ACTA VETERINARIA EURASIA

Formerly Journal of the Faculty of Veterinary Medicine Istanbul University
Official Journal of Istanbul University Faculty of Veterinary Medicine

VOLUME: 44 ISSUE: 2

істанбул uni4ver}sія

actaveteurasia.istanbul.edu.tr
Editorial Management

Editor in Chief
Serhat ALKAN
Department of Reproduction and Artificial Insemination, Istanbul University-Cerrahpaşa, Faculty of Veterinary Medicine, Istanbul, Turkey
salkan@istanbul.edu.tr
ORCID ID: 0000-0003-4741-1416

Editors
Ali AYDIN
Department of Food Hygiene and Technology, Istanbul University-Cerrahpaşa, Faculty of Veterinary Medicine, Istanbul, Turkey
aliaydin@istanbul.edu.tr
ORCID ID: 0000-0002-4931-9843

Hüseyin YILMAZ
Department of Virology, Istanbul University-Cerrahpaşa, Faculty of Veterinary Medicine, Istanbul, Turkey
hylmaz@istanbul.edu.tr
ORCID ID: 0000-0002-7897-2358

Atila ATEŞ
Department of Biochemistry, Istanbul University-Cerrahpaşa, Faculty of Veterinary Medicine, Istanbul, Turkey
atiates@istanbul.edu.tr
ORCID ID: 0000-0002-9013-930X

Karol MURATOĞLU
Department of Food Hygiene and Technology, Istanbul University-Cerrahpaşa, Faculty of Veterinary Medicine, Istanbul, Turkey
karolmrt@istanbul.edu.tr
ORCID ID: 0000-0001-8705-6813

Bülent EKİZ
Department of Animal Breeding and Husbandry, Istanbul University-Cerrahpaşa, Faculty of Veterinary Medicine, Istanbul, Turkey
bekiz@istanbul.edu.tr
ORCID ID: 0000-0001-6458-5747

O. B. Burak ESENER
Department of Histology-Embryology, Istanbul University-Cerrahpaşa, Faculty of Veterinary Medicine, Istanbul, Turkey
burake@istanbul.edu.tr
ORCID ID: 0000-0001-9444-3598

Gülcan DEMİREL
Department of Animal Nutrition and Nutritional Diseases, Istanbul University-Cerrahpaşa, Faculty of Veterinary Medicine, Istanbul, Turkey
gdemirel@istanbul.edu.tr
ORCID ID: 0000-0002-6864-5134

Özge TURNA
Department of Obstetrics and Gynecology, Istanbul University-Cerrahpaşa, Faculty of Veterinary Medicine, Istanbul, Turkey
turnao@istanbul.edu.tr, turnaozge@hotmail.com
ORCID ID: 0000-0002-7638-0519

Language Editors
Dorian Gordon Bates
Alan James Newson
İstanbul University, İstanbul, Turkey

Istanbul Üniversitesi Veterinerlik Fakültesi adına sahibi / Owner on behalf of the Istanbul University Faculty of Veterinary: Güven Kaşıkçı • Sorumlu Yazı İşleri Müdürü / Responsible Manager: Serhat Alkan • Yayın türü / Publication Type: Yerel süreli / Semiannual • Basım yeri / Printed at: Hamdioğulları İç ve Dış Ticaret A.Ş. Zübeyde Hanım Mah. Elif Sokak No.7/197 Altındağ, Ankara, Türkiye. Tel: +90 (542) 695 77 60 • Basım tarihi / Printing Date: Mayıs 2018 / May 2018
Aims and Scope

Acta Veterinaria Eurasia (Acta Vet Eurasia) is an international, scientific, open access periodical published in accordance with independent, unbiased, and double-blinded peer-review principles. The journal is the official publication of Istanbul University Faculty of Veterinary Medicine and published three times a year (January, May and September). The publication language of the journal is English.

Acta Veterinaria Eurasia (Acta Vet Eurasia) aims to contribute to the literature by publishing manuscripts at the highest scientific level on all fields of veterinary medicine. The journal publishes original articles, reviews, case reports, short communications, and letters to the editor that are prepared in accordance with the ethical guidelines.

The scope of the journal covers all animal species including the topics related to basic and clinical veterinary sciences, raising livestock, veterinary genetics, animal nutrition and nutritional diseases, zoonoses, veterinary medicinal products and public health, and food hygiene and technology.

The target audience of the journal includes specialists and professionals working and interested in all disciplines of veterinary medicine.

The editorial and publication processes of the journal are shaped in accordance with the guidelines of the International Committee of Medical Journal Editors (ICMJE), World Association of Medical Editors (WAME), Council of Science Editors (CSE), Committee on Publication Ethics (COPE), European Association of Science Editors (EASE), and National Information Standards Organization (NISO). The journal is in conformity with the Principles of Transparency and Best Practice in Scholarly Publishing (doaj.org/bestpractice).

All expenses of the journal are covered by the of Istanbul University Faculty of Veterinary Medicine. Processing and publication are free of charge with the journal. No fees are requested from the authors at any point throughout the evaluation and publication process. All manuscripts must be submitted via the online submission system, which is available at actaveteurasia.istanbul.edu.tr The journal guidelines, technical information, and the required forms are available on the journal’s web page.

Statements or opinions expressed in the manuscripts published in the journal reflect the views of the author(s) and not the opinions of the Istanbul University Faculty of Veterinary Medicine, editors, editorial board, and/or publisher; the editors, editorial board, and publisher disclaim any responsibility or liability for such materials.

All published content is available online, free of charge at actaveteurasia.istanbul.edu.tr Printed copies of the journal are distributed, free of charge.

İstanbul University Faculty of Veterinary Medicine holds the international copyright of all the content published in the journal.

Editor in Chief: Serhat Alkan
Address: Istanbul University Faculty of Veterinary Medicine, 34320 Avcilar, Istanbul, Turkey
Phone: +90 (212) 473 70 70/17260
Fax: +90 (212) 473 72 40
E-mail: actavet@istanbul.edu.tr

Publisher: AVES
Address: Büyükdere Avenue, 105/9 34394 Mecidiyeköy, Şişli, Istanbul, Turkey
Phone: +90 212 217 17 00
Fax: +90 212 217 22 92
E-mail: info@avesyayincilik.com
Web page: www.avesyayincilik.com
Instructions to Authors

Acta Veterinaria Eurasia (Acta Vet Eurasia) is an international, scientific, open access periodical published in accordance with independent, unbiased, and double-blinded peer-review principles. The journal is the official publication of Istanbul University Faculty of Veterinary Medicine and published three times a year (January, May and September). The publication language of the journal is English.

Acta Veterinaria Eurasia (Acta Vet Eurasia) aims to contribute to the literature by publishing manuscripts at the highest scientific level on all fields of veterinary medicine. The journal publishes original articles, reviews, case reports, short communications, and letters to the editor that are prepared in accordance with the ethical guidelines.

The scope of the journal covers all animal species including the topics related to basic and clinical veterinary sciences, raising livestock, veterinary genetics, animal nutrition and nutritional diseases, zoonoses, veterinary medicinal products and public health, and food hygiene and technology.

The target audience of the journal includes specialists and professionals working and interested in all disciplines of veterinary medicine.

The journal aims to contribute to the literature by publishing manuscripts at the highest scientific level on all fields of veterinary medicine. The journal publishes original articles, reviews, case reports, short communications, and letters to the editor that are prepared in accordance with the ethical guidelines.

The editorial and publication processes of the journal are shaped in accordance with the guidelines of the International Council of Medical Journal Editors (ICMJE), the World Association of Medical Editors (WAME), the Council of Science Editors (CSE), the Committee on Publication Ethics (COPE), the European Association of Science Editors (EASE), and National Information Standards Organization (NISO). The journal conforms to the Principles of Transparency and Best Practice in Scholarly Publishing (doaj.org/bestpractice).

Originality, high scientific quality, and citation potential are the most important criteria for a manuscript to be accepted for publication. The submission of previous reviewer reports will expedite the evaluation process. Manuscripts that have been presented in a meeting should be submitted with detailed information on the organization, including the name, date, and location of the organization.

Manuscripts submitted to Acta Veterinaria Eurasia will go through a double-blind peer-review process. Each submission will be reviewed by at least two external, independent peer reviewers who are experts in their fields in order to ensure an unbiased evaluation process. The editorial board will invite an external and independent editor to manage the evaluation processes of manuscripts submitted by editors or by the editorial board members of the journal. The Editor in Chief is the final authority in the decision-making process for all submissions.

An approval of research protocols by an Animal Ethics Committee in accordance with international principles is required for experimental, clinical and drug studies and for some case reports that are carried out on animals. If required, ethics committee reports or an equivalent official document will be requested from the authors. For studies carried out on animals, the measures taken to prevent pain and suffering of the animals should be stated clearly. The name of the ethics committee, and the ethics committee approval number should also be stated in the Materials and Methods section of the manuscript. For studies involving client-owned animals, author’s must provide the information on informed consent from the client or the owner and adherence to a high standard (best practice) of veterinary care. The editor has the right to reject manuscripts on suspicion of animal welfare or research protocols that are not consistent with the international principles of animal research. For studies conducting questionnaire methodology should also require ethical approval and a statement should be included that shows that written informed consent of participants and volunteers was obtained following a detailed explanation of the study. The scientific and ethical responsibility of the research belongs to the authors.

All submissions are screened by a similarity detection software (iThenticate by CrossCheck).

In the event of alleged or suspected research misconduct, e.g., plagiarism, citation manipulation, and data falsification/fabrication, the Editorial Board will follow and act in accordance with COPE guidelines.

Each individual listed as an author should fulfill the authorship criteria recommended by the International Committee of Medical Journal Editors (ICMJE - www.icmje.org). The ICMJE recommends that authorship be based on the following 4 criteria:

1. Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; AND
2. Drafting the work or revising it critically for important intellectual content; AND
3. Final approval of the version to be published; AND
4. Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

In addition to being accountable for the parts of the work he/she has done, an author should be able to identify which co-authors are responsible for specific other parts of the work. In addition, authors should have confidence in the integrity of the contributions of their co-authors.

All those designated as authors should meet all four criteria for authorship, and all who meet the four criteria should be identified as authors. Those who do not meet all four criteria should be acknowledged in the title page of the manuscript.
Acta Veterinaria Eurasia requires corresponding authors to submit a signed and scanned version of the authorship contribution form (available for download through actaveteurasia.istanbul.edu.tr during the initial submission process in order to act appropriately on authorship rights and to prevent ghost or honorary authorship. If the editorial board suspects a case of "gift authorship," the submission will be rejected without further review. As part of the submission of the manuscript, the corresponding author should also send a short statement declaring that he/she accepts to undertake all the responsibility for authorship during the submission and review stages of the manuscript.

Acta Veterinaria Eurasia requires and encourages the authors and the individuals involved in the evaluation process of submitted manuscripts to disclose any existing or potential conflicts of interests, including financial, consultant, and institutional, that might lead to potential bias or a conflict of interest. Any financial grants or other support received for a submitted study from individuals or institutions should be disclosed to the Editorial Board. To disclose a potential conflict of interest, the ICMJE Potential Conflict of Interest Disclosure Form should be filled in and submitted by all contributing authors. Cases of a potential conflict of interest of the editors, authors, or reviewers are resolved by the journal's Editorial Board within the scope of COPE and ICMJE guidelines.

The Editorial Board of the journal handles all appeal and complaint cases within the scope of COPE guidelines. In such cases, authors should get in direct contact with the editorial office regarding their appeals and complaints. When needed, an ombudsman may be assigned to resolve cases that cannot be resolved internally. The Editor in Chief is the final authority in the decision-making process for all appeals and complaints.

When submitting a manuscript to Acta Veterinaria Eurasia, authors accept to assign the copyright of their manuscript to Istanbul University Faculty of Veterinary Medicine. If rejected for publication, the copyright of the manuscript will be assigned back to the authors. Acta Veterinaria Eurasia requires each submission to be accompanied by a Copyright Transfer Form (available for download at actaveteurasia.istanbul.edu.tr). When using previously published content, including figures, tables, or any other material in both print and electronic formats, authors must obtain permission from the copyright holder.

Publication of Scholarly Work in Medical Journals (updated in December 2017 - http://www.icmje.org/icmje-recommendations.pdf). Authors are required to prepare manuscripts in accordance with the CONSORT guidelines for randomized research studies, STROBE guidelines for observational original research studies, STARD guidelines for studies on diagnostic accuracy, PRISMA guidelines for systematic reviews and meta-analysis, ARRIVE guidelines for experimental animal studies, and TREND guidelines for non-randomized public behavior.

Manuscripts can only be submitted through the journal's online manuscript submission and evaluation system, available at actaveteurasia.istanbul.edu.tr. Manuscripts submitted via any other medium will not be evaluated.

Manuscripts submitted to the journal will first go through a technical evaluation process where the editorial office staff will ensure that the manuscript has been prepared and submitted in accordance with the journal's guidelines. Submissions that do not conform to the journal's guidelines will be returned to the submitting author with technical correction requests.

Authors are required to submit the following:

- Copyright Transfer Form,
- Author Contributions Form, and
- ICMJE Potential Conflict of Interest Disclosure Form (should be filled in by all contributing authors) during the initial submission. These forms are available for download at http://dergipark.gov.tr/iuvfd.

Preparation of the Manuscript

Title page: A separate title page should be submitted with all submissions and this page should include:

- The full title of the manuscript as well as a short title (running head) of no more than 50 characters,
- Name(s), affiliations, highest academic degree(s), and ORCID ID(s) of the author(s),
- Grant information and detailed information on the other sources of support,
- Name, address, telephone (including the mobile phone number) and fax numbers, and email address of the corresponding author,
- Acknowledgment of the individuals who contributed to the preparation of the manuscript but who do not fulfill the authorship criteria.

Abstract: An English abstract should be submitted with all submissions except for Letters to the Editor. Submitting a Turkish abstract is not compulsory for international authors. The Abstract section of all types of articles should be unstructured.
Keywords: Each submission must be accompanied by a minimum of three to a maximum of six keywords for subject indexing at the end of the abstract. The keywords should be listed in full without abbreviations.

Manuscript Types
Original Articles: This is the most important type of article since it provides new information based on original research. The main text of original articles should be structured with Introduction, Materials and Methods, Results, and Discussion subheadings. The results and discussion may be combined into one section, if desired.

Statistical analysis to support conclusions is usually necessary. Statistical analyses must be conducted in accordance with international statistical reporting standards (Altman DG, Gore SM, Gardner MJ, Pocock SJ. Statistical guidelines for contributors to medical journals. Br Med J 1983; 7; 1489-93). Information on statistical analyses should be provided with a separate subheading under the Materials and Methods section and the statistical software that was used during the process must be specified.

Units should be prepared in accordance with the International System of Units (SI).

Review Articles: Reviews prepared by authors who have extensive knowledge on a particular field and whose scientific background has been translated into a high volume of publications with a high citation potential are welcomed. These authors may even be invited by the journal. Reviews should describe, discuss, and evaluate the current level of knowledge of a topic in the field and should guide future studies. The main text of review articles should be begun with an Introduction section and finalized with a Conclusion section. The remaining parts can be named relevantly to the essence of the research.

Case Reports: There is limited space for case reports in the journal and reports on rare cases or conditions that constitute challenges in diagnosis and treatment, those offering new therapies or revealing knowledge not included in the literature, and interesting and educative case reports are accepted for publication. The text should include Introduction, Case Presentation, and Discussion subheadings.

Short Communications: Short communications are the narrow-scope research articles that provide new scientific information. These types of articles should be prepared in the original article format and contain Introduction, Materials and Methods, Results, and Discussion subheadings.

Letters to the Editor: This type of manuscript discusses important parts, overlooked aspects, or lacking parts of a previously published article. Articles on subjects within the scope of the journal that might attract the readers’ attention, particularly educative cases, may also be submitted in the form of a “Letter to the Editor.” Readers can also present their comments on the published manuscripts in the form of a “Letter to the Editor.” Abstract, Keywords, and Tables, Figures, Images, and other media should not be included. The text should be unstructured. The manuscript that is being commented on must be properly cited within this manuscript.

Tables
Tables should be included in the main document, presented after the reference list, and they should be numbered consecutively in the order they are referred to within the main text. A descriptive title must be placed above the tables. Abbreviations used in the tables should be defined below the tables by footnotes (even if they are defined within the main text). Tables should be created using the “insert table” command of the word processing software and they should be arranged clearly to provide easy reading. Data presented in the tables should not be a repetition of the data presented within the main text but should be supporting the main text.

Figures and Figure Legends
Figures, graphics, and photographs should be submitted as separate files (in TIFF or JPEG format) through the submission system. The files should not be embedded in a Word document or the main document. When there are figure subunits, the subunits should not be merged to form a single image. Each subunit should be submitted separately through the submission system. Images should not be labeled (a, b, c, etc.) to indicate figure subunits. Thick and thin arrows, arrowheads, stars, asterisks, and similar marks can be used on the images to support figure legends. Like the rest of the submission, the figures too should be blind. Any information within the images that may indicate an individual or institution should be blinded. The minimum resolution of each submitted figure should be 300 DPI. To prevent delays in the evaluation process, all submitted figures should be clear in resolution and large in size (minimum dimensions: 100 x 100 mm). Figure legends should be listed at the end of the main document.

All acronyms and abbreviations used in the manuscript should be defined at first use, both in the abstract and in the main text. The abbreviation should be provided in parentheses following the definition. The Latin scientific names of a species should be written in italics. Apart from the names of species, italicization should be avoided as much as possible.

When a drug, product, hardware, or software program is mentioned within the main text, product information, including the name of the product, the producer of the product, and city and the country of the company (including the state if in USA), should be provided in parentheses in the following format: “Chelex-100 (BioRad, California, USA)”

All references, tables, and figures should be referred to within the main text, and they should be numbered consecutively in the order they are referred to within the main text.
Limitations, drawbacks, and the shortcomings of original articles should be mentioned in the Discussion section before the conclusion paragraph.

References
While citing publications, preference should be given to the latest, most up-to-date publications. In the main text of the manuscript, references should be cited by author’s name and the publication year in parenthesis. In the case of direct citations in the main text, only publication year should be stated in parenthesis after the name of the author. Please see below for examples:

For single authored reference: (Bell, 2005)

For double authored reference: (Nielsen and Engberg, 2006)

For direct citation in a sentence: “According to Bell (2005)……” or “According to Nielsen and Engberg (2006)……”

Reference with multiple authors: (Doyle et al., 2007)

For multiple references, in order of year: (Bell, 2005; Bell, 2008; Doyle et al., 2007; Nielsen and Engberg, 2006; Willis and Murray, 1997)

For references with the same author and year: (Bell, 2005a; Bell, 2005b; Bell, 2005c)

Reference List
The list of references should only include works that are cited in the text and that have been published or accepted for publication. The references must be listed alphabetically according to the last name of the author. The author names and the publication year should be written in bold. Journal titles should not be abbreviated. If an ahead-of-print publication is cited, the DOI number should be provided. Authors are responsible for the accuracy of references.

The reference styles for different types of publications are presented in the following examples:

REVISIONS
When submitting a revised version of a paper, the author must submit a detailed “Response to the reviewers” that states point by point how each issue raised by the reviewers has been covered and where it can be found (each reviewer’s comment, followed by the author’s reply and line numbers where the changes have been made) as well as an annotated copy of the main document. Revised manuscripts must be submitted within 30 days from the date of the decision letter. If the revised version of the manuscript is not submitted within the allocated time, the revision option may be canceled. If the submitting author(s) believe that additional time is required, they should request this extension before the initial 30-day period is over.

Accepted manuscripts are copy-edited for grammar, punctuation, and format. Once the publication process of a manuscript is completed, it is published online on the journal’s webpage as an ahead-of-print publication before it is included in its scheduled issue. A PDF proof of the accepted manuscript is sent to the corresponding author and their publication approval is requested within 2 days of their receipt of the proof.

Editor in Chief: Serhat Alkan
Address: Istanbul University Faculty of Veterinary Medicine, 34320 Avcilar, Istanbul, Turkey
Phone: +90 (212) 473 70 70/17260
Fax: +90 (212) 473 72 40
E-mail: actavet@istanbul.edu.tr

Publisher: AVES
Address: Büyükdere Cad. 105/9 34394 Mecidiyeköy, Şişli, Istanbul, Turkey
Phone: +90 212 217 17 00
Fax: +90 212 217 22 92
E-mail: info@avesyayincilik.com
Web page: www.avesyayincilik.com
Contents

Original Articles

53 Phylogenetic Grouping of Verotoxigenic Escherichia coli (VTEC) Obtained from Sheep and Broiler Chicken in Northwestern Iran
Habib DASTMALCHI SAEI, Mohammad ZAVARSHANI

59 SOD, CAT, TBARS, and TNF-α Concentrations in Uterine Tissues of Bitches with Pyometra and at Dioestrus
Tuğba Seval Fatma TOYDEMİR KARABULUT

63 Experimental Evaluation of the Wound-healing and Antioxidant Activities of Tamarind (Tamarindus indica) Pulp and Leaf Meal in the African Catfish (Clarias gariepinus)
Olarinke Victoria ADENIYI, Flora Eyibio OLAIFA, Benjamin Obukowho EMIKPE, Ademola Adetokunbo OYAGBEMI

73 The Effect of Safflower on the In Vitro Digestion Parameters and Methane Production in Horse and Ruminant
Alper ÇAĞRI, Kanber KARA

85 The Effects of Drinking Water Supplemented with Essential Oils on Performance, Egg Quality and Egg Yolk Fatty Acid Composition in Laying Hens
Özlem KARADAÇAĞLU, Bülent ÖZSOY, Mükremin ÖLMEZ, Özlem DURNA AYDIN, Tarkan ŞAHİN

93 Assessment of Temperature and Microbiological Quality of Fresh Sardine, Bouge, Saury and Mackerel Marketed in Tripoli City, Libya
Tawfik Mehdi HASSAN, Amal Abubaker ALHALLUG, Nuri Sahli MADI

Case Report

101 A Case of Sebaceous Carcinoma Detected on the Eyelid of a Horse
Aydin GÜREL, Damla HAKTANIR, Ibrahim KURBAN, Sevde İSLAMOĞLU, Serhat ÖZSOY
Phylogenetic Grouping of Verotoxigenic Escherichia coli (VTEC) Obtained from Sheep and Broiler Chicken in Northwestern Iran

Habib DASTMALCHI SAEI1, Mohammad ZAVARSHANI2
1Department of Microbiology, Faculty of Veterinary Medicine and Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
2Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran

ORCID IDs of the authors: H.D.S. 0000-0002-0628-3545; M.Z. 0000-0003-1672-2940

Abstract

Verotoxigenic Escherichia coli (VTEC) are major foodborne pathogens with an increasing public health concern. The purpose of this study was to investigate the occurrence and the phylogenetic groups of VTEC isolates from the feces of healthy sheep and broiler chickens at a slaughterhouse in Urmia region, Northwestern Iran. A total of 446 E. coli isolates (97 from sheep and 349 from broiler chickens) were assessed for the occurrence of the vtx-encoding genes (vtx1 and vtx2) using polymerase chain reaction. Then, all the recovered VTEC isolates were phylogenetically grouped based on the Clermont phylotyping method using three genetic sequences, the so-called chuA, yjaA, and TSPE4.C2. The vtx gene-carrying E. coli was identified in 46.4% (45/97) of sheep-originated isolates and in 8.3% (29/349) of broiler chicken-originated isolates. In general, phylotyping revealed that 74 VTEC isolates segregated in the phylogenetic groups A (32.4%; designated as VTEC-A), B1 (44.6%; VTEC-B1), B2 (9.5%; VTEC-B2), and D (13.5%; VTEC-D). The results also showed that the dissemination of VTEC isolates of sheep and broiler chicken origin varied noticeably in their assignment to B1 and D phylogenetic groups (p<0.01). In addition, the virulent phylogenetic groups (B2 and D) were significantly more common in broiler chickens than in sheep (p<0.01). In conclusion, healthy sheep and broiler chickens could be a reservoir for VTEC belonging to virulent phylogenetic groups, thus representing a potential risk factor for public health. This study also demonstrated significant differences with respect to the phylogenetic group assignment of the VTEC strains between sheep and broiler chickens.

