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A Note on the Differences of Two Positive Linear Operators

VIJAY GUPTA AND GANCHO TACHEV

ABSTRACT. In the present note we find the general estimate in terms of Pǎltǎneaś modulus of continuity. In the
end, we consider some examples and we apply our result for such examples to obtain the quantitative estimates for
the difference of operators.

Keywords: Weighted modulus, Baskakov operators, Szász-Mirakyan operators, Phillips operators, Lupaş operators,
Difference of operators.
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1. INTRODUCTION

In the last ten years there is an increasing interest to estimate the difference between two
linear positive operators (abvr. l.p.o.) in terms of appropriate moduli or K-functionals, see for
example [4], [5], [2], [3] and [6] etc. This note is motivated by the recent paper of Aral-Inoan-
Rasa [3], where they considered two different l.p.o. defined on unbounded interval [0,∞) and
obtained estimates for the difference of these operators in a quantitative form. They defined by
C2[0,∞) the space of all continuous functions satisfying the condition |f(t)| ≤ M(1 + x2).
Further C∗

2 [0,∞) is the closed subspace of C2[0,∞) formed by the functions f , for which
limx→∞ |f(x)|(1+ x2)−1 exists and is finite and used the norm ||f ||2 = supx≥0 |f(x)|(1+ x2)−1.

The weighted modulus of continuity Ω (f, δ) (see [1]), for each f ∈ C2 [0,∞) is defined as

(1.1) Ω (f, δ)= sup
|h|<δ, x∈R+

|f (x+ h)− f (x)|
(

1 + h2 + x2 + h2x2
)−1

.

In our note we extend the class of approximated functions, including unbounded functions of
polynomial growth of order m,m ≥ 2-arbitrary natural number. We point out that the modulus
Ω (f, .) given in (1.1) is defined only for functions of polynomial growth up to order 2. Instead
of modulus Ω (f, .), we use weighted modulus ωϕ(f ;h) introduced by Pǎltǎnea in [10] and
defined as

ωϕ(f ;h) = sup

{

|f(x)− f(y)| : x ≥ 0, y ≥ 0, |x− y| ≤ hϕ

(

x+ y

2

)}

, h ≥ 0

where ϕ(x) =
√
x

1+xm , x ∈ [0,∞),m ∈ N,m ≥ 2. We consider here those functions, for which we
have the property

lim
h→0

ωϕ(f ;h) = 0.

It is easy to verify that this property is fulfilled for f an algebraic polynomial of degree ≤ m.

Following Theorem 2 in [10] the limit given above is true iff f satisfies the following two con-
ditions:

Received: 10 October 2018; Accepted: 1 December 2018; Published Online: 4 January 2019
*Corresponding author: G. Tachev; gtt_fte@uacg.acad.bg
DOI: 10.33205/cma.469114

1



2 V. Gupta, G. Tachev

• The function f ◦ e2 is uniformly continuous on [0, 1]

• The function f ◦ ev, v = 2
2m+1 is uniformly continuous on [1,∞), where ev(x) = xv, x ≥

0

We denote by Wϕ[0,∞) the subspace of all real functions defined on [0,∞), satisfying above
conditions. This is the first advantage of our results, compared with [3]. Secondly the authors
in [3] considered the differences of two discrete l.p.o. with similar structure i.e. with the same
basis functions (see (2.5) in [3])

Let F : D → R be a positive linear functional, where D is a linear subspace of C[0,∞) which
contains C2[0,∞) and the polynomials up to degree 6 and for r ∈ N, er(x) = xr, x ∈ [0,∞),

such that F (e0) = 1, bF = F (e1) and we denote µF
r = F

(

(e1 − bF e0)
r
)

, r ∈ N, 0 ≤ r ≤ 6.

Now we consider two positive linear operators namely Mn and Ln for linear positive func-
tionals Fn,k, Gn,k : D → R such that Fn,k(e0) = 1 and Gn,k(e0) = 1
as

Mn (f, x) =
∑

k∈K

Fn,k(f)pn,k(x)(1.2)

and

Ln (f, x) =
∑

k∈K

Gn,k(f)pn,k(x)(1.3)

where K be a set of non-negative integers and the functions pn,k(x) are positive. One of the
main results in [3] states the following:

Theorem A. Let f ∈ C2 [0,∞) with f ′′ ∈ C∗
2 [0,∞) . Then

|(Mn − Ln)(f, x)| ≤
1

2
||f ′′||2β(x) + 8Ω (f ′′, δ1) (1 + β(x)) + 16Ω (f, δ2) (γ(x) + 1),

where

β(x) =
∑

k∈K

pn,k(x)
{(

1 +
(

bFn,k
)2
)

µ
Fn,k

2 +
(

1 +
(

bGn,k
)2
)

µ
Gn,k

2

}

,

γ(x) =
∑

k∈K

pn,k(x)
(

1 +
(

bFn,k
)2
)

,

δ41(x) =
∑

k∈K

pn,k(x)
{(

1 +
(

bFn,k
)2
)

µ
Fn,k

6 +
(

1 +
(

bGn,k
)2
)

µ
Gn,k

6

}

and

δ42(x) =
∑

k∈K

pn,k(x)
(

1 +
(

bFn,k
)2
)

(

bFn,k − bGn,k
)4

,

where we suppose that δ1(x) ≤ 1, δ2(x) ≤ 1 and µ
Fn,k

r = Fn,k

(

(e1 − bFn,ke0)
r
)

, r ∈ N.

Instead of this, we study in our note the difference of two operators with different basis
functions and even more Mn and Ln can be arbitrary positive linear operators, including inte-
gral representation. The only information we need is a good (exact if possible) representation
of moments of the operators Mn and Ln of order upto 6.
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2. AUXILIARY RESULTS

In our note we consider l.p.o. Ln : E → C[0,∞), where E is a subspace of C[0,∞), such that
Ck[0,∞) ⊂ E, with k = max{m+ r + 1, 2r + 2, 2m}, r ∈ N and

Ck[0,∞) := {f ∈ C[0,∞), ∃M > 0 : |f(x)| ≤ M(1 + xk), ∀x ≥ 0, k ∈ N}.
Let µL

n,m(x),m ∈ N is the moment of order m of Ln i.e. µL
n,m(x) = Ln((t − x)m;x). The main

result in [8] is Theorem 2.2, which we formulate as:
Theorem B. Let Ln : E → C[0,∞), Ck[0,∞) ⊂ E, k = max{m + 3, 6, 2m} be sequence of
linear positive operators, preserving the linear functions. Also m ∈ N. If f ∈ C2[0,∞) ∩ E and
f ′′ ∈ Wϕ[0,∞), then we have for x ∈ (0,∞) that

∣

∣

∣

∣

Ln(f, x)− f(x)− 1

2
f ′′(x)µL

n,2(x)

∣

∣

∣

∣

≤ 1

2



µL
n,2(x) +

√
2

√

√

√

√Ln

(

[

1 +

(

x+
|t− x|

2

)m]2

;x

)





ωϕ



f ′′;

(

µL
n,6

x

)1/2


 .(2.4)

Remark 2.1. We point out that the statement in Theorem B can be extended also for p.l.o. Ln which
don’t preserve linear function. In this case the left hand side of (2.4) should be replaced by

∣

∣

∣

∣

Ln(f, x)− f(x)− f ′(x)µL
n,1(x)−

1

2
f ′′(x)µL

n,2(x)

∣

∣

∣

∣

.

Remark 2.2. The proof of Theorem B is based on good upper estimate for the remainder in Taylor’s
formula at the point x ∈ (0,∞)

Rr(f ; t, x) = f(t)−
r
∑

k=0

f (k)(x)

k!
(t− x)r.

From estimate (2.4) in [8], we have

|Rr(f ; t, x)| ≤ |t− x|r
r!



1 +
√
2
|t− x|

h
.
1 +

(

x+ |t−x|
2

)m

√
x



ωϕ(f
(r);h).(2.5)

Hence for r = 0 we get

|f(t)− f(x)| ≤



1 +
√
2.
|t− x|

h
.
1 +

(

x+ |t−x|
2

)m

√
x



ωϕ(f ;h),(2.6)

which can be considered as an extension of the estimate (2.2) in [3], because now we allow the function f

to be of polynomial growth m,m ≥ 2.. In our paper [8] we supposed that µL
n,m(x) = O(n−[(m+1)/2]), n →

∞, which guarantees that the term in right-hand side of Theorem B in front modulus ωϕ(f
′′, .) is

bounded when n → ∞ for fixed x and m. Particularly this assumption is fulfilled for Szász-Mirakyan,
Baskakov, Phillips operators etc.

Remark 2.3. We may apply also Theorem 2.3 from [8] where as argument of the modulus ωϕ(f
′′, .) in

Theorem B instead of

(

µL
n,6

x

)1/2

we have

√

µL
n,4(x)

µL
n,2(x)

. We omit the details in this case.
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3. MAIN RESULT

Theorem 3.1. Let Ln,Mn : E → C[0,∞), Ck[0,∞) ⊂ E, k = max{m+3, 6, 2m} be two sequences
of linear positive operators. If f ∈ C2[0,∞)∩E and f ′′ ∈ Wϕ[0,∞), then we have for x ∈ (0,∞) that

|Ln(f, x)−Mn(f, x)|
≤ |f ′(x)|.

∣

∣

∣µ
Ln

n,1(x)− µMn

n,1 (x)
∣

∣

∣

+
1

2
|f ′′(x)|.

∣

∣

∣µ
Ln

n,2(x)− µMn

n,2 (x)
∣

∣

∣

+
1

2

[

µLn

n,2(x) +
√
2.

√

Ln

([

1 +

(

x+
|t− x|

2

)m])
]

ωϕ



f ′′;

(

µLn

n,6

x

)1/2




+
1

2

[

µMn

n,2 (x) +
√
2.

√

Mn

([

1 +

(

x+
|t− x|

2

)m])
]

ωϕ



f ′′;

(

µMn

n,6

x

)1/2




Proof. We use the following representation

Ln(f, x)−Mn(f, x) = Ln(f, x)− f(x)− f ′(x)µLn

n,1(x)−
1

2
f ′′(x)µLn

n,2(x)

−(Mn(f, x)− f(x)− f ′(x)µMn

n,1 (x)−
1

2
f ′′(x)µMn

n,2 (x))

+f ′(x)[µLn

n,1(x)− µMn

n,1 (x)] +
1

2
[µLn

n,2(x)− µMn

n,2 (x)].

Hence the proof follows from Theorem B. �

Remark 3.4. If both the operators Ln and Mn reproduce linear functions, we have µLn

n,1x = µMn

n,1 x = 0.

Therefore we can omit the summand containing f ′(x).

Remark 3.5. In Theorem 3.1, we used (2.6) for r = 2. In a similar way if we suppose f ∈ Cr[0,∞) ∩
E and f (r) ∈ Wϕ[0,∞) we may prove estimate for the differences Ln(f, x) − Mn(f, x) in terms of

ωϕ(f
(r); .).

4. EXAMPLES

We apply Theorem 3.1 for some classical positive linear operators, some examples are given
as (see [9], [7] and references therein):

Example 4.1. The Szász-Mirakyan operators are defined as

(4.7) Sn(f, x) =

∞
∑

k=0

e−nx (nx)
k

k!
f

(

k

n

)

where x ∈ [0,∞), n ∈ N. The central moments of the Szász-Mirakyan operators (4.7) satisfy for m ≥ 1
the recurrence relation:

µSn

n,m+1(x) =
x

n
[µSn

n,m(x)]′ +
mx

n
µSn

n,m−1(x).

In particular

µSn

n,0(x) = 1, µSn

n,1(x) = 0, µSn

n,2(x) =
x

n
, µSn

n,3(x) =
x

n2
,

µSn

n,4(x) =
x

n3
+

3x2

n2
, µSn

n,5(x) =
x

n4
+

10x2

n3
, µSn

n,6(x) =
x

n5
+

25x2

n4
+

15x3

n3
.
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Example 4.2. The Baskakov operators are defined as

(4.8) Bn(f ;x) =

∞
∑

k=0

(

n+ k − 1

k

)

xk

(1 + x)n+k
f

(

k

n

)

.

The moments of the Baskakov operators are well known for m ≥ 1 the following recurrence relation
holds true:

µBn

n,m+1(x) =
x(1 + x)

n
[µBn

n,m(x)]′ +
mx(1 + x)

n
µBn

n,m−1(x).

In particular

µBn

n,0(x) = 1, µBn

n,1(x) = 0, µBn

n,2(x) =
x(1 + x)

n
, µBn

n,3(x) =
x(1 + x)(1 + 2x)

n2
,

µBn

n,4(x) =
x(1 + x)

n3
+

6x2(1 + x)2

n3
+

3x2(1 + x)2

n2
,

µBn

n,5(x) =
x+ 15x2 + 50x3 + 60x4 + 24x5

n4
+

10x2 + 76x3 + 86x4 + 20x5

n3
,

µBn

n,6(x) =
x+ 31x2 + 180x3 + 390x4 + 360x5 + 120x6

n5

+
25x2 + 288x3 + 667x4 + 534x5 + 130x6

n4

+
15x3 + 105x4 + 105x5 + 15x6

n3
.

Example 4.3. The well known Phillips operators are defined as

(4.9) Pn(f ;x) = n

∞
∑

k=1

e−nx (nx)
k

k!

∫ ∞

0

e−nt (nt)
k−1

(k − 1)!
f(t)dt+ e−nxf(0).

The Phillips operators satisfy the following recurrence relation for central moments:

µPn

n,m+1(x) =
x

n
[(µPn

n,m(x))′ + 2mµPn

n,m−1(x)] +
m

n
µPn

n,m(x),m ≥ 1

and in particular, we have

µPn

n,0(x) = 1, µPn

n,1(x) = 0, µPn

n,2(x) =
2x

n
,

µPn

n,3(x) =
6x

n2
, µPn

n,4(x) =
12x2

n2
+

24x

n3

µPn

n,5(x) =
120x

n4
+

72x

n3
+

48x2

n3
,

µPn

n,6(x) =
720x

n5
+

576x2

n4
+

432x

n4
+

120x3

n3
.

Example 4.4. The Lupaş operators are defined as

Un(f, x) :=
∞
∑

k=0

2−nx (nx)k
k! 2k

f

(

k

n

)

.(4.10)
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Some of the central moments are given below:

µUn

n,0(x) = 1, µUn

n,1(x) = 0, µUn

n,2(x) =
2x

n
,

µUn

n,3(x) =
6x

n2
, µUn

n,4(x) =
26x+ 12nx2

n3
,

µUn

n,5(x) =
150x+ 120nx2

n4
, µUn

n,6(x) =
1082x+ 1140nx2 + 120n2x3

n5
.

Using Example 4.1 and Example 4.2, we have the following quantitative estimate as appli-
cation of Theorem 3.1 for the difference of Szász-Mirakyan and Baskakov operators.

