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Abstract 

In the present study, efforts have been made to numerically evaluate elastic displacements and stresses in a 

convergent or divergent hyperbolic disk subjected to a centrifugal force of constant circular velocity.  The disk 

material is assumed to be continuously radially functionally graded (FG) with two orthotropic materials based on 

the simplest Voigt rule with a power of volume fraction of two constituents. The fibers are assumed to be aligned 

along either radial (RR) or circumferential (CR) directions. Having been a second order differential equation with 

variable coefficients, the governing equation so-called Navier equation is first derived and then put in the form of 

two differential equations of first order. These two ordinary differential equation set is originally solved based on 

the initial value problem (IVP) by employing the Complementary Functions Method (CFM). The numerical results 

are verified with the corresponding benchmark results for uniform thickness FG polar orthotropic disks. The radial 

variation of the elastic fields in a hyperbolic disk is investigated for several boundary conditions, disk profile 

parameters, and the gradient parameter for both the radially and circumferentially aligned fibers. Some numerical 

results are also presented. Under the case that is considered in this study, it is revealed that the CR disk offers 

much higher elastic fields than RR disk under all boundary conditions. For a composite rotating disk rotating at 

a constant speed, it will be better to align fibers along the radial directions, to use convergent disk profiles, and 

to locate the material having higher radial stiffness at the outer surface. It is also disclosed that the location of the 

maximum Von-Mises equivalent stress in fixed-free disks varies regarding the fiber orientation.  

Keywords: Anisotropic, complementary functions method, composite rotating disk, elasticity solution, 

functionally graded, initial value problem, polar orthotropic, variable-thickness, Voigt rule. 

1. Introduction 

Rotating disks are essential elements of turbine rotors, compressors, flywheels, automobile disc 

brake systems, gears, and etc.  Today’s scientific works focus on the use of advanced materials 

so that discs can withstand much higher rotational speeds and resulting stresses.  

Rotating disk is a common component in diverse engineering applications such as turbine 

rotors, compressors, flywheels, disk brakes in automobiles, gears, computer disk drives, and 

etc. 
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Anisotropic materials whose mechanical properties change in certain directions allow engineers 

to design and manufacture rotating disks that can withstand much higher critical/burst speeds 

than those made from common isotropic materials. As a new kind of advanced structural 

composite materials, FGMs have made considerable headway since the 1990s by virtue of their 

impeccable heat-resistance features. Despite the open literature contains many studies having 

very high academic standard on anisotropic disks, on FG metal-ceramic disks or the disks which 

are functionally graded with isotropic materials, any of them is not included in this article due 

to the space limitation. 

Using anisotropic/orthotropic materials to form FG new kind nonhomogeneous materials is also 

one of the new trends in engineering design. There are, therefore, a limited number of works on 

FG disks composed of anisotropic materials in the open literature [1-8]. From those, Durodola 

and Attia [1] considered FG orthotropic materials to study deformation and stresses in rotating 

hollow uniform disks. Chen et al. [2] offered a three-dimensional analytical solution for a 

uniform rotating disk made of exponentially functionally graded materials with transverse 

isotropy. Kansal and Parvez [3] dealt with stress analysis on orthotropic graded rotating annular 

disks subjected to parabolic temperature distributions. Lubarda [4] analytically and numerically 

studied the elastic response of a uniformly pressurized cylindrically anisotropic hollow uniform 

thin rotating disks by using both the finite difference method and a Fredholm integral equation. 

Fredholm integral equation was also employed by Peng and Li [5] to consider FG hollow polar-

orthotropic rotating disks under free-free and fixed-free boundary conditions.  Kacar and 

Yıldırım [6] offered analytical formulas for the displacement and stress determination in polar 

orthotropic functionally power-law graded polar orthotropic rotating uniform disks under three 

boundary conditions. Essa and Argeso [7] developed analytical solutions for the analysis of 

elastic polar orthotropic FG annular free-free and fixed-free disks rotating with constant angular 

velocity. The elasticity moduli and thickness were assumed to be varied radially by a nonlinear 

function controlled by three parameters, while the radial variation of density may be defined by 

any form of continuous function. Essa and Argeso [7] also validated their analytical solutions 

by the use of a computational model based on the nonlinear shooting method. Based on the 

finite difference method and Voigt grading rule, Zheng et al. [8] numerically studied 

displacements and stress fields in a functionally graded fiber reinforced non-uniform thickness 

disk mounted on a rotating shaft and subjected to angular deceleration. The disk profile in the 

form of )/(  r  and circumferentially reinforced fibers were considered in this 

comprehensive study. Zheng et al. [8] concluded that the disk deceleration has no effect on the 

radial and hoop stresses except the shear stress.  

