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Abstract. In this paper, the concepts of I−deferred statistical convergence

of order α and I−deferred statistical convergence of order (α, β) in topological
groups were defined. Also some inclusion relations between I−statistical con-
vergence of order α, I−deferred statistical convergence of order α, I−statistical

convergence of order (α, β) and I−deferred statistical convergence of order
(α, β) in topological groups are given.

1. INTRODUCTION

The idea of statistical convergence was given by Zygmund [38] in the first edi-
tion of his monograph puplished in Warsaw in 1935. The consept of statistical
convergence was introduced by Steinhaus [30] and Fast [13] and later reintro-
duced by Schoenberg [28] independently. Later on it was further investigated
from the sequence space point of view and linked with summability theory by
Çakallı ([2],[3],[4],[5],[6]), Çınar et al. [7], Et et al. ([9],[10],[11],[12],[24]), Fridy
[14], Fridy and Orhan [15], Işık and Akbaş [17], Salat [22], Savaş [23], Sengul et.
al. ([31],[32],[33],[34]), Srivastava and Et [29], Yıldız [37] and many others.

Let X be a non-empty set. Then a family of sets I ⊆ 2X (power sets of X) is
said to be an ideal if I is additive i.e. A, B ∈ I implies A ∪ B ∈ I and hereditary,
i.e. A ∈ I, B ⊂ A implies B ∈ I.

A non-empty family of sets F ⊆ 2X is said to be a filter of X if and only if
(i) φ /∈ F, (ii) A, B ∈ F implies A∩B ∈ F and (iii) A ∈ F, A ⊂ B implies B ∈ F.

An ideal I ⊆ 2X is called non-trivial if I 6= 2X .

A non-trivial ideal I is said to be admissible if I ⊃ {{x} : x ∈ X} .

If I is a non-trivial ideal in X(X 6= φ) then the family of sets
F (I) = {M ⊂ X : (∃A ∈ I) (M = X \A)} is a filter ofX, called the filter associated
with I.

Throughout the paper I will stand for a non-trivial admissible ideal of N.
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The idea of I−convergence of real sequences was introduced by Kostyrko et al.
[19] and also independently by Nuray and Ruckle [21] (who called it generalized
statistical convergence) as a generalization of statistical convergence. Later on
I−convergence was studied in ([20],[26],[27],[25],[35],[36]).

The order of statistical convergence of a sequence of numbers was given by Gad-
jiev and Orhan in [16] and after then statistical convergence of order α and strong
p−Cesàro summability of order α studied by Çolak [8].

In 1932, R.P. Agnew [1] defined the deferred Cesaro mean Dp,q of the sequence
x = (xk) by

(Dp,qx)n =
1

q (n)− p (n)

q(n)
∑

p(n)+1

xk

where (p (n)) and (q (n)) are sequences of non-negative integers satisfying

p (n) < q (n) and lim
n→∞

q (n) = +∞. (1.1)

Let K be a subset of N, and denote the set {k : p (n) < k ≤ q (n) , k ∈ K} by
Kp,q (n) . Deferred density of K is defined by

δp,q (K) = lim
n→∞

1

q (n)− p (n)
|Kp,q (n)| (1.2)

whenever the limit exists (finite or infinite). The vertical bars in (1.2) indicate the
cardinality of the set Kp,q (n) .

A real valued sequence x = (xk) is said to be deferred statistical convergent to
l, if

lim
n→∞

1

q (n)− p (n)
|{p (n) < k ≤ q (n) : |xk − l| ≥ ε}| = 0

for every ε > 0. If q (n) = n, p (n) = 0 then deferred statistical convergence
coincides statistical convergence [18].

2. I−DEFERRED STATISTICAL CONVERGENCE of ORDER α in
TOPOLOGICAL GROUPS

In this section, some inclusion relations between I−statistical convergence, I−statistical
convergence of order α and I−deferred statistical convergence of order α in topo-
logical groups are given.

Definition 2.1. Let (p (n)) and (q (n)) be two sequences of non-negative integers
satisfying the conditions (1.1) , X be an abelian topological Hausdorf group, (x (k))
be a sequence of real numbers and α be a positive real number such that 0 < α ≤ 1.
The sequence x = (x (k)) is said to be DSα

p,q (X, I)−statistically convergent in
topological groups to l (or I−deferred statistically convergent sequences of order α
in topological groups to l) if there is a real number l for each neighbourhood U of 0
such that

{

n ∈ N :
1

(q (n)− p (n))
α |{p (n) < k ≤ q (n) : x (k)− l /∈ U}| ≥ δ

}

∈ I.

In this case we write DSα
p,q(I) − limx (k) = l or x (k) → l

(

DSα
p,q(I)

)

. The set
of all DSα

p,q (X, I)− statistically convergent sequences in topological groups will
be denoted by DSα

p,q (X, I). If α = 1, then I−deferred statistical convergence
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of order α coincides then I−deferred statistical convergence in topological groups
(DSp,q (X, I)− convergence) and if q (n) = n, p (n) = 0 then I−deferred statistical
convergence of order α coincides I−statistical convergence of order α in topolog-
ical groups (Sα (X, I)−convergence). If q (n) = n, p (n) = 0 and α = 1, then
I−deferred statistical convergence of order α coincides I−statistical convergence in
topological groups (S (X, I)−convergence).

Theorem 2.1. Let (p (n)) and (q (n)) be two sequences of non-negative integers
satisfying the conditions (1.1) and α,β be positive real numbers such that 0 < α ≤
β ≤ 1 then DSα

p,q (X, I) ⊆ DSβ
p,q (X, I) and the inclusion is strict.

Proof. Omitted. �

Theorem 2.1 yields the following corollary.

Corollary 2.2. If a sequence is DSα
p,q (X, I)−statistically convergent of order α

to l, then it is DSp,q (X, I)−statistically convergent to l.

Theorem 2.3. Let (p (n)) and (q (n)) be two sequences of non-negative integers
satisfying the conditions (1.1) and α be a positive real number such that 0 < α ≤ 1.

If lim infn
q(n)
p(n) > 1, then Sα (X, I) ⊂ DSα

p,q (X, I) .

Proof. Suppose that lim infn
q(n)
p(n) > 1; then there exists an a > 0 such that q(n)

p(n) ≥

1 + a for sufficiently large n, which implies that

q (n)− p (n)

q (n)
≥

a

1 + a
=⇒

(

q (n)− p (n)

q (n)

)α

≥

(

a

1 + a

)α

=⇒
1

q (n)
α ≥

aα

(1 + a)
α

1

(q (n)− p (n))
α .

If Sα (I)− limk→∞ x (k) = l, then for each neighbourhood U of 0 and for sufficiently
large n, we have

1

q (n)
α |{k ≤ q (n) : x (k)− l /∈ U}| ≥

1

q (n)
α |{p (n) < k ≤ q (n) : x (k)− l /∈ U}|

≥
aα

(1 + a)
α

1

(q (n)− p (n))
α |{p (n) < k ≤ q (n) : x (k)− l /∈ U}| .

Therefore, we can write

{

n ∈ N :
1

(q (n)− p (n))
α |{p (n) < k ≤ q (n) : x (k)− l /∈ U}| ≥ δ

}

⊆

{

n ∈ N :
1

q (n)
α |{k ≤ q (n) : x (k)− l /∈ U}| ≥ δ

aα

(1 + a)
α

}

∈ I.

This implies that Sα (X, I) ⊂ DSα
p,q (X, I) . �

Theorem 2.4. Let (p (n)) and (q (n)) be two sequences of non-negative integers
satisfying the conditions (1.1) and α be a positive real number such that 0 < α ≤ 1.

If lim infn
(q(n)−p(n))α

n
> 0 and q (n) < n, then S (X, I) ⊂ DSα

p,q (X, I).

Proof. For each neighbourhood U of 0, we have

{k ≤ n : x (k)− l /∈ U} ⊃ {p (n) < k ≤ q (n) : x (k)− l /∈ U} .



ON I−DEFERRED STATISTICAL CONVERGENCE IN TOPOLOGICAL GROUPS 51

Therefore,

1

n
|{k ≤ n : x (k)− l /∈ U}| ≥

1

n
|{p (n) < k ≤ q (n) : x (k)− l /∈ U}|

=
(q (n)− p (n))

α

n

1

(q (n)− p (n))
α |{p (n) < k ≤ q (n) : x (k)− l /∈ U}| .

Hence, we can write

{

n ∈ N :
1

(q (n)− p (n))
α |{p (n) < k ≤ q (n) : x (k)− l /∈ U}| ≥ δ

}

⊆

{

n ∈ N :
1

n
|{k ≤ n : x (k)− l /∈ U}| ≥ δ

(q (n)− p (n))
α

n

}

∈ I.

Consequently, S (X, I) ⊂ DSα
p,q (X, I) . �

Theorem 2.5. Let (p (n)) , (q (n)) , (p′ (n)) , (q′ (n)) be four sequences of non-negative
integers such that p (n) < q (n), p′ (n) < q′ (n) and q (n) − p (n) ≤ q′ (n) − p′ (n)
for all n ∈ N, let U be any neighbourhood of 0 and let α and β be such that
0 < α ≤ β ≤ 1.

(i) If

lim
n→∞

inf
(q (n)− p (n))

α

(q′ (n)− p′ (n))
β
> 0 (2.1)

then DSβ
p′,q′(X, I) ⊆ DSα

p,q(X, I),

(ii) If

lim
n→∞

q′ (n)− p′ (n)

(q (n)− p (n))
β
= 1 (2.2)

then DSα
p,q(X, I) ⊆ DSβ

p′,q′(X, I).

Proof. (i) Let (2.1) be satisfied. For given ε > 0 and each neighbourhood U,W of
0 such that W ⊂ U, we have

{p′ (n) < k ≤ q′ (n) : x (k)− l /∈ W} ⊇ {p (n) < k ≤ q (n) : x (k)− l /∈ U} ,

and so
1

(q′ (n)− p′ (n))
β
|{p′ (n) < k ≤ q′ (n) : x (k)− l /∈ W}|

≥
(q (n)− p (n))

α

(q′ (n)− p′ (n))
β

1

(q (n)− p (n))
α |{p (n) < k ≤ q (n) : x (k)− l /∈ U}|

for all n ∈ N, where p (n) < q (n), p′ (n) < q′ (n) and q (n)− p (n) ≤ q′ (n)− p′ (n) .

Then we can write

{

n ∈ N :
1

(q (n)− p (n))
α |{p (n) < k ≤ q (n) : x (k)− l /∈ U}| ≥ δ

}

⊆

{

n ∈ N :
1

(q′ (n)− p′ (n))
β
|{p′ (n) < k ≤ q′ (n) : x (k)− l /∈ W}| ≥ δ

(q (n)− p (n))
α

(q′ (n)− p′ (n))
β

}

∈ I.

This completes the proof.
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(ii) Omitted. �

Corollary 2.6. Let (p (n)) , (q (n)) , (p′ (n)) , (q′ (n)) be four sequences of non-negative
integers such that p (n) < q (n), p′ (n) < q′ (n) and q (n)− p (n) ≤ q′ (n)− p′ (n) for
all n ∈ N and 0 < α ≤ 1.

If (2.1) holds then,

(i) DSα
p′,q′(X, I) ⊆ DSα

p,q(X, I),

(ii) DSp′,q′(X, I) ⊆ DSα
p,q(X, I),

(iii) DSp′,q′(X, I) ⊆ DSp,q(X, I).

If (2.2) holds then,

(i) DSα
p,q(X, I) ⊆ DSα

p′,q′(X, I),

(ii) DSα
p,q(X, I) ⊆ DSp′,q′(X, I),

(iii) DSp,q(X, I) ⊆ DSp′,q′(X, I).

3. I−DEFERRED STATISTICAL CONVERGENCE of ORDER(α, β) in
TOPOLOGICAL GROUPS

In this section, the results which were given in the previous section are general-
ized. Some inclusion relations between I−statistical convergence of order (α, β) and
I−deferred statistical convergence of order (α, β) in topological groups are given.

Definition 3.1. Let (p (n)) and (q (n)) be two sequences of non-negative integers
satisfying the conditions (1.1), X be an abelian topological Hausdorf group, (x (k))
be a sequence of real numbers and α, β be positive real numbers such that 0 < α ≤
β ≤ 1. The sequence x = (x (k)) is said to be I−deferred statistical convergent of
order (α, β) in topological groups to l ( or DSα,β

p,q (X, I)−statistically convergent to
l ), if there is a real number l, for each neighbourhood U of 0 such that

{

n ∈ N :
1

(q (n)− p (n))
α |{p (n) < k ≤ q (n) : x (k)− l /∈ U}|

β
≥ δ

}

∈ I.

In this case we write DSα,β
p,q (I) − limx (k) = l or x (k) → l

(

DSα,β
p,q (I)

)

. The set

of all DSα,β
p,q (X, I)−statistically convergent sequences in topological groups will be

denoted by DSα,β
p,q (X, I). If q (n) = n, p (n) = 0 and α = β = 1, then I−deferred

statistical convergence of order (α, β) coincides I−statistical convergence in topo-
logical groups (S (X, I)−convergence).

Theorem 3.1. Let (p (n)) and (q (n)) be two sequences of non-negative integers
satisfying the conditions (1.1) and α1, α2, β1 and β2 be positive real numbers such
that 0 < α1 ≤ α2 ≤ β1 ≤ β2 ≤ 1, then DSα1,β2

p,q (X, I) ⊆ DSα2,β1

p,q (X, I) and the
inclusion is strict.

Proof. Omitted. �

Theorem 3.2. Let (p (n)) and (q (n)) be two sequences of non-negative integers
satisfying the conditions (1.1) and α, β be two positive real numbers such that 0

< α ≤ β ≤ 1. If lim infn
q(n)
p(n) > 1, then Sα,β (X, I) ⊂ DSα,β

p,q (X, I) .

Proof. The proof is similar to that of Theorem 2.3. �
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Theorem 3.3. Let (p (n)) , (q (n)) , (p′ (n)) and (q′ (n)) be four sequences of non-
negative integers such that p (n) < q (n) , p′ (n) < q′ (n) and q (n)− p (n) ≤ q′ (n)−
p′ (n) for all n ∈ N, let U be any neighbourhood of 0 and let α1, α2, β1 and β2 be
such that 0 < α1 ≤ α2 ≤ β1 ≤ β2 ≤ 1.

(i) If

lim
n→∞

inf
(q (n)− p (n))

α1

(q′ (n)− p′ (n))
α2

> 0 (3.1)

then DSα2,β2

p′,q′ (X, I) ⊆ DSα1,β1

p,q (X, I),

(ii) If

lim
n→∞

q′ (n)− p′ (n)

(q (n)− p (n))
α2

= 1 (3.2)

then DSα1,β2

p,q (X, I) ⊆ DSα2,β1

p′,q′ (X, I).

Proof. (i) Let limn→∞ inf (q(n)−p(n))α1

(q′(n)−p′(n))α2
> 0. For given ε > 0 and each neighbour-

hood U,W of 0 such that W ⊂ U, we have

1

(q′ (n)− p′ (n))
α2

|{p′ (n) < k ≤ q′ (n) : x (k)− l /∈ W}|
β2

≥
(q (n)− p (n))

α1

(q′ (n)− p′ (n))
α2

1

(q (n)− p (n))
α1

|{p (n) < k ≤ q (n) : x (k)− l /∈ U}|
β1

for all n ∈ N.

Therefore, we can write

{

n ∈ N :
1

(q (n)− p (n))
α1

|{p (n) < k ≤ q (n) : x (k)− l /∈ U}|
β1 ≥ δ

}

⊆

{

n ∈ N :
1

(q′ (n)− p′ (n))
α2

|{p′ (n) < k ≤ q′ (n) : x (k)− l /∈ W}|
β2 ≥ δ

(q (n)− p (n))
α1

(q′ (n)− p′ (n))
α2

}

∈ I.

This completes the proof.

(ii) Omitted. �

Corollary 3.4. Let (p (n)) , (q (n)) , (p′ (n)) and (q′ (n)) be four sequences of non-
negative integers such that p (n) < q (n), p′ (n) < q′ (n) and q (n)− p (n) ≤ q′ (n)−
p′ (n) for all n ∈ N and 0 < α1 ≤ α2 ≤ β1 ≤ β2 ≤ 1.

If (3.1) holds then,

(i) DSα2

p′,q′(X, I) ⊆ DSα1

p,q(X, I) for β1 = β2 = 1,

(ii) DSp′,q′(X, I) ⊆ DSα1

p,q(X, I) for α2 = β1 = β2 = 1,

(iii) DSp′,q′(X, I) ⊆ DSp,q(X, I) for α1 = α2 = β1 = β2 = 1.

If (3.2) holds then,

(i) DSα1

p,q(X, I) ⊆ DSα2

p′,q′(X, I) for β1 = β2 = 1,

(ii) DSα1

p,q(X, I) ⊆ DSp′,q′(X, I) for α2 = β1 = β2 = 1,

(iii) DSp,q(X, I) ⊆ DSp′,q′(X, I) for α1 = α2 = β1 = β2 = 1.
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IN MEMORY OF RISTEARD TIMONEY

Abstract. Spectral disjointness confers a certain mutual independence on
pairs of Banach algebra elements. Necessary and sufficient for full spectral
disjointness of diagonal elements is that the structural idempotent is a holo-
morphic function of a block diagonal matrix, while a partial left-right spec-

tral disjointness is sufficient for membership of the double commutant. For
bounded linear Banach space operators with an invariant subspace, spectral
disjointness for the restriction and quotient operators implies both hyperin-

variance and reducing.

1. BLOK STRUCTURE

Our ”spectral disjointness” applies to pairs of operators defined on different
spaces, and we need a somewhat elaborate algebraic framework for them: accord-
ingly, we look at matrices with block structure.

If G is a ring, with identity I, then [7] an idempotent

Q = Q2 ∈ G

imposes a block structure on G:

G ∼=

(

A M
N B

)

where A and B are rings with identity in their own right, while M and N are
bimodules over A and B; there are also bilinear mappings

(m,n) 7→ m · n (M ×N → A) ; (m,n) 7→ n ·m (M ×N → B)

The structure is laid bare by formal multiplication of 2× 2 matrices. We can take

A = QGQ ; M = QG(I −Q) ; N = (I −Q)GQ ; B = (I −Q)G(I −Q)

2010 Mathematics Subject Classification. Primary: 47A13; Secondaries: 15A21 .
Key words and phrases. block matrices; structural idempotent; invariant subspaces; holomor-

phic functional calculus; double commutant.
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The identity I, the structural idempotent Q and a generic element T ∈ G are now
given by block matrices:

1.5 I =

(

1 0
0 1

)

; Q =

(

1 0
0 0

)

; T =

(

a m
n b

)

.

The commutant of the structural idempotent is the subring of block diagonals,

comm(Q) =

(

A O
O B

)

⊆ G

In the notation of (1.5),

1.7 QT = TQ ⇐⇒ T =

(

a 0
0 b

)

.

More generally [13] there are upper and lower block triangles:

QT = QTQ ⇐⇒ T =

(

a m
0 b

)

∈

(

A M
O B

)

TQ = QTQ ⇐⇒ T =

(

a 0
n b

)

∈

(

A O
N B

)

2. INVERTIBILITY

An element T ∈ G is said to be invertible, written T ∈ G−1, if there is another
element T−1 ∈ G, for which

T−1T = I = TT−1

More generally if
T ′T = I

then we say that T ∈ G−1
left is left invertible and T ′ ∈ G−1

right is right invertible; we
observe

G−1 = G−1
left ∩G−1

right

that the invertible group is the intersection of the left and right invertible semi-
groups. In general it is quite a complicated business to express the invertibility
or otherwise of an element T ∈ G in terms of the contributing elements a ∈ A,
m ∈ M , n ∈ N and b ∈ B of (1.5); for the block diagonals of (1.7) it is however
rather simple:

2.4

(

a 0
0 b

)

∈ G−1
left ⇐⇒ a ∈ A−1

left & b ∈ B−1
left

and

2.5

(

a 0
0 b

)

∈ G−1
right ⇐⇒ a ∈ A−1

right & b ∈ B−1
right ,

and hence
T ∈ G−1 ⇐⇒ a ∈ A−1 & b ∈ B−1

For upper block triangles [6] something more subtle obtains:

2.7 a ∈ A−1
left & b ∈ B−1

left =⇒

(

a m
0 b

)

∈ G−1
left =⇒ a ∈ A−1

left

2.8 a ∈ A−1
right & b ∈ B−1

right =⇒

(

a m
0 b

)

∈ G−1
right =⇒ b ∈ B−1

right
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Also

2.9 T ∈ G−1
left & a ∈ A−1

right =⇒ b ∈ B−1
left

and

2.10 T ∈ G−1
right & b ∈ B−1

left =⇒ a ∈ A−1
right .

It follows, that of the three assertions

T ∈ G−1 ; a ∈ A−1 ; b ∈ B−1

any two imply the third.

