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ON THE λα
h−STATISTICAL CONVERGENCE OF THE

FUNCTIONS DEFINED ON THE TIME SCALE

NAME TOK* AND METIN BAŞARIR*

*DEPARTMENT OF MATHEMATICS, SAKARYA UNIVERSITY, SAKARYA, 54050,
TURKEY

Abstract. In this paper, we have introduced the concepts λα
h
-density of a

subset of the time scale T and λα
h
-statistical convergence of order α (0 < α ≤ 1)

of ∆− measurable function f defined on the time scale T with the help of
modulus function h and λ = (λn) sequences. Later, we have discussed the
connection between classical convergence, λ-statistical convergence and λα

h
-

statistical convergence. In addition, we have seen that f is strongly λα
h
-Cesaro

summable on T then f is λα
h
-statistical convergent of order α.

1. Introduction

The concept of statistical convergence which is a generalization of classical con-
vergence was first given by Zygmund [21] and later were introduced independently
by Steinhaus [18] and Fast [4]. This concept is discussed under different names in
spaces such as topological space, cone metric space, Banach space, time scale (see
[10],[11],[12],[13],[15],[16],[17],[18],[19],[20],[26],[24],[25],[34],[41],[43]). Mursaleen [27]
introduced the notion of λ-statistical convergence by using the sequence λ = (λn)
and then λ-statistical convergence on the time scales was introduced by Yılmaz et
al[33] . The order of statistical convergence of a sequence of positive linear opera-
tors was introduced by Gadjiev and Orhan [36]. Later, Çolak [37] introduced and
investigated the statistical convergence of order α (0 < α ≤ 1) and strong p-Cesaro
summability of order α of number sequences.

The time scale calculus was first introduced by Hilger in his Ph.D. thesis in
1988 (see [8],[9],[22]). In later years, the integral theory on time scales was given
by Guseinov [7], and further studies were developed by Cabada-Vivero [3] and
Rzezuchowski [16]. Recently, Seyyidoğlu and Tan [17] defined the density of the
subset of the time scale. By using this definition, they gave ∆−convergence and
∆−Cauchy concepts for a real valued function defined on time scale. On the other
side, the modulus function was first introduced by Nakano [14]. Aizpuru et al.[1]
defined a new density concept with the help of a modulus function and obtained
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MSC Numbers 46A45.
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2 NAME TOK AND METIN BAŞARIR

a new convergence concept between ordinary convergence and statistical conver-
gence. Gürdal and Özgür [6] introduced ideal h-statistical convergence and ideal
h-statistical Cauchy concepts in normed space using the modulus function h and
ideals.

In this paper, we have aimed to define λα
h -statistical convergence of ∆− measur-

able functions of order α (0 < α ≤ 1) defined on the time scale by using modulus
function h and λ = (λn) sequences in light of works of Seyyidoğlu and Tan [17]
and others [7], [2].

2. Prelimineries

The statistical convergence concept is based on the asymptotic (natural) density
of a subset B in N (the set of positive integers) which is defined as

δ (B) = lim
n→∞

|{k ≤ n : k ∈ B}|

n
, (2.1)

where |B| denotes the number of elements in B (see [29],[4],[5]). It has been gen-
eralized to α-density of a subset B ⊂ N and given the definition of α−statistically
convergence (α ∈ (0, 1] ) by Colak [37]. The notion of λ-statistical convergence was
introduced by Mursaleen [27] using the sequence λ = (λn) which is a non-decreasing
sequence of positive numbers tending to ∞ as n → ∞ such that λn+1 ≤ λn + 1,
λ1 = 1, and In = [n− λn + 1, n] . Lets denote by Λ the set of λ = (λn) sequences.
The λ- density of B ⊂ N is defined by

δλ(B) = lim
n→∞

|{k ∈ In : k ∈ B}|

λn
(2.2)

and δλ(B) reduces to the natural density δ(B) in case of λn = n for all n ∈ N (see
[33]). A sequence x = (xn) is said to be λ- statistically convergent to L of order α
(α ∈ (0, 1] ) if for every ǫ > 0,

lim
n→∞

|{k ∈ In : |xk − L| ≥ ǫ}|

(λn)α
= 0. (2.3)

In this case, we write sλα −limx = L (see [33],[27],[38],[28],[45],[46],[44]) and we
denote by Sλα the set of λα- statistically convergent sequences of order α . If λn

= n, Sλα reduces to Sα the set of statistically convergent number sequences of
order α.

On the other hand, we recall that h : [0,∞) → [0,∞) is called modulus function,
or simply modulus, if it is satisfies:

(1) h(s) = 0 if and only if s = 0,
(2) h (s+ p) ≤ h (s) + h (p) for every s, p ∈ [0,∞),
(3) h is increasing,
(4) h is continuous from the right at 0.

A modulus may be bounded or unbounded . For instance, h(x) = xp, where
0 < p ≤ 1, is unbounded, but h(x) = x

1+x is bounded (see [39], [23]).

Let h be an unbounded modulus function. The λα
h−density of order α (0 < α ≤

1) of a set B ⊆ N is defined by

δλ
α
h (B) = lim

n→∞

h(|{n− λn + 1 ≤ k ≤ n : k ∈ B}|)

h((λn)α)
(2.4)
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whenever this limit exists.
In this study, we shall give a notion of λα

h−statistical convergence on any time
scales and its properties. Throughout this paper, we consider the time scales which
are unbounded from above and have a minimum point. Lets remember some con-
cepts.

A nonempty closed subset of R is called a time scale and is denoted by T. We
suppose that a time scale has the topology inherited from R with the standart
topology. For t ∈ T, we consider the forward jump operator σ : T → T by σ (t) :=
inf {s ∈ T : s > t}. In this definition, we take inf ∅ = supT. For t ∈ T with a ≤ b,
it is defined the interval [a, b] in T by [a, b] = {t ∈ T : a ≤ t ≤ b} .

Let T be a time scale. Denote by F the family of all left-closed and right-open
intervals of T of the form [a, b) = {t ∈ T : a ≤ t < b} with a, b ∈ T and a ≤ b.
It is clear that the interval [a, a) is an empty set, F is semiring of subsets of T.
Let m : F → [0,∞) be the set function on F that assings to each interval [a, b)
its lenght b − a,m ([a, b)) = b − a. Then m is a countably additive measure on
F . We denote by µ∆ the Caratheodory extension of the set function m associated
with family F (for the Caratheodory extension see [17]) and is denoted by µ∆,
the Lebesgue ∆-measure on T, and that is a countably additive measure . In this
case, it is known that if a ∈ T− {maxT}, then the single point set {a} is ∆-
measurable and µ∆(a) =σ (a)− a. If a, b ∈ T and a ≤ b then µ∆(a, b)T = b−σ (a) .
If a, b ∈ T− {maxT}, a ≤ b ; µ∆(a, b]T = σ(b)−σ (a) and µ∆[a, b]T= σ(b)−a. It
can be easily seen that the measure of a subset of N is equal to its cardinality (see
[17],[32]).

Turan and Duman [30] introduced the concept of statistical convergence of ∆-
measurable real-valued functions defined on time scales as follows. Suppose that
Ω be a ∆-measurable subset of T. Then, the set Ω(t) is defined by Ω(t) =: {s ∈
[t0, t]T : s ∈ Ω} for t ∈ T. In this case, the density of Ω on T can be defined as

δT (Ω) = lim
t→∞

µ∆(Ω(t))

µ∆([t0, t]T)
(2.5)

provided that the limit exists. In case of T = N, this reduces to the classical
concept of asymptotic density. Let f : T → R be a ∆− measurable function.
Then, f is statistically convergent to a real number L on T if for every ǫ > 0,
δT({t ∈ T : |f(t)− L| ≥ ǫ}) = 0. In this case, it can be written sT − lim

t→∞

f(t) = L.

Later, the λ-statistical convergence on time scale was introduced by Yılmaz et
al [33], [31]. It is said that f is λ−statistically convergent on T to a real number
L if

lim
t→∞

µ∆λ
({s ∈ [t− λt + t0, t]T : |f(s)− L| ≥ ǫ})

µ∆λ
([t− λt + t0, t]T)

= 0 (2.6)

for every ǫ > 0. In this case, we can writes sλ
T
− lim

t→∞

f(t) = L. The set of all λ−

statistically convergence functions on T will be denoted by Sλ
T
. Here and afterwards

∆λ shows that ∆ depends on λ.

3. Main Results

Definition 3.1. Let Ω be a ∆λ-measurable subset of T, h be an unbounded modulus

function and α be any real number (0 < α ≤ 1). Then, one defines the set Ω(t, λ)
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by Ω(t, λ) =: {s ∈ [t − λt + t0, t]T : s ∈ Ω} for t ∈ T. In this case, the λα

h−density

of Ω on T of order α can be defined as

δ
λα
h

T
(Ω) = lim

t→∞

h(µ∆λ
(Ω(t, λ)))

h((µ∆λ
([t− λt + t0, t]T))α)

(3.1)

provided that the limit exists.

We can easily get δ
λα
h

T
(Ω) = δ

α
h

T
(Ω) if λt = t and δ

λα
h

T
(Ω) = δλ

α

T
(Ω) if we take

h(x) = x on T.

Definition 3.2. Let f : T → R be a ∆λ- measurable function. Then, one says

that f is λα

h− statistically convergent to a real number L of order α (0 < α ≤ 1) on
T if

lim
t→∞

h(µ∆λ
({s ∈ [t− λt + t0, t]T : |f(s)− L| ≥ ǫ}))

h((µ∆λ
([t− λt + t0, t]T))α)

= 0 (3.2)

for every ǫ > 0.

In this case, one writes s
λα
h

T
− lim

t→∞

f(t) = L. The set of all λα

h− statistically

convergence functions on T will be denoted by S
λα
h

T
.

If we take λt = t in (8), we get classical statistically convergent on T to a real
number L, for the function f which is defined by [17],[30] in (7). This shows that
our results are generalizations of classical conclusions.

As will be noted that, when α = 1, λα

h−density of Ω on T of order α returns
to λh−density. In case h(x) = x, λα

h−density becomes λα−density. If α = 1 and
h(x) = x, then λα

h−density reduces to λ−density of Ω on T.

The equality δ
λα
h

T
(Ω) + δ

λα
h

T
(TrΩ) = 1 does not hold for α (0 < α ≤ 1) and an

unbounded modulus h, in general. For instance, if we take h(x) = xp, 0 < p ≤ 1,

0 < α < 1 and Ω = {2n : n ∈ N}, then δ
λα
h

T
(Ω) = δ

λα
h

T
(TrΩ) = ∞. Also, finite sets

have zero λα

h−density for any unbounded modulus h and α (0 < α ≤ 1) (see [30],
[38]).

Lemma 3.1. Let α (0 < α ≤ 1) be any real number, Ω be a ∆λ-measurable subset

of T and h be an unbounded modulus function. If δ
λα
h

T
(Ω) = 0, then δ

λα
h

T
(TrΩ) 6= 0.

