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On the Geometric Series of Linear Positive Operators

RADU PALTANEA

ABSTRACT. We study the existence and the norm of operators obtained as power series of linear positive operators
with particularization to Bernstein operators. We also obtain a Voronovskaja-kind theorem.

Keywords: Positive linear operators, Geometric series of operators, Bernstein operators, Voronovskaja theorem

2010 Mathematics Subject Classification: 41A36, 41A25.

1. INTRODUCTION.

Let L : C[0,1] — C[0, 1] be a positive linear operator. Denote by L*, k € Ny := N U {0}, the
iterates of L, defined by LY = I, where I is the identical operator and LF=Lo...oL whereL
appears k times.

By geometric series of operator L we understand the series

(L1) G =S I"
k=0

The geometric series of operators were studied in [11], [1], [2], [3], [12]. The existence of these
operators needs some restrictions of the domain of definition. It is necessary to consider some
special subspaces of functions. Let ¢ : [0,1] — R, ¢(z) = 2(1 —z). The more simple is the space

vC[0,1] = {f € C[0,1]: 3g € C[0,1], f =g},
which is a Banach space if it is endowed with the norm

_ | f ()]
(1.2) [ flly == w:&a) 0@

where f € yC|0, 1].
Denote by B,, the Bernstein operators. In [11] there is proved that operators A4,, : ¥C[0,1] —
(10, 1], given by

k=0
are well defined and the following result is true:
Theorem A For any g € C|0, 1] we have

13) lim |4, (4g) ~2F(g)]l4 =0,
where
(1.4) F(g)(z)=(1— :c)/o tg(t)dt + 93/ (1 —=1t)g(t)dt, = € [0,1].
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50 R. Paltanea

Note that (F'(g)(z))” = —g(x), for z € [0, 1]. Because the convergence in norm || - ||, implies the
convergence in sup-norm || - ||, (|| f|| = maxzejo,17 |f(x)]), we have
Corollary A For any g € C|[0, 1] we have

(1.5) Jim A, (1bg) = 2F(g)|| = 0.

In [3], the geometric series are consider for a large class of operators, defined on an more ex-
tended space Cy[0, 1] given by

Cyl0,1]:={f : [0,1] = R[3Jg € B[0,1]NC(0,1) : f =g},
or equivalently by:
Cyl0,1]:={f € C[0,1]| IM > 0: |f(x)| < My(x), = € [0,1]}.

Space Cy [0, 1] is also a Banach space with regard the norm || - ||, defined in (1.2), but is not
a Banach space with respect the sup-norm, || - ||. Theorem A is generalized in this extended
context and also an inverse Voronovskaja theorem is obtained.

A more general space is

Col0,1] ={f € C[0,1], f(0) =0=f(1)},

endowed by the usual sup-norm || - ||. Clearly, ¥C10, 1] C Cy[0,1] C Cy]0, 1], but the topologies
are different.

In paper [12] the geometric series are considered for multidimensional Bernstein operators for
a simplex, on the space of continuous functions which vanish at the vertexes. In the unidi-
mensional case we obtain the space Cy[0, 1]. The definition of geometric series of Bernstein
operators is possible because the norms of operators B,, on space Cy|0, 1] are strictly less than
1.

The first aim of the present paper is to study the norm of the operators defined by geometric
series and in the particular case the norm of the series of powers of Bernstein operators. This
allow us to extend Theorem A on space Cy|0, 1]. In the final section, we derive a Voronovskaja
type theorem for the geometric series of Bernstein operators.

For a general theory on Bernstein operators see the papers [9], [6], [5]. For specific problems
regarding Voronovskaja theorem we indicate the papers [4], [7]. For general methods of esti-
mating the degree of approximation we mention [10] and [8].

2. PRELIMINARIES

Lemma 2.1. We have:

i) Cy[0, 1] is a Banach space with regard the norm || - |.
ii) With regard to the norm || - || we have:

B0, 1] = Cy[0, 1].

Proof. i) It is immediate.
ii) If f € Cy[0,1], then B,,(f) € ¥C|0,1], for n € N, where B,, are the Bernstein operators. Since

lim,, o0 || f —Bn(f)|| = 0, it follows f € (0, 1]. The inverse inclusion follows since, obviously
»C[0,1] € Cp[0, 1] and Cy[0, 1] is closed. O

Lemma 2.2. If L : C[0,1] — C|[0, 1] satisfies condition L(e;) = e;, j =0, 1, then
L(CQ[O, 1]) C C() [0, 1]
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Proof. It is well known that an operator L : C[0, 1] — C|0, 1] which satisfies the given condition
has the property L(f)(0) = f(0) and L(f)(1) = f(1), for any f € C[0,1]. O

Definition 2.1. Denote by Ay[0, 1], the class of positive linear operators L : C[0,1] — C|0, 1] which
satisfy the following conditions:

a) L(ej) = ey, for j =0,1;

b) Ll z(eofo.1.co10,17) < 1-
Lemma 2.3. Forany L € A0, 1] we have:

i) operator G, : Cy[0,1] — C[0, 1], given in (1.1) is well defined if we consider the convergence
with regard to the sup-norm || - ||;
ii) operator G, is positive and linear;
iii) (I — L) o G, = I, in the Banach space (Cy[0, 1], || - [|);
iv) Gr o (I — L) = I, in the Banach space (Cy[0,1], ] - ||).

Proof. i) Because the series 7~ o [|L* |l z(coj0.1],¢c0[0,1]) 1S convergent it follows that for each f €
Co[0,1], series Y=, L*(f) is convergent in space (Cy[0,1],]| - ||)-
Point ii) is obvious. The proof of points iii) and iv) is standard. O

3. THE NORM OF OPERATORS G,

In this section we give estimates of the norm ||G'z || £ (¢ [0,1],¢5[0,1)) for Operators L € Agl0, 1].
In the next lemma, for z € (0,1) we make the following conventions. If ¢ = 1, then

[ttt gy = [T du and if ¢ = 0, then [@ L=t du = [T 2

z u(l—u) u(l—u) —Jo 1—u

Lemma 3.4. Forall x € (0,1)and t € [0, 1] we have
Pt —w (t — x)?
) < du < .
(36) O_Lu(l—u) u_x(l—x)

Proof. The left inequality is clear. For the second one first we consider that 0 < <t < 1. Fora
fixed t € [0,1] we have

_ _ 2 _ _aN\2

d/t—u \_ —ut+2ut t<_(t w) <0

du \u(l —u) w(l—w)?2 — w?(l—wu)® —

From this it follows relation (3.6). The case 0 < ¢t < x < 1 can be reduced to the case above.
Indeed if we made the chang of variable u; = 1 — v and denote z; =1 — x, t; =1 — ¢t then we

obtain . . ) )
L u(l—u) 2 ur(l—wuq) r1(1—z1) z(1—2x)

1

Consider function ® € Cy|0, 1], defined by
(3.7) O(x)=zlnz+ (1 —2)In(l —x), z € (0,1), (0) =0, (1) =0.
Theorem 3.1. If L € A0, 1], then

|®]]  In2
(3.8) IG Ll 2(colo,1,¢000,1)) = T
where
I N2
(3.9) ap = sup ((ex — ) )(33)

z€(0,1) V()
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Proof. For x € (0,1) and ¢ € [0, 1], the Taylor formula yields
t

<I>(t):q>(x)+©/(m)(t—x)+/ (t — )3 (u)du.

Since " (u) = m, u € (0,1), by taking into account Lemma 3.4 we obtain
t —x)?
o < ¢ ol — (—

() < ®(x) + 0 (2)(t —2) + P
Applying operator L we obtain

L(®)(x) < ®(x) + ar.

We use the immediate equality L((e; —z)?)(z) = L(ez)(x) — ea(x) and the equalities L(®)(0) —
®(0) = 0 and L(P)(1) — (1) = 0. Since function ¢ is convex and L preserves linear func-
tions we have L(®) — & > 0. From these we deduce that %(L(CI)) — ®) € (Cyl0,1] and

H(aL)_l(L(q)) - <I>)H < 1. Therefore
IG Ll z(cof0,1],Co0,1)) = IGL((ar) ™ (L(D) — @))].
But using Lemma 2.3 - iv) we obtain
GrL(L(®) — ®) = —9.
Consequently we obtain relation (3.8). O
4. CONVERGENCE OF GEOMETRIC SERIES OF BERNSTEIN OPERATORS IN THE SPACE Cj |0, 1]

Let B,, n € N be the Bernstein operators. It is clear that B,, € A¢[0, 1], for any n € N, see [13].
From Lemma 2.3, G, is well defined on space Cy|[0, 1].

Theorem 4.2. For n € N, n > 2 we have
(410) nln2 < ||GBn ”5(00[0,1],00[0,1}) <1+3nln2.

Proof. For simplicity let denote G,, = G, . The left inequality follows from Theorem 3.1, by
taking into account that ap, = I, forn € N.
We pass to the right inequality. Let € (0,1) we have

1 2¢ — 1
o) —
z(l—x)’ 22(1 — x)2’ (z)

Since &) > 0, using the Taylor formula for = € (0,1), ¢ € [0, 1]:

3 ¢
B — th(k)(x)(t—w)kJr/ M@zl)(u)du

2(1 — 3U(z))

(I)H(SC) _ \Ijg(x)

B (g) =

k! 3!
k=0
3
oW () (t — x)*
0

We have B, ((e1 — zeg)?)(z) = -5 (1 — 22)z(1 — x). Applying operator B,, we obtain:
11 (1-22)?
> - .

Take here x = %, 1 <k <n-—1. We obtain, for n > 2:
1 (=25 1 -2y

max . = .
T e I T ()

n n

1
< —.
~ 6n



On the Geometric Series of Linear Positive Operators 53

Hence
k k 1
4.11) Bn(é)(—) —@(—) > 1<k<n-—L.
n n n
Since G,, = I + G,, o B,, we obtain
(4.12) 1Gnllzicoo.1.coi0,1)) < 1+ [|Gr o Bullz(coo.11,¢000,1])-
Fix fo € C[0, 1] arbitrary such that, fo > 0 and fy (%) =1,1 <k <n-—1. Itis easy to see that
(4.13) G © Bullc(colo,11,0000,1)) = I|Gn(Bn(fo))ll-

From relation (4.11) and since f,(0) = 0 = fo(1) and (B,(®) — ®)(0) =0 = (B, (®) — ®)(1) it

follows that
(8 <o [mm(5) -o(8)] oz <

n n
and from this we obtain

B, (fo) < 3nB,(B,(®) — ).

Applying operator G,, to this inequality we arrive to
Gn(Bn(fo)) < 3nGy o (Bn — I)(Bn(®)).
By tacking into account Lemma 2.3 - iv) we get
Gn(Bn(fo0)) < —3nB,(®).

