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Department of Mathematics,

Faculty of Science and Arts, İstanbul University,
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Abstract

We examine European call options in the jump-diffusion version of the Double Heston

stochastic volatility model for the underlying price process to provide a more flexible model

for the term structure of volatility. We assume, in addition, that the stochastic interest rate

is governed by the Cox– Ross – Ingersoll (CIR) dynamics. The instantaneous volatilities

are correlated with the dynamics of the stock price process, whereas the short-term rate

is assumed to be independent of the dynamics of the price process and its volatility. The

main result furnishes a semi-analytical formula for the price of the European call option in

the hybrid call option/interest rates model. Numerical results show that the model implied

volatilities are comparable for in-sample but outperform out-of-sample implied volatilities

compared to the benchmark Heston model [1], and Double Heston volatility model put

forward by Christoffersen et al. [2] for calls on the S&P 500 index.

1. Introduction

In this paper we derive a semi-analytical pricing formula for European options in a model where the volatility of the stock price process is

specified by a jump diffusion version of double Heston volatility model considered by Christoffersen et al.[2], whereas, the interest rate

is governed by CIR dynamics postulated in Cox et al. [3]. In particular, the model put forward in the present work allows for a non-zero

correlation between the stock price process and its instantaneous volatilities. According to the model given by (2.1), the CIR interest rate

processes are independent of one another, and they are also independent of the stock price process and its volatility, which in turn is jointly

governed by a jump process an extension of Heston’s model. It is well established that the Heston model is not always able to fit the implied

volatility smile very well, particularly at short maturities Gatheral [4]. Further, these models are particularly restrictive in their modeling of

the relationship between the volatility level and the slope of the smirk, crucially the Heston one factor model can generate steep smirks

at a given volatility level but cannot generate both for a given parametrization. Christofferson et al. [2], considered a two-factor structure

for the volatility and demonstrate that the two-factor model gives much more flexibility in controlling the level and slope of the smirk. In

their empirical estimates, one of the factors has a high mean reversion and determines the correlation between the short-term returns and

variance. The other factor has lower mean reversion and determines the correlation between long-term returns and variance. Recchioni et al.

[5] consider a two factor model, specifically, the dynamics of the asset price is described through two stochastic factors, one related to the

stochastic volatility and the second to the stochastic interest rate.

In papers by Bakshi et al. [6], Bates [7] and Duffie et al. [8], the authors showed that stochastic volatility models do not offer reliable prices

for close to expiration derivatives. This motivated Bates [7] and Bakshi et al. [6] to introduce jumps to the dynamics of the underlying.

However, as observed by Andersen and Andreasen [9] and Alizadeh et al. (2002), the addition of jumps to the dynamics of the underlying is

not sufficient to capture the sudden increase in volatility due to market turbulence. Since the overall volatility in financial markets consists of

a highly persistent slow moving and a rapid moving components, Eraker et al. [10] proposed to introduce jump process to the dynamics

of the volatility process in order to enhance the cross-sectional impact on option prices(see also Lewis [11]). A distinct advantage of an

affine specification using Lévy processes as building block leads to analytically tractable pricing formulas for volatility derivatives, such as

VIX options, as well as efficient numerical methods for pricing European options on the underlying asset, Cont et al. [12]. As observed by

Gatheral [4] a more significant aspect as to why we consider jumps, though jumps have very little effect on the shape of the volatility surface
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for long-dated options; the impact on the shape of the volatility surface is all at the short-expiration end, and further might explain why the

skew is so steep for very short expirations and why the very short-dated term structure of skew is inconsistent with any stochastic volatility

model. In this paper we have demonstrated implied volatilities based Double Heston Jump-Diffusion Hybrid Model for the underlying

asset and volatility dynamics clearly outperform implied volatilities based on single and Double Heston volatility models when compared

with market implied volatilities compatible with observations of Carr et al. [13] and Christofferson et al. [2] with regard to out-of-sample

implied volatilities. Van Haastrecht et al. [14] have extended the stochastic volatility model of Schöbel and Zhu [15] to equity/currency

derivatives by including stochastic interest rates and assuming all driving model factors to be instantaneously correlated. Since their model is

based on the Gaussian processes, it enjoys analytical tractability even in the most general case of a full correlation structure. On the other

hand,, when the squared volatility is driven by the CIR process and the interest rate is driven either by the Vasicek [16] or the Cox et al. [3]

process, a full correlation structure leads to intractability of equity options even under a partial correlation of the driving factors, as have

been documented by, among others, Van Haastrecht and Pelsser [17] and Grzelak and Oosterlee [18], [19] who examined, in particular, the

Heston/Vasicek and Heston/CIR hybrid models (see also Grzelak et al. [20], where the Schöbel–Zhu/Hull–White and Heston/Hull–White

models for equity derivatives are studied). Andrei Cozma et al. [21] consider the Heston-CIR stochastic-local volatility model in the context

of foreign exchange markets under a full correlation structure. They derive a full truncation scheme for simulating the stochastic volatility

component and the stochastic domestic and foreign interest rates. More recently Andrei Cozma et al. [21] propose a calibration technique for

four-factor foreign-exchange hybrid local-stochastic volatility models (LSV) with stochastic short rates. However, their model specification

do not include jumps . In this paper we do not follow this line of research here and we focus instead on finding a semi-analytical solution,

since this goal can be achieved under Assumptions (A.1)–(A.6).

In this paper we extend the results put forward in Ahlip-Rutkowski [22] by considering the double Heston Volatility model, further we provide

a complete pricing formula which speeds numerical calibration substantially (refer to Lemma 4.3) Our goal is to derive a semi-analytical

solution for prices of plain-vanilla options in a model in which the volatility components are specified by the extended double Heston model

with log-normal and exponential jumps, whereas the short-term interest rate is governed by the independent CIR processes. The model thus

incorporates important empirical characteristics of stock price return variability: (a) the correlation between the stock price dynamics and its

stochastic volatility, (b) the presence of jumps in the stock price process and in one of the stochastic factors and a second stochastic factor the

usual Heston volatility and (c) the random character of interest rate. The practical importance of this feature of newly developed equity

models is rather clear in view of the existence of complex equity products that have a short lifetime and are sensitive to smiles or skews in

the market.

The paper is organised as follows. In Section 2, we set the option pricing model examined in this work. The options pricing problem

is introduced in Section 3. The main result, Theorem 4.1 of Section 4, furnishes the pricing formula for European call options. And in

particular the result in Lemma 4.3 is crucial in the derivation of the semi analytical pricing formula Section 4,which in turn significantly

speeds up calibration of the model parameters to market and most important the model implied volatility surface . It is worth stressing that

the independence of volatility and interest rates appears to be a crucial assumption from the point of view of analytical tractability and thus it

cannot be relaxed. Numerical illustrations of our method are provided in Section 5 where the Single Heston, Double Heston and Double

Heston jump-diffusion models are compared applied to S&P 500 index data and further our model can fit market implied volatilities across

strikes and maturities particularly well for out-of-sample options.

2. The double Heston-Jump diffusion/CIR model

Let (Ω,F ,P) be an underlying probability space. Let the stock price process S= (St)t∈[0,T ], its instantaneous squared volatility v= (vt)t∈[0,T ],
the short-term interest rate r = (rt)t∈[0,T ] be governed by the following system of SDEs:





dSt = St (rt −λSµS) dt +St
√

vt dW S
t +St

√
v̂t dŴ S

t +StdZS
t ,

dvt =
(
θ −κvt

)
dt +σv

√
vt dW v

t +dZv
t ,

dv̂t =
(
θ̂ − κ̂ v̂t

)
dt +σv̂

√
v̂t dŴ v

t ,

drt =
(
a−brt

)
dt +σr

√
rt dW r

t .

(2.1)

We work under the following standing assumptions:

(A.1) Processes W S = (W S
t )t∈[0,T ], W v = (W v

t )t∈[0,T ] are correlated Brownian motions with a constant correlation coefficient, so that the

quadratic covariation between the processes W S and W v satisfies d[W S,W v]t = ρ dt for some constant ρ ∈ [−1,1].
(A.2) Processes Ŵ S = (Ŵ S

t )t∈[0,T ], Ŵ v = (Ŵ v
t )t∈[0,T ] are correlated Brownian motions with a constant correlation coefficient, so that the

quadratic covariation between the processes Ŵ S and Ŵ v satisfies d[Ŵ S,Ŵ v]t = ρ̂ dt for some constant ρ̂ ∈ [−1,1]. Further the processes

W v = (W v
t )t∈[0,T ] and Ŵ v = (Ŵ v

t )t∈[0,T ] are independent.

(A.3) Processes W r = (W r
t )t∈[0,T ] is independent of the Brownian motions W S, Ŵ S and W v, Ŵ v.

(A.4) The process ZS
t = ∑

NS
t

k=1 JS
k is the compound Poisson process; specifically, the Poisson process NS has the intensity λS > 0 and

the random variables ln(1+ JS
k ), k = 1,2, . . . have the probability distribution N(ln[1+µS]− 1

2 σ2
S ,σ

2
S ); hence the jump sizes (JS

k )
∞
k=1 are

lognormally distributed on (−1,∞) with mean µS >−1.

(A.5) The process Zv
t = ∑

Nv
t

k=1 Jv
k is the compound Poisson process; specifically, the Poisson process Nv has the intensity λv > 0 and the jump

sizes Jv
k are exponentially distributed with mean µv.

(A.6) The Poisson process Nv and sequence of random variables (Jv
k )

∞
k=1 are independent of the Brownian motions W S,W v,Ŵ S,Ŵ v,W r.

(A.7) The model’s parameters satisfy the stability conditions: 2θ > σ2
v > 0, 2θ̂ > σ2

v̂
> 0 and 2a > σ2

r > 0 (see, for instance, Wong and

Heyde [23]).

Note that we postulate that the instantaneous squared volatility processes v, v̂ the short-term interest rate r are independent stochastic

processes. We will argue in what follows that this assumption is indeed crucial for analytical tractability. For brevity, we refer to the model

given by SDEs (2.1) under Assumptions (A.1)–(A.6) as the Double Heston/CIR jump-diffusion hybrid model(DHJDH).
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3. Call option

We will first establish the general representation for the value European call option with maturity T > 0 and a constant strike level K > 0.

The probability measure P is interpreted as the spot martingale measure (i.e., the risk-neutral probability). We denote by F= (Ft)t∈[0,T ] the

filtration generated by the Brownian motions W S,W v,Ŵ v,W r and the compound Poisson processes ZS and Zv. We write EP
t ( ·) and Pt( ·) to

denote the conditional expectation and the conditional probability under P with respect to the σ -field Ft , respectively. Hence the arbitrage

price Ct(T,K) of the call option at time t ∈ [0,T ] is given as the conditional expectation with respect to the σ -field Ft of the option’s payoff

at expiration discounted by the money market account, that is,

Ct(T,K) = E
P
t

{
exp

(
−
∫ T

t
ru du

)
CT (T,K)

}
= E

P
t

{
exp

(
−
∫ T

t
ru du

)
(ST −K)+

}

or, equivalently,

Ct(T,K) = E
P
t

{
exp

(
−
∫ T

t
ru du

)
ST1{ST>K}

}
−KE

P
t

{
exp

(
−
∫ T

t
ru du

)
1{ST>K}

}
.

Similarly, the arbitrage price of the discount bond maturing at time T equals, for every t ∈ [0,T ],

B(t,T ) = E
P
t

{
exp

(
−
∫ T

t
ru du

)}

(see Musiela and Rutkowski ([24], Chapter 14)).

As a preliminary step towards the general valuation result presented in Section 4, we state the following well-known proposition (see, e.g,

Cox et al. [3] or Chapter 10 in Musiela and Rutkowski [24]).

Proposition 3.1. The price at date t of the discount bond maturing at time T > t in the CIR model are given by the following expressions

B(t,T ) = exp
(
m(t,T )−n(t,T )rt

)
,

m(t,T ) =
2a

σ2
r

log

[
γ̃ e

1
2

b(T−t)

γ̃ cosh(γ̃(T − t))+ 1
2 bsinh(γ̃(T − t))

]
,

n(t,T ) =
sinh(γ̃(T − t))

γ̃ cosh(γ̃(T − t))+ 1
2 bsinh(γ̃(T − t))

.

and

γ̃ =
1

2

√
b2 +2σ2

r .

The dynamics of the bond price under the spot martingale measure P is given by

dB(t,T ) = B(t,T )
(
rt dt −σrn(t,T )

√
rt dW r

t

)
,

The following result is also well known (see, for instance, Section 11.3.1 in Musiela and Rutkowski [24]).

Lemma 3.2. The forward rate F(t,T ) at time t for settlement date T equals

F(t,T ) =
St

B(t,T )
. (3.1)

Since manifestly ST = F(T,T ), the option’s payoff at expiration can also be expressed as follows

CT (T,K) = F(T,T )1{F(T,T )>K}−K1{F(T,T )>K}.

Consequently, the option’s value at time t ∈ [0,T ] admits the following representation

Ct(T,K) = E
P
t

{
exp

(
− ∫ T

t ru du

)
F(T,T )1{F(T,T )>K}

}

−KE
P
t

{
exp

(
− ∫ T

t ru du

)
1{F(T,T )>K}

}
.

In what follows, we will frequently use the notation xt = lnF(t,T ) where t ∈ [0,T ].
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4. Pricing formula for the European call option

In this section we present the main result of the paper, which furnishes a semi-analytical formula for the arbitrage price of the call option of

European style under the Double Heston Jump- Diffusion Hybrid model for the stock price process combined with the independent CIR

model for short-term rate.

Theorem 4.1. Let the model be given by SDEs (2.1) under Assumptions (A.1)–(A.6). Then the price of the European call option equals, for

every t ∈ [0,T ],

Ct(T,K) = StP1

(
t,St ,vt , v̂t ,rt ,K

)
−KB(t,T )P2

(
t,St ,vt , v̂t ,rt ,K

)

where the bond price B(t,T ) is given in Proposition 3.1, and the functions P1 and P2 are given by

P1

(
t,St ,vt , v̂t ,rt ,K

)
=

1

2
+

1

π

∫ ∞

0
Re

(
f1(φ)

exp(−iφ lnK)

iφ

)
dφ . (4.1)

and

P2

(
t,St ,vt , v̂t ,rt ,K

)
=

1

2
+

1

π

∫ ∞

0
Re

(
f2(φ)

exp(−iφ lnK)

iφ

)
dφ .

where the Ft -conditional characteristic functions f j(φ) = f j(φ , t,St ,vt , v̂t ,rt), j = 1,2 of the random variable xT = ln(ST ) under the

probability measure P̂T (see Definition 4.6) and PT (see Definition 4.4), respectively, are given by

f1(φ) = ct exp

[
λSτ

(
(1+µS)

iφ e−
1
2
(φ 2+iφ)σ 2

S −1
)]

× exp

[
−
(

iφλSµSτ +λvτ

(
ρ(1+ iφ)µv

σv +ρ(1+ iφ)µv

))]

×exp

[
−
(
(1+ iφ)ρ

σv
(vt +θτ)+

(1+ iφ)ρ̂

σv̂

(v̂t + θ̂ τ)

)]

×exp

[
− iφ

(
n(t,T )rt +a

∫ T

t
n(u,T )du

)]
(4.2)

×exp

[
−G1(τ,s1,s2)vt −G2(τ,s3,s4)v̂t −G3(τ,s5,s6)rt

]

×exp

[
−θH1(τ,s1,s2)− θ̂H2(τ,s3,s4)−aH3(τ,s5,s6)]

and

f2(φ) = ct exp

[
λSτ

(
(1+µS)

iφ e−
1
2
(φ 2+iφ)σ 2

S −1
)]

× exp

[
−
(

iφλSµSτ +λvτ

(
iφρµv

σv + iφρµv

))]

× exp

[
−
(
(iφ)ρ

σv
(vt +θτ)+

(iφ)ρ̂

σv̂

(v̂t + θ̂ τ)

)]

×exp

[
(1− iφ)

(
n(t,T )rt +a

∫ T

t
nd(u,T )du

)]
(4.3)

×exp

[
−G1(τ,q1,q2)vt −G2(τ,q3,q4)v̂t −G3(τ,q5,q6)rt

]

×exp

[
−θH1(τ,q1,q2)− θ̂H2(τ,q3,q4)−aH3(τ,q5,q6)

]

where the functions G1,G2,G3,H1,H2,H3, are given in Lemma 4.3 and ct equals

ct = exp
(
iφxt

)
= exp(iφ lnF(t,T )) .

Moreover, the constants s1,s2,s3,s4,s5,s6 are given by

s1 =− (1+ iφ)ρ

σv
,

s2 =− (1+ iφ)2(1−ρ2)

2
− (1+ iφ)ρκ

σv
+

1+ iφ

2
,

s3 =− (1+ iφ)ρ̂

σv̂

, (4.4)

s4 =− (1+ iφ)2(1− ρ̂)2

2
− (1+ iφ)ρ̂ κ̂

σv̂

+
1+ iφ

2
,

s5 = 0, s6 =−iφ ,
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and the constants q1,q2,q3,q4,q5,q6 equal

q1 =− iφρ

σv
,

q2 =− (iφ)2(1−ρ2)

2
− iφρκ

σv
+

iφ

2
,

q3 =− iφρ̂

σv̂

, (4.5)

q4 =− (iφ)2(1− ρ̂2)

2
− iφρ̂κ̂

σv̂

+
iφ

2
,

q5 = 0, q6 = iφ −1.

4.1. Auxiliary results

The proof of Theorem 4.1 hinges on a number of lemmas. We start by stating the well known result, which can be easily obtained from

Proposition 8.6.3.4 in Jeanblanc et al. [25]. Let us denote τ = T − t and let us set, for all 0 ≤ t < T ,

JS(t,T ) :=
NS

T

∑
k=NS

t +1

ln(1+ JS
k ). (4.6)

Note that we use here Assumptions (A.3)–(A.5). The property (A.3) (resp. (A.4)) implies that the random variable JS(t,T ) (resp. Zv
T −Zv

t )

is independent of the σ -field Ft . Let ν1 stand for the Gaussian distribution N
(
ln(1+µS)− 1

2 σ2
S ,σ

2
S

)
and let ν2 stand for the exponential

distribution with the mean µv.

Lemma 4.2. (i) Under Assumptions (A.3) and (A.5), the following equalities are valid

E
P
t

{
exp
(
iφJS(t,T )

)}
= E

P
t

{
exp

(
iφ ∑

NS
T

k=NS
t +1

ln
(
1+ JS

k

))}

= exp
[
λSτ

∫+∞
−∞

(
eiφz −1

)
ν1(dz)

]

= exp
[
λQτ

(
(1+µS)

iφ e−
1
2

σ 2
S (φ

2+iφ)−1
)]

.

(ii) Under Assumptions (A.4) and (A.5), the following equalities are valid for c = a+bi with a ≤ 0

E
P
t

{
exp
(
c(Zv

T −Zv
t )
)}

= E
P
t

{
exp

(
c∑

Nv
T

k=Nv
t +1 Jv

k

)}

= exp
[
λvτ

∫+∞
0 (ecz −1)ν2(dz)

]

= exp
[
λvτ

(
cµv

1−cµv

)]
.

The next result which is crucial for the derivation of the pricing formula in the main Theorem 4.1 extends Lemma 4.2 in Ahlip and Rutkowski

[22] (see also Duffie et al. [8]) where the model without the jump component in the dynamics of v was examined.

Lemma 4.3. Let the dynamics of processes v, v̂ and r be given by SDEs (2.1) with independent Brownian motions W v, Ŵ v andW r . For any

complex numbers µ1, λ1, µ2, λ2, µ̃, λ̃ , we set

F(τ,vt , v̂t ,rt) = E
P
t

{
exp

(
−λ1vT −µ1

∫ T

t
vu du−λ2v̂T −µ2

∫ T

t
v̂u du

−λ̃ rT − µ̃

∫ T

t
ru du

)}
.

Then

F(τ,vt , v̂t ,rt) = exp
[
−G1(τ,λ1,µ1)vt −G2(τ,λ2,µ2)v̂t − (G3(τ, λ̃ , µ̃)rt

]

× exp[−θH1(τ,λ1,µ1)− θ̂H2(τ,λ2,µ2)−aH3(τ, λ̃ , µ̃)
]

where

G1(τ,λ1,µ1) =
λ1[(γ1 +κ)+ eγ1τ (γ1 −κ)]+2µ1(e

γ1τ −1)

σ2
v λ1 (eγ1τ −1)+ γ −κ + eγ1τ (γ1 +κ)

,

G2(τ,λ2,µ2) =
λ2[(γ2 + κ̂)+ eγ2τ (γ2 − κ̂)]+2µ2(e

γ2τ −1)

σ2
v̂

λ2 (eγ2τ −1)+ γ2 − κ̂ + eγ2τ (γ2 + κ̂)
,

G3(τ, λ̃ , µ̃) =
λ̃ [(γ̃ +b)+ eγ̃τ (γ̃ −b)]+2µ̃(eγ̃τ −1)

σ2
r λ̃
(
eγ̃τ −1

)
+ γ̃ −b+ eγ̃τ (γ̃ +b)

,
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and

H1(τ,λ1,µ1) =− 2

σ2
v

ln

(
2γ1e[(γ1+κ)τ]/2

σ2
v λ1 (eγ1τ −1)+ γ1 −κ + eγ1τ (γ1 +κ)

)

+
2λvµvσ2

v

θ(σ2
v +2µvα1)(σ2

v +2µvβ1)
ln

(
(σ2

v +2β1µv)+Γ1(σ
2
v +2α1µv)e

γ1τ

(σ2
v +2β1µv)+Γ1(σ2

v +2α1µv)

)

+
2λvµvβ1

θ(σ2
v +2β1µv)

τ,

H2(τ,λ2,µ2) =− 2

σ2
v̂

ln

(
2γ2e[(γ2+κ̂)τ]/2

σ2
v̂

λ2 (eγ2τ −1)+ γ2 − κ̂ + eγ2τ (γ2 + κ̂)

)
,

H3(τ, λ̃ , µ̃) =− 2

σ2
r

ln

(
2γ̃e

(γ̃+b)τ
2

σ2
r λ̃
(
eγ̃τ −1

)
+ γ̃ −b+ eγ̃τ (γ̃ +b)

)
,

where we denote γ1 =
√

κ2 +2σ2
v µ1, γ2 =

√
κ̂2 +2σ2

v̂ µ2, γ̃ =
√

b2 +2σ2
r µ̃,

α1 =
−κ+γ1

2 , β1 =
−κ−γ1

2 , Γ1 =
2β1−λ1σ 2

v

λ1σ 2
v −2α1

.

Proof. For the reader’s convenience, we sketch the proof of the lemma. Let us set, for t ∈ [0,T ],

Mt = F(τ,vt , v̂t ,rt)exp

(
−µ1

∫ t

0
vu du−µ2

∫ t

0
v̂u du− µ̃

∫ t

0
ru du

)
. (4.7)

Then the process M = (Mt)t∈[0,T ] satisfies

Mt = E
P
t

{
exp

(
−λ1vT −µ1

∫ T

0
vu du−λ2v̂T −µ2

∫ T

0
v̂u du− λ̃ rT − µ̃

∫ T

0
ru du

)}

and thus it is an F-martingale under P. By applying the Itô formula to the right-hand side in (4.7) and by setting the drift term in the dynamics

of M to be zero, we deduce that the function F(τ,v, v̂,r, r̂) satisfies the following partial integro-differential equation (PIDE)

−∂F

∂τ
+

1

2
σ2

v v
∂ 2F

∂v2
+λv

∫ ∞

0

(
F(τ,v+ z,r)−F(τ,v,r)

)
ν2(dz)

+
1

2
σ2

v̂ v̂
∂ 2F

∂ v̂2
+

1

2
σ2

r r
∂ 2F

∂ r2
+(θ −κv)

∂F

∂v
+(θ̂ − κ̂ v̂)

∂F

∂ v̂

+(a−br)
∂F

∂ r
− (µ1v+µ2v̂+ µ̃r)F = 0

with the initial condition F(0,v, v̂,r) = exp(−λ1v−λ2v̂− λ̃ r). We search for a solution to this PIDE in the form

F(τ,v,r, r̂) = exp
[
−G1(τ,λ1,µ1)v−G2(τ,λ2,µ2)v̂−G3(τ, λ̃ , µ̃)r

−θH1(τ,λ1,µ1)− θ̂H2(τ,λ2,µ2)−aH3(τ, λ̃ , µ̃)
]

with

G1(0,λ1,µ1) = λ1, G2(0,λ2,µ2) = λ2, G3(0, λ̃ , µ̃) = λ̃ ,

and

H1(0,λ1,µ1) = H2(0,λ2,µ2) = H3(0, λ̃ , µ̃) = 0.

By substituting this expression in the PIDE and using part (ii) in Lemma 4.2, we obtain the following system of ODEs for the functions

G1,G2,G3,H1,H2,H3 (for brevity, we suppress the last three arguments)

∂G1(τ)

∂τ
=−1

2
σ2

v G2
1(τ)−κG1(τ)+µ1,

∂H1(τ)

∂τ
= G1(τ)+

λv

θ

(
µvG1

1+µvG1(τ)

)

∂G2(τ)

∂τ
=−1

2
σ2

v̂ G2
2(τ)− κ̂G2(τ)+µ2,

∂H2(τ)

∂τ
= G2(τ),

∂G3(τ)

∂τ
=−1

2
σ2

r G2
3(τ)−bG3(τ)+ µ̃.

∂H3(τ)

∂τ
= G3(τ),

By solving these equations, we obtain the stated formulae.
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Under the assumptions of Lemma 4.3, it is possible to factorise F as a product of two conditional expectations. This means that the functions

G1 (H1), G2 (H2) and G3 (H3) are of the same form, except that they correspond to different sets of parameters.

We now introduce a convenient change of the underlying probability measure, from the spot martingale measure P to the forward martingale

measure PT .

Definition 4.4. The The T - forward martingale measure PT , equivalent to P on (Ω,FT ), is defined by the Radon-Nikodým derivative

process η = (ηt)t∈[0,T ] where

ηt =
dPT

dP

∣∣∣
Ft

= exp

(
−
∫ t

0
σrn(u,T )

√
ru dW r

u − 1

2

∫ t

0
σ2

r n2(u,T )ru du

)
. (4.8)

An application of Girsanov’s theorem shows that the process W T = (W T
t )t∈[0,T ], which is given by the equality

W T
t =W r

t +
∫ t

0
σrn(u,T )

√
ru du, (4.9)

is the Brownian motion under the domestic forward martingale measure PT . Using the standard change of a numéraire technique, one can

check that the price of the European foreign exchange call option admits the following representation under the probability measure PT

Ct(T,K) = Bd(t,T )E
PT
t

(
F(T,T )1{F(T,T )>K}

)
−KBd(t,T )E

PT
t

(
1{F(T,T )>K}

)
. (4.10)

The following auxiliary result is easy to establish and thus its proof is omitted. Recall that JS(t,T ) is given by equality (4.6).

Lemma 4.5. Under Assumptions (A.1)–(A.6), the dynamics of the forward stock price dynamics F(t,T ) under the forward martingale

measure PT are given by the SDE

dF(t,T ) = F(t,T )
(

dZS
t −λS µSdt +

√
vt dW S

t +
√

v̂t dŴ S
t +σd nd(t,T )

√
rt dW T

t

)

or, equivalently,

F(T,T ) = F(t,T )exp

(
JS(t,T )−λSµS(T − t)+

∫ T

t
σ̃F (u,T ) ·dW̃ T

u − 1

2

∫ T

t
‖σ̃F (u,T )‖2 du

)

where the dot · denotes the inner product in R
3, (σ̃F (t,T ))t∈[0,T ] is the R

3-valued process (row vector) given by

σ̃F (t,T ) =
[√

vt ,
√

v̂t , σrn(t,T )
√

rt

]

and W̃ T = (W̃ T
t )t∈[0,T ] is the R

3-valued process (column vector) given by W̃ T =
[
W S, Ŵ S,W T

]∗
.

Under Assumptions (A.1)–(A.6), the process W̃ T is the three-dimensional standard Brownian motion under PT . In view of Lemma 4.5, we

have that

B(t,T )EPT
t

(
F(T,T )1{F(T,T )>K}

)

= B(t,T )EPT
t

{
F(t,T )exp

(
JS(t,T )−λSµS(T − t)

+
∫ T

t
σ̃F (u,T ) ·dW̃ T

u − 1

2

∫ T

t
‖σ̃F (u,T )‖2 du

)
1{F(T,T )>K}

}

= St E
PT
t

{
exp

(
JS(t,T )−λSµS(T − t)

+
∫ T

t
σ̃F (u,T ) ·dW̃ T

u − 1

2

∫ T

t
‖σ̃F (u,T )‖2 du

)
1{F(T,T )>K}

}
.

To deal with the first term in the right-hand side of (4.10), we introduce another auxiliary probability measure.

Definition 4.6. The modified forward martingale measure P̂T , equivalent to PT on (Ω,FT ), is defined by the Radon-Nikodým derivative

process η̂ = (η̂t)t∈[0,T ] where

η̂t =
dP̂T

dPT

∣∣∣
Ft

= exp

(∫ t

0
σ̃F (u,T ) ·dW̃ T

u − 1

2

∫ t

0
‖σ̃F (u,T )‖2 du

)
.

Using Lemma 4.5 and equation (3.1), we obtain

B(t,T )EPT
t

(
F(T,T )1{F(T,T )>K}

)
= St

E
PT
t

(
1{F(T,T )>K}η̂T

)

E
PT
t (η̂T )

and thus the Bayes formula and Definition 4.6 yield

B(t,T )EPT
t

(
F(T,T )1{F(T,T )>K}

)
= St E

P̂T
t

(
1{F(T,T )>K}

)
.

