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TÜRKİYE

Mujahid Abbas

University of Pretoria,

SOUTH AFRICA

i



Editorial Secretariat

Pınar Zengin Alp

Department of Mathematics,

Faculty of Science and Arts, Düzce University,
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Abstract

The aim of this paper is to define Smarandache curves according to the Sabban frame

belonging to the spherical indicatrix curve of the anti-Salkowski curve. We also illustrate

these curves with the Maple program and calculate the geodesic curvatures of these curves.

1. Introduction

Erich Salkowski (1881-1943), a German mathematician. In 1909, he defined curve families with non-constant τ and constant curvature κ

[1]. Later J. Monterde constructed a method for closed curves and the properties of anti-Salkowski curve used in [2]. For authors worked

on the anti-Salkowski curve also can be seen in [3]-[7]. When the Frenet vectors of any curve are taken as the position vector, then the

regular curves generated by these vectors are called Smarandache curves [8]. Smarandache curves in Euclidean 3-space are defined and

some features of these curves are given in [9]. For some authors worked on the Smarandache curve also may be seen in [10, 11]. In 1990, the

geodesic curve of a spherical curve is calculated by J. Koenderink with the Sabban frame of the spherical indicatrix curves in [12]. Then the

Smarandache curves obtained from Sabban frame are defined and geodesic curvatures of these curves are given in [13].

In this study, Smarandache curves are defined according to the Sabban frames belonging to the spherical indicatrix curves of each of the

T,N,B Frenet vectors of the anti-Salkowski curve. The geodesic curvatures of these curves are then calculated.

2. Preliminaries

In the Euclidean 3-space E3, the Frenet frame of any curve α is given by {T,N,B}. For an arbitrary curve α ∈ E3, with the first and second

curvatures, κ and τ respectively, the Frenet apparatus are given by [14]

T ′ = κN, N′ =−κT + τB, B′ =−τN.

Accordingly, the spherical indicatrix curves of Frenet vectors are (T ), (N) and (B) respectively.These equations of curves are given by [14]

αT (s) = T (s), αN(s) = N(s), αB(s) = B(s).

Let γ : I → S2 be a unit speed spherical curve. We denote s as the arc-length parameter of γ . Let us denote by [14]

γ(s) = γ(s), t(s) = γ ′(s), d(s) = γ(s)∧ t(s).

We call t(s) a unit tangent vector of γ . {γ, t,d} frame is called the Sabban frame of γ on S2. Then we have the following spherical Frenet

formulae of γ :

γ ′ = t, t ′ =−γ +κgd, d′ =−κgt (2.1)
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where is called the geodesic curvature of κg on S2 and

κg = 〈t ′,d〉, (2.2)

[12, 13].

Definition 2.1. (anti-Salkowski curve) [2]. For any m ∈ R with m 6=∓ 1√
3
, 0, let us define the space curve

βm(s) =

(

n

2(4n2 −1)m

(

n(1−4n2 +3cos(2ns))cos(s)+(2n2 +1)sin(s)sin(2ns)
)

,

n

2(4n2 −1)m

(

n(1−4n2 +3cos(2ns))sin(s)− (2n2 +1)cos(s)sin(2ns),
n2 −1

4n
(2ns+ sin(2ns))

)

)

where n = m√
1+m2

. The Frenet apparatus are



















































κ = tan(ns), τ = 1, ‖γm(s)‖= cos(ns)√
1+m2

T (s) = −
(

cos(s)sin(ns)−nsin(s)cos(ns),sin(s)sin(ns)+ncos(s)cos(ns), n
m cos(ns)

)

,

N(s) = n
(

sin(s)
m ,− cos(s)

m ,1
)

,

B(s) =
(

− cos(s)cos(ns)−nsin(s)sin(ns),−sin(s)cos(ns)+ncos(s)sin(ns), n
m sin(ns)

)

.

The shape of this curve is given in Figure (2.1)

Figure 2.1: anti-Salkowski Curve , m = 1
3
,

1
5
,

1
8
,

1
16

and s = [−5,5]

Let (α),(δ ) and (ζ ) be spherical indicatrix curves of tangent, principal normal and binormal vectors belonging to anti-Salkowski curve,

respectively. Using the equations (2.1) and (2.2), Sabban apparatus belonging to these curves is given by

T = T , TT = N , T ∧TT = B,

T ′ = TT , T ′
T =−T +

1

tan(ns)
(T ∧TT ), (T ∧TT )

′ =− 1

tan(ns)
TT ,

KT
g =

1

κ
=

1

tan(ns)
. (2.3)

T (s) = (cos(s)sin(ns)−nsin(s)cos(ns),sin(s)sin(ns)+ncos(s)cos(ns),
n

m
cos(ns)), (2.4)

TT (s) = n

(

sin(s)

m
,− cos(s)

m
,1

)

,

(T ∧TT )(s) =−(cos(s)cos(ns)+nsin(s)sin(ns),sin(s)cos(ns)−ncos(s)sin(ns),
n

m
sin(ns)).

N = N , TN =
− tan(ns)T +B
√

tan2(ns)+1
, N ∧TN =

T + tan(ns)B
√

tan2(ns)+1
,

N′ = TN , T ′
N =

tan(ns)′
√

tan2(ns)+1
N +N ∧TN , (T ∧TT )

′ =
− tan(ns)′

√

tan2(ns)+1
TN ,

KN
g =

−κ ′
√

κ2 +1
=

− tan(ns)′
√

tan2(ns)+1
. (2.5)
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N(s) =
(nsin(s)

m
,−ncos(s)

m
,n
)

,

TN(s) =
1

√

tan2(ns)+1

(

− cos(s)cos(ns)−nsin(s)sin(ns)− tan(ns)(−cos(s)sin(ns)+nsin(s)cos(ns)),

− tan(ns)(−sin(s)sin(ns)−ncos(s)cos(ns))− sin(s)cos(ns)+ncos(s)sin(ns),
2n

m
sin(ns)

)

, (2.6)

(N ∧TN)(s) =
1

√

tan2(ns)+1

(

tan(ns)(−cos(s)cos(ns)−nsin(s)sin(ns))− cos(s)sin(ns)+nsin(s)cos(ns),−sin(s)sin(ns)

+ tan(ns)(−sin(s)cos(ns)+ncos(s)sin(ns))−ncos(s)cos(ns),
n

m
tan(ns)sin(ns)− n

m
cos(ns)

)

.

B = B, TB =−N, B∧TB = T,

B′ = TB , B′
T =−B+ tan(ns)(B∧TB) ,

(B∧TB)
′ = tan(ns)TB, KB

g = κ = tan(ns). (2.7)

B(s) = −
(

cos(s)cos(ns)+nsin(s)sin(ns),sin(s)cos(ns)−ncos(s)sin(ns),
n

m
sin(ns)

)

,

TB(s) = −
(

nsin(s)

m
,−ncos(s)

m
,n

)

, (2.8)

(B∧TB)(s) = −
(

cos(s)sin(ns)−nsin(s)cos(ns),sin(s)sin(ns)+ncos(s)cos(ns),− n

m
cos(ns)

)

.

3. Smarandache curves according to the Sabban frame belonging to spherical indicatrix curve of

the anti-Salkowski curve

Definition 3.1. Let α = α(s) be a curve and {T,TT ,T ∧TT } be Sabban frame of this curve. Then T TT -Smarandache curve is given by

α1(s) =
1√
2
(T +TT ). (3.1)

According to equation (2.4) we can parameterize the α1(s)-Smarandache curve as in the following form

α1(s) =
1√
2

(

− cos(s)sin(ns)+nsin(s)cos(ns)+
n

m
sin(s),−sin(s)sin(ns)−ncos(s)cos(ns)− n

m
cos(s),− n

m
cos(ns)+n

)

.

The shape of this curve is given in Figure (3.1)

Figure 3.1: T TT -Smarandache Curve , m = 1
3
,

1
5
,

1
8
,

1
16

and s = [−5,5]

Theorem 3.2. The geodesic curvature K
α1
g according to α1(s)-Smarandache curve is

Kα1
g =

tan4(ns)

(2tan(ns)+1)
5
2

(χ1 −χ2 +2tan(ns)χ3) ,

where the coefficients χ1,χ2 and χ3 are

χ1 = −2− 1

tan2(ns)
+

1

tan(ns)
(

1

tan(ns)
)′,

χ2 = −2− 1

tan(ns)
(

1

tan(ns)
)′− 3

tan2(ns)
− 1

tan4(ns)
,

χ3 =
2

tan(ns)
+(

2

tan(ns)
)′+

1

tan3(ns)
.
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Proof. If we take the derivative of (3.1) and from the equation (2.3) we get

(TT )α1
· ds∗

ds
=

1√
2
(−T +TT +

1

tan(ns)
(T ∧TT )), (3.2)

if we take the norm of (3.2) we have

ds∗

ds
=

√

2tan2(ns)+1

tan(ns)
√

2
.

We obtain the tangent of α1(s)-Smarandahce curve as in

(TT )α1
=

1
√

2tan2(ns)+1
(− tan(ns)T + tan(ns)TT +(T ∧TT )). (3.3)

The derivative of (3.2) is

(TT )
′
α1

=
1

√

2tan2(ns)+1
(χ1T +χ2TT +χ3(T ∧TT )).

From equations (3.1) and (3.3) we have

(T ∧TT )α1
=

1
√

2tan2(ns)+1
(T −TT +2tan(ns)(T ∧TT )).

So the geodesic curvature from the equation (2.3) is

Kα1
g =

tan4(ns)

(2tan(ns)+1)
5
2

(χ1 −χ2 +2tan(ns)χ3) .

Definition 3.3. Let α = α(s) be a curve and {T,TT ,T ∧TT } be Sabban frame of this curve. Then T (T ∧TT )-Smarandache curve is given by

α2(s) =
1√
2
(T +(T ∧TT )). (3.4)

According to equation (2.4) we can parameterize the α2(s)-Smarandache curve as in the following form

α2(s) =
1√
2

(

− cos(s)(cos(ns)− sin(ns))+nsin(s)(cos(ns)+ sin(ns)),

sin(s)(cos(ns)− sin(ns))−ncos(s)(cos(ns)+ sin(ns)),− n

m
(cos(ns)+ sin(ns))

)

.

The shape of this curve is given in Figure (3.2)

Figure 3.2: T (T ∧TT )-Smarandache Curve , m = 1
3
,

1
5
,

1
8
,

1
16

and s = [−5,5]

Theorem 3.4. The geodesic curvature K
α2
g according to α2(s)-Smarandache curve is given by

Kα2
g =

tan(ns)+1

tan(ns)
.

Proof. If we take the derivative of (3.4) and from the equation (2.3) we get,

(TT )α2
· ds∗

ds
=

1√
2
(TT − 1

tan(ns)
TT ), (3.5)

if we take the norm of (3.5),
ds∗

ds
=

tan(ns)−1

tan(ns)
√

2
we have, We obtain the tangent of α2(s)-Smarandahce curve as in

(TT )α2
= TT . (3.6)
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The derivative in the (3.6) is

(TT )
′
α2

· ds∗

ds
=

√
2

tan(ns)−1
(− tan(ns)T +(T ∧TT )).

From equations (3.4) and (3.6) we have

(T ∧TT )α2
=

1√
2
(−T +(T ∧TT )).

So the geodesic curvature from the equation (2.3) is

Kα2
g =

tan(ns)+1

tan(ns)
.

Definition 3.5. Let α = α(s) be a curve and {T,TT ,T ∧TT } be Sabban frame of this curve. Then TT (T ∧TT )-Smarandache curve is given

by

α3(s) =
1√
2
(TT +(T ∧TT )). (3.7)

According to equation (2.4) we can parameterize the α4(s)-Smarandache curve as in the following form

α3(s) =
1√
2

(

cos(s)cos(ns)+nsin(s)sin(ns)+
n

m
sin(s),sin(s)cos(ns)−ncos(s)sin(ns)− n

m
cos(s),− n

m
sin(ns)+n

)

.

The shape of this curve is given in Figure (3.3)

Figure 3.3: TT (T ∧TT )-Smarandache Curve , m = 1
3
,

1
5
,

1
8
,

1
16

and s = [−5..5]

Theorem 3.6. The geodesic curvature K
α3
g according to α3(s)-Smarandache curve is given by

Kα3
g =

tan4(ns)

(1+2tan2(ns))
5
2

(2χ4 − tan(ns)χ5 + tan(ns)χ6) ,

where the coefficients χ4,χ5 and χ6 are

χ4 =
2

tan(ns)
(

1

tan(ns)
)′+

1

tan(ns)
+

2

tan3(ns)
,

χ5 = −1− (
1

tan(ns)
)′− 3

tan2(ns)
− 2

tan4(ns)
,

χ6 = − 1

tan2(ns)
+(

1

tan(ns)
)′− 2

tan4(ns)
.

Proof. If we take the derivative of (3.7) and from the equation (2.3) we get

(TT )α3
· ds∗

ds
=

1√
2
(−T − 1

tan(ns)
TT +

1

tan(ns)
(T ∧TT )), (3.8)

if take the norm of (3.8) we have,
ds∗

ds
=

√

tan2(ns)+2

tan(ns)
√

2
. We obtain the tangent of α3(s)-Smarandahce curve as in

(TT )α3
=

1
√

tan2(ns)+2
(− tan(ns)T −TT +(T ∧TT )). (3.9)

The derivative of (3.9) is

(TT )
′
α3

=
tan4(ns)

√
2

(tan2(ns)+2)2
(χ4T +χ5TT +χ6(T ∧TT )).
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From equations (3.7) and (3.9) we have

(T ∧TT )α3
=

1
√

2(tan2(ns)+2)
(2T − tan(ns)TT + tan(ns)(T ∧TT )).

So the geodesic curvature from the equation (2.3) is

Kα3
g =

tan4(ns)

(1+2tan2(ns))
5
2

(2χ4 − tan(ns)χ5 + tan(ns)χ6) .

Definition 3.7. Let α = α(s) be a curve and {T,TT ,T ∧TT } be Sabban frame of this curve. Then T TT (T ∧TT )-Smarandache curve is given

by

α4(s) =
1√
3
(T +TT +(T ∧TT )). (3.10)

According to equation (2.4) we can parameterize the α1(s)-Smarandache curve as in the following form

α4(s) =
1√
3

(

cos(s)(cos(ns)− sin(ns))+nsin(s)(cos(ns)+ sin(ns))+
n

m
sin(s),

sin(s)(cos(ns)− sin(ns))−ncos(s)(cos(ns)+ sin(ns))− n

m
cos(s),− n

m
(cos(ns)+ sin(ns))+n

)

.

The shape of this curve is given in Figure (3.4)

Figure 3.4: T TT (T ∧TT )-Smarandache Curve , m = 1
3
,

1
5
,

1
8
,

1
16

and s = [−5,5]

Theorem 3.8. The geodesic curvature K
α4
g according to α4(s)-Smarandache curve is given as

Kα4
g =

tan4(ns)((2− tan(ns))χ7 − (1+ tan(ns))χ8 +(2tan(ns)−1)χ9)

(4
√

2(tan2(ns)− tan(ns)+1)2)
5
2

,

where the coefficients χ6,χ7 and χ8 are

χ7 = −(
1

tan(ns)
)′+

2

tan(ns)
(

1

tan(ns)
)′−2+

4

tan(ns)
− 4

tan2(ns)
+

2

tan3(ns)
,

χ8 = −(
1

tan(ns)
)′− 1

tan(ns)
(

1

tan(ns)
)′−2− 4

tan2(ns)
+

2

tan(ns)
+

2

tan3(ns)
− 2

tan4(ns)
,

χ9 =
1

tan(ns)
(

1

tan(ns)
)′+

2

tan(ns)
− 4

tan2(ns)
+(

2

tan(ns)
)′+

4

tan3(ns)
− 2

tan4(ns)
.

Proof. If we take the derivative of (3.10) and from the equation (2.3) we get,

(TT )α4
· ds∗

ds
=

1√
3
(−T +(1− 1

tan(ns)
)TT +

1

tan(ns)
(T ∧TT )), (3.11)

if we take the norm of (3.11) we have,

ds∗

ds
=

√

2(tan2(ns)− tan(ns)+1)

tan(ns)
√

3
.

We obtain the tangent of α4(s)-Smarandahce curve as in

(TT )α4
=

(− tan(ns)T +(tan(ns)−1)TT +(T ∧TT ))
√

2(tan2(ns)− tan(ns)+1)
. (3.12)

The derivative of (3.12) is

(TT )
′
α4

=
tan2(ns)

√
3(χ7T +χ8TT +χ9(T ∧TT ))

4(tan2(ns)− tan(ns)+1)2
.
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From equations (3.10) and (3.12) we have

(T ∧TT )α4
=

(− tan(ns)+2)T − (tan(ns)+1)TT +(2tan(ns)−1)(T ∧TT )
√

6(tan2(ns)− tan(ns)+1)
.

So the geodesic curvature from the equation (2.3) is

Kα4
g =

tan4(ns)((2− tan(ns))χ7 − (1+ tan(ns))χ8 +(2tan(ns)−1)χ9)

(4
√

2(tan2(ns)− tan(ns)+1)2)
5
2

.

Definition 3.9. Let δ = δ (s) be a curve and {N,TN ,N ∧TN} be Sabban frame of this curve. Then NTN -Smarandache curve is given by

δ1(s) =
1√
2
(N +TN).

According to equation (2.6) we can parameterize the δ1(s)-Smarandache curve as in the following form

δ1(s) =
1√
2

(

− tan(ns)
√

tan2(ns)+1
(−cos(s)sin(ns)+nsin(s)cos(ns))+

nsin(s)

m
− cos(s)cos(ns)−nsin(s)sin(ns),

−sin(s)cos(ns)+ncos(s)sin(ns)− ncos(s)

m
− tan(ns)
√

tan2(ns)+1
(−sin(s)sin(ns)−ncos(s)cos(ns)),

n tan(ns)

m
√

tan2(ns)+1
cos(ns)+n

)

.

The shape of this curve is given in Figure (3.5)

Figure 3.5: NTN -Smarandache Curves , m = 1
3
,

1
5
,

1
8
,

1
16

and s = [−5,5]

Theorem 3.10. The geodesic curvature K
δ1
g according to δ1(s)-Smarandache curve is given by

Kδ1
g =

(1+ tan2(ns))
(

− tan(ns)′χ10 + tan(ns)′χ11 +2
√

tan2(ns)+1χ12

)

(2
√

1+ tan2(ns)− (tan(ns)′)2)
5
2

,

where the coefficients χ10, χ11 and χ12 are

χ10 = −2− (
− tan(ns)′

√

tan2(ns)+1
)2 +

− tan(ns)′
√

tan2(ns)+1
(

− tan(ns)′
√

tan2(ns)+1
)′,

χ11 = −2− − tan(ns)′
√

tan2(ns)+1
(

− tan(ns)′
√

tan2(ns)+1
)′−3(

− tan(ns)′
√

tan2(ns)+1
)2 − (

− tan(ns)′
√

tan2(ns)+1
)4
,

χ12 =
−2tan(ns)′
√

tan2(ns)+1
+2(

− tan(ns)′
√

tan2(ns)+1
)′+(

− tan(ns)′
√

tan2(ns)+1
)3
.

Proof. If we take the derivative of equation (3.13) and from the equation (2.5) we have

(TN)δ1
· ds∗

ds
=

1√
2
(−N +TN +

− tan(ns)′
√

tan2(ns)+1
(N ∧TN)), (3.13)

if we take the norm of equation (3.13) we get

ds∗

ds
=

√

2(1+ tan2(ns))− (tan(ns)′)2

√
2
√

1+ tan2(ns)
.
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We obtain the tangent of δ1(s)-Smarandahce curve as in

(TN)δ1
=

−
√

tan2(ns)+1 N +
√

tan2(ns)+1 TN − tan(ns)′(N ∧TN)
√

2(1+ tan2(ns))− (tan(ns)′)2
. (3.14)

The derivative of (3.13) is

(TN)
′
δ1

=
(tan2(ns)+1)

√
2(χ10N +χ11TN +χ12(N ∧TN))

(2(tan2(ns)+1)− (tan(ns)′)2)2
.

From equations (3.13) and (3.14) we have

(N ∧TN)δ1
=

(1+ tan2(ns))4(− tan(ns)′(N −TN)+2
√

1+ tan2(ns)(N ∧TN))
√

2(2(1+ tan2(ns))− (tan(ns)′)2)
.

So the geodesic curvature from the equation (2.5) is

Kδ1
g =

(1+ tan2(ns))
(

− tan(ns)′χ10 + tan(ns)′χ11 +2
√

tan2(ns)+1χ12

)

(2
√

1+ tan2(ns)− (tan(ns)′)2)
5
2

.

Definition 3.11. Let δ = δ (s) be a curve and {N,TN ,N ∧TN} be Sabban frame of this curve. Then N(N ∧TN)-Smarandache curve is given

by

δ2(s) =
1√
2
(N +(N ∧TN)). (3.15)

According to equation (2.6) we can parameterize the δ2(s)-Smarandache curve as in the following form

δ2(s) =
1√
2

( tan(ns)
√

tan2(ns)+1
(−cos(s)cos(ns)−nsin(s)sin(ns))− cos(s)sin(ns)+nsin(s)cos(ns)+

nsin(s)

m
,

+
tan(ns)

√

tan2(ns)+1
(−sin(s)cos(ns)+ncos(s)sin(ns))− sin(s)sin(ns)−ncos(s)cos(ns)− ncos(s)

m
,

n tan(ns)

m
√

tan2(ns)+1
sin(ns)− n

m
cos(ns)+n

)

.

The shape of this curve is given in Figure (3.6)

Figure 3.6: N(N ∧TN)-Smarandache Curve , m = 1
3
,

1
5
,

1
8
,

1
16

and s = [−5,5]

Theorem 3.12. The geodesic curvature K
δ2
g according to δ2(s)-Smarandache curve is given by

Kδ2
g =

√

tan(ns)2 +1− tan(ns)′
√

tan(ns)2 +1

.

Proof. If we take the derivative of equation (3.15) and from the equation (2.5) we get

(TN)δ2
· ds∗

ds
=

1√
2
(TN − − tan(ns)′

√

tan2(ns)+1
TN), (3.16)

if we take the norm of equation (3.16) we have

ds∗

ds
=

√

tan(ns)2 +1+ tan(ns)′

√
2

√

tan(ns)2 +1

.
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We obtain the tangent of δ2(s)-Smarandahce curve as in

(TN)δ2
= TN . (3.17)

The derivative of (3.17) is

(TN)
′
δ2

=

√
2(−

√

tan2(ns)+1N − tan(ns)′(N ∧TN))
√

tan(ns)2 +1+ tan(ns)′
.

From equations (3.15) and (3.17) we have

(N ∧TN)δ2
=

1√
2
(−N +(N ∧TN)).

So the geodesic curvature from the equation (2.5) is

Kδ2
g =

√

tan(ns)2 +1− tan(ns)′
√

tan(ns)2 +1

.

Definition 3.13. Let δ = δ (s) be a curve and {N,TN ,N ∧ TN} be Sabban frame of this curve. Then TN(N ∧ TN)-Smarandache curve

(δ3(s)-Smarandache curve) is given by

δ3(s) =
1√
2
(TN +(N ∧TN)). (3.18)

According to equation (2.6) we can parameterize the δ3(s)-Smarandache curve as in the following form

δ3(s) =
1√
2

(

− cos(s)cos(ns)−nsin(s)sin(ns)− cos(s)sin(ns)+
tan(ns)

√

tan2(ns)+1
(−cos(s)cos(ns)−nsin(s)sin(ns))

− tan(ns)
√

tan2(ns)+1
(−cos(s)sin(ns)+nsin(s)cos(ns))+nsin(s)cos(ns),−sin(s)sin(ns)−ncos(s)cos(ns)

−sin(s)cos(ns)+ncos(s)sin(ns)+
tan(ns)

√

tan2(ns)+1
(−sin(s)cos(ns)+ncos(s)sin(ns))

− tan(ns)
√

tan2(ns)+1
(−sin(s)sin(ns)−ncos(s)cos(ns)),

n tan(ns)

m
√

tan2(ns)+1
(cos(ns)+ sin(ns))− n

m
cos(ns)

)

.

The shape of this curve is given in Figure (3.7)

Figure 3.7: TN(N ∧T N)-Smarandache Curve , m = 1
3
,

1
5
,

1
8
,

1
16

and s = [−5,5]

Theorem 3.14. The geodesic curvature K
δ3
g according to δ3(s)-Smarandache curve is given by

Kδ3
g =

(tan2(ns)+1)4((−2tan(ns)′)χ13 −
√

tan(ns)2 +1(χ14 −χ15))

(1+ tan2(ns)+(− tan(ns)′)2)
5
2

,

where the coefficients χ13, χ14 and χ15 are

χ13 = 2
− tan(ns)′

√

tan2(ns)+1
(

− tan(ns)′
√

tan2(ns)+1
)′+

− tan(ns)′
√

tan2(ns)+1
+2(

− tan(ns)′
√

tan2(ns)+1
)3
,

χ14 = −1− (
− tan(ns)′

√

tan2(ns)+1
)′− (

−3tan(ns)′
√

tan2(ns)+1
)2 − (

−2tan(ns)′
√

tan2(ns)+1
)4
,

χ15 = −(
− tan(ns)′

√

tan2(ns)+1
)2 +(

−2tan(ns)′
√

tan2(ns)+1
)′− (

−2tan(ns)′
√

tan2(ns)+1
)4
.
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Proof. If we take the derivative of equation (3.18) and from the equation (2.5) we get

(TN)δ3
· ds∗

ds
=

1√
2
(−N − − tan(ns)′

√

tan2(ns)+1
TN +

− tan(ns)′
√

tan2(ns)+1
(N ∧TN)), (3.19)

if we take the norm of equation (3.19) we have

ds∗

ds
=

√

1+ tan2(ns)+2(− tan(ns)′)2

√
2
√

tan2(ns)+1
.

We obtain the tangent of δ3(s)-Smarandahce curve as in

(TN)δ3
=

−
√

tan2(ns)+1N + tan(ns)′TN − tan(ns)′(N ∧TN)
√

1+ tan2(ns)+2(− tan(ns)′)2
. (3.20)

The derivative of (3.20) is

(TN)
′
δ3

=

√
2(tan2(ns)+1)2

(1+ tan2(ns)+2(− tan(ns)′)2)2
(χ13N +χ14TN +χ15(N ∧TN)).

From equations (3.18) and (3.20) we have

(N ∧TN)δ3
=

(−2tan(ns)′N −
√

1+ tan2(ns)TN +
√

1+ tan2(ns)(N ∧TN))
√

2(1+ tan2(ns)+2(− tan(ns)′)2)
.

So the geodesic curvature from the equation (2.5) is

Kδ3
g =

(tan2(ns)+1)4((−2tan(ns)′)χ13 −
√

tan(ns)2 +1(χ14 −χ15))

(1+ tan2(ns)+(− tan(ns)′)2)
5
2

.

Definition 3.15. Let δ = δ (s) be a curve and {N,TN ,N ∧TN} be Sabban frame of this curve. Then NTN(N ∧TN)-Smarandache curve

(δ4(s)-Smarandache curve) is given by

δ4(s) =
1√
3
(N +TN +(N ∧TN)). (3.21)

According to equation (2.6) we can parameterize the δ4(s)-Smarandache curve as in the following form

δ4(s) =
1√
3

(

− cos(s)cos(ns)−nsin(s)sin(ns)− cos(s)sin(ns)+
tan(ns)

√

tan2(ns)+1
(−cos(s)cos(ns)−nsin(s)sin(ns))+

nsin(s)

m

− tan(ns)
√

tan2(ns)+1
(−cos(s)sin(ns)+nsin(s)cos(ns))+nsin(s)cos(ns),−sin(s)sin(ns)

+
tan(ns)

√

tan2(ns)+1
(−sin(s)cos(ns)+ncos(s)sin(ns))−ncos(s)cos(ns)− sin(s)cos(ns)+ncos(s)sin(ns)

− tan(ns)
√

tan2(ns)+1
(−sin(s)sin(ns)−ncos(s)cos(ns))− ncos(s)

m
,

n tan(ns)

m
√

tan2(ns)+1
(cos(ns)+ sin(ns))− n

m
cos(ns)+n

)

.

The shape of this curve is given in Figure (3.8)

Figure 3.8: T TN(T ∧TN)-Smarandache Curve , m = 1
3
,

1
5
,

1
8
,

1
16

and s = [−5,5]
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Theorem 3.16. The geodesic curvature K
δ4
g according to δ4(s)-Smarandache curve is given by

Kδ4
g =

(

(−2tan(ns)′−
√

tan(ns)2 +1)χ16 −χ17(

√

tan(ns)2 +1− tan(ns)′)
)

(4
√

2(1+ tan2(ns)+
√

1+ tan2(ns) tan(ns)′+(− tan(ns)′)2)2)
5
2

+
(2

√

tan(ns)2 +1+ tan(ns)′)χ18

(4
√

2(1+ tan2(ns)+
√

1+ tan2(ns) tan(ns)′+(− tan(ns)′)2)2)
5
2

,

where the coefficients χ16, χ17 and χ18 are

χ16 = (
tan(ns)′

√

tan2(ns)+1
)′+

−2tan(ns)′
√

tan2(ns)+1
(

− tan(ns)′
√

tan2(ns)+1
)′−2+

−4tan(ns)′
√

tan2(ns)+1
+(

4tan(ns)′
√

tan2(ns)+1
)2 +(

−2tan(ns)′
√

tan2(ns)+1
)3
,

χ17 = −(
− tan(ns)′

√

tan2(ns)+1
)′− − tan(ns)′

√

tan2(ns)+1
(

− tan(ns)′
√

tan2(ns)+1
)′−2+(

4tan(ns)′
√

tan2(ns)+1
)2 − 2tan(ns)′

√

tan2(ns)+1
− (

2tan(ns)′
√

tan2(ns)+1
)3

+(
2tan(ns)′

√

tan2(ns)+1
)4
,

χ18 =
− tan(ns)′

√

tan2(ns)+1
(

− tan(ns)′
√

tan2(ns)+1
)′+

−2tan(ns)′
√

tan2(ns)+1
−4(

− tan(ns)′
√

tan2(ns)+1
)2 +2(

− tan(ns)′
√

tan2(ns)+1
)′+4(

− tan(ns)′
√

tan2(ns)+1
)3

−2(
− tan(ns)′

√

tan2(ns)+1
)4
.

Proof. If we take the derivative of equation (3.21) and from the equation (2.5) we have

(TN)δ4
· ds∗

ds
=

1√
3
(−N +(1− − tan(ns)′

√

tan2(ns)+1
)TN +

− tan(ns)′
√

tan2(ns)+1
(N ∧TN)), (3.22)

if we take the norm of equation (3.22) we get

ds∗

ds
=

√

2(1+ tan2(ns)+ tan(ns)′
√

tan2(ns)+1+(− tan(ns)′)2)
√

3
√

tan2(ns)+1
.

We obtain the tangent of δ4(s)-Smarandahce curve as in

(TN)δ4
=

−
√

tan2(ns)+1N +(
√

tan2(ns)+1+ tan(ns)′)TN − tan(ns)′(N ∧TN)
√

2(1+ tan2(ns)+ tan(ns)′
√

tan2(ns)+1+(− tan(ns)′)2)
. (3.23)

The derivative of (3.23) is

(TN)
′
δ4

=

√
3(χ16N +χ17TN +χ18(N ∧TN))

4(1+ tan2(ns)+ tan(ns)′
√

tan2(ns)+1+(− tan(ns)′)2)2
.

From equations (3.21) and (3.23) we have

(N ∧TN)δ4
=

(−(
√

tan2(ns)+1+2tan(ns)′)N − (
√

tan2(ns)+1− tan(ns)′)TN)
√

6(1+ tan2(ns)+ tan(ns)′
√

tan2(ns)+1+(− tan(ns)′)2)

+
(2
√

tan2(ns)+1+ tan(ns)′)(N ∧TN)
√

6(1+ tan2(ns)+ tan(ns)′
√

tan2(ns)+1+(− tan(ns)′)2)
.

So the geodesic curvature from the equation (2.5) is

Kδ4
g =

(

(−2tan(ns)′−
√

tan(ns)2 +1)χ16 −χ17(

√

tan(ns)2 +1− tan(ns)′)
)

(4
√

2(1+ tan2(ns)+
√

1+ tan2(ns) tan(ns)′+(− tan(ns)′)2)2)
5
2

+
(2

√

tan(ns)2 +1+ tan(ns)′)χ18

(4
√

2(1+ tan2(ns)+
√

1+ tan2(ns) tan(ns)′+(− tan(ns)′)2)2)
5
2

.
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Definition 3.17. Let ζ = ζ (s) be a curve and {B,TB,B∧ TB} be Sabban frame of this curve. Then BTB-Smarandache curve (ζ1(s)-
Smarandache curve) is given by

ζ1(s) =
1√
2
(B+TB). (3.24)

According to equation (2.8) we can parameterize the ζ1(s)-Smarandache curve as in the following form

ζ1(s) =
1√
2

(

− cos(s)cos(ns)−nsin(s)sin(ns)+
n

m
sin(s),−sin(s)cos(ns)−ncos(s)sin(ns)− n

m
cos(s),

n

m
sin(ns)+n

)

.

The shape of this curve is given in Figure (3.9)

Figure 3.9: BTB(B∧TB)-Smarandache Curve , m = 1
3
,

1
5
,

1
8
,

1
16

and s = [−5,5]

Theorem 3.18. The geodesic curvature K
ζ1
g according to ζ1(s)-Smarandache curve is

K
ζ1
g =

1

(2+(tan(ns))2)
5
2

(χ19 tan(ns)−χ20 tan(ns)+2χ21) ,

where the coefficients χ19, χ20 and χ21 are

χ19 = −2− tan2(ns)+ tan(ns) tan(ns)′,

χ20 = −2− tan(ns) tan(ns)′−3tan2(ns)− tan4(ns),

χ21 = 2tan(ns)+2tan(ns)′+ tan3(ns).

Proof. If we take the derivative of equation (3.24) and from the equation (2.7) we get

(TB)ζ1
· ds∗

ds
=

1√
2
(−B+TB + tan(ns)(B∧TB)), (3.25)

if we take the norm of equation (3.25) we have

ds∗

ds
=

1√
2

√

2+ tan2(ns).

We obtain the tangent of ζ1(s)-Smarandahce curve as in

(TB)ζ1
=

1
√

2+ tan2(ns)
(−B+TN + tan(ns)(B∧TB)). (3.26)

The derivative of (3.26) is

(TB)
′
ζ1
· ds∗

ds
=

√
2

(2+ tan2(ns))2
(χ19B+χ20TB +χ21(B∧TB)).

From equations (3.24) and (3.26) we have

(B∧TB)ζ1
=

1
√

4+2tan2(ns)
(tan(ns)N − tan(ns)TB +2(B∧TB)).

So the geodesic curvature from the equation (2.7) is

K
ζ1
g =

1

(2+(tan(ns))2)
5
2

(χ19 tan(ns)−χ20 tan(ns)+2χ21) .



Fundamental Journal of Mathematics and Applications 113

Definition 3.19. Let ζ = ζ (s) be a curve and {B,TB,B∧TB} be Sabban frame of this curve. Then B(B∧TB)-Smarandache curve (ζ2(s)-
Smarandache curve) is given by

ζ2(s) =
1√
2
(B+(B∧TB)). (3.27)

According to equation (2.8) we can parameterize the ζ2(s)-Smarandache curve as in the following form

ζ2(s) =
1√
2

(

− cos(s)(cos(ns)− sin(ns))−nsin(s)(cos(ns)+ sin(ns)),−sin(s)(cos(ns)− sin(ns))+ncos(s)(cos(ns)+ sin(ns)),

n

m
(cos(ns)+ sin(ns))

)

.

The shape of this curve is given in Figure (3.10)

Figure 3.10: B(B∧TB)-Smarandache Curve , m = 1
3
,

1
5
,

1
8
,

1
16

and s = [−5,5]

Theorem 3.20. The geodesic curvature K
ζ2
g according to ζ2(s)-Smarandache curve is

K
ζ2
g = 1+ tan(ns).

Proof. If we take the derivative of equation (3.27) and from the equation (2.7) we get

(TB)ζ2
· ds∗

ds
=

1√
2
(TB − tan(ns)TB), (3.28)

if we take the norm in equation (3.28), ds∗
ds =

1−tan(ns)√
2

. We obtain the tangent of ζ2(s)-Smarandahce curve as in

(TB)ζ2
= TB. (3.29)

The derivative of (3.29) is

(TB)
′
ζ2
· ds∗

ds
= −B+ tan(ns)(B∧TB).

From eqnarrays (3.27) and (3.29) we have

(B∧TB)ζ2
=

1√
2
(−B+(B∧TB)).

So the geodesic curvature from the equation (2.7) is

K
ζ2
g = 1+ tan(ns).
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Definition 3.21. Let ζ = ζ (s) be a curve and {B,TB,B∧ TB} be Sabban frame of this curve. Then TB(B∧ TB)-Smarandache curve

(ζ3(s)-Smarandache curve) is given by

ζ3(s) =
1√
2
(TB +(B∧TB)). (3.30)

According to equation (2.8) we can parameterize the ζ3(s)-Smarandache curve as in the following form

ζ3(s) =
1√
2

(

cos(s)sin(ns)−nsin(s)cos(ns)+
n

m
sin(s),sin(s)sin(ns)+ncos(s)cos(ns)− n

m
cos(s),

n

m
cos(ns)+n

)

.

The shape of this curve is given in Figure (3.11)

Figure 3.11: TB(B∧TB)-Smarandache Curve , m = 1
3
,

1
5
,

1
8
,

1
16

and s = [−5,5]

Theorem 3.22. The geodesic curvature K
ζ3
g according to ζ3(s)-Smarandache curve is

K
ζ3
g =

1

(1+2(tan(ns))2)
5
2

(2tan(ns)χ22 −χ23 +χ24) ,

where the coefficients χ22, χ23, χ24 are

χ22 = 2tan(ns) tan(ns)′+ tan(ns)+2tan3(ns),

χ23 = −1− tan(ns)′−3tan2(ns)−2tan4(ns),

χ24 = − tan2(ns)+2tan(ns)′−2tan4(ns).

Proof. If we take the derivative of equation (3.30) and from the equation (2.7) we get

(TB)ζ3
· ds∗

ds
=

1√
2
(−B− tan(ns)TB + tan(ns)(B∧TB)), (3.31)

if we take the norm of eqnarray (3.31) we have

ds∗

ds
=

1√
2

√

1+2tan2(ns).

We obtain the tangent of ζ3(s)-Smarandahce curve as in

(TB)ζ3
=

1
√

1+2tan2(ns)
(−B− tan(ns)TN + tan(ns)(B∧TB)). (3.32)

The derivative of (3.32) is

(TB)
′
ζ3
· ds∗

ds
=

√
2

(1+2tan2(ns))2
(χ22B+χ23TB +χ24(B∧TB)).

From equations (3.30) and (3.32) we have

(B∧TB)ζ3
=

1
√

2+4tan2(ns)
(2tan(ns)B−TB +(B∧TB)).

So the geodesic curvature from the equation (2.7) is

K
ζ3
g =

1

(1+2(tan(ns))2)
5
2

(2tan(ns)χ22 −χ23 +χ24) .
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Definition 3.23. Let ζ = ζ (s) be a curve and {B,TB,B∧ TB} be Sabban frame of this curve. Then BTB(B∧ TB)-Smarandache curve

(ζ4(s)-Smarandache curve) is given by

ζ4(s) =
1√
3
(B+TB +(B∧TB)). (3.33)

According to equation (2.8) we can parameterize the ζ4(s)-Smarandache curve as in the following form

ζ4(s) =
1√
3

(

− cos(s)(cos(ns)− sin(ns))−nsin(s)(cos(ns)+ sin(ns))+
n

m
sin(s),−sin(s)(cos(ns)− sin(ns))+ncos(s)(cos(ns)

+sin(ns))− n

m
cos(s),

n

m
(cos(ns)+ sin(ns))+n

)

.

The shape of this curve is given in Figure (3.12)

Figure 3.12: BTB(B∧TB)-Smarandache Curve , m = 1
3
,

1
5
,

1
8
,

1
16

and s = [−5,5]

Theorem 3.24. The geodesic curvature K
ζ4
g according to ζ4(s)-Smarandache curve is

K
ζ4
g =

(χ25(2tan(ns)−1)+χ26(−1− tan(ns))+χ27(2− tan(ns)))

(4
√

2(1− tan(ns)+ tan2(ns))2)
5
2

,

where the coefficients χ25, χ26, χ27 are

χ25 = − tan(ns)′+2tan(ns) tan(ns)′−2+4tan(ns)−4tan2(ns)

+2tan3(ns),

χ26 = − tan(ns)′− tan(ns) tan(ns)′−2−4tan2(ns)+2tan(ns)

+2tan3(ns)−2tan4(ns),

χ27 = tan(ns) tan(ns)′+2tan(ns)−4tan2(ns)+2tan(ns)′+4tan3(ns)

−2tan4(ns).

Proof. If we take the derivative of equation (3.33) and from the equation (2.7) we have

(TB)ζ4
· ds∗

ds
=

1√
3
(−B+(1− tan(ns))TB + tan(ns)(B∧TB)), (3.34)

if we take the norm of equation (3.34)

ds∗

ds
=

1√
3

√

2(1− tan(ns)+ tan2(ns)).

We obtain the tangent of ζ4(s)-Smarandahce curve as in

(TB)ζ4
=

1
√

2(1− tan(ns)+ tan2(ns))
(−B+(1− tan(ns))TB + tan(ns)(B∧TB)). (3.35)

The derivative of (3.35) is

(TB)
′
ζ3
· ds∗

ds
=

√
3

4(1− tan(ns)+ tan2(ns))2
(χ25B+χ26TB +χ27(B∧TB)).

From equations (3.33) and (3.35) we have

(B∧TB)ζ4
=

((−1+2tan(ns))B+(−1− tan(ns))TB +(2− tan(ns))(B∧TB))
√

6(1− tan(ns)+ tan2(ns))
.

So the geodesic curvature from the equation (2.7) is

K
ζ4
g =

(χ25(2tan(ns)−1)+χ26(−1− tan(ns))+χ27(2− tan(ns)))

(4
√

2(1− tan(ns)+ tan(ns)2)2)
5
2

.
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[6] S. Şenyurt, B. Öztürk, Smarandache curves of Salkowski curve according to Frenet frame, Turk. J. Math. Comput. Sci., 10(2018), 190-201.
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Abstract

In this paper, we discuss a two-grid iterative method for solving a class of Fredholm

functional integral equations based on the radial basis function interpolation. Firstly,

the existence and uniqueness of the solution are proved by Banach fixed point theorem.

Secondly, the algorithm and convergence analysis of the radial basis function approximation

method is given on the coarse grid. Thirdly, the fine grid iterative solution and convergence

results are obtained. Finally, the validity and reliability of the theoretical analysis are

verified by two numerical experiments.

1. Introduction

Integral equations are widely used in quantum physics, engineering design, astronomy, geography, biomedicine and other fields, so it is of

great application value to explore the solution of integral equations.

For a long time, the algorithms of integral equations have been widely concerned and studied. Many different methods have been used to

approximate the solutions of some integral equations [1, 2]. In recent years, F.Muller and W.Varnhorn [3] have studied approximation and

numerical solution of Fredholm integral equations of second kind using quasi-interpolation. Some convergence analysis for 2-dimensional

Fredholm integral equation with complex factors by Meshless method were introduced in [4]. Application of Legendre wavelets for solving

a class of functional integral equations were discussed in [5]. Chelyshkov collocation approach was developed in [6] for solving linear

weakly singular Volterra integral equations. In addition, we know that the computational complexity of numerical integral discretization

depends on the diameter h of mesh generation. The calculated workload is usually O(n3), where n = 1/h. Therefore, the construction of a

suitable two-grid algorithm can solve the difficulty of computational complexity. Two-grid method is a discretization technique based on two

meshes of different sizes, which has been concerned by many researchers [7]-[10] for a long time. Therefore, it is very necessary to enrich

the efficient algorithms of different types of integral equations.

