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Merve İlkhan

Department of Mathematics,

Faculty of Science and Arts, Düzce University,
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İsmet Altıntaş
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Regularity of Linear Systems of Differential

Equations on the Axes and Pencils of Quadratic

Forms

Viktor Kulyk1, Ganna Kulyk2, Nataliia Stepanenko3*

Abstract

It is considered linear systems of differential equations and investigated questions of regularity of these systems.

To explore the regularity it is comfortable to use quadratic form whose derivative with respect to the adjoint

system is positive definite. Sometimes it is possible to find such a quadratic form, the derivative of which with

respect to the system is non-negative. There are examples showing that in this case we can’t say anything about

the exponential dichotomy of this system (that is, its regularity). The question arises whether it is possible to

combine a certain set of quadratic forms to get such a form, the derivative of which with respect to the system is

positive definite. This question is similar to the question that arises in the theory of control: having a set of certain

data about an object, can one say something about this object as a whole. It turns out that this is possible, only a

set of these quadratic forms should be special, in some sense complete. In the presented article the authors

propose to write it with the help of some combination of specific symmetric matrices S1,S2, . . . . So we have a

quadratic form

Vp = p1 〈S1 (t)x,x〉+ p2 〈S2 (t)x,x〉+ · · ·+ pk−1 〈Sk−1 (t)x,x〉+ 〈Sk (t)x,x〉

It is proved that the derivative of this quadratic form is positive definite for sufficiently large parameters p1, . . . , pk−1.

The results are illustrated by examples.
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1. Introduction

In many interesting investigations [1]-[4] it is arisen linear systems of differential equations in which we have to find the strong

properties, i.e. such properties which arent changed under small perturbations. Such properties often are exponential dichotomy

and trichotomy of the solutions of linear systems of differential equations. As for non-stationary systems this question is opened

it is interesting to find something new in investigation of dichotomy of linear systems of differential equations. The investigation
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of sets of quadratic forms is a promising and relevant topic, since they provide an opportunity to answer the question of the

magnitude of perturbation, which does not disturb the property of the regularity of linear systems. Consequently, we consider

certain classes of systems of linear equations and try to find quadratic forms that will enable us to investigate these systems.

2. Main results

Let’s consider the homogeneous system of differential equations

dx

dt
= P(t)x, (2.1)

where x ∈ Rn and P(t) is n×n-dimensional matrix with scalar functions whose elements are real continuous and bounded on

R = (−∞,+∞). We will denote by C0 (R) the space of functions which are continuous and bounded on R and by C1 (R) – the

subspace of space C0 (R) of continuously differentiable functions with bounded derivative on R.

We will consider a norm of a vector x ∈ Rn as ‖x‖=
√

〈x,x〉, where 〈x,y〉= ∑
n
j=1 x jy j – scalar product in Rn. And we will

denote a norm of a matrix A as ‖A‖= max‖Ax‖, ‖x‖= 1, ‖A‖0 = sup‖A(t)‖, t ∈ R.

The important question about system (2.1) is its regularity on entire axis R. It is known the following definition of regularity

[1]:

Definition 2.1. The system (2.1) is called regular on R if corresponding non-homogeneous system dx
dt

= P(t)x+ f (t) has

unique bounded solution on R with any fixed vector function f (t) ∈C0 (R). If it is only known that such system has at least one

solution bounded on R with any f (t) ∈C0 (R) then the system (2.1) is called weakly regular on R.

It is known that the system (2.1) is regular on R if and only if there exists a quadratic form V = 〈S (t)x,x〉 where S (t)∈C1 (R)
– symmetric matrix whose derivative with respect to the system (2.1) is positive definite, i.e.

V̇ =

〈[

dS (t)

dt
+S (t)P(t)+PT (t)S (t)

]

x,x

〉

≥ ‖x‖2
(2.2)

and wherein the matrix S (t) is non-degenerated for any t ∈ R

detS (t) 6= 0 ∀t ∈ R. (2.3)

In case the matrix P(t) from the system (2.1) is a constant, from a weak regularity always follows the regularity. It can be if

and only if real parts of all eigenvalues of matrix P are non-zeroes. Therefore, if detP = 0 then the system (2.1) with constant

matrix P is not regular. It turns out that there exists variable matrix P(t) such that detP(t)≡ 0 ∀t ∈ R but the system (2.1) is

regular on R. The examples of such systems are:

{

dx1
dt

= x1 (p1 cos2ωt + p2 sin2ωt)+ x2 (−p2 cos2ωt + p1 sin2ωt −ω) ,
dx2
dt

= x1 (−p2 cos2ωt + p1 sin2ωt +ω)− x2 (p1 cos2ωt + p2 sin2ωt) ,

where parameters p1, p2,ω ∈ R are non-zero, real and p2
1 + p2

2 = ω2.

In this case the derivative of non-degenerated quadratic form

V = x2
1 cos2ωt +2x1x2 sin2ωt − x2

2 cos2ωt

with respect to this system equals V̇ = 2p1

(

x2
1 + x2

2

)

.

Remark 2.2. For some systems (2.1) there exists symmetric matrices S (t) ∈ C1 (R) which satisfy inequality (2.2) but the

condition (2.3) is not satisfied. Then the system (2.1) is not regular but adjoint system dx
dt

=−PT (t)x is weakly regular.

Linear operator S (t) ∈C1 (R) which affects on symmetric matrices we will denote L [S]:

L [S] =
dS (t)

dt
+S (t)P(t)+PT (t)S (t) (2.4)

Remark 2.3. If instead of the inequality (2.2) we write 〈L [S]x,x〉 ≥ ‖Nx‖2
, where N – some constant non-generated matrix,

then we can’t say anything about regularity of the system (2.1). We can see this from the example:

dx1

dt
= x2,

dx2

dt
= 0.

The derivative of quadratic form V = x1x2 with respect to this system is V̇ = x2
2, but this system is not regular.
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The question arises: If we have not a single matrix S, but some set of matrices S1,S2, . . . , then is it possible to combine

these matrices to construct the matrix S that satisfy the inequality 〈L [S]x,x〉 ≥ ‖x‖2
? This article is devoted to investigating this

question.

Theorem 2.4. Let there exists two matrices S1 (t) ,S2 (t) ∈C1 (R) which satisfy the following inequalities

{

〈L [S1]Mx,Mx〉 ≥ ε1 ‖(M−N)x‖2
,

〈L [S2]Nx,Nx〉 ≥ ε2 ‖Nx‖2
, ε1,ε2 = const > 0 ,

(2.5)

for some constant matrices M, N. Then the sum of these matrices S̄ = pS1 (t)+S2 (t) satisfies an inequality

〈

L
[

S̄
]

Mx,Mx
〉

≥ σ (p)‖Mx‖2
, (2.6)

where σ (p) = (p−αε1)ε2−α2

2(p−αε1+ε2)
, (p−αε1)ε2 −α2 > 0, constant α is chosen from inequality ‖L [S2]‖ ≤ α .

Proof. Taking into account the linearity of the operator (2.4), we can write the left side of the inequality (2.6) in the following

form:

〈

L
[

S̄
]

Mx,Mx
〉

= p〈L [S1]Mx,Mx〉+ 〈L [S2]Mx,Mx〉= p〈L [S1]Mx,Mx〉+ 〈L [S2]Nx,Nx〉+Q, (2.7)

where

Q = 〈L [S2]Mx,Mx〉−〈L [S2]Nx,Nx〉

= 〈L [S2]Mx,Mx〉−〈L [S2]Mx,Nx〉+ 〈L [S2]Mx,Nx〉−〈L [S2]Nx,Nx〉

= 〈L [S2]Mx,(M−N)x〉+ 〈L [S2]Nx,(M−N)x〉

= 〈L [S2] (M−N +N)x,(M−N)x〉+ 〈L [S2]Nx,(M−N)x〉

= 〈L [S2] (M−N)x,(M−N)x〉+2〈L [S2]Nx,(M−N)x〉 .

From this we obtain an estimation from below

Q ≥−α ‖(M−N)x‖2 −2α ‖Nx‖‖(M−N)x‖2
. (2.8)

Therefore using inequalities (2.5) and (2.8) from inequality (2.7), we get

〈

L
[

S̄
]

Mx,Mx
〉

≥ (p−αε1)‖(M−N)x‖2 −2α ‖Nx‖‖(M−N)x‖+ ε2 ‖Nx‖2
. (2.9)

Let us write the quadratic form corresponding to the right side of the inequality (2.9)

V (x1,x2) = (p−αε1)x2
1 −2αx1x2 + ε2x2

2.

We should find its lowest value on a single circle x1 = cosy, x2 = siny. We obtain

V (cosy,siny) = (p−αε1)
1+cos2y

2
−α sin2y+ ε2

1−cos2y
2

≥ p−αε1+ε2
2

−

√

(

p−αε1−ε2
2

)2
+α2 = (p−αε1)ε2−α2

p−αε1+ε2
2 +

√

(

p−αε1−ε2
2

)2
+α2

.

Choosing sufficiently large the value of parameter p > 0, exactly p > αε1 +
α2

ε2
, we get

V (x1,x2)≥
(p−αε1)ε2 −α2

p−αε1 + ε2

(

x2
1 + x2

2

)

.

Therefore, from (2.9) we obtain

〈

L
[

S̄
]

Mx,Mx
〉

≥
(p−αε1)ε2 −α2

p−αε1 + ε2

(

‖(M−N)x‖2 +‖Nx‖2
)

. (2.10)

As for any matrices M and N of equal dimension the inequality

‖(M−N)x‖2 +‖Nx‖2 ≥
1

2
‖Mx‖2
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is fulfilled then from (2.10) we get

〈

L
[

S̄
]

Mx,Mx
〉

≥
(p−αε1)ε2 −α2

2(p−αε1 + ε2)
‖Mx‖2

.

Theorem 2.5. Let there exists symmetric matrices S j (t) ∈C1 (R), j = 1,k, n×n-dimensional and they satisfy the following

inequalities:

〈

L [S j]M j (t)x,M j (t)x
〉

≥
∥

∥

[

M j (t)−M j+1 (t)
]

x
∥

∥

2
, j = 1,(k−1) (2.11)

〈L [Sk]Mk (t)x,Mk (t)x〉 ≥ ‖Mk (t)x‖2
, (2.12)

with some n×n- dimensional continuous non-degenerated matrices M j (t). Then the derivative of a quadratic form

Vp = p1 〈S1 (t)x,x〉+ p2 〈S2 (t)x,x〉+ · · ·+ pk−1 〈Sk−1 (t)x,x〉+ 〈Sk (t)x,x〉

with respect to the system (2.1) will be positive definite for sufficiently large fixed values of parameters p1, p2, . . . , pk−1.

Proof. Let us choose and fix the constant α , that satisfy an inequalities
∥

∥L [S j]
∥

∥≤ α , j = 1,k. From the last of the inequalities

(2.11)

〈L [Sk−1]Mk−1 (t)x,Mk−1 (t)x〉 ≥ ‖[Mk−1 (t)−Mk (t)]x‖
2

and (2.12) using Theorem 2.4 with ε1 = 1, ε2 = 1 we get an inequality

〈

L
[

S̃
]

Mk−1 (t)x,Mk−1 (t)x
〉

≥ σ (pk−1)‖Mk−1 (t)x‖2
, (2.13)

where

S̃ = pk−1Sk−1 (t)+Sk (t) ,σ (pk−1) =
pk−1 −α −α2

2(pk−1 −α +1)
.

Then let us consider the penultimate of the inequalities (2.11)

〈L [Sk−2]Mk−2 (t)x,Mk−2 (t)x〉 ≥ ‖[Mk−2 (t)−Mk−1 (t)]x‖
2
.

Together with the inequality (2.13), based on the Theorem 2.4 (ε1 = 1, ε2 = σ (pk−1)) for the sum of the matrices

S̄ = pk−2Sk−2 (t)+ S̃ = pk−2Sk−2 (t)+ pk−1Sk−1 (t)+Sk (t) ,

we get an inequality

〈

L
[

S̄
]

Mk−2 (t)x,Mk−2 (t)x
〉

≥ σ (pk−2, pk−1) · ‖Mk−2 (t)x‖2
,

where

σ (pk−2, pk−1) =
(pk−2 −α)σ (pk−1)−α2

2(pk−2 −α +σ (pk−1))
.

So we have the following estimation

〈

L
[

⌢

S

]

Mk−3 (t)x,Mk−3 (t)x
〉

≥ σ (pk−3, pk−2, pk−1)‖Mk−3 (t)x‖2
,

σ (pk−3, pk−2, pk−1) =
(pk−3 −α)σ (pk−2, pk−1)−α2

2(pk−2 −α +σ (pk−2, pk−1))
.
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Continuing to receive similar estimates, in the end for the sum of the matrices

Sp = p1S1 (t)+ p2S2 (t)+ · · ·+ pk−1Sk−1 (t)+Sk (t) ,

we will get

〈

L [Sp]M1 (t)x,M1 (t)x
〉

≥ σ (p1, p2, .., pk−2, pk−1)‖M1 (t)x‖2
, (2.14)

where

σ (p1, p2, .., pk−2, pk−1) =
(p1 −α)σ (p2, .., pk−2, pk−1)−α2

2(p1 −α +σ (p2, .., pk−2, pk−1))
.

Let us denote M1 (t)x= y. Since the matrix M1 (t) is non-degenerate then we get
〈

L [Sp]y,y
〉

≥σ (p1, p2, .., pk−2, pk−1)‖y‖2

from the inequality (2.14) for any y ∈ Rn with positive coefficient σ (p1, p2, .., pk−2, pk−1). That means the derivative of the

quadratic form Vp with respect to the system (2.1) at certain choices of the vector of parameters (p1, p2, .., pk−2, pk−1) = p will

be positive definite. The Theorem 2.5 is proved.

Let us consider an example of the application of the proved theorem.

Denote

a(t;λ ) =
λe−t − (1−λ )et

λe−t +(1−λ )et
,0 ≤ λ ≤ 1

and consider the system







dx1
dt

= [a(t;λ1)+a(t;λ2)−1]x1 +[a(t;λ1)+a(t;λ2)]x2,
dx2
dt

= [−a(t;λ2)+1]x1 −a(t;λ2)x2,
dx3
dt

= [a(t;λ2)+1]x1 − [a(t;λ1)+a(t;λ2)]x2 −a(t;λ1)x3,

(2.15)

where λ1,λ2 – independent parameters from the closed segment [0,1].
We choose the matrices Si, Mi in the following form

S1 =





0 1 1

1 0 1

1 1 0



 , S2 =





0 0 0

0 −a(t;λ2) 0

0 0 0



 , S3 =





0 0 0

0 0 0

0 0 −a(t;λ1)



 ,

M1 =





1 0 0

0 1 0

0 0 1



 , M2 =





0 0 0

0 1 0

0 0 1



 , M3 =





0 0 0

0 0 0

0 0 1



 .

Calculating the left sides of the inequalities (2.11) and (2.12) (k = 3), we get

L [S1] =





2 0 0

0 0 0

0 0 0



 ,L [S2] =







0
(

a2 (t;λ2)−a(t;λ2)
)

0
(

a2 (t;λ2)−a(t;λ2)
)

(

2a2 (t;λ2)−
da(t;λ2)

dt

)

0

0 0 0






,

L [S3] =







0 0 −a(t;λ1) [a(t;λ2)+1]
0 0 a(t;λ1) [a(t;λ1)+a(t;λ2)]

−a(t;λ1) [a(t;λ2)+1] a(t;λ1) [a(t;λ1)+a(t;λ2)]
(

2a2 (t;λ1)−
da(t;λ1)

dt

)






.

Hence it is already clear that the inequalities (2.11) and (2.12) are fulfilled. Thus, the derivative of the quadratic form

p1 (x1x2 + x1x3 + x2x3)− p2x2
2a(t;λ2)− x2

3a(t;λ1) with respect to the system (2.15) with the appropriate choice of parameters

p1, p2 will be positively defined. This implies that the system (2.15) is regular on R.
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1. Statement of the problem

Consider the lp spaces for 1 < p < ∞ consisting of all absolutely p-power summable scalar sequences, with the p-norm.

Consider also the subspace of all null scalar sequences c0 with the supremum norm.

Let X be either lp,1 ≤ p < ∞ or c0. Let also be B(X) the space of all bounded linear operators on X . Consider the following

equation

ẋ(t) = A0 x(t)+
n

∑
i=1

Ai x(t −hi), t ≥ 0

x(0) = r,

x(θ) = f (θ), −hn ≤ θ < 0, (1.1)

where 0 < h1 < .. . < hn are the delaying points, x(t) ∈ X for t > 0, Ai ∈ B(X), i = 0, . . . ,n and f : [−hn,0]→ X must also

satisfy f (0) = x(0) = r (a fixed vector in X), and f (θ) 6= 0 for every θ such that −hn ≤ θ < 0. Here, the convergence is in

the norm of X , ie, {xn}
∞
n=1 converges to x ∈ X if and only if ‖xn − x‖ → 0 as n → ∞, where ‖.‖ stands for the p-norm or the

supremum norm, respectively.

The fundamental concepts of derivative and integral for scalar functions of a single variable can be extended to a function

F : [0,∞)→ X . We simply express F as a function of its components and do the calculus operations on those components, i.e.,

if F(t) = { fi(t)}
∞
i=1 , we have F ′(t) = { f ′i (t)}

∞
i=1 and

∫ b
a F(t)dt =

{

∫ b
a fi(t)dt

}∞

i=1
.

In view of these definitions, it is easily checked that the basic theorems about continuity, differentiability and integrability

are also valid in this case. Using standard arguments, it can also be proven that
∣

∣

∣

∣

∣

∣

∣

∣

∫ t

0
x(s)ds

∣

∣

∣

∣

∣

∣

∣

∣

X

≤
∫ t

0
||x(s)||X ds.
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We also have, as usual, eAt =
∞

∑
k=0

(t A)k

k!
for A ∈ B(X).

Note that the functions x ∈ X we are working with should satisfy

i) x(t) ∈ X for every t ≥ 0.

ii) x′(t) ∈ X for every t ≥ 0.

iii) g(t) =
∫ t

a x(s)ds ∈ X for each fixed t ≥ 0 and every t ≥ 0.

The mapping x(t) =

{

eλ t

iq

}∞

i=1

, where λ ∈ C and q ≥ 1
p

is a example of this. More generally, the same is true for y(t) =

{g(t)ai}
∞
i=1 , where {ai}

∞
i=1 ∈ X and g is differentiable function on R.

In the next pages we will show that (1.1) can be rewritten as an abstract differential equation of the form

ż(t) = Az(t)

z(0) = z0, (1.2)

where A is the infinitesimal generator of a c0-semigroup {Tt}t≥0 on a suitable Banach space, and we will prove some important

properties of {Tt}t≥0 and A (including some spectral properties). Finally, as an application, we will characterize the null-

controllability by using some techniques from Functional Analysis and Operator Theory. The control u is constrained to lie in a

separable weakly compact subset Ω of an arbitrary Banach space U .

2. Main results

In the following we will prove a standard formula for the solution of (1.1). Then, we will introduce the c0-semigroup {Tt}t≥0

associated to (1.1), and its infinitesimal generator A.

Theorem 2.1. Consider the retarded differential equation (1.1). For every r ∈ X and every f : [−hp,0]→ X there exists a

unique function x from (0,∞) to X that is absolutely continuous and satisfies the differential equation (1.1) almost everywhere.

This function is called the solution of (1.1) and it satisfies

x(t) = eA0tr+
n

∑
i=1

∫ t

0
eA0(t−s)Aix(s−hi)ds, for t ≥ 0. (2.1)

Proof. Notice first that, for t ∈ (0,hi) the term ∑
n
i=1 Aix(t −hi) equals the known function v(t) := ∑

n
i=1 Ai f (t −hi). So we may

reformulate the equation (1.1) on [0,hi] as

ẋ(t) = A0 x(t)+ v(t)

x(0) = r. (2.2)

Now, we can proceed coordinatewise an apply finite dimensional theory on each coordinate. We thus find that the solution of

(2.2) is given by

x(t) = eA0t f +
∫ t

0
eA0(t−s)v(s)ds

and this equals (2.1).

Now, we will consider the case t ≥ h1. At a given time t, the past is known and so the delayed part ∑
n
i=1 Aix(t −hi) is also a

known function. Using the same argument as before we conclude that the solution of (1.1) is unique and it satisfies (2.1).

Lemma 2.2. If x(t) is the solution of (1.1), then the following inequalities hold

a) ||x(t)|| ≤Ct [||r||+ || f (·)||],

b)
∫ 1

0 ||x(t)||qdt ≤ Dt [||r||
q + || f (·)||q],

where 1 ≤ q < ∞ and Ct and Dt are constants, depending only on t.
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Proof. We know that for some positive constants M0 and ω0, eA0t satisfies

||eA0t || ≤ M0 eω0t
, t ≥ 0.