Proof. Let α (0 < α ≤ 1) be any given real number and the equality δ
λα
h

T
(Ω) = 0

be valid for any unbounded modulus h. Suppose that δ
λα
h

T
(TrΩ) = 0. Let us

say Ω(t, λ)T =: {s ∈ [t − λt + t0, t]T : s ∈ Ω(t)} for t ∈ T and TrΩ(t, λ)T =:
{s ∈ [t − λt + t0, t]T : s ∈ T r (Ω)(t)} for t ∈ T. Since µ∆λ

([t − λt + t0, t]T) =
µ∆λ

(Ω(t, λ)T) + µ∆λ
(TrΩ(t, λ)T) for t ∈ T and h is subadditive, we have

h(µ∆λ
([t− λt + t0, t]T)) ≤ h( µ∆λ

Ω(t, λ)T) + h( µ∆λ
(TrΩ(t, λ)T)) (3.3)

Hence we may write

lim
t→∞

h(µ∆λ
([t− λt + t0, t]T))

h((µ∆λ
([t− λt + t0, t]T))α)

(3.4)

≤ lim
t→∞

h( µ∆λ
Ω(t, λ)T)

h((µ∆λ
([t− λt + t0, t]T))α)

+ lim
t→∞

h( µ∆λ
(TrΩ(t, λ)T))

h((µ∆λ
([t− λt + t0, t]T))α)

.
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Since δ
λα
h

T
(Ω) = 0 and δ

λα
h

T
(TrΩ) = 0, the right side of the inequality is zero and

thus

lim
t→∞

h(µ∆λ
([t− λt + t0, t]T))

h((µ∆([t− λt + t0, t]T)α)
= 0.

This is a contradiction. Because
h(µ∆λ

([t−λt+t0,t]T))

h((µ∆λ
([t−λt+t0,t]T)α) ≥ 1 for α (0 < α ≤ 1) and

therefore

lim
t→∞

h((µ∆λ
([t− λt + t0, t]T))

h((µ∆λ
([t− λt + t0, t]T)α)

≥ 1. (3.5)

�

For any unbounded modulus h and 0 < α ≤ 1, if δ
λα
h

T
(Ω) = 0 then δλ

α

T
(Ω) = 0,

but the inverse of this does not need to be true ([40]). Namely, a set having
zero α-density for some α (0 < α ≤ 1) might have non-zero λα

h−density for some
unbounded modulus h, with the same α. Similarly a set having zero λ− density
might have non-zero λα

h−density for some unbounded modulus h and 0 < α ≤ 1.

For example, let h(x) = log(x + 1) and Ω = {1, 4, 9, ...}. Then δλ (Ω) = 0 and

δλ
α

T
(Ω) = 0 for 1/2 < α ≤ 1, but δ

λα
h

T
(Ω) ≥ δλh

T
(Ω) = 1/2 and therefore δ

λα
h

T
(Ω) 6=

0.

If Φ ⊆ T has zero λα

h−density for some unbounded modulus h and for some α
(0 < α ≤ 1), then it has zero λα−density and hence zero λ−density (see [3]).

Lemma 3.2. [40] Let h be an unbounded modulus and Φ ⊆ T. If 0 < α ≤ β ≤ 1,

then δ
λβ

h

T
(Φ) ≤ δ

λα
h

T
(Φ).

Thus, for any unbounded modulus h and 0 < α ≤ β ≤ 1, if Φ has zero λα

h−density
in that case, it has zero λβ

h−density. Specially, a set having zero λα

h−density for
some α (0 < α ≤ 1) has zero λh−density. But, the inverse is not correct. For
instance, let h(x) = xp for 0 < p ≤ 1 and Φ = {1, 4, 9, ...}. Then

δλh

T
(Φ) = lim

t→∞

h(µ∆λ
Φ(t, λ)T)

h(µ∆λ
([t− λt + t0, t]T))

(3.6)

≤ lim
t→∞

h(⌈
√

Φ(t, λ)⌉)

h(µ∆λ
([t− λt + t0, t]T))

(3.7)

= lim
t→∞

(⌈
√

Φ(t, λ)⌉)p

(µ∆λ
([t− λt + t0, t]T)p

= 0

but, if we get 0 < α ≤ 1/2,

δ
λα
h

T
(Φ) = lim

t→∞

h(µ∆λ
Φ(t, λ)T)

h((µ∆λ
([t− λt + t0, t]T)α)

(3.8)

= lim
t→∞

(⌈
√

Φ(t, λ)⌉)p

((µ∆λ
([t− λt + t0, t]T)α)p

= ∞

where ⌈r⌉ denotes the integer part of number r.

Proposition 3.3. Let f, g : T → R be a ∆λ- measurable functions such that s
λα
h

T
−

lim
t→∞

f(t) = L1 and s
λα
h

T
− lim

t→∞

g(t) = L2. Then the following statements hold:
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i) s
λα
h

T
− lim

t→∞

(f(t) + g(t)) = L1 +L2,

ii) s
λα
h

T
− lim

t→∞

(cf(t)) = cL1.

Proof. It is easy to prove and we omit it. �

Theorem 3.4. Sh
αT ⊆ S

λα
h

T
if and only if

lim inf
t→∞

h(µ∆λ
([t− λt + t0, t]T))

h((µ∆λ
([t0, t]T)α)

> 0 (3.9)

Proof. For given ǫ > 0, we have

h(µ∆({s ∈ [t0, t]T : |f(s)− L| ≥ ǫ})) ⊃ h(µ∆({s ∈ [t− λt + t0, t]T : |f(s)− L| ≥ ǫ})).

Then

h(µ∆λ
({s ∈ [t0, t]T : |f(s)− L| ≥ ǫ}))

h((µ∆λ
([t0, t]T)α)

≥
h(µ∆λ

({s ∈ [t− λt + t0, t]T : |f(s)− L| ≥ ǫ}))

h((µ∆λ
([t0, t]T)α)

=
h(µ∆λ

([t− λt + t0, t]T ))

h((µ∆λ
([t0, t]T)α)

1

h(µ∆λ
([t− λt + t0, t]T ))

h(µ∆λ
({s∈ [t− λt + t0, t]T : |f(s)− L| ≥ ǫ}))

Hence by using (3.9) and taking the limit as t → ∞, we get s
α
h

T
− lim

t→∞

f(s) → L

implies s
λα
h

T
− lim

t→∞

f(s) = L. �

The definition of p−Cesaro summability on time scales was given by Turan and
Duman [30] as follows.

Definition 3.3. [30] Let f : T → R be a ∆-measurable function and 0 < p < ∞.

Then, f is strongly p−Cesaro summable on T if there exists some L ∈ R such that

lim
t→∞

1

(µ∆([t0, t]T))

∫

[t0,t]T

|f(s)− L|p∆s = 0. (3.10)

The set of all p− Cesaro summable functions on T is denoted by [Wp]T.
We need to emphasize that measure theory on time scales was first constructed

by Guseinov [7] and Lebesque ∆− integral on time scales introduced by Cabada
and Vivero [35].

Definition 3.4. Let f : T → R be a ∆λ- measurable function, λ ∈ Λ and 0 < p <
∞. We say that f is strongly λα

h − Cesaro summable on T if there exists some

L ∈ R such that
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lim
t→∞

1

(µ∆λ
([t− λt + t0, t]T))α

∫

[t−λt+t0,t]T

h(|f(s)− L|) ∆s = 0. (3.11)

In this case we write [W,λα
h ]T− lim f(s) = L. The set of all strongly λα

h−Cesaro
summable functions on T will be denoted by [W,λα

h ]T. If we take h(x) = xp and
α = 1 then we get [W,λp]T the set of all strongly λp −Cesaro summable functions
on T (see [33]).

Lemma 3.5. Let f : T → R be a ∆λ- measurable function and Ω(t, λ) = { s ∈
[t− λt + t0, t]T : h(|f(s)− L|) ≥ ǫ } for ǫ > 0. In this case, we have

h(µ∆λ
(Ω(t, λ))) ≤

1

ǫ

∫

Ω(t,λ)

h(|f(s)− L|) ∆s (3.12)

≤
1

ǫ

∫

[t−λt+t0,t]T

h(|f(s)− L|) ∆s (3.13)

Proof. It can be proved by using similar method with [30]. �

Theorem 3.6. Let f : T → R be a ∆λ- measurable function, λ ∈ Λ , L ∈ R and

0 < p < ∞. Then we get:

i) [W,λα
h ]T.⊂ s

λα
h

T
.

ii) If f is strongly λα
h − Cesaro summable to L, then s

λα
h

T
− lim

t→∞

f(t) = L.

iii) If s
λα
h

T
− lim

t→∞

f(t) = L and f is a bounded function, then f is strongly

λα
h − Cesaro summable to L.

Proof. i) Let ǫ > 0 and [W,λα
h ]T − lim f(s) = L. We can write

∫

[t−λt+t0,t]T

h(|f(s)− L|) ∆s ≥

∫

Ω(t,λ)

h(|f(s)− L|) ∆s (3.14)

≥ ǫ h(µ∆λ
(Ω(t, λ))). (3.15)

Therefore, [W,λα
h ]T − lim f(s) = L implies s

λα
h

T
− lim

t→∞

f(s) = L.

ii) Let f is strongly λα
h − Cesaro summable to L. For given ǫ > 0, let Ω(t, λ)

= { s ∈ [t− λt + t0, t]T : h(|f(s)− L|) ≥ ǫ } on time scale T. Then, it follows from
lemma 9

ǫ h(µ∆λ
(Ω(t, λ))) ≤

∫

[t−λt+t0,t]T

h(|f(s)− L|) ∆s.

Dividing both sides of the last equality by h(µ∆λ
([t−λt + t0, t]T)) and taking limit

as t → ∞, we obtain

lim
t→∞

h(µ∆λ
(Ω(t, λ)))

h((µ∆λ
([t− λt + t0, t]T)α)

(3.16)

≤
1

ε
lim

t→∞

1

h((µ∆λ
([t− λt + t0, t]T)α)

∫

[t−λt+t0,t]T

h(|f(s)− L|) ∆s = 0
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�

which yields that s
λα
h

T
− lim

t→∞

f(t) = L.

iii) Let f be bounded and λα
h−statistically convergent to L on T. Then, there

exists a positive number M such that |f(s)| ≤ M for all s ∈ T, and also

lim
t→∞

h(µ∆λ
(Ω(t, λ)))

h((µ∆λ
([t− λt + t0, t]T)α)

= 0

where Ω(t, λ) = { s ∈ [t− λt + t0, t]T : h(|f(s)− L|) ≥ ǫ } as stated before. Since

∫

[t−λt+t0,t]T

h(|f(s)− L|) ∆s

=

∫

Ω(t,λ)

h(|f(s)− L|) ∆s+

∫

[t−λt+t0,t]T/Ω(t,λ)

h(|f(s)− L|) ∆s (3.17)

≤ (h(M) + h(|L|))

∫

Ω(t,λ)

∆s+ ǫ

∫

[t−λt+t0,t]T/Ω(t,λ)

∆s

= (h(M) + h(|L|)) h(µ∆λ
(Ω(t, λ))) + ǫ h(µ∆λ

([t− λt + t0, t]T)),

we obtain

lim
t→∞

1

h((µ∆λ
([t− λt + t0, t]T)α)

∫

[t−λt+t0,t]T

h(|f(s)− L|) ∆s (3.18)

≤ (h(M) + h(|L|)) lim
t→∞

h(µ∆λ
(Ω(t, λ)))

h((µ∆λ
([t− λt + t0, t]T)α)

+ ǫ

Since ǫ > 0 is arbitrary, the proof follows from (3.16) and (3.18).

Theorem 3.7. Let f be a ∆λ-measurable function. Then, s
λα
h

T
− lim

t→∞

f(t) = L if

and only if there exists a ∆λ-measurable set Ω ⊆ T such that δλ
α
h (Ω) = 1 and lim

t→∞

h(|f(t)− L|) = 0, (t ∈ Ω(t, λ)).

