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KP-KdV Hierarchy and Pseudo-Differential Operators

Ahmed Lesfari'*

Abstract

The study of KP-KdV equations are the archetype of integrable systems and are one of the most fundamental
equations of soliton phenomena and a topic of active mathematical research. Our purpose here is to give a
motivated and a sketchy overview of this interesting subject. One of the objectives of this paper is to study the
KdV equation and the inverse scattering method (based on Schrédinger and Gelfand-Levitan equations) used to
solve it exactly. We study some generalities on the algebra of infinite order differential operators. The algebras of
Virasoro and Heisenberg, nonlinear evolution equations such as the KdV, Boussinesq and KP play a crucial role
in this study. We make a careful study of some connection between pseudo-differential operators, symplectic
structures, KP hierarchy and tau functions based on the Sato-Date-Jimbo-Miwa-Kashiwara theory. A few other

connections and ideas concerning the KdV and Boussinesq equations, the Gelfand-Dickey flows, the Heisenberg
and Virasoro algebras are given.

Keywords: Gelfand-Levitan integral equation, Integrable systems, KdV equation, KP hierarchy, Schrodinger
equation, Symplectic structures.
2010 AMS: Primary 70H06, Secondary 14H55, 14H70, 14K20

1. Introduction

Korteweg and de Vries have established a nonlinear partial differential equation describing the gravitational wave propagating
in a shallow channel [1] and possessing remarkable mathematical properties :

3

%—6u%+%=0, (1.1)
where u(x,t) is the amplitude of the wave at the point x and the time ¢. The equation thus bearing their name (abbreviated KdV)
admits a solution: the soliton or solitary wave. In fact, this model was obtained from Euler’s equations (assuming irrotational
flow) by Boussinesq around 1877 (see [2], p. 360) and rediscovered by Korteweg and de Vries in 1890. The solution to this
equation was obtained and interpreted rigorously only in the early 1970s while a solitary wave was already observed in 1834 by
engineer Scott Russell riding on the Edinburgh Glasgow Canal in Scotland; he described his observation of a hydrodynamic
phenomenon as follows : ” I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of
horses, when the boat suddenly stopped - not so the mass of watering the channel which it had put in motion; it accumulated
round the prow of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward with great velocity,
assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which continued its course
along the channel apparently without change of form or diminution of speed. I followed it on horseback, and overtook it still
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rolling on at a rate of some eight or nine miles an hour, preserving its original figure some thirty feet long and a foot to a
foot and a half in height. Its height gradually diminished, and after a chase of one or two miles I lost it in the windings of
the channel. Such, in the month of August 1834, was my first chance interview with that singular and beautiful phenomenon
which I have called the wave of translation ”. Fascinated by this phenomenon, Scott-Russell built a wave pool in his garden and
worked to generate and study these waves more carefully. This led to a paper [3] dubbed “The report on waves” published in
1844 by the British Association for the Advancement of Science.

A little later, Boussinesq, then Korteweg and de Vries proposed equation (1.1) to explain this phenomenon. The KdV
equation preserves mass, momentum, energy, and many other quantities. Many experiments have uncovered the astonishing
properties of the solutions of this equation satisfying zero boundary conditions : when || — oo, these solutions are decomposed
into solitons, i.e., in waves of defined forms progressing at different speeds. These waves propagate over long distances

without deformation and one of the remarkable characteristics of solitons is that they are exceptionally stable with respect to
3

disturbances; the term ug leads to shock waves while the term P I; produces a scattering effect. Everyone can contemplate
solitons where the tide comes to die on the beaches. In the field of hydrodynamics for example, tsunamis (tidal waves) are
manifestations of solitons. Generally, we group together under the term soliton solutions of nonlinear wave equations presenting
the following characteristic properties : they are localized in space, last indefinitely and retain their amplitude and velocity even
at the end of several collisions with other solitons. Solitons have become indispensable for the study of several phenomena.
In particular, the study of wave propagation in hydrodynamics, the study of localized waves in astrophysical plasmas, They
are involved in the study of signals in optical fibers, charge transport phenomena in conductive polymers, localized modes in
magnetic crystals, etc. Industrialized societies have developed, after soliton studies, what may be called solitary lasers. The
latter play an important role in the field of telecommunications. Ultra-short light signals sent in certain optical fibers made
from a specific material can travel long distances without lengthening or fading. The construction of memories with ultra-fast
communication time and low energy consumption, is based on the movement of magnetic vortices in the dielectric junction
between two superconductors. At the molecular level, the theory of solitons can elucidate the contraction mechanism of striated
muscles, the dynamics of biological macromolecules such as DNA and proteins. In the peptide and hydrogen chain of proteins,
solitons arise from the marriage of dispersion due to intrapeptide vibrations and the non-linearity due to the interaction of
these vibrations with the displacements of peptide groups around their position balanced. But also the theory of solitons had
an impact on pure mathematics; for example, it provides the answer to the famous Schottky problem, posited a century ago,
on the relations between the periods coming from a Riemann surface. Roughly, it is a question of finding criteria so that a
matrix of the periods belonging to the Siegel half-space is the matrix of the periods of a Riemann surface. Geometrically,
Schottky’s problem consists in characterizing the Jacobians among all the Abelian mainly polarized varieties. In addition to
the KdV equation, examples that may be mentioned among the nonlinear equations having soliton-type solutions are: the
non-linear equation of Kadomtsev-Petviashvili, the nonlinear Schrodinger equation, the Sine Gordon equation, the Boussinesq
equation, the Camassa-Holm equation, the Toda lattice consisting of vibrating masses arranged on a circle and interconnected
by springs whose return force is exponential, the non-linear Klein Gordon equation, the Zabusky-Kruskal equation for the
Fermi-Pasta-Ulam model of phonons in anharmonic lattice, and so on.

2. Stationary Schrodinger equation and integral Gelfand-Levitan equation

Since the method (discussed later) of solving the KdV equation is based on the idea of studying it in the form of an equation of
a certain operator and using the analogy with quantum mechanic, we will expose certain mathematical notions of this mechanic.
The terminology of the physicists will be used to describe the properties of the solutions of the stationary Schrodinger’s
equation,

h " _ —
oV T A —ulx)y =0, =

without stopping on the physical motivations of the introduced notions. We will see that the method of the inverse diffusion is
reduced to the solution of a linear integral equation (Gelfand-Levitan equation). In the following, we will simplify the notation

by using a system of units in which the Planck constant is 72 = 1 and the mass of the particle is m = 3 So consider the equation

v+ (A —u(x)y =0, —oo0 < x < o0 2.1

where Y (unknown) is the wave function of the particle, the spectral parameter A is the energy of the particle, the function u(x)
is the potential or potential energy of the particle. This potential is assumed to have a compact support, i.e., is different from
zero only in some domain. When the particle is free (i.e., u = 0) and has a positive energy (i.e., A = k?), then equation (2.1) is
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reduced to
v (x)+ky =0, 2.2)

and admits two linearly independent solutions e** (describing the particle moving to the right) and e ~** (describing the particle
moving to the left).

Let us denote by E<A§> (resp. Eé‘é) the space of real (or complex) solutions of equation (2.1) and by E(*3’> (resp. Eé';')) the
space of the real (or complex) solutions of equation (2.2). The space E(Y%’) (resp. Ei‘g)) is provided with the base (coskx, sinkx)

(resp. (e, e=*)). Let [, B] be the bounded support of . The monodromy operator of equation (2.1) is a linear operator
defined by

acoskx+bsinkx six< o

. Sr ST H
///'E(Z)_”E(Z)’ acoskx—i—bsmkx'—>{ ccoskx+dsinkx six> 3,

where a, b are constants and (c,d) = .#,(a,b). This means that for each solution of equation (2.2) is associated : (i) the
solution of (2.1) which is to the left of ; in this region the solution of (2.2) coincides with that of (2.1). (i) the solution of
(2.1) which is to the right of 8. Similarly, the complex monodromy operator of equation (2.1) is defined by

ae®™ + pe=*  six < o

. sc sc ikx —ikx
M Eg) — E),  ae™ +be '—>{Ceikx+de"k" six>p.

Recall that a particle propagating from x = —oo, crosses a potential barrier with a transmission coefficient 7 and a reflection
coefficient R if the equation (2.1) where A = k> admits a solution y such that :

B Te'™,  to the right of the barrier,
V=9 et Re~** to the left of the barrier.

Theorem 2.1. a) Let W be the phase plane formed by the representative points (y,y’). Let
By By — W, yr— Bow=(y(n), ¥ (n)),

be an operator with W a solution of equation (2.1) whose initial conditions for x = x; € R are (y(x1), ¥’ (x1)). Then the space

E(g) is isomorphic to W and the phase application of x| to x; defined by

p=a (2) W W (W) W) — (W) W ()

is a linear isomorphism.
b) If equation (2.1) where A = k?, has a confounded solution with ae™ for x < 0 and with be™™** for x > 0, then this
solution is null. In addition, for all k > O the y, T and R defined above exist and are unique.

Proof. a) %’2(2') is linear and for any representative point (Y, y') € W, there exists from the existence theorem (differential
equations) a solution Y satisfying the initial condition (W(x;), ¥/ (x;)). Then Im 932) = {%’a)w: (V&S E(g)} = W. Finally
Ker '%?21) ={y:ye E(Yg) , %& v =0} =0, follows from the uniqueness theorem because the solution satisfying the initial
condition at the point x; is equal to zero. The result follows from the fact that the inverse of an isomorphism is one. If y; and
v, are two solutions of equation (2.1), then (y(x1), ¥’ (x1)) = %’“{2‘) v+ @8) o = (Wi (x1), i (x1)) + (w2 (x1), W5 (x1)), and
this is equivalent to

(2) " (). Vi) + sl wd0a)) = (233) i) i)+ (233)) (). W),

b) Let be (ae’™ ae™), (be**, be~**) and (ae™*,ae~**) the hermitian forms in the space ESS,. Let’s designate by [.,.] the

@)
left scalar product, then
e ik Lo oike — ik L| @ la 2
ae™™ ae™) = ~lae™ ae =—| Z _ | =la|".
e e
Similarly, we have (be™** be=**) = —|b|? et (ae™,ae~**) = 0. By setting z = 7€ + zpe~** where z; and z, are the
coordinates of the vector z in the basis (e/*,e=*¥), we obtain (z,z) = |z1|*> — |z2|% i.e., (.,.) is of type (1,1). Since the




KP-KdV Hierarchy and Pseudo-Differential Operators — 78/104

monodromy operator retains this hermitian form, we deduce that |a|> = —|b|? and so a = b = 0. Consider now a particle going
to 40 and let X be a solution to the right of the barrier. To the left of the barrier this solution becomes

e A ae™ + pe 2.3)

From what precedes, the coefficient a is nonzero. So to have the solution in question, simply divide the two members of (2.3)

1 .
ikx ~ eth

b _; 1 b
by a, —e + —¢ ™* Taking T = — and R = —, this shows that T and R are uniquely defined. O
a a a a

In the same way, we can define an operator ﬁg) of E(Sg) in W that associates with each solution of equation (2.2), its initial
condition at the point x;. In this case, instead of ”phase application”, there will be phase point”.
We will now demonstrate a theorem that will be useful later.
dx
Theorem 2.2. (Liouville). Let i F(x), x=(x1,...,%n), be a system of ordinary differential equations whose solutions extend

to the whole time axis. Let {g'} be the corresponding group of transformations : g'x = x + f(x)t +o(t?), for t small. We denote
noof,
by D a domain in phase space, D(t) = g'D(0) and by v(t) the volume of D(t). If div f = Z a—fj =0, thenv(t) =v(0), i.e., g
y X
Jj= J
preserves the volume of any domain.

ag ag ag d
8L ix, where 282 is the Jacobian matrix, 25 =1+ —ft +0(t?). The determinant

ox ox T dx ox

Proof. We have v(t) = ()dx:/()
Dt D(0

d
of the operator [ + a—ft is equal to the product of the eigenvalues. These (taking into account their multiplicities) are equal to

d d
141 o where ol are the eigenvalues of of Then
ox; dx; ox’
ag . 2
det —_1+t2—+o )= 1+ztdiv f+o(t?).
. 2 d\/(f) . . .
Therefore, v(t) = / (I4+¢div f+0(¢7))dx, and = / div fdx. Since t = 1y is not worse than r = 0, we also
D(0) dt D(0)

have

dv(t

) _ / div fdx,

dr |, Jp(o)

and the proof of the theorem follows. O

Note that the Liouville’s theorem is easily generalized to the case of non autonomous systems (f = f(x,t)). Indeed, the
t

. . X . . .
terms of first degree in the expression of remain the same. But the terms of degree greater than one do not intervene in the

proof. In other words, Liouville’s theorem )ics a first order theorem.

Let SL(2,R) be the real unimodular group, i.e., the set of all real 2 x 2 matrices with determinant one. In other words,
SL(2,R) is the group of all linear transformations of R? that preserve oriented area [.,.] (see the notation used in the proof of
theorem 2.1). Consider the group SU(1, 1) of (1,1)-unitary unimodular matrices. This is the set of all complex 2 x 2 matrices
with determinant one preserving the hermitian form |z;|> — |z2|? (see again the notation used in the proof of theorem 2.1). In

a b>f0rwhich|a2 b2 = |c? — |d|?> = 1, ac — bd = 0, ad — bc = 1.

other words, they are matrices of the form d

Theorem 2.3. The matrix of the monodromy operator 4 in the basis (coskx,sinkx) (resp. (e’* e=)

SL(2,R) (resp. SU(1,1)).

) belongs to the group

Proof. We show that the determinant of the monodromy operator of the Schrédinger equation is equal to one. Note that
(coskx,sinkx) is a basis on the space EF). As %’2‘3) coskx = (coskx, —ksinkx) and ,%’Eg) sinkx = (sinkx,kcoskx), so W is
provided with a basis in which the matrix of the operator (we use here the same notation for the operator and the matrix) is
written

B — coskx sinkx
()7 \ —ksinkx kcoskx )’
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hence det (%’é) = k, independent of x. Let us denote by x* the point x to the left of the support of the potential and by x~ the
one on the right. We have the following situation :

M E<S3r) HE(Sg), acoskx+ bsinkx — ccoskx+dsinkx, (c,d) = #,(a,b),

%’E‘;) : E(Yg) — W, acoskx+bsinkx — (acoskx™ + bsinkx™, —aksinkx™ + bkcoskx™),
%E‘:) tEfy) — W, ccoskx+dsinkx — (acoskx” +bsinkx", —aksinkx" + bkcoskx"),

gﬁf W — W, (acoskx™ +bsinkx™,—aksinkx™ +bkcoskx™) — (acoskx™ +bsinkx™, —aksinkx™ + bkcoskx™).

We verity directly that : gjf O%’z‘;) = %’g) 0./, and since det %ﬁ = 95’6 so we have det.# = det g’C+ Now g* preserves the
areas according to Liouville’s theorem (indeed, by putting y; = W, W, = ¥/, we rewrite equation (2.1) under form

Vi=wm=fi, = Ay =

Here we have f = (f1, f2),t =xand div f = a—z? + %2)% = 0). Therefore, detgﬁf = 1 and consequently det.Z = 1.
For the case of SU(1, 1), we will show that the matrix (also denoted .#) of an operator is real and unimodular in the basis
(coskx,sinkx) if and only if it is special (1,1)-unitary in complex conjugate basis (¢/**,e~**). By setting as in the proof
of theorem 1, z = 71 + zpe~** where z; and z, are the coordinates of the vector z in the basis (¢’**,e~**), we obtain
(z,2) = |z1]* = |z2) i.e., {.,.) is of type (1,1). The monodromy operator conserves this hermitian form. Say that ./ is real and
unimodular in the basis (coskx, sinkx) is equivalent to .# € GL(2,R) NSL(2,C) or what amounts to the same .# € SU(1,1)

or what is equivalent ./ is (1, 1)-unitary and unimodular in the basis (e/*, e=/*¥). O

Define the solutions y;(x,A) and y»(x,A) of equation (2.1) by the initial conditions : y;(0,4) = 1, y{(0,A) =0,
Y2 (0,4) =0, y(0,A) = 1. For the simple case u(x) = 0, we obviously have

_ _ 1 2 LETAW 6
Y1 (x,A) = cos lx—l—ﬁ—( 2),>x +<24)L )x +0(x), 2.4)

1 1 1
ya(x,A) = N sinVAx =x+ (67L> P <12012> X +0 (x7) .
For /A, we can choose for example the determination v/A = \/?eig where A = re’® with r > 0and —7 < 6 < 7. Let a be an
arbitrary real number. The function y(x,A) = y;(x,A) + oty (x, A) is also solution of equation (2.1) and satisfies the boundary
condition ¥'(0,A1) — oy (0,A) = 0. For @ = 0, we have y(x,4) = y;(x,A) and for & = oo, we put Y(x,A) = yr(x,A). We
assume that for A € C and x > 0, we have

y(x,A) = cos \/Ix—}—/xl((x,t)cos VArdt, (2.5)
0

where K is a function to be determined, subject to the condition of having partial derivatives of order one and order two
continuous in the set of real pairs (x,) such that : 0 < < x. In other words, we look for y(x,.) as a perturbation of the function
x> y(x,A) = cos v/Ax and precisely, as a transform (I + K )y (x,.) where K is a Volterra operator in [0, 4-co[. We will look for
the conditions that K (x,#) must satisfy for the function (2.5) to be a solution of the differential equation (2.1). From equation
(2.5), we get

K(x,1)
ox

2
a—w(x,k) = —AcosVAx+ dKC(ix,x) cos VAx—VAK (x,x) sin vVAx+ J
x

72 cosx/Ix—i—/ o KXt) cosVArdt. (2.6)
X 0

82

=x

"X
Let’s calculate the expression A / K(x,t)cos Vi, by doing two integrations in parts, we get
0

0sVAx— OK(x1)
ot

A /'XK(XJ) cos VAtdt = VAK(x,x)sinVAx+ 8Ka()t6,t)
0

2
/ 81;2 )cosfzdt 2.7)
=0 0

1=x
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To calculate expression (2.1), substitute (2.6) and (2.7),
0 = Y+ —ulx)y
= dK (x,x) cos VAx+ <8K(x,t) + 8K(x,t)> cos VAx — oK1 u(x) cos VAx
x=t

dx ot ox |
¥ (92K(x,t)  9°K(x,t)
+/o ( o2 o2 ”(X)K(x,t)) cos VArdr.
We have
azK(x,t) azK()C,t)
T MWKED=T50 2.8)
with the boundary conditions
IK(xp)|
ol (2.9)
dK(x,x) 1
o ZM(X)' (2.10)

For the initial conditions, we have y(0,4) =1 and y'(0,1) = K(0,0). As y/(0,A) — oy(0,A) = 0, then K(0,0) = «.
Therefore,

K(x,x) :a—i-%/oxu(t)dt. (2.11)

If u(x) has a continuous derivative, then there exists a unique solution of (2.8), satisfying conditions (2.9) and (2.11). Hence,
there exists a satisfying function K (x,7) (2.5). Let’s solve equation (2.5) as an equation of Volterra, we get

cos VAx = y(xA) — / " K ()W, A )t 2.12)
JO

and in the same way as before, we show that K| (x,7) is solution of the equation

K\ (x,1) 02K (x,1)

02 012 _M(I)K] (X,t)7
. . K, I
with the conditions | —— — oK =0, K (x,x) =a+ 7/ u(r)dt.
ot =0 2Jo
1
For the case o = oo, we look for y(x, 1) as a perturbation of the function x — y(x,A) = i sinV/Ax (see expression

(2.4)) or what is equivalent as a transform (7 + K)y (x,.) where K is a Volterra operator in [0, +o[. In other words, we set
A€Candx >0,

y(xA) =

51n\/1x+/xL(x7t)s1n\/Xxdt7 @2.13)
0

VA VAt

where L is a function to be determined, subject to the condition of having partial derivatives of order one and order two
continuous in the set of real pairs (x,7) such that : 0 < ¢ < x. By reasoning as before, we obtain the relation
d%L(x,1)
ox?

9%L(x,t
- M(X)L(x7t) = 85)267 ) ;
l X
with the conditions L(x,x) = 0, L(x,x) = 3 / u(r)dt. By solving equation (2.13), we obtain
Jo

Si”\/‘/;x — w(x, ) +/OXL1 (e ) (e, A)dt. (2.14)
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The functions L(x,¢) and L; (x,¢) have the same properties as the functions K (x,7) and K (x,#) previously obtained.
Recall that for every function f € L?(IR), we have the Parseval identity / fH(x)dx = / F%(L).dp(A) where Z{f(x)} =

/ F(x)w(x,A)dx is the Fourier transform of f(x) and p(A) a monotone function, bounded on any finite interval. The

n
sequence of functions F, (1) = / S(xX)w(x,A)dx, converges in quadratic mean (with respect to the spectral measure p(14)) to
0

oo

n—o0 | _oo

F(A),ie., lim (F(A) —F,(A))*dp(A) = 0. We choose p(A) in the following form : p(A) = %\/XJr o(A)if A >0and
p(A)=0(A)if A <0, where 6(A) is a measure with compact support satisfying the condition : /oo |A].|do(A)| < -ee. For

x 'y
0 < b <y<a<x,the functions / y(t,A)dt and / cos V/Atdt are orthogonal with respect to p(A). In other words, we have
a b

the orthogonality relation :

= /: </ w(t,)t)dt) (/l;ycosﬁtdt> dp(R) =

Indeed, by integrating equation (2.12) from b to y, we obtain
y y y 't
/ cosVardt = / w(t,)di —/ dt/ K1 (1,5)w(s,A)ds
b b b 0

— [ veaar- /Ob ys.0)ds [ Kite.s)ar— [y ayae [ K

By definition, this function is expressed using the transform (in y(¢,A)) of a null function outside the interval ]b,y[. Since
1b,y[N]a,x[= 0, we deduce from Parseval’s equality that we have I = 0.
To obtain the Gelfand-Levitan integral equation [4, 5], we proceed as follows: according to equation (2.5), we have

X X X 1
/ y(t,A)dt = / cosx/)TtdtJr/ dt/ K(t,s)cosVAsds,
a a a 0
/Xcos\/Xtdt—i—/acos\/Xsds/xl((t,s)dt—i-/xcos\/sts/lK(t,s)dt,
a 0 a a s

by virtue of Lebesgue-Fubini’s theorem. Therefore,

I = /m (/a cosxﬂd;> (/ cosx/Itdt> dp(2)
+/ (/ cosx/xsds/a K(r,s)dt+/axcosx/isds/sx1((t,s)dt> y (/bycosx/mz> dp(A) =
This expression can be written using the definition of p(4), in the form
I = /m (/a cosxﬂd;> (/ cosx/%tdt> do (1)
+ / ( / cos VAsds / K(t,5)dr + / " cos /A sds / xK(t,s)dt) X ( /bycosx/mt> do()
+E/,m (/:cos\/)ftdt) (/bycosx/%tdz> do(A)
+%/:7 (/()acos\/Isds/:K(ns)dt—l-/:cos\/Xsds[xl((ns)dt) v (/bycosﬁtdt> do(A) =0.

Since b <y < a < x, then given the Parseval identity, the third term is equal to zero while the fourth is equal to

/y </ﬁacosx/zsds/xl{(t,s)dt+/xcosx/zsds/xl{(t,s)do ds = /yds/XK(t,s)dt
b 0 a a s b a
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Therefore,
[ = /°° (sin \/Ix—sin\/xa)l(sin\/zy—sin\/xb)do_(s)
+/: (/Oacosﬁsds/axg(t,s)dz+/;Cosﬁsds/:1((t7s)dt> X </bycosx/zsds> do(A)
+/byds/axl((t,s)dz:
By setting

Flx,y) = [ © smvArsinvAy ‘/’T)f“ YA i5(0),

and

[FK(t,s)dt, a<s<x

[ K(t,s)dt, 0<s<a
G(x,s) =
0, s>x

the equation above becomes

F(x,y)—F(x,b)—F(a,y)+F(a,b)+/b.yds/axK(t,s)dt+/:o (/:G(x,s)cosﬂsds> </b.ycosﬁsds> do(A) =0.

This last equation can still be written, doing an integration by parts and noticing that G(x,x) =0,

F(x,y)—F(x,b)—F(a,y) + F(a,b)+ / ds / K(t,s)di + / ( / IG(x.s) S‘%%) (Si“ﬂygmmjdam:

ds

(2.15)

But

= [ [*dG(x,s) sinV/As sinv/Ay —sinv/Ab
/. </o s V& d)( 7 )do(m,

_ /x dG(x,s) (/“ (sinﬁssinﬂ)/—sinﬂssinﬁb) dc(l)) ds,
Jo J—eo

ds A
= [ 2% (o) - R as,
o s

/G <aF(sy) 8F§ss,b)>d57

(25 A o ['kie) - [ (22 2 o [,
/ /(aF(sy 8F(§Z,b)>ds’

so equation (2.15) becomes

F(x,y)—F(x,b) — F(a,y) + F(a,b) +/ ds/ Ktsdt+/ dt/ (8F(sy aF(gSS’b)>ds—O.

Deriving this expression with respect to y and then with respect to x (the support of the measure ¢ is compact), we obtain

2
9F+/K aF(,y)

xdy +K(x,y) =
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J*F
By setting f(x,y) = m, we finally obtain the Gelfand-Levitan integral equation for the function x — K(x,y) valid for

O<y<n,
fxy) +K(x,y)+ /OXK(x,S)f(s,y)ds =0, y<x (2.16)

For the case a =, i.e., W(x,A) = y»(x, 1), just integrate the two members of equation (2.14) from 0 to x and use a similar
reasoning. Under the continuity assumption of K, equation (2.16) must be checked for x = 0 and x = y. Note also that if we set
x in the previous equation, then we will obtain the so called Fredholm’s linear integral equation. We can prove that, conversely,
equation (2.16) admits a single continuous solution in the set of pairs of real numbers such that : 0 <t < x. We will not look
for the solution at this level, it will be done later (in the next section) when we treat the Korteweg-de-Vries equation.

3. KdV equation and the inverse diffusion method

Let us first examine some particular solutions of the equation of KdV (1.1), of the kind of progressive waves u(x,t) = s(x — ct),

d ds 0d°
where c is the phase velocity. By replacing this expression in (1.1), we obtain 262 + 22 o. By integrating

dx dx dx3
this equation with respect to x and imposing the boundary condition that s and its derivatives decrease for |x| — oo, we get
2

2
—cs—3s* + a—x; =0, hence —cs — 25> + <(7i> =0, and the exact expression of the solution s requires the use of elliptic

functions. Suppose that —S(O) = 0, in which case the solution of this last equation is s(x — ct) =

Jx

1 4
sech denotes the hyperbolic secant, i.e., cosh’ Therefore u(x,0) = ug sechz)lf, where uy = —% et > = —. This expression
c

x—ct), where

—% sechz%z(

shows that u removes infinitely long time in the position u ~ 0, then it reaches the value uy, is reflected on this point and
returns again in the position of u ~ 0. This solution is called soliton. To obtain this solution, we can use the so-called Bicklund
transformations for the Korteweg de Vries equation.

When solitons collide, dimensions and speeds of solutions do not change after collision. This phenomenon has suggested
the idea of conservation laws. And indeed, Kruskal, Zabusky, Lax, Gardner, Green and Miura [6, 7, 8, 9, 10, 11, 12, 13, 14]

have been able to find a whole series of first integrals for the KdV equation. These integrals are of the form / P, (u7 vy u<”)) dx,
where P, is a polynomial. Indeed, the conservation equations that can be deduced from the KdV equation take the following

90n

; =0, where P, and Q,, form a series of functions of which here are the first three:
X
(1) The KdV equation can be written in the form

general form :

dr  dx ox? ox?
(i1) Multiply the KdV equation by u, this gives

8 28u 8314 d [u? 0 5 u 1 [u\> B

Hence,
2 Pu 1 [(du\?
Pzz%, Q2—2u3+uu<u> -
(iii) We have

’u\ [ du du du
(35 (5 o+ ) =0

6 ai
ou du d%u 30U 23u dud*u d*uoddu J*udu Ju J%u
2 _ 2 ouotu druou  oruodu  ou
<3 it 8x8x8[>+< 18’57+ 3u oy o+ bu )

2 2
R R e

a3 dx dx2  0x2Jx3 0x?2dt OJx dxot

Therefore,

i 3_|_l @ ? _|_£ 2 _|_3 282 87214 2_@@ —
ar \“ T2\ ox ar\ 2" o2 2\ o2 oxor )~
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Consequently,

B u 9y 28214 1/9%2u\> Quou
Bi=u'ty (ax)’ Qs = —3u +3“axz‘z<axz> T oxar

0 2]
If u vanishes for x — oo, we get — / P,dx =0, then / P, dx are first integrals of the KdV equation. Let u(x,t) = a—y(x,t) and
X

dy dy 9%
suppose that FIRE T decay when |x| — 0. The KdV equation, is written
J ay\> 9
D _3(2) 2.
ot ox or’
Hence,

%/ xtdx—3/ <c9y> xt)dx—3/ %(x,t)dx = constant.