Define the positive constant M by M := max(||A1||, . . . , ||An|,M0|). Then, from (2.1) it follows that

||x(t)|| ≤ ||eA0tr||+ ||
n

∑
i=1

∫ t

0
eA0(t−s)Aix(s−hi)ds||

≤ Meω0t ||r||+
n

∑
i=1

∫ t

0
M eω0(t−s)M||x(s−hi)||ds

= Meω0t ||r||+
n

∑
i=1

M2
∫ t−hi

−hi

eω0(t−t−hi)||x(t)||dt

= Meω0t ||r||+M2eω0t
n

∑
i=1

∫ t−hi

−hi

e−ω0(t+hi)||x(t)||dt. (2.3)

We now establish the following inequalities for the last term of (2.3)

n

∑
i=1

∫ t−hi

−hi

e−ω0(t+hi)||x(t)||dt ≤
n

∑
i=1

∫ 0

−hi

e−ω0(t+hi)||x(t)||dt +
n

∑
i=1

∫ t

0
e−ω0(t+hi)||x(t)||dt

≤
n

∑
i=1

∫ 0

−hi

|| f (t)||dt +
n

∑
i=1

∫ t

0
e−ω0t ||x(t)||dt since ω0 > 0

≤
n

∑
i=1

∫

−hr

|| f (t)||dt +
n

∑
i=1

∫ t

0
e−ω0t ||x(t)||dt.

Now, let us fix θ ∈ [−hn,0) and let g : [−hn,0]→ R be defined by g(t) =
|| f (t)||

|| f (θ)||
. Since g is a continuous function over

the compact set [−hn,0], there exists k > 0 such that || f (t)|| ≤ k|| f (θ)|| for all t ∈ [−hn,0].
From this we deduce that the former equation is lesser or equal than

nhn Q|| f (·)||+n

∫ t

0
e−ω0t ||x(t)||dt. (2.4)

Comparing equations (2.3) and (2.4) gives

||x(t)|| ≤ eω0 t

[

M||r||+M2 nhn Q || f (·)||+M2 n

∫ t

0
e−ω0t ||x(t)||dt

]

. (2.5)

Setting α = M||r||+M2 nhn Q || f (·)||, β = nM2 and y(t) = e−ω0t ||x(t)||, we can reformulate (2.5) as

y(t)≤ α +β

∫ t

0
y(t)dt.

From Gronwall’s Lemma we conclude that y(t)≤ α eβ t . So we have

||x(t)|| ≤ α e(β+ω0) t

= e(ρ M2+ω0) t
[

M||r||+M2 Qnhn || f (·)||
]

≤ e(ρ M2+ω0) t max
[

M, M2 nhn Q
]

[||r||+ || f (·)||] ,

which proves a).
It follows, from the above inequality, that

||x(t)||q ≤ eq(ρ M2+ω0) t max
[

M, M2 Qnhn

]q
[||r||+ || f (·)||]q .

Let us now suppose r 6= 0. On the whole compact set [−hn,0] we define

w(θ) =
(||r||+ || f (θ)||)q

||r||q + || f (θ)||q
,
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w is a continuous function over [−hn,0]. Then there exists K > 0 such that w(θ)≤K. This, in particular, is valid for θ ∈ [−hn,0)
and thus, we have

(||r||+ || f (θ)||)q ≤ K (||r||q + || f (θ)||q) θ ∈ [−hn,0).

Consequently

||x(t)||q ≤ K eq(ρ M2+ω0) t max
[

M, M2 Qnhn

]q
[||r||+ || f (·)||]q .

If r = 0, then (||r||+ || f (·)||)q = (||r||q + || f (·)||q) and we have the same estimation for ||x(t)||q. Integrating this inequality

gives b).

Now we shall introduce the semigroup related to (1.1). Consider the space X ⊕X with the usual norm ||(x1,x2)||X⊕X =
||x1||X + ||x2||X .

It should be noted that lp, 1 ≤ p < ∞ and c0 are prime Banach spaces, i.e, every infinite-dimensional complemented

subspace of X is isomorphic to X . From this we can deduce that X ⊕X is isomorphic to X and thus, the norm ||(·, ·)||X⊕X is, in

fact, equivalent to || · ||X (see, for example,[1]).

We define the following family of operators on X ⊕X for t ≥ 0 by

T (t)

(

r

f (·)

)

:=

(

x(t)
x(t + ·)

)

, (2.6)

where x(·) is the solution of (1.1) and x(−s) = f (−s) for hp > s > 0.

Theorem 2.3. The family {T (t)}t≥0 defined by (2.6) satisfies:

a) T (t) ∈ B(X ⊕X) for all t ≥ 0.

b) {T (t)}t≥0 is a c0-semigroup on X ⊕X

Proof. The linearity of T (t) follows easily from the linearity of (1.1) and the uniqueness of its solution. We will now prove that

T (t) is a bounded operator.

We can suppose that x is not constantly equal to zero (otherwise the result is trivial) and let us choose t0 such that x(t0) 6= 0.

For each t, let Mt = sup
t∈[−hp,0]

||x(t + t)||X . Then, we have

||x(t + ·)||X :=
||x(t + ·)||X
||x(t0)||X

||x(t0)||X ≤ Dt [||r||X + || f (·)||X ] ,

where Dt =
Mt

||x(t0)||
Ct0 (Ct0 as in the previous lemma), and so

∣

∣

∣

∣

∣

∣

∣

∣

T (t)

(

r

f (·)

)∣

∣

∣

∣

∣

∣

∣

∣

X⊕X

= ||x(t)||X + ||x(t + ·)||X ≤ (Ct +Dt)(||r||X + || f (·)||X ) .

The semigroup property can be proven exactly as in Theorem 2.4.4 of [2].

It only remains to prove the strong continuity. For t < h1 we have

∣

∣

∣

∣

∣

∣

∣

∣

T (t)

(

r

f (·)

)

−

(

r

f (·)

)∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

eA0tr+
p

∑
i=1

∫ t

0
eA0(t−s)Ai f (s−hi)ds− r

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

X

+ ||x(t + ·)− f (·)||X .

The first term converges to zero as t → 0 since

eA0tr+
p

∑
i=1

∫ t

0
eA0(t−s)Ai f (s−hi)ds
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is continuous. Let us now prove that ||x(t + ·)− f (·)||X tends to zero as t → 0. We first suppose X = lp, 1 ≤ p < ∞. We thus

have

||x(t + ·)− f (·)||PX ≤ (||x(t + ·)||X + || f (·)||X )
p

≤

(

sup
t∈[0,h1]

||x(t + ·)||+ || f (·)||

)p

≤ K(·)

(

sup
t∈[0,h1]

||x(t + ·)||p + || f (·)||p
)

=
∞

∑
i=1

[

K(·) supt∈[0,h1]
||x(t + ·)||p

2i
+K(·)| fi(·)|

p

]

,

where K(·) is a constant non depending on t. Consequently, the series

∞

∑
i=1

|xi(t + ·)− f (·)|p

converges uniformly on [0,h1], according to the classical Weierstrass M Test, and so we have

lim
t→0

(

∞

∑
i=1

|xi(t + ·)− f (·)|p
)

=
∞

∑
i=1

(

lim
t→0

|xi(t + ·)− f (·)|p
)

= 0.

Let us now suppose X = c0, and let ε > 0 be given. We use the results for lp in the particular case p = 1. Then, there exists

δ > 0 such that

|xi(t + ·)− f (·)| ≤
∞

∑
i=1

|xi(t + ·)− f (·)|< ε

for t ∈ [0,h1)∩ (−δ ,δ ) and every i ∈ N. Consequently we have,

sup
i∈N

|xi(t + ·)− f (·)|< ε, for t ∈ [0,h1)∩ (−δ ,δ ).

The following two results deal with the infinitesimal generator A. We will give a detailed description of A and prove some

important properties of it. Bearing in mind this, and the former comments about {T (t)}t≥0, it can be shown, in a classical

manner, that (1.1) can be rewritten as (1.2).

Lemma 2.4. Consider the c0-semigroup T (t) defined by (2.6) and let A denote its infinitesimal generator. For sufficiently large

α ∈ R, the resolvent is given by

(α I −A)−1

(

r

f (·)

)

=

(

g(0)
g(·)

)

(2.7)

where

g(θ) = eαθ g(0)−
∫ θ

0
eα(θ−s) f (s)ds, for θ ∈ [−h,0] (2.8)

and

g(0) = [∆(α)]−1

[

r+
n

∑
i=1

∫ 0

−hi

e−α(θ+hi) Ai f (θ)dθ

]

, (2.9)

where

∆(λ ) =

[

λ I −A0 −
n

∑
i=1

e−λ hi Ai

]

, for λ ∈ C.

Furthemore, g satisfies the following relation:

αg(0) = r+A0 g(0)+
n

∑
i=1

Ai g(−hi).
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Proof. The proof is essentially the same as in Lemma 2.4.5 of [2]. One should only note the following: c0 and lp, 1 ≤ p < ∞

have Schauder bases. For X being either lp, 1 ≤ p < ∞, or c0, we have that every bounded linear operator T : X → X can be

written as an infinite matrix M in the usual way. If {ei}
∞
i=1 is the standard unit vector basis of X , and T (e1) = ∑

∞
k=1 αk1

ek,

T (e2) = ∑
∞
k=1 αk2

ek, etc., then

M =

















α11 α12 · · ·
α21 α22 · · ·
α31 α32 · · ·
· · · · ·
· · · · ·
· · · · ·

















.

For more details, see [3]. It can also be proven, using standard arguments, that the equalities
∫ ∞

0
e−α t A0 x(t)dt = A0

∫ ∞

0
e−α t x(t)dt,

n

∑
i=1

∫ ∞

0
e−α t Ai x(t −hi)dt =

n

∑
i=1

Ai g(−hi),

n

∑
i=1

∫ ∞

hi

e−α t Ai x(t −hi)dt =
n

∑
i=1

e−αhi Ai g(0)

from Lemma 2.4.5 of [2] remain valid for the present case.

Theorem 2.5. Consider the c0-semigroup defined by (2.6). Its infinitesimal generator is given by

A





r

f (·)



=













A0 r+
p

∑
i=1

Ai f (−hi)

d f

dθ
(·)













(2.10)

with domain

D(A) =

{(

r

f (·)

)

∈ X ⊕X : f is absolutely continuous,
d f

dθ
(·) ∈ X , f (0) = r

}

.

Furthermore, the spectrum of A is discreet and is given by

σ(A) = σp(A) =
{

λ ∈ C : ∆(λ )−1 does not exist
}

,

where ∆(λ ) is defined in the former Lemma.

If λ ∈ σp(A), then

(

r

eλ ·r

)

, where r 6= 0 satisfies ∆(λ )r = 0, is an eigenvector of A, with eigenvalue λ . On the other

hand, if v is an eigenvector of A with eigenvalue λ , then v =

(

r

eλ ·r

)

with ∆(λ )r = 0.

Proof. Denote by Ã the operator

Ã





r

f (·)



=













A0 r+
p

∑
i=1

Ai f (−hi)

d f

dθ
(·)













with domain

D(Ã) =

{(

σ
f (·)

)

∈ X ⊕X : f is absolutely continuos,
d f

dθ
(·) ∈ X , f (0) = r

}

.
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We have to show that the infinitesimal generator A equals Ã. Let α0 be a sufficiently larger real number such that the results

of the former Lemma hold. If we can show that the inverse of (α0 I − Ã) equals (α0 I −A)−1, then A = Ã. To this end, we

calculate

(α0 I − Ã)(α0 I −A)−1

(

r

f (·)

)

= (α0 I − Ã)

(

g(0)
g(·)

)

withgas in the former Lemma

=













α0g(0)−A0 g(0)+
p

∑
i=1

Ai g(−hi)

α0g(·)−
dg

∂θ
(·)













=

(

r

α0g(·)−
dg

∂θ
(·)

)

from (2.3) of the former Lemma

=

(

r

f (·)

)

by differentiating (1.2).

So for

(

r

f (·)

)

∈ X ⊕X we have shown that

(α0 I − Ã)(α0 I −A)−1

(

r

f (·)

)

=

(

r

f (·)

)

. (2.11)

It remains to show that

(α0 I −A)−1 (α0 I − Ã)

(

r

f (·)

)

=

(

r

f (·)

)

,

for

(

r

f (·)

)

∈ D(A).

For

(

r

f (·)

)

∈ D(A) we define

(

r1

f1(·)

)

:= (α0 I −A)−1 (α0 I − Ã)

(

r

f (·)

)

.

Then, from (2.11) we have that

(α0 I − Ã)

(

r1

f1(·)

)

= (α0 I − Ã)

(

r

f (·)

)

.

So

(

r

f (·)

)

=

(

r1

f1(·)

)

if and only if (α0 I− Ã) is injective. Suppose, on the contrary, that there exists a

(

r0

f0(·)

)

∈ D(A)

such that
(

0

0

)

= (α0 I − Ã)

(

r0

f0(·)

)

= (α0 I − Ã)

(

f0(0)
f0(·)

)

=











α0 f0(0)−A0 f0(0)−
n

∑
i=1

Ai f0(−hi)

α0 f0(·)−
d f0

dθ
(·)











,

where we have used the definitions of Ã and D(Ã) in the last two steps. Then, working coordinatewise as it has been established,

we have

f0(θ) = f0(0)eα0θ

α0 f0(0)−A0 f0(0)−
n

∑
i=1

Ai f0(0)e−α0 hi = 0.
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Since
(

α0 I −A0 −∑
n
i=1 Ai e−α0 hi

)

is invertible, this implies that f0(0)= 0 and thus f0(·)= f0(0)eα0· = 0. This is a contradiction

and thus (α0 I − Ã) is injective. This proves the assertion that A equals Ã.

It remains to calculate the spectrum of A. In the previous Lemma we obtained the explicit expression (2.7) for the resolvent

operator for sufficiently large α ∈ R in terms of g given by (2.8) and (2.9). Denote by Qλ the extension of (2.7) to C

Qλ

(

r

f (·)

)

:=

(

g(0)
g(·)

)

.

A simple calculation shows that if λ ∈ C satisfies (λ I −A0 −∑
n
i=1 Ai e−λ hi) is invertible then Qλ is a bounded linear operator

from X ⊕X to X ⊕X (working coordinatewise, as ever, we have that each component is continuous). Furthemore, for these λ
we have (λ I −A)Qλ = I and (λ I −A) is injective. So, as in the first part of the proof, we conclude that Qλ = (λ I −A)−1, the

resolvent operator of A. We have that

{λ ∈ C : (λ I −A0 −
n

∑
i=1

Ai e−λ hi) is invertible} ⊆ ρ(A).

If, on the other hand,
(

λ I −A0 −∑
n
i=1 Ai e−λ hi

)

is not invertible, there exists ξ ∈ X ,ξ 6= 0, such that the following element of

X ⊕X : z0 =

(

ξ

eλ ·ξ

)

is in D(A) and

(λ0 I − Ã)z0 =











λ ξ −A0 ξ −
n

∑
i=1

Ai e−hi λ ξ

λ eλ0ξ −
d

dθ
eλθ ξ











=

(

0

0

)

.

So

σp(A)⊃ {λ ∈ C : (λ I −A0 −
n

∑
i=1

Ai e−λ hi) is not invertible}.

Let v =

(

r

f (·)

)

be an eigenvector of A with eigenvalue λ . From (2.10) we obtain that for θ ∈ [−hp,0)

d f

dθ
(θ) = λ f (θ),

which gives f (θ) = eλ θ f (0). Since v ∈ D(A) we have f (0) = r. Using the first equation of (2.10) gives

A0 r+
n

∑
i=1

Ai e−λ hir = λ r.

This shows that ∆(λ )r = 0.

3. An application: Constrained null-controllability

We will now consider a system like the following

ω̇(t) = Aω(t)+Bu(t), t > 0

ω(0) = ω0 = ( f (0), f (·)), (3.1)

where A is the infinitesimal generator of the semigroup {T (t)}t≥0, X is as before, U is a Banach space, B : U → X is a bounded

linear operator, u : [0,∞) → U is a strongly measurable, essentially bounded function and Bu =

(

Bu

0

)

. Note that the

homogeneous part of (3.1) is exactly (1.2). On the other hand, the mild solution of (3.1) is given by

ω(t) = T (t)ω0 +
∫ t

0
T (t − s)Bu(s)ds.
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Let Ω be a non-empty separable weakly compact subset of U , and let Ωr be defined as follows:

Ωr = {u ∈ L∞
U [0,r] : u ∈ Ωa.e} .

Ωr is called the set of admissible controls of (3.1), while the set

Ar(ω0) =

{

T (t)ω0 +
∫ r

0
T (r− s)Bu(s)ds : u ∈ Ωr

}

is the set of accesible points of (3.1). The system (3.1) is controllable if 0 ∈ Ar(ω0).
The controllability map on [0,r] for some r ≥ 0 is the linear map

Br : L∞([0,r]; U)→ X defined by Br u =
∫ r

0
T (r− s)Bu(s)ds.

Now, one says that the system is exactly controllable on [0,r] if every point in X can be reached from the origin at r, i.e., if

ran(Br) = X .

If ran(Br) = X then 0 ∈ Ar(0). On the other hand, one can prove, using the Open Mapping Theorem, the following: if

0 ∈ interior(Ar(0)), then ran(Br) = X , see [4].

Next we recall a result that we will use to characterize the null controllability, see [5].

Theorem 3.1. Bárcenas-Diestel Let X and U be Banach spaces, let B : U → X be a bounded linear operator and A : X → X be

the infinitesimal generator of a strongly continuous semigroup {S(t)}t≥0 on X whose dual semigroup is strongly continuous on

(0,∞). Suppose Ω is a non-empty separable weakly compact convex subset of U containing 0. Then for each T > 0, 0 ∈ AT (x0)
if and only if for each x∗ ∈ X∗,

〈x∗,S(T )x0〉+
∫ T

0
max
v∈Ω

〈x∗,S(T )Bv〉 dt ≥ 0.

The Bárcenas-Diestel theorem is an important and recent achievement on exact controllability. Using techniques from

Banach space theory and the theory of vector measures, the authors show how to translate the question of accesibility of controls

to a problem in semigroups of operators, namely, given a c0-semigroup {S(t)}t≥0 of operators on a Banach space X , under

what conditions is the dual semigroup {S∗(t)}t≥0 strongly continuous on (0,∞)? This is the question we will try to answer in

the following.

We recall that a Banach space is a Grothendieck space if every weakly∗ convergent sequence in X∗ is also weakly convergent.

Equivalently, X is a Grothendieck space if every linear bounded from X to any separable Banach Space is a weakly compact.

Among Grothendieck spaces we will list all reflexive Banach spaces and L∞(Ω,Σ,µ), where (Ω,Σ,µ) is a positive measure

space (see for example [6]). We also recall that a bounded linear operator T : X → Y , (where X and Y are Banach spaces)

factors through a Banach space Z, if there are bounded linear operators u : X → Z and v : Z → Y such that T = vu.

It is proven in [7] that if X is a Banach space and {T (t)}t≥0 a c0-semigroup defined on X such that for every a > 0 there

exists a Grothendieck space Ya such that T (a) factors through Ya, then {T ∗(t)}t≥0 is strongly continuous on (0,∞). Among

semigroups satisfying those assumptions (and hence having adjoints which are strongly continuous on (0,∞)) we mention

weakly compact semigroups, i.e, semigroups such that T (t) is weakly compact for each t (see [7] for more detrails). There are

many examples of weakly compact semigroups, a category that includes all compact semigroups. Moreover, in X = l1, the

terms ”weakly compact” and ”compact” are equivalent, due to the classical Schur Theorem. This will prove useful to establish

our result for the non reflexive cases.

We are, in our case, working with X being either c0 or lp, 1 ≤ p < ∞, and we have a c0-semigroup {T (t)}t≥0 (and its

infinitesimal generator A) defined on X ⊕X , which, as we have indicated before, is isomorphic to X . If p ∈ (1,∞), we have a

reflexive Banach space, hence a Grothendieck space. Then, for every a > 0 there exists, in an obvious manner, a Grothendieck

space Ya (X itself) such that T (a) factors through Ya. {T ∗(t)}t≥0 is thus strongly continuous on (0,∞), and we are under the

hypotheses of the Bárcenas-Diestel Theorem.

For the cases X = l1 or X = c0, we can additionally suppose that {T (t)}t≥0 factors through a Grothendieck space as

before (this happens, for example, if {T (t)}t≥0 is weakly compact, as we have previously indicated). Then we can apply the

Bárcenas-Diestel Theorem again.

All this can be sumarized in the following:

Theorem 3.2. For each r > 0,0 ∈ Ar(ω0) (i.e., system (3.1) is controllable) if and only if, for each x∗ ∈ lq, 1 < p < ∞,
1

p
+

1

q
= 1

〈x∗,T (r)ω0〉+
∫ r

0
max
v∈Ω

〈

x∗,T (t)Bv(t)
〉

dt ≥ 0.
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If, additionally, we suppose that the associated semigroup satisfies that, for every a > 0 there exists a Grothendieck space Ya

such that T (a) factors through Ya (in particular, if it is is weakly compact) then we have similar results for X = l1 and X = c0.

