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Abstract 

In this article the electromagnetic waves scattered from an inhomogeneous medium are considered when 

the electromagnetic waves are polarized in the case of transverse electric. Using the Rellich lemma, the 

uniqueness of the solution of the direct scattering problem is proved. In order to show the existence of 

the solution of this problem, the operator equations are constructed and the Riesz theory which provides 

the existence of the inverse operator is used. Furthermore, for solution of the inverse scattering problems, 

an interior boundary value problem is considered. Finally, a linear integral equation is obtained whose 

the solution yield the support of the scattering object. 

Keywords: Electromagnetic wave, Far-field pattern, Linear method, Scattering theory. 

 

1. Introduction 

 
The scattering problems of time-harmonic waves which are acoustic or  electromagnetic  waves are 

the basic problems in the  scattering  theory.  These problems  have been considered  by many writers  as 

direct and indirect  scattering problems [2-19, 22-24 ]. 

 

Before the inverse scattering problems with regard to the direct scattering problems, the most 

important questions are the uniqueness and the existence of the solution of the direct scattering problem. 

Gerlach and Kress [17] , Colton, Kress and Monk [8] have proved the uniqueness of the solution by using 

Green’s theorems and the unique continuation property of solution. Furthermore,  they have showed the 

existence of solution by using the jump relations of the single-layer and double-layer in the potential 

theory and the integral equations. For the transmission boundary value problem, this results have been 

proved by Colton and Piana [9] . 

 

In the inverse scattering theory, the most importance thing is scattered far-field model. In the 1980’s, 

the inverse scattering problem of determining the unknown scattering obstacle from information about the 

far- field data was considered by Angel, Colton and Kirsch [2] , Tobocman [23] and many more 
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mathematicians. Integral equations or Green’s formulas were used to reformulate the inverse obstacle 

problem by these researchers. 

 

For the solution of the inverse scattering problem, a method is the linear method which was 

suggested, firstly,  by Colton and Kirsch [10].  Then the method is used by Colton, Kress and  Monk [8], 

Colton and Piana [9], Colton, Piana and Potthast [11], Colton, Giebermann and Monk [12], Colton, Coyle 

and Monk [13], Cakoni, Colton and Monk [3], Cakoni, Colton and Haddar [4], Cakoni and Colton [5], 

Colton [14] and Colton and Kress [15]. This method is mathematically established by placing a network on 

the unknown domain  by solving a linear integral equation for each point on this network and then 

determining the shape of the domain from  the information about the solutions for this set of integral 

equations. To apply this method, first, the far field operatör     2 2:F L L    is defined by 

 

      ˆ ˆ( ) ( ,d) d dFg x u x g ds



  ,          ˆ,dx    

       

where  2 : 1x IR x    . Then the Regulation method [16] is used to solving of the linear integral 

equation    ˆ ˆ( ) ( , )Fg x x y  , where 
4

ˆ.ˆ( , )
8

i

ikx ye
x y e

k







   is the far-field model of the function 

     1

0,
4

i
x y H k x y    for x y  [1]. According to this method, for 0  , there exists a function 

   2.,g g y L    such that  Fg    and  both  .,g y   and   .,gv y  become 

unbounded as y  approaches the boundary of the scatterer,  where      .d d dikx

gv x e g ds



   is the 

Herlogtz wave function with  kernel  .,g y  [16]. The Herlogtz kernel  .,g y is determined from 

     ˆ ˆ( ) ( ,d) d dFg x u x g ds



   for y  on a grid containing the scatterer. Thus, the boundary of the 

unknown domain can be found as the locus of points y ,  where  
 2.,

L
g y


begins to increase sharply. 

 

 Now, we consider the following problem: 

 

         We investigated an electromagnetic scattering problem in an inhomogenous medium when the 

incident wave is polarized parallel to the axis of infinite cylinder representing the scatterer and the 

magnetic field has only one component in the direction of the axis to the cylinder. This is the referred to 

as the transverse electric mode (briefly, TE mode) in scattering theory [9,22,24]. The electromagnetic 

waves can be obtained by using the Maxwell equations [16]. We assume that D  is a simply-connected 

bounded domain in 
2IR with  2C D  and which the domain is the cross section of the cylinder. For the  

time-harmonic electromagnetic waves, the scattering is defined by the Maxwell equations  

 

0 0 0curlE ikH         0 0 0curlH ikE  ,            in 
2 \IR D                                                     (1) 
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0curlE ikH             0curlH ikn x E  ,     in  D                                                  (2) 

    

and the boundary conditions 

0H H    ,       on  D                              (3)                                                          

     0 0

0

1k k
curlE E curlE E

n
     

 
         ,  on D                               (4)          

where k  is positive wave number and   is outward unit normal vector on D . Let  0 0,E H  and  ,E H  

be electromagnetic fields outside and inside the cylinder, respectively. Let be  0,C D   and 

Im 0  .   n x  is the index of refraction defined by 

 

   
 

0

1 i x
n x x




 

 
  

 
                                     

where  is the constant permittivity in 
2 \IR D ,  x and  x  are the permittivity and the 

conductivity   of  the  cylinder, respectively, and   is the frequency of  the electromagnetic waves. We 

assume that  n x  satisfies the following conditions:  

 

           (i)    2 2n x C IR  and   0 0n x n   for 
2 \x IR D , where  0 1n IR   

 

           (ii)  Im 0n x  and   0 : Im 0D x D n x    .                                                        (5)  

    

If the electromagnetic wave is polarized in the  transverse electric mode, the scalar fields 0u  and u  can 

be defined as    
1 2 30 0 0 0 0, , 0,0,H H H H u   and    1 2 3, , 0,0,H H H H u  . Thus,  the Maxwell 

equations 1-2  and  the boundary conditions  3-4  are equivalent to the Helmholtz equations and the 

boundary conditions in the following 

 
2

0 0 0u k u   ,       in 
2 \IR D                                                                                                  (6) 

 

21
. 0u k u

n

 
    
 

,       in  D                                                                                                    (7) 

 

0 0u u  ,      on  D                                                                                                                    (8) 

 

0
0

0 0

1 1
0

u u
k u u

n n


 

  
    

   
,        on  D .                                                                        (9) 

 

0
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The exterior field 0u  can be written in the form 

 

 0( ) ( )i su x u x u x  ,      

                                                               

where  2d : 1x IR x    and   .di ikxu x e  is the incident plane wave with incident direction d. 

The scattered wave  
su  satisfies the Sommerfeld radiation condition  

 

          lim 0
s

s

r

u
r iku

r

 
  

 
                                                                                                            (10) 

 

uniformly in all directions ˆ
x

x
x

  with xr  . This condition guarantees that the scattered wave  has the 

asymptotic behaviour 

 

               
3

2ˆ,d
ikr

s e
u x u x O r

r



         

                                                                                         

as r x  ,  where  u
 is known as the far-field pattern of the scattered wave and is defined in the 

form 

 

          
 

   
ˆ.4

ˆ.ˆ( ,d)
8

i ikx y
ikx y

D

e e u
u x u y y e ds y

yk



 








  
  

  
  , x̂  [16]. 

 

2. The Direct Scattering Problem 

 
The scattering of time-harmonic plane waves by a simply connected bounded domain  

2D IR  is 

formed with the following direct scattering problem. For given )(,1 DCf  
 and )(, ,0 DCg    from 

Hölder spaces with exponent 0 1  , this problem is to find a pair of functions 

   2 2 1 2

0 \ \u C IR D C IR D   and    2 1u C D C D   such that 

 
2

0 0 0u k u   ,          in 
2 \IR D                                                                                               (11) 

 

21
.( ) 0u k u

n
    ,      in  D                                                                                                   (12) 

 

 
0u u f   ,         on  D                                                                                                           (13) 

      

0
0

0 0

1 1u u
k u u g

n n


 

  
    

   
,      on  D ,                                                                      (14) 
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where  k  is positive  wave  number  and   is the unit outward  to D . 0n  and n  are defined in the 

conditions (i)-(ii) of (5). 0u  satisfies the Sommerfeld radiation condition  (10),  i.e. 

 

          0
0lim 0

r

u
r iku

r

 
  

 
,                                                                                                            (15) 

  

where xr  .  For simplicity, we will always suppose that Im 0   on D . 

 

Theorem 2.1.  The solution of  the boundary value problem  11-15  is unique. 

 

Proof.  We suppose that the solution of  the problem 11-15  is  not unique.  Let 
21 000 uuu   and  

21 uuu  . Thus  0u  and u  satisfy the homogeneous boundary value problem 6-9.  

We first show that   

 

2

0lim 0

r

r
u ds





 ,                                                                                                           (16) 

 

where r denotes the circle with the  radius r  and centered in the origin and ds  is the arc lenght. To 

achieve this, from the Sommerfeld radiation condition 15, we have  

 

2 2
220 0 0

0 0 0lim 2 Im lim 0

r r

r r

u u u
k u k u ds iku ds

   

 

    
      

     
  .                           (17) 

 

We take r  large enough such that 
rD . Applying Green’s theorem [16] in the domain  

 ryDIRyDr  <   :   \    = 2 ,  we  have 

 

 
2 22

0 0

r rD D

k u dy gradu dy    = 0
0 ( )

r

u
u ds y








0

0 ( )

D

u
u ds y







 .       

        

Taking  imaginary parts of  this equation,  from the equation 17,  we  obtain    

 

            

2
220 0

0 0lim 2 Im

r

r

D

u u
k u ds k u ds

 

 

  
   

   
  .                                                      (18) 

 

Applying Divergence theorem [18]  to the function 
1

 
  

u u
n

 
 

 
,  from  the condition  (i) of (5)  and  

boundary conditions  8-9,  we get 
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            
2 2 2 22 0

0 0 0

0

1
  

D D

u k
k u u dy u k u u ds y

n n







  
             .                

 

Taking imaginary parts of  this equation, we have 

 

             
2 20

0 0

0

1 1
Im  Im Im  1

D D D

u
u dy u ds y k u ds y

n n



 

 
    

     .                               (19) 

 

From the condition  (ii) of  5,  the left-hand of equation 19  is positive or zero. Since Im 0   on D , 

again from the condition (i) of  5,  the last integral in the right-hand of equation 19  is negative or zero. 

Thus we obtain 

 

 0
0Im ( ) 0

D

u
u ds y







 .                                    

                                         

The equation 18 becomes 

 

2
220

0lim 0

r

r

u
k u ds





 
  

  
 .                                                                       (20) 

 

Since the left-hand of equation 20  is positive or zero,  we get the equation 16. From Rellich’s lemma 

[16], 0 0u   in DIR \2
  and so 00

0 







u
u  in 

2 \IR D  from the Theorem 3.12 in [7]. From the 

conditions 8-9, we obtain 0







u
u  on D . From the unique continuation principle (see : Theorem 

8.6 in [16] ), we obtain 0u  in D .  

 

          We will now apply the Riesz’s theory (the inverse operator’s existence) for compact operators 

[7,18]  to  demonstrate  the existence  of solution to the boundary value problem 11-15. With the change 

of variables ( ) ( ) ( )u x n x w x , the boundary value problem 11-15 takes form 

 

2

0 0 0u k u   , in  
2 \IR D                                                                                                        (21)  

 

 2 0w k n p w    ,       in  D                                                                                                (22) 

 

0 0u n w f  ,          on  D                                                                                                     (23) 

 

0
0

0 0

1 1u w
k u w g

n n


 

  
    

    

,        on  D                                                                (24) 
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where   

 

   
 

1
p x n x

n x
    .                                                                                                              (25) 

 Then for  DC  ,  and  DC1 ,  let’s define the following functions 

 

0
0 0

( , )
( )  ( ) ( , ) ( ) ( )

( )
D

x y
u x y x y y ds y

y
 




 
  

  ,          
2 \x IR D                                        (26) 

 

0 1

( , )
( )  ( ) ( , ) ( ) ( ) ( , ) ( ) ( )

( )
D D

x y
w x n y x y y ds y x y y y dy

y
   




 
    

   ,
2IRx \ D    (27) 

                                                                                                                                                   

where   
2 2

0( ) [ ( ) ( )]x k n k n x p x     and the functions    (1)

0 0,
4

i
x y H k x y    and 

   (1)

0 0,
4

i
x y H k n x y   ,  yx   in 

2IR  are the fundemantal solutions of the Helmholtz 

equations which are 
2 0u k u    and 

2

0 0u k n u   , respectively, where 
(1)

0H  is the Hankel function 

of the first kind and the zero order. The functions 0u  defined by equation 26  and w  defined by equation 

27  satisfies the problem  21-24 and the Sommerfeld radiation condition 15. 

 

          We introduce the following integral operators: 

 

The operators , ,K S T  and  
ıK  are defined  from  ( )C D   to  ( )C D ,  such that 

 

( , )
( )( ) 2 ( ) ( )

( )
D

x y
K x y ds y

y
 







 ,             Dx                                                         (28) 

 

( )( ) 2 ( , ) ( ) ( )

D

S x x y y ds y 



  ,   Dx                                                                      (29) 

 

( , )
( )( ) 2 ( ) ( )

( ) ( )
D

x y
T x y ds y

x y
 

 


 


  ,  Dx                                                               (30) 

 

( )( ) 2 ( , ) ( ) ( )
( )

ı

D

K x x y y ds y
x

 





 

  ,   Dx                                                              (31) 

The operators K 
 and  S 

 are defined  from  ( )C D   to  ( )C D ,  such that 
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( , )
( )( ) 2 ( ) ( )

( )
D

x y
K x y ds y

y
 










 ,    Dx                                                                        (32)   

  

( )( ) 2 ( , ) ( ) ( )

D

S x x y y ds y 



  ,     Dx                                                                             (33)  

 

The operators  S  and  
ıK   are defined  from  ( )C D   to  ( )C D ,  such that 

 

 
1 1( )( ) 2 ( , ) ( ) ( )

D

S x x y y y dy    ,   Dx                                                                       (34) 

 

 
1 1( )( ) 2 ( , ) ( ) ( )

( )

ı

p

D

K x x y y y dy
x

  



 

  ,   Dx                                                          (35) 

 

Finally, the operatör  S


 be defined from  ( )C D   to  ( )C D ,  such that 

 

1 1( )( ) 2 ( , ) ( ) ( )p

D

S x x y y y dy     , Dx .                                                                       (36) 

 

Let 0 0 0, ,K S T  and 
ıK0  show  the operators corresponding to TSK ,,  and 

ıK , respectively,  with   

replaced by 0 . 

 

Theorem 2.2. The functions 0u  and w  defined by equations 26-27 are restricted to DIR \2
and D , 

respectively. Then the functions  DC  ,  and  DC1  satisfy the following  integral equations 

 

    0 0 0 0 0 0 1( ) (1 ) ( ) 2K n K n S n S n S f          ,  on  D                                                 (37) 

 

     0 0 1

0 0 0

1 1 1
( ) 1ı ı ıT T K K K

n n n
   

   
        

   
   

       

                      0 0 1

0 0

1 1
2 2k K K S S S g

n n
    

  
        

    

,   on  D          (38) 

 

0 1 12 0n K S S         ,     in  D .                                                                             (39) 

 

Proof. Firstly, we will obtain the integral equation 37. When DxDIRx  \2
, the limit value of 

0u  in equation 26  is  
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  0
0 0

( , ) 1
 ( ) ( ) ( ) ( , ) ( ) ( )

( ) 2
D D

x y
u x y ds y x x y y ds y

y
  





 


   

  . 

                          

When DxDx  , the limit value of w  in equation 27  is 

 

0

( , ) 1
( )  ( ) ( ) ( ) ( , ) ( ) ( )

( ) 2
D D

x y
w x n y ds y x x y y ds y

y
  





 

 


    
 

 
    

                                                                                                1( , ) ( ) ( )
D

x y y y dy   . 

 

From the condition 23 and the operators  28, 29,34,  we obtain 

 

0 0 0 0 02 ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )f x K x x S x n K x n x n S x           0 1( )( )n S x . 

 

Thus, for x D  , the equation 37 is obtained. 

 

Now, we will obtain the integral equation  38. We take the derivative of the function 0u  in the 

direction  . When 
2IRx \ D x D , the limit value of 



 0u
 is  

 

0 0
0

( , ) 1
( )  ( ) ( ) ( , ) ( ) ( ) ( )

( ) ( ) ( ) 2
D D

u x y
x y ds y x y y ds y x

x y x
  

   



 

  
   

     .   

               

We take the derivative of  the function w  in the direction  . When DxDx  , the limit value of 



w
 is 

 

0

( , )
( )  ( ) ( ) ( , ) ( ) ( )

( ) ( ) ( )
D D

w x y
x n y ds y x y y ds y

x y x
 

   



 

   
  

      

         1

1
( ) ( , ) ( ) ( )

2 ( )
D

x x y y y dy
x

  



  

  .        

                   

From the condition 24 and the operators 28, 31, 34, 35 we have 

 

                               1

0 0

0 0 0

( )( )( )( ) ( )
2 ( )( ) ( )( ) ( ) ( )( )

ıı
ı

K xK x x
g x T x K x x T x

n n n

 
                                              



 

10 

 

Ikonion Journal of Mathematics                                                                                2019, 1(2) 

                                                      

      
     1

0 0

0 0

( )( ) ( ) ( )( )
S xS x

x k K x x S x K x x
n n


     

 
       

  

. 

Thus, for x D  , the equation 38 is obtained. 

 

Finally, for the integral equation  39,  if we write the operators 32, 33 and 36   in the function w  

defined by equation 27, then we obtain 

 

     0 12 ( ) ( ) ( ) ( )w x n K x S x S x       . 

                                                             

 Since 
2 1( ) ( ) ( )w x C D C D   and )()(1 DCx  , we can write )()( 1 xxw  . Thus, we satisfy the 

equation 39 for  x D  .  

 

Equations 37 - 39 can be written in operator notation as  

 






































0

2

2

 

1

g

f

BA







 ,                                                       (40) 

 

where the matrixes A  and B  are described in the following forms 

 

 

 0

0

1 0 0

1
2 1 0

0 0 2

n I

A kI I
n

I



 
 

  
     

  
  

                                                                                                      

 

and 

     

0 0 0 0 0

0 0 0 0

0 0 0

0

1 1 1
    ı ı ı

K n K S n S n S

B T T k K K K K k S S K kS
n n n

n K S S



 



  

  

   
 
    

            
   

    
 
  

.          

 

The operator A  clearly has a bounded inverse [2,4]. The operators in the matrix B are weakly singular 

operators . Thus,  the operator B  is compact in the space      DCDCDC   [7].  

 

In the following theorem,  we will denote  that the A B  operator is injective.  

 

Theorem 2.3. The boundary value problem 11-15 has a unique solution. 
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Proof. Let us consider the problem 21-24. From the uniqueness theorem 2.1, if 0 gf  then 00 u  

in DIR \2
 and 0u  in D . Since wnu  ,  then 0w  in D ,  where  the functions 0u  and w  are 

defined by equations  26  and  27,  respectively.  From the equation 39 ,  we have 
1 0w    for Dx  

and  so  01  . Thus, the equations 37 and 38 reduce to 

 

            0)()1()( 00000   SnSnKnK ,        

                                                                         

 0 0 0 0

0 0 0

1 1 1
( ) 1 2 0ı ıT T K K k K K S S

n n n
      

      
                

            

.    