. 2]
Since u = —y, we have also

ox

0 0 ~
E/ y(x,1)dx = at/ / u(z,t)dzdx = XE/N (z,1)dz )

J [ d [
- E/ﬂo (z,0)dx = 75/ xu(x,t)dx,
2

u
EIo) tend to 0 when |x| — co. Comparing the two expressions obtained, we obtain a new first

=

because by hypothesis #> and ——

integral

E/ xu(x,t)dx = constante.

dA
Lax [7] showed that the equation of KdV is equivalent to the equation : — = [A, B], where

dt
02 03 Jd Jdu
A:*W”(“)’ B_48x33<u8x+8x>'

We deduce that the spectrum of A is conserved : if A is a symmetric operator (AT = A) and T an orthogonal transformation
(T'" =T7"), then the spectrum of 7~'AT coincides with that of A. The appearance of an infinite series of first integrals is
easily explained by the Lax equation.

The Sturm-Liouville equation Ay = Ay, where A is a real parameter, can be written in the form

82
LA

W+ A—M(X,I))I[IZO. 3.1

This equation reminds us the stationary Schrodinger equation. We will see that the complete solution of the KdV equation
is closely related to the solution of this equation. We will look at solutions for which u decreases fast enough for x — +oo.
There are other interesting conditions to know: the case where u(x,#) tends to different constants for |x| — e and the one
where u(x,?) is periodic in x. So consider equation (3.1) where u(x,t) is the solution of the KdV equation (1.1). It is assumed
that after a certain time equation (3.1) has N bound states with energy A, = kn, n=1,2,...,N and continuous states with for
energy A = k?. We draw u from equation (3.1) and replace it in equation (1.1). After a long calculation, after multiplying by

w2, we get the expression

A 5 d [ dy\
vl ("’ax -2¥r) o (32)
wherera—erM* 3(u +M3y/

ot Ix? dx
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Theorem 3.1. a) For the study of the discrete part of the spectrum A,(t) = —k2(t), we consider , (measurable and square
d
integrable function) and we show that if W, and % tend to zeros when |x| goes to infinity, then A, (t) = constant and the
X

solution of equation (3.1) is given by y,(t) = cn(O)ek”(x"‘k%’), where ¢, (0) is determined by the initial condition u(x,0) = uo(x)
of the KdV equation.

b) For the study of the continuous part of the spectrum A(t) = k*(t), we assume that a stationary plane wave propagates
from x = —oo and meets a potential u(x,t) with a transmission coefficient T and a reflection coefficient R. In this case equation

(3.1) admits a solution y such that :

- T (k,t)e**, x — +oo (i.e., to the right of the potential barrier)
V=19 ek +R(k,t)e ™ x — + —oo (i.e., to the left of the potential barrier)

where |R|> +|T|> = 1. If u~0 for |x| — oo, then we have T (k,t) = T (k,0) and R(k,t) = R(k,O)e‘Sik3’ where R(k,0) and
T (k,0) are determined by the initial condition u(x,0) = ug(x) of the KdV equation.

Proof. a) Just integrate equation (3.2), this gives

oA, ) aY Jdy,
. dx+ vy, — — T =0.
5| v =
. ) oIy, o Y,
By hypothesis, W, € L* and v, x tend to zeros when |x| goes to infinity, so Y, = — Y tends to O for |x| — oo and
x X
dA d BT d
we deduce that A, () = constant. Now, since Fr 0, then equation (3.2) becomes . ( 87 a‘”r) = 0. Let’s integrate
X

8v1
(‘V* o ) A T\ A
this expression twice, T = v ie., <‘I/> v hence, Y = l[// dx+B(t)l// where A(t) and B(t) are
integration constants. So we have

Y, 8%73( Hﬂ)aw

o o ox

A,
_ Wn/WdHBnq/n. (3.3)

Note that A,(¢) = 0 because y, satisfies (3.3) and decreases to zeros for  — —co. Let’s consider u = 0 for x — —oo because
otherwise y;, would not have the decay assumption. Multiply (3.3) by y;, and integrate

3
/ Yy wnd +/ <l//n(9 Y —3A, u/na;/")dx—Bn/ ulzdx

oy, 3%y,
ox dx?’

= 10y} v 3, 5 1y’ =
dx _Z i dx =B, ndx.
/ ot + / < "ox2 2 An i 2\ oJx * /_oo Ynax
We have B, (t) = 0 because v, € L7 and decreases to zeros when x — —eo. Since u 22 0 for x — —oo, then from equation (3.2),

de
% + 4c,,k3) & = 0, hence

This expression can be written, by adding and subtracting

it comes ¥, (x,1) = ¢, (t)ek**, x — —oo. By replacing the latter in equation (3.3), we obtain <

en(t) = cn(O)e"”‘ﬁ’. Consequently, v, (x,) = c,,(O)ekn(X"lk'%’).
b) Choose A = constant since the spectrum for A > 0 is continuous. So equation (3.3) remains valid,

Iy A
o (u—i—),)g—l///ﬁdx—i-Bw. (34)

) aT A ;
For u 22 0, when x — oo, we replace y = T (k,t)e’®™, A = k? in equation (3.4) and we get o 4T = T /e’Z’kxderBT.

For this equation to preserve meaning when x — —+oo, we must have A = 0, hence

‘?% — (4ik* +B)T = 0. (3.5)
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Similarly, for u 22 0, when x — —oo, we replace Y = ¢** + R(k,t)e~**, A = k? in equation (3.4) and we get

dx
o2k | R2o—2ikx L QR"

oR . . . . g
<at —‘,—4ik3R—BR> e—th_ (4ik3 _,’_B)ezkx :A(elkx+Re_lkx)/

For x — oo, the equation above preserves a sense if A = 0 and is written

JR A .
<8t +4ik>R — BR) e~ _ (4ik® + B)e™ = 0.

JdR
For 4ik® + B = 0, equation (3.5) implies that T'(k,t) = T (k,0) while the condition 5 +4ik’R — BR = 0, gives us R(k,t) =

R(k,0)e 81, O
The knowledge of ¢,(t), kn(t), n =1,2,...,N and R(k,t) allows to express u(x,?) for any time; it is the problem of the

inverse diffusion. The latter is reduced to the solution K (x,y;) (to simplify the notations, the reader can obviously use K(x,y)
instead of K(x,y;t)), of the Gelfand-Levitan linear integral equation :

X
K(x,y;t)+l(x+y,t)+/ I(y+z,0)K(x,z;t)dz=0, y<x (3.6)

where
L o) g 3" 25 n06)
o —ik(x+y n (1) (x+
I(x+y,t)—ELwR(k,t)e ) dk+,,§'1€n(t)e ),
The solution u(x,7) of the KAV equation is then given (see (2.10)) by

d
u(x,t) = ZEK(x,x,t). 3.7)

The nonlinear KdV equation is transformed into the linear Gelfand-Levitan equation. The initial problem is thus completely
solved. This method presents two major simplifications. First, in the analytical approach of the solution of the KdV equation,
it suffices at each stage to solve only linear equations. Then ¢ only appears parametrically and more than for all ¢ the
Gelfand-Levitan equation seems superficially to be an integral equation of two variables, actually x intervenes as a parameter
and so we have to do to a family of integral equations for the functions K(x,y) of a single variable y. Before dealing
with the general case, i.e., the case of distinct N solitons, let us return first to the case of a soliton and therefore consider

the solution u(x,t) = —% sech2§(x— ct) of the KAV equation obtained previously with the following initial condition :
u(x,0) = -2 sech’x, where by convention we put ¢ = 4. The Schrodinger equation (3.1) is written

82

a—x‘é’ﬂz sechx+ A)y = 0. (3.8)

To study equation (3.8), one poses

v = A sech®x.w(x), (3.9
where A is an arbitrary amplitude, > = —A and w satisfies the equation

92 d

2 sotanha Y + 2+ a — o?) sech’x.w = 0.

dx? dx

By doing the substitution # = 3 (1 —tanhx), the last equation comes down to a hypergeometric differential equation or Gaussian
equation :

i o _

u(l—u) +(c—(a+b+1u) P

EP abw =0,
u
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where a, b, c denote constants and are equal toa =2+ o, b = —1 4+ &, ¢ = 1 + . This equation presents three regular singular
points : u =0, u = 1, u = co. The solution of this equation for u = 0 is
ab u ala+1)b(b+1) ﬁ ala+1)...(a+n—1bb+1)...,b+n—1) u"

=F(a,b =14+ —.— . — 3.10
w=Fab,eu) =1+ c 1!+ c(c+1) 2! clc+1)..(c+n—1) n!+ (3.10)

For x — o (i.e., when u — 0), we have w — 1. According to (3.9), we have y = A2%(e* + ¢™*)~%.w(x) and this one tends to
Ae?%e~% when x — oo, To represent a plane wave Ae™** going to +oco, we will put @ = —ik. The asymptotic form of the wave
function for x — —oo (4 — 1) is obtained by transforming the hypergeometric function using the well-known functional relation

_ T(e)l'(c—a—D)

_olle—a9) —ap L (atb=c)
I'(c—a)l'(c—b)

F(a,b,c,u) OR0)

F(a,b,a+b—c+1,1—u)+(1—u) F(c—a,c—b,c—a—b+1,1—u),
where I'(z) = / e’ ezfldt, Re z > 0, is the Euler Gamma function. Taking into account (3.10) and the expression above, the

relation (3.9) becomes

v=A Sech&x[?(c)l“(c—a—b) (1+ ab (1_u)+...)

(c—a)'(c—b) a+b—c+1
—ap L@ (a+b—¢) (c—a)(c—Db)
1—u)? 1 1— ).
+(1-u) [(a)T(b) e W
When u — 1 (x — —o0), we have (l—u)c’“’b—m’z‘” and since o¢ = —ik, then

v — Ae”

I'c)I'(a+b—c) (e’k" I'(c—a—b)'(a)l'(b) )
I['(a)T(b) L(c—a)l(c—b)T(a+b—c))"

This expression combined with the fact that y tends to Ae>*e~%, x — oo, give us the transmission coefficient 7 and the reflection
coefficient R,
I['(a)'(b) I'(c—a—Db)'(a)'(D)

L= Fotats—0 B Tle—alc—b(atb—c)

We have k; =1, ¢(0) = V2, R(k,0) = 0. For an individual soliton, equation (1.1) has a precise solution. It turns out that the
soliton of amplitude g has only one discrete level with eigenvalue A = @, while the next level corresponds to the point A = 0
(with the respective eigenfunction ¥ = tanhx) and already belongs to the continuous spectrum. The Gelfand-Levitan equation
(3.6) where I(1,t) = c}(t)e1H = c3(0)e k7 ekl = 27811 i written
"X
K(x,y;t) +2e 8+ 4 2678[+y/ ¢“K(x,z;t)dz=0.
e*.x

By putting K(x,y,t) = f(x)e’, we obtain f(x) +2e 8+* 4 ¢~ 8+2f(x) = 0, hence, f(x) = —2m.

solution (3.7) of the KdV equation in the case of a solitary wave is
2
cosh? (x — 4t)

Therefore, the

u(x,t) = Z%K(x,x,t) =— = —2 sech?(x—4r1).

We will now look at the case of N-solitons through the procedure suggested by Gardner, Green, Kruskal, Miura [8] and to
use the results of [15]. In order to solve the Gelfand-Levitan equation (3.6), where R(k,¢) = 0, one poses

N
K()C,y) = an(x7t)eknya (3.11)
n=1

where w,, are functions to be determined. By replacing this expression in the Gelfand-Levitan equation, we obtain the following
system of linear algebraic equations for w,,n=1,....N :

(ky +km)
wi(x,t) + C%(Z)eklx +Z{X=1 C%([) ekll+k:lxwm(x7t) =0,

(kpr+km )x
wy (x,1) + e ()N + YN clz\,(t)%wm(x,t) =0.
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Define the following notations : A = (c,%(t)e(kﬁkm)x) W= (w-wy) ,G= (c(r)ekr-. ‘clzv(t)ek"’x)T,

2 e(kn"v‘km)x

PE(an): 6nm+6n(t)m :I-f—147 (312)
where [ is the unit matrix. With these notations, the system above is written PW = —G, and it is easy to show that it has a
unique solution. From equation (3.11), we draw K (x,x) = Ww=—h"PIG h= (ek1x~ . -ekNx)T. Or

d 2 o S 2 et

%an:cme nX o mX’ detP:n;] 8nm+Cn(t)m Ol

_1 anm .
and P~ = , where q;,,,, is the cofactor of P, so

detP
Oy d 1 d d
K(x,x) = — =Py =————(detP) = —— Indet P
() == ). Gop dn " =~ darp dx \GetF) = — g Indet P

n,m

d d?
and according to (3.7), we have u = Zd—K (x,x) = —Zﬁ Indet P. Therefore,
X X

Theorem 3.2. The solution of the KdV equation is given by the function

d2
u= —ZE lndetR

where P is defined by (3.12) and whose c,(t) = cn(O)e"”‘z’, with k, > 0 distinct.

The function obtained in the this theorem is negative for all x, continuous and behaves like the exponential when |x| — oo.
To get an idea of the behavior of solitons and in particular their asymptotic behavior, suppose that k; < ky < ... < ky_1 < kn.
We will need the following result :

1 1 1

(llTb] alThz e alTb”
N R T T e [Tj<k(aj —a) [1j<k(bj — bi)
Hj,k(aj —by)
1 1 1
anfbl a,,sz e an—by

Consider the following determinant :

1+clby; clbi cibis
A=| by 1+cdbyn  dbys |,
C%bg,l C%b32 14+ C%b33

where cjcacs # 0. If we divide the 1% line by ¢y, the 21 Yine by ¢, and the 3" Jine by c3, we will have

14+c2b
— abn b
1+c3b
A=cicac3 cabyy #22 caby3
]+C%b33

c3bzr cabm o

Multiply the 1* column by ¢y, the 2"¢ column by ¢, and the 3" column by c3, we get

2

I+cibir  ciebiy cic3bis

A=| cxctby  14+3bn  cac3bas
2

c3c1bsy c3cobsn 1 +C3b33

So for the determinant of order N, just use the same procedure, i.e., by dividing the /"¢ row by ¢ ; and multiply the 7" column
by c;
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Theorem 3.3. The explicit solution of N-solitons of the KdV equation is given by

—22 k2 sech? (k,&, +8F), t— 4oo
u(x,t) =
—2): k2 sech* (k& +8,7), t— —oo

where the phase changes are given by

1 2 "71]{1‘7]{ ? 1 2 N kj*kn ?
§f=-In - - 6, =-In*>
" =2 ok, JUlk,+k,, TS .Hlkj+k,,

Jj=n+

Proof. The determinant of the matrix P is written explicitly in the form

()2k AWk +k AW (ky+k AWk +k
1+ o A e elkitha)x k11+k,€(]+ o W elkithkn)x
3 ) (k2+k1) 149 cz(> o G0 Lkathx GO (kpthy)s
detP = k2+k1 k2+k1 k2+kN
N (y+k)x Ny N0 (kytkj (1) dkyx
kAI/V+k1 (N+ 1) k1§v+k2 elknth)x kNNiJijE( N+kj)x 1+ e
Applying the previous remark to the determinant det P above, we obtain
1+ ( ) 21<1x ci(t)ea(t) (k1+k2) c1(t)en(t) (k1+/<N)
ky+ka o Thitky
7‘2( Jer (1) elkatki)x 1+% 62( ) e2kox ca(t)en(t) elhatkn)x
detp=| M Koty
en(t)er(t) (ky+kn)x  en(t)ea(t) ,(ky+ka)x 1 + ( ) p2knx
kN+k] kn—+ko e
Since c(t) = cj(O)e_4k§t, then
1+ ) k& c1(0)ex(0) éithé c1(0)en(0) k1 81thnén
ki +ky e k1+ky
2(0)c1 (0 ) Stk g 1+ 92 Le%zéz o 200en(0) Jka&r+kyéy
detP = k2+/<| 2ko ko+kn
: . .
7CN]{(,S)+C]1€1(O) eNENTHKIE) 761\/1{(,3132(0) nEnthas 1+ 7%/]((}3) e2knén

where &, =x— 4k§t, 1 < j < N. To get an idea of the behavior of solitons and in particular their asymptotic behavior, suppose
that ky <k < ... <kny_i <ky. Fort>>0let’s write &; inthe form &; =&, —¢€;,1, 1 < j <N with g, = 4k? —4k2 and cj(0)=c;.
Note that g, <0if 1 < j <n, &, =0, €, >0if n < j <N, and &;, = —¢&,;. We have also &y > €1y > --- > Epuy1)n > 0
if n>m, and & < &,(n—1) < ... < Eymy1) < 0if n <m. Replace these expressions in the determinant above and approximate
the elements of the diagonal (for j < n) :

C? 2%; (€ ) C? 2%;(& )
14 L g% n—E&jnl) o _J_o%kj n—Ejnt , '<I/l, t — oo
2; 2%; /

(we can do it because for j < n, we have €, <0 and 1+ ¢* = ¢" for x — o). Then, we put in factor the following common
expressions : %K1 (Gn—eint) p2ka(Gn—emt)  o2hn1(En—E(u-1)al) . By turning 7 to infinity, we have (since £, > 0 forn < j < N) the
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following situation :

1 (S5} C1n—1 CiCn knén
2k fik e Kithn_t i tkn € 0 0
(9191 o €2€n-1 €26n_ Lknp
Bth % Ttk Tt € 0 0
Cn—1€1 Cp—1C2 ‘%71 Cp—1Cn ek,,é,, 0 0
detP =C| £ vk Fotthy Zhr Kot Hhn
_CnCy kngn CnC2 knén CnCp—1 knén n 2k,,§n
Tk € i € SRR o 1+ 52e 0 0
0 0 ... 0 0 1 ... 0
0 0 0 0 0 1
n—1
where C = H 2K (En—Ejn) Obviously, we have
Jj=1
2 .
1 [S1%) C1Cn—1 C1Cn_ k,,é,,
2k ky+ko e ky+ky—1 ky +kn
(191 i €2Cn—1 C2¢n eknén
ko+ky 2k e kytkn—1 ka+kn
detP=C : :
2
Cnf 1€1 Cn—1€2 Cn—1 Cn—1Cn ekn 5,,
kn—1+k; kn—1+ko e 2kp—1 kn—l+2kn
_Cn€1 kngn CnC2 kn&n CnCn—1 knén Sn 2kn§1
Kutkr € Knthz € R A 14 e
This determinant is still written in the form
1 1 .t 1
1 1 1 2k ky+ko ky+k,—1 ky+ky
2k, ki+ky ki tk, 1 1 1 1
el ﬁ % # u otk 2k, o Ttk kot
2+k) 2 e 2+kn—1 . .
detP=C[]<; . . e | : : :
=1 : . : =1 1 1 1 1
1 _ 1 1 knp—1tki  kp—ytka 77T 2k ky—1+kn
kn_1+ky  kp1t+ky 7 2k _ 1 1 1 1
kn+k kn+ky T kn+ky—1 2kp

2
for n > 2, while for n = 1, it equals to 1 + 2‘71]@2/6151. Using the previous lemma, we get for t > 0,

- (ki=k)? " [ (k= ky))?
= 2k; (571 781)1 I—Il<j— 2 L 2kn ‘:”
detP H€ H J [ (ki +k;) +JI:IIC] [T, (ki + k) ‘

i=1 Jj=1

By replacing this expression in the solution obtained in the last theorem, we obtain the explicit solution of N-solitons :

2
u(x, t)——ZZ’k2 sech? | k,&, + C% ﬁkj_k" t — oo
= nt 2 2k 1 ki ky ’ '
=
Similarly, it is shown that for r < 0
i 22 1 c ﬁ Kk )
u(x,t) =—2Y% k;sech” | k&, +=-ln-—2+- e B , I— —oo.
= 20 2kn \ ;i kjtkn
This completes the demonstration. O

This result can be interpreted as follows: for example for t — oo, we have

. _f —2k% sech? (ky(x—4k2t)+8;) ifc=4k2
o) = figut _C[)_{ 0 ifc#4k2
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This is the form of a solitary wave of amplitude 2k2, propagating on the right with a constant velocity equal to 4k2. The solution
of the KdV equation actually splits into N-solitons at the limit for || — . This indicates that each soliton preserves its shape
after collisions. These are analyzed by the phase changes &, and 8, . The relative phase change is determined by

L 6 (T TN k—k ) I N
8 —8, =-In_~ B NP B | ] =Y In o In “
2% \ Mk ) "2 2%\ A 5 ) TE TR A Tk

and it is expressed in terms of k; (1 < j < N). Since k; are invariant with respect to time, then the §,” — §, are also invariant.
Recall that we assumed k; < kp < ... < ky, then

5*—6’:—§:lnkj_kl>() 6*—5’:]\illnkN_kl<O
! ! - kj+k ’ N N +

N N
In addition, it is easy to show that Y 8§, =) &, .
n=1 n=1
We could not finish this section without indicating some results related to the KdV equation. The KdV equation (1.1) is
written in the form

du_ 0 (,, 9w\ _ 0 3H
o oax\"" T o) T oxeu’

where
o oo 1 /ou\?
H= [ Pdx= S+ (=) )4
/—oo 34 /—oo <u +2<&X> ) L

6H
is the first integral (Hamiltonian) obtained previously and

Su(x
This equation forms an infinite dimensional Hamiltonian systeng, Btompletely integrable and the Hamiltonian structure is defined
by the Poisson br kt'{FH}—/ o0F 0 oH

y the Poisson bracket : {F,H} = Sulx) 9x dul)
further (in the following sections) the problem of studying the KdV equation via symplectic structures on operator algebra,
the relation with the KP hierarchy [16], the Sato theory [17] T functions and the work of Jimbo-Miwa-Kashiwara [18, 19].
The study of the periodic problem for the KdV equation allowed some authors to discover an interesting class of completely
integrable systems. The obtained solutions are endowed with remarkable properties : they define functions u(x) for which
equation (2.1) with periodic coefficients has a finite number of zones of parametric resonance on the axis A. The spectrum of
the Schrodinger operator is invariant by the Hamiltonian flow defined by the KdV equation. And as we have already pointed
out, this spectrum provides an infinity first integrals or invariants. The isospectral sets related to invariant manifolds defined
by putting these invariants equal to generic constants are compact, connected, and infinite-dimensional tori. Each of these
isospectral sets is isomorphic to the real part of a Jacobi variety associated with a hyperelliptic curve of finite or infinite genus.
The periods of this torus can be expressed using hyperelliptic integrals; in short, the explicit linearization of the flow of the
KdV equation is made on this Jacobian variety using the Abel application, the Jacobi inversion problem and the theta functions.
For other interesting integrable systems that will not be discussed here, the solutions blow up after a finite time as Laurent
series depending on many parameters (see for example [20, 21]).

denotes the gradient (Fréchet derivative) of the function H.

dx. We check that the latter satisfies the Jacobi identity. We will discuss

4. Pseudo-differential operators

Let L be a pseudo-differential operator with holomorphic coefficients. The set of these operators form a Lie algebra that we
note o . The algebra 7 decomposes in two sub-algebras <7, and &7_ : of = o7, B o/_, where 7, is the algebra of differential

operators of the form § = Z ur(x)a*, finite sum, @ = > and &7_ is the algebra of strictly pseudo-differential operators of the
k=0 x

form

n=Yy u_ ()0 * =07+ v+, 9=

k>0
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The algebra .« is an associative algebra for the product of two pseudo-differential operators L and L,

o 1
LL=Y 50

k=0""

(L).9¢ (L),

d . . .
where d = > and the symbol :: denotes the normal order, i.e., it means that the derivatives always appear on the right
X

independently of the commutation relations.
For m,n € N*, we have for all functions u, v,

m n - m' m-r+n— % ] m n
ud" vo" = mek)a ok — Zﬁzag(ua ).0F(vo™): 4.1)
k=0 k=0
and
0 u=ud" 92+ +--- =Y 29507 ").9% (u): 4.2)
k=0

where 9! is a formal inverse of 9, i.e., 0~ 1.0 = 9.9~ = 1.
We define a coupling between .7, and <7 as follows : Let Res({n) be the coefficient of 9! in {7n. We have

n)= <Zuk8k, Z u_k8k> = <u08°+u181 4 ,(971V0+872V1 +>

k>0 k>0

ie., (£,n) / Res({n)dx = / Z ugvrdx. Therefore, the Volterra group (I + 27— ) acts on 27— by the adjoint action and
k>0
on o7, by the coadjoint action. Let { € &7, and 1y € /. We obtain from [22],

(adp (§),m2) = (€, adn, (n2)) (€, [m,m2l),
/(8’1 —term of ({Mim2 — {mam)) dx

/(9*1 —termof ({1 —m&), m)dx,

= <[Can1]+7n2>-
So the set 07, (L) of the differential operators of the form

N=2
L=09"+Y w(x)o", N fixed, (4.3)

is a coadjoint orbit in 27, .
Let f be a function of class € in x and dependent on a finite number of derivatives u,(cl) of the coefficients u; of L. Let

k-1 d\' of &' 4 8H
VH(L) = Za Z 1)( PRy k;oa Su,

be the gradient of the functional, H(L) = / Sl u,(f), ...)dx defined on &7, and such that :

N
dH = / duk—<Zduk.8k,VH>:(dL,VH>,
k=0

N
where dL = Z dug.9%. We recall that the scalar product between two pseudo-differential operators L and L' is defined by
k=0

(L,L'y = — / (LL)_dx = / (L'L)_dx). According to the Adler-Kostant-Symes [20, 22, 23, 24, 25, 26, 27, 28, 29], the

Hamiltonian vector fields on the coadjoint orbit &7, /s define commutative flows and are given by

dL

a ad@]—[(L) (L) =[L,VH(L)],, 4.4
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where H(L) is the Hamiltonian on <7, . The operator L does not contain the coefficient uy_;. Since the vector field (4.4)

1)
applied to the operator L (4.3) imposes the condition Res [L, VH(L)] = 0, we can replace the gradient S . by any expression
PN-1
satisfying this condition. A first Poisson bracket is given by
(H,F}, = (L,[VF,VH]) = / Res (VH[L,VF], )dx = / Res (VH[L, VF])dx = / Res ([VH,L]VF) dx. 4.5)

+N T
applied to these Hamiltonians, provide the integrable equations; N-reduction of Gel’fand Dickey equations of KP hierarchy
(see below for definition) :

N
Consider the Hamiltonians Hyy = m/ (Rés L%) dx, k € N*. We have VH,E” (L§) , and the vector fields (4.4)

@ _ [L,VHn (L)), = — klﬁ)ﬂL}

i = [(I%)JHL} : (4.6)

Note that since [(L% )+,L} = [L§ - (L% ),,L} =— [(L% ),,L} € o/, then equations (4.6) determine an infinite number
+ +

of commutative vector fields (see below) on &7 + .o/ .
We will now study [22, 30, 31, 32, 33] the existence of a second symplectic structure. Let L = L+ z where L is a differential
operator of order n. We have

‘;—f - (ZVH) L-L (VHZ) K @.7)

Note that (4.7) is a Hamiltonian vector field generalizing (4.4). Indeed, let J : &7_/o7_o n—1 —> Po.N—1. be the function
defined by

J(E) = (Zg)}-i (gZ)+ - (Zg)_Z+Z (gZ)_, Led |own 1.

dL ~ ~ ~f o~
Hence, i dy¢)(L) = (LC ) L-L (C L) , which shows that it is indeed a vector field on the differential operators L of
+ +
dL ~ ~ ~
order n. Similarly, we have I =— (LVH ) L+L (VHL) , and the same conclusion remains valid. We also have the

dL
relation i (LVH),L—L(VHL), +z[VH, L], which shows that this vector field is an interpolation between (4.4) for

z = oo and a new vector field for z = 0. Consider the 2-differential form
@ (30 ) = ((£),m) = [ Res ().

This form is closed (d® = 0) and is antisymmetric (J({),n) = —(£,J(n)), and furthermore [z, 9)(n)] = (&), Where
&= (¢ (tn) +(er) n) (=n(E) +(nE)_¢) +amom -t

The functional algebra on the operator space of the form (4.3) for this symplectic form is the so called % algebra.

Theorem 4.1. The Hamiltonians Hy,Hy.n,Hyion, --., defined in (4.6) are all in involution for the bracket (4.5).

Proof. Indeed, let J = J; if z = co and J = J, if z = 0, where the Poisson brackets {.,.}y, {.,.} are given by {H;, Hy}1 =
/Res (VH;J\(VHy)) and

(H;,H}2 = (VH,J,(VF)) = / Res (VH((LVF);L— L(VFL),))dx = / Res (LVH(LVF)+ — VHL(VFL). )dx.