This shows that P̂T is a martingale measure associated with the choice of the price process St as a numéraire asset.
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Lemma 4.7. The price of the call option satisfies

Ct(T,K) = St P̂T

(
ST > K |Ft

)
−KB(t,T )PT

(
ST > K |Ft

)

or, equivalently,

Ct(T,K) = St P̂T

(
xT > lnK |Ft

)
−KB(t,T )PT

(
xT > lnK |Ft

)
. (4.11)

To complete the proof of Theorem 4.1, it remains to evaluate the conditional probabilities given in formula (4.11). By another application of

Girsanov’s theorem, one can check that the process (S,v, v̂,r) has the Markov property under the probability measures PT and P̂T . In view of

Proposition 3.1 and Lemma 3.2, the random variable xT is a function of ST and rT . Hence it follows that

Ct(T,K) = St P1(t,St ,vt , v̂t ,rt ,K)−KB(t,T )P2(t,St ,vt , v̂t ,rt ,K) (4.12)

where we denote

P1(t,St ,vt , v̂t ,rt ,K) = P̂T (xT > lnK |St ,vt , v̂t ,rt),

P2(t,St ,vt , v̂t ,rt ,K) = PT (xT > lnK |St ,vt , v̂t ,rt).

To obtain explicit formulae for the conditional probabilities above, it suffices to derive the corresponding conditional characteristic functions

f1(φ , t,St ,vt , v̂t ,rt) = E
P̂T
t

[
exp(iφxT )

]
,

f2(φ , t,St ,vt , v̂t ,rt) = E
PT
t

[
exp(iφxT )

]
.

The idea is to use the Radon-Nikodým derivatives in order to obtain convenient expressions for the characteristic functions in terms of

conditional expectations under the spot martingale measure P. The following lemma will allow us to achieve this goal.

Lemma 4.8. The following equality holds

dP̂T

dP

∣∣∣
Ft

= exp

(∫ t

0

√
vu dW S

u +
∫ t

0

√
v̂u dŴ S

u

)

× exp

(
− 1

2

∫ t

0
(vu + v̂u)du

)
.

Proof. Straightforward computations show that

dP̂T

dP

∣∣∣
Ft

=
dP̂T

dPT

∣∣∣
Ft

dPT

dP

∣∣∣
Ft

= exp

(∫ t

0
σ̃F (u,T ) ·dW̃ T

u − 1

2

∫ t

0
‖σ̃F (u,T )‖2 du

)

× exp

(
−
∫ t

0
σrn(u,T )

√
ru dW r

u − 1

2

∫ t

0
σ2

r n2(u,T )ru du

)

= exp

(∫ t

0

(√
vu dW S

u +
√

v̂u dŴ S
u +σdnd(u,T )

√
ru dW T

u

))

× exp

(
− 1

2

∫ T

t

(
vu + v̂u +σ2

r n2(u,T )ru

)
du

)

× exp

(
−
∫ t

0
σrn(u,T )

√
ru dW r

u − 1

2

∫ t

0
σ2

r n2(u,T )ru du

)
.

Using (4.9), we now obtain

dP̂T

dP

∣∣∣
Ft

= exp

(∫ t

0

√
vu dW S

u +
√

v̂u dŴ S
u

)

× exp

(
− 1

2

∫ t

0

(
vu + v̂u

)
du

)
,

which is the desired expression.

In view of the formula established in Lemma 4.8 and the abstract Bayes formula, to compute f1(φ) = f1(φ , t,St ,vt , v̂t ,rt),
it suffices to focus on the following conditional expectation under P

f1(φ) = E
P
t

{
exp
(
iφxT

)
exp

(∫ T
t

√
vu dW S

u +
∫ T

t

√
v̂u dŴ S

u (4.13)

− 1
2

∫ T
t

(
vu + v̂u

)
du

)}
.

Similarly, in view of formula (4.8), we obtain for f2(φ) = f2(φ , t,St ,vt , v̂t ,rt)

f2(φ) = E
P
t

{
exp(iφxT )exp

[
−
∫ T

t
σrn(u,T )

√
ru dW r

u − 1

2

∫ T

t
σ2

r n2(u,T )ru du

]}
. (4.14)

To proceed, we will need the following result, which is an immediate consequence of Lemma 4.5.
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Corollary 4.9. Under Assumptions (A.1)–(A.4), the process xt = lnF(t,T ) admits the following representation under the forward martingale

measure PT

xT = xt +
∫ T

t
σ̃F (u,T ) ·dW̃ T

u − 1

2

∫ T

t
‖σ̃F (u,T )‖2 du+ JS(t,T )−λSµS(T − t)

or, more explicitly,

xT = xt +
∫ T

t

√
vu dW S

u +
∫ T

t

√
v̂u dŴ S

u +
∫ T

t σrn(u,T )
√

ru dW T
u −1

2

∫ T

t

(
vu + v̂u +σ2

r n2(u,T )ru

)
du

+∑
NS

T

k=NS
t +1

ln(1+ JS
k )−λSµS(T − t).

Using equality (4.13) and Corollary 4.9, we obtain

f1(φ) = E
P
t

{
exp
(
iφxT

)
exp

[∫ T

t

√
vu dW S

u +
∫ T

t

√
v̂u dŴ S

u

− 1

2

∫ T

t

(
vu + v̂u

)
du

]}

so that

f1(φ) = E
P
t

{
exp

[
iφ

(
xt +

∫ T

t

√
vu dW S

u +
∫ T

t

√
v̂u dŴ S

u

)]

×exp

[
iφ

(∫ T

t
σrn(u,T )

√
ru dW T

u

)]

×exp

[
− iφ

2

∫ T

t

(
vu + v̂u +σ2

r n2(u,T )ru

)
du

]

×exp

[∫ T

t

√
vu dW S

u +
∫ T

t

√
v̂u dŴ S

u

]

×exp

[
− 1

2

∫ T

t

(
vu + v̂u

)
du

]

×exp

[
iφJS(t,T )− iφλSµS(T − t)

]}
.

We denote α = 1+ iφ , β = iφ and ct = exp(iφxt). After simplifications and rearrangement, the formula above becomes

f1(φ) = ct E
P
t

{
exp

[
α

(∫ T

t

√
vu dW S

u +
∫ T

t

√
v̂u dŴ S

u − 1

2

∫ T

t
vu du− 1

2

∫ T

t
v̂u du

)]

×exp

[
β

(∫ T

t
σrn(u,T )

√
ru dW T

u − 1

2

∫ T

t
σ2

r n2(u,T )ru du

)]

×exp

[
βJS(t,T )−βλSµS(T − t)

]}
.

In view of Assumptions (A.1)–(A.6), we may use the following representation for the Brownian motion W Q

W S
t = ρ1 W v

t +
√

1−ρ2 Wt (4.15)

where W = (Wt)t∈[0,T ] is a Brownian motion under P independent of the Brownian motions W S,W v,Ŵ v and W r.

Ŵ S
t = ρ2 Ŵ v̂

t +
√

1− ρ̂2 Ŵt

where Ŵ = (Ŵt)t∈[0,T ] is a Brownian motion under P independent of the Brownian motions W v,Ŵ v,W S and W r . Consequently, the

conditional characteristic function f1(φ) can be represented in the following way

f1(φ) = ct E
P
t

{
exp

[
αρ

∫ T

t

√
vu dW v

u +α

√
1−ρ2

∫ T

t

√
vu dWu −

α

2

∫ T

t
vu du

]

×exp

[
αρ̂

∫ T

t

√
v̂u dŴ v̂

u +α

√
1− ρ̂2

∫ T

t

√
v̂u dŴu −

α

2

∫ T

t
v̂u du

]
(4.16)

×exp

[
β

(∫ T

t
σrn(u,T )

√
ru dW T

u − 1

2

∫ T

t
σ2

r n2(u,T )ru du

)]

×exp

[
βJS(t,T )−βλS(T − t)µS

]}
.

By combining Proposition 3.1 with Definition 4.4, we obtain the following auxiliary result, which will be helpful in the proof of Theorem 4.1.
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Lemma 4.10. Given the dynamics (2.1) of processes v, v̂ and r and formula (4.9), we obtain the following equalities

∫ T

t

√
vu dW v

u =
1

σv

(
vT − vt −θτ +κ

∫ T

t
vu du − (Zv

T −Zv
t )

)
,

∫ T

t

√
v̂u dŴ v̂

u =
1

σv̂

(
v̂T − v̂t − θ̂ τ + κ̂

∫ T

t
v̂u du

)
,

∫ T

t
σrnd(u,T )

√
ru dW T

u − 1

2

∫ T

t
σ2

r n2(u,T )ru du =−n(t,T )rt −
∫ T

t
an(u,T )du+

∫ T

t
ru du.

Proof. The first asserted formula is an immediate consequence of (2.1). For the second, we recall that the function n(t,T ) is known to satisfy

the following differential equation, for any fixed T > 0,

∂n(t,T )

∂ t
− 1

2
σ2

r n2(t,T )−bn(t,T )+1 = 0

with the terminal condition n(T,T ) = 0. Therefore, using the Itô formula and equality (4.9), we obtain

d(n(t,T )rt) = rt dn(t,T )+n(t,T )drt

= rt

(1

2
σ2

r n2(t,T )+bn(t,T )−1
)

dt +nd(t,T )(a−brt)dt +n(t,T )σd

√
rt dW r

t

=
1

2
σ2

r n2(t,T )rt dt − rt dt +n(t,T )adt +n(t,T )σr
√

rt dW r
t

=−1

2
σ2

r n2(t,T )rt dt − rt dt +n(t,T )adt +n(t,T )σr
√

rt dW T
t .

This yields the second asserted formula, upon integration between t and T . The derivation of the last one is based on the same arguments and

thus it is omitted.

4.2. Proof of theorem 4.1

The proof of Theorem 4.1 is split into two steps in which we deal with f1(φ) and f2(φ), respectively.

Step 1. We will first compute f1(φ). By combining (4.16) with the equalities derived in Lemma 4.10, we obtain the following representation

for f1(φ)

f1(φ) = ct E
P
t

{
exp

[
− αρ

σv

[
(vt +θτ)+

(
v̂t + θ̂ τ

)]

× exp

[(
αρκ

σv
− α

2

)∫ T

t
vu du+

(
αρ̂κ̂

σv̂

− α

2

)∫ T

t
v̂u du

]

× exp

[
α

√
1−ρ2

∫ T

t

√
vu dWu +

αρ

σv
vT

]

× exp

[
α

√
1− ρ̂2

∫ T

t

√
v̂u dŴu +

αρ̂

σv̂

v̂T

]

× exp

[
−β

(
n(t,T )rt +

∫ T

t
an(u,T )du

)
+β

∫ T

t
ru du

]

× exp

[
βJS(t,T )−βλSµS(T − t)− αρ

σv
(Zv

T −Zv
t )

]}
.

Recall the well-known property that if ζ has the standard normal distribution then E
(
ezζ
)
= ez2/2 for any complex number z ∈ C.

Consequently, by conditioning first on the sample path of the process (v, v̂,r) and using the independence of the processes (v, v̂,r) and W

under P and Lemma 4.2, we obtain

f1(φ) = ct exp

[
λSτ

(
(1+µS)

β e−
1
2

βγσ 2
S −1

)]

× exp

[
−
(

βλSµSτ +λvτ
ραµv

σv +ραµv
+

αρ

σv
(vt +θτ)+

αρ̂

σv̂

(v̂t + θ̂ τ)

)]

× exp

[
−β

(
n(t,T )rt +

∫ T

t
an(u,T )du

)]

×E
P
t

{
exp

[
αρ

σv
vT +

(
α2(1−ρ2)

2
+

αρκ

σv
− α

2

)∫ T

t
vu du

]

× exp

[
αρ̂

σv̂

v̂T +

(
α2(1− ρ̂2)

2
+

αρ̂κ̂

σv̂

− α

2

)∫ T

t
v̂u du

]

× exp

[
β

∫ T

t
ru du

]}
.
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where we denote γ = 1− iφ . This in turn implies that the following equality holds

f1(φ) = ct exp

[
λSτ

(
(1+µS)

β e−
1
2

βγσ 2
S −1

)]

× exp

[
−
(

βλSµSτ +λvτ
ραµv

σv +ραµv
+

αρ

σv
(vt +θτ)+

αρ̂

σv̂

(v̂t + θ̂ τ)

)]

× exp

[
−β

(
n(t,T )rt +

∫ T

t
an(u,T )du

)]

×E
P
t

{
exp

[
− s1vT − s2

∫ T

t
vu du− s3v̂T − s4

∫ T

t
v̂u du

]

× exp

[
− s5rT − s6

∫ T

t
ru du

]}

where the constants s1,s2,s3,s4,s5,s6 are given by (4.4). A direct application of Lemma 4.3 furnishes an explicit formula for f1(φ), as

reported in the statement of Theorem 4.1.

Step 2. In order to compute the conditional characteristic function

f2(φ) = f2(φ , t,St ,vt , v̂t ,rt) = E
PT
t

[
exp(iφxT )

]

we proceed in an analogous manner as for f1(φ). We first recall that (see (4.14))

f2(φ) = E
P
t

{
exp(iφxT )exp

[
−
∫ T

t
σrn(u,T )

√
ru dW r

u − 1

2

∫ T

t
σ2

r n2(u,T )ru du

]}
.

Therefore, using Corollary 4.9, we obtain

f2(φ) = ct E
P
t

{
exp

[
iφ

(∫ T

t

√
vu dW S

u +
∫ T

t

√
v̂u dŴ S

u + JS(t,T )

)]

× exp

[
iφ

(∫ T

t
σrn(u,T )

√
ru dW T

u

)]

× exp

[
− iφ

(
1

2

∫ T

t

(
vu +σ2

r n2(u,T )ru

)
du

)]

× exp

[
−
∫ T

t
σrn(u,T )

√
ru dW r

u − 1

2

∫ T

t
σ2

r n2(u,T )ru du

]}
.

Consequently, using formulae (4.9), (4.15) and Lemma 4.2, we obtain the following expression for f2(φ)

f2(φ) = ct exp

[
λSτ

(
(1+µS)

β e−
1
2

βγσ 2
S −1

)
−βλSµSτ

]

×E
P
t

{
exp

[
β

(
ρ

∫ T

t

√
vu dW v

u +
√

1−ρ2

∫ T

t

√
vu dWu

)]

× exp

[
β

(
ρ̂

∫ T

t

√
v̂u dŴ v

u +
√

1− ρ̂2

∫ T

t

√
v̂u dŴu

)]

× exp

[
−β

(
1

2

∫ T

t

(
v̂u + v̂u

)
du

)]

× exp

[
− γ

(∫ T

t
σrn(u,T )

√
ru dW r

u +
1

2

∫ T

t
σ2

r n2(u,T )ru du

)]}
.

Similarly as in the case of f1(φ), we condition on the sample path of the process (v, v̂,r) and we use the postulated independence of the

processes (v, v̂,r) and W under P. By invoking also Lemma 4.2, we obtain

f2(φ) = ct exp

[
λSτ

(
(1+µS)

β e−
1
2

βγσ 2
S −1

)
−βλSµSτ

]

E
P
t

{
exp

[
βρ

∫ T

t

√
vu dW v

u +
β 2(1−ρ2)−β

2

∫ T

t
vu du

]

× exp

[
βρ̂

∫ T

t

√
v̂u dŴ v

u +
β 2(1− ρ̂2)−β

2

∫ T

t
v̂u du

]

× exp

[
− γ

(∫ T

t
σrn(u,T )

√
ru dW r

u +
1

2

∫ T

t
σ2

r n(u,T )ru du

)]}
.
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Using Lemma 4.10, we conclude that

f2(φ) = ct exp

[
λSτ

(
(1+µS)

β e−
1
2

βγσ 2
S −1

)]

× exp

[
−
(

βλSµSτ +λvτ
ρβ µv

σv +ρβ µv
+

βρ

σv
(vt +θτ)+

βρ̂

σv̂

(v̂t + θ̂ τ)

)]

× exp

[
−γ

(
n(t,T )rt +

∫ T

t
an(u,T )du

)]

×E
P
t

{
exp

[
−q1vT −q2

∫ T

t
vu du−q3v̂T −q4

∫ T

t
v̂u du

]

× exp

[
−q5rT −q6

∫ T

t
ru du

]}

with the coefficients q1,q2,q3,q4,q5,q6 reported in formula (4.5). Another straightforward application of Lemma 4.3 yields the closed-form

expression (4.3) for the conditional characteristic function f2(φ).
To complete the proof of Theorem 4.1, it suffices to combine formula (4.12) with the standard inversion formula (4.1) providing integral

representations for the conditional probabilities

P1(t,St ,vt , v̂t ,rt ,K) = P̂T (xT > lnK |St ,vt , v̂t ,rt)

and

P2(t,St ,vt , v̂t , ,rt ,K) = PT (xT > lnK |St ,vt , v̂t ,rt).

This ends the derivation of the pricing formula for the call option. The price of the corresponding put option is readily available as well, due

to the put-call parity relationship (4.17).

Ct(T,K)−Pt(T,K) = St −KB(t,T ) (4.17)

where Ct(T,K) and Pt(T,K) are prices of the call and put options, respectively. ✷

5. Model calibration and empirical analysis

In this section we estimate the parameters for DHJDH model considered in this paper using Dow Jones Industrial implied volatilities(IV)

quoted May 10, 2012 [26] and compare the model’s empirical performance with that of the Double Heston Model considered by Christoffersen

et.al [2] and the Heston model. In this analysis we have assumed constant interest rates. Calibration of DHJDH model parameters

Θ = {λS,µS,λV ,µV ,θ , θ̂ ,κ, κ̂,σv,σv̂,ρ, ρ̂,σS,v1,v2}

was performed using Interior Point optimisation. Further, the US treasury yield curve rates for one, three, six and twelve -months have

been used as a proxy for the initial interest rates for the different maturities. To fit the model to market implied volatilities we use the

approximation implied volatility root mean squared error(IVRMSE) loss function considered by Christoffersen et.al.[2], also Carr and Wu

[13] and Trolle and Schwartz [27].

IVRMSE≈

√√√√ 1

N
∑
t,k

(
CM

t,k −CΘ
t,k

BSVegat,k

)2

(5.1)

where CM
t,k is the market price, CΘ

t,k is the model price,and BSVega(t,k) is the Black Scholes sensitivity of the option computed using the

implied volatility from the market price of the option, CM
t,k. Interior point optimization is used to obtain the set of parameters that minimise

the objective function in equation (5.1).

Using the data from Table 1, the parameter estimates Θ for the univariate, double Heston and Double Heston Jump-Diffusion Hybrid models,

along with their estimation error are found in Table 2. If we compare the calibrated parameters for the Double Heston and DHJDH models,

we notice that κ , σ and v0 are similar, implying that the calibrated Double Heston parameters can be used as a seed for when calibrating the

DHJDH Model. One practical consequence of this is that the Double Heston parameters can be fitted fairly robustly using longer dated

options and then jump parameters can be found to generate the extra skew for short-dated options.

The panels in figure 5.1 show the implied volatility surfaces for the double Heston and DHJDH Models for all strikes and across all times to

maturities. These figures show that theoretical implied volatilities of the DHJDH model provide satisfactory approximation for the observed

implied volatilities across all maturities and across all strikes but particularly outperforms out-of-sample calls for the double Heston Model

across all expiries ranging from 37 to 226 days(short dated options). This improvement is achieved through the inclusion of jumps in the

dynamics of the stock price and the volatility processes and using only one set of model parameters.

To visualise how well the DHJDH fits the market IV, we have provided contour plots in Figure 5.2, of the Market IV and the predicted market

IV using the DHJDH model. Note that the market IV contour plot was generated using the data from Table 1 and the model contour plot

was generated using the DHJDH model, therefore the resolution of the model contour is much finer since we can compute many points of

the contour, while the resolution of the market contour is coarse since we are only able to use the provided data points. The difference in

resolution can be seen from the straight contour lines in the market IV contour plot, while the model contour lines are much smoother due to

the abundance of generated contour points from the model. Other than this, the contour plots are very similar, implying that the DHJDH

model provides a good fit to the market data.
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Figure 5.1: The implied volatility for various strike prices at four maturity times. Each plot shows the market IV, the calibrated Double Heston IV and the
calibrated DHJDH IV.
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Figure 5.2: Contour plots showing the implied volatility for the given strike prices and maturities from market data (left) and the calibrated DHJDH Model
(right).
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Strike Maturity

37 72 135 226

124 19.62 19.47 20.19 21.15

125 19.10 19.05 19.8 20.82

126 18.60 18.61 19.43 20.57

127 18.10 18.12 19.07 20.21

128 17.61 17.64 18.71 20.00

129 17.18 17.43 18.42 19.74

130 16.71 17.06 18.13 19.50

131 16.44 16.71 17.83 19.27

132 16.61 16.41 17.60 18.99

133 16.61 16.25 17.43 18.84

134 17.01 16.02 17.26 18.71

135 17.55 16.10 17.16 18.46

136 17.86 16.57 17.24 18.42

Table 1: S&P 500 index Implied Volatilities for strike prices ranging from 124 to 136 and maturities from 37 to 226 days.

Method κ θ σ v0 ρ IVMSE

Univariate 0.8998 0.1721 1.3390 0.0325 -0.3716 3.951×10−4

Double Heston 2.7994 0.0716 0.9565 0.0179 -0.8510 1.227×10−4

18.4552 0.0074 1.8167 0.0221 0.7557

DHJDH 2.2336 0.1642 0.5424 0.0092 -0.8372 1.039×10−4

18.9014 0.0179 1.8764 0.0287 0.1547

λV λS µS µV σS

0.0047 0.0617 2.0541 0.7108 2.2827

Table 2: Calibrated parameters of the Double Heston Jump-Diffusion Hybrid Model, along with the Single and Double Heston model calibrated parameters.
The last column shows the model mean square error.
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Figure 5.3: Histogram of the residuals of the Double Heston (left) and DHJDH (right) models.
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Finally, we will examine the model residuals. Figure 5.3 contains the histograms of the Double Heston residuals and the Double DHJDH

residuals. We can see from the histograms that the majority of the residuals for the Double DHJDH model are located near zero, with only a

few residuals located further than ±0.001, while the Double Heston residuals are more widely spread between -0.002 and 0.002. The smaller

residuals from the DHJDH model is a clear indication it having a smaller IVRMSE then the Double Heston model.
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Abstract

In this article, we establish some fixed point theorems of Ćirić’s type for Akram-Zafar-

Siddiqui type contractive mappings having non-unique fixed points. Our results generalize,

extend and improve several ones in the literature.

1. Introduction

Let (X ,d) be a complete metric space and T : X → X a self-mapping of X . Suppose that F(T ) = {x ∈ X | T x = x} is the set of fixed points

of T.

The following definitions shall be required in the sequel: O(x,T ) = {x,T x,T 2x, · · · ,T nx, · · ·}=orbit of T at x.

Definition 1.1. Ćirić [1]: A metric space (X ,d) is said to be T−orbitally complete if T : X → X is a selfmapping and if any Cauchy

subsequence {T ni x} in orbit O(x,T ), with x ∈ X , converges in X .

Definition 1.2. An operator T : X → X is orbitally continuous if

lim
i→∞

d(T ni x,x∗) = 0 =⇒ lim
i→∞

d(T (T ni x),T x∗) = 0.

Definition 1.2 was originally stated in the following equivalent form in Ćirić [1]:

An operator T : X → X is said to be orbitally continuous if T ni x → x∗ =⇒ T (T ni x)→ T x∗ as i → ∞.

Indeed, the notions in both Definition 1.1 and Definition 1.2 were first introduced by Ćirić [1] in 1971 to obtain some fixed point theorems.

The definitions are also contained in Ćirić [2].

There are non-linear equations which may arise in applications and whose fixed points are not necessarily unique. Ćirić [3] established some

results pertaining to this notion of non-unique fixed points. The classical Banach’s fixed point theorem was established by Banach [4], using

the following contractive definition: there exists c ∈ [0,1) (fixed) such that ∀ x, y ∈ X ,

d(T x,Ty)≤ c d(x,y). (1.1)

However, it is crucial to say that the mappings satisfying the contractive condition (1.1) are necessarily continuous. In order to have a

wider class of contractive mappings than those satisfying (1.1), Kannan [5] generalized the Banach’s fixed point theorem by employing the

following contractive definition: there exists a ∈ [0, 1
2 ) such that

d(T x,Ty)≤ a[d(x,T x)+d(y,Ty)], ∀ x, y ∈ X . (1.2)

So, the mappings satisfying (1.2) need not be continuous and this is a very nice initiative by the author [5]. Several authors have generalized

and extended Banach’s fixed point theorem using similar notion as in (1.2). Interested readers may also consult Chatterjea [6], Zamfirescu

[7] and a host of others in the literature.
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However, it is noteworthy to say that several contractive conditions including Banach’s contractive condition (1.1) have always been

concerned with establishing the existence and uniqueness of the fixed point of the mapping. Therefore, in order to include mappings whose

fixed points may be not unique, Ćirić [3] introduced a new technique involving contractive conditions for such mappings, realizing the fact

that there are also nonlinear equations with more than one fixed point as aforementioned. In particular, Ćirić [3] introduced, amongst others,

the following two contractive conditions: For a mapping T : X → X , there exists λ ∈ (0,1) such that ∀ x, y ∈ X ,

min{d(T x,Ty),d(x,T x),d(y,Ty)}−min{d(x,Ty),d(y,T x)} ≤ λd(x,y), (1.3)

where T is orbitally continuous; and also there exists λ ∈ (0,1) such that ∀ x, y ∈ X ,

min{d(T x,Ty),max{d(x,T x),d(y,Ty)}}−min{d(x,Ty),d(y,T x)} ≤ λd(x,y). (1.4)

Another contractivity condition worthy of note is the following:

Definition 1.3. (Akram et al. [8]): A selfmap T : X → X of a metric space (X ,d) is said to be A-contraction if it satisfies the condition:

d(T x,Ty)≤ β (d(x,y),d(x,T x),d(y,Ty)), ∀ x, y ∈ X , (1.5)

and some β ∈ A, where A is the set of all functions β : IR3
+ → IR+ satisfying

(i) β is continuous on the set IR3
+ (with respect to the Euclidean metric on IR3);

(ii) a ≤ kb for some k ∈ [0,1) whenever a ≤ β (a,b,b), or a ≤ β (b,a,b), or, a ≤ β (b,b,a), ∀ a, b ∈ IR+.

Akram et al. [8] employed the contractive condition (1.5) to prove that if X is a complete metric space, then the mapping T has a unique

fixed point.

Olatinwo [9] generalized the results of Akram et al. [8] by employing the following more general contractive condition:

Definition 1.4. (Olatinwo [9]): A selfmap T : X → X of a metric space (X ,d) is said to be a generalized A-contraction or GA−contraction

if it satisfies the condition:

d(T x,Ty)≤ α(d(x,y),d(x,T x),d(y,Ty), [d(x,T x)]r[d(y,T x)]pd(x,Ty),d(y,T x)[d(x,T x)]m),

∀ x, y ∈ X , r, p, m ∈ IR+ and some α ∈ GA, where GA is the set of all functions α : IR5
+ → IR+ satisfying

(i) α is continuous on the set IR5
+ (with respect to the Euclidean metric on IR5);

(ii) if any of the conditions a ≤ α(b,b,a,c,c), or, a ≤ α(b,b,a,b,b), or, a ≤ α(a,b,b,b,b) holds for some a, b, c ∈ IR+, then there exists

k ∈ [0,1) such that a ≤ kb.

The contractive mappings of both Akram et al. [8] and Ćirić [3] are our motivation for the present article. Therefore, in this paper, we

prove various and more general non-unique fixed point theorems by employing on a complete metric space for selfmappings by using

Akram-Zafar-Siddiqui type contractive conditions which are hybrids of those used in [3, 8, 9]. Our results are generalizations, extensions and

improvemens of the results of Ćirić [3] and those of the author [10, 11, 12]. Many unique fixed point theorems in the literature involving

those of Akram et al. [8] are also special cases of the results of the present article. One can consult the reference section for detail on unique

fixed point theorems. For excellent study of mappings having non-unique fixed points, we refer to Achari [13, 14, 15], Ćirić [2, 3, 16],

Karapinar [17] and Pachpatte [18].

To prove our results, we shall employ the following more general contractive conditions than those stated in (1.3) and (1.4)

(a) For a mapping T : X → X , there exists a function β : IR5
+ → IR+ such that ∀ x, y ∈ X , we have

min{d(T x,Ty),d(x,T x),d(y,Ty)}−min{d(x,Ty),d(y,T x)} ≤ (1.6)

β (d(x,y),d(x,T x),d(y,Ty), [d(x,T x)]r[d(y,T x)]pd(x,Ty),d(y,T x)[d(x,T x)]m);

∀ x, y ∈ X , r, p, m ∈ IR+, where the function β satisfies:

(i) β is continuous on the set IR5
+ (with respect to the Euclidean metric on IR5);

(ii) there exists some λ ∈ [0,1), such that a ≤ λb whenever a ≤ β (b,b,a,c,c), ∀ a, b, c ∈ IR+.

(b) For a mapping T : X → X , there exists a function β : IR5
+ → IR+ such that ∀ x, y ∈ X , we have

min{d(T x,Ty),max{d(x,T x),d(y,Ty)}}−min{d(x,Ty),d(y,T x)} ≤ (1.7)

β (d(x,y),d(x,T x),d(y,Ty), [d(x,T x)]r[d(y,T x)]pd(x,Ty),d(y,T x)[d(x,T x)]m),

∀ x, y ∈ X , r, p, m ∈ IR+, where the function β satisfies:

(i) β is continuous on the set IR5
+ (with respect to the Euclidean metric on IR5);

(ii) there exists some λ ∈ [0,1), such that a ≤ λb whenever a ≤ β (b,b,a,c,c), or, a ≤ β (b,b,a,b,b), ∀ a, b, c ∈ IR+.

Remark 1.5. Each of the contractive conditions (1.6) and (1.7) can be reduced to several other ones in the literature. In particular, we have

the following:

(i) It is obvious that both contractive conditions (1.3) and (1.4) are special cases of contractive conditions (1.6) and (1.7) respectively if

β (t1, t2, t3, t4, t5) = λ t1, ∀ (t1, t2, t3) ∈ IR5
+, λ ∈ (0,1).
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2. Main results

Theorem 2.1. Let (X ,d) be a complete metric space and T : X → X an orbitally continuous mapping satisfying contractive condition (1.6).

For x0 ∈ X , let {xn}
∞

n=0 defined by xn = T xn−1 = T nx0, n = 0,1,2, · · · , be the Picard iteration associated with T. Then, T has a fixed point.

