
Volume 11, Issue 4
2019



i	

 

Honorary Editors  

(in Alphabetical) 

 

 Prof. Atluri, S.N.- University of California, Irvine-USA 
Prof. Liew, K.M.- City University of Hong Kong-HONG KONG 
Prof. Lim, C.W.- City University of Hong Kong-HONG KONG 

Prof. Liu, G.R.- National University of Singapore- SINGAPORE 
Prof. Nath, Y.- Indian Institute of Technology, INDIA 

Prof. Omurtag, M.H. -ITU 
Prof. Reddy, J.N.-Texas A& M University, USA 

Prof. Saka, M.P.- University of Bahrain-BAHRAIN 
Prof. Shen, H.S.- Shanghai Jiao Tong University, CHINA 

Prof. Xiang, Y.- University of Western Sydney-AUSTRALİA 
Prof. Wang, C.M.- National University of Singapore- SINGAPORE 

Prof. Wei, G.W.- Michigan State University-USA 

 

 

Editor in Chief: 

Ömer Civalek – Akdeniz University  civalek@yahoo.com 

 

 

 

Associate Editors: 

 

Asst. Prof. Ibrahim AYDOĞDU -Akdeniz University aydogdu@akdeniz.edu.tr 
R.A. Kadir MERCAN –Mehmet Akif Ersoy University kmercan@mehmetakif.edu.tr 

 
 
 
 



ii 
	

 
Editorial Board  

 
(The name listed below is not Alphabetical or any title scale) 

 
 

Prof. Xinwei Wang -Nanjing University of Aeronautics and Astronautics 

Asst. Prof. Francesco Tornabene -University of Bologna 

Asst. Prof. Nicholas Fantuzzi -University of Bologna 

Asst. Prof. Keivan Kiani - K.N. Toosi University of Technology 

R. A. Michele Bacciocchi -University of Bologna 

Asst. Prof. Hamid M. Sedighi -Shahid Chamran University of Ahvaz 

Assoc. Prof. Yaghoub Tadi Beni -Shahrekord University 

Assoc. Prof. Raffaele Barretta -University of Naples Federico II 

Assoc. Prof. Meltem ASİLTÜRK   -Akdeniz 
University meltemasilturk@akdeniz.edu.tr 

Prof. Metin AYDOĞDU -Trakya University metina@trakya.edu.tr 

Prof. Ayşe DALOĞLU - KTU aysed@ktu.edu.tr 

Prof. Oğuzhan HASANÇEBİ - METU oguzhan@metu.edu.tr 

Asst. Prof. Rana MUKHERJİ - The ICFAI University 

Assoc. Prof. Baki ÖZTÜRK - Hacettepe University 

Assoc. Prof. Yılmaz AKSU    -Akdeniz University 

Assoc. Prof. Hakan ERSOY- Akdeniz University 

Assoc. Prof. Mustafa Özgür YAYLI -Uludağ University 

Assoc. Prof. Selim L. SANİN - Hacettepe University 

Asst. Prof. Engin EMSEN  -Akdeniz University 

Prof. Serkan DAĞ - METU 

Prof. Ekrem TÜFEKÇİ - İTÜ 

 
 
 
 
 
 
 
 

 



iii 
	

Abstracting & Indexing 
 
 

        
 
  

      
 

     
 
 

IJEAS provides unique DOI link to every paper published. 

 

Editorial Scope  

 

The journal presents its readers with broad coverage across some branches of engineering and 

science of the latest development and application of new solution algorithms, artificial intelligent 

techniques innovative numerical methods and/or solution techniques directed at the utilization of 

computational methods in solid and nano-scaled mechanics. 

International Journal of Engineering & Applied Sciences (IJEAS) is an Open Access Journal 

International Journal of Engineering & Applied Sciences (IJEAS) publish original contributions on 

the following topics: 

Numerical Methods in Solid Mechanics 

Nanomechanic and applications 

Microelectromechanical systems (MEMS) 

Vibration Problems in Engineering 

Higher order elasticity (Strain gradient, couple stress, surface elasticity, nonlocal elasticity) Applied 

Mathematics 

IJEAS allows readers to read, download, copy, distribute, print, search, or link to the full texts of 

articles. 

  



CONTENTS 
 

Higher Order Fitted Operator Finite Difference Method for Two-Parameter Parabolic Convection-

Diffusion Problems 

By Tesfaye Bullo, Gemechis Duressa, Guy Degla ...................................................................... 455-467 

 

 

Finite Element Modeling of Receding Contact Problem 

By Murat Yaylacı, Mehmet Çağrı Bayrak, Mehmet Avcar ........................................................ 468-475 

 

 

Exponentially fitted finite difference method for singularly perturbed delay differential equations 

with integral boundary condition  

By Habtamu Garoma Debela, Gemechis File Duressa .............................................................. 476-493 

 

 

The Kinematics of the East Anatolian Fault Zone, Eastern Turkey and Seismotectonic Implications  

By Aylin Tan, Haluk Eyidoğan ................................................................................................... 494-506 

 

 

 

Comparative Stability Analysis of Silicone Carbide Nanotube using MD Simulation and FEM 

Software  

By Kadir Mercan ....................................................................................................................... 507-511 

 

 

 



© 2019 T.A. Bullo, G.F. Duressa, G.A. Degla published by  International Journal of Engineering & Applied Sciences. This work is licensed 

under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 

455 

 

Higher Order Fitted Operator Finite Difference Method for Two-Parameter Parabolic 

Convection-Diffusion Problems 
 

 

 

Tesfaye Aga Bullo 1*, Gemechis File Duressa 2, Guy Aymard Degla 3 

 
1,2 Department of Mathematics, Jimma University, Jimma, P.O. Box 378, Ethiopia 

3 Institut De Mathematiques et de sciences physiques, Universit D'Abomey Calavi, Benin 

 

E-mail address: tesfayeaga2@gmail.com 1*, gammeef@gmail.com 1, gdegla@gmail.com 2 

ORCID numbers of authors: 

0000-0001-6766-48031*, 0000-0003-1889-46902, 0000-0003-1162-61403  

Received date: 07.11.2019 

Accepted date: 24.11.2019 
 

 

Abstract 

In this paper, we consider singularly perturbed parabolic convection-diffusion initial boundary value problems with 

two small positive parameters to construct higher order fitted operator finite difference method.  At the beginning, we 

discretize the solution domain in time direction to approximate the derivative with respect to time and considering 

average levels for other terms that yields two point boundary value problems which covers two time level. Then, full 

discretization of the solution domain followed by the derivatives in two point boundary value problem are replaced 

by central finite difference approximation, introducing and determining the value of fitting parameter ended at system 

of equations that can be solved by tri-diagonal solver. To improve accuracy of the solution with corresponding higher 

orders of convergence, we applying Richardson extrapolation method that accelerates second order to fourth order 

convergent. Stability and consistency of the proposed method have been established very well to assure the 

convergence of the method. Finally, validate by considering test examples and then produce numerical results to care 

the theoretical results and to establish its effectiveness. Generally, the formulated method is stable, consistent and 

gives more accurate numerical solution than some methods existing in the literature for solving singularly perturbed 

parabolic convection- diffusion initial boundary value problems with two small positive parameters. 

Keywords: Singularly perturbation parabolic problems, two parameters, fitted operator, accurate solution. 

1. Introduction 

 

Singularly perturbed parabolic convection–diffusion problems appeared as model in various 

branches of science and engineering such as modeling of water quality problems in river networks, 

fluid flow at high Reynold’s numbers, convective heat transport problem, drift diffusion equation 

of semiconductor device modeling, electromagnetic field problem in moving media, financial 

modeling and turbulence model, one can refer [1, 4, 5, 6, 8, 11]. As stated in book written by 

Morton [7] and in article presented by Das and Mehrmann [1], singularly perturbed parabolic 
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problems describe the transport of solute in groundwater and surface water, the displacement of 

oil by fluid injection in oil recovery, the movement of aerosols and trace gases in the atmosphere, 

and describe fluid flow processes in many other applications.  Boundary layers occur in the 

solution of singularly perturbed problems when the singular perturbation parameter multiplies the 

terms involving the highest order derivatives in the differential equation tends to zero. These 

boundary layers are neighborhood of the boundary of the domain, where the solution has a very 

steep gradient. 

 If one tries to solve singularly perturbed parabolic problems using standard numerical methods 

applied to solve partial differential equations, then very inaccurate solutions are obtained unless 

the mesh discretization domain used is extremely small. Even in this context, carful numerical 

experiments show that the classical computational methods like; standard finite difference or finite 

element or finite volume methods fail to decrease the maximum point-wise error as the mesh is 

smaller and smaller; until the mesh size and the perturbation parameter have the same order of 

magnitude. This contradicts the natural expectation that the error of an acceptable computational 

method decreases when the mesh is refined. Subsequently, the size of system of algebraic 

equations will be growing more as the dimension of problem increases. Hence this incorporates 

the huge computational cost. This drawback motivates researcher to develop and analysis 

numerical methods which gives accurate numerical solution corresponding to higher order of 

convergence. Thus, in order to get inexpensive but accurate numerical solution, it will be necessary 

to develop methods that can handle singular perturbation problems. Hence, numerically solving 

singularly perturbed parabolic problems depend upon the small positive parameters that affect 

highest order derivatives of the problem; solution varies rapidly in some parts of the domain and 

varies slowly in some other parts. 

As a result, in the past few decades, various numerical schemes are proposed to solve singularly 

perturbed parabolic problems with two small positive parameters. For instance, from many few 

recently developed methods are; parameter-uniform finite element method presented by 

Kadalbajoo and Yadaw [4], spline difference scheme [12], robust finite difference method [8], 

robust layer adapted difference method [3] and a parameter-uniform higher order finite difference 

scheme [2]. All these works concerns singularly perturbed parabolic problems in which 

perturbation parameters affecting the first and second order derivative terms. While for the 

perturbation parameter affects only the second order derivative is other type of problem to be 

discussed separately in other part of our work. These developed methods analyzed very well in 

different approaches and produce good accurate numerical solution corresponding with first and 

second order rate of convergence to demonstrate efficiency of the methods.  

However, the obtained approximate solution and corresponding order of convergence are not more 

satisfactory which indicates that yet to solve the stated problem needs develop other numerical 

methods to produce more accurate numerical solution. Thus, in this work, we formulate, analyze 

and implement higher order fitted operator finite difference method to solve singularly perturbed 

parabolic convection-diffusion problems with two small parameters more accurately.  
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2. Formulation of the Method 

 

We consider the following singularly perturbed parabolic initial boundary value problem (IBVP) 

on the solution domain ( , ) : (0, ], (0,1)x t Q T     

 

     
2

2
( , ) ( , ) ( , ) ( , )

u u u
a x t b x t u x t f x t

x x t

  
    
  

       (1) 

subject to the initial and boundary conditions 

 
0 1

( ,0) ( ),

(0, ) ( ), (1, ) ( ), [0, ]

u x s x x

u t q t u t q t t T

 

  
           (2) 

with two small parameters 0 , 1    . The coefficient functions ( , ), ( , )a x t b x t  and source 

function ( , )f x t are sufficiently regular on Q  and satisfy ( , ) 0a x t    , ( , ) 0b x t   ;  and 

are real numbers. Also, we assume that sufficient regularity and compatibility conditions imposed 

on the functions 0 1( ), ( ), ( )s x q t q t  and ( , )f x t , so that a unique solution exists. Problem given by 

Eqs. (1) and (2) exhibits two boundary layer with different width depending on the relation 

between the two parameters  and  , one can see refer [1, 2, 4]. 

