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Düzce-TÜRKİYE

Editorial Secretariat

Hande Kormalı

Department of Mathematics,

Faculty of Science and Arts, Sakarya University,

Sakarya-TÜRKİYE
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KP-KdV Hierarchy and Pseudo-Differential Operators

Ahmed Lesfari1*

Abstract
The study of KP-KdV equations are the archetype of integrable systems and are one of the most fundamental

equations of soliton phenomena and a topic of active mathematical research. Our purpose here is to give a

motivated and a sketchy overview of this interesting subject. One of the objectives of this paper is to study the

KdV equation and the inverse scattering method (based on Schrödinger and Gelfand-Levitan equations) used to

solve it exactly. We study some generalities on the algebra of infinite order differential operators. The algebras of

Virasoro and Heisenberg, nonlinear evolution equations such as the KdV, Boussinesq and KP play a crucial role

in this study. We make a careful study of some connection between pseudo-differential operators, symplectic

structures, KP hierarchy and tau functions based on the Sato-Date-Jimbo-Miwa-Kashiwara theory. A few other

connections and ideas concerning the KdV and Boussinesq equations, the Gelfand-Dickey flows, the Heisenberg

and Virasoro algebras are given.

Keywords: Gelfand-Levitan integral equation, Integrable systems, KdV equation, KP hierarchy, Schrödinger

equation, Symplectic structures.
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1. Introduction

Korteweg and de Vries have established a nonlinear partial differential equation describing the gravitational wave propagating

in a shallow channel [1] and possessing remarkable mathematical properties :

∂u

∂ t
−6u

∂u

∂x
+

∂ 3u

∂x3
= 0, (1.1)

where u(x, t) is the amplitude of the wave at the point x and the time t. The equation thus bearing their name (abbreviated KdV)

admits a solution: the soliton or solitary wave. In fact, this model was obtained from Euler’s equations (assuming irrotational

flow) by Boussinesq around 1877 (see [2], p. 360) and rediscovered by Korteweg and de Vries in 1890. The solution to this

equation was obtained and interpreted rigorously only in the early 1970s while a solitary wave was already observed in 1834 by

engineer Scott Russell riding on the Edinburgh Glasgow Canal in Scotland; he described his observation of a hydrodynamic

phenomenon as follows : ” I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of

horses, when the boat suddenly stopped - not so the mass of watering the channel which it had put in motion; it accumulated

round the prow of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward with great velocity,

assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which continued its course

along the channel apparently without change of form or diminution of speed. I followed it on horseback, and overtook it still
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rolling on at a rate of some eight or nine miles an hour, preserving its original figure some thirty feet long and a foot to a

foot and a half in height. Its height gradually diminished, and after a chase of one or two miles I lost it in the windings of

the channel. Such, in the month of August 1834, was my first chance interview with that singular and beautiful phenomenon

which I have called the wave of translation ”. Fascinated by this phenomenon, Scott-Russell built a wave pool in his garden and

worked to generate and study these waves more carefully. This led to a paper [3] dubbed ”The report on waves” published in

1844 by the British Association for the Advancement of Science.

A little later, Boussinesq, then Korteweg and de Vries proposed equation (1.1) to explain this phenomenon. The KdV

equation preserves mass, momentum, energy, and many other quantities. Many experiments have uncovered the astonishing

properties of the solutions of this equation satisfying zero boundary conditions : when |t| −→∞, these solutions are decomposed

into solitons, i.e., in waves of defined forms progressing at different speeds. These waves propagate over long distances

without deformation and one of the remarkable characteristics of solitons is that they are exceptionally stable with respect to

disturbances; the term u
∂u

∂x
leads to shock waves while the term

∂ 3u

∂x3
produces a scattering effect. Everyone can contemplate

solitons where the tide comes to die on the beaches. In the field of hydrodynamics for example, tsunamis (tidal waves) are

manifestations of solitons. Generally, we group together under the term soliton solutions of nonlinear wave equations presenting

the following characteristic properties : they are localized in space, last indefinitely and retain their amplitude and velocity even

at the end of several collisions with other solitons. Solitons have become indispensable for the study of several phenomena.

In particular, the study of wave propagation in hydrodynamics, the study of localized waves in astrophysical plasmas, They

are involved in the study of signals in optical fibers, charge transport phenomena in conductive polymers, localized modes in

magnetic crystals, etc. Industrialized societies have developed, after soliton studies, what may be called solitary lasers. The

latter play an important role in the field of telecommunications. Ultra-short light signals sent in certain optical fibers made

from a specific material can travel long distances without lengthening or fading. The construction of memories with ultra-fast

communication time and low energy consumption, is based on the movement of magnetic vortices in the dielectric junction

between two superconductors. At the molecular level, the theory of solitons can elucidate the contraction mechanism of striated

muscles, the dynamics of biological macromolecules such as DNA and proteins. In the peptide and hydrogen chain of proteins,

solitons arise from the marriage of dispersion due to intrapeptide vibrations and the non-linearity due to the interaction of

these vibrations with the displacements of peptide groups around their position balanced. But also the theory of solitons had

an impact on pure mathematics; for example, it provides the answer to the famous Schottky problem, posited a century ago,

on the relations between the periods coming from a Riemann surface. Roughly, it is a question of finding criteria so that a

matrix of the periods belonging to the Siegel half-space is the matrix of the periods of a Riemann surface. Geometrically,

Schottky’s problem consists in characterizing the Jacobians among all the Abelian mainly polarized varieties. In addition to

the KdV equation, examples that may be mentioned among the nonlinear equations having soliton-type solutions are: the

non-linear equation of Kadomtsev-Petviashvili, the nonlinear Schrödinger equation, the Sine Gordon equation, the Boussinesq

equation, the Camassa-Holm equation, the Toda lattice consisting of vibrating masses arranged on a circle and interconnected

by springs whose return force is exponential, the non-linear Klein Gordon equation, the Zabusky-Kruskal equation for the

Fermi-Pasta-Ulam model of phonons in anharmonic lattice, and so on.

2. Stationary Schrödinger equation and integral Gelfand-Levitan equation

Since the method (discussed later) of solving the KdV equation is based on the idea of studying it in the form of an equation of

a certain operator and using the analogy with quantum mechanic, we will expose certain mathematical notions of this mechanic.

The terminology of the physicists will be used to describe the properties of the solutions of the stationary Schrödinger’s

equation,

h̄

2m
ψ ′′+(λ −u(x))ψ = 0, ′ ≡ d

dx
,

without stopping on the physical motivations of the introduced notions. We will see that the method of the inverse diffusion is

reduced to the solution of a linear integral equation (Gelfand-Levitan equation). In the following, we will simplify the notation

by using a system of units in which the Planck constant is h̄ = 1 and the mass of the particle is m =
1

2
. So consider the equation

ψ ′′+(λ −u(x))ψ = 0, −∞ < x < ∞ (2.1)

where ψ (unknown) is the wave function of the particle, the spectral parameter λ is the energy of the particle, the function u(x)
is the potential or potential energy of the particle. This potential is assumed to have a compact support, i.e., is different from

zero only in some domain. When the particle is free (i.e., u = 0) and has a positive energy (i.e., λ = k2), then equation (2.1) is
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reduced to

ψ ′′(x)+ k2ψ = 0, (2.2)

and admits two linearly independent solutions eikx (describing the particle moving to the right) and e−ikx (describing the particle

moving to the left).

Let us denote by Esr
(2) (resp. Esc

(2)) the space of real (or complex) solutions of equation (2.1) and by Esr
(3) (resp. Esc

(3)) the

space of the real (or complex) solutions of equation (2.2). The space Esr
(3) (resp. Esc

(3)) is provided with the base (coskx,sinkx)

(resp. (eikx,e−ikx)). Let [α,β ] be the bounded support of u. The monodromy operator of equation (2.1) is a linear operator

defined by

M : Esr
(2) −→ Esr

(2), acoskx+bsinkx 7−→
{

acoskx+bsinkx si x < α
ccoskx+d sinkx si x > β ,

where a, b are constants and (c,d) = Mu(a,b). This means that for each solution of equation (2.2) is associated : (i) the

solution of (2.1) which is to the left of α; in this region the solution of (2.2) coincides with that of (2.1). (ii) the solution of

(2.1) which is to the right of β . Similarly, the complex monodromy operator of equation (2.1) is defined by

M : Esc
(2) −→ Esc

(2), aeikx +be−ikx 7−→
{

aeikx +be−ikx si x < α
ceikx +de−ikx si x > β .

Recall that a particle propagating from x =−∞, crosses a potential barrier with a transmission coefficient T and a reflection

coefficient R if the equation (2.1) where λ = k2 admits a solution ψ such that :

ψ =

{
Teikx, to the right of the barrier,

eikx +Re−ikx, to the left of the barrier.

Theorem 2.1. a) Let W be the phase plane formed by the representative points (ψ,ψ ′). Let

B
x1

(2)
: Esr

(2) −→W, ψ 7−→B
x1

(2)
ψ = (ψ(x1),ψ

′(x1)),

be an operator with ψ a solution of equation (2.1) whose initial conditions for x = x1 ∈ R are (ψ(x1),ψ
′(x1)). Then the space

Esr
(2) is isomorphic to W and the phase application of x1 to x2 defined by

gx2
x1
≡B

x2

(2)

(
B

x1

(2)

)−1

: W −→W, (ψ(x1),ψ
′(x1)) 7−→ (ψ(x2),ψ

′(x2)),

is a linear isomorphism.

b) If equation (2.1) where λ = k2, has a confounded solution with aeikx for x≪ 0 and with be−ikx for x≫ 0, then this

solution is null. In addition, for all k > 0 the ψ , T and R defined above exist and are unique.

Proof. a) B
x1

(2)
is linear and for any representative point (ψ,ψ ′) ∈W , there exists from the existence theorem (differential

equations) a solution ψ satisfying the initial condition (ψ(x1),ψ
′(x1)). Then Im B

x1

(2)
≡ {Bx1

(2)
ψ : ψ ∈ Esr

(2)} = W . Finally

Ker B
x1

(2)
≡ {ψ : ψ ∈ Esr

(2),B
x1

(2)
ψ = 0}= 0, follows from the uniqueness theorem because the solution satisfying the initial

condition at the point x1 is equal to zero. The result follows from the fact that the inverse of an isomorphism is one. If ψ1 and

ψ2 are two solutions of equation (2.1), then (ψ(x1),ψ
′(x1)) = B

x1

(2)
ψ1 +B

x1

(2)
ψ2 = (ψ1(x1),ψ

′
1(x1))+(ψ2(x1),ψ

′
2(x1)), and

this is equivalent to

(
B

x1

(2)

)−1

((ψ1(x1),ψ
′
1(x1))+(ψ2(x1),ψ

′
2(x1))) =

(
B

x1

(2)

)−1

(ψ1(x1),ψ
′
1(x1))+

(
B

x1

(2)

)−1

(ψ2(x1),ψ
′
2(x1)).

b) Let be 〈aeikx,aeikx〉, 〈be−ikx,be−ikx〉 and 〈aeikx,ae−ikx〉 the hermitian forms in the space Esc
(2). Let’s designate by [., .] the

left scalar product, then

〈aeikx,aeikx〉= i

2
[aeikx,ae−ikx] =

i

2

∣∣∣∣
a ia

a −ia

∣∣∣∣= |a|
2.

Similarly, we have 〈be−ikx,be−ikx〉 = −|b|2 et 〈aeikx,ae−ikx〉 = 0. By setting z = z1eikx + z2e−ikx where z1 and z2 are the

coordinates of the vector z in the basis (eikx,e−ikx), we obtain 〈z,z〉 = |z1|2− |z2|2, i.e., 〈., .〉 is of type (1,1). Since the
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monodromy operator retains this hermitian form, we deduce that |a|2 =−|b|2 and so a = b = 0. Consider now a particle going

to +∞ and let eikx be a solution to the right of the barrier. To the left of the barrier this solution becomes

eikx y aeikx +be−ikx. (2.3)

From what precedes, the coefficient a is nonzero. So to have the solution in question, simply divide the two members of (2.3)

by a,
1

a
eikx y eikx +

b

a
e−ikx. Taking T =

1

a
and R =

b

a
, this shows that T and R are uniquely defined.

In the same way, we can define an operator B
x1

(3)
of Esr

(3) in W that associates with each solution of equation (2.2), its initial

condition at the point x1. In this case, instead of ”phase application”, there will be ”phase point”.

We will now demonstrate a theorem that will be useful later.

Theorem 2.2. (Liouville). Let
dx

dt
= f (x), x = (x1, ...,xn), be a system of ordinary differential equations whose solutions extend

to the whole time axis. Let {gt} be the corresponding group of transformations : gtx = x+ f (x)t +o(t2), for t small. We denote

by D a domain in phase space, D(t)≡ gtD(0) and by v(t) the volume of D(t). If div f =
n

∑
j=1

∂ f j

∂x j

= 0, then v(t) = v(0), i.e., gt

preserves the volume of any domain.

Proof. We have v(t) =
∫

D(t)
dx =

∫

D(0)

∂gtx

∂x
dx, where

∂gtx

∂x
is the Jacobian matrix,

∂gtx

∂x
= I +

∂ f

∂x
t +o(t2). The determinant

of the operator I +
∂ f

∂x
t is equal to the product of the eigenvalues. These (taking into account their multiplicities) are equal to

1+ t
∂ f j

∂x j

where
∂ f j

∂x j

are the eigenvalues of
∂ f

∂x
. Then

det
∂gtx

∂x
= 1+ t

n

∑
j=1

∂ f j

∂x j

+o(t2) = 1+ t div f +o(t2).

Therefore, v(t) =
∫

D(0)
(1+ t div f +o(t2))dx, and

dv(t)

dt

∣∣∣∣
t=0

=
∫

D(0)
div f dx. Since t = t0 is not worse than t = 0, we also

have

dv(t)

dt

∣∣∣∣
t=t0

=
∫

D(t0)
div f dx,

and the proof of the theorem follows.

Note that the Liouville’s theorem is easily generalized to the case of non autonomous systems ( f = f (x, t)). Indeed, the

terms of first degree in the expression of
∂gtx

∂x
remain the same. But the terms of degree greater than one do not intervene in the

proof. In other words, Liouville’s theorem is a first order theorem.

Let SL(2,R) be the real unimodular group, i.e., the set of all real 2× 2 matrices with determinant one. In other words,

SL(2,R) is the group of all linear transformations of R2 that preserve oriented area [., .] (see the notation used in the proof of

theorem 2.1). Consider the group SU(1,1) of (1,1)-unitary unimodular matrices. This is the set of all complex 2×2 matrices

with determinant one preserving the hermitian form |z1|2−|z2|2 (see again the notation used in the proof of theorem 2.1). In

other words, they are matrices of the form

(
a b

c d

)
for which |a|2−|b|2 = |c|2−|d|2 = 1, ac−bd = 0, ad−bc = 1.

Theorem 2.3. The matrix of the monodromy operator M in the basis (coskx,sinkx) (resp. (eikx,e−ikx)) belongs to the group

SL(2,R) (resp. SU(1,1)).

Proof. We show that the determinant of the monodromy operator of the Schrödinger equation is equal to one. Note that

(coskx,sinkx) is a basis on the space Esr
(3). As Bx

(3) coskx = (coskx,−k sinkx) and Bx
(3) sinkx = (sinkx,k coskx), so W is

provided with a basis in which the matrix of the operator (we use here the same notation for the operator and the matrix) is

written

B
x
(3) =

(
coskx sinkx

−k sinkx k coskx

)
,
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hence detBx
(3) = k, independent of x. Let us denote by x+ the point x to the left of the support of the potential and by x− the

one on the right. We have the following situation :

M : Esr
(3) −→ Esr

(3), acoskx+bsinkx 7−→ ccoskx+d sinkx, (c,d) = Mu(a,b),

B
x−
(3) : Esr

(3) −→W, acoskx+bsinkx 7−→ (acoskx−+bsinkx−,−ak sinkx−+bk coskx−),

B
x+

(3) : Esr
(3) −→W, ccoskx+d sinkx 7−→ (acoskx++bsinkx+,−ak sinkx++bk coskx+),

gx+

x− : W −→W, (acoskx−+bsinkx−,−ak sinkx−+bk coskx−) 7−→ (acoskx++bsinkx+,−ak sinkx++bk coskx+).

We verify directly that : gx+

x−oBx−
(3) = Bx+

(3)oM , and since detBx+

(3) = Bx−
(3), so we have detM = detgx+

x− . Now gx preserves the

areas according to Liouville’s theorem (indeed, by putting ψ1 = ψ , ψ2 = ψ ′, we rewrite equation (2.1) under form

ψ ′1 = ψ2 ≡ f1, ψ ′2 = (u(x)−λ )ψ1 ≡ f2.

Here we have f = ( f1, f2), t = x and div f =
∂ψ2

∂ψ1
+

∂ (u(x)−λ )ψ1

∂ψ2
= 0). Therefore, detgx+

x− = 1 and consequently detM = 1.

For the case of SU(1,1), we will show that the matrix (also denoted M ) of an operator is real and unimodular in the basis

(coskx,sinkx) if and only if it is special (1,1)-unitary in complex conjugate basis (eikx,e−ikx). By setting as in the proof

of theorem 1, z = z1eikx + z2e−ikx where z1 and z2 are the coordinates of the vector z in the basis (eikx,e−ikx), we obtain

〈z,z〉= |z1|2−|z2|2, i.e., 〈., .〉 is of type (1,1). The monodromy operator conserves this hermitian form. Say that M is real and

unimodular in the basis (coskx,sinkx) is equivalent to M ∈ GL(2,R)∩SL(2,C) or what amounts to the same M ∈ SU(1,1)
or what is equivalent M is (1,1)-unitary and unimodular in the basis (eikx,e−ikx).

Define the solutions ψ1(x,λ ) and ψ2(x,λ ) of equation (2.1) by the initial conditions : ψ1(0,λ ) = 1, ψ ′1(0,λ ) = 0,

ψ2(0,λ ) = 0, ψ ′2(0,λ ) = 1. For the simple case u(x) = 0, we obviously have

ψ1(x,λ ) = cos
√

λx = 1+

(
−1

2
λ

)
x2 +

(
1

24
λ 2

)
x4 +O

(
x6
)
, (2.4)

ψ2(x,λ ) =
1√
λ

sin
√

λx = x+

(
−1

6
λ

)
x3 +

(
1

120
λ 2

)
x5 +O

(
x7
)
.

For
√

λ , we can choose for example the determination
√

λ =
√

rei θ
2 where λ = reiθ with r > 0 and −π < θ < π . Let α be an

arbitrary real number. The function ψ(x,λ ) = ψ1(x,λ )+αψ2(x,λ ) is also solution of equation (2.1) and satisfies the boundary

condition ψ ′(0,λ )−αψ(0,λ ) = 0. For α = 0, we have ψ(x,λ ) = ψ1(x,λ ) and for α = ∞, we put ψ(x,λ ) = ψ2(x,λ ). We

assume that for λ ∈ C and x≥ 0, we have

ψ(x,λ ) = cos
√

λx+
∫ x

0
K(x, t)cos

√
λ tdt, (2.5)

where K is a function to be determined, subject to the condition of having partial derivatives of order one and order two

continuous in the set of real pairs (x, t) such that : 0≤ t ≤ x. In other words, we look for ψ(x, .) as a perturbation of the function

x 7→ψ(x,λ ) = cos
√

λx and precisely, as a transform (I+K)ψ1(x, .) where K is a Volterra operator in [0,+∞[. We will look for

the conditions that K(x, t) must satisfy for the function (2.5) to be a solution of the differential equation (2.1). From equation

(2.5), we get

∂ 2ψ

∂x2
(x,λ )=−λ cos

√
λx+

dK(x,x)

dx
cos
√

λx−
√

λK(x,x)sin
√

λx+
∂K(x, t)

∂x

∣∣∣∣
t=x

cos
√

λx+
∫ x

0

∂ 2K(x, t)

∂x2
cos
√

λ tdt. (2.6)

Let’s calculate the expression λ

∫ x

0
K(x, t)cos

√
λ tdt, by doing two integrations in parts, we get

λ

∫ x

0
K(x, t)cos

√
λ tdt =

√
λK(x,x)sin

√
λx+

∂K(x, t)

∂ t

∣∣∣∣
t=x

cos
√

λx− ∂K(x, t)

∂ t

∣∣∣∣
t=0

−
∫ x

0

∂ 2K(x, t)

∂ t2
cos
√

λ tdt. (2.7)
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To calculate expression (2.1), substitute (2.6) and (2.7),

0 = ψ ′′+(λ −u(x))ψ

=
dK(x,x)

dx
cos
√

λx+

(
∂K(x, t)

∂ t
+

∂K(x, t)

∂x

)

x=t

cos
√

λx− ∂K(x, t)

∂ t

∣∣∣∣
t=0

−u(x)cos
√

λx

+
∫ x

0

(
∂ 2K(x, t)

∂x2
− ∂ 2K(x, t)

∂ t2
−u(x)K(x, t)

)
cos
√

λ tdt.

We have

∂ 2K(x, t)

∂x2
−u(x)K(x, t) =

∂ 2K(x, t)

∂ t2
, (2.8)

with the boundary conditions

∂K(x, t)

∂ t

∣∣∣∣
t=0

= 0, (2.9)

dK(x,x)

dx
=

1

2
u(x). (2.10)

For the initial conditions, we have ψ(0,λ ) = 1 and ψ ′(0,λ ) = K(0,0). As ψ ′(0,λ )−αψ(0,λ ) = 0, then K(0,0) = α .

Therefore,

K(x,x) = α +
1

2

∫ x

0
u(t)dt. (2.11)

If u(x) has a continuous derivative, then there exists a unique solution of (2.8), satisfying conditions (2.9) and (2.11). Hence,

there exists a satisfying function K(x, t) (2.5). Let’s solve equation (2.5) as an equation of Volterra, we get

cos
√

λx = ψ(x,λ )−
∫ x

0
K1(x, t)ψ(t,λ )dt, (2.12)

and in the same way as before, we show that K1(x, t) is solution of the equation

∂ 2K1(x, t)

∂x2
=

∂ 2K1(x, t)

∂ t2
−u(t)K1(x, t),

with the conditions

(
∂K1

∂ t
−αK1

)

t=0

= 0, K1(x,x) = α +
1

2

∫ x

0
u(t)dt.

For the case α = ∞, we look for ψ(x,λ ) as a perturbation of the function x 7−→ ψ(x,λ ) =
1√
λ

sin
√

λx (see expression

(2.4)) or what is equivalent as a transform (I +K)ψ1(x, .) where K is a Volterra operator in [0,+∞[. In other words, we set

λ ∈ C and x≥ 0,

ψ(x,λ ) =
sin
√

λx√
λ

+
∫ x

0
L(x, t)

sin
√

λx√
λ t

dt, (2.13)

where L is a function to be determined, subject to the condition of having partial derivatives of order one and order two

continuous in the set of real pairs (x, t) such that : 0≤ t ≤ x. By reasoning as before, we obtain the relation

∂ 2L(x, t)

∂x2
−u(x)L(x, t) =

∂ 2L(x, t)

∂ t2
,

with the conditions L(x,x) = 0, L(x,x) =
1

2

∫ x

0
u(t)dt. By solving equation (2.13), we obtain

sin
√

λx√
λ

= ψ(x,λ )+
∫ x

0
L1(x, t)ψ(t,λ )dt. (2.14)
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The functions L(x, t) and L1(x, t) have the same properties as the functions K(x, t) and K1(x, t) previously obtained.

Recall that for every function f ∈ L2(R), we have the Parseval identity

∫ ∞

0
f 2(x)dx =

∫ ∞

−∞
F2(λ ).dρ(λ ) where F{ f (x)} ≡

F(λ ) =
∫ ∞

0
f (x)ψ(x,λ )dx is the Fourier transform of f (x) and ρ(λ ) a monotone function, bounded on any finite interval. The

sequence of functions Fn(λ ) =
∫ n

0
f (x)ψ(x,λ )dx, converges in quadratic mean (with respect to the spectral measure ρ(λ )) to

F(λ ), i.e., lim
n→∞

∫ ∞

−∞
(F(λ )−Fn(λ ))

2dρ(λ ) = 0. We choose ρ(λ ) in the following form : ρ(λ ) =
2

π

√
λ +σ(λ ) if λ > 0 and

ρ(λ ) = σ(λ ) if λ < 0, where σ(λ ) is a measure with compact support satisfying the condition :

∫ ∞

−∞
|λ |.|dσ(λ )|<+∞. For

0 < b < y < a < x, the functions

∫ x

a
ψ(t,λ )dt and

∫ y

b
cos
√

λ tdt are orthogonal with respect to ρ(λ ). In other words, we have

the orthogonality relation :

I ≡
∫ ∞

−∞

(∫ x

a
ψ(t,λ )dt

)(∫ y

b
cos
√

λ tdt

)
dρ(λ ) = 0.

Indeed, by integrating equation (2.12) from b to y, we obtain

∫ y

b
cos
√

λ tdt =
∫ y

b
ψ(t,λ )dt−

∫ y

b
dt

∫ t

0
K1(t,s)ψ(s,λ )ds,

=
∫ y

b
ψ(t,λ )dt−

∫ b

0
ψ(s,λ )ds

∫ y

b
K1(t,s)dt−

∫ y

b
ψ(s,λ )dt

∫ y

s
K1(t,s)dt.

By definition, this function is expressed using the transform (in ψ(t,λ )) of a null function outside the interval ]b,y[. Since

]b,y[∩]a,x[= /0, we deduce from Parseval’s equality that we have I = 0.

To obtain the Gelfand-Levitan integral equation [4, 5], we proceed as follows: according to equation (2.5), we have

∫ x

a
ψ(t,λ )dt =

∫ x

a
cos
√

λ tdt +
∫ x

a
dt

∫ t

0
K(t,s)cos

√
λ sds,

=
∫ x

a
cos
√

λ tdt +
∫ a

0
cos
√

λ sds

∫ x

a
K(t,s)dt +

∫ x

a
cos
√

λ sds

∫ x

s
K(t,s)dt,

by virtue of Lebesgue-Fubini’s theorem. Therefore,

I =
∫ ∞

−∞

(∫ x

a
cos
√

λ tdt

)(∫ y

b
cos
√

λ tdt

)
dρ(λ )

+
∫ ∞

−∞

(∫ a

0
cos
√

λ sds

∫ x

a
K(t,s)dt +

∫ x

a
cos
√

λ sds

∫ x

s
K(t,s)dt

)
×
(∫ y

b
cos
√

λ tdt

)
dρ(λ ) = 0.

This expression can be written using the definition of ρ(λ ), in the form

I =
∫ ∞

−∞

(∫ x

a
cos
√

λ tdt

)(∫ y

b
cos
√

λ tdt

)
dσ(λ )

+
∫ ∞

−∞

(∫ a

0
cos
√

λ sds

∫ x

a
K(t,s)dt +

∫ x

a
cos
√

λ sds

∫ x

s
K(t,s)dt

)
×
(∫ y

b
cos
√

λ tdt

)
dσ(λ )

+
2

π

∫ ∞

−∞

(∫ x

a
cos
√

λ tdt

)(∫ y

b
cos
√

λ tdt

)
dσ(λ )

+
2

π

∫ ∞

−∞

(∫ a

0
cos
√

λ sds

∫ x

a
K(t,s)dt +

∫ x

a
cos
√

λ sds

∫ x

s
K(t,s)dt

)
×
(∫ y

b
cos
√

λ tdt

)
dσ(λ ) = 0.

Since b < y < a < x, then given the Parseval identity, the third term is equal to zero while the fourth is equal to

∫ y

b

(∫ a

0
cos
√

λ sds

∫ x

a
K(t,s)dt +

∫ x

a
cos
√

λ sds

∫ x

s
K(t,s)dt

)
ds =

∫ y

b
ds

∫ x

a
K(t,s)dt.
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Therefore,

I =
∫ ∞

−∞

(sin
√

λx− sin
√

λa)(sin
√

λy− sin
√

λb)

λ
dσ(s)

+
∫ ∞

−∞

(∫ a

0
cos
√

λ sds

∫ x

a
K(t,s)dt +

∫ x

a
cos
√

λ sds

∫ x

s
K(t,s)dt

)
×
(∫ y

b
cos
√

λ sds

)
dσ(λ )

+
∫ y

b
ds

∫ x

a
K(t,s)dt = 0.

By setting

F(x,y)≡
∫ ∞

−∞

sin
√

λxsin
√

λy

λ
dσ(λ ),

and

G(x,s)≡





∫ x
a K(t,s)dt, 0≤ s≤ a∫ x
s K(t,s)dt, a≤ s≤ x

0, s > x

the equation above becomes

F(x,y)−F(x,b)−F(a,y)+F(a,b)+
∫ y

b
ds

∫ x

a
K(t,s)dt +

∫ ∞

−∞

(∫ x

0
G(x,s)cos

√
λ sds

)(∫ y

b
cos
√

λ sds

)
dσ(λ ) = 0.

This last equation can still be written, doing an integration by parts and noticing that G(x,x) = 0,

F(x,y)−F(x,b)−F(a,y)+F(a,b)+
∫ y

b
ds

∫ x

a
K(t,s)dt+

∫ ∞

−∞

(∫ x

0

∂G(x,s)

∂ s

sin
√

λ s√
λ

ds

)(
sin
√

λy− sin
√

λb√
λ

)
dσ(λ )= 0.

(2.15)

But

∫ ∞

−∞

(∫ x

0

∂G(x,s)

∂ s

sin
√

λ s√
λ

ds

)(
sin
√

λy− sin
√

λb√
λ

)
dσ(λ ),

=
∫ x

0

∂G(x,s)

∂ s

(∫ ∞

−∞

(
sin
√

λ ssin
√

λy− sin
√

λ ssin
√

λb

λ

)
dσ(λ )

)
ds,

=
∫ x

0

∂G(x,s)

∂ s
(F(s,y)−F(s,b))ds,

=−
∫ x

0
G(x,s)

(
∂F(s,y)

∂ s
− ∂F(s,b)

∂ s

)
ds,

=−
∫ a

0

(
∂F(s,y)

∂ s
− ∂F(s,b)

∂ s

)
ds

(∫ x

a
K(t,s)dt

)
−
∫ x

a

(
∂F(s,y)

∂ s
− ∂F(s,b)

∂ s

)
ds

(∫ x

s
K(t,s)dt

)
,

=
∫ x

a
dt

∫ t

0

(
∂F(s,y)

∂ s
− ∂F(s,b)

∂ s

)
ds,

so equation (2.15) becomes

F(x,y)−F(x,b)−F(a,y)+F(a,b)+
∫ y

b
ds

∫ x

a
K(t,s)dt +

∫ x

a
dt

∫ t

0

(
∂F(s,y)

∂ s
− ∂F(s,b)

∂ s

)
ds = 0.

Deriving this expression with respect to y and then with respect to x (the support of the measure σ is compact), we obtain

∂ 2F

∂x∂y
+
∫ x

0
K(x,s)

∂ 2F(s,y)

∂ s∂y
+K(x,y) = 0.
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By setting f (x,y) ≡ ∂ 2F

∂x∂y
, we finally obtain the Gelfand-Levitan integral equation for the function x 7−→ K(x,y) valid for

0 < y < x,

f (x,y)+K(x,y)+
∫ x

0
K(x,s) f (s,y)ds = 0, y≤ x. (2.16)

For the case α = ∞, i.e., ψ(x,λ ) = ψ2(x,λ ), just integrate the two members of equation (2.14) from 0 to x and use a similar

reasoning. Under the continuity assumption of K, equation (2.16) must be checked for x = 0 and x = y. Note also that if we set

x in the previous equation, then we will obtain the so called Fredholm’s linear integral equation. We can prove that, conversely,

equation (2.16) admits a single continuous solution in the set of pairs of real numbers such that : 0≤ t ≤ x. We will not look

for the solution at this level, it will be done later (in the next section) when we treat the Korteweg-de-Vries equation.

3. KdV equation and the inverse diffusion method

Let us first examine some particular solutions of the equation of KdV (1.1), of the kind of progressive waves u(x, t) = s(x− ct),

where c is the phase velocity. By replacing this expression in (1.1), we obtain −c
∂ s

∂x
−6s

∂ s

∂x
+

∂ 3s

∂x3
= 0. By integrating

this equation with respect to x and imposing the boundary condition that s and its derivatives decrease for |x| −→ ∞, we get

−cs−3s2 +
∂ 2s

∂x2
= 0, hence −cs−2s3 +

(
∂ s

∂x

)2

= 0, and the exact expression of the solution s requires the use of elliptic

functions. Suppose that
∂ s

∂x
(0) = 0, in which case the solution of this last equation is s(x− ct) =− c

2
sech2

√
c

2
(x− ct), where

sech denotes the hyperbolic secant, i.e.,
1

cosh
. Therefore u(x,0) = u0 sech2 x

l
, where u0 ≡ −

c

2
et l2 ≡ 4

c
. This expression

shows that u removes infinitely long time in the position u ≃ 0, then it reaches the value u0, is reflected on this point and

returns again in the position of u≃ 0. This solution is called soliton. To obtain this solution, we can use the so-called Bäcklund

transformations for the Korteweg de Vries equation.

When solitons collide, dimensions and speeds of solutions do not change after collision. This phenomenon has suggested

the idea of conservation laws. And indeed, Kruskal, Zabusky, Lax, Gardner, Green and Miura [6, 7, 8, 9, 10, 11, 12, 13, 14]

have been able to find a whole series of first integrals for the KdV equation. These integrals are of the form

∫
Pn

(
u, ...,u(n)

)
dx,

where Pn is a polynomial. Indeed, the conservation equations that can be deduced from the KdV equation take the following

general form :
∂Pn

∂ t
+

∂Qn

∂x
= 0, where Pn and Qn form a series of functions of which here are the first three:

(i) The KdV equation can be written in the form

∂u

∂ t
+

∂

∂x

(
−3u2 +

∂ 2u

∂x2

)
= 0 =⇒ P1 = u, Q1 =−3u2 +

∂ 2u

∂x2
.

(ii) Multiply the KdV equation by u, this gives

u
∂u

∂ t
−6u2 ∂u

∂x
+u

∂ 3u

∂x3
= 0,

∂

∂ t

(
u2

2

)
+

∂

∂x

(
−2u3 +u

∂ 2u

∂x2
− 1

2

(
∂u

∂x

)2
)

= 0.

Hence,

P2 =
u2

2
, Q2 =−2u3 +u

∂ 2u

∂x2
− 1

2

(
∂u

∂x

)2

.

(iii) We have
(

3u2− ∂ 2u

∂x2

)(
∂u

∂ t
−6u

∂u

∂x
+

∂ 3u

∂x3

)
= 0,

(
3u2 ∂u

∂ t
+

∂u

∂x

∂ 2u

∂x∂ t

)
+

(
−18u3 ∂u

∂x
+3u2 ∂ 3u

∂ t3
+6u

∂u

∂x

∂ 2u

∂x2
− ∂ 2u

∂x2

∂ 3u

∂x3
− ∂ 2u

∂x2

∂u

∂ t
− ∂u

∂x

∂ 2u

∂x∂ t

)
= 0.

Therefore,

∂

∂ t

(
u3 +

1

2

(
∂u

∂x

)2
)
+

∂

∂ t

(
−9

2
u4 +3u2 ∂ 2u

∂x2
− 1

2

(
∂ 2u

∂x2

)2

− ∂u

∂x

∂u

∂ t

)
= 0.
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Consequently,

P3 = u3 +
1

2

(
∂u

∂x

)2

, Q3 =−
9

2
u4 +3u2 ∂ 2u

∂x2
− 1

2

(
∂ 2u

∂x2

)2

− ∂u

∂x

∂u

∂ t
.

If u vanishes for x→ ∞, we get
∂

∂ t

∫
Pndx = 0, then

∫
Pndx are first integrals of the KdV equation. Let u(x, t) =

∂y

∂x
(x, t) and

suppose that
∂y

∂ t
,

∂y

∂x
,

∂ 3y

∂ t3
decay when |x| → ∞. The KdV equation, is written

∂y

∂ t
−3

(
∂y

∂x

)2

+
∂ 3y

∂ t3
= 0.

Hence,

∂

∂ t

∫ ∞

−∞
y(x, t)dx = 3

∫ ∞

−∞

(
∂y

∂x

)2

(x, t)dx = 3

∫ ∞

−∞
u2(x, t)dx = constant.

Since u =
∂y

∂x
, we have also

∂

∂ t

∫ ∞

−∞
y(x, t)dx =

∂

∂ t

∫ ∞

−∞

∫ x

−∞
u(z, t)dzdx = x

∂

∂ t

∫ x

−∞
u(z, t)dz

∣∣∣∣
∞

−∞

− ∂

∂ t

∫ ∞

−∞
u(z, t)dx =− ∂

∂ t

∫ ∞

−∞
xu(x, t)dx,

because by hypothesis u2 and
∂ 2u

∂x2
tend to 0 when |x| → ∞. Comparing the two expressions obtained, we obtain a new first

integral

∂

∂ t

∫ ∞

−∞
xu(x, t)dx = constante.