Proof. We have that xn = T xn−1 = T nx0, x0 ∈ X (n = 0,1,2, · · ·). If d(xq,xq+1) = 0 for some q ≥ 0, then x0 is the limit point of {T nx0}
and xq is a fixed point of T. Suppose that d(xn,xn+1)> 0, n = 0,1,2, · · · . Using condition (1.6) with x = xn, y = xn+1, we have

min{d(T xn,T xn+1),d(xn,T xn),d(xn+1,T xn+1)}−min{d(xn,T xn+1),d(xn+1,T xn)}

≤ β (d(xn,xn+1),d(xn,T xn),d(xn+1,T xn+1), [d(xn,T xn)]
r[d(xn+1,T xn)]

pd(xn,T xn+1),d(xn+1,T xn)[d(xn,T xn)]
m),

from which we obtain that

min{d(xn+1,xn+2),d(xn,xn+1)} ≤ β (d(xn,xn+1),d(xn,xn+1),d(xn+1,xn+2),0,0). (2.1)

Since λ < 1, we choose min{d(xn+1,xn+2),d(xn,xn+1)}= d(xn+1,xn+2) and apply Property (ii) of β so that from (2.1) we get

d(xn+1,xn+2)≤ β (d(xn,xn+1),d(xn,xn+1),d(xn+1,xn+2),0,0)≤ λd(xn,xn+1),

which yields

d(xn+1,xn+2)≤ λd(xn,xn+1)≤ λ 2d(xn−1,xn)≤ ·· · ≤ λ n+1d(x0,x1). (2.2)

Using (2.2) inductively in the repeated application of the triangle inequality yields, for p ∈ IN,

d(xn,xn+p)≤
λ n(1−λ p)

1−λ
d(x0,x1)→ 0 as n → ∞. (2.3)

Hence, from (2.3) we have that {xn} is a Cauchy sequence in X . Since (X ,d) is a complete metric space, there exists u ∈ X such that

lim
n→∞

d(xn,u) = 0, that is, lim
n→∞

xn = u. Therefore, since xn = T nx0 and T is orbitally continuous, we have

0 = d( lim
n→∞

T (T nx0),Tu) = lim
n→∞

d(T (T nx0),Tu) = lim
n→∞

d(T xn,Tu) = lim
n→∞

d(xn+1,Tu) = d(u,Tu).

Thus, proving that Tu = u, that is, u ∈ X is a fixed point of T.

Theorem 2.2. Let (X ,d) be a complete metric space and T : X → X a mapping satisfying contractive condition (1.7) For x0 ∈ X , let {xn}
∞

n=0

defined by xn = T xn−1 = T nx0, n = 0,1,2, · · · , be the Picard iteration associated with T. Then, T has a fixed point.

Proof. We have that xn = T xn−1 = T nx0, x0 ∈ X (n = 0,1,2, · · ·). If d(xq,xq+1) = 0 for some q ≥ 0, then x0 is the limit point of {T nx0}
and xq is a fixed point of T. Suppose that d(xn,xn+1)> 0, n = 0,1,2, · · · . Using condition (1.7) with x = xn, y = xn+1, we have

min{d(T xn,T xn+1),max{d(xn,T xn),d(xn+1,T xn+1)}}−min{d(xn,T xn+1),d(xn+1,T xn)} ≤

β (d(xn,xn+1),d(xn,T xn),d(xn+1,T xn+1), [d(xn,T xn)]
r[d(xn+1,T xn)]

pd(xn,T xn+1),d(xn+1,T xn)[d(xn,T xn)]
m),

which reduces to

min{d(xn+1,xn+2),max{d(xn,xn+1),d(xn+1,xn+2)}} ≤ (2.4)

β (d(xn,xn+1),d(xn,xn+1),d(xn+1,xn+2),0,0).

Since

min{d(xn+1,xn+2),max{d(xn,xn+1),d(xn+1,xn+2)}}= max{d(xn,xn+1),d(xn+1,xn+2)},

we obtain from (2.4) that

max{d(xn+1,xn+2),d(xn,xn+1)} ≤ β (d(xn,xn+1),d(xn,xn+1),d(xn+1,xn+2),0,0). (2.5)

Again, since λ < 1, we choose max{d(xn+1,xn+2),d(xn,xn+1)}= d(xn+1,xn+2), so that from (2.5) we obtain

d(xn+1,xn+2)≤ β (d(xn,xn+1),d(xn,xn+1),d(xn+1,xn+2),0,0)≤ λd(xn,xn+1),

which inductively leads again (as in the proof of Theorem 2.1) to

d(xn,xn+1)≤ λ nd(x0,x1).

For p ∈ IN, we therefore, have again as in the proof of Theorem 2.1 that d(xn,xn+p)→ 0 as n → ∞.

Hence, we have that {xn} is a Cauchy sequence in X . Since (X ,d) is complete, there exists u ∈ X such that lim
n→∞

xn = u.

Using (1.7) again with x = xn, y = u we obtain

min{d(T xn,Tu),max{d(xn,T xn),d(u,Tu)}}−min{d(xn,Tu),d(u,T xn)} ≤

β (d(xn,u),d(xn,T xn),d(u,Tu), [d(xn,T xn)]
r[d(u,T xn)]

pd(xn,Tu),d(u,T xn)[d(xn,T xn)]
m),

which reduces to
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min{d(xn+1,Tu),max{d(xn,xn+1),d(u,Tu)}}−min{d(xn,Tu),d(u,xn+1)} ≤ (2.6)

β (d(xn,u),d(xn,xn+1),d(u,Tu), [d(xn,xn+1)]
r[d(u,xn+1)]

pd(xn,Tu),d(u,xn+1)[d(xn,xn+1)]
m).

As n → ∞, we obtain from (2.6) that

min{d(u,Tu),d(u,Tu)} ≤ β (0,0,d(u,Tu),0,0). (2.7)

Using Property(ii) of β in (2.7) yields

d(u,Tu)≤ β (0,0,d(u,Tu),0,0)≤ λ .0 = 0,

from which it follows that d(u,Tu)≤ 0.

Therefore, due to nonnegativity of the metric, we obtain d(Tu,u) = 0 ⇐⇒ Tu = u. Thus, T has a fixed point u ∈ X .

The next two results are Maia type (see [19]) which extend both Theorem 2.1 and Theorem 2.2

Theorem 2.3. Let X be a non-empty set, d and ρ two metrics on X and T : X → X a mapping. For x0 ∈ X , let {xn}
∞

n=0 defined by

xn+1 = T xn, n = 0,1,2, · · · , be the Picard iteration associated with T. Suppose that

(i) there exists M > 0 such that ρ(T x,Ty)≤ Md(x,y), ∀ x, y ∈ X ;

(ii) (X ,ρ) is a complete metric space;

(iii) T : (X ,ρ)→ (X ,ρ) is orbitally continuous;

(iv) T : (X ,d)→ (X ,d) is a mapping satisfying (∆).
Then, T : (X ,ρ)→ (X ,ρ) has a fixed point.

Proof. By condition (iv), we obtain as in Theorem 2.1 that, for p ∈ IN,d(xn,xn+p)→ 0 as n → ∞. That is, {xn} is a Cauchy sequence in

(X ,d).
We now show that {xn} is a Cauchy sequence in (X ,ρ) as follows: By condition (i), we have, for p ∈ IN,

ρ(xn,xn+p) = ρ(T xn−1,T xn+p−1)≤ Md(xn−1,xn+p−1)→ 0 as n → ∞,

that is, ρ(xn,xn+p)→ 0 as n → ∞. Thus, {xn} is a Cauchy sequence in (X ,ρ) too.

By condition (ii), (X ,ρ) is a complete metric space implies that there exists u ∈ X such that lim
n→∞

ρ(xn,u) = 0, that is, lim
n→∞

xn = u.

By condition (iii), since xn = T nx0 and T : (X ,ρ)→ (X ,ρ) is orbitally continuous, we have

0 = ρ( lim
n→∞

T (T nx0),Tu) = lim
n→∞

ρ(T (T nx0),Tu) = lim
n→∞

ρ(T xn,Tu) = lim
n→∞

ρ(xn+1,Tu) = ρ(u,Tu).

Therefore, ρ(u,Tu) = 0 ⇐⇒ Tu = u. So, T has a fixed point u.

Theorem 2.4. Let X be a non-empty set, d and ρ two metrics on X and T : X → X a mapping. For x0 ∈ X , let {xn}
∞

n=0 defined by

xn+1 = T xn, n = 0,1,2, · · · , be the Picard iteration associated with T. Suppose that

(i) there exists M > 0 such that ρ(T x,Ty)≤ Md(x,y), ∀ x, y ∈ X ;

(ii) (X ,ρ) is a complete metric space;

(iii) T : (X ,ρ)→ (X ,ρ) is continuous;

(iv) T : (X ,d)→ (X ,d) is a mapping satisfying (∆⋆).
Then, T : (X ,ρ)→ (X ,ρ) has a fixed point.

Proof. By condition (iv), we obtain as in Theorem 2.2 that {xn} is a Cauchy sequence in (X ,d).
By condition (i), we have as in Theorem 2.3 that {xn} is a Cauchy sequence in (X ,ρ) too.

By condition (ii), (X ,ρ) is a complete metric space implies that there exists u ∈ X such that lim
n→∞

ρ(xn,u) = 0, that is, lim
n→∞

xn = u.

By condition (iii), since T : (X ,ρ)→ (X ,ρ) is continuous, we have

0 = lim
n→∞

ρ(xn+1,u) = lim
n→∞

ρ(T xn,u) = ρ(T ( lim
n→∞

xn),u) = ρ(Tu,u).

Therefore, ρ(u,Tu) = 0 ⇐⇒ Tu = u. So, T has a fixed point u.

Remark 2.5. Our results generalize and extend several classical results in the literature, involving unique and nonunique fixed points. In

particular, both Theorem 2.1 and Theorem 2.2 are generalizations and extensions of the corresponding results of Ćirić [3, 2]. Both Theorem

2.3 and Theorem 2.4 extend both Theorem 2.1 and Theorem 2.2 respectively as well as the corresponding results of Ćirić [3, 2]. Both

Theorem 2.3 and Theorem 2.4 also generalize the result of Maia [19]. Indeed, the results of our present paper generalize the corresponding

results of Olatinwo [10, 11, 12], but independent of the corresponding results of the author [20]. We also observe that the unique fixed point

theorems of Akram et al. [8] are special cases of the results contained in this paper.

Remark 2.6. We also employ this medium to announce that while proving the existence of the fixed point of T, the term ”d(T lim
n→∞

(T nx0),Tu)”

that appeared was a typographical misprint in Theorem 2.1 and Theorem 2.3 of [10] as well as in Theorem 2.1 and Theorem 2.4 of [20].

Since T is orbitally continuous in those Theorems (rather than being continuous), the misprint should change to ”d( lim
n→∞

T (T nx0),Tu)”

(which is now correctly expressed in the present article). Our interested readers can also see the correct term ”d( lim
n→∞

T (T nx0),Tu)” in the

articles [11, 12] (which invariably becomes ” lim
n→∞

d(T (T nx0),Tu)” since metric is continuous).
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3. Conclusion

So far, the results obtained in the present article are the most general results in non-unique fixed point theory.
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[11] M. O. Olatinwo, Some Ćirić’s type non-unique fixed point theorems and rational type contractive conditions, Kochi J. Math., 10 (2015), 1-9.
[12] M. O. Olatinwo, Some non-unique fixed point theorems of Ciric’s type using rational type contractive conditions, Georgian Math. J., 24(3) (2017),

455-461.
[13] J. Achari, On Ciric’s nonunique fixed points, Mat. Vesnik, 13(28) (1976), 255-257.
[14] J. Achari, Results on nonunique fixed points, Publ. Inst. Math. Nouvelle Serie, 26(40) (1979), 5-9.
[15] J. Achari, On the generalization of Pachpatte’s nonunique fixed point theorem, Indian J. Pure Appl. Math., 13(3) (1982), 299-302.
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Abstract

We obtain the generating functions for the combinatorial enumeration of colorings of all

hyperplanes of hypercubes for all irreducible representations of the hyperoctahedral groups.

The computational group theoretical techniques involve the construction of generalized

character cycle indices of all irreducible representations for all hyperplanes of the hypercube

using the Möbius function, polynomial generators for all cycle types and for all hyperplanes.

This is followed by the construction of the generating functions for colorings of all (n-q)-

hyperplanes of the hypercube, for example, vertices (q=5), edges (q=4), faces (q=3), cells

(q=2) and tesseracts (q=4) for a 5D-hypercube. Tables are constructed for the combinatorial

numbers for coloring all hyperplanes of 5D-hypercubes for 36 irreducible representations.

Applications to chirality, chemistry and biology are also pointed out.

1. Introduction

Hypercubes [1]-[29] and related combinatorics of wreath product groups [30]-[54] have been the focus of a number of research investigations

owing to their importance in numerous applications in a variety of disciplines. Hypercubes are natural representations of Boolean functions,

as 2n possible Boolean functions from a set of n entities that take binary values can be represented by the vertices of a hypercube. Thus

hypercubes find applications in chemistry, biology, finite automata, electrical circuits, genetics, enumeration of isomers, isomerization

reactions, visualization and computer graphics, chirality, protein-protein interactions, intrinsically disordered proteins, partitioning of

massively large databases, and parallel computing [1]-[11], [19]-[29], [41]-[55], [56]-[59]. The automorphism groups of hypercubes

which are hyperoctahedral wreath products find applications in enumerative combinatorics, isomerization reactions, chirality, nuclear spin

statistics, weakly-bound non-rigid water clusters, non-rigid molecules, and in proteomics [41]-[55], [56]-[59]. The hypercubes have also

been connected to Goldbach conjecture, last Fermat’s theorem, Erdös discrepancy conjecture, modern multi-dimensional representation of

time measures, quantum similarity measures, [1]-[5], biochemical imaging [6], multi-dimensional imaging [19],[20], [22]-[26], classification

of large data, Quantitative Shape-Activity Relations (QShAR)etc. [7]-[10].

Combinatorial enumeration of colorings of different hyperplanes, especially vertices of hypercubes has been the topic of several studies for

the past two centuries. In fact, subsequent to publication of his classic 1937 [15] paper on combinatorics of groups, graphs and chemical

compounds, Pólya in a subsequent work [17] has pointed out the errors in previous enumeration of colorings of vertices hypercubes. As

pointed out recently by Banks et al. [19],[20] in the context of computer visualization, in 1877, Clifford [12],[13] has enumerated the number

of equivalence classes for 2-colorings of a 4D-hypercube vertices as 396 which was subsequently shown to be incorrect by Pólya [17] in

1940 who obtained 402 equivalence classes for 2-colorings of a 4d-hypercube. Historically Pólya’s theorem was anticipated in Redfield’s

paper on superposition theorem [16]. Although in more recent mathematical literature, cycle indices of hypercubes and enumerations of

colorings of the vertices of hypercubes have been considered [17]-[29], [34] these studies have been restricted only to the totally symmetric

irreducible representations of the hyperoctahedral groups. Moreover in the most recent work on the 5D-hypercube enumeration [29] of

vertex colorings there are errors, as we show here. Pólya’s theorem and its variation [1]-[6], [17]-[21] have been applied extensively which

generate equivalence classes for different distribution of colors called the pattern inventory and also the total number of colorings. However,

several chemical and spectroscopic applications require more powerful and generalized enumeration techniques that span all the irreducible

representations of the groups where Pólya’s theorem becomes a special case for the totally symmetric representation. Furthermore in the
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case of hypercubes, most of the previous combinatorics is restricted to the enumeration of vertex colorings. The vertices of hypercubes

are only one of several possible hypercube’s hyperplanes. The present author [39]-[40] has generalized Pólya’s theorem, De Bruijn’s

theorem [60] and Harary-Palmer power group theorem [31] to characters of all irreducible representations of a group cast into the form of

generalized character cycle indices or GCCIs. Such combinatorial and graph theoretical methods have several applications to rovibronic

spectroscopy, non-rigid molecules, water clusters, nuclear spin statistics, multiple-quantum NMR spectroscopy, dynamic NMR, enumeration

of isomerization reactions, chirality, ESR spectroscopy, topological indices in QSAR [36]-[58], [61]-[63].

The n-dimensional hypercube’s automorphism group is comprised of 2n ×n! operations, and thus the order of this group increases both

exponentially and factorially. For example, the automorphism group of a 6D-hypercube consists of 46, 080 operations spanning 65 irreducible

representation. In ordinary Pólya’s theory, different conjugacy classes that give rise to the same cycle types under group action on a given set

are combined into a single term, as they give rise to the same monomial for patterns, and in general with the exception of full symmetric

group Sn, multiple conjugacy classes often contribute to the same cycle type. This poses a problem when one needs to consider all irreducible

representation, as character values in general are based on conjugacy classes and not cycle types. Furthermore there is no one-to-one

correspondence between cycle types and conjugacy classes for hyperoctahedral wreath product groups of hypercubes. Thus we need both

cycle types of each conjugacy class and the character table of the group unlike the ordinary Pólya cycle index which only needs the cycle

types that compose the cycle index of a group. The other computational challenge that arises for hypercube colorings is that the cycle types

of induced permutation for different hyperplanes need to be obtained. In general there are n hyper planes for an nD-hypercube represented

by q values ranging from 1 to n with of course q=0 being the trivial single vertex and hence is not considered. When q=n we obtain the

vertices of the hypercube, q=n-1 we obtain the edges, q=n-2 yields faces, and in general q represents (n-q)-hyperplanes of an nD-hypercube.

Each such hyperplane generates a set of cycle types for each conjugacy class. Thus computing the equivalence classes of the colorings of

various hyperplanes requires the computation of the cycle types of different (n-q)-hyperplanes of the hypercube with q=1 through n. Previous

works in the mathematical literature [17]-[29] have focused on the total number of equivalence classes rather than the inventory of patterns

or a generating function that yields number of colorings for a given number of colors of various kinds. Such a distribution of patterns for

various colors is quite important for a number of practical applications, and thus we focus in the present study the computational techniques

to obtain such generating functions for all hyperplanes and all irreducible representations of the hypercube. Moreover none of the previous

studies [17]-[29] has dealt with irreducible representations other than totally symmetric representation in their enumerations. The present

author [11] has previously considered multinomial colorings of 4D-hypercube for different hyperplanes, and with chemical applications to

water pentamer in mind, the present author has considered colorings of tesseracts [64] of the 5D-hypercube, and recently vertices (q=4) and

tesseracts q=1 for all irreducible representations and 2-colorings of (q=2) 3-faces only for the totally symmetric irreducible representation of

the 5D-hypercube [61]. The present work considers for the first time enumeration of colorings for all hyperplanes (q=1 through q=5) of the

5D-hypercube for all 36 irreducible representations.

2. Mathematical and computational techniques

In general, the automorphism group of an nD-hypercube is the wreath product Sn [S2] where Sn is the full permutation group of n objects

comprising of n! permutations. The order of the nD-hypercube wreath product group is 2n ×n! and hence it grows in astronomical proportion

as a function of n. For example, the automorphism group of a 10D-hypercube consists of 210 × 10! permutations that give rise to 481

conjugacy classes, and 481 irreducible representations, 10 hyperplanes, thus demonstrating the combinatorial complexity of the problem

of enumerating colorings of different hyperplanes of an nD-hypercube for all irreducible representations. Coxeter [65] has discussed in

depth hypercubes and various other regular polytopes and their mathematical characterizations using various projections and graph theory.

An nD-hypercube is comprised of (n-q)-hyperplanes where q goes from 0 to n. The largest value of q = n represents the vertices, q=n-1

represents the edges, q=n-2 represents the faces, q=n-3 represents the cells, q=n-4 represents tesseracts, and so on. The induced permutation

of the automorphism group of the nD-hypercube on each of these hyperplanes is quite different and it cannot be deduced from a simple

inspection with the exception of a 2D-hypercube (square) and a 3D-hypercube (a regular cube). Thus the first step is to construct the cycle

types for each conjugacy class of the hypercube’s wreath product group for the induced permutations of all hyperplanes of the hypercube. We

note that although for ordinary Pólya enumeration one needs only the cycle index which can be constructed by other methods as cycle types

of several conjugacy classes become degenerate for wreath products, the enumerations that involve all irreducible representations require the

cycle types of each conjugacy class, as there is no one-to-one correspondence between the conjugacy classes and cycle types for wreath

product groups. The cycle types of q=1 or (n-1)-hyperplanes are the ones that can be readily constructed as they are natural representations

of the hypercube permutations.

The techniques to construct the conjugacy class cycle types of q=1 or (n-1)-hyperplanes and the character table for all irreducible

representations of the hypercube group involve matrix generating functions and we shall consider this first. We use the 5D-hypercube as not

only an illustrative example but also to carry out all of the needed computations. For a 5D-hypercube the special case of q=1 enumerates

the various tesseracts of the hypercube, and Fig.1 shows a graph that exemplifies the underlying relationship between the tesseracts of

the 5D-hypercube. In Fig. 1 the vertices represent the tesseracts while the edges represent the underlying connectivity among the ten

tesseracts of the 5D-hypercube. The cycle types of the permutations of q=1 tesseracts are isomorphic with the permutations of vertices of the

automorphism group of the graph in Fig. 1.

In general, let a permutation g ∈ Sn upon its action on the set Ω of q = 1 hyperplanes of the hypercube generate a1 cycles of length 1, a2

cycles of length 2, a3 cycles of length 3, ... , an cycles of length n, which can be represented by 1a1 2a2 3a3 ...nan . Alternatively, the cycle type

Tg of g χ can be denoted as Tg = (a1,a2,a3, ... ,an). As the composing group in Sn [S2], S2 of the wreath product has only two conjugacy

classes, the conjugacy class of the wreath product Sn [S2] and he cycle types of action on q=1 hyperplanes can be expressed as a cycle type

comprised of a 2×n matrix, where the first row corresponds to the action of {(g;π)}permutations where π = e ∈ S2 and g ∈ Sn and the

second row represents the permutations {(g;π)}, for π = (12) ∈ S2. The cycle type of any conjugacy class, T (g;π), where (g;π) is any

representative in then a 2×n matrix is obtained using the orbit structure of g ∈ Sn and the corresponding conjugacy class of S2. For the

particular case of S5 [S2] under consideration, the cycle type of (g;π) for a conjugacy class of S5 [S2] is given by

T (g;π) = aik (1 ≤ i ≤ 2) , (1 ≤ k ≤ 5) (2.1)
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Figure 2.1: Ten tesseracts of the 5D-hypercube are represented by the vertices of the graph shown in this figure (reproduced from ref.[59]). Right: Water
Pentamer. The automorphism group of this graph is also the automorphism group of the 5D-hypercube and fully non-rigid water pentamer or S5[S2]
comprising of 3840 permutations that span 36 conjugacy classes.

To illustrate, the conjugacy class {(1)(2)(345) ;(12)} of S5 [S2] given by (2.2)

T [{(1)(2)(345) ;(12)}] =

[

2 0 0 0 0

0 0 1 0 0

]

(2.2)

Likewise the conjugacy class of {(12)(34)(5) ;(12)}(1234)(5); (12) is given by (2.3):

T [{(12)(34)(5) ;(12)}] =

[

1 0 0 0 0

0 0 0 1 0

]

(2.3)

In this manner all conjugacy classes of Sn [S2] are obtained and for the simplest example of S3 [S2] which represents the permutations of the

six faces of the cube, Table 1 shows all as 2×3 matrices thus constructed for the 3D-cube. In Table 1 we have also shown the corresponding

rotations or mirror planes of the cube, as the cycle types of the cube’s faces can also be directly obtained by applying these operations on

a regular cube and collecting the induced orbits of the permutations of the faces of the cube under the action of these operations. It can

be seen from Table 1 that there is no one-to-one correspondence between the cycle types and conjugacy classes of the 3D-cube, as orbit

structures of two different matrix types can be the same, for example, for matrices 3 and 5 in Table 1 have the same cycle types of 1222 for

the six faces of the cube (q=1). However these two matrices belong to different conjugacy classes with different character values for the

various irreducible representations of the octahedral (cubic) group or S3 [S2]. Thus the matrices are important for the enumerations involving

all irreducible representations while only the cycle types are needed for the ordinary Pólya enumeration of equivalence classes, as such

enumeration becomes a special case of our formalism applied to the totally symmetric A1 irreducible representation.

We can obtain the orders of the conjugacy classes and the cycle types for the q=1 or (n-1)hyper planes of the hypercube directly from their

2×n matrices. Suppose P(m) denotes the number of partitions of integer m with P(0) = 1. Then all ordered partitions of n into pairs or

compositions of n into two parts, denoted by (n1,n2) such that ∑ni = n, yields the number of conjugacy classes of Sn [S2]. That is, the total

number of conjugacy classes of Sn [S2]is given by

NC = ∑ (n)P(n1)P(n2) (2.4)

where the sum is over all ordered pairs of partitions of n. Furthermore, the order any conjugacy class of Sn [S2] with the matrix type

T (g;π) = aik can be obtained with Eq (2.5):

|T (g;π)|=
n!

∏i,kaik!(2k)aik
(2.5)

For example, for the 6-D hyperoctahedral group, S6 [S2], the ordered partitions of 6 into 2 parts are given by {(6,0) ,(0,6) ,(5,1) ,(1,5) ,(4,2) ,(2,4) ,(3,3)
and hence the number of conjugacy classes of the S6 [S2] group is

2P(6)P(0)+2P(5)P(1)+2P(4)P(2)+P(3)2 = 65 (2.6)

The number of elements in any particular conjugacy class of Sn [S2] can also be readily computed from the corresponding matrix cycle type.

For example, application of (2.5) to the conjugacy class 6 in table 1 gives:

∣

∣

∣

∣

(

1 0 0

0 1 0

)∣

∣

∣

∣

=
3!23

1!(2.1)11!(2.2)1
= 6 (2.7)

The orders of conjugacy classes thus obtained for the cube are shown in Table 1 for each conjugacy class. The cycle types for the permutations

induced on the q = 1 or (n−1)− hyperplanes are also obtained readily from the 2×n matrices by mapping place values for the non-zero

entries in the matrix type. That is, assign a cycle of length
(

k2
)a1k

for each non-zero entry column k in the first row while for the second row

the contribution is 2k for nonzero entries. Thus the above matrix yields the overall cycle type 1222 for the regular cube’s 6 faces. The cycle

types thus obtained for q = 1 or tesseracts of the 5D-hypercubeand for all conjugacy classes of the cubic group, S3 [S2] group are shown in

Tables 2 and 1 together with the orders of each conjugacy class.
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The above process for finding the cycle types of conjugacy classes and their orders can be likewise applied to the 5D-hypercube and the

results are shown in Table 2. The next step is to compute the cycle types of the induced permutations for each conjugacy class for all of

the remaining (n-q)-hyperplanes. For the 5d-hypercube this corresponds to q = 2 (cells), q = 3 (faces), q = 4 (edges) and q = 5 (vertices).

Although there are previous studies [17]-[29] that have discussed the techniques for obtaining the cycle indices of the hypercube including

the 5D-hypercube, these previous works have been predominantly restricted to the Pólya cycle indices of the vertices of a hypercube with the

exception of Lemmis [23] who has explicitly considered other cycle types for a 4D-hypercube even though Lemmis [23] does not compute

or report any results for the equivalence classes even for the totally symmetric irreducible representation . The explicit expressions have

also been constructed for the ordinary cycle indices of hypercubes up to six dimensions [26], [28], [29]. In the present study we outline

techniques for constructing the generalized character cycle indices for all irreducible representations and all cycle types of the various

(n-q)-hyperplanes of the hypercube.

The process of computing the generating functions for the cycle types of various (n−q)− hyperplanes of the hypercube involve the Möbius

function, a fundamental enumerative combinatorial technique that encompasses generalization of the fundamental combinatorial principle of

inclusion and exclusion that has been applied to many disciplines [66], [67] including music theory [35] and isomers with nearest neighbor

exclusions [63]. The Möbius functions appear in a natural way, as the construction of various cycle types for the (n−q)−hyperplanes is

related to the divisors of the set of all hyperplanes and it relates to the simplest cycle types of q = 1. Thus the technique involves computing

the polynomial generating functions via Möbius sums. We accomplish this from the matrix types of the conjugacy classes of the Sn [S2]
groups to generate all of the cycle types for all (n−q)−hyperplanes through polynomial generating functions. The techniques employed

are similar to the ones outlined in Krishnamurthy’s book [67] and the work of Lemmis [24] who has made use of the enumerative Möbius

inversion technique. That is, the generating functions for all cycle types for all values of q representing (n−q)−hyperplanes are generated

as coefficient of xq in the polynomial generating function Qp (x) obtained using the Möbius functions shown below:

Qp (x) =
1

p
∑
d/p

µ (p/d)Fd (x) (2.8)

where the sum is strictly over all divisors d of p, and µ (p/d) is the Möbius function which takes values

1 , −1, −1, 0, −1, 1, −1, 0, 0, 1 . . .

for arguments 1 to 10; in general, the Möbius function is obtained as follows for any number:

µ (m) = 1 if one of m’s prime factors is not a perfect square and m contains even number of prime factors,

µ (m) =−1 if m satisfies the same perfect-square condition as before but m contains odd number of prime factors,

µ (m) = 0 if m has a perfect square as one of its factors.