Now, since fo > 0 it follows G, (B, (fo)) > 0 and from the inequality above we obtain
(4.14) |G (Br(fo))ll < 3n[Bn(®)]l
From relations (4.12), (4.13), (4.14) and inequality || B,,(®)|| < ||®|| we deduce relation (4.15). O

Lemma 4.5. Let F be the operator defined in relation (1.4). We have:

i) F(yp!) =-9.
ii) If f € C[0,1], then F ()1 f) is well defined and F (¢~ f) € Cy[0, 1].

Proof. i) It follows by a simple direct calculus.

ii) Letz € (0,1). Then0 < F(¢ ' f])(x) < |fI|1F (1) (x) = —|| f||®(z) < oo.Since F (1| f]) is
well defined it follows that F'()~! f) is well defined. Also, from the inequality above it follows
that F(¢~1f) € Co]0, 1]. O

According to notations used in the previous sections we have 4,, = %G B,,n €N
Theorem 4.3. We have
(4.15) lim ||n~'Gp, (f) —2F (@~ f)|| =0, forall f € Co[0,1].

n—oo

Proof. Let f € Cy[0,1]. Let ¢ > 0 be arbitrarily chosen. Since the space C|0, 1] is dense in
Cy[0, 1] (Lemma 2.1), we can find g € ¢C|0, 1] such that || f — ¢|| < . From Corollary A there is
ne € Nsuch that |[n"1Gp (g9) — 2F(¢"1g))|| < ¢, for n > n.. Then, for such index n we obtain
In~ G, (f) = 2F (W )]
< |In7'Gp, (f =)l + In7' G, (9) = 2F (™ g)|| + [2F (v~ (f — 9))ll
<n G, e copapIf — gl +e+1f =gl - [2F (7]
<(n'4+3In2)e+ec+2In2- e

Since € > 0 was arbitrary, the proof is finished. O
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5. VORONOVSKAYA TYPE RESULT

Recall that A,, = % > oo (B,)¥, where B, is the Bernstein operator of order n.

Theorem 5.4. If f € C*[0, 1], then

(5.16) I n(An(Bf)(@) = F(f)(@) = 56@) (@) - SF()(),
uniformly with regard to x € |0, 1].

Proof. Fix f € C%[0,1] and denote F(t) = F(f)(t), t € [0,1]. Because F"(t) = —f(t), we have
from Taylor formula, for s,t € [0, 1]:

Fls) = F()+F0)s— 1)~ 3 f0)(s 17— </ (0)(s — 1)°
(517) o O = 1) = s )~ 0 Rt )
where
Rs(t,s) = %/:(s — W)Y (u)d

Denote my(t) = B,((ex — t)*)(t), for k = 0,1,2,...,t € [0,1]. In [9] the following relation is
given:

mst1(t) = @ [m(t) + sms_1(t)], s =1,2,..., t € [0,1].
we obtain
1
ma(t) = H@D(t)
m(t) = (),

malt) = SUA) + (01— 6(0))

ms(t) = AW () + s (B () — 1202 (1),

mo(t) = o)+ g (493 (1) — 1240%(0) + o (6(1) — 2802(0) + 1200°(1).

Applying operator B,, from relation (5.17) we obtain

L pyms ()

(= B)E)E) = 5FOmalt) + ¢ fOms(t) + 5 f/(Omalt) + 1

+Bn(Rs(t,-))(1).

Note that F' € ¢C|0,1]. Also m;, € ¥C|0,1], k = 2,3,4,5. From the above equality it follows
that also B, (Rs(t,-))(t) € ¥C]0,1]. So that we can apply operator G, = nA, to the tems of
the both side of above equality and from Lemma 2.3 - iv), we obtain

A (" ms) (x)

F@) = SAuf9)@) + 5 An(fms)(w) + o An(fma)(z) + 1o

+nAn(Bn(Rs(t, ) (1)) (@),
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Finally we obtain

1 n2

P(AG(FO)w) = 2F(@)) = 0P An(fms) (@) = sontAn(f ) (@) — o

—2n° Ay (B, (Rs(t, ) (1)) (2),

An(f"'ms)(x)

Using Corollary A we obtain
1 1

—§W2An(f'm3)($) = —3A(f ) (2)
= SR+ o(1);
1 " o 1 " 1"
AP M) =~ AR E) — T A~ 60)(a)
= L CF(9)(@) + o(1) — - (F(F(1 ~ 60))(x) + o(1))
= SF()@) +o(1);
AN (@) = = A (E) — oo A~ 126%)) )
= RGN (@) +o(1)) — o (F(F( — 1299) + o(1)
= o(1).
In all these relations o(1) is uniform with regard to « € |0, 1] Also we have
v
| t s ’< ||f ||/ du- ) ||fIVH
Therefore .
Bu(|Rs(t,))(8) < gme @I 11
It follows
2 2n? v
| = 207 An(Ba(B5(t, ) () (2)] < - [1F77 [[An (me) (2)
2||fIV|| 3, Lo 3
< 5 D (2497 — 1249°) (4 - 2897 + 12007 ) (0)
— QHJ;I'V” [ (g@/ﬂ + %(24;1) — 1244p%) + %(eo — 28¢) + 120¢2> (z) + 0(1)]
= o(1).
From the relation above we coclude that
(518 T n(AL(f9)(x) — 2F(2)) = — F(F9') @) — 3 F(f"0)().
Next integrating by parts we obtain
T 1
—%F(f’w’)(x) _ —g [(1—33)/0 t(1—2t)f’(t)dt+x/ (1= )(1 — 2) ' (t)dt

- /Ox(1—4t)f(t)dt+§x/x (4t — 3)f(t)dt.

55
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o) = — [0-a) [ fa-ordrs [ -0
_ (1—1’)/ (2t — 32) (1)t + x/1(1—4t+3t2)f’(t)dt

F@)w@) + (12 / 3t —1)f )dt+x/1(2 3 f(t)dt.

Hence

P - G = el @) - 3 (0o [T ns@as [ e
U
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On Some Bivariate Gauss-Weierstrass Operators

GRAZYNA KRECH AND IRENEUSZ KRECH

ABSTRACT. The aim of the paper is to investigate the approximation properties of bivariate generalization of Gauss-
Weierstrass operators associated with the Riemann-Liouville operator. In particular, the approximation error will be
estimated by these operators in the space of functions defined and continuous in the half-plane (0,00) x R, and
bounded by certain exponential functions.

Keywords: Gauss-Weierstrass operator, Linear operators, Approximation order

2010 Mathematics Subject Classification: 41A25, 41A36.

1. INTRODUCTION

Numerous issues related to positive linear integral operators were and still are the subject of re-
search. The reason lays with their numerous applications in different domains of mathematics
and physics. The classical Gauss-Weierstrass singular integral

pt) = L (x —y)?

(BY Wtiant) = 5 o= o (<520 s

has been studied systematically in the past. The integral W is a solution of the heat equation.
The details can be found, for example, in [13]. Approximation properties of the operator W
were given in many papers and monographs (see, for example, [13, 14, 18]). In [4], Anastas-
siou and Mezei investigated the smooth Gauss-Weierstrass singular integral operators (not in
general positive) over the real line regarding their simultaneous global smoothness preserva-
tion property with respect to the L” norm, by involving higher order moduli of smoothness.
Some Lipschitz type results for the smooth Gauss-Weierstrass type singular integral operators
were established in [17]. Approximation properties of the classical Gauss-Weierstrass integrals
for functions of two variables in exponential weighted space were presented in [11] and a cer-
tain modification of these integrals which has a better order of approximation than the classical
integrals was investigated in [19]. Khan and Umar (see [16]) gave a generalization of the Gauss-
Weierstrass integrals and obtained the rate of convergence of the integral operator. In [5], Aral
proposed a definition of the A\-Gauss Weierstrass singular integral with the kernel depend-
ing on a nonisotropic distance, its generalization, and gave some approximation properties of
these integrals in certain function spaces. In [3], Anastassiou and Duman studied statistical L,-
approximation properties of the double Gauss-Weierstrass singular integral operators which
do not need to be positive. Similar issues were also examined in the complex case in note [2].
Recently, various g¢-generalizations of Gauss-Weierstrass singular integral operators based on
g-calculus (see [15]) and their approximation properties were investigated intensively (see, for
example, [1, 6,7, 8]).
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The aim of this paper is to study approximation properties of the family of bivariate Gauss-
Weierstrass operators associated with the Riemann-Liouville operator (see [10]). This family is
of the form

VE(P) () = Valfsr 1) / / Kt (r,x, 5,y) f(s,y)dsdy,

where the kernel is defined by

2t)~(@+3/2) 242062 /1
K = 2T s
w(ryz,s,y) e 57

—a rs
I, (_) s20H1
V2T 2t
for a > —%, r>0,z€R,t>0,and I, is a modified Bessel function

0o
Za+2k

I.(2) = .
(2) kzzo 202Kk (o + k + 1)

In paper [9], the operator V, is considered for functions belonging to L?, 1 < p < oo and 5,
which is a space of infinitely differentiable functions, rapidly decreasing together with all their
derivatives, even with respect to the first variable.

It is known (see [9, Proposition 3.4]) that the operator V, is a positive linear operator from L”
into itself and for every f € L?,1 < p < oo, we have

IVa(Dllze < [I£1lze-

Moreover, for every 1 < p < oo, the family (V!);~¢ is strongly continuous semigroup of opera-
tors on L? and it is called Gauss semigroup associated with the Riemann-Liouville operator.
Armi and Rachdi proved thatif f € S, then V, is a function of the class C*° on (0, c0) xR x (0, 00)
and satisfies the following equations (see [9]):

ou(r,z,t)  d*u(r,z,t)  2a+10u(r,z,t) N O%u(r,z,t)
ot - Oa? r or orz
lim Vo (f;r,z,t) = f(r,z) wuniformlyon (0,00) x R.

t—0+

(1.2)

An interesting fact related to the study of the operator V, is the following remark. If f(r,z) =
f1 (’I")fg (.I'), then

(1.3) Vo (fsr,x,t) = Wo(fr;r, )W (fo; 2, t),

where ) ,
1 [ r° 4+ s TS
—a a+1 o
Weo(fi;r,t) = 2t/ r~%s exp ( yr > 1, <_2t> fi(s)ds

and W is defined by (1.1). Note that W_ 1 is the classical Gauss-Weierstrass integral (1.1) and

2\/— ( ;S)>f1()

fi(s) if s >0,

(fl,?" t

—1
2

where

fi(s) =
fl(—S) if s < 0.

It is worth mentioning that for f(s) = s?k, k € N, the function W, (f) is a polynomial called
radial heat polynomial [12].

Some properties of the operator W, in particular, an estimation of the rate of convergence,
were studied in [20].
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In this work, we will investigate approximation properties of V,, in the space Ex, K > 0,
consisting of all continuous functions f defined on the half-plane (0, c0) x R, and such that

‘f(?", l‘)’ < MeK(r2+m2)

for some M > 0. The norm in E is given by

CK(r2ag2
||J"||EK:(su)pD6 RO £ (r, )]
r,x)E

where D = {(r,x) : = > 0,2 € R}. Observe thatif 0 < K; < Ky, then Ex, C Eg, and
Hf||K2 < ||fHK1

We shall prove that the operator V, is bounded and maps Ex into Ex 5, where § > 0. More-
over, we shall estimate an order of approximation by this operator.