As seen from the open literature that there are few studies considered the CR-disks (Fig. 1) [8-

12]. As far as the author knows, moreover, there is scarcely any comparative study on the elastic 

behavior of functionally graded CR and RR orthotropic disks. This was also a motivation for 

the author. 
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CR-disk                   RR-disk 

Fig. 1. Circumferentially and radially aligned disks  

 

In this work, a comprehensive analysis that inspects the elastic characteristics of both RR and 

CR disks made of FG orthotropic materials and having either divergent or convergent 

hyperbolic disk profiles is presented (Figs. 1-2). A Voigt rule with a power of volume fraction 

of two orthotropic constituents is used to determine the radial variation of elastic constants. 

Poisson’s ratios are taken to be constant. Within the frame of infinitesimal deformations and 

axisymmetric plane stress elasticity theory, Navier equation is derived and solved numerically 

based on the Complementary Functions Method (CFM) under three types of boundary 

conditions: free-free (traction-free inner and outer surfaces), fixed-free (rigidly circular shaft-

mounted inner surface and traction-free outer surface), and fixed-guided (rigidly circular shaft-

mounted inner surface and rigidly-cased outer surface). The present results are verified with the 

available literature [5].  

 

Convergent (m<0)             Divergent (𝑚>0) 

Fig. 2. Convergent and divergent hyperbolic disk profiles  

2. Derivation and Solution of Navier Equation 

Under small deformation assumptions, the strain-displacement relation is given by 

𝜀𝑟(𝑟) =
d𝑢𝑟(𝑟)

𝑟
,   𝜀𝜃(𝑟) =

𝑢𝑟(𝑟)

𝑟
 

 

(1) 

By presuming a state of axisymmetric plane stress (since the thickness/diameter ratio is far less 

than one) constitutive equation for RR-disk is to be (for CR disk, simply use 

𝐸1 = 𝐸𝜃, 𝐸2 = 𝐸𝑟 , 𝜈12=𝜈𝜃𝑟) 
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𝜎r(r) = −
𝐸𝜃𝜈𝑟𝜃

𝜈𝜃𝑟(𝜈𝑟𝜃𝜈𝜃𝑟 − 1)
𝜀𝑟(𝑟) −

𝐸𝜃𝜈𝑟𝜃

(𝜈𝑟𝜃𝜈𝜃𝑟 − 1)
𝜀𝜃(r)

= 𝐶11(𝑟)𝜀𝑟(𝑟) + 𝐶12(𝑟)𝜀𝜃(𝑟) 

 

𝜎𝜃(𝑟) = −
𝐸𝜃𝜈𝑟𝜃

(𝜈𝑟𝜃𝜈𝜃𝑟 − 1)
𝜀𝑟(𝑟) −

𝐸𝜃

(𝜈𝑟𝜃𝜈𝜃𝑟 − 1)
𝜀𝜃(𝑟) =  𝐶12(𝑟)𝜀𝑟(𝑟) + 𝐶22(𝑟)𝜀𝜃(𝑟) 

 

 

 

 

 

(2) 

The equilibrium equation under the centrifugal forces is 

(ℎ(𝑟)𝑟𝜎𝑟(𝑟))
′

− ℎ(𝑟)𝜎𝜃(𝑟) + 𝜌(𝑟)ℎ(𝑟)𝜔2𝑟2 = 0 

 

(3) 

Poisson’s ratio are related by Maxwell’s theorem as follows 

𝜈𝜃𝑟

𝐸𝜃(𝑟)
=

𝜈𝑟𝜃

𝐸𝑟(𝑟)
 

 

(4) 

Navier equation is derived from the field equations given above as follows 

𝑑2𝑢𝑟(𝑟)

