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tunceracar@ymail.com

Managing Editors
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University, Konya, Türkiye
acarozlem@ymail.com

Osman Alagoz
Department of Mathematics, Faculty of Science and
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Kırıkkale University, Türkiye

i



Contents

1 Positive Linear Operators Preserving τ and τ2

Tuncer Acar, Ali Aral, Ioan Raşa 98-102
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Positive Linear Operators Preserving τ and τ 2

TUNCER ACAR, ALI ARAL*, AND IOAN RAŞA

ABSTRACT. In the paper we introduce a general class of linear positive approximation processes defined on
bounded and unbounded intervals designed using an appropriate function. Voronovskaya type theorems are given
for these new constructions. Some examples including well known operators are presented.

Keywords: Generalized operators, Voronovskaya theorem.

2010 Mathematics Subject Classification: 41A25, 41A36.

1. INTRODUCTION

In the theory of approximation by linear positive operators (l.p.o) Korovkin famous theorem
has a crucial role to determine whether the corresponding sequence of l.p.o converges to the
identity operator. However, Korovkin theorem for a sequence of l.p.o requires uniform con-
vergence on an extended complete Tchebychev system, in special, the set of test functions
ei (t) = ti, i = 0, 1, 2. In [6], to obtain better error estimation, J. P. King introduced and studied a
generalization of the classical Bernstein operators. These operators preserve the test functions
e0 and e2, while the classical Bernstein operators preserve the test functions e0 and e1. Start-
ing from this approximation process King’s idea has been successfully applied to several well
known sequences of operators. In [5], the authors introduced the sequence of operators Bτn by

Bτn (f ;x) =

n∑
k=0

(
f ◦ τ−1

)(k
n

)(
n

k

)
τk (x) (1− τ (x))n−k , x ∈ [0, 1] , n ∈ N,

which is a new form of well-known Bernstein operators, where τ ∈ C [0, 1] is a strictly increas-
ing function , τ (0) = 0, τ (1) = 1. Shape preserving and convergence properties as well as the
asymptotic behavior and saturation for the sequence (Bτn) were deeply studied using the test
functions

{
1, τ, τ2

}
. Durrmeyer version of the operators Bτn was introduced and studied in [1].

A similar idea was used for the operators defined on unbounded intervals given in [2].
In this short note, we introduce linear positive operators defined on bounded and unbounded
intervals that preserve the functions τ and τ2 such that τ ∈ C [0, 1] is strictly increasing, τ (0) =
0, τ (1) = 1 (for the operators defined on the unbounded interval, we consider the function
ρ ∈ C[0,∞) such that ρ (0) = 0 and ρ

′
(x) > 0 for x ∈ [0,∞)). Then, we give a Voronovskaya

type theorem for our general operators. Some examples including very well known operators
are also obtained.

2. GENERALIZED OPERATORS

Let Ln : C [0, 1]→ C [0, 1] be a sequence of l.p.o such that Lne0 = e0 and Lne1 = e1.
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Let τ : [0, 1] → [m,M ] be continuous such that 0 < m < M, τ
′
(x) > 0 for x ∈ [0, 1] , τ (0) = m

and τ (1) =M . For any f ∈ C [0, 1] consider the function f◦τ−1

e1
such that

f ◦ τ−1

e1
(m+ (M −m) t) =

f
(
τ−1 (m+ (M −m) t)

)
m+ (M −m) t

, t ∈ [0, 1] .

For x ∈ [0, 1] and f ∈ C [0, 1] consider the operators(
V Ln f

)
(x) = τ (x)Ln

(
f ◦ τ−1

e1
(m+ (M −m) t) ;

τ (x)−m
M −m

)
.

It is obvious that
V Ln τ (x) = τ (x) and V Ln τ

2 (x) = τ2 (x) .

2.1. Examples.

(1) Let τ (x) = x+ 1 and Ln = Bn, where (Bn) is the sequence of Bernstein operators. For
m = 1 and M = 2,

V Bn f (x) = (x+ 1)Bn

(
f (t)

1 + t
, x

)
.

(2) Let τ (x) = eµx, µ > 0 and Ln = Bn, where (Bn) is the sequence of Bernstein operators.
For m = 1 and M = eµ,

V Bn f (x) = eµxBn

f
(

1
µ log (1 + (eµ − 1) t)

)
1 + (eµ − 1) t

;
eµx − 1

eµ − 1

 .

Let Kn : C[0,∞)→ C[0,∞) be a sequence of l.p.o such that Kne0 = e0 and Kne1 = e1.
Let ρ : [0,∞)→ [m,∞) be continuous such that m > 0, ρ

′
(x) > 0 for x ∈ [0,∞) and ρ (0) = m.

For f ∈ C[0,∞), consider the function f◦ρ−1

e1
such that

f ◦ ρ−1

e1
(t+m) =

f
(
ρ−1 (t+m)

)
t+m

, t ∈ [0,∞).

For x ∈ [0,∞), consider the operators

(
UKn f

)
(x) = ρ (x)Kn

(
f
(
ρ−1 (m+ t)

)
m+ t

; ρ (x)−m

)
.

It is obvious that (
UKn ρ

)
(x) = ρ (x) and

(
UKn ρ

2
)
(x) = ρ2 (x) .

2.2. Examples.

(1) Let ρ (x) = eµx + 1, x ≥ 0, µ > 0 and Kn = Sn, where (Sn) is the sequence of Szász-
Mirakyan operators. For m = 2, ρ−1 : [2,∞) → [0,∞), ρ−1 (x) = 1

µ log (x− 1) and
x ∈ [2,∞) ,

(
USn f

)
(x) = (eµx + 1)Sn

f
(

1
µ log (1 + t)

)
2 + t

, eµx − 1

 .
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(2) Let ρ (x) = eµx and Kn = Tn, where (Tn) is the sequence of Baskakov operators. For
x ≥ 0, m = 1 and µ > 0,

(
UBn f

)
(x) = eµxTn

f
(

1
µ log (1 + t)

)
1 + t

; eµx − 1

 .

3. TRANSFERRING THE VORONOVSKAYA RESULT

Theorem 3.1. Let f ∈ C [0, 1] with f
′′
(t) finite at any t ∈ [0, 1] . Suppose that Lne0 = e0 , Lne1 = e1

and

Vnf (x) = τ (x)Ln

(
f ◦ τ−1

e1
(m+ (M −m) t) ;

τ (x)−m
M −m

)
.

If there exists α ∈ C [0, 1] such that

lim
n→∞

n (Lnf (t)− f (t)) = α (t) f
′′
(t) ,

then we have

lim
n→∞

n (Vnf (x)− f (x))

=
(M −m)

2
α
(
τ(x)−m
M−m

)
τ2 (x) (τ ′ (x))

3

[
τ
′
(x) τ2 (x) f

′′
(x)− τ (x)

(
τ (x) τ

′′
(x) + 2

(
τ
′
(x)
)2)

f
′
(x)

+ 2
(
τ
′
(x)
)3
f (x)

]
.

Proof. We have

n (Vnf (x)− f (x))

= nτ (x)

[
Ln

(
f ◦ τ−1

e1
(m+ (M −m) t) ;

τ (x)−m
M −m

)
− f (x)

τ (x)

]
,

= nτ (x)

[
Ln

(
f ◦ τ−1

e1
(m+ (M −m) t) ;

τ (x)−m
M −m

)
− f ◦ τ−1

e1
(m+ (M −m) t)

∣∣∣∣( τ(x)−mM−m )

]
.

Thus we have from the hypothesis that

lim
n→∞

n (Vnf (x)− f (x)) = τ (x)α

(
τ (x)−m
M −m

)
d2

du2

(
f
(
τ−1 (m+ (M −m)u)

)
m+ (M −m)u

)∣∣∣∣∣
u=

τ(x)−m
M−m

,

with u = τ(x)−m
M−m and dx

du = M−m
τ ′ (x)

.

It is obvious that

d

du

(
f
(
τ−1 (m+ (M −m)u)

)
m+ (M −m)u

)∣∣∣∣∣
u=

τ(x)−m
M−m

=
d

du

(
f ◦ τ−1

e1
(m+ (M −m)) (u)

)∣∣∣∣
u=

τ(x)−m
M−m

,

=
dx

du

d

dx

(
f (x)

τ (x)

)
,

=
M −m
τ ′ (x)

d

dx

(
f (x)

τ (x)

)
,

= (M −m)
f
′
(x) τ (x)− τ ′ (x) f (x)

τ ′ (x) τ2 (x)
,
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and

d2

du2

(
f
(
τ−1 (m+ (M −m)u)

)
m+ (M −m)u

)∣∣∣∣∣
u=

τ(x)−m
M−m

=
M −m
τ ′ (x)

d

dx

(
(M −m)

f
′
(x) τ (x)− f (x) τ ′ (x)

τ ′ (x) τ2 (x)

)
,

=
(M −m)

2

(τ (x) τ ′ (x))
3

[
τ
′
(x) τ2 (x) f

′′
(x)− τ (x)

(
τ (x) τ

′′
(x) + 2

(
τ
′
(x)
)2)

f
′
(x)

+ 2
(
τ
′
(x)
)3
f (x)

]
.

Hence we have the desired result. �

Corollary 3.1. Let τ (x) = eµx and Ln = Bn, where (Bn) is the sequence of Bernstein operators. For
m = 1 and M = eµ, we get

lim
n→∞

n (Vnf (x)− f (x)) =
(eµx − 1) (eµ − eµx)

2µ2e2µx

(
f
′′
(x)− 3µf

′
(x) + 2µ2f (x)

)
.

Corollary 3.2. Let τ (x) = x + 1 and Ln = Bn, where (Bn) is the sequence of Bernstein operators.
For m = 1 and M = 2, we obtain

lim
n→∞

n (Vnf (x)− f (x)) =
x (1− x)

2

(
f
′′
(x)− 2

x+ 1
f
′
(x) +

2

(x+ 1)
2 f (x)

)
.

Theorem 3.2. Let f ∈ C[0,∞) with f
′′
(t) finite, t ∈ [0,∞). Suppose that Kne0 = e0 , Kne1 = e1

and

Unf (x) = ρ (x)Kn

(
f ◦ ρ−1

e1
(m+ t) ; ρ (x)−m

)
.

If there exists γ ∈ C[0,∞) such that

lim
n→∞

n (Knf (t)− f (t)) = γ (t) f
′′
(t) ,

then we have

lim
n→∞

n (Unf (x)− f (x))

=
γ (ρ (x)−m)

ρ2 (x) (ρ′ (x))
3

[
ρ
′
(x) ρ2 (x) f

′′
(x)− ρ (x)

(
ρ (x) ρ

′′
(x) + 2

(
ρ
′
(x)
)2)

f
′
(x)

+ 2
(
ρ
′
(x)
)3
f (x)

]
.

Proof. The proof of this theorem is similar to that of Theorem 1. �

Corollary 3.3. Let ρ (x) = eµx + 1, x ≥ 0, µ > 0 and Kn = Sn, where (Sn) is the sequence of
Szász-Mirakyan operators. For m = 2, we have

lim
n→∞

n (Unf (x)− f (x)) =
eµx − 1

2µ2e2µx

(
f
′′
(x)− µ3e

µx + 1

eµx + 1
f
′
(x) + 2µ2 e2µx

(eµx + 1)
2 f (x)

)
.
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Corollary 3.4. Let ρ (x) = eµx, and Kn = Tn, where (Tn) is the sequence of Baskakov operators. For
x ≥ 0, µ > 0 and m = 1, we get

lim
n→∞

n (Unf (x)− f (x)) =
eµx − 1

2µ2eµx

(
f
′′
(x)− 3µf

′
(x) + 2µ2f (x)

)
.
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[2] A. Aral, D. Inoan, I. Raşa, On the generalized Szasz-Mirakyan Operators, Results in Mathematics, 65(3-4), 2014,

441–452.
[3] D. Cárdenas-Morales, P. Garrancho, F. J. Munoz-Delgado, Shape preserving approximation by Bernstein-Type op-

erators which fix polynomials, Appl. Math. Comp. 182, 2006, 1615-1622.
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Shift λ-Invariant Operators

OCTAVIAN AGRATINI

ABSTRACT. The present note is devoted to a generalization of the notion of shift invariant operators that we call it
λ-invariant operators (λ ≥ 0). Some properties of this new class are presented. By using probabilistic methods, three
examples are delivered.

Keywords: Modulus of continuity, integral operator, convolution type operator, probabilistic distribution function.

2010 Mathematics Subject Classification: 41A35, 47B38.

1. INTRODUCTION

This research is mainly motivated by the work of G. A. Anastassiou and H. H. Gonska [6]. The
authors have introduced a general family of integral type operators. Sufficient conditions were
given for shift invariance and also the property of global smoothness preservation was studied.
Let (X, d) be a metric space of real valued functions defined on D, where D = R or D = R+.
An operator L which maps X into itself is called a shift invariant operator if and only if

Lfα = (Lf)α for any f ∈ X and α > 0,

where fα(·) = f(·+ α).
In this note we give a generalization of the notion of shift invariant operator. Some properties
of this class are presented and a general family of such operators in the space of integrable func-
tions L1(R) is introduced by using the convolution product of another operators with a scaling
type function. By resorting to probabilistic methods, we indicate some classical operators as
shift λ-invariant, where λ is calculated in each case.
We refer to the following operators: Szász-Mirakjan, Baskakov and Weierstrass. It is honest to
mention that the value of λ does not target the whole sequence, it depends on the rank of the
considered term.
The general results are concentrated in Section 2 and the applications are detailed in Section 3.
It is known that the shift invariant operators are useful in wavelet analysis. Along with the
paper [6], the subject was developed in other papers, among which we quote [3], [4], [5]. Until
now, we have built a generalization of the shift invariant operators and we proved that the new
class is consistent. The applications presented reinforce the significance of the construction.
The use of this class of operators could lead for generating wavelet bases type. In this direction,
the conditions for multiresolution analysis can be relaxed by using shift λ-invariant operators.
Thus, we can talk about quasi-wavelet functions that can serve to reconstruct certain signals.
We admit that this research direction is at an early stage.

Received: 25 March 2019; Accepted: 27 May 2019; Published Online: 4 June 2019
*Corresponding author: O. Agratini; agratini@math.ubbcluj.ro
DOI: 10.33205/cma.544094
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2. RESULTS

Firstly, we present the following informal definition.

Definition 2.1. Let λ be a non negative number andX be a metric space of real valued functions defined
on R or R+. An operator L acting on X is called a shift λ-invariant operator if

(2.1) |(Lf)α − Lfα| ≤ λ, for any f ∈ X and α > 0.

Clearly, for λ = 0 we reobtain the notion of shift invariant operator.

Theorem 2.1. Let A,B operators acting on a compact metric space X of real valued functions defined
on R or R+.
i) If A is a shift λ-invariant and B is a shift invariant, then AB is a shift λ-invariant operator.
ii) If A is a shift invariant, linear and positive operator, and B is a shift λ-invariant, then AB is a shift
λµ-invariant operator, where µ = ‖A‖.
Call ‖A‖ = sup{‖Ag‖X : g ∈ X and ‖g‖X ≤ 1}.

Proof. i) We take g = Bf and, in concordance with the hypothesis, we can write successively

|(ABf)α −ABfα| = |(Ag)α −A(Bfα)| = |(Ag)α −Agα| ≤ λ,
which implies the first statement of the theorem.
ii) Since B is a shift λ-invariant operator, we get

(2.2) − λ ≤ (Bf)α −Bfα ≤ λ.
The operator A is linear and positive, consequently it is monotone, i.e., Au ≤ Av for any u, v
belong to X with the property u ≤ v.
A being a shift invariant operator too, relation (2.2) implies

|(ABf)α −ABfα| ≤ λAe0,
where e0(x) = 1, x ∈ R or x ∈ R+. Because of 0 < Ae0 ≤ ‖A‖, the result follows. �
Remark. Assuming Ae0 = e0, relation usually verified by linear and positive operators (so
called Markov type operators), we deduce that µ = 1 and Theorem 2.1 (ii) guarantees that AB
becomes a shift λ-invariant operator.
In what follows, starting from a sequence of shift λ-invariant operators and using a scaling
type function, we construct a sequence of integral type operators.
For each n ∈ N, let ln be a shift λn-operator which maps the space L1(R) into itself. Also, we
are fixing a function ψ ∈ L1(R) such that

‖ψ‖1 =

∫
R
|ψ(x)|dx 6= 0.

