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Abstract 

This research deals with dynamic response of a Polymer/BaTiO3 nanowire including viscosity influences. The 

wire is also impressed by a longitudinal electric field. Hamilton’s principle, Lagrangian strains and a refined 

higher-order beam theory are combined together in order to derive equations of motion. By combining 

nonlocality and small size effects of a unique model into the derived equations, the couple relations which 

describe nanosize behavior in a small scale are presented. By employing an analytical approach, the 

fundamental natural frequencies are calculated numerically. The important results display that the effect of 

internal viscosity and nonlocality whenever the nanowire is very large are pointless. 

Keywords: Dynamics response; Piezo-nanowires; Viscosity; Nonlocal theory of strain gradient; Analytical 

approach 

1. Introduction and Literature review 

In continuation of discovering of carbon nanotubes by Ijimia in 1991, a wide attention has 

been paid to the other one-dimensional nanomaterials for example; nanobelts, nanorods and 

nanowires [1]. Quasi aforementioned one-dimensional materials are a new group which in 

recent years have been presented in many scientific research. It was proved that these 

materials with a non-carbonic base show the amazing optic, thermal and mechanical 

characteristics and are utilized as main structural group in nanoscience and nanotechnology 

for equipment such as biological and chemical sensors, field effect transistors and logic 

circuits [2]. 

Paying attention to the new shape of nanostructures, namely nanowires, has been doubled 

after year 2000. The structures with thickness or diameter of a few tens of nanometers and 

even smaller and also non-limited length can be defined as nanowires. The nanowires' cross 

section might be cylindrical, hexagonal, polygons or etc. with regard to their crystallography 

[3]. The nanowires' length can be variable from a few tens of nanometers to micron or even 

millimeter. These nanostructures regarding their special properties can be used in the new 
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electronic parts. Because developments and progressives in the electronic industries are due to 

the decreasing of their parts [4].  

One of the most attractive nanostructures can be nanowires made of metals due to their unique 

properties, which lead to their various applications. Nanowires can be used on computers and 

other calculating devices. Nanoscale wires are required to achieve complex nanoscale 

electronics. In addition, the nanowires itself can be the basis of electronic components, such 

as memory [4]. Proper understanding of the properties, applications, and methods of making 

nanowires is very important because it will enable researchers to construct nanowires with 

controlled properties and dimensions and can easily adapt them to fit the structural elements 

in minimizing electrical and electronic equipment [3]. 

Theoretical investigations on the prediction of mechanical response of nanowires are rare and 

there have been a few studies about nanowires. Kiani [5] analyzed dynamically a nanowire 

exposed to a longitudinal magnetic shock. He assumed wires on an elastic foundation and 

used nonlocal continuum theory to study quantum effects. He also solved the obtained 

equations of motion by a semi-analytical approach. In another study, Kiani [6] examined a 

double current-carrying nanowire exposed to a longitudinal magnetic field based on a new 

integro-surface energy method. Pishkenari et al. [7] studied transverse natural frequencies of a 

silicon nanowire using atomistic simulation method. To model the nanoscale, they proposed a 

new continuum model at which surface stress and surface elasticity were considered by both 

Timoshenko and Euler-Bernoulli beam models. Their outcomes estimated the results for 

Timoshenko approach including surface effects are matched with MD results. Fu and Zhang 

[8] reported stability critical conditions and free torsional natural frequencies of an established 

continuum core-shell nanowire which included weak interfaces based on the surface 

elasticity. Dynamic buckling and free vibrations of a nanowire with an initial deformation 

considering surface effects were investigated by Kiani [9]. The nanowire was placed in an 

axial magnetic surround and frequencies of vibration were computed analytically. Gongbai et 

al. [10] investigated harmonic and transient response of an atomic nanowire made of silicon. 

Zhoua et al. [11] formulated nonlinear resonance of a ZnO piezo-nanowire derived by an 

electric field. Their results agreed with the experimental outcomes. Zhang et al. [12] 

combined the Euler-Bernoulli approach and a high-order surface stress in order to study 

transverse vibrations of a nanowire placed in a polymer foundation exposed to an axial 

compressive force. The pivot boundary condition was satisfied analytically based on a closed-

form solution. Li et al. [13] demonstrated three different elastic substrates for analysis free 

natural and excitation frequencies of a nanowire. The governing equations were derived 

regarding a surface elasticity and solved respecting to various boundary conditions. Su et al. 

[14] addressed small scale effects for considering mechanically transverse response of several 

nanostructures with one-dimension like nanoropes and nanowires. They presented the strain 

gradient model to examine small size influences and obtained constitutive equations on the 

basis of classical beam theory. Finally they computed free vibrations and buckling of the 

models under several edge conditions and validated the numerical results with the 

experimental tests. Samaei et al. [15] presented free vibration of a piezo-nanowire under an 

electric field for which surface effects addressed size influences. The simply-supported 

rectangular wire was modeled analytically on the basis of both Timoshenko and Euler-

Bernoulli beam approaches. Their outcomes showed that the shear deformations imposed a 

remarkable impact on the dynamics characteristics of the nanowire. Gheshlaghi and 

Hasheminejad [16] analyzed dynamically a piezo-nanowire included both nonlocal and 

surface elasticity effects based on the classic beam theory. An explicit solution technique was 

devoted to compute natural frequencies of the wire. Kiani also published some other research 

works related to the nanowires [17-19]. Mercan et al. [20] modeled stability of a Silicon 
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Carbide nanowire on the basis of a higher-order elasticity theory. Mercan and Civalek [21] 

analyzed dynamically a micro/nanowire based on the finite element model. On the other hand, 

Numanoglu et al. [22] examined natural frequencies of an Au nanowire based on the 

continuum elasticity approach. In terms of nanostructures analyses, there are a wide range of 

valuable published research in several conditions [23-65].  

