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Differential Relations for the Solutions to the NLS

Equation and Their Different Representations

Pierre Gaillard 1*

Abstract

Solutions to the focusing nonlinear Schrödinger equation (NLS) of order N depending on 2N −2 real parameters

in terms of wronskians and Fredholm determinants are given. These solutions give families of quasi-rational

solutions to the NLS equation denoted by vN and have been explicitly constructed until order N = 13. These

solutions appear as deformations of the Peregrine breather PN as they can be obtained when all parameters are

equal to 0. These quasi rational solutions can be expressed as a quotient of two polynomials of degree N(N +1)
in the variables x and t and the maximum of the modulus of the Peregrine breather of order N is equal to 2N +1.

Here we give some relations between solutions to this equation. In particular, we present a connection between

the modulus of these solutions and the denominator part of their rational expressions. Some relations between

numerator and denominator of the Peregrine breather are presented.
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1. Introduction

We consider the one dimensional focusing nonlinear Schrödinger equation (NLS) which can be written in the form

ivt + vxx +2|v|2v = 0, (1.1)

The first results concerning the NLS equation date from the works of Zakharov and Shabat in 1972 who solved it using the

inverse scattering method [1, 2]. Its and Kotlyarov first constructed periodic and almost periodic algebro-geometric solutions to

the focusing NLS equation in 1976 [3, 4]. Ma found in 1979 the first breather type solution of the NLS equation [5]. In 1983,

the first quasi rational solutions of NLS equation were constructed by Peregrine [6]. In 1986, Eleonski, Akhmediev and Kulagin

obtained the two-phase almost periodic solution to the NLS equation and got the first higher order analogue of the Peregrine

breather[7, 8, 9]. Other analogues of the Peregrine breathers of order 3 and 4 were constructed using Darboux transformations,

in a series of articles by Akhmediev et al. [10, 11, 12, 13].

Recently, many works about NLS equation have been published using different methods. We can quote the works of Matveev

et al. [14, 15] in 2010 for the representation of the solutions in terms of wronskians; those of Gaillard [16, 17, 18] for the

solutions given in terms of wronskians and Fredholm determinants, and their quasi-rational solutions limit of order N depending

on 2N −2 parameters. Akhmediev gave quasi rational solutions using Darboux transformation in several papers [19, 20, 21].

Guo, Ling and Liu in 2012 gave an other representation of the solutions as a ratio of two determinants [22] using generalized

Darboux transformation. A new approach has been done by Ohta and Yang in [23] using Hirota bilinear method. Smirnov [24]
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gave solutions with an algebro-geometric approach. Other types of solutions were given by Zhao et al. in [25].

We give some relations between the modulus of these solutions and the denominator part of their rational expression. Some

relations between numerator and denominator of the rational solutions are given.

2. Different representations of solutions to the NLS equation

2.1 Solutions of the NLS equation in terms of of Fredholm determinant

We have to define the following notations.

The terms κν ,δν ,γν and xr,ν are functions of the parameters λν , 1 ≤ ν ≤ 2N; they are defined by the formulas :

κν = 2
√

1−λ 2
ν , δν = κν λν , γν =

√

1−λν

1+λν
,;

xr,ν = (r−1) ln
γν − i

γν + i
, r = 1,3.

(2.1)

The parameters −1 < λν < 1, ν = 1, . . . ,2N, are real numbers such that

−1 < λN+1 < λN+2 < .. . < λ2N < 0 < λN < λN−1 < .. . < λ1 < 1

λN+ j =−λ j, j = 1, . . . ,N.
(2.2)

The condition (2.2) implies that

κ j+N = κ j, δ j+N =−δ j+N , γ j+N = γ−1
j , xr, j+N = xr, j, j = 1, . . . ,N.

Complex numbers eν 1 ≤ ν ≤ 2N are defined in the following way :

e j = i∑
N−1
l=1 al( jε)2l+1 −∑

N−1
l=1 bl( jε)2l+1,

e j+N = i∑
N−1
l=1 al( jε)2l+1 +∑

N−1
l=1 bl( jε)2l+1,

1 ≤ j ≤ N −1.

(2.3)

ε , aν , bν , ν = 1 . . .2N are arbitrary real numbers.

Let I be the unit matrix, and

ε j = j 1 ≤ j ≤ N, ε j = N + j, N +1 ≤ j ≤ 2N.

Let’s consider the matrix Dr = (d
(r)
jk )1≤ j,k≤2N defined by :

d
(r)
νµ = (−1)εν ∏

η 6=µ

∣

∣

∣

∣

γη + γν

γη − γµ

∣

∣

∣

∣

exp(iκν x−2δν t + xr,ν + eν). (2.4)

With these notations, the solution to the NLS equation takes the form [16, 17, 18] :

Theorem 2.1. The function v defined by

v(x, t) =
det(I +D3(x, t))

det(I +D1(x, t))
e2it−iϕ .

is a solution to the focusing NLS equation depending on 2N − 1 real parameters a j, b j, ε , 1 ≤ j ≤ N − 1 with the matrix

Dr = (d
(r)
jk )1≤ j,k≤2N defined by

d
(r)
νµ = (−1)εν ∏

η 6=µ

∣

∣

∣

∣

γη + γν

γη − γµ

∣

∣

∣

∣

exp(iκν x−2δν t + xr,ν + eν).

where κν , δν , xr,ν , γν , eν being defined in(2.1), (2.2) and (2.3).
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2.2 Wronskian representation

For this, we need to define the following notations :

φr,ν = sinΘr,ν , 1 ≤ ν ≤ N, φr,ν = cosΘr,ν , N +1 ≤ ν ≤ 2N, r = 1,3,

with the arguments

Θr,ν = κν x/2+ iδν t − ixr,ν/2+ γν y− ieν/2, 1 ≤ ν ≤ 2N.

The functions φr,ν are defined by

φr,ν = sinΘr,ν , 1 ≤ ν ≤ N, φr,ν = cosΘr,ν , N +1 ≤ ν ≤ 2N, r = 1,3, (2.5)

We denote Wr(y) the wronskian of the functions φr,1, . . . ,φr,2N defined by

Wr(y) = det[(∂ µ−1
y φr,ν)ν ,µ∈[1,...,2N]].

We consider the matrix Dr = (dνµ)ν ,µ∈[1,...,2N] defined in (2.4). Then we have the following statement [17] :

Theorem 2.2.

det(I +Dr) = kr(0)×Wr(φr,1, . . . ,φr,2N)(0),

where

kr(y) =
22N exp(i∑

2N
ν=1 Θr,ν)

∏
2N
ν=2 ∏

ν−1
µ=1(γν − γµ)

.

With these notations, we have the following result [17] :

Theorem 2.3. The function v defined by

v(x, t) =
W3(φ3,1, . . . ,φ3,2N)(0)

W1(φ1,1, . . . ,φ1,2N)(0)
e2it−iϕ .

is a solution to the focusing NLS equation depending on 2N −1 real parameters a j, b j, ε , 1 ≤ j ≤ N −1 with φ r
ν defined in

(2.5)

φr,ν = sin(κν x/2+ iδν t − ixr,ν/2+ γν y− ieν/2), 1 ≤ ν ≤ N,
φr,ν = cos(κν x/2+ iδν t − ixr,ν/2+ γν y− ieν/2), N +1 ≤ ν ≤ 2N, r = 1,3,

κν , δν , xr,ν , γν , eν being defined in(2.1), (2.2) and (2.3).

We can give another representation of the solutions to the NLS equation depending only on terms γν , 1 ≤ ν ≤ 2N. From

the relations (2.1), we can express the terms κν , δν and xr,ν in function of γν , for 1 ≤ ν ≤ 2N and we obtain :

κ j =
4γ j

(1+ γ2
j )
, δ j =

4γ j(1− γ2
j )

(1+ γ2
j )

2
, xr, j = (r−1) ln

γ j − i

γ j + i
, 1 ≤ j ≤ N,

κ j =
4γ j

(1+ γ2
j )
, δ j =−

4γ j(1− γ2
j )

(1+ γ2
j )

2
, xr, j = (r−1) ln

γ j + i

γ j − i
, N +1 ≤ j ≤ 2N.

We have the following new representation [17, 26] :

Theorem 2.4. The function v defined by

v(x, t) =
det[(∂

µ−1
y φ̃3,ν(0))ν ,µ∈[1,...,2N]]

det[(∂
µ−1
y φ̃1,ν(0))ν ,µ∈[1,...,2N]]

e2it−iϕ (2.6)
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is a solution to the NLS equation (1.1) depending on 2N −1 real parameters a j, b j, ε , 1 ≤ j ≤ N −1. The functions φ̃r,ν are

defined by

φ̃r, j(y) = sin

(

2γ j

(1+ γ2
j )

x+ i
4γ j(1− γ2

j )

(1+ γ2
j )

2
t − i

(r−1)

2
ln

γ j − i

γ j + i
+ γ jy− ie j

)

,

φ̃r,N+ j(y) = cos

(

2γ j

(1+ γ2
j )

x− i
4γ j(1− γ2

j )

(1+ γ2
j )

2
t + i

(r−1)

2
ln

γ j − i

γ j + i
+

1

γ j

y− ieN+ j

)

,

where γ j =

√

1−λ j

1+λ j

, 1 ≤ j ≤ N.

λ j is an arbitrary real parameter such that 0 < λ j < 1, λN+ j =−λ j, 1 ≤ j ≤ N.
The terms eν are defined by (2.3),
where a j and b j are arbitrary real numbers, 1 ≤ j ≤ N −1.

(2.7)

Remark 2.1. In the formula (2.6), the determinants det[(∂
µ−1
y fν(0))ν ,µ∈[1,...,2N]] are the wronskians of the functions f1, . . . , f2N

evaluated in y = 0. In particular ∂ 0
y fν means fν .

2.3 Families of quasi-rational solutions of NLS equation in terms of a quotient of two determinants

The following notations are used :

Xν = κν x/2+ iδν t − ix3,ν/2− ieν/2,

Yν = κν x/2+ iδν t − ix1,ν/2− ieν/2,

for 1 ≤ ν ≤ 2N, with κν , δν , xr,ν defined in (2.1).

Parameters eν are defined by (2.3).

Below the following functions are used :

ϕ4 j+1,k = γ
4 j−1
k sinXk, ϕ4 j+2,k = γ

4 j
k cosXk,

ϕ4 j+3,k =−γ
4 j+1
k sinXk, ϕ4 j+4,k =−γ

4 j+2
k cosXk,

(2.8)

for 1 ≤ k ≤ N, and

ϕ4 j+1,N+k = γ
2N−4 j−2
k cosXN+k, ϕ4 j+2,N+k =−γ

2N−4 j−3
k sinXN+k,

ϕ4 j+3,N+k =−γ
2N−4 j−4
k cosXN+k, ϕ4 j+4,N+k = γ

2N−4 j−5
k sinXN+k,

(2.9)

for 1 ≤ k ≤ N.

We define the functions ψ j,k for 1 ≤ j ≤ 2N, 1 ≤ k ≤ 2N in the same way, the term Xk is only replaced by Yk.