𝑑𝑟
+(

1

𝑟
+

𝑑𝐶11(𝑟)
𝑑𝑟

𝐶11(𝑟)
+

𝑑ℎ(𝑟)
𝑑𝑟

ℎ(𝑟)
) 

𝑑𝑢𝑟(𝑟)

𝑑𝑟
 

+ ( −
𝐶22(𝑟)

𝑟2𝐶11(𝑟)
+

𝐶12(𝑟)

𝑟𝐶11(𝑟)
(

𝑑𝐶11(𝑟)
𝑑𝑟

𝐶11(𝑟)
+

𝑑ℎ(𝑟)
𝑑𝑟

ℎ(𝑟)
))𝑢𝑟(r)= −

𝜌(𝑟)𝜔2𝑟

𝐶11(𝑟)
 

 

 

 

 

 

 

(5) 

This equation is a second order differential equation with variable coefficients for boundary 

value problems (BVP). IVP form of the above Navier equation may be derived as follows 

𝑑𝑢𝑟(𝑟)

𝑑𝑟
= −

𝐸𝜃(𝑟)𝜈𝑟𝜃

𝑟𝐸𝑟(𝑟)
𝑢𝑟(𝑟) −

(𝜈𝑟𝜃𝜈𝜃𝑟 − 1)

𝐸𝑟(𝑟)
𝜎𝑟(𝑟) 

𝑑𝜎𝑟(𝑟)

𝑑𝑟
= −

𝐸𝜃(𝑟)(𝐸𝑟(𝑟) − 𝐸𝜃(𝑟)𝜈𝑟𝜃
2 )

𝑟2𝐸𝑟(𝑟)(𝜈𝑟𝜃𝜈𝜃𝑟 − 1)
𝑢𝑟(𝑟) 

+ (
𝐸𝜃(𝑟)𝜈𝑟𝜃

𝑟𝐸𝑟(𝑟)
−

1

𝑟
−

𝑑ℎ(𝑟)
𝑑𝑟

ℎ(𝑟)
) 𝜎𝑟(𝑟) − 𝜌(𝑟)𝜔2𝑟 

 

(6a) 

 

 

 

 

 

 

(6b) 

Equation (6) is written in a compact form of 

𝑑𝒁(𝑟)

𝑑𝑟
= 𝑫(𝑟)𝒁(𝑟) + 𝒇(𝑟) 

 

(7) 

where 
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𝒁(𝑟) = {
𝑢𝑟(𝑟)

𝜎𝑟(𝑟)
} = {

𝑧1(𝑟)

𝑧2(𝑟)
} 

𝒇(𝑟) = {
0

−𝜌(𝑟)𝜔2𝑟
} 

𝐷11 = −
𝐸𝜃(𝑟)𝜈𝑟𝜃

𝑟𝐸𝑟(𝑟)
 

𝐷12 = −
(𝜈𝑟𝜃𝜈𝜃𝑟 − 1)

𝐸𝑟(𝑟)
 

𝐷21 = −
𝐸𝜃(𝑟)(𝐸𝑟(𝑟) − 𝐸𝜃(𝑟)𝜈𝑟𝜃

2 )

𝑟2𝐸𝑟(𝑟)(𝜈𝑟𝜃𝜈𝜃𝑟 − 1)
 

𝐷22 =
𝐸𝜃(𝑟)𝜈𝑟𝜃

𝑟𝐸𝑟(𝑟)
−

1

𝑟
−

𝑑ℎ(𝑟)
𝑑𝑟

ℎ(𝑟)
 

 

(8a) 

 

 

(8b) 

 

 

(8c) 

 

 

(8d) 

 

 

(8e) 

 

 

 

 

 

 

(8f) 

 

The general solution of Eq. (7) in CFM over the interval [a, b] is given by [13-17] 

𝑧1(𝑟) = 𝑥0(𝑟) + 𝑏1𝑥1(𝑟) + 𝑏2𝑥2(𝑟) 

𝑧2(𝑟) = 𝑦0(𝑟) + 𝑏1𝑦1(𝑟) + 𝑏2𝑦2(𝑟) 

 

(9) 

where unknown functions 𝑥0, 𝑥1, 𝑥2 and 𝑦0, 𝑦1, 𝑦2 are calculated by using those prescribed 

boundary conditions given in Table 1 in the first three stages of the method. At the final stage, 

the physical boundary conditions given in Table 2 are imposed in Eq. (9) to determine the 

remaining unknowns, 𝑏1 and 𝑏2. The solution has then been completed. 