Theorem 4.2. Let Sn, Bn : E → C[0,∞), Ck[0,∞) ⊂ E, k = max{m+3, 6, 2m} be two sequences
of linear positive operators. If f ∈ C2[0,∞)∩E and f ′′ ∈ Wϕ[0,∞), then we have for x ∈ (0,∞) that

|Sn(f, x)−Bn(f, x)|

≤ x2

2n
|f ′′(x)|+ 1

2

[x

n
+
√

2An,m,x

]

ωϕ

(

f ′′;

√

1

n5
+

25x

n4
+

15x2

n3

)

+
1

2

[

x(1 + x)

n
+
√

2Bn,m,x

]

ωϕ

(

f ′′;

(

1 + 31x+ 180x2 + 390x3 + 360x4 + 120x5

n5

+
25x+ 288x2 + 667x3 + 534x4 + 130x5

n4
+

15x2 + 105x3 + 105x4 + 15x5

n3

)1/2)

,

where

An,m,x = Sn

(

[

1 +

(

x+
|t− x|

2

)m]2

;x

)

, Bn,m,x = Bn

(

[

1 +

(

x+
|t− x|

2

)m]2

;x

)

.

Using Example 4.1 and Example 4.3, we have the following quantitative estimate as appli-
cation of Theorem 3.1 for the difference of Szász-Mirakyan and Phillips operators.

Theorem 4.3. Let Sn, Pn : E → C[0,∞), Ck[0,∞) ⊂ E, k = max{m+ 3, 6, 2m} be two sequences
of linear positive operators. If f ∈ C2[0,∞)∩E and f ′′ ∈ Wϕ[0,∞), then we have for x ∈ (0,∞) that

|Sn(f, x)− Pn(f, x)|

≤ x

2n
|f ′′(x)|+ 1

2

[x

n
+
√

2An,m,x

]

ωϕ

(

f ′′;

√

1

n5
+

25x

n4
+

15x2

n3

)

+
1

2

[

2x

n
+
√

2Cn,m,x

]

ωϕ

(

f ′′;

√

720

n5
+

576x

n4
+

432

n4
+

120x2

n3

)

,

where

An,m,x = Sn

(

[

1 +

(

x+
|t− x|

2

)m]2

;x

)

, Cn,m,x = Pn

(

[

1 +

(

x+
|t− x|

2

)m]2

;x

)

.

Using Example 4.3 and Example 4.4, we have the following quantitative estimate as appli-
cation of Theorem 3.1 for the difference of Phillips and Lupaş operators.
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Theorem 4.4. Let Pn, Un : E → C[0,∞), Ck[0,∞) ⊂ E, k = max{m+ 3, 6, 2m} be two sequences
of linear positive operators. If f ∈ C2[0,∞)∩E and f ′′ ∈ Wϕ[0,∞), then we have for x ∈ (0,∞) that

|Pn(f, x)− Un(f, x)|

≤ 1

2

[

2x

n
+
√

2Cn,m,x

]

ωϕ

(

f ′′;

√

720

n5
+

576x

n4
+

432

n4
+

120x2

n3

)

+
1

2

[

2x

n
+
√

2Dn,m,x

]

ωϕ

(

f ′′;

√

1082 + 1140nx+ 120n2x2

n5

)

,

where

Dn,m,x = Un

(

[

1 +

(

x+
|t− x|

2

)m]2

;x

)

, Cn,m,x = Pn

(

[

1 +

(

x+
|t− x|

2

)m]2

;x

)

.
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ABSTRACT. In the present paper we establish a quantitative estimate for the sampling Kantorovich operators with
respect to the modulus of continuity in Orlicz spaces defined in terms of the modular functional. At the end of the
paper, concrete examples are discussed, both for what concerns the kernels of the above operators, as well as for some
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1. INTRODUCTION

The sampling Kantorovich operators Sw have been introduced by Bardaro, Butzer, Stens and
Vinti in [8], in order to study an L1-version of the so-called generalized sampling operators
([12, 32, 14]). The main peculiarity of the sampling Kantorovich operators is that they revealed
to be suitable in order to reconstruct not necessarily continuous signals ([2]).

Indeed, in the original paper [8] the authors proved the modular convergence of the opera-
tors Sw in the general setting of Orlicz spaces, which include, as a special case, the Lp-spaces.

Later on, the operators Sw have been studied under different aspects, both from theoretical
([17, 5, 23]) and applications point of view ([6, 7]). For instance, in [6, 7] some applications
to energy engineering have been developed applying an algorithm for image reconstruction
and enhancement based on the multivariate version of the operators Sw for the processing of
thermographic images.

The order of approximation for the sampling Kantorovich operators has been also studied
in [21]; this has been done assuming the function f in suitable Lipschitz classes, both in the
space of uniformly continuous and bounded functions (i.e., in C(R)) and in Orlicz spaces (i.e.,
in Lϕ(R)). For other results concerning the order of approximation for the above operators,
see, e.g., [31, 11].

The above problem has been faced in C(R) also from the quantitative point of view in [9],
by using the modulus of continuity of the function being approximated.

Currently, the study of quantitative estimates in the setting of Orlicz spaces in terms of the
modulus of continuity is still an open problem.

For the latter reason, in this paper we establish the quantitative rate of convergence for the
sampling Kantorovich operators; in order to do this we firstly recall the notion of the modulus
of continuity in Lϕ(R) which is based on the modular functional of the space ([10]).
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At the end of the paper, several examples of kernels and concrete cases of Orlicz spaces are
recalled. For instance, the Lp-spaces, with 1 ≤ p < +∞, are included in the present general
theory, together with other well-known examples of Orlicz spaces.

2. NOTATION AND PRELIMINARIES

We begin this section by recalling some basic facts concerning Orlicz spaces.
A function ϕ : R+

0 → R
+
0 is said to be a ϕ-function if it satisfies the following conditions:

(Φ1) ϕ is a non decreasing and continuous function;
(Φ2) ϕ(0) = 0, ϕ(u) > 0 if u > 0 and limu→+∞ ϕ(u) = +∞.

Let us now consider the functional Iϕ associated to the ϕ-function ϕ and defined by

Iϕ[f ] :=

∫

R

ϕ(|f(x)|) dx,

for every f ∈ M(R), i.e., for every (Lebesgue) measurable function f : R → R. As it is well-
known, Iϕ is a modular functional (see e.g. [29, 10]), and the Orlicz space generated by ϕ is
defined by

Lϕ(R) := {f ∈ M(R) : Iϕ[λf ] < ∞, for some λ > 0} .

A notion of convergence in Orlicz spaces, called modular convergence, was introduced in [30].
We will say that a net of functions (fw)w>0 ⊂ Lϕ(R) is modularly convergent to f ∈ Lϕ(R),

if there exists λ > 0 such that

(2.1) Iϕ[λ(fw − f)] =

∫

R

ϕ(λ|fw(x)− f(x)|) dx −→ 0, w → +∞.

Moreover we recall, for the sake of completeness, that in Lϕ(R) it can be also given a strong
notion of convergence, i.e. the Luxemburg-norm convergence, see e.g. [29, 10]. We will say that
a net of functions (fw)w>0 ⊂ Lϕ(R) is convergent to f ∈ Lϕ(R) with respect to the Luxemburg
norm if (2.1) holds for every λ > 0. Definition (2.1) induces a topology in Lϕ(R), called modular
topology. Obviously, the modular convergence and the Luxemburg norm convergence coincide
if and only if the well-known ∆2-condition on ϕ is satisfied, see, e.g., [29, 10].

Now, we recall the definition of the modulus of continuity in Orlicz spaces Lϕ(R), with
respect to the modular Iϕ. For any fixed f ∈ Lϕ(R), and for a suitable λ > 0, we denote:

(2.2) ω(f, δ)ϕ := sup
|t|≤δ

Iϕ [λ (f(·+ t)− f(·))] ,

with δ > 0.
For general references concerning Orlicz spaces and some of their generalizations, see, e.g.,

[28, 1, 24, 25, 18].
In order to define the considered operators, we need some additional notions.
Let Π = (tk)k∈Z be a sequence of real numbers such that −∞ < tk < tk+1 < +∞ for every

k ∈ Z, limk→±∞ tk = ±∞ and there are two positive constants ∆, δ such that δ ≤ ∆k :=
tk+1 − tk ≤ ∆, for every k ∈ Z.
In what follows, a function χ : R → R will be called a kernel if it satisfies the following proper-
ties:

• (χ1) χ ∈ L1(R) and is bounded in a neighborhood of 0;
• (χ2) for every u ∈ R

∑

k∈Z

χ(u− tk) = 1;
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• (χ3) for some β > 0,

mβ,Π(χ) := sup
u∈R

∑

k∈Z

|χ(u− tk)| · |u− tk|
β

< +∞.

Then, the sampling Kantorovich operators Sw for a given kernel χ are defined by:

(2.3) (Swf)(x) :=
∑

k∈Z

χ(wx− tk)

[

w

∆k

∫ tk+1/w

tk/w

f(u) du

]

(x ∈ R),

where f : R → R is a locally integrable function such that the series is convergent for every
x ∈ R.

There holds the following lemma.

Lemma 2.1 ([8]). Under the assumptions (χ1) and (χ3) on the kernel χ, it turns out:

m0,Π(χ) := sup
u∈R

∑

k∈Z

|χ(u− tk)| < +∞.

Note that, it is easy to see that the discrete absolute moment m0,Π(χ) > 0.

3. THE MAIN RESULT

We can prove the following quantitative estimate for the sampling Kantorovich operators
by using the modulus of continuity in Orlicz spaces.

Theorem 3.1. Let ϕ be a convex ϕ-function. Suppose that, for any fixed 0 < α < 1, we have:

(3.4) w

∫

|y|>1/wα

|χ(wy)| dy ≤ M w−γ , as w → +∞,

for suitable positive constants M , γ depending on α and χ. Then, for f ∈ Lϕ(R), and λ > 0 there
holds:

Iϕ[λ (Swf − f)] ≤
‖χ‖1

2 δ m0,Π(χ)
ω

(

2m0,Π(χ) f,
1

wα

)

ϕ

+
M Iϕ [4λm0,Π(χ) f ]

2 δ m0,Π(χ)
w−γ +

∆

2 δ
ω

(

2m0,Π(χ) f,
1

w

)

ϕ

,

for every sufficiently large w > 0, where m0,Π(χ) < +∞ in view of Lemma 2.1. In particular, if λ > 0
is sufficiently small, the above inequality implies the modular convergence of the sampling Kantorovich
operators Swf to f .

Proof. Let λ > 0 be fixed. Using the convexity of ϕ, and since ϕ is non decreasing, we can write
what follows:

Iϕ[λ (Swf − f)]

≤
1

2

{

∫

R

ϕ

(

2λ

∣

∣

∣

∣

∣

(Swf)(x)−
∑

k∈Z

χ(wx− tk)
w

∆k

∫ tk+1/w

tk/w

f(u+ x− tk/w) du

∣

∣

∣

∣

∣

)

dx

+

∫

R

ϕ

(

2λ

∣

∣

∣

∣

∣

∑

k∈Z

χ(wx− tk)
w

∆k

∫ tk+1/w

tk/w

f(u+ x− tk/w) du − f(x)

∣

∣

∣

∣

∣

)

dx

}

=: I1 + I2,
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w > 0. We estimate I1. By using the Jensen inequality (see, e.g., [19]) twice, and the change of
variable y = x− tk/w, we obtain:

2 I1 ≤

∫

R

ϕ

(

2λ
∑

k∈Z

|χ(wx− tk)|
w

∆k

∫ tk+1/w

tk/w

|f(u)− f(u+ x− tk/w)| du

)

dx

≤
1

m0,Π(χ)

∫

R

∑

k∈Z

|χ(wx− tk)|ϕ

(

2λm0,Π(χ)
w

∆k

∫ tk+1/w

tk/w

|f(u)− f(u+ x− tk/w)| du

)

dx

≤
1

m0,Π(χ)

∫

R

∑

k∈Z

|χ(wx− tk)|
w

∆k

∫ tk+1/w

tk/w

ϕ (2λm0,Π(χ)|f(u)− f(u+ x− tk/w)|) du dx

≤
δ−1

m0,Π(χ)

∫

R

|χ(wy)| w
∑

k∈Z

∫ tk+1/w

tk/w

ϕ (2λm0,Π(χ)|f(u)− f(u+ y)| ) du dy

=
δ−1

m0,Π(χ)

∫

R

|χ(wy)| w

∫

R

ϕ (2λm0,Π(χ)|f(u)− f(u+ y)|) du dy

=
δ−1

m0,Π(χ)

∫

R

w |χ(wy)| Iϕ [2λm0,Π(χ)(f(·)− f(·+ y))] dy =: J,

w > 0. Let now 0 < α < 1 be fixed. Thus we can split the above integral J as follows:

J :=
w δ−1

m0,Π(χ)
×

{

∫

|y|≤1/wα

+

∫

|y|>1/wα

}

|χ(wy)| Iϕ [2λm0,Π(χ)(f(·)− f(·+ y))] dy =: J1 + J2.

For J1, we have:

J1 ≤
w δ−1

m0,Π(χ)

∫

|y|≤1/wα

|χ(wy)| ω (2m0,Π(χ) f, |y|)ϕ dy

≤ ω (2m0,Π(χ) f, 1/w
α)ϕ

w δ−1

m0,Π(χ)

∫

|y|≤1/wα

|χ(wy)| dy

≤ ω (2m0,Π(χ) f, 1/w
α)ϕ

δ−1 ‖χ‖1
m0,Π(χ)

,

w > 0. Moreover, by using the convexity of ϕ, for J2 we can obtain:

J2 ≤
w δ−1

m0,Π(χ)

∫

|y|>1/wα

|χ(wy)|
1

2
{ Iϕ [4λm0,Π(χ)f ]

+ Iϕ [4λm0,Π(χ)f(·+ y)] } dy.

Obviously, it is easy to see that:

Iϕ [4λm0,Π(χ)f ] = Iϕ [4λm0,Π(χ)f(·+ y)] ,

for every y. Then, by exploiting assumption (3.4), we finally obtain:

J2 ≤
w δ−1

m0,Π(χ)

∫

|y|>1/wα

|χ(wy)| Iϕ [4λm0,Π(χ)f ] dy

≤
δ−1

m0,Π(χ)
Iϕ [4λm0,Π(χ)f ] M w−γ ,

for w > 0 sufficiently large.
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Now, we can estimate I2. Using Jensen inequality twice (as above), the change of variable
y = u− tk/w, and Fubini-Tonelli theorem, we have:

2 I2

≤
1

m0,Π(χ)

∫

R

∑

k∈Z

|χ(wx− tk)|
w

∆k

∫ tk+1/w

tk/w

ϕ (2λm0,Π(χ)|f(u+ x− tk/w)− f(x)| ) du dx

≤
δ−1

m0,Π(χ)

∫

R

∑

k∈Z

|χ(wx− tk)|w

∫ ∆/w

0

ϕ (2λm0,Π(χ)|f(x+ y)− f(x)| ) dy dx

≤ δ−1

∫

R

w

∫ ∆/w

0

ϕ (2λm0,Π(χ)|f(x+ y)− f(x)| ) dy dx

≤ δ−1w

∫ ∆/w

0

Iϕ [2λm0,Π(χ) (f(·+ y)− f(·))] dy

≤ δ−1 ω(2m0,Π(χ) f, 1/w)ϕ w

∫ ∆/w

0

dy = δ−1 ∆ω(2m0,Π(χ) f, 1/w)ϕ,

w > 0. This completes the proof. �

Remark 3.1. Note that, it is easy to show that for any kernels such that χ(u) = O(|u|−θ), as
|u| → +∞, for θ > 1, we have that assumption (3.4) is satisfied for some constant M > 0 and
γ = (1− α)(θ − 1) > 0, for every fixed 0 < α < 1.