Heretofore by review the literature, it is clear that the nanowires have been examined rarely 

which the most important ones are above mentioned. However within the published research 

there is no one in which a nanowire has viscoelastic influences. There is no doubt that 

considering a viscoelastic piezo-nanowire can lead to attractive results. Additionally, the 

Polymer/BaTiO3 nanowire has been rarely investigated. Therefore, in this paper it is tried to 

show a new schema for analysis of nanowires. To this, a modified beam model is employed 

from which one equation is obtained only whenever the classical mechanics is taken into 

consideration. To be the small scale influences taken into account, nonlocal strain gradient 

theory is applied. This model examines both size-dependent and nonlocality characteristics. In 

order to simply transfer the partial differential equation into the algebraic one the Navier 

method is utilized. This method fully satisfies pivot boundary condition. Afterwards, the 

outcomes for variety of cases would be depicted numerically. 

2. Theoretical Modelling 

A BaTiO3 nanowire is lied in a polymer matrix and displayed by Figure below. Cartesian 

coordinate is connected to the center of the wire (x) and along the upper quadrant of its 

diameter (z).  

        z 
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Fig. 1. A Polymer/BaTiO3 nanowire in a Cartesian coordinate system 

Regarding the refined shear deformation beam theory [48], the given displacement field is 

described as  

 

 
 

 

 
 

 
 

0
0

2
0

0 2

,
,

, ,

, , ,
,

w x t
u x t z

x z t x

W x z t w x t
w x t

U

B
x

  
      

   
     

  

 (1) 

 

In which B becomes 11

44

D
B

A
 . 

The dynamic equilibrium of the model is derived with the calculus of variations on the basis 

of the Hamilton’s principle leading to formulating governing equations [48] 
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  
0

0

t

S T dt          (2) 

 

where Π depicts total potential energy of the wire, T and Ω denote the kinetic energy and the 

work done by outer loads. S also symbolizes the strain energy of the wire. 

2.1. The strain potential energy 

The strain energy would be shown in a variational form as [48]  

 

   0ij ij i i

v

S D E dV       (3) 

 

In which the aforementioned parameters are respectively the electric field ( iE ), electric 

displacement ( iD ), strain tensor ( ij ), and stress tensor ( ij ), and can be summarized as 

follows [49] 

 

 ij ijkl kl ijk k=C e E    (4) 

 i ikl kl ik kD =e E   (5) 

 

where the displayed constants are piezoelectric ( ijke ), dielectric ( ik ), and elasticity quantities 

( ijklC ). The tensors in Eqs. (4-5) lead to [49]: 
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A potential function for the longitudinal electric field can be chosen as [49].  
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In which  (x,t) denotes the electric field and the outer electric voltage is shown by 
0V . 

Afterwards, the piezoelectric components take the form [49]: 
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The electric displacements can be expressed as [49]: 
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The coefficients in Eq. (12) are developed as 
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2.2. The external force 

The Winkler model as an external force makes a thermodynamic work calculated as [48-49] 
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where kw demonstrates the value of springiness in the foundation. 

2.3. The kinetic energy 

The kinetic energy is written as [48] 
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Applying the variational form of the kinetic energy, one gets 
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where Im  m cI I shows the mass moment of inertia, m0  0
A

m dA   is the volumetric mass 

density, and ρ exhibits the sectional density. 

Finally, doing δΠ=0 gives problem equations as 
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In which Nx, Mx and Qx symbolize respectively the in-plane, moment and shear stress 

resultants. 

The stress resultants are written as 
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Therefore Eq. (18) is rewritten as 
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where the coefficients are 
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A reveals the nanowire' cross section. Furthermore, cI  
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
 represents the area moment 

of the cross section.  

In this research, axial stress resultant addresses the longitudinal electric load ( E
ijN ) created by 

the electric field as [49]: 
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The equation below is applied to address the nonlocal strain gradient theory (NSGT) [66]. 

Efficiency and accuracy of NSGT as a size-dependent model was approved in many papers and 

this nanoscale approach is now a well-known one. Therefore, in this research the NSGT is used 

corresponding to 
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In which μ depicts nonlocality and also l symbloizes a length scale factor for NSGT. 

With regard to the Eq. (23) and applying it on the Eq. (19) the small scale stress resultants can 

be given by  

 

    
2

2 2 2 0
11 312

1 1x

w
M = l D E

x


 
         

 (24a) 

    
3

2 2 2 0
44 153

1 1x

w
Q = l A B E

xx


  
        

 (24b) 

 

The linear model of viscoelasticity, namely Kelvin-Voigt is here utilized to consider coupling 

of Viscous-Elasticity in the nanowire as [67] 

 

        1t E t t E g t
t

 
   

 
    (25) 

 

In which the viscoelastic factor is represented by g. Now the equations below are achieved 

which include a combination of Eq. (17) with Eqs. (12), (22), (24) and (25). The obtained 

relations should be utilized in order to compute the vibration frequencies of the piezo-

nanowire with viscoelasticity properties. 
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 (26a-b) 

3. Solution Technique 

In this section Navier solution method is used which reduces the partial differential equation 

(PDE) to an algebraic one as [48] 

 

      0 ,w x t y x W t  (27a) 

      ,x t y x t    (27b) 

 

In which  y x  is a fundamental mode shape,  W t and  t are temporary functions based 

on time. The mode shape which determines pivot boundary conditions is as 

 

   sin
x

y x
L

 
  

 
  (28) 

 

Substituting Eq. (27) into Eq. (26), Eq. (26) reduces to an algebraic equation where to 

compute pivot boundary supports, Eq. (28) is employed. Thereafter, in order to present 

vibration frequencies a harmonic function is assumed as below 

 

    exp nt t    (29a) 

    exp nW t t   (29b) 

 

In which ωn corresponds to the complex frequency of the nanowire. The natural frequency is 

divided into two parts, real and imaginary as 

 

 , 1n i  i=      (30) 

 

In which   is the real part and   is the imaginary part of the complex frequency, 

respectively. The real part shows damping ratio for the model and the imaginary part 

represents natural frequency. Consequently, based on the given algorithm and some 

mathematical simplifying, the equation below can be obtained. 
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t L
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   (31) 
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To compute the natural frequency of the piezo-visco-nanowire, a nontrivial solution can be 

done by vanishing determinant of the coefficients matrix (   0det K  ). After that, by 

calculating the obtained equation based on n the numeric outcomes for the natural frequency 

can be shown (Appendix A). 

