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fuatusta@duzce.edu.tr

Managing Editor

Merve İlkhan
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TÜRKİYE
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Abstract

Irregular fences are subgraphs of Pm ×Pn formed with m copies of Pn in such a way that two

consecutive copies of Pn are connected with one or two edges; if two edges are used, then

they are located in levels separated an odd number of units. We prove here that any of these

fences admits a special kind of graceful labeling, called α-labeling. We show that there is

a huge variety of this type of fences presenting a closed formula to determine the number

of them that can be built on the grid [1,m]× [1,n]. If only one edge is used to connect any

pair of consecutive copies of Pn, the resulting graph is a tree. We use the α-labelings of this

type of fences to construct and label a subfamily of lobsters, partially answering the long

standing conjecture of Bermond that states that all lobsters are graceful. The final labeling

of the lobsters presented here is not only graceful, it is an α-labeling, therefore they can be

used to produce new graceful trees.

1. Introduction

Suppose G is a graph of order n and size m. An injective function f : V (G)→{0,1, . . . ,m} is called a graceful labeling of G if every edge

uv of G has assigned a weight, defined by | f (u)− f (v)|, and the set of all weights induced by f on the edges of G is {1,2, . . . ,m}. A graph

that admits a graceful labeling is called graceful. This labeling, together with three other labelings, was introduced by Rosa [1] as a mean to

study a problem in combinatorial design associated with the decomposition of the complete graph K2m+1 into copies of any tree of size m.

Rosa proved that if there is a graceful labeling of a tree T of size m, then there exists a (cyclic) decomposition of K2m+1 into copies of T .

Several applications of gracefully labeled graphs are known, we can mentioned here the ones presented by Bloom and Golomb [2] and [3],

and the ones given by Brankovic and Wanless [4].

An α-labeling of G is a graceful labeling f for which there exists an integer λ , called the boundary value of f , such that for each edge uv

of G, either f (u)≤ λ < f (v) or f (v)≤ λ < f (u). If G admists an α-labeling, then it is called an α-graph. This definition of an α-graph

implies that G is bipartite and λ is the smaller of the two vertex labels that yield the weight 1. This type of labeling is the most restrictive one

among the four labelings introduced by Rosa [1]. The existence of an α-labeling implies the existence of several other types of labelings; so,

they are located at the center of this research area. Not all graphs are graceful or α , this fact motivates the search of new families of graphs

admitting these types of labelings.

Let G be a graph of order n and size m. Suppose that f is a graceful labeling of G. The labeling f̄ : V (G) → {0,1, . . . ,m}, defined as

f̄ = m− f (v) for every v ∈V (G), is called the complementary labeling of f ; this is also a graceful labeling; thus, its existence can be used

to prove that the number of graceful labelings of any graph is always even. Let g be a labeling of G defined as g(v) = c+ f (v) for every

v ∈V (G); we say that g is a c units shifting of f . It is not difficult to see that both, f and g, induce the same weights. Suppose now that f is

an α-labeling of G with boundary value λ ; the labeling h, defined for every v ∈V (G) as

h(v) =

{

f (v) if f (v)≤ λ ,

d −1+ f (v) if f (v)> λ ,
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is called a d-graceful labeling of G. This type of labeling was introduced in 1982, independently, by Maheo and Thuillier [5] and Slater [6].

Suppose that f (v)− f (u)=w> 0, then h(v)−h(u)= d−1+ f (v)− f (u)= d−1+w. Since 1≤w≤m, we get that d ≤ d−1+w≤ d−1+m.

In other terms, the weights induced by h on the edges of G are d,d+1, . . . ,d−1+m. This property of the α-labelings has been widely used

to construct new graceful and α-graphs starting with smaller α-graphs. The reverse of f , denoted by fr, is another α-labeling of G, it is

defined as

fr(v) =

{

λ − f (v) if f (v)≤ λ ,

m+λ +1− f (v) if f (v)> λ .

Note that f and fr have the same boundary value; in addition, if f (v)− f (u) = w, for any weight w ∈ {1,2, . . . ,m}, then fr(v)− fr(u) =
m+λ +1− f (v)−λ + f (u) = m+1− ( f (v)− f (u)) = m+1−w.

In Section 2 we present an α-labeling for a large family of connected subgraphs of the grid Pm ×Pn. This family, denoted by F , is formed

by all the graphs built in the following way:

For every i ∈ {1,2, . . . ,m}, let Pi
n be the path of order n with vertex set V (Pi

n) = {vi,0,vi,1, . . . ,vi,n−1} and edge set E(Pi
n) = {vi,0vi,1,

vi,1vi,2, . . . ,vi,n−2vi,n−1}. Now, for every i ∈ {1,2, . . . ,m−1}, decide whether Pi
n is connected to Pi+1

n with one or two edges (also called

links). If only one edge connects them, then choose any j ∈ {0,1, . . . ,n−1} and connect with an edge the vertices vi, j and vi+1, j. If two

edges connect them, then choose j1, j2 ∈ {0,1, . . . ,n−1}, where | j2 − j1| is odd, and introduce the edges vi, j1 vi+1, j1 and vi, j2 vi+1, j2 . Given

that the number of edges connecting two copies of Pn may vary, we refer to this type of graph as an irregular fence. In Figure 1.1 we show

all the nonisomorphic fences in F built on [1,3]× [1,4]. We claim that all the irregular fences are α-graphs.

Figure 1.1: All nonisomorphic irregular fences built on [1,3]× [1,4]

In Section 3 we study this type of irregular fences from an enumerative perspective. We present a closed formula for the number of

nonisomorphic irregular fences built on [1,m]× [1,n]. When every pair of consecutive copies of Pn is connected with only one edge, the

resulting fence corresponds to a type of tree called path-like tree; it is known that they are α-trees [7]. In Section 4 we consider a subfamily

of the path-like trees built on [1,m]× [1,5], with the extra property that they are lobsters. We characterize the lobsters that are irregular

fences, therefore, α-trees; in addition we show that some other α-lobsters can be obtained from them by adding pendant vertices to some or

all the vertices at distance one from the central path.

All graphs considered in this work are simple, i.e., no loops nor multiple edges are allowed. We mainly follow the notation and terminology

used in [8] and [9].

2. α-labelings of irregular fences

As we mentioned before, α-labelings were introduced by Rosa [1]; he presented a labeling scheme for caterpillars that can be easily adapted

for the case of paths. For the sake of completeness, we present here Rosa’s α-labeling of the path Pn; we use this labeling in the construction

of the α-labeled irregular fences.

Lemma 2.1. For every n ≥ 1, the path Pn is an α-graph.

Assuming that V (Pn) = {v0,v1, . . . ,vn−1} and E(Pn) = {v0v1,v1v2, . . . ,vn−2vn−1}, the α-labeling f : V (Pn)→ {0,1, . . . ,n−1} is defined

as:

f (vi) =

{

i
2 if i is even,

n− i+1
2 if i is odd.
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The labeling f has boundary value λ = n−2
2 when n is even and λ = n−1

2 when n is odd. Moreover, f (v0) = 0 regardless the parity of n but

f (vn−1) =
n
2 = λ +1 when n is even and f (vn−1) =

n−1
2 = λ when n is odd. We say that v ∈V (Pn) is a black vertex if f (v)≤ λ , otherwise

v is a white vertex. In Figure 2.1 we show two examples of this labeling on P12 and P17. Just for the examples, the boundary value is on a red

vertex.

P12 : P17 :

11 10 9 8 7 6

0 1 2 3 4 5

16 15 14 13 12 11 10 9

0 1 2 3 4 5 6 7 8

Figure 2.1: α-labelings of P12 and P17

The construction of the α-labeled irregular fences, built on Pm ×Pn, is based on an embedding of the path Pmn on the grid [1,m]× [1,n]. The

division algorithm tell us that for each i ∈ {1,2, . . . ,mn}, there exist unique q and r such that i = qn+ r, where 0 ≤ r < n. Using this fact we

can define the embedding of Pmn on the grid [1,m]× [1,n] to be the bijective function φ : {v0,v1, . . . ,vmn−1}→ [1,m]× [1,n], where

φ(vi) =

{

(q+1,r+1) if q is even,

(q+1,n− r) if q is odd.

Once the embedding is done, we proceed to label the vertices of Pmn using the function f given in Lemma 2.1. In the first part of Figure 2.2

we show an embedding of P15 on the grid [1,5]× [1,3], on the second part we exhibit the α-labeling of this path at this embedding.

v0 v5 v6 v11 v12 0 12 3 9 6

v1 v4 v7 v10 v13 14 2 11 5 8

v2 v3 v8 v9 v14 1 13 4 10 7

(1,1) (2,1) (3,1) (4,1) (5,1)

(1,2) (2,2) (3,2) (4,2) (5,2)

(1,3) (2,3) (3,3) (4,3) (5,3)

Figure 2.2: Embedding of P15 on [1,5]× [1,3] and its α-labeling

In the following lemmas we present the essential results that will allow us to prove that any irregular fence in F is an α-graph.

Lemma 2.2. Any fence built on [1,2]× [1,n], with only one edge connecting the two copies of Pn, is an α-graph.

Proof. Suppose that P2n has been embedded in the grid [1,2]× [1,n] in the way described before. In addition, assume that P2n has been

labeled using the function f given in Lemma 2.1. In the following diagram we show this labeling where the labels on the black vertices are at

most λ , the boundary value of f , while the labels on the white vertices are at least λ +1. Note that the edge connecting the vertices on (1,n)
and (2,n) has weight y− x−5, independently of the parity of n.

x

y

x+1

y−1

x+2

y−2

y−5

x+5

y−4

x+4

y−3

x+3

n even

...
...

y

x

y−1

x+1

y−2

x+2

x+5

y−5

x+4

y−4

x+3

y−3

n odd

...
...

If for any feasible value of t, the vertices on (1,n− t) and (2,n− t) are connected, the new edge also has weight y− x−5. This implies that

all the horizontal “edges” on this embedding of P2n have the same weight and any of them can be used to connect the two copies of Pn, being

the final fence an α-graph.
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Lemma 2.3. Any fence built on [1,2]× [1,n], with two edges connecting the two copies of Pn, is an α-graph.

Proof. As we did in Lemma 2.2, suppose that P2n has been embedded in the grid [1,2]× [1,n], in the way described before, and that it has

been labeled using the α-labeling f in Lemma 2.1. In the following diagram, we show new labelings for the two copies of Pn.

x

y+1

x+1

y

x+2

y−1

y−4

x+6

y−3

x+5

y−2

x+4

n even

...
...

y+1

x

y

x+1

y−1

x+2

x+6

y−4

x+5

y−3

x+4

y−2

n odd

...
...

These labelings are obtained from f by fixing the labels on the black vertices of the first copy of Pn and adding one unit to all other vertices.

In this way, the edges on the first copy of Pn have the weights n+2,n+3, . . . ,2n; the weights on the edges of the second copy of Pn are

1,2, . . . ,n−1. We use all the labels in {0,1, . . . ,2n} except ⌈ n
2 ⌉. Since the white vertices on the second copy of Pn were augmented one

unit while the black vertices on the first copy were fixed, any line connecting a black vertex with a white vertex will be an edge of weight

y− x−4. Similarly, any line connecting a white vertex with a black vertex will be an edge of weight y− x−5 because the labels of both

endvertices were augmented one unit. Hence, by connecting both copies of Pn with two edges, one of each kind, that is, one black-white

and one white-black, we obtain an α-labeled irregular fence. This fence is in F because these types of edges are in alternated levels. This

concludes the proof.

In Figure 2.3 we show four examples of these labeled irregular fences, two for each lemma.

0

13

1

12

2

11

3

7

6

8

5

9

4

10

0

15

1

14

2

13

3

12

8

7

9

6

10

5

11

4

0

16

1

15

2

14

3

13

9

8

10

7

11

6

12

5

0

14

1

13

2

12

3

8

7

9

6

10

5

11

Figure 2.3: α-labelings of four irregular fences

Theorem 2.4. If G is an irregular fence in F , then G is an α-graph.

Proof. Suppose that G is an irregular fence built on Pm ×Pn such that it contains 1 ≤ k ≤ m−1 pairs of consecutive copies of Pn connected

by two edges. Thus, G has size m(n−1)+(m−1)+ k = mn−1+ k. Assume that the path Pmn has been labeled using the function f in

Lemma 2.1 and is embedded in the grid [1,m]× [1,n]. Thus, the weights induced on the edges of every copy of Pn are consecutive integers,

and the horizontal edges, of this embedding of Pmn, have weights (m−1)n,(m−2)n, . . . ,2n,n.

Now we delete all the horizontal edges connecting consecutive copies of Pn in Pmn. Once this is done, we draw new horizontal edges

following the pattern in G, In this way, we have a labeling of G; based on Lemma 2.2, this is an α-labeling when G is a tree, that is, when

only one edge connects any pair of consecutive copies of Pn. If this is not the case, i.e., when there are k > 0 pairs of consecutive copies of

Pn connected with two edges, these two horizontal edges have the same weight. To eliminate this duplicity, we apply the procedure used in

the proof of Lemma 2.3.

Suppose that i1, i2, . . . , ik are the indices for which there are two horizontal edges connecting P
i j
n and P

i j+1
n . For every i ≤ i j, the labels of

the black vertices of all Pi
n are fixed and all the other labels are augmented in one unit. In this way, these horizontal edges have different
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weights that are consecutive integers. Once this process has been applied to every pair of consecutive copies of Pn connected by two edges,

the resulting labeling is indeed an α-labeling of G. In fact, since there are exactly k pairs of consecutive copies of Pn connected by two edges,

the original labels of the white vertices have been shifted k units, avoiding the duplicity of vertex labels; the weights on each copy of Pn are

consecutive integers, and the weights on the horizontal edges complement the ones on the vertical edges. Therefore, the final labeling of G is

an α-labeling and G is an α-graph.

In Figure 2.4 we show an example of this labeling where G is built on P10 ×P10 and k = 7.

0

106

1

105

2

104

3

103

4

102

97

10

98

9

99

8

100

7

101

6

11

96

12

95

13

94

14

93

15

92

87

21

88

20

89

19

90

18

91

17

23

86

24

85

25

84

26

83

27

82

77

33

78

32

79

31

80

30

81

29

35

76

36

75

37

74

38

73

39

72

67

44

68

43

69

42

70

41

71

40

46

66

47

65

48

64

49

63

50

62

57

56

58

55

59

54

60

53

61

52

Figure 2.4: α-labelings of a fence of size 106 built on [1,10]× [1,10]

3. Enumerating irregular fences

Motivated by the result in the previous section, we want to determine the number of this type of fences. In [10], we found the number of

fences that can be built on the grid [1,m]× [1,n]. Using that result, we present here a closed formula for the number of nonisomorphic

irregular fences built on the grid.

We start by counting the number of irregular fences that can be built on [1,2]× [1,n]. Since the grid [1,m]× [1,n] can be seen as a linear

amalgamation of m−1 copies of [1,2]× [1,n] we refer to the fences on [1,2]× [1,n] as building blocks, or just blocks, of [1,m]× [1,n]. Thus,

a block in an irregular fence consists of two copies of Pn and 1 or 2 (horizontal) links (edges), It is not difficult to see that the number of

blocks with only one link is C(n,1) = n, i.e., the number of ways of selecting one element from {1,2, . . . ,n}. To determine the number of

blocks with two links we may count the 2-element subsets of {1,2, . . . ,n}, such that the difference between the two elements is odd. Thus,

for any subset {i, j}, with i < j, the possible values for j are determined by the value of i. When i is odd, there are ⌊ n
2 ⌋−

i−1
2 possible values

for j. When i is even, there are ⌈ n
2 ⌉−

i
2 possible values for j.

Hence, when n is even, the number of 2-element subsets satisfying the conditions is given by

n
2

∑
i=1

i+

n
2
−1

∑
i=1

i = 2

n
2
−1

∑
i=1

i+
n

2
=

2( n
2 −1) n

2

2
+

n

2
=

n

2

(n

2
−1+1

)

=
n2

4
.

When n is odd, this number is

2

n−1
2

∑
i=1

i =
2( n−1

2 )( n+1
2 )

2
=

n2 −1

4
.

Therefore, the number of blocks is n+ n2

4 = n2+4n
4 when n is even and n+ n2−1

4 = n2+4n−1
4 when n is odd. For n ≥ 1, the sequence a(n)

formed by these values corresponds to the sequence A002620 in OEIS [11].

Another number needed in our counting process is the number of symmetric blocks. Once again, we start analyzing the case where the

block has exactly one link. If n is even, there are no symmetric blocks. If n is odd, there is only one symmetric block. We have a similar

situation when the block has two links. When n is odd there are no two numbers i < j in {1,2, . . . ,n} such that j− i is odd and i−1 = n− j.

When n is even, for every 1 ≤ i ≤ n
2 , the number j = n+1− i belongs to { n

2 +1, n
2 +2, . . . ,n}, j− i = n+1− i− i = n+1−2i is odd and

i−1 = n− j = n− (n+1− i) = i−1. Then, if s(n) denotes the number of symmetric blocks, we get
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s(n) =

{

n
2 if n is even,

1 if n is odd.

For n ≥ 1, the sequence s(n) is the sequence A152271 in OEIS [12].

Now we turn our attention to the general case. Given any irregular fence F built on [1,m]× [1,n], there are other three fences that are

isomorphic to F : when F is rotated 180◦ around a central vertical axis, when F is rotated 180◦ around a central horizontal axis, and when F

is rotated 180◦ around a central axis perpendicular to the plane containing F . Thus, there are three possible situations: F has four different

representations, F has two different representations, or F has one representation. Let T be the set of all irregular fences on [1,m]× [1,n]; we

define V to be the subset of T containing the fences with a vertical symmetry, H to be the subset of T containing the fences with a horizontal

symmetry, C to be the subset of T containing the fences with a central symmetry, and A to be the subset of T containing the fences with all

these symmetries. In Figure 3.1 we show four examples, one for each of these subsets.

V H C A

Figure 3.1: Different types of symmetric fences

Since the fences in A have all the described symmetries, each of them appears only once in the list of all possible fences built on [1,m]× [1,n].
Every element of V −A, H −A, or C−A appears twice in this list. Every nonsymmetric fence appears four times in the list. Thus, if we take

the addition of cardinalities

|T |+ |V |+ |H|+ |C|

every fence is counted four times. Therefore, the number of nonisomorphic irregular fences built on [1,m]× [1,n] is given by

f (m,n) = 1
4 (|T |+ |V |+ |H|+ |C|).

In order to find a closed formula for f (m,n) we just need to determine explicitely these four cardinalities.

Based on the number of blocks and symmetric blocks, found above, and the fact that [1,m]× [1,n] can be formed with m− 1 copies of

[1,2]× [1,n], we can say that

|T |=

{

( n2+4n
4 )m−1 if n is even,

( n2+4n−1
4 )m−1 if n is odd.

If F is a fence in V , then its ith block is identical to its (m− i)th block. This implies that we need to determine the number of posibilities for

the first ⌊m
2 ⌋ blocks. Thus,

|V |=

{

( n2+4n
4 )⌊

m
2
⌋ if n is even,

( n2+4n−1
4 )⌊

m
2
⌋ if n is odd.

If F ∈ H, each block in F must be symmetric. So,

|H|=

{

( n
2 )

m−1 if n is even,

1 if n is odd.

When F ∈ C, there are two cases that we need to analyze that depend on the parity of m. Recall that in this case the ith block of F is

represented up side down in the (m− i)th block.

If m is even and i = m
2 , then i = m− i. This implies that the ith block of F must be symmetric. So,

|C|=

{

( n2+4n
4 )

m−2
2 · n

2 if n is even,

( n2+4n−1
4 )

m−2
2 ·1 if n is odd.



Universal Journal of Mathematics and Applications 7

If m is odd

|C|=

{

( n2+4n
4 )

m−1
2 if n is even,

( n2+4n−1
4 )

m−1
2 if n is odd.

Thus, we have found a closed formula for F(m,n). We summarize these results in the following theorem.

