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Kırıkkale University, Türkiye

i



Contents

1 On Geometric Series of Positive Linear Operators

Radu Paltanea 49-56

2 On Some Bivariate Gauss-Weierstrass Operators

Grazyna Krech, Ireneusz Krech 57-63

3 General Multivariate Iyengar Type Inequalities

George A. Anastassiou 64-80

4 A General Korovkin Result Under Generalized Convergence

Pedro Garrancho 81-88

5 Set-Valued Additive Functional Equations

Choonkil Park, Sungsik Yun, Jung Rye Lee, Dong Yun Shin 89-97

ii



CONSTRUCTIVE MATHEMATICAL ANALYSIS

2 (2019), No. 2, pp. 49-56

http://dergipark.gov.tr/cma

ISSN 2651-2939

On the Geometric Series of Linear Positive Operators

RADU PĂLTĂNEA

ABSTRACT. We study the existence and the norm of operators obtained as power series of linear positive operators
with particularization to Bernstein operators. We also obtain a Voronovskaja-kind theorem.
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1. INTRODUCTION.

Let L : C[0, 1] → C[0, 1] be a positive linear operator. Denote by Lk, k ∈ N0 := N ∪ {0}, the
iterates of L, defined by L0 = I , where I is the identical operator and Lk = L ◦ . . . ◦L, where L
appears k times.
By geometric series of operator L we understand the series

(1.1) GL =

∞
∑

k=0

Lk.

The geometric series of operators were studied in [11], [1], [2], [3], [12]. The existence of these
operators needs some restrictions of the domain of definition. It is necessary to consider some
special subspaces of functions. Let ψ : [0, 1] → R, ψ(x) = x(1−x). The more simple is the space

ψC[0, 1] = {f ∈ C[0, 1] : ∃g ∈ C[0, 1], f = ψg},

which is a Banach space if it is endowed with the norm

(1.2) ‖f‖ψ := sup
x∈(0,1)

|f(x)|

ψ(x)
,

where f ∈ ψC[0, 1].
Denote by Bn the Bernstein operators. In [11] there is proved that operators An : ψC[0, 1] →
ψC[0, 1], given by

An =
1

n

∞
∑

k=0

(Bn)
k

are well defined and the following result is true:
Theorem A For any g ∈ C[0, 1] we have

(1.3) lim
n→∞

‖An(ψg)− 2F (g)‖ψ = 0,

where

(1.4) F (g)(x) = (1− x)

∫ x

0

tg(t)dt+ x

∫ 1

x

(1− t)g(t)dt, x ∈ [0, 1].
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50 R. Păltănea

Note that (F (g)(x))′′ = −g(x), for x ∈ [0, 1]. Because the convergence in norm ‖ · ‖ψ implies the
convergence in sup-norm ‖ · ‖, (‖f‖ = maxx∈[0,1] |f(x)|), we have
Corollary A For any g ∈ C[0, 1] we have

(1.5) lim
n→∞

‖An(ψg)− 2F (g)‖ = 0.

In [3], the geometric series are consider for a large class of operators, defined on an more ex-
tended space Cψ[0, 1] given by

Cψ[0, 1] := {f : [0, 1] → R | ∃g ∈ B[0, 1] ∩ C(0, 1) : f = ψg},

or equivalently by:

Cψ[0, 1] := {f ∈ C[0, 1] | ∃M > 0 : |f(x)| ≤Mψ(x), x ∈ [0, 1]}.

Space Cψ[0, 1] is also a Banach space with regard the norm ‖ · ‖ψ , defined in (1.2), but is not
a Banach space with respect the sup-norm, ‖ · ‖. Theorem A is generalized in this extended
context and also an inverse Voronovskaja theorem is obtained.
A more general space is

C0[0, 1] = {f ∈ C[0, 1], f(0) = 0 = f(1)},

endowed by the usual sup-norm ‖ · ‖. Clearly, ΨC[0, 1] ⊂ Cψ[0, 1] ⊂ C0[0, 1], but the topologies
are different.
In paper [12] the geometric series are considered for multidimensional Bernstein operators for
a simplex, on the space of continuous functions which vanish at the vertexes. In the unidi-
mensional case we obtain the space C0[0, 1]. The definition of geometric series of Bernstein
operators is possible because the norms of operators Bn on space C0[0, 1] are strictly less than
1.
The first aim of the present paper is to study the norm of the operators defined by geometric
series and in the particular case the norm of the series of powers of Bernstein operators. This
allow us to extend Theorem A on space C0[0, 1]. In the final section, we derive a Voronovskaja
type theorem for the geometric series of Bernstein operators.
For a general theory on Bernstein operators see the papers [9], [6], [5]. For specific problems
regarding Voronovskaja theorem we indicate the papers [4], [7]. For general methods of esti-
mating the degree of approximation we mention [10] and [8].

2. PRELIMINARIES

Lemma 2.1. We have:

i) C0[0, 1] is a Banach space with regard the norm ‖ · ‖.
ii) With regard to the norm ‖ · ‖ we have:

ψC[0, 1] = C0[0, 1].

Proof. i) It is immediate.
ii) If f ∈ C0[0, 1], then Bn(f) ∈ ψC[0, 1], for n ∈ N, where Bn are the Bernstein operators. Since

limn→∞ ‖f−Bn(f)‖ = 0, it follows f ∈ ψC[0, 1]. The inverse inclusion follows since, obviously
ψC[0, 1] ⊂ C0[0, 1] and C0[0, 1] is closed. �

Lemma 2.2. If L : C[0, 1] → C[0, 1] satisfies condition L(ej) = ej , j = 0, 1, then

L(C0[0, 1]) ⊂ C0[0, 1].
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Proof. It is well known that an operator L : C[0, 1] → C[0, 1] which satisfies the given condition
has the property L(f)(0) = f(0) and L(f)(1) = f(1), for any f ∈ C[0, 1]. �

Definition 2.1. Denote by Λ0[0, 1], the class of positive linear operators L : C[0, 1] → C[0, 1] which
satisfy the following conditions:

a) L(ej) = ej , for j = 0, 1;
b) ‖L‖L(C0[0,1],C0[0,1]) < 1.

Lemma 2.3. For any L ∈ Λ0[0, 1] we have:

i) operator GL : C0[0, 1] → C0[0, 1], given in (1.1) is well defined if we consider the convergence
with regard to the sup-norm ‖ · ‖;

ii) operator GL is positive and linear;
iii) (I − L) ◦GL = I , in the Banach space (C0[0, 1], ‖ · ‖);
iv) GL ◦ (I − L) = I , in the Banach space (C0[0, 1], ‖ · ‖).

Proof. i) Because the series
∑∞

k=0 ‖L
k‖L(C0[0,1],C0[0,1]) is convergent it follows that for each f ∈

C0[0, 1], series
∑∞

k=0 L
k(f) is convergent in space (C0[0, 1], ‖ · ‖).

Point ii) is obvious. The proof of points iii) and iv) is standard. �

3. THE NORM OF OPERATORS GL

In this section we give estimates of the norm ‖GL‖L(C0[0,1],C0[0,1]) for operators L ∈ Λ0[0, 1].
In the next lemma, for x ∈ (0, 1) we make the following conventions. If t = 1, then
∫ t

x
t−u

u(1−u) du =
∫ 1

x
du
u

and if t = 0, then
∫ t

x
t−u

u(1−u) du =
∫ x

0
du
1−u .

Lemma 3.4. For all x ∈ (0, 1) and t ∈ [0, 1] we have

(3.6) 0 ≤

∫ t

x

t− u

u(1− u)
du ≤

(t− x)2

x(1− x)
.

Proof. The left inequality is clear. For the second one first we consider that 0 < x ≤ t ≤ 1. For a
fixed t ∈ [0, 1] we have

d

du

(

t− u

u(1− u)

)

=
−u2 + 2ut− t

u2(1− u)2
≤ −

(t− u)2

u2(1− u)2
≤ 0.

From this it follows relation (3.6). The case 0 ≤ t ≤ x < 1 can be reduced to the case above.
Indeed if we made the chang of variable u1 = 1− u and denote x1 = 1− x, t1 = 1− t then we
obtain

∫ t

x

t− u

u(1− u)
du =

∫ t1

x1

t1 − u1

u1(1− u1)
du1 ≤

(t1 − x1)
2

x1(1− x1)
=

(t− x)2

x(1− x)
.

�

Consider function Φ ∈ C0[0, 1], defined by

(3.7) Φ(x) = x lnx+ (1− x) ln(1− x), x ∈ (0, 1), Φ(0) = 0, Φ(1) = 0.

Theorem 3.1. If L ∈ Λ0[0, 1], then

(3.8) ‖GL‖L(C0[0,1],C0[0,1]) ≥
‖Φ‖

αL
=

ln 2

αL
,

where

(3.9) αL = sup
x∈(0,1)

L((e1 − x)2)(x)

ψ(x)
.
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Proof. For x ∈ (0, 1) and t ∈ [0, 1], the Taylor formula yields

Φ(t) = Φ(x) + Φ′(x)(t− x) +

∫ t

x

(t− u)Φ′′(u)du.

Since Φ′′(u) = 1
u(1−u) , u ∈ (0, 1), by taking into account Lemma 3.4 we obtain

Φ(t) ≤ Φ(x) + Φ′(x)(t− x) +
(t− x)2

x(1− x)
.

Applying operator L we obtain
L(Φ)(x) ≤ Φ(x) + αL.

We use the immediate equality L((e1 −x)2)(x) = L(e2)(x)− e2(x) and the equalities L(Φ)(0)−
Φ(0) = 0 and L(Φ)(1) − Φ(1) = 0. Since function Φ is convex and L preserves linear func-
tions we have L(Φ) − Φ ≥ 0. From these we deduce that 1

αL

(L(Φ) − Φ) ∈ C0[0, 1] and
∥

∥(αL)
−1(L(Φ)− Φ)

∥

∥ ≤ 1. Therefore

‖GL‖L(C0[0,1],C0[0,1]) ≥ ‖GL((αL)
−1(L(Φ)− Φ))‖.

But using Lemma 2.3 - iv) we obtain

GL(L(Φ)− Φ) = −Φ.

Consequently we obtain relation (3.8). �

4. CONVERGENCE OF GEOMETRIC SERIES OF BERNSTEIN OPERATORS IN THE SPACE C0[0, 1]

Let Bn, n ∈ N be the Bernstein operators. It is clear that Bn ∈ Λ0[0, 1], for any n ∈ N, see [13].
From Lemma 2.3, GBn

is well defined on space C0[0, 1].

Theorem 4.2. For n ∈ N, n ≥ 2 we have

(4.10) n ln 2 ≤ ‖GBn
‖L(C0[0,1],C0[0,1]) ≤ 1 + 3n ln 2.

Proof. For simplicity let denote Gn = GBn
. The left inequality follows from Theorem 3.1, by

taking into account that αBn
= 1

n
, for n ∈ N.

We pass to the right inequality. Let x ∈ (0, 1) we have

Φ′′(x) =
1

x(1− x)
, Φ(3)(x) =

2x− 1

x2(1− x)2
, Φ(4)(x) =

2(1− 3Ψ(x))

Ψ3(x)
.

Since Φ(4) ≥ 0, using the Taylor formula for x ∈ (0, 1), t ∈ [0, 1]:

Φ(t) =

3
∑

k=0

Φ(k)(x)(t− x)k

k!
+

∫ t

x

(t− u)3

3!
Φ(4)(u)du

≥
3

∑

k=0

Φ(k)(x)(t− x)k

k!

We have Bn((e1 − xe0)
3)(x) = 1

n2 (1− 2x)x(1− x). Applying operator Bn we obtain:

Bn(Φ)(x) ≥ Φ(x) +
1

2n
−

1

6n2
·
(1− 2x)2

x(1− x)
.

Take here x = k
n

, 1 ≤ k ≤ n− 1. We obtain, for n ≥ 2:

max
1≤k≤n−1

1

6n2
·

(

1− 2 k
n

)2

k
n

(

1− k
n

) =
1

6n2
·

(

1− 2
n

)2

1
n

(

1− 1
n

) ≤
1

6n
.
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Hence

(4.11) Bn(Φ)
(k

n

)

− Φ
(k

n

)

≥
1

3n
, 1 ≤ k ≤ n− 1.

Since Gn = I +Gn ◦Bn we obtain

(4.12) ‖Gn‖L(C0[0,1],C0[0,1]) ≤ 1 + ‖Gn ◦Bn‖L(C0[0,1],C0[0,1]).

Fix f0 ∈ C0[0, 1] arbitrary such that, f0 ≥ 0 and f0
(

k
n

)

= 1, 1 ≤ k ≤ n− 1. It is easy to see that

(4.13) ‖Gn ◦Bn‖L(C0[0,1],C0[0,1]) = ‖Gn(Bn(f0))‖.

From relation (4.11) and since f0(0) = 0 = f0(1) and (Bn(Φ) − Φ)(0) = 0 = (Bn(Φ) − Φ)(1) it
follows that

f0

(k

n

)

≤ 3n

[

Bn(Φ)
(k

n

)

− Φ
(k

n

)

]

, 0 ≤ k ≤ n

and from this we obtain

Bn(f0) ≤ 3nBn(Bn(Φ)− Φ).

Applying operator Gn to this inequality we arrive to

Gn(Bn(f0)) ≤ 3nGn ◦ (Bn − I)(Bn(Φ)).

By tacking into account Lemma 2.3 - iv) we get

Gn(Bn(f0)) ≤ −3nBn(Φ).

Now, since f0 ≥ 0 it follows Gn(Bn(f0)) ≥ 0 and from the inequality above we obtain

(4.14) ‖Gn(Bn(f0))‖ ≤ 3n‖Bn(Φ)‖

From relations (4.12), (4.13), (4.14) and inequality ‖Bn(Φ)‖ ≤ ‖Φ‖ we deduce relation (4.15). �

Lemma 4.5. Let F be the operator defined in relation (1.4). We have:

i) F
(

ψ−1
)

= −Φ.

ii) If f ∈ C[0, 1], then F (ψ−1f) is well defined and F (ψ−1f) ∈ C0[0, 1].

Proof. i) It follows by a simple direct calculus.
ii) Let x ∈ (0, 1). Then 0 ≤ F (ψ−1|f |)(x) ≤ ‖f‖F (ψ−1)(x) = −‖f‖Φ(x) <∞. Since F (ψ−1|f |) is
well defined it follows that F (ψ−1f) is well defined. Also, from the inequality above it follows
that F (ψ−1f) ∈ C0[0, 1]. �

According to notations used in the previous sections we have An = 1
n
GBn

, n ∈ N.

Theorem 4.3. We have

(4.15) lim
n→∞

‖n−1GBn
(f)− 2F (ψ−1f)‖ = 0, for all f ∈ C0[0, 1].

Proof. Let f ∈ C0[0, 1]. Let ε > 0 be arbitrarily chosen. Since the space ψC[0, 1] is dense in
C0[0, 1] (Lemma 2.1), we can find g ∈ ψC[0, 1] such that ‖f − g‖ < ε. From Corollary A there is
nε ∈ N such that ‖n−1GBn

(g)− 2F (ψ−1g))‖ < ε, for n ≥ nε. Then, for such index n we obtain

‖n−1GBn
(f)− 2F (ψ−1f)‖

≤ ‖n−1GBn
(f − g)‖+ ‖n−1GBn

(g)− 2F (ψ−1g)‖+ ‖2F (ψ−1(f − g))‖

≤ n−1‖GBn
‖L(C0[0,1],C0[0,1])‖f − g‖+ ε+ ‖f − g‖ · ‖2F (ψ−1)‖

≤ (n−1 + 3 ln 2)ε+ ε+ 2 ln 2 · ε.

Since ε > 0 was arbitrary, the proof is finished. �
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5. VORONOVSKAYA TYPE RESULT

Recall that An = 1
n

∑∞

k=0(Bn)
k, where Bn is the Bernstein operator of order n.

Theorem 5.4. If f ∈ C4[0, 1], then

(5.16) lim
n→∞

n(An(ψf)(x)− F (f)(x)) =
1

2
ψ(x)f(x)−

1

3
F (f)(x),

uniformly with regard to x ∈ [0, 1].