 

4. Examples and Discussions   

At this point, several samples are considered with which a crystal comparison between the 

current formulation and others is presented. Table 1 considers several references with various 

beam approaches. As it is found, the numerical outcomes of the present work are matched 

with those obtained by references. In addition, very good agreements are observed whenever 

the beam tends to be thinner with increasing its ratio of length to thickness. The reason is 

because at this condition the influence of shear deformations cannot be important and the 

results of the mentioned beam theories are close to one another. By this Table, the current 

formulation can be approved and so, the numerical outcomes can be further developed by 

changes in the essential variables. On the other hand, the mechanical and electrical quantities 

and properties of the employed nanowire can be seen at Table 2 which are found by the well-

known references. 

 

Table 1. Validations for nondimensional vibration frequencies. 

2

n n

A
L

EI


  , E=1TPa, υ= 0.3, h=1nm 

L/h (e0a)2 Present 

Timoshenko beam 

theory (TBT) 

Sinusoidal beam 

theory (SBT) 

[68] [69] [68] [69] 

5 

0 9.2943 9.2740 9.2740 9.2752 9.2752 

1 8.8587 8.8477 8.8477 8.8488 8.8488 

2 8.4788 8.4752 8.4752 8.4763 8.4763 

3 8.1495 8.1461 8.1461 8.1472 8.1472 

4 7.8693 7.8526 7.8526 7.8536 7.8536 

10 

0 9.7209 9.7075 9.7075 9.7077 9.7077 

1 9.2666 9.2612 9.2612 9.2614 9.2614 

2 8.8857 8.8713 8.8713 8.8715 8.8715 

3 8.5483 8.5269 8.5269 8.5271 8.5271 

4 8.2320 8.2196 8.2196 8.2198 8.2198 

20 

0 9.8377 9.8281 9.8281 9.8282 9.8282 

1 9.3840 9.3763 9.3763 9.3764 9.3764 

2 8.9917 8.9816 8.9816 8.9816 8.9816 

3 8.6456 8.6328 8.6328 8.6329 8.6329 

4 8.3329 8.3218 8.3218 8.3218 8.3218 
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Table 2. The mechanical, electrical and geometrical characteristics of the piezo-nanowire [49] 

 

 

 

 

 

 

 

According to Figs. 2, the changes in the parameter of the electric voltage can be seen versus 

small scale parameters' changes. It is evident from both figures the influences of changes in 

the outer voltage on frequency results of the system is insignificant. As a matter of fact, the 

nanowire used in the present study does not have a significant reaction to external electricity, 

although the influence is sufficiently large at such nanoscale. Perhaps it’s because of its very 

low nanoscale thickness or its one dimensional manner. Furthermore, it is observed that 

increasing the nonlocal parameter in NSGT relation results in reduction of the natural 

frequency and regarding the second figure, the length scale parameter of the relation leads to 

increasing of the natural frequency. It can also be worth noting that in the case of both 

parameters which have the same values (e.g. value 1), the natural frequency of the nanowire 

in both figures will be in same values that are quite logical. In fact, this mode represents a 

local analysis, not taking the influences of small scale into account. 

 

 
Fig. 2a. Effects of variations of the electric voltage versus nonlocal parameter on the natural 

frequencies (β=5, l=1nm, g=5N.s/m) 

Material Mechanical and electrical Properties 

BaTiO3 

Dielectric (C/V.m) 

κ11=5.64e-9, κ 33=6.35e-9 

Piezoelectric (C/m2) 

e31=-2.2,  e15=5.8, e33=9.3 

Elastic (GPa) 

C11=226, C13=124,  

C33=216, C44= 44.2 

β=L/d (Aspect ratio), d=5 nm, ρ=5550 kg/m3,  kw=1.13GPa 
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Fig. 2b. Effects of variations of the electric voltage versus length scale parameter on the natural 

frequencies (β=5, e0a=1nm, g=5N.s/m) 

Figure 3 exhibits the variation of the coefficient of internal viscosity of the nanowire against 

the nonlocal coefficient’s variation. It is quite clear from the figure that the natural frequency 

is increased with increasing the viscoelastic coefficient. In fact, from a physical point of view, 

by increasing the coefficient, the nanowire’s energy absorption is higher, and so the nanowire 

will have a larger frequency. Moreover, the frequency variations are linear and with a slight 

gradient. It can be concluded that for nanowires with very large lengths, the effect of viscosity 

is not remarkable. In Fig. 4, the effect of changes in the Winkler elastic foundation on the 

frequency results of the nanowire can be observed. In fact, after embedding the elastic base, 

the system provides greater frequencies. Such an increase is shown with a fairly significant 

gradient in the aforementioned figure. It can also be seen that changes in the viscosity of the 

nanowire do not affect the variation of the elastic base. The reason is as a result of the 

parallelism of results of the three viscosity coefficients in Fig. 4. 

 

 
Fig. 3. Effects of variations of the viscoelastic coefficient versus nonlocal parameter on the natural 

frequencies (V0=5V, β=5, l=1nm) 
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Fig. 4. Effects of variations of the Winkler parameter versus viscoelastic coefficient on the natural 

frequencies (V0=5V, β=5, e0a=1nm, l=2nm) 
 

Figure 5 shows an important effect on nanowires. In fact, the physical nature of the nanowires 

is wires of very long lengths. For example, nanowires with a length to thickness ratio of 1,000 

are also available. According to this figure, it can be seen that in large proportions of this 

coefficient, the small scale effect is completely unimportant. However, in small ratios of this 

factor, the effect of small scale will be larger. Additionally, increasing the aspect ratio to 7 

will lead to a sharp decrease of vibration results for the nanostructure, and then the slope of 

the results will be mitigated. To the extent that it can be said, in very large quantities, the 

effect of the coefficient’s changes does not affect the frequency results of the modeled system 

in the present study. 