Theorem 3.1. The number f (m,n) of nonisomorphic irregular fences built on [1,m]× [1,n] is:

• When both m and n are even.

f (m,n) = 1
4

(

( n2+4n
4 )m−1 +( n2+4n

4 )
m
2 +( n

2 )
m−1 +( n2+4n

4 )
m−2

2 · n
2

)

• When m is even and n is odd.

f (m,n) = 1
4

(

( n2+4n−1
4 )m−1 +( n2+4n−1

4 )
m
2 +1+( n2+4n−1

4 )
m−2

2

)

• When m is odd and n is even.

f (m,n) = 1
4

(

( n2+4n
4 )m−1 +( n2+4n

4 )
m−1

2 +( n
2 )

m−1 +( n2+4n
4 )

m−1
2

)

• When both m and n are odd

f (m,n) = 1
4

(

( n2+4n−1
4 )m−1 +( n2+4n−1

4 )
m−1

2 +1+( n2+4n−1
4 )

m−1
2

)

In Table 1, read by rows, we show the first values of f (m,n) for 2 ≤ m,n ≤ 10. We have omitted the cases where m = 1 or n = 1 because

f (m,n) = 1.

2 3 4 5 6 7 8 9 10

2 2 3 5 6 9 10 14 15 20

3 4 9 21 36 66 100 160 225 330

4 10 39 150 366 918 1810 3640 6315 11100

5 25 169 1060 3721 12789 32761 83296 177241 375925

6 70 819 8360 40626 190917 620830 1994944 5134095 13143500

7 196 3969 65808 443556 2849526 11764900 47783680 148718025 459591750

8 574 19719 525600 4875786 42730578 223502230 1146718720 4312651995 16085261781

9 1681 97969 4196416 53597041 640749609 4245955921 27519010816 125061956881 562969695625

10 5002 489219 33564800 589530846 9611072577 80672576050 660454273024 3626791798575 19703925162500

Table 1: Initial values for the numebr f (m,n) of nonisomorphic irregular fences builon [1,m]× [1,n]

4. Lobsters with an α-labeling

A lobster is a tree with the property that the removal of all its leaves results in a caterpillar, and a caterpillar is a tree with the property that

the removal of all its leaves results in a path. We refer to this path as the central path of the lobster. An alternative definition was given in

[13]. Let P be any of the longest paths in a tree T ; T is called a k-distance tree if every vertex is at distance at most k from P. Thus, paths are

0-distance trees, caterpillars are 1-distance trees, and lobsters are 2-distance trees.

It was conjectured by Bermond [14] that all lobsters are graceful. Several families of graceful lobsters are known. Using the construction of

Stanton and Zarnke [15] it is possible to obtain a graceful labeling of any lobster constructed by attaching, to every vertex of a path, a leaf of

the star K1,n. Burzio and Ferrarese [16] proved that any tree obtained from a graceful tree by replacing each edge with a path of fixed length

is graceful. Thus, if the starting tree is a caterpillar and every edge is replaced with a path of length 2, the resulting graph is a lobster. This is

one of the strongest results in this area, the weakest part is that the distance between any two leaves, at distance two, is always even. This

problem is solved in the work of Wang et al. [17], as well as in the series of articles of Mishra and Panagrahi [18], [19], [20], and [21]. In all

these papers, the lobsters considered share the property that all the vertices in the central path have degree larger than two and the subtrees

attached to them must satisfy some structural conditions. Morgan [13] proved that all lobsters with a perfect matching are graceful. In a

similar line, Krop [22] showed the same for lobsters with an almost perfect matching.

In this section we explore lobsters that are path-like trees and how to use the α-labeling, given in Section 2, to produce new α-labeled lobsters.

Suppose that the path P5m has been labeled using the labeling in Lemma 2.1, and embedded in the grid [1,m]× [1,5], as we did in Section 2.

Thus, every column in this embedding is a copy of P5; moreover, the labeling of the ith copy of P5 is a di-graceful labeling shifted ci units,

where di = n(m− i)+1 and

ci =

{

n(i−1)
2 if i is odd,

n(i−1)+1
2 if i is even.

We claim that when every copy of P5 is replaced by a copy of any caterpillar of diameter four, the result still holds; that is, we can concatenate

the central vertices of these caterpillars to obtain a lobster with an α-labeling. In Figure 4.1 we show the labeling scheme given by Rosa [1]

to get an α-labeling of a caterpillar of size n−1.

Let G be a caterpillar of diameter 4 and order n. If all the leaves of G are deleted, we get the path P3; thus, we can use the notation

C(n1,n2,n3) to denote the caterpillar of order n = n1 +n2 +n3 +3, obtained from P3 by attaching ni pendant vertices to the vertex vi of P3.

In Figure 4.2 we show an α-labeling f of C(n1,n2,n3) together with the reverse of its complementary labeling.
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0 1 2 3 4 5 6

n−1 n−2 n−3 n−4 n−5 n−6 n−7

. . .

. . .

Figure 4.1: α-labeling scheme of a caterpillar of size n−1
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Figure 4.2: α-labelings of C(n1,n2,n3)

Lemma 4.1. The lobster L, obtained by connecting with an edge the central vertices of two copies of the caterpillar C(n1,n2,n3), is an

α-tree.

Proof. The caterpillar C(n1,n2,n3) has size n1,n2,n3 +2; the α-labeling f of it has boundary value λ = n1 +n3. Then, we label the first

copy of this caterpillar using the labeling f , which is transformed into a (n+1)-graceful labeling. In this way, its central vertex has label n1.

The second copy of the caterpillar is originally labeled using f r, this labeling is shifted n1 +n3 +1 units, thus there is no repetition of labels

between both copies. The new label of the central vertex of the second copy is (n1 +n2 +2)+(n1 +n3 +1) = n+n1. Hence, if we connect

with an edge the central vertices, this edge will have weight n. Therefore, the lobster L is an α-tree.

This process can be applied to any number of copies of C(n1,n2,n3), in the same way that it was applied to any number of copies of Pn in

Section 2. Thus, we get the following theorem.

Theorem 4.2. For each 1 ≤ i ≤ k, let Gi be a copy of the caterpillar C(n1,n2,n3). If for every 1 ≤ i ≤ k− 1, the central vertex of Gi is

connected with an edge to the central vertex of Gi+1, then the resulting graph is a lobster that admits an α-labeling.

In Figure 4.3 we show an example of this construction using the caterpillar C(2,4,3) four times. We must observe that the lobsters obtained

using these caterpillars do not have a perfect (or almost perfect) matching.
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Figure 4.3: α-labeling of a lobster in G
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For each 1 ≤ i ≤ k, let Gi be a copy of the caterpillar C(n1,n2,n3). The family Gk consists of all lobsters formed connecting with an edge the

central vertices of Gi and Gi+1 where 1 ≤ i ≤ k−1. Thus we can say that all members of Gk are α-trees. Furthermore, for any G ∈ Gk, the

α-labeling of G, obtained using Theorem 4.2, assigns the label 0 to a leaf of G and the label λ (when k is odd) or λ +1 (when k is even) to

another leaf, and the distance between these leaves is k+3, that is, the diameter of G. In [23] we proved that if B1,B2, . . . ,Bk is a collection

of α-labeled blocks, with boundary value λi, then the graph obtained amalgamating the vertex labeled 0 in Bi with the vertex labeled λi−1 in

Bi−1, for every 2 ≤ i ≤ k, is an α-graph. We refer to this process as the (0,λ )-amalgamation. As we showed before, if G is a caterpillar,

there exists an α-labeling of G that assigns the labels 0 and λ (when the diameter is even) or 0 and λ +1 (when the diameter is odd) on the

leaves of a path of maximum length in G. These two properties allow us to prove the following theorem.

Theorem 4.3. Let G1,G2, . . . ,Gt be a collection of α-graphs, such that Gi ∈ Gki
or Gi is a caterpillar. Then, the lobster L, obtained via

(0−λ )-amalgamation of these graphs, is an α-tree.

Proof. Suppose that fi is an α-labeling of Gi with boundary value λi. If Gi is a caterpillar, we assume that fi is the labeling f in Figure 4.1.

If Gi is a lobster in Gki
, we assume that fi is the labeling obtained in Theorem 4.2. In both cases, the vertex of Gi labeled 0 belongs to a path

of maximum length in Gi. If the vertex of Gi labeled λi is on a leaf, then we can identify the vertex labeled 0 in Gi+1 with the vertex labeled

λi in Gi. The α-labeling of the new graph, denoted by Γi+1, is obtained by shifting λi units the labeling fi+1 and transforming fi into a

di-graceful labeling where di −1 is the size of Gi+1. If the boundary value of this labeling of Γi+1 is on a leaf, we concatenate Γi+1 with

Gi+2, to obtain an α-graph Γi+2, and so on until all the amalgamations are done. If the boundary value of this labeling of Γi+1 is not on a

leaf, then we use the complementary labeling, which puts its boundary value on a leaf, and connect Γi+1 with Gi+2, and continue in this way

until all the amalgamations are done. Given the position of the vertices labeled 0 and λi, the final graph is a lobster with an α-labeling.

In Figure 4.4 we show an example of this construction where G1 ∈ G2, G2 is a caterpillar of size 10, and G3 ∈ G3.
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Figure 4.4: α-labeling of a lobster

5. Conclusions

There is a wide variety of fences, we explored here one of these varieties where two consecutive copies of Pn are connected by one or two

links, if two links are used, the distance between them is odd. These constraints can be modified to explore the existence of α-labelings of

general fences, where the number of links is not restricted to 1 or 2. We think that all fences admit an α-labeling, except when the fence is

isomorphic to the cycle Cn with n ≡ 2(mod 4), that is not a graceful graph.

The construction of α-lobsters presented in Theorem 4.3 can be use in a more general case, where a lobster could be decomposed into

sublobsters, each of them with an α-labeling that assigns the labels 0 and λ to leaves u and v such that the distance between them equals the

diameter of the sublobster. We think that this technique should be explored with more details in future works.
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Abstract

We show that a zero-symmetric near-ring N is left regular if and only if N is regular and

isomorphic to a subdirect product of integral near-rings, where each component is either an

Anshel-Clay near-ring or a trivial integral near-ring. We also show that a zero-symmetric

near-ring is regular without nonzero nilpotent elements if and only if the multiplicative

semigroup of N is a union of disjoint groups.

1. Introduction

A (right) near-ring is an algebraic system (N,+, ·) such that (1) (N,+) is a (not necessarily abelian) group, (2) (N, ·) is a semigroup and

(3) the multiplication · is right distributive over the addition + . From (3) we obtain that 0x = 0 for all x ∈ N. The near-ring of constant

functions on a group (G,+) shows that in general x0 6= 0 in a near-ring. N is called zero-symmetric, if x0 = 0 for all x ∈ N. A near-ring N is

called regular, if for all x ∈ N there

exists an element y ∈ N such that x = xyx. N is called left (right) regular, if for all x ∈ N there exists y ∈ N such that x = yx2 (x = x2y). N is

called integral, if N has no nonzero divisors of zero. A zero-symmetric integral near-ring N is called trivial, if xy = x for all x,y ∈ N,y 6= 0.

The set N −{0} shall be denoted by N∗. For this and other terminology we refer to [1]. In the next section we define Anshel-Clay near-rings

and characterize them in the class of nontrivial integral near-rings. Then we show that a zero-symmetric near-ring N is left regular, if and

only if N is regular and isomorphic to a subdirect product of near-rings, which are either trivial integral near-rings or Anshel-Clay near-rings.

We also prove for an arbitrary zero-symmetric near-ring N that the multiplicative semigroup (N, ·) is a union of disjoint groups, if and only N

is regular without nonzero nilpotent elements.

2. Left regular near-rings

Definition 2.1. [2] A near-ring N is called Anshel-Clay near-ring (ACN), if N∗ is a disjoint union of subsets Ai, i ∈ I, where I is an index set,

such that the following conditions hold:

1. |Ai| ≥ 2 for all i ∈ I.

2. (Ai, ·) is a group with neutral element 1i for all i ∈ I.

3. For all i, j ∈ I, the mapping x 7→ 1 jx for x ∈ Ai is a group isomorphism from (Ai, ·) onto (A j, ·).
4. Each 1i, i ∈ I, is a right identity of N.

As we shall see in the next result, condition 3 follows from the other conditions, so when we say that N is an ACN, we mean that N

satisfies conditions 1,2,4. Anshel-Clay near-rings have been defined in [2], but they occured implicitely in previous papers on planar and

strongly uniform near-rings, see for example [3], [4], [5] and [6]. In [2] and in [7] these near-rings have been used to coordinatise certain

noncommutative spaces.

Theorem 2.2. Let N be an ACN. Then

1. Ai = {n ∈ N∗ | 1in = n}
2. Ai = 1iN

∗

3. For all i, j ∈ I,hi j : Ai → A j,hi j(x) := 1 jx for x ∈ Ai is a group isomorphism.
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Proof. 1. Since 1i is the identity of the group Ai,Ai ⊆ {n ∈ N∗|1in = n}. Conversely, let n ∈ N∗ such that 1in = n. Since N∗ =
⋃

j∈I A j,

n ∈ A j for some j ∈ I. Suppose that i 6= j and let n−1 denote the inverse of n in A j. Then 1 j = nn−1 = (1in)n
−1 = 1i(nn−1) = 1i1 j = 1i,

since 1 j is a right identity of N. Thus 1i = 1 j, a contradiction, since i 6= j implies Ai ∩A j =∅. It follows that {n ∈ N∗|1in = n} ⊆ Ai.

2. From 1. we have that Ai ⊆ 1iN
∗. Conversely, if n = 1im ∈ 1iN

∗, then 1in = 1i(1im) = 12
i m = 1im = n, hence from 1. 1iN

∗ ⊆ Ai.

3. Let x,y ∈ Ai. Since 1 j is a right identity of N,hi j(xy) = 1 jxy = 1 jx1 jy = h(x)h(y), so hi j is a group homomorphism. Now suppose that

1 jx = 1 jy, for some elements x,y ∈ Ai. Then 1i(1 jx) = 1i(1 jy). Since 1i1 j = 1i, we obtain 1ix = 1iy. By 1. it follows that x = y, so hi j is

injective. If x is an arbitrary element of A j, then 1ix ∈ Ai by 2., hence hi j(1ix) = 1 j(1ix) = (1 j1i)x = 1 jx = x, which shows that hi j is an

isomorphism.

A near-field is a near-ring with identity, where every nonzero element is invertible.

Theorem 2.3. 1. Every ACN is a zero-symmetric, nontrivial integral near-ring.

2. Let N be an ACN. Then N is a near-field, if and only if N has an identity, if and only if I is a one element set.

Proof. 1. If x0 6= 0 for some x ∈ N, then x0 ∈ Ai for some i ∈ I, since N∗ =
⋃

i∈I Ai. From (x0)2 = x(0x)0 = x0 we obtain x0 = 1i. Thus

1in = (x0)n = x(0n) = x0 = 1i for all n ∈ N∗
. By 2. of Theorem 2.2, it follows that Ai = 1iN

∗ = {1i}, which contradicts condition 1 in the

definition of an ACN. It follows that N is zero-symmetric. Now suppose xy = 0 for some elements x,y ∈ N. If y 6= 0, then y ∈ Ai for some

i ∈ I. If y−1 is the inverse of y in Ai, then 0 = 0y−1 = (xy)y−1 = x(yy−1) = x1i = x, thus N is integral. If N is a trivial integral near-ring,

then xy = x for all y 6= 0, hence Ai = 1iN
∗ = {1i} for all i ∈ I, a contradiction.

2. If N is an ACN with identity 1, then 1 = 1i for all i ∈ I, since each 1i is a right identity of N. Thus N is a near-field.

Next we characterize which nontrivial integral near-rings are Anshel-Clay near-rings.

Theorem 2.4. For a zero-symmetric, nontrivial integral near-ring N, the

following are equivalent:

1. N is an ACN

2. ∀n ∈ N∗ : Nn = N

3. N is left regular

4. N is regular

Proof. Let N be an ACN and let n ∈ N∗
. Then n ∈ Ai for some i ∈ I. Since 1i is a right identity of N, N = N1i = Nn−1n ⊆ Nn, hence

Nn = N. Next, suppose Nx = N for all x ∈ N,x 6= 0. Then Nx2 = (Nx)x = Nx = N, for all x 6= 0, hence there exists an element y ∈ N, such

that x = yx2
, thus N is left regular. That 3. implies 4. has been shown in [8], Proposition 1. Finally we show that 4. implies 1. If 0 6= e ∈ N is

idempotent, then for all n ∈ N we have (ne−n)e = ne2 −ne = ne−ne = 0. Since N is integral it follows that ne = n, hence each idempotent

is a right identity of N. Now suppose that N is regular and let n ∈ N. Then there exists an element x ∈ N such that n = nxn. Then nx is

idempotent, hence n = n(nx) = n2x. It follows that N is regular and right regular. By [9], Theorem 4.3, N∗ =
⋃

i∈I Ai, where Ai is a group

with identity 1i for i ∈ I and Ai ∩A j =∅ if i 6= j. As we have seen before, each 1i is a right identity of N. Now we can show like in Theorem

2.2, No. 3, that hi j : Ai → A j, hi j(x) = 1 jx for x ∈ Ai is a group isomorphism. If Ai = {1i} for all i ∈ I, then (N∗
, ·) is a band since each

1i, i ∈ I, is a right identity of N. Since this contradicts our assumption that N is a nontrivial integral near-ring, it follows that |Ai| ≥ 2 for all

i ∈ I, hence N is an ACN.

An idempotent e of a near-ring N is called right semi-central in N, if eN = eNe. It is easy to show that e is right semi-central in N if and only

if en = ene for all n ∈ N. N is called right semi-central, if every idempotent e of N is right semi-central in N (see [10]). Let N be an integral

near-ring and i,n ∈ N. i is called a left identity of n, if in = n. Note that if n 6= 0 has a left identity i, then i is uniquely determined, since

i1n = n = i2n implies (i1 − i2)n = 0, hence i1 = i2.

Theorem 2.5. For a zero-symmetric regular near-ring N the following are

equivalent:

1. N has no nonzero nilpotent elements.

2. N is right semi-central.

3. N is isomorphic to a subdirect product of Anshel-Clay near-rings and trivial integral near-rings.

4. N is left regular.

Proof. That 1. implies 2. has been shown in [10], Cor. 7. Conversely, suppose that there exists an element n ∈ N,n 6= 0,n2 = 0. Since N is

regular, n = nxn for some x ∈ N. Then e := nx is idempotent and n = en = ene, since e is semi-central by assumption, so n = ne = n2x = 0,

a contradiction, which shows the equivalence of 1. and 2. Next we show that 1. implies 3. By [11], N is isomorphic to a subdirect product of

integral near-rings Ni, i ∈ I. Since N is regular, each Ni is also regular. Therefore, if Ni is a nontrivial integral near-ring, then Ni is an ACN

by Theorem 2.4. Since each ACN is integral by Theorem 2.3 it follows that 3. implies 1. Since 4. implies 1. is clear, it remains to show

that 3. implies 4. Suppose that N is isomorphic to a subdirect product of near-rings Ni, i ∈ I, where each Ni is an ACN or a trivial integral

near-ring. Let n ∈ N. We have to show that there exists an element x ∈ N such that n = xn2
. Since N is regular, there exists y ∈ N such that

n = nyn. N is isomorphic to a subdirect product of the near-rings Ni, so n = (ni)i∈I , y = (yi)i∈I , for some ni,yi ∈ Ni, i ∈ I. Then ni = niyini

and ei := niyi is an idempotent for all i ∈ I. Since (ni −niei)ei = 0i and each Ni is integral, we obtain ni = niei = n2
i yi. Let x := ny2

. Then for

all i ∈ I, n2
i xi = ni(n

2
i yi)yi = n2

i yi = ni and nixini = (n2
i yi)(yini) = niyini = ni, hence n2x = n = nxn. Now fix an element i ∈ I and suppose

that Ni is an ACN. Then there exists an index set Ji such that Ni = {0i}∪
⋃

j∈Ji
A j, using the terminology of Definition 2.1 Suppose ni 6= 0.