2. APPROXIMATION PROPERTIES
Applying the method used in [20], we can prove the following theorem.

Theorem 2.1. Let f € E.
(a) The function V., (f) is of the class C*° in the set
1
0= R, —
{(r,x,t) r>0,zeR0<t< 4K}
(if K =0, then 0 <t < 00).
(b) The function V,(f) is a solution of the equation (1.2) in 2 and

lim Vo (fsr,x,t) = f(ro, o)

(ryz,t)—=(ro,x0,0t
for every (rg, zo) € Q2. Moreover, we have
hm Vo(fir oz, t) = f(r,x)

in every closed subset in €.

In what follows, it will be useful to consider the functions:
Yo,o(r,x) = 6K(r2+$2), Yoi(r,x) = pteK +x2)
Yio(r,x) = p2ieK 4% g = 1,2.

Using (see [20])

oo

o0 P2+ k+b+1)
a42b+1 2 _ } : s
/0 5 xp ( s ) Lo (fBs) ds = k!F(a + k + 1)gotktbtlgat+2k417

a>—5,b>0,a>0,8>0and the equation (1.3), we have the following lemma.
Lemma 2.1. Let I = (0, %) for K > 0and I = (0, 0c) for K = 0. For t € I, we have

Va(o0im2,t) = A,
Vo (Yo,157, 2,) Az(1 —4Kt)™?
Ve (Y0,2;7, 2, 1) A22°(1 — AKt) 2+ 2t(1 — 4Kt) '],
Vo (Y1057, 2, 1) A[r?(1—4Kt) 72 +4t(a + 1)(1 — 4Kt) '],
Vo(Wo0im,a,t) = A[r*(1—4Kt) ™ +8tr* (e +2)(1 — 4Kt)™®

+ 16t°(a 4 2)(a + 1)(1 — 4Kt) %],
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K(r2+m2)

where A = (1 — AKt)~(@+3)e Tare

Theorem 2.2. Let f € Ex. If K > 0, then for every 6 > 0and t € (0, my the operator V,
maps the space Ex in Eg s and
AN
(2.4) IValHlleys < (1+ g) s
If K = 0, then V,, maps the space E into itself and
(25) ValHllo < 171o-

Proof. By the positivity and linearity of V,,, we get
Va(fira, )] < Vallflsr 2, t) < (1 FllxVa(tPo,0i7,2,) = All fl k-

From above we have (2.5) for K = 0.
Let K >0.If§ >0and ¢t € (O,m),thenL < K + 6. Hence

1-4Kt
Vilkes = sup e DY (50 g 1))
(r,x)eD
< sup e_1*§Kt(r2+$2)|Va(f;T,x,t)|
(r,x)eD
a+3
(a3 ) 2
< -1 Dfles (14 1) Il
which gives (2.4). O

3. RATE OF CONVERGENCE

In this section, we shall state an estimate of the rate of convergence of the integral V,, in terms
of the modulus of continuity.

Letd > 0and
w(f; Ex,0) = sup f(5,y) = flr,a)|e KD K >0,
V (s=1)2+(y—x)2<8
Observe that

w(f;EK,(51) < w(f; EK,(52) for 0< 51 < (52,

w(f; Frx,A0) < (1 4+ Nw(f; Ex,0) for X>0.

K(r2+z2)

Theorem 3.3. Let f € Ex, K > 0and A= (1 — 4Kt)_(°‘+%)e 1i=art , We have
Vo (f;mz,t) — f(r,2)| < 2Aw(f; Ek, 6),

where
5 = {x2 ~22%(1 — 4K 4 22(1 — 4Kt)"2 + 24(1 — AKt) !
+ [t =20t (1 — AKt) 2 + 0 (1 — 4Kt) ™ = 8tr?(a+ 1)(1 — 4Kt) ™!
+ 8tr%(a +2)(1 — 4Kt) ™% + 16£2(ar + 2) (o + 1)(1 — 4Kt) 2] 1/2}1/2

forr>0,2€R,0<t< g and K > 0.



On some bivariate Gauss-Weierstrass operators 61

If K = 0, we have

Vo (f;rx, t) — f(r,x)] < 2w (f;EO, \/225—!— V/8tr2 + 16t2(a + 2)(a + 1))

forr>0,zeR,t>0.

Proof. Let 6 > 0. Using the property of the modulus of continuity, we obtain

F(s,9) = fr,a)] < K0 (£ B, (5= 12+ (y — 2%
for f € Ef. From this, we get
F(s,9) = f(r,)
o oK) (1 VT x)?) o (F: Ex. )

5

2,2 —r)? — )2
< oneed (14 2RO I s,

In view of (s — r)? < |s? — r?|, we can write

2 .2 N2
L ] e S ELUL L)

The operator V,, is positive and linear (see also [9]), so
Va(fsr,z,t) = f(r,z)|

< Vallf = f(r2)ir 2, t)

< (i) Vo (Voo +

2200 — 22101 + Vo2 + Phoo
52 ) r, aj, t )

where ¢(s,y) = |s? — r?|. Observe that
Vi ($00.0;r,2,8) < {Va(o,oi s, ) Val(d* o0, 2,1)} 2
= {Va@ooir,z,t) [r*Va(ioo;r 2, 1)
— 27“2‘/06(1#170; r,x,t) + Vo (2,07, 2, t)} }1/2 )
Hence
Vo (fsr @, t) = f(r, z)|
< w(f5 B, 8) {Va (Woi o, )

1
+ 6_2 [xzvoz (wo,o; r,a:,t) - 21"/@ (77/}0,1; T, {B,t) + Va (77/}0,2; T, (B,tﬂ

1
+ (5_2 [Va (,‘7[)0,0; r,z, t) (TAVa (wo,o; r,axz, t) - QTQVOL (,‘7[)1,0; r,z, t)

—+ Va('L/JQ,O; r,x, t))]1/2} .
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If K =0, then from Lemma 2.1, we have

Vo (Wo,057,2,t) = 1,

Vo (o157 2,t) =

Vo (o237, 1,t) = 237+ 2t,

Vo (Wr0im,3,t) = 1+ 4t(a+1),

Va (2,057, 2, 1) rt + 8tr(a +2) + 16t%(a + 2)(a + 1).

Hence, we conclude

Vo (fir oz, t) — f(r,z)] < 2w (f;EO, \/225—1— V/8tr2 +16t2(a + 2) (a + 1))

forr >0,z € R, t>0.
For K > 0, we obtain from Lemma 2.1 the following estimation

|Voz(f; T,:C,t) - f(ra {L')‘
S Aw (f, EK,5)

1 _ _ -
x{1+5—2[x2—2x2(1—4f(t) 4 a?(1—4Kt) 2+ 2t(1 — 4Kt) ']

1 _ _ _
+3 [r* —2r4(1 — 4Kt) "2 + (1 — 4Kt) ™ — 8tr?(a + 1)(1 — 4Kt)

+ 8tr2 (o + 2)(1 — 4AK) ™3 + 16t2(a + 2) (e + 1)(1 — 4Kt)—2]1/2} .

Setting
5 = {x2 —22%(1 — 4KtV 4 2?(1 — 4K) "2 + 24(1 — 4Kt) "
+ [t =20 (1 — 4K )2 + ' (1 — 4Kt) " = 8tr® (o + 1)(1 — 4Kt)
+ 8tr2(a+ 2)(1 — 4K1) ™3 + 16t2(a + 2) (o + 1)(1 — 4Kt) 2] 1/2}1/2 ,
we get the assertion. O
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ABSTRACT. Here we give a variety of general multivariate Iyengar type inequalities for not necessarily radial func-
tions defined on the shell and ball. Our approach is based on the polar coordinates in RN, N > 2, and the related
multivariate polar integration formula. Via this method we transfer well-known univariate Iyengar type inequalities
and univariate author’s related results into general multivariate Iyengar inequalities.
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1. BACKGROUND

In the year 1938, Iyengar [5] proved the following interesting inequality:
Theorem 1.1. Let f be a differentiable function on [a,b] and |f' (z)| < My. Then

My (b-a)” (f(b)—f(a)®
4 4M,

(1.1)

/ f @) dz— 5 (b—a) (f (a) + ()| <

In 2001, X.-L. Cheng [4] proved that
Theorem 1.2. Let f € C? ([a,b]) and |f" (x)| < My. Then

(12) / f ) de = 3 (b= a) (F (@) + F(0)) + 5 (b= ) (' ()  f' (a)
3 (b—a) s
s o S’ - 1600, °
where o (F (b
Alzf/(a)— (f()_f(a))+f/(b)

(b—a)

In 1996, Agarwal and Dragomir [1] obtained a generalization of (1.1):

Theorem 1.3. Let f : [a,b] — R be a differentiable function such that for all x € |a,b] with M > m
we have m < f' (x) < M. Then

dﬂﬁ——( —a) (f(a) + f (b))

—fla)=m(b—a))(M(b—a)—f()+[(a))
2(M —m) ‘

<

In [7], Qi proved the following:
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Theorem 1.4. Let f : [a,b] — R be a twice differentiable function such that for all x € [a,b] with
M > 0 we have | f" (x)| < M. Then

[ 1@ TOIO g B2 (1) gy - ap
M- a)
< T (173,

where

(7 @+ 7 () — 2 (L=t )’
M2 (b= a)* = (f'(0) = [ (@)~
In 2005, Zheng Liu, [6], proved the following;:

Theorem 1.5. Let f : [a,b] — R be a differentiable function such that f' is integrable on [a, b] and for
all x € [a,b] with M > m we have

@)= 1'@

2

ORI

< M andm <

Then ) )
b 2
‘/ paydo - HOTLO gy () () - 7 (@) 0 - 0
B (1+4:P >(m—|—M)(b—a)3 < (M_Wil)g(b_a) (1-3P?),
where

(/' (@) + 1 (6) =2 (—f(",li{;(“)))Q
(Mom)* (b —a)? = (f' (b) - f' (a) — (mEM) (b —a))”

Next we list some author’s related results, (here L ([a,b]) is the normed space of essentially
bounded functions over [a, b]):

Theorem 1.6. ([3]) Let n € N, f € AC™ ([a,b]) (i.e. f™ 1 € AC ([a,b]), absolutely continuous
functions). We assume that f™) € L., ([a,b]). Then
(i)

P2

1
d”_kz_o(kﬂ)!