2.1. Temporal discretization 

 

To discretize the time variable with uniform step size k, so that the time interval [0, ]T is partitioned 

as 0 10 . . . Nt t t T      for 

  , , 0,1,2, . . . ,n

T
t nk k n N

N
        (3) 

Now, at the point 0.5( , )nx t  , Eq. (1) can be written as  

2

0.5 0.5 0.5 0.5 0.5 0.5 0.5
2

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )n n n n n n n

u u u
x t a x t x t b x t u x t x t f x t

x x t
      

  
    
  

  (4) 

Using Taylor’s series expansion about the point 0.5( , )nx t  , we have 

    

2 2 3 3

1 0.5 0.5 0.5 0.5
2 3

2 2 3 3

0.5 0.5 0.5 0.5
2 3

( , ) ( , ) ( , ) ( , ) ( , ) ...
2 8 48

( , ) ( , ) ( , ) ( , ) ( , ) ...
2 8 48

n n n n n

n n n n n

k u k u k u
u x t u x t u x t u x t u x t

t t t

k u k u k u
u x t u x t u x t u x t u x t

t t t

    

   

  
    

  

  
    

  

  

 which gives  

  
1

( ) ( )1
0.5 1 1

( , ) ( , )
( , )

n n
x xn n

n

u uu u x t u x t
x t

t k k






 
     


    (5) 
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where  
2 3

21 0.5
3

( , ) ( )
24

n

k u
u x t O k

t



   


 

This indicates, the error estimate of time discretization is given by 

 2nE Ck

       (6) 

where 
3

0.5 0.5
3

1
( , ) , , 1, 2,...

24
i n i n

u
C u x t t t t i N

t
 


    


, is a constant independent of 

parameters ,  and k.  

let take the average of the remaining terms in Eq. (4) which is written as 

 

2

0.5 0.5 0.5 0.5 0.5 0.5
2

2 1 1 2
1 1 11 1

( ) ( ) ( ) ( ) ( ) ( )
2 2

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

1

2

n n n n n n

n n n n
n n n n n nn n
x x x x x x

u u
x t a x t x t b x t u x t f x t

x x

d u du d u du
a b u f a b u f

dx dx dx dx

     

 
   

 
   
 

    
             

    

 (7) 

 

Substituting Eqs. (5) and (7) into Eq. (4) yields linear system of boundary value problems in space 

at each two time level of the form  

 

2 1 1 2
1 1 11 1

( ) ( ) ( ) ( ) ( ) ( )
2 2

2 2n n n n
n n n n n nn n
x x x x x x

d u du d u du
a b u a b u f f

dx dx k dx dx k

 
   

   
            

   
     (8) 

subject to the boundary conditions at each level 

 

1 0 1 1 1 1

0 1

(0, ) ( ), (1, ) ( )

(0, ) ( ), (1, ) ( )

n n n n

n n n n

u t q t u t q t

u t q t u t q t

    

 
     (9) 

The characteristic equation for the homogeneous part with constant coefficients   and    of Eq. 

(8) on  1
th

n  time level is  

  2
2

( ) ( ) 0r x r x
k

 
     

      

 (10)  

Assume it has two real solutions 1( ) 0r x  and 2 ( ) 0r x  that describe the boundary layers at 0x   

and 1x  , respectively. Let  

 1 1
[0,1]

max ( )
x

r x


    and 2 2
[0,1]

min ( )
x

r x


   



T.A. Bullo, G.F. Duressa, G.A. Degla 

459 
 

The situations of two layers are characterized by the case     as 0  , which suggests that 

1 2
2 k

k

 
   


and we have the layer like to the case 0  . The other condition, layers arises 

across in the case where    as 0 yields 1
[0,1]

max
x

 
   

 
 and 2 0  . Depending on 

these facts, we have the following two cases: 

Case 1: if    as 0   , Eq. (1) has two boundary layers of each width ( )O   then the solution 

for homogeneous part of Eq.(8) on  1
th

n  time level can be given by 

     1 1

2
( ) exp( )

k
u x A B x

k

 
  


      (11) 

where 1 1,A B  and ( , ) 0b x t    are real constant numbers. 

Case 2: if     as 0  , Eq. (1) has two boundary layers of width ( ) and ( )O O





 on the left 

and right sides respectively, then the solution for homogeneous part of Eq.(8) on  1
th

n  time level 

can be given by 

  2 2( ) exp( )u x A B x


  


       (12) 

where 2 2,A B  and ( , ) 0a x t     are real constant numbers. 

Here, most numerical methods gives good accurate solution for case 1, since 0  , it has reaction-

diffusion parabolic problem property. While for case 2 is challenging to produce good accurate 

solution.  Thus, in this work our focuses to be treat the problem when it is in case 2.  

2.2. The full discrete problem  

 

Assume that M be positive integer and M
  denote partition of [0,1]  into M subintervals such that

0 10 . . . 1Mx x x       and 
1

, , 1 0,1,2, . . . ,mx mh h M
M

    then the tensor-product grids 

on ,M N
Q . Undertake the notation  ,n

m m nU u x t  and using the central finite difference 

approximation, Eq. (8) written as  

 

 

1 1 1 1 1
1 1 1 11 1 1

2

1 1 1 1 1
2

2

2 2

2

2 2

2

n n n n n
mm m m mn n n

m m m

n n n n n
mm m m mn n n n n

m m m m m

U U U U U
a b u

h h k

U U U U U
a b u f f

h h k

    
     

    

    
     

 

    
        

 

   (13) 
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subject to the discrete initial and boundary conditions 

 

      
 

[0,1]

1 0 1 1 1 1 1

( ,0) ( ),

(0, ) ( ), (1, ) ( ), 0,

m m m

N
n n n n n

U x s x x

U t q t u t q t t T    

 

  
   (14) 

where      
1 112 2 22 1

2

n nn
m xxx xxxxm m

h a u u O h k
 

 
       

 
 

Let introduce fitting parameter  on the  1
th

n  - level of homogeneous part of Eq. (13), multiply 

both sides of this equation by
h


, denote 

h
 


and then evaluate limits both side gives 

 

 
 

 

1 1
1 1

0

1 1 1
1 1

0

lim

2lim 2

n n
m m

h

n n n
mm m

h

U U

U U U

 
 



  
 



 
 

  
     (15) 

 

To determine the value of introduced fitting parameter , we consider the discrete form Eq. (12) 

that leads to 

 

       1
2 2

0
lim expn

m
h

U A B m


         (16) 

 

Inducing indices from Eq. (16) for 1
1

n
mU 
 and substituting into Eq. (15), we get  

 

   coth
2 2

  
   

 
      (17) 

The fitted scheme of Eq. (13) can be written as three term recurrence relation in space direction 

and two levels in time direction as 

   1 1 1 1 1 1 1
1 1 , 1,2, ..., and 0,1, ...,n n n n n n n

m m m m mm mE U F U G U H m M n N      
        (18) 

where,  
1

1

2 2

n
mn

m

a
E

h h




 
  ,   1 1

2

2 2
n n

m mF b
h k

 


   ,   
1

1

2 2

n
mn

m

a
G

h h




 
    

and 1 1 1 11 1

2

2 2

2

n n n n n
mm m m mn n n n n n

m m m m m m

U U U U U
H f f a b u

h h k

    
    

      
 

 

Hence, scheme developed in Eq. (18) is considered as fitted operator finite difference method to 

solve the problem in Eqs. (1) and (2). Tri-diagonal system of Eq. (18) with respect to the x direction 

and the coefficients 1 1 1, ,n n n
m m mE F G    and the right-hand side 1n

mH  are given that they satisfy the 

conditions 1 1 1 1 1 10, 0, 0 andn n n n n n
m m m m m mE F G F E G         

 
at each  1

th
n   level. These 

situations guarantee that the system is diagonally dominant and it can be solved by tri-diagonal 

solver. 
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3. Richardson Extrapolation 

 

This technique is a convergence acceleration technique which involves combination of two 

computed approximations of a solution. The combination goes out to be an improved 

approximation. In this work, the truncation terms of the schemes given in Eqs. (5) and (13), we 

have  

 

               2 2( , ) n
m n mu x t U C h k        (19) 

 

where ( , ) and n
m n mu x t U  are exact and approximate solutions respectively, C is constant free from 

mesh sizes h and k.  

Let 2
2

N
MQ  be the mesh found by dividing each mesh interval in N

MQ  and symbolize the 

approximation solution on 2
2

N
MQ  by n

mU . Consider Eq. (19) works for any , 0h k  , which implies: 

 

          2 2( , ) , ( , )n N N
m n m m nM Mu x t U C h k R x t Q           (20) 

 

So that, it works for any , 0
2 2

h k
  yields: 

 

 

2 2

2 2
2 2( , ) , ( , )

2 2
n N N

m n m m nM M

h k
u x t U C R x t Q

    
             

    (21) 

 

where the remainders, N
MR  and 2

2
N
MR  are 4 4( )h kO  .   

Combination of inequalities in Eqs. (20) and (21) leads to   4 43 ( , ) 4 ( )n n
m n m m h ku x t U U O   

which proposes that 

 

     
1

4
3

ext
n n n
m m mU U U         (22) 

is also approximation of ( , )m nu x t . By means of this approximation to estimate the truncation error, 

we obtain 

 

      4 4( , )
ext

n
m n m h ku x t U C        (23) 

 

where C is constant free of mesh sizes h and k. Thus, the obtained accelerated method is order four 

convergent with respect to both independent variables.  

4. Convergence analysis 

 

The Von Neumann stability technique has been applied to investigate the stability of the developed 

scheme in Eq. (18), by assuming that the solution of Eq. (18) at the grid point  ,m nx t  is given by: 
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      mn in
m eU        (24) 

 

where 1,i    is the real number and  is the amplitude factor. Now, substituting Eq. (24) into 

the homogeneous part of Eq. (18) gives: 

 
1 1 1(m 1) m (m 1)1 1 1

(m 1) m (m 1) (m 1) (m 1)
m

2

2 2

2

n n ni i in n n
m m m

n n n n ni i i i i
n in n

m m

e e e

e e e e e
e

E F G

a b
h h k

        

        


  

    


 

    
     

 

 

This implies that 
   
   

2

1 12

2 2 2

2 2 2

i i i in n
m m

i i i in n
m m

e e e e

e e e e

ha h b

ha h b

     

      

      
 

     
 

For sufficiently small mesh size h, we have the amplitude factor 
1

 


 and the condition to be 

stable is 1 
 
leads to: 

1 2
tanh 1

2

  
     

     

which yields tanh
2 2 2

   
   

 
 

Since, as 0, tanh 0.
2

h
h

  
    

  
 Therefore, 1  .  

Hence, the developed scheme in Eq. (18) is stable for any value of mesh sizes. Thus, the developed 

scheme in Eq. (18) is unconditionally stable by Lax Richtmyer definition [10, 13]. 

To investigate the consistency of the method, we have considered before extrapolation Eq. (19) 

and after extrapolation Eq. (23), and then truncation terms vanish as 0 and 0h k  . Hence, the 

scheme is consistent with the orders of  2 2O h k  and  4 4O h k  respectively. Therefore, the 

constructed scheme is convergent by Lax’s equivalence theorem, as stated in books by Smith [12] 

and Zhilin et. al. [13]. 