For any f ∈ L1(R), the convolution of lnf with ψ is a function named Lnf which belongs to
L1(R) and is defined by

(2.3) (Lnf)(x) = (lnf ∗ ψ)(x) =
∫
R
(lnf)(y)ψ(x− y)dy.

It is known that the convolution product ∗ enjoys the commutativity property. Let n ∈ N
arbitrarily be set. On the other hand, we have the following relations

(Lnf)α(x) =

∫
R
(lnf)(x+ α− u)ψ(u)du,

(Lnfα)(x) =

∫
R
(lnfα)(x− u)ψ(u)du,
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which allow us to write

|(Lnf)α(x)− (Lnfα)(x)| ≤
∫
R
|(lnf)(x+ α− u)− (lnfα)(x− u)||ψ(u)|du

=

∫
R
|((lnf)α − lnfα)(x− u)||ψ(u)|du

≤ λn‖ψ‖1.

We just ended the proof of the following result.

Theorem 2.2. Let Ln : L1(R) → L1(R), n ≥ 1, be operators defined by (2.3). Then, for each n ∈ N,
Ln is a shift λn‖ψ‖1-invariant operator.

We notice that if we substitute in (2.3) the function ψ by ‖ψ‖−11 ψ, then the operator Ln becomes
shift λn-invariant, n ∈ N.
As usual, we denote by CB(D) the Banach lattice of all bounded and continuous real functions
on D endowed with the sup-norm ‖ · ‖. Also C1

B(D) denotes the subspace of CB(D) consisting
of all functions which are continuously differentiable and bounded on D. We recall the defini-
tion of the first modulus of smoothness ω(f ; ·) associated to the bounded function f : I → R,
I ⊆ R,

(2.4) ω(f ; δ) = sup
x,y∈I
|x−y|≤δ

|f(x)− f(y)|, δ ≥ 0.

At this moment we need the following result.

Theorem 2.3. ([2, Theorem 7.3.4]) Let the random variable Y have distribution µ, E(Y ) := x0 and
V ar(Y ) := σ2. Consider f ∈ C1

B(R). Then

(2.5) |Ef(Y )− f(x0)| =
∣∣∣∣∫

R
fdµ− f(x0)

∣∣∣∣ ≤ (1.5625)ω
(
f ′;

σ

2

)
σ.

In the above E(Y ), V ar(Y ) represent the expected value and variance of Y , respectively.
We consider the random variables Xj , j ≥ 1, independent and identically distributed and we
introduce

(2.6) Xj,α = Xj + α, Sn,α =
1

n

n∑
j=1

Xj,α, n ≥ 1.

Clearly, Sn,0+α = Sn,α. If we use the notationsE(Xj,α) := x0,α and V ar(Xj,α) := σ2
α, by using

the properties of the expectation respectively the variance, we obtain

E(Sn,α) = x0,0 + α = x0,α, V ar(Sn,α) =
σ2
α

n
=
σ2
0

n
.

From (2.5) we deduce

|E[f(Sn,α)]− f(x0,α)| =
∣∣∣∣∫

R
f

(
t

n

)
dFn,α(t)− f(x0,α)

∣∣∣∣
≤ 1.5625ω

(
f ′;

σ0
2
√
n

)
σ0√
n
,(2.7)

where Fn,α is the distribution function of the random variable Sn,α.
It is known that by using probabilistic methods several classical positive and linear operators
have been obtained. Pioneers in this research field can be mentioned here W. Feller [7] and
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D.D. Stancu [9]. A recent and up-to-date approach to this study direction concerning Markov
semigroups and approximation processes can be found in [1].
As in [9], for each n ≥ 1, we choose

(2.8) (Lnf)(x) = E[f ◦ Sn,0(x)] =
∫ ∞
−∞

fdFSn,0(x),

where FSn,0 is the probability distribution of the variable Sn,0. Note that Lnf is a bounded
function and clearly satisfies ‖Lnf‖ ≤ ‖f‖.
Taking into account (2.6) and (2.7) we can write successively

|(Lnf)α(x)−(Lnfα)(x)| ≤ |E[f(Sn,α)]−f(x0,α)|+ |E[fα(Sn,0)]−fα(x0,0)|

≤ µ
(
ω

(
f ′;

σ0
2
√
n

)
+ ω

(
f ′α;

σ0
2
√
n

))
σ0√
n

= 2µω

(
f ′;

σ0
2
√
n

)
σ0√
n
,

where µ = 1.5625. Also, based on the definition (2.4), we used the identity ω(fα; ·) = ω(f ; ·) for
each α ≥ 0.
Finally, using that ω(f ′; ·) is a non-decreasing function, the above relations lead us to the fol-
lowing result.

Theorem 2.4. Let Sn and Ln be defined by (2.6) and (2.7) respectively, where f ∈ C1
B(R). Let I be an

interval such that sup
x∈I

σ0(x) = γ <∞. The following identity

(2.9) |(Lnf)α(x)− (Lnfα)(x)| ≤ 3.125ω

(
f ′;

γ

2
√
n

)
γ√
n
, x ∈ I,

holds.

In view of relation (2.1), the above theorem says that Ln operator, subject of certain conditions,
is a λn-invariant operator, where

λn = 3.125ω

(
f ′;

γ

2
√
n

)
γ√
n
.

Here λn’s expression is complicated, consequently it is practically unattractive. With the desire
to simplify it, we add an additional condition to function f . We require that f ′ satisfies a
Lipschitz condition with a constant M and exponent β, f ′ ∈ LipMβ, (M ≥ 0, 0 < β ≤ 1), that is

|f ′(x1)− f ′(x2)| ≤M |x1 − x2|β , (x1, x2) ∈ I × I.
The new requirement implies the continuity of f ′. On the other hand, equivalent to this prop-
erty is the inequality

(2.10) ω(f ′;h) ≤Mhβ , h ≥ 0,

see, e.g., [8, page 49].
Considering (2.9) and (2.10), the main result of this note will be read as follows.

Theorem 2.5. Let Sn and Ln be defined by (2.6) and (2.8) respectively, where f ∈ CB(R) is differen-
tiable on the domain such that f ′ ∈ LipMβ. Let I be an interval and sup

x∈I
σ0(x) = γ < ∞. Then, for

each n ∈ N, Ln is a λn-shift invariant operator, where

(2.11) λn =
3.125

2α
M

(
γ√
n

)β+1

.
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3. APPLICATIONS

In this section we present three examples of classical operators, both of discrete and continuous
type, which verify Theorem 2.4. We are able to indicate explicitly λn such that Ln may become
a shift λn-invariant operator. In the following N0 stands for {0} ∪ N.
Set

E2(R+) =

{
f ∈ C(R+) :

f(x)

1 + x2
is convergent as x→∞

}
,

representing a Banach lattice endowed with the norm

‖f‖∗ = sup
x≥0

(1 + x2)−1|f(x)|.

Example 3.1. Let Xj , j ≥ 1, be i.i. random variables having Poisson distribution, i.e., for each k ∈ N0

P (Xj = k) = e−x
xk

k!
, x ≥ 0,

which implies E(Xj) = x and V ar(Xj) = x. Formula (2.8) leads us to Szász-Mirakjan operators
defined for f ∈ E2(R+) as follows

(3.12) (Lnf)(x) ≡ (Mnf)(x) = e−nx
∞∑
k=0

(nx)k

k!
f

(
k

n

)
, n ≥ 1.

Further on, we consider f ∈ C1
B(R+) and I = [0, a], a > 0 fixed.

Consequently we get γ =
√
a. Relation (2.9) yields

|(Mnf)α(x)− (Mnfα)(x)| ≤ 3.125ω

(
f ′;

1

2

√
a

n

)√
a

n
, x ∈ [0, a].

Example 3.2. LetXj , j ≥ 1, be i.i. random variables following Pascal distribution, i.e., for each k ∈ N0

P (Xj = k) =

(
n+ k − 1

k

)
xk

(1 + x)n+k
, x ≥ 0,

which implies E(Xj) = x and V ar(Xj) = x+ x2. Applying formula (2.8) we get Baskakov operators
defined for f ∈ E2(R+) as follows

(3.13) (Lnf)(x)≡(Vnf)(x)=
1

(1 + x)n

∞∑
k=0

(
n+k−1

k

)(
x

1 + x

)k
f

(
k

n

)
, n ≥ 1.

We take f ∈ C1
B(R+) and I = [0, a], a > 0 fixed. This time we have γ =

√
a(a+ 1) and (2.9) yields

|(Vnf)α(x)− (Vnfα)(x)| ≤ 3.125ω

(
f ′;

1

2

√
a2 + a

n

)√
a2 + a

n
, x ∈ [0, a].

Example 3.3. Assume Xj , j ≥ 1, are i.i. continuous Gaussian random variables having the normal
distribution N(x, σ). This means the probability density function is given by

µ(t) =
1√
2πσ

exp(−(t− x)2/(2σ2)), t ∈ R.

It is known that Sn,0 has a normal distribution too, with E(Sn,0) = x and V ar(Sn,0) = σ2/n. In this
case, (2.8) yields the operator

(Lnf)(x) =

√
n√

2πσ

∫
R
f(t) exp(−n(t− x)2/(2σ2))dt, f ∈ CB(R).
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For σ2 = 0.5 it reduces to genuine Weierstrass operator Wn.
For any f ∈ C1

B(R) and I ⊆ R we have γ = 2−1/2 and, in view of (2.9), we get

(3.14) |(Wnf)α(x)− (Wnfα)(x)| ≤ 3.125ω

(
f ′;

1

2
√
2n

)
1√
2n
, x ∈ I.

Remark. Taking into account the results (3.12), (3.13), (3.14), under the hypotheses of Theorem
2.5, we can state that the operators Szász-Mirakjan, Baskakov and Weierstrass of rank n are
shift C(τ/n)(β+1)/2-invariant operators, where C = 3.125M2−β and τ is defined as follows:
τ = a for the first operator, τ = a2 + a for the second operator and τ = 0.5 for the last operator.
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Inequalities for Synchronous Functions and Applications
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ABSTRACT. Some inequalities for synchronous functions that are a mixture between Čebyšev’s and Jensen’s in-
equality are provided. Applications for f -divergence measure and some particular instances including Kullback-
Leibler divergence, Jeffreys divergence and χ2-divergence are also given.
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sure, Kullback-Leibler divergence, Jeffreys divergence measure, χ2-divergence.
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1. INTRODUCTION

Let (Ω,A, ν) be a measurable space consisting of a set Ω, a σ -algebra A of subsets of Ω and a
countably additive and positive measure ν on A with values in R ∪ {∞} . For a ν-measurable
function w : Ω→ R, with w (x) ≥ 0 for ν -a.e. (almost every) x ∈ Ω, consider the Lebesgue space

Lw (Ω, ν) := {f : Ω→ R, f is ν-measurable and
∫

Ω

w (x) |f (x)| dν (x) <∞}.

For simplicity of notation we write everywhere in the sequel
∫

Ω
wdν instead of

∫
Ω
w (x) dν (x) .

Assume also that
∫

Ω
wdν = 1. We have Jensen’s inequality

(1.1)
∫

Ω

w (Φ ◦ f) dν ≥ Φ

(∫
Ω

wfdν

)
,

where Φ : [m,M ] → R is a continuous convex function on the closed interval of real numbers
[m,M ] , f : Ω→ [m,M ] is ν-measurable and such that f,Φ ◦ f ∈ Lw (Ω, ν) .
We say that the pair of measurable functions (f, g) are synchronous on Ω if

(1.2) (f (x)− f (y)) (g (x)− g (y)) ≥ 0

for ν-a.e. x, y ∈ Ω. If the inequality reverses in (1.2), the functions are called asynchronous on Ω.
If (f, g) are synchronous on Ω and f, g, fg ∈ Lw (Ω, ν) then the following inequality, that is
known in the literature as Čebyšev’s Inequality, holds

(1.3)
∫

Ω

wfgdν ≥
∫

Ω

wfdν

∫
Ω

wgdν,

where w (x) ≥ 0 for ν-a.e. (almost every) x ∈ Ω and
∫

Ω
wdν = 1.

In this paper we establish some inequalities for synchronous functions that are a mixture be-
tween Čebyšev’s and Jensen’s inequality. Applications for f -divergence measure and some
particular instances including Kullback-Leibler divergence, Jeffreys divergence and χ2-divergence
are also given.
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2. INEQUALITIES FOR SYNCHRONOUS FUNCTIONS

We have the following inequality for synchronous functions:

Theorem 2.1. Let Φ, Ψ : [m,M ] → R be two synchronous functions on [m,M ] and w ≥ 0 a.e. on Ω
with

∫
Ω
wdν = 1. If g : Ω → [m,M ] is ν-measurable and such that g, Φ ◦ g, Ψ ◦ g, (Φ ◦ g) (Ψ ◦ g) ∈

Lw (Ω, ν) , then ∫
Ω

w (Φ ◦ g) (Ψ ◦ g) dν + Φ

(∫
Ω

wgdν

)
Ψ

(∫
Ω

wgdν

)
(2.4)

≥ Φ

(∫
Ω

wgdν

)∫
Ω

w (Ψ ◦ g) dν + Ψ

(∫
Ω

wgdν

)∫
Ω

w (Φ ◦ g) dν.

If the functions (Φ,Ψ) are asynchronous, then the inequality in (2.4) reverses.

Proof. Since Φ, Ψ are synchronous on [m,M ] and
∫

Ω
wgdν ∈ [m,M ] , then we have[

Φ (g (x))− Φ

(∫
Ω

wgdν

)][
Ψ (g (x))−Ψ

(∫
Ω

wgdν

)]
≥ 0

for ν-a.e. x ∈ Ω.
This is equivalent to

Φ (g (x)) Ψ (g (x)) + Φ

(∫
Ω

wgdν

)
Ψ

(∫
Ω

wgdν

)
(2.5)

≥ Φ

(∫
Ω

wgdν

)
Ψ + Ψ

(∫
Ω

wgdν

)
Φ (g (x))

for ν-a.e. x ∈ Ω.
Now, if we multiply (2.5) by w ≥ 0 a.e. on Ω and integrate, we deduce the desired result
(2.4). �

Remark 2.1. If the functions Φ, Ψ : [m,M ] → R have the same monotonicity (opposite mono-
tonicity) on [m,M ] , then they are synchronous (asynchronous) and the inequality (2.4) holds for any
g ∈ Lw (Ω, ν) .

If Φ, Ψ : [m,M ] → R are two synchronous functions on [m,M ], xi ∈ [m,M ] and wi ≥ 0,
i ∈ {1, ..., n} with

∑n
i=1 wi = 1, then by applying the inequality (2.4) for the discrete counting

measure, we have
n∑
i=1

wiΦ (xi) Ψ (xi) + Φ

(
n∑
i=1

wixi

)
Ψ

(
n∑
i=1

wixi

)
(2.6)

≥ Φ

(
n∑
i=1

wixi

)
n∑
i=1

wiΨ (xi) + Ψ

(
n∑
i=1

wixi

)
n∑
i=1

wiΦ (xi) .

Example 2.1. Let w ≥ 0 a.e. on Ω with
∫

Ω
wdν = 1.

a). If p, q > 0 (< 0) and g : Ω → [0,∞) is ν-measurable and such that g, gp, gq, gp+q ∈ Lw (Ω, ν) ,
then ∫

Ω

wgp+qdν +

(∫
Ω

wgdν

)p(∫
Ω

wgdν

)q
(2.7)

≥
(∫

Ω

wgdν

)p ∫
Ω

wgqdν +

(∫
Ω

wgdν

)q ∫
Ω

wgpdν.