We deduce from the relation

() 1 e((57) ) +[(&9) o] =0
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the expression {H;, Hy}1 = / Res (VH;J,VH;_y). Since the form @ is anti-symmetric, we have
{Hj, Hih = —/Res (VHe—nJ2(VH))) = —/Res (VHe-nJ1(VHj1n)) s

{H;,H; }) = — /RGS (VHj nJ1 (VHi_n)),

{Hj,Hi}1 = {Hjn,Hin}, = {Hj,H}1 = {Hjyan,Hi-an } |

for a large enough with J; (VH_qn) =0, i.e., Hy_qu is trivial for o large enough and we get {H;, Hi}1 =0, so H;, H are in
involution. O

5. KdV equation, Heisenberg and Virasoro algebras
Theorem 5.1. a) The operator L = 9% + g, corresponding to the case N = 2 with q = ug, is related to the KdV equation and
d
the Poisson bracket is provided in this case by {q(x),q(y)}1 = d—5 (x—y).
X
b) By replacing in a), q(x) by the Fourier series
gx)=a Y ™o+, —ia =1, 5.1)

n=—oo

where (Q)rez are new coordinates (Fourier coefficients), one obtains the Heisenberg algebra and the Poisson bracket is

provided by {(pm (Pm}l = n5m+nA0~
c) In the case N = 2 one obtains the Virasoro algebra and its structure is given by

3

c
{Om, On}2 = (m—n)@uin+ — (M —m)Spino-

12

Proof. a) Indeed, since

SH 1 (S6HY'
VH(L):8’15—q+8’2§ (&1) :

1
then the vector fields applied to the Hamiltonian H = / (q3 - 5q’ 2) dx, provide the KdV equation

dg dL 1 d 6H dqg d%g dq

L= —"=_[LVHl,=——=—"=— -—. 2

a a2V = s T T e T, (5-2)
"O0H d OF

d
The Poisson bracket is in this case is {H,F}| = , and therefore, {g(x),q(y)}1 = d—é(x -y).
x

8q dx 8q
b) Let .# be the set of matrices (ay), (k,I € Z), with complex coefficients and
N ={(ay) € A : there is at least r such that ay; = 0 for [k —I| > r},

the C-algebra, i.e., the set of infinite matrices with support in a band around the diagonal. The product of two matrices belonging
respectively to .4 and .# is defined in the usual way. Note that ./ is a Lie algebra and .# is a .#"-module. Their extensions

A and ./ are defined by
0—>(Cc—>j—>JV—>0, 0—><Cc—>/2(v—>//l—>0,

with A = A @ Cec, M = M @ Cc, where c is a central element, i.e., we have [c,A] = [¢,B] =0, VA € /7, VB e . 4. We

notice ¢; j = (0x;.0;;)1 the elementary matrices, i.e., the matrices whose coefficients are all zero except the one of the line i and

the column j which is equal to 1. Since a Jacobi matrix has no trace, then we consider the matrix A[J,B] where A € A4, B € .4

and J is the matrix defined by J = Z €(i)e;;, where £(i) = +1if i < 0 and —1 if i > 0. The elements of the matrix A[J, B] are
i€Z

null except for a finite number, so it is a finite matrix and we define the cocycle of A € .4” and B € .# using the formula

p(AB) = STHAB) = 3 ¥(e(0) —(j))aijb

i,J
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Therefore, the bracket [,] of A € 4" and B € ./ is defined by

—

[A,B]=[A+oc,B+Bc]=[A,B]+p(A,B)c.

We note that the ./ algebra is a non-trivial central extension of N while the subalgebra JZ/; = My ®Cec, is a trivial central
extension of

My =A{(aij) € A : (i, j) — (a;;) with finished support}.

Let’s put E; = Z enn+i» Where e; ; = (8;.0;;)i are the elementary matrices defined above. The subspace E = @,c; CE;, is a
nez
commutative subalgebra of .4". The subalgebra of .4 defined by setting E = E & Cc is called Heisenberg subalgebra. We have

e~

[E,‘,Ej] = l'5,“’,jC. (53)

We now reconsider the previous example and replace g(x) with the Fourier series (5.1). Let H be a functional of ¢. Its Fréchet
derivative in terms of the coordinates ¢y, is written

OH > OH doy 1w O0H ,
_— —_—— = — et X. 5.4
dq k:X_:w S dq k:z_:w 50.° >4

I _ H
o 'Y "0

We substitute (5.3) and (5.1) in equation (5.2) and we specify the Fourier coefficients; we get the relation o

Moreover, since the symplectic structure is given by the matrix of the Poisson brackets, we also have

o, d JH
at _m:Z_oo{(pn7(pm}1a(pm'
Therefore, {@, P }1 = —i *n8,1n0. By putting —iot=2 = 1, we obtain the Heisenberg algebra (where {, } plays the role

here of the bracket [,] (5.3) above).
c) Let Diff(S!) be the group of diffeomorphisms of the unit circle : S' = {z € C: |z| = 1}. Let

d 1
F = {f(z)dZ 1 f(2) E(C[Z,Z]}7

be the set of vector fields (Laurent’s polynomials). Note that F can be seen as the tangent space Diff(S') at its unit point, so F

m+-1

d
is a Lie algebra with respect to the bracket [,]. By setting ¢, = —z 7 we obtain
¥4

d d
(@, @a] = ((n+1)2" ! — (m 1)) = 7(m+n)zm+l’l+ldiz7

1
i.e., [Qm, Pn] = (m— 1) Q1. We show that H>(F,C) = C and p (@, 9n) = E(m3 —m) O, —n. The vector space F & Cc is

called Virasoro algebra, it is a central extension of the algebra of complex vector fields on the circle. The bracket is given by
the formula

c
[@ns @] = (m =) @i+ 15 (= 1) 8. (5.5)
Let us now consider the example of the KdV equation. We have N =2 and

dg _dL _ _ _ (93 5£
=0 = (LVH), ~ L(VHL), = (9" +2(9q + 49)) 5

The (Poisson) bracket is written in this case

(o or
(P = [ 5@ 200 +49) 5
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and we have {g(x),q(y)}> = (9* +2(dg+¢d)) 8(x —y). By reasoning as before (while taking into account the Fréchet
derivative (5.4)), we obtain

0H i 0H

RN _ 37 S —
5(Pn+205(m 4ﬁm)6q0—m’

OPm .
067 = lzn:(nfm)(pm_m

6i
where (@ )rez are the Fourier coefficients of g. By setting 4 =1, a = > and taking into account the Fourier series (5.1), we
c

obtain
P : —nth column nth column :
_ — \L \L OH
at (Pm - S(Pm
. mthline —  S(m*—m) ... (m—n)Qun .

Consequently, we have {@y,, @y }2 = (m —n) Qpin + I—CZ( 3_ m) 840, 1.€., the Virasoro structure [19] (where {, }, plays the

role here of the bracket [,] (5.5) above). This establishes the theorem. O
2
ForN=3,u=uy,v=u3, L= 09> +ud+v, and L3 =93 + §“’ the flow (5.2) takes the form

du 0%u av dv 9> 2d% 2 du

an - o oy’ 9n a2 398 3'ox

Eliminating v from these equations yields the Boussinesq equation
du\> 9 (9%
3( 28 — (=5 +242 ) =0.
(az2> tor (axz e )

6. KP hierarchy and vertex operators

Consider the pseudo-differential operator of infinite order

0

L=0+ud ' 4up0+.., d=—
ox

6.1)

where uj,u,, ... are functions of class ¢ depending on an infinity of independent variables x = t{,f,,.... The compound
operator L" is calculated according to the rules (4.1) and (4.2). We obtain

n oo
L"=0" +pn,28n72 + ... +pn,n +pn,n+1871 +..= a" + Z pn.jark] + Z pn,n+j(97]7
j=2 j=1

where p, ; are polynomials in u; and their derivatives in relation to x. The differential part L, of L" being equal to L =
n

9"+ pn,jd" /. we have
=2

LL=9, L[2=0"+2u, L}=09"+3ud+3(uz+ur),.. 6.2)

The dependency between the functions u,u;, ... and the variables x =t1,1,, ... is provided by the following system of partial
differential equations :

JdL

az:[g,L], neN (6.3)

The set of these equations is called Kadomtsev-Petviashvili hierarchy (abbreviated KP hierarchy). It is a hierarchy of isospectral
deformations of the pseudo-differential operator (6.1). We prove (see [34]) the following result :
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Theorem 6.1. There is an equivalence between (6.3) and the equations

a m a n m
L= gt =, (6.4)

as well as their dual forms

EIT.
ot, Oty

L' =—[L",L", (6.5)
where L = L" — L' . Equations (6.3) determine an infinite number of commutative vector fields on algebra o/ = o/, @ o7_.

oL
Proof. Note that since L" =L +L" , then =— =

e [L%,L] = —[L" ,L] € &/_. Equation (6.3) defines an infinite number of vector
d
fields on 7. Since 5 and [L'} , ] are derivations, then
n
oL™
i (L%, L]+ (L, L7,
= -,
1 n m n m 1 n m n m
= 3 (.o — [, L)) + 5 (—[Lm,Lm+ (L, L),
1 n m n m ] m n m n
= E([L-',-:L-&-]*[L—?L—])‘i’i([LJ,-’L—]*[L—aL-&-])'
Similarly, we have (just swap n and m)
aLn 1 m n m n 1 n m n m
atm = 5 ([L+7L+} - [LvafD + 5 ([L+7L—] - [L77L+]) :
aL"  JL”
Hence, — TR =[L,L7]—[L",L"]. Or
n m
o™ JdL* 9 d d d d d d d
L T - S = e L L — L
Jt, ot, Idt, 8t,, Aty T Oty at, T Oty ot, oty
then
d d d d
— L ——0L" —[L" L] =——L"+—L" —[L",L"].
oty T Oty (3L ot, _+9tm -l

Since the expression on the left belongs to <7, and the one on the right belongs to «7_, then the result comes from the
decomposition &/ = o/} & </_ since obviously <7, N/ = 0. To show that the vector fields defined by these equations
commute, we put X (L) = [L'} L] and Y (L) = [L ,L]. Hence,
X,Y|(L) = (XY-YX)(L),
= X([£}.z) -y ([t
= [x (Li) Y(LY), ] (L2 x(@)] = L2,y ()],
= [X(@) =y (L),L] + [, [, 1] = [L2[L], L]
=[xy -y —Ly.Li),L,

).

according to Jacobi’s identity and taking into account (6.4), we deduce that the vector fields in question commute. L

By specifying the quantifiers of @* in (6.4), one obtains an infinity of nonlinear partial differential equations [5] forming the
Kadomtsev-Petviashvili hierarchy. These equations connect infinitely many functions u; to infinitely many variables #;. For
example, for m = 2, n = 3, relations (6.4) and (6.2) determine two expressions based on u, and u3. After eliminating u3, we
immediately obtain the Kadomtsev-Petviashvili equation (KP equation) :

%u, 09 ( dur dur 83u2> —0

4= —12uy—= —
o2 I 2

(9t3 (9[1 8;13

(6.6)
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We can obtain particular solutions of this equation by solving the equations :

d d d 23

T2, 4222220

8t2 ot 13 ot 1 Btl
The second equation is precisely the KdV equation. The KP equation is therefore a generalization of the KdV equation, to
which it is reduced when ﬂ =0.

Equations (6.3) and (6.4) (see also (6.5)) imply the existence of the following pseudo-differential operator of degree 0
(wave operator) W € ¥ + .7 :

W=14w ()0 ' +wa(t)d 2+ (6.7)
with t = (t1,1,...) € C*. The inverse W ! of W is also a pseudo-differential operator of the form
W h=1+v()d "+ va(t)d 2+,

and can be calculated term by term. Indeed, by definition, we have ww-! =1. So, using the fact that

=)

0"u = kZ’ 7( Y (*ud™) o™ *u o"M" = gmtn,
as well as the formulas described above, we specify the quantifiers of d !, d~2,... in the equation WW ~! = 1 and we determine
relations between w,, et v,,. We obtain finally for W' the following expression :

Wl =1—wid '+ (—wa+wH)d 2+ (w3 +2wiws —widwy —wi)d > +---
In terms of W, the operator L (6.1) can be written in the form

L=w.ow " (6.8)
According to (6.1) and ((6.7), we deduce the relations :

ur = dwy, u3 = —dwy —wiowy, ug = —dwsz +widwy + (dwy)wp — w%&wl — (8w1)2.
We have the following result :

Theorem 6.2. Equations (6.3) or what amounts to the same equations (6.4)) are equivalent to the existence of the wave
operator W (6.7) such that the system of differential equations

LW =WJ, (6.9)
oW .
o, ~ W (6.10)

has a solution (which can be inductively obtained).

Theorem 6.3. a) Let &(t,7) = Z l,z’ z € C be the phase function with d™E (t,z) = 2" and 9" = 7"e5(2) There is an

equivalence between (6.6), (6. 10) and the following problem : there is a wave function  (Baker-Akhiezer function)

W(1,2) = (14+wi(t)z  +wa(t)g 2 4---) 0D =wet 3 zeC (6.11)
where W is identified as (6.7) and such that :
LY = 7%, g—z =Y. (6.12)
b) Introduce the conjugation 0* = —0d and let
L'=14 (=) 'uy+(=0) 2ug+---, W*=1+(=9)"'wi+(=9)2wy+---

be the adjoints of L and W such that : L* = —(W*)~1.0.W*. The adjoint wave function
W (t,2) = (W(t,0)) e,

al}’* * *
= ()

satisfies the following relations : L*W* = 7%, Fr
n
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Proof. a) Indeed, we have from (6.11),
oY W ()
ot, ot,

= —L"We* ") 4 7'Wet 19 according to (6.8)

= —L"W+4+7"¥, according to (6.9)
—L"¥Y+L"¥, according to (6.10)

= LY.

In other words, W satisfies (6.11) and (6.12) is equivalent to the fact that W satisfies (6.7) and (6.10).

b) Just reason as in the proof of a). O

+ WZ"eé(f@’

Therefore, the knowledge of ¥ implies the knowledge of W and also of W* and L. Define the following residues :
ResZakzk =a_q, RgsZakak = a_ and consider the following result [33],
Z

Theorem 6.4. Let P and Q be two pseudo-differential operators. So
Res((Pe™).(Qe ™)) = RSS PQ*,
Z

where Q* is the adjoint of Q.

Proof. Indeed, we have

RgS((Pe"Z)-(QE’“))=R§S():pkzk2qz(—Z)’)= Y (—D'par,

ktl=—1

and

Res PQ* =Res Y pid*(=d)'qi= Y, (—=1)'pas,
d 9 " k=1

hence the result. O
Moreover, we have [33, 34] :
Res ("W). %" = Res (akWe~5 <va>) (W)~ le=802),
~ Res (8kW€‘Z) W le™, x=1-1,
= Rgs Iww1,
= Rgs o,
= 0.
This bilinear identity can be written in the following symbolic form :
Res (¥(1,2).97(r',2)) =0,
for all ¢ and #’. Therefore, we have
Theorem 6.5. \¥(t,z) is a wave function for the KP hierarchy if and only if the residue identity is satisfied :

Res (W(t,2).W*(t',2)) =0 Vi1’ (6.13)
phaie

or what amounts to the same if and only if

1
— W1, W (¢, 2)dz =0, 6.14
Zﬂ\/jl/}' (t,2). 9" (t',2)dz (6.14)

ith v a closed path d (such that / dz 1)

wi a close a around 7 — oo (SUuc art —_— = .
Y P Y271
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Recall that a 7(¢) function is defined by the Fay differential identity (see next theorem) :

{(t =), ot = 2D+ Oy =22 (e = D)) T = [ya]) = 2(0)7(e = D] = [y2])) =0,

ol y1,y2 € C* and {u,v} is the Wronskian u'v —uv'.

Theorem 6.6. Let’s put [s] = (s, %, g, ) The 7 function satisfies the following identities :
(i) Fay identity :
F(t.50,31,52:y3) = (o —y1)(v2 = ¥3)T(t + [yo] + 1)) T(2 + [y2] + [v3])
(o = y2)(y3 = y1) (2 + [vo] + [y2]) 7(r + [y2] + [y1])
+(v0—y3) (1 =y2)T(t+ [vo] + [ya]) Tt + 1] + [y2])

= 0.
(ii) Fay differential identity :
{2t —D]), o =D} + 07 ' =y (el = D)) Tl = [2]) = 7(0) 2t = i) = va2])) =
where y1,y, € C* and {u,v} is the Wronskian u'v —wV'. This identity can still be written in the form

] N 1 ’L'(t— M*l] + [,ufl]) T (i -2d)
a llj(tvﬂ’)w (tnu)*u_l T(I) e Y :

The following equation © = X (t,A, |1)T, determines a vector field on the infinite dimension manifold of the T functions where
X(t,A, 1) is the vertex operator (of Date-Jimbo-Kashiwara-Miwa) for the KP equation .

Proof. According to Sato theory [35, 36], the functions ¥ and ¥* can be expressed in terms of a tau function as follows :

w(r,2) = webtd) = T ey
)

* _ (w1, —E(tz) _ T(I+[Z_l]) —E(tz
‘P([,Z)—(W)le g()*TE &( ).

By replacing these expressions in the residue formula (6.13) or (6.14), we obtain a bilinear relation for the 7 functions. Indeed,
the equation (6.14) is written

[ It e~ =0
‘Using the following change : ¢ <t +s and ¢’ <t + s, we obtain
/ St —s— [ Nt +s+["))dz=0.
Y

Using again the transformation

1
S 1+ 5 ([yo] Dl Do)+ Ds]) 1 S (Dol =Dl = D2l = D)),
and taking into account that eZT(“’f1 ) ab~!, we obtain via the residue theorem
1—
0 :/ Zy“ (t—s—[z )Tt +s+ [z 1])dz,
IT-(1—zy;)
= 27v-1) Res 1_¢T(t—s—[zfl])r(H—s—!—[z*l]) ,
o aygl 3! H (I_Zy/)
2w/ —1

= 9(17)’07}’17)’2;)’3)7
1 =y2) (2 =¥3) (3 = 1)
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where
F(t,50,51:y2,3) = (o —=y1)(y2 = y3)7(t + [yo] + 1)) (e + [y2] + [v3])
+ (o —=y2)(y3 = y1) Tt + [yo] + [y2]) T(t + [y2] + [y1])
+(vo —y3)(y1 = y2) 7t + [yo] + [ys])7(t + [y1] + [y2])-
. . o . . . _0F
The relation .7 (,y0,y1,y2,y3) = 0 is the Fay identity. By making the transformation in the expression (y;y7) I lyo=y3=0
Yo

and replacing ¢ by ¢ — [y;] — [y2], we obtain the Fay differential identity which allows to define the T functions :

{o(t =), vt = 2D} + 1! =32 ) (2 = D)) et = [y2)) — w(0) 2 = 1] = [v2])) =0,

where y1,y> € C* and {u,v} is the Wronskian u'v — uv'. Consider the Fay differential identity above and replace ¢ with ¢ + [y;].
We obtain

{(0), 7t + 1] = D)} + 07" =32 ) (2@ 7+ ] = [v2]) = 2(0)7( — [y2])) = 0.

1 . . .
By putting A = y; ', s =y, !, we obtain after having multiplied the expression obtained by %ezl (=21 the following

formula :

T(f+[)fl])ef):z_,-x/f(f—[Nfl])ezz_,-u-f _ 14 <ezz,(;u'/1f)7(f+ml]— [Nl])>‘

(1) (1) U—Adx (1)

Let

el —j =iy D
X(t, A, 1) = %ezm(uuy)eiu L PN

be the vertex operator (of Date-Jimbo-Kashiwara-Miwa) for the KP equation, then X (¢r,A,u)t et T+ X (¢,A, )7 are also T
functions. Therefore, © = X (¢, A4, 1t)7 determines a vector field on the infinite dimension manifold of functions 7. We deduce,

according to [33], that 1 (¥* (1, 1)z, 1)) = %I)X(t,l,u)r(t). O

Let A(s1,...,8n) = H (Sfl — 5;1 ), be the Vandermonde determinant. Fay identities (theorem 6.6) are generalized as

1<j<i<n
follows. The 7 function satisfies identities :

n—1
T (t_ Z[y]}> A(Y1;-+5Yn) ((f— Z[yﬁ) A(xl,...,xn))
j=1 j=1

= det ((l‘ i[xk] + [Xj} — [y[]> A(xl,...,xjH,yj,xjH,‘..,xn)> ,
=1

1<jI<n

and

_ _ oo i . T(r— — =y,
(W 0y} = 007 ) TP =Py,

j—1
where {uy,...,u,} is the Wronskian det ((gx) uj> .
1<i,j<n
We will see that T functions characterize the KP hierarchy. Let s;(¢) denote the elementary Schur polynomials, i.e.,
polynomials such that :

z © e 1 1
) = % = Y 5i()z; = 1+ nz+ <2t12 +t2) 2+ <6tf +1t +t3> S
j=1
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: t = [(d 19 19 _
with s(r) = 7]!+...+tn. By setting d = (%’2812’3&3"“)’“]6 obtain
-2 -3
T(t1_17]7f2—%,l‘3—%,..) o Tt
\P(l‘,z): Z ()a —j ljtz :W(t)eé(t’z),:

(1)

t

where W (t) = i M

0 077, is the wave operator (6.7). Similarly, we have
j=0

ia ’Sj(a)r 2 (6.15)

> si(—)T ., . .59
It follows from (6.8) that L = W.9".W ! and L" is expressed in terms of the 7 function, L" = Z sil p ) ot SJEL_ ) .

i,j=0
developing this expression, we get

8)rs]( )1’+

=0"+n(log?)"9" 24+ ¥ p

i+j=n+1

The formula (6.10) is written taking into account this last expression of L" and the relation (6.15) as follows :

’ (—Nre.(_2 ’
a(l_ra_1+...):<_ y Wa-l+_..)(1_ra-1+...),
Ity T i+j=n+1 v T

Using the Hirota symbol', we have

i+1§l+1 (Si(g)r) (Sj(_g)f) = sn+1(9)7.7,

and we obtain

2 ~ ~
72 J logt— ) si(d)Tsj(—d)t=0, neN".
91,01 i+j=n+1

i,j>0

These relations are called Hirota bilinear equations. They show that all the functions, j > 2, can be expressed in terms of the T
function. For example,

fa—zlor _1 a—s—ka J log T, _1 a—4—3()—2i+2a J log T — 821017
LT BT \on Tanan ) ¢ “Ze\or o on  Tonon) T \a2 ¢

In particular, these equations provide the KP equation in the following bilinear form :

(P P ey Nc (3 dn\ 1 (3% ov) (9 ar)
12°\ ot} ondry To13) 3dn\ot} di) 4\d In)\dF odn)

Therefore, we have
Theorem 6.7. The 7 functions characterize the KP hierarchy.

The equations of soliton theory play an important role in the characterization of Jacobian varieties. Let

H,={ZM,(C):Q=Q", 1Q> 0},

Tp(d)f(t).et)=p (aBTp %7> flt+s)g(t— s)‘ _where p is any polynomial, f(t) and g(t) are two differentiable functions.
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be the Siegel half-space, A = Z8 @ ZZ# a lattice in C$ and T = C$/A a principally polarised Abelian variety. We show
[24, 37] that the following three conditions are equivalent : (i) There are vector fields v{,v,,v3 on C$ and a quadratic form
3 3
qt) = Z qu1 (t)ixty, such that : for all z € C4, the function 7(r) = ¢71) @ (Z v +z |, satisfies the KP equation. The theta
kI=1 k=1
divisor does not contain an Abelian subvariety of T for which the vector v is tangent. (ii) T is isomorphic to the Jacobian
variety of a reduced non-singular complete curve of genus g. (iii) There is a matrix ¥ = (v1,va,...) of order g X e, v; € C8,

of rank g and a quadratic form Q(¢) = Z qu (D)1xty, such that: for all z € C8, 7(r) = )0 (¥t +z), is a T function for KP
ki=1
hierarchy.
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Abstract

In this article, the consistent Riccati expansion (CRE) method is presented for constructing new exact solutions of
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1. Introduction

Nonlinear evolution equations (NLEEs) in mathematical physics play a vital role in different fields, such as fluid mechanics,
plasma physics, optical fibers, solid state physics, chemical kinematic, chemical physics and geochemistry. Since obtaining
exact solutions of NLEEs come into prominence, there become significant improvements in this domain[1]. Many effective and
powerful methods have been established and improved, such as modified simple equation method [2], symmetry reduction
method[3], trial equation method [4], the (G’/G)-expansion method [5], sub equation method [6], exp(—® (&)) method[7],
functional variable method[8], first integral method[9], modified exp-function method [10] and so on.

The aim of this paper is search new solutions of (1+1) dimensional nonlinear dispersive modified Benjamin Bona Mahony
(DMBBM) equation and modified Korteweg-de Vries (mKdV)-Burgers equation with consistent Riccati expansion (CRE)
method. In section 2, we give the definition of the method. In section 3, there found solutions of the given equations. In section
4, conslusions are given.

2. Consistent Riccati expansion (CRE) method

Lets assume that we have a nonlinear differential equation, remark in the independent variables x and ¢ and dependent
variable u, given by

F(uauxaut7uxxautt;~~-):07 (21)

where F is a polynomial of u(x,¢) and its various partial derivatives including the highest order derivatives and nonlinear terms.
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According to the algoritm, we can seek for the solutions of Eq. (2.1) in the form
n
u= Zui (x7[)Rl (W)7 (2.2)
i=0

where u; (i =0, ...,n) are functions to be detected later and the positive integer n can be detected by using homogeneous balance
method. Here R(w) is a solution of the Riccati equation

R, = ao+aiR+aR? (2.3)

where ag,a;,a, are parameters to be determined and w is an undetermined function of x and .

The positive integer n can be detected by considering the homogeneous balance between the highest order derivative term
with the highest order nonlinear term appearing in Eq. (2.1). Then by sett ing Eq. (2.2) along with Eq. (2.3) into Eq. (2.1) and
equating the coefficients of all powers of R (w) to zero yields a set of algebraic equations for unknowns u;,ag,a; and as[11, 12].

3. Exercises

In this part, we have dealed with two partial differential equations as an application of the CRE method.

3.1 (1+1) dimensional nonlinear dispersive modified Benjamin Bona Mahony (DMBBM) equation
Firstly, we look at the (1+1) dimensional nonlinear dispersive modified Benjamin Bona Mahony (DMBBM) equation [13]

Uy + Uty — QU Uy + Uy = 0, (3.1

where where « is a nonzero constant. This equation was first derived to describe an approximation for surface long waves in
nonlinear dispersive media. It can also characterize the hydro magnetic waves in cold plasma, acoustic waves in inharmonic
crystals and acoustic gravity waves in compressible fluids [14].

Here, it is clear from the homogoneous balance principle that the balancing number is 1. From here, we infer from that the
exact solution of Eq. (3.1) is

u(x,t) = uo (x,1) +uy (x, 1) R(w(x,1)) (3.2)

where ug (x,t) and u; (x,1) are functions to be determined later. Setting Eq. (3.2) and its derivatives with the condition Eq. (2.3)
into Eq. (3.1) and gathering all terms with the same power of R (w), (i =0, 1,...,4), we obtain the following system

R*(w) 6u1w)3cag — au?wxaz =0, (3.3)

R*(w) : 72auou%wxa2+6(u1)xw§a%+12u1w§a1a%+6u1wxwxxa%

—Om% (ul)x—au%wxal =0, (3.4)

R*(w) : 9(n )y wlaya; + 8u1w)3ca0a% — (xu(z)ulwxaz + 9u1wxngxa1a2
—Ocu% (uo), +urwyar — Zauou%wxm +uiwas — uywydp
+7u wia%az +3(uy )Xx wyay — 20tuouy (u )x

+3 (ul)x Wixdp + U Wyxxd) = 0»

(3.5)

R'(w) (1) e Furwrar +3 (uy)  wiay +3u1wxwxxa%
+ (ur), — au(z)ulwxal + 8uywlajazag
—Zauou%wxag —2auoui (uo), + ulw?ca% + (1), (3.6)
+6 (u1), w2asag + 6uy W W andg + U Windg
+3 (u1), wear +3 (u1 )xwﬁa% +uywyag — Otu% (u1), =0,

RO(w) : 3 (ul)xwﬁalao + U W@ + 3 WeWyra@ ag
+ (o) + (10), + (10) e +3 (1) Wxao + urwiao
+3 (u1), waao — Ocu(z) (uo), +urwiatag
+uiwyag + 2u1w)3ca2a% — au(z)ulwxao =0.