Fd (x) in the above Eq (2.8) is defined as a polynomial in x constructed from the matrix cycle types shown in the first column of Table

1 or Table 2. Consider the non-zero columns of the matrix cycle types of Sn [S2] (see Tables 1 and 2) . Recall that the first row of these

elements are represented by a1k while the second rows are denoted by a2k (k = 1,n). Then if p is the period of the matrix type shown in the

first column of Table 1 or 2, and define, g = gcd(k; p), p′ = k
g , h = gcd(2k; p) ; p′′ = 2k

h and define the polynomial Fp (x) in terms of these

divisors of the cycle type as

aaa (2.9)

where the product is taken only over nc, non-zero columns of the 2×n matrix cycle type shown in Tables 1 or 2. The coefficient of xq in

Qp (x) obtained from the Möbius sums of various Fd polynomials where d’s are strictly divisors of p generate the various cycle types for

(n−q)− hyperplanes of the nD-hypercube. We shall illustrate this by one of the matrix cycle types in Table 2. Consider the 31st matrix

shown in Table 2 for S5 [S2]:

(

0 1 1 0 0

0 0 0 0 0

)

(2.10)

As only 2nd and 3rd columns contain non-zero values, hence we need to consider only these two columns. Thus the maximum period to

consider is 6 and hence the possible F polynomials are F6, F3, F2 and F1 as divisors of 6 are 1, 2, 3, and 6. Applying the GCD followed by

the use of Eq (2.9), we obtain each of these polynomials as

F1 (x) =
(

1+2x2
)(

1+2x3
)

(2.11)

F2 (x) = (1+2x)2
(

1+2x3
)

(2.12)

F3 (x) =
(

1+2x2
)

(1+2x)3 (2.13)

F6 (x) = (1+2x)5. (2.14)

From the Fd polynomials thus constructed above, we obtain the Qp polynomials using the Möbius sum, shown in Eq (2.8). Thus we obtain

Q1 = F1 = 1+2x2 +2x3 +4x5 (2.15)
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Q2 =
m(2)F1 +m(1)F2

2
=

F2 −−F1

2
=
(1+2x)2

(

1+2x3
)

−−
(

1+2x2
)(

1+2x3
)

2
= 2x+ x2 +4x4 +2x5 (2.16)

Q3 =
m(1)F3 +m(3)F1

3
=

F3 −−F1

3
=

(

1+2x2
)

(1+2x)3 −
(

1+2x2
)(

1+2x3
)

3
= 2x+4x2 +6x3 +8x4 +4x5 (2.17)

Q6 =
m(1)F6 +m(2)F3 +m(3)F2 +m(6)F1

6
=

F6 −−F3 −−F2 +F1

6
= 4x2 +10x3 +8x4 +2x5 (2.18)

The coefficients of xqs are tabulated below for all possible Qp polynomials which yield the cycle types for various (n−q)−perplanes as

shown below:

Table 1

Qp x x2 x3 x4 x5

Q1 2 2 4

Q2 2 1 4 2

Q3 2 4 6 8 4

Q6 4 10 8 2

Cycle type 2232 12213464 1236610 243868 14223462

Hyperplane q = 1 q = 2 q = 3 q = 2 q = 5

(tesseracts) (cells) (faces) (edges) (vertices)

The results thus obtained for all cycle types of the hyperplanes of 5D-hypercube are shown in Table 2. We believe this is the first time

that these cycle types have been tabulated for all hyperplanes of the 5D-hypercube. Although previously the cycle index for the vertices

of the 5D-hypercube have been reported in the literature [24]-[26], [28], [29] using different techniques, and our results agree with those

results, Table 2 is exhaustive as it includes all hyperplanes, not just q = 5 (vertices). Moreover, as outlined below we consider all irreducible

representations for coloring the (n−q)− hyperplanes, and not just the totally symmetric A1 representation. In our previous studies [51],[52]

we have shown how the character tables of the Sn [S2] groups can be obtained from matrix generating functions and thus we shall not repeat

the techniques in detail. Instead we shall focus on the colorings of the hyperplanes using the character table of S5 [S2], and the cycle types

obtained for various hyperplanes of the 5D-hypercube shown in Table 2.

The character table of S5 [S2] containing 36 irreducible representations have been constructed before and thus we employ the GCCIs of the

irreducible representation with character of the group S5 [S2]. In general, the GCCI for the character χ of a group G′ is defined as

P
χ
G′ =

1

|G′| ∑
g∈G′

χ (g)S
b1

1 S
b2

2 ...Sbn
n (2.19)

where the sum is over all permutation representations of g ∈ G′ that generate b1 cycles of length 1, b2 cycles of length 2, ... , bn cycles of

length n upon its action on the set Ω of the (n−q)− hyperplanes of the 5D-hypercube. Upon construction of the GCCIs for each irreducible

representation and each of the (n−q)−hyperplane’s cycle types shown in Table 2, one can carry out generalized Pólya substitution in the

GCCIs for each representation of S5 [S2] with a multinomial expansion. Let[n] be an ordered partition, also called the composition of n into

p parts such that n1 ≥ 0, n2 ≥ 0, ... , np ≥ 0, ∑
p
i=1 ni = n. A multinomial generating function in λ s is obtained as

(

λ1 +λ2 + . . . ..+λp

)n
=

p

∑
[n]

(

n1 n2

n

. . np

)

λ1
n1 λ2

n2 . . . . . . ..λp−1
np−1 λp

np (2.20)

where

(

n1 n2

n

. . np

)

are multinomials given by

(

n1 n2

n

. . np

)

=
n!

n1!n2! . . . . . .np−1!np!
(2.21)

Define two sets, the set D which contains a set of (n−q)−hyperplanes for a given q to be colored and the set R which contains different

colors. Let wi be the weight of each color r in R . The weight of a function f from D to R is defined as

W ( f ) =
|R|

∏
i=1

w( f (di)) (2.22)

The generating function for each irreducible representation of the nD-hyperoctahedral group is obtained by the substitution as

GFχ
(

λ1,λ2 . . . ..λp

)

= P
χ
G

{

sk →
(

wk
1 +wk

1 + . . . .+wk
p−1 +wk

p

)}

(2.23)
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The above GFs are computed for each irreducible representation of the 5D-hyperoctahedral group. The coefficient of each term

w1
n1w2

n2 . . . ..wp
np generates the number of functions in the set RD that transform according to the irreducible representation Γ with

character χ . For the special case of the totally symmetric irreducible representation A1 , the GF becomes the ordinary Pólya’s theorem, thus

enumerating the number of equivalence classes of colorings.

In the case of hyperplanes of nD-hypercubes the number of (n−q)−hyperplanes for a given value of q increase as

(

n

q

)

2q and thus, for

example, a 10D-hypercube would have 13,440 4-hyperplanes (q=6) and 15,360 3-hyperplanes (q=7). Consequently, as the multinomial

generators explode in astronomical proportions for such large sets, it is practically not possible to consider more than 2 colors in the set R or

only 2-colorings for larger hypercubes are feasible. We have developed Fortran ’95 codes that compute the cycle types for all hyperplanes

using the Möbius method, the character tables and then finally the generating functions for 2-colorings of various (n−q)−hyperplanes of

the hypercube. All of the arithmetic were carried out in Real*16 quadruple precision arithmetic and thus we can rely on an accuracy of

up to 32 digits, which appears to suffice for 2-colorings for all possible distribution of colors up to six-dimensional cases. However, for

larger cases either only first k coefficients that contain 32 or fewer digits be considered for colorings or the codes have to be enhanced with

multiple arrays to store beyond 32 digits as presently most compilers handle at most quadruple precision for real numbers. The special cases

of multinomials for 2 colorings were computed in a single step for 2-colorings recursively, and stored in memory for computations of each of

the monomials, sorting and collection of the coefficients for the final GF without computation of any factorials to save time. Moreover the

expansion of multinomials, sorting and collection of coefficients is done only for the A1 IR and for the remaining IRs the computed terms for

each cycle type of A1 are used. For the present case of the 5D-hypercube we were able to compute all of the possible 2-colorings for all

(n−q)−hyperplanes as discussed in the next section within real quadruple precision or REAL*16 precision.

3. Results and discussions

As seen from Table 2, the 5D-hypercube contains 5 different hyperplanes, where q = 1 to 5, represent tesseracts, cells, 3-faces, edges and

vertices, respectively. Owing to the simplicity of q = 1which yields only 10 tesseracts that can be represented by 10 vertices of a graph

(Fig. 1) and as these 10 vertices also represent the protons of the fully nonrigid water pentamer (H2O)5 , colorings of these ten vertices have

been considered previously [64] and thus we shall not repeat the results. However for other q values with the exception of q = 5 (vertices)

restricted to A1 , complete enumeration results for all IRs have not been considered previously. We note that the problem of coloring the

vertices of the hypercube is equivalent to generating the equivalence classes of 2n Boolean functions of a n− dimensional hypercube which

is of considerable interest [24]-[?], [28], [29]. Previous exhaustive combinatorial enumerations for the 4d-hypercube for all irreducible

representations have been considered by the current author recently [11].

Tables 3-6 show the unique terms for 2-colorings of (5−q)− hyperplanes q = 2−5, respectively for the 5D-hypercube. In all these tables

irreducible representations of the S5 [S2] group are denoted as A1 to A36, respectively. We note that only A1 to A4 are one-dimensional,

A5 −A8 are 4-dimensional, A9 −A16 are five-dimensional, A17 −A18 are 6-dimensional, A19-A28 are 10-dimensional, A29 −A32 are

15-dimensional, A33 −A36 are 20-dimensional IRs of the 5d-hypercube. The number of colorings that transform according to the irreducible

representation Ai (i = 1−36) are shown in Tables 3-6 for unique partition of colors. For example, the number of colorings which transform

as the given irreducible representation in a row and contain 35 red colors and 5 green colors for coloring the cells (q = 2) of the 5D-hyercube

are shown in Table 3 in the fifth column. We use the notation [λ ] to denote the unique partitions for the colorings and in order to save space,

owing to the symmetry of binomial numbers the results are shown only for [ n1,n2] where n1 GE n2 as the other case (n2, n1) is equivalent

to (n1, n2) . As can be seen from Table 3, there are 1, 1, 5, 18, 84, and 362 colorings that transform as A1 for 40 reds, 39 reds, 38 reds, 37

reds, 36 reds, and 35 reds (remaining 40-red = greens), respectively. The number of colorings that transform as A1 irreducible representation

is simply the number of equivalence classes under the action of the 5D-hyperoctahedal group on the cells for Table 3. Thus from Table 3,

there are 36,600,432 ways to color the cells of the 5D-hypercube with 20 red colors and 20 green colors.- a result that is not known up to

now. In the mathematics literature, the focus has been often on the total number of equivalence classes for the vertex colorings as opposed to

the detailed enumeration for each possible distribution of colors (n1, n2) that we show in Table 3. The results in Tables 3-5 have not been

obtained before.

As can be seen from Table 4 the number of equivalence classes for coloring faces (q = 3) of the 5D-hypercube are 1, 8, 54, 633 and 7287

for 1, 2, 3, 4, 5 green colors (remaining being red colors), respectively. The fact that the number of equivalence classes for 79 red and 1

green colors for the face colorings is one implies all the faces of the hypercube are equivalent, a result that is expected. As seen from table 4,

the number of equivalence classes (A1 colorings) for 40 red and 40 green colors is a result that is unknown up to now. The numbers for

other 35 irreducible representations (A2 −A36) correspond to the number of functions out of 280 functions in the set RD4 that transform as

the corresponding irreducible representation. Consequently, the numbers in each row multiplied by the dimensions of the corresponding

irreducible representations for all 36 IRs and all color distributions, that is, doubling each number in Table 4 for [λ ] with the exception

[40 40] we obtain 280 which is the total number of functions in the set of all maps. Likewise the sum of twice all numbers for the A1

representation with the exception that [40 40] is added only once, generates the total number of equivalence classes. This result can also be

directly obtained from the cycle index for the A1 IR by replacing every xk by 2. That is, for the results in Table 3, total equivalence classes

count is given by

I ( f aces;2) =























280 +5×256 +10×244 +10×240 +5×240 +1×240 +20×250 +20×226

+60×244 +60×222 +60×242 +60×222 +20×240 +20×222 +80×228

+80×214 +160×220 +160×214 +80×216 +80×214 +60×244 +120×224

+60×240 +120×222 +60×220 +60×220 +240×222 +240×210 +240×222

+240×210 +160×218 +160×214 +160×210 +160×28 +384×216 +384×28























= 314,824,532,572,147,370,464

The result thus obtained agrees with the computer code that independently computed the sum of all coefficients in the generating function,

thus providing independent validation of our results. Consequently, the total number of equivalence classes for the face colorings of

5D-hypercube with 2 colors is 314,824,532,572,147,370,464.
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As seen from Table 5, there are also 80 edges for the 5D-hypercube, which happens to be coincidentally same as the number of faces. We

have provide all 2-coloring distributions in Table 5 and as these numbers contain less than 32-33, digits all results are computed accurately

within the quadruple precision arithmetic. Once again from Table 5, we infer there are 1, 8, 50, 608, 7092 colorings for 1, 2, 3, 4, 5 green

colors (remaining reds) for the edge colorings of the 5D-cube.Although the first two numbers coincide with the face coloring distribution

from the third number onwards all the results differ. In general, the number of face colorings is larger than the number of edge colorings for

the same color distribution. Thus we obtain 27,996,670,589,987,902,014 as the number of equivalence classes for edge colorings with

40 red colors and 40 green colors while the corresponding number for face colorings is with 40 reds and 40 greens. The total number of

equivalence classes for edge colorings of the 5D-hypercube with 2 colors is 314,824,456,456,819,827,136 which can be obtained in two

independent ways as demonstrated for the face colorings.

Table 6 shows the vertex colorings for all irreducible representations for the 5D-hypercube. The results for the vertex colorings of the

5D-hypercube have been obtained previously by Chen and Guo [29] using a completely different method of generating the cycle index of the

group. The results obtained by Chen and Guo [29] for the equivalence classes correspond to our numbers in Table 6 for the A1 IR. Chen

and Guo [29] obtain these numbers as 1, 1, 5, 29, 47, 131, 472, 1326, 3779, 9013, 19,963, 38,073, 65,664, 98,804, 133,576, 158,658, for

greens varying from 0 to 17 (remaining red). The corresponding results that we obtain in Table 6 for the same color distribution for the

vertex colorings of the 5D-hypercube are 1, 1, 5, 10, 47, 131, 472, 1326, 3779, 9013, 19,963, 38,073, 65,664, 98,804, 133,576, 158,658,

respectively. In addition we obtain the number of equivalence classes for 40 red and 40 green as 169,112 that Chen and Guo [29] did not

report. Evidently the number of equivalence classes reported for 3 green colors by Chen and Guo [29] as 29 is not correct, and it disagrees

with our result of 10 equivalence classes for the same color distribution. Furthermore the total number of equivalence classes that we obtain

by adding doubles of all the numbers for A1 in Table 6 except that [16 16] is counted once, is 1,228,158 which clearly does not agree with

the results of Chen and Guo [29] although the total number directly obtained from their cycle index by replacing every xk with 2 agrees

with our result of 1,228,158. Therefore we conclude that only the number reported for 3 green colors as 29 by Chen and Guo [29] must

be incorrect. Moreover, our result of 1,228,158 for the total number of equivalence classes for 2 colors agrees with the number reported

by Perez-Agulia [26] but differs from the result of Aichholzer [25] who has obtained it as 1,226,525. The difference was reconciled by

Perez-Agulia [26] with the explanation that vertices with 0 to 4 polytopes were treated differently by Aichholzer [25].

4. Chiral and alternating colorings, chemical and biological applications

As discussed in the previous section the numbers enumerated for the A1 representation (totally symmetric) for the partition [n1,n2] of colors

enumerates the number of Pólya equivalence classes for the coloring of (n−q)− hyperplanes with n1 colors of one kind and n2 colors of

another kind. A geometrical or physical interpretation for the numbers enumerated for other irreducible representations in Tables is that these

numbers enumerate the number of functions that transform as the IR among the set of all RD functions from the set D to R. That is, for

hypercube’s binary colorings there are 2n such functions where n is the number of (n−q)−hyperplanes for a given q . Thus the number of

irreducible representations in Tables 3 to 6 for a given color partition [n1n2] gives the number of possible symmetry-adapted orthogonal

functions generated from the set RD of 2n functions. In addition to this interpretation the numbers enumerated for irreducible representations

other than A1 can yield information on different aspects of colorings such as chirality, alternation and various other applications.

Chirality arises in a coloring if the mirror image of the coloring is not superimposable on the original coloring. Objects are chiral when they

have handedness such as shoes, hands, feet, gloves, etc. In such cases, the mirror images of the object cannot be converted into the original

object by any proper rotations in the physical space. The term proper rotation refers to a rotation by an angle 2p/m for a natural number m

around a specified axis of rotation denoted by a Cm axis of rotation. The set of such proper rotations that leave the object in the set D invariant

constitute a subgroup that we call the rotational subgroup of the nD-hyperoctahedral group and it is comprised of 2(n−1)x n! operations for

the nD-hypercube. While such rotational operations are readily identified for a regular three-dimensional square or a cube shown in Table 1,

this is less transparent for the higher dimensional hypercubes. As seen from Table 1, for each conjugacy class we can assign a rotational

operation or mirror plane or a composite improper rotation by simply applying the operation on the vertices or edges or faces of the cube and

gathering the various orbits generated upon the action of the operation. An improper axis of rotation, denoted is defined as the product Cnσh,
or σh, Cn where the σh operation is a mirror plane perpendicular to the Cn axis. For a cube these operations are assigned to the various matrix

conjugacy classes in Table 1 based on the permutation’s orbits it generates upon its action on the vertices or edges or faces of the 3D cube.

The proper rotations for an nD-hypercube can be obtained from the 2×n matrix of the corresponding conjugacy class by considering the

non-zero column’s place values. That is, a conjugacy class with matrix [aik] is a proper rotation if and only if

even

∑
k

a1k +
odd

∑
k

a2k

is even, where the first sum is restricted to even ks while the second to odd ks. If the above sum is odd then the operation corresponding to

the 2×n matrix of the conjugacy class is an improper axis of rotation, where a special case of an improper axis may also be a mirror plane of

symmetry or a center of inversion. This procedure can be applied to higher dimensional cubes, and thus in Table 2 we have identified each

proper rotation of the 5D-hypercube by placing the label R next to the conjugacy class. If the label R is absent it means that the conjugacy

class represents an improper axis of rotation. Chirality can then be determined by the definition that an object is chiral if it does not possess

an improper axis of rotation. Evidently uncolored 5D-hypercube or a 3D-cube is not chiral because of the presence of improper axes of

rotations. However, once the (n-q)-hyperplanes are colored some of the colorings for certain distribution of colors may become chiral.

Tables 3-6 that we have constructed enumerate and identify these chiral colorings. The chiral colorings are obtained by stipulating that the

functions in RD for the coloring distribution [n1 n2] must transform in accord to the irreducible representation of chirality. This irreducible

representation for chirality of the nD-hypercube is rigorously identified as the uni-dimensional IR that has +1 character values for all proper

rotations of the nD-hyperoctahedral group and -1 for all improper rotations. By examining the character values for the uni-dimensional

representations for the 5D-hypercube we identify this IR as A2 representation, and thus in Tables 3-5 they are identified with * in these

tables. Consequently, the number of chiral colorings for a given distribution of colors [n1 n2]is enumerated by the numbers for the A2 row in

Tables 3-6 for various (n−q)− hyperplanes.
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As seen from Table 3, the first few numbers or the A2 representation are 0,0,0,0,6,84,657,3750,16,898,63,366,203,095,565,964, ...
suggesting that coloring 40 cells of the 5D-hypercube do not produce any chiral colorings for 40 reds δ0 greens, 39 reds δ1 green, 38 reds

δ2 green, 37 reds δ3 greens, and in order to produce a chiral coloring one needs at least 4 green colors and remaining 36 red, and there are

exactly 6 such colorings which are chiral. That is, among the 84 equivalence classes of cell colorings for [36 4] partition of colors there are

exactly six chiral pairs in that mirror images of a chiral coloring is not superimposable on the original coloring. In order to illustrate this

further consider a regular 3D cube. Among the total of 14 equivalence classes produced for all 2-colorings of the vertices of a 3D cube, only

one coloring is chiral and all remaining colorings are achiral. The chiral coloring is shown in Figure 2.

Figure 4.1: The only chiral coloring among 14 equivalence classes of 2-colorings of vertices of a cube. This is enumerated as the number of A1u irreducible
representations for the 2-colorings. For the 5D-hypercube the first chiral coloring appears for 4 greens and 28 reds. There are 2, 26, 148, 653, 2218, 6300,
14972, 30,730, and 54,528 such chiral colorings for 4, 5, 6, 7, 8, 9, 10, 11, and 12 green colors (remaining red), respectively for the 2-colorings of the vertices
of the 5D-hypercube as enumerated by the A2 chiral representation of the 5D-hypercube..

The numbers of chiral colorings for face-colorings of the 5D-hypercube are given by the numbers of the A2 IR in Table 4, and it can be

seen as 14, 326, 5722, 74973, 811,527, 7, 477, 975 and 60,113,621 for 3, 4, 5, 6, 7, 8, and 9 greens (remaining reds), respectively. The

corresponding results for the edge 2-colorings are 12, 330, 5782, 75,369, 815,762, 60, 219, 494 and 428, 191, 237 for 3, 4, 5, 6, 7, 8, and 9

greens (remaining reds), respectively. Finally as can be seen from Table 6, 2-colorings of the vertices of the 5D-hypercube produce 2, 26,

148, 653, 2218, 6300, 14,972, 30,730, and 54,528 chiral colorings for 4, 5, 6, 7, 8, 9, 10, 11, and 12 green colors (remaining red), respectively.

Thus in order to produce a chiral coloring of 2-coloring of the vertices of a 5D-hypercube one needs at least 4 colors of one kind and 28

colors of another kind, and there are 2 such chiral colorings for [28 4] color distribution.

The alternating irreducible representation is defined as the one that exhibits +1 character values for even permutations of q=1 (n-1)hyperplanes

and -1 for the odd permutations. The set of all even permutations form the alternating subgroup of the hypercube group. The alternating

representation plays an important role in the quantum chemical classification of the rovibronic total wave functions of fermions as such

wave functions for fermions must transform as the alternating IR in order to comply with the Pauli Principle. For the 5D-hypercube the uni-

dimensional alternating IR is the A3 representation in Table 3-6. Thus the 2-colorings enumerated for the A3representationprovidesimportant

information on the nuclear spin functions of rovibronic levels and nuclear spin statistical weights of fermionic particles of molecules, for

example, water pentamer. We thus point out that these combinatorial enumerations aid in the analysis of experimental spectroscopic studies

of weakly-bound van der waals clusters and molecular clusters of polar molecules such as ammoniated ammonia, (H2O)n, (NH3)n [50], [64],

[62] etc., as such clusters exhibit potential energy surfaces with multiple valleys separated by surmountable mountains, and consequently,

these molecular clusters undergo rapid tunneling motions. Hence these tunneling motions that occur rapidly at higher room temperatures

result in the splittings of the rovibronic levels to tunneling levels. Consequently, the interpretation of the rovibronic spectra of these molecular

clusters requires hypercube colorings and detailed analysis for all IRs.

Finally we would like to point out applications to biology in the context of genetic regulatory network and phylogeny. The phylogenic trees

are recursive in nature and they are special cases of Cayley trees and thus the automorphism groups and colorings of phylogenic trees require

nested nD-hypergroups and wreath products. Likewise, in genetics it has been shown that canalization or control of one genetic trait by

another trait of genetic regulatory networks is important in evolutionary processes, and such networks are represented by nD-hypercubes

where the vertices of the nD-hypercube represent the 2n possible Boolean functions for n traits. Reichhardt and Bassler [34] have shown

the connection between 2-colorings of an nD-hypercube and genetic regulatory pathways, and the necessity to classify the 2-colorings of

the vertices into equivalence classes in order to generate a smaller clustering subsets on the basis of equivalence classes thus enumerated

for the 2-colorings of the vertices of the nD-hypercube. Thus the properties of any representative function in a class would have the same

genetic expression as any other function in the equivalence class thereby reducing the amount of computations. The question of if chirality in

colorings would have any implication in the probability of producing chiral traits and thus biological evolutionary implication of chirality has

not been visited thus far.

5. Conclusion

Combinatorial enumeration of 2-colorings for all irreducible representations and all hyperplanes for were considered for a 5D-hypercube.

The techniques involved Möbius inversion combined with generalized character cycle indices for all 36 irreducible representations of the

5D-hypercube. We also discussed applications chirality, alternation of colorings in the equivalence class. Applications to genetics and

molecular spectroscopy were pointed out. As nD-hypercube colorings explode combinatorially in astronomical proportions, it remains to be

seen how well the techniques will computationally scale and work for higher dimensional hypercubes.
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Table 2: Conjugacy Classes, polynomials, cycle types of a regular cube or 3D-cube with group S3[S2]

CC |CC| O Fd(x) q = 1 q = 2 q = 3

(face) (edge) (Vert)
(

3 0 0

0 0 0

)

1 E F1(x) = (1+2x)3 16 112 18

(

2 0 0

1 0 0

)

3 σh F1(x) = (1+2x)2 142 1424 24

F2(x) = (1+2x)3
(

1 0 0

2 0 0

)

3 C2
4 F1(x) = (1+2x) 1222 26 24

F2(x) = (1+2x)3
(

0 0 0

3 0 0

)

1 i F1(x) = 1 23 26 24

F2(x) = (1+2x)3
(

1 1 0

0 0 0

)

6 σd F1(x) = (1+2x)(1+2x2) 1212 1225 1422

F2(x) = (1+2x)3
(

1 0 0

0 1 0

)

6 C4 F1(x) = (1+2x) 124 43 42

F2(x) = (1+2x)
F4(x) = (1+2x)3

(

0 1 0

1 0 0

)

6 C2 F1(x) = (1+2x2) 23 1225 24

F2(x) = (1+2x)3
(

0 0 0

1 1 0

)

6 S4 F1(x) = 1 2141 43 42

F2(x) = (1+2x)
F4(x) = (1+2x)3

(

0 0 1

0 0 0

)

8 C3 F1(x) = (1+2x3) 32 34 1232

F3(x) = (1+2x)3
(

0 0 0

0 0 1

)

8 S3 F1(x) = 1 6 62 26

F2(x) = (1+2x3)
F3(x) = 1

F6(x) = (1+2x)3
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Table 3: Conjugacy Classes of S5[S2], their orders, Fd polynomials and cycle types generated using Möbius inversion for the 5D-hypercube’s five hyperplanes*.

Conj Class |C| Fd(x) q = 1 q = 2 q = 3 q = 4 q = 5

C tes Cel fac ed Ver
(

5 0 0 0 0

0 0 0 0 0

)

1E F1(x) = (1+2x)5 110 140 180 180 132

(

4 0 0 0 0

1 0 0 0 0

)

5 F1(x) = (1+2x)4 182 12428 132224 116232 216

F2(x) = (1+2x)5
(

3 0 0 0 0

2 0 0 0 0

)

10R F1(x) = (1+2x)3 1822 112214 18236 240 216

F2(x) = (1+2x)5
(

2 0 0 0 0

3 0 0 0 0

)

10 F1(x) = (1+2x)2 1423 14218 240 240 216

F2(x) = (1+2x)5
(

1 0 0 0 0

4 0 0 0 0

)

5R F1(x) = (1+2x) 1224 220 240 240 216

F2(x) = (1+2x)5
(

0 0 0 0 0

5 0 0 0 0

)

1 F1(x) = 1 25 220 240 240 216

F2(x) = (1+2x)5
(

3 1 0 0 0

0 0 0 0 0

)

20 F1(x) = (1+2x)3(1+2x2) 1622 114213 120230 124228 11628

F2(x) = (1+2x)5
(

3 0 0 0 0

0 1 0 0 0

)

20R F1(x) = (1+2x)3 164 11247 18418 420 48

F2(x) = (1+2x)3

F4(x) = (1+2x)5
(

2 1 0 0 0

1 0 0 0 0

)

60R F1(x) = (1+2x)2(1+2x2) 1423 116217 18236 18236 216

F2(x) = (1+2x)5
(

2 0 0 0 0

1 1 0 0 0

)

60 F1(x) = (1+2x)2 1424 142447 24418 420 48

F2(x) = (1+2x)3

F4(x) = (1+2x)5
(

1 1 0 0 0

2 0 0 0 0

)

60 F1(x) = (1+2x)(1+2x2) 1224 12219 14238 240 216

F2(x) = (1+2x)5
(

1 0 0 0 0

2 1 0 0 0

)

60R F1(x) = (1+2x) 14224 2647 24418 420 48

F2(x) = (1+2x)3

F4(x) = (1+2x)5
(

0 1 0 0 0

3 0 0 0 0

)

20R F1(x) = (1+2x2) 25 12219 240 240 216

F2(x) = (1+2x)5
(

0 0 0 0 0

3 1 0 0 0

)

20 F1(x) = 1 234 2647 24418 420 48

F2(x) = (1+2x)3

F4(x) = (1+2x)5
(

2 0 1 0 0

0 0 0 0 0

)

80R F1(x) = (1+2x)2(1+2x3) 1432 14312 12226 18324 1838

F3(x) = (1+2x)5
(

2 0 0 0 0

0 0 1 0 0

)

80 F1(x) = (1+2x)2 146 1466 2613 24612 2464

F2(x) = (1+2x)2(1+2x3)
F3(x) = (1+2x)2

F6(x) = (1+2x)5
(

1 0 1 0 0

1 0 0 0 0

)

160 F1(x) = (1+2x)(1+2x3) 12232 2231068 123862 142234610 2464

F2(x) = (1+2x)2(1+2x3)
F3(x) = (1+2x)4

F6(x) = (1+2x)5
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Table 4: Conjugacy Classes of S5[S2], their orders, Fd polynomials and cycle types generated using Möbius inversion for the 5D-hypercube’s five hyperplanes*,
(Cont.).