13 FP @ (=@ ()R ) (-0

17 (a0 nt1 ni1
syl (AU

forallt € [a,b],
(ii) at t = <2 the right hand side of (1.3) is minimized, and we get:

- k+1

Z I i) [f““)(a)ﬂ—l)’“f(’“)(b)]‘
k=0

Hf“”HLm(ab (b— >”+1
(n+1)! 2n
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(i) if f*) (a) = f*) (b) =0 forall k = 0,1,...,n — 1, then we obtain
b f(n) _ n+1
/ f(2)d [ HLOO([a,b]) (b—a)

(n+1)! 2n
which is a sharp inequality,
(iv) more generally, for j = 0,1,2,..., N € N, it holds

n—1 1 b—a k+1 it . )
(14 D=3 o () [ @ cor - 9 )
1Py (0= a7 -~
wine (%) o),

() if f%) (a) = f*) (b) =0,k =1,....,n — 1, from (1.4) we get:

(1.5)

oo = (P30 s @)+ (- 5) £ 0)

1F N oy (b—a)" o
(nﬁ;[! b)) ( N@) [jn+1+(N_]) +1}

forj=0,1,2,..,N €N,
(vi) when N = 2and j =1, (1.5) turns to

b—a 17| (ap) (b—a)" ™
[— < oo
1.6 odo - (P51) (F@+ fop) < e D20
(vii) when n = 1 (without any boundary conditions), we get from (1.6) that
(b—a)°

oo (P5) (£ @+ FO)] < I e "

a similar to Iyengar inequality (1.1).
We mention here L, ([a, b]) is the normed space of integrable functions over [a, b]).
Theorem 1.7. ([3]) Let f € AC™ ([a,b]), n € N. Then
(i)

(1.7) x)dx —

) @) (¢ = )" ()R B ) (0 - )

S
(AR P

n!
forallt € [a,b],
(ii) att = “£2, the right hand side of (1.7) is minimized, and we get:

[(t—a)" +(b—1)"],

dx_; T [f<’“)(a)+(—1)’“f(’“)(b)]‘

Hf(n) HLl([a,b]) (b—a)"
n! on—1 7
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(i) if f*) (a) = f*) (b) = 0, forall k = 0,1,...,n — 1, we obtain

Hf( Iz, op (0 —@)"

n! 2n1 )

which is a sharp inequality,
(iv) more generally, for j =0,1,2,..., N € N, it holds

> (v

f( a b— " n
I !f!l([ ) ( N“) "+ (N =4)T,

(1.8) x)dz —

k+1
) W @) (1 V= ) 0 )

() if f%) (a) = f*) () =0,k =1,....,n — 1, from (1.8) we get:

b—a
x)dx—( I

Hf(n)HLl([ab]) b—a\" . ., n
o ( I ) "+ (N =35)"],

(1.9)

) U (@) + (N — 5) £ ()]

forj=0,1,2,...,N €N,
(vi) when N = 2and j =1, (1.9) turns to

170V HLl([a,b]) (b—a)"

(1.10) - T

wyde— 2D (7 @)+ 7 0] <

(vii) when n = 1 (without any boundary conditions), we get from (1.10) that

< 5 agey) (0 —a)-

oo ("5) (F @+ 7 0)

We mention here L, ([a, b]) is the normed space of functions f such that | f|? is integrable over

[a, b])
Theorem 1.8. ([3]) Let f € AC™ ([a,b]), n € N; p,q > 1such that & + o =1, and f™ e L, ([a,b]).

Then
(i)
(1.11) S L A e O

Hf(n) HLq([a,b])
(=1 (n+1) (p(n—1)+ 1)

forallt € [a,b],




68 G. A. Anastassiou

(ii) at t = %L, the right hand side of (1.11) is minimized, and we get:

b n—1 —a k+1
fa)de =3 oo [ @)+ (1)1 )] ‘
a k=0
Hf(n)HLq([a,b]) (b— a)”ﬁ

(n—1)! ("+ %) (p(n—1)+1)r 2"74

(i) if f*) (a) = f*) (b) =0, forall k = 0,1,...,n — 1, we obtain
b f(n) _ n—l—%
/ /(@) da I HLq([a,b]) (b—a)

n—1)! (n+ ;17) (p(n—1)+1)r 2"77
which is a sharp inequality,
(iv) more generally, for j =0,1,2,..., N € N, it holds

<
(

(112) /ab f (@) dz — ,g (k +1 1) (bz_va)kﬂ 5 (@) + (~)F (N = )T O )
Hf(n)HLq([a,b]) b—a ity L _antd
< (nl)!(n+%)(p(n1)+1);( N) [J+ + (v j)+},

@) if f¥) (a) = f*E (b)=0,k=1,...n— 1, from (1.12) we get:

(113) /abf(mdm— (ﬁ,“) 3 (@) + (N = ) £ (o)

”f(n)”Lqua,bD <b — a>n+; [jn+% + (N —j)n+%}
(=1 (n+ 1) 1)+ 1)7

forj=0,1,2,..,N €N,
(vi) when N =2and j = 1,(1.13) turns to

Hf(n)HLq([a,b]) (b—a)n+%
(n—1)! <n+ %) (p(n—1)+ 1)% 2"

(vii) when n = 1 (without any boundary conditions), we get from (1.14) that

[r@e- (") g@ o)

(1.14) <

b —a
[ @=L @+ s

1

- I L sy (b—a)'T? .

(1+3) 2
We need

Remark 1.1. We define the ball B(0,R) = {x € RY : |z| <R} C RN, N > 2, R > 0, and the
sphere

SN-L.— {xE]RN:|a?|:1},

where |-| is the Euclidean norm. Let dw be the element of surface measure on SN~ and

N
w :/ dw = 2m >
VT o T T
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is the area of SN 1.
For z € RN — {0} we can write uniquely v = rw, wherer = |z| > 0and w = £ € SN, |w| = 1.

Note that [, (0.7 W = “’N]\?N is the Lebesgue measure on the ball, that is the volume of B (0, R), which
. =% RN

exactly is Vol (B (0, R)) = F(zg—lj—l)'

Following [8, pp. 149-150, exercise 6], and [9, pp. 87-88, Theorem 5.2.2] we can write for F' :

B (0, R) — R a Lebesgue integrable function that

0.1 from @ [ ([ e tar)

and we use this formula a lot.
Typically here the function f : B (0, R) — R is not radial. A radial function f is such that there exists

a function g with f (x) = g (r), where r = |z|, r € [0, R|, forall x € B (0, R).

We need

Remark 1.2. Let the spherical shell A := B(0,Ry) — B(0,R;),0 < Ry < Ry, AC RN, N > 2,
x € A. Consider that f : A — R is not radial. A radial function f is such that there exists a function
gwith f (z) = g(r), 7 = |z|, 7 € [R1, Ra), for all x € A. Here x can be written uniquely as © = rw,
wherer = |z| > 0and w = 2 € SN=1, |w| =1, see ([8], p. 149-150 and [2], p. 421), furthermore for
F : A — R a Lebesgue integrable function we have that

(1.16) /AF(ac) dx = /SN_1 (/RITZF(TLU) erdr> dw.

Here

wy (RY — RN) 7% (RY — RN
Vol (4) = “N ( . ) _ r((ﬂ2+1)1)
2

In this article we derive general multivariate Iyengar type inequalities on the shell and ball of
RY, N > 2, for not necessarily radial functions. Our results are based on Theorems 1.1-1.8.

2. MAIN RESULTS

We present the following non-radial multivariate Iyengar type inequalities:
We start with

Theorem 2.9. Let the spherical shell A :== B (0,Rs) — B(0,R;1),0 < Ry < Ry, ACRN, N > 2.
Consider f : A — R that is not necessarily radial, and that f € C* (A). Assume that ‘%‘ < M,

forall s € [Ry, Ry, and for all w € SN~=1, where My > 0.
Then

[rway- BB (e [ o R [ f(Raas)

M7= (Ry — Ry)” B Jsv—1 (f (Row) Ry ™' — f (Riw) RiVil)de
S 2 |
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Proof. Here f (sw) sV =1 € C' ([Ry1, Ra]), N > 2, forallw € SV~1. By (1.1) we get

Ro
£ (sw) s —1ds — % (Ro — Ry) (f (Raw) RN 1 4 f (Row) RY 1)
Ry
o Mi(Re— R (R R = (R RV

4 4M,y

forallw € SN-1,
Equivalently, we have

Ry
N @) < [ F )N — 5 (Ry— Ra) (F (Raw) BY ™ 4 f (Raw) RY ') < (@),

R1

forallw e SN—1,
Hence it holds

Ry
- / A1 (w) dw < / ( f (sw) 3N1d3> dw
SN*I SNfl Rl
1
2
A (

— S (Ry— Ry) (R{V‘lf f(le)dw+RéV‘1/ f(sz)dw>
SN-—1 SN-—-1

<)
SN-—-1

That is (by (1.16))

w) dw.

[wéVMl (Ro— R1)*  Jowor (f (Row) RY ™! = f (Ryw) R{Vl)de]

2T (ﬂ) 4M,
< / F )y - 2= ) Rl) (Ri“ /S _ f(Rw)dw+ Ry Sle(Rw)dw)
T My (Ro— R1)? Jawos (f (Row) RY ™' = f (Riw) RY 1) dw
) i |
proving the claim. O

We continue with

Theorem 2.10. Let the spherical shell A := B (0, R) — B(0,R1),0 < Ry < Ry, ACRN, N > 2.
Consider f : A — R that is not necessarily radial, and that f € C? (A). Assume that ‘ o°f (o) ‘ < Ms,

forall s € [Ry, Ry), and for all w € SN~ where My > 0.
Set

2 (f (Row) RY ™" = f (Ryw) RN 1)
Ry — Ry

Ay (w) = (f (sw) sV 1) (Ry) —
+  (f (sw) sNﬁl)/ (Ry), Ywe SN71,
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Then
C(Be—R) (v N . RN—1 Y doo
[rway =TT (g [ o RY [ (e )
@ [/SN_l (f (sw) sNﬁl)/(Rg)dw — /SN—1 (f (sw) sNﬁl)/ (Rl)dw]
T M, (R — Ry) 2
< (& (%)E(R2_Rl)3_ 160, /SN—1 AY (w) dw.