In this paper, we consider the following as a class of Fredholm functional integral equations

u(x)−A(x)u(α(x)) = f (x)+λ

∫

Ω
k(x,s)u(s)ds, x ∈ Ω, (1.1)

where Ω is the bounded closed area in Rd ,d = 1,2,3, x = (x1,x2, · · · ,xd), s = (s1,s2, · · · ,sd), α(x) = (α1(x),α2(x), · · · ,αd(x)), and

A(x),α(x), f (x),k(x,s) are properly smooth known functions, u(x) ∈ R is the unknown function.

The contents of this article are as follows. Section 2 contains the proofs of the existence and uniqueness of the exact solution for (1.1). In

section 3, we discuss the radial basis function approximation method and convergence results on the coarse grid for (1.1). Section 4, is

devoted to the two-grid iterative method and convergence results on the fine grid for (1.1). In the last section, the correctness of the theory is

proved by two numerical examples.

Email addresses and ORCID numbers: 282228006@qq.com, https://orcid.org/0000-0001-6254-2938 (Q. Wang), 1303943677@qq.com, https://orcid.org/0000-0003-3078-

7652 (H. Zhou)
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2. The existence and uniqueness of solution

In this section, the conditions which provides the existence and uniqueness of exact solution of (1.1) are given by using Banach fixed point

theorem.

Theorem 2.1. Assume that Ω is a suitable Banach space and A(x),α(x), f (x) ∈C(Ω),k(x,s) ∈C(Ω×Ω). If the following conditions are

satisfied

{

(i)α(x) ∈ Ω, f or x ∈ Ω,
(ii)‖A(x)‖∞ + |λ | · ‖∫Ω |k(x,s)|ds‖∞ = γ < 1,

where ‖ · ‖∞ = max | · |. Then the (1.1) has a unique solution.

Proof. Let T be a mapping from C(Ω) to C(Ω) with

Tu(x) = A(x)u(α(x))+ f (x)+λ

∫

Ω
k(x,s)u(s)ds,

for u ∈C(Ω). Let u1,u2 be two solutions of (1.1), then we have

‖Tu1 −Tu2‖∞ = ‖A(x)[u1(α(x))−u2(α(x))]+λ
∫

Ω k(x,s)[u1(s)−u2(s)]ds‖∞

≤ (‖A(x)‖∞ + |λ | · ‖∫Ω |k(x,s)|ds‖∞) · ‖u1 −u2‖∞

≤ γ · ‖u1 −u2‖∞.

Note that 0 < γ < 1, by the Banach fixed point theorem, then T is a contractive mapping on (C(Ω),‖ ·‖∞). So there exists the unique solution

u∗ ∈C(Ω) such that Tu∗ = u∗, and (1.1) has a unique solution.

3. The radial basis function interpolation and convergence on the coarse grid

In this section, we give the algorithm of the radial basis function interpolation for (1.1), and obtain the convergence theorem in the infinite

norm sense.

First of all, Assume {xi}m
i=1,x

i = (xi
1,x

i
2, · · · ,xi

d) ∈ Ω is a series of irregular observation points of u(x) on Ω, and let the basis of the radial

basis function is ϕ1(x),ϕ2(x), · · · ,ϕm(x), where ϕi(x) = ϕ(‖x− xi‖2), i = 1,2, · · · ,m. Note that r = ‖x− xi‖2. There are three common

radial basis functions (see [11]):

(1)Gaussian distribution function ϕ(r) = e−a2r2

;

(2)MQ function ϕ(r) = (c2 + r2)b and IMQ function ϕ(r) = (c2 + r2)−b(b > 0);
(3)Thin plate splines function ϕ(r) = r2k−d logr.

Now, we construct vector space Vm(Ω) = span{ϕ1(x),ϕ2(x), · · · ,ϕm(x)}. And let the radial basis function interpolation uI
m(x) =

m

∑
i=1

ciϕi(x)∈

Vm, satisfying uI
m(x

i) = u(xi), i = 1,2, · · · ,m. From [11], we can get the following error estimation between the radial basis function and the

exact solution:

‖u(x)−uI
m(x)‖∞ ≤ ch

e
2 ,

where h = sup
x∈Ω

min
1≤i≤m

‖x− xi‖.

Therefore, let u(x) = uI
m(x)+ εm(x) where εm(x) is the interpolation remainder of u(x) on Vm(Ω) . Then we can obtain

uI
m(x)+ εm(x)−A(x)[uI

m(α(x))+ εm(α(x))] = f (x)+λ

∫

Ω
k(x,s)[uI

m(s)+ εm(s)]ds. (3.1)

Ignore the error terms εm(x) and εm(α(x)) and substitute uI
m(x) =

m

∑
i=1

ciϕi(x) into (3.1), we get the approximate equation of (1.1):

m

∑
i=1

ciϕi(x)−A(x)
m

∑
i=1

ciϕi(α(x)) = f (x)+
m

∑
i=1

ciλ

∫

Ω
k(x,s)ϕi(s)ds.

Remove the items then we have

m

∑
i=1

ci[ϕi(x)−A(x)ϕi(α(x))−λ

∫

Ω
k(x,s)ϕi(s)ds] = f (x). (3.2)

Let ψi(x) = ϕi(x)−A(x)ϕi(α(x))−λ
∫

Ω k(x,s)ϕi(s)ds, i = 1,2, · · · ,m, then (3.2) can be written as

m

∑
i=1

ciψi(x) = f (x). (3.3)

Since ϕ1(x),ϕ2(x), · · · ,ϕm(x) are linear independent functions on Vm(Ω) and satisfies the condition of Theorem 2.1, which implies

ψ1(x),ψ2(x), · · · ,ψm(x) are also linear independent functions on Vm(Ω). Here’s the proof.

Because

m

∑
i=1

ciψi(x) =
m

∑
i=1

ciϕi(x)−A(x)
m

∑
i=1

ciϕi(α(x))−λ

∫

Ω
k(x,s)

m

∑
i=1

ciϕi(s)ds,



Fundamental Journal of Mathematics and Applications 119

and

‖
m

∑
i=1

ciϕi(α(x))‖∞ ≤ ‖
m

∑
i=1

ciϕi(x)‖∞, α(x) ∈ Ω.

From Theorem 2.1 and trigonometric inequality we can get

(1− γ) · ‖
m

∑
i=1

ciϕi(x)‖∞ ≤ ‖
m

∑
i=1

ciψi(x)‖∞ ≤ (1+ γ) · ‖
m

∑
i=1

ciϕi(x)‖∞ (3.4)

For x ∈ Ω, assume that
m

∑
i=1

ciψi(x) = 0, then we obtain ‖
m

∑
i=1

ciψi(x)‖∞ = 0. From (3.4) we have ‖
m

∑
i=1

ciϕi(x)‖∞ = 0. Therefore,

m

∑
i=1

ciϕi(x) = 0.

And because ϕ1(x),ϕ2(x), · · · ,ϕm(x) are linear independent functions on Vm(Ω), so

c1 = c2 = · · ·= cn = 0.

The proof is complete.

(3.3) take the collocation points x = x j = (x
j
1,x

j
2, · · · ,x

j
d
), j = 1,2, · · · ,m, then we get

m

∑
i=1

ciψi(x
j) = f (x j). Written in matrix form is

Gm ·Cm = Fm, (3.5)

where Cm = (c1,c2, · · · ,cm)
T , Fm = ( f (x1), f (x2), · · · , f (xm))T , Gm = (gi j)m×m, gi j = ψi(x

j), i, j = 1,2, · · · ,m.

Let Gm is a nonsingular matrix, then G−1
m exists. So there is

C∗
m = G−1

m ·Fm = (c∗1,c
∗
2, · · · ,c∗m)T .

Therefore, u∗m(x) =
m

∑
i=1

c∗i ϕi(x) is called the approximate solution of radial basis function of (1.1).

Theorem 3.1. Assume that u(x) is the exact solution and u∗m(x) is the approximate solution of radial basis function, then

‖u−u∗m‖∞ ≤ ch
e
2 +

m

∑
i=1

‖ϕi(x)‖∞ · ‖G−1
m ‖∞ · ‖Rm(ε)‖∞,

where Rm(ε) =−εm(x)+A(x)εm(α(x))+λ
∫

Ω k(x,s)ε(s)ds, and for ∀x ∈ Ω, we have

lim
h→0

u∗m(x) = u(x).

Proof. For (3.1) and uI
m(x) =

m

∑
i=1

ciϕi(x), we can get

m

∑
i=1

ciϕi(x)+ εm(x)−A(x)[
m

∑
i=1

ciϕi(α(x))+ εm(α(x))] = f (x)+λ

∫

Ω
k(x,s)[

m

∑
i=1

ciϕi(s)+ εm(s)]ds,

abbreviated in the following form

m

∑
i=1

ciψi(x) = f (x)+ [−εm(x)+A(x)εm(α(x))+λ

∫

Ω
k(x,s)εm(s)ds].

Now we write down the above equation as

m

∑
i=1

ciψi(x) = f (x)+Rm(ε),

where Rm(ε) =−εm(x)+A(x)εm(α(x))+λ
∫

Ω k(x,s)εm(s)ds. The corresponding matrix form is

Gm ·Cm = Fm +Rm(ε). (3.6)

Subtracting (3.5) from (3.6)to get Gm(Cm −C∗
m) = Rm(ε), so

‖Cm −C∗
m‖∞ ≤ ‖G−1

m ‖∞ · ‖Rm(ε)‖∞.

Then for

‖u−u∗m‖∞ = ‖u−uI
m +uI

m −u∗m‖∞

≤ ‖u−uI
m‖∞ +‖uI

m −u∗m‖∞

≤ ch
e
2 +‖∑

m
i=1(ci − c∗i )ϕi(x)‖∞

≤ ch
e
2 +∑

m
i=1 |ci − c∗i |‖ϕi(x)‖∞

≤ ch
e
2 +∑

m
i=1 ‖ϕi(x)‖∞ · ‖G−1

m ‖∞ · ‖Rm(ε)‖∞.

Since ‖Rm(ε)‖∞ → 0, ‖u−u∗m‖∞ → 0.
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4. Two-grid iterative method and convergence analysis

As we all know, for the discretization of numerical integration of (1.1), the computational complexity depends on the diameter h of mesh

subdivision, and the workload of numerical calculation is usually O(n3), where n = 1/h. Therefore, computational complexity can be well

solved by constructing an appropriate two-layer grid algorithm.

In this section, a new fixed point iterative approximation method is introduced in three steps to obtain two-grid iterative solution on the fine

grid. The iterative algorithm is as follows

Algorithm 1.

Step 1. Select a series of irregular observation points of u(x) on the fine grid as (y1,y2, · · · ,yn),yi = (yi
1,y

i
2, · · · ,yi

d), i = 1,2, · · · ,n,d =
1,2 or 3.

Step 2. Approximate solution of Radial basis function on the fine grid is

u
(0)
n (x) =

n

∑
i=1

liΦi(x),

where Φi(x) = ϕ(‖x− yi‖), i = 1,2, · · · ,n.
Step 3. Take the initial value u

(0)
n (x) = u∗m(x) and construct iterative scheme

u
(k+1)
n (x) = A(x)u

(k)
n (α(x))+ f (x)+λ

∫

Ω
k(x,s)u

(k)
n (s)ds, k = 0,1,2, · · · . (4.1)

The error estimation and convergence results between the fine grid approximate solution of radial basis function uI
n(x) and the two-grid

iterative solution u
(k+1)
n (x) are given below.

Theorem 4.1. Let uI
n(x) is the fine grid approximate solution of radial basis function and u

(k+1)
n (x) is the (k+ 1)th iterative solution

determined by (4.1), then

‖uI
n(x)−u

(k+1)
n (x)‖∞ ≤ γk+1 · ‖un(x)−u

(0)
n (x)‖∞,

where γ < 1 as in Theorem 2.1.

For ∀x ∈ Ω, there holds

lim
k→∞

u
(k)
n (x) = uI

n(x).

Proof. Replace uI
n(x) =

n

∑
i=1

ciϕi(x) in (1.1) and get

uI
n(x) = A(x)uI

n(α(x))+ f (x)+λ

∫

Ω
k(x,s)uI

n(s)ds. (4.2)

Subtracting (4.1) from (4.2), we have

uI
n(x)−u

(k+1)
n (x) = A(x)[uI

n(α(x))−u
(k)
n (α(x))]+λ

∫

Ω
k(x,s)[uI

n(s)−u
(k)
n (s)]ds,

then

‖uI
n(x)−u

(k+1)
n (x)‖∞ = ‖A(x)[uI

n(α(x))−u
(k)
n (α(x))]+λ

∫

Ω k(x,s)[uI
n(s)−u

(k)
n (s)]ds‖∞

≤ (‖A(x)‖∞ + |λ | · ‖∫Ω |k(x,s)|ds‖∞) · ‖uI
n −u

(k)
n ‖∞

≤ γ · ‖uI
n −u

(k)
n ‖∞.

In this way,

‖uI
n(x)−u

(k+1)
n (x)‖∞ ≤ γk+1 · ‖uI

n −u
(0)
n ‖∞

can be obtained by progressive recursion.

From Theorem 2.1, we get 0 < γ < 1, such that

lim
k→∞

γk+1 = 0.

For x ∈ Ω, there exists

lim
k→∞

u
(k)
n (x) = uI

n(x).
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5. Numerical examples

In this section, two numerical examples (d = 2) are given to illustrate the feasibility and validity of the above algorithm and its convergence

analysis. The exact solution is compared with the two-grid iterative solution and its error estimation in the infinite norm sense is provided by

using Matlab 2015a.

Selecting {(m,n)}= {(8,32),(8,64),(16,64)}, we calculate the maximum error ‖un(x,y)−u
(k)
n (x,y)‖∞ = max

(xi,yi)∈Ω
|un(xi,yi)−u

(k)
n (xi,yi)|

between the fine grid radial basis interpolation solution un(x,y) and two-grid iterative solution u
(k)
n (x,y) with {k}= {3,4,5,6}.

Example 5.1. Consider the following Fredholm functional integral equation

u(x,y)− x+ y

16
u(α1(x),α2(y)) = f (x,y)+

1

20

∫

Ω
(x+ y)u(s1,s2)ds1ds2, (5.1)

where Ω = {(x,y)|0 ≤ x ≤ 1,0 ≤ y ≤ x2}, α1(x) =
1
4 x, α2(x) =

1
16 x2 and f (x,y) = xy− 1

240 x− 1
240 y− 1

16 xy2( f racx64+ y
64 ). (5.1) has an

exact solution u(x,y) = xy.

We solve (5.1) by two-grid method based on radial basis interpolation, and our experimental results can be seen from Table 1. The results were

obtained by using Gaussian distribution function (a = 1) and IMQ function (c =
√

2,b = 1), respectively. Next, the exact solution u(x,y)

and the two-grid iterative solution u
(k)
n (x,y) which are given and can be seen from Figure 5.1(a) and Figure 5.1(b) while (m,n,k) = (8,64,6).

‖un −u
(k)
n ‖∞ ‖un −u

(k)
n ‖∞ ‖un −u

(k)
n ‖∞

m n k Gaussian IMQ m n k Gaussian IMQ m n k Gaussian IMQ

8 32 3 9.1698e-04 1.3462e-04 8 64 3 1.5243e-03 9.3253e-04 16 64 3 1.2412e-05 7.5523e-06

4 2.2979e-05 2.1310e-05 4 2.4130e-04 1.4762e-04 4 1.9648e-06 1.1955e-06

5 1.9648e-06 3.3734e-06 5 3.8198e-05 2.3368e-05 5 3.1103e-07 1.8925e-07

6 5.7583e-07 5.3401e-07 6 6.0467e-06 3.6992e-06 6 4.9236e-08 2.9958e-08

Table 1: The maximum error ‖un(x)−u
(k)
n (x)‖∞ for Example 5.1.

(a) The exact solution u(x,y) of example 5.1 (b) The two-grid iterative solution u
(k)
n (x,y) of example 5.1

Example 5.2. Consider the following Fredholm functional integral equation

u(x,y)− 1

10
exyu(α1(x),α2(y)) = f (x,y)+

1

10

∫

Ω
xys1s2u(s1,s2)ds1ds2, (5.2)

where Ω = {(x,y)|0 ≤ x ≤ 1,0 ≤ y ≤ x}, α1(x) = x, α2(x) =
1
2 x and f (x,y) = ex+y − 1

10 ex+ y

2 exy − xy
20 . (5.2) has an exact solution

u(x,y) = ex+y.

We also solve (5.2) by two-grid method based on radial basis interpolation, and the experimental results can be seen from Table 2. The results

were obtained by using Gaussian distribution function (a = 1) and MQ function (c = 4,b = 1
2 ), respectively. Next, the exact solution u(x,y)

and the two-grid iterative solution u
(k)
n (x,y) which are given and can be seen from Figure 5.1(c) and Figure 5.1(d) while (m,n,k) = (8,64,6).
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‖un −u
(k)
n ‖∞ ‖un −u

(k)
n ‖∞ ‖un −u

(k)
n ‖∞

m n k Gaussian IMQ m n k Gaussian IMQ m n k Gaussian IMQ

8 32 3 5.3422e-03 1.5322e-03 8 64 3 8.7424e-03 1.6395e-03 16 64 3 4.4892e-04 9.7401e-05

4 1.6000e-03 4.5476e-04 4 2.6000e-03 4.8660e-04 4 1.3324e-04 2.8909e-05

5 4.7488e-04 1.3497e-04 5 7.7168e-04 1.4442e-04 5 3.9546e-05 8.5802e-06

6 1.4094e-04 4.0059e-05 6 2.2903e-04 4.2864e-05 6 1.1737e-05 2.5466e-06

Table 2: The maximum error ‖un(x)−u
(k)
n (x)‖∞ for Example 5.2.

(c) The exact solution u(x,y) of example 5.2 (d) The two-grid iterative solution u
(k)
n (x,y) of example 5.2

6. Conclusion

In this paper, a new two-grid method based on the radial basis function interpolation for solving a class of Fredholm functional integral

equations, which has practical value is presented. The algorithm and convergence analysis of two-grid iterative solution are given.

At the same time, the method can greatly reduce the computational workload. Our numerical results can successfully prove the correctness

of the proposed error estimation. Extending this method to other integral equations is our further research.
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Abstract

Given a normed space, one can define a new n-norm using a semi-inner product g on the

space, different from the n-norm defined by Gähler. In this paper, we are interested in the

new n-norm which is defined using such a functional g on the space ℓp of p-summable

sequences, where 1 ≤ p < ∞. We prove particularly that the new n-norm is equivalent with

the one defined previously by Gunawan on ℓp.

1. Introduction

On a normed space (X ,‖ · ‖), let g : X2 → R be the functional defined by the formula

g(x,y) :=
1

2
‖x‖ [τ+(x,y)+ τ−(x,y)] ,

with

τ±(x,y) := lim
t→0±

‖x+ ty‖−‖x‖
t

.

Then, one may check that g satisfies the following properties:

(1) g(x,x) = ‖x‖2 for every x ∈ X ;

(2) g(αx,βy) = αβ g(x,y) for every x,y ∈ X and α,β ∈ R;

(3) g(x,x+ y) = ‖x‖2 +g(x,y) for every x,y ∈ X ;

(4) |g(x,y)| ≤ ‖x‖‖y‖ for every x,y ∈ X .

Assuming that the g-functional is linear in the second argument then [y,x] = g(x,y) is a semi-inner product on X .

Note that all vector spaces in text are assumed to be over R. For example, one may observe that the functional

g(x,y) := ‖x‖2−p
p ∑

k

|xk|p−1sgn(xk)yk, x := (xk) ,y := (yk) ∈ ℓp

is a semi-inner product on ℓp, 1 ≤ p < ∞ [1].

Remark 1.1. Note that not all vector spaces have the property that the g-functional is linear in the second argument. If the normed space is

smooth, then the g-functional is linear in the second argument. A normed spaces with the property that the g-functional is linear in the

second argument is referred to as normed spaces of (G)-type [2].

Email addresses and ORCID numbers: muhammadnur@unhas.ac.id, https://orcid.org/0000-0001-5258-3867 (M. Nur), hgunawan@math.itb.ac.id, https://orcid.org/0000-

0001-7879-8321 (H. Gunawan)
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By using a semi-inner product g, Miličić [3] introduced the following orthogonality relation on X : x is said to be g-orthogonal to y, denoted

by x ⊥g y, provided that g(x,y) = 0. For more recent works, see in [4, 5].

Recently, Nur and Gunawan in [6] defined a 2-norm on X by

‖x1,x2‖g := sup
‖y j‖≤1, j=1,2

∣

∣

∣

∣

g(y1,x1) g(y2,x1)
g(y1,x2) g(y2,x2)

∣

∣

∣

∣

.

Similarly, we can define an n-norm (with n≥ 2) using the semi-inner product g on X . An n-norm on X is a mapping ‖·, . . . , ·‖ : X ×·· ·×X −→
R which satisfies the following four properties:

(1) ‖x1, . . . ,xn‖= 0 if and only if x1, . . . ,xn are linearly dependent;

(2) ‖x1, . . . ,xn‖ is invariant under permutation;

(3) ‖αx1, . . . ,xn‖= |α|‖x1, . . . ,xn‖ for every x1, . . . ,xn ∈ X and for every α ∈ R;

(4) ‖x1, . . . ,xn−1,y+ z‖ ≤ ‖x1, . . . ,xn−1,y‖+‖x1, . . . ,xn−1,z‖ for every x,y,z ∈ X .

The pair (X ,‖·, . . . , ·‖) is called an n-normed space.

The theory of 2-normed spaces was initially introduced by Gähler [7] in the 1960’s. Meanwhile, the theory of n-normed spaces for n ≥ 2 was

developed in [8]-[10]. See [11]-[15] for recent results on this subject.

On the space ℓp of p-summable sequences, where 1 ≤ p < ∞, the following n-norm

‖x1, . . . ,xn‖p :=







1

n!
∑
k1

· · ·∑
kn






abs

∣

∣

∣

∣

∣

∣

∣

x1k1
· · · x1kn

...
. . .

...

xnk1
· · · xnkn

∣

∣

∣

∣

∣

∣

∣







p





1
p

(1.1)

is defined by Gunawan in [16]. As shown in [17, 18], this n-norm is equivalent with the one formulated by Gähler in [8]-[10], namely

‖x1, . . . ,xn‖′p := sup
‖y j‖p′≤1, j=1,...,n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑
k

x1ky1k · · · ∑
k

x1kynk

...
. . .

...

∑
k

xnky1k · · · ∑
k

xnkynk

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (1.2)

where p′ denotes the dual exponent of p. Precisely, we have the following theorem.

Theorem 1.2. [19] For every x1, . . . ,xn ∈ ℓp (1 ≤ p < ∞), we have

(n!)
1
p
−1 ‖x1, . . . ,xn‖p ≤ ‖x1, . . . ,xn‖′p ≤ (n!)

1
p ‖x1, . . . ,xn‖p .

In this article, we shall first prove that, on ℓp (1 ≤ p < ∞), the new 2-norm ‖·, ·‖g is equivalent with the 2-norm ‖·, ·‖p which is defined in

(1.1). Using this result, we can prove that the 2-normed space (ℓp,‖·, ·‖g) is complete. We then extend the result for all n ≥ 2.

2. Main results

Before we discuss the equivalence between the two 2-norms on ℓp (1 ≤ p < ∞), we need some definitions. Let (X ,‖ · ‖) be a normed space.

We define the g-orthogonal projection of a vector y on a subspace S of X as follows.

Definition 2.1. [20] Let y ∈ X and S = span{x1, . . . ,xm} be a subspace of X with Γ(x1, . . . ,xm) = det[g(xi,x j)] 6= 0. The g-orthogonal

projection of y on S, which we denote by yS, is defined by

yS :=− 1

Γ(x1, . . . ,xm)

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 x1 · · · xm

g(x1,y) g(x1,x1) · · · g(x1,xm)
...

...
. . .

...

g(xm,y) g(xm,x1) · · · g(xm,xm)

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

and its g-orthogonal complement y− yS is given by

y− yS =
1

Γ(x1, . . . ,xm)

∣

∣

∣

∣

∣

∣

∣

∣

∣

y x1 · · · xm

g(x1,y) g(x1,x1) · · · g(x1,xm)
...

...
. . .

...

g(xm,y) g(xm,x1) · · · g(xm,xm)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Observe here that xi ⊥g y− yS for every i = 1, . . . ,m. Note that, if S = span{x}, then

yS =
g(x,y)

‖x‖2
x,

and y− yS is the g-orthogonal complement y on S. It is clear here that x ⊥g y− yS.
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Next, let x1, . . . ,xn ∈ X be a set of n linearly independent vectors. We may construct a left g-orthogonal sequence x∗1, . . . ,x
∗
n with x∗1 := x1,

and

x∗i := xi − (xi)Si−1
, (2.1)

where Si−1 = span
{

x∗1, . . . ,x
∗
i−1

}

for i = 2, . . . ,n. Observe here that x∗i ⊥g x∗j for i < j (see [15, 20]).

For X = ℓp (1 ≤ p < ∞), we have relation for the n-norm ‖x1, . . . ,xn‖p and the ‘volume’ of the n-dimensional parallelepiped spanned by

{x1, . . . ,xn} in ℓp, namely V (x1, . . . ,xn) =
n

∏
i=1

‖x∗i ‖p, as follows.

Theorem 2.2. [19] Let {x1, . . . ,xn} be a set of linearly independent vectors in ℓp (1 ≤ p < ∞). Then we have

(n!)
1
p
−1 ‖x1, . . . ,xn‖p ≤V (xi1 , . . . ,xin)≤ (n!)

1
p ‖x1, . . . ,xn‖p

for any permutation (i1, . . . , in) of (1, . . . ,n).

Note that the value of V (x1, . . . ,xn) may not be invariant under permutation of (x1, . . . ,xn) because g(·, ·) may not be symmetry. The above

theorem states that all possible values of V (xi1 , . . . ,xin) lie between two multiples of ‖x1, . . . ,xn‖p, independent of the permutation.

2.1. The equivalence between two 2-norms

Let us consider Gunawan’s definition and Gähler’s definition of 2-norm on ℓp (1 ≤ p < ∞), namely:

‖x1,x2‖p =

[

∑
k1

∑
k2

(

abs

∣

∣

∣

∣

x1k1
x1k2

x2k1
x2k2

∣

∣

∣

∣

)p
] 1

p

and

‖x1,x2‖′p := sup
‖y j‖p′≤1, j=1,2

∣

∣

∣

∣

∣

∣

∑
k

x1ky1k ∑
k

x1ky2k

∑
k

x2ky1k ∑
k

x2ky2k

∣

∣

∣

∣

∣

∣

.

Meanwhile, Nur and Gunawan’s 2-norm is given by

‖x1,x2‖g,p = sup
‖y j‖p

≤1, j=1,2

∣

∣

∣

∣

∣

∣

∣

‖y1‖2−p
p ∑

k

|y1k|p−1sgn(y1k)x1k ‖y2‖2−p
p ∑

k

|y2k|p−1sgn(y2k)x1k

‖y1‖2−p
p ∑

k

|y1k|p−1sgn(y1k)x2k ‖y2‖2−p
p ∑

k

|y2k|p−1sgn(y2k)x2k

∣

∣

∣

∣

∣

∣

∣

.

Remark 2.3. Using properties of determinants, the above 2-norm may be rewritten as

‖x1,x2‖g,p = sup
‖y j‖p

≤1, j=1,2

1

2

2

∏
j=1

‖y j‖2−p
p ∑

k1

∑
k2

∣

∣

∣

∣

|y1k1
|p−1sgn

(

y1k1

)

|y1k2
|p−1sgn

(

y1k2

)

|y2k1
|p−1sgn

(

y2k1

)

|y2k2
|p−1sgn

(

y2k2

)

∣

∣

∣

∣

∣

∣

∣

∣

x1k1
x1k2

x2k1
x2k2

∣

∣

∣

∣

.

For p = 2, we observe that

‖x1,x2‖g,2 = sup
‖y j‖2

≤1, j=1,2

1

2
∑
k1

∑
k2

∣

∣

∣

∣

y1k1
y1k2

y2k1
y2k2

∣

∣

∣

∣

∣

∣

∣

∣

x1k1
x1k2

x2k1
x2k2

∣

∣

∣

∣

.

One may then verify that the three 2-norms ‖·, ·‖2, ‖·, ·‖′2 and ‖·, ·‖g,2 are identical (see [6, 12]).

For other values of p, we have the following theorem.

Theorem 2.4. For every x1,x2 ∈ ℓp (1 ≤ p < ∞), we have

2
1
p
−1 ‖x1,x2‖p ≤ ‖x1,x2‖g,p ≤ ‖x1,x2‖′p ≤ 2

1
p ‖x1,x2‖p.

Proof. For j = 1,2, let y j ∈ ℓp with ‖y j‖p ≤ 1. Take u j = (u jk) with u jk = ‖y j‖2−p
p |y jk|p−1sgn(y jk). We observe that u j ∈ ℓp′ with

‖u j‖p′ = ‖y j‖p. As a consequence, we have ‖x1,x2‖g,p ≤ ‖x1,x2‖′p . By using Theorem 1.2, we obtain

‖x1,x2‖g,p ≤ ‖x1,x2‖′p ≤ 2
1
p ‖x1,x2‖p.

Next, assume that {x1,x2} is linearly independent. Using the process in (2.1), we obtain the left g-orthogonal set
{

x∗1,x
∗
2

}

. Then, by Theorem

2.2, we have

2
1
p
−1 ‖x1,x2‖p ≤V (x1,x2) = ‖x∗1‖p ‖x∗2‖p .
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For j = 1,2, let y j =
x∗j

‖x∗j‖p
, so that ‖y j‖p = 1. It follows from the properties of semi-inner product g and matrix determinants that

∣

∣

∣

∣

g(y1,x1) g(y2,x1)
g(y1,x2) g(y2,x2)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1
‖x∗1‖p

g(x∗1,x
∗
1)

1
‖x∗2‖p

g(x∗2,x
∗
1)

1
‖x∗1‖p

g(x∗1,x
∗
2)

1
‖x∗2‖p

g(x∗2,x
∗
2)

∣

∣

∣

∣

∣

∣

= ‖x∗1‖p ‖x∗2‖p =V (x1,x2)

≥ 2
1
p
−1 ‖x1,x2‖p .

By the definition of ‖·, ·‖g,p, we conclude that ‖x1,x2‖g,p ≥ 2
1
p
−1‖x1,x2‖p. Combining with the previous inequalities, we have

2
1
p
−1 ‖x1,x2‖p ≤ ‖x1,x2‖g,p ≤ ‖x1,x2‖′p ≤ 2

1
p ‖x1,x2‖p.

Note that if {x1,x2} is a linearly dependent set, then all the 2-norms are equal 0, and so we have the equalities.

Corollary 2.5. For 1 ≤ p < ∞, the three 2-norms ‖·, ·‖g,p, ‖·, ·‖′p, and ‖·, ·‖p are pairwise equivalent.

Since (ℓp,‖·, ·‖p) is a 2-Banach space [1], we obtain the following corollary.

Corollary 2.6. For 1 ≤ p < ∞, the 2-normed space (ℓp,‖·, ·‖g,p) is a 2-Banach space.

2.2. The equivalence between two n-norms

All results in above subsection can be extended to n-normed spaces for any n ≥ 2. Suppose that g is a semi-inner product on (X ,‖ · ‖).
Consider the following mapping ‖·, . . . , ·‖g on X ×·· ·×X :

‖x1, . . . ,xn‖g = sup
‖y j‖≤1, j=1,...,n

∣

∣

∣

∣

∣

∣

∣

g(y1,x1) · · · g(yn,x1)
...

. . .
...

g(y1,xn) · · · g(yn,xn)

∣

∣

∣

∣

∣

∣

∣

= sup
‖y j‖≤1, j=1,...,n

det[g(y j,xi)]. (2.2)

If ‖y j‖ ≤ 1 for j = 1, . . . ,n, then det[g(y j,xi)] ≤ n!
n

∏
i=1

‖xi‖. Note that the factor n! comes from the number of terms in the expansion of

det[g(y j,xi)]. The following fact tells us that ‖·, . . . , ·‖g is a finite number.

Fact 2.7. The inequality

‖x1, . . . ,xn‖g ≤ n!
n

∏
i=1

‖xi‖

holds whenever x1, . . . ,xn ∈ X.

Moreover, we have the following result.

Proposition 2.8. The mapping (2.2) defines an n-norm on X.

Proof. It is obvious that, if {x1, . . . ,xn} is linearly dependent, then we have ‖x1, . . . ,xn‖g = 0. Conversely, if ‖x1, . . . ,xn‖g = 0, then the

rows of the matrix [g(y j,xi)] are linearly dependent for every y1, . . . ,yn ∈ X with ‖y j‖ ≤ 1, j = 1, . . . ,n. This happens only if x1, . . . ,xn are

linearly dependent.

Next, by using the properties of supremum and matrix determinants, we obtain the invariance of ‖x1, . . . ,x2‖g under permutation. Furthermore,

we have ‖αx1, . . .xn‖g = |α|‖x1, . . . ,xn‖g for α ∈ R.

Finally, for arbitrary x0,x1, . . .xn ∈ X , we obtain

‖x0 + x1, . . . ,xn‖g = sup
‖y j‖≤1, j=1,...,n

∣

∣

∣

∣

∣

∣

∣

g(y1,x0 + x1) · · · g(yn,x0 + x1)
...

. . .
...

g(y1,xn) · · · g(yn,xn)

∣

∣

∣

∣

∣

∣

∣

≤ sup
‖y j‖≤1, j=1,...,n

∣

∣

∣

∣

∣

∣

∣

g(y1,x0) · · · g(yn,x0)
...

. . .
...

g(y1,xn) · · · g(yn,xn)

∣

∣

∣

∣

∣

∣

∣

+ sup
‖y j‖≤1, j=1,...,n

∣

∣

∣

∣

∣

∣

∣

g(y1,x1) · · · g(yn,x1)
...

. . .
...

g(y1,xn) · · · g(yn,xn)

∣

∣

∣

∣

∣

∣

∣

= ‖x0, . . . ,xn‖g +‖x1, . . . ,xn‖g.

This completes the proof.

The following theorem holds for an inner product space (X ,〈·, ·〉).
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Theorem 2.9. If (X ,〈·, ·〉) is a real inner product space, then the two n-norms ‖·, . . . , ·‖g in (2.2) and ‖·, . . . , ·‖s given by

‖x1, . . . ,xn‖s :=

∣

∣

∣

∣

∣

∣

∣

〈x1,x1〉 · · · 〈xn,x1〉
...

. . .
...

〈x1,xn〉 · · · 〈xn,xn〉

∣

∣

∣

∣

∣

∣

∣

1
2

are identical.

Proof. On the inner product space X , the functional g(·, ·) is identical with the inner product 〈·, ·〉. Therefore,

‖x1, . . . ,xn‖g = sup
‖y j‖≤1, j=1,...,n

∣

∣

∣

∣

∣

∣

∣

〈y1,x1〉 · · · 〈yn,x1〉
...

. . .
...

〈y1,xn〉 · · · 〈yn,xn〉

∣

∣

∣

∣

∣

∣

∣

.

Now, applying the generalized Cauchy-Schwarz inequality [21] and Hadamard’s inequality [22], we get

‖x1, . . . ,xn‖g ≤ sup
‖y j‖≤1, j=1,...,n

‖x1, . . . ,xn‖s‖y1, . . . ,yn‖s ≤ ‖x1, . . . ,xn‖s.

Conversely, suppose that {x1, . . . ,xn} is linearly independent. Using the Gram-Schmidt process, we get the orthogonal set {x′1, . . . ,x
′
n}.

Because the determinant of the Gram matrix of a linearly independent set being equal to the Gram matrix of the associated orthogonal

set (obtained using Gram-Schmidt process), we have ‖x1, . . . ,xn‖s = ‖x′1, . . . ,x
′
n‖s = ‖x′1‖· · ·‖x′n‖. For j = 1, . . . ,n, let y j =

x′j
‖x′j‖

, so that

‖y j‖= 1. Then, by the properties of the inner product and matrix determinants, we obtain

∣

∣

∣

∣

∣

∣

∣

〈y1,x1〉 · · · 〈yn,x1〉
...

. . .
...

〈y1,xn〉 · · · 〈yn,xn〉

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

〈y1,x
′
1〉 · · · 〈yn,x

′
1〉

...
. . .

...

〈y1,x
′
n〉 · · · 〈yn,x

′
n〉

∣

∣

∣

∣

∣

∣

∣

=
1

‖x′1‖· · ·‖x′n‖

∣

∣

∣

∣

∣

∣

∣

〈x′1,x′1〉 · · · 〈x′n,x′1〉
...

. . .
...

〈x′1,x′n〉 · · · 〈x′n,x′n〉

∣

∣

∣

∣

∣

∣

∣

= ‖x′1‖· · ·‖x′n‖= ‖x1, . . . ,xn‖s.

Thus, ‖x1, . . . ,xn‖g ≥ ‖x1, . . . ,xn‖s. Hence we conclude that ‖x1, . . . ,xn‖g = ‖x1, . . . ,xn‖s whenever {x1, . . . ,xn} is linearly independent.

If {x1, . . . ,xn} is linearly dependent, then ‖x1, . . . ,xn‖g = ‖x1, . . . ,xn‖s = 0.

Remark 2.10. Note that, in an inner product space, we have the well-known Hadamard’s inequality [22]

‖x1, . . . ,xn‖g = ‖x1, . . . ,xn‖s ≤ ‖x1‖· · ·‖xn‖,

which is better than that in Fact ??.

For X = ℓp (1 ≤ p < ∞), we rewrite the formula in (2.2) as

‖x1, . . . ,xn‖g,p = sup
‖y j‖p

≤1, j=1,...,n

∣

∣

∣

∣

∣

∣

∣

g(y1,x1) · · · g(yn,x1)
...

. . .
...

g(y1,xn) · · · g(yn,xn)

∣

∣

∣

∣

∣

∣

∣

.

Substituting g(y j,xi) = ‖y j‖2−p
p ∑

k

|y jk|p−1sgn(y jk)xik and using the properties of determinants, we have

‖x1, . . . ,xn‖g,p = sup
‖y j‖p

≤1, j=1,...,n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

‖y1‖2−p
p ∑

k

|y1k|p−1sgn(y1k)x1k · · · ‖yn‖2−p
p ∑

k

|ynk|p−1sgn(ynk)x1k

...
. . .

...

‖y1‖2−p
p ∑

k

|y1k|p−1sgn(y1k)xnk · · · ‖yn‖2−p
p ∑

k

|ynk|p−1sgn(ynk)xnk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= sup
‖y j‖p

≤1, j=1,...,n

n

∏
j=1

‖y j‖2−p
p ∑

k1

· · ·∑
kn

n

∏
j=1

|y jk j
|p−1sgn

(

y jk j

)

∣

∣

∣

∣

∣

∣

∣

x1k1
· · · x1kn

...
. . .

...

xnk1
· · · xnkn

∣

∣

∣

∣

∣

∣

∣

. (2.3)

Corollary 2.11. For p = 2, the three n-norms ‖·, . . . , ·‖2 in (1.1), ‖·, . . . , ·‖′2 in (1.2) and ‖·, . . . , ·‖g,2 in (2.3) are identical.

For p 6= 2, we have the following generalization of Theorem 2.4.

Theorem 2.12. For every x1, . . . ,xn ∈ ℓp (1 ≤ p < ∞), we have

(n!)
1
p
−1 ‖x1, . . . ,xn‖p ≤ ‖x1, . . . ,xn‖g,p ≤ ‖x1, . . . ,xn‖′p ≤ (n!)

1
p ‖x1, . . . ,xn‖p.
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Proof. For each j = 1, . . . ,n, let y j ∈ ℓp with ‖y j‖p ≤ 1. Then take u j = (u jk) with u jk = ‖y j‖2−p
p |y jk|p−1sgn(y jk). We observe that u j ∈ ℓp′

with ‖u j‖p′ = ‖y j‖p ≤ 1. As a consequence, we have

‖x1, . . . ,xn‖g,p ≤ ‖x1, . . . ,xn‖′p .

By using Theorem 1.2, we obtain

‖x1, . . . ,xn‖g,p ≤ ‖x1, . . . ,xn‖′p ≤ (n!)
1
p ‖x1, . . . ,xn‖p.

Conversely, suppose that {x1, . . . ,xn} is a linearly independent set. Using x∗1 = x1 and so forth as in (2.1), we obtain the left g -orthogonal set
{

x∗1, . . . ,x
∗
n

}

. Then, it follows from Theorem 2.2 that

(n!)
1
p
−1 ‖x1, . . . ,xn‖p ≤V (x1, . . . ,xn) = ‖x∗1‖p · · ·‖x∗n‖p .

For j = 1, . . . ,n, let y j =
x∗j

‖x∗j‖p
, so that ‖y j‖p = 1. Next, using the properties of matrix determinants and the semi-inner product g, we have

∣

∣

∣

∣

∣

∣

∣

g(y1,x1) · · · g(yn,x1)
...

. . .
...

g(y1,xn) · · · g(yn,xn)

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
‖x∗1‖p

g(x∗1,x
∗
1) · · · 1

‖x∗n‖p
g(x∗n,x

∗
1)

...
. . .

...
1

‖x∗1‖p

g(x∗1,x
∗
n) · · · 1

‖x∗n‖p
g(x∗n,x

∗
n)

∣

∣

∣

∣

∣

∣

∣

∣

∣

= ‖x∗1‖p · · ·‖x∗n‖p =V (x1, . . . ,xn)

≥ (n!)
1
p
−1 ‖x1, . . . ,xn‖p ,

whence ‖x1, . . . ,xn‖g,p ≥ (n!)
1
p
−1‖x1, . . . ,xn‖p. Combining with the previous inequalities, we obtain

(n!)
1
p
−1 ‖x1, . . . ,xn‖p ≤ ‖x1, . . . ,xn‖g,p ≤ ‖x1, . . . ,xn‖′p ≤ (n!)

1
p ‖x1, . . . ,xn‖p.

If {x1, . . . ,xn} is linearly dependent, then all the n-norms vanish and so we have the equalities.

Corollary 2.13. For 1 ≤ p < ∞, the three n-norms ‖·, . . . , ·‖g,p, ‖·, . . . , ·‖′p and ‖·, . . . , ·‖p are equivalent.

Knowing that the space (ℓp,‖·, . . . , ·‖p) is an n-Banach space in [16], we have a generalization of Corollary 2.6 as follows.

Corollary 2.14. For 1 ≤ p < ∞, the space (ℓp,‖·, . . . , ·‖g,p) is an n-Banach space.

3. Concluding remarks

In this paper, a new n-norm is defined using a semi-inner product g on ℓp for 1 ≤ p < ∞. Accordingly, on the space ℓp (1 ≤ p < ∞), we

have three different n-norms, namely Gähler’s n-norm ‖·, . . . , ·‖′p defined in [8]-[10], Gunawan’s n-norm ‖·, . . . , ·‖p defined in [16], and

‖·, . . . , ·‖g,p defined here in (2.3). In Corollary 2.13, we have just seen that the three n-norms on ℓp are equivalent. As expected, the case

where p = 2 is special. Here, the three n-norms on ℓ2 are identical.

In addition to the above three n-norms, we also have a formula for another n-norm using the semi-inner product g on ℓp (1 ≤ p < ∞), namely

‖x1, . . . ,xn‖◦g,p = sup
‖y1,...,yn‖p≤1

∣

∣

∣

∣

∣

∣

∣

g(y1,x1) · · · g(yn,x1)
...