Keywords: Broiler chickens, phylogenetic groups, sheep, verotoxigenic Escherichia coli (VTEC)

Introduction

Escherichia coli is a bacterium generally found in the gut of warm-blooded animals (Kaper et al., 2004). Although most strains of this micro-organism are considered to be harmless symbionts of digestive tract, some strains cause human diseases. Verotoxigenic Escherichia coli (VTEC; also called Shiga toxin-producing E. coli or STEC) has emerged as an important zoonotic food-borne pathogen (Gyles, 2007) which can cause hemorrhagic colitis (HC) and haemolytic uremic syndrome (HUS) in human (Girardeau et al., 2005). These strains are defined by making of one or more cytotoxins, called verocytotoxin 1 (VT1) and verocytotoxin 2 (VT2), usually encoded by bacteriophages. However, strains of this pathotype appear to circulate as a part of the gut flora with ruminants such as cattle, sheep and goats serving as the major animal reservoirs (Horcajo et al., 2010; Oporto et al., 2008). Healthy birds have also been reported to carry VTEC (Farooq et al., 2009).

Escherichia coli strains can be categorized into four main phylogenetic groups A, B1, B2 and D, by assessing the presence or absence of three genetic sequences called chuA (existing in B2 and D phylgroups, absent from B1 and A), yjaA (existing in B2, absent from D) and TSPE4.C2 (existing in B1, absent from group A) (Clermont et al., 2000). These phylogenetic groups apparently differ in their ecological niches, history of life, ten-
dency to cause disease (Gordon et al., 2008) and some characteristics such as their virulence genotype and genome size (Berghthorsson and Ochman, 1998; Girardeau et al., 2005). Commensal E. coli belongs generally to A and B1 phylogroups and rarely possess virulence genes (Dixit et al., 2004), whereas B2 and D strains are typically related to disease and carry a broad spectrum of virulence-factor genes (Nowrouzian et al., 2005). Phylotyping analyses have also revealed that the majority of the VTEC strains comprise phylogenetic group B1, representing that they most probably do not cause severe diseases in human (Girardeau et al., 2005; Ishii et al., 2007). In general, humans are infected with VTEC strains mostly through the ingestion of contaminated food or water or direct contact with animals, therefore identifying the sources of infection is an effective way towards decreasing the prevalence of this pathogen and thus reduce the risk of humans infection. Phylotyping of E. coli strains has previously been underscored as a valuable tool for bacterial source tracking (BST) and for surveillance programs of virulence-factor genes (Nowrouzian et al., 2005). Phylotyping analyses have also revealed that the majority of E. coli isolates was examined for the presence of vtx genes (E. coli), which allow the amplification of a DNA fragment at approximately 584-bp. E. coli ATCC43895 was used as positive control. Polymerase chain reaction and electrophoresis of products were performed as described previously (Saei and Ayremlou, 2012).

Phylogenetic group determination by triplex PCR
Three primer pairs used for the amplification of three genetic sequences called chuA, yjaA and TSPE4.C2 are presented in Table 1. Amplifications were done in a CORBETT thermocycler (Model CP2-003, Australia) with the following temperature profile: 1 cycle of 5 min at 94°C; 30 cycles of 30 s at 94°C, 30 s at 55°C, and 30 s at 72°C; and finally 1 cycle of 72°C for 7 min. The positive control used for the determination of three phylogenetic group markers (chuA+, yjaA+ and TSPE4.C2+) was E. coli reference strain ECOR62. Amplicons were electrophoresed on 1.5% (w/v) agarose gel containing ethidium bromide and visualized by the UV transilluminator. The sizes of PCR products were determined by comparing with GeneRuler 100 bp DNA ladder plus (Thermo Scientific, Germany). The main phylogenetic groups (A, B1, B2 and D) and subgroups (B1, B2 and D) of VTEC strains were determined according to the combinations of chuA, yjaA, and TSPE4.C2 markers as described earlier by Clermont et al. (2000) and Escobar-Paramo et al. (2004), respectively.

Statistical analysis
The Mann-Whitney U test was done using Statistical Package for the Social Sciences Software V22.0 (SPSS Statistics for Windows, IBM Corp.; Armonk, New York, USA) to compare the phylogenetic groups between the studied hosts. For each comparison, a p value less than 0.01 was considered significant.

Results
A total of 446 E. coli isolates comprising 97 from sheep and 349 from broiler chickens were obtained from same number of fecal samples by conventional culture as well as species-specific PCR techniques. Confirmed E. coli isolates were tested for the presence of vtxA and vtxR genes. VTEC isolates were recovered from 46.4% (45/97) in healthy sheep, and 8.3% (29/349) in broiler chickens.

The PCR results for phylotyping revealed that VTEC strains segregated mainly in phylogenetic group B1 (33 of 74 (44.6%)), designated as VTEC-B1. Of the remaining strains, 24 (32.4%), 10 (13.5%) and 7 (9.5%) segregated in main phylogenetic groups A (VTEC-A), D (VTEC-D), and B2 (VTEC-B2), respectively. The different banding patterns obtained by Clermont triplex PCR method for the phylogenetic groups are shown in Figure 1.

Materials and Methods
Sample collection and E. coli isolates
A total of 446 fecal samples of apparently healthy sheep (n=97) and broiler chickens (n=349) were obtained during slaughter in Urmia region, Northwestern, Iran. All procedures in this study were in accordance with the ethical standards of the Animal Ethics Committee of Faculty of Veterinary Medicine, Urmia University (AECVU) and supervised by authority of Urmia University Research Council (UURC). The swab samples were placed directly in tubes containing Stuart transport medium (CM0111-Oxoid, Basingstoke, United Kingdom), and submitted to the laboratory for immediate processing. Each sample was streaked onto MacConkey agar (105465-Merck, Darmstadt, Germany) plates and incubated overnight at 37°C. Typical lactose-positive (pink E. coli colonies) colonies were further streaked on Eosin Methylene Blue (101347-EMB, Merck, Darmstadt, Germany) agar. From each plate, a single colony of typical morphology was selected and subcultured onto 5% sheep blood agar (110886-Merck, Darmstadt, Germany) for purity and biochemical tests. Furthermore, species-specific PCR was done as described previously (Riffon et al., 2001) using primers Eco 2083 (GCT TGA CAC TCA ACA TTG AG) and Eco 2745 (GCA CTT ATC TCT TCC GCA TT). The confirmed E. coli isolates were kept in glycerol broth at -20°C for subsequent analysis.

Detection of vtx genes by PCR
The presence of the vtx genes in the E. coli isolates was examined by PCR using primers described earlier (Osek, 2003). The primer set vtxF (5’-CAG TTA ATG TCG CGA AGG-3’) and vtxR (5’-CAC CAG ACA ATG TAA CCG CTG-3’) were used for the amplification of vtx+, which yielded a PCR product of 384 bp in size. The primer set vtxF (5’-ATC CTA TTC CCG GGA GTT TAC G-3’) and vtxR (5’-GCG TCA TCG TAT ACA CAG GAG C-3’) were used for amplifying vtx+, which allow the amplification of a DNA fragment at approximately 584-bp. E. coli ATCC43895 was used as positive control. Polymerase chain reaction and electrophoresis of products were performed as described previously (Saei and Ayremlou, 2012).

Table 1. Amplifications were done in a CORBETT thermocycler (Model CP2-003, Australia) with the following temperature profile: 1 cycle of 5 min at 94°C; 30 cycles of 30 s at 94°C, 30 s at 55°C, and 30 s at 72°C; and finally 1 cycle of 72°C for 7 min. The positive control used for the determination of three phylogenetic group markers (chuA+, yjaA+ and TSPE4.C2+) was E. coli reference strain ECOR62. Amplicons were electrophoresed on 1.5% (w/v) agarose gel containing ethidium bromide and visualized by the UV transilluminator. The sizes of PCR products were determined by comparing with GeneRuler 100 bp DNA ladder plus (Thermo Scientific, Germany). The main phylogenetic groups (A, B1, B2 and D) and subgroups (B1, B2 and D) of VTEC strains were determined according to the combinations of chuA, yjaA, and TSPE4.C2 markers as described earlier by Clermont et al. (2000) and Escobar-Paramo et al. (2004), respectively.

Results
A total of 446 E. coli isolates comprising 97 from sheep and 349 from broiler chickens were obtained from same number of fecal samples by conventional culture as well as species-specific PCR techniques. Confirmed E. coli isolates were tested for the presence of vtxA and vtxR genes. VTEC isolates were recovered from 46.4% (45/97) in healthy sheep, and 8.3% (29/349) in broiler chickens.

The PCR results for phylotyping revealed that VTEC strains segregated mainly in phylogenetic group B1 (33 of 74 (44.6%)), designated as VTEC-B1. Of the remaining strains, 24 (32.4%), 10 (13.5%) and 7 (9.5%) segregated in main phylogenetic groups A (VTEC-A), D (VTEC-D), and B2 (VTEC-B2), respectively. The different banding patterns obtained by Clermont triplex PCR method for the phylogenetic groups are shown in Figure 1.

Dastmalchi Saei et al. Phylogenetic Grouping of VTEC Obtained from Sheep and Broiler
Acta Vet Eurasia 2018; 44: 53-58
Table 1. Sequences of oligonucleotide primers used in this study

<table>
<thead>
<tr>
<th>Gene</th>
<th>Sequence</th>
<th>Amplicon size</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>chuA</td>
<td>5’-GAC GAA CCA ACG GTC AGG AT-3’</td>
<td>279 bp</td>
<td>(Clermont et al., 2000)</td>
</tr>
<tr>
<td></td>
<td>5’-TGC CGC CAG TAC CAA AGA CA-3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>yjaA</td>
<td>5’-TGA AGT GTC AGG AGA CGC TG-3’</td>
<td>211 bp</td>
<td>(Clermont et al., 2000)</td>
</tr>
<tr>
<td></td>
<td>5’-ATG GAG AAT GCG TTC CTC TCT AAC-3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSPE4.C2</td>
<td>5’-GAG TAA TGT CGG GGC ATT CA-3’</td>
<td>152 bp</td>
<td>(Clermont et al., 2000)</td>
</tr>
<tr>
<td></td>
<td>5’-CGC GCC AAC AAA GTA TTA CG-3’</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Phylogenetic groups and subgroups of VTEC strains isolated from sheep and broiler chickens

<table>
<thead>
<tr>
<th>Host</th>
<th>VTEC-A</th>
<th>VTEC-B1</th>
<th>VTEC-B2</th>
<th>VTEC-D</th>
<th>Phylogenetic groups and subgroups of VTEC*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheep</td>
<td>45</td>
<td>5</td>
<td>8</td>
<td>29</td>
<td>A0, A1, B1, B23, D1, D2</td>
</tr>
<tr>
<td>Broiler chickens</td>
<td>29</td>
<td>2</td>
<td>9</td>
<td>4</td>
<td>A0, A1, B1, B23, D1, D2</td>
</tr>
<tr>
<td>Total</td>
<td>74</td>
<td>7</td>
<td>17</td>
<td>33</td>
<td>A0, A1, B1, B23, D1, D2</td>
</tr>
</tbody>
</table>

*Verotoxigenic Escherichia coli

Table 3. The vtx genes in VTEC isolates from sheep and broiler chickens in relation to main phylogenetic groups

<table>
<thead>
<tr>
<th>Phylogenetic group</th>
<th>Sheep</th>
<th>Broiler chickens</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>vtx* genes</td>
<td>A</td>
</tr>
<tr>
<td>vtx1</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td>vtx2</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>vtx1, vtx2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>29</td>
</tr>
</tbody>
</table>

*Verocytotoxin

Figure 1. Triplex PCR patterns of representative E. coli phylogenetic groups. Lane M: GeneRuler™ 100 bp plus DNA ladder; Lane 1: negative control; Lane 2: group B1; Lane 3: group D; Lanes 4 and 5: group A; Lanes 6 and 7: group B2

Of 45 sheep VTEC isolates, 29 isolates (64.5%) were phylogenetic group B1, 13 (28.9%) phylogenetic group A, 2 (4.4%) phylogenetic group B2, and 1 (2.2%) phylogenetic group D. Among the isolates recovered from broiler chickens, 11 isolates (38%) were allocated into phylogenetic group A, 9 (31%) phylogenetic group D, 5 (17.2%) phylogenetic group B2, and 4 (13.8%) phylogenetic group B1. The analysis of phylotyping results among the studied hosts is detailed in Table 2. As shown, with the exception of B2 phylosubgroups (B2y, B2x), all other phylogenetic subgroups A (A0, A1), B1, D (D1, D2) were identified in VTEC isolates from both sheep and broiler chickens.

There was no significant difference in carriage of phylogenetic groups A and B2 between sheep and broiler chickens, whereas B1 significantly associated with sheep and D with broiler chickens (p<0.01). Concerning commensal (A and B1) and virulent (B2 and D) phylogenetic groups, statistical analysis also showed that commensal strains and virulent strains significantly associated with sheep and broiler chickens, respectively (p<0.01).

Out of 74 VTEC isolates, 38 isolates (51.4%) were positive for vtx1, 28 (37.8%) for vtx2, and 8 (10.8%) for both vtx1 and vtx2. Twenty-seven of sheep VTEC isolates were positive for vtx1, 26 contained vtx2 and 6 possessed both vtx1 and vtx2. The corresponding counts in broiler isolates were 11, 16, and 2, respectively. The vtx genes in sheep and broilers VTEC isolates in relation to main phylogenetic groups are shown in Table 3.

Discussion

According to Wasteson (2001), Verotoxigenic Escherichia coli (VTEC) is the only E. coli pathogenicity group of major interest from zoonotic standpoint. In the current study, VTEC were isolated more frequently (45/97; 46.4%) in feces from sheep. This is in agreement with previous studies and confirms the importance of sheep as VTEC reservoir (Oporto et al., 2008). The frequency detected in the present study was, however, higher than the 29.9% and 7.9% reported in Switzerland and Brazil, respectively (Maluta et al., 2014; Zweifel et al., 2004).

Another study on collection of E. coli isolates from healthy fattailed sheep in Iran showed that 13% of isolates belonged to VTEC pathotype (Ghanbarpour and Kiani, 2013). Differences in farm-level factors such as feed composition and sanitation...
of drinking water may explain these discrepancies. A study of dairy cattle farms demonstrated that herd management factors related to cattle feeding practices were associated with fecal shedding of VTEC (Cho et al., 2013). In the current study, VTEC prevalence rate (29/349; 8.3%) in fecal samples of healthy broiler chickens was also higher than those reported in Kerman, southeastern of Iran (Ghanbarpour et al., 2011; Salehi, 2014). High incidence of VTEC observed in broilers may at least in part be due to geographical effects, hygienic measures and higher stocking density of birds in intensive chicken farming.

Despite the description of a new quadruplex PCR method to assign \textit{E. coli} isolates to eight phylo-groups (A, B1, B2, C, D, E, F and clade I), Clermont genotyping triplex PCR is a cost effective and reasonably accurate method for detecting putative \textit{E. coli} isolates from a variety of sample types (Higgins et al., 2007). Consistent with previous study (Girardeau et al., 2005), phylogenetic analysis revealed that VTEC isolates, irrespective of sheep or broilers origin, segregated mainly in phylogenetic groups A (24/74; 32.4%) and B1 (33/74; 44.6%). Selection through antibiotic pressure may explain this phenomenon, as most of antibiotic resistant \textit{E. coli} strains have been shown to belong to the phylogenetic groups A and B1 (Obeng et al., 2012). Other speculation could be the ability of these phylogenetic groups to survive and persist in feces, manure, and soil in the environment. It is also hypothesized that bacteriophages carrying \textit{vtx} genes probably could transduce with significant frequency to A and B1 phylogenetic group strains (Garcia-Aljaro et al., 2009).

Seven out of 74 (9.5%) VTEC strains analyzed in the study belonged to phylogenetic group B2, which is predominant among extraintestinal strains. In contrast to this result, none of the fecal isolates from domestic animals in South Korea and healthy fat-tailed sheep in southeastern of Iran belonged to B2 group (Ghanbarpour and Kiani, 2013; Unno et al., 2009). We supposed that they originated from food handlers or water contaminated with fecal material of humans. Carlos et al. (2010) stated that isolates belonging to the B2 group, particularly subgroup B2\(_r\), represent an indicator for pollution by human feces.

According to statistical analysis, there were significant differences with respect to the phylogenetic group assignment of VTEC strains obtained from sheep and broilers. Carlos et al. (2010) also described a different dissemination of phylogenetic groups among \textit{E. coli} strains isolated from humans, chickens, cows, goats, pigs and sheep, where high percentage of strains from the chicken samples were dominated by group A, whereas group B1 was predominant among \textit{E. coli} strains from sheep. This non-random distribution of phylogenetic groups in the hosts may be due to ecological differences (e.g. in their behaviour, diet, antibiotic usage etc.) coupled with physiological differences (e.g. host genetic factors, gut characteristics, etc). A well-known example of the influence food ingestion may have is the prevalence of phylogenetic group A and B1 among omnivorous and herbivorous mammals, respectively (Carlos et al., 2010). Clermont et al. (2011) also concluded that gain (or loss) of few genes, e.g. adhesion-encoding genes, could contribute to the host specificity of non-B2 strains of different origin. Further studies of virulence factors which enable a phylogenetic group to colonize the gastrointestinal tract of different animal species are therefore needed to be evaluated.

\textit{Escherichia coli} ST69, ST393, ST405 clones belonging to phylogenetic group D are increasingly reported as multidrug resistant strains causing extraintestinal infections (Novais et al., 2013). We found that the 10 VTEC strains studied belonged to the phylogenetic group D and significant differences on its association with hosts were also detected: only one VTEC isolate of phylogenetic groups D (2.2%) in sheep against 9 (31%) of broiler origin. Therefore, avian species appear to be a relevant reservoir of virulent phylogenetic group D. More expanded studies are needed to be undertaken in order to confirm this hypothesis.

In this study, we found that \textit{vtx}\(_1\) was the predominant gene over \textit{vtx}\(_1\) and \textit{vtx}\(_2\)-\textit{vtx}\(_1\) in VTEC isolates in sheep. This distribution is in consistent with those previously described in two studies in sheep carried out in Spain (Blanco et al., 2003; Rey et al., 2003). However, in contrast with the results reported here, several studies have shown that most sheep VTEC carry \textit{vtx}\(_1\) and \textit{vtx}\(_2\) (Oporto et al., 2008; Vettorato et al., 2009). As results, \textit{vtx}\(_1\) was frequently found in broiler isolates. The same trend has been observed in chicken products in Argentina (Alonso et al., 2012). This is important because \textit{vtx}\(_2\)-producing strains is more associated with severe disease in humans than \textit{vtx}\(_1\)-producing strains (Paton and Paton, 2002).

Detection of \textit{vtx} gene-carrying \textit{E. coli} belonging to virulent phylogenetic groups (B2 and D), especially in broilers, represents a public health concern through fecal contamination of carcasses during slaughter operation at the processing facility. In Iran, studies have recently demonstrated that broiler and sheep carcasses could be considered as an important source of pathogenic \textit{E. coli} (Bagheri et al., 2014; Tahamtan et al., 2010). On the other hand, high ratios of B2 and D isolates have been obtained from human clinical samples (Navidinia et al., 2013; Ramazanzadeh et al., 2013). However, further studies regarding phylogenetic background using other phylogenetic methods such as multilocus sequence typing (MLST), along with detection of serovars, \textit{vtx} subtypes, and virulence genes are needed for predicting potential health hazards related to \textit{E. coli} isolates from animals. In this regard, researches have pointed out the zoonotic potential of certain clonal groups such as avian pathogenic \textit{E. coli} (APEC) O45:K1:H7-B2-ST195 (Mora et al., 2013) and O25b:K1:H4-B2-ST131 \textit{ibeA} strains (Mora et al., 2010).

In conclusion, this study indicates that healthy sheep and broilers in Urmia region, Iran, could be considered as a source of VTEC strains. In addition, it demonstrates a different circulation
of the *E. coli* phylogenetic groups in the analyzed host. Regarding the presence of *stx* gene-carrying *E. coli* belonging to virulent phylogenetic groups in fecal samples of healthy animals, sufficient discrimination among VTEC strains to assess their public health significance is therefore recommended.

Ethics Committee Approval: Ethics committee approval was received for this study from the Animal Ethics Committee of Faculty of Veterinary Medicine, Urmia University (AECVU) and supervised by authority of Urmia University Research Council (UJURC).

Peer-review: Externally peer-reviewed.

Acknowledgement: The authors would like to thank Dr. S. Hosseinza-deh for her technical assistance and Dr. M. Abtahi for his assistance in data analysis.

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: This work was supported by the research foundation of the biotechnology research center of Urmia University, Urmia, Iran.

References

Alonso, M.Z., Lucchesi, P.M.A., Rodríguez, E.M., Parma, A.E., Padilla, N.L., 2012. Enteropathogenic (EPEC) and Shigatoxigenic *Escherichia coli* (STEC) in broiler chickens and derived products at different retail stores. Food Control 23(2), 351-355. [CrossRef]

Bagheri, M., Ghanbarpour, R., Alizadeh, H., 2014. Shiga toxin and beta-lactamases genes in *Escherichia coli* phylotypes isolated from carcasses of broiler chickens slaughtered in Iran. International Journal of Food Microbiology 177, 16-20. [CrossRef]

Clermont, O., Bonacorsi, S., Bingen, E., 2000. Rapid and simple determination of the *Escherichia coli* phylogenetic group. Applied and Environmental Microbiology 66(10), 4555-4558. [CrossRef]

Gordon, D.M., Clermont, O., Tolley, H., Denamur, E., 2008. Assigning *Escherichia coli* strains to phylogenetic groups: multi-locus sequence typing versus the PCR triplex method. Environmental Microbiology 10(10), 2484-2496. [CrossRef]

Novais, A., Votto, C., Pires, J., Montenegro, C., Donelli, G., Coque, T.M., Peixe, L., 2013. Diversity and biofilm-production ability among isolates of Escherichia coli phylogroup D belonging to ST69, ST393 and ST405 clonal groups. BMC Microbiology 13, 144. [CrossRef]

Nowrouzian, F.L., Wold, A.E., Adlerberth, I., 2005. Escherichia coli strains belonging to phylogenetic group B2 have superior capacity to persist in the intestinal microflora of infants. The Journal of Infectious Disease 192, 1078-1083. [CrossRef]

Obeng, A.S., Rickard, H., Ndi, O., Sexton, M., Barton, M., 2012. Antibiotic resistance, phylogenetic grouping and virulence potential of Escherichia coli isolated from the faeces of intensively farmed and free range poultry. Veterinary Microbiology 154(3-4), 305-315. [CrossRef]

Ose, J., 2003. Development of a multiplex PCR approach for the identification of Shiga toxin-producing Escherichia coli strains and their major virulence factor genes. Journal of Applied Microbiology 95(6), 1217-1225. [CrossRef]

Salehi, M., 2014. Determination of intimin and Shiga toxin genes in Escherichia coli isolates from gastrointestinal contents of healthy broiler chickens in Kerman City, Iran. Comparative Clinical Pathology 23(1), 175-179. [CrossRef]

Abstract

Decreased antioxidant levels may be a cause of many diseases. Pus accumulation in the uterus literally called pyometra and generally occurs in median or late life span of bitches. The objective of the study was to evaluate the concentrations of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), oxidative stress parameter-thiobarbituric acid-reactive substances (TBARS) and inflammatory mediator, tumour necrosis factor alpha (TNF-α) in uterine tissues of bitches with and without pyometra. For this purpose, bitches with pyometra (n=27), and healthy bitches in dioestrus (n=8) included in the study and both of the groups went under ovariohysterectomy operation. SOD and CAT enzymes were found significantly higher in uterine tissues of dioestrus group (p<0.01, p<0.05, respectively). TNF-α did not differ in uterine tissues between the groups (p>0.05). Our data showing that decreased concentrations of antioxidant enzymes in the uterus occurs during the disease of pyometra in bitches. Due to antioxidants cannot deactivate free radicals occurred during the inflammatory process probably one of the main cause for uterine tissue damage in pyometra.