Conj Class |C| Fd(x) q = 1 q = 2 q = 3 q = 4 q = 5

C tes Cel fac ed Ver
(

1 0 0 0 0

1 0 1 0 0

)

160R F1(x) = (1+2x) 1226 2266 2613 24612 2464

F2(x) = (1+2x)2(1+2x3)
F3(x) = (1+2x)

F6(x) = (1+2x)5
(

0 0 1 0 0

2 0 0 0 0

)

80R F1(x) = (1+2x3) 2232 223464 1232612 24612 2464

F2(x) = (1+2x)2(1+2x3)
F3(x) = (1+2x)3

F6(x) = (1+2x)5
(

0 0 0 0 0

2 0 1 0 0

)

80 F1(x) = 1 226 2266 2613 24612 2464

F2(x) = (1+2x)2(1+2x3)
F3(x) = 1

F6(x) = (1+2x)5
(

1 2 0 0 0

0 0 0 0 0

)

60R F1(x) = (1+2x)(1+2x2)2 1224 14218 18236 14238 18212

F2(x) = (1+2x)5
(

1 1 0 0 0

0 1 0 0 0

)

120 F1(x) = (1+2x)(1+2x2) 12224 122547 1422418 420 48

F2(x) = (1+2x)3

F4(x) = (1+2x)5
(

0 2 0 0 0

1 0 0 0 0

)

60 F1(x) = (1+2x2)2 25 14218 240 14238 216

F2(x) = (1+2x)5
(

0 1 0 0 0

1 1 0 0 0

)

120R F1(x) = (1+2x2) 234 122547 24418 420 48

F2(x) = (1+2x)3

F4(x) = (1+2x)5
(

1 0 0 0 0

0 2 0 0 0

)

60R F1(x) = (1+2x) 12424 410 420 420 48

F2(x) = (1+2x)

F4(x) = (1+2x)5
(

0 0 0 0 0

1 2 0 0 0

)

60 F1(x) = 1 242 410 420 420 48

F2(x) = (1+2x)

F4(x) = (1+2x)5
(

1 0 0 1 0

0 0 0 0 0

)

240 F1(x) = (1+2x)(1+2x4) 12424 2249 24418 122419 142246

F2(x) = (1+2x)(1+2x2)2

F4(x) = (1+2x)5
(

1 0 0 0 0

0 0 0 1 0

)

240R F1(x) = (1+2x) 128 85 810 810 84

F2(x) = (1+2x)
F4(x) = (1+2x)

F8(x) = (1+2x)5
(

0 0 0 1 0

1 0 0 0 0

)

240R F1(x) = (1+2x)(1+2x4) 242 2249 24418 122419 2446

F2(x) = (1+2x)(1+2x2)2

F4(x) = (1+2x)5
(

0 0 0 0 0

1 0 0 1 0

)

240 F1(x) = 1 28 85 810 810 84

F2(x) = (1+2x)
F4(x) = (1+2x)

F8(x) = (1+2x)5
(

0 1 1 0 0

1 0 0 1 0

)

160 F1(x) = (1+2x2)(1+2x3) 2332 1223464 1236610 243868 14223462

F2(x) = (1+2x)2(1+2x3)
F3(x) = (1+2x2)(1+2x)3

F6(x) = (1+2x)5
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Table 5: Conjugacy Classes of S5[S2], their orders, Fd polynomials and cycle types generated using Möbius inversion for the 5D-hypercube’s five hyperplanes*,
(Cont.).

Conj Class |C| Fd(x) q = 1 q = 2 q = 3 q = 4 q = 5

C tes Cel fac ed Ver
(

0 1 0 0 0

0 0 1 0 0

)

160R F1(x) = (1+2x2) 226 12266 2613 24612 2464

F2(x) = (1+2x)2(1+2x3)
F3(x) = (1+2x2)

F6(x) = (1+2x)5
(

0 0 1 0 0

0 1 0 0 0

)

160R F1(x) = (1+2x3) 432 344122 1232126 42126 42122

F2(x) = (1+2x3)
F3(x) = (1+2x)3

F4(x) = (1+2x)2(1+2x3)
F6(x) = (1+2x)3

F12(x) = (1+2x)5
(

0 0 0 0 0

0 1 1 0 0

)

160 F1(x) = 1 46 462122 26126 42126 42122

F2(x) = (1+2x3)
F3(x) = 1

F4(x) = (1+2x)2(1+2x3)
F6(x) = (1+2x)3

F12(x) = (1+2x)5
(

0 0 0 0 1

0 0 0 0 0

)

384R F1(x) = (1+2x5) 52 58 516 516 1256

F5(x) = (1+2x)5
(

0 0 0 0 0

0 0 0 0 1

)

384 F1(x) = 1 10 104 108 108 21103

F2(x) = (1+2x5)
F5(x) = 1

F10(x) = (1+2x)5

*Label R identifies proper rotations.
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Table 6: 2-colorings of q = 2 or 3-hyerplnes (cells) of 5D-hhypercube*

[λ ] 40 39 1 38 2 37 3 36 4 35 5

A1 1 1 5 18 84 362

A2∗ 0 0 0 0 6 84

A3† 0 0 0 1 17 130

A4 0 0 0 3 29 218

A5 0 0 0 14 132 912

A6 0 1 8 41 234 1198

A7 0 0 0 1 33 376

A8 0 0 0 3 53 466

A9 0 0 3 28 211 1266

A10 0 1 7 43 261 1410

A11 0 0 0 2 46 502

A12 0 0 0 3 57 548

A13 0 0 1 11 105 753

A14 0 0 0 4 59 570

A15 0 1 5 36 217 1247

A16 0 0 0 10 130 958

A17 0 0 3 34 253 1534

A18 0 0 0 3 63 632

A19 0 0 1 20 225 1705

A20 0 0 0 19 231 1741

A21 0 1 7 48 335 2060

A22 0 10 2 30 266 1853

A23 0 0 0 11 161 1394

A24 0 0 1 16 181 1454

A25 0 0 2 27 237 1684

A26 0 0 1 22 217 1624

A27 0 0 1 14 158 1315

A28 0 0 4 44 341 2197

A29 0 0 0 11 191 1808

A30 0 0 0 18 232 1991

A31 0 0 4 54 471 3155

A32 0 1 9 80 558 3444

A33 0 0 3 50 489 3556

A34 0 0 6 66 562 3797

A35 0 0 1 32 376 3012

A36 0 0 3 40 414 3130

[λ ] 34 6 33 7 32 8 31 9 30 10 29 11

A1 1608 6549 24447 81523 243027 645920

A2∗ 657 3750 16898 63366 203095 565964

A3† 820 4201 18036 65883 208248 575519

A4 1196 5575 22187 76923 234085 630118

A5 4957 22752 89932 310271 941691 2530274

A6 5764 24690 94419 319457 959523 2561868

A7 2788 15437 68714 255963 817470 2273349

A8 3112 16337 70988 260991 827766 2292449

A9 6548 29276 114337 391745 1184645 3176086

A10 6951 30250 116572 396345 1193551 3191888

A11 3603 19622 86732 321822 1025657 2848796

A12 3766 20073 87870 324339 1030810 2858351

A13 4505 22424 94334 340422 1066636 2931379

A14 3902 20774 90308 331592 1048890 2898671



Journal of Mathematical Sciences and Modelling 171

Table 7: 2-colorings of q = 2 or 3-hyerplnes (cells) of 5D-hhypercube*, (Cont.)

[λ ] 40 39 1 38 2 37 3 36 4 35 5

A15 6315 28332 111060 382756 1162511 3128715

A16 5519 26226 106192 372241 1142010 3091274

A17 7917 35318 137717 471282 1424118 3816104

A18 4423 23823 104768 387705 1233905 3424315

A19 10100 49179 202674 719261 2225769 6060963

A20 10246 49608 203802 721773 2231003 6070695

A21 11143 51877 209058 732893 2252661 6109809

A22 10559 50479 205914 726505 2240491 6088449

A23 8893 45231 191440 690879 2161351 5928638

A24 9081 45720 192650 693498 2166648 5938361

A25 9791 47669 197270 703613 2186655 5975122

A26 9603 47180 196060 700994 2181358 5965399

A27 8394 43167 184598 671959 2115409 5829890

A28 11821 54521 217202 754936 2304404 6219829

A29 12097 63479 273932 1001661 3160917 8722835

A30 12691 65129 277938 1010491 3178627 8755543

A31 17340 80747 323394 1127177 3446414 9311103

A32 18136 82853 328262 1137692 3466915 9348544

A33 20657 99644 408572 1445748 4466210 12149350

A34 21383 101463 412836 1454636 4483602 12180432

A35 18488 92296 387472 1391838 4342653 11893939

A36 18860 93370 389890 1397068 4353235 11913375

[λ ] 28 12 27 13 26 14 25 15 24 16 20 20

A1 1534959 3268238 6253840 10780533 16780905 36600432

A2∗ 1387615 3018198 5860684 10206958 16001831 35267044

A3† 1404093 3044481 5899917 10261735 16073555 35382134

A4 1508474 3227163 6193673 10698058 16674124 36432620

A5 6051057 12935884 24815540 42849105 66771193 145850208

A6 6103944 13018005 24935767 43014020 66984612 146185674

A7 5566873 12098955 23481819 40882439 64078845 141182942

A8 5599815 12151509 23560277 40991977 64222269 141413110

A9 7585897 16203956 31069136 53629419 83551831 182450208

A10 7612322 16245031 31129219 53711894 83658502 182617894

A11 6970887 15143304 29381578 51144016 80152173 176564772

A12 6987365 15169587 29420811 51198793 80223897 176679862

A13 7122810 15401876 29787455 51737069 80956494 177940894

A14 7066962 15313232 29655841 51554067 80717484 177559178

A15 4793096 16040561 30802821 53232534 83001076 181479598

A16 7430012 15940878 30655982 53029221 82736568 181059380

A17 9111568 19458488 37303794 64384562 100300776 219002868

A18 8374980 18187785 35281495 61405751 96225728 211946906

A19 14630010 31481747 60673483 105113023 164178470 359867382

A20 14646966 31508798 60714034 105169696 164252800 359986806

A21 14712710 31612100 60865880 105379320 164525016 360417862

A22 14677526 31557917 60787385 105272259 164387422 360203692

A23 14381627 31054027 59993215 104112178 162809521 357499270

A24 14398357 31080628 60032854 104167367 162881749 357614990

A25 14460573 31179079 60178307 104369056 163144521 358033038

A26 14443843 31152478 60138668 104313867 163072293 357917318

A27 14189604 30714843 59442940 103290802 161673524 355499400

A28 14922940 31981159 61458432 106261406 165737190 362538286

A29 21247566 46014649 89080019 154819871 242359594 533011478

A30 21303354 46103293 89211549 155002873 242598504 533393068

A31 22352952 47922037 92114414 159290627 248473758 543597666

A32 22416036 48021720 92261253 159493940 248738266 544017884

A33 29307474 63039544 121460718 210385140 328565692 720070782

A34 29359594 63120751 121579741 210548843 328777586 720404344

A35 28825377 62206368 120131677 208425861 325881583 715416208

A36 28858823 62259556 120210947 208536219 326026015 715647636

∗Identifies Chiral Representation, †Identifies Alternating Representation
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Table 8: 2-colorings of 5D-hypercube: q=3 or 2-hyperplanes(faces)

[λ ] 80 0 79 1 78 2 77 3 76 4 75 5

A1 1 1 8 54 633 7287

A2∗ 0 0 0 14 326 5722

A3† 0 0 1 2 408 699

A4 0 0 0 19 418 661

A5 0 0 1 86 1724 25905

A6 0 1 14 154 2138 27755

A7 0 0 0 48 1329 22923

A8 0 0 2 71 1491 23876

A9 0 0 8 136 2349 33188

A10 0 1 14 171 2552 34114

A11 0 0 1 73 1735 29121

A12 0 0 2 85 1817 29598

A13 0 0 6 110 2060 30896

A14 0 0 1 73 1771 29392

A15 0 1 10 168 2435 33702

A16 0 0 3 106 2090 31741

A17 0 0 7 167 2811 40020

A18 0 0 1 79 2086 34886

A19 0 0 7 201 4067 62428

A20 0 0 6 213 4117 62905

A21 0 1 18 275 4557 64866

A22 0 0 6 220 4201 6500

A23 0 0 4 173 3807 60718

A24 0 0 4 165 3833 60755

A25 0 1 11 245 4232 6148

A26 0 0 8 210 4090 62222

A27 0 0 7 180 3825 60285

A28 0 1 13 271 4519 65440

A29 0 0 4 233 5451 89243

A30 0 0 7 270 5728 90747

A31 0 0 14 354 6550 96726

A32 0 1 21 416 6895 98687

A33 0 0 13 421 8268 125928

A34 0 1 24 487 8672 127770

A35 0 0 12 381 7893 122938

A36 0 0 15 406 8057 123899

[λ ] 74 6 73 7 72 8 71 9 70 10 69 11

A1 83555 849445 7641565 60729304 429970617 2732388768

A2∗ 74973 811527 7477975 60113621 427758604 2725189869

A3† 77230 821376 7515124 60245702 428179564 2726468083

A4 79347 833673 7583400 60540511 429376647 2730690404

A5 319235 3344486 30366992 242293889 1717899937 10924039594

A6 327603 3376017 30483176 242671455 1719087495 10927436302

A7 301055 3250060 29935770 240529874 1711337285 10901617831

A8 305566 3269746 30010065 240794016 1712179165 10904174239

A9 402754 4193869 38008521 303022994 2147870156 13656428163

A10 406924 4209641 38066550 303211787 2148463784 13658126527

A11 378269 4071401 37450878 300775427 2139516551 13628085765

A12 380526 4081250 37488027 300907508 2139937511 13629363979



Journal of Mathematical Sciences and Modelling 173

Table 9: 2-colorings of 5D-hypercube: q=3 or 2-hyperplanes(faces)

[λ ] 80 0 79 1 78 2 77 3 76 4 75 5

A13 388244 4115896 37642667 301493236 2142078579 13636348861

A14 380718 4085029 37522094 301081473 2140734613 13632382149

A15 403325 4194147 37983313 302887223 2147152220 13653690659

A16 394699 4157315 37849447 302418655 2145690306 13649303434

A17 483936 5037385 45625203 363695529 2577640232 16388396724

A18 454418 4886903 44952736 360964567 2567578338 16354134118

A19 782696 8276912 75522353 604085534 4288538040 27288670143

A20 784537 8286761 75555698 604217615 4288931526 27289948357

A21 794398 8323593 75700964 604686183 4290475691 27294335582

A22 787906 8301941 75618251 604440771 4289681978 27292217431

A23 772614 8226772 75295921 603175242 4285167659 27277249393

A24 773790 8230741 75319810 603250704 4285470842 27278107820

A25 783478 8273411 75466888 603775798 4287050362 27282914469

A26 780121 8257639 75416431 603587005 4286511454 27281216105

A27 768923 8200847 75164722 602574387 4282812548 27268730688

A28 797985 8351384 75832721 605305556 4292841882 27302993771

A29 1147363 12280002 112662231 903599298 6423347475 40900693107

A30 1154851 12310869 112782678 904011061 6424691099 40904659819

A31 1191584 12502770 113668866 907667442 6438414240 40951876998

A32 1200210 12539602 113802732 908136010 6439876154 40956264223

A33 1570592 16578830 151140594 1208526176 8578219760 54580887445

A34 1578916 16610319 151256643 1208903649 8579406919 54584283790

A35 1552712 16484362 150712329 1206762068 8571678755 54558465319

A36 1557242 16504090 150786672 1207026303 8572520806 54561022090
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Table 10

[λ ] 44 36 43 37 42 38 41 39 40 40

A1 18847863525339251552 22413675116856521554 25362842575806673932 27313830262039356344 27996675954790045648

A2∗ 18847852585019852784 22413662952649979772 25362829447471548304 27313816527678832042 27996662005552559820

A3† 18847853190803004294 22413663622117296124 25362830164050160934 27313817276349083728 27996662763315380740

A4 18847862859627984748 22413674384398836626 25362841789323193438 27313829443562144630 27996675123446791678

A5 75391452039570414338 89654698207061418894 101451367868400802692 109255318522918146262 111986701245805189142

A6 75391453370992774196 89654699671976785110 101451369441367576670 109255320159872567790 111986702908491503538

A7 75391410895382419988 89654652417075817924 101451318447499755284 109255266789578133400 111986648717878780904

A8 75391412106948721622 89654653756010447008 101451319880656979158 109255268286918634892 111986650233404418984

A9 94239315564909056836 112068373323916723632 126814210444206867570 136569148784956847548 139983377200593924674

A10 94239316230620152144 112068374056374408560 126814211230690163308 136569149603434059262 139983378031936988900

A11 94239264086184823660 112068316039191912380 126814148611549315596 136569084065926569990 139983311481192867368

A12 94239264691967975170 112068316708659228732 126814149328127928226 136569084814596821676 139983312238955688288

A13 94239275611010301062 112068328846778722822 126814162431677508060 136569098520092612896 139983326162116863420

A14 94239273757571746680 112068326806566039966 126814160239766081968 136569096238736595918 139983323844407910574

A15 94239306532959553232 112068363268005984602 126814199571879555474 136569137407356432010 139983365636539659632

A16 94239304629041322386 112068361164802814868 126814197321003585678 136569135056193326978 139983363256737576052

A17 113087179025595952234 134482048377782845824 152177052944638511992 163882978977189213078 167980053076059861824

A18 113087117226508284532 134481979598318989036 152176978716635025204 163882901272468852522 167979974182415265728

A19 188478589300930046414 224136700109485934928 253628370658848001576 273138245000424414272 279966701018560496814

A20 188478589901989013044 224136700778953251280 253628371369956483346 273138245749094665958 279966701770579703858

A21 188478591820079755620 224136702882156421014 253628373637242754192 273138248100257770990 279966704167612580446

A22 188478591089716591170 224136702086708485832 253628372775384675292 273138247211973727294 279966703256945725386

A23 188478568698399675330 224136677182998016880 253628345912898114958 273138219098850995800 279966674717232831548

A24 188478569253703298004 224136677789475082978 253628346570512276262 273138219777714415504 279966675412902686308

A25 188478571208100940998 224136679955668384664 253628348880352605006 273138222198684224492 279966677854797606408

A26 188478570551838143964 224136679223210699736 253628348104809448672 273138221380207012778 279966677034941689648

A27 188478549368580840744 224136655653342348792 253628322671442383030 273138194758827908970 279966650006522174306

A28 188478611161999668620 224136724432806385474 253628396892881934154 273138272463548459144 279966728893274635996

A29 282717823061500661778 336204982396918169290 380442482835833897378 409707290927757703692 419949973771606452858

A30 282717824914939044664 336204984437130852146 380442485027745138714 409707293209113720670 419949976089315216212

A311 282717915740561360068 336205085534618800980 380442594154920976128 409707407449934795308 419950092087919132428

A32 282717917644479590914 336205087637821970714 380442596405796945924 409707409801097900340 419950094467721216008

A33 376957180390646038772 448273402196193222712 507256743434232078056 546276492212397496308 559933404275504931684

A34 376957181722068167618 448273403661108470626 507256745007198636492 546276493849351789810 559933405938190990028

A35 376957139250237212918 448273356406207503440 507256694017706957254 546276440479057355420 559933351752173214880

A36 376957140461803631240 448273357745142250826 507256695450864273506 546276441976397984938 559933353267698982600

*Identifies Chiral Representation

†Identifies Alternating Representation
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Table 11: 2-colorings of 5D-hypercube for q=4 or 1-hyperplanes (edges) of 5D-hypercube

[λ ] 80 0 79 1 78 2 77 3 76 4 75 5

A1 1 1 8 50 608 7092

A2∗ 0 0 0 12 330 5782

A3† 0 0 2 30 488 6690

A4 0 0 0 10 319 5730

A5 0 0 0 55 1426 23866

A6 0 1 13 132 1990 26563

A7 0 0 1 64 1465 23992

A8 0 0 5 98 1781 25800

A9 0 0 3 97 2010 30903

A10 0 0 10 136 2289 32246

A11 0 0 2 90 1940 30638

A12 0 0 4 108 2098 31546

A13 0 1 10 148 2345 32892

A14 0 0 2 74 1808 29722

A15 0 1 10 162 2385 33253

A16 0 0 1 67 1795 29648

A17 0 0 5 127 2489 37615

A18 0 0 4 120 2428 37328

A19 0 0 4 171 3786 60625

A20 0 0 6 191 3952 61607

A21 0 1 19 284 4598 65138

A22 0 0 6 225 4204 63415

A23 0 0 3 157 3735 60286

A24 0 0 5 175 3893 61194

A25 0 1 14 270 4483 64799

A26 0 1 12 252 4325 63891

A27 0 0 9 212 4121 62523

A28 0 0 8 219 4148 62810

A29 0 0 6 267 5820 91884

A30 0 0 13 340 6347 95035

A31 0 0 9 286 5943 92458

A32 0 1 18 381 6533 96063

A33 0 0 10 394 7978 124004

A34 0 1 23 471 8536 126701

A35 0 0 13 403 8041 124130

A36 0 0 17 437 8357 125938

[λ ] 74 6 73 7 72 8 71 9 70 10 69 11

A1 82379 843038 7611823 60601324 429479585 2730645204

A2∗ 75639 815762 7501366 60219494 428191237 2726763270

A3† 80615 837606 7592170 60547288 429312879 2730230168

A4 75477 815283 7500045 60216779 428185149 2726758252

A5 307123 3284074 30095715 241209472 1713913625 10910627650

A6 320894 3339553 30319122 241978353 1716502254 10918401261

A7 307440 3284670 30095732 241204688 1713884368 10910515598

A8 317386 3328346 30277316 241860238 1716127616 10917449272

A9 389378 4126847 37706909 301809609 2143390868 13641268215

A10 396261 4154583 37818587 302193983 2144685133 13645154996

A11 387957 4122042 37687342 301750856 2143195045 13640741264

A12 392933 4143886 37778146 302078650 2144316687 13644208162

A13 399267 4171384 37884523 302461562 2145574281 13648094476

A14 383245 4099953 37598806 301421467 2142091443 13637273850

A15 400355 4177159 37900610 302525641 2145738361 13648631429

A16 383252 4099836 37601654 301428966 2142137746 13637390920

A17 470161 4965306 45302969 362369722 2572751209 16371625455

A18 468572 4959648 45279512 362298144 2572507924 16370971432

*Identifies Chiral Representation

†Identifies Alternating Representation
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Table 12: 2-colorings of 5D-hypercube for q=4 or 1-hyperplanes (edges) of 5D-hypercube

[λ ] 80 0 79 1 78 2 77 3 76 4 75 5

A19 772214 8226800 75301905 603231076 4285454906 27278542065

A20 777520 8249976 75397983 603574410 4286630098 27282141053

A21 795119 8325967 75699273 604655545 4290232009 27293249472

A22 786640 8293652 75571959 604229960 4288818500 27289074727

A23 771209 8221878 75288996 603179822 4285332791 27278132184

A24 776185 8243722 75379800 603507616 4286454433 27281599082

A25 793288 8321045 75678756 604604291 4290055048 27292839591

A26 788312 8299201 75587952 604276497 4288933406 27289372693

A27 782308 8270850 75482201 603880760 4287661270 27285359307

A28 783403 8276508 75501136 603952338 4287871653 27286013330

A29 1163976 12366243 113065434 905261187 6429633640 40922345364

A30 1179979 12437655 113351061 906301111 6433116307 40933165819

A31 1166655 12376344 113102790 905381304 6430009399 40923404250

A32 1183758 12453667 113401746 906477979 6433610014 40934644759

A33 1558766 16520230 150873340 1207459954 8574271258 54567612412

A34 1572537 16575709 151096684 1208228835 8576859887 54575386023

A35 1559415 16520826 150876380 1207455170 8574263945 54567500360

A36 1569361 16564502 151057964 1208110720 8576507193 54574434034

*Identifies Chiral Representation

†Identifies Alternating Representation
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Table 13: 2-colorings of 5D-hypercube for q=4 or 1-hyperplanes (edges) of 5D-hypercube (Cont.)

[λ ] 44 36 43 37 42 38 41 39 40 40

A1 18847859334620010456 22413670446997972838 25362837531743140240 27313824978896887460 27996670589987902014

A2∗ 18847856749898064896 22413667593567098448 25362834461344949584 27313821778724903160 27996667338560535196

A3† 18847859257885780852 22413670364841246912 25362837441865001528 27313824887601341100 27996670495254082980

A4 18847856766704295498 22413667612733468770 25362834481318343144 27313821800213507326 27996667359714049916

A5 75391429606157432796 89654673254005600786 101451340942485322288 109255290345061834468 111986672634212247242

A6 75391434741988768948 89654678922534504952 101451347043334813206 109255296702428492698 111986679094759845390

A7 75391429507567646082 89654673145529299732 101451340825886267878 109255290223762071580 111986672510921365600

A8 75391434523543070266 89654678688077585068 101451346786926363114 109255296441514937800 111986678824308450416

A9 94239288940765094724 112068343700990309476 126814178474214859414 136569115323944723314 139983343224185808696

A10 94239291508680725702 112068346535254721166 126814181524639564132 136569118502628011070 139983346454459568290

A11 94239288765441089748 112068343510357292528 126814178267737678352 136569115111349424020 139983343006161121260

A12 94239291273428805704 112068346281631440992 126814181248257730296 136569118220225861960 139983346162854669044

A13 94239293852494038614 112068349135075557906 126814184312105381812 136569121420411825260 139983349407403993730

A14 94239286278051269304 112068340758262768502 126814175311580690928 136569112023975578906 139983339875230284004

A15 94239293986646838254 112068349287375751864 126814184469883533380 136569121590029833798 139983349573931817500

A16 94239286361724523754 112068340847572699234 126814175410394391170 136569112123786737628 139983339979665122900

A17 113087148246821895790 134482014116808664130 152177015972758652110 163882940268379932380 167980013779270147172

A18 113087148023326870600 134482013875198539440 152177015709602679880 163882939998950765120 167980013501415204240

A19 188478575214092180140 224136684459253077978 253628353780325450740 273138227347920302220 279966683093672480502

A20 188478577753444741688 224136687262337963862 253628356797550900292 273138230492142003960 279966686289042830634

A21 188478585356450552428 224136695670330279072 253628365831274846342 273138239923039836330 279966695856119919142

A22 188478582759971824040 224136692804886249198 253628362747650794080 273138236709894870180 279966692590942719194

A23 188478575127165613502 224136684357929991762 253628353678132069522 273138227235136161648 279966682985826244160

A24 188478577635153329458 224136687129204140226 253628356658652121466 273138230344012599588 279966686142519791944

A25 188478585260075643958 224136695569007192856 253628365718141263676 273138239810255695758 279966695736786486544

A26 188478582752087928002 224136692797733044392 253628362737621211732 273138236701379257818 279966692580092938760

A27 188478580130520633006 224136689893311819736 253628359623658890590 273138233444359426552 279966689282605624774

A28 188478580348346687096 224136690134921944426 253628359880250742400 273138233713788593812 279966689553568287440

A29 282717866380008860880 336205030620395062432 380442534902040326352 409707345433873419442 419950029122932529996

A30 282717873954451546210 336205038997207759458 380442543902564924858 409707354830309573418 419950038655106147470

A31 282717866710071210850 336205030982494643660 380442535290645133570 409707345837575331440 419950029533233410340

A32 282717874334993525350 336205039422297696290 380442544350134275780 409707355303818427610 419950039127500104940

A33 376957157974051675740 448273377264126084652 507256716527962663540 546276464057801193400 559933375684600884504

A34 376957163109882955912 448273382932654988818 507256722628812154458 546276470415167851630 559933382145148421080

A35 376957157879241203778 448273377155649783598 507256716415739690158 546276463936501430512 559933375565904857280

A36 376957162895216627962 448273382698198068934 507256722376779785394 546276470154254296732 559933381879291942096

*Identifies Chiral Representation

†Identifies Alternating Representation
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Table 14: Table 6: Two-Colorings of Vertices or q=5-hyperplanes of 5D-hypercube.

[λ ] 32 0 31 1 30 2 29 3 28 4 27 5 26 6 25 7 24 8

A1 1 1 5 10 47 131 472 1326 3779

A2∗ 0 0 0 0 2 26 148 653 2218

A3† 0 1 2 10 33 131 421 1326 3616

A4 0 0 0 0 1 26 144 653 2210

A5 0 0 0 0 8 120 664 2870 9511

A6 0 0 4 13 82 310 1281 4174 12576

A7 0 0 0 0 13 120 690 2870 9600

A8 0 0 2 13 67 310 1215 4174 12360

A9 0 0 0 4 39 228 1092 4135 13189

A10 0 0 2 11 77 324 1399 4789 14718

A11 0 0 0 4 35 228 1073 4135 13128

A12 0 0 1 11 64 324 1339 4789 14514

A13 0 1 5 23 105 441 1657 5500 16038

A14 0 0 0 0 17 146 852 3523 11868

A15 0 1 4 23 100 441 1636 5500 15976

A16 0 0 0 0 15 146 838 3523 11818

A17 0 0 0 3 42 276 1335 5068 16098

A18 0 0 0 3 45 276 1342 5068 16126

A19 0 0 0 4 52 374 1922 7658 24982

A20 0 0 0 3 56 396 2021 7938 25690

A21 0 1 7 34 176 765 3034 10289 30678

A22 0 0 0 16 100 586 2498 9242 28298

A23 0 0 0 4 50 374 1911 7658 24946

A24 0 0 0 3 58 396 2032 7938 25726

A25 0 1 5 34 164 765 2975 10289 30490

A26 0 0 2 16 112 586 2557 9242 28486

A27 0 0 2 15 106 552 2447 8924 27754

A28 0 0 1 15 99 552 2412 8924 27642

A29 0 0 0 7 91 624 3091 12073 38804

A30 0 0 2 27 171 910 3875 14031 42938

A31 0 0 0 7 93 624 3105 12073 38854

A32 0 0 3 27 176 910 3896 14031 43000

A33 0 0 0 18 148 948 4398 16862 53220

A34 0 0 4 31 220 1138 5015 18166 56276

A35 0 0 1 18 157 948 4444 16862 53368

A36 0 0 3 31 211 1138 4969 18166 56128

*Identifies Chiral Representation

†Identifies Alternating Representation
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Table 15: EN SON TABLO

[λ ] 23 9 22 10 21 11 20 12 19 13 18 14 17 15 16 16

A1 9013 19963 38073 65664 98804 133576 158658 169112

A2∗ 6300 14972 30730 54528 84854 115772 139549 148312

A3† 9013 19591 38073 64985 98804 132622 158658 168028

A4 6300 14955 30730 54502 84854 115733 139549 148272

A5 26577 62443 127170 224457 348060 473805 570371 605924

A6 31935 72346 141756 246631 375831 509313 608445 647402

A7 26577 62656 127170 224857 348060 474370 570371 606564

A8 31935 71835 141756 245691 375831 507976 608445 645892

A9 35457 82216 165022 289831 446538 607012 728648 774616

A10 38137 87161 172314 300905 460423 624750 747682 795338

A11 35457 82075 165022 289569 446538 606644 728648 774200

A12 38137 86673 172314 299996 460423 623459 747682 793876

A13 40948 91573 179829 310939 474635 640973 767103 814338

A14 32877 77754 157900 279619 432914 590482 709920 755258

A15 40948 91426 179829 310676 474635 640598 767103 813920

A16 32877 77628 157900 279385 432914 590142 709920 754876

A17 43199 99880 200138 350931 540233 733809 880619 935962

A18 43199 99934 200138 351041 540233 733952 880619 936136

A19 68334 159792 322922 569118 879452 1197022 1438568 1529340

A20 69776 162501 327308 575734 888293 1208086 1450990 1542436

A21 79085 178556 352143 611502 935058 1265251 1514785 1609132

A22 75134 171312 341894 595902 916064 1240734 1489064 1580692

A23 68334 159703 322922 568954 879452 1196786 1438568 1529076

A24 69776 162590 327308 575898 888293 1208322 1450990 1542700

A25 79085 178099 352143 610672 935058 1264057 1514785 1607796

A26 75134 171769 341894 596732 916064 1241928 1489064 1582028

A27 73594 169021 337336 590062 906961 1230818 1476330 1568876

A28 73594 168748 337336 589565 906961 1230103 1476330 1568076

A29 105233 244539 492330 865233 1334831 1814626 2179638 2316518

A30 113271 258295 514208 896465 1376487 1865012 2236746 2375486

A31 105233 244665 492330 865467 1334831 1814966 2179638 2316900

A32 113271 258442 514208 896728 1376487 1865387 2236746 2375904

A33 143370 330976 664644 1164802 1795254 2437474 2927320 3109712

A34 148728 340879 679230 1186958 1823025 2472982 2965394 3151168

A35 143370 331338 664644 1165463 1795254 2438425 2927320 3110776

A36 148728 340517 679230 1186297 1823025 2472031 2965394 3150104

Identifies Chiral Representation

†Identifies Alternating Representation
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Abstract

In this article, we study the form of the solutions of the system of difference equations

xn+1 = ((yn−8)/(1+ yn−2xn−5yn−8)), yn+1 = ((xn−8)/(1xn−2yn−5xn−8)), with the initial

conditions are real numbers. Also, we give the numerical examples of some of difference

equations and got some related graphs and figures using by Matlab.