Lax [7] showed that the equation of KdV is equivalent to the equation :
dA

dt
= [A,B], where

A =− ∂ 2

∂x2
+u(x, t), B = 4

∂ 3

∂x3
−3

(
u

∂

∂x
+

∂u

∂x

)
.

We deduce that the spectrum of A is conserved : if A is a symmetric operator (A⊤ = A) and T an orthogonal transformation

(T⊤ = T−1), then the spectrum of T−1AT coincides with that of A. The appearance of an infinite series of first integrals is

easily explained by the Lax equation.

The Sturm-Liouville equation Aψ = λψ , where λ is a real parameter, can be written in the form

∂ 2ψ

∂x2
+(λ −u(x, t))ψ = 0. (3.1)

This equation reminds us the stationary Schrödinger equation. We will see that the complete solution of the KdV equation

is closely related to the solution of this equation. We will look at solutions for which u decreases fast enough for x−→±∞.

There are other interesting conditions to know: the case where u(x, t) tends to different constants for |x| −→ ∞ and the one

where u(x, t) is periodic in x. So consider equation (3.1) where u(x, t) is the solution of the KdV equation (1.1). It is assumed

that after a certain time equation (3.1) has N bound states with energy λn =−k2
n, n = 1,2, ...,N and continuous states with for

energy λ = k2. We draw u from equation (3.1) and replace it in equation (1.1). After a long calculation, after multiplying by

ψ2, we get the expression

∂λ

∂ t
.ψ2 +

∂

∂x

(
ψ

∂ϒ

∂x
− ∂ψ

∂x
ϒ

)
= 0, (3.2)

where ϒ≡ ∂ψ

∂ t
+

∂ 3ψ

∂x3
−3(u+λ )

∂ψ

∂x
.
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Theorem 3.1. a) For the study of the discrete part of the spectrum λn(t) =−k2
n(t), we consider ψn (measurable and square

integrable function) and we show that if ψn and
∂ψn

∂x
tend to zeros when |x| goes to infinity, then λn(t) = constant and the

solution of equation (3.1) is given by ψn(t) = cn(0)e
kn(x−4k2

nt), where cn(0) is determined by the initial condition u(x,0) = u0(x)
of the KdV equation.

b) For the study of the continuous part of the spectrum λ (t) = k2(t), we assume that a stationary plane wave propagates

from x =−∞ and meets a potential u(x, t) with a transmission coefficient T and a reflection coefficient R. In this case equation

(3.1) admits a solution ψ such that :

ψ =

{
T (k, t)eikx, x→+∞ (i.e., to the right of the potential barrier)

eikx +R(k, t)e−ikx, x→+−∞ (i.e., to the left of the potential barrier)

where |R|2 + |T |2 = 1. If u ≃ 0 for |x| → ∞, then we have T (k, t) = T (k,0) and R(k, t) = R(k,0)e−8ik3t where R(k,0) and

T (k,0) are determined by the initial condition u(x,0) = u0(x) of the KdV equation.

Proof. a) Just integrate equation (3.2), this gives

∂λn

∂ t
.
∫ ∞

−∞
ψ2

n dx+ψn

∂ϒ

∂x
− ∂ψn

∂x
ϒ = 0.

By hypothesis, ψn ∈ L2 and ψn,
∂ψn

∂x
tend to zeros when |x| goes to infinity, so ψn

∂ϒ

∂x
− ∂ψn

∂x
ϒ tends to 0 for |x| → ∞ and

we deduce that λn(t) = constant. Now, since
∂λ

∂ t
= 0, then equation (3.2) becomes

∂

∂x

(
ψ

∂ϒ

∂x
− ∂ψ

∂x
ϒ

)
= 0. Let’s integrate

this expression twice,

(
ψ ∂ϒ

∂x
− ∂ψ

∂x
ϒ

)

ψ2
=

A

ψ2
, i.e.,

(
ϒ

ψ

)′
=

A

ψ2
, hence, ϒ = ψ

∫
A(t)

ψ2
dx+B(t)ψ , where A(t) and B(t) are

integration constants. So we have

∂ψn

∂ t
+

∂ 3ψn

∂x3
−3(u+λn)

∂ψn

∂x
= ψn

∫
An

ψ2
n

dx+Bnψn. (3.3)

Note that An(t) = 0 because ψn satisfies (3.3) and decreases to zeros for t→−∞. Let’s consider u∼= 0 for x→−∞ because

otherwise ψn would not have the decay assumption. Multiply (3.3) by ψn and integrate

∫ ∞

−∞
ψn

∂ψn

∂ t
dx+

∫ ∞

−∞

(
ψn

∂ 3ψn

∂x3
−3λnψn

∂ψn

∂x

)
dx = Bn

∫ ∞

−∞
ψ2

n dx.

This expression can be written, by adding and subtracting
∂ψn

∂x

∂ 2ψn

∂x2
,

∫ ∞

−∞

1

2

∂ψ2
n

∂ t
dx+

∫ ∞

−∞

∂

∂x

(
ψn

∂ 2ψn

∂x2
− 3

2
λnψ2

n −
1

2

(
∂ψn

∂x

)2
)

dx = Bn

∫ ∞

−∞
ψndx.

We have Bn(t) = 0 because ψn ∈ L2 and decreases to zeros when x→−∞. Since u∼= 0 for x→−∞, then from equation (3.2),

it comes ψn(x, t) = cn(t)e
knx, x→−∞. By replacing the latter in equation (3.3), we obtain

(
∂cn

∂ t
+4cnk3

n

)
eknx = 0, hence

cn(t) = cn(0)e
−4k3

nt . Consequently, ψn(x, t) = cn(0)e
kn(x−4k2

nt).

b) Choose λ = constant since the spectrum for λ > 0 is continuous. So equation (3.3) remains valid,

∂ψ

∂ t
+

∂ 3ψ

∂x3
−3(u+λ )

∂ψ

∂x
= ψ

∫
A

ψ2
dx+Bψ. (3.4)

For u∼= 0, when x→+∞, we replace ψ = T (k, t)eikx, λ = k2 in equation (3.4) and we get
∂T

∂ t
−4ik3T =

A

T

∫
e−2ikxdx+BT .

For this equation to preserve meaning when x→+∞, we must have A = 0, hence

∂T

∂ t
− (4ik3 +B)T = 0. (3.5)
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Similarly, for u∼= 0, when x→−∞, we replace ψ = eikx +R(k, t)e−ikx, λ = k2 in equation (3.4) and we get

(
∂R

∂ t
+4ik3R−BR

)
e−ikx− (4ik3 +B)eikx = A(eikx +Re−ikx)

∫
dx

e2ikx +R2e−2ikx +2R
.

For x→+∞, the equation above preserves a sense if A = 0 and is written

(
∂R

∂ t
+4ik3R−BR

)
e−ikx− (4ik3 +B)eikx = 0.

For 4ik3 +B = 0, equation (3.5) implies that T (k, t) = T (k,0) while the condition
∂R

∂ t
+4ik3R−BR = 0, gives us R(k, t) =

R(k,0)e−8ik3t .

The knowledge of cn(t), kn(t), n = 1,2, ...,N and R(k, t) allows to express u(x, t) for any time; it is the problem of the

inverse diffusion. The latter is reduced to the solution K(x,y; t) (to simplify the notations, the reader can obviously use K(x,y)
instead of K(x,y; t)), of the Gelfand-Levitan linear integral equation :

K(x,y; t)+ I(x+ y, t)+
∫ x

−∞
I(y+ z, t)K(x,z; t)dz = 0, y≤ x (3.6)

where

I(x+ y, t) =
1

2π

∫ ∞

−∞
R(k, t)e−ik(x+y)dk+

N

∑
n=1

c2
n(t)e

kn(t)(x+y).

The solution u(x, t) of the KdV equation is then given (see (2.10)) by

u(x, t) = 2
d

dx
K(x,x; t). (3.7)

The nonlinear KdV equation is transformed into the linear Gelfand-Levitan equation. The initial problem is thus completely

solved. This method presents two major simplifications. First, in the analytical approach of the solution of the KdV equation,

it suffices at each stage to solve only linear equations. Then t only appears parametrically and more than for all t the

Gelfand-Levitan equation seems superficially to be an integral equation of two variables, actually x intervenes as a parameter

and so we have to do to a family of integral equations for the functions K(x,y) of a single variable y. Before dealing

with the general case, i.e., the case of distinct N solitons, let us return first to the case of a soliton and therefore consider

the solution u(x, t) =− c

2
sech2

√
c

2
(x− ct) of the KdV equation obtained previously with the following initial condition :

u(x,0) =−2 sech2x, where by convention we put c = 4. The Schrödinger equation (3.1) is written

∂ 2ψ

∂x2
+(2 sech2x+λ )ψ = 0. (3.8)

To study equation (3.8), one poses

ψ = A sechα x.w(x), (3.9)

where A is an arbitrary amplitude, α2 =−λ and w satisfies the equation

∂ 2w

∂x2
−2α tanhx

∂w

∂x
+(2+α−α2) sech2x.w = 0.

By doing the substitution u =
1

2
(1− tanhx), the last equation comes down to a hypergeometric differential equation or Gaussian

equation :

u(1−u)
∂ 2w

∂u2
+(c− (a+b+1)u)

∂w

∂u
−abw = 0,
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where a,b,c denote constants and are equal to a = 2+α , b =−1+α , c = 1+α . This equation presents three regular singular

points : u = 0, u = 1, u = ∞. The solution of this equation for u = 0 is

w≡ F(a,b,c,u) = 1+
ab

c
.

u

1!
+

a(a+1)b(b+1)

c(c+1)
.
u2

2!
+

a(a+1)...(a+n−1)b(b+1)...(b+n−1)

c(c+1)...(c+n−1)
.
un

n!
+ · · · (3.10)

For x→ ∞ (i.e., when u→ 0), we have w→ 1. According to (3.9), we have ψ = A2α(ex + e−x)−α .w(x) and this one tends to

Ae2α e−αx when x→ ∞. To represent a plane wave Aeikx going to +∞, we will put α =−ik. The asymptotic form of the wave

function for x→−∞ (u→ 1) is obtained by transforming the hypergeometric function using the well-known functional relation

:

F(a,b,c,u) =
Γ(c)Γ(c−a−b)

Γ(c−a)Γ(c−b)
F(a,b,a+b−c+1,1−u)+(1−u)c−a−b Γ(c)Γ(a+b− c)

Γ(a)Γ(b)
F(c−a,c−b,c−a−b+1,1−u),

where Γ(z) =
∫ ∞

0
e−tez−1dt, Re z > 0, is the Euler Gamma function. Taking into account (3.10) and the expression above, the

relation (3.9) becomes

ψ = A sechα x

[
Γ(c)Γ(c−a−b)

Γ(c−a)Γ(c−b)

(
1+

ab

a+b− c+1
(1−u)+ · · ·

)

+ (1−u)c−a−b Γ(c)Γ(a+b− c)

Γ(a)Γ(b)

(
1+

(c−a)(c−b)

c−a−b+1
(1−u)+ · · ·

)]
.

When u→ 1 (x→−∞), we have (1−u)c−a−b→ e−2αx and since α =−ik, then

ψ −→ Aeα Γ(c)Γ(a+b− c)

Γ(a)Γ(b)

(
eikx +

Γ(c−a−b)Γ(a)Γ(b)

Γ(c−a)Γ(c−b)Γ(a+b− c)

)
.

This expression combined with the fact that ψ tends to Ae2α e−α , x→∞, give us the transmission coefficient T and the reflection

coefficient R,

T =
Γ(a)Γ(b)

Γ(c)Γ(a+b− c)
, R =

Γ(c−a−b)Γ(a)Γ(b)

Γ(c−a)Γ(c−b)Γ(a+b− c)
.

We have k1 = 1, c(0) =
√

2, R(k,0) = 0. For an individual soliton, equation (1.1) has a precise solution. It turns out that the

soliton of amplitude u0 has only one discrete level with eigenvalue λ =
u0

2
, while the next level corresponds to the point λ = 0

(with the respective eigenfunction ψ = tanhx) and already belongs to the continuous spectrum. The Gelfand-Levitan equation

(3.6) where I(µ, t) = c2
1(t)e

k1µ = c2
1(0)e

−8k1tek1t = 2e−8t+µ is written

K(x,y; t)+2e−8t+x+y +2e−8t+y

∫ x

−∞
ezK(x,z; t)dz = 0.

By putting K(x,y, t) = f (x)ey, we obtain f (x) + 2e−8t+x + e−8t+2x f (x) = 0, hence, f (x) =−2
e−x

1+ e8t−2x
. Therefore, the

solution (3.7) of the KdV equation in the case of a solitary wave is

u(x, t) = 2
d

dx
K(x,x, t) =− 2

cosh2(x−4t)
=−2 sech2(x−4t).

We will now look at the case of N-solitons through the procedure suggested by Gardner, Green, Kruskal, Miura [8] and to

use the results of [15]. In order to solve the Gelfand-Levitan equation (3.6), where R(k, t) = 0, one poses

K(x,y) =
N

∑
n=1

wn(x, t)e
kny, (3.11)

where wn are functions to be determined. By replacing this expression in the Gelfand-Levitan equation, we obtain the following

system of linear algebraic equations for wn, n = 1, ...,N :





w1(x, t)+ c2
1(t)e

k1x +∑
N
m=1 c2

1(t)
e(k1+km)x

k1+km
wm(x, t) = 0,

...

wN(x, t)+ c2
N(t)e

kN x +∑
N
m=1 c2

N(t)
e(kN+km)x

kN+km
wm(x, t) = 0.
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Define the following notations : A =
(

c2
n(t)e

(kn+km)x
)

, W = (w1 · · ·wN)
⊤

, G =
(
c2

1(t)e
k1x · · ·c2

N(t)e
kN x
)⊤

,

P≡ (Pnm) =

(
δnm + c2

n(t)
e(kn+km)x

kn + km

)
= I +A, (3.12)

where I is the unit matrix. With these notations, the system above is written PW = −G, and it is easy to show that it has a

unique solution. From equation (3.11), we draw K(x,x) = h⊤w =−h⊤P−1G, h≡
(
ek1x · · ·ekN x

)⊤
. Or

d

dx
Pnm = c2

meknx.ekmx, detP =
N

∑
n=1

(
δnm + c2

n(t)
e(kn+km)x

kn + km

)
αnm,

and P−1 =
αnm

detP
, where αnm is the cofactor of P, so

K(x,x) =−∑
n,m

αnm

detP

d

dx
Pnm =− 1

detP

d

dx
(detP) =− d

dx
lndetP,

and according to (3.7), we have u = 2
d

dx
K(x,x) =−2

d2

dx2
lndetP. Therefore,

Theorem 3.2. The solution of the KdV equation is given by the function

u =−2
d2

dx2
lndetP,

where P is defined by (3.12) and whose cn(t) = cn(0)e
−4k3

nt , with kn > 0 distinct.

The function obtained in the this theorem is negative for all x, continuous and behaves like the exponential when |x| → ∞.

To get an idea of the behavior of solitons and in particular their asymptotic behavior, suppose that k1 < k2 < ... < kN−1 < kN .

We will need the following result :

∆≡

∣∣∣∣∣∣∣∣∣∣

1
a1−b1

1
a1−b2

. . . 1
a1−bn

1
a2−b1

1
a2−b2

. . . 1
a2−bn

...
. . .

1
an−b1

1
an−b2

. . . 1
an−bn

∣∣∣∣∣∣∣∣∣∣

= (−1)
n(n−1)

2
∏ j<k(a j−ak)∏ j<k(b j−bk)

∏ j,k(a j−bk)
.

Consider the following determinant :

∆ =

∣∣∣∣∣∣

1+ c2
1b11 c2

1b12 c2
1b13

c2
2b21 1+ c2

2b22 c2
2b23

c2
3b31 c2

3b32 1+ c2
3b33

∣∣∣∣∣∣
,

where c1c2c3 6= 0. If we divide the 1st line by c1, the 2nd line by c2 and the 3nd line by c3, we will have

∆ = c1c2c3

∣∣∣∣∣∣∣∣

1+c2
1b11

c1
c1b12 c1b13

c2b21
1+c2

2b22

c2
c2b23

c3b31 c3b32
1+c2

3b33

c3

∣∣∣∣∣∣∣∣
.

Multiply the 1st column by c1, the 2nd column by c2 and the 3nd column by c3, we get

∆ =

∣∣∣∣∣∣

1+ c2
1b11 c1c2b12 c1c3b13

c2c1b21 1+ c2
2b22 c2c3b23

c3c1b31 c3c2b32 1+ c2
3b33

∣∣∣∣∣∣
.

So for the determinant of order N, just use the same procedure, i.e., by dividing the jnd row by c j and multiply the jnd column

by c j
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Theorem 3.3. The explicit solution of N-solitons of the KdV equation is given by

u(x, t) =





−2
N

∑
n=1

k2
n sech2(knξn +δ+

n ), t→+∞

−2
N

∑
n=1

k2
n sech2(knξn +δ−n ), t→−∞

where the phase changes are given by

δ+
n ≡

1

2
ln

c2
n

2kn

(
n−1

∏
j=1

k j− kn

k j + kn

)2

, δ−n ≡
1

2
ln

c2
n

2kn

(
N

∏
j=n+1

k j− kn

k j + kn

)2

.

Proof. The determinant of the matrix P is written explicitly in the form

detP =

∣∣∣∣∣∣∣∣∣∣∣∣

1+
c2

1(t)
2k1

e2k1x c2
1(t)

k1+k2
e(k1+k2)x . . .

c2
1(t)

k1+k j
e(k1+k j)x . . .

c2
1(t)

k1+kN
e(k1+kN)x

c2
2(t)

k2+k1
e(k2+k1)x 1+

c2
2(t)
2k2

e2k2x c2
2(t)

k2+k j
e(k2+k j)x . . .

c2
2(t)

k2+kN
e(k2+kN)x

...
. . .

c2
N(t)

kN+k1
e(kN+k1)x c2

N(t)
kN+k2

e(kN+k2)x . . .
c2

N(t)
kN+k j

e(kN+k j)x 1+
c2

N(t)
2kN

e2kN x

∣∣∣∣∣∣∣∣∣∣∣∣

Applying the previous remark to the determinant detP above, we obtain

detP =

∣∣∣∣∣∣∣∣∣∣∣

1+
c2

1(t)
2k1

e2k1x c1(t)c2(t)
k1+k2

e(k1+k2)x . . . c1(t)cN(t)
k1+kN

e(k1+kN)x

c2(t)c1(t)
k2+k1

e(k2+k1)x 1+
c2

2(t)
2k2

e2k2x . . . c2(t)cN(t)
k2+kN

e(k2+kN)x

...
. . .

cN(t)c1(t)
kN+k1

e(kN+k1)x cN(t)c2(t)
kN+k2

e(kN+k2)x . . . 1+
c2

N(t)
2kN

e2kN x

∣∣∣∣∣∣∣∣∣∣∣

Since c j(t) = c j(0)e
−4k3

j t , then

detP =

∣∣∣∣∣∣∣∣∣∣∣

1+
c2

1(0)
2k1

e2k1ξ1
c1(0)c2(0)

k1+k2
ek1ξ1+k2ξ2 . . . c1(0)cN(0)

k1+kN
ek1ξ1+kN ξn

c2(0)c1(0)
k2+k1

ek2ξ2+k1ξ1 1+
c2

2(0)
2k2

e2k2ξ2 . . . c2(0)cN(0)
k2+kN

ek2ξ2+kN ξN

...
. . .

cN(0)c1(0)
kN+k1

ekN ξN+k1ξ1
cN(0)c2(0)

kN+k2
ekN ξN+k2ξ2 . . . 1+

c2
N(0)
2kN

e2kN ξN

∣∣∣∣∣∣∣∣∣∣∣

where ξn ≡ x−4k2
j t, 1≤ j ≤ N. To get an idea of the behavior of solitons and in particular their asymptotic behavior, suppose

that k1 < k2 < ... < kN−1 < kN . For t≫ 0 let’s write ξ j in the form ξ j ≡ ξn−ε jnt, 1≤ j≤N with ε jn ≡ 4k2
j−4k2

n and c j(0)≡ c j.

Note that ε jn < 0 if 1≤ j < n, εnn = 0, ε jn > 0 if n < j ≤ N, and ε jn =−εn j. We have also εnm > ε(n−1)m > ... > ε(m+1)n > 0

if n > m, and εnm < εn(m−1) < ... < εn(m+1) < 0 if n < m. Replace these expressions in the determinant above and approximate

the elements of the diagonal (for j < n) :

1+
c2

j

2k j

e2k j(ξn−ε jnt) ∼=
c2

j

2k j

e2k j(ξn−ε jnt), j < n, t→ ∞

(we can do it because for j < n, we have ε jn < 0 and 1+ ex ∼= ex for x→ ∞). Then, we put in factor the following common

expressions : e2k1(ξn−ε1nt), e2k2(ξn−ε2nt),...,e2kn−1(ξn−ε(n−1)nt). By turning t to infinity, we have (since ε jn > 0 for n≤ j ≤ N) the
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following situation :

detP =C

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c2
1

2k1

c1c2
k1+k2

. . .
c1cn−1

k1+kn−1

c1cn

k1+kn
eknξn 0 . . . 0

c2c1
k2+k1

c2
2

2k2
. . .

c2cn−1

k2+kn−1

c2cn

k2+kn
eknξn 0 . . . 0

...
. . .

...
... . . .

...

cn−1c1

kn−1+k1

cn−1c2

kn−1+k2
. . .

c2
n−1

2kn−1

cn−1cn

kn−1+kn
eknξn 0 . . . 0

cnc1
kn+k1

eknξn cnc2
kn+k2

eknξn . . .
cncn−1

kn+kn−1
eknξn 1+ c2

n
2kn

e2knξn 0 . . . 0

0 0 . . . 0 0 1 . . . 0
...

...
...

...
...

...
. . .

...

0 0 . . . 0 0 0 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

where C ≡
n−1

∏
j=1

e2k j(ξn−ε jn). Obviously, we have

detP =C

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c2
1

2k1

c1c2
k1+k2

. . .
c1cn−1

k1+kn−1

c1cn

k1+kn
eknξn

c2c1
k2+k1

c2
2

2k2
. . .

c2cn−1

k2+kn−1

c2cn

k2+kn
eknξn

...
. . .

...

cn−1c1

kn−1+k1

cn−1c2

kn−1+k2
. . .

c2
n−1

2kn−1

cn−1cn

kn−1+kn
eknξn

cnc1
kn+k1

eknξn cnc2
kn+k2

eknξn . . .
cncn−1

kn+kn−1
eknξn 1+ c2

n
2kn

e2knξn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

This determinant is still written in the form

detP =C
n−1

∏
l=1

c2
l

∣∣∣∣∣∣∣∣∣∣

1
2k1

1
k1+k2

. . . 1
k1+kn−1

1
k2+k1

1
2k2

. . . 1
k2+kn−1

...
. . .

...
1

kn−1+k1

1
kn−1+k2

. . . 1
2kn−1

∣∣∣∣∣∣∣∣∣∣

+C
n

∏
l=1

c2
l

∣∣∣∣∣∣∣∣∣∣∣∣

1
2k1

1
k1+k2

. . . 1
k1+kn−1

1
k1+kn

1
k2+k1

1
2k2

. . . 1
k2+kn−1

1
k2+kn

...
. . .

...
1

kn−1+k1

1
kn−1+k2

. . . 1
2kn−1

1
kn−1+kn

1
kn+k1

1
kn+k2

. . . 1
kn+kn−1

1
2kn

∣∣∣∣∣∣∣∣∣∣∣∣

,

for n≥ 2, while for n = 1, it equals to 1+
c2

1
2k1

e2k1ξ1 . Using the previous lemma, we get for t≫ 0,

detP =
n−1

∏
i=1

e2ki(ξn−εint)

(
n−1

∏
j=1

c2
j

(∏i< j(ki− k j))
2

∏i, j(ki + k j)
+

n−1

∏
j=1

c2
j

(∏i< j(ki− k j))
2

∏i, j(ki + k j)
e2knξn

)
.

By replacing this expression in the solution obtained in the last theorem, we obtain the explicit solution of N-solitons :

u(x, t) =−2
N

∑
n=1

k2
n sech2


knξn +

1

2
ln

c2
n

2kn

(
n−1

∏
j=1

k j− kn

k j + kn

)2

 , t→+∞.

Similarly, it is shown that for t≪ 0

u(x, t) =−2
N

∑
n=1

k2
n sech2


knξn +

1

2
ln

c2
n

2kn

(
N

∏
j=n+1

k j− kn

k j + kn

)2

 , t→−∞.

This completes the demonstration.

This result can be interpreted as follows: for example for t→ ∞, we have

lim
t→∞

u(x, t) = lim
t→∞

u(x− ct) =

{
−2k2

n sech2
(
kn(x−4k2

nt)+δ+
n

)
if c = 4k2

n

0 if c 6= 4k2
n
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This is the form of a solitary wave of amplitude 2k2
n, propagating on the right with a constant velocity equal to 4k2

n. The solution

of the KdV equation actually splits into N-solitons at the limit for |t| → ∞. This indicates that each soliton preserves its shape

after collisions. These are analyzed by the phase changes δ+
n and δ−n . The relative phase change is determined by

δ+
n −δ−n =

1

2
ln

c2
n

2kn

(
n−1

∏
j=1

k j− kn

k j + kn

)2

− 1

2
ln

c2
n

2kn

(
N

∏
j=n+1

k j− kn

k j + kn

)2

=
n−1

∑
j=1

ln
k j− kn

k j + kn

−
N

∑
j=n+1

ln
k j− kn

k j + kn

,

and it is expressed in terms of k j (1≤ j ≤ N). Since k j are invariant with respect to time, then the δ+
n −δ−n are also invariant.

Recall that we assumed k1 < k2 < ... < kN , then

δ+
1 −δ−1 =−

N

∑
j=2

ln
k j− k1

k j + k1
> 0, δ+

N −δ−N =
N−1

∑
j=1

ln
kN − k1

kN + k1
< 0.

In addition, it is easy to show that
N

∑
n=1

δ+
n =

N

∑
n=1

δ−n .

We could not finish this section without indicating some results related to the KdV equation. The KdV equation (1.1) is

written in the form

∂u

∂ t
=

∂

∂x

(
3u2− ∂ 2u

∂x2

)
=

∂

∂x

δH

δu
,

where

H =
∫ ∞

−∞
P3dx =

∫ ∞

−∞

(
u3 +

1

2

(
∂u

∂x

)2
)

dx,

is the first integral (Hamiltonian) obtained previously and
δH

δu(x)
denotes the gradient (Fréchet derivative) of the function H.

This equation forms an infinite dimensional Hamiltonian system, completely integrable and the Hamiltonian structure is defined

by the Poisson bracket : {F,H}=
∫

δF

δu(x)

∂

∂x

δH

δu(x)
dx. We check that the latter satisfies the Jacobi identity. We will discuss

further (in the following sections) the problem of studying the KdV equation via symplectic structures on operator algebra,

the relation with the KP hierarchy [16], the Sato theory [17] τ functions and the work of Jimbo-Miwa-Kashiwara [18, 19].

The study of the periodic problem for the KdV equation allowed some authors to discover an interesting class of completely

integrable systems. The obtained solutions are endowed with remarkable properties : they define functions u(x) for which

equation (2.1) with periodic coefficients has a finite number of zones of parametric resonance on the axis λ . The spectrum of

the Schrödinger operator is invariant by the Hamiltonian flow defined by the KdV equation. And as we have already pointed

out, this spectrum provides an infinity first integrals or invariants. The isospectral sets related to invariant manifolds defined

by putting these invariants equal to generic constants are compact, connected, and infinite-dimensional tori. Each of these

isospectral sets is isomorphic to the real part of a Jacobi variety associated with a hyperelliptic curve of finite or infinite genus.

The periods of this torus can be expressed using hyperelliptic integrals; in short, the explicit linearization of the flow of the

KdV equation is made on this Jacobian variety using the Abel application, the Jacobi inversion problem and the theta functions.

For other interesting integrable systems that will not be discussed here, the solutions blow up after a finite time as Laurent

series depending on many parameters (see for example [20, 21]).

4. Pseudo-differential operators

Let L be a pseudo-differential operator with holomorphic coefficients. The set of these operators form a Lie algebra that we

note A . The algebra A decomposes in two sub-algebras A+ and A− : A = A+⊕A−, where A+ is the algebra of differential

operators of the form ζ = ∑
k≥0

uk(x)∂
k, finite sum, ∂ =

∂

∂x
, and A− is the algebra of strictly pseudo-differential operators of the

form

η = ∑
k>0

u−k(x)∂
−k = ∂−1v0 +∂−2v1 + · · · , ∂ =

∂

∂x
,
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The algebra A is an associative algebra for the product of two pseudo-differential operators L and L′,

L.L′ =
∞

∑
k=0

1

k!
:∂ k

∂ (L).∂
k
x (L
′):,

where ∂ =
∂

∂x
and the symbol :: denotes the normal order, i.e., it means that the derivatives always appear on the right

independently of the commutation relations.

For m,n ∈ N∗, we have for all functions u, v,

u∂ m.v∂ n =
m

∑
k=0

m!

k!(m− k)!
uv(k)∂ m+n−k =

m

∑
k=0

1

k!
:∂ k

∂ (u∂ m).∂ k
x (v∂ n): (4.1)

and

∂−1u = u∂−1−u′∂−2 +u′′∂−3 + · · ·=
∞

∑
k=0

:∂ k
∂ (∂

−1).∂ k
x (u): (4.2)

where ∂−1 is a formal inverse of ∂ , i.e., ∂−1.∂ = ∂ .∂−1 = 1.

We define a coupling between A+ and A− as follows : Let Res(ζ η) be the coefficient of ∂−1 in ζ η . We have

〈ζ ,η〉=
〈

∑
k≥0

uk∂ k, ∑
k>0

u−k∂−k

〉
=
〈
u0∂ 0 +u1∂ 1 + · · · ,∂−1v0 +∂−2v1 + · · ·

〉

i.e., 〈ζ ,η〉=
∫ ∞

−∞
Res(ζ η)dx =

∫ ∞

−∞
∑
k≥0

ukvkdx. Therefore, the Volterra group (I +A−) acts on A− by the adjoint action and

on A+ by the coadjoint action. Let ζ ∈A+ and ηk ∈A−. We obtain from [22],

〈ad∗η1
(ζ ),η2〉= 〈ζ ,adη1

(η2)〉 = 〈ζ , [η1,η2]〉,

=
∫ (

∂−1− term of (ζ η1η2−ζ η2η1)
)

dx,

=
∫ (

∂−1− term of (ζ η1−η1ζ )+ η2

)
dx,

= 〈[ζ ,η1]+ ,η2〉.
So the set O∗

A+
(L) of the differential operators of the form

L = ∂ N +
N−2

∑
k=0

uk(x)∂
k, N fixed, (4.3)

is a coadjoint orbit in A+.

Let f be a function of class C ∞ in x and dependent on a finite number of derivatives u
(l)
k of the coefficients uk of L. Let

∇H(L) =
N−1

∑
k=0

∂−k−1 ∑
l

(−1)l

(
d

dx

)l ∂ f

∂ p
(l)
k

=
N−1

∑
k=0

∂−k−1 δH

δuk

,

be the gradient of the functional, H(L) =
∫ ∞

−∞
f (x, ...,u

(l)
k , ...)dx defined on A+ and such that :

dH =
∫ ∞

−∞

δH

δuk

duk =

〈
N

∑
k=0

duk.∂
k,∇H

〉
= 〈dL,∇H〉,

where dL =
N

∑
k=0

duk.∂
k. We recall that the scalar product between two pseudo-differential operators L and L′ is defined by

〈L,L′〉=−
∫ ∞

−∞
(LL′)−dx =

∫ ∞

−∞
(L′L)−dx). According to the Adler-Kostant-Symes [20, 22, 23, 24, 25, 26, 27, 28, 29], the

Hamiltonian vector fields on the coadjoint orbit O∗
A+

, define commutative flows and are given by

dL

dt
= ad∗∇H(L)(L) = [L,∇H(L)]+ , (4.4)
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where H(L) is the Hamiltonian on A+. The operator L does not contain the coefficient uN−1. Since the vector field (4.4)

applied to the operator L (4.3) imposes the condition Res [L,∇H(L)] = 0, we can replace the gradient
δH

δ pN−1
by any expression

satisfying this condition. A first Poisson bracket is given by

{H,F}1 = 〈L, [∇F,∇H]〉=
∫

Res(∇H[L,∇F ]+)dx =
∫

Res(∇H[L,∇F ])dx =
∫

Res([∇H,L]∇F)dx. (4.5)

Consider the Hamiltonians Hk+N =
N

k+N

∫ (
Rés L

k+N
N

)
dx, k ∈ N∗. We have ∇H

(L)
k+N =

(
L

k
N

)
−

, and the vector fields (4.4)

applied to these Hamiltonians, provide the integrable equations; N-reduction of Gel’fand Dickey equations of KP hierarchy

(see below for definition) :

dL

dt
= [L,∇Hk+N(L)]+ =−

[
(L

k
N )−,L

]
+
=
[
(L

k
N )+,L

]
. (4.6)

Note that since
[
(L

k
N )+,L

]
+
=
[
L

k
N − (L

k
N )−,L

]
+
=−

[
(L

k
N )−,L

]
∈A −, then equations (4.6) determine an infinite number

of commutative vector fields (see below) on A ++A −.

We will now study [22, 30, 31, 32, 33] the existence of a second symplectic structure. Let L̃ = L+ z where L is a differential

operator of order n. We have

dL

dt
=
(

L̃∇H
)
+

L̃− L̃
(

∇HL̃
)
+
. (4.7)

Note that (4.7) is a Hamiltonian vector field generalizing (4.4). Indeed, let J : A−/A−∞,N−1 −→ D0,N−1, be the function

defined by

J(ζ ) =
(

L̃ζ
)
+

L̃− L̃
(

ζ L̃
)
+
=−

(
L̃ζ
)
−

L̃+ L̃
(

ζ L̃
)
−
, ζ ∈A−/A−∞,N−1.

Hence,
dL

dt
= ∂J(ζ )(L)≡

(
L̃ζ
)
+

L̃− L̃
(

ζ L̃
)
+

, which shows that it is indeed a vector field on the differential operators L of

order n. Similarly, we have
dL

dt
=−

(
L̃∇H

)
−

L̃+ L̃
(

∇HL̃
)
−

, and the same conclusion remains valid. We also have the

relation
dL

dt
= (L∇H)+ L−L(∇HL)++ z [∇H,L]+, which shows that this vector field is an interpolation between (4.4) for

z = ∞ and a new vector field for z = 0. Consider the 2-differential form

ω
(
∂J(ζ ),∂J(η)

)
= 〈J(ζ ),η〉=

∫
Res (J(ζ )η)dx.

This form is closed (dω = 0) and is antisymmetric 〈J(ζ ),η〉=−〈ζ ,J(η)〉, and furthermore
[
∂J(ζ ),∂J(η)

]
= ∂J(ξ ), where

ξ =
(
−ζ
(

L̃η
)
+
+
(

ζ L̃
)
−

η
)

−

(
−η
(

L̃ζ
)
+
+
(

η L̃
)
−

ζ
)

−
+∂J(ζ )η−∂J(η)ζ .

The functional algebra on the operator space of the form (4.3) for this symplectic form is the so called W algebra.

Theorem 4.1. The Hamiltonians Hk,Hk+N ,Hk+2N , ..., defined in (4.6) are all in involution for the bracket (4.5).

Proof. Indeed, let J = J1 if z = ∞ and J = J2 if z = 0, where the Poisson brackets {., .}1, {., .}2 are given by {H j,Hk}1 =∫
Res (∇H jJ1(∇Hk)) and

{H j,Hk}2 = 〈∇H,J2(∇F)〉=
∫

Res (∇H((L∇F)+L−L(∇FL)+))dx =
∫

Res (L∇H(L∇F)+−∇HL(∇FL)+)dx.

We deduce from the relation

(
L
(

L
r
n−1
)
−

)

+
L−L

((
L

r
n−1
)
−

L
)

+
+
[(

L
r
n

)
−
,L
]

+
= 0,
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the expression {H j,Hk}1 =
∫

Res (∇H jJ2∇Hk−N). Since the form ω is anti-symmetric, we have

{H j,Hk}1 =−
∫

Res (∇Hk−NJ2(∇H j)) =−
∫

Res (∇Hk−NJ1(∇H j+N)) ,

{H j,Hk}1 =−
∫

Res (∇H j+NJ1(∇Hk−N)) ,

{H j,Hk}1 =
{

H j+N ,Hk−N

}
1
= {H j,Hk}1 =

{
H j+αN ,Hk−αN

}
1
,

for α large enough with J1 (∇Hk−αN) = 0, i.e., Hk−αN is trivial for α large enough and we get {H j,Hk}1 = 0, so H j,Hk are in

involution.