Keywords: Dioestrus, dog, oxidative stress, pyometra, TNF-α, uterus

Introduction

Free radicals are a reactive and unstable ion species, which become stable by acquiring electrons from wherever they can, which causes some adverse reactions resulting in cellular impairment. There are two types of free radicals: reactive oxygen species (ROS) and reactive nitrogen species (NOS) (Agarwall et al., 2005). Superoxide radical (˙O₂), hydrogen peroxide (H₂O₂) and hydroxyl radical (OH˙) are referred as ROS and have became more recognizable in the last few decades. ROS are responsible for DNA damage, and thus are a cause of underlying diseases (Ercan et al., 2012, Todorova et al., 2005). More than 100 diseases including female reproductive disorders have been associated with ROS (Agarwall et al., 2005). Overabundance of ROS is termed “oxidative stress”, and this stress is possibly an initiator of certain pregnancy-related disorders such as early pregnancy loss and embryopathies, in both humans and animals (Al-Gubory et al., 2010). Oxidative stress and antioxidants during pregnancy have been analysed in many studies on mammalian species (Gupta et al., 2007; Santos et al., 2004). It is clear that there is a link between oxidative stress and disorders of the female reproductive system, which is important in both human and animal reproduction (Al-Gubory et al., 2010).

The causes of infertility in bitches are difficult to identify and generally remain an unsolved problem in pet clinics. Infertility in bitches is presumed mainly caused by infectious agents (Brucella canis, Campylobacter spp., Escherichia coli, etc.), however, there are other causes including uterine lesions, hormonal imbalances, systemic diseases (Mir et al., 2013) as well as oxidative stress (Agarwall et al., 2005, Burton and Jauinaux, 2011). Diseases related to oxidative stress and inflammation has been...
reported in numerous previous studies in dogs. When oxidative stress occurs, there may be no clinical signs, however, more energy is used for scavenging free radicals rather than for reproduction (Mohebbi-Fani et al., 2016) and this may lead to infertility in dogs.

Reactive oxygen species can be deactivated by antioxidants, which are 1) vitamins (A, C, and E) and 2) antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; and glutathione peroxidase, GPX). Antioxidants protect against peroxidation and DNA impairment (Al-Gubory et al., 2010, Todorova et al., 2005). If the balance between antioxidants and ROS fails, ROS is overproduced and binds to unsaturated fatty acids on cell membranes. This reaction is called “lipid peroxidation” and can be measured as thiobarbituric acid-reactive substances (TBARS) to show the degree of lipid peroxidation in an organism.

Superoxide dismutase is the first part of the defence mechanism during oxidative stress conditions and its main function is catalysing detoxification of superoxide radicals (‘O2•−) (Nakano et al., 1996, Todorova et al., 2005). Hydrogen peroxide (H2O2) is generated at the end of this reaction and together with GPX, CAT degrades H2O2 into water and oxygen. CAT is a more active antioxidant enzyme under high concentrations of H2O2 (Szczubial and Dabrowski, 2009).

Pyometra is sometimes a life-threatening disease, arising as a consequence of the systemic inflammatory response syndrome (SIRS). SIRS can be detected by determining the concentrations of cytokines in dogs, like in humans (Karlsson et al., 2012). Cytokines are mainly protein constructed elements that are released into the inter cellular space by leucocytes. SOD also neutralizes superoxide radicals formed by tumour necrosis factor alpha (TNF-α) cytokine (Agarwall et al., 2005).

In our study, oxidative stress biomarkers were chosen according to the results of some previous studies. In those studies, Cu SOD, Mn SOD, CAT and GPX (Sugino et al., 2000), malondialdehyde (MDA) and TBARS (Jozwik et al., 1999) were revealed to be present in the female reproductive tract.

The present study compared the level of oxidative stress by using TBARS, SOD and CAT, and the inflammatory mediator TNF-α during the dioestrus period in healthy bitches and bitches with pyometra. The hypothesis of the study was that, when the uterus gets infected, oxidative stress probably occurs in the uterine tissues, affecting the reproductive performance of bitches and also increasing the risk of pyometra disease.

Materials and Methods

Dogs

The studies were performed on 27 dogs with pyometra, with a mean body weight of 20.18±12.41 kg (pyometra group; PG), and 8 clinically healthy dogs in dioestrus with a mean body weight of 15.15±14.72 kg (dioestrus group; DG). There was only one young dog in each group while all others were geriatric in both groups. Dogs in both groups were free of common infectious diseases. Bitches were considered to be in dioestrus according to their vaginal cytology results (appearance of intermediate and parabasal cells, neutrophils, and large numbers of bacteria in vaginal smears) in DG. Five dogs in PG had closed-cervix pyometra while twenty-two had open-cervix pyometra. Physical examinations were performed on each dog to evaluate the general condition in both groups. Results of vaginal examination, vaginal cytology and ultrasonography were used to differentiate pyometra from other uterine pathologies such as mucometra and hydrometra. For this purpose, transabdominal ultrasonography was performed to visualise the uterus (Easote Piemedical MyLab Five Vet, Netherlands) and also vaginoscopy was used to see the cervix uteri and vagina. Visualisation of pus during vaginal examination and/or a hypoechoic fluid-filled uterus on ultrasonography was considered as pyometra.

Tissue collection

Both groups of bitches underwent ovariohysterectomy (OVH). OVHs were performed under general anaesthesia, induced with an intravenous 4-8 mg/kg propofol solution (Propofol 1% Fresenius; Fresenius Kabi, DE) and continued with 2-4% isofluorane (Forane Liquid; Aesica Queenborough, UK). Excised uterine tissues were promptly rinsed and cleaned of blood and pus with cold saline to minimize the effect of blood on free radicals. Three parts of the uterus at different levels were taken for homogenization and stored in Eppendorf tubes at −86°C until homogenization.

Homogenization of uterine tissues and ELISA assays

Uterine tissues were first weighed and then rinsed with phosphate-buffered saline (PBS, pH 7.4) and homogenized (MIC-CRA-D1, ART ProcesL&Labsortekin GmbHS&Co. KG., Germany) in 5-10 ml cold PBS (proportion: 1/10). Uterine homogenates were centrifuged at 4°C for 30 min at 3000×g and then supernatants were analysed for TBARS, SOD, CAT and TNF-α. These parameters were measured with commercially available canine sandwich ELISA kits (TNF-α; canine TNF-α, CK-E90814; SOD; canine SOD ELISA, CK-E91351; CAT; canine CAT ELISA, CK-E91349; TBARS; canine TBARS ELISA, CK-E91350; Hangzhou EastbioPharm Co. Ltd., China) by the quantitative sandwich enzyme immunoassay technique (µQuant, Bio-Tech Instruments, High Point, NC, USA) according to the manufacturer’s instructions. The detection range of TNF-α was 5-1000 ng/L, SOD was 0.5-200 ng/mL, CAT was 1-300 ng/mL, TBARS was 0.5-100 nmol/mL and intra- and inter-assay coefficients of variations for all parameters were <10% and <2%, respectively.

Statistical analysis

Groups (pyometra and dioestrus) were added to the statistical model as between-subject effects and an independent sample t-test was applied to compare each sampling time for uterine analyses. A value of p<0.05 was used to indicate statistical significance.
Results

Uterine concentrations of SOD, CAT, TBARS and TNF-α

The mean concentrations in the groups are shown in Table 1. SOD, CAT and TNF-α were higher in uterine tissues of DG compared with PG. Of these variables, SOD and CAT levels were significantly different between the two groups (p<0.01, p<0.05, respectively). Concentrations of SOD, CAT, TBARS and TNF-α did not differ between the open- and closed-cervix pyometra bitches.

Discussion

Reactive oxygen species production is correlated with inflammatory processes. The consumption of oxygen by activated macrophages and neutrophils occurs during inflammation. An overabundance of ROS is seen if ROS production cannot be controlled by antioxidative mechanisms and this is one of the causes of tissue damage (Agarwal et al., 2005).

In this study, comparisons were made between SOD, CAT, TBARS and TNF-α concentrations in uterine tissues of bitches in the dioestrus period and bitches with pyometra. The main aim of this study was to determine the effect of ROS occurring during pyometra on levels of antioxidant enzymes SOD and CAT and also on the lipid peroxidation product TBARS and their relationships with a cytokine, TNF-α.

In our study, SOD concentrations were higher in DG, which comprises animals under the influence of progesterone. In a previous study, changes in superoxide anion and SOD level were detected during the oestrus cycle of Rattus norvegicus. Low levels of superoxide radical and high levels of SOD were observed during the dioestrus period (Laloraya et al., 1990). In another study, the expression of SOD was investigated in corpora lutea collected from women. The Cu-Zn SOD expression in the corpora lutea paralleled levels of progesterone and these levels rose from the early to the mid luteal phase and decreased during regression of the corpus luteum. Enhanced expression of Cu-Zn SOD in luteal tissue from pregnant patients was found and it was correlated with high levels of hCG (Sugino et al., 2000). In addition to this, it was revealed that estrogen lowers mammalian uterine SOD levels (Jain et al., 1999). Our results are in accordance with these studies. Additionally, when compared with DG, SOD levels were significantly lower in PG (p<0.01). This is likely due to the increased levels of ROS during inflammation and infection occurring in the uterus such as in the case of pyometra.

Our findings showed that pyometra disease significantly decreases the activity of the antioxidant enzymes, SOD and CAT (p<0.01, p<0.05, respectively), however, unfortunately, the level of antioxidant activity in the uterus at the beginning of the infection in these dogs is not known. TBARS concentrations were increased as expected in PG but the difference between the groups was not significant (p>0.05). At the initiation of uterine infection, antioxidant enzymes probably increase because of cytokines released from the leucocytes. In another study in bitches, SOD and CAT levels were found to be similar between the uterine tissues of bitches with pyometra and healthy ones (Szczybil and Dabrowski, 2009). This result might have been obtained in that study due to the fact that those bitches were recognized promptly at the initiation of pyometra. The duration of infection is thought to affect the activity of SOD and CAT concentrations in uterine tissue.

In another study, in women with endometriosis, high TNF-α concentrations were detected in the peritoneal fluid (Bedaiwy and Falcone, 2003). Cytokines influence the redox status of the ectopic endometrium in patients with endometriosis. Also, the antioxidant MnSOD neutralizes superoxide anions generated by cytokine TNF-α (Agarwal et al., 2005). In our study, TNF-α concentrations did not differ in uterine tissues between DG and PG (p>0.05) and no relationship was found between concentrations of TNF-α and pyometra occurrence.

In conclusion, our data showed that pyometra disease negatively changes the oxidative status of the uterus. Additionally, significantly decreased concentrations of SOD and CAT found in infected uteri compared with dioestrus uterine tissue show the importance of these antioxidant enzymes in the uterus. Also, it was assumed that one of the main causes of uterine damage in pyometra is the generation of free radicals during the inflammatory process, which cannot be deactivated by decreased levels of antioxidants.

Table 1. Uterine concentrations of SOD, CAT, TBARS and TNF-α

<table>
<thead>
<tr>
<th>Variable</th>
<th>Dioestrus group (Mean±SE) (n=8)</th>
<th>Pyometra group (Mean±SE) (n=27)</th>
<th>t-test significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOD (ng/mL)</td>
<td>67.93±18.78</td>
<td>31.11±2.32</td>
<td>**</td>
</tr>
<tr>
<td>CAT (ng/mL)</td>
<td>67.69±18.52</td>
<td>39.40±3.80</td>
<td>*</td>
</tr>
<tr>
<td>TBARS (nmol/mL)</td>
<td>89.49±21.32</td>
<td>97.90±10.14</td>
<td>NS</td>
</tr>
<tr>
<td>TNF-α (ng/L)</td>
<td>371.45±64.56</td>
<td>342.99±32.85</td>
<td>NS</td>
</tr>
</tbody>
</table>

SOD: super oxide dismutase; CAT: catalase; TBARS: thiobarbituric acid reactive substances; TNF-α: tumour necrosis factor alpha
*p<0.05; **p<0.01; NS: p>0.05

Ethics Committee Approval: Ethics committee approval was received for this study from the ethics committee of Istanbul University (1702011).
Acknowledgement: The author thanks Dr. Bülent Ekiz for his help with statistical analyses, Dr. Atila Ateş for help with ELISA analyses and Dr. Barry Bavister for English editing this manuscript.

Conflict of Interest: The author has no conflicts of interest to declare.

Financial Disclosure: This research was funded by Research Fund of Istanbul University with the grant number 17144.

References

Laloraya, M., Kumar, G.P., Laloraya, M.M., 1990. Changes in the superoxide radical and superoxide dismutase levels in the uterus of Rattus norvegicus during the estrous cycle and a possible role for superoxide radical in uterine oedema and cell proliferation at proestrus. Biochemistry and Cell Biology 69, 313-316. [CrossRef]

Todorova, I., Simeonova, G., Kyuchukova, D., Dinev, D., Gadjeva, V., 2005. Reference values of oxidative stress parameters (MDA, SOD, CAT) in dogs and cats. Comparative Clinical Pathology 13, 190–194. [CrossRef]
Experimental Evaluation of the Wound-healing and Antioxidant Activities of Tamarind (*Tamarindus indica*) Pulp and Leaf Meal in the African Catfish (*Clarias gariepinus*)

Olarinke Victoria ADENIYI1, 2, Flora Eyibio OLAIFA2, Benjamin Obukowho EMIKPE3, Ademola Adetokunbo OYAGBEMI4

1Department of Animal Production, Fisheries and Aquaculture, Kwara State University, Malete, Nigeria
2Department of Aquaculture and Fisheries Management, University of Ibadan, Nigeria
3Department of Veterinary Pathology, University of Ibadan, Nigeria
4Department of Veterinary Physiology, Biochemistry and Pharmacology, University of Ibadan, Nigeria

ORCID IDs of the authors: O.V.A. 0000-0002-0964-8300; F.E.O. 0000-0003-1263-4134; B.O.E. 0000-0003-2458-6504; A.A.O. 0000-0002-8996-8610

Abstract

The fruits and leaves of *Tamarindus indica* have been widely used in traditional medicine for treating wounds and other diseases in Africa. The aim of this study was to investigate the wound-healing property of *T. indica* pulp (TP) and leaf (TL) meal and the importance of antioxidant enzymes in the wound-healing process in the African catfish, *Clarias gariepinus*. Surgical incisions of 10 mm² were made aseptically on the lateral part of the catfish, above the pelvic fin and toward the caudal region. The fish were fed experimental diets composed of basal diet fortified with each of TP or TL at concentrations of 0.5%, 1.0%, 1.5%, 2.0%, and 0.0% (untreated) and 0.2% oxytetracycline (treated) as controls in triplicate groups. Changes occurring in the wound area (mm²) were measured at 3-day-intervals for 15 days. The healing rates and the relative percentage of healing were calculated. Sera collected from the experimental fish were analyzed for oxidative stress biomarkers and antioxidant enzymes. The results showed that fish fed diets treated with TP or TL had significantly faster (p<0.05) daily healing rates at the lateral and caudal regions from the 6th to the 12th day compared with those in the control groups. Percentage wound-healing (PWH) at the lateral and caudal regions was significantly enhanced (p<0.05) from the 6th day in the tamarind-treated groups. The PWH reached the peak (100%) at the lateral region on the 12th day in fish fed 0.5–2.0% of TL and 1.5%–2.0% of TP diets. Dietary treatment with TP and TL resulted in a lower production of serum malondialdehyde and hydrogen peroxide levels, whereas the reduced glutathione, superoxide dismutase, and glutathione peroxidase levels increased. Fortifying diets of *C. gariepinus* with 1.0%–2.0% of TP and TL meal enhanced wound-healing significantly compared to that of natural healing and with oxytetracycline-fortified diet. The faster wound-healing rate might be a consequence of elevated levels of serum antioxidants in the fish fed tamarind-fortified diets.

Keywords: African catfish, antioxidant activity, experimental study, serum antioxidants, *Tamarindus indica*, wound-healing

Introduction

The skin forms the external covering of the body of fish, which protects the fish against mechanical injury and noxious agents. The skin consists of the epidermis and dermal layer. The epidermis of teleost fish consists of fusiform cells, which remain viable and retain the capacity for mitotic division significant for healing processes (Genten et al., 2009; Yang et al., 2015). Skin grows, differentiates and renews itself at all times. A wound is a loss or breaking of cellular and anatomic or functional continuity of living tissues (Ayello, 2005). The closing of an open wound initiates healing because of the responses triggered off by the damaged local cells. Wound-healing is a physiological response of animal to tissue injury which results in replacement of destroyed tissue and restoration of the tissue integrity.

Wound-healing is enhanced by circulation of oxygen and nutrients in wound sites (Abdulla et al., 2009). Although oxygen plays vital roles such as oxidative phagocytosis, synthesis of collagen, angiogenesis and epithelialization in wound-heal-
ing, it is also resulted to production of highly reactive oxygen species (ROS) such as free radicals and peroxide, which result to oxidative stress, decelerate these processes and impaired wound-healing. Excessive production of ROS is deleterious to wound-healing (Dunnill et al., 2017; Kanta, 2011), hence, balance between ROS and antioxidants is essential. Antioxidant enzymes play important roles in the detoxification of reactive oxygen metabolites during wound-healing process (Bryan et al., 2012; Keller et al., 2006; Kurahashi and Fujii, 2015).

Plants and their extracts are organic products with immense potential for the management and treatment of wounds. Wound-healing activity of herbal products has been associated with the antimicrobial and antioxidants properties of the phytobiotics (Abdulla et al., 2009; Mohammad et al., 2012; Vifayaraghavan et al., 2017). Plant phytochemical constituents such as tannins, alkaloids and flavonoids contribute to wound-healing activity in animals (Kim et al., 2011; Li et al., 2011; Pawar and Toppo, 2012). Herbal products from Rafflesia hasseltii flowers (Abdulla et al., 2009), Tamarindus indica (Linn 1753) seed (Mohammad et al., 2012), Acorus calamus root and rhizome (Shi et al., 2014) in rat or mice, Allium cepa bulb, Tetracarpidium conophorum leaf (Bello et al., 2013) and Azadirachta indica leaf and oil (Alam et al., 2014) in fish have been used to test the efficacy of herbal products in wound-healing with great potentials.

Tamarindus indica L., commonly called tamarind, is a large tree belonging to the family Leguminosae (Fabaceae) and subfamily Ceasalpinioideae. Tamarind grows widely in most tropical and subtropical regions of the world (Bhadoriya et al., 2011; Dhamija and Parle, 2012). The bark or leaves of tamarind in the form of powder, decoction, and poultice are applied traditionally on cuts, wounds and abscesses as well as for cleansing wounds caused by guinea worm (Lockett et al., 2000). The ethnomedical use of tamarind in wound-healing in many African countries has been reported (Diallo et al., 2002; Fabiyi et al., 1993; Havinga et al., 2010; Inngjerdingen et al., 2004). Studies have demonstrated the in vitro antimicrobial (Adeniyi et al., 2017; Gumgumjee et al., 2012) and antioxidant (Khairunnur et al., 2009; Lim et al., 2013) activities of tamarind extracts. The role of antioxidant property of tamarind in wound-healing has not been elucidated while scientific information on the wound-healing and in vivo antioxidant activities of T. indica in fish is limited. Intensive culture of Clarias gariepinus (Burchell 1822) is associated with wounds resulting from aggressive behaviours of fish and artificial breeding involving the cutting of testes. This study therefore investigated wound-healing and antioxidant activities of dietary T. indica pulp and leaf meal as feed additives in C. gariepinus.

Materials and Methods

Plant identification and diets preparation

Fresh tamarind leaves and dried fruits were obtained and authenticated as Tamarindus indica Linn with a Voucher Number: UIH-22550. Following the harvest of the plant materials, fresh leaves were removed from the stalk, washed with clean water, drained while the brittle fruit husks were carefully removed and the pulp scraped from the fruits. The leaves were air-dried under shade for 14 days and pulp for 21 days. Both the tamarind pulp (TP) and leaves (TL) were processed into meals. The meals, TP and TL, were included singly at 0.5, 1.0, 1.5 and 2.0% each to fortify the basal diets while 0.0% and 0.2% oxytetracycline (OXY 200 WSP; Kepro, Deventer, Holland) were untreated and treated controls, respectively to make 10 experimental diets.

Experimental fish samples and formation of the wounds

The experimental fish samples consisted of 150 healthy African catfish (C. gariepinus). The fish (33.97-45.69g) were randomly selected from each treatment of fish previously fed with the experimental diets in triplicate groups for 12 weeks. Five fish were selected from each replicate and distributed into 50 litre capacity rectangular tanks in triplicates, according to their treatment groups. Following cleaning the portion of the skin with 70% ethanol, surgical incisions wounds of 10 mm² were made on each of the fish to the dermis on the lateral part, above the pelvic fin and towards the caudal region (Bello et al., 2013). The fish were returned to the holding tanks (50 litre capacity) and fed the experimental diets at 3% body weight daily. The culture water was changed completely every 48 hours. The water temperature, pH and dissolved oxygen were 26.5±1.00°C, 7.23±0.02 and 5.20±0.50mg/L respectively.

Evaluation of the wound-healing rate

Progressive changes in the wound area were evaluated by measuring the wound area with transparent ruler. The percentage wound-healing (Ammar et al., 2015), daily healing rates (Bell, 2002) and relative percentage healing (Ammar, 1981) were calculated using the initial wound area (on 0th day) and areas determined on nth day (n=3, 6, 9, 12, 15) as shown in Table 1.

Evaluation of antioxidant activity

After the wound-healing experiment earlier described, blood samples were collected from the caudal vein (Ejraei et al., 2015) of fish sampled from each replicate individually into plain tubes and allowed to clot. The clotted blood samples were centrifuged at 4000 rpm for 10 minutes. Clear sera were collected with micro-pipette into plain tubes and stored in the freezer until when analysed. The in vivo antioxidant properties of dietary tamarind pulp and leaves were evaluated by analysing some oxidative stress biomarkers and antioxidants in the serum of the experimental fish after fifteen days. Concentrations of total protein (Gornal et al., 1949), hydrogen peroxide (Wolff, 1994), malondialdehyde (Varshney and Kale, 1990) as described by Omobowale et al., 2015 Reduced glutathione (Jollow et al. 1974) and activities superoxide dismutase (Oyagbemi et al., 2014) glutathione peroxidase (Rotruck et al., 1973) glutathione-s-transferase (Habig et al., 1974) and myeloperoxidase (Xia and Zweier, 1997) were analysed spectrophotometrically (Elix800, BioTek, Winooski, USA) using the standard procedures. The whole experimental protocols
were performed according to the International (2010/63/EU) and University of Ibadan Institutional rules of animal experiments, clinical studies and biodiversity rights.

Statistical analysis

One-way Analysis of Variance (ANOVA) was used to analyze the data. Duncan multiple range test was used to compare differences among means at 5% probability level using statistical Statistical Analysis System (SAS software, 2010; SAS Institute, Cary, USA).

Results

Wound-healing activity

Fish on diets treated with TP and TL had significantly faster (p<0.05) Daily Healing Rates (DHR) at the lateral and caudal regions from the 6th to 12th day compared to the control groups (Table 2). The DHR generally reduced progressively from the 3rd day to the 15th day. Similar to the pattern observed for DHR, Percentage Wound-Healing (PWH) was significantly enhanced (p<0.05) from the 6th day in tamarind-treated groups (Table 3). The PWH reached the peak (100%) at the lateral region on the 12th day for all TL and 1.5-2.0% TP groups. The healing pattern at the lateral and caudal regions was dose-dependent. The PWH significantly increased (p<0.05) as the levels of inclusion of TP and TL rose.

Treating the diets of *C. gariepinus* with OTC and tamarind enhanced Relative Percentage Wound-Healing (RPWH) at the lateral and caudal region compared to natural healing in untreated control group (Figure 1, 2). On the 9th-15th day (Figure 3-5), fish fed the tamarind-treated diets also demonstrated significantly higher (p<0.05) RPWH than those fed the control diets. On the 12th day healing was completed at the lateral region in all the experimental groups except in the control groups and 0.5-1.0% TP group. Healing seemed to be relatively higher in the fish fed TL-treated diets than those fed TP-treated diets.

Other biological indices

During the 15 days study, *C. gariepinus* fed diets fortified with 2.0% TP and 1.0% TL showed significantly lower FCR than those fed untreated control diet. The survival was 100% in all the experimental groups (Table 4).