1. Introduction

Our aim in this studying to get the techniques of solutions of the system of rational difference equations

xn+1 =
yn−8

1+ yn−2xn−5yn−8
, yn+1 =

xn−8

±1± xn−2yn−5xn−8
,

with real number‘s initial conditions x−8, x−7, x−6, x−5, x−4, x−3, x−2, x−1, x0, y−8, y−7, y−6, y−5, y−4, y−3, y−2, y−1, y0.
Lately, difference equations appear as discrete analogues of discovered evolution because most analysis of time evolving variables are

discrete. Also, there has been an increasing interest in the study of qualitative analysis of system of rational difference equations. Discrete

systems can be described as operators acting on functions with countable domains. These functions are also called discrete functions or

sequences. Although difference equations looks simple in form, but it is highly difficult to understand thoroughly the behaviors of their

solutions, see [1]-[44] and the references cited therein. There are many papers with related to the difference equations system for example,

Ahmed and Elsayed [1] has got the expressions of solutions of some rational difference equations systems

xn+1 =
xn−1yn−2

yn (−1± xn−1yn−2)
, yn+1 =

yn−1xn−2

xn (±1± yn−1xn−2)
.

Din investigated the boundedness character, the local asymptotic stability of equilibrium points and global of the unique positive equilibrium

point of a discrete perdator-pery model given by

xn+1 =
αxn −βxnyn

1+ γxn
, yn+1 =

δxnyn

xn +ηyn
.

El-Dessoky [2] obtained the solutions and periodicity for some systems of third-order rational difference equations

xn+1 =
yn−1yn−2

xn(±1± yn−1yn−2)
, yn+1 =

xn−1xn−2

yn(±1± xn−1xn−2)
.

Email addresses and ORCID numbers: emmelsayed@yahoo.com, 0000-0003-0894-8472 (E. M. Elsayed), mmialzubaidi@hotmail.com, 0000-0002-3314-5244 (E. M. El-

sayed)
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In [3], El-Dessoky and Elsayed studied the solution and periodic nature of some systems of rational difference equations

xn+1 =
xnyn−1

yn−1 ± yn
, yn+1 =

ynxn−1

xn−1 ± xn
.

El-Dessoky et al. [4] obtained the rational system of difference equations

xn+1 =
xn−3yn−4

yn (±1± xn−3yn−4)
, yn+1 =

yn−3xn−4

xn (±1± yn−3xn−4)
.

Elsayed and Ibrahim [5] solved solutions for some systems of nonlinear rational difference equations

xn+1 =
xn−2yn−1

yn(±1± xn−2yn−1)
, yn+1 =

yn−2xn−1

xn(±1± yn−2xn−1)
.

Elsayed and Alghamdi [6] solved the form of the solution of nonlinear difference equation systems

xn+1 =
xn−7

1+ xn−7yn−3
, yn+1 =

yn−7

±1± yn−7xn−3
.

Haddad et al [7] obtained solution form of a higher-order system of difference equations and dynamical behavior of its special case

xn+1 =
x

p
n−k+1yn

ay
p
n−k

+byn

, yn+1 =
y

p
n−k+1xn

αx
p
n−k

+βxn

.

In [8] Kurbanli studied the behavior of solutions of the following systems of difference equations

xn+1 =
xn−1

ynxn−1 −1
, yn+1 =

yn−1

xnyn−1 −1
.

Kurbanli et al. [9, 10] obtained the solutions of following problems

xn+1 = xn−1+yn

ynxn−1−1 , yn+1 =
yn−1+xn

xnyn−1−1 .

xn+1 = xn−1

ynxn−1+1 , yn+1 =
yn−1

xnyn−1+1 .

Mansour et al. [11] investigated the solutions and periodicity of some system of difference equations

xn+1 =
xn−5

−1+ xn−5yn−2
, yn+1 =

yn−5

±1± yn−5xn−2
.

Touafek and Elsayed [12] gave the solutions of following systems of difference equations

xn+1 =
xn−3

±1± xn−3yn−1
, yn+1 =

yn−3

±1± yn−3xn−1
.

Definition 1.1. A sequence {xn}
∞
n=−k is said to be periodic with period p if xn+p = xn for all n ≥−k.

2. The main results

2.1. The first system: xn+1 =
yn−8

1+yn−2xn−5yn−8
,yn+1 =

xn−8

1+xn−2yn−5xn−8

In this part, we study the solutions of the system of difference equations

xn+1 =
yn−8

1+ yn−2xn−5yn−8
,yn+1 =

xn−8

1+ xn−2yn−5xn−8
,

with a real number‘s initial conditions.
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Theorem 2.1. Suppose that x−8 = a, x−7 = b, x−6 = c, x−5 = d, x−4 = e, x−3 = f , x−2 = g, x−1 = h, x0 = k, y−8 = l, y−7 = m, y−6 = p,
y−5 = q, y−4 = r, y−3 = s, y−2 = t, y−1 = u, y0 = v are arbitrary real numbers and let {xn,yn} be solutions of the system 2.1. Then all

solutions of 2.1 are given by

x18n−8 = a
n−1

∏
i=0

(1+(6i)agq)(1+(6i+3)agq)
(1+(6i+1)agq)(1+(6i+4)agq)

,

x18n−7 = b
n−1

∏
i=0

(1+6ibhr)(1+(6i+3)bhr)
(1+(6i+1)bhr)(1+(6i+4)bhr)

,

x18n−6 = c
n−1

∏
i=0

(1+6icks)(1+(6i+3)cks)
(1+(6i+1)cks)(1+(6i+4)cks)

,

x18n−5 = d
n−1

∏
i=0

(1+(6i+1)dlt)(1+(6i+4)dlt)
(1+(6i+2)dlt)(1+(6i+5)dlt)

,

x18n−4 = e
n−1

∏
i=0

(1+(6i+1)emu)(1+(6i+4)emu)
(1+(6i+2)emu)(1+(6i+5)emu)

,

x18n−3 = f
n−1

∏
i=0

(1+(6i+1) f pv)(1+(6i+4) f pv)
(1+(6i+2) f pv)(1+(6i+5) f pv)

,

x18n−2 = g
n−1

∏
i=0

(1+(6i+2)agq)(1+(6i+5)agq)
(1+(6i+3)agq)(1+(6i+6)agq)

,

x18n−1 = h
n−1

∏
i=0

(1+(6i+2)bhr)(1+(6i+5)bhr)
(1+(6i+3)bhr)(1+(6i+6)bhr)

,

x18n = k
n−1

∏
i=0

(1+(6i+2)cks)(1+(6i+5)cks)
(1+(6i+3)cks)(1+(6i+6)cks)

,

x18n+1 = l
1+dlt

n−1

∏
i=0

(1+(6i+3)dlt)(1+(6i+6)dlt)
(1+(6i+4)dlt)(1+(6i+7)dlt)

,

x18n+2 = m
1+emu

n−1

∏
i=0

(1+(6i+3)emu)(1+(6i+6)emu)
(1+(6i+4)emu)(1+(6i+7)emu)

,

x18n+3 = p
1+ f pv

n−1

∏
i=0

(1+(6i+3) f pv)(1+(6i+6) f pv)
(1+(6i+4) f pv)(1+(6i+7) f pv)

,

x18n+4 =
q(1+agq)
(1+2agq)

n−1

∏
i=0

(1+(6i+4)agq)(1+(6i+7)agq)
(1+(6i+5)agq)(1+(6i+8)agq)

,

x18n+5 =
r(1+bhr)
(1+2bhr)

n−1

∏
i=0

(1+(6i+4)bhr)(1+(6i+7)bhr)
(1+(6i+5)bhr)(1+(6i+8)bhr)

,

x18n+6 =
s(1+cks)
(1+2cks)

n−1

∏
i=0

(1+(6i+4)cks)(1+(6i+7)cks)
(1+(6i+5)cks)(1+(6i+8)cks)

,

x18n+7 =
t(1+2dlt)
(1+3dlt)

n−1

∏
i=0

(1+(6i+5)dlt)(1+(6i+8)dlt)
(1+(6i+6)dlt)(1+(6i+9)dlt)

,

x18n+8 =
u(1+2emu)
(1+3emu)

n−1

∏
i=0

(1+(6i+5)emu)(1+(6i+8)emu)
(1+(6i+6)emu)(1+(6i+9)emu)

,

x18n+9 =
v(1+2 f pv)
(1+3 f pv)

n−1

∏
i=0

(1+(6i+5) f pv)(1+(6i+8) f pv)
(1+(6i+6) f pv)(1+(6i+9) f pv)

,

y18n−8 = l
n−1

∏
i=0

(1+6idlt)(1+(6i+3)dlt)
(1+(6i+1)dlt)(1+(6i+4)dlt)

,

y18n−7 = m
n−1

∏
i=0

(1+6iemu)(1+(6i+3)emu)
(1+(6i+1)emu)(1+(6i+4)emu)

,

y18n−6 = p
n−1

∏
i=0

(1+6 f pv)(1+(6i+3) f pv)
(1+(6i+1) f pv)(1+(6i+4) f pv)

,

y18n−5 = q
n−1

∏
i=0

(1+(6i+1)agq)(1+(6i+4)agq)
(1+(6i+2)agq)(1+(6i+5)agq)

,

y18n−4 = r
n−1

∏
i=0

(1+(6i+1)bhr)(1+(6i+4)bhr)
(1+(6i+2)bhr)(1+(6i+5)bhr)

,
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y18n−3 = s
n−1

∏
i=0

(1+(6i+1)cks)(1+(6i+4)cks)
(1+(6i+2)cks)(1+(6i+5)cks)

,

y18n−2 = t
n−1

∏
i=0

(1+(6i+2)dlt)(1+(6i+5)dlt)
(1+(6i+3)dlt)(1+(6i+6)dlt)

,

y18n−1 = u
n−1

∏
i=0

(1+(6i+2)emu)(1+(6i+5)emu)
(1+(6i+3)emu)(1+(6i+6)emu)

,

y18n = v
n−1

∏
i=0

(1+(6i+2) f pv)(1+(6i+5) f pv)
(1+(6i+3) f pv)(1+(6i+6) f pv)

,

y18n+1 = a
1+agq

n−1

∏
i=0

(1+(6i+3)agq)(1+(6i+6)agq)
(1+(6i+4)agq)(1+(6i+7)agq)

,

y18n+2 = b
1+bhr

n−1

∏
i=0

(1+(6i+3)bhr)(1+(6i+6)bhr)
(1+(6i+4)bhr)(1+(6i+7)bhr)

,

y18n+3 = c
1+cks

n−1

∏
i=0

(1+(6i+3)cks)(1+(6i+6)cks)
(1+(6i+4)cks)(1+(6i+7)cks)

,

y18n+4 =
d(1+dlt)
(1+2dlt)

n−1

∏
i=0

(1+(6i+4)dlt)(1+(6i+7)dlt)
(1+(6i+5)dlt)(1+(6i+8)dlt)

,

y18n+5 =
e(1+emu)
(1+2emu)

n−1

∏
i=0

(1+(6i+4)emu)(1+(6i+7)emu)
(1+(6i+5)emu)(1+(6i+8)emu)

,

y18n+6 =
f (1+ f pv)
(1+2 f pv)

n−1

∏
i=0

(1+(6i+4) f pv)(1+(6i+7) f pv)
(1+(6i+5) f pv)(1+(6i+8) f pv)

,

y18n+7 =
g(1+2agq)
(1+3agq)

n−1

∏
i=0

(1+(6i+5)agq)(1+(6i+8)agq)
(1+(6i+6)agq)(1+(6i+9)agq)

,

y18n+8 =
h(1+2bhr)
(1+3bhr)

n−1

∏
i=0

(1+(6i+5)bhr)(1+(6i+8)bhr)
(1+(6i+6)bhr)(1+(6i+9)bhr)

,

y18n+9 =
k(1+2cks)
(1+3cks)

n−1

∏
i=0

(1+(6i+5)cks)(1+(6i+8)cks)
(1+(6i+6)cks)(1+(6i+9)cks)

.

Proof. For n = 0, the result holds. Now, assume that n > 0 and that our assumption holds for n−1. That is,

x18n−17 = l
1+dlt

n−2

∏
i=0

(1+(6i+3)dlt)(1+(6i+6)dlt)
(1+(6i+4)dlt)(1+(6i+7)dlt)

,

x18n−16 = m
1+emu

n−2

∏
i=0

(1+(6i+3)emu)(1+(6i+6)emu)
(1+(6i+4)emu)(1+(6i+7)emu)

,

x18n−15 = p
1+ f pv

n−2

∏
i=0

(1+(6i+3) f pv)(1+(6i+6) f pv)
(1+(6i+4) f pv)(1+(6i+7) f pv)

,

x18n−14 =
q(1+agq)
(1+2agq)

n−2

∏
i=0

(1+(6i+4)agq)(1+(6i+7)agq)
(1+(6i+5)agq)(1+(6i+8)agq)

,

x18n−13 =
r(1+bhr)
(1+2bhr)

n−2

∏
i=0

(1+(6i+4)bhr)(1+(6i+7)bhr)
(1+(6i+5)bhr)(1+(6i+8)bhr)

,

x18n−12 =
s(1+cks)
(1+2cks)

n−2

∏
i=0

(1+(6i+4)cks)(1+(6i+7)cks)
(1+(6i+5)cks)(1+(6i+8)cks)

,

x18n−11 =
t(1+2dlt)
(1+3dlt)

n−2

∏
i=0

(1+(6i+5)dlt)(1+(6i+8)dlt)
(1+(6i+6)dlt)(1+(6i+9)dlt)

,

x18n−10 =
u(1+2emu)
(1+3emu)

n−2

∏
i=0

(1+(6i+5)emu)(1+(6i+8)emu)
(1+(6i+6)emu)(1+(6i+9)emu)

,

x18n−9 =
v(1+2 f pv)

(1+3 f pv)

n−2

∏
i=0

(1+(6i+5) f pv)(1+(6i+8) f pv)

(1+(6i+6) f pv)(1+(6i+9) f pv)
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y18n−17 = a
1+agq

n−2

∏
i=0

(1+(6i+3)agq)(1+(6i+6)agq)
(1+(6i+4)agq)(1+(6i+7)agq)

,

y18n−16 = b
1+bhr

n−2

∏
i=0

(1+(6i+3)bhr)(1+(6i+6)bhr)
(1+(6i+4)bhr)(1+(6i+7)bhr)

,

y18n−15 = c
1+cks

n−2

∏
i=0

(1+(6i+3)cks)(1+(6i+6)cks)
(1+(6i+4)cks)(1+(6i+7)cks)

,

y18n−14 =
d(1+dlt)
(1+2dlt)

n−2

∏
i=0

(1+(6i+4)dlt)(1+(6i+7)dlt)
(1+(6i+5)dlt)(1+(6i+8)dlt)

,

y18n−13 =
e(1+emu)
(1+2emu)

n−2

∏
i=0

(1+(6i+4)emu)(1+(6i+7)emu)
(1+(6i+5)emu)(1+(6i+8)emu)

,

y18n−12 =
f (1+ f pv)
(1+2 f pv)

n−2

∏
i=0

(1+(6i+4) f pv)(1+(6i+7) f pv)
(1+(6i+5) f pv)(1+(6i+8) f pv)

,

y18n−11 =
g(1+2agq)
(1+3agq)

n−2

∏
i=0

(1+(6i+5)agq)(1+(6i+8)agq)
(1+(6i+6)agq)(1+(6i+9)agq)

,

y18n−10 =
h(1+2bhr)
(1+3bhr)

n−2

∏
i=0

(1+(6i+5)bhr)(1+(6i+8)bhr)
(1+(6i+6)bhr)(1+(6i+9)bhr)

,

y18n−9 =
k(1+2cks)
(1+3cks)

n−2

∏
i=0

(1+(6i+5)cks)(1+(6i+8)cks)
(1+(6i+6)cks)(1+(6i+9)cks)

.

Now, it follows from system 2.1 that

x18n−8 =
y18n−17

1+ y18n−11x18n−14y18n−17

=

a
1+agq

n−2

∏
i=0

(1+(6i+3)agq)(1+(6i+6)agq)
(1+(6i+4)agq)(1+(6i+7)agq)

1+













g(1+2agq)
(1+3agq)

n−2

∏
i=0

(1+(6i+5)agq)(1+(6i+8)agq)
(1+(6i+6)agq)(1+(6i+9)agq)

n−2

∏
i=0

(1+(6i+4)agq)(1+(6i+7)agq)
(1+(6i+5)agq)(1+(6i+8)agq)

a
1+agq

n−2

∏
i=0

(1+(6i+3)agq)(1+(6i+6)agq)
(1+(6i+4)agq)(1+(6i+7)agq)













=

a
1+agq

n−2

∏
i=0

(1+(6i+3)agq)(1+(6i+6)agq)
(1+(6i+4)agq)(1+(6i+7)agq)

1+ agq

(1+3agq)

n−2

∏
i=0

(1+(6i+3)agq)(1+(6i+6)agq)
(1+(6i+6)agq)(1+(6i+9)agq)

=

a
1+agq

n−2

∏
i=0

(1+(6i+3)agq)(1+(6i+6)agq)
(1+(6i+4)agq)(1+(6i+7)agq)

1+ agq(1+3agq)
(1+3agq)(1+(6n−3)agq

=

a
1+agq

n−2

∏
i=0

(1+(6i+3)agq)(1+(6i+6)agq)
(1+(6i+4)agq)(1+(6i+7)agq)

(1+(6n−2)agq

(1+(6n−3)agq

= a
1+agq

n−2

∏
i=0

(1+(6i+3)agq)(1+(6i+6)agq)
(1+(6i+4)agq)(1+(6i+7)agq)

(1+(6n−3)agq

(1+(6n−2)agq
.

Hence, we have

x18n−8 = a
n−1

∏
i=0

(1+6iagq)(1+(6i+3)agq)

(1+(6i+1)agq)(1+(6i+4)agq)
,

and

y18n−8 =
x18n−17

1+ x18n−11y18n−14x18n−17

=

l
1+dlt

n−2

∏
i=0

(1+(6i+3)dlt)(1+(6i+6)dlt)
(1+(6i+4)dlt)(1+(6i+7)dlt)

1+













t(1+2dlt)
(1+3dlt)

n−2

∏
i=0

(1+(6i+5)dlt)(1+(6i+8)dlt)
(1+(6i+6)dlt)(1+(6i+9)dlt)

l
1+dlt

n−2

∏
i=0

(1+(6i+3)dlt)(1+(6i+6)dlt)
(1+(6i+4)dlt)(1+(6i+7)dlt)

d(1+dlt)
(1+2dlt)

n−2

∏
i=0

(1+(6i+4)dlt)(1+(6i+7)dlt)
(1+(6i+5)dlt)(1+(6i+8)dlt)













=

l
1+dlt

n−2

∏
i=0

(1+(6i+3)dlt)(1+(6i+6)dlt)
(1+(6i+4)dlt)(1+(6i+7)dlt)

1+ dlt
(1+3dlt)

n−2

∏
i=0

(1+(6i+3)dlt)(1+(6i+6)dlt)
(1+(6i+6)dlt)(1+(6i+9)dlt)

==

l
1+dlt

n−2

∏
i=0

(1+(6i+3)dlt)(1+(6i+6)dlt)
(1+(6i+4)dlt)(1+(6i+7)dlt)

1+ dlt(1+3dlt)
(1+3dlt)(1+(6n−3)dlt

=

l
1+dlt

n−2

∏
i=0

(1+(6i+3)dlt)(1+(6i+6)dlt)
(1+(6i+4)dlt)(1+(6i+7)dlt)

(1+(6n−2)dlt

(1+(6n−3)dlt

= l
1+dlt

n−2

∏
i=0

(1+(6i+3)dlt)(1+(6i+6)dlt)
(1+(6i+4)dlt)(1+(6i+7)dlt)

(1+(6n−3)dlt

(1+(6n−2)dlt
.
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Therefore, we have

y18n−8 = l
n−1

∏
i=0

(1+6idlt)(1+(6i+3)dlt)

(1+(6i+1)dlt)(1+(6i+4)dlt)
.

Similarly, we can prove the other relations.

Lemma 2.2. If xi,yi, since i =−8,−7,−6, ...,−1,0 are arbitrary real numbers and let {xi,yi} be solutions of system 2.1, then the following

statements are true

(i) I f x−8 = a = 0 then we get

x18n−8 = y18n+1 = 0, x18n−2 = y18n+7 = g, x18n+4 = y18n−5 = q.

(ii) I f x−7 = b = 0 then we obtain

x18n−7 = y18n+2 = 0, x18n−1 = y18n+8 = h, x18n+5 = y18n−4 = r.

(iii) I f x−6 = c = 0 then

x18n−6 = y18n+3 = 0, x18n = y18n+9 = k, x18n+6 = y18n−3 = s.

(iv) I f x−5 = d = 0 then

x18n−5 = y18n+4 = 0, x18n+1 = y18n−8 = l, x18n+7 = y18n−2 = t.

(v) I f x−4 = e = 0 then

x18n−4 = y18n+5 = 0, x18n+2 = y18n−7 = m, x18n+8 = y18n−1 = u.

(vi) I f x−3 = f = 0 then we see that

x18n−3 = y18n+6 = 0, x18n+3 = y18n−6 = p, x18n+9 = y18n = v.

(vii) I f x−2 = g = 0 then we have

x18n−2 = y18n+7 = 0, x18n+4 = y18n−5 = q, x18n−8 = y18n+1 = a.

(viii) I f x−1 = h = 0 then

x18n−1 = y18n+8 = 0, x18n+5 = y18n−4 = r, x18n−7 = y18n+2 = b.

(ix) I f x0 = k = 0 then we get

x18n = y18n+9 = 0, x18n+6 = y18n−3 = s, x18n−6 = y18n+3 = c.

(x) I f y−8 = l = 0 then

y18n−8 = x18n+1 = 0, y18n−2 = x18n+7 = t, y18n+4 = x18n−5 = d.

(xi) I f y−7 = m = 0 then we get

y18n−7 = x18n+2 = 0, y18n−1 = x18n+8 = u, y18n+5 = x18n−4 = e.

(xii) I f y−6 = p = 0 then we have

y18n−6 = x18n+3 = 0, y18n = x18n+9 = v, y18n+6 = x18n−3 = f .

(xiii) I f y−5 = q = 0 then

y18n−5 = x18n+4 = 0, y18n+1 = x18n−8 = a, y18n+7 = x18n−2 = g.

(xiv) I f y−4 = r = 0 then we see

y18n−4 = x18n+5 = 0, y18n+2 = x18n−7 = b, y18n+8 = x18n−1 = h.

(xv) I f y−3 = s = 0 then

y18n−3 = x18n+6 = 0, y18n+3 = x18n−6 = c, y18n+9 = x18n = k.

(xvi) I f y−2 = t = 0 then

y18n−2 = x18n+7 = 0, y18n+4 = x18n−5 = d, y18n−8 = x18n+1 = l.

(xvii) I f y−1 = u = 0 then we get

y18n−1 = x18n+8 = 0, y18n+5 = x18n−4 = e, y18n−7 = x18n+2 = m.

(xviii) I f y0 = v = 0 then we obtain

y18n = x18n+9 = 0, y18n+6 = x18n−3 = f , y18n−6 = x18n+3 = p.

Proof. The proof follows from the form of the solutions of system 2.1.

Lemma 2.3. Let {xn,yn} be a positive solution of System 2.1, then {xn},{yn} are bounded and converges to zero.

Proof. It follows from System 2.1 that

xn+1 =
yn−8

1+ yn−2xn−5yn−8
≤ yn−8, yn+1 =

xn−8

1+ xn−2yn−5xn−8
≤ xn−8.

Then we have

xn+10 =
yn+1

1+ yn+7xn+4yn+1
≤ yn+1 ≤ xn−8, yn+10 =

xn+1

1+ xn+7yn+4xn+1
≤ xn+1 ≤ yn−8.

Then the subsequences {x18n−8}
∞
n=0, {x18n−7}

∞
n=0, ..., {x18n+9}

∞
n=0 are decreasing and so are bounded from above by M =max{x−8,x−7, ...,x8,x9}.

Also, the subsequences {y18n−8}
∞
n=0, {y18n−7}

∞
n=0,..., {y18n+9}

∞
n=0 are decreasing and so are bounded from above by L=max{y−8,y−7, ...,y8,y9}.
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2.2. The second system: xn+1 =
yn−8

1+yn−2xn−5yn−8
,yn+1 =

xn−8

1−xn−2yn−5xn−8

In this subsection, we get the solutions of the following system of the difference equations

xn+1 =
yn−8

1+ yn−2xn−5yn−8
,yn+1 =

xn−8

1− xn−2yn−5xn−8
, (2.1)

where the initial conditions are arbitrary real numbers with y−2x−5y−8, y−1x−4y−7, y0x−3y−6 6= −1 and x−2y−5x−8, x−1y−4x−7,
x0y−3x−6 6= 1.

Theorem 2.4. System 2.1 has a periodic solution of period eighteen. Moreover {xn,yn}
∞
n=−8 takes the form

{xn} =

{

a,b,c,d,e, f ,g,h,k, l
1+dlt ,

m
1+emu ,

p
1+ f pv ,q−agq2,

r−bhr2,s− cks2, t
1+dlt ,

u
1+emu ,

v
1+ f pv ,a,b,c, ...

}

,

{yn} =

{

l,m, p,q,r,s, t,u,v, a
1−agq ,

b
1−bhr ,

c
1−cks ,d(1+dlt),

e(1+ emu), f (1+ f pv), g
1−agq ,

h
1−bhr ,

k
1−cks , l,m, p, ...

}

.

or

x18n−8 = a, x18n−7 = b, x18n−6 = c, x18n−5 = d, x18n−4 = e, x18n−3 = f ,

x18n−2 = g, x18n−1 = h, x18n = k, x18n+1 =
l

1+dlt , x18n+2 =
m

1+emu ,

x18n+3 = p
1+ f pv , x18n+4 = q−agq2, x18n+5 = r−bhr2,

x18n+6 = s− cks2, x18n+7 =
t

1+dlt , x18n+8 =
u

1+emu , x18n+9 =
v

1+ f pv ,

and

y18n−8 = l, y18n−7 = m, y18n−6 = p, y18n−5 = q, y18n−4 = r, y18n−3 = s,

y18n−2 = t, y18n−1 = u, y18n = v, y18n+1 =
a

1−agq , y18n+2 =
b

1−bhr ,

y18n+3 = c
1−cks ,y18n+4 = d(1+dlt), y18n+5 = e(1+ emu),

y18n+6 = f (1+ f pv), y18n+7 =
g

1−agq
, y18n+8 =

h
1−bhr ,y18n+9 =

k
1−cks .

Proof. For n = 0, the result holds. Now, assume that n > 0 and that our assumption holds for n−1. That is,

x18n−17 = l
1+dlt , x18n−16 =

m
1+emu , x18n−15 =

p
1+ f pv ,

x18n−14 = q−agq2, x18n−13 = r−bhr2, x18n−12 = s− cks2,

x18n−11 = t
1+dlt , x18n−10 =

u
1+emu , x18n−9 =

v
1+ f pv ,

and

y18n−17 = a
1−agq , y18n−16 =

b
1−bhr , y18n−15 =

c
1−cks ,

y18n−14 = d(1+dlt), y18n−13 = e(1+ emu), y18n−12 = f (1+ f pv),

y18n−11 =
g

1−agq
, y18n−10 =

h
1−bhr ,y18n−9 =

k
1−cks .

Now, it follows from system 2.1 that

x18n−8 = y18n−17

1+y18n−11x18n−14y18n−17
=

a
1−agq

1+
g

1−agq
(q−agq2) a

1−agq

=
a

1−agq

1+
agq

1−agq

= a
1−agq+agq = a,

also,

y18n−8 = x18n−17

1−x18n−11y18n−14x18n−17
=

l
1+dlt

1− t
1+dlt

d(1+dlt) l
1+dlt

=
l

1+dlt

1− dlt
1+dlt

= l.

The other relations can be proved by similar way.