4. Final remarks

Problems of this kind are usually set in the context of Hilbert function spaces (see, for example, [2]). But according to the

Riesz-Fischer Theorem (see [8]) every separable infinite-dimensional Hilbert space H is isomorphic to l2. For an orthonormal

basis {ei}
∞
i=1 of H and x ∈ H, the map T x = {(x, ei)}

∞
i=1 is an isometry. We can thus identify any Hilbert function space with a

specific sequence space, namely l2. Hence, by studying and solving this type of problems in l2 (as we have, in particular, done)

we are, in a certain important sense, studying and solving problems set in any Hilbert function space.

On the other hand, since the function f is allowed, in the present work, to belong to lp, 1 ≤ p < ∞ or c0, we are able to

study these classical problems (and also, in particular, their null controllability) in a considerably more general context.

In the same line of research to the ones presented here but considering other topological spaces that are not Banach spaces,

we refer the reader to [9, 10, 11, 12].
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1. Introduction

In this paper, we consider FIDE of the form:

k

∑
j=0

p j(x)∆
( j)(x) = f (x)+λ

∫ b

a
W (x, t)G(∆(t))dt (1.1)

with the initial conditions

∆(r)(a) = br, r = 0,1,2, · · · ,(k−1), (1.2)

where ∆( j)(x) is the jth derivative of the unknown function ∆(x) that will be determined, W (x, t) is the kernel of the equation,

f (x) and p j(x) are analytic functions, G is nonlinear function of ∆ and a,b,λ , and br are real finite constants.

The FIDEs arise in many scientific applications. It was also shown that these equations can be derived from boundary value

problems.

The application of homotopy techniques in linear and non-linear problems has been devoted by scientists and engineers,

because this method is to continuously deform a simple problem which is easy to solve into the under study problem which

is difficult to solve. This method was proposed first by He in 1997 and systematical description in 2000 which is, in fact,

a coupling of the traditional perturbation method and homotopy in topology [1]. This method was further developed and

improved by He and applied to non-linear oscillators with discontinuities [2]. After that many researchers applied the method to

various linear and non-linear problems. For example, it was applied to the quadratic Ricatti differential equation by Abbasbandy

[3], to the axisymmetric flow over a stretching sheet by Ariel et al. [4], to the Helmholtz equation and fifth-order KdV equation

by Rafei and Ganji [5], for the thin film flow of a fourth grade fluid down a vertical cylinder by Siddiqui et al. [6], to the



Solving FIDEs by Using Semi-Analytical Techniques — 193/198

non-linear Volterra-Fredholm integral equations by Hamoud and Ghadle [7], to FIDE [8], to system of Fredholm integral

equations [9], Alao et al. [10] studied the ADM and the VIM on various types of integro-differential equation. Moreover, many

methods for solving integro-differential equations have been studied by several authors [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21].

The main objective of the present paper is to study the behavior of the solution that can be formally determined by

semi-analytical approximated methods as the VIM, HPM and DHAM. Moreover, we proved the existence and uniqueness

results of the FIDEs.

2. Variational iteration method (VIM)

The main idea of this method is to construct a correction functional form using general Lagrange multipliers. To illustrate, we

consider the following general differential equation:

L∆(t)+N∆(t) = f (t),

where L is a linear operator, N is a nonlinear operator and f (t) is inhomogeneous term. According to variational iteration

method [7], the terms of a sequence ∆n are constructed such that this sequence converges to the exact solution. The terms ∆n

are calculated by a correction functional as follows:

∆n+1(t) = ∆n(t)+
∫ t

0
µ(τ)(L∆n(τ)+Nỹ(τ)− f (τ))dτ. (2.1)

The successive approximation ∆n(t),n ≥ 0 of the solution ∆(t) will be readily obtained upon using the obtained Lagrange

multiplier and by using any selective function ∆0. The zeroth approximation ∆0 may be selected using any function that

just satisfies at least the initial and boundary conditions. With µ determined, several approximations ∆n(t),n ≥ 0 follow

immediately.

The VIM has been shown to solve effectively, easily and accurately a large class of nonlinear problems with approximations

converging rapidly to accurate solutions.

To obtain the approximation solution of IVP (1.1)− (1.2), according to the VIM, the iteration formula (2.1) can be written

as follows:

∆n+1(x) = ∆n(x)+L−1
[

µ(x)
[ k

∑
j=0

p j(x)∆
( j)
n (x)− f (x)−λ

∫ b

a
W (x, t)G(∆n(t))dt

]]

,

where L−1 is the multiple integration operator given as follows:

L−1(·) =
∫ x

a

∫ x

a
· · ·

∫ x

a
(·)dxdx · · ·dx (k− times).

To find the optimal µ(x), we proceed as follows:

δ∆n+1(x) = δ∆n(x)+δL−1
[

µ(x)
[ k

∑
j=0

p j(x)∆
( j)
n (x)− f (x)−λ

∫ b

a
W (x, t)G(∆n(t))dt

]]

= δ∆n(x)+µ(x)δ∆n(x)−L−1
[

δ∆n(x)µ
′(x)

]

. (2.2)

From Eq. (2.2), the stationary conditions can be obtained as follows:

µ ′(x) = 0, and 1+µ(x)|x=t = 0.

As a result, the Lagrange multipliers can be identified as µ(x) =−1 and by substituting in Eq. (2.2), the following iteration

formula is obtained:

∆0(x) = L−1
[ f (x)

pk(x)

]

+
k−1

∑
r=0

(x−a)r

r!
br, (2.3)

∆n+1(x) = ∆n(x)−L−1
[ k

∑
j=0

p j(x)∆
( j)
n (x)− f (x)−λ

∫ b

a
W (x, t)G(∆n(t))dt

]

,n ≥ 0.

The term ∑
k−1
r=0

(x−a)r

r!
br is obtained from the initial conditions, pk(x) 6= 0. Relation (2.3) will enable us to determine the

components ∆n(x) recursively for n ≥ 0. Consequently, the approximation solution may be obtained by using

∆(x) = lim
n→∞

∆n(x).
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3. Homotopy perturbation method (HPM)

The homotopy perturbation method first proposed by He [1, 2]. To illustrate the basic idea of this method, we consider the

following nonlinear differential equation

A(∆)− f (r) = 0, r ∈ Ω, (3.1)

under the boundary conditions

B

(

∆,
∂∆

∂n

)

= 0, r ∈ Γ,

where A is a general differential operator, B is a boundary operator, f (r) is a known analytic function, Γ is the boundary of the

domain Ω.

In general, the operator A can be divided into two parts L and N, where L is linear, while N is nonlinear. Eq. (3.1) therefore can

be rewritten as follows [19]:

L(∆)+N(∆)− f (r) = 0.

By the homotopy technique, we will construct a homotopy v(r, p) : Ω× [0,1]−→ R which satisfies

H(v, p) = (1− p)[L(v)−L(∆0)]+ p[A(v)− f (r)] = 0, p ∈ [0,1]. (3.2)

or

H(v, p) = L(v)−L(∆0)+ pL(∆0)]+ p[N(v)− f (r)] = 0, (3.3)

where p ∈ [0,1] is an embedding parameter, ∆0 is an initial approximation of Eq.(3.1) which satisfies the boundary conditions.

From Eqs.(3.2), (3.3) we have

H(v,0) = L(v)−L(∆0) = 0,

H(v,1) = A(v)− f (r) = 0.

The changing in the process of p from zero to unity is just that of v(r, p) from ∆0(r) to ∆(r). In topology this is called

deformation, the L(v)−L(∆0), and A(v)− f (r) are called homotopic. Now, assume that the solution of Eqs. (3.2) and (3.3) can

be expressed as

v = v0 + pv1 + p2v2 + · · · .

The approximate solution of Eq.(3.1) can be obtained by setting p = 1.

∆ = lim
p→1

v = v0 + v1 + v2 + · · · .

Then equating the terms with identical power of P, we obtain the following series of linear equations:

P0 : ∆0(x) =
k−1

∑
r=0

1

r!
(x−a)rbr,

P1 : ∆1(x) = L−1

(

f (x)

pk(x)

)

+λL−1

(

∫ b

a

W (x, t)

pk(x)
G(∆0(t))(t)dt

)

−
k−1

∑
j=0

L−1

(

p j(x)

pk(x)
∆
( j)
0 (x)

)

,

P2 : ∆2(x) = λL−1

(

∫ b

a

W (x, t)

pk(x)
G(∆1(t))(t)dt

)

−
k−1

∑
j=0

L−1

(

p j(x)

pk(x)
∆
( j)
1 (x)

)

,

P3 : ∆3(x) = λL−1

(

∫ b

a

W (x, t)

pk(x)
G(∆2(t))dt

)

−
k−1

∑
j=0

L−1

(

p j(x)

pk(x)
∆
( j)
2 (x)

)

,

.

.

.
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4. Direct homotopy analysis method (DHAM)

Consider FIDE (1.1) and substitute the kernel W (x, t) = g(x)h(t) we obtain

k

∑
j=0

p j(x)∆
( j)(x) = f (x)+λg(x)

∫ b

a
h(t)G(∆(t))dt.

To obtain the approximate solution, we integrating (k)-times in the interval [a,x] with respect to x we obtain,

∆(x) = L−1

(

f (x)

pk(x)

)

+
k−1

∑
r=0

1

r!
(x−a)rbr +λL−1

(

g(x)

pk(x)

∫ b

a
h(t)G(∆(t))dt

)

−
k−1

∑
j=0

L−1

(

p j(x)

pk(x)
∆
( j)
n (x)

)

,

Setting

Q =
∫ b

a
h(t)G(∆(t))dt

F = L−1

(

f (x)

pk(x)

)

+
k−1

∑
r=0

1

r!
(x−a)rbr −

k−1

∑
j=0

L−1

(

p j(x)

pk(x)
∆
( j)
n (x)

)

.

Therefore, we can rewrite Eq. (4.1) as

∆(x) = F(x)+λL−1

(

g(x)

pk(x)
Q

)

,

we define the nonlinear homotopy operator as:

N[∆(x)] = ∆(x)−F(x)−λL−1

(

g(x)

pk(x)
Q

)

,

The corresponding mth-order deformation equation is as follows

L[∆m(x)−χm∆m−1(x)] = BH(x)Rm(
−−−−−→
∆m−1(x))

where

Rm(
−−−−−→
∆m−1(x)) = ∆m−1(x)−F(x)(1−χm)−λL−1

(

g(x)

pk(x)
Q

)

,

and

χm =

{

1, m > 1.

0, m ≤ 1.

choosing the auxiliary linear operator L[∆] = ∆, we obtain

∆0(x) Choosing initial guess

∆1(x) = BH(x)
[

∆0(x)−L−1

(

f (x)

pk(x)

)

−
k−1

∑
r=0

1

r!
(x−a)rbr −λL−1

(

g(x)

pk(x)

∫ b

a
h(t)G(∆0(t))dt

)

+
k−1

∑
j=0

L−1

(

p j(x)

pk(x)
∆
( j)
0 (x)

)

]

,

∆m(x) = χm∆m−1(x)+BH(x)
[

∆m−1(x)−λL−1

(

g(x)

pk(x)

∫ b

a
h(t)G(∆m−1(t))dt

)

+
k−1

∑
j=0

L−1

(

p j(x)

pk(x)
∆
( j)
m−1(x)

)

]

,m > 1.

with auxiliary function H(x) and auxiliary parameter B.

Then, ∆(x) = ∑
m
i=0 ∆i as the approximate solution.
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5. Uniqueness results

In this section, we shall give an uniqueness results of Eq. (1.1), with the initial condition (1.2) and prove it [22, 23].

We can be written equation (1.1) in the form of:

∆(x) = L−1
[ f (x)

pk(x)

]

+
k−1

∑
r=0

(x−a)r

r!
br +λ1L−1

[

∫ b

a

1

pk(x)
W (x, t)G(∆n(t))dt

]

−L−1
[ k−1

∑
j=0

p j(x)

pk(x)
∆( j)(x)

]

.

we can write

L−1
[

∫ b

a

1

pk(x)
W (x, t)G(∆n(t))dt

]

=
∫ b

a

(x− t)k

k!pk(x)
W (x, t)G(∆n(t))dt

k−1

∑
j=0

L−1
[ p j(x)

pk(x)

]

∆( j)(x) =
k−1

∑
j=0

∫ b

a

(x− t)k−1 p j(t)

k−1!pk(t)
∆( j)(t)dt.

We set,

Ψ(x) = L−1
[ f (x)

pk(x)

]

+
k−1

∑
r=0

(x−a)r

r!
br.

Before starting and proving the main results, we introduce the following hypotheses:

(H1) There exist two constants α and γ j > 0, j = 0,1, · · · ,k such that, for any ∆1,∆2 ∈C(J,R)

|G(∆1))−G(∆2))| ≤ α |∆1 −∆2|

and

∣

∣D j(∆1)−D j(∆2)
∣

∣≤ γ j |∆1 −∆2| ,

we suppose that the nonlinear terms G(∆(x)) and D j(∆) = ( d j

dx j )∆(x) = ∑
∞
i=0 γi j

, (D j is a derivative operator), j =
0,1, · · · ,k, are Lipschitz continuous.

(H2) We suppose that for all a ≤ t ≤ x ≤ b, and j = 0,1, · · · ,k:

∣

∣

∣

∣

λ (x− t)kW (x, t)

k!pk(x)

∣

∣

∣

∣

≤ θ1,

∣

∣

∣

∣

λ (x− t)kW (x, t)

k!

∣

∣

∣

∣

≤ θ2,

and

∣

∣

∣

∣

(x− t)k−1 p j(t)

(k−1)!pk(t)

∣

∣

∣

∣

≤ θ3,

∣

∣

∣

∣

(x− t)k−1 p j(t)

(k−1)!

∣

∣

∣

∣

≤ θ4,

(H3) There exist three functions θ ∗
3 ,θ

∗
4 , and γ∗ ∈ C(D,R+), the set of all positive function continuous on D = {(x, t) ∈

R×R : 0 ≤ t ≤ x ≤ 1} such that:

θ ∗
3 = max |θ3| , θ ∗

4 = max |θ4| , and γ∗ = max
∣

∣γ j

∣

∣ .

(H4) Ψ(x) is bounded function for all x in J = [a,b].

Theorem 5.1. Assume that (H1)–(H4) hold. If

0 < ψ = (αθ1 + kγ∗θ ∗
3 )(b−a)< 1,

then there exists a unique solution ∆(x) ∈C(J) to IVP (1.1)− (1.2).
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Proof. Let ∆1 and ∆2 be two different solutions of IVP (1.1)− (1.2)., then

∣

∣

∣
∆1 −∆2

∣

∣

∣
=

∣

∣

∣

∫ b

a

λ (x− t)kW (x, t)

pk(x)k!
[G(∆1)−G(∆2))]dt

−
k−1

∑
j=0

∫ b

a

(x− t)k−1 p j(t)

pk(t)(k−1)!
[D j(∆1)−D j(∆2))]dt

∣

∣

∣

≤
∫ b

a

∣

∣

∣

λ (x− t)kW (x, t)

pk(x)k!

∣

∣

∣

∣

∣

∣
G(∆1)−G(∆2))

∣

∣

∣
dt

−
k−1

∑
j=0

∫ b

a

∣

∣

∣

(x− t)k−1 p j(t)

pk(t)(k−1)!

∣

∣

∣

∣

∣

∣
D j(∆1)−D j(∆2))

∣

∣

∣
dt

≤ (αθ1 + kγ∗θ ∗
3 )(b−a)|∆1 −∆2|,

we get (1−ψ)|∆1 −∆2| ≤ 0. Since 0 < ψ < 1, so |∆1 −∆2|= 0. Therefore, ∆1 = ∆2 and the proof is completed.

6. Example

In this section, we present the semi-analytical techniques based on VIM, HPM and DHAM to solve FIDEs. To show the

efficiency of the present methods for our problem in comparison with the exact solutions.

Example 6.1. Consider the following FIDE:

∆′(x) = ex(1+ x)− x+
∫ 1

0
x∆(t)dt,

with the initial condition

∆(0) = 0,

and the the exact solution is ∆(x) = xex.

Table 1. Numerical Results of the Example 6.1

x Exact VIM HPM DHAM

0.1 0.1105170 0.1096837 0.1103782 0.1105170

0.2 0.2442805 0.2409472 0.2437249 0.2442805

0.3 0.4049576 0.3974576 0.4037076 0.4049576

0.4 0.5967298 0.5833965 0.5945076 0.5967298

0.5 0.8243606 0.8035273 0.8208884 0.8233606

0.6 1.0932712 1.0632712 1.0882712 1.0932712

0.7 1.4096268 1.3687935 1.4028213 1.4096268

0.8 1.7804327 1.7270994 1.7715438 1.7804327

0.9 2.2136428 2.1461428 2.2023928 2.2136428

7. Discussion and conclusion

We discussed the VIM, HPM and DHAM for solving FIDEs of the second kind. To assess the accuracy of each method, the test

example with known exact solution is used. In this work, the above methods have been successfully employed to obtain the

approximate solution of a FIDE. The results show that these methods are very efficient, convenient and can be adapted to fit a

larger class of problems. The comparison reveals that although the numerical results of these methods are similar approximately,

Table 1 shows that the numerical results obtained with DHAM agree with the exact solutions.
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1. Introduction

The classical Beta function B(x,y) is defined by:

B(x,y) =

{

∫ 1
0 tx−1(1− t)y−1dt , (Re(x)> 0 , Re(y)> 0)

Γ(x)Γ(y)
Γ(x+y) , Re(x)> 0 , Re(y)> 0,

(1.1)

where Γ(x) is the familiar Gamma function defined by

Γ(x) =
∫ ∞

0
tx−1e−tdt, (Re(x)> 0).

The generalized hypergeometric function pFq with p numerator parameters and q denominator parameters is defined by (see

[1])

pFq





a1, . . . ,ap ;

b1, . . . ,bq ;

z



=
∞

∑
n=0

(a1)n . . .(bp)n

(a1)n . . .(bq)n

zn

n!
, (1.2)

where (λ )n is the well-known Pochhammer symbol. The case p = 2 and q = 1 of (1.2), yields the Gauss’s hypergeometric

function 2F1(z).
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The Kampé de Fériet function of two variables F
p:q;k

l:m;n [x,y] is defined by (see[1])

F
p:q;k

l:m;n





(ap) : (bq) ; (ck) ;

(el) : ( fm) ; (gn) ;

x , y



=
∞

∑
r,s=0

p

∏
j=1

(a j)r+s

q

∏
j=1

(b j)r

k

∏
j=1

(c j)s

l

∏
j=1

(e j)r+s

m

∏
j=1

( f j)r

n

∏
j=1

(g j)s

xr

r!

ys

s!
.

In 1903, Gosta Mittag-Leffler [2] introduced the function Eα(z) defined as:

Eα(z) =
∞

∑
n=0

zn

Γ(αn+1)
, α > 0 , z ∈ C.

In 1905, Wiman [3] defined the generalized Mittag-Leffler function Eα,β (z) as follows:

Eα,β (z) =
∞

∑
n=0

zn

Γ(αn+β )
, (α,β ∈ C , Re(α)> 0 , Re(β )> 0).

Afterward, Prabhakar [4] defined the generalized Mittag-Leffler function E
γ
α,β (z) as follows:

E
γ
α,β (z) =

∞

∑
n=0

(γ)n

Γ(αn+β )

zn

n!
, (α,β ,γ ∈ C , Re(α)> 0 , Re(β )> 0 , Re(γ)> 0). (1.3)

Clearly,

E1
α,β = Eα,β (z), E1

α,1 = Eα(z), E1
1,1 = E1(z) = ez.

In recent years, some extensions of Beta function and Gauss hypergeometric function have been considered by several authors

(see [5, 6, 7, 8, 9, 10, 11]).

The following extended Beta function and extended Gauss hypergeometric function are introduced by Chaudhry et al. [12]

and Chaudhry et al. [13] respectively:

B(x,y; p) =
∫ 1

0
tx−1(1− t)y−1exp

(

−p

t(1− t)

)

dt, (Re(p)> 0, Re(x)> 0, Re(y)> 0)

and

Fp(a,b;c;z) =
∞

∑
n=0

Bp(b+n,c−b)

B(b,c−b)
(a)n

zn

n!
, (Re(c)> Re(b)> 0, p ≥ 0).