. . .
...

g(y1,xn) · · · g(yn,xn)

∣

∣

∣

∣

∣

∣

∣

.

Since g(y j,xi) = ‖y j‖2−p
p ∑

k

|y jk|p−1sgn(y jk)xik, we obtain

‖x1, . . . ,xn‖◦g,p =

[

sup
‖y1,...,yn‖p≤1

1

n!

n

∏
j=1

‖y j‖2−p
p ×

× ∑
k1

· · ·∑
kn

∣

∣

∣

∣

∣

∣

∣

|y1k1
|p−1sgn

(

y1k1

)

· · · |y1kn
|p−1sgn

(

y1kn

)

...
. . .

...

|ynk1
|p−1sgn

(

ynk1

)

· · · |ynkn
|p−1sgn

(

ynkn

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1k1
· · · x1kn

...
. . .

...

xnk1
· · · xnkn

∣

∣

∣

∣

∣

∣

∣






.

Note that, for p = 2, we have ‖x1, . . . ,xn‖g,2 = ‖x1, . . . ,xn‖◦g,2. For other values of p, we can show that

‖x1, . . . ,xn‖g,p ≤ (n!)2− 1
p ‖x1, . . . ,xn‖◦g,p.
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Indeed, assuming that x1, . . . ,xn are linearly independent, let x∗1, . . . ,x
∗
n be the vectors obtained from x1, . . . ,xn through the process in (2.1).

By taking y j =
x∗j

n
√

‖x∗1,...,x
∗
n‖p

( j = 1, . . . ,n), we obtain ‖y1, . . . ,yn‖p = 1. Next, using the properties of matrix determinants and the semi-inner

product g, we have

∣

∣

∣

∣

∣

∣

∣

g(y1,x1) · · · g(yn,x1)
...

. . .
...

g(y1,xn) · · · g(yn,xn)

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
n
√

‖x∗1,...,x
∗
n‖p

g(x∗1,x
∗
1) · · · 1

n
√

‖x∗1,...,x
∗
n‖p

g(x∗n,x
∗
1)

...
. . .

...
1

n
√

‖x∗1,...,x
∗
n‖p

g(x∗1,x
∗
n) · · · 1

n
√

‖x∗1,...,x
∗
n‖p

g(x∗n,x
∗
n)

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∥

∥x∗1
∥

∥

2

p
. . .‖x∗n‖2

p

‖x∗1, . . . ,x
∗
n‖p

.

Since ‖x1, . . . ,xn‖p ≤ (n!)1− 1
p

∥

∥x∗1
∥

∥

p
· · ·‖x∗n‖p by Theorem 2.2 and ‖x∗1, . . . ,x

∗
n‖p = ‖x1, . . . ,xn‖p, we obtain

‖x1, . . . ,xn‖◦g,p ≥ (n!)
2
p
−2 ‖x1, . . . ,xn‖p .

Moreover, using Theorem 2.12, we have

‖x1, . . . ,xn‖g,p ≤ (n!)2− 1
p ‖x1, . . . ,xn‖◦g,p .

It follows from this inequality that the convergence of a sequence in ‖·, . . . , ·‖◦g,p implies the convergence in ‖·, . . . , ·‖g,p, and hence also in

‖·, . . . , ·‖p. Unfortunately, up to now, we do not know if the converse is true.
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Abstract

In this paper, we study the computation of Lyapunov exponents for deterministic dynamical

systems via a general piecewise spline maximum entropy method. We present a comparison

of computations of Lyapunov exponents between a piecewise linear, a piecewise quadratic

and a piecewise cubic maximum entropy methods. In order to compute Lyapunov exponents

for deterministic maps, we also compute density functions of their invariant measures via

piecewise spline maximum entropy method.

1. Introduction

In a chaotic dynamical system, inaccuracies in specifying the initial state of the system are rapidly amplified in time and therefore, it is

impossible to predict the long term system state. If nearby trajectories of a dynamical system diverges exponentially then the dynamical

system possesses chaotic behaviour [1]-[3]. The rate of increase of perturbations of initial conditions is described by the Lyapunov exponent

[4]. The Lyapunov exponent of a dynamical system classifies the dynamics of the system. A dynamical system with positive Lyapunov

exponent exhibits chaotic nature of the system. Let τ : [0,1]→ [0,1] be a measure preserving deterministic dynamical system (map) and µ
be a τ-invariant measure on the probability space [0,1]. For any x ∈ [0,1], the Lyapunov exponent h(x) of the trajectory of x is defined as

(see, for example, [5])

h(x) = lim
n→∞

ln(|((τn(x))′|) 1
n

= lim
n→∞

1

n

(

ln|τ ′(x)|+ ln|τ ′(τ(x)|+ · · ·+ ln|τ ′(τn−1(x)|
)

= lim
n→∞

1

n

n−1

∑
i=0

ln|τ ′(τ i(x))| (1.1)

provided the limit exists. If the function ln(τ ′(x)) is integrable and τ is ergodic, then the Birkhoff Ergodic Theorem [6] gaurantees that for

almost all x ∈ [0,1] the above limit exists, it is a constant (say, l) and if f is the density of the invariant measure dµ(x) = f (x)dλ (x), then the

Lyapunov exponent

l =
∫ 1

0
ln|τ ′(x)|dµ(x) =

∫ 1

0
ln|τ ′(x)| f (x)dλ (x), (1.2)

where λ is the underlying Lebesgue measure on [0,1]. Therefore, if the invariant measure µ or the density function f is known, then one

can calculate the Lyapunov exponent of τ in (1.1). Unfortunately, except for some cases, the analytical formula of the invariant measure
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µ or the density function f for most of the deterministic maps is not known. Therefore, the computation of Lyapunov exponent havily

rely on numerical approximation of invariant measures or density functions of the corresponding deterministic maps. Computations of

Lyapunov exponents for deterministic dynamical systems are well studied by many researchers. A spatial average estimation method for

Lyapunov exponents of deterministic maps is presented in [7] by G. Froyland. A numerical scheme is described in [8] for the n Lyapunov

exponents of an n-dimensional unknown dynamical system. In [4], A. Boyarsky presented a matrix method for the approximation of

Lyapunov exponents and invariant measures. Lyapunov exponents from observed time series is studied in [9]. For Jacobian-based estimates

of Lyapunov exponents from data, convergence rates and data requirements are studied in [10].

In the context of information theory, the principle of maximum entropy [11] was introduced by E. T. Jaynes [12] in 1957. Since then,

mathematicians, physicists and engineers have widely used the maximum entropy method in many different directions for solving problems

in mathematics, mathematical physics and other related branches of Science and Engineering. A maximum entropy method was described by

Lawrence R. Mead and N. Papanicolaou in [11] for solving moment problems. For finite approximation of the Frobenius-Perron operator of

deterministic dynamical systems the maximum entropy methods were described by many authors [13]-[18] and [19]. In [20], C. Bose and

R. Murray presented dynamical conditions for convergence of a maximum entropy method for Frobenius-Perron operator equations. For

approximation of invariant measures for position dependent random maps we have described maximum entropy methods in [21, 22]. An

iterative maximum entropy method is presented in [23] for Lyapunov exponents and invariant densities for deterministic chaotic maps. In

this paper, we compute Lyapunov exponents via a general piecewise spline maximum entropy method. Moreover, we compare our results

between piecewise linear, piecewise quadratic and piecewise cubic maximum entropy methods for the computation of Lyapunov exponents.

In Section 2, we present a general piecewise spline maximum entropy method for approximation of invariant measures of deterministic

dynamical systems. Moreover, we present convergence analysis of maximum entropy method. In Section 3, we present calculations

of Lyapunov exponents of deterministic dynamical systems using general piecewise spline maximum entropy method. We present two

numerical examples with a comparison between piecewise linear, piecewise quadratic and piecewise cubic maximum entropy method.

2. A general piecewise spline maximum entropy optimization method for invariant measures of

deterministic chaotic dynamical systems

Let (I = [0,1],B,λ ) be a measure space, where B is a σ -algebra on I = [0,1] and λ is the Lebesgue measure on B. Let τ : I → I be

a deterministic map such that τ has a unique absolutely continuous invariant measure µ∗ with density f ∗. Using (1.2) one can find the

actual Lyapunov exponent L for τ. In this section, first we revisit a general piecewise spline maximum entropy optimization method for the

approximation fn of the density function f ∗. In the next section, using the approximate density fn we compute an approximate Lyapunov

exponent ln. We also present the convergence analysis of the general piecewise maximum entropy method. We closely follow [6] and [13].

Let

· · ·< x−2 < x−1 < x0 = 0 < x1 < x2 < .. .

be an infinite set of nodes on the real line. The B-splines of degree k are defined recursively as follows:

B0
i (x) =















1, x ∈ [xi,xi+1),

0, x /∈ [xi,xi+1),
, i ∈ {. . . ,−2,−1,0,1,2, . . .}

and

Bk
i (x) =

x− xi

xi+k − xi
Bk−1

i (x)+
xi+k+1 − x

xi+k+1 − xi+1
Bk−1

i+1 (x), i ∈ {. . . ,−2,−1,0,1,2, . . .}.

Each Bk
i (x) is a piecewise polynomial of degree k and Bk

i (x) are called B-splines of degree k. The family {Bk
i } of B-splines satisfies the

following properties (see Proposition 1 in [13]):

Properties of B-splines:

1. If x /∈ [xi,xi+k+1), then Bk
i (x) = 0;

2. If x ∈ (xi,xi+k+1), then Bk
i (x)> 0;

3. ∑i Bk
i (x) = 1 for all x;

4. For fixed k, the set {Bk
i |[xo,xn]} : −k ≤ i ≤ n− 1} of functions constitute a basis for the space ∆k

n consisting of all functions in

Ck−1[x0,xn] which are piecewise polynomials of degree ≤ k on the n subintervals [x0,x1], [x1,x2], . . . , [xn−1,xn].

Let τ : I → I be a deterministic map such that τ has a unique absolutely continuous invariant measure µ∗ with density f ∗. A particular

choice of τ is a Lasota – Yorke map described in [24]. Note that the invariant density f ∗ of the unique acim µ∗ is the fixed point of the

Frobenius-Perron operator PT . In the following, we describe a general spline maximum entropy approximation scheme for f ∗.
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Let D be the set of all densities, that is,

D = { f ∈ L1(0,1) such that f ≥ 0 and ‖ f ‖1=
∫ 1

0
f(x)dλ (x) = 1}.

The Boltzmann entropy [6] of f ≥ 0 is defined by

H( f ) =−
∫

I
f (x) log f (x)dλ (x). (2.1)

For properties of H see [6]. Using the Gibbs inequality

u−u logu ≤ v−u logv,u,v ≥ 0,

it can be shown that

∫

I
f (x) log f (x)dλ (x)≥

∫

I
f (x) logg(x)dλ (x) ∀ f ,g ∈ D . (2.2)

The above inequality in (2.2) leads to the following optimization problem [14]:

maxH( f ) such that f ∈ D and

∫

I
f(x)gn(x)dλ (x) = mn, 1 ≤ n ≤ N, (2.3)

where m1,m2, · · · ,mN are given moments of the unknown density with respect to the moment function {g1,g2, ...,gN} ⊂ L∞(I), respectively.

Proposition 2.1. [6] Suppose that a1,a2, · · · ,aN are real numbers such that the function

fN(x) =
e∑

N
n=1 angn(x)

∫ 1
0 e∑

N
n=1 angn(x)dλ (x)

satisfies the constraints in (2.3), that is,

∫ 1
0 gi(x)e∑

N
n=1 angn(x)dλ (x)

∫ 1
0 e∑

N
n=1 angn(x)dλ (x)

= mi, i = 1,2, . . . ,N.

Then fN is a unique solution of the maximum entropy problem (2.3).

Proof: See [6].

Let P(n) = {I1, I2, . . . , In} partition of [0,1] into n equal subintervals, where Ii = [bi−1,bi],
bi = ih, i = 1,2, . . . ,n,b0 = 0,bn = 1,h = 1

n . Without loss of generality and for convenience, we consider n = 2s = l ·q, where l is a positive

even integer and q is the number of the sub-intervals of the partition J on which the maps τ is piecewise one-to-one and monotonic.

Consider 2k additional nodes: b− j =− jh,bn+ j = (n+ j)h, j = 1,2, . . . ,k. These nodes are needed to express all the involved B-splines for

the state space I = [0,1]. Moreover, for fixed k, the set

{Bk
i |[0,1]} : i =−k,−k+1, . . . ,0,1,2, . . . ,n−1}

of functions constitute a basis for the space ∆k
n consisting of all functions in Ck−1[0,1] which are piecewise polynomials of degree ≤ k on the

n subintervals [b0,b1], [b1,b2], . . . , [bn−1,bn] of I = [0,1]. ∆k
n has dimension n+ k and Bk

k,B
k
−k+1, . . . ,B

k
0,B

k
1, . . . ,B

k
n−1 are elements of the

basis for ∆k
n.

Let f ∗ be an unique density function of the acim µ∗ for the map τ. Then the moments of f ∗ with respect to B-spline Bk
i , i = −k,−k+

1, . . . ,0,1,2, . . . ,n−1 is

mi =
∫ 1

0
f ∗(x)Bk

i (x)dλ (x). (2.4)

Proposition 2.2.

n−1

∑
i=−k

mi = 1.

Proof:

n−1

∑
i=−k

mi =
n−1

∑
i=−k

∫ 1

0
f ∗(x)Bk

i (x)dλ (x) =
∫ 1

0
f ∗(x)

n−1

∑
i=−k

Bk
i (x)dλ (x)

=
∫ 1

0
f ∗(x)dλ (x) = 1,

since ∑
n−1
i=−k

Bk
i (x) = 1, by Property (iii).
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Proposition 2.3. Suppose that m−k,m−k+1, . . . ,m0,m1, . . . ,mn−1 are moments defined in (2.4) of the probability density function f ∗ of the

map τ. If a−k,a−k+1, . . . ,a0,a1, . . .an−1 are constants which satisfy

∫ 1

0
Bk

i (x)e
∑

n−1
i=−k aiB

k
i (x)dλ (x) = mi, i =−k,−k+1, . . . ,0,1, . . . ,n−1,

then

f k
n (x) = e∑

n−1
i=−k aiB

k
i (x) (2.5)

is a density.

Proof.

∫ 1

0
f k
n (x)dλ (x) =

∫ 1

0
e∑

n−1
i=−k aiB

k
i (x)dλ (x)

=
∫ 1

0
e∑

n−1
i=−k aiB

k
i (x)

n−1

∑
i=−k

Bk
i (x)dλ (x)

=
n−1

∑
i=−k

∫ 1

0
Bk

i (x)e
∑

n−1
i=−k aiB

k
i (x)dλ (x)

=
n−1

∑
i=−k

mi = 1

If we solve the maximum entropy problem

maxH( f ) such that f ∈ D and

∫

I
f (x)Bk

i (x)dλ (x) = mi, − k ≤ i ≤ n−1,

then f k
n (x) = e∑

n−1
i=−k aiB

k
i (x) is a solution of (2.6) such that there exists constants a−k,a−k+1, . . . ,a0,a1,a2, . . . ,an−1 satisfying

∫ 1

0
Bk

i (x)e
∑

n−1
i=−k aiB

k
i (x)dλ (x) = mi, i =−k,−k+1, . . . ,0,1, . . . ,n−1. (2.6)

Now, using the Birkhoff’s Ergodic Theorem (see below), we describe a method for estimating the moments m−k,m−k+1, . . . ,m0,m1, . . . ,mn−1

in (2.6) for the unknown invariant density f ∗ of a map τ:

Theorem 2.4. If µ∗ is τ-invariant, µ∗ is absolutely continuous and unique among absolutely continuous invariant measures, Pτ satisfies

‖ Pn
τ f ‖BV≤ A ‖ f ‖BV +B ‖ f ‖1,

where A > 0 and B > 0 are constants defined in [24]. Then for µ∗ almost every x with probability 1,

1

M

M−1

∑
i=0

f (τ i(x))→ µ∗( f ),

for any f ∈ L1([0,1]). Moreover, if [0,1 is a probability space (that is, µ∗ is a probability measure on [0,1]) and τ is ergodic, then there

exists a function f̂ ∈ L1([0,1]) such that

lim
M→∞

1

M

M−1

∑
i=0

f (τ i(x)) = f̂ (x),∀x ∈ [0,1]µ∗−a.e.

and f̂ is constant and f̂ =
∫ 1

0 f (x)dµ∗(x).

Note that f ∗ is the density of the map τ with respect to the acim µ∗. Thus, dµ∗(x) = f ∗(x)dλ (x). If we replace f by Bk
i , i = −k,−k+

1, . . . ,0,1,2, . . . ,n−1 and f̂ by mi then from Equation (2.7) we obtain

mi = lim
M→∞

1

M

M−1

∑
j=0

Bk
i (τ

j(x)),∀x ∈ [0,1] a.e., i = k,−k+1, . . . ,0,1, . . . ,n−1. (2.7)

For large M, define

m̂i =
1

M

M−1

∑
j=0

Bi(τ
j(x)),∀x ∈ [0,1] a.e., i = k,−k+1, . . . ,0,1, . . . ,n−1.

Note that the choice of x almost surely doesn’t matter asymptotically. Now, we consider the following normalized approximation for

moments (for convenience, we denote them by mi.):

mi ≈
m̂i

∑
n−1
i=−k

m̂i

, i = k,−k+1, . . . ,0,1, . . . ,n−1.



134 Fundamental Journal of Mathematics and Applications

Note that if a−k,a−k+1, . . . ,a0,a2, . . . ,an−1 satisfy (2.5) then a−k,a−k+1, . . . ,a0,a2, . . . ,an−1 also satisfy

∫ 1
0 Bk

i (x)e
∑

n−1
i=−k aiB

k
i (x)dλ (x)

∫ 1
0 e∑

n−1
i=−k aiB

k
i (x)dλ (x)

= mi, i =−k,−k+1, . . . ,0,1,2, . . . ,n−1.

The nonlinear equations in (2.5) form the following system of n+ k nonlinear equations:

G(a) = 0, (2.8)

where G : Rn+k → R
n+k defined by

Gi(a−k,a−k+1, . . . ,a0,a1, . . . ,an−1) =
∫ 1

0
Bk

i (x)e
∑

n−1
i=−k aiφ

k
i (x)dλ (x)−mi,

i =−k,−k+1, . . . ,0,1, . . . ,n−1.

The Jacobian matrix G′ =
(

g′i, j
)

−k≤i, j≤n−1
of G is defined by

g′i, j =
∂Gi

∂a j
=
∫ 1

0
Bk

i (x)e
∑

n−1
i=−k aiB

k
i (x)Bk

j(x)dλ (x), i, j =−k,−k+1, . . . ,0,1, . . . ,n−1.

Proposition 2.5. The system (2.5) has a unique solution a = (a−k,a−k+1, . . . ,a0,a1, . . . ,an−1).

Proof. Since support of Bk
i and Bk

j are disjoint for |i− j|> k, it is clear that Jacobian matrix G′ of G is symmetric. Let

β = (β−k,β−k+1, . . . ,β0,β1, . . . ,βn−1) ∈ R
n+k.

Then,

βG′β T =
n−1

∑
i=−k

n−1

∑
j=−k

βiβ j

∫ 1

0
Bk

i (x)e
∑

n−1
i=−k aiB

k
i (x)Bk

j(x)dλ (x)

=
∫ 1

0

n−1

∑
i=−k

n−1

∑
j=−k

βiB
k
i (x)e

∑
n−1
i=−k aiB

k
i (x)Bk

j(x)β jdλ (x)

=
∫ 1

0

(

n−1

∑
i=−k

βiB
k
i (x)

)

e∑
n−1
i=−k aiB

k
i (x)

(

n−1

∑
j=−k

Bk
j(x)β j

)

dλ (x)> 0.

Thus, G′ is positive definite. Let

g(a−k,a−k+1, . . . ,a0,a1, . . . ,an−1) =
∫ 1

0
e∑

n−1
i=−k aiB

k
i (x)dλ (x)−

n−1

∑
i=−k

aimi.

Now, consider the following global minimization problem:

min
(a−k ,a−k+1,...,a0,a1,...,an−1)∈Rn+k

g(a−k,a−k+1, . . . ,a0,a1, . . . ,an−1) (2.9)

It can be shown that the system (2.5) of equations is the gradient equation of the global minimization problem (2.9). Since G′ is positive

definite, the objective function g is strictly convex on R
n+k. Moreover, g(a−k,a−k+1, . . . ,a0,a1, . . . ,an−1) is coercive on its domain. Thus,

the above global unconditioned convex programming problem (2.9) has a unique solution and therefore, the system (2.5) has a unique

solution.

Algorithm: Choose n and k. Calculate the moments mi, i = −k,−k + 1, . . . ,0,1 . . . ,n− 1 using (2.8) and use these moments mi, i =
−k,−k+1, . . . ,0,1 . . . ,n−1 to find a = (a−k,a−k+1, . . . ,a0,a1, . . . ,an−1). Then the solution of the the maximum moment problem (2.6) is

f k
n (x) = e∑

n−1
i=−k aiB

k
i (x)

which is an approximation of the density function f ∗ of the acim µ∗ for the map τ.

For convergence analysis, we also assume that the unique invariant measure f ∗ of τ is used in Equation (2.4) for the calculations of moments

mi, i =−k,−k+1, . . . ,0,1, . . . ,n−1. Our convergence analysis is based on the following general convergence theory for moment problem

developed by Borwein and Lewis in [25].

Let X be a locally convex topological vector space with nested sequence of compact subsets {Gn}. Let W : X → [−∞,∞) be a functional

with compact level sets. Let gn be an optimal solution of max{W (h) : h ∈ Gn} and g∞ be the unique optimal solution of the limiting problem

max{W (h) : h ∈ ∩∞
n=1Gn} with W (g∞) > −∞. It was proved in [25] that limn→∞ gn = g∞ under the topology of X and limn→∞ W (gn) =

W (g∞). For our B-spline maximum entropy method of degree k, we partition the interval [0,1] in the following special way so that the

feasible sets are monotonically decreasing. First we divide [0,1] into k+1 equal subintervals. Then we divide one subinterval of the current

partition into k+1 equal parts at each step in succession. Thus the corresponding n+ k-dimensional spaces ∆k
n of spline functions of degree

k are monotonically increasing, which guarantees that the feasible sets of the maximum entropy method are monotonically decreasing.

Furthermore, by property of the Boltzmann entropy in the previous section, these feasible sets are weakly compact in L1(0,1). Since L1(0,1)
is a locally convex topological vector space in the weak topology, the above weak convergence implies the weak convergence of our method.

Thus, we have the following theorem:
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Theorem 2.6. Let τ : I → I be a deterministic dynamical system with the unique fixed point f ∗ of the Frobenius - Perron operator Pτ

satisfying H( f ∗)>−∞ and fn be the sequence of solutions in (2.10). Then limn→∞ fn = f ∗ weakly and limn→∞ H( fn) = H( f ∗).

Note that a functional W on a normed space X into [−∞,∞) is called a Kadec if xn → x weakly and W (xn)→W (x) imply xn → x strongly.

It can be shown that Boltzmann entropy functional H in (2.1) is Kadec (see [25]). Thus, we have the following strong convergence result.

Theorem 2.7. Let τ : I → I be a deterministic dynamical system with the unique fixed point f ∗ of the Frobenius - Perron operator Pτ

satisfying H( f ∗)>−∞ and fn be the sequence of solutions in (2.10). Then limn→∞ ‖ fn − f ∗ ‖1= 0.

3. Numerical examples for Lyapunov exponents and invariant measures of one dimensional chaotic

maps via piecewise spline maximum entropy method

In this section, we give two the results from two numerical examples to illustrate our method. Our first example uses the well-known logistic

map for which the density function f∗ of the acim is known and hence hence the analytical Lyapunov exponent l is also known. The second

example uses a piecewise polynomial mapping whose corresponding density function is not known. For both of these examples we apply our

piecewise spline maximum entropy method using piecewise linear, piecewise quadratic, and piecewise cubic splines.

Example 3.1. We consider the well known logistic map τ : [0,1]→ [0,1] defined by τ(x) = 4x(1− x). The actual density f ∗ of τ is given

by f ∗(x) =
1

π
√

x(1− x)
. The logistic map τ is topologically conjugate to the tent map and it is known that the Lyapunov exponent for the

logistic map τ is l = ln2 = 0.693147. Now, we apply (a) piecewise linear maximum entropy method; (b) piecewise quadratic maximum

entropy method; (c) piecewise cubic maximum entropy method and we compute approximate Lyapunov exponent ln, error En = |ln − l|, the

approximate density function fn and the L1−norm ‖ fn − f ∗ ‖1 .

In Figure 3.1, using (a) piecewise linear maximum entropy method; (b) piecewise quadratic maximum entropy method and (c) piecewise cubic

maximum entropy method, we present the graph of the actual density function f ∗(x) = 1

π
√

x(1−x)
(red) and the graph of the approximate

density function fn (blue). Gauss quadrature method is used for integrations. 500,000 iterations are used for the approximation of moments.

(a) A subfigure (b) A subfigure (c) A subfigure

Figure 3.1: This is lot of figures arranged side by side in matrix form with captions for each and a main caption

(a) (b) (c)

Figure 3.2: Approximate density fn of the density function f ∗ of invariant measure µ∗ for the map τ via piecewise spline maximum entropy method: Figure
3.1 (a) approximate density f32 (blue) via piecewise linear maximum entropy method and the actual density f ∗ (red); Figure 3.1 (b) approximate density f32

(blue) via piecewise quadratic maximum entropy method and the actual density f ∗ (red); Figure 3.1 (c) approximate density f16 (blue) via piecewise cubic
maximum entropy method and the actual density f ∗ (red).
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n ln (piecewise linear) |ln − l| (piecewise linear) ‖ fn − f ∗ ‖1 (piecewise linear)

4 0.68775 0.00539 0.22098

8 0.69363 0.00049 0.15821

16 0.69355 0.00040 0.10494

32 0.69361 0.00046 0.07745

.

n ln (piecewise quad) |ln − l| (piecewise quad) ‖ fn − f ∗ ‖1 (piecewise quad)

4 0.67348 0.01965 0.17346

8 0.69092 0.00222 0.12631

16 0.693443 0.0002 0.08778

32 0.69352 0.00037 0.05108

.

n ln (piecewise cubic) (piecewise cubic) ‖ fn − f ∗ ‖1 (piecewise cubic)

4 0.70605 0.01290 0.15001

8 0.69570 0.00255 0.10621

16 0.69391 0.00255 0.06343

32 0.69352 0.00037 0.05108

.

The density function f ∗(x) =
1

π
√

x(1− x)
of the invariant measure µ∗ is known for the logistic map τ(x) = 4x(1− x). Therefore, instead

of (2.7) one can use (2.4) for the calculations of moments. In the following tables we present some approximate Lyapunov exponents ln
and error |ln − l| using piecewise linear, piecewise quadratic and piecewise cubic maximum entropy method, where we have used (2.4) for

moments.

piecewise spline method n ln |ln − l|
piecewise linear 4 0.68812 0.00503

piecewise linear 32 0.69363 0.00048

piecewise quad 32 0.69349 0.00034

piecewise cubic 32 0.69352 0.00037

.

Example 3.2. We consider the map τ : [0,1]→ [0,1] defined by

τ(x) =







3
2 x2 + 5

4 x, 0 ≤ x < 1
2 ,

3
2 (1− x)2 + 5

4 (1− x), 1
2 ≤ x ≤ 1,

The map τ is is a piecewise expanding map. However, analytical density function of τ is not known. We apply (a) piecewise linear

maximum entropy method; (b) piecewise quadratic maximum entropy method; (c) piecewise cubic maximum entropy method and we compute

approximate Lyapunov exponent ln.

n ln (piecewise linear) ln (piecewise quadratic) ln (piecewise cubic)

4 0.63118 0.63104 0.63132

8 0.63105 0.63104 0.63114

16 0.63105 0.63104 0.63105

.

In Figure 3.2, using (a) piecewise linear maximum entropy method; (b) piecewise quadratic maximum entropy method and (c) piecewise

cubic maximum entropy method, we present the graph of the histogram (with 500,000 iterations) of an approximate density function (black)

and the graph of the approximate density function fn (red). Gauss quadrature method is used for integrations.

Example 3.3. We consider the map τ : [0,1]→ [0,1] defined by

τ(x) =







2x
1−x , 0 ≤ x < 1

3 ,

1−x
2x , 1

3 ≤ x ≤ 1,

The actual density f ∗ of τ is given by f ∗(x) =
2

(1− x)2
. The Lyapunov exponent for the map τ is l ≈= 0.693147. Now, we apply (a)

piecewise linear maximum entropy method; (b) piecewise quadratic maximum entropy method; (c) piecewise cubic maximum entropy method

and we compute approximate Lyapunov exponent ln, error En = |ln − l|.

In Figure 3.3, using (a) piecewise linear maximum entropy method; (b) piecewise quadratic maximum entropy method and (c) piecewise cubic

maximum entropy method, we present the graph of the actual density function f ∗(x) =
2

(1− x)2
. (red) and the graph of the approximate

density function fn (blue). Gauss quadrature method is used for integrations. 500,000 iterations are used for the approximation of moments.
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(a) (b) (c)

Figure 3.3: Histogram and approximate density via piecewise spline maximum entropy method: Figure 3.2 (a) the histogram of the density function of the
map τ with 500,000 points on the trajectory of the map τ with 1000 subintervals for [0,1]. and the graph of the approximate density function f16 via piecewise
linear maximum entropy method; Figure 3.2 (b) the same histogram and the graph of the approximate density function f8 via piecewise quadratic maximum
entropy method; Figure 3.2 (c) the same histogram and the graph of the approximate density function f16 via piecewise cubic maximum entropy method;

(a) (b) (c)

Figure 3.4: Approximate density fn of the density function f ∗ of invariant measure µ∗ for the map τ via piecewise spline maximum entropy method: Figure
3.3 (a) approximate density f32 (blue) via piecewise linear maximum entropy method and the actual density f ∗ (red); Figure 3.2 (b) approximate density f32

(blue) via piecewise quadratic maximum entropy method and the actual density f ∗ (red); Figure 3.3 (c) approximate density f16 (blue) via piecewise cubic
maximum entropy method and the actual density f ∗ (red).

n ln (piecewise linear) |ln − l| (piecewise linear)

4 0.69323 0.00009

8 0.69316 0.00001

16 0.69316 0.00001

32 0.69314 0.0000008

.

n ln (piecewise quad) |ln − l| (piecewise quad)

4 0.69323 0.00008

8 0.69314 0.00005

16 0.69313 0.00001

32 0.69314 0.000001

.

n ln (piecewise cubic) (piecewise cubic)

4 0.69300 0.00014

8 0.69325 0.00010

16 0.69314 0.00003

.

The density function f ∗(x) =
2

(1− x)2
of the invariant measure µ∗ is known for the map τ. Therefore, instead of (2.7) one can use (2.4) for

the calculations of moments. In the following tables we present some approximate Lyapunov exponents ln and error |ln − l| using piecewise

linear and piecewise quadratic maximum entropy method, where we have used (2.4) for moments.
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piecewise spline method n ln |ln − l|
piecewise linear 4 0.69324 0.00008

piecewise linear 16 0.69314 0.000005

piecewise quad 16 0.69314 0.000005

.

4. Conclusion

In this paper, we study numerical computations of Lyapunov exponents for deterministic chaotic dynamical systems in one dimension. First,

we discuss the fact that the Lyapunov exponent is one of the key tools for determining whether a deterministic dynamical system is chaotic

or not. Moreover, we show that the computation of Lyapunov exponents of dynamical systems depends on the computation of invariant

measures of dynamical systems. Then, we study a general piecewise spline maximum entropy method for the computation of Lyapunov

exponents and invariant measures for deterministic dynamical systems. We present a proof of convergence of the general piecewise spline

maximum entropy method. The general piecewise spline maximum entropy method includes piecewise linear, piecewise quadratic, piecewise

cubic and higher order maximum entropy methods. Finally, we present two examples where we compute Lyapunov exponents of dynamical

systems via piecewise linear, piecewise quadratic and piecewise cubic maximum entropy methods. Moreover, we compute invariant measures

of the dynamical systems. In the first example we present errors between the numerical results and analytical results (both for Lyapunov

exponent and invariant measures). The numerical examples show that the piecewise spline maximum entropy method is a useful method for

the computation of Lyapunov exponents and invariant measures for deterministic dynamical systems. In future we plan to study the speed of

convergence of the piecewise spline maximum entropy method for the computation of Lyapunov exponents and invariant measures.
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Abstract

Many physical phenomena in nature can be described or modeled via a differential equation

or a system of differential equations. In this work, we restrict our attention to research a

solution of fractional nonlinear generalized Burgers’ differential equations. Thereby we

find some exact solutions for the nonlinear generalized Burgers’ differential equation with a

fractional derivative, which has domain as R2 ×R
+. Here we use the Lie groups method.

After applying the Lie groups to the boundary value problem we get the partial differential

equations on the domain R
2 with reduced boundary and initial conditions. Also, we find

conservation laws for the nonlinear generalized Burgers’ differential equation.

1. Introduction

The research of exact solutions plays an important role in the study of nonlinear systems. Many methods as the inverse scattering method [1],

Hirota bilinear method [2], Lie symmetry analysis [3, 4], CK (Clarkson-Kruskal) method [5, 6], etc. have been developed to find these

exact physically significant solutions of the partial differential equation, although this is rather difficult. Our work in this area is to use Lie

transformation methods and its analysis to search exact solutions to fractional nonlinear partial differential equations. It is known that the Lie

group method is a powerful and direct approach to the construction of exact solutions of nonlinear differential equations. Essentially, the

symmetry analysis is aimed at using the symmetry of the equation. The process thus obtained reduces the complexity of the given equation.

Even though physical phenomena are mostly based on searching the solution of the underlying nonlinear model equations, it is too difficult

to find a general solution of the fractional nonlinear partial differential equation. There is no existing general theory for nonlinear partial

differential equations. While there is no existing general theory for nonlinear partial differential equations, many special cases have

yielded to appropriate changes of variable [7–11]. In fact, transformations are perhaps the most powerful tool currently available in this

area [12–14]. Ivanova, Sophocleous and Tracin in [15] investigated the Lie symmetry analysis of (2+1) - dimensional variable coefficient

Burgers differential equation of the form

ut = A(t)uxx +B(t)uyy +uux.

They obtained the symmetries, according them conservation laws and some analytical solutions for above equation. Later Abd-el-Malek and

Amin in [16] studied the symmetry analysis of the generalized (1+1)-dimensional Burgers differential equation in the form

ut +α(un)x = βg(t)(un)xx,

with boundary and initial conditions u(0,x)−→ ∞, for x > 0, u(t,0) = γr(t), for t > 0,γ 6= 0, and lim
x→∞

u(t,x)−→ ∞, for t > 0.

Some recent studies of Burgers differential equation the reader can see in [17, 18].

In this research, we show the applying of Lie group analysis to study (2+1)-dimensional time-fractional generalized Burgers’ differential

equation with boundary and initially conditions:

Email addresses and ORCID numbers: gulistan.iskandarova@istanbulticaret.edu.tr, https://orcid.org/0000-0001-7322-1339 (G. Iskenderoglu),

dogank@ticaret.edu.tr, https://orcid.org/0000-0002-3420-7718 (D. Kaya)
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∂ α u

∂ tα
+P∇(un) = Rg(t)△(un), (1.1)

u(0,x,y)−→ ∞, (x,y) ∈ R
2

u(t,0,0) = Φ(t), t ∈ [0,∞),
lim

(x,y)→(∞,∞)
u(t,x,y)−→ ∞, t ∈ [0,∞).

(1.2)

Here(x,y) ∈ R
2, t ∈ R

+, 0 < α ≤ 1, n > 1, P,R 6= 0 and ∂ α u
∂ tα is a fractional derivative which is considered in the Riemann–Liouville terms

as [19]

∂ α f (t)

∂ tα
=











1
Γ(n−α)

dn

dtn

∫ t
0

f (τ)
(t−τ)α+1−n dτ, i f α /∈ N, n−1 < α < n, n ∈ N,

dn

dtn f (t), i f α,n ∈ N.

Moreover we investigate the conservation laws for above equation by using Ibragimov’s theorem for fractional derivative equations [7, 20].

The Lie group or Lie symmetry analysis allows us to see that the underlying symmetry algebra of the equation reduce the dimension, it is

since each of the time-fractional equations is invariant under time translation symmetry. So, by using the Lie symmetry, we show that the

fractional partial differential equation with the domain R
2 ×R

+ can be transformed into a nonlinear fractional partial differential equation

with the domain R
2.

2. Symmetry analysis for time fractional partial differential equation

Consider a time-fractional partial differential equations with three independent variables x > 0, y > 0, and t > 0 as following:

F(x,y, t,u,∂ α
t u,ux,uy,uxx,uyy) = 0, 0 < α ≤ 1, (2.1)

where ∂ α
t u is Riemann–Liouville fractional derivative of u.

A one parameter Lie symmetry transformations acting on a space of three independent variables (t,x,y) and depended variable u are

determined as

t̄ = t + ετ(t,x,y,u)+O(ε2),

x̄ = x+ εξ1(t,x,y,u)+O(ε2),

ȳ = y+ εξ2(t,x,y,u)+O(ε2),

ū = u+ εη(t,x,y,u)+O(ε2),

(2.2)

where ε > 0 is an infinitesimal group parameter. The infinitesimal generator associated with the above transformations can be written as:

X = ξ1(t,x,y,u)
∂

∂x
+ξ2(t,x,y,u)

∂

∂y
+ τ(t,x,y,u)

∂

∂ t
+η(t,x,y,u)

∂

∂u

with ξ1 =
dx̄
dε |ε=0, ξ2 =

dȳ
dε |ε=0, τ = dt̄

dε |ε=0 and η = dū
dε |ε=0. According to the infinitesimal invariant criterion (2.2), prolongation pr(α,2)X

to equation (2.1) has the form

pr(α,2)X(E) |E=0= 0, E = F(t,x,y,u,∂ α
t u,ux,uxx) = 0,

here the operator pr(α,2)X takes the following form

pr(α,2)X = X +η t
α ∂∂ α

t u +ηx
1∂ux

+ηx
2∂uxx

+η
y
1∂uy

+η
y
2∂uyy

,

where

η t
α = Dα

t (η)+ξ1Dα
t (ux)−Dα

t (ξ1ux)+ξ2Dα
t (uy)−Dα

t (ξ2uy)+Dα
t (uDt(τ))−Dα+1

t (τu)+ τDα+1
t (u),

ηx
1 = Dxη −uxDxξ1 −uyDxξ2 −utDxτ,

ηx
2 = Dxηx

1 −uxxDxξ1 −uxyDxξ2 −uxtDxτ,

η
y
1 = Dyη −uxDyξ1 −uyDyξ2 −utDyτ,

η
y
2 = Dyη

y
1 −uyxDyξ1 −uyyDyξ2 −uytDyτ,

(2.3)

with Di is the total derivative

Di = ∂i +ui∂u +uit∂ut
+u jt∂ut

+uii∂ui
+u j j∂u j

+ ....

and Dα
t is a fractional derivative operator with respect to t.
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The expression for ηx
1 , η

y
1 , ηx

2 , and η
y
2 in (2.3) can be easily obtained [4, 21], here we concentrate our attention on η t

α . Using the generalized

Leibnitz rule, that was given in [22]

Dα
t ( f (t)g(t)) =

∞

∑
n=0

(

α
n

)

Dα−n
t f (t)Dn

t g(t),

(

α
n

)

=
(−1)n−1αΓ(n−α)

Γ(1−α)Γ(n+1)
.

So we get

ξ1Dα
t (ux)−Dα

t (ξ1ux) =−
∞

∑
n=1

(

α
n

)

Dα−n
t (ux)D

n
t (ξ1),

ξ2Dα
t (uy)−Dα

t (ξ2uy) =−
∞

∑
n=1

(

α
n

)

Dα−n
t (uy)D

n
t (ξ2),

and

Dα
t (uDt(τ))−Dα+1

t (τu)+ τDα+1
t (u) =−αDt(τ)D

α
t (u)−

∞

∑
n=1

(

α
n+1

)

Dα−n
t (u)Dn+1

t (τ).

Thereby we get the expression

η t
α = Dα

t (η)−
∞

∑
n=1

(

α
n

)

Dα−n
t (ux)D

n
t (ξ1)−

∞

∑
n=1

(

α
n

)

Dα−n
t (uy)D

n
t (ξ2)−αDt(τ)D

α
t (u)−

∞

∑
n=1

(

α
n+1

)

Dα−n
t (u)Dn+1

t (τ).

According to the compound function of the chain rule [23] we get

dm f (g(t))

dtm
=

m

∑
k=0

k

∑
r=0

(

k

r

)

1

k!
(−g(t))r dm

dtm

(

g(t)k−r
) dk f (g)

dgk
.

Thus infinitesimal η t
α takes a form

η t
α = ∂ α η

∂ tα +(ηu −α(τt +utτu))
∂ α u
∂ tα −u

∂ α ηu

∂ tα +µ

+
∞

∑
n=1

[(

α
n

)

∂ nηu

∂ tn −

(

α
n+1

)

Dn+1
t τ

]

Dα−n
t u−

∞

∑
n=1

(

α
n

)

Dn
t (ξ1)D

α−n
t (ux)−

∞

∑
n=1

(

α
n

)

Dα−n
t (uy)D

n
t (ξ2),

where

µ =
∞

∑
n=2

n

∑
m=2

m

∑
k=2

k

∑
r=0

(

α
n

)(

n

m

)(

k

r

)

1

k!

tn−α (−u)r

Γ(n+1−α)

∂ m

∂ tm

(

uk−r
) ∂ n−m+kη

∂ tn−m∂uk
.

3. Symmetry analysis for time-fractional nonlinear generalized Burgers’ differential equation

After some easy mathematical transformations our equation (1.1) can be written in the form

∂ α u

∂ tα
+nPun−1(ux +uy) = nRg(t)((n−1)un−2(u2

x +u2
y)+un−1(uxx +uyy)). (3.1)

By substitution of transformations (2.2) and (2.3) into (3.1) and equating the multiplier of ε to zero we get that, for the fractional nonlinear

generalized Burgers’ differential equation (3.1) the invariance criterion takes the form

η t
α +n(n−1)Pun−2η(ux +uy)+nPun−1(ηx

1 +η
y
1)−n(n−1)(n−2)Rg(t)un−3η(u2

x +u2
y)

−2n(n−1)Rg(t)un−2(ηx
1 +η

y
1)−n(n−1)Rg′(t)un−2(u2

x +u2
y)τ

−n(n−1)Rg(t)un−2(uxx +uyy)η −nRg′(t)un−1(uxx +uyy)τ −nRg(t)un−1(ηx
2 +η

y
2) = 0.

(3.2)

Substituting the extended infinitesimals (2.3) into the equation (3.2) we get following system of differential equations:

∂uξ1 = ∂uξ2 = ∂tξ1 = ∂tξ2 = ∂uτ = ∂xτ = ∂yτ = ηuu = 0,

Pη(n2 −n)+Rg(t)∂xη(2n−2n2)+u(nPα∂tτ −nP(∂yξ1 +∂xξ1)+nRg(t)(∂yyξ1 +∂xxξ1)+2nRg(t)∂xuη) = 0,

Pη(n2 −n)+Rg(t)∂yη(2n−2n2)+u(nPα∂tτ −nP(∂yξ2 +∂xξ2)+nRg(t)(∂yyξ2 +∂xxξ2)+2nRg(t)∂yuη) = 0,

Rg(t)η(n−n2)+u(−nRg′(t)τ −nRαg(t)∂tτ +2nRg(t)∂xξ1) = 0,

Rg(t)η(n−n2)+u(−nRg′(t)τ −nRαg(t)∂tτ +2nRg(t)∂xξ2) = 0,

∂utη − α−1
2 ∂ttτ = 0,

∂ α η
∂ tα −u

∂ α ηu

∂ tα +nPun−1(∂xη +∂yη)−nRg(t)un−1(∂xxη +∂yyη) = 0.
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In below we study some cases and obtain generating infinitesimal operators for classification of solutions of the equation.