Proof. It can be easily proved by using similar way in Theorem 3.9 of Turan and
Duman (see, [30]). �

Acknowledgments. The authors are very grateful to the the anonymous Referees
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[35] A. Cabada and D. R. Vivero, Expression of the Lebesque - integral on time scales as a usual

Lebesque integral; application to the calculus of -antiderivates, Mathematical and Computer
Modelling, 43 (2006), 194-207.

[36] A. D.Gadjiev and C. Orhan, Some approximation theorems via statistical convergence, Rocky
Mountain J. Math. 32(1) (2002), 129-138.
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WEAK CONE-COMPLETENESS OF DIRECT SUMS IN

LOCALLY CONVEX CONES

M.R. MOTALLEBI*

*UNIVERSITY OF MOHAGHEGH ARDABILI, ARDABIL, IRAN

Abstract. We consider the weak cone-completeness in locally convex cones
and prove that the direct sum of a family of weakly cone-complete separated

locally convex cones is weakly cone-complete. We conclude that a direct sum

cone topology is barreled whenever its components are weakly cone-complete
and separated with the countable bases.

1. Introduction

The notions of barreledness and weak cone completeness in locally convex cones
have been defined and investigated by W. Roth in [8]. Various topics of locally
convex cones have been studied from the direct sum point of view in [2-7]. In this
paper, we discuss the direct sum topology of weakly cone complete locally convex
cones and show that it is barreled if its components are separated and carry the
countable bases.

An ordered cone is a set P endowed with an addition (a, b) 7−→ a+b and a scalar
multiplication (α, a) 7−→ αa for real numbers α ≥ 0. The addition is supposed to
be associative and commutative, there is a neutral element 0 ∈ P, and for the
scalar multiplication the usual associative and distributive properties hold, that is,
α(βa) = (αβ)a, (α + β)a = αa + βa, α(a + b) = αa + αb, 1a = a, 0a = 0 for
all a, b ∈ P and α, β ≥ 0. In addition, the cone P carries a (partial) order, i.e., a
reflexive transitive relation ≤ that is compatible with the algebraic operations, that
is a ≤ b implies a+c ≤ b+c and αa ≤ αb for all a, b, c ∈ P and α ≥ 0. For example,
the extended scalar field R = R ∪ {+∞} of real numbers is a preordered cone. We
consider the usual order and algebraic operations in R; in particular, α+∞ = +∞
for all α ∈ R, α · (+∞) = +∞ for all α > 0 and 0 · (+∞) = 0. In any cone P,

equality is obviously such an order, hence all results about ordered cones apply to
cones without order structures as well.

A full locally convex cone (P,V) is an ordered cone P that contains an abstract

neighborhood system V, i.e., a subset of positive elements that is directed downward,
closed for addition and multiplication by (strictly) positive scalars. The elements
v of V define upper (lower) neighborhoods for the elements of P by v(a) = {b ∈ P :

2010 Mathematics Subject Classification. Primary: 46A03; Secondaries: 20K25, 46A30.
Key words and phrases. Locally convex cones, direct sums, weak cone-completeness.
c©2019 Proceedings of the Third International conference of Mathematical Sciences.
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12 M.R. MOTALLEBI

b ≤ a+v} (respectively, (a)v = {b ∈ P : a ≤ b+v}), creating the upper, respectively
lower topologies on P. Their common refinement is called the symmetric topology.

We assume all elements of P to be bounded below, i.e., for every a ∈ P and v ∈ V
we have 0 ≤ a+ρv for some ρ > 0. Finally, a locally convex cone (P,V) is a subcone
of a full locally convex cone, not necessarily containing the abstract neighborhood
system V. For a locally convex cone (P,V) the collection of all sets ṽ ⊆ P2, where
ṽ = {(a, b) : a ≤ b + v} for all v ∈ V, defines a convex quasi-uniform structure on
P. On the other hand, every convex quasi-uniform structure leads to a full locally
convex cone, including P as a subcone and induces the same convex quasi-uniform
structure. For details see [1, Ch I, 5.2]. For cones P and Q, a map t : P → Q is
called a linear operator, if t(a + b) = t(a) + t(b) and t(αa) = αt(a) for all a, b ∈ P
and α ≥ 0. If V and W are abstract neighborhood systems on P and Q, a linear
operator t : P → Q is called uniformly continuous if for every w ∈ W there is v ∈ V
such that t(a) ≤ t(b)+w whenever a ≤ b+v. Uniform continuity implies continuity
with respect to the upper, lower and symmetric topologies on P and Q. Endowed
with the neighborhood system ε = {ǫ ∈ R : ǫ > 0}, R is a full locally convex cone.
The set of all uniformly continuous linear functionals µ : P → R is a cone called
the dual cone of P and denoted by P∗.

A locally convex cone (P,V) is called weakly cone-complete if for all b ∈ P and
v ∈ V, every sequence (ai)n∈N in v(b) ∩ (b)v that converges to b in the symmetric
topology of P and ηi > 0 such that

∑∞
i=1

ηi = 1 there is a ∈ v(b) ∩ (b)v such that
µ(a) =

∑∞
i=1

ηiµ(ai) for all µ ∈ P∗ with µ(b) < +∞. A convex subset U of P2 is
called barrel, if it satisfies the following properties:

(U1) For every b ∈ P there is a neighborhood v ∈ V such that for every a ∈
v(b) ∩ (b)v there is a λ > 0 such that (a, b) ∈ λU.

(U2) If (a, b) 6∈ U, then there is a µ ∈ P∗ such that µ(c) ≤ µ(d) + 1 for all
(c, d) ∈ U and µ(a) > µ(b) + 1.

A locally convex cone (P,V) is called barreled if for every barrel U and every element
b ∈ P there is a neighborhood v ∈ V and a λ > 0 such that (a, b) ∈ λU for all
a ∈ v(b) ∩ (b)v. A subset V0 of V is a neighborhood base, if for every v ∈ V there is
v0 ∈ V0 such that v0 ≤ v. Every weakly cone complete locally convex cone with a
countable neighborhood base is barreled [8, Theorem 2.3].

2. Weak cone-completeness and direct sums

Let Pγ , γ ∈ Γ be cones and put P = ×γ∈ΓPγ . For elements a, b ∈ P, a =
×γ∈Γaγ , b = ×γ∈Γbγ and α ≥ 0 we set a+b = ×γ∈Γ (aγ+bγ) and αa = ×γ∈Γ (αaγ).
With these operations P is a cone which is called the product cone of Pγ . The
subcone of the product cone P spanned by ∪Pγ (more precisely, by ∪jγ(Pγ), where
jγ : Pγ → P is the injection mapping) is said to be the direct sum cone of Pγ and
denoted by Q =

∑
γ∈Γ

Pγ . If (Pγ ,Vγ), γ ∈ Γ be a family of locally convex cones,
then W = ×γ∈ΓVγ leads to the finest locally convex cone topology on Q such that
the all injection mappings jγ are uniformly continuous:

Definition 2.1. For elements a, b ∈ Q, a =
∑

γ∈∆
aγ , b =

∑
γ∈Θ

bγ and w ∈
W, w = ×γ∈Γvγ , we set

a ≤Γ b+ w

if aγ ≤γ bγ + αvγ for all γ ∈ ∆ ∪Θ, where
∑

γ∈∆∪Θ
αγ ≤ 1.
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The subsets {(a, b) ∈ Q2 : a ≤Γ b+ w} for all w ∈ W describe the finest convex
quasi-uniform structure on Q which makes every injection mapping uniformly con-
tinuous. According to [1, Ch I, 5.4], there exists a full cone Q⊕W0 with abstract
neighborhood system W = {0} ⊕ W , whose neighborhoods yield the same quasi-
uniform structure on Q. The elements w ∈ W, w = ×γ∈Γvγ form a basis for W in
the following sense: For every w ∈ W there is w ∈ W such that a ≤Γ b + w for
a, b ∈ Q implies that a ≤Γ b⊕w. The locally convex cone topology on Q induced by
W is called the locally convex direct sum cone of (Pγ ,Vγ) and denoted by (Q,W).
For details see [3].

Proposition 2.1. If Q =
∑

γ∈Γ
Pγ is the locally convex direct sum cone, then

(a) if b ∈ Q and (ai)i∈N ⊂ Q converges to b in the symmetric topology of

Q, then for each γ ∈ Γ, (ϕγ(ai))i∈N converges to ϕγ(b) in the symmetric

topology of (Pγ ,Vγ),
(b) Q∗ = ×γ∈ΓP

∗
γ , where Q∗ is the dual cone of (Q,W).

Proof. (a) Fix γ ∈ Γ and let vγ ∈ Vγ . If we set w = ×ξ∈Γvξ, where vξ = vγ for ξ = γ

and vξ ∈ Vγ otherwise, then a ≤Γ b+w for a, b ∈ Q implies that ϕγ(a) ≤ ϕγ(b)+vγ ,

i.e., ϕγ is uniformly continuous. For (b), see Theorem 3.10 in [7]. �

Let (P,V) be a locally convex cone. A subset A of P is bounded in the weak
topology σ(P,P∗) if, −∞ < infµ∈F,x∈A µ(x) ≤ supµ∈F,x∈A µ(x) < +∞ for all finite

sets F ⊂ P∗ [5, 6]. The cone P is separated if ā = b̄ for a, b ∈ P implies a = b,

where a is the closure of a with respect to the lower topology of P; for example R

with the neighborhoods system ε = {ǫ ∈ R : ǫ > 0} is separated [1, Ch I, 3.12]. A
locally convex cone direct sum cone is separated if and only if its components are
separated [7, Corollary 3,3].

Lemma 2.2. Suppose (Q,W) is the locally convex direct sum cone of (Pγ ,Vγ),
b ∈ Q and let Q∗

b be the subcone of all µ ∈ Q∗ with µ(b) < +∞. If (Pγ ,Vγ) is

separated for all γ ∈ Γ and (ai)i∈N ⊂ Q converges to b in the symmetric topology

of Q, then there is a finite subset ∆ of Γ such that for each i ∈ N, ϕγ(ai) = 0 for

all γ ∈ Γ \∆.

Proof. Let µ1, ..., µn ∈ Q∗
b and let w′ ∈ W such that w′ ≤ w and µi ∈ w′◦ for all

i = 1, 2, ..., n. By the assumption, there is i0 ∈ N such that ai ∈ w′(b) ∩ (b)w′ for
all i ≥ i0 which yields

−∞ < inf
1≤j≤n,i≥i0

µj(ai) ≤ sup
1≤j≤n,i≥i0

µj(ai) < +∞,

i.e., {ai : i ≥ i0} is σ(Q,Q∗
b)-bounded so, by [6, Theorem 2.6], there is a finite set

∆ ⊂ Γ such that {ai : i ≥ i0} ⊆
∑

γ∈∆
ϕγ{ai : i ≥ i0}. �

Theorem 2.3. The direct sum cone topology (Q,W) = (
∑

γ∈Γ
Pγ ,×γ∈ΓVγ) is

weakly cone-complete, whenever for each γ ∈ Γ, (Pγ ,Vγ) is separated and weakly

cone-complete.