 

Using the jump relations of potential theory [16], we obtain   

 

 

00 uu                










 

00 uu
,       on  D                                                                

 

 0nww  
       











  ww
,      on  D .      

                                

Since 00 u  in DIR \2
 and 0w  in D , then  0

0 0
u w

u w
 

 
  
   
 

. Thus, we have  

 

0
1

0

0   w
n

u       0 0
u w

 

  
 

 
,         on  D                                                                (41) 

 

Since 0n  is real, from the Divergence theorem and equation 41,  we have 

 

0
0 0Im Im 0

D D

uw
w ds n u ds

 


 

 


 

   .                                                                              

 

Since the function w  is radiating solution of the Helmholtz equation for DIRx \2 , from the Rellich’s 

lemma, 0w  in D\2IR  and  so 0






w
.  Since 0











w
w  on D  and  from equation 41, 

00
0 











u
u . Then we obtain 0 .Since 01   , the BA   operatör is injective [18].   

Since B  is compact and BA   is injective, the inhomogeneous system 40  has a unique solution  

1,,   from the fundamental results of the Riesz’s theory for compact operators  (see: Theorem 1.16,  

Corollary 1.17 and Corollary 1.20 in [7]). Finally the boundary-value problem 21-24  has a unique 

solution. 
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 To formulate the linear method,  firstly, we consider  the interior boundary-value problem. 

 

3. The Interior Boundary Value Problem  

 

The interior boundary value problem is to find the functions 
2 1

0 , ( ) ( )u u C D C D   to the 

differential equations  

 
2

0 0 0u k u   ,       in  D                                                                                                         (42) 

 

            0
1

. 2 







 uku

n
,         in  D                                                                                                (43) 

 

  and the boundary conditions  

 

          fuu 0 ,             on   D                                                                                                       (44)  

 

         0
0

0 0

1 1u u
k u u g

n n


 

  
    

   
,     on  D  .                                                                       (45) 

 

Theorem 3.1 Let  }0)(Im:{0  xnDxD  be  different from empty set. The solution of the interior 

boundary value problem  42–45  is unique. 

 

Proof. Let     2 1

0,u u C D C D  be the solution of the homogeneous interior boundary value 

problem, that is, assume 0f g  . Then,  applying of the Divergence theorem to the function  

1
 

  
u u

n

 
 

 
 and using the condition (i) of 5 and homogeneous boundary conditions, we obtain  

 

        
2 221 1

   ( )
  

D D

u
u k u dy u ds y

n n 


 
        

20
0 0

0

1
y  + 1 ( )

D D

u
u ds k u ds y

n



 

 
  

     

                                                   
2 2 22

0

0

1 1
  1

D D

u k u dy k u ds y
n n

 



  
       

     .          

   

Taking imaginary parts of this equation, we have 

 

          2 2 2

0

0

1 1 1
Im  Im  Im 1 ( )

    
D D D

u dy u dy k u ds y
n n n

 



 
      

    .                    (46) 
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Since 
1

Im 0
n
  in D , the left-hand of equation 46 is negative or zero. Since 

1
Im 0

n
  in D  and 

 Im 0    on D , due to the condition (i) of  5,  the right side of equation 46 is pozitive or zero. 

Thus, we get 

 

21
Im  0

 
D

u dy
n
  .  

  

          Since 
1

Im 0
n
  in 

0D D , then 0u  . Since u  satisfies  the equation  43, then 0u  in D. 

From the unique continuation principle, we  have 0
u

u
v


 


  on D . Also since  0u  satisfies  the  

equation 42,  from  the homogeneous boundary conditions  and  the  Helmholtz representation, 0 0u   

in D .   

 

We will show the existence of  the solution of  the interior boundary value problem 42-45. Again, 

using the change of variables ( ) ( ) ( )u x n x w x , the interior boundary value problem 42-45 takes form 

 

         
2

0 0 0u k u   ,         in  D                                                                                                       (47) 

 
2( ) 0w k n p w    ,    in  D                                                                                                 (48) 

 

fwnu  00 ,      on   D                                                                                                     (49) 

 

0
0

0 0

1 1u w
k u w g

n n


 

  
    

    

,   on    D                                                                 (50) 

 

where  the function p  is defined by equation 25. Now, for  DC  ,  ve  DC1  ,  we use 

the function  0u x  for  
2 \x IR D   defined by equation 26  and   let’s define the following function, 

 

   0 1

( , )
( )  ( ) ( , ) ( ) ( ) ,  ( )

( )
D D

x y
w x n y x y y ds y x y y y dy

y
   




 
    

   ,  

                                                                                                           
2 \x IR D                  (51) 

 

where the functions 
0,  ve   are defined as Section 2. 

 

Theorem 3.2. Let the functions 0u  and w  defined by equations 26 and 51 , respectively, are restricted 

to D .  
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Then the functions  DC  ,  and  DC1  satisfy the integral equations 

 

0 0 0 0 0 0 1( ) (1 ) ( ) 2K n K n S n S n S f           ,      on  D                               (52) 

 

0 0 1

0 0 0

1 1 1
( ) 1ı ı ıT T K K K

n n n
   

   
        

   
   

  

                                   0 0 1

0 0

1 1
2k K K S S S g

n n
   

  
       

    

,  on D           (53) 

 

0 1 12 0n K S S          ,     in   D .                                                                         (54) 

  

To prove,  the similar way as Theorem 2.2 can be done . 

 

Theorem 3.3  The interior boundary value problem  42-45  has a unique solution. 

 

 Proof. For the proof, we will examine the interior boundary value problem 47-50. From the uniqueness 

theorem 3.1, if 0 gf  then 00  wu  in D . Since 0 1 2n K S S w       , from the 

equation 54,  
1 0  . Thus, the equations 52 and 53  reduce to 

 

0)()1()( 00000   SnSnKnK   

 

and                                                                        

 0 0 0 0

0 0 0

1 1 1
( ) 1 0ı ıT T K K k K K S S

n n n
     

      
               

            

 .    

         

From the jump relations, we obtain  

 

           

00 uu                 










 

00 uu
,           on   D  

                                

0nww  
         











  ww
,            on   D . 

                                

Since  00  wu   in D , then 0
0 0

u w
u w

 

 
  
   
 

 . Thus, we  have  

 

0
1

0

0   w
n

u          00 







 



wu
,          on   D .                                
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Thanks to 0n  positive  real constant in  condition (i)  of  5, we obtain  

 

0
0

0

1
Im Im

D D

u w
u ds w ds

n 

 
 

 

 
 

   .                                                                              (55) 

 

The two integrals in equation 55  is  pozitive or zero. Since 0u  and w  are radiating solution of the  

Helmholtz equation  for DIRx \2 , from the Rellich’s lemma,  we have either 0 0u   or 0w  . Thus  

we have  either 00
0 











u
u  or 0











w
w   on D .  Then, we obtain 0 . Thus, the 

existence of the solution of the  interior boundary value problem  47-50  is obtained from the fundamental 

results of the Riesz’s theory. 

 

4. The Linear Method for The Inverse Scattering Problem 

 

We will formulate  the  linear  method for the solution of  the inverse scattering problem defined 

by the boundary value problem  6-10. This problem is associated  with the determine the support D of 

  0n x n from the information about the far-field pattern ˆ( , )u x d  in the section 1. For 0  , there 

exists a solution  2

yg L   such that 

 

              

 2

4
ˆ.ˆ( ,d) d d

8

i

ikx y

y

L

e
u x g ds e

k










 

   for y D .      

                                              

When  y D  , both  
 2y L

g


 and  
 2g L D

v  become unbounded [10,11].  

 

        First of all, we  shall form the  integral equation for  the linear method. We will come up with a 

basic solution that provides equation 48.  Let be  :y x y D      . We take the integral 

 

               , , ,

D

I x z x y m y y z dy   ,               
2z IR                                                          (56) 

 

where    2 1C D C D  . Let  ,I x z  be the solution of equation 48 and  

  

             
 

0 2

p y
m y n n y

k
                                                                                                         (57) 

 

Let be 
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                     
\

, , , , ,

D

I x z x y m y y z dy x y m y y z dy

  

           1 2, ,I x z I x z  . 

                                                                                                 

Since    2

0, , 0x y k n x y     for x y ,   then we get    2

0 2 , 0k n I x z  . Hence 

 

       2 2

0 0 1, ,k n I x z k n I x z       

           2

0, , , ,x y m y y z dy k n x y m y y z dy

  

        .  (58)    

 

Applying the divergence theorem to the first integral on the right-hand of equation 58,  we get 

 

               , , , ,xx y m y y z dy x y y m y y z ds y

 



 

        ,           x y    

 

           (1)

0 0 ,
4

y

i
H k n x y y m y y z ds y







 
    

   

 

       

2

(1)

0 0

0

,
4

i
H k n m x x z d



    



    

  

 

      

2

0 (1)

1 0

0

,
4

ik n
H k n m x x z d



        . 

 

Thus, from    (1)

0 1 0
0

2
lim

i
n H k n

k
 



 
   

 
 given in [20] ,  we have     

                   

         
0

lim , , ,x y m y y z dy m x x z







    .                                                              (59) 

 

Applying the mean value theorem [1] to the second integral on the right-hand of equation 58,  we get 

 

                     , , , ,x y m y y z dy x a m a a z dy

  

      ,  0 x a     

 

           
       

2
1

0 0 ,
4

i
H k n x a m a a z


   . 
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Therefore  

 

      
0

lim , , 0x y m y y z dy







                                                                                         (60) 

 

From equations  59, 60 and function 57, the equation 58 takes  the form 

 

            
 

       2

2
, ,

p x
k n x m x I x z m x x z

k

  
        

  
 .  

                                                       

Since  ,I x z  satisfies the equation 48  and  ,x y  is a solution of the Helmholtz equation,  

 

                2, , ,x z x z k I x z                                       

 

satisfies the equation 48.  If we write the integral 56  in the last equation,  then  we obtain the  Lippmann 

Schwinger integral equation [16] 

 

                       2 2

0, , , ,

D

x z x z x y k n k n y p y y z dy        
   .                                  

 

Thus  ,x z  is a basic solution for the equation 48.  From the Theorem 8.3  given in [16],  the solution 

of   ,x z is a solution of  the following problem 

 

 2 0w k n p w    ,           
2x IR                                                                                      (61) 

 

     , sw x x z w x                                                                                                            (62) 

 

lim 0
s

s

r

w
r ikw

r

 
  

 
.                                                                                                        (63) 

 

With the change of variables      u x n x w x ,  the problem 61-63  is takes form 

 

21
. 0u k u

n

 
    
 

,         
2x IR                                                                                          (64) 

 

       , su x n x x z u x   ,                                                                                              (65) 

 

where   su x  satisfies the Sommerfeld radiation condition 10. 
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From the Theorem 8.7 given in [16]  and  the  condition (ii) of 5,  the problem 64-65  has at most one 

solution. Thus,  the orijinal problem 61-63  has  at  most one solution  and  the  Fredholm alternative 

[18]  guarantee the existence  of  a fundamental solution for the equation 48. 

 

           Secondly, we will give the following  lemma. 

 

Lemma 4.1.  Let D  be a bounded domain with  2C D ,  x D  and  2 :RB x IR x x R     

If  the  function    2 1u C D C D   is the solution of the following equation 

 

21
. 0u k u

n

 
    
 

        in D ,                                                                                              (66) 

 

then there exists a constant 0C   such that  

 

 
 

 \ RC D C D B
C D

u
u C u

 


 
  

  

 .                                                                                   (67) 

 

 Proof. The proof can be done  in the similar way  to proof of  Lemma 4.4 given in [19].  Let 

 0,C D   be  positive  function  with support  \ RD B  .  Now,  we  will  show  that  any solution 

of  equation (66)  satisfying  the boundary condition  

 

          
u

ku g



 


                                                                                                                          (68) 

 

must vanish identically in D . We suppose  that the solution of the problem 66 and 68 is not unique i.e. 

let 21 uuu  . Thus the function u  satisfy the homogeneous boundary condition 

 

         0
u

ku



 


.                                                                                                                             (69) 

 

We take the homogeneous  problem  66 and 69. By applying the divergence theorem to the function  

1
u u

n

 
 

 
  and  then taking imaginary parts, we  have 

 

           
2 2 22

0

1 1
Im  Im

D D

k u u dy k u ds y
n n





 
    
   .                                                         (70) 
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From 
1

Im 0
n
 , the left-hand of  equation 70  is negatif or zero. From Im 0   and 

0n IR  on D ,  

the  right-hand  of  equation 70  is positive or zero. Moreover, since 0  , 0u   on  \ RD B ,  the 

boundary condition  69  implies  that  0
u







.  From  the unique continuation principle,  we  obtain that 

0u   in D . Thus,  the problem 66 and 68  has  at most one solution.  

 

             To show existence of  the solution of the boundary value problem 66 and 68,  we  use  the inverse 

operator’s existence  theorem [18].  Firstly, we define the function 

 

 
 

 1

0

, ,
n x

x y x y
n

                                                                                                         

 

and  let  this function  be the fundamental solution to equation 66. With the function    in the operators  

S  and 
ıK  which were defined in the operators 29 and 31 replaced by 1 .  Therefore,  for  C D  

, we  define  the function  

 

       1 ,

D

u x x y y ds y



  ,           
2 \x IR D  .  

                                

The function u  restricted to D  solves the problem 66 and 68. The function   satisfies the integral 

equation 

 

          2ıK kS g           on D .                                                                                              (71) 

 

This integral equation is obtained from the jump relations and the boundary condition 68. If 0g  , 

since 0u   in D , from the unique continuation principle, then 0
u

u



 
 


. From the continuity of 

the single-layer potential and the uniqueness of  the solution of  the exterior Dirichlet problem given in 

[16],  we have that  0
u

u u



  
  


.  From  the jump relations, we obtain that 

u u


 

  
  

 
.  

Thus, 0  . This ensures the existence of the solution. That is, since the homogeneous equation 

  0ıI K kS      has to the solution 0  ,  the operatör 
ıI K kS   is injective. Thus, from 

the inverse operator’s existence theorem, the  inhomogeneous equation 71 for all  g C D   has a 

unique solution and the solution depends continuously on the function g . Since the inverse operator 

     
1

:ıI K kS C D C D


      exists and bounded, then the constant 
1 0C   exists such that 

 

   1C D C D
u C g

 
 .                                                                                                              (72) 
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From  the boundary condition 68  and since the function   is  support  \ RD B , then 

 

 
   

 \ RC D C D B
C D C D

u u
g ku c u

  
 

 
   

 
,      0c  .     

                                             

Writing the last  inequality  in the inequality 72, we get the inequality 67. 

Teorem 4.2. If  the sequences 
0, ju  and 

ju  are solutions of  the interior boundary value problem 

 

2

0, 0, 0j ju k u   ,       in D                                                                                                     (73) 

 

21
. 0j ju k u

n

 
    
 

,     in D                                                                                               (74) 

 

    0, 0 .,j j ju u y   ,        on  D                                                                                         (75) 

 

 
 00,

0, 0

0 0

.,1 1
.,

jj j

j j j

yu u
k u u k y

n n
 

  

   
       

   
,     on  D                      (76) 

 

Then 

 

 10,lim j C Dj
u


  ,                                                                                                                  (77) 

 

where  the sequences jy  are defined by      

    

          j

R
y y y

j
                                                                                                                       (78) 

 

for 0R   is sufficently small and y
 is a point on D . 

 

Proof.  We assume that there exists a positive constant 
1c such that  

 

 10, 1j C D
u c


 ,        j                                                                                                      (79) 

 

For 0R   sufficently small and y D , we  take  the set of points in  
2 \IR D  defined with the 

sequences 

 

 j

R
z y y

j
    .  
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  Let’s define the sequence  

 

   .,j j ju u n z        in D .                                                                                            (80) 

 

From the boundary condition 75  and the sequence 80, we obtain 

 

   0, 0 0., .,j j j ju u y n z      
 

    on  D .                                                            (81) 

 

Again from the boundary condition 76  and  the derivative of  the  sequence 80  in the direction  , we 

obtain 

 

   00,

0,

0 0 0

., .,1 1 1j jj j

j j

y zu u
k u u

n n n


   

     
       

       

    

                                                                         0

0

1
., .,j jk y z

n


 
    

  

    on  D .              (82) 

 

The right-hand of equations 81 and 82 are  defined,  respectively,  by the sequences  

 

   0 0., .,j j jf y n z        on  D ,              

                                                                       

         
   

   0

0

0 0

., .,1 1
., .,

j j

j j j

y z
g k y z

n n


 

  
      

    

         on  D .       

                 

Let the disk rB  and   be as defined as the Lemma 4.1. Then there exists a constant 2 0c   such that  

 

 
   0 0 2\

. \ . \

sup ., sup .,
R

R R

j j jC D B
D B D B

f y n z c


 

     .                                                      (83) 

 

The norm of sequence jg  is given by the following inequality 

 

         
 

   

 

   
 

0

0

0 0

., .,1 1
., .,

j j

j j jC D

C DC D

y z
g k y z

n n


 



  
      

    

. 

 

Taking  the first norm  on  the right-hand of  the above inequation  and  using as in the  proof of Lemma 

4.2  [8],  there exists a constant 3 0c   such that  

 

   

 

0

3

0

., .,1j j

C D

y z
c

n 


 
 

 
 . 
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Thus, the  with support \ RD B ,  there exists a constant 4 0c   such that  

 

        
 

   3 0 4
. \

0

1
sup ., .,  

R

j j jC D
D B

g c k y z c
n






 
      

  

.                                                   (84) 

From the Lemma 4.1,  there exists a constant 5 0c   such that  

 

   
 

5
\ R

j

j j
C D C D B

C D

u
u c u

 



 
  
 
 

 .                                                                              (85) 

 

From the boundary condition 75,  the assumption 79 and the inequality 83,  we obtain  

 

     0, 1 2\ \\ R RR
j j jC D B C D BC D B

u u f c c
 

    .                                                                   (86) 

 

From the boundary conditions 75, 76,  the equation 81,  the assumption 79,  the inequalities 84 and 86, 

there exists a constant 6 0c   such that  

 

   
   

0,

0 0, 0

j j

j j j C DC D
C DC D

u u
n ku ku n g 

  


 
    

 
        

                    

 
   

0,

0 0, 0 4 6\ \R R

j

j jC D B C D B
C D

u
n ku ku n c c 

  


 
      

  

.            (87)                  

 

When we write  the inequalities  86 and 87 in the inequality 85, we obtain  the following inequality  

 

 
7 7, 0j

C D
u c c


  .                                                                                                       (88) 

 

For  the sequence jf  ,  we have  

 

          
 

   
 

0 0., .,j j jC D C D
f y n z

 
   

     0, 0,1j j j j C DC D C D
u u u u

 
     . 