Antioxidant activity

All tamarind-treated groups showed lower hydrogen peroxide (H₂O₂) than the control groups (Figure 6). Fish fed diets containing 1.5% TP and 2.0% TL had significantly lower (p<0.05) H₂O₂ compared to those fed untreated control diet. Treating the diets of *C. gariepinus* with 1.0% TP and 1.0-1.5% TL significantly reduced (p<0.05) the sera Malondialdehyde (MDA) compared to the untreated control diet (Figure 7). The concentration of reduced glutathione (GSH) rose with the increasing level of inclusion of TP and TL in the diets (Figure 8). The concentration of GSH in the sera of fish fed diets treat-

Table 1. Formulae used for the study

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Formulae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage wound healing (%)</td>
<td>100 x (Healed area* / Initial wound area)</td>
</tr>
<tr>
<td>Daily healing rates (mm²)</td>
<td>Healed area / Healing time (n⁰ day)</td>
</tr>
<tr>
<td>Relative percentage healing</td>
<td>1 – [% wound healing in treatment (on nth day) / % wound healing in untreated control (on nth day)] x 100</td>
</tr>
<tr>
<td>Feed Conversion Ratio (FCR)</td>
<td>Feed intake (g) / Weight gain (g)</td>
</tr>
<tr>
<td>Survival rate (%)</td>
<td>100 x (Initial fish number - mortality number / Initial fish number)</td>
</tr>
</tbody>
</table>

*Healed area = Initial wound area (on 0⁰ day) – Wound area left (on nth day)

Table 2. Daily healing rate (mm²/day) of surgically wounded *Clarias gariepinus* fed diet treated with tamarind pulp and at three days interval for 15 days

<table>
<thead>
<tr>
<th></th>
<th>3rd day</th>
<th>6th day</th>
<th>9th day</th>
<th>12th day</th>
<th>15th day</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LA</td>
<td>CA</td>
<td>LA</td>
<td>CA</td>
<td>LA</td>
</tr>
<tr>
<td>0.0</td>
<td>0.98±0.02⁵</td>
<td>0.36±0.03¹</td>
<td>0.83±0.02²</td>
<td>0.40±0.02²</td>
<td>0.83±0.01¹</td>
</tr>
<tr>
<td>0.2O</td>
<td>1.19±0.02⁵</td>
<td>0.53±0.03³</td>
<td>0.85±0.02²</td>
<td>0.49±0.01¹</td>
<td>0.84±0.01¹</td>
</tr>
<tr>
<td>0.5P</td>
<td>1.04±0.01¹</td>
<td>0.53±0.02⁴</td>
<td>0.86±0.01¹</td>
<td>0.54±0.02⁴</td>
<td>0.92±0.01¹</td>
</tr>
<tr>
<td>1.0P</td>
<td>1.16±0.02⁶</td>
<td>0.64±0.03⁴</td>
<td>0.91±0.01¹</td>
<td>0.53±0.02⁴</td>
<td>0.98±0.02⁵</td>
</tr>
<tr>
<td>1.5P</td>
<td>1.19±0.02⁵</td>
<td>0.77±0.02²</td>
<td>0.95±0.02⁵</td>
<td>0.58±0.01¹</td>
<td>1.00±0.02²</td>
</tr>
<tr>
<td>2.0P</td>
<td>1.22±0.02⁵</td>
<td>0.94±0.01¹</td>
<td>1.03±0.01</td>
<td>0.64±0.02²</td>
<td>1.06±0.06⁶</td>
</tr>
<tr>
<td>0.5L</td>
<td>1.33±0.03³</td>
<td>0.52±0.02⁴</td>
<td>0.89±0.01¹</td>
<td>0.56±0.01¹</td>
<td>1.00±0.01</td>
</tr>
<tr>
<td>1.0L</td>
<td>1.16±0.00⁴</td>
<td>0.56±0.03³</td>
<td>0.92±0.02⁵</td>
<td>0.63±0.02²</td>
<td>1.01±0.02²</td>
</tr>
<tr>
<td>1.5L</td>
<td>1.18±0.02⁴</td>
<td>0.62±0.04⁴</td>
<td>0.92±0.02⁵</td>
<td>0.64±0.01¹</td>
<td>1.05±0.02²</td>
</tr>
<tr>
<td>2.0L</td>
<td>1.27±0.03³</td>
<td>0.84±0.04⁴</td>
<td>0.95±0.01¹</td>
<td>0.71±0.01¹</td>
<td>1.06±0.04³</td>
</tr>
</tbody>
</table>

Means with similar superscripts (a-g) on the same column are not significantly different at p<0.05

LA: lateral; CA: caudal; O: oxytetracycline; P: pulp; L: leaves
Table 3. Percentage wound-healing of surgically wounded *Clarias gariepinus* fed diet treated with tamarind pulp and leaf meal at three days interval for 15 days

<table>
<thead>
<tr>
<th>Diets</th>
<th>3rd day</th>
<th>6th day</th>
<th>9th day</th>
<th>12th day</th>
<th>15th day</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LA</td>
<td>CA</td>
<td>LA</td>
<td>CA</td>
<td>LA</td>
</tr>
<tr>
<td>0.0</td>
<td>29.3±0.5e</td>
<td>10.7±0.7f</td>
<td>50.0±1.0e</td>
<td>24.0±1.0e</td>
<td>74.3±0.6e</td>
</tr>
<tr>
<td>0.2 O</td>
<td>35.7±0.7e</td>
<td>16.0±1.0e</td>
<td>50.2±0.7e</td>
<td>27.5±0.5e</td>
<td>75.5±1.8e</td>
</tr>
<tr>
<td>0.5P</td>
<td>31.3±0.3e</td>
<td>16.0±0.5e</td>
<td>51.5±0.5e</td>
<td>32.0±1.0e</td>
<td>82.7±1.1d</td>
</tr>
<tr>
<td>1.0P</td>
<td>34.7±0.6d</td>
<td>19.3±1.0d</td>
<td>54.7±0.6d</td>
<td>32.7±1.1d</td>
<td>88.0±2.0e</td>
</tr>
<tr>
<td>1.5P</td>
<td>35.7±0.6d</td>
<td>23.0±0.8d</td>
<td>57.0±1.0b</td>
<td>34.7±0.5bc</td>
<td>90.0±2.0b</td>
</tr>
<tr>
<td>2.0P</td>
<td>36.7±0.6c</td>
<td>28.1±0.2a</td>
<td>62.0±0.5e</td>
<td>38.7±1.1b</td>
<td>95.3±5.0e</td>
</tr>
<tr>
<td>0.5L</td>
<td>34.0±1.0e</td>
<td>15.7±0.4a</td>
<td>53.7±0.6d</td>
<td>33.7±0.6e</td>
<td>90.0±1.0mc</td>
</tr>
<tr>
<td>1.0L</td>
<td>34.7±0.3bc</td>
<td>16.8±0.7e</td>
<td>55.3±1.5c</td>
<td>38.0±1.0k</td>
<td>91.3±2.3bc</td>
</tr>
<tr>
<td>1.5L</td>
<td>35.3±0.6cd</td>
<td>18.7±0.5d</td>
<td>56.0±1.0ic</td>
<td>38.7±0.6ac</td>
<td>94.5±1.8a</td>
</tr>
<tr>
<td>2.0L</td>
<td>38.0±1.0a</td>
<td>25.3±1.1b</td>
<td>57.3±1.5c</td>
<td>42.3±0.6a</td>
<td>96.0±3.61a</td>
</tr>
</tbody>
</table>

Means with similar superscripts (a-g) on the same column are not significantly different at p<0.05
LA: lateral; CA: Caudal; OTC: oxytetracycline; P: pulp; L: leaves

Discussion

This study investigated the wound-healing and antioxidants activities of *Tamarindus indica* pulp and leaf meal and related possible role of natural antioxidants in wound-healing. Faster wound-healing was observed at three-day intervals in groups of wounded *C. gariepinus* fed with tamarind-treated diets compared to the group on OTC-treated and untreated control diets.

Although, TP-treated groups showed higher activity of Gluthathione-5-Transferase (GST) compared to OTC-treated group, the values did not differ significantly (p>0.05). Contrary to the observation with GST activity in TP groups, the activity of GST decreased with increasing level of TL in the diet (Figure 10). Figure 11 shows that fish on control diets had higher Myeloperoxidase (MPO) activity, than those on diets containing TP and TL. The activity of MPO did not differ significantly (p>0.05) among the tamarind-treated groups.

The faster wound-healing observed in fish fed OTC-treated diets, compared to the untreated control, is similar to observation on faster healing of wounds / lesions treated with OTC earlier reported (Ajith et al., 2016; Chandler et al., 2010). The faster healing obtained from the fish fed tamarind-treated diets confirms the efficacy of this plant in traditional wound-healing. The
bark or leaves of tamarind have been reported to be used traditionally for healing wounds (Fabiyi et al., 1993; Havinga et al., 2010; Lockett et al., 2000). The healing activity of tamarind pulp and leaves in the diets of *C. gariepinus* might be due to the ability of the phytochemical in these herbal products to promote formation of collagen. Collagen is the principal component of connective tissue, which plays a key role in tissue regeneration (Abdulla et al., 2009; Cohen et al., 1992).
Better wound-healing rate was similarly observed in C. gariepinus fed diets containing walnut leaf and onion bulb (Bello et al., 2013). Alam et al. (2014) reported enhanced wound-healing in fish on kalajira seed oil, neem seed oil and leaves extract compared to control diets. Inclusion of extracts of Rafflesia hasseltii in the diets of Sprague Dawley rat has also been proved to enhance wound-healing (Abdulla et al., 2009). Shi et al. (2014) further re-
ported higher wound-healing rate in mice fed with diets treated with Acorus calamus extracts compared to the control diet.

Antioxidants in phytobiotics have been reported to promote wound-healing activity in animals (Abdulla et al., 2009; Mohamed et al., 2012). Reduction in the biomarkers of oxidative stress and complementary higher activities of sera GSH, GPx and SOD in C. gariepinus on dietary tamarind demonstrated antioxidant ability of TP and TL. Spontaneous dismutation of superoxide radicals to H₂O₂ and less reactive oxygen is enhanced by SOD while GPx remove it in the presence of GSH as substrate (Kohen and Nyska, 2002). The antioxidant activities demonstrated might be due to flavonoid in the tamarind pulp and leaves (Adeniyi et al., 2017) resulting to the enhanced wound-healing of the fish. Dietary flavonoid in animal has been recognized for antioxidants activities (Yao et al., 2004).

The activity of GST was not seriously affected except the significant reduction at 2.0% TL inclusion level. Cell inflammation and oxidative stress have been associated with increased MPO
activities, as high MPO may be released from neutrophil when reactive oxygen species is high (Akinrinde et al., 2015). Therefore, the reduction in MPO activity in the tamarind-treated C. gariepinus demonstrated the chemoprotective effects of the tamarind additives and this might have contributed to faster healing observed in fish fed diets fortified with tamarind pulp and leaf meal.

Similar antioxidant properties of some phytobiotics have been reported: Activity of SOD was similarly higher in common carp and prawn fed diets containing 0.1-0.2% *Rheum officinale* anthraquinone extract than those fed control diet (Liu et al., 2010; Xie et al., 2008). Giannenas et al. (2012) also observed decreased MDA and increased GSH-based enzymes in the fillet of rainbow trout fed diets containing thymol and carvacrol. Furthermore, SOD activity was increased in pacific red snapper fed microalgae (Reyes-Becerril et al., 2014) and in Nile tilapia on diets supplemented with *Astragalus* polysaccharides (Zahran et al., 2014). The later authors however reported insignificant effect on MDA.

The possible mechanism of the enhanced wound-healing of *Clarias gariepinus* fed with diets fortified with tamarind in this study might be reduction of oxidative stress. Utilization of antioxidants has been reported to enhance repair of tissues and wound-healing (Fitzmaurice et al., 2011; Shetty, 2013; Kuraishi and Fujii, 2015). Elevated levels of MDA and hydrogen peroxide accompanied with higher production of antioxidant levels seemed to enhance wound-healing in this study. Low levels of antioxidants and elevated levels of markers of oxidative stress have been reported to delay wound-healing due to damage to cellular membranes, proteins and lipids (Rasik and Shukla, 2000).

In conclusion, this study revealed the *in vivo* antioxidant activity of *Tamarindus indica* pulp and leaves and its utilization as proven wound-healing agent. These natural antioxidants might have been responsible for enhanced wound-healing observed in *Clarias gariepinus*. Utilization of 1.0-2.0% air-dried *Tamarindus indica* pulp and leaf meal as feed additives significantly enhanced wound-healing in *Clarias gariepinus* and it is therefore recommended for use.

Ethics Committee Approval: Ethics committee approval was received for this study from the ethics committee of University of Ibadan, Nigeria.

Peer-review: Externally peer-reviewed.

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: This study was supported by TETFUND Management of Kwara State University, Malete, Nigeria.

References

Akinrinde, A.S., Olouwu, E., Oyagbemi, A.A., Omobowale, O.T., 2015. Gastrointestinal protective efficacy of Kolaviron (a bi-flavonoid from *Garcinia kola*) following a single administration of sodium arsenite in rats: Biochemical and histopathological studies. Pharmacognosy Research 7(3), 268-276. [CrossRef]

Ayello, E.A., 2005. What does the wound say? Why determining etiology is essential for appropriate wound care. Advances in Skin Wound Care 18, 98-109. [CrossRef]

Ejraei F., Ghiasi M., Khara H. 2015. Evaluation of hematological and plasma indices in grass carp, Ctenopharyngodon idella, with reference to age, sex, and hormonal treatment. Archives of Polish Fisheries 23, 163-170. [CrossRef]

Giannenas, I., Triantafillou, E.I., Stavrakakiss, S., Margaroni, M.M., Mavridis, S., Steiner, T., Karagaini E., 2012. Assessment of dietary supplementation with carvacrol or thymol containing feed additives on performance, intestinal microbiota and antioxidant status of rainbow trout (Oncorhynchus mykiss). Aquaculture 350-353, 26-32. [CrossRef]

Lim, C.Y., Mat, J. S., Abdulla, M.A., Abdul, A. A., 2013. In vivo biochemical and gene expression analyses of the antioxidant activities and polycholesterolamae properties of Tamarindus indica fruit pulp extract. Plos one 8(7), e70058. [CrossRef]

Oyagbemi, A.A., Omowobale, T.O., Akinrinde, A.S., Saba, A.B., Ogunpolu, B.S., Daramola, O., 2015. Lack of reversal of oxidative damage in renal tissues of lead acetate-treated rats. Environmental Toxicology 30(11), 1235-1243. [CrossRef]

Reyes-Becerril, M., Angulo, C., Estrada, N., Murillo, Y., Ascencio, V., 2014. Dietary administration of microalgae alone or supplement- ed with Lactobacillus sakei affects immune response and intestinal morphology of pacific red snapper (Lutjanus peru). Fish and Shellfish Immunology 40(1), 208-216. [CrossRef]

Shetty, B.S., 2013. Wound healing and indigenous drugs: Role as antioxi- dants. Research and Reviews Journal of Medical and Health Sciences 2(2), 5-16.

Yang, S., Ma, K., Geng, Z., Sun, X., Fu, X., 2015. Oriented cell division: new roles in guiding skin wound repair and regeneration. Bioscience Report 35(6), e00280. [CrossRef]

The Effect of Safflower on the In Vitro Digestion Parameters and Methane Production in Horse and Ruminant

Alper ÇAĞRI1, Kanber KARA2

1Kırşehir Directorate of Provincial Food Agriculture and Livestock, Kırşehir, Turkey
2Department of Animal Nutrition and Nutritional Diseases, Erciyes University, Faculty of Veterinary Medicine, Kayseri, Turkey

Abstract

The aim of this study was to determine the effects of using 5%, 10%, and 20% of safflower (Carthamus tinctorius L. Dinçer; without thorns) grain, and its hay and straw, on the in vitro fermentation parameters in the diets of horses and ruminants. The addition of up to 5% of crushed safflower grain to a horse's diet had no negative effect on the in vitro total gas production, true dry matter digestion (T-DMD), metabolic energy (ME), gas yield at 24 h (GY24), partial factor (PF24), microbi-al crude protein production (MCP) and short chain fatty acid composition (SCFA) of digestion fluid; however, increasing the grain content negatively affected certain parameters (p<0.05). The hay and straw at 5%–20% ratio in a horse's diet had a positive effect on in vitro gas production, ME, SCFA, and GY24. We observed that 5% safflower grain in ruminants' diets did not negatively affect the in vitro cumulative gas production up to 96 h, T-DMD, true organic matter digestion (T-OMD), ME, net energy lactation (NEL), GY24, PF24, and MCP values and SCFA compositions; but 10% and 20% levels negatively affected the in vitro gas production, ME, NEL, and SCFA values (p<0.05). The use of up to 20% hay and straw had no negative effect on the parameters (p>0.05). Using safflower grain, hay and straw in horse and ruminants' diets did not affect the in vitro methane production (p>0.05). Consequently, using up to 5% safflower grain, and 20% hay and straw has the potential as a feed source in the diets of horses and ruminants.

Keywords: Digestion, horse, in vitro gas production, ruminant, safflower

Introduction

Safflower is Carthamus tinctorius L species in the Compositae (or Asteraceae) family of the Comanulatae (Asterales) order. The gene centre of safflower is known as Africa, the Middle- East and Asian continents; it can be planted in winter or summer, or as a crop rotation plant. This plant, which can be grown in different environmental and soil conditions, is one of the earliest crops used by humans. It is an annual and is stake rooted; and there are thorny and thorn-less species and it is an oil-seed plant which can include 70-80% linoleic acid or 80% oleic acid in oils (Baumler et al., 2006; Gilbert, 2008; Gumus and Kucukersan, 2016; Landau et al., 2004; Sahebi et al., 2011). This oil-seed plant can adapt more easily to different soil conditions than those of other oil-seed plants. Safflower, which has attracted attention as a food crop resistant to drought, is of extreme importance today due to the effects of global warm (Altin et al., 2012).

The grain of safflower is described as a hulled seed (achene) due to its covering with a hull layer. This seed is shaped like a sunflower seed, but is white-coloured and is smaller and harder than a sunflower seed. Previous studies have found the hull ratio in safflower grains to be 33-60% (Gumus and Kucukersan, 2016). The safflower grain contains 13-19% crude protein (CP), 24-28% ether extract (EE), 42% neutral detergent fibre (NDF), 32% acid detergent fibre (ADF) (Bozan and Temelli, 2008; Dschaak et al., 2011). The safflower herbage includes 9.5-13.8% CP, 37.2-42.1% NDF, 0.4-0.7% tannin and 0.2-0.4% non-protein nitrogen in total nitrogen (Asgharzadeh et al., 2013). Quality
herbage can be obtained from safflower and despite its thorny leaves can be consumed by sheep and goats. In previous study, the preference for and rejection of safflower herbage (especially stems) by sheep and dairy cattle was determined to be very close to that of wheat straw (Landau et al., 2005). The herbage or hay of safflower has been used as forage in the diets of cows in Australia and sheep in Italy (Landau et al., 2004 and 2005).

The drought in the Mediterranean Levant has reached its the highest level for the last 900 years, and semi-arid soils have turned to arid; and arid soils have turned to desert (Altin et al., 2012; Cook et al., 2016; IPCC. 2014). The importance of safflower, which is an oilseed plant cultivated on moorland and arid/semi-arid lands, has increased in arid and semi-arid countries. In countries which experience drought safflower stands out as an alternative culture plant in terms of oil for human nutrition and feed (grain and forage) for herbivorous nutrition. Recently, the plantation areas and amount of production in the harvest of the safflower plant in areas which have arid and semi-arid climatic conditions of Turkey, have also increased (Gumus and Kucukersan, 2016; TSi, 2016). In 2015, the safflower plant was cultivated on 0.43 million decares and a total of 70 thousand tonnes (162 kg/peracre) was harvested in Turkey (TSi, 2016). The planting area of safflower in Turkey is increasing day by day. In the study, the use of up to 5%, 10% and 20% of safflower grain, safflower herbage and safflower straw in horse and ruminant total mix ration (TMR) aimed to determine the effect on in vitro digestion parameters.

Materials and Methods

The scientific procedures of the study were conducted according to research protocol approved (Date: January 14, 2015; Decision number: 15/10) by the Local Ethics Committee for Animal Experiments of Erciyes University.

The samples of safflower herbage, safflower straw and safflower grain

The samples of safflower herbage were dried in an oven (Binder, Germany) for 24 hours at 55°C and then 8 hours at 105°C. The grain and straw samples of safflower which were ground to size to pass through a 1 mm sieve (IKA Werke, Staufen im Breisgau, Germany), were also dried in an oven for 24 hours at 105°C. The safflower herbage was ground to size to pass through a 1 mm sieve (IKA Werke, Staufen im Breisgau, Germany) and then dried for 24 hours at 105°C. After this procedure, the dry matter (DM) values of these samples were calculated. The ash, crude protein (CP) and ether extract (EE) contents were detected according to the Association of Official Analytical Chemists (AOAC 1995; method 920.39; method 942.05; method 942.01). The neutral detergent fibre (NDF), acid detergent fibre (ADF), and acid detergent lignin (ADL) contents, were analysed using a glass crucible on an FIWE3 fibre analyser (Velp, Italy) (Van-Soest et al., 1991). The NDF was detected using sodium sulphite and thermo-stable α-amylase (Megazyme, Ireland) (called as “aNDF”). The aNDF, ADF, and ADL contents were checked for ash residue (called as “aNDFom, ADFom, and ADL”, respectively). Analyses were carried out in triplicate.

The metabolic energy (ME) values were calculated using the following formula (MAFF, 1984) by the nutrient contents determined by analysis of the grain, herbage and straw of the safflower.

\[
\text{ME (kcal/kg DM): } 3227 + 62.86 \times \text{EE%} - 31.79 \times \text{ash%} - 32.50 \times \text{CP%} - 237.33 \times \text{EE%}
\]

In vitro digestion

Ruminant and horse rations used in the study and added rations, including 5%, 10% and 20% of the safflower grain, safflower herbage and safflower straw are given in Table 1 and 2.

In vitro digestion technique for ruminants

As inoculum, fresh rumen fluid was used. Rumen fluid (approximately 1.0 L) was obtained from two beef cattle (Hereford) fed with a diet containing an 80% concentrated mix feed and 20% forage in DM applied in intensive fattening. Rumen fluid was obtained via a stomach tube into two hours after the morning feeding and collected in a thermos including water at 39°C using CO₂ gas, and filtered with four layers of cheesecloth in the laboratory. The total mix ration (TMR) for beef cattle evaluated to determine in vitro digestion in ruminants is given in Table 1. This TMR was prepared for fattening cattle which are 12 months of age, with 400 kg of live weight and 1.4 kg of live weight gain.

The in vitro digestion technique performed in the current study is the Hohenheim in vitro gas production technique (Menke et al., 1988), which incubated filtered rumen fluid (10 mL), buffer mixture (20 mL) and substrate (milled feed sample, 200±10 mg). This buffer mixture includes 474 mL of bi-distilled water, 237.33 mL of macro-mineral solution, 237.33 mL of buffer solution, 0.12 mL of trace-mineral solution, 1.22 mL of resazurin solution and 50 mL of reducing solution in one litre. Dried samples were incubated in rumen fluid and buffer mixture in 100 mL glass syringes (Model For-
tuna, Germany) (n=6) (triplicate; cumulative gas production plus triplicate; dry matter-organic matter loss). The three blank syringes (no template; rumen fluid plus buffer mixture) were incubated to calculate the total gas production. The syringes were incubated in a water bath with a thermostat (Special Waterbath, Yapar Stainless Steel Ltd., Kahramanmaraş, Turkey), which has a stainless reservoir, at 39°C for up to 96 h.
The in vitro digestion technique for horses

The in vitro digestion technique in horses was carried out according to Sunvold et al. (1995) and Sweney (2012), which incubated feed sample in faeces inoculum and fermentation medium, which included solution A, solution B, trace mineral solution, water-soluble vitamins, folate:biotin solution, riboflavin solution, hemin solution, short-chain fatty acids, resurine, yeast extract, trypticase, Na₂CO₃ and Cystein HCl*H₂O (Table 3). The faeces samples used as an inoculum in the current study were obtained from two thoroughbred horses (6-7 years of age, 480-500 kg in body weight) that were fed with a diet containing 70% forage and 30% concentrate feed, in DM basis. Faeces samples were collected soon after defecation and transferred into a thermos containing water at 39°C under CO₂ gas and transferred to the laboratory. Faeces samples were diluted at a 1:10 ratio with 0.9% sterile serum physiologic solution (Polifleks, Polifarma, Turkey) using a laboratory type blender (Waring Products Division, Torrington C.T., USA). Diluted faeces inoculum was filtered through four layers of cheesecloth under constant CO₂ gas (anaerobically) and used in the in vitro digestion technique.