3. SPECTRUM

If the rings G, A and B are complex linear algebras, then invertibility breeds
spectrum

3.1 σleft
G (T ) = {λ ∈ C : T − λI 6∈ G−1

left} ,

and

3.2 σright
G (T ) = {λ ∈ C : T − λI 6∈ G−1

right} ,

and then

σG(T ) = σleft
G (T ) ∪ σright

G (T )

with corresponding notation for σA(a) and σB(b). Thus, for a block diagonal T ∈ G,
we can rewrite (2.4) and (2.5) in the form

σleft
G (T ) = σleft

A (a) ∪ σleft
B (b)

and

σright
G (T ) = σright

A (a) ∪ σright
B (b)

For upper block triangles T ∈ G, (2.7) and (2.8) take the form

σleft
A (a) ⊆ σleft

G (T ) ⊆ σleft
A (a) ∪ σleft

B (b)

and

σright
B (b) ⊆ σright

G (T ) ⊆ σright
B (b) ∪ σright

A (a)

Also (2.9) and (2.10) take the form

σleft
B (b) ⊆ σleft

G (T ) ∪ σright
A (a)

and

σright
A (a) ⊆ σright

G (T ) ∪ σleft
B (b)

It follows that, of the three sets

σG(T ) ; σA(a) ; σB(b)

each is a subset of the union of the other two:

σG(T ) ⊆ σA(a) ∪ σB(b) ∪
(

σA(a) ∩ σB(b)
)

We can improve on this: by (2.7)-(2.10) we have ([6] Theorem 3.1, Theorem 3.2)

σA(a) ∪ σB(b) = σG(T ) ∪
(

σright
A (a) ∩ σleft

B (b)
)
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4. SPECTRAL DISJOINTNESS

When the linear algebras G, A and B are complex Banach algebras, then the
spectral theory begins to bite. When the structural idempotent Q = Q2 ∈ G is
bounded, then it is necessary and sufficient, for spectral disjointness

4.1 σA(a) ∩ σB(b) = ∅ ,

that

4.2 Q ∈ Holo(T ) :

the structural idempotent is a holomorphic function of the generic T ∈ G of (1.5).
This of course means that there exists a holomorphic function f : U → C defined
on an open neighbourhood of the spectrum σG(T ) = σA(a) ∪ σB(b) for which

Q = f(T ) =
1

2πi

∮

σ(T )

f(z)(zI − T )−1dz

is given by the Cauchy integral formula. Inspecting the contour integral, which
winds +1 times round the spectrum of T , it is sufficient, and obviously necessary,
that Q lies in the closed subalgebra generated by all rational functions of T : this is
generated by the polynomials in T , together with all possible inverses (λI − T )−1.
To see why the disjointness (4.1) gives (4.2), it is sufficient to take the characteristic
function

f = χK with K = σA(a)

Conversely if Q = f(T ) then a = f(1) and b = f(0) and hence, by the spectral
mapping theorem,

σA(a) ∩ σB(b) ⊆ f−1(1) ∩ f−1(0) = ∅

Since the block diagonal T is in the commutant of the idempotent Q, it follows
that generally the idempotent Q is also in the commutant of the block diagonal T .
If however it turns out ([7] Theorem 1;[10]) that the idempotent Q is a holomorphic
function of T , then it follows that the idempotent is in the double commutant of
the block diagonal:

4.6 Q ∈ comm2(T ) .

In finite dimensions, in particular for matrices, it turns out [14] that everything in
the double commutant of T is a polynomial in T , and hence (4.6) and (4.2) are
equivalent. In general Banach algebras, as we shall see, (4.2) is strictly stronger
than (4.6). This whole argument extends [13] to upper and lower block triangles.

We might notice here another “spectral disjointness”: if for example f = p/q is
a rational function, with “relatively prime” polynomials p and q,

f =
p

q
∈ H = C(Ω) with Ω = Df = C \ q−1(0)

then necessary and sufficent for f(T ) to exist is

σH(f) ∩ σG(T ) = ∅

none of the poles q−1(0) of f can be in the spectrum of T . For example

f = z−1 =⇒ σH(f) = {0}

thus
0 6∈ σG(T ) ⇐⇒ T ∈ G−1
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5. PARTIAL SPECTRAL DISJOINTNESS

In Banach algebras we claim ([7] Theorem 2;[10]) that a weaker “left,right”
spectral disjointness is sufficient for the double commutant property :

5.1 σleft
A (a) ∩ σright

B (b) = ∅

and

5.2 σright
A (a) ∩ σleft

B (b) = ∅

are together sufficient for (4.6). Specifically we claim that (5.1) implies

La −Rb ∈ B(M)−1
left

the generalized inner derivation La − Rb ∈ E = B(M) has a bounded left inverse.
This is the spectral mapping theorem in two variables. With no need of tensor
product theory

σleft
E (La, Rb) ⊆ σleft

E (La)× σleft
E (Rb) ⊆ σleft

A (a)× σright
B (b)

and then, since La and Rb commute, by the spectral mapping theorem

0 ∈ σleft
E (La −Rb) =⇒ 0 ∈ σleft

A (a)− σright
B (b)

and the spectral disjointness (5.1) excludes 0 from the right hand side. If the inner
derivation La −Rb has a bounded left inverse then it is also “bounded below”, and
hence in particular one-to-one: if m ∈ M there is implication

am = mb =⇒ m = 0

This is one step on the way to the double commutivity (4.6). If instead (5.2) holds
then instead the generalized derivation Lb − Ra ∈ F = B(N) is left invertible and
hence also one-one. Now for arbitrary (c, u, v, d) ∈ A×M ×N ×B

(

a 0
0 b

)(

c u
v d

)

−

(

c u
v d

)(

a 0
0 b

)

=

(

ac− ca au− ub
bv − va bd− db

)

It follows that if S =

(

c u
v d

)

commutes with T =

(

a 0
0 b

)

then c commutes

with a and d commutes with b, while

(La −Rb)u = 0 ∈ M and (Lb −Ra)v = 0 ∈ N

The condition (5.1) therefore ensures that S is a lower block triangle, while (5.2)
makes it an upper block triangle, and together they put it in the commutant of Q,
givng the inclusion

comm(T ) ⊆ comm(Q)

which is equivalent to (4.6).
The condition (5.2) also says that La − Rb has a bounded right inverse in E =

B(M) and hence is onto:

M = aM +Mb

which confers a certain splitting ”left,right exactness” [9] on the pair (a, b). Dually
(5.1) says that also

N = bN +Na

Notice also [10] that left,right spectral disjointness makes block triangles “similar”
to their block diagonals.
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6. LINEAR OPERATORS

If the linear algebra G = L(X) is all the linear operators on a linear vector space
X, then an invariant subspace for T ∈ G is a subspace Y ⊆ X for which

6.1 T (Y ) ⊆ Y ⊆ X .

In the purely linear environment, this will confer block structure on the algebra
L(X). For Banach algebra structure we need a Banach space, and to look at
bounded operators T ∈ B(X); evidently we will only be interested in invariant
subspaces Y ⊆ X which are norm closed. It is now not clear that this confers
block structure on G = B(X): it is necessary that the invariant subspace is also
complemented. We can however still mount a similar discussion, courtesy of the
quotient:

X/Y = {[x]Y ≡ x+ Y : x ∈ X}

the set of cosets x+ Y , normed by the distance function:

‖[x]Y ‖ = dist(x, Y ) = inf{‖x− y‖ : y ∈ Y }

Now if (6.1) holds then the operator T ∈ G = L(X) has a restriction

TY ∈ L(Y )

and a quotient

T/Y ∈ L(X/Y )

defined by setting, for each y ∈ Y and each x ∈ X,

TY (y) = Ty ; T/Y ([x]Y ) = [Tx]Y

When T ∈ B(X) is bounded on a Banach space and Y ⊆ X is closed, then both
the restriction and the quotient are also bounded.

As in the block matrix situation the invertibility of T ∈ G = L(X), TY = a ∈
A = L(Y ) and T/Y = b ∈ B = L(X/Y ) are mutually constrained. In the purely
linear environment, necessary and sufficient for two-sided invertibility is that an
operator is both one-one and onto; for bounded operators on Banach space this
continues to be the case, courtesy of the ”Open Mapping Theorem”. To see the
mutual constraints observe [2] the implications

6.7 TY , T/Y one-one =⇒ T one-one =⇒ TY one-one ;

6.8 TY , T/Y onto =⇒ T onto =⇒ T/Y onto ;

6.9 T one-one , TY onto =⇒ T/Y one-one ;

6.10 T onto , T/Y one-one =⇒ TY onto .

To verify these implications, express non singularity properties of TY and T/Y

in terms of the whole space X:

TY one-one ⇐⇒ T−1(0) ∩ Y ⊆ O ≡ {0}

TY onto ⇐⇒ Y ⊆ T (Y )

T/Y one-one ⇐⇒ T−1(Y ) ⊆ Y

T/Y onto ⇐⇒ X ⊆ Y + T (X)
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7. SPECTRAL THEORY

The spectrum of T ∈ G is the same as always:

σ(T ) = {λ ∈ C : T − λI 6∈ G−1}

The point spectrum or eigenvalues of T ∈ G is

π(T ) = {λ ∈ C : (T − λI)−1(0) 6= {0}} ⊆ σleft(T )

The defect spectrum is in a sense dual to the point spectrum:

π′(T ) = {λ ∈ C : (T − λI)(X) 6= X} ⊆ σright(T )

Evidently
σ(T ) = π(T ) ∪ π′(T )

this is true both for G = L(X) and for G = B(X). From the implications (6.7)-
(6.10) it follows that

7.5 σ(T ) ⊆ σ(TY ) ∪ σ(T/Y ) ⊆ σ(T ) ∪ (σ(TY ) ∩ σ(T/Y )) .

It follows that disjointness

7.6 σ(TY ) ∩ σ(T/Y ) = ∅

implies equality
σ(T ) = σ(TY ) ∪ σ(T/Y )

We see (7.6), in the Banach space situation, as a significant property of the invariant
subspace T (Y ) ⊆ Y ⊆ X: when it holds we shall describe the subspace Y as
spectrally invariant.

Barnes ([1] Proposition 4) has an improvement (cf (3.11)) on the right hand side
of (7.5): by (6.7)-(6.10)

σ(TY ) ∪ σ(T/Y ) = σ(T ) ∪ (π′(TY ) ∩ π(T/Y ))

8. PARTIALLY HYPERINVARIANT SUBSPACES

When T ∈ G = B(X) is a bounded operator on a Banach space X then we
describe a subspace Y ⊆ X as an “invariant subspace” for T provided it is norm
closed and satisfies the inclusion (6.1). We describe it as hyperinvariant provided

8.1 comm(T )Y ⊆ Y :

this means that there is implication, for S ∈ G,

ST = TS =⇒ S(Y ) ⊆ Y ⊆ X

More generally we shall describe a subspace Y ⊆ X as comm-square invariant for
T ∈ G provided

8.3 comm2(T )Y ⊆ Y .

More generally still we will say that Y is holomorphically invariant for T when

8.4 Holo(T )Y ⊆ Y .

Evidently this is the same as inverse invariant, in the sense that if λ ∈ C there is
implication

T − λI ∈ G−1 =⇒ (T − λI)−1Y ⊆ Y

There is obvious implication

(8.1) =⇒ (8.3) =⇒ (8.4) =⇒ (6.1)
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It turns out [2] that none of these three implications is reversible; the counterexam-
ples can all be taken to be 2× 2 matrices of familiar operators such as the forward
and backward shift. It also turns out that a spectrally invariant subspace Y ⊆ X,
in the sense of (7.6), is hyperinvariant, in the sense (8.1), and also reducing: this
means that it has an invariant complement, in the sense of a closed subspace Z ⊆ X
for which

Y + Z = X , Y ∩ Z = O ≡ {0} , T (Z) ⊆ Z

In general ([2] Example 5) neither of hyperinvariant and reducing implies the other;
also ([2] Example 4) hyperinvariant and reducing do not together imply spectral
invariance (7.6).

9. BLOCK STRUCTURE for OPERATORS

Associated with an invariant subspace T (Y ) ⊆ Y ⊆ X for a linear operator
T ∈ L(X) we have a family of block triangular matrices of operators

TU =

(

TY U
0 T/Y

)

:

(

Y
X/Y

)

→

(

Y
X/Y

)

with

9.2 U ∈ L(X/Y, Y ) ;

in the bottom left hand corner we have (cf [2] (0.3))

9.3 KY TJY = T/Y KY JY = KY JY TY = 0 ∈ L(Y,X/Y ) .

If f ∈ Holo(σ(TY ) ∪ σ(T/Y )) then, with

9.4 T ′

U =

(

TY TY U − UT/Y

0 T/Y

)

, QU =

(

IY U
0 0/Y

)

,

we have 8

9.5 f(T ′

U ) =

(

f(TY ) f(TY )U − Uf(T/Y )
0 f(T/Y )

)

,

and also ([13] Theorem 1) necessary and sufficient for spectral invariance (7.6) is
that

9.6 QU ∈ Holo(T ′

U ) .

As in the block diagonal case, the weaker left,right disjointness conditions (5.1)
and (5.2) are ([13] Theorem 3) together sufficient for membership of the double
commutant:

9.7 QU ∈ comm2(T ′

U ) .

This turns out ([2] Theorem 7) to be helpful towards a sort of converse [3] to
Lomonosov’s theorem.
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10. PRIMES and EUCLID

We observe [10] a curious analogy between the spectral theory of operators and
the prime factorization of integers: if we write

n = p
ν1(n)
1 p

ν2(n)
2 . . . p

νk(n)
k

for the prime factorization of n ∈ N ⊆ Z, with

p = (p1, p2, p3, . . .) = (2, 3, 5, 7, 11, 13, . . .)

for the usual sequence of prime numbers, then it is tempting to interpret

{pj : j ∈ N, νj(n) 6= 0} = ̟(n)

as some kind of “spectrum” of n ∈ N. For example

n = 1 ⇐⇒ ̟(n) = ∅

n ∈ 1 +N is a prime power if and only if ̟(n) is a singleton,

#̟(n) = 1

and is square free if and only if every prime factor occurs with multiplicity one:

j ∈ N =⇒ νj(n) ≤ 1

If {m,n} ⊆ 1 +N then ([16] Corollary 4.1.3, Theorem 7.2.2)

10.7 ̟(mn) = ̟(m) ∪̟(n) ,

and, by the Euclidean algorithm, spectral disjointness gives rise to a sort of “ex-
actness”:

̟(m) ∩̟(n) = ∅ =⇒ 1 ∈ Zm+ nZ

The background motivation, stimulated by Rosenthal-cubed [16], would be to try
and apply linear algebra intuitions to elementary number theory. In another di-
rection, Read [15], using essentially (10.7) as the definition, shows that all Banach
algebra primes “have closed range”.
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Abstract. In this paper, we introduce the notion of generalized weakly
ZG,α,µ,ξ,η,ϕ−contraction maps with respect to the CG−simulation function
and prove the existence of PPF dependent fixed points of nonself maps in
Banach spaces. For such maps, PPF dependent fixed points may not be unique.
We provide an example to illustrate this phenomenon.

1. INTRODUCTION AND PRELIMINARIES

In fixed point theory, Banach contraction principle is one of the well known
basic fundemental result and it gives an idea for the existence of fixed points with
uniqueness in complete metric spaces. In 1997, Alber and Gurre-Delabriere [1]
introduced weakly contractive maps which are extensions of contraction maps and
obtained fixed point results in the setting of Hilbert spaces. Rhoades [9] extended
this concept to metric spaces. Based on this idea, many authors generalized and
extended the contraction maps and weakly contractive maps by introducing new
functions like α−admissible maps, C−class function, simulation function etc., for
more details we refer [2, 10, 14, 18].

Throughout this paper, we denote the real line by R, R+ = [0,∞), and N is the
set of all natural numbers, Z is the set of integers.

In 2011, Choudhury, Konar, Rhoades and Metiya [16] introduced the notion of
generalized weakly contractive mapping as follows and proved the existence of fixed
points of generalized weakly contractive mappings in complete metric spaces.

Definition 1.1. [16] Let (X, d) be a metric space, T a self-mapping of X. We shall
call T a generalized weakly contractive mapping if for any x, y ∈ X,

ψ(d(Tx, Ty)) ≤ ψ(m(x, y))− φ(max{d(x, y), d(y, Ty)}),
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Key words and phrases. α−admissible mapping, µ−subadmissible mapping, C−class function,

Razumikhin class, PPF dependent fixed point, simulation function, CG−simulation function.
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where
(i) ψ : R+ → R

+ is a continuous monotone increasing function with
ψ(t) = 0 ⇐⇒ t = 0,

(ii) φ : R+ → R
+ is a continuous function with φ(t) = 0 ⇐⇒ t = 0,

(iii) m(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), 12 [d(x, Ty) + d(y, Tx)]}.

Theorem 1.1. [16] Let (X, d) be a complete metric space, T a generalized weakly
contractive self-mapping of X. Then T has a unique fixed point.

In 2012, Samet, Vetro and Vetro [30] introduced the concept of α−admissible
mappings as follows.

Definition 1.2. [30] Let (X, d) be a metric space. Let T : X → X and
α : X×X → R

+ be two functions. Then T is said to be an α−admissible mapping
if

α(x, y) ≥ 1 =⇒ α(Tx, Ty) ≥ 1 (1.1)

for all x, y ∈ X.

In 2013, Karapınar, Kumam and Salimi [23] introduced the notion of triangular
α−admissible mappings as follows.

Definition 1.3. [23] Let T be a self-mapping of X and let α : X ×X → R
+ be a

function. Then T is said to be a triangular α−admissible mapping if

α(x, y) ≥ 1 =⇒ α(Tx, Ty) ≥ 1 and

α(x, z) ≥ 1, α(z, y) ≥ 1 =⇒ α(x, y) ≥ 1
(1.2)

for all x, y, z ∈ X.

In 2014, Ansari [2] introduced the concept of C−class function as follows.

Definition 1.4. [2] A mapping G : R+ × R
+ → R is called a C−class function

if it is continuous and for any s, t ∈ R
+, the function G satisfies the following

conditions:
(i) G(s, t) ≤ s and
(ii) G(s, t) = s implies that either s = 0 or t = 0.
The family of all C−class functions is denoted by ∆.

Example 1.1. [2] The following functions belong to ∆.
(i) G(s, t) = s− t for all s, t ∈ R

+.
(ii) G(s, t) = ks for all s, t ∈ R

+ where 0 < k < 1.
(iii) G(s, t) = s

(1+t)r for all s, t ∈ R
+ where r ∈ R

+.

(iv) G(s, t) = sβ(s) for all s, t ∈ R
+ where β : R+ → [0, 1) is continuous.

In 2015, Khojasteh, Shukla and Radenović [24] introduced the notion of sim-
ulation function and proved the existence of fixed points of ZH−contractions in
complete metric spaces.

Definition 1.5. [24] A function ζ : R
+ × R

+ → R is said to be a simulation
function if it satisfies the following conditions:
(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(t, s) < s− t for all t, s > 0;
(ζ3) if {tn}, {sn} are sequences in (0,∞) such that lim

n→∞
tn = lim

n→∞
sn > 0, then

lim sup
n→∞

ζ(tn, sn) < 0.
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We denote the set of all simulation functions in the sense of Definition 1.5 by
ZH .

Example 1.2. [24, 22] Let φi : R
+ → R

+ be a continuous function with φi(t) = 0
if and only if t = 0 for i = 1, 2, 3. Then the following functions ζ : R+ × R

+ → R

belong to ZH .
(i) ζ(t, s) = s

s+1 − t for all t, s ∈ R
+.

(ii) ζ(t, s) = λs− t for all t, s ∈ R
+ and 0 < λ < 1.

(iii) ζ(t, s) = φ1(s)− φ2(t) for all t, s ∈ R
+, where φ1(t) < t ≤ φ2(t) for all t > 0.

Definition 1.6. [24] Let (X, d) be a metric space, T : X → X be a mapping and
ζ ∈ ZH . Then T is called a ZH−contraction with respect to ζ if

ζ(d(Tx, Ty), d(x, y)) ≥ 0 (1.3)

for all x, y ∈ X.

Theorem 1.2. [24] Let (X, d) be a complete metric space and T : X → X be a
ZH−contraction with respect to ζ. Then T has a unique fixed point u in X and for
every x0 ∈ X the Picard sequence {xn} where xn = Txn−1 for any n ∈ N converges
to the fixed point of T .

In 2015, Nastasi and Vetro [4] proved the existence of fixed points in complete
metric spaces by using simulation functions and a lower semicontinuous function.

Theorem 1.3. [4] Let (X, d) be a complete metric space and let
T : X → X be a mapping. Suppose that there exist a simulation function ζ and a
lower semicontinuous function ϕ : X → R

+ such that

ζ(d(Tx, Ty) + ϕ(Tx) + ϕ(Ty), d(x, y) + ϕ(x) + ϕ(y)) ≥ 0 (1.4)

for any x, y ∈ X. Then T has a unique fixed point u such that ϕ(u) = 0.