5. Numerical Results and discussions 
 

Since the exact solution for such type of problems is not available, the maximum absolute errors 

at all the mesh points are evaluated for before and after extrapolation using the formula 

    , 2
, 2

0 ; 0
maxM N n n

m m
m M n N

E u u 
   

     and     , 2
, 2

0 ; 0
max

ext extM N n n
m m

m M n N
E u u 

   
   respectively. 

where n
mu  is approximate solution obtained using a constant space mash size h and time step k and 

2
2

n
mu is also approximate solution produced using space and time step 

2

h
, 

2

k
. Also, its solutions 

obtained by Richardson extrapolation are  
ext

n
mu and  2

2

ext
n
mu . Likewise, we compute the 

numerical rates of convergence as  
, 2 ,2

, ,log log

log2

M N M NE E
R

   
  

 

 



T.A. Bullo, G.F. Duressa, G.A. Degla 

463 
 

Example 1: Consider the problem 

 

      
2 22

2
(1 ) ( , ) 16 1 , ( , ) : (0,1) (0, ]x

u u u
x u x t x x t T

x x t

  
         
  

 

 

subject to the conditions: ( ,0) 0, [0,1] and (0, ) 0 (1, ), [0, ]u x x u t u t t T      

For this example, the obtained numerical results given below in Tables 1 – 3 and Figure 1. 

Example 2:  This example corresponds to the following IBVP 

 

 
2

2

2
(1 (1 ) ) (1 5 ) ( , ) (1 )( 1)t

u u u
x x t xt u x t x x e

x x t

  
          
  

 

 

subject to the conditions: ( ,0) 0, [0,1] and (0, ) 0 (1, ), [0,1]u x x u t u t t     . And numerical 

results given below in Tables 4 and 5 with Figure 1. 

Table 1.  Comparison maximum absolute errors for Example 1 at 
0.125

32,
4

M k    

    210  410  610  810  
Present Method      

2
10

  1.3131e-06 2.2236e-07 2.6487e-06 2.6521e-06 
4

10
  1.2750e-06 2.5782e-08 4.9088e-10 2.4534e-08 
8

10
  1.2746e-06 2.4962e-08 2.9731e-10 2.9926e-10 
10

10
  1.2746e-06 2.4954e-08 2.9747e-10 2.9757e-10 

Results in [2]    
2

10
  1.7212e-02 1.7507e-02 2.2799e-02 2.2801e-02 
4

10
  1.7000e-02 1.6928e-02 1.6913e-02 1.6962e-02 
8

10
  1.6998e-02 1.6923e-02 1.6908e-02 1.6917e-02 
10

10
  1.6998e-02 1.6923e-02 1.6908e-02 1.6917e-02 

 

Table 2. Maximum absolute errors and rate of convergence for Example 1 at 1210 , 1T    and 

M N   

N   8 16 32 64 128 256 

After extrapolation      

8
10

  
2.0138e-07 

3.9961 

1.2620e-

08 

3.9420 

8.2113e-

10 

3.4733 

7.3934e-

11 

1.4946 

2.6237e-

11 

0.9655 

1.3436e-

11 

--- 

10
10

  
2.0123e-07 

4.0033 

1.2548e-

08 

4.0008 

7.8380e-

10 

4.0003 

4.8977e-

11 

3.9916 

3.0789e-

12 

3.9201 

2.0339e-

13 

--- 

12
10

  
2.0123e-07 

4.0033 

1.2548e-

08 

7.8377e-

10 

4.8983e-

11 

3.0536e-

12 

2.2882e-

13 
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4.0009 4.0001 4.0037 3.7382 --- 

Before extrapolation      

8
10

  
3.6002e-04 

2.0023 

8.9862e-

05 

2.0006 

2.2456e-

05 

2.0001 

5.6135e-

06 

2.0001 

1.4033e-

06 

2.0000 

3.5082e-

07 

--- 

10
10

  
3.6002e-04 

2.0023 

8.9862e-

05 

2.0005 

2.2457e-

05 

2.0002 

5.6136e-

06 

  2.0000 

1.4034e-

06 

2.0000 

3.5084e-

07 

--- 

12
10

  
3.6002e-04 

2.0023 

8.9862e-

05 

2.0005 

2.2457e-

05 

2.0002 

5.6136e-

06 

2.0000 

1.4034e-

06 

2.0000 

3.5084e-

07 

--- 

 

Table 3. Comparison of maximum absolute errors for Example 2 at 7
10

    

   M 64 128 256 512 

 N  16 32 64 128 

Present Method     
6

10
  1.7532e-08 1.0945e-09 6.0268e-10 8.3094e-10 
7

10
  1.7532e-08 1.0945e-09 6.8464e-11 2.6425e-11 
8

10
  1.7532e-08 1.0945e-09 6.8466e-11 4.2801e-12 
9

10
  1.7532e-08 1.0945e-09 6.8497e-11 4.2873e-12 

Results in [2]    
6

10
  3.8754e-5 1.0214e-5 2.6170e-6 6.6241e-7 
7

10
  3.8753e-5 1.0214e-5 2.6170e-6 6.6241e-7 
8

10
  3.8753e-5 1.0214e-5 2.6170e-6 6.6241e-7 
9

10
  3.8753e-5 1.0214e-5 2.5461e-6 6.6241e-7 

 Results in [1]    
6

10
  9.6949e−4 4.9906e−4 2.5231e−4 1.2824e−4 
7

10
  9.8712e−4 5.0049e−4 2.5485e−4 1.2853e−4 
8

10
  9.5128e−4 5.0026e−4 2.5237e−4 1.2781e−4 
9

10
  9.6746e−4 5.0012e−4 2.5461e−4 1.2803e−4 

Table 4. Maximum absolute errors for Example 2 at 810  and number of intervals M N   

N    8 16 32 64 128 256 

After extrapolation      
8

10
  2.7269e-07 1.7499e-08 1.0945e-09 6.8442e-11 4.2783e-12 2.6702e-13 
10

10
  2.7269e-07 1.7499e-08 1.0945e-09 6.8442e-11 4.2782e-12 2.6825e-13 
12

10
  2.7269e-07 1.7499e-08 1.0945e-09 6.8441e-11 4.2783e-12 2.6698e-13 

Before extrapolation      
8

10
  1.3949e-04 3.5101e-05 8.7729e-06 2.1959e-06 5.4909e-07 1.3728e-07 
10

10
  1.3949e-04 3.5101e-05 8.7729e-06 2.1959e-06 5.4909e-07 1.3728e-07 

12
10

  1.3949e-04 3.5101e-05 8.7729e-06 2.1959e-06 
 5.4909e-

07 
1.3728e-07 
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Table 5. Order of convergence for Example 2 at 810  and number of intervals M N   

N   8 16 32 64 128 

After extrapolation     
8

10
  3.9619 3.9989 3.9992 3.9998 4.0020 
10

10
  3.9619 3.9989 3.9992 3.9998 3.9954 
12

10
  3.9619 3.9989 3.9993 3.9998 4.0022 

Before extrapolation     
8

10
  1.9906  2.0004 1.9982   1.9997 1.9999 
10

10
  1.9906  2.0004 1.9982   1.9997 1.9999 
12

10
  1.9906  2.0004 1.9982   1.9997 1.9999 

 

 
Fig. 1. Log-log plot of maximum absolute errors before and after Richardson extrapolation 

presented in Table 2 and 4 for Example 1 in the left side and for Example 2 in the right adjacent. 

 

From the results presented in Tables 1 and 3 demonstrates higher order fitted operator finite 

difference method gives more accurate numerical solution than the existing method. As far results 

presented in Tables 2, 4 and 5, one can observe that effects of using Richardson extrapolation 

method to produce more accurate numerical solution corresponding to higher rate of convergence 

for singularly perturbed parabolic IBVPs with two small positive parameters. Besides, clearly to 

verify the use of Richardson extrapolation method on numerical scheme to increase accuracy of 

numerical solution and accelerate order of convergence, one can realize by results confirmed in 

Figure 1. Moreover, Figure 1 specifies that accuracy of solution increases as number of mesh 

interval of the domain increases which indicates that convergence of the method.  

Conclusion  

 

The key purpose of this work is to formulate and investigate higher order fitted operator finite 

difference method to solve singularly perturbed parabolic convection-diffusion IBVPs with two 

small positive parameters. We first discretize the solution domain in the time direction only which 

leads to ordinary differential equation with respect to space variable. Secondly, full discretization 

of domain, derivatives in the differential equations are replaced by central finite difference 

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
-14

-12

-10

-8

-6

-4

-2

0

Mesh points of x in log scale

M
a
x
. 

A
b
s
. 

E
rr

o
rs

 i
n
 l
o
g
 s

c
a
le

 

 

O(1/(M+N))

=10-8

=10-10

=10-12

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
-14

-12

-10

-8

-6

-4

-2

0

Mesh points of x in log scale

M
a
x
. 

A
b
s
. 

E
rr

o
rs

 i
n
 l
o
g
 s

c
a
le

 

 

O(1/(M+N))

=10-8

=10-10

=10-12

Before 

After 

Before 

After 

 



T.A. Bullo, G.F. Duressa, G.A. Degla 

466 
 

approximation,  introduce and determine the value of fitting parameter on  1
th

n  - time level and 

then the obtained finite difference approximation yields on two-level time direction and three-term 

recurrence relations in spatial derivatives that can be solved by tri-diagonal solver. Thirdly, 

applying Richardson extrapolation method to accelerate its rate of convergence from second order 

to fourth order convergent. Consistency and stability of proposed method have been established 

very well to guarantee the convergence of the method. Finally, it is validated by considering test 

examples and displaying numerical results to care the theoretical results and to determine the 

effectiveness of using the present method. Overall, the developed method is consistent, stable and 

produces more accurate numerical solution than the existing one for solving singularly perturbed 

parabolic initial boundary value problems with two small positive parameters. 
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Abstract 

In this study, the contact problem of an elastic layer resting on the rigid foundation is examined. For this aim, 

two-dimensional analysis has been performed using Finite Element Method (FEM) based software called ANSYS. 

In the solution of the problem, the mass forces of the layers are neglected and the thickness through z-axis direction 

is taken as a unit since the problem is examined for the plane state. The contact length between the punch and 

layer and the resulting contact stresses are obtained for various dimensionless parameters.  

Keywords: Contact Mechanics, Plane contact problem, FEM analysis 

1. Introduction 

 

Contact problems have found wide application areas in engineering structures of practical 

importance. Foundations, road and airport superstructures, railways, fuel tanks, grain silos, 

cylindrical shafts and marbles are some of examples of these applications. Therefore, contact 

problems attracted the attentions of many scientists, and so open literature includes numerous 

analytical and numerical studies on contact problems. Hertz [1] presented an analytical solution 

for the contact problem of two elastic bodies with curved surfaces. Weitsman [2] reported an 

approximate solution for the radius of contact between an elastic plate and a semi-infinite elastic 

half space. Keer et al. [3] considered the smooth receding contact between an elastic layer and 

a half space when the two bodies arc pressed together. Ratwani and Erdogan [4] examined the 

plane contact problem for an elastic layer lying on an elastic half space.  Nowell and Hills [5] 

studied the plane elastic contact between a thin strip and symmetric rollers. Chan and Tuba [6] 

described modified finite element method for solving problems of elastic bodies in contact. 

Francavilla and Zienkiewicz [7] proposed a simple procedure of obtaining flexibility matrices 

in terms of contact pressures at possible contact points of two bodies allows the frictionless 
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contact pressures to be solved as a quasi‐linear problem. Jing and Liao [8] examined an 

improved finite element scheme for elastic contact problems with friction is improved by 

introducing the concept of a contact node pair. Garrido et al. [9] applied boundary element 

method to the receding contact problems with friction. Garrido and Lorenzana [10] presented a 

new algorithm for the boundary element analysis of the two-dimensional contact problem 

between elastic solids involving large displacements. Yaylacı et al. [11] dealt with the 

numerical analysis of the symmetric contact problem of two bonded layers resting on an elastic 

half plane compressed with a rigid punch using FEM based ANSYS and ABAQUS software. 

