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TÜRKİYE
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TÜRKİYE

Michael Th. Rassias
University of Zurich,
SWITZERLAND

Murat Kirişçi
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Abstract

In this paper, a two-parameter weighted Rama distribution which includes one parameter

Rama distribution introduced by Shanker [1] has been proposed for modelling real lifetime

data. Statistical properties of the distribution including shapes of a probability density

function, moments and moment related measures, hazard rate function, mean residual life

function, and stochastic orderings have been discussed. The estimation of its parameters

has been discussed using the method of maximum likelihood. Application of the proposed

distribution has been discussed.

1. Introduction

The concept of weighted distributions was firstly introduced by Fisher [2] to model ascertainment biases which were later formalized by Rao

[3] in a unifying theory for problems where the observations fall in non-experimental, non-replicated and non-random. When an investigator

records an observation in nature according to a certain stochastic model, the distribution of the recorded observation will not have the original

distribution unless every observation is given an equal chance of being recorded. For example, suppose the original observation x0 comes

from a distribution having a probability density function (pdf.), fo(x,θ1), where θ1 may be a parameter vector and observation x s recorded

according to a probability re-weighted by a weight function w(x,θ2)> 0, θ2 being a new parameter vector, then x comes from a distribution

having pdf

f (x;θ1,θ2) = k w(x;θ2) fo (x;θ2)

where k is a normalizing constant. Recall that such types of distributions are known as weighted distributions. The weighted distributions

with a weight function w(x,θ2) = x are called length-biased distribution. Patil and Rao [4]-[5] have examined some general probability

models leading to weighted probability distributions, discussed their applications and showed the occurrence of w(x,θ2) = x in a natural way

in problems relating to sampling.

Shanker [1] has introduced Rama distribution for modelling behavioural Science data defined by its pdf and cumulative distribution function

(cdf)

f1 (x;θ) =
θ 4

θ 3 +6

(
1+ x3

)
e−θx ;x > 0, θ > 0 (1.1)

F1 (x,θ) = 1−
[

1+
θ 3x3 +3θ 2x2 +6θ x

θ 3 +6

]
e−θx ; x > 0,θ > 0

Thus the rth moment about origin µ ′
r of Rama distribution (1.1) obtained by Shanker [1] is given by
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µr
′ =

r!
[
θ 3 +(r+1)(r+2)(r+3)

]

θ r
(
θ 3 +6

) ;r = 1,2,3, ...

The first four moments about origin of Rama distribution obtained by Shanker [1] are as follows

µ1
′ =

θ 3 +24

θ
(
θ 3 +6

)

µ2
′ =

2
(
θ 3 +60

)

θ 2
(
θ 3 +6

)

µ3
′ =

6
(
θ 3 +120

)

θ 3
(
θ 3 +6

)

µ4
′ =

24
(
θ 3 +210

)

θ 4
(
θ 3 +6

) .

The moments about mean of Rama distribution are

µ2 =
θ 6 +84θ 3 +144

θ 2
(
θ 3 +6

)2

µ3 =
2
(
θ 9 +198θ 6 +324θ 3 +864

)

θ 3
(
θ 3 +6

)3

µ4 =
9
(
θ 12 +312θ 9 +2304θ 6 +10368θ 3 +10368

)

θ 4
(
θ 3 +6

)4
.

Shanker [1] has discussed statistical properties including shapes of pdf for varying values of parameter, hazard rate function; mean residual

life function, stochastic ordering, mean deviations, order statistic, Bonferroni and Lorenz curves, Renyi entropy measures, and stress-strength

reliability of Rama distribution. Shanker [1] has also studied the estimation of the parameter of Rama distribution using both the method of

maximum likelihood and the method of the moment along with an application.

In this paper, a two-parameter weighted Rama distribution which includes one parameter Rama distribution proposed by Shanker [1] has

been introduced and studied. The statistical properties of the distribution including the coefficient of variation, skewness, kurtosis, index

of dispersion, hazard rate function, mean residual life function, and stochastic ordering have been discussed. The method of maximum

likelihood has been discussed for estimating parameters. The goodness of fit of the proposed distribution has been discussed with a real

lifetime data and it shows a quite satisfactory fit over one parameter life time distributions including exponential, Lindley, Rama and

two-parameter lifetime distributions including Gompertz, lognormal, Generalized exponential introduced by Gupta and Kundu [6], weighted

Lindley introduced by Ghitany et al [7] and weighted Sujatha distribution introduced by Shanker et al [8].

2. Weighted Rama Distribution

The pdf of the weighted Rama distribution (WRD) can be expressed as

f (x;θ ,α) = K xα−1 fo (x;θ) ; x > 0, θ > 0, α > 0

where, K is the normalizing constant and fo(x;θ) is the pdf of Rama distribution given in (1.1). Thus the pdf of WRD can be obtained as

f2 (x;θ ,α) =
θ α+3

θ 3 +α (α +1)(α +2)

xα−1

Γ(α)

(
1+ x3

)
e−θx ; x > 0,θ > 0,α > 0 (2.1)

where θ = scale parameter , α = shape parameter and

Γ(α) =

∞∫

0

e−yyα−1dy;y > 0,α > 0

is the complete gamma function.

Further, pdf (2.1) can be expressed as a two-component mixture of gamma (θ ,α) and gamma (θ ,α +3) distributions. We have

f2 (x;θ ,α) = pg1 (x;θ ,α)+(1− p)g2 (x;θ ,α +3)
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where

p =
θ 3

θ 3 +α (α +1)(α +2)
,

g1 (x;θ ,α) =
θ α

Γ(α)
e−θxxα−1,

g2 (x;θ ,α +3) =
θ α+3

Γ(α +3)
e−θxx(α+3)−1.

The behaviour of the pdf of WRD for varying values of parameters θ and α are shown in Figure 2.1.

Figure 2.1: Behavior of the pdf of WRD for various values of the parameters θ and α

The cdf of WRD can be obtained as

F2 (x;θ ,α) = 1−




(θx)α
{
(θx)2 +(θx)(α +2)+(α +1)(α +2)

}
e−θx

+
{

θ 3 +α (α +1)(α +2)
}

Γ(α,θx)[
θ 3 +α (α +1)(α +2)

]
Γ(α)




; x > 0,θ > 0,α > 0

where Γ(α,θx) is the upper incomplete gamma function defined by

Γ(α,z) =

∞∫

z

e−yyα−1dy; y ≥ 0, α > 0.

The behaviour of the cdf of WRD for varying values of the parameters θ and α are shown in Figure 2.2.
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Figure 2.2: Behavior of the cdf of WRD for various values of the parameters θ and α

3. Statistical Constants

The rth moment about origin, µ ′
r of WRD (2.1) can be obtained as

µ ′
r = E (X r) =

∞∫

0

xr f2 (x;θ ,α)dx =

∞∫

0

xr θ α+3xα−1
(
1+ x3

)

Γ(α)
[
θ 3 +α (α +1)(α +2)

] e−θxdx

=
Γ(α + r)

Γ(α)

θ 3 +(α + r)(α + r+1)(α + r+2)

θ r
[
θ 3 +α (α +1)(α +2)

] ; r = 1,2,3, .... (3.1)

The first four moments about origin of WRD, after substituting r = 1, 2, 3 and 4 in (3.1) are obtained as

µ ′
1 =

α
{

θ 3 +(α +1)(α +2)(α +3)
}

θ
[
θ 3 +α (α +1)(α +2)

]

µ ′
2 =

α (α +1)
{

θ 3 +(α +2)(α +3)(α +4)
}

θ 2
[
θ 3 +α (α +1)(α +2)

]

µ ′
3 =

α (α +1)(α +2)
{

θ 3 +(α +3)(α +4)(α +5)
}

θ 3
[
θ 3 +α (α +1)(α +2)

]

µ ′
4 =

α (α +1)(α +2)(α +3)
{

θ 3 +(α +4)(α +5)(α +6)
}

θ 4
[
θ 3 +α (α +1)(α +2)

] .

Now using the relationship µr = E(X −µ ′
1)

r =
r

∑
k=0

(
r

k

)
µ ′

k(−µ ′
1)

r−k
between moments about mean and moments about origin, the

moments about the mean of WRD are obtained as
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µ2 =
α
{

θ 6 +2
(
α3 +9α2 +20α +12

)
θ 3 +

(
α6 +9α5 +31α4 +51α3 +40α2 +12α

)}

θ 2
(
θ 3 +α3 +3α2 +2α

)2

µ3 =

2α

{
θ 9 +3

(
α3 +13α2 +32α +20

)
θ 6 +3

(
α6 +8α5 +25α4 +38α3 +28α2 +8α

)
θ 3

+
(
α9 +12α8 +60α7 +162α6 +255α5 +234α4 +116α3 +24α2

)
}

θ 3
(
θ 3 +α3 +3α2 +2α

)3

µ4 =

3α





(α +2)θ 12 +4
(
α4 +11α3 +56α2 +106α +60

)
θ 9

+3
(
2α6 +34α5 +198α4 +550α3 +792α2 +568α +160

)
αθ 6

+4
(
α8 +20α7 +156α6 +642α5 +1551α4 +2274α3 +1988α2 +952α +198

)
α2θ 3

+

(
α13 +20α12 +173α11 +856α10 +2691α9 +5628α8

+7943α7 +7480α6 +4504α5 +1568α4 +240α3

)





θ 4
(
θ 3 +α3 +3α2 +2α

)4
.

It can be easily shown that at α = 1, the moments about the origin and the moments about mean of WRD reduces to the corresponding

moments of Rama distribution.

The expressions for coefficient variation (C.V.) coefficient of skewness
(√

β1

)
, the coefficient of kurtosis (β2) and index of dispersion (γ)

of WRD is thus given as

C.V =
σ

µ1
′ =

√
α
{

θ 6 +
(
2α3 +18α2 +40α +24

)
θ 3 +α6 +9α5 +31α4 +51α3 +40α2 +12α

}

α
(
θ 3 +α3 +6α2 +11α +6

)

√
β1 =

µ3

µ2
3/2

=

2α

{
θ 9 +

(
3α3 +39α2 +96α +60

)
θ 6 +

(
3α6 +24α5 +75α4 +114α3 +84α2 +24α

)
θ 3

α9 +12α8 +60α7 +162α6 +255α5 +234α4 +116α3 +24α2

}

{
α
(
θ 6 +

(
2α3 +18α2 +40α +24

)
θ 3 +α6 +9α5 +31α4 +51α3 +40α2 +12α

)}3/2

β2 =
µ4

µ2
2

=

3(α +2)





θ 12 +
(
4α3 +36α2 +152α +120

)
θ 9 +

(
6α6 +90α5 +414α4 +822α3 +732α2 +240α

)
θ 6

+
(
4α9 +72α8 +480α7 +1608α6 +2988α5 +3120α4 +1712α3 +384α2

)
θ 3

+
(
α12 +18α11 +137α10 +582α9 +1527α8 +2574α7 +2795α6 +1890α5 +724α4 +120α3

)





{
α
(
θ 6 +

(
2α3 +18α2 +40α +24

)
θ 3 +α6 +9α5 +31α4 +51α3 +40α2 +12α

)2
}

γ =
σ2

µ ′
1

=

{
θ 6 +

(
2α3 +18α2 +40α +24

)
θ 3 +α6 +9α5 +31α4 +51α3 +40α2 +12α

}

θ
(
θ 3 +α3 +3α2 +2α

)(
θ 3 +α3 +6α2 +11α +6

) .

The behaviour of the coefficient of variation (C.V.), the coefficient of skewness (C.S.), the coefficient of kurtosis (C.K.) and index of

dispersion (I.D.) of WRD have been prepared for varying values of the parameters θ and α and presented in Figure 3.1.
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Figure 3.1: Behavior of C.V., C.S., C.K., and I.D of WRD for varying values of parameters θ and α

4. Survival Function ans Hazard Rate Function

The survival (reliability) function of WRD can be obtained as

S (x;θ ,α) = 1−F2 (x;θ ,α) ==

{
(θx)α

[
(θx)2 +(α +2)(θx)+(α +1)(α +2)

]
e−θx

+
[
θ 3 +α (α +1)(α +2)

]
Γ(α,θx)

}

[
θ 3 +α (α +1)(α +2)

]
Γ(α)

.

The hazard (or failure) rate function, h(x) of WRD is thus obtained as

h(x) =
f (x;θ ,α)

S (x;θ ,α)
=

θ α+3xα−1
(
1+ x3

)
e−θx

{ [
θ 3 +α (α +1)(α +2)

]
Γ(α,θx)

+(θx)α
[
(θx)2 +(θx)(α +2)+(α +1)(α +2)

]
e−θx

} ; x > 0, θ > 0, α > 0.

The behaviour of h(x) of WRD for varying values of parameters θ and α are shown in Figure 4.1.
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Figure 4.1: Behavior of C.V., C.S., C.K., and I.D of WRD for varying values of parameters θ and α

5. Mean Residual Life Function

The mean residual life function µ (x) = E (X − x |X > x ) of the WRD can be obtained as

µ (x) = 1
S(x;θ ,α)

∞∫
x

y f2 (y;θ ,α)dy − x

=





(θx)α
{
(θx)2 +2(α +2)(θx)+θ 3 +(α +1)(α +2)(α +3)

}
eθx

+
[{

αθ 3 +α (α +1)(α +2)(α +3)
}
−θx

{
θ 3 +α (α +1)(α +2)

}]
Γ(α,θx)





θ [(θx)α{(θx)2+(α+2)(θx)+(α+1)(α+2)}e−θx+{θ 3+α(α+1)(α+2)}Γ(α,θx)]
.

It can be easily shown that

µ (0) =
α
[
θ 3 +(α +1)(α +2)(α +3)

]

θ
[
θ 3 +α (α +1)(α +2)

] = µ ′
1.

The behaviour of µ(x) of WRD for varying values of parametersθ and α are shown in Figure 5.1.
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Figure 5.1: Behavior of µ(x) of the WRD for varying values of parameters θ and α

6. Stochastic Ordering

The stochastic ordering of positive continuous random variables is an important tool for examining their comparative behaviour. A random

variable X is said to be smaller than a random variable Y in the

• stochastic order (X≤stY ) if FX (x)≥ FY (x) for all x

• hazard rate order (X≤hrY ) if hX (x)≥ hY (x) for all x

• mean residual life order (X≤mrlY ) if mX (x)≤ mY (x) for all x

• likelihood ratio order (X≤lrY ) if
fX (x)
fY (x)

decreases in x.

The following important interpretations due to Shaked and Shanthikumar [10] are well known for establishing the stochastic ordering of

distributions.

X≤lrY ⇒ X≤hrY ⇒ X≤mrlY

⇓
X≤stY.

The WRD is ordered with respect to the strongest ‘likelihood ratio’ ordering as shown in the following theorem.

Theorem 6.1. Let X˜WRD(θ1,α1) and Y˜WRD(θ2,α2). If θ1 > θ2 and α1 = α2 (or α1 < α2 and θ1 = θ2) , then X≤lrY and hence X≤hrY ,

X≤mrlY and X≤stY .

Proof. We have

fX (x;θ1,α1)

fY
(
x;θ2,α2

) =
θ α1+3

1

(
θ 3

2 +α3
2 +3α2

2 +2α2

)
Γ(α2)

θ α2+3
2

(
θ 3

1 +α3
1 +3α2

1 +2α1

)
Γ(α1)

xα1−α2 e−(θ1−θ2)x.

Now,

ln
fX (x;θ1,α1)

fY
(
x;θ2,α2

) = ln

(
θ α1+3

1

(
θ 3

2 +α3
2 +3α2

2 +2α2

)
Γ(α2)

θ α2+3
2

(
θ 3

1 +α3
1 +3α2

1 +2α1

)
Γ(α1)

)
+(α1 −α2) lnx− (θ1 −θ2)x.

This gives

d

dx
ln

(
fX (x;θ1,α1)

fY (x;θ2,α2)

)
=

α1 −α2

x
− (θ1 −θ2) .
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Thus, if (α1 = α2 and θ1 ≥ θ2) or (α1 < α2 and θ1 ≥ θ2),then d
dx ln

(
fX (x;θ1,α1)
fY (x;θ2,α2)

)
< 0. This means that X≤lrY and hence X≤hrY , X≤mrlY

and X≤stY . This shows flexibility of WRD over Rama distribution.

7. Maximum Likelihood Estimation of Parameters

Let (x1,x2,x3, . . .,xn) be a random sample of size n from WRD (2.1). The likelihood function, L of WRD is given by

L =

[
θ α+3

Γ(α)
{

θ 3 +α3 +3α2 +2α
}
]n

n

∏
i=1

xα−1
i

(
1+ x3

i

)
e−n θ x̄.

The natural log likelihood function is thus obtained as

lnL = n
[
(α +3) lnθ − ln

{
θ 3 +α (α +1)(α +2)

}
− lnΓ(α)

]
+(α −1)

n

∑
i=1

ln(xi)+
n

∑
i=1

ln
(

1+ x3
i

)
−nθ x̄.

The maximum likelihood estimates (θ̂ , ) of (θ ,α) is the solution of the following log likelihood equations.

∂ lnL

∂θ
=

n(α +3)

θ
− 3nθ 2

θ 3 +α3 +3α2 +2α
−n x̄ = 0

∂ lnL

∂α
= n lnθ − n

(
3α2 +6α +2

)

θ 3 +α3 +3α2 +2α
−nψ (α)+

n

∑
i=1

lnxi = 0

where x̄ is the sample mean and ψ(α) is the digamma function defined as

ψ (α) =
d

dα
lnΓ(α) .

The MLE’s

(
∧
θ ,

∧
α

)
of parameters of WRD (θ ,α) can be computed directly by solving the natural log likelihood equation using Newton-

Raphson iteration available in R-software till sufficiently close estimates of
∧
θ and

∧
α are obtained. In this paper, initial values of θ and α are

taken θ = 0.5 and α = 1.5, respectively.

8. A Numerical Example

A numerical example of real lifetime data has been presented to test the goodness of fit of WRD over other one parameter and two parameter

life time distribution. The following data represent the tensile strength, measured in GPa, of 69 carbon fibers tested under tension at gauge

lengths of 20mm, available in Bader and Priest [9].

1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958 1.966 1.997

2.006 2.021 2.027 2.055 2.063 2.098 2.140 2.179 2.224 2.240 2.253 2.270

2.272 2.274 2.301 2.301 2.359 2.382 2.382 2.426 2.434 2.435 2.478 2.490

2.511 2.514 2.535 2.554 2.566 2.570 2.586 2.629 2.633 2.642 2.648 2.684

2.697 2.726 2.770 2.773 2.800 2.809 2.818 2.821 2.848 2.880 2.954 3.012

3.067 3.084 3.090 3.096 3.128 3.233 3.433 3.585 3.585

For this data set, WRD has been fitted along with one parameter exponential, Lindley , Rama distributions and two – parameter gamma

distribution Gompertz distribution, generalized exponential distribution (GED) introduced by Gupta and Kundu [6], lognormal distribution

,weighted Sujatha distribution (WSD) introduced by Shanker and Shukla [8] and WLD. The pdf and cdf of gamma, Gompertz, lognormal,

GED, WSD and WLD are presented in table 1. The ML estimates, values of −2lnL, Akaike Information criteria (AIC), K-S statistics

and p-value of the fitted distributions are presented in table 2. The AIC and K-S Statistics are computed using the following formulae:

AIC =−2lnL+2k and K-S = Sup
x

|Fn (x)−F0 (x)|, where k = the number of parameters, n = the sample size , Fn (x) is the empirical (sample)

cumulative distribution function, and F0 (x) is the theoretical cumulative distribution function. The best distribution is the distribution

corresponding to lower values of −2lnL, AIC, and K-S statistics.
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Distributions pdf cdf

WSD f (x;θ ,α) = θ α+2

θ 2+α θ+α(α+1)
xα−1

Γ(α)

(
1+ x+ x2

)
e−θ x F (x;θ ,α,β ) = 1− {θ 2+α θ+α(α+1)}Γ(α,θx)+(θx)α (θ x+θ+α+1)e−θ x

{θ 2+α θ+α(α+1)}Γ(α)

WLD f (x;θ ,α) = θ α+1

(θ+α)
xα−1

Γ(α)
(1+ x) e−θ x F (x;θ ,α) = 1− (θ+α)Γ(α,θ x)+(θ x)α

e−θ x

(θ+α)Γ(α)

GED f (x;θ ,α) = θ α
(
1− e−θ x

)α−1
e−θ x F (x;θ ,α) =

(
1− e−θx

)α

Gamma f (x;θ ,α) = θ α

Γ(α)
e−θxxα−1 F (x;θ ,α) = 1− Γ(α,θx)

Γ(α)

Lognormal f (x;θ ,α) = 1√
2παx

e−
1
2 (

logx−θ
α )

2

F (x;θ ,α) = φ
(

logx−θ
α

)

Lindley f (x;θ) = θ 2

θ+1 (1+ x)e−θx F (x;θ) = 1−
[
1+ θx

θ+1

]
e−θx

Gompertz f (x;θ ,α) = θ eα x− θ
α (eα x−1) F (x;θ ,α) = 1− e−

θ
α (eα x−1)

Table 1: The pdf and the cdf of fitted distributions

Distribution Team sheet −2lnL AIC K-S P-value
∧
θ

∧
α

WRD 9.5764 20.7494 98.76 102.76 0.055 0.983

WSD 9.7387 22.3612 99.99 103.99 0.057 0.975

WLD 9.6265 22.8938 101.95 105.95 0.059 0.973

Gamma 9.5380 23.3820 100.07 104.07 0.058 0.962

GED 2.0331 87.2847 109.24 113.24 0.087 0.613

Lognormal 0.8751 0.2124 102.72 106.73 0.103 0.713

Gompertz 0.0080 2.0420 107.25 111.250 0.085 0.673

Rama 0.130106 ——- 211.49 213.49 0.324 0.000

Lindley 0.0702 ——- 238.38 240.38 0.401 0.000

Exponential 0.4079 ——- 261.73 263.73 0.447 0.000

Table 2: MLE’s, - 2ln L, AIC, K-S Statistics and p-values of the fitted distributions

It is quite obvious from table 2 that WRD is competing well with two parameter lifetime distributions and gives a quite satisfactory fit the

considered distributions. This means that, like other two-parameter lifetime distributions, WRD is also an important two-parameter lifetime

distribution for modeling real lifetime data.

9. Concluding Remarks

A two-parameter weighted Rama distribution (WRD) which includes one parameter Rama distribution proposed by Shanker [1] has been

suggested for modelling lifetime data from engineering. Its statistical properties including shapes of the probability density function for

varying values of parameters, coefficients of variation, skewness, kurtosis, and index of dispersion have been studied. Its reliability measures

including hazard rate function, mean residual life function, and the stochastic ordering have been discussed. The method of maximum

likelihood has been discussed for estimating its parameters. The goodness of fit of the proposed distribution has been explained with a real

lifetime data from engineering and the fit has been found quite satisfactory over one parameter exponential, Lindley and Rama distributions

and two- parameter gamma, Gompertz, generalized exponential, lognormal, weighted Sujatha and weighted Lindley distributions.
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Abstract

In this paper, we investigate the hyperbolic Fibonacci sequence and the hyperbolic Fibonacci

numbers. Furthermore, we give recurrence relations, the golden ratio and Binet’s formula

for the hyperbolic Fibonacci sequence and Lorentzian inner product, cross product and

mixed product for the hyperbolic Fibonacci vectors.