5. KdV equation, Heisenberg and Virasoro algebras

Theorem 5.1. a) The operator L = ∂ 2 +q, corresponding to the case N = 2 with q≡ u0, is related to the KdV equation and

the Poisson bracket is provided in this case by {q(x),q(y)}1 =
d

dx
δ (x− y).

b) By replacing in a), q(x) by the Fourier series

q(x) = α
∞

∑
n=−∞

e−inxϕn +β , −iα−2 = 1, (5.1)

where (ϕk)k∈Z are new coordinates (Fourier coefficients), one obtains the Heisenberg algebra and the Poisson bracket is

provided by {ϕn,ϕm}1 = nδm+n,0.

c) In the case N = 2 one obtains the Virasoro algebra and its structure is given by

{ϕm,ϕn}2 = (m−n)ϕm+n +
c

12
(m3−m)δm+n,0.

Proof. a) Indeed, since

∇H(L) = ∂−1 δH

δq
+∂−2 1

2

(
δH

δq

)′
,

then the vector fields applied to the Hamiltonian H =
∫ (

q3− 1

2
q′2
)

dx, provide the KdV equation

dq

dt
=

dL

dt
=

1

2
[L,∇H]+ =

d

dx

δH

δq
=

dq

dt
=

∂ 3q

∂x3
+6q

∂q

∂x
. (5.2)

The Poisson bracket is in this case is {H,F}1 =
∫

δH

δq

d

dx

δF

δq
, and therefore, {q(x),q(y)}1 =

d

dx
δ (x− y).

b) Let M be the set of matrices (akl), (k, l ∈ Z), with complex coefficients and

N = {(akl) ∈M : there is at least r such that akl = 0 for |k− l|> r},

the C-algebra, i.e., the set of infinite matrices with support in a band around the diagonal. The product of two matrices belonging

respectively to N and M is defined in the usual way. Note that N is a Lie algebra and M is a N -module. Their extensions

Ñ and M̃ are defined by

0−→ Cc−→ Ñ −→N −→ 0, 0−→ Cc−→ M̃ −→M −→ 0,

with Ñ = N ⊕Cc, M̃ = M ⊕Cc, where c is a central element, i.e., we have [c,A] = [c,B] = 0, ∀A ∈ Ñ , ∀B ∈ M̃ . We

notice ei, j = (δki.δl j)kl the elementary matrices, i.e., the matrices whose coefficients are all zero except the one of the line i and

the column j which is equal to 1. Since a Jacobi matrix has no trace, then we consider the matrix A[J,B] where A ∈N , B ∈M

and J is the matrix defined by J = ∑
i∈Z

ε(i)ei,i, where ε(i) = +1 if i < 0 and −1 if i≥ 0. The elements of the matrix A[J,B] are

null except for a finite number, so it is a finite matrix and we define the cocycle of A ∈N and B ∈M using the formula

ρ(A,B) =
1

2
Tr(A[J,B]) =

1

2
∑
i, j

(ε(i)− ε( j))ai jb ji.
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Therefore, the bracket [̃, ] of A ∈N and B ∈M is defined by

[̃A,B] = [A+αc,B+βc] = [A,B]+ρ(A,B)c.

We note that the Ñ algebra is a non-trivial central extension of N while the subalgebra M̃ f = M f ⊕Cc, is a trivial central

extension of

M f = {(ai j) ∈M : (i, j) 7−→ (ai j) with finished support}.

Let’s put Ei = ∑
n∈Z

en,n+i, where ei,i = (δki.δi j)kl are the elementary matrices defined above. The subspace E =
⊕

i∈ZCEi, is a

commutative subalgebra of N . The subalgebra of N defined by setting Ẽ = E⊕Cc is called Heisenberg subalgebra. We have

˜[Ei,E j] = iδi,− jc. (5.3)

We now reconsider the previous example and replace q(x) with the Fourier series (5.1). Let H be a functional of q. Its Fréchet

derivative in terms of the coordinates ϕk is written

δH

δq
=

∞

∑
k=−∞

δH

δϕk

.
∂ϕk

∂q
= α−1

∞

∑
k=−∞

δH

δϕk

eikx. (5.4)

We substitute (5.3) and (5.1) in equation (5.2) and we specify the Fourier coefficients; we get the relation α
∂ϕn

∂ t
=−iα−1n

∂H

∂ϕn

.

Moreover, since the symplectic structure is given by the matrix of the Poisson brackets, we also have

∂ϕn

∂ t
=

∞

∑
m=−∞

{ϕn,ϕm}1
∂H

∂ϕm

.

Therefore, {ϕn,ϕm}1 =−iα−2nδm+n,0. By putting −iα−2 = 1, we obtain the Heisenberg algebra (where {,} plays the role

here of the bracket [̃, ] (5.3) above).

c) Let Diff(S1) be the group of diffeomorphisms of the unit circle : S1 = {z ∈ C : |z|= 1}. Let

F =

{
f (z)

d

dz
: f (z) ∈ C[z,

1

z
]

}
,

be the set of vector fields (Laurent’s polynomials). Note that F can be seen as the tangent space Diff(S1) at its unit point, so F

is a Lie algebra with respect to the bracket [, ]. By setting ϕm =−zm+1 d

dz
, we obtain

[ϕm,ϕn] =
(
(n+1)zm+n+1− (m+1)m+n+1

) d

dz
=−(m+n)zm+n+1 d

dz
,

i.e., [ϕm,ϕn] = (m− n)ϕm+n. We show that H2(F,C) ∼= C and ρ(ϕm,ϕn) =
1

12
(m3−m)δm,−n. The vector space F ⊕Cc is

called Virasoro algebra, it is a central extension of the algebra of complex vector fields on the circle. The bracket is given by

the formula

[ϕm,ϕn] = (m−n)ϕm+n +
c

12
(m3−m)δm,−n. (5.5)

Let us now consider the example of the KdV equation. We have N = 2 and

dq

dt
=

dL

dt
= (L∇H)+−L(∇HL)+ =

(
∂ 3 +2(∂q+q∂ )

) δH

δq
.

The (Poisson) bracket is written in this case

{H,F}2 =
∫

δH

δq

(
∂ 3 +2(∂q+q∂ )

) δF

δq
,
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and we have {q(x),q(y)}2 =
(
∂ 3 +2(∂q+q∂ )

)
δ (x− y). By reasoning as before (while taking into account the Fréchet

derivative (5.4)), we obtain

α
∂ϕm

∂ t
= i∑

n

(n−m)ϕm+n

δH

δϕn

+
i

2α
(m3−4βm)

δH

δϕ−m

,

where (ϕk)k∈Z are the Fourier coefficients of q. By setting 4β = 1, α =
6i

c
and taking into account the Fourier series (5.1), we

obtain

∂

∂ t




...

ϕm

...


=




−nth column nth column

↓ ↓
mth line −→ c

12
(m3−m) ... (m−n)ϕm+n







...
δH
δϕm

...


 .

Consequently, we have {ϕm,ϕn}2 = (m−n)ϕm+n +
c

12
(m3−m)δm+n,0, i.e., the Virasoro structure [19] (where {,}2 plays the

role here of the bracket [, ] (5.5) above). This establishes the theorem.

For N = 3, u≡ u2, v≡ u3, L = ∂ 3 +u∂ + v, and L
2
3 = ∂ 3 +

2

3
u, the flow (5.2) takes the form

∂u

∂ t2
=−∂ 2u

∂x2
+2

∂v

∂x
,

∂v

∂ t2
=

∂ 2v

∂x2
− 2

3

∂ 3u

∂x3
− 2

3
u

∂u

∂x
.

Eliminating v from these equations yields the Boussinesq equation

3

(
∂u

∂ t2

)2

+
∂ 2

∂x2

(
∂ 2u

∂x2
+2u2

)
= 0.

6. KP hierarchy and vertex operators

Consider the pseudo-differential operator of infinite order

L = ∂ +u1∂−1 +u2∂−2 + ..., ∂ ≡ ∂

∂x
(6.1)

where u1,u2, ... are functions of class C ∞ depending on an infinity of independent variables x ≡ t1, t2, .... The compound

operator Ln is calculated according to the rules (4.1) and (4.2). We obtain

Ln = ∂ n + pn,2∂ n−2 + ...+ pn,n + pn,n+1∂−1 + ...= ∂ n +
n

∑
j=2

pn, j∂
n− j +

∞

∑
j=1

pn,n+ j∂
− j,

where pn, j are polynomials in u j and their derivatives in relation to x. The differential part Ln
+ of Ln being equal to Ln

+ =

∂ n +
n

∑
j=2

pn, j∂
n− j, we have

L1
+ = ∂ , L2

+ = ∂ 2 +2u2, L3
+ = ∂ 3 +3u2∂ +3(u3 +∂u2), ... (6.2)

The dependency between the functions u1,u2, ... and the variables x = t1, t2, ... is provided by the following system of partial

differential equations :

∂L

∂ tn
= [Ln

+,L], n ∈ N∗ (6.3)

The set of these equations is called Kadomtsev-Petviashvili hierarchy (abbreviated KP hierarchy). It is a hierarchy of isospectral

deformations of the pseudo-differential operator (6.1). We prove (see [34]) the following result :
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Theorem 6.1. There is an equivalence between (6.3) and the equations

∂

∂ tn
Lm
+−

∂

∂ tm
Ln
+ = [Ln

+,L
m
+], (6.4)

as well as their dual forms

∂

∂ tn
Lm
−−

∂

∂ tm
Ln
− =−[Ln

−,L
m
−], (6.5)

where Ln
− = Ln−Ln

+. Equations (6.3) determine an infinite number of commutative vector fields on algebra A = A+⊕A−.

Proof. Note that since Ln = Ln
++Ln

−, then
∂L

∂ tn
= [Ln

+,L] =−[Ln
−,L] ∈A−. Equation (6.3) defines an infinite number of vector

fields on A . Since
∂

∂ tn
and [Ln

+, .] are derivations, then

∂Lm

∂ tn
= [Ln

+,L
m
+]+ [Ln

+,L
m
−],

= −[Ln
−,L

m
+]− [Ln

−,L
m
−],

=
1

2

(
[Ln

+,L
m
+]− [Ln

−,L
m
+]
)
+

1

2

(
−[Ln

−,L
m
−]+ [Ln

+,L
m
−]
)
,

=
1

2

(
[Ln

+,L
m
+]− [Ln

−,L
m
−]
)
+

1

2

(
[Lm

+,L
n
−]− [Lm

−,L
n
+]
)
.

Similarly, we have (just swap n and m)

∂Ln

∂ tm
=

1

2

(
[Lm

+,L
n
+]− [Lm

−,L
n
−]
)
+

1

2

(
[Ln

+,L
m
−]− [Ln

−,L
m
+]
)
.

Hence,
∂Lm

∂ tn
− ∂Ln

∂ tm
= [Ln

+,L
m
+]− [Ln

−,L
m
−]. Or

∂Lm

∂ tn
− ∂Ln

∂ tm
=

∂

∂ tn
Lm
++

∂

∂ tn
Lm
−−

∂

∂ tm
Ln
+−

∂

∂ tm
Ln
− =

∂

∂ tn
Lm
+−

∂

∂ tm
Ln
++

∂

∂ tn
Lm
−−

∂

∂ tm
Ln
−,

then

∂

∂ tn
Lm
+−

∂

∂ tm
Ln
+− [Ln

+,L
m
+] =−

∂

∂ tn
Lm
−+

∂

∂ tm
Ln
−− [Ln

−,L
m
−].

Since the expression on the left belongs to A+ and the one on the right belongs to A−, then the result comes from the

decomposition A = A+⊕A− since obviously A+ ∩A− = /0. To show that the vector fields defined by these equations

commute, we put X(L) = [Lm
+,L] and Y (L) = [Ln

+,L]. Hence,

[X ,Y ](L) = (XY −Y X)(L),

= X
(
[Ln

+,L]
)
−Y

(
[Lm

+,L]
)
,

=
[
X(Ln

+)−Y (Lm
+),L

]
+
[
Ln
+,X(L)

]
−
[
Lm
+,Y (L)

]
,

=
[
X(Ln

+)−Y (Lm
+),L

]
+
[
Ln
+, [L

m
+,L]

]
−
[
Lm
+, [L

n
+,L]

]
,

=
[
X(Ln

+)−Y (Lm
+)− [Lm

+,L
n
+],L

]
,

according to Jacobi’s identity and taking into account (6.4), we deduce that the vector fields in question commute.

By specifying the quantifiers of ∂ k in (6.4), one obtains an infinity of nonlinear partial differential equations [5] forming the

Kadomtsev-Petviashvili hierarchy. These equations connect infinitely many functions u j to infinitely many variables t j. For

example, for m = 2, n = 3, relations (6.4) and (6.2) determine two expressions based on u2 and u3. After eliminating u3, we

immediately obtain the Kadomtsev-Petviashvili equation (KP equation) :

3
∂ 2u2

∂ t2
2

− ∂

∂ t1

(
4

∂u2

∂ t3
−12u2

∂u2

∂ t1
− ∂ 3u2

∂ t3
1

)
= 0. (6.6)
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We can obtain particular solutions of this equation by solving the equations :

∂u2

∂ t2
= 0, 4

∂u2

∂ t3
−12u2

∂u2

∂ t1
− ∂ 3u2

∂ t3
1

= 0.

The second equation is precisely the KdV equation. The KP equation is therefore a generalization of the KdV equation, to

which it is reduced when
∂u2

∂ t2
= 0.

Equations (6.3) and (6.4) (see also (6.5)) imply the existence of the following pseudo-differential operator of degree 0

(wave operator) W ∈I +A− :

W = 1+w1(t)∂
−1 +w2(t)∂

−2 + · · · (6.7)

with t = (t1, t2, ...) ∈ C∞. The inverse W−1 of W is also a pseudo-differential operator of the form

W−1 = 1+ v1(t)∂
−1 + v2(t)∂

−2 + · · · ,
and can be calculated term by term. Indeed, by definition, we have WW−1 = 1. So, using the fact that

∂ mu =
∞

∑
k=0

m!

k!(m− k)!
(∂ ku∂ u)∂ m−ku, ∂ m∂ n = ∂ m+n,

as well as the formulas described above, we specify the quantifiers of ∂−1, ∂−2,... in the equation WW−1 = 1 and we determine

relations between wm et vm. We obtain finally for W−1 the following expression :

W−1 = 1−w1∂−1 +(−w2 +w2
1)∂
−2 +(w3 +2w1w2−w1∂w1−w3

1)∂
−3 + · · ·

In terms of W , the operator L (6.1) can be written in the form

L =W.∂ .W−1. (6.8)

According to (6.1) and ((6.7), we deduce the relations :

u2 = ∂w2, u3 =−∂w2−w1∂w1, u4 =−∂w3 +w1∂w2 +(∂w1)w2−w2
1∂w1− (∂w1)

2.

We have the following result :

Theorem 6.2. Equations (6.3) or what amounts to the same equations (6.4)) are equivalent to the existence of the wave

operator W (6.7) such that the system of differential equations

LW =W∂ , (6.9)

∂W

∂ tn
=−Ln

−W, (6.10)

has a solution (which can be inductively obtained).

Theorem 6.3. a) Let ξ (t,z) =
∞

∑
j=1

t jz
j, z ∈ C be the phase function with ∂ mξ (t,z) = zm and ∂ meξ (t,z) = zmeξ (t,z). There is an

equivalence between (6.6), (6.10) and the following problem : there is a wave function ψ (Baker-Akhiezer function)

Ψ(t,z) =
(
1+w1(t)z

−1 +w2(t)z
−2 + · · ·

)
eξ (t,z) =Weξ (t,z), z ∈ C (6.11)

where W is identified as (6.7) and such that :

LΨ = zΨ,
∂Ψ

∂ tn
= Ln

+Ψ. (6.12)

b) Introduce the conjugation ∂ ∗ =−∂ and let

L∗ = 1+(−∂ )−1u1 +(−∂ )−2u2 + · · · , W ∗ = 1+(−∂ )−1w1 +(−∂ )−2w2 + · · ·
be the adjoints of L and W such that : L∗ =−(W ∗)−1.∂ .W ∗. The adjoint wave function

Ψ∗(t,z) = (W ∗(t,∂ ))−1
e−ξ (t,z),

satisfies the following relations : L∗Ψ∗ = zΨ∗,
∂Ψ∗

∂ tn
=−(Ln

+)
∗Ψ∗.
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Proof. a) Indeed, we have from (6.11),

∂Ψ

∂ tn
=

∂W

∂ tn
eξ (t,z)+Wzneξ (t,z),

= −Ln
−Weξ (t,z)+ znWeξ (t,z), according to (6.8)

= −Ln
−Ψ+ znΨ, according to (6.9)

= −Ln
−Ψ+LnΨ, according to (6.10)

= Ln
+Ψ.

In other words, Ψ satisfies (6.11) and (6.12) is equivalent to the fact that W satisfies (6.7) and (6.10).

b) Just reason as in the proof of a).

Therefore, the knowledge of Ψ implies the knowledge of W and also of W ∗ and L. Define the following residues :

Res
z

∑akzk = a−1, Res
∂

∑ak∂ k = a−1 and consider the following result [33],

Theorem 6.4. Let P and Q be two pseudo-differential operators. So

Res
z
((Pexz).(Qe−xz)) = Res

∂
PQ∗,

where Q∗ is the adjoint of Q.

Proof. Indeed, we have

Res
z
((Pexz).(Qe−xz)) = Res

z

(
∑ pkzk ∑ql(−z)l

)
= ∑

k+l=−1

(−1)l pkql ,

and

Res
∂

PQ∗ = Res
∂

∑
kl

pk∂ k(−∂ )lql = ∑
k+l=−1

(−1)l pkql ,

hence the result.

Moreover, we have [33, 34] :

Res
z

(∂ kΨ).Ψ∗ = Res
z

(
∂ kWeξ (t,z)

)
(W ∗)−1e−ξ (t,z),

= Res
z

(
∂ kWexz

)
(W ∗)−1e−xz, x≡ t−1,

= Res
∂

∂ kW.W−1,

= Res
∂

∂ k,

= 0.

This bilinear identity can be written in the following symbolic form :

Res
z=∞

(
Ψ(t,z).Ψ∗(t ′,z)

)
= 0,

for all t and t ′. Therefore, we have

Theorem 6.5. Ψ(t,z) is a wave function for the KP hierarchy if and only if the residue identity is satisfied :

Res
z=∞

(
Ψ(t,z).Ψ∗(t ′,z)

)
= 0 ∀t, t ′ (6.13)

or what amounts to the same if and only if

1

2π
√
−1

∫

γ
Ψ(t,z).Ψ∗(t ′,z)dz = 0, (6.14)

with γ a closed path around z = ∞ (such that :

∫

γ

dz

2π
√
−1

= 1).
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Recall that a τ(t) function is defined by the Fay differential identity (see next theorem) :

{τ(t− [y1]),τ(t− [y2])}+(y−1
1 − y−1

2 )(τ(t− [y1])τ(t− [y2])− τ(t)τ(t− [y1]− [y2])) = 0,

où y1,y2 ∈ C∗ and {u,v} is the Wronskian u′v−uv′.

Theorem 6.6. Let’s put [s] =
(

s, s2

2
, s3

3
, ...
)

. The τ function satisfies the following identities :

(i) Fay identity :

F (t,y0,y1,y2,y3) ≡ (y0− y1)(y2− y3)τ(t +[y0]+ [y1])τ(t +[y2]+ [y3])

+(y0− y2)(y3− y1)τ(t +[y0]+ [y2])τ(t +[y2]+ [y1])

+(y0− y3)(y1− y2)τ(t +[y0]+ [y3])τ(t +[y1]+ [y2])

= 0.

(ii) Fay differential identity :

{τ(t− [y1]),τ(t− [y2])}+(y−1
1 − y−1

2 )(τ(t− [y1])τ(t− [y2])− τ(t)τ(t− [y1]− [y2])) = 0,

where y1,y2 ∈ C∗ and {u,v} is the Wronskian u′v−uv′. This identity can still be written in the form

∂−1ψ(t,λ )ψ∗(t,µ) =
1

µ−λ

τ
(
t− [λ−1]+ [µ−1]

)

τ(t)
e∑

∞
j=1 t j(µ

j−λ j).

The following equation τ̇ = X(t,λ ,µ)τ , determines a vector field on the infinite dimension manifold of the τ functions where

X(t,λ ,µ) is the vertex operator (of Date-Jimbo-Kashiwara-Miwa) for the KP equation .

Proof. According to Sato theory [35, 36], the functions Ψ and Ψ∗ can be expressed in terms of a tau function as follows :

Ψ(t,z) =Weξ (t,z) =
τ(t− [z−1])

τ(t)
eξ (t,z),

Ψ∗(t,z) = (W ∗)−1e−ξ (t,z) =
τ(t +[z−1])

τ(t)
e−ξ (t,z).

By replacing these expressions in the residue formula (6.13) or (6.14), we obtain a bilinear relation for the τ functions. Indeed,

the equation (6.14) is written

∫

γ
eξ (t−t ′,z)τ(t− [z−1])τ(t ′− [z−1])dz = 0.

‘Using the following change : t← t + s and t ′← t + s, we obtain

∫

γ
eξ (−2s,z)τ(t− s− [z−1])τ(t + s+[z−1])dz = 0.

Using again the transformation

s← t +
1

2
([y0]+ [y1]+ [y2]+ [y3]), t← 1

2
([y0]− [y1]− [y2]− [y3]),

and taking into account that e∑
∞
1 (ab−1) j . j−1

= 1−ab−1, we obtain via the residue theorem

0 =
∫

γ

1− zy0

∏
3
j=1(1− zy j)

τ(t− s− [z−1])τ(t + s+[z−1])dz,

= 2π
√
−1∑ Res

y−1
1 ,y−1

2 ,y−1
3

(
1− zy0

∏
3
j=1(1− zy j)

τ(t− s− [z−1])τ(t + s+[z−1])

)
,

=
2π
√
−1

(y1− y2)(y2− y3)(y3− y1)
F (t,y0,y1,y2,y3),
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where

F (t,y0,y1,y2,y3) ≡ (y0− y1)(y2− y3)τ(t +[y0]+ [y1])τ(t +[y2]+ [y3])

+(y0− y2)(y3− y1)τ(t +[y0]+ [y2])τ(t +[y2]+ [y1])

+(y0− y3)(y1− y2)τ(t +[y0]+ [y3])τ(t +[y1]+ [y2]).

The relation F (t,y0,y1,y2,y3) = 0 is the Fay identity. By making the transformation in the expression (y1y2)
−1 ∂F

∂y0
|y0=y3=0

and replacing t by t− [y1]− [y2], we obtain the Fay differential identity which allows to define the τ functions :

{τ(t− [y1]),τ(t− [y2])}+(y−1
1 − y−1

2 )(τ(t− [y1])τ(t− [y2])− τ(t)τ(t− [y1]− [y2])) = 0,

where y1,y2 ∈ C∗ and {u,v} is the Wronskian u′v−uv′. Consider the Fay differential identity above and replace t with t +[y1].
We obtain

{τ(t),τ(t +[y1]− [y2])}+(y−1
1 − y−1

2 )(τ(t)τ(t +[y1]− [y2])− τ(t)τ(t− [y2])) = 0.

By putting λ = y−1
1 , µ = y−1

2 , we obtain after having multiplied the expression obtained by
1

τ(t)
e∑

∞
1 t j(µ

j−λ j), the following

formula :

τ(t +[λ−1])

τ(t)
e−∑ t jλ

j τ(t− [µ−1])

τ(t)
e∑ t jµ

j

=
1

µ−λ

∂

∂x

(
e∑ t j(µ

j−λ j) τ(t +[λ−1]− [µ−1])

τ(t)

)
.

Let

X(t,λ ,µ) =
1

µ−λ
e∑

∞
1 t j(µ

j−λ j)e
∑

∞
1 j−1(λ− j−µ− j) ∂

∂ t j , λ 6= µ,

be the vertex operator (of Date-Jimbo-Kashiwara-Miwa) for the KP equation, then X(t,λ ,µ)τ et τ +X(t,λ ,µ)τ are also τ
functions. Therefore, τ̇ = X(t,λ ,µ)τ determines a vector field on the infinite dimension manifold of functions τ . We deduce,

according to [33], that ∂−1 (Ψ∗(t,λ )Ψ(t,µ)) =
1

τ(t)
X(t,λ ,µ)τ(t).

Let ∆(s1, ...,sn) = ∏
1≤ j<i≤n

(s−1
i − s−1

j ), be the Vandermonde determinant. Fay identities (theorem 6.6) are generalized as

follows. The τ function satisfies identities :

τ

(
t−

n

∑
j=1

[y j]

)
∆(y1, ...,yn)

((
t−

n

∑
j=1

[y j]

)
∆(x1, ...,xn)

)n−1

= det

((
t−

n

∑
j=1

[xk]+ [x j]− [yl ]

)
∆(x1, ...,x j+1,y j,x j+1, ...,xn)

)

1≤ j,l≤n

,

and

{ψ(t,y−1
1 , ...,ψ(t,y−1

n }= e∑
∞
j=1t j(y

− j
1 + · · ·+ y− j

n )
τ(t− [yl ]−·· ·− [yn]

τ(t)
∆(y1, ...,yn),

where {u1, ...,un} is the Wronskian det

((
∂
∂x

) j−1

u j

)

1≤i, j≤n

.

We will see that τ functions characterize the KP hierarchy. Let s j(t) denote the elementary Schur polynomials, i.e.,

polynomials such that :

eξ (t,z) = e∑
∞
j=1 t jz j =

∞

∑
j=1

s j(t)z j = 1+ t1z+

(
1

2
t2
1 + t2

)
z2 +

(
1

6
t3
1 + t1t2 + t3

)
z3 + · · ·



KP-KdV Hierarchy and Pseudo-Differential Operators — 102/104

with s j(t) =
t

j
1

j!
+ · · ·+ tn. By setting ∂̃ =

(
∂

∂ t1
,

1

2

∂

∂ t2
,

1

3

∂

∂ t3
, ...

)
, we obtain

Ψ(t,z) =
τ
(

t1− z−1, t2− z−2

2
, t3− z−3

3
, ...
)

τ(t)
eξ (t,z) =

∞

∑
j=0

s j(−∂̃ )τ(t)

τ(t)
∂− jeξ (t,z) =W (t)eξ (t,z),=

where W (t) =
∞

∑
j=0

s j(−∂̃ )τ(t)

τ(t)
∂− j, is the wave operator (6.7). Similarly, we have

W−1 =
∞

∑
j=0

∂− j s j(∂̃ )τ(t)

τ(t)
. (6.15)

It follows from (6.8) that Ln =W.∂ n.W−1 and Ln is expressed in terms of the τ function, Ln =
∞

∑
i, j=0

si(−∂̃ )τ

τ
∂ n−i− j s j(∂̃ )

τ
τ . By

developing this expression, we get

Ln = ∂ n +n(logτ)′′∂ n−2 + · · ·+ ∑
i+ j=n+1

si(∂̃ )τs j(−∂̃ )τ

τ2
+ · · ·

The formula (6.10) is written taking into account this last expression of Ln and the relation (6.15) as follows :

∂

∂ tn

(
1− τ ′

τ
∂−1 + · · ·

)
=

(
− ∑

i+ j=n+1

si(−∂̃ )τs j(−∂̃ )τ

τ2
∂−1 + · · ·

)(
1− τ ′

τ
∂−1 + · · ·

)
.

Using the Hirota symbol1, we have

∑
i+ j=n+1

i, j≥0

(
si(∂̃ )τ

)(
s j(−∂̃ )τ

)
= sn+1(∂̃ )τ.τ,

and we obtain

τ2 ∂ 2

∂ tn∂ t1
logτ− ∑

i+ j=n+1
i, j≥0

si(∂̃ )τs j(−∂̃ )τ = 0, n ∈ N∗.

These relations are called Hirota bilinear equations. They show that all the functions, j ≥ 2, can be expressed in terms of the τ
function. For example,

u2 =
∂ 2

∂ t2
1

logτ , u3 =
1

2

(
∂ 3

∂ t3
1

+
∂

∂ t1

∂

∂ t3

)
logτ, u4 =

1

6

(
∂ 4

∂ t4
1

−3
∂ 2

∂ t2
1

∂

∂ t2
+2

∂

∂ t1

∂

∂ t2

)
logτ−

(
∂ 2

∂ t2
1

logτ

)
, ...

In particular, these equations provide the KP equation in the following bilinear form :

1

12
τ

(
∂ 4τ

∂ t4
1

−4
∂ 2τ

∂ t1∂ t3
+3

∂ 2τ

∂ t2
2

)
− 1

3

∂τ

∂ t1

(
∂ 3τ

∂ t3
1

− ∂τ

∂ t3

)
+

1

4

(
∂ 2τ

∂ t2
1

+
∂τ

∂ t2

)(
∂ 2τ

∂ t2
1

− ∂τ

∂ t2

)
= 0.

Therefore, we have

Theorem 6.7. The τ functions characterize the KP hierarchy.

The equations of soliton theory play an important role in the characterization of Jacobian varieties. Let

Hg = {Z ∈Mg(C) : Ω = Ω⊤, IΩ > 0},
1 p(∂t) f (t).g(t)≡ p

(
∂

∂ s1
, ∂

∂ s2
, ...
)

f (t + s)g(t− s)
∣∣∣
s=0

where p is any polynomial, f (t) and g(t) are two differentiable functions.
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be the Siegel half-space, Λ = Zg⊕ ZZg a lattice in Cg and T = Cg/Λ a principally polarised Abelian variety. We show

[24, 37] that the following three conditions are equivalent : (i) There are vector fields v1,v2,v3 on Cg and a quadratic form

q(t) =
3

∑
k,l=1

qkl(t)tktl , such that : for all z ∈ Cg, the function τ(t) = eq(t)θ

(
3

∑
k=1

tkvk + z

)
, satisfies the KP equation. The theta

divisor does not contain an Abelian subvariety of T for which the vector v1 is tangent. (ii) T is isomorphic to the Jacobian

variety of a reduced non-singular complete curve of genus g. (iii) There is a matrix V = (v1,v2, ...) of order g×∞, vk ∈ Cg,

of rank g and a quadratic form Q(t) =
∞

∑
k,l=1

qkl(t)tktl , such that: for all z ∈ Cg, τ̃(t) = eQ(t)θ (V t + z), is a τ function for KP

hierarchy.
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[30] I. M. Gel’fand, L. Dickey, Family of Hamiltonian structures connected with integrable nonlinear differential equations,

Funct. Anal. Appl., 2 (1968), 92-93.

[31] L. Dickey, Soliton equations and integrable systems, World Scientific, 1991.

[32] L. Dickey, Additional symmetries of KP, Grassmannian and the string equation, Mod. Phys. Lett., A 8 (1993), 1259-1272.

[33] L. Dickey, Lectures on classical W-algebras, Acta Appl. Math., 47 (1997), 243-321.

[34] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Transformation groups for soliton equations, Proc. RIMS Symp. Nonlinear

integrable systems (Kyoto, 1981). Classical and quantum theory, Singapore, World Scientific (1983), 39-119.

[35] M. Sato, The KP hierarchy and infinite-dimensional Grassmann manifolds, Proc. of Sympos. Pure Math., 49 (1989), 51-66.

[36] M. Sato, Y. Sato, Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds, Lect. Notes in

Num. Appl. Anal., 5 (1982), 259-271.

[37] T. Shiota, Characterization of jacobian varieties in terms of soliton equations, Invent. Math., 83 (1986), 333-382.



Communications in Advanced Mathematical Sciences

Vol. II, No. 2, 105-113, 2019

Research Article

e-ISSN:2651-4001

DOI: 10.33434/cams.486401

Construction of Exact Solutions to Partial

Differential Equations with CRE Method
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1. Introduction

Nonlinear evolution equations (NLEEs) in mathematical physics play a vital role in different fields, such as fluid mechanics,

plasma physics, optical fibers, solid state physics, chemical kinematic, chemical physics and geochemistry. Since obtaining

exact solutions of NLEEs come into prominence, there become significant improvements in this domain[1]. Many effective and

powerful methods have been established and improved, such as modified simple equation method [2], symmetry reduction

method[3], trial equation method [4], the (G′/G)-expansion method [5], sub equation method [6], exp(−Φ(ξ )) method[7],

functional variable method[8], first integral method[9], modified exp-function method [10] and so on.

The aim of this paper is search new solutions of (1+1) dimensional nonlinear dispersive modified Benjamin Bona Mahony

(DMBBM) equation and modified Korteweg-de Vries (mKdV)-Burgers equation with consistent Riccati expansion (CRE)

method. In section 2, we give the definition of the method. In section 3, there found solutions of the given equations. In section

4, conslusions are given.

2. Consistent Riccati expansion (CRE) method

Lets assume that we have a nonlinear differential equation, remark in the independent variables x and t and dependent

variable u, given by

F (u,ux,ut ,uxx,utt , ...) = 0, (2.1)

where F is a polynomial of u(x, t) and its various partial derivatives including the highest order derivatives and nonlinear terms.



Construction of Exact Solutions to Partial Differential Equations with CRE Method — 106/113

According to the algoritm, we can seek for the solutions of Eq. (2.1) in the form

u =
n

∑
i=0

ui (x, t)Ri (w) , (2.2)

where ui (i = 0, ...,n) are functions to be detected later and the positive integer n can be detected by using homogeneous balance

method. Here R(w) is a solution of the Riccati equation

Rw = a0 +a1R+a2R2 (2.3)

where a0,a1,a2 are parameters to be determined and w is an undetermined function of x and t.
The positive integer n can be detected by considering the homogeneous balance between the highest order derivative term

with the highest order nonlinear term appearing in Eq. (2.1). Then by sett ing Eq. (2.2) along with Eq. (2.3) into Eq. (2.1) and

equating the coefficients of all powers of R(w) to zero yields a set of algebraic equations for unknowns ui,a0,a1 and a2[11, 12].

3. Exercises

In this part, we have dealed with two partial differential equations as an application of the CRE method.

3.1 (1+1) dimensional nonlinear dispersive modified Benjamin Bona Mahony (DMBBM) equation

Firstly, we look at the (1+1) dimensional nonlinear dispersive modified Benjamin Bona Mahony (DMBBM) equation [13]

ut +ux −αu2ux +uxxx = 0, (3.1)

where where α is a nonzero constant. This equation was first derived to describe an approximation for surface long waves in

nonlinear dispersive media. It can also characterize the hydro magnetic waves in cold plasma, acoustic waves in inharmonic

crystals and acoustic gravity waves in compressible fluids [14].

Here, it is clear from the homogoneous balance principle that the balancing number is 1. From here, we infer from that the

exact solution of Eq. (3.1) is

u(x, t) = u0 (x, t)+u1 (x, t)R(w(x, t)) (3.2)

where u0 (x, t) and u1 (x, t) are functions to be determined later. Setting Eq. (3.2) and its derivatives with the condition Eq. (2.3)

into Eq. (3.1) and gathering all terms with the same power of R(w) ,(i = 0,1, ...,4), we obtain the following system

R4 (w) : 6u1w3
xa3

2 −αu3
1wxa2 = 0, (3.3)

R3 (w) : −2αu0u2
1wxa2 +6(u1)x w2

xa2
2 +12u1w3

xa1a2
2 +6u1wxwxxa2

2

−αu2
1 (u1)x −αu3

1wxa1 = 0,
(3.4)

R2 (w) : 9(u1)x w2
xa1a2 +8u1w3

xa0a2
2 −αu2

0u1wxa2 +9u1wxwxxa1a2

−αu2
1 (u0)x +u1wxa2 −2αu0u2

1wxa1 +u1wta2 −αu3
1wxa0

+7u1w3
xa2

1a2 +3(u1)xx wxa2 −2αu0u1 (u1)x

+3(u1)x wxxa2 +u1wxxxa2 = 0,

(3.5)

R1 (w) : (u1)xxx +u1wta1 +3(u1)x wxxa1 +3u1wxwxxa2
1

+(u1)t −αu2
0u1wxa1 +8u1w3

xa1a2a0

−2αu0u2
1wxa0 −2αu0u1 (u0)x +u1w3

xa3
1 +(u1)x

+6(u1)x w2
xa2a0 +6u1wxwxxa2a0 +u1wxxxa1

+3(u1)xx wxa1 +3(u1)x w2
xa2

1 +u1wxa1 −αu2
0 (u1)x = 0,

(3.6)

R0 (w) : 3(u1)x w2
xa1a0 +u1wxxxa0 +3u1wxwxxa1a0

+(u0)x +(u0)t +(u0)xxx +3(u1)xx wxa0 +u1wta0

+3(u1)x wxxa0 −αu2
0 (u0)x +u1w3

xa2
1a0

+u1wxa0 +2u1w3
xa2a2

0 −αu2
0u1wxa0 = 0.