Table 1. Procedure for the first three steps of CFM 

Let Solve Eq.(7) with the following prescribed 

initial conditions 

Find 

{
𝑧1 = 𝑥0

𝑧2 = 𝑦0
} with f(r)≠0 

{
𝑧1(a) = 0

𝑧2(a) = 0
} {

𝑥0

𝑦0
} 

{
𝑧1 = 𝑥1

𝑧2 = 𝑦1
} with f(r)=0 

{
𝑧1(a) = 1
𝑧2(a) = 0

} {
𝑥1

𝑦1
} 

{
𝑧1 = 𝑥2

𝑧2 = 𝑦2
} with f(r)=0 

{
𝑧1(a) = 0
𝑧2(a) = 1

} {
𝑥2

𝑦2
} 
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Table 2. Boundary conditions taken into consideration 

 𝑟 = a 𝑟 = 𝑏 

Free-Free  𝜎𝑟(𝑎) =  0 𝜎𝑟(𝑏) = 0 

Fixed-Free  𝑢𝑟(a) = 0  σr(b) = 0 

Fixed-Guided  𝑢𝑟(a) = 0 𝑢𝑟(b) = 0 

3. Material and Geometry of the Disk 

A hyperbolic disk profile function is determined as follows 

ℎ(𝑟) = ℎ𝑏 (
𝑟

𝑏
)

𝑚

   

 

(10) 

In Eq. (10), m=0 represents the uniform disk. Positive profile parameters offer divergent 

hyperbolic disks while the negative ones render convergent disks (Fig. 2). 

In the present study, Voigt rule is employed with a power of volume fraction of constituents as 

follows [5]  

𝑉𝐵 = (
𝑟𝑛 − 𝑎𝑛

𝑏𝑛 − 𝑎𝑛
) , 𝑛 > 0 

 

(11) 

In this function (Fig. 3), the outer surface is to be Material B-rich (woven Glass fiber/Epoxy 

prepreg) while the inner surface is Materal A-rich (An injection molded Nylon 6 composite 

containing 40 wt% short glass fiber) (Table 3). 
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Fig. 3. Variation of volume fraction of the outer surface material  

 

Table 3. Anisotropic materials and their properties. 

 𝐸𝑟  (GPa) 𝐸𝜃(GPa) 𝜌 (kg/m3) 𝜈𝑟𝜃 

Material-A [18] 12.0 20.0 1600 0.21 

Material-B [9] 21.8  26.95  2030 0.15 

 

Based on the Voigt mixture rule, the radial variation of the effective material properties such as 

𝐸𝑟(𝑟), 𝐸𝜃(𝑟),  and 𝜌(𝑟) are defined by 

𝑃(𝑟) = 𝑃𝐴𝑉𝐴 + 𝑃𝐵𝑉𝐵 = 𝑃𝐴(1 − 𝑉𝐵) + 𝑃𝐵𝑉𝐵 = (𝑃𝐵 − 𝑃𝐴)𝑉𝐵 + 𝑃𝐴 

 

(12) 

It is worth noting that, in the present numerical analysis, the arithmetic mean of Poisson’s ratios 

of two orthotropic materials is considered. 

𝜈𝑟𝜃 =
𝜈𝑟𝜃

𝐴 + 𝜈𝑟𝜃
𝐵

2
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

(13) 
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Fig. 4. Validation of the present results with Reference [5] (𝜎𝑜 = 12𝐺𝑃𝑎. 𝜌𝑜 = 1600𝑘𝑔/𝑚3) 

4. Numerical Study 

The dimensionless elastic fields are defined as 

𝑢
_

𝑟 =
Eo

𝜌𝑜𝜔2𝑏3
 𝑢𝑟, 𝜎

_

𝑟 =
σr

𝜌𝑜𝜔2𝑏2
, 𝜎

_

𝜃 =
σθ

𝜌𝑜𝜔2𝑏2
 

(14) 

To verify the present numerical results with material properties given in Table 3, the example 

in Reference [5] is re-considered. Results are illustrated in Fig. 4.  



