent, denoted by

cn
tr
∼ dn, as n → ∞,

if

lim
n→∞

c[n+λ]

dn
= ∞ and lim

n→∞

d[n+λ]

cn
= ∞ (2.2)

hold for each λ ≥ 1.

Theorem 2.1. Let sequences c = (cn)n∈N and d = (dn)n∈N be elements from S. If

cn
ts
∼ dn, as n → ∞, then c ∈ Tr(SVs) and d ∈ Tr(SVs).

Proof. For λ ≥ 1 we have

lim
n→∞

c[n+λ]

cn
= lim

n→∞

(

cn+1

cn

)[λ]

if the limit on the right side exists. Further, since cn
ts
∼ dn, we have

lim
n→∞

cn+2

cn
= lim

n→∞

(

cn+2

dn+1
·
dn+1

cn

)

= lim
n→∞

cn+2

dn+1
· lim
n→∞

dn+1

cn
= 1.
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Therefore

1 = lim
n→∞

(

cn+2

cn+1
·
cn+1

cn

)

= lim
k→∞

(

ck+1

ck

)2

,

hence
lim
n→∞

cn+1

cn
= 1.

This means that

lim
n→∞

c[n+λ]

cn
= 1 for each λ ≥ 1 ,

i.e. c ∈ Tr(SVs).
Similarly we prove d ∈ Tr(SVs). �

In a similar way, by suitable modifications in the proof, we prove the following
result.

Theorem 2.2. Let c = (cn)n∈N and d = (dn)n∈N be sequences in S. If cn
tr
∼ dn,

as n → ∞, then c ∈ Tr(Rs,∞) and d ∈ Tr(Rs,∞).

Theorem 2.3. Relation
ts
∼ is an equivalence relation on Tr(SVs).

Proof. 1. (Reflexivity) Let c ∈ Tr(SVs). Then limn→∞

c[n+λ]

cn
= 1 for each λ ≥ 1,

that is cn
ts
∼ cn as n → ∞, and so reflexivity holds.

2.(Symmetry) It follows from the definition of relation
ts
∼.

3. (Transitivity) Let c = (cn)n∈N, d = (dn)n∈N and e = (en)n∈N be elements

from Tr(SVs) such that cn
ts
∼ dn, n → ∞, and dn

ts
∼ en, n → ∞. Then we have

lim
n→∞

cn+2

en
= lim

n→∞

cn+2

dn+1
· lim
n→∞

dn+1

en
= 1.

We conclude

1 = lim
n→∞

(

cn+2

en+1
·
en+1

en

)

.

Because of e ∈ Tr(SVs), we obtain

lim
n→∞

cn+1

en
= 1.

It follows from here that for each λ ≥ 1 it holds

lim
n→∞

c[n+λ]

en
= 1.

In a similar way one proves

lim
n→∞

e[n+λ]

cn
= 1, λ ≥ 1,

which means cn
ts
∼ en. �

Remark. Let a sequence c = (cn)n∈N belong to the class Tr(SVs) and let d =

(dn)n∈N ∈ S be such that cn
ts
∼ dn. Then

lim
n→∞

cn

dn
= lim

n→∞

(

cn

cn+1
·
cn+1

dn

)

= 1

and we conclude that sequences c and d are strongly asymptotically equivalent (see,
for instance. [1, 6]), i.e. limn→∞

cn
dn

= 1.
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Recall the definition of selection principles, which we need in what follows (see
[9, 10]).

Definition 2.3. Let A and B be subfamilies of the set S. The symbol αi(A,B),
i ∈ {2, 3, 4}, denotes the following selection hypotheses: for each sequence (An)n∈N

of elements from A there is an element B ∈ B such that:

(1) α2(A,B): the set Im(An) ∩ Im(B) is infinite for each n ∈ N;
(2) α3(A,B): the set Im(An) ∩ Im(B) is infinite for infinitely many n ∈ N;
(3) α4(A,B): the set Im(An) ∩ Im(B) is nonempty for infinitely many n ∈ N,

where Im denotes the image of the corresponding sequence.

The following infinitely long game is related to α2 (see [9, 10]).

Definition 2.4. Let A and B be nonempty subfamilies of S. The symbol Gα2
(A,B)

denotes the following infinitely long game for two players, I and II, who play a round
for each natural number n. In the first round I chooses an arbitrary element A1 =
(A1,j)j∈N from A, and II chooses a subsequence yr1 = (A1,r1(j))j∈N of the sequence

A1. At the kth round, k ≥ 2, I chooses an arbitrary element Ak = (Ak,j)j∈N from
A and II chooses a subsequence yrk = (Ak,rk(j))j∈N of the sequence Ak, such that
Im(rk(j)) ∩ Im(rp(j)) = ∅ is satisfied, for each p ≤ k − 1. II wins a play

A1, yr1 ; . . . ;Ak, yrk ; . . .

if and only if all elements from Y =
⋃

k∈N

⋃

j∈N
Ak, rk(j), with respect to second

index, form a subsequence y = (ym)m∈N ∈ B.
A strategy σ for the player II is a coding strategy if II remembers only the most

recent move by I and by II before deciding how to play the next move.

Observe, that if II has a winning strategy in the game Gα2
(A,B), then the

selection principle α2(A,B) is true. Also, α2(A,B) ⇒ α3(A,B) ⇒ α4(A,B).

Let c = (cn)n∈N ∈ S. Then we define

[c]ts = {d = (dn)n∈N ∈ S : cn
ts
∼ dn, n → ∞} (2.3)

as the equivalence class of c in Tr(SVs).

Theorem 2.4. For a fixed element c ∈ Tr(SVs), the player II has a winning coding

strategy in the game Gα2([c]ts, [c]ts),

Proof. (1st round): Let σ be the strategy of the player II. The player I chooses a
sequence x1 = (x1,n)n∈N ∈ [c]ts arbitrary. Then the player II chooses the subse-
quence σ(x1) = (x1,k1(n))n∈N of the sequence x1, where Im(k1) is the set of natural
numbers greater of or equal to n1 ∈ N which are divisible by 2 and not divisible by
22, and 1− 1

2 ≤ cn
xm,n

≤ 1 + 1
2 holds for each n ≥ n1.

(mth round, m > 2): The player I chooses a sequence xm = (xm,n)n∈N ∈ [c]ts.
Then the player II chooses the subsequence

σ(xm, (xm−1,km−1(n))n∈N) = (xm,km(n))n∈N

of the sequence xm, so that Im(km) is the set of natural numbers greater of or equal
to nm ∈ N, which are divisible by 2m, and not divisible by 2m+1, and 1 − 1

2m ≤
cn

xm,n
≤ 1 + 1

2m holds for each n ≥ nm.
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Consider now the set Y =
⋃

m∈N

⋃

n∈N
xm,km(n) in S indexed by the second index

km(n). This set we can consider as the subsequence of the sequence y = (yi)i∈N

given by:

yi =

{

xm,km(n), if i = km(n) for some m,n ∈ N;
ci, otherwise.

By the construction y ∈ S. Also, the intersection of y and xm, m ∈ N, is an infinite
set.