Proof. Here f (sw) sV =1 € C? ([Ry1, R]), N > 2, forallw € SV~1. By (1.2) we get

Ry
[ (o) s = 5 (R = o) (1 (i) BY ™ (o) RY )
1 2 N-1\/ N-1\/
+ g(Rz—R1) ((f(sw)s ) (R2) — (f (sw)s"77) (R1)>‘
M, (R2 — R1) 5 .
< o (Ry — Ry)® — 1617, Af (w) = A2 (W),

forallw e SN—1.
Equivalently, we have

Ro .
= @ [ fewys s — LRI (p Ry R4 (Ryw) B

Ry 2
b = R ((F () 8% (B) = (F (50 sV ™) (R)) < s )

forallw e SN—1,
Hence it holds

Ro
- / A2 (w)dwﬁ/
SN—I SN—]. Rl

_ Ry (R{V—l f(Riw dw+R§V—1/
2 SN—l S

+ Ml/y{_l (f(sw)sN_l)/(R dw—/s

)\ w dw.
S /N ) 2( )

[71'1;] M2

f (sw) sN_lds> dw
)
2)

Tz My o3 (Be—R) / 2
() 12 (2 = F1) 160, Jgw, D1@)dw

/f( ) dy B Ry) (Riv‘l/Sle(le) dw+R§V‘1/SN1f(R2w) dw)

¥ R‘—I“US Nl(f(sw)sN‘l)/(Rz)dw— / (f(sw)sN‘l)%Rl)dw]

8 o

M, (B2 — Ry) 2
T2 (Re— R’ 16Ms /SN A1 w)dw,

IA

m‘z

™

IA

r

—
N
SN—"
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proving the claim. O
We give

Theorem 2.11. Let the spherical shell A := B (0, Ry) — B(0,R;1),0 < Ry < Ry, ACRN, N > 2.
Consider f : A — R that is not necessarily radial, and that f € C* (A). Let M > m and assume that

m < % < M,foralls = [Rl,RQ],andfOTallw e SN-1,

Then
Rl) (R{V—l/SN T (B1w) dw+R§V—1/SN 1f(R2w)dw>‘
< m/sfv—l [(f (Row) Ry ~' = [ (Riw) RY ™" —m (Ry — Ry))
X (M (Ry— Ry) — f(Row) RY ™' + f (Riw) RY )] dw.
Proof. Similar to the proof of Theorem 2.9 by using Theorem 1.3 and (1.16). O
We give

Theorem 2.12. Let the spherical shell A := B (0, Rz) — B(0,R1),0 < Ry < Ry, ACRN, N > 2.
Consider f : A — R that is not necessarily radial, and that f € C? (A). Assume that ‘%‘ < Ms,

forall s € [Ry, Ry), and for all w € SN~ where M3 > 0.
Set

Qf (@)
[(F (o) s¥1)' (Bu) o (F (o) s¥1)' (Ry) — 2 (LRt e 2y
| M3 (R = Ba)® = ((f (sw) sV (Ra) = (f (sw) sV 1) (R1)”]

forallw e SN—1.

Then
y)dy — —Rl) (Riv_1 / f(Riw)dw+ RY ™! / f (Row) dw)
SN—1 SN—1
(R2 — R B B
- : ] 1) /SN_l (1 + Q7 (W)) ((f (sw) sV 1), (R2) — (f (sw) sV 1), (Rl)) dw
3
< M3 (R — Ry) / (1- 302 () dw.
24 gN-1

Proof. Similar to the proof of Theorem 2.10 by using Theorem 1.4 and (1.16). O

We continue with

Theorem 2.13. Here all as in Theorem 2.9, and let M, > mq. Assume that

_ (L (s0) M) () = (f (sw) sV (Ra)
- r— Ry

S M17

and

(f (sw) sN=1) (Ro) — (£ (sw) sN=1)" (2)
RQ — X

m S SMla

forall x € [Ry, Ry), forall w € SN—1.
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[( —1)’ (R1) + (f (sw) sN—l)’ (Ry) — 2 (f(RQw)RéV;::{%(lle)Ri\f—l):|2
(Ml2 )2 (Ry — Rl) - [(f (sw) SN—l)’ (Ra) — (f (sw) SN_l)/ (Ry) — (%]\41) (Ry — Rl)}m

forallw e SN—1.
Then

g (PG (RN [ s dor mY [ () ao)

+ @ /SN_l (14 P (@) ((f () V) (Ba) = (f (sw) ) (Ry) ) o

_ (R ;8R1) (my + My) /SN_1 (1 + 3P12 (w)) dw

(M; — mﬁéRz — Ry) /SN_1 (1-3P7 (w)) dw.

Proof. Similar to the proof of Theorem 2.10 by using Theorem 1.5 and (1.16). O

<

We present

Theorem 2.14. Consider f : A — R be Lebesgue integrable, which is not necessarily radial. Assume
that f (sw)sV—t € AC™ ([R1, Ra]) (ie. (f (sw) stl)(n_l) € AC ([R1, Rz]) absolutely continuous
functions), for all w € SN=1, N > 2. We assume that (f (sw) sN_l)(n) € Lo ([R1, Ra)), for all
w € SN=L. There exists K1 > 0 such that H (f (sw) sN_l)(n) < K;, where s € [Ry, Rs),

Loo([R1,R2])
forallw e SN—1.
Then
(i)
n . 1 N—1\ (k) k+1
(2.17) '/f ( — K/SN (f (sw) V1) (Rl)dw> (t— Ryt
+ (-1)F (/SN_l (f (sw) SN_l)(k) (Rz)dw) (R2 —t)kH}
QF% K; n+1 n+1
< Ty €A

forallt € [Rq, Ry,
(ii) at t = Btz e right hand side of (2.17) is minimized, and we get:

B 1k:+1 .
3 e et ()

T /S (f(sw) S () o

7'('% Kl (RQ - Rl)n+1
r(Y)(m+1nl 20T
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(i) if (1 (s0) sV ) (R)) = (1 (s0) N )P (Ry) = 0, for all w € SV, (e, LZULE")
vanish on 0B (0, Ry) and 0B (0, Ry)) forall k = 0,1, ...,n — 1, we obtain

T2 K (RQ —Rl)n+1
dy| <
/Af(y) y‘—r(%) n_|_1 on—1 )

which is a sharp inequality,
(iv) more generally, for j = 0,1,2, ..., N € N, it holds

[ 1) dy—g T (R}RI)M (L s Y mya)
+ ()P - </SN (f (sw) sV 1P dw)”

™

2 Kl R2 — Rl ntl [-n—l—l n—|—1:|
L) (n+1) N /

() if (f (sw) N ) (Ry) = (f (sw) sV )P (R ): 0, for all w € SN, (ie. ZUE")
vanish on 0B (0, Ry) and 0B (0, Ry)) for k =1, ...,n — 1, from (2.18) we get:

oo (25 i ([ s

+ (N R ( /W f (Fa) d‘“)” 2<§> |
.

Ky Ry — R \""! ntl | (T
e () e

forj =0,1,2,..., N € N,
(vi) when N = 2and j =1, (2.19) turns to

(2.20) ' /A f(y)dy - (RzgRl) (Ri“ /S _ f(Bw)dw+ Ry /S T (Rw) dw)l

< T2 Kl (RQ — R1>n+1
- () (n+1) 2n—1 ’
(vii) when n = 1 (without any boundary conditions), we get from (2.20) that

y)dy — (R2 . Rl) (Ri“ /S S (Ruw)de+ RY /S T (Raw) dw)'

(2.18)

N‘Z

<

(2.19)

|

2 K, 2
< Ry — Ry)”.
Proof. Similar to the proof of Theorem 2.9. We apply Theorem 1.6 along with (1.16). O

We continue with

Theorem 2.15. Consider f : A — R be Lebesgue integrable, which is not necessarily radial.
Assume that f(sw)sN—1 € AC™([Ry, Ra]) (ie. (f (sw)s¥1)""" € AC([Ry,Ry)) abso-
lutely continuous functions), for all w € SN—=1 "N > 2. Here there exists Ko > 0 such that
H(f (sw) sN_l)(n) < Ky, where s € [Ry, Ra), forall w € SN—1.

Then

Li([R1,Rz2])
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(i)
n—1

_ - ! sw) sN-1F) o B k+1
(221) '/Af(y)dy ;)(,Hl)! K/SN (f (s0) s™71) 7 (Ra) d )(t R;)
+ (-D"

ML e ) ) o) (e - 0|
271'% KQ n n
< F(%)F[(t—fil) + (R — 1),

fOT all t € [Rl, RQ] ,
(i) at t = BrtB2 the right hand side of (2.21) is minimized, and we get:

n—1 1 (R2 . Rl)kz—i—l N1 (k)
Af(y) dy - ;) (k‘ + 1)! 2k+1 [/gNl (f (Sw) s ) (Rl)dw
k

[ s ) () ]

(i) if (f (s0) s ) (R)) = (F (s0) N )P (Ry) = 0, for all w € SV, (e, LU
vanish on 0B (0, Ry) and 0B (0, Rz)) forall k = 0,1, ...,n — 1, we obtain

N

T2 Ky (RQ — Rl)n
/Af(y)dy‘gr(%)ﬁ on—2 ’

which is a sharp inequality,
(iv) more generally, for j = 0,1,2, ..., N € N, it holds

Py -5 i (BB e (] (7 )@ ()
/A (k+1)! N GN-1

k=0

b =) (L G ) mas) |
< oy (5F) e

) if (f (s0) NP (Ry) = (f (sw0) ¥ )P (Ry) = 0, forall w € SV, (e, LU
vanish on 0B (0, Ry) and 0B (0, Rz)) for k = 1,...,n — 1, from (2.22) we get:

/Af(y) dy — (RQ%Rl) {jR{V‘l (/SN_1 f (Ryw) dw)

(2.22)

(2.23)

B (B e @-a],

forj =0,1,2,.... N € N,



76 G. A. Anastassiou

(vi) when N = 2and j =1, (2.23) turns to

Ry — Ry _ _
(2.24) /Af(y) dy—( 5 )(R{V 1/SN_1f(R1w) dw + RY 1/SN_1f(R2w) dw)‘
L K (R Ry
RO RS

(vii) when n = 1 (without any boundary conditions), we get from (2.24) that

/Af(y) dy — <R2;R1) (Rf”/SNl f(Rw)dw+ RY ™! /SN1 F (Row) dw)‘

2 % K 2
< (Ra — Ry).
r(z)
Proof. Similar to the proof of Theorem 2.9. We apply Theorem 1.7 along with (1.16). O

We continue with

Theorem 2.16. Letp,q > 1: %—I—% > 1. Consider f : A — R be Lebesgue integrable, which is not nec-
essarily radial. Assume that f (sw) s™ =1 € AC™ ([R1, Rs]) (i.e. (f (sw) sN_l)(nfl) € AC ([Ry, R2))
absolutely continuous functions), for all w € SN, N > 2. We assume that (f (sw) s™ ‘1)(n) €

Ly ([R1, Ra)), forall w € SN=1. There exists K3 > 0 such that H(f (sw) sN_l)(n) L (Rs.Ra]) < K3,
where s € [Ry, Ra], forall w € SN—1. T
Then

(i)

ity 1 N—1\ (k) k+1
(225) '/Af(y)dy—;) D K/SN (f (sw) ™) (Rl)dw) (t = Ri)
b ([ G )Y s (R0
SN—l

K3

= L (%) (n—l)!(n—k%) (p(n—1)+1)

(t=R)"™ 5 + (R = )",

3=

forallt € [Ry, Ry,
(ii) att = B1tB2 the right hand side of (2.25) is minimized, and we get:

n—1 1 (R2 . Rl)k—l—l
/Af(y)dy—;(kﬂ)! s

% l/sN_l (f (sw) 5N—1)(k) (Ry) dw + (_1)k:/

N
2
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Gii) if (f (sw) sN D) P (R ) - (f (sw) s8N D ® (Ry) = 0, for all w € SN, (e, ZUE2"7)
vanish on 0B (0, Ry) and 0B (0, Ry)) forall k = 0,1, ...,n — 1, we obtain
KS (RQ - Rl)n—i_%

(=D (n+i)p-n+1r 27

Y

| < Wé)

which is a sharp inequality,
(iv) more generally, for j = 0,1,2, ..., N € N, it holds