 

 

In the present paper, two-dimensional analysis is performed using Finite Element Method 

(FEM) based software called ANSYS [12] for the contact problem of an elastic layer resting on 

the rigid foundation subjected to the concentrated load by a rigid punch. Several analyses are 

conducted for determining the contact length between the punch and layer and the resulting 

contact stresses for versus dimensionless parameters.  

 

2. The Analysis of the Problem 

 

Figure 1 shows the geometry of frictionless contact problem of the rigidly supported elastic 

layer, where h is the height of the elastic layer and the concentrated load is applied via a rigid 

punch with the radius R to the upper surface of the elastic layer. The layer is in contact with 

punch in the interval (-a, +a) and extends along the x axis in the range (-∞, + ∞). Since the 

problem is symmetrical with respect to the y axis, the calculations are made in the range (0, + 

∞). In the solution of the problem, the thickness is taken as a unit since the problem is examined 

for the plane state, as well as the mass forces and friction are neglected in the solution of the 

problem.  
 

 
Fig. 1. The geometry of the problem 

 

Here, ,  and E denote the shear modulus, Poisson's ratio, and Young’s modulus of the layer, 

respectively.  

 

Figure 2 shows the geometry of finite element analysis. The problem is modeled symmetrically 

with respect to the y axis and the weight of the layer is neglected in here. Linear, elastic and 

isotropic materials are used in all parts of the finite element model. In the analyzes, the half-

length and height of the layer taken to be L = 1 m and h = 0.1m, respectively.  
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Fig. 2. The geometry of the analysis 

 

Figure 3 shows the geometry of ANSYS. The element choice is especially important in 

determining the mathematical model to be used in the analysis. The elements are selected 

according to the type of analysis to be performed. Distinct types of elements may be used for 

static, thermal, fluid, or electromagnetic analyses. Similarly, whether the model to be analyzed 

is two or three dimensional is another significant factor in the element choice. Furthermore, the 

type and number of degrees of freedom of the joints of selected element are essential for the 

exact analysis. In the analysis, PLANE183 type structural element of the ANSYS package 

library is used. The PLANE183 type element is defined by eight joints and each joint has two 

degrees of freedom and no rotation as well as it has plasticity, withstands large flexes, and has 

a great deal of deformation.  

 

 

 
Fig. 3. The geometry of ANSYS 

 

Figure 4 shows the contact pair of ANSYS. The surface-to-surface contact model is used to 

model the contact pair. Contact pairs consist of two element types, i.e., TARGET and 

CONTACT element types. The target surface TARGE169 and the contact surface CONTA172 

with three joints are used to form the contact pair.  
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Fig. 4. The contact pair of ANSYS 

 

Figure 5 shows the mesh of the present model. Here, the material properties and element types 

of the parts in the geometry are assigned mesh structure and size are determined. After the 

application of the boundary conditions and loading, the problem is solved with the help of the 

ANSYS program. 4155 joint points and 1450 elements are used to solve the present problem. 

The deformed shapes of the model are given in Figure 6. 

 

 

  
Fig. 5. The mesh of model 

 

 

   
Fig. 6. The deformed shapes of the model 
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3. The Numerical Results 

 

Figure 7 shows the variation of contact length between the elastic layer and the rigid punch, 

(a/h), versus the punch radius and load ratio. Here, the variation of the load is expressed with 

the dimensionless ratio 𝜇 (𝑃 ℎ⁄ )⁄ . It is found that the contact distances decrease with the 

increase of the ratio 𝜇0 (𝑃 ℎ⁄ )⁄ . Besides, the contact length increases with the increase of the 

punch radius. 

 

 
Fig. 7. The variation of the contact length versus the punch radius and load ratio (=0.25) 

 

Figure 8 shows the variation of the contact length versus punch radius and Poisson’s ratio, 𝜈. It 

is seen that as Poisson’s ratio increases, the contact length decreases, since the body becomes 

more rigid. Besides, the contact length increases with the increase of the punch radius. 

 

 
Fig. 8. The variation of the contact length versus the punch radius and Possions’s ratio 

(
𝜇

𝑃 ℎ⁄
= 100) 
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Figure 9 shows the variation of dimensionless contact stress versus load ratios. It is concluded 

that as the load ratio increases, the dimensionless contact stresses under the punch increase 

because the decrease of half contact length. 

 

 
Fig. 9. The variation of dimensionless contact stress versus of load ratios (=0.25, R/h=10) 

 

Figure 10 shows the variation of the dimensionless contact stress versus punch radius. It is 

observed that as the block radius increases, the maximum value of the dimensionless contact 

stress under the punch decreases. 

 
Fig. 10. The variation of the dimensionless contact stress versus punch radius (=0.25, 

𝜇

𝑃 ℎ⁄
=

100) 
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Figure 11 shows the variation of the dimensionless contact stress versus Possion’s ratio. It is 

found that as the value of Poisson’s ratio decreases, the contact length increases and thus the 

load spreads over a larger area and the contact stresses decrease. 

 

 

 
Fig. 11. The variation of the dimensionless contact stress versus Poisson’s ratio (R/h=10, 

𝜇

𝑃 ℎ⁄
= 100) 

 

 

4. Conclusions 

 

In this study, contact problem of an elastic layer resting on the rigid foundation is examined 

using Finite Element Method (FEM) based software called ANSYS. The contact length 

between the punch and layer and the resulting contact stresses are obtained for various 

dimensionless parameters 

 

Here, the following results are gotten  

 

a) The contact distances decrease with the increase of the load ratio 

b) The contact length increases with the increase of the punch radius 

c) The dimensionless contact stresses under the punch increase with the increase of load 

ratio  

d) The maximum value of the dimensionless contact stress decreases with the increase of 

the block radius 

e) The contact stresses decrease with the decrease of the value of Poisson’s ratio  
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Abstract 

 
In this paper, exponentially fitted finite difference method for solving singularly perturbed delay differential equation 

with integral boundary condition is considered. To treat the integral boundary condition, Simpson’s rule is applied. 

The stability and parameter uniform convergence of the proposed method are proved. To validate the applicability of 

the scheme, two model problems are considered for numerical experimentation and solved for different values of the 

perturbation parameter,   and mesh size, .h  The numerical results are tabulated in terms of maximum absolute 

errors and rate of convergence and it is observed that the present method is more accurate and  -uniformly 

convergent for h    where the classical numerical methods fails to give good result and it also improves the results 

of the methods existing in the literature. 

Keywords: Singularly perturbed problems, Delay differential equation, Exponentially fitted operator, Integral 

boundary condition 

Mathematics Subject Classification: 65L11 · 65L12 · 65L20 

 

1. Introduction 

A differential equation is said to be singularly perturbed delay differential equation, if it includes 

at least one delay term, involving unknown functions occurring with different arguments and also 

the highest derivative term is multiplied by a small parameter. Such type of delay differential 

equations play very important role  in the mathematical modeling of various practical phenomena 
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and also widely applicable in the fields such as biosciences, control theory, economics, material 

science, medicine, robotics etc [1-4]. Any system involving a feedback control almost involves 

time delay. The delay occurs because a finite time is required to sense the information and then 

react to it. 

Finding the solution of singularly perturbed delay differential equations is a challenging problem. 

In response to these, in recent years there has been a growing interest in numerical methods on 

singularly perturbed delay differential equations. In mid-eighties to mid-nineties, Lange and Miura 

[5] studied a class of boundary-value problems for second-order differential-difference equations 

in which the highest-order derivative is multiplied by a small parameter and proposed some 

asymptotic method to approximate the solution of this class of differential equations. In 2002, 

Kadalbajoo and Sharma initiated the numerical study of such type of boundary value problems [6-

12]. In [13], a fitted operator scheme on a uniform mesh is suggested to solve an initial value 

problem for a class of linear and semi linear first order delay differential equations. Amiraliyev and 

Cimen [14] proposed a first order uniform convergent fitted finite difference scheme for singularly 

perturbed boundary value problem for a linear second order delay differential equation with large 

delay in reaction term. Subburayan and Ramanujam [15] gave an initial value technique to solve 

singularly perturbed boundary value problem for second order delay differential equation of 

convection-diffusion problem with large delay. 

The standard numerical methods used for solving singularly perturbed differential equation are 

sometime ill posed and fail to give analytical solution when the perturbation parameter ε is small. 

Therefore, it is necessary to develop suitable numerical methods which are uniformly convergent 

to solve this type of differential equations. 

In the present paper, motivated by the works of [16], we developed exponentially fitted operator 

finite difference scheme on uniform mesh for the numerical solution of second order singularly 

perturbed convection-diffusion equations with delay and integral boundary condition. 

Throughout our analysis  C  is generic positive constant  that is  independent of the parameter   

and number of mesh points 2 .N We assume that 1 2[0,2],  (0,2),   (0,1),  (1,2).       

Further, * 2

1 2,  N     is denoted by   2

10,1,2,..., 2 ,  NN   is denoted by   2

21,2,..., 1 ,  NN  

is denoted by  1, 2,..., 2 1 .N N N  
 

Therefore, the main objective of this study is to develop more accurate, stable and convergent 

exponentially fitted operator finite difference method for solving singularly perturbed convection- 

diffusion problems with integral boundary condition. 

 

2. Statement of the problem 

Consider the following singularly perturbed problem 

 

          ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 1) ( ),   (0,2)Ly x y x a x y x b x y x c x y x f x x                            (1) 

 

                                    ( ) ( ),    [ 1,0],y x x x                                                               (2) 

        

2

0

(2) (2) ( ) ( ) ,Ky y g x y x dx l                                                 (3) 

where  ( )x is sufficiently smooth on [ 1,0].   
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For all ,x  it is assumed that the sufficient smooth functions 

1( ), ( )  and  ( ) satisfy ( ) 0,  ( ) 0,  ( ) 0,a x b x c x a x b x c x          and 0.      

Furthermore, ( )g x  is non-negative and monotonic with 

2

0

( ) 1.g x dx   The above assumptions 

ensure that 0 1 2

1 2( ) ( ) ( ).y X C C C         

 The Eqs.  (1)–(3) is equivalent to 

 

 ( ) ( )Ly x F x              (4) 

 

Where 

                 

1 1

2 2

( ) ( ) ( ) ( ) ( ) ( ),                             (0,1)
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 1),      (1,2)

L y x y x a x y x b x y x x
Ly x

L y x y x a x y x b x y x c x y x x

      
 

        




                  (5) 

1

2

( ) ( ) ( 1),     
( )

( ),                           

f x c x x x
F x

f x x

  
 




                                                         (6) 

 

with boundary conditions 

 

                               

2

0

( ) ( ),  [ 1,0],

(1 ) (1 ),   (1 ) (1 ),

(2) (2) ( ) ( ) ,

y x x x

y y y y

Ky y g x y x dx l

   




  



   

  








     

                                              (7) 

 

3. Properties of continuous solution 

 

Lemma 3.1: (Maximum Principle) Let ( )x  be any function in X  such that 

1 1 2 2(0) 0,  (2) 0,  ( ) 0, , ( ) 0, ,K L x x L x x           and[ ](1) 0  then 

( ) 0,  .x x    

 Proof:  Define the test function 

                                           

1
,   [0,1]

8 2
( )

3
,   [1,2]

8 4

x
x

s x
x

x


 

 
  


                                                              (8) 

 

Note that 
1 2( ) 0,  ,  ( ) 0,  , (0) 0,  (2) 0s x x Ls x x s Ks          and [ ](1) 0.s    



H.G. Debela, G.F. Duressa 

479 
 

Let 
( )

max :  .
( )

x
x

s x

 
  

 


  Then, there exists 

0x   such that 
0 0( ) ( ) 0x s x    and 

( ) ( ) 0,  .x s x x       Therefore, the function ( )s  attains its minimum at 0.x x  Suppose 

the theorem does not hold true, then 0.  