4. EXAMPLES

Examples of convex ϕ-functions generating remarkable Orlicz spaces, where the above re-
sult is valid are:
ϕp(u) := up, 1 ≤ p < ∞, ϕα,β := uα logβ(u + e), for α ≥ 1, β > 0 and ϕγ(u) = eu

γ

− 1, for
γ > 0, u ≥ 0. It is well-known that ϕp generates the Lp(R)-space and the corresponding convex

modular functional is given by Iϕp [f ] := ‖f‖pp, while ϕα,β and ϕγ generate the Lα logβ L-spaces
(or Zygmund spaces), largely used, e.g., in the theory of partial differential equations, and the
exponential spaces respectively, e.g., used for embedding theorems between Sobolev spaces.
The convex modular functionals corresponding to ϕα,β and ϕγ are

Iϕα,β [f ] :=

∫

R

|f(x)|α logβ(e+ |f(x)|) dx, (f ∈ M(R)),

and

Iϕγ [f ] :=

∫

R

(e|f(x)|
γ

− 1) dx, (f ∈ M(R)),

respectively.
Now, we give a brief list of some well-known and important class of kernels which satisfy

the above assumptions (χ1)− (χ3), and for which Theorem 3.1 holds.
First of all, we recall the definition of the well-known central B-spline of order N (see e.g.,

[33, 3, 4]):

(4.5) βN (x) :=
1

(N − 1)!

N
∑

i=0

(−1)i
(

N

i

)(

N

2
+ x− i

)N−1

+

, x ∈ R.

It is well-known that βN have compact support, then (3.4) is obviously satisfied for every γ > 0.
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Other important (band-limited) kernels are given by the so-called Jackson type kernels of
order N , defined by:

(4.6) JN (x) := cN sinc2N
( x

2Nπα

)

, x ∈ R,

with N ∈ N, α ≥ 1, and cN is a non-zero normalization coefficient, given by:

cN :=

[
∫

R

sinc2N
( u

2Nπα

)

du

]−1

.

For JN , assumption (3.4) turns out to be satisfied in view of what has been observed in Re-
mark 3.1. For the sake of completeness, we recall that the well-known (above mentioned)
sinc-function is that defined as sin(πx)/πx, if x 6= 0, and 1 if x = 0, see e.g., [26, 27]. For other
examples of kernels, see, e.g., [13, 20, 15, 22, 16].
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ABSTRACT. For the univariate Bernstein-Kantorovich-Choquet polynomials written in terms of the Choquet inte-
gral with respect to a distorted probability Lebesgue measure, we obtain quantitative approximation estimates for the
Lp-norm, 1 ≤ p < +∞, in terms of a K-functional.
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1. INTRODUCTION

Recently, in a series of papers we have started the study of the approximation properties of
some nonlinear integral operators obtained from the linear ones by replacing the classical
Lebesgue integral by its nonlinear extension called Choquet integral with respect to a mono-
tone and submodular set function. Thus, qualitative and quantitative results of approximation
by Bernstein-Durrmeyer-Choquet polynomials written in terms of Choquet integrals with re-
spect to monotone and submodular set functions were obtained in the papers [7], [9], [10],
[14]. Qualitative and quantitative approximation results for other Choquet integral operators
obtained by using a Feller kind scheme (and including discrete Bernstein-Choquet operators
and Picard-Choquet operators) were obtained in [8]. For large classes of functions, all these
nonlinear operators give better estimates of approximation than their classical correspondents.
Quantitative results of uniform and pointwise approximation by Bernstein-Kantorovich-
Choquet polynomials, better in large classes of functions than those obtained by their classical
correspondents, were obtained in the very recent paper [11]. Also, shape preserving properties
of some Kantorovich-Choquet type operators were considered in [13].
It is worth to mention that implications of the concept of Choquet integral in other topics of
mathematical analysis were obtained in the papers [12], [15], [16].
The aim of the present paper is to to obtain quantitative estimates for Lp-approximation, 1 ≤
p < +∞, by Bernstein-Kantorovich-Choquet polynomials.
Section 2 contains some preliminaries on the Choquet integral. In Section 3, in the case when
the Choquet integral is taken with respect to the so called distorted Lebesgue measures, quan-
titative estimates in terms of a K-functional for the Lp approximation, 1 ≤ p < ∞, are obtained.
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2. PRELIMINARIES

In this section we present some concepts and results on the Choquet integral which will be
used in the main section.

Definition 2.1. Let Ω be a nonempty set and C be a σ-algebra of subsets in Ω.
(i) (see, e.g., [21], p. 63) Let µ : C → [0,+∞]. If µ(∅) = 0 and A,B ∈ C, with A ⊂ B, implies
µ(A) ≤ µ(B), then µ is called a monotone set function (or capacity). Also, if

µ(A
⋃

B) + µ(A
⋂

B) ≤ µ(A) + µ(B), for all A,B ∈ C,
then µ is called submodular. If µ(Ω) = 1, then µ is called normalized.
(ii) (see [5], or [21], p. 233, or [19]) Let µ be a normalized, monotone set function on C.
If f : Ω → R is C-measurable, i.e. for any Borel subset B ⊂ R we have f−1(B) ∈ C, then for any
A ∈ C, the Choquet integral is defined by

(C)

∫

A

fdµ =

∫ +∞

0

µ(Fβ(f)
⋂

A)dβ +

∫ 0

−∞
[µ(Fβ(f)

⋂

A)− µ(A)]dβ,

where Fβ(f) = {ω ∈ Ω; f(ω) ≥ β}. If (C)
∫

A
fdµ ∈ R, then f is called Choquet integrable on A.

Notice that if f ≥ 0 on A, then in the above formula we get
∫ 0

−∞ = 0.
If µ is the Lebesgue measure, then the Choquet integral (C)

∫

A
fdµ reduces to the Lebesgue integral.

In what follows, we list some known properties of the Choquet integral.

Remark 2.1. If µ : C → [0,+∞] is a monotone set function, then the following properties hold :
(i) For all a ≥ 0 we have (C)

∫

A
afdµ = a · (C)

∫

A
fdµ (if f ≥ 0 then see, e.g., [21], Theorem 11.2, (5),

p. 228 and if f is of arbitrary sign, then see, e.g., [6], p. 64, Proposition 5.1, (ii)).
(ii) For all c ∈ R and f of arbitrary sign, we have (see, e.g., [21], pp. 232-233, or [6], p. 65)

(C)

∫

A

(f + c)dµ = (C)

∫

A

fdµ+ c · µ(A).

If µ is submodular too, then for all f, g of arbitrary sign and lower bounded we have (see, e.g., [6], p. 75,
Theorem 6.3)

(C)

∫

A

(f + g)dµ ≤ (C)

∫

A

fdµ+ (C)

∫

A

gdµ,

that is the Choquet integral is sublinear.
(iii) If f ≤ g on A then (C)

∫

A
fdµ ≤ (C)

∫

A
gdµ (see, e.g., [21], p. 228, Theorem 11.2, (3) if f, g ≥ 0

and p. 232 if f, g are of arbitrary sign).
(iv) Let f ≥ 0. By the definition of the Choquet integral, it is immediate that if A ⊂ B then

(C)

∫

A

fdµ ≤ (C)

∫

B

fdµ

and if, in addition, µ is finitely subadditive, then

(C)

∫

A
⋃

B

fdµ ≤ (C)

∫

A

fdµ+ (C)

∫

B

fdµ.

(v) By the definition of the Choquet integral, it is immediate that

(C)

∫

A

1 · dµ(t) = µ(A).

(vi) The formula µ(A) = γ(M(A)), where γ : [0, 1] → [0, 1] is an increasing and concave function,
with γ(0) = 0, γ(1) = 1 and M is a probability measure (or only finitely additive) on a σ-algebra on Ω
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(that is, M(∅) = 0, M(Ω) = 1 and M is countably additive), gives simple examples of monotone and
submodular set functions (see, e.g., [6], pp. 16-17, Example 2.1). Such of set functions µ are also called
distorsions of normalized and countably additive measures (or distorted measures).

3. Lp-APPROXIMATION

Denoting by B[0,1] the sigma algebra of all Borel measurable subsets in P([0, 1]), everywhere in
this section, (Γn,x)n∈N,x∈[0,1], will be a collection of families Γn,x = {µn,k,x}nk=0, of monotone,
submodular and strictly positive set functions µn,k,x on B[0,1]. Note here that a set function
on B[0,1] is called strictly positive, if for any open subset A ⊂ R with A ∩ [0, 1] 6= ∅, we have
µ(A ∩ [0, 1]) > 0.
Suggested by the classical form of the linear and positive operators of Bernstein-Kantorovich
(see, e.g., [17]), we can introduce the following.

Definition 3.2. The Bernstein-Kantorovich-Choquet polynomials with respect to Γn,x = {µn,k,x}nk=0,
are defined by the formula

Kn,Γn,x
(f)(x) =

n
∑

k=0

pn,k(x) ·
(C)

∫ (k+1)/(n+1)

k/(n+1)
f(t)dµn,k,x(t)

µn,k,x([k/(n+ 1), (k + 1)/(n+ 1)])
,

where pn,k(x) =
(

n
k

)

xk(1− x)n−k.

In order to be well defined these operators, it is good enough if, for example, we suppose that
f : [0, 1] → R+ is a B[0,1]-measurable function, bounded on [0, 1].

Remark 3.2. It is clear that if µn,k,x = M , for all n, k and x, where M is the Lebesgue measure, then
the above polynomials become the classical ones.
Also, if µn,k,x = δk/n (the Dirac measures), since k/n ∈ (k/(n+1), (k+1)/(n+1)), it is immediate that
Kn,Γn,x

(f)(x) become the Bernstein polynomials. This fact shows the great flexibility of the formulas of
these operators. More exactly, we can generate very many kinds of approximation operators, by choosing
for some µn,k,x the Lebesgue measure, for some others µn,k,x, the Dirac measures and for the others
µn,k,x, some Choquet measures.

Note that pointwise and uniform approximation by Kn,Γn,x
(f)(x) were studied in [11].

In this section we study quantitative Lp-approximation results, 1 ≤ p < ∞, for the Bernstein-
Kantorovich-Choquet polynomials Kn,Γn,x

(f)(x) when Γn,x = {µ}. In this case, we denote
them by Kn,µ.
But as in the case of Bernstein-Durrmeyer-Choquet polynomials studied in [10], even in the
simple case when, for example p = 1, for f ∈ L1

µ (meaning that f is B[0,1]-measurable and

‖f‖L1
µ
= (C)

∫ 1

0
|f(t)|dµ(t) < ∞), considering for example the operator Kn,µ, we easily get

‖Kn,µ(f)‖L1
µ
≤

n
∑

k=0

(C)

∫ 1

0

pn,k(x)dµ(x) ·
(C)

∫ (k+1)/(n+1)

k/(n+1)
f(t)dµ(t)

µ([k/(n+ 1), (k + 1)/(n+ 1)])

≤
n
∑

k=0

(C)

∫ (k+1)/(n+1)

k/(n+1)

f(t)dµ(t) ≤ (n+ 1) · ‖f‖L1
µ
.

This is due to the fact that (C)
∫ 1

0
fdµ is not, in general, additive as function of f (it is only

subadditive).
Therefore, quantitative estimates for Lp-approximation by Bernstein-Kantorovich-Choquet
polynomials, remain, for the general case, an open question.
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However, in what follows, for a large class of distorted Lebesgue measures (see Remark 2.1,
(vi)), we will be able to prove Lp-approximation results.
If µ : B[0,1] → [0,+∞) is a monotone set function and 1 ≤ p < +∞, then we make the following
notations :

Lp
µ[0, 1] = {f : [0, 1] → R; f is B[0,1]-measurable and (C)

∫ 1

0

|f(t)|pdµ(t) < +∞},

Lp
µ,+[0, 1] = Lp

µ[0, 1]
⋂

{f : [0, 1] → R+},
C1

+[0, 1] = {g : [0, 1] → [0,+∞); g is differentiable on [0, 1]},
K (f ; t)Lp

µ[0,1]
= inf

g∈C1
+
[0,1]

{‖f − g‖Lp
µ
+ t‖g′‖C[0,1]},

where ‖F‖Lp
µ[0,1] =

(∫ 1

0

|F (t)|pdµ(t)
)1/p

, ‖F‖C[0,1] = sup{|F (t)|; t ∈ [0, 1]},

IC[0, 1] = {g : [0, 1] → [0, 1] : g(0) = 0, g(1) = 1, g is concave and strictly

increasing on [0, 1] and there exists g′(0) < +∞}.
Also, denote by D(B[0,1]) the class of all set functions µ : B[0,1] → [0,+∞) of the form µ(A) =
g(M(A)), for all A ∈ B[0,1], where g ∈ IC[0, 1] and M is the Lebesgue measure on B[0,1]. In the
words of Remark 2.1, (vi), any such a µ is a distorted Lebesgue measure.

Remark 3.3. According to Remark 2.1, (vi), any µ ∈ D(B[0,1]) is a normalized, monotone, strictly
positive and submodular set function. Simple examples of µ ∈ D(B[0,1]) are µ(A) = sin[M(A)]/ sin(1)

or µ(A) = g[M(A)], for all A ∈ B[0,1], where M denotes the Lebesgue measure and g(x) = 2x
1+x .

We can state the following.

Theorem 3.1. Let 1 ≤ p < ∞. If µ ∈ D(B[0,1]), then for all f ∈ Lp
µ,+[0, 1], n ∈ N, we have

‖f −Kn,µ(f)‖Lp
µ
≤ cp ·K

(

f ;
1

2
√
n+ 1

)

Lp
µ

,

where cp = 1 + g′(0)(p+1)/p.

Proof. Let µ(A) = g[M(A)] with µ ∈ D(B[0,1]). The main ideas used several times in the proof
are that the Choquet integral with respect to m reduces to the classical Lebesgue integral and
that if µ and ν are two monotone set functions satisfying µ(A) ≤ c · ν(A) for all A, with c > 0 a

constant independent of A, then (C)
∫ 1

0
Fdµ ≤ c · (C)

∫ 1

0
Fdν, for any F ≥ 0.

Firstly, by g(0) = 0, g(1) = 1 and by the concavity of g, we immediately obtain the inequalities

(3.1) x ≤ g(x) ≤ g′(0)x, for all x ∈ [0, 1],

which clearly implies

(3.2) M(A) ≤ µ(A) ≤ g′(0)M(A), for all A ∈ B[0,1].

Indeed, the inequalities in (3.1) hold since all the points of the segment passing through the
points (0, g(0)) and (1, g(1)) are below the graph of g and since all the points of the tangent to
the graph of g at (0, g(0)) are above the graph of g.
We make the proof in three steps.
Step 1. For f ∈ Lp

µ,+[0, 1] we obtain

(3.3) ‖Kn,µ(f)‖Lp
µ
≤ [g′(0)](p+1)/p · ‖f‖Lp

µ
.
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Indeed, by ‖Kn,M (f)‖Lp

M
≤ ‖f‖Lp

M
(see, e.g. [3]) combined with (3.2), it follows ‖f‖Lp

M
≤

‖f‖Lp
µ

and

(3.4) ‖Kn,M (f)‖Lp

M
≤ ‖f‖Lp

µ
.