 

 

Fig. 5. Effects of variations of the aspect ratio versus nonlocal parameter on the natural frequencies 

(V0=10V, g=5N.s/m, l=1nm) 
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5. Conclusions 

In the study, a nanowire was embedded in an elastic substrate, and the electric field was 

assumed to be longitudinal. To analyze the effects of size-dependent, the nonlocal strain 

gradient theory was employed which has two variables. One parameter, known as nonlocal 

parameter, measures effects of quantum mechanics on the surface, and the second factor, 

known as the length scale one, measures the stiffness effects of the material by decreasing its 

size. The marked outcomes are listed below: 

 Although the BaTiO3 nanowire does not react remarkably to the external voltage, the 

influence is sufficiently large and cannot be neglected at nanoscale.  

 Whilst the nanowire is very large, the effects of small scale and viscoelasticity cannot be 

considerable. 

 The effect of increase of the external voltage on the nonlocal parameter is more than the 

length scale one.  

 Increase of the viscoelastic parameter is further remarkable for lower values of the 

nonlocal parameter. 
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Abstract 

In the present study, free vibration of functionally graded (FG) nanobeam is investigated. The variation of 

material properties is assumed in the thickness direction according to the power law. FG nanobeam is modeled 

as Euler-Bernoulli beam with different boundary conditions and investigated based on Eringen’s nonlocal 

elasticity theory. Governing equations are derived via Hamilton principle. Frequency values are found by using 

finite element method. FG nanobeam is composed of silicon carbide (SiC) and stainless steel (SUS304). The 

effects of dimensionless small-scale parameters (e0a/L), power law exponent (k) and boundary conditions on 

frequencies are examined for FG nanobeam. 

Keywords: Functionally graded nanobeam, nonlocal elasticity theory, free vibration, finite element method 

1. Introduction 

Functionally graded materials (FGMs) are defined as special composites which material 

properties change continuously along with direction of the material. FGMs are mostly 

composed of ceramic and metal. Thus the ceramic can resist high temperature in thermal 

environments, while the metal can reduce the stress occurring on the ceramic surface at the 

earlier case of cooling. FGMs are utilized in various applications such as aviation, 

mechanical, electronics, nuclear, optics, chemical, biomedicine and civil engineering [1-2]. 

The classical continuum theories lose their validity when the dimensions are reduced because 

they lack internal/additional material small-scale parameters. For this reason, some 

researchers have been used some higher order theories that take into account small-scale 

effect analysis of micro and nano structures [3-5]. Among higher order theories, nonlocal 

elasticity theory [6] have been widely studied recently [7-21]. Ebrahimi et al. [2] presented 

the applicability of differential transformation method (DTM) in investigations on vibrational 

characteristics of FG size-dependent nanobeams. Civalek and Demir [22] developed elastic 

beam model using nonlocal elasticity theory and Euler–Bernoulli beam theory for the bending 
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analysis of microtubules (MTs). Kadıoğlu and Yaylı [23] studied buckling analysis of a nano 

sized beam by using Timoshenko beam theory and Eringen’s nonlocal elasticity theory. 

Zargaripoor et al. [24] investigated free vibration of functionally graded nanoplate by using 

Eringen’s nonlocal theory. 

In this study, vibration characteristics of FG nanobeams are investigated. The variation of 

material properties is assumed in the thickness direction based on the power law. FG 

nanobeam is composed of silicon carbide (SiC) and stainless steel (SUS304). Governing 

equations are derived via Hamilton principle. The vibration behaviours of SiC/SUS304 FG 

nanobeam with simply-supported (S-S) and clamped-clamped (C-C) boundary conditions are 

analyzed using nonlocal finite element formulation. The effects of small-scale parameters 

(e0a/L), power law exponents (k) and boundary conditions on frequencies are examined for 

FG nanobeam.  

2. Functionally Graded Euler-Bernoulli Beam 

 
 

Fig. 1. Ilustration of FG beam 

L, b and h are length, width and thickness of the FG beam, respectively. The material 

properties of the beam are assumed to vary continuously in the thickness direction. The 

effective material property of FG beam is expressed by the power law as follows [9] 

 

 1
( ) ( )

2

k

U L L

z
P z P P P

h

 
    

 
 (1) 

Here P(z) is the effective material property of the beam, PU  and PL  are the material property 

at the upper and lower surfaces of the beam, k is the power law exponent (non-negative 

variable parameter). P(z) indicates to the properties of the beam components such as the 

elastic module (E), density (ρ) etc. and can be transformed into the following forms 
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Fig. 2. The variation of material properties through the thickness direction 

The displacements for Euler-Bernoulli beam can be written as follows [13] 

 

 
1

( , )
( , , ) ( , )

w x t
u x z t u x t z

x


 


 (4a) 

 
2( , , ) 0u x z t  (4b) 

 
3( , , ) ( , )u x z t w x t (4c) 

Here u1, u2 and u3 are the displacements in the x, y, z directions, respectively. u and w denote 

longitudinal and transverse displacements of any point on the neutral axis, respectively. 

Strains of the Euler-Bernoulli beam as follows 

 

 0xy yx xz zx yy yz zy zz              
2
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( , ) ( , )
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u x t w x t
z

x x
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 

 
xx (5) 

εxx is the non-zero only strain component. Stress, normal force and moment expressions for 

the functionally graded beam are written as follows 

 

 ( )xx xxE z  (6) 
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A1, B1 ve D1 are expressed as 
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 2

1 ( )
A

D E z z dA 1 ( ) ,
A

B E z zdA 1 ( ) ,
A

A E z dA  (8) 

The Hamilton principle to be used to obtain equations of motion is expressed as follows [25] 

 

 

0

( ) 0

T

S T dt   (9) 

Where S and T are the strain energy and kinetic energy, respectively. S and T for an element 

which has volume V and length L is as below 
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The first variation of the strain and kinetic energy are obtained as follows 
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Here I0, I1 and I2 are expressed as 
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Substituting Equations (12) and (13) into Equation (9), we obtain the equilibrium equations 

from the Euler-Lagrange equation as follows 
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3. Nonlocal Functionally Graded Nanobeam 

The nonlocal constitutive formulation is [6] 

 

  
2 2

01 ij ijkl kle a C    
 

 (17) 