V. Yıldırım 

284 

 

Comparison of the graphs in Fig. 4 and Reference [5] shows a good harmony although very 

minor differences are observed in the variation of the radial displacement. The reason of this 

that Peng and Li [5] used 𝜈𝑟𝜃 = 0.35 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 along the radial coordinate. As stated before, 

the arithmetic mean of Poisson’s ratios is employed in the present study as in Eq. (13).   

 

 

Fig. 5. Equivalent stress variation in a convergent free-free disk 

Unless otherwise stated,𝜎𝑜 = 20𝐺𝑃𝑎, 𝜌𝑜 = 1600𝑘𝑔/𝑚3, a/b=0.2 and material properties in 

Table 3 are used in the other examples in this section. The following is also to be used for 

calculation of the equivalent von-Mises stresses. 

𝜎𝑒𝑞 = √𝜎𝑟
2 − 𝜎𝑟𝜎𝜃 + 𝜎𝜃

2 (15) 
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Table 3. Elastic fields in a disk mounted a rigid shaft at its center for both RR-aligned and CR-aligned 

fibers (Fixed-Free / n=1.5/𝜎𝑜 = 20𝐺𝑃𝑎, 𝜌𝑜 = 1600𝑘𝑔/𝑚3) 

r/b 𝑢
_

𝑟 𝜎
_

𝑟 𝜎
_

𝜃 𝜎
_

𝑒𝑞 

 m = - 0.75 (Convergent) - RR 

0.20 0.000000 0.254942 0.070393 0.228045 

0.36 0.058276 0.267503 0.239232 0.254547 

0.52 0.109178 0.267832 0.298127 0.284193 

0.68 0.149197 0.226587 0.310756 0.278384 

0.84 0.173387 0.138394 0.289906 0.251152 

1.00 0.178150 0.000000 0.240057 0.240057 

 m = - 0.75 (Convergent) - CR 

0.20 0.000000 0.397176 0.069018 0.367560 

0.36 0.053761 0.367496 0.167605 0.318670 

0.52 0.097730 0.329748 0.206547 0.288594 

0.68 0.130795 0.260380 0.218750 0.242262 

0.84 0.150247 0.152298 0.206644 0.185539 

1.00 0.153441 0.000000 0.167250 0.167250 

 m = 0 (Uniform) - RR 

0.20 0.000000 0.498896 0.137752 0.446261 

0.36 0.093347 0.367826 0.367436 0.367631 

0.52 0.155521 0.311798 0.407678 0.369197 

0.68 0.197666 0.238967 0.397688 0.346737 

0.84 0.220296 0.136596 0.359863 0.314649 

1.00 0.223040 0.000000 0.300546 0.300546 

 m = 0 (Uniform) - CR 

0.20 0.000000 0.857362 0.148986 0.793430 

0.36 0.094259 0.542222 0.275015 0.469595 

0.52 0.151229 0.400530 0.298017 0.360380 

0.68 0.186970 0.281421 0.293677 0.287745 

0.84 0.204963 0.152405 0.269602 0.234145 

1.00 0.205853 0.000000 0.224380 0.224380 

 m = 0.75 (Divergent) - RR 

0.20 0.000000 0.951731 0.262785 0.851320 

0.36 0.145635 0.483175 0.549678 0.519628 

0.52 0.217426 0.347049 0.548290 0.480397 

0.68 0.258985 0.242830 0.504968 0.437422 

0.84 0.278433 0.131066 0.445852 0.396896 

1.00 0.278505 0.000000 0.375286 0.375286 

 m = 0.75 (Divergent) - CR 

0.20 0.000000 1.809360 0.314418 1.674440 

0.36 0.162007 0.767196 0.442271 0.666997 

0.52 0.231863 0.464214 0.427418 0.446954 

0.68 0.267464 0.291406 0.396815 0.356013 

0.84 0.281906 0.147241 0.356954 0.310705 

1.00 0.279353 0.000000 0.304494 0.304494 
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Fig. 6. Elastic fields in a convergent fixed-free RR-disk 
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Results are presented in Table 3 and Figs. 5-9 for various cases. As explained before, Young’s 

modulus in the radial direction of the outer surface material (Material-B) is assumed to be higher 

than the other. Table 3 reveals that the convergent hyperbolic profile and RR orientation are 

better than uniform and divergent ones since they offer smaller equivalent stresses under 

rotation and fixed-free boundary conditions. Figs. 5-9 suggest that RR disks have smaller 

equivalent stresses than CR ones under all boundary conditions. Fig. 6 and 8 disclosed that the 

location of the maximum equivalent stress in fixed-free disk depends on the fiber orientation.    