On the other hand, by (3.2), we obtain

‖Kn,M (f)‖Lp

M

=





∫ 1

0





n
∑

k=0

pn,k(x) ·
(C)

∫ (k+1)/(n+1)

k/(n+1)
f(t)dM(t)

M([k/(n+ 1), (k + 1)/(n+ 1)])





p

dM(x)





1/p

≥ 1

g′(0)1/p
·



(C)

∫ 1

0





n
∑

k=0

pn,k(x) ·
(C)

∫ (k+1)/(n+1)

k/(n+1)
f(t)dM(t)

M([k/(n+ 1), (k + 1)/(n+ 1)])





p

dµ(x)





1/p

≥ 1

g′(0)1/p

·



(C)

∫ 1

0





n
∑

k=0

pn,k(x) ·
1

g′(0)
·

(C)
∫ (k+1)/(n+1)

k/(n+1)
f(t)dµ(t)

µ([k/(n+ 1), (k + 1)/(n+ 1)])





p

dµ(x)





1/p

=
1

[g′(0)](p+1)/p
· ‖Kn,µ(f)‖Lp

µ
,

which combined with (3.4), implies (3.3).
Step 2. For n ∈ N and 0 ≤ k ≤ n arbitrary fixed, let us define Tn,k : Lp

µ,+[0, 1] → R+ by

Tn,k(f) = (C)

∫ (k+1)/(n+1)

k/(n+1)

f(t)dµ(t), f ∈ Lp
µ,+([0, 1]).

From Lp
M,+[0, 1] ⊂ L1

M,+[0, 1] and since from (3.2) we clearly have f ∈ Lp
M,+[0, 1] if and only if

f ∈ Lp
µ,+[0, 1], it follows that Lp

µ,+[0, 1] ⊂ L1
µ,+[0, 1], for all 1 ≤ p < +∞.

Also, 0 ≤ (C)
∫ (k+1)/(n+1)

k/(n+1)
fp(t)dµ(t) ≤ (C)

∫ 1

0
fp(t)dµ(t) < ∞, for any f ∈ Lp

µ,+[0, 1].

Based on the Remark 3.3 and Remark 2.1, (i), (ii), (iii), by similar reasonings with those in the
proof of Lemma 3.1 in [7], we obtain |Tn,k(f) − Tn,k(g)| ≤ Tn,k(|f − g|). Also, since Tn,k is
positively homogeneous, sublinear and monotonically increasing, it is immediate that Kn,µ

keeps the same properties, Consequently, it follows

(3.5) |Kn,µ(f)(x)−Kn,µ(g)(x)| ≤ Kn,µ(|f − g|)(x), f, g ∈ Lp
µ,+[0, 1],

Kn,µ(λf) = λKn,µ(f), Kn,µ(f + g) ≤ Kn,µ(f) + Kn,µ(g) and that f ≤ g on [0, 1] implies
Kn,µ(f) ≤ Kn,µ(g) on [0, 1], for all λ ≥ 0, f, g ∈ Lp

µ,+[0, 1], n ∈ N.
Now, from (3.5) we get

(3.6) ‖Kn,µ(f)−Kn,µ(g)‖Lp
µ
≤ ‖Kn,µ(|f − g|)‖Lp

µ
.

Step 3. Let f, g ∈ Lp
µ,+[0, 1]. We will apply the Minkowski’s inequality in the Choquet integral

(see. e.g., Theorem 3.7 in [20] or Theorem 2 in [4]). It is worth mentioning that the proof of
Minkowski’s inequality in [20] or [4] is based on the Hölder’s inequality

(C)

∫

|fg| ≤
(

(C)

∫

|f |dµ
)1/p

·
(

(C)

∫

|g|dµ
)1/q

, 1/p+ 1/q = 1,
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where the proof is performed under the supposition that (C)
∫

|f |dµ 6= 0 and (C)
∫

|g|dµ 6=
0. But from (3.2), it easily follows that the Hölder’s inequality immediately holds even if
(C)

∫

|f |dµ = 0 or (C)
∫

|g|dµ = 0. Therefore, under the hypothesis of the theorem, the
Minkowski’s inequality holds in its full generality.
So, we get

‖f −Kn,µ(f)‖Lp
µ
= ‖(f − g) + (g −Kn,µ(g)) + (Kn,µ(g)−Kn,µ(f))‖Lp

µ

(3.7) ≤ ‖f − g‖Lp
µ
+ ‖g −Kn,µ(g)‖Lp

µ
+ ‖Kn,µ(g)−Kn,µ(f)‖Lp

µ
.

By (3.6) and (3.3), we obtain

(3.8) ‖Kn,µ(g)−Kn,µ(f)‖Lp
µ
≤ [g′(0)](p+1)/p · ‖f − g‖Lp

µ
.

Now, let us estimate ‖g−Kn,µ(g)‖Lp
µ

for g ∈ C1
+[0, 1]. Thus, by (3.5) and Kn,µ(e0)(x) = e0(x) =

1, we get

|g(x)−Kn,µ(g)(x)| = |Kn,µ(g(x))(x)−Kn,µ(g(t))(x)| ≤ Kn,µ(|g(x)− g(·)|)(x).
Since for g ∈ C1

+[0, 1] and x, t ∈ [0, 1], it follows (see, e.g., [18], formula (2.5), or [2])

|g(x)− g(t)| ≤ ‖g′‖C[0,1] · |x− t| = ‖g′‖C[0,1] · ϕx(t),

applying Kn,µ, which is subadditive as function of f , it follows Kn,µ(|g(x) − g(·)|)(x) ≤
‖g′‖C[0,1]Kn,µ(ϕx).
Taking to the power p and integrating above with respect to x and µ, we obtain

(3.9) ‖g −Kn,µ(g)‖Lp
µ
≤ ‖g′‖C[0,1] · ‖Kn,µ(ϕx)‖Lp

µ
.

Denoting cp = 1 + g′(0)(p+1)/p, from (3.8) and (3.9) replaced in (3.7), it follows

‖f −Kn,µ(f)‖Lp
µ
≤ cp

(

‖f − g‖Lp
µ
+ ‖g′‖C[0,1] ·∆n,p/cp

)

,

where ∆n,p := ‖Kn,µ(ϕx)‖Lp
µ

, ϕx(t) = |x− t| for x, t ∈ [0, 1].
Finally, the reasonings from Step 1 lead to the estimate

∆n,p/cp ≤ [g′(0)](p+1)/p

cp
· ‖Kn,M (ϕx)‖Lp

M
≤ [g′(0)](p+1)/p

cp
· ‖Kn,M (ϕx)‖C[0,1]

≤ [g′(0)](p+1)/p

cp
· 1

2
√
n+ 1

≤ 1

2
√
n+ 1

.

(we have used above the inequality in, e.g., [1], p. 334, |Kn,M (ϕx)(x)| ≤
√

(n−1)x(1−x)

n+1 ).
This immediately proves the required conclusion. �

Remark 3.4. Note that the order of Lp-approximation K
(

f ; 1
2
√
n+1

)

Lp
µ

in Theorem 3.1 is, in some

sense, similar with the order of Lp-approximation for the classical Bernstein-Kantorovich operators,

τ
(

f ; 1√
n+1

)

p
, where τ(f ; δ)p is the Lp-averaged modulus of smoothness of Sendov-Popov (see, e.g.,

[3], p. 279).

Remark 3.5. For f of arbitrary sign and lower bounded on [0, 1] with f(x)−m ≥ 0, for all x ∈ [0, 1],
Theorem 3.1 still take place for the slightly modified operator

K∗
n,µ(f)(x) = Kn,µ(f −m)(x) +m.
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Indeed, we have K∗
n,µ(f)(x)− f(x) = Kn,µ(f −m)(x)− (f(x)−m) and since we may consider here

that m < 0, we immediately get

K(f −m; t)Lp
µ
= inf

g∈C1
+
[0,1]

{‖f − (g +m)‖Lp
µ
+ t‖∇g‖C[0,1]}

= inf
g∈C1

+
[0,1]

{‖f − (g +m)‖Lp
µ
+ t‖∇(g +m)‖C[0,1]}

= inf
h∈C1[0,1], h≥m

{‖f − h‖Lp
µ
+ t‖∇h‖C[0,1]}.
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ABSTRACT. In this paper we survey some recent results concerning the asymptotic behaviour of the iterates of a
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discussed. In particular we present some simple criteria concerning their asymptotic behaviour.

Finally, some applications are shown concerning Bernstein-Schnabl operators on convex compact sets and
Bernstein-Durrmeyer operators with Jacobi weights on the unit hypercube. A final section contains some sugges-
tions for possible further researches.
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1. INTRODUCTION

In this paper we survey some recent results concerning the asymptotic behaviour of the iterates
of a single Markov operator or of a sequence of Markov operators.
Such problems are connected with ergodic theory and, in particular with ergodic theorems.
Iterates of sequences of Markov operators are also involved in the constructive approxima-
tion of strongly continuous semigroups of operators and, hence, of the solutions to the initial-
boundary value differential problems governed by them.
Among other things, a characterization of the convergence of the iterates of Markov operators
toward a given Markov projection is discussed in terms of the involved interpolation sets.
The usefulness of the approximation of strongly continuous semigroups of operators in terms
of iterates, is enlightened by discussing some qualitative properties of them as well as their
asymptotic behaviour.
Finally, some applications are shown concerning Bernstein-Schnabl operators on convex com-
pact sets and Bernstein-Durrmeyer operators with Jacobi weights on the unit hypercube. A
final section contains some suggestions for possible further researches. For more details about
the results which are discussed in this paper we refer to [2], [4] and [5] and the references
therein.
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2. PRELIMINARIES AND NOTATION

Given a compact metric space X , we shall denote by C(X) the linear space of all real-valued
continuous functions on X endowed with the supremum norm

(2.1) ||f ||∞ := sup
x∈X

|f(x)| (f ∈ C(X))

and the pointwise ordering, with respect to which it is a Banach lattice.
Let BX be the σ-algebra of all Borel subsets of X and denote by M+(X) (resp., M+

1 (X)) the
subset of all Borel measures (resp. the subset of all probability Borel measures) on X .
The symbol M+(X) (resp., M+

1 (X)) designates the subset of all positive linear functionals on
C(X) (resp. the subset of all positive linear functionals µ : C(X) → R such that µ(1) = 1, 1
denoting the constant function with constant value 1).
By the Riesz representation theorem (see, e.g., [12, Section 29]), if µ ∈ M+(X) (resp. µ ∈
M+

1 (X)), then there exists a unique (regular) Borel measure µ̃ ∈ M+(X) (resp., in M+
1 (X))

such that

(2.2) µ(f) =

∫

X

f dµ̃ for every f ∈ C(X).

Moreover, ‖µ‖ = µ̃(X).
Consider a given Markov operator T : C(X) → C(X), i.e., T is positive and T (1) = 1. In the
sequel a special role will be played by the subset of interpolation points of T which is defined
by

(2.3) ∂TX := {x ∈ X | T (f)(x) = f(x) for every f ∈ C(X)},

and its possible representation by means of suitable functions.

Given a linear subspace H of C(X), its Choquet boundary ∂HX is the subset of all points
x ∈ X such that, if µ ∈ M+(X) and if µ(h) = h(x) for every h ∈ H , then µ(f) = f(x) for every
f ∈ C(X).
If H contains the constants and separates the points of X , then the Choquet boundary is non
empty.
Given a Markov operator T : C(X) → C(X), we shall set

(2.4) M := {h ∈ C(X) | T (h) = h}.

Clearly, M is contained in the range of T which will be also denoted by

(2.5) H := T (C(X)) = {T (f) | f ∈ C(X)}.

The subspace M contains the constants and hence, if it separates the points of X , then its
Choquet boundary ∂MX is not empty.

Theorem 2.1. Assume that the subspace M defined above separates the points of X . Then

∅ 6= ∂MX ⊂ ∂TX ⊂ ∂HX.

Moreover, if V is an arbitrary subset of M separating the points of X , then

∂TX = {x ∈ X | T (h2)(x) = h2(x) for every h ∈ V }.

Finally, if (hn)n≥1 is a finite or countable family of the linear subspace generated by V , separating the

points of X and such that the series Φ :=
∞∑

n=1
h2
n is uniformly convergent, then Φ ≤ T (Φ) and

∂TX = {x ∈ X | T (Φ)(x) = Φ(x)}.
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For a proof of Theorem 2.1 we refer to [2, Theorem 2.1]) (see also [5, Theorem 1.3.1]).
As a particular case of the result above, consider a compact subset X of Rd, d ≥ 1. For every
i = 1, . . . , d denote by pri the ith coordinate function on X , i.e., pri(x) := xi for every x =
(x1, . . . , xd) ∈ X , and set

Φd :=

d∑

i=1

pr2i = ‖ · ‖2,

where ‖ · ‖ stands for the Euclidean norm on R
d.

Corollary 2.1. Given a Markov operator T : C(X) → C(X) such that T (pri) = pri for every
i = 1, . . . , d, then Φd ≤ T (Φd) and

∂TX = {x ∈ X | T (Φd)(x) = Φd(x)}.

3. CONVERGENCE CRITERIA FOR NETS OF POSITIVE LINEAR OPERATORS

In this section we discuss some general criteria concerning the convergence of nets (generalized
sequences) of positive linear operators. The results seem to have an own independent interest
and they can be considered as Korovkin-type theorems with respect to a limit operator which is
an arbitrary positive linear operator rather then the identity operator. For additional Korovkin-
type theorems, we refer, e.g., to [1], [3] and the references therein.
For a given Markov operator T : C(X) → C(X), we proceed to state a criterion in terms
of the subset ∂TX defined by (2.3), which concerns the convergence of nets of positive linear
operators toward a positive linear operator S : C(X) → C(X) such that S ◦ T = S.
In the subsequent section we shall use this result in order to investigate the asymptotic be-
haviours of iterates of Markov operators.

Theorem 3.2. Let T : C(X) → C(X) be a Markov operator such that the subset ∂TX is non empty
and assume that there exists Ψ ∈ C(X), Ψ ≥ 0, such that ∂TX = {x ∈ X | Ψ(x) = 0} (for example
Ψ = T (Φ)− Φ as in Theorem 2.1).

Consider a net (Li)
≤
i∈I of positive linear operators from C(X) into itself such that

(i) (Li(1)
≤
i∈I is pointwise bounded (resp. uniformly bounded) on X .

(ii) lim
i∈I

≤Li(Ψ) = 0 pointwise (resp., uniformly) on X .

Then, lim
i∈I

≤Li(T (f)− f) = 0 pointwise (resp., uniformly) on X for every f ∈ C(X).

Accordingly, if S : C(X) → C(X) is a positive linear operator and if Li(T (f))
≤
i∈I converges pointwise

(resp., uniformly) on X to S(f) for every f ∈ C(X), then

lim
i∈I

≤Li(f) = S(f)

pointwise (resp., uniformly) on X for every f ∈ C(X). In particular, S ◦ T = S.

As a special case of Theorem 3.2 we get the following Korovkin-type result.

Corollary 3.2. Let T : C(X) → C(X) be a Markov operator such that the subspace M defined by
(2.4) separates the points of X . Furthermore, set H := T (C(X)) and consider Φ ∈ C(X) such that
Φ ≤ T (Φ) and ∂TX = {x ∈ X | T (Φ)(x) = Φ(x)}.