Let us prove that ym
ts
∼ cm, as m → ∞. Let ε > 0. Let m be the smallest

natural number such that 1
2m ≤ ε. For each k ∈ {1, 2, ...,m− 1} there is n∗

k ∈ N, so
that 1 − ε ≤ ci

xk,n
≤ 1 + ε for each n ≥ n∗

k. Set n∗ = max{n∗

1, n
∗

2, . . . , n
∗

m−1}. For

each i ≥ n∗ we have 1− ε ≤ ci
yi

≤ 1 + ε. Therefore, limn→∞
ci
yi

= 1. It follows

lim
i→∞

ci+1

yi
= lim

i→∞

(

ci+1

ci
·
ci

yi

)

= 1

because c ∈ Tr(SVs). In a similar way we prove

lim
i→∞

yi+1

ci
= 1.

One concludes that for each λ ≥ 1

lim
i→∞

y[i+λ]

ci
= lim

i→∞

c[i+λ]

yi
= 1

i.e. y = (yi)i∈N ∈ [c]ts. The theorem is proved. �

Corollary 2.5. The selection principle α2([c]ts, [c]ts) holds for each fixed element

c ∈ Tr(SVs). Consequently, α3([c]ts, [c]ts) and α4([c]ts, [c]ts) also hold.

We end the paper by proving a result about mutually translationally rapidly
equivalent sequences.

Let c = (cn)n∈N ∈ S. Then we define

[c]tr = {d = (dn)n∈N ∈ S : cn
tr
∼ dn, n → ∞}. (2.4)

Theorem 2.6. The player II has a winning coding strategy in the game Gα2
([c]tr, [c]tr),

for any fixed element c ∈ Tr(Rs,∞).

Proof. Let σ be the strategy of II.
(mth round, m ≥ 1): The player I chooses a sequence xm = (xm,n)n∈N ∈ [c]tr.

Then the player II chooses the subsequence

σ(xm, (xm−1,km−1(n))n∈N) = (xm,km(n))n∈N

of the sequence xm, so that Im(km) is the set of natural numbers greater of or
equal to nm, which are divisible with 2m, and not divisible with 2m+1, nm ∈ N,
and cn+1

xm,n
≥ 2m and

xm,n+1

cn
≥ 2m for each n ≥ nm. Let λ ≥ 1. Since c ∈ Tr(Rs,∞),

we have cn+1

cn
≥ 1 for sufficiently large n. Then

c[n+λ]

xm,n

=
c[n+λ]

c[n+λ]−1
·
c[n+λ]−1

c[n+λ]−2
· · ·

cn+1

xm,n

≥ 2m

for each n ≥ nm. Since xm,n
tr
∼ cn, as n → ∞, we have xm ∈ Tr(Rs,∞) (Theorem

2.2). In a similar way we prove
xm,[n+λ]

cn
≥ 2m for all n ≥ nm.
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Form the set Y =
⋃

m∈N

⋃

n∈N
xm,km(n) of positive real numbers indexed by the

second index. This set is a subsequence of the sequence y = (yi)i∈N defined by:

yi =

{

xm,km(n), if i = km(n) for some m,n ∈ N;
ci, otherwise.

Evidently, y ∈ S and the intersection of y and xm, m ∈ N, is an infinite set.

We prove ym
tr
∼ cm, as m → ∞. Let M > 0. Choose the smallest m ∈ N such

that 2m > M . For each k ∈ {1, 2, ...,m − 1} there is n∗

k ∈ N, so that
c[n+λ]

xk,n
≥ M

and
xk,[n+λ]

cn
≥ M for each λ ≥ 1 and each n ≥ n∗

k. Let n∗ = max{n∗

1, . . . , n
∗

m−1}.

Therefore, the inequalities
c[i+λ]

yi
≥ M and

y[i+λ]

ci
≥ M hold for each λ ≥ 1 and each

i ≥ n∗. As M was arbitrary, one concludes yi
tr
∼ ci, as i → ∞. In other words,

y ∈ [c]tr. �

Corollary 2.7. The selection principle α2([c]tr, [c]tr) holds for each fixed element

c ∈ Tr(Rs,∞), and thus α3([c]tr, [c]tr) and α4([c]tr, [c]tr) hold.
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University of Kragujevac, Faculty of Technical Sciences, Svetog Save 65, 32000 Čačak,
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Abstract. In this paper, we study the existence and multiplicity of positive
radial solutions for a class of local elliptic boundary value problem defined on
bounded annular domains. The existence and multiplicity of positive radial

solutions are obtained by means of fixed point index theory. We include an
example to illustrate our results.

1. Introduction

In this paper, we are interested in the existence of radial positive solutions to
the following boundary value problem (BVP)

{

−△u (x) = f (|x| , u (x)) , x ∈ Ω,

u (x) = 0, x ∈ ∂Ω,
(1.1)

where Ω =
{

x ∈ R
N : R0 < |x| < R1, N ≥ 3

}

with 0 < R0 < R1 is an annulus in

R
N and f ∈ C ([0, 1]× [0,∞) , [0,∞)).
The study of such problems is motivated by a lot of physical applications start-

ing from the well-known Poisson-Boltzmann equation (see [2, 26, 34]), also they
serve as models for some phenomena which arise in fluid mechanics, such as the
exothermic chemical reactions or autocatalytic reactions (see [31], Section 5.11.1).
The nonlinearity f in applications always has a special form and here we assume
only the continuity of f and some inequalities at some points for the values of this
function. However, we know that in the integrand should stay a superposition of u
with a given function (usually the exponent of u in applications) instead of u alone,
but we treat this paper as the first step in this direction. The method we use is
typical for local BVP. We shall formulate an equivalent fixed point problem and
look for its solution in the cone of nonnegative function in an appropriate Banach
space. The most popular fixed point theorem in a cone is the cone-compression
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and cone-expansion theorem due to M. Krasnosel’skii [25] which we use in the form
taken from [12], [19]. We also point out the fact that problems of type (1.1) when
equation does not contain parameter λ, are connected with the classical boundary
value theory of Bernstein [1] (see also the studies of Granas, Gunther and Lee [17]
for some extensions to nonlinear problems).

The existence and uniqueness of positive radial solutions for equations of type
(1.1) when equation does not contain parameter λ, were obtained in [5], [27], [36].

Wang [36] proved that if f : (0,∞) → (0,∞) satisfies lim
z→0

f(z)
z

= ∞ and lim
z→∞

f(z)
z

=

0 then problem (1.1) when equation does not contain parameter λ, has a positive
radial solution in Ω =

{

x ∈ R
N , N > 2

}

. That result was extended for the systems
of elliptic equations by Ma [24]. We quote also the research of Ovono el al. [32]
where the diffusion at each point depends on all the values of the solutions in a
neighborhood of this point and Chipot et al. [13] considred the solvability of a
class of nonlocal problems which admit a formulation in term of quasi-variational
inequalities. There is a wide literature that deals with existence multiplicity results
for various second-order, fourth-order and higher-order boundary value problems
by different approaches, see [8, 9, 10, 11, 12, 14, 29, 30].
In 2011, Bohneure et al. [6] studied the existence of positive increasing radial
solutions for superlinear Neumann problem in the unit ball B in R

N , N ≥ 2,










−∆u+ u = a (|x|) f (u) , in B,

u > 0, inB,

∂tu = 0, on ∂B,

where a ∈ C1 ([0, 1] ,R) , a (0) > 0 is nondecreasing, f ∈ C1 ([0, 1] ,R) , f (0) =

0, lim
s→0+

f(s)
s

= 0 and lim
s→+∞

f(s)
s

> 1
a(0) .