If p > 0(< 0), and q < (> 0) then the inequality (2.7) reverses.
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b). If α, β > 0 (< 0) and g : Ω → R is ν-measurable and such that g, exp (αg) , exp (βg) ,
exp ((α+ β) g) ∈ Lw (Ω, ν) , then∫

Ω

w exp ((α+ β) g) dν + exp

(
(α+ β)

∫
Ω

wgdν

)
(2.8)

≥ exp

(
α

∫
Ω

wgdν

)∫
Ω

w exp (βg) dν + exp

(
β

∫
Ω

wgdν

)∫
Ω

w exp (αg) dν.

If α > 0(< 0), and β < (> 0) then the inequality (2.8) reverses.
c). If p > 0 and g : Ω→ (0,∞) is ν-measurable and such that g, gp, ln g, gp ln g ∈ Lw (Ω, ν) , then∫

Ω

wgp ln gdν +

(∫
Ω

wgdν

)p
ln

(∫
Ω

wgdν

)
(2.9)

≥
(∫

Ω

wgdν

)p ∫
Ω

w ln gdν + ln

(∫
Ω

wgdν

)∫
Ω

wgpdν.

If p < 0, then the inequality (2.9) reverses.

Corollary 2.1. Let Φ : [m,M ] → R be a measurable function on [m,M ] and w ≥ 0 a.e. on Ω and∫
Ω
wdν = 1. If g : Ω→ [m,M ] is ν-measurable and such that g, Φ ◦ g, (Φ ◦ g)

2 ∈ Lw (Ω, ν) , then

(2.10)
1

2

[∫
Ω

w (Φ ◦ g)
2
dν + Φ2

(∫
Ω

wgdν

)]
≥ Φ

(∫
Ω

wgdν

)∫
Ω

w (Φ ◦ g) dν.

We observe that the inequality (2.10) is of interest only if Φ
(∫

Ω
wgdν

)
6= 0. In this case, by

dividing with Φ2
(∫

Ω
wgdν

)
> 0, we get

(2.11)
1

2

[∫
Ω
w (Φ ◦ g)

2
dν

Φ2
(∫

Ω
wgdν

) + 1

]
≥
∫

Ω
w (Φ ◦ g) dν

Φ
(∫

Ω
wgdν

) .

Remark 2.2. Let Φ : [m,M ] → R be a convex function on [m,M ] and w ≥ 0 a.e. on Ω with∫
Ω
wdν = 1. If g : Ω → [m,M ] is ν-measurable and such that g, Φ ◦ g, (Φ ◦ g)

2 ∈ Lw (Ω, ν) and
Φ
(∫

Ω
wgdν

)
> 0, then by (2.11) we have

(2.12)
1

2

[∫
Ω
w (Φ ◦ g)

2
dν

Φ2
(∫

Ω
wgdν

) + 1

]
≥
∫

Ω
w (Φ ◦ g) dν

Φ
(∫

Ω
wgdν

) ≥ 1.

This implies that

(2.13)

∫
Ω
w (Φ ◦ g)

2
dν

Φ2
(∫

Ω
wgdν

) ≥ 1.

This inequality obviously holds for functions Φ : [m,M ] → R that are square convex, namely Φ2 is
convex. There are examples of convex functions Φ : [m,M ] → R for which Φ2 is not convex and
Φ
(∫

Ω
wgdν

)
> 0 holds. Indeed, if we consider Φ : [−k, k] → R, Φ (t) = t2 − 1 for k > 1 then

Φ2 (t) =
(
t2 − 1

)2 is convex on
[
−k,−

√
3

3

]
∪
[√

3
3 , k

]
and concave on

(√
3

3 ,
√

3
3

)
. Now, observe that

for g (t) = t, Ω = [0, k], w (t) = 1
k we have∫

Ω

wgdν =
1

k

∫ k

0

tdt =
k

2

and

Φ

(∫
Ω

wgdν

)
= Φ

(
k

2

)
=
k2

4
− 1
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which is positive for k > 2.
This shows that the Jensen’s type inequality (2.13) holds for larger classes than the square convex func-
tions, namely for convex functions Φ for which we have Φ

(∫
Ω
wgdν

)
> 0.

Corollary 2.2. Let Φ : [m,M ]→ R be a monotonic nondecreasing function on [m,M ] and w ≥ 0 a.e.
on Ω and

∫
Ω
wdν = 1. If g : Ω→ [m,M ] is ν-measurable and such that g,Φ◦g, g (Φ ◦ g) ∈ Lw (Ω, ν) ,

then

(2.14)
∫

Ω

wg (Φ ◦ g) dν ≥
∫

Ω

wgdν

∫
Ω

w (Φ ◦ g) dν.

Remark 2.3. We observe that, under the assumptions of Corollary 2.2 and if g : Ω→ [m,M ] is convex
and

∫
Ω
wgdν > 0, then we get from (2.14) that

(2.15)

∫
Ω
wg (Φ ◦ g) dν∫

Ω
wgdν

≥
∫

Ω

w (Φ ◦ g) dν ≥ Φ

(∫
Ω

wgdν

)
.

Example 2.2. Let w ≥ 0 a.e. on Ω with
∫

Ω
wdν = 1.

a). If p ≥ 1 and g : Ω→ [m,M ] is ν-measurable and such that g, gp, gp+1 ∈ Lw (Ω, ν) , then

(2.16)

∫
Ω
wgp+1dν∫
Ω
wgdν

≥
∫

Ω

wgpdν ≥
(∫

Ω

wgdν

)p
.

b). If α > 0 and g : Ω → [m,M ] is ν-measurable and such that g, exp (αg) , g exp (αg) ∈ Lw (Ω, ν) ,
then

(2.17)

∫
Ω
wg exp (αg) dν∫

Ω
wgdν

≥
∫

Ω

w exp (αg) dν ≥ exp

(
α

∫
Ω

wgdν

)
.

Corollary 2.3. Let Φ, Ψ : [m,M ] → R be two synchronous functions on [m,M ] , Ψ also convex on
[m,M ] and w ≥ 0 a.e. on Ω with

∫
Ω
wdν = 1. If g : Ω → [m,M ] is ν-measurable and such that g,

Φ ◦ g, Ψ ◦ g, (Φ ◦ g) (Ψ ◦ g) ∈ Lw (Ω, ν) and Φ
(∫

Ω
wgdν

)
> 0, then

(2.18)
∫

Ω

w (Φ ◦ g) (Ψ ◦ g) dν ≥ Ψ

(∫
Ω

wgdν

)∫
Ω

w (Φ ◦ g) .

Proof. From (2.4) and Jensen’s inequality for Ψ we have∫
Ω

w (Φ ◦ g) (Ψ ◦ g) dν + Φ

(∫
Ω

wgdν

)
Ψ

(∫
Ω

wgdν

)
≥ Φ

(∫
Ω

wgdν

)∫
Ω

w (Ψ ◦ g) dν + Ψ

(∫
Ω

wgdν

)∫
Ω

w (Φ ◦ g)

≥ Φ

(∫
Ω

wgdν

)
Ψ

(∫
Ω

wgdν

)
+ Ψ

(∫
Ω

wgdν

)∫
Ω

w (Φ ◦ g)

and the inequality (2.18) is obtained. �

Let Φ, Ψ : [m,M ] → R be two synchronous functions on [m,M ] , Ψ also convex on [m,M ]. If
xi ∈ [m,M ] and wi ≥ 0, i ∈ {1, ..., n} with

∑n
i=1 wi = 1, then by applying the inequality (2.18)

for the discrete counting measure, we have

(2.19)
n∑
i=1

wiΦ (xi) Ψ (xi) ≥ Ψ

(
n∑
i=1

wixi

)
n∑
i=1

wiΦ (xi) .
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Example 2.3. Let w ≥ 0 a.e. on Ω with
∫

Ω
wdν = 1.

a). If p > 0, q ≥ 1 and g : Ω→ [0,∞) is ν-measurable and such that g, gp, gq, gp+q ∈ Lw (Ω, ν) , then
by (2.18) we have

(2.20)

∫
Ω
wgp+qdν∫
Ω
wgp

≥
(∫

Ω

wgdν

)q
.

b). If α, β > 0 and g : Ω→ R is ν-measurable and such that g, exp (βg) , exp ((α+ β) g) ∈ Lw (Ω, ν) ,
then by (2.18) we have

(2.21)

∫
Ω
w exp ((α+ β) g) dν∫

Ω
w exp (βg)

≥ exp

(
α

∫
Ω

wgdν

)
.

c). If p ≥ 1 and g : Ω → (0,∞) is ν-measurable and such that g, ln g, gp ln g ∈ Lw (Ω, ν) , then by
(2.18) we have

(2.22)
∫

Ω

wgp ln gdν ≥
(∫

Ω

wgdν

)p ∫
Ω

w ln gdν.

3. AN ASSOCIATED FUNCTIONAL

Let Φ, Ψ : I → R be two measurable functions on the interval I and w ≥ 0 a.e. on Ω with∫
Ω
wdν = 1. If g : Ω→ I is ν-measurable and such that g,Φ◦g,Ψ◦g, (Φ ◦ g) (Ψ ◦ g) ∈ Lw (Ω, ν) ,

then we can consider the following functional

F (Φ,Ψ; g, w)(3.23)

:=

∫
Ω

w (Φ ◦ g) (Ψ ◦ g) dν + Φ

(∫
Ω

wgdν

)
Ψ

(∫
Ω

wgdν

)
− Φ

(∫
Ω

wgdν

)∫
Ω

w (Ψ ◦ g) dν −Ψ

(∫
Ω

wgdν

)∫
Ω

w (Φ ◦ g) dν.

In particular, if g, Φ ◦ g, Ψ ◦ g, (Φ ◦ g)
2 ∈ Lw (Ω, ν) , we have

F (Φ; g, w)(3.24)

:=

∫
Ω

w (Φ ◦ g)
2
dν + Φ2

(∫
Ω

wgdν

)
− 2Φ

(∫
Ω

wgdν

)∫
Ω

w (Φ ◦ g) dν

≥ 0.

Theorem 3.2. Let Φ, Ψ : I → R be two measurable functions on I and w ≥ 0 a.e. on Ω with∫
Ω
wdν = 1. If g : Ω→ I is ν-measurable and such that g,Φ◦g,Ψ◦g, (Φ ◦ g)

2
, (Ψ ◦ g)

2 ∈ Lw (Ω, ν) ,
then

(3.25) F2 (Φ,Ψ; g, w) ≤ F (Φ; g, w)F (Ψ; g, w) .

Proof. Observe that the following identity holds true

F (Φ,Ψ; g, w)(3.26)

=

∫
Ω

w (x)

[
Φ (g (x))− Φ

(∫
Ω

wgdν

)][
Ψ (g (x))−Ψ

(∫
Ω

wgdν

)]
dν (x) .
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Using the Cauchy-Bunyakovsky-Schwarz integral inequality we have∣∣∣∣∫
Ω

w (x)

[
Φ (g (x))− Φ

(∫
Ω

wgdν

)][
Ψ (g (x))−Ψ

(∫
Ω

wgdν

)]
dν (x)

∣∣∣∣(3.27)

≤

(∫
Ω

w (x)

[
Φ (g (x))− Φ

(∫
Ω

wgdν

)]2

dν (x)

)1/2

×

(∫
Ω

w (x)

[
Ψ (g (x))−Ψ

(∫
Ω

wgdν

)]2

dν (x)

)1/2

= F1/2 (Φ; g, w)F1/2 (Ψ; g, w) .

On utilizing (3.26) and (3.27) we deduce the desired result (3.25). �

For the functions Φ, Ψ : I → R, the n-tuples of real numbers x = (x1, ..., xn) ∈ In and the
probability distribution w = (w1, ..., wn) define the functionals

F (Φ,Ψ;x,w) :=

n∑
i=1

wiΦ (xi) Ψ (xi) + Φ

(
n∑
i=1

wixi

)
Ψ

(
n∑
i=1

wixi

)
(3.28)

− Φ

(
n∑
i=1

wixi

)
n∑
i=1

wiΨ (xi)−Ψ

(
n∑
i=1

wixi

)
n∑
i=1

wiΦ (xi)

and

(3.29) F (Φ;x,w) :=

n∑
i=1

wiΦ
2 (xi) + Φ2

(
n∑
i=1

wixi

)
− 2Φ

(
n∑
i=1

wixi

)
n∑
i=1

wiΦ (xi) .

From the inequality (3.25) we have

F2 (Φ,Ψ;x,w) ≤ F (Φ;x,w)F (Ψ;x,w) .

Theorem 3.3. Let Φ : I → R be an L-Lipschitzian function on I, with L > 0, namely it satisfies the
condition

|Φ (t)− Φ (s)| ≤ L |t− s| for any t, s ∈ I,

and w ≥ 0 a.e. on Ω with
∫

Ω
wdν = 1. If g : Ω → I is ν-measurable and such that g, g2, Φ ◦ g,

(Φ ◦ g)
2 ∈ Lw (Ω, ν) , then

(3.30) (0 ≤)F1/2 (Φ; g, w) ≤ LD (g, w) ,

where the dispersion D (g, w) is defined by

(3.31) D (g, w) :=

(∫
Ω

wg2dν −
(∫

Ω

wgdν

)2
)1/2

.
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Proof. By Lipschitz condition we have

F (Φ; g, w) =

∫
Ω

w (x)

[
Φ (g (x))− Φ

(∫
Ω

wgdν

)]2

dν (x)

≤ L2

∫
Ω

w (x)

(
g (x)−

∫
Ω

wgdν

)2

dν (x)

= L2

∫
Ω

w (x)

(
g2 (x)− 2

(∫
Ω

wgdν

)
g (x) +

(∫
Ω

wgdν

)2
)
dν (x)

= L2

[∫
Ω

w (x) g2 (x) dν (x)−
(∫

Ω

wgdν

)2
]

= L2D2 (g, w) .

�

Corollary 3.4. Let Φ : [m,M ]→ R be an absolutely continuous function on [m,M ] with

(3.32) ‖Φ′‖[m,M ],∞ := essupt∈[m,M ] |Φ
′ (t)| <∞

and w ≥ 0 a.e. on Ω with
∫

Ω
wdν = 1. If g : Ω → [m,M ] is ν-measurable and such that g, g2, Φ ◦ g,

(Φ ◦ g)
2 ∈ Lw (Ω, ν) , then

(3.33) (0 ≤)F1/2 (Φ; g, w) ≤ ‖Φ′‖[m,M ],∞D (g, w) .

The proof follows by Theorem 3.3 on observing that for and t, s ∈ [m,M ] we have

|Φ (t)− Φ (s)| =
∣∣∣∣∫ t

s

Φ′ (u) du

∣∣∣∣ ≤ |t− s| ‖Φ′‖[m,M ],∞ .

Corollary 3.5. Let Φ : I → R be an L-Lipschitzian function on I, with L > 0, and w ≥ 0 a.e. on Ω
with

∫
Ω
wdν = 1. If g : Ω→ I is ν-measurable and there exists the constant m, M ∈ I such that

(3.34) m ≤ g (x) ≤M for ν-a.e. x ∈ Ω,

then g, g2, Φ ◦ g, (Φ ◦ g)
2 ∈ Lw (Ω, ν) and

(3.35) (0 ≤)F1/2 (Φ; g, w) ≤ 1

2
(M −m)L.

The proof follows by (3.30) and the Grüss inequality that states that

(3.36) D (g, w) ≤ 1

2
(M −m)

provided that g satisfies the condition (3.34).