Choi et al. [14] introduced the extended Beta and extended Gauss hypergeometric functions as follows:

B(x,y; p;q) =
∫ 1

0
tx−1(1− t)y−1exp

(

−p

t
−

q

(1− t)

)

dt, (Re(p)> 0, Re(q)> 0) (1.4)

and

Fp,q(a,b;c;z) =
∞

∑
n=0

Bp,q(b+n,c−b)

B(b,c−b)
(a)n

zn

n!
, (Re(c)> Re(b)> 0, p,q ≥ 0). (1.5)

Rahman et al. [15] introduced the following extensions of (1.4) and (1.5) as follows:

Bα
p,q(x,y) =

∫ 1

0
tx−1(1− t)y−1Eα

(

−
p

t

)

Eα

(

−
q

(1− t)

)

dt, (Re(α)> 0, p,q ≥ 0) (1.6)

and

Fα
p,q(a,b;c;z) =

∞

∑
n=0

Bα
p,q(b+n,c−b)

B(b,c−b)
(a)n

zn

n!
, (Re(c)> Re(b)> 0, Re(α)> 0, p,q ≥ 0).
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Further generalizations of (1.6) are introduced by Atash et al. [16] and Barahmah [17] as follows:

B
(α,β )
p,q (x,y) =

∫ 1

0
tx−1(1− t)y−1Eα,β

(

−
p

t

)

Eα,β

(

−
q

(1− t)

)

dt, (Re(α)> 0, Re(β )> 0, p,q ≥ 0) (1.7)

and

B
(α,β ,γ)
p,q (x,y) =

∫ 1

0
tx−1(1− t)y−1E

γ
α,β

(

−
p

t

)

E
γ
α,β

(

−
q

(1− t)

)

dt, (Re(α)> 0, Re(β )> 0, Re(γ)> 0, p,q ≥ 0). (1.8)

In the present paper, we aim to introduce new extensions for extended Gauss hypergeometric function by using (1.7) and (1.8)

as follows:

F
(α,β )
p,q (a,b;c;z) =

∞

∑
n=0

(a)n

B
(α,β )
p,q (b+n,c−b)

B(b,c−b)

zn

n!
, (Re(c)> Re(b)> 0, Re(α)> 0, Re(β )> 0, p,q ≥ 0) (1.9)

and

F
(α,β ,γ)
p,q (a,b;c;z) =

∞

∑
n=0

(a)n

B
(α,β ,γ)
p,q (b+n,c−b)

B(b,c−b)

zn

n!
,

(Re(c)> Re(b)> 0, Re(α)> 0, Re(β )> 0, Re(γ)> 0, p,q ≥ 0). (1.10)

Clearly,

F
(α,β ,1)
p,q = F

(α,β )
p,q , F

(α,1,1)
p,q = Fα

p,q, F
(1,1,1)
p,q = Fp,q, F

(1,1,1)
p,p = Fp, F

(1,1,1)
0,0 = 2F1.

Further, if we use (1.7) in (1.9) and (1.8) in (1.10), we have respectively the following integral representations:

F
(α,β )
p,q (a,b;c;z) =

1

B(b,c−b)

∫ 1

0
tb−1(1− t)c−b−1(1− zt)−α Eα,β

(

−
p

t

)

Eα,β

(

−
q

(1− t)

)

dt,

(Re(c)> Re(b)> 0, Re(α)> 0, Re(β )> 0, p,q ≥ 0)

and

F
(α,β ,γ)
p,q (a,b;c;z) =

1

B(b,c−b)

∫ 1

0
tb−1(1− t)c−b−1(1− zt)−α E

γ
α ,β

(

−
p

t

)

E
γ
α,β

(

−
q

(1− t)

)

dt,

(Re(c)> Re(b)> 0, Re(α)> 0, Re(β )> 0, Re(γ)> 0, p,q ≥ 0). (1.11)

2. Transformation and summation formulas

In this section, we present some transformation and summation formulas for extended Gauss hypergeometric function (1.10) as

follows:

Theorem 2.1. For (Re(c)> Re(b)> 0, Re(α)> 0, Re(β )> 0, Re(γ)> 0, p,q ≥ 0), the following transformation formula

holds true:

F
(α,β ,γ)
p,q (a,b;c;z) = (1− z)−aF

(α,β ,γ)
q,p (a,c−b;c;

−z

1− z
). (2.1)

Proof. Replacing t by (1− t) in (1.11) and using the following result:

(1− z(1− t))−a = (1− z)−a(1−
z

z−1
t)−a,

we obtain

F
(α,β ,γ)
p,q (a,b;c;z) =

(1− z)−a

B(b,c−b)

∫ 1

0
tc−b−1(1− t)b−1(1−

z

z−1
t)−aEα,β

(

−
q

t

)

Eα,β

(

−
p

1− t

)

dt,

which, by applying (1.11) yields the desired result.

Remark 2.2. Replacing z by 1− 1
z

and z
1+z

in (2.1), we have respectively
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Corollary 2.3.

F
(α,β ,γ)
p,q

(

a,b;c;1−
1

z

)

= zaF
(α,β ,γ)
q,p (a,c−b;c;1− z). (2.2)

Corollary 2.4.

F
(α,β ,γ)
p,q

(

a,b;c;
z

1+ z

)

= (1+ z)aF
(α,β ,γ)
q,p (a,c−b;c;−z). (2.3)

Theorem 2.5. For (Re(c−a−b)> 0, Re(k)> 0, Re(β )> 0, Re(γ)> 0, p,q ≥ 0), the following summation formula holds

true:

F
(k,β ,γ)
p,q (a,b;c;1) =

Γ(c)Γ(c−a−b)

Γ(β )Γ(β )Γ(c−a)Γ(c−b)
(2.4)

×F
1 : 1 ; 1

0 : 1+ k ; 1+ k





1+a− c : γ ; γ ;

− : 1−b,∆(k;β ) ; 1+a+b− c,∆(k;β ) ;

−p

kk ,
−q

kk



 ,

where ∆(k;β ) is k-tuple

β

k
,

β +1

k
, . . . ,

β + k−1

k
.

Proof. From (1.11), we have

F
(α,β ,γ)
p,q (a,b;c;1) =

1

B(b,c−b)

∫ 1

0
tb−1(1− t)c−a−b−1E

γ
k,β

(

−
p

t

)

E
γ
k,β

(

−
q

(1− t)

)

dt.

Applying (1.3) and interchanging the order of summation and integration and then using (1.1), we obtain

F
(α,β ,γ)
p,q (a,b;c;1) =

Γ(c)

Γ(β )Γ(β )Γ(c−b)
×

∞

∑
r,s=0

(γ)r(γ)s(−p)r(−q)sΓ(b− r)Γ(c−a−b− s)

(β )kr(β )ksr!s!
.

Now, using the following identities (see [1]):

Γ(α −n)

Γ(α)
=

(−1)n

(1−α)n

and

(α)kn = kkn
k

∏
j=1

(

α + j−1

k

)

n

, n = 1,2,3, . . . ,

we have

F
(k,β ,γ)
p,q (a,b;c;1) =

Γ(c)Γ(c−a−b)

Γ(β )Γ(β )Γ(c−a)Γ(c−b)
×

∞

∑
r,s=0

(1− c+a)r+s(γ)r(γ)s(−p)r(−q)s

kkr ∏
k
j=1

(

β+ j−1
k

)

r
kks ∏

k
j=1

(

β+ j−1
k

)

s
(1−b)r(1+a+b− c)sr!s!

=
Γ(c)Γ(c−a−b)

Γ(β )Γ(β )Γ(c−a)Γ(c−b)

×F
1 : 1 ; 1

0 : 1+ k ; 1+ k





1+a− c : γ ; γ ;

− : 1−b, β
k
, β+1

k
, . . . , β+k−1

k
; 1+a+b− c, β

k
, β+1

k
, . . . , β+k−1

k
;

−p

kk ,
−q

kk



 .

This completes the proof of (2.4).

Remark 2.6. Putting a =−n in (2.4), we obtain
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Corollary 2.7.

F
(k,β ,γ)
p,q (−n,b;c;1) =

Γ(c)Γ(c+n−b)

Γ(β )Γ(β )Γ(c+n)Γ(c−b)

×F
1 : 1 ; 1

0 : 1+ k ; 1+ k





1−n− c : γ ; γ ;

− : 1−b,∆(k;β ) ; 1−n+b− c,∆(k;β ) ;

−p

kk ,
−q

kk



 . (2.5)

Remark 2.8. Putting a =−n and b = a+n in (2.4), we obtain

Corollary 2.9.

F
(k,β ,γ)
p,q (−n,a+n;c;1) =

Γ(c)Γ(c−a)

Γ(β )Γ(β )Γ(c+n)Γ(c−a−n)

×F
1 : 1 ; 1

0 : 1+ k ; 1+ k





1−n− c : γ ; γ ;

− : 1−a−n,∆(k;β ) ; 1+a− c,∆(k;β ) ;

−p

kk ,
−q

kk



 . (2.6)

Remark 2.10. Putting a =−n and b = 1−b−n in (2.4), we obtain

Corollary 2.11.

F
(k,β ,γ)
p,q (−n,1−b−n;c;1) =

Γ(c)Γ(c+b−1+2n)

Γ(β )Γ(β )Γ(c+n)Γ(c+b−1−n)

×F
1 : 1 ; 1

0 : 1+ k ; 1+ k





1−n− c : γ ; γ ;

− : b+n,∆(k;β ) ; 2−b− c−2n,∆(k;β ) ;

−p

kk ,
−q

kk



 . (2.7)

Theorem 2.12. For (Re(b)> 0, Re(k)> 0, Re(β )> 0, Re(γ)> 0, p,q ≥ 0), the following summation formula holds true:

F
(k,β ,γ)
p,q (−

n

2
,−

n

2
+

1

2
;b+

1

2
;1) =

Γ(b+ 1
2
)Γ(b+n)

Γ(β )Γ(β )Γ(b+ n
2
)Γ(b+ n

2
+ 1

2
)

×F
1 : 1 ; 1

0 : 1+ k ; 1+ k





1
2
− n

2
−b : γ ; γ ;

− : (n/2)+(1/2),∆(k;β ) ; 1−b−n,∆(k;β ) ;

−p

kk ,
−q

kk



 , (2.8)

where ∆(k;β ) is k-tuple

β

k
,

β +1

k
, . . . ,

β + k−1

k
.

The proof of the Theorem 2.12 is similar to that of the Theorem 2.5. Therefore, we omit the details.

3. Special cases

(i) Setting β = γ = 1 in (2.1), we get the following corrected formula given by Rahman et al. [15]

Fk
p,q(a,b;c;z) = (1− z)−aFk

q,p(a,c−b;c;
−z

1− z
).

(ii) Setting k = β = γ = 1 in (2.1), (2.2) and (2.3), we get a known transformation formulas of Choi et al. [14] for Fp,q(a,b;c;z).
(iii) Setting k = β = γ = 1, p = q in (2.1), we get a known transformation formula of Chaudhry et al. [13] for Fp(a,b;c;z).
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(iv) Setting k = β = γ = 1, p = q = 0 in (2.1), we get Euler transformation [18, 1]).

(v) Setting k = β = γ = 1 in (2.4), we get

F
(1,1,1)
p,q (a,b;c;1) =

Γ(c)Γ(c−a−b)

Γ(c−a)Γ(c−b)
ψ2[1+a− c;1−b,1+a+b− c;−p,−q], (3.1)

where ψ2 is the Humbert’s confluent hypergeometric function [1].

By setting p = q in (3.1) and using the result [1]

ψ2[a;b,c;x,x] = 3F3

[

a,
b+ c

2
,

b+ c−1

2
;b,c,b+ c−1;4x

]

, (3.2)

equation (3.1) reduces to

F
(1,1,1)
p,p (a,b;c;1) =

Γ(c)Γ(c−a−b)

Γ(c−a)Γ(c−b)
2F2

[

a− c+1

2
,

a− c+2

2
;1−b,1+a+b− c;−4p

]

. (3.3)

Further, setting p = 0 in (3.3), we get the well-known Gauss summation formula (see [18])

F
(1,1,1)
0,0 (a,b;c;1) = 2F1(a,b;c;1) =

Γ(c)Γ(c−a−b)

Γ(c−a)Γ(c−b)
.

(vi) Setting k = β = γ = 1 in (2.5), we get

F
(1,1,1)
p,q (−n,b;c;1) =

Γ(c)Γ(c+n−b)

Γ(c+n)Γ(c−b)
ψ2[1−n− c;1−b,1−n+b− c;−p,−q]. (3.4)

Further, setting p = q = 0 in (3.4), we get a known result (see [18])

F
(1,1,1)
0,0 (−n,b;c;1) = 2F1(−n,b;c;1) =

(c−b)n

(c)n

.

(vii) Setting k = β = γ = 1 in (2.6), we get

F
(1,1,1)
p,q (−n,a+n;c;1) =

Γ(c)Γ(c−a)

Γ(c+n)Γ(c−a−n)
ψ2[1−n− c;1−a−n,1+a− c;−p,−q]. (3.5)

Further, setting p = q = 0 in (3.5), we get a known result (see [18])

F
(1,1,1)
0,0 (−n,a+n;c;1) = 2F1(−n,a+n;c;1) =

(−1)n(1+a− c)n

(c)n

.

(viii) Setting k = β = γ = 1 in (2.7), we get

F
(1,1,1)
p,q (−n,1−b−n;c;1) =

Γ(c)Γ(b+ c−1+2n)

Γ(c+n)Γ(b+ c−1−n)
ψ2[1−n− c;b+n,2−b− c−2n;−p,−q]. (3.6)

Further, setting p = q = 0 in (3.6), we get a known result (see [18])

F
(1,1,1)
0,0 (−n,1−b−n;c;1) = 2F1(−n,1−b−n;c;1) =

(−1)n(b+ c−1)2n

(c)n(b+ c−1)n

.

(viiii) Setting k = β = γ = 1 in (2.8), we get

F
(1,1,1)
p,q (−

n

2
,−

n

2
+

1

2
;b+

1

2
;1) =

Γ(b+ 1
2
)Γ(b+n)

Γ(b+ n
2
)Γ(b+ n

2
+ 1

2
)

ψ2

[

1

2
−

n

2
−b;

1

2
+

n

2
,1−b−n;−p,−q

]

,

which for p = q and using the result (3.2) reduces to

F
(1,1,1)
p,p (−

n

2
,−

n

2
+

1

2
;b+

1

2
;1) =

Γ(b+ 1
2
)Γ(b+n)

Γ(b+ n
2
)Γ(b+ n

2
+ 1

2
)

2F2

[

3

4
−

n

4
−

b

2
,

1

4
−

n

4
−

b

2
;

1

2
+

n

2
,1−b−n;−4p

]

. (3.7)

Further, setting p = 0 in (3.7) and using Legender’s duplication formula (see [18])

Γ(b)Γ(b+
1

2
) = 21−2b

√
πΓ(2b),

we get a known result (see [18])

F
(1,1,1)
0,0 (−

n

2
,−

n

2
+

1

2
;b+

1

2
;1) = 2F1(−

n

2
,−

n

2
+

1

2
;b+

1

2
;1) =

2n(b)n

(2b)n

.
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1. Introduction

Homology theory is one of the most powerful tools for study of various mathematical objects. There are many kind of

(co)homology theories, for instance: de Rham (co)homology for smooth manifolds, sheaf cohomology for algebraic varieties,

singular (co)homology of topological spaces with values in an arbitrary ring, C̆ech cohomology for topological spaces, bordism

homology, and Hochschild (co)homology for rings and topological algebras with values in bimodules.

The bounded cohomology theory was first defined for discrete groups by B. E. Johnson [1] and F. Trauber. Then, M.

Gromov [2] extended it to topological spaces. Gromov has been proved that for every path connected manifold, the bounded

cohomology group of any rank is equivalent with bounded cohomology group of fundamental group of the manifold with the

same rank; for more details one can look [3]. The continuous cohomology theory for topological spaces and topological groups

have been studied by many mathematicians in different approaches; see [4, 5, 6] and [7].

The bounded continuous cohomology theory for topological spaces and topological groups, generalizing both continuous

cohomology and bounded cohomology theories simultaneously, has been studied by many authors such as R. Frigerio [8] and

N. Monod [9]. Bounded cohomology of semigroups has also been considered by many mathematicians such as R. Brooks [10],

R. I. Grigorchuk [11] and N. V. Ivanov [12].

In this paper we establish a topological bounded cohomology theory for topological semigroups, using continuous bounded

cocycles.

In the section 2, we define bounded continuous cohomology group of a topological semigroup. In the section 3, we

show some basic properties of the bounded continuous cohomology. In the next section, we explain the bounded continuous

cohomology relation with amenability. In the last section, we give some examples of it.
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2. Definition of the cohomology

For any set X , B(X) denotes the Banach space of all bounded complex (C) valued maps on X with the uniform norm. If X

has a topology, then C(X)⊂ B(X) denotes the Banach subspace of continuous maps. By a topological semigroup we mean a

semigroup S with a topology such that the multiplication S×S → S is jointly continuous.

Let S be a semigroup. Let C 0
b (S) = C, and for n ≥ 1, let C n

b (S) = B(Sn). The elements of C n
b (S) are called bounded

cochains of the semigroup S. Let δ 0 : C 0
b (S)→ C 1

b (S) be the zero linear map and for n ≥ 1, define the bounded linear map

δ n : C n
b (S)→ C

n+1
b (S) by

δ n( f )(s1, . . . ,sn+1) = f (s2, . . . ,sn+1)+
n

∑
i=1

(−1)i f (s1, . . . ,sisi+1, . . . ,sn+1)+(−1)n+1 f (s1, . . . ,sn),

for f ∈ C n
b (S) and s1, . . . ,sn+1 ∈ S. The linear map δ n is called coboundary. It is easily checked that δ n+1δ n = 0 and thus, we

have the following cochain complex of Banach spaces and bounded linear maps:

0 // C 0
b (S)

δ 0
// C 1

b (S)
δ 1

// · · ·
δ n−1

// C n
b (S)

δ n
// · · · (2.1)

Then, the cohomology groups of the complex (2.1) are called bounded cohomology groups of S and denoted by H n
b (S) = kerδ n

Imδ n−1 .

Always, the quotient vector space H n
cb(S) is considered as a semi normed space with quotient semi norm. As any cohomology

theory, we let Bn
b(S) = Imδ n−1 and Z n

b (S) = kerδ n. The elements of Bn
b and Z n

b are called bounded n-coboundaries and

bounded n-cocycles, respectively. For more details on bounded cohomology of semigroups, see [11].

Now, suppose that S is a topological semigroup. Let C 0
cb(S) =C, and for n ≥ 1, let C n

cb(S) = C(Sn). The elements of C n
cb(S)

are called continuous bounded cochains of the semigroup S. Then we have the following Banach subcomplex of (2.1):

0 // C 0
cb(S)

δ 0
// C 1

cb(S)
δ 1

// · · ·
δ n−1

// C n
cb(S)

δ n
// · · · (2.2)

Definition 2.1. The cohomology groups of the complex (2.2) are called continuous bounded cohomology groups of S and

denoted by H n
cb(S).

Analogously, we have the space of continuous bounded n-coboundaries Bn
cb(S), and the space of continuous bounded

n-cocycles Z n
cb, and H n

cb(S) is considered by the quotient semi norm.

Remark 2.2. (I) Let S be a discrete semigroup. Consider the convolution Banach algebra ℓ1(S). Then the space C is a

Banach ℓ1(S)-bimodule by the symmetric action f ·λ = λ · f = λ ∑s∈S f (s) for f ∈ ℓ1(S) and λ ∈ C. It is well known

and easily checked that the bounded Hochschild cohomology groups of ℓ1(S) with values in the bimodule C and the

bounded cohomology groups of S are isometric isomorph. Thus, the bounded cohomology is a special case of Hochschild

cohomology, see[13].

(II) Let S be a compact Hausdorff semigroup. If we dualize cochain complex (2.2), then (by the natural isomorphism between

C(X)∗ and the Banach space of complex Borel regular measures M(X) for any compact Hausdorff space X) we have the

chain complex

0 Coo M(S)
(δ 0)∗

oo M(S2)
(δ 1)∗
oo · · ·

(δ 2)∗
oo

One can consider the homology of this complex as a measure homology theory (cf. [14, 15]) that is a topological version

of ℓ1-homology of discrete semigroups [11].

3. Some basic properties

Theorem 3.1. Let S,T be topological semigroups and φ : S → T be a continuous homomorphism. Then for every n ≥ 0, there

is a canonical continuous linear map

H
n

cb(φ) : H
n

cb(T )→ H
n

cb(S).
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Proof. For every n ≥ 1 let φ̂n : C n
cb(T )→ C n

cb(S) be defined by

φ̂n( f )(s1, . . . ,sn) = f (φ(s1), . . . ,φ(sn)) ( f ∈ C
n
cb(T )).

Then (φ̂n)n is a cochain map between continuous bounded cohomology complexes of T and S, i.e. the following diagram is

commutative:

0 // C
δ 0

//

id

��

C 1
cb(T )

δ 1
//

φ̂1

��

· · ·
δ n−1

// C n
cb(T )

δ n
//

φ̂n

��

· · ·

0 // C
δ 0

// C 1
cb(S)

δ 1

// · · ·
δ n−1

// C n
cb(S) δ n

// · · ·

Thus, the standard arguments of Banach homology ([16], [17]) shows that we have a continuous linear map H n
cb(φ), defined by

H
n

cb(φ)( f +B
n
cb(T )) = φ̂n( f )+B

n
cb(S),

for f ∈ Z n
cb(T ).

Let T S G be the category of topological semigroups and continuous homomorphisms. Then, the above theorem shows

that H n
cb is a contravariant functor from T S G to the category of seminormed spaces and continuous linear maps. Since the

category T S G has no additive properties, the computation of continuous bounded cohomology groups often are very hard. In

another paper, we will consider various extensions of H n
cb to some categories of representations of topological semigroups on

topological vector spaces.