In 2011, Hakimi and Zertiti [22] studied the nonexistence of radial positive solutions
for a nonpositone problem when the nonliearity is superlinear and has more than
one zero,

{

−△u (x) = λf (u (x)) , x ∈ Ω,

u (x) = 0, x ∈ ∂Ω,

where f ∈ C ([0,+∞) ,R).
In 2014, Sfecci [35] obtained the existence result by introduced the lim sup type
of nonresonance condition with respect to the first positive eigenvalue λ1 pro-

vided lim
|u|→∞

sup 2F (u)
u2 < λ1 with a double lim inf condition like the following one

lim
u→−∞

sup 2F (u)
u2 < π2

4ρ2 and lim
u→+∞

inf 2F (u)
u2 < π2

4ρ2 for the following Neumann prob-

lems defined on the ball BR =
{

x ∈ R
N , |x| < R

}

,
{

−△u (x) = f (u (x)) + e (|x|) , in BR,
u (x) = 0, on ∂BR,

where f ∈ C (R,R), e ∈ C ([0, R] ,R), F is a primitive of f and Ω = (−2ρ, 2ρ) ⊂ R.
In 2014, Butler et. al, [7] studied the positive radial solutions to the BVP











−∆u+ u = λa (|x|) f (u) , x ∈ Ω,
∂u
∂η

+ c (u)u = 0, |x| = r0,

u (x) → 0, |x| → ∞,
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where f ∈ C ([0,∞) ,R) , Ω =
{

x ∈ R
N : N > 2, |x| > r0 with r0 > 0

}

, λ is a pos-

itive parameter, a ∈ C ([r0,∞) ,R+) such that lim
r→∞

a (r) = 0, ∂
∂u

is the outward

normal derivative and c ∈ C ([0,∞) , (0,∞)).

In 2003, Stanzy [34], by using the norm-type cone expansion and compression
theorem proved that problem (1.1) has at least one positive radial solution under
the following conditions
(B1) for any M > 0 there exist a function pM ∈ C ((1,+∞) ,R+) with

∞
∫

1

s
(

1− s2n
)

pM (s) ds <∞,

such that

0 ≤ f (s, u) ≤ pM (s) , for any (s, u) ∈ (1,∞)× [0,M ] ,

(B2) there exist a set B ∈ ((1,+∞) ,R+) of positive measure such that

lim
u→+∞

f (s, u)

u
= +∞, uniformly with respect to s ∈ B,

(B3) there exist a function p ∈ C ((1,+∞) ,R+) with
∫∞

1
s
(

1− s2n
)

p (s) ds < ∞
such that

lim
u→0+

f (s, u)

up (s)
= 0, uniformly with respect to s ∈ B.

In 2006, Han [21], replacing the conditions listed above (B1) , (B2) and (B3) by the
weaker ones

lim
u→0+

inf min
s∈[c,d]

f (s, u)

u
> ξ, lim

u→0+
sup

f (s, u)

up (s)
< η,

uniformly with respect to s ∈ (1,+∞) for suitable positive numbers ξ and η, the
authors proved that problem (1.1) still has at least one positive radial solution.

In 2014, Wu [37], studied problem (1.1) under some conditions concerning the first
eigenvalues corresponding to the relevant linear operators, they obtained several ex-
istence theorems on multiple positive radial solutions of (1.1) in an exterior domain.

Inspired and motivated by the works mentioned above, we deal with existence
and multiplicity of radial positive solutions to the BVP (1.1), our approach is based
on fixed point index theory. The paper is organized as follows. In Section 2, we
changes problem (1.1) into a sigular two-point boundary value problem and we
will state all the lemmas which will be used to prove our main results in the later
section. Setion 3 is devoted to the existence and multiplicity of positive solutions
and positive radial solutions for BVP (1.1) and we give an example to illustrate our
results.

2. Preliminaries

We shall consider the Banach space E = C [0, 1] equipped with sup norm ‖u‖ =
max
0≤t≤1

|u (t)| and C+ [0, 1] is the cone of nonnegative functions in C [0, 1].
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Definition 2.1. Anonempty closed and convex set P ⊂ E is called a cone of E if
it satisfies

(i) u ∈ P, r > 0 implies ru ∈ P,
(ii) u ∈ P, −u ∈ P implies u = θ, where θ denotes the zero element of E.

Definition 2.2. A cone P is said to be normal if there exists a positive number N
called the normal constant of P , such that θ ≤ u ≤ v implies ‖u‖ ≤ N ‖v‖.

We are interested in finding radial solutions for problem (1.1). We proceed
as in introduction. Since we are looking for the existence of nonnegative radial
solutions u (x) = z (|x|) of the problem (1.1), where z : R+ → R, one can substitute

v (t) = z
(

A
B−t

)
1

n−2

for t ∈ [0, 1] , n ≥ 3, thus reducing the BVP (1.1) to the

following singular two-point BVP
{

−v′′ (t) = g (t, v (t)) , t ∈ (0, 1) ,

v (0) = v (1) = 0,
(2.1)

where

g (t, v) = φ (t) f

(

(

A

B − t

)
1

n−2

, v

)

, (2.2)

A =
(R0R1)

n−2

Rn−2
1 −Rn−2

0

and B =
Rn−2

1

Rn−2
1 −Rn−2

0

, (2.3)

and

φ (t) =

(

R
−(n−2)
1 −R

−(n−2)
0

n− 2

)2
(

R
−(n−2)
1 −

(

R
−(n−2)
1 −R

−(n−2)
0

)

t
)

, n ≥ 3.

(2.4)
we can reformulate g as

g (t, v) = φ (t) f

(

(

A

B − t

)
1

n−2

, v

)

,

where

φ (t) =

(

R
−(n−2)
1 −R

−(n−2)
0

n− 2

)2




1

A
2n−2
n−2

(

Rn−2
1 −Rn−2

0

)

2n−2
n−2





[

A

B − t

]

2(n−1)
n−2

We observe that the existence of radial positive solutions of (1.1) is equivalent
to the existence of positive solutions of the problem (2.1).

In arriving our results, we need the following six preliminary lemmas. The first
one is well known.

Lemma 2.1. Let y (·) ∈ C [0, 1]. If u ∈ C2 [0, 1], then the BVP (2.1) has a unique
solution

v (t) =

1
∫

0

G (t, s) y (s) ds, (2.5)
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where

G (t, s) =

{

s (1− t) , 0 ≤ t ≤ s ≤ 1,

t (1− s) , 0 ≤ s ≤ t ≤ 1.
(2.6)

Lemma 2.2. For any (t, s) ∈ [0, 1]× [0, 1], we have

0 < G (t, s) ≤ G (s, s) = s (1− s) .

Proof. The proof is evident, we omit it. �

Lemma 2.3. (see [23]) For y (t) ∈ C+ [0, 1]. Then the unique solution u (t) of
BVP (2.1) is nonnegative and satisfies

min
R0≤t≤R1

v (t) ≥ c ‖v‖ ,

where c = min {R0, 1−R1} and [R0, R1] ⊂ (0, 1).