 

Fig. 7. Equivalent stress variation in a convergent fixed-fixed RR-disk 

5. Conclusions 

From the present study conducted with CFM the following results are achieved: i) CR-disks 

have higher equivalent stresses than RR-disks, ii) the location of the maximum Von-Mises 

equivalent stress in fixed-free disks depends on the fiber orientation, iii) if the outer surface 

material has higher radial stiffness than the inner surface material, a RR-disk having convergent 

profile has the smallest equivalent stresses than uniform and divergent ones under all boundary 

conditions.  

Nomenclature 

a, b   : Inner and outer radii of the disk 

Cij     : Stiffness components 

E(r)   : Effective Young’s modulus 

𝐸𝑟, 𝐸𝜃   : Young’s moduli along radial and tangential directions 

h(r) : Disk profile function 

m    : Hyperbolic disk profile parameter 

n  : Gradation parameter 

r, θ   : Radial and tangential coordinates 

ur    : Radial displacement 

V     : Volume fraction 
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Fig. 8. Elastic fields in a convergent fixed-free CR-disk  
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Fig. 9. Equivalent stress variation in a convergent fixed-fixed CR-disk 

 

𝜀𝑟, 𝜀𝜃   : Radial and tangential normal strain components 

ρ          : Material density 

σeq     : Equivalent Von-Mises stress    

σr,σθ   : Normal radial and hoop stresses 

ω  : Circular frequency 

νrθ, νθr   : Anisotropic Poisson’s ratios 

Subcripts 

a, A : At the inner surface 

b, B : At the outer surface 

o : Reference value of the quantity 

Overscripts 

_  : Dimensionless quantity 
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Abstract 

The aim of this work is to represent a quick and truthful modality to obtain frequencies of microwires and 

nanowires which are widely used in nanosensors, nanocircuit and many more susceptible scientific areas.  In this 

paper, modal analysis of micro and nano sized wires is investigated using COMSOL software. To obtain first ten 

mode shapes and eigenfrequencies of silicon carbide nanowire, thirty-nine modes is calculated. Results are given 

in figures captured from the software. 

Keywords: Modal analysis, microwires, nanowires, SiCNW, COMSOL.  

1. Introduction 

As experimental analyzes of very small structures like carbon nanotubes (CNT), silicon carbide 

nanotubes (SiCNT), boron nitride nanotubes (BNNT), zinc oxide nanotube (ZnO) and 

nanowires of homologous structures is very-high costed and take a long time, many methods 

have been developed to make analysis possible without any experiment. Similarly, atomic 

simulation and molecular dynamic analysis need too much time to analyze nanotubes in case 

of buckling and vibration. Continuum mechanics models have been widely used to perform 

modal, dynamic and stability analysis using mathematical model [1-4]. Computer softwares 

have also been widely used to perform modal, dynamic and stability analysis in recent years [5-

8]. Most of analysis softwares is not able to model structures in micro and nano size. 

Determining the critical buckling loads and frequencies of nanotubes is very important in case 

of designing for its particular using areas.      

Finite element method (FEM) is a very time-effective method if meshing phase is done 

properly. This method has been used for a very wide range of analysis. Many different 

geometries can be modeled using the method such as very complex parts of engineering systems 

[9-15], beams, plates [16], shells [17, 18], human body parts such as kidney, bone etc. [19-22]. 