 

From the assumption 79  and  the inequality  88,  
 j C D

f


 is bounded which is a contradiction. Because  

jf  is nondefined in RD B   and bounded  according to the norm on  \ RC D B .  Therefore,    

 10, j C D
u


is unbounded  as j  . 
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To formulate the linear method for the solution of the inverse scattering problem, we will benefit 

from the information about the far-field  model  ˆ( , )u x d , where ˆ
x

x
x

  and d  are unit vector on the 

unit circle  . Recall that for this end, the Herglotz wave function in the form 

 

             .d d dikx

gv x e g ds



                                                                                                  (89)   

 

is a solution of  the Helmholtz equation , where  2g L   is the kernel of 
gv . Our aim is to show that 

there exists a function     2., jg g y L    such that  

 

    

 2

4
ˆ.

ˆ( ,d) d d
8

j

i

ikx y

L

e
u x g ds e

k










 
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where jy D  is defined by  sequence 78. We will also show that it is   
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the boundary  of  D is characterized by points where the norm  
 2

., j
L

g y


 is unlimited.  

 

Theorem 4.3 There exists    2., jg g y L    such that  
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 and   
 2

lim (., )j Lj
g y


  .  Moreover,  if  gv   is  the Herglotz  wave  function  defined  by  function 

89,  then  
 2

lim .,g j
j L D

v y

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Proof. From Theorem 3.3,  the  interior boundary value problem 73-76  has  a solution  which  is not  

generally  a  Herglotz  wave  function.  However, a  Herglotz  wave function 0, jU  with kernel g  is 

shown to exist and  this function approaches 0, ju  in  1C D  given in [8,11]. Let 0u  be  show  the total 

field, solving  the original exterior boundary value problem 6-10, and the functions 0u
 and u

 be defined 

   0 0
ˆ,u y u y x     and    ˆ,u y u y x   ,  respectively. From the reciprocity relation [16]  and  the 

far-field pattern ˆ( ,d),  u x
we obtain  
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Since 
0, 0,j jU u  in  1C D ,  the integral on the right-hand of equation 91 become 
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Applying the conditions 75-76 and then the conditions 8-9 , respectively, the last equation is in the form 

below 
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Let's apply the Divergens theorem to the first integral on the right hand of equation 92. We get 
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From the Helmholtz representation and the  Green’s formula, the last integral in the right-hand of 

equation 92 is  
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From the equations 93 and 94,  the equation 92 is in the form below 
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When we write the equation 95 in the equation 91,  we get   
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Hence   there is a function  2g L   that satisfies the equation 90. We assume that  
 2

., j
L

g y


is 

bounded as j  . Hence 
 10, j C D

U  is bounded. This implies  that 
 10, j C D

u is  bounded  as j 

. This result is contradict with the Theorem 4.2.  Thus,  the theorem is proved. 

 

Acknowledgement 

 

The author thank Professor Dr. İbrahim Ethem Anar for valuable hints and discussion. 

 

References 

 

  [1]  Adams, R.A. (1998) A Complete Course Calculus 4th ed., Addison-Wesley, Canada,834-835.  

  [2]  Angell, T.S., Colton, D., Kirsch, A. (1982) The three dimensional inverse scattering problem for 

acoustic     waves, J.Diff. Equations, 46: 46-58.  

[3]  Cakoni, F., Colton, D., Monk, P. (2001) The direct and inverse scattering problems for partially 

coated     obstacles, Inverse Problems,  17:  1997-2015. 

  [4]  Cakoni, F., Colton, D., Haddar, H. (2002) The linear sampling method for anisopratic media”, J. 

Comput. Appl. Math., 146:  285-299. 

  [5]   Cakoni, F., Colton, D. (2003) The linear sampling method for craks, Inverse Problems, 19:  279-  

  295. 

          [6]  Cakoni, F., Colton, D. (2007)  Inequalities in inverse scattering theory, J.Inv. III-Posed Problems, 

15:  483-491 (2007). 

[7]  Colton, D., Kress, R. (1983) Integral Equations Methods in Scattering Theory. John Wiley, New 

York, 2-106.  

         [8]    Colton, D., Kress, R., Monk, P. (1997) Inverse scattering from an orthotropic medium, J. Comput. 

Apply Math., 81: 269-298.  

  [9]  Colton, D., Piana, M. (1998) The simple method for solving the electromagnetic inverse scattering 

problem : the case of TE polarized waves, Inverse Problems, 14: 597-614.  

  [10] Colton, D., Kirsch, A. (1996) A simple method for solving inverse scattering problems in the   

resonance region, Inverse Problems, 12: 383-393.  

     [11]  Colton, D., Piana, M., Potthast, R. (1997) A simple method using Morozov’s discrepancy 

principle for solving inverse scattering problems, Inverse Problems, 13: 1477-1493.  

  [12] Colton, D., Giebermann, K., Monk, P. (2000) A regularized sampling method for solving three – 

dimensional inverse scattering problems, SIAM J.Sci. Comput., 21 (6): 2316 – 2330.  



 

26 

 

Ikonion Journal of Mathematics                                                                                2019, 1(2) 

  [13] Colton, D., Coyle, J., Monk, P. (2000) Recent developments in inverse acoustic scattering theory, 

SIAM   Review, 42 (3): 369-414. 

  [14] Colton, D. (2003) Inverse acoustic and electromagnetic scattering theory, Inverse Problems, 47: 

67-110.  

  [15] Colton, D., Kress, R. (2006)  Using fundamental solutions in inverse scattering theory, Inverse 

Problems,  22(3):  49-66.  

  [16] Colton, D., Kress, R. (1992) Inverse Acoustic and Electromagnetic Scattering Theory, Springer – 

Verlag, Berlin, 2-86,147-148,207-240.  

          [17] Gerlach, T., Kress, R. (1996) Uniqueness in inverse obstacle scattering with conductive boundary 

condition, Inverse Problems 12:  619-625.  

  [18] Kress, R. (1989) Linear Integral Equations,  Springer-Verlag, Berlin, 14-45.  

  [19] Kirsch, A., Kress, R. (1993) Uniqueness in inverse obstacle scattering,  Inverse Problems, 9: 

285-299. 

[20] Lebedev, N.N. (1972) Special Functions and Their Applications, Silverman, R.A., Dover 

Publications,       Newyork, (107,134-135). 

[21]  Qin, H.H., Colton,  D. (2011) The  inverse scattering problem for cavities with impedance 

boundary   condition,  Adv. Comp. Math., 36:157-174 . 

  [22] Seydou, F. (2001) Profile inversion in scattering theory: the TE case, J. Comput. Appl. Math.,       

137:  49-60. 

  [23] Tobocman, W. (1989)  Inverse acoustic wave scattering in two dimensions from impenetrable 

targets,   Inverse Problems, 5: 1131-1144. 

  [24] Torun, G., Anar, İ.E. (2005) The electromagnetic scattering problem: the case of TE polarized 

waves,   ELSEVIER Appl. Math. And Comput.,169: 339-354. 



ON CO-FILTERS IN CO-QUASIORDERED RESIDUATED SYSTEMS

Daniel A. Romano1

1 International Mathematical Virtual Institute, 78000 Banja Luka, Bosnia and Herzegovina,
E-mail: : bato49@hotmail.com

( Received: 12.11.2019, Accepted: 10.12.2019, Published Online: 24.12.2019)

Abstract

Residuated relational systems have been the focus of many researchers in the past decade. In this
article, as a continuation of [9], we focused on residuated relational systems hA; �;!; 1;�i ordered
under co-quasiorder relation 0 � 0 within the Bishop�s constructive framework. In this report we give
some new results on co-�lters in such relational systems by more depth and deeper analyzing of the
connection between the internal operation 0 � 0 and 0 ! 0 with the co-quasiorder relation.

Keywords: Bishop�s constructive mathematics; Set with apartness; Co-quasiordered residuated
system; Co-�lter.
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1 Introduction

Although in the last decade the concept of residual relational systems is in the focus of many
researchers (for example, [3, 4]), there are still not many research reports on such algebraic structures.

De�nition 1.1. ([4], De�nition 2.1) A residuated relational system is a structure A = hA; �;!; 1; Ri,
where hA; �;!; 1i is an algebra of type h2; 2; 0i and R is a binary relation on A and satisfying the
following properties:

(1) hA; �; 1i is a commutative monoid;
(2) (8x 2 A)((x; 1) 2 R);
(3) (8x; y; z 2 A)((x � y; z) 2 R() (x; y ! z) 2 R).

They referred to the operation 0 � 0 as multiplication, to 0 ! 0 as its residuum and to condition (3) as
residuation.

The concept of residual relational system ordered under a quasi-order relation can be found in
Bonzio�s dissertation [3] from 2015 and in one of his articles [4] from 2018 (done together with I.
Chajda). In the forthcoming articles [11, 12] this author introduced and analyzed concepts of ideals
and �lters in such systems. In the aforementioned texts, authors observed the relational system
hA; �;!; 1; Ri where R was a quasi-order relation.

In our article [9], we are developed this concept within the Bishop�s constructive framework
[1, 2, 5, 6, 13]. Observed and analyzed is residuated relational system with a set with apartness as
the carrier of the algebraic construction, and additionally R was a co-quasiorder relation on the set A.
With this article, as a continuation of our article [9, 10], we complements our researches on algebraic
structures within Bishop�s principled-philosophical orientation (see, for example [7, 8]).
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The Constructive algebra abounds in speci�c behavior of algebraic structures determined on sets
with apartness. Additionally, the ordered algebraic structures constructed on sets with apartness are
also very interesting. Particularly, there is a possibility that an algebraic structure is ordered under a
co-order (under a co-quasiorder) relation instead an order (or a quasi-order) relation.

In this article we continue our analysis of co-quasiordered residuated systems launched in [9] and
[10]. Second, we continue to analyze the concept of co-�lters in such systems and proved some new
properties of this concept.

2 Preliminaries

2.1 The research framework

The setting of this research is the Bishop�s constructive mathematics [Bish] in the seance of the
following books [1], [2], [5], [6] and [13] - a mathematics based on the Intuitionistic logic [IL] (See [13])
and principled-philosophical orientation on Bishop�s constructive mathematics.

Let (S;=; 6=) be a constructive set in the sense of Bishop [1], Mines et all. [6], Troelstra and van
Dalen [13]. On set S = (S;=; 6=) in this mathematics we look as on a relational system with an one
binary relation extensive with respect to the equality in the following sense

= � 6= � 6= and 6= � = � 6=;

where 0 � 0 is the standard operation between relations. The relation 6= is a binary relation on S with
the following properties:

:(x 6= x), x 6= y =) y 6= x, x 6= z =) x 6= y _ y 6= z,
x 6= y ^ y = z =) x 6= z.

It is called apartness. Let S and T be two sets with apartness, then the relation 6= on S � T is
de�ned by

(x; y) 6= (u; v) () (x 6= u _ y 6= v)

for any x; u 2 S and any y; v 2 T .

Let Y be a subset of S and x 2 S. We put it the following notation C as a relation between an
element x and subset Y with (For more details on this relation, the readers can see the following texts
[7, 8])

xC Y () (8y 2 Y )( x 6= y):
Following the orientation in books [1], [2], [5] we de�ne a subset

Y C = fx 2 S : xC Y g

of S called the complement of Y in S.

For subset Y of S we say that it is a strongly extensional subset if

(8x; y 2 S)(y 2 Y =) x 6= y _ x 2 Y ):

For a relation R on S it is called a strongly extensional if

(8x; y; z; u 2 S)((x; y) 2 R =) ((x; y) 6= (z; u) _ (z; u) 2 R))

holds. For example, for a mapping f : S �! T it is called a strongly extensional (shortly: se-mapping)
if holds

(8x; y 2 S)(f(x) 6= f(y) =) x 6= y):

28
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2.2 Co-quasiorder relation

The constructive notion of a co-quasiorder relation is the dual notion to the classical notion of a
quasi-order relation. Let (S;=; 6=) be a set with apartness. A consistent and co-transitive relation �
de�ned on S is called a co-quasiorder ([7, 8]):

(8c; y 2 S)(x � y =) x 6= y) (consistency)
(8x; y; z 2 S)(x � z =) (x � y _ y � z)) (co-transitivity).

We accept that the empty set ; is also a co-quasiorder relation on set S. The strong complement �C
of a co-quasiorder � has the well known property.

Lemma 2.1. ([7], Lemma 2.2) If � is a co-quasiorder on S, then the relation �C= f(x; y) 2 S � S :
(x; y)C �g is a quasi-order on S.

2.3 Co-quasiordered residuated systems

In our papers [9, 10], following the ideas of Bonzio [3] and Bonzio and Chajda [4], we introduced
and analyzed the notion of residuated relational systems ordered under a co-quasiorder - a residuated
relational systems A = hA; �;!; 1; Ri where R is a co-quasiorder relation on set (A;=; 6=). In the
article [9] we introduced and analyzed the concept of co-�lters in such systems, and in the text [10]
we introduced and analyzed the concept of co-ideals.

If R is a co-quasiorder relation on set (A;=; 6=), then the axiom (2) in De�nition 1.1 gives (1; 1) 2
R � 6= which is a contradiction. That is why we transformed this axiom into the next formula

(2�) (8x 2 A)(x 6= 1 =) (x; 1) 2 R).
Let (A;=; 6=) be a set with apartness. A co-quasiordered residuated system is a residuated relational
system A = hA; �;!; 1; Ri, where the axiom (2�) is replaced by (2) and where R is a co-quasiorder on
A.

De�nition 2.1. ([9], De�nition 2.1) A co-quasiordered residuated relational system is a structure
A = hA; �;!; 1;�i, where A = (A;=; 6=) is a set with apartness and where hA; �;!; 1i is an algebra of
type h2; 2; 0i and � is a co-quasiorder relation on A and satisfying the following properties:

(1) hA; �; 1i is a commutative monoid;
(2�) (8x 2 A)(x 6= 1 =) x � 1);
(3) (8x; y; z 2 A)(x � y � z () x � y ! z).

We will refer to the operation 0 � 0 as multiplication, to 0 ! 0 as its residuum and to condition (3) as
residuation.

Apart from the di¤erence in the carrier of this constructed algebraic structure, the di¤erence
between the residuated relational system in our de�nition and the de�nition in texts [3, 4] is in the
strong extensionality of the internal binary operations in A. Let us note that the internal operations
0 � 0 and 0 ! 0 are total strongly extensional function from A�A into A:

(8a; b; a0; b0 2 A)(a � b 6= a0 � b0 =) (a; b) 6= (a0; b0)),
(8a; b; a0; b0 2 A)(a! b 6= a0 ! b0 =) (a; b) 6= (a0; b0)).

Proposition 2.1. ([9], Proposition 2.3) Let A be a co-quasiordered residuated relational system.
Then

(8x; y 2 A)(x � y () 1 6= x! y):

In the following theorem we shown that the co-quasiorder 0 � 0 is compatible with the internal
operation 0 � 0.

Theorem 2.1. ([9], Theorem 2.1) Let A be a co-quasiordered residuated system. Then

(8x; y; a; b 2 A)((a � x � a � y _ x � b � y � b) =) x � y):

In the following theorem we shown that the co-quasiorder 0 � 0 is left compatible and right
anti-compatible with the internal operation 0 ! 0.
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Theorem 2.2. ([9], Theorem 2.2) Let A be a co-quasiordered residuated system. Then
(a) (8x; y; a 2 A)(a! x � a! y =) x � y).
(b) (8x; y; b 2 A)(y ! b � x! b =) x � y).
Speaking by the language of classical algebra, when we speak of the compatibility of the internal

binary operations 0 � 0 and 0 ! 0 with the relation 0 � 0, we mean on the cancellativity of these
operations with respect to 0 � 0.

The algebraic system ordered under co-quasiorder relation thus determined was in the focus of
our forthcoming work [10], also.

3 Further developing the idea of co-�lters

The following is valid
Lemma 3.1. Let hA; �;!; 1;�i be a co-quasiordere resuated system. The relation �C is a quasi-order
on the monoid (A; �) compatible with the internal operation in A.
Proof. As is known (see, for example [7], Lemma 2.1), �C is a quasi-order relation on the set A. Let
x; y; a; u; v 2 A be arbitrary elements such that x �C y and u � v. Then

u � a � x _ a � x � a � y _ a � y � u

by co-transitivity of �. Thus u 6= a � x _ a � y 6= v because the option a � x � a � y implies x � y by
Theorem 2.1 and according to consistency of �. So, we have (a � x; a � y) 6= (u; v) 2�. This means
a � x �C a � y. Therefore, the relation �C is left compatible with the internal operation in A.
The implication of x �C y =) x � a �C y � a can be prove by analogy with the previous evidence.

Corollary 3.1. If � \ ��1= ;, then
(4) (8x 2 A)(1 �C x) and
(5) (8x; y 2 A)(x �C x � y and y �C x � y).

Proof. Let x; u; v 2 A be arbitrary elements such that u � v and x 6= 1. Then x � 1 by (2�) and

u � v =) (u � 1 _ 1 � x _ x � v):

Since the second option is impossible because x � 1 and � \ ��1= ;, we have (1; x) 6= (u; v) 2�. So,
it means 1 �C x.
Since 1 �C x by the �rst evidence of this proof, it follows 1 � y �C x � y by Lemma 3.1. So, y �C x � y
holds. The claim y �C x � y can prove by analogy to the previous claim.

It should be noted here that the condition � \ ��1= ; is not always satis�ed. In what follows,
we will always assume that this condition is ful�lled.

It is shown in [9], Proposition 2.1, that condition (3) implies condition
(6) (8x; yz 2 A)(x � y �C z () x �C y ! z).

Naturally, the reverse implication does not valid in general case.
In our forthcoming article [10], Proposition 5, is proven.

Proposition 3.1. Classes L�(a) = fy 2 A : a � yg (a 2 A) are strongly extensional subsets of A
such that aC L�(a), 1 2 L�(a) and following formula is valid

(L) (8u; v 2 A)(v 2 L�(a) =) (u � v _ u 2 L�(a))).
In addition, these left classes of the relation � have the following properties:

Proposition 3.2. Let hA; �;!; 1;�i be a co-quasiordere resuated system with � \ ��1= ; and
a; b 2 A. Then

(7) (8x; y 2 A)(x � y 2 L�(a) =) (x 2 L�(a) ^ y 2 L�(a))) ;
(8) (8x; y 2 A)(x � y =) x! y 2 L�(a));
(9) L�(a) [ L�(b) � L�(a � b).
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Proof. (7) Let x; y 2 A be arbitrary elements such that x � y 2 L�(a). Then a � x � y. Thus
a � x _ x � x � y and a � y _ y � x � y by co-transitivity of �. Since the second option is impossible
by (5), we have x 2 L�(a) and y 2 L�(a).
(8) Let x; y 2 A arbitrary elements such that x � y. Then x � a � x _ a � x � y by co-transitivity of
�. Thus a � x � y because the �rst option is impossible by (5). So, a � x ! y by (3). Therefore,
x! y 2 L�(a).
(9) If t 2 L�(a), then a � t. Thus a � a � b _ a � b � y. So, we have t 2 L�(a � b) by (5). From this
follows L�(a) [ L�(b) � L�(a � b) immediately.