Corollary 3.6. Let Φ : I → R be Lipschitzian with constant L > 0, Ψ : I → R be Lipschitzian with
constant K > 0 and w ≥ 0 a.e. on Ω with

∫
Ω
wdν = 1. If g : Ω → I is ν-measurable and such that g,

Φ ◦ g, Ψ ◦ g, (Φ ◦ g)
2
, (Ψ ◦ g)

2 ∈ Lw (Ω, ν) , then

(3.37) |F (Φ,Ψ; g, w)| ≤ LKD2 (g, w) .

Moreover, if g : Ω→ I is ν-measurable and there exists the constant m, M ∈ I such that the condition
(3.34) is satisfied, then

(3.38) |F (Φ,Ψ; g, w)| ≤ 1

4
(M −m)

2
LK.
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The proof follows by (3.25), (3.30) and (3.35).
If Φ : I → R is Lipschitzian with constant L > 0, Ψ : I → R is Lipschitzian with constant
K > 0, the n-tuples of real numbers x = (x1, ..., xn) ∈ In then for any probability distribution
w = (w1, ..., wn) we have by (3.37) that

(3.39) |F (Φ,Ψ;x,w)| ≤ LK

 n∑
i=1

wix
2
i −

(
n∑
i=1

wixi

)2
 .

If the interval I is closed, namely I = [m,M ] and x = (x1, ..., xn) ∈ [m,M ]
n then by (3.38) we

get the simpler upper bound:

(3.40) |F (Φ,Ψ;x,w)| ≤ 1

4
(M −m)

2
LK.

Consider the functional

Fp,q (g, w) :=

∫
Ω

wgp+qdν +

(∫
Ω

wgdν

)p(∫
Ω

wgdν

)q
(3.41)

−
(∫

Ω

wgdν

)p ∫
Ω

wgqdν −
(∫

Ω

wgdν

)q ∫
Ω

wgpdν,

provided that g > 0, w ≥ 0 a.e. on Ω with
∫

Ω
wdν = 1, g, gp, gq, gp+q ∈ Lw (Ω, ν) and p,

q ∈ R\ {0} .
Assume that g : Ω→ [m,M ] ⊂ (0,∞) and for p 6= 0 define the constants

(3.42) ∆p (m,M) := |p| ×

 Mp−1 if p ≥ 1,

mp−1 if p < 1.

If we consider the function Φ : [m,M ] ⊂ (0,∞)→ (0,∞) , Φ (t) = tp then Φ′ (t) = ptp−1 and

sup
t∈[m,M ]

|Φ′ (t)| = ∆p (m,M)

as defined by (3.42).

Proposition 3.1. Let g : Ω → [m,M ] ⊂ (0,∞) be ν-measurable and p, q ∈ R\ {0} . Then we have
the inequality

(3.43) |Fp,q (g, w)| ≤ 1

4
(M −m)

2
∆p (m,M) ∆q (m,M) .

The proof follows by Corollary 3.6 for the functions Φ (t) = tp and Ψ (t) = tq for p, q ∈ R\ {0} .
Consider now the functional

Fp,ln (g, w) :=

∫
Ω

wgp ln gdν +

(∫
Ω

wgdν

)p
ln

(∫
Ω

wgdν

)
(3.44)

−
(∫

Ω

wgdν

)p ∫
Ω

w ln gdν − ln

(∫
Ω

wgdν

)∫
Ω

wgpdν,

provided that p > 0 and g : Ω → (0,∞) is ν-measurable and such that g, gp, ln g, gp ln g ∈
Lw (Ω, ν) .
If we take the function Ψ (t) = ln t, t ∈ [m,M ] ⊂ (0,∞) , then supt∈[m,M ] |Ψ′ (t)| = 1

m .

Using Corollary 3.6 for the functions Φ (t) = tp and Ψ (t) = ln t for p ∈ R\ {0} we can state the
following result as well:
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Proposition 3.2. Let g : Ω → [m,M ] ⊂ (0,∞) be ν-measurable and p ∈ R\ {0} . Then we have the
inequality

(3.45) |Fp,ln (g, w)| ≤ 1

4m
(M −m)

2
∆p (m,M) .

We have the following result:

Theorem 3.4. Let Φ, Ψ : I → R be two measurable functions such that there exists the real constants
γ, Γ with

(3.46) γ ≤ Φ (t)− Φ (s)

Ψ (t)−Ψ (s)
≤ Λ

for a.e. t, s ∈ I with t 6= s. If g : Ω→ I is ν-measurable and such that g,Φ◦g,Ψ◦g, (Φ ◦ g)
2
, (Ψ ◦ g)

2 ∈
Lw (Ω, ν) , then we have the inequalities

(3.47) γF (Ψ; g, w) ≤ F (Φ,Ψ; g, w) ≤ ΛF (Ψ; g, w) .

Proof. My multiplying (3.46) with (Ψ (t)−Ψ (s))
2 ≥ 0 we get

γ (Ψ (t)−Ψ (s))
2 ≤ [Φ (t)− Φ (s)] [Ψ (t)−Ψ (s)] ≤ Λ (Ψ (t)−Ψ (s))

2

for a.e. t, s ∈ I .
This implies

γw (x)

(
Ψ (g (x))−Ψ

(∫
Ω

wgdν

))2

(3.48)

≤ w (x)

[
Φ (g (x))− Φ

(∫
Ω

wgdν

)][
Ψ (g (x))−Ψ

(∫
Ω

wgdν

)]
≤ Λw (x)

(
Ψ (g (x))−Ψ

(∫
Ω

wgdν

))2

for ν-a.e. x ∈ Ω.
Integrating the inequality (3.48) on Ω and making use of the equality (3.26) we deduce the
desired result (3.47). �

Corollary 3.7. Let Φ, Ψ : [m,M ] → R be continuous on [m,M ] and differentiable on (m,M) .
Assume that Ψ′ (t) 6= 0 for any t ∈ (m,M) and

inf
t∈(m,M)

(
Φ′ (t)

Ψ′ (t)

)
> −∞, sup

t∈(m,M)

(
Φ′ (t)

Ψ′ (t)

)
<∞.

If g : Ω → I is ν-measurable and such that g, Φ ◦ g, Ψ ◦ g, (Φ ◦ g)
2
, (Ψ ◦ g)

2 ∈ Lw (Ω, ν) , then we
have the inequalities

inf
t∈(m,M)

(
Φ′ (t)

Ψ′ (t)

)
F (Ψ; g, w) ≤ F (Φ,Ψ; g, w)(3.49)

≤ sup
t∈(m,M)

(
Φ′ (t)

Ψ′ (t)

)
F (Ψ; g, w) .

Proof. By Cauchy’s mean value theorem, for any t, s ∈ [m,M ] with t 6= s there exists a c between t
and s such that

Φ (t)− Φ (s)

Ψ (t)−Ψ (s)
=

Φ′ (c)

Ψ′ (c)
.
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Therefore, for any t, s ∈ [m,M ] with t 6= s we have

inf
t∈(m,M)

(
Φ′ (t)

Ψ′ (t)

)
≤ Φ (t)− Φ (s)

Ψ (t)−Ψ (s)
≤ sup
t∈(m,M)

(
Φ′ (t)

Ψ′ (t)

)
.

By applying Theorem 3.4 for γ = inft∈(m,M)

(
Φ′(t)
Ψ′(t)

)
and Γ = supt∈(m,M)

(
Φ′(t)
Ψ′(t)

)
we get the

desired result (3.49). �

Remark 3.4. We observe that if Φ, Ψ : I → R are two measurable functions such that there exists the
positive constant Θ with

(3.50)
∣∣∣∣Φ (t)− Φ (s)

Ψ (t)−Ψ (s)

∣∣∣∣ ≤ Θ

for a.e. t, s ∈ I with t 6= s and g : Ω → I is ν-measurable and such that g, Φ ◦ g, Ψ ◦ g,
(Φ ◦ g)

2
, (Ψ ◦ g)

2 ∈ Lw (Ω, ν) , then we have the inequalities

(3.51) |F (Φ,Ψ; g, w)| ≤ ΘF (Ψ; g, w) .

Moreover, if Φ, Ψ are as in Corollary 3.7, then we have

|F (Φ,Ψ; g, w)| ≤ sup
t∈(m,M)

∣∣∣∣Φ′ (t)Ψ′ (t)

∣∣∣∣F (Ψ; g, w) .

In the case of synchronous functions we can prove the following result as well:

Theorem 3.5. Let Φ, Ψ : [m,M ] → R be two synchronous functions on [m,M ] and w ≥ 0 a.e. on Ω
with

∫
Ω
wdν = 1. If g : Ω → [m,M ] is ν-measurable and such that g, Φ ◦ g, Ψ ◦ g, (Φ ◦ g) (Ψ ◦ g) ,

|Φ| ◦ g, |Ψ| ◦ g, (|Φ| ◦ g) (|Ψ| ◦ g) ∈ Lw (Ω, ν) , then

F (Φ,Ψ; g, w)(3.52)

≥ max {|F (|Φ| ,Ψ; g, w)| , |F (Φ, |Ψ| ; g, w)| , |F (|Φ| , |Ψ| ; g, w)|} ≥ 0.

Proof. We use the continuity property of the modulus, namely

|a− b| ≥ ||a| − |b|| , a, b ∈ R.

Since Φ, Ψ are synchronous, then[
Φ (g (x))− Φ

(∫
Ω

wgdν

)][
Ψ (g (x))−Ψ

(∫
Ω

wgdν

)]
(3.53)

=

∣∣∣∣Φ (g (x))− Φ

(∫
Ω

wgdν

)∣∣∣∣ ∣∣∣∣Ψ (g (x))−Ψ

(∫
Ω

wgdν

)∣∣∣∣
≥



∣∣|Φ (g (x))| −
∣∣Φ (∫

Ω
wgdν

)∣∣∣∣ ∣∣Ψ (g (x))−Ψ
(∫

Ω
wgdν

)∣∣∣∣Φ (g (x))− Φ
(∫

Ω
wgdν

)∣∣ ∣∣|Ψ (g (x))| −
∣∣Ψ (∫

Ω
wgdν

)∣∣∣∣∣∣|Φ (g (x))| −
∣∣Φ (∫

Ω
wgdν

)∣∣∣∣ ∣∣|Ψ (g (x))| −
∣∣Ψ (∫

Ω
wgdν

)∣∣∣∣
=



∣∣(|Φ (g (x))| −
∣∣Φ (∫

Ω
wgdν

)∣∣) (Ψ (g (x))−Ψ
(∫

Ω
wgdν

))∣∣∣∣(Φ (g (x))− Φ
(∫

Ω
wgdν

)) (
|Ψ (g (x))| −

∣∣Ψ (∫
Ω
wgdν

)∣∣)∣∣∣∣(|Φ (g (x))| −
∣∣Φ (∫

Ω
wgdν

)∣∣) (|Ψ (g (x))| −
∣∣Ψ (∫

Ω
wgdν

)∣∣)∣∣
for any x ∈ Ω.
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By using the identity (3.26) and the first branch in (3.53) we have

F (Φ,Ψ; g, w)

=

∫
Ω

w (x)

[
Φ (g (x))− Φ

(∫
Ω

wgdν

)][
Ψ (g (x))−Ψ

(∫
Ω

wgdν

)]
dν (x)

≥
∫

Ω

w (x)

∣∣∣∣(|Φ (g (x))| −
∣∣∣∣Φ(∫

Ω

wgdν

)∣∣∣∣)(Ψ (g (x))−Ψ

(∫
Ω

wgdν

))∣∣∣∣ dν (x)

≥
∣∣∣∣∫

Ω

w (x)

(
|Φ (g (x))| −

∣∣∣∣Φ(∫
Ω

wgdν

)∣∣∣∣)(Ψ (g (x))−Ψ

(∫
Ω

wgdν

))
dν (x)

∣∣∣∣
= |F (|Φ| ,Ψ; g, w)| ,

which proves the first part of (3.52).
The second and third part of (3.52) can be proved in a similar way and the details are omitted.

�

For the natural numbers n, m ≥ 1 we consider the functions Φ (t) = t2n+1 and Ψ (t) = t2m+1

for real numbers t ∈ R. These functions are monotonic increasing on R. If g : Ω → R is ν-
measurable and such that g, g2n+1, g2m+1, g2m+2n+2 ∈ Lw (Ω, ν) , then by (3.52) we have the
inequality

F
(

(·)2n+1
, (·)2m+1

; g, w
)

(3.54)

≥ max
{∣∣∣F (|·|2n+1

, (·)2m+1
; g, w

)∣∣∣ ,∣∣∣F ((·)2n+1
, |·|2m+1

; g, w
)∣∣∣ , ∣∣∣F (|·|2n+1

, |·|2m+1
; g, w

)∣∣∣} (≥ 0.)

4. APPLICATIONS FOR f -DIVERGENCES

Let (X,A) be a measurable space satisfying |A| > 2 and µ be a σ-finite measure on (X,A) . Let
P be the set of all probability measures on (X,A) which are absolutely continuous with respect
to µ. For P, Q ∈ P , let p = dP

dµ and q = dQ
dµ denote the Radon-Nikodym derivatives of P and Q

with respect to µ.
Two probability measures P, Q ∈ P are said to be orthogonal and we denote this by Q ⊥ P if

P ({q = 0}) = Q ({p = 0}) = 1.

Let f : [0,∞)→ (−∞,∞] be a convex function that is continuous at 0, i.e., f (0) = limu↓0 f (u) .
In 1963, I. Csiszár [3] introduced the concept of f -divergence as follows.

Definition 4.1. Let P, Q ∈ P . Then

(4.55) If (Q,P ) =

∫
X

p (x) f

[
q (x)

p (x)

]
dµ (x) ,

is called the f -divergence of the probability distributions Q and P.

Remark 4.5. Observe that, the integrand in the formula (4.55) is undefined when p (x) = 0. The way
to overcome this problem is to postulate for f as above that

(4.56) 0f

[
q (x)

0

]
= q (x) lim

u↓0

[
uf

(
1

u

)]
, x ∈ X.
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We now give some examples of f -divergences that are well-known and often used in the liter-
ature (see also [2]).
For f continuous convex on [0,∞) we obtain the ∗-conjugate function of f by

f∗ (u) = uf

(
1

u

)
, u ∈ (0,∞)

and
f∗ (0) = lim

u↓0
f∗ (u) .

It is also known that if f is continuous convex on [0,∞) then so is f∗.
The following two theorems contain the most basic properties of f -divergences. For their
proofs we refer the reader to Chapter 1 of [17] (see also [2]).

Theorem 4.6 (Uniqueness and Symmetry Theorem). Let f, f1 be continuous convex on [0,∞). We
have

If1 (Q,P ) = If (Q,P ) ,

for all P, Q ∈ P if and only if there exists a constant c ∈ R such that

f1 (u) = f (u) + c (u− 1) ,

for any u ∈ [0,∞).

Theorem 4.7 (Range of Values Theorem). Let f : [0,∞) → R be a continuous convex function on
[0,∞).
For any P, Q ∈ P , we have the double inequality

(4.57) f (1) ≤ If (Q,P ) ≤ f (0) + f∗ (0) .

(i) If P = Q, then the equality holds in the first part of (4.57).
If f is strictly convex at 1, then the equality holds in the first part of (4.57) if and only if P = Q;

(ii) If Q ⊥ P, then the equality holds in the second part of (4.57).
If f (0) + f∗ (0) <∞, then equality holds in the second part of (4.57) if and only if Q ⊥ P.

The following result is a refinement of the second inequality in Theorem 4.7 (see [2, Theorem
3]).

Theorem 4.8. Let f be a continuous convex function on [0,∞) with f (1) = 0 (f is normalised) and
f (0) + f∗ (0) <∞. Then

(4.58) 0 ≤ If (Q,P ) ≤ 1

2
[f (0) + f∗ (0)]V (Q,P )

for any Q, P ∈ P .

For other inequalities for f -divergence see [1], [4]-[15].
The concept of f -divergence can be extended in a similar way for non-convex functions.