The horse in vitro digestion technique was carried out in glass syringes with 100 ml volume (Model Fortuna, Haberle Laborteknich, Germany). The samples (500±10 mg as DM) were incubated with a medium mixture (30 mL) and faeces inoculum (5 mL) in glass syringes (n=6). The syringes were closed using clips and then the initial volume recorded and incubated in a water bath with a thermostat (Special Waterbath, Yapar Stainless Steel Ltd., Kahramanmaraş, Turkey), which has a stainless reservoir, at 39.0±0.2°C for up to 48h. In addition, six blank syringes (no template; medium mixture plus faeces inoculum) were used to calculate the total gas production.

Determination of cumulative gas production

In in vitro incubations, the total gas volume was recorded from the calibrated scale on the syringe at 3, 6, 12, 24, 48, 72, and 96 hours for ruminants and at 6, 12, 18, 24, 36, and 48 hours for horses.

Determination of methane production

After measuring the total gas volume at 24 h, the tubing of the plastic syringe outlet was inserted into the inlet of the methane analyser (Sensor, Europe GmbH, Erkrath, Germany) and the piston was pushed to insert the accumulated gas into the analyser.

Determination of in vitro true dry matter disappearance and in vitro true organic matter disappearance values

Three of the in vitro fermentation syringes for both ruminants

| Table 1. The supplementation of safflower to beef cattle total mix ration |
|-----------------|-----------------|-----------------|-----------------|
| **Feeds** | **Feed kg/day** | **Safflower grain** | **Safflower herbage** |
| | (as DM) | 5% 10% 20% | 5% 10% 20% |
| Safflower | - | 0.50 1.00 2.00 | 0.5 1.00 2.00 |
| Corn silage | 1.20 | 1.20 1.20 1.20 | 0.70 0.20 - |
| Wheat straw | 1.80 | 1.80 1.80 2.25 | 1.80 1.80 1.00 |
| Barley grain | 3.15 | 2.65 2.15 0.00 | 3.15 3.15 3.15 |
| Concentrated feed mix* | 3.60 | 3.60 3.10 2.80 | 3.60 3.60 3.60 |
| Cotton seed meal | - | - 0.50 1.50 | - - - |
| Total feed kg/day (as DM) | 9.75 | 9.75 9.75 9.75 | 9.75 9.75 9.75 |

Crude protein and energy composition (Calculated)

| **CP** (% DM) | 12.00 | 11.58 | 11.66 |
| **ME** (kcal/kg DM) | 2457.00 | 2498.00 | 2515.00 |

Nutrient composition analysed

Ash	7.25
CP	11.50
EE	2.64
aNDFom	36.15
ADFom	20.58
ADL	3.29

CP: crude protein as %; aNDFom: assayed with a heat stable amylase and expressed exclusive of residual ash as %; ADFom: ADF expressed exclusive of residual ash as %; ADL: acid detergent lignin as %; EE: diethyl ether extract as %.

*: Beef cattle concentrated feed mixture included 15%CP and 2700 kcal/kg ME.
Çağrı and Kara. The Digestion Parameters of Safflower
Acta Vet Eurasia 2018; 44: 73-84

The in vitro true dry matter disappearance (T-DMd) and the in vitro true organic matter disappearance (T-OMd) values of substrates were calculated at 24 h of incubations.

The in vitro dry matter- and organic matter - disappearance was determined by filtering the fermentation residues using a vacuum unit (Velp Dietary Fibre Analyzer, Italy) on pre-weighed glass crucibles (Velp, porosity #2, Italy) and burning the residual at 550°C. In vitro T-DMd was calculated as 1 - (1 - [(DM residue - DM blank)/initial DM]) x 100. In vitro T-OMd was calculated as 1 - (1 - [(OM residue - OM blank)/initial OM]) x 100.

Determination of estimated digestion values and end-products
The ME and OMD contents of the samples were calculated using the equations of Menke and Steingass (1988).

The gas yields (GY24), partial factor (PF24), and microbial crude protein production levels (MCP) of the samples at 24 h were calculated using the equations:

\[\text{GY}_{24} = \frac{\text{GP}_{24} \times 10^3}{\text{T-DMd}} \]
\[\text{PF}_{24} = \text{T-DMd}: \text{GP}_{24} \]
\[\text{MCP} \text{ (mg/g DM)} = \text{mg T-DMd - (mL gas \times 2.2 mg/mL)} \]

\[\text{T-DMd: in vitro dry matter disappearance (mg)} \text{ for g DM at 24 h (mg/g DM)} \]

\[\text{GP}_{24}: \text{volume (mL)} \text{ of total gas produced by g DM at 24 h (mL/g DM)} \]

The molarities of estimated short chain fatty acid (SCFA) produced by substrate at 24 hours of in vitro fermentations were calculated using the following formula of Getachew et al. (2008):

\[\text{SCFA (mmol/0.2 g DM) = 0.0222 GP - 0.00425} \]

The GP is net gas production at 24 h (mL/0.2 g DM)

Statistical analysis
The experiment data were first subjected to Levene’s test to detect the variance homogeneity. One-way variance analyses (ANOVA) were implemented for homogeneous variances by General Linear Model procedures to test treatment differences.

| Table 2. The supplementation of safflower to horse total mix ration |
|---|---|---|---|---|---|---|
| Feeds | Feed kg/day (as DM) | Safflower grain | Safflower herbage | Safflower straw |
| | 5% | 10% | 20% | 5% | 10% | 20% | 5% | 10% | 20% |
| Safflower | 0.50 | 0.90 | 1.80 | 0.50 | 0.90 | 1.80 | 0.50 | 0.90 | 1.80 |
| Wheat straw | 3.00 | 3.00 | 3.00 | 3.00 | 2.65 | 2.30 | 2.50 | 2.30 | 2.20 |
| Grass hay, mature | 3.00 | 3.00 | 2.70 | 2.00 | 2.50 | 2.50 | 2.50 | 2.80 | 2.00 |
| Alfalfa hay, mid maturity | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 |
| Barley grain | 0.50 | - | - | - | 0.50 | 0.50 | - | 0.50 | 0.50 | 0.50 |
| Vegetable oil | 0.10 | 0.10 | - | - | 0.10 | 0.05 | - | 0.10 | 0.10 | 0.10 |
| Oat grain | 0.50 | 0.50 | 0.50 | - | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
| Cotton seed meal | 0.50 | 0.50 | 0.50 | 0.30 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
| Total feed kg/day (as DM) | 9.10 | 9.10 | 9.10 | 9.10 | 9.10 | 9.10 | 9.10 | 9.10 | 9.10 |

Crude protein and energy composition (Calculated)

<table>
<thead>
<tr>
<th>Feed</th>
<th>CP (% DM)</th>
<th>DE (kcal/kg DM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12.31</td>
<td>2043.00</td>
</tr>
<tr>
<td></td>
<td>12.30</td>
<td>2022.00</td>
</tr>
<tr>
<td></td>
<td>12.48</td>
<td>2048.00</td>
</tr>
<tr>
<td></td>
<td>11.57</td>
<td>2088.00</td>
</tr>
<tr>
<td></td>
<td>12.16</td>
<td>2069.00</td>
</tr>
<tr>
<td></td>
<td>12.36</td>
<td>2069.00</td>
</tr>
<tr>
<td></td>
<td>12.34</td>
<td>2012.00</td>
</tr>
<tr>
<td></td>
<td>12.34</td>
<td>2012.00</td>
</tr>
<tr>
<td></td>
<td>12.33</td>
<td>2065.00</td>
</tr>
<tr>
<td></td>
<td>12.15</td>
<td>2074.00</td>
</tr>
<tr>
<td></td>
<td>12.00</td>
<td>2078.00</td>
</tr>
</tbody>
</table>

Nutrient composition analysed

<table>
<thead>
<tr>
<th>Feed</th>
<th>Ash</th>
<th>CP</th>
<th>EE</th>
<th>aNDFom</th>
<th>ADTOM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10.69</td>
<td>10.62</td>
<td>3.34</td>
<td>30.26</td>
<td>23.81</td>
</tr>
<tr>
<td></td>
<td>4.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CP: crude protein as %; aNDFom: assayed with a heat stable amylase and expressed exclusive of residual ash as %; ADTOM: ADF expressed exclusive of residual ash as %; ADL: acid detergent lignin as %; EE: diethyl ether extract as %; DE: digestible energy; DE=ME/0.80.
the increasing dose of safflower grain higher than that of 0% safflower grain (p<0.05; quadratic); but 250 mL/L Trace mineral solution c 10.0 Folate: biotin solution e 5.0 under investigation. S e = the general mean common for each parameter i,j. Where, Y i,j +S e = µ . Data was analyzed based on the statistical model: Y i,j .

<table>
<thead>
<tr>
<th>Component</th>
<th>mL/L</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution A</td>
<td>330.0</td>
<td></td>
</tr>
<tr>
<td>Solution B</td>
<td>330.0</td>
<td></td>
</tr>
<tr>
<td>Trace mineral solution</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>Water-soluble vitamins</td>
<td>20.0</td>
<td></td>
</tr>
<tr>
<td>Folate: biotin solution</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Riboflavin solution</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Hemin solution</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Short chain fatty acids</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Resazurine</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Distilled H2O</td>
<td>296.0</td>
<td></td>
</tr>
</tbody>
</table>

g/L

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yeast extract</td>
<td>0.5</td>
</tr>
<tr>
<td>Trypticase</td>
<td>0.5</td>
</tr>
<tr>
<td>Na2CO3</td>
<td>4.0</td>
</tr>
<tr>
<td>Cystein HCl*H2O</td>
<td>0.5</td>
</tr>
</tbody>
</table>

\[^* \text{Composition (g/L): NaCl, 5.4; KH2PO4, 2.7; CaCl2*H2O, 0.16; MgCl2*6H2O, 0.12; MnCl2*4H2O, 0.06; CoCl2*6H2O, 0.06; (NH4)2SO4, 5.4.} \]

\[^{a} \text{Composition: K HPO4, 2.7 g/L.} \]

\[^{b} \text{Composition: K2HPO4, 2.7 g/L.} \]

\[^{c} \text{Composition: ethylene diamine tetraacetic acid (disodium salt), 500; FeSO4*7H2O, 200; ZnSO4*7H2O, 10; MnCl2*4H2O, 3; H2PO4, 30; CoCl2*6H2O, 20; CuCl2*2H2O, 1; NiCl2*6H2O, 2; Na2MoO4*2H2O, 3.} \]

\[^{d} \text{Composition (mg/L): thiamin-HCl, 100; d-pantothenic acid, 100; niacin, 100; pyridoxine, 100; p-aminobenzoic acid, 5; vitamin B12, 0.25.} \]

\[^{e} \text{Composition (mg/L): riboflavin, 10 mg/L in 5 mmol/L of Heps.} \]

\[^{f} \text{Hemin: Hemin 500 mg/L of 10 mmol/L NaOH.} \]

\[^{g} \text{Composition: n-valerate, isovalerate, isobutyrate and DL alpha- methylbutyrate, 250 mL/L.} \]

\[^{h} \text{Composition: 1 g resazurine/L distilled water.} \]

Data was analyzed based on the statistical model: \(Y_{ij} = \mu + S_i + S_j + e_{ij} \). Where, \(Y_{ij} \) = the general mean common for each parameter under investigation. \(S_i \) = the ith effect of the safflower grain, safflower herbage or safflower straw on the observed parameters, and \(e_{ij} \) = the standard error term. The means were separated by Tukey’s multiple range test at p<0.05. Analyses were performed using Statistical Package for the Social Sciences (SPSS) 17.0 software (IBM Corp.; Armonk, NY, USA).

Results

The nutrient compositions of safflower grain, safflower herbage and safflower straw are given in Table 4.

In vitro digestion parameters in horse

Supplementation of up to 20% crushed safflower grain in horse ration did not have a linear effect on cumulative total gas production for the first 12 hours (p>0.05). In vitro total gas production during the 12th and 18th hours of incubation was negatively affected by the use of safflower grain at 24 - 48 hours of incubation, those produced by 10% and 20% safflower grain were low linearly than that of control ration (p<0.05) (Table 5).

Safflower herbage supplementation to horse TMR positively affected in vitro cumulative total gas production during all incubation (6, 12, 18, 24, 36 and 48 hours) (p<0.05).

In horses, at 24 hours of incubation, in vitro total gas production of TMR with safflower herbage reached 183-195 mL/g DM, and this production level reached 229-253 mL/g DM at 48 hours (Table 5).

Up to 20% safflower straw was used in horse TMR and increased linearly the in vitro cumulative gas production at 6, 12, 18 and 24 hours of incubation (p<0.05). At the 36th and 48th hours of incubation, the horse TMR with up to 20% safflower straw did not negatively affect in vitro cumulative gas production (p>0.05) (Table 5).

Supplementation of up to 20% of crushed safflower grain, safflower herbage and safflower straw to horse TMR did not have a significant effect on methane production at 24 hours of incubation (p>0.05). The in vitro methane production ranged from 0.22 to 0.42 mL/g DM (Table 5).

Up to 20% safflower straw was used in horse TMR and increased linearly the in vitro cumulative gas production at 6, 12, 18 and 24 hours of incubation (p<0.05). The other hand, the in vitro GY, ME and MCP values of horse TMR did not change with the use of up to 20% safflower grain (p>0.05).

It was determined that the use of 5%, 10% and 20% of safflower herbage in horse TMR decreased in vitro T-DMd, PF24 and MCP values (p<0.05). The in vitro T-OMd value of TMR were not affected by the use of safflower herbage in horses (p>0.05) (Table 6).
an increase in all levels of safflower herbage (p<0.05). It was observed that this increase slightly decreased with the use of 20% (Table 6). It was determined that the use of safflower straw in horse TMR decreased linearly the \textit{in vitro} T-DMd, PF 24 and MCP values (p<0.05). The \textit{in vitro} GY24, ME and SCFA values of horse TMR were increased in linear contrast (p<0.001) depending on the increase in the level of safflower straw. In contrast, \textit{in vitro} T-OMd were not affected by up to 20% safflower straw (p>0.05) (Table 6).

\textit{In vitro} digestion parameters in ruminant

Safflower grain supplementation of up to 20% to beef cattle TMR decreased linearly \textit{in vitro} cumulative gas production at 3, 6, 12, 24, 48, 72, and 96 hours (p<0.05). The \textit{in vitro} methane production (mL/0.2 g DM) of beef cattle TMR reduced linearly by safflower grain supplementation level (p<0.05) (Table 7).

The safflower herbage and safflower straw (5-20% in DM) used in beef cattle TMR did not change \textit{in vitro} cumulative total gas production up to 96 hours and methane production at 24 hours of incubation (p<0.05). In the beef cattle TMR, the use of crushed safflower grain did not change \textit{in vitro} T-DMd, T-OMd, GY24 and PF24 values (p>0.05). In relation to the increase of safflower grain in beef cattle TMR, the ME and NEL values of TMR and the SCFA concentration of digestion fluid decreased linearly (p<0.001) (Table 8). The \textit{in vitro} estimated T-DMd, T-OMd, GY24, PF24, ME, NEL and SCFA values of beef cattle TMR were not affected by up to 20% safflower herbage and safflower straw (p<0.05) (Table 8).

\textbf{Discussion}

Nutrient composition in the grain, herbage and straw of safflower

Similar to our present study findings, Oğuz et al. (2014) reported that safflower grain grown in Turkey contained about 12% CP, 33% EE, 33% ADF and 44% NDF in DM. In another study, Ingale and Shrivastava (2011) stated that safflower grain (\textit{C. tinctorius} PBNS-12 and PBNS-40) grown in India contained approximately 16% CP, 25-29% EE and 3.5% ash. Paya et al. (2014) (arid climate, Iran) found CP values (16%) of safflower grain was higher than that of our findings, in line with the findings of Ingale and Shrivastava (2011). Stanford et al. (2001) reported that safflower straw, which containing seed-bound plant heads, contained about 13% CP, 13% EE, 40% ADF and 50% NDF in DM. The aNDFom and ADFom

\begin{table}
\centering
\caption{Effect of safflower in horse TMR on \textit{in vitro} cumulative gas production and methane production}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline
Supplementation to TMR & Methane & 6 h & 12 h & 18 h & 24 h & 36 h & 48 h \\
\hline
0% Safflower grain & 0.29 & 3.94 & 43.37 & 73.94 & 183.11 & 221.39 & 229.29 \\
5% Safflower grain & 0.36 & 6.58 & 53.25 & 87.78 & 184.08 & 222.09 & 231.92 \\
10% Safflower grain & 0.27 & 5.27 & 43.49 & 72.16 & 161.45 & 198.10 & 200.08 \\
20% Safflower grain & 0.22 & 5.26 & 41.08 & 66.52 & 158.37 & 172.18 & 174.13 \\
\hline
SEM & 0.06 & 0.51 & 1.70 & 2.71 & 3.86 & 6.17 & 7.12 \\
\hline
p value & L & 0.640 & 0.380 & 0.136 & 0.029 & 0.002 & <0.001 & <0.001 \\
& Q & 0.709 & 0.210 & 0.026 & 0.015 & 0.445 & <0.001 & <0.001 \\
0% Safflower herbage & 0.29 & 3.94 & 43.37 & 73.94 & 183.11 & 220.92 & 229.43 \\
5% Safflower herbage & 0.38 & 5.94 & 58.17 & 92.22 & 194.35 & 243.96 & 247.94 \\
10% Safflower herbage & 0.39 & 6.60 & 56.81 & 91.17 & 195.57 & 251.18 & 253.50 \\
20% Safflower herbage & 0.37 & 7.30 & 53.13 & 90.65 & 189.94 & 243.50 & 251.16 \\
\hline
SEM & 0.07 & 0.54 & 1.91 & 2.45 & 2.17 & 3.80 & 4.47 \\
\hline
p value & L & 0.771 & 0.033 & 0.010 & 0.001 & 0.038 & 0.003 & <0.001 \\
& Q & 0.799 & 0.507 & 0.001 & 0.002 & 0.007 & 0.004 & 0.004 \\
0% Safflower straw & 0.29 & 3.94 & 43.37 & 73.94 & 183.11 & 220.92 & 229.43 \\
5% Safflower straw & 0.33 & 4.64 & 59.18 & 93.74 & 195.51 & 233.34 & 232.03 \\
10% Safflower straw & 0.40 & 5.93 & 61.94 & 99.85 & 204.32 & 237.78 & 241.46 \\
20% Safflower straw & 0.42 & 7.84 & 66.71 & 108.89 & 214.52 & 240.37 & 245.98 \\
\hline
SEM & 0.08 & 0.52 & 2.74 & 3.96 & 4.02 & 4.21 & 4.04 \\
\hline
p value & L & 0.604 & 0.002 & <0.001 & <0.001 & <0.001 & 0.132 & 0.145 \\
& Q & 0.976 & 0.379 & 0.014 & 0.030 & 0.427 & 0.572 & 0.909 \\
\hline
L: linear; Q: quadratic; Methane: \textit{in vitro} methane production as mL/g DM at 24; SEM: standard error of means
\end{tabular}
\end{table}
contents of the safflower grain and safflower straw in the present study were similar to the findings of previous researchers (Asgharzadeh et al., 2013; Sahebi et al., 2011; Stanford et al., 2001). In another study, although ANDFom and ADFom values of safflower herbage grown in arid climatic conditions (in Jordan), were found to be similar to the results of the present study, CP (13.4%), ash (10.8%) values of it were high than those of the present study (Landau et al., 2004). In addition, the calculated ME value of safflower herbage was parallel to that of Asgharzadeh et al. (2013).

Generally, the CP content of safflower herbage, harvested at the pre-flowering stage in the current study, was similar to some meadow-pasture grass (Dactylis Glomerata, Lolium multiflorum) at the end of vegetative. The safflower straw contains the lowest plant cell wall substances than those (70-78% aNDFom and 50-55% ADFom) of wheat straw and similar CP and EE to wheat straw (NRC, 1989).

The differences among the findings of the present study and previous studies can be attributed to variables in the safflower species used and the soil and climatic conditions grown. When evaluated in terms of nutrient content, it can be seen that safflower herbage and safflower straw have potential as alternative forages sources. In addition, the safflower grain may be a good source energy and moderate protein source due to its EE and CP content. The effect of the safflower grain, straw and herbage on the digestibility must be determined.

The in vitro fermentation values in horse TMR

In the present study, in vitro methane volume produced by aspiration grain, herbage and straw at different levels in horse TMR was 0.22-0.42 mL/g DM at 24 hours of in vitro incubation. The in vitro methane production of horse TMR was diverse in range from 0.43 to 0.59 mL/g DM by Kara and Baytok (2017). As it is understood from these values, methane is not produced (Ellis et al., 2007) in the digestive tract of horses as much as in ruminants, and it is observed that the contribution of horses to global warming is not as high as ruminants.