Given a Markov operator S : C(X) → C(X) such that S ◦ T = S, if (Li)
≤
i∈I is a net of positive linear

operators from C(X) into itself and if lim
i∈I

≤Li(h) = S(h) pointwise (resp., uniformly) on X for every

h ∈ H ∪ {Φ}, then lim
i∈I

≤Li(f) = S(f) pointwise (resp., uniformly) on X for every f ∈ C(X).
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The proofs of Theorem 3.2 and its subsequent Corollary 3.2 can be found in [2, Theorem 2.5 and
Corollary 2.7]). Note also that it can be applied, e.g., for S = T or for S = λT (λ ∈ C(X), 0 ≤ λ)
provided T is a Markov projection, i.e. T ◦ T = T .
An application of Corollary 3.2 will be shown in the subsequent Section 4 (see Theorem 5.8).
The next result can be useful to study the behaviour of nets of positive linear operators when
the limit operator is unknown. It generalizes Theorem 2 of [19]. For its proof we refer to [10,
Proposition 3.7]. In the same paper further remarks and applications can be found.
Let (E, ‖·‖) be a Banach space of real-valued functions defined on a convex subset X of a locally
convex space. Assume that the space E, endowed with its norm and the pointwise order, is a
Banach lattice.

Proposition 3.1. Let (Li)
≤
i∈I be a net of positive linear operators from E into itself and assume that for

every convex function ϕ ∈ E, the net (Li(ϕ))
≤
i∈I is decreasing (resp., increasing).

Furthermore, assume that for some convex function u ∈ E, the net (Li(u))
≤
i∈I is convergent in E. Then,

setting
A(u) := { g ∈ E |There exists λ ≥ 0 such thatλu− g andλu+ g are convex},

the net (Li(f))
≤
i∈I is convergent in E for every f ∈ A(u).

Therefore, if A(u) is dense in E and sup
i∈I, i0≤i

‖Li‖ < +∞ for some i0 ∈ I , then (Li(f))
≤
i∈I is convergent

in E for every f ∈ E.

Note that, if X is a real interval and the convex function u belongs to C2(X), then { f ∈ E ∩
C2(X) | |f ′′| ≤ λu′′ for someλ ≥ 0 } ⊂ A(u). In particular, if α := min

X
u′′(x) > 0, then {f ∈

E ∩ C2(X)| f ′′ bounded} ⊂ A(u), since |f ′′| ≤
‖f ′′‖

α
u′′ for every f ∈ E ∩ C2(X), f ′′ bounded.

Moreover, if 1 ∈ E and a net (Li)
≤
i∈I satisfies the assumptions of Proposition 3.1, then the

net (Li(1))
≤
i∈I is constant. Therefore, if E is a closed linear subspace of bounded continuous

functions on X , equipped with the uniform norm, the net (Li)
≤
i∈I is equibounded as well.

If X is a compact real interval, Proposition 3.1 applies in particular for E = C(X) and u ∈
C2(X) satisfying min

X
u′′(x) > 0.

Corollary 3.3. Given a compact real interval X , let (Ln)n≥1 be a sequence of positive linear operators
from C(X) into itself and assume that for every convex function ϕ ∈ C(X), the sequence (Ln(ϕ))n≥1

is decreasing (resp., increasing).
Further assume that for some convex function u ∈ C2(X) satisfying min

X
u′′(x) > 0, the sequence

(Ln(u))n≥1 is uniformly convergent. Then for every f ∈ C(X), the sequence (Ln(f))n≥1 is uniformly
convergent.

For a multidimensional version of the above result we refer to [18, Theorem 2.2].

4. ASYMPTOTIC BEHAVIOUR OF ITERATES OF MARKOV OPERATORS

In this section we discuss some results concerning the asymptotic behaviour of iterates of
Markov operators. For other additional results about this subject we refer, e.g., to [15, The-
orem 1], [16, Theorem 3.1], [17, Theorem 1] and [23, Theorem 2.2].
Let X be a compact metric space and consider two Markov operators S : C(X) → C(X) and
T : C(X) → C(X) such that the subspace M := {h ∈ C(X) | T (h) = h} separates the points
of X .
If S ◦ T = T , then

M ⊂ H := T (C(X)) ⊂ {h ∈ C(X) | S(h) = h}
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and hence
∅ 6= ∂MX ⊂ ∂TX ⊂ ∂HX ⊂ ∂SX.

The proof of the next result is based on Theorem 3.2. For more details we refer to [2, Theorem
3.1]).
As usual, if S : C(X) → C(X) is a linear operator, the iterates Sn, n ≥ 1, are defined recursively
by S1 := S and Sn+1 := S ◦ Sn.

Theorem 4.3. Let S : C(X) → C(X) and T : C(X) → C(X) be Markov operators and assume that
the subspace M := {h ∈ C(X) | T (h) = h} separates the points of X . Then the following statements
are equivalent:

(a) limn→∞ Sn(f) = T (f) uniformly on X for every f ∈ C(X).
(b) limn→∞ Sn(f) = T (f) pointwise on X for every f ∈ C(X).
(c) S ◦ T = T and ∂SX ⊂ ∂TX , i.e., for every x ∈ X�∂TX there exists f ∈ C(X) such that

S(f)(x) 6= f(x).
(d) S ◦T = T and for every sequence (hn)n≥1 in M separating the points of X , such that the series

Φ :=
∞∑

n=1
h2
n is uniformly convergent on X , one gets Φ ≤ S(Φ) and

{x ∈ X | S(Φ)(x) = Φ(x)} ⊂ ∂TX.

(e) There exists Φ ∈ C(X) such that Φ ≤ S(Φ) and

{x ∈ X | S(Φ)(x) = Φ(x)} ⊂ ∂TX.

Moreover, if one of the statements above holds true, then T ◦S = T , T necessarily is a Markov projection,
i.e., T ◦ T = T , and

∂TX = ∂SX = ∂HX.

It is not devoid of interest to point out that, if T : C(X) → C(X) is a Markov projection
whose range separates the points of X , considering an arbitrary function Φ ∈ C(X) such that
Φ ≤ T (Φ) and ∂HX = {x ∈ X | T (Φ)(x) = Φ(x)}, then an example of a Markov operator
S : C(X) → C(X) satisfying statement (c) of Theorem 4.3 is S := λT + (1 − λ)I , where I
denotes the identity operator on C(X) and λ ∈ C(X) satisfies 0 < λ(x) ≤ 1 for every x ∈ X .
Below we show some applications of the results we have just described.

4.1. The Poisson operator associated with the classical Dirichlet problem. Consider a
bounded open subset Ω of Rd, d ≥ 2, which we assume to be regular in the sense of poten-
tial theory (see, e.g., [3, Section 2.6]) and denote by H(Ω) the subspace of all u ∈ C(Ω) which
are harmonic on Ω.
Thus, for every f ∈ C(Ω) there exists a unique uf ∈ H(Ω) such that uf |∂Ω = f |∂Ω, i.e., uf is the
unique solution to the Dirichlet problem





△u :=
d∑

i=1

∂2u
∂x2

i

= 0 on Ω,

u|∂Ω = f |∂Ω

(u ∈ C(Ω) ∩ C2(Ω)).

For instance, each bounded convex open subset of Rd is regular. Consider the Poisson operator
T : C(Ω) → C(Ω) defined by

(4.6) T (f) := uf (f ∈ C(Ω))

The operator T is a positive projection whose range is H(Ω). Moreover,

∂H(Ω)Ω = ∂TΩ = ∂Ω.
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A direct application of Theorem 4.3 gives the following result.

Corollary 4.4. Let Ω be a regular bounded open subset of Rd, d ≥ 2, and consider the Poisson operator
T : C(Ω) → C(Ω) defined by (4.6).
Furthermore, consider a Markov operator S : C(Ω) → C(Ω) such that S(u) = u for every u ∈ H(Ω)

and assume that ∂SΩ = ∂Ω, i.e.,

for every x ∈ Ω there exists f ∈ C(Ω) such that S(f)(x) 6= f(x).

Then

lim
n→∞

Sn(f) = T (f)

uniformly on Ω for every f ∈ C(Ω).

Moreover, combining Corollaries 3.2 and 2.1, we also get the following result which might be
useful to approximate the Poisson operator.

Corollary 4.5. If (Li)
≤
i∈I is a net of positive linear operators from C(Ω) into itself and if lim

i∈I
≤Li(h) =

T (h) pointwise (resp., uniformly) on Ω for every h ∈ H(Ω)∪ {Φd}, then lim
i∈I

≤Li(f) = T (f) pointwise

(resp., uniformly) on Ω for every f ∈ C(Ω).

4.2. Bernstein-Schnabl operators on convex compact subsets. Consider a metrizable convex
compact subset K (of some locally convex Hausdorff space) and denote by A(K) the linear
subspace of all real-valued continuous affine functions on K.
Consider a positive linear projection T : C(K) → C(K) such that

(4.7) A(K) ⊂ H := T (C(K)) = {f ∈ C(K) | T (f) = f}

and

(4.8) hz,α ∈ H for every z ∈ K,α ∈ [0, 1], h ∈ H,

where

(4.9) hz,α(x) := h(αx+ (1− α)z) (x ∈ K).

For instance, if Ω is a bounded open convex subset of Rd, d ≥ 2, then the Poisson operator
defined by (4.6) is a positive projection satisfying (4.7) and (4.8).
We also recall that, if K is a Bauer simplex (see, e.g., [3, Section 5.1] and [5, Section 1.1.3])(for
instance, finite dimensional simplices are Bauer simplices), then there exists a unique positive
linear projection T : C(K) → C(K) such that

T (C(K)) = A(K).

The projection T is often referred to as the canonical positive projection associated with K.
Actually, for every f ∈ C(K), T (f) is the unique function in A(K) that coincides with f on the
subset ∂eK of the extreme points of K. Clearly, T satisfies (4.8) as well and

∂TK = ∂eK.

In the finite dimensional case, considering the canonical simplex

Kd :=

{
(x1, . . . , xd) ∈ R

d | xi ≥ 0 for every i = 1, . . . , d and
d∑

i=1

xi ≤ 1

}
.
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and setting v0 := (0, . . . , 0), v1 := (1, 0, . . . , 0), . . . , vd := (0, . . . , 0, 1), then the canonical Markov
projection Td : C(Kd) −→ C(Kd) associated with Kd, is defined by

(4.10) Td(f)(x) :=

(
1−

d∑

i=1

xi

)
f(v0) +

d∑

i=1

xif(vi)

(f ∈ C(Kd), x = (x1, . . . , xd) ∈ Kd).
When K = [0, 1], then the canonical projection is,indeed, the Markov operator T1 : C([0, 1]) →
C([0, 1]) defined by

(4.11) T1(f)(x) = (1− x)f(0) + xf(1)

(f ∈ C([0, 1]), x ∈ [0, 1]).
For several other examples we refer to [3, Section 3.3] and [5, Chapter 3].
Coming back to a general positive linear projection T : C(K) → C(K) satisfying (4.7) and (4.8),
let S : C(K) → C(K) be another positive linear operator such that

(4.12) S(h) = h for every h ∈ H

and

(4.13) ∂SK = ∂TK.

Let (µ̃S
x )x∈K be the unique family in M+

1 (K) such that

S(f)(x) =

∫

K

f dµ̃S
x (f ∈ C(K), x ∈ K).

For every n ≥ 1, x ∈ K, and f ∈ C(K), set

(4.14) Bn(f)(x) =

∫

K

· · ·

∫

K

f
(x1 + · · ·+ xn

n

)
dµ̃S

x (x1) · · · dµ̃
S
x (xn).

By the continuity property of the product measure it follows that Bn(f) ∈ C(K). Moreover,
B1 = S.
The positive linear operator Bn : C(K) → C(K) is referred to as the n-th Bernstein-Schnabl
operator associated with the positive linear operator S.
For special choices of the convex compact subset K and of the operator S, these operators turn
into the classical Bernstein operators on the unit interval, the unit d-dimensional hypercube
and the d-dimensional simplex (see, e.g., [3, Section 6.1] and [5, Chapter 3]).
First, we point out that, by using a general Korovkin-type approximation theorem, it is possible
to show that

(4.15) lim
n→∞

Bn(f) = f uniformly on K for every f ∈ C(K)

(see [5, Theorem 3.2.1]).
Let (un)n≥1 be an arbitrary (finite or countable) sequence in A(K) separating the point of K

and such that the series Φ :=
∞∑

n=1
u2
n is uniformly convergent on K.

Therefore, Φ ≤ T (Φ) and

∂HK = ∂TK = {x ∈ K | T (Φ)(x) = Φ(x)}.

Accordingly, Bn(Φ) =
1
n
S(Φ) + n−1

n
Φ, so that, for every x ∈ K,

Bn(Φ)(x)− Φ(x) = 0 if and only if S(Φ)(x)− Φ(x) = 0,
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i.e.,

∂TX = {x ∈ X | Bn(Φ)(x) = Φ(x)}

and Φ ≤ Bn(Φ). Thus all the assumptions of part (e) of Theorem 4.3 are satisfied and hence we
get that

Theorem 4.4. Under the preceeding hypotheses, for every n ≥ 1,

lim
m→∞

Bm
n (f) = T (f)

uniformly on K for every f ∈ C(K).
In particular, for n = 1,

lim
m→∞

Sm(f) = T (f)

uniformly on K for every f ∈ C(K).

The following special cases of Theorem 4.4 are worthy to be mentioned separately.

Corollary 4.6. Consider a metrizable Bauer simplex K and denote by T the canonical projection asso-
ciated with K. Let S : C(K) → C(K) be a Markov operator such that S(u) = u for every u ∈ A(K)
and ∂SK = ∂eK, i.e., for every x ∈ K�∂eK there exists f ∈ C(K) such that S(f)(x) 6= f(x).
Denoting by (Bn)n≥1 the sequence of Bernstein-Schnabl operators associated with S, then for every
n ≥ 1,

lim
m→∞

Bm
n (f) = T (f)

uniformly on K for every f ∈ C(K). In particular, for n = 1,

lim
m→∞

Sm(f) = T (f)

uniformly on K for every f ∈ C(K).

Corollary 4.7. Consider the Markov projection T1 : C([0, 1]) → C([0, 1]) defined by (4.11). Let
S : C([0, 1]) → C([0, 1]) be a Markov operator such that S(1) = 1, S(e1) = e1 and ∂S [0, 1] = {0, 1}
i.e., for every x ∈]0, 1[ there exists f ∈ C([0, 1]) such that S(f)(x) 6= f(x).
Denoting by (Bn)n≥1 the sequence of Bernstein-Schnabl operators associated with S, then for every
n ≥ 1,

lim
m→∞

Bm
n (f) = T1(f)

uniformly on [0, 1] for every f ∈ C([0, 1]). In particular, for n = 1,

lim
m→∞

Sm(f) = T1(f)

uniformly on [0, 1] for every f ∈ C([0, 1]).

Remark 4.1. Corollaries 4.6 and 4.7 apply in particular when, respectively, K = Kd and S = Td,
d ≥ 1 (see (4.10)) and when K = [0, 1] and T = T1. In these cases, the corresponding Bernstein-
Schnabl operators are, indeed, the classical Bernstein operators on Kd and on [0, 1].