Corollary 3.2. Let hA; �;!; 1;�i be a co-quasiordere resuated system with � \ ��1= ; and a 2 A.
Then

(10) (8x; y 2 A)(y 2 L�(a) =) (x! y 2 L�(a) _ x 2 L�(a))).
Proof. Let x; y 2 A be arbitrary elements such that y 2 L�(a). Then x � y _ x 2 L�(a) by (L).
Thus x! y 2 L�(a) _ x 2 L�(a) by (8).

In the article [9], we have developed the idea of co-�lters in these algebraic systems. In addition,
we have shown some of the signi�cant features of these substructures in a residuated relational system
ordered under a co-quasiorder.

De�nition 3.1. ([9], De�nition 2.2) A subset G of A is a co-�lter of a residuated system A ordered
under a co-quasiorder � if the following conditions hold

(G1) (8x; y 2 A)(x � y 2 G =) x 2 G _ y 2 G);
(G2) (8x; y 2 A)(y 2 G =) (x � y _ x 2 G).
Condition (G1) speaks that a co-�lter G is a co-subgroupoid in (A; �).
Lemma 3.2. ([9]) Any co-�lter G of a co-quasiordered residuated system A is a strongly exten-

sional subset in A.
Our �rst theorem correlate condition (G2) to condition (G1).

Theorem 3.1. Let A be a co-quasiordered residuated system and G be a co-�lter in A. Then
(G2) =) (G1).
Proof. Let x; y 2 A be arbitrary elements such that x � y 2 G. Then x � x � y _ x 2 G by (G2).
Since the �rst option is impossible by (5), we have x 2 G. The second part x � y 2 G =) y 2 G of
the proof of this theorem can be obtained analogously to the �rst part.

Corollary 3.3. Any co-�lter G of a co-quasiordered residuated system A = hA; �; 1;!;�i is a
consistent subset in A.

Corollary 3.4. If G is a non empty co-�lter in a co-quasiordered residuated system A, then 1 2 G.

Theorem 3.2. Let A be a co-quasiordered residuated system and G be a subset of A. Then the
condition (G2) is equivalent to the condition

(G3) (8x; y; z 2 A)(z 2 G =) (x � y ! z _ x � y 2 G)).
Proof. (G2) =) (G3): Suppose (G2) holds and let x; y; z 2 A be arbitrary element such that z 2 G.
Then z 2 G =) (x � y � z _ x � y 2 G). Thus x � y ! z _ x � y 2 G by (3). So, the condition (G3)
is proven.
(G3) =) (G2). Opposite, let the condition (G3) be a valid formula in A and let x; y 2 A be arbitrary
elements such that y 2 G. Then y 2 G =) (x � 1 ! y _ x � 1 2 G by (G3) where we put z = 1.
Thus y 2 G =) (x � y _ x 2 G) by (1) and (3). So, the condition (G2) is a valid formula in A.

Subsets L�(a) (a 2 A) are co-�lters in a residuated relational system A ordered under a co-
quasiorder � according to (L) and (7), Therefore, the family G(A) of all co-�lters in A is not empty.

Theorem 3.3. The family G(A) of all co-�lters of a co-quasiordered residuated system A forms a
complete lattice.
Proof. (i) Let x; y 2 A be arbitrary elements. Thus
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y 2
S
G() (9G 2 G)(y 2 G)
=) (9G 2 G)(x � y _ x 2 G)
=) x � y _ x 2

S
G.

(ii) LetB be the families of all co-ideals contained in
T
G. Then

S
B is the maximal co-�lter contained

in
T
G, according to the �rst part of this evidence.

(iii) If we put tG =
S
G and uG =

S
B, then (G(A);t;u) is a complete lattice.

Corollary 3.5. For each subset B of A, there is the maximal co-�lter of A contained in B.

Corollary 3.6. For elements a1; :::; an 2 A, there is the maximal co-�lter K of A such that a1 CK,
..., an CK.

If T is a subset of A, then
S
t2T L�(t) is a co-�lter in A, by Theorem 3.3. We call such a co-�lter

a normal co-�lter. We will write TU =
S
t2T L�(t) in this case.

Proposition 3.3. Let A be a co-quasiordered residuated system. Then the union of any family of
normal co-�lters in A is a normal co-�lter in A.

Proof. The assertion of this proposition is a direct consequence of the following equality (
S
i2I Ti)

U =S
i2I T

U
i :

Corollary 3.7. The family of all normal co-�lters in A forms join semi-lattice.
However, the intersection of two normal co-�lters is not a co-�lter in the general case.

In the following proposition we give one upper measure for a non-empty co-�lter.

Proposition 3.4. For any non empty co-�lter G in a co-quasiordered residuated system A the
following G �

S
aCG L�(a) holds.

Proof. Let a 2 A be an arbitrary element such that aCG. Then from t 2 G follows a � t _ a 2 G by
(G2). Since the second option is impossible by hypothesis, we have t 2 L�(a). Thus G �

S
aCG L�(a).

In order to o¤er one lower measure of a co-�lter in a co-quasiprdered residuated system A, we need
the notion of right class R�(b) of relation � generated by the element b 2 A: R(b) = fx 2 A : x � bg.

Proposition 3.5. For any non empty co-�lter G in a co-quasiordered residuated system A the
following

S
b2GR(b)

C � G holds.

Proof. Let t 2 A be an arbitrary element such that t 2
S
b2GR(b)

C. Then there exists an element
b 2 G such that tCR(b). Thus from (G2): b 2 G =) (t � b _ y 2 G) follows t 2 G because :(t � b)
by the hypothesis. Therefore, we have

S
b2GR(b)

C � G.

4 Final re�ection

Bishop�s constructive mathematics includes the following two aspects:
(1) The Intuitionistic logic and
(2) The principled-philosophical orientations of constructivism.

Intuitionistic logic does not accept the TND principle as an axiom. In addition, Intuitionistic logic
does not accept the validity of the �double negation� principle. This makes it possible to have a
di¤erence relation in sets which is not a negation of the equality relation. Therefore, we accept that in
Bishop�s constructive mathematics we consider set S as one relational system (S;=; 6=). In Bishop�s
constructive algebra we always encounter the following two problems:

(a) How to choose a predicate (or more predicates) between several classically equivalent ones by
which an algebraic concept is determined.

32



Ikonion Journal of Mathematics 2019, 1(2)

(b) Since every predicate has at least one of its duals, how to construct a dual of the algebraic
concept de�ned with a given predicate(s).

In this case, we are faced with the problem of describing a residuated relational system based on
a set with apartness as the carrier for constructing an algebraic structure. By our orientation that in
this construction, groupoid (A; �) is ordered under a a co-quasiorder relation instead of a quasi-order
relation, a signi�cantly di¤erent logical-sets framework is formed. In addition to the above, in this
report we have described some of the important features of a class of substructures (in this case - the
class of co-�lers) in residuated relational systems constructed on sets with apartness in which both
internal binary operations are strongly extensional functions.

The problem encountered by authors working within Bishop�s constructive framework is that when
developing concepts of new ideas and de�ning their interrelationships with respect to the permissible
rules of conclusion in [IL], they must always strive for the results obtained to be correlated with the
corresponding results that exist or can be obtained in the classical case.
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Abstract

The main purpose of this paper is to investigate ordered �-semihypergroups in the general terms
of ordered �-hyperideals. We introduce ordered (generalized) (m;n)-�-hyperideals in ordered �-
semihypergroups. Then, we characterize ordered �-semihypergroup by ordered (generalized) (0; 2)-�-
hyperideals, ordered (generalized) (1; 2)-��hyperideals and ordered (generalized) 0-minimal (0; 2)-�-
hyperideals. Furthermore, we investigate the notion of ordered (generalized) (0; 2)-bi-�-hyperideals,
ordered 0-(0; 2) bisimple ordered �-semihypergroups and ordered 0-minimal (generalized) (0; 2)-bi-�-
hyperideals in ordered �-semihyperoups. It is proved that an ordered �-semihypergroup S with a zero
0 is 0-(0; 2)-bisimple if and only if it is left 0-simple.

Keywords: Algebraic hyperstructure; �-subsemihypergroup; bisimple; ordered �-semihypergroup;
ordered bi-�-hyperideal; ordered (m;n)-��hyperideal; ordered (0; 2)-�-hyperideal.

MSC 2000: 06F99; 20N20; 06F05.

1 Introduction

The theory of (m;n)-ideal in semigroups was given by Lajos [44] as a generalization of left(resp. right)
ideals in semigroups. Thereafter, the notion of generalized bi-ideal [(or generalized (1,1)-ideal] was
introduced in semigroups also by Lajos [43] as a generalization of bi-ideals in semigroups. Then,
various authors investigated these concepts [1], [2], [19], [27], [28], [29], [30], [31]. Akram, Yaqoob
and Khan studied (m;n)-hyperideals in LA-semihypergroups [25]. Hila et al. [23], [47] investigated
quasi-hyperideals and bi-hyperideals in semihypergroups.

The concept of hyperstructure was given by Marty [20], at the 8th Congress of Scandinavian
Mathematics. He formulated hypergroups and began to derive its properties and results. Now, the
notion of algebraic hyperstructures has become a highly fruitful branch in algebraic theory and it has
wide applications in various branches of mathematics and applied science. For detailed review of the
notion of hyperstructures, readers are referred to [8], [13], [18], [23], [33], [35], [37], [38], [39], [40], [42].
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Recently, Basar et al. studied di¤erent aspects of ideal theoretic results in ordered semihypergroups
[3], [4], [5], [6], [7] [41].

Later on, many algebraists have developed semihypergroups as the simplest algebraic hyperstruc-
tures with closure and associative properties. Semihypergroups (hypergroups) have been found useful
for dealing with problems in di¤erent domains of algebraic hyperstructures. Many mathematicians
studied various aspects of semihypergroups (hypergroups), for instance, Kondo and Lekkoksung [26],
Bonansinga and Corsini [35], Leoreanu [49], Davvaz [8], Pibaljommee and Davvaz [9], Davvaz [10], [11],
Freni [14], and Salvo [32]. The applications of semihypergroups (hypergroups) to areas such as graph
theory, optimization theory, theory of discrete event dynamical systems, automata theory, generalized
fuzzy computation, formal language theory, coding theory and analysis of computer programs have
been extensively studied in the literature [12].

Then connection between hyperstructures and ordered sets has been investigated by many re-
searchers. Heidari and Davvaz [15], [18] studied ordered hyperstructures. One main aspect of this
theory, known as El-hyperstructures, was studied by Chvalina and Novak [21], [34]. Conard studied
ordered semigroups [36]. The concept of ordered semihypergroups was studied in [9], [22], [47], [48].
Heideri et al. [16], [17], [45], [46] studied �-semihypergroups. We assume that the reader is familiar
with some terminology in theory of semihypergroup and other related notions. What follows now are
some de�nitions and preliminaries in the theory of �-semihypergroups that we need for formulation
and proof of our main results.

Let H be a nonempty set, then the mapping � : H � H ! H is called hyperoperation or join
operation on H, where P ?(H) = P (H) n f0g is the set of all nonempty subsets of H. Let A and B be
two nonempty sets. Then a hypergroupoid (S; �) is called a �-semihypergroups if for every x; y; z 2 S
and �; � 2 �,

x � � � (y � � � z) = (x � � � y) � � � z;

i.e., [
u2y���z

x � � � u =
[

v2x���y
v � � � z:

A �-semihypergroup (S; �) together with a partial order " � " on S that is compatible with �-
semihypergroup operation such that for all x; y; z 2 S, we have

x � y ) z � � � x � z � � � y and x � � � z � y � � � z;

ia called an ordered �-semihypergroup. For subsets A;B of an ordered �-semihypergroup S, the prod-
uct set A � � �B of the pair (A;B) relative to S is de�ned as below:

A � � �B = fa � 
 � b : a 2 A; b 2 B; 
 2 �g;

and for A � S, the product set A � � �A relative to S is de�ned as A2 = A � � �A.

For M � S, (M ] = fs 2 S j s � m for some m 2Mg. Also, we write (s] instead of (fsg] for s 2 S.

Let A � S. Then, for a non-negative integer m, the power of A is de�ned by Am = A � � �A � � �A �
��A � � � , where A occursm times. Note that the power vanishes ifm = 0. So, A0���S = S = S���A0.

In what follows we denote ordered �-semihypergroup (S; �;�;�) by S unless otherwise speci�ed.

Suppose S is an ordered �-semihypergroup and I is a nonempty subset of S. Then, I is called an
ordered right (resp. left) �-hyperideal of S if

(i) I � � � S � I(resp: S � � � I � I),

(ii) a 2 I; b � a for b 2 S ) b 2 I.

Equivalent De�nition:
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(i) I � � � S � I (resp. S � � � I � I).

(ii) (I] = I.

An ordered �-hyperideal I of S is both a right and a left ordered �-hyperideal of an ordered �-
semihypergroup S. A right, left or (two-sided) ordered �-hyperideal I of S is called proper if I 6= S.

De�nition 1.1: Let S be a �-semihypergroup and A be a nonempty subset of S, then A is called a
generalized (m;n)-�-hyperideal of S if Am�S�An � A, wherem, n are arbitrary non-negative integers.
Notice that if A is a sub-�-semihypergroup of S, then A is called an (m;n)-�-hyperideal of S:

De�nition 1.2. Suppose A is a sub-�-semihypergroup (resp. nonempty subset) of an ordered
�-semihypergroup S. Then, A is called an (resp. generalized) (m;n)-�-hyperideal of S if (i) Am � � �
S � � �An � A, and (ii) for b 2 A, s 2 S, s � b) s 2 A:

Observe that in the above De�nition 1.2., if we put m = n = 1, then A is called an ordered
(generalized) bi-�-hyperideal of S. Furthermore, if m = 0 and n = 2, then we �nd an ordered
(generalized) (0; 2)-�-hyperideal of S. In a similar manner, we can derive an ordered (generalized)
(1; 2)-�-hyperideal and an ordered (generalized) (2; 1)-�-hyperideal of S.

Let (S; �;�;�) be an ordered �-semihypergroup and A;B be nonempty subsets of S, then we easily
have the following:

(i) A � (A];

(ii) If A � B, then (A] � (B];

(iii) (A] � � � (B] � (A � � �B];

(iv) (A] = ((A]];

(v) ((A] � � � (B]] = (A � � �B];

(vi) For every left (resp. right) ordered �-hyperideal T of S, (T ] = T .

If A is a nonempty subset of S, (A2 [A �� �S �� �A2] is an ordered (generalized) bi-�-hyperideal
of S, we depict the proof of it as follows:

((A2 [A � � � S � � �A2]] = (A2 [A � � � S � � �A2]
and (A2 [A � � � S � � �A2] � � � S � ��
(A2 [A � � � S � � �A2]
= (A2 [A � � � S � � �A2] � ��
(S] � � � (A2 [A � � � S � � �A2]
� (A2 � � � S � � �A2 [A2�
� � S � � �A � � � S � � �A2 [A�
� � S � � �A2 � � � S � �
�A2 [A � � � S � � �A2 � �
� S � � �A � � � S � � �A2]
� (A � � � S � � �A2]
� (A2 [A � � � S � � �A2]:
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2 Main Results

In the current section, we now study ideal theory in ordered �-semihypergroups. We obtain many
equivalent conditions based on ordered �-hyperideal, ordered (0, 2)-�-hyperideal, ordered bi-�-hyperideal.
We begin with the following:

Lemma 2.1: The following assertions are equivalent for a subsetA of an ordered �-semihypergroup
S:

(i) A is an ordered (generalized) (0; 2)-�-hyperideal of S;

(ii) A is an ordered left �-hyperideal of some ordered left �-hyperideal of S.

Proof. (i) ) (ii). Suppose A is an ordered (generalized) (0; 2)-�-hyperideal of an ordered �-
semihypergroup S. Then, we obtain the following:

(A [ S � � �A] � � �A = (A2 [ S � � �A2]
� (A]
= A;

and
((A] = (A];

therefore, A is an ordered left �-hyperideal of ordered left �-hyperideal (A [ S � � �A] of S.
(ii)) (i). Suppose L is an ordered left �-hyperideal of S and B is an ordered left �-hyperideal of L.
Then, we have

S � � �A2 � S � � � L � � � � �A
� L � � �A
� A:

Suppose b 2 A and s 2 S are such that s � b. As b 2 L, we get s 2 L and so s 2 A. Hence, A is an
ordered (generalized) (0; 2)-�-hyperideal of S.

Theorem 2.2. Let A be a subset of an ordered �-semihypergroup S. Then the following results
are equivalent:

(i) A is an ordered (generalized) (1; 2)-�-hyperideal of S;

(ii) A is an ordered left �-hyperideal of some ordered (generalized) bi-�-hyperideal of S;

(iii) A is an ordered (generalized) bi-�-hyperideal of some left ordered �-hyperideal of S;

(iv) A is an ordered (generalized) (0; 2)-�-hyperideal of some ordered right �-hyperideal of S;

(v) A is an ordered right-�-hyperideal of some ordered (generalized) (0; 2)-�-hyperideal of S.

Proof. (i) ) (ii): Suppose A is an ordered (generalized) (1; 2)-�-hyperideal of S. This means A
is a sub-�-semihypergroup (nonempty subset) of S and A � � � S � � �A2 � A. Therefore,

(A2 [A � � � S � � �A2] � � �A = (B2 [A � � � S � � �A2] � � � (A]
� (A3 [A � � � S � � �A3]
� (A2 [A � � � S � � �A2]
� (A] = A:
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Clearly, if b 2 A, s 2 (S2 [ A � � � S � � � A2] so that s � b then, s 2 A. Hence, A is an ordered left
�-hyperideal of ordered (generalized) bi-�-hyperideal (A2 [A � � � S � � �A2] of S.

(ii)) (iii): Suppose A is an ordered left �-hyperideal of some ordered (generalized) bi-�-hyperideal
B of S. Recall that (A [ S � � �A] is an ordered left �-hyperideal of S. According to our hypothesis,

A � (A [ S � � �A] �B � (A] � � � (A [ S � � �A] � � � (A]
� (A3 [A � � � S � � �A2]
� (A [A � � � S � � �A � � �A]
� (A [A � � �A]
� (A]
= A:

Suppose b 2 A, s 2 (A [ S � � �A] such that s � b. As, b 2 A, b 2 B. So, s 2 B and therefore, s 2 A.
Hence, A is an ordered (generalized) bi-�-hyperideal of left ordered hyperideal (A [ S � � �A] of S.

(iii) ) (iv): Suppose A is an ordered (generalized) bi-�-hyperideal of some left ordered �-
hyperideal L of S. This implies that B � L, A � � � L1 � � �B � A and S � � � L � L. Therefore,

(A [A � � � S] � � �A2 � (A [A � � � S] � (A2]
� (A3 [A � � � S � � �A2]
� (A [A � � � S � L � � �A]
� (A [A � � � L � � �A]
� (A] = A:

Furthermore, suppose that b 2 A, s 2 (A[A���S] such that s � b, so b 2 L. Then, s 2 L, therefore,
s 2 A. Hence, A is an ordered (generalized) (0; 2)-�-hyperideal of the ordered right �-hyperideal
(A [A � � � S] of S.