1. Introduction

For the Fibonacci sequence

1 , 1 , 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . . ,Fn, . . .

defined by the recurrence relation

Fn = Fn−1 +Fn−2 , (n ≥ 3),

with F1 = F2 = 1, it is well known that the n-th term of the Fibonacci sequence (Fn) [1]-[3]. Some recent generalizations have produced a

variety of new and extended results,[4]-[8].

Hyperbolic numbers have applications in different areas of mathematics and theoretical physics. In particular, they are related to the

Lorentz-Minkowski (Space-time) geometry in the plane as well as complex numbers are to Euclidean one [9] . The work on the function

theory for hyperbolic numbers can be found in [10]-[15]. The set of hyperbolic numbers H can be described in the form as

H= {z = x+hy | h /∈ R , h2 = 1 , x,y ∈ R}. (1.1)

Addition, substraction and multiplication of any two hyperbolic numbers z1 and z2 are defined by

z1 ± z2 =(x1 +hy1)± (x2 +hy2) = (x1 ± x2)+h(y1 ± y2),

z1 × z2 =(x1 +hy1)× (x2 +hy2) = x1 x2 + y1 y2 +h(x1 y2 + y1 x2).
(1.2)

On the other hand, the division of two hyperbolic numbers are given by

z1

z2
=

x1 +hy1

x2 +hy2

(x1 +hy1)(x2 −hy2)

(x2 +hy2)(x2 −hy2)
=

x1 x2 + y1 y2

x2
2 − y2

2

+h
(x1 y2 + y1 x2)

x2
2 − y2

2

.

(1.3)
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If x2
2 − y2

2 6= 0, then the division z1

z2
is possible. Therefore, the hyperbolic number system is a non-division algebra.

The hyperbolic conjugation of z = x+hy is defined by

z = z† = x−hy , z = z .

For any z1, z2 hyperbolic numbers, can be written as follows:

z1 + z2 = z1 + z2,
z1 × z2 = z1 × z2,∥∥−→z

∥∥2
= z× z = x2 − y2.

where z is time-like if
∥∥−→z

∥∥2
> 0 , light-like if

∥∥−→z
∥∥2

= 0 and space-like if
∥∥−→z

∥∥2
< 0 . The ring of hyperbolic numbers has zero-divisors.

Moreover, these zero-divisors are also idempotent elements {e,e†} for hyperbolic numbers, given by

e =
1+h

2
, e† =

1−h

2
.

where ee† = 0 , e2 = e , (e†)2 = e† , e+ e† = 1 and e− e† = k . Then, each hyperbolic number z can be written as follows:

z = x+hy = (x+ y)e+(x− y)e† = z1 e+ z2 e†.

These numbers are also called double, split, perplex, Lorentz and duplex numbers [12].

2. Hyperbolic Fibonacci sequence

The hyperbolic Fibonacci sequence defined by

F̃n = Fn +hFn+1 , (h2 = 1) (2.1)

with F̃1 = 1+h , F̃2 = 1+2h where h2 = 1 . That is, the hyperbolic Fibonacci sequence F̃n is

h , 1+h , 1+2h, 2+3h, 3+5h, . . . ,(1+h)Fn +hFn−1, . . . (2.2)

Using the equations (2.1) and (2.2) , it was obtained

F̃n+1 = (1+h)Fn+1 +hFn

F̃n+2 = (1+2h)Fn+1 +(1+h)Fn

F̃n+3 = (2+3h)Fn+1 +(1+2h)Fn

...

F̃n+r = (Fn +hFn+1)Fr+1 +(Fn−1 +hFn)Fr

...

(2.3)

For the hyperbolic Fibonacci sequence, it was obtained the following properties:

F̃2
n+1 + F̃2

n = 2 F̃2n+1 +F2n+2 ,

F̃2
n+1 − F̃2

n−1 = 2 F̃2n +F2n+1 ,

F̃n+r = F̃nFr+1 + F̃n−1Fr (n ≥ 3)

F̃n−1 F̃n+1 − F̃2
n = h(−1)n ,

F̃n−r F̃n+r − F̃2
n = h(−1)n−r+1 F2

r ,

F̃2
n +hF2

n+1 = F̃2n+1 ,

F̃n F̃m + F̃n+1 F̃m+1 = 2 F̃n+m+1 +Fn+m+2 ,

F̃n F̃m+1 − F̃n+1 F̃m = h(−1)m Fn−m ,
F̃n+r+(−1)r F̃n−r

F̃n

= Lr = Fr+1 +(−1)rFr−1 .

Theorem 2.1. If F̃n is the hyperbolic Fibonacci number, then

lim
n→∞

F̃n+1

F̃n

= α2

α2−1

where α = (1+
√

5)
/

2 = 1.618033.. is the golden ratio.

Proof. We have for the Fibonacci number Fn,

lim
n→∞

Fn+1

Fn
= α

where α = (1+
√

5)
/

2 = 1.618033.. is the golden ratio [3].
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Then, using this limit value for the hyperbolic Fibonacci number F̃n, we obtain

lim
n→∞

F̃n+1

F̃n

= lim
n→∞

Fn+1+hFn+2

Fn+hFn+1
= lim

n→∞

(Fn+1+hFn+2)(Fn−hFn+1)

F2
n −Fn+1

2

lim
n→∞

Fn+1 (Fn−Fn+2)+h(Fn Fn+2−F2
n+1)

(F2
n −F2

n+1)

lim
n→∞

−F2
n+1

F2
n −F2

n+1

+h lim
n→∞

(−1)n+1

F2
n −F2

n+1

= −α2

1−α2 +0

= α2

α2−1

where the identities Fn+2 = Fn +Fn+1 and Fn+1 Fn−1 −Fn
2 = (−1)n are used.

Theorem 2.2. The Binet formula 1 for the hyperbolic Fibonacci sequence is as follows;

F̃n =
1

α −β
( ᾱ αn − β̄ β n) .

Proof. If we use definition of the hyperbolic Fibonacci sequence and substitute first equation in footnote, then we get

F̃n = Fn +hFn+1

= (αn−β n

α−β
)+h(αn+1−β n+1

α−β
)

=
αn (1+hα)−β n (1+hβ )

α−β

= α αn −β β n

α−β

where α = 1+hα and β = 1+hβ .

3. Hyperbolic Fibonacci vectors

Let −→z1 = (x1,x2,x3) and −→z2 = (y1,y2,y3) be vectors in R
3. The Lorentzian inner product of z1 and z2 is defined as [16]

z1.z2 = 〈−→z1 ,
−→z2 〉L = x1 y1 + x2 y2 − x3 y3.

This space denote by L
2,1 or Lorentz 3− space L

3.

A hyperbolic Fibonacci vector is defined by

−→̃
Fn = (F̃n , F̃n+1, F̃n+2)

Also, from equations (2.1) and (2.3) it can be expressed as

−→̃
F n =

−→
F n +h

−→
F n+1

where
−→
F n = (Fn , Fn+1, Fn+2) and

−→
F n+1 = (Fn+1 , Fn+2, Fn+3) are the hyperbolic Fibonacci vectors.

The product of the hyperbolic Fibonacci vector
−→̃
Fn and the scalar λ ∈ R is given by

λ
−→̃
Fn = λ

−→
F n +hλ

−→
F n+1

and
−→̃
Fn and

−→̃
Fm are equal if and only if

Fn = Fm

Fn+1 = Fm+1

Fn+2 = Fm+2.

1Binet formula is the explicit formula to obtain the n-th Fibonacci and Lucas numbers. It is well known that for the Fibonacci and Lucas numbers, Binet formulas are

Fn =
αn −β n

α −β

and

Ln = αn +β n

respectively, where α +β = 1 , α −β =
√

5 , αβ =−1 and α = (1+
√

5)
/

2 , β = (1−
√

5)
/

2 ,[7],[8].
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Some examples of the hyperbolic Fibonacci vectors can be given easily as;

−→̃
F1 = (F̃1 , F̃2, F̃3)

= (F1 , F2, F3)+h(F2 , F3, F4)
= (1+h, 1+2h, 2+3h)

−→̃
F2 = (F̃2 , F̃3, F̃4)

= (F2 , F3, F4)+h(F3 , F4, F5)
= (1+2h, 2+3h, 3+5h)

Theorem 3.1. Let
−→̃
Fn and

−→̃
Fm be two hyperbolic Fibonacci vectors. The Lorentzian inner product of

−→̃
Fn and

−→̃
Fm is given by

〈−→̃
Fn,

−→̃
Fm

〉

L

= (Fn+m+1 −Fn+m+4)+h(3Fn+m+2 +2Fn+m+3 −Fn+1 Fm+1 ). (3.1)

Proof. The Lorentzian inner product of
−→̃
F n = (F̃n , F̃n+1, F̃n+2) and

−→̃
F m = (F̃m , F̃m+1, F̃m+2) defined by

〈−→̃
Fn,

−→̃
Fm

〉

L

= F̃nF̃m + F̃n+1F̃m+1 − F̃n+2F̃m+2

=
〈−→

F n,
−→
F m

〉
+
〈−→

F n+1,
−→
F m+1

〉

+h [
〈−→

F n ,
−→
F m+1

〉
+
〈−→

F n+1 ,
−→
F m

〉
]

where
−→
Fn = (Fn , Fn+1, Fn+2) is the hyperbolic Fibonacci vector. Also, the equations (1.1), (1.2) and (1.3), we obtain

〈−→
F n,

−→
F m

〉
= Fn Fm +Fn+1 Fm+1 −Fn+2 Fm+2 (3.2)

〈−→
F n+1,

−→
F m+1

〉
= Fn+1 Fm+1 +Fn+2 Fm+2 −Fn+3 Fm+3 (3.3)

〈−→
F n,

−→
F m+1

〉
= Fn Fm+1 +Fn+1 Fm+2 −Fn+2 Fm+3 (3.4)

and
〈−→

F n+1,
−→
F m

〉
= Fn+1 Fm +Fn+2 Fm+1 −Fn+3 Fm+2 (3.5)

Then from equation (3.2), (3.3), (3.4) and (3.5), we have the equation (3.1).

Special Case-1: For the Lorentzian inner product of the hyperbolic Fibonacci vectors
−→̃
Fn and

−→̃
F n+1, we get

〈−→̃
F n,

−→̃
F n+1

〉

L

= F̃nF̃n+1 + F̃n+1F̃n+2 − F̃n+2F̃n+3

=
〈−→

F n,
−→
F n+1

〉
+
〈−→

F n+1,
−→
F n+2

〉

+h [
〈−→

F n,
−→
F n+2

〉
+
〈−→

F n+1,
−→
F n+1

〉
]

= (F2n+2 −F2n+5)+h(2F2n+3 +F2n+5 −Fn+2 Fn+3)

and
〈−→̃

F n,
−→̃
F n

〉

L

= F̃2
n + F̃2

n+1 − F̃2
n+2

=
〈−→

F n ,
−→
F n

〉
+
〈−→

F n+1 ,
−→
F n+1

〉
+h

〈−→
F n ,

−→
F n+1

〉

= (F2n+1 −F2n+4)+2h(F2n+2 −Fn+2 Fn+3).

Then for the Lorentzian inner product of the hyperbolic vector 2, we have, using identities of the Fibonacci numbers

F2
n +F2

n+1 = F2n+1

F2
n+3 − F2

n+1 = F2n+2

Fn Fm +Fn+1 Fm+1 = Fn+m+1

(see, [11]), we have

∥∥∥∥
−→̃
Fn

∥∥∥∥
2

=

〈−→̃
Fn,

−→̃
Fn

〉

L

= F̃2
n + F̃2

n+1 − F̃2
n+2

= (F2n+1 −F2n+2)+2h(F2n+2 −2Fn+2 Fn+3) .

2Lorentzian inner product of hyperbolic number as follows: 〈−→
z ,−→z

〉
L
= x1

2 + x2
2 − x3

2 , [11].
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The Lorentzian cross product [16],[17] of the vectors −→z1 and −→z2 in L
3 is

−→
z1 ×L

−→
z2 =

∣∣∣∣∣∣

−i − j k

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣

= −i(x2y3 − x3y2)+ j (x1y3 − x3y1)+ k (x1y2 − x2y1) .

Theorem 3.2. Let
−→̃
Fn and

−→̃
Fm be two hyperbolic Fibonacci vectors. The Lorentzian cross product of

−→̃
Fn and

−→̃
Fm is given by

−→̃
Fn ×L

−→̃
Fm = h(−1)m Fn−m (i+ j+ k). (3.6)

Proof. The Lorentzian cross product of
−→̃
Fn =

−→
F n +h

−→
F n+1 and

−→̃
Fm =

−→
F m +h

−→
F m+1 defined by

−→̃
Fn ×

−→̃
Fm = (

−→
F n ×

−→
F m)+(

−→
F n+1 ×

−→
F m+1)+h (

−→
F n ×

−→
F m+1 +

−→
F n+1 ×

−→
F m

where
−→̃
F n is the hyperbolic Fibonacci vector and

−→
F n×

−→
F m is the Lorentzian cross product for the hyperbolic Fibonacci vectors

−→̃
F n and

−→̃
F m,

Now, we calculate the cross products
−→
F n ×

−→
F m,

−→
F n+1 ×

−→
F m+1,

−→
F n ×

−→
F m+1 and

−→
F n+1 ×

−→
F m: Using the property FmFn+1 −Fm+1 Fn =

(−1)n Fm−n, we get

−→
F n ×

−→
F m = (−1)m Fn−m (i+ j+ k) (3.7)

−→
F n+1 ×

−→
F m+1 = (−1)m+1 Fn−m (i+ j+ k) (3.8)

−→
F n ×

−→
F m+1 = (−1)m+1 Fn−m−1 (i+ j+ k) (3.9)

and

−→
F n+1 ×

−→
F m = (−1)m Fn−m+1 (i+ j+ k). (3.10)

Then from the equations (3.7), (3.8), (3.9) and (3.10), we obtain the equation (3.6).

Theorem 3.3. Let
−→̃
Fn,

−→̃
Fm and

−→̃
Fℓ be the hyperbolic Fibonacci vectors. The Lorentzian mixed product of these vectors is

〈−→̃
Fn ×L

−→̃
Fm ,

−→̃
Fℓ

〉
= 0. (3.11)

Proof. Using the properties

−→̃
Fn ×

−→̃
Fm = (

−→
F n ×

−→
F m)+(

−→
F n+1 ×

−→
F m+1)+h (

−→
F n ×

−→
F m+1 +

−→
F n+1 ×

−→
F m)

and

−→̃
F ℓ =

−→
F ℓ+h

−→
F ℓ+1

we can write,

〈−→̃
F n ×L

−→̃
F m,

−→̃
F ℓ

〉
=
〈−→

F n ×
−→
F m,

−→
F ℓ

〉
+
〈−→

F n+1 ×
−→
F m+1,

−→
F ℓ

〉

+h [
〈−→

F n ×
−→
F m,

−→
F ℓ+1

〉
+
〈−→

F n+1 ×
−→
F m+1,

−→
F ℓ+1

〉
]

+h [
〈−→

F n ×
−→
F m+1,

−→
F ℓ

〉
+
〈−→

F n+1 ×
−→
F m,

−→
F ℓ

〉
]

+
〈−→

F n ×
−→
F m+1,

−→
F ℓ+1

〉
+
〈−→

F n+1 ×
−→
F m,

−→
F ℓ+1

〉
.

Then from equations (3.7), (3.8), (3.9)and (3.10) and by using the Lorentzian inner product definition of the hyperbolic number, we obtain

〈
(i+ j+ k),

−→
Fℓ

〉
= Fℓ+Fℓ+1 −Fℓ+2 = 0,

〈
(i+ j+ k),

−−→
Fℓ+1

〉
= Fℓ+1 +Fℓ+2 −Fℓ+3 = 0.

Thus, we have the equation (3.11).
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4. Conclusion

The hyperbolic Fibonacci sequence defined by

F̃n = Fn +hFn+1 , (h2 = 1),

with F̃1 = 1+h , F̃2 = 1+2h where h2 = 1, .

In addition, limit for the hyperbolic Fibonacci sequence and Binet’s formula for the hyperbolic Fibonacci sequence is given. Furthermore,

vectors and the Lorentzian inner product, cross product and mixed product of these vectors are given.
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Abstract

In the present paper we establish that the space expβ X of compact subsets of a Tychonoff

space X is superparacompact iff X is so. Further, we prove the Tychonoff map expβ f :

expβ X → expβ Y is superparacompact iff a given map f : X → Y is superparacompact.

1. Introduction

In the present paper under space we mean a topological T1-space, under compact a Hausdorff compact space and under map a continuous

map.

A collection ω of subsets of a set X is said [1] to be star-countable (respectively, star-finite) if each element of ω intersects at most a

countable (respectively, finite) set of elements of ω . A collection ω of subsets of a set X refines a collection Ω of subsets of X if for each

element A ∈ ω there is an element B ∈ Ω such that A ⊂ B. They also say that ω is a refinement of Ω.

A finite sequence of subsets M0, ...,Ms of a set X is [2] a chain connecting sets M0 and Ms, if Mi−1 ∩Mi 6=∅ for i = 1, ...,s. A collection

ω of subsets of a set X is said to be connected if for any pair of sets M, M
′
⊂ X there exists a chain in ω connecting sets M and M

′
. The

maximal connected subcollections of ω are called components of ω . A star-finite open cover of a space X is said to be a finite-component

cover if the number of elements of each component is finite. A space X is said to be superparacompact if every open cover of X has a

finite-component cover which refines it.

Note that any compact space is superparacompact, and any superparacompact space is strongly paracompact. Infinite discrete space is

superparacompact, but it is not compact. Real line is strongly paracompact, but it is not superparacompact.

For a collection ω = {Oα : α ∈ A} of subsets of a space X we suppose [ω] = [ω]X = {[Oα ]X : α ∈ A}. For a space X , its some subspace W

and a set B ⊂ X \W they say [2] that an open cover λ of the space W pricks out the set B in X if B∩ (∪[λ ]X ) =∅.

The following criterion plays a key role in investigation the class of superparacompact spaces.

Theorem 1.1. [3] A Tychonoff space X is superparacompact iff for every closed set F in βX lying in the growth βX \X there exists a

finite-component cover λ of X pricking out F in βX (i. e. F ∩ (∪[λ ]βX ) =∅).

D.Buhagiar and T.Miwa offered the following criterion of superparacompactness.

Theorem 1.2. [4] A Tychonoff space X is superparacompact iff for every closed set F in perfect compactification bX lying in the growth

bX \X there is a finite-component cover λ of X pricking out F in bX (i. e. F ∩ (∪[λ ]bX ) =∅).

Let us recall a notion of the perfect compactification. For a topological space X and its subset A a set FrX A = [A]X ∩ [X \A]X = [A]X \ IntX A

is called [5] a boundary of A.

Let vX be a compact extension of a Tychonoff space X . If H ⊂ X is an open set in X , then by O(H) (or by OvX (H)) we denote a maximal

open set in vX satisfying OvX (H)∩X = H. It is easy to see that

OvX (H) =
⋃

Γ∈τvX ,
Γ∩X=H

Γ,
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5387-3639 (D. I. Jumaev)
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where τvX is the topology of the space vX .

A compactification vX of a Tychonoff space X is called perfect with respect to an open set H in X , if the equality [FrX H]vX = FrvX OvX (X)
holds. If vX is perfect with respect to every open set in X , then it is called a perfect compactification of the space X ([1], P. 232). A

compactification vX of a space X is perfect iff for any two disjoint open sets U1 and U2 in X the equality O(U1
⋃

U2) = O(U1)
⋃

O(U2) is

carried out. The Stone-Cěch compactification βX of X is perfect. The equality O(U1
⋃

U2) = O(U1)
⋃

O(U2) is satisfied for every pair of

open sets U1 and U2 in X iff X is normal, and the compactification vX coincides with the Stone-Cěch compactification βX , i. e. vX ∼= βX .

Let X be a space. By expX we denote a set of all nonempty closed subsets of X . A family of sets of the view

O〈U1, ...,Un〉= {F ∈ expX : F ⊂
n
⋃

i=1

Un,F ∩U1 6=∅, ...,F ∩Un 6=∅}

forms a base of a topology on expX , where U1, . . . ,Un are open nonempty sets in X . This topology is called the Vietoris topology. A space

expX equipped with Vietoris topology is called hyperspace of X . For a compact space X its hyperspace expX is also a compact space (for

details, see [6], [7], [8]).

Note for any space X it is well known that

[O〈U1, ...,Un〉]expX = O〈[U1]X , ..., [Un]X 〉 .

Let f : X → Y be continuous map of compacts, F ∈ expX . We put

(exp f )(F) = f (F).

This equality defines a map exp f : expX → expY . For a continuous map f the map exp f is continuous. Really, it follows from the formula

(exp f )−1O〈U1, ...,Um〉= O〈 f−1(U1), ..., f−1(Um)〉

what one can check directly. Note that if f : X → Y is an epimorphism, then exp f is also an epimorphism.

For a Tychonoff space X we put

expβ X = {F ∈ expβX : F ⊂ X}.

It is clear, that expβ X ⊂ expX . Consider the set expβ X as a subspace of the space expX . For a Tychonoff spaces X the space expβ X is also

a Tychonoff space with respect to the induced topology.

For a continuous map f : X → Y of Tychonoff spaces we put

expβ f = (expβ f )|expβ X ,

where β f : βX → βY is the Stone-Cěch compactification [5] of f (it is unique).

As it is well-known the action of functors on various categories of topological spaces and their continuous maps is one of the main problems

of theory of covariant functors, in the present paper we investigate the action of the functor exp (the construction of taking of a hyperspace of

a given space) on superparacompact spaces (section 2) and superparacompact maps (section 3).

2. Hyperspace of superparacompact spaces

It is well known that for a Tychonoff space X the set expβ X is everywhere dense in expβX , i. e. expβX is a compactification of the space

expβ X . We claim expβX is a perfect compactification of expβ X . At first we will prove the following technical statement.

Lemma 2.1. Let γX be a compact extension of a space X and, V and W be disjoint open sets in γX. Let V X = X ∩V and W X = X ∩W.

Then the following equality is true:

[X \V X ]γX ∩ [X \W X ]γX = [X \ (V X ∪W X )]γX .

Proof. It is clear that [X \V X ]γX ∩ [X \W X ]γX ⊃ [X \(V X ∪W X )]γX . Let x ∈ [X \V X ]γX ∩ [X \W X ]γX . Then each open neighbourhood Ox in

γX of x intersects with the sets X \V X and X \W X . Hence, Ox 6⊂V X and Ox 6⊂W X . Therefore, since V X ∩W X =∅, we have Ox 6⊂V X ∪W X ,

i. e. Ox∩X \ (V X ∪W X ) 6=∅. By virtue of arbitrariness of the neighbourhood Ox we conclude that x ∈ [X \ (V X ∪W X )]γX .

Theorem 2.2. For a Tychonoff space X the space expβX is a perfect compactification of the space expβ X.