Theorem 4.9. Let f, h : [0,∞)→ R be synchronous and measurable on [0,∞). For any P, Q ∈ P we
have

(4.59) Ifh (Q,P ) ≥ f (1) Ih (Q,P ) + h (1) If (Q,P )− f (1)h (1) .

Moreover, if f is normalised, then

(4.60) Ifh (Q,P ) ≥ h (1) If (Q,P ) .

If both f and h are normalised, then

(4.61) Ifh (Q,P ) ≥ 0.
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Proof. If we write the inequality (2.4) for the synchronous functions (Φ,Ψ) = (f, h), w = p,
g = q

p , Ω = X and ν = µ we have∫
X

pf

(
q

p

)
h

(
q

p

)
dµ+ f

(∫
X

qdµ

)
h

(∫
X

qdµ

)
≥ f

(∫
X

qdµ

)∫
X

ph

(
q

p

)
dµ+ h

(∫
X

qdµ

)∫
X

pf

(
q

p

)
dµ

that is equivalent to the desired result (4.59).
The rest is obvious. �

An important divergence in Information Theory is the Kullback-Leibler divergence obtained for
the decreasing convex function f (t) = − ln t, t > 0 and defined by

KL (P,Q) =

∫
X

p ln

(
p

q

)
dµ,

for any P, Q ∈ P .
If h : [0,∞)→ R is a decreasing function with h (1) ≥ 0, then by (4.60) we have the inequality

(4.62) I−h ln(·) (Q,P ) ≥ h (1)KL (P,Q) ≥ 0

for any P, Q ∈ P .
In particular, we have the following inequalities

(4.63) I−(·)p ln(·) (Q,P ) ≥ KL (P,Q) ≥ 0

and

(4.64) I− exp(−α·) ln(·) (Q,P ) ≥ KL (P,Q) exp (−α) ≥ 0

for p, α > 0.

Theorem 4.10. Let f, h : [0,∞) → R be Lipschitzian on [0,∞) with the constants L and K, respec-
tively. For any P, Q ∈ P we then have

(4.65) |Ifh (Q,P )− f (1) Ih (Q,P )− h (1) If (Q,P ) + f (1)h (1)| ≤ KLχ2 (Q,P )

where

χ2 (Q,P ) =
1

2

∫
X

p

(
q

p
− 1

)2

dµ =

∫
X

q2

p
dµ− 1

is Karl Pearson’s χ2-divergence.
Moreover, if f is normalised, then

(4.66) |Ifh (Q,P )− h (1) If (Q,P )| ≤ KLχ2 (Q,P ) .

If both f and h are normalised, then

(4.67) |Ifh (Q,P )| ≤ KLχ2 (Q,P ) .
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Proof. If we write the inequality (3.25) for the functions (Φ,Ψ) = (f, h), w = p, g = q
p , Ω = X

and ν = µ we have∣∣∣∣∫
X

pf

(
q

p

)
h

(
q

p

)
dµ+ f

(∫
X

qdµ

)
h

(∫
X

qdµ

)
(4.68)

−f
(∫

X

qdµ

)∫
X

ph

(
q

p

)
dµ− h

(∫
X

qdµ

)∫
X

pf

(
q

p

)
dµ

∣∣∣∣
≤ LK

(∫
X

q2

p
dµ− 1

)
,

that is equivalent to the desired result (4.65).
The rest is obvious. �

If some bounds for the likelihood ratio are known, then we can state the following results as
well.

Theorem 4.11. Let P, Q ∈ P such that for 0 < r < 1 < R we have

(4.69) r ≤ q

p
≤ R µ-a.e. on X.

If f, h : [r,R]→ R are Lipschitzian on [r,R] with the constants L and K, then we have

|Ifh (Q,P )− f (1) Ih (Q,P )− h (1) If (Q,P ) + f (1)h (1)|(4.70)

≤ 1

4
(R− r)2

KL.

Moreover, if f is normalised, then

(4.71) |Ifh (Q,P )− h (1) If (Q,P )| ≤ 1

4
(R− r)2

KL.

If both f and h are normalised, then

(4.72) |Ifh (Q,P )| ≤ 1

4
(R− r)2

KL.

If we consider the convex function g (t) = (t− 1) ln t, then this function generates the Jeffreys
divergence measure

J (P,Q) :=

∫
X

(p− q) (ln p− ln q) dµ

where P, Q ∈ P .
If we take f (t) = t−1, h (t) = ln t then f is Lipschitzian with the constant 1 and h is Lipschitzian
with the constant 1

r on [r,R] and by (4.72) we have

(4.73) 0 ≤ J (P,Q) ≤ 1

4r
(R− r)2

provided that P, Q ∈ P satisfy the condition (4.69).
The Neyman Chi-square distance is defined by

χ2
N (Q,P ) :=

1

2

∫
X

(p− q)2

q
dµ =

∫
X

p2

q
dµ− 1 = χ2 (P,Q)

and generated by the convex function g (t) = (t−1)2

2t , t > 0.
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Now, consider the functions f (t) = 1
2 (t− 1)

2 and h (t) = 1
t defined on the interval [r,R] . Then

f ′ (t) = t− 1 and

max
t∈[r,R]

|f ′ (t)| = max {1− r,R− 1} =
R− r

2
+

∣∣∣∣r +R

2
− 1

∣∣∣∣ .
Also h′ (t) = − 1

t2 and

max
t∈[r,R]

|h′ (t)| = 1

r2
.

Then from (4.71) we have

(4.74)
∣∣χ2
N (Q,P )− χ2 (Q,P )

∣∣ ≤ 1

4

(
R

r
− 1

)2(
R− r

2
+

∣∣∣∣r +R

2
− 1

∣∣∣∣)
provided that P, Q ∈ P satisfy the condition (4.69).
Similar results may be obtained by utilizing (3.49), however the details are not presented here.

REFERENCES

[1] P. Cerone and S. S. Dragomir, Approximation of the integral mean divergence and f -divergence via mean results.
Math. Comput. Modelling 42 (2005), no. 1-2, 207–219.

[2] P. Cerone, S. S. Dragomir and F. Österreicher, Bounds on extended f -divergences for a variety of classes, Ky-
bernetika (Prague) 40 (2004), no. 6, 745–756. Preprint, RGMIA Res. Rep. Coll. 6(2003), No.1, Article 5. [ONLINE:
http://rgmia.vu.edu.au/v6n1.html].

[3] I. Csiszár, Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von
Markoffschen Ketten. (German) Magyar Tud. Akad. Mat. Kutató Int. Közl. 8 (1963) 85–108.

[4] S. S. Dragomir, Some inequalities for (m,M)-convex mappings and applications for the Csiszár Φ-divergence in
information theory. Math. J. Ibaraki Univ. 33 (2001), 35–50.

[5] S. S. Dragomir, Some inequalities for two Csiszár divergences and applications. Mat. Bilten No. 25 (2001), 73–90.
[6] S. S. Dragomir, An upper bound for the Csiszár f-divergence in terms of the variational distance and applications.

Panamer. Math. J. 12 (2002), no. 4, 43–54.
[7] S. S. Dragomir, Upper and lower bounds for Csiszár f -divergence in terms of Hellinger discrimination and appli-

cations. Nonlinear Anal. Forum 7 (2002), no. 1, 1–13
[8] S. S. Dragomir, Bounds for f -divergences under likelihood ratio constraints. Appl. Math. 48 (2003), no. 3, 205–223.
[9] S. S. Dragomir, New inequalities for Csiszár divergence and applications. Acta Math. Vietnam. 28 (2003), no. 2,

123–134.
[10] S. S. Dragomir, A generalized f -divergence for probability vectors and applications. Panamer. Math. J. 13 (2003),

no. 4, 61–69.
[11] S. S. Dragomir, Some inequalities for the Csiszár ϕ-divergence when ϕ is an L-Lipschitzian function and applica-

tions. Ital. J. Pure Appl. Math. No. 15 (2004), 57–76.
[12] S. S. Dragomir, A converse inequality for the Csiszár Φ-divergence. Tamsui Oxf. J. Math. Sci. 20 (2004), no. 1, 35–53.
[13] S. S. Dragomir, Some general divergence measures for probability distributions. Acta Math. Hungar. 109 (2005), no.

4, 331–345.
[14] S. S. Dragomir, A refinement of Jensen’s inequality with applications for f -divergence measures. Taiwanese J. Math.

14 (2010), no. 1, 153–164.
[15] S. S. Dragomir, A generalization of f -divergence measure to convex functions defined on linear spaces. Commun.

Math. Anal. 15 (2013), no. 2, 1–14.
[16] H. Jeffreys, Theory of Probability, Oxford University Press, 1948, 2nd ed.
[17] F. Liese and I. Vajda, Convex Statistical Distances, Teubuer-Texte zur Mathematik, Band 95, Leipzig, 1987.

MATHEMATICS, COLLEGE OF ENGINEERING & SCIENCE,
VICTORIA UNIVERSITY, PO BOX 14428,
MELBOURNE CITY, MC 8001, AUSTRALIA

SCHOOL OF COMPUTER SCIENCE & APPLIED MATHEMATICS,
UNIVERSITY OF THE WITWATERSRAND,
PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA.
E-mail address: sever.dragomir@vu.edu.au



CONSTRUCTIVE MATHEMATICAL ANALYSIS
2 (2019), No. 3, pp. 124-129
http://dergipark.gov.tr/cma

ISSN 2651-2939

A Quantitative Variant of Voronovskaja’s Theorem for
King-Type Operators

ZOLTÁN FINTA*

ABSTRACT. In this note we establish a quantitative Voronovskaja theorem for modified Bernstein polynomials us-
ing the first order Ditzian-Totik modulus of smoothness.

Keywords: Bernstein operators, Voronovskaja theorem, King operators, First order Ditzian-Totik modulus of smooth-
ness

2010 Mathematics Subject Classification: 41A25, 41A36.

1. INTRODUCTION

The Bernstein polynomials are defined by

(Bnf)(x) ≡ Bn(f ;x) =
n∑
k=0

pn,k(x)f

(
k

n

)
,(1.1)

where pn,k(x) =
(
n
k

)
xk(1 − x)n−k, x ∈ [0, 1], f ∈ C[0, 1] and n ≥ 1. Among the properties of

Bernstein polynomials we mention the following asymptotic formula, called Voronovskaja’s
theorem: if f is bounded on [0, 1], differentiable in some neighborhood of x ∈ [0, 1], and has second
derivative f ′′(x), then

lim
n→∞

n ((Bnf)(x)− f(x)) =
1

2
x(1− x)f ′′(x).(1.2)

Further properties:

(Bne0)(x) = 1, (Bne1)(x) = x and (Bne2)(x) = x2 +
1

n
x(1− x),

where ei(x) = xi, x ∈ [0, 1] and i ∈ {0, 1, 2, . . .}. In [8] King constructed a Bernstein-type
operator, which preserves the functions e0 and e2. By modification of f

(
k
n

)
in (1.1), Aldaz

et al. [1] defined Bernstein-King-type operators possessing e0 and ej as fixed points, where
j ∈ {2, 3, . . .} is arbitrary. These operators are given by

(Un,jf)(x) ≡ Un,j(f ;x) =
n∑
k=0

pn,k(x)f(an,k)(1.3)

(see [1, Proposition 11]), where x ∈ [0, 1], f ∈ C[0, 1] and

an,k = j

√
k(k − 1) . . . (k − j + 1)

n(n− 1) . . . (n− j + 1)
, n ≥ j ≥ 2.(1.4)

The operators Un,j are linear and positive, Un,je0 = e0 and Un,jej = ej , respectively.
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The goal of the paper is to obtain a quantitative Voronovskaja-type theorem for Un,j with the
aid of the first order Ditzian-Totik modulus of smoothness defined by

ω1
ϕ(f ; δ) = sup

0<h≤δ
sup

x± 1
2hϕ(x)

∣∣∣∣∣ f
(
x+

1

2
hϕ(x)

)
− f

(
x− 1

2
hϕ(x)

) ∣∣∣∣∣,(1.5)

where ϕ(x) =
√
x(1− x), x ∈ [0, 1]. It is known [2, Theorem 2.1.1] that (1.5) is equivalent with

the K−functional

K1,ϕ(f ; δ) = inf
g∈W (ϕ)

{‖f − g‖+ δ‖ϕg′‖}, δ > 0,

where W (ϕ) = {g | g ∈ ACloc[0, 1], ‖ϕg′‖ < ∞} and g ∈ ACloc[0, 1] means that g is absolutely
continuous in every closed interval [a, b] ⊆ [0, 1], i.e. there exists C1 > 0 such that

C−11 ω1
ϕ(f ; δ) ≤ K1,ϕ(f ; δ) ≤ C1ω

1
ϕ(f ; δ).(1.6)

It is worth mentioning that Floater obtained a generalization of (1.2) in [4], dealing with the
asymptotic behavior of differentiated Bernstein polynomials. Different quantitative versions
of Floater’s theorem were established in [5], [6], [7] and [3].

2. MAIN RESULT

In the sequel we need some lemmas.

Lemma 2.1. The inequalities 0 ≤ 1 − xn − (1 − x)n ≤ nx(1 − x) hold true for all x ∈ [0, 1] and
n = 1, 2, . . .

Proof. For x ∈ [0, 1], we have

xn + (1− x)n ≤ x+ (1− x) = 1.(2.1)

For the second inequality, we have

1− xn − (1− x)n = (1− x)(1 + x+ . . .+ xn−1)− (1− x)n

= (1− x)[1 + x+ . . .+ xn−1 − (1− x)n−1] ≤ nx(1− x)

iff 1 + x+ . . .+ xn−1 ≤ nx+ (1− x)n−1. We prove the former inequality by induction on n. If
n = 1, then 1 ≤ x+ 1; we suppose that 1 + x+ . . .+ xn−1 ≤ nx+ (1− x)n−1. Then, by (2.1),

1 + x+ . . .+ xn−1 + xn

≤ nx+ (1− x)n−1 + xn = (n+ 1)x+ (1− x)n−1 − x+ xn

= (n+ 1)x+ (1− x)n + (1− x)n−1 − (1− x)n − x+ xn

= (n+ 1)x+ (1− x)n + x(1− x)n−1 − x+ xn

= (n+ 1)x+ (1− x)n − x(1− xn−1 − (1− x)n−1) ≤ (n+ 1)x+ (1− x)n,

which was to be proved. �

Lemma 2.2. For the operator Un,j defined by (1.3)-(1.4) and x ∈ [0, 1], we have

a) 0 ≤ Un,j(xe0 − e1;x) ≤ 1
n (j − 1);

b) Un,j((e1 − xe0)2;x) ≤ 2
n ((j − 1)2 + 1)ϕ2(x);

c) Un,j((e1 − xe0)4;x) ≤ 8
n2 ((j − 1)2 + 1).
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Proof. Because Un,j is linear and preserves the functions e0 and ej , we obtain

Un,j(xe0 − e1;x) = x− Un,j(e1;x) =
n∑
k=0

pn,k(x)
k

n
−

n∑
k=0

pn,k(x)an,k

=

n∑
k=0

pn,k(x)

(
k

n
− an,k

)
.(2.2)

For k ∈ {j, j + 1, . . . , n}, we have
k − j + 1

n− j + 1
≤ . . . ≤ k − 1

n− 1
≤ k

n
. Hence

0 ≤ k

n
− an,k ≤ k

n
− k − j + 1

n− j + 1
= (j − 1)

n− k
n(n− j + 1)

≤ (j − 1)
n− j

n(n− j + 1)
≤ j − 1

n
.(2.3)

Therefore, in view of (2.2) and (2.3), we get

0 ≤ Un,j(xe0 − e1;x) =
j−1∑
k=1

pn,k(x)
k

n
+

n−1∑
k=j

pn,k(x)

(
k

n
− an,k

)