In 2018, Cho [14] introduced the notion of generalized weakly contractive map-
pings in metric spaces and proved the existence of its fixed points in complete metric
spaces.

Definition 1.7. [14] Let (X, d) be a metric space, T a self-mapping of X. Then T
is called a generalized weakly contractive mapping if

ψ(d(Tx, Ty) + ϕ(Tx) + ϕ(Ty)) ≤ ψ(m(x, y, d, T, ϕ))− φ(l(x, y, d, T, ϕ)) (1.5)

for all x, y ∈ X, where
(i) ψ : R+ → R

+ is a continuous function and ψ(t) = 0 ⇐⇒ t = 0,
(ii) φ : R+ → R

+ is a lower semicontinuous function and φ(t) = 0 ⇐⇒ t = 0,
(iii) m(x, y, d, T, ϕ) = max{d(x, y) + ϕ(x) + ϕ(y), d(x, Tx) + ϕ(x) + ϕ(Tx),

d(y, Ty) + ϕ(y) + ϕ(Ty),
1
2 [d(x, Ty) + ϕ(x) + ϕ(Ty) + d(y, Tx) + ϕ(y) +

ϕ(Tx)]},
(iv) l(x, y, d, T, ϕ) = max{d(x, y) + ϕ(x) + ϕ(y), d(y, Ty) + ϕ(y) + ϕ(Ty)} and
(v) ϕ : X → R

+ is a lower semicontinuous function.

Theorem 1.4. [14] Let (X, d) be a complete metric space. If T is a generalized
weakly contractive mapping, then there exists a unique z ∈ X such that z = Tz and
ϕ(z) = 0.
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In 2018, Liu, Ansari, Chandok and Radenović [25] generalized the simulation
function introduced by Khojasteh, Shukla and Radenović [24] by using C−class
functions with CG property.

Definition 1.8. [25] A mapping G : R+ × R
+ → R has the property CG if there

exists an CG ≥ 0 such that
(i) for any s, t ∈ R

+, G(s, t) > CG implies s > t, and
(ii) G(t, t) ≤ CG for all t ∈ R

+.

Example 1.3. [25] The following functions are elements of ∆ that have property
CG for all t, s ∈ R

+:
(i) G(s, t) = s− t, CG = r, r ∈ R

+,

(ii) G(s, t) = s− (2+t)t
1+t , CG = 0,

(iii) G(s, t) = s
1+kt , k ≥ 1, CG = r

1+k , r ≥ 2.

Definition 1.9. [25] A function ζ : R+ × R
+ → R is said to be a CG−simulation

function if it satisfies the following conditions:
(ζ4) ζ(0, 0) = 0;
(ζ5) ζ(t, s) < G(s, t) for all t, s > 0 where G ∈ ∆ has property CG;
(ζ6) if {tn}, {sn} are sequences in (0,∞) such that lim

n→∞
tn = lim

n→∞
sn > 0 and

tn < sn then lim sup
n→∞

ζ(tn, sn) < CG.

We denote the set of all CG−simulation functions by ZG.

Example 1.4. [25] The following functions ζ belong to ZG.
(i) Let k ∈ R be such that k < 1 and ζ : R+ × R

+ → R be the function defined
by ζ(t, s) = kG(s, t)− t, here CG = 0.

(ii) Let k ∈ R be such that k < 1 and let ζ : R+ ×R
+ → R be the function defined

by ζ(t, s) = kG(s, t), here CG = 1.
(iii) We define ζ : R+ × R

+ → R by ζ(t, s) = λs− t, where λ ∈ (0, 1) and
G : R+ × R

+ → R by G(s, t) = s− t for any s, t ∈ R
+.

Clearly ζ(0, 0) = 0 and G ∈ ∆ with CG = 0.
Clearly ζ(t, s) = λs− t < s− t = G(s, t) and hence ζ satisfies (ζ5).
If {tn}, {sn} are sequences in (0,∞) such that lim

n→∞
tn = lim

n→∞
sn = k > 0

and tn < sn for all n ∈ N, then
lim sup
n→∞

ζ(tn, sn) = lim sup
n→∞

(λsn − tn) = λk − k = (λ− 1)k < 0.

Therefore ζ satisfies (ζ6) and hence ζ ∈ ZG.

In 1977, Bernfeld, Lakshmikantham and Reddy [12] introduced the concept of
fixed point for mappings that have different domains and ranges which is called
PPF (Past, Present and Future) dependent fixed point, for more details we refer
[6, 11, 17, 19, 21, 26].

Let (E, ||.||E) be a Banach space and we denote it simply by E. Let I = [a, b] ⊆ R

and E0 = C(I, E), the set of all continuous functions on I equipped with the
supremum norm ||.||E0

and we define it by ||φ||E0
= sup
a≤t≤b

||φ(t)||E for φ ∈ E0.

For a fixed c ∈ I, the Razumikhin class Rc of functions in E0 is defined by
Rc =

{

φ ∈ E0/ ||φ||E0
= ||φ(c)||E

}

. Clearly every constant function from I to E
belongs to Rc so that Rc is a non-empty subset of E0 .

Definition 1.10. [12] Let Rc be the Razumikhin class of continuous functions in
E0. We say that
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(i) the class Rc is algebraically closed with respect to the difference if φ−ψ ∈ Rc
whenever φ, ψ ∈ Rc.

(ii) the class Rc is topologically closed if it is closed with respect to the topology
on E0 by the norm ||.||E0

.

The Razumikhin class of functions Rc has the following properties.

Theorem 1.5. [5] Let Rc be the Razumikhin class of functions in E0. Then
i) E0 = ∪Rc

c∈[a,b]
.

ii) for any φ ∈ Rc and α ∈ R, we have αφ ∈ Rc.
iii) the Razumikhin class Rc is topologically closed with respect to the norm defined

on E0.
iv) ∩Rc

c∈[a,b]
= {φ ∈ E0 | φ : I → E is constant} .

Definition 1.11. [12] Let T : E0 → E be a mapping. A function φ ∈ E0 is said to
be a PPF dependent fixed point of T if Tφ = φ(c) for some c ∈ I.

Definition 1.12. [12] Let T : E0 → E be a mapping. Then T is called a Banach
type contraction if there exists k ∈ [0, 1) such that ||Tφ− Tψ||E ≤ k ||φ− ψ||E0

for
all φ, ψ ∈ E0.

Theorem 1.6. [12] Let T : E0 → E be a Banach type contraction. Let Rc be
algebraically closed with respect to the difference and topologically closed. Then T
has a unique PPF dependent fixed point in Rc.

Definition 1.13. [28] Let c ∈ I. Let T : E0 → E and α : E × E → R
+ be two

functions. Then T is said to be an αc−admissible mapping if

α(φ(c), ψ(c)) ≥ 1 =⇒ α(Tφ, Tψ) ≥ 1 (1.6)

for all φ, ψ ∈ E0.

In 2013, Hussain, Khaleghizadeh, Salimi and Akbar [21] introduced the concept
of αc−admissible mapping with respect to µc and proved theorems for the exis-
tence of PPF dependent fixed points and PPF dependent coincidence points for
contractive mappings in Banach spaces.

Definition 1.14. [21] Let c ∈ I and T : E0 → E. Let α, µ : E × E → R
+ be two

functions. Then T is said to be an αc−admissible mapping with respect to µc if

α(φ(c), ψ(c)) ≥ µ(φ(c), ψ(c)) =⇒ α(Tφ, Tψ) ≥ µ(Tφ, Tψ) (1.7)

for all φ, ψ ∈ E0.

Note that, if we take µ(x, y) = 1 for all x, y ∈ E then αc−admissible mapping
with respect to µc is an αc−admissible mapping. If we take α(x, y) = 1 for all
x, y ∈ E in (1.7) then we say that T is a µc−subadmissible mapping.

In 2014, Ćirić, Alsulami, Salimi and Vetro [13] introduced the concept of trian-
gular αc−admissible mapping with respect to µc as follows.

Definition 1.15. [13] Let c ∈ I and T : E0 → E. Let α, µ : E × E → R
+ be two

functions. Then T is said to be a triangular αc−admissible mapping with respect
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to µc if














(i) α(φ(c), ψ(c)) ≥ µ(φ(c), ψ(c)) =⇒ α(Tφ, Tψ) ≥ µ(Tφ, Tψ)
and

(ii) α(φ(c), ψ(c)) ≥ µ(φ(c), ψ(c)), α(ψ(c), ϕ(c)) ≥ µ(ψ(c), ϕ(c))
=⇒ α(φ(c), ϕ(c)) ≥ µ(φ(c), ϕ(c)).

(1.8)

for all φ, ψ, ϕ ∈ E0.

Lemma 1.7. [13] Let T be a triangular αc−admissible mapping with respect to µc.
We define the sequence {φn} by Tφn = φn+1(c) for all n ∈ N∪{0}, where φ0 ∈ Rc is
such that α(φ0(c), Tφ0) ≥ µ(φ0(c), Tφ0). Then α(φm(c), φn(c)) ≥ µ(φm(c), φn(c))
for all m,n ∈ N with m < n.

Remark. If µ(x, y) = 1 for any x, y ∈ E in Lemma 1.7, we get the following
lemma.

Lemma 1.8. Let T be a triangular αc−admissible mapping. We define the sequence
{φn} by Tφn = φn+1(c) for all n ∈ N ∪ {0}, where φ0 ∈ Rc is such that
α(φ0(c), Tφ0) ≥ 1. Then α(φm(c), φn(c)) ≥ 1 for all m,n ∈ N with m < n.

Remark. If α(x, y) = 1 for any x, y ∈ E in Lemma 1.7, we get the following
lemma.

Lemma 1.9. Let T be a triangular µc−subadmissible mapping. We define the
sequence {φn} by Tφn = φn+1(c) for all n ∈ N ∪ {0}, where φ0 ∈ Rc is such that
µ(φ0(c), Tφ0) ≤ 1. Then µ(φm(c), φn(c)) ≤ 1 for all m,n ∈ N with m < n.

Lemma 1.10. [7] Let {φn} be a sequence in E0 such that ||φn − φn+1||E0
→ 0 as

n → ∞. If {φn} is not a Cauchy sequence, then there exists an ǫ > 0 and two
subsequences {φmk

} and {φnk
} of {φn} with mk > nk > k such that

||φnk
− φmk

||E0
≥ ǫ, ||φnk

− φmk−1||E0
< ǫ and

i) lim
k→∞

||φnk
− φmk+1||E0

= ǫ, ii) lim
k→∞

||φnk+1 − φmk
||E0

= ǫ,

iii) lim
k→∞

||φnk
− φmk

||E0
= ǫ, iv) lim

k→∞
||φnk+1 − φmk+1||E0

= ǫ.

In Section 2, we introduce the notion of generalized weakly ZG,α,µ,ξ,η,ϕ−contraction
map with respect to a CG−simulation function ζ ∈ ZG and prove the existence of
PPF dependent fixed points of these maps in Banach spaces(Theorem 2.1) which
is the main result of this paper. For such maps, PPF dependent fixed points may
not be unique. In Section 3, we draw some corollaries and an example is provided
to illustrate our main result.

2. EXISTENCE of PPF DEPENDENT FIXED POINTS

We denote
Ψ = {ξ | ξ : R+ → R

+ is continuous, nondecreasing and ξ(t) = 0 ⇐⇒ t = 0}
and
Φ = {η | η : R+ → R

+ is continuous and η(t) = 0 ⇐⇒ t = 0}.
Based on the results of [4, 14, 16] we introduce a notion of generalized weakly

ZG,α,µ,ξ,η,ϕ−contraction map with respect to ζ ∈ ZG as follows.

Definition 2.1. Let c ∈ I. Let T : E0 → E be a function and ζ ∈ ZG. If there exist
ξ ∈ Ψ, η ∈ Φ, α : E × E → R

+, µ : E × E → (0,∞), and a lower semicontinuous
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function ϕ : E → R
+ such that

ζ(α(φ(c), ψ(c))ξ(||Tφ− Tψ||E + ϕ(Tφ) + ϕ(Tψ)),
µ(φ(c), ψ(c))(ξ(M(φ, ψ))− η(N(φ, ψ)))) ≥ CG

(2.1)
for all φ, ψ ∈ E0, where ξ(t) > η(t) for any t > 0,
M(φ, ψ) = max{||φ−ψ||E0

+ϕ(φ(c)) +ϕ(ψ(c)), ||φ(c)− Tφ||E +ϕ(φ(c)) +ϕ(Tφ),
||ψ(c)− Tψ||E + ϕ(ψ(c)) + ϕ(Tψ),

1
2 [||φ(c)−Tψ||E+ϕ(φ(c))+ϕ(Tψ)+||ψ(c)−Tφ||E+ϕ(ψ(c))+ϕ(Tφ)]}

and
N(φ, ψ) = max{||φ−ψ||E0

+ϕ(φ(c))+ϕ(ψ(c)), ||ψ(c)−Tψ||E +ϕ(ψ(c))+ϕ(Tψ)}
then we say that T is a generalized weakly ZG,α,µ,ξ,η,ϕ−contraction map with respect
to ζ.

Remark. (i) If ϕ(x) = 0 for any x ∈ E in the inequality (2.1) then T is called a
generalized weakly ZG,α,µ,ξ,η−contraction map with respect to ζ.
(ii) If ϕ(x) = 0, µ(x, y) = 1 = α(x, y) for any x, y ∈ E in the inequality (2.1) then

T is called a generalized weakly ZG,ξ,η−contraction map with respect to ζ.
(iii) If ϕ(x) = 0, µ(x, y) = 1 = α(x, y) for any x, y ∈ E and ξ(t) = t for any t ∈ R

+

in the inequality (2.1) then T is called a generalized weakly ZG,η−contraction
map with respect to ζ.

Theorem 2.1. Let c ∈ I. Let T : E0 → E be a function satisfying the following
conditions:
(i) T is a generalized weakly ZG,α,µ,ξ,η,ϕ−contraction map with respect to ζ,

(ii) T is a triangular αc−admissible mapping and triangular µc−subadmissible
mapping,

(iii) Rc is algebraically closed with respect to the difference,
(iv) if {φn} is a sequence in E0 such that φn → φ as n→ ∞, α(φn(c), φn+1(c)) ≥ 1

and µ(φn(c), φn+1(c)) ≤ 1 for any n ∈ N ∪ {0} then α(φn(c), φ(c)) ≥ 1 and
µ(φn(c), φ(c)) ≤ 1 for any n ∈ N ∪ {0} and

(v) there exists φ0 ∈ Rc such that α(φ0(c), Tφ0) ≥ 1 and µ(φ0(c), Tφ0) ≤ 1.
Then T has a PPF dependent fixed point φ∗ ∈ Rc such that ϕ(φ∗(c)) = 0.

Proof. From (v) we have φ0 ∈ Rc such that α(φ0(c), Tφ0) ≥ 1 and
µ(φ0(c), Tφ0) ≤ 1. Let {φn} be a sequence in Rc defined by

Tφn = φn+1(c) (2.2)

for any n = 0, 1, 2, 3... .
Since Rc is algebraically closed with respect to the difference, we have

||φn+1 − φn||E0
= ||φn+1(c)− φn(c)||E (2.3)

for any n = 0, 1, 2, 3... .
Since T is triangular αc−admissible and triangular µc−subadmissible mappings,
by Lemma 1.8 and Lemma 1.9 we have

α(φm(c), φn(c)) ≥ 1
and

µ(φm(c), φn(c)) ≤ 1
(2.4)

for any m,n ∈ N with m < n.
If there exists n ∈ N ∪ {0} such that φn = φn+1 then Tφn = φn+1(c) = φn(c)
and hence φn ∈ Rc is a PPF dependent fixed point of T .
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Suppose that φn 6= φn+1 for any n ∈ N ∪ {0}.
If either M(φn, φn+1) = 0 or N(φn, φn+1) = 0 then the result is trivial.
Suppose that M(φn, φn+1) 6= 0 and N(φn, φn+1) 6= 0.
We consider
M(φn, φn+1) = max{||φn − φn+1||E0

+ ϕ(φn(c)) + ϕ(φn+1(c)),
||φn(c)− Tφn||E + ϕ(φn(c)) + ϕ(Tφn),
||φn+1(c)− Tφn+1||E + ϕ(φn+1(c)) + ϕ(Tφn+1),
1
2 [||φn(c)− Tφn+1||E + ϕ(φn(c)) + ϕ(Tφn+1) +

||φn+1(c)− Tφn||E + ϕ(φn+1(c)) + ϕ(Tφn)]}
= max{||φn − φn+1||E0

+ ϕ(φn(c)) + ϕ(φn+1(c)),
||φn − φn+1||E0

+ ϕ(φn(c)) + ϕ(φn+1(c)),
||φn+1 − φn+2||E0

+ ϕ(φn+1(c)) + ϕ(φn+2(c)),
1
2 [||φn − φn+2||E0

+ ϕ(φn(c)) + ϕ(φn+2(c)) +
||φn+1 − φn+1||E0

+ ϕ(φn+1(c)) + ϕ(φn+1(c))]}
= max{||φn − φn+1||E0

+ ϕ(φn(c)) + ϕ(φn+1(c)),
||φn+1 − φn+2||E0

+ ϕ(φn+1(c)) + ϕ(φn+2(c))}
and
N(φn, φn+1) = max{||φn − φn+1||E0

+ ϕ(φn(c)) + ϕ(φn+1(c)),
||φn+1(c)− Tφn+1||E + ϕ(φn+1(c)) + ϕ(Tφn+1)}

= max{||φn − φn+1||E0
+ ϕ(φn(c)) + ϕ(φn+1(c)),

||φn+1 − φn+2||E0
+ ϕ(φn+1(c)) + ϕ(φn+2(c))}.

Suppose that
max{||φn − φn+1||E0

+ ϕ(φn(c)) + ϕ(φn+1(c)), ||φn+1 − φn+2||E0
+ ϕ(φn+1(c)) +

ϕ(φn+2(c))}
= ||φn+1 − φn+2||E0

+ ϕ(φn+1(c)) + ϕ(φn+2(c)).
ClearlyM(φn, φn+1) = N(φn, φn+1) = ||φn+1−φn+2||E0

+ϕ(φn+1(c))+ϕ(φn+2(c)).
Since φn+1 6= φn+2, we have ||φn+1 − φn+2||E0

> 0 and hence
||φn+1 − φn+2||E0

+ ϕ(φn+1(c)) + ϕ(φn+2(c)) > 0 and which implies that
ξ(||φn+1 − φn+2||E0

+ ϕ(φn+1(c)) + ϕ(φn+2(c))) > 0.
Therefore
α(φn(c), φn+1(c))ξ(||Tφn − Tφn+1||E + ϕ(Tφn) + ϕ(Tφn+1))

= α(φn(c), φn+1(c))ξ(||φn+1−φn+2||E0
+ϕ(φn+1(c))+ϕ(φn+2(c))) >

0.
Since ξ(t) > η(t) for any t > 0 we have ξ(M(φn, φn+1))− η(N(φn, φn+1)) > 0 and
hence µ(φn(c), φn+1(c))(ξ(M(φn, φn+1))− η(N(φn, φn+1))) > 0.
From (2.1), we have
CG ≤ ζ(α(φn(c), φn+1(c))ξ(||Tφn − Tφn+1||E + ϕ(Tφn) + ϕ(Tφn+1)),

µ(φn(c), φn+1(c))(ξ(M(φn, φn+1))− η(N(φn, φn+1))))
< G(µ(φn(c), φn+1(c))(ξ(M(φn, φn+1))− η(N(φn, φn+1))),

α(φn(c), φn+1(c))ξ(||Tφn − Tφn+1||E + ϕ(Tφn) + ϕ(Tφn+1))).
(by

(ζ5))
Now by the property CG , we get
µ(φn(c), φn+1(c))(ξ(M(φn, φn+1))− η(N(φn, φn+1)))

> α(φn(c), φn+1(c))ξ(||Tφn − Tφn+1||E + ϕ(Tφn) + ϕ(Tφn+1)).
Clearly
ξ(||φn+1 − φn+2||E0

+ ϕ(φn+1(c)) + ϕ(φn+2(c))) = ξ(M(φn, φn+1))
> ξ(M(φn, φn+1))− η(N(φn, φn+1))



74 G. V. R. BABU AND M. VINOD KUMAR

≥ µ(φn(c), φn+1(c))(ξ(M(φn, φn+1))− η(N(φn, φn+1)))
> α(φn(c), φn+1(c))ξ(||Tφn−Tφn+1||E+ϕ(Tφn)+ϕ(Tφn+1))
≥ ξ(||φn+1 − φn+2||E0

+ ϕ(φn+1(c)) + ϕ(φn+2(c))),
a contradiction.
Therefore
||φn−φn+1||E0

+ϕ(φn(c))+ϕ(φn+1(c)) > ||φn+1−φn+2||E0
+ϕ(φn+1(c))+ϕ(φn+2(c))

and hence M(φn, φn+1) = N(φn, φn+1) = ||φn−φn+1||E0
+ϕ(φn(c))+ϕ(φn+1(c)).