(iv) ) (v): Suppose A is an ordered (generalized) (0; 2)-�-hyperideal of some ordered right �-
hyperideal R of S. This implies that A � R, R � � �A2 � A and R � � � S � R. Then,

A � � � (A [ S � � �A2] � (A] � � � (A [ S � � �A2]
� (A2 [A � � � S � � �A2]
� (A [R � � � S � � �A2]
� (A [R � � �A2]
� (A] = A:

Let b 2 A, s 2 (A [ S � � � A2] such that s � b. Then, b 2 R, so s 2 R, thus s 2 B. Hence, B is an
ordered right �-hyperideal of the (generalized) (0; 2)-�-hyperideal (B [ S � � �B2] of S.

(v) ) (i). Suppose A is an ordered right �-hyperideal of an ordered (generalized) (0; 2)-�-
hyperideal R of S. This further shows that A � R, A � � � R � A and S � � � R2 � R. Then,
we have the following:

A � S � � �A2 � A � � � S � � �R2

� A �R
� A:

Suppose b 2 A, s 2 S such that s � b. Since b 2 R, so s 2 B. Therefore, A is an ordered (generalized)
(1; 2)-�-hyperideal of S. Hence, A is an ordered (generalized) bi-�-hyperideal of S.

Lemma 2.3. A sub-�-semihypergroup (nonempty subset) A of an ordered �-semihypergroup S
such that A = (A] is an ordered (generalized) (1; 2)-�-hyperideal of S if and only if there exists an
ordered (generalized) (0; 2)-�-hyperideal L of S and an ordered right �-hyperideal R of S so that
R � � � L2 � A � R \ L.
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Proof. Suppose A is an ordered (generalized)(1; 2)-�-hyperideal of S. We know that (A[S���A2]
and (A[A �� � S] are an ordered (generalized) (0; 2)-�-hyperideal and an ordered right �-hyperideal
of S, respectively. Furthermore, assume L = (A [ S � � �A2] and R = (A [A � � � S]. Then, we have
the following:

R � � � L2 � (A3 [A2 � � � S � � �A2 [A � � � S � � �A2 [A � � � S � � �A � � � S � � �A2]
� (A3 [A � � � S � � �A2]
� (A] = A:

Hence, R � R \ L.
Conversely, suppose R is an ordered right �-hyperideal of S and L is an ordered (generalized)

(0; 2)-�-hyperideal of S so that R � � � L2 � A � R \ L. Then, we have the following:

A � � � S � � �A2 � (R \ L) � � � � � S � � � (R \ L) � � � � � (R \ L)
� R � � � S � � � L2

� R � � � L2

� A:

Hence, A is an ordered (generalized) (1; 2)-�-hyperideal of S.

De�nition 2.4. An ordered (generalized) (0; 2)-bi-�-hyperideal B of S is called 0-minimal if
B 6= f0g, f0g is the only ordered (generalized) (0; 2)-bi-�-hyperideal of S properly contained in B.

Lemma 2.5. Suppose L is an ordered 0-minimal left �-hyperideal of an ordered �-semihypergroup
S with 0 and I is a sub-�-semihypergroup (nonempty subset) of L such that I = (I]. Then, I is an
ordered (generalized) (0; 2)-�-hyperideal of S contained in L if and only if (I �� � I] = f0g or I = L.

Proof. Suppose I is an ordered (generalized) (0; 2)-�-hyperideal of S contained in L. As (S���I2]
is an ordered left �-hyperideal of S and (S � � � I2] � I � L, we obtain the following:
(S � � � I2] = f0g or (S � � � I2] = fLg.
If (S � � � I2] = L, then L = (S � � � I2] � (I]. So, I = L. Suppose (S � I2] = f0g. As S � (I2] �
(S � � � I2] = f0g � (I2], then (I2] is an ordered left �-hyperideal of S contained in L. By the
minimality of L, we obtain (I2] = f0g or (I2] = L. If (I2] = L, then I = L. Therefore, I2 = f0g or
I = L.
The converse part is straightforward.

Lemma 2.6. Suppose M is an ordered 0-minimal (generalized) (0; 2)-�-hyperideal of an ordered
�-semihypergroup S with a zero 0. Then (M2] = f0g or M is an ordered 0-minimal left �-hyperideal
of S.

Proof. Since M2 �M and

S � � � (M2]2 = S � � � (M2] � � � (M2]

� (S � � �M2] � � � (M2]

� (M ] � � � (M2]

� (M2]:

Then, we obtain (M2] is an ordered (generalized) (0; 2)-�-hyperideal of S contained in M . Therefore,
(M2] = f0g or (M2] =M . Suppose (M2] =M . Since

S �M = S � � � (M2]

� (S � � �M2]

� (M ] =M:
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It follows that M is an ordered left �-hyperideal of S. Suppose B is an ordered left �-hyperideal of S
contained in M . Therefore,

S � � �B2 � B2

� B
�M:

Hence, B is an ordered (generalized) (0; 2)-�-hyperideal of S contained in M and so, B = f0g or
B =M .

Corollary 2.7 Suppose S is an ordered �-semihypergroup without a zero 0. Then,M is an ordered
minimal (generalized) (0; 2)-�-hyperideal of S if and only ifM is an ordered minimal left �-hyperideal
of S.

Proof. It follows by Lemma 2.5 and Lemma 2.6.

Lemma 2.8. Suppose S is an ordered �-semihypergroup without a zero 0. Further, suppose that
M is a nonempty subset of S. Then, the following results are equivalent:

(i) M is an ordered (generalized) minimal (2; 1)-�-hyperideal of S;

(ii) M is an ordered (generalized) minimal bi-�-hyperideal of S.

Proof. Suppose S is an ordered �-semihypergroup without zero and M is an ordered minimal
(generalized) (2; 1)-�-hyperideal of S. Then, (M2 � � � S � � �M ] �M and so (M2 � � � S � � �M ] is
an ordered (generalized) (2; 1)-�-hyperideal of S. Therefore, we obtain (M2 � � � S � � �M ] =M .
As

M � � � S � � �M = (M2 � � � S � � �M ] � � � S � � �M
� (M2 � � � S � � �M � � � S � � �M ]
� (M2 � � � S � � �M ] =M;

we have that M is an ordered (generalized) bi-�-hyperideal of S. Let there exist an ordered (gener-
alized) bi-�-hyperideal A of S contained in M . Then, A2 � S � A � A2 � A � M , therefore, A is an
ordered (generalized) (2; 1)-�-hyperideal of S contained in M . Using the minimality of M , we obtain
A =M .

Conversely, suppose M is an ordered minimal (generalized) bi-�-hyperideal of S. Then, M is an
ordered (generalized) (2; 1)-�-hyperideal of S. Suppose T is an ordered (generalized) (2; 1)-hyperideal
of S contained in M . As

(T 2 � � � S � � � T ] � � � S � � � (T 2 � S � T ] � (T 2 � (S � T � � � S � � � T 2 � � � S) � � � T ]
� (T 2 � � � S � � � T ];

we obtain (T 2 � � � S � � � T ] is an ordered (generalized) bi-�-hyperideal of S. This shows that
(T 2 � � � S � � � T ] = M . As M = (T 2 � � � S � � � T ] � (T ] = T , M = T . Hence, M is an ordered
minimal (generalized) (2; 1)-�-hyperideal of S.

De�nition 2.9. A sub-�-semihypergroup (nonempty subset) A of an ordered �-semihypergroup
S is called an ordered (generalized) (0; 2)-bi-�-hyperideal of S if A is an ordered (generalized) bi-�-
hyperideal of S and also an ordered (generalized) (0; 2)-�-hyperideal of S.

Lemma 2.10. Suppose A is a subset of an ordered �-semihypergroup S. Then, the following
conditions are equivalent:

(i) B is an ordered (generalized) (0; 2)-bi-�-hyperideal of S;
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(ii) B is an ordered �-hyperideal of some ordered left �-hyperideal of S.

Proof. (i) ) (ii): Suppose A is an ordered (generalized) (0; 2)-bi-�-hyperideal of S. This shows
that A � � � S � � �B � B and S � � �A2 � A. Then, we have

S � (A2 [ S � � �A2] � (S � � �A2 [ S2 � � �A2]
� (S �A2]
� (A2 [ S � � �A2]

Therefore, (A2 [ S � � �A2] is an ordered left �-hyperideal of S. As

A � (A2 [ S � � �A2] � (A3 [A � S � � �A2]
� (A]
= A;

(A�2 [ S � � � A2] � � � B � (A3 [ S � � � A3] � (A] = A. Hence, A is an ordered �-hyperideal of left
ordered hyperideal (A2 [ S � � �A2] of S.
(ii)) (i): Suppose A is an ordered �-hyperideal of some ordered left �-hyperideal L of S. By Lemma
2.1, A is an ordered (generalized) (0; 2)-�-hyperideal of S, and hence, A is an ordered (generalized)
bi-�-hyperideal of S.

Theorem 2.11. Suppose A is an ordered 0-minimal (generalized) (0; 2)-bi-�-hyperideal of an
ordered �-semihypergroup S with a zero 0. Then, exactly one of the followings cases arises:

(i) A = f0; bg, (b � � � S � � � b] = f0g;

(ii) A = (f0; bg], b2 = 0, (b � S � � � b] = A;

(iii) (S � � � b2] = A for all b 2 A n f0g.

Proof. Suppose A is an ordered 0-minimal (generalized) (0; 2)-bi-�-hyperideal of an ordered �-
semihypergroup S. Furthermore, suppose b 2 A n f0g. Then, (S � � � b2] � A and (S � � � b � � � b] is
an ordered left �-hyperideal of S, therefore, (S � b2] is an ordered (generalized) (0; 2)-bi-�-hyperideal
of S. Hence, (S � � � b2] = f0g or (S � b2] = A.
Let (S � � � b2] = f0g. As b2 2 A, we obtain either b2 = b or b2 = 0 or b2 2 A n f0; bg. If b2 = b, then
b = 0. This is a contradiction. Let b2 2 A n f0; bg. Then,

S � � � (f0; b2g]2 � (f0; S � � � b2g] = (f0g] [ (S � � � b2]
= f0g
� (f0g [ b2];

(f0g [ b2] � � � S � � � (f0g [ b2] � (b2 � � � S � � � b2]
� (S � � � b2] = f0g
� f0; b2g:

So, (f0g[b2] is an ordered (generalized) (0; 2)-bi-�-hyperideal of S contained in A, and we obtain that
(f0g [ b2] 6= f0g, (f0g [ b2] 6= A. This is also not possible as A is an ordered 0-minimal (generalized)
(0; 2)-bi-�-hyperideal of S. Therefore, b2 = f0g and hence by Lemma 2.10, A = (f0; bg]. Now, since
we have (b �� �S �� � b] is an ordered (generalized) (0; 2)-bi-�-hyperideal of S contained in A, we get
(b���S ���b] = f0g or (b���S ���b] = A. So, (S ���b2] = f0g and it implies that either A = f0; bg
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and (b � � � S � � � b] = f0g or A = f0; bg, b2 = f0g and (b � � � S � � � b] = A. If (S � � � b2] 6= f0g,
then (S � � � b2] = A.

Corollary 2.12. Suppose B is an ordered 0-minimal (generalized) (0; 2)-bi-�-hyperideal of an
ordered �-semihypergroup S with a zero 0 so that (B2] 6= f0g. Then, B = (S � � � b2] for every
b 2 B n f0g.

De�nition 2.13. An ordered �-semihypergroup S with a zero 0 is called 0-(0; 2)- bisimple if (i)
(S2] 6= f0g, and f0g is the only ordered proper (generalized) (0; 2)-bi-�-hyperideal of S.

Corollary 2.14. An ordered �-semihypergroup S with a zero 0 is 0-(0; 2)-bisimple if and only if
(S � � � s2] = S for every s 2 S n f0g.

Proof. If S is 0-(0; 2)-bisimple, then (S � S] 6= f0g and S is an ordered 0-minimal (generalized)
(0; 2)-bi-�-hyperideal. By Corollary 2.12., we have S = (S � � � s2] for every s 2 S n f0g.

Conversely, suppose S = (S � � � s2] for every element s 2 S n f0g and further suppose that A is
an ordered (generalized) (0; 2)-bi-�-hyperideal of S such that A 6= f0g. Suppose b 2 A n f0g. Then,
S = (S �� � b2] � (S �� �A2] � (A] = A, therefore S = A. Since, S = (S �� � b2] � (S �� �S] = (S2],
we obtain f0g 6= S = (S � � � S] = (S2]. Hence, S is 0-(0; 2)-bi-simple. The proof is complete.

Theorem 2.15. An ordered �-semihypergroup S with a zero 0 is 0-(0; 2)-bisimple if and only if
S is left 0-simple.

Proof. We recall that every ordered left �-hyperideal A of an ordered �-semihypergroup S is an
ordered 0-(0; 2)-bi-�-hyperideal of S. So, A = f0g or A = S. Therefore, if S is 0-(0; 2)-bisimple then
S is left 0-simple.

Conversely, if S is left 0-simple then, (S � s] = S for every s 2 S n f0g from which it follows that

S = (S � � � s]
= ((S � � � s] � � � s]
� ((S � � � s2]]
= (S � � � s2]:

Therefore, using Corollary 2.14, S is 0-(0; 2)-bisimple. The proof is complete.

Theorem 2.16. Suppose A is an ordered 0-minimal (generalized) (0; 2)-bi-�-hyperideal of an
ordered �-semihypergroup S. Then, either (A � � �A] = f0g or A is left 0-simple.

Proof. Suppose (A � A] 6= f0g. Then, by Corollary 2.12, we obtain (S � � � b2] = A for every
b 2 Anf0g. As b2 2 Anf0g for every b 2 Anf0g, we obtain b4 = (b2)2 2 Anf0g. Suppose b 2 Anf0g.
As, (A � � � b2] � � � S � � � (A � � � b2] � (A � � �A � � � b2] � (A � � � b2] and

S � (A � � � b2]2 � (S � � �A � � � b2 � � �A � � � b2]
� (S � � �A2 � � � b2]
� (A � � � b2];

we get that (A � b2] is an ordered (generalized) (0; 2)-bi-�-hyperideal of S contained in A. Therefore,
(A � � � b2] = f0g or (A � � � b2] = A. As, b4 2 A � b2 � (A � b2], and b4 2 A n f0g, we obtain
(A � � � b2] = A. By Corollary 2.14 and Theorem 2.15, it follows that A is left 0-simple. The proof is
complete.
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3 Conclusion

In the current paper, we enriched ideal theory in ordered �-semihypergroups. We derived various
equivalent conditions related to ordered �-hyperideals, ordered (0, 2)-�-hyperideals, ordered bi-�-
hyperideals. We introduced ordered (generalized) (m;n)-�-hyperideals in ordered �-semihypergroups.
Then, we characterized ordered �-semihypergroup in terms of ordered (generalized) (0; 2)-�-hyperideals,
ordered (generalized) (1; 2)-�-hyperideals and ordered (generalized) 0-minimal (0; 2)-�-hyperideals.
Furthermore, we studied the notion of ordered (generalized) (0; 2)-bi-�-hyperideals, ordered 0-(0; 2)
bisimple ordered �-semihypergroups and ordered 0-minimal (generalized) (0; 2)-bi-�-hyperideals in
ordered �-semihyperoups. It is shown that an ordered �-semihypergroup S with a zero 0 is 0-(0; 2)-
bisimple if and only if it is left 0-simple.
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Abstract

In this paper, formulas are given both for the operator norm and for the extension of a linear
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1 Introduction

Linear functionals occupy quite important place in mathematics in terms of both theory and applica-
tion. The weak and weak-star topologies, which are fundamental and substantial subject in functional
analysis, are generated by families of linear functionals. They are important in the theory of di¤eren-
tial equations, potential theory, convexity and control theory [6]. Linear functionals play fundamental
role in characterizing the topological closure of sets and therefore they are important for approxima-
tion theory. They play a very important role in de�ning vector valued analytic functions, generalizing
Cauchy integral theorem and Liouville theorem. Therefore the need arises naturally to construct lin-
ear functionals with certain properties. The construction is usually achieved by de�ning the linear
functional on a subspace of a normed linear space where it is easy to verify the desired properties and
then extending it to the whole space with retaining the properties. This is not always easy in the
case of general normed linear spaces. We specialize to linear functionals de�ned on the subspaces of
a Hilbert space and provide formulas (Theorem 2) both for the operator norms and norm preserving
linear extensions of linear functionals.

We start with basic de�nitions and results and �xed notations that will be used in the sequel. We
denote the �eld of the real numbers R or the �eld of the complex numbers C by F. We denote the
absolute value function by j:j de�ned on the �eld F. So for x 2 R, if x < 0 then jxj = �x and if x � 0
then jxj = x. For z = x + iy 2 C we have jzj =

p
x2 + y2. The complex number z = x � iy is the

complex conjugate of the number z = x+ iy.

De�nition 1.1. Let X be a linear space over the �eld F and k:k : X 7! R be a function. If the
function k:k satis�es the following properties

1. k0k = 0 and kxk > 0 for every x 2 X n f0g (positivity de�niteness);
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2. k�xk = j�j kxk for every � 2 F and x 2 X (homogeneity); and

3. kx+ yk � kxk+ kyk for all x; y 2 X (triangular inequality);

then the function k:k is called a norm on the space X and the pair (X; k:k) is called a normed
linear space.

Example 1.2. Let p 2 [1;1) and Rn = fx = (x1; : : : ; xn) : xj 2 R for j = 1; : : : ; ng. Rn is
a linear (vector) space over the �eld R with componentwise addition and scaler multiplication. For

x = (x1; : : : ; xn) 2 Rn de�ne kxkp =
�Pn

j=1 jxj j
p
�1=p

and kxk1 = maxfjxj j : j = 1; : : : ; ng. Then for
1 � p � 1 the functions k:kp are norms on the space Rn. Hence (Rn; k:kp) is a normed linear spaces
for each p 2 [1;1].

Inner products spaces are very important sources of normed linear spaces.

De�nition 1.3. Let X be a linear space over the �eld F. If the function (:; :) : X�X 7! F satis�es
the following properties

1. (x; x) � 0 for all x 2 X and (x; x) = 0 if and only if x = 0;

2. (x; y) = (y; x) for every x; y 2 X;

3. (x+ y; z) = (x; z) + (y; z) for every x; y; z 2 X; and

4. (�x; y) = �(x; y) for every � 2 F and for every x; y 2 X;

then the function (:; :) is called an inner product on X and the pair (X; (:; :)) is called a inner
product space over the �eld F. The number kxk =

p
(x; x) is called the norm of the vector x 2 X. If

x; y 2 X and (x; y) = 0 then the vectors x and y are called orthogonal vectors.

The inner product generates the most important inequality in mathematics, namely the Cauchy-
Schwarz inequality.

Theorem 1.4. [Cauchy-Schwarz inequality][2, 4] Let (X; (:; :)) be an inner product space over the
�eld F. Then for every x; y 2 X, j(x; y)j �

p
(x; x)

p
(y; y) = kxk kyk. The equality occurs if and only

if the vectors x and y are linearly dependent.