Proof. Suppose b ∈ Q, b =
∑

γ∈∆
bγ , w ∈ W , w = ×γ∈Γvγ and let (ai)i∈N ⊂

w(b) ∩ (b)w converges to b in the symmetric topology of Q and ηi > 0 such that∑∞
i=1

ηi = 1. Using the Lemma 2.2, we may assume that ai =
∑

γ∈∆
ϕγ(ai) for all

i ∈ N. By Proposition 2.1 (a), the sequence (ϕγ(ai))i∈N ⊂ (αγvγ)(bγ) ∩ (bγ)(αγvγ)
converges to bγ in the symmetric topology of Pγ for all γ ∈ ∆, where

∑
γ∈∆

αγ ≤ 1;
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so from the weak cone-completeness of Pγ there exists aγ ∈ (αγvγ)(bγ)∩(bγ)(αγvγ)
such that

µγ(aγ) =
∞∑

i=1

ηiµγ(ϕγ(ai))

for all µγ ∈ P∗
γ with µγ(bγ) < ∞. Then a :=

∑
γ∈∆

aγ ∈ w(b) ∩ (b)w and for every

µ ∈ Q∗ with µ(b) < +∞, we have µ = ×γ∈Γµγ by Proposition 2.1 (b), where
µγ ∈ P∗

γ such that µγ(bγ) < +∞ for all γ ∈ ∆. Thus

µ(a) =
∑

γ∈∆

∞∑

i=1

ηiµγ(ϕγ(ai)) =

∞∑

i=1

ηi
∑

γ∈∆

µγ(ϕγ(ai))

=

∞∑

i=1

ηiµ(
∑

γ∈∆

ϕγ(ai)) =

∞∑

i=1

ηiµ(ai),

i.e., (Q,W) is weakly cone-complete. �

By combining Theorem 2.3 and [8, Theorem 2.3], we have:

Corollary 2.4. A direct sum cone topology is barreled, whenever its components

are separated and weakly cone-complete with the countable bases.

Example 2.1. (i) If we consider (R, ε), ε = {ǫ ∈ R : ǫ > 0}, then R
∗
= R+ ∪ {0};

where 0(x) = 0 for all x ∈ R and 0(+∞) = +∞ [9, Example 2.2]. Let b ∈ R, ǫ > 0,
(ai)i∈N ⊂ ǫ(b) ∩ ǫ(b) converges to b in the symmetric topology of (R, ε) and let
ηi > 0 such that

∑∞
i=1

ηi = 1. If b = +∞, then for a = +∞ the assertion holds. If

b ∈ R then a :=
∑∞

i=1
ηiai ∈ ǫ(b)∩ (b)ǫ and for every µ ∈ R

∗
, µ = λ for some λ > 0,

hence µ(a) = λ(
∑∞

i=1
αiai) =

∑∞
i=1

αiµ(ai), i.e., (R, ε) is weakly cone-complete.

(ii) We consider Q =
∑

n∈N
R with the countable neighborhood system W =

×n∈Nε. For elements a, b ∈ Q, a =
∑

n∈∆
an, b =

∑
n∈Θ

bn, the direct sum neigh-
borhood w ∈ W, w = ×n∈Nǫn on Q is defined by

a ≤N b+ w if an ≤ bn + αnεn (for all n ∈ ∆ ∪Θ)

where
∑

n∈∆∪Θ
αn ≤ 1. Suppose b ∈ Q, b =

∑
n∈∆R

bn +
∑

n∈∆\∆R
(+∞), where

∆ = {n ∈ N : bn 6= 0}, ∆R = {n ∈ ∆ : bn ∈ R} and let w ∈ W , w = ×n∈Nǫn.

Let (ai)i∈N ⊂ w(b) ∩ (b)w, ai =
∑

n∈∆i

R

ain +
∑

n∈∆i\∆i

R

(+∞) for all i ∈ N such

that (ai)i∈N converges to b in the symmetric topology of Q and for ηi > 0, let∑∞
i=1

ηi = 1. Without loss of generality we may assume that ∆i = ∆ and ∆i
R
= ∆R

for all i ∈ N. Then

a :=
∑

n∈∆R

∞∑

i=1

ηia
i
n +

∑

n∈∆\∆R

∞∑

i=1

ηi(+∞) ∈ w(b) ∩ (b)w

and for every µ ∈ Q∗ with µ(b) < +∞, we have µ = ×n∈Nµn by Proposition 2.1
(b), where

µn =

{
λn (some λn > 0) if bn ∈ R,

0
R

∗ if b = +∞.
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Thus

µ(a) =
∑

n∈∆R

λn(
∞∑

i=1

ηia
i
n) +

∑

n∈∆\∆R

0
R

∗(
∞∑

i=1

ηi(+∞))

=

∞∑

i=1

ηiλn(
∑

n∈∆R

ain) +

∞∑

i=1

ηi0R∗(
∑

n∈∆\∆R

(+∞))

=
∞∑

i=1

ηiµ(ai),

i.e., (
∑

n∈N
R,×n∈Nε) is weakly cone-complete.
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Abstract. This paper deals with an inverse problem to determine a space-

dependent coefficient in a one-dimensional time fractional diffusion-wave equa-

tion defined in heterogeneous medium with additional boundary measurement.
Then, we construct the explicit finite difference scheme for the direct problem

based on the equivalent partial integro-differential equation and Simpson’s
rule. Using the matrix analysis and mathematical induction, we prove that

our scheme is stable and convergent . The least squares method with homotopy

regularization is introduced to determine the space-dependent coefficient, and
an inversion algorithm is performed by one numerical example. This inversion

algorithm is effective at least for this inverse problem.

1. Introduction

In this paper, we consider the following equation:

cDα
t u (x, t) =

∂

∂x

(

D (x)
∂u (x, t)

∂x

)

+ f (x, t) , 0 < x < L, 0 < t ≤ T, (1.1)

with the initial conditions

u (x, 0) = ψ (x) , ut (x, 0) = ϕ (x) , 0 ≤ x ≤ L, (1.2)

and the Neumann boundary conditions

∂u (0, t)

∂x
=
∂u (L, t)

∂x
= 0, 0 ≤ t ≤ T, (1.3)

where u (x, t) denotes state variable at space point x and time t, and 1 < α < 2
is called fractional order of the derivative in time, D (x) is the space-dependent

2010 Mathematics Subject Classification. 65M32; 35R11; 65M06 .
Key words and phrases. Inverse problem; time-fractional diffusion-wave equation; Finite dif-

ference method.
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coefficient, f (x, t) is a source term, and cDα
t u (x, t) means the Caputo derivative

defined by:

CDα
t u (x, t) =

1

Γ (2− α)

∫ t

0

(t− s)
1−α ∂

2u (x, s)

∂s2
ds. (1.4)

In this study, we are concerned with the inverse problem of approximating the
unknown space-dependent coefficient D (x), while the initial functions ψ (x) and
ϕ (x) and the source term f (x, t) are considered as known functions. To determine
the set of functions (u,D) in the inverse problem (1.1)-(1.3), we need an over-
specified condition:

u (x, T ) = η (x) , 0 < x < L, (1.5)

is used.

2. The direct problem

The direct problem is composed by Eq. (1.1) with the initial and boundary value
conditions (1.2) and (1.3).

2.1. The explicit finite difference scheme. Firstly, we have the following lemma:

Lemma 2.1. ([2, 3]) Let α ∈ ] 1, 2 [ and y ∈ C2 ([0, T ]) with T > 0. Then, we
have

(1) C
0 D

α−1
t

(

Iα−1
t y (t)

)

= y (t),

(2) Iα−1
t

(

C
0 D

α
t y (t)

)

= Iα−1
t

[

C
0 D

α−1
t (y′ (t))

]

= y′ (t)− y′ (0),

where C
0 D

α
t is the Caputo fractional derivative operator defined in (1.4) and Iα−1

t

is the Riemann-Liouville integral operator defined as

Iα−1
t g (t) =

1

Γ (α− 1)

∫ t

0

(t− s)
α−2

g (s) ds. (2.1)

Based on this lemma, we have the following theorem.

Theorem 2.2. ([2, 5]). The equation (1.1) is equivalent to the following partial
integro-differential equation

ut (x, t) = ϕ (x) + Iα−1
t [D′ (x)ux (x, t) +D (x)uxx (x, t)] + Iα−1

t f (x, t) , (2.2)

where F (x, t) = Iα−1
t f (x, t).

We consider Ωτ = {tn : tn = nτ, 0 ≤ n ≤ N} a uniform mesh of the interval [0, T ]
with τ = T/N and using Simpson’s rule [3], we obtain the following lemma.

Lemma 2.3. If g ∈ C4 ([0, T ]) and α ∈ ] 1, 2 [ , then

Iα−1
t g (tn) =

τα−1

3Γ (α− 1)

n
∑

k=1

ωkg (tn−k) +O
(

τ5
)

,

where ω1 = 5, ωk = 6kα−2, k = 2, . . . , n− 2, ωn−1 = 5 (n− 1)
α−2

, ωn = nα−2.
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Let Ωh = {xi/xi = ih, 0 ≤ i ≤M} is a uniform mesh of the interval [0, L] with
h = L/M and M ∈ N

∗. Suppose u = {uni /0 ≤ i ≤M, 0 ≤ n ≤ N} is a grid func-
tion on Ωhτ = Ωh × Ωτ . Considering the Eq.(2.2) at the point (xi, tn) and with
Lemma 2.3, we obtain an explicit scheme for (2.2) in the following matrix form:























U0 = ψ,

U1 = (I + 5A)U0 + τϕ+ τα

3Γ(α−1)f
0,

Un = (I + 5A)Un−1 + τϕ+ τα

3Γ(α−1)

∑n

k=1 ωkf
n−k +

n
∑

k=2

ωkAU
n−k.

(2.3)

Here I is the M − 1 order identity matrix. Where Un =
(

un1 , u
n
2 , . . . , u

n
M−1

)T
, ϕ =

(ϕ1, ϕ2, . . . , ϕM−1)
T
, ψ = (ψ (x1) , . . . , ψ (xM−1))

T
, fn =

(

fn1 , f
n
2 , . . . , f

n
M−1

)T
and

A = (aij) , i, j = 1, 2, . . . ,M − 1 is defined by

A =



















−p1 p1 0 . . . 0 0
p2 − q2 q2 − 2p2 p2 . . . 0 0

0 p3 − q3 q3 − 2p3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . qM−2 − 2pM−2 pM−2

0 0 0 . . . pM−1 − qM−1 qM−1 − pM−1



















(2.4)

2.2. Stability and convergence. Firstly, we have the following lemma.

Lemma 2.4. Suppose that D : [0, L] → R+ is a continuously differentiable function
on ] 0, L [ . Then, the matrix A given by (2.4) is negative definite, and we have

aii = −
M−1
∑

j=1,j 6=i

|aij | , ‖A‖ ≤
4τα

3h2Γ (α− 1)
max

0≤x≤L
D (x) . (2.5)

By utilizing linear difference scheme (2.3), we can easily get


















E0 = ψ̃ − ψ

E1 = (I + 5A)E0,

En = (I + 5A)En−1 +
n
∑

k=2

ωkAE
n−k,

(2.6)

where ψ̃ denotes the initial function with noises, En = Ũn−Un denotes the solutions
error for the n-th step iteration, and n = 1, . . . , N .

Theorem 2.5. The explicit difference scheme defined by (2.3) is unconditionally
stable.

We denote eni = u (xi, tn)− uni , i = 1, . . . ,M − 1, n = 1, . . . , N , where u (xi, tn)
is the exact solution of the direct problem (1.1)-(1.3) at mesh point (xi, tn) and u

n
i is

the solution of the difference scheme (2.3) also at (xn, tn), and e
n =

(

en1 , e
n
2 , . . . , e

n
M−1

)T
.

Note that e0i = u (xi, 0)− ψ (xi) = 0. We have










e1 = R1,

en = (I + 5A) en−1 +
n
∑

k=2

ωkAe
n−k +Rn,

(2.7)

where Rn =
(

Rn
1 , R

n
2 , . . . , R

n
M−1

)T
denotes the truncated term.
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Theorem 2.6. The solution of the explicit difference scheme (2.3) is convergent
to the exact solution of the direct problem (1.1)-(1.3) as h, τ → 0 for finite time
domain.