The following cases can be proved similarly.
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2.3. The third system: xn+1 =
yn−8

1+yn−2xn−5yn−8
,yn+1 =

xn−8

−1+xn−2yn−5xn−8

In this part, we obtain the form of the solutions of the following system of the difference equations

xn+1 =
yn−8

1+ yn−2xn−5yn−8
,yn+1 =

xn−8

−1+ xn−2yn−5xn−8
, (2.2)

where the initial conditions are arbitrary real numbers with y−2x−5y−8, y−1x−4y−7, y0x−3y−6 6=−1 and x−2y−5x−8, x−1y−4x−7, x0y−3x−6 6=
1.

Theorem 2.5. System 2.2 has a periodic solution of period (36) which takes the form

{xn} =































a,b,c,d,e, f ,g,h,k, l
1+dlt ,

m
1+emu ,

p
1+ f pv ,

q(−1+agq)
−1+2agq ,

r(−1+bhr)
−1+2bhr ,

s(−1+cks)
−1+2cks , t

1−dlt ,
u

1−emu ,
v

1− f pv ,

−a,−b,−c,−d,−e,− f ,−g,−h,−k, −l
1+dlt ,

−m
1+emu ,

−p
1+ f pv ,

−q(−1+agq)
−1+2agq ,

−r(−1+bhr)
−1+2bhr ,

−s(−1+cks)
−1+2cks , t

−1+dlt ,
u

−1+emu ,
v

−1+ f pv ,a,b,c,d, ...































,

{yn} =











































l,m, p,q,r,s, t,u,v, a
−1+agq ,

b
−1+bhr ,

c
−1+cks ,

−d(1+dlt),−e(1+ emu),− f (1+ f pv), g−2ag2q
−1+agq ,

h−2bh2r
−1+bhr ,

k−2ck2s
−1+cks ,

l(−1+dlt)
1+dlt ,

m(−1+emu)
1+emu ,

p(−1+ f pv)
1+ f pv , q

−1+2agq ,
r

−1+2bhr ,
s

−1+2cks ,
t(1+dlt)
−1+dlt ,

u(1+emu)
−1+emu ,

v(1+ f pv)
−1+ f pv ,

a(−1+2agq)
−1+agq ,

b(−1+2bhr)
−1+bhr ,

c(−1+2cks)
−1+cks ,d −d2lt,e− e2mu, f − f 2 pv,
g

1−agq ,
h

1−bhr ,
k

1−cks , l,m, p, ...











































.

2.4. The fourth system: xn+1 =
yn−8

1+yn−2xn−5yn−8
,yn+1 =

xn−8

−1−xn−2yn−5xn−8

In this case, we solve the form of the solutions of the following system of the difference equations

xn+1 =
yn−8

1+ yn−2xn−5yn−8
,yn+1 =

xn−8

−1− xn−2yn−5xn−8
, (2.3)

where the initial conditions are arbitrary real numbers with y−2x−5y−8, y−1x−4y−7, y0x−3y−6 6=−1 and x−2y−5x−8, x−1y−4x−7, x0y−3x−6 6=
−1.

Theorem 2.6. Every solutions of system 2.3 are periodic with period (36). Moreover {xn,yn}
∞
n=−8 takes the form

{xn} =











































a,b,c,d,e, f ,g,h,k, l
1+dlt ,

m
1+emu ,

p
1+ f pv ,q(1+agq),

r(1+bhr),s(1+ cks),
t(1+2dlt)

1+dlt ,
u(1+2emu)

1+emu ,
v(1+2 f pv)

1+ f pv ,
a(−1+agq)

1+agq ,
b(−1+bhr)

1+bhr ,
c(−1+cks)

1+cks , −d
1+2dlt ,

−e
1+2emu ,

− f
1+2 f pv ,

g(1+agq)
−1+agq ,

h(1+bhr)
−1+bhr ,

k(1+cks)
−1+cks ,

−l(1+2dlt)
1+dlt ,

−m(1+2emu)
1+emu ,

−p(1+2 f pv)
1+ f pv ,q(−1+agq),r(−1+bhr),

s(−1+ cks), −t
1+dlt ,

−u
1+emu ,

−v
1+ f pv ,a,b,c, ...











































,

{yn} =































l,m, p,q,r,s, t,u,v, −a
1+agq ,

−b
1+bhr ,

−c
1+cks ,

−d(1+dlt)
1+2dlt ,

−e(1+emu)
1+2emu ,

− f (1+ f pv)
1+2 f pv , g

−1+agq ,
h

−1+bhr ,
k

−1+cks ,−l,−m,−p,−q− r,−s,−t,−u,−v,
a

1+agq ,
b

1+bhr ,
c

1+cks ,
d(1+dlt)
1+2dlt ,

e(1+emu)
1+2emu)

,
f (1+ f pv)
1+2 f [v)

,
g

1−agq ,
h

1−bhr ,
k

1−cks , l,m, p, ...































.

3. Numerical examples

Here we consider some numerical examples to illustrate the behavior of the solutions of the systems which we studied.

Example 3.1. Consider the System 2.1 with the initial conditions x−8 = 15, x−7 =−6.2, x−6 =−0.26, x−5 =−13, x−4 = 12, x−3 = 6,
x−2 = 9, x−1 =−2, x0 =−6, y−8 = 7, y−7 = 8, y−6 =−0.3, y−5 = 11, y−4 = 14, y−3 = 2.5, y−2 = 16, y−1 =−9, y0 =−0.3. See Figure

3.1 and see Figure 3.2 when we put x−8 = 15, x−7 = 6.2, x−6 = 0.26, x−5 = 13, x−4 = 2, x−3 = 16, x−2 = 9, x−1 = 2, x0 = 6, y−8 = 7,
y−7 = 18, y−6 = 0.3, y−5 = 11, y−4 = 34, y−3 = 2.5, y−2 = 26, y−1 = 9, y0 = 0.3.
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Example 3.2. See Figure 3.3, when we take System 2.1 and put x−8 = −1.5, x−7 = 6.2, x−6 = 0.6, x−5 = 1.3, x−4 = 1.2, x−3 = 0.6,
x−2 = 0.9, x−1 = 0.2, x0 = 0.6, y−8 = 0.7, y−7 =−1.8, y−6 = 0.3, y−5 = 1.1, y−4 = 1.4, y−3 = 2.5, y−2 = 1.6, y−1 = 0.9, y0 = 0.3.
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Example 3.3. Figure 3.4 below describe the periodic solutions of System 2.2 when x−8 = −1.5, x−7 = −6.2, x−6 = 0.6, x−5 = 1.3,
x−4 = 1.2, x−3 =−0.6, x−2 = 0.9, x−1 = 0.2, x0 = 0.6, y−8 = 0.7, y−7 =−1.8, y−6 = 0.3, y−5 = 1.1, y−4 = 1.4, y−3 = 2.5, y−2 = 1.6,
y−1 = 0.9, y0 = 0.3.
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Example 3.4. Consider the System 2.3 when x−8 = −1.5, x−7 = −6.2, x−6 = 0.6, x−5 = 1.3, x−4 = −1.2, x−3 = −0.6, x−2 = 0.9,
x−1 = 0.2, x0 = 0.6, y−8 = 0.7, y−7 =−1.8, y−6 = 0.3, y−5 = 1.1, y−4 =−1.4, y−3 =−2.5, y−2 = 1.6, y−1 = 0.9, y0 = 0.3. See Figure

3.5.
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Abstract

In this paper, we consider a spectral method to solve a class of two-dimensional singular

Volterra integral equations using some basic concepts of fractional calculus. This method

uses a modification of hat functions for finding a numerical solution of the considered

equation. Some properties of the modification of hat functions are presented. The main

contribution of this work is to introduce the fractional order operational matrix of integration

for the considered basis functions. Making use of the Riemann-Liouville fractional integral

operator helps us to reduce the main problem to a system of linear algebraic equations

which can be solved easily. After that, error analysis of the method is discussed. Finally,

numerical examples are included to confirm the accuracy and applicability of the suggested

method.

1. Introduction

Singular integral equations consist a class of integral equations in which the kernel is singular within the range of integration, or one or both

limits of integration are infinite [1]. There are some analytical and numerical methods to solve one-dimensional singular integral equations

with different kinds of singularity. Ioakimidis [2] has used quadrature methods for obtaining a numerical solution for singular integral

equations with singular kernels. In [3], a numerical method has been proposed for the numerical solution of singular integral equations of the

Cauchy type via replacing the integral equation by integral relations at a discrete set of points. Gauss-Chebyshev formulae has been used to

find the numerical solution of singular integral equations of the Cauchy type in [4]. Monegato and Scuderi in [5] introduced high order

methods for the second kind Fredholm integral equations with weakly singular kernels. For more methods on these equations, the interested

reader can refer to [6]-[13].

The main aim of this paper is to introduce an application of fractional calculus in solving a class of two-dimensional Volterra integral

equations as

u(x, t) = f (x, t)+
∫ t

0

∫ x

0
(x− y)−α (t − z)−β u(y,z)dydz, (x, t) ∈ D, (1.1)

where u(x, t) is the unknown function on D := [0, l]× [0,T ], f (x, t) is a given known function and 0 < α,β < 1. This equation, is a singular

integral equation with weakly singular convolution kernel. In recent decades fractional calculus provided a wonderful tool for the explanation

of many mathematical models in science and engineering [14, 15]. A general outlook of fractional calculus and its basic theories can be

found in [16]-[24].

In this work, we propose a numerical method to solve Eq. (1.1) using the modification of hat functions (MHFs). The MHFs have been

employed to obtain numerical solutions of two-dimensional linear Fredholm integral equations [25], nonlinear Stratonovich Volterra integral

equations [26], Volterra-Fredholm integral equations [27] and systems of linear Stratonovich Volterra integral equations [28]. The operational

matrix technique is used to reduce the main problem to a system of algebraic equations. It should be noted that any other well-known basis

functions that their operational matrix of fractional integration are known such as Legendre polynomials [29], Chebyshev polynomials [30],

Haar wavelet functions [31] and hat functions [32] could be employed in our new approach to solve Eq. (1.1).

This paper is organized as follows: Some preliminaries in fractional calculus and properties of the MHFs are given in Section 2. Section 3 is

committed to introducing the operational matrix of fractional integration of the MHFs. In Section 4, a numerical method is given to solve Eq.

Email addresses: s.nemati@umz.ac.ir, 0000-0003-1724-6296 (S. Nemati)
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(1.1). Error analysis of the method is discussed in Section 5. Numerical examples are given in Section 6 to demonstrate the accuracy and

applicability of the method. Concluding remarks are presented in Section 7.

2. Basic concepts

In this section, we give some definitions which will be used further in this paper.

There are different definitions for fractional integral in literature (see [19]). Here, we consider the Riemann-Liouville fractional integral

operator Iα
x to reach our aim.

Definition 2.1. The Riemann-Liouville integral operator Iα
x of order α > 0 is given by [17]

Iα
x f (x) =

1

Γ(α)

∫ x

0
(x− y)α−1 f (y)dy,

where Γ(α) is the gamma function; as

Γ(α) =
∫ ∞

0
tα−1e−tdt.

Definition 2.2. Let a = (a1,a2) ∈ (0,∞)× (0,∞), θ = (0,0) and u ∈ L1(D). The left-sided mixed Riemann-Liouville integral of order a of

u is defined by [33]

Ia
θ u(x, t) =

1

Γ(a1)Γ(a2)

∫ t

0

∫ x

0
(x− y)a1−1(t − z)a2−1u(y,z)dydz.

Hat functions are defined on the interval [0,1] and are linear piecewise continuous functions with shape hats [32]. Here we consider the

MHFs which are quadratic piecewise continuous functions with shape hats and replace the domain of the definition to [0, l].

Definition 2.3. A set of (n+1)-MHFs consists of n+1 functions which are defined on the interval [0, l] as follows [25]:

ψ0,l(x) =







1
2h2 (x−h)(x−2h), 0 ≤ x ≤ 2h,

0, otherwise,

when i is odd and 1 ≤ i ≤ n−1:

ψi,l(x) =







−1
h2 (x− (i−1)h)(x− (i+1)h), (i−1)h ≤ x ≤ (i+1)h,

0, otherwise,

when i is even and 2 ≤ i ≤ n−2:

ψi,l(x) =























1
2h2 (x− (i−1)h)(x− (i−2)h), (i−2)h ≤ x ≤ ih,

1
2h2 (x− (i+1)h)(x− (i+2)h), ih ≤ x ≤ (i+2)h,

0, otherwise,

and

ψn,l(x) =







1
2h2 (x− (l −h))(x− (l −2h)), l −2h ≤ x ≤ l,

0, otherwise.

where h = l
n and n ≥ 2 is an even integer number. These functions are linearly independent functions in L2[0, l].

Using Definition 2.3, the MHFs satisfy the following properties:

ψi,l( jh) =







1, i = j,

0, i 6= j,

(2.1)

n

∑
i=0

ψi,l(x) = 1,

ψi,l(x)ψ j,l(x) =







0, if i is even and |i− j| ≥ 3,

0, if i is odd and |i− j| ≥ 2.

An arbitrary function f (x) ∈ L2[0, l] may be approximated in terms of the MHFs as

f (x)≃ fn(x) =
n

∑
i=0

fiψi,l(x) = FT ψl(x) = ψT
l (x)F,
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where

ψl(x) = [ψ0,l(x),ψ1,l(x), . . . ,ψn,l(x)]
T
, (2.2)

and

F = [ f0, f1, . . . , fn]
T
,

in which fi = f (ih).

Definition 2.4. A (n+1)× (m+1)-set of two-dimensional modification of hat functions (2DMHFs) includes (n+1)× (m+1) functions

which are defined on D as

φi, j(x, t) = ψi,l(x)ψ j,T (t).

A function u(x, t) in L2(D) can be approximated in terms of the 2DMHFs as

u(x, t)≃
n

∑
i=0

m

∑
j=0

ui, jφi, j(x, t) =UT φ(x, t),

where

φ(x, t) = ψl(x)⊗ψT (t), (2.3)

in which ⊗ denotes the Kronecker product and

U =
[

u0,0,u0,1, . . . ,u0,m, . . . ,un,0,un,1, . . . ,un,m

]T
,

such that ui, j = u(ih1, jh2) with h1 =
l
n and h2 =

T
m .

From (2.1), it is seen that

φi, j(ph1,qh2) =







1, p = i & q = j,

0, otherwise.

(2.4)

3. Operational matrix of fractional integration

In this section, the fractional order operational matrix of integration of the MHFs is introduced.

Theorem 3.1. Let ψ(x) be the MHFs vector given by (2.2) and α > 0, then

Iα
x ψl(x)≃ P

(α)
l

ψl(x),

where P
(α)
l

is the (n+1)× (n+1) operational matrix of fractional integration of order α in the Riemann-Liouville sense and is defined as

follows

P
(α)
l

=
hα

2Γ(α +3)



























0 β1 β2 β3 β4 . . . βn−1 βn

0 η0 η1 η2 η3 . . . ηn−2 ηn−1

0 ξ−1 ξ0 ξ1 ξ2 . . . ξn−3 ξn−2

0 0 0 η0 η1 . . . ηn−4 ηn−3

0 0 0 ξ−1 ξ0 . . . ξn−5 ξn−4

...
...

...
...

...
...

...

0 0 0 0 0 . . . η0 η1

0 0 0 0 0 . . . ξ−1 ξ0



























,

where

β1 = α(3+2α),

βk = kα+1(2k−6−3α)+2kα (1+α)(2+α)− (k−2)α+1(2k−2+α), k = 2,3, . . . ,n,

η0 = 4(1+α),

ηk = 4[(k−1)α+1(k+1+α)− (k+1)α+1(k−1−α)], k = 1,2, . . . ,n−1,

ξ−1 =−α,

ξ0 = 2α+1(2−α),

ξ1 = 3α+1(4−α)−6(2+α),

ξk = (k+2)α+1(2k+2−α)−6kα+1(2+α)− (k−2)α+1(2k−2+α), k = 2,3, . . . ,n−2.

Proof. For proof see [34], Theorem 3.1.
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4. Numerical method

In this section, a numerical method is proposed to solve Eq. (1.1) using the properties of the MHFs. To this aim, we need the following

theorem.

Theorem 4.1. Let φ(x, t) be the 2DMHFs vector defined by (2.3) and 0 < α,β < 1, then

∫ t

0

∫ x

0
(x− y)−α (t − z)−β φ(y,z)dydz ≃ χα,β Q(α,β )φ(x, t), (4.1)

where

χα,β = Γ(1−α)Γ(1−β ), (4.2)

and

Q(α,β ) = P
(1−α)
l

⊗P
(1−β )
T . (4.3)

Proof. By considering the Riemann-Liouville integral operator in Definition 2.2 and after some manipulation, we obtain

∫ t

0

∫ x

0
(x− y)−α (t − z)−β φ(y,z)dydz =

Γ(1−α)Γ(1−β )

Γ(1−α)Γ(1−β )
×

∫ t

0

∫ x

0
(x− y)(1−α)−1(t − z)(1−β )−1ψl(y)⊗ψT (z)dydz

= Γ(1−α)Γ(1−β )

(

1

Γ(1−α)

∫ x

0
(x− y)(1−α)−1ψl(y)dy

)

⊗
(

1

Γ(1−β )

∫ t

0
(t − z)(1−β )−1ψT (z)dz

)

= Γ(1−α)Γ(1−β )
(

I1−α
x ψl(x)

)

⊗
(

I
1−β
t ψT (t)

)

≃ Γ(1−α)Γ(1−β )
(

P
(1−α)
l

ψl(x)
)

⊗
(

P
(1−β )
T ψT (t)

)

= Γ(1−α)Γ(1−β )
(

P
(1−α)
l

⊗P
(1−β )
T

)

(ψL(x)⊗ψT (t))

= Γ(1−α)Γ(1−β )
(

P
(1−α)
l

⊗P
(1−β )
T

)

φ(x, t).

(4.4)

Therefore, taking into account Eqs. (4.2)–(4.4) the proof is completed.�

Now, by employing Theorem 4.1 we suggest our numerical method for solving Eq. (1.1). To do this, we expand the functions u(x, t) and

f (x, t) in terms of the 2DMHFs by the way mentioned in Section 2, respectively, as follows

u(x, t)≃UT φ(x, t), (4.5)

f (x, t)≃ FT φ(x, t), (4.6)

where U is the unknown vector. Substituting Eqs. (4.5) and (4.6) into Eq. (1.1), we have

UT φ(x, t) = FT φ(x, t)+
∫ t

0

∫ x

0
(x− y)−α (t − z)−βUT φ(y,z)dydz. (4.7)

Utilizing Eq. (4.1) in (4.7) gives

UT φ(x, t) = FT φ(x, t)+χα,βUT Q(α,β )φ(x, t).

Finally, we obtain the following system

UT −FT −χα ,βUT Q(α ,β ) = 0,

that can be rewritten in a matrix form equation as

(I −χα,β Q(α,β )T
)U = F, (4.8)

where I is the identity matrix of order (n+1)(m+1)× (n+1)(m+1).

In our implementation, we have used the Mathematica function Solve for solving the final system in (4.8).
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5. Error analysis

The purpose of this section is to introduce an error estimate for the numerical solution of Eq. (1.1) obtained by the presented method. For

convenience, suppose that l = T = 1 and h := 1
n . Then we get the following results.

Theorem 5.1. Assume that u(x, t) ∈C3(D), and

un(x, t) =
n

∑
i=0

n

∑
j=0

u(ih, jh)φi, j(x, t)

is the approximation of u(x, t) by the 2DMHFs. Then, we have

|u(x, t)−un(x, t)|= O(h3). (5.1)

Proof. Suppose that Di, j = [xi,xi+2]× [t j, t j+2], i, j = 0,1, . . . ,n−2, therefore we have D =
⋃

Di, j . From Eq. (2.4) it is seen that un(x, t) is a

quadratic polynomial which interpolates u(x, t) at (x, t) = (ph,qh), p = i, i+1, i+2, q = j, j+1, j+2 on Di, j . So for the interpolation error

on Di, j we have [35]

u(x, t)−un(x, t) =
1

6

∂ 3u(ξ , t)

∂x3

i+2

∏
p=i

(x− ph)+
1

6

∂ 3u(x,η)

∂ t3

j+2

∏
q= j

(t −qh)

− 1

36

∂ 6u(ξ ′,η ′)
∂x3∂ t3

i+2

∏
p=i

(x− ph)
j+2

∏
q= j

(t −qh),

where ξ , ξ ′ ∈ [xi,xi+2] and η , η ′ ∈ [t j, t j+2]. Therefore

|u(x, t)−un(x, t)| ≤
1

6
max

(x,t)∈Di, j

∣

∣

∣

∣

∂ 3u(ξ , t)

∂x3

∣

∣

∣

∣

∣

∣

∣

∣

∣

i+2

∏
p=i

(x− ph)

∣

∣

∣

∣

∣

+
1

6
max

(x,t)∈Di, j

∣

∣

∣

∣

∂ 3u(x,η)

∂ t3

∣

∣

∣

∣

∣

∣

∣

∣

∣

j+2

∏
q= j

(t −qh)

∣

∣

∣

∣

∣

+
1

36
max

(x,t)∈Di, j

∣

∣

∣

∣

∂ 6u(ξ ′,η ′)
∂x3∂ t3

∣

∣

∣

∣

∣

∣

∣

∣

∣

i+2

∏
p=i

(x− ph)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

j+2

∏
q= j

(t −qh)

∣

∣

∣

∣

∣

.

(5.2)

There are real numbers M1, M2 and M3, such that

max
(x,t)∈Di, j

∣

∣

∣

∣

∂ 3u(ξ , t)

∂x3

∣

∣

∣

∣

≤ M1, (5.3)

max
(x,t)∈Di, j

∣

∣

∣

∣

∂ 3u(x,η)

∂ t3

∣

∣

∣

∣

≤ M2, (5.4)

max
(x,t)∈Di, j

∣

∣

∣

∣

∂ 6u(ξ ′,η ′)
∂x3∂ t3

∣

∣

∣

∣

≤ M3. (5.5)

On the other hand, we know that

∣

∣

∣

∣

∣

i+2

∏
p=i

(x− ph)

∣

∣

∣

∣

∣

≤ 2
√

3

9
h3
, (5.6)

∣

∣

∣

∣

∣

j+2

∏
q= j

(t −qh)

∣

∣

∣

∣

∣

≤ 2
√

3

9
h3
. (5.7)

Using (5.3)–(5.7) in (5.2) gives

|u(x, t)−un(x, t)| ≤
√

3M1

27
h3 +

√
3M2

27
h3 +

M3

243
h6
,

which completes the proof.�

Theorem 5.2. Let u(x, t) ∈C3(D) be the exact solution of Eq. (1.1) and un(x, t) be its approximation obtained by the proposed method in

the previous section, then

|u(x, t)−un(x, t)|= O(h3).
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Proof. Using Definition 2.2 and (4.2) we rewrite Eq. (1.1) as

u(x, t) = f (x, t)+χα,β Ia
θ u(x, t), (5.8)

where a1 = 1−α and a2 = 1−β . Similarly, by neglecting the error of the operational matrix, it is seen from (4.7) that

un(x, t) = fn(x, t)+χα,β Ia
θ un(x, t). (5.9)

Subtracting (5.9) from (5.8) yields

|u(x, t)−un(x, t)| ≤ | f (x, t)− fn(x, t)|+χα,β |Ia
θ (u)− Ia

θ (un)|. (5.10)

By employing (5.1), we obtain the following estimates

| f (x, t)− fn(x, t)|= O(h3), (5.11)

|Ia
θ (u)− Ia

θ (un)|= O(h3). (5.12)

Therefore, using (5.10)–(5.12), the proof is completed.�

6. Numerical examples

In this section, four examples are included to show the applicability, efficiency and accuracy of the proposed method. In all the examples, we

consider l = T = 1, n = m and h = 1
n . In order to demonstrate the error of the method we introduce the notations

en = max1≤i≤n
1≤ j≤n

|u(ih, jh)−un(ih, jh)|,

εn = log2

(

en

e2n

)

,

where u(x, t) is the exact solution and un(x, t) is the computed solution obtained by the present method. The computations were performed

on a personal computer using a 2.60 GHz processor and the codes were written in Mathematica 11.

Example 6.1. As the first example, consider Eq. (1.1) with α = β = 1
2 and the function f (x, t) is such that the exact solution of the problem is

u(x, t) = sin(xt).

We have solved the considered equation in this example with different values of n and reported the numerical results in Table 1, Table 2 and

Fig. 6.1. The numerical results confirm that the convergence order of the proposed method is O(h3).

Table 1: The absolute error at x = 0.5 and some selected values of t with n = 2,4,8,16 for Example 6.1.

t n = 2 n = 4 n = 8 n = 16

0.1 2.8061E −02 1.6256E −04 1.2950E −05 1.7363E −06

0.2 5.4755E −02 1.2044E −04 1.2440E −05 5.7903E −07

0.3 8.0205E −02 1.7403E −06 1.8686E −05 1.3683E −06

0.4 1.0453E −01 8.0012E −05 1.9832E −06 2.1673E −06

0.5 1.2786E −01 8.6827E −06 9.2267E −07 1.1182E −08

0.6 1.5032E −01 1.4418E −04 1.5849E −05 1.4427E −06

0.7 1.7203E −01 1.6602E −04 3.5720E −06 6.4436E −08

0.8 1.9310E −01 1.9260E −04 3.2879E −05 2.2763E −06

0.9 2.1364E −01 3.4021E −04 2.8298E −05 3.9246E −06

Table 2: Numerical results for Example 6.1.

n 4 8 16 32

en 4.2610E −03 3.5930E −03 2.6193E −05 2.1096E −06

εn 3.57 3.78 3.63 —

Example 6.2. Consider Eq. (1.1) with α = 2
3 , β = 1

3 and

f (x, t) = x6
(

t
4
3 + t3

)

− 729

6086080
x

19
3 t2

(

6561t
5
3 +1760

√
3π

)

,

which has the exact solution u(x, t) = x6
(

t
4
3 + t3

)

.
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Figure 6.1: en on logarithmic scale for Example 6.1.

Table 3: The absolute error at x = 0.5 and some selected values of t with n = 2,4,8,16 for Example 6.2.

t n = 2 n = 4 n = 8 n = 16

0.1 4.5191E −03 5.8186E −05 2.2606E −05 4.1468E −06

0.2 1.4798E −02 1.4233E −04 1.6604E −05 3.7513E −06

0.3 3.0914E −02 3.2751E −04 3.4959E −05 5.9114E −06

0.4 5.2822E −02 5.7154E −04 7.5115E −05 9.1917E −06

0.5 8.0458E −02 8.0863E −04 1.0657E −04 1.5264E −05

0.6 1.1374E −01 1.3920E −03 1.3247E −04 2.1537E −05

0.7 1.5260E −01 1.7557E −03 1.6985E −04 2.5701E −05

0.8 1.9695E −01 1.8155E −03 1.5472E −04 2.7789E −05

0.9 2.4669E −01 1.4851E −03 1.1840E −04 2.7401E −05

Table 4: Numerical results for Example 6.2.

n 4 8 16 32

en 2.1663E −01 2.4800E −02 2.0087E −03 1.9377E −04

εn 3.12 3.63 3.37 —

Figure 6.2: en on logarithmic scale for Example 6.2.

The presented method has been applied to this equation with different values of n. The numerical results for this example are seen in Table 3,

Table 4 and Fig. 6.2. Table 3 shows the absolute error at some selected grid points with different n. The values of εn in Table 4 confirm that

the error is O(h3) and Fig. 6.2 displays the convergence of the method.

Example 6.3. Consider Eq. (1.1) with α = 1
2 , β = 1

3 and

f (x, t) = x2t4 − 972

1925
x

5
2 t

14
3 .
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Table 5: The absolute error at x = 0.5 and some selected values of t with n = 2,4,8,16 for Example 6.3.

t n = 2 n = 4 n = 8 n = 16

0.1 1.9964E −02 1.5950E −03 6.0907E −05 6.5053E −06

0.2 2.9903E −02 1.1848E −03 1.0031E −04 7.2572E −06

0.3 3.0716E −02 3.3073E −03 2.9834E −04 1.7434E −05

0.4 2.3903E −02 1.4516E −03 9.4651E −05 4.2587E −05

0.5 1.1564E −02 7.7908E −05 1.1807E −05 1.3121E −06

0.6 3.6003E −03 5.2420E −03 3.1794E −04 5.0484E −05

0.7 1.8291E −02 3.7167E −03 4.2978E −04 2.5486E −05

0.8 2.8607E −02 7.5402E −04 7.2285E −04 4.6354E −05

0.9 3.0050E −02 3.6701E −03 2.0164E −04 9.3176E −05

Here, the exact solution is u(x, t) = x2t4. The numerical results for this example can be observed in Table 5, Table 6 and Fig. 6.3.

Table 6: Numerical results for Example 6.3.

n 4 8 16 32

en 1.1627E −02 9.8060E −04 7.6913E −05 5.8282E −06

εn 3.57 3.67 3.72 —

Figure 6.3: en on logarithmic scale for Example 6.3.

Example 6.4. In Eq. (1.1), consider α = β = 1
2 and

f (x, t) =− 4

105
t

1
2 x

1
2

(

56t2 +48x3 +105
)

+ t2 + x3 +1,

which its exact solution is u(x, t) = x3 + t2 +1.

The numerical results foe Example 6.4 are displayed in Table 7, Table 8 and Fig. 6.4.

Table 7: The absolute error at t = 0.5 and some selected values of x with n = 4,8,16,32 for Example 6.4.

x n = 4 n = 8 n = 16 n = 32

0.1 1.3321E −02 1.1337E −03 5.7134E −05 1.6212E −06

0.2 1.5102E −02 9.5963E −05 1.9323E −05 1.5189E −05

0.3 1.1342E −02 1.5772E −03 1.2592E −04 7.2678E −06

0.4 8.0404E −03 8.8473E −04 1.6926E −04 1.3029E −05

0.5 1.1197E −02 8.0388E −04 5.5802E −05 3.8313E −06

0.6 2.6582E −02 2.1404E −03 2.0027E −05 4.2261E −06

0.7 3.0561E −02 1.0987E −03 1.0930E −04 2.2050E −05

0.8 2.9134E −02 2.9554E −03 2.3026E −04 6.9424E −07

0.9 2.8302E −02 2.4703E −03 2.8957E −04 2.2221E −05



200 Journal of Mathematical Sciences and Modelling

Table 8: Numerical results for Example 6.4.

n 4 8 16 32

en 2.8859E −01 2.1523E −02 1.5844E −03 1.1787E −04

εn 3.75 3.76 3.75 —

Figure 6.4: en on logarithmic scale for Example 6.4.