ψ4 j+1,k = γ
4 j−1
k sinYk, ψ4 j+2,k = γ

4 j
k cosYk,

ψ4 j+3,k =−γ
4 j+1
k sinYk, ψ4 j+4,k =−γ

4 j+2
k cosYk,

(2.10)

for 1 ≤ k ≤ N, and

ψ4 j+1,N+k = γ
2N−4 j−2
k cosYN+k, ψ4 j+2,N+k =−γ

2N−4 j−3
k sinYN+k,

ψ4 j+3,N+k =−γ
2N−4 j−4
k cosYN+k, ψ4 j+4,N+k = γ

2N−4 j−5
k sinYN+k,

(2.11)

for 1 ≤ k ≤ N.

Then we get the following result [26] :

Theorem 2.5. The function v defined by

v(x, t) =
det((n jk) j,k∈[1,2N]

)

det((d jk) j,k∈[1,2N]
)

e2it−iϕ



Differential Relations for the Solutions to the NLS Equation and Their Different Representations — 239/243

is a quasi-rational solution of the NLS equation (1.1) depending on 2N −2 real parameters a j, b j, 1 ≤ j ≤ N −1, where

n j1 = ϕ j,1(x, t,0), 1 ≤ j ≤ 2N n jk =
∂ 2k−2ϕ j,1

∂ε2k−2
(x, t,0),

n jN+1 = ϕ j,N+1(x, t,0), 1 ≤ j ≤ 2N n jN+k =
∂ 2k−2ϕ j,N+1

∂ε2k−2
(x, t,0),

d j1 = ψ j,1(x, t,0), 1 ≤ j ≤ 2N d jk =
∂ 2k−2ψ j,1

∂ε2k−2
(x, t,0),

d jN+1 = ψ j,N+1(x, t,0), 1 ≤ j ≤ 2N d jN+k =
∂ 2k−2ψ j,N+1

∂ε2k−2
(x, t,0),

2 ≤ k ≤ N, 1 ≤ j ≤ 2N

The functions ϕ and ψ are defined in (2.8),(2.9), (2.10), (2.11).

3. Structure of the multi-parametric solutions to the NLS equation of order N

depending on 2N −2 parameters

3.1 The quotient of two polynomials of degree (N(N +1) in x and t by an exponential depending on t

Here we present a result which states the structure of the quasi-rational solutions of the NLS equation. It was only conjectured

in preceding works [16, 18]. Moreover we obtain here families of deformations of the Nth Peregrine breather depending on

2N −2 parameters.

In this section we use the notations defined in the previous sections. The functions ϕ and ψ are defined in (2.8), (2.9), (2.10),

(2.11).

The structure of the quasi rational solutions to the NLS equation is given by [27] :

Theorem 3.1. The function v defined by

v(x, t) =
det((n jk) j,k∈[1,2N]

)

det((d jk) j,k∈[1,2N]
)

e2it−iϕ (3.1)

is a quasi-rational solution of the NLS equation (1.1) quotient of two polynomials R(x, t) and S(x, t) depending on 2N −2 real

parameters a j and b j, 1 ≤ j ≤ N −1.

R(x, t) and S(x, t) are polynomials of degrees N(N +1) in x and t.

Remark 3.1. The polynomials R(x, t) and S(x, t) have the same coefficients of degrees N(N +1) in 2x and 4t equal to 1.

The polynomial B(x, t) does not have any real root.

3.2 The structure of the Peregrine breather of order n

There is any freedom to choose γ j in such a way that the conditions on λ j are checked. We know from previous works [16, 18]

that the (analogue) Peregrine breathers are obtained when all the parameters a j and b j are equal to 0. In order to get the more

simple expressions in the determinants, we choose particular solutions in the previous families.

Here we choose γ j = jε as simple as possible in order to have the conditions on λ j checked, and we have [26, 27] :

Theorem 3.2. The function v0 defined by

vn,0(x, t) =

(

det((n jk) j,k∈[1,2N])

det((d jk) j,k∈[1,2N])
e2it−iϕ

)

(a j=b j=0,1≤ j≤N−1)

(3.2)

is the Peregrine breather of order N solution of the NLS equation (1.1) whose highest amplitude in modulus is equal to 2N +1.

Remark 3.2. The previous result is given in the frame where the limit of the modulus of the solution when x or t tend to infinity

is equal to 1. We know that if v(x, t) is is a solution to the NLS equation then u(x, t) = av(ax,a2t) is also a solution to the NLS

equation, for any arbitrary real a.

Remark 3.3. In (3.2), the matrices (n jk) j,k∈[1,2N] and (d jk) j,k∈[1,2N] are defined in (3.1).
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We have seen in previous section that solutions of NLS equation given by (2.7) can be written in function uniquely

of terms γ . We recall that the terms γ j are given by γ j =

√

1−λ j

1+λ j

, 1 ≤ j ≤ N; λ j is an arbitrary real parameter such that

0 < λ j < 1, λN+ j =−λ j, 1 ≤ j ≤ N.

We can rewrite the result given in (2.7) in a simplest formulation as follows [26, 27] :

Theorem 3.3. The function v defined by

v(x, t) =
det(( f

(3)
jk ) j,k∈[1,2N])

det(( f
(1)
jk ) j,k∈[1,2N])

e2it−iϕ

is a quasi-rational solution of the NLS equation (1.1) depending on 2N −2 real parameters a j, b j, 1 ≤ j ≤ N −1 where

f
(r)
jk =

∂ 2(k−1)

∂ε2(k−1)

(

γ4 j−1 sin

[

2γ

1+ γ2
x+4i

γ(1− γ2)

(1+ γ2)2
t − i

r−1

2
ln

γ − i

γ + i
+∑

N−1
l=1 (al + ibl)ε

2l+1 +( j−1)
π

2

])

(ε=0)

,

f
(r)
jN+k =

∂ 2(k−1)

∂ε2(k−1)

(

γ2N−4 j−1 cos

[

2γ

1+ γ2
x−4i

γ(1− γ2)

(1+ γ2)2
t + i

r−1

2
ln

γ − i

γ + i
+∑

N−1
l=1 (al − ibl)ε

2l+1 +( j−1)
π

2

])

(ε=0)

,

1 ≤ k ≤ N, 1 ≤ j ≤ 2N, r ∈ {1;3}, ε ∈]0;1[, γ = ε(1− ε2)1/2.

Remark 3.4. In the previous theorem, the expression
∂ 0

∂ε0
f (x) means f (x).

The solution to the NLS equation can be written in the form

vN(x, t) =
RN(x, t)

SN(x, t)
e2it =

(

1+
AN(x, t)

BN(x, t)

)

e2it (3.3)

and the Peregrine breather in the form

vN,0(x, t) =
TN(x, t)

UN(x, t)
e2it =

(

1+
PN(x, t)

QN(x, t)

)

e2it (3.4)

where the index 0 means that all the parameters are equal to 0.

4. Differential relation for the NLS equation

In previous works [26, 27], we have proven that the solutions vN to the NLS equation can be written in the form

vN(x, t) =

(

1+
AN(x, t)

BN(x, t)

)

e2it .

We have a very simple relation between the square of the modulus of vN and the denominator part BN . This relation appears

in a paper of Ling and Zhao [25] where the solutions to the NLS equation are given in the frame of the generalized Darboux

transfomation. Here this result and its proof are given in a general frame by the following theorem :

Theorem 4.1. The solutions vN(x, t) =

(

1+
AN(x, t)

BN(x, t)

)

e2it to the NLS equation verify the following relation

|vN(x, t)|
2 = 1+(lnBN(x, t))xx , (4.1)

where the subscript xx means the double derivation with respect to x.

Proof. For simplicity with omit the references to N and (x, t) to the solution v and the polynomials A and B. If we substitute v

by

(

1+
A

B
e2it

)

in the expression X = ivt + vxx +2|v|2v, we get

2

B3

(

|A+B|2(A+B)+AB2
x −ABxxB

)

+
1

B2

(

i(BAt −ABt)−2B2 −2AB−2AxBx +ABxx +BAxx

)

= 0
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This can gives the two following relations

|A+B|2(A+B)+(A+B)B2
x − (A+B)BxxB− (A+B)B2 = 0

and

i(AtB−ABt)+(AxxB−2AxBx +ABxx)+(BxxB−B2
x) = 0

The first relation can be rewritten as

|A+B|2 +B2
x −BxxB−B2 = 0

Then the square of the modulus of vN can be written as

|vN |
2 =

|A+B|2

B2
= 1+(lnB)xx ,

which proves relation (4.1).

5. Relations between rational part of the solutions to the NLS equation

With the preceding notations, we get the following statement

Theorem 5.1. The polynomials of the solutions vN to the NLS equation defined by (3.3) vN(x, t) =
RN(x, t)

SN(x, t)
e2it verify the

following relations

(i(RN)t +(RN)xx −2RN)S
2
N − ((SN)xx + i(SN)t)RNSN

−2(RN)x(SN)xSN +2((SN)
2
x +RNRN)RN = 0.

Proof. It is sufficient to replace in the equation (1.1) vN(x, t) by
RN(x, t)

SN(x, t)
e2it .

Proposition 5.1. The coordinates of extrema (x0, t0) of solutions vN to the NLS equation defined by (3.3) vN(x, t) =
RN(x, t)

SN(x, t)
e2it

verify the the following relations

(RN)x(x0, t0)RN(x0, t0)SN(x0, t0)+(RN)x(x0, t0)RN(x0, t0)SN(x0, t0)
−2(SN)x(x0, t0)RN(x0, t0)RN(x0, t0) = 0,

(RN)t(x0, t0)RN(x0, t0)SN(x0, t0)+(RN)t(x0, t0)RN(x0, t0)SN(x0, t0)
−2(SN)t(x0, t0)RN(x0, t0)RN(x0, t0) = 0.

(RN)x(x0, t0)SN(x0, t0)− (SN)x(x0, t0)RN(x0, t0) = 0.

(RN)t(x0, t0)SN(x0, t0)− (SN)t(x0, t0)RN(x0, t0)+2iSN(x0, t0)RN(x0, t0) = 0.

where a means the complex conjugate of a.

Proof. It is sufficient to compute the partial derivatives of (1.1) vN(x, t) defined by
RN(x, t)

SN(x, t)
e2it .

Remark 5.1. As a consequence of the result on the highest modulus of the PN breather defined by (3.4) vN,0(x, t) =
TN(x, t)

UN(x, t)
e2it ,

we get

TN(0,0) = (2N +1)UN(0,0).
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6. Conclusion

Different representations of the solutions to the NLS equation have been summarized in this paper, as well as the structure of

the quasi rational solutions. Some differential relations have been given in this text for the NLS equation.

From different studies realized by the author, [26]-[32], it seems that the maximums of the modulus of the solutions to the NLS

equation are in connection with the zeros of the Yablonski-Vorob’ev polynomials [33, 34].

It would be relevant to study this conjecture.

It would be also relevant to search other types of equations verified by the polynomials (PN , QN), (RN , SN), (AN , BN) or

(TN ,UN).
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1. Introduction

From a theoretical standpoint, there are many different ways to solve the problems encountered in mathematics and related

sciences. In the recent years, the most remarkable theory is the fixed point theory which is used in many areas. The most known

theory is the Banach contraction principle [1] and this theory has numerous applications in important areas (see [2], [3]).

Recently, Khojasteh et al. [4] introduced the concept of simulation function. Then, they introduced the non-linear Z-

contraction of the simulation class of functions. The well known Banach contraction principle ensures the existence and

uniqueness of fixed point of a contraction on a complete metric space. After this interesting principle, several authors generalized

this principle by introducing the various contractions on metric spaces (see [4],[5]).