From the Cauchy-Schwarz inequality it follows that the function kxk =
p
(x; x) is a norm on the

space X. This norm is called the norm generated by the inner product function (:; :). If the normed
linear space (X; k:k)) is a Banach space, that is, if every Cauchy sequence in X converges to a point
in X, the inner product space (X; (:; :)) is called a Hilbert space.

Example 1.5. For x = (x1; : : : ; xn); y = (y1; : : : ; yn) 2 Rn the function (:; :) : Rn � Rn 7! R
de�ned by (x; y) =

Pn
j=1 xjyj is an inner product on the space Rn. The norm generated by this inner

product is the Euclidean norm kxk2 =
p
(x; x) =

�Pn
j=1 x

2
j

�1=2
. The inner product space (Rn; k:k) is

a Hilbert space.

On normed linear spaces the primary objects of study are the linear operators and linear functionals
which play central role in functional analysis.

De�nition 1.6. Let (X; k:k) and (Y; k:k0) be normed linear spaces over the same �eld F and
T : X 7! Y be a mapping. If T (�x + �y) = �T (x) + �T (Y ) for all �; � 2 F and x; y 2 X then T is
called a linear operator. A linear operator T is called bounded if there is a real constant M > 0 such
that kT (x)k0 � M kxk for all x 2 X. If T is a bounded linear operator the number kTkop = kTk =
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inf
�
M : kT (x)k0 �M kxk for all x 2 X

	
is called a operator norm of T . The equivalent de�nition of

operator norm is given by the formulas

kTkop = kTk =sup
�
kT (x)k0

kxk : kxk 6= 0
�
= sup

�
kT (x)k0 : kxk � 1

	
=sup

�
kT (x)k0 : kxk = 1

	
The following is a very useful result for the computation of operator norms of linear operators.

Lemma 1.7. [Computation of operator norm] Let (X; k:k) and (Y; k:k0) be normed linear spaces
over the same �eld F, T : X 7! Y be a bounded linear operator and M � 0 be a real constant. If for
every x 2 X, kT (x)k0 � M kxk and kT (x0)k0 = M kx0k for a vector x0 2 X n f0g then the operator
norm of T is kTkop =M .

Proof. If for every x 2 X, kT (x)k0 �M kxk then by the de�nition of operator norm kTkop �M .
On the other hand if for a vector x0 2 X n f0g, kT (x0)k0 =M kx0k then by the de�nition of operator
norm we have M kx0k = kT (x0)k0 � kTkop kx0k so that M � kTkop. Therefore kTkop =M .

Remark 1.8. We note that in the �nite dimensional case the operator norm can be computed by
the method of Lagrange multipliers with constraints.

It is now a classical result that a linear operator is bounded if and only if it is continuous. The set
B(X;Y ) of bounded linear operators is a linear space over F with pointwise addition and scaler multi-
plication and k:kop is a norm on B(X;Y ). If (Y; k:k

0) is a Banach space then the space (B(X;Y ); k:kop)
is a Banach space.

A bounded linear operator f : (X; k:k) 7! (F; j:j) is called a bounded linear functional. The
Banach space (X�; k:kop) of bounded linear functional is called dual or conjugate space of the normed
linear space (X; k:k):

Example 1.9. Let (X; (:; :)) be an inner product space over the �eld F and a 2 X be a �xed
vector. Then f : (X; k:k) 7! (F; j:j); f(x) = (x; a) is a bounded linear functional and kfkop = kak :

Linear functionals are important in terms of generating and characterizing linear subspaces. If
(X; k:k) is a normed linear space over the �eld F and ` : X 7! F is a linear functional then the the
kernel or the null space ker(`) = fx 2 X : `(x) = 0g of the linear functional ` is a linear subspace of
X. It is well-known that a linear functional is continuous if and only if its null space is closed. On
the other hand we have the following simple result which shows the relations between linear subspaces
and linear functionals.

We recall that a linear subspace W of a linear space X is called a codimension one linear subspace
if the dimension of the quotient space X nW is dim(X nW ) = 1.

Lemma 1.10. Let (X; k:k) be normed linear space over the �eld F. Then W is a codimension
one linear subspace of the space X if and only if there is a linear functional ` : X 7! F such that
W = ker(`).

Proof. Since the null space of a linear operator is a linear subspace if W = ker ` for a linear
functional ` : X 7! F, then W is a linear subspace of the space X. Conversely we assume that W is a
codimension one linear subspace of the space X. Let x0 2 X nW be arbitrary and M = f�x0 : � 2 Fg
be the linear subspace of X generated by the vector x0. Then X = W � M . Since each x 2 X
has a unique representation of the form x = wx + �xx0 where wx 2 W and �xx0 2 M the function
` : X 7! F; `(x) = `(wx + �xx0) = �x is a linear functional with ker(`) =W .

There are two fundamental results about bounded linear functionals, namely the Hahn-Banach
theorem and the Riesz representation theorem. The Hahn-Banach theorem, one of the indispensable
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tools of modern analysis, play the central role in the investigation of geometric and analytic properties
of bounded linear functionals. The Riesz representation theorem completely characterizes the bounded
linear functionals on certain normed linear spaces. We state a version of each of these theorems that
we need in what follows.

Theorem 1.11. [Hahn-Banach][2, 1, 7, 3] Let (X; k:k) be normed linear space over the �eld F and
W be a linear subspace of X. If f : (W; k:k) 7! (F; j:j) is a bounded linear functional then there is a
bounded linear functional F : (X; k:k) 7! (F; j:j) such that F jW= f , that is for all x 2W;F (x) = f(x)
and kFkop = kfkop :

Remark 1.12. The linear functional F is called a norm preserving linear functional extension
of the linear functional f . The important and the di¢ cult part of the theorem is to get the norm
preserving linear extension. Otherwise it is well-known that there are many linear extensions of f easy
to construct.

Theorem 1.13. [Riesz representation theorem] [2, 5, 3, 7] Let (X; (:; :)) be a Hilbert space over
the �eld F and k:k be the norm generated by the inner product. Then a function f : (X; k:k) 7! (F; j:j)
is a bounded linear functional if and only if there is a unique vector a 2 X such that f(x) = (x; a) for
all x 2 X . Furthermore, the operator norm of the linear functional f is kfkop = kak.

Remark 1.14. By Lemma 1.10 and the Riesz representation theorem in a Hilbert space (X; (:; :))
a codimension one linear subspace W of the space X is of the form W = fx 2 X : `a(x) = (x; a) = 0g
where a 2 X is a �xed vector.

On �nite dimensional normed linear spaces, the Riesz representation theorem provides more con-
crete information about the structure of linear functionals. In this context, we state a version of
the Riesz representation theorem for the �nite dimensional spaces and give its proof for the sake of
completeness.

Theorem 1.15. [Riesz representation theorem] Let 1 � p; q � 1 and 1
p +

1
q = 1. Then a

function f : (Rn; k:kp) 7! (R; j:j) is a bounded linear functional if and only if there is constant vector
a = (a1; : : : ; an) 2 Rn such that f(x) = (x; a) = a1x1+ � � �+ anxn for every x 2 Rn. Furthermore, the
operator norm of f is kfkop = kakq.

Proof. We �rst assume that for a constant vector a = (a1; : : : ; an) 2 Rn and for every x =
(x1; : : : ; xn) 2 Rn f(x) = (x; a) = a1x1 + � � � + anxn . Since the inner product is a linear functional
with respect to the �rst variable it follows that f is a linear functional. On the other hand we
assume that f : (Rn; k:kp) 7! (R; j:j) is a linear functional. If f � 0 then for the vector a = 0, f
is the required form f(x) = a1x1 + � � � + anxn = (x; a): Therefore we may assume that f 6= 0. For
j = 1; 2; : : : ; n let ej = (0; : : : ; 0; 1

j
; 0 : : : ; 0). The set B = fe1; : : : ; eng is a standard (Hamel) basis of

the space Rn. Hence every vector x 2 Rn has a unique representation of the form x =
Pn
j=1 xjej .

For j = 1; 2; : : : ; n let aj = f(ej). a = (a1; : : : ; an) 2 Rn. Since f is a linear functional we have
f(x) =

Pn
j=1 xjf(ej) =

Pn
j=1 xjaj = a1x1 + � � �+ anxn = (x; a). So f is the required form.

For 1 � p <1 and for each x 2 Rn by the Cauchy-Schwarz inequality we have jf(x)j � kakq kxkp.
If p = 1 then q = 1 and jf(x)j � kak1 kxk1 = kakq kxkp. Hence by the de�nition of operator norm
kfkop � kakq.

For 1 � p < 1, if aj = 0 we de�ne xj(0) = 0, and if aj 6= 0 we de�ne xj(0) =
jaj jq
aj

and let

x(0) = (x1(0); : : : ; xn(0)). Since kx(0)kp = kakq=pq and jf(x(0))j = kakqq = kak
q( 1
p
+ 1
q
)

q = kakq kak
q
p
q =

kakq kx(0)kp from the Lemma1.7 it follows that kfkop = kakq.
For p = 1, if aj � 0 we de�ne xj(0) = 1 and if aj < 0 we de�ne xj(0) = �1 and let x(0) =

(x1(0); : : : ; xn(0)). Since kx(0)k1 = 1 and jf(x(0))j = kak1 = kak1 kx(0)k1 from the Lemma 1.7 it
follows that kfkop = kak1. Therefore we have kfkop = kakq for all 1 � p � 1.
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2 Operator Norms and Extension of Linear Functionals

The Hahn-Banach theorem states that a bounded linear functional on a linear subspace of a normed
linear space can be extended to the whole space without changing its operator norm. On the other
hand, the Riesz representation theorem provides formulas both for the linear functional and its operator
norm on a Hilbert space. But, as far as I know there is no such a formula for the operator norm of a
linear functional de�ned on a linear subspace of a normed linear space.

By analyzing the orthogonal decomposition theorem and the Riesz representation theorem [5],
[7](4.11 Theorem, 4.12 Theorem) we get two methods of the unique norm preserving linear extension
of a linear functional de�ned on a closed linear subspace a Hilbert space. We note and state these
methods without proofs.

Lemma 2.1. Let (X; (:; :)) be a Hilbert space over the �eld F, k:k be the norm generated
by the inner product, W be a closed linear subspace of the space X and f : (W; k:k) 7! (F; j:j)
be a nontrivial bounded linear functional. Let M = ker(f) be the null space of f and M? =
fx 2W : (x; y) = 0 for all y 2Mg be the orthogonal complement of the space M in W . Choose any

vector x0 2M?nf0g and let a = f(x0)

kx0k2
x0. Then f(x) = (x; a) for all x 2W , kfkop = kak and the norm

preserving linear extension of the functional f is the linear functional F : (X; k:k) 7! (F; j:j); F (x) =
(x; a).

Lemma 2.2. Let (X; (:; :)) be a Hilbert space over the �eld F, k:k be the norm generated by the
inner product, W be a closed linear subspace of the space X and f : (W; k:k) 7! (F; j:j) be a bounded
linear functional. Let p : X 7!W be the orthogonal projection of the space X onto the spaceW . Then
F : (X; k:k) 7! (F; j:j); F (x) = f � p(x) = f(p(x)) is the norm preserving linear functional extension of
the functional f .

The applications of these methods, without doubt, requires certain amount of work. In the case
of a bounded linear functional de�ned on a codimension one subspace of a Hilbert space we provide
simple formula both for the operator norm and for the norm preserving linear functional extension.

Theorem 2.3. [Formula for the operator norm and linear extension] Let (X; (:; :)) be a Hilbert
space over the �eld F, k:k be the norm generated by the inner product, a; b 2 X n f0g be �xed vectors,
W = fx 2 X : `b(x) = (x; b) = 0g be a linear subspace of the space X and fa : (W; k:k) 7! (F; j:j),
fa(x) = (x; a) be a linear functional. Then the operator norm of the linear functional fa is kfakop =


a� (a;b)

kbk2 b



 = 1

kbk

q
kak2 kbk2 � j(a; b)j2 and the norm preserving extension of the linear functional fa

is the linear functional F : (X; k:k) 7! (F; j:j); F (x) = fa(x)� (a;b)

kbk2 `b(x) =
�
x; a� (a;b)

kbk2 b
�
.

Proof. Since for each x 2W , `b(x) = 0 we have F (x) = fa(x). So the function F is an extension
of the function fa. By the Riesz representation theorems F is a linear functional on the space X and

its operator norm is kFkop =



a� (a;b)

kbk2 b



. Since by the properties of the inner product

kFkop =




a� (a; b)kbk2

b





 =
s�

a� (a; b)
kbk2

b; a� (a; b)
kbk2

b

�

=

s
kak2 � 2 j(a; b)j

2

kbk2
+
j(a; b)j2 kbk2

kbk4

=

s
kak2 � j(a; b)j

2

kbk2
=

1

kbk

q
kak2 kbk2 � j(a; b)j2
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it su¢ ces to show that kfakop =



a� (a;b)

kbk2 b



. Since for x 2 W , `b(x) = 0 by the Cauchy-Schwarz

inequality we have

jfa(x)j =
����fa(x)� (a; b)kbk2

`b(x)

���� = ����(x; a)� (a; b)kbk2
(x; b)

����
=

�����x; a� (a; b)kbk2
b

����� � 



a� (a; b)kbk2
b





 kxk :
By the de�nition of operator norm kfakop �




a� (a;b)

kbk2 b



. Since the equality holds in Cauchy-Schwarz

inequality when x = a� (a;b)

kbk2 b 2 W and
���fa �a� (a;b)

kbk2 b
���� = 


a� (a;b)

kbk2 b



2 = 


a� (a;b)

kbk2 b



 kxk it follows

from the Lemma 1.7 that

kfakop =




a� (a; b)kbk2

b





 = 1

kbk

q
kak2 kbk2 � j(a; b)j2:

Remark 2.4. Since a = (a;b)

kbk2 b + a �
(a;b)

kbk2 b and
�
a� (a;b)

kbk2 b; b
�
= 0, the vector a � (a;b)

kbk2 b is the

component of the vector a orthogonal to the vector b. This observation gives the following results.

Corollary 2.5. In Theorem 2.3, if the vectors a and b are orthogonal, that is (a; b) = 0 then the
operator norm of the linear functional fa is kfakop = kak and its norm preserving extension is the
linear functional F : (X; k:k) 7! (F; j:j); F (x) = fa(x).

Corollary 2.6. In Theorem 2.3., if the vectors a and b are collinear, that is b = ta for a scaler
t 2 F then fa � 0, its operator norm kfakop = 0 and its norm preserving extension is the linear
functional F : (X; k:k) 7! (F; j:j); F (x) = 0.

In the following result we assume that dim(Rn) = n � 2.

Corollary 2.7. Let a = (a1; a2; : : : ; an); b = (b1; b2; : : : ; bn) 2 Rn n f0g be �xed vectors, W =
fx = (x1; x2; : : : ; xn) 2 Rn : `b(x) = (x; b) = b1x1 + b2x2 + � � � + bnxn = 0g be a linear subspace and
fa : (W; k:k2) 7! (R; j:j), fa(x) = (x; a) = a1x1 + a2x2 + � � � + anxn be a linear functional. Then the

operator norm of the linear functional fa is kfakop =
r
kak22 �

(a;b)2

kbk22
= 1

kbk2

q
kak22 kbk

2
2 � (a; b)2 and its

norm preserving extension is the linear functional F : (Rn; k:k2) 7! (R; j:j); F (x) = fa(x)� (a;b)

kbk22
`b(x) =�

x; a� (a;b)

kbk22
b
�
.

Remark 2.8. Since the computation of an operator norm is an extremum value problem we note
that Corollary 2.7 may be used to solve certain type of extremum value problems.

Example 2.9. Let W =
�
x = (x1; x2; x3) 2 R3 : x1 + x2 + x3 = 0

	
be a linear subspace of the

space R3. Find the operator norm of the linear functional f : (W; k:k2) 7! (R; j:j); f(x) = 2x1 + 3x3
and its norm preserving linear functional extension F : (R3; k:k2) 7! (R; j:j).

Solution. For the vectors b = (b1; b2; b3) = (1; 1; 1), a = (a1; a2; a3) = (2; 0; 3) 2 R3 we have
W = fx = (x1; x2; x3) 2 R3 : `b(x) = (x; b) = x1+x2+x3 = 0g and f(x) = fa(x) = (x; a) = 2x1+3x3.
Since (a; b) = 5, kak2 =

p
13 and kbk2 =

p
3 by the Corollary 2.7 the operator norm of the linear

functional f is kfkop = 1p
3

p
39� 25 =

q
14
3 =

p
42
3 and its norm preserving linear functional extension

is F : (R3; k:k2) 7! (R; j:j) F (x) = fa(x)� (a;b)

kbk22
`b(x) = 2x1+3x3� 5

3(x1+x2+x3) =
1
3(x1�5x2+4x3).

We use Lemma 2.1 and Lemma 2.2 to give alternative solutions of this example.
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Alternative solution. (W; k:k2) is a Hilbert space. The kernel or the null space of the linear
functional f is the linear subspace M = ker(f) =

�
�
�
1;�1

3 ;�
2
3

�
: � 2 R

	
and its orthogonal com-

plement in W is the linear subspace M? = f�(1;�5; 4) : � 2 Rg. Choose x0 = (1;�5; 4). and let
a = f(x0)

kx0k22
x0 =

1
3(1;�5; 4). Then by Lemma 2.1 we have f(x) = (x; a) =

1
3(x1�5x2+4x3) for all x 2W .

By the Riesz representation theorem kfkop = kak2 =
p
42
3 and by the uniqueness of extension the norm

preserving linear extension of the linear functional f is the linear functional F : (R3; k:k2) 7! (R; j:j);
F (x) = (x; a) = 1

3(x1 � 5x2 + 4x3).

Alternative solution 2. Since the space W is the kernel of the linear functional ` : R3 7!
R; `(x) = x1+x2+x3 it is a closed codimension one linear subspace of R3 and hence dimW = 2. The
orthogonal projection of the space R3 onto the space W is the bounded linear operator p : R3 7! W;
p(x) =

�
2x1�x2�x3

3 ; 2x2�x1�x33 ; 2x3�x2�x13

�
. So by Lemma 2.2 the norm preserving linear extension of

the linear functional f is the linear functional F : (R3; k:k2) 7! (R; j:j),

F (x) =f(p(x)) = f

�
2x1 � x2 � x3

3
;
2x2 � x1 � x3

3
;
2x3 � x2 � x1

3

�
=2

�
2x1 � x2 � x3

3

�
+ 3

�
2x3 � x2 � x1

3

�
=
1

3
(x1 � 5x2 + 4x3) = ((x1; x2; x3);

1

3
(1;�5; 4)):

By the Riesz representation theorem kfkop = kFkop =


1
3(1;�5; 4)




2
=

p
42
3 :

We give a di¤erent solution of this example which is also important in terms of the method used.