Case 1: For arbitrary g(t) and 0 < α ≤ 1 we get infinitesimals as

ξ1 = c1,
ξ2 = c2,
τ = 0,
η = 0,

here c1 and c2 are arbitrary constants and there are two infinitesimal operators

X1 =
∂

∂x
X2 =

∂

∂y
.

Case 2: For g(t) = 1 we get following infinitesimals

ξ1 = c1,
ξ2 = c2,

τ = c3t + c4,
η =− αc3

n−1 u,

here c1,c2,c3, and c4 are arbitrary constants and thus we obtain two additional infinitesimal operators

X3 =
∂

∂ t
, X4 = t

∂

∂ t
+

α

1−n
u

∂

∂u
.

Case 3: For g(t) = tb with b 6= 0 we have infinitesimals as

ξ1 = c5x+ c6,
ξ2 = c5x+ c7,

τ = c5
t
b ,

η = b−α
b(n−1)

c5u,

here c5,c6, and c7 are arbitrary constants and there is one additional infinitesimal operator

X3 = x
∂

∂x
+ y

∂

∂y
+

t

b

∂

∂ t
+

b−α

b(n−1)
u

∂

∂u
.

Case 4: For g(t) = et we obtain following infinitesimals in a form

ξ1 = c6x+ c7,
ξ2 = c6y+ c8,

τ = c6,
η = c6

n−1 u,

here c6,c7 and c8 are arbitrary constants and we have one additional infinitesimal operator

X3 = x
∂

∂x
+ y

∂

∂y
+

∂

∂ t
+

1

n−1
u

∂

∂u
.

4. Symmetry reductions of the time fractional nonlinear generalized Burgers’ differential equation

Now, we obtain similarity reductions and present the reduced nonlinear fractional ordinary differential equations. Also we classify the

corresponding group invariant solutions of the fractional nonlinear generalized Burgers’ equation.

Case 2: For g(t) = 1 we have four infinitesimal operators

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 =

∂

∂ t
, X4 = t

∂

∂ t
+

α

1−n
u

∂

∂u
.

The similarity variables for infinitesimal operator X1 and X2 can be found by solving the corresponding characteristic equation

dx

1
=

dy

0
=

dt

0
=

du

0

dx

0
=

dy

1
=

dt

0
=

du

0
.

Thus we obtain the similarity reduction u = φ(t), by substituting which into (1.1) we get

Dα
t φ(t) = 0.

Thereby the exact solution of time fractional nonlinear generalized Burgers’ differential equation (1.1) with X1 and X2 is

u(t,x,y) = ctα−1,

where c is arbitrary constant.

For infinitesimal operator X3 the corresponding characteristic equation is in a form

dx

0
=

dy

0
=

dt

1
=

du

0
.
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This equation gives us a similarity reduction u = φ(x,y), by substituting which into (1.1) we have

u(t,x,y) = 0.

And the similarity variables for infinitesimal operator X4 can be found by solving the corresponding characteristic equation

dx

0
=

dy

0
=

dt

t
=

du
αu

1−n

.

Here we have u = t
α

1−n φ(x,y) similarity reduction, by substituting it into (1.1) we get

1

Γ(1−α)

d

dt

t
∫

0

(t − s)−α s
α

1−n φ(x,y)ds+nPt
αn

1−n (φ(x,y))n−1(∂xφ(x,y)+∂yφ(x,y))

−Rt
αn

1−n (n(φ(x,y))n−1(∂xxφ(x,y)+∂yyφ(x,y))+n(n−1)(φ(x,y))n−2((∂xφ(x,y))2 +∂yφ(x,y))2)) = 0.

After some easy transformations we obtain following nonlinear ordinary differential equation

Γ

(

1+ α
(1−n)

)

Γ

(

1−α+ α
(1−n)

)φ(x,y)+nP(φ(x,y))n−1(∂xφ(x,y)+∂yφ(x,y))−Rn(φ(x,y))n−1(∂xxφ(x,y)+∂yyφ(x,y))

−Rn(n−1)(φ(x,y))n−2((∂xφ(x,y))2 +∂yφ(x,y))2) = 0.

Case 3: For g(t) = tb with b 6= 0 we have three infinitesimal operators

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
+ y

∂

∂y
+

t

b

∂

∂ t
+

b−α

b(n−1)
u

∂

∂u
.

The third infinitesimal operator by solving the corresponding characteristic equations

dx

x
=

dy

y
=

bdt

t
=

bdu
b−α
n−1 u

,

gives us the similarity reduction

u(x,y, t) = t
b−α
n−1 ω(p1, p2),

where p1 = xt−b and p2 = yt−b.

Case 4: And lastly for g(t) = et we have three infinitesimal operators

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
+ y

∂

∂y
+

∂

∂ t
+

1

(n−1)
u

∂

∂u
.

The third infinitesimal operator gives us the corresponding characteristic equations

dx

x
=

dy

y
=

dt

1
=

du
1

n−1 u
,

and a similarity reduction

u(x,y, t) = e
1

n−1
tν(q1,q2),

here q1 = xe−t , and q2 = ye−t .

5. Conservation laws

In this section we will construct the conservation laws of time-fractional nonlinear generalized Burgers’ differential equation (2.1) by using

Ibragimov’s theorem [24, 25]. Ibragimov proved this theorem for differential equations with integer order. And it was applied to fractional

differential equations [26, 27].

We will search a vector field C = (Ct ,Cx,Cx), where Ct =Ct(t,x,y,u,ux,uy, ...), Cx =Cx(t,x,y,u,ux,uy, ...), and Cy =Cy(t,x,y,u,ux,uy, ...)
is conserved vector for (3.1) on all its solution if it satisfies the following conservation equation Dt(C

t)+Dx(C
x)+Dy(C

y) = 0, where Ct ,

Cx, and Cy are conservation laws for equation (2.1). A formal Lagrangian function for (2.1) is given by

L = v(t,x,y)E. (5.1)

Here v(t,x,y) is a new dependent variable and

E =
∂ α u

∂ tα
+nPun−1(ux +uy)−n(n−1)Rg(t)un−2(u2

x +u2
y)+nRg(t)un−1(uxx +uyy).

The Euler–Lagrange operator with respect to u is defined by [27, 28]

δ

δu
=

∂

∂u
+(Dα

t )
∗ ∂

∂Dα
t u

−Dx
∂

∂ux
−Dy

∂

∂uy
+D2

x

∂

∂uxx
+D2

y

∂

∂uyy
− ...,

where (Dα
t )

∗ is adjoint operator of Dα
t that has a form

(Dα
t )

∗ = (−1)n
t In−α

T (Dn
t ).
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By using Euler–Lagrange operator we can define an adjoint equation of equation (3.1) as

δL

δu
= 0. (5.2)

After calculations, the equation (5.2) takes a form

δL

δu
= (Dα

t )
∗v−nPun−1(vx + vy)−nRg(t)un−1(vxx + vyy).

So, we say that generalized Burgers’ equation is nonlinearly self-adjoint if the adjoint equation (5.2) is satisfied for all solution u of equation

(3.1) upon a substitution v = ϕ(t,x,y,u) and ϕ(t,x,y,u) 6= 0. This substitution allows us use formal Lagrangian as usual classical Lagrangian

and construct the conservation laws.

Thus, x-component conservation laws for the equation (3.1) have the form [28]

Cx
i = ξ1L+Wi

(

∂L

∂ux
−Dx

∂L

∂uxx

)

+Dx(Wi)

(

∂L

∂uxx

)

,

here Wi = η i −ξ i
1ux −ξ i

2uy − τ iut . y-component conservation laws for the equation (3.1) have the form [28]

C
y
i = ξ2L+Wi

(

∂L

∂uy
−Dy

∂L

∂uyy

)

+Dy(Wi)

(

∂L

∂uyy

)

.

And t-component conservation laws for the equation (3.1) have the form

Ct
i =

m−1

∑
k=0

(−1)kDα−1−k
t (Wi)D

k
t (

∂L

∂Dα
t u

)− (−1)mJ(Wi,D
m
t

∂L

∂Dα
t u

),

for m−1 < α < m and J is a integral

J( f ,g) =
1

Γ(m−α)

t
∫

0

T
∫

t

f (x,y,s)g(x,y, p)

(p− s)α+1−m
d pds.

Thus, by using (5.1) and above formulas we can find Cx, Cy, and Ct for our problem.

Case 1: For arbitrary g(t) we have W1 = ux and W2 = uy that gives us

Ct
1 = vDα−1

t (ux)+ J(ux,vt),

Ct
2 = vDα−1

t (uy)+ J(uy,vt),

Cx
1 = v( ∂ α u

∂ tα +nPun−1(ux +uy)−n(n−1)Rg(t)un−2(u2
x +u2

y)+nRg(t)un−1(uxx +uyy))+

nRg(t)un−1uxxv−3n(n−1)Rg(t)un−2v(ux)
2 +nPun−1uxv−nRg(t)un−1ux(uxvu + vx),

Cx
2 = nRg(t)un−1uxyv−3n(n−1)Rg(t)un−2vuxuy +nPun−1uyv−nRg(t)un−1uy(uxvu + vx),

C
y
1 = nRg(t)un−1uxyv−3n(n−1)Rg(t)un−2vuxuy +nPun−1uxv−nRg(t)un−1ux(uyvu + vy),

C
y
2 = v( ∂ α u

∂ tα +nPun−1(ux +uy)−n(n−1)Rg(t)un−2(u2
x +u2

y)+nRg(t)un−1(uxx +uyy))+

nRg(t)un−1uyyv−3n(n−1)Rg(t)un−2v(uy)
2 +nPun−1uyv−nRg(t)un−1uy(uyvu + vy).

Case 2: For g(t) = tb we get W1 = ux, W2 = uy, and W3 = xux + yuy +
t
b ut +

α−b
b(1−n)

u, thus the corresponding conservation laws are like:

Ct
1 and Ct

2 are the same.

Ct
3 = tv( ∂ α u

∂ tα +nPun−1(ux +uy)−n(n−1)Rg(t)un−2(u2
x +u2

y)+nRg(t)un−1(uxx +uyy))+

vDα−1
t (xux + yuy +

t
b ut +

α−b
b(1−n)

u)+ J(xux + yuy +
t
b ut +

α−b
b(1−n)

u,vt),

Cx
1 = v( ∂ α u

∂ tα +nPun−1(ux +uy)−n(n−1)Rtbun−2(u2
x +u2

y)+nRtbun−1(uxx +uyy))+

nRtbun−1uxxv−3n(n−1)Rtbun−2v(ux)
2 +nPun−1uxv−nRtbun−1ux(uxvu + vx),

Cx
2 = nRtbun−1uxyv−3n(n−1)Rtbun−2vuxuy +nPun−1uyv−nRtbun−1uy(uxvu + vx),

Cx
3 = xv( ∂ α u

∂ tα +nPun−1(ux +uy)−n(n−1)Rtbun−2(u2
x +u2

y)+nRtbun−1(uxx +uyy))+

nRtbun−1v(ux +
α−b

b(1−n)
ux +

t
b uxt + yuxy + xuxx)+

(

α−b
b(1−n)

u+ t
b ut + yuy + xux

)

(−3n(n−1)Rtbun−2vux +nPun−1v−nRtbun−1(uxvu + vx)),

C
y
1 = nRtbun−1uxyv−3n(n−1)Rtbun−2vuxuy +nPun−1uxv−nRtbun−1ux(uyvu + vy),

C
y
2 = v( ∂ α u

∂ tα +nPun−1(ux +uy)−n(n−1)Rtbun−2(u2
x +u2

y)+nRtbun−1(uxx +uyy))+

nRtbun−1uyyv−3n(n−1)Rtbun−2v(uy)
2 +nPun−1uyv−nRtbun−1uy(uyvu + vy),

C
y
3 = yv( ∂ α u

∂ tα +nPun−1(ux +uy)−n(n−1)Rtbun−2(u2
x +u2

y)+nRtbun−1(uxx +uyy))+

nRtbun−1v(uy +
α−b

b(1−n)
uy +

t
b uyt + yuyy + xuxy)+

(

α−b
b(1−n)

u+ t
b ut + yuy + xux

)

(−3n(n−1)Rtbun−2vuy +nPun−1v−nRtbun−1(uyvu + vy)).

Case 3: For g(t) = 1 we obtain W1 = ux, W2 = uy, W3 = ut , and W4 = tut +
α

1−n u, thus the corresponding conservation laws are in the

following form:
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Ct
1 and Ct

2 is the same.

Ct
3 = v( ∂ α u

∂ tα +nPun−1(ux +uy)−n(n−1)Rg(t)un−2(u2
x +u2

y)+nRg(t)un−1(uxx +uyy))+ vDα−1
t (ut)+ J(ut ,vt),

Ct
4 = tv( ∂ α u

∂ tα +nPun−1(ux +uy)−n(n−1)Rg(t)un−2(u2
x +u2

y)+nRg(t)un−1(uxx +uyy))+

vDα−1
t (tut +

α
1−n u)+ J(tut +

α
1−n u,vt),

Cx
1 = v( ∂ α u

∂ tα +nPun−1(ux +uy)−n(n−1)Rg(t)un−2(u2
x +u2

y)+nRg(t)un−1(uxx +uyy))+

nRun−1uxxv−3n(n−1)Run−2(ux)
2v+nPun−1uxv−nRun−1ux(uxvu + vx),

Cx
2 = nRun−1vuxy −3n(n−1)Run−2uxuyv+nPun−1uyv−nRun−1uy(uxvu + vx)),

Cx
3 = nRun−1vuxt −3n(n−1)Run−2uxutv+nPun−1utv−nRun−1ut(uxvu + vx)),

Cx
4 = nRun−1v(tuxt +

α
n−1 ux)+(tut +

α
n−1 u)(−3n(n−1)Run−2uxv+nPun−1v−nRun−1(uxvu + vx)),

C
y
1 = nRun−1vuxy −3n(n−1)Run−2uxuyv+nPun−1uxv−nRun−1ux(uyvu + vy)),

C
y
2 = v( ∂ α u

∂ tα +nPun−1(ux +uy)−n(n−1)Rg(t)un−2(u2
x +u2

y)+nRg(t)un−1(uxx +uyy))+

nRun−1uyyv−3n(n−1)Run−2(uy)
2v+nPun−1uyv−nRun−1uy(uyvu + vy)),

C
y
3 = nRun−1vuyt −3n(n−1)Run−2uyutv+nPun−1utv−nRun−1ut(uyvu + vy))),

C
y
4 = nRun−1v(tuyt +

α
n−1 uy)+(tut +

α
n−1 u(−3n(n−1)Run−2uyv+nPun−1v−nRun−1(uyvu + vy))).

Case 4: For g(t) = et we have W1 = ux, W2 = uy, and W2 = xux + yuy +ut +
1

1−n u, and thus the corresponding conservation laws are:

Ct
1 and Ct

2 is the same.

Ct
3 = v( ∂ α u

∂ tα +nPun−1(ux +uy)−n(n−1)Retun−2(u2
x +u2

y)+nRetun−1(uxx +uyy))+

vDα−1
t (xux + yuy +ut +

1
1−n u)+ J(xux + yuy +ut +

1
1−n u,vt),

Cx
1 = v( ∂ α u

∂ tα +nPun−1(ux +uy)−n(n−1)Retun−2(u2
x +u2

y)+nRetun−1(uxx +uyy))+

nRetun−1uxxv−3n(n−1)Retun−2(ux)
2v+nPun−1uxv−nRetun−1ux(uxvu + vx),

Cx
2 = nRetun−1uxyv−3n(n−1)Retun−2uxuyv+nPun−1uyv−nRetun−1uy(uxvu + vx),

Cx
3 = vx( ∂ α u

∂ tα +nPun−1(ux +uy)−n(n−1)Retun−2(u2
x +u2

y)+nRetun−1(uxx +uyy))+

nRetun−1(ux + xuxx + yuxy +utx +
1

1−n ux)+
(

xux ++yuy +ut +
1

1−n u
)

(−3n(n−1)Retun−2uxv+nPun−1v−nRetun−1(uxvu + vx)),

C
y
1 = nRetun−1uyxv−3n(n−1)Retun−2uyuxv+nPun−1uxv−nRetun−1ux(uyvu + vy),

C
y
2 = v( ∂ α u

∂ tα +nPun−1(ux +uy)−n(n−1)Retun−2(u2
x +u2

y)+nRetun−1(uxx +uyy))+

nRetun−1uyyv−3n(n−1)Retun−2(uy)
2v+nPun−1uyv−nRetun−1uy(uyvu + vy),

C
y
3 = vy( ∂ α u

∂ tα +nPun−1(ux +uy)−n(n−1)Retun−2(u2
x +u2

y)+nRetun−1(uxx +uyy))+

nRetun−1(xuxy + yuy +uyy +uty +
1

1−n uy)+
(

xux + yuy +ut +
1

1−n u
)

(−3n(n−1)Retun−2uyv+nPun−1v−nRetun−1(uyvu + vy)).

6. Symmetry analysis for boundary value problem

In this section, we will discuss the symmetry analysis for the boundary value problem. Lie symmetry analysis is one of the most

widely-applicable methods of finding exact solutions of differential equations, but it was not widely used for solving boundary value

problems. And the reason is the initial and boundary conditions are usually are not invariant under any obtained Lie symmetry method

transformations [3, 29–31]. So, for partial differential equations, an invariant solution found by applying symmetry transformation solves a

given boundary value problem, when the symmetry transformation leaves invariant all boundary conditions and the domain of the boundary

value problem.

Now, let the Q-condition symmetry

Q = ξ1(x,y, t,u)
∂

∂x
+ξ2(x,y, t,u)

∂

∂y
+ τ(x,y, t,u)

∂

∂ t
+η(x,y, t,u)

∂

∂u
, (6.1)

with

Qk(ut −F(x,y,u,
∂u

∂x
,

∂u

∂y
, ...,

∂ ku

∂xk
,

∂ ku

∂yk
))|M = 0,

and the manifold M = {ut −F(x,y,u, ∂u
∂x
, ∂u

∂y
, ..., ∂ ku

∂xk ,
∂ ku
∂yk ) = 0,Q(u) = 0} is admitted by the boundary value problem defined on a domain

Ω:

ut = F

(

x,y,u,
∂u

∂x
,

∂u

∂y
, ...,

∂ ku

∂xk
,

∂ ku

∂yk

)

, (x,y, t) ∈ Ω ⊂ R
2 ×R

+, (6.2)

da(x,y, t) = 0 : Ba

(

t,x,y,u,
∂u

∂x
,

∂u

∂y
, ...,

∂ k−1u

∂xk−1
,

∂ k−1u

∂yk−1

)

= 0, a = 1, ..., p. (6.3)
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lc(x,y, t) = ∞ : Lc(x,y, t,u,
∂u

∂x
,

∂u

∂y
, ...,

∂ k−1u

∂xk−1
,

∂ k−1u

∂yk−1
) = 0, c = 1, ..., p∞. (6.4)

Here Ba(t,x,y,u,
∂u
∂x
, ∂u

∂y
, ..., ∂ k−1u

∂xk−1 ,
∂ k−1u
∂yk−1 ) boundary condition on da(x,y, t). Suppose that the above boundary value problem has a unique

solution.

So, for the manifold M = {lc(x,y, t) = ∞,Lc(x,y, t,u,
∂u
∂x
, ∂u

∂
, ..., ∂ ku

∂xk ,
∂ ku
∂yk ) = 0} there exist a smooth bijective transformation that maps the

manifold M into

M∗ = {l∗c (x
∗,y∗, t∗) = ∞,L∗

c(x
∗,y∗, t∗,u,

∂u

∂x∗
,

∂u

∂
, ...,

∂ k∗u

∂ (x∗)k∗
,

∂ k∗u

∂ (y∗)k∗
) = 0}.

Definition 6.1. The symmetry Q which has the form (6.1) is allowed by the boundary value problem (6.2)-(6.4) if:

• Q(k)(ut −F(x,y,u, ∂u
∂x
, ∂u

∂y
, ..., ∂ ku

∂xk ,
∂ ku
∂yk )) = 0 for ut = F(x,y,u, ∂u

∂x
, ∂u

∂y
, ..., ∂ ku

∂xk ,
∂ ku
∂yk );

• Qda(x,y, t) = 0 for da(x,y, t) = 0, a = 1, ..., p;

• Q(k)Ba(x,y, t,u,
∂u
∂x
, ∂u

∂y
, ..., ∂ ku

∂xk ,
∂ ku
∂yk ) = 0 for Ba(t,x,y,u,

∂u
∂x
, ∂u

∂y
, ..., ∂ ku

∂xk ,
∂ ku
∂yk ) = 0 on da(x,y, t) = 0, a = 1, .., p;

• there exist a smooth bijective transformation that maps the manifold M into M∗ of the same dimensionality;

• Q∗l∗c (x
∗,y∗, t∗) = 0 for l∗c (x

∗,y∗, t∗) = 0, c = 1, ..., p∞;

• Q∗
(k∗)Lc(x,y, t,u,

∂u
∂x
, ∂u

∂y
, ..., ∂ ku

∂xk ,
∂ ku
∂yk ) = 0 for lc(x,y, t) = ∞, c = 1, ...,r.

Let us consider our fractional partial differential equation (1.1) with α = 1, which defined on the domain 0 ≤ t < ∞, x > 0, and y > 0 with

initial and boundary conditions

ut +Pnun−1(ux +uy) = nRg(t)(un−1(uxx +uyy +(n−1)un−2((ux)
2 +(uy)

2)), n > 1, P,R 6= 0 (6.5)

u(x,y,0)−→ ∞, (x,y) ∈ R
+×R

+,

u(0,0, t) = Φ(t), t ∈ [0,∞],
u(x,y, t)(x,y)→(0,0) −→ ∞, t ∈ [0,∞].

The problem (6.5) for g(t) = et with boundary and initially conditions is not invariant. But it is invariant for g(t) = 1 and g(t) = tb, b > 0.

As we found before the equation (1.1) with g(t) = tb has an infinitesimal generator

X = (c1 + c2x)
∂

∂x
+(c3 + c2y)

∂

∂y
+ c2

t

b

∂

∂ t
+ c2

b−α

b(n−1)
u

∂

∂u
.

So, after applying X to boundary condition as ξ1(0) = 0 for x= 0 and ξ2(0) = 0 for y= 0 we get c1 = c3 = 0 and c2

(

b−1
b(n−1)

Φ(t)− t dΦ
dt

)

= 0,

where Φ(t) = Kt
b−1
n−1 , K is arbitrary constant.

According above definition let assume t∗ = t, x∗ = 1/x, y∗ = 1/y, and u∗ = u bijective transformation which maps M = {x → ∞,y → ∞,u →

∞} to M∗ = {x∗ → 0,y∗ → 0,u∗ → 0}. This transformation maps the infinitesimal operator X to X∗. Thus, X = x ∂
∂x

+y ∂
∂y

+ t
b

∂
∂ t
+ b−1

b(n−1)
∂
∂u

infinitesimal operator with X∗ = −x∗ ∂
∂x∗

− y∗ ∂
∂y∗

+ t∗

b
∂

∂ t∗
− b−1

b(n−1)
u∗ ∂

∂u∗
leaves invariant the equation (6.5) with boundary and initially

conditions:
u(t,x,y)t→0 −→ ∞, (x,y) ∈ R

+×R
+,

u(t,0,0) = Kt
b−1
n−1 , t ∈ [0,∞],

u(t,x,y)(x,y)→(0,0) −→ ∞, t ∈ [0,∞].

Which give us u = t
b−1
n−1 f (r1,r2), where r1 =

x
tb , r2 =

y

tb transformation, after applying that we get










b−1
n−1

f −b(r1 fr1
+ r2 fr2

)+nP f n−1( fr1
+ fr2

)−R(n f n−1( fr1r1
+ fr2r2

)+n(n−1) f n−2( f 2
r1
+ f 2

r2
)) = 0,

f (r1,r2)(r1 ,r2)→(0,0) −→ 0,
lim

(r1 ,r2)−→(∞,∞)
f (r1,r2) = K,

boundary value problem of partial differential equation with two independent variable.

And the equation (1.1) with g(t) = 1 have an infinitesimal generator

X = c1
∂

∂x
+ c2

∂

∂y
+(c3t + c4)

t

b

∂

∂ t
+ c4

1

1−n

∂

∂u
.

Thus, as ξ1(0) = 0 for x = 0, ξ2(0) = 0 for y = 0, and τ(0) = 0 for t = 0 we get

c1 = 0, c2 = 0, c4 = 0, and c3

(

1

1−n
Φ(t)− t

dΦ

dt

)

= 0.

So, Φ(t) =Ct
1

1−n , C is arbitrary constant. According above, the X = t ∂
∂ t
+ 1

1−n
∂
∂u

with X∗ = t∗ ∂
∂ t∗

− 1
1−n u∗ ∂

∂u∗
infinitesimal operator leaves

invariant the equation (6.5) with boundary and initially conditions:

u(t,x,y)t→0 −→ ∞, (x,y) ∈ R
+×R

+,

u(t,0,0) =Ct
1

1−n , t ∈ [0,∞],
u(t,x,y)(x,y)→(0,0) −→ ∞, t ∈ [0,∞].

Which give us u = t
1

1−n h(x,y) transformation, after applying that we get










1
1−n

h+nPhn−1(hx +hy)−R(nhn−1(hxx +hyy)+n(n−1)hn−2(h2
x +h2

y)) = 0,
h(x,y)(x,y)→(0,0) −→ 0,

lim
(x,y)−→(∞,∞)

h(x,y) =C,

boundary value problem of partial differential equation with two independent variable.
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7. Conclusion

In this work, we presented the application of Lie group analysis to study time-fractional nonlinear generalized Burgers’ differential equations.

So, we found some exact solutions of nonlinear generalized Burgers’ differential equation with fractional derivative here we used the method

of Lie groups method. Also, we obtained the conservation laws for corresponding cases of the function g(t). After applying the Lie groups

we got boundary value problems with reduced dimension for special cases of g(t). Moreover we defined conditions which leave invariant the

boundary value problem (1.1)-(1.2) for g(t) = tλ and g(t) = 1 with α = 1. The symmetry method on fractional boundary value problem is

our future research.
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Abstract

In this paper, we have obtained spinor with two complex components representations of

Involute Evolute curves in E3. Firstly, we have given the spinor equations of Frenet vectors

of two curves which are parameterized by arc-length and have an arbitrary parameter.

Moreover, we have chosen that these curves are Involute Evolute curves and have matched

these curves with different spinors. Then, we have investigated the answer of question

”How are the relationships between the spinors corresponding to the Involute Evolute curves

in E3?”. Finally, we have given an example which crosscheck to theorems throughout this

study.

1. Introduction

The theory of spinors, especially used in applications to electron spin and theory of relativity in quantum mechanics, was expressed by B.

L. van der Waerden in 1929. The introduction of spinors is one of the most difficult topics in quantum mechanics. Even if the spin-1/2 is

considered, some fundamental sections of spinors, such as the effects of rotation on spinors, turn out to be difficult to explain. Spinors appear

to be closely related to the theory of the electromagnetic theory. According to physicists spinors are multilinear transformations. Thanks to

this feature, spinors are mathematical entities somewhat like tensors and allow a more general treatment of the notion of invariance under

rotation and Lorentz boosts. Spinors can also be used without reference to relativity, but they arise naturally in discussions of the Lorentz

group. Moreover, for a spinor it can be say that it is the most basic sort of mathematical object that can be Lorentz-transformed, [1]-[3]. On the

other hand, the basic knowledge of spinor theory is based on earlier years, indeed, if we consider the relationship between spinors and Euler’s

parameters it is date back to 1776. Spinors are vectorial objects and there is no their multilinear features for mathematicians. Also, spinors

have one-index. In discussing vectors and tensors there are two ways in which we can proceed; the geometrical and analytical. To use the geo-

metrical approach, we describe each kind of quantity in terms of its magnitudes and directions; in the analytical treatment, we use components.

Spinors were first studied by Elie Cartan in a geometrical sense. Cartan was one of the founders of Lie group theory which is one of the most

important topics of mathematics and which has many physical applications. So, Cartan’s study is a very impressive reference in terms of the

geometry of the spinors since this gives the spinor representation of the basic geometric definitions [1]. In geometrical meaning, another

study was made by Vivarelli. In that study, Vivarelli established a one-to-one linear relationship between the quaternions and spinors. In

addition, using the relationship between the rotations in quaternions and three-dimensional Euclidean space, Vivarelli actually obtained the

spinor representation of the rotations in Euclidean space, [4]. Castillo, on the other hand, examined the spinor formulation of the curve

theory, one of the important subjects of differential geometry. In that study, Castillo gave a spinor corresponding to a mutually orthogonal

vector triads in three-dimensional Euclidean space and thus obtained a spinor representation of the Frenet frame and curvatures of a curve,

[5]. Based on that study, Kişi and Tosun obtained the spinor formulation of the Darboux frame on a directed surface in three-dimensional

Euclidean space, [6]. Similarly, in [7], the spinor Bishop equations of the curves in E3 have been expressed.

Ketenci et. al investigated the answer of question ”How does a spinor correspond to a mutually orthogonal vector triad in three dimensional

Minkowski space E3
1?”. Thus, they introduced hyperbolic spinors. Based on this, they matched the hyperbolic spinors which have hyperbolic

components up with Frenet frame of a curve in Minkowski space E3
1, [8]. Then, Erişir et. al obtained the spinor representation of the Bishop

frame, an alternative frame, of a curve in the three-dimensional Minkowski space, and the spinor formulation of the relationship between

Email addresses and ORCID numbers: tulay.erisir@erzincan.edu.tr, https://orcid.org/0000-0001-6444-1460 (T. Erişir), Neslihan.2424@outlook.com,

https://orcid.org/0000-0002-8505-3819 (N. C. Kardaǧ)
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Frenet frame and Bishop frame, [9]. Also, the Darboux frame on the oriented surface in E3
1 was obtained by the aid of hyperbolic spinors,

[10]. Moreover, in [11] Tarakçıoǧlu et. al considered the Vivarelli’s study and they gave a different approach to the relationship between

the split quaternions and rotations in Minkowski space R3
1. In addition, they obtained an automorphism of the split quaternion algebra H’

corresponding to a rotation in R3
1. Then, they gave the relationship between the hyperbolic spinors and rotations in R3

1.

In this paper, we have studied on spinors with two complex components and we have given spinor representations of Involute Evolute curves

in E3. Firstly, we have introduced spinor representation of Frenet vectors of any unit-speed curve in three dimensional Euclidean space

E3. Then, we have obtained spinor equations of the curve which is not parameterized by arc-length and considered the Involute Evolute

curves corresponding the different spinors. Thus, we have investigated the answer of question ”How are the relations between the spinors

corresponding to the Involute Evolute curves in E3?”. Finally, we have given an example.

2. Preliminaries

2.1. Involute Evolute curves in E3

It is well known that if a curve is differentiable at the each point of an open interval then a set of mutually orthogonal unit vectors can be

constructed. These vectors are called tangent T, normal N and binormal B unit vectors or the Serret-Frenet frame, collectively. So, let us

consider that the regular curve (α) which is the differentiable function so that α : I → E3, (I ⊆ R) has the arbitrary parameter t. Moreover,

for ∀t ∈ I the Frenet vectors on the point α(t) of the curve (α) are given by {T(t),N(t),B(t)}. So, these Frenet vectors are obtained by the

following equations

T = 1
‖α ′‖α ′

,

N = B×T,

B = 1
‖α ′×α ′′‖ (α

′×α ′′)

where ” ′ ” is the derivative with respect to arbitrary parameter t, κ and τ are the curvature and torsion of this curve (α), [12].

Moreover, the Frenet derivative formulas of this curve (α) are given by

T′ = ‖α ′‖κN,

N′ = ‖α ′‖(−κT+ τB) ,
B′ =−‖α ′‖τN,

(2.1)

[12].

Now, we know that if there is equation ‖α ′ (s)‖= 1 for ∀s ∈ I on the point α(s) of the curve α : I → E3, (I ⊆ R), the curve (α) is called as

the curve parameterized by arc-length parameter s. So, the Frenet vectors of the curve (α) parameterized by arc-length parameter can be

obtained by

T = α ′
,

N = 1
‖α ′′‖α ′′

,

B = T×N

(2.2)

where ” ′ ” is the derivative with respect to arc-length parameter s. Moreover, the Frenet formulas of this curve are as

T′ = κN,

N′ =−κT+ τB,

B′ =−τN,

(2.3)

[12].

The Involute Evolute curves in E3 are well known and one of the most studied curve pairs in elementary differential geometry. So, for the

Involute Evolute curves, the following definition and theorems can be given.

Definition 2.1. Let the curve α : I → E3 be parameterized by arc-length parameter and the curve β : I → E3 be any curve which has an

arbitrary parameter. Moreover, the Frenet frames of these curves (α) and (β ) are considered that {T,N,B} and {T∗
,N∗

,B∗}, respectively.

So, if there is equation

〈T, T∗〉= 0,

then the curve (β ) is called the involute of the curve (α) and the curve (α) is called the evolute of the curve (β ), [12].

Theorem 2.2. Let the curve β ,α : I → E3 be consider Involute Evolute curves, respectively. Then, the distance between mutual points of

these curves is

d(α(s), β (s)) = |c− s| .

So, it can be written

β (s) = α(s)+(c− s)T(s), (2.4)

[12].
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Theorem 2.3. Let the Frenet frames of the Involute Evolute curves (β ,α) be {T∗
,N∗

,B∗} and {T,N,B}, respectively. So, the relationship

between these Frenet frames is

T∗ = N,

N∗ = 1√
κ2+τ2

(−κT+ τB,)

B∗ = 1√
κ2+τ2

(τT+κB,)

(2.5)

[12].

Theorem 2.4. Let the Frenet curvatures of the Involute Evolute curves (β ,α) be κ∗
,τ∗ and κ,τ , respectively. So, the relationship between

these Frenet curvatures is

κ∗ =
√

κ2+τ2

|(c−s)κ|
τ∗ = κτ ′−κ ′τ

|(c−s)κ|(κ2+τ2)

[12].

2.2. Spinors

In this section, spinors introduced by Cartan [1], which is a basic study in geometric sense, are given. Afterwards, the spinors in the study

given by Del Castillo and Barrales are mentioned, [5].

Consider that x = (x1, x2, x3) ∈ C3 is the isotropic vector and C3 is the three-dimensional complex vector space. So, we obtain

x1
2 + x2

2 + x3
2 = 0. The set of isotropic vectors in the vector space C3 forms a two-dimensional surface in the space C2. If this

two-dimensional surface is parameterized by ξ1 and ξ2 coordinates, then x1 = ξ1
2 −ξ2

2
, x2 = i(ξ1

2 +ξ2
2), x3 =−2ξ1ξ2 is obtained. It is

seen from the solution of this equation that ξ1 =±
√

x1−ix2

2 , ξ2 =±
√

−x1−ix2

2 . It is seen that; in the complex vector space C3, each isotropic

vector corresponds to two vectors, (ξ1, ξ2) and (−ξ1, −ξ2) in the space C2. Conversely; both vectors so given in space C2 correspond to

the same isotropic vector x. Cartan expressed that the two-dimensional complex vectors ξ = (ξ1, ξ2) described in this way are called as

spinors. In addition, Cartan emphasized that spinors are not only two-dimensional complex vectors, but also represent a three-dimensional

complex isotropic vectors, [1].

Consider the SO(3), the group of rotations around the origin in the three-dimensional real vector space R3, and the SU (2), the group

of 2x2 dimensional unitary matrices. As is known, the SO(3) group is homomorphic to the SU (2) group, [5, 13, 14]. By means of this

homomorphism and spinors introduced by Cartan, the isotropic vector a+ ib is matched with spinor

ξ =

(
ξ1

ξ2

)

where a, b ∈ R3. So, we have x1 = ξ1
2 −ξ2

2
, x2 = i(ξ1

2 +ξ2
2) and x3 =−2ξ1ξ2 where a+ ib = (x1, x2, x3) ∈ C3, [1, 5]. As it is known,

Pauli matrices form a basis for 2x2-dimensional Hermitian and unitary matrices. Using the Pauli matrices and the matrix C =

(
0 1

−1 0

)
,

the matrices σ are generated as σ1 =

(
1 0

0 −1

)
, σ2 =

(
i 0

0 i

)
and σ3 =

(
0 −1

−1 0

)
, [5, 15]. On the other hand, the mate ξ̂ of

the spinor ξ is obtained as

ξ̂ =−
(

0 1

−1 0

)
ξ =−

(
0 1

−1 0

)(
ξ1

ξ2

)
=

(
−ξ2

ξ1

)
.

Throughout this information, we obtain that

a+ ib = ξ tσξ ,

c =−ξ̂ tσξ

where a+ ib is the isotropic vector in the space C3 and c ∈ R3, [5].

When necessary operations are considered, it is seen that the vectors a, b and c are equal in length and these vectors are mutually orthogonal,

[5]. Moreover, the following proposition can be given.

Proposition 2.5. Let two arbitrary spinors be ξ and φ . Then, the following statements are hold;

i) φ tσξ =−φ̂ tσξ̂

ii) ̂λφ +µξ = λ φ̂ +µξ̂

iii) ˆ̂ξ =−ξ
iv) φ tσξ = ξ tσφ

where λ , µ ∈ C, [5].
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Now, let a curve parameterized by arc-length be α : I → E3, (I ⊆ R). So, ‖α ′ (s)‖= 1 where s is the arc-length parameter of the curve (α).
Moreover, we consider that the Frenet vectors of this curve are {N,B,T} and the spinor ξ corresponds to the Frenet vectors {N,B,T}. Thus,

the following equations

N+ iB = ξ tσξ = (ξ1
2 −ξ2

2
, i(ξ1

2 +ξ2
2), −2ξ1ξ2),

T =−ξ̂ tσξ = (ξ1ξ2 +ξ1ξ2, i(ξ1ξ2 −ξ1ξ2), |ξ1|2 −|ξ2|2)
(2.6)

can be written where ξ
t
ξ = 1 since these vectors are mutually orthogonal, [5]. Moreover, the following theorem can be given.

Theorem 2.6. If the spinor ξ with two complex components represents the triad {N,B,T} of a curve parameterized by its arc-length s the

Frenet equations are equivalent to the single spinor equation

dξ

ds
=

1

2
(−iτξ +κξ̂ )

where κ and τ denote the curvature and torsion of the curve, respectively, [5].

3. Main theorems and proofs

In this section, first of all, we have expressed that the spinor representations of each Frenet vectors {N,B,T} of a unit-speed curve (α),
separately. In addition that, we have considered that the curve (β ) which has not arc-length parameter and a different spinor is corresponded

to the Frenet vectors {N∗
,B∗

,T∗} of this curve. Moreover, we have given the spinor equations of this curve. Then, we have regarded that

the curves (β ,α) are Involute Evolute curves and obtained the relationship between spinors corresponding to these curves with theorems.

Finally, we have given an example.

Let α : I → E3 be arbitrary unit-speed curve and the Frenet vectors of this curve be {N,B,T}. So, the following theorem can be given.

Theorem 3.1. Let the Frenet vectors of the unit-speed curve α : I → E3 be {N,B,T}. We assume that the spinor ξ is corresponded to this

curve (α), So, the spinor equations of these Frenet vectors are

T =−ξ̂ tσξ ,

N = 1
2

(
ξ tσξ − ξ̂ tσξ̂

)
,

B =− i
2

(
ξ tσξ + ξ̂ tσξ̂

)
.

Proof. Let the spinor ξ be correspond to the Frenet curve {N,B,T} of unit-speed curve (α). Then, considering the equations (2.2) and (2.6)

for the tangent vector on the point α (s) of (α) the following equation

T = α ′ =−ξ̂ tσξ (3.1)

can be written. If we calculate the derivative of the equation (3.1) and make necessary arrangement, we obtain that

α ′′ =
κ

2

(
ξ tσξ − ξ̂ tσξ̂

)
.

On the other hand, let us consider the equation (2.2), So, we obtain that the spinor equation of the normal vector N of the curve (α) is obtain

that

N =
1

2

(
ξ tσξ − ξ̂ tσξ̂

)
. (3.2)

Similarly, using the equations (2.3), (3.1) and (3.2), we have

N′ =
1

2

[
−iτ

(
ξ tσξ + ξ̂ tσξ̂

)
+2κξ̂ tσξ

]

and

1

2

[
−iτ

(
ξ tσξ + ξ̂ tσξ̂

)
+2κξ̂ tσξ

]
=−κ

(
−ξ̂ tσξ

)
+ τB.

And finally, the spinor equation of the binormal tangent of the curve (α) is

B =− i

2

(
ξ tσξ + ξ̂ tσξ̂

)
. (3.3)

So, the proof ends.

Indeed, if we consider the first equality in the equation (2.6), we see that N = Re(ξ tσξ ) and B = Im(ξ tσξ ). So, considering complex

numbers we obtain that

N = 1
2

(
ξ tσξ +ξ tσξ

)
,

B =− i
2

(
ξ tσξ −ξ tσξ

)
.



152 Fundamental Journal of Mathematics and Applications

Finally, using the Proposition 2.5, we reach the equations (3.2) and (3.3).

Moreover, the spinor equations of these vectors can be written in terms of components as follows since they will be used operations after that

T =
(

ξ1ξ2 +ξ1ξ2, i(ξ1ξ2 −ξ1ξ2), |ξ1|2 −|ξ2|2
)
,

N = 1
2

(
ξ1

2 −ξ2
2 −ξ2

2
+ξ1

2
, i
(

ξ1
2 +ξ2

2 −ξ1
2 −ξ2

2
)
,−2ξ1ξ2 −2ξ1ξ2

)
,

B =− i
2

(
ξ1

2 −ξ2
2 +ξ2

2 −ξ1
2
, i
(

ξ1
2 +ξ2

2 +ξ1
2
+ξ2

2
)
,−2ξ1ξ2 +2ξ1ξ2

)
.

(3.4)

On the other hand, let us take any curve (β ) which is not parameterized by arc length. Moreover, let the Frenet vectors of this curve be

{N∗
, B∗

,T∗} and the different spinor corresponding the curve (β ) be φ . So, similar to the equation (2.6), we can write

N∗+ iB∗ = φ tσφ ,

T∗ =−φ̂ tσφ .

So, the spinor equations of this curve (β ) can be written by components as

T∗ = (φ1φ2 +φ1φ2, i(φ1φ2 −φ1φ2), |φ1|2 −|φ2|2),
N∗ = 1

2

(
φ1

2 −φ2
2 +φ1

2 −φ2
2
, i
(

φ1
2 +φ2

2 −φ1
2 −φ2

2
)
,−2

(
φ1φ2 +φ1φ2

))
,

B∗ =− i
2

(
φ1

2 −φ2
2 +φ2

2 −φ1
2
, i
(

φ1
2 +φ2

2 +φ1
2
+φ2

2
)
,−2

(
φ1φ2 −φ1φ2

))
(3.5)

for the curve (β ). In addition that, the equation (3.5) provides the equation (2.1). So, we can give the following theorem.

Theorem 3.2. Let the Frenet vectors of the curve (β ) which is not parameterized by arc length be {N∗
, B∗

,T∗} and the spinor corresponding

to this curve be φ . So, the Frenet equation of this curve in terms of a single spinor equation is written by

dφ

ds
=

‖β ′‖
2

(−iτ∗φ +κ∗φ̂).