Since ni = nixini, nixi is a left identity for ni. There exists an element j ∈ Ji, such that ni ∈ A j. But then 1 j is also a left identity for ni, hence

by the uniqueness of the left identity, nixi = 1 j. Note that xi is also an element of A j. This follows from Theorem 2.2, since ni ∈ A j and

1 jxi = 1 jniy
2
i = (1 jni)y

2
i = niy

2
i = xi. Therefore we obtain that xini = 1 j = nixi, hence n2

i xi = ni = nixini = xin
2
i . This equation also holds if

ni = 0, so it holds for all i ∈ I, where Ni is an ACN. Since the previous equation is obviously true for all those i ∈ I, where Ni is a trivial

integral near-ring, we conclude that n2x = n = xn2
. Thus N is left regular.
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In [12], the equivalence of 1. and 4. has been shown with a different proof. From Theorem 2.5 and [9], Theorem 4.3 we also obtain

Theorem 2.6. For a zero-symmetric near-ring N, the following are equivalent:

1. N is regular without nonzero nilpotent elements.

2. The multiplicative semigroup of N is a union of disjoint groups.
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Abstract

Small changes in the entries of a matrix pencil may lead to important changes in its

Kronecker normal form. Studies about the effect of small perturbations have been made

when considering the stratification associated with the strict equivalence between matrix

pencils. In this work, we consider a partition in the space of pairs of matrices associated to

regular matrix pencils, which will be proved to be a finite stratification of the space of such

matrix pencils, called D-stratification. Matrix pencils in the same strata are those having

some prescribed Segre indices. We study the effect of perturbations which lead to changes

in the Kronecker canonical form, preserving the order of the nilpotent part. Our goal is to

determine which D-strata can be reached. In the cases where the order of the matrix pencils

is 2 or 3, we obtain the corresponding hierarchy graphs, illustrating the D-strata that can be

reached when applying some small perturbations.

1. Introduction

Jordan normal form of a square matrix A is not stable under small perturbations, small changes in its entries may change the Jordan normal

form of the matrix. In [1, 2], V. I. Arnold identified nearby canonical structures using miniversal deformations. H. den Boer and G. Ph. A.

Thijsse, A. S. Markus and E. E. Parilis (see [3, 4]) found Jordan normal form of matrices which could be obtained from a given Jordan

matrix by arbitrary small perturbations. The changes in the normal form of a matrix when only elements in some concrete positions can be

changed are studied by different authors for example, (see [5, 6]).

An informal introduction to perturbations of matrices up to different equivalence relations is given in [7]. Changes of the canonical form for

order two and three matrices under congruence were given in [8].

V. I. Arnold introduced the sets of matrices having the same Segre characteristics (and differing only in the continuous invariants) as bundles

of matrices. Gibson proved in [9] that this partition is actually a Whitney stratification, the closure of each stratum being the union of strata

(of strictly lower dimension).

In [10], [11] a different stratification of the space of square matrices is considered, being the matrices in the same stratum those having the

same Drazin inverse (see [12] for this relation between matrices).

The stratification of the space of pairs of matrices related to linear control systems can be found in [13], where a proof of this stratification

being Whitney regular in a particular case is included (the general case is an open problem). Bifurcation diagrams were obtained in [14].

Later, the same author proved that the partition of the space of quadruples of matrices according to the set of discrete structural invariants is a

stratification (see [15]). All possible Kronecker canonical forms of matrix pencils in a neighbourhood of any given pencil were described by

Pokrzywa in [16].

Stratifications can be represented by hierarchy graphs, the nodes being the strata and the edges the covering relations; that is to say, the

possible paths from one bundle to another one.

The closure of a stratum consists of all those strata which can be reached applying a small perturbation. Closure relations for matrices under

conjugation and matrix pencils under strict equivalence were studied in [17, 18]. In [19] Hasse diagrams for the closure ordening for order

two matrices under *congruece were constructed. E. Elmroth, P. Johansson and B. Kågström presented in [18] Stratigraph, a Java-based tool

for the computation and visualization of canonical information and stratification hierarchies for matrices and matrix pencils.

Email addresses and ORCID numbers: maria.isabel.garcia@upc.edu, 0000-0001-7418-7208 (M. I. Garcı́a-Planas),m.dolors.magret@upc.edu, 0000-0003-1135-2274 (M.

D. Magret)
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Closure relations for matrix pencils under strict equivalence were studied in [20] and [14]. All possible Kronecker canonical forms of matrix

pencils in a neighbourhood of any given matrix pencil were described by Pokrzywa in [16].

As usual, we will denote by Mn(C) the set of square matrices of order n with coefficients in C and by Gln(C) the set of all invertible matrices

of order n.

2. Motivation

Let us consider a linear control dynamical system

Eẋ(t) = Ax(t)+Bu(t) (2.1)

with E,A square matrices of order n.

In the case where E is an invertible matrix, we can pre-multiply the equation above by E−1, thus obtaining:

ẋ(t) = A1x(t)+B1u(t)

If E is not invertible, and assuming that the matrix pencil λE +A is regular (to ensure the system has a unique solution) the system splits into

a slow and fast subsystems, according to the response’s speed to the changes in the control input. These subsystems can be obtained using the

Kronecker normal form of the matrix pencil (or its Weierstraß normal form, since we only consider regular matrix pencils). It can be found,

for example, in [21]. Let us recall it, we have assumed the matrix pencil λE +A to be regular, there exist invertible matrices P, Q such that

Q(λE +A)P = λ

(

In0
0

0 NE

)

+

(

G 0

0 In−n0

)

with NE a nilpotent matrix, G ∈ Mn0
(C) a matrix in Jordan reduced form,

G =

(

J

NG

)

where det(J) 6= 0 and NG is a nilpotent matrix.

The Kronecker reduced form of the matrix pencil λE +A, or Weierstraß form, is:

λEc +Ac = λ

(

In0
0

0 NE

)

+

(

G 0

0 In−n0

)

= λ





Iν 0 0

0 In0−ν 0

0 0 NE



+





J 0 0

0 NG 0

0 0 In−n0





Applying suitable basis change and pre-multiplication to the systems’ equation (2.1)

Eẋ(t) = Ax(t)+Bu(t)

the system splits into two subsystems:

(

Iν 0

0 In0−ν

)

ẋ1(t) =

(

J 0

0 NG

)

x1(t)+

(

B1
1

B2
1

)

u(t)

NE ẋ2(t) = x2(t)+B2u(t)















The first system is referred to as the slow subsystem and the second one as the fast subsystem. We will denote them by ΣS and ΣF ,

respectively. The solution of the fast subsystem is well-known (see [22], 1989). Obviously, if E is an invertible matrix, the fast subsystem

does not appear (n0 = n).

In turn, the slow subsystem ΣS splits into two subsystems:

ΣJ ẏ(t) = Jy(t)+B1
1u(t)

ΣNG
ż(t) = NGz(t)+B2

1u(t)







That is to say, the initial system can be divided into three independent subsystems:

ΣJ ẏ(t) = Jy(t)+B1
1u(t)

ΣNG
ż(t) = NGz(t)+B2

1u(t)

ΣF NE ẋ2(t) = x2(t)+B2u(t)






















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The solutions to the subsystems above are:

y(t) = eJty0 +
∫ t

0 eJ(t−τ)B1
1u(τ)dτ,

z(t) = eNGtz0 +
∫ t

0 eN(t−τ)B2
1u(τ)dτ

= ∑
n0−ν−1
i=0

1

i!
Ni

Gt iz0 +∑
n0−ν−1
i=0

1

i!

∫ t
0 Ni

Gt iB2
1u(τ)dτ,

x2 =−∑
n−n0−1
i=1 N iBu(i)(t)

and while the solution of the first subsystem, ΣJ is a matrix series, the solution of the second and third ones, ΣNG
and ΣF are polynomial

matrices. The first one depends on the integral of control function and the second one on the derivatives of this function. This supposes an

important difference when computing solutions (recall that the different methods and algorithms to compute the exponential of a matrix J are

not absolutely satisfactory). On the other hand, the formula to compute the exponential of the matrix is the same independently of the exact

value of the eigenvalues and relies only on the Segre characteristics of the matrix.

This suggests to considering a partition in the space of regular matrix pencils, which will be called D-stratification, where strata will consist

of matrix pencils having the same Segre characteristics in matrix J (and not taking into account the Segre characteristics of matrices NG and

NE ).

3. D-Partition of the space of pairs of matrices associated to regular matrix pencils

We will denote by X the set of regular matrix pencils λE +A, with E,A ∈ Mn(C) (which is an open subset of the space of pencils of

matrices identified with the space of pair of matrices Mn(C)×Mn(C), thus a differentiable manifold).

We define an equivalence relation in X according to the Segre characteristic of matrix J in the Kronecker reduced form of the matrix pencil

λE +A.

Definition 3.1. Given two regular matrix pencils λE +A ∈ X ,λE ′+A′ ∈ X with Kronecker reduced forms

λEc +Ac = λ





Iν 0 0

0 In0−ν 0

0 0 NE



+





J 0 0

0 NG 0

0 0 In−n0





λE ′
c +A′

c = λ





Iν ′ 0 0

0 In′0−ν ′ 0

0 0 N ′
E



+





J′ 0 0

0 N′
G′ 0

0 0 In−n′0





they will be said to be D-equivalent if ν = ν ′, n0 = n′0 and J and J′ have the same Segre characteristics.

Note that equivalent pencils in the same orbit under classical equivalent relation of matrix pencils (see [23]) are equivalent under D-

equivalence relation considered. Therefore equivalent classes are the union of orbits. But matrix pencils in the same stratum of the

stratification induced for classical equivalence relation are not necessarily in the same orbit under D-equivalence.

Example 3.2. The following matrix pencils

λE1 +A1 =





1

1

0



+





2

3

1





λE2 +A2 =





1

1

0



+





2

0

1





are in the same stratum when considering the stratification induced for classical equivalence (strict equivalence) relation but they are not in

the same orbit under D-equivalence.

Equivalent classes under D-equivalence relation can be obtained dividing classical strata.

Example 3.3. Let S be the classical stratum consisting of matrix pencils with canonical reduced form

λ











1

. . .

1

NE











+











λ1

. . .

λn0

In−n0











where λi 6= λ j if i 6= j, 1 ≤ i, j ≤ n.

This stratum splits into the following D-equivalence classes:
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λ











1

. . .

1

NE











+











λ1

. . .

λn0

In−n0











, λi 6= 0, λi 6= λ j if i 6= j

λ















1

. . .

1

1

NE















+















λ1

. . .

λn0−1

0

In−n0















, λi 6= 0, λi 6= λ j if i 6= j

In order to obtain all the strata, we can proceed as follows. First of all we divide each stratum on the finite classical stratification into a finite

number of equivalent classes, separating the orbits in the stratum having some zero-eigenvalue Jordan block and then we joint the sets having

the same Segre characteristic correspoding to non-singular part of the Jordan matrix.

Example 3.4. Let us consider the classical strata corresponding to

λE1 +A1 = λ













1

1

1

0 1

1













+













λ1

λ2 1

λ2

1

1













, λ1 6= λ2

λE2 +A2 = λ













1

1

1

0

0













+













λ1

λ2 1

λ2

1

1













, λ1 6= λ2

The stratum corresponding to λE1 +A1 may be divided into

λE1
1 +A1

1 = λ













1

1

1

0 1

0













+













λ1

0 1

0

1

1













, λ1 6= 0

λE2
1 +A2

1 = λ













1

1

1

0 1

1













+













λ1 1

λ1

0

1

1













, λ1 6= 0

The stratum corresponding to λE2 +A2 may be divided into

λE1
2 +A1

2 = λ













1

1

1

0

0













+













λ1

0 1

0

1

1













, λ1 6= 0

λE2
2 +A2

2 = λ













1

1

1

0

0













+













λ1 1

λ1

0

1

1













, λ1 6= 0

Then, we joint

(λE1
1 +A1

1)∪ (λE1
2 +A1

2), (λE2
1 +A2

1)∪ (λE2
2 +A2

2)

That is to say, λE1
1 +A1

1 and λE1
2 +A1

2 are in the same stratum (and all D-equivalent to both pencils) and λE2
1 +A2

1 and λE2
2 +A2

2 are in

the same stratum (and all D-equivalent to both pencils).

Observe that the equivalent classes of λE i
2 +Ai

2 (i = 1,2) is in the frontier (or boundary) of the equivalent classes of λE i
1 +Ai

1 (i = 1,2):
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lim
ε→0

λ













1

1

1

0 ε

0













+













λ1

0 1

0

1

1













=

λ













1

1

1

0

0













+













λ1

0 1

0

1

1













lim
ε→0

λ













1

1

1

0 ε

0













+













λ1 1

λ1

0

1

1













=

λ













1

1

1

0

0













+













λ1 1

λ1

0

1

1













Proposition 3.5. The partition of X into D-equivalence classes is a finite partition.

We will denote D-equivalence classes as D(ν ,n0,σ), referring to the orders of matrices J, G and the Segre characteristics of J. A deeper

study of these sets is made below.

Proposition 3.6. Let J(σ) the stratum in Glν (C) under similarity and let N il(n− n0) and let N il(n0 − ν) be the smooth manifolds

of nilpotent matrices of size n−n0 and n0 −ν respectively. Then, there is a smooth monomorphism from the set J(σ)×N il(n−n0)×
N il(n0 −ν) to Mn(C)×Mn(C),

ϕ : J(σ)×N il(n−n0)×N il(n0 −ν) −→ Mn(C)×Mn(C)

(A,N ,N) −→

((

Iν

In0

N

)

,

(

A

N

Inn0

))

Proof. It is straightforward that ϕ is injective and differentiable.

Corollary 3.7. For each N ∈ N il(n−n0), the map

ϕN : J(σ)×N il(n0 −ν) −→ Mn(C)×Mn(C)

(A,N ,N) −→

((

Iν

In0−ν

N

)

,

(

A

N

In−n0

))

is a smooth monomorphism.

Remark 3.8. The D-equivalent class D(ν ,n0,σ) is the set of equivalent pairs to ϕ(J(σ)×N iln−n0
×N iln0−ν )

D(ν ,n0,σ) =
{(A,B) = Qϕ(A,N ,N)P |(A,N ,N) ∈ J(σ)×N iln−n0

×N iln0−ν ,P,Q ∈ Gln(C)}

and each D-equivalence class D(ν ,n0,σ) is a disjoint union of the sets of equivalent pairs to ϕN (J(σ)×N ×N iln0−ν ). Therefore, as a

consequence of [10], D(ν ,n0,σ) is a disjoint union of differentiable manifolds.

In the following section we will show that D(ν ,n0,σ) are, actually, differentiable manifolds.

4. Regularity of strata

First of all we reasoning that the orbits configuring the strata are complex differentiable submanifolds of the set of matrix pencils

Mn(C)×Mn(C).
Since orbits under classical equivalent relation of matrix pencils are orbits under the action of the Lie group G = {(P,Q) ∈ Gl(n;C)×
Gl(n;C)} under the αλE+A action:

αλE+A : G ×Mn(C) −→ Mn(C)×Mn(C)
(P,Q) −→ λPEQ+PAQ
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Proposition 4.1. The orbits of matrix pencils under classical equivalent relation are complex differentiable submanifolds of Mn(C)×Mn(C)

Proof. Taking into account that αλE+A is a rational map and G is obviously a constructible set, Chevalley’s theorem (see for example [24])

states that αλE+A(G = O(λE +A) is also constructible. Then O(λE +A) has a nonsingular point. Taking into account that given any two

points on the orbit there is a diffeomorphism of Mn(C)×Mn(C) preserving the orbit and mapping one onto the other, it follows that every

point on the orbit is nonsingular. Hence O(λE +A) is a complex differentiable manifold.

The orbits can be parameterized by

α1 : V −→ O(λE +A)
(P,Q) −→ α1(P,Q) = αλE+A(P,Q)

where V is a submanifold of G minitransversal to the stabilizer defined as Stab(λE +A) = {(P,Q) | αλE+A(P,Q) = λE +A}.

From α1 we can construct a local diffeomorphism at (λE +A,λE +A ∈ Γ×O(λE +A) which preserves the orbits as follows

β : Γ×O(λE +A) −→ Mn(C)×Mn(C)

((λE +A)+(λX +Y ),(λE ′+A′) −→ α(λE+A)+(λX+Y )(α
−1
1 (λE ′+A′))

where Γ is a variety transversal to the orbit under strict equivalence of matrix pencils.

To study the regularity of strata, we first reduce the problem to the intersection with a variety Γ transversal to the orbits of any element of the

D-equivalence class. The variety considered in this paper is the miniversal deformation obtained in [23]:

Γ = (λE +A)+{λX +Y}, that has the following form for regular matrix pencils in canonical reduced form:
(

λ

(

I

N

)

+

(

J

I

))

+

(

λ

(

0

XN

)

+

(

YJ

0

))

where N +XN and J+YJ are miniversal deformations of square matrices under similarity (for instance, given in [1]).

Remark 4.2. J+YJ =

(

J1

J(0)

)

+

(

YJ1

YJ(0)

)

.

Proposition 4.3. For this particular variety Γ considered above,

a) If λX +Y 6= λ0+0 then (λE +A)+(λX +Y ) /∈ O(λE +A).
b) (λE +A)+ (λX +Y ) ∈ D(ν ,n0,σ) if and only if J1 +YJ1

has the same Segre symbol than J1, and J(0)+YJ(0) and N +YN are

nilpotent.

Lemma 4.4. Let λE +A be a matrix pencil in Mn(C)×Mn(C), O(λE +A) its orbit, D(ν ,n0,σ) its stratum and Γ the variety transversal

to the orbit defined in [23]. Then, in a neighborhood of λE +A, D(ν ,n0,σ) is a complex differentiable submanifold of X if and only if

D(ν ,n0,σ)∩Γ is

Proof. Assume that D(ν ,n0,σ) is regular at λE +A. Taking into account that Γ is transversal to the orbit it is also transversal to D(ν ,n0,σ).
Hence D(ν ,n0,σ)∩Γ is regular at λE +A.

Conversely, assume that D(ν ,n0,σ)∩Γ is regular at λE +A. Considering the local diffeormorphism β we have

D(ν ,n0,σ) = β (D(ν ,n0,σ)∪Γ)×O(λE +A)

locally at λE +A. Therefore D(ν ,n0,σ) is regular at λE +A.

Then we can conclude the following result.

Theorem 4.5. The sets of the from D(ν ,n0,σ) are differentiable submanifolds of X .

Proof. Let λE +A be a regular pencil, O(λE +A) its orbit and D(ν ,n0,σ) its stratum. We must prove that D(ν ,n0,σ) is regular at λE +A.

Taking into account (as we said before) that given any two points in the orbit there is a diffeomorphism of Mn(C)×Mn(C) preserving the

orbit and mapping one onto the other. We consider the pencil in its reduced form.

By 4.4 it suffices to prove that D(ν ,n0,σ)∩Γ is regular at λE +A, for that we consider the following map

φ : Mν (C)×Mn−n0
(C)×Mn0−ν (C) −→ Mn(C)×Mn(C)

(A,B,C) −→ λ





I

I

B



+





A

B

I





that is, clearly, a diffeomorphim such that

φ(Ss(J(σ))∩Γs(J)×Ss(NE)∩Γs(NE)∩N iln−n0
×Ss(NG)∩Γs(NG)∩N iln0−ν ) = D(ν ,n0,σ)∩Γ

(where Ss(J(σ)), Ss(NE), Ss(NG) are the Segre strata of the square matrices J(σ), NE and NG under similarity and Γs(J(σ)), Γs(NE) and

Γs(NG) are linear varieties transversal to the Segre orbit of J(σ), NE an NG respectively and hence also transversal to Ss(J(σ)), Ss(NE)
and Ss(NG) at J(σ), NE and NG respectively)

Following [9], Segre strata are regular so, Ss(J(σ))∩Γs(J(σ)), Ss(NE)∩Γs(NE) and Ss(NG)∩Γs(NG) are regular at J(σ), NE and NG

respectively, and the proof is completed.
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Proposition 4.6. D-equivalence classes verify the frontier condition. That is to say, each frontier of strata consists of strata of strictly lower

dimension.

Corollary 4.7. The partition of X into sets of the form D(ν ,n0,σ) constitutes a (finite) stratification of X , which will be called D-

stratification.

5. Hierarchy diagrams

Given a non-standard regular pencil, not all small perturbations but some of them lead to a standard pencil with all the non-zero eigenvalues

being different from each other.

Example 5.1. Let us consider

λE +A = λ









1

1

0 1

0









+









1

0

1

1









The small perturbation

(λE +A)(ε) = λ









1

1

ε1 1

ε2









+









1

ε3

1

1









, ∀εi 6= 0, i = 1,2,3,

is equivalent to

(λEc +Ac)(ε) = λ









1

1

1

1









+















1

ε3
1

ε1
1

ε2















.