Now, we give some concepts and results from the literature used throughout the study.

Definition 1.1. [6] Let X be a non-empty set and let d : X ×X −→ [0,∞) be a function satisfying the following conditions:

(i) d(x,y) = 0 ⇐⇒ x = y, for all x,y ∈ X ,

(ii) d(x,y) = d(y,x), for all x,y ∈ X,

(iii) d(x,y)≤ s[d(x,y)+d(y,z)], for some real s ≥ 1, for all x,y,z ∈ X.

Then, d is called a b-metric on X and (X ,d) is called a b-metric space.

Lemma 1.2. [7] Let (X ,d) be a metric space and {xn} be a sequence in X such that

lim
n→∞

d(xn,xn+1) = 0.
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If {xn} is not a Cauchy sequence in (X ,d), then there exist an ε > 0 and sequences of positive integers {mk} and {nk} with

nk > mk ≥ k such that d(xmk
,xnk

)≥ ε . For all k > 0, corresponding to mk, we can choose nk to be the smallest positive integer

such that d(xmk
,xnk

)≥ ε , d(xmk
,xnk−1)< ε and

(1) lim
k→∞

d(xnk−1,xmk+1) = ε ,

(2) lim
k→∞

d(xmk−1,xnk
) = ε ,

(3) lim
k→∞

d(xnk
,xmk

) = ε ,

(4) lim
k→∞

d(xnk
,xmk+1) = ε .

Lemma 1.3. [8] Let (X ,d) be a b-metric space for some real s ≥ 1 and {xn} be a sequence in X such that

lim
n→∞

d(xn,xn+1) = 0.

If {xn} is not a b-Cauchy sequence in (X ,d), then there exist an ε > 0 and sequences of positive integers {mk} and {nk} with

nk > mk ≥ k such that d(xmk
,xnk

)≥ ε , d(xmk
,xnk−1)< ε and

(1) ε ≤ liminf
k→∞

d(xmk
,xnk

)≤ limsup
k→∞

d(xmk
,xnk

)≤ sε ,

(2) ε
s
≤ liminf

k→∞

d(xmk+1,xnk
)≤ limsup

k→∞

d(xmk+1,xnk
)≤ s2ε ,

(3) ε
s
≤ liminf

k→∞

d(xmk
,xnk+1)≤ limsup

k→∞

d(xmk
,xnk+1)≤ s2ε ,

(4) ε
s2 ≤ liminf

k→∞

d(xmk+1,xnk+1)≤ limsup
k→∞

d(xmk+1,xnk+1)≤ s3ε .

Definition 1.4. [9] Let X be a nonempty set and T,g : X −→ X be mappings.

(1) A point x ∈ X is called a fixed point of the mapping T if T x = x.

(2) A point x ∈ X is called a coincidence point of the mappings T and g if T x = gx.

(3) A point x ∈ X is called a common fixed point of the mappings T and g if T x = gx = x.

Definition 1.5. [9] Let T,g : X −→ X be mappings on a b-metric space (X ,d). If

lim
n→∞

d(T gxn,gT xn) = 0,

for all {xn} ⊆ X such that the {gxn} and {T xn} sequences are convergent and have the same limit points, then T and g are

called compatible.

Remark 1.6. [10] If T and g commuting (that is, T gx = gT x for all x ∈ X), then T and g are compatible.

Definition 1.7. [4] Let T,g : X −→ X be functions and {xn} ⊆ X. The sequence {xn} is a Picard-Jungck sequence with a pair

of (T,g) if gxn+1 = T x, for each n ≥ 0

Definition 1.8. [11] Let F : [0,∞)× [0,∞)−→ R be a continuous function and satisfy the following conditions:

(a) F(s, t)≤ s;

(b) F(s, t) = s implies that either s = 0 or t = 0; for all s, t ∈ [0,∞).

Then, F is called a C-class function.

We denote C-class functions as ∁.

Definition 1.9. [4] Let F : [0,∞)× [0,∞)−→ R be a function. There exists a CF ≥ 0 such that



Coincidence Point Theorems on b-Metric Spaces via CF -Simulation Functions — 246/250

(a) F(s, t)>CF ⇒ s > t;

(b) F(t, t)≤CF , ∀s, t ∈ [0,∞).

Then, F has property CF .

Definition 1.10. [5] Let ζ : [0,∞)× [0,∞)−→ R be a function satisfying the following conditions:

(ζ a) ζ (0,0) = 0;

(ζ b) ζ (t,s)< F(t,s), for all s, t > 0; the function F : [0,∞)× [0,∞)−→ R is the element of ∁ with property CF .

(ζ c) If {tn}, {sn} are sequences in (0,∞) such that lim
n→∞

tn = lim
n→∞

sn > 0 and tn < sn, then limsup
n→∞

ζ (tn,sn)<CF .

Then, it is called a CF -simulation function.

We denote the class of all CF -simulation functions as ZF .

Definition 1.11. Let (X ,d) be a b-metric space for some real s ≥ 1 and f ,g : X −→ X be mappings. ζ is an element of ZF

such that

ζ (s4d(T x,Ty),(gx,gy))≥CF , (1.1)

for all x,y ∈ X with gx 6= gy. Then, T is called a (ZF,b,g)-contraction.

2. Main results

In this section, we introduce our main results.

Remark 2.1.

(1) By axiom (ζb), it is clear that a simulation function must verify ζ (r,s4r)<CF for all r > 0.

(2) Furthermore, ζ is the elements of ZF such that

d(T x,Ty)≤ s4d(T x,Ty)< d(gx,gy), (2.1)

for all x,y ∈ X with gx 6= gy. T is a (ZF,b,g)-contraction.

To prove, assume that gx 6= gy. Then, d(gx,gy) > 0. If T x = Ty, then 0 = d(T x,Ty) = s4d(T x,Ty) < d(gx,gy). On the

contrary case, if T x 6= Ty, then 0 < d(T x,Ty) , by property (ζb) and (1.1), we have that

CF ≤ ζ (s4d(T x,Ty),d(gx,gy))< F(d(gx,gy),s4d(T x,Ty))

so (2.1) holds. In other words d(T x,Ty)≤ s4d(T x,Ty)< d(gx,gy) is obtained.

Lemma 2.2. If T is a (ZF,b,g)-contraction in a b-metric space (X ,d) and x,y ∈ X are coincidence points of T and g, then

T x = gx = gy = Ty. In particular, the following conditions hold.

(1) If T (or g) is injective within the entire set of coincidence points of T and g, then T and g have a single coincidence point

at most.

(2) If T and g have a common fixed point, it is unique.

Proof. To prove, assume that gx 6= gy. Then, d(gx,gy)> 0. Using (1.1) the following is obtained

CF ≤ ζ (s4d(T x,Ty),d(gx,gy)) = ζ (s4d(gx,gy),d(gx,gy)).

Due to the item (1) of Remark 2.1, contradiction is obtained. In this case, our assumption is incorrect. Therefore, if x and y are

coincidence points of T and g, then T x = gx = gy = Ty. The proof is completed.
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Theorem 2.3. Let T be a (ZF,b,g)-contraction in b-metrik space (X ,d). Suppose that there is a Picard-Jungck sequence {xn}
of (T,g). In addition, at least one of the following conditions holds.

(a) (g(X),d) (or (T (X),d)) is complete.

(b) (X ,d) is complete, T and g are b-continuous and compatible.

(c) (X ,d) is complete, T and g are b-continuous and commuting.

T and g have at least one coincidence point. Furthermore, either the sequence {gxn} contains a coincidence point of T and

g, or at least one of the following conditions holds.

In case (a), the sequence {gxn} converges to u ∈ g(X) and any point of v ∈ X is a coincident point of T and g such that

gv = u.

In cases (b) and (c), the sequence {gxn} is convergent to a coincidence point of T and g.

In addition, if x,y ∈ X are the coincidence points of T and g, then T x = gx = gy = Ty. If T (or g) is injective within the

entire set of coincidence points of T and g, then T and g have a single coincidence point at most.

Proof. The proof is completed if {xn} contains a coincidence point of T and g. Suppose that {xn} does not contain any

coincidence points of T and g, for all n ≥ 0; that is,

gxn 6= T xn = gxn+1.

In this case, we have

d(gxn,gxn+1)> 0 (2.2)

for all n ≥ 0.

Now, the evidence will be examined in three cases.

Step 1. Using (ζ b) and (1.1), s ≥ 1 and for all n ≥ 0,

CF ≤ ζ (s4(d(T xn,T xn+1)),d(gxn,gxn+1)) (2.3)

= ζ (s4d(gxn+1,gxn+2),d(gxn,gxn+1))

< F(d(gxn,gxn+1),s
4d(gxn+1,gxn+2)),

for all n ≤ 0, 0 < d(gxn+1,gxn+2) ≤ s4d(gxn+1,gxn+2) < d(gxn,gxn+1). Similarly, we can prove that d(gxn+2,gxn+3) <
d(gxn+1,gxn+2). Therefore, {d(gxn,gxn+1)} is sub-zero, non-increasing and convergent.

Let r > 0 and lim
n→∞

d(gxn,gxn+1) = r. Using axiom (ζ c) to the sequences {tn = d(gxn+1,gxn+2)} and {sn = d(gxn,gxn+1)}

with tn < sn,

CF ≤ limsup
n→∞

ζ (s4d(gxn+1,gxn+2),d(gxn,gxn+1) = limsup
n→∞

ζ (s4tn,sn)<CF .

Due to the with (2.3),

CF ≤ limsup
n→∞

ζ (s4d(gxn+1,gxn+2),d(gxn,gxn+1)),

for all n ≥ 0, a contradiction is obtained. In this case, our assumption is incorrect. Therefore, we have r = 0; that is,

lim
n→∞

d(gxn,gxn+1) = 0,

holds.

Step 2. Suppose that the sequence {gxn} is not a b-Cauchy sequence in (X ,d). Then, there exits an ε > 0 and sequences of

positive integers
{

gxn(k)

}

and
{

gxm(k)

}

with n(k)> m(k)≥ k such that d(gxm(k),gxn(k))> ε , d(gxm(k),gxn(k)−1)< ε . T , using

(ζ b) axiom and (ZF,b,g) contraction,we have

CF ≤ ζ (s4(d(T xm(k),T xn(k))),d(gxm(k),gxn(k)))

= ζ (s4d(gxm(k)+1,gxn(k)+1),d(gxm(k),gxn(k)))

< F(d(gxm(k),gxn(k)),s
4d(gxm(k)+1,gxn(k)+1)).
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It now consists of two different situations.

Case (i): s = 1.

In this case, (X ,d) is a metric space. By Lemma 1.2 there exits ε > 0 and sequence of positive integers
{

gxn(k)

}

and
{

gxm(k)

}

such that n(k)> m(k)≥ k with d(gxm(k),gxn(k))> ε , d(gxm(k),gxn(k−1))< ε and satisfying (1)-(4) of Lemma 1.2 and

using (ζ c),
{

tn = d(gxm(k)+1,gxn(k)+1)
}

and
{

sn = d(gxm(k),gxn(k))
}

, we have

CF ≤ limsup
n→∞

ζ (d(gxm(k)+1,gxn(k)+1),d(gxm(k),gxn(k)))

< F(d(gxm(k),gxn(k)),d(gxm(k)+1,gxn(k)+1))

<CF

which is a contradiction.