Proof. Let the Frenet vectors {N∗
, B∗

,T∗} of the curve (β ) be correspond to the spinor φ . We know that
{

φ , φ̂
}

is the basis for the spinor

with two complex components. So, it can be written

dφ

ds
= f φ +gφ̂ (3.6)

where the functions f and g are arbitrary, complex-valued functions. On the other hand, using the equations (2.1), (3.5) and (3.6) we obtain

that

∥∥β ′∥∥(−κ∗T∗− iτ∗ (N∗+ iB∗)) = 2 f (N∗+ iB∗)−2gT∗
.

So, we have

f =
−iτ∗ ‖β ′‖

2
, g =

κ∗ ‖β ′‖
2

. (3.7)

Finally, if we consider the equations (3.6) and (3.7), we obtain that the Frenet vectors of the curve (β ) in terms of a single spinor equation as

dφ

ds
=

‖β ′‖
2

(−iτ∗φ +κ∗φ̂)

where κ∗ and τ∗ are curvature and torsion of curve (β ).

Now, we express the spinor representation of Involute Evolute curves. Let us consider the curves α, β : I → E3 and the Frenet vectors

{T, N, B} and {T∗
, N∗

, B∗} of the curves (α) and (β ), respectively. Moreover, the curves (β , α) are considered that Involute Evolute

curves and the spinors φ and ξ are corresponded to the Involute Evolute curves (β , α), respectively. So, we can give the following theorem.

Theorem 3.3. Let the curves β ,α : I →E3 be Involute Evolute curves which have the Frenet vectors {N∗
, B∗

,T∗} and {N,B,T}, respectively.

Moreover, the spinors corresponding to the Frenet vectors of these curves (α) and (β ) are considered as ξ and φ , respectively. So, the

relationship between the spinor equations of Involute Evolute curves is

φξ
t
φ =Cφφ

t
ξ̂

where C =

(
0 1

−1 0

)
.

Proof. We consider that the curves α, β : I → E3 are Involute Evolute curves which have the Frenet vectors {N,B,T} and {N∗
, B∗

,T∗},

respectively. So, we know that relationship between the tangent vectors of these curves is 〈T, T∗〉= 0. Thus, using this relation and the first

equations in the equations (3.4), (3.5), we obtain

(
ξ1ξ2 +ξ1ξ2

)(
φ1φ2 +φ1φ2

)
− (ξ1ξ2 −ξ1ξ2)(φ1φ2 −φ1φ2)+

(
|ξ1|2 −|ξ2|2

)(
|φ1|2 −|φ2|2

)
= 0
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and

2ξ1ξ2φ1φ2 +2ξ1ξ2φ1φ2 + |ξ1|2|φ1|2 −|ξ1|2|φ2|2 −|ξ2|2|φ1|2 + |ξ2|2|φ2|2 = 0. (3.8)

Also, if the equation (3.8) is written as matrix product, the following equation can be written

(
ξ1 ξ2

)( φ1

φ2

)(
ξ1 ξ2

)( φ1

φ2

)
+
(

ξ1 ξ2

)( φ2

−φ1

)(
φ1 φ2

)( ξ2

−ξ1

)
= 0

where the spinors ξ and φ are written as column matrix like these ξ =

(
ξ1

ξ2

)
and φ =

(
φ1

φ2

)
. Finally, we have

φξ
t
φ =Cφφ

t
ξ̂

where C =

(
0 1

−1 0

)
.

So, we obtain the spinor equations of Involute Evolute curves. After that, we will call the spinors corresponding to Involute Evolute curves as

Involute Evolute spinors. The other relationship between Involute Evolute spinors can be given following theorem.

Theorem 3.4. Let the curves β ,α : I → E3 be Involute Evolute curves and the spinors corresponding to the Frenet vectors of these curves

are considered as φ and ξ , respectively. So, the relationship between Involute Evolute spinors is

ξ tφξ
t
φ =

1

2
.

Proof. We know that for the spinors ξ and φ there is relationship |ξ1|2+ |ξ2|2 = 1 and |φ1|2+ |φ2|2 = 1 since the Frenet vectors corresponding

to these spinors are unit vectors. So, we can write

(
|ξ1|2 + |ξ2|2

)(
|φ1|2 + |φ2|2

)
= 1.

So, we have

|ξ1|2|φ1|2 + |ξ1|2|φ2|2 + |ξ2|2|φ1|2 + |ξ2|2|φ2|2 = 1. (3.9)

If we use the equations (3.8) and (3.9), we obtain

(
ξ1φ1 +ξ2φ2

)(
ξ2φ2 +ξ1φ1

)
=

1

2
.

Moreover, if the last equation is written by matrix product by the help of ξ =

(
ξ1

ξ2

)
,φ =

(
φ1

φ2

)
, the equation can be obtain

ξ tφξ
t
φ =

1

2
.

Now, the expression of the Involute Evolute spinors in terms of each other can be written as follows.

Theorem 3.5. Let the spinors φ and ξ be Involute Evolute spinors. So, the expression of spinor φ in terms of the spinor ξ is

φ1
2 = κ−iτ

2
√

κ2+τ2

(
ξ1 − ξ̄2

)2

φ2
2 = κ−iτ

2
√

κ2+τ2

(
ξ̄1 +ξ2

)2 .

Proof. We consider that the equations (3.4) and (3.5) are written in the second equation of (2.5). So, we find the equations

1

2

(
φ1

2 −φ2
2 − φ̄ 2

2 + φ̄ 2
1

)
=

1√
κ2 + τ2

(
−κ

(
ξ1ξ2 +ξ1ξ2

)
− i

τ

2

(
ξ1

2 −ξ2
2 +ξ2

2 −ξ1
2
))

, (3.10)

1

2

(
φ1

2 +φ2
2 − φ̄ 2

1 − φ̄ 2
2

)
=

1√
κ2 + τ2

(
−κ

(
ξ1ξ2 −ξ1ξ2

)
− i

τ

2

(
ξ1

2 +ξ2
2 +ξ1

2
+ξ2

2
))

(3.11)

and

−φ1φ2 − φ̄1φ̄2 =
1√

κ2 + τ2

(
−κ

(
ξ1ξ̄1 −ξ2ξ2

)
+ iτ

(
ξ1ξ2 −ξ1ξ2

))
. (3.12)

Similarly, if the equations (3.4) and (3.5) are written in the third equation of (2.5), we find that

− i

2

(
φ1

2 −φ2
2 + φ̄ 2

2 − φ̄ 2
1

)
=

1√
κ2 + τ2

(
τ
(

ξ1ξ2 +ξ1ξ2

)
− i

κ

2

(
ξ1

2 −ξ2
2 +ξ2

2 −ξ1
2
))

, (3.13)
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− i

2

(
φ1

2 +φ2
2 + φ̄ 2

1 + φ̄ 2
2

)
=

1√
κ2 + τ2

(
τ
(

ξ1ξ2 −ξ1ξ2

)
− i

κ

2

(
ξ1

2 +ξ2
2 +ξ1

2
+ξ2

2
))

(3.14)

and

i
(
φ1φ2 − φ̄1φ̄2

)
=

1√
κ2 + τ2

(
τ
(

ξ1ξ̄1 −ξ2ξ2

)
− iκ

(
−ξ1ξ2 +ξ1ξ2

))
. (3.15)

If we consider the equations (3.10) and (3.13), we obtain

φ1
2 −φ2

2 =
κ − iτ

2
√

κ2 + τ2

((
ξ1 −ξ2

)2
−
(

ξ1 +ξ2

)2
)
.

Similarly, from the equations (3.11) and (3.14), we have

φ1
2 +φ2

2 =
κ − iτ

2
√

κ2 + τ2

((
ξ1 −ξ2

)2
+
(

ξ1 +ξ2

)2
)
.

Finally, from the equations (3.12) and (3.15), we get

φ1φ2 =
κ − iτ

2
√

κ2 + τ2

(
ξ1 −ξ2

)(
ξ1 +ξ2

)
.

So, we can write

φ1
2 = κ−iτ

2
√

κ2+τ2

(
ξ1 − ξ̄2

)2
,

φ2
2 = κ−iτ

2
√

κ2+τ2

(
ξ̄1 +ξ2

)2
.

Now, we give an example.

Example 3.6. Let the unit-speed curve α : I → E3 be α (s) =
(

1√
2

coss, 1√
2

sins, 1√
2

s
)

. So, if we use the equation (2.2), for the Frenet

vectors {T,N,B} of the curve (α), we calculate as

T(s) =
(
− 1√

2
sins, 1√

2
coss, 1√

2

)
,

N(s) = (−coss,−sins, 0) ,

B(s) =
(

1√
2

sins, − 1√
2

coss, 1√
2

)
.

(3.16)

Moreover, from the equation (2.3) we obtain the curvature and torsion of this curve as

κ =
1√
2
, τ =

1√
2
.

Now, we consider that the Frenet vectors {N,B,T} are corresponded to the spinor ξ . So, from the equations (3.4) and (3.16), we get

ξ1 =
1
2

√
2+

√
2

2

(√
1− coss+ i

√
1+ coss

)
,

ξ2 =− 1
2

√
2+

√
2

2

(√
1+ coss+ i

√
1− coss

)
,

In addition that, from Theorem 2.6, we have
dξ
ds =

√
2

4

(
−iξ + ξ̂

)
.

Now, we regard that the involute curve of unit-speed curve (α) is (β ) which has not arc-length parameter. So, if we look the equation (2.4),

then the curve (β ) is written by

β (s) =
1√
2
(coss− (c− s)sins,sins+(c− s) coss,c) .

Then, we obtain the Frenet vectors and curvature, torsion of this curve

T∗ (s) = (−coss,−sins,0) ,
N∗ (s) = (sins,−coss,0) ,
B∗ (s) = (0,0,1)

and

κ∗ =

√
2

(c− s)
, τ∗ = 0.

Finally, we get the spinor corresponded to involute curves

φ1 =
1
2

(√
1+ sins+ i

√
1− sins

)
,

φ2 =− 1
2

(√
1− sins+ i

√
1+ sins

)
.

So, the Frenet equation of this curve in terms of a single spinor equation is written by
dφ
ds = 1

2 φ̂ .
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Abstract

We study directed Baire spaces and their relevant topological properties. A characterization

of directed Baire spaces is given using point finite family of Gδ−sets. Further, we prove

that the product of directed Baire space with a metric hereditarily directed Baire space is a

downward-directed Baire space. Finally, it is established that the product of a Baire space

with a hereditarily metric Volterra space is again a Volterra space.

1. Introduction

A topological space X is a Baire space (resp. second category) if intersection of any sequence of dense open subsets of X is dense (resp.

non-empty). It follows from the definition that the intersection of countably many dense Gδ−sets of Baire space (resp. second category) X

must be dense (resp. non-empty) in X [1]. The properties of Baire spaces and characterizations are studied in [2]. A family B of non-empty

open subsets of a topological space is said to be pseudo base [3] (π −base) if every non-empty open set contains at least one member of B.
A space X is called a P−space [4] if every countable intersection of open subsets of X is open. A directed set [5](or a directed preorder or a

filtered set) is a non-empty set ∆ together with a reflexive and transitive binary relation ≤ (that is, a preorder), with the additional property

that every pair of elements has an upper bound. In other words, for any a and b in ∆, there must exists a c ∈ ∆ with a ≤ c and b ≤ c. In this

article, we consider only the directed set in which every two elements of it are comparable. A space X is a directed Baire space if intersection

of family of dense Gδ−subsets {Dα | α ∈ ∆} of X is dense and weakly directed Baire space if intersection of family of dense Gδ−subsets

{Dα | α ∈ ∆} of X is non-empty where ∆ is a directed set. A space X is called downward-directed Baire space if intersection of the family of

decreasing dense Gδ−subsets {Dα | α ∈ ∆} of X is dense, where ∆ is a directed set. The following Example 1.1 shows the existence of

directed Baire spaces.

Example 1.1. Consider X = [0,∞) with the topology having B = {[0,a) | a 6= 0 ∈ X} as its basis. In this space, the intersection of any

family of dense Gδ−subsets of X is dense.

By definition itself it is clear that every directed Baire space is Baire, but there are Baire spaces which are not directed Baire, refer Example

1.2.

Example 1.2. Consider R with usual metric. Since R is a complete metric space, it is a Baire space and hence second category. Since

Q∪{α} is countable and each singleton sets of R is closed, Q∪{α} is an Fσ−set and its complement is a dense Gδ−subset of R for every

irrational α ∈ R. Hence there exists a family of dense Gδ−sets such that their intersection is not dense (in particular empty set) namely

(Q∪{α})c where α runs over irrationals. Hence R with usual metric is neither directed Baire space nor weakly directed Baire.

Also, by definition itself it is clear that every directed Baire space is weakly directed Baire, but the converse does not hold as shown by

Example 1.3.

Example 1.3. Consider R with the topology obtained from the basis B = {(a,b)| a,b ∈ R}∪{0}. Since every dense set contains {0}, the

intersection of every family of dense Gδ−sets is non-empty. For every irrational α ∈ R the set (Q−{0})∪{α} is countable, and each

Email addresses and ORCID numbers:renu−siva2003@yahoo.com, https://orcid.org/0000-0002-4185-5545 (V. Renukadevi), arti6arti@gmail.com, https://orcid.org/0000-

0001-7569-4623 (R. Thangamariappan)
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singleton sets of R is closed, the above defined set is an Fσ−set and its complement is a dense Gδ−subset. Hence there is a family of dense

Gδ−sets such that their intersection is not dense (which equals {0}) namely, (Q−{0}∪{α})c where α runs over irrationals. Hence this

topological space is weakly directed Baire, Baire and second category but not directed Baire.

Example 1.4. There is a space which is weakly directed Baire and hence second category but not Baire and directed Baire. Let X =Q∪(1,2)
where Q denotes the set of the rational numbers in (0,1) of the real line. Topologize X by the subbasis {{(a,b) | a,b ∈ (1,2)}∪Q}. Then X

is not Baire because the open set Q is of first category. But X is weakly directed Baire in itself as the open subset (1,2) is.

Example 1.5. Consider (X ,τ) where X = [0,∞) and the topology τ has {[a,∞)−F | a ∈ X and F is a finite subset of X} as its basis. By its

construction, it is of first category, so it is none of the Baire, second category, directed Baire and weakly directed Baire.

Example 1.6. There is a space which is second category but not weakly directed Baire, Baire and directed Baire. Topologize X =Q∪ (0,2)
by the subbasis {{(a,b) | a,b ∈ (0,2)}∪Q}. Since Q is a first category set, X fails to be a Baire space and so X is not a directed Baire

space. But X is of second category in itself as the open subset (1,2) is. Since Q is countable, {r1,r2,r3 . . .} be the sequential arrangements

of Q and I is the collection of all irrationals in (0,2). Define Hα
i = {ri}∪{I −{α}} where α is irrational in (0,2). {Hα

i | i ∈ N and α ∈ I}
is the collection of dense Gδ−sets in X whose intersection is empty.

Theorem 1.7. Every compact p−space X is a directed Baire space.

Proof. Suppose {Uα | α ∈ ∆} is a family of dense Gδ−subsets of X , and take U as an open subset of X . It is enough to show that

U ∩ (∩
α

Uα ) 6= /0. Since in a p−space, every Gδ−sets are open, it is possible to construct a non-empty open subset Vα of X such that

Vα ⊂ U ∩Uα . Defining recursively we have non-empty open subsets {Vα} of X such that Vα+1 ⊂ Vα ∩Uα+1, for each α and Vα+1 is

the successor of Vα . Suppose ∩
α

Vα = /0. Then define Wα = X − cl(Vα ), so that {Wα} is an open cover of X . As X is compact, we find a

finite sub-cover {Wα1
,Wα2

, ...Wαn
} such that {Wαk

} covers X . Since Wα = X −cl(Vα ) we have cl(Vα )⊂ int(X −Wα ) = X −cl(Wα ). Hence

Vα ⊂ X − cl(Wα ) for every α. But /0 =
n
∩

k=1
(X − cl(Wαk

))⊃
n
∩

n=1
Vαk

=Vαn
, which is a contradiction. Thus, /0 6= ∩

α
Vα ⊂U ∩ (∩

α
Uα ).

Corollary 1.8. Every submaximal compact space is a directed Baire space.

Proof. Since in submaximal spaces, every dense set is open, the proof follows.

Since every compact p−spaces are also Baire spaces, by Theorem 1.7, there are spaces which are Baire, directed Baire, weakly directed

Baire and second category. Example 1.2 shows that there are Baire spaces which are not weakly directed Baire space, Example 1.4 shows

that there are weakly directed Baire space which are neither Baire nor directed Baire spaces. The following arrow diagram shows the relation

between the four spaces namely, Baire, second category, directed Baire and weakly directed Baire.

Baire second category

directed Baire weakly directed Baire

Hence Baire, second category, directed Baire and weakly directed Baire are independent concepts.

2. Characterization for directed Baire space

The hereditary property of (resp. weakly) directed Baire spaces need not be true for arbitrary spaces. Here, we prove that for some classes of

subspaces, these properties are hereditary. This gives us a new characterization for directed Baireness of spaces.

Theorem 2.1. In a directed Baire space X , if H ⊂ X and A ⊂ H where A is a Gδ set implies that int(A) is dense in H, then H is a directed

Baire space.

Proof. Since int(A) is dense in H, we have H ⊂ (H ∩ intA). For, x ∈ H implies Ux ∩H 6= /0 for every neighborhood Ux of x. Therefore

y∈Ux∩H is a neighborhood of y in H, Since int(A) is dense in H, (Ux∩H)∩ int(A) 6= /0 so that Ux∩(H∩ int(A)) 6= /0. Hence H ⊂ (H ∩ intA).

Since A ⊂ H, A ⊂ H ⊂ H ∩ int(A). But A ⊂ H ⊂ H ∩ int(A)⊂ A. Therefore, A = H = H ∩ int(A).
Let {Dα : α ∈ ∆} be a family of dense Gδ−subsets in H. Then H ∩Dα = H for every α. Define A+ = A∪ (X −H), and D+

α = Dα ∪ (X −H)
for every α. Then A+ and D+

α are dense Gδ−sets in X for every α and X is directed Baire A+∩ (∩
α

Dα ) is dense in X . Hence (A∩ (∩
α

Dα ))∪

(X −H) is dense in X .

Now A = H implies int(A) ⊂ (A∩ (∩
α

Dα )). Suppose not, there is an element a ∈ int(A) with a /∈ (A∩ (∩
α

Dα )). That is, there exists Ua

such that Ua ∩ (A∩ (∩
α

Dα )) = /0. For every a ∈ int(A), there exists Va such that Va ∩ (X −H) = /0. Since a ∈ int(A), there exists an open

set Va,Va ⊂ A so that Va ⊂ H. Take Wa =Ua ∩Va. Then Wa ∩ ((A∩ (∩
α

Dα ))∪ (X −H)) = /0, which is a contradiction. H ⊂ (H ∩ int(A))⊂

(int(A))⊂ A∩ (∩
α

Dα )⊂ H ∩ (∩
α

Dα )⊂ H. Therefore, ∩
α

Dα is dense in H.

Remark 2.2. Observe that H satisfies the hypothesis of Theorem 2.1 if H is open or a regular closed or a dense Gδ subset of X.

Corollary 2.3. X is a directed Baire space if and only if each non-empty open subspace is a weakly directed Baire space.
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Proof. If X is directed Baire, then every non-empty open subspace is also directed Baire and hence weakly directed Baire. Conversely,

suppose that each non-empty open subspace is weakly directed Baire. Let {Dα | α ∈ ∆} be a family of dense Gδ−subsets of X . If O is

a non-empty open subset of X , then O∩Dα are Gδ−subsets of O which are dense in O. Then ∩
α
(O∩Dα ) 6= /0 so that O∩ (∩

α
Dα ) 6= /0.

Therefore, ∩
α

Dα is dense in X .

Remark 2.4. X is directed Baire if and only if each non-empty open subspaces U of X cannot be written as the union of any family of

nowhere dense Fσ−sets in U.

Theorem 2.5. If O is a family of open subsets of X whose union is dense in X , then the following hold.

(a) If there is some non-empty U1 ∈ O such that U1 is weakly directed Baire, then X is weakly directed Baire.

(b) If each member of O is directed Baire, then X is directed Baire.

Proof. (a) Let U1 be a weakly directed Baire set in O and {Oα | α ∈ ∆} be a family of dense Gδ−subsets of X . Then U1 ∩Oα are dense

Gδ−sets in U1. Since U1 is weakly directed Baire, ∩
α
(U1 ∩Oα ) 6= /0 in U1 which implies that U1 ∩ (∩

α
Oα ) 6= /0 so that ∩

α
Oα 6= /0. Hence X is

a weakly directed Baire space.

(b) Let V1 be a non-empty open subset of X and {Oα | α ∈ ∆} be a family of dense Gδ−subsets of X . Since ∪{U1 |U1 ∈ O} is dense in X ,
V1 ∩U1 6= /0 for some U1 ∈ O. By hypothesis, V1 ∩U1 is a weakly directed Baire subspace of U1. Now Oα ∩ (U1 ∩V1) are dense Gδ−sets of

U1 ∩V1, ∩
α

Oα ∩ (U1 ∩V1) 6= /0. Therefore, (∩
α

Oα )∩V1 6= /0. Hence X is directed Baire.

Now we characterize directed Baire spaces in terms of point finite Gδ−cover of X . A family U = {Uα | α ∈ I } is said to be point

finite in a topological space X if every point of X lies in only finite members of U , and it is locally finite at x ∈ X if every neighborhood of x

intersects only finite members of U .

Theorem 2.6. A space X is directed Baire if and only if every point finite Gδ−cover of X is locally finite at a dense set of points.

Proof. Let W = {Uα | α ∈ ∆} be a point finite Gδ−cover of X and U be a non-empty open subset of X . Assume that W is not locally finite

at any point of U. If V = {Vα}, Vα =Uα ∩U, then each open set in W intersects many members of V . Put F = {Fα | Fα ⊂ ∆ and ∆−Fα is

finite}. Let J be the index set of the family F . Now for each J ∈ J , define XJ = Bd(∪{Vβ | β ∈ FJ}). Each XJ is closed and int(XJ) = /0,
so that each XJ is nowhere dense. Let x ∈U. Since W = {Uα} is point finite, there exists a J′ ∈ J such that x belongs to the members of

{Vα | α ∈ ∆−FJ′}, but no other members of V . So x 6∈ ∪{Vβ | β ∈ FJ′}. If V is an open set containing x, then V intersects some members

of {Vβ | β ∈ FJ′}, since V = {Vα} is not locally finite at any point of U. Since x 6∈ ∪{Vβ | β ∈ FJ′}, x ∈ XJ′ . Hence U = ∪(U ∩XJ), which

is a contradiction, by Remark 2.4. Conversely, let U be a non-empty open subset of X . Suppose X is not directed Baire, U = ∪Xα , where

int(Xα ) = /0 for each α in the index set ∆, by Remark 2.4. Let U0 = X and for each α ∈ ∆ define Uα =U − ∪
β≤α

Xβ . Let U= {Uα} where

α ∈ ∆, which is a point finite Gδ−cover of X . Then U is locally finite at some x in U. Let O be an open set of x such that x ∈ O ⊂U. Since

int(Xα ) = /0, O * ∪
β≤α

Xβ for each α. Thus, O must intersect every member of U, which is a contradiction to locally finiteness of the point

finite Gδ−cover U.

Blumberg [6] showed that for every real valued function f defined on the real line R, there exists a dense subset D of R such that f |D is

continuous. We will say that space X has Blumberg’s property with, respect to Y if for every function f : X → Y, there exists a dense subset

D of X such that f |D is continuous. It is known [7] that for a metric space X , X is a Baire space if and only if X has Blumberg’s property

with respect to the reals. In Theorem 2.7, the similar result is proved for directed Baire space.

Theorem 2.7. Let Y contain an infinite discrete subset D = {yα | α ∈ ∆}. If X satisfies Blumberg’s property with respect to Y, then X is a

directed Baire space.

Proof. Let D= {yα | α ∈ ∆} be a infinite discrete subset of Y. If X is not a directed Baire space, then there is an open set U in X such that

U = (∪
α

Uα ). Define a function f : X → Y as follows: let f (x) = yα0
for each x ∈ X −U, where yα0

∈ D and let f (x) = yβ for each x ∈U,

where β = min {α | x ∈Uα}. From the construction of the function f , f |D is not continuous for every dense subset D of X .

3. Product of directed Baire spaces

A directed Baire space in which every closed subspace is also directed Baire space is called a hereditarily directed Baire space. We

discuss the product of directed Baire spaces. The following Lemma 3.1 is useful in the sequel.

Lemma 3.1. Let Y be a topological space, (A,d) be a metric space and C be a dense Gδ−subset of Y ×A. Then given any finite subset F of

A, ε > 0 and non-empty open set O of Y, there exists a finite subset A′ of A and a dense Gδ−subset CY of O such that

(i) for each z ∈ F, there exists a ∈ A′ with d(z,a)< ε

(ii) CY ×A′ ⊆C.

Proof. For the given finite subset F of A, define an open subset V = ∪B(z,ε) of A where union runs over the points of F. Since C is dense in

Y ×A, (O×V )∩C 6= /0. Then CY = PX ((O×V )∩C) and A
′
⊂ PY ((O×V )∩C) are the requirements.

Theorem 3.2. If X is a directed Baire space and Y is a metrizable hereditarily directed Baire space, then X ×Y is a downward-directed

Baire space.
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Proof. Let {Dα | α ∈ ∆} be a family of decreasing dense Gδ−sets in X ×Y. We prove that ∩
α

Dα is dense in X ×Y. Let G and H be any

non-empty open sets in X and Y, respectively. To prove [∩
α

Dα ]∩ (G×H) 6= /0. Let {sα | α ∈ ∆} be a net in [0,∞) with usual metric, which

converges to 0.
Let α1 be the least member of ∆. Since Dα1

is dense (G×H)∩Dα1
6= /0. Define a dense Gδ−set of G, Xα1

= PX ((G×H)∩Dα1
) and

Zα1
= {y}, where y ∈ PY ((G×H)∩Dα1

).
By Lemma 3.1, for any finite subset Zα1

of Y, non-empty open set G in X , dense Gδ−set Dβ of X ×Y and sβ > 0, we can find a finite subset

Yβ of Y and a dense Gδ subset Xβ of G such that

(i) for each z ∈ Zα1
, one can find y ∈ Yβ with d(z,y)< sβ

(ii) Xβ ×Yβ ⊆ Dβ . Then we define

(iii) Zβ = Zα1
∪Yβ , where β is the successor of α1.

Continuing in this way, we reached a family of dense Gδ−subsets {Xα | α ∈ ∆} of G. Since X is a directed Baire space, ∩
α

Xα 6= /0. Choose

x ∈ ∩
α

Xα and define, for each α ∈ ∆, the dense Gδ−subsets {Wα | α ∈ ∆} of Y so that {x}×Wα = ({x}×Y )∩Dα .

Let Z+ =∪
α

Zα ⊂ H. Since Y is hereditarily directed Baire, Z+ is directed Baire which implies Wα ∩Z+ is dense in Z+ for each α ∈ ∆. For, let

z ∈ Z+, α ∈ ∆ and ε > 0 be given. Since the net (sα ) converges to 0, for the neighborhood [0,ε) of 0, we can find δ ∈ ∆ such that 0 ≤ sα < ε

for every α > δ . Choose ρ ∈ ∆ sufficiently large so that ρ > α , sρ < ε and z ∈ Zρ . There is an element y ∈ Yρ1
with d(y,z)< sρ1

< sδ < ε

and (x,y) ∈ Dρ1
∩ ({x}×Y ), which implies that y ∈ Wρ1

⊂ Wα , where ρ1 is the successor of ρ. Thus, y ∈ B(z,ε)∩ (Wα ∩Z+) so that

B(z,ε)∩ (Wα ∩Z+) is non-empty. Choosing y ∈ (∩
α

Wα )∩H ∩Z+, we get that (x,y) ∈ [∩
α

Dα ]∩ (G×H).

Theorem 3.3. Let X and Y be directed Baire spaces. If either of the space has a countable pseudo base, their product is directed Baire.

Proof. Assume that X ×Y is not directed Baire. We can find an open set G×H in the product space such that (G×H)∩ (∩
α

Dα ) = /0 where

{Dα | α ∈ ∆} is a family of dense Gδ− sets in X ×Y. Since Dα are Gδ−sets, Dα =
∞

∩
n=1

Dn
α where Dn

α are open in X ×Y. Since Dα is dense,

each Dn
α is also dense.

Let {Vk} be a countable pseudo base for Y. Now for each n,k and α, define h
n,k
α = Dn

α ∩ (U ×Vk). Also, define H
n,k
α = PX (h

n,k
α ) so that H

n,k
α

are open. Also, Dn
α is dense in G×H implies Dn

α ∩ (G×Vk) is dense in G×Vk which implies h
n,k
α is dense in G×Vk. For any open set U1 in

G,U1 ×Vk is an open set in U ×Vk. Therefore, (U1 ×Vk)∩h
n,k
α 6= /0 implies U1 ∩PX (h

n,k
α ) 6= /0 which implies U1 ∩H

n,k
α 6= /0. Therefore, each

H
n,k
α is dense in G. Since X is directed Baire, G will become directed Baire, by Remark 2.4.

Since G is directed Baire, ∩
n,k
[G∩H

n,k
α ] are dense in G and so ∩

n,k
[G∩H

n,k
α ] 6= /0. Therefore, there exists some a ∈ G with a ∈ ∩

n,k
[G∩H

n,k
α ]

which gives a ∈ H
n,k
α for every n,k.

Define Dn
α (a) = {b ∈ H | (a,b) ∈ Dn

α}. For each Vk, (a,b) ∈ Dn
α ∩ (G×Vk) for all n,k implies (a,b) ∈ ∩

n
[Dn

α ∩ (G×Vk)] which gives that

(a,b) ∈ Dα ∩ (G×Vk). Therefore, there is some b ∈ Vk with (a,b) ∈ D so that b ∈ Vk such that b ∈ Dn
α (a). Therefore, Dn

α (a)∩Vk 6= /0.
Therefore, Dn

α (a) is dense in H. Also, Dn
α (a) is an open set.

Since Y is directed Baire, H is also directed Baire and hence ∩
n,α

Dn
α (a) 6= /0. Therefore, we can find z ∈ H with z ∈ ∩

n,α
Dn

α (a) and hence

(a,z) ∈ ∩
n,k

Dn
α = Dα which is not possible. Thus, ∩

α
Dα 6= /0 and so G×H is a weakly directed Baire space.

4. Product of Volterra spaces

In 1993, the class of Volterra spaces was introduced by Gauld and Piotrowski [8]. A topological space (X ,τ) is said to be Volterra

[8, 9] (resp. weakly Volterra [8]) if the intersection of any two dense Gδ− sets in X is dense (resp. non-empty). By the definition itself,

every Baire space is Volterra and every space of second category is weakly Volterra. Is there exists a Baire space X whose square X2 is not

Baire ? The first space with such properties, constructed under the Continuum Hypothesis, is due to Oxtoby [3]. This example was improved

to an absolute one by Cohen [10] relying on forcing. Finally, Fleissner and Kunen [11] constructed a metrizable Baire space X whose square

X2 is not Baire in ZFC by direct combinatorial arguments. Gauld, Greenwood and piotrowski [12], using stationary sets in the result of

Flessner proved that there exists a metric Baire space whose square is not even Weakly Volterra. Spadaro [13] proved that the product of a

hereditarily volterra space and a hereditarily Baire space may fail to be weakly volterra. In [14], Moors proved that ”The Product of a Baire

space with a hereditarily Baire metric space is Baire”. In that proof, he use Choquet game [15]-[17] played on X to get a non-empty subset

for any given sequence of dense open sets in X .

Theorem 4.1. If X is Baire and Y is metrizable hereditarily Volterra, then X ×Y is a Volterra space.

Proof. Suppose that C and D are two dense Gδ−sets in X ×Y. Let G and H be non-empty open sets in X and Y, respectively. To prove

(C∩D)∩ (G×H) 6= /0. Since C and D are dense Gδ−sets, C =
∞

∩
n=1

Cn and D =
∞

∩
n=1

Dn, where {Cn} and {Dn} are decreasing sequence of

open dense sets in X ×Y.

Denseness of C gives that (G×H)∩C 6= /0. Define a dense Gδ−set of G,C1 =PX ((G×H)∩C) and ZC
1 = {bC}, where bC ∈PY ((G×H)∩C).

Also, since D is dense, (G×H)∩D 6= /0. Define a dense Gδ−set of G, D1 = PX ((G×H)∩D) and ZD
1 = {bD}, where bD ∈ PY ((G×H)∩C).

Also, define Z1 = ZC
1 ∪ZD

1 .

By Lemma 3.1, for a finite set Z1 of Y, non-empty open set G in X , dense Gδ−set C of X ×Y and 1
2 > 0, there is a finite subset ZC

2 of Y and

a dense Gδ subset C2 of G such that

(i) for every a ∈ Z1, there is some b ∈ ZC
2 with d(a,b)< 1

2

(ii) C2 ×ZC
2 ⊆C.



160 Fundamental Journal of Mathematics and Applications

Also, by Lemma 3.1, for a finite set Z1 of Y, non-empty open set G in X , dense Gδ−set D of X ×Y, and 1
2 > 0 there is a finite subset ZD

2 of

Y and a dense Gδ subset D2 of G such that

(i) for every a ∈ Z1, there is some b ∈ ZD
2 with d(a,b)< 1

2
(ii) D2 ×ZD

2 ⊆ D.
Define Z2 = Z1 ∪ZC

2 ∪ZD
2 .

Continuing in this way, for every n ∈ D, by Lemma 3.1, given any finite subset Zn−1 of Y, non-empty open set G in X , dense Gδ−set C of

X ×Y and 1
n > 0, there is a finite subset ZC

n of Y and a dense Gδ subset Cn of G such that

(i) for every a ∈ Zn−1, there is some b ∈ ZC
n with d(a,b)< 1

n

(ii) Cn ×ZC
n ⊆C.

Also, given any finite subset Zn−1 of Y, non-empty open set G in X , dense Gδ−set D of X ×Y and 1
n > 0, there is a finite subset ZD

n of Y and

a dense Gδ subset Dn of G such that

(i) for every a ∈ Zn−1, there is some b ∈ ZD
n with d(a,b)< 1

n

(ii) Dn ×ZD
n ⊆ D.

Define Zn = Zn−1 ∪ZC
n ∪ZD

n .
The countable collection {Cn | n ∈ D}∪{Dn | n ∈ D} of dense Gδ−subsets can be enumerated as a sequence of dense Gδ−sets {Hi | i ∈ D}

of G. Since every Hi is a dense Gδ−set, Hi =
∞

∩
j=1

H
j

i where H
j

i is a dense open set in G. Since a countable union of countable set the family

{H
j

i | i, j ∈ D} also can be enumerated as a sequence of dense open sets {Om | m ∈ D}. Since X is a Baire space, the open subset G is also a

Baire space. Therefore,
∞

∩
m=1

Om 6= /0.

Choose s ∈
∞

∩
m=1

Om and define, C(s) = {t ∈ H | (s, t) ∈ C} and D(s) = {t ∈ H | (s, t) ∈ D}. Now C(s) = (∩
m

Cm)(s) = ∩
m
[Cm(s)], because

t ∈ (∩
m

Cm)(s)⇔ (s, t) ∈ ∩
m

Cm ⇔ (s, t) ∈Cm for all m ⇔ t ∈Cm(s) for all m ⇔ t ∈ ∩
m
[Cm(s)]. Therefore, C(s) is a Gδ−set. Similarly, D(s) is

also a Gδ−set.

Let S =
∞

∪
n=1

Zn ⊂ H. Since Y is hereditarily Volterra, S is Volterra and hence C(s)∩S and D(s)∩S are dense in S.

For, a ∈ Z, and ε > 0 be given. Choose N ∈ N sufficiently large so that 1/N < ε and a ∈ ZN−1. There is some t ∈ ZC
N such that

d(t,a)< 1/N < ε and CN ×ZC
N ⊆C. Hence (s, t) ∈ (CN ×Y )∩ ({s}×Y )⊂C, which implies that t ∈C(s). Thus, t ∈ B(a,ε)∩C(s)∩Z 6= /0.

Similarly, D(s)∩Z is also dense in Z. Choosing t ∈C(s)∩D(s)∩H ∩Z, we get (s, t) ∈C∩D∩ (G×H). Hence C∩D is dense in the product

space.

In Theorem 4.1 above, the hereditary property cannot be dropped, since Fleissner and Kunen [11] constructed a metrizable Baire space X

whose square X2 is not Baire. Since Spadaro [13], shows that the product of a hereditarily volterra space and a hereditarily Baire space may

fail to be weakly volterra the metrizability of the Volterra space cannot be dropped in the above theorem.

Piotrowski raised a question that, “Whether X × [0,1] is Volterra or not? for any Volterra space X”. As a partial answer to this question,

in Corollary 4.2 below, we consider a subfamily of Volterra spaces consisting of metrizable hereditarily Volterra space, and proved that

cartesian product of X and [0,1] is again a Volterra space.

Corollary 4.2. If (X ,τ) is a metrizable hereditarily Volterra space, then X × [0,1] is also a Volterra space.

Proof. It is well known that, a subset A of a complete metric space (M,d) is complete if and only if A is a closed subset of M and

consequently, [0,1] is complete. Since [0,1] is Baire, X × [0,1] is Volterra, by Baire Category Theorem and Theorem 4.1.

5. Conclusion

In this paper, we have introduced the concepts of directed Baire and weakly directed Baire spaces. Since every compact p-spaces are also

Baire spaces, we have proved that there are spaces which are Baire, directed Baire, weakly directed Baire and second category. Also, it is

shown that there are Baire spaces which are not weakly directed Baire space and there are weakly directed Baire space which are neither

Baire nor directed Baire spaces, by giving examples. Hence we have proved that the concepts namely, Baire, second category, directed

Baire and weakly directed Baire are independent. We have proved that the product of directed Baire spaces is also Directed Baire if either

of the space has a countable pseudo base. Also, we have provided partial answer for the question raised by Piotrowski regarding product

of Volterra spaces. The results of this article can also be applied on generalized topological spaces and ideal topological spaces by some

suitable modifications. We hope that this work will provide the basis for further study on directed Baire spaces.
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Abstract

Dual-hyperbolic Fibonacci and Lucas numbers with Fibonacci and Lucas coefficients are

introduced by Cihan et al. and some identities and theorems are given regarding modules

and conjugates of these numbers. Later, generating function and Binet’s formula with the

help of this generating function have been derived. Also, Binet formula, Cassini’s, Catalan’s,

d’Ocagne’s, Honsberger and Tagiuri identities are found for dual-hyperbolic numbers with

generalized Fibonacci and Lucas coefficients. While these operations are being done, we

will benefit from the well-known Fibonacci and Lucas identitites. Moreover, it is seen that

the results which are obtained for the values p = 1 and q = 0 corresponds to the theorems

in the article by Cihan et al. [1].

1. Introduction

Italian mathematician Leonardo Fibonacci’s Liber Abaci was one of the most important books on mathematics in the Middle Ages. Through

this book mathematicians introduced Fibonacci number sequence concept. Several studies have been conducted with respect to Fibonacci

numbers and Fibonacci quaternions [2]-[5].

Dual-hyperbolic numbers with Fibonacci and Lucas coefficients which is constitutes a new number system have been introduced by Cihan

and her colleagues [1]. In this article, the dual-hyperbolic number system has been generalized based on the article [1].

Firstly, addition, multiplication, modules and conjugates of these numbers have been defined and the fundamental identities for these numbers

regarding these operations have been proven. Then, we have defined generating function and this function helped us to find Binet’s formula.

Additionally, d’Ocagne’s, Honsberger, Tagiuri, Catalan identities have been obtained and Cassini’s identity has been given in case of r = 1

for the Catalan identity. Finally, we have discussed special cases and have given examples.

2. Preliminaries

The Fibonacci and Lucas numbers have many interesting properties and applications. Initial conditions for the Fibonacci and Lucas numbers

are defined as follows respectively

F0 = 0, F1 = 1, . . . , Fn+1 = Fn +Fn−1, n ≥ 1

and

L0 = 2, L1 = 1, . . . , Ln+1 = Ln +Ln−1, n ≥ 1

where Fn and Ln denote the n-th Fibonacci and Lucas numbers, respectively.

Binet formula for the n-th Fibonacci and Lucas numbers are given by the following relation

Fn =
1√
5
(αn −β n) , Ln = αn +β n

, n ≥ 1

Email addresses and ORCID numbers: agungor@sakarya.edu.tr, https://orcid.org/0000-0003-1863-3183 (M. A. Güngör), arzu.cihan3@ogr.sakarya.edu.tr,

https://orcid.org/0000-0003-2003-3507 (A. Cihan)
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(see [2]).

On the other hand, Horadam introduced generalized Fibonacci numbers with the initial conditions as follows

H1 = p, H2 = p+q, p, q ∈ Z

where the recurrence relation is defined by

Hn = Hn−1 +Hn−2, n ≥ 3,

or

Hn = (p−q)Fn +qFn+1.

In the above equation, if we take p = 1 and q = 0, then the generalized Fibonacci number becomes Fibonacci number. If we take p = 1 and

q = 2, then the generalized Lucas number becomes Lucas number. Furthermore, Horadam investigated Binet formula for the n-th generalized

Fibonacci number such that

Hn =
1

2
√

5
(αn −µβ n)

(see [2]).

The set of dual-hyperbolic numbers is defined by

DH =
{

w = z1 + z2ε|z1, z2 ∈ H where, ε2 = 0, ε 6= 0
}

.

If we consider two hyperbolic numbers z1 = x1 + x2 j and z2 = y1 + y2 j, then any dual-hyperbolic number can be written as

w = x1 + x2 j+ y1ε + y2 jε.

There exist five different conjugates and these conjugates are given as follows

|ω |†1 =z̄1 + ε z̄2, hyperbolic conjugation

|ω|†2 =z1 − εz2, dual conjugation

|ω|†3 =z̄1 − ε z̄2, coupled conjugation

|ω|†4 =z̄1

(

1− ε z2

z1

)

(ω ∈ DH −A) , dual −hyperbolic conjugation

|ω|†5 =z2 − εz1, anti−dual conjugation

where “− “ denotes the standard complex conjugation and the zero divisors of DH is defined by the set A [6]. Namely, DH −A is a

multiplicative group. The dual hyperbolic numbers form a commutative ring with 0 characteristic. Unlike quaternions, the multiplication

of dual-hyperbolic numbers with generalized Fibonacci and Lucas number has a commutative ring structure. However, multiplication of

dual-hyperbolic numbers with generalized Fibonacci and Lucas number constitutes two-dimensional Complex Clifford and 4-dimensional

Real Clifford algebra structure.

3. Properties of Dual-Hyperbolic numbers with generalized Fibonacci and Lucas coefficients

The dual-hyperbolic Fibonacci and Lucas numbers are defined as

DHFn = Fn +Fn+1 j+Fn+2ε +Fn+3 jε

and

DHLn = Ln +Ln+1 j+Ln+2ε +Ln+3 jε

respectively. Here, Fn and Ln are the n-th generalized Fibonacci number and Lucas numbers respectively and ε denotes dual unit
(

ε2 = 0, ε 6= 0
)

, j denotes imaginary unit
(

j2 = 1
)

, jε denotes imaginary-dual unit
(

jε2 = 0
)

. After these numbers have been defined in

the article [1], some identities regarding the modules, conjugates have been obtained for dual-hyperbolic Fibonacci and Lucas numbers.

Then, negadual-hyperbolic Fibonacci, negadual-hyperbolic Lucas, d’Ocagne’s, Cassini, Catalan identities and the correspondence of Binet

formula have been given for these numbers. Now, Let’s define the dual-hyperbolic number system with generalized Fibonacci and Lucas

coefficients by considering the study [1].