3. The inverse problem

The inverse problem is formulated by: the fractional diffusion-wave equation
(1.1), the initial conditions (1.2), the boundary conditions (1.3) and the additional
condition (1.4). For the solution of the inverse problem, suppose that the function
D ∈ C (0, L). Let V be a subspace of C (0, L) of finite dimension s and (ηi (x)),
i = 1, . . . , s une base de V . We can write the diffusion-wave coefficient D(x) by:

D (x) =
s

∑

i=1

piηi (x) . (3.1)

For D(x) given, the direct problem (1.1)-(1.3) admits a unique solution noted by

u (x, t,D). To find D(x) just find the vector P = (p1, p2, . . . , ps)
T
∈ R

s. Let β > 0,
we notice Sβ = {P ∈ R

s : ‖P‖ ≤ β} the admissible set of unknowns P .

3.1. Nonlinear least squares problem. To solve the inverse problem we solve
a nonlinear least squares problem:

{

minΦ (P ) = ‖u (L, t;P )− ψ (t)‖
2
2 , 0 < t ≤ T.

P ∈ Sβ

(3.2)

The objective function Φ continuous and convex on the set Sβ closed and bounded.
Therefore, according to Weierstrass theorem, the problem (3.2) admits at least one
solution. On the other hand the problem (3.2) is ill-posed so that the problem
admits several solutions. For uniqueness, using Homotopy regularization [1], we
consider the following regularized problem:

{

minΦλ (P ) = (1− λ) ‖u (L, t;P )− ψ (t)‖
2
2 + λ ‖P‖

2
2 ,

P ∈ Sβ ,
(3.3)

where 0 < λ < 1 is the regularization parameter. To get P j , we assume that
P j+1 = P j + δP j , j = 0, 1, . . .. We need to determine a regularized vector

δP j =
(

δpj1, δp
j
2, . . . , δp

j
s

)T

. Using Taylor’s approximation to order one, we find:

u (L, t;P + δP ) ≈ u (L, t;P ) +∇T
Pu (L, t;P ) · δP. (3.4)

From (3.3) and (3.4) the objective function of the regularized problem becomes:

Fλ(δP ) = (1− λ)
∥

∥∇T
Pu(L, t;P ).δP − (ψ(t)− u(L, t;P ))

∥

∥

2

2
+ λ ‖δP‖

2
2 . (3.5)

By the finite difference method, we obtain:

∇T
Pu(L, tn;P ).δP ≈

s
∑

i=0

u(L, tn; (p0, . . . , pi + τ, . . . , ps))− u(L, tn; p)

τ
.δpi. (3.6)

We define the matrix H = (hni)N×(s+1) by:

hni =
u(L, tn; (p0, . . . , pi + τ, . . . , ps))− u(L, tn; p)

τ
. (3.7)
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Let U = (u(L, t1; p), u(L, t2; p), . . . , u(L, tN ; p))T , Ψ = (ψ(t1), ψ(t2), . . . , ψ(tN ))T .
Using (3.6) and (3.7), we can write (3.5) in the form:

Fλ(δP ) = (1− λ) ‖HδP − (Ψ− U)‖
2
2 + λ ‖δP‖

2
2 . (3.8)

We have the following equivalence result:

Proposition 3.1. ([4, 5]).

✓ δP a minimum point of Fλ if only if δP solution of the normal equation:

(1− λ)HTHδP + λδP = HT (Ψ− U). (3.9)

✓ For all 0 < λ < 1, the normal equation (3.9) has a unique solution.

Algorithm 1 (Inversion algorithm, [4, 5])

1: Give an initial value P , the step τ , α, λ and ε,
2: Solve the scheme (2.3) to get u(ℓ, tn;P ) and u(ℓ, tn; (p0, . . . , pi + τ, . . . , ps)), for

all n = 1, 2, . . . , N et i = 0, 1, . . . , s
3: Calculate the matrix H and the vectors U , Ψ,

4: Calculate a regularization vector δP by: δP =
[

(1− λ)HTH + λI
]−1

HT (Ψ−
U).

5: If ‖δP‖2 ≤ ε stop, and P + δP is considered a solution. Otherwise, go to step
2 by replacing P with P + δP .

3.2. Numerical test. ([4, 5])

• T = 1, L = 1, ϕ(x) = x2(1−x)2,
ψ(x) = 0, λ = 0.01,

• f(x, t) =
2x2(1− x)2t2−α

Γ(3− α)
− (1 + t2)(16x3 − 6x2 − 8x+ 2),

• D(x) = 1 + x, P 0 = (1, 1).
τ = 0.4, ε = 10−6, α = 1.8,

• M = 20, N = 1000.
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Abstract. The aim of this work is to introduce and to study an algebra of
pseudo almost periodic generalized functions containing the classical pseudo
almost periodic functions as well as pseudo almost periodic distributions.

1. Introduction and preliminaries

The concept of pseudo almost periodicity is a generalization of Bohr almost
periodicity, it has been introduced by C. Zhang, see [8]. The algebra G of gener-
alized functions of Colombeau give an answer to the problem of multiplication of
distributions. For a detailed study of these generalized functions see the book [6].
An algebra of almost periodic generalized functions of Colombeau type containing
classical Bohr almost periodic functions and almost periodic Schwartz distributions
has been introduced and studied in [3]. As mentioned in the abstract, the first
aim of this work is to introduce and to study an algebra of pseudo almost periodic
generalized functions of Colombeau type containing Zhang pseudo almost periodic
functions as well as pseudo almost periodic Schwartz distributions. In section 1,
we recall the basic definitions and results that we shall use in this work. The
main results of paper are given in the next section. First, we construct the space of
smooth pseudo almost periodic functions and we recall the algebra GL∞ of bounded
generalized functions in which we study the pseudo almost periodicity. Next, we
define the space Mpap of pseudo almost periodic moderate elements and the space
Npap of pseudo almost periodic negligible elements. The main properties of Mpap

and Npap are summarized in Proposition 2. The new algebra Gpap of pseudo al-
most periodic generalized functions of Colombeau type is given in Definition 5. A
characterization of elements of Gpap similar to the classical result for pseudo almost
periodic Schwartz distributions is given by Proposition 4. By means of convolution
with a mollifier ρ ∈ Σ, we show that the space of pseudo almost periodic Schwartz
distributions B

′

pap. can be embedded by the map ipap into the algebra Bpap . By
defining the canonical embedding σpap between Bpap and Gpap, Proposition 6, shows
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tions; Colombeau algebra; Pseudo almost periodic generalized functions.
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that we have two ways to embed the space Bpap into Gpap by ipap and by σpap . Fi-
nally, another result is Proposition 7, in which we give an extension of the classical
Bohl-Bohr’s Theorem. We refer the reader to [3], [4] and [5] from which the results
of this paper were inspired. In this paper we consider functions and distributions
defined on R. Recall (Cb, ‖ ‖L∞) the Banach algebra of bounded and continuous
complex valued functions on R endowed with the norm ‖ ‖L∞ of uniform conver-
gence on R. The space Cap of almost periodic functions on R, which was introduced
by H. Bohr, is the closed subalgebra of (Cb, ‖ ‖L∞) that contains all the functions
f, satisfying: for any ε > 0, the set

{

τ ∈ R : sup
x∈R

|f (x+ τ)− f (x)| < ε

}

, (1.1)

is relatively dense in R. In [8], C. Zhang introduced an extension of the almost
periodic functions. Set

C0 =







f ∈ Cb : lim
t−→+∞

1

2t

t
∫

−t

|f (x)| dx = 0







. (1.2)

Definition 1.1. A function f ∈ Cb is called pseudo almost periodic if it can be

written as f = g + h, where g ∈ Cap and h ∈ C0.

The above decomposition is unique, so the functions g and h are called respec-
tively the almost periodic component and the ergodic perturbation of the pseudo
almost periodic function f. Denote by Cpap the set of all such functions. Then we
have Cap ⊂ Cpap ⊂ Cb.

Now, we recall Schwartz almost periodic distributions, see [7]. Let p ∈ [1,+∞] ,
the space

DLp :=
{

ϕ ∈ C∞ : ϕ(j) ∈ Lp, ∀j ∈ Z+

}

, (1.3)

endowed with the topology defined by the countable family of norms

|ϕ|k,p :=
∑

j≤k

∥

∥

∥
ϕ(j)

∥

∥

∥

Lp

, k ∈ Z+, (1.4)

is a differential Frechet subalgebra of C∞. The topological dual of DL1 , denoted by
D

′

L∞ , is called the space of bounded distributions.

Definition 1.2. A distribution T ∈ D
′

L∞ is called almost periodic if the set {τhT, h ∈ R}
of translated of T is relatively compact in D′

L∞ . The space of Schwartz almost pe-

riodic distributions is denoted by B
′

ap.

Define

B′
0 :=







T ∈ D
′

L∞ : lim
t−→+∞

1

2t

t
∫

−t

|(T ∗ ϕ) (x)| dx = 0, ∀ϕ ∈ D







. (1.5)

Definition 1.3. A distribution T ∈ D
′

L∞ is called pseudo almost periodic if it

can be written as T = R + S, where R ∈ B
′

ap and S ∈ B′
0. The space of all such

distributions is denoted by B
′

pap.

The above decomposition is unique and we have B
′

ap ⊂ B
′

pap ⊂ D
′

L∞ .
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Theorem 1.1. Let T ∈ D
′

L∞ , the following statements are equivalent :

(i) T ∈ B
′

pap.

(ii) T ∗ ϕ ∈ Cpap, ∀ ϕ ∈ D.

(iii) ∃k ∈ Z+, ∃ (fj)j≤k
⊂ Cpap : T =

∑

j≤k f
(j)
j .

2. Results

In this section, we introduce the algebra of pseudo almost periodic generalized
functions of Colombeau type and we give their main properties.

Definition 2.1. The space of smooth pseudo almost periodic functions on R, is

denoted and defined by

Bpap :=
{

ϕ ∈ DL∞ : ϕ(j) ∈ Cpap, ∀j ∈ Z+

}

. (2.1)

We give some, easy to prove, properties of the space Bpap.

Proposition 2.1. (i) Bpap is a closed subalgebra of DL∞ stable by derivation.

(ii) If T ∈ B′
pap and ϕ ∈ Bpap, then ϕT ∈ B′

pap.

(iii) Bpap ∗ D
′
L1 ⊂ Bpap.

(iv) Bpap = DL∞ ∩ Cpap.

Let I = ]0, 1], ε ∈ I, and

ML∞ =
{

(uε)ε ∈ (DL∞)
I
: ∀k ∈ Z+, ∃m ∈ Z+, |uε|k,∞ = O

(

ε−m
)

, ε −→ 0
}

,

(2.2)

NL∞ =
{

(uε)ε ∈ (DL∞)
I
: ∀k ∈ Z+, ∀m ∈ Z+, |uε|k,∞ = O (εm) , ε −→ 0

}

.

(2.3)
The algebra of bounded generalized functions on R, is denoted and defined by

the quotient algebra

GL∞ :=
ML∞

NL∞

, (2.4)

An element u of GL∞ is an equivalence class, that is, u = [(uε)ε] = (uε)ε+NL∞ . Fol-
lowing the construction of the algebra Gap of almost periodic generalized functions,
see [3], we define the space of pseudo almost periodic moderate elements

Mpap =
{

(uε)ε ∈ (Bpap)
I
, ∀k ∈ Z+, ∃m ∈ Z+, |uε|k,∞ = O

(

ε−m
)

, ε −→ 0
}

,

(2.5)
and the space of pseudo almost periodic negligible elements

Npap =
{

(uε)ε ∈ (Bpap)
I
, ∀k ∈ Z+, ∀m ∈ Z+, |uε|k,∞ = O (εm) , ε −→ 0

}

. (2.6)

The main properties of Mpap and Npap are summarized in the following propo-
sition.