3.7
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From the Eq. (3.3), we get

up (x,1) = Vg\/zazwx. (3.8)

If we substitute Eq. (3.8) in Eq. (3.4), we obtain

V6, Twy 1 1 1\3
up (x,1) = ;/W:—l—\@ aalwx—iwxa\/g <a> ai. 3.9
X

When we substitute Eq. (3.8) and Eq. (3.9) in Eq. (3.5), we get following partial differential equation
4a2w§a0 — wﬁa% — 3w)2cx +2W Wypx + 2w)2(

2

If we use Eq. (3.10) in Eq. (3.6) and Eq. (3.7), these Egs. are equal to zero.
If w is a solution of Eq. (3.10), then

WiWyx = —

(3.10)

3

V6w I 1 1 I
uzia—f—\/é —alwx—iwxoc\@ <a> a1+\f6 aagwa 3.11)

2wy o

is a solution of the DMBBM equation with R = R (w) being a solution of the Riccati equation (2.3).
We suppose that w (x,7) be of the form

w(x,t) = acosh (kx+1t + &)+ bsinh (kx + 1t + &) +r (3.12)

where a,b, k,I and r are constants to be determined later and & is an arbitrary constant. Setting Eq. (3.12) into Eq. (3.10) , we
obtain the following equations
k (16a2a0a’k3b — 4a3ak®b® — 4a3a®k3b + 16ara0ak>b* )

— =0
2 Y

k (—16axapa’ kb +4alb+4ata’k’b — 2ak* b+ 4akb)
2 - )
k (—a%a4k3 + 24arapa*k3b* — a%b4k3)
2

B k (f6a%a2k3b2 +4aragh*k3 + 4a2aoa4k3) _0
2 b
k (2a%a4k3 + 6a%azk3b2 —8apapa’k> +2a%k + 2b2k)
2

k(—b*k — a3 +2a*l — 24aya0a®ib* +20%1) 0
5 )
k(—aa*k® —2a*k — 2a%1 — 2a*k> + 4arapa*k> + 3b%k3)
2
Solving above system, we get the following two solutions.

State 1:

2
a
a=b,a0= gz, a1 =a1, aa=ay, b=>b,

(3.13)
k=k E=£ 1=,

State 2:

a:_b7a0: al:a17a2:a2ab:b7

a
4ay

(3.14)
k=k E=¢ 1=,
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Combining Eq. (3.11), Eq. (3.12) with Eq. (3.13) and Eq. (3.14), two families of exact explicit solutions to the DMBBM
equation are obtained

u(x,t) = ;\@\/Zk(albcosh(ﬁ)Jr1+a1bsinh(ﬁ))

6y Las (bksinh (B) + bkcosh (B))

xR (bcosh (B)+bsinh () +r)

and
u(x,t) = ;ﬁ\/Zk(albcosh(ﬁ)—l—albsinh([)’))

+6 éaz (—bksinh (B) + bkcosh (8))

XR(—bcosh(f)+bsinh(B)+r).

Bt
where 3 :kx—kt—}—?—i-é.

We suppose that w (x,7) be of the form
w(x,t) =Aexp(kix+ Lt + &)+ Bexp (kox+ bt + &) +C (3.15)

where A, B, C, k; and [; are constants to be determined later and &; are an arbitrary constant. Setting Eq. (3.15) into Eq. (3.10),
we get the following system

ZB4k4
‘”TZ —2ayapB*KS =0,

—8ayapAki B>k} + 2aiAk| B>k} =0,

—12a2a0A%K3 B?K3 + 3a3A’k3B*k3 = 0,

—B*3 + B3 — Bk, = 0,

—8azapA’ki Bk, + 2aiA’ki Bk, =0,

—Al Bky — Ak Bky — BlLAky — Bk3Aky + 3Ak3Bk3 — 2Aki Bk, = 0,

2 4474
ajA’k|

—2azapA*k} =0,

A%kt
Tl — A2 — A%Lky = 0.

Solving above system, one gets the following set of solution.
ai
A=A, B=B,C=C,a)= day> a)=ay, aa =az, ky = ks,

(3.16)
k3 k3
kh=k,i=-kh+t3 b=-kh+% 6=85,5%=5
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Combining Eq. (3.11), Eq. (3.15) with Eq. (3.16), exact explicit solution is obtained

ko

ulx,t) = f\/Z(Aalexp(ﬁ+§1)+3ale><p(ﬁ+§z)+1)

+a2ﬁ\/Z(Akz exp (B +&1) +Bkyexp (B +&2))
xR(Aexp(B+&1)+Bexp(B+&)+C)
where 8 = kpx+ (sz + %) t.

3.2 Modified Korteweg-de Vries (mKdV)-Burgers equation
mKdV-Burgers equation is given by [15]

u,+qu2ux+ruxxfsuxxx =0 (3.17)

where ¢, r and s are arbitrary constants. According to the homogeneous balance method, we get the balancing number as n = 1.
From here, we infered that the exact solution of Eq. (3.17) is

u(x,t) = ug (x,1) +uy (x,1) R(w(x,1)) (3.18)

where ug (x,7) and u; (x,t) are functions to be detected later. Setting Eq. (3.18) and its derivatives with the condition Eq. (2.3)
into Eq. (3.17) and picking all terms with the same power of R(w), (i =0, 1,...,4), we have the following system

R*(w) qu?wxaz — 6su1w)3ca% =0, (3.19)

R (w) 2qu0u%wxa2 — 65 (u; )waa% + 2ru1w)2ca% — 12su1w§,a1a%

3.20
+qu% (1), + qu?wxal — 6su1wxwxxa% =0, ( )

R*(w) qu% (uo), +2r (u1) , Weaz — SUIWrrxG2
+uiwias —3s (u1) , Weear — 8su1w)3caoa%
+3ru1w§a1a2 + 2quou%wxa1 —3s(ur),, wraz (3.21)
+2quouy (u1), — 9s (ur) ,wlajas — Osuywywyaras

+qu?wxa0 + qu%ulwxag — Tsuy w;a%az +ruiwyaz =0,

R'(w) qu(z) (u1), — 6surwewxarag + 2quou%wxa0 +r(u1),,
Frugwiea) — Suiwyear + (u1), — 3s (ur),, weai
—3s (u; )ijzca% —sulwia? + rulw)%a% —3s(u1), weai
+qu(2)u1wxa1 —s(uy) o, + wiwear — 3suywywyal
—8suywlajazag +2r (ug ) Wxa1 +2ruy w2azay
+2quoui (uo), — 65 (u1), wlayay =0,

(3.22)

RO(w) : wyweag —3s (1) wiarao +2r (uy) , weao + rupw?a ag

2
Frugwieao — 3 (1), Wrao + qUGUIWxAQ — SUI Wyxxlo

+7 (o)., — 2surwiazad — 3s (ur)  wiwao + qu (uo)

—3suiwywyarag + (uo), — s (up) ., — suywiatap = 0.

(3.23)

From the Eq. (3.19), we get

\@\/ELQW)C

up (x,1) = (3.24)
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If we substitute Eq. (3.24) in Eq. (3.20), we obtain

NG (3swxx —rwy + 3sw)2ca1)
6/5\/qWx '

ug (x,1) =

When we substitute Eq. (3.24) and Eq. (3.25) in Eq. (3.21), we get following partial differential equation

4.2 2.2
2 4 sSw.a Wir
wiwy = —3swy, + 2sa2apwy — #1 4 SWe Wy — gs .

If we use Eq. (3.26) in Eq. (3.22), this Eq. is equal to zero. If we use Eq. (3.26) in Eq. (3.23), we obtain

4 3
v 6s (4wxxa2wxao + 3wy, + wxxxxwi — AW Wyex Wy — wia%wxx)

=0.
2./qw}

If w is a solution of Egs. (3.26) and (3.27), then

V6 (3swxx —rwye + 3sw§a1) \@\/Eazwa
6/5\/qwx N

u=

is a solution of the Eq. (3.17) with R = R (w) being a solution of the Riccati equation (2.3).

We suppose that w (x,7) be of the form

w(x,t) =acosh (kx+ 1t + &)+ bsinh (kx+ 1t + &) +r

where a,b,k,l and r are constants to be determined later and & is an arbitrary constant. Setting Eq. (3.29) into Egs.

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.26) and
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(3.27), we obtain the following equations

3 b2k4 2 2k2 4k4
i ra =0 2sa2aoa4k4 sa a

204 217 o
sa“k* —a“kl > s , 2

=0,
—?asct%azk“b2 + 12sarapa®k*b? = 0, 8saraga’k*b — 2sa%a3k4b =0,

b4k4 2 1.2
_SODR S tnagh™ = 0, —sakh — 2akpl — KD

=0,
S

23/6r\/sbklara*ay  /6r\/sa*k®ba? r2b2k? 3sa?k?
- L—0, — — bkl - =
NG 2./9 ’ 6s 2

B \/gr\/gaskéa% B 2\/6r\/§a3k6b2a% 2a (4\@r\ﬁa3k6b2a2 n \@r\ﬁa‘sk%z) _0

+sb*k* =

2v4q Vi Vi Vi
_ 2orysa'khat  3vorysakhat - (6\/6r\/§a2k6b3a2 N 4\/6r\/§a4k6a2b> o

Vi Vi V4 Vi

3v6r\/sbk®a®  3/6r\/sb>k°
—zsa%ak4b3+gsa2a0ak4b3:0’ _ V6r\/sbk®a N V6ry/sb3k 0

2.4 2.4 ’

3V6rysakSh?a?  2v/6r\/sab*kSa? +2a 4\/6r\/sakSb*ar N 6V6r\/sa*kbarb? 0
- - 0 =Y,
Vi V4 V4 Vi

7/ 6r\/sakb? N V6r\/sa’kb ok <\/6r\/§k5b2 fr\fazk5>
—2a

24 2v4q Va
2or/sakh e} Vorysabkoa} - <\f6r\/§b5k6a2 4/6r /5 a2k6a2b3>

Vi 2v4q Vi

7/ 6r\/sbk®a*  \/6r\/sb’k° bk \/Er\/EkaZ V6. r\f a*k>
N N Va

3V6ry/sa*k®  3v/6r\/sak’h? _0 2v/6r\/sak®b*araq \@r\/fab4k6a% B

a2 v v

Solving above system, we get the following two solutions.

State 1:

2
a
a=b, a():ﬁ; ay =ay, ap =az, b=">,

222 (3.30)
k=k E=E 1= )
State 2:
b a b=b
= —b, ap= 7 ap =dap, a; =dap, =0,
i (3247 (3.31)
k=k E=¢ [=-00H)

Combining Eq. (3.28), Eq. (3.29) with Eq. (3.30) and Eq. (3.31), two families of exact explicit solutions to the mKdV-Burgers
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equation are obtained

V6b3I3 (cosh (B) — sinh (B))? (3sk — r + 3sbka, cosh (B) — 3sbkay sinh (B))

u(x,t) = 3
6+/s,/q (—bksinh (&) + bkcosh («))
+\/\/§ (—bksinh (a) + bkcosh (a)) azR (bcosh (o) — bsinh (a) + r)
q
and
w(rg) = V6b3I3 (cosh (B) — sinh (B))? (—3sk — r+ 3sbkaj cosh (B) + 3sbka; sinh (B))
’ 61/5y/q (bksinh (e) + bkcosh (at))?
+\/\/§ (bksinh (@) + bkcosh (a))aaR (—bcosh (o) — bsinh () + r)
q
2,22 _ 3.2 2
where & — —kx+ k(3s I;S+r )t e B 6kxs + 3k t; + ktr® — 65 '
s
We suppose that w (x,7) be of the form
w(x,t) =A+Bexp (kyx+ 11t + &) (3.32)

where A, B, k| and | are constants to be determined later and &; are an arbitrary constant. Setting Eq. (3.32) into Egs. (3.26)
and (3.27), we get the following system

2\/6r\/§sz?a2a0 B \f6r\/§sz%a%

V4 2v4q 7
B3k3 2
2sB3k?a2a0 _ 2 AG 0,
Bk} Bkir?
el G\ L Y 0,

Solving above system, one gets the following set of solution

2
a
A=A, B=B, a():ﬁaal:alyaZ:aZa

ky (3s%k3 412
ki =kl = —¥, & =&

Combining Eq. (3.28), Eq. (3.29) with Eq. (3.33), exact explicit solution is obtained

(3.33)

V6exp(a) (3kis—r+3sBkiarexp (%))

M(X,I) = 3
6,/5q (exp (B))
| V6v/sBkiazexp (B) R (A+Bexp (B))
Vi
_ 3.2 2 by (35202 +12) ¢
where o — _ Ok +3kits> + e 6§1s7ﬁ:k1x_ 1 (352K} + %) g

2s 6s

4. Conclusions

In this paper, by introducing CRE method we apply to DMBBM and mKdV-Burgers equations. We had exact explicit
solutions of given equations with the help of Riccati equation. The obtained exact solutions are consist of hyperbolic and
exponential functions. We checked all solutions of given equations by the Maple.

It is also shown that the CRE method can be performed to other kinds of integrable systems and can be obtained other kind
of solutions.
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Abstract

The standard coalescence of two graphs is extended, allowing to identify two isomorphic subgraphs instead
of a single vertex. It is proven here that any succesive coalescence of cycles of size n, where n is divisible by
four, results in an a-graph, that is, the most restrictive kind of graceful graph, when the subgraphs identified are
paths of sizes not exceeding 5. Using the coalescence and another similar technique, it is proven that some
subdivisions of the ladder L, = P, x P, also admit an a-labeling, extending and generalizing the existing results
for this type of subdivided graphs.
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1. Introduction

A difference vertex labeling of a graph G of size n is an injective mapping f from V(G) into a set M of nonnegative integers,
such that every edge uv of G has assigned a weight defined by | f(«) — f(v)|. All labelings considered in this work are difference
vertex labelings. A labeling is called graceful when M = {0, 1,...,n} and the induced weights are 1,2,...,n. If G admits such
a labeling, it is called a graceful graph. Let G be a bipartite graph where {A, B} is the natural bipartition of V(G), we refer to A
and B as stable sets of V(G). A bipartite labeling of G is an injection f : V(G) — {0, 1,...,¢} for which there exists an integer
A, named the boundary value of f, such that f(u) < A < f(v) for every (u,v) € A X B, that induces n different weights. This is
an extension of the definition given by Rosa and Sirafi [1]. From the definition we conclude that the labels assigned by f on the
vertices of A and B are in the interval [0,A] and [A + 1,7], respectively. When ¢ = n, the function f is an o-labeling and G is an
a-graph.

Let f:V(G) — {0,1,...,t} be a labeling of a graph G of size n <t. The labeling g: V(G) — {c,c+1,...,c+1}, defined
for every v € V(G) and ¢ € Z as g(v) = ¢ + f(v), is the shifting of f in c units. Note that this labeling preserves the weights
induced by f.

If f is bipartite with boundary value A, the labeling /2 : V(G) — {0, 1,...,t +d — 1}, defined for every v € V(G) and d € Z*
as h(v) = f(v) when f(v) <A and h(v) = f(v)+d — 1 when f(v) > A, is the bipartite d-labeling of G obtained from f. This
labeling uses labels from [1,A]U[A 4+ d,t+d — 1]. In other terms, this labeling shifts the weights induced by f in d — 1 units.
Thus, if f is an o-labeling of G and d is a positive constant, then / is a d-graceful labeling. This concept was introduced,
independently by Maheo and Thuillier [2] and Slater [3] in 1982.

In the following sections we study «-labelings of the coalescence of a-cycles. Suppose that G; and G, are two graphs such
that H is an induced subgraph of both of them. The H-coalescence, or simply coalescence, of G| and G», denoted by G| - G, is
the graph obtained by identifying the copy of H in G with the copy of H in G,. Assuming that for i = 1,2, the graph G; has
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order n; and size m;, and H has order p and size g, then Gy - G, has order n| +ny — p and size m; +my — q. In Figure 1.1 we
show an example of this operation where G| and G» are isomorphic and H = Cy4, which is represented in the picture with green
edges.

Figure 1.1. The C4-coalescence of two isomorphic graphs of order 12 and size 20

In [4], Barrientos proved that if H = P; and G and G» are a-graphs, there is a coalescence (also named one-point union or
vertex amalgamation) of them is an o-graph. In [5], Barrientos and Minion showed that if H = P, and G; and G are ¢-graphs,
the coalescence ( or edge amalgamation) of them is an @-graph if the edge of minimum weight in G is identified with the edge
of maximum weight of G;. In this article, we extend the idea of the edge amalgamation, presented in [5], considering H to be a
path. All graphs considered here are finite with no loops or multiple edges. We use the notation and terminology used in [6]
and [7].

2. Preliminary results

In his seminal paper, Rosa [8] showed that when n = 0(mod 4), there exists an a-labeling of the cycle C,,. We present here two
labelings of C, that are going to be used in the proof of the main result of the next section.

Suppose that V(C,) = {vi,v2,...,v, } is the vertex set of C, and its edge set is {v;v;iy1 : 1 <i < n} where the addition is
taken modulo n. The labelings f and g given below are two well-known a-labelings of C,,. The interested reader can easily
verify this statement.

|
—_

[l if iisoddand 1 <i<Z%-—1,

2
flvi)y=¢ = if iisoddand §+1<i<n—1,
n+1-3 if iiseven.
% ifiisevenanngig%_l’
gvi)=19 3 if iisevenand §+2<i<n,
n—1if iis odd.

In Figure 2.1 we show two examples for each of these labelings. The graphs on the first row are labeled using the function
f, while g is used to label the graphs on the second row. The arrow inside the cycle shows the orientation of the vertices within
each graph.

3. Graceful coalescence

Let Cy,,Cy,,...,Cy, be a collection of cycles, where the vertex set is V(an) = {vlﬁj,vz_j,...,v,,j_j} and the edge set is
E(Cpj) = {v1,jv2,j5V2,jV3,js+ - s V=1,V j» Vo jv1,j | for each j € {1,2,... k}. For every j € {1,2,...,k— 1}, select a posi-
tive integer ¢; such that 2¢; < min{n;,n;11}. A graph G is a coalescence of the cycles C,,,Cy,, . ..,C,, when the vertices
VIt 1 V2,415 - o Vi, ] of C,lj .1 (together with the induced edges) are identified with the vertices Vij—tj1,js Vnj—tj+2,j> - - - V. j

of Gy, respectively. Note that G is a graph of order

™=

k—1 k—1
nj— Y ti=m+ Y (nj—1))
j=1 j=1 j=1
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0 12 1 11 2 10 0 16 1 15 2 14 3 13
O—O0——0——=0 O—O0—"C0—"—C0C—C0—=0C
2 2
) ) ) () ) ) ) ) ) )
N\ / N\ N\ N\ / N\ / / /

7 6 8 5 9 4 9 8 10 7 11 6 12 5
12 0 11 1 10 2 16 0 15 1 14 2 13 3
) ) ) ) ) ) ) ) ) )

/ N\ / N\ / N\ N\ N\ / /

Y s
) ) ) ) ) ) ) ) ) )
/ N\ / N\ / N\ N\ N\ / /
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Figure 2.1. Two a-labelings of Cy;, and Cj¢

and size

=~

— k—1

Z Z‘ ti—1) —nk-i-Z(n] ti+1)

In Figure 3.1 we show an example of this construction where ny =8, np =12, n3 =12, n4 =8, and ns =4, and t; = 3,
tp =4, 13 =4, and 14 = 2. The numbers inside each cycle correspond to their respective vertices within that cycle.

O O
4 3 2 1
¢
6 7 8
() ) () () ()
N4 N N N4 N4
1 2 3 4 5 6
2
12 11 10 9 8 7
O O O O O O
6 5 4 3 2 1
<
7 8 9 10 11 12
O O O O
1 2 3 4
2
7 6 5
O O
1

N

Figure 3.1. A coalescence of Cg,C12,C12,Cg and Cy

We claim that when each n; = 0(mod 4), the coalescence G of the cycles C,,,Cy,, ... ,Cn» determined by t1,1,... 1, is
an o-graph. Within the proof of this theorem we use the labelings f and g of C,, given in Section 2.

Theorem 3.1. Let G be the coalescence of the cycles Cy,,Chp,,...,Cy, determined by the integers ti,t2,...,tx_1, where
2t; <min{nj,njy}. If for every j € {1,2,...,k}, nj = 0(mod 4)}, then G is an a-graph.

Proof. Let G be the coalescence of the cycles C,,,C,,,...,C,, determined by the integers t1,,...,t_1, where, for every
je{1,2,...,k}, 2t <min{nj,nj;1} and n; = 0(mod 4)}. Thus every C,,. admits an a-labeling.
To start, we label the vertices of C,,, using the labeling f. For each j € {27 3,...,k}, the selection of the initial labeling used

on the vertices of C,,; depends on the labeling used on G,,; ,, according to the following criteria:
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e If#;_;is even, both anf , and an have the same type of labeling.

e Ifzj_isodd, G, | and Gy, have different types of labelings.

1

Now that every cycle Cy,; has been a-labeled, we proceed to modify these initial labelings to obtain the desired a-labeling
of G. '

Recall that for every j € {1,2,...,k}, the size of the coalescence of the cycles Cy,,Cp,, . .. ,Cy, determined by the integers
t17t27 s 7tk71, iS

k—1 k—1
n; — (Ii—l):nk-f—Z(l’li—ti-i-l),
J i=j

lngle

J i=j

where the term Z;‘:—jl (t; — 1) is the number of edges shared by C,,; and Gy, .
The o-labeling of C;,; is transformed into a d-graceful labeling (the intermediate labeling), where

1

k—
dj = (1 +ng + Z(nitiJrl)) —nj.
i=j
In this way, the weights on the edges of C,,; form the interval
k-1 k—1

ni +ng + Z(n,-—t,-—i—l)—(nj—l),nk—i— Z(l’li—t,‘-i-l) .
i=j i=j

lj=

Sincemin{/;: 1 < j<k}=1landmax{l;:1<j<k}=mn +Zf.:11 (n; — t; + 1), that is, the size of G, we get

k—1

Ij = [1,nk+ Z(”i*ti+1)]~
1 i=1

-

J

Now, we need to shift these labelings to perform the coalescence of the labeled cycles. The labels assigned to the vertices of
Gy, constitute the final labeling of this cycle. For every j € {2,3,...,k}, the final labeling of C,; is obtained recursively in the
following manner:

Assume that the labeling of Cy,; | is its final labeling. Let L;_; be the set of the labels assigned to the vertices shared by
i and C,,j. The final labeling of an is obtained by adding the constant min L;_; to every label of an. Thus, the only
overlapping of vertex labels between Cy, , and Cy;occurs on the vertices used to produce the coalescence.

Once this process has been completed, we have a bipartite labeling of G where the induced weights are 1,2,...,n; +
Z’j‘.;{ (nj —t;+ 1), with no label repeated.
Therefore, G is an o-graph. O

G

In Figure 3.2 we show the final o-labeling of the coalescence of the cycles Cyg, C12, Cg, Ci2, Cg, determined by the integers
ty =5, =3,13 =4, t4 = 3. The starting a-labelings of the cycles are: (0, 16, 1, 15, 2, 14,3, 13,5, 12,6, 11, 7, 10, 8, 9), (12,
0,11,1,10,2,9,4,8,5,7,6),(0,8,1,7,3,6,4,5),(0,12,1, 11,2, 10,4,9,5,8,6,7),(8,0,7, 1, 6, 3, 5, 4). The intermediate
d-graceful labelings are: (0, 45, 1,44, 2,43, 3,42, 5,41, 6, 40,7, 39, 8, 38), (33, 0, 32, 1, 31, 2, 30, 4, 29, 5, 28, 6), (0, 23, 1,
22, ), ( ,2,16,4,15,5, 14,6, 13),(8,0,7, 1, 6, 3, 5, 4). The shifting constants are 7, 12, 15, and 21,
respectively. The highlighted numbers correspond to the vertices that are going to be identified to produce the graph G.

Suppose that we want to form all nonisomorphic coalescence graphs constructed with k copies of C,, where n = O(mod 4).
How many of these graphs exist? Since two consecutive copies of C, shared at most ”;22 edges, any graph obtained by
the coalescence of these cycles can be described by a sequence (or string) of numbers from {1,2,..., %} Thus, counting
nonismorphic coalescence graphs is equivalent to count nonoriented strings with k — 1 beads of % or fewer colors. This
number is known and can be found in OEIS A277504 [9]. In the following table we show the first values for n € {4,8,12,16,20}
andk € {1,2,...,11}.

In Figure 3.3 we show the ¢t-labelings of the six graphs obtained using three copies of Cg.
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O—O0—O0——C0—C0—=0
42 3 43 2 44 1 45 %)
O—O—F7/"CO——CO0—CO0—C0—=0
5 41 6 <4O 7 39 8 38 9
O—O0—0O<x—C0——=C
34 13 35 12> 36 11 37
O—O0—0O0~—0
15 33 16 32 17 31
O—O0—0O0~—C0C——=0
22 28 21 29 20 30 19
O—0O
27 24 26 25
Figure 3.2. a-labeling of a coalescence of cycles
K\n | 4 8 12 16 20
1|1 1 1 1 1
211 3 5 7 9
311 6 15 28 45
411 18 75 196 405
511 45 325 1225 3321
6|1 135 1625 8575 29889
711 378 7875 58996 266085
8|1 1134 39375 412972 2394765
911 3321 195625 2883601 21526641
10 | 1 9963 978125 20185207 193739769
11 | 1 | 29643 | 4884375 | 141246028 | 1743421725

Table 1. Number of nonisomorphic coalescence graphs formed with k copies of Cg

4. Graceful subdivision of ladders

In this section we present two graceful labelings of subdivisions of ladders; the first result is a corollary of Theorem 3.1, the
second one is a new construction. The ladder L, is the result of the Cartesian product of the paths P, and P,. The edges of P»
within L, = P, x P, are called the steps of L,. This type of graph can be seen as the coalescence of n — 1 copies of C4, therefore,
L, is an o-graph. The fact that L, is graceful was proven first by Acharya and Gill [10].

In a graph G, a subdivision of an edge uv is the operation of replacing uv with a path u, w,v through a new vertex w. If the
edhe uv is replaced with the path u,w,w»,...,w;,v, we say that uv has been subdivided an even (resp. odd) number of times
when 7 is even (resp. odd). Kathiresan [11] has shown that graphs obtained from ladders by subdividing each step exactly once
are graceful.

If every step of L, is subdivided an even number of times, then two consecutive subdivided steps, together with the two
edges connecting them, form a cycle of size divisible by 4. Using Theorem 3.1, we can prove that this type of subdivided ladder
is a graceful graph; in fact, it is an a-graph.

Corollary 4.1. If every step of the ladder L, = P, X P, is subdivided an even number of times, the resulting graph is an
a-graph.

In Figure 4.1 we show, together with the original labeling of Ls, two examples of this subdivided ladder.

Unfortunately, the argument used in this corollary does not work when the edges are subdivided an odd number of times.
So it is an open problem to find an @-labeling or a graceful labeling of these subdivided ladders.
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0 13 0 23 1 22 0 33 1 32 2 31
O—0O O—CO0—C—=0 O—CO0—"C0—"0—C0—=0

12 ]2 20 4 21 |3 28 6 29 5 30 |14
O—CO O—CO0—C—=0 O—O0—C—"—C0—C0—=0

4 11 6 19 7 18 8 27 9 26 10 |25
O—CO O—O0—C30—=0 O—O0—"—C—"—C0—C0—=0

10 |6 16 10 17 |9 22 14 23 13 24 |12
O—O O—O0—C0—=0 O—O0—C—"—C0—C0—=0

8 19 12 15 13 | 14 16 21 17 20 18 |19
Oo—oO Oo—C0C0—C—=0 O—O0—C—CO—C—=0

Figure 4.1. o-labeling of the ladder L5 and some of its even subdivisions

Now we turn our attention to the graph obtained by subdividing every edge of L, exactly once. We claim that this graph
admits an o-labeling. Even when the resulting graph can be seen as the coalescence of n — 1 copies of Cg, we use here a
different construction based on the facts that Cg and Ps are o-graphs. The basic labelings of these graphs are given below:

e For Cg, the consecutive labels are: 5,0, 8, 1, 7, 3, 6, 4.
e For Ps, the consecutive labels are: 2, 1, 3, 0, 4.

Suppose that G, denotes the graph obtained by subdividing once all the edges of L,,. When n =2, G, = Cg; we use on G,
the o-labeling given above. To obtain an a-labeling of G3 we transform the a-labeling of G, by shifting its weights in such a
way that the new largest label is 14 = 8 + 6, that is, the size of G; plus 6. The labeling of Ps is shifted A, + 2 units, where A5 is
the boundary value of the ot-labeling of G,. The vertices A, — 1 and 4, in G, are connected to the vertices to the vertices A, + 4
and A, + 6 in Ps; thus, the new edges have weights 5 and 6, respectively. The resulting graph is G3 with an a-labeling. We
continue this process until G, has been labeled. In this way we have proved the following theorem.
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Theorem 4.2. The graph G, obtained by subdividing every edge of the ladder L, exactly once, is an a-graph.

In Figure 4.2 we show the first four cases of this construction.

0 8 1 0 14 1
5 7 11 13 170
4 3 40

4 6 3 o2
10 8 160
6 O

6 9 7

Figure 4.2. ¢-labelings of subdivided ladders
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1. Introduction

In this work, we solve
H(x) =0, (1.1)

to find a solution x* € Q, where H : Q C X — Y and X, Y stand for Banach spaces. Iterative methods are mostly used to solve
(1.1), since solutions in closed form are hard to find. If H is a differentiable operator, Newton’s method is the most used method
to solve the equation of (1.1), which is given by [1,2]

X1 = Xy — H'(x,) "' H(xy), foralln =0,1,2,... x € Q. (12)

If H is not differentiable, Remember that an operator [x,y; H| € L(X,Y) is called a divided difference of order one for the
operator H on the points x and y (x # y) if the following equality holds:

[x,y;H] = H(x) — H(y).