Where σij is the stress tensor, Cijkl is the fourth-order elastic module tensor, εkl is the strain 

tensor, e0 is a material constant which is determined experimentally, a is the internal 

characteristic length. For Euler–Bernoulli FG nanobeam, Equation (17) can be rewritten as 
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Integrating Equation (18) over the cross-section area, we obtain the axial force-strain relation 

as 
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Multiplying Equation (18) by z and integrating over the cross-section area, we get the 

moment-curvature relation as 
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Differentiating Equation (15) with respect to x, then substituting Equation (19) we obtain 

Equation (21). And substituting Equation (16), we obtain Equation (22). 
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4. Finite Element Formulation 

The variational statement of FG Euler–Bernoulli nanobeam has the following form 
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ϕu and ϕw are the interpolation shape functions and they are expressed as below  

 

 
  1u

x x

L L


 
  
 

 (24) 

 
 

2 3 2 3 2 3 2 3

2 3 2 2 3 2

3 2 2 3 2
1w

x x x x x x x x
x

L L L L L L L L


 
        
 

 (25) 

The stiffness matrices ( ,uK ,uwK wK ), the classical mass matrices ( ,c

uM ,c

uwM c

wM ) and the 

nonlocal mass matrices ( ,nl

uM ,nl

uwM nl

wM ) are obtained using Equations (23)-(25) as follows 
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The frequencies of FG nanobeam are found as follows 

 

 

 2 0K M  (35) 

 

Here ω is frequency. K and M are total stiffness and mass matrices and given in Equations 

(36) and (37) 

 

 

 
u w uwK K K K   (36) 
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5. Numerical Results for Free Vibration of FG Nanobeam 

In this section frequency values of SiC/SUS304 FG nanobeam are obtained with various 

dimensionless small-scale parameters (e0a/L), power law exponents (k) and different 

boundary conditions such as S-S and C-C. The bottom surface of the beam is pure metal 

(SUS304) whereas the top surface of the beam is pure ceramic (SiC). Mechanical properties 

of nanobeam constituents are given in Table 1. Geometrical properties of the FG nanobeam 

are: b (width) = 100 nm, h (thickness) = 200 nm and L (length) = 10000 nm. 

 

Table 1. Properties of FG nanobeams constituents [26] 

 
Properties 

E (Gpa) )3ρ (kg/m 

Silicon Carbide (SiC) 

Stainless Steel (SUS304) 

427 

207.78 

3210 

8166 

 

The frequency values obtained from the analyses of S-S FG nanobeam and C-C FG nanobeam 

with various e0a/L ranging from 0 to 0.5 and various k ranging from 0 to 10 are presented in 

Table 2 and Table 3, respectively. 

 

 
 

Fig. 3. Functionally graded S-S nanobeam 

 

Table 2. Variation of first five frequencies (MHz) of FG nanobeam with k and e0a/L (S-S) 

k 
ω 

(MHz) 

a/L0e 

0 0.1 0.2 0.3 0.4 0.5 

0 1ω 10.4580 9.9772 8.8551 7.6106 6.5120 5.6163 

2ω 41.8114 35.4031 26.0350 19.5949 15.4576 12.6820 

3ω 93.9986 68.4054 44.0524 31.3427 24.1004 19.5126 

4ω 166.9175 103.9357 61.7090 42.7962 32.5689 26.2355 

5ω 260.4264 139.8566 78.9911 54.0604 40.9330 32.8930 

0.2 1ω 8.8233 8.4177 7.4710 6.4210 5.4941 4.7384 

2ω 35.2750 29.8685 21.9649 16.5316 13.0411 10.6994 

3ω 79.3007 57.7093 37.1643 26.4418 20.3320 16.4616 

4ω 140.8103 87.6793 52.0573 36.1025 27.4749 22.1321 

5ω 219.6787 117.9739 66.6317 45.6018 34.5284 27.7464 

2 1ω 6.1069 5.8262 5.1709 4.4442 3.8026 3.2796 

2ω 24.4163 20.6741 15.2035 11.4427 9.0266 7.4058 

3ω 54.8939 39.9478 25.7260 18.3037 14.0743 11.3951 

4ω 97.4831 60.7005 36.0393 24.9938 19.0209 15.3221 

5ω 152.1054 81.6851 46.1358 31.5747 23.9074 19.2116 

5 1ω 5.5038 5.2508 4.6602 4.0052 3.4271 2.9557 
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2ω 22.0051 18.6325 13.7021 10.3127 8.1352 6.6745 

3ω 49.4742 36.0037 23.1861 16.4965 12.6848 10.2701 

4ω 87.8615 54.7093 32.4822 22.5269 17.1435 13.8098 

5ω 137.0985 73.6259 41.5840 28.4595 21.5487 17.3161 

10 1ω 5.1688 4.9312 4.3766 3.7615 3.2185 2.7758 

2ω 20.6658 17.4984 12.8681 9.6850 7.6401 6.2682 

3ω 46.4626 33.8121 21.7747 15.4924 11.9126 9.6449 

4ω 82.5120 51.3783 30.5045 21.1554 16.0997 12.9690 

5ω 128.7487 69.1418 39.0514 26.7262 20.2363 16.2615 

 
 

Fig. 4. Functionally graded C-C nanobeam 

Table 3. Variation of first five frequencies (MHz) of FG nanobeam with k and e0a/L (C-C) 

k 
ω 

(MHz) 