Case (ii): s > 1.

In this case, (X ,d) is a b-metric space. By Lemma 1.3 there exist ε > 0 and sequences of positive integers
{

gxn(k)

}

and
{

gxm(k)

}

such that n(k)> m(k)≥ k with d(gxm(k),gxn(k))> ε , d(gxm(k),gxn(k−1))< ε and satisfying (1)-(4) of Lemma 1.3, we

have

CF ≤ limsup
n→∞

ζ (s4d(gxm(k)+1,gxn(k)+1),d(gxm(k),gxn(k)))

< F(d(gxm(k),gxn(k)),s
4d(gxm(k)+1,gxn(k)+1))

<CF

which is a contradiction.

Consequently, by (i) and (ii), we have {gxn}, is a b-Cauchy sequence in (X ,d).
Step 3. By assumptions (a), (b), (c), we will prove that T and g have a coincidence point.

Case (a): Suppose that (g(X)) (or (T (X),d)) is complete. We also found that the sequence {gxn} is a b-Cauchy sequence.

In case for all n ≥ 0, gxn+1 = T xn ∈ T (X)⊆ g(X), taking into account these, u ∈ g(X), that is,

lim
n→∞

d(gxn,u) = 0.

Since T xn = gxn+1, for all n we have,

lim
n→∞

d(T xn,u) = 0. (2.4)

Let v ∈ X be any point such that gv = u. Suppose that v is not a coincidence point of T and g, then gv = u 6= T v. In

this case, we have δ = d(T v,gv) > 0. Using (2.4), n0 ∈ N be such that d(gxn,gv) < δ for all n ≥ n0. This means that

d(gxn,gv)< δ = d(T v,gv), for all n ≥ n0.

In particular, gxn 6= T v for all n ≥ n0, then

d(T xn,T v) = d(gxn+1,gv)> 0, for all n ≥ n0. (2.5)

On the other hand, if gxn = gv for all n ≥ n1, it contradicts the condition (2.2) for ∃ n1 ∈ N.

Therefore, the sequence {gxn} has a subsequence
{

gxδ (n)

}

with

gxδ (n) 6= gv. (2.6)

Now, let n2 ∈ N such that δ (n2)≥ n0. Therefore, for all n ≥ n2, by (2.5) and (2.6), d(gxδ (n),gv)> 0 and d(T xδ (n),T v)> 0.

Using(ζ b),

CF ≤ ζ (s4d(T xδ (n),T v),d(gxδ (n),gv)))

< F(d(gxδ (n),gv),s4d(T xδ (n),T v))

this means that;

0 ≤ d(T xδ (n),T v)≤ s4d(T xδ (n),T v)< d(gxδ (n),gv) = d(gxδ (n),u).
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By lim
n→∞

d(gxδ (n),u) = 0, lim
n→∞

d(T xδ (n),T v) = 0. However,
{

T xδ (n)

}

=
{

gxδ (n)+1

}

is a supsequence of {gxn} and converges

to gv. Due to the uniqueness of the limit, we have gv = T v. This contradicts our assumption. Then, u = gv = T v. In other

words, v is a coincidence point of T and g.

Case (b): Suppose that (X ,d) is complete. T and g are continuous and compatible. In this case the sequence {gxn} is

{gxn} −→ u ∈ X , since (X ,d) is a b-Cauchy sequence on the complete b-metric space. Since T is continuous, {ggxn} −→ gu.

Since g is continuous, {T gxn} −→ Tu. Moreover, T and g are compatible, {T xn = gxn+1} and {gxn} have the same limit

points, we deduce that

d(Tu,gu) = lim
n→∞

d(T gxn,ggxn+1) = lim
n→∞

d(T gxn,gT xn) = 0.

Therefore, u is a coincidence point of T and g.

Case (c): Suppose that (X ,d) is complete and T and g are continuous and commuting. In this case, if T and g are commuting,

then T and g will be compatible which is the same with case (b).

Example 2.4. Let X = [0,1] and d : X ×X −→ [0,∞) be defined as

d(x,y) =

{

0, x = y,

(x− y)2, x 6= y,

Then, d is a b-metric with coefficient s = 2 but it is not a metric. Consider the mappings T,g : X −→ X defined by T x = x+3

and gx = 5x+1 for all x ∈ X. In order to solve the non-linear equation

x+3 = 5x+1

Theorem 2.3 can be applied using the simulation function ζ (t,s) = s− t.

ζ (s4d(T x,Ty),d(gx,gy)) = d(gx,gy)− s4d(T x,Ty)

= (5x+1−5y−1)2 −24
.(x+3− y−3)2

= 25(x− y)2 −16(x− y)2

= 9(x− y)2

≥ 0.
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1. Introduction and basic results

The numerous references that we mention allow the reader to have a chronological overview of the contributions. Many results

have been collected in our book (Edit. 2005) quoted [1].

1.1 Notion of Galois S-ramification

Let p ≥ 2 be a prime number and let K be a number field; we denote by P := {p prime, p | p} the set of p-places of K and by S

an arbitrary set of finite places (later we shall assume S ⊆ P).

A main problem in Galois theory above K is to study the Galois group GK,S of the maximal pro-p-extension of K which is

S-ramified in the ordinary sense (i.e., unramified outside S and non-complexified (= totally split) at the real infinite places of K

when p = 2).

As we will recall it in detail, in Section A.2, the study of GK,S goes back to fundamental contributions of Serre [2], Šafarevič

[3], Brumer [4], and has been largely extended, from the 1980’s, in much works considering S-ramification (eventually with

decomposition of another set Σ of finite and infinite places).
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The analogous theory for a local base field has also a long history that we shall not consider in this article.

1.2 Main cohomological invariants

For complete current information about the “cohomology of number fields”, see the book of Neukirch–Schmidt–Wingberg [5,

Chapter X].

When S = P, the Fp-dimension of H1(GK,P,Z/pZ), which gives the minimal number of generators of GK,P, is the p-rank 1

of the abelianization:

AK,P := G
ab
K,P := GK,P/[GK,P,GK,P].

Denote by (r1,r2) the signature of K (whence r1 +2r2 = [K : Q]); then, the Fp-dimension of H2(GK,P,Z/pZ), which gives

the minimal number of relations between these generators, fulfills the identity:

rkp(H
1(GK,P,Z/pZ)) = rkp(H

2(GK,P,Z/pZ))+ r2 +1,

giving, for the torsion group TK,P of AK,P under Leopoldt’s conjecture:

rkp(TK,P)= rkp(H
2(GK,P,Z/pZ)).

1.3 Class field theory

In the general case for S (possibly containing tame places and not all the p-places) we may write:

AK,S = ΓK,S

⊕
TK,S, with ΓK,S ≃ Z

r̃K,S
p , (1.1)

where TK,S := torZp
(AK,S) and r̃K,S ≥ 0.

Without any p-adic assumption on the group of global units of K, we still have rkp(H
1(GK,S,Z/pZ)) = rkp(AK,S), but r̃K,S

(called the Zp-rank of AK,S) is more difficult when S ( P; however, rkp(AK,S) = r̃K,S + rkp(TK,S) is computable in complete

generality with the invariants of class field theory for K as follows (Šafarevič formula):

Let K×
(S)

be the subgroup of K× of elements prime to S and for any p ∈ S, let Kp be the completion of K at p; then:

rkp(AK,S) = rkp

(
VK,S/K

×p

(S)

)
+ ∑

p∈S∩P
[Kp : Qp]+ ∑

p∈S
δp−δK − (r1 + r2 −1), (1.2)

where VK,S :=
{

α ∈ K×
(S)

, (α) = ap for an ideal a of K
}

, δp = 1 or 0 according as Kp contains µp or not, and δK = 1 or 0

according as K contains µp or not. Thus, from the relation (1.1):

rkp(TK,S) = rkp(AK,S)− r̃K,S = rkp

(
VK,S/K

×p

(S)

)
+
[

∑
p∈S∩P

[Kp : Qp]− r̃K,S

]
+ ∑

p∈S
δp−δK − (r1 + r2 −1),

where r̃K,S fulfills the following formula:

∑
p∈S∩P

[Kp : Qp]− r̃K,S = dimQp

(
QplogS∩P(EK)

)
, (1.3)

where EK is the group of global units of K and logS∩P :=
(
logp

)
p∈S∩P

the family of p-adic logarithms over S ∩ P with values

in
⊕

p∈S∩P Kp. Note that for S = P,

rK,P := dimQp

(
QplogP(EK)

)
,

is the p-adic rank of EK (i.e., the Zp-rank of the closure of the image ιP(EK) of EK in the group of local principal units UK,P,

where ιP is the diagonal embedding; see § 2.1).

The Šafarevič and reflection formulas, generalized with decomposition, may be obtained via [1, Exercise II.5.4.1] or other

classical references.

In general, r̃K,S is non-obvious and varies from 0 to r2 +1 (see Wingberg [6, 7], Yamagishi [8], Maire [9, 10, 11], Labute

[12], [13], Vogel [14] for some results and cases where GK,S may be free with less than r2 +1 generators and our forthcoming

numerical results showing that many Zp-ranks can occur).

1 As usual, the p-rank of an abelian group A is the Fp-dimension of A/Ap.
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For S = P we obtain r̃K,P = r2 +1, under the Leopoldt conjecture, giving (since ∑p∈P[Kp : Qp] = r1 +2r2):

rkp(TK,P) = rkp(VK,P/K
×p
P )+ ∑

p∈P
δp−δK .

If S = /0 then AK,S = TK,S =: CℓK , the p-class group of K (ordinary sense).

Remark 1.1. We shall not consider S-ramification with S = P ∪ T , when T is a finite set of tame places, because of the

following exact sequence, under the Leopoldt conjecture (Neumann [15], Nguyen Quang Do [16, Corollary 4.3], [1, Theorem

III.4.1.5]), where the Fl are the residue fields:

1 −→
⊕
l∈T

(F×
l ⊗Zp)−−−→TK,P∪T −−−→ TK,P −→ 1.

For some specialized applications (about number fields, elliptic curves, representation theory, Galois cohomology, Iwasawa’s

theory, p-adic L-functions) and some recent conjectures, one needs to study and compute the above S-invariants when S is a

subset of P and K/Q not necessarily Galois. Even if K/Q is Galois, the Galois group does not necessarily operate on S. So the

classical algebraic considerations (cohomology, Iwasawa’s theory) largely collapse.

So the most tricky invariants in “incomplete P-ramification” are

TK,S and r̃K,S = rkp(AK,S)− rkp(TK,S) = ∑
p∈S

[Kp : Qp]−dimQp

(
QplogS(EK)

)
.

Of course, they highly depend on the decomposition of the prime p in the Galois closure of K and probably of specific

p-adic properties of units; but it remains the class field theory framework above the base field K.

2. General p-adic context of S-ramification

Consider a number field K and a given prime p ≥ 2. Let S be a subset of the set P of the p-places of K and let HK,S be the

maximal abelian S-ramified pro-p-extension of K; this field contains a (maximal) compositum K̃
S

of Zp-extensions of K and

always the p-Hilbert class field HK := HK, /0 of K.

These definitions are given in the ordinary sense when p = 2 (so that the real infinite places of K are not complexified in the

class fields considered; in other words they are totally split).