For any topological semigroup S it is trivial that H 0
cb(S) = C. First order cohomology groups are zero:

Theorem 3.2. For any topological semigroup S, H 1
cb(S) is zero.

Proof. Let f ∈ Z 1
cb(S) be a 1-cocycle. Then for every s, t ∈ S, we have δ 1( f )(s, t) = f (t)− f (st)+ f (s) = 0 and thus,

f (st) = f (s)+ f (t).

In particular, for every s ∈ S and n ∈N, we have f (sn) = n f (s). This implies that f (s) = 0, since f is a bounded map. Therefore

Z 1
cb(S) = 0 and H 1

cb(S) is zero.

We recall a kind of limiting process: Let E be the Banach space of all bounded sequences of complex numbers with

uniform norm and let F ⊂ E be the subspace of all convergent sequences. Then, the functional lim : F → C defined by

lim(an)n∈N = limn→∞ an is a bounded functional and thus, by the Hann-Banach theorem there is a bounded functional

LIM : E → C that extends lim and ‖LIM‖= 1 (such functionals are called Banach limits).

Theorem 3.3. Let S be a compact semigroup with a metric d that induces the topology of S and has the following property:

• For every β > 0, s, t ∈ S, and i ∈ N if d(s, t)< β then d(si, t i)< β .

Then H 2
cb(S) is a Banach space.

Proof. It is enough that we prove δ 1(C 1
cb(S)) is closed in C 2

cb(S), and thus, it is sufficient to construct a bounded linear map

γ : C 2
cb(S)→ C 1

cb(S) such that γδ = id
C 1

cb
(S).

Let f ∈ C 2
cb(S) be a 2-cochain. For every s ∈ S, consider the bounded sequence a

f ,s
n = n−1 ∑

n−1
i=1 f (si,s) (n ≥ 2) of complex

numbers and define γ( f )(s) = LIM(a f ,s
n ). Let α > 0 be arbitrary. Since S2 is a compact metric space and f is continuous, there

is β > 0 such that if d(t1, t2)< β and d(t ′1, t
′
2)< β then | f (t1, t

′
1)− f (t2, t

′
2)|< α . This property together with (∗) implies that

for every s, t ∈ S and n ∈ N if d(s, t)< β then |a f ,s
n −a

f ,t
n |< α and thus, |γ( f )(s)− γ( f )(t)|< α . Therefore we have proved

γ( f ) is continuous and γ( f ) ∈ C 1
cb(S). Also, it is easily checked that γ is a bounded linear operator.

Now, suppose that g is in C 1
cb(S). For every s ∈ S and i ≥ 1 we have

δ 1(g)(si,s) = g(si)−g(si+1)+g(s),

thus, for every n ≥ 2, a
δ 1(g),s
n = g(s)−n−1g(sn). Therefore we have

γ(δ 1(g))(s) = LIM(a
δ 1(g),s
n ) = lim

n→∞
g(s)−n−1g(sn) = g(s).

Thus, we have proved γδ (g) = g.
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It is easily checked that the arguments of the proof of Theorem 3.3, satisfy when S is a discrete semigroup:

Theorem 3.4. Let S be a discrete semigroup. Then H 2
b (S) is a Banach space.

Proposition 3.5. Let S and T be topological semigroups and p : S×T → S be the natural projection. Suppose that T has a

unite element e. Then the linear map H n
cb(p) : H n

cb(S)→ H n
cb(S×T ) is injective for all n ≥ 1.

Proof. For n = 1, the result follows from Theorem 3.2. Let n ≥ 2 be fixed, and let p(n) : (S×T )n → Sn be defined by

p(n)((s1, t1), . . . ,(sn, tn)) = (s1, . . . ,sn)

for s1, . . . ,sn ∈ S, t1, . . . , tn ∈ T . By definition of H n
cb(p), we must prove that if f ∈ Z n

cb(S) and f ◦ p(n) ∈ Bn
cb(S×T ), then f is

in Bn
cb(S). Thus, consider such a n-cocycle f . There is g ∈ C

n−1
cb (S×T ) such that δ n−1(g) = f ◦ p(n). Define ĝ ∈ C

n−1
cb (S) by

ĝ(s1, . . . ,sn−1) = g((s1,e), . . . ,(sn−1,e)) (s1, . . . ,sn−1 ∈ S).

Then, for every s1, . . . ,sn ∈ S, we have

δ n−1(ĝ)(s1, . . . ,sn) = ĝ(s2, . . . ,sn)+
n−1

∑
i=1

(−1)iĝ(s1, . . . ,sisi+1, . . . ,sn)+(−1)nĝ(s1, . . . ,sn−1) = g((s2,e), . . . ,(sn,e))

+
n−1

∑
i=1

(−1)ig((s1,e), . . . ,(sisi+1,e), . . . ,(sn,e))+(−1)ng((s1,e), . . . ,(sn−1,e))

= δ n−1(g)((s1,e), · · · ,(sn,e)).

On the other hand, δ n−1(g)((s1,e) . . . ,(sn,e)) = f (s1, . . . ,sn). Thus, we have δ n−1(ĝ) = f and f ∈ Bn
cb(S).

4. Relation with amenability

Let S be a topological semigroup. A function f ∈ C(S) is called right uniformly continuous, if the map Φ f : S → C(S) defined

by Φ f (s) = f · s is continuous with uniform norm of C(S), where f · s(x) = f (sx) (x ∈ S). Left uniformly continuous functions

are similarly defined. The space of all right (left) uniformly continuous functions is denoted by RUC(S) (LUC(S)). Note that

if f ∈ RUC(S) and s ∈ S, then f · s ∈ RUC(S). Also, it is easily checked that RUC(S) = LUC(S) = C(S) when S is compact,

and it is clear that RUC(S) = LUC(S) = C(S) = B(S) when S is discrete.

A topological semigroup S is called it left amenable if there is a left invariant mean on RUC(S), i.e. a bounded linear

functional m on RUC(S) such that 〈m,1S〉= ‖m‖= 1 (where 1S is the constant map on S with value 1) and for every s ∈ S and

f ∈ RUC(S), 〈m, f · s〉= 〈m, f 〉. Right invariant means and right amenable semigroups are similarly defined. A topological

semigroup is called amenable if it is both left and right amenable.

It is well known and easily checked that for topological semigroups S and T , if there is a continuous homomorphisms form

S onto T , and S is left (right) amenable, then T is also left (right) amenable. In particular, if S is left (right) amenable semigroup

with topology τ , and τ ′ is another semigroup topology on S such that τ ′ ⊂ τ , then (S,τ ′) is left (right) amenable. Thus, any

commutative topological semigroup is amenable since any commutative discrete semigroup is amenable ([18]). It is well known

that any compact group is amenable ([18]), but there are compact semigroups that are not left amenable nor right amenable:

Example 4.1. Let X and Y be two disjoint compact spaces with distinguished elements x0 ∈ X and y0 ∈ Y . Define a semigroup

multiplication on disjoint union space T = X ∪Y by

xx′ = x0, yy′ = y0, xy = x0, yx = y0,

for every x,x′ ∈ X and y,y′ ∈ Y . Then T becomes a compact semigroup. We show that T is not left amenable. Suppose

m is a bounded linear functional on C(T ) such that 〈m,1T 〉 = ‖m‖ = 1. For every x ∈ X ⊂ T and f ∈ C(T ), we have

〈m, f · x〉= 〈m, f (x0)1T 〉= f (x0), and similarly 〈m, f · y〉= f (y0) for every y ∈ Y . Thus, m is not a left invariant mean, since

there is a continuous map f on S such that f (x0) 6= f (y0). Thus, we have proved that T is not left amenable. Let T op be

the opposite semigroup of T . Then T op is not right amenable. Now the compact semigroup S = T ×T op is not left nor right

amenable, since the canonical projection maps from S to T and T op are continuous surjective homomorphisms.

We need the following simple topological lemma.
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Lemma 4.2. Let X be a topological space and Y be a compact space. Let f : X ×Y → C be a continuous map. Then

F : X → C(Y ), defined by F(x)(y) = f (x,y) is continuous with norm topology of C(Y ).

Proof. Let x0 ∈ X and α > 0 be arbitrary. Since f is continuous, for every y ∈ Y , there are open sets Uy,Vy in X and Y

respectively, such that (x0,y) ∈Uy ×Vy and | f (x0,y)− f (x,y′)|< α/2 for every (x,y′) ∈Uy ×Vy. Since Y is compact, there

are y1, . . . ,yn ∈ Y such that Y = ∪n
i=1Vyi

. Let W be the open set ∩n
i=1Uyi

. Let x ∈W and y ∈ Y be arbitrary. Then for some i

(i = 1, · · · ,n), y belongs to Vyi
and we have,

| f (x,y)− f (x0,y)| ≤ | f (x,y)− f (x0,yi)|+ | f (x0,yi)− f (x0,y)|< α/2+α/2 = α.

Thus, we have ‖F(x)−F(x0)‖< α for every x ∈W . The proof is complete.

The proof of the following Theorem is an adaptation of the proof given in [11, Theorem 2.1] to the topological case.

Theorem 4.3. Let S be a compact semigroup and suppose that S is left (right) amenable. Then H n
cb is zero for every n ≥ 0.

Proof. Suppose that S is left amenable and let m be a left invariant mean on C(S)∗. Similar [11], we use the notation

m( f ) =
∫

S
f (s)d(s) (4.1)

for f ∈ C(S). Thus, we have

(i)
∫

S 1S(s)d(s) = 1, and

(ii)
∫

S f (ts)d(s) =
∫

S f (s)d(s) for every f ∈ C(S) and t ∈ S.

The cases n = 0 and n = 1 were considered before, thus, suppose that n ≥ 2 and let f ∈Z n
cb(S). Then, for every s1, . . . ,sn+1 ∈ S,

we have,

δ n( f )(s1, . . . ,sn+1) = f (s2, . . . ,sn+1)+
n

∑
i=1

(−1)i f (s1, . . . ,sisi+1, . . . ,sn+1)+(−1)n+1 f (s1, . . . ,sn) = 0

If we fix s1, . . . ,sn ∈ S and integrate the above formula over the variable sn+1 in the sense of (4.1), then we have

∫
S

f (s2, . . . ,sn+1)d(sn+1)+
n−1

∑
i=1

(−1)i

∫
S

f (s1, . . . ,sisi+1, . . . ,sn,sn+1)d(sn+1)

+(−1)n

∫
S

f (s1, . . . ,sn−1,snsn+1)d(sn+1)+(−1)n+1
∫

S
f (s1, · · · ,sn)d(sn+1) = 0

(4.2)

By property (i),∫
S

f (s1, . . . ,sn)d(sn+1) = f (s1, . . . ,sn), (4.3)

and by property (ii),∫
S

f (s1, . . . ,sn−1,snsn+1)d(sn+1) =
∫

S
f (s1, . . . ,sn−1,sn+1)d(sn+1). (4.4)

Let g : Sn−1 → C be defined by

g(s2, . . . ,sn) =
∫

S
f (s2, . . . ,sn,sn+1)d(sn+1).

By Lemma 4.2, the map F : Sn−1 → C(S), defined by

F(s2, . . . ,sn)(x) = f (s2, . . . ,sn,x) (x ∈ S),

is continuous with the norm of C(S). On the other hand,
∫

: C(S)→C is also continuous with the norm. Thus, the map g =
∫

F

is in C
n−1
cb (S). Therefore, by (4.2), (4.3) and (4.4), we have,

(−1)n f (s1, . . . ,sn) = g(s2, . . . ,sn)+
n−1

∑
i=1

(−1)ig(s1, . . . ,sisi+1, . . . ,sn)+(−1)ng(s1, . . . ,sn−1)

But the right hand side of the latter equation is δ n−1(g). Thus,

f = δ n−1((−1)ng).

Therefore we have proved Bn
cb(S) = Z n

cb(S) and H n
cb(S) = 0. A similar proof can be given in the case of right amenable S.
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5. Some examples

Gromov ([2]) proved that for any connected manifold X , and any n ≥ 1, the bounded cohomology of X and the bounded

cohomology of the fundamental homotopy group π1(X) of X coincide (for more details see [2, 10, 12], and [11]). Thus, there

are many discrete groups that their bounded cohomology groups are non zero.

Let G be a discrete group and S be a topological semigroup with a unite. Suppose that for an integer n ≥ 2, H n
cb(G) 6= 0 (for

example G = F2, the free group on two generators, and n = 2, see [11], [19]). Then by Proposition 3.5 we have H n
cb(G×S) 6= 0.

A semigroup S is called semilattice if it is commutative and ss = s for every s ∈ S.

Theorem 5.1. Let S be a topological semilattice. Then H 2
cb(S) is zero.

Proof. Let f ∈ Z 2
cb(S) be a 2-cocycle. We need a g ∈ C 1

cb(S) such that for every s, t ∈ S,

f (s, t) = g(s)+g(t)−g(s, t).

Since f is a 2-cocycle, for every s1,s2,s3 ∈ S we have

δ 2( f )(s1,s2,s3) = f (s2,s3)− f (s1s2,s3)+ f (s1,s2s3)− f (s1,s2) = 0. (5.1)

By applying (5.1) with s1 = s,s2 = s,s3 = t, we obtain

f (s,s) = f (s,st) (5.2)

and similarly

f (t, t) = f (t,st). (5.3)

By applying (5.1) with s1 = s,s2 = t,s3 = st, we obtain

f (s, t) = f (t,st)− f (st,st)+ f (s,st) (5.4)

Now, by (5.2), (5.3) and (5.4), we have

f (s, t) = f (t, t)+ f (s,s)− f (st,st).

Thus, if we define g(s) = f (s,s) (s ∈ S), then g ∈ C 1
cb(S) and δ 1(g) = f .

Remark 5.2. (a) The above result follows directly from Theorem 4.3, when S is compact.

(b) In [20], Y. Choi proved that for any discrete semilattice S and any symmetric Banach ℓ1(S) bimodule E, every Hochschild

cohomology group of ℓ1(S) with coefficient in E is trivial (see Remark of Section 1). Thus, for every discrete semilattice

S and n ≥ 0, H n
b (S) = 0.

Example 5.3. Let (X ,d) be a metric space and let for every A ⊂ X and ε > 0, Nε(A) be the ε-neighborhood of A in X. Let

SX be the set of all nonempty closed bounded subsets of X. Then SX is a metric space by the following metric that is called

Hausdorff distance:

dH(C1,C2) = inf{ε > 0 : C1 ⊂ Nε(C2) and C2 ⊂ Nε(C1)},

for (C1,C2 ∈ SX ). Also SX is a semilattice with the multiplicaton C1C2 =C1 ∪C2. It is easily checked that SX is a topological

semilattice with the topology induced by dH . Note that if (X ,d) is a compact metric space then so is (SX ,dH), [21, Lemma

5.31].

Let (X ,d) and (Y,ρ) be disjoint compact metric spaces with distinguished elements x0 ∈ X and y0 ∈Y . Let S and T be compact

semigroups defined in Example of Section 3, using X and Y . Define the metric d′ on T = X ∪Y by d′|X×X = d, d′|Y×Y = ρ and

d′(x,y) = 1 for x ∈ X ,y ∈Y . Then T together with d′, satisfy the conditions of Theorem 3.3. Also, S together with the maximum

metric satisfy the conditions of Theorem 3.3, but it is not left nor right amenable, and thus, we can not apply Theorem 4.3, to

conclude that the cohomology groups of S are zero.
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1. Introduction

In pure and applied mathematics, one of the important questions is connected to the discovery of proximal objects [1]. The

objects often can be represented as sets of points and this stipulates that set-theoretic and topological methods are very useful

tools in the study of proximity relations. Digital geometry is the study of geometric properties of shapes in digital pictures.

Figure 1.1. Structure of the Digital Discs
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Many different computer screen images can be obtained via pixel lighting. A pixel is the smallest element on the digital

plane and they are usually identified as points. In other words, we can describe images on the computer screen by their pixels

that have digital valued coordinates, i.e., a mathematical model of the computer screen is the digital plane Z
2.

The importance of the notions of the circle and disc in Euclidean geometry is well known. In digital geometry, digital

circles and digital discs have various important properties that are different from the Euclidean ones (see, e.g., [2–4]). One of

the reasonable realizations of metric structure on the digital plane Z2 can be determined via the so-called l1 metric. This metric

has the following view:

d(p1,p2)=∣a1−a2∣+∣b1−b2∣,where p1 and p2 are some matched points,

with coordinates (a1,b1) and (a2,b2). respectively,

i.e., p1 and p2 are pixels for our future considerations. Since we can represent pixel coordinates as digital pairs, then it is

obvious that d(p1,p2)∈Z (the integers).

Based on the l1 metric, we define a digital circle with radius r and center x (denoted by Cd(x,r)) as follows:

Cd(x,r)={z∈Z2 ∶d(x,z)=r}.
Moreover, we denote by c(Cd(x,r)) the circumference of the circle Cd(x,r) where r∈N∪{0}.

It is well-known that if r is a natural number, we have πl1 = c(Cd(x,r))

diam(Cd(x,r))
= 8r

2r
=4, where diam(Cd(x,r)) is the diameter of

the circle Cd(x,r). Using this fact, we easily obtain the following result.

Lemma 1.1. Let Cd(x,r) be a digital circle with center at point x and radius r relative to the l1 metric. Then, for the number of

pixels of Cd(x,r), we have the formula

card(Cd(x,r))= 2c(Cd(x,r))
πl1

=4r.

Fig. 1.1 demonstrates the structural property of the digital disc, namely,

Dd (x,R)={z∈Z2 ∣d(x,z)≤R}, particularly:

Dd (x,R)={x}∪( R⋃
r=1

Cd(x,r)), where R∈N.
Lemma 1.2. If Dd (x,R) is a digital disc relative to the l1 metric d, then the number of pixels forming the disc Dd (x,R) can be

computed by the formula card(Dd (x,R))=2R2+2R+1.

Proof. Since Dd (x,R)={x}∪( R⋃
r=1

Cd(x,r)), we can write

card(Dd (x,R))=1+card(Cd(x,1))+card(Cd(x,2))+⋯+card(Cd(x,R)).
Now, applying Lemma 1.1, we get

card(Dd (x,R))=1+4+8+⋯+4R=
=1+4(1+R

2
R)=

=2R2+2R+1.

2. How near are digital discs?

To solve a wide class of the problems of computational proximity, the Hausdorff metric is appropriate. The Hausdroff metric

(denoted by dH(A,B)) measures the distance between the sets A,B in the given metric space (X ,d) and is defined by

dH(A,B)=max{sup
x∈A

inf
y∈B

d(x,y),sup
y∈B

inf
x∈A

d(x,y)}.
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If the sets A,B are finite, we obtain the simplication of the Hausdorff metric by maxima and minima, i.e.,

dH(A,B)=max{max
x∈A

min
y∈B

d(x,y),max
y∈B

min
x∈A

d(x,y)}.
It is clear that even in the case of finite sets, computation of the Hausdorff distances are quite capacitive. These difficulties

can be bypassed in some special cases of analytical sets. Below, we are interested in characterization of intersecting digital

discs.

Figure 2.1. Intersecting Digital Discs with Intersecting Boundaries

Classification of images in computer science frequently need the application of Jaccard-like metrics [5], [6], [7] . We

will use a simplified version to analyze proximity of intersecting digital discs. It must be especially noticed that the problem

connected with the intersection of plane discs was considered from a computer science perspective in [8].

For the Jaccard-like metric m, we understand the distance function defined via the cardinality of the symmetric difference

of two arbitrary nonempty finite sets A and B, i.e.,

m(A,B)=card(A△B)
=card(A∖B)+card(B∖A)
=card(A)+card(B)−2card(A∩B).

It is obvious that if card(A)≠card(B) and both sets are finite while A∩B≠∅, we get m(A,B)≠0. This raises the question of

the computation of the proximity of intersecting digital discs such as the ones in Fig. 2.1.

Theorem 2.1. Let Dd(x,R1) and Dd(y,R2) be digital discs such that Cd(x,R1)∩Cd(y,R2)≠∅. Then

m(Dd(x,R1),Dd(y,R2))=2(R2
1+R2

2+R1+R2−2kn+k+n),
where k and n denote the number of pixels forming the width and height of the greatest rectangle subset of an intersection set.

Proof. Applying Lemma 1.2, we obtain the following cardinal equalities:

m(Dd(x,R1),Dd(y,R2))=card(Dd(x,R1))+card(Dd(y,R2))−2card(Dd(x,R1)∩Dd(y,R2))
=2(R2

1+R2
2+R1+R2+1))−2card(Dd(x,R1)∩Dd(y,R2))

=2(R2
1+R2

2+R1+R2+1)−2[kn+(k−1)(n−1)]

=2(R2
1+R2

2+R1+R2−2kn+k+n)

Notice that there is a situation in which two digital discs are intersecting but their boundaries are not intersecting (see,

e.g., Fig.2.2). Observe that in that case, we have Cd (x,R1−1)∩Cd (y,R2)≠∅, or, equivalently, Cd (x,R1)∩Cd (y,R2−1)≠∅.