Let dn = ||φn − φn+1||E0
+ ϕ(φn(c)) + ϕ(φn+1(c)).

Then the sequence {dn} is a decreasing sequence and hence convergent.
Let lim

n→∞
dn = k (say). Suppose that k > 0.

Since φn 6= φn+1 we have dn = ||φn − φn+1||E0
+ ϕ(φn(c)) + ϕ(φn+1(c)) > 0

and which implies that ξ(dn) = ξ(||φn − φn+1||E0
+ ϕ(φn(c)) + ϕ(φn+1(c))) > 0.

Similarly η(dn) > 0. Clearly M(φn, φn+1) = N(φn, φn+1) = dn and hence
µ(φn(c), φn+1(c))(ξ(dn)− η(dn)) > 0.
Similarly dn+1 > 0 and which implies that α(φn(c), φn+1(c))ξ(dn+1) > 0.
From (2.1), we have

CG ≤ ζ(α(φn(c), φn+1(c))ξ(||φn+1 − φn+2||E0
+ ϕ(φn+1(c)) + ϕ(φn+2(c))),

µ(φn(c), φn+1(c))(ξ(dn)− η(dn)))
(2.5)

= ζ(α(φn(c), φn+1(c))ξ(dn+1), µ(φn(c), φn+1(c))(ξ(dn)− η(dn)))
< G(µ(φn(c), φn+1(c))(ξ(dn)−η(dn)), α(φn(c), φn+1(c))ξ(dn+1)). (by(ζ5))

Now by the property CG , we get that
µ(φn(c), φn+1(c))(ξ(dn)− η(dn)) > α(φn(c), φn+1(c))ξ(dn+1).
Clearly
ξ(dn) > ξ(dn)− η(dn)

≥ µ(φn(c), φn+1(c))(ξ(dn)− η(dn))
> α(φn(c), φn+1(c))ξ(dn+1)
≥ ξ(dn+1).

On applying limits as n→ ∞, we get that
lim
n→∞

µ(φn(c), φn+1(c))(ξ(dn)−η(dn)) = lim
n→∞

α(φn(c), φn+1(c))ξ(dn+1) = ξ(k) > 0.

On applying limit superior to (2.5), we get that
CG ≤ lim sup

n→∞
ζ(α(φn(c), φn+1(c))ξ(dn+1), µ(φn(c), φn+1(c))(ξ(dn)− η(dn)))

< CG, (by (ζ6))
a contradiction.
Therefore k = 0 and hence lim

n→∞
[||φn − φn+1||E0

+ ϕ(φn(c)) + ϕ(φn+1(c))] = 0.

That is
lim
n→∞

||φn − φn+1||E0
= 0 and lim

n→∞
ϕ(φn(c)) = 0. (2.6)

We now show that the sequence {φn} is a Cauchy sequence in Rc.
Suppose that the sequence {φn} is not a Cauchy sequence.
Then there exists an ǫ > 0 and two subsequences {φmk

} and {φnk
} of {φn} with

mk > nk > k such that ||φnk
− φmk

||E0
≥ ǫ, ||φnk

− φmk−1||E0
< ǫ and by

Lemma 1.10 we have,

lim
k→∞

||φnk
− φmk

||E0
= ǫ and

lim
k→∞

||φnk
− φmk+1||E0

= ǫ = lim
k→∞

||φnk+1 − φmk
||E0

= lim
k→∞

||φnk+1 − φmk+1||E0
.

(2.7)
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Let dnkmk
= ||φnk

− φmk
||E0

+ ϕ(φnk
(c)) + ϕ(φmk

(c)).

Then from (2.6) and (2.7) it follows that
lim
k→∞

dnkmk
= ǫ = lim

k→∞
dnk+1mk+1.

Since ξ is continuous, we get that

lim
k→∞

ξ(dnk+1mk+1) = ξ(ǫ) > 0. (2.8)

We consider
M(φnk

, φmk
) = max{||φnk

− φmk
||E0

+ ϕ(φnk
(c)) + ϕ(φmk

(c)),
||φnk

(c)− Tφnk
||E + ϕ(φnk

(c)) + ϕ(Tφnk
),

||φmk
(c)− Tφmk

||E + ϕ(φmk
(c)) + ϕ(Tφmk

),
1
2 [||φnk

(c)− Tφmk
||E + ϕ(φnk

(c)) + ϕ(Tφmk
) +

||φmk
(c)− Tφnk

||E + ϕ(φmk
(c)) + ϕ(Tφnk

)]}
= max{||φnk

− φmk
||E0

+ ϕ(φnk
(c)) + ϕ(φmk

(c)),
||φnk

− φnk+1||E0
+ ϕ(φnk

(c)) + ϕ(φnk+1(c)),
||φmk

− φmk+1||E0
+ ϕ(φmk

(c)) + ϕ(φmk+1(c)),
1
2 [||φnk

− φmk+1||E0
+ ϕ(φnk

(c)) + ϕ(φmk+1(c)) +
||φmk

−φnk+1||E0
+ϕ(φmk

(c)) +ϕ(φnk+1(c))]}
= max{dnkmk

, dnknk+1, dmkmk+1,
1
2 [dnkmk+1 + dmknk+1]}.

On applying limits as k → ∞, we get that lim
k→∞

M(φnk
, φmk

) = ǫ.

We consider
N(φnk

, φmk
) = max{||φnk

− φmk
||E0

+ ϕ(φnk
(c)) + ϕ(φmk

(c)),
||φmk

(c)− Tφmk
||E + ϕ(φmk

(c)) + ϕ(Tφmk
)}

= max{||φnk
− φmk

||E0
+ ϕ(φnk

(c)) + ϕ(φmk
(c)),

||φmk
− φmk+1||E0

+ ϕ(φmk
(c)) + ϕ(φmk+1(c))}

= max{dnkmk
, dmkmk+1}.

On applying limits as k → ∞, we get that lim
k→∞

N(φnk
, φmk

) = ǫ.

Since ξ, η are continuous, we have
lim
k→∞

ξ(M(φnk
, φmk

)) = ξ(ǫ) > 0 and lim
k→∞

η(N(φnk
, φmk

)) = η(ǫ) > 0.

Therefore

lim
k→∞

(ξ(M(φnk
, φmk

))− η(N(φnk
, φmk

))) = ξ(ǫ)− η(ǫ) > 0. (2.9)

(since ξ(t) > η(t)
for t > 0)
From (2.8) and (2.9), there exists k1 ∈ N such that

ξ(M(φnk
, φmk

))− η(N(φnk
, φmk

)) > ξ(ǫ)−η(ǫ)
2 > 0

and
ξ(dnk+1mk+1) >

η(ǫ)
2 > 0

(2.10)

for any k ≥ k1.
From (2.4), we have

α(φnk
(c), φmk

(c))ξ(dnk+1mk+1) ≥ ξ(dnk+1mk+1) > 0 and
µ(φnk

(c), φmk
(c))(ξ(M(φnk

, φmk
))− η(N(φnk

, φmk
))) > 0.

(2.11)

for any k ≥ k1.
For any k ≥ k1, from (2.1) we have
CG ≤ ζ(α(φnk

(c), φmk
(c))ξ(||Tφnk

− Tφmk
||E + ϕ(Tφnk

) + ϕ(Tφmk
)),

µ(φnk
(c), φmk

(c))(ξ(M(φnk
, φmk

))− η(N(φnk
, φmk

))))
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= ζ(α(φnk
(c), φmk

(c))ξ(||φnk+1 − φmk+1||E0
+ ϕ(φnk+1(c)) + ϕ(φmk+1(c))),

µ(φnk
(c), φmk

(c))(ξ(M(φnk
, φmk

))− η(N(φnk
, φmk

))))

= ζ(α(φnk
(c), φmk

(c))ξ(dnk+1mk+1),
µ(φnk

(c), φmk
(c))(ξ(M(φnk

, φmk
))− η(N(φnk

, φmk
))))

(2.12)
< G(µ(φnk

(c), φmk
(c))(ξ(M(φnk

, φmk
))− η(N(φnk

, φmk
))),

α(φnk
(c), φmk

(c))ξ(dnk+1mk+1)).
(by (2.11) and (ζ5))

Now by the property CG, we have

µ(φnk
(c), φmk

(c))(ξ(M(φnk
, φmk

))− η(N(φnk
, φmk

)))
> α(φnk

(c), φmk
(c))ξ(dnk+1mk+1).

(2.13)
Clearly
ξ(M(φnk

, φmk
)) > ξ(M(φnk

, φmk
))− η(N(φnk

, φmk
))

≥ µ(φnk
(c), φmk

(c))(ξ(M(φnk
, φmk

))− η(N(φnk
, φmk

)))
> α(φnk

(c), φmk
(c))ξ(dnk+1mk+1) (by(2.13))

≥ ξ(dnk+1mk+1).
On applying limits as k → ∞, we get that

lim
k→∞

µ(φnk
(c), φmk

(c))(ξ(M(φnk
, φmk

))− η(N(φnk
, φmk

)))

= lim
k→∞

α(φnk
(c), φmk

(c))ξ(dnk+1mk+1) = ξ(ǫ) > 0.
(2.14)

On applying limit superior as k → ∞ to (2.12), by (2.13) ,(2.14) and (ζ6) we get
CG ≤ lim sup

k→∞
ζ(α(φnk

(c), φmk
(c))ξ(dnk+1mk+1),

µ(φnk
(c), φmk

(c))(ξ(M(φnk
, φmk

))− η(N(φnk
, φmk

))))
< CG,

a contradiction.
Therefore the sequence {φn} is a Cauchy sequence in Rc.
Since E0 is complete, there exists φ∗ ∈ E0 such that φn → φ∗.
Since Rc is topologically closed, we have φ∗ ∈ Rc.
Clearly ||φ∗||E0

= ||φ∗(c)||E . (since φ∗ ∈ Rc)
Since ϕ is lower semicontinuous function, we have
ϕ(φ∗(c)) ≤ lim inf

n→∞
ϕ(φn(c)) = 0 and hence ϕ(φ∗(c)) = 0.

We now show that Tφ∗ = φ∗(c). Suppose that Tφ∗ 6= φ∗(c).
From (2.4) we have α(φn(c), φn+1(c)) ≥ 1 and µ(φn(c), φn+1(c)) ≤ 1
for any n ∈ N ∪ {0}.
From (iv) we get that α(φn(c), φ∗(c)) ≥ 1 and µ(φn(c), φ∗(c)) ≤ 1
for any n ∈ N ∪ {0}.
We consider
M(φn, φ

∗) = max{||φn − φ∗||E0
+ ϕ(φn(c)) + ϕ(φ∗(c)),

||φn(c)− Tφn||E + ϕ(φn(c)) + ϕ(Tφn),
||φ∗(c)− Tφ∗||E + ϕ(φ∗(c)) + ϕ(Tφ∗),
1
2 [||φn(c)− Tφ∗||E + ϕ(φn(c)) + ϕ(Tφ∗) +

||φ∗(c)− Tφn||E + ϕ(φ∗(c)) + ϕ(Tφn)]}
= max{||φn − φ∗||E0

+ ϕ(φn(c)) + ϕ(φ∗(c)),
||φn − φn+1||E0

+ ϕ(φn(c)) + ϕ(φn+1(c)),
||φ∗(c)− Tφ∗||E + ϕ(φ∗(c)) + ϕ(Tφ∗),
1
2 [||φn(c)− Tφ∗||E + ϕ(φn(c)) + ϕ(Tφ∗) +
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||φ∗ − φn+1||E0
+ ϕ(φ∗(c)) + ϕ(φn+1(c))]}

and
N(φn, φ

∗) = max{||φn − φ∗||E0
+ ϕ(φn(c)) + ϕ(φ∗(c)),

||φ∗(c)− Tφ∗||E + ϕ(φ∗(c)) + ϕ(Tφ∗)}.
If either M(φn, φ

∗) = 0 or N(φn, φ
∗) = 0 then Tφ∗ = φ∗(c),

a contradiction.
Therefore M(φn, φ

∗) > 0 and N(φn, φ
∗) > 0.

Clearly M(φn, φ
∗) ≥ N(φn, φ

∗).
Since ξ(t) > η(t) for t > 0 we have ξ(M(φn, φ

∗)) ≥ ξ(N(φn, φ
∗)) > η(N(φn, φ

∗))
and hence ξ(M(φn, φ

∗))− η(N(φn, φ
∗)) > 0.

Clearly

µ(φn(c), φ
∗(c))(ξ(M(φn, φ

∗))− η(N(φn, φ
∗))) > 0. (2.15)

If ||Tφn − Tφ∗||E + ϕ(Tφn) + ϕ(Tφ∗) = 0 then φn+1(c) = Tφn = Tφ∗.
On applying limits as n→ ∞, we get φ∗(c) = Tφ∗,
a contradiction.
Therefore ||Tφn − Tφ∗||E + ϕ(Tφn) + ϕ(Tφ∗) > 0 and hence
ξ(||Tφn − Tφ∗||E + ϕ(Tφn) + ϕ(Tφ∗)) > 0.
Clearly

α(φn(c), φ
∗(c))ξ(||Tφn − Tφ∗||E + ϕ(Tφn) + ϕ(Tφ∗)) > 0. (2.16)

From (2.1) we have
CG ≤ ζ(α(φn(c), φ

∗(c))ξ(||Tφn − Tφ∗||E + ϕ(Tφn) + ϕ(Tφ∗)),
µ(φn(c), φ

∗(c))(ξ(M(φn, φ
∗))−η(N(φn, φ

∗))))
< G(µ(φn(c), φ

∗(c))(ξ(M(φn, φ
∗))− η(N(φn, φ

∗))),
α(φn(c), φ

∗(c))ξ(||Tφn − Tφ∗||E + ϕ(Tφn) + ϕ(Tφ∗))).
Now by the property CG, we get that

µ(φn(c), φ
∗(c))(ξ(M(φn, φ

∗))− η(N(φn, φ
∗)))

> α(φn(c), φ
∗(c))ξ(||Tφn − Tφ∗||E + ϕ(Tφn) + ϕ(Tφ∗)).

(2.17)
On applying limits as n→ ∞ to M(φn, φ

∗) and N(φn, φ
∗), we get that

lim
n→∞

M(φn, φ
∗) = ||φ∗(c)− Tφ∗||E + ϕ(Tφ∗) = lim

n→∞
N(φn, φ

∗).

Since ξ is continuous, we get that
lim
n→∞

ξ(M(φn, φ
∗)) = ξ(||φ∗(c)− Tφ∗||E + ϕ(Tφ∗)) > 0. (since Tφ∗ 6= φ∗(c))

Clearly
ξ(M(φn, φ

∗)) > ξ(M(φn, φ
∗))− η(N(φn, φ

∗))
≥ µ(φn(c), φ

∗(c))(ξ(M(φn, φ
∗))− η(N(φn, φ

∗)))
> α(φn(c), φ

∗(c))ξ(||Tφn − Tφ∗||E + ϕ(Tφn) + ϕ(Tφ∗))
≥ ξ(||Tφn − Tφ∗||E + ϕ(Tφn) + ϕ(Tφ∗))
= ξ(||φn+1(c)− Tφ∗||E + ϕ(φn+1(c)) + ϕ(Tφ∗)).

On applying limits as n→ ∞, we get
lim
n→∞

α(φn(c), φ
∗(c))ξ(||Tφn − Tφ∗||E + ϕ(Tφn) + ϕ(Tφ∗))

= lim
n→∞

µ(φn(c), φ
∗(c))(ξ(M(φn, φ

∗))− η(N(φn, φ
∗)))

= ξ(||φ∗(c)− Tφ∗||E + ϕ(Tφ∗)) > 0.
From (2.1) we have
CG ≤ ζ(α(φn(c), φ

∗(c))ξ(||Tφn − Tφ∗||E + ϕ(Tφn) + ϕ(Tφ∗)),
µ(φn(c), φ

∗(c))(ξ(M(φn, φ
∗))− η(N(φn, φ

∗)))).
On applying limit superior as n→ ∞, by (ζ6) we get that
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CG ≤ lim sup
n→∞

ζ(α(φn(c), φ
∗(c))ξ(||Tφn − Tφ∗||E + ϕ(Tφn) + ϕ(Tφ∗)),

µ(φn(c), φ
∗(c))(ξ(M(φn, φ

∗))− η(N(φn, φ
∗))))

< CG,
a contradiction.

Therefore Tφ∗ = φ∗(c) and hence φ∗ ∈ Rc is a PPF dependent fixed point of T
such that ϕ(φ∗(c)) = 0. �

3. COROLLARIES and EXAMPLES

Corollary 3.1. Let c ∈ I. Let T : E0 → E be a function satisfying the following
conditions:
(i) T is a generalized weakly ZG,α,µ,ξ,η−contraction map with respect to ζ,

(ii) T is a triangular αc−admissible mapping and triangular µc−subadmissible
mapping,

(iii) Rc is algebraically closed with respect to the difference,
(iv) if {φn} is a sequence in E0 such that φn → φ as n→ ∞, α(φn(c), φn+1(c)) ≥ 1

and µ(φn(c), φn+1(c)) ≤ 1 for any n ∈ N ∪ {0} then α(φn(c), φ(c)) ≥ 1 and
µ(φn(c), φ(c)) ≤ 1 for any n ∈ N ∪ {0} and

(v) there exists φ0 ∈ Rc such that α(φ0(c), Tφ0) ≥ 1 and µ(φ0(c), Tφ0) ≤ 1.
Then T has a PPF dependent fixed point in Rc.

Proof. By taking ϕ(x) = 0 for any x ∈ E in Theorem 2.1 we obtain the desired
result. �

By choosing α(x, y) = 1 = µ(x, y) for any x, y ∈ E in Corollary 3.1 we get the
following corollary.

Corollary 3.2. Let c ∈ I. Let T : E0 → E be a function satisfying the following
conditions:
(i) T is a generalized weakly ZG,ξ,η−contraction map with respect to ζ and

(ii) Rc is algebraically closed with respect to the difference.
Then T has a PPF dependent fixed point in Rc.

By choosing ξ(t) = t for any t ∈ R
+ in Corollary 3.2 we get the following

corollary.

Corollary 3.3. Let c ∈ I. Let T : E0 → E be a function satisfying the following
conditions:
(i) T is a generalized weakly ZG,η−contraction map with respect to ζ and

(ii) Rc is algebraically closed with respect to the difference.
Then T has a PPF dependent fixed point in Rc.

By choosing α(x, y) = 1 = µ(x, y) for any x, y ∈ E, ξ(t) = t for any t ∈ R
+ and

CG = 0 in Theorem 2.1 we get the following corollary.

Corollary 3.4. Let c ∈ I and ζ ∈ ZG. Let T : E0 → E be a function satisfying
the following conditions:
(i) if there exist η ∈ Φ and a lower semicontinuous function ϕ : E → R

+ such
that

ζ(||Tφ− Tψ||E + ϕ(Tφ) + ϕ(Tψ),M(φ, ψ)− η(N(φ, ψ))) ≥ 0
for any φ, ψ ∈ E0, where η(t) < t for any t > 0,
M(φ, ψ) = max{||φ−ψ||E0

+ϕ(φ(c))+ϕ(ψ(c)), ||φ(c)−Tφ||E+ϕ(φ(c))+ϕ(Tφ),
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||ψ(c)− Tψ||E + ϕ(ψ(c)) + ϕ(Tψ),
1
2 [||φ(c)−Tψ||E+ϕ(φ(c))+ϕ(Tψ)+||ψ(c)−Tφ||E+ϕ(ψ(c))+ϕ(Tφ)]},

N(φ, ψ) = max{||φ−ψ||E0
+ϕ(φ(c))+ϕ(ψ(c)), ||ψ(c)−Tψ||E+ϕ(ψ(c))+ϕ(Tψ)}

and
(ii) Rc is algebraically closed with respect to the difference.
Then T has a PPF dependent fixed point φ∗ ∈ Rc such that ϕ(φ∗(c)) = 0.

By choosing ϕ(x) = 0 for any x ∈ E in Corollary 3.4 we get the following
corollary.

Corollary 3.5. Let c ∈ I and ζ ∈ ZG. Let T : E0 → E be a function satisfying
the following conditions:
(i) if there exists η ∈ Φ such that

ζ(||Tφ− Tψ||E ,M(φ, ψ)− η(N(φ, ψ))) ≥ 0
for any φ, ψ ∈ E0, where η(t) < t for any t > 0,
M(φ, ψ) = max{||φ− ψ||E0

, ||φ(c)− Tφ||E , ||ψ(c)− Tψ||E ,
1
2 [||φ(c)− Tψ||E + ||ψ(c)− Tφ||E ]},

N(φ, ψ) = max{||φ− ψ||E0
, ||ψ(c)− Tψ||E}

and
(ii) Rc is algebraically closed with respect to the difference.
Then T has a PPF dependent fixed point in Rc.