(3.7)
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From the Eq. (3.3), we get

u1 (x, t) =
√

6

√

1

α
a2wx. (3.8)

If we substitute Eq. (3.8) in Eq. (3.4), we obtain

u0 (x, t) =

√
6

√

1
α wxx

2wx

+
√

6

√

1

α
a1wx −

1

2
wxα

√
6

√

(

1

α

)3

a1. (3.9)

When we substitute Eq. (3.8) and Eq. (3.9) in Eq. (3.5), we get following partial differential equation

wtwx =−
4a2w4

xa0 −w4
xa2

1 −3w2
xx +2wxwxxx +2w2

x

2
. (3.10)

If we use Eq. (3.10) in Eq. (3.6) and Eq. (3.7), these Eqs. are equal to zero.

If w is a solution of Eq. (3.10), then

u =

√
6

√

1
α wxx

2wx

+
√

6

√

1

α
a1wx −

1

2
wxα

√
6

√

(

1

α

)3

a1 +
√

6

√

1

α
a2wxR (3.11)

is a solution of the DMBBM equation with R ≡ R(w) being a solution of the Riccati equation (2.3).

We suppose that w(x, t) be of the form

w(x, t) = acosh(kx+ lt +ξ )+bsinh(kx+ lt +ξ )+ r (3.12)

where a,b,k, l and r are constants to be determined later and ξ is an arbitrary constant. Setting Eq. (3.12) into Eq. (3.10) , we

obtain the following equations

−
k
(

16a2a0a3k3b−4a2
1ak3b3 −4a2

1a3k3b+16a2a0ak3b3
)

2
= 0,

−
k
(

−16a2a0a3k3b+4alb+4a2
1a3k3b−2ak3b+4akb

)

2
= 0,

−
k
(

−a2
1a4k3 +24a2a0a2k3b2 −a2

1b4k3
)

2

−
k
(

−6a2
1a2k3b2 +4a2a0b4k3 +4a2a0a4k3

)

2
= 0,

−
k
(

2a2
1a4k3 +6a2

1a2k3b2 −8a2a0a4k3 +2a2k+2b2k
)

2

−
k
(

−b2k3 −a2k3 +2a2l −24a2a0a2k3b2 +2b2l
)

2
= 0,

−
k
(

−a2
1a4k3 −2a2k−2a2l −2a2k3 +4a2a0a4k3 +3b2k3

)

2
= 0

Solving above system, we get the following two solutions.

State 1:

a = b, a0 =
a2

1
4a2

, a1 = a1, a2 = a2, b = b,

k = k, ξ = ξ , l =
k(k2−2)

2
, r = r.

(3.13)

State 2:

a =−b, a0 =
a2

1
4a2

, a1 = a1, a2 = a2, b = b,

k = k, ξ = ξ , l =
k(k2−2)

2
, r = r.

(3.14)
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Combining Eq. (3.11), Eq. (3.12) with Eq. (3.13) and Eq. (3.14), two families of exact explicit solutions to the DMBBM

equation are obtained

u(x, t) =
1

2

√
6

√

1

α
k (a1bcosh(β )+1+a1bsinh(β ))

+
√

6

√

1

α
a2 (bk sinh(β )+bk cosh(β ))

×R(bcosh(β )+bsinh(β )+ r)

and

u(x, t) =
1

2

√
6

√

1

α
k (a1bcosh(β )−1−a1bsinh(β ))

+
√

6

√

1

α
a2 (−bk sinh(β )+bk cosh(β ))

×R(−bcosh(β )+bsinh(β )+ r) .

where β = kx− kt +
k3t

2
+ξ .

We suppose that w(x, t) be of the form

w(x, t) = Aexp(k1x+ l1t +ξ1)+Bexp(k2x+ l2t +ξ2)+C (3.15)

where A,B,C,ki and li are constants to be determined later and ξi are an arbitrary constant. Setting Eq. (3.15) into Eq. (3.10) ,

we get the following system

a2
1B4k4

2

2
−2a2a0B4k4

2 = 0,

−8a2a0Ak1B3k3
2 +2a2

1Ak1B3k3
2 = 0,

−12a2a0A2k2
1B2k2

2 +3a2
1A2k2

1B2k2
2 = 0,

−B2k2
2 +

1
2
B2k4

2 −B2l2k2 = 0,

−8a2a0A3k3
1Bk2 +2a2

1A3k3
1Bk2 = 0,

−Al1Bk2 −Ak3
1Bk2 −Bl2Ak1 −Bk3

2Ak1 +3Ak2
1Bk2

2 −2Ak1Bk2 = 0,

a2
1A4k4

1

2
−2a2a0A4k4

1 = 0,

A2k4
1

2
−A2k2

1 −A2l1k1 = 0.

Solving above system, one gets the following set of solution.

A = A, B = B, C =C, a0 =
a2

1
4a2

, a1 = a1, a2 = a2, k1 = k2,

k2 = k2, l1 =−k2 +
k3

2
2
, l2 =−k2 +

k3
2
2
, ξ1 = ξ1, ξ2 = ξ2

(3.16)
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Combining Eq. (3.11), Eq. (3.15) with Eq. (3.16), exact explicit solution is obtained

u(x, t) =
k2

√
6

2

√

1

α
(Aa1 exp(β +ξ1)+Ba1 exp(β +ξ2)+1)

+a2

√
6

√

1

α
(Ak2 exp(β +ξ1)+Bk2 exp(β +ξ2))

×R(Aexp(β +ξ1)+Bexp(β +ξ2)+C)

where β = k2x+
(

−k2 +
k3

2
2

)

t.

3.2 Modified Korteweg-de Vries (mKdV)-Burgers equation

mKdV-Burgers equation is given by [15]

ut +qu2ux + ruxx − suxxx = 0 (3.17)

where q, r and s are arbitrary constants. According to the homogeneous balance method, we get the balancing number as n = 1.

From here, we infered that the exact solution of Eq. (3.17) is

u(x, t) = u0 (x, t)+u1 (x, t)R(w(x, t)) (3.18)

where u0 (x, t) and u1 (x, t) are functions to be detected later. Setting Eq. (3.18) and its derivatives with the condition Eq. (2.3)

into Eq. (3.17) and picking all terms with the same power of R(w) ,(i = 0,1, ...,4), we have the following system

R4 (w) : qu3
1wxa2 −6su1w3

xa3
2 = 0, (3.19)

R3 (w) : 2qu0u2
1wxa2 −6s(u1)x w2

xa2
2 +2ru1w2

xa2
2 −12su1w3

xa1a2
2

+qu2
1 (u1)x +qu3

1wxa1 −6su1wxwxxa2
2 = 0,

(3.20)

R2 (w) : qu2
1 (u0)x +2r (u1)x wxa2 − su1wxxxa2

+u1wta2 −3s(u1)x wxxa2 −8su1w3
xa0a2

2

+3ru1w2
xa1a2 +2qu0u2

1wxa1 −3s(u1)xx wxa2

+2qu0u1 (u1)x −9s(u1)x w2
xa1a2 −9su1wxwxxa1a2

+qu3
1wxa0 +qu2

0u1wxa2 −7su1w3
xa2

1a2 + ru1wxxa2 = 0,

(3.21)

R1 (w) : qu2
0 (u1)x −6su1wxwxxa2a0 +2qu0u2

1wxa0 + r (u1)xx

+ru1wxxa1 − su1wxxxa1 +(u1)t −3s(u1)xx wxa1

−3s(u1)x w2
xa2

1 − su1w3
xa3

1 + ru1w2
xa2

1 −3s(u1)x wxxa1

+qu2
0u1wxa1 − s(u1)xxx +u1wta1 −3su1wxwxxa2

1

−8su1w3
xa1a2a0 +2r (u1)x wxa1 +2ru1w2

xa2a0

+2qu0u1 (u0)x −6s(u1)x w2
xa2a0 = 0,

(3.22)

R0 (w) : u1wta0 −3s(u1)x w2
xa1a0 +2r (u1)x wxa0 + ru1w2

xa1a0

+ru1wxxa0 −3s(u1)xx wxa0 +qu2
0u1wxa0 − su1wxxxa0

+r (u0)xx −2su1w3
xa2a2

0 −3s(u1)x wxxa0 +qu2
0 (u0)x

−3su1wxwxxa1a0 +(u0)t − s(u0)xxx − su1w3
xa2

1a0 = 0.

(3.23)

From the Eq. (3.19), we get

u1 (x, t) =

√
6
√

sa2wx
√

q
. (3.24)
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If we substitute Eq. (3.24) in Eq. (3.20), we obtain

u0 (x, t) =

√
6
(

3swxx − rwx +3sw2
xa1

)

6
√

s
√

qwx

. (3.25)

When we substitute Eq. (3.24) and Eq. (3.25) in Eq. (3.21), we get following partial differential equation

wtwx =−3sw2
xx +2sa2a0w4

x −
sw4

xa2
1

2
+ swxxxwx −

w2
xr2

6s
. (3.26)

If we use Eq. (3.26) in Eq. (3.22), this Eq. is equal to zero. If we use Eq. (3.26) in Eq. (3.23), we obtain

r
√

6s
(

4wxxa2w4
xa0 +3w3

xx +wxxxxw2
x −4wxxwxxxwx −w4

xa2
1wxx

)

2
√

qw3
x

= 0. (3.27)

If w is a solution of Eqs. (3.26) and (3.27), then

u =

√
6
(

3swxx − rwx +3sw2
xa1

)

6
√

s
√

qwx

+

√
6
√

sa2wx
√

q
R (3.28)

is a solution of the Eq. (3.17) with R ≡ R(w) being a solution of the Riccati equation (2.3).

We suppose that w(x, t) be of the form

w(x, t) = acosh(kx+ lt +ξ )+bsinh(kx+ lt +ξ )+ r (3.29)

where a,b,k, l and r are constants to be determined later and ξ is an arbitrary constant. Setting Eq. (3.29) into Eqs. (3.26) and
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(3.27), we obtain the following equations

sa2k4 −a2kl −
3sb2k4

2
−

r2a2k2

6s
= 0, 2sa2a0a4k4 −

sa2
1a4k4

2
= 0,

−3sa2
1a2k4b2 +12sa2a0a2k4b2 = 0, 8sa2a0a3k4b−2sa2

1a3k4b = 0,

−
sa2

1b4k4

2
+2sa2a0b4k4 = 0, −sak4b−2akbl −

r2ak2b

3s
= 0,

2
√

6r
√

sbk6a2a4a0
√

q
−

√
6r
√

sa4k6ba2
1

2
√

q
= 0, −

r2b2k2

6s
−b2kl −

3sa2k4

2
+ sb2k4 = 0,

−

√
6r
√

sa5k6a2
1

2
√

q
−

2
√

6r
√

sa3k6b2a2
1√

q
+2a0

(

4
√

6r
√

sa3k6b2a2
√

q
+

√
6r
√

sa5k6a2
√

q

)

= 0,

−
2
√

6r
√

sa4k6ba2
1√

q
−

3
√

6r
√

sa2k6b3a2
1√

q
+2a0

(

6
√

6r
√

sa2k6b3a2
√

q
+

4
√

6r
√

sa4k6a2b
√

q

)

= 0,

−2sa2
1ak4b3 +8sa2a0ak4b3 = 0, −

3
√

6r
√

sbk6a2

2
√

q
+

3
√

6r
√

sb3k6

2
√

q
= 0,

−
3
√

6r
√

sa3k6b2a2
1√

q
−

2
√

6r
√

sab4k6a2
1√

q
+2a0

(

4
√

6r
√

sak6b4a2
√

q
+

6
√

6r
√

sa3k6a2b2

√
q

)

= 0,

7
√

6r
√

sak6b2

2
√

q
+

√
6r
√

sa3k6

2
√

q
−2ak

(√
6r
√

sk5b2

√
q

+

√
6r
√

sa2k5

√
q

)

= 0,

−
2
√

6r
√

sa2k6b3a2
1√

q
−

√
6r
√

sab5k6a2
1

2
√

q
+2a0

(√
6r
√

sb5k6a2
√

q
+

4
√

6r
√

sa2k6a2b3

√
q

)

= 0,

7
√

6r
√

sbk6a2

2
√

q
+

√
6r
√

sb3k6

2
√

q
−2bk

(√
6r
√

sk5b2

√
q

+

√
6r
√

sa2k5

√
q

)

= 0,

3
√

6r
√

sa3k6

2
√

q
−

3
√

6r
√

sak6b2

2
√

q
= 0,

2
√

6r
√

sak6b4a2a0
√

q
−

√
6r
√

sab4k6a2
1

2
√

q
= 0,

Solving above system, we get the following two solutions.

State 1:

a = b, a0 =
a2

1
4a2

, a1 = a1, a2 = a2, b = b,

k = k, ξ = ξ , l =−
k(3s2k2+r2)

6s
, r = r.

(3.30)

State 2:

a =−b, a0 =
a2

1
4a2

, a1 = a1, a2 = a2, b = b,

k = k, ξ = ξ , l =−
k(3s2k2+r2)

6s
, r = r.

(3.31)

Combining Eq. (3.28), Eq. (3.29) with Eq. (3.30) and Eq. (3.31), two families of exact explicit solutions to the mKdV-Burgers
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equation are obtained

u(x, t) =

√
6b3k3 (cosh(β )− sinh(β ))3 (3sk− r+3sbka1 cosh(β )−3sbka1 sinh(β ))

6
√

s
√

q(−bk sinh(α)+bk cosh(α))3

+

√
6s

√
q
(−bk sinh(α)+bk cosh(α))a2R(bcosh(α)−bsinh(α)+ r)

and

u(x, t) =

√
6b3k3 (cosh(β )− sinh(β ))3 (−3sk− r+3sbka1 cosh(β )+3sbka1 sinh(β ))

6
√

s
√

q(bk sinh(α)+bk cosh(α))3

+

√
6s

√
q
(bk sinh(α)+bk cosh(α))a2R(−bcosh(α)−bsinh(α)+ r)

where α =−kx+
k(3s2k2+r2)t

6s
−ξ , β =

−6kxs+3k3ts2 + ktr2 −6sξ

6s
.

We suppose that w(x, t) be of the form

w(x, t) = A+Bexp(k1x+ l1t +ξ1) (3.32)

where A,B,k1 and l1 are constants to be determined later and ξ1 are an arbitrary constant. Setting Eq. (3.32) into Eqs. (3.26)

and (3.27), we get the following system

2
√

6r
√

sB2k3
1a2a0

√
q

−

√
6r
√

sB2k3
1a2

1

2
√

q
= 0,

2sB3k3
1a2a0 −

sB3k3
1a2

1

2
= 0,

−
sBk3

1

2
−

Bk1r2

6s
−Bl1 = 0,

Solving above system, one gets the following set of solution

A = A, B = B, a0 =
a2

1
4a2

, a1 = a1, a2 = a2,

k1 = k1, l1 =−
k1(3s2k2

1+r2)
6s

, ξ1 = ξ1.
(3.33)

Combining Eq. (3.28), Eq. (3.29) with Eq. (3.33), exact explicit solution is obtained

u(x, t) =

√
6exp(α)

(

3k1s− r+3sBk1a1 exp
(

α
3

))

6
√

sq(exp(β ))3

+

√
6
√

sBk1a2 exp(β )R(A+Bexp(β ))
√

q

where α =−
−6k1xs+3k3

1ts2 + k1tr2 −6ξ1s

2s
,β = k1x−

k1

(

3s2k2
1 + r2

)

t

6s
+ξ1

4. Conclusions

In this paper, by introducing CRE method we apply to DMBBM and mKdV-Burgers equations. We had exact explicit

solutions of given equations with the help of Riccati equation. The obtained exact solutions are consist of hyperbolic and

exponential functions. We checked all solutions of given equations by the Maple.

It is also shown that the CRE method can be performed to other kinds of integrable systems and can be obtained other kind

of solutions.



Construction of Exact Solutions to Partial Differential Equations with CRE Method — 113/113

References
[1] M. Kaplan, A. Akbulut, A. Bekir, Exact travelling wave solutions of the nonlinear evolution equations by auxiliary

equation method, Z. Naturforsch A, 70 (2015), 969–974.

[2] A. Bekir, A. Akbulut, M. Kaplan, Exact solutions of nonlinear evolution equations by using modified simple equation

method, Int. J. Nonlinear Sci., 19 (2015), 159-164.
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1. Introduction

A difference vertex labeling of a graph G of size n is an injective mapping f from V (G) into a set M of nonnegative integers,

such that every edge uv of G has assigned a weight defined by | f (u)− f (v)|. All labelings considered in this work are difference

vertex labelings. A labeling is called graceful when M = {0,1, . . . ,n} and the induced weights are 1,2, . . . ,n. If G admits such

a labeling, it is called a graceful graph. Let G be a bipartite graph where {A,B} is the natural bipartition of V (G), we refer to A

and B as stable sets of V (G). A bipartite labeling of G is an injection f : V (G)→{0,1, . . . , t} for which there exists an integer

λ , named the boundary value of f , such that f (u)≤ λ < f (v) for every (u,v) ∈ A×B, that induces n different weights. This is

an extension of the definition given by Rosa and Širáň [1]. From the definition we conclude that the labels assigned by f on the

vertices of A and B are in the interval [0,λ ] and [λ +1, t], respectively. When t = n, the function f is an α-labeling and G is an

α-graph.

Let f : V (G)→{0,1, . . . , t} be a labeling of a graph G of size n ≤ t. The labeling g : V (G)→{c,c+1, . . . ,c+ t}, defined

for every v ∈V (G) and c ∈ Z as g(v) = c+ f (v), is the shifting of f in c units. Note that this labeling preserves the weights

induced by f .

If f is bipartite with boundary value λ , the labeling h : V (G)→{0,1, . . . , t +d−1}, defined for every v ∈V (G) and d ∈ Z
+

as h(v) = f (v) when f (v)≤ λ and h(v) = f (v)+d −1 when f (v)> λ , is the bipartite d-labeling of G obtained from f . This

labeling uses labels from [1,λ ]∪ [λ +d, t +d −1]. In other terms, this labeling shifts the weights induced by f in d −1 units.

Thus, if f is an α-labeling of G and d is a positive constant, then h is a d-graceful labeling. This concept was introduced,

independently by Maheo and Thuillier [2] and Slater [3] in 1982.

In the following sections we study α-labelings of the coalescence of α-cycles. Suppose that G1 and G2 are two graphs such

that H is an induced subgraph of both of them. The H-coalescence, or simply coalescence, of G1 and G2, denoted by G1 ·G2, is

the graph obtained by identifying the copy of H in G1 with the copy of H in G2. Assuming that for i = 1,2, the graph Gi has



The Graceful Coalescence of Alpha Cycles — 115/120

order ni and size mi, and H has order p and size q, then G1 ·G2 has order n1 +n2 − p and size m1 +m2 −q. In Figure 1.1 we

show an example of this operation where G1 and G2 are isomorphic and H ∼=C4, which is represented in the picture with green

edges.

Figure 1.1. The C4-coalescence of two isomorphic graphs of order 12 and size 20

In [4], Barrientos proved that if H ∼= P1 and G1 and G2 are α-graphs, there is a coalescence (also named one-point union or

vertex amalgamation) of them is an α-graph. In [5], Barrientos and Minion showed that if H ∼= P2 and G1 and G2 are α-graphs,

the coalescence ( or edge amalgamation) of them is an α-graph if the edge of minimum weight in G1 is identified with the edge

of maximum weight of G2. In this article, we extend the idea of the edge amalgamation, presented in [5], considering H to be a

path. All graphs considered here are finite with no loops or multiple edges. We use the notation and terminology used in [6]

and [7].

2. Preliminary results

In his seminal paper, Rosa [8] showed that when n ≡ 0(mod 4), there exists an α-labeling of the cycle Cn. We present here two

labelings of Cn that are going to be used in the proof of the main result of the next section.

Suppose that V (Cn) = {v1,v2, . . . ,vn} is the vertex set of Cn and its edge set is {vivi+1 : 1 ≤ i ≤ n} where the addition is

taken modulo n. The labelings f and g given below are two well-known α-labelings of Cn. The interested reader can easily

verify this statement.

f (vi) =







i−1
2

if i is odd and 1 ≤ i ≤ n
2
−1,

i+1
2

if i is odd and n
2
+1 ≤ i ≤ n−1,

n+1− i
2

if i is even.

g(vi) =







i−1
2

if i is even and 2 ≤ i ≤ n
2
−1,

i
2

if i is even and n
2
+2 ≤ i ≤ n,

n− i−1
2

if i is odd.

In Figure 2.1 we show two examples for each of these labelings. The graphs on the first row are labeled using the function

f , while g is used to label the graphs on the second row. The arrow inside the cycle shows the orientation of the vertices within

each graph.

3. Graceful coalescence

Let Cn1
,Cn2

, . . . ,Cnk
be a collection of cycles, where the vertex set is V (Cn j

) = {v1, j,v2, j, . . . ,vn j , j} and the edge set is

E(Cn j
) = {v1, jv2, j,v2, jv3, j, . . . ,vnk−1, jvnk, j,vnk, jv1, j} for each j ∈ {1,2, . . . ,k}. For every j ∈ {1,2, . . . ,k− 1}, select a posi-

tive integer t j such that 2t j ≤ min{n j,n j+1}. A graph G is a coalescence of the cycles Cn1
,Cn2

, . . . ,Cnk
when the vertices

v1, j+1,v2, j+1, . . . ,vt j , j+1 of Cn j+1
(together with the induced edges) are identified with the vertices vn j−t j+1, j,vn j−t j+2, j, . . .vn j , j

of Cn j
, respectively. Note that G is a graph of order

k

∑
j=1

n j −
k−1

∑
j=1

t j = nk +
k−1

∑
j=1

(n j − t j)
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6 7 5 8 4 9 8 9 7 10 6 11 5 12

12 0 11 1 10 2 16 0 15 1 14 2 13 3

7 6 8 5 9 4 9 8 10 7 11 6 12 5

0 12 1 11 2 10 0 16 1 15 2 14 3 13

' '

' '

Figure 2.1. Two α-labelings of C12, and C16

and size

k

∑
j=1

n j −
k−1

∑
j=1

(t j −1) = nk +
k−1

∑
j=1

(n j − t j +1)

In Figure 3.1 we show an example of this construction where n1 = 8, n2 = 12, n3 = 12, n4 = 8, and n5 = 4, and t1 = 3,

t2 = 4, t3 = 4, and t4 = 2. The numbers inside each cycle correspond to their respective vertices within that cycle.

3 4

8 7 6 5

7 8 9 10 11 12

12 11 10 9 8 7

5 6 7 8

4 3 2 1

2 1

1 2 3 4

6 5 4 3 2 1

1 2 3 4 5 6

&

'

&

'

&

Figure 3.1. A coalescence of C8,C12,C12,C8 and C4

We claim that when each n j ≡ 0(mod 4), the coalescence G of the cycles Cn1
,Cn2

, . . . ,Cnk
, determined by t1, t2, . . . , tk−1, is

an α-graph. Within the proof of this theorem we use the labelings f and g of Cn given in Section 2.

Theorem 3.1. Let G be the coalescence of the cycles Cn1
,Cn2

, . . . ,Cnk
determined by the integers t1, t2, . . . , tk−1, where

2t j ≤ min{n j,n j+1}. If for every j ∈ {1,2, . . . ,k}, n j ≡ 0(mod 4)}, then G is an α-graph.

Proof. Let G be the coalescence of the cycles Cn1
,Cn2

, . . . ,Cnk
determined by the integers t1, t2, . . . , tk−1, where, for every

j ∈ {1,2, . . . ,k}, 2t j ≤ min{n j,n j+1} and n j ≡ 0(mod 4)}. Thus, every Cn j
admits an α-labeling.

To start, we label the vertices of Cn1
using the labeling f . For each j ∈ {2,3, . . . ,k}, the selection of the initial labeling used

on the vertices of Cn j
depends on the labeling used on Cn j−1

, according to the following criteria:
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• If t j−1 is even, both Cn j−1
and Cn j

have the same type of labeling.

• If t j−1 is odd, Cn j−1
and Cn j

have different types of labelings.

Now that every cycle Cn j
has been α-labeled, we proceed to modify these initial labelings to obtain the desired α-labeling

of G.

Recall that for every j ∈ {1,2, . . . ,k}, the size of the coalescence of the cycles Cn1
,Cn2

, . . . ,Cnk
determined by the integers

t1, t2, . . . , tk−1, is

k

∑
i= j

ni −
k−1

∑
i= j

(ti −1) = nk +
k−1

∑
i= j

(ni − ti +1),

where the term ∑
k−1
i= j (ti −1) is the number of edges shared by Cn j

and Cn j+1
.

The α-labeling of Cn j
is transformed into a d j-graceful labeling (the intermediate labeling), where

d j =

(

1+nk +
k−1

∑
i= j

(ni − ti +1)

)

−n j.

In this way, the weights on the edges of Cn j
form the interval

I j =

[

nk +nk +
k−1

∑
i= j

(ni − ti +1)− (n j −1),nk +
k−1

∑
i= j

(ni − ti +1)

]

.

Since min{I j : 1 ≤ j ≤ k}= 1 and max{I j : 1 ≤ j ≤ k}= nk +∑
k−1
i=1 (ni − ti +1), that is, the size of G, we get

k
⋃

j=1

I j = [1,nk +
k−1

∑
i=1

(ni − ti +1)].

Now, we need to shift these labelings to perform the coalescence of the labeled cycles. The labels assigned to the vertices of

Cn1
constitute the final labeling of this cycle. For every j ∈ {2,3, . . . ,k}, the final labeling of Cn j

is obtained recursively in the

following manner:

Assume that the labeling of Cn j−1
is its final labeling. Let L j−1 be the set of the labels assigned to the vertices shared by

Cn j−1
and Cn j

. The final labeling of Cn j
is obtained by adding the constant min L j−1 to every label of Cn j

. Thus, the only

overlapping of vertex labels between Cn j−1
and Cn j

occurs on the vertices used to produce the coalescence.

Once this process has been completed, we have a bipartite labeling of G where the induced weights are 1,2, . . . ,nk +

∑
k−1
j=1(n j − t j +1), with no label repeated.

Therefore, G is an α-graph.

In Figure 3.2 we show the final α-labeling of the coalescence of the cycles C16, C12, C8, C12, C8, determined by the integers

t1 = 5, t2 = 3, t3 = 4, t4 = 3. The starting α-labelings of the cycles are: (0, 16, 1, 15, 2, 14, 3, 13, 5, 12, 6, 11, 7, 10, 8, 9), (12,

0, 11, 1, 10, 2, 9, 4, 8, 5, 7, 6), (0, 8, 1, 7, 3, 6, 4, 5), (0, 12, 1, 11, 2, 10, 4, 9, 5, 8, 6, 7), (8, 0, 7, 1, 6, 3, 5, 4). The intermediate

d-graceful labelings are: (0, 45, 1, 44, 2, 43, 3, 42, 5, 41, 6, 40, 7, 39, 8, 38), (33, 0, 32, 1, 31, 2, 30, 4, 29, 5, 28, 6), (0, 23, 1,

22, 3, 21, 4, 20), (0, 18, 1, 17, 2, 16, 4, 15, 5, 14, 6, 13), (8, 0, 7, 1, 6, 3, 5, 4). The shifting constants are 7, 12, 15, and 21,

respectively. The highlighted numbers correspond to the vertices that are going to be identified to produce the graph G.

Suppose that we want to form all nonisomorphic coalescence graphs constructed with k copies of Cn, where n ≡ 0(mod 4).

How many of these graphs exist? Since two consecutive copies of Cn shared at most n−2
2

edges, any graph obtained by

the coalescence of these cycles can be described by a sequence (or string) of numbers from {1,2, . . . , n−2
2
}. Thus, counting

nonismorphic coalescence graphs is equivalent to count nonoriented strings with k− 1 beads of n−2
2

or fewer colors. This

number is known and can be found in OEIS A277504 [9]. In the following table we show the first values for n∈ {4,8,12,16,20}
and k ∈ {1,2, . . . ,11}.

In Figure 3.3 we show the α-labelings of the six graphs obtained using three copies of C8.
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27 24 26 25

22 28 21 29 20 30 19

15 33 16 32 17 31

34 13 35 12 36 11 37

5 41 6 40 7 39 8 38 9

42 3 43 2 44 1 45 0

Figure 3.2. α-labeling of a coalescence of cycles

k\n 4 8 12 16 20

1 1 1 1 1 1

2 1 3 5 7 9

3 1 6 15 28 45

4 1 18 75 196 405

5 1 45 325 1225 3321

6 1 135 1625 8575 29889

7 1 378 7875 58996 266085

8 1 1134 39375 412972 2394765

9 1 3321 195625 2883601 21526641

10 1 9963 978125 20185207 193739769

11 1 29643 4884375 141246028 1743421725

Table 1. Number of nonisomorphic coalescence graphs formed with k copies of C8

4. Graceful subdivision of ladders

In this section we present two graceful labelings of subdivisions of ladders; the first result is a corollary of Theorem 3.1, the

second one is a new construction. The ladder Ln is the result of the Cartesian product of the paths P2 and Pn. The edges of P2

within Ln = P2 ×Pn are called the steps of Ln. This type of graph can be seen as the coalescence of n−1 copies of C4, therefore,

Ln is an α-graph. The fact that Ln is graceful was proven first by Acharya and Gill [10].

In a graph G, a subdivision of an edge uv is the operation of replacing uv with a path u,w,v through a new vertex w. If the

edhe uv is replaced with the path u,w1,w2, . . . ,wt ,v, we say that uv has been subdivided an even (resp. odd) number of times

when t is even (resp. odd). Kathiresan [11] has shown that graphs obtained from ladders by subdividing each step exactly once

are graceful.

If every step of Ln is subdivided an even number of times, then two consecutive subdivided steps, together with the two

edges connecting them, form a cycle of size divisible by 4. Using Theorem 3.1, we can prove that this type of subdivided ladder

is a graceful graph; in fact, it is an α-graph.

Corollary 4.1. If every step of the ladder Ln = P2 ×Pn is subdivided an even number of times, the resulting graph is an

α-graph.

In Figure 4.1 we show, together with the original labeling of L5, two examples of this subdivided ladder.

Unfortunately, the argument used in this corollary does not work when the edges are subdivided an odd number of times.

So it is an open problem to find an α-labeling or a graceful labeling of these subdivided ladders.
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10 13 11 12 14 11 13 12 11 14 12 13

14 8 15 7 16 9 15 8 16 7 17 15 9 16 8 17 7

3 81 4 17 5 3 19 4 18 5 3 20 4 19 5 18

19 1 20 0 20 1 21 0 21 1 22 0

9 12 10 11 13 10 12 11 10 13 11 12

13 7 14 6 8 14 7 15 6 14 8 15 7 16 6

3 16 4 15 3 17 4 16 3 18 4 17

17 1 18 0 18 1 19 0 19 1 20 0

Figure 3.3. α-labelings of all the coalescences of three copies of C8

8 9 12 15 13 14 16 21 17 20 18 19

10 6 16 10 17 9 22 14 23 13 24 12

4 11 6 19 7 18 8 27 9 26 10 25

12 2 20 4 21 3 28 6 29 5 30 14

0 13 0 23 1 22 0 33 1 32 2 31

Figure 4.1. α-labeling of the ladder L5 and some of its even subdivisions

Now we turn our attention to the graph obtained by subdividing every edge of Ln exactly once. We claim that this graph

admits an α-labeling. Even when the resulting graph can be seen as the coalescence of n− 1 copies of C8, we use here a

different construction based on the facts that C8 and P5 are α-graphs. The basic labelings of these graphs are given below:

• For C8, the consecutive labels are: 5, 0, 8, 1, 7, 3, 6, 4.

• For P5, the consecutive labels are: 2, 1, 3, 0, 4.

Suppose that Gn denotes the graph obtained by subdividing once all the edges of Ln. When n = 2, G2
∼=C8; we use on G2

the α-labeling given above. To obtain an α-labeling of G3 we transform the α-labeling of G2 by shifting its weights in such a

way that the new largest label is 14 = 8 + 6, that is, the size of G2 plus 6. The labeling of P5 is shifted λ2 +2 units, where λ2 is

the boundary value of the α-labeling of G2. The vertices λ2 −1 and λ2 in G2 are connected to the vertices to the vertices λ2 +4

and λ2 +6 in P5; thus, the new edges have weights 5 and 6, respectively. The resulting graph is G3 with an α-labeling. We

continue this process until Gn has been labeled. In this way we have proved the following theorem.
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Theorem 4.2. The graph G, obtained by subdividing every edge of the ladder Ln exactly once, is an α-graph.

In Figure 4.2 we show the first four cases of this construction.

12 15 13

16 14

10 12 9

10

18

9

11 13 17 19
6 9 7

6

15

7 6

21

7

10 8 16 14 22 20

4 6 3
4

12

3 4
18

3 4
24

3

5 7 11 13 17 19 23 25

0 8 1 0 14 1 0 20 1 0 26 1

Figure 4.2. α-labelings of subdivided ladders
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1. Introduction

In this work, we solve

H(x) = 0, (1.1)

to find a solution x∗ ∈ Ω, where H : Ω ⊆ X −→ Y and X ,Y stand for Banach spaces. Iterative methods are mostly used to solve

(1.1), since solutions in closed form are hard to find. If H is a differentiable operator, Newton’s method is the most used method

to solve the equation of (1.1), which is given by [1, 2]

xn+1 = xn −H ′(xn)
−1H(xn), for alln = 0,1,2, . . . x0 ∈ Ω. (1.2)

If H is not differentiable, Remember that an operator [x,y;H] ∈ L(X ,Y ) is called a divided difference of order one for the

operator H on the points x and y (x 6= y) if the following equality holds:

[x,y;H] = H(x)−H(y).

Replacing the Fréchet derivative H ′ by divided differences of the operator H in Newton’s method (1.2) at different points, we

can define two iterative methods as follows: one is the secant method is given by [3, 4]

xn+1 = xn − [xn−1,xn;H]−1 H(xn) n ≥ 0, x0, x−1 ∈ Ω,
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and the other is Kurchatov’s method given by [5]

xn+1 = xn − [xn−1,2xn − xn−1;H]−1 H(xn) n ≥ 0, x0, x−1 ∈ Ω.

Note that, Kurchatov’s method is as simple as Newton’s method and has the same rate of convergence as Newton’s method.

This means it has the higher rate of convergence than the Secant method. A lot of study about the convergence of Kurchatov’s

method have been given, see [5–10].

We split it as

H(x) = F(x)+G(x),

where F : Ω −→ Y and G : Ω −→ Y. F is differentiable and G is continuous but non-differentiable. Then, we use the following

Newton-Kurchatov-type method given by

xn+1 = xn − (F ′(xn)+ [xn−1, 2xn − xn−1;G])−1 H(xn) n ≥ 0, x0, x−1 ∈ Ω (1.3)

to solve (1.1). Recently, M. A. Hernández and M. J. Rubio [8] gave an analysis of method (1.3). Cases where method

(1.3) is efficient for solving systems and also arguments about its efficiency were also given in [8]. A novel idea of [8] is

that the usual condition of H ′(x⋆) is reduced to a new type condition, which means that H can be a non-differentiable oper-

ator. We give a more precise local analysis for (1.3) than [8]. Advantages of our local convergence analysis over the work, in [8] :

(a) Larger radius of convergence lending to wider choice of initial guesses,

(b) More precise estimates on the distances ‖xn+1 − x⋆‖. Hence fewer iterates are need to obtain a desired error tolerance.

(c) At least as precise information on the uniqueness ball of the solution.

These advantages are obtained under the same computational cost, since in practice the new majorizing functions are special

cases of the majorizing functions in [8].

The paper is organized as follows: Section 2 contains the local convergence analysis of method (1.3). The numerical

examples including favorable comparisons with earlier study [8] are presented in the concluding Section 3.

Throughout the paper we denote B(x,ρ) = {y ∈ X : ‖y− x‖< ρ} and B(x,ρ) = {y ∈ X : ‖y− x‖ ≤ ρ}.

2. Local convergence analysis

From now on by differentiable operator, we mean differentiable in the sense of Fréchet. We shall use condition (C) to show the

local convergence analysis of the Kurchatov-type method (1.3):

(C1) F : Ω ⊂ X → Y is continuously differentiable operator.

(C2) G : Ω ⊂ X → Y is continuous and a divided difference of order one [·, ·;G] : Ω×Ω → L(X ,Y ), exists.

(C3) There exist x⋆ ∈ Ω and x ∈ Ω with ‖x− x⋆‖= δ > 0 such that H(x⋆) = 0 and M = F ′(x⋆)+ [x⋆, x;G] is invertible.

(C4) ‖M−1
(

F ′(x)−F ′(x⋆)
)

‖ ≤ v0 (‖x− x⋆‖) for some function v0 : [0,+∞)→ [0,+∞) continuous, nondecreasing with

v0(0) = 0 and each x ∈ Ω.

(C5) ‖M−1
(

[y, 2x− y; G]− [x⋆, x; G]
)

‖ ≤ w0

(

‖y− x⋆‖,‖2x− y− x‖
)

for some function w0 : [0,+∞)× [0,+∞)→ [0,+∞)
continuous, nondecreasing for each x, y, 2x− y ∈ Ω.

(C6) Equation v0(t)+w0(t,δ + t) = 1 has a minimal positive solution r0. Pick r0 ∈ (0,r0]. Define

p0 := v0(r0)+w0(r0,δ + r0)< 1.