Alternative solution 3. By the de�nition of operator norm combined probably with the method
of Lagrange multipliers we have

kfkop =sup fjf(x)j : x = (x1; x2; x3) 2W; kxk2 = 1g
=sup

�
j2x1 + 3x3j : x = (x1; x2; x3) 2 R3; x1 + x2 + x3 = 0; kxk2 = 1

	
=sup f2x1 + 3x3 : x1; x3 � 0; x1 + x2 + x3 = 0; kxk2 = 1g =

p
42

3
:

By the Hahn-Banach theorem there is at least one norm preserving linear functional extension F of
f to the space (R3; k:k2). By the Riesz representation theorem this extension is of the form F (x) =
(x; a) = a1x1 + a2x2 + a3x3 where a = (a1; a2; a3) 2 R3 is a constant vector and kFkop = kak2. For
x 2 W by solving the linear extension equality 2x1 + 3x3 = f(x) = F (x) = a1x1 + a2x2 + a3x3 and
the operator norm equality

p
42
3 = kfkop = kFkop = kak2 =

p
a21 + a

2
2 + a

2
3 simultaneously we get

a1 =
1
3 ; a2 =

�5
3 and a3 = 4

3 . Therefore the unique norm preserving linear extension of the linear
functional f is the linear functional F (x) = 1

3(x1 � 5x2 + 4x3).

Example 2.10. Let X = P3(R) be the linear space of all real polynomial functions of degree at
most 3. The function (:; :) : X � X 7! R de�ned by (p; q) =

R 1
�1 p(x)q(x)dx is an inner product on

X and it generates the norm kpk =
p
(p; p) =

�R 1
�1(p(x))

2dx
�1=2

. The inner product space (X; (:; :))

is a Hilbert space. Let W = fp 2 X :
R 1
�1(p(x) + xp(x))dx = 0g and ` : (W; k:k) 7! (R; j:j); `(p) =R 1

�1(p(x)+x
2p(x))dx. Show thatW is a linear subspace of X and ` is bounded linear functional. Find

the operator norm of the functional ` and its norm preserving linear extension to the space X.

Solution. For the polynomial functions a : R 7! R; a(x) = 1 + x2 and b : R 7! R; b(x) = 1 + x we
haveW = fp 2 X :

R 1
�1(p(x)+xp(x))dx = 0g = fp 2 X : (p; b) = 0g and `(p) =

R 1
�1(p(x)+x

2p(x))dx =R 1
�1(1+x

2)p(x)dx = (p; a). Since the inner product is a bounded linear functional with respect to the
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�rst variable it follows that W is a closed codimension one linear subspace of the space X and ` is a
bounded linear functional. Since

kbk =
�Z 1

�1
(b(x))2dx

�1=2
=

�Z 1

�1
(1 + x)2dx

�1=2
=

�Z 2

0
t2dt

�1=2
=

r
t3

3
j20 =

2
p
6

3
and

(a; b) =

Z 1

�1
a(x)b(x)dx =

Z 1

�1
(1 + x+ x2 + x3)dx

=

�
x+

x2

2
+
x3

3
+
x4

4

�
j1�1= 2 +

2

3
=
8

3
;

by the Theorem 2.3 the operator norm of the linear functional ` is

k`kop =




a� (a; b)kbk2

b





 = ka� bk = �Z 1

�1
(a(x)� b(x))2dx

�1=2
=

�Z 1

�1
(x2 � x)2dx

�1=2
=

�Z 1

�1
(x4 � 2x3 + x2)dx

�1=2
=

s�
x5

5
� 2x

4

4
+
x3

3

�
j1�1 =

r
2

5
+
2

3
=
4
p
15

15

and its norm preserving linear functional extension is the linear functional L : (X; k:k) 7! (R; j:j)
de�ned by

L(p) =

�
p; a� (a; b)

kbk2
b

�
= (p; a� b)

=

Z 1

�1
(a(x)� b(x))p(x)dx =

Z 1

�1
(x2 � x)p(x)dx:

The following example shows that our formula works not just for �nite dimensional Hilbert spaces
but also works for in�nite dimensional Hilbert spaces.

Example 2.11. Let X = L2([0; 1]) = ff : f : [0; 1] 7! R; Lebesque measurable and kfk2 =�R 1
0 (f(x))

2dx
�1=2

g be the linear space of Lebesque square integrable functions. The function (:; :) :
X � X 7! R de�ned by (f; g) =

R 1
0 f(x)g(x)dx is an inner product on X and it generates the norm

kfk = kfk2. Let W = ff 2 X :
R 1
0 f(x)dx = 0g and ` : (W; k:k) 7! (R; j:j); `(f) =

R 1
0 x

2f(x)dx. Show
that W is a linear subspace of X and ` is bounded linear functional on W . Find the operator norm
of the functional ` and its norm preserving linear extension to the space X.

Solution. For the functions a : [0; 1] 7! R; a(x) = x2 and b : [0; 1] 7! R; b(x) = 1 we have
W = ff 2 X :

R 1
0 f(x)dx = 0g = ff 2 X : (f; b) = 0g and `(f) =

R 1
0 x

2f(x)dx = (f; a). Since the
inner product is a bounded linear functional with respect to the �rst variable it follows that W is a
codimension one linear subspace of the space X and ` is a bounded linear functional. Since kbk =�R 1
0 (b(x))

2dx
�1=2

=
�R 1
0 1

2dx
�1=2

=
p
x j10 = 1 and (a; b) =

R 1
0 a(x)b(x)dx =

R 1
0 x

2dx = x3

3 j
1
0=

1
3 by
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the Theorem 2.3 the operator norm of the linear functional ` is

k`kop =




a� (a; b)kbk2

b





 = 



a� b

3





 =
 Z 1

0

�
a(x)� b(x)

3

�2
dx

!1=2

=

 Z 1

0

�
x2 � 1

3

�2
dx

!1=2
=

�Z 1

0

�
x4 � 2

3
x2 +

1

9

�
dx

�1=2

=

s�
x5

5
� 2
9
x3 +

1

9
x

�
j10 =

s�
1

5
� 2
9
+
1

9

�
� 0

=

r
9� 5
9 � 5 =

r
4

9 � 5 =
2

3
p
5
=
2
p
5

15

and its norm preserving linear functional extension is the linear functional L : (X; k:k) 7! (R; j:j); L(p) =�
f; a� (a;b)

kbk2 b
�
=
�
p; a� b

3

�
=
R 1
0 (a(x)� b(x))f(x)dx =

R 1
0

�
x2 � 1

3

�
f(x)dx.

We end the paper with the following question.

Question. Can we remove the codimension one hypothesis in Theorem 2.3? Is it possible to
generalize these results to normed linear spaces under some smoothness conditions.
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Abstract

This paper deals with nonlinear fractional di¤erential equation with boundary value problem con-
ditions. We investigate the existence of solutions in Banach spaces with Hilfer derivative. To obtain
such result we apply Mönch�s �xed point theorem and the technique of measures of noncompactness.
At the end an example is given.

Keywords: Fractional di¤erential equation; Hilfer fractional derivative; Kuratowski measures of
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1 Introduction

In recent years, several papers have been devoted to the study of the existence of solutions for fractional
di¤erential equations, among others we refer the readers to the following references: Agarwal et al.
[5, 4], Abbas et al. [3, 2], Sandeep et al. [32], Furati et al.[20] , Benchohra et al. [17, 18], Gu et al. [21].
Moreover, it has been proved that di¤erential models involving derivatives of fractional order arise
in many engineering and scienti�c disciplines as the mathematical modeling of systems and processes
in many �elds, for instance, about physics, control theory, rheology, chemistry, and so on (see the
monograph of Kilbas and al. [25], Hilfer and al. [22, 23], and Samko and al. [30]).

In this paper we focus on the existence of solutions of the following boundary value problem for a
nonlinear fractional di¤erential equation,

D�;�
a+
y(t) = f(t; y(t)); t 2 J := [0; T ]: (1.1)

with the fractional boundary conditions

I1�
y(0) = y0; I
3�
�2�y0(0) = y1;

I1�
y(�) = �(I1�
y(T )); 
 = �+ � � ��:
(1.2)

where D�;�
0+

is the Hilfer fractional derivative, 0 < � < 1,0 � � � 1, 0 < � < 1, 0 < � < T and let
E be a Banach space space with norm k:k, f : J � E � E � E � E ! E is given continuous function
and satisfying some assumptions that will be speci�ed later. We will use the technique of measures
of noncompactness. which is often used in several branches of nonlinear analysis. Especially , that
technique turns out to be a very useful tool in existence for several types of integral equations; details
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are found in Akhmerov et al. [7], Alvàrez [8], Banas̀ et al. [10, 11, 12, 13, 14, 15, 16], Benchohra et
al. [17, 18], Mönch [27], Szu�a [31].

The main idea used here is that on the Banach space E, we can not use Ascoli-Arzela theorem to prove
the compactness of the operator, so we use the technique of measure of nocompactness to conclude.

Recently, considerable attention has been given to the existence of solutions of initial and boundary
value problems for fractional di¤erential equations with Hilfer fractional derivative [2, 3, 19], and other
problems with Hilfer-Hadamard fractional derivative; see [1, 2, 33, 34]. Many existence results were
established by the use of technics of nonlinear analysis such as Banach �xed point theorem, Schaefer�s
�xed point theorem, Lerayâ-Schauder nonlinear alternative, etc ..., and the technique of measures of
noncompactness, see [4, 5, 6, 18, 15, 16].

In 2008, Benchohra et al. [17], considered the existence of solutions of an initial value problem for a
nonlinear fractional di¤erential equation�

Dry(t) = f(t; y); for each t 2 J = [0; T ]; 1 < r < 2
y(0) = y0; y

0(0) = y1; .
(1.3)

where Dr is the Caputo fractional derivative, f : J � E ! E is a given function, and E is a Banach
space. They obtained results for solutions by using Mönch�s �xed point theorem and the technique of
measures of noncompactness.

In 2018, S. Abbas et al. [2], studied the existence of solutions for the following coupled system of
Hilfer fractional di¤erential equations(

D�1;�10 u(t) = f1(t; u(t); v(t)); t 2 J = [0; T ]
D�2;�20 v(t) = f2(t; u(t); v(t));

(1.4)

with the following initial conditions �
I1�
10 u(0) = �1
I1�
20 v(0) = �2;

(1.5)

where T > 0, �i 2 (0; 1), �i 2 [0; 1], 
i = �i + �i � �i�i, �i 2 E, fi : I � E � E ! E ; i = 1; 2, are
given functions, E is a real (or complex) Banach space with a norm k:k, I1
i0 is the left- sided mixed
Riemann-Liouville integral of order 1� 
i, and D�i;�i0 is the generalized Riemann-Liouville derivative
(Hilfer) operator of order �i and type �i: i = 1; 2. They obtained results for solutions by using the
technique of measure of noncompactness and the �xed point theory.

In 2018, D.Vivek et al. [34], studied the existence, uniqueness and stability analysis of Hilfer-Hadamard
type fractional neutral pantograph equations with boundary conditions of the form(

D�;�
1+
x(t) = f(t; x(t); x(�t); D�;�

1+
x(�t)); t 2 J = [0; T ]:

I1�

1+

x(1) = a; I1�

1+

x(T ) = b; 
 = �+ � � ��:
(1.6)

where D�;�
1+

is the Hilfer-Hadamard fractional derivative, 0 < � < 1, 0 � � � 1, 0 < � < 1. Let E be
a Banach space, f : J � E � E � E ! E is a given continuous function. They obtained results for
solutions by using Schaefer�s �xed point theorem.

The principal goal of this paper is to prove the existence of solutions for the problem (1.1)-(1.2) using
Mönch�s �xed point theorem and its related Kuratowski measure of noncompactness.
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2 Preliminaires

In what follows we introduce de�nitions, notations, and preliminary facts which are used in the sequel.

For more details, we refer to [4, 5, 7, 9, 11, 19, 20, 21, 22, 23, 24, 25, 26, 31, 32].
Denote by C(J;E) the Banach space of continuous functions y : J ! E, with the usual supremum
norm

kyk1 = supfky(t)k; t 2 Jg:

Let L1(J;E) be the Banach space of measurable functions y : J ! E which are Bochner integrable,
equipped with the norm

kykL1 =
Z
J
y(t)dt:

AC1(J;E) denotes the space of functions y : J ! E, whose �rst derivative is absolutely continuous.

De�nition 2.1. [20] Let J = [0; T ] be a �nite interval and 
 as a real such that 0 � 
 < 1. We
introduce the weighted space C1�
(J;E) of continuous functions f on (0; T ] as

C1�
(J;E) = ff : (0; T ]! E : (t� a)1�
f(t) 2 C(J;E)g:

In the space C1�
(J;E), we de�ne the norm

kfkC1�
 = k(t� a)1�
f(t)kC ; C0(J;E) = C(J;E):

De�nition 2.2. [20] Let 0 < � < 1; 0 � � � 1, the weighted space C�;�1�
(J;E) is de�ned by

C�;�1�
(J;E) = ff : (0; T ]! R : D�;�
0+
f 2 C1�
(J;E)g; 
 = �+ � � ��

and
C11�
(J;E) = ff : (0; T ]! R : f 0 2 C1�
(J;E)g; 
 = �+ � � ��

with the norm
kfkC11�
 = kfkC + kf

0kC1�
 : (2.1)

One have, see [20], D�;�
0+
f = I

�(1��)
0+

D

0+
f and C
1�
(J;E) � C�;�1�
(J;E); 
 = � + � � ��; 0 < � <

1; 0 � � � 1. Moreover, C1�
(J;E) is complete metric space of all continuous functions mapping J
into E with the metric d de�ned by

d(y1; y2) = ky1 � y2kC1�
(J;E) := maxt2J
j(t� a)1�
 [y1(t)� y2(t)]j

for details see [20].

Notation 2.3. For a given set V of functions v : J ! E, let us denote by

V (t) = fv(t) : v 2 V g; t 2 J;

and
V (J) = fv(t) : v 2 V; t 2 Jg:

Now let us recall some fundamental facts of the notion of Kuratowski measure of noncompactness.

De�nion 2.4. ([7, 11]). Let E be a Banach space and 
E the bounded subsets of E. The
Kuratowski measure of noncompactness is the map � : 
E ! [0;1] de�ned by

�(B) = inff� > 0 : B � [ni=1Bi and diam(Bi) � �g; here B 2 
E .
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This measure of noncompactness satis�es some important properties [7, 11]:
(a) �(B) = 0, B is compact (B is relatively compact).
(b) �(B) = �(B):
(c) A � B ) �(A) � �(B):
(d) �(A+B) � �(A) + �(B)
(e) �(cB) = jcj�(B); c 2 R:
(f) �(convB) = �(B):

Now, we give some results and properties of fractional calculus. De�nition 2.5. [26] Let (0; T ] and
f : (0;1) ! R is a real valued continuous function. The Riemann-Liouville fractional integral of a
function f of order � 2 R+ is denoted as I�0+f and de�ned by

I�0+f(t) =
1

�(�)

Z t

0
(t� s)��1f(s)ds; t > 0: (2.2)

where �(�) is the Euler�s Gamma function.

De�nion 2.6. [25] Let (0; T ] and f : (0;1) ! R is a real valued continuous function. The
Riemann-Liouville fractional derivative of a function f of order � 2 R+0 = [0;+1) is denoted as D�0+f
and de�ned by

D�0+f(t) =
1

�(n� �)
dn

dtn

Z t

0
(t� s)n���1f(s)ds: (2.3)

where n = [�] + 1, and [�] means the integral part of �, provided the right hand side is pointwise
de�ned on (0;1).

De�nion 2.7. [25] The Caputo fractional derivative of function f with order � > 0; n� 1 < � <
n; n 2 N is de�ned by

CD�0+f(t) =
1

�(n� �)

Z t

0
(t� s)n���1f (n)(s)ds; t > 0: (2.4)

In [22], R. Hilfer studied applications of a generalized fractional operator having the Riemann-Liouville
and Caputo derivatives as speci�c cases (see also [23, 24]).

De�nion 2.8. [22] The Hilfer fractional derivative D�;�
0+

of order � (n � 1 < � < n) and type �
(0 � � � 1) is de�ned by

D�;�
0+

= I
�(n��)
0+

DnI
(1��)(n��)
0+

f(t) (2.5)

where I�0+ and D
�
0+ are Riemann-Liouville fractional integral and derivative de�ned by 2.2 and 2.3,

respectively.

Remark 2.9. (See [19]) Hilfer fractional derivative interpolates between the R-L (2.3, if � = 0)
and Caputo (2.4, if � = 1) fractional derivatives since

D�;�
0+

=

8<:
DI1�� = D�0+ ; � = 0; I1��D =C D�0+ ; � = 1;

I1��D =C D�0+ ; � = 1;

Lemma 2.10. Let 0 < � < 1; 0 � � � 1; 
 = �+ � � ��, and f 2 L1(J;E).
The operator D�;�

0+
can be written as

D�;�
0+
f(t) =

�
I
�(1��)
0+

d

dt
I
(1�
)
0+

f

�
(t)

= I
�(1��)
0+

D
f(t); t 2 J:
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Moreover, the parameter 
 satis�es

0 < 
 � 1; 
 � �; 
 > �; 1� 
 < 1� �(1� �):

Lemma 2.11. Let 0 < � < 1; 0 � � � 1; 
 = �+����, If D�(1��)
0+

f exists and in L1(J;E), then

D�;�
0+
I�0+f(t) = I

�(1��)
0+

D
�(1��)
0+

f(t); for a.e. t 2 J:

Furthermore, if f 2 C1�
(J;E) and I1��(1��)0+
f 2 C11�
(J;E), then

D�;�
0+
I�0+f(t) = f(t); for a.e. t 2 J:

Lemma 2.12. Let 0 < � < 1; 0 � � � 1; 
 = � + � � ��, and f 2 L1(J;E). If D

0+
f exists and

in L1(J;E), then

I�0+D
�;�
0+
f(t) = I


0+
D

0+
f(t)

= f(t)�
I1�

0+

f(0+)

�(
)
t
�1; t 2 J:

Lemma 2.13. [25] For t > a, we have

I�0+(t� a)
��1(t) =

�(�)

�(� � �)(t� a)
�+��1

D�0+(t� a)
��1(t) =

�(�)

�(� � �)(t� a)
����1;

(2.6)

Lemma 2.14. Let � > 0; 0 � � � 1, so the homogeneous di¤erential equation with Hilfer
fractional order

D�;�
0+
h(t) = 0 (2.7)

has a solution

h(t) = c0t

�1 + c1t


+2��2 + c2t

+2(2�)�3 + :::+ cnt


+n(2�)�(n+1):

De�nion 2.15. A map f : J � E ! E is said to be Caratheodory if
(i) t 7! f(t; u) is measurable for each u 2 E;
(ii) u 7! F (t; u) is continuous for almost all t 2 J .

The following theorems will play a major role in our analysis.

Theorem 2.16. ([5, 32]). Let D be a bounded, closed and convex subset of a Banach space such
that 0 2 D, and let N be a continuous mapping of D into itself. If the implication
V = convN(V ) or V = N(V ) [ 0) �(V ) = 0
holds for every subset V of D, then N has a �xed point.