But between the initial pencil and the more generic one which was obtained, we can find other matrix pencils as, for example,

(λE +A)(ε) = λ









1

1

ε 1

0









+









1

0

1

1









, ∀ε 6= 0

that is equivalent to

(λEc +Ac)(ε) = λ









1

1

1

0









+











1
1

ε
0

1











.

Therefore we are interested in finding all possible types of pencils that we can find in a neighbourhood of a given pencil and in what

hierarchic position.

The construction of a hierarchy diagram is based upon two facts. First, the order of matrices NE and NG in the reduced form can be the same

or smaller than the original one when applying a small perturbation. The hierarchy diagram in the case the order of these matrices are the

same can be deduced from the hierarchy diagrams in the case where square matrices under similarity are considered.

Taking into account the construction of each stratum we can deduce the hierarchic structure from the stratification induced by classical

equivalence, by means of breaking joining equivalent strata and replacing them in the closure hierarchic.

We present the hierarchic closure for n = 2.

First of all, we show the list of all equivalent classes with a representant of each class.

D(ν ,n0,σ) λA+B

D(0,0,−) λ
(

0
0

)

+
(

1
1

)

D(0,1,−) λ
(

1
0

)

+
(

0
1

)

D(1,1,(1)) λ
(

1
0

)

+
(

λ1

1

)

D(0,2,−) λ
(

1
1

)

+
(

0
0

)

D(1,2,(1)) λ
(

1
1

)

+
(

λ1

0

)

D(2,2,(2)) λ
(

1
1

)

+
(

λ1

1 λ1

)

D(2,2,(1,1)) λ
(

1
1

)

+
(

λ1

λ1

)

D(2,2,((1);(1))) λ
(

1
1

)

+
(

λ1

λ2

)
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D(2,2,((1);(1)))

D(2,2,(2))

D(2,2,(1,1))

D(1,2,(1))                                            D(1,1,(1))

D(0,2,-)

D(0,1,-)

D(0,0,-)

Figure 5.1: Hierarchic closure for n = 2

Then, the hierarchic closure is given as Figure 5.1.

Notation D(ν ,n0,σ)→ D(ν ′,n′0,σ
′) indicates that D(ν ,n0,σ)⊂ D(ν ′,n′0,σ

′) where D(ν ′,n′0,σ
′) is the closure of D(ν ′,n′0,σ

′).

Now we present the case n = 3.

As in the case n = 2 we present the list of all equivalence classes

D(ν ,n0,σ) λA+B

D(0,0,−) λ
(

0
0

0

)

+
(

1
1

1

)

D(0,1,−) λ
(

1
0

0

)

+
(

0
1

1

)

D(1,1,(1)) λ
(

1
0

0

)

+

(

λ1

1
1

)

D(2,2,((1);(1))) λ
(

1
1

0

)

+

(

λ1

λ2

1

)

D(2,2,(2)) λ
(

1
1

0

)

+

(

λ 1
λ

1

)

D(2,2,(1,1)) λ
(

1
1

0

)

+

(

λ1

λ1

1

)

D(1,2,(1)) λ
(

1
1

0

)

+

(

λ1

0
1

)

D(0,2,−) λ
(

1
1

0

)

+
(

0
0

1

)

D(3,3,((1);(1);(1))) λ
(

1
1

1

)

+

(

λ1

λ2

λ3

)

D(3,3,((2);(1))) λ
(

1
1

1

)

+

(

λ1 1
λ1

λ2

)

D(3,3,(3)) λ
(

1
1

1

)

+

(

λ1 1
λ1 1

λ1

)

D(3,3,(2,1)) λ
(

1
1

1

)

+

(

λ1 1
λ1

λ1

)

D(3,3,((1,1);(1)) λ
(

1
1

1

)

+

(

λ1

λ1

λ2

)
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D(3,3,((1);(1);(1)) λ
(

1
1

1

)

+

(

λ
λ

λ

)

D(2,3,((1);(1)) λ
(

1
1

1

)

+

(

λ1

λ2

0

)

D(2,3,(2)) λ
(

1
1

1

)

+

(

λ1 1
λ1

0

)

D(2,3,(1,1)) λ
(

1
1

1

)

+

(

λ1

λ1

0

)

D(1,3,(1)) λ
(

1
1

1

)

+

(

λ1

0
0

)

D(0,3,−) λ
(

1
1

1

)

+
(

0
0

0

)

Then, the hierarchic closure is given in figure 5.2.

D(0,0,-)

D(3,3,((1);(1);(1))) 

D(3,3,((2);(1))) D(2,3,((1);(1)))

D(3,3,(3))

D(3,3,(2,1))

D(3,3,((1),(1);(1))) D(2,3,(2))

D(2,2,((1);(1)))

D(3,3,(1,1,1))

D(0,3,-)

D(1,1,(1))

D(1,2,(1))

D(0,1,-)

D(0,2,-)

D(1,3,(1))D(2,2,(2))

D(2,2,(1,1))

D(2,3,(1,1))

Figure 5.2: Hierarchic closure for n = 3

Notation D(ν ,n0,σ)→ D(ν ′,n′0,σ
′) indicates that D(ν ,n0,σ)⊂ D(ν ′,n′0,σ

′)

where D(ν ′,n′0,σ
′) is the closure of D(ν ′,n′0,σ

′).

6. Conclusion

In this work, a partition called D-stratification, in the space of pairs of matrices associated to regular matrix pencils preserving the order of

the nilpotent parts has been considered and it was proved to be is a finite stratification of the space of such matrix pencils. This study shows

the effect of perturbations over the Kronecker canonical form of a prescribed pencil. We present the D-strata that can be reached in the cases

where the order of the matrix pencils is 2 or 3 and obtain the corresponding hierarchy graphs, thus illustrating the D-strata that is possible to

reach when applying small perturbations.
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Abstract

The problem of the mean-square optimal linear estimation of linear functionals which

depend on the unknown values of a multidimensional continuous time stationary stochastic

process from observations of the process with a stationary noise is considered. Formulas

for calculating the mean-square errors and the spectral characteristics of the optimal linear

estimates of the functionals are derived under the condition of spectral certainty, where

spectral densities of the signal and the noise processes are exactly known. The minimax

(robust) method of estimation is applied in the case of spectral uncertainty, where spectral

densities of the processes are not known exactly, while some sets of admissible spectral

densities are given. Formulas that determine the least favorable spectral densities and

minimax spectral characteristics of the optimal estimates are derived for some special sets

of admissible spectral densities.

1. Introduction

The problem of estimation of the unknown values of stochastic processes is of constant interest in the theory and applications of stochastic

processes. The formulation of the interpolation, extrapolation and filtering problems for stationary stochastic sequences with known spectral

densities and reducing the estimation problems to the corresponding problems of the theory of functions belongs to Kolmogorov [1]. Effective

methods of solution of the estimation problems for stationary stochastic processes were developed by Wiener [2] and Yaglom [3, 4]. Further

results are presented in the books by Rozanov [5], Hannan [6], Box et. al [7], Brockwell and Davis [8].

The crucial assumption of most of the methods developed for estimating the unobserved values of stochastic processes is that the spectral

densities of the involved stochastic processes are exactly known. However, in practice, complete information on the spectral densities is

impossible in most cases. In this situation, one finds the parametric or nonparametric estimate of the unknown spectral density and then apply

one of the traditional estimation methods provided that the selected density is the true one. This procedure can result in significant increasing

of the value of the error of estimate as Vastola and Poor [9] have demonstrated with the help of some examples. To avoid this effect one can

search estimates which are optimal for all densities from a certain class of admissible spectral densities. These estimates are called minimax

since they minimize the maximum value of the errors of estimates. The paper by Grenander [10] was the first one where this approach

to extrapolation problem for stationary processes was proposed. Several models of spectral uncertainty and minimax-robust methods of

data processing can be found in the survey paper by Kassam and Poor [11]. In the papers by Franke [12], [13] Franke and Poor [14] the

minimax extrapolation and filtering problems for stationary sequences were investigated with the help of convex optimization methods.

This approach makes it possible to find equations that determine the least favorable spectral densities for different classes of densities. In

the papers by Moklyachuk [15, 16] the extrapolation, interpolation and filtering problems for functionals which depend on the unknown

values of stationary processes and sequences are investigated. The estimation problems for functionals which depend on the unknown values

of multidimensional stationary stochastic processes is the aim of the investigation by Moklyachuk and Masyutka [17, 18]. In their book

Moklyachuk and Golichenko [19] presented results of investigation of the interpolation, extrapolation and filtering problems for periodically

correlated stochastic sequences. In the papers by Luz and Moklyachuk [20], Luz2016 results of an investigation of the estimation problems

for functionals which depend on the unknown values of stochastic sequences with stationary increments are described. Prediction problem

Email addresses and ORCID numbers: omasyutka@gmail.com, 0000-0002-7301-8813 (O. Masyutka),Moklyachuk@gmail.com, 0000-0002-6173-0280 (M. Mokly-

achuk),marysidei4@gmail.com, 0000-0003-1765-0969 (M. Sidei)
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for stationary sequences with missing observations is investigated in papers by Bondon [21, 22], Cheng, Miamee and Pourahmadi [23],

Cheng and Pourahmadi [24], Kasahara, Pourahmadi and Inoue [25], Pourahmadi, Inoue and Kasahara [26], Pelagatti [27]. In papers by

Moklyachuk and Sidei [28] - [31] an approach is developed to an investigation of the interpolation, extrapolation and filtering problems for

stationary stochastic processes with missing observations.

In this article, we deal with the problem of the mean-square optimal linear estimation of the functional

A~ξ =
∫

Rs

~a(t)⊤~ξ (−t)dt,

which depends on the unknown values of a multidimensional stationary stochastic process ~ξ (t) from observations of the process ~ξ (t)+~η(t)

at points t ∈ R
−\S, S =

s
⋃

l=1

[−Ml −Nl ,−Ml ], Rs = [0,∞)\S+, S+ =
s
⋃

l=1

[Ml , Ml +Nl ]. The case of spectral certainty, as well as the case of

spectral uncertainty, are considered. Formulas for calculating the spectral characteristic and the mean-square error of the optimal linear

estimate of the functional are derived under the condition of spectral uncertainty, where the spectral densities of the processes are exactly

known. In the case of spectral uncertainty, where the spectral densities are not exactly known while a set of admissible spectral densities is

given, the minimax method is applied. Formulas for determination the least favorable spectral densities and the minimax-robust spectral

characteristics of the optimal estimates of the functional are proposed for some specific classes of admissible spectral densities.

2. Hilbert space projection method of filtering

Let ~ξ (t) = {ξk(t)}
T
k=1 , t ∈R, and ~η(t) = {ηk(t)}

T
k=1 , t ∈R, be uncorrelated mean square continuous multidimensional stationary stochastic

processes with zero first moments, E~ξ (t) =~0, E~η(t) =~0, absolutely continuous spectral functions and spectral density matrices which

satisfy the minimality condition

∫ ∞

−∞
(b(λ ))⊤(F(λ )+G(λ ))−1b(λ )dλ < ∞, (2.1)

where b(λ ) =
s

∑
l=1

−Ml
∫

−Ml−Nl

~α(t)eitλ dt is a nontrivial function of the exponential type. Under this condition the error-free estimate of the

process ~ξ (t)+~η(t) is impossible (see, for example, Rozanov [5]).

Suppose that we have observations of the process ~ξ (t)+~η(t) at points t ∈ R
−\S, where

S =
s
⋃

l=1

[−Ml −Nl ,−Ml ], Rs = [0,∞)\S+, S+ =
s
⋃

l=1

[Ml , Ml +Nl ]

.

The main purpose of this article is to find the mean-square optimal linear estimate of the functional

A~ξ =
∫

Rs

~a(t)⊤~ξ (−t)dt,

which depends on the unknown values of the process ~ξ (t).
We will assume that the function~a(t) satisfies the condition

T

∑
k=1

∫

Rs

|ak(t)|dt < ∞. (2.2)

This condition ensures that the functional As
~ξ has a finite second moment.

It follows from the spectral decompositions of the processes ~ξ (t) and ~η(t) (see Gikhman and Skorokhod [32])

~ξ (t) =

∞
∫

−∞

eitλ Zξ (dλ ), ~η(t) =

∞
∫

−∞

eitλ Zη (dλ ),

where Zξ (dλ ) and Zη (dλ ) are vector valued orthogonal stochastic measures, that the functional A~ξ can be represented in the form

A~ξ =

∞
∫

−∞

(A(λ ))⊤Zξ (dλ ), A(λ ) =
∫

Rs

~a(t)e−itλ dt.

Consider the Hilbert space H = L2(Ω,F ,P) generated by random variables ξ with zero mathematical expectations, Eξ = 0, finite variations,

E|ξ |2 < ∞, and inner product (ξ ,η) = Eξ η . Denote by Hs(ξ +η) the closed linear subspace generated by elements {ξk(t)+ηk(t) : t ∈
R
−\S,k = 1,T} in the Hilbert space H = L2(Ω,F ,P).

Let L2(F +G) be the Hilbert space of complex-valued functions~a(λ ) = {ak(λ )}
T
k=1 such that

∫ ∞

−∞
~a(λ )⊤(F(λ )+G(λ ))~a(λ )dλ =

∫ ∞

−∞

T

∑
k,l=1

ak(λ )al(λ )( fkl(λ )+gkl(λ ))dλ < ∞.
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Denote by Ls
2(F +G) the subspace of L2(F +G) generated by functions

eitλ δk, δk = {δkl}
T
l=1 , k = 1,T , t ∈ R

−\S.

Denote by Âs
~ξ the optimal linear estimate of the functional As

~ξ from observations of the process ~ξ (t)+~η(t) and denote by ∆(F,G) =

E

∣

∣

∣
As
~ξ − Âs

~ξ
∣

∣

∣

2
the mean-square error of the estimate Âs

~ξ .

The mean-square optimal linear estimate Âs
~ξ of the functional As

~ξ is of the form

Â~ξ =

∞
∫

−∞

(h(λ ))⊤(Zξ (dλ )+Zη (dλ )),

where h(λ ) = {hk(λ ))}
T
k=1 ∈ Ls

2(F +G) is the spectral characteristic of the estimate, and the mean-square error ∆(h;F,G) of the estimate is

determined by formula

∆(h;F,G) = E

∣

∣

∣
A~ξ − Â~ξ

∣

∣

∣

2
=

1

2π

∞
∫

−∞

(A(λ )−h(λ ))⊤F(λ )(A(λ )−h(λ ))dλ +
1

2π

∞
∫

−∞

(h(λ ))⊤G(λ )h(λ )dλ .

Since we suppose that the spectral densities of the stationary processes ~ξ (t) and ~η(t) are known, we can apply the method of orthogonal

projections in the Hilbert spaces proposed by A. N. Kolmogorov [1] in order to find the optimal estimate. According to this method, the

optimal linear estimation of the functional A~ξ is a projection of the element A~ξ of the space H on the subspace Hs(ξ +η). The estimate is

determined by two conditions:

1)Â~ξ ∈ Hs(ξ +η),

2)A~ξ − Â~ξ⊥Hs(ξ +η).

Under the second condition, the spectral characteristic h(λ ) of the optimal linear estimate Â~ξ satisfies the relation

1

2π

∞
∫

−∞

[

(A(λ ))⊤F(λ )− (h(λ ))⊤(F(λ )+G(λ )))
]

e−itλ dλ = 0, t ∈ R
−\S. (2.3)

Consider the function (C(λ ))⊤ = (A(λ ))⊤F(λ )− (h(λ ))⊤(F(λ )+G(λ )) and its Fourier transform

~c(t) =
1

2π

∞
∫

−∞

C(λ )e−itλ dλ , t ∈ R.

It follows from relation (2.3), that the function c(t) can be nonzero only on the set U = S∪ [0,∞). Hence, the function C(λ ) is of the form

C(λ ) =
s

∑
l=1

−Ml
∫

−Ml−Nl

~c(t)eitλ dt +

∞
∫

0

~c(t)eitλ dt,

and the spectral characteristic of the estimate Â~ξ is of the form

(h(λ ))⊤ = (A(λ ))⊤F(λ )(F(λ )+G(λ ))−1 − (C(λ ))⊤(F(λ )+G(λ ))−1.

It follows from the first condition, Â~ξ ∈ Hs(ξ +η), which determines the estimate of the functional A~ξ , that for any t ∈U the following

relation holds true

∞
∫

−∞

(

(A(λ ))⊤F(λ )(F(λ )+G(λ ))−1 − (C(λ ))⊤(F(λ )+G(λ ))−1
)

e−itλ dλ = 0. (2.4)

Let us define the following operators in the space L2(U)

(Bx)(t) =
1

2π

s

∑
l=1

−Ml
∫

−Ml−Nl

(~x(u))⊤
∞
∫

−∞

(F(λ )+G(λ ))−1eiλ (u−t)dλdu+
1

2π

∞
∫

0

(~x(u))⊤
∞
∫

−∞

(F(λ )+G(λ ))−1eiλ (u−t)dλdu,

(Rx)(t) =
1

2π

s

∑
l=1

−Ml
∫

−Ml−Nl

(~x(u))⊤
∞
∫

−∞

F(λ )(F(λ )+G(λ ))−1eiλ (u+t)dλdu+
1

2π

∞
∫

0

(~x(u))⊤
∞
∫

−∞

F(λ )(F(λ )+G(λ ))−1eiλ (u−t)dλdu,

(Qx)(t) =
1

2π

s

∑
l=1

−Ml
∫

−Ml−Nl

(~x(u))⊤
∞
∫

−∞

F(λ )(F(λ )+G(λ ))−1G(λ )eiλ (u−t)dλdu+

+
1

2π

∞
∫

0

(~x(u))⊤
∞
∫

−∞

F(λ )(F(λ )+G(λ ))−1G(λ )eiλ (u−t)dλdu,
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~x(t) ∈ L2(U), t ∈U.

The equality (2.4) can be represented in the form

∞
∫

−∞

∫

Rs

~a(u)⊤F(λ )(F(λ )+G(λ ))−1ei(u−t)dudλ −

∞
∫

−∞





s

∑
l=1

−Ml
∫

−Ml−Nl

~c(t)⊤(F(λ )+G(λ ))−1ei(u−t)λ du



dλ

−

∞
∫

−∞

∞
∫

0

~c(t)⊤(F(λ )+G(λ ))−1ei(u−t)λ dudλ = 0, t ∈ U. (2.5)

Let~a(t) be a function such that

~a(t) =~0, t ∈ S, ~a(t) =~a(t), t ∈ Rs ~a(t) =~0, t ∈ S+.

Making use of the introduces above notations, we can represent equality (2.5) in terms of linear operators in the space L2(U)

(Ra)(t) = (Bc)(t), t ∈U.

Assume that the operator B is invertible (see paper by Salehi [33] for more details). Then the function~c(t) can be found and it is calculated

by the formula

~c(t) = (B−1Ra)(t), t ∈U.

The spectral characteristic h(λ ) of the estimate Â~ξ is calculated by the formula

(h(λ ))⊤ = (A(λ ))⊤F(λ )(F(λ )+G(λ ))−1 − (C(λ ))⊤(F(λ )+G(λ ))−1,

C(λ ) =
s

∑
l=1

−Ml
∫

−Ml−Nl

(B−1Ra)(t)eitλ dt +

∞
∫

0

(B−1Ra)(t)eitλ dt.
(2.6)

The mean-square error of the estimate Â~ξ is calculated by the formula

∆(h;F,G) =
1

2π

∞
∫

−∞

((A(λ ))⊤G(λ )+(C(λ ))⊤)(F(λ )+G(λ ))−1F(λ )(F(λ )+G(λ ))−1((A(λ ))⊤G(λ )+(C(λ ))⊤)∗dλ+

+
1

2π

∞
∫

−∞

((A(λ ))⊤F(λ )− (C(λ ))⊤)(F(λ )+G(λ ))−1G(λ )(F(λ )+G(λ ))−1((A(λ ))⊤G(λ )+(C(λ ))⊤)∗dλ =

= 〈(Ra)(t),(B−1Ra)(t)〉+ 〈(Qa)(t),~a(t)〉, (2.7)

where

〈~a(t),~b(t)〉=
s

∑
l=1

−Ml
∫

−Ml−Nl

ak(t)bk(t)dt +

∞
∫

0

ak(t)bk(t)dt

is the inner product in the space L2(U).
The obtained results can be summarized in the form of theorem.