a/L0e 

0 0.1 0.2 0.3 0.4 0.5 

0 1ω 23.7062 22.3654 19.3760 16.2643 13.6693 11.6421 

2ω 65.3103 53.9796 38.5572 28.5806 22.3751 18.2819 

3ω 127.9220 90.6560 57.6512 41.0566 31.6753 25.7224 

4ω 211.2074 128.1562 75.6097 52.4448 39.9337 32.1811 

5ω 315.0270 165.2416 93.2586 64.0399 48.6300 39.1599 

0.2 1ω 20.0006 18.8694 16.3471 13.7218 11.5325 9.8221 

2ω 55.1000 45.5403 32.5288 24.1120 18.8767 15.4234 

3ω 107.9189 76.4787 48.6349 34.6354 26.7212 21.6993 

4ω 178.1710 108.1072 63.7804 44.2395 33.6858 27.1461 

5ω 265.7327 139.3795 78.6615 54.0159 41.0180 33.0302 

2 1ω 13.8432 13.0603 11.3147 9.4976 7.9823 6.7985 

2ω 38.1389 31.5225 22.5165 16.6905 13.0666 10.6763 

3ω 74.7053 52.9434 33.6689 23.9776 18.4989 15.0223 

4ω 123.3507 74.8490 44.1601 30.6307 23.3236 18.7956 

5ω 183.9983 96.5172 54.4729 37.4063 28.4054 22.8738 

5 1ω 12.4760 11.7704 10.1972 8.5597 7.1940 6.1271 

2ω 34.3727 28.4098 20.2932 15.0425 11.7765 9.6222 

3ω 67.3299 47.7170 30.3455 21.6109 16.6729 13.5395 

4ω 111.1767 67.4631 39.8028 27.6084 21.0223 16.9411 

5ω 165.8462 86.9977 49.1007 33.7173 25.6041 20.6181 

10 1ω 11.7167 11.0541 9.5766 8.0387 6.7562 5.7542 

2ω 32.2807 26.6807 19.0580 14.1269 11.0597 9.0365 

3ω 63.2313 44.8121 28.4980 20.2951 15.6578 12.7152 

4ω 104.4073 63.3549 37.3788 25.9271 19.7421 15.9094 

5ω 155.7450 81.6980 46.1094 31.6632 24.0442 19.3619 
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(a) (b) 
 

Fig. 5. The variation of the frequencies with mode numbers for different e0a/L (S-S) 

(a) k=0  (b) k=10 
 

 

 (a)  (b) 
 

Fig. 6. The variation of the frequencies with mode numbers for different e0a/L (C-C) 

(a) k=0  (b) k=10 

 

The effects of mode number on the frequency are respectively shown in Fig. 5 and Fig. 6. The 

frequency values of FG nanobeam increase as the mode number increase. 
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Fig. 7. The variation of the frequencies with e0a/L (k=5) 

The effects of e0a/L (small-scale parameters) on the frequency are depicted in Fig. 7. The 

frequency values of FG nanobeam decrease as e0a/L increases. 

 

 

Fig. 8. The variation of the frequencies with k (e0a/L=0.1) 

The effects of k (power law exponent) on the frequency are depicted in Fig. 8. The frequency 

values of FG nanobeam decrease as k increases. Also it is clearly observed from the tables and 

figures that the frequency values of C-C boundary condition higher than the frequency values 

of S-S boundary condition. 
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6. Conclusions 

Due to the small-scale effect, the properties and behaviours of nano structures are different 

from macro structures. In this paper, free vibration analysis of FG nanobeam composed of 

SiC and SUS304 is investigated based on the nonlocal elasticity theory and Euler-Bernoulli 

beam theory. Finite element method is a powerful numerical method. A nonlocal finite 

element formulation is developed for free vibration analysis of FG nanobeams, in this study. 

Solutions are obtained for S-S and C-C FG nanobeams. According to the obtained results 

 By increasing e0a/L, the frequency values decrease. 

 Frequencies decrease with increasing k value. 

 The frequency values of S-S smaller than the frequency values of C-C. 

 The frequency values increase as the mode number increase. 

 As the k increases, the properties of the FG nanobeam transform from ceramic to metal. 
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Abstract 

In this study, 4 different pieces of automotive rear lamp lenses which are made of Polymethylmethacrylate (PMMA) 

and have different geometries have been inspected. Free-free natural frequencies and mode shapes of lenses have 

been estimated by the help of ANSYS WB® Finite Element Analysis (FEA) software. Meanwhile, by the help of 

Experimental Modal Analysis (EMA) methods; natural frequencies, damping ratios and mode shapes of the lenses 

have been determined. Finally, mode shapes calculated by FE and measured by EMA were compared and Modal 

Assurance Criteria matrix (MAC) was determined. After experimental modal tests, FRF’s were calculated by 

DEWESoft® X3 software then natural frequencies, damping ratios and mode shapes were calculated by the use 

of ME’scope® VESVT-570 Visual Modal software. In addition, MAC was calculated by the help of MEScope® 

software. The main reason for the use of such experimental methods was to understand if the assumptions made 

before theoretical analysis were satisfied in reality or not. 

Keywords: Auotomotive Lighting, Polymethylmethacrylate, Finite Element Modal Analysis, Experimental 

Modal Analysis, Modal Assurance Criteria (MAC) 

1. Introduction 

The reaction of the structures used in engineering under the influence of static and dynamic 

forces is very important in the design phase of these structures. In order to investigate the 

reactions of the structures under the influence of dynamic forces, the free vibration 

characteristics must be determined in the first stage. Free vibration characteristics are the mode 

shapes of the structure, damping ratio and vibration frequencies. The comparison of the 

frequencies of the forces coming to the structure and the free vibration frequencies are important 

for the resonance event. In addition, it is very important to determine how the structure behaves 

under the influence of these forces in the investigation of the response of structures to dynamic 

forces. 
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The machines manufactured today are exposed to very high vibration forces due to their high 

speed and elastic structure. The frequencies of these forces are especially worth knowing about 

the resonance vibrations. Because, if the frequency of one or more of the driving forces 

coincides with the natural frequencies of the system, resonance vibrations with a destructive 

effect occur. Therefore, vibration analysis should be done at the design phase in order to avoid 

resonance vibrations and unwanted dynamic conditions. A number of simple studies that will 

be done during the design phase can prevent the future large vibration problems [1]. 

Altunel (2009) in his study, structural finite element model updating of a utility helicopter 

fuselage was performed as a case study. Initially, experimental modal analyses were performed 

using modal shakers. Modal analysis of test results was carried out using LMS Test.lab® 

software. At the same time, finite element analysis of the helicopter fuselage was performed by 

MSC.Patran & Nastran software. Initial updating was processed first for the whole helicopter 

fuselage then, tail of the helicopter was tried to be updated.  

Furthermore, a new method was proposed for the optimum node removal location for getting 

better Modal Assurance Criterion (MAC) matrix. This routine was tried on the helicopter case 

study and it showed better performance than the Coordinate Modal Assurance Criterion 

(coMAC) that is often used in such analyses [2]. 