Proof. Fix f ∈ C4[0, 1] and denote F (t) = F (f)(t), t ∈ [0, 1]. Because F ′′(t) = −f(t), we have
from Taylor formula, for s, t ∈ [0, 1]:

F (s) = F (t) + F ′(t)(s− t)−
1

2
f(t)(s− t)2 −

1

6
f ′(t)(s− t)3

−
1

24
f ′′(t)(s− t)4 −

1

120
f ′′′(t)(s− t)5 −R5(t, s),(5.17)

where

R5(t, s) =
1

5!

∫ s

t

(s− u)5f IV (u)du.

Denote mk(t) = Bn((e1 − t)k)(t), for k = 0, 1, 2, . . ., t ∈ [0, 1]. In [9] the following relation is
given:

ms+1(t) =
ψ(t)

n
[m′

s(t) + sms−1(t)] , s = 1, 2, . . . , t ∈ [0, 1].

we obtain

m2(t) =
1

n
ψ(t)

m3(t) =
1

n2
ψ(t)ψ′(t),

m4(t) =
3

n2
ψ2(t) +

1

n3
ψ(t)(1− 6ψ(t)),

m5(t) =
10

n3
ψ2(t)ψ′(t) +

1

n4
(ψ(t)ψ′(t)− 12ψ2(t)ψ′(t)),

m6(t) =
15

n3
ψ3(t) +

1

n4
(24ψ2(t)− 124ψ3(t)) +

1

n5
(ψ(t)− 28ψ2(t) + 120ψ3(t)).

Applying operator Bn from relation (5.17) we obtain

(I −Bn)(F )(t) =
1

2
f(t)m2(t) +

1

6
f ′(t)m3(t) +

1

24
f ′′(t)m4(t) +

1

120
f ′′′(t)m5(t)

+Bn(R5(t, ·))(t).

Note that F ∈ ψC[0, 1]. Also mk ∈ ψC[0, 1], k = 2, 3, 4, 5. From the above equality it follows
that also Bn(R5(t, ·))(t) ∈ ψC[0, 1]. So that we can apply operator GBn

= nAn to the tems of
the both side of above equality and from Lemma 2.3 - iv), we obtain

F (x) =
1

2
An(fψ)(x) +

n

6
An(f

′m3)(x) +
n

24
An(f

′′m4)(x) +
n

120
An(f

′′′m5)(x)

+nAn(Bn(R5(t, ·))(t))(x),
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Finally we obtain

n(An(fψ)(x)− 2F (x)) = −
1

3
n2An(f

′m3)(x)−
1

12
n2An(f

′′m4)(x)−
n2

60
An(f

′′′m5)(x)

−2n2An(Bn(R5(t, ·))(t))(x),

Using Corollary A we obtain

−
1

3
n2An(f

′m3)(x) = −
1

3
An(f

′ψψ′)(x)

= −
2

3
F (f ′ψ′)(x) + o(1);

−
1

12
n2An(f

′′m4)(x) = −
1

4
An(f

′′ψ2)(x)−
1

12n
An(f

′′ψ(1− 6ψ))(x)

= −
1

4
(2F (f ′′ψ)(x) + o(1))−

1

12n
(2F (f ′′(1− 6ψ))(x) + o(1))

= −
1

2
F (f ′′ψ)(x) + o(1);

−
n2

60
An(f

′′′m5)(x) = −
1

6n
An(f

′′′ψ2ψ′)(x)−
1

60n2
An(f

′′′(ψψ′ − 12ψ2ψ′))(x)

= −
1

6n
(2F (f ′′′ψψ′)(x) + o(1))−

1

60n2
(2F (f ′′′(ψ′ − 12ψψ′)) + o(1))

= o(1).

In all these relations o(1) is uniform with regard to x ∈ [0, 1]. Also we have

|R5(t, s)| ≤
‖f IV ‖

5!

∫ s

t

(s− u)5du =
(s− t)6

6!
‖f IV ‖.

Therefore

Bn(|R5(t, ·)|)(t) ≤
1

6!
m6(t)‖f

IV ‖.

It follows

| − 2n2An(Bn(R5(t, ·))(t))(x)| ≤
2n2

6!
‖f IV ‖An(m6)(x)

≤
2‖f IV ‖

6!
An

(

15

n
ψ3 +

1

n2
(24ψ2 − 124ψ3) +

1

n3
(ψ − 28ψ2 + 120ψ3

)

(x)

=
2‖f IV ‖

6!

[

2F

(

15

n
ψ2 +

1

n2
(24ψ − 124ψ2) +

1

n3
(e0 − 28ψ + 120ψ2

)

(x) + o(1)

]

= o(1).

From the relation above we coclude that

(5.18) lim
n→∞

n(An(fψ)(x)− 2F (x)) = −
2

3
F (f ′ψ′)(x)−

1

2
F (f ′′ψ)(x).

Next integrating by parts we obtain

−
2

3
F (f ′ψ′)(x) = −

2

3

[

(1− x)

∫ x

0

t(1− 2t)f ′(t)dt+ x

∫ 1

x

(1− t)(1− 2t)f ′(t)dt

]

=
2

3
(1− x)

∫ x

0

(1− 4t)f(t)dt+
2

3
x

∫ 1

x

(4t− 3)f(t)dt.
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−
1

2
F (f ′′ψ)(x) = −

1

2

[

(1− x)

∫ x

0

t2(1− t)f ′′(t)dt+ x

∫ 1

x

t(1− t)2f ′′(t)dt

]

=
1

2
(1− x)

∫ x

0

(2t− 3t2)f ′(t)dt+
1

2
x

∫ 1

x

(1− 4t+ 3t2)f ′(t)dt

=
1

2
f(x)ψ(x) + (1− x)

∫ x

0

(3t− 1)f(t)dt+ x

∫ 1

x

(2− 3t)f(t)dt.

Hence

−
2

3
F (f ′ψ′)(x)−

1

2
F (f ′′ψ)(x) =

1

2
ψ(x)f(x)−

1

3

[

(1− x)

∫ x

0

(1− t)f(t)dt+ x

∫ 1

x

tf(t)dt

]

.

�
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On Some Bivariate Gauss-Weierstrass Operators
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ABSTRACT. The aim of the paper is to investigate the approximation properties of bivariate generalization of Gauss-
Weierstrass operators associated with the Riemann-Liouville operator. In particular, the approximation error will be
estimated by these operators in the space of functions defined and continuous in the half-plane (0,∞) × R, and
bounded by certain exponential functions.

Keywords: Gauss-Weierstrass operator, Linear operators, Approximation order
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1. INTRODUCTION

Numerous issues related to positive linear integral operators were and still are the subject of re-
search. The reason lays with their numerous applications in different domains of mathematics
and physics. The classical Gauss-Weierstrass singular integral

W (f ;x, t) =
1

2
√
πt

∫

R

exp

(

− (x− y)2

4t

)

f(y)dy,(1.1)

has been studied systematically in the past. The integral W is a solution of the heat equation.
The details can be found, for example, in [13]. Approximation properties of the operator W
were given in many papers and monographs (see, for example, [13, 14, 18]). In [4], Anastas-
siou and Mezei investigated the smooth Gauss-Weierstrass singular integral operators (not in
general positive) over the real line regarding their simultaneous global smoothness preserva-
tion property with respect to the Lp norm, by involving higher order moduli of smoothness.
Some Lipschitz type results for the smooth Gauss-Weierstrass type singular integral operators
were established in [17]. Approximation properties of the classical Gauss-Weierstrass integrals
for functions of two variables in exponential weighted space were presented in [11] and a cer-
tain modification of these integrals which has a better order of approximation than the classical
integrals was investigated in [19]. Khan and Umar (see [16]) gave a generalization of the Gauss-
Weierstrass integrals and obtained the rate of convergence of the integral operator. In [5], Aral
proposed a definition of the λ-Gauss Weierstrass singular integral with the kernel depend-
ing on a nonisotropic distance, its generalization, and gave some approximation properties of
these integrals in certain function spaces. In [3], Anastassiou and Duman studied statistical Lp-
approximation properties of the double Gauss-Weierstrass singular integral operators which
do not need to be positive. Similar issues were also examined in the complex case in note [2].
Recently, various q-generalizations of Gauss-Weierstrass singular integral operators based on
q-calculus (see [15]) and their approximation properties were investigated intensively (see, for
example, [1, 6, 7, 8]).
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The aim of this paper is to study approximation properties of the family of bivariate Gauss-
Weierstrass operators associated with the Riemann-Liouville operator (see [10]). This family is
of the form

V t
α(f)(r, x) = Vα(f ; r, x, t) =

∫

R

∫ ∞

0

Kt
α(r, x, s, y)f(s, y)dsdy,

where the kernel is defined by

Kt
α(r, x, s, y) =

(2t)−(α+3/2)

√
2π

e−
r2+s2+(x−y)2

4t

(rs

2t

)−α

Iα

(rs

2t

)

s2α+1,

for α ≥ − 1
2 , r > 0, x ∈ R, t > 0, and Iα is a modified Bessel function

Iα(z) =

∞
∑

k=0

zα+2k

2α+2kk!Γ(α+ k + 1)
.

In paper [9], the operator Vα is considered for functions belonging to Lp, 1 ≤ p ≤ ∞ and S,
which is a space of infinitely differentiable functions, rapidly decreasing together with all their
derivatives, even with respect to the first variable.
It is known (see [9, Proposition 3.4]) that the operator Vα is a positive linear operator from Lp

into itself and for every f ∈ Lp, 1 ≤ p ≤ ∞, we have

||V t
α(f)||Lp ≤ ||f ||Lp .

Moreover, for every 1 ≤ p <∞, the family (V t
α)t>0 is strongly continuous semigroup of opera-

tors on Lp and it is called Gauss semigroup associated with the Riemann-Liouville operator.
Armi and Rachdi proved that if f ∈ S, then Vα is a function of the classC∞ on (0,∞)×R×(0,∞)
and satisfies the following equations (see [9]):

∂u(r, x, t)

∂t
=
∂2u(r, x, t)

∂x2
+

2α+ 1

r

∂u(r, x, t)

∂r
+
∂2u(r, x, t)

∂r2
,(1.2)

lim
t→0+

Vα(f ; r, x, t) = f(r, x) uniformly on (0,∞)× R.

An interesting fact related to the study of the operator Vα is the following remark. If f(r, x) =
f1(r)f2(x), then

Vα(f ; r, x, t) =Wα(f1; r, t)W (f2;x, t),(1.3)

where

Wα(f1; r, t) =
1

2t

∫ ∞

0

r−αsα+1 exp

(

−r
2 + s2

4t

)

Iα

(rs

2t

)

f1(s) ds

and W is defined by (1.1). Note that W− 1
2

is the classical Gauss-Weierstrass integral (1.1) and

W− 1
2
(f1; r, t) =

1

2
√
πt

∫

R

exp

(

− (r − s)2

4t

)

f̃1(s)ds,

where

f̃1(s) =







f1(s) if s ≥ 0,

f1(−s) if s < 0.

It is worth mentioning that for f(s) = s2k, k ∈ N, the function Wα(f) is a polynomial called
radial heat polynomial [12].
Some properties of the operator Wα, in particular, an estimation of the rate of convergence,
were studied in [20].
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In this work, we will investigate approximation properties of Vα in the space EK , K ≥ 0,
consisting of all continuous functions f defined on the half-plane (0,∞)× R, and such that

|f(r, x)| ≤MeK(r2+x2)

for some M > 0. The norm in EK is given by

||f ||EK
= sup

(r,x)∈D

e−K(r2+x2)|f(r, x)|,

where D = {(r, x) : r > 0, x ∈ R}. Observe that if 0 ≤ K1 ≤ K2, then EK1 ⊂ EK2 and
‖f‖K2 ≤ ‖f‖K1 .
We shall prove that the operator Vα is bounded and maps EK into EK+δ , where δ > 0. More-
over, we shall estimate an order of approximation by this operator.

2. APPROXIMATION PROPERTIES

Applying the method used in [20], we can prove the following theorem.

Theorem 2.1. Let f ∈ EK .

(a) The function Vα(f) is of the class C∞ in the set

Ω =

{

(r, x, t); r > 0, x ∈ R, 0 < t <
1

4K

}

(if K = 0, then 0 < t <∞).
(b) The function Vα(f) is a solution of the equation (1.2) in Ω and

lim
(r,x,t)→(r0,x0,0+)

Vα(f ; r, x, t) = f(r0, x0)

for every (r0, x0) ∈ Ω. Moreover, we have

lim
t→0+

Vα(f ; r, x, t) = f(r, x)

in every closed subset in Ω.

In what follows, it will be useful to consider the functions:

ψ0,0(r, x) = eK(r2+x2), ψ0,i(r, x) = xieK(r2+x2),

ψi,0(r, x) = r2ieK(r2+x2) for i = 1, 2.

Using (see [20])
∫ ∞

0

sα+2b+1 exp
(

−as2
)

Iα(βs) ds =
∞
∑

k=0

βα+2kΓ(α+ k + b+ 1)

k!Γ(α+ k + 1)aα+k+b+12α+2k+1
,

α ≥ − 1
2 , b ≥ 0, a > 0, β > 0 and the equation (1.3), we have the following lemma.

Lemma 2.1. Let I =
(

0, 1
4K

)

for K > 0 and I = (0,∞) for K = 0. For t ∈ I , we have

Vα(ψ0,0; r, x, t) = A,

Vα(ψ0,1; r, x, t) = Ax(1− 4Kt)−1,

Vα(ψ0,2; r, x, t) = A
[

2x2(1− 4Kt)−2 + 2t(1− 4Kt)−1
]

,

Vα(ψ1,0; r, x, t) = A
[

r2(1− 4Kt)−2 + 4t(α+ 1)(1− 4Kt)−1
]

,

Vα(ψ2,0; r, x, t) = A
[

r4(1− 4Kt)−4 + 8tr2(α+ 2)(1− 4Kt)−3

+ 16t2(α+ 2)(α+ 1)(1− 4Kt)−2
]

,
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where A = (1− 4Kt)−(α+ 3
2 )e

K(r2+x2)
1−4Kt .

Theorem 2.2. Let f ∈ EK . If K > 0, then for every δ > 0 and t ∈ (0, δ
4K(K+δ) ), the operator Vα

maps the space EK in EK+δ and

∥

∥V t
α(f)

∥

∥

K+δ
≤
(

1 +
δ

K

)α+ 3
2

‖f‖K .(2.4)

If K = 0, then Vα maps the space E0 into itself and
∥

∥V t
α(f)

∥

∥

0
≤ ‖f‖0.(2.5)

Proof. By the positivity and linearity of Vα, we get

|Vα(f ; r, x, t)| ≤ Vα(|f |; r, x, t) ≤ ‖f‖KVα(ψ0,0; r, x, t) = A‖f‖K .
From above we have (2.5) for K = 0.
Let K > 0. If δ > 0 and t ∈ (0, δ

4K(K+δ) ), then K
1−4Kt < K + δ. Hence

‖V t
α‖K+δ = sup

(r,x)∈D

e−(K+δ)(r2+x2)|Vα(f ; r, x, t)|

≤ sup
(r,x)∈D

e−
K

1−4Kt
(r2+x2)|Vα(f ; r, x, t)|

≤ (1− 4K)−(α+ 3
2 )‖f‖K ≤

(

1 +
δ

K

)α+ 3
2

‖f‖K ,

which gives (2.4). �

3. RATE OF CONVERGENCE

In this section, we shall state an estimate of the rate of convergence of the integral Vα in terms
of the modulus of continuity.
Let δ > 0 and

ω(f ;EK , δ) = sup√
(s−r)2+(y−x)2≤δ

|f(s, y)− f(r, x)|e−K(s2+y2), K ≥ 0.

Observe that

ω(f ;EK , δ1) ≤ ω(f ;EK , δ2) for 0 < δ1 ≤ δ2,

ω(f ;EK , λδ) ≤ (1 + λ)ω(f ;EK , δ) for λ > 0.