Theorem 2.2. Let Dd (x,R1) and Dd (y,R2) be digital discs such that Cd (x,R1)∩Cd (y,R2)=∅, but Cd (x,R1−1)∩Cd (y,R2)≠∅.

Then we have m(Dd (x,R1),Dd (y,R2))=2(R2
1+R2

2+R1+R2+1−2kn), where k and n denote the number of pixels forming the

width and height of the greatest rectangle subset of an intersection set.

Proof. In this case, we can easily note that card(Dd (x,R1)∩Dd (y,R2))=2kn. Hence, we have m(Dd (x,R1),Dd (y,R2))=
2(R2

1+R2
2+R1+R2+1−2kn).
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Figure 2.2. Intersecting Discs with Non-Intersecting Boundaries

Next, we need to represent the centers x and y of discs Dd (x,R1) and Dd (y,R2) by a couple of digital coordinates as follows:

x=(α,β) and y=(γ,δ). If one of the following equalities hold d(x,y)=∣α−γ ∣ or d(x,y)=∣β −δ ∣, i.e., the centers of the discs lie

on horizontal or vertical axes (similar to the situations shown in Fig. 2.3.1 and Fig. 2.3.2), then we can measure the proximity

of the discs via computation of the pixel cardinality of the intersections sets.

2.3.1: Intersecting Discs with Intersecting

Boundaries

2.3.2: Intersecting Discs with Non-

Intersecting Boundaries

Figure 2.3. Intersecting Discs on the Digital Plane

Theorem 2.3. Let Dd (x,R1) and Dd (y,R2) be digital discs such that x=(α,0) and y=(γ,0) with α <γ and γ−α ≤R1+R2. If

Cd (x,R1)∩Cd (y,R2)≠∅, then

m(Dd (x,R1),Dd (y,R2))=(R1−R2)2+2(R1+R2+1)(γ−α)−(γ−α)2 .
Proof. Since x=(α,0), y=(γ,0) and Cd (x,R1)∩Cd (y,R2)≠∅, we claim that

Cd (x,R1)∩Cd (y,R2)=Cd(k,r), where,

k=(α+R1+γ−R2

2
,0) and

r=R1−(k−α)= R1+R2+(γ−α)
2

∈N∪{0}. Consequently, simplification of

m(Dd (x,R1),Dd (y,R2))=2(R2
1+R2

2+R1+R2+1−2r2−2r−1)
gives the needed expression

m(Dd (x,R1),Dd (y,R2))=(R1−R2)2+2(R1+R2+1)(γ−α)−(γ−α)2 .
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Observe that Theorem 2.3 can be applied in similar cases when the intersection set of the digital discs itself is a disc.

This leads us to consider two intersecting digital discs with non-intersecting boundaries (see, e.g., Fig. 2.3.2) so that both

centers lie on the horizontal or vertical axes. In such cases, we obtain the following result.

Corollary 2.4. Let Dd (x,R1) and Dd (y,R2) be intersecting digital discs that satisfy the conditions of Theorem 2.3, but

Cd (x,R1)∩Cd (y,R2)=∅. Then we have

m(Dd (x,R1),Dd (y,R2))=2(R2
1+R2

2+R1+R2−2r2
0−4r0+1),where,

r0= R1−1+R2+(γ−α)
2

.

Recall that a boundary point x0 of a convex set C is called a support point [9, p. 27].

Lemma 2.5. [Bishop-Phelps [9]] Suppose M is a closed subspace of finite co-dimension in a topological vector space X, and

that C is a convex subset of X. Suppose x0 is a support point of C∪M in the subspace M. Then x0 is a support point of C.

Let A,B be nonempty sets and let bdyA denote the set of boundary points of a nonempty set A. Also, let A
⩕

δ B denote that A

and B are overlapping sets. From Lemma 2.5, we obtain

Theorem 2.6. Let A,B be nonempty sets of digital discs. If A,B are convex sets in a subspace M of the Euclidean plane

intersect, then

1o A∩B is a convex set.

2o A
⩕

δ B (A and B are strongly near).

3o x0 ∈bdy(A∩B) is a support point of A∩B.

Proof.

1o Immediate, since the intersection of any two convex sets is a convex set.

2o Let intA,intB be the interior of A,B, respectively. From Theorem 2.6.1, A∩B≠∅ implies intA∩intB≠∅. Hence, from [10,

§2.3], A
⩕

δ B.

3o Immediate from Lemma 2.5.

Example 2.7. The blue and red pixels on the boundary of the intersecting discs in Fig. 2.3.1 are support points. �

Figure 2.4. Intersecting sets of boundary points skA,skB

In what follows, we give an application of Theorem 2.6.2, namely, digital discs A,B are convex sets in a subspace M of the

Euclidean plane intersect, provided

A
⩕

δ B (A and B are strongly near).
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Figure 2.5. Boundary with support point ⟨a⟩

3. Application: Classifying triangulated digital images

Recall that an Alexandroff nerve on a triangulated 2D surface is a set of triangles with a common vertex (called the nucleus of

the nerve), introduced by P. Alexandroff [Aleksandrov] [11, §31, p. 39], [12] and elaborated in [13, Vol. 3, p. 67], [14, §2.11,

pp. 160-161]. Such a nerve with nucleus p is maximal, provided the number of triangles attached to p is highest [15]. It is

possible for more than one Alexandroff nerve to be maximal on the same triangulated image (see, for example, Fig. 2.4). This

observation leads to an application of Theorem 2.6.2 in classifying triangulated digital images.

Let skA,skB be sets of boundary points on polygons whose vertexes are barycenters on an Alexandroff nerve in a triangulaged

digital image img (see, for example, the set of boundary points that includes a support point ⟨a⟩ in Fig. 2.5). Also let I be a

collection of triangulated digital images.

We can then derive a collection C(I) of classified triangulated digital images containing intersecting support points on

boundary sets on barycentric polygons on maximal Alexandroff nerves defined by

C(I)=
Images containing overlapping boundary sets³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

{img∈I ∶skA,skB∈ img & A
⩕

δ B}. �
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1. Introduction and preliminaries

A modification of closure operator in topological space is the local function in ideal topological space. This study was

introduced by Kuratowski [1] and Vaidyanathswamy [2]. An ideal [1] I on a topological space (X ,τ) is a nonempty collection

of subsets of X which satisfies the following conditions:

(1) A ∈ I and B ⊆ A implies B ∈ I ,

(2) A ∈ I and B ∈ I implies A∪B ∈ I .

A topological space (X ,τ) with an ideal I on X is called an ideal topological space and is denoted by (X ,τ,I ). For a

subset A of an ideal topological space (X ,τ,I ), the local function A∗ is defined as: A∗ = {x ∈ X : Ux ∩A /∈ I , Ux ∈ τ(x)}
(where τ(x) is the collection of all open sets which contains x) and it was defined by imposing extra condition on the closure

operator. As a result, the mathematicians like Samuel [3], Pavlović [4], Hayashi [5], Hashimoto [6], Janković and Hamlett

[7, 8], Ekici [9, 10, 11], Hatir [12], Noiri [11, 12, 13] have reached to obtain a new topology known as ∗-topology and it is

finer topology than the original topology. In an ideal topological space (X ,τ,I ), the structures-“topology” and“ideal” played

important roles simultaneously. The condition τ ∩I = { /0} is a remarkable part in ideal topological space and such ideal

topological space is called Hayashi-Samuel space [14]. Modak and his associates studied this ideal topological space and

introduced different types of generalized open sets and operators with the help of ideals (see [15], [16], [17], [18], [19], [20],

[21], [22], [23], [24], [25], [26]). The complement operator of the local function is known as ψ-operator [8, 27] and it is defined

by: ψ(A) = X \ (X \A)∗, for a subset A of an ideal topological space (X ,τ,I ). ψ-operator is an important part for the study of

ideal topological space.

In this paper, we introduce a new type of boundary points in ideal topological spaces by using ∗ - operator. We consider a

comparative study of these boundary points with the boundary points in topological spaces. We also explore the characterizations

of Hayashi-Samuel space which was established in [18, 19, 24]. We also obtain more closure operators in ideal topological
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spaces through this paper.

2. ∗ boundary points

Boundary operator [28] is a set valued set-function and we may consider it by the following way:

Let (X ,τ) be a topological space and A ⊆ X . The boundary operator Bd : ℘(X)→ C(τ) is defined as Bd(A) = Cl(A)∩
Cl(X \A), where C(τ) denotes the collection of all closed sets and Cl(A) denotes the closure of A in (X ,τ).

Thus boundary point of a set A ⊆ X is a common point between closure of A and closure of (X \A).
We modify the boundary operator with the help of the local function and call it ∗-boundary operator.

Definition 2.1. Let (X ,τ,I ) be an ideal topological space. The operator Bd∗ : ℘(X) → C(τ), defined by: Bd∗(A) =
A∗∩ (X \A)∗, for A ∈℘(X), is called ∗-boundary operator on (X ,τ,I ).

The point x ∈ Bd∗(A) is called ∗-boundary point of A and it is the common point of A∗ and (X \A)∗.

We start with the following example which shows that there is some common points in A∗ and (X \A)∗.

Example 2.2. Let X =R, Ru be the usual topology on R and I = { /0}. Then Q∗ =Cl(Q) =R and (R\Q)∗ =Cl(R\Q) =R.

This shows that there are common points between Q∗ and (R\Q)∗.

We know that boundary points of a set depends on the topology. For this, if we consider the indiscrete topology on R, then

Bd(Q) = R, where Q denotes the set of all rational numbers. But if we consider the discrete topology on R, then Bd(Q) = /0.

∗-boundary point of a set depends on not only the topology but the ideal also.

Followings examples show the role of ideal in ∗-boundary points:

Let (X ,τ,I ) be an ideal topological space and A ⊆ X .

(i) If we take I = { /0}, then Bd∗(A) = Bd(A).
(ii) If the ideal I =℘(X), Bd∗(A) = /0.

Note that in discrete topological space, boundary points of any set is always empty. But in any ideal topological space, if

the ideal is the collection of all subsets of the set then ∗-boundary points of any set is always empty.

(iii) When the ideal I = I f , the ideal of finite subsets of X , then Bd∗(A) is the ω-accumulation points of A and X \A.

(iv) If one choose the ideal I = Ic, the ideal of countable subsets of X , then A∗ is precisely the set of condensation points

of A and boundary points accordingly.

(v) Let In be the collection of all nowhere dense subsets of (X ,τ), then In is an ideal on X . If we take I = In, then

A∗ =Cl(Int(Cl(A))) and Bd∗(A) =Cl(Int(Cl(A)))\ Int(Cl(Int(A))).
(vi) Let (X ,τ) be a topological space and Im be the collection of all meager sets (or sets of first category). Then it forms an

ideal on X and A∗ is set the points of second category of A.

Note that for a subset A ⊆ X in a topological space (X ,τ) with an ideal I , x ∈ Bd∗(A) implies Ux /∈ I for all Ux ∈ τ(x)
but converse statement is not true in general.

Example 2.3. Let X = {a,b,c}, τ = { /0,X ,{a},{a,b}} and I = { /0,{a}}. Then ({b})∗ = {b,c} and all open sets containing

a do not belongs to I but a /∈ Bd∗({b}).

One of the characterizations of ∗-boundary point is:

Theorem 2.4. Let (X ,τ ,I ) be an ideal topological space and A ⊆ X. Then x ∈ Bd∗(A) if and only if x ∈ A∗ \ψ(A).

Similar characterization of boundary point is:

Theorem 2.5. [28] Let (X ,τ) be a topological space and A ⊆ X. Then x ∈ Bd(A) if and only if x ∈ Cl(A) \ Int(A), where

Int(A) denotes the interior of A.

Theorem 2.6. Let (X ,τ,I ) be an ideal topological space and A ⊆ X. Then Bd∗(A) = /0 if and only if A∗ ⊆ ψ(A).

Similar characterization of boundary point is:

Theorem 2.7. [28] Let (X ,τ) be a topological space and A ⊆ X. Then Bd(A) = /0 if and only if A is both open and closed.

Note that ()∗ is not a closure operator and ψ is not an interior operator, but both A∗ \ψ(A) and Cl(A)\ψ(A) are closed set.

In this regards, A∩ψ(A) is an interior operator [8] and A∪A∗ is a closure operator [7] and both the operators induce the same

topology which is above ∗-topology [7].

Corollary 2.8. Let (X ,τ,I ) be a Hayashi-Samuel space and A ⊆ X. Then Bd∗(A) = /0 if and only if A∗ = ψ(A).
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Proof. Proof is obvious from Theorem 2.6 and the following lemma.

Lemma 2.9. [16] Let (X ,τ,I ) be A be a Hayashi-Samuel space and A ⊆ X. Then ψ(A)⊆ A∗.

Theorem 2.10. Let (X ,τ,I ) be an ideal topological space and A ⊆ X. Then Bd∗(A) = (X \A)∗ if and only if X \A∗ ⊆ ψ(A).

Proof. Suppose Bd∗(A) = (X \A)∗. Then A∗∩ (X \A)∗ = (X \A)∗ implies (X \A)∗ ⊆ A∗. Therefore X \A∗ ⊆ ψ(A).
Proof of the converse part is obvious.

Theorem 2.11. Let (X ,τ,I ) be an ideal topological space and A be a I -dense subset of X. Then Bd∗(A) = (X \A)∗.

Proof. Obvious from definition of I -dense set (A subset A of X is said to be I -dense [14] if A∗ = X).

Now we look how the ∗-boundary operator gives new closure operator:

Theorem 2.12. Let (X ,τ,I ) be an ideal topological space and A,B ⊆ X. Then following statements hold:

1. Bd∗( /0) = /0.

2. Bd∗(X) = /0.

3. Bd∗(I) = /0, if I ∈ I .

4. Bd∗(A) is a closed set in (X ,τ).

5. Bd∗(A∪B)⊆ Bd∗(A)∪Bd∗(B).

6. Bd∗(A)∪Bd∗(B) = [A∩Bd∗(B)]∪ [Bd∗(A∪B)]∪ [Bd∗(A)∩B].

7. Bd∗(A) = A∗ \ψ(A).

8. Cl∗(A) = Bd∗(A)∪ψ(A)∪A (Cl∗ denotes the closure operator of ∗-topology).

9. Bd∗(A) = /0 implies Int∗(A)⊇ A∩A∗ (Int∗ denotes the interior operator of ∗-topology).

10. Bd∗(Bd∗(A))⊆ Bd∗(A).

11. Bd∗(A) = (X \A)∗ \ψ(X \A).

12. Bd∗(X \A) = Bd∗(A).

13. Bd∗(A)⊆ Bdτ∗(I )(A)⊆ Bd(A) (Bdτ∗(I )(A) denotes the set of all boundary points of A with respect to ∗-topology ).

14. X \Bd∗(A) = ψ(X \A)∪ψ(A).

15. X = ψ(X \A)∪ψ(A)∪Bd∗(A) = ψ(X \A)∪ψ(A)∪Bd∗(X \A).

Proof. The proofs of 1., 2., 3. and 4. are obvious.

5. Bd∗(A∪B) = (A∪B)∗∩ (X \A∪B)∗ = (A∪B)∗∩ [(X \A)∩ (X \B)]∗ ⊆ (A∗∪B∗)∩ [(X \A)∗∩ (X \B)∗] = [[(X \A)∗∩
(X \B)∗]∩A∗]∪ [[(X \A)∗∩ (X \B)∗]∩B∗]⊆ [A∗∩ (X \A)∗]∪ [B∗∩ (X \B)∗] = Bd∗(A)∪Bd∗(B).

6. Note that [A∩Bd∗(B)]∪ [Bd∗(A)∩B]∪ [Bd∗(A∪B)]⊆ Bd∗(B)∪Bd∗(B)∪Bd∗(A∪B) = Bd∗(A)∪Bd∗(B) (from 4.).

Again Bd∗(A)∪Bd∗(B) ⊆ Bd∗(A)∪Bd∗(B)∪Bd∗(A∪B)∪ [A∩Bd∗(B)]∪ [B∩Bd∗(A)] = [(A∗ ∩ (X \A)∗ ∪ (B∗ ∩ (X \
B)∗]∪Bd∗(A∪B)∪ [A∩Bd∗(B)]∪ [B∩Bd∗(A)]⊆ [(A∗∪B∗)∪Bd∗(A∪B)]∪ [A∩Bd∗(B)]∪ [B∩Bd∗(A)] = [(A∪B)∗∩ (X \
(A∪B)∗]∪ [A∩Bd∗(B)]∪ [B∩Bd∗(A)] = Bd∗(A∪B)∪ [A∩Bd∗(B)]∪ [B∩Bd∗(A)].

7. Bd∗(A) = A∗∩ (X \A)∗ = A∗∩ (X \ψ(A)) = A∗ \ψ(A).
8. Bd∗(A)∪ψ(A)∪A = (A∗ \ψ(A))∪ψ(A)∪A = A∗∪A =Cl∗(A).
9. Given that Bd∗(A) = /0. Then A∗ ⊆ ψ(A) and hence A∩A∗ ⊆ Int∗(A).
10. Bd∗(Bd∗(A)) = Bd∗[A∗ ∩ (X \A)∗] = [A∗ ∩ (X \A)∗]∗ ∩ (X \ [A∗ ∩ (X \A)∗])∗ ⊆ A∗∗ ∩ (X \A)∗∗ ⊆ A∗ ∩ (X \A)∗ =

Bd∗(A).
11. Bd∗(A) = (X \A)∗∩A∗ = (X \A)∗∩ [X \ψ(X \A)] = (X \A)∗ \ψ(X \A).
12. The proof of 12. is obvious from definition.

13. The proof is obvious from the fact A∗ ⊆Cl∗(A)⊆Cl(A), for any subset A of X .

14. X \Bd∗(A) = (X \A∗)∪ [X \ (X \A)∗] = ψ(X \A)∪ψ(A).
15. The proof of 15. is obvious from definition.
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Definition 2.13. Let (X ,τ,I ) be an ideal topological space and A,B ⊆ X. The operator k1 :℘(X)→℘(X) on X is defined by

k1(A) = A∪T1(A),

where T1 :℘(X)→℘(X) is an operator which satisfies the following conditions:

(i) T1( /0) = /0,

(ii) T1(A∪B)⊆ T1(A)∪T1(B),
(iii) Cl∗(A) = T1(A)∪ψ(A)∪A,

(iv) T1(T1(A))⊆ T1(A).

Then, k1 is a closure operator on X ,and T1(A) = Bd∗(A) for every subset A of X , in which the topology is induced by k.

The operator k1(A) = A∪T1(A), satisfies the following conditions:

(i) k1( /0) = /0∪T1( /0) = /0;

(ii) A ⊆ A∪T1(A) = k1(A);
(iii) k1(k1(A)) = k1(A∪T1(A)) = A∪T1(A)∪T1(A∪T1(A))⊆ A∪T1(A)∪T1(A)∪T1(T1(A))⊆ A∪T1(A)∪T1(A) = k1(A);
(iv) k1(A∪B) = A∪B∪T1(A∪B)⊆ A∪B∪T1(A)∪T1(B) = k1(A)∪ k1(B) and k1(A)∪ k1(B) = A∪T1(A)∪B∪T1(B) =

A∪B∪ (A∩T1(B))∪T1(A∪B)∪ (B∩T1(A))⊆ A∪B∪T1(A∪B) = k1(A∪B).
Recall the following lemma:

Lemma 2.14. [20] An ideal topological space (X ,τ,I ) is Hayashi-Samuel if and only if, for each O ∈ τ , O∗ =Cl(O).

Theorem 2.15. Let (X ,τ,I ) be a Hayashi-Samuel space. Then for each open set U, Bd∗(U)⊆U∗ \U.

Proof. Bd∗(U) =U∗∩ (X \U)∗ ⊆Cl(U)∩Cl(X \U) =U∗∩ (X \ Int(U)) =U∗ \U , since the space is Hayashi-Samuel.

We recall the following theorem:

Theorem 2.16. [19] Let (X ,τ,I ) be an ideal topological space. Then, the following properties are equivalent:

1. τ ∩I = { /0};

2. I ∈ I , then Int(I) = /0;

3. for every G ∈ τ , G ⊆ G∗;

4. X = X∗;

5. if O ∈ τ , then O∗ =Cl(O).

Theorem 2.17. An ideal topological space (X ,τ,I ) is Hayashi-Samuel if and only if, for each closed set A ⊆ X, Bd∗(A) =
A∗ \ Int(A).

Proof. Bd∗(A) = A∗∩ (X \A)∗ = A∗∩Cl(X \A) = A∗ \ Int(A), since the space is Hayashi-Samuel.

From the given condition, we have Bd∗(X) = X∗ \ Int(X). Then /0 = X∗ \ Int(X) (from Theorem 2.12) implies X∗ = X .

Thus, τ ∩I = { /0}.

Theorem 2.18. An ideal topological space (X ,τ,I ) is Hayashi-Samuel if and only if, for each open set U ⊆ X, Bd∗(U) =
Bd(U).