Proof. It is enough to consider basic open sets. Let U1 and U2 be disjoint open sets in X . Since βX is perfect compactification of X we have

OβX (U1 ∪U2) = OβX (U1)∪OβX (U2). Consider open sets

O〈Ui〉= {F : F ∈ expβ X ,F ⊂Ui}, i = 1, 2

in expβ X . It is clear, that O〈U1〉∩O〈U2〉=∅. We will show that

OexpβX (O〈U1〉∪O〈U2〉) = OexpβX (O〈U1〉)∪OexpβX (O〈U2〉).

The inclusion ⊃ follows from the definition of the set O(H) (see [1], P. 234). That is why it is enough to show the inverse inclusion. Let

Φ ⊂ βX be a closed set such that Φ /∈ OexpβX (O〈U1〉)∪OexpβX (O〈U2〉). Then Φ ∈ expβX \OexpβX (O〈Ui〉), i = 1, 2. From [1] (see, P.

234) we have

expβX \OexpβX (O〈Ui〉) = [expβ X \O〈Ui〉]expβX , i = 1, 2.
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Hence Φ ∈ [expβ X \O〈Ui〉]expβX , i = 1, 2. Since O〈U1〉∩O〈U2〉=∅ by Lemma 2.1 we have

[expβ X \O〈U1〉]expβX ∩ [expβ X \O〈U2〉]expβX = [expβ X \O(〈U1〉∪O〈U2〉)]expβX .

Therefore, Φ ∈ [expβ X \OexpβX (O〈U1〉∪O〈U2〉)]expβX , what is equivalent Φ ∈ expβX \OexpβX (〈U1〉∪ 〈U2〉) (see [1], P. 234). In other

words, Φ /∈ OexpβX (〈U1〉∪ 〈U2〉). Thus, we have established that inclusion OexpβX (〈U1〉∪ 〈U2〉) ⊂ OexpβX (O〈U1〉)∪OexpβX (O〈U2〉) is

also fair.

Lemma 2.3. Let U1, . . . , Un; V1, . . . , Vm be open subsets of a space X. Then O〈U1, . . . , Un〉∩O〈V1, . . . , Vm〉 6=∅ iff for each i ∈ {1, . . . ,n}
and for each j ∈ {1, . . . ,m} there exists, respectively j(i) ∈ {1, . . . ,m} and i( j) ∈ {1, . . . ,n}, such that Ui ∩V j(i) 6=∅ and Ui( j)∩V j 6=∅.

Proof. Assume that for every i ∈ {1, . . . ,n} there exists j(i) ∈ {1, . . . ,m} such that Ui ∩V j(i) 6=∅ and for every j ∈ {1, . . . ,m} there exists

i( j) ∈ {1, . . . ,n} such that Ui( j)∩V j 6=∅. For any pair (i, j) ∈ {1, . . . ,n}×{1, . . . ,m} for which Ui ∩V j 6=∅, choose a point xi j ∈Ui ∩V j

and make a closed set F consisting of these points. Then F ⊂
n
⋃

i=1

Ui and F ⊂
m
⋃

j=1

V j. Besides, F ∩Ui 6= ∅, i = 1, . . . , n, and F ∩V j 6= ∅,

j = 1, . . . , m. Therefore, F ∈ O〈U1, . . . , Un〉∩O〈V1, . . . , Vm〉.

Suppose there exists i0 ∈ {1, . . . ,n} such that Ui0 ∩V j =∅ for all j ∈ {1, . . . ,m}. Then Ui0 ∩
m
⋃

j=1

V j =∅ and for each F ∈ O〈U1, ..., Un〉

we have F 6⊂
m
⋃

j=1

V j. Hence, F /∈ O〈V1, ..., Vm〉. Similarly, every Γ ∈ O〈V1, ..., Vm〉 lies in
m
⋃

j=1

V j what implies Γ∩Ui0 = ∅. From here

Γ /∈ O〈U1, ..., Un〉. Thus, O〈U1, ..., Un〉∩O〈V1, ..., Vm〉=∅.

Lemma 2.4. Let υ be a finite-component cover of a Tychonoff space X. Then the family expβ υ = {O〈U1, . . . , Un〉 : Ui ∈ υ , i = 1, . . . , n; n ∈
N} is a finite-component cover of the space expβ X.

Proof. Let O〈G1, . . . , Gk〉 be an element of expβ υ . Each Gi ∈ υ intersects with finite elements of υ . Let |{α : Gi ∩Uα 6=∅, Uα ∈ υ}|= ni,

i = 1, 2, . . . , k. Denote γ = {Gi ∩U j : Gi ∩U j 6= ∅, i = 1, 2, . . . , k, U j ∈ υ}. Then |γ| ≤ n1 · . . . ·nk. Therefore, the set O〈G1, . . . , Gk〉

crosses not more then
k

∏
i=1

ni elements of expβ υ . It means that the collection expβ υ is star-finite.

Let F ∈ expβ X . There is a subfamily υF ⊂ υ such that F ⊂
⋃

U∈υF

U . From a cover {F ∩U : U ∈ υF , F ∩U 6=∅} of the compact F it is

possible to allocate a finite subcover {F ∩Ui : i = 1, . . . ,m}. We have F ∈ O〈U1, . . . , Um〉. So, the family expβ υ is a cover of expβ X . On

the other hand by the definition of Vietoris topology the cover expβ υ is open. Thus, expβ υ is a star-finite open cover of expβ X .

We will show now that all components of the expβ υ are finite.

Let M = O〈G1, . . . , Gs〉 and M
′
= O〈G

′

1, . . . , G
′

t〉 be arbitrary elements of expβ υ . Further, let γ
GiG

′
j
= {U

i j
l

: l = 1, 2, . . . , ni j} be the

maximal chain of υ connecting Gi and G
′

j , i = 1, 2, . . . , s; j = 1, 2, . . . , t. By definition these sets satisfy the following properties:

(1) U
i j
1 = Gi, i = 1, . . . , s; j = 1, . . . , t;

(2) U
i j
ni j

= G
′

j, i = 1, . . . , s; j = 1, . . . , t;

(3) U
i j
l
∩U

i j
l+1 6=∅, l = 1, . . . ,ni j −1; i = 1, . . . , s; j = 1, . . . , t.

If s< t we have O〈G1, . . . ,Gs〉=O〈U
1 j
1 , . . . ,U

s j
1 , U

i1(s+1)
1 , . . . ,U

it−st
1 〉, where j = 1, . . . , t and i1, . . . , it−s ∈{1, . . . ,s}. Further, O〈G

′

1, . . . ,G
′

t〉=

O〈U i1
ni1
, . . . ,U it

nit
〉, i = 1, . . . ,s. Thus, the cover expβ υ has a chain connecting the given sets M = O〈G1, . . . , Gs〉 and M

′
= O〈G

′

1, . . . , G
′

t〉.
The case s > t is analogously.

Now using Lemma 2.1 and calculating directly we find that each maximal chain of expβ υ connecting the sets M = O〈G1, . . . , Gs〉 and

M
′
= O〈G

′

1, . . . , G
′

t〉 has no more than

t
s

∏
i=1,
j=1

ni j elements. Thus, all components of expβ υ is finite.

Theorem 2.5. For a Tychonoff space X its hyperspace expβ X is superparacompact iff X is superparacompact.

Proof. As the superparacompactness is inherited to the closed subsets [2], the superparacompactness of expβ X implies superparacompactness

of the closed subset X ⊂ expβ X .

Let Ω be an open cover of expβ X . For each element G ∈ Ω there exists OG〈U1, . . . ,Un〉 such that OG〈U1, . . . ,Un〉 ⊂ G, where U1, . . . ,Un

are open sets in X . We can choose sets G ∈ Ω so that a collection of sets OG〈U1, . . . , Un〉 forms a cover of expβ X , what we denote by Ω
′
. It

is easy to see that a collection ω
′
=

⋃

OG〈U1,...,Un〉∈Ω
′
{U1, . . . , Un} is an open cover of X . There exists a finite-component cover ω of X which

refines ω
′
. Then by Lemma 2.4 the collection

expβ ω = {O〈V1, . . . , Vk〉 : Vi ∈ ω , i = 1, . . . , n; n ∈ N}

is a finite-component cover of expβ X and it refines Ω.
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3. Superparacompactness of the map expβ f

For a continuous map f : (X ,τX )→ (Y,τY ) and O ∈ τY a preimage f−1O is called a tube (above O). Remind, a continuous map f : X →Y is

called [2] a T0-map, if for each pair of distinct points x, x
′
∈ X , such that f (x) = f (x

′
), at least one of these points has an open neighbourhood

in X which does not contain another point. A continuous map f : X →Y is called totally regular, if for each point x ∈ X and every closed set

F in X not containing x there exists an open neighbourhood O of f (x) such that in the tube f−1O the sets {x} and F are functional separable.

Totally regular T0-map is said to be a Tychonoff map.

Obviously, each continuous map f : X → Y of a Tychonoff space X into a topological space Y is a Tychonoff map. In this case owing to

the set expβ X is a Tychonoff space concerning to Vietoris topology for every Tychonoff space X , the map expβ f : expβ X → expβ Y is a

Tychonoff map.

A continuous, closed map f : X →Y is said to be compact if the preimage f−1y of each point y ∈Y is compact. A continuous map f : X →Y

is compact iff for each point y ∈ Y and every cover ω of the fibre f−1y, consisting of open sets in X , there is an open neighbourhood O of y

in Y such that the tube f−1O can be covered with a finite subfamily of ω .

A compact map b f : b f X →Y is said to be a compactification of a continuous map f : X →Y if X is everywhere dense in b f X and b f |X = f .

On the set of all compactifications of the map f it is possible to introduce a partial order: for the compactifications b1 f : b1 f X → Y and

b2 f : b2 f X → Y of f we put b1 f ≤ b2 f if there is a natural map of b2 f X onto b1 f X . B. A. Pasynkov showed that for each Tychonoff map

f : X →Y there exists its maximal compactification g : Z →Y , which he denoted by β f , and the space Z where this maximal compactification

defines by β f X . To within homeomorphism for a given Tychonoff map f its maximal compactification β f is unique.

Remark 3.1. Note that the maps b1 f , b2 f , β f are compactifications of the map f. The spaces b1 f X, b2 f , β f X are some extensions of X but

they are not obliged to be compactifications.

A Tychonoff map f : X → Y is said to be superparacompact, if for every closed set F in β f X lying in the growth β f X \X there exists a

finite-component cover λ of X pricking out F in β f X (i. e. F ∩ (∪[λ ]β f X ) =∅) [3].

It is easy to see that one can define superparacompactness of a map as follows: a map f : X → Y is superparacompact if for each y ∈ Y and

every open cover ϒ of f−1y in X there exists an open neighbourhood O of y in Y such that ϒ has a finite-component cover υ of f−1O in X

which refines ϒ.

Definition 3.2. A compactification b f : b f X → Y of a Tychonoff map f : X → Y is said to be perfect compactification of f if for each point

y ∈ Y and for every disjoint open sets U1 and U2 in X there exists an open neighbourhood O ⊂ Y of y such that the equality

Ob f X (U1 ∪U2)∩b f−1O =
(

Ob f X (U1)∪Ob f X (U2)
)

∩b f−1O

holds.

Let f : X →Y be a continuous map of a Tychonoff space X into a space Y . It is well known there exists a compactification vX of X such that

f has a continuous extension v f : vX → Y on vX . It is clear, v f is a perfect compactification of f .

The following result is an analog of Theorem 1.2 for a case of maps.

Theorem 3.3. Let b f : b f X →Y be a perfect compactification of a Tychonoff map f : X →Y . The map f is superparacompact iff for every

closed set F in b f X lying in the growth b f X \X there exists a finite-component cover λ of X pricking out the set F in b f X.

Proof. The proof is carried out similar to the proof of Theorem 1.1 Π from [2].

Evidently a restriction f |Φ : Φ → Y of a superparacompact map f : X → Y on the closed subset Φ ⊂ X is a superparacompact map.

The following result is a variant of Theorem 2.2 for a case of maps.

Theorem 3.4. Let f : X → Y be a Tychonoff map. Then the map expβ β f : expβ β f X → expβ Y is a perfect compactification of expβ f :

expβ X → expβ Y .

Proof. The proof is similar to the proof of Theorem 2.2. Here the equality

(expβ β f )−1O〈U1, ...,Um〉= O〈β f−1(U1), ...,β f−1(Um)〉

is used.

The following statement is the main result of this section.

Theorem 3.5. The Tychonoff map expβ f : expβ X → expβ Y is superparacompact iff a map f : X → Y is superparacompact.

Proof. Let expβ f : expβ X → expβ Y be a superparacompact map. It implies that f : X → Y is a superparacompact map since X ∼= exp1 X

is closed set in expβ X .

Let now f : X → Y be a superparacompact map. Consider arbitrary Γ ∈ expβ Y and an open cover Ω of (expβ f )−1(Γ) = {F ∈ expβ X :

f (F) = Γ} in expβ X . For each element G ∈ Ω there exists OG〈U1, . . . ,Un〉 such that OG〈U1, . . . ,Un〉 ⊂ G, where U1, . . . ,Un are open sets in

X . We can choose sets G ∈ Ω so that a collection of sets OG〈U1, . . . , Un〉 forms a cover of (expβ f )−1(Γ), what we denote by Ω
′
. It is easy

to see that a collection ω
′
=

⋃

OG〈U1,...,Un〉∈Ω
′
{U1, . . . , Un} is an open cover of f−1Γ in X . For each y ∈ Γ there exists an open neighbourhood

Oy of y in Y such that the collection ωy = {U ∩ f−1Oy : U ∈ ω
′
} is an open cover of f−1y in X and ωy has a finite-component cover ω

′

y

of f−1Oy in X which refines ωy. Gather such Oy and construct an open cover {Oy : y ∈ Γ} of Γ in Y . Since Γ ∈ expβ Y by construction

of hyperspace, Γ is a compact subset of Y . Consequently, there exists a finite open subcover γ = {Oy1
, . . . ,Oyn

} in Y , which covers Γ. Put
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ω =
⋃

Oyi
∈γ

ω
′

yi
. Then ω is an open cover of f−1

(

⋃

U∈ω
U

)

in X . By the construction ω is a finite-component cover, and it refines ω
′
. Hence,

expβ ω is a finite-component cover of (expβ f )−1O〈Oy1
, . . . ,Oyn

〉=
〈

f−1Oy1
, . . . , f−1Oyn

〉

in expβ X and it refines Ω.

So, for each Γ ∈ expβ Y and every open cover Ω of (expβ f )−1Γ in expβ X there exists an open neighbourhood O〈Oy1
, . . . ,Oyn

〉 of Γ

in expβ Y such that Ω has a finite-component cover expβ ω of (expβ f )−1O〈Oy1
, . . . ,Oyn

〉 in expβ X which refines Ω. Thus, the map

expβ f : expβ X → expβ Y is superparacompact.

Corollary 3.6. Let f : X → Y be a superparacompact map and Φ be a closed set in expβ β f X such that Φ ⊂ expβ β f X \ expβ X. Then

there exists a finite-component cover Ω of expβ X pricking out Φ in expβ β f X (i. e. Φ∩ (∪[Ω]expβ β f X ) =∅).

Corollary 3.7. The functor expβ lifts onto category of superparacompact spaces and their continuous maps.
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Abstract

In this work, we consider an initial-boundary value problem related to the nonlinear coupled

viscoelastic equations















|ut |
j utt −∆utt −div

(

|∇u|α−2
∇u
)

−∆u+
t
∫

0

g(t − s)∆uds+ |ut |
m−1 ut = f1 (u,v) ,

|vt |
j vtt −∆vtt −div

(

|∇v|β−2
∇v
)

−∆v+
t
∫

0

h(t − s)∆vds+ |vt |
r−1 vt = f2 (u,v) .

We will show the exponential growth of solutions with positive initial energy.

1. Introduction

In this work we consider the following coupled system of viscoelastic wave equations:







































|ut |
j utt −∆utt −div

(

|∇u|α−2
∇u
)

−∆u+
t
∫

0

g(t − s)∆uds+ |ut |
m−1 ut = f1 (u,v) , (x, t) ∈ Ω× (0,T ) ,

|vt |
j vtt −∆vtt −div

(

|∇v|β−2
∇v
)

−∆v+
t
∫

0

h(t − s)∆vds+ |vt |
r−1 vt = f2 (u,v) , (x, t) ∈ Ω× (0,T ) ,

u(x, t) = v(x, t) = 0, (x, t) ∈ Ω× (0,T ) ,
u(x,0) = u0 (x) , ut (x,0) = u1(x), x ∈ Ω,
v(x,0) = v0 (x) , vt (x,0) = v1(x), x ∈ Ω,

(1.1)

where Ω is a bounded domain in Rn (n = 1,2,3) with smooth boundary ∂Ω, the constants j > 0, α ≥ 2, β ≥ 2, m ≥ 1, r ≥ 1. Here, f1 (u,v)
and f2 (u,v) are nonlinear functions defined as

{

f1 (u,v) = a |u+ v|2(p+1) (u+ v)+b |u|p u |v|p+2 ,

f2 (u,v) = a |u+ v|2(p+1) (u+ v)+b |v|p v |u|p+2 (1.2)

in which the constants a > 0, b > 0, and p satisfies

{

p >−1, n = 1,2,
−1 < p ≤ 1, n = 3.

(1.3)

Let

f1 (u,v) =
∂F (u,v)

∂u
and f2 (u,v) =

∂F (u,v)

∂v
,

Email addresses and ORCID numbers: episkin@dicle.edu.tr, https://orcid.org/0000-0001-6587-4479 (E. Pişkin), altindag.s@hotmail.com, https://orcid.org/0000-0002-

1863-2909 (Ş. Altındağ)
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where

F (u,v) =
1

2(p+2)

[

a |u+ v|2(p+2) (u+ v)+2b |uv|p+2
]

.

There are two positive constants c0, c1 such that

c0

(

|u|2(r+2)+ |v|2(r+2)
)

≤ 2(r+2)F (u,v)≤ c1

(

|u|2(r+2)+ |v|2(r+2)
)

.

As a special case, for α = β = 2, the system (1.1) becomes the following system















|ut |
j utt −∆utt −∆u+

t
∫

0

g(t − s)∆uds+ |ut |
m−1 ut = f1 (u,v) ,

|vt |
j vtt −∆vtt −∆v+

t
∫

0

h(t − s)∆vds+ |vt |
r−1 vt = f2 (u,v) .

(1.4)

Liu [1] proved decay of the solutions for system (1.4) under some appropriate functions f1 and f2. Later, Said-Houari [2] studied exponential

growth of the solutions for system (1.4). When j = 0 and without the ∆utt , ∆vtt terms, the system (1.4) has been investigated by some

authors and results concerning local and global existence, blow up, decay of the solutions were obtained [3, 4, 5, 6, 7, 8]. Hao et al. [9]

considered global nonexistence of the solution of (1.1), with negative initial energy.

Motivated by the above papers, in this work we prove the exponential growth of solutions for the problem (1.1), with positive initial energy.

This work is organized as follows: In section 2, we present some lemmas and notations needed later of this paper. In section 3, exponential

growth of the solution is proved.

2. Preliminaries

In this part, we give some assumptions and lemmas which will be used throughout this paper. Let ‖.‖ and ‖.‖p denote the usual L2 (Ω) norm

and Lp (Ω) norm, respectively.

Now, we make the following assumptions on the C1-nonnegative and nonincreasing relaxation functions g and h :

1−

∞
∫

0

g(s)ds = l > 0, 1−

∞
∫

0

h(s)ds = k > 0 (2.1)

and ∀s ≥ 0

g′ (s)≤ 0, h′ (s)≤ 0. (2.2)

Let us define

I (t) = I (u,v) =



1−

t
∫

0

g(s)ds



‖∇u‖2 +



1−

t
∫

0

h(s)ds



‖∇v‖2 (2.3)

−2(p+2)
∫

Ω

F (u,v)dx+(g◦∇u+h◦∇v)+
1

α
‖∇u‖α

α +
1

β
‖∇v‖

β
β
,

J (t) = J (u,v) =
1

2



1−

t
∫

0

g(s)ds



‖∇u‖2 +
1

2



1−

t
∫

0

h(s)ds



‖∇v‖2 (2.4)

−
∫

Ω

F (u,v)dx+
1

2
(g◦∇u+h◦∇v)+

1

α
‖∇u‖α

α +
1

β
‖∇v‖

β
β

and

E (t) =
1

j+2

(

‖ut‖
j+2
j+2 +‖vt‖

j+2
j+2

)

+
1

2

(

‖∇ut‖
2 +‖∇vt‖

2
)

+
1

2



1−

t
∫

0

g(s)ds



‖∇u‖2 +
1

2



1−

t
∫

0

h(s)ds



‖∇v‖2

−
∫

Ω

F (u,v)dx+
1

2
(g◦∇u+h◦∇v)+

1

α
‖∇u‖α

α +
1

β
‖∇v‖

β
β

(2.5)

where

(φ ◦ψ)(t) =

t
∫

0

φ (t − τ)
∫

Ω

|ψ (t)−ψ (τ)|2 dxdτ.
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Lemma 2.1. E (t) is a nonincreasing function for t ≥ 0 and

E ′ (t) =−
(

‖ut‖
m+1
m+1 +‖vt‖

m+1
m+1

)

+
1

2

(

g′ ◦∇u+h′ ◦∇v
)

−
1

2

(

g(t)‖∇u‖2 +h(t)‖∇v‖2
)

≤ 0. (2.6)

Proof. Multiplying the first and second equation of (1.1) by ut and vt , respectively, integrating over Ω× [0, t] , then adding them together

and integrating by parts, we obtain (2.6).

3. Exponential growth of solutions

In this part, we are going to consider the exponential growth of the solution for the problem (1.1).

Firstly, we give following two lemmas.

Lemma 3.1. [10, 11]. Suppose that (1.3) holds. Let (u,v) for η > 0

‖u+ v‖
2(p+2)
2(p+2)

+2‖uv‖
p+2
p+2 ≤ η

[

1

α
‖∇u‖α

α +
1

β
‖∇v‖

β
β

+I1 ‖∇u‖2 + I2 ‖∇v‖2
]p+2

,

where

I1 =
∫

Ω1

|ut |
(

|u|2p+3 + |v|2p+3 + |u|p+1 |v|p+2
)

dx,

I2 =
∫

Ω2

|vt |
(

|u|2p+3 + |v|2p+3 + |u|p+2 |v|p+1
)

dx

and

Ω1 = {(x, t) : |u(x, t)| ≤ 1, |v(x, t)| ≤ 1} ,

Ω2 = {(x, t) : |u(x, t)| ≤ 1, |v(x, t)| ≥ 1} .

Lemma 3.2. [10, 11]. Suppose that (1.3) holds. Let (u,v) be the solution of problem (1.1). Assume further that E (0)< E1 and

[

1

α
‖∇u0‖

α
α +

1

β
‖∇v0‖

β
β
+ I (0)

] 1
2

> α1.

Then, there exists a constant α2 > α1 such that

[

1

α
‖∇u‖α

α +
1

β
‖∇v‖

β
β
+ I (t)

] 1
2

> α2,

(

‖u+ v‖
2(p+2)
2(p+2)

+‖uv‖
p+2
p+2

) 1
2(p+2)

> Bα2,

for all t ∈ (0,T ), where

B = η
1

2(p+2) , α1 = B
− p+2

p+1 , E1 =

(

1

2
−

1

2(p+2)

)

α2
1 .