/Af(y) dy—:z:é (kil)! (Rz%Rl)kH {jkﬂ </SN_1 (f (sw) sN_l)(k) (Rl)dw>
s @) ([ )Y )|

< 2 K () e,
(5) n—1)! (n—k%)(p(n—l)—l—l)5 N

(2.26)

k) 8k(f(sw)sN71)

@) if (f (sw) sV 1) (Ry) = (£ (sw) sV D)™ (R, ) =0, forallw € SN, (ie. )
vanish on 0B (0, Ry) and 0B (0, Ry)) for k =1,...,n — 1, from (2.26) we get:

o (5] o
e (] o)
’ (n—1)!(n+%[)(?p(n—1)+1)é (RQ%&) p[‘jn+%+<N 2t

forj =0,1,2,...., N € N,
(vi) when N = 2and j = 1, (2.27) turns to

Ry — R
y)dy—( 2 5 1) (R{V_l/SN_lf(le)derRév_l/SN_lf(R2w)dw)'
W% Kg (R2 — Rl)n+%

F(%) (n—l)!(n+%) (p(n—l)—l—l)% 2n—1—%

(vii) when n = 1 (without any boundary conditions), we get from (2.28) that

B TR o)

(2.27)

2

(2.28)

Y

ol N
q 2 3 1+ 1
< (B2 — R1)
r (%) (1 + 5)
Proof. Similar to the proof of Theorem 2.9. We apply Theorem 1.8 along with (1.16). O

We continue with results on the ball. We present

Theorem 2.17. Consider f : B (0,R) — R be Lebesgue integrable, which is not necessarily ra-
dial. Assume that f (sw)sN=1 € AC([0,R)]), for all w € SN=1, N > 2. We further assume
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that M € Lo ([0,R]), for all w € SN~ Suppose there exists My > 0 such that
H 3f<S°J>SN ; < M, forallw € SN-1.

00,(s€[0,R])
Then

(i)

(2.29)

/B(O’R)f(y) dy — (/SN_I f (Rw) dw) RN-1(R— 1)

forallt € [0, R],
(i) at t = &, the right hand side of (2.29) is minimized, and we get:

RN| 7% M, R?
/ (OyR)f(y)dy—< /S le(Rw)dw) <

Y

(iii) if f (Rw) =0, forallw € SN~ (ie. f (-w) vanishes on B (0, R)), we obtain

[ E
B(0,R)

which is a sharp inequality,
(iv) more generally, for j = 0,1,2, ..., N € N, it holds

7'('% M1R2
2r (3)

(2.30) <

RN
[ W= (=3) [ s

(v) when N = 2and j =1, (2.30) turns to

RN
/ f()dy—T [ (Rw) dw| <
B(0,R) gN-1

Proof. Same as the proof of Theorem 2.14, just set there R; = 0 and Ry = R and use (1.15). [

We continue with

Theorem 2.18. Consider f : B (0, R) — R be Lebesgue integrable, which is not necessarily radial.
Assume that f (sw) sV =1 € AC ([0, R)), forallw € SN=1, N > 2. Suppose there exists My > 0 such

that HMH < My, forallw € SN-1.
Ly ( O R])
Then
(i)
(2.31) / f () dy - ( / f (Rw) dw) RNV (R—1)| < 22 AR
B(O7R) SN-1 F (?)

forallt € [0, R],
(ii) if f (Rw) =0, forall w € SN=1 (ie. f (-w) vanishes on OB (0, R)) from (2.31), we obtain

21> MoR
/ f () dy| < 2
B(0,R)

rs)

which is a sharp inequality,
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(iii) more generally, for j = 0,1,2,..., N € N, it holds

RN 272 ML R
(2.32) / Fy)dy — 2= (N—])/ f (Rw) dw| < ZZ20B1
B (0.R) N st (%)
(iv) when N = 2and j = 1, (2.32) turns to
RN 21> MyR
/ Fwdy— [ f(Reyde| < AR
B(0.R) 2 Jon-a (%)

Proof. Same as the proof of Theorem 2.15, just set there R; = 0 and Ry = R and use (1.15). [

We continue with

Theorem 2.19. Let p,q > 1 : % + % = 1. Consider f : B (0, R) — R be Lebesgue integrable, which
is not necessarily radial. Assume that f (sw)sV=1 € AC([0,R]), forall w € SN=1, N > 2. We

further assume that % € L, ([0, R)), for all w € SN=1. Suppose there exists Mz > 0 such

M < N-1
that H 5s ‘ (o) S Ms, forall w € S+,
Then
(1)
(2.33) / f(y)dy — < / [ (Rw) dw) RN"Y(R—1t)
B(0,R) SN-1

QW%Mg

r(5)(1+3)

[tH% +(R - t)”%] ,

forallt € [0, R],
(ii) at t = &, the right hand side of (2.33) is minimized, and we get:

RN| 2ix¥ MR
fydy—</ wadw) < |
/Bm,R) ) g B A ) ey

(iii) if f (Rw) =0, forallw € SN~ (i.e. f (-w) vanishes on OB (0, R)), we obtain

[ twa
B(0,R)

which is a sharp inequality,
(iv) more generally, for j = 0,1,2, ..., N € N, it holds

1 1
2ar> MaR'tr

reE)

<

(2.34)

RN
/B = () [5 f(Re)d

e (8 e
p

(v) when N = 2and j = 1,(2.34) turns to

RN
[ rwa- T [ r(Re)de
B(0,R)
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Proof. Same as the proof of Theorem 2.16, just set there Ry = 0 and Ry = R and use (1.15). [
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A General Korovkin Result Under Generalized Convergence

PEDRO GARRANCHO

ABSTRACT. In this paper, the classic result of Korovkin about the convergence of sequences of functions defined
from sequences of linear operators is reformulated in terms of generalized convergence. This convergence extends
some others given in the literature. The operator of the sequence fulfill a shape preserving property more general than
the positivity. This property is related with certain extension of the notion of derivative. This extended derivative is
precisely the object of the approximation process. The study is completed by analysing the conditions for the existence
of an asymptotic formula, from which some interesting consequences are derived as a local version of the shape pre-
serving property. Finally, as applications of the previous results, the author use the following notion of generalized
convergence, an extension of Norlund-Cesaro summability given by V. Loku and N. L. Braha in 2017. A way to transfer
a notion of generalized convergence to approximation theory by means of linear operators is showed.

Keywords: Korovkin results, asymptotic condition, generalized convergence.
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1. INTRODUCTION

The following sequence of positive linear operators is studied in [2]:

BLA0) = Y (1) r0M 1= A or k), f € ol te 1]
k=0

where 7 is a function defined on [0, 1] infinitely differentiable, such that 7(0) =0, 7(1) = 1 and
7/(t) > 0, t € (0,1). The convergence of B}, f towards f can be analyzed by using the classical
result of Korovkin [11], according to which it suffices to check it for these three test functions
1,t,t2, or other three, say 19, ¢1,12 that form a Tchebychev System. In particular, the choice
1, 7,72 is the more convenient for B7.

Now, let L,, be a slight modification of the previous sequence of positive linear operators,
L, f(t) = (1+a,)B] f(t), where a,, does not converge to 0 in the classical sense. The aforemen-
tioned result of Korovkin allows to conclude that the approximation process defined by L,, is
not convergent. That said, if a,, is convergent in some other sense, a question arises whether
the sequence would be convergent under this other notion. This is a motivation for a long list
of papers where the so called Korovkin theory has been extended by considering new notions
of convergence. We mention a few, restricting our attention to sequences of linear operator
defined on spaces of real continuous functions on a compact interval.

In 1970, J. P. King and J. J. Swetits [10] studied the almost convergence, introduced by Lorentz
in 1948 [14]. In 2002, A. D. Gadjiev and C. Orhan[6] proceeded analogously with statistical
convergence, a now classic concept that was conceived by H. Fast in 1957 [5]. More recently,
we may mention some papers by V. Karakaya and A. Karaisa in 2015 [9], where they consid-
ered weighted af3-statistical convergence, T. Acar and S. A. Mohiuddine in 2016 [1] dealt with
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statistical (C, 1)(F, 1) summability, or finally, in 2016, D. Ali Karaisa, [8] worked with statistical
(N7, af) summability.

All the quoted papers dealt with positive linear operators and more importantly, for the proofs
of their main results the same arguments of continuity and boundness were strongly used. Our
main purpose with this work is to bring a sort of unification by proving a general qualitative
Korovkin result, in such a way that this result can be applied whenever a concept of conver-
gence is moved from mathematical analysis to Korovkin-type approximation theory. Moreover,
we shall deal with a shape preserving property more general than the mere positivity, related
to the preservation of the sign of certain generalized derivative.

This paper is organized as follows. In section 2, we will show some required notions and the
notation will be set. In section 3, the qualitative Korovkin type result will be shown. Besides
this, in the section 4, we will add the analysis of existence of the asymptotic condition by
means of another Korovkin type result. In section 5, some consequences of the existence of
an asymptotic condition will be given. In the last section, we show an example that shows the
applicability of our result, by recovering the paper by V. Loku and N. L. Braha [12].

2. GENERAL SETTINGS

In this section, we will establish the framework, and present the required tools. Some notation
will be set as well.

Let S be the usual linear space of all real sequences, and let Sy be a subspace of S closed under
the usual sum and scalar multiplication.

Let £ be a linear functional defined on Sy fulfilling the following properties:

(I) if z,, is convergent in the classical sense, then £(z,) = lim x,,, where lim refers to the
classic limit (as a consequence L(z,) ={¢ < L(z, —{)=0);
(1) if z,, <y, forevery n € N, then L(z,,) < L(y,,) for every n € N. In short, z,, < y,, implies
L(zn) < L(yn);
(III) if a,, is non negative, lima,, = 0 and L(x,,) = ¢, then L(a,, - z,,) = 0;
(Iv) ifx, <z, <y, and L(x,) = L(yn) = ¢, then z,, € Sp and L(z,) = /.

We have assumed, and will assume from now onwards that z,, € Sy whenever we write £(x,,).
On the other hand, to fix ideas, notice that under the classical setting Sy is formed by all con-
vergent sequences, and, under statistical convergence, our functional £ coincides with the so
noted st — lim.

Recall the following properties for a Tschebyshev System, T" = {1y, 91, 2}, on an interval [a, b]:

P1: Given three points z1, z2, z3 € [a, b] and three real numbers a1, as, ag, there exists only
one T-polynomial (i.e. a function that belongs to the space spanned by v, ¢1, ¥2), such
that pT(CEZ‘) = a,, 1= 1, 2,3.