In addition to the previous results, it is possible to investigate the limit behaviour of the iterates
of Bernstein-Schnabl operators associated with a Markov projection even when the order of
iteration depend of n ≥ 1. The proof of the next result relies on Corollary 3.2 (see also [3,
Theorem 6.1.3] or [5, Theorem 3.2.10]).
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Theorem 4.5. Let T : C(K) → C(K) be a positive Markov projection satisfying (4.7) and (4.8), and
consider the relevant sequence (Bn)n≥1 of Bernstein-Schnabl operators defined by (4.14) (with S = T ).
If f ∈ C(K) and if (k(n))n≥1 is a sequence of positive integers, then

lim
n→∞

Bk(n)
n (f) =





f uniformly on K if k(n)
n

→ 0,

T (f) uniformly on K if k(n)
n

→ +∞.

It is worthy to point out that, under some additional assumptions on T , the sequence
(B

k(n)
n (f))n≥1 (f ∈ C(K)) converges uniformly also when k(n)

n
−→ t ∈]0,+∞[.

More precisely, if K is a subset of Rd, d ≥ 1, with non-empty interior and if T maps the sub-
space of all polynomials of degree m into itself for every m ≥ 1, then for every t ≥ 0 there
exists a Markov operator T (t) : C(K) −→ C(K) such that for every f ∈ C(K) and for every
sequence (k(n))n≥1 of positive integers satisfying k(n)

n
−→ t,

T (t)f = lim
n→∞

Bk(n)
n (f) uniformly on K.

Moreover the family (T (t))t≥0 is a strongly continuous semigroup of operators (briefly, C0-
semigroup of operators) whose generator (A,D(A)) is the closure of the operator (Z,D(Z))
where

D(Z) := {u ∈ C(K) | lim
n→∞

n(Bn(u)− u) exists in C(K)}

and, for every u ∈ D(Z) ⊂ D(A)

A(u) = Z(u) = lim
n→∞

n(Bn(u)− u) uniformly on K.

Furthermore, C2(K) ⊂ D(Z) ⊂ D(A) and for every u ∈ C2(K)

(4.16) Au(x) = Zu(x) =
1

2

d∑

i,j=1

αij(x)
∂2u(x)

∂xi∂xi

(x = (xi)1≤i≤d) where for every i, j = 1, . . . , d

αij(x) := T (priprj)(x)− xixj .

The differential operator (4.16) is an elliptic second order differential operator which degener-
ates on ∂TK (which contains the subset ∂eK of the extreme points of K).
For more details on the above results and, especially, for the rich theory which is related to
them we refer to [3, Chapter 6] and [5, Chapters 4 and 5]. This theory stresses an interesting
relationship among positive semigroups, initial-boundary value problems, Markov processes
and constructive approximation theory. Some aspects of them will be also treated in the subse-
quent Sections 5 and 6.

5. ITERATES AND CONSTRUCTIVE APPROXIMATION OF SEMIGROUPS OF OPERATORS

Iterates of (positive) linear operators can be usefully involved in the constructive approxima-
tion as well as in the qualitative study of (positive) C0-semigroups of operators and, hence of
the solutions to the initial-boundary value problems governed by them. For a short introduc-
tion to the theory of C0-semigroups of operators we refer, e.g., to [5, Chapter 2].
We begin by recalling the following results which is a consequence of a more general one due
to H. F. Trotter (see [25] or [5, Corollary 2.2.3]).

Theorem 5.6. Let E be a Banach space and let (Ln)n≥1 be a sequence of bounded linear operators on
E. Suppose that
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(i) (stability conditions) there exist M ≥ 1 and ω ∈ R such that

‖Lk
n‖ ≤ Meω

k
n for every k, n ≥ 1.

Furthermore, let (A0, D0) be a linear operator defined on a dense subspace D0 of E and assume that

(ii) (core condition) (λID0
−A0)(D0) is dense in E for some λ > ω;

(iii) (asymptotic formula) lim
n→∞

n(Ln(u)− u) = A0(u) for every u ∈ D0.

Then (A0, D0) is closable and its closure (A,D(A)) is the generator of a C0-semigroup (T (t))t≥0 on E
such that

(1) ‖T (t)‖ ≤ Meωt for every t ≥ 0;

(2) T (t)(f) = lim
n→∞

L
k(n)
n (f)

for every f ∈ E and t ≥ 0 and for every sequence (k(n))n≥1 of positive integers satisfying lim
n→∞

k(n)
n

=

t.

The core condition (ii) is often difficult to verify; in the special case where ω = 0 in (i), i.e.,
‖Ln‖ ≤ 1, then it can be replaced by

(ii)∗ there exists a family (Ei)i∈I of finite dimensional subspaces of D0 which are invariant
under each Ln and whose union

⋃
i∈I

Ei is dense in E.

This variant of Trotter theorem is due to R. Schnabl (see [24] or [5, Corollary 2.2.11]). Note also
that, because of assumptions (i) and (iii), necessarily

lim
n→∞

Ln(u) = u for every u ∈ E.

i.e., (Ln)n≥1 is an approximation process on E.
In the sequel, a C0-semigroup (T (t))t≥0 which is approximate by a sequence (Ln)n≥1 as in for-
mula (2) of Theorem 5.6, will be referred to as the limit semigroup associated with the sequence
(Ln)n≥1. Furthermore, a sequence (Ln)n≥1 verifying conditions (i), (ii), (iii) (resp. conditions
(i), (ii)∗, (iii)) will be referred to as a Trotter-type admissible sequence (resp. a Schnabl-type
admissible sequence).
The generator (A,D(A) of such semigroup will be also referred to as the generator of the se-
quence (Ln)n≥1.
Formula (2) of Theorem 5.6 has been successfully and mainly used in order to infer some prop-
erties of the sequence (Ln)n≥1, notably, their saturation properties or, e.g., if E is a Banach
function space, converse theorems of convexity (see, e.g., [14], [21], [24], [3, Section 6.1, pp.
420-421] and the references therein).
Starting from the late eighties, we started a long series of investigations, which are also related
to these theorems, but we developed a different point of view.
As it is well-known, each C0− semigroup (T (t))t≥0 of operators on a Banach space E gives
rise, indeed, to its infinitesimal generator A : D(A) → E, which is defined on a dense subspace
D(A) of E, and to which it corresponds an abstract Cauchy problem, namely

(5.17)





du(t)

dt
= Au(t) t ≥ 0,

u(0) = u0 u0 ∈ D(A).

When E is a "concrete" continuous function space on a domain X of Rd, d ≥ 1, the operator
A mostly is a differential operator and problem (5.17) turns into an initial-boundary value
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evolution problem

(5.18)





∂u

∂t
(x, t) = A(u(·, t))(x) x ∈ X, t ≥ 0,

u(x, 0) = u0(x) u0 ∈ D(A), x ∈ X,

the boundary conditions being incorporated in the domain D(A).
Moreover, problem (5.17) (resp. problem (5.18)) has a unique solution if and only if u0 ∈ D(A)
and, in such a case, the solution is given by

u(t) = T (t)u0 (t ≥ 0)

(resp.
u(x, t) = T (t)u0(x) (x ∈ X, t ≥ 0))

and hence, by using the approximation formula (2) of Theorem 5.6,

(5.19) u(x, t) = T (t)(u0)(x) = lim
n→∞

Lk(n)
n (u0)(x),

where the limit is uniform with respect to x ∈ X .
Therefore, if it is possible to determine the operator A and its domain D(A), the initial sequence
(Ln)n≥1 become the key tool to approximate and to study (especially, from a qualitative point
of view) the solutions to problems (5.17) or (5.18).
For instance,

• If H is a closed subset of E which is invariant under the operators Ln, i.e., Ln(H) ⊂ H
for every n ≥ 1, then T (t)(H) ⊂ H for every t ≥ 0.
In such a case, this inclusion represents an abstract "spatial regularity results" in the
sense that

u(t) ∈ H for every t ≥ 0 whenever u0 ∈ H.

or, respectively,

u(·, t) ∈ H for every t ≥ 0 whenever u0 ∈ H.

• In several contexts, the approximation formula of the semigroup in terms of iterates of
the operators Ln allows to determine its asymptotic behaviour, i.e., to determine

lim
t→+∞

T (t)u in E (u ∈ E)

or, respectively,
lim

t→+∞
u(x, t) (u ∈ E, x ∈ K)

(see, for instance, the subsequent Theorems 5.7 and 5.8).
• if E is a Banach lattice and each Ln is positive, then the semigroup (T (t))t≥0 is positive;

hence u(t) ≥ 0 for every t ≥ 0 provided that u0 ≥ 0.
• if E is a Banach lattice and each Ln is positive, then

u ≤ Ln(u) =⇒ u ≤ T (s)u ≤ T (t)u (u ∈ E, 0 ≤ s ≤ t).

Furthermore, when E = C(X), X compact space, or E = C0(X), X locally compact space, and
the operators Ln, n ≥ 1, are positive, then the positive semigroup governs a right-continuous
normal Markov process having X as a state space (see, e.g., [3, Section 1.6, pp. 68 - 73]); hence,
by means of the operators Ln, it is also possible to investigate some qualitative properties of
the transition functions associated with the Markov process.
Particular attention deserves the important case when the approximating operators are con-
structively generated by a given positive linear operator T : C(X) → C(X) which, in turn,



Iterates of Markov Operators and Constructive Approximation of Semigroups 33

allows to determine the differential operator (A,D(A)) as well, X being a compact subset of
R

d, d ≥ 1, having non-empty interior.
As a matter of fact, the linear operators generated by such general approach generalize positive
approximating operators which are well-known in Approximation Theory, such as Bernstein
operators, Kantorovich operators and others ones, and they shed new light on these classical
operators and on their usefulness.
Moreover, initial-boundary value evolution problems corresponding to these particular set-
tings, are of current interest as they occur in the study of diffusion problems arising from dif-
ferent areas such as biology, mathematical finance and physics. For more details and for several
other aspects related to the above outlined theory, we refer to the monographs [3], [5] and to
the recent paper [4].
Below, we show another general property of limit semigroups in the context of C(X) spaces,
X compact metric space.
Consider indeed a compact metric space (X, d) and set

δ(X) := sup{d(x, y) | x, y ∈ X}

and

Lip(X) := {f ∈ C(X) | |f |Lip := sup
x,y∈X
x 6=y

|f(x)− f(y)|

d(x, y)
< +∞}.

We also recall that every Markov operator T on C(X) admits at least one invariant probability
measure, i.e., a measure µ ∈ M+

1 (X) such that

(5.20)
∫

X

T (f)dµ =

∫

X

fdµ for every f ∈ C(X)

(see, e.g., [20, Section 5.1, p. 178]). Therefore, for every p ∈ [1,+∞[, from the Hölder inequality
it turns out that for every f ∈ C(X),

∫

X

|T (f)|pdµ ≤

∫

X

T (|f |p)dµ =

∫

X

|f |pdµ

and hence T extends to a unique bounded linear operator Tp : Lp(X,µ) → Lp(X,µ) such that
||Tp|| ≤ 1. Furthermore, Tp is positive as C(X) is a sublattice of Lp(X,µ) and, if 1 ≤ p < q <
+∞, then Tp = Tq on Lq(X,µ).
From now on, for a given p ∈ [1,+∞[, if no confusion can arise, we shall denote by T̃ the
operator Tp.
In the sequel, given µ ∈ M+

1 (X), we shall denote by Λ(µ) the subset of all Markov operators T
on C(X) for which µ is an invariant measure.
The next result can be found in [11], Corollary 2.5.

Theorem 5.7. Consider a C0-semigroup (T (t))t≥0 of Markov operators and assume that it is the limit
semigroup associated with some sequence of Markov operators (Ln)n≥1. Furthermore, assume that

(i) There exists ω ∈ R, ω < 0, such that for every n ≥ 1, Ln(Lip(X)) ⊂ Lip(X) and

|Ln(f)|Lip ≤
(
1 + ω

n

)
|f |Lip for every f ∈ Lip(X).

(ii) There exists µ ∈ M+
1 (X) such that Ln ∈ Λ(µ) for every n ≥ 1.

Then

(1) For every n ≥ 1 and f ∈ C(X)

(5.21) lim
m→∞

Lm
n (f) =

∫

X

fdµ uniformly on X.
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(2) For every t ≥ 0, T (t)(LipX) ⊂ Lip(X) and |T (t)f |Lip ≤ exp(ωt)|f |Lip (f ∈ Lip(X)) .
Moreover, each T (t) is invariant under µ, and

(5.22) lim
t→+∞

T (t)f =

∫

X

fdµ uniformly on X

for every f ∈ C(X).

(3) If 1 ≤ p < +∞, denoting by (L̃n)n≥1 and (T̃ (t))t≥0 the relevant extensions to Lp(X,µ), then

(T̃ (t))t≥0 is a C0-semigroup on Lp(X,µ) and for every n ≥ 1 and f ∈ Lp(X,µ),

(5.23) lim
m→∞

L̃m
n (f) =

∫

X

fdµ = lim
t→+∞

T̃ (t)f in Lp(X,µ).

Remark 5.2. Note that the property of the theorem above which states that each T (t) is invariant under
µ, means that

∫

X

u(x, t)dµ(x) =

∫

X

u0(x)dµ(x) for every u0 ∈ D(A) and t ≥ 0,

u(x, t) being the solution to the initial-boundary value problem governed by the semigroup (T (t))t≥0.

The next result is also useful to investigate the limit behaviour of the C0-semigroups. The proof
depends on Corollary 3.2 (when S = T )(for more details see [2, Theorem 2.9] and [23]).

Theorem 5.8. Let X be a compact metric space and consider a Markov projection T : C(X) → C(X)
such that its range H := T (C(X)) separates the points of X . Further, consider Φ ∈ C(X) of the

form Φ =
∞∑

n=1
h2
n as in Theorem 2.1 (with each hn ∈ H), so that Φ ≤ T (Φ) and ∂HX = {x ∈ X |

T (Φ)(x) = Φ(x)}.
Let (Ln)n≥1 be a sequence of Markov operators on C(X) such that Ln(h) = h for every h ∈ H and
n ≥ 1 and set

(5.24) an,p := max
x∈X

{T (Φ)(x)− Φ(x)− pn(Ln(Φ)(x)− Φ(x))}

(n ≥ 1, p ≥ 1).
Finally, assume that the sequence (Ln)n≥1 generates a limit C0-semigroup (T (t))t≥0.
If lim

p→∞
an,p = 0 uniformly with respect to n ≥ 1, then

(5.25) lim
t→+∞

T (t)(f) = T (f)

uniformly on X for every f ∈ C(X).

6. AN APPLICATION: BERNSTEIN-DURRMEYER OPERATORS WITH JACOBI WEIGHTS ON THE

UNIT HYPERCUBE

In this section we discuss some applications of the previous results concerning a sequence of
Markov linear operators acting on weighted Lp-spaces on the unit hypercube Qd := [0, 1]d,
d ≥ 1, which have been recently introduced and studied in [4].
These operators map weighted Lp-functions into polynomials on Qd and generalize the
Bernstein-Durrmeyer operators with Jacobi weights on [0, 1] ([13], [22]).
Although we are mainly interested in the role which they play in the approximation of the
corresponding limit semigroups, it seems that they also have an interest on their own as an
approximation sequence for continuous functions as well as for weighted Lp-functions.
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We begin by fixing some additional notation. Let γ = (γ1, . . . , γd) ∈ R
d, d ≥ 1. If

x = (x1, . . . , xd) ∈ R
d, with xi > 0 for every i = 1, . . . , d, we set

xγ :=

d∏

i=1

xγi

i .