If we let

P =
{

v ∈ C+ [0, 1] : v (t) ≥ 0, for t ∈ [0, 1]
}

,

and

Q =

{

v ∈ C+ [0, 1] : min
R0≤t≤R1

v (t) ≥ c ‖v‖
}

,

then it is easy see that P and Q are cones in E = C [0, 1].
Let Ωr = {u ∈ E : ‖u‖ < r} be the open ball of radius r in E and the operator
A : E → E define by

(Av) (t) =

1
∫

0

G (t, s) g (s, v (s)) ds, t ∈ [0, 1] . (2.7)

Define a set H by

H =







h ∈ C
(

(0, 1) ,R+
)

: h 6= 0,

1
∫

0

t (1− t)h (t) dt < +∞







. (2.8)

Now, we define an integral operators Th : E → E for h ∈ H by

(Thv) (t) =

1
∫

0

G (t, s)h (s) v (s) ds, for v ∈ E. (2.9)

We have the following lemma.

Lemma 2.4. For any h ∈ H we have
(i) Th is a completely continuous linear operator and the specteral radius r (Th) 6= 0
and Th has a positive eigenfunction ϕ1h corresponding to its first eigenvalue λ1h =
(r (Th))

−1
,

(ii) Th (P ) ⊂ Q,
(iii) there exist δ1, δ2 > 0, such that

δ1G (t, s) ≤ ϕ1h (s) ≤ δ2G (s, s) , t, s ∈ [0, 1] , (2.10)

(iv) define a functional Jh by Jh (v) =
∫ 1

0
h (t)ϕ1h (t) v (t) dt for v ∈ E. Then

Jh (Thv) = λ−1
1h Jh (v) for v ∈ E,
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(v) let
P0 =

{

v ∈ P : Jh (v) ≥ λ−1
1h δ1 ‖v‖

}

, (2.11)

then P0 is a cone in E and Th (P ) ⊂ P0 where δ1 is defined by (2.10).

To prove Lemma 2.4, we need the following lemmas.

Lemma 2.5. (see [24]) Suppose that E is a Banach space, Tn : E → E, n ∈ N
∗

are completely continuous operators, T : E → E and

lim
n→+∞

max
‖u‖<r

‖Tnu− Tu‖ = 0, ∀r > 0, (2.12)

then T is completely continuous operator.

Lemma 2.6. (see [25]) Suppose that E is a Banach space, T : E → E is completely
continuous linear operators and T (P ) ⊂ P . If there exist ψ ∈ E \ (−P ) and a
constant µ > 0 such that µTψ ≥ ψ, then the spectral radius r (T ) 6= 0 and T has a

positive eigenfunction corresponding to its first eigenvalue λ1 (r (T ))
−1

.

Proof. Proof of Lemma 2.4. It follows from the definition of H that for any v ∈ E

|(Thv) (t)| ≤
1
∫

0

G (t, s)h (s) |v (s)| ds,

≤ ‖v‖
1
∫

0

G (t, s)h (s) ds < +∞. (2.13)

Obviously, Th (P ) ⊂ P and Th : E → E is a positive linear operators.
We will show tha Th : E → E is completely continuous. For any natural number
n ≥ 2, let

hn (t) =























inf
t≤s≤ 1

n

h (s) , 0 ≤ t ≤ 1
n
,

h (t) , 1
n
≤ t ≤ n−1

n
,

inf
n−1
n

≤s≤1

h (s) , n−1
n

≤ t ≤ 1.

(2.14)

Then hn : [0, 1] → [0,∞) is continuous and hn (t) ≤ h (t) for all t ∈ (0, 1).
Let

(Thn
v) (t) =

1
∫

0

G (t, s)hn (s) v (s) ds. (2.15)

Now, we show that Thn
: E → E is completely continuous. For any r > 0 and

v ∈ Ωr, according to (2.14) , (2.15) and the absolute continuity of integral, we have

lim
n→+∞

‖Thn
v − Tv‖ = lim

n→+∞
max
t∈[0,1]

∣

∣

∣

∣

∣

∣

1
∫

0

G (t, s) (hn (s)− h (s)) v (s) ds

∣

∣

∣

∣

∣

∣

≤ ‖v‖ lim
n→+∞

∣

∣

∣

∣

∣

∣

1
∫

0

G (s, s) (hn (s)− h (s)) ds

∣

∣

∣

∣

∣

∣

≤ ‖v‖ lim
n→+∞

∫

e(n)

G (s, s) (h (s)− hn (s)) ds
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≤ ‖v‖ lim
n→+∞

∫

e(n)

G (s, s)h (s) ds = 0, (2.16)

where e (n) =
[

0, 1
n

]

∪
[

n−1
n
, 1
]

.
Therefore, by Lemma 2.5, Thn

: E → E is a completely continuous operator. It
is obvious that there exists t1 ∈ (0, 1) such that G (t1, t1)h (t1) > 0. Thus there is
[a1, b1] ⊂ (0, 1) such that t1 ∈ (a1, b1) and G (t, s)h (s) > 0 for all t, s ∈ [a1, b1].
Take ζ ∈ P such that ζ (t1) > 0 and ζ (t) = 0 for all t /∈ [a1, b1]. Then, for t ∈ [a1, b1]

(Thζ) (t) =

1
∫

0

G (t, s)h (s) ζ (s) ds

≥
b1
∫

a1

G (t, s)h (s) ζ (s) ds > 0. (2.17)

So, there exist a constant µ > 0 such that µ (Thζ) (t) ≥ ζ (t) for all t ∈ [0, 1]. From
Lemma 2.6, we have that the spectral radius r (Th) 6= 0 and Th has a positive

eigenfunction corresponding to its first eigenvalue λ1h (r (Th))
−1

.
(ii) To prove Th (P ) ⊂ Q, we only need to show

min
t∈[R0,R1]

(Thv) (t) ≥ min {R0, 1−R1} ‖Thv‖ for v ∈ P. (2.18)

In fact, for every v ∈ P , from 0 < G (t, s) ≤ G (s, s) = s (1− s) for t, s ∈ [0, 1], we
have

(Thv) (t) =

1
∫

0

G (t, s)h (s) v (s) ds

≤
1
∫

0

s (1− s)h (s) v (s) ds,

so, for any v ∈ P , we have

‖Thv‖ ≤
1
∫

0

s (1− s)h (s) v (s) ds. (2.19)

Notice that, for t ∈ [R0, R1],

G (t, s) =

{

s (1− t) ≥ s (1−R1) , s ≤ t,

t (1− s) ≥ R0 (1− s) , t ≤ s.
(2.20)

Thus, for (t, s) ∈ [R0, R1]× [0, 1], we have

G (t, s) ≥ min {R0, 1−R1} s (1− s) . (2.21)

It follows, from (2.19) and (2.21) that for all v ∈ P

(Thv) (t) =

1
∫

0

G (t, s)h (s) v (s) ds
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≥ min {R0, 1−R1}
1
∫

0

s (1− s)h (s) v (s) ds

≥ min {R0, 1−R1} ‖Thv‖ , t ∈ [R0, R1] . (2.22)

So, (2.18) holds. Thus, Th maps P into Q.
(iii) Since ϕ1h is a positive eigenfunction of Th, we know from the maximum prin-
ciple (see [18]) that ϕ1h (t) > 0 for all t ∈ (0, 1).
Note that G (0, s) = G (1, s) = 0 for s ∈ (0, 1), we have ϕ1h (0) = ϕ1h (1) = 0.
This impleis that ϕ′

1h (0) > 0 and ϕ′
1h (1) < 0 (see [18]).