Definition 3.1. Hn is called as n-th Fibonacci number which have either Hn = Hn−1 +Hn−2, n ≥ 3 or Hn = (p− q)Fn + qFn+1 the

recurrence relations and depending on the initial values such that

H1 = p, H2 = p+q, H3 = 2q+3p, ... (p, q ∈ Z) .

Then, the sets of generalized Fibonacci and Lucas sequences are defined

DHX = {DHXn = Rn + εR∗
n = (Hn + jHn+1)+ ε (Hn+2 + jHn+3) | Hn Generalized Fibonacci Number}

and

DHY = {DHYn = Pn + εP∗
n = (Vn + jVn+1)+ ε (Vn+2 + jVn+3 ) |Vn Generalized Lucas Number}

where ε
(

ε2 = 0, ε 6= 0
)

, j
(

j2 = 1
)

and iε
(

( jε)2 = 0
)

, denote dual unit, imaginary unit and dual-imaginary unit, respectively. So the

base elements of dual-hyperbolic numbers with generalized Fibonacci and Lucas coefficients are (1, j, ε, jε). Multiplication scheme of

these base elements are given in Table 1.
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× 1 j ε jε

1 1 j ε jε

j j 1 jε ε

ε ε jε 0 0

jε jε ε 0 0

Table 1: Multiplication scheme of dual-hyperbolic units

If two dual-hyperbolic numbers with generalized Fibonacci coefficients are DHX1
n = Rn +R∗

nε = Hn +Hn+1 j +Hn+2ε +Hn+3 jε and

DHX2
n = Kn +K∗

n ε = Gn +Gn+1 j+Gn+2ε +Gn+3 jε then the addition, subtraction and multiplication operations of these numbers are

defined as

DHX1
n ±DHX2

n = (Rn +R∗
nε)± (Kn +K∗

n ε)
= (Hn +Hn+1 j+Hn+2ε +Hn+3 jε)± (Gn +Gn+1 j+Gn+2ε +Gn+3 jε)
= (Hn ±Gn)+(Hn+1 ±Gn+1) j+(Hn+2 ±Gn+2)ε +(Hn+3 ±Gn+3) jε

(3.1)

and

DHX1
n ×DHX2

n = (Rn +R∗
nε)× (Kn +K∗

n ε)
= (Hn +Hn+1 j+Hn+2ε +Hn+3 jε)× (Gn +Gn+1 j+Gn+2ε +Gn+3 jε)
+(HnGn +Hn+1Gn+1)+(HnGn+1 +Hn+1Gn) j

+(HnGn+2 +Hn+1Gn+3 +Hn+3Gn+1 +Hn+2Gn)ε
+(HnGn+3 +Hn+1Gn+2 +Hn+2Gn+1 +Hn+3Gn) jε

(3.2)

respectively. Also, any dual-hyperbolic number with generalized Fibonacci coefficient can be expressed as follows

DHXn = Rn +R∗
nε = (Hn +Hn+1 j)+(Hn+2 +Hn+3 j)ε. (3.3)

This yields five different conjugates. Thus, these five different conjugates can be defined as follows

DHX†1
n = (Hn −Hn+1 j)+(Hn+2 −Hn+3 j) ε, hyperbolic conjugation (3.4)

DHX†2
n = (Hn +Hn+1 j)− (Hn+2 +Hn+3 j)ε, dual conjugation (3.5)

DHX†3
n = (Hn −Hn+1 j)− (Hn+2 −Hn+3 j)ε, coupled conjugation (3.6)

DHX†4
n = (Hn −Hn+1 j)×

(

1− Hn+2 +Hn+3 j

Hn +Hn+1 j
ε

)

, dual−hyperbolic conjugation (3.7)

DHX†5
n = (Hn+2 +Hn+3 j)− (Hn +Hn+1 j)ε, anti−dual conjugation. (3.8)

Five different norms can be given for dual-hyperbolic numbers with generalized Fibonacci coefficients thanks to the definition of conjugates.

Definition 3.2. Let DHXn be a dual-hyperbolic number with generalized Fibonacci coefficient. In this case, j-th modulus of DHXn are

denoted by |DHXn|2†i
, ( j = 1,2,3,4,5) and are given as follows

|DHXn|2†1
=DHHn ×DHH

†1
n

|DHXn|2†2
=DHHn ×DHH

†2
n

|DHXn|2†3
=DHHn ×DHH

†3
n

|DHXn|2†4
=DHHn ×DHH

†4
n

|DHXn|2†5
=DHHn ×DHH

†5
n

Proposition 3.3. Let DHXn be a dual-hyperbolic number with generalized Fibonacci coefficient. Then, the following identities are satisfied:

DHXn +DHX†1
n = 2(Hn +Hn+2ε) (3.9)

DHXn ×DHX†1
n = (H2

n −H2
n+1)+2ε (HnHn+2 −Hn+1Hn+3) (3.10)

DHXn +DHX†2
n = 2(Hn +Hn+1 j) (3.11)

DHXn ×DHX†2
n = [(2p−q)H2n+1 − eF2n+1]+2HnHn+1 j (3.12)
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DHXn +DHX†3
n = 2(Hn +Hn+3 jε) (3.13)

DHXn ×DHX†3
n = (H2

n −H2
n+1)+ jε

[

2e(−1)n+1
]

(3.14)

DHXn +DHX†4
n = 2Hn + ε

2Hn+1

H2
n −H2

n+1

[(Hn+3Hn −Hn+1Hn+2)+ j (Hn+2Hn −Hn+1Hn+3)] (3.15)

DHXn ×DHX†4
n = H2

n −H2
n+1 (3.16)

DHXn +DHX†5
n = (Hn +Hn+2)+(Hn+1 +Hn+3) j+Hn+1ε +Hn+2 jε (3.17)

DHXn ×DHX
†5
n = (HnHn+2 +Hn+1Hn+3)+ j (HnHn+3 +Hn+1Hn+2)

+ε
(

H2
n+2 +H2

n+3 −H2
n+1 −H2

n

)

+2 jε (Hn+3Hn+2 −Hn+1Hn)
(3.18)

Proof. (3.9): Using equations (3.1), (3.3) and (3.4), we obtain

DHXn +DHX†1
n = 2(Hn +Hn+2ε) .

Here, If the values p = 1,q = 0 are specially taken in the generalized Fibonacci number Hn, then it is concluded that DHXn +DHX
†1
n =

2(Fn +Fn+2ε).

(3.10): Considering equations (3.2), (3.3) and (3.4), the result is found by

DHXn ×DHX
†1
n =

(

H2
n +H2

n+1

)

+2(HnHn+2 +Hn+1Hn+3)ε

= (H2
n −H2

n+1)+2ε (HnHn+2 −Hn+1Hn+3) .

Here, If the values p = 1, q = 0 are specially taken in the generalized Fibonacci number Hn, then it is concluded that DHXn ×DHX
†1
n =

F2n+1 +2F2n+3ε .

(3.11): From the equations (3.1), (3.3) and (3.5), we can reach the following identity

DHXn +DHX†2
n = 2(Hn +Hn+1 j) .

Here, If the values p = 1,q = 0 are specially taken in the generalized Fibonacci number Hn, DHXn +DHX
†1
n = 2(Fn +Fn+2 j) .

(3.12): Using the equations (3.2), (3.3), (3.5), using the identity H2
n−1 +H2

n = (2p−q)H2n−1 − eF2n−1 (see.ref. [2]) and simplifying

we have

DHXn ×DHX†2
n = [(2p−q)H2n+1 − eF2n+1]+2HnHn+1 j.

Here, If the values p = 1,q = 0 are specially taken in the generalized Fibonacci number Hn, then it is concluded that DHXn ×DHX
†2
n =

F2n+1 +2FnFn+1 j.

(3.13): We can write the following equation by using the equations (3.1), (3.3) and (3.6)

DHXn +DHX†3
n = 2(Hn +Hn+3 jε) .

Here, If the values p = 1,q = 0 are specially taken in the generalized Fibonacci number Hn, then it is concluded that DHXn +DHX
†3
n =

2(Fn +Fn+3 jε).

(3.14): From equations (3.2), (3.3) and (3.6), we have

DHXn ×DHX†3
n = (H2

n −H2
n+1)+ jε

[

2e(−1)n+1
]

.

While we are obtaining the above equation, the identity HnHn+r+1 − Hn−sHn+r+s+1 = (−1)n+s
eFsFr+s+1 has been used [2]. Here,

If the values p = 1,q = 0 are specially taken in the generalized Fibonacci number Hn, then it is concluded that DHXn ×DHX
†3
n =

−Fn−1Fn+2 −2(−1)n
jε .

(3.15): If we take into account the equations (3.1), (3.3) and (3.7), then the following identity can be easily seen

DHXn +DHX†4
n = 2Hn + ε

2Hn+1

H2
n −H2

n+1

[(Hn+3Hn −Hn+1Hn+2)+ j (Hn+2Hn −Hn+1Hn+3)] .
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Here, If the values p = 1,q = 0 are specially taken in the generalized Fibonacci number Hn, then it is concluded that

DHXn +DHX†4
n = 2Fn + ε

2Fn+1

F2
n −F2

n+1

[(Fn+3Fn −Fn+1Fn+2)+ j (Fn+2Fn −Fn+1Fn+3)] .

(3.16): By making the necessary operations with the help of the equations (3.2), (3.3), (3.7) and rearranging the last equation, the following

identity can be given

DHXn ×DHX†4
n = H2

n −H2
n+1.

Here, If the values p = 1,q = 0 are specially taken in the generalized Fibonacci number Hn, then it is concluded that DHXn ×DHX
†4
n =

F2
n −F2

n+1.

(3.17): Considering the equations (3.1), (3.3) and (3.8), we have

DHXn +DHX†5
n = (Hn +Hn+2)+(Hn+1 +Hn+3) j+Hn+1ε +Hn+2 jε.

Here, If the values p = 1,q = 0 are specially taken in the generalized Fibonacci number Hn, then it is concluded that DHXn +DHX
†5
n =

Fn +Fn+2 +(Fn+1 +Fn+3)J+Fn+1ε +Fn+2 jε.

(3.18): If we use equations (3.2), (3.3), (3.8) and make the necessary calculations, then the rearranged equation yields

DHXn ×DHX
†5
n = (HnHn+2 +Hn+1Hn+3)+ j (HnHn+3 +Hn+1Hn+2)

+ε
(

H2
n+2 +H2

n+3 −H2
n+1 −H2

n

)

+2 jε (Hn+3Hn+2 −Hn+1Hn) .

Here, If the values p = 1,q = 0 are specially taken in the generalized Fibonacci number Hn, then it is concluded that

DHXn ×DHX
†5
n = (FnFn+2 +Fn+1Fn+3)+ j (FnFn+3 +Fn+1Fn+2)

+ε
(

F2
n+2 +F2

n+3 −F2
n+1 −F2

n

)

+2 jε (Fn+3Fn+2 −Fn+1Fn) .

Theorem 3.4. Let DHXn and DHXn−1 be two dual-hyperbolic numbers with generalized coefficients. There exist the following identities for

these numbers and their conjugates:

i)
(

DHXn ×DHX
†1
n

)

+
(

DHXn−1 ×DHX
†1

n−1

)

=− [(2p−q)H2n − eF2n] +2ε
(

−H2
n+1

)

ii) DHX2
n = 2HnDHXn −

(

DHXn ×DHX
†1
n

)

+2ε
(

H2
n+2 −Hn+1Hn+3

)

+2 jε (Hn+1Hn+2)

iii)
DHX2

n +DHX2
n−1 = 2(2p−q)DHX2n−1 −DHXn ×DHX

†1
n −DHXn−1 ×DHX

†1

n−1 +(2p−q)(2H2n+3ε +2H2n+2 jε)

−e(2F2n−1 +2F2n j+2(F2n+3 +F2n+1)ε +4F2n+2iε)−2H2
n+1ε

iv) DHYn ×DHX
†1
n −DHY

†1
n ×DHXn = (−1)n

[(

4p2 −8pq+8q2
)

+
(

−6p2
)

jε
]

.

Proof. i) By using identity H2
n−1 +H2

n = (2p−q)H2n−1 − eF2n−1 [2] and considering the equations (3.2), (3.3) and the above equations

which have been defined by Horadam, the proof can be seen easily.

ii) Considering the equation (3.1), the proof can be easily seen.

iii) From the identity HnHm +Hn+1Hm+1 = (2p−q)Hm+n+1 − eFm+n+1 [3] and equation (3.1), the proof is completed.

iv) Using the equation (3.1) and the identity LnFm = Fm+n +(−1)m
Fm−n [2], the desired result is obtained. Also, the equations given in

Proposition 2.2. in the article [1] are specially obtained by giving values p = 1,q = 0 in the equations we have found above.

i)
(

DHXn ×DHX
†1
n

)

+
(

DHXn−1 ×DHX
†1

n−1

)

=−F2n +2ε
(

−F2
n+1

)

ii) DHX2
n = 2HnDHXn −

(

DHXn ×DHX
†1
n

)

+2ε
(

F2
n+2 −Fn+1Fn+3

)

+2 jε (Fn+1Fn+2)

iii) DHX2
n +DHX2

n−1 = 4DHX2n−1 −DHXn ×DHX
†1
n −DHXn−1 ×DHX

†1

n−1 +[−2F2n−1 +2(F2n+3 −F2n+1)ε −2F2n j]−2F2
n+1ε

iv) DHYn ×DHX
†1
n −DHY

†1
n ×DHXn = (−1)n [4+(−6) jε]

Theorem 3.5. Let DHXn be a dual-hyperbolic number with generalized coefficient. Then, the following identities are valid:

1) DHXn +DHXn+1 = DHXn+2

2) (DHXn)
2 = 2(HnDHXn)+2(Hn+1DHXn+1)−

[(

H2
n +H2

n+1

)

+2(Hn+1Hn+2) j+2(Hn+1Hn+3) jε
]

3) −DHXn +DHXn+1 j+DHXn+2ε −DHXn+3 jε = Hn+1
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4)
(DHXn ×DHXm)+(DHXn+1 ×DHXm+1) = (2p−q)

[

(Hm+n+1 +Hm+n+3)+2Hm+n+2 j+2(Hm+n+3 +Hm+n+5)ε +4Hm+n+4iε
]

−e
[

(Fm+n+1 +Fm+n+3)+2Fm+n+2 j+2(Fm+n+3 +Fm+n+5)ε +4Fm+n+4 jε
]

5)
DHXn

2 +DHX2
n−1 = [(2p−q)(H2n+1 +H2n−1)− e(F2n+1 +F2n−1)]+2 j [(2p−q)H2n − eF2n]

+2ε [(2p−q)(H2n+3 +H2n+1)− e(F2n+3 +F2n+1)]+4 jε [(2p−q)H2n+2 − eF2n+2]

Proof. 1) Let DHXn and DHXn+1 be two dual-hyperbolic numbers with generalized coefficients. In this case, taking into account that the

equation (3.1), we get

DHXn +DHXn+1 = Hn+2 +Hn+3 j+Hn+4ε +Hn+5 jε = DHXn+2.

Here, if the values p = 1 and q = 0 are specially taken in the generalized Fibonacci number Hn, then it is concluded that DHXn +DHXn+1 =
DHFn+2.

2) Let DHXn be dual-hyperbolic numbers with generalized coefficients. If the equation (3.2) is used, then the following equality is

obtained

DHX2
n = [(Hn +Hn+1 j)+(Hn+2 +Hn+3 j)ε]× [(Hn +Hn+1 j)+(Hn+2 +Hn+3 j)ε]
= 2(HnDHXn)+2(Hn+1DHXn+1)−

[(

H2
n +H2

n+1

)

+2(Hn+1Hn+2) j+2(Hn+1Hn+3) jε
]

.

Here, if the values p = 1 and q = 0 are specially taken in the generalized Fibonacci number Hn, then (DHXn)
2 = 2(FnDHFn) +

2(Fn+1DHFn+1)−
[(

F2
n +F2

n+1

)

+2(Fn+1Fn+2) j+2(Fn+1Fn+3) jε
]

is found.

3) By considering the equation (3.1) and doing some algebraic calculations, we obtain

−DHXn +DHXn+1 j+DHXn+2ε −DHXn+3 jε =− [(Hn +Hn+1 j)+(Hn+2 +Hn+3 j)ε]
+[(Hn+1 +Hn+2 j)+(Hn+3 +Hn+4 j)ε] j

+[(Hn+2 +Hn+3 j)+(Hn+4 +Hn+5 j)ε]ε
− [(Hn+3 +Hn+4 j)+(Hn+5 +Hn+6 j)ε] iε
= Hn+1.

Here, if the values p = 1 and q = 0 are specially taken in the generalized Fibonacci number Hn,

−DHXn +DHXn+1 j+DHXn+2ε −DHXn+3 jε = Fn+1

is found.

4) Follows from the identity HnHm +Hn+1Hm+1 = (2p−q)Hm+n+1 − eFm+n+1 (see ref. [3]) and using the equation (3.2), we achieve that

(DHXn ×DHXm)+(DHXn+1 ×DHXm+1) = [(Hn +Hn+1 j)+(Hn+2 +Hn+3 j)ε]× [(Hm +Hm+1 j)+(Hm+2 +Hm+3 j)ε]
+[(Hn+1 +Hn+2 j)+(Hn+3 +Hn+4 j)ε]× [(Hm+1 +Hm+2 j)+(Hm+3 +Hm+4 j)ε]

= (2p−q)

[

(Hm+n+1 +Hm+n+3)+2Hm+n+2 j+2(Hm+n+3 +Hm+n+5)ε

+4Hm+n+4iε

]

−e [(Fm+n+1 +Fm+n+3)+2Fm+n+2 j+2(Fm+n+3 +Fm+n+5)ε +4Fm+n+4 jε]

Here, If the values p = 1 and q = 0 are specially taken in the generalized Fibonacci number Hn

(DHXn ×DHXm)+(DHXn+1 ×DHXm+1) = (Fm+n+1 +Fm+n+3)+2Fm+n+2 j+2(Fm+n+3 +Fm+n+5)ε +4Fm+n+4 jε

5) Considering the identity HnHm +Hn+1Hm+1 = (2p−q)Hm+n+1 − eFm+n+1 (see ref. [3]) and the equation (3.2), we reach the result.

Here, If the values p = 1 and q = 0 are specially taken in the generalized Fibonacci number DHXn
2 +DHX2

n−1 = (F2n+1 +F2n−1)+
2F2n j+2(F2n+3 +F2n+1)ε +4F2n+2 jε.

Theorem 3.6. Let DHXn and DHLn be dual-hyperbolic Fibonacci and dual-hyperbolic Lucas numbers with generalized Fibonacci and

Lucas coefficients, respectively. For n ≥ 0, there exist the following relationships between these numbers:

1) DHXn+1 +DHXn−1 = pDHLn +qDHLn

2) DHXn+2 −DHXn−2 = pDHLn +qDHLn

Proof. Equations 1) and 2) are found by taking the identity Hn+1 +Hn−1 = pLn +qLn−1 (see ref. [4]) and using the recurrence relation

Hn = (p−q)Fn +qFn+1, respectively.

DHXn+1 +DHXn−1 = (Hn+1 +Hn+2 j+Hn+3ε +Hn+4 jε)+(Hn−1 +Hn j+Hn+1ε +Hn+3 jε)
= (Hn+1 +Hn−1)+(Hn+2 +Hn) j+(Hn+3 +Hn+1)ε +(Hn+4 +Hn+3) jε

= (pLn +qLn−1)+(pLn−1 +qLn) j+(pLn+2 +qLn+1)ε +(qLn+3 +qLn+2) jε

= pDHLn +qDHLn



168 Fundamental Journal of Mathematics and Applications

DHXn+2 −DHXn−2 = (Hn+2 +Hn+3 j+Hn+4ε +Hn+5 jε)− (Hn−2 +Hn−1 j+Hnε +Hn+1 jε)
= (Hn+2 −Hn−2)+(Hn+3 −Hn−1) j+(Hn+4 −Hn)ε +(Hn+5 −Hn+1) jε

= (pLn +qLn−1)+(pLn−1 +qLn) j+(pLn+2 +qLn+1)ε +(qLn+3 +qLn+2) jε

= pDHLn +qDHLn

Here, if the values p = 1,q = 0 are specially taken in the generalized Fibonacci number Hn, then the desired results are obtained.

Theorem 3.7. The sums of the dual-hyperbolic numbers with generalized Fibonacci coefficients satisfy the following relations:

1)
n

∑
s=1

DHXs = DHXn+2 −DHX2

2)
p

∑
s=0

DHXs+n +DHXx+1 = DHXn+p+2

3)
n

∑
s=1

DHX2s−1 = DHX2n −DHX0

4)
n

∑
s=1

DHX2s = DHX2n+1 −DHX1

Proof. Using the identity
n

∑
t=a

Ht = Hn+2 −Ha+1 (see ref. [4]), the proof can be seen easily as follows

1)
n

∑
s=1

DHXs =
n

∑
s=1

Hs+ j
n

∑
s=1

Hs+1 + ε
n

∑
s=1

Hs+2 + jε
n

∑
s=1

Hs+3 =DHXn+2 −DHX2

2)
p

∑
s=0

DHXn+s+DHXn+1 =
n

∑
s=1

Hn+s +Hn+1 + j
n

∑
s=1

Hn+s+1 +Hn+2 + ε
n

∑
s=1

Hn+s+2 +Hn+3 + jε
n

∑
s=1

Hn+s+3 +Hn+4 = DHXn+p+2

3)
n

∑
s=1

DHX2s−1 =
n

∑
s=1

H2s−1 + j
n

∑
s=1

H2s + ε
n

∑
s=1

H2s+1 + jε
n

∑
s=1

H2s+2 = DHX2n −DHX0

4)
n

∑
s=1

DHX2s =
n

∑
s=1

H2s + j
n

∑
s=1

H2s+1 + ε
n

∑
s=1

H2s+2 + jε
n

∑
s=1

H2s+3 = DHX2n+1 −DHX1

Also, if we consider the values p = 1,q = 0 in the generalized Fibonacci number Hn, then the above equations becomes as follows:

1)
n

∑
s=1

DHXs = DHFn+2 −DHF2

2)
p

∑
s=0

DHXs+n +DHXx+1 = DHFn+p+2

3)
n

∑
s=1

DHX2s−1 = DHF2n −DHF0

4)
n

∑
s=1

DHX2s = DHF2n+1 −DHF1

Now, let’s find correspondence of the Binet formula for the dual-hyperbolic Fibonacci numbers which helps to find golden ratio.

Theorem 3.8. Let DHXn be dual-hyperbolic number with generalized Fibonacci coefficient. For m,n ≥ 1, the Binet formula for this number

is given by

DHXn =
ᾱ αn − β̄ β n

α −β

where α = 1+
√

5
2 , β = 1−

√
5

2 and the coefficients ᾱ , β̄ are as follows

ᾱ = (p−qβ )+ [p(1−β )+q] j+[p(2−β )+q(1−β )]ε +[p(3−2β )+q(2−β )] jε

and

β̄ = (p−qα)+ [p(1−α)+q] j+[p(2−α)+q(1−α)]ε +[p(3−2α)+q(2−α)] jε.

Proof. If t1 and t2 denote the roots of characteristic equation t2− t−1 = 0 associated to the recurrence relation DHXn+DHXn+1 = DHXn+2.

Then, these roots can be found as α = t1 = 1+
√

5
2 and β = t2 = 1−

√
5

2 . Note that, α +β = 1,α.β =−1 and α −β =
√

5. Therefore, the

general term of the dual-hyperbolic number sequence with generalized Fibonacci coefficients may be expressed in the form:

DHXn = Aαn +Bβ n

for some coefficients A and B. For n = 0 and n = 1, the following equalities can be written

DHX0 = (q, p, p+q, 2p+q)

and

DHX1 = (p, p+q, 2p+q, 3p+2q) .
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Also, if we give to n the values n = 0 and n = 1, we get

DHX0 = A+B

and

DHX1 = αA+βB.

Then, solving this system of linear equations, we have

A =
DHX1 −βDHX0

α −β
and B =

αDHX0 −DHX1

α −β

where some coefficients ᾱ and β̄ are

ᾱ = (p−qβ )+ [p(1−β )+q] j+[p(2−β )+q(1−β )]ε +[p(3−2β )+q(2−β )] jε

and

β̄ = (p−qα)+ [p(1−α)+q] j+[p(2−α)+q(1−α)]ε +[p(3−2α)+q(2−α)] jε.

Theorem 3.9. The generating function for dual-hyperbolic number with generalized coefficients is

g(x) =
1

1− x− x2

3

∑
s=0

(DHXs +DHXs−1x)es.

Proof. Assuming that the generating function for dual-hyperbolic number with generalized coefficients becomes

g(x) =
∞

∑
n=0

Pnxn
.

such that

Pn = (DHXn, DHXn+1, DHXn+2 ,DHXn+3) .

Multiplying the generating function by x and x2, the following equalities can be written

xg(x) = P0x+P1x2 + ...+Pn−1xn + ...

x2g(x) = P0x2 +P1x3 + ...+Pn−2xn + ...

After some algebraic calculations, we obtain

g(x) =
1

1− x− x2

3

∑
s=0

(P0 +(P1 −P0)x).

This completes the proof.

Now, let’s write the Binet formula in terms of the generating function which has been obtained in Theorem 3.9.

Theorem 3.10. Binet formula for the dual-hyperbolic numbers with generalized Fibonacci coefficients is

Pn = P1Hn +P0Hn−1.

Proof. Let’s we take the relation

Pn = Aαn +Bβ n
.

Putting n = 0 and n = 1 in the above equation, A and B are obtained by

A =
P1 −βP0

α −β
, B =

αP0 −P1

α −β

In this case, Pn can be rewritten as

Pn =
1

α −β
[(P1 −βP0)αn +(αP0 −P1)β n] .

When the equalities of P0 and P1 is written in Theorem 3.9 and is arranged, Pn is found as

Pn =

(

αn −β n

α −β

) 3

∑
s=0

DHXs+1es +

(

αn−1 −β n−1

α −β

) 3

∑
s=0

DHXses.

Finally

Pn = P1Hn +P0Hn−1

is obtained.
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Let us express the Catalan identity which is one of the most known identities of Fibonacci numbers.

Theorem 3.11. (Catalan’s Identity)

For n ≥ r, the relation

DHX2
n −DHXn+r ×DHXn−r = (−1)n−rµF2

r [ j+3 jε]

is verified.

Proof. Squaring DHXn, multiplying DHXn+r and DHXn−r and noting that Hm+kHn−k −HmHn = (−1)n−k+1µFkFm+k−n [7], the following

equalities are obtained

DHX2
n = H2

n +H2
n+1 +2HnHn+1 j+2(HnHn+2 +Hn+1Hn+3)ε +2(Hn+1Hn+2 +HnHn+3) jε

and

DHXn+r ×DHXn−r = Hn+r Hn−r +Hn+r+1 Hn−r+1 +(Hn+r+1 Hn−r +Hn+r Hn−r+1) j

+(Hn+r Hn−r+2 +Hn+r+1 Hn−r+3 +Hn−r+2 Hn−r +Hn−r+3 Hn−r+1)ε

+(Hn+r+1 Hn−r+2 +Hn+r Hn−r+3 +Hn+r+3 Hn−r +Hn+r+2 Hn−r+1 ) jε.

Adding the above equations gives us the proof. Writting p = 1 and q = 0 in the Catalan identity for dual-hyperbolic numbers with generalized

coefficients, Catalan identity for dual-hyperbolic numbers with Fibonacci coefficients is found. Namely

DHX2
n −DHXn+r ×DHXn−r = (−1)n−r

F2
r ( j+3 jε) .

Let’s give Cassini identity for generalized dual-hyperbolic numbers as a special case of Catalan identity.

Theorem 3.12. (Cassini’s Identity)

Let DHXn be the dual-hyperbolic number with generalized Fibonacci coefficients. For n ≥ 1, we have

DHX2
n − (DHXn+1 ×DHXn−1) = (−1)n−1µ ( j+3 jε) .

Proof. For r = 1, we see that the identity in Theorem 3.11 becomes the desired identity.Putting p = 1 and q = 0 in the above identity, we get

DHX2
n − (DHXn+1 ×DHXn−1) = (−1)n−1 ( j+3 jε) .

This identity is Cassini formula for dual-hyperbolic numbers.

Theorem 3.13. (Honsberger Identity)

For n,m ≥ 0, the Honsberger identity for the dual-hyperbolic number with generalized coefficient DHXn is given by

(DHXk−1 ×DHXn)+(DHXk ×DHXn+1) = [(2p−q)(Hk+n +Hk+n+2)− e(Fk+n +Fk+n+2)]
+2 j [(2p−q)Hk+n+1 − eFk+n+1]
+2ε [(2p−q)(Hk+n+2 +Hk+n+4)− e(Fk+n+2 +Fk+n+4)]
+4 jε [(2p−q)Hk+n+3 − eFk+n+3] .

Proof. If we take into consider the equations (3.1), (3.2) and use the identity HnHm +Hn+1Hm+1 = (2p−q)Hm+n+1 − eFm+n+1 (see ref.

[3]), we complete the proof. If the values p = 1,q = 0 are specially taken in the generalized Fibonacci number Hn, then the following identity

is found

(DHXk−1 ×DHXn)+(DHXk ×DHXn+1) = (Fk+n +Fk+n+2)+2Fk+n+1 j

+2(Fk+n+2 +Fk+n+4)ε +4Fk+n+3 jε.

Theorem 3.14. (Tagiuri Identity)

Let DHXn be the dual-hyperbolic number with generalized Fibonacci coefficients. For m n,m ≥ 1, Tagiuri’s identity is as follows:

(DHXm+k ×DHXn−k)− (DHXm ×DHXn) = (−1)n−k−1µFkFm+k−n ( j+3 jε) .

Proof. The proof can be easily seen by using the identity Hm+kHn−k −HmHn = (−1)n−k+1µFkFm+k−n [7] and equations (3.1) and (3.2). If

the values p = 1,q = 0 are specially taken in the generalized Fibonacci number Hn, then it is concluded that

(DHXm+k ×DHXn−k)− (DHXm ×DHXn) = (−1)n−k−1
FkFm+k−n ( j+3 jε) .

Theorem 3.15. (d’Ocagne’s Identity)

Let DHXn be the dual-hyperbolic number with generalized Fibonacci coefficients. For m > n, m ∈ N and n ∈ Z, we have

(DHXm+k ×DHXn−k)− (DHXm ×DHXn) = µFm−n(−1)n ( j+3 jε) .

Proof. Using identity Hm+kHn−k −HmHn = (−1)n−k+1µFkFm+k−n [7] and the equations (3.1) and (3.2), the proof is completed. If the

values p = 1,q = 0 are specially taken in the generalized Fibonacci number Hn, then the following identity is found

(DHXm+k ×DHXn−k)− (DHXm ×DHXn) = Fm−n(−1)n ( j+3 jε) .
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4. Conclusion

Our main aim in this study was to generalize the study which was done on dual-hyperbolic numbers. It was seen that, some theorems were

obtained as a result of this generalization and they corresponded to the theorems in the article [1] for p = 1, q = 0. Also, the generating

function was obtained and the Binet formula was given with the help of the generating function. Unlike the identities which was given in the

article [1], Honsberger and Tagiuri identities were proved. At the same time, special cases of these identities were discussed. Because of the

fact that generalized Fibonacci and Lucas coefficient dual-hyperbolic number system have commutative algebra structure, five different

conjugates can be defined. As a result, in addition to the identities related to the conjugates which we obtained in Proposition 3.4, the

following identities are given.

i)
(

DHXn ×DHX
†2
n

)

+
(

DHXn−1 ×DHX
†2

n−1

)

= (2p−q) [H2n−1 +H2n+2]− e [F2n−1 +F2n+2]+2 jHnHn−1
(

DHXn ×DHX
†3
n

)

+
(

DHXn−1 ×DHX
†3

n−1

)

=−(1+2 j) [(2p−q)H2n − eF2n]
(

DHXn ×DHX
†4
n

)

+
(

DHXn−1 ×DHX
†4

n−1

)

=− [(2p−q)H2n − eF2n]
(

DHXn ×DHX
†5
n

)

+
(

DHXn−1 ×DHX
†5

n−1

)

= [(2p−q)(H2n+3 +H2n+1)− e(F2n+3 +F2n+1)]

+2 j [(2p−q)H2n+2 − eF2n+2]
+ε [(2p−q)(2H2n +H2n+5)− e(2F2n+3 +F2n+5)]
+2 jε [(2p−q)(H2n+2 +H2n)− e(F2n+2 +F2n)]

ii)

DHX2
n = 2HnDHXn −DHXnDHX

†2
n +2Hn+1 (Hn+1 +Hn j+Hn+2ε +Hn+2 jε)

DHX2
n = 2HnDHXn −DHXnDHX

†3
n +2(Hn+2Hn+1ε +HnHn+3 jε)

DHX2
n = 2HnDHXn −DHXnDHX

†4
n +2Hn+2 (Hnε +Hn+1 jε)

DHX2
n = 2HnDHXn −DHXnDHX

†5
n +(Hn+2Hn−1 +Hn+2Hn +Hn+1Hn+3)

+(Hn+3Hn +Hn+1Hn+2) j+
(

2Hn+2Hn +H2
n+2 +H2

n+3 −H2
n+1 −H2

n

)

ε

+2(Hn+2Hn+1 +Hn+2Hn+3 −Hn+1Hn) jε

iii)

DHX2
n +DHX2

n−1 = 2(2p−q)DHX2n−1 −DHXnDHX
†2
n −DHXn−1DHX

†2

n−1

+(2p−q)(2H2n+1 +2H2n+3ε +2H2n+2 jε)
−e(2F2n−1 +2F2n+1 +F2n j+2(F2n+3 +F2n+1)ε +4F2n+2 jε)+2(HnHn−1) j

DHX2
n +DHX2

n−1 = 2(2p−q)DHX2n−1 −DHXnDHX
†3
n −DHXn−1DHX

†3

n−1

+(2p−q)(−2H2n j+2H2n+3ε +2H2n+2 jε)
−e(2F2n−1 +2(F2n+3 +F2n+1)ε +4F2n+2 jε)

DHX2
n +DHX2

n−1 = 2(2p−q)DHX2n−1 −DHXnDHX
†4
n −DHXn−1DHX

†4

n−1

+2(2p−q)(H2n+3ε +H2n+2 jε)
−2e(F2n−1 +F2n j+(F2n+3 +F2n+1)ε +2F2n+2 jε)

DHX2
n +DHX2

n−1 = 2(2p−q)DHX2n−1 −DHXnDHX
†5
n −DHXn−1DHX

†5

n−1

+(2p−q) [H2n+4 +2H2n+2 j+(2H2n+3 +2H2n +H2n+5)ε +2(2H2n+2 +H2n) jε]
−e [F2n+3 +2F2n+1 +F2n−1 +2(Fn +F2n+2)+(4F2n+3 +F2n+5)ε +(6F2n+2 +F2n) jε]

iv)

DHYn ×DHX
†2
n −DHY

†2
n ×DHXn = 4(−1)n

[

2p2ε + p2 jε
]

DHYn ×DHX
†3
n −DHY

†3
n ×DHXn = 4(−1)n

[(

p2 −2pq+2q2
)

j−2p2ε
]

DHYn ×DHX
†4
n −DHY

†4
n ×DHXn =

[

4(−1)n−1
(

p2 +2pq−2q2
)

]

j

+
8(−1)n

p2

(Vn+Vn+1i)(Hn+Hn+1i)

[

−p2F2n+1 + pq(−2F2n+2 −F2n)
+q2 (F2n+1 +F2n)

]

jε

DHYn ×DHX
†5
n −DHY

†5
n ×DHXn = 2(−1)n−1

p2 j

The proofs of these identities are easily seen by following the similar ways in the proof of Theorem 3.4. Finally, the special values p = 1 and

q = 0 provide the above equations.
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Abstract

In this article, authors employed the new sub equation method to attain new traveling

wave solutions of conformable time fractional partial differential equations. Conformable

fractional derivative is a well behaved, applicable and understandable definition of arbitrary

order derivation. Also this derivative obeys the basic properties that Newtonian concept

satisfies. In this study authors obtained the exact solution for KDV equation where the

fractional derivative is in conformable sense. New solutions are obtained in terms of the

generalized version of the trigonometric functions.

1. Introduction

Fractional differential equations (FDEs) are generalized form of the integer order differential equations. In the last decades, researchers have

worked hard for obtaining analytic solutions of nonlinear FDEs. Nonlinear FDEs are often used to describe many problems arising in many

fields such as physics, chemistry, engineering, heat transfer, applied mathematics, control theory et all. [1]-[4]. So, many authors presented

very strong methods to solve FDEs. For instance Kurt et. al. [5] studied the solutions of time fractional Whitham-Broer-Kaup Equation by

using homotopy analysis method where the fractional terms are described in Caputo sense. Tasbozan et. al. [6] employed the finite element

method for attaining the approximate solutions of diffusion equation where the derivatives are in Riemann-Liouville sense. Celik et. al. [7]

utilized Crank-Nicolson scheme to get the the numerical solutions of fractional diffusion equation. As it is seen from the given references, all

the obtained results are numerical solutions for the considered nonlinear equations. Because, the analytical methods can not be applied to the

nonlinear equations which involves Caputo, Riemann-Liouville and Riesz fractional derivative definitions. On the contrary, conformable

fractional detivative definition gives us chance to get the exact solutions of nonlinear FDEs by using new wave transformation [8] and

the chain rule [9]. For example Eslami and Rezazadeh [10] used the first integral method to obtain analytic solutions of time fractional

Wu-Zhang system. Aminikhah et. al. [11] obtained analytic solutions of fractional regularized long-wave equations using sub-equation

method. Osman et al. [12] employed the unified method to get the analytic solutions of conformable time fractional Schrödinger equation

with perturbation terms. For further details please see the references [13]-[34]. In this paper, we handle the Korteweg-de Vries equation with

a source that provides a sixth order differential equation.

D6
xu+20DxuD4

xu+40D2
xuD3

xu+120Dxu2D2
xu+D3

xD
µ
t u+8DxuDxD

µ
t u+4D

µ
t uD2

xu = 0. (1.1)

2. Conformable fractional calculus

R. Khalil et. al. [32] presented the definition of conformable fractional derivative as follows.

Definition 2.1. µth order ”conformable fractional derivative” of function g which is defined as g : [0,∞)→ R can be dedicated as

Tµ (g)(t) = lim
ε→0

g(t + εt1−µ )−g(t)

ε

Email addresses and ORCID numbers: akurt@pau.edu.tr, https://orcid.org/0000-0002-0617-6037 (A. Kurt), otasbozan@mku.edu.tr, https://orcid.org/0000-0001-5003-

6341 (O. Tasbozan),hulyadurur@ardahan.edu.tr, https://orcid.org/0000-0002-9297-6873 (H. Durur)
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for all t > 0, α ∈ (0,1). Assuming thatg is µ- differentiable over some (0,a) where a > 0 and lim
t→0+

g(µ)(t) exists, then g(µ)(0) = lim
t→0+

g(µ)(t).

The other fractional derivative definitions such as Caputo, Riemann-Liouville, Grünwald-Letnikov and etc. do not satisfy basic principles

which are provided by Newtonian type derivative. For instance

1. Assume that λ is a constant and α ∈ R. Then D
µ
a (λ ) 6= 0 for Riemann-Liouville derivative.

2. The Riemann-Liouville and Caputo derivatives do not provide the derivative of the product of two functions.

3. D
µ
a ( f g) 6= f D

µ
a (g)+gD

µ
a ( f ) .

4. The Riemann-Liouville and Caputo derivatives do not do not provide the derivative of the quotient of two functions

5. D
µ
a

(

f
g

)

6= gD
µ
a ( f )− f D

µ
a (g)

g2 .

This new definition satisfies the properties which are given in the following theorem.

Theorem 2.2. Let µ ∈ (0,1) and f ,g be µ− differentiable at point t > 0. Then

1. Tµ (a f +bg) = aTµ ( f )+bTµ (g), for all a,b ∈ R

2. Tµ (t
p) = pt p−µ for all p ∈ R.

3. Tµ (λ ) = 0 for all constant function f (t) = λ .

4. Tµ ( f g) = f Tµ (g)+gTµ ( f ).

5. Tµ

(

f
g

)

=
gTµ (g)− f Tµ ( f ).

g2 .

6. If f is differentiable, then Tµ ( f )(t) = t1−µ d f
dt .

3. The new sub-equation method

Consider that the general form of nonlinear fractional partial differential equation can be expressed as

H

(

u,
∂ µ u

∂ tµ
,

∂u

∂x
,u

∂u

∂x
,u2 ∂u

∂x
,

∂ 2u

∂x2
, . . .

)

= 0. (3.1)

Using the wave transform ξ = kx+w tµ

µ where k and w are constants and chain rule [9] in Eq. (3.1), the independent variables and can be

changed into single variable. So Eq. (3.1) can be rewritten as

P(u,u′(ξ ),u′′(ξ ), ...). (3.2)

Consider that u(ξ ) can be written as a polynomial in Q(ξ )

u(ξ ) =
n

∑
j=0

a j Q j(ξ ), (3.3)

where a j (0 ≤ j ≤ n) are constant coefficients to be determined after and Q(ξ ) provides first order linear ODE of the form

Q′ (ξ ) = Ln(A)
(

α +βQ(ξ )+σQ2(ξ )
)

, A 6= 0,1, (3.4)

where α,β ,σ are constants. Moreover , Eq. has the following traveling wave solutions.

Family 1.If β 2 −4ασ < 0 and σ 6= 0, then we have

Q1(ξ ) = − β

2σ
+

√

−
(

β 2 −4ασ
)

2σ
tanA





√

−
(

β 2 −4ασ
)

2
ξ



 ,

Q2(ξ ) = − β

2σ
−

√

−
(

β 2 −4ασ
)

2σ
cotA





√

−
(

β 2 −4ασ
)

2
ξ



 ,

Q3(ξ ) = − β

2σ
+

√

−
(

β 2 −4ασ
)

2σ

(

tanA

(

√

−
(

β 2 −4ασ
)

ξ

)

±√
pqsecA

(

√

−
(

β 2 −4ασ
)

ξ

))

,

Q4(ξ ) = − β

2σ
+

√

−
(

β 2 −4ασ
)

2σ

(

−cotA

(

√

−
(

β 2 −4ασ
)

ξ

)

±√
pqcscA

(

√

−
(

β 2 −4ασ
)

ξ

))

,

Q5(ξ ) = − β

2σ
+

√

−
(

β 2 −4ασ
)

4σ



tanA





√

−
(

β 2 −4ασ
)

4
ξ



− cotA





√

−
(

β 2 −4ασ
)

4
ξ







 .
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Family 2.Suppose that β 2 −4ασ > 0 and σ 6= 0,

Q6(ξ ) = − β

2σ
−
√

β 2 −4ασ

2σ
tanhA

(

√

β 2 −4ασ

2
ξ

)

,

Q7(ξ ) = − β

2σ
−
√

β 2 −4ασ

2σ
cothA

(

√

β 2 −4ασ

2
ξ

)

,

Q8(ξ ) = − β

2σ
+

√

β 2 −4ασ

2σ

(

−tanhA

(

√

β 2 −4ασξ

)

± i
√

pqsechA

(

√

β 2 −4ασξ

))

,

Q9(ξ ) = − β

2σ
+

√

β 2 −4ασ

2σ

(

−cothA

(

√

β 2 −4ασξ

)

±√
pqcschA

(

√

β 2 −4ασξ

))

,

Q10(ξ ) = − β

2σ
−
√

β 2 −4ασ

4σ

(

tanhA

(

√

β 2 −4ασ

4
ξ

)

+ cothA

(

√

β 2 −4ασ

4
ξ

))

.