Proposition 2.2. (i) The space Mpap is a subalgebra of (Bpap)
I
.

(ii) The space Npap is an ideal of Mpap.

Proof. (i) It follows from the fact that Bpap is a differential algebra.
(ii) Let (uε)ε ∈ Npap and (vε)ε ∈ Mpap, then ∀k ∈ Z+, ∃m

′ ∈ Z+, ∃c1 > 0, ∃ε0 ∈

I, ∀ε < ε0, |vε|k,∞ < c1ε
−m′

. Take m ∈ Z+, then for m′′ = m + m′, ∃c2 > 0 such

that |uε|k,∞ < c2ε
m′′

. Since the family of the norms | |k,∞ is compatible with
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the algebraic structure of DL∞ , then ∀k ∈ Z+, ∃ck > 0 such that |uεvε|k,∞ ≤

ck |uε|k,∞ |vε|k,∞ , consequently |uεvε|k,∞ < ckc2ε
m′′

c1ε
−m′

≤ cεm, where c =

c1c2ck. Hence (uεvε)ε ∈ Npap. �

Definition 2.2. The algebra of pseudo almost periodic generalized functions is

defined as the quotient algebra

Gpap :=
Mpap

Npap

. (2.7)

We have the following results.

Proposition 2.3. Gap →֒ Gpap →֒ GL∞ .

A characterization of elements of Gpap is given by the following result.

Proposition 2.4. Let u = [(uε)ε] ∈ GL∞ , the following assertions are equivalent :

(i) u is pseudo almost periodic.

(ii) uε ∗ ϕ ∈ Bpap, ∀ε ∈ I, ∀ϕ ∈ D.

Proof. (i) =⇒ (ii) : If u ∈ Gpap, then for every ε ∈ I we have uε ∈ Bpap, the result
(iii) of Proposition (2.1) gives uε ∗ ϕ ∈ Bpap, ∀ε ∈ I, ∀ϕ ∈ D.

(ii) =⇒ (i) : Let (uε)ε ∈ ML∞ and uε ∗ ϕ ∈ Bpap, ∀ε ∈ I, ∀ϕ ∈ D, then from
Theorem (1.1)− (ii) it follows that uε ∈ Bpap, it suffices to show that

∀k ∈ Z+, ∃m ∈ Z+, |uε|k,∞ = O
(

ε−m
)

, ε −→ 0, (2.8)

which follows from the fact that (uε)ε ∈ ML∞ . If (uε)ε ∈ NL∞ and uε ∗ ϕ ∈ Bpap,

∀ε ∈ I, ∀ϕ ∈ D, we obtain the same result, because NL∞ ⊂ ML∞ . �

Remark. The characterization (ii) does not depend on representatives.

The space Bpap is canonically embedded into Gpap, i.e.

σpap : Bpap −→ Gpap

f −→ [(f)ε] = (f)ε +Npap
(2.9)

Set Σ =

{

ρ ∈ S :
∫

R

ρ (x) dx = 1 and
∫

R

xαρ (x) dx = 0, ∀α ≥ 1

}

and ρε (.) =
1
ε
ρ
(

.
ε

)

, ε >

0.

Proposition 2.5. For ρ ∈ Σ, the map

ipap : B′
pap −→ Gpap

T −→ (T ∗ ρε)ε +Npap,
(2.10)

is a linear embedding which commutes with derivatives.

Proof. Let T ∈ B′
pap, from Theorem (1.1) − (iii) , ∃ (fβ)β ⊂ Cpap such that T =

∑

β≤m

f
(β)
β , so ∀α ∈ Z+,

∣

∣

∣

(

T (α) ∗ ρε
)

(x)
∣

∣

∣
≤

∑

β≤m

1

εα+β
‖fβ‖L∞

∫

R

∣

∣

∣
ρ(α+β) (y)

∣

∣

∣
dy,
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consequently, ∃c > 0 such that sup
x∈R

∣

∣

(

T (α) ∗ ρε
)

(x)
∣

∣ ≤ c
εα+m , hence, ∃c′ > 0 such

that

|T ∗ ρε|m′,∞ =
∑

α≤m′

sup
x∈R

∣

∣

∣

(

T (α) ∗ ρε
)

(x)
∣

∣

∣
≤

c′

εm+m′
, where c′ =

∑

α≤m′

c

εα
, (2.11)

which shows that (T ∗ ρε)ε ∈ Mpap. Let (T ∗ ρε)ε ∈ Npap, then lim
ε−→0

T ∗ ρε = 0 in

D′
L∞ , but we have also lim

ε−→0
T ∗ρε = T in D′

L∞ , this mean that ipap is an embedding.

The linearity of ipap it results from the fact that the convolution is linear and that

ipap
(

T (j)
)

=
(

T (j) ∗ ρε
)

ε
= (T ∗ ρε)

(j)
ε = (ipap (T ))

(j)
. �

The following result shows that there are tow ways to embed the space Bpap into
Gpap.

Proposition 2.6. The following diagram

Bpap −→ B′
pap

σpap ց ↓ ipap
Gpap

(2.12)

is commutative.

Proof. Let f ∈ Bpap, we must show that (f ∗ ρε − f)ε ∈ Npap. Indeed, by Taylor‘s
formula and the fact that ρ ∈ Σ, we have

‖f ∗ ρε − f‖L∞ ≤ sup
x∈R

∫

R

∣

∣

∣

∣

(−y)
m

m!
f (m) (x− θεy) ρ (y) dy

∣

∣

∣

∣

εm.

Then ∃Cm > 0 such that ‖f ∗ ρε − f‖L∞ ≤ Cm

∥

∥f (m)
∥

∥

L∞
‖ymρ‖L1 ε

m. The same
result can be obtained for all the derivatives of f. Hence (f ∗ ρε − f)ε ∈ Npap. �

We have the following generalized version of the classical Bohl-Bohr’s Theorem.

Proposition 2.7. A primitive of a pseudo almost periodic generalized function is

pseudo almost periodic if and only if it is bounded generalized function.

Proof. Let u = [(uε)ε] ∈ Gpap and U its primitive, i.e. U = [(Uε)ε] . where Uε (x) =
x
∫

x0

uε (t) dt and x0 ∈ R. If U ∈ Gpap, then by Proposition (2.3) , U ∈ GL∞ . Conversely,

let x0 ∈ R and assume that U = [(Uε)ε] ∈ GL∞ , then by definition ∀ε ∈ I, ∀x ∈

R, Uε (x) =
x
∫

x0

uε (t) dt ∈ DL∞ , which show that Uε is a bounded primitive of uε ∈

Cpap. From the classical case, we deduce that Uε ∈ Cpap, i.e. ∀ε ∈ I, Uε ∈ Cpap ∩
DL∞ = Bpap, Proposition (2.1)−(iv) . Moreover, (Uε)ε ∈ ML∞ , i.e. ∀k ∈ Z+, ∃m ∈
Z+, |Uε|k,∞ = O (ε−m) , ε −→ 0. Thus, (Uε)ε ∈ Mpap and U ∈ Gpap. The result is
independent on representatives. �

3. Conclusion

This work has allowed us to lift the concept of pseudo almost periodicity to
the level of generalized functions.The results obtained are the first steps to go on
studying other problems. Some of them, the uniqueness of the decomposition of
a pseudo almost periodic generalized function, the composition of tempered gener-
alized function with pseudo almost periodic generalized function, the convolution
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and some results of existence for the linear differential equations in the framework
of pseudo almost periodic generalized functions.
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Abstract. This paper considers the question of the output stabilization for
a class of infinite dimensional bilinear systems evolving on a spatial domain
Ω. Then, we give sufficient conditions for exponential, strong and weak sta-

bilization of the output of such systems. Examples and simulations illustrate
the efficiency of such controls.

1. Introduction

In this paper, we consider the following bilinear system
{

ż(t) = Az(t) + v(t)Bz(t), t ≥ 0,

z(0) = z0,
(1.1)

where A : D(A) ⊂ H → H generates a strongly continuous semigroup of con-
tractions (S(t))t≥0 on a Hilbert space H, endowed with norm and inner product
denoted, respectively, by ‖.‖ and 〈., .〉, v(.) ∈ Vad (the admissible controls set) is a
scalar valued control and B : H → H is a linear bounded operator. The problem of
feedback stabilization of distributed system (1.1) was studied in many works that
lead to various results. In [1], it was shown that the control

v(t) = −〈z(t), Bz(t)〉, (1.2)

weakly stabilizes system (1.1) provided that B be a weakly sequentially continuous
operator such that, for all ψ ∈ H, we have

〈BS(t)ψ, S(t)ψ〉 = 0, ∀ t ≥ 0 =⇒ ψ = 0, (1.3)

and if (1.3) is replaced by the following assumption
∫ T

0

|〈BS(s)ψ, S(s)ψ〉|ds ≥ γ‖ψ‖2, ∀ ψ ∈ H, (for some γ, T > 0), (1.4)

then control (1.2) strongly stabilizes system (1.1) (see [2]). In [3], the authors show
that when the resolvent of A is compact, B self-adjoint and monotone, then strong

2010 Mathematics Subject Classification. Primary: 93C20 ; Secondaries: 93D15.
Key words and phrases. Distributed bilinear systems; output stabilization; feedback controls.
c©2019 Proceedings of International Mathematical Sciences.
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stabilization of system (1.1) is proved using bounded controls. Let the output state
space Y be a Hilbert space with inner product 〈., .〉Y and the corresponding norm
‖.‖Y , and let C ∈ L(H,Y ) be an output operator. The system (1.1) is augmented
with the output

w(t) := Cz(t). (1.5)

The output stabilization means that w(t) → 0 as t → +∞ using suitable controls.
In the case when Y = H and C = I, one obtains the classical stabilization of the
state. When C 6= I, the output stabilization for distributed systems was studied
in many works: in [14], authors considered the output exponential stabilization for
one-dimensional wave equations with boundary control. In [4], authors considered
output stabilization for Kirchhoff-type equation with boundary control. They stud-
ied the existence and uniqueness of solution of system and the strong stabilization
of such equation was proved. In [6], authors established the output stabilization for
a class of nonlinear systems with boundary control. They investigated the existence
of solution and the exponential stabilization of such systems. In [7], author studied
weak and strong output stabilization for semilinear systems using controls that do
not take into account the output operator. In [11], authors considered exponential,
strong and weak output stabilization of semilinear systems. If Ω ⊂ R

d (d ≥ 1) be
the system evolution domain and ω ⊂ Ω, when C = χω, the restriction operator
to a subregion ω of Ω, one is concerned with the behaviour of the state only in a
subregion of the system evolution domain. This is what we call regional stabiliza-
tion. The notion of regional stabilization is useful in systems theory since there
exist systems which are not stabilizable on the whole domain but stabilizable on
some subregion ω. Moreover stabilizing a systems on a subregion is cheaper than
stabilizing it on the whole domain [12]. In [13], regional stabilization for bilinear
systems was studied using decomposition of system (1.1) into regional stable and
regional unstable subsystems, therefore regional stabilization of system (1.1) turns
out to stabilizing its unstable part. In [10], authors proved regional strong and weak
stabilization of bilinear systems with unbounded control operator. In [9], authors
considered regional weak, strong and exponential stabilization of bilinear systems
with control operator B assumed to be bounded with respect to the graph norm
of the operator A. In this paper, we study the exponential, strong and weak sta-
bilization of the output (1.5) using bounded controls. Then, we develop sufficient
conditions that allow exponential, strong and weak stabilization of the output of
such system. Illustrations by examples and simulations are given. The approach
is based on the decay of an adapted function, the exact and weak observability
conditions, and semigroup properties. The paper is organized as follows. The sec-
ond section discusses sufficient conditions to achieve exponential, strong and weak
stabilization of the output (1.5). In the third section, we give illustrating examples.
The fourth section is devoted to simulations.