By choosing ζ(t, s) = λs − t, G(s, t) = s − t for any s, t ∈ R
+, CG = 0 and

λ ∈ (0, 1) in Theorem 2.1 we get the following corollary.

Corollary 3.6. Let c ∈ I. Let T : E0 → E be a function satisfying the following
conditions:
(i) if there exist ξ ∈ Ψ, η ∈ Φ, α : E × E → R

+, µ : E × E → (0,∞), λ ∈ (0, 1)
and a lower semicontinuous function ϕ : E → R

+ such that

α(φ(c), ψ(c))ξ(||Tφ− Tψ||E + ϕ(Tφ) + ϕ(Tψ))
≤ λµ(φ(c), ψ(c))(ξ(M(φ, ψ))− η(N(φ, ψ)))

(3.1)

for any φ, ψ ∈ E0, where ξ(t) > η(t) for any t > 0,
M(φ, ψ) = max{||φ − ψ||E0

+ ϕ(φ(c)) + ϕ(ψ(c)), ||φ(c) − Tφ||E + ϕ(φ(c)) +
ϕ(Tφ),

||ψ(c)− Tψ||E + ϕ(ψ(c)) + ϕ(Tψ),
1
2 [||φ(c)−Tψ||E+ϕ(φ(c))+ϕ(Tψ)+||ψ(c)−Tφ||E+ϕ(ψ(c))+ϕ(Tφ)]},

N(φ, ψ) = max{||φ− ψ||E0
+ ϕ(φ(c)) + ϕ(ψ(c)),
||ψ(c)− Tψ||E + ϕ(ψ(c)) + ϕ(Tψ)},

(ii) T is a triangular αc−admissible mapping and triangular µc−subadmissible
mapping,

(iii) Rc is algebraically closed with respect to the difference,
(iv) if {φn} is a sequence in E0 such that φn → φ as n→ ∞, α(φn(c), φn+1(c)) ≥ 1

and µ(φn(c), φn+1(c)) ≤ 1 for any n ∈ N ∪ {0} then α(φn(c), φ(c)) ≥ 1 and
µ(φn(c), φ(c)) ≤ 1 for any n ∈ N ∪ {0} and

(v) there exists φ0 ∈ Rc such that α(φ0(c), Tφ0) ≥ 1 and µ(φ0(c), Tφ0) ≤ 1.
Then T has a PPF dependent fixed point φ∗ ∈ Rc such that ϕ(φ∗(c)) = 0.

By choosing ξ(t) = t, t ∈ R
+ in Corollary 3.6 we get the following corollary.

Corollary 3.7. Let c ∈ I. Let T : E0 → E be a function satisfying the following
conditions:
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(i) if there exist η ∈ Φ, α : E × E → R
+, µ : E × E → (0,∞), λ ∈ (0, 1) and a

lower semicontinuous function ϕ : E → R
+ such that

α(φ(c), ψ(c))(||Tφ− Tψ||E + ϕ(Tφ) + ϕ(Tψ))
≤ λµ(φ(c), ψ(c))(M(φ, ψ)− η(N(φ, ψ))

(3.2)

for any φ, ψ ∈ E0, where η(t) < t for any t > 0,
M(φ, ψ) = max{||φ − ψ||E0

+ ϕ(φ(c)) + ϕ(ψ(c)), ||φ(c) − Tφ||E + ϕ(φ(c)) +
ϕ(Tφ),

||ψ(c)− Tψ||E + ϕ(ψ(c)) + ϕ(Tψ),
1
2 [||φ(c)−Tψ||E+ϕ(φ(c))+ϕ(Tψ)+||ψ(c)−Tφ||E+ϕ(ψ(c))+ϕ(Tφ)]},

N(φ, ψ) = max{||φ− ψ||E0
+ ϕ(φ(c)) + ϕ(ψ(c)),
||ψ(c)− Tψ||E + ϕ(ψ(c)) + ϕ(Tψ)},

(ii) T is a triangular αc−admissible mapping and triangular µc−subadmissible
mapping,

(iii) Rc is algebraically closed with respect to the difference,
(iv) if {φn} is a sequence in E0 such that φn → φ as n→ ∞, α(φn(c), φn+1(c)) ≥ 1

and µ(φn(c), φn+1(c)) ≤ 1 for any n ∈ N ∪ {0} then α(φn(c), φ(c)) ≥ 1 and
µ(φn(c), φ(c)) ≤ 1 for any n ∈ N ∪ {0} and

(v) there exists φ0 ∈ Rc such that α(φ0(c), Tφ0) ≥ 1 and µ(φ0(c), Tφ0) ≤ 1.
Then T has a PPF dependent fixed point φ∗ ∈ Rc such that ϕ(φ∗(c)) = 0.

By choosing If ϕ(x) = 0 for any x ∈ E in Corollay 3.7 we get the following
corollary.

Corollary 3.8. Let c ∈ I. Let T : E0 → E be a function satisfying the following
conditions:
(i) if there exist η ∈ Φ, α : E × E → R

+, µ : E × E → (0,∞) and λ ∈ (0, 1) such
that

α(φ(c), ψ(c))||Tφ− Tψ||E ≤ λµ(φ(c), ψ(c))(M(φ, ψ)− η(N(φ, ψ))) (3.3)

for any φ, ψ ∈ E0, where η(t) < t for any t > 0,
M(φ, ψ) = max{||φ− ψ||E0

, ||φ(c)− Tφ||E , ||ψ(c)− Tψ||E ,
1
2 [||φ(c)− Tψ||E + ||ψ(c)− Tφ||E ]},

N(φ, ψ) = max{||φ− ψ||E0
, ||ψ(c)− Tψ||E},

(ii) T is a triangular αc−admissible mapping and triangular µc−subadmissible
mapping,

(iii) Rc is algebraically closed with respect to the difference,
(iv) if {φn} is a sequence in E0 such that φn → φ as n→ ∞, α(φn(c), φn+1(c)) ≥ 1

and µ(φn(c), φn+1(c)) ≤ 1 for any n ∈ N ∪ {0} then α(φn(c), φ(c)) ≥ 1 and
µ(φn(c), φ(c)) ≤ 1 for any n ∈ N ∪ {0} and

(v) there exists φ0 ∈ Rc such that α(φ0(c), Tφ0) ≥ 1 and µ(φ0(c), Tφ0) ≤ 1.
Then T has a PPF dependent fixed point in Rc.

By choosing α(x, y) = 1 = µ(x, y) for any x, y ∈ E in Corollay 3.6 we get the
following corollary.

Corollary 3.9. Let c ∈ I. Let T : E0 → E be a function satisfying the following
conditions:
(i) if there exist ξ ∈ Ψ, η ∈ Φ, λ ∈ (0, 1) and a lower semicontinuous function
ϕ : E → R

+ such that

ξ(||Tφ− Tψ||E + ϕ(Tφ) + ϕ(Tψ)) ≤ λ(ξ(M(φ, ψ))− η(N(φ, ψ))) (3.4)
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for any φ, ψ ∈ E0, where ξ(t) > η(t) for any t > 0,
M(φ, ψ) = max{||φ − ψ||E0

+ ϕ(φ(c)) + ϕ(ψ(c)), ||φ(c) − Tφ||E + ϕ(φ(c)) +
ϕ(Tφ),

||ψ(c)− Tψ||E + ϕ(ψ(c)) + ϕ(Tψ),
1
2 [||φ(c)−Tψ||E+ϕ(φ(c))+ϕ(Tψ)+||ψ(c)−Tφ||E+ϕ(ψ(c))+ϕ(Tφ)]},

N(φ, ψ) = max{||φ− ψ||E0
+ ϕ(φ(c)) + ϕ(ψ(c)),
||ψ(c)− Tψ||E + ϕ(ψ(c)) + ϕ(Tψ)},

(ii) Rc is algebraically closed with respect to the difference.
Then T has a PPF dependent fixed point φ∗ ∈ Rc such that ϕ(φ∗(c)) = 0.

By choosing ϕ(x) = 0 for any x ∈ E in Corollay 3.9 we get the following corollary.

Corollary 3.10. Let c ∈ I. Let T : E0 → E be a function satisfying the following
conditions:
(i) if there exist ξ ∈ Ψ, η ∈ Φ and λ ∈ (0, 1) such that

ξ(||Tφ− Tψ||E) ≤ λ(ξ(M(φ, ψ))− η(N(φ, ψ))) (3.5)

for any φ, ψ ∈ E0, where ξ(t) > η(t) for any t > 0,
M(φ, ψ) = max{||φ− ψ||E0

, ||φ(c)− Tφ||E , ||ψ(c)− Tψ||E ,
1
2 [||φ(c)− Tψ||E + ||ψ(c)− Tφ||E ]},

N(φ, ψ) = max{||φ− ψ||E0
, ||ψ(c)− Tψ||E},

(ii) Rc is algebraically closed with respect to the difference.
Then T has a PPF dependent fixed point in Rc.

By choosing ξ(t) = t for any t ∈ R
+ in Corollary 3.10 we get the following

corollary.

Corollary 3.11. Let c ∈ I. Let T : E0 → E be a function satisfying the following
conditions:
(i) if there exist η ∈ Φ and λ ∈ (0, 1) such that

||Tφ− Tψ||E ≤ λ(M(φ, ψ)− η(N(φ, ψ)))
for any φ, ψ ∈ E0, where η(t) < t for any t > 0,
M(φ, ψ) = max{||φ− ψ||E0

, ||φ(c)− Tφ||E , ||ψ(c)− Tψ||E ,
1
2 [||φ(c)− Tψ||E + ||ψ(c)− Tφ||E ]},

N(φ, ψ) = max{||φ− ψ||E0
, ||ψ(c)− Tψ||E}

and
(ii) Rc is algebraically closed with respect to the difference.
Then T has a PPF dependent fixed point in Rc.

We present the following example in support of Theorem 2.1, which suggests
that under the hypotheses of Theorem 2.1, T may have more than one fixed point.

Example 3.1. Let E = R, c = 1 ∈ I = [ 12 , 2] ⊆ R, E0 = C(I, E).
We define T : E0 → E,α : E × E → R

+, µ : E × E → (0,∞) by

Tφ =







−2 if φ(c) ≤ 0
3φ(c)−4

2 if 0 ≤ φ(c) < 1
2

− 1
2 if φ(c) ≥ 1

2 ,

α(x, y) =

{

1 if x ≥ y
0 if x < y,

and

µ(x, y) =

{ 1√
2

if x ≥ y

2 if x < y.
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We first prove that T is an αc−admissible mapping.
For any φ, ψ ∈ E0, we suppose that α(φ(c), ψ(c)) ≥ 1.
From the definition of α, we get φ(c) ≥ ψ(c).
Case (i): Suppose that 0 ≤ φ(c), ψ(c) < 1

2 .

Clearly 3φ(c)− 4 ≥ 3ψ(c)− 4 and which implies that 3φ(c)−4
2 ≥ 3ψ(c)−4

2 .
Therefore Tφ ≥ Tψ and hence α(Tφ, Tψ) ≥ 1.
Case (ii): Suppose that φ(c), ψ(c) ≥ 1

2 .

Clearly Tφ = − 1
2 = Tψ and which implies that α(Tφ, Tψ) ≥ 1.

Case (iii): Suppose that φ(c), ψ(c) ≤ 0.

Clearly Tφ = −2 = Tψ and which implies that α(Tφ, Tψ) ≥ 1.
Case (iv): Suppose that 0 ≤ φ(c) < 1

2 and ψ(c) ≤ 0.

Since φ(c) ≥ 0 we have Tφ = 3φ(c)−4
2 ≥ −2 = Tψ

and which implies that α(Tφ, Tψ) ≥ 1.
Case (v): Suppose that φ(c) ≥ 1

2 and ψ(c) ≤ 0.

Clearly Tφ = − 1
2 > −2 = Tψ and which implies that α(Tφ, Tψ) ≥ 1.

Case (vi): Suppose that φ(c) ≥ 1
2 and 0 ≤ ψ(c) < 1

2 .

Since ψ(c) ≤ 1 we have Tφ = − 1
2 ≥ 3ψ(c)−4

2 = Tψ and
which implies that α(Tφ, Tψ) ≥ 1.
From the above cases, we get that T is an αc−admissible mapping.
For any φ, ψ, γ ∈ E0, we suppose that α(φ(c), ψ(c)) ≥ 1 and α(ψ(c), γ(c)) ≥ 1.
From the definition of α, we get φ(c) ≥ ψ(c) ≥ γ(c).
Therefore φ(c) ≥ γ(c) and hence α(φ(c), γ(c)) ≥ 1.
Therefore T is a traingular αc−admissible mapping.
Similarly, we can prove that T is a triangular µc−subadmissible mapping.
Let λ = 1√

2
. Then λ ∈ (0, 1).

We define ϕ : E → R
+ by

ϕ(x) =







0 if x ≤ 0
x if 0 ≤ x < 1

2
0 if x ≥ 1

2 .

Clearly ϕ is a lower semicontinuous function.
We define η : R+ → R

+ by η(t) = t
2 for any t ∈ R

+. Clearly η ∈ Φ.
Let φ, ψ ∈ E0.
If φ(c) < ψ(c) then from the definition of α, the inequality (3.2) trivially holds.
Without loss of generality, we assume that φ(c) ≥ ψ(c).
From the definition of α, we get Tφ ≥ Tψ.
We consider
||Tφ− Tψ||E + ϕ(Tφ) + ϕ(Tψ) ≤ Tφ− Tψ + Tφ+ Tψ = 2 Tφ.
Therefore

α(φ(c), ψ(c))(||Tφ− Tψ||E + ϕ(Tφ) + ϕ(Tψ)) ≤ 2 Tφ. (3.6)

Also we have
M(φ, ψ) = max{||φ−ψ||E0

+ϕ(φ(c)) +ϕ(ψ(c)), ||φ(c)− Tφ||E +ϕ(φ(c)) +ϕ(Tφ),
||ψ(c)− Tψ||E + ϕ(ψ(c)) + ϕ(Tψ),

1
2 [||φ(c)−Tψ||E+ϕ(φ(c))+ϕ(Tψ)+||ψ(c)−Tφ||E+ϕ(ψ(c))+ϕ(Tφ)]}

≥ max{||φ−ψ||E0
+ϕ(φ(c))+ϕ(ψ(c)), ||ψ(c)−Tψ||E+ϕ(ψ(c))+ϕ(Tψ)}

which implies that
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M(φ, ψ)− η(N(φ, ψ)) ≥ 1
2 max{||φ− ψ||E0

+ ϕ(φ(c)) + ϕ(ψ(c)),
||ψ(c)− Tψ||E + ϕ(ψ(c)) + ϕ(Tψ)}

≥ 1
2 max{||φ(c)− ψ(c)||E + ϕ(φ(c)) + ϕ(ψ(c)),

||ψ(c)− Tψ||E + ϕ(ψ(c)) + ϕ(Tψ)}
= 1

2 max{φ(c)− ψ(c) + ϕ(φ(c)) + ϕ(ψ(c)),
||ψ(c)− Tψ||E + ϕ(ψ(c)) + ϕ(Tψ)}.

(since φ(c) ≥ ψ(c))
Therefore

M(φ, ψ)− η(N(φ, ψ)) ≥ 1
2 max{φ(c)− ψ(c) + ϕ(φ(c)) + ϕ(ψ(c)),

||ψ(c)− Tψ||E + ϕ(ψ(c)) + ϕ(Tψ)}.
(3.7)

Case (i): Suppose that Tψ = ψ(c).
If ψ ∈ Rc then ψ is a PPF dependent fixed point of T and hence the result holds.
Let us suppose ψ /∈ Rc.
We define ψ1 : I → E by ψ1(x) = ψ(c), x ∈ I. Clearly ψ1 ∈ Rc.
From the definition of T , we have

Tψ1 =







−2 if ψ1(c) ≤ 0
3ψ1(c)−4

2 if 0 ≤ ψ1(c) <
1
2

− 1
2 if ψ1(c) ≥

1
2 .

That is

Tψ1 =







−2 if ψ(c) ≤ 0
3ψ(c)−4

2 if 0 ≤ ψ(c) < 1
2

− 1
2 if ψ(c) ≥ 1

2 .

Therefore Tψ1 = Tψ = ψ(c) = ψ1(c).
Hence ψ1 is a PPF dependent fixed point of T in Rc and the result follows.
Case (ii): Suppose that ψ(c) < Tψ.

From the definition of T we have ψ(c) < −2 and hence Tψ = −2.
Since φ(c) ≥ ψ(c) we have φ(c) ≤ 0 or 0 ≤ φ(c) < 1

2 or φ(c) ≥ 1
2 .

Suppose that φ(c) ≤ 0. Clearly Tφ = −2.
From (3.7) we have
M(φ, ψ)− η(N(φ, ψ)) ≥ 1

2 max{φ(c)− ψ(c) + ϕ(φ(c)) + ϕ(ψ(c)),
||ψ(c)− Tψ||E + ϕ(ψ(c)) + ϕ(Tψ)}

= 1
2 max{φ(c)− ψ(c), Tψ − ψ(c)}

(since ϕ(φ(c)) = ϕ(ψ(c)) = ϕ(Tψ) = 0)
≥ 1

2 max{0, Tψ − ψ(c)} ≥ 1
2 max{0, Tψ − φ(c)}.

(since φ(c) ≥ ψ(c) =⇒ −ψ(c) ≥ −φ(c))
If φ(c) < Tψ then Tψ − φ(c) > 0 and hence

M(φ, ψ)− η(N(φ, ψ)) ≥ 1
2 (Tψ − φ(c)) = −1− φ(c)

2 .
Clearly

λµ(φ(c), ψ(c))(M(φ, ψ)− η(N(φ, ψ))) ≥ − 1
2 − φ(c)

4 ≥ 2 Tφ.

(since − 1
2 − φ(c)

4 ≥ −4 ⇐⇒ φ(c) ≤ 14)
If φ(c) > Tψ then Tψ − φ(c) < 0 and hence
M(φ, ψ)− η(N(φ, ψ)) ≥ 0 > −4 = 2 (−2) = 2 Tφ.

Suppose that 0 ≤ φ(c) < 1
2 . Clearly Tφ = 3φ(c)−4

2 .
From (3.7) we have
M(φ, ψ)− η(N(φ, ψ)) ≥ 1

2 max{φ(c)− ψ(c) + ϕ(φ(c)) + ϕ(ψ(c)),
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||ψ(c)− Tψ||E + ϕ(ψ(c)) + ϕ(Tψ)}
= 1

2 max{φ(c)− ψ(c) + φ(c), Tψ − ψ(c)}
(since ϕ(ψ(c)) = ϕ(Tψ) = 0)

= 1
2 max{2φ(c)− ψ(c), Tψ − ψ(c)}

≥ 1
2 max{2ψ(c)− ψ(c), Tψ − ψ(c)}

= 1
2 max{ψ(c), Tψ − ψ(c)}

= 1
2 (Tψ − ψ(c)) = −1− ψ(c)

2 ≥ −1− φ(c)
2 .

(since ψ(c) < −2 and Tψ − ψ(c) > 0)
Clearly

λµ(φ(c), ψ(c))(M(φ, ψ)− η(N(φ, ψ))) ≥ − 1
2 − φ(c)

4 ≥ 2 Tφ.

(since − 1
2 − φ(c)

4 ≥ 3φ(c)− 4 ⇐⇒ φ(c) ≤ 14
13 )

Suppose that φ(c) ≥ 1
2 . Clearly Tφ = − 1

2 .
From (3.7) we have
M(φ, ψ)− η(N(φ, ψ)) ≥ 1

2 max{φ(c)− ψ(c) + ϕ(φ(c)) + ϕ(ψ(c)),
||ψ(c)− Tψ||E + ϕ(ψ(c)) + ϕ(Tψ)}

= 1
2 max{φ(c)− ψ(c), Tψ − ψ(c)}

(since ϕ(φ(c)) = ϕ(ψ(c)) = ϕ(Tψ) = 0)
= 1

2 (φ(c)− ψ(c))
(since φ(c) > Tψ we have φ(c)− ψ(c) > Tψ − ψ(c) > 0)
> 0.

Clearly
λµ(φ(c), ψ(c))(M(φ, ψ)− η(N(φ, ψ))) > 0 > −1 = 2(− 1

2 ) = 2 Tφ.
Case (iii): Suppose that ψ(c) > Tψ.

From the definition of T we have 0 ≤ ψ(c) < 1
2 or −2 < ψ(c) ≤ 0 or ψ(c) ≥ 1

2 .

Sub-case (i): Suppose that 0 ≤ ψ(c) < 1
2 . Clearly Tψ = 3ψ(c)−4

2 < 0.

Since φ(c) ≥ ψ(c) we have either 0 ≤ φ(c) < 1
2 or φ(c) ≥ 1

2 .