Table 9 reports the computing time (in seconds) for solving the final system in Eq. (4.8) with different values of n for Examples 6.1–6.4.

Table 9: The computing time (in seconds) for Examples 6.1–6.4.

n 2 4 8 16 32

Example 6.1 0.000 0.015 0.032 0.188 1.875

Example 6.2 0.000 0.000 0.031 0.141 1.875

Example 6.3 0.000 0.000 0.016 0.141 1.984

Example 6.4 0.000 0.000 0.000 0.078 1.407

7. Conclusion

In this paper, the MHFs have been used to solve the two-dimensional Volterra integral equations with weakly singular kernels. The

operational matrix of fractional integration was obtained which helped us to reduce the main problem to a system of algebraic equations. The

error analysis verified that the convergence order is O(h3) and also the numerical results in Section 6 (Tables 2, 4, 6 and 8) confirmed this

convergence order. Compared to the other piecewise functions such as block-pulse functions (O(h)), Haar wavelet functions (O(h2)) and hat

functions (O(h2)), the MHFs have higher order of convergence. The fractional order operational matrix of integration of the MHFs has a

large number of zeros and it makes the proposed method computationally attractive. Table 9 shows the high performance of the method even

when we have a large system of equations with 1089 unknown parameters (for n = 32).
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Abstract

This paper deals with the numerical solution of space-time fractional partial differential-

difference Toda lattice equation ∂ 2α un

∂xα ∂ tα = (1+ ∂ α un

∂ tα )(un−1 −2un +un+1), α ∈ (0,1). The

finite differences method (FD-method) is used for numerical solution of this problem.

According to the method, we approximate the unknown values un of the desired function by

finite differences approximation. As an application we demonstrate the capabilities of this

method for identification of various values of order of fractional derivative α . Numerical

results show that the proposed version of FD-method allows to obtain all data from the

initial and boundary conditions with enough high accuracy.

1. Introduction

In this paper, we shall consider the space-time fractional (2+1)-dimensional Toda lattice equation described in equation (1) and (2) below.

The importance of Toda lattice is, together with the Korteweg –de Vires equation, one of the most classical and significant completely

integrable systems. Several methods have been developed to reveal its philosophical mathematical structure [1]. The (2+1)-dimensional Toda

lattice hierarchy has been proposed as an extension of the KP hierarchy. This comprises the (2+1)-dimensional Toda lattice equation as the

modest nontrivial differential-difference equation. The Toda lattice equation and the sine-Gordon equation are derived by imposing suitable

reductions on the (2+1)-dimensional Toda lattice equation [2]. These type of equations, usually, describe the evolution of certain phenomena

over the course of time [3].

This paper studies the space-time fractional differential-difference Toda lattice equation (denote I = (a,b)),

∂ 2α un

∂xα ∂ tα
= (1+

∂ α un

∂ tα
)(un−1

−2un +un+1), (x, t) ∈ I × (0,T ] (1.1)

from the initial and homogeneous Dirichlet boundary condition
{

u(x,0) = φ(x), x ∈ I,
u(a, t) = u(b, t) = 0, t ∈ (0,T ],

where the mixed derivative ∂ 2α un

∂xα ∂ tα denotes the space-time derivative with fractional order 2α of the function u = u(x, t) at t = tn. The

derivative ∂ α un

∂ tα also denotes time derivative with fractional order α ∈ (0,1). We consider the most frequently used the Riemann–Liouville

and the Caputo derivative for fractional derivatives in (1.1). Riemann-Liouville fractional derivative with fractional order α of the function

u = u(x, t) is defined by [4, 5], i.e.,
[

∂ α u(x, t)

∂ tα

]

RL

=
1

Γ(1−α)

∂

∂ t

∫ t

0

u(x,τ)

(t − τ)α
dτ, t > 0. (1.2)

where Γ(x) is the Euler’s Gamma Function. Another definition of fractional derivative is Caputo derivative. Caputo fractional derivative with

fractional order α of the function u = u(x, t) is defined by [4, 5] as follows:
[

∂ α u(x, t)

∂ tα

]

C

=
1

Γ(1−α)

∫ t

0

1

(t − τ)α

∂u(x,τ)

∂ t
dτ, t > 0. (1.3)
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From (1.2) and (1.3), it is clear that definitions of Riemann–Liouville derivative and Caputo derivative are not equivalent. But, there is a

fact that, almost all the numerical methods for the Riemann–Liouville derivative can be theoretically extended to the Caputo derivative if

the function u(x, t) satisfies suitable smooth conditions. Following equality shows the relation between the Riemann–Liouville and Caputo

derivatives for 0 < α < 1:

[

∂ α u(x, t)

∂ tα

]

RL

=

[

∂ α u(x, t)

∂ tα

]

C

+
t−α u(x,0)

Γ(1−α)
, t > 0. (1.4)

Hence, a natural way to discretize the Caputo derivative in the equation (1.1) is to use the Grünwald–Letnikov approximation [6].

2. Numerical implementation

One method of the solutions of fractional equations based on numerical methods and solutions are determined by implementing the numerical

methods on original (physical) domain. These methods are adapted for fractional integrals (Riemann-Liouville integrals etc.) and derivatives

(Caputo derivatives and the Riesz Derivatives etc.) based on polynomial interpolation, Gauss interpolation or linear multistep methods.

For the numerical solution to the considered problem above we construct a uniform grid of mesh points tn with tn = n∆t, n = 0,1, . . . ,Nt

and ∆t = T/Nt . One can define the space step size ∆x = (b−a)/Nx. The space grid point xk is given by xk = a+ k∆x, k = 0,1, . . . ,Nx. We

denote the exact solution u(x, t) at (xk, tn) by un
k = u(xk, tn) and approximate solution by Un

k at the same grid point (xk, tn).

Toda Lattice Equation for Riemann-Liouville derivative in time: For the numerical solution to the considered problem (1.1), we consider

Riemann-Liouville time-fractional derivative:

[

∂ 2α un

∂xα ∂ tα

]

RL

=

(

1+

[

∂ α un

∂ tα

]

RL

)

(un−1
−2un +un+1), (x, t) ∈ I × (0,T ] (2.1)

We can discretize the Riemann-Liouville fractional derivative of u(x, t) at t = tn by the Grünwald–Letnikov formula as follows:

[

∂ α u(xk, t
n)

∂ tα

]

RL

=
1

∆tα

n

∑
j=0

wα
j u

n− j
k

+O(∆t p), t > 0

where wα
j are the coefficients of the generating function, that is wα

0 = 1, wα
j = (1− (α +1)/ j)wα

j−1, j ≥ 1 and p = 1 [4, 5]. Then the finite

difference approximation of (2.1) is given as follows:

1

∆tα

n

∑
j=0

wα
j (δ

α
x U

n− j
k

) =

(

1+
1

∆tα

n

∑
j=0

wα
j U

n− j
k

)

(Un−1
k −2Un

k +Un+1
k ), n ≥ 1, (2.2)

where δ α
x U

n− j
k

is the approximation of the Riemann-Liouville space-fractional derivative ∂ α un

∂xα and defined by the Grünwald–Letnikov

formula similarly:

δ α
x Un

k =
1

∆xα

k

∑
i=0

wα
i Un

k−i.

So (2.2) gives the approximate solution for all points (xk, tn), k = 1,Nx −1, n = 1,Nt −1 as follows:

{

1
∆tα

1
∆xα ∑

n
j=0 ∑

k
i=0 wα

j wα
i U

n− j
k−i

=
(

1+ 1
∆tα ∑

n
j=0 wα

j U
n− j
k

)

(Un−1
k

−2Un
k +Un+1

k
), n ≥ 0,

U0
k = φ(xk), k = 0,Nx, Un

0 =Un
Nx

= 0, n = 1,Nt .

Example 1. We consider here φ(x) = 10x(10− x), 0 ≤ x ≤ 10 as initial data and α = 0.75 as fractional order of derivative. In this example

the time step size is ∆t = 0.001 , number of time nodes is Nt = 41 and the space step size is ∆x = 0.5 , number of space nodes is Nx = 21.

The left Figure 2.1 shows numerical solution U(x, t) for x ∈ [0,10], t ∈ (0,T ], T = 0.04. The right Figure 2.1 shows final time profile of

numerical solution at T = 0.04.

Toda Lattice Equation for Caputo derivative in time: For the numerical solution to the considered problem (1.1), we consider Caputo

time-fractional derivative:

[

∂ 2α un

∂xα ∂ tα

]

C

=

(

1+

[

∂ α un

∂ tα

]

C

)

(un−1
−2un +un+1), (x, t) ∈ I × (0,T ]. (2.3)

We can discretize the Caputo fractional derivative of u(x, t) at t = tn by the L1-method defined as follows:

[

∂ α u(xk, t
n)

∂ tα

]

C

=
1

∆tα

n−1

∑
j=0

bα
n− j−1(u

j+1
k

−u
j
k
)+O(∆t p), t > 0

where bα
n− j−1 are the coefficients, that is bα

j = 1
Γ(2−α)

[( j+1)1−α − ( j)1−α ] and p = 1 [4, 5]. Then the finite difference approximation of

(2.3) is given as follows:

1

∆tα

n−1

∑
j=0

bα
n− j−1[δ

α
x (U

j+1
k

−U
j

k
)] =

(

1+
1

∆tα

n−1

∑
j=0

bα
n− j−1[δ

α
x (U

j+1
k

−U
j

k
)]

)

(Un−1
k −2Un

k +Un+1
k ), n ≥ 1, (2.4)
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Figure 2.1: Numerical solutions for Riemann-Liouville fractional derivative (α = 0.75 )

where δ α
x Un

k is the approximation of the Riemann-Liouville space-fractional derivative ∂ α un

∂xα and defined by the Grünwald–Letnikov formula

similarly. So (2.4) gives the approximate solution for all points (xk, tn), k = 1,Nx −1, n = 1,Nt −1 as follows:

{

1
∆tα

1
∆xα ∑

n−1
j=0 ∑

k
i=0 bα

n− j−1wα
i (U

j+1
k−i

−U
j

k−i
) =

(

1+ 1
∆tα ∑

n−1
j=0 bα

n− j−1(U
j+1

k
−U

j
k
)
)

(Un−1
k

−2Un
k +Un+1

k
), n ≥ 1(U

j+1
k−i

−U
j

k−i
),

U0
k = φ(xk), k = 0,Nx, Un

0 =Un
Nx

= 0, n = 1,Nt .
(2.5)

Example 2. We consider same data in Example 1 to compare the numerical solutions corresponding to the two type of fractional derivatives.

Thus, φ(x) = 10x(10−x), 0 ≤ x ≤ 10 is initial data and α = 0.75 is fractional order of derivative. The time step size is ∆t = 0.001 , number

of time nodes is Nt = 41 and the space step size is ∆x = 0.5 , number of space nodes is Nx = 21. The left Figure 2.2 shows numerical

solution U(x, t) for x ∈ [0,10], t ∈ (0,T ], T = 0.04. The right Figure 2.2 shows final time profile of numerical solution at T = 0.04. Figure

2.3 shows a slight differences difference on the solutions with Riemann–Liouville fractional derivative and Caputo fractional derivatives for

(α = 0.75 ). This slight difference, may be interpreted as, that is, due to the second term on r.h.s of equation (1.4) which states the relation

between the Riemann–Liouville and Caputo derivatives for 0 < α < 1.
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Figure 2.2: Numerical solutions for Caputo fractional derivative (α = 0.75 )
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Figure 2.3: Numerical solutions for both Riemann-Liouville and Caputo fractional derivative (α = 0.75 )

3. Conclusion

In this study the space-time fractional partial differential-difference Toda lattice equation is considered. We use the finite differences method

for numerical solution of the problem and present computational results for the case of two type of time fractional derivative (Riemann

Liouville and Caputo) with fractional order α = 0.75. Numerical experiments show that any of the fractional (Riemann–Liouville and

Caputo) derivatives may be used for any physical problem without any reluctance and the choice of the fractional derivative is negligible at

least the problem considered in this study.
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Abstract

The intention of this article is to study on timelike uniform B-spline curves in Minkowski-3

space. In our paper, we take the control points of uniform B-spline curves as a timelike

point in Minkowski-3 space. Then we calculate some geometric elements for this new curve

in Minkowski-3 space.

1. Introduction

B-spline curves were described by Schoenberg who was worked on B-spline curves for statistical data collection in [1]. The B-spline

curves was constructed for computing a convolution of some probability distributions. Moreover, de Boor and Hollig considered a different

approach to B-spline curves in [2]. Recently, in Computer Aided Geometric Design (CAGD), B-spline curves have been commonly used for

designing an automobile, a boat, an aircraft, [3] and [4]. There are many studies on the B-spline curves, see some of them in [2], [5], [6].

Although degree d of a Bezier curve has d+1 control points, degree d of a B-spline curves can have any number of control points supplied a

sufficient number of knots are defined in [7] and [8]. In addition, the control points of the Bezier curves provide a global change on the curve,

while the control points of the B-spline curves provide a local change on the curve. For this reason, B-spline curves can be given additional

freedom by increasing the number of control points in order to define complex curve shapes without increasing the degree of the curve, [9].

Minkowski space was introduced by H. Minkowski. In our paper, we try to investigate some geometric properties of the B-spline curves in

Minkowski 3-space. We present the curvature and torsion of the B-spline curves in Minkowski 3-space.

2. Preliminaries

In this section the B-spline curves are defined and some preliminaries are given. Then some basics of Minkowski space is given.

Definition 2.1. Let t0, t1, ..., tm be knot vectors of the B-spline basis function of degree d. The B-spline basis function denoted Ni,d(t) is

defined by

Ni,0(t) =







1, i f t ∈ [ti, ti+1)
0, otherwise (2.1)

Ni,d(t) =
t − ti

ti+d − ti
Ni,d−1(t)+

ti+d+1 − t

ti+d+1 − ti+1
Ni+1,d−1(t) (2.2)

for i = 0, ...,n and d ≥ 1.
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Definition 2.2. If the B-spline curve of degree d with control points b0, ...,bn and knots t0, t1, ..., tm is defined on the interval [a,b] = [td , tm−d ],
then the curve can be written in the form

B(t) =
n

∑
i=0

biNi,d(t).

When the B-spline curves are in the rational form, they are often called integral B-spline curves. Moreover, if the knots are equally spaced,

then a B-spline curve is called uniform.

On the other hand, Minkowski 3-space R
3
1 is a vector space R

3 provide with the Lorentzian inner product g given by

g(ν ,λ ) = ν1λ1 +ν2λ2 −ν3λ3,

where ν = (ν1,ν2,ν3) and λ = (λ1,λ2,λ3) ∈R
3
1. A vector in Minkowski 3-space λ = (λ1,λ2,λ3) ∈R

3
1 is called spacelike if g(λ ,λ )> 0 or

λ = 0; timelike if g(λ ,λ )< 0; lightlike if g(λ ,λ ) = 0 and λ 6= 0. The vectors ν and λ are ortogonal if and only if g(ν ,λ ) = 0. The norm

of a vector ν on Minkowski space R
3
1 is defined by ‖ν‖

L
=
√

|g(ν ,ν)|. If the vector is timelike, then the form will be ‖ν‖
L
=
√

−g(ν ,ν).
Let (c) be curve in R

3
1. We say that (c) is timelike curve (resp. spacelike, lightlike) at t if the tangent vector (c)′ (t) is a timelike (resp.

spacelike, lightlike) vector. The vector fields of the moving Serret-Frenet from along the curve (c) are denoted by {T,N,B} where T, N

and B are called with the tangent, the principal normal and the binormal vector of the curve (c), respectively. If the curve (c) is time-like

curve, then T is timelike vector, N and B are spacelike vectors which satisfy T∧LN = −B, N∧LB = T, B∧LT = −N. The derivative of

Serret-Frenet frame equations for a timelike curve is

T′ = κN

N′ = κT+ τB

B′ =−τN.

3. Main result

Definition 3.1. Let X = {b0,b1, ...,bn} be a timelike points set in R
3
1. The

TCH {X}=

{

λ0b0 + ...+λnbn|
n

∑
i=0

λi = 1,λi ≥ 0

}

set formed by these X points are called timelike convex hull of a timelike uniform B-spline curve.

Definition 3.2. If the control points b0, ...,bn ∈ TCH{X} are timelike and the knots t0, t1, ..., tm on the interval [a,b] = [td , tm−d ] are equally

spaced, then the timelike uniform B-spline curve of degree d in Minkowski 3-space is defined by

B(t) =
n

∑
i=0

biNi,d(t),

where Ni,d(t) are the basis functions.

Example: Lets consider the timelike uniform B-spline curve B(t) of degree d = 2 defined on the knots t0 = 0, t1 = 1, t2 = 2, t3 = 3, t4 =
4, t5 = 5, t6 = 6, t7 = 7 and with control points b0(2,3),b1(−1,7),b2(2,5),b3(4,5),b4(1,3). The basis graphic and the curve shape are in

the following figures.

,

Figure 3.1: a) Basis function graphic b) A timelike uniform B-spline curve

Theorem 3.3. Let B(t) be a timelike uniform B-spline curve of degree d with the knot vector t0, ..., tm in Minkowski 3-space. If t ∈

[tr, tr+1) (d ≤ r ≤ m− d − 1) then B(t) =
r

∑
i=r−d

biNi,d(t). Therefore to compute B(t) its sufficient to compute Nr−d,d(t), ...,Nr,d(t). This

shows us that the B-spline curve is achieved by the local control. If t ∈ [tr, tr+1) (d ≤ r ≤ m− d − 1) then B(t) ∈ TCH{br−d , ...,br}.
This means that B-spline curve has an convex hull. If pi is the multiplicity of the breakpoint t = ui then B(t) is Cd−pi (or greater) at



208 Journal of Mathematical Sciences and Modelling

t = ui and C∞ elsewhere. Thus, it is seen that the B-spline curve is satisfied the continuity property. Let T be an affine transformation. If

T (
n

∑
i=0

biNi,d(t)) =
n

∑
i=0

T (bi)Ni,d(t), the B-spline curve is invariant under affine transformations.

Theorem 3.4. Let B(t) be a timelike uniform B-spline curve of degree d with the knot vector t0, ..., tm in Minkowski 3-space. The second and

third derivative of the control points bi are calculated by

b
(2)
i = (d −1).mi.∆b

(1)
i

b
(3)
i = (d −1)(d −2).pi.(ni.∆b

(1)
i+1 −mi∆b

(1)
i )

where mi,ni, pi are some constants of ti.

Proof. Using the Eq.(2.1) and Eq.(2.2) the control points can be written as

b
(2)
i = (d −1)

b
(1)
i+1 −b

(1)
i

ti+d+1 − ti+2

= (d −1).mi.∆b
(1)
i ,

b
(3)
i =

(d −2)

ti+d+1 − ti+3

(

b
(2)
i+1 −b

(2)
i

)

=
(d −2)

ti+d+1 − ti+3

(

(d −1).ni.(b
(2)
i+2 −b

(1)
i+1)− (d −1).mi.(b

(1)
i+1 −b

(1)
i )

)

=
(d −1)(d −2)

ti+d+1 − ti+3

(

.ni.(b
(2)
i+2 −b

(1)
i+1)−mi.(b

(1)
i+1 −b

(1)
i )

)

= (d −1)(d −2).pi.(ni.∆b
(1)
i+1 −mi∆b

(1)
i )

where mi =
1

ti+d+1−ti+2
, ni =

1
ti+d+2−ti+3

and pi =
1

ti+d+1−ti+3
.

Theorem 3.5. Let B(t) be a timelike uniform B-spline curve of degree d with the knot vector t0, ..., tm in Minkowski 3-space. The derivatives

of B-spline curve is computed by

B(1)(t) =
n−1

∑
i=0

bi
(1)N(1)

i,d−1(t)

B(2)(t) = (d −1)
n−2

∑
i=0

mi.∆b
(1)
i .N

(2)
i,d−2

B(3)(t) = (d −1)(d −2)
n−3

∑
i=0

pi.

(

ni.∆b
(1)
i+1 −mi∆b

(1)
i

)

.N
(3)
i,d−3.

Proof. Substituting the above results in Eq.(2.2), the proof is obvious.

Theorem 3.6. Let B(t) be an arbitrary timelike uniform B-spline curve and {T,N,B}|t=0 be the Serret-Frenet frame of B(t), where T is

timelike, N and B are spacelike. Then the following conditions are satisfied

g(T ,T ) =−1,g(N,N) = 1,g(B,B) = 1

g(T ,N) = 0,g(T ,B) = 0,g(N,B) = 0.

The Serret-Frenet frame of the timelike uniform B-spline curve B(t) is obtained by

T =

n−1

∑
i=0

bi
(1)N(1)

i,d−1(t)

∥

∥

∥

∥

n−1

∑
i=0

bi
(1)N(1)

i,d−1(t)

∥

∥

∥

∥

B =

n−1

∑
i=0

bi
(1)N

(1)

i,d−1
(t)∧

n−2

∑
i=0

mi.∆b
(1)
i .N

(2)
i,d−2

∥

∥

∥

∥

n−1

∑
i=0

bi
(1)N

(1)

i,d−1
(t)∧

n−2

∑
i=0

mi.∆b
(1)
i .N

(2)
i,d−2

∥

∥

∥

∥

N = −

−g

(

n−1

∑
i=0

bi
(1)N

(1)

i,d−1
(t),

n−1

∑
i=0

bi
(1)N(1)

i,d−1(t)

)(

n−2

∑
i=0

mi.∆b
(1)
i .N

(2)
i,d−2

)

+g

(

n−2

∑
i=0

mi.∆b
(1)
i .N

(2)
i,d−2,

n−1

∑
i=0

bi
(1)N

(1)

i,d−1
(t)

)(

n−1

∑
i=0

bi
(1)N

(1)

i,d−1
(t)

)

∥

∥

∥

∥

n−1

∑
i=0

bi
(1)N

(1)

i,d−1
(t)∧

n−2

∑
i=0

mi.∆b
(1)
i .N

(2)
i,d−2

∥

∥

∥

∥

∥

∥

∥

∥

n−1

∑
i=0

bi
(1)N(1)

i,d−1(t)

∥

∥

∥

∥
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Proof. Let consider the B-spline curve B(t) is non unit speed curve in Minkowski 3-space. Using the scalar and vector product in Minkowski

3-space, the tangent vector of the timelike uniform B-spline curve B(t) is calculated as

T =
B(1)(t)

∥

∥B(1)(t)
∥

∥

=

n−1

∑
i=0

bi
(1)N(1)

i,d−1(t)

∥

∥

∥

∥

n−1

∑
i=0

bi
(1)N(1)

i,d−1(t)

∥

∥

∥

∥

,

and the binormal vector of the timelike B-spline curve is

B =
B(1)(t)∧B(2)(t)

∥

∥B(1)(t)∧B(2)(t)
∥

∥

=

n−1

∑
i=0

bi
(1)N

(1)

i,d−1
(t)∧ (d −1)

n−2

∑
i=0

mi.∆b
(1)
i .N

(2)
i,d−2

∥

∥

∥

∥

n−1

∑
i=0

bi
(1)N

(1)

i,d−1
(t)∧ (d −1)

n−2

∑
i=0

mi.∆b
(1)
i .N

(2)
i,d−2

∥

∥

∥

∥

=

n−1

∑
i=0

bi
(1)N

(1)

i,d−1
(t)∧

n−2

∑
i=0

mi.∆b
(1)
i .N

(2)
i,d−2

∥

∥

∥

∥

n−1

∑
i=0

bi
(1)N

(1)

i,d−1
(t)∧

n−2

∑
i=0

mi.∆b
(1)
i .N

(2)
i,d−2

∥

∥

∥

∥

.

The principal normal can be obtained as

N = −B∧T

= −

n−1

∑
i=0

bi
(1)N

(1)

i,d−1
(t)∧

n−2

∑
i=0

mi.∆b
(1)
i .N

(2)
i,d−2

∥

∥

∥

∥

n−1

∑
i=0

bi
(1)N

(1)

i,d−1
(t)∧

n−2

∑
i=0

mi.∆b
(1)
i .N

(2)
i,d−2

∥

∥

∥

∥

∧

n−1

∑
i=0

bi
(1)N(1)

i,d−1(t)

∥

∥

∥

∥

n−1

∑
i=0

bi
(1)N(1)

i,d−1(t)

∥

∥

∥

∥

= −

(

n−1

∑
i=0

bi
(1)N

(1)

i,d−1
(t)∧

n−2

∑
i=0

mi.∆b
(1)
i .N

(2)
i,d−2

)

∧
n−1

∑
i=0

bi
(1)N(1)

i,d−1(t)

∥

∥

∥

∥

n−1

∑
i=0

bi
(1)N

(1)

i,d−1
(t)∧

n−2

∑
i=0

mi.∆b
(1)
i .N

(2)
i,d−2

∥

∥

∥

∥

∥

∥

∥

∥

n−1

∑
i=0

bi
(1)N(1)

i,d−1(t)

∥

∥

∥

∥

= −

−g

(

n−1

∑
i=0

bi
(1)N

(1)

i,d−1
(t),

n−1

∑
i=0

bi
(1)N(1)

i,d−1(t)

)(

n−2

∑
i=0

mi.∆b
(1)
i .N

(2)
i,d−2

)

+g

(

n−2

∑
i=0

mi.∆b
(1)
i .N

(2)
i,d−2,

n−1

∑
i=0

bi
(1)N

(1)

i,d−1
(t)

)

n−1

∑
i=0

bi
(1)N

(1)

i,d−1
(t)

∥

∥

∥

∥

n−1

∑
i=0

bi
(1)N

(1)

i,d−1
(t)∧

n−2

∑
i=0

mi.∆b
(1)
i .N

(2)
i,d−2

∥

∥

∥

∥

∥

∥

∥

∥

n−1

∑
i=0

bi
(1)N(1)

i,d−1(t)

∥

∥

∥

∥

.

Theorem 3.7. If the B-spline curve of degree d with control points b0, ...,bn and knots t0, t1, ..., tm is defined on the interval [a,b] = [td , tm−d ],
the curvature of timelike uniform B-spline curve B(t) is found as

κ = |d −1|

∥

∥

∥

∥

n−1

∑
i=0

bi
(1)N

(1)

i,d−1
(t)∧

n−2

∑
i=0

mi.∆b
(1)
i .N

(2)
i,d−2

∥

∥

∥

∥

∥

∥

∥

∥

n−1

∑
i=0

bi
(1)N

(1)

i,d−1
(t)

∥

∥

∥

∥

3

Proof. From the definition of curvature of the non-unit speed curve, we have

κ =

∥

∥

∥
B(1)(t)∧B(2)(t)

∥

∥

∥

∥

∥B(1)(t)
∥

∥

3

=

∥

∥

∥

∥

n−1

∑
i=0

bi
(1)N

(1)

i,d−1
(t)∧ (d −1)

n−2

∑
i=0

mi.∆b
(1)
i .N

(2)
i,d−2

∥

∥

∥

∥

∥

∥

∥

∥

n−1

∑
i=0

bi
(1)N

(1)

i,d−1
(t)

∥

∥

∥

∥

3

= |d −1|

∥

∥

∥

∥

n−1

∑
i=0

bi
(1)N

(1)

i,d−1
(t)∧

n−2

∑
i=0

mi.∆b
(1)
i .N

(2)
i,d−2

∥

∥

∥

∥

∥

∥

∥

∥

n−1

∑
i=0

bi
(1)N

(1)

i,d−1
(t)

∥

∥

∥

∥

3
.
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Theorem 3.8. If B(t) is a timelike uniform B-spline curve of degree d with the knot vector t0, ..., tm in Minkowski 3-space, the torsion of a

timelike uniform B-spline curve B(t) is computed by

τ =−(d −2)

det

(

n−1

∑
i=0

bi
(1)N

(1)

i,d−1
(t) ,

n−2

∑
i=0

mi.∆b
(1)
i .N

(2)
i,d−2,

n−3

∑
i=0

pi.

(

ni.∆b
(1)
i+1 −mi∆b

(1)
i

)

.N
(3)
i,d−3

)

∥

∥

∥

∥

n−1

∑
i=0

bi
(1)N

(1)

i,d−1
(t)∧

n−2

∑
i=0

mi.∆b
(1)
i .N

(2)
i,d−2

∥

∥

∥

∥

2

Proof. Using the definition of torsion, we have the following equations:

τ =

(

B(1)(t) B(2)(t) B(3)(t)
)

∥

∥B(1)(t)∧B(2)(t)
∥

∥

2

=

(

n−1

∑
i=0

bi
(1)N

(1)

i,d−1
(t) (d −1)

n−2

∑
i=0

mi.∆b
(1)
i .N

(2)
i,d−2 (d −1)(d −2)

n−3

∑
i=0

pi.

(

ni.∆b
(1)
i+1 −mi∆b

(1)
i

)

.N
(3)
i,d−3

)

∥

∥

∥

∥

n−1

∑
i=0

bi
(1)N

(1)

i,d−1
(t)∧ (d −1)

n−2

∑
i=0

mi.∆b
(1)
i .N

(2)
i,d−2

∥

∥

∥

∥

2

= −(d −2)

det

(

n−1

∑
i=0

bi
(1)N

(1)

i,d−1
(t) ,

n−2

∑
i=0

mi.∆b
(1)
i .N

(2)
i,d−2,

n−3

∑
i=0

pi.

(

ni.∆b
(1)
i+1 −mi∆b

(1)
i

)

.N
(3)
i,d−3

)

∥

∥

∥

∥

n−1

∑
i=0

bi
(1)N

(1)

i,d−1
(t)∧

n−2

∑
i=0

mi.∆b
(1)
i .N

(2)
i,d−2

∥

∥

∥

∥

2

4. Conclusion

In this paper, we present a theoretical work about the timelike uniform B-spline curves in Minkowski-3 space. The timelike B-spline curve in

Minkowski 3-space at first time is introduced. The derivatives of control points are calculated. Later Serret-Frenet frame of the timelike

uniform B-spline curve is given. Moreover, the curvature and torsion of the B-spline curve are computed.
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