≤
j−1∑
k=1

pn,k(x)
j − 1

n
+

n−1∑
k=j

pn,k(x)
j − 1

n
≤ j − 1

n

n∑
k=0

pn,k(x) =
j − 1

n
.

b) Taking into account the inequality (a+ b)2 ≤ 2(a2 + b2), (2.3) and Lemma 2.1, we find that

Un,j((e1 − xe0)2;x) =
n∑
k=0

pn,k(x)(an,k − x)2

≤ 2

n∑
k=0

pn,k(x)

(
an,k −

k

n

)2

+ 2

n∑
k=0

pn,k(x)

(
k

n
− x
)2

= 2

j−1∑
k=1

pn,k(x)

(
k

n

)2

+ 2

n−1∑
k=j

pn,k(x)

(
an,k −

k

n

)2

+
2

n
x(1− x)

≤ 2

(
j − 1

n

)2 j−1∑
k=1

pn,k(x) + 2

(
j − 1

n

)2 n−1∑
k=j

pn,k(x) +
2

n
x(1− x)

= 2

(
j − 1

n

)2

(1− (1− x)n − xn) + 2

n
x(1− x) ≤ 2

(
j − 1

n

)2

nx(1− x) + 2

n
x(1− x)

=
2

n
((j − 1)2 + 1)ϕ2(x).
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c) In view of (a+b)4 ≤ 8(a4+b4), (2.3) and
n∑
k=0

(k−nx)4pn,k(x) = 3n2ϕ4(x)+n(ϕ2(x)−6ϕ4(x)),

we obtain

Un,j((e1 − xe0)4;x) =
n∑
k=0

pn,k(x)(an,k − x)4

≤ 8

n∑
k=0

pn,k(x)

(
an,k −

k

n

)4

+ 8

n∑
k=0

pn,k(x)

(
k

n
− x
)4

= 8

j−1∑
k=1

pn,k(x)

(
k

n

)4

+ 8

n−1∑
k=j

pn,k(x)

(
an,k −

k

n

)4

+
8

n4

n∑
k=0

pn,k(x) (k − nx)4

≤ 8

(
j − 1

n

)4 j−1∑
k=1

pn,k(x) + 8

(
j − 1

n

)4 n−1∑
k=j

pn,k(x)

+
8

n4
(3n2ϕ4(x) + n(ϕ2(x)− 6ϕ4(x)))

≤ 8

(
j − 1

n

)4

+
8

n4
4n2ϕ2(x) ≤ 8

(
j − 1

n

)4

+
8

n2
≤ 8

n2
((j − 1)4 + 1).

This completes the proof of the lemma. �

The main result is the following theorem.

Theorem 2.1. Let Un,j be given by (1.3)-(1.4). Then there exists C2 > 0 depending only on j such that∣∣∣ n(Un,j(f ;x)− f(x)) + f ′(x)nUn,j(xe0 − e1;x)−
1

2
f ′′(x)nUn,j((e1 − xe0)2;x)

∣∣∣
≤ C2ω

1
ϕ

(
f ′′;

1√
n

)
(2.4)

for all x ∈ [0, 1], f ∈ C2[0, 1] and n ≥ j ≥ 2. Furthermore

0 ≤ lim inf
n→∞

nUn,j(xe0 − e1;x) ≤ lim sup
n→∞

nUn,j(xe0 − e1;x) ≤ j − 1(2.5)

and

0 ≤ lim inf
n→∞

nUn,j((e1 − xe0)2;x)

≤ lim sup
n→∞

nUn,j((e1 − xe0)2;x) ≤
1

2
((j − 1)2 + 1).(2.6)

Proof. Because Un,j(f ; 0) = f(0) and Un,j(f ; 1) = f(1), the estimate (2.4) is satisfied for x ∈
{0, 1}. Now let x ∈ (0, 1) and t ∈ [0, 1]. By Taylor’s formula, we have

f(t) = f(x) + f ′(x)(t− x) + 1

2
f ′′(x)(t− x)2 +

∫ t

x

(f ′′(u)− f ′′(x))(t− u) du.
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Hence ∣∣∣ Un,j(f ;x)− f(x) + f ′(x)Un,j(xe0 − e1;x)−
1

2
f ′′(x)Un,j((e1 − xe0)2;x)

∣∣∣
=

∣∣∣∣∣ Un,j
(∫ t

x

(f ′′(u)− f ′′(x))(t− u) du;x
) ∣∣∣∣∣

≤ Un,j

(∣∣∣∣∣
∫ t

x

|f ′′(u)− f ′′(x)||t− u| du

∣∣∣∣∣;x
)
.(2.7)

On the other hand∣∣∣∣∣
∫ u

x

dv

ϕ(v)

∣∣∣∣∣≤ ϕ−1(x)|u− x|1/2
∣∣∣∣∣
∫ u

x

dv

|u− v|1/2

∣∣∣∣∣≤ 2ϕ−1(x)|u− x|, x ∈ (0, 1), u ∈ [0, 1]

(cf. [2, Lemma 9.6.1]). Hence, for all g ∈W (ϕ), we have

∣∣∣∣∣
∫ t

x

|f ′′(u)− f ′′(x)||t− u| du

∣∣∣∣∣
≤

∣∣∣∣∣
∫ t

x

|f ′′(u)− g(u)||t− u| du

∣∣∣∣∣ +
∣∣∣∣∣
∫ t

x

|g(u)− g(x)||t− u| du

∣∣∣∣∣
+

∣∣∣∣∣
∫ t

x

|g(x)− f ′′(x)||t− u| du

∣∣∣∣∣
≤ 1

2
(t− x)2‖f ′′ − g‖+

∣∣∣∣∣
∫ t

x

∣∣∣ ∫ u

x

g′(v) dv
∣∣∣ |t− u| du ∣∣∣∣∣ +1

2
(t− x)2‖f ′′ − g‖

≤ (t− x)2‖f ′′ − g‖+ ‖ϕg′‖

∣∣∣∣∣
∫ t

x

∣∣∣ ∫ u

x

dv

ϕ(v)

∣∣∣∣∣ |t− u| du
∣∣∣∣∣

≤ (t− x)2‖f ′′ − g‖+ 2ϕ−1(x)‖ϕg′‖
∣∣∣ ∫ t

x

|u− x||t− u| du
∣∣∣

≤ (t− x)2‖f ′′ − g‖+ 2ϕ−1(x)|t− x|3‖ϕg′‖.(2.8)

Combining (2.7), (2.8), Hölder’s inequality and Lemma 2.2, we get∣∣∣ Un,j(f ;x)− f(x) + f ′(x)Un,j(xe0 − e1;x)−
1

2
f ′′(x)Un,j((e1 − xe0)2;x)

∣∣∣
≤ ‖f ′′ − g‖Un,j((e1 − xe0)2;x) + 2ϕ−1(x)‖ϕg′‖Un,j(|e1 − xe0|3;x)
≤ ‖f ′′ − g‖Un,j((e1 − xe0)2;x)

+2ϕ−1(x)‖ϕg′‖
(
Un,j((e1 − xe0)2;x)

)1/2 (
Un,j((e1 − xe0)4;x)

)1/2
≤ 2

n
((j − 1)2 + 1)ϕ2(x)‖f ′′ − g‖

+2ϕ−1(x)‖ϕg′‖
√

2

n
((j − 1)2 + 1)ϕ(x)

2
√
2

n

√
(j − 1)4 + 1

≤ 8

n

√
(j − 1)2 + 1

√
(j − 1)4 + 1

(
‖f ′′ − g‖+ 1√

n
‖ϕg′‖

)
.



A Quantitative Variant of Voronovskaja’s Theorem for King-Type Operators 129

Taking the infimum on the right hand side over all g ∈W (ϕ), we find∣∣∣ n(Un,j(f ;x)− f(x)) + f ′(x)nUn,j(xe0 − e1;x)−
1

2
f ′′(x)nUn,j((e1 − xe0)2;x)

∣∣∣
≤ 8
√
(j − 1)2 + 1

√
(j − 1)4 + 1K1,ϕ

(
f ;

1√
n

)
.

Hence, by (1.6), we obtain the estimation (2.4).
Finally, the estimations (2.5) follow from Lemma 2.2, a). Again, due to Lemma 2.2, b), we obtain

nUn,j((e1 − xe0)2;x) ≤ 2((j − 1)2 + 1)ϕ2(x) ≤ 1

2
((j − 1)2 + 1).

Hence we find the estimations (2.6), which completes the proof of the theorem. �

Corollary 2.1. There exists C3 > 0 such that∣∣∣ n(Un,2(f ;x)− f(x)) + (f ′(x)− xf ′′(x))nUn,2(xe0 − e1;x)
∣∣∣≤ C3ω

1
ϕ

(
f ′′;

1√
n

)
for all x ∈ [0, 1], f ∈ C2[0, 1] and n ≥ 2. Furthermore

0 ≤ lim inf
n→∞

nUn,2(xe0 − e1;x) ≤ lim sup
n→∞

nUn,2(xe0 − e1;x) ≤ 1.

Proof. It follows immediately from Theorem 2.1, taking into account that Un,2(e0;x) = 1,
Un,2(e2;x) = x2 and

Un,2((e1 − xe0)2;x) = Un,2(e2;x)− 2xUn,2(e1;x) + x2Un,2(e0;x)

= 2x(x− Un,2(e1;x)) = 2xUn,2(xe0 − e1;x).
�
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[7] H. Gonska, M. Heilmann and I. Raşa: Asymptotic behavior of differentiated Bernstein polynomials revisited. General

Math. 18 (2010), 45–53.
[8] J. P. King: Positive linear operators which preserve x2. Acta Math. Hungar. 99 (2003), 203–208.
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A Sequence of Kantorovich-Type Operators on Mobile
Intervals

MIRELLA CAPPELLETTI MONTANO AND VITA LEONESSA*

ABSTRACT. In this paper, we introduce and study a new sequence of positive linear operators, acting on both
spaces of continuous functions as well as spaces of integrable functions on [0, 1]. We state some qualitative properties
of this sequence and we prove that it is an approximation process both in C([0, 1]) and in Lp([0, 1]), also providing
some estimates of the rate of convergence. Moreover, we determine an asymptotic formula and, as an application,
we prove that certain iterates of the operators converge, both in C([0, 1]) and, in some cases, in Lp([0, 1]), to a limit
semigroup. Finally, we show that our operators, under suitable hypotheses, perform better than other existing ones in
the literature.

Keywords: Kantorovich-type operators, Positive approximation processes, Rate of convergence, Asymptotic formula,
Generalized convexity.
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1. INTRODUCTION

In [13], the author proposed a modification of the classical Bernstein operatorsBn on [0, 1] that,
instead of fixing constants and the function x, fixes the constants and x2, obtaining, in such a
way, an order of approximation at least as good as the order of approximation of the operators
Bn in the interval [0, 1/3[. More precisely, those operators are defined by setting, for every
continuous function on [0, 1], B̃n(f) = Bn(f) ◦ rn, where, for every x ∈ [0, 1],

rn(x) =


x2 if n = 1 ,

− 1

2(n− 1)
+

√
nx2

n− 1
+

1

4(n− 1)2
if n ≥ 2 .

Subsequently, other modifications of the classical Bernstein operators, as well as of many other
well-known operators, that fix suitable functions were introduced (see [2] and the references
quoted therein). Here we limit ourselves to mention that, for example, in [9], the authors
considered a family of sequences of operators (Bn,α)n≥1, α ≥ 0, that preserve the constants and
the function x2 + αx. A further extension was presented in [12]; in that paper, Gonska, Raşa
and Piţul considered the operators V τn (f) = Bn(f)◦τn (f ∈ C([0, 1])), where τn = (Bn(τ))

−1◦τ
and τ is a strictly increasing function on [0, 1] such that τ(0) = 0 and τ(1) = 1. In particular, the
operators V τn preserve the constants and the function τ .
In [10], instead, the authors introduced a modification of Bernstein operators fixing constants
and a strictly increasing function τ in the following way: considering a strictly increasing func-
tion τ which is infinitely many times continuously differentiable on [0, 1] and such that τ(0) = 0
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and τ(1) = 1, they introduced the operators

Bτn(f) = Bn(f ◦ τ−1) ◦ τ (n ≥ 1, f ∈ C([0, 1])).

The authors studied shape preserving and approximation properties of the operators Bτn, and
compared them, under suitable assumptions, with the Bn’s and the V tnau′s. General sequences
of positive linear operators fixing τ and τ2 have been recently studied in [1].
In this paper, motivated by works [7], [4] and [5], we present a Kantorovich-type modification
of the operatorsBτn. In particular, in [7], among other things, the authors introduced a sequence
of positive linear operators (Cn)n≥1 that generalize the classical Kantorovich operators on [0, 1]
and present the advantage to reconstruct any integrable function on [0, 1] by means of its mean
value on a finite numbers of subintervals of [0, 1] that do not need to be a partition of [0, 1].
Accordingly, in this work, for any integrable function f on [0, 1] we shall study the operators

Cτn(f) = Cn(f ◦ τ−1) ◦ τ (n ≥ 1),

where τ is a strictly increasing function that is infinitely many times continuously differentiable
on [0, 1] and such that τ(0) = 0 and τ(1) = 1.
The paper is organized as follows; after giving some preliminaries, we discuss some qualitative
properties of the operators Cτn ; in particular, we prove that they preserve some generalized
convexity. We also prove that the sequence (Cτn)n≥1 is an approximation process for spaces
of continuous as well as integrable functions and we evaluate the rate of convergence in both
cases by means of suitable moduli of smoothness. As a byproduct, we obtain a simultaneous
approximation result for the operators Bτn.
By using some results of [5], we prove that the operators Cτn satisfy an asymptotic formula with
respect to a second order elliptic differential operator and, as an application, that suitable iter-
ates of the Cτn’s can be employed in order to constructively approximate strongly continuous
semigroups in the function spaces considered in the paper.
Finally, as a further consequence of the above mentioned asymptotic formula, we compare
the sequence (Cτn)n≥1 and the sequence (Cn)n≥1, showing that, under suitable conditions, the
former perform better.

2. PRELIMINARIES

From now on, we denote by C([0, 1]) the space of all real-valued continuous functions on the
interval [0, 1]. As usual, C([0, 1]) will be equipped with the uniform norm ‖ · ‖∞.
For every i ≥ 1, the symbol ei stands for the functions ei(x) := xi for all x ∈ [0, 1]; moreover 1
will indicate the constant function on [0, 1] of constant value 1. If X ⊂ R, we denote by 1X the
characteristic function of X , defined by setting, for every x ∈ R,

1X(x) :=

{
1 if x ∈ X ;
0 if x /∈ X .

Moreover, for every k ∈ N, we denote by Ck([0, 1]) the space consisting of all real-valued
functions which are continuously differentiable up to order k on [0, 1]. In particular, if f ∈
Ck([0, 1]), for every i = 0, . . . , k, D(i)(f) is the derivative of order i of f . For simplicity, if
i = 1, 2, we might also use the usual symbols f ′ and f ′′. Further, C∞([0, 1]) is the space of all
real-valued functions which are infinitely many times continuously differentiable on [0, 1].
Finally, for every p ∈ [1,+∞[, we denote by Lp([0, 1]) the space of all (the equivalence classes
of) Borel measurable real-valued functions on [0, 1] whose pth power is integrable with respect
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to the Borel-Lebesgue measure λ1 on [0, 1]. The space Lp([0, 1]) is endowed with the norm

‖f‖p :=
(∫ 1

0

|f(x)|p dx
)1/p

(f ∈ Lp([0, 1])).