Theorem 3.3. Let f ∈ EK , K ≥ 0 and A = (1− 4Kt)−(α+ 3
2 )e

K(r2+x2)
1−4Kt . We have

|Vα(f ; r, x, t)− f(r, x)| ≤ 2Aω(f ;EK , δ),

where

δ =
{

x2 − 2x2(1− 4Kt)−1 + x2(1− 4Kt)−2 + 2t(1− 4Kt)−1

+
[

r4 − 2r4(1− 4Kt)−2 + r4(1− 4Kt)−4 − 8tr2(α+ 1)(1− 4Kt)−1

+ 8tr2(α+ 2)(1− 4Kt)−3 + 16t2(α+ 2)(α+ 1)(1− 4Kt)−2
]1/2

}1/2

for r > 0, x ∈ R, 0 < t < 1
4K and K > 0.
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If K = 0, we have

|Vα(f ; r, x, t)− f(r, x)| ≤ 2ω

(

f ;E0,

√

2t+
√

8tr2 + 16t2(α+ 2)(α+ 1)

)

for r > 0, x ∈ R, t > 0.

Proof. Let δ > 0. Using the property of the modulus of continuity, we obtain

|f(s, y)− f(r, x)| ≤ eK(s2+y2)ω
(

f ;EK ,
√

(s− r)2 + (y − x)2
)

for f ∈ EK . From this, we get

|f(s, y)− f(r, x)|

≤ eK(s2+y2)

(

1 +

√

(s− r)2 + (y − x)2

δ

)

ω (f ;EK , δ)

≤ eK(s2+y2)

(

1 +
(s− r)2 + (y − x)2

δ2

)

ω (f ;EK , δ) .

In view of (s− r)2 ≤ |s2 − r2|, we can write

|f(s, y)− f(r, x)| ≤ eK(s2+y2)

(

1 +
|s2 − r2|+ (y − x)2

δ2

)

ω (f ;EK , δ) .

The operator Vα is positive and linear (see also [9]), so

|Vα(f ; r, x, t)− f(r, x)|

≤ Vα(|f − f(r, x)|; r, x, t)

≤ ω (f ;EK , δ)Vα

(

ψ0,0 +
x2ψ0,0 − 2xψ0,1 + ψ0,2 + φψ0,0

δ2
; r, x, t

)

,

where φ(s, y) = |s2 − r2|. Observe that

Vα (φψ0,0; r, x, t) ≤
{

Vα(ψ0,0; r, x, t)Vα(φ
2ψ0,0; r, x, t)

}1/2

=
{

Vα(ψ0,0; r, x, t)
[

r4Vα(ψ0,0; r, x, t)

− 2r2Vα(ψ1,0; r, x, t) + Vα(ψ2,0; r, x, t)
]}1/2

.

Hence

|Vα(f ; r, x, t)− f(r, x)|

≤ ω (f ;EK , δ)
{

Vα (ψ0,0; r, x, t)

+
1

δ2

[

x2Vα (ψ0,0; r, x, t)− 2xVα (ψ0,1; r, x, t) + Vα (ψ0,2; r, x, t)
]

+
1

δ2

[

Vα(ψ0,0; r, x, t)
(

r4Vα(ψ0,0; r, x, t)− 2r2Vα(ψ1,0; r, x, t)

+ Vα(ψ2,0; r, x, t))]
1/2
}

.



62 G. Krech, I. Krech

If K = 0, then from Lemma 2.1, we have

Vα (ψ0,0; r, x, t) = 1,

Vα (ψ0,1; r, x, t) = x,

Vα (ψ0,2; r, x, t) = 2x2 + 2t,

Vα (ψ1,0; r, x, t) = r2 + 4t(α+ 1),

Vα (ψ2,0; r, x, t) = r4 + 8tr2(α+ 2) + 16t2(α+ 2)(α+ 1).

Hence, we conclude

|Vα(f ; r, x, t)− f(r, x)| ≤ 2ω

(

f ;E0,

√

2t+
√

8tr2 + 16t2(α+ 2)(α+ 1)

)

for r > 0, x ∈ R, t > 0.
For K > 0, we obtain from Lemma 2.1 the following estimation

|Vα(f ; r, x, t)− f(r, x)|

≤ Aω (f ;EK , δ)

×
{

1 +
1

δ2

[

x2 − 2x2(1− 4Kt)−1 + x2(1− 4Kt)−2 + 2t(1− 4Kt)−1
]

+
1

δ2

[

r4 − 2r4(1− 4Kt)−2 + r4(1− 4Kt)−4 − 8tr2(α+ 1)(1− 4Kt)−1

+ 8tr2(α+ 2)(1− 4Kt)−3 + 16t2(α+ 2)(α+ 1)(1− 4Kt)−2
]1/2

}

.

Setting

δ =
{

x2 − 2x2(1− 4Kt)−1 + x2(1− 4Kt)−2 + 2t(1− 4Kt)−1

+
[

r4 − 2r4(1− 4Kt)−2 + r4(1− 4Kt)−4 − 8tr2(α+ 1)(1− 4Kt)−1

+ 8tr2(α+ 2)(1− 4Kt)−3 + 16t2(α+ 2)(α+ 1)(1− 4Kt)−2
]1/2

}1/2

,

we get the assertion. �
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General Multivariate Iyengar Type Inequalities

GEORGE A. ANASTASSIOU

ABSTRACT. Here we give a variety of general multivariate Iyengar type inequalities for not necessarily radial func-

tions defined on the shell and ball. Our approach is based on the polar coordinates in R
N , N ≥ 2, and the related

multivariate polar integration formula. Via this method we transfer well-known univariate Iyengar type inequalities
and univariate author’s related results into general multivariate Iyengar inequalities.
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1. BACKGROUND

In the year 1938, Iyengar [5] proved the following interesting inequality:

Theorem 1.1. Let f be a differentiable function on [a, b] and |f ′ (x)| ≤ M1. Then

(1.1)

∣

∣

∣

∣

∣

∫ b

a

f (x) dx−
1

2
(b− a) (f (a) + f (b))

∣

∣

∣

∣

∣

≤
M1 (b− a)

2

4
−

(f (b)− f (a))
2

4M1
.

In 2001, X.-L. Cheng [4] proved that

Theorem 1.2. Let f ∈ C2 ([a, b]) and |f ′′ (x)| ≤ M2. Then
∣

∣

∣

∣

∣

∫ b

a

f (x) dx−
1

2
(b− a) (f (a) + f (b)) +

1

8
(b− a)

2
(f ′ (b)− f ′ (a))

∣

∣

∣

∣

∣

(1.2)

≤
M2

24
(b− a)

3
−

(b− a)

16M2
∆2

1,

where

∆1 = f ′ (a)−
2 (f (b)− f (a))

(b− a)
+ f ′ (b) .

In 1996, Agarwal and Dragomir [1] obtained a generalization of (1.1):

Theorem 1.3. Let f : [a, b] → R be a differentiable function such that for all x ∈ [a, b] with M > m

we have m ≤ f ′ (x) ≤ M . Then
∣

∣

∣

∣

∣

∫ b

a

f (x) dx−
1

2
(b− a) (f (a) + f (b))

∣

∣

∣

∣

∣

≤
(f (b)− f (a)−m (b− a)) (M (b− a)− f (b) + f (a))

2 (M −m)
.

In [7], Qi proved the following:
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Theorem 1.4. Let f : [a, b] → R be a twice differentiable function such that for all x ∈ [a, b] with
M > 0 we have |f ′′ (x)| ≤ M . Then

∣

∣

∣

∣

∣

∫ b

a

f (x) dx−
(f (a) + f (b))

2
(b− a) +

(

1 +Q2
)

8
(f ′ (b)− f ′ (a)) (b− a)

2

∣

∣

∣

∣

∣

≤
M (b− a)

3

24

(

1− 3Q2
)

,

where

Q2 =

(

f ′ (a) + f ′ (b)− 2
(

f(b)−f(a)
b−a

))2

M2 (b− a)
2
− (f ′ (b)− f ′ (a))

2 .

In 2005, Zheng Liu, [6], proved the following:

Theorem 1.5. Let f : [a, b] → R be a differentiable function such that f ′ is integrable on [a, b] and for
all x ∈ [a, b] with M > m we have

m ≤
f ′ (x)− f ′ (a)

x− a
≤ M and m ≤

f ′ (b)− f ′ (x)

b− x
≤ M.

Then
∣

∣

∣

∣

∣

∫ b

a

f (x) dx−
(f (a) + f (b))

2
(b− a) +

(

1 + P 2

8

)

(f ′ (b)− f ′ (a)) (b− a)
2

−

(

1 + 3P 2

48

)

(m+M) (b− a)
3

∣

∣

∣

∣

≤
(M −m) (b− a)

3

48

(

1− 3P 2
)

,

where

P 2 =

(

f ′ (a) + f ′ (b)− 2
(

f(b)−f(a)
b−a

))2

(

M−m
2

)2
(b− a)

2
−
(

f ′ (b)− f ′ (a)−
(

m+M
2

)

(b− a)
)2 .

Next we list some author’s related results, (here L∞ ([a, b]) is the normed space of essentially
bounded functions over [a, b]):

Theorem 1.6. ([3]) Let n ∈ N, f ∈ ACn ([a, b]) (i.e. f (n−1) ∈ AC ([a, b]), absolutely continuous

functions). We assume that f (n) ∈ L∞ ([a, b]). Then

(i)
∣

∣

∣

∣

∣

∫ b

a

f (x) dx−
n−1
∑

k=0

1

(k + 1)!

[

f (k) (a) (t− a)
k+1

+ (−1)kf (k) (b) (b− t)
k+1
]

∣

∣

∣

∣

∣

(1.3)

≤

∥

∥f (n)
∥

∥

L∞([a,b])

(n+ 1)!

[

(t− a)
n+1

+ (b− t)
n+1
]

,

for all t ∈ [a, b] ,

(ii) at t = a+b
2 , the right hand side of (1.3) is minimized, and we get:

∣

∣

∣

∣

∣

∫ b

a

f (x) dx−

n−1
∑

k=0

1

(k + 1)!

(b− a)
k+1

2k+1

[

f (k) (a) + (−1)kf (k) (b)
]

∣

∣

∣

∣

∣

≤

∥

∥f (n)
∥

∥

L∞([a,b])

(n+ 1)!

(b− a)
n+1

2n
,
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(iii) if f (k) (a) = f (k) (b) = 0 for all k = 0, 1, ..., n− 1, then we obtain
∣

∣

∣

∣

∣

∫ b

a

f (x) dx

∣

∣

∣

∣

∣

≤

∥

∥f (n)
∥

∥

L∞([a,b])

(n+ 1)!

(b− a)
n+1

2n

which is a sharp inequality,
(iv) more generally, for j = 0, 1, 2, ..., N ∈ N, it holds

∣

∣

∣

∣

∣

∫ b

a

f (x) dx−

n−1
∑

k=0

1

(k + 1)!

(

b− a

N

)k+1
[

jk+1f (k) (a) + (−1)k (N − j)
k+1

f (k) (b)
]

∣

∣

∣

∣

∣

(1.4)

≤

∥

∥f (n)
∥

∥

L∞([a,b])

(n+ 1)!

(

b− a

N

)n+1
[

jn+1 + (N − j)
n+1
]

,

(v) if f (k) (a) = f (k) (b) = 0, k = 1, ..., n− 1, from (1.4) we get:
∣

∣

∣

∣

∣

∫ b

a

f (x) dx−

(

b− a

N

)

[jf (a) + (N − j) f (b)]

∣

∣

∣

∣

∣

(1.5)

≤

∥

∥f (n)
∥

∥

L∞([a,b])

(n+ 1)!

(

b− a

N

)n+1
[

jn+1 + (N − j)
n+1
]

for j = 0, 1, 2, ..., N ∈ N,

(vi) when N = 2 and j = 1, (1.5) turns to

(1.6)

∣

∣

∣

∣

∣

∫ b

a

f (x) dx−

(

b− a

2

)

(f (a) + f (b))

∣

∣

∣

∣

∣

≤

∥

∥f (n)
∥

∥

L∞([a,b])

(n+ 1)!

(b− a)
n+1

2n
,

(vii) when n = 1 (without any boundary conditions), we get from (1.6) that
∣

∣

∣

∣

∣

∫ b

a

f (x) dx−

(

b− a

2

)

(f (a) + f (b))

∣

∣

∣

∣

∣

≤ ‖f ′‖[a,b],∞
(b− a)

2

4
,

a similar to Iyengar inequality (1.1).

We mention here L1 ([a, b]) is the normed space of integrable functions over [a, b]).

Theorem 1.7. ([3]) Let f ∈ ACn ([a, b]), n ∈ N. Then

(i)
∣

∣

∣

∣

∣

∫ b

a

f (x) dx−

n−1
∑

k=0

1

(k + 1)!

[

f (k) (a) (t− a)
k+1

+ (−1)kf (k) (b) (b− t)
k+1
]

∣

∣

∣

∣

∣

(1.7)

≤

∥

∥f (n)
∥

∥

L1([a,b])

n!
[(t− a)

n
+ (b− t)

n
] ,

for all t ∈ [a, b] ,

(ii) at t = a+b
2 , the right hand side of (1.7) is minimized, and we get:

∣

∣

∣

∣

∣

∫ b

a

f (x) dx−

n−1
∑

k=0

1

(k + 1)!

(b− a)
k+1

2k+1

[

f (k) (a) + (−1)kf (k) (b)
]

∣

∣

∣

∣

∣

≤

∥

∥f (n)
∥

∥

L1([a,b])

n!

(b− a)
n

2n−1
,
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(iii) if f (k) (a) = f (k) (b) = 0, for all k = 0, 1, ..., n− 1, we obtain

∣

∣

∣

∣

∣

∫ b

a

f (x) dx

∣

∣

∣

∣

∣

≤

∥

∥f (n)
∥

∥

L1([a,b])

n!

(b− a)
n

2n−1
,

which is a sharp inequality,
(iv) more generally, for j = 0, 1, 2, ..., N ∈ N, it holds

∣

∣

∣

∣

∣

∫ b

a

f (x) dx−

n−1
∑

k=0

1

(k + 1)!

(

b− a

N

)k+1
[

jk+1f (k) (a) + (−1)k (N − j)
k+1

f (k) (b)
]

∣

∣

∣

∣

∣

(1.8)

≤

∥

∥f (n)
∥

∥

L1([a,b])

n!

(

b− a

N

)n

[jn + (N − j)
n
] ,

(v) if f (k) (a) = f (k) (b) = 0, k = 1, ..., n− 1, from (1.8) we get:

∣

∣

∣

∣

∣

∫ b

a

f (x) dx−

(

b− a

N

)

[jf (a) + (N − j) f (b)]

∣

∣

∣

∣

∣

(1.9)

≤

∥

∥f (n)
∥

∥

L1([a,b])

n!

(

b− a

N

)n

[jn + (N − j)
n
] ,

for j = 0, 1, 2, ..., N ∈ N,

(vi) when N = 2 and j = 1, (1.9) turns to

(1.10)

∣

∣

∣

∣

∣

∫ b

a

f (x) dx−
(b− a)

2
(f (a) + f (b))

∣

∣

∣

∣

∣

≤

∥

∥f (n)
∥

∥

L1([a,b])

n!

(b− a)
n

2n−1
,

(vii) when n = 1 (without any boundary conditions), we get from (1.10) that

∣

∣

∣

∣

∣

∫ b

a

f (x) dx−

(

b− a

2

)

(f (a) + f (b))

∣

∣

∣

∣

∣

≤ ‖f ′‖L1([a,b])
(b− a) .

We mention here Lq ([a, b]) is the normed space of functions f such that |f |q is integrable over
[a, b])

Theorem 1.8. ([3]) Let f ∈ ACn ([a, b]), n ∈ N; p, q > 1 such that 1
p
+ 1

q
= 1, and f (n) ∈ Lq ([a, b]).

Then

(i)

∣

∣

∣

∣

∣

∫ b

a

f (x) dx−

n−1
∑

k=0

1

(k + 1)!

[

f (k) (a) (t− a)
k+1

+ (−1)kf (k) (b) (b− t)
k+1
]

∣

∣

∣

∣

∣

(1.11)

≤

∥

∥f (n)
∥

∥

Lq([a,b])

(n− 1)!
(

n+ 1
p

)

(p (n− 1) + 1)
1

p

[

(t− a)
n+ 1

p + (b− t)
n+ 1

p

]

,

for all t ∈ [a, b] ,
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(ii) at t = a+b
2 , the right hand side of (1.11) is minimized, and we get:

∣

∣

∣

∣

∣

∫ b

a

f (x) dx−
n−1
∑

k=0

1

(k + 1)!