Let Ω0 = Ω∩B(x⋆,r0).
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(C7) ‖M−1
(

F ′(y)−F ′(x)
)

‖ ≤ v(‖y− x‖) for function v : [0,r0)→ [0,+∞) continuous, nondecreasing with v(0) = 0 and

all x, y ∈ Ω0.

(C8) ‖M−1
(

[y, 2x−y; G]− [x⋆, x; G]
)

‖ ≤ w
(

‖y−x⋆‖,‖x−y‖
)

for some function w : [0,r0)× [0,r0)→ [0,+∞) continuous,

nondecreasing for each x, y, 2x− y ∈ Ω0.

Let p =
∫ 1

0 v(θ r0)dθ +w(r0,2r0) and q = p
1−p0

.

(C9) Let r ≥ 0, there exists minimal r ∈ (0,r0) solving the equation

r = t [1−
2(
∫ 1

0 v(θ t)dθ +w(t,2t))

1−
(

v0(t)+w0(t,δ + t)+2
(
∫ 1

0 v(θ t)dθ +w(t,2t)
)) ].

Notice that r > r.

(C10) B(x⋆,r)⊆ Ω.

(C11)
∫ 1

0
v0(θ r⋆)dθ +w0(0,δ + r⋆)< 1

for some r∗ ≥ r.

First, we need a perturbation result.

Lemma 2.1. Assume (C1)− (C6). Then, operator F ′(x)+ [y, 2x− y; G] is invertible for all x,y,2x− y ∈ B(x⋆,r0) with x 6= y

and

‖
(

F ′(x)+ [y,2x− y;G]
)−1

M‖ ≤
1

1− p0
.

Proof. Operator [y,2x− y;G] is well defined, since y 6= 2x− y. Using (C3)− (C5), we have in turn that

‖M−1
(

M−F ′(x)− [y,2x− y;G]
)

‖

≤ ‖M−1
(

F ′(x⋆)−F ′(x)
)

‖+‖M−1
(

[x⋆,x;G]− [y,2x− y;G]
)

‖

≤ v0(‖x⋆− x‖)+w0

(

‖x⋆− y‖,‖x− (2x− y)‖
)

≤ v0(r0)+w0(r0,δ + r0) = p0 < 1.

The result follows from the preceding estimate and the Banach lemma on invertible operators [1, 2].

Secondly, we establish the sequence {xn} generated by the Newton-Kurchatov-type method (1.3) is well defined.

Lemma 2.2. Suppose the conditions (C1)− (C8) hold, xn−1,xn−2,2xn−1 − xn−2 ∈ B(x⋆,r0) and xn−1 6= xn−2, then xn is well

defined and

‖xn − x⋆‖ ≤ q‖xn−1 − x⋆‖.

Proof. We shall use the notation

Mn−1 = F ′(xn−1)+ [xn−2, 2xn−1 − xn−2;G].

Newton-Kurchatov-type method (1.3) gives

xn − x⋆ = xn−1 − x⋆−M−1
n−1 H(xn−1)

= M−1
n−1

(

Mn−1(xn−1 − x⋆)−H(xn−1)
)

= M−1
n−1

(

(

F ′(xn−1)(xn−1 − x⋆)−F(xn−1)+F(x⋆)
)

+G(x⋆)−G(xn−1)+ [xn−2,2xn−1 − xn−2;G] (xn−1 − x⋆)
)

=−[M−1
n−1 M] [M−1

∫ 1

0

(

F ′(xn−1 +θ (x⋆− xn−1))−F ′(xn−1)
)

(xn−1 − x⋆)dθ ]

+ [M−1
n−1 M] [M−1

(

[xn−2,2xn−1 − xn−2;G]− [x⋆,xn−1;G]
)

(xn−1 − x⋆)].
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Using Lemma 2.1, (C7), (C8) and the triangle inequality in the preceding identity,

‖xn − x⋆‖ ≤ ‖M−1
n−1 M‖

(

∫ 1

0
v(θ ‖x⋆− xn−1‖)d θ

+w
(

‖xn−2 − x⋆‖,‖xn−1 − xn−2‖
)

)

‖xn−1 − x⋆‖

≤
1

1− p0

(

∫ 1

0
v(θ r0)dθ +w(r0,2r0)

)

‖xn−1 − x⋆‖

=
p

1− p0
‖xn−1 − x⋆‖= q‖xn−1 − x⋆‖.

Let r = ‖x0 − x⋆‖. As in [7], [11], we must somehow drop 2xn−1 − xn−2 ∈ B(x⋆,r0), if xn−1,xn−2 ∈ B(x⋆,r0). Suppose that

x1,x2, · · · ,xn−1 ∈ B(x⋆,r0), then

‖2xn−1 − xn−2 − x⋆‖ ≤ ‖xn−1 − xn−2‖+‖xn−1 − x⋆‖

≤ 2‖xn−1 − x⋆‖+‖xn−2 − x⋆‖

≤ (2q+1)‖xn−2 − x⋆‖

and

‖xn−2 − x⋆‖ ≤ qn−2 ‖x0 − x⋆‖.

Then, if q < 1, we have

‖xn−2 − x⋆‖< ‖x0 − x⋆‖= r

and

‖2xn−1 − xn−2 − x⋆‖< (2q+1)r.

Clearly, if p0 + p < 1, then q < 1. To show 2xn−1 − xn−2 ∈ B(x⋆,r0), it suffices to have (2q+1)r = r leading to the condition

(C9).

Theorem 2.3. Assume (C) with p0 + p < 1. Then, sequence {xn} generated by the Kurchatov-type method (1.3) for x0 ∈
B(x⋆,r)−{x⋆} and x−1 ∈ B(x0,r− r) with x−1 6= x0 and r = ‖x0 −x⋆‖ exists in B(x⋆,r), stayes in B(x⋆,r) for all n = 0,1,2, · · ·
and limn−→∞ xn = x⋆.

Proof. Notice

‖x−1 − x⋆‖ ≤ ‖x−1 − x0‖+‖x0 − x⋆‖ ≤ r− r+ r = r

and

‖2x0 − x−1 − x⋆‖ ≤ ‖x−1 − x0‖+‖x0 − x⋆‖ ≤ r− r+ r = r,

so x−1,2x0 − x−1 ∈ B(x⋆,r) and 2x0 − x−1 6= x1. By Lemma 2.1, x1 exists and by Lemma 2.2

‖x1 − x⋆‖ ≤ q‖x0 − x⋆‖< ‖x0 − x⋆‖= r < r,

so, x1 ∈ B(x⋆,r) and x1 6= x0. Analogously,

‖2x1 − x0 − x⋆‖ ≤ ‖x1 − x0‖+‖x1 − x⋆‖

≤ 2‖x1 − x⋆‖+‖x0 − x⋆‖< (2q+1)‖x0 − x⋆‖< r,

so 2x1 −x0 ∈ B(x⋆,r). Assume for k ≥ 2, if xk−1,xk−2 ∈ B(x⋆,r) for xk−1 6= xk−2, then 2xk−1 −xk−2 ∈ B(x⋆,r) and hence M−1
k−1

is well defined. Then, xk is well defined and from Lemma 2.2, we get that

‖xk − x⋆‖ ≤ q‖xk−1 − x⋆‖.
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Suppose using mathematical induction that the preceding two inequalities hold for k = 2,3, · · · ,m, we shall show that they hold

for k = m+1. If xk,xk−1 ∈ B(x⋆,r) with xk 6= xk−1, we get that

‖2xk − xk−1 − x⋆‖ ≤ ‖xk − xk−1‖+‖xk − x⋆‖

≤ 2‖xk − x⋆‖+‖xk−1 − x⋆‖< (2q+1)‖xk−1 − x⋆‖

≤ (2q+1)qk−1 ‖x0 − x⋆‖< (2q+1)‖x0 − x⋆‖< r,

so 2xk − xk−1 ∈ B(x⋆,r) and 2xk − xk−1 6= xk−1. That is by Lemma 2.1 M−1
k exists and xk+1 is well defined. Moreover, by

Lemma 2.2,

‖xk−1 − x⋆‖ ≤ q‖xk − x⋆‖

which completes the induction. That is {xk} ⊆ B(x⋆,r) and

‖xk − x⋆‖ ≤ qk ‖x0 − x⋆‖,

from which we deduce that limk→∞ xk = x⋆.

Next, a uniqueness result is given.

Proposition 2.4. Assume conditions (C). Then, x⋆ is the only solution of equation H(x) = 0 in Ω1 = Ω∩B(x⋆,r⋆).

Proof. Let y⋆ ∈ Ω1 with H(y⋆) = 0. Define operator T =
∫ 1

0 F ′(x⋆+θ (y⋆− x⋆))d θ +[x⋆,y⋆;G]. Then, using (C4), (C5) and

(C11).

‖M−1 (T −M)‖ ≤ ‖
∫ 1

0
M−1

(

F ′(x⋆+θ (y⋆− x⋆))
)

d θ‖

+‖M−1 ([x⋆,y⋆;G]− [x⋆,x;G])‖

≤
∫ 1

0
v0(θ ‖x⋆− y⋆‖)d θ +w0(‖x⋆− x⋆‖,‖y⋆− x‖)

≤
∫ 1

0
v0(θ r⋆)d θ +w0(0,r

⋆+δ )< 1,

so, T−1 exists.

But from

0 = H(x⋆)−H(y⋆) = T (x⋆− y⋆),

we conclude that y⋆ = x⋆.

Remark 2.5. (a) We can set x = x0. In this case δ = r.

(b) If Ω = X , condition 2x− y ∈ Ω is automatically satisfied. To relax this condition,

let

p1 = v0(r0)+w0(r0,δ +3r0).

Then, we use the condition p1 + p < 1, instead of using (C9) to calculate r, or the equation

v0(t)++w0(t,δ +3 t)+2
(

∫ 1

0
v(θ t)d t +w(t,2t)

)

= 1. (2.1)

Note that in this case q1 =
p

1−p1
< 1. Hence, we arrived at:

Proposition 2.6. Assume conditions (C1)− (C8), and

(C9)
′ There exists a solution R ∈ (0,r0) of equation (2.1)
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(C10)
′ For R1 < R, B(x⋆,R1)⊂ Ω

(C11)
′ 2x− y ∈ Ω for all x,y ∈ B(x⋆,R1) with x 6= y

(C12)

∫ 1

0
v0(θ R⋆)d θ +w0(0,δ +R⋆)< 1

for some R⋆ ≥ R1. Then, sequence {xn} generated for x0 ∈ B(x⋆)− x⋆ and x1 ∈ B(x0,R1 − r) with x−1 6= x0 by the Newton-

Kurchatov-type method (1.3) exists in B(x⋆,R1), stays in B(x⋆,R1) for all n = 0,1, · · · and limn−→∞ xn = x⋆, which is the only

solution of equation H(x) = 0 in Ω2 = Ω∩B(x⋆,R1).

Remark 2.7. Clearly condition (C11)
′ can be exchanged by

(C10)
′′B(x⋆,3R)⊆ Ω,

since if x,y ∈ B(x⋆,R)⇒‖x⋆− (2x−y)‖ ≤ 2‖x⋆−x‖+‖x⋆−y‖< 3R ⇒ 2x−y ∈ B(x⋆,3R) (see also [5–9] and the numerical

examples).

Remark 2.8. The results in this study improve the corresponding ones in [8]. Indeed, we have the following advantages:

(1) Affine invariant results are given here which are more advantageous than non affine results given in [8].

(2) The following conditions have been used in [8]

(h7) ‖F ′(y)−F ′(x)‖ ≤ v(‖y− x‖) for all x,y ∈ Ω,

(h8) ‖[x,y;G]− [u,v;G]‖ ≤ w(‖x−u‖,‖y− v‖) for all x,y,u,v ∈ Ω,

(h6)
′ p = γ

(

∫ 1
0 v(θ ρ)d θ +w(ρ,2ρ)

)

, q = p
1−p0

, ‖M−1‖ ≤ γ ,

p0 = γ(v(ρ)+w(ρ,ρ +δ ))< 1,

r = t [1−
2γ

(

∫ 1
0 v(θ t)d θ+w(t,2t)

)

1−γ

(

v(t)+w(t γ,δ+t)+2γ

(

∫ 1
0 v(θ t)d θ+w(t,2t)

)) ]

and

(h9) B(x⋆,ρ)⊆ Ω,

(h10) There exists ρ⋆ ≥ ρ such that

γ
(

∫ 1

0
v(θ ρ⋆)dθ +w(0,δ +ρ⋆)

)

< 1.

However, we have that

v0(t)≤ γ v(t),v(t)≤ γ v(t)

w0(s, t)≤ w(s, t)≤ γ w(s, t)

q ≤ q

ρ ≤ r

and

ρ⋆ ≤ r⋆

which lead to the improvements listed in the introduction. It is worth noticing that improvements are given using the same

computational cost, because in practice the computation of functions v, w needs the computation of the functions v0,v,w0,w as

special cases.
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Remark 2.9. Let us see the radii for Newton’s method (1.2), i.e., when the v̄ and the the v̄0 functions are choosen by v̄(t) = µt

and v̄0(t) = λ t, G = 0,w = w0 = 0 and x⋆ = x (i.e, δ = 0). The radius ρ given in [8] is

ρ =
2

3γ µ
.

The radius ρ coincides with radius given independently by Rheinboldt [12] and Traub [13]. This value improves the radius

ρ0 =
1

2γ µ
,

given also by Dennis and Schnabel [12, 13]. Our radius of convergence r is given by

r =
2

(2λ +µ0)γ
.

Then, we have that

ρ0 ≤ ρ ≤ r. (2.2)

The right hand side inequality in (2.2) can be strict (see (c4), (h7) and the numerical examples).

3. Numerical examples

Choose the divided difference [x,y;F ] =
∫ 1

0 F ′(y+θ(x− y))dθ .

Example 3.1. Case 1 Newton’s method. Let F, G be defined on Ω = [−1,1]× [−1,1]× [−1,1] by

F(x,y,z) = (ex −1,
(e−1)y2

2
+ y,z)T

, and G = 0. (3.1)

Choose λ = e−1,µ0 = e
1

e−1 , µ = e for x⋆ = (0,0,0)T and γ = 1

we have

ρ0 = 0.1839 < ρ = 0.2453 < r = 0.3827.

Newton’s method is very efficient. In general, if the method is inefficient, then we use a better method. The new error bounds

are also better, since

‖xn+1 − x⋆‖ ≤
µ0 ‖xn − x⋆‖2

2(1−λ ‖xn − x⋆‖)
n = 1,2, . . .

and

‖x1 − x⋆‖ ≤
λ ‖x0 − x⋆‖2

2(1−λ ‖xn − x⋆‖)

but λ the old ones are given by

‖xn+1 − x⋆‖ ≤
µ ‖xn − x⋆‖2

2(1−µ ‖xn − x⋆‖)
,n = 0,1,2,3, · · · .

The old uniqueness ball is B(x⋆, 2
e
). The new uniqueness ball is B(x⋆, 2

e−1
) is better, since

B(x⋆,
2

e
)⊆ B(x⋆,

2

e−1
).

Case 2 Newton-Kurchatov-type method. Let F be given as in (3.1) and define G(x)= |x|. We have for x̄=(0.01,0.01,0.01)T ,γ =
1
2
,δ = 0.01, v0(t) = (e−1)t, v(t) = e

1
e−1 t,w0(s, t) = w(s, t) = 1, r̄ = δ and v0(t)< v(t). Then

rold = 0.4905 < r = 0.7654.
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1. Statement of the main result

Let H be a Hilbert space with a scalar product 〈., .〉 , the norm ‖.‖ =
√

〈, .〉 and unit operator I. For a linear operator C,

Dom (C) is the domain, C∗ is the adjoint operator, σ(C) is the spectrum. If C is a bounded operator, then ‖C‖ is its operator

norm.

Throughout this paper A and B are linear operators on H with Dom(B) ⊇ Dom(A). In addition, A and A+B generate

C0-semigroups eAt and et(A+B), respectively.

We consider the following problem: let eAt be exponentially stable, i.e.

‖eAt‖ ≤ ce−νt (t ≥ 0;c = const ≥ 1,ν = const > 0).

What are the conditions that provide the exponential stability of et(A+B)? The literature on the stability of semigroups is

very rich. The classical results are presented in the books [1, 2], about the recent investigations for instance see [3] -[6],

[7, 8, 9, 10]. In particular, in [7] the author investigates the uniform, strong, weak and almost weak stabilities of multiplication

semigroups on Banach space valued Lp-spaces. In the paper [9] Lyapunov based proofs are presented for the well-known

Arendt-Batty-Lyubich-Vu Theorem for strongly continuous and discrete semigroups. In [10] the authors obtain continuous-time

and discrete-time Lyapunov operator inequalities for the exponential stability of strongly continuous, one-parameter semigroups

acting on Banach spaces. Thus they extend the classic result of Datko from Hilbert spaces to Banach spaces. Recall also that

various conditions, under which the perturbed operator generates a C0-semigroup can be found for instance in [11, Chapter III].

For example, if B is A-compact and the semigroups generated by A is analytic, then by Corollary III.2.17 from [11, p. 180]

A+B generates an analytic semigroup. Certainly, we could not survey the whole subject here and refer the reader to the above

listed publications and references given therein.

To the best of our knowledge, the exponential stability conditions for the perturbed semigroup in terms of the commutator

[A,B] = AB−BA have not been investigated in the available literature. In the paper [12] in the case of a Banach space, an



Stability Conditions for Perturbed Semigroups on a Hilbert Space via Commutators — 130/134

estimate has been established for the L1-norm of a semigroup generated by A+B, provided that both [A,B] and B are bounded.

The aim of this paper is to establish exponential stability conditions for et(A+B) in terms of [A,B], assuming that

BDom(A2)⊆ Dom(A) (1.1)

and

[A,B] has a bounded extension. (1.2)

Besides, B can be unbounded. Since A generates a C0-semigroup, Dom(A2) is dense in H , cf. [13, Theorem I.2.3]. So the

operators AB and BA are defined on Dom(A2). Thus (1.2) means that [A,B] is defined and uniformly bounded on Dom(A2),
and therefore admits the extension to the whole space as a bounded operator. Our approach in the present paper is considerably

different from the one in [12]. In addition, we considerably generalize the main result from [14].

Introduce the operator

W :=
∫

∞

0
eA∗teAtdt.

This integral converges in the operator norm, since eAt is exponentially stable, and

‖W‖ ≤
∫

∞

0
‖eAt‖2dt ≤ c2

∫

∞

0
e−2νtdt =

c2

2ν
. (1.3)

The integral

ζ (A) := 2

∫

∞

0
‖eAt‖

∫ t

0
‖esA‖‖e(t−s)A‖ds dt

also converges, and

ζ (A)≤ 2c3
∫

∞

0
e−νt

∫ t

0
e−νse−ν(t−s)ds dt = 2c3

∫

∞

0
e−2νttdt =

c3

2ν2
. (1.4)

Finally assume that

Λ(B) := sup
h∈Dom(B);‖h‖=1

ℜ〈Bh,h〉< ∞

and put

ψ(W,B) :=

{

2Λ(B)‖W‖ if Λ(B)> 0,
0 if Λ(B)≤ 0.

Now we are in a position to formulate the main result of the paper.

Theorem 1.1. Let conditions (1.1) and (1.2) hold, and eAt be exponentially stable. If, in addition, Λ(B)< ∞ and

ψ(W,B)+‖[A,B]‖ζ (A)< 1, (1.5)

then et(A+B) is also exponentially stable.

This theorem is proved in the next section. It is sharp. Indeed, let A and B be commuting normal operators, with

α(A) := supℜσ(A)< 0. Λ(B) = α(B)> 0. Then ‖eAt‖= eα(A)t (t ≥ 0), and by (1.3) ‖W‖ ≤ 1
2|α(A)| . Consequently,

ψ(W,B) =
α(B)

|α(A)|

By Theorem 1.1 et(A+B) is stable if α(B)< |α(A)|. But ‖et(A+B)‖= e(α(A)+α(B))t (t ≥ 0). Therefore, in the considered case

et(A+B) is stable, provided α(A)+α(B)< 0. So Theorem 1.1 is really sharp.
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2. Proof of Theorem 1.1

Lemma 2.1. Let A generate a C0-semigroup eAt on H , and conditions (1.1) and (1.2) hold. Then the operator [eAt ,B] :=
eAtB−BeAt is bounded. Moreover,

[eAt ,B] =
∫ t

0
esA[A,B]e(t−s)Ads (t ≥ 0). (2.1)

Proof. For any x ∈ Dom(A2), we have esAx ∈ Dom(A2) and AesAx ∈ Dom(A) ⊆ Dom(B). So BAesAx ∈ H . In addition,

according to (1.1) , ABesAx ∈ H . Thus,

eA(t−s)(AB−BA)esAx ∈ H (x ∈ Dom(A2)).

But

eA(t−s)(AB−BA)esAx =−
∂

∂ s
eA(t−s)Bx−B

∂

∂ s
esAx =−

∂

∂ s
eA(t−s)BesAx.

Integrating this equality, we get
∫ t

0
eA(t−s)(AB−BA)esAxds = −

∫ t

0

∂

∂ s
eA(t−s)BesAxds =−eA(t−s)BesAx|t0

= (etAB−BetA)x.

Thus

[eAt ,B]x =
∫ t

0
eA(t−s)[A,B]esAxds.

Since [A,B] is bounded, we can extend [eAt ,B] to the whole space. This proves the required relation (2.1).

Proof of Theorem 1.1: Since eAt is exponentially stable, W is a unique solution of the Lyapunov equation

WA+(WA)∗ =−I. (2.2)

Equation (2.2) is understood in the sense

〈Az1,Wz2〉+ 〈Wz1,Az2〉=−〈z1,z2〉 (z1,z2 ∈ Dom(A)). (2.3)

Besides, W : Dom (A)→ Dom (A∗), cf. [1, p. 252, Section 5.3].

For all h ∈ Dom(A) with ‖h‖= 1, by (2.3) we can write

〈(A+B)h,Wh〉+ 〈Wh,(A+B)h〉 = 〈Ah,Wh〉+ 〈Wh,Ah〉+ 〈Bh,Wh〉+ 〈Wh,Bh〉

= −1+ 〈Bh,Wh〉+ 〈Wh,Bh〉=−1+ 〈Bh,
∫

∞

0
eA∗teAtdt h〉+ 〈

∫

∞

0
eA∗teAtdt h,Bh〉

= −1+
∫

∞

0
(〈eAtBh,eAth〉+ 〈eAth,eAtBh〉)dt =−1+

∫

∞

0
(〈BeAth,eAth〉+ 〈eAth,BeAth〉)dt

+
∫

∞

0
(〈[eAt ,B]h,eAth〉+ 〈eAth, [eAt ,B]h〉)dt.

Thus,

〈(A+B)h,Wh〉+ 〈Wh,(A+B)h〉=−1+ J1(h)+ J2(h), (2.4)

where

J1(h) =
∫

∞

0
(〈BeAth,eAth〉+ 〈eAth,BeAth〉)dt

and

J2(h) =
∫

∞

0
(〈[eAt ,B]h,eAth〉+ 〈eAth, [eAt ,B]h〉)dt.
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Since

〈BeAth,eAth〉+ 〈eAth,BeAth〉= 2ℜ〈BeAth,eAth〉 ≤ 2Λ(B)〈eAth,eAth〉,

we have

J1(h)≤ 2Λ(B)
∫

∞

0
〈eAth,eAth〉dt = 2Λ(B)〈Wh,h〉. (2.5)

If Λ(B)> 0, then J1(h)≤ 2Λ(B)‖W‖. If Λ(B)< 0, then J1(h)≤ 0. So J1(h)≤ ψ(W,B). In addition, by Lemma 2.1

|J2(h)| ≤ 2

∫

∞

0
‖eAt‖‖[eAt ,B]‖dt ≤ 2

∫

∞

0
‖eAt‖‖[A,B]‖

∫ t

0
‖esA‖‖e(t−s)A‖ds dt = ‖[A,B]‖ζ (A). (2.6)

Consequently, due to (1.5), for all h ∈ Dom(A),‖h‖= 1,

〈(A+B)h,Wh〉+ 〈Wh,(A+B)h〉=−1+ J1(h)+ J2(h)≤−(1−ψ(W,B)−‖[A,B]‖ζ (A))< 0.

Now the required result is due to the generalized Lyapunov theorem [2, Theorem 7.1].

3. Example

Let H = L2(0,1), where L2(0,1) is the space of square-integrable functions defined on [0,1] with the traditional scalar product.

Let a(x) be a complex valued function having a bounded measurable derivative, b be a real constant,

(A f )(x) =
d2 f (x)

dx2
+a(x) f (x) and (B f )(x) = b f ′(x) (0 < x < 1, f ∈ Dom (A))

with

Dom (A) = {h ∈ L2(0,1) : h′′ ∈ L2(0,1),h(0) = h(1) = 0}.

Then the commutator is defined by ([A,B] f )(x) =−ba′(x) f (x) and ‖[A,B]‖= |b|supx |a
′(x)|. Clearly A+B and A generate

C0-semigroups. Assume that q := maxx ℜa(x)< π2. Since the largest eigenvalue of the operator defined on Dom(A) by d2/dx2

is −π2, we easily obtain

sup
h∈Dom A;‖h‖=1

ℜ〈Ah,h〉 ≤ q−π2 < 0.

So A is dissipative and therefore,

‖eAt‖ ≤ exp [−t(π2 −q)] (t ≥ 0).

Hence, by (1.4)

ζ (A)≤
1

2(π2 −q)2
.

Since ( f ′, f ) = −( f , f ′) ( f ∈ Dom (A)), we have Λ(B) = 0 and consequently, ψ(W,B) = 0. Thus, due to Theorem 1.1 the

semigroup generated by the operator Ã = A+B defined by

(Ã f )(x) =
d2 f (x)

dx2
+b f ′(x)+a(x) f (x) (0 < x < 1, f ∈ Dom (A))

is exponentially stable, provided

|b|sup
x
|a′(x)|< 2(π2 −q)2.
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4. A particular case

In this section we refine Theorem 1.1, assuming that

λ (A) := inf
h∈Dom(A);‖h‖=1

ℜ〈Ah,h〉>−∞. (4.1)

For example, let

(A f )(x) =
d f (x)

dx
+a(x) f (x) (0 < x < 1; f ∈ L2(0,1))

with

Dom (A) = {h ∈ L2(0,1) : h′ ∈ L2(0,1),h(0) = h(1)}

and a complex bounded measurable function a(x) with supx ℜ a(x)< 0. Simple calculations show that in this case λ (A) =
infx ℜ a(x)>−∞.

Furthermore, put

ψ̂(W,B) :=

{

2Λ(B)‖W‖ if Λ(B)≥ 0,
Λ(B)
|λ (A)| if Λ(B)< 0.

Theorem 4.1. Let conditions (1.1), (1.2) and (4.1) hold, and eAt be exponentially stable. If, in addition, λ (B)< ∞ and

ψ̂(W,B)+‖[A,B]‖ζ (A)< 1,

then et(A+B) is also exponentially stable.

Proof. Define J1(h) and J2(h) (h ∈ Dom(A),‖h‖= 1) as in Section 2. Under condition Λ(B)< 0 we have

J1(h) = 2

∫

∞

0
ℜ〈BeAth,eAth〉dt ≤ 2Λ(B)

∫

∞

0
〈eAth,eAth〉dt < 0.

Put y(t) = eAth (h ∈ Dom(A)). Then

d

dt
〈y(t),y(t)〉= 2ℜ〈

d

dt
y,y(t)〉= 2ℜ〈Ay,y(t)〉 ≥ 2λ (A)〈y(t),y(t)〉.

Solving this inequality, we get

‖eAth‖ ≥ eλ (A)t‖h‖.

Since A generates a stable semigroup λ (A)< 0. Consequently,

∫

∞

0
〈eAth,eAth〉dt ≥

∫

∞

0
e2λ (A)dt〈h,h〉=

1

2|λ (A)|
〈h,h〉.

If Λ(B)≥ 0, then according to (2.5) |J1(h)| ≤ 2Λ(B)‖W‖. Thus |J1(h)| ≤ ψ̂(W,B). Taking into account (2.4) and (2.6) , under

condition (4.1) for all h ∈ Dom(A),‖h‖= 1, we obtain

〈(A+B)h,Wh〉+ 〈Wh,(A+B)h〉=−1+ J1(h)+ J2(h)≤−(1− ψ̂(W,B)−‖[A,B]‖ζ (A))< 0.

Now the required result is due to the above mentioned generalized Lyapunov theorem [2, Theorem 7.1].
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Départment de Mathématiques, Faculté des sciences, Université de Sherbrooke, Sherbrooke (Qc), Canada, ORCID: 0000000229563208

*Corresponding author: francois.dubeau@usherbrooke.ca

Received: 14 January 2019, Accepted: 12 April 2019, Available online: 27 June 2019

1. Introduction

Many textbooks of numerical analysis present the method of undetermined coefficients to find and approximation of the integral

or the derivative of a given function, for example [1, 2, 3, 4] and many others. The method of undetermined coefficients

used to estimate the k-th derivative f (k)(0) of a given function f (x) consists in finding a (n+1)-dimensional weight vector

~a = (a0, . . . ,an) associated to a given (n+1)-dimensional vector of distinct coordinates (or nodes)~x = (x0, . . . ,xn) with n ≥ k

and |xi| ≤ 1 for all i, such that the quantity D(k)( f ;h) given by the formula

f (k)(0)≈
1

hk

n

∑
i=0

ai f (hxi).

The method of undetermined coefficients is based on the requirement that the truncation error

R
D(k)( f ;h) = hk f (k)(0)−

n

∑
i=0

ai f (hxi), (1.1)

be such that

R
D(k)( f ;h) = o(hr(n)), (1.2)

where r(n)≥ n depends on the regularity of f (x).
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It is possible to increase the order of the truncation error term. Indeed, if a primitive F(x) is available, that is to say

F ′(x) = f (x), we can add an expression to the preceding approximation as follows

f (k)(0)≈
1

hk

(
n

∑
i=0

ai f (hxi)+ c

[
1

h

m

∑
j=0

β jF(hξ j)−
n

∑
i=0

bi f (hxi)

])
,

where (n+1)-dimensional weight vector~b = (b0, . . . ,bn), the two (m+1)-dimensional vectors of weight ~β = (β0, . . . ,βm) and

distinct coordinates (or nodes) ~ξ = (ξ0, . . . ,ξm), and c are chosen in such a way that the truncation error given by

Rc

D(k)( f ;h) = hk f (k)(0)−
n

∑
i=0

ai f (hxi)− c

[
1

h

m

∑
j=0

β jF(hξ j)−
n

∑
i=0

bi f (hxi)

]
, (1.3)

is such that

Rc

D(k)( f ;h) = o(hrc(n)),

with rc(n)> r(n).
The plan of the paper is the following. In the next section, we present preliminaries about polynomials, Vandermonde

matrix, and Taylor’s expansions. Section 3 presents the standard approach for obtaining differentiation rules using the method of

undetermined coefficients. We establish optimal truncation error bounds by a direct approach and by the method of integration

by parts ”backward”. Total error bound composed of the truncation term and of the roundoff error term is given. In Section 4,

we present a method to improve the error by adding information coming from a primitive. Examples of formula are given in

Section 5 and numerical tests are included in Section 6.

We will use f (l)(x) for the l-th derivative of f (x) for l = 0,1,2, . . ., and f (0)(x) = f (x). Let 1 ≤ p ≤ ∞, if f (x) is defined

on a set E, ‖ f‖p,E will be its p-norm on E, and if~v is a vector in R
n, its p-norm will be ‖~v‖p.

2. Preliminaries

2.1 Small o and big O notations
Let f (x) be a function such that limx→α f (x) = 0. We say that g(x) is a small o of f (x) around α , and write g(x) = o( f (x)), if

for any ε > 0 there exists a δε > 0 such that

|g(x)| ≤ ε | f (x)| .

holds for 0 < |x−α |< δε . We say that g(x) is a big O of f (x) around α , and write g(x) = O( f (x)), if there exist a constant C

and a δ > 0 such that

|g(x)| ≤C | f (x)| .

holds for 0 < |x−α|< δ .

Lemma 2.1. Let us assume that the real number r > 0 and n = ⌊r⌋ ≥ 0. Let πm(x) be a polynomial of degree m such that

πm(x) = o(|x−α|r) .

Then,

πm(x) =





(x−α)nπm−n(x) if m > r,

0 if m ≤ r,

where πm−n(x) is a polynomial of degree m−n.

2.2 Vandermonde matrix and Lagrange interpolation polynomials

Let~x = (x0, . . . ,xn) bet a n+1-vector of distincts real (or complex) numbers and its associated Vandermonde matrix V (~x),

V (~x) =




1 . . . 1

x0 xn

...
...

xn
0 . . . xn

n


 .
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Let~el be the (n+1)-column vector, the transpose of (δl,0, · · · ,δl, j · · · ,δl,n), where

δl, j =





1 if j = l,

0 if j 6= l,

for 0 ≤ l, j ≤ n.

Lemma 2.2. [5] The Vandermonde matrix V (~x) is invertible and the l-th column of V−1(~x) is

V−1(~x)~el =
1

l!




w
(l)
n,0(0)

w
(l)
n,1(0)

...

w
(l)
n,n(0)



,

for l = 0, . . . ,n, where
{

wn, j(x)
}n

j=0
is the Lagrange’s basis of the space of polynomial of degree at most n.

2.3 Taylor’s expansion

Let Ih = [−h,h], I+h = [0,h] and I−h = [−h,0]. For h = 1 we will simply use I = [−1,1], I+ = [0,1] and I− = [−1,0]. Let p and

q be two real numbers such that 1 ≤ p,q ≤ ∞ and 1
p
+ 1

q
= 1. Let Cl(Ih) be the set of continuously differentiable functions up

to order l on Ih, and the set of absolutely continuous function on Ih be defined by

ACl+1,p(Ih) =

{
f ∈Cl(Ih)

∣∣∣∣
(a) f (l+1) ∈ Lp(Ih), and

(b) f (l)(s) = f (l)(r)+
∫ s

r f (l+1)(ξ )dξ , ∀r,s ∈ Ih

}
.

Taylor’s expansion of f (x) ∈ ACl+1,p(Ih) around x = 0 of order l +1 is

f (x) =
l

∑
j=0

f ( j)(0)

j!
x j +

∫ h

−h
f (l+1)(y)KT,l(x,y;h)dy.

where KT,l(x,y;h) is the kernel

KT,l(x,y;h) =
1

l!

[
(x− y)l

+1I+
h
(y)+(−1)l+1(y− x)l

+1I−
h
(y)

]
,

for any x, y in Ih [6, 7]. This kernel is a piecewise polynomial function of degree l. In this expression, if E is a set, then

1E(y) =





1 if y ∈ E,

0 if y /∈ E.

Also for any l ≥ 0, (η)l
+ is defined

(η)l
+ = η l1(0,+∞)(η).

If we set x = hξ , and y = hη , then the kernel becomes

KT,l(x,y;h) = KT,l(hξ ,hη ;h) = hlKT,l(ξ ,η ;1),

for any ξ , η in I.

3. Standard numerical differentiation rules

3.1 Existence: method of undetermined coefficients

Let us observe that R
D(k)( f ;h) is linear expression with respect to f (x) and also if f (x) is a polynomial of degree ≤ m with

respect to x, then R
D(k)( f ;h) is a polynomial of degree ≤ m with respect to h. The condition (1.2), combined to Lemma 2.1,
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implies that R
D(k)( f ;h) = 0 for any polynomial f (x) of degree ≤ n. So using the standard basis

{
xl
}n

l=0
, we have to solve the

linear system

n

∑
i=0

aix
l
i =

D(k)(xl ;h)

hl
= k!δk,l for l = 0, . . . ,n, (3.1)

for which the solution is

~a = k!V−1(~x)~ek =




w
(k)
n,0(0)

w
(k)
n,1(0)

...

w
(k)
n,n(0)



.

We obtain the method

f (k)(0)≈
∑

n
i=0 ai f (hxi)

hk
.

It might happen that R
D(k)( f ;h) = 0 for some polynomials of degree k > n. Let us define the degree of accuracy (or precision)

ka of the approximation process (1.1) to be the largest integer ka ≥ n such that R
D(k)( f ;h) = 0 holds for any polynomial f (x) of

degree l ≤ ka.

3.2 Truncation error
Two different approaches can be used to establish the best bounds for the truncation error in terms of the regularity of f (x).
The first approach will be called the standard direct approach, while the second way is the integration by parts ”backwards”.

This second approach presented in [8, 9, 10], usually presented for numerical integration [11], can be used in general when we

consider the method of undetermined coefficients [12]. Let us note some bounds were already presented for specific formulae

elsewhere, for example in [13].