Proof. Suppose (X ,τ,I ) is Hayashi-Samuel. Then for U ∈ τ , Bd∗(U) =U∗∩ (X \U)∗ =Cl(U)∩Cl(X \U) = Bd(U).
Conversely suppose that Bd∗(U) = Bd(U). Then U∗∩(X \U)∗ =Cl(U)∩Cl(X \U) implies U∗∩(X \ψ(U)) =Cl(U)\U .

Thus U∗ \ψ(U) =Cl(U)\U implies Cl(U)\U . Thus U∗ \ψ(U) =Cl(U)\U implies Cl(U)\U ⊆U∗ \U (since for open

set U, U ⊆ ψ(U) [8]). This implies that Cl(U) ⊆ U∗ and hence U ⊆ Cl(U) ⊆ U∗. Thus U ⊆ U∗. Therefore, (X ,τ,I ) is

Hayashi-Samuel.

Corollary 2.19. Let (X ,τ,I ) be an ideal topological space. Then, the following properties are equivalent:

1. τ ∩I = { /0};

2. I ∈ I , then Int(I) = /0;

3. for every G ∈ τ , G ⊆ G∗;
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4. X = X∗;

5. if O ∈ τ , then O∗ =Cl(O);

6. Bd∗(A) = A∗ \ Int(A);

7. for each U ∈ τ , Bd∗(U) = Bd(U).

Theorem 2.20. Let (X ,τ,I ) be an ideal topological space. Then for A, B ⊆ X, Bd∗(A)∪Bd∗(B) = Bd∗(A\B)∪Bd∗(A∩
B)∪Bd∗(B\A).

Proof. We have:

(a) Bd∗(A∩B) = Bd∗(X \ (A∩B)) = Bd∗[(X \A)∪ (X \B)]⊆ Bd∗(X \A)∪Bd∗(X \B) = Bd∗(A)∪Bd∗(B).
(b) Bd∗(A\B) = Bd∗[A∩ (X \B)]⊆ Bd∗(A)∪Bd∗(X \B) = Bd∗(A)∪Bd∗(B).
(c) Bd∗(B\A)⊆ Bd∗(A)∪Bd∗(B).
Thus from (a), (b) and (c) Bd∗(A\B)∪Bd∗(A∩B)∪Bd∗(B\A)⊆ Bd∗(A)∪Bd∗(B).
Further, we have Bd∗(A)∪Bd∗(B) =Bd∗[(A\B)∪(A∩B)]∪Bd∗[(B\A)∪(A∩B)]⊆Bd∗(A\B)∪Bd∗(A∩B)∪Bd∗(B\A).
Therefore, Bd∗(A)∪Bd∗(B) = Bd∗(A\B)∪Bd∗(A∩B)∪Bd∗(B\A).

Theorem 2.21. Let A and B be subsets of a topological space (X ,τ) with an ideal I . Then the following properties hold:

(1) Bd∗(A)∪Bd∗(B) = Bd∗(A∩B)∪Bd∗(A\B)∪Bd∗(A∪B).
(2) Bd∗(A)∪Bd∗(B) = Bd∗(A∪B)∪Bd∗(B\A)∪Bd∗(A∩B).
(3) Bd∗(A)∪Bd∗(B) = Bd∗(A\B)∪Bd∗(B\A)∪Bd∗(A∩B).
(4) Bd∗(A)∪Bd∗(A∆B) = Bd∗(A\B)∪Bd∗(A∩B)∪Bd∗(B\A) (∆ denotes the symmetric difference).

(5) Bd∗(B)∪Bd∗(A∆B) = Bd∗(A\B)∪Bd∗(A∩B)∪Bd∗(B\A).

Proof. (1) If we put X \B in the relation of the Theorem 2.20 instead of B, then we get,

Bd∗(A)∪Bd∗(X \B) = Bd∗(A\ (X \B))∪Bd∗(A∩ (X \B))∪Bd∗((X \B)\A).

This implies that

Bd∗(A)∪Bd∗(B) = Bd∗(A∩B)∪Bd∗(A\B)∪Bd∗(A∪B).

(2) If we put X \A in the relation of the Theorem 2.20 instead of A, then we get,

Bd∗(X \A)∪Bd∗(B) = Bd∗((X \A)\B)∪Bd∗((X \A)∩B)∪Bd∗(B\ (X \A)).

This implies that

Bd∗(A)∪Bd∗(B) = Bd∗(A∪B)∪Bd∗(B\A)∪Bd∗(A∩B).

(3) If we put X \A instead of A and X \B instead of B in the relation of the Theorem 2.20 we get,

Bd∗(X \A)∪Bd∗(X \B) = Bd∗[(X \A)\ (X \B)]∪Bd∗[(X \A)∩ (X \B)]∪Bd∗[(X \B)\ (X \A)].
This implies that

Bd∗(A)∪Bd∗(B) = Bd∗(B\A)∪Bd∗(A∪B)∪Bd∗(A\B).

(4) From Theorem 2.20,

Bd∗(A)∪ Bd∗(A∆B) = Bd∗[A \ (A∆B)]∪ Bd∗[A∩ (A∆B)]∪ Bd∗[(A∆B) \ A] = Bd∗(A∩ B)∪ Bd∗(A \ B)∪ Bd∗(B \ A) =
Bd∗(B)∪Bd∗(A∆B).

(5) The proof of (5) is obvious from (4).

We have from Theorem 2.21, the union of any two distinct elements of {Bd∗(A), Bd∗(B), Bd∗(A∆B)} is equal to the union

of any three distinct elements of {Bd∗(A∪B), Bd∗(A∩B), Bd∗(A\B), Bd∗(B\A)}

Definition 2.22. Let (X ,τ,I ) be an ideal topological space. The operator ()∗− :℘(X)→℘(X) is defined as:

A∗− = A∗ \A, for A ⊆ X .

Theorem 2.23. Let (X ,τ,I ) be an ideal topological space and A, B ⊆ X, then following conditions hold:
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1. /0∗− = /0;

2. A∩A∗− = /0;

3. (A∪B)∗− = (A∗− \B)∪ (B∗− \A);

4. (A∗−)∗− ⊆ A.

Proof. The proof of 1. and 2. are obvious from definition.

3. (A∪B)∗− = (A∪B)∗ \ (A∪B) = (A∗∪B∗)\ (A∪B) = [(A∗ \A)\B]∪ [(B∗ \B)\A] = (A∗− \B)∪ (B∗− \A).
4. (A∗−)∗− = (A∗−)∗ \A∗− = (A∗ \A)∗ \ (A∗ \A)⊆ (A∗)∗ \ (A∗ \A)⊆ A∗ \ (A∗ \A)⊆ A.

Definition 2.24. Let (X ,τ,I ) be an ideal topological space and A,B ⊆ X. The operator k2 :℘(X)→℘(X) on X is defined by

k2(A) = A∪T2(A),

where T2 :℘(X)→℘(X) is an operator which satisfies the following conditions:

(i) T2( /0) = /0,

(ii) A∩T2(A) = /0,

(iii) T2(A∪B) = (T2(A)\B)∪ (T2(B)\A),
(iv) T2(T2(A))⊆ A.

The operator k2 satisfies the following conditions:

(i) k2( /0) = /0∪T2( /0) = /0;

(ii) A ⊆ A∪T2(A) = k2(A);
(iii) k2(A∪B) = (A∪B)∪T2(A∪B) = (A∪B)∪ (T2(A)\B)∪ (T2(B)\A) = A∪T2(A)∪B∪T2(B) = k2(A)∪ k2(B);
(iv) k2(k2(A)) = k2(A)∪T2(k2(A)) = k2(A)∪T2(A∪T2(A)) = k2(A)∪ (T2(A)\T2(A))∪ (T2(T2(A))\A) = k2(A).
Thus, the operator k2 is a closure operator on (X ,τ,I ).

Theorem 2.25. Let (X ,τ,I ) be an ideal topological space and A, B ⊆ X. Then, the following conditions hold:

1. A∗−∪B∗− = (A∩B∗−)∪ (A∪B)∗−∪ (A∗−∩B);

2. (A∗)∗− = /0;

3. A is ∗-open [5] if and only if A∗− = Bd∗(A).

Proof. 1. Note that A∗ ⊆ (A∪B)∗ if and only if (A∗ \A)\B ⊆ (A∪B)∗ \ (A∪B) if and only if A∗− \B ⊆ (A∪B)∗−. Therefore,

(A∗− \B)∪ (A∗−∩B)⊆ (A∪B)∗−∪ (A∗−∩B) and A∗− ⊆ (A∪B)∗−∪ (A∗−∩B). Analogously, B∗− ⊆ (A∪B)∗−∪ (B∗−∩A).
So A∗−∪B∗− ⊆ (A∪B)∗−∪ (B∗−∩A)∪ (A∗−∩B).

For the reverse inclusion we will only show that (A∪B)∗− ⊆ A∗−∪B∗−. Note that (A∪B)∗ \ (A∪B)⊆ (A∗ \A)∪ (B∗ \B).
Thus (A∪B)∗− ⊆ A∗−∪B∗−. This implies that (A∪B)∗−∪ (A∩B∗−)∪ (B∩A∗−)⊆ A∗−∪B∗−.

2. Note that (A∗)∗− = (A∗)∗ \A∗ ⊆ A∗ \A∗ = /0.

Theorem 2.26. Let (X ,τ,I ) be an ideal topological space. Then a subset A of X is ∗-closed [5] if and only if A∗− = /0.

Proof. Suppose A is ∗-closed. Then A∪A∗ ⊆ A and hence A∗ ⊆ A. Now A∗− = A∗ \A = /0.

Conversely suppose that A∗− = /0. Then A∗ \A = /0 implies A∗ ⊆ A. Thus A∪A∗ = A. So A is ∗-closed.

Theorem 2.27. Let (X ,τ,I ) be an ideal topological space and A ⊆ X. If A∗− = X, then A is I -dense.

Proof. Given that A∗− = X , then A∗ \A = X . Thus X ⊆ A∗.

Converse of the above theorem need not hold in general:

Example 2.28. Let X = {a,b,c}, τ = { /0,X ,{a}} and I = { /0,{c}}. Then ({a,c})∗ = X, but ({a,c})∗ \{a,c} 6= X.

Definition 2.29. We define the operator ()∗ψ on an ideal topological space (X ,τ,I ) in the following way: for a subset A of X,

A∗ψ = A\ψ(A).

Theorem 2.30. Let (X ,τ,I ) be an ideal topological space and A, B ⊆ X. Then following conditions hold:

1. X∗ψ = /0;
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2. A∗ψ ⊆ A;

3. (A∩B)∗ψ = (A∗ψ ∩B)∪ (A∩B∗ψ);

4. (A∗ψ)∗ψ = A∗ψ , if the space is Hayashi-Samuel.

Proof. The proofs of 1. and 2. hold trivially.

3. (A∩B)∗ψ = (A∩B)\ψ(A∩B) = (A∩B)∩ [X \ψ(A)∩ψ(B)] = [A∩ (X \ψ(A))∩B]∪ [A∩B∩ (X \ψ(B))] = (A∗ψ ∩
B)∪ (A∩B∗ψ).

4. (A∗ψ)∗ψ = A∗ψ \ψ[A∗ψ ] = (A\ψ(A))\ψ[A\ψ(A)] = (A\ψ(A))\ψ(A\ [X \ (X \A)∗]) = (A\ψ(A))\ψ[A\X ∪ (X \
A)∗] = (A\ψ(A))\ /0 = A∗ψ .

Definition 2.31. Let (X ,τ,I ) be an ideal topological space and A,B ⊆ X. The operator Intψ :℘(X)→℘(X) on X is defined

by

Intψ(A) = A\T3(A),

where T3 :℘(X)→℘(X) is an operator which satisfies the following conditions:

(i) T3(X) = /0,

(ii) T3(A)⊆ A,

(iii) T3(A∩B) = (T3(A)∩B)∪ (A∩T3(B)),
(iv) T3(T3(A)) = T3(A), if the space is Hayashi-Samuel.

The operator Intψ satisfies the following conditions:

(i) Intψ(X) = X \T3(X) = X ;

(ii) Intψ(A) = A\T3(A)⊆ A;

(iii) Intψ(A∩B) = (A∩B)\T3(A∩B) = (A∩B)\ [(T3(A)∩B)∪(T3(B)∩A)] = [A\T3(A)]∩(B\T3(B)) = Intψ(A)∩Intψ(B)
(from (ii));

(iv) Intψ(Intψ(A)) = Intψ [A \T3(A)] = [A \T3(A)] \T3[A \T3(A)] = [A \T3(A)] \T3(A∩T3(A)
c) ⊇ (A \T3(A)) \T3(A)∩

T3(X \T3(A)) (from (iii)) ⊇ (A\T3(A))\ (T3(A)∩ (X \T3(A)) (from 3. of Theorem 2.30) = Intψ(A).
This shows that Intψ is an interior operator on X .
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[8] T. R. Hamlett, D. Janković, Ideals in topological spaces and the set operator Ψ , Bollettino U. M. I. 7(4-B) (1990),

863-874.

[9] E. Ekici, A new collection which contains the topology via ideals, Trans. A. Razmadze Math. Inst. 172 (2018), 372-377.

[10] E. Ekici, T. Noiri, Properties of I-submaximal ideal topological spaces, Filomat. 24(4) (2010), 87-94.

[11] E. Ekici, T. Noiri, On subsets and decompositions of continuity in ideal topological spaces, Arab. J. Sci. Eng. 34(1A)

(2009), 165-177.

[12] E. Hatir, T. Noiri, On decompositions of continuity via idealization, Acta Math. Hungar. 96 (2002), 341-349.

[13] A. Al-Omari, T. Noiri, Local closure functions in ideal topological spaces, Novi Sad J. Math. 43(2) (2013), 139-149.

[14] J. Dontchev, Idealization of Ganster-Reilly decomposition theorems, arXIV:math. Gn/9901017v1 [math.GN], 5 Jan 1999.

[15] S. Modak, Minimal spaces with a mathematical structure, J. Assoc. Arab Univ. Basic Appl. Sci. 22 (2017), 98-101.

[16] S. Modak, C. Bandyopadhyay, A note on ψ-operator, Bull. Malays. Math. Sci. Soc. 30(1) (2007), 43-48.

[17] Md. M. Islam, S. Modak, Operator associated with the ∗ and Ψ operators, J. Taibah Univ. Sci., 12(4) (2018), 444-449.



Characterizations of Hayashi-Samuel Spaces via Boundary Points — 226/226

[18] S. Modak, Md. M. Islam, New form of Njastad’s α-set and Levine’s semi-open set, J. Chung. Math. Soc. 30(2) (2017),

165-175.

[19] S. Modak, Some new topologies on ideal topological spaces, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 82(3) (2012),

233-243.

[20] S. Modak, C. Bandyopadhyay, ∗-topology and generalized open sets, Soochow J. Math. 32(2) (2006), 201-210.

[21] S. Modak, C. Bandyopadhyay, Ideals and some nearly open sets, Soochow J. Math. 32(4) (2006), 541-551.

[22] C. Bandyopadhyay, S. Modak, A new topology via ψ-operator, Proc. Nat. Acad. Sci. India. 76(A), IV, (2006), 317-320.

[23] S. Modak, B. Garai, S. Mistry, Remarks on ideal M-space, Anal. Univ. Oradea Fasc. Mat. Tom. XIX(1) (2012), 207-215.

[24] S. Modak, Md. M. Islam, On ∗ and Ψ operators in topological spaces with ideals, Trans. A. Razmadze Math. Inst. 172

(2018), 491-497.

[25] S. Modak, Md. M. Islam, More on α-topological spaces, Commun. Fac. Sci. Univ. Ankara Series A1: Math. and Stat.

66(2) (2017), 323-331.

[26] S. Modak, T. Noiri, Connectedness of ideal topological spaces, Filomat. 29(4) (2015), 661-665.

[27] T. Natkaniec, On I-continuity and I-semicontinuity points, Math. Slovaca. 36(3) (1986), 297-312.

[28] N. Bourbaki, General Topology, Chapter 1-4, Springer, 1989.



Communications in Advanced Mathematical Sciences

Vol. II, No. 3, 227-234, 2019

Research Article

e-ISSN:2651-4001

DOI: 10.33434/cams.542704

On the Bicomplex k-Fibonacci Quaternions
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1. Introduction

In 2007, the k-Fibonacci sequence {Fk,n}n∈N is defined by Falcon and Plaza [1, 2] as follows















Fk,0 = 0, Fk,1 = 1

Fk,n+1 = k Fk,n + Fk,n−1, n ≥ 1

or

{Fk,n}n∈N = {0, 1, k, k2 +1, k3 +2k, k4 +3k2 +1, ...}.















Here, k is a positive real number.

In 2015, Ramirez [3] defined the the k-Fibonacci and the k-Lucas quaternions as follows:

Dk,n ={Fk,n + iFk,n+1 + j Fk,n+2 +kFk,n+3 | Fk,n, n− th k-Fibonacci number},
and

Pk,n ={Lk,n + iLk,n+1 + j Lk,n+2 +kLk,n+3 | Lk,n, n− th k-Lucas number}
where i, j and k satisfy the multiplication rules

i2 = j2 = k2 =−1 , i j =−j i = k , j k =−kj = i , k i =−ik = j .

In 1892, bicomplex numbers were introduced by Corrado Segre, for the first time [4]. In 1991, G. Baley Price, the bicomplex

numbers gave in the book based on multicomplex spaces and functions [5]. The set of bicomplex numbers can be expressed by

a basis {1 , i , j , i j} as,

BC= {q = q1 + iq2 + jq3 + i jq4 | q1,q2,q3,q4 ∈ R}
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where i, j and i j satisfy the conditions

i2 =−1, j2 =−1, i j = j i. (1.1)

In 2019, bicomplex k-pell quaternions were introduced by Catarino Paula, [6] as follows

BC
P
k,n ={Pk,n + iPk,n+1 + j Pk,n+2 + i j Pk,n+3 |Pk,n, n− th k-Pell number},

where i, j and i j satisfy the conditions

i2 =−1, j2 =−1, i j = j i.

The aim of this study is to define bicomplex k-Fibonacci quaternions with k-Fibonacci number and bicomplex number and to

give their algebraic properties.

2. The bicomplex k-Fibonacci numbers

Definition 2.1. The bicomplex k-Fibonacci and k-Lucas numbers can be define by with the basis {1, i, j, i j}, where i, j and

i j satisfy the conditions

i2 =−1, j2 =−1, i j = j i, (i j)2 = 1.

as

BCFk,n =(Fk,n + iFk,n+1)+ j (Fk,n+2 + iFk,n+3)

=Fk,n + iFk,n+1 + j Fk,n+2 + i j Fk,n+3

and

BCLk,n =(Lk,n + iLk,n+1)+ j (Lk,n+2 + iLk,n+3)

=Lk,n + iLk,n+1 + j Lk,n+2 + i j Lk,n+3.
(2.1)

For two bicomplex k-Fibonacci numbers, addition and subtraction are defined by the following:

BCFk,n ±BCFk,m = (Fk,n ±Fk,m)+ i(Fk,n+1 ±Fk,m+1)+ j (Fk,n+2 ±Fk,m+2)+ i j (Fk,n+3 ±Fk,m+3)

and multiplication of by

BCFk,n × BCFk,m = (Fk,n Fk,m −Fk,n+1 Fk,m+1 −Fk,n+2 Fk,m+2 −Fk,n+3 Fk,m+3)
+i(Fk,n Fk,m+1 +Fk,n+1 Fk,m −Fk,n+2 Fk,m+3 −Fk,n+3 Fk,m+2)
+ j (Fk,n Fk,m+2 +Fk,n+2 Fk,m −Fk,n+1 Fk,m+3 −Fk,n+3 Fk,m+1)
+i j (Fk,n Fk,m+3 +Fk,n+3 Fk,m +Fk,n+1 Fk,m+2 +Fk,n+2 Fk,m+1)

= BCFk,m × BCFk,n .

3. The bicomplex k-Fibonacci quaternions and some basic properties

In 2018, the bicomplex Fibonacci quaternions defined by Aydın Torunbalcı [7] as follows

QF n = Fn + iFn+1 + j Fn+2 + i j Fn+3

where quaternionic units satisfy the rules Eq. 1.1. In this section, firstly the bicomplex k-Fibonacci quaternions will be defined.