Theorem 2.1. Let ~ξ (t) and~η(t) be uncorrelated multidimensional stationary stochastic processes with the spectral densities F(λ ) and G(λ )
which satisfy the minimality condition (2.1). Let condition (2.2) be satisfied and let the operator B be invertible. The spectral characteristic

h(λ ) and the mean-square error ∆(h;F,G) of the optimal linear estimate of the functional A~ξ which depends on the unknown values of the

process ~ξ (t) based on observations of the process ~ξ (t)+~η(t), t ∈ R
−\S are calculated by formulas (2.6), (2.7).

3. Minimax-robust method of filtering

In the previous sections, we deal with the filtering problem under the condition that we know spectral densities of the processes. In this

case, we derived formulas for calculating the spectral characteristics and the mean-square errors of the optimal estimates of the introduced

functionals. In the case of spectral uncertainty, where full information on spectral densities is impossible while it is known that spectral

densities belong to some specified classes of admissible densities, the minimax method of filtering is reasonable. This method gives us a

procedure of finding estimates which minimize the maximum values of the mean-square errors of the estimates for all spectral densities from

the given class of admissible spectral densities. For the description of the minimax method, we propose the following definitions (see book

by Moklyachuk and Masytka [18] for more details).

Definition 3.1. For a given class of spectral densities D = DF ×DG the spectral densities F0(λ ) ∈ DF , G0(λ ) ∈ DG are called least

favorable in class D for the optimal linear filtering of the functional A~ξ if the following relation holds true

∆

(

F0,G0
)

= ∆

(

h
(

F0,G0
)

;F0,G0
)

= max
(F,G)∈DF×DG

∆(h(F,G) ;F,G) .
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Definition 3.2. For a given class of spectral densities D = DF ×DG the spectral characteristic h0(λ ) of the optimal linear filtering of the

functional A~ξ is called minimax-robust if there are satisfied conditions

h0(λ ) ∈ HD =
⋂

(F,G)∈DF×DG

Ls
2(F +G),

min
h∈HD

max
(F,G)∈D

∆(h;F,G) = max
(F,G)∈D

∆

(

h0;F,G
)

.

From the introduced definitions and formulas derived above, we can obtain the following statement.

Lemma 3.3. Spectral densities F0(λ ) ∈ DF , G0(λ ) ∈ DG satisfying the minimality condition (2.1) are the least favorable in the class

D = DF ×DG for the optimal linear filtering of the functional A~ξ , if the Fourier coefficients of the functions

(F0(λ )+G0(λ ))−1, F0(λ )(F0(λ )+G0(λ ))−1, F0(λ )(F0(λ )+G0(λ ))−1G0(λ )

determine operators B0,R0,Q0, which give a solution of the constrained optimization problem

max
(F,G)∈DF×DG

(〈(Ra)(t),(B−1Ra)(t)〉+ 〈(Qa)(t),~a(t)〉) = 〈(R0a)(t),((B0)−1R0a)(t)〉+ 〈(Q0a)(t),~a(t)〉. (3.1)

The minimax spectral characteristic h0 = h(F0,G0) is determined by formula (2.6) if h(F0,G0) ∈ HD.

For more detailed analysis of properties of the least favorable spectral densities and the minimax-robust spectral characteristics we observe

that the least favorable spectral densities F0(λ ), G0(λ ) and the minimax spectral characteristic h0 = h(F0,G0) form a saddle point of the

function ∆(h;F,G) on the set HD ×D. The saddle point inequalities

∆

(

h0;F,G
)

≤ ∆

(

h0;F0,G0
)

≤ ∆

(

h;F0,G0
)

, ∀h ∈ HD,∀F ∈ DF ,∀G ∈ DG,

hold true if h0 = h(F0,G0), h(F0,G0) ∈ HD, where (F0,G0) is a solution of the constrained optimization problem

sup
(F,G)∈DF×DG

∆

(

h(F0,G0);F,G
)

= ∆

(

h(F0,G0);F0,G0
)

. (3.2)

The linear functional ∆
(

h
(

F0,G0
)

;F,G
)

is calculated by the formula

∆

(

h
(

F0,G0
)

;F,G
)

=

=
1

2π

∫ ∞

−∞
((A(λ ))⊤G0(λ )+(C0(λ ))⊤)(F0(λ )+G0(λ ))−1F(λ )(F0(λ )+G0(λ ))−1((A(λ ))⊤G0(λ )+(C0(λ ))⊤)∗dλ+

+
1

2π

∫ ∞

−∞
((A(λ ))⊤F0(λ )− (C0(λ ))⊤)(F0(λ )+G0(λ ))−1G(λ )(F0(λ )+G0(λ ))−1((A(λ ))⊤G0(λ )− (C0(λ ))⊤)∗dλ ,

C0(λ ) =
s

∑
l=1

−Ml
∫

−Ml−Nl

((B0)−1R0a)(t)eitλ dt +

∞
∫

0

((B0)−1R0a)(t)eitλ dt.

The constrained optimization problem (3.2) is equivalent to the unconstrained optimization problem (see book by Pshenichnyj [34])

∆D(F,G) =−∆(h(F0,G0);F,G)+δ ((F,G) |DF ×DG )→ inf, (3.3)

where δ ((F,G) |DF ×DG ) is the indicator function of the set D = DF ×DG. Solution of the problem (3.3) is characterized by the condition

0 ∈ ∂∆D(F
0,G0), where ∂∆D(F

0,G0) is the subdifferential of the convex functional ∆D(F,G) at point (F0,G0), namely, the set of all

continuous linear functionals Λ on L1 ×L1 satisfying the inequality ∆D(F,G)−∆D(F
0,G0)≥ Λ(F,G)−Λ(F0,G0). This condition makes

it possible to find the least favourable spectral densities in some special classes of spectral densities D (see books by Ioffe and Tihomirov

[35], Pshenichnyj [34], Rockafellar [36]).

Note, that the form of the functional ∆(h(F0,G0);F,G) is convenient for application of the Lagrange method of indefinite multipliers for

finding solution of the problem (3.2). Making use the method of Lagrange multipliers and the form of subdifferentials of the indicator

functions we describe relations that determine least favourable spectral densities in some special classes of spectral densities (see books by

Moklyachuk [37, 15], Moklyachuk and Masyutka [18] for additional details).

4. Least favorable spectral densities in the class D = D0 ×D1δ

Consider the problem of minimax filtering of the functional A~ξ in the case where spectral densities of the processes belong to the following

classes of admissible spectral densities D = D0 ×D1δ ,

D1
0 =

{

F(λ )

∣

∣

∣

∣

1

2π

∫ ∞

−∞
TrF(λ )dλ = p

}

,

D1
1δ =

{

G(λ )

∣

∣

∣

∣

1

2π

∫ ∞

−∞
|Tr(G(λ )−G1(λ ))|dλ ≤ δ

}

;
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D2
0 =

{

F(λ )

∣

∣

∣

∣

1

2π

∫ ∞

−∞
fkk(λ )dλ = pk,k = 1,T

}

,

D2
1δ =

{

G(λ )

∣

∣

∣

∣

1

2π

∫ ∞

−∞

∣

∣

∣gkk(λ )−g1
kk(λ )

∣

∣

∣dλ ≤ δk,k = 1,T

}

;

D3
0 =

{

F(λ )

∣

∣

∣

∣

1

2π

∫ ∞

−∞
〈B1,F(λ )〉dλ = p

}

,

D3
1δ =

{

G(λ )

∣

∣

∣

∣

1

2π

∫ ∞

−∞
|〈B2,G(λ )−G1(λ )〉|dλ ≤ δ

}

,

D4
0 =

{

F(λ )

∣

∣

∣

∣

1

2π

∫ ∞

−∞
F(λ )dλ = P

}

,

D4
1δ =

{

G(λ )

∣

∣

∣

∣

1

2π

∫ ∞

−∞

∣

∣

∣gi j(λ )−g1
i j(λ )

∣

∣

∣dλ ≤ δ
j

i , i, j = 1,T

}

,

where G1(λ ) is a known and fixed spectral density matrix, δ , p,δk, pk,k = 1,T , δ
j

i , i, j = 1,T , are given numbers, P,B1,B2 are given positive

definite Hermitian matrices.

The classes D1δ describe the “δ -neighborhood” models in the space L1 of a given bounded spectral density matrix G1(λ ).
From the condition 0 ∈ ∂∆D(F

0,G0) we find the following equations which determine the least favourable spectral densities for these given

sets of admissible spectral densities.

For the first pair D1
0 ×D1

1δ we have equations

((A(λ ))⊤G0(λ )+(C0(λ ))⊤)∗((A(λ ))⊤G0(λ )+(C0(λ ))⊤) = α2(F0(λ )+G0(λ ))2, (4.1)

((A(λ ))⊤F0(λ )− (C0(λ ))⊤)∗((A(λ ))⊤F0(λ )− (C0(λ ))⊤) = β 2γ(λ )(F0(λ )+G0(λ ))2, (4.2)

1

2π

∫ ∞

−∞

∣

∣

∣Tr(G0(λ )−G1(λ ))
∣

∣

∣dλ = δ , (4.3)

where α2,β 2 are Lagrange multipliers, |γ(λ )| ≤ 1 and

γ(λ ) = sign (Tr(G0(λ )−G1(λ ))) if Tr(G0(λ )−G1(λ )) 6= 0.

For the second pair D2
0 ×D2

1δ , we have equations

((A(λ ))⊤G0(λ )+(C0(λ ))⊤)∗((A(λ ))⊤G0(λ )+(C0(λ ))⊤) = (F0(λ )+G0(λ ))
{

α2
k δkl

}T

k,l=1
(F0(λ )+G0(λ )), (4.4)

((A(λ ))⊤F0(λ )− (C0(λ ))⊤)∗((A(λ ))⊤F0(λ )− (C0(λ ))⊤) = (F0(λ )+G0(λ ))
{

β 2
k γk(λ )δkl

}T

k,l=1
(F0(λ )+G0(λ )), (4.5)

1

2π

∫ ∞

−∞

∣

∣

∣
g0

kk(λ )−g1
kk(λ )

∣

∣

∣
dλ = δk, k = 1,T , (4.6)

where α2
k ,β

2
k are Lagrange multipliers, δkl are Kronecker symbols, |γk(λ )| ≤ 1 and

γk(λ ) = sign (g0
kk(λ )−g1

kk(λ )) if g0
kk(λ )−g1

kk(λ ) 6= 0, k = 1,T .

For the third pair D3
0 ×D3

1δ
, we have equations

((A(λ ))⊤G0(λ )+(C0(λ ))⊤)∗((A(λ ))⊤G0(λ )+(C0(λ ))⊤) = α2(F0(λ )+G0(λ ))B⊤
1 (F

0(λ )+G0(λ )), (4.7)

((A(λ ))⊤F0(λ )− (C0(λ ))⊤)∗((A(λ ))⊤F0(λ )− (C0(λ ))⊤) = β 2γ ′(λ )(F0(λ )+G0(λ ))B⊤
2 (F

0(λ )+G0(λ )), (4.8)

1

2π

∫ ∞

−∞

∣

∣

∣

〈

B2,G
0(λ )−G1(λ )

〉∣

∣

∣dλ = δ , (4.9)

where α2,β 2 are Lagrange multipliers, |γ ′(λ )| ≤ 1 and

γ ′(λ ) = sign
〈

B2,G
0(λ )−G1(λ )

〉

if
〈

B2,G
0(λ )−G1(λ )

〉

6= 0.

For the fourth pair D4
0 ×D4

1δ , we have equations

((A(λ ))⊤G0(λ )+(C0(λ ))⊤)∗((A(λ ))⊤G0(λ )− (C0(λ ))⊤) = (F0(λ )+G0(λ ))~α ·~α∗(F0(λ )+G0(λ )), (4.10)
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((A(λ ))⊤F0(λ )− (C0(λ ))⊤)∗((A(λ ))⊤F0(λ )+(C0(λ ))⊤) = (F0(λ )+G0(λ ))
{

βi jγi j(λ ))
}T

i, j=1
(F0(λ )+G0(λ )), (4.11)

1

2π

∫ ∞

−∞

∣

∣

∣g
0
i j(λ )−g1

i j(λ )
∣

∣

∣dλ = δ
j

i , i, j = 1,T , (4.12)

where ~α,βi j are Lagrange multipliers,
∣

∣γi j(λ )
∣

∣≤ 1 and

γi j(λ ) =
g0

i j(λ )−g1
i j(λ )

∣

∣

∣
g0

i j(λ )−g1
i j(λ )

∣

∣

∣

if g0
i j(λ )−g1

i j(λ ) 6= 0, i, j = 1,T .

Thus, the following statement holds true.

Theorem 4.1. The least favorable spectral densities F0(λ ), G0(λ ) in the classes D0 ×D1δ for the optimal linear filtering of the functional

A~ξ are determined by relations (4.1) – (4.3) for the first pair D1
0 ×D1

1δ of sets of admissible spectral densities; by relations (4.4) – (4.6) for

the second pair D2
0 ×D2

1δ of sets of admissible spectral densities; by relations (4.7) – (4.9) for the third pair D3
0 ×D3

1δ
of sets of admissible

spectral densities; by relations (4.10) – (4.12) for the fourth pair D4
0 ×D4

1δ of sets of admissible spectral densities; the minimality condition

(2.1), the constrained optimization problem (3.1) and restrictions on densities from the corresponding classes D0 ×D1δ . The minimax-robust

spectral characteristic of the optimal estimate of the functional A~ξ is determined by the formula (2.6).

Corollary 4.2. Assume that the spectral density G(λ ) is known. Let the function F0(λ )+G(λ ) satisfy the minimality condition (2.1).

The spectral density F0(λ ) is the least favorable in the classes Dk
0, k = 1,4 for the optimal linear filtering of the functional A~ξ if it

satisfies relations (4.1), (4.4), (4.7), (4.10), respectively, and the pair (F0(λ ),G(λ )) is a solution of the optimization problem (3.1). The

minimax-robust spectral characteristic of the optimal estimate of the functional A~ξ is determined by formula (2.6).

Corollary 4.3. Assume that the spectral density F(λ ) is known. Let the function F(λ )+G0(λ ) satisfy the minimality condition (2.1). The

spectral density G0(λ ) is the least favorable in the classes Dk
1δ

, k = 1,4 for the optimal linear filtering of the functional A~ξ if it satisfies

relations (4.2) – (4.3), (4.5) – (4.6), (4.8) – (4.9), (4.11) – (4.12), respectively, and the pair (F(λ ),G0(λ )) is a solution of the optimization

problem (3.1). The minimax-robust spectral characteristic of the optimal estimate of the functional A~ξ is determined by formula (2.6).

5. Least favorable spectral densities in the class D = D2δ ×Dε

Consider the problem of filtering of the functional A~ξ in the case where spectral densities of the processes belong to the class of admissible

spectral densities D2δ ×Dε ,

D1
2δ =

{

F(λ )

∣

∣

∣

∣

1

2π

∫ ∞

−∞
|Tr(F(λ )−F1(λ ))|

2
dλ ≤ δ

}

;

D1
ε =

{

G(λ )

∣

∣

∣

∣

TrG(λ ) = (1− ε)TrG1(λ )+ εTrW (λ ),
1

2π

∫ ∞

−∞
TrG(λ )dλ = q

}

;

D2
2δ =

{

F(λ )

∣

∣

∣

∣

1

2π

∫ ∞

−∞

∣

∣

∣ fkk(λ )− f 1
kk(λ )

∣

∣

∣

2
dλ ≤ δk,k = 1,T

}

;

D2
ε =

{

G(λ )

∣

∣

∣

∣

gkk(λ ) = (1− ε)g1
kk(λ )+ εwkk(λ ),

1

2π

∫ ∞

−∞
gkk(λ )dλ = qk,k = 1,T

}

;

D3
2δ =

{

F(λ )

∣

∣

∣

∣

1

2π

∫ ∞

−∞
|〈B1,F(λ )−F1(λ )〉|

2
dλ ≤ δ

}

;

D3
ε =

{

G(λ )

∣

∣

∣

∣

〈B2,G(λ )〉= (1− ε)〈B2,G1(λ )〉+ ε 〈B2,W (λ )〉 ,
1

2π

∫ ∞

−∞
〈B2,G(λ )〉dλ = q

}

;

D4
2δ =

{

F(λ )

∣

∣

∣

∣

1

2π

∫ ∞

−∞

∣

∣

∣
fi j(λ )− f 1

i j(λ )
∣

∣

∣

2
dλ ≤ δ

j
i , i, j = 1,T

}

,

D4
ε =

{

G(λ )

∣

∣

∣

∣

G(λ ) = (1− ε)G1(λ )+ εW (λ ),
1

2π

∫ ∞

−∞
G(λ )dλ = Q

}

,

where F1(λ ),G1(λ ) are known and fixed spectral densities, W (λ ) is unknown spectral density, q,δ ,qk,δk,k = 1,T , δ
j

i , i, j = 1,T , are given

numbers, Q,B1,B2 are given positive definite Hermitian matrices.

The classes D2δ describe the “δ -neighborhood” models in the space L2 of the given bounded spectral density F1(λ ), the classes Dε describe

the “ε-contamination” models of spectral densities.

From the condition 0 ∈ ∂∆D(F
0,G0) we find the following equations which determine the least favourable spectral densities for these given

sets of admissible spectral densities.

For the first pair D2δ ×D1
ε , we have equations

((A(λ ))⊤G0(λ )+(C0(λ ))⊤)∗((A(λ ))⊤G0(λ )+(C0(λ ))⊤) = α2Tr(F0(λ )−F1(λ ))(F
0(λ )+G0(λ ))2, (5.1)
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1

2π

∫ ∞

−∞

∣

∣

∣Tr(F0(λ )−F1(λ ))
∣

∣

∣

2
dλ = δ , (5.2)

((A(λ ))⊤F0(λ )− (C0(λ ))⊤)∗((A(λ ))⊤F0(λ )− (C0(λ ))⊤) = (β 2 + γ(λ ))(F0(λ )+G0(λ ))2, (5.3)

where α2,β 2 are Lagrange multipliers, γ(λ )≤ 0 and γ(λ ) = 0 if TrF0(λ )> (1− ε)TrG1(λ ).
For the second pair D2

2δ ×D2
ε , we have equations

((A(λ ))⊤G0(λ )+(C0(λ ))⊤)∗((A(λ ))⊤G0(λ )+(C0(λ ))⊤)= (F0(λ )+G0(λ ))
{

α2
k ( f 0

kk(λ )− f 1
kk(λ ))δkl

}T

k,l=1
(F0(λ )+G0(λ )),

(5.4)

1

2π

∫ ∞

−∞

∣

∣

∣ f 0
kk(λ )− f 1

kk(λ )
∣

∣

∣

2
dλ = δk, k = 1,T , (5.5)

((A(λ ))⊤F0(λ )− (C0(λ ))⊤)∗((A(λ ))⊤F0(λ )− (C0(λ ))⊤) = (F0(λ )+G0(λ ))
{

(β 2
k + γk(λ ))δkl

}T

k,l=1
(F0(λ )+G0(λ )), (5.6)

where α2
k ,β

2
k are Lagrange multipliers, γk(λ )≤ 0 and γk(λ ) = 0 if g0

kk(λ )> (1− ε)g1
kk(λ ).

For the third pair D3
2δ

×D3
ε , we have equations

((A(λ ))⊤G0(λ )+(C0(λ ))⊤)∗((A(λ ))⊤G0(λ )+(C0(λ ))⊤) = α2
〈

B1,F
0(λ )−F1(λ )

〉

(F0(λ )+G0(λ ))2, (5.7)

1

2π

∫ ∞

−∞

∣

∣

∣

〈

B1,F
0(λ )−F1(λ )

〉∣

∣

∣

2
dλ = δ , (5.8)

((A(λ ))⊤F0(λ )− (C0(λ ))⊤)∗((A(λ ))⊤F0(λ )− (C0(λ ))⊤) = (β 2 + γ ′(λ ))(F0(λ )+G0(λ ))B⊤
2 (F

0(λ )+G0(λ )), (5.9)

where α2,β 2 are Lagrange multipliers, γ ′(λ )≤ 0 and γ ′(λ ) = 0 if 〈B2,G
0(λ )〉> (1− ε)〈B2,G1(λ )〉.