Replacing the Fréchet derivative H' by divided differences of the operator H in Newton’s method (1.2) at different points, we
can define two iterative methods as follows: one is the secant method is given by [3,4]

anrl :xn—[x,,,l,xn;H]_lH(xn) n207 X(),x71 EQ)
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and the other is Kurchatov’s method given by [5]

Xn+1 = Xn — [xn—bz-xn *xn—1§H}7lH(xn) n>0,xp,x-1 € Q.
Note that, Kurchatov’s method is as simple as Newton’s method and has the same rate of convergence as Newton’s method.
This means it has the higher rate of convergence than the Secant method. A lot of study about the convergence of Kurchatov’s

method have been given, see [5-10].
We split it as

H(x)=F(x)+G(x),

where F : Q — Y and G : Q — Y. F is differentiable and G is continuous but non-differentiable. Then, we use the following
Newton-Kurchatov-type method given by

Xna1 = Xn — (F (%) + [xn_1, 2, —x,,,l;G]f1 H(x,) n>0,x0,x_1 €Q (1.3)
to solve (1.1). Recently, M. A. Herndndez and M. J. Rubio [8] gave an analysis of method (1.3). Cases where method
(1.3) is efficient for solving systems and also arguments about its efficiency were also given in [8]. A novel idea of [8] is

that the usual condition of H'(x*) is reduced to a new type condition, which means that H can be a non-differentiable oper-
ator. We give a more precise local analysis for (1.3) than [8]. Advantages of our local convergence analysis over the work, in [8] :

(a) Larger radius of convergence lending to wider choice of initial guesses,

(b) More precise estimates on the distances ||x,+1 —x*||. Hence fewer iterates are need to obtain a desired error tolerance.

(c) At least as precise information on the uniqueness ball of the solution.

These advantages are obtained under the same computational cost, since in practice the new majorizing functions are special
cases of the majorizing functions in [8].

The paper is organized as follows: Section 2 contains the local convergence analysis of method (1.3). The numerical

examples including favorable comparisons with earlier study [8] are presented in the concluding Section 3.
Throughout the paper we denote B(x,p) = {y € X : |[y—x|| <p} and B(x,p)={y e X : |ly—x|| < p}.

2. Local convergence analysis

From now on by differentiable operator, we mean differentiable in the sense of Fréchet. We shall use condition (C) to show the
local convergence analysis of the Kurchatov-type method (1.3):

(C1) F: QC X —Y is continuously differentiable operator.
(C2) G:Q C X — Y is continuous and a divided difference of order one [, ;G] : Q@ x Q — L(X,Y), exists.
(C3) There exist x* € Q and X € Q with ||[x —x*|| = § > 0 such that H(x*) = 0 and M = F’'(x*) + [x*, X; G] is invertible.

(C4) M~ (F'(x) = F'(x*)) || < vo(]lx—x*||) for some function v : [0, +e0) — [0, +e0) continuous, nondecreasing with
vp(0) =0 and each x € Q.

(Cs) |M~! (v 2x—y; G] — [x*, %, G]) || < wo(|ly —x*||,[|2x — y —X]|) for some function wy : [0, 4c0) X [0, +e0) — [0, +e0)
continuous, nondecreasing for each x, y, 2x —y € Q.

(Cs) Equation vy (1) +wo(t,8 +1) = 1 has a minimal positive solution 7y. Pick ry € (0,7]. Define
po = VQ(ro) + Wo(ro, S+ r()) < 1.

Let Qp = QN B(x*,rp).
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(C7) M~ (F'(y) = F'(x)) || < v(|ly—x]|) for function v : [0,r9) — [0,+e0) continuous, nondecreasing with v(0) = 0 and
allx, y € Q.

(Cs) 1M~ ([y, 2x—y; G = [x*, x; G]) || < w(|ly—x*|, |[x—y]|) for some function w : [0, rg) % [0,r9) — [0,+o°) continuous,
nondecreasing for each x, y, 2x —y € Q.
Let p = [y v(670)d6 +w(ro,2r0) and g = e
(Cy) Let 7 > 0, there exists minimal r € (0, rp) solving the equation
2(Jo v(01)d6 +w(1,21))
1— (vo(t) +wolt, 8 +1) +2( fy v(01)dO +w(t,21)))

Notice that r > 7.

F=t[l

(Cro) B(x*,r) C Q.
(Cn)
1
/ Vo(67°)d6 +wo(0,8 +1*) < 1
0

for some r* > r.
First, we need a perturbation result.

Lemma 2.1. Assume (Cy) — (Cg). Then, operator F'(x) + |y, 2x —y; G| is invertible for all x,y,2x—y € B(x*,ro) withx #y
and

1 1

I(F'(x) + [y, 2x = y:G]) -

Proof. Operator [y,2x — y; G| is well defined, since y # 2x —y. Using (C3) — (Cs), we have in turn that
1M1 (M = F'(x) = [y, 2x — y; G)) |
< MHF' @) = F' ) |+ 1M (% 6] = [y, 2= »: G|
< vo([lx* —x[l) +wo (" = y[l, [ = (2x = »)])
<wo(ro) +wo(ro,6+ry) =po < 1.

The result follows from the preceding estimate and the Banach lemma on invertible operators [1,2]. O

Secondly, we establish the sequence {x,} generated by the Newton-Kurchatov-type method (1.3) is well defined.

Lemma 2.2. Suppose the conditions (Cy) — (Cs) hold, x,—1,%y—2,2xp—1 — Xn—2 € B(x*,ry) and x,—| # xy—2, then x, is well
defined and

[0 — "] < g [l -1 —x"]].
Proof. We shall use the notation
M, = F,(xnfl ) + [xn72a 2xp-1 —anz;G]~
Newton-Kurchatov-type method (1.3) gives
Xp—X = Xp_1—x" —Mnill H(xp—1)
- M,:,ll (Mnfl (xnfl _x*) - H(xnfl))
=M, ((F’(x,,,l)(xn,l —X*) = F(x, 1)+ F(x"))
+G(6) = Gl¥a1) + -2, 2801 —0-23G] (51 — "))
1
= M MM /O (F' (a1 + 0 (7" = x0-1)) = F'(x1)) (tn_t — ) 6]

+ M, MM (2, 2% 1 — Xn—25G] — [¥*,x- 13 G]) (xp—1 —xV)].

n—1
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Using Lemma 2.1, (C7), (Cg) and the triangle inequality in the preceding identity,

1
o =2 < g,y ([ o(0 1~ 0

([l = ot = 202 ) ot =)
1 1
< (/ v(ero)de+w(ro,2ro)) net =2
1—po \Jo
__p ) — ok
1T -1 —x*|| = q|lxp—1 —x7]|.

O

Let 7 = ||xo —x*||. As in [7], [11], we must somehow drop 2x,_; —x,—2 € B(x*,rg), if x,—1,X,—2 € B(x*,rg). Suppose that
X1,%2, " ,Xn—1 € B(x*,rp), then

Han,l —Xn-2 *X*” < Hx,,,l *xanH + %01 *x*”
<21 = x|+ [ — x|
< (2g+1)[Jxp—2 — x|

and

Pon—2 =" < "2 [lxo — 2.
Then, if g < 1, we have

02 = x| <[lxo—x"|| =7
and

12x—1 —Xn—2 —x*|| < (2¢ + 1) 7.

Clearly, if po+ p < 1, then g < 1. To show 2x,,_; —x,_2 € B(x*,ro), it suffices to have (2¢+ 1)7 = r leading to the condition
(Go).

Theorem 2.3. Assume (C) with po+ p < 1. Then, sequence {x,} generated by the Kurchatov-type method (1.3) for xy €
B(x*,r) —{x*} and x_1 € B(xo,r —7) with x_ # xo and 7 = ||xo — x*|| exists in B(x*,r), stayes in B(x*,r) foralln=0,1,2,---
and lim,, e X, = x*.
Proof. Notice
[lx1 = x| < et —xol[ + o —x*| S r =F4+F=r
and
12x0 —x_1 = x*|| < ||x=1 —x0|| + ||[x0o —x*|| < r —F+F=r,
sox_1,2xp —x_1 € B(x*,r) and 2xo —x_j # x;. By Lemma 2.1, x| exists and by Lemma 2.2
[lx1 =" < g llxo —x*|| < [lxo —x*[| =7 <,
80, x] € B(x*,r) and x| # xo. Analogously,
1221 —x0 — x| < [lxr —xo]| + [lxg — x|

<2l = x|+ [lxo = x"[| < (2 +1) [lxo —x"[ <1,

$0 2x1 —xo € B(x*,r). Assume for k > 2, if x_1,x,_p € B(x*,r) for xp_ # xx—2, then 2x;_; —x,_ € B(x*,r) and hence Mk_jl
is well defined. Then, x; is well defined and from Lemma 2.2, we get that

ek =[] < gl —x"]|-
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Suppose using mathematical induction that the preceding two inequalities hold for k = 2,3, --- ,m, we shall show that they hold
for k =m+ 1. If x, x5 € B(x*,r) with x; # x;_1, we get that

1206k — 21 = X" [| < ek — 21| 4 e — 7|
< 2o =2 by =[] < 2 4 1) [Py — 7]
< (2q+ )¢ xo =2 < (2q+1) o —"[ <

s0 2x; —xx—1 € B(x*,r) and 2x; —xx_1 # x¢_;. That is by Lemma 2.1 M, ! exists and Xx+1 is well defined. Moreover, by
Lemma 2.2,

ekt =" < g [l — x|
which completes the induction. That is {x;} C B(x*,r) and
o = x| < ¢ [lxo — 71,
from which we deduce that limy_,., x; = x*. O
Next, a uniqueness result is given.
Proposition 2.4. Assume conditions (C). Then, x* is the only solution of equation H(x) = 0 in Q| = QNB(x*,r").

Proof. Lety* € Q; with H(y*) = 0. Define operator T = fol F'(x*+6 (y*—x*))d 6 + [x*,y*; G]. Then, using (C4), (Cs) and
(Cn).

R (T P
+ M (556 - [ 5 G|
< [ (@l 51140 +wo(le <, Iy )
< /01 v0(87°)d B +wo(0,r" +8) < 1,

so, T~ ! exists.
But from

0=H(x")—H(y") =T —y"),
we conclude that y* = x*. O

Remark 2.5. (a) We can set X = xo. In this case § =F.

(b) If @ =X, condition 2x —y € Q is automatically satisfied. To relax this condition,
let

p1 =vo(ro) +wo(ro,8+3r0).

Then, we use the condition p;+ p < 1, instead of using (Co) to calculate r, or the equation

vo(t) ++wo(t,0 +31)+2 (/01 v(9t)dt+w(t72t)) =1. 2.1

Note that in this case q; = # < 1. Hence, we arrived at:

Proposition 2.6. Assume conditions (C1) — (Cg), and

(Co)' There exists a solution R € (0,ry) of equation (2.1)
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(C1o) For Ry <R, B(x*,R;) C Q
(Cn) 2x—y e Qforall x,y € B(x*,Ry) withx#y
(Ci2)
/0] Vo(OR*)d 0 +wo(0,8 + R*) < 1
for some R* > R|. Then, sequence {x,} generated for xy € B(x*) —x* and x| € B(xy,R| —F) with x_ # xo by the Newton-

Kurchatov-type method (1.3) exists in B(x*,R1), stays in B(x*,R;) for alln=0,1,--- and lim,__,. x,, = x*, which is the only
solution of equation H(x) = 0 in Q; = QNB(x*,Ry).

Remark 2.7. Clearly condition (Cy1)’ can be exchanged by
(Ci0)"B(x*,3R) C Q,

since if x,y € B(x*,R) = ||lx* — (2x —y)|| <2|jx* —x|| + [|x* —y|| < 3R = 2x—y € B(x*,3R) (see also [5-9] and the numerical
examples).

Remark 2.8. The results in this study improve the corresponding ones in [8]. Indeed, we have the following advantages:

(1) Affine invariant results are given here which are more advantageous than non affine results given in [8].
(2) The following conditions have been used in [8]

() [IF'(3) = F'(3)| < 7(]ly = +]) for all 2,y € 2,

() 1163 G) = [, v: G| < (e = [ly—=v]]) for all x, y.u,v € 2,

(hs) B =7( [y 7(0p)d0+W(p.2p) ). 7= 2. M <.
po=v((p)+wlp,p+9)) <1,

zy(.;g w(61)d 9+w<z,2z)>

l—y(V(tH—W(t y,6+t)+27(f0' V(Gt)de-&-w(tlt))) }

(ho) B(x*,p) C Q,

(h10) There exists p* > p such that

y(/olv(ep*)de +79(0,8+p%)) < 1.
However, we have that
vo(t) < yw(),v(t) < yv(t)
wo(s,t) < w(s,t) < yw(s,t)
]
p<r
and
p* <
which lead to the improvements listed in the introduction. It is worth noticing that improvements are given using the same

computational cost, because in practice the computation of functions v, w needs the computation of the functions vy, v, wg, w as
special cases.
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Remark 2.9. Let us see the radii for Newton’s method (1.2), i.e., when the v and the the Vo functions are choosen by v(t) = [t
and vy(t) = At, G=0,w =wo =0 and x* =X (i.e, 6 =0). The radius p given in [8] is

2
p= m
The radius p coincides with radius given independently by Rheinboldt [12] and Traub [13]. This value improves the radius
1
Po = m»
given also by Dennis and Schnabel [12, 13]. Our radius of convergence r is given by
2
T @Ay

Then, we have that
pos<p<sr 2.2)

The right hand side inequality in (2.2) can be strict (see (c4), (h7) and the numerical examples).

3. Numerical examples

Choose the divided difference [x,y; F| = fol F'(y+0(x—y))d6.
Example 3.1. Case 1 Newton’s method. Let F, G be defined on Q = [—1,1] x [-1,1] x [=1,1] by

—1)y?
F(X7Y7Z):(€x—17%+)’,z)t and G=0. 3.1

Choose A =e— 1,1y = eﬁ, u = e forx* = (0,0,0)" and y=1
we have

po=0.1839 < p = 0.2453 < r = 0.3827.

Newton’s method is very efficient. In general, if the method is inefficient, then we use a better method. The new error bounds
are also better, since

x Ho [l —x*|1*
Xpa1 — x| < =1,2,...
Pt =S 30 2 )
and
A |lxo —x*|?
[l =" < "
2(1 = Allxn —x*)
but A the old ones are given by
12
Bl =x o0

*
X 1—X S 9
e (P

The old uniqueness ball is B(x*,2). The new uniqueness ball is B(x*,-%;) is better, since

2 2
B(x",~) € B(x",
e

).

e—1

Case 2 Newton-Kurchatov-type method. Let F be given as in (3.1) and define G(x) = |x|. We have for = (0.01,0.01,0.01)7 ,y=
1,8 =0.01,vo(t) = (e— 1), v(t) = eﬁt,wo(s,t) =w(s,t) =1,F =8 and vo(t) < v(t). Then

rotd = 0.4905 < r =0.7654.
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Abstract

Let A and B be linear operators on a Hilbert space. Let A and A + B generate C,-semigroups ¢4 and ¢/ +5),
respectively, and ¢4 be exponentially stable. We establish exponential stability conditions for ¢/4*5) in terms of
the commutator AB — BA, assuming that it has a bounded extension. Besides, B can be unbounded.
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1. Statement of the main result

Let ./ be a Hilbert space with a scalar product (.,.) , the norm ||.|| = 1/(,.) and unit operator /. For a linear operator C,
Dom (C) is the domain, C* is the adjoint operator, 6(C) is the spectrum. If C is a bounded operator, then ||C|| is its operator
norm.

Throughout this paper A and B are linear operators on .2 with Dom(B) 2 Dom(A). In addition, A and A + B generate
Co-semigroups ¢V and ¢'A+5) | respectively.

We consider the following problem: let ¢’ be exponentially stable, i.e.

||| < ce™ (t > 0;¢ = const > 1,v = const > 0).

What are the conditions that provide the exponential stability of ¢/(A*5)? The literature on the stability of semigroups is
very rich. The classical results are presented in the books [1, 2], about the recent investigations for instance see [3] -[6],
[7, 8,9, 10]. In particular, in [7] the author investigates the uniform, strong, weak and almost weak stabilities of multiplication
semigroups on Banach space valued L”-spaces. In the paper [9] Lyapunov based proofs are presented for the well-known
Arendt-Batty-Lyubich-Vu Theorem for strongly continuous and discrete semigroups. In [10] the authors obtain continuous-time
and discrete-time Lyapunov operator inequalities for the exponential stability of strongly continuous, one-parameter semigroups
acting on Banach spaces. Thus they extend the classic result of Datko from Hilbert spaces to Banach spaces. Recall also that
various conditions, under which the perturbed operator generates a Cp-semigroup can be found for instance in [11, Chapter IIT].
For example, if B is A-compact and the semigroups generated by A is analytic, then by Corollary II1.2.17 from [11, p. 180]
A + B generates an analytic semigroup. Certainly, we could not survey the whole subject here and refer the reader to the above
listed publications and references given therein.

To the best of our knowledge, the exponential stability conditions for the perturbed semigroup in terms of the commutator
[A,B] = AB — BA have not been investigated in the available literature. In the paper [12] in the case of a Banach space, an
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estimate has been established for the L!-norm of a semigroup generated by A + B, provided that both [A, B] and B are bounded.

The aim of this paper is to establish exponential stability conditions for ¢/*5) in terms of [A, B], assuming that

BDom(A?) C Dom(A) (1.1)
and

[A, B] has a bounded extension. (1.2)

Besides, B can be unbounded. Since A generates a Cyp-semigroup, Dom(Az) is dense in 7, cf. [13, Theorem 1.2.3]. So the
operators AB and BA are defined on Dom(A?). Thus (1.2) means that [A, B] is defined and uniformly bounded on Dom(A?),
and therefore admits the extension to the whole space as a bounded operator. Our approach in the present paper is considerably
different from the one in [12]. In addition, we considerably generalize the main result from [14].

Introduce the operator

W= / AleMdr,
0
This integral converges in the operator norm, since ¢*’ is exponentially stable, and

a0 00 2
Wi< [P < [ e =2 (13)
0 0 \%

The integral

0o t
cyi=2 [ [ e el ds ds
0 0

also converges, and
o 1 ) 3
) < 263/0 efw/o e Ve VU ds dr = 203/0 e Vitdt = 267\/2 (1.4

Finally assume that

A(B) := sup R(Bh,h) < o
heDom(B);||h||=1
and put
_f2aB)|W| if A(B) >0,
Y(W.B) := { 0 if A(B) < 0.

Now we are in a position to formulate the main result of the paper.

Theorem 1.1. Let conditions (1.1) and (1.2) hold, and é*' be exponentially stable. If, in addition, A(B) < « and

w(W,B)+|[A, BJ[|S(A) < 1, (1.5)

then 'A+B)

is also exponentially stable.
This theorem is proved in the next section. It is sharp. Indeed, let A and B be commuting normal operators, with

a(A) :=supRo(A) < 0. A(B) = a(B) > 0. Then || || = ¥4 (¢ >0), and by (1.3) [|W]| < m. Consequently,

vIV-B) = @)

By Theorem 1.1 ¢/*5) is stable if a(B) < |a(A)|. But ||!4*B)|| = e(*(A)+@B) (¢ > ). Therefore, in the considered case
¢'A+B) s stable, provided a(A) 4 &(B) < 0. So Theorem 1.1 is really sharp.
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2. Proof of Theorem 1.1
Lemma 2.1. Let A generate a Co-semigroup e on 5, and conditions (1.1) and (1.2) hold. Then the operator [¢*',B] :=
e B — Be* is bounded. Moreover,

("B :/tesA[A,B]e“—S)Ads (t>0). 2.1
0

Proof. For any x € Dom(A?), we have e*Ax € Dom(A?) and Ae*x € Dom(A) C Dom(B). So BAe*Ax € . In addition,
according to (1.1) , ABe™x € . Thus,

A1) (AB— BA)e x € A (x € Dom(A?)).

But

0 0 0
(t—s) _ AL 9 (t—s) _pY A _ _“ (t—s) p sA
A=) (AB— BA)e*x aseA Bx—Bo-ex aseA Be*x.

Integrating this equality, we get

1 t
/ =) (AB— BA)e" xds —/ ggA(t*S)BeSAxds = A BeM ]
0 0 ogs
= (e’AB — B )x.
Thus

[¢" Blx = ./Ot AU9[A, Ble™ xds.

Since [A, B] is bounded, we can extend [¢?’, B] to the whole space. This proves the required relation (2.1). O
Proof of Theorem 1.1: Since ¢ is exponentially stable, W is a unique solution of the Lyapunov equation
WA + (WA)* = —1. 2.2)
Equation (2.2) is understood in the sense
(Az1,Wz) + (Wz1,Az0) = —(z1,22) (21,22 € Dom(A)). (2.3)

Besides, W : Dom (A) — Dom (A*), cf. [1, p. 252, Section 5.3].
For all & € Dom(A) with ||| = 1, by (2.3) we can write

((A+B)h,Wh) + (Wh, (A+ B)h) (Ah,Wh) + (Wh,Ah) + (Bh,Wh) + (Wh, Bh)
= —1+4(Bh,Wh)+ (Wh,Bh) = —1+<Bh,/:e/‘*’emdt h>+</0weA*’eA’dt h, Bh)

= —1+/ (<eA’Bh,eA’h>+<eA’h,eAth))dt:—1+/ ((Be" h,e" h) + (¢*'h, Be b)) dt
0 0

+

/O " (1™ Bl ) + (M, [ B )d.
Thus,

(A+B)h, Wh) + (Wh, (A+B)h) = —1 +Jy (h) + Ja(h), 2.4)
where

Ji(h) = /0 m((BeA’h7eA’h> + (" h, BeM h))dt

and

oo

Jr(h) = /O ([, Blh, e h) + (M h, [, BIR) )dt.
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Since

(B h, e ) + (M h, BeM h) = 2R (Be h, e h) < 2A(B) (e h, e h),
we have

Ji(h) < 2A(B) /0 m<eA’h,eA’h>dr =2A(B)(Wh,h). (2.5)
If A(B) > 0, then J; (h) < 2A(B)||W||. If A(B) < 0, then J (k) < 0. So J; (h) < w(W,B). In addition, by Lemma 2.1

) <2 [ Bllan <2 [ AB [ e et as ar = 1A, BIIE ) 26

Consequently, due to (1.5), for all # € Dom(A), ||k =1,
(A+B)h,Wh) + (Wh,(A+B)h) = —1+Ji(h) +/2(h) < —(1 —y(W,B) — [[[A, B]|| £(A)) < 0.

Now the required result is due to the generalized Lyapunov theorem [2, Theorem 7.1].

3. Example

Let 7 = L*(0, 1), where L?(0, 1) is the space of square-integrable functions defined on [0, 1] with the traditional scalar product.
Let a(x) be a complex valued function having a bounded measurable derivative, b be a real constant,

_df(x) o
(Af)(x) = +a(x)f(x)and (Bf)(x) =bf'(x) (0<x<1,f € Dom (A))

dx?

with
Dom (A) = {h € L*(0,1) : " € L*(0,1),h(0) = h(1) = 0}.

Then the commutator is defined by ([A, B|f)(x) = —bd’(x) f(x) and ||[A, B]|| = |b|sup, |¢'(x)|. Clearly A+ B and A generate
Co-semigroups. Assume that ¢ := max, Ra(x) < 2. Since the largest eigenvalue of the operator defined on Dom(A) by d? /dx*
is —72, we easily obtain

sup R(Ah,h) < q—n* <0.
heDom A;||h||=1

So A is dissipative and therefore,
]| < exp [~#(n* = g)] (1 >0).
Hence, by (1.4)

1

Since (f',f) = —(f,f") (f € Dom (A)), we have A(B) = 0 and consequently, y(W,B) = 0. Thus, due to Theorem 1.1 the

semigroup generated by the operator A = A + B defined by

2f(x
(Af)(x) = dd];(z ) +bf'(x)+a(x)f(x) (0<x<1,f€Dom (A))

is exponentially stable, provided

[blsupld (x)] < 2(z* —q)*.
X
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4. A particular case

In this section we refine Theorem 1.1, assuming that

A(A) =

= inf  R(Ahh) > —co. 4.1y
heDom(A);||h]|=1

For example, let

(Af)(x) = dflix) falx)fx) (0<x<1;fel?0,1))

with
Dom (A) = {h € L*(0,1) : i € L*(0,1),h(0) = h(1)}
and a complex bounded measurable function a(x) with sup, R a(x) < 0. Simple calculations show that in this case A(A) =

inf, R a(x) > —co.
Furthermore, put

sow.s) o | PABIWIFAB) 20,
y(W,b) = A(B .
i if A(B) < 0.

Theorem 4.1. Let conditions (1.1), (1.2) and (4.1) hold, and e*' be exponentially stable. If, in addition, A(B) < o and
¥(W.B) +|[A,B][|£(A) < 1,
then ¢A+B) is also exponentially stable.

Proof. Define J)(h) and J>(h) (h € Dom(A),||A|| = 1) as in Section 2. Under condition A(B) < 0 we have
Ji(h)=2 / R(Be''h, e h)dr < 2A(B) / (eMh,eMh)dr < 0.
0 0

Put y(t) = ¢h (h € Dom(A)). Then

d d
27 @0, y(0)) = 2Ry (1)) = 2R(Ay, y(1)) 2 24(A) {y(1), ¥(1)).-
Solving this inequality, we get

e nl| = * ]

Since A generates a stable semigroup A(A) < 0. Consequently,

=)

Ay A 2(4) __ L
/0 (e h,eAh>dt2/0 O (1) = 3 ()

If A(B) > 0, then according to (2.5) |J;(h)| < 2A(B)||W||. Thus |/, (k)| < (W, B). Taking into account (2.4) and (2.6) , under
condition (4.1) for all » € Dom(A), ||| = 1, we obtain

((A+B)h,Wh) + (Wh, (A+B)h) = =1 +Ji(h) +J2(h) < —(1 - ¥(W,B) — [[[A,B][| £ (4)) < 0.
Now the required result is due to the above mentioned generalized Lyapunov theorem [2, Theorem 7.1]. O
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Abstract

Standard numerical differentiation rules that might be established by the method of undetermined coefficients
are revisited. Best truncation error bounds are established by a direct method and by the method of integration
by parts "backwards”. A new method to increase the order of the truncation error using a primitive is presented.
This approach leads to corrected numerical differentiation rules. Differentiation formulae and numerical tests are
presented.
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1. Introduction

Many textbooks of numerical analysis present the method of undetermined coefficients to find and approximation of the integral
or the derivative of a given function, for example [1, 2, 3, 4] and many others. The method of undetermined coefficients
used to estimate the k-th derivative f¥)(0) of a given function f(x) consists in finding a (n+ 1)-dimensional weight vector
d = (ay,...,ay) associated to a given (n+ 1)-dimensional vector of distinct coordinates (or nodes) X = (xo, . ..,x,) wWithn >k
and |x;| < 1 for all i, such that the quantity D) (f; /) given by the formula

1 n
100) = g Laif ()
The method of undetermined coefficients is based on the requirement that the truncation error
n
Ry (f:h) = 1F f(0) = ¥ aif (i), (1.1)
i=0

be such that
Ry (f:h) = o(h"™), (1.2)

where r(n) > n depends on the regularity of f(x).
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It is possible to increase the order of the truncation error term. Indeed, if a primitive F(x) is available, that is to say
F'(x) = f(x), we can add an expression to the preceding approximation as follows

90) % (Zn:aif(hxi) el Y BF() - fbif(hxi)D ,
=0 =0 i=0

where (n+ 1)-dimensional weight vector b = (bo, . .., by), the two (m + 1)-dimensional vectors of weight B= (Bo,.-.,Bm) and

distinct coordinates (or nodes) E = (&o,...,&n), and ¢ are chosen in such a way that the truncation error given by
n 1 m n
R (f3h) = 1 £®(0) — ;)a,»f(hxi) —c [h ZoﬁjF(hgj) — ;)bif(hxi)} , (1.3)
1= J= =

is such that
RS 4o (fih) = o(h" ™),

with r“(n) > r(n).

The plan of the paper is the following. In the next section, we present preliminaries about polynomials, Vandermonde
matrix, and Taylor’s expansions. Section 3 presents the standard approach for obtaining differentiation rules using the method of
undetermined coefficients. We establish optimal truncation error bounds by a direct approach and by the method of integration
by parts "backward”. Total error bound composed of the truncation term and of the roundoff error term is given. In Section 4,
we present a method to improve the error by adding information coming from a primitive. Examples of formula are given in
Section 5 and numerical tests are included in Section 6.