Define a function Φh on [0, 1] by

Φh (s) =











ϕ′
1h (0) , s = 0,

ϕ1h(s)
s(1−s) , s ∈ (0, 1) ,

−ϕ′
1h (1) , s = 1.

(2.23)

Then, it is easy to see that Φh continuous on [0, 1] and Φh (s) > 0 for all s ∈ [0, 1].
So, there exist δ1, δ2 > 0, such that

δ1G (t, s) ≤ δ1s (1− s) ≤ ϕ1h (s) ≤ δ2s (1− s) ≤ δ2G (s, s) , (2.24)

for all t, s ∈ [0, 1].
(iv) From (2.10), for all v ∈ E, we have

Jh (v) =

1
∫

0

h (t)ϕ1h (t) v (t) dt

≤ δ2

1
∫

0

t (1− t)h (t) v (t) dt < +∞.

So, J : E → R is well defined.
For all v ∈ E, we have

Jh (Thv) =

1
∫

0

h (t)ϕ1h (t)





1
∫

0

G (t, s)h (s) v (s) ds



 dt

=

1
∫

0

h (s) v (s)





1
∫

0

G (s, t)h (t)ϕ1h (t) dt



 ds

=

1
∫

0

h (s) v (s) (r1hϕ1h (s)) ds

= λ−1
1h Jh (v) , (2.25)

for v ∈ E. Then Jh (Thv) = λ−1Jh (v) for v ∈ E.
(v) It is easy to verify that P0 is a cone in E. It follows from (2.10) and (2.25) that

Jh (Thv) = λ−1
1h

1
∫

0

h (s)ϕ1h (s) v (s) ds
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≥ δ1λ
−1
1h

1
∫

0

h (s)G (t, s) v (s) ds

= δ1λ
−1
1h (Thv) (t) , for v ∈ P. (2.26)

The proof is completed. �

3. Existence results

3.1. Positive solutions of singular two-point boundary value problems.

The following Lemma is a well-known result of the fixed point index theory, which
will play an important role in the proof of our main results.

Lemma 3.1. (see [18])Let Ω be a bounded open set in E with θ ∈ Ω,A : P∩Ω → P
a completely continuous operator, where θ denotes the null element of E. Assume
that A has no fixed point on P ∩ ∂Ω.

(i) (Homotopy invariance) If u 6= µAu for all µ ∈ [0, 1] and u ∈ P ∩ ∂Ω, then the
fixed point index i (A,P ∩Ω,P ) = 1,

(ii) (omitting a direction) if there exists an element ψ0 ∈ P \ {θ} such that u 6=
Au+ µψ0 for all u ∈ P ∩ ∂Ω and µ ≥ 0, then i (A,P ∩Ω,P ) = 0,

(iii) (cone expansion) if ‖Au‖ ≥ ‖u‖ for all u ∈ P ∩ ∂Ω, then i (A,P ∩Ω,P ) = 0,

(iv) (additivity) suppose Ω1 is an open subset of Ω with θ ∈ Ω1 and u 6= Au for
u ∈ P ∩ ∂Ω1, then

i (A,P ∩Ω,P ) = i (A,P ∩Ω1, P ) + i
(

A,P ∩
(

Ω \Ω
)

, P
)

,

(v) i (A,P ∩Ω,P ) 6= 0, then A has at least one fixed point in P ∩Ω.

Denote

M1 =



 min
t∈[R0,R1]

R1
∫

R0

G (t, s) ds





−1

, η =



max
t∈[0,1]

R1
∫

R0

G (t, s) ds





−1

. (3.1)

The following conditions holds.
(H1) g ∈ C ((0, 1)× R

+,R+) and for any M > 0 there exists a function hM ∈ H
such that

g (t, v) ≤ hM (t) , ∀ (t, v) ∈ (0, 1)× [0,M ] , (3.2)

(H2) there exists a function h ∈ H such that

lim
v→0+

sup
g (t, v)

h (t) v
< λ1h, uniformly with respect to t ∈ (0, 1) , (3.3)

(H3) there exists a function h ∈ H such that

lim
v→+∞

sup
g (t, v)

h (t) v
< λ1h, uniformly with respect to t ∈ (0, 1) , (3.4)

(H4) lim
v→0+

inf min
t∈[R0,R1]

g(t,v)
v

> M1,

(H5) lim
v→+∞

inf min
t∈[R0,R1]

g(t,v)
v

> M1,
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(H6) there exists a number l > 0 such that

g (t, v) > ηl, for (t, v) ∈ [R0, R1]× [min {R0, 1−R1} l, l] , (3.5)

where η defined in (3.1),
(H7) there exists a function h ∈ H such that

lim
v→0+

inf
g (t, v)

h (t) v
> λ1h, uniformly with respect to t ∈ (0, 1) , (3.6)

(H8) there exists a function h ∈ H with h (t) 6= 0 for t ∈ [R0, R1] and q ∈
C (R+,R+) such that

g (t, v) ≥ h (t) q (v) , ∀ (t, v) ∈ (0, 1)× R
+, (3.7)

lim
v→∞

inf
q (v)

v
> λ1h. (3.8)

Lemma 3.2. Assume (H1) holds. Then A : Q → Q is a completely continuous
operator.

Proof. The proof is similar to that of Lemma 3.1 in [21]. �

Lemma 3.3. assume (H1) holds.

(i) If (H2) holds. Then i (A,Q ∩Ωr, Q) = 1 for sufficiently small positive number r.

(ii) If (H3) holds. Then i (A,Q ∩ΩR, Q) = 1 for sufficiently large positive number
R.

(iii) If (H4) holds. Then i (A,Q ∩Ωr, Q) = 0 for sufficiently small positive number
r.

(iv) If (H5) holds. Then i (A,Q ∩ΩR, Q) = 0 for sufficiently large positive number
R.

(v) If (H6) holds. Then i (A,Q ∩Ωl, Q) = 0.

(vi) If (H7) holds. Then i (A,Q ∩Ωr, Q) = 0 for sufficiently small positive number
r.

(ii) If (H8) holds. Then i (A,Q ∩ΩR, Q) = 0 for sufficiently large positive number
R.

Proof. (i) By (H2) there exists r > 0 such that

g (t, v) ≤ λ1hh (t) v, ∀ (t, v) ∈ (0, 1)× [0, r] . (3.9)

Define Shv = λ1hThv for v ∈ E, then Sh : E → E is a bounded linear operator
with Sh (P ) ⊂ Q and the spectral radial r (Sh) = 1. For every v ∈ Q ∩ ∂Ωr, it
follows from (3.9) that for t ∈ [0, 1],

(Av) (t) =

1
∫

0

G (t, s) g (s, v (s)) ds
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≤ λ1h

1
∫

0

G (t, s)h (s) v (s) ds

≤ λ1h (Thv) (t) = (Shv) (t) . (3.10)

So,
Av ≤ Shv, ∀v ∈ Q ∩ ∂Ωr. (3.11)

If there exist v1 ∈ Q ∩ ∂Ωr and µ1 ∈ [0, 1] such that v1 = µ1Av1, then it is easy
to see that µ1 ∈ (0, 1).
Thus τ1 = µ−1