Suppose that 0 ≤ φ(c) < 1
2 . Clearly Tφ = 3φ(c)−4

2
From (3.7) we have
M(φ, ψ)− η(N(φ, ψ)) ≥ 1

2 max{φ(c)− ψ(c) + ϕ(φ(c)) + ϕ(ψ(c)),
||ψ(c)− Tψ||E + ϕ(ψ(c)) + ϕ(Tψ)}

= 1
2 max{φ(c)− ψ(c) + φ(c) + ψ(c), ψ(c)− Tψ + ψ(c)}

(since Tψ < 0 we have ϕ(Tψ) = 0)
= 1

2 max{2φ(c), 2ψ(c) − Tψ} ≥ 1
2max{2ψ(c), 2ψ(c) −

Tψ}.
(since φ(c) ≥

ψ(c))

= ψ(c)− Tψ
2 . (since Tψ < 0)

Clearly

λµ(φ(c), ψ(c))(M(φ, ψ)−η(N(φ, ψ))) ≥ ψ(c)
2 −Tψ

4 = ψ(c)
2 − 3ψ(c)−4

8 = ψ(c)+4
8 ≥ 2Tφ.

(since φ(c) ≥ ψ(c) and ψ(c)+4
8 ≥ 3φ(c) − 4 ⇐⇒ ψ(c) ≤

36
23 )

Suppose that φ(c) ≥ 1
2 . Clearly Tφ = − 1

2 .
From (3.7) we have
M(φ, ψ)− η(N(φ, ψ)) ≥ 1

2 max{φ(c)− ψ(c) + ϕ(φ(c)) + ϕ(ψ(c)),
||ψ(c)− Tψ||E + ϕ(ψ(c)) + ϕ(Tψ)}

= 1
2 max{φ(c)− ψ(c) + ψ(c), ψ(c)− Tψ + ψ(c)}
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(since φ(c) ≥ 1
2 and Tψ < 0 we have ϕ(ψ(c)) = ϕ(Tψ) = 0)

= 1
2 max{φ(c), 2ψ(c)− Tψ} ≥ 1

2max{ψ(c), 2ψ(c)− Tψ}.
(since φ(c) ≥

ψ(c))

= ψ(c)− Tψ
2 . (since Tψ < 0)

Clearly

λµ(φ(c), ψ(c))(M(φ, ψ)− η(N(φ, ψ))) ≥ ψ(c)
2 − Tψ

4 = ψ(c)
2 − 3ψ(c)−4

8

= ψ(c)+4
8 ≥ 2(− 1

2 ) = 2 Tφ.

(since ψ(c)+4
8 ≥ −1 ⇐⇒ ψ(c) ≥

−12)
Sub-case (ii): Suppose that −2 < ψ(c) ≤ 0. Clearly Tψ = −2.

Since φ(c) ≥ ψ(c) we have either −2 < φ(c) ≤ 0 or 0 ≤ φ(c) < 1
2 or φ(c) ≥ 1

2 .
Suppose that −2 < φ(c) ≤ 0. Clearly Tφ = −2.
From (3.7) we have
M(φ, ψ)− η(N(φ, ψ)) ≥ 1

2 max{φ(c)− ψ(c) + ϕ(φ(c)) + ϕ(ψ(c)),
||ψ(c)− Tψ||E + ϕ(ψ(c)) + ϕ(Tψ)}

= 1
2 max{φ(c)− ψ(c), ψ(c)− Tψ}

(since φ(c), ψ(c), Tψ < 0 we have ϕ(Tψ) = ϕ(φ(c)) = ϕ(ψ(c)) = 0)

≥ 1
2 max{0, ψ(c) + 2} = ψ(c)+2

2 . (since ψ(c) + 2 > 0)
Clearly

λµ(φ(c), ψ(c))(M(φ, ψ)− η(N(φ, ψ))) ≥ ψ(c)+2
4 ≥ −4 = 2 Tφ.

(since ψ(c)+2
4 ≥ −4 ⇐⇒ ψ(c) ≥

−18)

Suppose that 0 ≤ φ(c) < 1
2 . Clearly Tφ = 3φ(c)−4

2 .
From (3.7) we have
M(φ, ψ)− η(N(φ, ψ)) ≥ 1

2 max{φ(c)− ψ(c) + ϕ(φ(c)) + ϕ(ψ(c)),
||ψ(c)− Tψ||E + ϕ(ψ(c)) + ϕ(Tψ)}

= 1
2 max{φ(c)− ψ(c) + φ(c), ψ(c)− Tψ}

(since ψ(c), Tψ ≤ 0 we have ϕ(Tψ) = ϕ(ψ(c)) =
0)

≥ 1
2 max{φ(c), ψ(c) + 2} ≥ 1

2max{ψ(c), ψ(c) + 2}
(since ψ(c)+

2 > 0)

= ψ(c)+2
2 .

Clearly

λµ(φ(c), ψ(c))(M(φ, ψ)− η(N(φ, ψ))) ≥ ψ(c)+2
4 ≥ 2 Tφ.

(since φ(c) ≥ ψ(c) and ψ(c)+2
4 ≥ 3φ(c) − 4 ⇐⇒ ψ(c) ≤

18
11 )

Suppose that φ(c) ≥ 1
2 . Clearly Tφ = − 1

2 .
From (3.7) we have
M(φ, ψ)− η(N(φ, ψ)) ≥ 1

2 max{φ(c)− ψ(c) + ϕ(φ(c)) + ϕ(ψ(c)),
||ψ(c)− Tψ||E + ϕ(ψ(c)) + ϕ(Tψ)}

= 1
2 max{φ(c)− ψ(c), ψ(c)− Tψ}

(since ψ(c), Tψ ≤ 0 and φ(c) ≥ 1
2 we have ϕ(Tψ) = ϕ(φ(c)) = ϕ(ψ(c)) = 0)

≥ 1
2 max{0, ψ(c) + 2} = ψ(c)+2

2 . (since ψ(c) + 2 > 0)
Clearly
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λµ(φ(c), ψ(c))(M(φ, ψ)− η(N(φ, ψ))) ≥ ψ(c)+2
4 ≥ 2 Tφ.

(since ψ(c)+2
4 ≥ −1 ⇐⇒ ψ(c) ≥

−6)
Sub-case (iii): Suppose that ψ(c) ≥ 1

2 . Clearly Tψ = − 1
2 .

Since φ(c) ≥ ψ(c) we have φ(c) ≥ 1
2 . Clearly Tφ = − 1

2 .
From (3.7) we have
M(φ, ψ)− η(N(φ, ψ)) ≥ 1

2 max{φ(c)− ψ(c) + ϕ(φ(c)) + ϕ(ψ(c)),
||ψ(c)− Tψ||E + ϕ(ψ(c)) + ϕ(Tψ)}

= 1
2 max{φ(c)− ψ(c), ψ(c)− Tψ}

(since Tψ ≤ 0 and ψ(c), φ(c) ≥ 1
2 we have ϕ(Tψ) = ϕ(φ(c)) = ϕ(ψ(c)) = 0)

≥ 1
2 max{0, ψ(c) + 1

2} = ψ(c)
2 + 1

4 . (since ψ(c) + 1
2 > 0)

Clearly

λµ(φ(c), ψ(c))(M(φ, ψ)− η(N(φ, ψ))) ≥ ψ(c)
4 + 1

8 ≥ 2 Tφ.

(since ψ(c)
4 + 1

8 ≥ −1 ⇐⇒

ψ(c) ≥ − 9
2 )

From all the above cases, we get
λµ(φ(c), ψ(c))(M(φ, ψ)− η(N(φ, ψ)))

≥ α(φ(c), ψ(c))(||Tφ − Tψ||E + ϕ(Tφ) +
ϕ(Tψ)).
Therefore the inequality (3.2) is holds.
Let {φn} be a sequence in E0 such that α(φn(c), φn+1(c)) ≥ 1 and
µ(φn(c), φn+1(c)) ≤ 1 for any n ∈ N ∪ {0}.
Then from the definition of α, we have φn(c) ≥ φn+1(c) for any n ∈ N ∪ {0} and
hence convergent. Since R is complete, there exists r ∈ R such that
φn(c) → r as n→ ∞.
We define γ : I → E by γ(x) = r, x ∈ I. Then γ ∈ Rc and γ(c) = r.
Therefore φn(c) → γ(c) as n→ ∞. Clearly φn(c) ≥ γ(c) for any n ∈ N ∪ {0}.
From the definition of α and µ, we get α(φn(c), γ(c)) ≥ 1 and µ(φn(c), γ(c)) ≤ 1
for any n ∈ N ∪ {0}. Therefore the condition (iv) is satisfied.
For any n ∈ R, we define φn : I → E by

φn(x) =

{

nx2 if x ∈ [ 12 , 1]
n
x2 if x ∈ [1, 2].

Clearly φn ∈ E0, ||φn||E0
= ||φn(c)||E and hence φn ∈ Rc for any n ∈ R.

Let F0 = {φn | n ∈ R}. Then F0 ⊆ Rc and F0 is algebraically closed with respect to
the difference.
Clearly φ2(c) ≥ Tφ2 and hence α(φ2(c), Tφ2) ≥ 1 and µ(φ2(c), Tφ2) ≤ 1.
Therefore the condition (v) is satisfied.

Therefore T satisfies all the hypotheses of Corollary 3.7 which in turn T satisfies
all the hypotheses of Theorem 2.1 with ζ(t, s) = λs− t, G(s, t) = s− t, ξ(t) = t for
any s, t ∈ R

+, CG = 0 and λ = 1√
2
∈ (0, 1) and hence φ−2 ∈ Rc is a PPF dependent

fixed point of T such that ϕ(φ−2(c)) = 0.
We define γ1 : I → E by

γ1(x) =

{

−2x if x ∈ [ 12 , 1]
2x− 4 if x ∈ [1, 2].
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Clearly ||γ1||E0
= 2 = ||γ1(c)||E and hence γ1 ∈ Rc.

We observe that Tγ1 = γ1(c). (since γ1(c) = −2 < 0, we have Tγ1 = −2 = γ1(c))
Therefore γ1 ∈ Rc is another PPF dependent fixed point of T such that ϕ(γ1(c)) = 0.
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Abstract. In this paper, convex optimization techniques are employed for
convex optimization problems in infinite dimensional Hilbert spaces. A first

order optimality condition is given. Let f : R
n → R and let x ∈ R

n be
a local solution to the problem min

x∈Rn f(x). Then f ′(x, d) ≥ 0 for every

direction d ∈ R
n for which f ′(x, d) exists. Moreover, Let f : R

n → R be

differentiable at x∗ ∈ R
n. If x∗ is a local minimum of f , then ∇f(x∗) = 0.

A simple application involving the Dirichlet problem is also given. Lastly, we

have given optimization conditions involving positive semi-definite matrices.

1. INTRODUCTION

Studies on convex optimization have been carried out by many mathematicians
and it still remains interesting. Convex operators, convex vector-functions among
others, that is, mappings defined on a convex subset of a vector space and with
values in an ordered vector space, have been intensively studied in the last years,
mainly in connection with optimization problems and mathematical programming
in ordered vector spaces (see [1], [3], [5]). The normality of the cone is essential in the
proofs of the continuity properties of convex vector-functions. Lipschitz properties
of continuous convex vector functions defined on an open convex subset of a normed
space and with values in a normed space ordered by a normal cone have also been
considered [6]. Equicontinuity results for pointwise bounded families of continuous
convex mappings have also been studied with many interesting results obtained. It
has been shown that a pointwise bounded family of continuous convex mappings,
defined on an open convex subset of a Banach space X and with values in a normed
space Y ordered by a normal cone, is locally equi-Lipschitz on X. Equicontinuity
and equi-Lipschitz results for families of continuous convex mappings defined on
open convex subsets of Baire topological vector spaces or of barrelled locally convex
spaces and taking values in a topological vector space respectively in a locally convex
space, ordered by a normal cone have also been obtained [7]. We are concerned
here with the classical results on optimization of convex functionals in infinite-
dimensional real Hilbert spaces. When working with infinite-dimensional spaces, a
basic difficulty is that, unlike the case in finite-dimension, being closed and bounded

2010 Mathematics Subject Classification. Primary: 49M30 Secondaries: 65K10; 90C26; 93B40.
Key words and phrases. Optimization; Convexity; Hilbert space.
c©2019 Maltepe Journal of Mathematics.
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does not imply that a set is compact. In reflexive Banach spaces, this problem is
mitigated by working in weak topologies and using the result that the closed unit
ball is weakly compact. This in turn enables mimicking some of the same ideas in
finite-dimensional spaces when working on unconstrained optimization problems. It
is the goal of these note to provide a concise coverage of the problem of minimization
of a convex function on a Hilbert space ([8]-[10]). The focus is on real Hilbert
spaces, where there is further structure that makes some of the arguments simpler.
Namely, proving that a closed and convex set is also weakly sequentially closed
can be done with an elementary argument, whereas to get the same result in a
general Banach space we need to invoke Mazur’s Theorem. The ideas discussed in
this brief note are of great utility in theory of Partial Differential Equations, where
weak solutions of problems are sought in appropriate Sobolev’s spaces [2]. After a
brief review of the requisite preliminaries, we develop the main results. Though,
the results in this note are classical, we provide proofs of key theorems for a self
contained presentation. A simple application, regarding the Dirichlet problem, is
provided for the purposes of illustration. Also, we recall an important point about
notions of compactness and sequential compactness in weak topologies [4]. It is
common knowledge that compactness and sequential compactness are equivalent
in metric spaces. The situation is not obvious in the case of weak topology of an
infinite-dimensional normed linear space [6]. Lastly, we give optimization conditions
involving positive semi-definite matrices.

2. PRELIMINARIES

Definition 2.1. A sequence xn in a Banach space B is said to converge to x ∈ B

if limn→∞ xn = x. Also a sequence xn in a Hilbert space H converges weakly to x
if, limn→∞〈xn, u〉 = 〈x, u〉, ∀u ∈ H. We use the notation xn ⇀ x to mean that xn
converges weakly to x.

Definition 2.2. A set D ⊆ R
n is bounded if there exists a constant M > 0 such

that ‖x‖ < M , for all x ∈ D. The set Dis said to be compact if it is closed and
bounded.

Example 2.1. A closed interval [a, b] is bounded in R, and is therefore also com-
pact. The circle and its interior {(x, y)|x2 + y2 ≤ 1} is a closed set in R

2, and is
also bounded, and therefore it is compact. The interval [0,∞) is closed in R, as its
complement (−∞, 0) is open, but it is not bounded, so it is not compact either.

Definition 2.3. A real valued function f on a Banach space B is lower semi-
continuous (LSC) if f(x) ≤ lim infn→∞ f(xn) for all sequences xn in B such that
xn → x (strongly) and weakly sequentially lower semi-continuous (weakly sequen-
tially LSC) if xn ⇀ x.

Definition 2.4. A non-empty set W is said to be convex if for all β ∈ [0, 1] and
∀ x, y ∈ W βx+ (1− β)y ∈ W. Let X be a metric space and W ⊆ X a non-empty
convex set. A function f :W → R is convex if for all β ∈ [0, 1] and ∀ x, y ∈W

f(βx+ (1− β)y) ≤ βf(x) + (1− β)f(y).

Remark. We note that the function f in the above definition is called strictly
convex if the above inequality is strict for x 6= y and β ∈ (0, 1). A function f is
convex if and only if its epigraph, epi(f), is convex whereby epi(f) := f(x, r) ∈
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dom(f) × R : f(x) ≤ r. An optimization problem is convex if both the objective
function and feasible set are convex.

Definition 2.5. Let R
n be an n-dimensional real space and W ⊆ R

n. A point
x∗ ∈ R

n is called a global minimizer of the optimization problem minx∈W f(x), if
x∗ ∈W and f(x∗) ≤ f(x), for all x ∈W.

Definition 2.6. Let R
n be an n-dimensional real space and W ⊆ R

n. A point
x∗ ∈ R

n is called a local minimizer of the optimization problem minx∈W f(x), if
there exists a neighbourhood N of x∗ such that x∗ is a global minimizer of the
problem P = minx∈W∩N f(x). That is there exists ε > 0 such that f(x∗) ≤ f(x),
whenever x∗ ∈W satisfies ‖x∗ − x‖ ≤ ε.

Remark. Any local minimizer of a convex optimization problem is a global mini-
mizer.

Theorem 2.1. (Weierstrass Extreme Value Theorem) Every continuous function
on a compact set attains its extreme values on that set.

Proposition 2.2. Let B be a Banach space and f : B → R. Then the following
are equivalent. (i). f is (weakly sequentially) LSC.
(ii). epi(f), is (weakly sequentially) closed.

Remark. f : B → R is coercive if for all x ∈ B, lim‖x‖→∞ f(x) = ∞. As

an example, the function f(x, y) = x2 + y2 is coercive, as lim‖x‖→∞ f(x, y) =

lim‖x‖→∞ ‖x‖2 + ∞. Also, A linear function is never coercive. For instance, a

linear function on R
2 has the form f(x, y) = ax + by + c, for constants a, b and c,

and is equal to c along the line defined by the equation ax+ by = 0. Since ‖x‖ → ∞
along this line, but f(x, y) = c along this line, f(x, y) is not coercive. As these
examples show, in order for a function to be coercive, it must approach +∞ along
any path within R

n on which ‖x‖ becomes infinite.

Proposition 2.3. Let f(x) be a continuous function defined on all of Rn. If f(x)
is coercive, then f(x) has a global minimizer. Furthermore, if the first partial
derivatives of f(x) exist on all of Rn, then any global minimizers of f(x) can be
found among the critical points of f(x).

Lemma 2.4. Let f : R
n → R be continuous on all of R

n. The function f is
coercive if and only if for every β ∈ R the set {x|f(x) ≤ β} is compact.

Proof. First we need to show that the coercivity of f implies the compactness of the
sets {x|f(x) ≤ β}.We note that the continuity of f implies the closedness of the sets
{x|f(x) ≤ β}. Therefore, it suffices to show that any set of the form {x|f(x) ≤ β}
is bounded. We prove this by contradiction. Suppose to the contrary that there is
an β ∈ R such that the set S = {x|f(x) ≤ β} is unbounded. Then there must exist
a sequence {xr} ⊂ S with ‖xr‖ → ∞. But then, by the coercivity of f , we must
also have f(xr) → ∞. This contradicts the fact that f(xr) ≤ β for all r = 1, 2, ...
Hence the set S must be bounded. Conversely, assume that that each of the sets
{x|f(x) ≤ β} is bounded and let {xr} ⊂ R be such that ‖xr‖ → ∞. Assume
that there exists a subsequence of the integers J ⊂ N such that the set {f(xr)}J is
bounded above. Then there exists β ∈ R such that {f(xr)}J ⊂ {x|f(x) ≤ β}. But
this cannot be the case since each of the sets {x|f(x) ≤ β} is bounded while every
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subsequence of the sequence {xr} is unbounded by definition. Therefore, the set
{f(xr)}J cannot be bounded, and so the sequence {f(xr)} contains no bounded
subsequence, that is f(xr) → ∞. �

Corollary 2.5. Let f : Rn → R be continuous on all of Rn. If f is coercive, then
f has at least one global minimizer.

Proof. Let β ∈ R be chosen so that the set S = {x|f(x) ≤ β} is non-empty. By coer-
civity, this set is compact. By Weierstrass’s Theorem, the problem min{f(x)|x ∈ S}
has at least one global solution. It is easy to see that the set of global solutions
to the problem min{f(x)|x ∈ S} is a global solution to P and this completes the
proof. �

Remark. We note that coercivity hypothesis is stronger than as strictly required in
order to establish the existence of a solution. Indeed, a global minimizer must exist
if there exist one non-empty compact lower level set. We do not need all of them
to be compact. However, in practice, coercivity is a sufficiency.

Proposition 2.6. Let H be an infinite dimensional real separable Hilbert space and
let W ⊆ H be a (strongly) closed and convex set. Then, W is weakly sequentially
closed.

Proof. Let the sequence xn ⇀ x be in W. It only suffices to show that x ∈ W

by showing that x = φW (x), where φW (x) is the projection of x into the closed
convex set W . Indeed, we know that the projection φW (x) satisfies the variational
inequality, 〈x− φW (x), y − φW (x)〉 ≤ 0, for all y ∈W.

So,
〈x− φW (x), xn − φW (x)〉 ≤ 0, ∀n. (2.1)

But, xn ⇀ x be in W so we have,

‖x− φW (x)‖2 = 〈x− φW (x), x− φW (x)〉

= lim
n→∞

〈x− φW (x), xn − φW (x)〉

Hence, by Equation 2.1 we have ‖x− φW (x)‖ = 0. That is, x = φW (x). �

Lemma 2.7. Let f : H → R be a LSC convex function. Then f is weakly LSC.

Proof. We know that f is convex iff epi(f) is convex. Moreover, epi(f) is strongly
closed because f is (strongly) LSC. By proposition 2.6 we have that epi(f) is weakly
sequentially closed implying that f is weakly sequentially LSC.

�

3. MAIN RESULT

Theorem 3.1. Let H be an infinite dimensional real separable Hilbert space and
W ⊆ H be a weakly sequentially closed and bounded set. Let f : W → R be weakly
sequentially LSC. Then f is bounded from below and has a minimizer on W .