For the fourth pair D4
2δ ×D4

ε we have equations

((A(λ ))⊤G0(λ )+(C0(λ ))⊤)∗((A(λ ))⊤G0(λ )+(C0(λ ))⊤) = (F0(λ )+G0(λ ))
{

αi j( f 0
i j(λ )− f 1

i j(λ ))
}T

i, j=1
(F0(λ )+G0(λ )),

(5.10)

1

2π

∫ ∞

−∞

∣

∣

∣ f 0
i j(λ )− f 1

i j(λ )
∣

∣

∣

2
dλ = δ

j
i , i, j = 1,T , (5.11)

((A(λ ))⊤F0(λ )− (C0(λ ))⊤)∗((A(λ ))⊤F0(λ )− (C0(λ ))⊤) = (F0(λ )+G0(λ ))(~β ·~β ∗+Γ(λ ))(F0(λ )+G0(λ )), (5.12)

where ~β ,αi j are Lagrange multipliers, Γ(λ )≤ 0 and Γ3(λ ) = 0 if G0(λ )> (1− ε)G1(λ ).
Thus, the following statement holds true.

Theorem 5.1. The least favorable spectral densities F0(λ ), G0(λ ) in the classes D2δ ×Dε for the optimal linear filtering of the functional

As
~ξ are determined by relations (5.1) – (5.3) for the first pair D1

2δ ×D1
ε of sets of admissible spectral densities; by relations (5.4) – (5.6) for

the second pair D2
2δ ×D2

ε of sets of admissible spectral densities; by relations (5.7) – (5.9) for the third pair D3
2δ

×D3
ε of sets of admissible

spectral densities; by relations (5.10) – (5.12) for the fourth pair D4
2δ ×D4

ε of sets of admissible spectral densities; the minimality condition

(2.1), the constrained optimization problem (3.1) and restrictions on densities from the corresponding classes D2δ ×Dε . The minimax-robust

spectral characteristic of the optimal estimate of the functional As
~ξ is determined by the formula (2.6).

Corollary 5.2. Assume that the spectral density G(λ ) is known. Let the function F0(λ )+G(λ ) satisfy the minimality condition (2.1). The

spectral density F0(λ ) is the least favorable in the classes Dk
2δ

, k = 1,4 for the optimal linear filtering of the functional A~ξ if it satisfies

relations (5.1) – (5.2), (5.4) – (5.5), (5.7) – (5.8), (5.10) – (5.11), respectively, and the pair (F0(λ ),G(λ )) is a solution of the optimization

problem (3.1). The minimax-robust spectral characteristic of the optimal estimate of the functional A~ξ is determined by formula (2.6).

Corollary 5.3. Assume that the spectral density F(λ ) is known. Let the function F(λ )+G0(λ ) satisfy the minimality condition (2.1).

The spectral density G0(λ ) is the least favorable in the classes Dk
ε , k = 1,4 for the optimal linear filtering of the functional A~ξ if it

satisfies relations (5.3), (5.6), (5.9), (5.12), respectively, and the pair (F(λ ),G0(λ )) is a solution of the optimization problem (3.1). The

minimax-robust spectral characteristic of the optimal estimate of the functional A~ξ is determined by formula (2.6).
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6. Conclusion

In the article, we propose methods of the mean-square optimal linear filtering of functionals which depend on the unknown values of the

multidimensional stationary stochastic process based on observations of the process with an additive stationary stochastic noise process. The

case of spectral certainty, as well as the case of spectral uncertainty, are considered. In the case of spectral certainty, where the spectral

density matrices of the stationary processes are exactly known, we apply a method based on orthogonal projections in a Hilbert space and

derive formulas for calculating the spectral characteristics and the mean-square errors of the optimal estimates of the functionals. In the case

of spectral uncertainty, where the spectral density matrices of the stationary processes are not exactly known while some sets of admissible

spectral density matrices are given, we apply the minimax-robust method of estimation. This method allows us to find estimates that minimize

the maximum values of the mean-square errors of estimates for all spectral density matrices from a given class of admissible spectral

density matrices and derive relations which determine the least favourable spectral density matrices. These least favourable spectral density

matrices are solutions of the optimization problem ∆D(F,G) =−∆(h(F0,G0);F,G)+δ ((F,G) |DF ×DG )→ inf, which is characterized by

the condition 0 ∈ ∂∆D(F
0,G0), where ∂∆D(F

0,G0) is the subdifferential of the convex functional ∆D(F,G) at point (F0,G0). The form

of the functional ∆(h(F0,G0);F,G) is convenient for application of the Lagrange method of indefinite multipliers for finding a solution

to the optimization problem. The complexity of the problem is determined by the complexity of calculation of the subdifferential of the

convex functional ∆D(F,G). Making use of the method of Lagrange multipliers and the form of subdifferentials of the indicator functions we

describe relations that determine the least favourable spectral densities in some special classes of spectral densities. These are: classes D0

of densities with the moment restrictions, classes D1δ which describe the “δ -neighborhood” models in the space L1 of a given bounded

spectral density, classes D2δ which describe the “δ -neighborhood” models in the space L2 of a given bounded spectral density, classes Dε

which describes the “ε-contamination” models of spectral densities.
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Abstract

A graph is called Hamiltonian (resp. traceable) if the graph has a Hamiltonian cycle (resp.

path), a cycle (resp. path) containing all the vertices of the graph. The energy of a graph is

defined as the sum of the absolute values of the eigenvalues of the graph. In this note, we

present new conditions based on energy for Hamiltonain and traceable graphs.

1. Introduction

All the graphs considered in this note are undirected graphs without loops or multiple edges. Notation and terminology not defined here

follow those in [1]. Let G be a graph of order n with e edges. We use δ (G) and χ(G) to denote the minimum degree and the chromatic

number of G, respectively. The independence number, denoted α = α(G), is defined as the size of the largest independent set in G. The

eigenvalues µ1(G)≥ µ2(G)≥ ...≥ µn(G) of the adjacency matrix A(G) of G are called the eigenvalues of G. We use S+(G) (resp. S−(G))
to denote the sum of the squares of the positive (resp. negative) eigenvalues of G. Notice that S+(G)+S−(G) = 2e(G) for a graph G. The

energy, denoted Eng(G), of G is defined as ∑
n
i=1 |µi(G)| (see [2]). A cycle C in a graph G is called a Hamiltonian cycle of G if C contains all

the vertices of G. A graph G is called Hamiltonian if G has a Hamiltonian cycle. A path P in a graph G is called a Hamiltonian path of G if P

contains all the vertices of G. A graph G is called traceable if G has a Hamiltonian path. In this note, we will present the energy conditions

for Hamiltonian and traceable graphs. The results are as follows.

Theorem 1.1. Let G be a k-connected (k ≥ 2) graph with n ≥ 3 vertices and e edges. If

Eng(G)≥ 2

√

2e(χ −1)(n− k−1)

χ
,

then G is Hamiltonian.

Theorem 1.2. Let G be a k-connected graph with n ≥ 3 vertices and e edges. If

Eng(G)≥ 2

√

2e(χ −1)(n− k−2)

χ
,

then G is traceable or K1,3.

2. Lemmas

In order to prove Theorem 1.1, we need the following results as our lemmas. Lemma 2.1 below is Theorem 2.3 on Pages 484 in [3].

Lemma 2.1. Let G be a graph. Then

χ ≥ 1+max

{

S+

S−
,

S−

S+

}

.
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Lemma 2.2 below is Theorem 3.14 on Pages 88 and 89 in [4].

Lemma 2.2. Let G be a graph. If the number of eigenvalues of G which are greater than, less than, and equal to zero are p, q, and r,

respectively, then

α ≤ r+min{ p, q},

where α is the independence number of G.

3. Proofs

Next, we will present proofs for Theorems 1.1 and 1.2. Some ideas from [5] are used in our proofs.

Proof of Theorem 1.1. Let G be a graph satisfying the conditions in Theorem 1.1. Suppose, to the contrary, that G is not Hamiltonian. If

n = 3, G must be Hamiltonian since G is k-connected (k ≥ 2). From now on, we assume that n ≥ 4. Since G is k-connected (k ≥ 2), G has a

cycle. Choose a longest cycle C in G and give an orientation on C. Since G is not Hamiltonian, there exists a vertex u0 ∈V (G)−V (C). By

Menger’s theorem, we can find s (s ≥ k) pairwise disjoint (except for u0) paths P1, P2, ..., Ps between u0 and V (C). Let vi be the end vertex

of Pi on C, where 1 ≤ i ≤ s. Without loss of generality, we assume that the appearance of v1, v2, ..., vs agrees with the orientation of C. We

use v+i to denote the successor of vi along the orientation of C, where 1 ≤ i ≤ s. Since C is a longest cycle in G, we have that v+i 6= vi+1,

where 1 ≤ i ≤ s and the index s+1 is regarded as 1. Moreover, S := {u0,v
+
1 ,v

+
2 , ...,v

+
s } is independent (otherwise G would have cycles

which are longer than C). Then α ≥ s+1 ≥ k+1.

Let µ1 ≥ µ2 ≥ ...≥ µp be the p positive eigenvalues of G and let µn−q+1 ≥ µn−q+2 ≥ ...≥ µn be the q negative eigenvalues of G. Then

n−(p+q) is the number of eigenvalues of G which are equal to zero. Since ∑
p
i=1 µi+∑

n
i=n−q+1 µi = trace of A= 0, ∑

p
i=1 |µi|=∑

n
i=n−q+1 |µi|.

Thus we have that

Eng(G) = 2

p

∑
i=1

|µi|= 2
n

∑
i=n−q+1

|µi|.

From Lemma 2.1, we have that

χ ≥ 1+
S+

S−
= 1+

S+

2e−S+
=

2e

2e−S+
, χ ≥ 1+

S−

S+
= 1+

S−

2e−S−
=

2e

2e−S−
.

Therefore we further have that

S+ ≤ 2e(χ −1)

χ
, S− ≤ 2e(χ −1)

χ
.

From Cauchy-Schwarz inequality, we have that

Eng(G)

2
=

p

∑
i=1

|µi| ≤
√

p

p

∑
i=1

µ2
i =

√

pS+ ≤
√

2e(χ −1)p

χ
.

Similarly, we have that

Eng(G)

2
=

n

∑
i=n−q+1

|µi| ≤

√

√

√

√q
n

∑
i=n−q+1

µ2
i =

√

qS− ≤
√

2e(χ −1)q

χ
.

Therefore we get that

Eng(G) =
Eng(G)

2
+

Eng(G)

2

≤
√

2e(χ −1)p

χ
+

√

2e(χ −1)q

χ
=

√

2e(χ −1)

χ
(
√

p+
√

q).

From Lemma 2.2, we have that α ≤ n−(p+q)+min{ p,q} ≤ n− p−q+ p= n−q and α ≤ n−(p+q)+min{ p,q}≤ n− p−q+q= n− p.

Thus p ≤ n−α and q ≤ n−α . Therefore we have that

2

√

2e(χ −1)(n− k−1)

χ
≤ Eng(G)≤ 2

√

2e(χ −1)(n−α)

χ

≤ 2

√

2e(χ −1)(n− s−1)

χ
≤ 2

√

2e(χ −1)(n− k−1)

χ
.

From the above proofs, we have that

S+ = S− =
2e(χ −1)

χ
,
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µ1 = µ2 = · · ·= µp, µn−q+1 = µn−q+2 = · · ·= µn,

p = q = n−α,α = s+1 = k+1.

Thus pµ2
1 = S+ = S− = qµ2

n . Since p = q, µ2
1 = µ2

n . Hence µ1 =−µn. Since G is connected and µ1 =−µn, G is a bipartite graph. From

Perron-Frobenius theorem, we have that µ1 > µ2. Since µ1 = µ2 = · · ·= µp, we must have p = 1. Now α = n− p = n−1, which implies

that G cannot be 2-connected, a contradiction.

Therefore the proof of Theorem 1 is complete. �

Proof of Theorem 1.2. Let G be a graph satisfying the conditions in Theorem 1.2. Suppose, to the contrary, that G is not traceable. If

n = 3, G must be traceable since G is k-connected (k ≥ 1). From now on, we assume that n ≥ 4. Choose a longest path P in G and give an

orientation on P. Let x and y be the two end vertices of P. Since G is not traceable, there exists a vertex u0 ∈V (G)−V (P). By Menger’s

theorem, we can find s (s ≥ k) pairwise disjoint (except for u0) paths P1, P2, ..., Ps between u0 and V (P). Let vi be the end vertex of Pi on P,

where 1 ≤ i ≤ s. Without loss of generality, we assume that the appearance of v1, v2, ..., vs agrees with the orientation of P. Since P is a

longest path in G, x 6= vi and y 6= vi, for each i with 1 ≤ i ≤ s, otherwise G would have paths which are longer than P. We use v+i to denote

the successor of vi along the orientation of P, where 1 ≤ i ≤ s. Since P is a longest path in G, we have that v+i 6= vi+1, where 1 ≤ i ≤ s−1.

Moreover, S := {u0,v
+
1 ,v

+
2 , ...,v

+
s ,x} is independent (otherwise G would have paths which are longer than P). Then α ≥ s+2 ≥ k+2.

Using the arguments similar to the ones in Proof of Theorem 1.1, we have that

2

√

2e(χ −1)(n− k−2)

χ
≤ Eng(G)≤ 2

√

2e(χ −1)(n−α)

χ

≤ 2

√

2e(χ −1)(n− s−2)

χ
≤ 2

√

2e(χ −1)(n− k−2)

χ
.

Therefore we have that

S+ = S− =
2e(χ −1)

χ
,

µ1 = µ2 = · · ·= µp, µn−q+1 = µn−q+2 = · · ·= µn,p = q = n−α,α = s+2 = k+2.

Thus pµ2
1 = S+ = S− = qµ2

n . Since p = q, µ2
1 = µ2

n . Hence µ1 =−µn. Since G is connected and µ1 =−µn, G is a bipartite graph. From

Perron-Frobenius theorem, we have that µ1 > µ2. Since µ1 = µ2 = · · ·= µp, we must have p = 1. Now α = n− p = n−1. So G is K1,n−1

with n ≥ 4. Since now k = 1 and n−1 = α = k+2, we have that G is K1,3.

Therefore the proof of Theorem 1.2 is complete.
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Abstract

In this work, the initial-boundary value problem for one fourth order semilinear hyperbolic

equation with memory operator is considered (here the memory operator is under the

operator of differentiation with respect to time variable). The asymptotic compactness of

semigroup generated by this problem is proved. The existence of a minimal global attractor

for this problem is also proved.

1. Introduction

Nonlinear equations with memory operator, especially the equations with hysteresis have great importance among the partial differential

equations. Nonlinear relations of hysteresis type appear in ferromagnetism, ferroelectricity, superconductivity, plasticity, friction, etc. The

research of solutions of partial differential equations with hysteresis nonlinearities is a nontrivial problem. Such equations, when hysteresis

operator is under the operator of differentiation with respect to time variable, have special difficulties.

The research of asymptotic behaviour of a dynamic system, which is originated by the corresponding initial-boundary value problem, has a

special significance. For the equations with hysteresis nonlinearities, these questions have not been almost investigated. In this field, only

particular cases were considered. For instance, the asymptotic character of solutions of the initial-boundary value problem for one quasilinear

parabolic equation, in which the hysteresis operator is under the operator of differentiation with respect to time variable, was investigated in

[1]. The similar results were obtained in [2], [3]. In [4], [5], [6] the corresponding problems were researched by the application of the results

of nonlinear semigroup theory.

In this work, the asymptotic result for solutions of the initial-boundary value problem for one semilinear hyperbolic equation with memory

operator is obtained and the existence of a minimal global attractor for this problem is proved.

2. Problem statement and reliminaries

Here we use the concepts and notations which were introduced in [7].

Let Ω ⊂ RN (N ≥ 1) be a bounded, connected set with a smooth boundary Γ. We consider the following problem:

∂ 2u

∂ t2
+

∂

∂ t
[u+F(u)]+∆2u+ |u|p u = h in Q = Ω× (0,T ) , (2.1)

u = 0, ∆u = 0, (x, t) ∈ Γ× [0,T ] , (2.2)

[u+F(u)] |t=0 = u(0)+w(0)
,

∂u

∂ t

∣

∣

∣t=0 = u(1) inΩ, (2.3)

Email address and ORCID number: isayevasevda@rambler.ru, 0000 0002 0872 1350 (S. E. Isayeva)
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where p > 0 and F is a memory operator (at any instant t, F(u) may depend not only on u(t), but also on the previous evolution of u),

which acts from M
(

Ω;C0 ([0,T ])
)

to M
(

Ω;C0 ([0,T ])
)

. Here M
(

Ω;C0 ([0,T ])
)

is a space of strongly measurable functions Ω→C0 ([0,T ]).
We assume that the operator F is applied at each point x ∈ Ω independently: the output [F(u(x, ·))] (t) depends on u(x, ·)|[0,t], but not on

u(y, ·)|[0,t] for any y 6= x (for more details see [7]).

We assume that

{

for∀υ1, υ2 ∈ M
(

Ω;C0 ([0,T])
)

andfor∀ t ∈ [0,T] , if υ1 = υ2

in [0, t] ,a.e. in Ω, then [F(υ1)] (·, t) = [F(υ2)] (·, t) a.e. inΩ;
(2.4)

{

∀
{

υn ∈ M
(

Ω;C0 ([0,T ])
)}

n∈N
, if υn → υ uniformly in [0,T]

a.e. in Ω, then F(υn) → F(υ) uniformly in [0,T] a.e. in Ω;
(2.5)

{

∃ L > 0, ∃g ∈ L2 (Ω) : ∀υ ∈ M
(

Ω;C0 ([0,T ])
)

‖[F(υ)] (x, ·)‖C0([0,T ]) ≤ L‖υ (x, ·)‖C0([0,T ])+g(x) , a.e. in Ω ;
(2.6)







∀ υ ∈ M
(

Ω;C0 ([0,T ])
)

, ∀ [t1, t2]⊂ [0,T ] ,
ifυ (x, ·) is affine in [t1, t2] a.e. in Ω, then

{[F(υ)] (x, t2)− [F(υ)] (x, t1)} [υ (x, t2)−υ (x, t1)]≥ 0, a.e. in Ω;

(2.7)







∃ 0 < L1 < 1, ∀υ ∈ M
(

Ω;C0 ([0,T ])
)

, ∀ [t1, t2]⊂ [0,T ] ,
if υ (x, ·) is affine in [t1, t2] a.e. in Ω, then

| [F(υ)] (x, t2)− [F(υ)] (x, t1) |≤ L1 |υ (x, t2)−υ (x, t1)| a.e. in Ω.

(2.8)















∃ 0 < L2 < 1, ∀υ ∈ M
(

Ω;C0 ([0,T ])
)

, ∀ [t1, t2]⊂ [0,T ] ,
if υ (x, ·) is affine in [t1, t2] a.e. in Ω, then

| [F(u)] (x, t2)− [F(υ)] (x, t2)− ([F(u)] (x, t1)− [F(υ)] (x, t1)) |≤
≤ L2 |u(x, t2)−υ (x, t2)− (u(x, t1)−υ (x, t1))| .

(2.9)

Let V = H2
0 (Ω)

⋂

Lp+2 (Ω) and

u(0) ∈V, w
(0)

∈ L2 (Ω) ,u(1) ∈ L2(Ω), h ∈ L2 (Ω) . (2.10)

Definition 2.1. A function u ∈ L2 (0,T ;V )
⋂

H1
(

0,T ;L2 (Ω)
)

is said to be a solution of problem (2.1)-(2.3) if F(u) ∈ L2 (Q) , and

∫∫

Q

{

−
∂u

∂ t
·

∂υ

∂ t
− [u+F(u)]

∂υ

∂ t
+∆u ·∆υ + |u|p uυ

}

dxdt =

=
∫∫

Q
hυdxdt +

∫

Ω

[

u(0) (x)+w(0) (x)+u(1)(x)
]

υ (x,0)dx,

for every υ ∈ L2 (0,T ;V )
⋂

H1
(

0,T ;L2 (Ω)
)

(υ (·,T ) = 0 a.e. in Ω).