P2: For all a € (a,b), we can find a T-polynomial, pr ,, such that, « is a double root of
Pr.o-

Asitis usual C"]0, 1] is the set of the all functions m-times differentiable with continuous m—th
derivative. Notice that C[0, 1] is simply the set of continuous function on [0, 1] and C*°[0, 1] =
NienC*[0, 1]. Now let 7 € C*°[0, 1], with 7(0) = 0, 7(1) = 1 and 7/(¢) > 0, t € (0,1). In relation
with the function 7, it is considered e, ;(t) = 7(t)’, eZ;(t) = (7(t) — 7(z))". Associated with

the function 7 the following differential operator is defined, see [13]

(2.1) D! f(t) := D’ (f o 7-71) (7(1)).
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We notice that DY = I. The previous definition is equivalent to this other:

lDl

. /7 / . /
/ DL = DY o DPT G e N
-

/ /
DO,T —1 Dl,T — ’ 7

Y

This differential operator has been dealt by the author inside approximation theory in [7] and

[3].
It it easy to observe that for = € (0,1),
) (j+!i)!€7.7j,i, lf] > i; ‘
(2.2) Dle.; = and Dlel ;=

0, if j <, 0, if j <.

J' oz L .
G- 725

3. QUALITATIVE KOROVKIN TYPE RESULT

Here is one of the main result of the paper, extension of the classical result of Korovkin.

Theorem 3.1. Let L,, : C™[0,1] — C™|0, 1] be a sequence of linear operators fulfilling the following
shape preserving property:

(3.3) if DT'f > 0then DL, f >0

Suppose we have three functions, Fy, Fy, Fo € C™[0,1] such that T = {D"Fy, D"Fy, D"Fy} is a
Tschebyshev System on C0, 1], then the following sentences are equivalent:

(i) L(DI'L,F;(z)) = DI'"Fi(z), i=0,1,2,

(ii) L(DT' L, f(z)) = D f(z) for all function f € C™|0, 1].

Proof.
(i7) = (4) is trivial. We are going to prove the converse. First of all, we consider that z € (0, 1).

We define the function ¢ € C™|0,1] as ¢(t) = f(t)— gf,f é((";)) G(t), where DG is a T-polynomial
of T'= {DI'Fy, D" Fy, DI Fy}, a Tchebychev System on [0, 1], with D]*G(x) # 0.
DT ¢, is continuous and it vanishes at x, then for all positive real number ¢ there exists § > 0

such that if |t — z| < 0, then

—e < D"o(t) <.
On the other hand D¢ is bounded on [0, 1], then there exists M > 0 such that
—M < D™¢(t) < M.

By property P2, for x, we can find two non negative T'—polynomials, f,,h, where the first
function has a double root at = and the second function is greater than or equal to 1 on [0, 1].
Let £ = miny,_,>5 fz(t) > 0and F,, H € C™[0,1] such that D" F, = f,, D"H = h, then the
following inequality is satisfied for ¢ € [0, 1]

M M

—eDPH(t) — T DY Fy(t) < D(t) < D H(1) + < DI'Fy(t),

or equivalently on [0, 1],

M M
D™ <—6H — ?Fw) <DT¢< DI <6H + ?F@) :

Applying the shape preserving property (3.3), linearity and then evaluating at z we have,

M M
(34)  —eDI'LoH(x) ~ DI LoFy(x) < DI Lo(x) < eDF Ly H(x) + DY Lo Fo(2).
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Since e is arbitrary, we can choose ¢ = 1. As F,, H belong to space spanned by Fy, F}, F»,
then we use the hypothesis (i) to get L(D?'L, F(z)) = DI'F,y(z) = 0 and £ (DL, H(z)) =
D H(x) = h(x).

From (3.4) and property (IlI), we have that £(eD™L, H(z) + Y D™L,F,(z)) = 0. Then
from property (IV), we deduce that £L(D}'L,¢(z)) = 0 or equivalently L(DI"L, f(x) —

bR DI L, G(x)) = 0,50 L(DI' Ly f(x)) = DI f ().
Now, we will prove the result for the end points of the interval z = 0 and x = 1. In this
case, we define ¢ as ¢(t) = f(t) — G(t), where DG is a T-polynomial, with D"G(0) =
D2 §(0), DXG(1) = D2 f(1).

Again we use the continuity, in this case in 0 and 1, and the bound M of D¢, as well as the
fact that D¢ vanishes at the endpoints of the interval. Then for all ¢ > 0, there exist § > 0

suchthatfor0 <t <4, 1-6<t<1
—e < D"¢(t) <eand — M < DI"¢(t) < M.
Now, we choose Fy; € C™[0, 1], where D" Fy; is a T-polynomial, D" Fy1(0) = D' Fp1(1) =

0 and DT"Fy; > 0. Now, we take k = 5<m<1r11 D™ Fyi(t) > 0. Then we have the following

inequalities on [0, 1]
M M
—?DTF()l — € S D:_n(b S €+ ?DTF()l

Finally, we can end the proof with similar arguments to the other case. O

4. ASYMPTOTIC CONDITION

Once guaranteed the generalized convergence of the process, we are going to analyze the se-
quence DL, f(xz) — DI f(x) comparing it with another sequence of real numbers \,, with
L(Ar) = 0. The purpose is to obtain an asymptotic condition. Here it is the corresponding
result. Again it is a Korovkin type result.

Theorem 4.2. Let L,, be the sequence of linear operators as that of Section 3. Let x € (0, 1) and let
us assume that there exist a sequence \,, of positive real numbers, with L(\,) = 0 and three strictly
positive functions wg, wy and wsy defined on (0, 1) with w; € C?*7%(0, 1) such that, for s € {m,m +
L,m+2,m+ 4},

(DT Lner (@ ; el )) — wy D' (wy ' D' (wy ' DI eE ) (@)

Then, for f € C™(0,1), m + 2 times differentiable in some neighborhood of x,

4.5) c

Proof.
The proof similar to the one we can find in [3], with the proper changes. First of all, we apply
the Taylors’s formula to the function D™ f o 7=! centered at a point 7(z) and evaluated at
7(t), t € (0,1),i.e
1
sl
s=0

DY for™ D*(DY'f o™ )(r(@))(r(t) — 7(2))* + h(r(t) — 7(2))(7(t) — 7(2)),

where h is a continuous function that vanishes at zero. Now using the definition of the
differential operator (2.1) and the notation of Section 2, we have:
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D f(t) = DD f)(x)er o(t) + Dr(DY f)(w)er 1 (t)

+2D2(D’"f)( z)es o(t) + h(r(t) — 7(x))e7 ().

Using (2.2), we can write

DI f(t) = D (22:

s 0

with H, € C™(J) and D"H,(t) = h(7(t) — 7'({17))6?2@). Then, we apply the linear operator
and evaluate at x to obtain

DS Dmf)( ) Tm+s+HiE> (t)

s:O

2
DL, f(x) = DI"L, (Z 1) Ds (D™ f)(z) Tm+s+Hw> (x).

By linearity,

2
1

DI Ly f(x) =) (mTD?(DTf)( T) DY L€ oy s(x) + D Ly Hy ().

s=0 ’

)!
2
Introducing this term, D" f(x Z (m o+ 9) DS (D" f)(x)D"e7 4 s(x), to both sides of the
s=0

equality and dividing by An

DL, f(z) — DI f(x) <
x =2 i

Ds Dmf)( )DaneTm—i—s( ) DT Tm—l—s(x)

m+s >\n *

s:O
D™ L, H,(z)
An '
Now, we consider the hypothesis (4.5) for m = 0, m = 1, m = 2. After some calculations,

- (Z ﬁDﬂDM)(m)DmL e imw)) )

s=0

wy ' DY (wi ' DY (wg ' DY f)) ().
Finally, the proof of 4.6 will be finished if we prove that £ (DTL:\L—f“”m> = 0 and the proof will

be finished.
To do this, we use continuity arguments on the function / to guarantee the existence of a neigh-
borhood of z, say 8, for a given € > 0, such that for ¢ € 6,,

|h(7(t) — 7(2))| < e.
Then, for all ¢ € [0, 1],

| DT Ho ()| = [A(7(t) — 7(x))[e7 2(t) < €eT 5(t) + max{0, [A(7(t) — 7(2))| — e}eT (D).
Let us consider a function W € C™[0, 1] such that D7*W (t) = max{0, |h(7(t) —7(x))| —e}eF 5 (t).
As D"W vanishes in 6,, then, for a sufficiently large constant M, one has |DI*'W(t)| <

MD7e7 . 4(t). So, gathering the last inequalities we get,
2¢e

|DmH()| WDT $m+2()+MDT Tm+4(t)
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We use the shape preserving property (3.3), and divide by A,, > 0, to obtain, after evaluating at
the point z,
Dy Lo Hu(z)| _ 2 DPLned is(@) M DT Lne3 i 4(x)

An, — (m+2)! An An

As regards the hypothesis of the result for s = m + 2 and s = m + 4, after some calculations
using (2.2), we can write respectively,

- (DTLnef,mH(a:)) _ 27/ (z)? .
An wa(z)w1 (x)wo(x)
and
L DTLnei,m—i—ll(x) —0
An '
Finally, properties (III) and (IV) and the fact that ¢ > 0 was arbitrary, allow us to finish the
proof. O

5. FURTHER RESULTS

From now on, we will assume that the sequence of linear operators is endowed with an as-
ymptotic condition of the type (4.6). We are going to deduce some consequences of the latter
fact. First of all, the existence of an asymptotic condition allows us to establish a local version
of the shape preserving property. We use the notation a,, = o.(b,,) to refer to two sequences

such that a,,, b, € Sy, L(ay,) = L(b,) =L <Z_Z) = 0.

Lemma 5.1. Let h € C™[0,1] and = € (0,1). We assume that there exists a neighborhood N, of x
where D"h > 0. Then,

D' Lyh(z) > 04+ o (An).
Proof. Let z1,20 € N, with z; < z < x5 and let 7, » belong to the space spanned
by 1,7',...,7™ such that for j = 1,2 and 0 < i < m, Ditj(z;) = DLh(z;) (notice that
{1,71,...,7™} is a Tchebychev system). Let h € C™[0, 1] be defined as:

_ ’7'1(75) t<xy
To(t) w2 <t.

Then, on [0, 1], D™h > 0 and on (1, z5), D™ (h — h) = 0. Indeed, it is enough to recall that for
i=0,1,...,m —1, D™7" = 0 and observe that D™7™ = m!. Finally, using the existence of an
asymptotic condition (4.6), yields DL, h(z) — D" L,h(x) = o (\,), and from (3.3)

0 < D™ Lyh(z) = D™ Lyh(z) + os (M)

If g € C™|0, 1] is a solution on (a, b) C [0, 1] of the ordinary differential equation
(5.7) wy ' D (w; DY (wy ' D™y) =0,

by asymptotic condition (4.6) it is obvious that if x € (a,b), D}* L, f(z) — D" f(x) = oz (\,), but
the converse is also true, as we can see in the next result.

Theorem 5.3. Let a,b € (0,1) witha < b. If f € C™|0, 1] satisfies DI L,, f(x) — D" f(z) = o (An)
at each point x € (a, b), then f is a solution of (5.7).
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Before the proof, we write some remarks. The ordinary differential equation (5.7) is of order
m + 2, with fundamental set of solutions {1,7,...,7""! y1,y2}. The change of variable z =
D7Tv makes equation (5.7) become the following one of second order:

(5.8) 1 p (iDl <i>) — 0.
w2 w1 Wy

The following lemma, whose proof can be found in, [7, Lemma 1] it is necessary for the proof
of the theorem.