The computer software used to obtain mode shapes and eigenfrequencies is a finite element 

method based software. 
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2. Modelling Structures  

Meshing is the most important part of software analyzes [23]. Inaccurate meshing leads to 

inaccurate results in modal, dynamic, and stability analyzes. For example, coarse meshing as it 

can be seen In Fig. 1 (a) would end up with improper results for current model. On the other 

hand, too fine meshing (Fig. 1 (c)) would end up with accurate and close results to experiments 

however analyzes would take very long time due to very much calculating vertexes in body. 

 

Fig. 1. Meshing nanostructures 

Ideal meshing steps of a modeled nanotube is demonstrated in Fig. 1. respectively. In first step, 

skewed and irregular links between vertexes is observed and demonstrated in red circles (Fig. 

1(a)). After fixing this issue (Fig. 1. (b)) it is observed that none of vertex were placed 

throughout the thickness of nanotube, this issue would lead to inaccurate results due to none of 

calculation throughout the thickness of nanotube. To overcome this issue, the spacing between 

vertexes is reduced (Fig. 1 (c)). As it can be seen in Fig. 1 (c). As it is stated before, too fine 

meshing would take very long time of analyzes due to very much calculating vertexes in body. 

Spacing between vertexes is extended for the body while reduced spacing is preserved along 

the thickness of nanostructure (Fig. 1 (d)). 
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3. Modal Analysis of SiCNW 

COMSOL Multiphysics [24] is used to model and perform modal analysis on selected silicon 

carbide nanowire (SiCNW). Subsequent to meshing, needed material properties (Young’s 

modulus 0.62 TPa and Poisson ratio 0.37) and geometrical properties is defined [25, 26]. 

Eventually, intended boundary conditions is defined (simply support in this case).  

 

Mode 1 

 

Mode 2 

 

Mode 3 

 

Mode 4 

 

Mode 5 

 

Mode 6 
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Mode 37 Mode 38 

 

Mode 39 

Fig. 2. First thirty-nine modes of SiCNW 

The aim of the analysis is to obtain first ten eigenfrequency values and mode shapes of silicon 

carbide nanowire (SiCNW). First thirty-nine modes of SiCNW is calculated and results are 

demonstrated in Fig. 2. The cause to calculating thirty-nine modes is to obtain the proper first 

ten modal analysis results. As it can be clearly seen from Fig. 2, mode number calculated by 

the software include symmetrical modes and undesirable distensions modes. To overcome this 

issue, first ten mode numbers need to be selected carefully from thirty-nine mode shapes. 

Sifting mode shapes can be easily done by visual choosing in current software. Familiar mode 

shapes can be easily differed from others while symmetric shapes need some more attention. In 

Fig. 3, selected and intended analyzes results is demonstrated with related eigenfrequencies. 
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Fig. 3. Sifted first ten modes of SiCNW 
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5. Conclusions 

In present study, the modal analysis of SiCNW is investigated using COMSOL Multiphysics 

computer software. Also, the right way of meshing and preparing micro and nano sized 

structures is demonstrated. To obtain intended first ten modes of SiCNW, thirty-nine modes 

needed to be calculated. After calculating mode shapes, results are sifted and desired first ten 

mode shapes are illustrated with related eigenfrequency value. This is a paper to give the 

introduction to finite element analysis softwares in micro and nano sizes. The future works can 

be comparing these results with size effective theories and see the validation of size effective 

constants. 
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Abstract 

The paper describes the matrix parameters of continuous control system by a regression approach: state -space 

equation in the continuous or discrete forms. The example of the system regression analysis is discussed 

according to the example of residual moisture stabilization system of material in a drying apparatus, the 

structural scheme is given. The coefficients of state space equation are represented by matrix and numeric value. 

The obtained results are graphically illustrated. The modern and widespread programming language Python 

and Python Control System Library are used at all stages of research. 

Keywords: Control system, identification, regression analysis, verification, state-space. 