3.2.1 Direct approach

For any integer l such that k ≤ l ≤ ka, let f (x) ∈ ACl+1,p(Ih). Since the process is exact for polynomials of degree ≤ l, using a

Taylor’s expansion of order l +1, the truncation error is

R
D(k)( f ;h) =

∫ h

−h
f (l+1)(y)K

D(k),l(y;h)dy,

where K
D(k),l(y;h) is the Peano kernel associated to the process given by

K
D(k),l(y;h) = R

D(k)(KT,l(·,y;h);h)

= hkKT,l−k(0,y;h)−
n

∑
i=0

aiKT,l(hxi,y;h).

It follows that

∣∣R
D(k)( f ;h)

∣∣≤
∥∥∥ f (l+1)

∥∥∥
p,Ih

∥∥∥K
D(k),l(·;h)

∥∥∥
q,Ih

.

Moreover, K
D(k),l(y;h) = K

D(k),l(hη ;h) = hlK
D(k),l(η ;1), then

∥∥∥K
D(k),l(·;h)

∥∥∥
q,Ih

= h
l+1− 1

p

∥∥∥K
D(k),l(·;1)

∥∥∥
q,I

.

So

∣∣R
D(k)( f ;h)

∣∣≤ h
l+1− 1

p Ck;l,p

∥∥∥ f (l+1)
∥∥∥

p,Ih
, (3.2)

where

Ck;l,p =
∥∥∥K

D(k),l(·;1)
∥∥∥

q,I
, (3.3)
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does not depend on h. Since because

lim
h→0

∥∥∥ f (l+1)
∥∥∥

p,Ih
=





0 for 1 ≤ p < ∞,

C for p = ∞,

we have

R
D(k)( f ;h) =





o

(
h

l+1− 1
p

)
for 1 ≤ p < ∞,

O
(
hl+1

)
for p = ∞.

Since an o

(
h

l+1− 1
p

)
and an O

(
hl+1

)
are o

(
hl
)
, it means that R

D(k)( f ;h) = o
(
hl
)
. In summary we have proved the

following theorem which presents necessary and sufficient conditions to obtain the desired error order.

Theorem 3.1. For any l such that n ≤ l ≤ ka, a necessary and sufficient condition to have R
D(k)( f ;h) = o(hl) for any

f ∈ ACl+1,p(Ih) is that R
D(k)( f ;h) = 0 for any polynomial f (x) of degree ≤ l.

Theorem 3.2. If R
D(k)( f ;h) = 0 for any polynomial of degree ≤ ka, then (3.2) and (3.3) hold for any f ∈ ACl+1,p(Ih) for

k ≤ l ≤ ka.

Remark 3.3. The bounds given by (3.2) and (3.3) are the best one as it has been shown in the general case of the method of

undetermined coefficient [12].

Remark 3.4. Let us specify the kernels K
D(k),l(y;h) and K

D(k),l(η ;1).

K
D(k),l(y;h) = hkKT,l−k(x,y;h)−

n

∑
i=0

aiKT,l(hxi,y;h)

=
hk

(l − k)!

[
(0− y)l−k

+ 1I+
h
(y)+(−1)l−k+1(y−0)l−k

+ 1I−
h
(y)
]

−
1

l!

n

∑
i=0

ai

[
(hxi − y)l

+1I+
h
(y)+(−1)l+1(y−hxi)

l
+1I−

h
(y)
]
,

and

K
D(k),l(η ;1) =−

1

l!

n

∑
i=0

ai

[
(xi −η)l

+1I+(η)+(−1)l+1(η − xi)
l
+1I−(η)

]
.

3.2.2 Integration by parts ”backwards”

The method of integration by parts ”backwards” is based on the Taylor’s expansion of

W
D(k)( f ;h) = hR

D(k)( f ;h).

We suppose that f ∈ ACl+1,p(Ih) for k ≤ l ≤ ka, and we proceed as follows. We have

W
D(k)( f ;h) = hR

D(k)(h; f ) = hk+1 f (k)(0)−h
n

∑
i=0

ai f (hxi),

so W
D(k)( f ;0) = 0. For k ≤ l ≤ ka and 1 ≤ j ≤ l −1

W
( j)

D(k)( f ;h) = (k+1) jh
k+1− j f (k)(0)− j

n

∑
i=0

aix
j−1
i f ( j−1)(hxi)−h

n

∑
i=0

aix
j
i f ( j)(hxi),

where for two non negative integers k and j

(k) j =





k!
(k− j)! for j = 0, . . . ,k,

0 for j > k.
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Then

lim
h→0

W
( j)

D(k)( f ;h) = (k+1) jδ j,k+1 f (k)(0)− j f ( j−1)(0)
n

∑
i=0

aix
j−1
i = 0.

Also for j = l

W
(l)

D(k)( f ;h) = (k+1)lh
k+1−l f (k)(0)− l

n

∑
i=0

aix
l−1
i f (l−1)(hxi)−h

n

∑
i=0

aix
l
i f (l)(hxi),

and using Taylor’s expansions of order 2 for f (l−1)(x) which is in AC2,p(Ih) and of order 1 for f (l)(x) which is in AC1,p(Ih), we

obtain

W
(l)

D(k)( f ;h) = (k+1)lh
k+1−l f (k)(0)− l f (l−1)(0)

n

∑
i=0

aix
l−1
i −h(l +1) f (l)(0)

n

∑
i=0

aix
l
i +
∫ h

−h
f (l+1)(y)KW,l(y;h)dy.

Now, considering (3.1) to simplify, we obtain

W
(l)

D(k)( f ;h) =
∫ h

−h
f (l+1)(y)KW,l(y;h)dy,

where

KW,l(y;h) =−l
n

∑
i=0

aix
l−1
i KT,1(hxi,y;h)−h

n

∑
i=0

aix
l
iKT,0(hxi,y;h).

Let us remark that KW,l(y;h) = hKW,l(η ;1) for y = hη . So the Taylor’s expansion of order l for Wn( f ;h) leads to

W
D(k)( f ;h) =

∫ h

0
W

(l)

D(k)( f ;z)
(h− z)l−1

(l −1)!
dz

=
∫ h

0

[∫ z

−z
f (l+1)(y)KW,l(y;z)dy

]
(h− z)l−1

(l −1)!
dz

=
∫ h

−h
f (l+1)(y)

[∫ h

|y|
KW,l(y;z)

(h− z)l−1

(l −1)!
dz

]
dy

=
∫ h

−h
f (l+1)(y)K̂

D(k),l(y;h)dy,

for

K̂
D(k),l(y;h) =

∫ h

|y|
KW,l(y;z)

(h− z)l−1

(l −1)!
dz.

As indicated in Remark 3.3, we can obtain the best bound from this expression. So we get the following result.

Theorem 3.5. Let h > 0, the kernels K
D(k),l(y;h) and K̂

D(k),l(y;h) are such that

hK
D(k),l(·;h) = K̂

D(k),l(·;h)

almost everywhere.

As a consequence both methods lead to the same best error bounds.

Remark 3.6. The kernel is

KW,l(y;h) = −

[
l

n

∑
i=0

aix
l−1
i (hxi − y)++h

n

∑
i=0

aix
l
i(hxi − y)0

+

]
1I+

h
(y)

−

[
l

n

∑
i=0

aix
l−1
i (y−hxi)+−h

n

∑
i=0

aix
l
i(y−hxi)

0
+

]
1I−

h
(y)

or, after the substitution y = hη and simplification,

KW,l(η ;1) = −

[
l

n

∑
i=0

aix
l−1
i (xi −η)++

n

∑
i=0

aix
l
i(xi −η)0

+

]
1I+(η)

−

[
l

n

∑
i=0

aix
l−1
i (η − xi)+−

n

∑
i=0

aix
l
i(η − xi)

0
+

]
1I−(η).
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3.3 Total error

In effective numerical computation, the quantity f (k)(0) is approximated by

1

hk

n

∑
i=0

ai f̃ (hxi),

which uses f̃ (hxi) instead of f (hxi), so introducing roundoff error ei = f (hxi)− f̃ (hxi). The total error E( f ;h) is decomposed

in two types of error: the truncation error R
D(k)( f ;h) and the roundoff error S( f ;h). Hence

E( f ;h) = f (k)(0)−
1

hk

n

∑
i=0

ai f̃ (hxi)

=

[
f (k)(0)−

1

hk

n

∑
i=0

ai f (hxi)

]
+

1

hk

n

∑
i=0

ai

(
f (hxi)− f̃ (hxi)

)

=
1

hk

[
R

D(k)( f ;h)+S( f ;h)

]
,

so

|E( f ;h)| ≤
1

hk

[∣∣R
D(k)( f ;h)

∣∣+ |S( f ;h)|

]
.

For the truncation error

∣∣R
D(k)( f ;h)

∣∣≤ h
l+1− 1

p Ck;l,p

∥∥∥ f (l+1)
∥∥∥

p,Ih
,

and for the roundoff error we have

S( f ;h) =
n

∑
i=0

ai

(
f (hxi)− f̃ (hxi)

)
=

n

∑
i=0

aiei.

So

|S( f ;h)|=

∣∣∣∣∣
n

∑
i=0

aiei

∣∣∣∣∣≤
n

∑
i=0

|ai| |εi| ≤ ‖~a‖q ‖~e‖p ,

where ‖~a‖q is independant of h.

Consequently we have

|En( f ;h)| ≤ h
l+1− 1

p−k
Ck;l,p

∥∥∥ f (l+1)
∥∥∥

p,Ih
+

‖~a‖q ‖~e‖p

hk
,

for l = k, . . . ,ka. This expression shows that the derivation process (k > 0) is numerically unstable. See also [14] for more

precision on stability of such processes.

4. Corrected numerical differentiation rules

4.1 The idea

In this section we suggest a way to improve the order of the truncation error term when we have a primitive F(x) of f (x), which

means that F ′(x) = f (x). Suppose that

hk f (k)(0) =
n

∑
i=0

ai f (hxi)+o(hka),

so the degree of accuracy of the process is ka, and the truncation error is

R
D(k)( f ;h) = hk f (k)(0)−

n

∑
i=0

ai f (hxi) = o(hka).
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Suppose now that using the same (n+1)-dimensional vector of distinct coordinates (or nodes)~x = (x0, . . . ,xn) we can find a

(n+1)-dimensional weight vector~b = (b0, . . . ,bn) such that we can determine an expression of the form

1

h

m

∑
j=0

β jF(hξ j) =
n

∑
i=0

bi f (hxi)+o(hka),

for two (m+1)-dimensional vectors ~β = (β0, . . . ,βm) and ~ξ = (ξ0, . . . ,ξm). Its truncation error is

RP( f ;h) =
1

h

m

∑
j=0

β jF(hξ j)−
n

∑
i=0

bi f (hxi),

and

RP( f ;h) = o(hka).

We can combine the two truncation error terms as follows

Rc

D(k)( f ;h) = R
D(k)( f ;h)− cRP( f ;h)

to get (1.3), and this expression is at least of degree of accuracy ka. Since the error terms are both o(hka), this expression is also

exact for polynomials of degree ≤ ka. We can select the parameter c such that Rc

D(k)( f ;h) will be also exact for polynomials of

degree ka +1. Indeed, if

c =
R

D(k)(xka+1;h)

RP(xka+1;h)
,

then Rc

D(k)( f ;h) will be also exact for polynomials of degree ka +1, so its degree of accuracy will be at least ka +1.

We will have

hk f (k)(0) =
n

∑
i=0

ai f (hxi)+ c

[
1

h

m

∑
j=0

β jF(hξ j)−
n

∑
i=0

bi f (hxi)

]
+o(hka+1)

=
n

∑
i=0

[ai − cbi] f (hxi)+
c

h

m

∑
j=0

β jF(hξ j)+o(hka+1),

or

f (k)(0) =
1

hk

n

∑
i=0

[ai − cbi] f (hxi)+
c

hk+1

m

∑
j=0

β jF(hξ j)+o(hka+1−k),

which will be exact for polynomials of degree up to ka +1, and we have increased the order of the error term.

4.2 Existence

The vectors~b, ~β , and ~ξ of

1

h

m

∑
j=0

β jF(hξ j) =
n

∑
i=0

bi f (hxi)

can be determined using the method of undetermined coefficients. It is required that

m

∑
j=0

β j = 0,

and

m

∑
j=0

β j

ξ l+1
j

l +1
=

n

∑
i=0

bix
l
i

for l = 0, . . . ,n. We also need that

m

∑
j=0

β j

ξ l+1
j

l +1
=

n

∑
i=0

bix
l
i .

for l = n+1, . . . ,ka. We will not present a complete analysis of this problem here. Examples of solutions of these equations are

given in the last section of this paper.
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4.3 Total error

In effective numerical computation, with these corrected rules the quantity f (k)(0) is approximated by

f (k)(0)≈
1

hk

n

∑
i=0

[ai − cbi] f̃ (hxi)+
c

hk+1

m

∑
j=0

β jF̃(hξ j),

which uses f̃ (hxi) and F̃(hξ j) instead of f (hxi) and F(ξ j). So roundoff errors are introduced as ei = f (hxi)− f̃ (hxi) and

E j = f (hx j)− f̃ (hx j). The total error Ec( f ;h) is decomposed in two types of error: the truncation error Rc

D(k)( f ;h) and the

roundoff error Sc( f ;h). Hence

Ec( f ;h) =
1

hk

[
Rc

D(k)( f ;h)+Sc( f ;h)

]
,

where

Rc

D(k)( f ;h) = hk f (k)(0)−
n

∑
i=0

[ai − cbi] f (hxi)+
c

h1

m

∑
j=0

β jF(hξ j),

and

Sc( f ;h) =
n

∑
i=0

[ai − cbi]
(

f (hxi)− f̃ (hxi)
)
+

c

h1

m

∑
j=0

β j

(
F(hξ j)− F̃(hξ j)

)
.

For the truncation error, if we proceed as we did in the preceding section, we could establish the bound

∣∣∣Rc

D(k)( f ;h)
∣∣∣≤ h

l+1− 1
p Cc

k;l,p

∥∥∥ f (l+1)
∥∥∥

p,Ih
.

For the roundoff error we have

Sc( f ;h) =
n

∑
i=0

[ai − cbi]
(

f (hxi)− f̃ (hxi)
)
+

c

h

m

∑
j=0

β j

(
F(hξ j)− F̃(ξ j)

)

=
n

∑
i=0

[ai − cbi]ei +
c

h

m

∑
j=0

β jEi,

so

|Sc( f ;h)| ≤
n

∑
i=0

|ai − cbi| |ei|+
c

h

m

∑
j=0

∣∣β j

∣∣ |Ei|

≤
∥∥∥~a− c~b

∥∥∥
q
‖~e‖p +

c

h

∥∥∥~β
∥∥

q

∥∥~E
∥∥∥

p

where

∥∥∥~a− c~b
∥∥∥

q
and

∥∥∥~β
∥∥∥

q
are independant of h.

Consequently we have

|Ec( f ;h)| ≤ h
l+1− 1

p−k
Cc

k;l,p

∥∥∥ f (l+1)
∥∥∥

p,Ih
+

1

hk

[∥∥∥~a− c~b
∥∥∥

q
‖~e‖p +

c

h

∥∥∥~β
∥∥

q

∥∥~E
∥∥∥

p

]
,

not only for l = k, . . . ,ka but also for l = ka +1. Obviously, this process is intereating for regular functions f (x) ∈ ACka+2,p(Ih)
for which we know a primitive.

5. Examples of formula

Example 5.1. First derivative: the 2-points symmetric formula is

f (1)(0) =
1

2h
[ f (h)− f (−h)]+o(h),
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which is exact for polynomials of degree up to 2. The truncation error we consider is

R
D(1)( f ;h) = h f (1)(0)−

1

2
[ f (h)− f (−h)] = o(h2).

For f (x) = xl , R
D(1)(xl ;h) = 0 for l = 0,1,2, and for l ≥ 3 we have

R
D(1)(x

l ;h) =−hl

[
1− (−1)l

]

2
=





0 for even l,

−hl for odd l.
(5.1)

The corresponding expression involving the primitive F(x) is

1

h
[F(h)−2F(0)+F(−h)] =

1

2
[ f (h)− f (−h)]+o(h2).

with its truncation error

RP( f ;h) =
1

h
[F(h)−2F(0)+F(−h)]−

1

2
[ f (h)− f (−h)] = o(h2).

For f (x) = xl , RP(x
l ;h) = 0 for l = 0,1,2, and for l ≥ 3 we have

RP(x
l ;h) = hl

[
1− (−1)l

][ 1

l +1
−

1

2

]
=





0 for even l,

2hl
[

1
l+1

− 1
2

]
for odd l.

(5.2)

Then we choose

c =
R

D(1)(x3;h)

RP(x3;h)
=

R
D(1)(x3;1)

RP(x3;1)
=

−1

−1/2
= 2.

The resulting formula will be exact not only for polynomials of degree 3 but also for polynomial of degree 4, since (5.1) and

(5.2) hold. We obtain

h f (1)(0) =−
1

2
[ f (h)− f (−h)]+

2

h
[F(h)−2F(0)+F(−h)]+o(h4)

or

f (1)(0) =−
1

2h
[ f (h)− f (−h)]+

2

h2
[F(h)−2F(0)+F(−h)]+o(h3).

Example 5.2. First derivative: the one-sided formula is

f (1)(0) =
1

h
[ f (h)− f (0)]+o(1).

Its corresponding truncation error is

R
D(1)( f ;h) = h f (1)(0)− [ f (h)− f (0)] = o(h).

For f (x) = xl , R
D(1)(xl ;h) = 0 for l = 0,1, and for l ≥ 2 we have

R
D(1)(x

l ;h) =−hl

We consider

1

h
[F(h)−F(0)] =

1

2
[ f (h)+ f (0)]+o(h).

with its truncation error

RP( f ;h) =
1

h
[F(h)−F(0)]−

1

2
[ f (h)+ f (0)] = o(h).
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For f (x) = xl , RP(x
l ;h) = 0 for l = 0,1, and for l ≥ 2 we have

RP(x
l ;h) = hl

[
1

l +1
−

1

2

]
.

Then we choose

c =
R

D(1)(x2;h)

RP(x2;h)
=

R
D(1)(x2;1)

RP(x2;1)
=

−1

−1/6
= 6.

The resulting formula will be exact for polynomial of degree 2, and we obtain

h f (1)(0) =−2 [ f (h)+2 f (0)]+
6

h
[F(h)−F(0)]+o(h2)

or

f (1)(0) =−
2

h
[ f (h)+2 f (0)]+

2

h2
[F(h)−F(0)]+o(h).

Example 5.3. Second derivative: the 3-points symmetric formula is

f (2)(0) =
1

h2
[ f (h)−2 f (0)+ f (−h)]+o(h),

and its truncation error

R
D(2)( f ;h) = h2 f (2)(0)− [ f (h)−2 f (0)+ f (−h)] = o(h3).

For f (x) = xl , R
D(2)(xl ;h) = 0 for l = 0,1,2,3, and for l ≥ 4 we have

R
D(2)(x

l ;h) =−hl
[
1+(−1)l

]
=





0 for odd l,

−2hl for even l.
(5.3)

We consider

1

h
[F(h)−F(−h)] =

[
1

3
f (h)+

4

3
f (0)+

1

3
f (−h)

]
+o(h3),

with its truncation error

RP( f ;h) =
1

h
[F(h)−F(−h)]−

[
1

3
f (h)+

4

3
f (0)+

1

3
f (−h)

]
= o(h3).

For f (x) = xl , RP(x
l ;h) = 0 for l = 0,1,2,3, and for l ≥ 4 we have

RP(x
l ;h) = hl

[
1+(−1)l

][ 1

l +1
−

1

3

]
=





0 for odd l,

2hl
[

1
l+1

− 1
3

]
for even l.

(5.4)

Then we choose

c =
R

D(2)(x4;h)

RP(x4;h)
=

R
D(2)(x4;1)

RP(x4;1)
=

−2

−4/15
=

15

2
.

The resulting formula is not only exact for polynomials of degree 4 but also for polynomials of degree 5, since (5.3) and (5.4)

hold. We obtain

h2 f (2)(0) =−
3

2
[ f (h)+8 f (0)+ f (−h)]+

15

2h
[F(h)−F(−h)]+o(h5)

or

f (2)(0) =−
3

2h2
[ f (h)+8 f (0)+ f (−h)]+

15

2h3
[F(h)−F(−h)]+o(h3).
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Example 5.4. Second derivative: the 4-points symmetric formula is

f (2)(0) =
9

8h2

[
f (h)− f

(
h

3

)
− f

(
−

h

3

)
+ f (−h)

]
+o(h).

Its truncation error is

R
D(2)( f ;h) = h2 f (2)(0)−

9

8

[
f (h)− f

(
h

3

)
− f

(
−

h

3

)
+ f (−h)

]
= o(h3).

For f (x) = xl , R
D(2)(xl ;h) = 0 for l = 0,1,2,3, and for l ≥ 4 we have

R
D(2)(x

l ;h) =−
9

8
hl
[
1+(−1)l

][
1−

1

3l

]
=





0 for odd l,

− 9
4
hl
[
1− 1

3l−1

]
for even l.

(5.5)

We consider

1

h
[F(h)−F(−h)] =

1

4

[
f (h)+3 f

(
h

3

)
+3 f

(
−

h

3

)
+ f (−h)

]
+o(h3).

with its truncation error

RP( f ;h) =
1

h
[F(h)−F(−h)]−

1

4

[
f (h)+3 f

(
h

3

)
+3 f

(
−

h

3

)
+ f (−h)

]
= o(h3).

For f (x) = xl , RP(x
l ;h) = 0 for l = 0,1,2,3, and for l ≥ 4 we have

RP(x
l ;h) = hl

[
1+(−1)l

][ 1

l +1
−

1

4

(
1+

1

3l−1

)]
=





0 for odd l,

2hl
[

1
l+1

− 1
4

(
1+ 1

3l−1

)]
for even l.

(5.6)

Then we choose

c =
R

D(2)(x4;h)

RP(x4;h)
=

R
D(2)(x4;1)

RP(x4;1)
=

−20/9

−16/135
=

75

4
.

The resulting formula will be exact not only for polynomials of degree 4 but also for polynomials of degree 5 since (5.5) and

(5.6) hold, and we obtain

h2 f (2)(0) =−
1

16

[
57 f (h)+243 f

(
h

3

)
+243 f

(
−

h

3

)
+57 f (−h)

]
+

75

4h
[F(h)−F(−h)]+o(h5)

or

f (2)(0) =−
1

16h2

[
57 f (h)+243 f

(
h

3

)
+243 f

(
−

h

3

)
+57 f (−h)

]
+

75

4h3
[F(h)−F(−h)]+o(h3).

Example 5.5. Third derivative: the 4-point symmetric formula is

f (3)(0) =
27

8h3

[
f (h)−3 f

(
h

3

)
+3 f

(
−

h

3

)
− f (−h)

]
+o(h).

Its truncation error is

R
D(3)( f ;h) = h3 f (3)(0)−

27

8

[
f (h)−3 f

(
h

3

)
+3 f

(
−

h

3

)
− f (−h)

]
= o(h4).

For f (x) = xl , R
D(3)(xl ;h) = 0 for l = 0,1,2,3,4, and for l ≥ 5 we have

R
D(3)(x

l ;h) =−
27

8
hl
[
1− (−1)l

][
1−

1

3l−1

]
=





0 for even l,

− 27
4

hl
[
1− 1

3l−1

]
for odd l.

(5.7)
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We consider

1

h
[F(−h)−2F(0)+F(h)] =

1

32

[
7 f (h)+27 f

(
h

3

)
−27 f

(
−

h

3

)
−7 f (−h)

]
+o(h4).

with its truncation error

RP( f ;h) =
1

h
[F(h)−2F(0)−F(−h)]−

1

32

[
7 f (h)+27 f

(
h

3

)
−27 f

(
−

h

3

)
−7 f (−h)

]
= o(h4).

For f (x) = xl , RP(x
l ;h) = 0 for l = 0,1,2,3,4, and for l ≥ 5 we have

RP(x
l ;h) = hl

[
1− (−1)l

][ 1

l +1
−

1

32

(
7+

1

3l−3

)]
=





0 for even l,

2hl
[

1
l+1

− 1
32

(
7+ 1

3l−3

)]
for odd l.

(5.8)

Then we choose

c =
R

D(3)(x5;h)

RP(x5;h)
=

R
D(3)(x5;1)

RP
3 (x

5;1)
=

−20/3

−1/9
= 60.

The resulting formula will also be exact for polynomials of degree 4 since (5.7) and (5.8) hold, and we obtain

h3 f (3)(0) =−
1

4

[
39 f (h)+243 f

(
h

3

)
−243 f

(
−

h

3

)
−39 f (−h)

]
+

60

h
[F(h)−2F(0)+F(−h)]+o(h6)

or

f (3)(0) =−
1

4h3

[
39 f (h)+243 f

(
h

3

)
−243 f

(
−

h

3

)
−39 f (−h)

]
+

60

h4
[F(h)−2F(0)+F(−h)]+o(h3).

Example 5.6. Fourth derivative: the 5-points symmetric formula is

f (4)(0) =
16

h4

[
f (h)−4 f

(
h

2

)
+6 f (0)−4 f

(
−

h

2

)
+ f (−h)

]
+o(h).

Its truncation error is

R
D(4)( f ;h) = h4 f (4)(0)−16

[
f (h)−4 f

(
h

2

)
+6 f (0)−4 f

(
−

h

2

)
+ f (−h)

]
= o(h5).

For f (x) = xl , R
D(4)(xl ;h) = 0 for l = 0,1,2,3,4,5, and for l ≥ 6 we have

R
D(4)(x

l ;h) =−16hl
[
1+(−1)l

][
1−

1

2l−2

]
=





0 for odd l,

−32hl
[
1− 1

2l−2

]
for even l.

(5.9)

We consider

1

h
[F(h)−F(−h)] =

1

45

[
7 f (h)+32 f

(
h

2

)
+12 f (0)+32 f

(
−

h

2

)
+7 f (−h)

]
+o(h5).

with its truncation error

RP( f ;h) =
1

h
[F(h)−F(−h)]−

1

45

[
7 f (h)+32 f

(
h

2

)
+12 f (0)+32 f

(
−

h

2

)
+7 f (−h)

]
= o(h5).

For f (x) = xl , RP(x
l ;h) = 0 for l = 0,1,2,3,4,5, and for l ≥ 6 we have

RP(x
l ;h) = hl

[
1+(−1)l

][ 1

l +1
−

1

45

(
7+

1

2l−5

)]
=





0 for odd l,

2hl
[

1
l+1

− 1
45

(
7+ 1

2l−5

)]
for even l.

(5.10)
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Then we choose

c =
R

D(4)(x6;h)

RP(x6;h)
=

R
D(4)(x6;1)

RP(x6;1)
=

−30

−1/21
= 630.

The resulting formula will also be exact not only for polynomials of degree 6 but also for polynomials of degree 7 since (5.9)

and (5.10) hold. We obtain

h4 f (4)(0) =−

[
82 f (h)+512 f

(
h

2

)
+72 f (0)+512 f

(
−

h

2

)
+82 f (−h)

]
+

630

h
[F(h)−F(−h)]+o(h7)

or

f (4)(0) =−
1

h4

[
82 f (h)+512 f

(
h

2

)
+72 f (0)+512 f

(
−

h

2

)
+82 f (−h)

]
+

630

h5
[F(h)−F(−h)]+o(h3)

6. Numerical examples

To illustrate the results, we will apply the formulae to the functions given in Table 1. To get the exponent L of expression of

the form o(hL), we compute the absolute error which is of the form O(hL+1) for a regular enough function, which is the case

for the chosen functions in Table 1. In the formula, we will replace o(hL) by O(hL+1). So the order L+1 is estimated by the

expression

log2

(
absolute error for h

absolute error for h/2

)
≈ log2

(
O(hL+1)

O((h/2)L+1)

)
≈ log2

(
2L+1

)
= L+1

The approximations of L+1 are given in the last column of the tables below. Obviously, the derivative can be estimated at any

value a not only at 0 as expressed in the formula. We reconsider the 6 examples of the preceding section, and we numerically

observe the predicted order L+1 of O(hL+1).

Example 6.1. First derivative: the 2-points symmetric formula is

f (1)(0) =
1

2h
[ f (h)− f (−h)]+O(h2),

and the corrected formula is

f (1)(0) =−
1

2h
[ f (h)− f (−h)]+

2

h2
[F(h)−2F(0)+F(−h)]+O(h4).

The numerical results are given in Table 2, which indicates the order of the method.

Example 6.2. First derivative: the one-sided formula is

f (1)(0) =
1

h
[ f (h)− f (0)]+O(h),

and the corrected formula is

f (1)(0) =−
2

h
[ f (h)+2 f (0)]+

2

h2
[F(h)−F(0)]+O(h2).

The numerical results are given in Table 3, which indicates the order of the method.

Example 6.3. Second derivative: the 3-points symmetric formula is

f (2)(0) =
1

h2
[ f (h)−2 f (0)+ f (−h)]+O(h2),

and the corrected formula is

f (2)(0) =−
3

2h2
[ f (h)+8 f (0)+ f (−h)]+

15

2h3
[F(h)−F(−h)]+O(h4).

The numerical results are given in Table 4, which indicates the order of the method.
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Example 6.4. Second derivative: the 4-points symmetric formula is

f (2)(0) =
9

8h2

[
f (h)− f

(
h

3

)
− f

(
−

h

3

)
+ f (−h)

]
+O(h2).

and

f (2)(0) =−
1

16h2

[
57 f (h)+243 f

(
h

3

)
+243 f

(
−

h

3

)
+57 f (−h)

]
+

75

4h3
[F(h)−F(−h)]+O(h4).

The numerical results are given in Table 5, which indicates the order of the method.

Example 6.5. Third derivative: the 4-point symmetric formula is

f (3)(0) =
27

8h3

[
f (h)−3 f

(
h

3

)
+3 f

(
−

h

3

)
− f (−h)

]
+O(h2).

and

f (3)(0) =−
1

4h3

[
39 f (h)+243 f

(
h

3

)
−243 f

(
−

h

3

)
−39 f (−h)

]
+

60

h4
[F(h)−2F(0)+F(−h)]+O(h4).

The numerical results are given in Table 6, which indicates the order of the method.

Example 6.6. Fourth derivative: the 5-points symmetric formula is

f (4)(0) =
16

h4

[
f (h)−4 f

(
h

2

)
+6 f (0)−4 f

(
−

h

2

)
+ f (−h)

]
+O(h2).

and

f (4)(0) =−
1

h4

[
82 f (h)+512 f

(
h

2

)
+72 f (0)+512 f

(
−

h

2

)
+82 f (−h)

]
+

630

h5
[F(h)−F(−h)]+O(h4)

The numerical results are given in Table 7, which indicates the order of the method.

7. Conclusion

In this paper, we have presented a complete analysis of the standard numerical differentiation formulae for which we have

established, using two different methods, the best error bounds depending on the regularity of absolutely continuous functions.

Moreover we have presented a way to improve the order of those formulae by adding information coming from a primitive of

the function. Obviously, this process is possible if we can get values of the primitive, directly of by an indirect method.
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Test functions

f (x)
1

1+ x2
tan(x)

f (1)(x) −2
x

(1+ x2)2
1+ tan2(x)

f (2)(x) −2
(1−3x2)

(1+ x2)3
2tan(x)(1+ tan2(x))

f (3)(x) 24x
(1− x2)

(1+ x2)4
2(1+ tan2(x))(1+3tan2(x))

f (4)(x) 24
(1−10x2 +5x4)

(1+ x2)5
8tan(x)(1+ tan2(x))(2+3tan2(x))

F(x) arctan(x) − ln |cos(x)|

Table 1. Test functions for numerical differentiation.
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Symmetric first derivative rule

Standard rule Corrected rule

h computed absolute estimated computed absolute estimated

derivative error order derivative error order

Estimation of f (1)(2) =−0.16 for f (x) = 1/(1+ x2)

1.0000 -2.00000000e-01 4.00000000e-02 -1.59707000e-01 2.93000415e-04

0.5000 -1.69761273e-01 9.76127321e-03 2.03 -1.59948828e-01 5.11719430e-05 2.52

0.2500 -1.62410785e-01 2.41078509e-03 2.02 -1.59996441e-01 3.55871874e-06 3.85

0.1250 -1.60600684e-01 6.00684200e-04 2.00 -1.59999772e-01 2.27514621e-07 3.98

0.0625 -1.60150043e-01 1.50042917e-04 2.00 -1.59999986e-01 1.42973008e-08 3.99

0.0313 -1.60037503e-01 3.75026847e-05 2.00 -1.59999999e-01 8.95188673e-10 4.00

0.0156 -1.60009375e-01 9.37516783e-06 2.00 -1.60000000e-01 5.67215996e-11 3.98

Estimation of f (1)(π/4) = 2 for f (x) = tan(x)

1.0000 -2.18503986e+00 4.18503986e+00 3.93847408e+00 6.57541629e+00

0.5000 3.11481545e+00 1.11481545e+00 1.91 1.81019631e+00 1.89803686e-01 5.11

0.2500 2.18520996e+00 1.85209959e-01 2.59 1.99348573e+00 6.51426518e-03 4.86

0.1250 2.04273537e+00 4.27353698e-02 2.12 1.99963919e+00 3.60810092e-04 4.17

0.0625 2.01048219e+00 1.04821852e-02 2.03 1.99997809e+00 2.19088367e-05 4.04

0.0313 2.00260824e+00 2.60824212e-03 2.01 1.99999864e+00 1.35955952e-06 4.01

0.0156 2.00065130e+00 6.51296080e-04 2.00 1.99999992e+00 8.48203887e-08 4.00

Table 2. Estimation of f (1)(x) using a symmetric rule.

Unilateral first derivative rule

Standard rule Corrected rule

h computed absolute estimated computed absolute estimated

derivative error order derivative error order

Estimation of f (1)(2) =−0.16 for f (x) = 1/(1+ x2)

1.0000 -1.00000000e-01 6.00000000e-02 -1.48617672e-01 1.13823276e-02

0.5000 -1.24137931e-01 3.58620690e-02 0.74 -1.56334573e-01 3.66542739e-03 1.63

0.2500 -1.40206186e-01 1.97938144e-02 0.86 -1.58952804e-01 1.04719561e-03 1.81

0.1250 -1.49575071e-01 1.04249292e-02 0.93 -1.59719803e-01 2.80196710e-04 1.90

0.0625 -1.54646840e-01 5.35315985e-03 0.96 -1.59927519e-01 7.24808122e-05 1.95

0.0313 -1.57287102e-01 2.71289769e-03 0.98 -1.59981568e-01 1.84323851e-05 1.98

0.0156 -1.58634325e-01 1.36567488e-03 0.99 -1.59995352e-01 4.64763034e-06 1.99

Estimation of f (1)(π/4) = 2 for f (x) = tan(x)

1.0000 -5.58803782e+00 7.58803782e+00 1.23765843e+01 2.15169529e+01

0.5000 4.81644688e+00 2.81644688e+00 1.43 4.68917926e-01 1.53108207e+00 3.81

0.2500 2.74318567e+00 7.43185669e-01 1.92 1.84910116e+00 1.50898839e-01 3.34

0.1250 2.29941556e+00 2.99415562e-01 1.31 1.97268790e+00 2.73120951e-02 2.47

0.0625 2.13630119e+00 1.36301191e-01 1.14 1.99406905e+00 5.93095126e-03 2.20

0.0313 2.06521013e+00 6.52101292e-02 1.06 1.99861227e+00 1.38772563e-03 2.10

0.0156 2.03191402e+00 3.19140168e-02 1.03 1.99966405e+00 3.35953571e-04 2.05

Table 3. Estimation of f (1)(x) using a non symmetric rule.
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Second derivative rule

Standard rule Corrected rule

h computed absolute estimated computed absolute estimated

derivative error order derivative error order

Estimation of f (2)(2) = 0.176 for f (x) = 1/(1+ x2)

1.0000 2.00000000e-01 2.40000000e-02 1.77357068e-01 1.35706751e-03

0.5000 1.82493369e-01 6.49336870e-03 1.89 1.76033533e-01 3.35330618e-05 5.34

0.2500 1.77636796e-01 1.63679619e-03 1.99 1.76001446e-01 1.44601079e-06 4.54

0.1250 1.76409814e-01 4.09814051e-04 2.00 1.76000081e-01 8.08135942e-08 4.16

0.0625 1.76102489e-01 1.02488599e-04 2.00 1.76000005e-01 4.90153890e-09 4.04

0.0313 1.76025624e-01 2.56242908e-05 2.00 1.76000000e-01 2.88695456e-10 4.09

0.0156 1.76006406e-01 6.40620560e-06 2.00 1.76000000e-01 1.94850247e-11 3.89

Estimation of f (2)(π/4) = 4 for f (x) = tan(x)

1.0000 -6.80599592e+00 1.08059959e+01 6.63488721e+00 2.37088144e+01

0.5000 6.80652574e+00 2.80652574e+00 1.95 3.36168164e+00 6.38318359e-01 5.21

0.2500 4.46380567e+00 4.63805674e-01 2.60 3.97858106e+00 2.14189379e-02 4.90

0.1250 4.10688307e+00 1.06883070e-01 2.12 3.99881917e+00 1.18083079e-03 4.18

0.0625 4.02620819e+00 2.62081947e-02 2.03 3.99992838e+00 7.16213649e-05 4.04

0.0313 4.00652078e+00 6.52077514e-03 2.01 3.99999556e+00 4.44325997e-06 4.01

0.0156 4.00162825e+00 1.62825080e-03 2.00 3.99999972e+00 2.77308572e-07 4.00

Table 4. Estimation of f (2)(x) using a 3-points symmetric rule.