Gündoğan (2012) in her study, system identification of a model steel bridge has been performed 

and calibrated finite element model of the bridge is obtained. Although there are many different 

system identification types, in this study only NExT-ERA and ERA methods are used. Methods 

are programmed using Matlab. As a result of this study, modal parameters (mode shapes, 

natural frequencies, and damping ratios) of the structure has been estimated. On the other hand, 

modal assurance criteria (MAC) is calculated to mode shapes between NExT-ERA, ERA results 

and SAP2000 analysis results. It has been shown that mode shapes are in good agreement with 

each other. Natural frequencies, obtained from NExT-ERA and ERA, are also in good 

agreement [3]. 

Ay (2019), in his study; first of all, finite element undamped modal analysis was performed on 

one of the automotive rear lamp lenses and were obtained natural frequencies and mode shapes. 

Then, Frequency Response Functions (FRF) of an automotive rear lamp lens, made of 

polycarbonate (PC) material, were obtained by using Impact Hammer Test Methods. At the 

same time; dynamic characteristics of the structure, natural frequencies, damping ratios and 

mode shapes were obtained. Damping ratios were calculated from the FRF’s by using the Half 

Power Method. Finite Element Analysis (FEA) results and test results were compared and the 

best test method was determined [4]. 

Ay (2019), in his study, the weight of the modal accelerometer used in the Roving Hammer 

Impact Test Method was added in the finite element analysis (FEA) and the undamped modal 

analysis of the automotive rear lamp lenses were performed. Also, calculated new Elastic 

Modulus for Polymethyl-methacrylate (PMMA) material with using natural frequency formula 

and this value was used in the ANSYS WB® program and the undamped modal analysis was 

repeated. After that, frequency response functions (FRFs) of an automotive rear lamp lens were 

obtained by using Roving Hammer Impact Test Method. At the same time; dynamic 

characteristics of the structure, natural frequencies, damping ratios and mode shapes were 

obtained. Damping ratios were calculated from the FRF’s by using the Half Power Method. 

Finally, experimental modal analysis (EMA) and FEA results were compared [5]. 
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The main aim of this study comparison of FEA results with the results of the Roving Hammer 

test for automotive rear lamp lenses made of PMMA material. EMA measurements were 

performed on the models. In order to make a comparison of experimental and analysis results, 

the analyses of the measured models with finite element method were also performed. In the 

EMA measurements, impact hammer and modal accelerometers were used. With the impact 

hammer at the points determined on the structures, the drive operation was carried out and the 

force applied to the structure with the force gauge at the end of the impact hammer was 

measured. Due to the applied force, the vibration in the structure was measured by the 

accelerometers placed at the determined points. The measured signals were processed in the 

DEWESoft® Sirius HD 16x STGS model data collection system to obtain FRF. FRF’s were 

pre-controlled and natural frequencies were determined and the damping ratios corresponding 

to these natural frequencies were calculated by using the half power method. 

Natural frequencies and mode shapes obtained by experiments and analysis were compared and 

Modal Assurance Criteria (MAC) was obtained. Then, the results obtained during the 

experiments and the results obtained from the comparison of experimental and theoretical 

results are presented. 

2. Material and Method 

2.1 Modal assurance criteria (MAC) 

The MAC is used to determine the similarity of two mode shapes: 

 If the mode shapes are identical (i.e., all points move the same) the MAC will have a value 

of one or 100%. 

 If the mode shapes are very different, the MAC value will be close to zero. 

If a mode shape was compared to itself, the MAC value should be one or 100%. 

For modes with different shapes, the MAC is less than 1. Shapes that are very different will 

have a value close to zero. Mode shapes that are used in the comparison can originate from a 

Finite Element Analysis (FEA) or from an Experimental Modal Analysis (EMA). In a typical 

MAC analysis, one might make a ‘MAC Matrix’.  A ‘MAC Matrix’ is a series of bar graphs of 

MAC values, that each range from 0 to 100% as shown in Fig. 1. 

 

Fig. 1. MAC matrix comparing a set of 9 modes 
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In Fig. 1, the first mode shape at 133 Hz is identical to itself, hence a single red bar of a value 

of 1. Along the diagonal, every mode is identical to itself, 1 to 1 (133 Hz), 2 to 2 (135 Hz), 3 to 

3 (304 Hz), etc. 

Off of the diagonal, the MAC values are very low.  Ideally, each mode should be uniquely 

observed and have a different shape than the other modes. This is the case for this mode set. 

The highest off diagonal mode pair is mode 2 compared to mode 9 (and vice versa 9 to 2) with 

a MAC value of 20%. All the other off-diagonal mode pairs are below 20% [6]. 

2.2 Modal assurance criterion equation  

The MAC value between two modes is essentially the normalized dot product of the complex 

modal vector at each common nodes (i.e., points), as shown in Eq. (1). It can also be thought of 

as the square of correlation between two modal vectors Φr and Φs. 

 

𝑀𝐴𝐶 ({Φ𝑟}, {Φ𝑠}) =  
|{𝛷}𝑟

∗𝑡 {𝛷}𝑠|2

(|{𝛷}𝑟
∗𝑡 {𝛷}𝑟|) (|{𝛷}𝑠

∗𝑡 {𝛷}𝑠|)
    (1) 

 

where * and t represents the complex conjugate and transpose of the vector respectively. MAC 

value can have values only between 0 and 1. The value of 0 means that two vectors are 

orthogonal and there is no correlation between them. If the MAC value is 1, it means that vectors 

are fully correlated and equal to each other. The value below 0.3 are poorly correlated whereas 

above 0.8 are well correlated. Between these values, model can be updated to get MAC values 

above 0.8 [2]. 

A MAC analysis can be used in several different ways [7]: 

 FEA - Test comparison: A MAC can be used to compare modes from an experimental modal 

analysis test to a FEA and an object. It will indicate if the same mode shapes are found in 

both the test and FEA analysis. 

 FEA - FEA comparison: Several assumptions can be made in the creation of a FEA analysis: 

Young’s Modulus, boundary conditions, and mass density values to name a few. A MAC 

analysis can determine the degree to which these assumptions affect the resulting mode 

shapes. 