Well posedness of problem (2.1)-(2.3) without F, was studied by different authors (see, for example [8]). The initial boundary problem for

the parabolic equation without the nonlinear term |u|p u and with ∆u was studied in [7].

The following theorems about existence and uniqueness of solutions of problem (2.1)-(2.3) can be proved in the same way as the corresponding

theorems from [9].

Theorem 2.2. Assume that (2.4)-(2.8),(2.10) hold. Then problem (2.1)-(2.3) has at least one solution such that

u ∈W 1,∞
(

0,T ;L2 (Ω)
)

∩L∞ (0,T ;V ) , F(u) ∈ H1
(

0,T ;L2(Ω)
)

.

Theorem 2.3. Assume that the hypotheses of Theorem 2.2 hold,

p ≤
2

N −2
,N ≥ 3 (p is arbitrary and finite when N=2) (2.11)

and F fulfils the following condition







∀r > 0, ∃L(r)> 0 : ∀t ∈ (0,T ],∀υ1,υ2 ∈ {u ∈ L2 (Qt) : ‖u‖L2(Qt ) ≤ r} :

‖F (υ1)−F (υ2)‖L2(Qt ) ≤ L(r)‖υ1 −υ2‖L2(Qt ).

(2.12)

Then problem (2.1)-(2.3) has only one solution.
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As an example of an operator which satisfies the mentioned conditions, we can present the Bouc operator (see, for example [10]):

[B(u)] (t) = αu(t)+
∫ t

0
f

(

∫ t

s
|u′(τ)|dτ

)

ϕ (u(s))u′(s)ds,

here α is a positive constant, f and ϕ are continuous real functions, with f positive and nondecreasing.

The following theorem is obtained from Theorem 2.2 and Theorem 2.3 by the common theory of solvability of linear hyperbolic equations.

Theorem 2.4. Assume that the conditions of Theorem 2.3 hold. Then for arbitrary T > 0 problem (2.1)-(2.3) has only one solution

u ∈C1
(

[0,T ] ;L2 (Ω)
)

∩C
(

[0,T ] ;H2
0 (Ω)

)

.

By the condition (2.11): V = H2
0 (Ω)

⋂

Lp+2 (Ω) = H2
0 (Ω). We set E = H2

0 (Ω)×L2 (Ω)×L2 (Ω). Then under the conditions of Theorem

2.4, Problems (2.1)-(2.3) generates the semigroup {S (t)}t≥0 in E by the formula:

S (t)
(

u(0), u(1),w(0)
)

= (u,ut ,w) ,

where u is a unique solution of this problem.

Definition 2.5. (see [11]) A bounded set B0 ⊂ E is said to be absorbing if for an arbitrary bounded set B ⊂ E there exists t1 (B) such that

S (t)B ⊂ B0 for all t ≥ t1 (B).

Definition 2.6. (see [11]) Let {S (t)} t≥0 be a semigroup on a metric space (X , d). A smallest, nonempty, bounded, closed set A ⊂ X that

satisfies

lim
t→∞

sup
υ∈B

inf
u∈A

d (S (t)υ , u) = 0,

for each bounded set B ⊂ X , is called a minimal global attractor of {S (t)} t≥0.

The following theorem about the existence of a bounded absorbing set for Problems (2.1)-(2.3) can be proved in the same way as the

corresponding theorem in [12].

Theorem 2.7. Under the conditions (2.4)-(2.12), Problems (2.1)-(2.3) has a bounded absorbing set B0 ⊂ E.

In this work, we first prove the asymptotic compactness of a semigroup, generated by problem (2.1)-(2.3), and then the basic theorem about

the existence of a minimal global attractor for this problem.

Note that, a semigroup {S (t)} t≥0, defined on a metric space (X , d), is called asymptotically compact, if for arbitrary bounded set B ⊂ X

such, that
⋃

t≥0

S (t)B is bounded in (X , d), the sequence {S (tk)υk}
∞
k=1 , tk → ∞ , υk ∈ B has a convergent subsequence.

3. Basic Results

Theorem 3.1. Assume that (2.4)-(2.12) hold. Then the semigroup {S (t)} t≥0, generated by problem (2.1)-(2.3), is asymptotically compact

in E.

The proof of Theorem 3.1. It suffices to prove that for any bounded set B from E and for arbitrary ε > 0 there exists T = T (ε,B) such that

limsup
i→∞

sup
q∈N

∥

∥S(T )θi+q −S(T )θi

∥

∥

E
≤ ε, (3.1)

where {θi} is the sequence from B and {S (t)θi} converges ∗−weekly in L∞ (0,∞; E) .
We prove this by the method of time discretization (see [7]).

For any m ∈ N, we set k = T
m and:

u0
m = u(0), w0

m = w(0)
, u1

m = u(0)+ ku(1),

u−1
m = u(0)− ku(1), un

m (x) = u(x,nk) , n = 2, ...,m,

wn
m (x) = [F(um)] (x,nk) , n = 1, ...,m, a.e. in Ω,

um (x, ·)= linear time interpolate of u(x,nk) for n= 0,1, ...,m a.e. in Ω, wm (x, ·)=linear time interpolate of w(x,nk) for n= 1, ...,m a.e. in Ω.

We will use the techniques used in [13, 14, 15]. We set θi =
{

u
(0)
i ,u

(1)
i ,w

(0)
i

}

, ui = S (t)θi (i = 1,2, ...).

We consider the following problems for l = i, j (i, j = 1,2, ...):

un
lm −2un−1

lm
+un−2

lm

k2
+

un
lm −un−1

lm

k
+

wn
lm −wn−1

lm

k
+

+∆2un
lm + |un

lm|
p

un
lm = h in V ′

, n = 1,2, ...,m,

u0
lm = u

(0)
l

, w0
lm = w

(0)
l

,u1
lm = u

(0)
l

+ ku
(1)
l

,u−1
lm

= u
(0)
l

− ku
(1)
l

,

and obtain, that

un
im −un

jm −2
(

un−1
im −un−1

jm

)

+un−2
im −un−2

jm

k2
+

un
im −un

jm − (un−1
im −un−1

jm )

k
+
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+
wn

im −wn
jm − (wn−1

im −wn−1
jm )

k
+

+∆2
(

un
im −un

jm

)

+ |un
im|

p
un

im −
∣

∣

∣
un

jm

∣

∣

∣

p
un

jm = 0, inV ′
, n = 1,2, ...,m. (3.2)

u0
lm −u0

jm = u
(0)
l

−u
(0)
j , w0

lm −w0
jm = w

(0)
l

−w
(0)
j ,

u1
lm −u1

jm = u
(0)
l

−u
(0)
l

+ k
(

u
(1)
l

−u
(1)
j

)

,u−1
lm

−u−1
jm = u

(0)
l

−u
(0)
l

− k
(

u
(1)
l

−u
(1)
j

)

. (3.3)

By multiplying both sides of equality (3.2) by un
im −un

jm − (un−1
im −un−1

jm ), summing for n = s, ...,m for arbitrary s ∈ {1,2, ...,m} , integrating

by Ω and using the condition (2.7), we can obtain the following relation:

E
(

um
im −um

jm

)

+
k

2
(1−L1)

m

∑
n=s

∫

Ω

(

un
im −un

jm − (un−1
im −un−1

jm )

k

)2

dx+

+
m

∑
n=s

∫

Ω

(

|un
im|

p
un

im −
∣

∣

∣
un

jm

∣

∣

∣

p
un

jm

)(

un
im −un

jm −
(

un−1
im −un−1

jm

))

dx ≤

≤ E
(

us−1
im −us−1

jm

)

, (3.4)

where

E
(

un
im −un

jm

)

=

=
1

2

∫

Ω

∣

∣

∣
∆

(

un
im −un

jm

)∣

∣

∣

2
dx+

1

2

∫

Ω

(

un
im −un

jm − (un−1
im −un−1

jm )

k

)2

dx.

It is evident that for arbitrary δ > 0 there exists c2 (δ )> 1 such, that

|u−υ |2 ≤ δ + c2 (δ ) |u−υ |2 , ∀u,υ ∈ R .

We can obtain the following inequality from (3.4), when s = 1 :

k
m

∑
n=1

∫

Ω

(

un
im −un

jm − (un−1
im −un−1

jm )

k

)2

dx ≤ δT mesΩ+C1
C2 (δ )

1−L1
‖B‖2

V +

+
C2 (δ )

1−L1

m

∑
n=1

∫

Ω

(∣

∣

∣
un

jm

∣

∣

∣

p
un

jm −|un
im|

p
un

im

)(

un
im −un

jm −
(

un−1
im −un−1

jm

))

dx, ∀δ > 0. (3.5)

By multiplying both sides of the equality (3.2) by un
im −un

jm, summing for n = 1, ...,m , integrating by Ω and using the condition (2.7), we

have

−k

(

1+
L2

1

2ν

)

m

∑
n=1

∫

Ω

(

un
im −un

jm − (un−1
im −un−1

jm )

k

)2

dx+

+
k

2

∫

Ω

(

um
im −um

jm − (um−1
im −um−1

jm )

k

)2

dx+

+
k

2

∫

Ω

(

u0
im −u0

jm − (u−1
im −u−1

jm )

k

)2

dx+

+
∫

Ω

um
im −um

jm − (um−1
im −um−1

jm )

k

(

um
im −um

jm

)

dx−

−
∫

Ω

u0
im −u0

jm − (u−1
im −u−1

jm )

k

(

u0
im −u0

jm

)

dx+

+
∫

Ω

(

1

2

(

um
im −um

jm

)2
−

1

2

(

u0
im −u0

jm

)2
)

dx+

+k

(

1−
νc2

Ω

2

)

m

∑
n=1

∫

Ω

∣

∣

∣
∆

(

un
im −un

jm

)∣

∣

∣

2
dx ≤ 0 , (3.6)
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By (3.3) and due to the existence of a bounded absorbing set, we have

E (un (T ))≤ c (‖B‖E) for∀T ≥ 0 ,

where ‖B‖E = sup
υ∈B

‖υ‖E . Then from (3.6), we obtain the following

k

(

1−
νc2

Ω

2

)

m

∑
n=1

∥

∥

∥
∆

(

un
im −un

jm

)∥

∥

∥

2
≤

≤C3 (‖B‖V )+ k

(

1+
L2

1

2ν

)

m

∑
n=1

∥

∥

∥

∥

∥

un
im −un

jm − (un−1
im −un−1

jm )

k

∥

∥

∥

∥

∥

2

. (3.7)

Multiplying (3.5) by ν1 and summing it with (3.7), we have

k
m

∑
n=1

E
(

un
im −un

jm

)

≤
ν1δT mesΩ

2ν2
+

C̃ (‖B‖V ,δ )

2ν2
+

+k
ν1C2 (δ )

2ν2 (1−L1)

m

∑
n=1

∫

Ω

(∣

∣

∣
un

jm

∣

∣

∣

p
un

jm −|un
im|

p
un

im

) un
im −un

jm −
(

un−1
im −un−1

jm

)

k
dx, ∀δ > 0 , (3.8)

where

ν2 = min

{

ν1 −1−
L2

1

2ν
, 1−

νc2
Ω

2

}

,

and ν , ν1 are chosen such that

1−
νc2

Ω

2
> 0 ,ν1 −1−

L2
2

2ν
> 0.

Summing (3.4) for s = 1, ...,m, using the condition L1 < 1, (3.8) and lemma 2.2 from [15], we can obtain that

limsup
i→∞

limsup
j→∞

E
(

um
im −um

jm

)

≤
ν1mesΩ

2ν2
δ +

C (‖B‖V ,δ )

2ν2T
, ∀δ > 0

and consequently,

limsup
i→∞

sup
q∈N

E
(

um
(i+q)m −um

im

)

≤
2ν1mesΩ

ν2
δ +

2C (‖B‖V ,δ )

ν2T
, ∀δ > 0 ,∀T > 0.

From the last relation we obtain, that for arbitrary ε > 0 there exists T = T (ε,B) and δ > 0 such that

limsup
i→∞

sup
q∈N







1

2

∥

∥

∥
∆

(

um
(i+q)m −um

im

)∥

∥

∥

2
+

1

2

∥

∥

∥

∥

∥

∥

um
(i+q)m

−um
im −

(

um−1
(i+q)m

−um−1
im

)

k

∥

∥

∥

∥

∥

∥

2





≤ ε,

whence defining

ũm (x, t) = un
m (x) , if(n−1)k < t ≤ nk, n = 1,2, ...,m; a.e. in Ω

and defining w̃m, f̃m similarly, we obtain that

limsup
i→∞

sup
q∈N

[

1

2

∥

∥

∥
∆

(

ũ(i+q)m − ũim

)

(T )
∥

∥

∥

2
+

1

2

∥

∥

∥

(

u(i+q)m −uim

)

t
(T )
∥

∥

∥

2
]

≤ ε . (3.9)

Since (see, [9])

um → u weakly star in H1
(

0,T ;L2 (Ω)
)

⋂

L∞
(

0,T ;H1
0 (Ω)

)

,

ũm → u weakly star in L∞
(

0,T ;H1
0 (Ω)

)

,

as m → ∞, then passing to the limit as m → ∞ in the inequality (3.9), we obtain (3.1).

Theorem 3.1 is proved.

Theorem 3.2. (the basic theorem) Assume that (2.4)-(2.12) hold. Then Problems (2.1)-(2.3) has a minimal global attractor which is

invariant and compact.

The proof of Theorem 3.2. According to Theorem 2.7, under the conditions (2.4)-(2.12), problem (2.1)-(2.3) has a bounded absorbing set

and by Theorem 3.1, the semigroup {S (t)} t≥0, generated by this problem is asymptotically compact. Therefore according to Theorem 3.2

from [11], the problem (2.1)-(2.3) has a minimal global attractor, which is invariant and compact.

Theorem 3.2 is proved.
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Abstract

The notion of supraposinormality was introduced by Rhaly in a superclass of posinormal

operators. In this paper, we give an extension of this notion of supraposinormality to

α-supraposinormality of operators in the dense norm-attainable class.

1. Introduction

Characterization of normality has been done in different aspects by many mathematicians. In [1, 2, 3] and the references therein, they showed

characterizations of posinormality and gave some spectral properties of posinormal operators. The relationship between a hyponormal

operator and a posinormal operator has also been considered [1]. The author in [2] further introduced a superclass of the posinormal operators

and determined sufficient conditions for this superclass to be posinormal and hyponormal. The idea of norm-attainabilty has also been

considered by quite a number of authors, for instance, [4, 5] considered conditions for norm-attainability for elementary operators. In this

paper, we are interested in characterizing α−supraposinormal operators in dense norm-attainable classes. At this point, we give some useful

notations. From [1] it is known that an operator A on a Hilbert space H is posinormal if and only if γ2A∗A ≥ AA∗ for some γ ≥ 0. A is

hyponormal when γ = 1. The operator A is dominant if Ran(A−λ )⊂ Ran(A−λ )∗ for all λ in the spectrum of A; A is dominant if and only

if A−λ is posinormal for all complex numbers λ . Hyponormal operators are necessarily dominant. If A is posinormal, then KerA ⊂ KerA∗
.

Moreover, A is norm-attainable if there exists a unit vector x ∈ H such that ‖Ax‖ = ‖A‖, where ‖.‖ is the usual operator norm [5]. The

class of all norm-attainable operators is denoted by NA(H). In this work, without loss of generality, NA(H) is taken to be norm dense and

separable unless otherwise stated and NA(H)⊆ B(H).

2. Preliminaries

In this section, we give some definitions and auxiliary results which are useful in the sequel.

Definition 2.1. Let A ∈ NA(H), we say that A is supraposinormal if there exist positive operators S and T on H such that ASA∗ = A∗TA,

where at least one of S, T has dense range. The ordered pair (T,S) is called an interrupter pair associated with A.

Definition 2.2. Let A ∈ NA(H), then for some positive integer α we say that A is α-supraposinormal if there exist positive invertible

operators S and T on H such that Aα SA∗ = Aα∗TA, where at least one of S, T has a separable range and A is self-adjoint. For simplicity we

denote an α-supraposinormal operator by Aα
.

Definition 2.3. Let A ∈ NA(H), we say that A is totally supraposinormal if A-λ is supraposinormal for all complex numbers λ .

We know that the superclass of operators contains all operators which are posinormal, hyponormal, invertible, positive, coposinormal and

norm-attainable [3]. If A is posinormal, then AA∗ = A∗PA for some positive operator P, so A is supraposinormal with interrupter pair (I,P).
If A is coposinormal, then A∗A = AQA∗ for some positive operator Q, so A is supraposinormal with interrupter pair (Q, I).
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Remark 2.4. Analogously from [3], the collection S of all supraposinormal operators on H forms a cone in NA(H), and S is involutive.

Indeed, it is easy to see that S is closed under scalar multiplication, so S contains all αA for A ∈ S and α ≥ 0, and therefore S is a cone.

Moreover, it is equally easy to see that A is supraposinormal if and only if A∗ is supraposinormal, so S is closed under involution since

NA(H) is a C∗-algebra.

3. Main Results

In this section, we give the main results in this paper. We begin with the following proposition.

Lemma 3.1. Let A ∈ NA(H) satisfy Aα QA∗ = Aα∗PA for positive invertible operators P,Q ∈ NA(H) and a positive integer α . The following

conditions hold:

(i). If Q has separable and norm dense range, then A is supraposinormal and KerAα ⊂ KerAα∗.

(ii). If P has separable dense range, then A is supraposinormal and dominant. Moreover, KerAα ⊂ KerAα∗.

(iii). If Q is positive invertible and norm-attainable, then the α-supraposinormal operator A is α-posinormal and hence α-hyponormal.

(iv). If P is positive invertible and norm-attainable, then the α-supraposinormal operator A is α-coposinormal.

(v). If P and Q are both positive invertible and norm-attainable, then A is both posinormal and coposinormal with KerAα = KerAα∗ and

RanAα = RanAα∗.

(vi). If P and Q are both positive invertible, norm-attainable and either is dominant, then A is both α-coposinormal and norm-attainable

with KerAα ∩KerAα∗ = RanAα ∩RanAα∗.

Proof. Proofs of (i)− (v) follow analogously from [3]. For the proof of (vi), We consider the orthogonal complements of KerAα ∩KerAα∗

and RanAα ∩RanAα∗. Since NA(H) is a C∗-algebra, normality and norm-attainabilty of P and Q are necessary. Hence, Fugledge-Putman

theorem for posinormal and norm attainable class suffices. This completes the proof.

Theorem 3.2. Let Aα −λ be supraposinormal for distinct real values λ = r1,r2, ...,rk, and assume that the same interrupter pair (Q,P)
serves Aα −λ in each value of the sequence. Then Q = P and Ker(Aα −λ ) = Ker(Aα −λ )∗ when λ = r1,r2, ...,rk

Proof. We first consider three cases when λ = 0,r1, and r2, as in [3]. For any positive integer α, (Aα −λ )Q(Aα −λ )∗ = (Aα −λ )∗P(Aα −λ )
for we find that for k = 1 and 2, (A−rk)Q(A−rk)

∗ = (Aα −rk)
∗P(Aα −rk) reduces to PAα +Aα ∗P+rkQ = QAα ∗+Aα Q+rkP. Therefore,

(r1 − r2)Q = (r1 − r2)P, so Q = P. The fact that Ker(Aα −λ ) = Ker(Aα −λ )∗ for λ = 0,r1, and r2 follows from [2], Corollary 3.2. For

the complete sequence upto rk, we consider Caratheodory’s extension theorem and by Proposition (??), the proof is complete.

For a generalization consider the following corollary.

Corollary 3.3. If Aα ∈ B(H) is totally supraposinormal and the same two positive operators Q,P ∈ B(H) form an interrupter pair (Q,P)
for Aα −λ for all complex numbers λ , then Q = P; it also follows that Ker(Aα −λ ) = Ker(Aα −λ )∗ for all λ if and only if Aα = Ker(Aα∗.

Proof. The proof is analogous to that of [3], Corollary 3.