Definition 3.1. The bicomplex k-Fibonacci quaternions are defined by using the bicomplex numbers and k-Fibonacci numbers

as follows

BC
Fk,n =Fk,n + iFk,n+1 + j Fk,n+2 + i j Fk,n+3 (3.1)

where quaternionic units satisfy the rules Eq. 1.1.
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Let BCFk,n and BC
Fk,m be two bicomplex k-Fibonacci quaternions. For two bicomplex k-Fibonacci quaternions, addition

and subtraction are defined in the obvious way,

BC
Fk,n ±BC

Fk,m = (Fk,n + iFk,n+1 + j Fk,n+2 + i j Fk,n+3)± (Fk,m + iFk,m+1 + j Fk,m+2 + i j Fk,m+3)
= (Fk,n ±Fk,m)+ i(Fk,n+1 ±Fk,m+1)+ j (Fk,n+2 ±Fk,m+2)+ i j (Fk,n+3 ±Fk,m+3).

and multiplication by

BC
Fk,n × BC

Fk,m = [Fk,n Fk,m −Fk,n+1 Fk,m+1 −Fk,n+2 Fk,m+2 +Fk,n+3 Fk,m+3]
+i [Fk,n Fk,m+1 +Fk,n+1 Fk,m −Fk,n+2 Fk,m+3 −Fk,n+3 Fk,m+2]
+ j [Fk,n Fk,m+2 −Fk,n+1 Fk,m+3 +Fk,n+2 Fk,m −Fk,n+3 Fk,m+1]
+i j [Fk,n Fk,m+3 +Fk,n+1 Fk,m+2 +Fk,n+2 Fk,m+1 +Fk,n+3 Fk,m]

= BC
Fk,m × BC

Fk,n
.

The different conjugations for bicomplex k-Fibonacci quaternions are presented as follows:

(BCFk,n)∗1 =Fk,n − iFk,n+1 + j Fk,n+2 − i j Fk,n+3,

(BCFk,n)∗2 =Fk,n + iFk,n+1 − j Fk,n+2 − i j Fk,n+3,

(BCFk,n)∗3 =Fk,n − iFk,n+1 − j Fk,n+2 + i j Fk,n+3.

Therefore, the norm of the bicomplex k-Fibonacci quaternion BC
Fk,n is defined in three different ways as follows

N(BC
Fk,n)∗1 = ‖BCFk,n × (BCFk,n)∗1‖2

= |(F2
k,n +F2

k,n+1)− (F2
k,n+2 +F2

k,n+3)+2 j (Fk,n Fk,n+2 +Fk,n+1 Fk,n+3) |
= |Fk,2n+1 −Fk,2n+5 +2 j Fk,2n+3|= BC

Fk,n (BCFk,n)∗1
,

N(BC
Fk,n)∗2 = ‖BCFk,n × (BCFk,n)∗2‖2

= |(F2
k,n −F2

k,n+1)+(F2
k,n+2 −F2

k,n+3)+2 iFk,n Fk,n+1 + k Fk,2n+3 |= BC
Fk,n (BCFk,n)∗2

,

N(BC
Fk,n)∗3 = ‖BCFk,n × (BCFk,n)∗3‖2

= |(F2
k,n +F2

k,n+1)+(F2
k,n+2 +F2

k,n+3)+2 i j (Fk,n Fk,n+3 −Fk,n+1 Fk,n+2) |
= |Fk,2n+1 +Fk,2n+5 +2 i j (−1)n+1 k |= BC

Fk,n (BCFk,n)∗3
.

In the following theorem, some properties related to the bicomplex k-Fibonacci quaternions are given.

Theorem 3.2. Let BCFk,n be the bicomplex k-Fibonacci quaternion. In this case, we can give the following relations:

BC
Fk,n+2 = BC

Fk,n + kBCFk,n+1
, (3.2)

(BCFk,n)2 +(BCFk,n+1)2 = BC
Fk,2n+1 +(k Fk,2n+6 −Fk,2n+3)+ i(Fk,2n+2 −2Fk,2n+6)

+ j (Fk,2n+3 −2Fk,2n+5)+ i j (3Fk,2n+4),
(3.3)

(BCFk,n+1)2 − (BCFk,n−1)2 = k [BCFk,2n −Fk,2n+2 + k Fk,2n+5 + i(Fk,2n+1 −2Fk,2n+5)
+ j (−Fk,2n+2 −2k Fk,2n+3)+ i j (3Fk,2n+3) ],

(3.4)

BC
Fk,n+1 +BC

Fk,n−1 = BC
Lk,n

, (3.5)

BC
Fk,n+2 −BC

Fk,n−2 = kBCLk,n
. (3.6)
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Proof. (3.2): By the Eq.(3.1) we get,

BC
Fk,n + kBCFk,n+1 = (Fk,n + k Fk,n+1)+ i(Fk,n+1 + k Fk,n+2)+ j (Fk,n+2 + k Fk,n+3)+ i j (Fk,n+3 + k Fk,n+4)

= Fk,n+2 + iFk,n+3 + j Fk,n+4 + i j Fk,n+5

= BC
Fk,n+2

.

(3.3): By the Eq.(3.1) we get,

(BCFk,n)2 +(BCFk,n+1)2 = (Fk,2n+1 −Fk,2n+3 −Fk,2n+5 +Fk,2n+7)+2 i(Fk,2n+2 −Fk,2n+6)
+2 j (Fk,2n+3 −Fk,2n+5)+2 i j (2Fk,2n+4)

= (Fk,2n+1 + iFk,2n+2 + j Fk,2n+3 + i j Fk,2n+4)−Fk,2n+3 −Fk,2n+5 +Fk,2n+7

+i(Fk,2n+2 −2Fk,2n+6)+ j (Fk,2n+3 −2Fk,2n+5)+ i j (3Fk,2n+4)
= BC

Fk,2n+1 +(k Fk,2n+6 −Fk,2n+3)
+i(Fk,2n+2 −2Fk,2n+6)+ j (Fk,2n+3 −2Fk,2n+5)+ i j (3Fk,2n+4).

(3.4): By the Eq.(3.1) we get,

(BCFk,n+1)2 − (BCFk,n−1)2 = [(F2
k,n+1 −F2

k,n−1)− (F2
k,n+2 −F2

k,n)− (F2
k,n+3 −F2

k,n+1)+(F2
k,n+4 −F2

k,n+2) ]

+2 i [ (Fk,n+1 Fk,n+2 −Fk,n−1 Fk,n)− (Fk,n+3 Fk,n+4 −Fk,n+1 Fk,n+2) ]
+2 j [ (Fk,n+1 Fk,n+3 −Fk,n−1 Fk,n+1)− (Fk,n+2 Fk,n+4 −Fk,n Fk,n+2) ]
+2 i j [ (Fk,n+1 Fk,n+4 −Fk,n−1 Fk,n+2)+(Fk,n+2 Fk,n+3 −Fk,n Fk,n+1) ]

= k (Fk,2n − k Fk,2n+2 − k Fk,2n+4 + k Fk,2n+6)
+2 i(k Fk,2n+1 − k Fk,2n+5)+2 j (−k2 Fk,2n+3)+2 i j (2k Fk,2n+3)

= k [BCFk,2n −Fk,2n+2 + k Fk,2n+5 + i(Fk,2n+1 −2Fk,2n+5)
+ j (−Fk,2n+2 −2k Fk,2n+3)+ i j (3Fk,2n+3) ].

(3.5) and (3.6):Proof of equalities can easily be done using Eq.(2.1).

Theorem 3.3. Let BCFk,n be the bicomplex k-Fibonacci quaternion. Then, we have the following identities

n

∑
s=1

BC
Fk,s =

1

k
(BCFk,n+1 +BC

Fk,n −BC
Fk,1 −BC

Fk,0 ),

n

∑
s=1

BC
Fk,2s−1 =

1

k
(BCFk,2n −BC

Fk,0), (3.7)

n

∑
s=1

BC
Fk,2s =

1

k
(BCFk,2n+1 −BC

Fk,1).

Proof. Proof can be easily done using sums of series following

∑
n
i=1 Fk,i =

1
k
(Fk,n+1 +Fk,n −1) ,

n

∑
i=1

Fk,2i+1 =
1
k
Fk,2n+2 and

n

∑
i=1

Fk,2i =
1
k
(F2n+1 −1) [1] .

4. Generating functions and Binet’s formula

In this section, the generating functions and the Binet’s formula of the bicomplex k-Fibonacci quaternions will be defined.

Theorem 4.1. Let BCFk,n be the bicomplex k-Fibonacci quaternion. For the generating function for these quaternions is as

follows:

g
BC

Fk,n (t) =
n

∑
s=1

BC
Fk,n tn =

BC
Fk,0 +(BCFk,1 − kBCFk,0) t

1− kt − t2

Proof. Using the definition of generating function, we obtain

g
BC

Fk,n (t) = BC
Fk,0 +BC

Fk,1 t + . . . +BC
Fk,n tn + . . . .

Multiplying both sides of Eq.(3.30) and using Eq.(3.7), we have

(1− kt − t2)g
BC

Fk,n (t) = BC
Fk,0 +(BCFk,1 − kBCFk,0) t .

Thus, the proof is completed.
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Theorem 4.2. Let BCFk,n be the bicomplex k-Fibonacci quaternion. For n ≥ 1, Binet’s formula for these quaternions is as

follows:

BC
Fk,n =

1

α −β

(

α̂ αn − β̂ β n
)

where

α̂ = 1+ iα + j α2 + i j α3
, α = k+

√
k2+4

2
,

β̂ = 1+ iβ + j β 2 + i j β 3
, β = k−

√
k2+4

2
,

α +β = k , α −β =
√

k2 +4 , αβ =−1.

Proof. Using the Binet formula for k-Fibonacci number [2], we obtain

BC
Fk,n = Fk,n + iFk,n+1 + j Fk,n+2 + i j Fk,n+3

= αn−β n√
k2+4

+ i(αn+1−β n+1√
k2+4

)+ j (αn+2−β n+2√
k2+4

)+ i j (αn+3−β n+3√
k2+4

)

= αn (1+iα+ j α2+i j α3)−β n (1+iβ+ j β 2+i j β 3)√
k2+4

= 1√
k2+4

( α̂ αn − β̂ β n).

where α̂ = 1+ iα + j α2 + i j α3
, β̂ = 1+ iβ + j β 2 + i j β 3.

5. Some identities for bicomplex k-Fibonacci quaternions

Theorem 5.1. Honsberger Identity

For n,m ≥ 0 the Honsberger identity for the bicomplex k-Fibonacci quaternions is given by

BC
Fk,n BC

Fk,m +BC
Fk,n+1 BC

Fk,m+1 = BC
Fk,n+m+1 −Fk,n+m+3 + k Fk,n+m+6 + i(Fk,n+m+2 −2Fk,n+m+6)

+ j (Fk,n+m+3 −2Fk,n+m+5)+ i j (3Fk,n+m+4).
(5.1)

Proof. (5.1): By the Eq.(3.1) we get,

BC
Fk,n BC

Fk,m +BC
Fk,n+1 BC

Fk,m+1 = (Fk,n+m+1 + iFk,n+m+2 + j Fk,n+m+3 + i j Fk,n+m+4)−Fk,n+m+3 + k Fk,n+m+6

+i(Fk,n+m+2 −2Fk,n+m+6)+ j (Fk,n+m+3 −2Fk,n+m+5)+ i j (3Fk,n+m+4)
= BC

Fk,n+m+1 −Fk,n+m+3 + k Fk,n+m+6 + i(Fk,n+m+2 −2Fk,n+m+6)
+ j (Fk,n+m+3 −2Fk,n+m+3)+ i j (3Fk,n+m+4).

where the identity Fk,nFk,m +Fk,n+1Fk,m+1 = Fk,n+m+1 was used [1].

Theorem 5.2. D’Ocagne’s Identity

For n,m ≥ 0 the D’Ocagne’s identity for the bicomplex k-Fibonacci quaternions is given by

BC
Fk,n BC

Fk,m+1 −BC
Fk,n+1 BC

Fk,m = (−1)m Fk,n−m [2(k2 +2) j+(k3 +2k) i j ]. (5.2)

Proof. (5.2): By the Eq.(3.1) we get,

BC
Fk,n BC

Fk,m+1 −BC
Fk,n+1 BC

Fk,m = [(Fk,nFk,m+1 −Fk,n+1Fk,m)− (Fk,n+1Fk,m+2 −Fk,n+2Fk,m+1)
−(Fk,n+2Fk,m+3 −Fk,n+3Fk,m+2)+(Fk,n+3Fk,m+4 −Fk,n+4Fk,m+3) ]

+ i [ (Fk,nFk,m+2 −Fk,n+1Fk,m+1)+(Fk,n+1Fk,m+1 −Fk,n+2Fk,m)
−(Fk,n+3Fk,m+3 −Fk,n+4Fk,m+2) ]

+ j [ (Fk,nFk,m+3 −Fk,n+1Fk,m+2)+(Fk,n+2Fk,m+1 −Fk,n+3Fk,m)
−(Fk,n+1Fk,m+4 −Fk,n+2Fk,m+3)− (Fk,n+3Fk,m+2 −Fk,n+4Fk,m+1) ]

+ i j [ (Fk,nFk,m+4 −Fk,n+1Fk,m+3)+(Fk,n+1Fk,m+3 −Fk,n+2Fk,m+2)
+(Fk,n+2Fk,m+2 −Fk,n+3Fk,m+1)+(Fk,n+3Fk,m+1Fk,n+4Fk,m) ]

= (−1)m Fk,n−m [2(k2 +2) j+(k3 +2k) i j ] .

where the identity Fk,mFk,n+1 −Fk,m+1Fk,n = (−1)nFk,m−n is used [1].
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Theorem 5.3. Catalan’s Identity

Let BCFk,n+r be the bicomplex k-Fibonacci quaternion. For n ≥ 1, Catalan’s identity for BCFk,n+r is as follows:

BC
Fk,n+r−1 BC

Fk,n+r+1 − (BCFk,n+r)2 = (−1)n+r [2(k2 +2) j+ (k3 +2k) i j ]. (5.3)

Proof. (5.3): By using (3.1) we get

BC
Fk,n+r−1 BC

Fk,n+r+1 − (BCFk,n+r)2 = (Fk,n+r−1Fk,n+r+1 −F2
k,n+r)− (Fk,n+rFk,n+r+2 −F2

k,n+r+1)

(Fk,n+r+1Fk,n+r+3 −F2
k,n+r+2)+(Fk,n+r+2Fk,n+r+4 −F2

k,n+r+3)

+i [ (Fk,n+r−1Fk,n+r+2)− (Fk,n+rFk,n+r+1)− (Fk,n+r+1Fk,n+r+4 −Fk,n+r+2Fk,n+r+3)
+ j [ (Fk,n+r−1Fk,n+r+3 −Fk,n+rFk,n+r+2)− (Fk,n+rFk,n+r+4 −Fk,n+r+1Fk,n+r+3)

+(Fk,n+r+1Fk,n+r+1 −Fk,n+r+2Fk,n+r)− (Fk,n+r+2Fk,n+r+2 −Fk,n+r+3Fk,n+r+1) ]
+i j [ (Fk,n+r−1Fk,n+r+4 −Fk,n+rFk,n+r+3)
+(Fk,n+rFk,n+r+3 −Fk,n+r+1Fk,n+r+2)+(Fk,n+r+2Fk,n+r+1 −Fk,n+r+3Fk,n+r) ]

= (−1)n+r [2(k2 +2) j+ (k3 +2k) i j ]

where the identity of the k-Fibonacci numbers Fk,n+r−1Fk,n+r+1 −F2
k,n+r = (−1)n+r is used [2]. Furthermore;































Fk,n+r−1 Fk,n+r+2 +Fk,n+r Fk,n+r+1 = (−1)n+r k,

Fk,n+r−1 Fk,n+r+3 −Fk,n+r Fk,n+r+2 = (−1)n+r (k2 +1),
Fk,n+r+1 Fk,n+r+3 −Fk,n+r Fk,n+r+4 = (−1)n+r (k2 +1),
Fk,n+r−1 Fk,n+r+4 −Fk,n+r Fk,n+r+3 = (−1)n+r (k3 +2k),
Fk,n+r Fk,n+r+3 −Fk,n+r+1 Fk,n+r+2 = (−1)n+r+1 k,

Fk,n+r+2 Fk,n+r+1 −Fk,n+r+3 Fk,n+r = (−1)n+r k .

are used.

Theorem 5.4. Cassini’s Identity

Let BCFk,n be the bicomplex k-Fibonacci quaternion. For n ≥ 1, Cassini’s identity for BC
Fk,n is as follows:

BC
Fk,n−1 BC

Fk,n+1 − (BCFk,n)2 = (−1)n [2(k2 +2) j+ (k3 +2k) i j ]. (5.4)

Proof. (5.4): By using (3.1) we get

BC
Fk,n−1 BC

Fk,n+1 − (BCFk,n)2 = [(Fk,n−1Fk,n+1 −F2
k,n)− (Fk,nFk,n+2 −F2

k,n+1)

−(Fk,n+1Fk,n+3 −F2
k,n+2)+(Fk,n+2Fk,n+4 −F2

k,n+3) ]

+i [ (Fk,n−1Fk,n+2 −Fk,nFk,n+1)− (Fk,n+1Fk,n+4 −Fk,n+2Fk,n+3) ]
+ j [ (Fk,n−1Fk,n+3 −Fk,nFk,n+2)− (Fk,nFk,n+4 −Fk,n+1Fk,n+3)

+(Fk,n+1Fk,n+1 −Fk,n+2Fk,n)− (Fk,n+2Fk,n+2 −Fk,n+3Fk,n+1) ]
+i j (Fk,n−1Fk,n+4 −Fk,nFk,n+3)

= (−1)n [2(k2 +2) j+ (k3 +2k) i j ].

where the identities of the k-Fibonacci numbers Fk,n−1Fk,n+1 −F2
k,n = (−1)n [2]. Furthermore;















Fk,n−1Fk,n+2 −Fk,nFk,n+1 = k (−1)n

Fk,n−1Fk,n+3 −Fk,nFk,n+2 = (k2 +1)(−1)n
,

Fk,n+1Fk,n+3 −Fk,nFk,n+4 = (k2 +1)(−1)n
,

Fk,n−1Fk,n+4 −Fk,nFk,n+3 = (k3 +2k)(−1)n

are used.

6. An application of bicomplex k-Fibonacci quaternions in tridiagonal matrices

In this section, we give another method to obtain the n-th term of bicomplex k-Fibonacci quaternion sequence as the calculation

of a tridiagonal matrix [8].
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Theorem 6.1. Let xn be any second-order linear sequence, defined recursively as

xn+1 = Axn +Bxn−1, n ≥ 1

with the values x0 =C, x1 = D. Then,for all n ≥ 0,

xn = det



















C D 0 0 . . . 0 0

−1 0 B 0 . . . 0 0

0 −1 A B . . . 0 0
...

. . .
. . .

. . .
. . .

...
...

0 0 0 0 . . . A B

0 0 0 0 . . . −1 A



















Theorem 6.2. Now, let’s consider the second-order linear sequence BCFk,n+1 =BC
Fk,n +kBCFk,n−1 . Using the previous theorem

and taking A = 1, B = k, C = BC
Fk,0 , D = BC

Fk,1 the following determinant was obtained.

BC
Fk,n = det



















BC
Fk,0 BC

Fk,1 0 0 . . . 0 0

−1 0 1 0 . . . 0 0

0 −1 k 1 . . . 0 0
...

. . .
. . .

. . .
. . .

...
...

0 0 0 0 . . . k 1

0 0 0 0 . . . −1 k



















Proof. For n ≥ 0, using the above theorem, we have

BC
Fk,0 =

∣

∣ BC
Fk,0 |= BC

Fk,0
,

BC
Fk,1 =

∣

∣

∣

∣

BC
Fk,0 BC

Fk,1

−1 0

∣

∣

∣

∣

= BC
Fk,1

,

BC
Fk,2 =

∣

∣

∣

∣

∣

∣

BC
Fk,0 BC

Fk,1 0

−1 0 1

0 −1 k

∣

∣

∣

∣

∣

∣

= BC
Fk,0

∣

∣

∣

∣

0 1

−1 k

∣

∣

∣

∣

−BC
Fk,1

∣

∣

∣

∣

−1 1

0 k

∣

∣

∣

∣

= BC
Fk,0 + kBCFk,1 = BC

Fk,2
,

BC
Fk,3 =

∣

∣

∣

∣

∣

∣

∣

∣

BC
Fk,0 BC

Fk,1 0 0

−1 0 1 0

0 −1 k 1

0 0 −1 k

∣

∣

∣

∣

∣

∣

∣

∣

= BC
Fk,0

∣

∣

∣

∣

∣

∣

0 1 0

−1 k 1

0 −1 k

∣

∣

∣

∣

∣

∣

−BC
Fk,1

∣

∣

∣

∣

∣

∣

−1 1 0

0 k 1

0 −1 k

∣

∣

∣

∣

∣

∣

= BC
Fk,0(−1)

∣

∣

∣

∣

−1 1

0 k

∣

∣

∣

∣

−BC
Fk,1(−1)

∣

∣

∣

∣

k 1

−1 k

∣

∣

∣

∣

= kBCFk,0 +BC
Fk,1(1+ k2)

= BC
Fk,1 +(k2

BC
Fk,1 + kBCFk,0) = kBCFk,2 +BC

Fk,1 = BC
Fk,3
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In this way, BCFk,n n-th term is obtained by calculating the determinant nxn.

7. Conclusion

In this paper, a number of new results on bicomplex k-Fibonacci quaternions were derived. Furthermore, a different way to find

the n-th term of Bicomplex k-Fibonacci quaternion sequence was expressed using the determinant of a tridiagonal matrix.
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