 Test - Test comparison: A MAC analysis can flag potential issues with the modal analysis 

results. Usually MAC will identify modes and areas that could benefit from acquiring more 

data points on the structure. 

2.3 FEA of automotive rear lamp lenses 

FEA was performed on automotive rear lamp lenses with 4 different geometries under free-free 

boundary conditions. For all lenses the first 3 flexible body mode shapes were investigated. In 

Fig. 2, Fig. 3 and Fig. 4, first, second and third flexible body mode shape are illustrated for the first 

sample respectively. 
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Fig. 2. First mode shape (109.89 Hz) for sample 1 

 

 

Fig. 3. Second mode shape (193.98 Hz) for sample 1 

 

 

Fig. 4. Third mode shape (242.42 Hz) for sample 1 

 

In Fig. 5, Fig. 6 and Fig. 7, first, second and third flexible body mode shape are illustrated for the 

second sample respectively. 



E. Ay, B. Ediz, B. Sönmezay, S. Telli Çetin 

406 

 

 

Fig. 5. First mode shape (85.509 Hz) for sample 2 

 

 

Fig. 6. Second mode shape (129.97 Hz) for sample 2 

 

 

Fig. 7. Third mode shape (198.13 Hz) for sample 2 

 

In Fig. 8, Fig. 9 and Fig. 10, first, second and third flexible body mode shape are illustrated for the 

third sample respectively. 
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Fig. 8. First mode shape (57.398 Hz) for sample 3 

 

 

Fig. 9. Second mode shape (106.76 Hz) for sample 3 

 

 

Fig. 10. Third mode shape (189.24 Hz) for sample 3 

 

In Fig. 11, Fig. 12 and Fig. 13, first, second and third flexible body mode shape are illustrated for 

the fourth sample respectively. 
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Fig. 11. First mode shape (51.489 Hz) for sample 4 

 

 

Fig. 12. Second mode shape (86.56 Hz) for sample 4 

 

 

Fig. 13. Third mode shape (128.87 Hz) for sample 4 

 

2.4 EMA of automotive rear lamp lenses 

After FEA, EMA was performed on automotive rear lamp lenses with 4 different geometries. 

The lenses marked on the response and excitation points and was used impact hammer for test.  

Furthermore, the lenses were suspended from a single point to the testing apparatus using a 

single elastic rope to capture the condition closest to the free-free boundary conditions. For all 

lenses the first 3 flexible body mode shapes were investigated and the EMA natural frequency 

results were compared with the FEA natural frequency results. In Table 1, EMA natural frequency 

and FEA natural frequency results are illustrated for the first sample. 



E. Ay, B. Ediz, B. Sönmezay, S. Telli Çetin 

409 

 

Table 1. FEA and EMA natural frequency results for sample 1 

 FEA EMA (%) 

1.Mod 109.89 110.871 0.884 

2.Mod 193.98 201.230 3.602 

3.Mod 242.42 393.477 38.390 

In Table 2, EMA natural frequency and FEA natural frequency results are illustrated for the second 

sample. 

Table 2. FEA and EMA natural frequency results for sample 2 

 FEA EMA (%) 

1.Mod 85.509 79.780 6.699 

2.Mod 129.97 129.474 0.381 

3.Mod 198.13 189.871 4.168 

In Table 3, EMA natural frequency and FEA natural frequency results are illustrated for the third 

sample. 

Table 3. FEA and EMA natural frequency results for sample 3 

 FEA EMA (%) 

1.Mod 57.398 56.682 1.247 

2.Mod 106.76 102.437 4.049 

3.Mod 189.24 189.595 0.187 

In Table 4, EMA natural frequency and FEA natural frequency results are illustrated for the fourth 

sample. 

Table 4 FEA and EMA natural frequency results for sample 4 

 FEA EMA (%) 

1.Mod 51.489 53.884 4.444 

2.Mod 86.56 88.138 1.790 

3.Mod 128.87 135.835 5.127 

2.5 MAC calculation with using MEScope® software 

MEScope® software is used to calculate the MAC. Mesh structure was imported to MEScope® 

software which including the points where acceleration measurements were made in EMA and 

FRFs measured at these points were taken. The FRFs were matched with these points. The 

curve is obtained for each FRF and the mode shapes are acquired.  
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Then the mesh structure and mode shapes used in the FEA model were imported into this 

software. These points are matched with the mode shapes. As a result of both EMA and FEA 

obtained mode shapes are examined. 

Then, the points in the finite element mesh structure and the closest points in the mesh structure 

used in the EMA were matched. 

After matching, mode shapes obtained by EMA and mode shapes obtained by FEA were 

compared using this program and MAC was calculated. 

Thus, a validation was made between the FEA and the EMA. 

 

 

Fig. 14 MEScope® flow chart 

 

Fig. 15 MAC matrix for sample 1 
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Fig. 16 MAC table for sample 1 

 

 

Fig. 17 MAC matrix for sample 2 

 

Fig. 18 MAC table for sample 2 

 

Fig. 19 MAC matrix for sample 3 
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Fig. 20 MAC table for sample 3 

 

 

Fig. 21 MAC matrix for sample 4 

 

 

Fig. 22 MAC table for sample 4 

 

3. Conclusions 

In this study, experimental modal analysis test was performed on lenses produced from PMMA 

material used in automotive lighting industry. Test results and finite element modal analysis 

results were compared and MAC matrix was calculated using MEScope® software. 

As a result; 

 When looking at the similarity status of the first 4 modes for sample 1; 0.822, 0.777, 0.736, 

0.548 
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 When looking at the similarity status of the first 4 modes for sample 2; 0.916, 0.887, 0.866, 

0.808 

 When looking at the similarity status of the first 4 modes for sample 3; 0.867, 0.816, 0.839, 

0.77 

 When looking at the similarity status of the first 4 modes for sample 4; 0.959, 0.928, 0.908, 

0.881 

it was found to be quite close to each other. 

 

Notations 

 

Φr       EMA modal vector 

Φs       FEA modal vector 
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