(b− a)
k+1

2k+1

[

f (k) (a) + (−1)kf (k) (b)
]

∣

∣

∣

∣

∣

≤

∥

∥f (n)
∥

∥

Lq([a,b])

(n− 1)!
(

n+ 1
p

)

(p (n− 1) + 1)
1

p

(b− a)
n+ 1

p

2n−
1

q

,

(iii) if f (k) (a) = f (k) (b) = 0, for all k = 0, 1, ..., n− 1, we obtain
∣

∣

∣

∣

∣

∫ b

a

f (x) dx

∣

∣

∣

∣

∣

≤

∥

∥f (n)
∥

∥

Lq([a,b])

(n− 1)!
(

n+ 1
p

)

(p (n− 1) + 1)
1

p

(b− a)
n+ 1

p

2n−
1

q

,

which is a sharp inequality,
(iv) more generally, for j = 0, 1, 2, ..., N ∈ N, it holds

∣

∣

∣

∣

∣

∫ b

a

f (x) dx−

n−1
∑

k=0

1

(k + 1)!

(

b− a

N

)k+1
[

jk+1f (k) (a) + (−1)k (N − j)
k+1

f (k) (b)
]

∣

∣

∣

∣

∣

(1.12)

≤

∥

∥f (n)
∥

∥

Lq([a,b])

(n− 1)!
(

n+ 1
p

)

(p (n− 1) + 1)
1

p

(

b− a

N

)n+ 1

p [

jn+
1

p + (N − j)
n+ 1

p

]

,

(v) if f (k) (a) = f (k) (b) = 0, k = 1, ..., n− 1, from (1.12) we get:
∣

∣

∣

∣

∣

∫ b

a

f (x) dx−

(

b− a

N

)

[jf (a) + (N − j) f (b)]

∣

∣

∣

∣

∣

(1.13)

≤

∥

∥f (n)
∥

∥

Lq([a,b])

(n− 1)!
(

n+ 1
p

)

(p (n− 1) + 1)
1

p

(

b− a

N

)n+ 1

p [

jn+
1

p + (N − j)
n+ 1

p

]

,

for j = 0, 1, 2, ..., N ∈ N,

(vi) when N = 2 and j = 1, (1.13) turns to

(1.14)

∣

∣

∣

∣

∣

∫ b

a

f (x) dx−
(b− a)

2
(f (a) + f (b))

∣

∣

∣

∣

∣

≤

∥

∥f (n)
∥

∥

Lq([a,b])

(n− 1)!
(

n+ 1
p

)

(p (n− 1) + 1)
1

p

(b− a)
n+ 1

p

2n−
1

q

,

(vii) when n = 1 (without any boundary conditions), we get from (1.14) that
∣

∣

∣

∣

∣

∫ b

a

f (x) dx−

(

b− a

2

)

(f (a) + f (b))

∣

∣

∣

∣

∣

≤
‖f ′‖Lq([a,b])
(

1 + 1
p

)

(b− a)
1+ 1

p

2
1

p

.

We need

Remark 1.1. We define the ball B (0, R) =
{

x ∈ R
N : |x| < R

}

⊆ R
N , N ≥ 2, R > 0, and the

sphere

SN−1 :=
{

x ∈ R
N : |x| = 1

}

,

where |·| is the Euclidean norm. Let dω be the element of surface measure on SN−1 and

ωN =

∫

SN−1

dω =
2π

N
2

Γ
(

N
2

)
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is the area of SN−1.

For x ∈ R
N − {0} we can write uniquely x = rω, where r = |x| > 0 and ω = x

r
∈ SN−1, |ω| = 1.

Note that
∫

B(0,R)
dy = ωNRN

N
is the Lebesgue measure on the ball, that is the volume of B (0, R), which

exactly is V ol (B (0, R)) = π
N
2 RN

Γ(N
2
+1)

.

Following [8, pp. 149-150, exercise 6], and [9, pp. 87-88, Theorem 5.2.2] we can write for F :

B (0, R) → R a Lebesgue integrable function that

(1.15)

∫

B(0,R)

F (x) dx =

∫

SN−1

(

∫ R

0

F (rω) rN−1dr

)

dω,

and we use this formula a lot.

Typically here the function f : B (0, R) → R is not radial. A radial function f is such that there exists

a function g with f (x) = g (r), where r = |x|, r ∈ [0, R], for all x ∈ B (0, R).

We need

Remark 1.2. Let the spherical shell A := B (0, R2) − B (0, R1), 0 < R1 < R2, A ⊆ R
N , N ≥ 2,

x ∈ A. Consider that f : A → R is not radial. A radial function f is such that there exists a function
g with f (x) = g (r), r = |x|, r ∈ [R1, R2], for all x ∈ A. Here x can be written uniquely as x = rω,
where r = |x| > 0 and ω = x

r
∈ SN−1, |ω| = 1, see ([8], p. 149-150 and [2], p. 421), furthermore for

F : A → R a Lebesgue integrable function we have that

(1.16)

∫

A

F (x) dx =

∫

SN−1

(

∫ R2

R1

F (rω) rN−1dr

)

dω.

Here

V ol (A) =
ωN

(

RN
2 −RN

1

)

N
=

π
N
2

(

RN
2 −RN

1

)

Γ
(

N
2 + 1

) .

In this article we derive general multivariate Iyengar type inequalities on the shell and ball of
R

N , N ≥ 2, for not necessarily radial functions. Our results are based on Theorems 1.1-1.8.

2. MAIN RESULTS

We present the following non-radial multivariate Iyengar type inequalities:
We start with

Theorem 2.9. Let the spherical shell A := B (0, R2) − B (0, R1), 0 < R1 < R2, A ⊆ R
N , N ≥ 2.

Consider f : A → R that is not necessarily radial, and that f ∈ C1
(

A
)

. Assume that
∣

∣

∣

∂f(sω)
∂s

∣

∣

∣
≤ M1,

for all s ∈ [R1, R2], and for all ω ∈ SN−1, where M1 > 0.
Then

∣

∣

∣

∣

∫

A

f (y) dy −
(R2 −R1)

2

(

RN−1
1

∫

SN−1

f (R1ω) dω +RN−1
2

∫

SN−1

f (R2ω) dω

)
∣

∣

∣

∣

≤
M1π

N
2 (R2 −R1)

2

2Γ
(

N
2

) −

∫

SN−1

(

f (R2ω)R
N−1
2 − f (R1ω)R

N−1
1

)2
dω

4M1
.
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Proof. Here f (sω) sN−1 ∈ C1 ([R1, R2]), N ≥ 2, for all ω ∈ SN−1. By (1.1) we get

∣

∣

∣

∣

∣

∫ R2

R1

f (sω) sN−1ds−
1

2
(R2 −R1)

(

f (R1ω)R
N−1
1 + f (R2ω)R

N−1
2

)

∣

∣

∣

∣

∣

≤
M1 (R2 −R1)

2

4
−

(

f (R2ω)R
N−1
2 − f (R1ω)R

N−1
1

)2

4M1
=: λ1 (ω) ,

for all ω ∈ SN−1.

Equivalently, we have

−λ1 (ω) ≤

∫ R2

R1

f (sω) sN−1ds−
1

2
(R2 −R1)

(

f (R1ω)R
N−1
1 + f (R2ω)R

N−1
2

)

≤ λ1 (ω) ,

for all ω ∈ SN−1.

Hence it holds

−

∫

SN−1

λ1 (ω) dω ≤

∫

SN−1

(

∫ R2

R1

f (sω) sN−1ds

)

dω

−
1

2
(R2 −R1)

(

RN−1
1

∫

SN−1

f (R1ω) dω +RN−1
2

∫

SN−1

f (R2ω) dω

)

≤

∫

SN−1

λ1 (ω) dω.

That is (by (1.16))

−

[

π
N
2 M1 (R2 −R1)

2

2Γ
(

N
2

) −

∫

SN−1

(

f (R2ω)R
N−1
2 − f (R1ω)R

N−1
1

)2
dω

4M1

]

≤

∫

A

f (y) dy −
(R2 −R1)

2

(

RN−1
1

∫

SN−1

f (R1ω) dω +RN−1
2

∫

SN−1

f (R2ω) dω

)

≤
π

N
2 M1 (R2 −R1)

2

2Γ
(

N
2

) −

∫

SN−1

(

f (R2ω)R
N−1
2 − f (R1ω)R

N−1
1

)2
dω

4M1
,

proving the claim. �

We continue with

Theorem 2.10. Let the spherical shell A := B (0, R2) − B (0, R1), 0 < R1 < R2, A ⊆ R
N , N ≥ 2.

Consider f : A → R that is not necessarily radial, and that f ∈ C2
(

A
)

. Assume that
∣

∣

∣

∂2f(sω)
∂s2

∣

∣

∣
≤ M2,

for all s ∈ [R1, R2], and for all ω ∈ SN−1, where M2 > 0.
Set

∆1 (ω) :=
(

f (sω) sN−1
)′

(R1)−
2
(

f (R2ω)R
N−1
2 − f (R1ω)R

N−1
1

)

R2 −R1

+
(

f (sω) sN−1
)′

(R2) , ∀ ω ∈ SN−1.
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Then
∣

∣

∣

∣

∫

A

f (y) dy −
(R2 −R1)

2

(

RN−1
1

∫

SN−1

f (R1ω) dω +RN−1
2

∫

SN−1

f (R2ω) dω

)

+
(R2 −R1)

2

8

[
∫

SN−1

(

f (sω) sN−1
)′

(R2) dω −

∫

SN−1

(

f (sω) sN−1
)′

(R1) dω

]

∣

∣

∣

∣

∣

≤
π

N
2

Γ
(

N
2

)

M2

12
(R2 −R1)

3
−

(R2 −R1)

16M2

∫

SN−1

∆2
1 (ω) dω.

Proof. Here f (sω) sN−1 ∈ C2 ([R1, R2]), N ≥ 2, for all ω ∈ SN−1. By (1.2) we get
∣

∣

∣

∣

∣

∫ R2

R1

f (sω) sN−1ds−
1

2
(R2 −R1)

(

f (R1ω)R
N−1
1 + f (R2ω)R

N−1
2

)

+
1

8
(R2 −R1)

2
(

(

f (sω) sN−1
)′

(R2)−
(

f (sω) sN−1
)′

(R1)
)

∣

∣

∣

∣

≤
M2

24
(R2 −R1)

3
−

(R2 −R1)

16M2
∆2

1 (ω) =: λ2 (ω) ,

for all ω ∈ SN−1.

Equivalently, we have

− λ2 (ω) ≤

∫ R2

R1

f (sω) sN−1ds−
(R2 −R1)

2

(

f (R1ω)R
N−1
1 + f (R2ω)R

N−1
2

)

+
1

8
(R2 −R1)

2
(

(

f (sω) sN−1
)′

(R2)−
(

f (sω) sN−1
)′

(R1)
)

≤ λ2 (ω) ,

for all ω ∈ SN−1.

Hence it holds

−

∫

SN−1

λ2 (ω) dω ≤

∫

SN−1

(

∫ R2

R1

f (sω) sN−1ds

)

dω

−
(R2 −R1)

2

(

RN−1
1

∫

SN−1

f (R1ω) dω +RN−1
2

∫

SN−1

f (R2ω) dω

)

+
(R2 −R1)

2

8

[
∫

SN−1

(

f (sω) sN−1
)′

(R2) dω −

∫

SN−1

(

f (sω) sN−1
)′

(R1) dω

]

≤

∫

SN−1

λ2 (ω) dω.

That is (by (1.16))

−

[

π
N
2

Γ
(

N
2

)

M2

12
(R2 −R1)

3
−

(R2 −R1)

16M2

∫

SN−1

∆2
1 (ω) dω

]

≤

∫

A

f (y) dy −
(R2 −R1)

2

(

RN−1
1

∫

SN−1

f (R1ω) dω +RN−1
2

∫

SN−1

f (R2ω) dω

)

+
(R2 −R1)

2

8

[
∫

SN−1

(

f (sω) sN−1
)′

(R2) dω −

∫

SN−1

(

f (sω) sN−1
)′

(R1) dω

]

≤
π

N
2

Γ
(

N
2

)

M2

12
(R2 −R1)

3
−

(R2 −R1)

16M2

∫

SN−1

∆2
1 (ω) dω,
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proving the claim. �

We give

Theorem 2.11. Let the spherical shell A := B (0, R2) − B (0, R1), 0 < R1 < R2, A ⊆ R
N , N ≥ 2.

Consider f : A → R that is not necessarily radial, and that f ∈ C1
(

A
)

. Let M > m and assume that

m ≤ ∂f(sω)
∂s

≤ M , for all s ∈ [R1, R2], and for all ω ∈ SN−1.

Then
∣

∣

∣

∣

∫

A

f (y) dy −
(R2 −R1)

2

(

RN−1
1

∫

SN−1

f (R1ω) dω +RN−1
2

∫

SN−1

f (R2ω) dω

)
∣

∣

∣

∣

≤
1

2 (M −m)

∫

SN−1

[(

f (R2ω)R
N−1
2 − f (R1ω)R

N−1
1 −m (R2 −R1)

)

×
(

M (R2 −R1)− f (R2ω)R
N−1
2 + f (R1ω)R

N−1
1

)]

dω.

Proof. Similar to the proof of Theorem 2.9 by using Theorem 1.3 and (1.16). �

We give

Theorem 2.12. Let the spherical shell A := B (0, R2) − B (0, R1), 0 < R1 < R2, A ⊆ R
N , N ≥ 2.

Consider f : A → R that is not necessarily radial, and that f ∈ C2
(

A
)

. Assume that
∣

∣

∣

∂2f(sω)
∂s2

∣

∣

∣
≤ M3,

for all s ∈ [R1, R2], and for all ω ∈ SN−1, where M3 > 0.
Set

Q2
1 (ω)

:=

[

(

f (sω) sN−1
)′

(R1) +
(

f (sω) sN−1
)′

(R2)− 2
(

f(R2ω)RN−1

2
−f(R1ω)RN−1

1

R2−R1

)]2

[

M2
3 (R2 −R1)

2
−
(

(f (sω) sN−1)
′
(R2)− (f (sω) sN−1)

′
(R1)

)2
] ,

for all ω ∈ SN−1.

Then
∣

∣

∣

∣

∫

A

f (y) dy −
(R2 −R1)

2

(

RN−1
1

∫

SN−1

f (R1ω) dω +RN−1
2

∫

SN−1

f (R2ω) dω

)

+
(R2 −R1)

2

8

∫

SN−1

(

1 +Q2
1 (ω)

)

(

(

f (sω) sN−1
)′

(R2)−
(

f (sω) sN−1
)′

(R1)
)

dω

∣

∣

∣

∣

∣

≤
M3 (R2 −R1)

3

24

∫

SN−1

(

1− 3Q2
1 (ω)

)

dω.

Proof. Similar to the proof of Theorem 2.10 by using Theorem 1.4 and (1.16). �

We continue with

Theorem 2.13. Here all as in Theorem 2.9, and let M1 > m1. Assume that

m1 ≤

(

f (sω) sN−1
)′

(x)−
(

f (sω) sN−1
)′

(R1)

x−R1
≤ M1,

and

m1 ≤

(

f (sω) sN−1
)′

(R2)−
(

f (sω) sN−1
)′

(x)

R2 − x
≤ M1,

for all x ∈ [R1, R2], for all ω ∈ SN−1.
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Set

P 2
1 (ω)

=

[

(

f (sω) sN−1
)′

(R1) +
(

f (sω) sN−1
)′

(R2)− 2
(

f(R2ω)RN−1

2
−f(R1ω)RN−1

1

R2−R1

)]2

(

M1−m1

2

)2
(R2 −R1)

2
−
[

(f (sω) sN−1)
′
(R2)− (f (sω) sN−1)

′
(R1)−

(

m1+M1

2

)

(R2 −R1)
]2 ,

for all ω ∈ SN−1.