We will use f(!)(x) for the I-th derivative of f(x) for I =0,1,2,...,and f()(x) = f(x). Let I < p < oo, if f(x) is defined
onaset E, [|f||, g will be its p-norm on E, and if ¥ is a vector in R", its p-norm will be [|{[| .

2. Preliminaries

2.1 Small o and big O notations
Let f(x) be a function such that lim,_,4 f(x) = 0. We say that g(x) is a small o of f(x) around a, and write g(x) = o(f(x)), if
for any € > 0 there exists a 6 > 0 such that

lg(x)] < el f(x)].

holds for 0 < |x — ¢t| < 8. We say that g(x) is a big O of f(x) around a, and write g(x) = O(f(x)), if there exist a constant C
and a § > 0 such that

ls()| <Clf(x)].
holds for 0 < |x— a| < &.
Lemma 2.1. Let us assume that the real number r > 0 and n = |r| > 0. Let m,,(x) be a polynomial of degree m such that

Tm(x) = o(|x—al").

Then,
(x— )" Tp—n(x) if m>r,
Ton (x) =
0 if m<r,
where Ty, (x) is a polynomial of degree m — n. O

2.2 Vandermonde matrix and Lagrange interpolation polynomials
Let X = (xo,...,%,) bet a n+ l-vector of distincts real (or complex) numbers and its associated Vandermonde matrix V (X),

1 ... 1

X0 Xn
V(X)) =
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Let €; be the (1 + 1)-column vector, the transpose of (80, ,0;,;---,8;,), where
1 if j=I,
o=
0 if j#I,

for0<I,j<n.

Lemma 2.2. [5] The Vandermonde matrix V (X) is invertible and the I-th column of V(%) is

l
)

(1
11 w0

12z _ & n,1
V(X = 0 ) ,
wiia(0)
forl=0,...,n, where {wn’j(x) };=0 is the Lagrange’s basis of the space of polynomial of degree at most n. O

2.3 Taylor’s expansion

Let I, = [—h,h), I, =[0,h] and I,” = [—h,0]. For h =1 we will simply use / = [—1,1],/* =[0,1] and I~ = [—1,0]. Let p and
g be two real numbers such that 1 < p,g < e and % + é = 1. Let C'(I;) be the set of continuously differentiable functions up
to order / on Ij,, and the set of absolutely continuous function on f; be defined by

(a) fUHY € LP(1y), and
(6) fO(s) = fO @)+ [ D (E)dE, Vrs €1y }

Taylor’s expansion of f(x) € AC'*!P(I,) around x = 0 of order / + 1 is

ACHVP (1) = {f eC(ly)

f(j) (0)
Jj!

1 ) h
10 =Y T2+ [ 0K iy
j=0 —h

where K7 (x,y; k) is the kernel

1
Kri(xyih) = 4 [(x—y)ilz,j M+ EDH =010,
for any x, y in I, [6, 7]. This kernel is a piecewise polynomial function of degree /. In this expression, if E is a set, then
1 if y€kE,
1e(y) =
0 if y¢E.
Also for any [ > 0, (1), is defined
(M)} = 1" 1) (M)
If we set x = h€, and y = h1, then the kernel becomes
Kr1(x,y;h) = Ky (h§,hmsh) = W Kry(8,m:1),

forany &, nin 1.

3. Standard numerical differentiation rules

3.1 Existence: method of undetermined coefficients
Let us observe that R, (f; ) is linear expression with respect to f(x) and also if f(x) is a polynomial of degree < m with
respect to x, then R ) (f5h) is a polynomial of degree < m with respect to . The condition (1.2), combined to Lemma 2.1,
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implies that R, (f; /) = 0 for any polynomial f(x) of degree < n. So using the standard basis {xl }7:0, we have to solve the
linear system

l.
Y axi=— "2 =kl&, for 1=0,....n, (3.1

Wn.()) (0)
k
w1 (0
a=kv ' (®)e = ”-{( )
Wi (0)
‘We obtain the method
Yioaif (hx;)

It might happen that R ) ( ;) = 0 for some polynomials of degree k > n. Let us define the degree of accuracy (or precision)
k, of the approximation process (1.1) to be the largest integer k, > n such that Ry, (f;1) = 0 holds for any polynomial f(x) of
degree | < k,.

3.2 Truncation error

Two different approaches can be used to establish the best bounds for the truncation error in terms of the regularity of f(x).
The first approach will be called the standard direct approach, while the second way is the integration by parts “backwards”.
This second approach presented in [8, 9, 10], usually presented for numerical integration [11], can be used in general when we
consider the method of undetermined coefficients [12]. Let us note some bounds were already presented for specific formulae
elsewhere, for example in [13].

3.2.1 Direct approach
For any integer / such that k < < k,, let f(x) € AC"*1(I,). Since the process is exact for polynomials of degree < [, using a
Taylor’s expansion of order [/ + 1, the truncation error is

h
Rpwy (fih) = | FEV0) K (v:)dy,
—h )
where K1) ,(v:h) is the Peano kernel associated to the process given by
KD(/")J (;h) = Rpw (Kr(-y:h)3h)

W Kr—(0,y:h) = Y aiKr, (hxi,y:h).
i=0

It follows that

\RD<k>(f;h)\§Hf(l+l)H HKDw),,(';h)H -
Piln a1y

Moreover, Kpx) ,(vih) = Ky ,(hnsh) = thD@J(n; 1), then

. g1l .
KD(k).l("h) =h 4 KD(k)_i("l) .
’ a1 ’ q,1
So
1
Ry (f3h)| < K177 Crrp Hf”“)le , 3.2)
sAh
where
Crap = HKD<k>,l(-;1)H (3.3)

al’
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does not depend on 4. Since because

0 for 1<p<eo,

i 4], =
h—0 p,lh C for p — 007
we have
o(hl+]7%) for 1< p<oo,
Rpw (f3h) =

O (h'*1) for p=oo.

. I+1-1 I+1 A ) — !
Since an o | h 7 ) and an O(h ) are o(h ), it means that R, (f;h) = o(h ) In summary we have proved the
following theorem which presents necessary and sufficient conditions to obtain the desired error order.

Theorem 3.1. For any [ such that n <1 < k,, a necessary and sufficient condition to have Ry (f;h) = o(h') for any
f € AC'™TVP (1) is that Ry (f3h) = O for any polynomial f(x) of degree < . O

Theorem 3.2. If R, (f;h) = 0 for any polynomial of degree < kq, then (3.2) and (3.3) hold for any f € AC!*VP (1) for
k<Il<k,. O

Remark 3.3. The bounds given by (3.2) and (3.3) are the best one as it has been shown in the general case of the method of
undetermined coefficient [12].

Remark 3.4. Let us specify the kernels Ky ,(y;h) and Kpw ,(1051).

n
Kpw (vih) = thT.sz(X,y;h)—ZaiKT.z(hxuy;h)
i=0
hk

= o (03742, )+ (=) (y=0)41, (v)]

gL [ 0+ (O k)]
and
Ky (m31) = = Yo (5= )+ (-1 -l ()]

3.2.2 Integration by parts "backwards”
The method of integration by parts "backwards” is based on the Taylor’s expansion of

Wy (f3h) = hR ) (f3h).

We suppose that f € AC*H1P(I},) for k < I < kg, and we proceed as follows. We have
Wt (1) = W (0 1) = 1L £0) 1 Lt ).
s0 Wy (f:0) =0. Fork <l <ksand 1 < j<I—1
WL (FR) = (ko4 1)1 F9(0) — Y el £ () Y. e £ (),
i=0

i=0

where for two non negative integers k and j

T for j=0,...,k,

(k)j =
0 for j>«k.
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Then
thD(k)(f h) = (k+1);8 k41N (0) = jfU=" Zazx =0.
Also for j =1
Wi (Fh) = (kt D+ p O)—lZa,xl LA=D) () hZa,xf (hxi),

and using Taylor’s expansions of order 2 for f~1) (x) which is in AC>?(I;,) and of order 1 for f()(x) which is in AC'? (1), we
obtain

n h
Wt (F3) = (k= D+ 0 (0) - Za,x’ L h( 00 Yad+ [ 0Kz )y
i=0 —h
Now, considering (3.1) to simplify, we obtain

h
!
Wik i) = [ 0K (rih)dy,
where
n n
Kw(y;h) =—1 Z a,‘xfflKT,l (hxi,y;h) —h Z aifoT,o(hxi,y; h).
i=0 i=0
Let us remark that Ky ;(y;h) = hKy, ,(n' 1) for y = hn. So the Taylor’s expansion of order ! for W, (f;4) leads to

-1
w(fih) = / D(k> i)‘ .
_\-1
- /O{ fl+1()KW,z(y;z)dy} %dz

/ 7100 | [ st 8=

= f”l (v ) D(k)l(y’h>dy:
for

R -1
Kpw ,(vih) = ) ‘sz(y Z)%d

As indicated in Remark 3.3, we can obtain the best bound from this expression. So we get the following result.
Theorem 3.5. Let h > 0, the kernels Ky ,(v:h) and I?D(k)_l(y;h) are such that

hKD(k) 1( h) = z( h)
almost everywhere.
As a consequence both methods lead to the same best error bounds.
Remark 3.6. The kernel is

n
Kwi(y:h) = [12“ (o — ++h2ain(hxl'y)3111,,+(y)
i=0

- [1 Y axi (v —hxi)y —h Y aixi(y— hxz')ﬂl 1,-(y)
i=0 i=0

or, after the substitution y = hn and simplification,

n n
Kwi(n;1) = _|:lzaixll'l(xi—n)++zaile‘(xi_n)3-]1#(’7)
=0 i=0

- {li)anE‘(n —Xi)4 — Zn‘,afxf(n xi)gr] 1,-(n).

i=0
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3.3 Total error
In effective numerical computation, the quantity f*) (0) is approximated by

1 & B
ﬁ Z aif(hxi)7
i=0

which uses f(/x;) instead of f(hx;), so introducing roundoff error ¢; = f(hx;) — f(hx;). The total error E(f;h) is decomposed
in two types of error: the truncation error R, (f:4) and the roundoff error S(f; /). Hence

E(f;h)

1 & -
FO0) = 0 Y aif ()
i=0

ln
= {f“)(m—hkza,-f(hx, tha, Flhx) = F(hxi))
i=0

% [Rmk) (f:h)+S(f; h)] ;

E(Fm)| < L [\R ()] +1S(F: h)|]

For the truncation error

R (79] <71, 7000

)
P

and for the roundoff error we have
n
h) = Za,- (f(hxi) = f(hx)) Za e;.
i=0

So

S(fsh)| =

n
Y aici
i=0

n
<) laillel < llal, l[éll,,
i=0
where ||d]|, is independant of h.
Consequently we have

4l lI€ll,

1
LT I
Dilp h

for I =k, ..., k,. This expression shows that the derivation process (k > 0) is numerically unstable. See also [14] for more
precision on stability of such processes.

4. Corrected numerical differentiation rules

4.1 The idea
In this section we suggest a way to improve the order of the truncation error term when we have a primitive F (x) of f(x), which
means that F’(x) = f(x). Suppose that

Kk f k) Z a;f (hx;) + o(h*e),
i=0
so the degree of accuracy of the process is k,, and the truncation error is

Ry (F:h) = HEF00) = Y af () = ().
i=0
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Suppose now that using the same (n + 1)-dimensional vector of distinct coordinates (or nodes) X = (xp, ...,x,) we can find a
(n+ 1)-dimensional weight vector b = (by, ..., by) such that we can determine an expression of the form

n

LS BF() = ¥ buf () + o(1),
hi= i—0

i—
for two (m + 1)-dimensional vectors B = (Bo,-..,Bm) and E = (&o,...,&n). Its truncation error is
1 m n
Rp(fih) = Y BiF(h&;) =Y bif (hxi),
j=0 i=0

and

Rp(f;h) = o(h*a).
We can combine the two truncation error terms as follows

RY ) (fih) = Rpuw (fih) — cRp(f3h)
to get (1.3), and this expression is at least of degree of accuracy k,. Since the error terms are both o(/*«), this expression is also
exact for polynomials of degree < k,. We can select the parameter c such that R"D(k) (fh) will be also exact for polynomials of
degree k, + 1. Indeed, if

_ Rpw (i)
Rp(xkl“Ll;h) ’

then R;(@ (fh) will be also exact for polynomials of degree k, + 1, so its degree of accuracy will be at least k, + 1.
We will have

n o) = iéa,-f(hx,-) +c % i}ﬁ,-F(hé;) - i,)b,-f(hxl-) + oAt
= J= =
= i la; — cb;] f (hx;) + % i B.,F(héj) + O(hka"rl)’
i=0 =
or
& 0)= % u [a; —cby] f(hx;) + hkcﬁ i BiF (hE;) + ok t1ky,
i=0 =

which will be exact for polynomials of degree up to k, 4 1, and we have increased the order of the error term.

4.2 Existence
The vectors Z; B, and E of

1 m n
7 Y BiF(h&j) =Y bif (hx;)
j=0 i=0
can be determined using the method of undetermined coefficients. It is required that
Y B;=0,
j=0

and
1,

m
Bi2l— =Y b
jglo ]l+l ;) e

for [ =0,...,n. We also need that
1,

mﬁj—z bix!.
j;)-’l+1 i;)’

forl=n+1,...,k,. We will not present a complete analysis of this problem here. Examples of solutions of these equations are
given in the last section of this paper.
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4.3 Total error
In effective numerical computation, with these corrected rules the quantity f*) (0) is approximated by
1
Ik

M:

f(k> (0) ~ la; — cbi] f(hx, hk;l Z ﬁ/ hé}

i=0

which uses f(hx;) and F(h&;) instead of f(hx;) and F(;). So roundoff errors are introduced as e; = f(hx;) — f(hx;) and
E; = f(hx;) — f(hx;). The total error E°(f;h) is decomposed in two types of error: the truncation error R (f3h) and the
roundoff error S°(f;h). Hence

ES(f3h) = o (F3h) +S(f3h)|,

hk

where
RS o (fih) = f(k>(0)g[afcb] Fho) + LZﬁ/Fuzé]

and
n

S° () = Y-y —ebi] (£ ) = () + 5 floﬁ,- (F(h&)) ~ F(hEy))

i=0

For the truncation error, if we proceed as we did in the preceding section, we could establish the bound

c I+1-1 c
RD(k)(f;h)‘thr pc,(;thf(zH)HM.

For the roundoff error we have

S = Y lar—cbi] (F(h) = F(hx) + 5 zﬁ, (hS)) ~F (&)
i=0
= i[ai—cbi]ei—b—%iﬁjE,
i=0 j=0
SO
S sml < Ylai—chillel+ 5 Y |Bi]E
i=0 j=0
- 7 - c 3 2
s

where HEI’ — CZH and HB H are independant of &.
q q

Consequently we have

et =, )] k|

S 2l e cllzy 11z
it el + 5 B HqHEM ,

not only for [ =k, ...k, but also for [ = k, + 1. Obviously, this process is intereating for regular functions f(x) € ACk«*+2P(I,)
for which we know a primitive.

5. Examples of formula

Example 5.1. First derivative: the 2-points symmetric formula is

F00) = o [F(8) — F(=)] + o),
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which is exact for polynomials of degree up to 2. The truncation error we consider is

1

Ry (f3h) = hfD(0) = S [£ () = f(=h)] = o(i?).

For f(x) =x!, Ry (x';h) =0 for 1 = 0,1,2, and for | > 3 we have

0 foreven 1
1—(-1) ’
RDm(x’;h):—h’[ (2 1 (5.1)
—h forodd .
The corresponding expression involving the primitive F(x) is
1 1
5 [F (1) =2F(0) + F(=h)] = 5 [f(h) = f(=h)] + o(h?).
with its truncation error
1 1
Rp(fih) = o [F(h) = 2F (0) + F(=h)] = 5 [f(h) = f(=h)] = o(h?).
For f(x) =x!, Rp(x';h) =0 for 1 =0,1,2, and for | > 3 we have
1 1 0 foreven I,
Rp(xsh) = il [1—(—1)’} = (5.2)
I+1 2 Tl 1
2h [H—l 2} forodd 1.
Then we choose
_ Ry (k) Ry (1) 1 _,
RP(XS;/’I) Rp(x3;1) 71/2 '

The resulting formula will be exact not only for polynomials of degree 3 but also for polynomial of degree 4, since (5.1) and
(5.2) hold. We obtain

BFO(0) = —3 [F(R) — F(~)) 2 [F ()~ 2F(0) + F(~h)] + o{i)

or

FO0) = — 51 [F() ~ ()] 5 [F(B) —2F(0) +-F () + o).

Example 5.2. First derivative: the one-sided formula is
F00) = £ 17(h) ~ FO)] + o(1)

Its corresponding truncation error is
Ry (f3h) = hf1(0) = [f(h) = £(0)] = o(h).

For f(x) =x!, Ry (x';h) =0 for 1 = 0,1, and for | > 2 we have
Ry (xsh) = =i

We consider

LiEmy - F(0) =

7 [f(R) + £(0)] + o(h).

| —

with its truncation error

Rp(f3h) = [F(h) = F(0)] - % [f(R) + £(0)] = o(h).

S| =
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For f(x) =x!, Rp(x';h) = 0 for 1 = 0,1, and for | > 2 we have

1 1
Rp(x'sh)=H | — — .
P(x:h) [z+1 2}
Then we choose
:RD(')(xz;h) :RD(I)(xz;l) _ -1 -6
Rp(x%;h) Rp(x%;1) -1/6

The resulting formula will be exact for polynomial of degree 2, and we obtain

hf1(0) = =2[f(h) +2£(0)] + % [F(h) = F(0)] +o(h?)

or

FO0) = 2 [7(0) +27(0)] + 3 [F (W)~ F(0) + o).

Example 5.3. Second derivative: the 3-points symmetric formula is
1
FE0) = o5 [ () = 27(0) + (=) + o),

and its truncation error
Rpo) (1) = 12 f2(0) = [f () = 2(0) + f ()] = o(i).
For f(x) = x!, Ry (x!;h) =0 for 1 =0,1,2,3, and for | > 4 we have

0 forodd 1,

Ry (xsh) = —H! [1+(*1)l} _ { " 1 (5.3)
— or even .

We consider

[P = PR = | 110+ 57000+ 37 + of),

with its truncation error

P~ P - |70+ 5

1
0+ 570+ 31(-)] = o)

S| =

Rp(fih) =

For f(x) = x!, Rp(x!;h) = 0 for | = 0,1,2,3, and for | > 4 we have

0 forodd 1,

1 1
Rp(xl;h)zhl [14‘(_1)[} o1 3| T "
I+1 3 24! [ZJ%I_%} foreven 1.
Then we choose

Rpo (x%h)  Rpyo(x*;1) -2 15

T Re(Ah)  Rp(1) —4/15 2

The resulting formula is not only exact for polynomials of degree 4 but also for polynomials of degree 5, since (5.3) and (5.4)
hold. We obtain

15

+5 [F(h) — F(—h)] +o(h)

1279 (0) = 3 [£() +8£(0) + /()]
3 15

20 = —52 ) +8F0) + f(=h)]+ 5.5 [F(h) = F(=h)] +o(h?).
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Example 5.4. Second derivative: the 4-points symmetric formula is

100 = gz |10 =1 (5 ) =1 (=5 ) + 0] + o0

Its truncation error is

i) =720~ 3 [ 1= () =1 (=5 ) + 0] =0t

For f(x) =x!, Ry (x';h) =0 for 1 = 0,1,2,3, and for | > 4 we have

0 forodd 1,

Ry (x'3h) = —%h’ [1+( 1)} {1—1] = (5.5)
f%hl {1 — 3,%1} foreven .

We consider

HE—ron) = ¢ [ +3r (3) +ar (<4) +om)] + ot

with its truncation error
Relri) = 4 1P = F-] = 70 +37 (5 ) 437 (=5 ) 5| = o),

For f(x) = x!, Rp(x!;h) = 0 for | = 0,1,2,3, and for | > 4 we have

] 1 1 0 forodd 1,
Rp(x';h) =1 [1+(—1)l} [— (1+>] = (5.6)
I+1 4 3i-1
+ o {ZJ%I_%<1+3’%')} foreven .
Then we choose
_ RD(Q) (x4;h) _ RD(z) (x4; 1) _ 720/9 _ E
Rp(x*;h) Rp(x*;1) —16/135 4"

The resulting formula will be exact not only for polynomials of degree 4 but also for polynomials of degree 5 since (5.5) and
(5.6) hold, and we obtain

2 (2)(0):71176 {57f(h)+243f<;l>+243f( h>+57f( h)] 4712 [F(h) = F(—=h)] +o(h°)

75

20 =- 57f(h)+243f< >+243f< h>+57f( h)] 7l [F(h) — F(—h)] + o(h®).

1642 {

Example 5.5. Third derivative: the 4-point symmetric formula is

8K [f(h) ( >+3f< ) fl= h)]+o(h).

Its truncation error is

i) =790 = 5 [ =37 (5 ) 37 (=5 ) s | = ot

190) =

8
For f(x) = x!, Ry (xl;h) =0 for1=0,1,2,3,4, and for | > 5 we have

0 foreven I,

Ry (x'3h) = f%h’ {1 - (4)’] [1 - 1_} - (5.7)

-1
3 27}#{1—3,—,] forodd 1.
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We consider
% [F(—h) —2F(0) + F(h)] = 3% [7f(h) +27f <’3’> —27f (;’) 7f(h)] +o(h*).
with its truncation error
Re(i) = (70 =27 0) - P - 55 1000 +27 (§) =227 (= ) = 70-] = ot
For f(x) =x!, Rp(x';h) =0 for 1 =0,1,2,3,4, and for | > 5 we have

foreven I,

1 I
R =1 [1 = (1) [l+1_32 <7+3’3>] T (=5 (T+5)] sorodd 1. oY

Then we choose

_ Ry (x>;h) _ Ry (x> 1) _ —20/3 _
Rp(x>;h) RE(x%;1) -1/9

60.

The resulting formula will also be exact for polynomials of degree 4 since (5.7) and (5.8) hold, and we obtain

60

1 r30) = —% [39f(h) 4243 f <§> —243f <—;’> - 39f(—h)} +— [F(h) —2F(0) + F(—h)] + o(h®)

or

F3(0) = —# [39f(h) +243f <§> —243f (—2’) - 39f(—h)} + 2—2 [F(h) —2F (0) + F(—h)] + o(h*).

Example 5.6. Fourth derivative: the 5-points symmetric formula is

190 = 5 [ =47 (5 ) +6700) a7 (=3 ) + 7] + ofh

Its truncation error is

h

Rpio (fh) =1t f9(0) ~ 16 {f(h) —4f (';) +6£(0) —4f (—2) +f<—h)] = o().

For f(x) = x!, Ry (xl;h) =0 for1=0,1,2,3,4,5, and for | > 6 we have

. 0 forodd I,
12} =
2 —32n! {l — L} foreven 1.

20-2

Ry (x':h) = —16h! [1+(—1)’] [1 - (5.9)

We consider

[F(h) — F(—h)] = % [7f(h) +32f (Z) +12£(0)+32f (—Z) +7f(—h)} +o(h).

S| =

with its truncation error
Ro(f:h) = % [F () — F(—h)] - 4% [7f(h) +32f G) +12£(0) +32f <—Z> +7f(—h)] — o(h).

For f(x) = x!, Rp(x!;h) = 0 for 1 = 0,1,2,3,4,5, and for | > 6 we have

0 forodd 1,

11 1
Rp(xsh) =1 [1+(f1)’} [ <7+>] = (5.10)
I+1 45 21-5
+ ! {ZJ%I_% (7_;_21%5)} foreven .
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Then we choose

Rpw (x%h) Ry (1) =30
o Bpw(h) _ Rpw (@:1) 630,
Rp(xS;h) — Rp(x&1) — —1/21

The resulting formula will also be exact not only for polynomials of degree 6 but also for polynomials of degree T since (5.9)
and (5.10) hold. We obtain

630

2 () — F(~h)] + o)

K@ (0) = — {SZf(h) +512f <Z) +72£(0) +512f (Z) +82f(h)} +

or

0 = —h—14 [82f(h) +512f (Z) +72£(0)+512f (—Z) +82f(—h)] + 6;—50 [F(h) — F(—h)] +o(h?)

6. Numerical examples

To illustrate the results, we will apply the formulae to the functions given in Table 1. To get the exponent L of expression of
the form o(h%), we compute the absolute error which is of the form O(hX+!) for a regular enough function, which is the case
for the chosen functions in Table 1. In the formula, we will replace o(h") by O(hX*1). So the order L+ 1 is estimated by the
expression

bsolut for h O(ht+!
10g2< absolute error for > ~ log, (()> ~log, (2471) =L+1

absolute error for i1/2 O((h/2)E+1)

The approximations of L+ 1 are given in the last column of the tables below. Obviously, the derivative can be estimated at any
value a not only at O as expressed in the formula. We reconsider the 6 examples of the preceding section, and we numerically
observe the predicted order L+ 1 of O(h-+1).

Example 6.1. First derivative: the 2-points symmetric formula is

1

F(0) = o L) — F(~)] +O0R),
and the corrected formula is
FO0) = — 51 [F(8) — F(~)]+ 3 [F () —2F(0) + F ()] + O(H).

The numerical results are given in Table 2, which indicates the order of the method.

Example 6.2. First derivative: the one-sided formula is

F) = [F () = £(0)] + O(h),

and the corrected formula is
FO0) =2 [7(0) +27(0)] + 5 [F (W)~ F(0)]+ O(R)

The numerical results are given in Table 3, which indicates the order of the method.

Example 6.3. Second derivative: the 3-points symmetric formula is

F0) = 11 () ~27(0) + F(~)] + 00,

and the corrected formula is

3 15
—5 ) +8F(0) + f(=m)]+ o5 [F (h) = F(=h)] + O(h").

The numerical results are given in Table 4, which indicates the order of the method.

r20) =
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Example 6.4. Second derivative: the 4-points symmetric formula is

720 = g [ 10 -7

~ 82
and

1

> —f (—;’) +f(—h)} +O(h?).

75

20 = e {57f(h) +243f (2) +243f (—2’) +57f(—h)] + 03 [F(h) —F(—h)] + O(K*).

The numerical results are given in Table 5, which indicates the order of the method.

Example 6.5. Third derivative: the 4-point symmetric formula is

F9(0) = 2
and

90 =5

= o [f(h) —3f (;‘) +3f (—2) —f(—h)] +O(1).

60

~ R {39f(h)+243f <;l) —243f <—;’) —39f(—h)} + 7 [F(h) =2F (0) + F(—h)] +O(h*).

The numerical results are given in Table 6, which indicates the order of the method.

Example 6.6. Fourth derivative: the 5-points symmetric formula is

16

f(4)(0)—ﬁ

and

1007 (5 ) 670 -47 (=5 )+ r-m| + 002

630

0 = _;714 [82f(h) +512f (’;) +72f(0)+512f (—2) +82f(—h)] + o5 [F(h) — F(—h)] + O(h")

The numerical results are given in Table 7, which indicates the order of the method.