The 5% safflower seeds in horse TMR did not affect the in vitro total gas volume (mL) produced for g T-DMd at 24 h; MCP: microbial crude protein is produced at 24 h (mg/g DM); ME: metabolic energy as MJ/kg DM; PF24: partial factor is ratio T-DMd to GP24 at 24 h; SFCA: molarities of short chain fatty acid in fermentation fluid at 24 h; T-DMd: in vitro true-dry matter disappearance (mg) for g DM at 24 h (mg/g DM); T-OMd: in vitro true-organic matter disappearance; SEM: standard error of means; L: linear; Q: quadratic

<table>
<thead>
<tr>
<th>Supplementation to TMR</th>
<th>T-DMd</th>
<th>T-OMd</th>
<th>GY_{24}</th>
<th>PF_{24}</th>
<th>MCP</th>
<th>ME</th>
<th>SCFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0% Safflower grain</td>
<td>494.46</td>
<td>560.36</td>
<td>371.18</td>
<td>2.69</td>
<td>90.70</td>
<td>8.12</td>
<td>0.81</td>
</tr>
<tr>
<td>5% Safflower grain</td>
<td>480.26</td>
<td>527.98</td>
<td>383.64</td>
<td>2.60</td>
<td>75.27</td>
<td>8.13</td>
<td>0.81</td>
</tr>
<tr>
<td>10% Safflower grain</td>
<td>439.79</td>
<td>449.37</td>
<td>367.15</td>
<td>2.72</td>
<td>84.60</td>
<td>7.52</td>
<td>0.71</td>
</tr>
<tr>
<td>20% Safflower grain</td>
<td>438.12</td>
<td>503.83</td>
<td>361.56</td>
<td>2.78</td>
<td>89.70</td>
<td>7.43</td>
<td>0.69</td>
</tr>
<tr>
<td>SEM</td>
<td>7.79</td>
<td>15.46</td>
<td>5.12</td>
<td>0.03</td>
<td>4.96</td>
<td>0.10</td>
<td>0.01</td>
</tr>
<tr>
<td>p value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>0.274</td>
<td>0.086</td>
<td>0.418</td>
<td>0.418</td>
<td>0.370</td>
<td>0.661</td>
<td>0.661</td>
</tr>
<tr>
<td>0% Safflower herbage</td>
<td>494.46</td>
<td>560.36</td>
<td>371.18</td>
<td>2.69</td>
<td>90.70</td>
<td>8.12</td>
<td>0.81</td>
</tr>
<tr>
<td>5% Safflower herbage</td>
<td>457.47</td>
<td>512.99</td>
<td>425.25</td>
<td>2.35</td>
<td>79.29</td>
<td>8.41</td>
<td>0.85</td>
</tr>
<tr>
<td>10% Safflower herbage</td>
<td>462.41</td>
<td>517.88</td>
<td>422.91</td>
<td>2.36</td>
<td>32.15</td>
<td>8.44</td>
<td>0.86</td>
</tr>
<tr>
<td>20% Safflower herbage</td>
<td>465.46</td>
<td>529.51</td>
<td>408.81</td>
<td>2.45</td>
<td>47.59</td>
<td>8.29</td>
<td>0.83</td>
</tr>
<tr>
<td>SEM</td>
<td>5.58</td>
<td>12.65</td>
<td>7.59</td>
<td>0.04</td>
<td>8.47</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>p value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>0.056</td>
<td>0.483</td>
<td>0.026</td>
<td>0.016</td>
<td>0.020</td>
<td>0.057</td>
<td>0.057</td>
</tr>
<tr>
<td>Q</td>
<td>0.041</td>
<td>0.301</td>
<td>0.006</td>
<td>0.003</td>
<td>0.005</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>0% Safflower straw</td>
<td>494.46</td>
<td>560.36</td>
<td>371.18</td>
<td>2.69</td>
<td>90.70</td>
<td>8.12</td>
<td>0.81</td>
</tr>
<tr>
<td>5% Safflower straw</td>
<td>504.25</td>
<td>542.39</td>
<td>387.66</td>
<td>2.58</td>
<td>74.12</td>
<td>8.44</td>
<td>0.86</td>
</tr>
<tr>
<td>10% Safflower straw</td>
<td>480.15</td>
<td>521.02</td>
<td>425.54</td>
<td>2.35</td>
<td>30.65</td>
<td>8.68</td>
<td>0.90</td>
</tr>
<tr>
<td>20% Safflower straw</td>
<td>478.33</td>
<td>510.60</td>
<td>448.50</td>
<td>2.23</td>
<td>6.38</td>
<td>8.96</td>
<td>0.94</td>
</tr>
<tr>
<td>SEM</td>
<td>3.90</td>
<td>9.56</td>
<td>9.25</td>
<td>0.05</td>
<td>10.19</td>
<td>0.09</td>
<td>0.01</td>
</tr>
<tr>
<td>p value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>0.014</td>
<td>0.065</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Q</td>
<td>0.296</td>
<td>0.838</td>
<td>0.242</td>
<td>0.821</td>
<td>0.189</td>
<td>0.731</td>
<td>0.731</td>
</tr>
</tbody>
</table>

GY_{24}: gas yield is total gas volume (mL) produced for g T-DMd at 24 h; MCP: microbial crude protein is produced at 24 h (mg/g DM); ME: metabolic energy as MJ/kg DM; PF$_{24}$: partial factor is ratio T-DMd to GP24 at 24 h; SFCA: molarities of short chain fatty acid in fermentation fluid at 24 h; T-DMd: in vitro true-dry matter disappearance (mg) for g DM at 24 h (mg/g DM); T-OMd: in vitro true-organic matter disappearance; SEM: standard error of means; L: linear; Q: quadratic
ative effects of high safflower grain (10% and 20%) on digestion parameters \textit{(in vitro} total gas, ME, SCFA, T-DMd and T-OMd) can be attributed to the husk content and high ADL levels (Blümmel and Orskov, 1993; Getachew et al., 2008; Menke and Steinbgass, 1988). Previous studies have also shown that \textit{in vitro} digestion parameters are negatively correlated with the structural carbohydrate content of the plant (Kara et al., 2016; Kara, 2016). The \textit{in vitro} digestion parameters \textit{(in vitro} total gas, T-DMd, T-OMd, GY24, ME, SCFA and ruminal pH) show that the safflower herbage can be used up to 20% instead of some forage (meadow hay and wheat straw) and concentrate (barley and vegetable oil) feeds of DM in horse TMR. Similarly, \textit{in vitro} digestion parameter applies to safflower straw and up to 20% can be used as forage in DM in horse TMR. These effects of safflower herbage and straw could be caused by the lower levels of aNDFom, ADF and ADL that can be included in grass herbage or hay (forages) which is harvested after the seed-binding stage (Kara, 2016; NRC, 1989 and 2001). These results indicate that the herbage and straw of safflower without thorns are the preferred forage for horse TMR.

The \textit{in vitro} fermentation values in beef cattle TMR

Research on the \textit{in vitro} digestion of safflower plant in ruminants is still very limited. In the present study, the \textit{in vitro} cumulative gas production of safflower in ruminants was lower than those of safflower herbage and straw, which is compatible with the findings of Sahebi et al (2011). The present study indicated that the addition of 5% safflower grain to beef TMR does not have a negative effect on the \textit{in vitro} gas production, ME, NEL, SCFA, \textit{in vitro} T-DMd, T-OMd, GY24 and PF24 values and the safflower grain at this level can be used in ruminant TMR suggesting that studies on safflower grain should be carried out. However, the use of safflower grain at 10% and 20% levels in ruminant TMR does not affect the \textit{in vitro} T-DMd, T-OMd, GY24 and PF24 values, despite the linear reduction of \textit{in vitro} gas production, ME, NEL and SCFA values. These fermentation results will not reveal a problem on ruminal digestion of beef TMR.

The \textit{in vitro} methane (mL/0.2 g DM) produced by unit DM of beef TMR decreased linearly with increasing rates of safflower grain in beef TMR and is an expected result due to the reduced \textit{in vitro} gas production (Ellis et al., 2007; Kara et al., 2015).

The use of up to 20% safflower herbage in beef TMR did not adversely affect \textit{in vitro} cumulative total gas and methane production levels and \textit{in vitro} T-DMd, T-OMd, GY24, PF24, ME,
NEL and SCFA values. This result shows that it could be advisable to use safflower herbage instead of corn silage and wheat straw in the beef cattle TMR. The safflower herbage can be characterized as quality forage due to the values of CP, fibre and ME.

The 5%, 10% and 20% of safflower straw in beef cattle did not change the in vitro cumulative total gas and methane production and in vitro T-DMd, T-OMd, GY24, PF24, ME, NEL and SCFA values, indicating it could be preferred instead of wheat straw. However, the safflower plant used in the study was the Dinçer type and did not have thorns. This plant may not cause adverse effects in the in vivo feeding experiments in ruminants. It may be advisable to use thorny forms of the plant in goats.

As a result;

- Before flowering, the safflower herbage has ME, CP, aNDFom, ADFom and ADL values, which may contain a moderate/good quality forage,
- Although safflower straw has the equivalent CP content to reference wheat straw, the values of aNDFom, ADFom and ADL are lower than those of wheat straw,
- The husked safflower grain has a high content oil, moderate CP content and high fibre contents,
- The use of safflower grain may be recommended up to 5% in horse TMR and up to 20% in ruminant TMR,
- Up to 20% safflower herbage can be used in high quality forage in horse and beef TMR,
- Moreover, it may be argued that further investigation into the in vivo digestibility of these feed sources and the effects on performance and product quality need to be investigated.

Ethics Committee Approval: Ethics committee approval was received for this study from the Local Ethics Committee for Animal Experiments of Erciyes University (ERU-HADYEK), Kayseri-Turkey (Date: January 14, 2015; Decision number: 15/10).

Table 8. Effect of safflower in ruminant TMR on in vitro fermentation parameters

<table>
<thead>
<tr>
<th></th>
<th>T-DMd</th>
<th>T-OMd</th>
<th>GY24</th>
<th>PF24</th>
<th>ME</th>
<th>NEL</th>
<th>SCFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0% Safflower grain</td>
<td>516.78</td>
<td>549.27</td>
<td>588.06</td>
<td>1.73</td>
<td>11.19</td>
<td>6.95</td>
<td>1.32</td>
</tr>
<tr>
<td>5% Safflower grain</td>
<td>654.20</td>
<td>745.24</td>
<td>446.17</td>
<td>2.26</td>
<td>10.94</td>
<td>6.73</td>
<td>1.27</td>
</tr>
<tr>
<td>10% Safflower grain</td>
<td>468.84</td>
<td>550.85</td>
<td>572.49</td>
<td>1.74</td>
<td>10.37</td>
<td>6.25</td>
<td>1.18</td>
</tr>
<tr>
<td>20% Safflower grain</td>
<td>526.68</td>
<td>577.44</td>
<td>488.84</td>
<td>2.07</td>
<td>9.98</td>
<td>5.92</td>
<td>1.12</td>
</tr>
<tr>
<td>SEM</td>
<td>27.11</td>
<td>28.81</td>
<td>23.62</td>
<td>0.08</td>
<td>0.14</td>
<td>0.12</td>
<td>0.02</td>
</tr>
<tr>
<td>p value</td>
<td>L</td>
<td>0.422</td>
<td>0.508</td>
<td>0.328</td>
<td>0.428</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Q</td>
<td>0.362</td>
<td>0.044</td>
<td>0.451</td>
<td>0.459</td>
<td>0.306</td>
<td><0.001</td>
<td>0.306</td>
</tr>
<tr>
<td>0% Safflower herbage</td>
<td>516.78</td>
<td>549.27</td>
<td>588.06</td>
<td>1.73</td>
<td>11.19</td>
<td>6.95</td>
<td>1.32</td>
</tr>
<tr>
<td>5% Safflower herbage</td>
<td>572.18</td>
<td>569.79</td>
<td>554.71</td>
<td>1.92</td>
<td>11.24</td>
<td>6.99</td>
<td>1.32</td>
</tr>
<tr>
<td>10% Safflower herbage</td>
<td>613.95</td>
<td>685.37</td>
<td>496.27</td>
<td>2.11</td>
<td>10.96</td>
<td>6.75</td>
<td>1.28</td>
</tr>
<tr>
<td>20% Safflower herbage</td>
<td>651.90</td>
<td>653.31</td>
<td>477.55</td>
<td>2.11</td>
<td>11.42</td>
<td>7.14</td>
<td>1.35</td>
</tr>
<tr>
<td>SEM</td>
<td>34.55</td>
<td>36.58</td>
<td>33.91</td>
<td>0.11</td>
<td>0.07</td>
<td>0.06</td>
<td>0.01</td>
</tr>
<tr>
<td>p value</td>
<td>L</td>
<td>0.207</td>
<td>0.243</td>
<td>0.267</td>
<td>0.261</td>
<td>0.530</td>
<td>0.530</td>
</tr>
<tr>
<td>Q</td>
<td>0.908</td>
<td>0.738</td>
<td>0.923</td>
<td>0.715</td>
<td>0.168</td>
<td>0.168</td>
<td>0.168</td>
</tr>
<tr>
<td>0% Safflower straw</td>
<td>516.78</td>
<td>549.27</td>
<td>588.06</td>
<td>1.73</td>
<td>11.19</td>
<td>6.95</td>
<td>1.32</td>
</tr>
<tr>
<td>5% Safflower straw</td>
<td>562.59</td>
<td>518.35</td>
<td>517.00</td>
<td>1.94</td>
<td>10.92</td>
<td>6.72</td>
<td>1.28</td>
</tr>
<tr>
<td>10% Safflower straw</td>
<td>561.83</td>
<td>596.87</td>
<td>546.13</td>
<td>1.83</td>
<td>11.40</td>
<td>7.13</td>
<td>1.35</td>
</tr>
<tr>
<td>20% Safflower straw</td>
<td>590.31</td>
<td>633.22</td>
<td>530.08</td>
<td>1.95</td>
<td>11.34</td>
<td>7.07</td>
<td>1.35</td>
</tr>
<tr>
<td>SEM</td>
<td>21.21</td>
<td>21.64</td>
<td>21.72</td>
<td>0.07</td>
<td>0.08</td>
<td>0.07</td>
<td>0.01</td>
</tr>
<tr>
<td>p value</td>
<td>L</td>
<td>0.318</td>
<td>0.305</td>
<td>0.513</td>
<td>0.445</td>
<td>0.209</td>
<td>0.209</td>
</tr>
<tr>
<td>Q</td>
<td>0.856</td>
<td>0.631</td>
<td>0.577</td>
<td>0.760</td>
<td>0.512</td>
<td>0.512</td>
<td>0.512</td>
</tr>
</tbody>
</table>

Other abbreviations:
- GY24: gas yield is total gas volume (mL) produced for g T-DMd at 24 h; MCP: microbial crude protein is produced at 24 h (mg/g DM); ME: metabolic energy as MJ/kg DM; NEL: net energy lactation as MJ/kg DM; SFCA: molarities of short chain fatty acid in fermentation fluid at 24 h; T-DMd: in vitro true-dry matter disappearance (mg) for g DM at 24 h (mg/g DM); T-OMd: in vitro true-organic matter disappearance; SEM: standard error of means; L: linear; Q: quadratic
Acknowledgements: This study was based on the Master Thesis of Alper ÇAĞRI. The abstract of this study was presented in International Symposium on Biodiversity and Edible Wild Species, Antalya, Turkey, at 3-5 April 2017.

Conflict of Interest: The authors have no conflicts of interest to declare.

Financial Disclosure: The study was supported by Project No. TYL-2015-5842 granted by the Research Fund of Erciyes University, Kayseri (Turkey).

References

Altin, T.B., Barak, B., Altin, B.N., 2012. Change in precipitation and temperature amounts over three decades in central Anatolia, Turkey. Atmospheric and Climate Sciences 2, 107-125. [CrossRef]

Baumler, E., Cuniberti, A., Nolascoa, S.M., Riccobene, I.C., 2006. Moisture dependent physical and compression properties of safflower seed. Journal of Food Engineering 72, 134-140. [CrossRef]

Kara, K., Baytok, E., 2017. Effect of different levels of psyllium supplementation to horse diet on in vitro fermentation parameters and methane emission. Journal of the Faculty of Veterinary Medicine Istanbul University 43, 12-18.

Oguz, M.N., Oguz, F.K., Buyukoglu, T.I., 2014. Effect of different concentrations of dietary safflower seed on milk yield and some rumen and blood parameters at the end stage of lactation in dairy cows. Revista Brasileira de Zootecnia 43, 207-211. [CrossRef]

Sweeney, C.R., 2012. In vivo and in vitro digestibility of a complete pelleted feed in horses. Master’s Theses and Project Reports, the Faculty of California Polytechnic State University. San Luis Obispo CA. [CrossRef]

The Effects of Drinking Water Supplemented with Essential Oils on Performance, Egg Quality and Egg Yolk Fatty Acid Composition in Laying Hens

Özlem KARADAĞOĞLU1, Bülent ÖZSOY2, Mükremin ÖLMEZ3, Özlem DURNA AYDIN3, Tarkan ŞAHIN3

1Department of Agricultural and Animal Production, Kars Vocational School, Kafkas University, Kars, 36100, Turkey
2Department of Animal Nutrition and Nutritional Disease, Faculty of Veterinary, Mustafa Kemal University, Hatay, 31000, Turkey
3Department of Animal Nutrition and Nutritional Disease, Faculty of Veterinary, Kafkas University, Kars, 36100, Turkey

Abstract

This study was performed to examine the effect of different concentrations of an essential oil mixture (EOM) added to drinking water on growth performance, internal and external egg quality, and egg yolk fatty acid composition in laying hens. A total of 240 Brown Nick laying hens aged 20 weeks were used in this study. These hens were divided into one control and three treatment groups whose drinking water was supplemented with 0, 0.1, 0.2, and 0.3 ml/L of Oregofarm EOM. Oregofarm is a commercially available product containing peppermint, oregano, and anise oil. Each treatment group was further categorized into 10 subgroups, each consisting of 6 laying hens. The hens were fed basal rations for 16 weeks. For data collection and analysis, a 16-week period was divided into three time periods of 5 weeks. The weights of 25- to 30- and 35-week eggs were recorded weekly. In the groups whose drinking water was supplemented with the EOM, there was a significant improvement in egg production (EP) (p<0.001), weekly egg weights during the entire study period (p<0.001), and feed conversion ratio (p<0.05). Furthermore, egg shell thickness and yolk height were significantly increased (p<0.05) at week 35. The Haugh unit was also significantly improved (p<0.05) at weeks 25 and 30. However, feed intake and body weight were not affected by the treatment (p>0.05). The levels of saturated fatty acids were decreased, whereas the levels of polyunsaturated fatty acids increased, although the differences were not statistically significant (p>0.05). Therefore, based on the beneficial effects of supplementing drinking water with different concentrations of EOM on egg weight, egg production, feed conversion ratio, and egg yolk fatty acid compositions, it is suggested that EOM can be safely added at concentrations of up to 0.3 ml/L (i.e., the levels used in this study) to drinking water for laying hens.

Keywords: Egg quality, essential oils, laying hens, performance, yolk fatty acids

Introduction

Due to cross and multiple resistance issues, many antibiotic growth promoters in poultry nutrition are restricted by the EU. Consequently, researchers have been exploring the use of phytophgenic feed additives (PFA) such as plants, plant extracts, essential oils (E Os) and individual or combined active E Os ingredients (Bozkurt et al., 2014). Essential oils are a mixture of fragile and volatile compounds—often referred to as aromatic—by plant origin and plant rooting. Hence, the chemical composition and concentrations of active plant compounds vary greatly dependent on their source (Hippenstiel et al., 2011). Mint (Mentha piperita) is a member of the Labiatae family and is probably of East Asian origin. Such herbal medicines are widely used and are believed to be particularly useful in combating the immune system and secondary infections (Akbari et al., 2015). As an aromatic plant growing mostly in the Mediterranean region, Oregano (Origanum vulgare L.) EO can be used as a phytogenic additive. The medicinal plant has been used as an anion for digestive, antiparasitic, antibacterial and antifungal stimulant effects (Ertaş et al., 2005).
In some studies, the successful use of EOs as alternative growth promoters has already been proven and has started to play an important role in poultry nutrition. Phytochemical additives found in a wide variety of plants, spices and derivatives have a beneficial effect on the quality of animal products and animal health and are safe for use in the food industry (Ertaş et al., 2005). It has been reported that thyme EOs have various biological activities in vitro and in vivo, together with antimicrobial, antioxidant and antifungal effects (Espina et al., 2015; Mooyottu et al., 2014). Essential oils using herbs and spices might increase the acceptability of feed because of their flavorful characteristics and therefore, could advance feed intake by being added to poultry diets (Williams and Losa, 2001). Similarly, some studies showed positive effects on performance traits such as egg production rate, egg weight and egg mass output (Aydın et al., 2008; Bozkurt et al., 2012b), however some experiments showed that varying levels of dietary EOM did not significantly affect the performance, damaged eggs and eggshell weight (Olgun and Yıldız, 2014; Özek et al., 2011). There are limited studies reporting the effects of herbs and EOs on egg quality parameters of laying hens with contradictory results (Bölükbaşı et al., 2008 and 2010).

Due to increased dietary fat and increased coronary heart disease, egg yolk fatty acid composition is very important for consumers (Simopoulos and Salem, 1992). Methods of feeding animals can change the fatty acid composition of the eggs (Yi et al., 2014). Essential oils or mixtures added to diets have a positive effect on lipid metabolism (Acamovic and Brooker, 2005). Contrary to this statement, Ding et al. (2017) reported that there was no significant effect on the fatty acid composition of egg yolk in the experimental groups where Enviva EO additions were made and not made. Up to now, although the effects on the performance parameters of essential oil addition to poultry diets have been studied, there have very few reports on the effects of essential oils on egg yolk acid composition. The study was designed to define the effects of essential oil mixture (EOM) (peppermint, oregano, and anise EOs) added to drinking water on growth performance, egg quality and egg yolk fatty acid compositions in laying hens.

Materials and Methods

Animals and experimental design

This study has been reviewed and approved by an ethical or advisory board of Animal Ethics Committee at Kafkas University (KAU-HADYEK/2016-032) (Kars, Turkey). A total of 240 Brown-Nick laying hens aged 20 weeks were used in the study. Drinking water was supplemented with EOs (Oregofarm EO, Farmavet International, Feed and Water Additives Specialist, Manisa, Turkey) at concentrations of 0.1, 0.2, and 0.3 mL/L respectively and were provided for 16 weeks (20 to 35 weeks). The EOM components are presented in Table 1. In the experiment, 4 groups of chickens were divided into 1 control group and 3 experimental groups. Ten sub-groups were created for each trial group and each sub group contained 6 laying hens. In the study, the hens were fed with laying hen rations containing 16% HP and 2750 kcal / kg ME. The basal ration was prepared using maize and soybean meal. The ingredient and nutrient levels of the basal diet as presented in Table 2 met the NRC recommendations (1994).

The rations were applied to all groups as isocaloric and isonitrogenic mixes. Hens were sheltered in a hen house where light...
ing, temperature and ventilation were controlled. The temperature was maintained at approximately 22-24°C. The house had controlled lighting (16L: 8D). The experiment was completed in 16 weeks in the layer chicken unit of the Research and Application Farm at Kafkas University. All hens were supplied with diet and water ad-libitum. 15 liter water tanks were prepared for each trial group and connected via nipples. The daily water consumption of the animals was estimated. Fresh drinking water and EOM were added to the water tanks daily. The animals were constantly monitored and kept well hydrated throughout the experiment. The nutrient composition of the basal diet was determined according to the AOAC (1995).

Performance and egg quality parameters
In order to determine the changes in body weight, the body weights of the chickens were recorded at the beginning and end of the study. Egg production and weight and FI were registered weekly during the experiment. Egg production and FCR were calculated for each period. The magnitude of production was adjusted according to mortality rates, which were recorded daily. To determine egg quality parameters, in every 5 week period, 20 eggs were randomly selected per treatment (2 eggs per replicate). These were then evaluated in terms of eggshell weight, albumen and yolk weight, yolk height, eggshell thickness and HU. The eggs were weighed with a special instrument (TP-2000A-0.01 g, Istanbul, Turkey). The eggs were broken on a glass table. The eggshell thickness was measured at three different sections (upper-middle and ends) using a micrometer (Standargage-200mm-8IN, Asia). The height of the yolk was measured with a tripod micrometer (Mitutoya-20mm, Kawasaki, Japan). Albumen quality was measured in terms of the HU calculated from the weight of the egg and the height of the albumen. While calculating HU values for each egg, the following formula was used:

\[HU = 100 \log (H - 1.7W^{0.37} + 7.6) \]

(H is the observed height of the albumen (mm) and W is the weight of the egg (g)).

Fatty acid profile of egg yolk
During the final week of fatty acids analysis, the oil extraction was carried out on 10 egg samples from each group, according to the method laid out by the AOAC (1995), and then processed with methyl esters with Boron Trifluoride. The fatty acid methyl esters were condensed under nitrogen gas and then analyzed in GC-MS (HP 6890/5972). An Agilent HP88 100X250 micro-Mx250 mm column was used in the analysis. The initial temperature of the column was 120°C, while the final temperature was 230°C. The injector and detector temperature was set at 250°C. The injection speed was set at 50:1 and helium was used as a carrier gas.

Statistical analysis
The statistical analysis and the significance of the mean values between the groups were determined by the analysis of variance. The multiple range test was used to determine differences between the trial groups. The statistical analyses were performed with Statistical Package for the Social Sciences 16.0 (SPSS Inc.; Chicago, IL, USA) (Dawson and Trap, 2001).

Results and Discussion
Laying hen performance and egg production
Initial and final BW, FI, FCR and egg production data for the layer hens fed drinking water containing EOM is presented in Table 3. Performance analysis showed that there were no effects on body weight and feed intake in the experimental group. During the experimental period, egg production and FCR improved significantly (p<0.05) with the supplementation of 0.2 and 0.3 mL/L EOM. Studies reported beneficial effects on laying performance with EOM supplementation in layer’s diet (Bozkurt et al., 2012b; Özek et al., 2011). Radwan et al. (2008) reported that FI and BW were not significantly affected by dietary herbs. No differences in FI were reported in hens when the EO was supplemented to basal diets (Bozkurt et al., 2012a and 2012c; Çabuk et al., 2014). In contrast, Abdo et al. (2010) found that adding green tea EO in the ratio significantly reduced feed intake. Similarly, Bölükbaşı et al. (2008) found that EO supplementation in layer diets lowered FI and FCR was improved when the birds were fed EOM in their diet. Certain feeding experiments with layer hens didn’t find any differences in FCR when the oregano EO was added to diets (Florou-Paneri et al., 2005). Similarly, Bozkurt et al. (2012a; 2012c) revealed that dietary inclusion of EO did not improve FCR in white layer hens. However, some beneficial effects on FCR using EO of inclusion level 24 mg/kg feed have been reported for the brown layer strain under hot environmental conditions (Çabuk et al., 2006). Some studies confirmed the positive effects of herbs and their respective EO on the BW of hens. Çabuk et al. (2006) reported that the BW of layer hens fed diets of an EO mixture increased compared to that of the control group over a 20-week period. Similarly, in another study, significant improvements were determined in the BW of hens when they were fed different levels of garlic (Khan et al., 2007). However, no effect was reported on BWG in response to dietary supplementation with tea leaves or green tea EO (Abdo et al., 2010), or dietary oregano EO (Florou-Paneri et al., 2005). Bozkurt et al. (2009) observed that adding an EO mixture to diet had no effect on egg production and weight. Similarly, Bölükbaşı et al. (2010) observed no effect on egg production but there was an increase in egg weight when diets were supplemented with thyme, sage or rosemary over a period of 12 weeks. However, Xinjiang He et al. (2017) found that added oregano EOs in layer diets significantly influenced egg production and average egg weight.