Case (i): 0 0x   

0 ( )(0) (0) (0) 0,s s           It is a contradiction. 

Case (ii): 0 1x   

0 0 0 0 0 00 ( )( ) ( ) ( ) ( )( ) ( ) ( )( )( ) 0L s x s x a x s x b x s x                    

It is a contradiction. 

Case (iii): 
0 1x   

0 [( ) ](1) [ ](1) [ ](1) 0,s s           It is a contradiction. 

Case (iv): 0 2x   

0 0 0 0 0 0

0 0

0 ( )( ) ( ) ( ) ( )( ) ( ) ( )( )( )

                               ( )( )( 1) 0,  It is a contradiction.

L s x s x a x s x b x s x

c x s x

         

   

        

 
 

Case (v): 0 2x   

2

0

0 ( )(2) ( )(2) ( )( )( ) 0,K s s g x s x dx              It is a contradiction. 

 Hence, the proof of the theorem. 

                                       

Lemma 3. 2: (Stability Result) The solution ( )y x  of the problem (1)–(3), satisfies the bound 

*

( ) max (0) , (2) ,sup ( ) ,   
x

y x C y Ky Ly x x


 
  

 
 

Proof: For the proof refer [16] 

Lemma 3.3: The bound for derivative of the solution ( )y x  of the problem (1)-(3) when 

1 (0,1)x   is given by  

( )
(1 )

( ) 1 exp ,   0 4,   1,2,..., 1.
jk k

x
y x C k k j N

   
         

  





 

Proof: For the proof refer [17] 

 

4. Formulation of the numerical scheme  

 

For small values of ,  the boundary value problem (1)–(3) exhibits strong boundary layer at 2x   

and interior layer at 1x   (see [16]) and cannot, in general, be solved analytically because of the 

dependence of ( ), ( )  and  ( ) a x b x c x on the spatial coordinate .x  We divide the interval [0,2]   into 

2N  equal parts with constant mesh length .h  Let 
0 2 1 2 20 , ,..., 1, , ,..., 2N N N Nx x x x x x     be the 

mesh points. Then we have ,  0,1,2,...2 .ix ih i N   If we consider, the interval (0,1)x  and the 

coefficients of (1) are evaluated at the midpoint of each interval, then we will obtain the differential 

equation 
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1

0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 1),   (0,1)

(0) (0)

y x a x y x b x y x f x c x x x

y y

        


 

 


                  (9) 

 

Now, the domain [0,1]   is discretized into N  equal number of subintervals, each of length .h  Let 

0 10 ... 1Nx x x      be the points such that ,  0,1,2,..., .ix ih i N   For the discretization, we 

apply a exponentially fitted operator finite difference method (FOFDM). 

From  (9) we have 

 

                1( ) ( ) ( ) ( ) ( ) ( ),   (0,1)y x a x y x b x y x F x x                                      (10) 

 

where ( ) ( ) ( ) ( 1).F x f x c x x     

To find the numerical solution of (10) we use the theory applied in asymptotic method for solving 

singularly perturbed BVPs. In the considered case, the boundary layer is in the right side of the 

domain i.e. near 1.x  From the theory of singular perturbations given by O’Malley [18] and using 

Taylor’s series expansion for ( )a x about 1x  and restriction to their first terms, we get the 

asymptotic solution as 

 

                                      
0 0

(1)(1 )
( ) ( ) ( (1))exp ,

a x
y x y x y

 
    

 



                                         (11) 

 

where 
0( )y x  is the solution of the reduced problem (obtained by setting  0) of  (10) which is 

given by 

 

                             ( ) ( ) ( ) ( ) ( )a x y x b x y x F x    with 0 (0) (0).y                                                     (12) 

 

Considering h  small enough, the discretized form of (11) becomes 

 

0 0

(1)(1 )
( ) ( ) ( (1))exp ,

a ih
y ih y ih y

 
    

 


  
which simplifies to 

                                         
0 0

1
( ) ( ) ( (1))exp (1) ,y ih y ih y a i

  
      

  
 


                                 (13) 

 

where 
1

,  .
h

h
N

 


 

To handle the effect of the perturbation parameter artificial viscosity (exponentially fitting factor 

( )  ) is multiplied on the term containing the perturbation parameter as 

 

                                

( ) ( ) ( ) ( ) ( ) ( ) ( ),y x a x y x b x y x F x                                                    (14) 

 

with boundary conditions  
0(0) (0)   and   ( )y y N    
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 where ( )y N is evaluated by Runge-Kutta method from the reduced solution of (12). 

Next, we consider the difference approximation of Eq.  (9) on a uniform grid 0{ }N N

i ix    and 

denote 
1 .i ih x x 

 
For any mesh function ,iz  define the following difference operators 

 

     
01 1 1 1 1 1

2

2
,   ,   ,   ,

2

i i i i i i i i i
i i i i

z z z z z z z z z
D z D z D z D D z

h h h h

            
                        (15) 

 

By applying the central finite difference scheme on Eq. (14) takes the form 

 

         

0( )( ( )) ( )( ( )) ( ) ( ) ( ),i i i i i iD D y x a x D y x b x y x F x                                      (16) 

 

with the boundary conditions 
0(0) (0)   and   ( ) .y y N    

Using operator, Eq. (10) is rewritten as 

 

                                                           
h

i iL y F                                                                                 (17) 

 

with the boundary conditions 
0 (0)   and   .Ny y     

where 

 

                

1 1 1 1

2

2
( )( ) ( )( ) ( ) ,

2

h i i i i i
i i i i i

y y y y y
L y a x b x y F

h h

     
                                   (18) 

 

Multiplying Eq. (18) by h and considering h  small and truncating the term ( ( ) ( )),i i ih F b x y x

 results  

 

                                                1 1 1 1

( )( )
2 0

2

i
i i i i i

a x
y y y y y       

 


                                  (19) 

 

 Now using Taylor’s series for 
1iy 
and 

1iy 
up to first term and substituting the results in Eq.  (19) 

into Eq. (16) and simplifying, the exponential fitting factor is obtained as 

 

                                          

(1) (1)
( ) coth

2 2

a a 
  

 

 
                                                                    (20) 

 

Assume that 2N
 denote partition of[0,2]  into 2N subintervals such that 0 10 ... 1Nx x x    

and 1 2 21 ... 2N N Nx x x      with 
2 1

, , 0,1,2,....,2
2

ix ih h i N
N N

    . 

Case 1: Consider Eq. (4) on the domain 
1 (0,1)   which is given by  

 

                          

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 1)y x a x y x b x y x f x c x x                                               (21) 
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Hence, the required finite difference scheme becomes 

 

    
1 12 2 2

( ) ( )( ) 2 ( ) ( )
( ) ( )

2 2

i i
i i i i i i i

a x a x
y b x y y f c x N

h h h h h
 

    
           

    

     
          (22) 

for 0,1,2,..., .i N   

The numerical scheme in Eq. (22) can be written in three term recurrence relation as      
 

  1 1 , 1,2,...,i i i i i i iE y F y G y H i N            (23) 

 

where  
2 2 2

2
,   ,   ,   ( )

2 2

i i
i i i i i i i i

a a
E F b G H f c x N

h h h h h

 
        

  
 ,   

 Case 2: Consider Eq. (4) on the domain
2 (1,2)  , for right layer in the domain 2  using 

exponentially fitted finite difference method, which is given by 

1 1 1
1

2

2
( ) ( 1)

i i i i i
i i i i i i

y y y y y
a b y c y x f

h h

       
           

   
 Similarly, this equation can 

be written as  

 

       1 1 , 1, 2,...,2 1i j i i i i i i ic y E y F y G y H i N N N                         (24) 

 

where  ( 1), 1,2, ...,j iy y x j N   ,
2 2 2

2
,   ,   ,   

2 2

i i
i i i i i i

a a
E F b G H f

h h h h h

 
      

  
 

Case 3: For 2i N , the composite Simpson’s rule approximates the integral of ( ) ( )g x y x  by  

 
2 2 1 2

2 2 2 1 2 1
1 10

( ) ( ) (0) (0) (2) (2) 2 ( ) ( ) 4 ( ) ( )
3

N N

i i i i
i i

h
g x y x dx g y g y g x y x g x y x



 
 
 

     
 

          (25) 

 

Substituting Eq. (25) into Eq. (3) gives 
2 1 2

2 2 2 1 2 1

1 1

(2) (0) (0) (2) (2) 2 ( ) ( ) 4 ( ) ( )
3

N N

i i i i

i i

h
y g y g y g x y x g x y x L



 

 

 
     

 
 


 

Since (0) (0)y   , from  Eq. (2), this equation can be re-written as  

 
2 2 1

2 1 2 1 2 2

1 1

4 2
( ) ( ) ( ) ( ) 1 (2) (2) (0) (0)

3 3 3 3

N N

i i i i

i i

h h h h
g x y x g x y x g y L g y



 

 

 
      

 
 

   
     (26) 

 

Therefore, on the whole domain [0,2] , the basic schemes to solve  Eqs. (1)-(3) are the schemes 

given in Eq. (23), Eq. (24) and Eq. (26) together with the local truncation error of 1 . 

 

5. Convergence analysis  

The discrete scheme corresponding to the original Eqs.  (1)–(3) is as follows: 
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For 1,2,..., 1,i N   

 

1 ,

N

i i i i NL Y f b                                                         (27) 

 

For 1,...,2 1,i N N    

 

2 ,N

i iL Y f                                                              (28) 

 

 subject to the boundary conditions: 

 

                                                  ,  , 1,...,0i iY i N N                                                             (29) 

 

                                     
2

1 1 1 1
2 2

1

4

3

N
N i i i i i i

N N i

i

g Y g Y g Y
K Y Y h   



 
                                             (30) 

 

And     
N ND Y D Y   

Where 

2 0

1

2 0

2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

N

i i i i i i

N

i i i i i i i i N

L Y Y x a x D Y x b x Y x

L Y Y x a x D Y x b x Y x c x Y x 

   

    




 

 

Lemma 5.1: (Discrete Maximum Principle) Assume that 
2

1 1

1

4
1

3

N
i i i

i

i

g g g
h 



 
    

and mesh function ( )ix  satisfies 
0( ) 0,x   and 

2( ) 0,N

NK x   Then 
2 2

1 1 2 2( ) 0,  , ( ) 0,  ,N N N N

i i i iL x x L x x        and ( ( )) ( ( )) 0N ND x D x     imply that 

2( ) 0,  .N

i ix x    

Proof:  Define  

 

2

2

1
,   [0,1] ,

8 2
( )

3
,   [1,2] ,

8 4

Ni
i

i

Ni
i

x
x

s x
x

x


  

 
   


                                                                       

Note that 2 2 2

1 1 2( ) 0,  ,  ( ) 0,  , (0) 0,  ( ) 0N N N

i i i i Ns x x Ls x x s Ks x          and

[ ]( ) 0.Ns x    

Let 2( )
max :  .