In what follows we recall the definition of certain operators acting on the space L1([0, 1]) which
represent a generalization of the classical Kantorovich operators on [0, 1]. They were studied in
[7, Examples 1.2, 1] and subsequently extended to the multidimensional setting in [4, 5].
Let (an)n≥1 and (bn)n≥1 be two sequences of real numbers such that, for every n ≥ 1, 0 ≤
an < bn ≤ 1. Then, consider the positive linear operator Cn : L1([0, 1]) −→ C([0, 1]) defined by
setting, for any f ∈ L1([0, 1]), n ≥ 1 and x ∈ [0, 1],

Cn(f)(x) =

n∑
k=0

(
n+ 1

bn − an

∫ k+bn
n+1

k+an
n+1

f(t) dt

)(
n

k

)
xk(1− x)n−k.(2.1)

Since Cn(1) = 1, the restriction to C([0, 1]) of each Cn is continuous and we have ||Cn|| = 1 for
any n ≥ 1, where ‖ · ‖ denotes the usual operator norm on C([0, 1]).
We notice that if, in particular, an = 0 and bn = 1 for any n ≥ 1, the operators Cn turn into the
classical Kantorovich operators on [0, 1].
For every n ≥ 1,

(2.2) Cn(e1) =
n

n+ 1
e1 +

an + bn
2(n+ 1)

1,

(2.3) Cn(e2) =
1

(n+ 1)2

(
n2e2 + ne1(1− e1) + n(an + bn)e1 +

b2n + anbn + a2n
3

1

)
.

We also point out that (see [7, Formula (4.2)]), the operatorsCn are closely related to the classical
Bernstein operators on [0, 1].
In fact, if one denotes by Bn the n-th Bernstein operator on C([0, 1]), for every f ∈ L1([0, 1]),
considering the function

Fn(f)(x) :=
n+ 1

bn − an

∫ nx+bn
n+1

nx+an
n+1

f(t) dt =

∫ 1

0

f

(
(bn − an)t+ an + nx

n+ 1

)
dt(2.4)

(x ∈ [0, 1], n ≥ 1), it turns out that

(2.5) Cn(f) = Bn(Fn(f))

(f ∈ L1([0, 1]), n ≥ 1).
As quoted in the Introduction, in [10] the authors introduced a modification of Bernstein oper-
ators that fixes suitable functions.
More precisely, consider a function τ ∈ C∞([0, 1]) such that τ(0) = 0, τ(1) = 1 and τ ′(x) > 0
for every x ∈ [0, 1].
The operators introduced in [10] are defined by

(2.6) Bτn(f) := Bn(f ◦ τ−1) ◦ τ (n ≥ 1, f ∈ C([0, 1])).

Namely, for every f ∈ C([0, 1]), n ≥ 1 and x ∈ [0, 1],

(2.7) Bτn(f)(x) :=

n∑
k=0

(
n

k

)
τ(x)k(1− τ(x))n−k

(
f ◦ τ−1

)(k
n

)
.
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After the above preliminaries, we pass to introduce a new sequence of positive linear operators
acting on integrable functions on [0, 1], which is a combination of (2.1) and (2.6). More precisely,
for any f ∈ L1([0, 1]) and n ≥ 1, we set

(2.8) Cτn(f) := Cn(f ◦ τ−1) ◦ τ ;
hence, for every f ∈ L1([0, 1]), n ≥ 1 and x ∈ [0, 1],

Cτn(f)(x) =

n∑
k=0

(
n+ 1

bn − an

∫ k+bn
n+1

k+an
n+1

(
f ◦ τ−1

)
(t) dt

)(
n

k

)
τ(x)k(1− τ(x))n−k,

where we have used the fact that, thanks to the change of variable theorem, f ◦ τ−1 ∈ L1([0, 1])
provided f ∈ L1([0, 1]).
Note that, if τ = e1, the operators Cτn turn into the operators Cn defined by (2.1), and hence in
the classical Kantorovich operators whenever an = 0 and bn = 1 for every n ≥ 1.
The operators Cτn can be viewed as integral modification of Kantorovich-type of the operators
Bτn with mobile intervals.

3. SHAPE PRESERVING PROPERTIES OF THE Cτn ’S

This section is devoted to show some qualitative properties of the operators Cτn . To this end,
we first remark that, taking (2.4), (2.5) and (2.8) into account, the following formula holds true:

(3.9) Cτn(f) = Bn(Fn(f ◦ τ−1)) ◦ τ
(f ∈ L1([0, 1]), n ≥ 1).
Hence, one can recover some properties of the operators Cτn by means of the relevant ones held
by the Bn’s.
First off, as Fn(f) is increasing whenever f is (continuous and) increasing, the Bn’s map (con-
tinuous) increasing functions into increasing functions (see, e.g., [3, Remark p. 461]), and τ is
increasing, we have that the operators Cτn map (continuous) increasing functions into increas-
ing functions.
The Cτn’s preserve also a particular form of convexity.
We recall (see [17]) that a function f ∈ C([0, 1]) is said to be convex with respect to τ if, for
every 0 ≤ x0 < x1 < x2 ≤ 1, one has∣∣∣∣∣∣

1 1 1
τ(x0) τ(x1) τ(x2)
f(x0) f(x1) f(x2)

∣∣∣∣∣∣ ≥ 0.

In particular, it can be proven that a function f is convex with respect to τ if and only if f ◦ τ−1
is convex.
In [7, Proof of Th. 4.3]) it has been shown that the operators Cn map (continuous) convex
functions into (continuous) convex functions; hence, thanks to (2.8), the operators Cτn map
(continuous) convex functions with respect to τ into (continuous) convex functions with respect
to τ .
Moreover, we investigate the monotonicity of the sequence (Cτn)n≥1 on convex functions with
respect to τ .

Proposition 3.1. If f ∈ C([0, 1]) is convex with respect to τ and increasing (resp., decreasing), then,
for every n ≥ 1,

(3.10) f ≤ Cτn(f) on
[
0, τ−1

(
an + bn

2

)]
,
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(resp.,

(3.11) f ≤ Cτn(f) on
[
τ−1

(
an + bn

2

)
, 1

]
).

Moreover, if (an)n≥1 and (bn)n≥1 are constant sequences and f ∈ C([0, 1]) is convex with respect to τ ,
then

(3.12) Cτn+1(f) ≤
n+ 1

n+ 2
Cτn(f) +

1

n+ 2
Bτn+1(f),

Bτn being defined by (2.7).

Proof. In [7, Proposiotion 4.5] it has been proven that, if g is convex and increasing, then g ≤
Cn(g) on

[
0, an+bn2

]
. Hence because f is convex with respect to τ and increasing, f ◦ τ−1 is

convex and increasing, so that

f ◦ τ−1 ≤ Cn(f ◦ τ−1) on
[
0,
an + bn

2

]
,

and from this we get (3.10). Reasoning in the same way, one can establish (3.11).
Moreover, fix f ∈ C([0, 1]) convex function with respect to τ . In [7, Theorem 4.4] it was estab-
lished that, if g ∈ C([0, 1]) is convex, then, for all n ≥ 1, Cn+1(g) ≤ n+1

n+2Cn(g) +
1

n+2Bn+1(g), so
that, by applying this result to f ◦ τ−1, we get (3.12). �

Besides the convexity with respect to τ , the operators Cτn preserve another type of convexity.
More precisely, given ϕ ∈ C∞([0, 1]) such that ϕ′(x) 6= 0 for all x ∈ [0, 1] and ϕ(0) = 0, and
k ∈ N, a function f ∈ Ck([0, 1]) is said to be ϕ-convex of order k if, for every x ∈ [0, 1],

D(k)
ϕ (f)(x) := D(k)(f ◦ ϕ−1)(ϕ(x)) ≥ 0.

For more details about ϕ-convex functions of order k see [14].
Since in our case τ : [0, 1]→ [0, 1] is a bijection and a positive function, it is easy to show that a
function f ∈ Ck([0, 1]) is τ -convex of order k if and only if

D(k)
τ (f) := D(k)(f ◦ τ−1) ≥ 0.

In other words, f is τ -convex of order k iff f ◦ τ−1 is k-convex. Here we recall that a function
g ∈ Ck([0, 1]) is said to be k-convex if D(k)(g) ≥ 0.
By using the fundamental theorem of calculus, Fn maps k-convex functions into k-convex func-
tions and the same happens for the Bn’s (see, for example, [6, Prop. A.2.5]). Then, thanks to
(3.9) we have that the Cτn’s map τ -convex functions of order k into τ -convex functions of order
k.
We point out that the operators Cτn do not preserve the convexity. In order to construct an
example, we use the following alternative representation for the operators Cτn : for every n ≥ 1
and f ∈ L1([0, 1]),

Cτn(f) = Bτn(G
τ
n(f ◦ τ−1)),

where

Gτn(f)(x) :=
n+ 1

bn − an

∫ nτ(x)+bn
n+1

nτ(x)+an
n+1

f(t) dt .

Then, choosing an = 0, bn = 1 for all n ≥ 1, τ = (e1 + e2)/2 and f = e1,

Cτn(e1) =
n

n+ 1
Bτn(e1) +

1

2(n+ 1)
.
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Recalling that in this case Bτn(e1) is not convex for lower n (see [10]), we get that the same
happens for Cτn(e1).
Now we pass to show that each Cτn preserves the class of Hölder continuous functions. Given
M > 0 and 0 ≤ α ≤ 1, we shall write f ∈ LipMα if

|f(x)− f(y)| ≤M |x− y|α for every 0 ≤ x, y ≤ 1.

In particular, if α = 1, we get the space of all Lipschitz functions of Lipschitz constant M .
First observe that, from hypotheses on τ , both τ and τ−1 are Lipschitz functions. Precisely,
τ ∈ LipL1 with L := ‖τ ′‖∞ and τ−1 ∈ LipN1 with N := (min[0,1] τ

′)−1. Therefore, by recalling
that Cn(LipM1) ⊂ LipCM1 with C := max{1, |f(0)| + |f(1)|} (see [7, Th. 4.1 and Example n.
1]), from (2.8) it follows that

(3.13) Cτn(LipM1) ⊂ LipCLMN1 for every n ≥ 1 .

On account of [3, Cor. 6.1.20], since ‖Cτn‖ = 1 and property (3.13) holds, for every n ≥ 1,
f ∈ C([0, 1]), δ > 0, M > 0 and 0 < α ≤ 1,

ω(Cτn(f), δ) ≤ (1 + C)ω(f, δ) and Cτn(LipMα) ⊂ Lip(CLN)αMα .

Finally, for every k ∈ N, denote by Pτ,k the linear subspace generated by the set {τ i : i =
0, . . . , k}. Pτ,k is said to be the space of the τ -polynomials of degree k. Since both the Bn’s and
the Fn’s map polynomials of degree k into polynomials of degree k, taking (3.9) into account,
we have that

Cτn(Pτ,k) ⊂ Pτ,k (k ∈ N, n ≥ 1).

4. APPROXIMATION PROPERTIES OF THE Cτn ’S

In this section, we prove that (Cτn)n≥1 is a positive approximation process both in C([0, 1]) and
in Lp([0, 1]), 1 ≤ p < +∞, and we provide some estimates of the rate of convergence, by means
of suitable moduli of smoothness. As a byproduct of the uniform convergence, we obtain a
property of the operators Bτn introduced in [10], which seems to be new.
We begin by stating the following result.

Theorem 4.1. For every f ∈ C([0, 1]), we have that

(4.14) lim
n→∞

Cτn(f) = f

uniformly on [0, 1].

Proof. From (2.2) and (2.3) it easily follows that

Cτn(τ) =
n

n+ 1
τ +

an + bn
2(n+ 1)

1,(4.15)

Cτn(τ
2) =

1

(n+ 1)2

(
n2τ2 + nτ(1− τ) + n(an + bn)τ +

b2n + anbn + a2n
3

1

)
;(4.16)

since Cτn(1) = 1 and
{
1, τ, τ2

}
is an extended Tchebychev system on [0,1], (4.14) comes directly

by an application of Korovkin Theorem (see [3, Example 5, p. 246]). �

In order to get a quantitative version of the above uniform convergence, we use a result due to
Paltanea (see [15]) which involves the usual modulus of continuity of the first and second order,
denoted, respectively, by ω(f, δ) and ω2(f, δ). To this end, we need some further preliminaries.
For x ∈ [0, 1], we denote by exτ,i the function

exτ,i(t) = (τ(t)− τ(x))i (i = 0, 1, 2, . . .) .
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When τ = e1 we shall simply write ψix(t) = (t− x)i.
In particular, for any n ≥ 1 and x ∈ [0, 1]) (see (4.15) and (4.16)),

(4.17) Cτn(e
x
τ,2)(x) =

1− n
(n+ 1)2

τ2(x) +
n− an − bn
(n+ 1)2

τ(x) +
b2n + anbn + a2n

3(n+ 1)2
.

Moreover, we recall the following result (see [11, Formula (8)]): there exists a constant K > 0
such that

(4.18) Kψ2
x(t) ≤ τ ′(x)exτ,2(t) for every x, t ∈ [0, 1] .

Obviously, K = 1 if τ = e1.

Proposition 4.2. Consider n ≥ 1, f ∈ C([0, 1]), 0 ≤ x ≤ 1, and δ > 0. Then

|Cτn(f)(x)− f(x)| ≤ ω(f, δτn(x)) +
3

2
ω2(f, δ

τ
n(x)) ,(4.19)

where

δτn(x) =

√
τ ′(x)

(n+ 1)
√
K

√
(n− 1)τ(x)(1− τ(x)) + (1− an − bn)τ(x) +

b2n + anbn + a2n
3

.

Moreover,

(4.20) ‖Cτn(f)− f‖∞ ≤ ω

(
f,

‖τ ′‖1/2∞√
K
√
n+ 1

)
+

3

2
ω2

(
f,

‖τ ′‖1/2∞√
K
√
n+ 1

)
.

Proof. Let n ≥ 1, f ∈ C([0, 1]), 0 ≤ x ≤ 1 and δ > 0. Paltanea’s estimate ([15, Theorem 2.2.1];
see, also, [6, Theorem 1.6.2]) runs as follows:

|Cτn(f)(x)− f(x)| ≤ |f(x)||Cτn(1)(x)− 1|
+ δ−1|Cτn(ψx)(x)|ω(f, δ) +

(
Cτn(1)(x) + (2δ2)−1Cτn(ψ

2
x)(x)

)
ω2(f, δ)

= δ−1|Cτn(ψx)(x)|ω(f, δ) + (1 + (2δ2)−1Cτn(ψ
2
x)(x))ω2(f, δ) .

Cauchy-Schwarz inequality yields

|Cτn(ψx)| ≤
√
Cτn(ψ

2
x) ,

so that

|Cτn(f)(x)− f(x)| ≤ δ−1
√
Cτn(ψ

2
x)(x)ω(f, δ) + (1 + (2δ2)−1Cτn(ψ

2
x)(x))ω2(f, δ) .

From (4.18), (4.17) and the positivity of Cτn’s, we have

KCτn(ψ
2
x)(x) ≤ τ ′(x)Cτn(exτ,2)

=
τ ′(x)

(n+ 1)2

{
(n− 1)τ(x)(1− τ(x)) + (1− an − bn)τ(x) +

b2n + anbn + a2n
3

}
.

Therefore,

Cτn(ψ
2
x) ≤

τ ′(x)

K(n+ 1)2

{
(n− 1)τ(x)(1− τ(x)) + (1− an − bn)τ(x) +

b2n + anbn + a2n
3

}
(4.21)

and, for δ = δτn(x), we get (4.19). Estimate (4.20) follows by noting that

δτn(x) ≤
‖τ ′‖1/2∞√
K
√
n+ 1

since 0 ≤ τ(x) ≤ 1. �
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As a byproduct of Theorem 4.1, we present a simultaneous approximation result for the oper-
ators Bτn given by (2.7). As far as we know, this property is new.

Theorem 4.2. Suppose that an = 0 and bn = 1 for every n ≥ 1. Then, for every f ∈ C1([0, 1]),

(4.22) Bτn+1(f)
′ = τ ′Cτn (f

′/τ ′) .

Moreover,

(4.23) lim
n→∞

Bτn(f)
′ = f ′ uniformly on [0, 1] .