1 > 1 and τ1v1 = Av1 ≤ Shv1. By induction, we have τn1 v1 = Av1 ≤
Snhv1, n = 1, 2, . . .. Then τn1 v1 = Snhv1 ≤ ‖Sh‖ ‖v1‖ and taking the sepremum on
[0, 1] gives τn1 ≤ ‖Snh‖. By the spectral radius formula, we have

r (Sh) = lim
n→+∞

n

√

‖Snh‖ ≥ τ1 > 1, (3.12)

which is contradiction.
According to the homotopy property invarience of fixed point index, we have
i (A,Q ∩Ωr, Q) = 1.
(ii) By (H3) there exists σ > 0 and ε0 ∈ (0, 1) such that

g (t, v) ≤ ε0λ1hh (t) v, ∀ (t, v) ∈ (0, 1)× [σ,+∞) . (3.13)

From (H1) there is hσ ∈ H such that g (t, v) ≤ hσ (t) for all (t, v) ∈ (0, 1) × [0, σ].
Hence

g (t, v) ≤ ε0λ1hh (t) v + hσ (t) , ∀ (t, v) ∈ (0, 1)× [0,+∞) . (3.14)

Define Shv = ε0λ1hThv, for v ∈ E, then Sh : E → E is a bounded linear

operator with Sh (P ) ⊂ Q. Let C1 =
∫ 1

0
t (1− t)hσ (t) dt < +∞. Set

W = {v ∈ Q : v = ρAv, ρ ∈ [0, 1]} . (3.15)

Next, we prove that W is bounded. For any v ∈W . From (3.14), we have

v (t) = ρ (Av) (t) ≤ (Av) (t)

=

1
∫

0

G (t, s) g (s, v (s)) v (s) ds

≤ ε0λ1h

1
∫

0

G (t, s)h (s) v(s)ds+

1
∫

0

G (t, s)hσ (s) ds

≤ ε0λ1h (Thv) (t) + C1

= (Shv) (t) + C1, t ∈ [0, 1] .

Thus
((I − Sh) v) (t) ≤ C1, ∀v ∈W, t ∈ [0, 1] . (3.16)

Since λ1h is the first eigenvalue of Sh, r (Sh)
−1

> 1. therefore, the inverce operator

(I − Sh)
−1

exists and

(I − Sh)
−1

= I + Sh + S2
h + · · ·+ Snh + · · · (3.17)

It follows from Th (P ) ⊂ Q that (I − Sh)
−1

(P ) ⊂ Q. Hence, we have from (3.16)
that

v (t) ≤ (I − Sh)
−1
C1, ∀v ∈W, t ∈ [0, 1] (3.18)
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that is W is bounded. Choose R > {ρ, supW}, then v 6= σAv for all σ ∈ [0, 1] and
v ∈ Q ∩ ΩR. By the homotopy property invarience of fixed point index, we have
i (A,Q ∩ΩR, Q) = 1.
(iii)− (v) have been proved in [21], so we skip it.
(vi) By (H7) there exist r > 0 such that

g (t, v) ≥ λ1hh (t) v, ∀ (t, v) ∈ (0, 1)× [0, r] . (3.19)

For any v ∈ Q ∩Ωr, we have

(Av) (t) =

1
∫

0

G (t, s) g (s, v (s)) ds

≥ λ1h

1
∫

0

G (t, s)h (s) v (s) ds

= λ1h (Thv) (t) , t ∈ [0, 1] . (3.20)

Without loss of generality, we can suppose that A has no fixed point on Q ∩ ∂Ωr.
Suppose that there exist v1 ∈ Q ∩ ∂Ωr and µ1 ≥ 0 such that v1 = Av1 + µ1ϕ1h.
Then µ1 > 0 and v1 = Av1 + µ1ϕ1h ≥ µ1ϕ1h. Let

µ∗ = sup {ρ > 0 : v1 ≥ ρϕ1h} . (3.21)

Then µ∗ ≥ µ1 > 0 and v1 ≥ µ∗ϕ1h.
Since Th is a positive linear operator, we have

λ1hThv1 ≥ µ∗λ1hThϕ1h. (3.22)

Hence, by (3.20) we have

v1 = Av1 + µ1ϕ1h ≥ λ1hThv1 + µ1ϕ1h ≥ µ∗ϕ1h + µ1ϕ1h, (3.23)

which is contradiction. Thus according to the homotopy property of omitting a
direction for fixed point index, we have i (A,Q ∩Ωr, Q) = 0.
(vii) From (3.8) there exist there exists σ > 0 and ε0 ∈ (0, 1) such that

q (v) ≥ (1 + ε0)λ1hv, ∀v ∈ [σ,+∞) . (3.24)

Since q is bounded on [0, σ], there is a constant C2 > 0 such that

q (v) ≥ (1 + ε0)λ1hv − C2, ∀v ∈ [0, σ] . (3.25)

Thus

q (v) ≥ (1 + ε0)λ1hv − C2, ∀v ∈ [0,+∞) .

Hence, by (3.7), we have

g (t, v) ≥ (1 + ε0)λ1hvh (t)− C2h (t) , ∀ (t, v) ∈ (0, 1)× [0,+∞) . (3.26)

Let C3 =
∫ 1

0
h (t)ϕ1h (t)

(

∫ 1

0
G (t, s)h (s) ds

)

dt < +∞. Then C3 > 0 is a finite

constant. Take

R > C3



ε0min {R0, 1−R1}
R1
∫

R0

h (t)ϕ1h (t) dt





−1

. (3.27)
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Suppose that there exsist v1 ∈ Q ∩ ΩR and µ1 ≥ 0 such that v1 = Av1 + µ1ϕ1h.
Then

Jh (v1) = J (Av1) + µ1J (ϕ1h)

≥ J (Av1)

≥
1
∫

0

h (t)ϕ1h (t)



λ1h (1 + ε0)

1
∫

0

G (t, s)h (s) v1 (s) ds− C2Th (1)



 dt

= λ1h (1 + ε0) Jh (Thv1)− C3

= (1 + ε0) Jh (v1)− C3. (3.28)

Hence

Jh (v1) ≤ C3ε
−1
0 .

On the other hand

Jh (v1) =

1
∫

0

h (t)ϕ1hv1 (t) dt

≥
R1
∫

R0

h (t)ϕ1hv1 (t) dt

≥ Rmin {R0, 1−R1}
R1
∫

R0

h (t) .ϕ1hdt. (3.29)

By the maximum principle, ϕ1h (t) > 0 for all t ∈ (0, 1). By h (t) 6= 0 for t ∈
[R0, R1], we have

R1
∫

R0

h (t)ϕ1hdt > 0.

Thus, from (3.28) and (3.29), we have

R ≤



min {R0, 1−R1}
R1
∫

R0

h (t)ϕ1hdt





−1

Jh (v1)

≤ C3



min {R0, 1−R1}
R1
∫

R0

h (t)ϕ1hdt





−1

. (3.30)

This is contradiction. So, by the property of omitting a direction for fixed point
index, we have i (A,Q ∩ΩR, Q) = 0. The is completed. �

Now, we are in position to present our main results of this subsection.

Theorem 3.4. Assume (H1) − (H3) and (H6) hold. Then the singular boundary
value problem (2.1) has at least two positive solutions.
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Proof. According to Lemma 3.3, we can choose sufficiently small positive number r
and sufficiently large positive number R satisfying 0 < r < l < R, i (A,P ∩Ωr, P ) =
1, i (A,P ∩ΩR, P ) = 1. From i (A,P ∩Ωl, P ) = 0 and additivity property of the
fixed point index, we obtain

i
(

A,P ∩
(

Ωl \Ωr
)

, P
)

= 0− 1 = −1,

i
(

A,P ∩
(

ΩR \Ωl
)

, P
)

= 1− 0 = 1.