Proof. The proof has two steps:
(i). f is bounded below.
(ii). There exists a minimizer in W.

Step(i): Suppose that f is not bounded from below. Then there exist a se-
quence xn ∈ W such that f(xn) < −n for all n. But W is bounded so xn has a
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weakly convergent subsequence xni
Furthermore, W is weakly sequentially closed

therefore x ∈ W . Then, since f is weakly sequentially LSC we have f(x) ≤
lim infn→∞ f(xni

) = −∞ which is a contradiction. Hence, f is bounded from
below.
Step(ii): Let xn ∈ W be a minimizing sequence for f that is f(xn) → infW f(x).
Let λ := infW f(x). Since W is bounded and weakly sequentially closed, it follows
that xn has a weakly convergent subsequence has a weakly convergent subsequence
xni

∈W . But f is weakly sequentially LSC so we have

λ ≤ f(x∗) ≤ lim inf f(xni
) = lim f(xni

) = λ

So, f(x∗) = λ �

Corollary 3.2. Let H be an infinite dimensional real separable Hilbert space and
W ⊆ H be a weakly sequentially closed and bounded set. Let f : W → R

n be non-
empty and closed, and that f :W → R

n is LSC and coercive. Then the optimization
problem infx∈W f(x) admits at least one global minimizer.

Proof. With an analogy to the proof of Theorem 3.1 the proof of coercivity is
sufficient. �

Theorem 3.3. A function that is strictly convex on W has a unique minimizer on
W.

Proof. Assume the contrary, that f(x) is convex yet there are two points x, y ∈
W such that f(x) and f(y) are local minima. Because of the convexity of W
every point on the secant line βx + (1 − β)y is in W. Without loss of generality
suppose f(x) ≥ f(y) if this is not the case, simply relabel the points. We then
have βf(x) + (1 − β)f(y) < f(y), ∀ β ∈ (0, 1). But f is strictly convex, we also
have f(βx+(1−β)y) < f(x), ∀ β ∈ (0, 1). Taking β arbitrarily close to 0 along the
secant line, z = βx+ (1− β)y remains in W (since W is convex) and f(z) remains
strictly below f(x) (because f is strictly convex). Therefore, there is no open ball
B containing x such that f(x) < f(z), ∀ z(B ∩W ) \ x. Therefore, x is not a local
minimizer, which is a contradiction. �

In this last part we give an optimality conditions. We give the first order condition
for optimality here. Consider the function ψ : R → R given by ψ(t) = f(x + td)
for some choice of x and d in R

n. The key variational object in this context is the
directional derivative of f at a point x in the direction d given by

f ′(x, d) = lim
t↓0

f(x+ td)− f(x)

t
.

When f is differentiable at the point x ∈ R
n, then f ′(x, d) = ∇f(x)T d = ψ′(0).

The next two results give us an optimality condition.

Proposition 3.4. Let f : Rn → R and let x ∈ R
n be a local solution to the problem

minx∈Rn f(x). Then f ′(x, d) ≥ 0 for every direction d ∈ R
n for which f ′(x, d) exists.

Theorem 3.5. Let f : R
n → R be differentiable at x∗ ∈ R

n. If x∗ is a local
minimum of f , then ∇f(x∗) = 0.

Proof. We know that every differentiable function is continuous so by Proposition
3.4 we have we have

0 ≤ f ′(x∗, d) = ∇f(x∗)T d,
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for all d ∈ R
n. Taking d = −∇f(x∗) we obtain 0 ≤ −∇f(x∗)T∇f(x∗) = −‖∇f(x∗)‖2 ≤

0. Therefore, ∇f(x∗) = 0. �

Example 3.1. Consider the Dirichlet problem: −△u = f, in W and u = 0, on
∂W, where W ⊂ R

n is a bounded domain, and f ∈ L2(W ). It is well known that this
problem has a weak solution which is convex and continuous, and coercive. Thus,
the existence of a unique minimizer is ensured by application of Theorem 3.5.

In the next results we consider positive definite matrices. We use concepts from
linear algebra to obtain simpler, more intuitive criteria for determining whether
a symmetric matrix, such as the Hessian of a function at a point, is positive or
negative definite or semi-definite. Let T be an n× n symmetric matrix. A nonzero
vector x ∈ R

n is an eigenvector of T if there exists a scalar λ such that Tx = λx.

The scalar λ is called an eigenvalue of T corresponding to x. From the equation
Tx−λx = (T −λI)x = 0, and the fact that x 6= 0 it follows that the matrix T −λI
is not invertible. Therefore, any eigenvalue λ of T satisfies det(T − λI) = 0. This
determinant is a polynomial of degree n in λ, which is called the characteristic poly-
nomial. Therefore, the eigenvalues can be found by computing the characteristic
polynomial, and then computing its roots. For a general matrix T , the eigenval-
ues may be real or complex, because a polynomial with real coefficients can have
complex roots, but the eigenvalues of a symmetric matrix T are real. Furthermore,
if T is symmetric, there exists an orthogonal matrix P, meaning that P tP = I,

such that T = PDP t, where D is a diagonal matrix whose diagonal entries are the
eigenvalues of T . The columns of P are orthonormal vectors, meaning that they
are orthogonal and are of magnitude 1. They are also the eigenvectors of T . The
following result follows immediately.

Theorem 3.6. Let T be a symmetric matrix on a real Hilbert space. Then the
following conditions hold:
(i). T is positive definite if and only if all of its eigenvalues are positive;
(ii). T is negative definite if and only if all of its eigenvalues are negative;
(iii). T is positive semi-definite if and only if all of its eigenvalues are nonnegative;
(iv). T is negative semi-definite if and only if all of its eigenvalues are non-positive;
(v). T is indefinite if and only if at least one of its eigenvalues is positive and at
least one of its eigenvalues is negative.

Proof. The proof is trivial. �

Next we demonstrate the use of these conditions for optimization in the next
example.

Example 3.2. Let f(x, y, z) = x2 + y2 + z2 − 4xy. Then we have ∇f(x, y, z) =
(2x− 4y, 2y − 4x, 2z), which yields the critical point (0, 0, 0), and

Hf(x, y, z) =





2 −4 0
−4 2 0
0 0 2



 . This matrix has the characteristic polynomial

detHf(x, y, z) − λI = (2 − λ)(λ + 2)(λ − 6). Therefore, the eigenvalues are 2,−2
and 6, which means that the Hessian is indefinite. We conclude that (0, 0, 0) is a
saddle point, and there are no global maximizers or minimizers.
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4. CONCLUSION

This work is geared to its extension to portfolio optimization, whereby appli-
cations to stochastic optimization with regarding Cox-Ross-Rubinstein model and
Hamilton-Jacobi-Bellman Equation will be considered.
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Abstract. In this paper, we investgate the existence of three positive so-

lutions of a nonlinear fractional differential equations with multi-point and
multi-strip boundary conditions. The existence result is obtained by using the
Leggett-Williams fixed point theorem. An example is also given to illustrate

our main results.

1. INTRODUCTION

Differential equations with fractional derivative have been used to model prob-
lems in many fields of science and technology as the mathematical modeling of sys-
tems, processes in the fields of physics, chemistry, biology, economics, control the-
ory, signal and image processing, biophysics, blood flow phenomena, aerodynamics,
fitting of experimental data, finance, etc. (see[3, 11, 15, 16, 17, 21, 25, 26, 28, 31, 36]
and the references therein).

Several definitions of fractional derivative have been presented to the litera-
ture, amongst are; Riemann-Liouville, Caputo and Grunwald-Letnikov definitions,
Atangana-Baleanu operator [4], Liouville-Caputo [22], Caputo-Fabrizio [9], the con-
formable derivative [18].

Many authors have studied the existence and the multiplicity of solutions of
fractional boundary value problems by different approaches. We refer the reader
to ([2, 5, 6, 10, 12]). Furthmore, the research in numerical approximations and
analytical techniques for the solution of different boundary value problems for time-
fractional equation has attracted by ([28, 34, 35, 37]).

Fractional-order multipoint or integral boundary value problems constitute a
very interesting and important class of problems. They have been research topics
from several authors ([1, 7, 13, 23, 29, 30, 32, 33]). It is worth mentioning that,
in 2012, Cabada and Wang [8] investigate the existence of positive solutions of the
following nonlinear fractional differential equations with integral boundary value

2010 Mathematics Subject Classification. Primary: 34B10 ; Secondaries: 34B15, 34B18 .
Key words and phrases. Caputo fractional derivative; multi-strip conditions; Leggett-Williams

fixed point theorem; multiplicity of positive solutions.
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conditions:
{

CDαu (t) + f (t, u (t)) = 0, 0 < t < 1,

u (0) = u′′ (0) = 0, u (1) = λ
∫ 1

0
u (s) ds,

(1.1)

where 2 < α < 3, 0 < λ < 2, CDα is the Caputo fractional derivative and f :
[0, 1]× [0,∞) → [0,∞) by using the Guo–Krasnoselskii fixed point theorem.

In 2014, Zhou and Jiang [38] studied the existence of positive solutions of the
following problem:

{

Dα
0+u (t) + f (t, u (t)) = 0, 0 < t < 1,

u′ (0)− βu (ξ) = 0, u′ (1) +
∑m−3

i=1 γiu (ηi) = 0,
(1.2)

where α is a real number with 1 < α ≤ 2, 0 ≤ β ≤ 1, 0 ≤ γi ≤ 1, i = 1, 2, ...,m− 3,
0 ≤ ξ < η1 < η2 < ... < ηm−3 ≤ 1, and Dα

0+ denotes the Caputo’s derivative. They
used the fixed point index theory and Krein-Rutman theorem.

In 2016, Guo et al.[14] investigate the existence of at least three positive solutions
to the problem

{

CDα
0+u (t) + f (t, u (t) , u′ (t)) = 0, 0 < t < 1,

u (0) = u′′ (0) = 0, u′ (1) =
∑∞

j=1 ηjuξj ,

where 2 < α ≤ 3, ηj ≥ 0, 0 < ξ1 < ξ2... < ξj−1 < ξj < ... < 1 (j = 1, 2, ...) and
CDα

0+ is the standard Caputo derivative. They applying the Avery–Peterson’s fixed
point theorem to obtain the existence of multiple positive solutions .

Motivated and inspired by the works mentioned above, we are concerned with
the existence of multiple positive solutions of the following nonlinear fractional
differential equations with multi-stip conditions







CDα
0+u (t) + h (t) f (t, u (t)) = 0, t ∈ (0, 1) ,

u(i) (0) = 0, i = 2, ..., n− 1,

u′ (0) =
∑m−2

i=1 biu
′ (ηi) , u (1) =

∑m−2
i=1 ai

∫ ηi

ηi−1

u (s) ds,
(1.3)

where CDα
0+ is the Caputo fractional derivatives, n−1 < α ≤ n, n ≥ 3 is an integer.

Using the Leggett-Williams fixed point theorem, we provide sufficient conditions for
the existence of multiple (at least three) positive solutions for the above boundary
value problems.

In the remainder, we assume the following conditions:
(H1) 0 = η0 < η1 < η2... < ηm−2 < 1, ai ≥ 0, bi ≥ 0 , (i = 1, ...,m− 2),

0 ≤ ∑m−2
i=1 bi < 1 and 0 ≤ ∑m−2

i=1 ai (ηi − ηi−1) < 1, where m > 2 is an integer;

(H2) f : [0, 1]× [0,+∞) → [0,+∞) is continuous;

(H3) h : (0, 1) → [0,+∞) is continuous, and h (t) does not identically vanish on

any subinterval of (0, 1). Furthermore h satisfies 0 <
∫ 1

0
h (t) dt < +∞.

2. PRELIMINARIES

For the reader’s convenience, we present some necessary definitions and relations
for fractional-order derivatives and integrals, which can be found in [22, 28].

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 for a
function f : (0,+∞) → R is defined as

Iα0+f (t) =
1

Γ (α)

∫ t

0

(t− s)
α−1

f (s) ds,
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provided the right side is pointwise defined on (0,+∞) where Γ (· ) is the Gamma
function.

Definition 2.2. For a function f : [0,+∞) → R, the Caputo derivative of frac-
tional order α is defined as

CDαf (t) =
1

Γ (n− α)

∫ t

0

(t− s)
n−α−1

f (n) (s) ds, n = [α] + 1,

where [α] denotes the integer part of the real number α, provided the right side is
pointwise defined on (0,+∞).

Lemma 2.1. Let α > 0 and u ∈ ACN [0, 1]. Then the fractional differential
equation

CDαu (t) = 0,

has a unique solution

u (t) = c0 + c1t+ c2t
2 + ...+ cN−1t

N−1, ci ∈ R, i = 1, 2, ..., N,

where N is the smallest integer greater than or equal to α.

Remark 1. The following property (Dirichlet’s formula) of the fractional calculus
is well known ([26] p.57)

IνIµy (t) = Iν+µy (t) , t ∈ [0, 1] , y ∈ L (0, 1) , ν + µ ≥ 1,

which has the form
∫ t

0

(t− s)
ν−1

(∫ s

0

(s− τ)
µ−1

y (τ) dτ

)

ds =
Γ (ν) Γ (µ)

Γ (ν + µ)

∫ t

0

(t− s)
ν+µ−1

y (s) ds

Definition 2.3. Let E be a real Banach space. A nonempty convex closed set
K ⊂ E is said to be a cone provided that

(i) au ∈ K for all u ∈ K and all a ≥ 0, and
(ii) u,−u ∈ K implies u = 0.

Definition 2.4. The map α is defined as a nonnegative continuous concave func-
tional on a cone K of a real Banach space E provided that α : K → [0,+∞) is
continuous and

α (tx+ (1− t) y) ≥ tα (x) + (1− t)α (y)

for all x, y ∈ K and 0 ≤ t ≤ 1.

Let 0 < a < b be given and let α be a nonnegative continuous concave functional
on K. Define the convex sets Pr and P (α, a, b) by

Pr = {x ∈ K | ‖x‖ < r}
and

P (α, a, b) = {x ∈ K | a ≤ α (x) , ‖x‖ ≤ b} .
Theorem 2.2. [19] Let A : Pc → Pc be a completely continuous operator and let
α be a nonnegative continuous concave functional on K such that α (x) ≤ ‖x‖ for
all x ∈ Pc. Suppose there exist 0 < a < b < d < c such that

(C1) {x ∈ P (α, b, d) | α (x) > b} 6= ∅ and α (Ax) > a for x ∈ P (α, b, d),
(C2) ‖Ax‖ < a for ‖x‖ ≤ a, and
(C3) α (Ax) > b for x ∈ P (α, b, c) with ‖Ax‖ > d.

Then A has at least three fixed points x1, x2 and x3 in Pc such that
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‖x1‖ < a, b < α (x2), and ‖x3‖ > a with α (x3) < b.

Lemma 2.3. For y ∈ C [0, 1], the following boundary value problem







CDα
0+u (t) + y (t) = 0, t ∈ (0, 1) ,

u(i) (0) = 0, i = 2, ..., n− 1,

u′ (0) =
∑m−2

i=1 biu
′ (ηi) , u (1) =

∑m−2
i=1 ai

∫ ηi

ηi−1

u (s) ds
(2.1)

has the unique solution

u (t) = c0 + c1t−
1

Γ (α)

∫ t

0

(t− s)
α−1

y (s) ds, (2.2)

where

c0 =

∫ 1

0
(1− s)

α−1
y (s) ds

(

1−∑m−2
i=1 ai (ηi − ηi−1)

)

Γ (α)
−

∑m−2
i=1 ai

[∫ ηi

0
(ηi − s)

α −
∫ ηi−1

0
(ηi−1 − s)

α]

y (s) ds
(

1−∑m−2
i=1 ai (ηi − ηi−1)

)

Γ (α+ 1)

+

(

1−∑m−2
i=1 ai

η2

i
−η2

i−1

2

)

∑m−2
i=1 bi

∫ ηi

0
(ηi − s)

α−2
y (s) ds

(

1−∑m−2
i=1 ai (ηi − ηi−1)

)(

1−∑m−2
i=1 bi

)

Γ (α− 1)
,

c1 = −
∑m−2

i=1 bi
∫ ηi

0
(ηi − s)

α−2
y (s) ds

(

1−∑m−2
i=1 bi

)

Γ (α− 1)
.

(2.3)

Proof. In view of Definition 2.1 and Lemma 2.1, it is clear that equation 2.1 is
equivalent to the integral form

u (t) = − 1

Γ (α)

∫ t

0

(t− s)
α−1

y (s) ds+ c0 + c1t+ ...+ cn−1t
n−1,

where c0, c1, ..., cn−1 ∈ R are arbitrary constants.
Next, using the initial conditions: u(i) (0) = 0, i = 2, ..., n− 1, we get

c2 = c3 = ... = cn−1 = 0,

that is,

u (t) = − 1

Γ (α)

∫ t

0

(t− s)
α−1

y (s) ds+ c0 + c1t. (2.4)

So we get

u′ (t) = − 1

Γ (α− 1)

∫ t

0

(t− s)
α−2

y (s) ds+ c1. (2.5)

By u′ (0) =
∑m−2

i=1 biu
′ (ηi), we obtain

c1 = −
∑m−2

i=1 bi
∫ ηi

0
(ηi − s)

α−2
y (s) ds

(

1−∑m−2
i=1 bi

)

Γ (α− 1)
. (2.6)
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Integrating the equation 2.4 from ηi−1 to ηi for 0 ≤ ηi−1 ≤ ηi ≤ 1, i = 1, ...,m− 2,
and using Remark 1, we get
∫ ηi

ηi−1

u (t) dt = − 1

Γ (α)

∫ ηi

ηi−1

(∫ s

0

(s− τ)
α−1

y (τ) dτ

)

ds+ c0

∫ ηi

ηi−1

ds+ c1

∫ ηi

ηi−1

sds

= − 1

Γ (α)

[

∫ ηi

0

(∫ s

0

(s− τ)
α−1

y (τ) dτ

)

ds+

∫ 0

ηi−1

(∫ s

0

(s− τ)
α−1

y (τ) dτ

)

ds

]

+ c0

∫ ηi

ηi−1

ds+ c1

∫ ηi

ηi−1

sds

= − 1

Γ (α+ 1)

∫ ηi

0

(ηi − s)
α
y (s) ds+

1

Γ (α+ 1)

∫ ηi−1

0

(ηi−1 − s)
α
y (s) ds

+ c0 (ηi − ηi−1) + c1
η2i − η2i−1

2
.

Then, by the condition u (1) =
∑m−2

i=1 ai
∫ ηi

ηi−1

u (s) ds, we get

− 1

Γ (α)

∫ 1

0

(1− s)
α−1

y (s) ds+ c0 + c1 = − 1

Γ (α+ 1)

m−2
∑

i=1

ai

∫ ηi

0

(ηi − s)
α
y (s) ds

+
1

Γ (α+ 1)

m−2
∑

i=1

ai

∫ ηi−1

0

(ηi−1 − s)
α
y (s) ds

+ c0

m−2
∑

i=1

ai (ηi − ηi−1) + c1

m−2
∑

i=1

ai
η2i − η2i−1

2
.

Which implies

c0 =

∫ 1

0
(1− s)

α−1
y (s) ds

(

1−∑m−2
i=1 ai (ηi − ηi−1)

)

Γ (α)
−

∑m−2
i=1 ai

[∫ ηi

0
(ηi − s)

α −
∫ ηi−1

0
(ηi−1 − s)

α]

y (s) ds
(

1−∑m−2
i=1 ai (ηi − ηi−1)

)

Γ (α+ 1)

+

(

1−∑m−2
i=1 ai

η2

i
−η2

i−1

2

)

∑m−2
i=1 bi

∫ ηi

0
(ηi − s)

α−2
y (s) ds

(

1−∑m−2
i=1 ai (ηi − ηi−1)

)(

1−∑m−2
i=1 bi

)

Γ (α− 1)
.

�

Remark 2. i) Assume that (H1) hold. Then, for y ∈ C ([0, 1]) and y (t) ≥ 0 by
(2.5) and (2.6), we obtain u′ (t) < 0 and

u′′ (t) = − 1

Γ (α− 2)

∫ t

0

(t− s)
α−3

y (s) ds < 0. (2.7)

ii) If we assume that (H1) hold, we have

0 ≤
m−2
∑

i=1

ai
(

η2i − η2i−1

)

≤
m−2
∑

i=1

ai (ηi − ηi−1) < 1.