For x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ R
d, we write x ≤ y if xi ≤ yi for every i = 1, . . . , d.

Let j = (j1, . . . , jd), k = (k1, . . . , kd) ∈ N
d be two multi-indices such that k ≤ j; we set

(
j

k

)
:=

d∏

i=1

(
ji
ki

)
.

From now on we fix a = (a1, . . . , ad), b = (b1, . . . , bd) ∈ R
d with ai > −1 and bi > −1 for all

i = 1, . . . , d.
Let us denote by µa,b ∈ M+

1 (Qd) the absolutely continuous measure with respect to the Borel-
Lebesgue measure λd on Qd with density the normalized Jacobi weight

wa,b(x) :=
xa(1− x)b∫

Qd
ya(1− y)b dy

(x ∈
◦

Qd =]0, 1[d).

Moreover, for every n ≥ 1, consider the operator Mn : L1(Qd, µa,b) → C(Qd) defined by
setting, for every f ∈ L1(Qd, µa,b) and x ∈ Qd,

Mn(f)(x) :=
∑

h∈Nd

0d≤h≤nd

ωnd,h(f)

(
nd

h

)
xh(1d − x)nd−h,(6.26)

where, for every n ≥ 1 and h = (h1, . . . hd) ∈ N
d, 0d ≤ h ≤ nd,

ωnd,h(f) :=
1∫

Qd
yh+a(1d − y)nd−h+b dy

∫

Qd

yh(1d − y)nd−hf(y) dµa,b(y)

=

d∏

i=1

Γ(n+ ai + bi + 2)

Γ(hi + ai + 1)Γ(n− hi + bi + 1)

∫

Qd

yh+a(1d − y)nd−h+bf(y) dy,

Γ(u) (u ≥ 0) being the classical Euler Gamma function.
Clearly, the restriction of each Mn to C(Qd) is a Markov operator on C(Qd).
As we shall see, these operators are closely related to the degenerate second-order elliptic dif-
ferential operator defined by

(6.27) A(u)(x) =
d∑

i=1

xi(1− xi)
∂2u

∂x2
i

(x) + (ai + 1− (ai + bi + 2)xi)
∂u

∂xi

(x)

for every u ∈ C2(Qd) and x = (x1, . . . , xd) ∈ Qd.
Operators similar to (6.27) arise in the theory of Fleming-Viot processes applied to some
models of population dynamics which, however, usually take places in the framework of d-
dimensional simplices.
Due to their intrinsic interest, more recently an increasing attention has been turned to them
also in the setting of hypercubes as well. The difficulties in studying them lie in the fact that
they degenerate on the boundary of Qd, which is not smooth because of the presence of sides
and corners.
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The next result shows that operator (6.27) is the pregenerator of a Markov semigroup on C(Qd)
and of a positive contraction semigroup in Lp(Qd, µa,b); moreover, both these semigroups are
the limit semigroups associated with the operators Mn.

Theorem 6.9. The differential operator (A,C2(Qd)) defined by (6.27) is closable and the sequence
(Mn)n≥1 is a Schnabl-type admissible sequence (with D0 = C2(Qd)), whose limit semigroup is gener-
ated by the closure (B,D(B)) of (A,C2(Qd)).
Moreover, P∞ :=

⋃∞
m=1 Pm, and hence C2(Qd), is a core for (B,D(B)) and T (t)(Pm) ⊂ Pm for every

t ≥ 0 and m ≥ 1, where Pm denotes the linear subspace generated by the polynomials on Qd of degree
≤ m.

Considering the measure µa,b ∈ M+
1 (Qd) with density the normalized Jacobi weight wa,b(x) (x ∈

◦

Qd),
then, for every f ∈ C(Qd) and n ≥ 1,

lim
t→+∞

T (t)(f) = lim
m→∞

Mm
n (f) =

∫

Qd

fdµa,b

uniformly on Qd, and the measure µa,b is the unique invariant measure on Qd for both the sequence
Mn≥1 and the semigroup (T (t))t≥0.
Finally, if f ∈ Lip(Qd), then, for every n,m ≥ 1 and t ≥ 0,

∣∣∣∣
∣∣∣∣M

m
n (f)−

∫

Qd

fdµa,b

∣∣∣∣
∣∣∣∣
∞

≤ 2
(
1 +

ω

n

)m
|f |Lip

and ∣∣∣∣
∣∣∣∣T (t)(f)−

∫

Qd

fdµa,b

∣∣∣∣
∣∣∣∣
∞

≤ 2 exp(ωt)|f |Lip,

where

(6.28) ω := − min
1≤i≤d

ai + bi + 2

ai + bi + 3
< 0.

The above Markov semigroup can be extended, indeed, to each Lp(Qd, µa,b) space (1 ≤ p <
+∞) as the next result shows.

Theorem 6.10. For every 1 ≤ p < +∞, the semigroup (T (t))t≥0 on C(Qd) extends to a unique pos-
itive contraction semigroup (Tp(t))t≥0 on Lp(Qd, µa,b), whose generator is an extension of (B,D(B))
to Lp(Qd, µa,b) and P∞ is a core for it. Moreover, if f ∈ Lp(Qd, µa,b) and (k(n))n≥1 is an arbitrary
sequence of positive integers satisfying lim

n→∞
k(n)/n = t, then

Tp(t)(f) = lim
n→∞

Mk(n)
n (f) in Lp(Qd, µa,b).

Finally, if f ∈ Lp(Qd, µa,b) and n ≥ 1,

lim
t→+∞

Tp(t)(f) = lim
m→∞

Mm
n (f) =

∫

Qd

fdµa,b

in Lp(Qd, µa,b).

Below we discuss some consequences of Theorem 6.9 (for additional details and proofs we refer
to [4]).
Consider the abstract Cauchy problem associated with the closure (B,D(B)) of (A,C2(Qd))

(6.29)





∂u

∂t
(x, t) = B(u(·, t))(x) x ∈ Qd, t ≥ 0,

u(x, 0) = u0(x) u0 ∈ D(B), x ∈ Qd.
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Since (B,D(B)) generates a Markov semigroup (T (t))t≥0, problem (6.29) admits a unique so-
lution u : Qd × [0,+∞[−→ R given by u(x, t) = T (t)(u0)(x) for every x ∈ Qd and t ≥ 0. Hence,
taking Theorem 6.9 into account, we may approximate such a solution in terms of iterates of
the Mn’s, namely

(6.30) u(x, t) = T (t)(u0)(x) = lim
n→∞

Mk(n)
n (u0)(x),

where (k(n))n≥1 is an arbitrary sequence of positive integers satisfying lim
n→∞

k(n)/n = t, and

the limit is uniform with respect to x ∈ Qd.
Note that B coincides with A on C2(Qd); therefore, if u0 ∈ Pm (m ≥ 1), then u(x, t) is the
unique solution to the Cauchy problem





∂u

∂t
(x, t)=

d∑
i=1

xi(1−xi)
∂2u

∂x2
i

(x, t)+(ai+1−(ai + bi + 2)xi)
∂u

∂xi

(x, t) x ∈ Qd,

t ≥ 0,

u(x, 0) = u0(x) x ∈ Qd,

and

(6.31) u(·, t) ∈ Pm for every t ≥ 0.

Moreover, each u(·, t), t ≥ 0, has the same integral of u0 with respect to the measure µa,b and,
thanks to formula (6.9),

(6.32) lim
t→+∞

u(x, t) =

∫

Qd

u0 dµa,b

uniformly w.r.t. x ∈ Qd.
Next, we enlighten other spatial regularity properties of the solution u(·, t) to (6.29), which,
however, we state in terms of the semigroup (T (t))t≥0.
We set

(6.33) Lip(Qd) :=



f ∈ C(Qd) | |f |Lip := sup

x,y∈Qd
x 6=y

|f(x)− f(y)|

‖x− y‖1
< +∞





and, for M > 0,

(6.34) Lip(M, 1) := {f ∈ Lip(Qd) | |f(x)− f(y)| ≤ M‖x− y‖1} ,

where ‖ · ‖1 is the norm on R
d defined by ‖x‖1 :=

∑d
i=1 |xi|, for every x = (x1, . . . , xd) ∈ R

d.
More generally, given 0 < α ≤ 1, we shall denote by Lip(M,α) the subset of all Hölder contin-
uous functions f on Qd with exponent α and constant M , i.e.,

(6.35) |f(x)− f(y)| ≤ M‖x− y‖α1 for every x, y ∈ Qd.

Theorem 6.11. Let ω be the constant defined by (6.28).The following statements hold true:

(a) T (t)(Lip(Qd)) ⊂ Lip(Qd) for every t ≥ 0; moreover, for every f ∈ Lip(Qd) and t ≥ 0,

(6.36) |T (t)(f)|Lip ≤ exp(ωt)|f |Lip;

in particular, if f ∈ Lip(M, 1), then, for every t ≥ 0,

T (t)(f) ∈ Lip(M exp (ωt), 1).



38 F. Altomare

(b) For every f ∈ C(Qd), t ≥ 0, δ > 0,

(6.37) Ω(T (t)(f), δ) ≤ (1 + exp (ωt))Ω(f, δ).

where Ω(g, δ) := sup{|g(x)− g(y)| | x, y ∈ Qd, ‖x− y‖1 ≤ δ} denotes the usual modulus of
continuity (g : Qd → R bounded function and δ > 0).

Moreover, if M > 0 and 0 < α ≤ 1,

(6.38) T (t)(Lip(M,α)) ⊂ Lip(M exp(αωt), α) ⊂ Lip(M,α)

(see (6.35)).
(c) If f ∈ C(Qd) is convex with respect to each variable, then so is T (t)(f) for every t ≥ 0. In

particular, if d = 1 and if f ∈ C([0, 1]) is convex, then T (t)(f) is convex for every t ≥ 0.

7. AN INVITATION FOR FURTHER RESEARCHES

The above outlined theory shows that, generally speaking, some sequences of positive linear
operators can be fruitfully used not only as approximation processes in various function spaces,
but also to approximate and to infer qualitative properties of solutions to initial-boundary
value problems.
On the light of this second aspect, it seems to be not devoid of interest to look at a kind of
inverse problem, namely, given a (degenerate) second-order elliptic differential operator

A0(u)(x) =
1

2

d∑

i,j=1

αij(x)
∂2u

∂xi∂xj

(x) +
d∑

i=1

βi(x)
∂u

∂xi

(x)

(u ∈ C2(X), αij , βi ∈ C(X), x ∈ X) with X subset of Rd, d ≥ 1, having non-empty interior, try
to investigate whether it is possible to construct a suitable Trotter-Schnabl type approximation
sequence in a suitable Banach function space such that the closure of (A0, C

2(X)) (if it exists)
is the relevant generator.
In order to reach this purpose, it might be fully justified to modify well-know classical approx-
imation processes as well as to try to generalize them introducing more general methods of
construction such as, for instance, those which arise from a Markov operator ([3], [5], [6], [7]),
even though such last methods seem to have an own intrinsic theoretical interest.
Toward the above mentioned direction several researches have been already developed both
in one dimensional contexts (bounded and unbounded interval) and in multidimensional con-
texts, but it seems that there are still new and interesting cases worthy to be investigated. For
more details we refer, e.g., to [8], [9] and the references therein.
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ABSTRACT. In this paper, we obtain a Prešić type common fixed point theorem for four maps in b-dislocated metric
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1. INTRODUCTION AND PRELIMINARIES

There are several generalizations of the Banach contraction principle in literature on fixed
point theory. Recently, very interesting results regarding fixed point are presented in the papers
([3, 4, 5, 7]. One of the generalization is a famous Prešić type fixed point theorem. There are
a lot of generalizations of mentioned theorem (more on this topic see [1]-[2], [7]-[15]). Hitzler
and Seda [6] introduced the concept of dislocated metric spaces (metric like spaces in [5], [15])
and established a fixed point theorem in complete dislocated metric spaces to generalize the
celebrated Banach contraction principle. Recently Hussain et al. [7] introduced the definition
of b - dislocated metric spaces to generalize the dislocated metric spaces introduced by [6] and
proved two common fixed point theorems for four self mappings.

In this paper we have proved Prešić type common fixed point theorem for four mappings
in b - dislocated metric spaces. One numerical example is also presented to illustrate our main
theorem. We also obtained two corollaries for three and two maps in b - dislocated metric
spaces.

Now we give some known definitions, lemmas and theorems which are needful for further
discussion. Throughout this paper, N denotes the set of all positive integers.

Prešić [10] generalized the Banach contraction principle as follows.

Theorem 1.1. [10] Let (X, d) be a complete metric space, k be a positive integer and T : Xk → X be a
mapping satisfying

(1.1) d(T (x1, x2, . . . , xk), T (x2, x3, . . . , xk+1)) ≤
k

∑

i=1

qid(xi, xi+1),

for all x1, x2, . . . , xk+1 ∈ X, where qi ≥ 0 and
k
∑

i=1

qi < 1. Then there exists a unique point

x ∈ X such that T (x, x, ...., x) = x. Moreover, if x1, x2, . . . , xk are arbitrary points in X and for
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n ∈ N, xn+k = T (xn, xn+1, . . . , xn+k−1), then the sequence {xn} is convergent and lim
n→∞

xn =

T ( lim
n→∞

xn, lim
n→∞

xn, . . . , lim
n→∞

xn).

Inspired by the Theorem 1.1, Ćirić and Prešić [8] proved the following theorem.

Theorem 1.2. [8] Let (X, d) be a complete metric space, k a positive integer and T : Xk → X be a
mapping satisfying

(1.2) d(T (x1, x2, · · · , xk), T (x2, x3, · · · , xk+1)) ≤ λ max{d(xi, xi+1) : 1 ≤ i ≤ k}
for all x1, x2, · · · , xk, xk+1 in X , and λ ∈ (0, 1). Then there exists a point x ∈ X such that

x = T (x, x, ...., x).
Moreover, if x1, x2, . . . , xk are arbitrary points in X and for n ∈ N, xn+k = T (xn, xn+1, . . . , xn+k−1),

then the sequence {xn} is convergent and lim
n→∞

xn = T ( lim
n→∞

xn, lim
n→∞

xn, . . . , lim
n→∞

xn). If in addi-

tion, we suppose that on diagonal ∆ ⊂ Xk, d(T (u, u, ..., u), T (v, v, ..., v)) < d(u, v) holds for u, v ∈ X

with u 6= v, then x is the unique fixed point satisfying x = T (x, x, ..., x).

Later Rao et al. [11, 12] obtained some Presić fixed point theorems for two and three maps
in metric spaces.

Definition 1.1. Let X be a nonempty set, k a positive integer and T : X2k → X and f : X → X . The
pair (f, T ) is said to be 2k-weakly compatible if f(T (x, x, ..., x)) = T (fx, fx, ..., fx) whenever there
exists x ∈ X such that fx = T (x, x, ..., x)

Actully Rao et al. [11] obtained the following.