7. Conclusion

In this paper, we have presented a complete analysis of the standard numerical differentiation formulae for which we have
established, using two different methods, the best error bounds depending on the regularity of absolutely continuous functions.
Moreover we have presented a way to improve the order of those formulae by adding information coming from a primitive of
the function. Obviously, this process is possible if we can get values of the primitive, directly of by an indirect method.
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Test functions

e — tan(x)

W) —27(1 +xx2)2 1+ tan?(x)
— 352

o | - 8 +)3€2) ) 2tan(x)(1 + tan?(x))
3 (x) 24x ((11 _:;2))4 2(1+tan(x)) (1 +3tan*(x))
79 () 24% $tan(x)(1 + tan?(x)) (2 + 3tan? (x))

F(x) arctan(x) —In|cos(x)|

Table 1. Test functions for numerical differentiation.
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Symmetric first derivative rule

Standard rule

Corrected rule

h computed absolute estimated computed absolute estimated
derivative error order derivative error order
Estimation of £(1)(2) = —0.16 for f(x) = 1/(1+2)
1.0000 | -2.00000000e-01 | 4.00000000e-02 -1.59707000e-01 | 2.93000415e-04
0.5000 || -1.69761273e-01 | 9.76127321e-03 2.03 -1.59948828e-01 | 5.11719430e-05 2.52
0.2500 || -1.62410785e-01 | 2.41078509e-03 2.02 -1.59996441e-01 | 3.55871874¢-06 3.85
0.1250 || -1.60600684e-01 | 6.00684200e-04 2.00 -1.59999772e-01 | 2.27514621e-07 3.98
0.0625 || -1.60150043e-01 | 1.50042917e-04 2.00 -1.59999986¢-01 | 1.42973008¢-08 3.99
0.0313 || -1.60037503e-01 | 3.75026847e-05 2.00 -1.59999999¢-01 | 8.95188673¢-10 4.00
0.0156 || -1.60009375¢-01 | 9.37516783e-06 2.00 -1.60000000e-01 | 5.67215996e-11 3.98
Estimation of fU)(rr/4) = 2 for f(x) = tan(x)
1.0000 || -2.18503986e+00 | 4.18503986e+00 3.93847408e+00 | 6.57541629¢e+00
0.5000 || 3.11481545e+00 | 1.11481545e+00 1.91 1.81019631e+00 | 1.89803686e-01 5.11
0.2500 || 2.18520996e+00 | 1.85209959e-01 2.59 1.99348573e+00 | 6.51426518e-03 4.86
0.1250 || 2.04273537e+00 | 4.27353698e-02 2.12 1.99963919¢+00 | 3.60810092e-04 4.17
0.0625 || 2.01048219e+00 | 1.04821852e-02 2.03 1.99997809e+00 | 2.19088367e-05 4.04
0.0313 || 2.00260824e+00 | 2.60824212e-03 2.01 1.99999864e+00 | 1.35955952e-06 4.01
0.0156 || 2.00065130e+00 | 6.51296080e-04 2.00 1.99999992¢+00 | 8.48203887e-08 4.00
Table 2. Estimation of f(!)(x) using a symmetric rule.
Unilateral first derivative rule
Standard rule Corrected rule
h computed absolute estimated computed absolute estimated
derivative error order derivative error order
Estimation of £(1)(2) = —0.16 for f(x) = 1/(1+x2)
1.0000 || -1.00000000e-01 | 6.00000000e-02 -1.48617672e-01 | 1.13823276e-02
0.5000 || -1.24137931e-01 | 3.58620690e-02 0.74 -1.56334573e-01 | 3.66542739¢-03 1.63
0.2500 || -1.40206186e-01 | 1.97938144e-02 0.86 -1.58952804e-01 | 1.04719561e-03 1.81
0.1250 || -1.49575071e-01 | 1.04249292¢-02 0.93 -1.59719803e-01 | 2.80196710e-04 1.90
0.0625 || -1.54646840e-01 | 5.35315985e-03 0.96 -1.59927519¢-01 | 7.24808122¢-05 1.95
0.0313 || -1.57287102e-01 | 2.71289769¢-03 0.98 -1.59981568e-01 | 1.84323851e-05 1.98
0.0156 || -1.58634325¢-01 | 1.36567488e-03 0.99 -1.59995352e-01 | 4.64763034e-06 1.99
Estimation of fU)(rr/4) = 2 for f(x) = tan(x)

1.0000 || -5.58803782e+00 | 7.58803782e+00 1.23765843e+01 | 2.15169529e+01
0.5000 || 4.81644688e+00 | 2.81644688e+00 1.43 4.68917926e-01 | 1.53108207e+00 3.81
0.2500 || 2.74318567e+00 | 7.43185669e-01 1.92 1.84910116e+00 | 1.50898839¢-01 3.34
0.1250 || 2.29941556e+00 | 2.99415562e-01 1.31 1.97268790e+00 | 2.73120951e-02 2.47
0.0625 || 2.13630119e+00 | 1.36301191e-01 1.14 1.99406905¢+00 | 5.93095126e-03 2.20
0.0313 || 2.06521013e+00 | 6.52101292¢-02 1.06 1.99861227e+00 | 1.38772563e-03 2.10
0.0156 || 2.03191402e+00 | 3.19140168e-02 1.03 1.99966405¢+00 | 3.35953571e-04 2.05

Table 3. Estimation of f(!) (x) using a non symmetric rule.
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Second derivative rule

Standard rule

Corrected rule

h computed absolute estimated computed absolute estimated
derivative error order derivative error order
Estimation of f)(2) = 0.176 for f(x) = 1/(1 +x%)
1.0000 || 2.00000000e-01 | 2.40000000e-02 1.77357068e-01 | 1.35706751e-03
0.5000 1.82493369¢-01 | 6.49336870e-03 1.89 1.76033533e-01 | 3.35330618¢-05 5.34
0.2500 || 1.77636796e-01 | 1.63679619¢-03 1.99 1.76001446¢-01 | 1.44601079¢-06 4.54
0.1250 || 1.76409814e-01 | 4.09814051e-04 2.00 1.76000081e-01 | 8.08135942¢-08 4.16
0.0625 || 1.76102489¢-01 | 1.02488599e-04 2.00 1.76000005¢-01 | 4.90153890e-09 4.04
0.0313 || 1.76025624e-01 | 2.56242908e-05 2.00 1.76000000e-01 | 2.88695456¢-10 4.09
0.0156 || 1.76006406e-01 | 6.40620560e-06 2.00 1.76000000e-01 | 1.94850247e-11 3.89
Estimation of f)(rr/4) = 4 for f(x) = tan(x)
1.0000 || -6.80599592e+00 | 1.08059959e+01 6.63488721e+00 | 2.37088144e+01
0.5000 || 6.80652574e+00 | 2.80652574e+00 1.95 3.36168164e+00 | 6.38318359¢-01 5.21
0.2500 || 4.46380567e+00 | 4.63805674e-01 2.60 3.97858106e+00 | 2.14189379e-02 4.90
0.1250 || 4.10688307e+00 | 1.06883070e-01 2.12 3.99881917e+00 | 1.18083079¢-03 4.18
0.0625 || 4.02620819e+00 | 2.62081947e-02 2.03 3.99992838e+00 | 7.16213649¢-05 4.04
0.0313 || 4.00652078e+00 | 6.52077514e-03 2.01 3.99999556e+00 | 4.44325997¢-06 4.01
0.0156 || 4.00162825¢+00 | 1.62825080e-03 2.00 3.99999972¢+00 | 2.77308572¢-07 4.00
Table 4. Estimation of /(2 (x) using a 3-points symmetric rule.
Second derivative rule
Standard rule Corrected rule
h computed absolute estimated computed absolute estimated
derivative error order derivative error order
Estimation of £)(2) = 0.176 for f(x) = 1/(1 +x%)
1.0000 || 2.02636917e-01 | 2.66369168e-02 1.78991046e-01 | 2.99104605¢-03
0.5000 || 1.83214004e-01 | 7.21400359e-03 1.88 1.76072351e-01 | 7.23506264¢-05 5.37
0.2500 || 1.77818622¢-01 | 1.81862247¢-03 1.99 1.76003075¢-01 | 3.07542484¢-06 4.56
0.1250 || 1.76455347e-01 | 4.55346643e-04 2.00 1.76000171e-01 | 1.70955263¢-07 4.17
0.0625 || 1.76113876e-01 | 1.13876080e-04 2.00 1.76000010e-01 | 1.03522543e-08 4.05
0.0313 1.76028471e-01 2.84714255e-05 2.00 1.76000001e-01 | 6.04290118e-10 4.10
Estimation of f)(rr/4) = 4 for f(x) = tan(x)

1.0000 || -8.26975149e+00 | 1.22697515e+01 7.03551181e+00 | 5.89830241e+01
0.5000 || 7.13309802e+00 | 3.13309802e+00 1.97 2.60314120e+00 | 1.39685880e+00 5.40
0.2500 || 4.51592823e+00 | 5.15928230e-01 2.60 3.95439864e+00 | 4.56013565¢-02 4.94
0.1250 || 4.11879260e+00 | 1.18792597e-01 2.12 3.99750194e+00 | 2.49806479¢-03 4.19
0.0625 || 4.02912227e+00 | 2.91222737e-02 2.03 3.99984872e+00 | 1.51279188e-04 4.05
0.0313 || 4.00724543e+00 | 7.24543362e-03 2.01 3.99999062¢+00 | 9.38143057¢-06 4.01

Table 5. Estimation of f(?)(x) using a 4-points symmetric rule.
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Third derivative rule

Standard rule Corrected rule
h computed absolute estimated computed absolute estimated
derivative error order derivative error order

Estimation of fC)(2) = —2.30400000e — 01 for f(x) = 1/(1 +x2)
1.0000 || -2.40973631e-01 | 1.05736308e-02 -2.37051773e-01 | 6.65177254¢-03
0.5000 || -2.34696213e-01 | 4.29621292e-03 1.30 -2.30683859¢-01 | 2.83859197¢-04 4.55
0.2500 || -2.31550154e-01 | 1.15015437e-03 1.90 -2.30415897e-01 | 1.58974761e-05 4.16
0.1250 || -2.30691910e-01 | 2.91909546e-04 1.98 -2.30400966e-01 | 9.65795639¢-07 4.04
0.0625 || -2.30473245e-01 | 7.32447324e-05 1.99 -2.30400059¢-01 | 5.94454010e-08 4.02

Estimation of f©)(1r/4) = 16 for f(x) = tan(x)
1.0000 || -3.06825876e+01 | 4.66825876e+01 -3.90107225e-01 | 1.89206795e+02
0.5000 || 2.80069421e+01 | 1.20069421e+01 1.96 1.14873564e+01 | 4.51264360e+00 5.39
0.2500 || 1.79802007e+01 | 1.98020069e+00 2.60 1.58535764e+01 | 1.46423628e-01 4.95
0.1250 || 1.64561085e+01 | 4.56108524e-01 2.11 1.59919858e+01 | 8.01418527e-03 4.19
0.0625 || 1.61118262e+01 | 1.11826164e-01 2.02 1.59995148e+01 | 4.85235909e-04 4.05
Table 6. Estimation of £ (x) using a 4-points symmetric rule.
Fourth derivative rule
Standard rule Corrected rule
h computed absolute estimated computed absolute estimated
derivative error order derivative error order
Estimation of ¥ (2) = 3.14880000e¢ — 01 for f(x) = 1/(1+x?)
1.0000 || 2.80106101e-01 | 3.47738992¢-02 3.38842477e-01 | 2.39624769e-02
0.5000 || 3.10820640e-01 | 4.05935957¢-03 3.10 3.16060349¢-01 | 1.18034893¢-03 4.34
0.2500 || 3.14107429¢-01 | 7.72571418e-04 2.39 3.14948783e-01 | 6.87831106e-05 4.10
0.1250 || 3.14701263e-01 | 1.78737171e-04 2.11 3.14884220e-01 | 4.22036637¢-06 4.03
0.0625 || 3.14836205e-01 | 4.37952495¢-05 2.03 3.14880209¢-01 | 2.09043622¢-07 4.34
Estimation of £ (rr/4) = 80 for f(x) = tan(x)

1.0000 || -2.17800347e+02 | 2.97800347e+02 -6.13368590e+02 | 2.09714234e+03
0.5000 || 1.49934084e+02 | 6.99340843e+01 2.09 4.20050565e+01 | 3.79949435e+01 5.79
0.2500 || 9.13721867e+01 | 1.13721867e+01 2.62 7.88356148e+01 | 1.16438517e+00 5.03
0.1250 || 8.26110723e+01 | 2.61107229¢+00 2.12 7.99370476e+01 | 6.29523769e-02 4.21
0.0625 || 8.06396706e+01 | 6.39670610e-01 2.03 7.99961997e+01 | 3.80027294e-03 4.05

Table 7. Estimation of f(*) (x) using a 5-points symmetric rule.
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1. Introduction and background

Throughout the paper N and R denote the set of all positive integers and the set of all real numbers, respectively. The concept
of convergence of a sequence of real numbers has been extended to statistical convergence independently by Fast [1] and
Schoenberg [2]. A lot of developments have been made in this area after the various studies of researchers [3, 4]. The idea
of .#-convergence was introduced by Kostyrko et al. [5] as a generalization of statistical convergence which is based on the
structure of the ideal .# of subset of the set of natural numbers N. Das et al. [6] introduced the concept of .#-convergence of
double sequences in a metric space and studied some properties of this convergence. A lot of developments have been made in
this area after the works of [7, 8, 9, 10].

The concept of ordinary convergence of a sequence of fuzzy numbers was firstly introduced by Matloka [11] and proved
some basic theorems for sequences of fuzzy numbers. Nanda [12] studied the sequences of fuzzy numbers and showed that
the set of all convergent sequences of fuzzy numbers are a complete metric space. Sencimen and Pehlivan [13] introduced
the notions of statistically convergent sequence and statistically Cauchy sequence in a fuzzy normed linear space. Hazarika
[14] studied the concepts of .#-convergence, .#*-convergence and .#-Cauchy sequence in a fuzzy normed linear space.
Diindar and Talo [15, 16] introduced the concepts of .#,-convergence and .%,-Cauchy sequence for double sequences of fuzzy
numbers and studied some properties and relations of them. Hazarika and Kumar [17] introduced the notion of .#,-convergence
and %-Cauchy double sequences in a fuzzy normed linear space. Diindar and Tiirkmen [18] studied some properties of
HH-convergence and %" -convergence of double sequences in fuzzy normed spaces. A lot of developments have been made in
this area after the various studies of researchers [19, 20, 21, 22].

Now, we recall the concept of ideal, convergence, statistical convergence, ideal convergence of sequence, double sequence
and fuzzy normed and some basic definitions (see [1, 3, 4, 13, 15, 20, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]).

Fuzzy sets are considered with respect to a nonempty base set X of elements of interest. The essential idea is that each
element x € X is assigned a membership grade u(x) taking values in [0, 1], with u(x) = 0 corresponding to nonmembership,



On .%,-Cauchy Double Sequences in Fuzzy Normed Spaces — 155/160

0 < u(x) < 1 to partial membership, and u(x) = 1 to full membership. According to Zadeh [35], a fuzzy subset of X is a

nonempty subset {(x,u(x)) : x € X} of X x [0, 1] for some function u : X — [0, 1]. The function u itself is often used for the
fuzzy set.

A fuzzy set u on R is called a fuzzy number if it has the following properties:

1. u is normal, that is, there exists an xp € R such that u(xy) = 1;

2. u is fuzzy convex, that is, forx,y € Rand 0 <A <1, u(Ax+ (1 —A)y) > minfu(x),u(y)];

3. u is upper semicontinuous;

4. suppu = cl{x € R :u(x) > 0}, or denoted by [u]o, is compact.

Let L(R) be set of all fuzzy numbers. If u € L(R) and u (¢) = 0 for ¢ < 0, then u is called a non-negative fuzzy number. We
write L*(R) by the set of all non-negative fuzzy numbers. We can say that u € L*(R) iff u, > 0 for each & € [0, 1]. Clearly we
have 0 € L(R). For u € L(R), the o level set of u is defined by

], = {xeR:ulx)>a}, if aec(0,1]
Ua = suppu, if @=0.

A partial order < on L(R) is defined by u < v if uy < vy and uj; <v{ forall o € [0,1].
Arithmetic operation for r € R, ¢,5,® and @ on L(R) x L(R) are defined by
(u@v) (1) = supser {u(s) Av(t —s)}, (uov) (1) = supyecg {u(s) Av(s—1)},
(V) (1) = supser 20 {u (s) Av(t/s)} and (u@v) (1) = supseg {u (s1) Av(s)}.
For k € RT, ku is defined as ku (t) = u(¢t/k) and Ou (1) =0, r € R.
Some arithmetic operations for ot—level sets are defined as follows:
u,v € L(R) and [u], = [ug,ug] and [v], = [vy,vg], o € (0,1]. Then,
@ V]g = [ug + v ug +vals OVIg = [ug —va,ug = vel,

O]y = [ug vy, ub-vé] and [Tou], = {’%7%} ,ug > 0.

o o
For u,v € L(R), the supremum metric on L(IR) defined as
D(u,v)= sup max{|ug —vg|,|ug —vé|}.
0<a<l

It is known that D is a metric on L(R) and (L(R), D) is a complete metric space.

A sequence x = (x;) of fuzzy numbers is said to be convergent to the fuzzy number xy, if for every € > 0 there exists a
positive integer ko such that D (x,xo) < € for k > ko and a sequence x = (x;) of fuzzy numbers convergent to levelwise to
xo if and only if klﬂ (%] o = [x0], and klgrolo [k) = [x0]er, where [xi], = [(¥k) g » (k)] and [, = [(x0)g » (%0) ], for every
o< (0,1).

Let X be a vector space over R, ||.|| : X — L*(R) and the mappings L;R (respectively, left norm and right norm) :
[0,1] x [0,1] — [0, 1] be symetric, nondecreasing in both arguments and satisfy L (0,0) =0 and R(1,1) = 1.

The quadruple (X, ||.||,L,R) is called fuzzy normed linear space (briefly FNS) and ||.|| a fuzzy norm if the following axioms
are satisfied

1. ||x|]| = 0iff x=0,
2. ||lrx|| =|r| @ ||x|| forx e X, r e R,

3. Forallx,ye X
@ [lx+yll (s +1) =
(b) [x+y[ (s+1) <

L (x| (5). 1] () . whenever s < [l .t < [y[]; and s+ < [lx+3]]7
Rl (), [11(1)), whenever s> [l .t > [yl ands+¢> -+l

Let (X, ||.||c) be an ordinary normed linear space. Then, a fuzzy norm ||.|| on X can be obtained by

0,  if0<r<alx|port>blxe
Ixll (1) = { T — Tea ifallxlle <7 <llxlle
~t

G + s i Ille <t < bl

where ||x| is the ordinary norm of x (#0),0 < a < 1 and 1 < b < e. For x = 0, define ||x| = 0. Hence, (X, ||.||) is a fuzzy
normed linear space.

Let us consider the topological structure of an FNS (X, ]|.||). For any € > 0, € [0, 1] and x € X, the (&, &) — neighborhood
of x is the set A5 (g,0) ={y e X : ||x—y||§ < €}
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Let (X, |.||) be an FNS. A sequence (x,),_; in X is convergent to x € X with respect to the fuzzy norm on X and we denote
by x, Wy, provided that (D) —lim,, . ||x, —x|| = 0; i.e., for every & > 0 there is an N (¢) € N such that D (||x,, — x| ,6) < g for
alln > N (&) . This means that for every £ > 0 there is an N (¢) € Nsuch thatforall n > N (€), sup ||x, — x5 = [lx, —x[|g <e&.

acl0,1]

Let (X, ||.|[) be an FNS. Then a double sequence (x ;) is said to be convergent to x € X with respect to the fuzzy norm on

X if for every € > 0 there exist a number N = N (&) such that D <||xjk —x|| ,6) < g, forall j,k>N.

In this case, we write x j ﬂ x. This means that, for every € > 0 there exist a number N = N (&) such that sup ||xjk — xHZ =
ael0,1]
Hx ik —)CH(J)r < g, for all j,k > N. In terms of neighnorhoods, we have x j IR & provided that for any € > 0, there exists a
number N = N (&) such that x;, € 45 (g,0), whenever j,k > N.

Let X # 0. A class .# of subsets of X is said to be an ideal in X provided:

H0e s, (ii)A,Be JimpliessAUBe€ ., (iii))A € ¥, BCAimpliesBe€ /.

# is called a nontrivial ideal if X ¢ .#. A nontrivial ideal .# in X is called admissible if {x} € .# for each x € X.

A nontrivial ideal . of N x N is called strongly admissible if {i} x N and N x {i} belong to .#, for each i € N. It is evident
that a strongly admissible ideal is also admissible. Throughout the paper we take .#, as a strongly admissible ideal in N x N.

Let # = {A C NxN: (3m(A), (i, j) > m(A) = (i, j) ¢ A)}. Then .# is a nontrivial strongly admissible ideal and clearly
an ideal .#, is strongly admissible if and only if %) C ..

Let X # 0. A non empty class .% of subsets of X is said to be a filter in X provided:

H0¢g.ZF, (ii))A,Be.Z impliessANB € .F, (iii))A € .%#,A C Bimplies B € .#.

Let .# is a nontrivial ideal in X, X # 0, then the class & () ={M C X : (A € .#)(M = X\A)} is a filter on X, called the
filter associated with .#.

Let (X,p) be a linear metric space and .#> C 2NN be a strongly admissible ideal. A double sequence x = (x,,,) in X
is said to be .#-convergent to L € X, if for any € > 0 we have A(¢€) = {(m,n) € Nx N: p(xu,,L) > €} € # and we write
S — lim x,, = L.

m,n—oeo

Let (X, ||.||) be fuzzy normed space. A sequence x = (x;;)men in X is said to be .# — convergent to L € X with respect to
fuzzy norm on X if for each € > 0, the set A (€) = {m € N : |[x,, —L||j > €} belongs to .#. In this case, we write x,, L.
The element L is called the .# —limit of (x,,) in X.

Let (X, ||.||) be a fuzzy normed space. A double sequence x = (X mm)enxn in X is said to be #5— convergent to L; € X

with respect to fuzzy norm on X if for each € > 0, the set A (¢) = {(m,n) € NXN: ||xpm —Lj ||§ > s} € #. In this case, we
. Bz . . .. .
WrIte Xy, 4 Ly or Xy — Ly (F#) or F.% — lim x,,, =L, . The element L, is called the F.#—limit of (x,,) in X. In
m,n—yoo

terms of neighborhoods, we have x,,, % L provided that for each € > 0, {(m,n) € Nx N: x,,, & A7, (€,0)} € H. A useful
interpretation of the above definition is the following;

F.7. .
Xom —3 L1 & FS — lim X — Li||g =0.
m,n—oo
Note that F.% — lim ||, — L1 || = 0 implies that
m,n—yoo

FI —lim|xum —Li|ly, = FS—lim|xm—Li|; =0,

for each o € [0, 1], since O < ||x; — Li ||y, < ||Xmn — L1 & < Nlotmn — L Hg holds for every m,n € N and for each @ € [0, 1].
Let (X, ||.]|) be a fuzzy normed space. A double sequence x = (x,,;,) in X is said to be .#,-Cauchy (or F.#,-Cauchy) double
sequence with respect to the fuzzy norm on X if, for each € > 0, there exists integers p = p(€) and g = g (&) such that the set

{(m,n) eNxN: men fquH(J)r > 8} belongs to .%;.
We say that an admissible ideal % C 2N*N satisfies the property (AP2), if for every countable family of mutually disjoint
sets {A1,A2,...} belonging to .%,, there exists a countable family of sets {By,B,...} such that A;NB; € 9 ie., AjNB;is

included in the finite union of rows and columns in N x N for each j € N and B = U;": 1Bj € % (hence B; € %, for each
jeN).

Lemma 1.1. (/27], Theorem 3.3) Let {P;};"_| be a countable collection of subsets of N x N such that P, € F (%) for each i,
where F (%) is a filter associated with a strongly admissible ideal .9, with the property (AP2). Then there exists a set P C
N x N such that P € % (%) and the set P\P; is finite for all i.
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Lemma 1.2. ([17], Theorem 3.5) Let (X, ||.||) be fuzzy normed space and ., be a admissible ideal. Then, every .%,-convergent
sequence is %-Cauchy sequence.

2. Main results

In this section, we investigate relationship between .#,-convergence and .#;-Cauchy double sequences in fuzzy normed spaces.
After, we introduce the concepts of .#;"-Cauchy double sequences and study relationships between .#,-Cauchy and .#;"-Cauchy
double sequences in fuzzy normed spaces.

Theorem 2.1. Let (X,||.||) be a fuzzy normed space. Then, a double sequence (x,) is F %-convergent if and only if it is
F %-Cauchy double sequence.

Proof. Hazarika and Kumar proved that every F.#,-convergent sequence is F.%,-Cauchy sequence in Lemma 1.2.

Assume that (x,,,) is F .#;-Cauchy double sequence. We prove that (x,,) is F.#,-convergent. To this effect, let (€,,) be a
strictly decreasing sequence of numbers converging to zero. Since (x,;,) is F %, —Cauchy double sequence, there exist two
strictly increasing sequences (k,) and (I;) of positive integers such that the set

Aepg) = { (m,m) € NXN: [ =511, = € }
belongs to %, (p,q € N). This implies that

(Z)#{(m,n)GNXN:me,l—xkpqu(J)r<8pq} 2.1)
belongs to & (#), (p,q € N). Let p,q,s,t be four positive integers such that p # g and s # 7. By (2.1), both the sets

D(gpq) ={(m,n) e NxN: me,, — Xk, 1,

+
|o < &pq}
and

C(Sst) = {(m,n) € NxN: ”xmn — Xkl ”3— < Sst}

are non empty sets in % (.%,). Since .7 (%) is a filter on N x N, therefore 0 # D (€,,) NC (&) € F (.#2) . Thus, for each pair
(p,q) and (s,t) of positive integers with p # g and s # ¢, we can select a pair (m<p?q),(s7,) , ”(p,q).(s,r)) € N x N such that

+ +
||x’”pqst”pqsf “Xkplyllg < Epq and Hx’"pqsf”pqst — Aksly |0 < &q-

It follows that

}(T < ||x’”1wst"pqﬂ — Xkply ’(-; + ||x’"pqﬂ”pqst — kgl ‘(-;

< &g t+& —0,as p,q,s,t — .

ety =,

This implies that (xkplq) (p,q € N) is a Cauchy double sequence in fuzzy normed space, therefore it satisfies the Cauchy
convergence criterion. Thus, the sequence (xk » q) converges to a finite limit L, that is,

lim Xk o1, — Ll.
pg—e P

Also, we have €g,; — 0 as p,q — o, so for each £ > 0 we can choose the positive integers py,qo such that for p > py and
q = 90,
€

—Lif|y <= 2.2)

t
Epogo < 5 and ||xkp >

l[[
Now, we define the set
Ae)= {(m,n) €eNxN: H)cmn—LIH(J)r > e}.

We prove that A (€) C A(&p,q,)- Let (m,n) € A(€), then by second half of (2.2) we have

N + +
e< ||xmn_L1H0 < men_xkpo[qo 0 + kapolqo _LIHO
+ &
< — —.
> Xmn xk,,olq() 0 + )
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This implies that

+

)
5 < men *xkpolqo 0

and therefore by first half of (2.2) we have

+

<

Epogo = || Xmn _xkpo lgg

0o

This implies that (m,n) € A(€y,q,) and therefore A (€) is contained in A (€4, ). Since A (&p,q,) belongs to .7 therefore, A (€)
belongs to .%. This proves that (x,,,) is F.%,-convergent to L. O

Definition 2.2. Ler (X, ||.||) be a fuzzy normed space. A double sequence x = (xpn) in X is said to be 75 -Cauchy (or F 75 -
Cauchy) double sequence with respect to fuzzy norm on X if, there exists a set M € F (%) (i.e, H=NxN\M € %) and
ko = ko(€) such that for every € > 0 and for (m,n), (s,t) € M, || Xn — X5t || < €, whenever m,n,s,t > ko. In this case, we write

Hm || —)cS,||(J)r =0.
m,n,s,t—oo

Theorem 2.3. Let .%; be an admissible ideal of N x N. If a double sequence (Xuy,) in X is an F .75 -Cauchy sequence, then it is
F %-Cauchy sequence.

Proof. Suppose that (x,,,,) is an F . -Cauchy sequence. Then, there exists a set M € .F (.%,) (i.e., H=NxN\M € .%,) and
ko = ko(€) such that for every € > 0 and for (m,n), (s,t) € M ||xyn fxs,H(J)r < €, whenever m,n,s,t > kg. Then,

A(e) = {(mn) e NxN: |t —xgllg > €}
C HUMN(({1,...ko} x N)UN X {1,....,k0}))]-

Since %, be an admissible ideal, then
HU [Mﬂ (({1, ...,ko} x N)U (N x {1, ,ko}))] € S.
Therefore, we have A(€) €.%,. This shows that (x,,,) is F.#;-Cauchy sequence in X. O

Theorem 2.4. Let % be an admissible ideal of N x N with the property (AP2) and (X,n) be a double sequence in X. Then,
the concepts %,—Cauchy double sequence with respect to fuzzy norm on X and %5 -Cauchy double sequence with respect to
Juzzy norm on X coincide.

Proof. 1f a double sequence is F.#;-Cauchy, then it is F'.#,-Cauchy by Theorem 2.3, where .#, need not have the property
(AP2). Now, it is sufficient to prove that a double sequence (x,,,) in X is a F ., -Cauchy double sequence under assumption
that it is an F'.#,-Cauchy double sequence. Let (x,;) be an F.#,-Cauchy double sequence in X. Then, there exists s = s(€),t =
t (&) € N such that for every € > 0,

Ae) = {(m,n) € NXN: ||xmn —xStHa' > 8} € 9.

Let
L1
Pi= 4 (mn) € NXN: o —xssllg <

where s; = s (1\i), (i € N), ; = t(1\i). It is clear that P, € (%) for all i € N. Since .#; has the property (AP2), then by
Lemma 1.1 there exists a set P C N x N such that P € .#(.#,) and P\P, is finite for all i € N. Now we show that

=l =0

for (m,n), (s,t) € P. To prove this, let € > 0 and j € N such that j > 2/¢. If (m,n),(s,¢) € P then P\P, is a finite set, so there
exists N = N () such that (m,n), (s,t) € P; for all m,n,s,t > N(j). Therefore,

1 1
(| Xrn _x-VitiH(-;_ < ; and [|xg _x-VitiH(-;_ < 7a
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for all m,n,s,t > N(j). Hence it follows that

men —xer(T < men _)th,'||(J)r + ||xst — Xsit; H§
1 1 2
< —+-=-<Eg,
J J

for all m,n,s,t > N(j). Thus, for any € > 0 there exists N = N (&) such that for m,n,s,t > N (j) and (m,n), (s,t) € P we have

|E- fxst||g <E.