Second derivative rule

Standard rule Corrected rule

h computed absolute estimated computed absolute estimated

derivative error order derivative error order

Estimation of f (2)(2) = 0.176 for f (x) = 1/(1+ x2)

1.0000 2.02636917e-01 2.66369168e-02 1.78991046e-01 2.99104605e-03

0.5000 1.83214004e-01 7.21400359e-03 1.88 1.76072351e-01 7.23506264e-05 5.37

0.2500 1.77818622e-01 1.81862247e-03 1.99 1.76003075e-01 3.07542484e-06 4.56

0.1250 1.76455347e-01 4.55346643e-04 2.00 1.76000171e-01 1.70955263e-07 4.17

0.0625 1.76113876e-01 1.13876080e-04 2.00 1.76000010e-01 1.03522543e-08 4.05

0.0313 1.76028471e-01 2.84714255e-05 2.00 1.76000001e-01 6.04290118e-10 4.10

Estimation of f (2)(π/4) = 4 for f (x) = tan(x)

1.0000 -8.26975149e+00 1.22697515e+01 7.03551181e+00 5.89830241e+01

0.5000 7.13309802e+00 3.13309802e+00 1.97 2.60314120e+00 1.39685880e+00 5.40

0.2500 4.51592823e+00 5.15928230e-01 2.60 3.95439864e+00 4.56013565e-02 4.94

0.1250 4.11879260e+00 1.18792597e-01 2.12 3.99750194e+00 2.49806479e-03 4.19

0.0625 4.02912227e+00 2.91222737e-02 2.03 3.99984872e+00 1.51279188e-04 4.05

0.0313 4.00724543e+00 7.24543362e-03 2.01 3.99999062e+00 9.38143057e-06 4.01

Table 5. Estimation of f (2)(x) using a 4-points symmetric rule.
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Third derivative rule

Standard rule Corrected rule

h computed absolute estimated computed absolute estimated

derivative error order derivative error order

Estimation of f (3)(2) =−2.30400000e−01 for f (x) = 1/(1+ x2)

1.0000 -2.40973631e-01 1.05736308e-02 -2.37051773e-01 6.65177254e-03

0.5000 -2.34696213e-01 4.29621292e-03 1.30 -2.30683859e-01 2.83859197e-04 4.55

0.2500 -2.31550154e-01 1.15015437e-03 1.90 -2.30415897e-01 1.58974761e-05 4.16

0.1250 -2.30691910e-01 2.91909546e-04 1.98 -2.30400966e-01 9.65795639e-07 4.04

0.0625 -2.30473245e-01 7.32447324e-05 1.99 -2.30400059e-01 5.94454010e-08 4.02

Estimation of f (3)(π/4) = 16 for f (x) = tan(x)

1.0000 -3.06825876e+01 4.66825876e+01 -3.90107225e-01 1.89206795e+02

0.5000 2.80069421e+01 1.20069421e+01 1.96 1.14873564e+01 4.51264360e+00 5.39

0.2500 1.79802007e+01 1.98020069e+00 2.60 1.58535764e+01 1.46423628e-01 4.95

0.1250 1.64561085e+01 4.56108524e-01 2.11 1.59919858e+01 8.01418527e-03 4.19

0.0625 1.61118262e+01 1.11826164e-01 2.02 1.59995148e+01 4.85235909e-04 4.05

Table 6. Estimation of f (3)(x) using a 4-points symmetric rule.

Fourth derivative rule

Standard rule Corrected rule

h computed absolute estimated computed absolute estimated

derivative error order derivative error order

Estimation of f (4)(2) = 3.14880000e−01 for f (x) = 1/(1+ x2)

1.0000 2.80106101e-01 3.47738992e-02 3.38842477e-01 2.39624769e-02

0.5000 3.10820640e-01 4.05935957e-03 3.10 3.16060349e-01 1.18034893e-03 4.34

0.2500 3.14107429e-01 7.72571418e-04 2.39 3.14948783e-01 6.87831106e-05 4.10

0.1250 3.14701263e-01 1.78737171e-04 2.11 3.14884220e-01 4.22036637e-06 4.03

0.0625 3.14836205e-01 4.37952495e-05 2.03 3.14880209e-01 2.09043622e-07 4.34

Estimation of f (4)(π/4) = 80 for f (x) = tan(x)

1.0000 -2.17800347e+02 2.97800347e+02 -6.13368590e+02 2.09714234e+03

0.5000 1.49934084e+02 6.99340843e+01 2.09 4.20050565e+01 3.79949435e+01 5.79

0.2500 9.13721867e+01 1.13721867e+01 2.62 7.88356148e+01 1.16438517e+00 5.03

0.1250 8.26110723e+01 2.61107229e+00 2.12 7.99370476e+01 6.29523769e-02 4.21

0.0625 8.06396706e+01 6.39670610e-01 2.03 7.99961997e+01 3.80027294e-03 4.05

Table 7. Estimation of f (4)(x) using a 5-points symmetric rule.
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1. Introduction and background

Throughout the paper N and R denote the set of all positive integers and the set of all real numbers, respectively. The concept

of convergence of a sequence of real numbers has been extended to statistical convergence independently by Fast [1] and

Schoenberg [2]. A lot of developments have been made in this area after the various studies of researchers [3, 4]. The idea

of I -convergence was introduced by Kostyrko et al. [5] as a generalization of statistical convergence which is based on the

structure of the ideal I of subset of the set of natural numbers N. Das et al. [6] introduced the concept of I -convergence of

double sequences in a metric space and studied some properties of this convergence. A lot of developments have been made in

this area after the works of [7, 8, 9, 10].

The concept of ordinary convergence of a sequence of fuzzy numbers was firstly introduced by Matloka [11] and proved

some basic theorems for sequences of fuzzy numbers. Nanda [12] studied the sequences of fuzzy numbers and showed that

the set of all convergent sequences of fuzzy numbers are a complete metric space. S. enc. imen and Pehlivan [13] introduced

the notions of statistically convergent sequence and statistically Cauchy sequence in a fuzzy normed linear space. Hazarika

[14] studied the concepts of I -convergence, I ∗-convergence and I -Cauchy sequence in a fuzzy normed linear space.

Dündar and Talo [15, 16] introduced the concepts of I2-convergence and I2-Cauchy sequence for double sequences of fuzzy

numbers and studied some properties and relations of them. Hazarika and Kumar [17] introduced the notion of I2-convergence

and I2-Cauchy double sequences in a fuzzy normed linear space. Dündar and Türkmen [18] studied some properties of

I2-convergence and I ∗
2 -convergence of double sequences in fuzzy normed spaces. A lot of developments have been made in

this area after the various studies of researchers [19, 20, 21, 22].

Now, we recall the concept of ideal, convergence, statistical convergence, ideal convergence of sequence, double sequence

and fuzzy normed and some basic definitions (see [1, 3, 4, 13, 15, 20, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]).

Fuzzy sets are considered with respect to a nonempty base set X of elements of interest. The essential idea is that each

element x ∈ X is assigned a membership grade u(x) taking values in [0,1], with u(x) = 0 corresponding to nonmembership,
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0 < u(x) < 1 to partial membership, and u(x) = 1 to full membership. According to Zadeh [35], a fuzzy subset of X is a

nonempty subset {(x,u(x)) : x ∈ X} of X × [0,1] for some function u : X → [0,1]. The function u itself is often used for the

fuzzy set.

A fuzzy set u on R is called a fuzzy number if it has the following properties:

1. u is normal, that is, there exists an x0 ∈ R such that u(x0) = 1;

2. u is fuzzy convex, that is, for x,y ∈ R and 0 ≤ λ ≤ 1, u(λx+(1−λ )y)≥ min[u(x),u(y)];
3. u is upper semicontinuous;

4. suppu = cl{x ∈ R : u(x)> 0}, or denoted by [u]0, is compact.

Let L(R) be set of all fuzzy numbers. If u ∈ L(R) and u(t) = 0 for t < 0, then u is called a non-negative fuzzy number. We

write L∗(R) by the set of all non-negative fuzzy numbers. We can say that u ∈ L∗(R) iff u−α ≥ 0 for each α ∈ [0,1] . Clearly we

have 0̃ ∈ L(R). For u ∈ L(R), the α level set of u is defined by

[u]α =

{
{x ∈ R : u(x)≥ α}, if α ∈ (0,1]

suppu, if α = 0.

A partial order � on L(R) is defined by u � v if u−α ≤ v−α and u+α ≤ v+α for all α ∈ [0,1] .
Arithmetic operation for t ∈ R, ⊕,⊖,⊙ and ⊘ on L(R)×L(R) are defined by

(u⊕ v)(t) = sups∈R {u(s)∧ v(t − s)}, (u⊖ v)(t) = sups∈R {u(s)∧ v(s− t)},

(u⊙ v)(t) = sups∈R,s 6=0 {u(s)∧ v(t/s)} and (u⊘ v)(t) = sups∈R {u(st)∧ v(s)}.

For k ∈ R
+, ku is defined as ku(t) = u(t/k) and 0u(t) = 0̃, t ∈ R.

Some arithmetic operations for α−level sets are defined as follows:

u,v ∈ L(R) and [u]α = [u−α ,u
+
α ] and [v]α = [v−α ,v

+
α ] , α ∈ (0,1] . Then,

[u⊕ v]α = [u−α + v−α ,u
+
α + v+α ], [u⊖ v]α = [u−α − v+α ,u

+
α − v−α ],

[u⊙ v]α = [u−α .v
−
α ,u

+
α .v

+
α ] and

[
1̃⊘u

]
α
=
[

1

u+α
, 1

u−α

]
, u−α > 0.

For u,v ∈ L(R), the supremum metric on L(R) defined as

D(u,v) = sup
0≤α≤1

max
{∣∣u−α − v−α

∣∣ ,
∣∣u+α − v+α

∣∣} .

It is known that D is a metric on L(R) and (L(R),D) is a complete metric space.

A sequence x = (xk) of fuzzy numbers is said to be convergent to the fuzzy number x0, if for every ε > 0 there exists a

positive integer k0 such that D(xk,x0) < ε for k > k0 and a sequence x = (xk) of fuzzy numbers convergent to levelwise to

x0 if and only if lim
k→∞

[xk]α = [x0]
−
α and lim

k→∞

[xk]α = [x0]
+
α , where [xk]α =

[
(xk)

−
α ,(xk)

+
α

]
and [x0]α =

[
(x0)

−
α ,(x0)

+
α

]
, for every

α ∈ (0,1).
Let X be a vector space over R, ‖.‖ : X → L∗ (R) and the mappings L;R (respectively, left norm and right norm) :

[0,1]× [0,1]→ [0,1] be symetric, nondecreasing in both arguments and satisfy L(0,0) = 0 and R(1,1) = 1.

The quadruple (X ,‖.‖ ,L,R) is called fuzzy normed linear space (briefly FNS) and ‖.‖ a fuzzy norm if the following axioms

are satisfied

1. ‖x‖= 0̃ iff x = 0,

2. ‖rx‖= |r|⊙‖x‖ for x ∈ X , r ∈ R,

3. For all x,y ∈ X

(a) ‖x+ y‖(s+ t)≥ L(‖x‖(s) ,‖y‖(t)) , whenever s ≤ ‖x‖−1 , t ≤ ‖y‖−1 and s+ t ≤ ‖x+ y‖−1 ,

(b) ‖x+ y‖(s+ t)≤ R(‖x‖(s) ,‖y‖(t)) , whenever s ≥ ‖x‖−1 , t ≥ ‖y‖−1 and s+ t ≥ ‖x+ y‖−1 .

Let (X ,‖.‖C) be an ordinary normed linear space. Then, a fuzzy norm ‖.‖ on X can be obtained by

‖x‖(t) =





0, if 0 ≤ t ≤ a‖x‖C or t ≥ b‖x‖C
t

(1−a)‖x‖C
− a

1−a
, if a‖x‖C ≤ t ≤ ‖x‖C

−t
(b−1)‖x‖C

+ b
b−1

, if ‖x‖C ≤ t ≤ b‖x‖C

where ‖x‖C is the ordinary norm of x ( 6= 0) , 0 < a < 1 and 1 < b < ∞. For x = 0, define ‖x‖= 0̃. Hence, (X ,‖.‖) is a fuzzy

normed linear space.

Let us consider the topological structure of an FNS (X ,‖.‖). For any ε > 0,α ∈ [0,1] and x ∈ X , the (ε,α)− neighborhood

of x is the set Nx (ε,α) = {y ∈ X : ‖x− y‖+α < ε}.
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Let (X ,‖.‖) be an FNS. A sequence (xn)
∞

n=1 in X is convergent to x ∈ X with respect to the fuzzy norm on X and we denote

by xn
FN
→ x, provided that (D)− limn→∞

‖xn − x‖= 0̃; i.e., for every ε > 0 there is an N (ε)∈N such that D
(
‖xn − x‖ , 0̃

)
< ε for

all n≥N (ε) . This means that for every ε > 0 there is an N (ε)∈N such that for all n≥N (ε) , sup
α∈[0,1]

‖xn − x‖+α = ‖xn − x‖+0 < ε .

Let (X ,‖.‖) be an FNS. Then a double sequence
(
x jk

)
is said to be convergent to x ∈ X with respect to the fuzzy norm on

X if for every ε > 0 there exist a number N = N (ε) such that D
(∥∥x jk − x

∥∥ , 0̃
)
< ε, for all j,k ≥ N.

In this case, we write x jk
FN
−→ x. This means that, for every ε > 0 there exist a number N =N (ε) such that sup

α∈[0,1]

∥∥x jk − x
∥∥+

α
=

∥∥x jk − x
∥∥+

0
< ε, for all j,k ≥ N. In terms of neighnorhoods, we have x jk

FN
−→ x provided that for any ε > 0, there exists a

number N = N (ε) such that x jk ∈ Nx (ε,0) , whenever j,k ≥ N.
Let X 6= /0. A class I of subsets of X is said to be an ideal in X provided:

(i) /0 ∈ I , (ii) A,B ∈ I implies A∪B ∈ I , (iii) A ∈ I , B ⊂ A implies B ∈ I .

I is called a nontrivial ideal if X 6∈ I . A nontrivial ideal I in X is called admissible if {x} ∈ I for each x ∈ X .

A nontrivial ideal I2 of N×N is called strongly admissible if {i}×N and N×{i} belong to I2 for each i ∈N. It is evident

that a strongly admissible ideal is also admissible. Throughout the paper we take I2 as a strongly admissible ideal in N×N.

Let I 0
2 = {A ⊂N×N : (∃m(A),(i, j)≥ m(A)⇒ (i, j) 6∈ A)}. Then I 0

2 is a nontrivial strongly admissible ideal and clearly

an ideal I2 is strongly admissible if and only if I 0
2 ⊂ I2.

Let X 6= /0. A non empty class F of subsets of X is said to be a filter in X provided:

(i) /0 6∈ F , (ii) A,B ∈ F implies A∩B ∈ F , (iii) A ∈ F , A ⊂ B implies B ∈ F .

Let I is a nontrivial ideal in X , X 6= /0, then the class F (I ) = {M ⊂ X : (∃A ∈ I )(M = X\A)} is a filter on X , called the

filter associated with I .

Let (X ,ρ) be a linear metric space and I2 ⊂ 2N×N be a strongly admissible ideal. A double sequence x = (xmn) in X

is said to be I2-convergent to L ∈ X , if for any ε > 0 we have A(ε) = {(m,n) ∈ N×N : ρ(xmn,L)≥ ε} ∈ I2 and we write

I2 − lim
m,n→∞

xmn = L.

Let (X ,‖.‖) be fuzzy normed space. A sequence x = (xm)m∈N in X is said to be I− convergent to L ∈ X with respect to

fuzzy norm on X if for each ε > 0, the set A(ε) =
{

m ∈ N : ‖xm −L‖+0 ≥ ε
}

belongs to I . In this case, we write xm
FI
−→ L .

The element L is called the I−limit of (xm) in X .
Let (X ,‖.‖) be a fuzzy normed space. A double sequence x = (xmn)(m,n)∈N×N in X is said to be I2− convergent to L1 ∈ X

with respect to fuzzy norm on X if for each ε > 0, the set A(ε) =
{
(m,n) ∈ N×N : ‖xmn −L1‖

+
0 ≥ ε

}
∈ I2. In this case, we

write xmn
FI2−→ L1 or xmn → L1 (FI2) or FI2 − lim

m,n→∞

xmn = L1 . The element L1 is called the FI2−limit of (xmn) in X . In

terms of neighborhoods, we have xmn
FI2−→ L1 provided that for each ε > 0, {(m,n) ∈ N×N : xmn /∈ NL1

(ε,0)} ∈ I2. A useful

interpretation of the above definition is the following;

xmn
FI2−→ L1 ⇔ FI2 − lim

m,n→∞

‖xmn −L1‖
+
0 = 0.

Note that FI2 − lim
m,n→∞

‖xmn −L1‖
+
0 = 0 implies that

FI2 − lim‖xmn −L1‖
−
α = FI2 − lim‖xmn −L1‖

+
α = 0,

for each α ∈ [0,1], since 0 ≤ ‖xmn −L1‖
−
α ≤ ‖xmn −L1‖

+
α ≤ ‖xmn −L1‖

+
0 holds for every m,n ∈ N and for each α ∈ [0,1].

Let (X ,‖.‖) be a fuzzy normed space. A double sequence x = (xmn) in X is said to be I2-Cauchy (or FI2-Cauchy) double

sequence with respect to the fuzzy norm on X if, for each ε > 0, there exists integers p = p(ε) and q = q(ε) such that the set{
(m,n) ∈ N×N :

∥∥xmn − xpq

∥∥+
0
≥ ε

}
belongs to I2.

We say that an admissible ideal I2 ⊂ 2N×N satisfies the property (AP2), if for every countable family of mutually disjoint

sets {A1,A2, ...} belonging to I2, there exists a countable family of sets {B1,B2, ...} such that A j ∩B j ∈ I 0
2 , i.e., A j ∩B j is

included in the finite union of rows and columns in N×N for each j ∈ N and B =
⋃

∞

j=1 B j ∈ I2 (hence B j ∈ I2 for each

j ∈ N).

Lemma 1.1. ([27], Theorem 3.3) Let {Pi}
∞

i=1 be a countable collection of subsets of N×N such that Pi ∈ F (I2) for each i,

where F (I2) is a filter associated with a strongly admissible ideal I2 with the property (AP2). Then there exists a set P ⊂
N×N such that P ∈ F (I2) and the set P\Pi is finite for all i.
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Lemma 1.2. ([17], Theorem 3.5) Let (X ,‖.‖) be fuzzy normed space and I2 be a admissible ideal. Then, every I2-convergent

sequence is I2-Cauchy sequence.

2. Main results

In this section, we investigate relationship between I2-convergence and I2-Cauchy double sequences in fuzzy normed spaces.

After, we introduce the concepts of I ∗
2 -Cauchy double sequences and study relationships between I2-Cauchy and I ∗

2 -Cauchy

double sequences in fuzzy normed spaces.

Theorem 2.1. Let (X ,‖.‖) be a fuzzy normed space. Then, a double sequence (xmn) is FI2-convergent if and only if it is

FI2-Cauchy double sequence.

Proof. Hazarika and Kumar proved that every FI2-convergent sequence is FI2-Cauchy sequence in Lemma 1.2.

Assume that (xmn) is FI2-Cauchy double sequence. We prove that (xmn) is FI2-convergent. To this effect, let (εpq) be a

strictly decreasing sequence of numbers converging to zero. Since (xmn) is FI2−Cauchy double sequence, there exist two

strictly increasing sequences (kp) and (lq) of positive integers such that the set

A(εpq) =
{
(m,n) ∈ N×N :

∥∥xmn − xkplq

∥∥+
0
≥ εpq

}

belongs to I2, (p,q ∈ N). This implies that

/0 6=
{
(m,n) ∈ N×N :

∥∥xmn − xkplq

∥∥+
0
< εpq

}
(2.1)

belongs to F (I2), (p,q ∈ N). Let p,q,s, t be four positive integers such that p 6= q and s 6= t. By (2.1), both the sets

D(εpq) = {(m,n) ∈ N×N :
∥∥xmn − xkplq

∥∥+
0
< εpq}

and

C(εst) = {(m,n) ∈ N×N : ‖xmn − xkslt‖
+
0 < εst}

are non empty sets in F (I2). Since F (I2) is a filter on N×N, therefore /0 6= D(εpq)∩C (εst) ∈ F (I2) . Thus, for each pair

(p,q) and (s, t) of positive integers with p 6= q and s 6= t, we can select a pair
(
m(p,q),(s,t),n(p,q),(s,t)

)
∈ N×N such that

∥∥xmpqst npqst − xkplq

∥∥+
0
< εpq and

∥∥xmpqst npqst − xkslt

∥∥+
0
< εst .

It follows that
∥∥xkplq − xkslt

∥∥+
0

≤
∥∥xmpqst npqst − xkplq

∥∥+
0
+
∥∥xmpqst npqst − xkslt

∥∥+
0

< εpq + εst → 0, as p,q,s, t → ∞.

This implies that
(
xkplq

)
(p,q ∈ N) is a Cauchy double sequence in fuzzy normed space, therefore it satisfies the Cauchy

convergence criterion. Thus, the sequence
(
xkplq

)
converges to a finite limit L1 that is,

lim
p,q→∞

xkplq = L1.

Also, we have εpq → 0 as p,q → ∞, so for each ε > 0 we can choose the positive integers p0,q0 such that for p ≥ p0 and

q ≥ q0,

εp0q0
<

ε

2
and

∥∥xkplq −L1

∥∥+
0
<

ε

2
. (2.2)

Now, we define the set

A(ε)=
{
(m,n) ∈ N×N : ‖xmn −L1‖

+
0 ≥ ε

}
.

We prove that A(ε)⊂ A
(
εp0q0

)
. Let (m,n) ∈ A(ε), then by second half of (2.2) we have

ε ≤ ‖xmn −L1‖
+
0 ≤

∥∥∥xmn − xkp0
lq0

∥∥∥
+

0
+
∥∥∥xkp0

lq0
−L1

∥∥∥
+

0

≤
∥∥∥xmn − xkp0

lq0

∥∥∥
+

0
+

ε

2
.
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This implies that

ε

2
≤
∥∥∥xmn − xkp0

lq0

∥∥∥
+

0

and therefore by first half of (2.2) we have

εp0q0
≤
∥∥∥xmn − xkp0

lq0

∥∥∥
+

0
.

This implies that (m,n) ∈ A
(
εp0q0

)
and therefore A(ε) is contained in A

(
εp0q0

)
. Since A

(
εp0q0

)
belongs to I2 therefore, A(ε)

belongs to I2. This proves that (xmn) is FI2-convergent to L1.

Definition 2.2. Let (X ,‖.‖) be a fuzzy normed space. A double sequence x = (xmn) in X is said to be I ∗
2 -Cauchy (or FI ∗

2 -

Cauchy) double sequence with respect to fuzzy norm on X if, there exists a set M ∈ F (I2) (i.e., H = N×N\M ∈ I2) and

k0 = k0(ε) such that for every ε > 0 and for (m,n),(s, t) ∈ M, ‖xmn − xst‖
+
0 < ε, whenever m,n,s, t > k0. In this case, we write

lim
m,n,s,t→∞

‖xmn − xst‖
+
0 = 0.

Theorem 2.3. Let I2 be an admissible ideal of N×N. If a double sequence (xmn) in X is an FI ∗
2 -Cauchy sequence, then it is

FI2-Cauchy sequence.

Proof. Suppose that (xmn) is an FI ∗
2 -Cauchy sequence. Then, there exists a set M ∈ F (I2) (i.e., H = N×N\M ∈ I2) and

k0 = k0(ε) such that for every ε > 0 and for (m,n),(s, t) ∈ M ‖xmn − xst‖
+
0 < ε, whenever m,n,s, t ≥ k0. Then,

A(ε) = {(m,n) ∈ N×N : ‖xmn − xst‖
+
0 ≥ ε}

⊂ H ∪ [M∩ (({1, ...,k0}×N)∪ (N×{1, ...,k0}))].

Since I2 be an admissible ideal, then

H ∪ [M∩ (({1, ...,k0}×N)∪ (N×{1, ...,k0}))] ∈ I2.

Therefore, we have A(ε) ∈I2. This shows that (xmn) is FI2-Cauchy sequence in X .

Theorem 2.4. Let I2 be an admissible ideal of N×N with the property (AP2) and (xmn) be a double sequence in X. Then,

the concepts I2−Cauchy double sequence with respect to fuzzy norm on X and I ∗
2 -Cauchy double sequence with respect to

fuzzy norm on X coincide.

Proof. If a double sequence is FI ∗
2 -Cauchy, then it is FI2-Cauchy by Theorem 2.3, where I2 need not have the property

(AP2). Now, it is sufficient to prove that a double sequence (xmn) in X is a FI ∗
2 -Cauchy double sequence under assumption

that it is an FI2-Cauchy double sequence. Let (xmn) be an FI2-Cauchy double sequence in X . Then, there exists s = s(ε), t =
t (ε) ∈ N such that for every ε > 0,

A(ε) =
{
(m,n) ∈ N×N : ‖xmn − xst‖

+
0 ≥ ε

}
∈ I2.

Let

Pi =

{
(m,n) ∈ N×N : ‖xmn − xsiti‖

+
0 <

1

i

}
,

where si = s(1\i), (i ∈ N), ti = t(1\i). It is clear that Pi ∈ F (I2) for all i ∈ N. Since I2 has the property (AP2), then by

Lemma 1.1 there exists a set P ⊂ N×N such that P ∈ F (I2) and P\Pi is finite for all i ∈ N. Now we show that

lim
m,n,s,t→∞

‖xmn − xst‖
+
0 = 0,

for (m,n) ,(s, t) ∈ P. To prove this, let ε > 0 and j ∈ N such that j > 2/ε . If (m,n) ,(s, t) ∈ P then P\Pi is a finite set, so there

exists N = N( j) such that (m,n) ,(s, t) ∈ Pj for all m,n,s, t > N( j). Therefore,

‖xmn − xsiti‖
+
0 <

1

j
and ‖xst − xsiti‖

+
0 <

1

j
,
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for all m,n,s, t > N( j). Hence it follows that

‖xmn − xst‖
+
0 ≤ ‖xmn − xsiti‖

+
0 +‖xst − xsiti‖

+
0

≤
1

j
+

1

j
=

2

j
< ε,

for all m,n,s, t > N( j). Thus, for any ε > 0 there exists N = N(ε) such that for m,n,s, t > N ( j) and (m,n) ,(s, t) ∈ P we have

‖xmn − xst‖
+
0 < ε.

This shows that the double sequence (xmn) in X is an FI ∗
2 -Cauchy double sequence in fuzzy normed spaces.
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[16] E. Dündar, Ö. Talo, Ö., I2-Cauchy Double Sequences of Fuzzy Numbers, Gen. Math. Notes, 16(2) (2013), 103–114.

[17] B. Hazarika, V. Kumar, Fuzzy real valued I -convergent double sequences in fuzzy normed spaces, J. Intell. Fuzzy Syst.,

26 (2014), 2323–2332.

[18] E. Dündar, M. R. Türkmen, On I2-Convergence and I ∗
2 -Convergence of Double Sequences in Fuzzy Normed Spaces,

Konuralp J. Math., (in press).

[19] V. Kumar, K. Kumar, On the ideal convergence of sequences of fuzzy numbers, Inform. Sci. 178 (2008), 4670–4678.

[20] S.A. Mohiuddine, H. S. evli, M. Cancan, Statistical convergence of double sequences in fuzzy normed spaces, Filomat, 26(4)

(2012), 673–681.

[21] M. R. Türkmen, E. Dündar, On Lacunary Statistical Convergence of Double Sequences and Some Properties in Fuzzy

Normed Spaces, J. Intell. Fuzzy Syst., 36(1) (2019), 467-472.

[22] R. Saadati, On the I -fuzzy topological spaces, Chaos, Solitons Fractals, 37 (2008), 1419–1426.

[23] T.Bag, S.K. Samanta, Fixed point theorems in Felbin’s type fuzzy normed linear spaces, J. Fuzzy Math., 16(1) (2008),

243–260.

[24] B. Bede, S.G. Gal, Almost periodic fuzzy-number-valued functions, Fuzzy Sets Syst., 147(2004), 385–403.

[25] P. Diamond, P. Kloeden, Metric Spaces of Fuzzy Sets-Theory and Applications, World Scientific Publishing, Singapore,

(1994).



On I2-Cauchy Double Sequences in Fuzzy Normed Spaces — 160/160

[26] E. Dündar, B. Altay, I2-convergence and I2-Cauchy of double sequences, Acta Math. Sci., 34(2) (2014), 343–353.

[27] E. Dündar, B. Altay, On some properties of I2-convergence and I2-Cauchy of double sequences, Gen. Math. Notes, 7(1)

(2011), 1–12.

[28] J.-X. Fang, H. Huang, On the level convergence of a sequence of fuzzy numbers, Fuzzy Sets and Systems, 147 (2004),

417–415.

[29] C. Felbin, Finite-dimensional fuzzy normed linear space, Fuzzy Sets and Systems, 48(2) (1992), 239–248.
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1. Introduction

Our motivation comes from the following results:

Theorem 1.1. (A. Ostrowski, 1938 [1]). Let f : [a,b] → R be continuous on [a,b] and differentiable on (a,b) such that

f ′ : (a,b)→ R is bounded on (a,b), i.e., ‖ f ′‖∞ := sup
t∈(a,b)

| f ′ (t)|< ∞. Then

∣∣∣∣
1

b−a

∫ b

a
f (t)dt − f (x)

∣∣∣∣≤


1

4
+

(
x− a+b

2

b−a

)2

∥∥ f ′

∥∥
∞
(b−a) ,

for all x ∈ [a,b] and the constant 1
4

is the best possible.

Theorem 1.2. (G. Grüss, 1934 [2]). Let f ,g : [a,b] → R be Lebesgue integrable functions, and m,M,n,N ∈ R such that:

−∞ < m ≤ f ≤ M < ∞, −∞ < n ≤ g ≤ N < ∞, a.e. on [a,b]. Then

∣∣∣∣
1

b−a

∫ b

a
f (t)g(t)dt −

(
1

b−a

∫ b

a
f (t)dt

)(
1

b−a

∫ b

a
g(t)dt

)∣∣∣∣≤
1

4
(M−m)(N −n) ,

with the constant 1
4

being the best possible.
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Let f ∈C1 ([a,b]) and the kernel p : [a,b]2 → R be such that

p(x, t) :=

{
t −a, if t ∈ [a,x] ,
t −b, if t ∈ (x,b].

Then, we have the basic Montgomery integral identity [3, p. 565],

f (x) =
1

b−a

∫ b

a
f (t)dt +

1

b−a

∫ b

a
p(x, t) f ′ (t)dt, ∀ x ∈ [a,b] .

In order to describe complex extensions of Ostrowski and Grüss inequalities using the complex integral we need the

following preparation.

Suppose γ is a smooth path parametrized by z(t), t ∈ [a,b] and f is a complex function which is continuous on γ . Put

z(a) = u and z(b) = w with u,w ∈ C. We define the integral of f on γu,w = γ as

∫

γ
f (z)dz =

∫

γu,w

f (z)dz :=
∫ b

a
f (z(t))z′ (t)dt.

We observe that the actual choice of parametrization of γ does not matter.

This definition immediately extends to paths that are piecewise smooth. Suppose γ is parametrized by z(t), t ∈ [a,b], which

is differentiable on the intervals [a,c] and [c,b], then assuming that f is continuous on γ we define

∫

γu,w

f (z)dz :=
∫

γu,v

f (z)dz+
∫

γv,w

f (z)dz,

where v := z(c). This can be extended for a finite number of intervals.

We also define the integral with respect to arc-length

∫

γu,w

f (z) |dz| :=
∫ b

a
f (z(t))

∣∣z′ (t)
∣∣dt

and the length of the curve γ is then

l (γ) =
∫

γu,w

|dz| :=
∫ b

a

∣∣z′ (t)
∣∣dt.

Let f and g be holomorphic in G, an open domain and suppose γ ⊂ G is a piecewise smooth path from z(a) = u to z(b) = w.

Then we have the integration by parts formula

∫

γu,w

f (z)g′ (z)dz = f (w)g(w)− f (u)g(u)−
∫

γu,w

f ′ (z)g(z)dz.

We recall also the triangle inequality for the complex integral, namely

∣∣∣∣
∫

γ
f (z)dz

∣∣∣∣≤
∫

γ
| f (z)| |dz| ≤ ‖ f‖γ,∞ l (γ) ,

where ‖ f‖γ,∞ := sup
z∈γ

| f (z)|.

We also define the p-norm with p ≥ 1 by

‖ f‖γ,p :=

(∫

γ
| f (z)|p |dz|

) 1
p

.

For p = 1 we have

‖ f‖γ,1 :=
∫

γ
| f (z)| |dz| .

If p,q > 1 with 1
p
+ 1

q
= 1, then by Hölder’s inequality we have

‖ f‖γ,1 ≤ [l (γ)]
1
q ‖ f‖γ,p .
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First, we mention a Complex extension of Ostrowski inequality to the complex integral by providing upper bounds for the

quantity

∣∣∣∣ f (v)(w−u)−
∫

γ
f (z)dz

∣∣∣∣

under the assumption that γ is a smooth path parametrized by z(t), t ∈ [a,b], u = z(a), v = z(x) with x ∈ (a,b) and w = z(b)
while f is holomorphic in G, an open domain and γ ⊂ G.

Secondly, we mention a Complex extension of Grüss inequality:

Suppose γ ⊂ C is a piecewise smooth path parametrized by z(t), t ∈ [a,b] from z(a) = u to z(b) = w with w 6= u. If f and

g are continuous on γ , we consider the complex Čebyšev functional defined by

Dγ ( f ,g) :=
1

w−u

∫

γ
f (z)g(z)dz−

1

w−u

∫

γ
f (z)dz

1

w−u

∫

γ
g(z)dz.

We display upper bounds to
∣∣Dγ ( f ,g)

∣∣ .
We have the following results for functions of a complex variable:

Theorem 1.3. (S. Dragomir, 2019 [4]). Let f be holomorhic in G, an open domain and suppose γ ⊂ G is a smooth path from

z(a) = u to z(b) = w. If v = z(x) with x ∈ (a,b), then γu,w = γu,v ∪ γv,w,

∣∣∣∣ f (v)(w−u)−
∫

γ
f (z)dz

∣∣∣∣≤
∥∥ f ′
∥∥

γu,v;∞

∫

γu,v

|z−u| |dz|+
∥∥ f ′
∥∥

γv,w;∞

∫

γu,w

|z−w| |dz| ≤

[∫

γu,v

|z−u| |dz|+
∫

γu,w

|z−w| |dz|

]∥∥ f ′
∥∥

γu,w;∞
,

and

∣∣∣∣ f (v)(w−u)−
∫

γ
f (z)dz

∣∣∣∣≤ max
z∈γu,v

|z−u|
∥∥ f ′
∥∥

γu,v;1
+ max

z∈γv,w

|z−w|
∥∥ f ′
∥∥

γv,w;1
≤

max

{
max
z∈γu,v

|z−u| , max
z∈γv,w

|z−w|

}∥∥ f ′
∥∥

γu,w;1
.

If p,q > 1 with 1
p
+ 1

q
= 1, then

∣∣∣∣ f (v)(w−u)−
∫

γ
f (z)dz

∣∣∣∣≤
(∫

γu,v

|z−u|q |dz|

) 1
q ∥∥ f ′

∥∥
γu,v;p

+

(∫

γu,w

|z−w|q |dz|

) 1
q ∥∥ f ′

∥∥
γv,w;p

≤

(∫

γu,v

|z−u|q |dz|+
∫

γu,w

|z−w|q |dz|

) 1
q ∥∥ f ′

∥∥
γu,w;p

.

Suppose γ ⊂ C is a piecewise smooth path parametrized by z(t), t ∈ [a,b] from z(a) = u to z(b) = w. Now, for φ ,Φ ∈ C

define the set of complex-valued functions

∆γ (φ ,Φ) :=

{
f : γ → C|

∣∣∣∣ f (z)−
φ +Φ

2

∣∣∣∣≤
1

2
|Φ−φ | for each z ∈ γ

}
.