2.1 Fundamental exact sequences

Let UK,S :=
⊕

p∈S Up, be the product of the groups of principal local units of Kp, p ∈ S, and let E
S
K be the closure of the image

ιS(EK) of EK in UK,S.

We denote by WK,S =
⊕

p∈S µKp
the torsion group of the Zp-module UK,S.

If K/Q is Galois and S ( P, UK,S is not necessarily a Galois module, which increases the difficulties.

The following p-adic result is valid without any assumption on K and S ⊆ P:

Lemma 2.1. We have the exact sequence:

1 →WK,S

/
torZp

(E
S
K)−−−→ torZp

(
UK,S

/
E

S
K

) logS−−−→ torZp

(
logS

(
UK,S

)/
logS(E

S
K)
)
→ 0.

Proof. The surjectivity comes from the fact that if u ∈ UK,S is such that pnlogS(u) = logS(ε), ε ∈ E
S
K , then upn

= ε · ξ for

ξ ∈WK,S, hence there exists m ≥ n such that upm ∈ E
S
K , whence u gives a preimage in torZp

(
UK,S

/
E

S
K

)
. If u ∈UK,S is such that

logS(u) ∈ logS(E
S
K), then u = ε ·ξ as above, giving the kernel equal to E

S
K ·WK,S/E

S
K =WK,S/torZp

(E
S
K).

Put:

WK,S :=WK,S/torZp
(E

S
K) & RK,S := torZp

(
logS(UK,S)/logS(E

S
K)
)
.

Then the exact sequence of Lemma 2.1 becomes:

1 −→ WK,S −−−→ torZp

(
UK,S

/
E

S
K

) logS−−−→RK,S −→ 0. (2.1)
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Lemma 2.2. Let µK be the group of roots of unity of p-power order of K. Under the Leopoldt conjecture for p in K we have

torZp
(E

P
K ) = ιP(µK); thus, in that case, WK,P =WK,P/ιP(µK).

Proof. From Jaulent [17, Définition 2.11, Proposition 2.12] or [1, Theorem III.3.6.2 (vi)].

Note that for S ( P, we do not know if torZp
(E

S
K) may be larger than ιS(µK) (as subgroups of WK,S), even under the Leopoldt

conjecture.

2.2 Diagram of S-ramification

Consider the following diagram under the Leopoldt conjecture for p in K. By definition, TK,S = torZp

(
AK,S

)
is the Galois

group Gal(HK,S/K̃
S
); let C̃ℓK

S
be the subgroup of CℓK corresponding to Gal(HK/K̃

S∩HK) by class field theory.

≃WK,S

TK,S

≃CℓK

≃UK,S/E
S
K

HK,SK̃
S
HK MK,S

≃RK,S≃C̃ℓK

S
K̃

S

HKK̃
S∩HK

K

AK,S

Then from the schema we get:

#TK,S =
[
HK : K̃

S∩HK

]
· #torZp

(
UK,S

/
E

S
K

)
= #C̃ℓK

S · #RK,S · #WK,S. (2.2)

Of course, for p ≥ p0 (explicit), #WK,S = C̃ℓK

S
= 1, whence TK,S = RK,S.

Remark 2.3. When S = P, we have Gal(HK,P/HK)≃UK,P/E
P
K , in which the image of WK,P fixes MK,P =: H

bp
K , the Bertrandias–

Payan field, Gal(H
bp
K /K̃

P
) being the Bertrandias–Payan module as named by Nguyen Quang Do from [18] on the p-cyclic

embedding problem. Then RK,P ≃ Gal(H
bp
K /K̃

P
HK). This “normalized regulator” RK,P (as a p-group or as a p-power) is

closely related to the classical p-adic regulator of K (see [19, Proposition 5.2]).

2.3 Local computations

Recall the following local computation:

Theorem 2.4. [1, Theorem I.4.5 & Corollary I.4.5.4, ordinary sense]. For p | p in K and j ≥ 1, let U
j
p be the group of local

units 1+p j, where p is the maximal ideal of the ring of integers of Kp. For S ⊆ P, denote by m(S) the modulus ∏p∈S p
ep , where

ep is the ramification index of p in K/Q.

For a modulus of the form m(S)n, n ≥ 0, let CℓK(m(S)n) be the corresponding ray class group (ordinary sense). Then for

m ≥ n ≥ 0, we have:

0 ≤ rkp(CℓK(m(S)m))− rkp(CℓK(m(S)n))≤ ∑
p∈S

rkp

(
(U1

p)
p U

n·ep
p /(U1

p)
p U

m·ep
p

)
.

Corollary 2.5. [20, Theorem 2.1 & Corollary 2.2] We have:

rkp(CℓK(m(S)m)) = rkp(CℓK(m(S)n)) = rkp(AK,S), for all m ≥ n ≥ n0,

where n0 = 3 for p = 2 and n0 = 2 for p > 2. Thus TK,S = 1 if and only if rkp(CℓK(m(S)n0)) = r̃K,S (Zp-rank of AK,S).
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Proof. It is sufficient to get, for some fixed n ≥ 0:

(U1
p)

p U
n·ep
p = (U1

p)
p, for all p ∈ S,

hence U
n·ep
p ⊆ (U1

p)
p for all p ∈ S; indeed, we then have:

rkp(CℓK(m(S)n)) = rkp(CℓK(m(S)m)) = r̃K,S + rkp(TK,S) as m → ∞,

giving rkp(CℓK(m(S)n)) = r̃K,S + rkp(TK,S) for such n.

The condition U
n·ep
p ⊆ (U1

p)
p is fulfilled as soon as n · ep >

p · ep
p−1

, whence n >
p

p−1
(Fesenko–Vostokov [21, Chapter I,

§ 5.8, Corollary 2]) giving the value of n0; furthermore, CℓK(m(S)n0) gives the p-rank of TK,S as soon as the Zp-rank r̃K,S is

known.

2.4 Practical computation of r̃K,S

Let S ⊆ P. From (1.3), we have: r̃K,S = ∑
p∈S

[Kp : Qp]− rK,S, where rK,S := dimQp

(
QplogS(EK)

)
.

(i) In [9, 10] Maire has given, in the relative Galois case, some results about rK,S depending on Schanuel’s conjecture and

the use of the representation QplogS(EK) from the results of Jaulent [22].

(ii) In the Galois case, this rank has been studied by Nelson [23] giving formulas (or lower bounds) under the p-adic

Schanuel conjecture.

(iii) We have proposed, in [1, III, § 4 (f)], a conjecture and a calculation process in the general non-Galois case using a

Galois descent from the Galois closure N of K and the family of decomposition groups of the places of N above p and ∞. If

K/Q is Galois then (with Σ := P\S):

rkZp

(
Gal(K̃

P
/K̃

S
)
)
= ∑

p∈Σ
[Kp : Qp]−dimQp

(
QplogP(EK,S)

)
,

where:

EK,S :=
{

ε ∈ EK ⊗Zp, ιp(ε) = 1, ∀p ∈ S
}

& ιp : EK ⊗Zp →U1
p .

But all these similar approaches are difficult for programming and not so obvious for random K and S because of conjectural

aspects; so we shall preferably give extensive computations via PARI/GP [24] since ray class fields are well computed. But

it remains the problem of justification of the “computing” of r̃K,S, when no theoretical value is known (see another explicit

numerical method in [1, § III.5, Theorem 5.2]).

We conclude by the following comments:

Remark 2.6. If TK,P = 1 (i.e., the field K is called p-rational as proposed by Movahhedi in [25, 26]), this does not imply

TK,S = 1 for S ( P (the numerical examples will show many cases). In the opposite situation, we may have TK,P 6= 1, but often

TK,S = 1 for S ( P.

This intricate aspects have been studied by Maire [11, Section 3] in which he introduces the “S-cohomologcal condition”

H2(GK,S,Qp/Zp) = 0 (knowing that GK,S is a free prop-group if and only if H2(GK,S,Qp/Zp) and TK,S are trivial) and that of

“S-arithmetical condition” (EK ⊗Zp →UK,S injective), and compare them, which of course coincide for S = P; we know that the

S-arithmetical condition implies the S-cohomologcal one.

We shall speak of S-rationality, when TK,S = 1 for S ⊆ P, even if this may be rather ambiguous when S ( P because of

the above observations; one must understand this as a “free S-ramification” over K (i.e., giving a free abelian S-ramified

pro-p-extension HK,S/K). This is also justified by the fact that many variants of the definition have been given, as those of

Jaulent–Sauzet [27, 28], Bourbon–Jaulent [29], where are defined and studied the case of singleton S = {p} or that of the

“2-birationality” of quadratic extensions of totally real fields when S = {p,p′}.

3. Algorithmic approach of S-ramification

The principle is to consider a modulus mS := ∏p∈S p
λp , S ⊆ P, with λp ≫ 0 for all p ∈ S to “read” the structure of AK,S on the

ray class group CℓK(mS). The practice shows that the more convenient modulus is of the form:
(

∏
p∈S

pep
)n

,

where ep is the ramification index of p in K/Q and n ≫ 0. Of course, this modulus is (pn) only for S = P; so we must use the

ideal decomposition of p in K, given by PARI/GP, and compute everywhere with ideals.
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3.1 Main program computing TK,S and r̃K,S

3.1.1 The PARI/GP program

==========================================================================================

{P=xˆ3+197*xˆ2+718*x+508;if(polisirreducible(P)==0,break);print(P);bp=2;Bp=5000;

n0=6;K=bnfinit(P,1);forprime(p=bp,Bp,n=n0+floor(30/p);print();print("p=",p);

F=idealfactor(K,p);d=matsize(F)[1];F1=component(F,1);for(j=1,d,print(F1[j]));

for(z=2ˆd,2ˆ(d+1)-1,bin=binary(z);mod=List;for(j=1,d,listput(mod,bin[j+1],j));

M=1;for(j=1,d,ch=mod[j];if(ch==1,F1j=F1[j];ej=F1j[3];F1j=idealpow(K,F1j,ej);

M=idealmul(K,M,F1j)));Idn=idealpow(K,M,n);Kpn=bnrinit(K,Idn); \\ ray class field

Hpn=Kpn.cyc;L=List;e=matsize(Hpn)[2];R=0;for(k=1,e,c=Hpn[e-k+1];

w=valuation(c,p);if(w>0,R=R+1;listinsert(L,pˆw,1)));

print("S=",mod," rk(A_S)=",R," A_S=",L)))}

==========================================================================================

3.1.2 Instructions for use and illustrations

See the Note at the end of Section A.8. The reader has only to copy and past the verbatim of the program and to use a “terminal

session via Sage”, on his or her computer, or a cell in the page http://pari.math.u-bordeaux.fr/gp.html

The programs in this article can be directly copied and pasted at:

https://www.dropbox.com/s/1srmksbr2ujf40i/Incomplete%20p-ramification.pdf?dl=0

It is assumed that the irreducible monic polynomial P defining K is given and that the interval [bp,Bp] of tested primes p is

also given by the user.

(i) The program computes the decomposition of p into d prime ideals; for instance, the following data gives, for

P= x3+197∗ x2+718∗ x+508 and p = 2, the decomposition (p) = pp′ in Q(x), using idealfactor(K,p):

[2, [-65, 0, 1]˜, 1, 1, [0, 0, -1]˜]

[2, [0, 0, 1]˜, 1, 2, [0, 1, 0]˜]

Recall that for an ideal as [2, [0,0,1]˜,1,2, [0,1,0]˜], the 3th component is its ramification index, the 4th component is its

residue degree. For the computation of the modulus mS (to be considered at the power n), we replace each prime ideal p ∈ S by

pep using the function idealpow.