( )

Ni
i

i

x
x

s x

 
  

 


  Then there exists 2N

kx   such that ( ) ( ) 0k kx s x    and 

2( ) ( ) 0,  .N

i i ix s x x       Therefore, the function ( )s  attains its minimum at .kx x  

Suppose the theorem does not hold true, then 0.  

Case (i): 
0kx x  

00 ( )( ) 0,s x      It is a contradiction. 

Case (ii): 2

1

N

kx   
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10 ( )( ) 0,N

kL s x      It is a contradiction. 

Case (iii): k Nx x  

0 [ ( ) ]( ) 0,ND s x   
 
 It is a contradiction. 

Case (iv): 2

2

N

kx   

20 ( )( ) 0,N

kL s x      It is a contradiction. 

Case (v): 2k Nx x  

2
1 1 1 1

2 2

1

( ) 4 ( ) ( )
0 ( ) ( ) 0

3

N
N i i i i i i

N N i

i

g s x g s x g s x
K s x s x h   



    
     

     
     

It is a contradiction. Hence the proof of the theorem. 

Lemma 5.2: Let  ( )ix  be any mesh function then for 0 2 ,i N   

 2 2
1 2

0 2( ) max ( ) , ( ) , max ( )
N N

N N

i N i
i

x C x K x L x
 

     

Proof: For the proof refer [16]  

The following theorem shows the parameter uniform convergence of the scheme developed. 

Theorem 5.1: Let ( )iy x and iy be respectively the exact solution of Eqs. (1)-(3) and numerical 

solutions of Eq. (17). Then for sufficiently large ,N the following parameter uniform error estimate 

holds: 

 

   

2

0 1

sup ( )i iy x y CN 

 

 
                                                       

 (31) 

 

Proof: Let us consider the local truncation error defined as 

 

    

2
0

2
( ( ) ) ( ) ( ) ( ) ( )h

i i i i i

d d
L y x y D D y x a x D y x

dx dx

    
        

  
                   (32) 

 

where 
1 1

( ) (1) coth (1)
2 2

N N
a a

  
  

 
 


 since 

1

.
2

N 


 In our assumption 1.h N    

By considering is fixed and taking the limit for 0,  we obtain the following 

1 1
1

0 0
lim ( ) lim (1) coth (1)

2 2

N N
a a CN

 


 

 
  

  
 


 

From Taylor series expansion, the bound for the difference becomes 

42
3

2 4

3
0 2

3

( ( ))
( )

( ( ))
( )

i
i

i
i

d y xd
D D y x CN

dx dx

d y xd
D y x CN

dx dx

  



  
   

 

  

  
 

 

where 
0( , )

( ( )) ( )
sup ,  3,4.

i N

k k

i i

k k
x x x

d y x d y x
k

dx dx

 
  

 
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Now using the bounds and the assumption 1,N   (32) reduces to 

 
2

0

2

2
0

2

4 3
3 2

4 3

( ( ) ) ( ) ( ) ( ) ( )

                        ( ) ( ) ( ) ( )

( ( )) ( ( ))
                         

h

i i i i i

i i i

i i

d d
L y x y D D y x a x D y x

dx dx

d d
D D y x a x D y x

dx dx

d y x d y x
CN CN

dx dx

 

 

 

   
        

  

   
       

  

 

 

 

                

(33) 

 
Here, the target is to show the scheme convergence independent on the number of mesh points. 

By using the bounds for the derivatives of the solution in Lemma 3.4, we obtain 

 

           

4 3
3 2

4 3

3 4 2 3

2 4

( ( )) ( ( ))
( ( ) )

(1 ) (1 )
                        1 exp 1 exp

(1 )
                        1 exp

h i i
i i

j j

j

d y x d y x
L y x y CN CN

dx dx

x x
CN CN

x
CN

 

   

 

  

         
            

      

   
   

  

 
 

 






4 3,   since   
 

     

(34) 

 

Lemma 5.3: For a fixed mesh and for 0,  it holds 

 

                             0 1 1

(1 )
exp

 lim max 0,   1,2,3,...

j

mj N

x

m
   

  
 
   








                                                (35) 

 

Proof: Refer from [19]  

By using Lemma 5.3 into Eq. (34), results to 

 

                                                          
2( ( ) )h

i iL y x y CN                                                                  (36) 

 

Hence, by discrete maximum principle, we obtain 

 

                                                                    2( )i iy x y CN                                                           (37) 

 

Thus, result of Eq. (37) shows Eq. (31). Hence the proof. 

Remark: A similar analysis for convergence may be carried out for finite difference scheme (24). 

 



H.G. Debela, G.F. Duressa 

486 
 

6. Numerical Examples and Results 

In this section, four examples are given to illustrate the numerical method discussed above. The 

exact solutions of the test problems are not known. Therefore, we use the double mesh principle to 

estimate the error and compute the experiment rate of convergence to the computed solution. For 

this we put 
2

2
0 2
maxh N N

i i
i N

E Y Y
 

   where N

iY  and 2

2

N

iY  are the thi  components of the numerical 

solutions on meshs of N  and 2 ,N respectively. We compute the uniform error and the rate of 

convergence as maxh hE E 


 and 2 2
log

N
h

N

E
R

E

 
  

 
. The numerical results are presented for the 

values of the perturbation parameter  4 8 2010 ,10 ,...,10 .    

Example 1:   

2

0

( ) 3 ( ) ( 1) 0, (0,1) (1,2)

( ) 1, [ 1,0]

(2) ( ) 2
3

y x y x y x x

y x x

x
y y x dx

      

  

 

 

 

 

Table 1. Maximum absolute errors and rate of convergence for Example 1 at number of mesh 

points 2N 

  32N   64N   128N   256N   512N   

    
410  6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04 

 0.9943 0.9972 0.9986 0.9993  
810  6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04 

 0.9943 0.9972 0.9986 0.9993  
1210  6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04 

 0.9943 0.9972 0.9986 0.9993  
1610  6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04 

 0.9943 0.9972 0.9986 0.9993  
2010  6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04 

 0.9943 0.9972 0.9986 0.9993  
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Table 2. Comparisons of maximum absolute errors and rate of convergence for Example 1 at 

number of mesh points 2N 

N          32       64      128     256     512 

Present 

Method 
102  

 

 

6.8902e-03 

 

 

3.4587e-03 

 

 

1.7327e-03 

 

 

8.6773e-04 

 

 

4.3760e-04 
112  6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04 
122  6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04 
132  6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04 
142  6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04 
152  6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04 
162  6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04 
172  6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04 
182  6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04 
192  6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04 
202  6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04 
hE  6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04 
hR      0.9943     0.9972     0.9986     0.9993  

 

Result in [16] 

     

102  8.7402e−03  4.0726e−03  1.9156e−03 9.1036e−04 4.3976e−04 
112  9.3259e-03  4.4288e-03  2.1232e-03  1.0265e-03  5.0201e-04 
122  9.7404e-03  4.6808e-03  2.2700e-03  1.1087e-03  5.4603e-04 
132  1.0033e-02  4.8591e-03  2.3738e-03  1.1668e-03  5.7716e-04 
142  1.0241e-02  4.9852e-03  2.4472e-03  1.2079e-03  5.9917e-04 
152  1.0387e-02  5.0744e-03  2.4991e-03  1.2370e-03  6.1474e-04 
162  1.0491e-02  5.1374e-03  2.5358e-03  1.2575e-03  6.2574e-04  
172  1.0564e-02  5.1820e-03  2.5618e-03  1.2720e-03  6.3352e-04 
182  1.0616e-02  5.2135e-03  2.5801e-03  1.2823e-03  6.3902e-04 
192  1.0653e-02  5.2358e-03  2.5931e-03  1.2896e-03  6.4292e-04 
202  1.0679e-02  5.2516e-03  2.6023e-03  1.2947e-03  6.4567e-04 
hE  1.0679e-02  5.2516e-03  2.6023e-03  1.2947e-03  6.4567e-04 
hR     1.0240    1.0129     1.0071      1.0038  
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Fig. 1. The behavior of the Numerical Solution for Example 1 at 1210   and 32.N   

 
Fig. 2. Point wise absolute error of Example 1 at 1210   with different mesh size .h  

 

 
Fig. 3.  -uniform convergence with NSFDM in Log-Log scale for example 1 

 

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

1.2

1.4

1.6

1.8

2

2.2

2.4

x

N
u
m

e
ri
c
a
l 
S

o
lu

ti
o
n

 

 

Numerical solution at N

Numerical Solution at 2N

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7
x 10

-3

x

E
rr

o
rs

 

 

N=32

N=64

N=128

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
-3.4

-3.2

-3

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

 

 

O(1/N)

=10-4

=10-8

=10-12

=10-16

=10-20



H.G. Debela, G.F. Duressa 

489 
 

Example 2:   
2

2

0

( ) ( 10) ( ) ( 1) , (0,1) (1,2)

( ) 1, [ 1,0]

(2) ( ) 2
3

y x x y x y x x x

y x x

x
y y x dx

       

  

 

 

Table 3. Maximum absolute errors and rate of convergence for Example 2 at number of mesh 

points 2N 

  32N   64N   128N   256N   512N   

    
410  1.5579e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7628e-05 

 0.9985 0.9988 0.9993 0.9996  
810  1.5579e-03 1.5579e-03 3.9021e-04 1.9520e-04 9.7628e-05 

 0.9985 0.9988 0.9993 0.9996  
1210  1.5579e-03 1.5579e-03 3.9021e-04 1.9520e-04 9.7628e-05 

 0.9985 0.9988 0.9993 0.9996  
1610  1.5579e-03 1.5579e-03 3.9021e-04 1.9520e-04 9.7628e-05 

 0.9985 0.9988 0.9993 0.9996  
2010  1.5579e-03 1.5579e-03 3.9021e-04 1.9520e-04 9.7628e-05 

 0.9985 0.9988 0.9993 0.9996  

 

Table 4. Comparison of Maximum absolute errors and rate of convergence for Example 2 at 

number of mesh points 2N 

N    32 64 128 256 512 

Present 

Method 
102  

 

 

1.5579e-03 

 

 

7.7976e-04 

 

 

3.9021e-04 

 

 

1.9520e-04 

 

 

9.7633e-05 
112  1.5579e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7633e-05 
122  1.5579e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7633e-05 
132  1.5579e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7633e-05 
142  1.5579e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7633e-05 
152  1.5579e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7633e-05 
162  1.5579e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7628e-05 
172  1.5579e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7628e-05 
182  1.5579e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7628e-05 
192  1.5579e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7628e-05 
202  1.5579e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7628e-05 
hE  1.5579e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7628e-05 
hR  0.9985 0.9988 0.9993 0.9993  

Result in [16]      
102  5.5958e-03 2.5488e-03 1.1977e-03 5.7296e-04 2.7750e-04 
112  5.8142e-03 2.6717e-03 1.2671e-03 6.1165e-04 2.9860e-04 
122  5.9692e-03 2.7588e-03 1.3161e-03 6.3898e-04 3.1349e-04 
132  6.0790e-03 2.8204e-03 1.3508e-03 6.5829e-04 3.2400e-04 
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142  6.1568e-03 2.8640e-03 1.3753e-03 6.7194e-04 3.3142e-04 
152  6.2119e-03 2.8948e-03 1.3927e-03 6.8158e-04 3.3667e-04 
162  6.2509e-03 2.9166e-03 1.4049e-03 6.8840e-04 3.4038e-04 
172  6.2785e-03 2.9321e-03 1.4136e-03 6.9322e-04 3.4300e-04 
182  6.2980e-03 2.9430e-03 1.4197e-03 6.9662e-04 3.4485e-04 
192  6.3118e-03 2.9507e-03 1.4241e-03 6.9903e-04 3.4616e-04 
202  6.3216e-03 2.9562e-03 1.4271e-03 7.0074e-04 3.4709e-04 
hE  6.3216e-03 2.9562e-03 1.4271e-03 7.0074e-04 3.4709e-04 
hR  1.0965 1.0505 1.0262 1.0135  

 

 
Fig. 4. The behavior of numerical solution for example 2 at 1210   and 32.N   

 
Fig. 5. Point wise absolute error of Example 2 at 1210   with different mesh size .h  
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Fig. 6.  -uniform convergence with NSFDM in Log-Log scale for example 2 

7. Discussion and Conclusion 

This study introduces fitted operator finite difference numerical method (NSFDM) for solving 

singularly perturbed delay differential equations with integral boundary condition. The behavior of 

the continuous solution of the problem is studied and shown that it satisfies the continuous stability 

estimate and the derivatives of the solution are also bounded. The numerical scheme is developed 

on uniform mesh using exponential fitted operator in the given differential equation. The integral 

boundary condition is treated using Simpson’s rule. The stability of the developed numerical 

method is established and its uniform convergence is proved. To validate the applicability of the 

method, two model problems are considered for numerical experimentation for different values of 

the perturbation parameter and mesh points. The numerical results are tabulated in terms of 

maximum absolute errors, numerical rate of convergence and uniform errors (see Tables 1-4). 