Then
∣

∣

∣

∣

∫

A

f (y) dy −

(

R2 −R1

2

)(

RN−1
1

∫

SN−1

f (R1ω) dω +RN−1
2

∫

SN−1

f (R2ω) dω

)

+
(R2 −R1)

2

8

∫

SN−1

(

1 + P 2
1 (ω)

)

(

(

f (sω) sN−1
)′

(R2)−
(

f (sω) sN−1
)′

(R1)
)

dω

−
(R2 −R1)

3

48
(m1 +M1)

∫

SN−1

(

1 + 3P 2
1 (ω)

)

dω

∣

∣

∣

∣

∣

≤
(M1 −m1) (R2 −R1)

3

48

∫

SN−1

(

1− 3P 2
1 (ω)

)

dω.

Proof. Similar to the proof of Theorem 2.10 by using Theorem 1.5 and (1.16). �

We present

Theorem 2.14. Consider f : A → R be Lebesgue integrable, which is not necessarily radial. Assume

that f (sω) sN−1 ∈ ACn ([R1, R2]) (i.e.
(

f (sω) sN−1
)(n−1)

∈ AC ([R1, R2]) absolutely continuous

functions), for all ω ∈ SN−1, N ≥ 2. We assume that
(

f (sω) sN−1
)(n)

∈ L∞ ([R1, R2]), for all

ω ∈ SN−1. There exists K1 > 0 such that
∥

∥

∥

(

f (sω) sN−1
)(n)

∥

∥

∥

L∞([R1,R2])
≤ K1, where s ∈ [R1, R2],

for all ω ∈ SN−1.

Then

(i)
∣

∣

∣

∣

∣

∫

A

f (y) dy −
n−1
∑

k=0

1

(k + 1)!

[(
∫

SN−1

(

f (sω) sN−1
)(k)

(R1) dω

)

(t−R1)
k+1(2.17)

+ (−1)
k

(
∫

SN−1

(

f (sω) sN−1
)(k)

(R2) dω

)

(R2 − t)
k+1

]∣

∣

∣

∣

≤
2π

N
2

Γ
(

N
2

)

K1

(n+ 1)!

[

(t−R1)
n+1

+ (R2 − t)
n+1
]

,

for all t ∈ [R1, R2] ,

(ii) at t = R1+R2

2 , the right hand side of (2.17) is minimized, and we get:
∣

∣

∣

∣

∣

∫

A

f (y) dy −
n−1
∑

k=0

1

(k + 1)!

(R2 −R1)
k+1

2k+1

[
∫

SN−1

(

f (sω) sN−1
)(k)

(R1) dω

+ (−1)
k

∫

SN−1

(

f (sω) sN−1
)(k)

(R2) dω

]
∣

∣

∣

∣

≤
π

N
2

Γ
(

N
2

)

K1

(n+ 1)!

(R2 −R1)
n+1

2n−1
,
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(iii) if
(

f (sω) sN−1
)(k)

(R1) =
(

f (sω) sN−1
)(k)

(R2) = 0, for all ω ∈ SN−1, (i.e.
∂k(f(sω)sN−1)

∂sk

vanish on ∂B (0, R1) and ∂B (0, R2)) for all k = 0, 1, ..., n− 1, we obtain
∣

∣

∣

∣

∫

A

f (y) dy

∣

∣

∣

∣

≤
π

N
2

Γ
(

N
2

)

K1

(n+ 1)!

(R2 −R1)
n+1

2n−1
,

which is a sharp inequality,
(iv) more generally, for j = 0, 1, 2, ..., N ∈ N, it holds

∣

∣

∣

∣

∣

∫

A

f (y) dy −

n−1
∑

k=0

1

(k + 1)!

(

R2 −R1

N

)k+1 [

jk+1

(
∫

SN−1

(

f (sω) sN−1
)(k)

(R1) dω

)

(2.18)

+ (−1)
k (

N − j
)k+1

(
∫

SN−1

(

f (sω) sN−1
)(k)

(R2) dω

)]
∣

∣

∣

∣

≤
2π

N
2

Γ
(

N
2

)

K1

(n+ 1)!

(

R2 −R1

N

)n+1
[

jn+1 +
(

N − j
)n+1

]

,

(v) if
(

f (sω) sN−1
)(k)

(R1) =
(

f (sω) sN−1
)(k)

(R2) = 0, for all ω ∈ SN−1, (i.e.
∂k(f(sω)sN−1)

∂sk

vanish on ∂B (0, R1) and ∂B (0, R2)) for k = 1, ..., n− 1, from (2.18) we get:
∣

∣

∣

∣

∫

A

f (y) dy −

(

R2 −R1

N

)[

jRN−1
1

(
∫

SN−1

f (R1ω) dω

)

(2.19)

+
(

N − j
)

RN−1
2

(
∫

SN−1

f (R2ω) dω

)]∣

∣

∣

∣

≤
2π

N
2

Γ
(

N
2

) ·

×
K1

(n+ 1)!

(

R2 −R1

N

)n+1
[

jn+1 +
(

N − j
)n+1

]

,

for j = 0, 1, 2, ..., N ∈ N,

(vi) when N = 2 and j = 1, (2.19) turns to
∣

∣

∣

∣

∫

A

f (y) dy −

(

R2 −R1

2

)(

RN−1
1

∫

SN−1

f (R1ω) dω +RN−1
2

∫

SN−1

f (R2ω) dω

)
∣

∣

∣

∣

(2.20)

≤
π

N
2

Γ
(

N
2

)

K1

(n+ 1)!

(R2 −R1)
n+1

2n−1
,

(vii) when n = 1 (without any boundary conditions), we get from (2.20) that
∣

∣

∣

∣

∫

A

f (y) dy −

(

R2 −R1

2

)(

RN−1
1

∫

SN−1

f (R1ω) dω +RN−1
2

∫

SN−1

f (R2ω) dω

)
∣

∣

∣

∣

≤
π

N
2 K1

2Γ
(

N
2

) (R2 −R1)
2
.

Proof. Similar to the proof of Theorem 2.9. We apply Theorem 1.6 along with (1.16). �

We continue with

Theorem 2.15. Consider f : A → R be Lebesgue integrable, which is not necessarily radial.

Assume that f (sω) sN−1 ∈ ACn ([R1, R2]) (i.e.
(

f (sω) sN−1
)(n−1)

∈ AC ([R1, R2]) abso-

lutely continuous functions), for all ω ∈ SN−1, N ≥ 2. Here there exists K2 > 0 such that
∥

∥

∥

(

f (sω) sN−1
)(n)

∥

∥

∥

L1([R1,R2])
≤ K2, where s ∈ [R1, R2], for all ω ∈ SN−1.

Then
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(i)
∣

∣

∣

∣

∣

∫

A

f (y) dy −

n−1
∑

k=0

1

(k + 1)!

[(
∫

SN−1

(

f (sω) sN−1
)(k)

(R1) dω

)

(t−R1)
k+1(2.21)

+ (−1)
k

(
∫

SN−1

(

f (sω) sN−1
)(k)

(R2) dω

)

(R2 − t)
k+1

]
∣

∣

∣

∣

≤
2π

N
2

Γ
(

N
2

)

K2

n!
[(t−R1)

n
+ (R2 − t)

n
] ,

for all t ∈ [R1, R2] ,

(ii) at t = R1+R2

2 , the right hand side of (2.21) is minimized, and we get:
∣

∣

∣

∣

∣

∫

A

f (y) dy −
n−1
∑

k=0

1

(k + 1)!

(R2 −R1)
k+1

2k+1

[
∫

SN−1

(

f (sω) sN−1
)(k)

(R1) dω

+ (−1)
k

∫

SN−1

(

f (sω) sN−1
)(k)

(R2) dω

]∣

∣

∣

∣

≤
π

N
2

Γ
(

N
2

)

K2

n!

(R2 −R1)
n

2n−2
,

(iii) if
(

f (sω) sN−1
)(k)

(R1) =
(

f (sω) sN−1
)(k)

(R2) = 0, for all ω ∈ SN−1, (i.e.
∂k(f(sω)sN−1)

∂sk

vanish on ∂B (0, R1) and ∂B (0, R2)) for all k = 0, 1, ..., n− 1, we obtain
∣

∣

∣

∣

∫

A

f (y) dy

∣

∣

∣

∣

≤
π

N
2

Γ
(

N
2

)

K2

n!

(R2 −R1)
n

2n−2
,

which is a sharp inequality,
(iv) more generally, for j = 0, 1, 2, ..., N ∈ N, it holds

∣

∣

∣

∣

∣

∫

A

f (y) dy −
n−1
∑

k=0

1

(k + 1)!

(

R2 −R1

N

)k+1 [

jk+1

(
∫

SN−1

(

f (sω) sN−1
)(k)

(R1) dω

)

(2.22)

+ (−1)
k (

N − j
)k+1

(
∫

SN−1

(

f (sω) sN−1
)(k)

(R2) dω

)]
∣

∣

∣

∣

≤
2π

N
2

Γ
(

N
2

)

K2

n!

(

R2 −R1

N

)n
[

jn +
(

N − j
)n
]

,

(v) if
(

f (sω) sN−1
)(k)

(R1) =
(

f (sω) sN−1
)(k)

(R2) = 0, for all ω ∈ SN−1, (i.e.
∂k(f(sω)sN−1)

∂sk

vanish on ∂B (0, R1) and ∂B (0, R2)) for k = 1, ..., n− 1, from (2.22) we get:
∣

∣

∣

∣

∫

A

f (y) dy −

(

R2 −R1

N

)[

jRN−1
1

(
∫

SN−1

f (R1ω) dω

)

(2.23)

+
(

N − j
)

RN−1
2

(
∫

SN−1

f (R2ω) dω

)]∣

∣

∣

∣

≤
2π

N
2

Γ
(

N
2

)

×
K2

n!

(

R2 −R1

N

)n
[

jn +
(

N − j
)n
]

,

for j = 0, 1, 2, ..., N ∈ N,
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(vi) when N = 2 and j = 1, (2.23) turns to

∣

∣

∣

∣

∫

A

f (y) dy −

(

R2 −R1

2

)(

RN−1
1

∫

SN−1

f (R1ω) dω +RN−1
2

∫

SN−1

f (R2ω) dω

)∣

∣

∣

∣

(2.24)

≤
π

N
2

Γ
(

N
2

)

K2

n!

(R2 −R1)
n

2n−2
,

(vii) when n = 1 (without any boundary conditions), we get from (2.24) that

∣

∣

∣

∣

∫

A

f (y) dy −

(

R2 −R1

2

)(

RN−1
1

∫

SN−1

f (R1ω) dω +RN−1
2

∫

SN−1

f (R2ω) dω

)∣

∣

∣

∣

≤
2π

N
2 K2

Γ
(

N
2

) (R2 −R1) .

Proof. Similar to the proof of Theorem 2.9. We apply Theorem 1.7 along with (1.16). �

We continue with

Theorem 2.16. Let p, q > 1 : 1
p
+ 1

q
> 1. Consider f : A → R be Lebesgue integrable, which is not nec-

essarily radial. Assume that f (sω) sN−1 ∈ ACn ([R1, R2]) (i.e.
(

f (sω) sN−1
)(n−1)

∈ AC ([R1, R2])

absolutely continuous functions), for all ω ∈ SN−1, N ≥ 2. We assume that
(

f (sω) sN−1
)(n)

∈

Lq ([R1, R2]), for all ω ∈ SN−1. There exists K3 > 0 such that
∥

∥

∥

(

f (sω) sN−1
)(n)

∥

∥

∥

Lq([R1,R2])
≤ K3,

where s ∈ [R1, R2], for all ω ∈ SN−1.

Then

(i)

∣

∣

∣

∣

∣

∫

A

f (y) dy −
n−1
∑

k=0

1

(k + 1)!

[(
∫

SN−1

(

f (sω) sN−1
)(k)

(R1) dω

)

(t−R1)
k+1(2.25)

+ (−1)
k

(
∫

SN−1

(

f (sω) sN−1
)(k)

(R2) dω

)

(R2 − t)
k+1

]∣

∣

∣

∣

≤
2π

N
2

Γ
(

N
2

)

K3

(n− 1)!
(

n+ 1
p

)

(p (n− 1) + 1)
1

p

[

(t−R1)
n+ 1

p + (R2 − t)
n+ 1

p

]

,

for all t ∈ [R1, R2] ,

(ii) at t = R1+R2

2 , the right hand side of (2.25) is minimized, and we get:

∣

∣

∣

∣

∣

∫

A

f (y) dy −

n−1
∑

k=0

1

(k + 1)!

(R2 −R1)
k+1

2k+1

×

[
∫

SN−1

(

f (sω) sN−1
)(k)

(R1) dω + (−1)
k

∫

SN−1

(

f (sω) sN−1
)(k)

(R2) dω

]
∣

∣

∣

∣

≤
π

N
2

Γ
(

N
2

)

K3

(n− 1)!
(

n+ 1
p

)

(p (n− 1) + 1)
1

p

(R2 −R1)
n+ 1

p

2n−1− 1

q

,
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(iii) if
(

f (sω) sN−1
)(k)

(R1) =
(

f (sω) sN−1
)(k)

(R2) = 0, for all ω ∈ SN−1, (i.e.
∂k(f(sω)sN−1)

∂sk

vanish on ∂B (0, R1) and ∂B (0, R2)) for all k = 0, 1, ..., n− 1, we obtain
∣

∣

∣

∣

∫

A

f (y) dy

∣

∣

∣

∣

≤
π

N
2

Γ
(

N
2

)

K3

(n− 1)!
(

n+ 1
p

)

(p (n− 1) + 1)
1

p

(R2 −R1)
n+ 1

p

2n−1− 1

q

,

which is a sharp inequality,
(iv) more generally, for j = 0, 1, 2, ..., N ∈ N, it holds

∣

∣

∣

∣

∣

∫

A

f (y) dy −
n−1
∑

k=0

1

(k + 1)!

(

R2 −R1

N

)k+1 [

jk+1

(
∫

SN−1

(

f (sω) sN−1
)(k)

(R1) dω

)

(2.26)

+ (−1)
k (

N − j
)k+1

(
∫

SN−1

(

f (sω) sN−1
)(k)

(R2) dω

)]
∣

∣

∣

∣

≤
2π

N
2

Γ
(

N
2

)

K3

(n− 1)!
(

n+ 1
p

)

(p (n− 1) + 1)
1

p

(

R2 −R1

N

)n+ 1

p [

jn+
1

p +
(

N − j
)n+ 1

p

]

,

(v) if
(

f (sω) sN−1
)(k)

(R1) =
(

f (sω) sN−1
)(k)

(R2) = 0, for all ω ∈ SN−1, (i.e.
∂k(f(sω)sN−1)

∂sk

vanish on ∂B (0, R1) and ∂B (0, R2)) for k = 1, ..., n− 1, from (2.26) we get:
∣

∣

∣

∣

∫

A

f (y) dy −

(

R2 −R1

N

)[

jRN−1
1

(
∫

SN−1

f (R1ω) dω

)

(2.27)

+
(

N − j
)

RN−1
2

(
∫

SN−1

f (R2ω) dω

)]
∣

∣

∣

∣

≤
2π

N
2

Γ
(

N
2

)

×
K3

(n− 1)!
(

n+ 1
p

)

(p (n− 1) + 1)
1

p

(

R2 −R1

N

)n+ 1

p [

jn+
1

p +
(

N − j
)n+ 1

p

]

,

for j = 0, 1, 2, ..., N ∈ N,

(vi) when N = 2 and j = 1, (2.27) turns to
∣

∣

∣

∣

∫

A

f (y) dy −

(

R2 −R1

2

)(

RN−1
1

∫

SN−1

f (R1ω) dω +RN−1
2

∫

SN−1

f (R2ω) dω

)
∣

∣

∣

∣

(2.28)

≤
π

N
2

Γ
(

N
2

)

K3

(n− 1)!
(

n+ 1
p

)

(p (n− 1) + 1)
1

p

(R2 −R1)
n+ 1

p

2n−1− 1

q

,

(vii) when n = 1 (without any boundary conditions), we get from (2.28) that
∣

∣

∣

∣

∫

A

f (y) dy −

(

R2 −R1

2

)(

RN−1
1

∫

SN−1

f (R1ω) dω +RN−1
2

∫

SN−1

f (R2ω) dω

)
∣

∣

∣

∣

≤
2

1

q π
N
2 K3

Γ
(

N
2

)

(

1 + 1
p

) (R2 −R1)
1+ 1

p .