Proof. Let x ∈ [0, 1], f ∈ C1([0, 1]), and n ≥ 1. From (2.7) if follows that

Bτn+1(f)
′(x) = τ ′(x)

n∑
k=0

(
n

k

)
τ(x)k(1− τ(x))n−k

× (n+ 1)

((
f ◦ τ−1

)(k + 1

n+ 1

)
−
(
f ◦ τ−1

)( k

n+ 1

))
= τ ′(x)

n∑
k=0

(
n

k

)
τ(x)k(1− τ(x))n−k

(
(n+ 1)

∫ k+1
n+1

k
n+1

(f ◦ τ−1)′(t) dt

)

= τ ′(x)Cτn

(
f ′

τ ′

)
(x) ,

and this completes the proof of (4.22). Formula (4.23) immediately follows from (4.22) and
Theorem 4.1, because τ ′ is bounded. �

Now we prove that the sequence (Cτn)n≥1 is a positive approximation process also in Lp([0, 1])
for any p ∈ [1,+∞[.

Theorem 4.3. Assume that

sup
n≥1

1

bn − an
=M ∈ R.

Then, for every p ∈ [1,+∞[ and f ∈ Lp([0, 1]),

(4.24) lim
n→∞

Cτn(f) = f in Lp([0, 1]).

Proof. By Theorem 4.1, for every f ∈ C([0, 1]), lim
n→∞

Cn(f) = f in Lp-norm, as well. Since

C([0, 1]) is dense in Lp([0, 1]), in order to prove the statement it is sufficient to show, thanks to
Banach-Steinhaus theorem, that the sequence of operators Cτn : Lp([0, 1])→ Lp([0, 1]) (n ≥ 1) is
equicontinuous, i.e.,

sup
n≥1
‖Cτn‖Lp,Lp < +∞.

To this end, for every n ≥ 1, f ∈ Lp([0, 1]) and x ∈ [0, 1], we preliminary notice that, since the
function |t|p (t ∈ R) is convex,

|Cτn(f)(x)|p ≤
n∑
k=0

(
n

k

)
τ(x)k(1− τ(x))n−k

[
(n+ 1)

(bn − an)

∫ k+bn
n+1

k+an
n+1

(
f ◦ τ−1

)
(t) dt

]p
.



138 M. Cappelletti Montano and V. Leonessa

By applying Jensen’s inequality (see, e.g., [8, Theorem 3.9]) to the probability measure
n+ 1

bn − an
1[ k+ann+1 ,

k+bn
n+1 ]

λ1 on [0, 1], we get

|Cτn(f)(x)|p ≤
n∑
k=0

(
n

k

)
τ(x)k(1− τ(x))n−k (n+ 1)

(bn − an)

∫ k+bn
n+1

k+an
n+1

∣∣(f ◦ τ−1) (t)∣∣p dt
=

n∑
k=0

(
n

k

)
τ(x)k(1− τ(x))n−k (n+ 1)

(bn − an)

∫ τ−1( k+bnn+1 )

τ−1( k+ann+1 )
|f(y)τ ′(y)|p dy

≤ ‖τ ′‖p∞
(n+ 1)

(bn − an)

n∑
k=0

(
n

k

)
τ(x)k(1− τ(x))n−k

∫ τ−1( k+bnn+1 )

τ−1( k+ann+1 )
|f(y)|p dy.

We point out that∫ 1

0

τ(x)k(1− τ(x))n−k dx =

∫ 1

0

tk(1− t)n−k

τ ′(τ−1(t))
dt ≤ 1

miny∈[0,1] τ ′(y)

1(
n
k

)
(n+ 1)

.

Hence, by integrating with respect to x, we obtain

‖Cτn(f)‖pp ≤MN‖f‖pp,

where

N :=
‖τ ′‖p∞

miny∈[0,1] τ ′(y)
;

hence ‖Cτn‖Lp,Lp ≤ (MN)1/p < +∞. �

An estimate of the convergence in (4.24) can be obtained by using a result due to Swetits and
Wood [16, Theorem 1] which involves the second-order integral modulus of smoothness de-
fined, for f ∈ Lp([0, 1]), 1 ≤ p < +∞, as

ω2,p(f, δ) := sup
0<t≤δ

‖f(·+ t)− 2f(·) + f(· − t)‖p (δ > 0).

We define

βn,p,τ :=
1

(n+ 1)
√
K
×

∥∥∥∥∥√τ ′
{
(n− 1)τ(1− τ) + (1− an − bn)τ +

b2n + anbn + a2n
3

1

}1/2
∥∥∥∥∥
1/2

p

(4.25)

and

γn,p,τ :=
1

(n+ 1)2p/(2p+1)Kp/(2p+1)

×
∥∥∥∥τ ′{(n− 1)τ(1− τ) + (1− an − bn)τ +

b2n + anbn + a2n
3

1

}∥∥∥∥p/(2p+1)

p

,

(4.26)

where K is the strictly positive constant in (4.18).
Then we can state the following result.

Proposition 4.3. Under the hypotheses of Theorem 4.3, for every p ∈ [1,+∞[ there exists Cp > 0 such
that, for every f ∈ Lp([0, 1]) and for n sufficiently large,

‖Cτn(f)− f‖p ≤ Cp(α2
n,p,τ‖f‖p + ω2,p(f, αn,p,τ ))

where αn,p,τ = max{βn,p,τ , γn,p,τ}.
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Proof. First we introduce the following auxiliary functions:

F τn (x) := Cτn(ψx)(x), G
τ
n(x) := Cτn(ψ

2
x)(x) (x ∈ [0, 1], n ≥ 1).

Hence, the result in [16] applied to the uniformly bounded sequence (Cτn)n≥1 yields that there
exists a constant Cp > 0 such that

‖Cτn(f)− f‖p ≤ Cp(µ2
n,p‖f‖p + ω2,p(f, µn,p)),

where the sequence µn,p → 0 as n→∞ and it is defined as follows:

µn,p :=max
{
‖Cτn(1)− 1‖1/2p , ‖F τn‖1/2p , ‖Gτn‖p/(2p+1)

p

}
=max

{
‖F τn‖1/2p , ‖Gτn‖p/(2p+1)

p

}
.

By Cauchy-Schwarz inequality we have

|F τn |p ≤ (
√
Gτn)

p ,

so

µn,p ≤ max
{
‖
√
Gτn‖1/2p , ‖Gτn‖p/(2p+1)

p

}
.

From (4.21) it follows that ‖
√
Gτn‖

1/2
p ≤ βn,p,τ and ‖Gτn‖

p/(2p+1)
p ≤ γn,p,τ (see (4.25) and (4.26)).

Moreover,

γn,p,τ ≤
‖τ ′‖p/(2p+1)

∞

(n+ 1)2p/(2p+1)Kp/(2p+1)
(n+ 1)p/(2p+1)

=
‖τ ′‖p/(2p+1)

∞

(n+ 1)p/(2p+1)Kp/(2p+1)
→ 0 as n→∞ .

Similarly,

βn,p,τ ≤
‖
√
τ ′‖1/2∞

(n+ 1)
√
K

(n+ 1)1/4 =
‖
√
τ ′‖1/2∞

(n+ 1)3/4
√
K
→ 0 as n→∞ .

Therefore, setting αn,p,τ = max{βn,p,τ , γn,p,τ}, we have that αn,p,τ → 0 as n → ∞ and this
completes the proof. �

5. ASYMPTOTIC FORMULA FOR THE Cτn ’S

In this section we establish an asymptotic formula for the operators Cτn , which, in addition,
allows us to derive other properties of them. To this end, from now assume that

(5.27) there exists l := lim
n→∞

(an + bn) ∈ R

and consider the differential operator (Vl, C2([0, 1])) defined by setting

Vl(u)(x) :=
1

2
x(1− x)u′′(x) +

(
l

2
− x
)
u′(x),

(u ∈ C2([0, 1]), x ∈ [0, 1]).
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Theorem 5.4. Assume that (5.27) holds true. Then, for each f ∈ C([0, 1]), twice differentiable at a
certain x ∈]0, 1[,

lim
n→∞

n(Cτn(f)(x)− f(x)) =
τ(x)(1− τ(x))

2
D2
τ (f)(x) +

(
l

2
− τ(x)

)
Dτ (f)(x)

=
τ(x)(1− τ(x))

2τ ′(x)2
f ′′(x) +

1

τ ′(x)

(
l

2
− τ(x)− τ(x)(1− τ(x))

2τ ′(x)2
τ ′′(x)

)
f ′(x).

(5.28)

Moreover, for every u ∈ C2([0, 1])

(5.29) lim
n→∞

n(Cτn(u)− u) = Vl(u ◦ τ−1) ◦ τ

uniformly in [0, 1].

Proof. In [5, Theorem 3.1] it was proven that

lim
n→∞

n(Cn(u)− u) = Vl(u),

for every u ∈ C2([0, 1]) uniformly on [0, 1], but it is easy to prove that the same limit relationship
holds pointwise for each f ∈ C([0, 1]), twice differentiable at a certain x ∈]0, 1[. From this,
formulas (5.28) and (5.29) easily follow. �

5.1. An application to iterates of the operators Cτn . In this subsection we show how iterates
of operators Cτn can be employed in order to approximate constructively certain semigroups
of operators. For unexplained terminology concerning Semigroup Theory and its connection
with Approximation Theory, we refer, e.g., to [6, Chapter 2].
We begin by recalling that, as shown in [5, Theorem 3.2] the operator (Vl, C2([0, 1])) is closable
and its closure generates a Markov semigroup (Tl(t))t≥0 on C([0, 1]) such that, if t ≥ 0 and if
(ρn)n≥1 is a sequence of positive integers such that lim

n→∞
ρn/n = t, then

lim
n→∞

Cρnn (f) = Tl(t)(f) uniformly on [0, 1]

for every f ∈ C([0, 1]), where Cρnn denotes the iterate of Cn of order ρn.
Moreover (see [5, Theorem 3.4, Remark 3.5,1]), if either an = 0 and bn = 1 for every n ≥ 1, or
the following properties hold true

(i) 0 < bn − an < 1 for every n ≥ 1;
(ii) there exist lim

n→∞
an = 0 and lim

n→∞
bn = 1;

(iii) M1 := sup
n≥1

n(1− (bn − an)) < +∞,

for every p ≥ 1, (Tl(t))t≥0 extends to a positiveC0-semigroup (T̃ (t))t≥0 onLp([0, 1]) such that, if
(ρn)n≥1 is a sequence of positive integers such that lim

n→∞
ρn/n = t, then for every f ∈ Lp([0, 1]),

lim
n→∞

Cρnn (f) = T̃ (t)(f) in Lp([0, 1]).

We remark that, for every f ∈ C([0, 1]) and k ≥ 1,

(Cτn)
k(f) = Ckn(f ◦ τ−1) ◦ τ.

From this we get the following result.

Theorem 5.5. Under assumption (5.27), for every f ∈ C([0, 1]), t ≥ 0 and for every sequence (ρn)n≥1
of positive integers such that lim

n→∞
ρn/n = t,

lim
n→∞

(Cτn)
ρn(f) = Tl(t)(f ◦ τ−1) ◦ τ uniformly on [0, 1].
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Moreover, assume that either an = 0 and bn = 1 for every n ≥ 1, or the following properties hold true
(i) 0 < bn − an < 1 for every n ≥ 1;

(ii) there exist lim
n→∞

an = 0 and lim
n→∞

bn = 1;
(iii) M1 := sup

n≥1
n(1− (bn − an)) < +∞.

Then, if t ≥ 0 and if (ρn)n≥1 is a sequence of positive integers such that lim
n→∞

ρn/n = t, then for every
f ∈ Lp([0, 1]),

lim
n→∞

(Cτn)
ρn(f) = T̃ (t)(f ◦ τ−1) ◦ τ in Lp([0, 1]).

5.2. Comparing the operators Cτn and Cn. The asymptotic formula (5.28) can be also used to
prove that, under suitable conditions, the operators Cτn perform better than the operators Cn
in approximating certain functions. In fact, arguing as in the proof of [10, Theorem 9], we are
able to show the following result.

Theorem 5.6. Let f ∈ C2([0, 1]) and assume that there exists n0 ∈ N such that, for every n ≥ n0 and
x ∈]0, 1[,

f(x) ≤ Cτn(f)(x) ≤ Cn(f)(x) .
Then, for x ∈]0, 1[,

f ′′(x) ≥ τ ′′(x)

τ ′(x)
f ′(x) +

τ ′(x)(2τ(x)− l)
τ(x)(1− τ(x))

f ′(x)

≥
(
1− x(1− x)τ ′(x)2

τ(x)(1− τ(x))

)
f ′′(x) +

τ ′(x)2(2x− l)
τ(x)(1− τ(x))

f ′(x) .

(5.30)

In particular, f ′′ ≥ 0 in ]0, l/2[ (resp., in ]l/2, 1[) whenever f is decreasing in ]0, l/2[ (resp., f is
increasing in ]l/2, 1[).
Conversely, assume that at a given point x0 ∈]0, 1[, (5.30) holds with strict inequalities. Then there
exists n0 ∈ N such that, for every n ≥ n0,

f(x0) < Cτn(f)(x0) < Cn(f)(x0) .

Example 5.1. Take

τ =
e2 + αe1
1 + α

(α > 0)

and suppose that f ∈ C2([0, 1]) is increasing and strictly convex.
Moreover, assume that the sequences (an)n≥1 and (bn)n≥1 are such that l = limn→∞(an + bn) = 2.
We show that there exist xα ∈]0, 1[ and n0 ∈ N such that, for each x ∈]xα, 1] and n ≥ n0,

f(x) < Cτn(f)(x) < Cn(f)(x) .

On account of Theorem 5.6, it is sufficient to prove that there exists xα ∈]0, 1[ such that, for x ∈]xα, 1[,

f ′′(x) >
τ ′′(x)

τ ′(x)
f ′(x) +

τ ′(x)(2τ(x)− 2)

τ(x)(1− τ(x))
f ′(x)

>

(
1− x(1− x)τ ′(x)2

τ(x)(1− τ(x))

)
f ′′(x) +

τ ′(x)2(2x− 2)

τ(x)(1− τ(x))
f ′(x) .

(5.31)

The first inequality in (5.31) is satisfied for α > 2f ′(1)/M , where M = min[0,1] f
′′(x). Indeed, for this

choice,

f ′′(x) >
2

2x+ α
f ′(x) >

2

2x+ α
f ′(x)− 2

2x+ α

x2 + αx
f ′(x), x ∈]0, 1[ .
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The second inequality in (5.31) is obviously fulfilled for those x for which

(5.32)
x(1− x)τ ′(x)2

τ(x)(1− τ(x))
≥ 1

and

(5.33)
τ ′′(x)

τ ′(x)
> 2

τ ′(x)2

τ(x)(1− τ(x))

(
x− 1− τ(x)− 1

τ ′(x)

)
.

From one hand (5.32) is verified for x ∈]yα, 1] where

yα :=
1− 2α+

√
4α2 + 8α+ 1

6

(see [10, Corollary 11, (iii)]). On the other hand (5.33) is equivalent to solve (with respect to x) the
following inequality:

gα(x) := (x2 + αx)(1 + x+ α)− (2x+ α)2(1− x) > 0 .

By observing that gα(0) < 0, gα(1) > 0, and evaluating the critical points of gα and their position
within the interval [0, 1] depending on α > 0, we can conclude that, for every α > 0, there exists
zα ∈]0, 1[ such that gα(zα) = 0 and gα(x) > 0 for every zα < x ≤ 1. By setting xα = max{yα, zα}
(α > 2f ′(1)/M), we get the claim.
We point out that, in the case α = 0, τ = e2 and the corresponding operators Cτn are a Kantorovich-
type modification on mobile intervals of the operators in [10, p. 159]. On the other hand, τ∞ =
limα→+∞ τ = e1 uniformly w.r.t. x ∈ [0, 1], so that Cτ∞n = Cn for any n ≥ 1.
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