Family 3.Consider that ασ > 0 and β = 0,

Q11(ξ ) =

√

α

σ
tanA

(√
ασξ

)

,

Q12(ξ ) = −
√

α

σ
cotA

(√
ασξ

)

,

Q13(ξ ) =

√

α

σ

(

tanA

(

2
√

ασξ
)

±√
pqsecA

(

2
√

ασξ
))

,

Q14(ξ ) =

√

α

σ

(

−cotA
(

2
√

ασξ
)

±√
pqcscA

(

2
√

ασξ
))

,

Q15(ξ ) =
1

2

√

α

σ

(

tanA

(√
ασ

2
ξ

)

− cotA

(√
ασ

2
ξ

))

.

Family 4.Regard that ασ < 0 and β = 0,

Q16(ξ ) = −
√

−α

σ
tanhA

(√
−ασξ

)

,

Q17(ξ ) = −
√

−α

σ
cothA

(√
−ασξ

)

,

Q18(ξ ) =

√

−α

σ

(

−tanhA

(

2
√
−ασξ

)

± i
√

pqsechA

(

2
√
−ασξ

))

,

Q19(ξ ) =

√

−α

σ

(

−cothA

(

2
√
−ασξ

)

±√
pqcschA

(

2
√
−ασξ

))

,

Q20(ξ ) = −1

2

√

−α

σ

(

tanhA

(√
−ασ

2
ξ

)

+ cothA

(√
−ασ

2
ξ

))

.

Family 5. When β = 0 and σ = α,

Q21(ξ ) = tanA (αξ ) ,

Q22(ξ ) = −cotA (αξ ) ,

Q23(ξ ) = tanA (2αξ )±√
pqsecA (2αξ ) ,

Q24(ξ ) = −cotA (2αξ )±√
pqcscA (2αξ ) ,

Q25(ξ ) =
1

2

(

tanA

(α

2
ξ
)

− cotA

(α

2
ξ
))

.

Family 6. If β = 0 and σ =−α, chosen

Q26(ξ ) = −tanhA (αξ ) ,

Q27(ξ ) = −cothA (αξ ) ,

Q28(ξ ) = −tanhA (2αξ )± i
√

pqsechA (2αξ ) ,

Q29(ξ ) = −cothA (2αξ )±√
pqcschA (2αξ ) ,

Q30(ξ ) = −1

2

(

tanhA

(α

2
ξ
)

+ cothA

(α

2
ξ
))

.

Family 7.While β 2 = 4ασ ,
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Q31(ξ ) =
−2α(βξ Ln(A)+2)

β 2ξ Ln(A)
.

Family 8.When beta = k ,α = mk(m 6= 0) and σ = 0,

Q32(ξ ) = Akξ −m.

Family 9.When β = σ = 0,

Q33(ξ ) = αξ Ln(A) .

Family 10.When β = α = 0,

Q34(ξ ) =
−1

σξ Ln(A)
.

Family 11.When α = 0 and β 6= 0,

Q35(ξ ) = − pβ

σ (coshA(βξ )− sinhA(βξ )+ p)
,

Q36(ξ ) = − qβ

σ (coshA(βξ )− sinhA(βξ )+q)
,

Q37(ξ ) = − β (sinhA(βξ )+ coshA(βξ ))

σ (sinhA(βξ )+ coshA(βξ )+q)
,

Family 12.When β = k ,σ = mk(m 6= 0), p = q and α = 0,

Q38(ξ ) =
pAkξ

p−mqAkξ
.

Remark 3.1. The generalized version of the trigonometric functions and the generalized types of the hypergeometric functions are declared

as [33]

sinhA(ξ ) =
pAξ −qA−ξ

2
, coshA(ξ ) =

pAξ +qA−ξ

2
,

tanhA(ξ ) =
pAξ −qA−ξ

pAξ +qA−ξ
, cothA(ξ ) =

pAξ +qA−ξ

pAξ −qA−ξ
,

sechA(ξ ) =
2

pAξ +qA−ξ
, cschA(ξ ) =

2

pAξ −qA−ξ
,

sinA(ξ ) =
pAiξ −qA−iξ

2i
, cosA(ξ ) =

pAiξ +qA−iξ

2
,

tanA(ξ ) =−i
pAiξ −qA−iξ

pAiξ +qA−iξ
, cotA(ξ ) = i

pAiξ +qA−iξ

pAiξ −qA−iξ
,

secA(ξ ) =
2

pAiξ +qA−iξ
, cscA(ξ ) =

2i

pAiξ −qA−iξ
,

where p,q > 0 are constants and ξ is an independent variable. In addition, by considering the balance between the highest order derivative

linear term and nonlinear terms appearing in ODE (3.2), the positive integer n can be defined. Replacing Eq. (3.3) into ODE (3.2), using Eq.

(3.4), and equalizing the coefficients of all the powers of Q(ξ ) to zero, we will obtain an equation system in terms of k,w and a j (0 ≤ j ≤ n).
From this obtained system the values for k,w and a j can be found with the aid of a computer software. Replacing the obtained values of k,w
and a j into Eq.(3.3), we may acquire all possible solutions of Eq. (3.1).

4. Analytic results for time fractional KdV6 equation with conformable derivative

Using the wave transformation and applying chain rule [9]

u(x, t) = u(ξ ), ξ = kx+w
tµ

µ
. (4.1)

Eq. (1.1) is transferred to

k6u(vı) (ξ )+ k3wuıv (ξ )+6k2w
(

u′ (ξ )
)2

+20k5uıv (ξ )u′ (ξ )+40k5u′′ (ξ )u′′′ (ξ )+12k2wu′ (ξ )u′′ (ξ ) = 0
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where the prime symbolizes the known derivative of function u(ξ ) with respect to ξ . Integrating the above equation once and making some

algebraic calculations led to

k6u(v) (ξ )+ k3wu′′′ (ξ )+3k2w
(

u′
)2

+5k5u′′′u+20k5
(

u′′
)2

+12k2wuu′ = 0. (4.2)

Considering the homogeneous balance between u2u′ and u(5) in Eq. (4.2) we obtain n+5 = 3(n+1); then n = 1;so we can write Eq. (3.3) as

u(ξ ) = a0 +a1 Q(ξ ). (4.3)

Subrogating Eq. (4.3) with (3.4) into Eq. (4.2) and gathering all the same power of Q(ξ ) together, the left hand side of Eq. (4.2) turns into a

polynomial of Q(ξ ). Equalizing the each coefficient of the same power of Q(ξ ) to zero led to an equation system. Solving the obtained

system due to unknowns variables a0, a1 and w, the solutions can be concluded as

w =
a1

3(β 2 −4ασ)

σ3Ln(A)
, k =− a1

σLn(A)
. (4.4)

Putting the solution set (4.4) with (4.1) into (4.3) and solutions of Eq. (1.1), can be expressed as

Case 1.If β 2 −4ασ < 0 andσ 6= 0, then we have

u1(ξ ) = a0 +a1



− β

2σ
+

√

−
(

β 2 −4ασ
)

2σ
tanA





√

−
(

β 2 −4ασ
)

2
ξ







 ,

u2(ξ ) = a0 +a1



− β

2σ
−

√

−
(

β 2 −4ασ
)

2σ
cotA





√

−
(

β 2 −4ασ
)

2
ξ







 ,

u3(ξ ) = a0 +a1



− β

2σ
+

√

−
(

β 2 −4ασ
)

2σ

(

tanA

(

√

−
(

β 2 −4ασ
)

ξ

)

±√
pqsecA

(

√

−
(

β 2 −4ασ
)

ξ

))



 ,

u4(ξ ) = a0 +a1



− β

2σ
+

√

−
(

β 2 −4ασ
)

2σ

(

−cotA

(

√

−
(

β 2 −4ασ
)

ξ

)

±√
pqcscA

(

√

−
(

β 2 −4ασ
)

ξ

))



 ,

u5(ξ ) = a0 +a1



− β

2σ
+

√

−
(

β 2 −4ασ
)

4σ



tanA





√

−
(

β 2 −4ασ
)

4
ξ



− cotA





√

−
(

β 2 −4ασ
)

4
ξ













where ξ =− a1

σLn(A)
x+

a1
3(β 2−4ασ)

2

σ 3µLn(A)
tµ .

Case 2.Suppose that β 2 −4ασ > 0 and σ 6= 0,

u6(ξ ) = a0 +a1

(

− β

2σ
−
√

β 2 −4ασ

2σ
tanhA

(

√

β 2 −4ασ

2
ξ

))

,

u7(ξ ) = a0 +a1

(

− β

2σ
−
√

β 2 −4ασ

2σ
cothA

(

√

β 2 −4ασ

2
ξ

))

,

u8(ξ ) = a0 +a1

(

− β

2σ
+

√

β 2 −4ασ

2σ

(

−tanhA

(

√

β 2 −4ασξ

)

± i
√

pqsechA

(

√

β 2 −4ασξ

))

)

,

u9(ξ ) = a0 +a1

(

− β

2σ
+

√

β 2 −4ασ

2σ

(

−cothA

(

√

β 2 −4ασξ

)

±√
pqcschA

(

√

β 2 −4ασξ

))

)

,

u10(ξ ) = a0 +a1

(

− β

2σ
−
√

β 2 −4ασ

4σ

(

tanhA

(

√

β 2 −4ασ

4
ξ

)

+ cothA

(

√

β 2 −4ασ

4
ξ

)))

where ξ =− a1

σLn(A)
x+

a1
3(β 2−4ασ)

2

σ 3µLn(A)
tµ .

Case 3.Consider that ασ > 0 and β = 0,

u11(ξ ) = a0 +a1

(
√

α

σ
tanA

(√
ασξ

)

)

,

u12(ξ ) = a0 −a1

(
√

α

σ
cotA

(√
ασξ

)

)

,

u13(ξ ) = a0 +a1

(
√

α

σ

(

tanA

(

2
√

ασξ
)

±√
pqsecA

(

2
√

ασξ
))

)

,

u14(ξ ) = a0 +a1

(
√

α

σ

(

−cotA
(

2
√

ασξ
)

±√
pqcscA

(

2
√

ασξ
))

)

,

u15(ξ ) = a0 +a1

(

1

2

√

α

σ

(

tanA

(√
ασ

2
ξ

)

− cotA

(√
ασ

2
ξ

)))
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where ξ =− a1

σLn(A)
x+

a1
3(β 2−4ασ)

2

σ 3µLn(A)
tµ .

Case 4.Regard that ασ < 0 and β = 0,

u16(ξ ) = a0 −a1

(
√

−α

σ
tanhA

(√
−ασξ

)

)

,

u17(ξ ) = a0 −a1

(
√

−α

σ
cothA

(√
−ασξ

)

)

,

u18(ξ ) = a0 +a1

(
√

−α

σ

(

−tanhA

(

2
√
−ασξ

)

± i
√

pqsechA

(

2
√
−ασξ

))

)

,

u19(ξ ) = a0 +a1

(
√

−α

σ

(

−cothA

(

2
√
−ασξ

)

±√
pqcschA

(

2
√
−ασξ

))

)

,

u20(ξ ) = a0 −a1

(

1

2

√

−α

σ

(

tanhA

(√
−ασ

2
ξ

)

+ cothA

(√
−ασ

2
ξ

)))

where ξ =− a1

σLn(A)
x+

a1
3(β 2−4ασ)

2

σ 3µLn(A)
tµ .

Case 5.When β = 0 and σ = α,

u21(ξ ) = a0 +a1tanA (αξ ) ,

u22(ξ ) = a0 −a1cotA (αξ ) ,

u23(ξ ) = a0 +a1 (tanA (2αξ )±√
pqsecA (2αξ )) ,

u24(ξ ) = a0 +a1 (−cotA (2αξ )±√
pqcscA (2αξ )) ,

u25(ξ ) = a0 +a1

(

1

2

(

tanA

(α

2
ξ
)

− cotA

(α

2
ξ
))

)

where ξ =− a1

σLn(A)
x+

a1
3(β 2−4ασ)

2

σ 3µLn(A)
tµ .

Case 6.If β = 0 and σ =−α, chosen

u26(ξ ) = a0 −a1tanhA (αξ ) ,

u27(ξ ) = a0 −a1cothA (αξ ) ,

u28(ξ ) = a0 +a1 (−tanhA (2αξ )± i
√

pqsechA (2αξ )) ,

u29(ξ ) = a0 +a1 (−cothA (2αξ )±√
pqcschA (2αξ )) ,

u30(ξ ) = a0 −
a1

2

(

tanhA

(α

2
ξ
)

+ cothA

(α

2
ξ
))

where ξ =− a1

σLn(A)
x+

a1
3(β 2−4ασ)

2

σ 3µLn(A)
tµ .

Case 11.When α = 0 and β 6= 0,

u31(ξ ) = a0 −
pa1β

σ (coshA(βξ )− sinhA(βξ )+ p)
,

u32(ξ ) = a0 −
qa1β

σ (coshA(βξ )− sinhA(βξ )+q)
,

u33(ξ ) = a0 −
a1β (sinhA(βξ )+ coshA(βξ ))

σ (sinhA(βξ )+ coshA(βξ )+q)
,

where ξ =− a1

σLn(A)
x+

a1
3(β 2−4ασ)

2

σ 3µLn(A)
tµ .

Case 12.When β = k ,σ = mk(m 6= 0), p = q andα = 0,

u34(ξ ) = a0 +
pa1Akξ

p−mqAkξ
.

5. Conclusion

In this manuscript the new sub-equation method successfully applied to time fractional KdV6 equation. Analytic solutions of the nonlinear

KdV6 equation are successfully obtained. Also wave transform and chain rule are used, so the nonlinear conformable FDE changes into

differential equation with integer order derivative. As it can be from the obtained results new sub-equation method is a reliable, efficient and

applicable tool for obtaining the exact solutions of fractional partial differential equations in conformable sense.
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Abstract

In this paper, the conservation laws for a model with both quadratic and cubic nonlinearity

mt = bux +
1

2
a
[(

u2 −u2
x

)

m
]

x
+

1

2
c(2m ·ux +mx ·u) ; m = u−uxx

are considered for the six cases of coefficients. By using a variational derivative approach,

conservation laws were constructed. The computations to derive multipliers and conserva-

tion law fluxes are conducted by using a Maple-based package which is called GeM.

1. Introduction

In this paper, we consider the conservation laws for the model

mt = bux +
1

2
a
[(

u2 −u2
x

)

m
]

x
+

1

2
c(2m ·ux +mx ·u) ; m = u−uxx, (1.1)

where a, b and c are arbitrary constants. Eq. (??) models the one-way propagation of a fluid that lies on a horizontal flat bottom.

Conservation laws, indicating that a certain measurable property (as mass, momentum or charge) of an isolated physical system does not

change as the system evolves over time, are of fundamental importance in nonlinear science. The study of the conservation laws of the KdV

equation was a milestone in the exploration of some techniques that include Miura transformation, Lax pair, inverse scattering transform,

bi-Hamiltonian structures, for solving evolutionary equations [?]. Conservation laws have several applications in the field of differential

equations. For example, Lax [?] proved global existence theorems by using conservation laws, DiPerna [?] used extra conservation laws for

the decay of shock waves, and stability problems were considered by Benjamin. In [?], they were used for studying cracks and dislocations in

elasticity (for more information see [?]). The existence of solitons is also closely related to the existence of an infinite number of conservation

laws of partial differential equations and is a predictor of complete integrability.

There are many powerful methods used to find conservation laws such as Laplace’s direct technique [?], Noether’s theorem [?], the

characteristic form (also known as multiplier or integrating factor) given by Steudel [?]. In this paper, we use the multiplier approach among

these techniques to derive conservation laws and conserved quantities corresponding to the six different cases of coeffficients of Eq. (??).

The multiplier approach will be explained in detail in the next section.

The emergence of symbolic computational packages provides great satisfaction in the performance of complex and tedious calculations.

Over the past decades, researchers have focused on developing symbolic computational packages working with either Maple or Mathematica

which are based on different approaches to conservation laws. Many computational packages have recently been developed, and we can

classify these packages on the environment in which they work in two parts:

1. Packages which are based on Mathematica [?] environment: Goktas and Hereman developed condens.m [?], Adams and Hereman

developed TransPDEDensity.m [?], and Poole and Hereman developed ConservationLawsMD.m [?].

2. Packages which are based on Maple environment: Cheviakov developed GeM [?, ?], Anderson and Cheb-Terrab developed Vessiot

suite [?] , Rocha Filho and Figueiredo developed SADE [?].

Email addresses and ORCID numbers: alaloush.mohanad@gmail.com, https://orcid.org/0000-0002-2861-8895 (M. Alaloush), haticetaskesen@yyu.edu.tr,

http://orcid.org/0000-0003-1058-0507 (H. Taskesen)
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GeM package [?] will be used in the present paper to find the conservation laws of Eq. (??) in the six different cases of coeffficients.

GeM package is developed to find the conservation laws and symmetries of differential equations. There exists a determining system for

obtaining multipliers (and hence conservation laws) for any partial differential equation. To obtain symmetries, this package, firstly obtain an

overdetermined system of determining equations, afterwards this system is simplified by a Rif package routines, and then a Maple command

gives all symmetry generators of differential equations. For the conservation laws, GeM package firstly obtain a determining system for

multipliers, afterwards the obtained system is simplified by Rif package to get multipliers. Once the multipliers are obtained, the fluxes are

constructed by the direct method, homotopy methods or scaling symmetry formula.

Eq. (??) is studied in [?] where they mainly interested in peakon, weak kink ank kink-peakon interactional solutions. To show that Eq. (??)

is completely integrable, they present the Lax representation, bi-Hamiltonian structure and infinitely many conservation laws for Eq. (??). In

[?] the conservation laws are obtained explicitly only for b = 0,a 6= 0,c 6= 0 case.

According to the different cases of coefficients, Eq. (??) reduces to the following six cases:

1. Case (b 6= 0,a 6= 0,c 6= 0):
mt = bux +

1
2 a

[(

u2 −u2
x

)

m
]

x
+ 1

2 c(2m ·ux +mx ·u), which is a linear combination of CH and mCH or generalized CH equation, see

(Qiao, Xia, and Li [e-print arXiv:1205.2028v3 (2012)]).

2. Case (b 6= 0,a = 0,c =−2):
mt = bux − (2mux +mxu),wich is a quadratic nonlinear equation.

3. Case (b 6= 0,a =−2,c = 0):
mt = bux −

[(

u2 −u2
x

)

m
]

x
, which is a cubic nonlinear equation.

4. Case (b = 0,a 6= 0,c 6= 0):
mt =

1
2 a

[

m
(

u2 −u2
x

)]

x
+ 1

2 c(2mux +mxu), which known as FQXL model.

5. Case (b = 0,a =−2,c = 0) :

mt =−(2mux +mxu), which is known as Camassa -Holm equation (CH).

6. Case (b = 0,a = 0,c =−2):
mt =−

[(

u2 −u2
x

)

m
]

x
, which known as modified Camassa-Holm equation (mCH).

In the present paper, the conservation laws of the above six cases of the coefficients are computed explicitly using GeM Maple routines

which are based on multiplier method. The multipliers are used to make the system being studied get a divergence form, then by equating

this divergence to zero one can obtain a conservation law. For the convenience, these are explained in detail in Section 2. The computations

are performed in Section 3, and the results are summarized in the last section.

2. Basic concepts on the method proposed

To compute conserved densities and fluxes, we use a multiplier approach based on the fact that the Euler operator eliminates a total divergence.

Let u be dependent variable and t,x be independent variables.

1. Consider an nth-order partial differential equation

G(t,x,u,ut ,ux,utt ,utx, . . .) = 0. (2.1)

2. The standard Euler operator Eu is defined as

Eu =
δ

δu
=

∂

∂u
−Dt

∂

∂ut
−Dx

∂

∂ux
+D2

t

∂

∂utt
+D2

x

∂

∂uxx
− . . . .

where Dt and Dx are the total differentiation operators which are given by:

Dt =
∂

∂ t
+ut

∂

∂u
+utt

∂

∂ut
+utx

∂

∂ux
+ . . . ,

Dx =
∂

∂x
+ux

∂

∂u
+uxx

∂

∂ux
+uxt

∂

∂ut
+ . . . .

The Euler operator tests whether an expression is a total derivative without using any integration by parts [?].

3. A vector T = (T t ,T x) is defined as the conserved vector of (??) if DtT
t +DxT x = 0 holds for all solutions of (??), where T t is

conserved density and T x is associated flux. The divergence expression DtT
t +DxT x = 0 is called the local conservation law for (??).

4. A multiplier λ of (??) is a function on the solution space which satisfies

DtT
t +DxT x = λG (2.2)

for any function u(x, t) [?, ?]. The multipliers may be chosen to depend on both the variables (independent and dependent) and

derivatives up to a certain order.

5. The multipliers may be determined by taking the variational derivative of (??)

δ

δu
(λG) = 0, (2.3)

where δ/δ s is the Euler operator defined as above. The conserved vectors can be derived using (??) after computing the multipliers

from (??).
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3. Multipliers and conservation laws for the six cases via GeM Maple Routines

In this section, we use a multiplier approach technique for deriving conservation laws and conserved quantities corresponding to the six cases

of Eq. (??) via Maple-based GeM package.

We start with the sixth case (b = 0,a = 0,c =−2). Consider the following model with both cubic and quadratic nonlinearity:

mt = bux +
1

2
a
[(

u2 −u2
x

)

m
]

x
+

1

2
c(2m ·ux +mx ·u) ;m = u−uxx, (3.1)

By using the following Maple command

> restart : with(PDEtools) : declare(m(t,x),u(t,x)) :

> pde := di f f (m(t,x), t) − b ∗ di f f (u(t,x),x) − (1/2) ∗ a ∗ (di f f ((u(t,x)2 − (di f f (u(t,x),x))2) ∗ m(t,x),x)) − (1/2) ∗ c ∗ (2 ∗ m ∗
(di f f (u(t,x),x))+u∗ (di f f (m(t,x),x))) = 0 :

> m(t,x) = u(t,x)− (di f f (u(t,x),x,x)) :

>CH := eval(pde,{b = 0,a = 0,c =−2,m(t,x) = u(t,x)− (di f f (u(t,x),x,x))});
we can rewrite equation (??) as follows:

CH := ut −utxx +2(u−uxx)ux +u(ux −uxxx) = 0 (3.2)

where u = u(t,x) . We will explain the case (b = 0,a = 0,c =−2) in detail along with GeM Maple routines given in [?, ?]. Dependent and

independent variables and Eq. (??) can be defined in GeM by the following commands:

> read(”H:/gem32 12.mpl”) :

> with(linalg) : With(GeM);
> gem decl vars(indeps = [t,x],deps = [u(t,x)], f reeconst = [b,a,c]);
> gem decl eqs([di f f (u(t,x), t) − (di f f (u(t,x),x,x, t)) + ((2 ∗ (u(t,x) − (di f f (u(t,x),x,x)))) ∗ (di f f (u(t,x),x)) + (di f f (u(t,x),x) −
(di f f (u(t,x),x,x,x)))∗u(t,x)) = 0],solve f or = [di f f (u(t,x), t)]);

Let us take the multipliers as λ = λ (t,x,u,ut ,ux,uxx,uxxx). The Maple routines to be used in GeM for which the multipliers will be obtained

from are

> det CH := gem conslaw det eqs([t,x,u(t,x),di f f (u(t,x), t),di f f (u(t,x),x),di f f (u(t,x),x,x),di f f (u(t,x),x,x,x)]);
>CL CH mult := gem conslaw multipliers();
> simpli CH := DEtools[ri f simp](det CH,CL CH mult,mindim = 1);

For the simplified form of multipliers, the determining equations are

λuu =
3λuxx

2u−2uxx
,λuuxx

=− 3λuxx

2u−2uxx
,λuxxuxx

=
3λuxx

2u−2uxx
,λt = 0,λx = 0,λut

= 0,λux
= 0,λuxxx

= 0 (3.3)

The following Maple command is used to solve the system (??)

> multipliers CH sol := pdsolve(simpli CH[Solved]);

which yields

λ (t,x,u,ut ,ux,uxx,uxxx) =− C2u+−C3+
−C1√−u+uxx

.

Here −C1,−C2 and −C3 are arbitrary constants. There arise three linearly independent conservation laws from the following multipliers

λ (1) = 1,λ (2) = u,λ (3) =
1√−u+uxx

(3.4)

The next task is the construction of conservation laws from the multipliers given in (??). The direct method is used to compute the flux

expressions in the Maple command

> gem get CL f luxes(multipliers CH sol); .

We have the conservation law fluxes which are presented in the following table for the multipliers (??) :

Case Multiplier Fluxes

b = 0
λ (1) = 1

T t = u−uxx

a = 0 T x = 3
2 u2 −uuxx − 1

2 u2
x

c =−2 λ (2) = u
T t = 1

2 u2 −uuxx − 1
2 u2

x

T x = u3 −uxxu2 +utux

λ (3) = 1√−u+uxx

T t =−2
√−u+uxx

T x =−2
√−u+uxxu

The homotopy formulas will be employed for the fluxes since the multipliers do not contain arbitrary constants. The following Maple

command is used for first homotopy formula

> gem get CL f luxes(multipliers CH sol,method = ”Homotopy1”);

to get conservation law fluxes
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Case Multiplier Fluxes

b = 0
λ (1) = 1

T t = u−uxx

a = 0 T x = 3
2 u2 −uuxx − 1

2 u2
x

c =−2 λ (2) = u
T t =

u(u−uxx)
2

T x = u3 −uxxu2 − 1
2 utxu+ 1

2 uxut

λ (3) = 1√−u+uxx

T t =−2
√
−2u+2uxx

T x =−2u
√
−2u+2uxx

For second homotopy formula, the Maple command

> gem get CL f luxes(multipliers CH sol,method = ”Homotopy2”);

yields the expressions for conservation law fluxes which are presented in the following table :

Case Multiplier Fluxes

b = 0
λ (1) = 1

T t = u− uxx

3

a = 0 T x = 3
2 u2 −uuxx − 1

2 u2
x − 2

3 utx

c =−2 λ (2) = u
T t = 1

2 u2 − 1
3 uuxx +

1
6 u2

x

T x = u3 −uxxu2 − 2
3 uutx +

1
3 utux

λ (3) = 1√−u+uxx

T t =−
2
√−u+uxx

(

u3+(− 13uxx
6

− uxxxx
6 )u2+

(

3u2
xx

2
+ uxxuxxxx

6
− 5(ux− 3uxxx

5
)(ux−uxxx)

12

)

u+ (−2u2
xx+ux(ux−uxxx))uxx

6

)

(u−uxx)
3

T x =− 1
(u−uxx)3

(

2
√−u+uxx

(

u4 −3u3uxx +
(

3u2
xx − 5utx

6 + utxxx

6

)

u2 − uxx(4uxxutx+(ux+uxx)ut−2utxxux)
6

))

Now, by repeating the previous processes for the cases (1,2,3,4 and 5), we find multipliers and conserved vectors using the direct method and

first homotopy method, which are given in Tables ??, ??, respectively.

Case Multiplier Fluxes

b 6= 0
λ (1) = 1

T t = u−uxx

a 6= 0 T x =− au3

2 +
(2auxx−3c)u2

4 +
(2au2

x+2cuxx−4b)u

4 − (auxx− c
2 )u2

x

2

c 6= 0 λ (2) = u
T t = 1

2 u2 −uuxx − 1
2 u2

x

T x =− 3au4

8 +
(4auxx−4c)u3

8 +
(2au2

x+4cuxx−4b)u2

8 − u2
x uxxau

2 +
ux(u3

x a+8ut)
8

λ (3) =
(−2u+2uxx)a−c√

(u−uxx)2a+cu−cuxx+b

T t =−2
√

(u−uxx)2a+ cu− cuxx +b

T x =
(

au2 −au2
x + cu

)
√

(u−uxx)2a+ cu− cuxx +b

b 6= 0
λ (1) = 1

T t = u−uxx

a = 0 T x = 3u2

2 +
(−2b−2uxx)u

2 − u2
x

2

c =−2. λ (2) = u
T t = 1

2 u2 −uuxx − 1
2 u2

x

T x = u3 +
(−b−2uxx)u

2

2 +utux

λ (3) = 2√
2b−4u+4uxx

T t =−
√

2b−4u+4uxx

T x =−
√

2b−4u+4uxxu

b 6= 0
λ (1) = 1

T t = u−uxx

a =−2 T x = u3 −uxxu2 +
(

−u2
x −b

)

u+u2
xuxx

c = 0 λ (2) = u
T t = 1

2 u2 −uuxx − 1
2 u2

x

T x = 3u4

4 −uxxu3 +
(−2u2

x−2b)u2

4 +u2
xuxxu− u4

x

4 +utux

λ (3) = −u+uxx√
2u2−4uuxx+2u2

xx−b

T t =−
√

2u2−4uuxx+2u2
xx−b

2

T x =− (u2−u2
x)
√

2u2−4uuxx+2u2
xx−b

2

b = 0
λ (1) = 1

T t = u−uxx

a 6= 0. T x =− au3

2 +
(2auxx−3c)u2

4 +
(2au2

x+2cuxx)u

4 − (auxx− c
2 )u2

x

2

c 6= 0 λ (2) = u
T t = 1

2 u2 −uuxx − 1
2 u2

x

T x =− 3au4

8 +
(4auxx−4c)u3

8 +
(2au2

x+4cuxx)u2

8 − u2
x uxxau

2 +
ux(2u3

x a+8ut)
8

λ (3) =
(−2u+2uxx)a−c√

(u−uxx)((u−uxx)a+c)

T t =−2
√

(u−uxx)((u−uxx)a+ c)

T x =
√

(u−uxx)((u−uxx)a+ c)
(

au2 −au2
x + cu

)

b = 0
λ (1) = 1

T t = u−uxx

a =−2 T x = (u−ux)(u+ux)(u−uxx)

c = 0 λ (2) = u
T t = 1

2 u2 −uuxx − 1
2 u2

x

T x =− u4
x

4 − u(u−2uxx)u
2
x

2 +utux +
3u4

4 −uxxu3

λ (3) = 1
(u−uxx)2

T t =− 1
u−uxx

T x =
3u2−4uuxx+u2

x

u−uxx

Table 1: Multipliers and conserved vectors using direct method
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Case Multiplier Fluxes

b 6= 0
λ (1) = 1

T t = u−uxx

a 6= 0 T x =− au3

2 +
(2auxx−3c)u2

4 +
(2au2

x+2cuxx−4b)u

4 − (auxx− c
2 )u2

x

2

c 6= 0 λ (2) = u
T t =

u(u−uxx)
2

T x =− 3au4

8 +
(4auxx−4c)u3

8 +
(2au2

x+4cuxx−4b)u2

8 +
(−4u2

x uxxa−4utx)u

8 +
ux(u3

x a+4ut)
8

λ (3) =
(−2u+2uxx)a−c√

(u−uxx)2a+cu−cuxx+b

T t = 2
√

b−2
√

(u−uxx)2a+ cu− cuxx +b

T x =
(

au2 −au2
x + cu

)
√

(u−uxx)2a+ cu− cuxx +b

b 6= 0
λ (1) = 1

T t = u−uxx

a = 0 T x = 3u2

2 +
(−2b−2uxx)u

2 − u2
x

2

c =−2. λ (2) = u
T t =

u(u−uxx)
2

T x = u3 +
(−b−2uxx)u

2

2 − uutx

2 + ut ux

2

λ (3) = 2√
2b−4u+4uxx

T t =
√

2
√

b−
√

2b−4u+4uxx

T x =−
√

2b−4u+4uxxu

b 6= 0
λ (1) = 1

T t = u−uxx

a =−2 T x = u3 −uxxu2 +
(

−u2
x −b

)

u+u2
xuxx

c = 0 λ (2) = u
T t =

u(u−uxx)
2

T x = 3u4

4 −uxxu3 +
(−2u2

x−2b)u2

4 +
(4u2

x uxx−2utx)u

4 − u4
x

4 + ut ux

2

λ (3) = −u+uxx√
2u2−4uuxx+2uu2

xx−b

T t =
√
−b
2 −

√
2u2−4uuxx+2u2

xx−b

2

T x =
(u−ux)(u+ux)(−2u2+4uuxx−2u2

xx+b)
2
√

2u2−4uuxx+2u2
xx−b

b = 0
λ (1) = 1

T t = u−uxx

a 6= 0. T x =− au3

2 +
(2auxx−3c)u2

4 +
(2au2

x+2cuxx)u

4 − (auxx− c
2 )u2

x

2

c 6= 0 λ (2) = u
T t =

u(u−uxx)
2

T x =− 3au4

8 +
(4auxx−4c)u3

8 +
(2au2

x+4cuxx)u2

8 +
(−4au2

x uxx−4utx)u

8 +
ux(au3

x+4ut)
8

λ (3) =
(−2u+2uxx)a−c√
(u−uxx)2a+cu−cuxx

T t =−2
√

(u−uxx)2a+ cu− cuxx

T x =
(

au2 −au2
x + cu

)
√

(u−uxx)2a+ cu− cuxx

b = 0
λ (1) = 1

T t = u−uxx

a =−2 T x = u3 −uxxu2 −u2
xu+u2

xuxx

c = 0 λ (2) = u
T t =

u(u−uxx)
2

T x = 3u4

4 −uxxu3 − u2
x u2

2 +
(8u2

x uxx−4utx)u

8 +
ux(−2u3

x+4ut)
8

λ (3) = 4u−4uxx√
−2(u−uxx)2

T t =−2
√

−2(u−uxx)2

T x =
(

−2u2 +2u2
x

)
√

−2(u−uxx)2

Table 2: Multipliers and conserved vectors using the first homotopy formula

4. Conclusion

The conservation laws for Eq. (??) with both quadratic and cubic nonlinearity for the six cases of coefficients ((b 6= 0,a 6= 0,c 6= 0),(b 6=
0,a = 0,c = −2),(b 6= 0,a = −2,c = 0),(b = 0,a 6= 0,c 6= 0),(b = 0,a = −2,c = 0) and (b = 0,a = 0,c = −2)) are constructed via a

Maple package called GeM. The conservation laws ρt = Fx of Eq. (??) were obtained in [?]. But, they were given explicitly only for

b = 0,a 6= 0,c 6= 0 case. In the present paper, the conservation laws of all the above six cases are computed explicitly. Three multipliers are

obtained by defining the multipliers of the form λ = λ (t,x,u,ut ,ux,uxx,uxxx) in GeM Maple routines. More multipliers may be computed in

the case of including higher order derivatives in the multipliers. Direct method and homotopy formula are used to compute the fluxes for

each cases. The fluxes obtained here can be used to construct the solutions of Eq. (??).
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Abstract

In 1973 Kotzig conjectures that the complete graph K2n+1 can be cyclically decomposed

into 2n+1 copies of any tree of size n. Rosa proved that this decomposition exists if and

only if there exists a ρ-labeling of the tree. In this work we prove that if T ′ is a graceful

tree, then any tree T obtained from T ′ by attaching a total of k ≥ 1 pendant vertices to any

collection of r vertices of T ′, where 1 ≤ r ≤ k, admits a ρ-labeling. As a consequence

of this result, many new families of trees with this kind of labeling are produced, which

indicates the strong potential of this result. Moreover, the technique used to prove this

result, gives us an indication of how to determine whether a given tree of size n decomposes

the complete graph K2n+1. We also prove the existence of a ρ-labeling for two subfamilies

of lobsters and present a method to produce ρ-labeled trees attaching pendant vertices and

pendant copies of the path P3 to some of the vertices of any graceful tree.

In addition, for any given tree T , we use bipartite labelings to show that this tree is a

spanning tree of a graph G that admits an α-labeling. This is not a new result; however, the

construction presented here optimizes (reduces) the size of G with respect to all the similar

results that we found in the literature.

1. Introduction

A decomposition (or edge-decomposition) of the complete graph Kn is a system R of subgraphs such that any edge of Kn belongs to exactly

one of the subgraphs in R. Suppose that the vertices of Kn are labeled 0,1, . . . ,n−1; let i j ∈ E(Kn), a turning of the edge ij is the increase of

both labels by one, i.e., the edge (i+1)( j+1), where the addition is taken modulo n. A turning of a subgraph G of Kn is the simultaneous

turning of all the edges of G. A decomposition R of Kn is called cyclic when for every G in R, the turning G′ of G is also in R.

In 1963, Ringel [1] presented the following conjecture: If T is a tree of size n, then the complete graph K2n+1 is edge-decomposable into

2n+1 copies of T . Ten years later, Kotzig [2] stated the following variation of this conjecture: The complete graph K2n+1 can be cyclically

decomposed into 2n+1 subgraphs isomorphic to a given tree with n edges. In 1966, Rosa [3] introduced four valuations (or labelings) of the

vertices of a graph that can be used to find a cyclic decomposition of K2n+1. A difference vertex labeling of a graph G of size n is an injective

mapping f : V (G)→ S, where S is a set of nonnegative integers, such that every edge uv of G has assigned a weight defined by | f (v)− f (u)|.
All labelings considered in this work are difference vertex labelings. Rosa’s valuations can be described as follows.

Suppose that f is a labeling of a graph G of size n. Let L f be the set of labels assigned by f to the vertices of G and W f be the set of weights

induced by f on the edges of G. Consider the following conditions.

(a) L f ⊆ {0,1, . . . ,n}
(b) L f ⊆ {0,1, . . . ,2n}
(c) W f = {1,2, . . . ,n}
(d) W f = {w1,w2, . . . ,wn} where wi = i or wi = 2n+1− i for every 1 ≤ i ≤ n

(e) it exists λ in {0,1, . . . ,n}, such that for any arbitrary edge uv of G, either f (u)≤ λ < f (v) or f (v)≤ λ < f (u). (The number λ is

called the boundary value of f .)

Email addresses and ORCID numbers: chr barrientos@yahoo.com, https://orcid.org/0000-0003-2838-8687 (C. Barrientos), sarah.m.minion@gmail.com,

https://orcid.org/0000-0002-8523-3369 (S. Minion)
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Figure 1.1: A ρ-labeling of S(3,2) and its 8th turning

+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12

0-12 1-0 2-1 3-2 4-3 5-4 6-5 7-6 8-7 9-8 10-9 11-10 12-11

1-12 2-0 3-1 4-2 5-3 6-4 7-5 8-6 9-7 10-8 11-9 12-10 0-11

1-11 2-12 3-0 4-1 5-2 6-3 7-4 8-5 9-6 10-7 11-8 12-9 0-10

2-11 3-12 4-0 5-1 6-2 7-3 8-4 9-5 10-6 11-7 12-8 0-9 1-10

1-9 2-10 3-11 4-12 5-0 6-1 7-2 8-3 9-4 10-5 11-6 12-7 0-8

3-9 4-10 5-11 6-12 7-0 8-1 9-2 10-3 11-4 12-5 0-6 1-7 2-8

Table 1: ρ-labeling of S(3,2) and all its turnings

When f satisfies the conditions (a), (c), and (e), it is called an α-labeling (and G is designated an α-graph). If f satisfies the conditions (a)

and (c), then it is called a β -labeling or graceful labeling (and G is named a graceful graph). The function f is a σ -labeling if (b) and (c)

hold (in this case G is a σ -graph). A ρ-labeling must satisfies the conditions (b) and (d); in this case, G is named a ρ-graph. Thus, every

α-graph is a graceful graph, every graceful graph is a σ -graph, and every σ -graph is a ρ-graph. Using these labelings, Rosa [3] proved the

following theorem.

Theorem 1.1. A cyclic decomposition of the complete graph K2n+1 into subgraphs isomorphic to a given graph G of size n exists if and only

if there exists a ρ-labeling of G.

Consequently, Kotzig’s conjecture can be stated in terms of ρ-labelings as follows.

Conjecture 1. Every tree of size n is a ρ-tree.

The tree S(3,2), obtained by attaching a pendant vertex to every leaf of the star S3
∼= K1,3, is the smallest tree that is not an α-tree. Suppose

that the vertices of K1,3 are labeled 0,1, . . . ,12. Thus, every column in Table 1 shows the adjacencies of the vertices of S(3,2) within K1,3,

being the first column a ρ-labeling of this tree and every column after that corresponds to a turning of the previous labeled graph. In Figure

1.1 we show, in blue, the ρ-labeling of S(3,2) used to create the cyclic decomposition of K1,3, together with its 8th turning, represented in

red.

In Section 2 we show that a tree T admists a ρ-labeling if it has a graceful subtree T ′, such that T ′ can be obtained by deleting a number of

leaves of T . Given that several families of graceful trees are known, this result allows us to expand, considerably, the number of trees or

families of trees that admit a ρ-labeling, therefore, decompose the complete graph K2n+1. Also here, we show two subfamilies of 3-distance

trees that admit ρ-labelings. In addition, we study the existence of ρ-labelings for trees obtained from smaller graceful trees by attaching

copies of the path P3 to some selected vertices of the base graceful trees; these selected vertices may be chosen almost randomly.

In [4], Barrientos and Krop represented a tree as an ordered rooted tree to calculate its excess ε(T ). This parameter was used in [5] to find a

ρ-labeling for any tree T that containing a branch that is a caterpillar of size at least ε(T ). In Section 3, we use the parameter ε(T ) to show

the existence of an α-graph of size n+ ε(T ) that contains T as a spanning tree.

All graphs used in this paper are finite, with no loops nor multiple edges. We follow the notation and terminology used in [6] and [7].

2. Constructing ρ-graphs from graceful graphs

Several families of ρ-trees are known. Gallian [7] mentions that in an unpublished work of Caro et al., [8], it was proven that all graphs with

at most 11 edges have a ρ-labeling as well as lobsters. Késdy [9] defined a stunted tree as follows: a tree of size n is stunted if its edges

can be linearly ordered e1,e2, . . . ,en so that e1 and e2 share a vertex and, for all 3 ≤ j ≤ n, e j shares a vertex with at least one ek such that

2k ≤ j−1. He proved that if p = 2n+1 is prime, then every stunted tree of size n has a ρ-labeling.

A spider is a tree that has at most one vertex, called the center, of degree greater than 2. Bahls et al. [10], proved that spiders for which the

lengths of every path from the center to a leaf differ by at most one, are graceful. A comet is a spider where all the paths used have equal
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length. El-Zanati et al. [11], proved that trees of diameter at most 5, lobsters, and comets admit a more restrictive type of ρ-labeling, called

ρ+-labeling. Essentially, ρ+-labelings are ρ-labelings with the extra condition of being bipartite (see Section 3 for a formal definition of

bipartite labeling). This extra condition is what it makes their result a novelty.

2.1. The first expansion

Let T be a tree of positive size q with at least k leaves and T ′ be any tree of size q− k obtained from T by deleting k of its leaves. We claim

that T admits a ρ-labeling when T ′ is a graceful tree.

Theorem 2.1. Let T ′ be any tree obtained from T by deleting any k of its leaves. If T ′ is graceful, then T admits a ρ-labeling.

Proof. Let T be a tree of size q with at least k leaves and T ′ be a graceful tree obtained by deleting k leaves from T . Suppose that f is a

graceful labeling of T ′. Thus, the labels assigned by f to the vertices of T ′ are 0,1, . . . ,q− k and the weights induced by f on the edges

of T ′ are 1,2, . . . ,q− k. Let v1,v2, . . . ,vr be the vertices of T ′ that when seen as vertices of T corresponds to those incident to the edges

of T that were deleted to form T ′. Without loss of generality we assume that f (v1)> f (v2)> · · ·> f (vr). Thus, f (v1)≤ q−k and f (vr)≥ 0.

In any ρ-labeling of a graph of size q, the labels are taken from {0,1, . . . ,2q}. When the labeled T ′ is seen inside T , its labeling can be extended

to a ρ-labeling of T as follows. There are k leaves of T that have not been labeled yet; none of the integers in {q− k+1,q− k+2, . . . ,2q}
have been used as a label; none of the integers q− k+1,q− k+2, . . . ,q correspond to the weight of an edge of T . Since we are constructing

a ρ-labeling of T , instead of these weights we use their complements with respect to 2q+1, that is, q+ k,q+ k−1, . . . ,q+1, respectively.