Proof. Similar to the proof of Theorem 2.9. We apply Theorem 1.8 along with (1.16). �

We continue with results on the ball. We present

Theorem 2.17. Consider f : B (0, R) → R be Lebesgue integrable, which is not necessarily ra-
dial. Assume that f (sω) sN−1 ∈ AC ([0, R]), for all ω ∈ SN−1, N ≥ 2. We further assume
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that ∂f(sω)sN−1

∂s
∈ L∞ ([0, R]), for all ω ∈ SN−1. Suppose there exists M1 > 0 such that

∥

∥

∥

∂f(sω)sN−1

∂s

∥

∥

∥

∞,(s∈[0,R])
≤ M1, for all ω ∈ SN−1.

Then

(i)

(2.29)

∣

∣

∣

∣

∣

∫

B(0,R)

f (y) dy −

(
∫

SN−1

f (Rω) dω

)

RN−1 (R− t)

∣

∣

∣

∣

∣

≤
π

N
2 M1

Γ
(

N
2

)

[

t2 + (R− t)
2
]

,

for all t ∈ [0, R] ,
(ii) at t = R

2 , the right hand side of (2.29) is minimized, and we get:
∣

∣

∣

∣

∣

∫

B(0,R)

f (y) dy −

(
∫

SN−1

f (Rω) dω

)

RN

2

∣

∣

∣

∣

∣

≤
π

N
2 M1R

2

2Γ
(

N
2

) ,

(iii) if f (Rω) = 0, for all ω ∈ SN−1, (i.e. f (·ω) vanishes on ∂B (0, R)), we obtain
∣

∣

∣

∣

∣

∫

B(0,R)

f (y) dy

∣

∣

∣

∣

∣

≤
π

N
2 M1R

2

2Γ
(

N
2

) ,

which is a sharp inequality,
(iv) more generally, for j = 0, 1, 2, ..., N ∈ N, it holds

(2.30)

∣

∣

∣

∣

∣

∫

B (0,R)

f (y) dy −
RN

N

(

N − j
)

∫

SN−1

f (Rω) dω

∣

∣

∣

∣

∣

≤
π

N
2 M1

Γ
(

N
2

)

(

R

N

)2
[

j2 +
(

N − j
)2
]

,

(v) when N = 2 and j = 1, (2.30) turns to
∣

∣

∣

∣

∣

∫

B(0,R)

f (y) dy −
RN

2

∫

SN−1

f (Rω) dω

∣

∣

∣

∣

∣

≤
π

N
2 M1R

2

2Γ
(

N
2

) .

Proof. Same as the proof of Theorem 2.14, just set there R1 = 0 and R2 = R and use (1.15). �

We continue with

Theorem 2.18. Consider f : B (0, R) → R be Lebesgue integrable, which is not necessarily radial.
Assume that f (sω) sN−1 ∈ AC ([0, R]), for all ω ∈ SN−1, N ≥ 2. Suppose there exists M2 > 0 such

that
∥

∥

∥

∂f(sω)sN−1

∂s

∥

∥

∥

L1([0,R])
≤ M2, for all ω ∈ SN−1.

Then

(i)

(2.31)

∣

∣

∣

∣

∣

∫

B(0,R)

f (y) dy −

(
∫

SN−1

f (Rω) dω

)

RN−1 (R− t)

∣

∣

∣

∣

∣

≤
2π

N
2 M2R

Γ
(

N
2

) ,

for all t ∈ [0, R] ,
(ii) if f (Rω) = 0, for all ω ∈ SN−1, (i.e. f (·ω) vanishes on ∂B (0, R)) from (2.31), we obtain

∣

∣

∣

∣

∣

∫

B(0,R)

f (y) dy

∣

∣

∣

∣

∣

≤
2π

N
2 M2R

Γ
(

N
2

) ,

which is a sharp inequality,
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(iii) more generally, for j = 0, 1, 2, ..., N ∈ N, it holds

(2.32)

∣

∣

∣

∣

∣

∫

B (0,R)

f (y) dy −
RN

N

(

N − j
)

∫

SN−1

f (Rω) dω

∣

∣

∣

∣

∣

≤
2π

N
2 M2R

Γ
(

N
2

) ,

(iv) when N = 2 and j = 1, (2.32) turns to
∣

∣

∣

∣

∣

∫

B(0,R)

f (y) dy −
RN

2

∫

SN−1

f (Rω) dω

∣

∣

∣

∣

∣

≤
2π

N
2 M2R

Γ
(

N
2

) .

Proof. Same as the proof of Theorem 2.15, just set there R1 = 0 and R2 = R and use (1.15). �

We continue with

Theorem 2.19. Let p, q > 1 : 1
p
+ 1

q
= 1. Consider f : B (0, R) → R be Lebesgue integrable, which

is not necessarily radial. Assume that f (sω) sN−1 ∈ AC ([0, R]), for all ω ∈ SN−1, N ≥ 2. We

further assume that ∂f(sω)sN−1

∂s
∈ Lq ([0, R]), for all ω ∈ SN−1. Suppose there exists M3 > 0 such

that
∥

∥

∥

∂f(sω)sN−1

∂s

∥

∥

∥

Lq([0,R])
≤ M3, for all ω ∈ SN−1.

Then

(i)
∣

∣

∣

∣

∣

∫

B(0,R)

f (y) dy −

(
∫

SN−1

f (Rω) dω

)

RN−1 (R− t)

∣

∣

∣

∣

∣

(2.33)

≤
2π

N
2 M3

Γ
(

N
2

)

(

1 + 1
p

)

[

t1+
1

p + (R− t)
1+ 1

p

]

,

for all t ∈ [0, R] ,
(ii) at t = R

2 , the right hand side of (2.33) is minimized, and we get:
∣

∣

∣

∣

∣

∫

B(0,R)

f (y) dy −

(
∫

SN−1

f (Rω) dω

)

RN

2

∣

∣

∣

∣

∣

≤
2

1

q π
N
2 M3R

1+ 1

p

Γ
(

N
2

) ,

(iii) if f (Rω) = 0, for all ω ∈ SN−1, (i.e. f (·ω) vanishes on ∂B (0, R)), we obtain
∣

∣

∣

∣

∣

∫

B(0,R)

f (y) dy

∣

∣

∣

∣

∣

≤
2

1

q π
N
2 M3R

1+ 1

p

Γ
(

N
2

) ,

which is a sharp inequality,
(iv) more generally, for j = 0, 1, 2, ..., N ∈ N, it holds

∣

∣

∣

∣

∣

∫

B (0,R)

f (y) dy −
RN

N

(

N − j
)

∫

SN−1

f (Rω) dω

∣

∣

∣

∣

∣

(2.34)

≤
2π

N
2 M3

(

1 + 1
p

)

Γ
(

N
2

)

(

R

N

)1+ 1

p [

j1+
1

p +
(

N − j
)1+ 1

p

]

,

(v) when N = 2 and j = 1, (2.34) turns to
∣

∣

∣

∣

∣

∫

B(0,R)

f (y) dy −
RN

2

∫

SN−1

f (Rω) dω

∣

∣

∣

∣

∣

≤
2

1

q π
N
2 M3R

1+ 1

p

(

1 + 1
p

)

Γ
(

N
2

)

.
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Proof. Same as the proof of Theorem 2.16, just set there R1 = 0 and R2 = R and use (1.15). �
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A General Korovkin Result Under Generalized Convergence

PEDRO GARRANCHO

ABSTRACT. In this paper, the classic result of Korovkin about the convergence of sequences of functions defined
from sequences of linear operators is reformulated in terms of generalized convergence. This convergence extends
some others given in the literature. The operator of the sequence fulfill a shape preserving property more general than
the positivity. This property is related with certain extension of the notion of derivative. This extended derivative is
precisely the object of the approximation process. The study is completed by analysing the conditions for the existence
of an asymptotic formula, from which some interesting consequences are derived as a local version of the shape pre-
serving property. Finally, as applications of the previous results, the author use the following notion of generalized
convergence, an extension of Nörlund-Cesáro summability given by V. Loku and N. L. Braha in 2017. A way to transfer
a notion of generalized convergence to approximation theory by means of linear operators is showed.

Keywords: Korovkin results, asymptotic condition, generalized convergence.
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1. INTRODUCTION

The following sequence of positive linear operators is studied in [2]:

Bτ
nf(t) =

n∑

k=0

(
n

k

)
τ(t)k(1− τ(t))n−k(f ◦ τ−1)(k/n), f ∈ C[0, 1], t ∈ [0, 1],

where τ is a function defined on [0, 1] infinitely differentiable, such that τ(0) = 0, τ(1) = 1 and
τ ′(t) > 0, t ∈ (0, 1). The convergence of Bτ

nf towards f can be analyzed by using the classical
result of Korovkin [11], according to which it suffices to check it for these three test functions
1, t, t2, or other three, say ψ0, ψ1, ψ2 that form a Tchebychev System. In particular, the choice
1, τ, τ2 is the more convenient for Bτ

n.
Now, let Ln be a slight modification of the previous sequence of positive linear operators,
Lnf(t) = (1+an)B

τ
nf(t), where an does not converge to 0 in the classical sense. The aforemen-

tioned result of Korovkin allows to conclude that the approximation process defined by Ln is
not convergent. That said, if an is convergent in some other sense, a question arises whether
the sequence would be convergent under this other notion. This is a motivation for a long list
of papers where the so called Korovkin theory has been extended by considering new notions
of convergence. We mention a few, restricting our attention to sequences of linear operator
defined on spaces of real continuous functions on a compact interval.
In 1970, J. P. King and J. J. Swetits [10] studied the almost convergence, introduced by Lorentz
in 1948 [14]. In 2002, A. D. Gadjiev and C. Orhan[6] proceeded analogously with statistical
convergence, a now classic concept that was conceived by H. Fast in 1957 [5]. More recently,
we may mention some papers by V. Karakaya and A. Karaisa in 2015 [9], where they consid-
ered weighted αβ-statistical convergence, T. Acar and S. A. Mohiuddine in 2016 [1] dealt with
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*Corresponding author: P. Garrancho; pgarran@ujaen.es
DOI: 10.33205/cma.530987

81



82 P. Garrancho

statistical (C, 1)(E, 1) summability, or finally, in 2016, D. Ali Karaisa, [8] worked with statistical
(Nγ , αβ) summability.
All the quoted papers dealt with positive linear operators and more importantly, for the proofs
of their main results the same arguments of continuity and boundness were strongly used. Our
main purpose with this work is to bring a sort of unification by proving a general qualitative
Korovkin result, in such a way that this result can be applied whenever a concept of conver-
gence is moved from mathematical analysis to Korovkin-type approximation theory. Moreover,
we shall deal with a shape preserving property more general than the mere positivity, related
to the preservation of the sign of certain generalized derivative.
This paper is organized as follows. In section 2, we will show some required notions and the
notation will be set. In section 3, the qualitative Korovkin type result will be shown. Besides
this, in the section 4, we will add the analysis of existence of the asymptotic condition by
means of another Korovkin type result. In section 5, some consequences of the existence of
an asymptotic condition will be given. In the last section, we show an example that shows the
applicability of our result, by recovering the paper by V. Loku and N. L. Braha [12].

2. GENERAL SETTINGS

In this section, we will establish the framework, and present the required tools. Some notation
will be set as well.
Let S be the usual linear space of all real sequences, and let S0 be a subspace of S closed under
the usual sum and scalar multiplication.
Let L be a linear functional defined on S0 fulfilling the following properties:

(I) if xn is convergent in the classical sense, then L(xn) = limxn, where lim refers to the
classic limit (as a consequence L(xn) = ℓ ⇔ L(xn − ℓ) = 0);

(II) if xn ≤ yn for every n ∈ N, then L(xn) ≤ L(yn) for every n ∈ N. In short, xn ≤ yn implies
L(xn) ≤ L(yn);

(III) if an is non negative, lim an = 0 and L(xn) = ℓ, then L(an · xn) = 0;
(IV) if xn ≤ zn ≤ yn and L(xn) = L(yn) = ℓ, then zn ∈ S0 and L(zn) = ℓ.

We have assumed, and will assume from now onwards that xn ∈ S0 whenever we write L(xn).
On the other hand, to fix ideas, notice that under the classical setting S0 is formed by all con-
vergent sequences, and, under statistical convergence, our functional L coincides with the so
noted st− lim.
Recall the following properties for a Tschebyshev System, T = {ψ0, ψ1, ψ2}, on an interval [a, b]:

P1: Given three points x1, x2, x3 ∈ [a, b] and three real numbers a1, a2, a3, there exists only
one T -polynomial (i.e. a function that belongs to the space spanned by ψ0, ψ1, ψ2), such
that pT (xi) = ai, i = 1, 2, 3.

P2: For all α ∈ (a, b), we can find a T -polynomial, pT,α, such that, α is a double root of
pT,α.

As it is usualCm[0, 1] is the set of the all functionsm-times differentiable with continuousm−th
derivative. Notice that C[0, 1] is simply the set of continuous function on [0, 1] and C∞[0, 1] =
∩i∈NC

i[0, 1]. Now let τ ∈ C∞[0, 1], with τ(0) = 0, τ(1) = 1 and τ ′(t) > 0, t ∈ (0, 1). In relation
with the function τ , it is considered eτ,i(t) = τ(t)i, exτ,i(t) = (τ(t) − τ(x))i. Associated with
the function τ the following differential operator is defined, see [13]

(2.1) Di
τf(t) := Di

(
f ◦ τ−1

)
(τ(t)).
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We notice that D0
τ = I. The previous definition is equivalent to this other:

D0,τ ′

= I, D1,τ ′

=
1

τ ′
D1, Di+1,τ ′

= D1,τ ′

◦Di,τ ′

, i ∈ N.

This differential operator has been dealt by the author inside approximation theory in [7] and
[3].
It it easy to observe that for x ∈ (0, 1),

(2.2) Di
τeτ,j =





j!
(j−i)!eτ,j−i, if j ≥ i;

0, if j < i,

and Di
τe

x
τ,j =





j!
(j−i)!e

x
τ,j−i, if j ≥ i;

0, if j < i.

3. QUALITATIVE KOROVKIN TYPE RESULT

Here is one of the main result of the paper, extension of the classical result of Korovkin.

Theorem 3.1. Let Ln : Cm[0, 1] → Cm[0, 1] be a sequence of linear operators fulfilling the following
shape preserving property:

(3.3) if Dm
τ f ≥ 0 then Dm

τ Lnf ≥ 0

Suppose we have three functions, F0, F1, F2 ∈ Cm[0, 1] such that T = {Dm
τ F0, D

m
τ F1, D

m
τ F2} is a

Tschebyshev System on C[0, 1], then the following sentences are equivalent:

(i) L(Dm
τ LnFi(x)) = Dm

τ Fi(x), i = 0, 1, 2,
(ii) L(Dm

τ Lnf(x)) = Dm
τ f(x) for all function f ∈ Cm[0, 1].

Proof.
(ii) ⇒ (i) is trivial. We are going to prove the converse. First of all, we consider that x ∈ (0, 1).
We define the function φ ∈ Cm[0, 1] as φ(t) = f(t)−

Dm

τ
f(x)

Dm

τ
G(x)G(t), whereDm

τ G is a T -polynomial
of T = {Dm

τ F0, D
m
τ F1, D

m
τ F2}, a Tchebychev System on [0, 1], with Dm

τ G(x) 6= 0.
Dm

τ φ, is continuous and it vanishes at x, then for all positive real number ǫ there exists δ > 0
such that if |t− x| < δ, then

−ǫ ≤ Dm
τ φ(t) ≤ ǫ.

On the other hand Dm
τ φ is bounded on [0, 1], then there exists M > 0 such that

−M ≤ Dm
τ φ(t) ≤M.

By property P2 , for x, we can find two non negative T−polynomials, fx, h, where the first
function has a double root at x and the second function is greater than or equal to 1 on [0, 1].
Let k = min|t−x|≥δ fx(t) > 0 and Fx, H ∈ Cm[0, 1] such that Dm

τ Fx = fx, D
m
τ H = h, then the

following inequality is satisfied for t ∈ [0, 1]

−ǫDm
τ H(t)−

M

k
Dm

τ Fx(t) ≤ Dm
τ φ(t) ≤ ǫDm

τ H(t) +
M

k
Dm

τ Fx(t),

or equivalently on [0, 1],

Dm
τ

(
−ǫH −

M

k
Fx

)
≤ Dm

τ φ ≤ Dm
τ

(
ǫH +

M

k
Fx

)
.