Theorem 3.3. Suppose that (1.3) holds. Assume further that

max{ j+2,m+1,r+1}< 2(p+2) ,

E (0)< E1

and (2.1), (2.2) hold. There exist constant γ such that

max{α,β}< γ < 2(p+2)

and

min{l,k}>
1/(2γ)

(γ/2)−1+1/(2γ)
.

Then, any solution of (1.1) grows exponentially.
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Proof. We define the functional

H (t) = E1 −E (t) . (3.1)

From (2.1), (2.5) and Lemma 3.2, we have

0 < H (0)≤ H (t)

≤ E1 −E (t)

= E1 −
1

j+2

(

‖ut‖
j+2
j+2 +‖vt‖

j+2
j+2

)

−
1

2

(

‖∇ut‖
2 +‖∇vt‖

2
)

−
1

2



1−

t
∫

0

g(s)ds



‖∇u‖2 −
1

2



1−

t
∫

0

h(s)ds



‖∇v‖2

+
∫

Ω

F (u,v)dx−
1

2
(g◦∇u+h◦∇v)−

1

α
‖∇u‖α

α −
1

β
‖∇v‖

β
β

< E1 −
1

2
α2

2 +
1

2(p+2)

(

‖u‖
2(p+2)
2(p+2)

+‖v‖
2(p+2)
2(p+2)

)

<
C1

2(p+2)

(

‖u‖
2(p+2)
2(p+2)

+‖v‖
2(p+2)
2(p+2)

)

. (3.2)

Let us define the functional

L(t) = H (t)+
ε

j+1

∫

Ω

(

|ut |
j utu+ |vt |

j vtv
)

dx− ε

∫

Ω

(∆uut +∆vvt)dx, (3.3)

where ε is a small positive constants to be determined later.

By differentiating with respect to t and using (3.3) and (1.1), we have

L′ (t) = H ′ (t)+ ε

∫

Ω

[

(

|ut |
j uttu+ |vt |

j vttv
)

+
1

j+1

(

|ut |
j+2 + |vt |

j+2
)

]

dx

+ ε
(

‖∇ut‖
2 +‖∇vt‖

2
)

− ε

∫

Ω

(u∆utt + v∆vtt)dx

= H ′ (t)+
ε

j+1

(

‖ut‖
j+2
j+2 +‖vt‖

j+2
j+2

)

− ε

∫

Ω

(

u |ut |
m−1 ut + v |vt |

r−1 vt

)

dx

+ ε
(

‖∇ut‖
2 +‖∇vt‖

2
)

− ε
(

‖∇u‖2 +‖∇v‖2
)

− ε
(

‖∇u‖α
α +‖∇v‖

β
β

)

+2ε (p+2)
∫

Ω

F(u,v)dx+ ε





t
∫

0

g(s)ds



‖∇u‖2 + ε





t
∫

0

h(s)ds



‖∇v‖2

+ ε

t
∫

0

g(t − s)
∫

Ω

∇u [∇u(s)−∇u(t)]dxds

+ ε

t
∫

0

h(t − s)
∫

Ω

∇v [∇v(s)−∇v(t)]dxds. (3.4)

Using Cauchy-Schwarz and Young’s inequalities, we get

t
∫

0

g(t − s)
∫

Ω

∇u [∇u(s)−∇u(t)]dxds ≤

t
∫

0

g(t − s)





∫

Ω

|∇u(t)|2 dx





1
2




∫

Ω

|∇u(s)−∇u(t)|2 dx





1
2

ds

≤

t
∫

0

g(t − s)‖∇u(t)‖‖∇u(s)−∇u(t)‖ds

≤

t
∫

0

g(t − s)

(

λ ‖∇u(s)−∇u(t)‖2 +
1

4λ
‖∇u(t)‖2

)

ds

≤ λ

t
∫

0

g(t − s)‖∇u(s)−∇u(t)‖2
ds+

1

4λ

t
∫

0

g(t − s)‖∇u(t)‖2
ds

≤ λ (g◦∇u)+
1

4λ





t
∫

0

g(s)ds



‖∇u(t)‖2 . (3.5)



74 Universal Journal of Mathematics and Applications

Similarly, we obtain

t
∫

0

h(t − s)
∫

Ω

∇v [∇v(s)−∇v(t)]dxds ≤ λ (h◦∇v)+
1

4λ





t
∫

0

h(s)ds



‖∇v(t)‖2 . (3.6)

Inserting (3.5) and (3.6) into (3.4), we have

L′ (t)≥ H ′ (t)+
ε

j+1

(

‖ut‖
j+2
j+2 +‖vt‖

j+2
j+2

)

− ε

∫

Ω

(

u |ut |
m−1 ut + v |vt |

r−1 vt

)

dx

+ ε
(

‖∇ut‖
2 +‖∇vt‖

2
)

− ε
(

‖∇u‖2 +‖∇v‖2
)

− ε
(

‖∇u‖α
α +‖∇v‖

β
β

)

+2ε (p+2)
∫

Ω

F(u,v)dx+ ε





∫

Ω

g(s)ds



‖∇u‖2 + ε





∫

Ω

h(s)ds



‖∇v‖2

+ ελ (g◦∇u+h◦∇v)+
ε

4λ









t
∫

0

g(s)ds



‖∇u‖2 +





t
∫

0

h(s)ds



‖∇v‖2



 . (3.7)

By the definition of E (t) and (3.1), we obtain

∫

Ω

F (u,v)dx = H (t)−E1 +
1

j+2

(

‖ut‖
j+2
j+2 +‖vt‖

j+2
j+2

)

+
1

2

(

‖∇ut‖
2 +‖∇vt‖

2
)

+
1

2



1−

t
∫

0

g(s)ds



‖∇u‖2 +
1

2



1−

t
∫

0

h(s)ds



‖∇v‖2

+
1

2
(g◦∇u+h◦∇v)+

1

α
‖∇u‖α

α +
1

β
‖∇v‖

β
β
. (3.8)

Substituting (3.8) into (3.7), we get

L′ (t)≥ H ′ (t)+ ε

(

1

j+1
+

γ

j+2

)

(

‖ut‖
j+2
j+2 +‖vt‖

j+2
j+2

)

− ε

∫

Ω

(

u |ut |
m−1 ut + v |vt |

r−1 vt

)

dx

+ ε
(

1+
γ

2

)(

‖∇ut‖
2 +‖∇vt‖

2
)

+ γεH (t)− εγE1 + ε (2(p+2)− γ)
∫

Ω

F (u,v)dx

+ ε





( γ

2
−1
)

−

(

γ

2
−1+

1

4λ

) ∞
∫

0

g(s)ds



‖∇u‖2

+ ε





( γ

2
−1
)

−

(

γ

2
−1+

1

4λ

) ∞
∫

0

h(s)ds



‖∇v‖2

+ ε
( γ

2
−λ

)

(g◦∇u+h◦∇v)+ ε
( γ

α
−1
)

‖∇u‖α
α + ε

(

γ

β
−1

)

‖∇v‖
β
β
. (3.9)

By using the Young’s inequality, we get

∫

Ω

|ut |
m−1 utudx ≤

δ m+1
1

m+1
‖u‖m+1

m+1 +
mδ

− m+1
m

1

m+1
‖ut‖

m+1
m+1

≤
δ1

m+1
‖u‖m+1

m+1 +
mδ

− m+1
m

1

m+1
H ′ (t) (3.10)

and

∫

Ω

|vt |
r−1 vtvdx ≤

δ r+1
2

r+1
‖v‖r+1

r+1 +
rδ

− r+1
r

2

r+1
‖vt‖

r+1
r+1

≤
δ r+1

2

r+1
‖v‖r+1

r+1 +
rδ

− r+1
r

2

r+1
H ′ (t) . (3.11)

Since L2(p+2) (Ω) →֒ Lm+1 (Ω) and L2(p+2) (Ω) →֒ Lr+1 (Ω) , we have

(

‖u‖
2(p+2)
2(p+2)

+‖v‖
2(p+2)
2(p+2)

)m
‖u‖m+1

m+1 ≤C2

(

‖u‖
2(p+2)
2(p+2)

+‖v‖
2(p+2)
2(p+2)

)m+ m+1
2(p+2)

(3.12)

and

(

‖u‖
2(p+2)
2(p+2)

+‖v‖
2(p+2)
2(p+2)

)r
‖v‖r+1

r+1 ≤C3

(

‖u‖
2(p+2)
2(p+2)

+‖v‖
2(p+2)
2(p+2)

)r+ r+1
2(p+2)

. (3.13)
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We use the following algebraic inequality

zv ≤ z+1 ≤

(

1+
1

a

)

(z+a) , ∀z ≥ 0, 0 < v ≤ 1, (3.14)

we obtain, for t ≥ 0,

(

‖u‖
2(p+2)
2(p+2)

+‖v‖
2(p+2)
2(p+2)

)m+ m+1
2(p+2)

≤ d
(

‖u‖
2(p+2)
2(p+2)

+‖v‖
2(p+2)
2(p+2)

+H (0)
)

≤ d
(

‖u‖
2(p+2)
2(p+2)

+‖v‖
2(p+2)
2(p+2)

+H (t)
)

(3.15)

and

(

‖u‖
2(p+2)
2(p+2)

+‖v‖
2(p+2)
2(p+2)

)r+ r+1
2(p+2)

≤ d
(

‖u‖
2(p+2)
2(p+2)

+‖v‖
2(p+2)
2(p+2)

+H (0)
)

≤ d
(

‖u‖
2(p+2)
2(p+2)

+‖v‖
2(p+2)
2(p+2)

+H (t)
)

(3.16)

for d = 1+ 1
H(0)

.

By (3.9)-(3.13),(3.15) and (3.16), we have

L′ (t)≥



1+
mδ

− m+1
m

1

m+1
+

rδ
− r+1

r

2

r+1



H ′ (t)+ ε

(

1

j+1
+

γ

j+2

)

(

‖ut‖
j+2
j+2 +‖vt‖

j+2
j+2

)

−

(

δ m+1
1 c2d

m+1
+

δ r+1
2 c3d

r+1

)

(

‖u‖
2(p+2)
2(p+2)

+‖v‖
2(p+2)
2(p+2)

)

+ ε

(

γ −

(

δ m+1
1 c2d

m+1
+

δ r+1
2 c3d

r+1

))

H (t)

+ ε
(

1+
γ

2

)(

‖∇u‖2 +‖∇v‖2
)

+ ε (2(p+2)− γ (p+2))
∫

Ω

F (u,v)dx

+ ε





( γ

2
−1
)

−

(

γ

2
−1+

1

4λ

) ∞
∫

0

g(s)ds



‖∇u‖2

+ ε
( γ

2
−λ

)

(g◦∇u+h◦∇v)

+ ε





( γ

2
−1
)

−

(

γ

2
−1+

1

4λ

) ∞
∫

0

h(s)ds



‖∇v‖2

+ ε
( γ

α
−1
)

‖∇u‖α
α + ε

(

γ

β
−1

)

‖∇v‖
β
β
.

By use (3.2) and since

min

{

γ

α
−1,

γ

β
−1

}

> 0

and

1+
γ

2
> 0

we obtain

L′ (t)≥ MH ′ (t)+ ε

(

1

j+1
+

γ

j+2

)

(

‖ut‖
j+2
j+2 +‖vt‖

j+2
j+2

)

+ ε (γ −K1)H (t)

+ εK2

(

‖∇u‖α
α +‖∇v‖

β
β

)

+ εK3

(

‖∇u‖2 +‖∇v‖2
)

+ ε
( γ

2
−λ

)

(g◦∇u+h◦∇v)+ ε
(

1+
γ

2

)(

‖∇ut‖
2 +‖∇vt‖

2
)

+ ε

(

(2(p+2)− γ (p+2))C1

2(p+2)
−K1

)

(

‖u‖
2(p+2)
2(p+2)

+‖v‖
2(p+2)
2(p+2)

)

,

where

M = 1+
mδ

− m+1
m

1

m+1
+

rδ
− r+1

r

2

r+1
,

K1 =
δ m+1

1 c2d

m+1
+

δ r+1
2 c3d

r+1
,

K2 = min

{

γ

α
−1,

γ

β
−1

}
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and

K3 =
( γ

2
−1
)

−

(

γ

2
−1+

1

4λ

)

max





∞
∫

0

g(s)ds,

∞
∫

0

h(s)ds



 .

Choose δ1,δ2 appropriate such that

b1 = γ −K1 > 0, b2 =
(2(p+2)− γ (p+2))C1

2(p+2)
−K1 > 0 and M > 0.

Then, we can find positive constants b1 and b2 such that

L′ (t)≥ MH ′ (t)+ ε

(

1

j+1
+

γ

j+2

)

(

‖ut‖
j+2
j+2 +‖vt‖

j+2
j+2

)

+εK2

(

‖∇u‖α
α +‖∇v‖

β
β

)

+ ε
(

1+
γ

2

)(

‖∇ut‖
2 +‖∇vt‖

2
)

+εb1H (t)+ εb2

(

‖u‖
2(p+2)
2(p+2)

+‖v‖
2(p+2)
2(p+2)

)

≥ 0.

Because of H ′ (t)≥ 0, there exists constants t > 0 such that

L′ (t)≥ K̃(H (t)+‖ut‖
j+2
j+2 +‖vt‖

j+2
j+2 +‖∇u‖α

α +‖∇v‖
β
β

+‖∇ut‖
2 +‖∇vt‖

2 +‖u‖
2(p+2)
2(p+2)

+‖v‖
2(p+2)
2(p+2)

)≥ 0 (3.17)

where K̃ = min
{

εb1,ε
(

1
j+1 +

γ
j+2

)

,εK2,ε
(

1+ γ
2

)

,εb2

}

.

On the other hand, we can choose ε smaller so that

L(0) = H (0)+ ε

∫

Ω

(u0u1 + v0v1)dx > 0. (3.18)

Furthermore, we have

L(t)≥ L(0) , t ≥ 0. (3.19)

Next we estimate L(t) . Using Young’s inequality, we obtain

∣

∣

∣

∣

∣

∣

∫

Ω

|ut |
j+1 udx

∣

∣

∣

∣

∣

∣

≤
µ

j+2
1

j+2
‖u‖

j+2
j+2 +

( j+1)µ
− j+2

j+1

1

j+2
‖ut‖

j+2
j+2 , ∀µ1 > 0. (3.20)

Next, using the embedding L2(p+2) (Ω) →֒ L j+2 (Ω) , the estimate (3.20) becomes

∣

∣

∣

∣

∣

∣

∫

Ω

|ut |
j+1 udx

∣

∣

∣

∣

∣

∣

≤C
(

‖u‖
j+2

2(p+2)
+‖ut‖

j+2
j+2

)

≤C

(

(

‖u‖
2(p+2)
2(p+2)

)
j+2

2(p+2)
+‖ut‖

j+2
j+2

)

.

Since 2(p+2)> j+2 and H (t)> H (0) , use the inequality (3.14), we have

∣

∣

∣

∣

∣

∣

∫

Ω

|ut |
j+1 udx

∣

∣

∣

∣

∣

∣

≤C

[(

1+
1

H (0)

)

(

‖u‖
2(p+2)
2(p+2)

+H (0)
)

+‖ut‖
j+2
j+2

]

≤C

[(

1+
1

H (0)

)

(

‖u‖
2(p+2)
2(p+2)

+H (t)
)

+‖ut‖
j+2
j+2

]

. (3.21)

Similarly, we have
∣

∣

∣

∣

∣

∣

∫

Ω

|vt |
j+1 vdx

∣

∣

∣

∣

∣

∣

≤C

[(

1+
1

H (0)

)

(

‖v‖
2(p+2)
2(p+2)

+H (t)
)

+‖vt‖
j+2
j+2

]

. (3.22)

By Green identity and Hölder’s inequality, we get

−
∫

Ω

ut∆udx =
∫

Ω

∇u∇utdx

≤





∫

Ω

(∇u)2
dx





1
2




∫

Ω

(∇ut)
2

dx





1
2

= ‖∇u‖‖∇ut‖ , (3.23)
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similarly

−
∫

Ω

vt∆vdx ≤ ‖∇v‖‖∇vt‖ . (3.24)

Next, using the embedding Lα (Ω) →֒ L2 (Ω) and Lβ (Ω) →֒ L2 (Ω) the estimate (3.23) and (3.24) becomes

{

‖∇u‖‖∇ut‖ ≤C‖∇u‖α ‖∇ut‖ ,
‖∇v‖‖∇vt‖ ≤C‖∇v‖β ‖∇vt‖ .

(3.25)

By Young’s inequality (3.25), we get

‖∇u‖α ‖∇ut‖ ≤
1

2

(

‖∇u‖2
α +‖∇ut‖

2
)

,

‖∇v‖β ‖∇vt‖ ≤
1

2

(

‖∇v‖2
α +‖∇vt‖

2
)

. (3.26)

Since α ≥ 2, β ≥ 2 and H (t)> H (0) , the inequality (3.14) yields

‖∇u‖2
α =

(

‖∇u‖α
α

) 2
α

≤

(

1+
1

H (0)

)

(

‖∇u‖α
α +H (0)

)

≤

(

1+
1

H (0)

)

(

‖∇u‖α
α +H (t)

)

(3.27)

and

‖∇v‖2
β =

(

‖∇v‖
β
β

) 2
β

≤

(

1+
1

H (0)

)

(

‖∇v‖
β
β
+H (0)

)

≤

(

1+
1

H (0)

)

(

‖∇v‖
β
β
+H (t)

)

. (3.28)

Combining (3.20)-(3.28), we have

∣

∣

∣

∣

∣

∣

ε

j+1

∫

Ω

(

|ut |
j utu+ |vt |

j vtv
)

dx− ε

∫

Ω

(∆uut +∆vvt)dx

∣

∣

∣

∣

∣

∣

≤ µ(H (t)+‖ut‖
j+2
j+2 +‖vt‖

j+2
j+2 +‖∇u‖α

α +‖∇v‖
β
β
+‖∇ut‖

2 +‖∇vt‖
2

+‖u‖
2(p+2)
2(p+2)

+‖v‖
2(p+2)
2(p+2)

).

Thus, we obtain

L(t)≤C∗(H (t)+‖ut‖
j+2
j+2 +‖vt‖

j+2
j+2 +‖∇u‖α

α +‖∇v‖
β
β
+‖∇ut‖

2 +‖∇vt‖
2

+‖u‖
2(p+2)
2(p+2)

+‖v‖
2(p+2)
2(p+2)

). (3.29)

A combination of (3.17) and (3.29) yields

L(t)≤C∗L′ (t) for all t ≥ 0, (3.30)

where C∗ is a some positive constants. Integrating the differential inequality (3.30) between 0 and t gives the following estimate for L(t) ,

L(t)≥ L(0)et/C∗

.

This completes the proof.

4. Conclusion

In this paper, we obtained a exponential growth of solutions for a nonlinear coupled viscoelastic wave equations with nonlinear damping

terms. This improves and extends many results in the literature such as (Houari [2], Pişkin [5]).
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[6] E. Pişkin, Global nonexistence of solutions for a system of viscoelastic wave equations with weak damping terms, Malaya Journal of Matematik, 3(2)

(2015) 168-174.
[7] B.S. Houari, S.A. Messaoudi, A. Guesmia, General decay of solutions of a nonlinear system of viscoelastic wavw equations, Nonlinear Differ. Equ.

Appl., 18 (2011) 659-684.
[8] Y. Zhao , Q. Wang, Blow-up of arbitrarily positive initial energy solutions for a viscoelastic wave system with nonlinear damping and source terms,

Boundary Value Problems, 35 (2018) 1-13.
[9] J. Hao, S. Niu, H. Men, Global nonexistence of solutions for nonlinear coupled viscoelastic wave equations with damping and source terms, Boundary

Value Problems, 250 (2014) 1-11.
[10] L. Fei, G. Hongjun, Global nonexistence of positive initial energy solutions for coupled nonlinear wave equations with damping and source terms, Abst.

Appl. Anal., 2011 (2011) 1-14.
[11] J. Hao, L. Cai, Global existence and blow up of solutions for nonlinear coupled wave equations with viscoelastic terms, Math. Meth. Appl. Sci., 39

(2016) 1977-1989.



Universal Journal of Mathematics and Applications, 2 (2) (2019) 79-84

Research paper

Universal Journal of Mathematics and Applications

Journal Homepage: www.dergipark.gov.tr/ujma

ISSN 2619-9653

DOI: http://dx.doi.org/10.32323/ujma.539127

Statistical Convergence of Nets Through Directed Sets

AR. Murugan1, J. Dianavinnarasi1 and C. Ganesa Moorthy 1*

1Department of Mathematics, Alagappa University, Karaikudi-630 004, India.
*Corresponding author

Article Info

Keywords: Asymptotic density, Nets,

Topological vector spaces, Uniform

spaces.

2010 AMS: 40A35.

Received: 13 March 2019

Accepted: 3 May 2019

Available online: 28 June 2019

Abstract

The concept of statistical convergence based on asymptotic density is introduced in this

article through nets. Some possible extensions of classical results for statistical convergence

of sequences are obtained in this article, with extensions to nets.

1. Introduction

The concept of statistical convergence was introduced independently by H. Fast [10] and by H. Steinhaus in [34] as an applicable concept

that generalizes the classical concept of usual convergence. This convergence was studied for sequences of numbers in [11, 12, 31], for

sequences of elements in uniform spaces in [4, 21], for sequences of elements in paranormed spaces in [2, 14], for sequences of elements in

topological groups in [6], for sequences of elements in metric spaces in [3], for sequences of elements in topological vector spaces in [20],

and for sequences of elements in topological vector lattices in [1]. There are articles [26, 27], which study statistical convergence of double

sequences and generalized sequences. There are generalizations of this concept through ideals in the articles [15, 16, 17, 32]. Almost all

applicable statistical convergence ideas depend on asymptotic densities of sets. These sets may be subsets of N, N ×N, N ×N ×N, ... ,
where N represents the set of all natural numbers. So, if the concept of asymptotic density for subsets of directed sets is introduced, then the

concept of statistical convergence for nets can be introduced. This is done in the present article. For this purpose, a natural restriction is

made on directed sets. The restriction is the following:

For the directed sets (D,≤) considered in this article, to each β ∈ D, the set {α ∈ D : α ≤ β} is finite and the set {α ∈ D : α ≥ β} is infinite.

It is assumed that all directed sets considered in this article satisfy this condition.

All directed sets considered through N, N ×N, N ×N ×N, ..., in earlier studies for statistical convergence satisfy this condition. Thus, a

common extension is proposed in this article.

There is an article [17], which discusses statistical convergence of nets through ideals, but not through a concept of asymptotic density. The

present article presents statistical convergence of nets through a concept of asymptotic density for directed sets.

The articles [7, 8, 9, 18, 19, 22, 23, 24, 25, 28, 29, 35, 36, 37, 38, 39] are related to this study of the concept. There are articles related

to summability through statistical convergence (see [11, 33]) and articles for generalizations of asymptotic density (see [5]). Let us first

introduce a concept of asymptotic density for our purpose.

2. Asymptotic density

A definition of asymptotic density for a special class of directed sets is presented in this section. This definition considers with the classical

definition for the directed set of natural numbers.