4. Conclusion

We conclude with the following open question: Does there exist an operator Aα that is totally α-supraposinormal but neither norm-attainable

nor dominant/codominant in a non-separable space?
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Abstract

We give some results about quotients of regular operators on Banach lattices by the linear

span of the positive M-weakly and positive L-weakly compact operators. We also present

a representation of the quotient space created by the linear span of the positive L-weakly

compact operators.

1. Introduction

A significant number of studies concerning L-weakly and M-weakly compact operators has been produced in the literature up to the present.

The existing studies concern mostly the relationship between these operators and other operator classes or pathological properties of them.

Recently, certain results regarding the order structure of these operator classes have been obtained [1]. Therefore, it is natural to consider

other spaces with new ordered structure. The quotient spaces represent of the constructing new spaces from old ones. For this reason, we

investigate certain order properties of quotients of the regular operators by our operators which are Banach lattice.

We refer to [2, 3, 4, 5] for unexplained concepts and properties about Banach lattices and positive operators. In the rest of this article, E and

F are assumed as Banach lattices, X and Y are assumed Banach spaces unless otherwise stated, and neither of them is the zero space, as we

will not indicate this fact in every result. L (E,F)
(

resp. L + (E,F)
)

denotes all linear bounded (resp. positive) operators from E to F .

In general, the linear span of the positive operators L r (E,F) which is called regular operators is neither a vector lattice (or Riesz space) nor

a Banach space with respect to operator norm ‖.‖. However, when another norm namely so-called regular norm ‖.‖r is defined by

‖T‖r = inf
{

‖S‖ : S ∈ L
+ (E,F) , |T x| ≤ S |x| , ∀x ∈ E

}

then L r (E,F) turns into a Banach space. Also, the equality ‖T‖r = ‖|T |‖ is satisfied whenever T ∈ L r (E,F) has a modulus. However,

there are situations in which L r (E,F) is a Riesz space. For example, (L r (E,F) ,‖.‖r) is a Banach lattice provided that F is Dedekind

complete or E is atomic with an order continuous norm ([6],Theorem 3.3 and 3.4).
The operator T ∈ L (X ,E) is called L-weakly compact if T (BX ), where BX is the closed unit ball of X , is an L-weakly compact in the sense

that every disjoint sequence (yn)n∈N in the sol (T (BX )) is norm null. The operator T ∈ L (E,X) is called M-weakly compact whenever the

sequence (T xn)n∈N is norm null for every bounded disjoint sequence (xn) in E. From now on, we use the notations WM (E,F) and WL (E,F)
for all operators which is M-weakly and L-weakly compact, respectively. There is very important duality property between our operators and

is stated as follows: T ∈ WM (E,F) (resp. T ∈ WL (E,F)) if and only if T ∗ ∈ WL (F
∗,E∗) (resp. T ∗ ∈ WM (F∗,E∗)) where T ∗ is adjoint

operator for T . WM (E,F) and WL (E,F) are subclasses of weakly compact operators and are closed in L (E,F) with the operator norm.

E is said to have an order continuous norm whenever inf{‖xα‖}= 0 for every downwards directed net (xα ) such that inf{xα}= 0 in E. For

example, c0, ℓp and Lp (µ) (1 ≤ p < ∞) have order continuous norm whereas ℓ∞ and c do not have respect their usual norms. The order

continuous part of E is defined

Ea = {x ∈ E : |x|> xα ↓ 0 ⇒‖xα‖→ 0}

For example, for an atomless measure µ , (L∞ (µ))a = {0} and (ℓ∞)a = c0. From Proposition 2.4.10, Proposition 3.6.2 in [4], we see that

Ea is a closed order ideal and all L-weakly compact subsets is included in Ea. Therefore, Ea = {0}
(

resp. (E ′)a = {0}
)

if and only if

WL (E,F) = {0} (resp. WM (E,F) = {0}). For this reason, we assume that Ea 6= {0}
(

resp. (E ′)a 6= {0}
)

.

Email addresses and ORCID numbers: ebayram@nku.edu.tr, https://orcid.org/0000-0001-8488-359X (E. Bayram), cansubinnaz @hotmail.com, https://orcid.org/0000-

0001-9586-516X (C. Binnaz Binbaşıoğlu)
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2. Quotients

For the Riesz space E, we recall that the linear subspace A ⊂ E is an ideal whenever |u| ≤ |v| and v ∈ A implies u ∈ A. On the other hand, the

quotient space E�A consists of all equivalence classes modulo A. We use the notation [u] for the equivalence classes containing the element

u ∈ E. The quotient E�A is a Riesz space according to the partial ordering: [u]≤ [v] whenever there exist elements u1 ∈ [u] and v1 ∈ [v] such

that u1 ≤ v1 ([7], Sec. 18, also for equivalent ordering). The natural quotient map π : E → E�A, π (u) = [u] is a linear, surjective Riesz

(lattice) homomorphism in that |π (u)|= π (u) for all u ∈ E and its null space is A. Since a null space of a Riesz homomorfizm should be

ideal, we consider quotients of Riesz spaces by the ideals. Moreover, the positive cone of E�A is π
(

E+
)

=
{

[u] : u ∈ E+
}

. Besides, for the

closed subspace A of a normed space X , the function

‖.‖ : X�A → R,‖u‖= dist (u,A) = inf{‖u− y‖ : y ∈ A}= inf{‖u‖ : u ∈ [x]}

define the so-called quotient norm on the quotient space X�A. Moreover, X�A with quotient norm is also a Banach space provided that X

is a Banach space. Therefore, E�A with the quotient norm is a Banach lattice whenever E is a Banach lattice and A is a closed ideal of E

([2],Proposition II.5.4).
Theorem 2.2 of [8] show that a regular operator which is both L-weakly compact and M-weakly compact do not need to have a modulus.

Also, Theorem 2.3 of [8] show that a modulus |T | for the operator T ∈ WL (E,F)∩WM do not need to be L-weakly or M-weakly compact.

These examples make it clear that WM (E,F) (resp. WL (E,F)) and WM (E,F)∩L r (E,F) (resp. WL (E,F)∩L r (E,F)) are not vector

lattice generally. Nevertheless, considering smaller subclasses

W
r

L (E,F) =
{

T1 −T2 : T1,T2 ∈ W
+

L (E,F)
}

and

W
r

M (E,F) =
{

T1 −T2 : T1,T2 ∈ W
+

M (E,F)
}

we have nice order theoretic structures. Recently the following result have been proven:

Theorem 2.1 ([1] Theorem 2.2 and 2.3). W r
L (E,F), equipped with the regular norm, is a Dedekind complete Banach lattice. Similarly, if F

is a Dedekind complete Banach lattice, then W r
M (E,F) equipped with the regular norm is a Dedekind complete Banach lattice.

As we can also see in the proof of Theorems 2.2 and 2.3 in [1], W r
L (E,F), equipped with the regular norm, is closed in L r (E,F). Similarly,

if F is a Dedekind complete Banach lattice, then W r
M (E,F) equipped with the regular norm is closed in L r (E,F). Note that our operator

classes have also domination property, in other words, the inequality 0 ≤ S ≤ T implies that S is in the class of operators as T . Thus, the next

two results are clear from Proposition II.5.4 of [2].

Corollary 2.2. If L r (E,F) with the regular norm is a Banach lattice, then L r (E,F)�W r
L (E,F) with the quotient norm is a Banach

lattice.

Corollary 2.3. If F is a Dedekind complete, then L r (E,F)�W r
M (E,F) with the quotient norm is a Banach lattice.

Dedekind completeness of the quotients depends on the quotient map π : E → E�A to be order continuous since A is the kernel of the

quotient map π . Note that our operator classes are not generally band in L r (E,F). For example, this can be seen when E = F = c0.

The next proposition state a situation that our quotients are Dedekind complete. Recall that a Banach lattice E is an AM-space if

‖sup{x,y}‖= maks{‖x‖ ,‖y‖} for all x,y ∈ E+ and a strong order unit in Riesz space E is an element e ∈ E+ whenever for every x ∈ E

there is λ ∈ R such that −λe ≤ x ≤ λe.

Proposition 2.4. If E is an AM-space with strong order unit and the norm on F is order continuous, then L r (E,F)�W r
L (E,F) and

L r (E,F)�W r
M (E,F) are Dedekind complete.

Proof. It is easy to see that W r
M (E,F) and W r

L (E,F) are bands in L r (E,F) under the assumptions. Therefore, the quotient map is order

continuous ([3], Theorem 7.9). Since F is Dedekind complete L r (E,F) is Dedekind complete so does our quotients.

From this point on, we assume that L r (E,F) is a Banach lattice whenever we mention about quotients of it.

A Riesz space E is said to be a lattice ordered algebra whenever E is also an associative algebra such that the product of positive elements is

positive. In addition, if E is a Banach lattice, then E is called a Banach lattice algebra provided that ‖xy‖ ≤ ‖x‖‖y‖ holds for all x,y ∈ E+. It

is well known that the composition of two positive operators is positive. Therefore, L r (E,E) (briefly L r (E)) is closed under composition.

This makes L r (E) with the regular norm into a Banach lattice algebra whenever E is Dedekind complete. In this case,the identity of L r (E)
has the norm one. Moreover, if a linear subset U of the space L r (E) is two sided ideal, in the sense that for every S ∈ U and for every

T ∈ L r (E), the compositions ST and T S belong to U , then L r (E)�U is also Banach lattice algebra.

On the contrary, regarding the regular weakly compact and regular compact operators, Example 1.2 in [9] shows that regular L-weakly and

regular M-weakly compact operators do not need to be two sided ideals in L r (E). In the same paper, it is proven that WM (E)∩L r (E)
(resp. WL (E)∩L r (E)) is a two sided ideal in L r (E) if and only if E∗ (resp. E)has an order continuous norm ([9], Theorem 3.3 and 3.4).
Similar results can be given for W r

M (E) and W r
L (E).

Theorem 2.5. W r
M (E) (resp. W r

L (E)) is a two sided ideal in L r (E) if and only if E∗ (resp. E) has an order continuous norm.

Proof. Proof is the same as with Theorem 3.3 and 3.4 in [9].

Since W r
L (E) and W r

M (E) are norm closed subspaces of L r (E), the following result is obvious.

Corollary 2.6. If E is Dedekind complete and E∗ (resp. E) has an order continuous norm then L r (E)�W r
M (E) (resp. L r (E)�W r

L (E))
with quotient norm is Banach lattice algebra.
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Order continuity properties of our operator classes regarding regular norm is given in [1] as it follows.

Theorem 2.7 ([1], Theorem 3.1 ve 3.2). The regular norm on W r
L (E,F) (resp. W r

M (E,F)) is order continuous if and only if E∗ (resp. F)
has an order continuous norm.

Order continuity is a hereditary property for the quotients by the closed ideals ([5], Example 1.5). But the regular norm is not order

continuous in general. In the context of the order continuity of regular norm, some results were given by Z.Chen et all in [10].

Theorem 2.8 ([10], Proposition 1). If the regular norm on L r (E,F) is order continuous, then the norms both on E∗ and F are order

continuous.

Theorem 2.9 ([10], Theorem 2). The following statements are equivalent.

1. L r (E,F) is a vector lattice and the regular norm on L r (E,F) is order continuous.

2. Every positive operator T : E → F is L- and M-weakly compact.

As a consequence, we obtain the following:

Corollary 2.10. The regular norm on L r (E,F) is order continuous if and only if L r (E,F)�W r
M (E,F)= {0} and L r (E,F)�W r

L (E,F)=
{0}.

Note that E has order continuous norm if and only if E is σ -Dedekind complete and there does not exist any sublattice of E isomorphic to ℓ∞

([4], Corollary.2.4.3).

Theorem 2.11 ([11], Theorem 2). Let E = (E,τ) be a Dedekind σ−complete Riesz space, let τ be locally convex-solid, and let M be a

τ-closed ideal of E. If E contains a copy of ℓ∞, then E�M or M contains a lattice copy of ℓ∞.

Combining Theorem 2.7 and Theorem 2.8 with Theorem 2.11, we obtain the following result:

Corollary 2.12. If F is Dedekind complete, the following statements hold.

1. If F has order continuous norm, but E∗ does not have then L r (E,F)�W r
M (E,F) also does not have order continuous norm.

2. If E∗ has order continuous norm, but F does not have then L r (E,F)�W r
L (E,F) also does not have order continuous norm.

Proof. If E∗ (resp. F) does not have order continuous, then L r (E,F) contains a lattice copy of ℓ∞. Since F (resp. E∗) has order continuous

norm, then W r
M (E,F) (resp. W r

L (E,F)) has order continuous norm. Therefore, L r (E,F)�W r
M (E,F) (resp. L r (E,F)�W r

L (E,F)) does

not have order continuous norm.

3. A Representation of L r (E,F)�W r
L (E,F)

In [12], a representation of the weak Calkin algebra L (E)�W (E) where W (E) denotes the class of weakly compact operators on E is

given. Similarly, in this section, we present a representation of the quotient L r (E,F)�W r
L (E,F).

We consider the operator R(S) : E∗∗�Ea → F∗∗�Fa for every S ∈ L r (E,F) as follows

R(S)([x∗∗]) = [S∗∗x∗∗] .

Thus, we can define the induced map

R : L
r (E,F)�W

r
L (E,F) → L

r (E∗∗�Ea,F∗∗�Fa)

S+W
r

L (E,F) → R(S) .

In the following proposition, we present some properties of the above operator.

Proposition 3.1. The following assumptions hold for the map R.

1. If S ∈ W r
L (E,F) then R(S) = 0.

2. R is a positive linear map.

3. For S ∈ L r (E,F) ‖R(S)‖F∗∗�Fa ≤ ‖S∗∗‖E∗∗ , so ‖R‖ ≤ 1.

4. If E = F then R([IE ]) = IE∗∗�Ea .

5. Whenever ST is defined as R(ST ) = R(S)R(T ).

Proof. (1) Since L-weakly compact operators take values in Fa and are a subclass of weakly compact operators, then S∗∗ (E∗∗)⊆ Fa hold

for all S ∈ W r
L (E,F).

(2) Let choose 0 ≤ S ∈L r (E,F) and [x∗∗] ∈ (E∗∗�Ea)+.Then x∗∗ ∈ (E∗∗)+ so S∗∗x∗∗ ∈ (F∗∗)+. It means that R([S]) [x∗∗] ∈ (F∗∗�Fa)+,

i.e. R is positive. The linearity of R is a routine verification.

(3) For T,S ∈ L r (E,F), x∗∗ ∈ E∗∗

‖R(S) [x∗∗]‖F∗∗�Fa = dist (R(S) [x∗∗] ,Fa) = inf{‖R(S) [x∗∗]− y‖ : y ∈ Fa}

= inf{‖S∗∗x∗∗+ z− y‖ : z,y ∈ Fa}

= inf{‖S∗∗x∗∗− (y− z)‖ : z,y ∈ Fa}

= inf{‖S∗∗x∗∗−u‖ : u ∈ Fa}

≤ inf{‖S∗∗x∗∗−S∗∗w‖ : w ∈ Ea}

≤ ‖S∗∗‖ inf{‖x∗∗−w‖ : w ∈ Ea}= ‖S∗∗‖‖[x∗∗]‖
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show that ‖R(S)‖ ≤ ‖S∗∗‖= ‖S‖ so ‖R‖ ≤ 1.

(4) It follows that for every x∗∗ ∈ E∗∗

R([IE ]) [x
∗∗] =

[

(IE)
∗∗

x∗∗
]

= [x∗∗] = IE∗∗�Ea [x∗∗] .

(5) Let E, F , G be Banach lattices and S ∈ L r (E,F), T ∈ L r (G,E). For every x∗∗ ∈ E∗∗ we obtain that

R([ST ]) [x∗∗] =
[

(ST )∗∗ x∗∗
]

= [S∗∗ (T ∗∗x∗∗)] = [S∗∗ (R([T ]) [x∗∗])]

= R([S])R([T ]) [x∗∗] .

Definition 3.2. The pair of Banach lattices (E,F) has the invariant modulus property if the equality |T ∗|= |T |∗ holds for every T ∈L r (E,F)
for which |T | exists in L r (E,F).

Theorem 3.3. If (E,F) and (F∗,E∗) have invariant modulus property, then R is a Riesz homomorphism.

Proof. For S ∈ L r (E,F) and x∗∗ ∈ E∗∗ we obtain

R(|[S]|) [x∗∗] = R([|S|]) [x∗∗] =
[

|S|∗∗ x∗∗
]

= [|S∗∗|x∗∗] .

On the other hand, by the help Riesz-Kantorovich formulae we get

R(|[S]|) [x∗∗] = [sup{|S∗∗y∗∗| : |y∗∗| ≤ x∗∗}] = [sup{|R([S]) [y∗∗]| : |y∗∗| ≤ x∗∗}]

= sup{|R([S]) [y∗∗]| : [|y∗∗|]≤ [x∗∗]}= sup{|R([S]) [y∗∗]| : |[y∗∗]| ≤ [x∗∗]}

= |R([S])| [x∗∗] .

Analogously to Gantmacher’s theorem (see [3], Theorem 17.2) can be modified for L-weakly compact operators as follows:

Lemma 3.4. If E∗ has Schur property and T ∈ L (E,F), then the following statements are equivalent.

1. T ∈ WL (E,F),
2. T ∗∗ (E∗∗)⊆ Fa,

3. T ∗ :
(

(Fa)∗ ,σ
(

(Fa)∗ ,Fa
))

→ (E∗,σ (E∗,E∗∗)),
4. T ∗ ∈ WM (E,F).

Proof. (1 ⇒ 2 ⇒ 3) is clear from Theorem 17.2 in [3].

(3 ⇒ 4) If ( fn)n∈N is a norm bounded disjoint sequence in F∗ so in (Fa)∗, then we have fn → 0 in the topology σ
(

(Fa)∗ ,Fa
)

since Fa has

order continuous norm (see [4], Corollary 2.4.3). Thus, (T ∗ fn) is σ (E∗,E∗∗)-null sequence by the hypothesis. Hence ‖T ∗ fn‖→ 0 since E∗

has Schur property. This show that T ∗ is an M-weakly compact operator.

(4 ⇒ 1) is clear from Theorem 18.13 in [3].

Lemma 3.5. If Fa has Schur property and T ∈ L (E,F) then the following statements are equivalent.

1. T ∈ WL (E,F),
2. T ∗∗ (E∗∗)⊆ Fa,

3. T ∗ ∈ WM (E,F).

Proof. (1 ⇒ 2) and (3 ⇒ 1) are obvious. (2 ⇒ 3) If T ∗∗ (E∗∗)⊆ Fa hold then the operator T is weakly compact (see [3], Theorem 17.2).
Hence T ∗∗ (BE∗∗), where BE∗∗ is unit ball of E∗∗, is relatively weakly compact subset of Fa, so is L-weakly compact from Corollary 3.6.8 in

[4] since Fa has Schur property.

Theorem 3.6. Suppose that E∗ or F has Schur property. Then, S ∈ W r
L (E,F) if and only if R(S) = 0.

Proof. Necessity has been proved in Proposition 3.1. Suppose that R(S) = 0. The equality R(S) = 0 implies S∗∗ (E∗∗) ⊆ Fa. Hence,

S ∈ W r
L (E,F) from Lemma 3.4 and Lemma 3.5 which we are looking for.

Hence, if E∗ and F has Schur property with order continuous norm, then S+W r
L (E,F)→ R(S) provides a representation of the quotient

L r (E,F)�W r
L (E,F), and its image {R(S) : S ∈ L r (E)} whenever E = F is a subalgebra of L r (E∗∗�Ea) containing the identity.

References

[1] E. Bayram, A. W. Wickstead, Banach lattices of L-weakly and M-weakly compact operators, Arch. Math. (Basel) 108(2017), 293–299.
[2] H. H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag, Berlin-Heidelberg-New York, 1974.
[3] C. D. Aliprantis and O. Burkinshaw, Positive Operators, Pure and Applied Mathematics, vol. 119, Academic Press, Inc., Orlando, FL, 1985.
[4] P. Meyer-Nieberg, Banach Lattices, Universitext, Springer-Verlag, Berlin, 1991.
[5] W. Wnuk, Banach Lattices with Order Continuous Norms, Advenced Topics in Mathematics, Polish Scientific Publishers PWN, Warsaw, 1999.
[6] A. W. Wickstead, Regular operators between Banach lattices, Positivity, TrendsMath., Birkhäuser, Basel, 2007.
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