2. Output stabilization

In this section, we develop sufficient conditions that allow exponential, strong
and weak stabilization of the output (1.5).

Definition 2.1. The output (1.5) is said to be:
1. weakly stabilizable, if there exists a control v(.) ∈ Vad such that for any initial
condition z0 ∈ H, the corresponding solution z(t) of system (1.1) is global and
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satisfies
〈Cz(t), ψ〉Y → 0, ∀ψ ∈ Y, as t→ ∞,

2. strongly stabilizable, if there exists a control v(.) ∈ Vad such that for any initial
condition z0 ∈ H, the corresponding solution z(t) of system (1.1) is global and
verifies

‖Cz(t)‖Y → 0, as t→ ∞,

3. exponentially stabilizable, if there exists a control v(.) ∈ Vad such that for any
initial condition z0 ∈ H, the corresponding solution z(t) of system (1.1) is global
and there exist α, β > 0 such that

‖Cz(t)‖Y ≤ αe−βt‖z0‖, ∀t > 0.

Remark. It is clear that exponential stability of (1.5) implies strong stability of
(1.5) implies weak stability of (1.5).

2.1. Exponential stabilization. In this subsection, we develop sufficient condi-
tions for exponential stabilization of the output (1.5).
The following result concerns the exponential stabilization of (1.5).

Theorem 2.1. Let A generate a semigroup (S(t))t≥0 of contractions on H and B
is a bounded control operator. If the conditions:
1. Re(〈C∗CAy, y〉) ≤ 0, ∀y ∈ D(A),
2. Re(〈C∗CBy, y〉〈By, y〉) ≥ 0, ∀y ∈ H,
3. there exist T, γ > 0, such that

∫ T

0

|〈C∗CBS(t)y, S(t)y〉|dt ≥ γ‖Cy‖2Y , ∀ y ∈ H, (2.1)

hold, then the control

v(t) =

{

− 〈C∗CBz(t),z(t)〉
‖z(t)‖2 if z(t) 6= 0

0 if z(t) = 0,
(2.2)

exponentially stabilizes the output (1.5).

Proof. System (1.1) has a unique weak solution z(t) (see [8]) defined on a maximal
interval [0, tmax] by

z(t) = S(t)z0 +

∫ t

0

g(z(s))S(t− s)Bz(s)ds, (2.3)

where

g(z(t)) =

{

− 〈C∗CBz(t),z(t)〉
‖z(t)‖2 if z(t) 6= 0

0 if z(t) = 0.

Since (S(t))t≥0 is a semigroup of contractions, we deduce

d

dt
‖z(t)‖2 ≤ 2g(z(t))〈Bz(t), z(t)〉.

Integrating this inequality over the interval [0, t], we have

‖z(t)‖2 − ‖z(0)‖2 ≤ 2

∫ t

0

g(z(s))〈Bz(s), z(s)〉ds.

Using hypothesis 2 of Theorem 2.1, it follows that

‖z(t)‖ ≤ ‖z0‖. (2.4)
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For all z0 ∈ H and t ≥ 0, we have

〈C∗CBS(t)z0, S(t)z0〉 = 〈C∗CBz(t), z(t)〉 − 〈C∗CBz(t), z(t)− S(t)z0〉
+ 〈C∗CBS(t)z0 − C∗CBz(t), S(t)z0〉.

Since B is bounded, then

|〈C∗CBS(t)z0, S(t)z0〉| ≤ |〈C∗CBz(t), z(t)〉|+ 2α‖B‖‖z(t)− S(t)z0‖‖z0‖, (2.5)

where α is a positive constant.
Using (2.4), we deduce

|〈C∗CBz(t), z(t)〉| ≤ |g(z(t))|‖z(t)‖‖z0‖, ∀t ∈ [0, T ]. (2.6)

While from (2.3) and using Schwartz’s inequality, we obtain

‖z(t)− S(t)z0‖ ≤ ‖B‖
(

T

∫ T

0

|g(z(t))|2‖z(t)‖2dt
)

1

2

. (2.7)

Integrating (2.5) over the interval [0, T ] and taking into account (2.6) and (2.7), we
have

∫ T

0

|〈C∗CBS(t)z0, S(t)z0〉|dt ≤ 2αT
3

2 ‖B‖2‖z0‖
(

∫ T

0

|g(z(t))|2‖z(t)‖2dt
)

1

2

+ T
1

2 ‖z0‖
(

∫ T

0

|g(z(t))|2‖z(t)‖2dt
)

1

2

. (2.8)

Let us consider the nonlinear semigroup U(t)z0 := z(t) (see [1]). Replacing z0 by
U(t)z0 in (2.8), and using the superposition properties of the semigroup (U(t))t≥0,
we deduce that
∫ T

0

|〈C∗CBS(s)U(t)z0, S(s)U(t)z0〉|ds ≤ 2αT
3

2 ‖B‖2‖U(t)z0‖ (2.9)

×
(

∫ t+T

t

|g(U(s)z0)|2‖U(s)z0‖2ds
)

1

2

+ T
1

2 ‖U(t)z0‖
(

∫ t+T

t

|g(U(s)z0)|2‖U(s)z0‖2ds
)

1

2

.

Thus, by using (2.1) and (2.9), it follows that

γ‖CU(t)z0‖Y ≤M

(

∫ t+T

t

|g(U(s)z0)|2‖U(s)z0‖2ds
)

1

2

, (2.10)

where M = (2αT‖B‖2 + 1)T
1

2 is a positive constant depending on ‖z0‖ and T .
From hypothesis 1 of Theorem 2.1, we have

d

dt
‖CU(t)z0‖2Y ≤ −2|g(U(t)z0)|2‖U(t)z0‖2. (2.11)

Integrating (2.11) from nT and (n+ 1)T, (n ∈ N), we obtain

‖CU(nT )z0‖2Y − ‖CU((n+ 1)T )z0‖2Y ≥ 2

∫ (n+1)T

nT

|g(U(s)z0)|2‖U(s)z0‖2ds.
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Using (2.10), (2.11) and the fact that ‖CU(t)z0‖Y decreases, it follows
(

1 + 2
( γ

M

)2
)

‖CU((n+ 1)T )z0‖2Y ≤ ‖CU(nT )z0‖2Y .

Then

‖CU((n+ 1)T )z0‖Y ≤ β‖CU(nT )z0‖Y ,
where β = 1

(

1+2( γ

M )
2
) 1

2

. By recurrence, we show that ‖CU(nT )z0‖Y ≤ βn‖Cz0‖Y .

Taking n = E( t
T
) the integer part of t

T
, we deduce that

‖CU(t)z0‖Y ≤ Re−σt‖z0‖,

where R = α
(

1 + 2
(

γ
M

)2
)

1

2

, with α > 0 and σ =
ln
(

1+2( γ

M )
2
)

2T > 0, which achieves

the proof. �

2.2. Strong stabilization. The following result will be used to prove strong sta-
bilization of the output (1.5).

Theorem 2.2. Let A generate a semigroup (S(t))t≥0 of contractions on H and
B : H → H is a bounded linear operator. If the conditions:
1. Re

(〈

C∗CAψ,ψ
〉)

≤ 0, ∀ψ ∈ D(A),

2. Re
(〈

C∗CBψ,ψ
〉〈

Bψ,ψ
〉)

≥ 0, ∀ψ ∈ H,
hold, then control

v(t) = −
〈

C∗CBz(t), z(t)
〉

1 + |
〈

C∗CBz(t), z(t)
〉

| , (2.12)

allows the estimate
(
∫ T

0

|
〈

C∗CBS(s)z(t), S(s)z(t)
〉

|ds
)2

= Θ

(
∫ t+T

t

|
〈

C∗CBz(s), z(s)
〉

|2
1 + |

〈

C∗CBz(s), z(s)
〉

|ds
)

,

as t→ +∞.

(2.13)

Proof. We have

1

2

d

dt

〈

Cz(t), Cz(t)
〉

Y
= Re

(〈

CAz(t), Cz(t)
〉

Y

)

+Re
(

v(t)
〈

CBz(t), Cz(t)
〉

Y

)

.

Then

1

2

d

dt

〈

Cz(t), Cz(t)
〉

Y
=

1

2

d

dt
‖Cz(t)‖2Y = Re

(〈

C∗CAz(t), z(t)
〉)

+Re
(

v(t)
〈

C∗CBz(t), z(t)
〉)

.

From hypothesis 1 of Theorem 2.2, we have

1

2

d

dt
‖Cz(t)‖2Y ≤ Re

(

v(t)〈C∗CBz(t), z(t)〉
)

.

In order to make the function 1
2‖Cz(t)‖2Y nonincreasing, we consider the control

v(t) = −
〈

C∗CBz(t), z(t)
〉

1 + |
〈

C∗CBz(t), z(t)
〉

| ,

so that the resulting closed-loop system is

ż(t) = Az(t) + f(z(t)), z(0) = z0, (2.14)
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where f(z) = −
〈

C∗CBz,z

〉

Bz

1+|
〈

C∗CBz,z

〉

|
, ∀ z ∈ H.

Since f is locally Lipschitz, then system (2.14) has a unique mild solution z(t) (see
Theorem 1.4, pp 185 in [8]) defined on a maximal interval [0, tmax] by

z(t) = S(t)z0 +

∫ t

0

S(t− s)f(z(s))ds. (2.15)

Because of the contractions of the semigroup (i.e Re
(〈

Aψ,ψ
〉)

≤ 0, ∀ ψ ∈ D(A)),
we have

d

dt
‖z(t)‖2 ≤ −2

〈

C∗CBz(t), z(t)
〉

〈Bz(t), z(t)〉
1 + |

〈

C∗CBz(t), z(t)
〉

| .

Integrating this inequality over the interval [0, t], we deduce

‖z(t)‖2 − ‖z(0)‖2 ≤ −2

∫ t

0

〈

C∗CBz(s), z(s)
〉

〈Bz(s), z(s)〉
1 + |

〈

C∗CBz(s), z(s)
〉

| ds.

Using condition 2 of Theorem 2.2, it follows that

‖z(t)‖ ≤ ‖z0‖. (2.16)

From hypothesis 1 of Theorem 2.2, we have

d

dt
‖Cz(t)‖2Y ≤ −2

|
〈

C∗CBz(t), z(t)
〉

|2
1 + |

〈

C∗CBz(t), z(t)
〉

| .