Definition 2.1. Let (D,≤) be a directed set that satisfies the condition mentioned above.

To each α ∈ D, let Dα = {β ∈ D : β ≤ α} and |Dα | denote the cardinality of Dα . The lower asymptotic density of a nonempty subset A of D

is defined as the number liminf
α∈D

|A∩Dα |
|Dα |

and the upper asymptotic density of A is defined as the number limsup
α∈D

|A∩Dα |
|Dα |

.

Email addresses and ORCID numbers: armurgn@gmail.com, https://orcid.org/0000-0003-3119-7531 (AR. Murugan), josephdiana4866@gmail.com,

https://orcid.org/0000-0003-3119-7531 (J. Dianavinnarasi), ganesamoorthyc@gmail.com, https://orcid.org/0000-0003-3119-7531 (C. Ganesa Moorthy )
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If the upper and lower densities are equal, then the common number is called the asymptotic density of A and it is denoted by δ (A;D). Thus,

δ (A;D) = lim
α∈D

|A∩Dα |
|Dα |

, in the real interval [0,1]. If A is an empty subset, it is assumed that δ (A;D) = 0.

Here, for xα ∈ R, the real line,

liminf
α∈D

xα = sup
β∈D

inf
α≥β

xα

and

limsup
α∈D

xα = inf
β∈D

sup
α≥β

xα .

Example 2.2. Let D = {(x1,x2,x3) : xi ∈ N, i = 1,2,3}. Define ≤ on D by: (x1,x2,x3) ≤ (y1,y2,y3) if and only if x1 ≤ y1, x2 ≤ y2 and

x3 ≤ y3. Then, to each (y1,y2,y3) ∈ D, the set {(x1,x2,x3) ∈ D : (x1,x2,x3)≤ (y1,y2,y3)} is finite, and it contains y1 · y2 · y3 elements. Let

A = {(x,x,x) : x ∈ N}. Then, δ (A;D) = 0.

Example 2.3. Let D = N be the directed set with the usual order relation. Then, to each α ∈ D, Dα = {β ∈ D : β ≤ α} has precisely α

elements. The asymptotic density introduced in Definition 2.1 for D coincides with the classical asymptotic density for subsets of N.

Definition 2.4. Let (D(1),≤(1)) and (D(2),≤(2)) be two directed sets. Let D = D(1)×D(2). Define the product order ≤ in D by: (x1,x2)≤
(y1,y2) if and only if x1 ≤

(1) y1 and x2 ≤
(2) y2. Observe again that to each α ∈ D, the set Dα = {β ∈ D : β ≤ α} is finite. This definition

can be extended to any Cartesian product of a finite number of directed sets.

Remark 2.5. If A ⊆ D(1), and if δ (A;D(1)) exists then δ (A×D(2);D) = δ (A;D(1)); for the notations used in the previous Definition 2.4.

Moreover, if B ⊆ D(2) and δ (A;D(1)) = 0 then δ (A×B;D) = δ (A;D(1)).

Proposition 2.6. Let D be one among the directed sets N,N ×N,N ×N ×N, · · · , when N is endowed with the usual order, and the other

sets are endowed with the corresponding product orders. Then, to each γ ∈ D,

δ ({α ∈ D : α not greater than or equal to γ};D) = 0, and hence δ ({α ∈ D : α ≥ γ};D) = 1

Proof. It is easy to verify the relation δ ({x ∈ D : α ≥ γ};D) = 1.

Example 2.7. Consider the set N with the following different order relation. m≤ n if and only if m divides n. Then, N is a directed set with the

properties mentioned in the introduction. Fix k ∈ N\{1}. Let A = {n ∈ N : n is not greater than or equal to k}= N\{k, 2k, 3k, · · ·}= N\kN

(say).

If m ∈ N\kN and if Dm = {n ∈ N : n ≤ m}, then, for i ∈ Dm, i ∈ N\kN and hence A∩Dm = Dm. This shows that limsupm→∞

|A∩Dm|
|Dm|

= 1.

If m = ki for some i > 1, then Dm = {n ∈ N : n ≤ m} = {1,k,2k, · · · ,ki}, when A∩Dm = {1}. This shows that liminfm→∞

|A∩Dm|
|Dm|

= 0.

In particular, δ (A;N) does not exist. However, if A = {n ∈ N : n is not greater than or equal to 1} = N\{1}, then δ (A;N) = 1. Now,

let D = N\{1} and consider the order relation defined above. To each β ∈ D, let Dβ = {α ∈ D : α ≤ β}. For a fixed γ ∈ D, let

B = {α ∈ D : α ≥ γ}. Then, limsupβ∈D
|B∩Dβ |
|Dβ |

= 1 > 0.

Definition 2.8. A directed set is said to satisfy the condition (*), if to each fixed γ ∈ D, for the set B = {α ∈ D : α ≥ γ}, it is true that

limsupβ∈D
|B∩Dβ |
|Dβ |

> 0, when Dβ = {α ∈ D : α ≤ β}.

3. Statistical convergence

The classical concept of statistical convergence is generalized in this section. Some new fundamental properties are derived.

Definition 3.1. Let (xα )α∈D be a net in a topological space (X ,τ) and let x ∈ X. Let us say that (xα )α∈D converges statistically to x in

(X ,τ), if, to each U ∈ τ such that x ∈U, the relation δ ({α ∈ D : xα /∈U};D) = 0 is true.

Let us first verify the uniqueness of statistical limits in Hausdorff spaces.

Proposition 3.2. Suppose (xα )α∈D be a net in a Hausdorff space (X ,τ) such that it converges statistically to x and y in X. Then, x = y.

Proof. Suppose x 6= y. Then, there are disjoint open sets U and V such that x ∈U and y ∈V. Then,

{α ∈ D : xα /∈U}∪{α ∈ D : xα /∈V}= {α ∈ D : xα /∈U ∩V}= D.

But, δ ({α ∈ D : xα /∈ U} ∪ {α ∈ D : xα /∈ V};D) = 0 and δ (D;D) = 1; which is a contradiction. Therefore, x = y. Observe that

δ (A∪B;D) = 0, whenever δ (A;D) = 0 and δ (B;D) = 0, for subsets A and B of D.

Proposition 3.3. Let (D(1),≤(1)), (D(2),≤(2)) and (D,≤) be as in Definition 2.4. Let (X ,τX ) and (Y,τY ) be given topological spaces. Let

τ be the product topology on X ×Y. Let (xα )α∈D(1) and (yβ )β∈D(2) be two nets in X and Y respectively. Then, ((xα ,yβ ))(α,β )∈D converges

statistically to some (x,y) in (X ×Y,τ) if and only if (xα )α∈D(1) converges statistically to x in (X ,τX ) and (yβ )β∈D(2) converges statistically

to y in (Y,τY ).
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Proof. Suppose, (xα )α∈D(1) converges statistically to x in (X ,τX ) and (yβ )β∈D(2) converges statistically to y in (Y,τY ). Fix U ∈ τX and

V ∈ τY such that x ∈U and y ∈V .

Then,

δ ({α ∈ D(1) : xα /∈U};D(1)) = 0 and δ ({β ∈ D(2) : yβ /∈V};D(2)) = 0

By Remark 2.5,

δ ({α ∈ D(1) : xα /∈U}×D(2)∪D(1)×{β ∈ D(2) : yβ /∈V};D) = 0.

Thus,

δ ({(α,β ) ∈ D : (xα ,yβ ) /∈U ×V};D) = 0.

This implies that, ((xα ,yβ ))(α,β )∈D converges statistically to (x,y) in (X ×Y,τ). Conversely, assume that ((xα ,yβ ))(α,β )∈D converges

statistically to (x,y) in (X ×Y,τ). Fix an open neighborhood U of x in (X ,τX ). Then,

δ ({(α,β ) ∈ D : (xα ,yβ ) /∈U ×Y};D) = 0.

So, δ ({α ∈ D(1) : xα /∈U};D(1)) = 0. This implies that, (xα )α∈D(1) converges statistically to x in (X ,τX ). Similarly, (yβ )β∈D(2) converges

statistically to y in (Y,τY ).

Proposition 3.4. Let (X ,τX ), (Y,τY ) and (X ×Y,τ) be as in the previous Proposition 3.3. Let (xα )α∈D be a net that converges statistically

to some x in (X ,τX ), for some directed set (D,≤). Let (yα )α∈D be a net that converges statistically to some y in (Y,τY ). Then, ((xα ,yα ))α∈D

converges statistically to (x,y) in (X ×Y,τ). On the other hand, if ((xα ,yα ))α∈D converges statistically to some (x,y) in (X ×Y,τ) then

(xα )α∈D converges statistically to x in (X ,τX ) and (yα )α∈D converges statistically to y in (Y,τY ).

Proof. Suppose (xα )α∈D converges statistically to x and (yα )α∈D converges statistically to y.

Let U be an open neighbourhood of x in X and V be an open neighbourhood of y in Y. Then,

δ ({α ∈ D : xα /∈U}∪{α ∈ D : yα /∈V};D) = 0.

That is

δ ({α ∈ D : (xα ,yα ) /∈U ×V};D) = 0.

So, ((xα ,yα ))α∈D converges statistically to (x,y).
Conversely assume that ((xα ,yα ))α∈D converges statistically to (x,y). Let U be an open neighbourhood of x. Then,

δ ({α ∈ D : (xα ,yα ) /∈U ×Y};D) = 0.

That is

δ ({α ∈ D : xα /∈U};D) = 0.

This implies that, (xα )α∈D converges statistically to x. Similarly (yα )α∈D converges statistically to y.

Remark 3.5. Proposition 3.3 and Proposition 3.4 can be extended to any Cartesian product of a finite number of spaces.

Proposition 3.6. Let (X ,τX ) and (Y,τY ) be topological spaces and let f : (X ,τX )→ (Y,τY ) be a function which is continuous at a point x

in X. Let (xα )α∈D be a net that converges statistically to some x in (X ,τX ). Then, ( f (xα ))α∈D converges statistically to f (x) in (Y,τY ).

Proof. Let U be an open neighbourhood of f (x) in (Y,τY ). Then, there is an open neighbourhood V of x in (X ,τX ) such that f (V ) ⊆U .

Then,

{α ∈ D : f (xα ) /∈U} ⊆ {α ∈ D : xα /∈V} and δ ({α ∈ D : xα /∈V};D) = 0.

So, δ ({α ∈ D : f (xα ) /∈U};D) = 0. This proves that ( f (xα ))α∈D converges statistically to f (x) in (Y,τY ).

Proposition 3.7. Let D(1),D(2) and D be as in Proposition 3.3. Let (xα )α∈D(1) and (yβ )β∈D(2) be two nets in a topological vector space X

over the field of real numbers or the field of complex numbers. Let (aα )α∈D(1) be a net of scalars. If (xα )α∈D(1) , (yβ )β∈D(2) and (aα )α∈D(1)

converge statistically to x,y and a respectively, then (xα + yβ )(α,β )∈D and (aα yβ )(α ,β )∈D converge statistically to x+ y and ay respectively.

Proof. Use Proposition 3.3 and Proposition 3.6. Observe that, it has been assumed that, the addition and the scalar multiplication in a

topological vector space are jointly continuous.

Proposition 3.8. Let (xα )α∈D and (yα )α∈D be two nets in a topological vector space X ; with respect to a common directed set D. Let

(aα )α∈D be a net of scalars. If (xα )α∈D, (yα )α∈D and (aα )α∈D converge statistically to x,y and a respectively, then (xα + yα )α∈D and

(aα yα )α∈D converge statistically to x+ y and ay respectively.

Proof. Use Proposition 3.4 and Proposition 3.6.

Remark 3.9. One may derive results similar to Proposition 3.7 and Proposition 3.8 for the structures, topological groups, topological rings,

and topological algebras.
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4. Statistically Cauchy nets

The concept of statistically Cauchy nets is to be introduced for uniform spaces. For the concepts and notations in uniform spaces, one may

refer to the book of Kelley [13] on General topology. The following definition agrees with the known definitions for statistically Cauchy

sequences and statistically Cauchy double sequences (see [11, 26, 30]).

Definition 4.1. Let (X ,U) be a uniform space with a uniformity U. A net (xα )α∈D in X is said to be statistically Cauchy if, for given U ∈ U,

there is a γ ∈ D such that

δ ({α ∈ D : (xα ,xγ ) /∈U,α ≥ γ};D) = 0.

It is easy to verify that every Cauchy net is a statistically Cauchy net, and hence every converging net is a statistically Cauchy net in a

uniform space. It is also possible to prove that statistical convergence implies statistical Cauchyness in a uniform space.

Proposition 4.2. Let D be a directed set. Then, every statistically convergent net (xα )α∈D in a uniform space is statistically Cauchy.

Proof. Let (xα )α∈D be a net which converges statistically to x in a uniform space (X ,U). Fix U ∈ U. Find a symmetric V ∈ U such that

V ◦V ⊆U . For this V,

δ ({α ∈ D : (xα ,x) /∈V};D) = 0

and hence there is a γ ∈ D such that (xγ ,x) ∈V . Then,

{α ∈ D : (xα ,xγ ) /∈U} ⊆ {α ∈ D : (xα ,x) /∈V}.

Thus,

δ ({α ∈ D : (xα ,xγ ) /∈U,α ≥ γ};D) = 0.

This proves that (xα )α∈D is statistically Cauchy.

Let us recall the order in product of two directed sets described in Definition 2.4.

Proposition 4.3. Let (xα )α∈D be a net that is statistically Cauchy in a uniform space (X ,U). Then, for given U ∈ U, there is a γ ∈ D such

that

δ ({(α,β ) ∈ D×D : (xα ,xβ ) /∈U,α ≥ γ,β ≥ γ};D×D) = 0.

Proof. Fix U ∈U. Find a symmetric V ∈U such that V ◦V ⊆U. For this V, there is a γ ∈ D such that δ ({α ∈ D : (xα ,xγ ) /∈V,α ≥ γ};D) = 0.

Since

{(α,β ) ∈ D×D : (xα ,xβ ) /∈U,α ≥ γ,β ≥ γ} ⊆ {(α,β ) ∈ D×D : (xα ,xγ ) /∈V

or (xβ ,xγ ) /∈V,α ≥ γ,β ≥ γ}

⊆ ({α ∈ D : (xα ,xγ ) /∈V,α ≥ γ}×D)

∪ (D×{β ∈ D : (xβ ,xγ ) /∈V,β ≥ γ}),

by Remark 2.5,

δ ({(α ,β ) ∈ D×D : (xα ,xβ ) /∈U,α ≥ γ,β ≥ γ};D×D) = 0.

Proposition 4.4. Let D(1),D(2) and D be as in Proposition 3.3. Let (X ,UX ) and (Y,UY ) be two uniform spaces. Let U be the product

uniformity on X ×Y . Let (xα )α∈D(1) and (yβ )β∈D(2) be two nets in X and Y respectively. Then, ((xα ,yβ ))(α,β )∈D is statistically Cauchy in

(X ×Y,U) if (xα )α∈D(1) is statistically Cauchy in (X ,UX ) and (yβ )β∈D(2) is statistically Cauchy in (Y,UY ). Moreover, if D(1) and D(2) satisfy

the condition (*) mentioned in Definition 2.8, and ((xα ,yβ ))(α,β )∈D is statistically Cauchy in (X ×Y,U), then (xα )α∈D(1) is statistically

Cauchy in (X ,UX ) and (yβ )β∈D(2) is statistically Cauchy in (Y,UY ).

Proof. The proof follows from the set relation: For U ∈ UX , V ∈ UY , γ1 ∈ D(1) and for γ2 ∈ D(2), it is true that

{(α,β ) ∈ D : ((xα ,xγ1
),(yβ ,yγ2

)) /∈U ×V,(α,β )≥ (γ1,γ2)}= ({α ∈ D(1) : (xα ,xγ1
) /∈U,α ≥ γ1}×{β ∈ D(2) : β ≥ γ2})

∪ ({α ∈ D(1) : α ≥ γ1}×{β ∈ D(2) : (yβ ,yγ2
) /∈V,β ≥ γ2}).

Proposition 4.5. Let (X ,UX ) and (Y,UY ) be two uniform spaces. Let U be the product uniformity on X ×Y . Let (xα )α∈D and (yα )α∈D be

nets in X and Y respectively. Then, ((xα ,yα ))α∈D is statistically Cauchy in X ×Y if and only if (xα )α∈D is statistically Cauchy in X and

(yα )α∈D is statistically Cauchy in Y.
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Proof. Suppose (xα )α∈D and (yα )α∈D be statistically Cauchy. Fix U ∈ UX and V ∈ UY . Then, there is a γ ∈ D such that

δ ({α ∈ D : (xα ,xγ ) /∈U,α ≥ γ};D) = 0 and δ ({α ∈ D : (yα ,yγ ) /∈V,α ≥ γ};D) = 0.

The statistically Cauchyness of ((xα ,yα ))α∈D follows from the relation:

{α ∈ D : (xα ,xγ ) /∈U or (yα ,yγ ) /∈V, α ≥ γ} ⊆ {α ∈ D : (xα ,xγ ) /∈U,α ≥ γ}∪{α ∈ D : (yα ,yγ ) /∈V,α ≥ γ}.

Conversely, assume that ((xα ,yα ))α∈D is statistically Cauchy. Fix U ∈ U. Then, there is a γ ∈ D such that

δ ({α ∈ D : (xα ,xγ ) /∈U,α ≥ γ};D) = δ ({α ∈ D : (xα ,xγ ) /∈U or (yα ,yγ ) /∈ Y ×Y,α ≥ γ};D) = 0.

This shows that (xα )α∈D is statistically Cauchy. Similarly, (yα )α∈D is statistically Cauchy.

Proposition 4.6. Let f : (X ,U)→ (Y,V) be a uniformly continuous function from a uniform space (X ,U) into a uniform space (Y,V). Let

(xα )α∈D be a statistically Cauchy net in (X ,U). Then, ( f (xα ))α∈D is a statistically Cauchy net in (Y,V).

Proof. Fix V ∈V. Find a U ∈ U such that ( f (x), f (y)) ∈ V , whenever (x,y) ∈ U . Find a γ ∈ D such that δ ({α ∈ D : (xα ,xγ ) /∈ U,α ≥
γ};D) = 0.

Then,

δ ({α ∈ D : ( f (xα ), f (xγ )) /∈V,α ≥ γ};D) = 0,

because

{α ∈ D : ( f (xα ), f (xγ )) /∈V,α ≥ γ} ⊆ {α ∈ D : (xα ,xγ ) /∈U,α ≥ γ}.

Remark 4.7. Let (X ,τ) be a topological vector space. The usual uniformity on X implies the following: A net (xα )α∈D is Cauchy in X if

and only if for every neighbourhood U of 0 there is a γ ∈ D such that

δ ({α ∈ D : xα − xγ /∈U,α ≥ γ};D) = 0.

One can derive the following Proposition 4.8 and Proposition 4.9 which are similar to Proposition 3.7 and Proposition 3.8.

Proposition 4.8. Let D(1),D(2), D, (xα )α∈D(1) , (yβ )β∈D(2) , (aα )α∈D(1) and X be as in Proposition 3.7. Let x ∈ X and a be a scalar.

If (xα )α∈D(1) , (yβ )β∈D(2) and (aα )α∈D(1) are statistically Cauchy, then (xα + yβ )(α ,β )∈D, (aα x)α∈D(1) and (axα )α∈D(1) are statistically

Cauchy.

Proof. Use Proposition 4.6 and Proposition 4.4.

Proposition 4.9. Let (xα )α∈D, (yα )α∈D and X be as in Proposition 3.8. If (xα )α∈D and (yα )α∈D are statistically Cauchy, then (xα +yα )α∈D

is statistically Cauchy.

Proof. Use Proposition 4.5 and Proposition 4.6.

5. Net Spaces

Corresponding to sequence spaces, net spaces can be constructed. The following construction is similar to the construction given in [31].

The following construction uses the Propositions 3.7, 3.8, 4.8 and 4.9. Since, verifications part is a direct one, it is omitted.

Let (X ,τ) be a topological vector space with the natural uniformity U that induces the topology τ . Let D be a fixed directed set. Let

M = {(xα )α∈D : {xα : α ∈ D} is a bounded subset o f X}.

Let Mcy = {(xα )α∈D ∈ M : (xα )α∈D is statistically Cauchy}.

Let Mct = {(xα )α∈D ∈ M : (xα )α∈D converges statistically in X}.

Let M0 = {(xα )α∈D ∈ M : (xα )α∈D converges statistically to zero in X}.

To each balanced neighbourhood U of zero in X , define a function pU on M by

pU ((xα )α∈D) = sup{λ ≥ 0 : λxα ∈U,∀α ∈ D},

and define a subset NU of M by

NU = {(xα )α∈D ∈ M : pU ((xα )α∈D)< 1}.

Then, the collection of the sets of the form NU forms a local base for M that makes M into a topological vector space under pointwise

algebraic operations. Also, Mcy is a closed linear subspace of M. If (X ,U) is a complete topological vector space, then M is a complete

topological vector space and Mct and M0 are closed linear subspaces of M.
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Abstract

The main concern of this study is to present a generalization of Banach’s fixed point theorem

in some classes of modular spaces, where the modular is convex and satisfying the ∆2-

condition. In this work, the existence and uniqueness of fixed point for (α,β )− (ψ,ϕ)−
contractive mapping and α−β −ψ−weak rational contraction in modular spaces are proved.

Some examples are supplied to support the usability of our results. As an application, the

existence of a solution for an integral equation of Lipschitz type in a Musielak-Orlicz space

is presented.

1. Introduction and Preliminaries

It is well known fixed point theorems play important roles and have applications in mathematics analysis, particularly in differential and

integral equations. One of the most popular fixed point theorem is Banach fixed point theorem [6]. By using this theorem, most authors have

proved several fixed point theorems for various mappings [13, 21, 28]. Such as, Dutta and Choudhury proved (ψ,φ)−contractive mappings

in complete metric space [11]. Samet et al. introduced the concept of α −ϕ− contractive type mappings and established various fixed point

theorems [32]. Later, Salimi et al. modified the concept of α −ϕ− contractive type mappings [31]. Alizadeh et al. [4] developed a new

fixed point theorem in complete metric spaces. They introduced the concept of cyclic (α,β )−admissible and (α ,β )− (ψ,φ)−contractive

mappings and established some fixed point results in metric spaces.

On the other hand, some authors introduced a new concept of modular vector spaces which are natural generalizations of many classical

function spaces. Firstly, Nakano initiated the concept of modular spaces [26]. Later, some authors proved new fixed point theorems of

Banach type in modular spaces [12, 18, 19, 22, 23, 24, 29, 33]. Then, also the concept of the fixed point theory was studied in modular

metric, modular function and modular vector spaces. [1, 2, 3, 5, 8, 9, 10, 14, 15, 16, 17, 20, 30, 34].

In this work, some fixed point results as a generalization of Banach’s fixed point theorem are presented using some convenient constants in

the contraction assumption in modular spaces. Motivated by [4] and [25], some fixed point results for (α,β )− (ψ,φ)−contractive mappings

in modular spaces are proved. Some examples are supplied in order to support the usability of our results. As an application the existence

and uniqueness of solutions for an integral equation of Lipschitz type in a Musielak-Orlicz space are showed.