Lemma 5.2. Let J be a bounded open subinterval of [0,1]. Let g,h € C(J) and tg,t1,t2 € J such
that ty € (t1,t2), g(t1) = g(t2) = 0 and g(tg) > 0. Then there exist a real number o < 0, a solution
of the differential equation (5.8) on J, say z, and a point x € (t1,t2) such that for all t € [t1,t2],
ah(t) 4+ z(t) > g, and at the point x, ah(z) + z(x) = g(x).

Let us proceed to the proof of Theorem 5.3. Let f € C"[0, 1] and let zy be the unique solution
of (5.8) such that zf(a) = D2 f(a) and 29(b) = D} f(b) and suppose that there exists zy €
(a,b),zf(xo) > DT f(x0)(by linearity, one may proceed analogously if the other inequality is
assumed). We apply Lemma 5.2 with g = 2y — D" f,h = DT"e? . o, t1 = a, 2 = b, tg = xo. In

this case, there exist a < 0, z solution of (5.8) and = € (a, b) such that,
QDI (1) + 2(8) 2 27(t) — DI F(E), € (a,)

DT, o)+ 2(x) = 24(2) — DI ().
Now if we consider Zy € C™[0,1], D*'Zy = zy and Z € C™|0,1], D*'Z = z, applying the
localization Lemma 5.1 and dividing by A, from (5.9) we obtain,

aD;nLn€£7m+2( ) DT eTm+2( )_'_D:nLnZ(x)_D'rrnZ(x)

(5.9)

>
An An B
DLy Zy(x) ~ D Zy(x)  oc(M)
+ .
An An
We use property (II) to get
. (D:@Lnef,mw; - Dref,w(x)) L. <D¢an<x> - DTZ(JC)> §

Y

(DTLan(w) - D’T”Zf(x))
£ A

and finally we apply asymptotic condition (4.6) to obtain the following expression in contra-
diction with the hypothesis,

27/ (x)?
Q > 0,
wa (2 )ws (2)wo ()
to conclude that D" f is a solution of (5.8), so f is a solution of (5.7). g

6. AN EXAMPLE

As it was pointed out in the introductory section, in this section we apply the results of the
paper to the notion of generalized convergence considered by V. Loku and N. L. Braha [12].
Let p,, be a non negative, non increasing real sequence. Let N?C!(-) be the linear transforma-
tion that assigns to each real sequence z,, this other

1 J—
NpC (.I?n zk lpk Zpk vaa
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The sequence z,, is said to be Norlund-Cesaro summable by the weighted mean determined
by p,,, or briefly (N, p,,)(C, 1)-summable if

lim NPC} (x,) = ¢.

In that case, the following notation is used: NPC} — limz, = ¢. Moreover, the set of all
(N, p,)(C, 1)-summable sequences is denoted by NPC..

Let us now recover the sequence of operators L, f(t) = (1 + a,,) B}, f(t) with a,, € NPC} and
an > 1. In order to prove the following statement, no Korovkin-type proof is needed.

Theorem 6.4. Let Fy, Iy, Fy € C™[0,1] such that { D" Fy, DI*Fy, D" F»} is a Tschebyshev System
on C[0, 1]. Then the followings sentences are equivalent:

(i) NPC} —1lim DL, F;(x) = D™F;(z), i =0,1,2
(ii) NPC} —lim D™L,, f(x) = D™ f(x), i =0,1,2, for all function f € C™|0,1].

Following the results of the paper, for the proof of the theorem we only have to check that
the shape preserving property (3.3) is fulfilled, and that the linear functional £(z,) = NPC} —
lim z,,, defined on Sy = N2C} satisfies properties (I)-(VI). Moreover, all the results of the paper
apply to this situation accordingly.

Finally, for the sake of completeness, I write a remark about a recent paper. In [15], the authors
defined a new sequence of linear operators and proved a result under statistical convergence.
The main theorem of the current paper shows an alternative approach to the problem.
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1. INTRODUCTION AND PRELIMINARIES

Set-valued functions in Banach spaces have been developed in the last decades. The pio-
neering papers by Aumann [4] and Debreu [11] were inspired by problems arising in Control
Theory and Mathematical Economics. We can refer to the papers by Arrow and Debreu [2],
McKenzie [24], the monographs by Hindenbrand [18], Aubin and Frankowska [3], Castaing
and Valadier [7], Klein and Thompson [22] and the survey by Hess [17].

The stability problem of functional equations originated from a question of Ulam [37] con-
cerning the stability of group homomorphisms. Hyers [19] gave a first affirmative partial an-
swer to the question of Ulam for Banach spaces. Hyers” Theorem was generalized by Aoki [1]
for additive mappings and by Rassias [35] for linear mappings by considering an unbounded
Cauchy difference. A generalization of the Rassias theorem was obtained by Gavruta [16] by re-
placing the unbounded Cauchy difference by a general control function in the spirit of Rassias’
approach

The functional equation f(x + y) = f(x) + f(y) is called an additive functional equation. In
particular, every solution of the additive functional equation is said to be an additive mapping.
The functional equation 2 f ( mT“’) = f(z) + f(y) is called a Jensen additive functional equation.
In particular, every solution of the Jensen additive functional equation is said to be a Jensen
additive mapping. The stability problems of several functional equations have been extensively
investigated by a number of authors and there are many interesting results concerning this
problem (see [15, 16, 20, 36]).

Let (X,d) be a generalized metric space. An operator 7' : X — X satisfies a Lipschitz
condition with Lipschitz constant L if there exists a constant L > 0 such that d(Tz,Ty) <
Ld(x,y) for all z,y € X. If the Lipschitz constant L is less than 1, then the operator 7" is called a
strictly contractive operator. Note that the distinction between the generalized metric and the
usual metric is that the range of the former is permitted to include the infinity. We recall the
following theorem by Margolis and Diaz.

Theorem 1.1. [8, 12] Let (X, d) be a complete generalized metric space and let J : X — X be a strictly
contractive mapping with Lipschitz constant L < 1. Then for each given element x € X, either

d(J"z, J" M 2) = 00
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for all nonnegative integers n or there exists a positive integer ng such that
(1) d(J"x, J" x) < oo, Vn > ng;
(2) the sequence {J™z} converges to a fixed point y* of J;
(3) y* is the umqueﬁxed point of J in theset Y = {y € X | d(J"°z,y) < oo};
)

(4) d(y,y*) < — d(y, Jy) forally €Y.

In 1996, Isac and Rassias [21] were the first to provide applications of stability theory of func-
tional equations for the proof of new fixed point theorems with applications. By using fixed
point methods, the stability problems of several functional equations have been extensively
investigated by a number of authors (see [9, 10, 13, 26, 32, 34]).

Let Y be a Banach space. We define the following;:

Y. the set of all subsets of Y;

Cy(Y) : the set of all closed bounded subsets of Y;

C.(Y) : the set of all closed convex subsets of Y;

Ce(Y) : the set of all closed convex bounded subsets of Y.

On 2 we consider the addition and the scalar multiplication as follows:

C+C ={z+2:2eC2x eC}, AC ={\z:xze€C},

where C,C’" € 2¥ and X € R. Further, if C,C’ € C.(Y), then we denoteby C & ¢’ = C + C".
It is easy to check that

AC + O = \(C + ), A+ up)C S AC + puC.

Furthermore, when C is convex, we obtain (A + u)C = A\C + pC for all A\, u € RT.
For a given set C' € 2Y, the distance function d(-, C') and the support function s(-,C) are
respectively defined by

d(z,C) = f{llzr—yll:yeC}, z€Y,
s(z*,C) = sup{(z*,x):z e C}, rreY™.
For every pair C,C" € Cy(Y'), we define the Hausdorff distance between C and C’ by
H(C,C') =inf{A>0:CCC +\By, C' CC+ABy),

where By is the closed unit ball in Y.
The following proposition reveals some properties of the Hausdorff distance.

Proposition 1.1. For every C,C’, K, K" € Cep(Y') and X > 0, the following properties hold
@QHCeC ,KeoK')<H(C,K)+H(C'K');
(b) HAC,AK) = AH(C, K).

Let (Ce(Y), ®, H) be endowed with the Hausdorff distance h. Since Y is a Banach space,
(Cap(Y), ®, H) is a complete metric semigroup (see [7]). Debreu [11] proved that (C,(Y), &, H)
is isometrically embedded in a Banach space as follows.

Lemma 1.1. [11] Let C(By ) be the Banach space of continuous real-valued functions on By - endowed
with the uniform norm || - ||,. Then the mapping j : (Cp(Y),®, H) — C(By~), given by j(A) =
s(-, A), satisfies the following properties:

(@) j(A® B) = j(A) +j(B);

(b) j(AA) = Aj(A);

(c) H(A, B) = [|5(A) = 5(B)]lu;

(d) j(Cep(Y)) is closed in C(By~)
forall A, B € Cop(Y) and all A > 0.
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Let f : Q@ = (Cwp(Y), H) be a set-valued function from a complete finite measure space
(Q,%,v) into Ce(Y). Then f is Debreu integrable if the composition j o f is Bochner integrable
(see [6]). In this case, the Debreu integral of f in (2 is the unique element (D) [, fdv € C(Y)
such tha j((D) [, fdv) is the Bochner integral of j o f. The set of Debreu integrable functions
from Q to C,(Y') will be denoted by D(2, Cc,(Y')). Furthermore, on D(£2, Cey(Y')), we define
(f+9)(w) = f(w) @g(w) forall f,g € D(Q,Ce(Y)). Then we obtain that ((2, Cep(Y)), +) is an
abelian semigroup.

Set-valued functional equations have been extensively investigated by a number of authors
and there are many interesting results concerning this problem (see [5, 27, 28, 29, 30, 31, 33]).

Using the fixed point method, we prove the Hyers-Ulam stability of the following set-valued
additive functional equations

(1.1) H(F(z +y), F(x) ® F(y)) < (z,y)
and
(1.2) H <2F (x i y) F(z) @ F(y)> < o(z,y).

Throughout this paper, let X be a real normed space and Y a real Banach space.

2. STABILITY OF THE SET-VALUED ADDITIVE FUNCTIONAL EQUATION (1.1)

Using the fixed point method, we prove the Hyers-Ulam stability of the set-valued additive
functional equation (1.1).

Definition 2.1. [23] Let F' : X — C(Y'). The set-valued additive functional equation is defined by
Flz+y)=F(z)® F(y)

for all x,y € X. Every solution of the set-valued additive functional equation is called a set-valued
additive mapping.

Definition 2.2. Let F' : X — Cu(Y'). The set-valued Jensen additive functional equation is defined by

oF (w ; y) = F(z)® F(y)

forall z,y € X. Every solution of the set-valued Jensen additive functional equation is called a set-
valued Jensen additive mapping.

Theorem 2.2. Let ¢ : X2 — [0, 00) be a function su