Egg quality parameters
The effects of Oregofarm EO on egg weight and internal and external egg quality are listed in Table 4 and 5. Supplementation of Oregofarm EO significantly increased the egg weight (p<0.05) weekly. In all periods, the egg weight was effected significantly

Karadağoğlu et al. Using Essential Oils in Laying Hens
Acta Vet Eurasia 2018; 44: 85-92
by essential oil mixes (p<0.05). Bozkurt et al. (2012b) declared that EOM added to layer hen diet significantly enhanced egg production rate and egg weight. Other studies showed no significant change in egg production and egg weight when hens were fed a diet supplemented with EOM (Bozkurt et al., 2012b; Florou-Paneri et al., 2005; Özek et al., 2011). Similarly, Bozkurt et al. (2009) discovered that the addition of EOM at 24 to 48 mg/kg to diet had no effect on the production and weight of eggs for broiler breeders in chickens between the ages of 26 and 46 weeks. This variability in results may be related to the dose of EOs, different application methods, components of EOs or their utilization in different types of poultry.

Eggshell weight increased at week 25 week (p<0.05). At the 30th and 35th weeks of the trial, eggshell weight gradually increased with EOM supplementation, but the difference was not significant (p>0.05). Supplements in drinking water had no effect on albumen and yolk weight (p>0.05) in early period hens at 25 weeks. Eggshell thickness was significantly improved at all periods measured (p<0.05). Adding EOM (0.1, 0.2 or 0.3 mL/L) to drinking water influenced HU at the age of 25 and 30 weeks (p<0.05) The highest HU was obtained in the eggs of layer hens fed drinking water containing 0.3 mL/L EOM. In some studies, it has been observed that the use of different forms of EOs or EOM leads to significant improvements in egg shell weight (Bozkurt et al., 2012b and 2012c). In contrast, Akbari et al. (2015) reported that feeding peppermint and thyme EO had no effect on shell weight in layer hens. In our study, the supplementation of EO significantly increased the eggshell thickness in all weeks (p<0.05). Sim-
ilarly, Bozkurt et al. (2012b) reported that supplementation of EOM increased egg shell weight, egg shell thickness and shell breaking strength. Adding oregano EO (50 or 100 mg kg⁻¹) to the diet had no effect on HU at the age of 32 weeks (Florou-Paneri et al., 2005). Similarly, Çabuk et al. (2006) observed that adding EOMs or antibiotics to the diet did not significantly affect the egg quality characteristics HU, shell weight or yolk weight in laying quails. Ding et al. (2017) reported that Enviva EO supplementation in layer hens diet had no significant effect on albumen height and HU. However, Xianjing et al. (2017) observed that the use of oregano EO supplementation had no effect on eggshell ratio but found that it did significantly affect yolk ratio, egg shape index and HU.

Fatty acid compositions
The mean value of the yolk fatty acids percentage in different treatment groups is shown in Table 6. When compared to the control diet, the proportion of DHA (C22:6 n-3) in the egg yolk was significantly decreased in the treatment groups (p<0.05). Palmitoleik acid (16:1) increased in drinking water containing EOM when compared to the control group (p<0.05). There was no significant effect on total saturated fatty acids and omega 3 and 6 fatty acid in the experimental groups. To our knowledge, there have been few reports about the effects of EO on the fatty acid composition of egg yolk. In the present study, there were significant differences in the treatment groups in α linolenic acid, linolenic acid, palmitoleic acid, arachidonic acid, lignoceric acid and DHA (p<0.05). However, Ding et al. (2017) found that EO in

Table 5. The effects on the internal and external egg quality (mean± standard error)¹ of adding EOMs to layer hens’ drinking water

<table>
<thead>
<tr>
<th>Item</th>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit of egg weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 wk</td>
<td>57.18±1.17b</td>
<td>58.13±0.91a</td>
<td>58.32±0.99ab</td>
<td>60.32±0.83a</td>
<td>0.15</td>
</tr>
<tr>
<td>30 wk</td>
<td>57.46±0.74</td>
<td>57.59±0.68</td>
<td>57.85±0.75</td>
<td>58.08±1.03</td>
<td>0.94</td>
</tr>
<tr>
<td>35 wk</td>
<td>59.66±0.95</td>
<td>59.39±0.90</td>
<td>61.64±0.65</td>
<td>61.02±0.79</td>
<td>0.10</td>
</tr>
<tr>
<td>Eggshell weight (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 wk</td>
<td>5.95±0.12b</td>
<td>5.97±0.12b</td>
<td>6.03±0.096b</td>
<td>6.37±0.13a</td>
<td>0.04</td>
</tr>
<tr>
<td>30 wk</td>
<td>6.03±0.12</td>
<td>6.04±0.12</td>
<td>6.35±0.09</td>
<td>6.21±0.11</td>
<td>0.12</td>
</tr>
<tr>
<td>35 wk</td>
<td>5.89±0.09</td>
<td>6.09±0.08</td>
<td>6.10±0.12</td>
<td>5.95±0.12</td>
<td>0.36</td>
</tr>
<tr>
<td>Albumen weight (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 wk</td>
<td>37.09±0.97</td>
<td>38.48±0.79</td>
<td>37.97±0.69</td>
<td>39.49±0.62</td>
<td>0.19</td>
</tr>
<tr>
<td>30 wk</td>
<td>37.91±0.77</td>
<td>36.89±0.84</td>
<td>36.08±0.84</td>
<td>36.14±0.97</td>
<td>0.82</td>
</tr>
<tr>
<td>35 wk</td>
<td>38.68±0.93a</td>
<td>38.43±0.89a</td>
<td>40.36±0.78a</td>
<td>40.36±0.75a</td>
<td>0.05</td>
</tr>
<tr>
<td>Yolk weight (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 wk</td>
<td>14.14±0.29</td>
<td>13.68±0.17</td>
<td>14.31±0.31</td>
<td>14.66±0.26</td>
<td>0.19</td>
</tr>
<tr>
<td>30 wk</td>
<td>14.48±0.27a</td>
<td>14.66±0.25b</td>
<td>15.42±0.22a</td>
<td>15.72±0.30a</td>
<td>0.003</td>
</tr>
<tr>
<td>35 wk</td>
<td>15.09±0.22a</td>
<td>14.86±0.23b</td>
<td>15.18±0.19a</td>
<td>14.71±0.19b</td>
<td>0.05</td>
</tr>
<tr>
<td>Yolk height (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 wk</td>
<td>28.94±0.70a</td>
<td>28.96±1.16a</td>
<td>26.12±0.35b</td>
<td>26.20±0.41b</td>
<td>0.004</td>
</tr>
<tr>
<td>30 wk</td>
<td>26.96±0.27</td>
<td>26.65±0.26</td>
<td>27.08±0.24</td>
<td>26.74±0.29</td>
<td>0.65</td>
</tr>
<tr>
<td>35 wk</td>
<td>27.87±0.33a</td>
<td>29.03±0.27a</td>
<td>29.11±0.28a</td>
<td>28.57±0.25ab</td>
<td>0.01</td>
</tr>
<tr>
<td>Eggshell thickness (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 wk</td>
<td>0.32±0.04a</td>
<td>0.28±0.05a</td>
<td>0.29±0.04a</td>
<td>0.31±0.05a</td>
<td>0.035</td>
</tr>
<tr>
<td>30 wk</td>
<td>0.33±0.05a</td>
<td>0.33±0.04a</td>
<td>0.31±0.05a</td>
<td>0.32±0.05ab</td>
<td>0.001</td>
</tr>
<tr>
<td>35 wk</td>
<td>0.31±0.03a</td>
<td>0.33±0.03a</td>
<td>0.33±0.08a</td>
<td>0.34±0.06a</td>
<td>0.008</td>
</tr>
<tr>
<td>Haugh unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 wk</td>
<td>78.35±1.22ab</td>
<td>75.99±0.89ab</td>
<td>78.72±1.04ab</td>
<td>80.95±1.25a</td>
<td>0.024</td>
</tr>
<tr>
<td>30 wk</td>
<td>79.26±0.28a</td>
<td>79.15±0.37ab</td>
<td>79.86±0.31ab</td>
<td>80.62±0.52a</td>
<td>0.03</td>
</tr>
<tr>
<td>35 wk</td>
<td>79.69±0.33</td>
<td>80.31±0.32</td>
<td>80.51±0.58</td>
<td>80.80±0.64</td>
<td>0.43</td>
</tr>
</tbody>
</table>

¹Indicated the difference within a row was significant (p<0.05)
²Means of 20 eggs per treatment
layer hen diet had no effect on the fatty acid composition of egg yolk of layer hens. The addition of EOM to the drinking water of layer hens had no effect on the n-6/n-3 ratio in the egg (p>0.05). Bölükbaşı et al. (2010) reported that bergamot oil supplementation in layer diets significantly increased the proportion of DHA and n-3 in the egg yolk. While the addition of essential oil to drinking water reduced the SFA concentration, it increased the MUFA concentration, numerically. In agreement with the present study, Ding et al. (2017) reported that SFA concentrations were decreased but PUFA and MUFA concentrations were increased with dietary EO. Bölükbaşı et al. (2008) showed that SFA and PUFA concentrations in leg and breast tissues in broilers were decreased, whereas, MUFA concentrations were increased. To our knowledge, the studies on the addition of essential oils to drinking water are limited. Therefore, further work is needed in order to give more detailed information on this topic in layer hens.

Conclusion

As a result of supplementing peppermint, oregano, and anise essential oils in the amounts of 0.2 mL/L and 0.3 mL/L to drink-
ing water, there were beneficial effects on performance and egg quality without adverse effects on other parameters.

Ethics Committee Approval: All experimental protocols adhered to and approved by the guidelines of Animal Ethics Committee of Kafkas University (KAU-HADYEK/2016-032) (Kars, Turkey).

Peer-review: Externally peer-reviewed.

Author Contributions: Concept - Ö.K.; Design - T.Ş., Ö.K.; Supervision - Ö.K.; Resources - M.Ö.; Materials - M.Ö.; Data Collection and/or Processing - Ö.K., B.Ö.; Analysis and/or Interpretation - B.Ö.; Literature Search - Ö.D.A.; Writing Manuscript - Ö.K.; Critical Review - M.Ö.

Conflict of Interest: The authors have no conflicts of interest to declare.

Financial Disclosure: The present study was supported by Scientific Research Center of Kafkas University (Protocol Number: 2013-VF-68).

References

Acamovic, T., Brooker, J.D., 2005. Biochemistry of plant metabolites and their effects in animals. The Proceedings of the Nutrition Society 64, 403-412. [CrossRef]

Aydin, A., Karaman, M., Cicek, T., Yardibi, H., 2008. Black cumin (Nigella sativa L.) supplementation into the diet of the laying hen positively influences egg yield parameters, shell quality and decreases egg cholesterol. Poultry Science 87, 2590-2595. [CrossRef]

Çabuk, M., Eratak, S., Alçiçek, A., Bozkurt, M., 2014. Effects of herbal essential oil mixture as a dietary supplement on egg production in quail. The Scientific World Journal 1, 573470. [CrossRef]

Olgun, O., Yıldız, A.Ö., 2014. Effect of dietary supplementation of essential oils mixture on performance, eggshell quality, hatchability, and mineral excretion in quail breeders. Environmental Science and Pollution Research 21, 13434-13439. [CrossRef]

Assessment of Temperature and Microbiological Quality of Fresh Sardine, Bouge, Saury and Mackerel Marketed in Tripoli City, Libya

Tawfik Mehdi HASSAN, Amal Abubaker ALHALLUG, Nuri Sahli MADI

Department of Food Science and Technology, University of Tripoli, Faculty of Agriculture, Libya

Abstract

The aim of this study was to assess the temperature, total aerobic plate count (TAPC), and histamine-producing bacterial count (HPBC) of four types of fish, viz., sardines (Sardinella aurita), bouge (Boops boops), saury (Trachurus mediterraneus), and mackerel (Scomber scombrus), that are sold in three major fish markets in Tripoli’s city center. A total of 113 samples of these fish types were collected, both in the morning and in the evening, from July to December in the fishing season. Results showed that the temperature of the collected fish samples ranged from <5°C to 22°C. Of the total 113 fish samples, 5.0%, 52.0%, and 43.0% had temperatures of <5°C, 5°C–14°C, and 15°C–22°C, respectively. The TAPC of all the fish samples ranged from 3.0 × 10³ to 3.5 × 10⁷ colony-forming unit/g (cfu/g) of meat (with skin), with a mean of 1.1 × 10⁶ cfu/g. The HPBC ranged from an estimated 5.0 × 10² to 2.7 × 10⁶ cfu/g, with a mean of 1.8 × 10⁵ cfu/g. Statistical analysis of the data showed a weak correlation (r = 0.05) between TAPC and HPBC of all the fish samples collected from the three major markets. The TAPC results revealed that 50%, 46%, 38%, and 17% of the saury, bouge, mackerel, and sardine fish samples, respectively, did not comply with the standard specification limit (10⁶ cfu/g) prescribed by the Libyan authorities. A total of 26 isolates of histamine-producing bacteria were identified in this study. The majority of them belonged to the Enterobacteriaceae family and were not indigenous to the marine environment. There was a variation in the distribution of these bacterial isolates among all the fish samples during the course of the study. However, Vibrio fluvialis, Erwinia spp., and Klebsiella planticola were detected in all the fish samples throughout the study period. The high TAPC and HPBC recorded in this study could be attributed to cross-contamination due to the poor quality of the surrounding environment and the poor hygienic practices. Therefore, there is an urgent need for proper control of product handling conditions in the fish markets monitored in this study.

Keywords: Bouge, HPBC, mackerel, sardine, saury, TAPC, Tripoli city

Introduction

Sardine (Sardinella aurita), Bouge (Boops boops), Saury (Trachurus mediterraneus), and Mackerel (Scomber scombrus) are among the most popular fish choices for the Libyan consumer because of their reasonable prices and availability during the fishing season. They represent 50% of the total annual fish catch, which amounts to around 38000 tons (Anonymous, 2014). These fish species have a high nutritive value and they are a source of good quality protein and polyunsaturated fatty acids – in particular, omega 3 and 6 fatty acids. Hassan et al. (2006, 2011), reported that the total lipids of Libyan sardine, bouge and mackerel contain ample quantities of omega 3 fatty acids - 33.11, 28.03 and 20.03% of total fatty acids respectively. In comparison with red meat, fish meat is highly perishable mainly because of its high non-protein nitrogen compound
content, which represents ideal nutrients for spoilage bacteria. In addition, these fish species are particularly sensitive to histamine formation from histamine producing bacteria if they become exposed to poor temperature control when handled, stored or displayed.

Histamine poisoning (also known as scombroid poisoning) occurs following consumption of certain fish species which contain histamine. Symptoms of histamine poisoning appear within anything from a few minutes to 3 hours after consuming these fish whether they are fresh, frozen, canned or dried. Studies and statistical surveys on scombroid poisoning showed that most of the histamine poisoning cases resulted from the consumption of fish belonging to the *scombridae* family - which includes mackerel, *clupeidae* such as sardines (Kim et al., 2004; Moreno et al., 2001) and carangididae -which includes Saury (Brillants et al., 2001; Lokuruka et al., 2004). This is because their muscles are rich in free histidine, the precursor to histamine formation by histamine producing bacteria (Kim et al., 2004; Moreno et al., 2001; Rawles et al., 1996).

Niven et al. (1981) reported that Most of the histamine-producing bacteria isolated from fish muscles belong to mesophilic enteric bacteria, which are not the natural flora of fresh fish. Other studies found the histamine decarboxylase enzyme in some species of bacteria: *Vibrio harveyii*, *Vibrio alginolyticus*, *Photobacterium phosphoreum* and *leionathii spp* which are all indigenous to the marine environment. While they are not potent histamine producers, they were responsible for most of the documented histamine poisoning cases reported (Kanki et al., 2004; Ramesh et al., 1989; Takahashi et al., 2003; Yoshinagu and Frank, 1982).

Due to the lack of local studies on the effect of display conditions in Tripoli fish markets on fish sensitive to histamine production, this study was carried out to determine temperature, total aerobic plate count and histamine producing bacterial count in samples of sardines, saury, bouge and mackerel displayed for sale in three fish markets in Tripoli city during the period July – December of the fishing season.

Materials and Methods

Sample collection

One hundred thirteen samples from fresh sardines, Bouge, saury and mackerel were collected directly from fish on sale in three main fish markets - A, B and C in Tripoli City, Libya. The samples were collected between 7:00 and 8:00 A.M. and between 12:00 and 13:00 P.M., during the period from July to December of the fishing season. The samples were kept in sterile polyethylene bags and transferred in an icebox, within 15 minutes, to the Microbiology and fish disease laboratory at the marine research center in Tajoura, Libya. The temperature of the displayed fish was taken when the samples were collected.

Sample preparation for bacteriological analysis

From each sample, 5-6 pieces were randomly collected. Meat muscles were cut from the back and sides of each fish body using a sterile knife and then homogenized in a sterile blender. Twenty five grams of the homogenate was then used for bacteriological analysis.

Determination of Total Aerobic Plate Count (TAPC) and Histamine Producing Bacterial Count (HPBC)

Twenty-five grams of minced homogenized fish meat was mixed with 225 mL of 0.1% sterile peptone water in a sterile electric blender for 1 minute. Then, serial dilutions of 10^{-2}, 10^{-4} and 10^{-5} were prepared from the homogenate for TAPC on plate count agar (Oxide Ltd., Hampshire, UK), while dilutions of 10^{-4} and 10^{-5} were used for HPBC determination on Niven’s medium, according to Swanson et al. (2001). The Niven’s medium was prepared according to the procedure of Niven et al. (1981). All plates were incubated inverted at 25°C for 48 ± 2 hours. Plates were incubated at 25°C, as recommended by Nickelson et al. (2001) for the routine assessment of quality of fresh and frozen seafood products.

Colonies with a purple halo grown on Niven agar were counted, aseptically isolated and then purified with the streaking technique on trypticase soy agar plates (Oxide Ltd. Hampshire, UK). The plates were incubated at 25°C for 24 hours to obtain isolates. Theses isolates were then restreaked on Niven agar medium plates to confirm that they produced purple halo colonies. Pure isolates were gram stained, and microscopically examined under oil immersion, before identification using analytical profile index 20 E (API 20 E kits) for identification and differentiation of member of the family *Enterobacteriaceae* (Biomerieux Inc Boston MA USA) in accordance with Korashy et al. (2005).

Statistical analysis

The results of the TAPC and HPBC were analyzed with the statistical package Minitab 16 (Minitab Inc. State college Pa USA) using descriptive statistics such as minimum, maximum and mean value. The Correlation coefficient test (r) was performed between the TAPC and HPBC data. Significance was considered where $p<0.05$.

Results and Discussion

Samples temperature

The temperature of fish samples ranged from <5 to 22°C. The percentage of samples that had temperatures <5, 5-14, and 15-22°C were 5.0, 52.0 and 43.0 % respectively out of the total 113 samples (Table 1). It is clear from the results that 95% of the samples collected had a temperature between 5 and 22°C. This temperature range is suitable for growth of HPB (Economou et al., 2007; Kim et al., 2009). Therefore, the presence of such bacteria might place the fish samples at risk of histamine formation when displayed for sale at temperatures higher than 5°C.

When the fish samples were classified according to the markets included in this study, the results showed that samples taken from fish market B were the best in terms of temperature. Sev-
enty-two percent (72%) of these samples had temperatures between 5 and 14°C, while the rest of the samples collected from the other two markets had temperatures between 15 and 22°C (Table 2).

The results shown in Table 3 reflect the poor refrigeration conditions of the samples, since the percentage of samples that had a temperature of <5°C did not exceed 5% in the morning and 8% in the afternoon at fish market B. Meanwhile, the highest percentage (60%) of samples that had temperatures between 15 to 22°C was recorded in samples collected at noon. This is probably due to poor refrigeration methods applied in these markets, especially for those who depend solely on ice as it melts by the end of the day. These conditions make fish samples more susceptible to histamine formation.

Total aerobic plate count (TAPC) and Histamine producing bacterial count (HPBC)

The TAPC for samples of Sardines, Bouge, Saury and Mackerel ranged from 5 x 10^5 to 8.9 x 10^6, 1.5 x 10^5 to 5.3 x 10^6, 3.2 x 10^5 to 3.5 x 10^6 and 5 x 10^5 to 3 x 10^6 colony forming unit/gram (cfu/g) meat (with skin) respectively as shown in Table 4. Meanwhile, the range of HPBC for the same samples were from 5 x 10^3 to 5 x 10^6, 6 x 10^3 to 2.6 x 10^6, 3 x 10^3 to 2.6 x 10^6 and 5 x 10^3 to 2.7 x 10^6 cfu/g meat (with skin) respectively as shown in Table 5. It is noted from the results in Table 4 and 5 that the highest average TAPC and HPBC were recorded in the saury fish samples, followed by bouge and the lowest counts were recorded in samples of mackerel.

When comparing the results for TAPC obtained in this study with the standard specification limit - 10^6 cfu/g fish (GSO 1016: 2015) as prescribed by the Libyan authorities, it was found that 50, 46, 38 and 17% of the Saury, Bouge, Mackerel and sardine fish samples did not comply with this limit as shown in Table 6. Remarkably, the total percentage of samples collected from market A that did not comply with this standard did not exceed 11%, whereas the figures for market B and market C were, 52% and 41%, respectively (although market B was equipped with new facilities and utensils). Moreover, the average TAPC in fish market A for all fish types was lower than that recorded in market B and market C.

WHO (2007) indicated that the TAPC rarely reflects the overall quality of fish, but it gives an indication of the risk of spoilage induced since each of these organisms had different ways of affecting health conditions of the consumer of such contaminated fish. The results of TAPC and HPBC obtained from the present study reflect the variations in handling conditions that these fish were exposed to from the time of harvesting until delivered to the fish markets.

The range of averages for TAPC of sardine samples found in this study (from 2.8 x 10^5 to 6.4 x 10^7 cfu/g fish meat) was higher than that reported in fresh Libyan sardines (Sardinella aurita) in previous studies carried out by Abuzeqhi (1990) where the TAPCs were between 7.9 x 10^3 and 8.2 x 10^4 and by Hassan et al. (2008) - between 1.0 x 10^4 and 1.0 x 10^5 cfu/g fish meat. The variations in TAPC reported in these studies could be attributed to the variations in handling conditions these fish were exposed to from the time of fishing until they reached the laboratories.

The range of TAPC recorded in this study for sardine and mackerel samples was from 5.0 x 10^3 to 8.9 x 10^5 and 9.0 x 10^3 to 1.0 x 10^6 cfu/g respectively, which is lower than that reported by Korashy et al. (2005) in samples of sardines (Sardinella gibbosa), European sardines (Sardinella pilchardus) and Atlantic mackerel (Trachurus trachurus), where the average counts were, 8.6 x 10^4, 6.5 x 10^4 and 7.0 x 10^4 cfu/g respectively. Furthermore, the results for the same samples showed that HPBCs (2.5 x 10^3, 2.1 x 10^4 and 2.2 x 10^3 cfu/g, respectively) were lower than the results obtained in this study for sardine and mackerel. The range of HPBCs recorded in this study for sardine and mackerel samples was between 5.0 x 10^3 (estimated) and 1.4 x 10^3 and between 5.0 x 10^3 (estimated) and 6.2 x 10^3 cfu/g fish, respectively.