Definition 1.1. [25, 27] Let X be an arbitrary vector space. A functional ρ : X → [0,∞) is called a modular if, for any x,y in X, the

following conditions hold:

(a) ρ(x) = 0 if and only if x = 0,

(b) ρ(−x) = ρ(x),
(c) ρ(αx+βy)≤ ρ(x)+ρ(y), whenever α +β = 1 and α,β ≥ 0.

If (c) is replaced with ρ(αx+βy)≤ αsρ(x)+β sρ(y) where αs +β s = 1, α,β ≥ 0, and s ∈ (0,1], then ρ is called s-convex modular. If

s = 1, then we say that ρ is convex modular. The following are some consequences of condition (c).

Remark 1.2. [7]
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(a) For a,b ∈ R with |a|< |b| we have

ρ(ax)< ρ(bx) for all x ∈ X.

(b) For a1, ...,an ∈ R+ with ∑
n
i=1 ai = 1, we have

ρ(
n

∑
i=1

aixi) = ρ(
n

∑
i=1

xi) for any x1, ...,xn ∈ X .

Remark 1.3. [26] A modular ρ defines a corresponding modular space, i.e. the space is given by

Xρ = {x ∈ X : ρ(λx)→ 0 as λ → 0}.

Definition 1.4. A sequence {xn} in modular space Xρ is said to be:

(a) ρ-convergent to x ∈ Xρ if ρ(xn − x)→ 0 as n → ∞.

(b) ρ-Cauchy if ρ(xn − xm)→ 0 as n,m → ∞.

(c) Xρ is called ρ-complete if any ρ-Cauchy sequence is ρ-convergent.

(d) ρ satisfies ∆2-condition if ρ(2xn)→ 0 as n → ∞, whenever ρ(xn)→ 0 as n → ∞.

Definition 1.5. [4] Let T : X → X be a mapping and α,β : X →R
+ be two functions. We say that T is a cyclic (α,β )-admissible mapping

if

(i) α(x)≥ 1 for some x ∈ X implies β (T x)≥ 1,

(ii) β (x)≥ 1 for some x ∈ X implies α(T x)≥ 1.

Definition 1.6. [4] Let Ψ be the set of continuous and increasing functions ψ : [0,∞)→ [0,∞) and Φ be the set of lower semicontinuous

functions φ : [0,∞)→ [0,∞) such that φ(t) = 0 iff t = 0. Let X be a metric space and T : X → X be a cyclic (α,β )-admissible mapping. We

say that T is a (α,β )− (ψ,φ)−contractive mapping if

α(x)β (y)≥ 1 ⇒ ψ(d(T x,Ty))≤ ψ(d(x,y))−φ(d(x,y))

for x,y ∈ X, where ψ ∈ Ψ and φ ∈ Φ.

2. Main Results

Let Ψ and Φ be defined as in Definition 1.6. Let Xρ be a nonempty set and T : Xρ → Xρ be an arbitrary mapping. We say that x ∈ Xρ is a

fixed point of T , if x = T x. We denote by Fix(T ) the set of all fixed points of T . In the sequel, suppose the modular ρ is convex and satisfies

the ∆2-condition.

Definition 2.1. Let Xρ be a ρ-complete modular space and T : Xρ → Xρ be a cyclic (α,β )−admissible mapping. We say that T is a

(α,β )− (ψ,φ)−contractive mapping if

α(x)β (y)≥ 1 ⇒ ψ(ρ(T x−Ty))≤ ψ(ρ(x− y))−φ(ρ(x− y)) (2.1)

for x,y ∈ Xρ , where ψ ∈ Ψ and φ ∈ Φ.

Theorem 2.2. Let Xρ be a ρ-complete modular space and T : Xρ → Xρ be a (α,β )− (ψ,φ)−contractive mapping. Suppose that the

following conditions hold:

(a) there exists x0 ∈ Xρ such that α(x0)≥ 1 and β (x0)≥ 1,

(b) T is continuous, or

(c) if {xn} is a sequence in Xρ such that xn → x and β (xn)≥ 1 for all n ∈ N, then β (x)≥ 1,

then T has a fixed point. Moreover, if α(x)≥ 1 and β (y)≥ 1 for all x,y ∈ Fix(T ), then T has a unique fixed point.

Proof. Define a sequence {xn} by xn = T nx0 = T xn−1 for all n ∈ N. Since T is a cyclic (α,β )−admissible mapping and α(x0)≥ 1 then

β (x1) = β (T x0)≥ 1 which implies α(x2) = α(T x1)≥ 1. By continuing this process, we get α(x2n)≥ 1 and β (x2n−1)≥ 1 for all n ∈ N.

Again, since T is a cyclic (α,β )-admissible mapping and β (x0)≥ 1, by the similar method, we have β (x2n)≥ 1 and α(x2n−1)≥ 1 for all

n ∈ N. That is, α(xn)≥ 1 and β (xn)≥ 1 for all n ∈ N∪{0}. Equivalently, α(xn−1)β (xn)≥ 1 for all n ∈ N. Therefore by (2.1), we have

ψ(ρ(xn − xn+1))≤ ψ(ρ(xn−1 − xn))−φ(ρ(xn−1 − xn))

≤ ψ(ρ(xn−1 − xn)) (2.2)

and since ψ is increasing, we get

ρ(xn − xn+1)≤ ρ(xn−1 − xn)
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for all n ∈ N. So, {ρn := ρ(xn − xn+1)} is a non-increasing sequence of positive real numbers. Then, there exists r ≥ 0 such that lim
n→∞

ρn = r.

We shall show that r = 0. By taking the limsup on both sides of (2.2), we have

limρ
n→∞

(xn − xn+1) = 0. (2.3)

Now, we want to show that {x2n} is a Cauchy sequence. Suppose to the contrary, that {x2n} is not a Cauchy sequence. Then, there are ε > 0

and sequences {m(k)} and {n(k)} such that for all positive integers k, and for n(k)> m(k)> k, we have

ρ(x2n(k)− x2m(k))≥ ε and ρ(2(x2n(k)−1 − x2m(k)))< ε. (2.4)

Now for all k ∈ N, we have

ε ≤ ρ(x2n(k)− x2m(k))

≤ ρ(2(x2n(k)− x2n(k)−1))+ρ(2(x2n(k)−1 − x2m(k)))

< ρ(2(x2n(k)− x2n(k)−1))+ ε.

Taking the limit as k →+∞ in the above inequality and using (2.3), we get

lim
k→∞

ρ(x2n(k)− x2m(k)) = ε. (2.5)

Since

ρ(x2n(k)+1 − x2m(k)+1) = ρ(x2n(k)+1 − x2n(k)+ x2n(k)− x2m(k)+1)

≤ ρ(2(x2n(k)+1 − x2n(k)))+ρ(2(x2n(k)− x2m(k)+1))

and

ρ(2(x2n(k)− x2m(k)+1)) = ρ(2(x2n(k)− x2m(k)+ x2m(k)− x2m(k)+1))≤ ρ(4(x2n(k)− x2m(k))+ρ(4(x2m(k)− x2m(k)+1))

then by taking the limit as k →+∞ in above inequality and using (2.3) and (2.5), we deduce that

lim
k→∞

ρ(x2n(k)+1 − x2m(k)+1) = ε. (2.6)

Now, by (2.1) and α(x2n(k))β (x2m(k))≥ 1 for all k ∈ N, we get

ψ(ρ(x2n(k)+1 − x2m(k)+1))≤ ψ(ρ(x2n(k)− x2m(k)))−φ(ρ(x2n(k)− x2m(k))). (2.7)

By taking the limsup on both sides of (2.7), applying (2.4) and (2.6), we obtain

ψ(ε)≤ ψ(ε)−φ(ε).

That is, ε = 0, which is a contradiction. Hence {xn} is a Cauchy sequence. Since Xρ is a complete modular space, then there is a z ∈ Xρ such

that xn → z as n → ∞. First, we assume that T is continuous. Hence, we deduce

T z = lim
n→∞

T xn = lim
n→∞

xn+1 = z.

So z is a fixed point of T . Now, assume that (c) holds. That is, α(xn)β (z)≥ 1. From (2.1) we have

ψ(ρ(xn+1 −T z))≤ ψ(ρ(xn − z))−φ(ρ(xn − z)). (2.8)

By taking the limsup on both sides of (2.8), we get ψ(ρ(z−T z)) = 0. Then ρ(z−T z) = 0. i.e., z = T z. To prove the uniqueness of fixed

point, suppose that z and z∗ are two fixed points of T . From condition (c) we have, α(z)β (z∗)≥ 1, it follows from (2.1) that

ψ(ρ(z−T z∗))≤ ψ(ρ(z− z∗))−φ(ρ(z− z∗)).

So φ(ρ(z− z∗)) = 0 and hence ρ(z− z∗) = 0 i.e., z = z∗.

Corollary 2.3. Let Xρ be a ρ-complete modular space and T : Xρ → Xρ be a cyclic (α,β )−admissible mapping such that

α(x)β (y)ψ(ρ(T x−Ty))≤ ψ(ρ(x− y))−φ(ρ(x− y))

for all x,y ∈ Xρ where ψ ∈ Ψ and φ ∈ Φ. Suppose that the following assertions hold:

(a) there exists x0 ∈ Xρ such that α(x0)≥ 1 and β (x0)≥ 1,

(b) T is continuous, or

(c) if {xn} is a sequence in Xρ such that xn → x and β (xn)≥ 1 for all n ∈ N, then β (x)≥ 1,

then T has a fixed point. Moreover, if α(x)≥ 1 and β (y)≥ 1 for all x,y ∈ Fix(T ), then T has a unique fixed point.
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Proof. Let α(x)β (y)≥ 1 for x,y ∈ Xρ . Then by (2.8), we have

ψ(ρ(T x−Ty))≤ ψ(ρ(x− y))−φ(ρ(x− y)).

This implies that the inequality (2.1) holds. Therefore, the proof follows from Theorem 2.2.

Corollary 2.4. Let Xρ be a ρ-complete modular space and T : Xρ → Xρ be a cyclic (α,β )-admissible mapping such that

(α(x)β (y)+1)ψ(ρ( f x− f y)) ≤ 2ψ(ρ(x−y))−φ(ρ(x−y))

for all x,y ∈ Xρ where ψ ∈ Ψ and φ ∈ Φ. Suppose that the following assertions hold:

(a) there exists x0 ∈ Xρ such that α(x0)≥ 1 and β (x0)≥ 1,

(b) T is continuous, or

(c) if {xn} is a sequence in Xρ such that xn → x and β (xn)≥ 1 for all n ∈ N, then β (x)≥ 1,

then T has a fixed point. Moreover, if α(x)≥ 1 and β (y)≥ 1 for all x,y ∈ Fix(T ), then T has a unique fixed point.

Example 2.5. Let Xρ = [−2,∞]→ R, ρ(x) = |x| for all x ∈ Xρ , and T : Xρ → Xρ by

T x =

{

x2

3 , x ∈ [−2,2]√
x , otherwise.

Define ψ,φ : [0,+∞)→ [0,+∞) by ψ(t) = 3t,φ(t) = t and α,β : Xρ → [0,+∞) by

α(x) =

{

1 , x ∈ [−2, 4
3 ]

0 , otherwise.

and

β (x) =

{

1 , x ∈ [ 4
3 ,2]

0 , otherwise.

Now, we prove that the hypotheses (a) and (c) of Corollary 2.4 are satisfied by T and hence T has a fixed point. Let α(x)≥ 1 for some x ∈ Xρ .

Then x ∈ [−2, 4
3 ] and so T x ∈ [ 4

3 ,2]. Therefore, β (T x) ≥ 1. Similarly, if β (x) ≥ 1 then α(x) ≥ 1. Then T is a cyclic (α,β )-admissible

mapping and that the hypotheses (a) and (c) of Corollary 2.4 hold.

Now, for all x ∈ [−2, 4
3 ] and y ∈ [ 4

3 ,2], we get

(α(x)β (y)+1)ψ(ρ( f x− f y)) = 23ρ( f x− f y)

= 2
3

∣

∣

∣

x2

3
− y2

3

∣

∣

∣

= 2|x−y||x+y|

≤ 22|x−y| = 23|x−y|−|x−y|

= 2ψ(ρ(x−y))−φ(ρ(x−y))

Otherwise, if α(x)β (y) = 0, we have

(α(x)β (y)+1)ψ(ρ( f x− f y)) = 1 ≤ 2ψ(ρ(x−y))−φ(ρ(x−y))

Therefore, Corollary 2.4 implies that T has a fixed point.

Corollary 2.6. Let Xρ be a ρ-complete modular space and T : Xρ → Xρ be a cyclic (α,β )-admissible mapping. Assume that there exists

ℓ > 1 such that

(ψ(ρ(T x−Ty))+ ℓ)α(x)β (y) ≤ ψ(ρ(x− y))−φ(ρ(x− y))+ ℓ

for all x,y ∈ Xρ where ψ ∈ Ψ and ϕ ∈ Φ. Suppose that the following assertions hold:

(a) there exists x0 ∈ Xρ such that α(x0)≥ 1 and β (x0)≥ 1,

(b) T is continuous, or

(c) if {xn} is a sequence in Xρ such that xn → x and β (xn)≥ 1 for all n ∈ N, then β (x)≥ 1,

then T has a fixed point. Moreover, if α(x)≥ 1 and β (y)≥ 1 for all x,y ∈ Fix(T ), then T has a unique fixed point.
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Example 2.7. Let Xρ = R
+, ρ(x) = |x| for all x ∈ Xρ , and T : Xρ → Xρ by

T x =

{

x2+x
4 , x ∈ [0,1]

2x , otherwise.

Define ψ,φ : [0,+∞)→ [0,+∞) by ψ(t) = t,φ(t) = t
4 and α,β : Xρ → [0,+∞) by

α(x) = β (x) =

{

1 , x ∈ [0,1]
0 , otherwise.

Now, we prove that the hypotheses (a) and (c) of Corollary 2.6 are satisfied by T and hence T has a fixed point. Proceeding as in the Example

2.5, we deduce that T is a cyclic (α,β )-admissible mapping and that the hypotheses (a) and (c) of Corollary 2.6 hold.

Now, for all x ∈ [0,1] and all y ∈ [0,1], we get

(ψ(ρ(T x−Ty))+ ℓ)α(x)β (y) = |T x−Ty|+ ℓ

≤ 1

4
|x− y| |x+ y+1|+ ℓ

≤ 3

4
|x− y|+ ℓ

= |x− y|− 1

4
|x− y|+ ℓ

= ψ(ρ(x− y))−φ(ρ(x− y))+ ℓ.

Otherwise, if α(x)β (y) = 0, we have

(ψ(ρ(T x−Ty))+ ℓ)α(x)β (y) = 1 ≤ ψ(ρ(x− y))−φ(ρ(x− y))+ ℓ.

Therefore, Corollary 2.6 implies that T has a fixed point.

Definition 2.8. Let Xρ be a ρ-complete modular space and T : Xρ → Xρ be a cyclic (α,β )−admissible mapping. We say that T is

α −β −ψ− weak rational contraction if α(x)β (y)≥ 1 for some x,y ∈ Xρ such that

ρ(T x−Ty)≤ M(x,y)−ψ(M(x,y))

where ψ ∈ Ψ and

M(x,y) = max{ρ(x− y),ρ(x−T x),ρ(y−Ty),
[1+ρ(x−T x)]ρ(y−Ty)

ρ(x− y)+1
}.

Theorem 2.9. Let Xρ be a ρ-complete modular space and T : Xρ → Xρ be α −β −ψ−weak rational contraction. Assume that the following

assertions hold:

(a) there exists x0 ∈ Xρ such that α(x0)≥ 1 and β (x0)≥ 1,

(b) T is continuous, or

(c) if {xn} is a sequence in Xρ such that xn → x and β (xn)≥ 1 for all n ∈ N, then β (x)≥ 1,

then T has a fixed point. Moreover, if α(x)≥ 1 and β (y)≥ 1 for all x,y ∈ Fix(T ), then T has a unique fixed point.

Proof. Define a sequence {xn} by xn = T nx0 = T xn−1 for all n ∈ N. Since T is a cyclic (α,β )−admissible mapping and α(x0)≥ 1 then

β (x1) = β (T x0)≥ 1 which implies α(x2) = α(T x1)≥ 1. By continuing this process, we get α(x2n)≥ 1 and β (x2n−1)≥ 1 for all n ∈ N.

Again, since T is a cyclic (α,β )−admissible mapping and β (x0)≥ 1, by the similar method, we have β (x2n)≥ 1 and α(x2n−1)≥ 1 for all

n ∈ N. That is, α(xn)≥ 1 and β (xn)≥ 1 for all n ∈ N∪{0}. Equivalently, α(xn−1)β (xn)≥ 1 for all n ∈ N. Since T is α −β −ψ−weak

rational contraction, we get

ρ(xn − xn+1)≤ M(xn−1,xn)−ψ(M(xn−1,xn)) (2.9)

where

M(xn−1,xn) = max{ρ(xn−1 − xn),ρ(xn−1 −T xn−1),ρ(xn −T xn),
[1+ρ(xn−1 −T xn−1)]ρ(xn −T xn)

ρ(xn−1 − xn)+1
}

= max{ρ(xn−1 − xn),ρ(xn − xn+1)}.

Now, suppose that there exists n0 ∈ N such that ρ(xn0
− xn0+1

)> ρ(xn0−1
− xn0

). Therefore M(xn0−1
,xn0

) = ρ(xn0
− xn0+1

) and so from (2.9),

we get

ρ(xn0
− xn0+1)≤ ρ(xn0

− xn0+1
)−ψ(ρ(xn0

− xn0+1
)).

This implies that ψ(ρ(xn0
− xn0+1)) = 0, i.e., ρ(xn0

− xn0+1) = 0, which is a contradiction. Hence, ρ(xn − xn+1) ≤ ρ(xn−1 − xn) for all

n ∈N. That is the sequence {ρn : ρ(xn −xn+1)} is decreasing and so there exists r ≥ 0 such that ρn → r as n → ∞. Taking the limit as n → ∞

in (2.9), we have

r ≤ r−ψ(r).
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This implies that ψ(r) = 0. Therefore, the property of ψ implies that r = 0. That is

lim
n→∞

ρ(xn+1 − xn) = 0. (2.10)

Now, we will show that {xn} is a Cauchy sequence. Suppose that {xn} is not a Cauchy sequence. Then there are ε > 0 and sequences

{m(k)} and {n(k)} such that for all positive integers k, for n(k)> m(k)> k, we have

ρ(x2n(k)− x2m(k))≥ ε and ρ(2(x2n(k)−1 − x2m(k)))< ε. (2.11)

For all k ∈ N, we have

ε ≤ ρ(x2n(k)− x2m(k))≤ ρ(2(x2n(k)− x2n(k)−1))+ρ(2(x2n(k)−1 − x2m(k)))< ρ(2(x2n(k)− x2n(k)−1))+ ε.

Taking the limit as k → ∞ in above inequality and from (2.10), we have

lim
k→∞

ρ(x2n(k)− x2m(k)) = ε. (2.12)

Then, we get

ρ(x2n(k)+1 − x2m(k)+1) = ρ(x2n(k)+1 − x2n(k)+ x2n(k)− x2m(k)+1)≤ ρ(2(x2n(k)+1 − x2n(k)))+ρ(2(x2n(k)− x2m(k)+1))

and

ρ(2(x2n(k)− x2m(k)+1)) = ρ(2(x2n(k)− x2m(k)+ x2m(k)− x2m(k)+1))≤ ρ(4(x2n(k)− x2m(k))+ρ(4(x2m(k)− x2m(k)+1)).

Taking the limit as k →+∞ in above inequality and using (2.12) and (2.11), we deduce that

lim
k→∞

ρ(x2n(k)− x2m(k)+1) = ε. (2.13)

Now, by (2.1), we get

ρ(x2n(k)+1 − x2m(k)+1)≤ M(x2n(k)− x2m(k))−ϕ(M(x2n(k)− x2m(k))) (2.14)

where

M(x2n(k)− x2m(k)) = max{ρ(x2n(k)− x2m(k)),ρ(x2n(k)− x2n(k)+1),ρ(x2m(k)− x2m(k)+1),
[1+ρ(x2n(k)− x2n(k)+1)]ρ(x2m(k)− x2m(k)+1)

ρ(x2n(k)− x2m(k))+1
}.

Letting k → ∞ in (2.14) and using (2.10), (2.12) and (2.13), we get

ε ≤ ε −ψ(ε).

That is ε = 0, which is a contradiction. Hence, {xn} is a Cauchy sequence. Since Xρ is complete, then there exists a z ∈ Xρ such that xn → z.

Suppose that (c) holds. That is, α(x2n)β (z)≥ 1. Since T is α −β −ψ−weak rational contradiction, then we have

ρ(x2n+1 −T z)≤ M(x2n,z)−ψ((x2n,z)) (2.15)

where

M(x2n,z) = max{ρ(x2n − z),ρ(x2n −T z),ρ(z−T z),
[1+ρ(x2n − xn+1)]ρ(z−T z)

ρ(x2n − z)+1
}.

Taking the limit as n → ∞ in (2.15), we have z = T z. Now, let show that T has at most one fixed point. Indeed, if x,y ∈ Xρ be two fixed

points of T, that is, T x = x 6= y = Ty. From condition (c) we have, α(x)β (y)≥ 1, it follows that

ψ(ρ(x− y))≤ ψ(M(x,y))−φ(M(x,y))

where

M(x,y) = max{ρ(x− y),ρ(x−T x),ρ(y−Ty),
[1+ρ(x−T x)]ρ(y−Ty)

ρ(x− y)+1
}.

Then, we obtain

ψ(ρ(x− y))≤ ψ(ρ(x− y))−φ(ρ(x− y)).

So φ(ρ(x− y)) = 0 and hence, ρ(x− y) = 0, that is, x = y.

We obtain the following corollaries from Theorem 2.9.
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Corollary 2.10. Let Xρ be a ρ-complete modular space and T : Xρ → Xρ be a cyclic (α,β )−admissible mapping such that

α(x)β (y)ρ(T x−Ty)≤ M(x,y)−ψ(M(x,y)),

where ψ ∈ Ψ and

M(x,y) = max{ρ(x− y),ρ(x−T x),ρ(y−Ty),
[1+ρ(x−T x)]ρ(y−Ty)

ρ(x− y)+1
}.

Suppose that the following assertions hold:

(a) there exists x0 ∈ Xρ such that α(x0)≥ 1 and β (x0)≥ 1,

(b) T is continuous, or

(c) if {xn} is a sequence in Xρ such that xn → x and β (xn)≥ 1 for all n ∈ N, then β (x)≥ 1,

then T has a fixed point. Moreover, if α(x)≥ 1 and β (y)≥ 1 for all x,y ∈ Fix(T ), then T has a unique fixed point.

Corollary 2.11. Let Xρ be a ρ-complete modular space and T : Xρ → Xρ be a cyclic (α,β )−admissible mapping such that

(α(x)β (y)+1)ρ(T x−Ty) ≤ 2M(x,y)−ψ(M(x,y))

for all x,y ∈ Xρ where ψ ∈ Ψ. Suppose that the following assertions hold:

(a) there exists x0 ∈ Xρ such that α(x0)≥ 1 and β (x0)≥ 1,

(b) T is continuous, or

(c) if {xn} is a sequence in Xρ such that xn → x and β (xn)≥ 1 for all n, then β (x)≥ 1,

then T has a fixed point. Moreover, if α(x)≥ 1 and β (y)≥ 1 for all x,y ∈ Fix(T ), then T has a unique fixed point.