1. Introduction 

Today, the methods of Regression Analysis have been successfully used to process the 

experimental data in Biology, Economics, Automation and other fields. In regression analysis 

all available resources should be used     completely and efficiently, especially if we are 

dealing with the accumulation and processing of information.  The development and 

perfection of the identification method are required for increasing   the accuracy and 

reliability of dynamic objects in many fields of science and technology. Today, the most 

required methods of evaluation of experimental data   provide high rates of efficiency, 

reliability, consumed energy savings and memory volume. Solving the problems of 

processing numerical algorithm for signals and parameters evaluation in linear dynamic object 

will solve all practical tasks. The purpose of the work is to evaluate the matrix parameters of 

control system with regression approach by using the programming language Python and 

integrated Python Control Systems Library 

2. Theoretical Part 

The state-space equation of continuous system has the   form [1]: 
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    )1(                                                      

 

Where X(t)  - is a state vector  n  size; U(t)  - is a control vector size r ; Y(t)  -  is a system 

output vector size; A - n×n  state matrix size; BC and D=0 input, output and  zero (null)  

matrix. In our case the task is to determine the matrix real numbers _ A, B,  C, D  of system 

parameters. (1) should be represented by the discrete forms for regression analysis of the 

system:                                                                                                                                           

 

 

)2(                                      

Where T – is a by quantization step by time; K-   whole number; C,D –is a  matrix discrete 

system  of the same dimension, that is the initial continuous system. 

           and    matrices have the following form[2]: 

 

                                            ,                                                                (3) 

.                                                             (4) 

 

3.Practical Part 

We should only use input impact and the value of state vector to evaluate   the matrix 

parameters. Let’s  consider A and B matrix regression analysis of control system  for the  

open  system of the residual moisture stabilization  of material in a drying apparatus, that 

consists of three inertial parts with the following parameters: ,  s; , 

 s; , s[3].   Obtain the input impact on the system in the form of 

.   Obtain the system initial condition as a zero in the state variable The 

open system of the residual moisture stabilization of the drying material in the drill drying 

apparatus has the following form:  

 

 

 

Fig. 1. Open System of residual moisture stabilization 

 

The transfer function of the system is determined for zero initial conditions; therefore, s 

complex variable may be formally changed by the product. So finally, the connection between 

the input and output values of the system may be represented by the following differential 

equation: 

1(t)  

2(t)                                               (5) 
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3(t)  

System may be represented by a matrix form and the matrix of control system will have the 

following form: 

, , , ,                    (6) 

 

Taking into account the numeric values of the parameters of the system inertial parts, we will 

obtain: The transformation of    discrete system into matrix continuous system is implemented 

by specialized functions:  ss(Create a state space system), d2c(discrete to continuous 

conversion), ssdata(Return state space data objects for a system)[4]. 

The results of   the program implementation have the following form:  

 

A = 
       -0.0625         0              0 
        0.0303    -0.1515         0 
         0             0.0750   -0.5000 
 

B = 
       0.0125 
         0 
         0 
 

C = 
        0     0     1 
 

D = 
        0        
 

Ad = 
        0.9994         0             0 
        0.0003    0.9985         0 
        0.0000    0.0007    0.9950 
 

Bd = 
     1.0e-003 * 
         0.1250 
        -0.0000 
         0.0000 

Adr = 
     0.9994   -0.0000    0.0000 
     0.0003    0.9985    0.0000 
     0.0000    0.0007    0.9950 

 

Bdr = 
   1.0e-003 * 
     0.1250 
         -0.0000 
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          0.0000 
      Areg = 
         -0.0625   -0.0000    0.0000 
          0.0303   -0.1515    0.0000 
          0.0000    0.0750   -0.5000 
     Breg = 
          0.0125 
         -0.0000 
          0.0000 
 

Whose transition characteristics are shown in Fig.2. The analysis of the obtained results 

shows that the evaluation of  the matrix system is quite accurate. 
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Fig. 2. Transfer functions of state variables 

 

On the other hand, let’s do the regression evaluation of the matrix output parameters of the 

same system. Matrices of control systems are determined by (6) the images. We have made 

the regression identification of C output matrix based on the equation . The 

results of the program implementation are represented by the following way: 

 

C = 
        0     0     1 
Cdr = 
        0.0000    0.0007    0.9950 
Creg = 
       0.0000    0.0007    0.9950 

The diagram of the system output process in verification is shown in Fig. (3). 
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Fig. 3. Transition process on the system output 

4. Conclusions 

As a result of the survey, the regression evaluation of the matrix of continuous linear system 

is sufficiently accurate. Such approach of the system regression analysis may be successfully 

used in various fields that will give us the ability to use all available resources in full and 

efficient manner. 
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