We have the following complex Grüss type inequalities:

Theorem 1.4. (S. Dragomir, 2018 [5]). Suppose γ ⊂ C is a piecewise smooth path parametrized by z(t), t ∈ [a,b] from

z(a) = u to z(b) = w with w 6= u. If f and g are continuous on γ and there exist φ ,Φ,ψ,Ψ ∈ C, φ 6= Φ, ψ 6= Ψ such that

f ∈ ∆γ (φ ,Φ) and g ∈ ∆γ (ψ,Ψ) then

∣∣Dγ ( f ,g)
∣∣≤ 1

4
|Φ−φ | |Ψ−ψ|

l2 (γ)

|w−u|2
.
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If the path γ is a segment [u,w] connecting two distinct points u and w in C then we write
∫

γ f (z)dz as
∫ w

u f (z)dz.

If f , g are continuous on [u,w] and there exists φ ,Φ,ψ,Ψ∈C, φ 6=Φ, ψ 6=Ψ such that f ∈∆[u,w] (φ ,Φ) and g∈∆[u,w] (ψ,Ψ)
then

∣∣∣∣
1

w−u

∫ w

u
f (z)g(z)dz−

1

w−u

∫ w

u
f (z)dz

1

w−u

∫ w

u
g(z)dz

∣∣∣∣≤
1

4
|Φ−φ | |Ψ−ψ| .

We will use the complex Montgomery identity which follows:

Theorem 1.5. (S. Dragomir, 2018 [4]) Let f be holomorphic in G, an open domain and suppose γ ⊂ G is a smooth path from

z(a) = u to z(b) = w. If v = z(t) with t ∈ [a,b], then γu,w = γu,v ∪ γv,w, and

f (v) =
1

w−u

[∫

γ
f (z)dz+

∫

γu,v

(z−u) f ′ (z)dz+
∫

γv,w

(z−w) f ′ (z)dz

]
.

Define

p(v,z) :=

{
z−u, if z ∈ γu,v

z−w, if z ∈ γv,w.

Thus, it holds

f (v) =
1

w−u

∫

γ
f (z)dz+

1

w−u

∫

γ
p(v,z) f ′ (z)dz, (1.1)

a form which we will use a lot in this article.

Representation formula (1.1) is the main inspiration to write this article.

We will use (1.1) to derive a multivariate Complex Montgomery type identity then based on it, we will produce Complex

multivariate Ostrowski and Grüss type inequalities.

For the last we need:

Definition 1.6. Here we extend the notion of line (curve) integral into multivariate case. Let γ j, j = 1, ...,m, be a smooth path

parametrized by z j (t j), t j ∈ [a j,b j] and f is a complex valued function which is continuous on
m

∏
j=1

γ j ⊆ Cm. Put z j (a j) = u j

and z j (b j) = w j, with u j,w j ∈ C, j = 1, ...,m.

We define the complex multivariate integral of f on
m

∏
j=1

γ j :=
m

∏
j=1

γu j ,w j
as

∫

γ1

...

∫

γm

f (z1, ...,zm)dz1...dzm :=
∫

m

∏
j=1

γ j

f (z1, ...,zm)dz1...dzm :=

∫

γu1 ,w1

...

∫

γum ,wm

f (z1, ...,zm)dz1...dzm :=
∫

m

∏
j=1

γu j ,w j

f (z1, ...,zm)dz1...dzm :=

∫ b1

a1

∫ b2

a2

...

∫ bm

am

f (z1 (t1) , ...,zm (tm))
m

∏
j=1

z′j (t j)dt1...dtm. (1.2)

We make

Remark 1.7. Clearly here z j ∈C1 ([a j,b j] ,C), j = 1, ...,m. The integrand in (1.2) is a continuous complex valued function

over
m

∏
j=1

[a j,b j]. Therefore | f (z1 (t1) , ...,zm (tm))|
m

∏
j=1

z′j (t j) is also continuous but from
m

∏
j=1

[a j,b j] into R, hence it is bounded.

Consequently it holds

∫
m

∏
j=1
[a j ,b j]

| f (z1 (t1) , ...,zm (tm))|
m

∏
j=1

∣∣z′j (t j)
∣∣

m

∏
j=1

dt j <+∞.
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Therefore, by Fubini’s theorem, the order integration in (1.2) is immaterial.

Clearly it holds

∣∣∣∣∣
∫ b1

a1

...

∫ bm

am

f (z1 (t1) , ...,zm (tm))
m

∏
j=1

z′j (t j)dt1...dtm

∣∣∣∣∣≤
∫ b1

a1

...

∫ bm

am

| f (z1 (t1) , ...,zm (tm))|
m

∏
j=1

∣∣z′j (t j)
∣∣dt1...dtm. (1.3)

We also define the integral with respect to arc-lengths

∫
m

∏
j=1

γu j ,w j

f (z1, ...,zm) |dz1| |dz2| ... |dzm| :=
∫

m

∏
j=1
[a j ,b j]

f (z1 (t1) , ...,zm (tm))
m

∏
j=1

∣∣z′j (t j)
∣∣dt1...dtm. (1.4)

It holds (by (1.3), (1.4))

∣∣∣∣∣∣

∫
m

∏
j=1

γ j

f (z1, ...,zm)dz1...dzm

∣∣∣∣∣∣
≤
∫

m

∏
j=1

γu j ,w j

| f (z1, ...,zm)| |dz1| |dz2| ... |dzm| ≤ ‖ f‖ m

∏
j=1

γ j ,∞

m

∏
j=1

l (γ j) ,

where

‖ f‖ m

∏
j=1

γ j ,∞
:= sup

(z1,...,zm)∈
m

∏
j=1

γ j

| f (z1, ...,zm)| ,

and

l (γ j) =
∫

γu j
,w j

∣∣dz j

∣∣=
∫ b j

a j

∣∣z′j (t j)
∣∣dt j, j = 1, ...,m.

We also define the p-norm with p ≥ 1 by

‖ f‖ m

∏
j=1

γ j ,p
:=



∫

m

∏
j=1

γ j

| f (z1, ...,zm)|
p |dz1| |dz2| ... |dzm|




1
p

.

For p = 1 we have

‖ f‖ m

∏
j=1

γ j ,1
:=
∫

m

∏
j=1

γ j

| f (z1, ...,zm)| |dz1| |dz2| ... |dzm| .

If p,q > 1 with 1
p
+ 1

q
= 1, then by Hölder’s inequality we have

‖ f‖ m

∏
j=1

γ j ,1
≤

(
m

∏
j=1

l (γ j)

) 1
q

‖ f‖ m

∏
j=1

γ j ,p
.

2. Main results

We start by presenting a complex trivariate Montgomery type representation identity of complex functions:

Theorem 2.1. Let f :
3

∏
j=1

D j ⊆ C3 → C be a continuous function that is analytic per coordinate on the domain D j, j = 1,2,3,

and x = (x1,x2,x3) ∈
3

∏
j=1

D j. For j = 1,2,3, suppose γ j ⊂ D j is a smooth path parametrized by z j (t j), t j ∈ [a j,b j] with

z j (a j) = u j, z j (t j) = x j and z j (b j) = w j, where u j,w j ∈ D j, u j 6= w j. Assume also that all partial derivatives of f up to order

three are continuous functions on
3

∏
j=1

D j.
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Here we define the kernels for i = 1,2,3, pi : γ2
i → C

pi (xi,si) :=

{
si −ui, if si ∈ γui,xi

,

si −wi, if si ∈ γxi,wi
.

Then

f (x1,x2,x3) =
1

3

∏
i=1

(wi −ui)

{∫

γ1

∫

γ2

∫

γ3

f (s1,s2,s3)ds3ds2ds1 +
3

∑
j=1

(∫

γ1

∫

γ2

∫

γ3

p j (x j,s j)
∂ f (s1,s2,s3)

∂ s j

ds3ds2ds1

)

+
3

∑
l=1
j<k

(∫

γ1

∫

γ2

∫

γ3

p j (x j,s j) pk (xk,sk)
∂ 2 f (s1,s2,s3)

∂ sk∂ s j

ds3ds2ds1

)
(l) +

∫

γ1

∫

γ2

∫

γ3

(
3

∏
i=1

pi (xi,si)

)
∂ 3 f (s1,s2,s3)

∂ s3∂ s2∂ s1
ds3ds2ds1

}
.

(2.1)

Above l counts ( j,k) : j < k; j,k ∈ {1,2,3}.

Proof. Here we apply (1.1) repeatedly.

First we see that

f (x1,x2,x3) = A0 +B0,

where

A0 :=
1

w1 −u1

∫

γ1

f (s1,x2,x3)ds1,

and

B0 :=
1

w1 −u1

∫

γ1

p1 (x1,s1)
∂ f (s1,x2,x3)

∂ s1
ds1.

Furthermore we have

f (s1,x2,x3) = A1 +B1,

where

A1 :=
1

w2 −u2

∫

γ2

f (s1,s2,x3)ds2,

and

B1 :=
1

w2 −u2

∫

γ2

p2 (x2,s2)
∂ f (s1,s2,x3)

∂ s2
ds2.

Also we find that

f (s1,s2,x3) =
1

w3 −u3

∫

γ3

f (s1,s2,s3)ds3+

1

w3 −u3

∫

γ3

p3 (x3,s3)
∂ f (s1,s2,s3)

∂ s3
ds3.

Next we put things together, and we derive

A1 =
1

(w2 −u2)(w3 −u3)

∫

γ2

∫

γ3

f (s1,s2,s3)ds3ds2 +
1

(w2 −u2)(w3 −u3)

∫

γ2

∫

γ3

p3 (x3,s3)
∂ f (s1,s2,s3)

∂ s3
ds3ds2.
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And we get

A0 =
1

3

∏
i=1

(wi −ui)

∫

γ1

∫

γ2

∫

γ3

f (s1,s2,s3)ds3ds2ds1 +
1

3

∏
i=1

(wi −ui)

∫

γ1

∫

γ2

∫

γ3

p3 (x3,s3)
∂ f (s1,s2,s3)

∂ s3
ds3ds2ds1

+
1

(w1 −u1)(w2 −u2)

∫

γ1

∫

γ2

p2 (x2,s2)
∂ f (s1,s2,x3)

∂ s2
ds2ds1.

Also we obtain

∂ f (s1,s2,x3)

∂ s2
=

1

w3 −u3

∫

γ3

∂ f (s1,s2,s3)

∂ s2
ds3 +

1

w3 −u3

∫

γ3

p3 (x3,s3)
∂ 2 f (s1,s2,s3)

∂ s3∂ s2
ds3.

Therefore we get

A0 =
1

3

∏
i=1

(wi −ui)

∫

γ1

∫

γ2

∫

γ3

f (s1,s2,s3)ds3ds2ds1 +
1

3

∏
i=1

(wi −ui)

∫

γ1

∫

γ2

∫

γ3

p3 (x3,s3)
∂ f (s1,s2,s3)

∂ s3
ds3ds2ds1

+
1

3

∏
i=1

(wi −ui)

∫

γ1

∫

γ2

∫

γ3

p2 (x2,s2)
∂ f (s1,s2,s3)

∂ s2
ds3ds2ds1+

1

3

∏
i=1

(wi −ui)

∫

γ1

∫

γ2

∫

γ3

p2 (x2,s2) p3 (x3,s3)
∂ 2 f (s1,s2,s3)

∂ s3∂ s2
ds3ds2ds1.

Similarly we obtain that

B0 =
1

3

∏
i=1

(wi −ui)

∫

γ1

∫

γ2

∫

γ3

p1 (x1,s1)
∂ f (s1,s2,s3)

∂ s1
ds3ds2ds1+

1

3

∏
i=1

(wi −ui)

∫

γ1

∫

γ2

∫

γ3

p1 (x1,s1) p3 (x3,s3)
∂ 2 f (s1,s2,s3)

∂ s3∂ s1
ds3ds2ds1+

1

3

∏
i=1

(wi −ui)

∫

γ1

∫

γ2

∫

γ3

p1 (x1,s1) p2 (x2,s2)
∂ 2 f (s1,s2,s3)

∂ s2∂ s1
ds3ds2ds1+

1

3

∏
i=1

(wi −ui)

∫

γ1

∫

γ2

∫

γ3

p1 (x1,s1) p2 (x2,s2) p3 (x3,s3)
∂ 3 f (s1,s2,s3)

∂ s3∂ s2∂ s1
ds3ds2ds1.

We have proved (2.1).

Next comes the general complex multivariate Montgomery type representation identity of complex functions:

Theorem 2.2. Let f :
m

∏
j=1

D j ⊆Cm →C be a continuous function that is analytic per coordinate on the domain D j, j = 1, ...,m,

and x = (x1, ...,xm) ∈
m

∏
j=1

D j. For j = 1, ...,m, suppose γ j ⊂ D j is a smooth path parametrized by z j (t j), t j ∈ [a j,b j] with

z j (a j) = u j, z j (t j) = x j and z j (b j) = w j, where u j,w j ∈ D j, u j 6= w j. Assume also that all partial derivatives of f up to order

m ∈ N are continuous functions on
m

∏
j=1

D j.

We define the kernels pi : γ2
i → C

pi (xi,si) :=

{
si −ui, if si ∈ γui,xi

,

si −wi, if si ∈ γxi,wi
,

for i = 1,2, ...,m.
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Then

f (x1,x2, ...,xm) =
1

m

∏
i=1

(wi −ui)




∫

m

∏
i=1

γi

f (s1,s2, ...,sm)dsmdsm−1...ds1+
m

∑
j=1



∫

m

∏
i=1

γi

p j (x j,s j)
∂ f (s1,s2, ...,sm)

∂ s j

dsm...ds1


+

(
m

2

)

∑
l1=1
j<k



∫

m

∏
i=1

γi

p j (x j,s j) pk (xk,sk)
∂ 2 f (s1,s2, ...,sm)

∂ sk∂ s j

dsm...ds1




(l1)

+

(
m

3

)

∑
l2=1

j<k<r



∫

m

∏
i=1

γi

p j (x j,s j) pk (xk,sk) pr (xr,sr)
∂ 3 f (s1, ...,sm)

∂ sr∂ sk∂ s j

dsm...ds1




(l2)

+ ...+

(
m

m−1

)

∑
l=1



∫

m

∏
i=1

γi

p1 (x1,s1) ... ̂pl (xl ,sl)...pm (xm,sm)
∂ m−1 f (s1, , ...,sm)

∂ sm...∂̂ sl ...∂ s1

dsm...d̂sl ...ds1




+
∫

m

∏
i=1

γi

(
m

∏
i=1

pi (xi,si)

)
∂ m f (s1, , ...,sm)

∂ sm...∂ s1
dsm...ds1



 . (2.2)

Above l1 counts ( j,k) : j < k; j,k ∈ {1,2, ...,m}, also l2 counts ( j,k,r) : j < k < r; j,k,r ∈ {1,2, ...,m}, etc. Also ̂pl (xl ,sl) and

∂̂ sl means that pl (xl ,sl) and ∂ sl are missing, respectively.

Proof. Similar to Theorem 2.1.

We make

Remark 2.3. (on Theorems 2.1, 2.2)

By (2.1) we get

E f (x1,x2,x3) := f (x1,x2,x3)−
1

3

∏
i=1

(wi −ui)




∫

3

∏
i=1

γi

f (s1,s2,s3)ds3ds2ds1

−
3

∑
j=1



∫

3

∏
i=1

γi

p j (x j,s j)
∂ f (s1,s2,s3)

∂ s j

ds3ds2ds1


−

3

∑
l=1
j<k



∫

3

∏
i=1

γi

p j (x j,s j) pk (xk,sk)
∂ 2 f (s1,s2,s3)

∂ sk∂ s j

ds3ds2ds1


(l)





=
1

3

∏
i=1

(wi −ui)



∫

3

∏
i=1

γi

(
3

∏
i=1

pi (xi,si)

)
∂ 3 f (s1,s2,s3)

∂ s3∂ s2∂ s1
ds1ds2ds3


 .

Above l counts ( j,k) : j < k; j,k ∈ {1,2,3}.
Similarly, by (2.2) we find

E f (x1,x2, ...,xm) = f (x1,x2, ...,xm)−

1
m

∏
i=1

(wi −ui)




∫

m

∏
i=1

γi

f (s1, ...,sm)ds1...dsm−
m

∑
j=1



∫

m

∏
i=1

γi

p j (x j,s j)
∂ f (s1, ...,sm)

∂ s j

ds1...dsm


−
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(
m

2

)

∑
l1=1
j<k



∫

m

∏
i=1

γi

p j (x j,s j) pk (xk,sk)
∂ 2 f (s1, ...,sm)

∂ sk∂ s j

ds1...dsm




(l1)

−

(
m

3

)

∑
l2=1

j<k<r



∫

m

∏
i=1

γi

p j (x j,s j) pk (xk,sk) pr (xr,sr)
∂ 3 f (s1, ...,sm)

∂ sr∂ sk∂ s j

ds1...dsm




(l2)

− ...−

(
m

m−1

)

∑
l=1



∫

m

∏
i=1

γi

p1 (x1,s1) ... ̂pl (xl ,sl)...pm (xm,sm)
∂ m−1 f (s1, , ...,sm)

∂ sm...∂̂ sl ...∂ s1

ds1...d̂sl ...dsm








=
1

m

∏
i=1

(wi −ui)



∫

m

∏
i=1

γi

(
m

∏
i=1

pi (xi,si)

)
∂ m f (s1, , ...,sm)

∂ sm...∂ s1
ds1...dsm


 .

Above l1 counts ( j,k) : j < k; j,k ∈ {1, ...,m}, l2 counts ( j,k,r) : j < k < r; j,k,r ∈ {1,2, ...,m}, etc. Also ̂pl (xl ,sl) and ∂̂ sl

means that pl (xl ,sl) and ∂ sl are missing, respectively.

Hence it holds

∣∣E f (x1,x2,x3)
∣∣≤ 1

3

∏
i=1

|wi −ui|

×



∫

3

∏
i=1

γi

(
3

∏
i=1

|pi (xi,si)|

)∣∣∣∣
∂ 3 f (s1,s2,s3)

∂ s3∂ s2∂ s1

∣∣∣∣ |ds1| |ds2| |ds3|


 , (2.3)

and

∣∣E f (x1, ...,xm)
∣∣≤ 1

m

∏
i=1

|wi −ui|
×



∫

m

∏
i=1

γi

(
m

∏
i=1

|pi (xi,si)|

)∣∣∣∣
∂ m f (s1, , ...,sm)

∂ sm...∂ s1

∣∣∣∣ |ds1| ... |dsm|


 . (2.4)

We give the following complex multivariate Ostrowski type inequalities:

Theorem 2.4. All as in Theorem 2.1. Here r1,r2,r3,r4 > 0 : 1
r1
+ 1

r2
+ 1

r3
+ 1

r4
= 1. Then

∣∣E f (x1,x2,x3)
∣∣≤ 1

3

∏
i=1

|wi −ui|

×min





(
3

∏
i=1

∫

γi

|pi (xi,si)| |dsi|

)∥∥∥∥
∂ 3 f

∂ s3∂ s2∂ s1

∥∥∥∥
∞,

3

∏
j=1

γ j

,

(
3

∏
i=1

‖pi (xi,si)‖r j ,γ j

)(
3

∏
i=1

(l (γ j))
2
r j

)∥∥∥∥
∂ 3 f

∂ s3∂ s2∂ s1

∥∥∥∥
r4,

3

∏
i=1

γ j

,


 sup

(s1,s2,s3)∈
3

∏
j=1

γ j

(
3

∏
i=1

|pi (xi,si)|

)



∥∥∥∥
∂ 3 f

∂ s3∂ s2∂ s1

∥∥∥∥
1,

3

∏
j=1

γ j




,

∀ (x1,x2,x3) ∈
3

∏
j=1

γ j.

Proof. By (2.3) and generalized Hölder’s inequality.



Complex Multivariate Montgomery Type Identity Leading to Complex Multivariate Ostrowski and Grüss Inequalities —

170/175

Theorem 2.5. All as in Theorem 2.2. Here r1,r2, ...,rm,rm+1 > 0 :
m+1

∑
i=1

1
ri
= 1. Then

∣∣E f (x1, ...,xm)
∣∣≤ 1

m

∏
i=1

|wi −ui|
×min





(
m

∏
i=1

∫

γi

|pi (xi,si)| |dsi|

)∥∥∥∥
∂ m f

∂ sm...∂ s1

∥∥∥∥
∞,

m

∏
j=1

γ j

,

(
m

∏
i=1

‖pi (xi,si)‖r j ,γ j

)(
m

∏
i=1

(l (γ j))
m−1

r j

)∥∥∥∥
∂ m f

∂ sm...∂ s1

∥∥∥∥
rm+1,

m

∏
i=1

γ j

,


 sup

(s1,...,sm)∈
m

∏
j=1

γ j

(
m

∏
i=1

|pi (xi,si)|

)


∥∥∥∥

∂ m f

∂ sm...∂ s1

∥∥∥∥
1,

m

∏
j=1

γ j




,

∀ (x1, ...,xm) ∈
m

∏
j=1

γ j.

Proof. By (2.4) and generalized Hölder’s inequality.

We make

Remark 2.6. Working further on (2.1) we call:

A
(3)
f := A

(3)
f (x1,x2,x3) :=

3

∑
j=1



∫

3

∏
i=1

γi

p j (x j,s j)
∂ f (s1,s2,s3)

∂ s j

ds1ds2ds3




+
3

∑
l=1
j<k



∫

3

∏
i=1

γi

p j (x j,s j) pk (xk,sk)
∂ 2 f (s1,s2,s3)

∂ sk∂ s j

ds1ds2ds3


(l) ,

and

B
(3)
f := B

(3)
f (x1,x2,x3) :=

∫
3

∏
i=1

γi

(
3

∏
i=1

pi (xi,si)

)
∂ 3 f (s1,s2,s3)

∂ s3∂ s2∂ s1
ds1ds2ds3.

Set also

T
(3)
f := T

(3)
f (x1,x2,x3) := A

(3)
f +B

(3)
f .

Thus, we have (x = (x1,x2,x3))

f (x) = f (x1,x2,x3) =
1

3

∏
i=1

(wi −ui)

∫
3

∏
i=1

γi

f (s1,s2,s3)ds1ds2ds3 +
1

3

∏
i=1

(wi −ui)

(
A
(3)
f +B

(3)
f

)
=

1

3

∏
i=1

(wi −ui)

∫
3

∏
i=1

γi

f (s1,s2,s3)ds1ds2ds3 +
1

3

∏
i=1

(wi −ui)

T
(3)
f .

Working further on (2.2) we call:

A
(m)
f := A

(m)
f (x1, ...,xm) :=

m

∑
j=1



∫

m

∏
i=1

γi

p j (x j,s j)
∂ f (s1, ...,sm)

∂ s j

ds1...dsm


+
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(
m

2

)

∑
l1=1
j<k



∫

m

∏
i=1

γi

p j (x j,s j) pk (xk,sk)
∂ 2 f (s1, ...,sm)

∂ sk∂ s j

ds1...dsm




(l1)

+

(
m

3

)

∑
l2=1

j<k<r



∫

m

∏
i=1

γi

p j (x j,s j) pk (xk,sk) pr (xr,sr)
∂ 3 f (s1, ...,sm)

∂ sr∂ sk∂ s j

ds1...dsm


(l2)+ ...+

(
m

m−1

)

∑
l=1



∫

m

∏
i=1

γi

p1 (x1,s1) ... ̂pl (xl ,sl)...pm (xm,sm)
∂ m−1 f (s1, , ...,sm)

∂ sm...∂̂ sl ...∂ s1

ds1...d̂sl ...dsm


 ,

and

B
(m)
f := B

(m)
f (x1, ...,xm) :=

∫
m

∏
i=1

γi

(
m

∏
i=1

pi (xi,si)

)
∂ m f (s1, , ...,sm)

∂ sm...∂ s1
ds1...dsm.

Set also

T
(m)
f := T

(m)
f (x1, ...,xm) := A

(m)
f +B

(m)
f .

Thus, we have (x = (x1, ...,xm))

f (x) = f (x1, ...,xm) =
1

m

∏
i=1

(wi −ui)

∫
m

∏
i=1

γi

f (s1, ...,sm)ds1...dsm +
1

m

∏
i=1

(wi −ui)

(
A
(m)
f +B

(m)
f

)
=

1
m

∏
i=1

(wi −ui)

∫
m

∏
i=1

γi

f (s1, ...,sm)ds1...dsm +
1

m

∏
i=1

(wi −ui)
T
(m)
f . (2.5)

Let function g as in Theorem 2.2. Then as in (2.5) we obtain

g(x) = g(x1, ...,xm) =
1

m

∏
i=1

(wi −ui)

∫
m

∏
i=1

γi

g(s1, ...,sm)ds1...dsm +
1

m

∏
i=1

(wi −ui)

(
A
(m)
g +B

(m)
g

)
= (2.6)

1
m

∏
i=1

(wi −ui)

∫
m

∏
i=1

γi

g(s1, ...,sm)ds1...dsm +
1

m

∏
i=1

(wi −ui)
T
(m)

g .

Above A
(m)
g ,B

(m)
g ,T

(m)
g have the obvious meaning.

By (2.5) we get

f (x)g(x) =
g(x)

m

∏
i=1

(wi −ui)

∫
m

∏
i=1

γi

f (s1, ...,sm)
m

∏
i=1

dsi +
g(x)

m

∏
i=1

(wi −ui)
T
(m)
f ,

and by (2.6) we get

g(x) f (x) =
f (x)

m

∏
i=1

(wi −ui)

∫
m

∏
i=1

γi

g(s1, ...,sm)
m

∏
i=1

dsi +
f (x)

m

∏
i=1

(wi −ui)
T
(m)

g .

Consequently after integration we get:
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(set s := (s1, ...,sm))

∫
m

∏
i=1

γi

f (s)g(s)
m

∏
i=1

dsi =

∫
m

∏
i=1

γi

g(s)
m

∏
i=1

dsi

m

∏
i=1

(wi −ui)

∫
m

∏
i=1

γi

f (s)
m

∏
i=1

dsi +
1

m

∏
i=1

(wi −ui)

∫
m

∏
i=1

γi

g(s)T
(m)
f (s)

m

∏
i=1

dsi, (2.7)

and

∫
m

∏
i=1

γi

f (s)g(s)
m

∏
i=1

dsi =

∫
m

∏
i=1

γi

f (s)
m

∏
i=1

dsi

m

∏
i=1

(wi −ui)

∫
m

∏
i=1

γi

g(s)
m

∏
i=1

dsi +
1

m

∏
i=1

(wi −ui)

∫
m

∏
i=1

γi

f (s)T
(m)

g (s)
m

∏
i=1

dsi. (2.8)

By (2.7) and (2.8) we obtain

∫
m

∏
i=1

γi

f (s)g(s)
m

∏
i=1

dsi−
1

m

∏
i=1

(wi −ui)



∫

m

∏
i=1

γi

f (s)
m

∏
i=1

dsi





∫

m

∏
i=1

γi

g(s)
m

∏
i=1

dsi


=

1
m

∏
i=1

(wi −ui)

∫
m

∏
i=1

γi

f (s)T
(m)

g (s)
m

∏
i=1

dsi =

1
m

∏
i=1

(wi −ui)

∫
m

∏
i=1

γi

g(s)T
(m)
f (s)

m

∏
i=1

dsi.

We conclude that (set d−→s :=
m

∏
i=1

dsi)

∫
m

∏
i=1

γi

f (s)g(s)d−→s −
1

m

∏
i=1

(wi −ui)



∫

m

∏
i=1

γi

f (s)d−→s





∫

m

∏
i=1

γi

g(s)d−→s


=

1

2

(
m

∏
i=1

(wi −ui)

)



∫

m

∏
i=1

γi

(
f (s)T

(m)
g (s)+g(s)T

(m)
f (s)

)
d−→s


 .

Therefore we have

1
m

∏
i=1

(wi −ui)

∫
m

∏
i=1

γi

f (s)g(s)d−→s −
1

m

∏
i=1

(wi −ui)



∫

m

∏
i=1

γi

f (s)d−→s


 1

m

∏
i=1

(wi −ui)



∫

m

∏
i=1

γi

g(s)d−→s


=

1

2

(
m

∏
i=1

(wi −ui)

)2



∫

m

∏
i=1

γi

{
f (s)

(
A
(m)
g (s)+B

(m)
g (s)

)
+g(s)

(
A
(m)
f (s)+B

(m)
f (s)

)}
d−→s


 .

Hence it holds

∆( f ,g) :=
1

m

∏
i=1

(wi −ui)

∫
m

∏
i=1

γi

f (s)g(s)d−→s −
1

m

∏
i=1

(wi −ui)



∫

m

∏
i=1

γi

f (s)d−→s


 1

m

∏
i=1

(wi −ui)



∫

m

∏
i=1

γi

g(s)d−→s


−

1

2

(
m

∏
i=1

(wi −ui)

)2



∫

m

∏
i=1

γi

{
f (s)A

(m)
g (s)+g(s)A

(m)
f (s)

}
d−→s


=

1

2

(
m

∏
i=1

(wi −ui)

)2



∫

m

∏
i=1

γi

{
f (s)B

(m)
g (s)+g(s)B

(m)
f (s)

}
d−→s


 .

Clearly we derive that (
∣∣d−→s

∣∣ :=
m

∏
i=1

|dsi|)

|∆( f ,g)| ≤
1

2

(
m

∏
i=1

|wi −ui|

)2



∫

m

∏
i=1

γi

{
| f (s)|

∣∣∣B(m)
g (s)

∣∣∣+ |g(s)|
∣∣∣B(m)

f (s)
∣∣∣
}∣∣d−→s

∣∣

= (2.9)
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1

2

(
m

∏
i=1

|wi −ui|

)2



∫

m

∏
i=1

γi

| f (s)|
∣∣∣B(m)

g (s)
∣∣∣
∣∣d−→s

∣∣+
∫

m

∏
i=1

γi

|g(s)|
∣∣∣B(m)

f (s)
∣∣∣
∣∣d−→s

∣∣

≤

1

2

(
m

∏
i=1

|wi −ui|

)2


‖ f‖

∞,
m

∏
i=1

γi



∫

m

∏
i=1

γi

∣∣∣B(m)
g (s)

∣∣∣
∣∣d−→s

∣∣

 +‖g‖

∞,
m

∏
i=1

γi



∫

m

∏
i=1

γi

∣∣∣B(m)
f (s)

∣∣∣
∣∣d−→s

∣∣



 .

We have established the following complex multivariate Grüss type inequality:

Theorem 2.7. Let f ,g and all as in Theorem 2.2. Then

∣∣∣∣∣∣∣∣

1
m

∏
i=1

(wi −ui)

∫
m

∏
i=1

γi

f (s)g(s)d−→s −
1

m

∏
i=1

(wi −ui)



∫

m

∏
i=1

γi

f (s)d−→s


 1

m

∏
i=1

(wi −ui)



∫

m

∏
i=1

γi

g(s)d−→s i


−

1

2

(
m

∏
i=1

(wi −ui)

)2



∫

m

∏
i=1

γi

(
f (s)A

(m)
g (s)+g(s)A

(m)
f (s)

)
d−→s




∣∣∣∣∣∣∣∣∣
≤

1

2

(
m

∏
i=1

|wi −ui|

)2


‖ f‖

∞,
m

∏
i=1

γi



∫

m

∏
i=1

γi

∣∣∣B(m)
g (s)

∣∣∣
∣∣d−→s

∣∣

 +‖g‖

∞,
m

∏
i=1

γi



∫

m

∏
i=1

γi

∣∣∣B(m)
f (s)

∣∣∣
∣∣d−→s

∣∣



 .

The corresponding Lp Grüss inequality follows:

Theorem 2.8. Let f ,g and all as in Theorem 2.2 and p,q > 1 such that 1
p
+ 1

q
= 1. Then

∣∣∣∣∣∣∣∣

1
m

∏
i=1

(wi −ui)

∫
m

∏
i=1

γi

f (s)g(s)d−→s −
1

m

∏
i=1

(wi −ui)



∫

m

∏
i=1

γi

f (s)d−→s


 1

m

∏
i=1

(wi −ui)



∫

m

∏
i=1

γi

g(s)d−→s


−

1

2

(
m

∏
i=1

(wi −ui)

)2



∫

m

∏
i=1

γi

(
f (s)A

(m)
g (s)+g(s)A

(m)
f (s)

)
d−→s




∣∣∣∣∣∣∣∣∣
≤

1

2

(
m

∏
i=1

|wi −ui|

)2


‖ f‖

p,
m

∏
i=1

γi

∥∥∥B
(m)
g

∥∥∥
q,

m

∏
i=1

γi

+‖g‖
p,

m

∏
i=1

γi

∥∥∥B
(m)
f

∥∥∥
q,

m

∏
i=1

γi


 .

Proof. Use of (2.9) and Hölder inequality.

The corrsponding L1 Grüss inequality follows:

Theorem 2.9. Let f ,g and all as in Theorem 2.2. Then

∣∣∣∣∣∣∣∣

1
m

∏
i=1

(wi −ui)

∫
m

∏
i=1

γi

f (s)g(s)d−→s −
1

m

∏
i=1

(wi −ui)



∫

m

∏
i=1

γi

f (s)d−→s


 1

m

∏
i=1

(wi −ui)



∫

m

∏
i=1

γi

g(s)d−→s


−
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1

2

(
m

∏
i=1

(wi −ui)

)2



∫

m

∏
i=1

γi

(
f (s)A

(m)
g (s)+g(s)A

(m)
f (s)

)
d−→s




∣∣∣∣∣∣∣∣∣
≤

1

2

(
m

∏
i=1

|wi −ui|

)2


‖ f‖

1,
m

∏
i=1

γi

∥∥∥B
(m)
g

∥∥∥
∞,

m

∏
i=1

γi

+‖g‖
1,

m

∏
i=1

γi

∥∥∥B
(m)
f

∥∥∥
∞,

m

∏
i=1

γi


 .

Proof. By (2.9)

Corollary 2.10. Let f ,g and all as in Theorem 2.1. Then

∣∣∣∣∣∣∣∣

1

3

∏
i=1

(wi −ui)

∫
3

∏
i=1

γi

f (s)g(s)d−→s −
1

3

∏
i=1

(wi −ui)



∫

3

∏
i=1

γi

f (s)d−→s


 1

3

∏
i=1

(wi −ui)



∫

3

∏
i=1

γi

g(s)d−→s


−

1

2

(
3

∏
i=1

(wi −ui)

)2



∫

3

∏
i=1

γi

(
f (s)A

(3)
g (s)+g(s)A

(3)
f (s)

)
d−→s




∣∣∣∣∣∣∣∣∣
≤

1

2

(
m

∏
i=1

|wi −ui|

)2


‖ f‖

∞,
3

∏
i=1

γi



∫

3

∏
i=1

γi

∣∣∣B(3)
g (s)

∣∣∣
∣∣d−→s

∣∣

 +‖g‖

∞,
3

∏
i=1

γi



∫

3

∏
i=1

γi

∣∣∣B(3)
f (s)

∣∣∣
∣∣d−→s

∣∣



 .

Proof. By Theorem 2.7 for m = 3.

Corollary 2.11. Let f ,g and all as in Theorem 2.1 and p,q > 1 : 1
p
+ 1

q
= 1. Then

∣∣∣∣∣∣∣∣

1

3

∏
i=1

(wi −ui)

∫
3

∏
i=1

γi

f (s)g(s)d−→s −
1

3

∏
i=1

(wi −ui)



∫

3

∏
i=1

γi

f (s)d−→s


 1

3

∏
i=1

(wi −ui)



∫

3

∏
i=1

γi

g(s)d−→s


−

1

2

(
3

∏
i=1

(wi −ui)

)2



∫

3

∏
i=1

γi

(
f (s)A

(3)
g (s)+g(s)A

(3)
f (s)

)
d−→s




∣∣∣∣∣∣∣∣∣
≤

1

2

(
3

∏
i=1

|wi −ui|

)2


‖ f‖

p,
3

∏
i=1

γi

∥∥∥B
(3)
g

∥∥∥
q,

3

∏
i=1

γi

+‖g‖
p,

3

∏
i=1

γi

∥∥∥B
(3)
f

∥∥∥
q,

3

∏
i=1

γi


 .

Proof. By Theorem 2.8 for m = 3.

Corollary 2.12. Let f ,g and all as in Theorem 2.1. Then

∣∣∣∣∣∣∣∣

1

3

∏
i=1

(wi −ui)

∫
3

∏
i=1

γi

f (s)g(s)d−→s −
1

3

∏
i=1

(wi −ui)



∫

3

∏
i=1

γi

f (s)d−→s


 1

3

∏
i=1

(wi −ui)



∫

3

∏
i=1

γi

g(s)d−→s


−
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1

2

(
3

∏
i=1

(wi −ui)

)2



∫

3

∏
i=1

γi

(
f (s)A

(3)
g (s)+g(s)A

(3)
f (s)

)
d−→s




∣∣∣∣∣∣∣∣∣
≤

1

2

(
3

∏
i=1

|wi −ui|

)2


‖ f‖

1,
3

∏
i=1

γi

∥∥∥B
(3)
g

∥∥∥
∞,

3

∏
i=1

γi

+‖g‖
1,

3

∏
i=1

γi

∥∥∥B
(3)
f

∥∥∥
∞,

3

∏
i=1

γi


 .

Proof. By Theorem 2.9 for m = 3.
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