Corollary 2.12. Let Xρ be a ρ-complete modular space and T : Xρ → Xρ be a cyclic (α,β )−admissible mapping such that

(αx)(βx)+ ℓ)(αx)(βx) ≤ M(x,y)−ψ(M(x,y))+ ℓ

for all x,y ∈ Xρ where ψ ∈ Ψ and l > 1. Suppose that the following assertions hold:

(a) there exists x0 ∈ Xρ such that α(x0)≥ 1 and β (x0)≥ 1,

(b) T is continuous, or

(c) if {xn} is a sequence in Xρ such that xn → x and β (xn)≥ 1 for all n ∈ N, then β (x)≥ 1,

then T has a fixed point. Moreover, if α(x)≥ 1 and β (y)≥ 1 for all x,y ∈ Fix(T ), then T has a unique fixed point.

3. Application

In this section, firstly we shall apply Corollary 2.3 to show the existence of solution of integral equation. Let ϕ be a Musielak-Orlicz

function on a measurable space C = ([0,1],Λ,µ), where ρϕ is a modular defined by

ρϕ (u) =
∫ 1

0
ϕ(s, |u(s)|)ds

for ∈ u L ϕ and α0 > e and c0 ∈ [ e
α0
,1). Assume that ρϕ is convex satisfying the ∆2-condition. Now, we investigate the existence and

uniqueness of solution of integral equation:

u(t) = e−t f +
∫ t

0
es−t(

∫ 1

0
K(ξ ,u(s))dξ )ds,

where K : [0,1]×L ϕ → L ϕ is a measurable function satisfying:

(1) lim
λ→0+

∫ 1
0 ϕ(ξ ,λ

∣

∣

∣
(
∫ 1

0 K(s,u)ds)ξ
∣

∣

∣
dξ = 0 for any u ∈ L ϕ .

(2)

∣

∣

∣

∫ 1
0 (K(ξ ,u(s))−K(ξ ,v(s)))dξ

∣

∣

∣
≤ k |(u− v)(s)| for any u,v ∈ L ϕ with k ∈ (0,1).

(3) We denote by B =C([0,1],A) the space of all ρ-continuous function from [0,1] into A which is a convex, closed, bounded subset of L ϕ .

So, B is a closed, bounded, convex subset of C([0,1],L ϕ ) satisfying the ∆2-condition.

Let T : B → B defined by

T (u) =
∫ 1

0

c0

e
K(s,u)ds.

(4) f ∈ B.
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(5) There exists u0 ∈ B such that θ(u0)≥ 0, η(u0)≥ 0 and

θ(u)≥ 0 for some u ∈ B implies η(Tu)≥ 0,

η(u)≥ 0 for some u ∈ B implies θ(Tu)≥ 0.

(6) if {un} is a sequence in B such that θ(un)≥ 0 for all n ∈ N∪{0} and un → u as n → ∞, then θ(u)≥ 0.

(7) Let α,β : B → [0,∞) by

α(u) =

{

1, θ(u)≥ 0

0, otherwise
and β (v) =

{

1, η(u)≥ 0

0, otherwise.

Theorem 3.1. Under the above assumptions (1)-(7), the integral equation has a solution in C([0,1],L ϕ ).

Proof. Firstly, we show that T is ρ-Lipschitz. By assumption (1), we have
∫ 1

0 ϕ(ξ ,λ |Tu(ξ )|dξ → 0 as λ → 0+. Hence the definition of

L ϕ , we get Tu ∈ L ϕ for any u ∈ L ϕ .

Let x,y ∈ B, then we have

ρ f (Tu−T v) = ρ f (
c0

e
(

e

c0
(Tu−T v)))

≤ c0

e
ρ f (

e

c0
(Tu−T v))

=
c0

e

∫ 1

0
ϕ(s,

e

c0
|(Tu−T v)(s)|ds

=
c0

e

∫ 1

0
ϕ(s,

e

c0

∣

∣

∣

∣

∫ 1

0
(K(ξ ,u(s))−K(ξ ,v(s)))dξ

∣

∣

∣

∣

)ds.

Therefore by assumption (2)

ρ f (Tu−T v)≤ c0

e

∫ 1

0
ϕ(s,k |(u− v)(s)|)ds

=
c0

e
ρϕ (k(u− v))

=
c0

e
kρϕ (u− v).

Then, we get T is ρ-Lipschitz (see Theorem 1.3 in [33]). Also define ψ,φ : C([0,1],L ϕ )→C([0,1],L ϕ ) by

ψ(u) = u, and φ(u) = (1− c0

e
k)u for

c0

e
k ∈ (0,1).

Consequently, for all u,v ∈ B we have

α(u)β (v)ψ(ρϕ (Tu−T v))≤ ψ(ρϕ (u− v))−φ(ρϕ (u− v)).

It shows that all the hypotheses of Corollary 2.3 are satisfied, hence T has a solution u ∈C([0,1],L ϕ ).
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[10] H. Dehghan, M. E. Gordji, A. Ebadian, Comment on ”Fixed point theorems for contraction mappings in modular metric spaces, Fixed Point Theory

Appl. 2012(144) (2012).
[11] P. N. Dutta, B.S. Coudhury, A generalization of contraction principle in metric spaces, Fixed Point Theory Appl., Article ID 406368, 2018.
[12] M. E. Ege, C. Alaca, Some results for modular b-metric spaces and an application to system of linear equations, Azerbaijan Journal of Mathematics,

8(1) (2018).
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[28] M.O. Olatinwo, Some non-unique fixed point theorems of Ćirić type using rational-type contractive conditions, Georgian Math. J., 24 (2016), 455-461.
[29] M. Paknazar, M. Eshaghi, Y.J. Cho, S. M. Vaezpour, A Pata-type fixed point theorem in modular spaces with application, Fixed Point Theory Appl.

2013(239) (2013).
[30] M. Paknazar, M. A. Kutbi, M. Demma, P. Salimi, On non-Archimedean modular metric spaces and some nonlinear contraction mappings, J. Nonlinear

Sci and Appl. (in press).
[31] P. Salimi, A. Latif, N. Hussain, Modified α −ϕ-contractive mappings with applications, Fixed Point Theory and Appl., 2013(151) (2013).
[32] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α −ϕ-contractive type mappings, Nonlinear Anal, 2012(75) (2012), 2154-2165.
[33] A.A. Taleb, E. Hanebaly, A fixed point theorem and its application to integral equations in modular spaces, Proceedings of the American Math. Soci.,

128(2) (1999), 419-426.
[34] B. Zlatanov, Best proximity points in modular function spaces, Arab. J. Math. 128 (2015), 215-227.



Universal Journal of Mathematics and Applications, 2 (2) (2019) 94-99

Research paper

Universal Journal of Mathematics and Applications

Journal Homepage: www.dergipark.gov.tr/ujma

ISSN 2619-9653

DOI: http://dx.doi.org/10.32323/ujma.543952

A Bound for the Joint Spectral Radius of Operators in a Hilbert

Space

Michael Gil’1*

1Department of Mathematics, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel
*Corresponding author

Article Info

Keywords: Joint spectral radius,

Hilbert space, Discrete time switched

systems

2010 AMS: 47A10, 93C30, 93C55,

93D05, 15A18

Received: 25 March 2019

Accepted: 13 May 2019

Available online: 28 June 2019

Abstract

We suggest a bound for the joint spectral radius of a finite set of operators in a Hilbert space.

In appropriate situations that bound enables us to avoid complicated calculations and gives

a new explicit stability test for the discrete time switched systems. The illustrative example

is given. Our results are new even in the finite dimensional case.

1. Introduction and statement of the main result

Let H be a complex separable Hilbert space with a scalar product (., .), the norm ‖.‖=
√

(., .) and unit operator I. By B(H ) we denote

the set of all bounded linear operators in H . For an A ∈ B(H ), σ(A) is the spectrum, rs(A) is the spectral radius; A∗ is adjoint to A, and

‖A‖= suph∈H ,h6=0 ‖Ah‖/‖h‖.

Let M = {A1, ...,Aν} be a finite set of operators A j ∈B(H ) ( j = 1, ...,ν). Our main object is the joint spectral radius ρ(M ) of M defined

by

ρ(M ) := lim
k→∞

sup{‖Aik · · ·Ai1‖1/k : Ai ∈ M },

cf. [1, 2]. The joint spectral radius arises naturally in a range of topics including the theory of difference equations [3], control and stability

of discrete time switched systems [4, 5, 6, 7, 8, 9, 10, 11], wavelets [12], ergodic theory [13], etc.

The literature on the theory of the joint spectral radius is rather rich, cf. [14], [15], [16], [17, 18] and references therein. Mainly, the finite

dimensional operators were considered and the numerical methods were developed.

In the present paper, under some restrictions, we suggest a bound for ρ(M ). In appropriate situations that bound enables us to avoid

complicated calculations and gives an explicit stability test for the discrete time switched systems. The example characterizing the sharpness

of our results is given. To the best of our knowledge, our results are new even in the finite dimensional case.

Let A ∈ B(H ) with rs(A)< 1. Then the discrete Lyapunov equation

X −A∗XA = I (1.1)

has a positive definite self-adjoint solution X(A) [19]. It can be represented by

X(A) =
∞

∑
j=0

(A∗) jA j (1.2)

and

X(A) =
1

2π

∫ 2π

0
(Ie−iω −A∗)−1(Ieiω −A)−1dω, (1.3)

cf. [20, Section 7.1]. We will say that M is Schur-Kohn stable, if ρ(M )< 1. Now we are in a position to formulate our main result.

Email addresses and ORCID numbers: gilmi@bezeqint.net, https://orcid.org/0000-0002-6404-9618, (M. Gil’)
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Theorem 1.1. Let there be an A ∈ B(H ) with rs(A)< 1, such that

‖X(A)‖(2‖A−Ak‖‖A‖+‖A−Ak‖2)< 1 (Ak ∈ M ; k = 1, ...,ν). (1.4)

Then M is Schur-Kohn stable. Moreover,

ρ(M )≤
√

1− 1

‖X(A)‖ (1− max
j=1,...,ν

‖X(A)‖(2‖A−A j‖‖A‖+‖A−A j‖2).

The proof of this theorem is presented in the next section. In Theorem 1.1, one can take A = Am for an Am ∈ M . Below we consider some

concrete classes of operators. Note that from (1.2) and (1.3) it follows that

‖X(A)‖ ≤
∞

∑
j=1

‖A j‖2 (1.5)

and

‖X(A)‖ ≤ 1

2π

∫ 2π

0
‖(Ieiω −A)−1‖2dω. (1.6)

If A is normal: AA∗ = A∗A, then ‖A‖= rs(A) and (1.5) implies

‖X(A)‖ ≤
∞

∑
j=0

r
2 j
s (A) =

1

1− r2
s (A)

. (1.7)

2. Proof of Theorem 1.1

In this section for the simplicity we put X(A) = X .

Lemma 2.1. Let A, Ã ∈ B(H ), rs(A)< 1 and X be a solution of (1.1). If

‖X‖(2‖A− Ã‖‖A‖+‖A− Ã‖2)< 1,

then

(XÃx, Ãx)≤ (1− c0

‖X‖ )(Xx,x) (x ∈ H ),

where

c0 := 1−‖X‖(2‖A− Ã‖‖A‖+‖A− Ã‖2).

Proof. Put Y = Ã−A. Then

X − Ã∗XÃ = X − (Y +A)∗X(Y +A) = X −A∗XA−Y ∗XA−A∗XY −Y ∗XY = I −Y ∗XA−A∗XY −Y ∗XY.

By (2.1)

‖I −Y ∗XA−A∗XY −Y XY‖ ≥ 1−‖Y ∗XA−A∗XY −Y ∗XY‖,≥ 1−‖X‖(2‖A− Ã‖+‖A− Ã‖2) = c0.

Thus,

X − Ã∗XÃ ≥ c0I.

Hence,

(Xx,x)− (XÃx, Ãx)≥ c0(x,x)≥ c0(
X

‖X‖ x,x) =
c0

‖X‖ (Xx,x),

as claimed.

Proof of Theorem 1.1: Define the norms

|x|X =
√

(Xx,x) (x ∈ H ) and |A|X = sup
x∈H

|Ax|X
|x|X

.

Due to Lemma 2.1 and (1.4) we have

|A j|2X ≤ 1− c j

‖X‖ , (2.1)

where

c j := 1−‖X‖(2‖A−A j‖‖A‖+‖A−A j‖2).
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Put

a0 := max
j

√

1− c j

‖X‖ =

√

1− 1

‖X‖ (1−max
j

‖X‖(2‖A−A j‖‖A‖+‖A−A j‖2)

Then by (2.1)

max
j

|A j|X ≤ a0. (2.2)

Since X is positive definite, it is boundedly invertible. For any T ∈ B(H ) one has

‖T x‖2

‖x‖2
=

(X−1XT x,T x)

(X−1Xx,x)
≤ (X−1XT x,T x)

( 1
‖X‖Xx,x)

≤ ‖X‖‖X−1‖ (XT x,T x)

(Xx,x)
(x ∈ H ).

So

‖T‖2 ≤ ‖X‖‖X−1‖|T |2X
Hence, according to (2.2),

‖Aik · · ·Ai1‖ ≤ (‖X‖‖X−1‖)1/2|Aik · · ·Ai1 |X ≤ (‖X‖‖X−1‖)1/2ak
0

and therefore,

ρ(M )≤ limk→∞(‖X‖‖X−1‖)1/2ka0 = a0,

as claimed. �

3. Concrete classes of operators

In this section we suggest estimates for X(A) under various assumptions. From (1.6) it follows

‖X(A)‖ ≤ sup
|z|=1

‖(Iz−A)−1‖2. (3.1)

Let there be monotonically increasing non-negative continuous function F(x) (x ≥ 0), such that F(0) = 0, F(∞) = ∞ and

‖(λ I −A)−1‖ ≤ F(1/dist(A,λ )) (λ 6∈ σ(A)),

where dist(A,λ ) = infs∈σ(A) |s−λ |. If rs(A)< 1 and |z|= 1, then obviously, dist(A,z)≥ 1− rs(A) and therefore, ‖(Iz−A)−1‖ ≤ F(1/(1−
rs(A))). Now (3.1) implies

‖X(A)‖ ≤ F2

(

1

1− rs(A)

)

. (3.2)

3.1. Operators in finite dimensional spaces

Let Cn (n < ∞) be the complex n-dimensional Euclidean space with a scalar product (., .), the Euclidean norm ‖.‖ =
√

(., .) and unit

matrix I, Cn×n is the set of all n× n matrices. λk(A),k = 1, ...,n, are the eigenvalues of A ∈ C
n×n, counted with their multiplicities;

N2(A) = (trace AA∗)1/2 is the Hilbert-Schmidt (Frobenius) norm of A. The quantity (the departure from normality of A)

g(A) = [N2
2 (A)−

n

∑
k=1

|λk(A)|2 ]1/2,

plays an essential role hereafter. The following relations are checked in [21, Section 3.1]:

g2(A)≤ N2
2 (A)−|trace A2| and g2(A)≤ N2(A−A∗)

2
= 2N2

2 (AI),

where AI = (A−A∗)/2i. If A is a normal matrix, then g(A) = 0.

Due to Example 3.3 from [21],

‖Am‖ ≤
n−1

∑
k=0

m!rm−k
s (A)gk(A)

(m− k)!(k!)3/2
(m = 1,2, ...).

Now (1.5) implies

‖X(A)‖ ≤ ξn(A) :=
∞

∑
j=1

(

n−1

∑
k=0

m!rm−k
s (A)gk(A)

(m− k)!(k!)3/2

)2

(A ∈ C
n×n). (3.3)

Note that if A is normal, then g(A) = 0 and (3.3) gives us the sharp inequality (1.7).

Theorem 1.1 and (3.3) yield the following corollary.
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Corollary 3.1. Let M be a finite set of n×n-matrices. Let there be an n×n-matrix A with rs(A)< 1, such that

ξn(A) max
B∈M

(2‖A−B‖‖A‖+‖A−B‖2)< 1.

Then M is Schur-Kohn stable. Moreover,

ρ(M )≤
√

1− 1

ξn(A)
(1−ξn(A) max

B∈M
(2‖A−B‖‖A‖+‖A−B‖2).

Let us point the more compact but less sharper estimate for X(A). To this end put

ηn(A) :=
n−1

∑
k=0

gk(A)√
k!(1− rs(A))k+1

.

By Theorem 3.2 from [21]

‖(A−λ I)−1‖ ≤
n−1

∑
k=0

gk(A)

(dist(A,λ ))k+1
√

k!
(A ∈ C

n×n,λ 6∈ σ(A)).

Making use of (3.2) we can assert that

‖X(A)‖ ≤ η2
n (A) (A ∈ C

n×n).

So in Corollary 3.1 one can replace ξn(A) by η2
n (A).

3.2. Hilbert-Schmidt operators

Denote by SN2 the ideal of Hilbert-Schmidt operators in H with the finite norm N2(A) = (trace AA∗)1/2. In the infinite dimensional case

we put

g(A) = [N2
2 (A)−

∞

∑
k=1

|λk(A)|2 ]1/2,

where λk(A),k = 1,2, ..., are the eigenvalues of A ∈ SN2, counted with their multiplicities and enumerated in the non-increasing order of

their absolute values.

Since

∞

∑
k=1

|λk(A)|2 ≥ |
∞

∑
k=1

λ 2
k (A)|= |trace A2|,

one can write

g2(A)≤ N2
2 (A)−|trace A2|.

If A is a normal Hilbert-Schmidt operator, then g(A) = 0, since

N2
2 (A) =

∞

∑
k=1

|λk(A)|2

in this case. Moreover,

g2(A)≤ N2
2 (A−A∗)

2
= 2N2

2 (AI),

cf. [21, Section 7.1]. Due to Corollary 7.4 from [21] for any A ∈ SN2 we have

‖Am‖ ≤
m

∑
k=0

m!rm−k
s (A)gk(A)

(m− k)!(k!)3/2
(m = 1,2, ...).

Now (1.5) implies

‖X(A)‖ ≤ ξ∞(A) :=
∞

∑
j=1

(

m

∑
k=0

m!rm−k
s (A)gk(A)

(m− k)!(k!)3/2

)2

(A ∈ SN2). (3.4)

If A is normal, then (3.4) gives us inequality (1.7).

Furthermore, by Theorem 7.1 from [21] for any A ∈ SN2 we have

‖Rλ (A)‖ ≤
∞

∑
k=0

gk(A)

(dist(A,λ ))k+1
√

k!
(λ 6∈ σ(A)).

Inequality (3.2) gives us the more compact but less sharper estimate

‖X(A)‖ ≤ η2
∞(A) (A ∈ SN2),
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where

η∞(A) :=
∞

∑
j=0

g j(A)√
j!(1− rs(A)) j+1

.

Now we can directly apply Theorem 1.1.

By the Schwarz inequality

(
∞

∑
j=0

(cg) j(A)

c j
√

j!(1− rs(A)) j
)2 ≤

∞

∑
k=0

c2k
∞

∑
j=0

g2 j(A)

c2 j j!(1− rs(A))2 j
=

1

1− c2
exp [

g2(A)

c2(1− rs(A))2
] (c ∈ (0,1)).

Thus,

‖X(A)‖ ≤ 1

(1− c2)(1− rs(A))2
exp [

g2(A)

c2(1− rs(A))2
] (A ∈ SN2,c ∈ (0,1)).

In particular, taking c2 = 1/2, we get

‖X(A)‖ ≤ η̂(A) :=
2

(1− rs(A))2
exp [

2g2(A)

(1− rs(A))2
].

Now Theorem 1.1 implies the following corollary.

Corollary 3.2. Let M be a finite set of bounded operators from H Let there be an A ∈ SN2 with rs(A)< 1, such that

η̂(A) max
B∈M

(2‖A−B‖‖A‖+‖A−B‖2)< 1.

Then M is Schur-Kohn stable. Moreover,

ρ(M )≤
√

1− 1

η̂(A)
(1− η̂(A) max

B∈M
(2‖A−B‖‖A‖+‖A−B‖2).

Similarly, making use of Theorems 7.2, 7.3 from [21] one can apply Theorem 1.1 to Shatten-von Neumann operators.

3.3. Non-compact non-normal operators

In this subsection we suggest a norm estimate for the solution of (1.1) under the condition

AI = (A−A∗)/(2i) ∈ SN2. (3.5)

To this end introduce the quantity

gI(A) :=
√

2

[

N2
2 (AI)−

∞

∑
k=1

(ℑ λk(A))
2

]1/2

.

Obviously, gI(A)≤
√

2N2(AI). Due to Example 10.2 from [21],

‖Am‖ ≤
m

∑
k=0

m!rm−k
s (A)gk

I (A)

(m− k)!(k!)3/2
(m = 1,2, ...).

Now (1.5) implies

‖X(A)‖ ≤ ξI(A) :=
∞

∑
j=0

(

m

∑
k=0

m!rm−k
s (A)gk(A)

(m− k)!(k!)3/2

)2

(AI ∈ SN2).

If A is normal from this inequality we get (1.7).

Furthermore, by Theorem 9.1 from [21] under condition (4.1) we have,

‖Rλ (A)‖ ≤
∞

∑
k=0

gk
I (A)

(dist(A,λ ))k+1
√

k!

and

‖Rλ (A)‖ ≤
√

e

dist(A,λ )
exp [

g2
I (A)

2(dist(A,λ ))2
] (λ 6∈ σ(A)).

Inequality (3.2) implies

‖X(A)‖ ≤ η2
I (A) and ‖X(A)‖ ≤ η̂2

I (A) (AI ∈ SN2),

where

ηI :=
∞

∑
j=0

g
j
I (A)√

j!(1− rs(A)) j+1
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and

η̂I :=

√
e

1− rs(A)
exp [

g2
I (A)

2(1− rs(A))2
].

Now we can directly apply Theorem 1.1.

Some other classes of operators can be considered, in particular, via norm estimates for operator functions from [21].

4. Example

The following example characterizes the sharpness of Theorem 1.1.

Let H = C
n, M = {A1,A2} with real positive matrices matrices A1 = diag (ak)

n
k=1,A2 = diag (bk)

n
k=1; (ak,bk ≥ 0) and rs(A1) < 1. So

am = maxk ak < 1. Take A = A1. Since A1 is Hermitian, according to (1.7) condition (1.4) takes the form

1

1− r2
s (A1)

(2rs(A1)‖A1 −A2‖+‖A1 −A2‖2)< 1. (4.1)

Besides, ‖A1 −A2‖= maxk |ak −bk|.
Assume that rs(A2)≥ 1. Namely, bm ≥ 1. So M is Schur-Kohn unstable. Then |am −bm|= bm −am ≥ 1−am and

1

1−a2
m

(2am|am −bm|+ |am −bm|2)≥
1

1−a2
m

(2am(1−am)+(1−am)
2)≥ 1

1+am
(2am +1−am)≥ 1.