(ii) For each modulus mS = ∏p∈S p
ep·n, the program gives rkp(AK,S) and the Z-structure of AK,S/A

pN

K,S , for N of the

order of n, under the form:

AK,S = [a1, . . . ,ar; b1, . . . ,bt ],

where the coefficients a1, . . . ,ar increase (resp. the coefficients b1, . . . ,bt stabilize) as the exponent n increses, so in the

non-ambiguous cases, b1, . . . ,bt give the group-invariants of TK,S and r is the p-rank r̃K,S of Gal(K̃
S
/K).

Of course, if the rank r̃K,S is not certain, we can not, in a mathematical point of view, deduce the structure of TK,S; but in

practice the information is correct since one can always verify, with the program, the stabilization of the invariants b j whereas

the ai increase linearly to infinity.

(iii) The symbolic data S = [δ1, . . . ,δd ], δi ∈ {0,1}, indicates that the S-modulus considered is:

mS =
( d

∏
i=1

p
epi

·δi

i

)n

.

We have chosen n= floor
(
n0+

30
p

)
to get small values when p ≫ 0 but larger ones for small p (especially p = 2 giving

possibly huge #TK,S). The parameter n0 may be increased at will (here n0 = 6).

There are 2
#S distinct sets S parametrized with the binary writing of the integers z ∈ [0,2d −1].

For S = [0, . . . ,0] one obtains the structure of the p-class group CℓK .

(iv) We illustrate the program with an example where K (a totally real cubic field) is not S-rational for some small p and

some S ⊆ P; but in almost all cases, K is S-rational.

Remark 3.1. We do not compute the Galois group associated to the given polynomial, nor the discriminant or the fundamental
units; otherwise, the reader has only to add if necessary the instructions:

print("Galois :",polgalois(P));

print("Discriminant: ",factor(component (component(K,7), 3)));

print("Fundamental system of units: ",component(component(K,8),5));
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giving, for the Galois group and the discriminant:

Galoisgroup= [6,−1,1, ”S3”] in the PARI/GP notation 2 and Discriminant= [769,1;1390573,1]).

P=xˆ3 + 197*xˆ2 + 718*x + 508

p=2

[2, [-65, 0, 1]˜, 1, 1, [0, 0, -1]˜]

[2, [0, 0, 1]˜, 1, 2, [0, 1, 0]˜]

S=[0, 0] rk(A_S)=0 A_S=[]

S=[0, 1] rk(A_S)=1 A_S=[4]

S=[1, 0] rk(A_S)=0 A_S=[]

S=[1, 1] rk(A_S)=3 A_S=[274877906944, 4, 2]

p=3

[3, [3, 0, 0]˜, 1, 3, 1]

S=[0] rk(A_S)=0 A_S=[]

S=[1] rk(A_S)=2 A_S=[22876792454961, 3]

p=5

[5, [-68, 0, 1]˜, 1, 1, [-1, 2, -1]˜]

[5, [12589, 2, -196]˜, 1, 2, [2, 0, 1]˜]

S=[0, 0] rk(A_S)=0 A_S=[]

S=[0, 1] rk(A_S)=1 A_S=[390625]

S=[1, 0] rk(A_S)=0 A_S=[]

S=[1, 1] rk(A_S)=2 A_S=[19073486328125, 390625]

p=7

[7, [-65, 0, 1]˜, 1, 1, [3, 2, 1]˜]

[7, [12519, 2, -195]˜, 1, 2, [-2, 0, 1]˜]

S=[0, 0] rk(A_S)=0 A_S=[]

S=[0, 1] rk(A_S)=1 A_S=[7]

S=[1, 0] rk(A_S)=0 A_S=[]

S=[1, 1] rk(A_S)=2 A_S=[33232930569601, 7]

p=11

[11, [11, 0, 0]˜, 1, 3, 1]

S=[0] rk(A_S)=0 A_S=[]

S=[1] rk(A_S)=2 A_S=[3138428376721, 11]

p=13

[13, [13, 0, 0]˜, 1, 3, 1]

S=[0] rk(A_S)=0 A_S=[]

S=[1] rk(A_S)=1 A_S=[1792160394037]

(...)

p=127

[127, [-66, 0, 1]˜, 1, 1, [-16, 2, 2]˜]

[127, [16240, 2, -252]˜, 1, 2, [61, 0, 1]˜]

S=[0, 0] rk(A_S)=0 A_S=[]

S=[0, 1] rk(A_S)=1 A_S=[127]

S=[1, 0] rk(A_S)=0 A_S=[]

S=[1, 1] rk(A_S)=2 A_S=[532875860165503, 127]

p=1571

[1571, [275, 0, 1]˜, 1, 1, [-418, 2, -339]˜]

[1571, [21576, 2, -339]˜, 1, 2, [275, 0, 1]˜]

S=[0, 0] rk(A_S)=0 A_S=[]

S=[0, 1] rk(A_S)=1 A_S=[1571]

S=[1, 0] rk(A_S)=0 A_S=[]

S=[1, 1] rk(A_S)=2 A_S=[23617465807865561078891, 1571]

p=1759

[1759, [1759, 0, 0]˜, 1, 3, 1]

S=[0, 0] rk(A_S)=0 A_S=[]

S=[1] rk(A_S)=2 A_S=[52102777604679963122719, 1759]

p=3371

[3371, [-295, 0, 1]˜, 1, 1, [-1597, 2, 231]˜]

[3371, [-121, 0, 1]˜, 1, 1, [355, 2, 57]˜]

[3371, [415, 0, 1]˜, 1, 1, [38, 2, -479]˜]

S=[0, 0, 0] rk(A_S)=0 A_S=[]

S=[0, 0, 1] rk(A_S)=0 A_S=[]

S=[0, 1, 0] rk(A_S)=0 A_S=[]

S=[0, 1, 1] rk(A_S)=1 A_S=[3371]

S=[1, 0, 0] rk(A_S)=0 A_S=[]

S=[1, 0, 1] rk(A_S)=1 A_S=[3371]

S=[1, 1, 0] rk(A_S)=1 A_S=[3371]

S=[1, 1, 1] rk(A_S)=2 A_S=[4946650964538063853923491, 3371]

2See: http://galoisdb.math.upb.de/home
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If, for the remarquable case p = 5, one has some doubt, one increases n, which gives (for n = 50):

[5, [-68, 0, 1]˜, 1, 1, [-1, 2, -1]˜]

[5, [12589, 2, -196]˜, 1, 2, [2, 0, 1]˜]

S=[0, 0] rk(A_S)=0 A_S=[]

S=[0, 1] rk(A_S)=1 A_S=[390625]

S=[1, 0] rk(A_S)=0 A_S=[]

S=[1, 1] rk(A_S)=2 A_S=[17763568394002504646778106689453125, 390625]

Whence TK,S ≃ Z/58Z for S1 = {p} (for the prime of residue degree 2) and S2 = P. Note that once the substantial

computation of K= bnfinit(P,1) (giving all the basic information about the field) is done, very large values of n do not increase

much the execution time; so any skeptical user can make n → ∞ to see that only the data 390625 remains constant.

(v) In [30, § 9.1] we have used some special families of polynomials (e.g., Lecacheux–Washington ones) in which we can

force the p-adic regulator to be p-adicaly close to 0 at will; but we must take the parameter n in proportion, even if here the

Zp-ranks of the AK,S are obvious, since K is totally real, giving finite groups except for S = P where rkZp
(AK,P) = 1:

P=xˆ3-134480895*xˆ2-263169*x-1

p=2

[2, [0, 0, 1]˜, 1, 1, [1, 0, 1]˜]

[2, [0, 1, 0]˜, 1, 1, [1, 1, 0]˜]

[2, [2, 1, 1]˜, 1, 1, [1, 1, 1]˜]

S=[0, 0, 0] rk(A_S)=6 A_S=[16, 16, 2, 2, 2, 2]

S=[0, 0, 1] rk(A_S)=6 A_S=[512, 16, 8, 2, 2, 2]

S=[0, 1, 0] rk(A_S)=6 A_S=[512, 16, 8, 2, 2, 2]

S=[0, 1, 1] rk(A_S)=6 A_S=[1024, 512, 8, 8, 2, 2]

S=[1, 0, 0] rk(A_S)=6 A_S=[512, 16, 8, 2, 2, 2]

S=[1, 0, 1] rk(A_S)=6 A_S=[1024, 512, 8, 8, 2, 2]

S=[1, 1, 0] rk(A_S)=6 A_S=[1024, 512, 8, 8, 2, 2]

S=[1, 1, 1] rk(A_S)=7 A_S=[9444732965739290427392, 1024, 1024, 8, 8, 2, 2]

xˆ3-7625984944841*xˆ2-387459856*x-1

p=3

[3, [1, -1, -1]˜, 1, 1, [0, 1, 1]˜]

[3, [2, 1, 0]˜, 1, 1, [1, 1, 0]˜]

[3, [2541994975055, -19683, 1]˜, 1, 1, [-1, 0, -1]˜]

S=[0, 0, 0] rk(A_S)=4 A_S=[27, 9, 3, 3]

S=[0, 0, 1] rk(A_S)=4 A_S=[177147, 9, 3, 3]

S=[0, 1, 0] rk(A_S)=4 A_S=[177147, 9, 3, 3]

S=[0, 1, 1] rk(A_S)=4 A_S=[177147, 59049, 3, 3]

S=[1, 0, 0] rk(A_S)=4 A_S=[177147, 9, 3, 3]

S=[1, 0, 1] rk(A_S)=4 A_S=[177147, 59049, 3, 3]

S=[1, 1, 0] rk(A_S)=4 A_S=[177147, 59049, 3, 3]

S=[1, 1, 1] rk(A_S)=5 A_S=[834385168331080533771857328695283, 177147, 59049, 3, 3]

P=xˆ3-1628427439432947*xˆ2-13841522500*x-1

p=7

[7, [1, -3, -3]˜, 1, 1, [0, 1, 1]˜]

[7, [4, 3, 0]˜, 1, 1, [1, 1, 0]˜]

[7, [542809146438439, -117649, 1]˜, 1, 1, [2, 0, 2]˜]

S=[0, 0, 0] rk(A_S)=2 A_S=[7, 7]

S=[0, 0, 1] rk(A_S)=2 A_S=[117649, 7]

S=[0, 1, 0] rk(A_S)=2 A_S=[117649, 7]

S=[0, 1, 1] rk(A_S)=3 A_S=[117649, 16807, 7]

S=[1, 0, 0] rk(A_S)=2 A_S=[117649, 7]

S=[1, 0, 1] rk(A_S)=3 A_S=[117649, 16807, 7]

S=[1, 1, 0] rk(A_S)=3 A_S=[117649, 16807, 7]

S=[1, 1, 1] rk(A_S)=4 A_S=[3219905755813179726837607, 117649, 16807, 7]

3.1.3 Example with p totally split in degree 5

For P = x5 −5, n0 = 8, and p = 31 (totally split) one finds one case of non S–rationality:

S= [1,0,0,0,1] rk(AS) = 1 AS = [961], i.e., r̃K,S = 0, TK,S ≃ Z/312Z:

[31, [-14, 1, 0, 0, 0]˜, 1, 1, [7, -15, 10, 14, 1]˜]

[31, [-7, 1, 0, 0, 0]˜, 1, 1, [14, 2, -13, 7, 1]˜]

[31, [3, 1, 0, 0, 0]˜, 1, 1, [-12, 4, 9, -3, 1]˜]

[31, [6, 1, 0, 0, 0]˜, 1, 1, [-6, 1, 5, -6, 1]˜]

[31, [12, 1, 0, 0, 0]˜, 1, 1, [-3, 8, -11, -12, 1]˜]
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S=[0, 0, 0, 0, 0] rk(A_S)=0 A_S=[]

S=[0, 0, 0, 0, 1] rk(A_S)=0 A_S=[]

S=[0, 0, 0, 1, 0] rk(A_S)=0 A_S=[]

S=[0, 0, 0, 1, 1] rk(A_S)=0 A_S=[]

S=[0, 0, 1, 0, 0] rk(A_S)=0 A_S=[]

S=[0, 0, 1, 0, 1] rk(A_S)=0 A_S=[]

S=[0, 0, 1, 1, 0] rk(A_S)=0 A_S=[]

S=[0, 0, 1, 1, 1] rk(A_S)=1 A_S=[27512614111]

S=[0, 1, 0, 0, 0] rk(A_S)=0 A_S=[]

S=[0, 1, 0, 0, 1] rk(A_S)=0 A_S=[]

S=[0, 1, 0, 1, 0] rk(A_S)=0 A_S=[]

S=[0, 1, 0, 1, 1] rk(A_S)=1 A_S=[27512614111]

S=[0, 1, 1, 0, 0] rk(A_S)=0 A_S=[]

S=[0, 1, 1, 0, 1] rk(A_S)=1 A_S=[27512614111]

S=[0, 1, 1, 1, 0] rk(A_S)=1 A_S=[27512614111]

S=[0, 1, 1, 1, 1] rk(A_S)=2 A_S=[27512614111, 27512614111]

S=[1, 0, 0, 0, 0] rk(A_S)=0 A_S=[]

S=[1, 0, 0, 0, 1] rk(A_S)=1 A_S=[961]

S=[1, 0, 0, 1, 0] rk(A_S)=0 A_S=[]

S=[1, 0, 0, 1, 1] rk(A_S)=1 A_S=[27512614111]

S=[1, 0, 1, 0, 0] rk(A_S)=0 A_S=[]

S=[1, 0, 1, 0, 1] rk(A_S)=1 A_S=[27512614111]

S=[1, 0, 1, 1, 0] rk(A_S)=1 A_S=[27512614111]

S=[1, 0, 1, 1, 1] rk(A_S)=2 A_S=[27512614111, 27512614111]

S=[1, 1, 0, 0, 0] rk(A_S)=0 A_S=[]

S=[1, 1, 0, 0, 1] rk(A_S)=1 A_S=[27512614111]

S=[1, 1, 0, 1, 0] rk(A_S)=1 A_S=[27512614111]

S=[1, 1, 0, 1, 1] rk(A_S)=2 A_S=[27512614111, 27512614111]

S=[1, 1, 1, 0, 0] rk(A_S)=1 A_S=[27512614111]

S=[1, 1, 1, 0, 1] rk(A_S)=2 A_S=[27512614111, 27512614111]

S=[1, 1, 1, 1, 0] rk(A_S)=2 A_S=[27512614111, 27512614111]

S=[1, 1, 1, 1, 1] rk(A_S)=3 A_S=[27512614111, 27512614111, 27512614111]

3.1.4 Example with p totally split in degree 7

For the polynomial P = x7 −7 and p = 43, one finds two cases:

[43, [-18, 1, 0, 0, 0, 0, 0]˜, 1, 1, [-2, 19, 13, -16, -20, 18, 1]˜]

[43, [-7, 1, 0, 0, 0, 0, 0]˜, 1, 1, [1, -6, -7, -1, 6, 7, 1]˜]

[43, [9, 1, 0, 0, 0, 0, 0]˜, 1, 1, [4, -10, -18, 2, -5, -9, 1]˜]

[43, [13, 1, 0, 0, 0, 0, 0]˜, 1, 1, [16, 12, 9, -4, -3, -13, 1]˜]

[43, [14, 1, 0, 0, 0, 0, 0]˜, 1, 1, [21, 20, 17, 8, -19, -14, 1]˜]

[43, [15, 1, 0, 0, 0, 0, 0]˜, 1, 1, [11, 5, 14, -21, 10, -15, 1]˜]

[43, [17, 1, 0, 0, 0, 0, 0]˜, 1, 1, [-8, 3, 15, -11, -12, -17, 1]˜]

(...)

S=[0, 1, 0, 1, 0, 0, 1] rk(A_S)=1 A_S=[43]

S=[1, 1, 0, 0, 1, 0, 0] rk(A_S)=1 A_S=[43]

i.e., r̃K,S = 0 and TK,S ≃ Z/43Z for the two above cases. For the other modulus, TK,S = 1.

3.1.5 Example with a field discovered by Jaulent–Sauzet

In [27], some numerical examples of {l}(= {p})-rational fields, which are not p-rational, are given; of course this corresponds

to a suitable choice of S = {p} and we give the case of the field defined by the polynomial:

P = x10 +19x8 +8x7 +130x6 +16x5 +166x4 −888x3 −15x2 +432x+243

for p = 3:

[3, [-1, 1, 0, 0, 1, 1, -1, 0, 0, -1]˜, 2, 1, [2, 0, 2, 1, 2, 0, 1, 1, 2, 1]˜]

[3, [-1, 1, 0, 1, 1, 0, -1, 0, 0, -1]˜, 2, 1, [2, 0, 1, 2, 1, 2, 1, 1, 2, 1]˜]

[3, [-5, 14, -4, -2, 5, 5, 13, -13, 2, 6]˜, 2, 3, [0, 1, 1, 1, -1, -1, -1, -1, -1, 1]˜]

S=[0, 0, 0] rk(A_S)=0 A_S=[]

S=[0, 0, 1] rk(A_S)=2 A_S=[14348907,14348907]

S=[0, 1, 0] rk(A_S)=0 A_S=[]

S=[0, 1, 1] rk(A_S)=5 A_S=[14348907,14348907,14348907,14348907, 3]

S=[1, 0, 0] rk(A_S)=0 A_S=[]

S=[1, 0, 1] rk(A_S)=5 A_S=[14348907,14348907,14348907,14348907, 3]

S=[1, 1, 0] rk(A_S)=1 A_S=[27]

S=[1, 1, 1] rk(A_S)=8 A_S=[14348907,14348907,14348907,14348907,14348907,14348907, 3, 3]
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which is indeed {p}-rational for each prime ideal p, but the field is not 3-rational since TK,P ≃ Z/3Z×Z/3Z.

Note the case AK,S = TK,S ≃ Z/27Z.

Many other numerical examples are available in [27, § 3.c].

3.1.6 Abelian fields with TK,S = 1 but TK,P 6= 1

We consider for this the cyclotomic field Q(µ24). The following program may be used for any abelian field given by polcyclo(N)
or polsubcyclo(N,d) giving the suitable polynomials of degree d dividing ϕ(N):

{P=polcyclo(24);bp=2;Bp=500;n0=8;K=bnfinit(P,1);forprime(p=bp,Bp,

n=n0+floor(30/p);print();print("p=",p);F=idealfactor(K,p);d=matsize(F)[1];

F1=component(F,1);for(j=1,d,print(F1[j]));for(z=2ˆd,2*2ˆd-1,bin=binary(z);

mod=List;for(j=1,d,listput(mod,bin[j+1],j));M=1;for(j=1,d,ch=mod[j];if(ch==1,F1j=F1[j];

ej=F1j[3];FF1j=idealpow(K,F1j,ej);M=idealmul(K,M, FF1j)));Idn=idealpow(K,M,n);

Kpn=bnrinit(K,Idn);Hpn=Kpn.cyc;L=List;e=matsize(Hpn)[2];R=0;

for(k=1,e,c=Hpn[e-k+1];w=valuation(c,p);if(w>0,R=R+1;listinsert(L,pˆw,1)));

print("S=",mod," rk(A_S)=",R," A_S=",L)))}

p=3

[3, [-1, 0, -1, 0, 1, 0, 0, 0]˜, 2, 2, [-1, -1, 1, 1, 1, 1, 0, 0]˜]

[3, [-1, 0, 1, 0, 1, 0, 0, 0]˜, 2, 2, [-1, -1, -1, -1, 1, 1, 0, 0]˜]

S=[0, 0] rk(A_S)=0 A_S=[]

S=[0, 1] rk(A_S)=1 A_S=[22876792454961]

S=[1, 0] rk(A_S)=1 A_S=[22876792454961]

S=[1, 1] rk(A_S)=6 A_S=[68630377364883,22876792454961,22876792454961,22876792454961,22876792454961, 3]

p=7

[7, [-3, 0, -1, 0, 1, 0, 0, 0]˜, 1, 2, [2, -3, -3, 1, -3, 1, 0, 0]˜]

[7, [-3, 0, 1, 0, 1, 0, 0, 0]˜, 1, 2, [2, -3, 3, -1, -3, 1, 0, 0]˜]

[7, [2, 0, -2, 0, 1, 0, 0, 0]˜, 1, 2, [-3, 2, -3, 2, 2, 1, 0, 0]˜]

[7, [2, 0, 2, 0, 1, 0, 0, 0]˜, 1, 2, [-3, 2, 3, -2, 2, 1, 0, 0]˜]

S=[0, 0, 0, 0] rk(A_S)=0 A_S=[]

S=[0, 0, 0, 1] rk(A_S)=0 A_S=[]

S=[0, 0, 1, 0] rk(A_S)=0 A_S=[]

S=[0, 0, 1, 1] rk(A_S)=2 A_S=[4747561509943, 7]

S=[0, 1, 0, 0] rk(A_S)=0 A_S=[]

S=[0, 1, 0, 1] rk(A_S)=2 A_S=[4747561509943,4747561509943]

S=[0, 1, 1, 0] rk(A_S)=2 A_S=[4747561509943, 7]

S=[0, 1, 1, 1] rk(A_S)=4 A_S=[4747561509943,4747561509943,4747561509943, 7]

S=[1, 0, 0, 0] rk(A_S)=0 A_S=[]

S=[1, 0, 0, 1] rk(A_S)=2 A_S=[4747561509943, 7]

S=[1, 0, 1, 0] rk(A_S)=2 A_S=[4747561509943,4747561509943]

S=[1, 0, 1, 1] rk(A_S)=4 A_S=[4747561509943,4747561509943,4747561509943, 7]

S=[1, 1, 0, 0] rk(A_S)=2 A_S=[4747561509943, 7]

S=[1, 1, 0, 1] rk(A_S)=4 A_S=[4747561509943,4747561509943,4747561509943, 7]

S=[1, 1, 1, 0] rk(A_S)=4 A_S=[4747561509943,4747561509943,4747561509943, 7]

S=[1, 1, 1, 1] rk(A_S)=6 A_S=[4747561509943,4747561509943,4747561509943,4747561509943,4747561509943, 7]

p=13

[13, [-6, 0, 0, 0, 1, 0, 0, 0]˜, 1, 2, [2, 6, 0, 0, -4, 1, 0, 0]˜]