Lemma 2.4. Let (H1) satisfied. If y (t) ∈ C [0, 1] satisfying y (t) ≥ 0, then the
function u of (2.2) satisfies u (t) ≥ 0.
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Proof. From Remark 2, u (t) is concave and non-increasing on [0, 1]. Then

max
0≤t≤1

u (t) = u (0) , min
0≤t≤1

u (t) = u (1) . (2.8)

From the concavity of u , we have

u (η1)

η1
≥ u (η2)

η2
≥ ... ≥ u (ηi−1)

ηi−1
≥ u (ηi)

ηi
≥ ... ≥ u (1)

1
(2.9)

and
∫ ηi

ηi−1

u (s) ds ≥ 1

2
(ηi − ηi−1) (u (ηi) + u (ηi−1)) , (2.10)

where 1
2 (ηi − ηi−1) (u (ηi) + u (ηi−1)) is the area of the trapezoid under the curve

u (t) from t = ηi−1 to t = ηi for i = 1, 2, ...,m − 2. Multiplying both sides of
the inequality (2.10) with ai and combining conditions (2.9), (2.10) and u (1) =
∑m−2

i=1 ai
∫ ηi

ηi−1

u (s) ds, we get

u (1) ≥ 1

2

m−2
∑

i=1

ai (ηi − ηi−1) (u (ηi) + u (ηi−1))

≥ 1

2

m−2
∑

i=1

ai (ηi − ηi−1) (ηiu (1) + ηi−1u (1))

=
1

2

m−2
∑

i=1

ai
(

η2i − η2i−1

)

u (1) .

If u (1) < 0, we get

2 ≤
m−2
∑

i=1

ai
(

η2i − η2i−1

)

.

This contradicts the fact that
∑m−1

i=1 ai
(

η2i − η2i−1

)

< 1. Then u (1) ≥ 0. Therefore,
we get u (t) ≥ 0 for t ∈ [0, 1]. The proof is complete. �

Lemma 2.5. Let (H1) hold. If y ∈ C ([0, 1]) and y ≥ 0, then the unique solution
u of the problem (2.1) satisfies

min
t∈[0,1]

u (t) ≥ γ ‖u‖ ,

where

γ =

∑m−2
i=1 ai (ηi − ηi−1) (2− ηi − ηi−1)

2−∑m−2
i=1 ai

(

η2i − η2i−1

) . (2.11)

Proof. From Remark 2, u is concave and nonincreasing on [0, 1]. This implies that

‖u‖ = u (0) , min
t∈[0,1]

u (t) = u (1)

and

u (0) ≤ u (1) +
u (1)− u (t)

1− t
(0− 1)

or

u (0) (1− t) ≤ u (1) (1− t) + u (t)− u (1) . (2.12)
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By integrating the both sides of the inequality (2.12) from t = ηi−1 to t = ηi, we
have

u (0)

∫ ηi

ηi−1

(1− t) dt ≤ u (1)

∫ ηi

ηi−1

(1− t) dt+

∫ ηi

ηi−1

u (t) dt− u (1)

∫ ηi

ηi−1

dt

and by the condition u (1) =
∑m−2

i=1 ai
∫ ηi

ηi−1

u (s) ds, we get

u (0) ≤ u (1)

[

1 +
1−∑m−2

i=1 ai (ηi − ηi−1)
∑m−2

i=1 ai
(

ηi − ηi−1 − 1
2

(

η2i − η2i−1

))

]

≤ u (1)

[

2−∑m−2
i=1 ai

(

η2i − η2i−1

)

∑m−2
i=1 ai (ηi − ηi−1) (2− (ηi + ηi−1))

]

.

Thus

min
t∈[0,1]

u (t) ≥
∑m−2

i=1 ai (ηi − ηi−1) (2− ηi − ηi−1)

2−∑m−2
i=1 ai

(

η2i − η2i−1

) u (0) .

�

Let E = C ([0, 1]) be a Banach space of all continuous real functions on [0, 1]
equipped with the norm ‖u‖ = maxt∈[0,1] |u (t)| for u ∈ E, and define

K = {u ∈ E | u is nonnegative concave and nonincreasing on [0, 1]} .
It is obvious that K is a cone.

Define the operator A : E → E as follows:

Au (t) =

∫ 1

0
(1− s)

α−1
h (s) f (s, u (s)) ds

(

1−∑m−2
i=1 ai (ηi − ηi−1)

)

Γ (α)

−
∑m−2

i=1 ai
[∫ ηi

0
(ηi − s)

α −
∫ ηi−1

0
(ηi−1 − s)

α]

h (s) f (s, u (s)) ds
(

1−∑m−2
i=1 ai (ηi − ηi−1)

)

Γ (α+ 1)

+

(

1−∑m−2
i=1 ai

η2

i
−η2

i−1

2

)

∑m−2
i=1 bi

∫ ηi

0
(ηi − s)

α−2
h (s) f (s, u (s)) ds

(

1−∑m−2
i=1 ai (ηi − ηi−1)

)(

1−∑m−2
i=1 bi

)

Γ (α− 1)

−
∑m−2

i=1 bi
∫ ηi

0
(ηi − s)

α−2
h (s) f (s, u (s)) ds

(

1−∑m−2
i=1 bi

)

Γ (α− 1)
t

−
∫ t

0
(t− s)

α−1
h (s) f (s, u (s)) ds

Γ (α)
.

(2.13)

Then u is a solution of the boundary value problem (1.3) if and only if it is a fixed
point of the operator A.

Lemma 2.6. Assume that (H1) − (H3) hold. Then the operator A : E → E is
completely continuous.

Proof. Let u ∈ K, then Au (t) ≥ 0, (Au)
′
(t) ≤ 0 and (Au)

′′
(t) ≤ 0, 0 ≤ t ≤ 1,

consequently, A : K → K. In view of continuity of h (t) and f (t, u), we get A is
continuous.
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Take N ⊂ K be bounded, that is, there exists a positive constant l for any u ∈ N ,
such that ‖u‖ ≤ l. Let L = maxt∈[0,1],u∈[0,l] f (t, u) + 1, then, for any u ∈ N , we
have

Au (t) ≤
∫ 1

0
(1− s)

α−1
h (s) f (s, u (s)) ds

(

1−∑m−2
i=1 ai (ηi − ηi−1)

)

Γ (α)

+

(

1−∑m−2
i=1 ai

η2

i
−η2

i−1

2

)

∑m−2
i=1 bi

∫ ηi

0
(ηi − s)

α−2
h (s) f (s, u (s)) ds

(

1−∑m−2
i=1 ai (ηi − ηi−1)

)(

1−∑m−2
i=1 bi

)

Γ (α− 1)

≤ L





∫ 1

0
h (s) ds

(

1−∑m−2
i=1 ai (ηi − ηi−1)

)

Γ (α)

+

(

1−∑m−2
i=1 ai

η2

i
−η2

i−1

2

)

∑m−2
i=1 biη

α−2
i

∫ ηi

0
h (s) ds

(

1−∑m−2
i=1 ai (ηi − ηi−1)

)(

1−∑m−2
i=1 bi

)

Γ (α− 1)






.

Hence, A (N) is uniformly bounded. Now, we will prove that A (N) is equicontin-
uous. For each u ∈ N , 0 ≤ τ1 < τ2 ≤ 1, we have

|(Au) (τ2)− (Au) (τ1)|

=

∣

∣

∣

∣

∣

∣

∑m−2
i=1 bi

∫ ηi

0
(ηi − s)

α−2
h (s) f (s, u (s)) ds

(

1−∑m−2
i=1 bi

)

Γ (α− 1)
τ2 +

∫ τ2

0
(τ2 − s)

α−1
h (s) f (s, u (s)) ds

Γ (α)

−
∑m−2

i=1 bi
∫ ηi

0
(ηi − s)

α−2
h (s) f (s, u (s)) ds

(

1−∑m−2
i=1 bi

)

Γ (α− 1)
τ1 −

∫ τ1

0
(τ1 − s)

α−1
h (s) f (s, u (s)) ds

Γ (α)

∣

∣

∣

∣

∣

∣

≤
∑m−2

i=1 bi
∫ ηi

0
(ηi − s)

α−2
h (s) f (s, u (s)) ds

(

1−∑m−2
i=1 bi

)

Γ (α− 1)
(τ2 − τ1)

+

∣

∣

∣

∣

∣

∫ τ2

0
(τ2 − s)

α−1
h (s) f (s, u (s)) ds

Γ (α)
−

∫ τ1

0
(τ1 − s)

α−1
h (s) f (s, u (s)) ds

Γ (α)

∣

∣

∣

∣

∣

≤
∑m−2

i=1 bi
∫ ηi

0
(ηi − s)

α−2
h (s) f (s, u (s)) ds

(

1−∑m−2
i=1 bi

)

Γ (α− 1)
(τ2 − τ1)
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+

∣

∣

∣

∣

∣

∣

∫ τ1

0

[

(τ2 − s)
α−1 − (τ1 − s)

α−1
]

h (s) f (s, u (s)) ds

Γ (α)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ τ2

τ1
(τ2 − s)

α−1
h (s) f (s, u (s)) ds

Γ (α)

∣

∣

∣

∣

∣

≤ L
∑m−2

i=1 biη
α−2
i

∫ ηi

0
h (s) ds

(

1−∑m−2
i=1 bi

)

Γ (α− 1)
(τ2 − τ1)

+
L
∫ τ1

0
h (s) ds

Γ (α)

(

τα−1
2 − τα−1

1

)

+
L
∫ τ2

τ1
(τ2 − s)

α−1
ds

Γ (α)
(τ2 − τ1)

α−1
.

≤ L





∑m−2
i=1 biη

α−2
i

∫ ηi

0
h (s) ds

(

1−∑m−2
i=1 bi

)

Γ (α− 1)
(τ2 − τ1) +

∫ τ1

0
h (s) ds

Γ (α)

(

τα−1
2 − τα−1

1

)

.

+

∫ τ2

τ1
h (s) ds

Γ (α)
(τ2 − τ1)

α−1

)

.

Therefore, A (N) is equicontinuous. Applying the Arzela -Ascoli theorem, we con-
clude that A is a completely continuous operator. The proof is completed. �

3. MAIN RESULTS

In this section, we discuss the existence of triple positive solutions of the Problem
(1.3). We define the nonnegative continuous concave functional on K by

α (u) = min
0≤t≤1

u (t) .

It is obvious that, for each u ∈ K, α (u) ≤ ‖u‖. For convenience, we use the
following notation. Let

M =

∫ 1

0
h (s) ds

(

1−∑m−2
i=1 ai (ηi − ηi−1)

)

Γ (α)
+

∑m−2
i=1 aiη

α
i−1

∫ ηi−1

0
h (s) ds

(

1−∑m−2
i=1 ai (ηi − ηi−1)

)

Γ (α+ 1)

+

(

1−∑m−2
i=1 ai

η2

i
−η2

i−1

2

)

∑m−2
i=1 biη

α−2
i

∫ ηi

0
h (s) ds

(

1−∑m−2
i=1 ai (ηi − ηi−1)

)(

1−∑m−2
i=1 bi

)

Γ (α− 1)
,

m =

∫ 1

0
(1− s)

α−1
h (s) ds

(

1−∑m−2
i=1 ai (ηi − ηi−1)

)

Γ (α)
−

∑m−2
i=1 ai

[∫ ηi

0
(ηi − s)

α −
∫ ηi−1

0
(ηi−1 − s)

α]

h (s) ds
(

1−∑m−2
i=1 ai (ηi − ηi−1)

)

Γ (α+ 1)

+

(

1−∑m−2
i=1 ai

η2

i
−η2

i−1

2

)

∑m−2
i=1 bi

∫ ηi

0
(ηi − s)

α−2
h (s) ds

(

1−∑m−2
i=1 ai (ηi − ηi−1)

)(

1−∑m−2
i=1 bi

)

Γ (α− 1)

−
∑m−2

i=1 bi
∫ ηi

0
(ηi − s)

α−2
h (s) ds

(

1−∑m−2
i=1 bi

)

Γ (α− 1)
−

∫ 1

0
(1− s)

α−1
h (s) ds

Γ (α)
.

Theorem 3.1. Suppose that the conditions (H1)− (H3) hold. In addition, assume
there exist non-negative numbers a, b and c such that 0 < a < b < γc, and f (t, u)
satisfies the following growth conditions:
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(H4) f (t, u) ≤ c
M
, for all (t, u) ∈ [0, 1]× [0, c],

(H5) f (t, u) ≤ a
M
, for all (t, u) ∈ [0, 1]× [0, a],

(H6) f (t, u) > b
m
, for all (t, u) ∈ [0, 1]×

[

b, b
γ

]

.

Then the boundary value problems (1.3) have at least three positive solutions u1, u2

and u3 such that
‖u1‖ < a, b < α (u2), ‖u3‖ > a, with α (u3) < b.

Proof. From Lemma 2.6, the operator A : K → K is completely continuous. Now,
we prove that A : Pc → Pc. For u ∈ Pc, we have ‖Au‖ = Au (0). Then

Au (0) =

∫ 1

0
(1− s)

α−1
h (s) f (s, u (s)) ds

(

1−∑m−2
i=1 ai (ηi − ηi−1)

)

Γ (α)

−
∑m−2

i=1 ai
[∫ ηi

0
(ηi − s)

α −
∫ ηi−1

0
(ηi−1 − s)

α]

h (s) f (s, u (s)) ds
(

1−∑m−2
i=1 ai (ηi − ηi−1)

)

Γ (α+ 1)

+

(

1−∑m−2
i=1 ai

η2

i
−η2

i−1

2

)

∑m−2
i=1 bi

∫ ηi

0
(ηi − s)

α−2
h (s) f (s, u (s)) ds

(

1−∑m−2
i=1 ai (ηi − ηi−1)

)(

1−∑m−2
i=1 bi

)

Γ (α− 1)

≤
∫ 1

0
h (s) f (s, u (s)) ds

(

1−∑m−2
i=1 ai (ηi − ηi−1)

)

Γ (α)
+

∑m−2
i=1 aiη

α
−1

∫ ηi−1

0
h (s) f (s, u (s)) ds

(

1−∑m−2
i=1 ai (ηi − ηi−1)

)

Γ (α+ 1)

+

(

1−∑m−2
i=1 ai

η2

i
−η2

i−1

2

)

∑m−2
i=1 biη

α−2
i

∫ ηi

0
h (s) f (s, u (s)) ds

(

1−∑m−2
i=1 ai (ηi − ηi−1)

)(

1−∑m−2
i=1 bi

)

Γ (α− 1)

≤ c

M





∫ 1

0
h (s) ds

(

1−∑m−2
i=1 ai (ηi − ηi−1)

)

Γ (α)

+

∑m−2
i=1 aiη

α
−1

∫ ηi−1

0
h (s) ds

(

1−∑m−2
i=1 ai (ηi − ηi−1)

)

Γ (α+ 1)

+

(

1−∑m−2
i=1 ai

η2

i
−η2

i−1

2

)

∑m−2
i=1 biη

α−2
i

∫ ηi

0
h (s) ds

(

1−∑m−2
i=1 ai (ηi − ηi−1)

)(

1−∑m−2
i=1 bi

)

Γ (α− 1)







≤ c.

Thus, ‖Au‖ ≤ c. Consequently, A : Pc → Pc.
In a completely analogous manner, the condition (H5) implies that the condition

(C2) of Theorem 2.2 is satisfied for A.

Now, we show that condition (C1) of Theorem 2.2 is satisfied. Since α
(

b
γ

)

= b
γ
>

b, then
{

u ∈ P
(

α, b, b
γ

)

| α (u) > b
}

6= ∅. If u ∈ P
(

α, b, b
γ

)

, then b ≤ u (s) ≤ b
γ
,

s ∈ [0, 1].
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By condition (H6), we get

α ((Au) (t)) = min
0≤t≤1

((Au) (t)) = (Au) (1)

=

∫ 1

0
(1− s)

α−1
h (s) f (s, u (s)) ds

(

1−∑m−2
i=1 ai (ηi − ηi−1)

)

Γ (α)

−
∑m−2

i=1 ai
[∫ ηi

0
(ηi − s)

α −
∫ ηi−1

0
(ηi−1 − s)

α]

h (s) f (s, u (s)) ds
(

1−∑m−2
i=1 ai (ηi − ηi−1)

)

Γ (α+ 1)

+

(

1−∑m−2
i=1 ai

η2

i
−η2

i−1

2

)

∑m−2
i=1 bi

∫ ηi

0
(ηi − s)

α−2
h (s) f (s, u (s)) ds

(

1−∑m−2
i=1 ai (ηi − ηi−1)

)(

1−∑m−2
i=1 bi

)

Γ (α− 1)

−
∑m−2

i=1 bi
∫ ηi

0
(ηi − s)

α−2
h (s) f (s, u (s)) ds

(

1−∑m−2
i=1 bi

)

Γ (α− 1)
−

∫ 1

0
(1− s)

α−1
h (s) f (s, u (s)) ds

Γ (α)

≥ b

m





∫ 1

0
(1− s)

α−1
h (s) ds

(

1−∑m−2
i=1 ai (ηi − ηi−1)

)

Γ (α)

−
∑m−2

i=1 ai
[∫ ηi

0
(ηi − s)

α −
∫ ηi−1

0
(ηi−1 − s)

α]

h (s) ds
(

1−∑m−2
i=1 ai (ηi − ηi−1)

)

Γ (α+ 1)

+

(

1−∑m−2
i=1 ai

η2

i
−η2

i−1

2

)

∑m−2
i=1 bi

∫ ηi

0
(ηi − s)

α−2
h (s) ds

(

1−∑m−2
i=1 ai (ηi − ηi−1)

)(

1−∑m−2
i=1 bi

)

Γ (α− 1)

−
∑m−2

i=1 bi
∫ ηi

0
(ηi − s)

α−2
h (s) ds

(

1−∑m−2
i=1 bi

)

Γ (α− 1)
−

∫ 1

0
(1− s)

α−1
h (s) ds

Γ (α)





≥ b.

Therefore, condition (C1) of Theorem 2.2 is satisfied.
For the condition (C3) of the Theorem 2.2, we can verify it easily under our

assumptions using Lemma 2.5. Here

α (Au) = min
0≤t≤1

(Au) (t) ≥ γ
b

γ
= b

as long as if u ∈ P (α, b, c), with ‖Au‖ > b
γ
.

Therefore, the condition (C3) of Theorem 2.2 is satisfied. By Theorem 2.2, there
exist three positive solutions u1, u2 and u3 such that ‖u1‖ < a, b < α (u2 (t)) and
‖u3‖ > a, with α (u3 (t)) < b. �

4. EXAMPLE

Consider the boundary value problem














D
2,5
0+u (t) + (1− t) f (t, u (t)) = 0, t ∈ (0, 1) ,

u′′ (0) = 0,
u′ (0) = 0, 1u′ (0, 4) + 0, 02u′ (0, 6) + 0, 05u′ (0, 8) ,

u (1) = 0, 01
∫ 0,4

0
u (s) ds+ 0, 02

∫ 0,6

0,4
u (s) ds+ 0, 4

∫ 0,8

0,6
u (s) ds

(4.1)
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where

f (t, u) =











e−
t

8

(

u3

144 + 3 + ln (4u+ 3)
)

, 0 ≤ t ≤ 1, 0 ≤ u ≤ 3,

e−
t

8

(

51
16 + ln 15 + 25

√
u− 3

)

, 0 ≤ t ≤ 1, 3 < u ≤ 150,

e−
t

8

(

51
16 + ln 15 + 25

√
147 +

√
u− 150

)

, 0 ≤ t ≤ 1, 3 < u ≤ 150.

To show the problem (4.1) has at least three positive solutions, we apply Theorem
3.1 with α = 2.5, m = 5, b1 = 0.1, b2 = 0.02, b3 = 0.05, a1 = 0.01, a2 = 0.02,
a3 = 0.4, η1 = 0.4, η2 = 0.6, η3 = 0.8.

Then, by direct calculations, we can obtain that

1−
3

∑

i=1

bi = 0.83, 1−
3

∑

i=1

ai (ηi − ηi−1) = 0.912, 1−
3

∑

i=1

ai
(

η2i − η2i−1

)

= 0.9412,

γ = 0.0310242 ,M = 0.495731 ,m = 0.16194.

If we choose a = 3, b = 4 and c = 160, we obtain

f (t, u) ≤ 312.166719 ≤ c

M
≈ 322.7557, 0 ≤ t ≤ 1, 0 ≤ u ≤ 160,

f (t, u) ≤ 5.896 ≤ a

M
≈ 6.052, 0 ≤ t ≤ 1, 0 ≤ u ≤ 3,

f (t, u) ≥ 27.2652274 ≥ b

m
≈ 24.7005 0 ≤ t ≤ 1, 4 ≤ u ≤ 128.931608.

Thus by Theorem 3.1 the problem (1.3) has at least three positive solutions u1, u2

and u3 satisfying

‖u1‖ < 3, 4 < α (u2 (t)) , and ‖u3‖ > 3, with α (u3 (t)) < 4.

5. CONCLUSION

In this paper, some results on the existence and multiplicity of solutions for
a nonlinear higher order fractional differential equation involving the left Caputo
fractional derivative with both multi-point and multi-strip boundary conditions
are obtained. Under sufficient conditions, we have applied the Leggett-Williams
fixed point theorem to obtain the existence of at least three positive solutions. An
example is given to show the applicability of our results.

Acknowledgments. The author sincerely thanks the editor and reviewers for their
valuable suggestions and useful comments to improve the manuscript.
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