This shows that the double sequence (x;,;) in X is an F.#-Cauchy double sequence in fuzzy normed spaces. O
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1. Introduction
Our motivation comes from the following results:
Theorem 1.1. (A. Ostrowski, 1938 [1]). Let f : [a,b] — R be continuous on [a,b] and differentiable on (a,b) such that
1 (a,b) = R is bounded on (a,b), i.e., ||f ||.. := sup |f'(t)] <eo. Then

te(a,b)

1 _atb?
4+<xb—2 > ] ]| (b —a),

for all x € [a,b] and the constant } is the best possible.

<

[

Theorem 1.2. (G. Griiss, 1934 [2]). Let f,g : [a,b] — R be Lebesgue integrable functions, and m,M,n,N € R such that:
—o<m< f<M< oo, —0<n< g<N<oo a.e. onla,b]. Then

ot st (55 ) (55 s < -

with the constant % being the best possible.
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Let f € C' ([a,b]) and the kernel p : [a,b]* — R be such that

(1) = t—a, ift €[a,x],
PWSUE= 1 —b, ift € (x,b).

Then, we have the basic Montgomery integral identity [3, p. 565],

b b
f(x):ﬁ/a f(t)dt+ﬁ/a p(et) £ (8)dr, ¥ x € [a,b].

In order to describe complex extensions of Ostrowski and Griiss inequalities using the complex integral we need the
following preparation.

Suppose ¥ is a smooth path parametrized by z(t), ¢ € [a,b] and f is a complex function which is continuous on y. Put
z(a) = uand z(b) = w with u,w € C. We define the integral of f on %,,, = 7 as

frion-

We observe that the actual choice of parametrization of y does not matter.
This definition immediately extends to paths that are piecewise smooth. Suppose ¥ is parametrized by z(¢), f € [a,b], which
is differentiable on the intervals [a,c] and [c, b], then assuming that f is continuous on ¥ we define

f(2)dz:= /abf(z(t))z' (t)dr.

W

fRdz:= | f(x)dz+ | f(2)dz,

S Yuw Yuy W

where v := z(c). This can be extended for a finite number of intervals.
We also define the integral with respect to arc-length

b
f(2)|dz] ::/a Fz@)|Z (1) dr

Yuw

and the length of the curve ¥ is then

l(y):/); ’\dz\ = /:|z'(t)|dt.

Let f and g be holomorphic in G, an open domain and suppose ¥ C G is a piecewise smooth path from z (a) = uto z(b) = w.
Then we have the integration by parts formula

| @8 @dz= g s~ [ fReEe

Yuw

We recall also the triangle inequality for the complex integral, namely

"/Yf(z)dz

< '/Y|f(z)| ldz] < | f ]l (V)

where ||/l ., := supf (2)]-
z€y
We also define the p-norm with p > 1 by

£y, = (/yf(z)|P|dz)‘l’.

For p =1 we have
£l o= /y ()] |da].

If p,g > 1 with % + é = 1, then by Holder’s inequality we have

11l < E@) 1L,
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First, we mention a Complex extension of Ostrowski inequality to the complex integral by providing upper bounds for the
quantity

‘f(V)(w—u)—/yf(Z)dz

under the assumption that y is a smooth path parametrized by z (), ¢ € [a,b], u = z(a), v =z(x) with x € (a,b) and w = z(b)
while f is holomorphic in G, an open domain and y C G.

Secondly, we mention a Complex extension of Griiss inequality:

Suppose y C C is a piecewise smooth path parametrized by z (), ¢ € [a,b] from z (a) = u to z(b) = w with w # u. If f and
g are continuous on Y, we consider the complex Cebysev functional defined by

w—u

Dy (f,8) ::ﬁ/yf(Z)g(Z)dzfﬁ/yf(Z)dz ! /yg(Z)dZ-

We display upper bounds to ‘9,, (f, g)| .
We have the following results for functions of a complex variable:

Theorem 1.3. (S. Dragomir, 2019 [4]). Let f be holomorhic in G, an open domain and suppose 'y C G is a smooth path from
z(a) =uto z(b) =w. If v=z(x) withx € (a,b), then Y.,y = Yuy U Yor

I E

<||7

‘f(V) o) [ Q| <P .o [ leullacl+

V e—ulldz + [ |z—w|dz|} If
'yuy Yuw

Yuwseo

and

<
Vsl %,w;l -

N < . / o /
£ 0= [ 7@ < maxle ],y + max 2wl |

max {;g;ﬁlz—ul ’;ggﬁ,lz—vvl} 17 11

pr,q>1with%+%=1, then

1

q
ot ([ emwtiaa)

1
< (/y |z—uq|dz|> ! Hf'

1

' q
z—u|?|dz| + Z—quz) . .
</'}'u,v | ‘ | Yiew ‘ | ‘ ‘ H HVu.w,P

Suppose 7 C C is a piecewise smooth path parametrized by z(¢), t € [a,b] from z(a) = u to z(b) = w. Now, for ¢, P € C
define the set of complex-valued functions

‘f(V)(w—u)—/yf(Z)dz

<
Yowsp —

Ay(9,D) = {f17—>C| ’f(z)— (szrcD‘ S%|CI>—¢| foreachzey}.

We have the following complex Griiss type inequalities:

Theorem 1.4. (S. Dragomir, 2018 [5]). Suppose v C C is a piecewise smooth path parametrized by z(t), t € [a,b] from
z(a) =uto z(b) = w with w # u. If f and g are continuous on 'y and there exist ¢, P, y,¥ € C, ¢ # @, ¥ # ¥ such that
€Ay (9, @) and g € Ay (y,"¥) then

I (y)
w—ul*

1
‘%/(f,g” < Z|‘I’_¢||IP_‘V|
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If the path 7 is a segment [u, w] connecting two distinct points u and w in C then we write [, f (z)dz as [, f (z) dz.

If f, g are continuous on [u, w] and there exists ¢, ®, y, ¥ € C, ¢ # @, y # W such that f € Ay, ,; (¢, P) and g € Ay, (v, ¥)
then

1
< 1= ol w-yl.

w—u w—u

‘ 1

[ r@e@a-—— ["r0d— ["s@:

We will use the complex Montgomery identity which follows:

Theorem 1.5. (S. Dragomir, 2018 [4]) Let f be holomorphic in G, an open domain and suppose Y C G is a smooth path from
z(a)=utoz(b) =w. Ifv=2z(t) witht € [a,b), then Yy, = Yy U Yo, and

fv)= {/yf(z)dZwL (z—u) f (z)dz+ (zw)f’(z)dz}

1
w—u Y,y How

Define

o z—Uu, l'fZGYM,V
p(sz) { —Ww, ifZEYV,W'

Thus, it holds

1 1
= dz+—— / 2) f(2)dz, 1.1
f) W_u/yf(Z) S yP(VZ)f(Z) z (1.1)
a form which we will use a lot in this article.
Representation formula (1.1) is the main inspiration to write this article.

We will use (1.1) to derive a multivariate Complex Montgomery type identity then based on it, we will produce Complex
multivariate Ostrowski and Griiss type inequalities.
For the last we need:

Definition 1.6. Here we extend the notion of line (curve) integral into multivariate case. Let yj, j = 1,...,m, be a smooth path
m
parametrized by z; (t;), t; € laj,bj] and f is a complex valued function which is continuous on Hl Y; € C™. Putzj(aj) = u;
j=
and zj (bj) =wj, withuj,w; €C, j=1,....,m.

m m
We define the complex multivariate integral of f on T vj = T1 Yu;w; as
=17 =

/ f(ziyeyzm)dzy .. dzm = /m f(ziyeyzm)dzy . dzy =
N S Ym JI1

Jj=1

/ f(z1yezm)dzy . dzy = /m f(z1yezm)dz . dzy =
- ’yul“‘/'l b ’yu

m-wm b H Yu',w-
=1

by by b mn
/ / @), eszm @) [ 25 @) dr..dtn. (1.2)
ap ap am i—=1

=
‘We make

Remark 1.7. Clearly here z; € C' ([aj,b;],C), j=1,...,m. The integrand in (1.2) is a continuous complex valued function

m m m
over [] [aj,bj]. Therefore |f (z1 (1) ;s zm (tm))| T1 2; (t;) is also continuous but from 1] [a;,b,] into R, hence it is bounded.
j=1 =1 J=1

Consequently it holds

/ﬁ 0] |f (21 (1), s 2m (tm))|f[1 |2 (tj)‘f[]dtj < too.

J=1
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Therefore, by Fubini’s theorem, the order integration in (1.2) is immaterial.
Clearly it holds

by bm m
/a / F @1 (1) ez () [ 1) dr it

j=1

b bm m
g/ 1/ £ @ (1) sz ) [T |2 () dt ot (13)
ap Aam j=1

We also define the integral with respect to arc-lengths
m
Fzi (1), zm (tm)) H |2 (1) | dty..dty,. (1.4)

[aj.b;] j=1

/m F 1y rzm) dz1] [d22] .. |d2m] = /
Hl')/uj?w]' H

J= j=1

It holds (by (1.3), (1.4))

m
w S (@1 2m) dzr e dzp, S/m f (21, zm)| |dzi| |dza| - |dzn| <1 fllm TT0(W),
_Hl Yj _Hl Yy I_EIIVJV"" j=1

Jj= i= j=

where

Hf” m = sup ‘f(zla---;zn1)‘7
H Vjroo m
j=1 (Z],n-,Zm)EH Yi

and

b.
1= [ ldgl= [ dy j=1m,
Wj aj

Mj'7
We also define the p-norm with p > 1 by

1
P

I i= | [ 1 Gzl ldar]dza] 2]
orp 117

For p =1 we have
11 :=/m |f @15eszm)| [dz1 | [d2a] . [dzm]

I1 7,1 i
=1 J jl;Il 7]

If p,q > 1 with % + é =1, then by Holder’s inequality we have

1

Hf”l:ilw < (HHV/)) [wlp

_ Myp
j=1 F=

2. Main results

We start by presenting a complex trivariate Montgomery type representation identity of complex functions:

3
Theorem 2.1. Let f: [] D; C C3 — C be a continuous function that is analytic per coordinate on the domain D i Jj=1,2,3,
j=1
3
and x = (x1,x2,x3) € [I1 D;. For j=1,2,3, suppose yj C Dj is a smooth path parametrized by z; (t;), tj € |a;,b;] with
j=1
zj(aj) =uj, zj(t;) =xjand zj (bj) = wj, where uj,w; € Dj, uj # w;. Assume also that all partial derivatives of f up to order
3

three are continuous functions on [] D;.
Jj=1
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Here we define the kernels fori=1,2,3, p; : 7/,-2 —C
e @) e S; — Ui, l:fSiE/J/u,',X[a
Pi (xhsl) '_{ si—wj, ifsi € Veswi-
Then
o df(s1,8,s
f(xl,xz,x3)=3{/ / f(s1,82,83)dszdsrds + (/ / / Pj(xjasj)f((;ZS)dhdSzdSl)
T (wi— ) N % 1 nInIn Sj
t:l
9f (s1,52,53) 93 f (s1,52,53)
———=———"ds3dsyds; ;.
1: </71/ / Py (xj587) Pk (Xks Sk) 95,95, — =5 ——ds3dsyds; l)+/yl/ / sz X, Si) 953952951 s3dsydsy
Jj<k

2.1
Above | counts (j,k): j<k; jke{l,2,3}.

Proof. Here we apply (1.1) repeatedly.
First we see that

f(x1,%2,x3) = Ag + By,

where
1 "
Ap = f(s1,x2,x3)dsy,
w1 —urJy
and
1 df (s1,x2,x3
By = /pl(xl,s1)¥ds
w1 —u dsi
Furthermore we have
f(S]7X2,x3) :Al +Bl7
where
A= /f (51,82,x3)ds2,
Wy — U
and
1 df (s1,82,x3
By := /Pz(xzﬁz)f(i)d&
w2 — Uz Jy asZ
Also we find that
f(s1,8,x3) = /f (s1,82,83)ds3+
W3 — U3
df (51,582,853
/1?3 (X37S3)¥6B3
W3 —us Jy 53

Next we put things together, and we derive

Al =

1 0 f (s1,82,5
f(s1,82,53)ds3dsy + //p3(X3,S3)7f(1 2 3)ds3clsz.
(w2 —uz) (w3 —u3) Jpn Jys ds3

1
(w2 —u2) (w3 —u3) /Yz "
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And we get
Ao=s5— ///fsl,S2,33)dS3ds2ds1+ 3 ///PS X3,53) (S$7s2’s3)dS3dszds1
53
I:[l Wi — n [I n
1 df (s1,52,%3)
+ / X2,80) ———=—""~ds»ds;.
(Wl_ul)(WZ_MZ).yl.yzpz(z 2) 95, 2401
Also we obtain
d 1 d 1 92
f(S(;,Ssz) _ / f(S17S27S3)d53+ /m(wa)MdsS.
) W3 —U3zJy 8s2 W3 —U3zJy 3S3aSQ
Therefore we get
Ao=s5— ///fs1,S2,S;)dS;dszdsl+ 3 ///PS X3,53) f(s(;;sz,53)d 3dsads)
n n'nin 3
Wi —
“ }3
51,52,8 92f (51,52,
3 ///Pz(xz,sz (é 2 3)dS3dS2d51+ 3 ///p2 x2,52) p3 (x3,583) f8( 182 3)ds3d52dsl,
H Wi — n 52 H N b2} $3052
i=1 i=1
Similarly we obtain that
S1,82,8
By = =3 ///Pl X1,51) f(é 2 3)dS3dS2dS1+
Nn’'nJv S1
Wi —
“ l
1 0%f (51,82,
37///171 (xlvsl)m(Ma%)%d&dszdsﬁ—
= n'nin
Wi i
fioe
0%f (51,52,
E // pi( X1751)P2(X27S2)%dndsm’sﬁ
H (W N 7 $2081
3f (s1,82,s
///Pl (x1,51) p2 (x2,52) p3 (x3,53) fls1.52 3)d sdsydsy.
H (W " 8sgas28s1
We have proved (2.1). O

Next comes the general complex multivariate Montgomery type representation identity of complex functions:
m
Theorem 2.2. Let f: [] D; € C" — C be a continuous function that is analytic per coordinate on the domain Dj, j=1,...,m,
j=1
m
and x = (x1,...,xn) € [1 D;. For j=1,...,m, suppose v; C D; is a smooth path parametrized by z; (t;), t; € [a;,bj] with
j=1
zj(aj) =uj, zj(tj) =xjand zj (bj) = wj, where uj,w; € Dj, uj # wj. Assume also that all partial derivatives of f up to order
m
m € N are continuous functions on [] D;.

j=1
We define the kernels p; : ylz —C

Di (X' S') . Si — Ui, ifSi € Yo xi 5
i \Xi,Si) == .
’ Si— Wi, if Si € Yaswys

fori=1,2,...m
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Then
1 i af (s1,52,...,8
2, dxm) = 2 [ F(s1,82,.,5m) dSdsp1..dsi+ ) /m pj(xj,s;) wdsm...dsl +
(wi —u;) il;[l i =1 il;[l K 5
i=1
(5)
2
82f(s1 82,00 sm)
N TICTT XgySg) ——e T s dS +
ZIZ::I /H%P/( 7355) Pr (X, k) 505, m--dS1
j<k =l ()
m
. FF (51,0050)
S1yeeesSm
m i(xj,8; Xie, Sk) pr (Xp, 8p) ——————=—=dsp,...ds +..+
Py /H%PJ( +85) Pk (Xk, 5%) pr (X7, 87) 35,95:9s, 1
Jj<k<r =l ()
ey
m—1
— 0"V f(s1,,.Sm —
Z /m P1 (xhsl)---Pl (xl7sl)---pm (x1n7s1n) #dsm...dS[...dS]
I=1 117 0Sp...05]...081
' ol amf(Sh,...,Sm)
m i (xi,87) | —=———="—"dsp...d . 2.2
+/H1y,- <H[J (x s)) dSp...081 S 51 (22)

Above Iy counts (j,k): j<k; j,k€{1,2,....,m}, also Iy counts (j,k,r): j<k<r;jkre{l,2,..,m}, etc. Also pml) and

ds; means that p; (x;,s;) and ds; are missing, respectively.
Proof. Similar to Theorem 2.1. O
We make

Remark 2.3. (on Theorems 2.1, 2.2)
By (2.1) we get

1
Ef(x1,x2,x3) := f (x1,42,%3) — & f(s1,82,53) ds3dsrds
1(W,‘—I/l,‘) ,':1%

3 af (s1,52,53) 3 ' d°f (s1,52,53)

— pi(xis;) ———=""2ds3dsyds; | — / pi(xi,87) pr (xg,58) ——=—a""2ds3dsrdsy | (I

j; /ﬁln J(J ]) as,» 12;1( .13[1% ]( J J) ( ) 8sk8sj ()
Pk = =

1 3 31 (s1,52,53)
E EE— i (xXi81) | —=—5——=——ds1ds»d
/ﬁy, (Hp (x S)> 053052051 S1652453

(W,’ — ui) i=1

=8

1

Above |l counts (j,k): j <k; j ke {1,2,3}.
Similarly, by (2.2) we find

Ey(x1,x2, .., xm) = f (X1,X2, .., Xp) —

S d Jeees S
Z /m p](xjvsj) ‘f(Slast)dSI...dSm —

j=1 \/Il %

1
VN /”’ f(slv"-vsm)dsl...dsm—
Yi
1

(wi—u;) |72

==

l
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2
' % f (S1yeresSm)
w D) (Xj,8)) P (ks sk) — == dsy.dsw | —
L=1 /H% R dsi0s;
<k 2 )
3 3
f(sl7 )
m j \Xj>Sj ) ) 7d .d — =
l2:1 /H'sz] ('x] S])pk (‘xk sk)Pr(xr sr) asraskasl Sl Sm
Jj<k<r =l (I)
m—1
- A"V (51, Sm —~
)y D1 (151) oL (31150)- P (i) T SL ) T s
I=1 1N dsp...05;...051

:% / le Xi,51) Mdsl‘..dsm
H (Wi_ui) H% i 3sm...8s1
]

Above Iy counts (j,k): j<k; jk€{l,...m}, lh counts (j,k,r): j<k<r;jkre{l,2,..m} etc. Also p;(x;,s;) and 5;1
means that p; (x;,s;) and ds; are missing, respectively.

Hence it holds
1 an(Sl 52 S3)
E < - AR At 2.
|Ef (x1,22,33)] < /H . (Hlp,(xl,stﬂ)‘ 95195205, |ds1||dsa||ds3] | (2.3)
l:l] |Wi_”l|
and
1 O™ (S1,y00es 8y
‘Ef(xlv-“axm)} S X / <H|Pz Xi, Si > ‘g(lan) |dsl|"'|dsm| . (2.4)
H |Wz_uz‘ HY: Sm...081
=1

We give the following complex multivariate Ostrowski type inequalities:

Theorem 2.4. All as in Theorem 2.1. Here ri,ry,r3,r4 >0 %—k%—k%—k% = 1. Then

1 9> f
‘Ef _Xl,x2,.x3)‘ < ——— Xmin <H/ i ( xtast)| |dsz> Has%aSZasl

IW — uil
i=1

; 3 ; 3 f
I;I |pi (i, 5:) r i H Has38s2(9s1

i=1

3 )
oo, [T %

3 b
T4, Hl Y
i

3 a3f
sup (l_[1|pi(xi,5i)|) H8S38sz8s11

=
(s1,52,83)€ Hl Y =1
=

Y (x1,X2,x3) € H Y;-

j=1

Proof. By (2.3) and generalized Holder’s inequality. O
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m+1
Theorem 2.5. All as in Theorem 2.2. Here ri,ry, ..., rm,rmy1 >0: Y, rl = 1. Then
i=1 "

amf
|Ef(X1a...,Xm)} <7 m X min H/ |pl X, Si Hdsz W ,
I:[ [wi —ui me=- 21 oo, H Y
m m amf
sl ) (oo™ ) 525
(H Y g J 0Sp...08] rm+1,,l;11}’j
su Xi, S, ,
p <H|pl( i z)|> HaYm o1 17ﬁ .
j=1"

(S15055m) € H Yi

V(X1 eeeyXm) € _]'I1 Y;-
j=
Proof. By (2.4) and generalized Holder’s inequality.
We make

Remark 2.6. Working further on (2.1) we call:

3
4D = A®
f . f 17)C2,.x3 Z

df (51,82,
/3 p] xj,sj)%dsldszds\z
J

1:1

> 9%f (s1,52,53)
+Z /Igl%_Pj(xﬁsj)Pk(XbSk)Tasjdsldszdﬁ (),

jek N
and
3
(3)._ p03 . d°f (s1,52,53)
B’ =B = i (xi,8) | —=——=—=—"ds1ds»ds3.
; 7 (x1,x2,x3) /ﬁﬁ(l}px&ﬂﬂ> Trndsnde sidsadss
Set also

Thus, we have (x = (x1,x2,x3))

1
F(x) = f(x1,x0,x3) = 37/?1 .f(sl,s2733)ds1dszdS3 +5 (A?) +B;3)) =
v fo
i= =
1 1 (3)
37 13[ f(sl,SQ,S3)dS1dS2dS3—|—37Tf .
Ewﬁmﬁﬂ Ew—)

Working further on (2.2) we call:

’ If (si, -
/m .pj(xj7sj)f(ﬁ77"sn1)dsl...dsm +
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82f(s1,...,sm)d

m Dj(xj,85) Pk (X, k) $1...dspy +
n=1 /H')’i s dsi0s;

<k 2 )
( 3 )

3 93

f(sl7 )
m i(Xj,85 , - 76! dsy, | (1

IZZ::1 /H%p](xJ 1) Pk (5t 54) Pr (37:51) ds,9sds; e LA
j<k<r i=1

oy _

/m pl (x17s1) Pl (-xl7sl) Pm(xm>sm)
JIL %

=1 P

and

B =B (x1,....x

Set also

T(m) — T(m) ()C] , __.’xm) = A}m> +B§Cm>

oo f

Thus, we have (x = (X1, ...,Xn))

/ (sz x,,s,))

(s17’ 7 )
OSp...08]

am_lf(slw---asm)

— dsl...gs\[...dsm ,
0Spy...05]...051

dsy...dsy.

1 1 m m
f(x) :f(xla"'ax’") = mi/‘m f(sl7 Sm)dS1...dSm+ (A( )+B§¢ )) =
I1 (w; = ui) Y I1 (w; = ;)
m; w LS Sp)dsydsy + ! Tf(m)
IT (wi—u;) 711 (wi —u;)

i=1

Let function g as in Theorem 2.2. Then as in (2.5) we obtain

i=1

1 1 m m
g(X):g(xl,...,xm): " /m g(S]7 Sm)dsl---dsm+m7(Aé )+B£, )) =
H] (wi —u;) " L4 Hl (wi —u;)
i= i—=
m;/m 8(StyesSm)dsy...ds,+ — ! Tg(m),
I:Il (Wi - ui) il;ll ¥ I:Il (W,’ — u,-)
Above Aém) , Bi,m) , Tg(m) have the obvious meaning.
By (2.5) we get
X
1080 = 52D [ f1msn) [T+ 21,
[T (wi =) "1 = )
i=1 i—1
and by (2.6) we get
X " X f
£ 0 = 5 o e [T L
[T (wi—wi) *, H% (Wz_”t)
i=1

Consequently after integration we get:

171175

2.5)

(2.6)
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(sets:=(S1,...,8m))
Jn 8(s) I ds
f(s)g(s)ﬁds' = ':1%—1:1/ f(s)ﬁds' / g(s)T m) Hds 2.7
ilz]l i i=1 fl[l (wi — u;) ilz]l K =1 ﬁl (wi —u;) i:
and
f’" f(s) ﬁ ds;
m f(s)g(s)ﬁds, = _m_l:l/m g(s)ﬁds, /, f(s)T )ﬁds,-. (2.8)
il;[ly[ =1 IT (wi —w;) il;[ln =1 —u;) i: =l

i=1 z—

By (2.7) and (2.8) we obtain

/, s [Tas - ﬁ - ( S %f(S)lI_Idsz) ( / (s Hdsz) =(1 N L))

! /,,, (s) T Hds,

m
Il (wi—u;) 7 1} 7
i=

We conclude that (set ds = I1dsi)

i=1

1 1 m m
i/ T ( ﬁlnf@)ds) (/ﬁ%g@)d?) —M l/ﬁ%(ﬂsné (5)+8(5)T! )(s))d?] |

i=1

Therefore we have

1 1
[ [()g(s)dT — (
H(W,—u)/n% 2 i i i

ol ]

i=

Hence it holds

U S s)g(s ?—; s)ds _r s)ds | —
AT | — Ui /ﬁ”f( e (Wi —u;) ([ﬁ%f( )d ) ﬁ(wi_ui) ([ﬁlng( )d )
Y ;

=1

[
L
I

1 (m) (m) - 1 (m) (m)
————————— | |n SSA 7 ()+ gAY (s)pds | =——5 | [n f(s)Bg " (s)+g(s)By" (s) d?]
2(fiou-w) o) ] 2 (1 o)’ fpulromn o resro)
Clearly we derive that(‘ds! = l|ds,-|)

1 (m) (m) —
A< — 5 | [u OB ()] +1g(5)]|Bf" (5)] ; |d |]= (2.9)
B ——
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1 m m
s | fo VOB O[T+ [ @] 0)][7]| <
m JI 7
2 H |w,'7u,-| L =1 i=1
i=1
1 (m) - | gm) -
e W o B @[T el | [ B )]0
m oIy \ Ty o Il% \ JIn! -
2 IT |wi — uil L i=1 i=1 i=1 i=1
i=1
We have established the following complex multivariate Griiss type inequality:
Theorem 2.7. Let f,g and all as in Theorem 2.2. Then
1 N 1 ' N 1 N
; o 1©s0)d7- o 1047 ) [ s0)d | -
[Il(wl_”l) II:—II% E(Wl_”l) ig]% [Il(wi_”i) LY
1 m m
- 2| fo (FOAP 9 +8(6)A7 () a7 || <
2<H(Wi_”i)> 2
i=1
1 (m) — (m) -~
—— [Ifll m _ /,,, ‘Bg (s)‘ ’d s | +lgll m ‘ /m ‘Bf (s)‘ ‘d s ‘
m oo, I1 % ITv o, I1 ¥ 1%
2<H |Wiui|> i=1 i=1 i=1 i=1
i=1
The corresponding L, Griiss inequality follows:
Theorem 2.8. Let f,g and all as in Theorem 2.2 and p,q > 1 such that % + é = 1. Then
1 N 1 N 1 N
- /m fs)gls)ds — /m .f(s)ds - /,,, .g(s)ds —
l:Il(Wl_”l) IIJIYI I:Il(wl_”l) ig]y' l:Il(Wi_ui) LY
1 m m
- 2| Ju (PO 9 +80)A7 (9)dT || <
2 (H (wi—ui)) =
i=1
% WAl m HB(m) w48l m “B((”)“ "
m 2 Il Y § g1 % pILxll T g T1n
2 H |Wi7ui| =1 i= = i=1
i=1
Proof. Use of (2.9) and Holder inequality. O
The corrsponding L; Griiss inequality follows:
Theorem 2.9. Let f,g and all as in Theorem 2.2. Then
1 N 1 N 1 s
[ .f(s)g(s)ds—mi m _f(s)ds _ /m .g(s)ds —
IT (wi—w;) ~ 17 IT (wi—w;) \" 17 IT (wi — ) L
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! (m) (m) .
———————5 | [n ([(AT (5)+g(s)A 7 (s))ds || <
2(if_nll (Wi—ui)>2 /ZHIY,' ( ! )

1 <m)H (m)
I w ||B n o+ n HB H "
- ; IIfHL_miH L L
2 IT [wi — uil =1 =1 =l =
i=1

Proof. By (2.9)

Corollary 2.10. Let f,g and all as in Theorem 2.1. Then

1 ; .

(s[5 BT ) el s ([ B 6]
m < I% \ /1% < I% \ /1%

2 H|Wi_”i| i=1 i=1 i=1 i=1

i=1

Proof. By Theorem 2.7 for m = 3.

Corollary 2.11. Let f,g and all as in Theorem 2.1 and p,q > 1:

;/ F)g6)dT - ———| [¢ f6)av _t /3%g(sw

1 5 X
e (B el s [l
2 <H |W1‘ —u,|> p’i:l% qﬁi:l% Pﬁ’_:l% C]-,jj]%

i=1

Proof. By Theorem 2.8 for m = 3.
Corollary 2.12. Let f,g and all as in Theorem 2.1. Then
1 ' 1 1
[ t0e0dT - | o a7 | | s
- Yi

‘ 3 3
(wi =) "L Hl(wi_”i) A Hl(w,'—ui) nr

=
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1
— | [y, (0T 0 6a7 (9) a7 || <
2 (H (wi—ui)> it
i=1
1 (3) (3)
T L 2 I Y
2 <H |Wiui|> Ay L Ll AR
i=1
Proof. By Theorem 2.9 for m = 3. O
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