For every i ∈ {1,2, . . . ,r}, let si be the number of edges incident to vi that were deleted from T to form T ′. Starting with v1, these edges are

going to have, the still not assigned, si largest weights, in the list q+ k,q+ k−1, . . . ,q+1, and so on. In order to see that this is possible,

note that the label q+ k+ f (v1)≤ q+ k+q− k ≤ 2q can be assigned to a leaf adjacent to vr. This means that given the graceful labeling of

T ′ and the set of integers that have not been used as labels, we can produce edges whose weights are q+ k,q+ k−1, . . . ,q+1.

All the pendant unlabeled vertices attached to vi, for every 1 ≤ i ≤ r, are labeled with consecutive integers, inducing consecutive weights. If

m is the smallest label assigned to a leaf adjacent to vi, inducing the weight w = q+ t ∈ {q+1,q+2, . . . ,q+ k} for some 1 ≤ t < k, then the

largest label assigned to a leaf adjacent to vi+1 is at most m−2. In fact, given that m− f (vi) = q+ t, equivalently, m = f (vi)+q+ t, when x

is the largest label used on a leaf adjacent to vi+1, then

x− f (vi+1) = q+ t −1

x = f (vi+1)+q+ t −1

x < ( f (vi)+q+ t)−1

x < m−1

x ≤ m−2.

Hence, there is always an integer in {q+1,q+2, . . . ,2q} that can be assigned as the label of a leaf, attached to vi, to produce the required

weight for that edge. Therefore, we have obtained a ρ-labeling of T .

In the rest of this section we show some results that can be obtained as a direct consequence of Theorem 2.1.

By definition, a lobster is a tree such that the deletion of all its pendant edges results in a caterpillar and caterpillars are graceful [3], therefore,

using Theorem 2.1 we may prove the following corollary.

Corollary 2.2. All lobsters admit ρ-labelings.

In Figure 2.1 we show an example of this labeling for a lobster L of size 38. The edges of L represented by red lines are the ones that we

deleted to obtain a caterpillar. As we mentioned at the beginning of this section, the fact that lobsters are ρ-trees has been proven in [8] and

[11]; however, the earliest proof of it was given by Huang and Rosa in 1978 [12].
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Figure 2.1: ρ-labeling of a lobster of size 38

In the same line, we have the following two results. Morgan [13] introduced the concept of k-distance tree as follows. Let P be any of the

longest paths in a tree T ; T is a k-distance tree if every vertex is at distance at most k from P. We refer to P as the central path of T . From
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this definition we have that paths, caterpillars, and lobsters are 0-, 1-, and 2-distance trees, respectively. Recall that a subdivision of a graph

is a graph obtained from it by replacing edges with pairwise internally-disjoint paths. In [14], Burzio and Ferrarese have shown that the

tree obtained from any graceful tree, by subdividing every edge the same number of times, is also graceful. We use this result to prove the

existence of a ρ-labeling for the members of two subfamilies of 3-distance trees.

Let T be a 3-distance tree. The symbols T ∗ and P∗ are used here to designate the lobster obtained from T by deleting all its leaves and the

central path of T ∗, respectively.

Theorem 2.3. Let T be a 3-distance tree. If for every pair of vertices in P∗ of degree at least 3, the distance between them is even, then T is

a ρ-tree.

Proof. Let assume that T is a 3-distance tree such that for every pair of vertices u,v in P∗, of degree at least 3, dist(u,v) is even. Let X be

the subset of V (T ∗) that contains all the leaves at distance 1 from P∗. Then for every x ∈ X , there exists yx ∈V (T ∗) such that xyx ∈ E(T ).
Suppose that for every x ∈ X , the edge xyx has been added to E(T ∗); thus, each vertex yx is at distance 2 from P∗, which implies that the new

tree, denoted by L, is a lobster where all the leaves not in P∗ are at distance 2 from P∗ and the vertices of degree at least 3 in P∗ are separated

by an even number of edges. Then, the lobster L can be obtained by subdividing once every edge of a caterpillar. Using the result in [14], we

know that L is a graceful tree. Since T can be obtained from L by attaching some pendant vertices, a ρ-labeling of T can be constructed

applying Theorem 2.1 to a gracefully labeled copy of L.

Similarly, but as a direct consequence of Theorem 2.1, we can prove that when T is a 3-distance tree where every leaf at distance 2 from

the central path is at distance 3 from a leaf and for every pair of vertices of degree at least 3 in P∗ the distance between them is a positive

multiple of 3, then T admits a ρ-labeling. We just need to observe that the underneath T is created by subdividing twice every edge of a

caterpillar. So, this graph is graceful and T is a ρ-graph by Theorem 2.1

Corollary 2.4. Let T be a 3-distance tree. If for every pair of vertices in P∗ of degree at least 3, the distance between them is a positive

multiple of 3, and every leaf at distance 2 from P∗ is at distance 3 from a leaf, then T is a ρ-tree.

Using the help of a computer, Fang [15] has shown that all trees of size up to 34 are graceful, therefore, they admit a ρ-labeling. This fact

helps us to prove the following corollary of Theorem 2.1.

Corollary 2.5. Let T be a tree of size q with at least k leaves. Any tree T ′ of size q− k, obtained by deleting k leaves from T , admits a

ρ-labeling if q− k ≤ 34.

In [16], Eshghi and Azimi presented an algorithm to find graceful labelings of larger graphs. They verified this method with all trees with 30,

35, and 40 vertices. Hence, the result in Corollary 2.3 is also valid when q− k = 39.

It is well-known that all trees with at most four leaves are graceful [17], [18], and [19]. Based on this result we have the following corollary

of Theorem 2.1.

Corollary 2.6. If T is a tree such that the removal of all its leaves results in a tree with at most four leaves, then T admists a ρ-labeling.

It is also known that trees with diameter at most 5 are graceful [18], [20]. If T is a tree of diameter 5, it can be represented as a rooted tree

where the root is any of the central vertices; thus, only one of the branches coming out of the root has height 3. Suppose now that A is a tree

of diameter 6. When A is seen as a rooted tree, where the root is its central vertex, more than one of the branches coming out of the root

has height 3, if for all, except one of these branches, the leaves in level 3 are deleted, a tree T of diameter 5 is obtained, which is graceful.

Therefore, we can obtain a ρ-labeling of T applying the procedure described in Theorem 2.1. Furthermore, the same idea can be used to

construct a ρ-labeling of any tree A∗ of diameter 7, in this case, we delete all the leaves in levels 3 and 4 to obtain a tree of diameter 5; hence

we can apply Theorem 2.1. Thus, we have proven the following corollary.

Corollary 2.7. If T is a tree of diameter at most 7, then T admits a ρ-labeling.

There are several families of graceful rooted trees, for example, Bermond and Sotteau [21] proved that every rooted tree, in which every level

contains vertices of the same degree, is graceful. A tree satisfying this condition is called symmetric. This result allows us to prove the

following corollary.

Corollary 2.8. If T is a rooted tree with the property that the removal of some of its leaves results in a symmetric tree, then T admits a

ρ-labeling.

In [22], Balbuena et al., proved that all trees having an even or quasi even degree sequence are graceful. They obtained a graceful labeling

for this type of graphs by representing them as rooted trees. They worked with rooted trees of diameter D, where the root is the central

vertex and has odd degree, and all the interior vertices have even degree (even degree sequence). The case of a quasi even degree sequence is

similar, except that the vertices in the penultimate level have odd degree.

Corollary 2.9. If T is a tree with the property that the removal of some of its leaves results in a tree with an even or quasi even degree

sequence, then T admist a ρ-labeling.

Sethuraman and Jesintha [23] proved that all rooted trees, in which every level contains leaves and the degrees of the internal vertices in the

same level are equal, are graceful.

Corollary 2.10. If T is a rooted tree with the property that the removal of some of its leaves results in a rooted tree where every level

contains leaves and the internal vertices, in that level, have the same degree, then T admits a ρ-labeling.
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2.2. The second expansion

We open this part exploring the existence of a ρ-labeling of a tree T ′ of size n+2k obtained, from a graceful tree T of size n, identifying an

end-vertex of a copy of the path P3 to each of k selected vertices of T .

The Labeling Scheme

Suppose that f is a graceful labeling of a tree T of size n. Thus, the labels assigned by f to the vertices of T are the integers 0,1, . . . ,n and

the induced weights are 1,2, . . . ,n. This labeling will be extended to a ρ-labeling of a tree of size n+2k.

Let v1,v2, . . . ,vk be distinct vertices of T . We assume that f (v1)> f (v2), . . . ,> f (vk). For every 1 ≤ i ≤ k, we say that the vertex set of the

ith copy of P3 is {vi,ui,wi} and the edge set is {viui,uiwi}. Then the labeling f of T is extended to include the vertices ui and wi, in the

following way:

f (ui) = f (vi)+n+4k+1− i

and

f (wi) = f (vi)+3k−2i+1.

We claim that f is a ρ-labeling of T ′ when f (vk)≥ n− k.

Theorem 2.11. Let f be a graceful labeling of a tree T of size n and v1,v2, . . . ,vk be distinct vertices of T . If min{ f (vi) : 1 ≤ i ≤ k} ≥ n−k,

then the tree T ′, obtained attaching an end-vertex of P3 to each vi, is a ρ-tree.

Proof. Suppose that the graceful labeling f of T has been extended to all the vertices of T ′ using the labeling scheme presented above. First,

we verify that the weights induced by f satisfy the conditions required by a ρ-labeling.

The edge viui has weight

f (ui)− f (vi) = ( f (vi)+n+4k+1− i)− f (vi) = n+4k+1− i.

Since 1 ≤ i ≤ k, these weights form the set {n + 4k,n + 4k − 1, . . . ,n + 3k + 1}. But the complement of each of these numbers is

(2n+4k+1)− (n+4k+1− i) = n+ i, which implies these weights are equivalent to the integers in {n+1,n+2, . . . ,n+ k}.

The edge uiwi has weight

f (ui)− f (wi) = ( f (vi)+n+4k+1− i)− ( f (vi)+3k−2i+1) = n+ k+ i.

Then, these weights form the set {n+ k+1,n+ k+2, . . . ,n+2k}.

Since the weights induced on the edges of T are 1,2, . . . ,n, the weights induced by f on the edges of T ′ satisfy the conditions required by a

ρ-labeling.

Now we analyze the injectivity of the function f . When f is restricted to the vertices in T it is injective because it is a graceful labeling.

Each extension of f to the vertices ui and wi is defined as a linear function, which implies that we just need to check that all the labels used

are different.

Note that min{ f (ui) : 1 ≤ i ≤ k}= f (vk)+n+3k+1 and max{ f (ui) : 1 ≤ i ≤ k}= f (v1)+n+4k. Since f (vk), f (v1) ∈ {0,1, . . . ,n}, we

get

{ f (ui) : 1 ≤ i ≤ k} ⊆ {n+3k+1,n+3k+2, . . . ,2n+4k}

and

{0,1, . . . ,n}∩{ f (ui) : 1 ≤ i ≤ k}=∅.

On the other side, min{ f (wi) : 1 ≤ i ≤ k}= f (vk)+ k+1 and max{ f (wi) : 1 ≤ i ≤ k}= f (v1)+3k−1. Thus,

{ f (wi) : 1 ≤ i ≤ k}∩{ f (ui) : 1 ≤ i ≤ k}=∅

and

{0,1, . . . ,n}∩{ f (wi) : 1 ≤ i ≤ k}=∅

when min{ f (wi) : 1 ≤ i ≤ k}> n, that is, when f (vk)+ k+1 > n; which is equivalent to say that f (vk)> n− k−1 or f (vk)≥ n− k. But

this condition is one of the hypotheses. Therefore, the final labeling of T ′ is in fact a ρ-labeling as we claimed.

Suppose that T ′ has been labeled using the scheme presented above. Then the edges viui have weights n+4k+1− i for every 1 ≤ i ≤ k. The

edges uiwi have weights n+2k+1− i; that is, the weights n+ k+1,n+ k+2, . . . ,n+2k.

Recall that if v1,v2, . . . ,vk are the selected vertices of T , then f (v1)> f (v2)> · · ·> f (vk). Thus, the edge ukvk has weight n+3k+1, which

implies that f (uk) = f (vk)+n+3k+1. The edge ukwk has weight n+ k+1 and f (wk) = f (uk)−n− k−1, then

f (wk) = f (vk)+n+3k+1−n− k−1 = f (vk)+2k.

But f (wk) is the smallest label assigned to a vertex wi, then it must be larger than n, that is, f (vk)+2k ≥ n+1, in other terms, f (vk) ≥
n+1−2k.

This implies that if the smallest label of the selected vertices of T is at least n+1−2k, the tree T ′ is a ρ-tree. Since 0 is the smallest possible

value for f (vk), we get that when 2k ≥ n+1, any possible tree T ′, obtained from T by attaching k copies of P3, is a ρ-tree. In this way, we

have proven the next theorem.
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Theorem 2.12. If T ′ is obtained from a graceful tree T of size n attaching a copy of P3 to each of k selected vertices of T and 2k ≥ n+1,

then T ′ is a ρ-tree.

Even when this result is not as strong as Theorem 2.1, it produces ρ-labelings for many trees. For instance, if n = 10, then 6 ≤ k ≤ 11; this

means that for any graceful tree of size 10, it is possible to construct ∑
11
k=6 C(10,k) = 210 ρ-labeled trees. In general we have that there

are ∑
n+1

⌈ n+1
2
⌉
C(n,k) = 2n obtained from a gracefully labeled tree of size n. In Figure 2.2 we have an example for each k ∈ {6,7,8,9,10,11},

where T is a gracefully labeled tree of size n = 10.
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Figure 2.2: Some of the 210 ρ-labeled trees obtained from a graceful tree of size 10

By Tn we denote the family of all ρ-labeled trees which ρ-labeling is obtained following the labeling scheme used in Theorem 2.1.

Theorem 2.13. If T ′′ is obtained from T ′ in Tn by attaching a pendant vertex to each of k selected vertices of T ′, where 2k ≥ n+1 and the

labels of any pair of selected vertices are at least two units apart, then T ′′ is a ρ-tree.

Proof. Assume that T is a graceful tree of size n and T ′ is any tree obtained by attaching any number of pendant vertices to any number

of vertices of T . Suppose that t is the total number of pendant vertices attached to T to form T ′. Let f be the ρ-labeling of T ′ procured

using Theorem 2.1 and v1,v2, . . . ,vk be distinct pendant vertices of T ′ such that for each 1 ≤ i ≤ k, f (vi)− f (vi+1)≥ 2. Note that the labels

assigned to the pendant vertices introduced to form T ′ are in the set {n+ t +2k+1,n+ t +2k+2, . . . ,n+2t +2k}. Thus, the integers in the

set L = {n+1,n+2, . . . ,n+ t +2k} have not been used as labels of T ′.

As we did in the previous theorem, the goal is that the edges generated connecting each vi, for 1 ≤ i ≤ k, to a pendant vertex, have weights

n+ t + k,n+ t + k− 1, . . . ,n+ t + 1, respectively. To achieve this goal, we label the pendant vertices with integers from L. Note that

f (vk)≤ n+ t +2k+1 and the pendant edge associated with vk has weight n+ t +1, so the pendant vertex has a label at least x, where

(n+2t +2k)− x = n+ t + k+1

x = 2k,

since 2k ≥ n+1, this integer has not been assigned as a label, hence it can be used now and no repetition of labels happens. Similarly, the

pendant edge associated with v1 has weight n+ t + k, so the pendant vertex has a label at most y, where

(n+2t +2k)− y = n+ t + k+1

y = t + k−1.

Thus, we conclude that is possible to label all the pendant vertices with integers from L, producing the weights n+t+1,n+t+2, . . . ,n+t+k.

Consequently, the labeling of T ′′ is in fact a ρ-labeling.

In Figure 2.3 we present an example of this labeling for a graceful tree of size 6, with t = 21 and k = 9. The blue edges are those produced

by the first expansion, and the red edges are the ones created by the second expansion of the graceful tree represented with black edges.a
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Figure 2.3: A ρ-labeled tree obtained from a subdivision of the star S3

3. Every tree is a spanning tree of an α-graph

In this section we show that any tree T of size n is a spanning tree of an α-graph of size n+ ε(T ), where ε(T ) is the excess of T , that is, a

parameter associated with the left-layered representation of T introduced in [4].

Let T be a rooted tree, for every vertex v of T , γ(v) is the number of levels in T where v has at least one descendant. We say that T is a

left-layered tree if the vertices on each level of T adhere to the following rules:

(i) If u and v are siblings of degree one, the order of u and v is arbitrary.

(ii) If u and v are siblings and γ(u)< γ(v), then u is placed to the left of v.

(iii) If u and v are siblings, γ(u) = γ(v), and deg(u)≥ deg(v), then u is placed to the left of v.

(iv) If u and v are siblings such that u is placed to the left of v, then the descendants of u are placed to the left of the descendants of v.

In Figure 3.1 we show the left-layered representation of a tree of size 58. The edges of this tree are represented with black lines.

Let Tr be the left-layered representation of a rooted tree T with root r. Thus, Lk = {vk
j : 1 ≤ j ≤ nk} is the set of all vertices of T at distance

k from r, that is, the vertices of Tr placed on level k. We assume that vk
j is placed to the left of vk

j+1, for all 1 ≤ j ≤ nk −1. The excess of Lk,

denoted Ωk, is defined to be

Ωk =

{

0 if k = 0,h,

nk −nk,0 −1 if 1 ≤ k ≤ h−1,

where nk,0 is the number of vertices in Lk with no children and h is the height of Tr. The excess of Tr, denoted by ex(Tr), is given by

ex(Tr) = ∑
h
k=0 Ωk. The excess of T , denoted by ε(T ), is defined to be

ε(T ) = min{ex(Tr) : for all r ∈V (T )}.

Thus, if T is a caterpillar or a path, ε(T ) = 0, and it is obtained when r is chosen to be any of the vertices of maximum eccentricity in T . The

tree in Figure 3.1, represented with the black edges, has excess 18; the vertices used to calculate this parameter are in black.

A bipartite labeling of a tree T of size n is an injective mapping f : V (G)→ {0,1, . . . ,s}, with s ≥ n, such that all induced weights are

distinct and the labels assigned to the vertices in one of the stable sets of T are smaller than the labels assigned to the vertices of the other

stable set. When s = n, the bipartite labeling is indeed an α-labeling of T . In [5] we introduced a bipartite labeling of T where s = n+ ε(T ).
For the sake of completeness, we describe this labeling again. We will use it to prove that every tree T of size n and excess ε(T ) is a spanning

tree of an α-graph of order n+1 and size n+ ε(T ).
Recall that on every level, the vertices are ordered from the right to the left. If h is the height of T , then the labels assigned to the vertices

on each level are consecutive integers. On the levels Lh,Lh−2, . . . they are in increasing order; on the levels Lh−1,Lh−3, . . . they are in

decreasing order. The smaller labels are on the levels Lh,Lh−2, . . . .

The first label on Lh is 0 and the first label on Lh−2i is the addition of the largest label on Lh−2i+2 and 1+Ωh−2i+1.

The first label on Lh−1 is n+ ε(T ) and the first label on Lh−1−2i is the subtraction of the smallest label on Lh+1−2i and 1+Ωh−2i.

In Figure 3.1 we exhibit an example of this bipartite labeling.

Theorem 3.1. Any tree T of size n is a spanning tree of an α-graph of size n+ ε(T ).

Proof. Suppose that T has been labeled using the bipartite labeling f described before. Thus, the labels assigned belong to the set

{0,1, . . . ,n+ ε(T )} and the induced weights are in the set {1,2, . . . ,n+ ε(T )}. Let v1 and v2 be two consecutive vertices on level Lk such

that they are not siblings, this implies the existence of two consecutive vertices, u1 and u2, on level Lk−1 such that u1v1,u2v2 ∈ E(T ).
If h and k have the same parity, then f (v1)+1 = f (v2) and f (u1)−1 = f (u2). Thus, the weight of u1v1, is f (u1)− f (v1), which is two

units larger than the weight of u2v2, because

f (u2)− f (v2) = f (u1)−1− ( f (v1)+1) = f (u1)− f (v1)−2.
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Figure 3.1: Embedding of a tree of size 58 and excess 18 in an α-graph of size 76

Hence, the integer f (u1)− f (v1)−1 is not the weight of any edge of T . If the vertices v2 and u1 are connected (or the vertices v1 and u2),

we create an edge of weight f (u1)− f (v1)−1.

If h and k have different parity, then f (v2) = f (v1)−1 and f (u1)+1 = f (u2). Thus, the weight of u1v1, is f (u1)− f (v1), and again, it is

two units larger than the weight of u2v2, because

f (v2)− f (u2) = f (v1)−1− ( f (u1)+1) = f (v1)− f (u1)−2.

So, the integer f (v1)− f (u1)−1 is not the weight of any edge of T . If the vertices v2 and u1 are connected (or the vertices v1 and u2), we

create an edge of weight f (v1)− f (u1)−1.

If this process of introducing a new edge is done every time that is needed, the resulting graph has T as a spanning tree and its labeling

induces the weights 1,2, . . . ,n+ ε(T ). Since the original labeling is bipartite, the labeling of the new graph is an α-labeling.

In Figure 3.1 we show an example of this labeling. The black edges correspond to a tree T of size 58, ε(T ) = 18, and h = 9, Ω9 = Ω4 =
Ω3 = Ω2 = Ω1 = Ω0 = 0, Ω8 = 4, Ω7 = 6, Ω6 = 5, and Ω5 = 3. The missing weights are 27, 29, 31, 34, 36, 38, 41, 45, 51, 53, 59, 62,

69, 70, 73, and 75. If the blue edges are added to the labeled tree, they form an α-labeled graph of size 58+18 = 76 that contains T as a

spanning tree.

Note that for every missing weight in the original bipartite labeling of T , there are two possible new edges with that weight, therefore, there

are at least 2ε(T ) hosts for T that are α-graphs. As far as we know, the α-graph obtained in this way, is the smallest α-graph that has T as a

spanning tree.

Other authors have studied similar problems; for example, Rao and Sahoo [24] proved that every connected graph of order n can be embedded

as an induced subgraph in a graceful Eulerian graph of size 3n. In [25], Sethuraman and Ragukumar introduced some algorithms that allow

them to prove, among other results, that any tree of size n is a spanning tree of an α-graph of size M. They provided an example for a tree of

size 20 embedded in an α-graph of size 55. This tree has excess 5; thus, when we apply our labeling scheme to this tree, the associated

α-graph has size 25. We have not been able to determine the value of M in [25] but we believe that for any given tree T of size n, the

inequality n+ ε(T )< M holds.

4. Conclusion

Since there are many known families of graceful trees and any graceful tree can be used to construct infinitely many larger ρ-trees, Theorem

2.1 is the most powerful result in the context of ρ-labelings. Then it was natural to ask whether is possible to weaken the condition of being

graceful imposed to the starting tree. As a result of that analysis, we obtained the last theorems in Section 2. In particular, Theorem 2.13 tells

us that for any k large enough, there are k end-vertices in T ′ that can be extended one more time, to obtain a new ρ-tree. Is there any other
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type of tree that can be used, instead of P3, to attach to all or some of the vertices of a tree T to create new ρ-trees? The result in Section 3

gives us an upper bound for the size of the smaller α-graph that contains T as a spanning tree. Further studies of this type should include the

examination of how good this bound is, which is better than any other bound known to date.
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Abstract

The classical calculus is viewed as additive calculus based on addition in the real line.

Another known multiplicative calculus corresponding to multiplication in the positive real

axis has been precisely introduced. Abstract multiplicative integration through positive

measures has been newly introduced. Results of multiplicative differentiation and integra-

tion have been obtained for completion, when some of them have been obtained through

multiplicative modulus function. Results have been obtained also for abstract multiplicative

measure integration.

1. Introduction

Arithmetic mean of real numbers is considered in elementary statistics and geometric mean of positive real numbers is also considered

in elementary statistics. The first one is a mean for addition and the second one is a mean for multiplication, and both are considered as

applicable. The usual absolute value function is a function for addition. A new absolute value function, which was just mentioned in [1], has

been extremely used for multiplication in [2]. The classical calculus of Newton and Leibnitz is based on addition. Another calculus was

also known for multiplication, and it became an important part of research since the publication of the book [3] and the article [1], which

provides a good introduction for multiplicative calculus. It has been extended in many directions; fractional derivative, complex derivative,

integral transformations, differential equations and applications for science and engineering in [1], [4]-[18]. It has been established in

[19, 20] that multiplicative calculus would also be applicable. The author believes that some precision is required in the introduction of

multiplicative calculus, because it is also treated as a course meant for undergraduate students in view of articles like [21]. This has been

done in this article. Moreover, multiplicative modulus function used in [2] has been applied to derive some new, but elementary results.

Multiplicative integration using positive measures has also been defined precisely and some fundamental results have been obtained. The

author could not find any article in literature for multiplicative abstract measure integration, even though there is an advanced research article

[22] for Lebesgue measure integration. It should be observed that some changes have been done in this article in conventional notations for

multiplicative calculus. Let us begin with a definition of the classical absolute value of real numbers. Let us use the notations R and P for the

set of real numbers and the set of positive real numbers, respectively.

Definition 1.1. If x ∈ R, then additive absolute value of x is denoted by |x|, and defined as the number max{x,−x}.

Let us now present the notation and definition of multiplicative absolute value given in [2].

Definition 1.2. If x ∈ P, then multiplicative absolute value of x is denoted by |x|×, and defined as the number max{x,x−1}.

Proposition 1.3. Let x,y ∈ R, and let u,v ∈ P. Then |uv|× ≤ |u|×|v|×, | logu|= log|u|×, and exp |x|= |expx|×.

Proof. Direct verification.

The second section discusses fundamental results for multiplicative differentiation for completion, the third section discusses multiplicative

Riemann integration with a precise definition, and the fourth section discusses newly introduced multiplicative abstract measure integration.

Email addresses and ORCID numbers: ganesamoorthyc@gmail.com, https://orcid.org/0000-0003-3119-7531 (C. Ganesa Moorthy).
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2. Multiplicative differentiation

Definition 2.1. Let f : [a,b]→ R be a real valued function and let x0 ∈ [a,b]. Then the derivative of f exists at x0, if lim
x→x0

f (x)− f (x0)
x−x0

exists.

This limit is denoted by f
′
(x0) or

d f (x0)
dx or

d f
dx |x=x0

or
d f (x)

dx |x=x0
, and it is called the derivative of f at x0.

Definition 2.2. Let F : [a,b] → (0,∞) be a positive real valued function and let x0 ∈ [a,b]. Then the m-derivative of F exists at x0, if

lim
x→x0

(

F(x)
F(x0)

)
1

x−x0 exists, and it is not equal to zero. This limit is denoted by F |(x0) or
DF(x0)

Dx or DF
Dx |x=x0

or
DF(x)

Dx |x=x0
, and it is called the

m-derivative of F at x0.

Remark 2.3. These definitions can be extended to other intervals of types [a,b),(a,b),(a,b], naturally. One sided derivatives can also be

defined. The higher order derivatives can also be defined.

Lemma 2.4. Let F, [a,b],x0 be as in Definition 2.2. Then
DF(x0)

Dx exists if and only if
d logF(x0)

dx exists, and in this case,
DF(x0)

Dx =

exp
(

d logF(x0)
dx

)

.

Proof. The proof follows from the relation exp
(

logF(x)−logF(x0)
x−x0

)

=
(

F(x)
F(x0)

)
1

x−x0 .

Corollary 2.5.
DF(x0)

Dx exists if and only if
dF(x0)

dx exists, for F and x0 given in Lemma 2.4.

Proof. Use the relation F(x) = explogF(x), and the chain rule.

Lemma 2.6. Let f , [a,b],x0 be as in Definition 2.1. Then
d f (x0)

dx exists if and only if
Dexp( f (x0))

Dx exists, and in this case,
d f (x0)

dx =

log
(

Dexp( f (x0))
Dx

)

.

Proof. The proof follows from the relation log
(

exp( f (x))
exp( f (x0))

)
1

x−x0 =
f (x)− f (x0)

x−x0
.

Remark 2.7. Formally, D
Dx = exp d

dx log, and d
dx = log D

Dx exp. For any integer n ≥ 2, it can be verified formally that Dn

Dxn = exp dn

dxn log,

and dn

dxn = log Dn

Dxn exp.

Let us try to use these formal relations and let us convert some results of Chapter 5 in [23].

Proposition 2.8. Let F, [a,b],x0 be as in Definition 2.2. Suppose
DF(x0)

Dx exists. Then F is continuous at x0.

Proof. Let M =
DF(x0)

Dx . Then 0 < M < ∞, and Mx−x0 → 1 as x → x0. Therefore,
F(x)
F(x0)

→ 1 and hence F(x)→ F(x0) as x → x0.

Another Proof:

Since
d logF(x0)

dx exists, logF(x0) is continuous at x0, and hence F(x) is continuous at x0.

Proposition 2.9. Let F,G be positive real valued functions on [a,b] and m-differentiable at a point x0 in [a,b]. Then
D(FG)(x0)

Dx exists and it

is
DF(x0)

Dx
DG(x0)

Dx .

Proof. It follows from Definition 2.2.

Theorem 2.10. Suppose f is a real valued function on [a,b]. Let x0 ∈ [a,b]. Suppose f
′
(x0) exists. Let G be a positive real valued function

on an interval I which contains the range of f . Suppose G is m-differentiable at the point f (x0). Let H(t) = G( f (t)), for all t ∈ [a,b]. Then

H is m-differentiable at x0, and H |(x0) = (G|( f (x0))
f ′(x0).

Proof. By Lemma 2.4,

(G|( f (x0))
f ′(x0) =

(

exp
(d logG( f (x0))

dy

))

d f (x0)

dx
(with y ∈ I)

= exp
(d f (x0)

dx

d(logG) f (x0)

dy

)

= exp
(d((logG)◦ f )(x0)

dx

)

=
DH(x0)

Dx
.

Another Proof:

Use Proposition 2.8 and the relation

( H(x)

H(x0)

)
1

x−x0 =

(

( G( f (x))

G( f (x0))

)
1

f (x)− f (x0)

)

f (x)− f (x0)

x−x0

for the case f (x) 6= f (x0). Separate the case f (x) = f (x0).
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Lemma 2.11. Let F be a positive real valued function defined on [a,b]. If F has a local maximum at a point x0 in (a,b) and if
DF(x0)

Dx exists,

then
DF(x0)

Dx = 1.

Proof. Suppose
DF(x0)

Dx exists. Then
d logF(x0)

dx exists. Suppose F has a local maximum at x0 in (a,b). Then
d logF(x0)

dx = 0, and hence
DF(x0)

Dx = exp
(

d logF(x0)
dx

)

= 1.

Direct Proof:
(

F(x)
F(x0)

)
1

x−x0 ≥ 1, if x < x0, and
(

F(x)
F(x0)

)
1

x−x0 ≤ 1, if x > x0, when x is in a suitable neighborhood of x0.

Theorem 2.12. Suppose F and G are continuous positive real valued functions on [a,b] which are m-differentiable in (a,b). Then there is a

point x0 in (a,b) such that
(

F(b)
F(a)

)

G
′
(x0)

G(x0) =
(

G(b)
G(a)

)

F
′
(x0)

F(x0)

Proof. Use Theorem 5.9 in [23], and Lemma 2.4 to find a point x0 in (a,b) such that (logF(b)− logF(a))
G

′
(x0)

G(x0)
= (logG(b)−

logG(a))
F
′
(x0)

F(x0)

Proposition 2.13. Suppose F is a continuous positive real valued function on [a,b] which is m-differentiable in (a,b). Then
(

F(b)
F(a)

)
1

b−a
=

DF(x0)
Dx , for some x0 ∈ (a,b).

Proof. By the mean value theorem, there is a point x0 ∈ (a,b) such that logF(b)− logF(a) = (b−a)
d logF(x0)

dx .

Theorem 2.14. Suppose F is an m-differentiable positive real valued function on (a,b).
(a) If F |(x)≥ 1 for all x ∈ (a,b), then F is monotonically increasing in (a,b).
(b) If F |(x) = 1 for all x ∈ (a,b), then F is a constant function in (a,b).
(c) If F |(x)≤ 1 for all x ∈ (a,b), then F is monotonically decreasing in (a,b).

Proof. Apply Theorem 5.11 in [23] to logF function.

Theorem 2.15. Suppose F is an m-differentiable positive real valued function on [a,b]. Let λ be a constant such that F |(a)< λ < F |(b).
Then there is a point x0 in (a,b) such that F |(x0) = λ .

Proof. Observe that exp
(

d logF(a)
dx

)

< λ < exp
(

d logF(b)
dx

)

and hence
d logF(a)

dx < logλ <
d logF(b)

dx . By Theorem 5.12 in [23], there is a

x0 ∈ (a,b) such that
d logF(x0)

dx = logλ . In this case, F |(x0) = λ .

Theorem 2.16. Let F be a positive real valued function on [a,b], and n be a positive integer such that
Dn−1F(t)

Dxn−1 is continuous on [a,b] and
DnF(t)

Dxn exists for every t ∈ (a,b). Let α,β be points in [a,b]. Then there is a point x0 between α and β such that

F(β )
F(α)

=
n−1

∑
k=1

(

DkF(α)
Dxk

)

(β−α)k

k!
+
(

DnF(x0)
Dxn

)

(β−α)n

n!

Proof. By Remark 2.7,
dn−1 logF

dxn−1 is continuous on [a,b] and
dn logF(t)

dxn exists for every t ∈ (a,b). By Theorem 5.15 in [23], there is a point x0

between α and β such that f (β )− f (α) =
n−1

∑
k=1

dk f (α)
dxk

(β−α)k

k! +
dn f (x0)

dxn

(β−α)n

n! , where f = logF . The result follows from this relation.

3. Multiplicative Riemann integration

Definition 3.1. Let [a,b] be a given interval. A partition P = x0,x1, ...,xn of [a,b] satisfies a = x0 ≤ x1 ≤ ...≤ xn−1 ≤ xn = b. Let D be the

collection of all partitions of [a,b]. This collection D is a directed set, directed by a relation ≤ defined by: P1 ≤ P2 if and only if P1 ⊆ P2. Let

F : [a,b]→ (0,∞) be a function such that m ≤ F(x)≤ M, for some m > 0 and M < ∞, for all x ∈ [a,b]. To each partition P = x0,x1, ...,xn of

[a,b], fix ti ∈ [xi−1,xi], for i = 1,2, ...,n, define FP = ∏
n
i=1 F(ti)

(xi−xi−1) . Suppose all nets (FP)P∈D converge uniformly to a common number

p ∈ (0,∞) in the following sense: For every ε > 0, there is a partition P0 of [a,b] such that |FP − p|< ε , for all partitions P ≥ P0 in D, and

for all selections of ti. The number p is called the m-Riemann integral of F of [a,b], and it is denoted by Mb
a F(x)Dx, or simply, Mb

a F. In this

case, let us say that F is m-Riemann integrable over [a,b].

Remark 3.2. Let F be as in Definition 3.1. Then F is m-Riemann integrable over [a,b] if and only if logF is Riemann integrable over [a,b].
Moreover,

Mb
a F(x)Dx = exp

b
∫

a

logF(x)dx,

in this case. Let f be a bounded real valued function on [a,b]. Then f is Riemann integrable over [a,b] if and only if exp f is m-Riemann

integrable over [a,b]. Moreover,

b
∫

a

f (x)dx = logMb
a exp f (x)Dx,



198 Fundamental Journal of Mathematics and Applications

in this case.

Lemma 3.3. Let F : [a,b] → (0,∞), G : [a,b] → (0,∞) be functions which are m-Riemann integrable over [a,b]. Then the pointwise

multiplication function FG : [a,b]→ (0,∞) is also m-Riemann integrable over [a,b], and Mb
a (FG)(x)Dx = (Mb

a F(x)Dx)(Mb
a G(x)Dx). If

F(x) = c > 0, for every x ∈ [a,b], then Mb
a F(x)Dx = cb−a.

Proof. It follows from Definition 3.1.

Let us recall that for every number x ∈ (0,∞), |x|× = max{x,x−1}, and for every x,y ∈ (0,∞), |xy|× ≤ |x|×|y|×. Direct verification is

applicable.

Lemma 3.4. Let F : [a,b]→ (0,∞) be m-Riemann integrable. Then, |Mb
a F(x)Dx|× ≤ Mb

a |F(x)|×Dx.

Proof. It follows from Definition 3.1.

Theorem 3.5. Suppose f : [a,b]→ (0,∞) be m-Riemann integrable. For a ≤ x ≤ b, define F(x) = Mx
a f (t)Dt. Then, F is continuous on

[a,b]. Moreover, if f is continuous at a point x0 of [a,b], then F is m-differentiable at x0, and F |(x0) = f (x0).

Proof.
x
∫

a
log f (t)dt is a continuous function of x in [a,b], by Theorem 6.20 in [23] and Remark 3.2. Thus, F(x) = exp

x
∫

a
log f (t)dt is a

continuous function of x in [a,b]. Also, if f is continuous at a point x0 of [a,b], then
d

x
∫

a

log f (t)dt

dx

∣

∣

∣

x=x0

= log f (x0), by Theorem 6.20 in [12].

Thus, F |(x0) = f (x0), when f is continuous at x0.

Theorem 3.6. Let f be an m-Riemann integrable function on [a,b]. Suppose there is an m-differentiable function F on [a,b] such that

F | = f . Then, Mb
a f (x)Dx =

F(b)
F(a)

.

Proof. The function log f is Riemann integrable over [a,b]. The relation F | = f implies that exp
d logF

dx = f or
d logF

dx = log f . By Theorem

6.21 in [23],
b
∫

a
log f (x)dx = logF(b)− logF(a), and hence Mb

a f (x)Dx =
F(b)
F(a)

.

4. Multiplicative abstract measure integration

Definition 4.1. Let (X ,M,µ) be a positive measure space. See [24]. Let s : X → [1,∞) be a simple measurable function and let

s = ∑
n
i=1 αiχAi

, where αi are distinct real numbers and Ai are pairwise disjoint sets. For A ∈M, define MAsDµ = Πn
i=1αi

µ(A∩Ai). It is +∞ if

and only if some αi > 1 with µ(A∩Ai) = +∞. Let f : X → [1,∞] be a measurable function. For A ∈M, define MA f Dµ = sup1≤s≤ f MAsDµ ,

where s represents a simple measurable function. Let us say that f : X → (0,∞) is m-absolutely m-integrable, if MA| f |×Dµ < ∞. To each

measurable f : X → (0,∞), let us define f+× : X → [1,∞), and f−× : X → [1,∞) by f+× (x) = max{1, f (x)}, and f−× (x) = max{1, f (x)−1}, for

every x ∈ X. Then | f |× = f+× f−× , and f =
f+×
f−×

. If f is absolutely m-integrable over X, then let us define MA f Dµ =
MA f+× Dµ

MA f−× Dµ
, for every A ∈M.

Remark 4.2. If f ∈ L1(µ) and f is real valued, then exp f is m-absolutely m-integrable on X, and logMX exp f Dµ =
∫

X f dµ . If F is

m-absolutely m-integrable on X, then logF ∈ L1(µ) and MX FDµ = exp
∫

X logFdµ.

Theorem 4.3. Let ( fn)
∞
n=1 be a sequence of measurable functions on X and f be a measurable function X such that

(a) 1 ≤ f1(x)≤ f2(x)≤ ...≤ ∞, for every x ∈ X, and

(b) fn(x)→ f (x) as n → ∞, for every x ∈ X.

Then MX fnDµ → MX f Dµ , as n → ∞.

Proof. Apply the classical monotone convergence theorem to the functions log fn and log f and use Remark 4.2.

Corollary 4.4. Let fn : X → [1,∞] be measurable for n = 1,2, ..., and let f (x) = ∏
∞
n=1 fn(x), for every x ∈ X. Then MX f Dµ =

∏
∞
n=1 MX fnDµ .

Proof. Observe that MX f1 f2Dµ = (MX f1Dµ)(MX f2Dµ). Extend this relation to finite products f1 f2... fn. Now, apply the previous

Theorem 4.3.

The following proposition can be verified directly.

Proposition 4.5. Let f ,g be m-absolutely m-integrable positive real valued functions on X. Let c > 0 be a scalar. Then MX f gDµ =
(MX f Dµ)(MX gDµ) and MX f cDµ = (MX f Dµ)c.

Proposition 4.6. Let fn : X → [1,∞] be measurable, for each n = 1,2, ..., Then

MX lim inf
n→∞

fnDµ ≤ lim inf
n→∞

MX fnDµ.

Proof. Apply the classical Fatou’s lemma to the functions log fn and use Remark 4.2.

Theorem 4.7. Suppose ( fn)
∞
n=1 is a sequence of positive real valued measurable functions on X such that f (x) = limn→∞ fn(x) for some

f (x)> 0, for every x ∈ X. Suppose there is an m-integrable function g : X → [1,∞) such that | fn|× ≤ g(x), ∀n = 1,2, ..., ∀x ∈ X. Then f is

an m-absolutely integrable function, limn→∞ MX |
fn

f |×Dµ = 1, and limn→∞ MX fnDµ = MX f Dµ.
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Proof. Let Fn = log fn and F = log f . Let G = logg. Then limn→∞ Fn(x) = F(x), ∀x ∈ X , and G ∈ L1(µ). Also, |Fn(x)| = | log fn(x)| =
log | fn|× ≤ logg = G, ∀x ∈ X . By the classical dominated convergence theorem,

∫

X Fndµ →
∫

X Fdµ and limn→∞

∫

X |Fn −F |dµ = 0,

as n → ∞. Then exp
∫

X log fndµ → exp
∫

X log f dµ, as n → ∞, and limn→∞ exp
∫

X | log( fn

f )|dµ = limn→∞ exp
∫

X log | fn

f |×dµ = 1. Thus,

limn→∞ MX fnDµ = MX f Dµ , and

limn→∞ MX |
fn

f |×Dµ = 1.

Proposition 4.8. Suppose f : X → (0,∞) is an m-absolutely m-integrable function. Then |MX f Dµ|× ≤ MX | f |×Dµ .

Proof. It follows from definitions.

Proposition 4.9. (a) Let f : X → [1,∞] be a measurable function on X such that MX f Dµ = 1. Then f = 1 almost everywhere on X.

(b) Let f : X → (0,∞) be m-absolutely m-integrable on X. Suppose ME f Dµ = 1, ∀ E ∈M. Then f = 1 almost everywhere on X.

(c) Let f : X → (0,∞) be m-absolutely m-integrable on X. Suppose |MX f Dµ|× = MX | f |×Dµ . Then there is a constant α such that

α f = | f |× almost everywhere on X.

Proof. Use Proposition 1.3 along with Theorem 1.39 in [24] for log f .

5. Conclusions

Theorem 11.33 in [23] states that a Lebesgue integrable bounded real valued function on [a,b] is Riemann integrable over the interval

if and only if the function is continuous almost everywhere in that interval with respect to classical Lebesgue measure. One can state a

corresponding result for m-Riemann integrable functions. Such observations may give a hope to transform every known result in additive

calculus and abstract measure integration theory through logarithmic exponential transformations. But, it is not true. Theorems 2.10 and 2.12

reveal difficulties in transforming chain rule and a generalized mean value theorem which is used for establishing L’Hospital’s rules. It is yet

to be tried for replacement of exponential transformation and its inverse logarithmic transformation by means of other transformations like

Lorentz transformation and its inverse Lorentz transformation of the theory of Einstein’s special relativity. It is yet to be tried to extend

results which provide generalizations of research work in differentiation, integration and measure theory like the ones provided in [25]-[30].
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