Theorem 1.3. Let (X, d) be a metric space and k be any positive integer. Let S, T : X2k −→ X and
f : X −→ X be mappings satisfying

(1) d(S(x1, x2, ..., x2k), T (x2, x3, ..., x2k+1)) ≤ λ max{d(fxi, fxi+1) : 1 ≤ i ≤ 2k}
for all x1, x2, ..., x2k, x2k+1 ∈ X,where λ ∈ (0, 1).

(2) d(S(u, u, ..., u), T (v, v, ..., v)) < d(fu, fv) for all u, v ∈ X with u 6= v

(3) Suppose that f(X) is complete and either (f, S) or (f, T ) is 2k-weakly compatible pair.

Then there exists a unique point p ∈ X such that p = fp = S(p, p, .., p, p) = T (p, p, .., p, p).

Hussain et al. [7] introduced b-dislocated metric spaces as follows.

Definition 1.2. Let X be a non empty set. A mapping bd : X ×X → [0,∞) is called a b - dislocated
metric (or simply bd-metric) if the following conditions hold for any x, y, z ∈ X and s ≥ 1:

(bd1) : If bd(x, y) = 0 then x = y,
(bd2) : bd(x, y) = bd(y, x),
(bd3) : bd(x, y) ≤ s[bd(x, z) + bd(z, y)].

The pair (X, bd) is called a b-dislocated metric space or bd-metric space.

Definition 1.3. [7]

(i) A sequence {xn} in b-dislocated metric space (X, bd) converges with respect to bd if there exists
x ∈ X such that bd(xn, x) converges to 0 as n → ∞. In this case, x is called the limit of {xn}
and we write xn → x.
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(ii) A sequence {xn} in a b-dislocated metric space (X, bd) is called a
bd - Cauchy sequence if given ε > 0, there exists n0 ∈ N such that
bd(xm, xn) < ε for all n,m ≥ n0 or lim

n,m→∞
bd(xm, xn) = 0.

(iii) A b-dislocated metric (X, bd) is called bd−complete if every bd-Cauchy sequence in X is bd -
convergent.

Lemma 1.1. [7] Let (X, bd) be a b-dislocated metric space with s ≥ 1.
Suppose that {xn} and {yn} are bd-convergent to x, y respectively. Then we have

1

s2
bd(x, y) ≤ lim

n→∞
inf bd(xn, yn) ≤ lim

n→∞
sup bd(xn, yn) ≤ s2 bd(x, y),

and
1

s
bd(x, z) ≤ lim

n→∞
inf bd(xn, z) ≤ lim

n→∞
sup bd(xn, z) ≤ s bd(x, z)

for all z ∈ X .

2. MAIN RESULT

We introduce the definition of jointly 2k−weakly compatible pairs as follows.

Definition 2.4. Let X be a nonempty set, k a positive integer and S, T : X2k → X and f, g : X → X .
The pairs (f, S) and (g, T ) are said to be jointly 2k-weakly compatible if

f(S(x, x, ..., x)) = S(fx, fx, ..., fx)

and
g(T (x, x, ..., x)) = T (gx, gx, ..., gx)

whenever there exists x ∈ X such that fx = S(x, x, ..., x) and gx = T (x, x, ..., x).

Now we give our main result. The contractive condition in the next theorem is similar with
conditions in [2, 7, 10, 13].

Theorem 2.4. Let (X, bd) be a bd−complete b-dislocated metric space with s ≥ 1 and k be any positive
integer. Let S, T : X2k −→ X and f, g : X −→ X be mappings satisfying

(2.3) S(X2k) ⊆ g(X), T (X2k) ⊆ f(X),

(2.4)

bd(S(x1, x2, ..., x2k), T (y1, y2, ..., y2k)) ≤ λ max















bd(gx1, fy1), bd(fx2, gy2),
bd(gx3, fy3), bd(fx4, gy4),
..................................

bd(gx2k−1, fy2k−1), bd(fx2k, gy2k)















for all x1, x2, ..., x2k, y1, y2, .., y2k ∈ X,where λ ∈ (0, 1
s2k

).

(2.5) (f, S) and (g, T ) are jointly 2k − weakly compatible pairs,

Assume that there exists u ∈ X such that fu = gu whenever there is sequence(2.6)

{y2k+n}∞n=1 ∈ X with lim lim
n→∞

y2k+n = fu = gu = z ∈ X.
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Then z is the unique point in X such that z = fz = gz = S(z, z, .., z, z) = T (z, z, ..., z, z).

Proof. Suppose x1, x2, ..., x2k are arbitrary points in X , From (2.3), we can define

y2k+2n−1 = S(x2n−1, x2n, ..., x2k+2n−2) = gx2k+2n−1,

and
y2k+2n = T (x2n, x2n+1, ..., x2k+2n−1) = fx2k+2n, n = 1, 2, . . .

Let
α2n = bd(fx2n, gx2n+1),

and
α2n−1 = bd(gx2n−1, fx2n) n = 1, 2, . . .

Write θ = λ
1

2k and µ = max{α1

θ
, α2

(θ)2 , ....,
α2k

(θ)2k
}.

Then 0 < θ < 1 and by the selection of µ, we have

(2.7) αn ≤ µ · (θ)n, n = 1, 2, . . . , 2k

Consider

α2k+1 = bd(gx2k+1, fx2k+2) = bd(S(x1, x2, ..., x2k−1, x2k), T (x2, x3, ..., x2k, x2k+1))(2.8)

≤ λ max















bd(gx1, fx2), bd(fx2, gx3),
bd(gx3, fx4), bd(fx4, gx5),
...................................

bd(gx2k−1, fx2k), bd(fx2k, gx2k+1)















≤ λ max{α1, α2, α3, α4, ...., α2k−1, α2k}
≤ λ max{µ · θ, µ · (θ)2, ..., µ · (θ)2k},
= λµ · θ = µ · θ · (θ)2k = µ · (θ)2k+1.

using (2.7),
and

(2.9) α2k+2 = bd(fx2k+2, gx2k+3)

= bd(T (x2, x3, ..., x2k, x2k+1), S(x3, x4, ..., x2k+1, x2k+2))

= bd(S(x3, x4, ..., x2k+1, x2k+2), T (x2, x3, ..., x2k, x2k+1))

≤ λ max















bd(gx3, fx2), bd(fx4, gx3),
bd(gx5, fx4), bd(fx6, gx5),
...................................

bd(gx2k+1, fx2k), bd(fx2k+2, gx2k+1)















≤ λ max{α2, α3, α4, α5, ...., α2k, α2k+1}
≤ λ max{µ · (θ)2, µ · (θ)3, ..., µ · (θ)2k, µ · (θ)2k+1},
= λµ · (θ)2 = µ · (θ)2(θ)2k = µ · (θ)2k+2,

using (2.7) and (2.8).
Continuing in this way, we get

(2.10) αn ≤ µ · (θ)n,
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for n = 1, 2, . . .
Consider now

(2.11) bd(y2k+2n−1, y2k+2n) = bd(S(x2n−1, x2n, ..., , x2k+2n−2), T (x2n, x2n+1, ..., x2k+2n−1))

≤ λ max















bd(gx2n−1, fx2n), bd(fx2n, gx2n+1),
........................................

bd(gx2k+2n−3, fx2k+2n−2),
bd(fx2k+2n−2, gx2k+2n−1)















≤ λ max{α2n−1, α2n, ...., α2k+2n−3, α2k+2n−2}
≤ λ max{µ · (θ)2n−1, µ · (θ)2n, ..., µ · (θ)2k+2n−3, µ · (θ)2k+2n−2},
= λµ · (θ)2n−1 = µ · (θ)2k(θ)2n−1 = µ · (θ)2k+2n−1

Also

(2.12) bd(y2k+2n, y2k+2n+1) = bd(T (x2n, x2n+1, ..., x2k+2n−1), S(x2n+1, x2n+2, . . . , x2k+2n))

= bd(S(x2n+1, x2n+2, . . . , x2k+2n), T (x2n, x2n+1, . . . , x2k+2n−1))

≤ λ max















bd(gx2n+1, fx2n), bd(fx2n+2, gx2n+1),
bd(gx2n+3, fx2n+2), bd(fx2n+4, gx2n+3),
........................................................

bd(gx2k+2n−1, fx2k+2n−2), bd(fx2k+2n, gx2k+2n−1)















≤ λ max{α2n, α2n+1, α2n+2, α2n+3, ...., α2k+2n−1}
≤ λ max{µ · (θ)2n, µ · (θ)2n+1, ..., µ · (θ)2k+2n−1},
= λµ · (θ)2n = µ · (θ)2n(θ)2k = µ · (θ)2k+2n.

From (2.11) and (2.12), we have

(2.13) bd(y2k+n, y2k+n+1) ≤ µ · (θ)2k+n, n = 1, 2, 3, . . .

Now, using (2.13), for m > n and using the fact that s > 1 we have

bd(y2k+n, y2k+m) ≤









s bd(y2k+n, y2k+n+1) + s2 bd(y2k+n+1, y2k+n+2)
+s3 bd(y2k+n+2, y2k+n+3) + ...+
sm−n−1 bd(y2k+m−1, y2k+m)









≤
(

s µ · (θ)2k+n + s2 µ · (θ)2k+n+1 + s3 µ · (θ)2k+n+2

+...+ sm−n−1µ · (θ)2k+m−1,

)

≤ µ ·
[

(sθ)2k+n + (sθ)2k+n+1 + (sθ)2k+n+2

+...+ (sθ)2k+m−1]

]

≤ µ(sθ)2k
[

(sθ)n

1− sθ

]

since sθ = sλ
1

2k < s · 1
s
= 1

→ 0 as n → ∞,m → ∞.

Therefore, {y2k+n} is a Cauchy sequence in (X, bd). Since X is bd−complete, there exists
z ∈ X such that y2k+n → z as n → ∞.



Prešić Type Results 45

From (2.6), there exists u ∈ X such that

(2.14) z = fu = gu.

Now consider

bd(S(u, u, ..., u), y2k+2n) = bd(S(u, u, ..., u), T (x2n, x2n+1, ..., x2n+2k−1))

≤ λ max







bd(gu, fx2n), bd(fu, gx2n+1),
...........................................

bd(gu, fx2k+2n−2), bd(fu, gx2k+2n−1)







.

Letting n → ∞ and using (2.14), we get

(2.15)
1

s
bd(S(u, u, ..., u), fu) ≤ 0 so that S(u, u, ..., u) = fu.

Similarly we have

(2.16) T (u, u, ..., u) = gu.

Since (f, S) and (g, T ) are jointly 2k-weakly compatible pairs and from (2.15) and (2.16), we
have

(2.17) fz = f(fu) = f(S(u, u, ..., u)) = S(fu, fu, ..., fu) = S(z, z, ..., z),

and

(2.18) gz = T (z, z, ..., z, z).

Now using (2.16) and (2.17), we get

bd(fz, z) = bd(fz, gu)

= bd(S(z, z, ..., z, z), T (u, u, ..., u, u))

≤ λ max















bd(gz, fu), bd(fz, gu),
bd(gz, fu), bd(fz, gu),
..........................

bd(gz, fu), bd(fz, gu)















≤ λ max{bd(gz, z), bd(fz, z)}.
Thus

(2.19) bd(fz, z) ≤ λmax{bd(gz, z), bd(fz, z)}.
Similarly, we have

(2.20) bd(gz, z) ≤ λmax{bd(gz, z), bd(fz, z)}.
From (2.19) and (2.20), we have

max{bd(gz, z), bd(fz, z)} ≤ λ max{bd(gz, z), bd(fz, z)}.
which in turn yields that

(2.21) fz = z = gz.

From (2.17), (2.18) and (2.21), we have

(2.22) fz = z = gz = S(z, z, ..., z, z) = T (z, z, ..., z, z).
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Suppose there exists z′ ∈ X such that
z′ = fz′ = gz′ = S(z′, z′, ..., z′, z′) = T (z′, z′, ..., z′, z′).
Then from (2.4), we have

bd(z, z
′) = bd(S(z, z, ..., z, z), T (z

′, z′, ..., z′, z′))

≤ λ max







bd(gz, fz
′), bd(fz, gz

′),
..........................

bd(gz, fz
′), bd(fz, gz

′)







≤ λbd(z, z
′).

This implies that z′ = z.
Thus z is the unique point in X satisfying (2.22). �

Now we give an example to illustrate our main Theorem 2.4.

Example 2.1. Let X = [0, 1] and bd(x, y) = |x+ y|2 and k = 1.

Define S(x, y) = 3x2+2y√
4608

, T (x, y) = 2x+3y2

√
4608

, fx = x
6 and gx = x2

4

for all x, y ∈ X . Then clearly s = 2. Then for all x1, x2, y1, y2 ∈ X ,
we have

bd(S(x1, x2), T (y1, y2)) = |3x
2
1 + 2x2√
4608

+
2y1 + 3y22√

4608
|2

=

(

x2
1

16
√
2
+

x2

24
√
2
+

y1

24
√
2
+

y22

16
√
2

)2

=
1

2

((

x2
1

16
+

y1

24

)

+

(

x2

24
+

y22
16

))2

=
1

32

((

x2
1

4
+

y1

6

)

+

(

x2

6
+

y22
4

))2

=
1

8





(

x2

1

4 + y1

6

)

+
(

x2

6 +
y2

2

4

)

2





2

≤ 1

8

(

max

{

x2
1

4
+

y1

6
,
x2

6
+

y22
4

})2

=
1

8
max

{

(

x2
1

4
+

y1

6

)2

,

(

x2

6
+

y22
6

)2
}

where used the following:

a+ b

2
≤ max{a, b}, (max(a, b))2 = max{a2, b2},

for non-negative a and b. Here λ = 1
8 ∈ (0, 1

4 ) = (0, 1
22 ) = (0, 1

s2k
).

One can easily verify the remaining conditions of Theorem 2.4. Clearly 0 is the unique point in X

such that f0 = 0 = g0 = S(0, 0) = T (0, 0).

Corollary 2.1. Let (X, bd) be a bd−complete b - dislocated metric space with s ≥ 1 and k be any positive
integer. Let S, T : X2k −→ X and f : X −→ X be mappings satisfying
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(2.23) S(X2k) ⊆ g(X), T (X2k) ⊆ f(X),

bd(S(x1, x2, ..., x2k), T (y1, y2, ..., y2k)) ≤ λmax{bd(fxi, fyi) : 1 ≤ i ≤ 2k}(2.24)

for all x1, x2, ..., x2k, y1, y2, .., y2k ∈ X,where λ ∈ (0,
1

s2k
)

(2.25) f(X) is abd − complete subspace of X

(2.26) (f, S) or (f, T ) is 2k − dweakly compatible pair.

Then there exists a unique point u ∈ X such that u = fu = S(u, u, .., u, u) = T (u, u, .., u, u).

Corollary 2.2. Let (X, bd) be a bd−complete b - dislocated metric space with s ≥ 1 and k be any positive
integer. Let S, T : X2k −→ X be mappings satisfying

bd(S(x1, x2, ..., x2k), T (y1, y2, ..., y2k)) ≤ λ max{bd(xi, yi) : 1 ≤ i ≤ 2k}(2.27)

for allx1, x2, ..., x2k, y1, y2, .., y2k ∈ X,where λ ∈ (0,
1

s2k
)

Then there exists a unique point u ∈ X such that u = S(u, u, .., u, u) = T (u, u, .., u, u).
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