Applying the shape preserving property (3.3), linearity and then evaluating at x we have,

(3.4) − ǫDm
τ LnH(x)−

M

k
Dm

τ LnFx(x) ≤ Dm
τ Lnφ(x) ≤ ǫDm

τ LnH(x) +
M

k
Dm

τ LnFx(x).
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Since ǫ is arbitrary, we can choose ǫ = 1
n

. As Fx, H belong to space spanned by F0, F1, F2,
then we use the hypothesis (i) to get L(Dm

τ LnFx(x)) = Dm
τ Fx(x) = 0 and L (Dm

τ LnH(x)) =
Dm

τ H(x) = h(x).
From (3.4) and property (III), we have that L(ǫDm

τ LnH(x) + M
k
Dm

τ LnFx(x)) = 0. Then
from property (IV), we deduce that L(Dm

τ Lnφ(x)) = 0 or equivalently L(Dm
τ Lnf(x) −

Dm

τ
f(x)

Dm

τ
G(x)D

m
τ LnG(x)) = 0, so L(Dm

τ Lnf(x)) = Dm
τ f(x).

Now, we will prove the result for the end points of the interval x = 0 and x = 1. In this
case, we define φ as φ(t) = f(t) − G(t), where Dm

τ G is a T -polynomial, with Dm
τ G(0) =

Dm
τ f(0), D

m
τ G(1) = Dm

τ f(1).
Again we use the continuity, in this case in 0 and 1, and the bound M of Dm

τ φ, as well as the
fact that Dm

τ φ vanishes at the endpoints of the interval. Then for all ǫ > 0, there exist δ > 0
such that for 0 ≤ t ≤ δ, 1− δ ≤ t ≤ 1

−ǫ ≤ Dm
τ φ(t) ≤ ǫ and −M ≤ Dm

τ φ(t) ≤M.

Now, we choose F01 ∈ Cm[0, 1], where Dm
τ F01 is a T -polynomial, Dm

τ F01(0) = Dm
τ F01(1) =

0 and Dm
τ F01 ≥ 0. Now, we take k = min

δ≤x≤1−δ
Dm

τ F01(t) > 0. Then we have the following

inequalities on [0, 1]

−
M

k
Dm

τ F01 − ǫ ≤ Dm
τ φ ≤ ǫ+

M

k
Dm

τ F01.

Finally, we can end the proof with similar arguments to the other case. �

4. ASYMPTOTIC CONDITION

Once guaranteed the generalized convergence of the process, we are going to analyze the se-
quence Dm

τ Lnf(x) − Dm
τ f(x) comparing it with another sequence of real numbers λn with

L(λn) = 0. The purpose is to obtain an asymptotic condition. Here it is the corresponding
result. Again it is a Korovkin type result.

Theorem 4.2. Let Ln be the sequence of linear operators as that of Section 3. Let x ∈ (0, 1) and let
us assume that there exist a sequence λn of positive real numbers, with L(λn) = 0 and three strictly
positive functions w0, w1 and w2 defined on (0, 1) with wi ∈ C2−i(0, 1) such that, for s ∈ {m,m +
1,m+ 2,m+ 4},

(4.5) L

(
Dm

τ Lne
x
τ,s(x)−Dm

τ e
x
τ,s(x)

λn

)
= w−1

2 D1(w−1
1 D1(w−1

0 Dm
τ e

x
τ,s))(x)

Then, for f ∈ Cm(0, 1), m+ 2 times differentiable in some neighborhood of x,

(4.6) L

(
Dm

τ Lnf(x)−Dm
τ f(x)

λn

)
= w−1

2 D1(w−1
1 D1(w−1

0 Dm
τ f))(x).

Proof.
The proof similar to the one we can find in [3], with the proper changes. First of all, we apply
the Taylors’s formula to the function Dm

τ f ◦ τ−1 centered at a point τ(x) and evaluated at
τ(t), t ∈ (0, 1), i.e.:

Dm
τ f ◦ τ−1(τ(t)) =

2∑

s=0

1

s!
Ds(Dm

τ f ◦ τ−1)(τ(x))(τ(t)− τ(x))s + h(τ(t)− τ(x))(τ(t)− τ(x))2,

where h is a continuous function that vanishes at zero. Now using the definition of the
differential operator (2.1) and the notation of Section 2, we have:
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Dm
τ f(t) = D0

τ (D
m
τ f)(x)e

x
τ,0(t) +D1

τ (D
m
τ f)(x)e

x
τ,1(t)

+
1

2
D2

τ (D
m
τ f)(x)e

x
τ,2(t) + h(τ(t)− τ(x))exτ,2(t).

Using (2.2), we can write

Dm
τ f(t) = Dm

τ

(
2∑

s=0

1

(m+ s)!
Ds

τ (D
m
τ f)(x)e

x
τ,m+s +Hx

)
(t)

with Hx ∈ Cm(J) and Dm
τ Hx(t) = h(τ(t) − τ(x))exτ,2(t). Then, we apply the linear operator

and evaluate at x to obtain

Dm
τ Lnf(x) = Dm

τ Ln

(
2∑

s=0

1

(m+ s)!
Ds

τ (D
m
τ f)(x)e

x
τ,m+s +Hx

)
(x).

By linearity,

Dm
τ Lnf(x) =

2∑

s=0

1

(m+ s)!
Ds

τ (D
m
τ f)(x)D

m
τ Lne

x
τ,m+s(x) +Dm

τ LnHx(x).

Introducing this term, Dm
τ f(x) =

2∑

s=0

1

(m+ s)!
Ds

τ (D
m
τ f)(x)D

m
τ e

x
τ,m+s(x), to both sides of the

equality and dividing by λn

Dm
τ Lnf(x)−Dm

τ f(x)

λn
=

2∑

s=0

1

(m+ s)!
Ds

τ (D
m
τ f)(x)

Dm
τ Lne

x
τ,m+s(x)−Dm

τ e
x
τ,m+s(x)

λn
+

Dm
τ LnHx(x)

λn
.

Now, we consider the hypothesis (4.5) for m = 0,m = 1,m = 2. After some calculations,

L

(
2∑

s=0

1

(m+ s)!
Ds

τ (D
m
τ f)(x)

Dm
τ Lne

x
τ,m+s(x)−Dm

τ e
x
τ,m+s(x)

λn

)
=

w−1
2 D1(w−1

1 D1(w−1
0 Dm

τ f))(x).

Finally, the proof of 4.6 will be finished if we prove that L
(

Dm

τ
LnHx(x)
λn

)
= 0 and the proof will

be finished.
To do this, we use continuity arguments on the function h to guarantee the existence of a neigh-
borhood of x, say θx, for a given ǫ > 0, such that for t ∈ θx,

|h(τ(t)− τ(x))| < ǫ.

Then, for all t ∈ [0, 1],

|Dm
τ Hx(t)| = |h(τ(t)− τ(x))|exτ,2(t) ≤ ǫexτ,2(t) + max{0, |h(τ(t)− τ(x))| − ǫ}exτ,2(t).

Let us consider a functionW ∈ Cm[0, 1] such thatDm
τ W (t) = max{0, |h(τ(t)−τ(x))|−ǫ}exτ,2(t).

As Dm
τ W vanishes in θx, then, for a sufficiently large constant M , one has |Dm

τ W (t)| ≤
MDm

τ e
x
τ,m+4(t). So, gathering the last inequalities we get,

|Dm
τ Hx(t)| ≤

2ǫ

(m+ 2)!
Dm

τ e
x
τ,m+2(t) +MDm

τ e
x
τ,m+4(t).
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We use the shape preserving property (3.3), and divide by λn > 0, to obtain, after evaluating at
the point x,

∣∣∣∣
Dm

τ LnHx(x)

λn

∣∣∣∣ ≤
2ǫ

(m+ 2)!

Dm
τ Lne

x
τ,m+2(x)

λn
+M

Dm
τ Lne

x
τ,m+4(x)

λn
.

As regards the hypothesis of the result for s = m + 2 and s = m + 4, after some calculations
using (2.2), we can write respectively,

L

(
Dm

τ Lne
x
τ,m+2(x)

λn

)
=

2τ ′(x)2

w2(x)w1(x)w0(x)
> 0

and

L

(
Dm

τ Lne
x
τ,m+4(x)

λn

)
= 0.

Finally, properties (III) and (IV) and the fact that ǫ > 0 was arbitrary, allow us to finish the
proof. �

5. FURTHER RESULTS

From now on, we will assume that the sequence of linear operators is endowed with an as-
ymptotic condition of the type (4.6). We are going to deduce some consequences of the latter
fact. First of all, the existence of an asymptotic condition allows us to establish a local version
of the shape preserving property. We use the notation an = oL(bn) to refer to two sequences

such that an, bn ∈ S0, L(an) = L(bn) = L
(

an

bn

)
= 0.

Lemma 5.1. Let h ∈ Cm[0, 1] and x ∈ (0, 1). We assume that there exists a neighborhood Nx of x
where Dm

τ h ≥ 0. Then,

Dm
τ Lnh(x) ≥ 0 + oL(λn).

Proof. Let x1, x2 ∈ Nx with x1 < x < x2 and let τ1, τ2 belong to the space spanned
by 1, τ1, . . . , τm such that for j = 1, 2 and 0 ≤ i ≤ m, Di

τ τj(xj) = Di
τh(xj) (notice that

{1, τ1, . . . , τm} is a Tchebychev system). Let h̃ ∈ Cm[0, 1] be defined as:

h̃(t) =





τ1(t) t < x1
h(t) x1 ≤ t ≤ x2
τ2(t) x2 < t.

Then, on [0, 1], Dm
τ h̃ ≥ 0 and on (x1, x2), Dm

τ (h̃− h) = 0. Indeed, it is enough to recall that for
i = 0, 1, . . . ,m − 1, Dm

τ τ
i = 0 and observe that Dm

τ τ
m = m!. Finally, using the existence of an

asymptotic condition (4.6), yields Dm
τ Lnh̃(x)−Dm

τ Lnh(x) = oL(λn), and from (3.3)

0 ≤ Dm
τ Lnh̃(x) = Dm

τ Lnh(x) + oL(λn).

�

If g ∈ Cm[0, 1] is a solution on (a, b) ⊂ [0, 1] of the ordinary differential equation

(5.7) w−1
2 D1(w−1

1 D1(w−1
0 Dm

τ y) ≡ 0,

by asymptotic condition (4.6) it is obvious that if x ∈ (a, b), Dm
τ Lnf(x)−D

m
τ f(x) = oL(λn), but

the converse is also true, as we can see in the next result.

Theorem 5.3. Let a, b ∈ (0, 1) with a < b. If f ∈ Cm[0, 1] satisfies Dm
τ Lnf(x)−Dm

τ f(x) = oL(λn)
at each point x ∈ (a, b), then f is a solution of (5.7).
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Before the proof, we write some remarks. The ordinary differential equation (5.7) is of order
m + 2, with fundamental set of solutions {1, τ, . . . , τm−1, y1, y2}. The change of variable z =
Dm

τ v makes equation (5.7) become the following one of second order:

(5.8)
1

w2
D1

(
1

w1
D1

(
z

w0

))
≡ 0.

The following lemma, whose proof can be found in, [7, Lemma 1] it is necessary for the proof
of the theorem.

Lemma 5.2. Let J be a bounded open subinterval of [0, 1]. Let g, h ∈ C(J) and t0, t1, t2 ∈ J such
that t0 ∈ (t1, t2), g(t1) = g(t2) = 0 and g(t0) > 0. Then there exist a real number α < 0, a solution
of the differential equation (5.8) on J , say z, and a point x ∈ (t1, t2) such that for all t ∈ [t1, t2],
αh(t) + z(t) ≥ g, and at the point x, αh(x) + z(x) = g(x).

Let us proceed to the proof of Theorem 5.3. Let f ∈ Cm[0, 1] and let z0 be the unique solution
of (5.8) such that zf (a) = Dm

τ f(a) and z0(b) = Dm
τ f(b) and suppose that there exists x0 ∈

(a, b), zf (x0) > Dm
τ f(x0)(by linearity, one may proceed analogously if the other inequality is

assumed). We apply Lemma 5.2 with g = zf −Dm
τ f, h = Dm

τ e
x
τ,m+2, t1 = a, t2 = b, t0 = x0. In

this case, there exist α < 0, z solution of (5.8) and x ∈ (a, b) such that,

(5.9)
αDm

τ e
x
τ,m+2(t) + z(t) ≥ zf (t)−Dm

τ f(t), t ∈ (a, b),

αDm
τ e

x
τ,m+2(x) + z(x) = zf (x)−Dm

τ f(x).

Now if we consider Zf ∈ Cm[0, 1], Dm
τ Zf = zf and Z ∈ Cm[0, 1], Dm

τ Z = z, applying the
localization Lemma 5.1 and dividing by λn, from (5.9) we obtain,

α
Dm

τ Lne
x
τ,m+2(x)−Dm

τ e
x
τ,m+2(x)

λn
+
Dm

τ LnZ(x)−Dm
τ Z(x)

λn
≥

Dm
τ LnZf (x)−Dm

τ Zf (x)

λn
+
oL(λn)

λn
.

We use property (II) to get

αL

(
Dm

τ Lne
x
τ,m+2(x)−Dm

τ e
x
τ,m+2(x)

λn

)
+ L

(
Dm

τ LnZ(x)−Dm
τ Z(x)

λn

)
≥

L

(
Dm

τ LnZf (x)−Dm
τ Zf (x)

λn

)
,

and finally we apply asymptotic condition (4.6) to obtain the following expression in contra-
diction with the hypothesis,

α
2τ ′(x)2

w2(x)w1(x)w0(x)
> 0,

to conclude that Dm
τ f is a solution of (5.8), so f is a solution of (5.7). �

6. AN EXAMPLE

As it was pointed out in the introductory section, in this section we apply the results of the
paper to the notion of generalized convergence considered by V. Loku and N. L. Braha [12].
Let pn be a non negative, non increasing real sequence. Let Np

nC
1
n(·) be the linear transforma-

tion that assigns to each real sequence xn this other

Np
nC

1
n(xn) =

1∑n
k=1 pk

n∑

k=1

pk
1

k

k∑

v=1

xv, n ∈ N.
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The sequence xn is said to be Nörlund-Cesáro summable by the weighted mean determined
by pn, or briefly (N, pn)(C, 1)-summable if

limNp
nC

1
n(xn) = ℓ.

In that case, the following notation is used: Np
nC

1
n − limxn = ℓ. Moreover, the set of all

(N, pn)(C, 1)-summable sequences is denoted by Np
nC

1
n.

Let us now recover the sequence of operators Lnf(t) = (1 + an)B
τ
nf(t) with an ∈ Np

nC
1
n and

an ≥ 1. In order to prove the following statement, no Korovkin-type proof is needed.

Theorem 6.4. Let F0, F1, F2 ∈ Cm[0, 1] such that {Dm
τ F0, D

m
τ F1, D

m
τ F2} is a Tschebyshev System

on C[0, 1]. Then the followings sentences are equivalent:

(i) Np
nC

1
n − limDm

τ LnFi(x) = Dm
τ Fi(x), i = 0, 1, 2

(ii) Np
nC

1
n − limDm

τ Lnf(x) = Dm
τ f(x), i = 0, 1, 2, for all function f ∈ Cm[0, 1].

Following the results of the paper, for the proof of the theorem we only have to check that
the shape preserving property (3.3) is fulfilled, and that the linear functional L(xn) = Np

nC
1
n −

limxn, defined on S0 = Np
nC

1
n satisfies properties (I)-(VI). Moreover, all the results of the paper

apply to this situation accordingly.
Finally, for the sake of completeness, I write a remark about a recent paper. In [15], the authors
defined a new sequence of linear operators and proved a result under statistical convergence.
The main theorem of the current paper shows an alternative approach to the problem.
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1. INTRODUCTION AND PRELIMINARIES

Set-valued functions in Banach spaces have been developed in the last decades. The pio-
neering papers by Aumann [4] and Debreu [11] were inspired by problems arising in Control
Theory and Mathematical Economics. We can refer to the papers by Arrow and Debreu [2],
McKenzie [24], the monographs by Hindenbrand [18], Aubin and Frankowska [3], Castaing
and Valadier [7], Klein and Thompson [22] and the survey by Hess [17].