Further, behavior of the numerical solution (Figure 1 and 4), point-wise absolute errors (Figure 2 

and 5) and the   -uniform convergence of the method is shown by the log-log plot (Figure 3 and 

6). The method is shown to be  -uniformly convergent with order of convergence ( ).O h The 

performance of the proposed scheme is investigated by comparing with prior study (see Table 2 

and 4). The proposed method gives more accurate, stable and  -uniform numerical result.  
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Abstract 

One of most prominent and active faults in Eastern Turkey is the NE-SW oriented left-lateral strike-slip East 

Anatolian Fault Zone (EAFZ) with a length of approximately 500 km. In this study, we have examined the recent 

seismicity of EAFZ that was obtained from the records of 34 three-dimensional broad-band earthquake stations 

established around the fault zone within TURDEP project since 2006. Further the seismicity and fault mechanism 

solutions of EAFZ, Eastern Turkey have been examined. The new fault mechanism solutions in addition to 

previously published 220 earthquakes, with a magnitude of ML=2.0 or more were determined by a local moment 

tensor solution and P-wave first motion data. It was suggested that the recent tectonic deformation of EAFZ south 

of Türkoğlu was taken up by the left-lateral strike-slip active faults in between Amik and Adana Basins were young 

trans-tensional stress regime was also active.  

Keywords: East Anatolian Fault Zone, Earthquake, Fault Mechanism Solution, Stress Tensor Analyses. 

1. Introduction 

 

The East Anatolian Fault Zone (EAFZ) is a left-lateral strike-slip fault and 500 km in length. 

The EAFZ, left lateral active strike-slip fault, extending from Karlıova (Bingöl) at the northeast 

through İskenderun Gulf at the southwest [1]. The fault starts at the Karlıova triple junction, 

where it meets the North Anatolian Fault (NAF) to the NE and continues to the Türkoğlu 

junction (T) (Fig. 1) where it divides into several splays to the SW. It was doubtful whether the 

continuation of EAFZ towards to southeastern end to the Dead Sea Fault (DSF) or the Cyprus 

Arc (CA). Various views were proposed: a) the EAFZ continued in southwestern trending from 

Karlıova to north of Cyprus and was not directly connected to the DSF, b) the Türkoğlu-Amik 

segment (Karasu Fault Zone) was interpreted as a separate fault, c) the EAFZ continued until 

Samandağ (Mediterranean Sea) in splay or left-stepping pattern, d) the EAFZ was interpreted 

as a northward continuation of the DSF [2].    
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Cilicia region constitutes a wide left lateral shearing zone that indicates a diffuse plate boundary 

between the African, Arabian and Anatolian plates [3] and [4]. Stress tensor was analyzed and 

shows that the entire region was under control of the left-lateral strike-slip faulting with minor 

normal component [5]. The stress tensor for the Osmaniye region showed that the area was 

affected by E-W oriented extensional stress. Distribution of earthquakes has implied that the 

splay fault extending from (T) through Andırın to Osmaniye has appeared to be active in this 

century [5]. The DSF and its junction were with the southern segment of the EAFZ, despite 

their high tectonic activity was relatively quiescent in the last two centuries [6]. 

 

The EAFZ was among the most important active continental transform fault zones in the world 

as testified by major historical and minor instrumental seismicity [7] outlined the seismological 

aspects of the region, was outlined that the characteristics of the strong ground motion, the 

geotechnical characteristics of the region and the structural damages based on site assessments 

in Elazığ [8]. Some researchers examined that a geochemical investigation has been carried out 

on the gas phase associated to thermal fluids discharged along three different segments of the 

EAFZ running from Malatya to the Triple Junction area (Karlıova) where the EAFZ and the 

NAFZ cross each other [9]. Further a different method, that was Artificial Neural Networks, 

was studied on EAFZ [10]. 

In this study, our aim is to examine the seismicity and fault mechanism solutions of EAFZ, 

eastern Turkey and whether the seismic hazard includes for segments that have been on the 

EAFZ. The recent seismicity of EAFZ has been monitored using the records of three-

dimensional broad-band earthquake stations established around the EAFZ within TURDEP 

Project since 2006 [11].  

2. 3. Method for Stress Tensor Analysis and Fault Mechanism Solutions 

The new fault mechanism solutions of 60 earthquakes in addition to previously published 220 

earthquake mechanism solutions (total 280) that occurred on and around EAFZ in the time 

period between 1951 and 2010 were studied to understand the principal stress field and the 

seismotectonic characteristics along the fault zone that was EAFZ in this study. The magnitude 

range of the data varied between 2.0 and 7.0. The new fault mechanism solutions in this study 

were determined by a local moment tensor solution (46) and P-wave first motion data (16) and 

had the magnitude range of ML=3.5 or more (Fig. 1). Then we separated the fault zone as 14 

parts that were called between D1 and D14, respectively (1 increased-stepped) (Figure 2). 
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Fig.1. Fault mechanism solutions of 280 events in this study (1951-2010) (The symbol T 

indicates the location of Türkoğlu junction) 

 

Fig. 2. Segmentation of EAFZ based on the characteristics of 280 earthquake fault mechanism 

solutions in the years between 1951 and 2010. 
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The earthquake fault mechanism solutions were divided into sub-regions in order to analyze the 

tectonic stresses along the EAFZ (Fig. 2). After we separated the segments as 14 parts, we 

started to apply them the classical Right Dihedron Method. It was improved to estimate the 

range of tectonic stress regimes using the earthquakes mechanism solutions and geological field 

data [12]. The Right Dihedron Method was particularly well adapted for the stress inversion of 

focal mechanisms, as it also used two orthogonal planes to define compressional and 

extensional quadrants. A stress regime index R’ which expressed numerically the stress regime 

was defined as followed: 

R’=R when S1 was vertical (extensional stress regime) 

R’=2-R when S2 was vertical (strike-slip stress regime) 

R’=2+R when S3 was vertical (compressional stress regime) 

where R was the stress ratio and R=(S2-S3)/(S1-S3). Further R’ ranged from 0.0 to 3.0 [13] 

(Fig. 3). 

 

Fig. 3. Analysis using the earthquake mechanism solutions in this study (1951-2010) 

The mechanism solutions of 82 earthquakes that were detected by 18 stations between 1993 

and 2002 were calculated [3]. They reached the conclusion with the Cilicia region where 

constituted a wide left lateral shearing zone, indicating a diffuse plate boundary between the 

African, Arabian and Anatolian Plates (Fig. 4, Fig. 5). 
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Fig. 4. Study area (Modified from [3] and [4]) 

 

Fig. 5. Focal mechanism solutions that were studied at the study area by [3] (Modified from 

[3]) 

Collected earthquake data was analized by TUBITAK-MAM in the Cilician Region between 

1999 and the first half of the 2001 (Fig. 6)[5].  
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Fig. 6. Analized earthquake data that was collected by TUBITAK-MAM in the Cilician 

Region between 1999 and the first half of the 2001 by [5] 

Stress tensors that were calculated using 59 focal mechanism solutions for the entire Cilicia 

region. The stress tensors showed that the entire region was under control of the left lateral 

strike-slip faulting with minor normal component. For the Osmaniye region the stress tensor 

showed that the area was affected by E-W oriented extensional stress (Fig. 7). 
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Fig. 7. The stress tensors showed that the Entire EAFZ region, for the Osmaniye region and 

the Entire Cilicia Region (Modified from [5]) 

 

4. Large Earthquakes in the Historical and Instrumental Period at the Study Area 

Distribution of earthquakes implied that the splay fault extending from T through Andırın to 

Osmaniye appeared to be active in this century. Identified areas that had seismicity gaps as 

Elazığ-Bingöl (EB) Region and Kahramanmaraş-Malatya (KM) Region, respectively according 

to the Coulomb Stress Change Statement at the study area of the particular seismic risk that was 

one of them which might be expected to yield a large event [14]. The DSF and its junction with 

the southern segment of the EAFZ, despite their high tectonic activity was relatively quiescent 

in the last two centuries [6] (Fig. 8). 
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Fig. 8. Coulomb stress change was plotted as a function of distance along EAFZ. Note the 

spikes along the KM and EB segments at the study area (Modified from [14]) 

 

The March 8, 2010 earthquakes that hit Kovancılar and Palu districts of Elazığ province in 

Turkey. According to United States Geological Survey (USGS), magnitudes of these 

earthquakes, which caused partial or total collapse in many buildings with life losses, were 6.1 

and 5.5, respectively [8]. Further, according to the historical earthquake records, the largest 

earthquake that affected Palu occurred in 1789 and its intensity is estimated to be 8 and it is 

stated that 8-10.000 or 51.000 people lost their lives as a result of the earthquake [15]. Some 

researchers evaluated the failures of masonry and adobe buildings during the June 23, 2011, 

Maden (Elazığ) earthquake. Maden was a township approximately 80 km away from Elazığ 

city in Turkey and the magnitude of the earthquake was announced as ML = 5.3 by the 

Earthquake Division of the Turkish Disaster and Emergency Management Agency (DEMA) 

[16]. It was an earthquake that might be called as the large earthquake on the EAFZ, too. 

Another researcher said that recent earthquakes occurred in Bingöl on 22.05.1971, Palu on 

25.03.1977, Bingöl on 01.05.2003 and Kovancılar on 08.03.2010 were quite important for Palu 

and its environs on the EAFZ [17]. On February 21, 2007, a moderate-sized (Mw 5.7) 

earthquake struck the town of Sivrice (Elazig, Turkey) located within the East Anatolian Fault 

(EAF) zone that formed the boundary between the Arabian and Anatolian plates [18]. Some 

reseachers reported that the last recorded large historical earthquake near the study area is the 

1513 event, which involved surface faulting between Türkoğlu and Gölbaşı [19]. 