Integrating this inequality, we deduce

‖Cz(t)‖2Y − ‖Cz(0)‖2Y ≤ −2

∫ t

0

|
〈

C∗CBz(s), z(s)
〉

|2
1 + |

〈

C∗CBz(s), z(s)
〉

|ds. (2.17)

While from (2.15) and using Schwartz inequality, we obtain

‖z(t)−S(t)z0‖ ≤ ‖B‖‖z0‖
(

T

∫ t

0

|
〈

C∗CBz(s), z(s)
〉

|2
1 + |

〈

C∗CBz(s), z(s)
〉

|ds
)

1

2

, ∀t ∈ [0, T ]. (2.18)

Since B is bounded and C continuous, we have

|〈C∗CBS(s)z0, S(s)z0〉| ≤ 2K‖B‖‖z(s)−S(s)z0‖‖z0‖+|〈C∗CBz(s), z(s)〉|, (2.19)
where K is a positive constant. Replacing z0 by z(t) in (2.18) and (2.19), we deduce

|〈C∗CBS(s)z(t), S(s)z(t)〉| ≤ 2K‖B‖2‖z0‖2
(

T

∫ t+T

t

|
〈

C∗CBz(s), z(s)
〉

|2
1 + |

〈

C∗CBz(s), z(s)
〉

|ds
)

1

2

+ |〈C∗CBz(t+ s), z(t+ s)〉|, ∀t ≥ s ≥ 0.

Integrating this relation over [0, T ] and using Cauchy-Schwartz, we obtain
∫ T

0

|〈C∗CBS(s)z(t), S(s)z(t)〉|ds ≤
(

2K‖B‖2T 3

2 + T

(

1 +K‖B‖‖z0‖2
))

×
(
∫ t+T

t

|
〈

C∗CBz(s), z(s)
〉

|2
1 + |

〈

C∗CBz(s), z(s)
〉

|ds
)

1

2

,

which achieves the proof. �

The following result gives sufficient conditions for strong stabilization of the
output (1.5).
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Theorem 2.3. Let A generate a semigroup (S(t))t≥0 of contractions on H and B
is a bounded linear operator. If the assumptions 1, 2 of Theorem 2.2 and
∫ T

0

|〈C∗CBS(t)ψ, S(t)ψ〉|dt ≥ γ‖Cψ‖2Y , ∀ ψ ∈ H, (for some T, γ > 0), (2.20)

hold, then control (2.12) strongly stabilizes the output (1.5) with decay estimate

‖Cz(t)‖Y = Θ

(

1√
t

)

, as t −→ +∞. (2.21)

Proof. Using (2.17), we deduce

‖Cz(kT )‖2Y − ‖Cz((k + 1)T )‖2Y ≥ 2

∫ k(T+1)

kT

|
〈

C∗CBz(t), z(t)
〉

|2
1 + |

〈

C∗CBz(t), z(t)
〉

|dt, k ≥ 0.

From (2.13) and (2.20), we have

‖Cz(kT )‖2Y − ‖Cz((k + 1)T )‖2Y ≥ β‖Cz(kT )‖4Y , (2.22)

where β = γ2

2
(

2K‖B‖2T
3

2 +T

(

1+K‖B‖‖z0‖2

))

2 . Taking sk = ‖Cz(kT )‖2Y , the inequality

(2.22) can be written as

βs2k + sk+1 ≤ sk, ∀k ≥ 0.

Since sk+1 ≤ sk, we obtain

βs2k+1 + sk+1 ≤ sk, ∀k ≥ 0.

Taking p(s) = βs2 and q(s) = s − (I + p)−1(s) in Lemma 3.3, page 531 in [5], we
deduce

sk ≤ x(k), k ≥ 0,

where x(t) is the solution of equation x′(t) + q(x(t)) = 0, x(0) = s0.
Since x(k) ≥ sk and x(t) decreases give x(t) ≥ 0, ∀t ≥ 0. Furthermore, it is easy
to see that q(s) is an increasing function such that

0 ≤ q(s) ≤ p(s), ∀s ≥ 0.

We obtain −βx(t)2 ≤ x′(t) ≤ 0, which implies that

x(t) = Θ(t−1), as t→ +∞.

Finally the inequality sk ≤ x(k), together with the fact that ‖Cz(t)‖Y decreases,
we deduce the estimate

‖Cz(t)‖Y = Θ

(

1√
t

)

, as t −→ +∞.

�

2.3. Weak stabilization. The following result provides sufficient conditions for
weak stabilization of the output (1.5).

Theorem 2.4. Let A generate a semigroup (S(t))t≥0 of contractions on H and B
is a compact operator. If the conditions:
1. Re

(〈

C∗CAψ,ψ
〉)

≤ 0, ∀ψ ∈ D(A),

2. Re
(〈

C∗CBψ,ψ
〉〈

Bψ,ψ
〉)

≥ 0, ∀ψ ∈ H,

3.
〈

C∗CBS(t)ψ, S(t)ψ
〉

= 0, ∀t ≥ 0 =⇒ Cψ = 0,
hold, then control (2.12) weakly stabilizes the output (1.5).
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Proof. Let us consider the nonlinear semigroup Γ(t)z0 := z(t) and let (tn) be a
sequence of real numbers such that tn −→ +∞ as n −→ +∞.
From (2.16), Γ(tn)z0 is bounded in H, then there exists a subsequence (tφ(n)) of
(tn) such that

Γ(tφ(n))z0 ⇀ ψ, as n→ ∞.

Since B is compact and C continuous, we have

lim
n→+∞

〈C∗CBS(t)Γ(tφ(n))z0, S(t)Γ(tφ(n))z0〉 = 〈C∗CBS(t)ψ, S(t)ψ〉.

For all n ≥, we set

Λn(t) :=

∫ φ(n)+t

φ(n)

|
〈

C∗CBΓ(s)z0,Γ(s)z0
〉

|2
1 + |

〈

C∗CBΓ(s)z0,Γ(s)z0
〉

|ds.

It follows that ∀t ≥ 0, Λn(t) → 0 as n→ +∞.
Using (2.13), we deduce

lim
n→+∞

∫ t

0

|〈C∗CBS(s)Γ(tφ(n))z0, S(s)Γ(tφ(n))z0〉|ds = 0.

Hence, by the dominated convergence Theorem, we have
∫ t

0

|〈C∗CBS(s)ψ, S(s)ψ〉|ds = 0.

We conclude that

〈C∗CBS(s)ψ, S(s)ψ〉 = 0, ∀s ∈ [0, t].

Using condition 3 of Theorem 2.4, we deduce that

CΓ(tφ(n))z0 ⇀ 0, as n −→ +∞. (2.23)

On the other hand, it is clear that (2.23) holds for each subsequence (tφ(n)) of (tn)
such that CΓ(tφ(n))z0 weakly converges in Y . This implies that ∀ϕ ∈ Y , we have
〈CΓ(tn)z0, ϕ〉 → 0 as n −→ +∞ and hence

CΓ(t)z0 ⇀ 0, as t −→ +∞.

�

3. Examples

Example 3.1. Let Ω denote a bounded open subset of Rn, and consider the follow-
ing wave equation



















∂2z(x, t)

∂t2
−∆z(x, t) = v(t)

∂z(x, t)

∂t
Ω×]0,+∞[

z(x, t) = 0 ∂Ω×]0,+∞[

z(x, 0) = z0(x),
∂z(x, 0)

∂t
= z1(x) Ω.

(3.1)

This system has the form of equation (1.1) if we set H = H1
0 (Ω) × L2(Ω) with

〈(y1, z1), (y2, z2)〉 = 〈y1, y2〉H1(Ω)+〈z1, z2〉L2(Ω), A =

(

0 I

∆ 0

)

and B =

(

0 0
0 I

)

.
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We consider the output operator C = I, we have A is skew-adjoint on H and the
assumption (2.20) holds (see [2]). Then the control

v(t) = −
‖∂z(., t)

∂t
‖2
L2(0,1)

1 + ‖∂z(., t)
∂t

‖2
L2(0,1)

, (3.2)

strongly stabilises system (3.1) with the decay estimate

‖(z(., t), ∂z(., t)
∂t

)‖H = Θ(
1√
t
), as t −→ +∞.

Example 3.2. Let us consider a system defined on Ω =]0, 1[ by







∂z(x, t)

∂t
= Az(x, t) + v(t)a(x)z(x, t) Ω×]0,+∞[

z(x, 0) = z0(x) Ω,
(3.3)

where H = L2(Ω), Az = −z, and a ∈ L∞(]0, 1[) such that a(x) ≥ 0 a.e on ]0, 1[
and a(x) ≥ c > 0 on subregion ω of Ω and v(.) ∈ L∞(0,+∞) the control function.
System (3.3) is augmented with the output

w(t) = χωz(t), (3.4)

where χω : L2(Ω) −→ L2(ω), the restriction operator to ω and χ∗
ω is the adjoint

operator of χω. The operator A generates a semigroup of contractions on L2(Ω)
given by S(t)z0 = e−tz0. For all z0 ∈ L2(Ω) and T = 2, we obtain

∫ 2

0

〈

χ∗
ωχωBS(t)z0, S(t)z0

〉

dt =

∫ 2

0

e−2tdt

∫

ω

a(x)|z0|2dx

≥ β‖χωz0‖2L2(ω),

with β = c

∫ 2

0

e−2tdt > 0.

Then the control

v(t) = −

∫

ω

a(x)|z(x, t)|2dx

1 +

∫

ω

a(x)|z(x, t)|2dx
,

strongly stabilizes the output (3.4) with decay estimate

‖χωz(t)‖L2(ω) = Θ

(

1√
t

)

, as t −→ +∞.

Example 3.3. Consider a system defined in Ω =]0,+∞[, and described by







∂z(x, t)

∂t
= −∂z(x, t)

∂x
+ v(t)Bz(x, t) Ω×]0,+∞[

z(x, 0) = z0(x) Ω,
(3.5)
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where Az = −∂z
∂x

with domain D(A) = {z ∈ H1(Ω) | z(0) = 0, z(x) → 0 as x →

+∞} and Bz =

∫ 1

0

z(x)dx. The operator A generates a semigroup of contractions

(S(t)z0)(x) =

{

z0(x− t) if x ≥ t

0 if x < t.

Let ω =]0, 1[ be a subregion of Ω and system (3.5) is augmented with the output

w(t) = χωz(t). (3.6)

We have

Re(
〈

χ∗
ωχωAz, z

〉

) = −Re(
∫ 1

0

z′(x)z(x)dx)

= −z
2(1)

2
≤ 0,

so, the assumption 1 of Theorem 2.4 holds. The operator B is compact and verifies

〈

χ∗
ωχωBS(t)z0, S(t)z0

〉

=

(
∫ 1−t

0

z0(x)dx

)2

, 0 ≤ t ≤ 1.

Thus
〈χ∗

ωχωBS(t)z0, S(t)z0〉 = 0, ∀t ≥ 0 =⇒ z0(x) = 0, a.e on ω.

Then, the control

v(t) = −

(
∫ 1

0

z(x, t)dx

)2

1 +

(
∫ 1

0

z(x, t)dx

)2 , (3.7)

weakly stabilizes the output (3.6).

4. Simulations

Consider system (3.5) with z(x, 0) = sin(πx), and augmented with the output
(3.6).
• For ω =]0, 2[, figure 1 shows that the state is stabilized on ω with error equals
3.4× 10−4, and the evolution of control function is given by figure 2.
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Figure 1. The stabilization of the state on ω =]0, 2[.

Figure 2. Evolution of control function.

• For ω =]0, 3[, figure 3 shows that the state is stabilized on ω with error equals
7.8× 10−4 and the evolution of control is given by figure 4.
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Figure 3. The stabilization of the state on ω =]0, 3[.

Figure 4. Evolution of control function.

5. Conclusion

The output stabilization of bilinear systems is discussed. Under sufficient con-
ditions, we give bounded controls depending on the output operator that expo-
nentially, strongly and weakly stabilizes the output of such systems. Numerical
simulations illustrate the efficiency theoretical results. This work gives an opening
to others questions, this is the case of output stabilization of semilinear systems
with bounded controls.
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