The stability problem of functional equations originated from a question of Ulam [37] con-
cerning the stability of group homomorphisms. Hyers [19] gave a first affirmative partial an-
swer to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [1]
for additive mappings and by Rassias [35] for linear mappings by considering an unbounded
Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruta [16] by re-
placing the unbounded Cauchy difference by a general control function in the spirit of Rassias’
approach

The functional equation f(x + y) = f(x) + f(y) is called an additive functional equation. In
particular, every solution of the additive functional equation is said to be an additive mapping.
The functional equation 2f

(

x+y

2

)

= f(x) + f(y) is called a Jensen additive functional equation.
In particular, every solution of the Jensen additive functional equation is said to be a Jensen
additive mapping. The stability problems of several functional equations have been extensively
investigated by a number of authors and there are many interesting results concerning this
problem (see [15, 16, 20, 36]).

Let (X, d) be a generalized metric space. An operator T : X → X satisfies a Lipschitz
condition with Lipschitz constant L if there exists a constant L ≥ 0 such that d(Tx, Ty) ≤
Ld(x, y) for all x, y ∈ X. If the Lipschitz constant L is less than 1, then the operator T is called a
strictly contractive operator. Note that the distinction between the generalized metric and the
usual metric is that the range of the former is permitted to include the infinity. We recall the
following theorem by Margolis and Diaz.

Theorem 1.1. [8, 12] Let (X, d) be a complete generalized metric space and let J : X → X be a strictly
contractive mapping with Lipschitz constant L < 1. Then for each given element x ∈ X , either

d(Jnx, Jn+1x) = ∞
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for all nonnegative integers n or there exists a positive integer n0 such that
(1) d(Jnx, Jn+1x) < ∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) < ∞};
(4) d(y, y∗) ≤ 1

1−L
d(y, Jy) for all y ∈ Y .

In 1996, Isac and Rassias [21] were the first to provide applications of stability theory of func-
tional equations for the proof of new fixed point theorems with applications. By using fixed
point methods, the stability problems of several functional equations have been extensively
investigated by a number of authors (see [9, 10, 13, 26, 32, 34]).

Let Y be a Banach space. We define the following:
2Y : the set of all subsets of Y ;
Cb(Y ) : the set of all closed bounded subsets of Y ;
Cc(Y ) : the set of all closed convex subsets of Y ;
Ccb(Y ) : the set of all closed convex bounded subsets of Y .
On 2Y we consider the addition and the scalar multiplication as follows:

C + C ′ = {x+ x′ : x ∈ C, x′ ∈ C ′}, λC = {λx : x ∈ C},

where C,C ′ ∈ 2Y and λ ∈ R. Further, if C,C ′ ∈ Cc(Y ), then we denote by C ⊕ C ′ = C + C ′.
It is easy to check that

λC + λC ′ = λ(C + C ′), (λ+ µ)C ⊆ λC + µC.

Furthermore, when C is convex, we obtain (λ+ µ)C = λC + µC for all λ, µ ∈ R
+.

For a given set C ∈ 2Y , the distance function d(·, C) and the support function s(·, C) are
respectively defined by

d(x,C) = inf{‖x− y‖ : y ∈ C}, x ∈ Y,

s(x∗, C) = sup{〈x∗, x〉 : x ∈ C}, x∗ ∈ Y ∗.

For every pair C,C ′ ∈ Cb(Y ), we define the Hausdorff distance between C and C ′ by

H(C,C ′) = inf{λ > 0 : C ⊆ C ′ + λBY , C ′ ⊆ C + λBY },

where BY is the closed unit ball in Y .
The following proposition reveals some properties of the Hausdorff distance.

Proposition 1.1. For every C,C ′,K,K ′ ∈ Ccb(Y ) and λ > 0, the following properties hold
(a) H(C ⊕ C ′,K ⊕K ′) ≤ H(C,K) +H(C ′,K ′);
(b) H(λC, λK) = λH(C,K).

Let (Ccb(Y ),⊕, H) be endowed with the Hausdorff distance h. Since Y is a Banach space,
(Ccb(Y ),⊕, H) is a complete metric semigroup (see [7]). Debreu [11] proved that (Ccb(Y ),⊕, H)
is isometrically embedded in a Banach space as follows.

Lemma 1.1. [11] Let C(BY ∗) be the Banach space of continuous real-valued functions on BY ∗ endowed
with the uniform norm ‖ · ‖u. Then the mapping j : (Ccb(Y ),⊕, H) → C(BY ∗), given by j(A) =
s(·, A), satisfies the following properties:

(a) j(A⊕B) = j(A) + j(B);
(b) j(λA) = λj(A);
(c) H(A,B) = ‖j(A)− j(B)‖u;
(d) j(Ccb(Y )) is closed in C(BY ∗)

for all A,B ∈ Ccb(Y ) and all λ ≥ 0.
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Let f : Ω → (Ccb(Y ), H) be a set-valued function from a complete finite measure space
(Ω,Σ, ν) into Ccb(Y ). Then f is Debreu integrable if the composition j ◦ f is Bochner integrable
(see [6]). In this case, the Debreu integral of f in Ω is the unique element (D)

∫

Ω
fdν ∈ Ccb(Y )

such tha j((D)
∫

Ω
fdν) is the Bochner integral of j ◦ f . The set of Debreu integrable functions

from Ω to Ccb(Y ) will be denoted by D(Ω, Ccb(Y )). Furthermore, on D(Ω, Ccb(Y )), we define
(f + g)(ω) = f(ω)⊕ g(ω) for all f, g ∈ D(Ω, Ccb(Y )). Then we obtain that ((Ω, Ccb(Y )),+) is an
abelian semigroup.

Set-valued functional equations have been extensively investigated by a number of authors
and there are many interesting results concerning this problem (see [5, 27, 28, 29, 30, 31, 33]).

Using the fixed point method, we prove the Hyers-Ulam stability of the following set-valued
additive functional equations

H(F (x+ y), F (x)⊕ F (y)) ≤ ϕ(x, y)(1.1)

and

H

(

2F

(

x+ y

2

)

, F (x)⊕ F (y)

)

≤ ϕ(x, y).(1.2)

Throughout this paper, let X be a real normed space and Y a real Banach space.

2. STABILITY OF THE SET-VALUED ADDITIVE FUNCTIONAL EQUATION (1.1)

Using the fixed point method, we prove the Hyers-Ulam stability of the set-valued additive
functional equation (1.1).

Definition 2.1. [23] Let F : X → Ccb(Y ). The set-valued additive functional equation is defined by

F (x+ y) = F (x)⊕ F (y)

for all x, y ∈ X . Every solution of the set-valued additive functional equation is called a set-valued
additive mapping.

Definition 2.2. Let F : X → Ccb(Y ). The set-valued Jensen additive functional equation is defined by

2F

(

x+ y

2

)

= F (x)⊕ F (y)

for all x, y ∈ X . Every solution of the set-valued Jensen additive functional equation is called a set-
valued Jensen additive mapping.

Theorem 2.2. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤
L

2
ϕ (2x, 2y)

for all x, y ∈ X . Suppose that F : X → (Ccb(Y ), H) is a mapping satisfying

H(F (x+ y), F (x)⊕ F (y)) ≤ ϕ(x, y)(2.3)

for all x, y ∈ X. Let r and M be positive real numbers with r > 1 and diamF (x) ≤ M‖x‖r for all
x ∈ X . Then there exists a unique set-valued additive mapping A : X → (Ccb(Y ), H) such that

H(F (x), A(x)) ≤
L

2− 2L
ϕ(x, x)(2.4)

for all x ∈ X .
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Proof. Let y = x in (2.3). Since F (x) is convex, we get

H(F (2x), 2F (x)) ≤ ϕ(x, x)(2.5)

and so

H
(

F (x), 2F
(x

2

))

≤ ϕ
(x

2
,
x

2

)

≤
L

2
ϕ (x, x)(2.6)

for all x ∈ X .
Consider

S := {g : g : X → Ccb(Y ), g(0) = {0}}

and introduce the generalized metric on X,

d(g, f) = inf{µ ∈ (0,∞) : H(g(x), f(x)) ≤ µϕ(x, x), x ∈ X},

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete (see [14, Theorem 2.4]
and [25, Lemma 2.1]).

Now we consider the linear mapping J : S → S such that

Jg(x) := 2g
(x

2

)

for all x ∈ X .
Let g, f ∈ S be given such that d(g, f) = ε. Then

H(g(x), f(x)) ≤ εϕ(x, x)

for all x ∈ X . Hence

H(Jg(x), Jf(x)) = H
(

2g
(x

2

)

, 2f
(x

2

))

= 2H
(

g
(x

2

)

, f
(x

2

))

≤ Lεϕ(x, x)

for all x ∈ X . So d(g, f) = ε implies that d(Jg, Jf) ≤ Lε. This means that

d(Jg, Jf) ≤ Ld(g, f)

for all g, f ∈ S.
It follows from (2.6) that d(F, JF ) ≤ L

2
.

By Theorem 1.1, there exists a mapping A : X → Y satisfying the following:
(1) A is a fixed point of J , i.e.,

A
(x

2

)

=
1

2
A(x)(2.7)

for all x ∈ X . The mapping A is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) < ∞}.

This implies that A is a unique mapping satisfying (2.7) such that there exists a µ ∈ (0,∞)
satisfying

H(F (x), A(x)) ≤ µϕ(x, x)

for all x ∈ X ;
(2) d(JnF,A) → 0 as n → ∞. This implies the equality

lim
n→∞

2nF
( x

2n

)

= A(x)

for all x ∈ X ;
(3) d(F,A) ≤ 1

1−L
d(F, JF ), which implies the inequality

d(F,A) ≤
L

2− 2L
.
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This implies that the inequality (2.4) holds.

H(A(x+ y), A(x)⊕A(y)) = lim
n→∞

2nH

(

F

(

x+ y

2n

)

, F
( x

2n

)

⊕ F
( y

2n

)

)

≤ lim
n→∞

2nϕ
( x

2n
,
y

2n

)

= 0

for all x, y ∈ X . Since diamF (x) ≤ M‖x‖r for all x ∈ X , diam
(

2nF
(

x
2n

))

≤ 2
n

2rn
M‖x‖r for all

x ∈ X and so A(x) = 2nF
(

x
2n

)

is a singleton set and A(x+y) = A(x)⊕A(y) for all x, y ∈ X . �

Corollary 2.1. Let p > 1 and θ ≥ 0 be real numbers, and let X be a real normed space. Suppose that
F : X → (Ccb(Y ), H) is a mapping satisfying

H(F (x+ y), F (x)⊕ F (y)) ≤ θ(||x||p + ||y||p)(2.8)

for all x, y ∈ X . Let r and M be positive real numbers with r > 1 and diamF (x) ≤ M‖x‖r for all
x ∈ X . Then there exists a unique set-valued additive mapping A : X → Y satisfying

H(F (x), A(x)) ≤
2θ

2p − 2
||x||p

for all x ∈ X .

Proof. The proof follows from Theorem 2.2 by taking L := 21−p and

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X . �

Theorem 2.3. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ 2Lϕ
(x

2
,
y

2

)

for all x, y ∈ X . Suppose that F : X → (Ccb(Y ), H) is a mapping satisfying (2.3). Let r and M be
positive real numbers with r < 1 and diamF (x) ≤ M‖x‖r for all x ∈ X . Then there exists a unique
set-valued additive mapping A : X → (Ccb(Y ), H) such that

H(F (x), A(x)) ≤
1

2− 2L
ϕ(x, x)

for all x ∈ X .

Proof. It follows from (2.5) that

H

(

F (x),
1

2
F (2x)

)

≤
1

2
ϕ (x, x)

for all x ∈ X .
The rest of the proof is similar to the proof of Theorem 2.2. �

Corollary 2.2. Let 1 > p > 0 and θ ≥ 0 be real numbers, and let X be a real normed space. Suppose
that F : X → (Ccb(Y ), H) is a mapping satisfying (2.8). Let r and M be positive real numbers with
r < 1 and diamF (x) ≤ M‖x‖r for all x ∈ X . Then there exists a unique set-valued additive mapping
A : X → Y satisfying

H(F (x), A(x)) ≤
2θ

2− 2p
||x||p

for all x ∈ X .
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Proof. The proof follows from Theorem 2.3 by taking L := 2p−1 and

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X . �

3. STABILITY OF THE SET-VALUED JENSEN ADDITIVE FUNCTIONAL EQUATION (1.2)

Using the fixed point method, we prove the Hyers-Ulam stability of the set-valued Jensen
additive functional equation (1.2).

Theorem 3.4. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤
L

2
ϕ (2x, 2y)

for all x, y ∈ X . Suppose that F : X → (Ccb(Y ), H) is a mapping satisfying F (0) = {0} and

H

(

2F

(

x+ y

2

)

, F (x)⊕ F (y)

)

≤ ϕ(x, y)(3.9)

for all x, y ∈ X. Let r and M be positive real numbers with r > 1 and diamF (x) ≤ M‖x‖r for all
x ∈ X . Then there exists a unique set-valued Jensen additive mapping A : X → (Ccb(Y ), H) such that

H(F (x), A(x)) ≤
1

1− L
ϕ(x, 0)

for all x ∈ X .

Proof. Let y = 0 in (3.9). Since F (x) is convex, we get

H
(

F (x), 2F
(x

2

))

≤ ϕ(x, 0)(3.10)

for all x ∈ X .
Consider

S := {g : g : X → Ccb(Y ), g(0) = {0}}

and introduce the generalized metric on X,

d(g, f) = inf{µ ∈ (0,∞) : H(g(x), f(x)) ≤ µϕ(x, 0), x ∈ X},

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete (see [14, Theorem 2.4]
and [25, Lemma 2.1]).

Now we consider the linear mapping J : S → S such that

Jg(x) := 2g
(x

2

)

for all x ∈ X .
It follows from (3.10) that d(F, JF ) ≤ 1.
The rest of the proof is similar to the proof of Theorem 2.2. �

Corollary 3.3. Let p > 1 and θ ≥ 0 be real numbers, and let X be a real normed space. Suppose that
F : X → (Ccb(Y ), H) is a mapping satisfying F (0) = {0} and

H

(

2F

(

x+ y

2

)

, F (x)⊕ F (y)

)

≤ θ(||x||p + ||y||p)(3.11)

for all x, y ∈ X . Let r and M be positive real numbers with r > 1 and diamF (x) ≤ M‖x‖r for all
x ∈ X . Then there exists a unique set-valued Jensen additive mapping A : X → Y satisfying

H(F (x), A(x)) ≤
2pθ

2p − 2
||x||p
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for all x ∈ X .

Proof. The proof follows from Theorem 3.4 by taking L := 21−p and

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X .. �

Theorem 3.5. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ 2Lϕ
(x

2
,
y

2

)

for all x, y ∈ X . Suppose that F : X → (Ccb(Y ), H) is a mapping satisfying F (0) = {0} and (3.9).
Let r and M be positive real numbers with r < 1 and diamF (x) ≤ M‖x‖r for all x ∈ X . Then there
exists a unique set-valued Jensen additive mapping A : X → (Ccb(Y ), H) such that

H(F (x), A(x)) ≤
L

1− L
ϕ(x, 0)

for all x ∈ X .

Proof. It follows from (3.11) that

H

(

F (x),
1

2
F (2x)

)

≤
1

2
ϕ (2x, 0) ≤ Lϕ (x, 0)

for all x ∈ X .
The rest of the proof is similar to the proofs of Theorems 2.2 and 3.4. �

Corollary 3.4. Let 0 < p < 1 and θ ≥ 0 be real numbers, and let X be a real normed space. Suppose
that F : X → (Ccb(Y ), H) is a mapping satisfying F (0) = {0} and (3.11). Let r and M be positive
real numbers with r < 1 and diamF (x) ≤ M‖x‖r for all x ∈ X . Then there exists a unique set-valued
Jensen additive mapping A : X → Y satisfying

H(F (x), A(x)) ≤
2pθ

2− 2p
||x||p

for all x ∈ X .

Proof. The proof follows from Theorem 3.5 by taking L := 2p−1 and

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X . �
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