Lemma 2.17. ([32]). Let D be a bounded, closed and convex subset of the Banach space C(J;E),
G a continuous function on J�J and f a function from J�E �! E which satis�es the Caratheodory
conditions, and suppose there exists p 2 L1(J;R+) such that, for each t 2 J and each bounded set
B � E, we have

lim
h!0+

�(f(Jt;h �B)) � p(t)�(B); here Jt;h = [t� h; t] \ J:

If V is an equicontinuous subset of D, then

�

��Z
J
G(s; t)f(s; y(s))ds : y 2 V

��
�
Z
J
kG(t; s)kp(s)�(V (s))ds:
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3 Main results

First of all, we de�ne what we mean by a solution of the BVP (1.1)-(1.2).

De�nition 3.1. A function y 2 C1�
(J;E) is said to be a solution of the problem (1.1)- (1.2) if y
satis�es the equation D�;�

a+
y(t) = f(t; y(t)) on J , and the conditions I1�
y(0) = y0; I3�
�2�y0(0) = y1,

and I1�
y(�) = �(I1�
y(T )):

Lemma 3.2. Let f : J � E � E � E � E ! E be a function such that f 2 C1�
(J;E) for any
y 2 C1�
(J;E). A function y 2 C
1�
(J;E) is a solution of the integral equation

y(t) = I�f(t; y(t)) +
y0
�(
)

t
�1 +
y1

�(
 + 2� � 1) t

+2��2 + �(�; 
; �; �)�

y0(�� 1) +
�T 2��1 � �2��1

�(2�)
y1 + �I

��
+1f(T; y(T ))� I��
+1f(�; y(�))
�
t
+2(2�)�3

(3.1)

if and only if y is a solution of the Hilfer fractional BVP

D�;�
a+
y(t) = f(t; y(t)); t 2 J := [0; T ]; (3.2)

with the fractional boundary conditions

I1�
y(0) = y0; I
3�
�2�y0(0) = y1;

I1�
y(�) = �(I1�
y(T )); 
 = �+ � � ��:
(3.3)

Proof. Assume y satis�es (3.1). Then Lemma 2.18 implies that

y(t) = c0t

�1 + c1t


+2��2 + c2t

+2(2�)�3 +

1

�(�)

Z t

0
(t� s)��1f(s; y(s))ds:

for some constants c0; c1; c2 2 R.
From (3.3), by Lemma 2.16 (2.6) , we have

� I1�
y(0) = y0 implies that c0 = y0
�(
)

� I3�
�2�y0(0) = y1 implies that c1 = y1
�(
+2��1)

� I1�
y(1) = �(I1�
y(T )) implies that

�
I1�
y

�
(�) = (I1�


y0
�(
)

t
�1)(�)+(I1�

y1
�(
)

t
+2��2)(�) + c2

�
I1�
t
+2(2�)�3

�
(�) + I��
+1f(�; y(�))

= y0 +
y1

�(2�)
�2��1 + c2

�(
 + 2(2�)� 2)
�(4� � 1) �4��2 + I��
+1f(�; y(�))�

I1�
y
�
(T ) = (I1�


y0
�(
)

t
�1)(T ) + (I1�

y1

�(
 + 2� � 1) t

+2��2)(T ) + c2

�
I1�
t
+2(2�)�3

�
(T )

+ I��
+1f(T; y(T ))

= y0 +
y1

�(2�)
T 2��1 + c2

�(
 + 2(2�)� 2)
�(4� � 1) T 4��2 + I��
+1f(T; y(T ))

�
�
I1�
y

�
(T ) = �y0 +

�y1
�(2�)

T 2��1 + c2
��(
 + 2(2�)� 2)

�(4� � 1) T 4��2 + �I��
+1f(T; y(T ))

that is,

c2 = �(�; 
; �; �)

�
y0(�� 1) +

�T 2��1 � �2��1
�(2�)

y1 + �I
��
+1f(T; y(T ))� I��
+1f(�; y(�))

�
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With

�(�; 
; �; �) =
�(4� � 1)

�(
 + 4� � 2)(�4��2 � �T 4��2)

The following hypotheses will be used in the sequel.
(H1) f : J � E ! E satis�es the Caratheodory conditions;
(H2) There exists p 2 L1(J;R+) \ C(J;R+), such that,

kf(t; y)k � p(t)kyk; for t 2 J and each y 2 E;

(H3) For each t 2 J and each bounded set B � E, we have

lim
h!0+

�(f(Jt;h �B)) � t1�
p(t)�(B); here Jt;h = [t� h; t] \ J:

Theorem 3.3. Assume that conditions (H1)-(H3) hold. Let

p� = sup
t2J

p(t):

If

p�
�
T��
+1

�(�+ 1)
+
j�(�; 
; �; �)j
�(�� 
 + 2)

�
j�jT��
+1 + ���
+1

�
T 2(2�)�2

�
< 1 (3.4)

then the BVP (1.1)-(1.2) has at least one solution.

Proof. We transform the problem (1.1)-(1.2) into a �xed point problem, then we consider the
operator N : C1�
(J;E)! C1�
(J;E) de�ned by

N(y)(t) = I�f(t; y(t)) +
y0
�(
)

t
�1 +
y1

�(
 + 2� � 1) t

+2��2 + �(�; 
; �; �)�

y0(�� 1) +
�T 2��1 � �2��1

�(2�)
y1 + �I

��
+1f(T; y(T ))� I��
+1f(�; y(�))
�
t
+2(2�)�3

Clearly, the �xed points of the operator N are solutions of the problem (1.1)-(1.2). Let

R �
y0
�(
) +

y1T 2��1

�(
+2��1) + j�(�; 
; �; �)j
�
ky0kj�� 1j+ �T 2��1��2��1

�(2�) ky1k
�

1� p�
�
T��
+1
�(�+1) �

j�(�;
;�;�)jT 4��2
�(��
+2) (j�jT��
+1 + ���
+1)

� (3.5)

and consider
D = fy 2 C1�
(J;E) : kyk � Rg:

The subset D is closed, bounded and convex. We shall show that the assumptions of Theorem 2.4 are
satis�ed. The proof will be given in three steps.

1-First we show that N is continuous:

Let yn be a sequence such that yn ! y in C1�
(J;E). Then for each t 2 J ,

kt1�
(N(yn)(t)�N(y)(t))k �
t1�


�(�)

Z t

0
(t� s)��1kf(s; yn(s))� f(s; y(s))kds+

j�(�; 
; �; �)jt4��2
�(�� 
 + 1)�

j�j
Z T

0
(T � s)��
kf(s; yn(s))� f(s; y(s))kds+

Z �

0
(� � s)��
kf(s; yn(s))� f(s; y(s))kds

�
�
�
t��
+1

�(�+ 1)
+
j�(�; 
; �; �)jt4��2
�(�� 
 + 2) (j�jT��
+1 + ���
+1)

�
kf(s; yn(s))� f(s; y(s))k

�
�
T��
+1

�(�+ 1)
+
j�(�; 
; �; �)jT 4��2
�(�� 
 + 2) (j�jT��
+1 + ���
+1)

�
kf(s; yn(s))� f(s; y(s))k
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Since f is of Caratheodory type, then by the Lebesgue dominated convergence theorem we have

kN(yn)�N(y)k1 ! 0 as n!1:

2-Second we show that N maps D into itself:

Take y 2 D, by (H2), we have, for each t 2 J and assume that Ny(t) 6= 0.

kt1�
N(y)(t)k � t1�


�(�)

Z t

0
(t� s)��1kf(s; y(s))kds+ ky0k

�(
)
+

ky1k
�(
 + 2� � 1) t

2��1

+ j�(�; 
; �; �)j
�
ky0kj�� 1j+

j�jT 2��1 � �2��1
�(2�)

ky1k
�
t4��2

+
j�(�; 
; �; �)jt4��2
�(�� 
 + 1)

�
j�j
Z T

0
(T � s)��
kf(s; y(s))kds+

Z �

0
(� � s)��
kf(s; y(s))kds

�
� T 1�


�(�)

Z t

0
(t� s)��1p(s)kykds+ ky0k

�(
)
+

ky1k
�(
 + 2� � 1)T

2��1

+ j�(�; 
; �; �)j
�
ky0kj�� 1j+

j�jT 2��1 � �2��1
�(2�)

ky1k
�
T 4��2

+
T 4��2

�(�� 
 + 1) j�(�; 
; �; �)j
�
j�j
Z T

0
(T � s)��
p(s)kykds+

Z 1

0
(1� s)��
p(s)kykds

�
� RT 1�


�(�)

Z t

0
(t� s)��1p(s)ds+ ky0k

�(
)
+

ky1k
�(
 + 2� � 1)T

2��1

+ j�(�; 
; �; �)j
�
ky0kj�� 1j+

j�jT 2��1 � �2��1
�(2�)

ky1k
�
T 4��2

+
RT 4��2

�(�� 
 + 1) j�(�; 
; �; �)j
�
j�j
Z T

0
(T � s)��
p(s)ds+

Z �

0
(� � s)��
p(s)ds

�
� Rp�T 1�


�(�)

Z t

0
(t� s)��1ds+ ky0k

�(
)
+

ky1k
�(
 + 2� � 1)T

2��1

+ j�(�; 
; �; �)j
�
ky0kj�� 1j+

j�jT 2��1 � �2��1
�(2�)

ky1k
�
T 4��2

+
Rp�T 4��2

�(�� 
 + 1) j�(�; 
; �; �)j
�
j�j
Z T

0
(T � s)��
ds+

Z �

0
(� � s)��
ds

�
� Rp�T��
+1

�(�+ 1)
+
ky0k
�(
)

+
ky1k

�(
 + 2� � 1)T
2��1

+ j�(�; 
; �; �)j
�
ky0kj�� 1j+

j�jT 2��1 � �2��1
�(2�)

ky1k
�
T 4��2

+ j�(�; 
; �; �)j
�
j�jRp�T��
+4��1
�(�� 
 + 2) +

Rp����
+1T 4��2

�(�� 
 + 2)

�
� R:

3-Finally we show that N(D) is bounded and equicontinuous:

By Step 2, it is obvious that N(D) � C1�
(J;E) is bounded. For the equicontinuity of N(D), let
t1; t2 2 J , t1 < t2 and y 2 D, so t1�
2 Ny(t2)� t1�
1 Ny(t1) 6= 0. Then

62



Ikonion Journal of Mathematics 2019, 1(2)

kt1�
2 Ny(t2)� t1�
1 Ny(t1)k �
1

�(
 + 2� � 1)ky1t
2��1
2 � y1t2��11 k+ j�(�; 
; �; �)j



�y0j�� 1j+ j�jT 2��1 � �2��1�(2�)

y1 + j�jI��
+1f(T; y(T ))� I��
+1f(�; y(�))
�





(t
2(2�)�2)
2 � t2(2�)�2)1 )

+






 t1�
2

�(�)

Z t2

0
(t2 � s)��1f(s; y(s))ds�

t1�
1

�(�)

Z t1

0
(t1 � s)��1f(s; y(s))ds







� 1

�(
 + 2� � 1)ky1k(t
2��1
2 � t2��11 ) + j�(�; 
; �; �)j�

ky0kj�� 1j+
j�jT 2��1 � �2��1

�(2�)
ky1k

�
(t
2(2�)�2)
2 � t2(2�)�2)1 )

+
j�(�; 
; �; �)j
�(�� 
 + 1)

�
j�j
Z T

0
(T � s)��
kf(s; y(s))kds+

Z �

0
(� � s)��
kf(s; y(s))kds

�
(t
2(2�)�2)
2 � t2(2�)�2)1 )

+
1

�(�)

�
t1�
2

Z t1

0
(t2 � s)��1kf(s; y(s))kds� t1�
1

Z t1

0
(t1 � s)��1kf(s; y(s))kds

+t1�
2

Z t2

t1

(t2 � s)��1kf(s; y(s))kds
�

� ky1k
�(
 + 2� � 1)(t

2��1
2 � t2��11 ) + j�(�; 
; �; �)j�

ky0kj�� 1j+
j�jT 2��1 � �2��1

�(2�)
ky1k+

1

�(�� 
 + 1)�
j�j
Z T

0
(T � s)��
p(s)kykds+

Z �

0
(� � s)��
p(s)kykds

��
(t
2(2�)�2)
2 � t2(2�)�2)1 )

+
1

�(�)

�
t1�
2

Z t1

0
(t2 � s)��1p(s)kykds� t1�
1

Z t1

0
(t1 � s)��1p(s)kykds

+t1�
2

Z t2

t1

(t2 � s)��1p(s)kykds
�

� ky1k
�(
 + 2� � 1)(t

2��1
2 � t2��11 ) + j�(�; 
; �; �)j�

ky0kj�� 1j+
j�jT 2��1 � �2��1

�(2�)
ky1k+

R

�(�� 
 + 1)�
j�j
Z T

0
(T � s)��
p(s)ds+

Z �

0
(� � s)��
p(s)ds

��
(t
2(2�)�2)
2 � t2(2�)�2)1 )

+
R

�(�)

�
t1�
2

Z t1

0
(t2 � s)��1p(s)ds� t1�
1

Z t1

0
(t1 � s)��1p(s)ds

+t1�
2

Z t2

t1

(t2 � s)��1p(s)ds
�

� ky1k
�(
 + 2� � 1)(t

2��1
2 � t2��11 )

+ j�(�; 
; �; �)j
�
ky0kj�� 1j+

j�jT 2��1 � �2��1
�(2�)

ky1k

+
Rp�

�(�� 
 + 1)

�
j�j
Z T

0
(T � s)��
ds+

Z �

0
(� � s)��
ds

��
(t
2(2�)�2)
2 � t2(2�)�2)1 )

+
Rp�

�(�)

�
t1�
2

Z t1

0
(t2 � s)��1ds� t1�
1

Z t1

0
(t1 � s)��1ds+ t1�
2

Z t2

t1

(t2 � s)��1ds
�
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� ky1k
�(
 + 2� � 1)(t

2��1
2 � t2��11 )

+ j�(�; 
; �; �)j
�
ky0kj�� 1j+

j�jT 2��1 � �2��1
�(2�)

ky1k+
Rp�(j�jT��
+1 + ���
+1)

�(�� 
 + 2)

�
(t
2(2�)�2)
2 � t2(2�)�2)1 ) +

Rp�

�(�+ 1)
(t��
+12 � t��
+11 ):

As t1 ! t2, the right hand side of the above inequality tends to zero.
Hence N(D) � D.

Now we show that the implication holds:

Let V � D such that V = conv(N(V ) [ f0g).

We have V (t) � conv(N(V )[f0g) for all t 2 J . NV (t) � ND(t), t 2 J is bounded and equicontinuous
in E, the function t! v(t) = �(V (t)) is continuous on J .
By assumption (H2), and the properties of the measure � we have for each t 2 J .

t1�
v(t) � �(t1�
N(V )(t) [ f0g)) � �(t1�
(NV )(t))

� �
�
t1�


�
I�f(t; y(t)) +

y0
�(
)

t
�1 +
y1
�(
)

t
+2��2 + �(�; 
; �; �)�
y0(�� 1) +

�T 2��1 � �2��1
�(2�)

y1 + �I
��
+1f(T; y(T ))� I��
+1f(�; y(�))

�
t
+2(2�)�3

��
� �

�
t1�


�(�)

Z t

0
(t� s)��1f(s; y(s))ds+ j�(�; 
; �; �)j

�(�� 
 + 1)�
j�j
Z T

0
(T � s)��
f(s; y(s))ds+

Z �

0
(� � s)��
f(s; y(s))ds

�
t2(2�)�2

�
�
�
t1�


�(�)

Z t

0
(t� s)��1�(f(s; y(s)))ds+ j�(�; 
; �; �)j

�(�� 
 + 1)�
j�j
Z T

0
(T � s)��
�(f(s; y(s)))ds+

Z �

0
(� � s)��
�(f(s; y(s)))ds

�
t2(2�)�2

�
�
�
t1�


�(�)

Z t

0
(t� s)��1p(s)�(V (s))ds+ j�(�; 
; �; �)j

�(�� 
 + 1)�
j�j
Z T

0
(T � s)��
p(s)�(V (s))ds+

Z �

0
(� � s)��
p(s)�(V (s))ds

�
t2(2�)�2

�
�
�
t1�


�(�)

Z t

0
(t� s)��1p(s)v(s)ds+ j�(�; 
; �; �)j

�(�� 
 + 1)�
j�j
Z T

0
(T � s)��
p(s)v(s)ds+

Z �

0
(� � s)��
p(s)v(s)ds

�
t2(2�)�2

�
� kvk

�
t1�


�(�)

Z t

0
(t� s)��1p(s)ds+ j�(�; 
; �; �)j

�(�� 
 + 1)�
j�j
Z T

0
(T � s)��
p(s)ds+

Z �

0
(� � s)��
p(s)ds

�
t2(2�)�2

�
� p�kvk

�
t1�


�(�)

Z t

0
(t� s)��1ds+ j�(�; 
; �; �)j

�(�� 
 + 1)

�
j�j
Z T

0
(T � s)��
ds+

Z �

0
(� � s)��
ds

�
t2(2�)�2

�
� p�kvk

�
t��
+1

�(�+ 1)
+
j�(�; 
; �; �)j
�(�� 
 + 2)

�
j�jT��
+1 + ���
+1

�
t2(2�)�2

�
This means that

kvk � p�kvk
�
T��
+1

�(�+ 1)
+
j�(�; 
; �; �)j
�(�� 
 + 2)

�
j�jT��
+1 + ���
+1

�
T 2(2�)�2

�
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By p�
h
T��
+1

�(�+1) +
j�(�;
;�;�)j
�(��
+2)

�
j�jT��
+1 + ���
+1

�
T 2(2�)�2

i
< 1 it follows that kvk = 0, that is v(t) = 0

for each t 2 J , and then V (t) is relatively compact in E. In view of the Ascoli-Arzela theorem, V is
relatively compact in D. Applying now Theorem 2.16, we conclude that N has a �xed point which is
a solution of the problem (1.1)-(1.2).

4 Example

We consider the problem for Hilfer fractional di¤erential equations of the form:8<:
D�;�y(t) = f(t; y(t)); (t; y) 2 ([0; 1];R);

I1�
y(0) = y0; I
3�
�2�y0(0) = y1; I

1�
y(�) = �(I1�
y(T ))
(4.1)

Here

� =
1

2
; � =

1

2
; 
 =

3

4
;

� =
1

2
; � =

1

4
; T = 1:

With

f(t; yt)) =
1

4
+
ct2

et+4
jy(t)j; t 2 [0; 1]

and

c =
e3

10

p
�

Clearly, the function f is continuous. For each y 2 E and t 2 [0; 1], we have

kf(t; y(t))k � ct2

et+4
kyk

Hence, the hypothesis (H2) is satis�ed with p� = ce�3. We shall show that condition 3.4 holds with
T = 1. Indeed,

p�
�
T��
+1

�(�+ 1)
+
j�(�; 
; �; �)j
�(�� 
 + 2)

�
j�jT��
+1 + ���
+1

�
T 2(2�)�2

�
< 1

Simple computations show that all conditions of Theorem 3.1 are satis�ed. It follows that the problem
4.1 has a solution de�ned on [0,T].
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