 

5. Instrumental Seismicity of EAFZ 

There have been three discussion points for determining seismicity gaps: a) the EAFZ continued 

southwestern trending from Karlıova (K) to Cyprus and has been not directly connected to DSF 

and c) the EAFZ continued until Samandağ (Mediterranean Sea) in splay or left-stepping 

pattern. For those reasons we obtained a seismicity map between 1973 and 2009 and determined 

KM and EB Regions, too (Fig. 9). 
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Fig. 9. KM and EB Regions, the Adana Earthquake in 1998 (Mw=6.2) in Adana, Turkey were 

shown as blue star and seismicity gap between EAFZ and DSF were shown as a blue ecliptic 

in this study. Earthquake activity was shown in the EAP Region for 50 BC-1994 AD. Circle 

size correlated with magnitude, color correlated with depth. Largest earthquake with 

associated magnitude was 7.7. Smallest earthquake with associated magnitude was 4.0. Very 

small circles had no associated magnitude (Modified [14]). 

The recent seismicity of EAFZ had been monitored by using the records of 34 three-

dimensional broad-band earthquake stations which were established around the EAFZ within 

TURDEP Project since 2006 [11]. The coordinates of the error margins of recently relocated 

epicenters were less than ±2 km. Some epicenter clusters displayed parallel and conjugate fault 

activity to EAFZ. The EAFZ has had high seismicity for near present time. We can see them 

on Fig. 10-11-12 and 13, respectively below. 

 

Fig. 10. The earthquake stations at the study area that were located by different institutes [11] 
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Fig. 11. Earthquakes that were classified according to magnitude scales (ML=1.0, 2.0, 3.0 and 

4.0) between 11.02.2007 and 30.04.2010 at TURDEP Project TUBITAK-MAM, Turkey [11] 

 

Fig. 12. Focal mechanism solutions of some major and strong earthquakes in vicinity of the 

study area (Modified from TURDEP Project, TÜBİTAK-MAM [11]) 
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Fig. 13. Southwestern part of region EB has produced an earthquake with M=6.0 on March 8, 

2010 (Modified from TURDEP Project, TÜBİTAK-MAM [11]) 

8. Results and Discussion 

1. A pure strike-slip stress deviator characterized by an approximate N-S trending σ1 and an 

approximate E-W trending σ3 axis for the area between Karlıova and Türkoğlu along the EAFZ 

(D1, D2, D3, D4) and R’≈1.48-1.57. 

2. A pure extensional and qblique extensive stress deviator characterized by an approximate 

NE-SW trending σ3 for the area between Türkoğlu and northern tip of DSF along western 

segment of EAFZ (Maraş and Karasu Basin) (D6, D10, D13) and R’≈0.45-1.73. 

3. A pure strike-slip stress deviator characterized by an approximate N-S trending σ1 and an 

approximate E-W trending σ3 axis for the area west Türkoğlu-Osmaniye zone (D7, D8, D9, 

D11, D12, D14) and R’≈1.38-1.67. 

4. Cilicia region constituted a wide left-lateral shearing zone that indicated a diffuse plate 

boundary between the African, Arabian and Anatolian Plates. 

5. The present day stress regime has been extensional and/or trans-tensional in the southern 

region of the EAFZ between Türkoğlu and Antakya. 

6. The strand of the Karasu fault zone in this region has formed a linkage between DSF and 

EAFZ. 

7. The recent tectonic deformation of EAFZ south of Türkoğlu were taken up dominantly by 

the left- lateral strike-slip active faults in between Amik and Adana Basins that were young 
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trans-tensional stress regime has been also active. Further the present seismic quiescence was 

compared with the past activity (paleoseismic and historic) and it indicated that the EAFZ might 

be ‘‘locked’’ and accumulating elastic strain energy but could move in the near future [7]. There 

are the seismic gaps on the EAFZ as we explained in this study, too. 

8. Left lateral strike-slip character of EAFZ was more dominant at west of Maraş-Antakya, 

South of T implying that the continuation of EAFZ towards DSF further Türkoğlu has been 

debatable based on the recent fault mechanism solutions. 
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Abstract 

 

In this paper, the stability analysis of silicon carbide nanotube (SiCNT) has been investigated. Nanotubes has many 

advantages with its very high surface area, exceptional electrical conductivity and resistance to high temperature and 

external loads. Although nanotubes can be obtained without superfluous effort, it is not facile to achieve experimental 

analyzes due to demand of laboratory equipment with astronomical cost. To obtain critical buckling loads, both 

molecular dynamic (MD) method and ANSYS finite element software is used in current paper. LAMMPS (Large-scale 

Atomic/Molecular Massively Parallel Simulator) is used for calculating critical buckling load. Also, VMD (visual 

molecular dynamics) is used to visualize atoms in molecular dynamic analysis.  

 

Keywords: SiCNT, stability, molecular dynamics, finite element. 

 

1. Introduction 

The popularity of nanotube and nanomaterial research and usage has been dramatically raised with 

the understanding of its gigantic potential and advantages [1-3]. Nanomaterials such as graphene 

has attracted worldwide attention due to their superior material properties and almost unlimited 

usage areas such as aerospace, drug delivery, modern automotive technology, high efficiency 

computers, textile etc. [4-6]. The superiority of nanomaterials comes from its very high surface 

area, exceptional electrical conductivity and resistance to high temperature and external loads. 

Outstanding mechanical stiffness and tensile strength put nanomaterials forward to conventional 

engineering materials. The discovery of Carbon nanotube (CNT) has been composed as a 
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revolutionary point for many areas. After CNT, new types of nanotubes with superior properties 

have been produced and used. Most used nanotubes in engineering is CNT, SiCNT, and boron 

nitride nanotube (BNNT).  

Improvement in material and usage of nano-sized materials such as graphene, silicone, CNT, 

SiCNT (silicon carbide nanotube), etc. resulted in smaller and more effective end products. 

Comparing nanotubes SiCNT is the one with the highest resistance to heat (1000 oC in air) and 

BNNT is the one with highest stiffness with Young modulus 1.8 TPa while CNT can resist 

temperature up to 600 oC in air and 1.0 TPa Young modulus. These limits guide researchers and 

engineers to specify which nanotube to use in different usage areas with different requirements. 

Because of astronomical cost in building a laboratory with sufficient equipment to perform 

stability analyzes in nano-size, many computational mechanic methods have been used to make 

analyzes possible with much lower cost [7]. 

 

2. FEM Analysis using ANSYS 

The history of finite element method dates back to 1942. Any material in nature eventuate from 

multiple atoms coming together in a certain order. For SiCNT, these atoms are silicon and carbon 

atoms bonding in hexagonal shape with 2.29 Å bond length. Finite element method based on 

modeling the structure by meshing in smaller parts. Results are more satisfactory with finer 

meshing. In figure 1 the real structure of SiCNT is demonstrated at left side of figure with the finite 

element (meshed) model at the right side. Meshing is one of the major problem to obtain accurate 

results. Inaccurate meshing leads inaccurate results in software. As coarse meshing is an issue in 

meshing, very fine meshing can also end up with very long calculating and simulating period in 

software. 

 

 

 

 

 

 

Fig. 1. Real and finite element model of SiCNT 

 



K. Mercan 

509 

 

As it can be seen from figure 1, the finite element model used in ANSYS multiphysics consist of 

a simple tubular structure. SiCNT material properties was applied to the model to obtain critical 

buckling load.  

 

 

 

3. MD Simulation using LAMMPS 

  

Molecular dynamic is an effective and accurate tool to calculate the critical buckling load of 

nanotubes. LAMMPS open source software is used to perform molecular dynamic simulation. To 

model interatomic potential function many model has been used such as Tersoff, Tersoff-Brenner, 

AIREBO (Adaptive Intermolecular Reactive Empirical Bond Order). Models differs from each 

other in many ways. To illustrate, AIREBO potential is a multi-body force field which is developed 

for hydrocarbons and includes REBO, Lennard-Jones, torsional potentials as sub-components. Xu 

et al. [8] have demonstrated that AIREBO is able to predict wrinkling patterns in graphene sheets 

which can be observed in experimental analyzes [9]. Furthermore, Zheng et al. have demonstrated 

that AIREBO can also capture the hybridization state caused by the deformation-induced curvature 

[10]. 

 

AIREBO potential can be expressed as follows [11] 

 

𝐸 =
1

2
∑ ∑ (𝐸𝑖𝑗

𝑅𝐸𝐵𝑂 + 𝐸𝑖𝑗
𝐿𝐽 + ∑ ∑ 𝐸𝑘𝑖𝑗𝑙

𝑇𝑂𝑅𝑆
𝑙≠𝑖,𝑗,𝑘𝑘≠𝑖,𝑗 )𝑗≠𝑖𝑖    (1) 

 

where 

 

𝐸𝑖𝑗
𝑅𝐸𝐵𝑂 = 𝑉𝑖𝑗

𝑅(𝑟𝑖,𝑗) + 𝑏𝑖,𝑗𝑉𝑖𝑗
𝐴(𝑟𝑖,𝑗)    (2) 

 

𝐸𝑖𝑗
𝐿𝐽 = 𝑆 (𝑡𝑟(𝑟𝑖,𝑗)) 𝑆 (𝑡𝑏(𝑏𝑖,𝑗

∗ )) 𝐶𝑖,𝑗𝑉𝑖𝑗
𝐿𝐽(𝑟𝑖,𝑗) + (1 − 𝑆 (𝑡𝑟(𝑟𝑖,𝑗)))𝐶𝑖,𝑗𝑉𝑖𝑗

𝐿𝐽(𝑟𝑖,𝑗) (3) 

 

𝐸𝑇𝑂𝑅𝑆 =
1

2
∑ ∑ ∑ ∑ 𝑤𝑖,𝑗(𝑟𝑖,𝑗)𝑤𝑗,𝑘(𝑟𝑗,𝑘)𝑤𝑘,𝑙(𝑟𝑘,𝑙)𝑙≠𝑖,𝑗,𝑘𝑘≠𝑖,𝑗𝑗≠𝑖𝑖 𝑉𝑇𝑂𝑅𝑆(𝜔𝑖,𝑗,𝑘,𝑙) (4) 

 

𝑉𝑇𝑂𝑅𝑆(𝜔 ) = 𝜖 (
256

405
𝑐𝑜𝑠10 (

𝜔

2
) −

1

10
)   (5) 

 

here 𝑉𝑖𝑗
𝑅 and 𝑉𝑖𝑗

𝐴 are repulsive and attractive pairwise popentials. These potentials can be obtained 

by atom types and depends on the atomic distance. 𝑆(𝑡) is universal switching function. 
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Fig. 1. Real and atomic model of SiCNT 

 

 

 

To compare, continuum mechanical models of nanotubes can give accurate results by using size 

effective theories which take the size effect of nanotubes to improve results by differing the 

operating equations from classical models and theories [12, 13].  

 

 

Conclusion 

 

Molecular dynamics simulation method has the advantage of defining every atom of nanotubes 

and interactions between these atoms. On the other hand, finite element software’s are able to 

model solid or fluid and simulate many scenario leading to perform various analyzes in very short 

time. Although the speed and ease of finite element software’s is attractive, software become 

insufficient when it comes to model the interaction between atoms. These issue lead to perform 

analyzes only on perfect (undamaged atoms and interactions) models while the freedom in 

molecular dynamic is infinite. In experiments which nanotubes are used, it is seen that nanotubes 

with atomic defects are existing in most experiments caused by limited fabrication technics which 

means that perfect nanotubes with perfect sequence and bonds is rare in practice. Consequently, 

although MD simulation has more complications in modeling and performing analyzes compared 

with finite element softwares, the method has the great advantage of modeling each atoms and 

bonds separately. This advantage leads to more accurate results. 
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