The results from this study were also higher than the results reported by Okuzumi et al. (1982), where the range of TAPCs for fresh sardine (Sardinella melanosticta), saury (Coloabissaira) and

<table>
<thead>
<tr>
<th>Temperature range (°C)</th>
<th>Numbers of samples</th>
<th>The percentage of each range</th>
</tr>
</thead>
<tbody>
<tr>
<td><5</td>
<td>6</td>
<td>5.0%</td>
</tr>
<tr>
<td>5 – 14</td>
<td>59</td>
<td>52.0%</td>
</tr>
<tr>
<td>15 – 22</td>
<td>48</td>
<td>43.0%</td>
</tr>
</tbody>
</table>

Table 1. The temperature ranges of fish samples collected from three fish markets in Tripoli, Libya, and the percentage of each range

<table>
<thead>
<tr>
<th>Fish samples temperature (°C)</th>
<th>Fish market (A)</th>
<th>Fish market (B)</th>
<th>Fish market (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of samples</td>
<td>% samples</td>
<td>Number of samples</td>
</tr>
<tr>
<td><5</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>5 – 14</td>
<td>6</td>
<td>23.0</td>
<td>36</td>
</tr>
<tr>
<td>15 – 22</td>
<td>20</td>
<td>77.0</td>
<td>8</td>
</tr>
</tbody>
</table>

(1) No samples recorded temperatures within this range.

Table 2. Classification of fish samples according to their temperatures and the markets included in the study
mackerel (Scomber japonicas) in Japan were between 1.1×10^4 and 3.0×10^4, 1.0×10^5 (estimated) and between 4.9×10^4 and 2.9×10^5 cfu/g respectively, while the HPBC ranges were, 1.0×10^5, 5.7×10^4 to 2.1×10^5 and 1.0×10^5 (estimated) cfu/g. Additionally, Lopez – Sabater et al. (1996) found that the HPBC in mackerel was 3.1×10^4 cfu/g fish in Spain, which is lower than the counts recorded in this study.

Statistical analysis of the results showed weak correlation ($r=0.05$) between TAPC and HPBC in all samples collected from the three markets. This might be related to the randomness of collected samples and the unknown variations in handling conditions that these fish species were exposed to from harvest to delivery to the fish markets.

Identification of HPB isolated from fish samples

The results revealed that twenty-six (26) bacterial types were isolated from the fish samples and identified as HPB. Most of these isolates belong to the family Enterobacteriacea, which are not indigenous to the marine environment, and some belong to Vibrionaceae (Table 7). According to these results, the prevalence percentages of V. fluvialis, Erwinia spp, S. putrefaciens and K. planticola were 18.3, 12.2, 11.9, and 10.0% respectively, while the prevalence percentages of M. morganii, P. aeruginosa and A. baumannii were almost equal - 6.40, 5.90, and 5.50 respectively. The prevalence percentages of other isolates were lower and ranged between 0.45 and 3.20%.

The prevalence percentages of S. putrefaciens and P. fluorescens in the sardine samples were 11.9 and 3.2% out of the total isolates, respectively. These percentages are close to those reported by Ababouch et al. (1991) in sardines (Sardinella pilchardus) caught off the Atlantic coast (10 and 20%).

The results of this study were compared with a study (Economou et al., 2007) that isolated 77 types of HPB, which accounted for 53% of the total number of bacteria in 30 samples of fresh and frozen albacore tuna (Thunnus alalanga) collected from Brazil, Sri Lanka, The Maldives, Indonesia and Yemen. There was a similarity in types of bacteria isolated from the samples, among which were P.fluorescens, P. aeruginosa, E. coli, and B. capacia. However, the differences were in the percent prevalence where their proportion in tuna samples was higher than in the fish samples of this study.

Variations were observed in the prevalence percentages of most types of HPB isolates during the period of the study and even in the same type of bacteria, since the prevalence percentages of V. fluvialis during the months of July, August, September, October, November and December were 21.0, 39.0, 30.0, 42.0, 30.0 and 25.0% respectively, While those of Erwinia spp were 29.0, 8.0, 21.0, and 9.0 respectively. However, the occurrence of S. putrefaciens and P. aeruginosa was only recorded long to Vibrionaceae (Table 7).

<table>
<thead>
<tr>
<th>Table 3. Classification of fish samples according to their temperatures and the time of sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling time</td>
</tr>
<tr>
<td>Temperature Range (°C)</td>
</tr>
<tr>
<td>< 5</td>
</tr>
<tr>
<td>5 – 14</td>
</tr>
<tr>
<td>15 – 22</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 4. Total aerobic plate counts (cfu/g) for fish samples collected from three fish markets located within Tripoli city center, Libya</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish market</td>
</tr>
<tr>
<td>Fish type</td>
</tr>
<tr>
<td>Sardine</td>
</tr>
<tr>
<td>Bouge</td>
</tr>
<tr>
<td>Saury</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 5. Histamine producing bacteria counts (cfu/g) for fish samples collected from three fish markets located within Tripoli city, Libya</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish market</td>
</tr>
<tr>
<td>Fish type</td>
</tr>
<tr>
<td>Sardine</td>
</tr>
<tr>
<td>Bouge</td>
</tr>
<tr>
<td>Saury</td>
</tr>
<tr>
<td>Mackerel</td>
</tr>
</tbody>
</table>
in samples collected during November and December with the percentages being 12.0 and 13.0%, respectively (Figure 1).

It is clear from the results that the period of fishing has an important effect on the type of bacteria found in fish samples, as confirmed by Yoshinaga et al. (1982) and Kim et al. (2009). The results from this study are also in agreement with the results of the study conducted by Yagoub (2009) in Khartoum, Sudan on fresh fish, which showed that 53.3 of isolated bacteria belong to Enterobacteriaceae and the incidence percentages of species belonging to this family during Summer, Autumn and Winter were 60, 33 and 20%, respectively.

Correlation between temperature of fish samples and prevalence percentages (percentage) of HPB isolates

The results illustrated in Figure 2 indicate the incidence of V. flu\-vialis, Erwinia spp, S. putrefaciens, P. aeruginosa, P. fluorescens and A. Baumanii in all samples irrespective of their temperature. The prevalence percentages of these species were 23.0, 26.0, 12.0, 8.0, 4.0, and 8.0% of total isolates for fish samples recorded at

<table>
<thead>
<tr>
<th>Fish type</th>
<th>Fish market (A)</th>
<th>Fish market (B)</th>
<th>Fish market (C)</th>
<th>Total number of samples (%) > 10^6 cfu /g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sardine</td>
<td>2 (7)*</td>
<td>1 (12)</td>
<td>2 (10)</td>
<td>5 (17%)</td>
</tr>
<tr>
<td>Bouge</td>
<td>1 (6)</td>
<td>9 (14)</td>
<td>3 (8)</td>
<td>13 (46%)</td>
</tr>
<tr>
<td>Saury</td>
<td>0 (6)</td>
<td>8 (13)</td>
<td>7 (11)</td>
<td>15 (50%)</td>
</tr>
<tr>
<td>Mackerel</td>
<td>0 (9)</td>
<td>7 (9)</td>
<td>3 (8)</td>
<td>10 (38%)</td>
</tr>
</tbody>
</table>

*Numbers between brackets indicate total number of sample examined.

Table 6. Numbers and percent of samples (%) having total aerobic plate counts higher than the maximum limit (10^6 cfu/g fish meat) referred to by the standard specification adopted by the Libyan authority.

Table 7. The prevalence percentages (%) of histamine producing bacteria (HPB) in fish samples collected from three fish markets located within Tripoli city, Libya

<table>
<thead>
<tr>
<th>Type of bacteria</th>
<th>Fish market (A)</th>
<th>Fish market (B)</th>
<th>Fish market (C)</th>
<th>% from total isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. fluvialis</td>
<td>23.70</td>
<td>17.70</td>
<td>24.30</td>
<td>18.30</td>
</tr>
<tr>
<td>Erwinia spp</td>
<td>13.40</td>
<td>9.70</td>
<td>17.40</td>
<td>13.20</td>
</tr>
<tr>
<td>S. putrefaciens</td>
<td>-</td>
<td>14.20</td>
<td>14.50</td>
<td>11.90</td>
</tr>
<tr>
<td>K. planticola</td>
<td>9.80</td>
<td>7.08</td>
<td>17.40</td>
<td>10.00</td>
</tr>
<tr>
<td>M. morganii</td>
<td>4.90</td>
<td>5.30</td>
<td>8.70</td>
<td>6.40</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>-</td>
<td>7.96</td>
<td>5.79</td>
<td>5.90</td>
</tr>
<tr>
<td>A. baumanii</td>
<td>9.80</td>
<td>4.40</td>
<td>5.80</td>
<td>5.50</td>
</tr>
<tr>
<td>P. fluorescens</td>
<td>-</td>
<td>5.31</td>
<td>1.45</td>
<td>3.20</td>
</tr>
<tr>
<td>Pantoea spp</td>
<td>-</td>
<td>6.20</td>
<td>-</td>
<td>3.20</td>
</tr>
<tr>
<td>K. pneumonia</td>
<td>6.60</td>
<td>0.88</td>
<td>2.90</td>
<td>2.87</td>
</tr>
<tr>
<td>E. cloacae</td>
<td>-</td>
<td>1.80</td>
<td>5.80</td>
<td>2.58</td>
</tr>
<tr>
<td>A. hydrophila</td>
<td>3.30</td>
<td>3.50</td>
<td>-</td>
<td>2.18</td>
</tr>
<tr>
<td>P. mirabilis</td>
<td>-</td>
<td>2.70</td>
<td>1.50</td>
<td>1.78</td>
</tr>
<tr>
<td>O. anthropy</td>
<td>-</td>
<td>2.65</td>
<td>1.45</td>
<td>1.71</td>
</tr>
<tr>
<td>K. oxytoca</td>
<td>-</td>
<td>2.65</td>
<td>-</td>
<td>1.75</td>
</tr>
<tr>
<td>B. cepacia</td>
<td>-</td>
<td>2.65</td>
<td>-</td>
<td>1.30</td>
</tr>
<tr>
<td>S. plymuthica</td>
<td>8.10</td>
<td>-</td>
<td>-</td>
<td>0.90</td>
</tr>
<tr>
<td>Brucella spp</td>
<td>-</td>
<td>0.90</td>
<td>1.50</td>
<td>0.86</td>
</tr>
<tr>
<td>P. vulgaris</td>
<td>-</td>
<td>1.77</td>
<td>-</td>
<td>0.86</td>
</tr>
<tr>
<td>S. liquefaciens</td>
<td>4.30</td>
<td>-</td>
<td>-</td>
<td>0.86</td>
</tr>
<tr>
<td>S. maltophilia</td>
<td>-</td>
<td>0.90</td>
<td>1.45</td>
<td>0.86</td>
</tr>
<tr>
<td>R. aquatilis</td>
<td>-</td>
<td>1.88</td>
<td>-</td>
<td>0.86</td>
</tr>
<tr>
<td>P. alcalifaciens</td>
<td>-</td>
<td>-</td>
<td>5.41</td>
<td>0.86</td>
</tr>
<tr>
<td>P. rettgeri</td>
<td>-</td>
<td>-</td>
<td>3.31</td>
<td>0.45</td>
</tr>
<tr>
<td>E. coli</td>
<td>-</td>
<td>-</td>
<td>3.30</td>
<td>0.45</td>
</tr>
<tr>
<td>C. freundii</td>
<td>1.45</td>
<td>-</td>
<td>-</td>
<td>0.45</td>
</tr>
</tbody>
</table>
<5°C; 21.0, 8.0, 18.0, 9.0, 2.0, and 5.0% for fish samples recorded between 5 and 14°C; and 30.0, 15.0, 3.0, 2.0, 3.0, and 6.0% for fish samples which had a temperature range between 15 and 22°C, respectively. The Incidence of *M. morganii* was recorded only in fish samples recorded at 5-15 and 15-22°C with prevalence percentages of 8.0 and 11% respectively. The results also showed that *Erwinia spp* made up the highest percentage of isolates from fish samples that had a temperature of <5°C. *V. fluviialis* represented the highest percentage of isolates from fish samples that had a temperature range between 5 and 14°C and 15 and 22°C with prevalence percentages of 20.7 and 30.11% respectively. Furthermore, the prevalence percentages of *Erwinia spp* were 8.49 and 15.12% for fish samples recorded at 5-14 and 15-22°C, respectively.

Conclusion

The results from this study showed that the samples of fish collected from fish markets in Tripoli city were displayed in poor refrigeration conditions. The higher percentage of samples not complying with the standard specification limit prescribed by...
the Libyan authorities, and the higher HPBC recorded in this study could be attributed to cross-contamination from the surrounding environment and poor hygiene during handling. Most of the histamine-producing bacteria isolated belong to the family *Enterobacteriaceae* and some belong to *Vibrionaceae*.

These findings represent additional evidence to encourage proper control of handling conditions in those fish markets considered in this study. Since histamine cannot be destroyed by cooking, drying, smoking or freezing, good hygienic practices are the proper way to prevent histamine producing bacteria from growing in fish.

Ethics Committee Approval: This research has been planned and implemented taking into account the contents of the ethics of scientific research document that was issued by University of Tripoli under international number 979995951551 and it was deposited at The national book house in Libya under a legal number 2017/155.

Peer-review: Externally peer-reviewed.

Acknowledgements: The authors of this work wish to express their profound gratitude to the staff of the Microbiology and fish Disease Laboratory at the Marine Research Center in Tajoura – Libya for their cooperation during the study. The support and encouragement of Mr. Abdul Kareem Ben Issa and MS. Enass Al-Shebani are also duly acknowledged.

Conflict of Interest: The authors declare no conflict of interest.

Financial Disclosure: The authors declared that this study has received no financial support.

References

A Case of Sebaceous Carcinoma Detected on the Eyelid of a Horse

Aydın GÜREL1, Damla HAKTANIR1, İbrahim KURBAN2, Sevde İSLAMOĞLU3, Serhat ÖZSOY4

1Department of Pathology, İstanbul University, Faculty of Veterinary Medicine, İstanbul, Turkey
2Equin and Training Programme, Vocational School of Veterinary Faculty, İstanbul University, İstanbul, Turkey
3Veterinary Faculty of İstanbul University, 3rd Year Student, İstanbul, Turkey
4Department of Surgery, İstanbul University, Faculty of Veterinary Medicine, İstanbul, Turkey

ORCID IDs of the authors: ORCID IDs of the authors: A.G. 0000-0002-0268-7716; D.H. 0000-0001-5171-1927; İ.K. 0000-0002-8391-905X; S.Ö. 0000-0003-0988-7691

Abstract

This article describes a case of sebaceous carcinoma located on the right lower eyelid of an 11-year-old female Haflinger horse and its surgical, clinical, and histopathological aspects. The Haflinger horse was referred to the clinics of the Department of Surgery with a complaint of a swelling on the right lower eyelid, which had been present for 1 year and began to grow during the past few months. A clinical inspection revealed a soft, multinodular tumoral mass, with the dimensions of 4×5 cm, located in the inferior region of the right lower eyelid and protruding outward. The surgical removal of the mass was decided after the clinical inspection. The excised tumoral mass was submitted to the department of pathology for histopathological evaluation, which revealed well-circumscribed multilobular structures comprising foci of round-to-ovoid and polygonal pleomorphic neoplastic epithelial cells with prominent nuclei and eosinophilic cytoplasm separated by bands of the fibrous tissue of varying thickness. There was prominent cellular pleomorphism; some cells contained cytoplasmic vacuoles of various sizes, whereas some exhibited sebaceous differentiation. Based on these histopathological findings, sebaceous carcinoma of the sebocyte type was diagnosed.

Keywords: Equine, eyelid, histopathology, sebaceous carcinoma

Introduction

The most commonly encountered neoplastic lesions in horses are located in the skin, eye and genital system (Baptiste and Grahan, 2000; Knottenbelt, 2011; Montgomery, 2014). Ocular and periocular tumors of the horses are categorized according to their anatomical locations which are 1) Orbit, 2) Eyelid, adnexa/palpebral conjunctiva, membrana nictitans, 3) Cornea/sclera/bulbar conjunctiva and 4) Intraorbital regions (Lavach and Severin, 1977; Montgomery, 2014).

Tumors that are originated from the eyelid and conjunctiva are the most frequent ocular neoplasms in horses and most common ones are squamous cell carcinoma and sarcoids (Arıkan et al., 1997; Knottenbelt, 2011; Rooney and Robertson, 1996). Papilloma, melanoma and lymphoma though not as frequent as the above mentioned tumors also occur in these regions. Adenoma, adenocarcinoma, Meibomian epithelioma, angioma, basal cell carcinoma, fibroma, fibrosarcoma and mast cell tumors were also reported despite their rarity (Baker and Leyland, 1975; Baptiste and Grahan, 2000; Brooks, 1999; Choi et al., 2013; Cotchin, 1977; Giulino, 2011; Knottenbelt, 2011). While the majority of these tumors are primary tumors, secondary tumors such as lymphomas may be encountered in the eyelid or the orbita by metastases (Knottenbelt, 2011; Lavach and Severin, 1977; Montgomery, 2014; Rooney and Robertson, 1996). Ocular neoplasms may be grossly confused with infectious or non-infectious lesions such as foreign body reactions, conjunctival infections, trauma, and cystic glandular changes of the eyelid. Determina-
tion of the prognosis and accurate and rapid treatment of these lesions depends on the definitive histopathological diagnosis (Knottenbelt, 2011; Montgomery, 2014).

A case of sebaceous carcinoma located on the right lower eyelid of a Haflinger horse was described with its surgical, clinical and histopathological aspects.

Case Report

An 11-year-old female Haflinger horse was referred to the clinics of the Department of Surgery with the complaint of a swelling on the right lower eyelid (Figure 1a). The swelling occurred for a year and started to grow during the last few months. Clinical inspection revealed a soft, multinodular tumoral mass with the dimensions of 4x5 cm, located in the inferior region of the right lower eyelid protruding outwards. The mass was restricted to the conjunctiva and the lesioned area was covered with a thick purulent exudate (Figure 1b). Surgical removal of the mass was decided after the clinical inspection. A wide excision was done to remove the total mass under local anesthesia (Figure 1c). Postoperatively, the conjunctiva and the affected area were treated topically with sterile serum physiologic solution and antibiotic pomade for 7 days. The patient was discharged on the 10th postoperative day (Figure 1d). The owner reported that there was no recurrence approximately 1 year after the treatment but the horse was tested positive for glanders and euthanized.

The excised tumoral mass was submitted to the Department of Pathology for histopathological evaluation. The specimen was fixed in 10% buffered formalin, routinely processed, embedded in paraffin and cut at about 4-5 μm thickness and then stained with Hematoxylin and eosin (HE) to be evaluated by light microscopy.

Histopathology revealed well circumscribed multilobular structures composed of foci of round to ovoid and polygonal pleomorphic neoplastic epithelial cells with prominent nuclei and eosinophilic cytoplasm. The tumoral mass was separated into lobular structures by bands of fibrous tissue of varying thickness. There was prominent cellular pleomorphism and some cells contained cytoplasmic vacuoles of various sizes and some showed sebaceous differentiation (Figure 2a-d). Some lobules showed wide central caseification necrosis (Figure 2b) and some contained inflammatory cell infiltrations including neutrophil leukocytes and mononuclear cells extending from the center to the interlobular areas (Figure 2a). These neoplastic epithelial cells were larger than basaloid reserve cells and euchromatic (Figure 2c). Moreover, foci of neoplastic cells showed squamous differentiation and metaplasia in some areas with the formation of keratin pearls. There was an average of 2-4 mitotic figures in the different foci of atypical

Figure 1. a-d. (a) Swelling on the right lower eyelid. (b) Prominent accumulation of purulent exudate in the lesioned area. (c) Multinodular structure of the surgically removed mass. (d) Postoperative appearance of the operation site
epithelial cells per high power field (40x) (Figure 2c). On the basis of histopathological features a diagnosis of sebaceous carcinoma of sebocytic type was rendered.

Discussion

Neoplastic lesions constitute 1-3% of all surgical cases in horses. (Arıkan et al., 1997; Cotchin, 1977). Ocular and periocular tumors account for approximately 10% of all equine tumors and around 80% show characteristics of malignancy (Baker and Leyland, 1975; Lavach and Severin, 1977; Montgomery, 2014). The most frequently seen tumors in this region are squamous cell carcinoma and sarcoids and although other types of tumors were occasionally reported (Baker and Leyland, 1975; Choi et al., 2013; Montgomery, 2014; Rachel et al., 2011; Rooney and Robertson, 1996), there is no data available with respect to the occurrence of sebaceous carcinoma originating from the conjunctiva of the horses. Therefore, this report was designed to be a contribution to the literature and described with its clinical and morphological features. To our knowledge this case was the first reported case of conjunctival sebaceous carcinoma in a horse in Turkey and even in Europe.

Sebaceous carcinoma which has been reported in cats and dogs and rarely encountered in other species is a malignant tumor originating from the sebaceous cells (namely meibomian cells) in the eyelid and is also referred to as meibomian carcinoma (Goldschmidt and Goldschmidt, 2017; Gross et al., 2015). Only one case of meibomian epithelioma has been previously reported in the eyelid of a horse (Choi et al., 2013). Since there is no report available regarding equine sebaceous carcinoma, the relevant case was comparatively evaluated based on the features of equine meibomian epithelioma and canine and feline sebaceous carcinomas of the eyelid.

Sebaceous carcinomas in dogs and cats are known to be originating from the sebaceous cells in the eyelid. In our case, we consider that epithelial cells of the tarsal gland in the eyelid (Meibomian gland) were the cellular origin of sebaceous carcinoma (Banks, 1986). The incidence of sebaceous carcinoma...
among feline and canine skin tumors was reported to be approximately 0.7%. These tumors are usually solitary ulcerated nodular lesions that can reach up to 7-8 cm in diameter (Goldschmidt and Goldschmidt, 2017; Gross et al., 2015). Our case was a diffusely ulcerated multinodular mass with the dimensions of 4x6. While canine and feline sebaceous carcinomas were reported to have developed usually on the head and the eyelids (Goldschmidt and Goldschmidt, 2017; Gross et al., 2015), the most frequently affected site was reported to be the eyelids in their human counterparts (Gross et al., 2015). This type of tumors was reported to be locally invasive and aggressive entities with rare incidences of distant metastasis in cats and dogs. Local metastasis and lymph node involvement were also noted (Goldschmidt and Goldschmidt, 2017; Gross et al., 2015). On the contrary, sebaceous carcinomas usually recur in humans (Gross et al., 2015). Our case was a locally invasive tumor but there was no evidence of recurrence after one year follow-up. However the horse was euthanized due to glanders. The microscopic findings detected in our case were consistent with those of canine sebaceous carcinomas and partly included some of the histomorphological features of meibomian epithelioma reported in a horse (Choi et al., 2013; Goldschmidt and Goldschmidt, 2017; Gross et al., 2015). Sebaceous epithelioma, which is another type of tumor arising from sebaceous glands, may be confused with sebaceous carcinomas due to their mild malignant changes. Therefore, an accurate histopathological evaluation is of great importance (Choi et al., 2013; Goldschmidt and Goldschmidt, 2017; Gross et al., 2015). In our case, severe cellular pleomorphic changes such as prominent anisocytosis and anisonucleosis in numerous basal cells, sebocytic differentiation in fewer cells and presence of mitotic figures led us to the diagnosis of sebaceous carcinoma. Sebaceous carcinomas are divided into two groups as sebocytic sebaceous carcinomas and epitheliomatous sebaceous carcinomas according to their histomorphological features. (Gross et al., 2015). Our case was a sebocytic type sebaceous carcinoma. The distinct histomorphological features of the tumor and its consistency with canine and feline sebaceous carcinomas (Goldschmidt and Goldschmidt, 2017; Gross et al., 2015) excluded the necessity of immunohistochemistry. While primary neoplasms on the eyelid are usually unilateral, secondary neoplasms show bilateral involvement (Konnetbelt, 2011). We consider that our case was a primary sebaceous carcinoma originating from the tarsal gland (sebaceous gland) of the eyelid (Banks, 1986).

Surgical excision, laser therapy, radiotherapy, cryotherapy and chemotherapy are the most commonly preferred and most efficient therapeutic approaches of the tumors of the eyelid and periocular region in horses (Arıkan et al., 1997; Brooks, 1999). In this case, our treatment of choice was the total surgical removal of the mass due to the well circumscribed nature of the tumor within the conjunctiva, the owner’s refusal of chemotherapy, inconvenience of cryotherapy and the lack of possibility of laser therapy and radiotherapy.

Peer-review: Externally peer-reviewed.

Conflict of Interest: The authors have no conflicts of interest to declare.

Financial Disclosure: The authors declared that this study has received no financial support.

References

Baker, J.R., Leyland, A., 1975. Histologijk survey of tumours of the horse, with particular reference to those of the skin. Veterinary Record 96, 419-422. [CrossRef]