Hence, A has at least two fixed points, one in Ωl \Ωr and another in ΩR \Ωl. That
is the singular boundary value problem (2.1) has at least two positive solution. The
proof is completed. �

Theorem 3.5. If (H1) and one of the following conditions are satisfied, then the
singular boundary value problem (2.1) has at least one positive solution.

(i) (H2) and (H5) holds,
(ii) (H2) and (H6) holds,
(iii) (H2) and (H8) holds,
(iv) (H3) and (H4) holds,
(v) (H3) and (H6) holds,
(vi) (H3) and (H7) holds.

Proof. By the property of the fixed point index, we only need to choose suitable
positive numbers r and R. This completes the proof. �

We present an example to illustrate the applicability of the results shown before.

Example 3.1. Let

g (t, v) =























1
t(t−1)

(

cvl
384

)

, t ∈ (0, 1) , v ∈
[

0, 18 l
]

,

1
t(t−1)

(

cvl
192 × l−4v

l
+ 16l(8v−l)

l

)

, t ∈ (0, 1) , v ∈
[

1
8 l,

1
4 l
]

,

16l, t ∈ (0, 1) , v ∈
[

1
4 l, l

]

,

16l + t
√
v − l, t ∈ (0, 1) , v ∈ [l,+∞) ,

where c, l > 0. Obviously, g (t, v) ≤ h (t)ψ (v) for all (t, v) ∈ (0, 1) × R
+, where

h (t) = 1
t(t−1) and

ψ (v) =























(

cvl
384

)

, t ∈ (0, 1) , v ∈
[

0, 18 l
]

,
(

cvl
192 × l−4v

l
+ 16cvl(8v−l)

l

)

, t ∈ (0, 1) , v ∈
[

1
8 l,

1
4 l
]

,

16cvl, t ∈ (0, 1) , v ∈
[

1
4 l, l

]

,

16cvl + t
√
v − l, t ∈ (0, 1) , v ∈ [l,+∞) ,

Since λ = 32
3 < 16, if lim

v→0+

ψ(v)
v

= cl
348 < λ1h and lim

v→+∞

ψ(v)
v

= 16cl < λ1h, then g

satisfies all the conditions of Theorem 3.4, thus we infer that the singular boundary
value problem (2.1) has at least two positive solutions.

3.2. Positive radial solutions of elliptic boundary value problems.

Define a set

K =
{

p ∈ C
(

(R0, R1) ,R
+
)

: p 6= 0,
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R1
∫

R0

(

Bsn−2 −A

sn−2

)(

1− Bsn−2 −A

sn−2

)(

(n− 2)Asn−3

s2(n−2)

)

p (s) ds < +∞







,

where A and B are defined above

Denote c =
(

A
B−R0

)n−2

and d =
(

A
B−R1

)n−2

.

For p ∈ K, let

h (t) = φ (s) p

(

(

A

B − t

)
1

n−2

)

,

we can reformulate h as

h (t) = φ (t) p

(

(

A

B − t

)
1

n−2

)

,

where

φ (t) =

(

R
−(n−2)
1 −R

−(n−2)
0

n− 2

)2




1

A
2n−2
n−2

(

Rn−2
1 −Rn−2

0

)

2n−2
n−2





[

A

B − s

]2(n−1)

.

For convinience, we let

∆ =

(

R
−(n−2)
1 −R

−(n−2)
0

n− 2

)2




1

A
2n−2
n−2

(

Rn−2
1 −Rn−2

0

)

2n−2
n−2



 .

Then h ∈ H. As in (2.9) and Lemma 2.4, h confirms an operator Th and its first
eigenvalue λ1h. To emphasize their relation with p, we use the notations hp, λ1hp

and ϕ1hp
.

According to (2.2), we formulate the following conditions which correspond to
those in Section 3.1.
(C1) f ∈ C ((R0, R1)× R

+,R+) and for any M > 0 there exist a function pM ∈ K
such that

f (s, u) ≤ pM (s) , ∀ (s, u) ∈ (R0, R1)× [0,M ] ,

(C2) there exist a function p ∈ K such that

lim
u→0+

sup
f (s, u)

p (s)u
< λ1hp

, uniformly with respect to t ∈ (R0, R1) ,

(C3) there exist a function p ∈ K such that

lim
u→+∞

sup
f (s, u)

p (s)u
< λ1hp

, uniformly with respect to t ∈ (R0, R1) ,

(C4) lim
u→0+

inf min
s∈[c,d]

f(s,u)
u

> c2−2n∆M1,

(C5) lim
u→+∞

inf min
s∈[c,d]

f(s,u)
u

> c2−2n∆M1,

(C6) there exist a number l > 0 such that

f (s, u) > ∆λl, for (s, u) ∈ [c, d]× [min {R0, 1−R1} l, l] ,
(C7) there exist a function p ∈ K such that

lim
u→0+

inf
f (s, u)

p (s)u
> λ1hp

, uniformly with respect to s ∈ (R0, R1) ,
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(C8) there exist a function p ∈ K with p (s) 6= 0 for s ∈ (c, d) and q ∈ C (R+,R+)
such that

f (s, u) ≥ p (s) q (u) , ∀ (s, u) ∈ (R0, R1)× R
+,

lim
u→+∞

inf
q (u)

u
> λ1hp

.

Now, we are ready to state our main results for the elliptic BVP (1.1).

Theorem 3.6. Assume (C1) − (C3) and (C6) hold. Then the singular boundary
value problem (1.1) has at least two positive solution.

Proof. The proof is similar to proof of Theorem 4.1 in [21] and from the proof of
Theorem 3.4. �

Theorem 3.7. If (C1) and one of the following conditions are satisfied, then the
singular boundary value problem (1.1) has at least one positive solution.

(i) (C2) and (C5) holds,
(ii) (C2) and (C6) holds,
(iii) (C2) and (C8) holds,
(iv) (C3) and (C4) holds,
(v) (C3) and (C6) holds,
(vi) (C3) and (C7) holds.

Proof. The proof is similar to proof of Theorem 4.1 in [21] and from the proof of
Theorem 3.5. �

Conclusion

In this contribution, we studied the existence and multiplicity of radial positive
solutions for elliptic BVP (1.1) in the ball. The interest of such problem came from
the lack of the existence of the multiple solutions by using bifurcation theory for
shown that many local branches of solutions existe while, among them, only one
is global and has no bifurcation point implies a considerable difficult to prove the
existence of bifurcation point interior the ball. The main scope of these paper is
the imposing some conditions on the nonlinearity f to prove the multiplicity of the
solutions of problems (1.1) in smooth domains via fixed point index theory.

References

[1] S. Bernstein, Sur les equations du calcul des variations, Ann. Sci. Ecole Norm. Sup. 29
(1912), 431-485.

[2] J. W. Bebernes and A. A. Lacey, Global existence and nite-time blow-up for a class of
nonlocal parabolic problems, Adv. Differential Equations 2(6) (1997), 927-953.

[3] V. Barutello, S. Secchi and E. A. Serra, note on the radial solutions for the supercritical
Hnon equation. J. Math. Anal. Appl. 341(1), 720-728 (2008).