Therefore, condition (4.1) is not fulfilled. So condition (1.4) is necessary under consideration.
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Abstract

In this paper, the existence and uniqueness problem of the initial and boundary value

problems of the linear fractional Caputo-Fabrizio differential equation of order σ ∈ (1,2]
have been investigated. By using the Laplace transform of the fractional derivative, the

fractional differential equations turn into the classical differential equation of integer order.

Also, the existence and uniqueness of nonlinear boundary value problem of the fractional

Caputo-Fabrizio differential equation has been proved. An application to mass spring

damper system for this new fractional derivative has also been presented in details.

1. Introduction

The fractional differential calculus has gained much interest by the many researcher in the last decades and it has strong mathematical

background and many papers are attributed to the development of it. Among them, we can cite some e.g, [1, 2, 3]. Fractional calculus has

been also used for modelling physical phenomena including control systems, mechanics, viscoelasticity [4, 5, 6]. Up to now, several definition

of fractional derivative has been proposed. Some frequently used definition of fractional derivative can be given as the Riemann-Lioville,

Caputo, Grünwald–Letnikov [7, 8] and conformable fractional derivative [9, 10, 11, 12, 13]. Among them, the Riemann-Lioville definition

requires nonlocal initial condition, so it does not reflect physical experiment while the Caputo definition allows to use the classical initial

condition. In the recent years, a new definition of fractional order derivative has been defined by Caputo and Fabrizio [14] with a regular

kernel. This new definition can be able to describe better heterogeneousness and systems with different scales with memory effects.

The other good property of this new definition is that the real power turn into the integer by the Laplace transformation, thus the exact

solution can be easily found for some cases. Some properties of this definition have been studied in [15]. Several papers are devoted to

development of this new fractional derivative [16, 17]. Some applications based on this new fractional derivative can be found in the papers

[18, 19, 20, 21, 22, 23]. In this paper, the previous results will be extended and the existence and uniqueness solution will be given for high

order fraction derivative. As an application, a mass-spring-damper system will be analyzed basen on this new derivative. In [15], the results

are presented when the fractional order α ∈ (0,1). The aim of this paper enriches these results for the case when the fractional order of

α +1 ∈ (1,2). In [19], a mass spring damper motion has been studied, but the solution available only for numerical approximation using

Laplace transform algorithm. More importantly, they consider the fractional order 2α ∈ (1,2) when α ∈ (0,1). However, this is not true

when α ∈ (0,1/2). Additionally, the Caputo-Fabrizio fractional operator does not have semigroup property. For this reason, the different

cases of the fractional order also have been examined and the exact solution for each case is given for the mass spring damper equation using

only the Laplace transformation.

The rest of the paper is organized as follows. In Section 2, preliminaries and previous related works have been introduced. The existence and

uniqueness results for linear problems have been presented in Section 3. Some simple but important initial and boundary value problems

of the fraction Caputo-Fabrizio differential equation are given in Section 4. In Section 5, the existence and uniqueness of the nonlinear

Email addresses and ORCID numbers: topraksp@artvin.edu.tr, https://orcid.org/0000-0003-3901-9641, (Ş. Toprakseven)
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boundary value problem of the fraction Caputo-Fabrizio differential equation have been demonstrated. Finally, an application to a mass

spring damper system is given in the last section.

2. Preliminaries and Previous Results

We present some definitions and previous results of the new fractional Caputo–Fabrizio derivative that are needed in this work.

Definition 2.1. Let α ∈ (0,1) and f ∈ H1(a,b),a < b. The Caputo fractional derivative of the function f defined as

Dα
C f (x) =

1

Γ(1−α)

∫ x

a
(x− t)α f ′(t)dt.

Definition 2.2. [14] Given a < b and f ∈ H1(a,b), the fractional Caputo-Fabrizio derivative of the function of order α ∈ (0,1) is defined

for t ≥ 0

CF Dα f (x) =
1

1−α

∫ x

a
exp

(

−
α

1−α
(x− t)

)

f ′(t)dt. (2.1)

Definition 2.3. [15] The Caputo-Fabrizio fractional integral of oder α ∈ (0,1) is defined as

CF
I ( f )(x) = (1−α) f (x)+α

∫ x

0
f (s)ds.

The Caputo-Fabrizio fractional of order σ = α +n for α ∈ (0,1) and n ∈ N defined as

CF Dα+n f (x) :=CF Dα (CF Dn f (x)).

Theorem 2.4. [14] Let the function f (x) satisfy f (k)(a) = 0, k = 1,2, . . . ,n, then the equality

CF Dα (CF Dn f (x)) =CF Dn(CF Dα f (x)) (2.2)

holds.

Definition 2.5. For σ = α +1 with α ∈ (0,1), the Caupto-Fabrizio fractional derivative of order σ defined as

CF Dσ f (x) =
1

1−α

∫ x

a
exp

(

−
α

1−α
(x− t)

)

f ′′(t)dt. (2.3)

Note that the equality CF Dα (CF D1 f (x)) =CFD1(CF Dα f (x)) is defined unambiguously when f ′(0) = 0. (see [14])

Definition 2.6. For a function f (x), the Laplace transformation F(s) of f is given by

F(s) = L

[

f (x)
]

=
∫

∞

0
exp(−sx) f (x)dx.

Lemma 2.7. [14] The Laplace transform of the Caputo-Fabrizio fractional of order σ = α +n for α ∈ (0,1) and n ∈ N is given by

L

{CF
Dσ ( f )(x)

}

(s) =
sn+1L { f (x)}(s)− sn f (0)− sn−1 f ′(0)−·· ·− f (n)(0)

s+α(1− s)
.

3. Existence and Uniqueness of the Solution

We show the existence and uniqueness of the solution of the fractional differential equations involving the Caputo- Fabrizio fractional

derivative in this section. We also derive the solution for some fractional differential equation that are important for physical applications.

Theorem 3.1. [15] For α ∈ (0,1) and h ∈ L1(0,∞), the following first order fractional differential equation

CF Dα (u)(x) = h(x), x ≥ 0

u(0) = u0

has the unique solution

u(x) = u0 +(1−α)(h(x)−h(0))+α

∫ x

0
h(s)ds.

Theorem 3.2. [15] For α ∈ (0,1) and h ∈ L1(0,∞), the following first order fractional differential equation

CF Dα (u)(x) = λu(x)+h(x), λ 6= 0, x ≥ 0

u(0) = u0

has the unique solution, when λ (1−α) = 1

u(x) =−
1−α

λα
u′(x)−

α

λ
u(x)

and when λ (1−α) 6= 1

u(x) =
λα

1−λ (1−α)

∫ x

0
u(s)ds+u0 +

1−α

1−λ (1−α)
(h(x)−h(0))+

α

1−λ (1−α)

∫ x

0
h(s)ds.
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Theorem 3.3. [15] If α ∈ (0,1), then the function u solves the fractional differential equation

CF Dα (u)(x) = 0, x ≥ 0

if and only if u is a constant function.

We study here the boundary value problem of a class of the Caputo-Fabrizio fractional differential equations of order σ ∈ (1,2) on [0,1]

Theorem 3.4. For σ = α +1, α ∈ (0,1), and g : [0,∞)→ R with g ∈ L1(0,∞), the following boundary value problem of the fractional

Caputo-Fabrizio differential equation

CF Dσ (u)(x) = g(x), x ≥ 0 (3.1)

u(0) = u0, u(1) = u1 (3.2)

has the unique solution given by

u(x) = u0 +(u1 −u0)x+(1−α)(1− x)
∫ x

0
g(t)dt +α(1− x)

∫ x

0
tg(t)dt

− (1−α)x
∫ 1

x
g(t)dt −αx

∫ 1

x
(1− t)g(t)dt.

Proof. Applying the Laplace operator to the equation (3.1), we get

L

{CF
Dσ (u)(x)

}

(s) = L

{

g(x)
}

(s)

Appealing the Lemma 2.7, we are led to

s2U(s)− su(0)−u′(0)

s+α(1− s)
= G(s)

where U(s) = L

{

(u)(x)
}

(s) and G(s) = L

{

g(x)
}

(s).

Equivalently, we can rewrite the last equation as

U(s) =
1

s
u(0)+

1

s2
u′(0)+

1−α

s
G(s)+

α

s2
G(s).

The inverse Laplace operator is applied to above equation to arrive at

u(x) = u(0)+ xu′(0)+(1−α)
∫ x

0
g(t)dt +α

∫ x

0
(x− t)g(t)dt. (3.3)

Taking into account the boundary conditions (3.2), we have the desired result

u(x) = u0 +(u1 −u0)x+(1−α)(1− x)
∫ x

0
g(t)dt +α(1− x)

∫ x

0
tg(t)dt

− (1−α)x
∫ 1

x
g(t)dt −αx

∫ 1

x
(1− t)g(t)dt.

For the uniqueness, as usual, we suppose that there are two solutions of the problem, say v1 and v2. Then we must have

CF Dσ (v1)(x)−
CF Dσ (v2)(x) =

CF Dσ (v1 − v2)(x) =
CF Dα (Dv1 −Dv2)(x) = 0

Thus, by Theorem 3.3 we get

Dv1(x) = Dv2(x).

This implies that v1(x) = v2(x)+ c for some constant c. But the condition v1(0) = v2(0) leads to c = 0. That is v1(x) = v2(x) for all

x ≥ 0.

Remark 3.5. In Theorem 3.4, if we let h(x) := g(x)−g(0), then h(0) = 0 so that the initial value problem

CF Dσ (u)(x) = h(x), x ≥ 0

u(0) = A, u′(0) = B

has the unique solution of much simpler form given by

u(x) = A+Bx+(1−α)
∫ x

0
h(t)dt +α

∫ x

0
(x− t)h(t)dt.

We further study the linear differential equation of fractional order in the sense of Caputo-Fabrizio fractional derivative, then we will work on

nonlinear boundary value problems of the fractional Caputo-Fabrizio differential equations. We first give the results for the linear cases.

Theorem 3.6. If σ ∈ (1,2) and g ∈ L1(0,∞)∩C1[0,∞), then the following linear boundary value problem of the fractional Caputo-Fabrizio

differential equation has the unique solution for all η ∈ R.

CF Dσ (u)(x) = ηu(x)+g(x), η 6= 0, x ≥ 0 (3.4)

u(0) = u0, u(1) = u1 (3.5)
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Proof. The case when η = 0 is already was proved in Theorem 3.4. So, assume that η 6= 0. we see that from Theorem 3.4, the solution to

(3.4) and (3.5) can be written as

u(x) = u0 +(u1 −u0)x+(1−α)(1− x)
∫ x

0

(

ηu(t)+g(t)
)

dt +α(1− x)
∫ x

0
t
(

ηu(t)+g(t)
)

dt

− (1−α)x
∫ 1

x

(

ηu(t)+g(t)
)

dt −αx

∫ 1

x
(1− t)

(

ηu(t)+g(t)
)

dt.

A little algebraic manipulation reveals that

u(x)+ηx

∫ 1

0
(1−αt)u(t)dt −η

∫ x

0

(

1−α + xα − tα
)

u(t)dt

= u0 +(u1 −u0)x+(1−α)(1− x)
∫ x

0
g(t)dt +α(1− x)

∫ x

0
tg(t)dt −(1−α)x

∫ 1

x
g(t)dt −αx

∫ 1

x
(1− t)g(t)dt (3.6)

Differentiating the equation (3.6) twice, we have that

u′′(x)− (1−α)ηu′(x) = (1−α)g′(x)+αg(x). (3.7)

Now we have two cases to analyze. First, we assume that (1−α)η = 0 ⇔ α = 1 since η 6= 0. In this case, the equation (3.7) becomes

u′′(x) = g(x).

This is just a second order ordinary differential equation with solution given by

u(x) =−u0x+u0 +u1x+(x−1)
∫ 0

1

(

∫ s

1
g(y)dy

)

ds+
∫ x

1

(

∫ s

1
g(y)dy

)

ds.

The second case when (1−α)η 6= 0, we have

u(x) = u0 +
∫ x

0
e(1−α)ηt

∫ t

0
e(1−α)ηs

(

(1−α)g′(s)+αg(s)
)

dsdt

+
u1 −u0 −

∫ 1
0 e(1−α)ηt

∫ t
0 e(1−α)ηs

(

(1−α)g′(s)+αg(s)
)

dsdt

∫ 1
0 e(1−α)ηtdt

∫ x

0
e(1−α)ηtdt.

4. Solutions of the initial and boundary value problem of the linear Caputo-Fabrizio fractional

differential equations

In this section, some initial and boundary value problems of the fractional differential equation in the sense of the Caputo-Fabrizio derivative

have been presented.

Example 4.1. If σ = α +1 with α = 1
2 and c1,c2 ∈ R, then the following initial value problem of fractional differential equation

u′′(x)+ cCF
1 Dσ (u)(x) = cCF

2 Dα u(x)+1− exp(−x) (4.1)

u(0) = 0, u′(0) = 0 (4.2)

has a unique solution of the form

u(x) =
exp(−

3(2c1+1)x
2 )sinh

(

√

9x(2c1+1)2

4 +2c2

)

√

9x(2c1+1)2

4 +2c2

.

In fact, by the Laplace transformation, the equation can be written as

s2U(s)− su(0)−u′(0)+ c1

s2U(s)− su(0)−u′(0)

(s+1)/2
− c2

s

(s+1)/2
=

s

s+1

U(s)
(

s3 +(2c1 +1)s2 −2c2s
)

= s

U(s) =
s

s3 +(2c1 +1)s2 −2c2s

where U(s) = {L u(t)}(s). Now, the inverse Laplace transformation gives us that

u(x) =
exp(−

3(2c1+1)x
2 )sinh

(

√

9x(2c1+1)2

4 +2c2

)

√

9x(2c1+1)2

4 +2c2



104 Universal Journal of Mathematics and Applications

Example 4.2. Consider the initial value problem

CF Dσ u(x)+u(x) = 0

u(0) = 1, u′(0) = 0

where σ = α +1 with α ∈ (0,1)

Applying the Laplace transformation leads to have

U(s)(s2 + s+α(1− s)) = s.

Now, the inverse Laplace transformation gives the exact solution as follows

u(x) = exp(x(α/2−1/2))(cosh(x(α2/4−3α/2+1/4)1/2)+(sinh(x(α2/4

−3α/2+1/4)1/2)(α/2−1/2))/(α2/4−3α/2+1/4)1/2)

Example 4.3. Consider the system of fractional algebraic-differential equations

CF D1/2u(x)− xv(x)+u(x)− (1+ x)v(t) = 0

v(x) = sinx

u(0) = 1, v(0) = 0

Applying the Laplace transformation, one gets

sU(s)−1

(s+1)/2
+V (s)+ sV ′(s)+U(s)−V (s)+V ′(s) = 0

V (s) =
1

s2 +1
, V ′(s) =−

2s

(s2 +1)2

U(s) =
s(s+1)

(1+ s2)2
+

1

s+1

Now, the inverse Laplace transform gives the exact solution

u(x) =
x+1

2
sinx+

x

2
cosx+ exp(−x)

Example 4.4. Consider the boundary value problem

CF D3/2u(x) = λu(x)

u(0) = 0, u(1) = 1

This is the equation given in the problem (3.4) and (3.5) with σ = 1+1/2 and u0 = 0,u1 = 1. Thus, the exact solution given by

u(x) =
1

∫ 1
0 e(λ/2)tdt

∫ x

0
e(λ/2)tdt =

eλx/2 −1

eλ/2 −1

5. Nonlinear boundary value problems

We prove the existence and uniquness of the nonlinear boundary value problems of the Caputo-Fabrizio differential equations by the help of

the Banach contraction principle.

Let C(I) be the Banach space of continuous functions on I = [0,1] with maximum norm

‖x‖= max
s∈[0,1]

|x(s)|, x ∈C(I).

We now state the existence and uniquness of the solution in the next theorem.

Theorem 5.1. If σ = 1+α, α ∈ (0,1] and F : [0,1]×R→ R is a continuous function with the property that

∣

∣

∣
F(x,u1)−F(x,u2)

∣

∣

∣
≤ q|u1 −u2| u1,u2 ∈ R, q > 0,

then the boundary value problem

CF Dσ (u)(x) = F(x,u(x)), x ≥ 0 (5.1)

u(0) = u0, u(1) = u1 (5.2)

has a unique solution in C(I) provided q < 1.
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Proof. Let the operator T : C(I)→C(I) be given by

(Tu)(x) = u0 +(u1 −u0)x+(1−α)(1− x)
∫ x

0
F(t,u(t))dt +α(1− x)

∫ x

0
tF(t,u(t))dt

− (1−α)x
∫ 1

x
F(t,u(t))dt −αx

∫ 1

x
(1− t)F(t,u(t))dt

We see that the solution for the problem (5.1) and (5.2) is the fixed point of the map T . For u,v ∈C(I) and 0 ≤ t ≤ 1, we find that

∣

∣

∣
(Tu)(x)− (T v)(x)

∣

∣

∣
=

∣

∣

∣

∣

∣

(1−α)(1− x)
∫ x

0

(

F(t,u(t))−F(t,v(t)
)

dt +α(1− x)
∫ x

0
t
(

F(t,u(t))−F(t,v(t)
)

dt

− (1−α)x
∫ 1

x

(

F(t,u(t))−F(t,v(t)
)

dt −αx

∫ 1

x
(1− t)

(

F(t,u(t))−F(t,v(t)
)

dt

∣

∣

∣

∣

∣

≤ (1−α)(1− x)xq‖u− v‖+α(1− x)
x2

2
q‖u− v‖+(1−α)x(1− x)q‖u− v‖+αx

(1− x)2

2
q‖u− v‖

= (1− x)x
4−3α

2
q‖u− v‖ ≤ max

x∈[0,1]
(1− x)x

4−3α

2
q‖u− v‖ ≤

4−3α

8
q‖u− v‖ ≤ q‖u− v‖.

Since q < 1, the operator T is a contraction, and by the Banach contraction theorem T must have a unique fixed point that is the solution of

the problem (5.1) and (5.2).

6. An Application to a Mass-Spring-Damper System

In [19], a mass spring damper system equation has been modelled by the Caputo-Fabrizio fractional differential equation as follows

m

µ2(1−α)
CF D2α u(x)+

c

µ1−α
CF Dα u(x)+ ku(x) = F(x), α ∈ (0,1]. (6.1)

where µ is the dimension of second, m is the damping coefficient, c is the spring constant and F(x) is the force of the system. The parameter

µ is introduced because of the dimensionless quantity of the physical problem in the case of fractional derivative of the displacement. The

equation (6.1) has been provided with an initial displacement, u0, and velocity, v0 = 0 for the mass m. As in [19], two cases for the forcing

term will be considered. Additionally, the order of the fractional is also considered in two cases.

1 . Assume that the forcing term F(x) = A for some constant A. Moreover, suppose that α ∈ (0,1/2) so that 2α ∈ (0,1). Applying the

Laplace transform of (6.1) leads to get

sU(s)−u0

s+2α(1− s)
+ c

η2µα−1

k

( sU(s)−u0

s+α(1− s)

)

+η2U(s) = A
η2

k

1

s
(6.2)

U(s) =
u0(s+α(1− s)+B(s+2α(1− s)))

s(s+α(1− s)+ s+2α(1− s)
(

B+η2(s+α(1− s))
) (6.3)

+
(η2/k)A(s+2α(1− s))(s+α(1− s))

s2
(

s+α(1− s)+ s+2α(1− s)
(

B+η2(s+α(1− s))
) (6.4)

where
η2

k = µ2(1−α)

m and B = c
η2

k µα−1

The inverse Laplace transform yields the exact solution

u(x) = (Aη2/k)
( 2αx

(2αη2 +2B+1
−

−2αη2 +2α −6B+4αB+1

(2αη2 +2B+1)2
exp(

x(α +2αB−2αη2 +4α2η2 −2)

4αη2(α −1)

(cosh((x(4α2B2 +8α2Bη2 +4α2B+4α2n4 −12α2η2 +α2 −8αB+8αη2 −4α +4)1/2)/(4αη2(α −1)))+

(sinh((x(4α2B2 +8α2Bη2 +4α2B+4α2n4 −12α2η2 +α2 −8αB+8αη2 −4α +4)1/2)/(4αη2(α −1)))

(8α2B2 +4α2Bη2 +8α2B+4α2n4 −14α2η2 +2α2 −12αB2 +4αBη2 −12αB+6αη2 −3α +8B2 −4B+4))

÷ ((−2αη2 +2α −6B+4αB+1)(4α2B2 +8α2Bη2 +4α2B+4α2n4 −12α2η2 +α2 −8αB+8αη2 −4α +4)(1/2)))

(−2αη2 +2α −6B+4αB+1))/(2αη2 +2B+1)2)
)

+(2B+1)/(2αn2 +2B+1)− (exp((x(α +2αB−2αη2 +4α2η2 −2))/(4αη2(α −1)))(2B+1)

(cosh((x(4α2B2 +8α2Bη2 +4α2B+4α2η4 −12α2η2 +α2 −8αB+8αη2 −4α +4)1/2)/(4αη2(α −1)))+

(sinh((x(4α2B2 +8α2Bη2 +4α2B+4α2η4 −12α2η2 +α2 −8αB+8αη2 −4α +4)1/2)/(4αη2(α −1)))

(α −2B+4αB+4αB2 −2αη2 −4B2))/((2B+1)

(4α2B2 +8α2Bη2 +4α2B+4α2η4 −12α2η2 +α2 −8αB+8αη2 −4α +4)1/2)))/(2αη2 +2B+1)
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2 . Assume that the forcing term F(x) = A for some constant A. Moreover, suppose that α ∈ (1/2,1) so that 2α ∈ (1,2). Applying the

Laplace transform of (6.1) leads to get

s2U(s)−u0

s+α(1− s)
+ c

η2µα−1

k

( sU(s)−u0

s+α(1− s)

)

+η2U(s) = A
η2

k

1

s

U(s) =
u0(s+α(1− s)+B(s+2α(1− s)))

s(s+α(1− s)+ s+2α(1− s)
(

B+η2(s+α(1− s))
)

+
(η2/k)A(s+2α(1− s))(s+α(1− s))

s2
(

s+α(1− s)+ s+2α(1− s)
(

B+η2(s+α(1− s))
)

where
η2

k = µ2(1−α)

m and B = c
η2

k µα−1

The inverse Laplace transform yields

u(x) = u0

(

(exp(−x(B/2− (αη2)/2+η2/2))sinh(x((α2η4)/4− (αBη2)/2− (αη4)/2−αη2 +B2/4+(Bη2)/2+η4/4)1/2)

(B+1))/((α2η4)/4− (αBη2)/2− (αη4)/2−αη2 +B2/4+(Bη2)/2+η4/4)1/2
)

+(Aη2/k)
(

1/η2 − (exp(−x(B/2− (αη2)/2+η2/2))(cosh(x((α2η4)/4− (αBη2)/2− (αη4)/2−αη2 +B2/4+(Bη2)/2

+η4/4)1/2)+(sinh(x((α2η4)/4− (αBη2)/2− (αη4)/2−αη2 +B2/4+(Bη2)/2+η4/4)1/2)(B/2+(αη2)/2−η2/2))

÷ ((α2η4)/4− (αBη2)/2− (αη4)/2−αη2 +B2/4+(Bη2)/2+η4/4)1/2))/η2
)
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