[4] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical

Sobolev exponents. Commun. Pure Appl. Math. 36(4), 437-477, (1983)
[5] C. Bandle, C. V. Coffman and Marcus. M, Nonlinear elliptic problems in the annulus, J.

Differential Equations 69 (1978), 322-345.

[6] D. Bonheure and E. Serra, Multiple positive radial solutions on annulus for nonlinear Neu-
mann problems with large growth, Nonlinear Differ. Equ. Appl. 18 (2011), 217-235.

[7] D. Butler, E. Ko, E. Kyuong and R. Shivaji, Positive radial solutions for elliptic equations
on exterior domains with nonlinear boundary conditions, Communications on Pure and

Applied Analysis Volume 13, Number 6, (2014), 2713-27631.



46 NOUREDDINE BOUTERAA, SLIMANE BENAICHA, AND HABIB DJOURDEM

[8] N. Bouteraa and S. Benaicha, Triple positive solutions of higher-order nonlinear boundary

value problems, Journal of Computer Science and Computational Mathematics, Volume 7,
Issue 2, June 2017, 25-31.

[9] N. Bouteraa and S. Benaicha, H. Djourdem and M. Elarbi Benatia, Positive solutions for
fourth-order two-point boundary value problem with a parameter, Romanian Journal of

Mathematic and Computer Science. 2018, Vol 8, Issue 1 (2018), p 17-30.
[10] N. Bouteraa, S. Benaicha , H. Djourdem and N. Benatia, Positive solutions of nonlinear

fourth-order two-point boundary value problem with a parameter, Romanian Journal of

Mathematics and Computer science, 2018, Volume 8, Issue 1, p.17-30.
[11] N. Bouteraa and S. Benaicha, Existence of solutions for third-order three-point boundary

value problem, Mathematica. 60 (83), No 1, 2018, pp. 12-22.

[12] N. Bouteraa and S. Benaicha, A Stdudy of Existence and Multiplicity of Positive Radial
Solutions for Nonlinear Elliptic Equation With Local Boundary Conditions On Bounded

Annular Domains, Studia U. B. B, To appear.
[13] M. Chipot and B. Lovat, On the asymptotic behaviour of some nonlocal problems. Positivity

3(1) (1999), 65-81.

[14] F. Cianciaruso, G. Infante and P. Pietramala, Solutions of perturbed Hammerstein integral
equations with applications, Nonl. Anal. Real World Appl. 33 (2017), 317-347.

[15] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, Germany, 1985.

[16] Y. Egorov and V.Kondratiev, On Spectral Theory of Elliptic Operators, Birkhauser, Basel,
Boston, Berlin, 1996.

[17] A. Granas, R. Gunther and J. Lee. , On a theorem of S. Bernstein, Pacic J. Math. 74 (1978),

67-82.
[18] D. Guo, Nonlinear Functional Analysis, Shandong Science and Technologie, Jinan, China,

1985.

[19] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Acad. Press, Inc.,
Boston, MA, 1988.

[20] M. Grossi, Asymptotic behaviour of the Kazdan–Warner solution in the annulus. J. Diff.
Eqns. 223, (2006), 96–111.

[21] G. Han and J. Wang, Multiple positive radial solutions of elliptic equations in an exterior

domain, Monatshefte fur Mathematik, vol. 148, no. 3, 2006, pp. 217-228.
[22] S. Hakimi and A. Zertiti, Nonexistence of radial positive solutions for a nonpositone problem,

Elec. J. Diff. Equ. 26 (2011), 1-7.

[23] G. Infante and P. Pietramala, Nonzero radial solutions for a class of elliptic systems with
nonlocal BCs on annular domains, NODEA Nonlinear Dierential Equations Appl. 22 (2015),
979-1003.

[24] M. A. Krasnosel’skii, Positive Solutions of Operator Equations, P. Noordho Ltd., Groningen,
1964.

[25] M. A. Krasnoselskii. and P. Zabreiko, Geometrical Methods of Nonlinear Analysis, Springer,

New York, NY, USA, 1984.
[26] A. Krzywicki and T. Nadzieja, Nonlocal elliptic problems. Evolution equations: existence,

regularity and singularities, Banach Center Publ. 52 (2000), Polish Acad. Sci., Warsaw,
147-152.

[27] P. L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM

Rev. 24 (1982), 441-467.
[28] R. Ma, Existence of positive radial solutions for elliptic systems, J. Math. Anal. Appl. 201

(1996), 375-386.

[29] O. J. Marcos do, S. Lorca, J. Sanchez and P. Ubilla, Positive solutions for some nonlocal
and nonvariational elliptic systems, Comp. Variab. Ellip. Equ. (2015), 18 pages.

[30] W. M. Ni and R. D. Nussbaum, Uniqueness and nonuniqueness for positive radial solutions

of ∆u+ f (u, r) = 0. Commun. Pure Appl. Math. 38(1), 67–108 (1985)
[31] J. Ockedon, S. Howison, A. Lacey and A. Movchan, Applied Partial Differential Equations,

Oxford University Press, 2003.

[32] A. A. Ovono and A. Rougirel, Elliptic equations with diffusion parameterized by the range
of nnonlocal interactions, Annali di Mathematica. 009-0104-y (2009).

[33] M. H. Protter and H. F. Weinberger. , Maximum principles in differential equations, Printice

Hall, New-York, NY, USA, 1967.



ELLIPTIC EQUATIONS 47

[34] R. Stanczy, Positive solutions for superlinear elliptic equations, Journal of Applied Analysis,

vol. 283, pp. 159–166, 2003.
[35] A. Sfecci, Nonresonance conditions for radial solutions of nonlinear Neumann elliptic prob-

lems on annuli, Rend. Istit. Mat. Univ. Trieste Volume 46 (2014), 255-270.
[36] H. Wang, On the existence of positive radial solutions for semilinear elliptic equations in

the annulus, J. Differential Equations 109 (1994), 1-8.
[37] Y. Wu and G. Han, On positive radial solutions for a class of elliptic equations, The Scientific

World Journal. Volume 2014, Article ID 507312, 11 pages.

Noureddine Bouteraa,
Laboratory of Fundamental and Applied Mathematics of Oran (LMFAO), University of

Oran 1, AB, 31000, Algeria

E-mail address: bouteraa-27@hotmail.fr

Slimane Benaicha,

Laboratory of Fundamental and Applied Mathematics of Oran (LMFAO), University of

Oran 1, AB, 31000, Algeria
E-mail address: slimanebenaicha@yahoo.fr

Habib Djourdem,
Laboratory of Fundamental and Applied Mathematics of Oran (LMFAO), University of

Oran 1, AB, 31000, Algeria

E-mail address: djourdem.habib7@gmail.com


	1. Introduction
	2. Results
	3. Conclusion
	4. Acknowledgments
	References
	1. Introduction
	2. Variations on lacunary statistical ward compactness
	3. Variations on lacunary statistical ward continuity
	4. Conclusion
	5. Acknowledgments
	References
	1. Introduction
	2. Abel statistical  quasi Cauchy sequences
	3. Conclusion
	4. Acknowledgments
	References
	1. Introduction
	2. Results
	References
	1. Introduction
	2. Preliminaries
	3. Existence results
	3.1. Positive solutions of singular two-point boundary value problems
	3.2. Positive radial solutions of elliptic boundary value problems

	Conclusion
	References