[13, [-2, 0, 0, 0, 1, 0, 0, 0]˜, 1, 2, [6, 2, 0, 0, 3, 1, 0, 0]˜]

[13, [2, 0, 0, 0, 1, 0, 0, 0]˜, 1, 2, [-6, -2, 0, 0, 3, 1, 0, 0]˜]

[13, [6, 0, 0, 0, 1, 0, 0, 0]˜, 1, 2, [-2, -6, 0, 0, -4, 1, 0, 0]˜]

S=[0, 0, 0, 0] rk(A_S)=0 A_S=[]

S=[0, 0, 0, 1] rk(A_S)=0 A_S=[]

S=[0, 0, 1, 0] rk(A_S)=0 A_S=[]

S=[0, 0, 1, 1] rk(A_S)=2 A_S=[1792160394037,13]

S=[0, 1, 0, 0] rk(A_S)=0 A_S=[]

S=[0, 1, 0, 1] rk(A_S)=2 A_S=[1792160394037,1792160394037]

S=[0, 1, 1, 0] rk(A_S)=2 A_S=[1792160394037,13]

S=[0, 1, 1, 1] rk(A_S)=4 A_S=[1792160394037,1792160394037,1792160394037,13]

S=[1, 0, 0, 0] rk(A_S)=0 A_S=[]

S=[1, 0, 0, 1] rk(A_S)=2 A_S=[1792160394037,13]

S=[1, 0, 1, 0] rk(A_S)=2 A_S=[1792160394037,1792160394037]

S=[1, 0, 1, 1] rk(A_S)=4 A_S=[1792160394037,1792160394037,1792160394037,13]

S=[1, 1, 0, 0] rk(A_S)=2 A_S=[1792160394037,13]

S=[1, 1, 0, 1] rk(A_S)=4 A_S=[1792160394037,1792160394037,1792160394037,13]

S=[1, 1, 1, 0] rk(A_S)=4 A_S=[1792160394037,1792160394037,1792160394037,13]

S=[1, 1, 1, 1] rk(A_S)=6 A_S=[1792160394037,1792160394037,1792160394037,1792160394037,1792160394037,13]
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3.2 Experiments with the fields K =Q( p
√

N), N prime

These fields are studied in great detail by Lecouturier in [31, § 5] for their p-class groups and these fields have some remarkable

properties. For instance if log is the discrete logarithm for (Z/pZ)× provided with a primitive root g, the expression

T =
(N−1)/2

∑
k=1

k · log(k) (mod p) governs, under some conditions, the p-rank of CℓK (from a result of Calegari–Emerton, after

other similar results of Iimura, proved again in [31, Theorem 1.1]) and improved by Schaefer–Stubley[32].

So we shall give the general calculations, for all S ⊆ P, with that of T . We assume N prime congruent to 1 modulo p, but

the reader may suppress this condition. It seems that many interesting heuristics can be elaborated from the numerical results;

we only give some examples (recall that the structure of the class group is given by the first data S = /0):

{p=3;print("p=",p);n=8+floor(30/p);g=znprimroot(p);forprime(N=1,10ˆ3,

if(Mod(N,p)!=1,next);P=xˆp-N;print();print("P=",P);T=Mod(0,p);

for(k=1,(N-1)/2,if(Mod(k,p)==0,next);T=T+k*znlog(k,g));K=bnfinit(P,1);

F=idealfactor(K,p);d=matsize(F)[1];F1=component(F,1);

for(j=1,d,print(F1[j]));for(z=2ˆd,2*2ˆd-1,bin=binary(z);mod=List;

for(j=1,d,listput(mod,bin[j+1],j));M=1;for(j=1,d,ch=mod[j];

if(ch==1,F1j=F1[j];ej=F1j[3];F1j=idealpow(K,F1j,ej);

M=idealmul(K,M,F1j)));Idn=idealpow(K,M,n);Kpn=bnrinit(K,Idn);

Hpn=Kpn.cyc;L=List;e=matsize(Hpn)[2];R=0;

for(k=1,e,c=Hpn[e-k+1];w=valuation(c,p);if(w>0,R=R+1;

listinsert(L,pˆw,1)));print("S=",mod," rk(A_S)=",R," A_S=",L)))}

p=3

P=xˆ3 - 7

[3, [-1, 1, 0]˜, 3, 1, [1, 1, 1]˜]

T=Mod(2,3) S=[0] rk(A_S)=1 A_S=[3]

T=Mod(2,3) S=[1] rk(A_S)=2 A_S=[387420489,387420489]

P=xˆ3 - 271

[3, [-2, 0, -1]˜, 1, 1, [0, 0, 1]˜]

[3, [-1, 1, 1]˜, 2, 1, [2, 1, 0]˜]

T=Mod(0,3) S=[0,0] rk(A_S)=1 A_S=[9]

T=Mod(0,3) S=[0,1] rk(A_S)=3 A_S=[129140163, 27, 3]

T=Mod(0,3) S=[1,0] rk(A_S)=2 A_S=[9, 3]

T=Mod(0,3) S=[1,1] rk(A_S)=4 A_S=[129140163,129140163, 27, 3]

P=xˆ3 - 523

[3, [0, 0, 1]˜, 2, 1, [2, 1, 0]˜]

[3, [1, 0, -1]˜, 1, 1, [2, 1, 1]˜]

T=Mod(0,3) S=[0,0] rk(A_S)=1 A_S=[9]

T=Mod(0,3) S=[0,1] rk(A_S)=2 A_S=[9, 3]

T=Mod(0,3) S=[1,0] rk(A_S)=3 A_S=[387420489, 9, 3]

T=Mod(0,3) S=[1,1] rk(A_S)=4 A_S=[387420489,129140163, 9, 3]

p=5

P=xˆ5 - 11

[5, [-1, 1, 0, 0, 0]˜, 5, 1, [1, 1, 1, 1, 1]˜]

T=Mod(4,5) S=[0] rk(A_S)=1 A_S=[5]

T=Mod(4,5) S=[1] rk(A_S)=3 A_S=[30517578125,6103515625,6103515625]

P=xˆ5 - 211

[5, [-1, 1, 0, 0, 0]˜, 5, 1, [1, 1, 1, 1, 1]˜]

T=Mod(4,5) S=[0] rk(A_S)=3 A_S=[5, 5, 5]

T=Mod(4,5) S=[1] rk(A_S)=5 A_S=[6103515625,6103515625,6103515625, 5, 5]

P=xˆ5 - 401

[5, [-1, 1, 0, 1, 0]˜, 4, 1, [4, 3, 2, 0, 1]˜]

[5, [1, 0, 0, -1, 0]˜, 1, 1, [4, 3, 2, 1, 1]˜]

T=Mod(0,5) S=[0,0] rk(A_S)=2 A_S=[5, 5]

T=Mod(0,5) S=[0,1] rk(A_S)=2 A_S=[25, 5]

T=Mod(0,5) S=[1,0] rk(A_S)=3 A_S=[6103515625,6103515625, 25]

T=Mod(0,5) S=[1,1] rk(A_S)=4 A_S=[6103515625,6103515625,1220703125, 25]

p=7

P=xˆ7 - 29

[7, [-1, 1, 0, 0, 0, 0, 0]˜, 7, 1, [1, 1, 1, 1, 1, 1, 1]˜]

T=Mod(6,7) S=[0] rk(A_S)=1 A_S=[7]

T=Mod(6,7) S=[1] rk(A_S)=4 A_S=[96889010407,13841287201,13841287201,13841287201]

P=xˆ7 - 197

[7, [0, 0, 0, 0, 0, 0, 1]˜, 1, 1, [6, 5, 4, 3, 3, 2, 1]˜]

[7, [1, 0, 0, 0, 0, 0, -1]˜, 6, 1, [6, 5, 4, 3, 1, 2, 1]˜]
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T=Mod(0,7) S=[0,0] rk(A_S)=1 A_S=[7]

T=Mod(0,7) S=[0,1] rk(A_S)=4 A_S=[96889010407,13841287201, 1977326743, 49]

T=Mod(0,7) S=[1,0] rk(A_S)=1 A_S=[7]

T=Mod(0,7) S=[1,1] rk(A_S)=5 A_S=[96889010407,13841287201,1977326743,1977326743, 49]

P=xˆ7 - 337

[7, [-1, 1, 0, 0, 0, 0, 0]˜, 7, 1, [1, 1, 1, 1, 1, 1, 1]˜]

T=Mod(2,7) S=[0] rk(A_S)=2 A_S=[7, 7]

T=Mod(2,7) S=[1] rk(A_S)=5 A_S=[13841287201,13841287201,13841287201,13841287201, 7]

p=11

P=xˆ11 - 67

[11, [-1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]˜, 11, 1, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]˜]

T=Mod(8,11) S=[0] rk(A_S)=2 A_S=[11, 11]

T=Mod(8,11) S=[1] rk(A_S)=7 A_S=[285311670611,285311670611,25937424601,

25937424601,25937424601,25937424601, 11]

P=xˆ11 - 727

[11, [-5, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5]˜, 1, 1, [10, 9, 8, 7, 6, 5, 4, 6, 3, 2, 1]˜]

[11, [-5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5]˜, 10, 1, [10, 9, 8, 7, 6, 5, 4, 4, 3, 2, 1]˜]

T=Mod(0,11) S=[0,0] rk(A_S)=1 A_S=[11]

T=Mod(0,11) S=[0,1] rk(A_S)=6 A_S=[25937424601,25937424601,25937424601,25937424601,2357947691, 121]

T=Mod(0,11) S=[1,0] rk(A_S)=1 A_S=[11]

T=Mod(0,11) S=[1,1] rk(A_S)=7 A_S=[25937424601,25937424601,25937424601,

25937424601,2357947691,2357947691,121]

p=13

P=xˆ13 - 53

[13, [-1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]˜, 13, 1, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]˜]

T=Mod(11,13) S=[0] rk(A_S)=1 A_S=[13]

T=Mod(11,13) S=[1] rk(A_S)=7 A_S=[1792160394037,137858491849,137858491849,

137858491849,137858491849,137858491849,137858491849]

P=xˆ13 - 677

[13, [-4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4]˜, 12, 1, [12, 11, 10, 9, 8, 7, 6, 5, 5, 4, 3, 2, 1]˜]

[13, [5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4]˜, 1, 1,[12, 11, 10, 9, 8, 7, 6, 5, 2, 4, 3, 2, 1]˜]

T=Mod(0,13) S=[0,0] rk(A_S)=1 A_S=[13]

T=Mod(0,13) S=[0,1] rk(A_S)=1 A_S=[13]

T=Mod(0,13) S=[1,0] rk(A_S)=7 A_S=[137858491849,137858491849,137858491849,

137858491849,137858491849,10604499373, 169]

T=Mod(0,13) S=[1,1] rk(A_S)=8 A_S=[137858491849,137858491849,137858491849,

137858491849,137858491849,10604499373,10604499373, 169]

3.3 The fields K =Q
(√

−√−q
)

associated to elliptic curves

These fields, used by Coates–Li in [33, 34] to prove non-vanishing theorems for the central values at s = 1 of the complex

L-series of a family of elliptic curves studied by Gross (for any prime q ≡ 7 (mod 8) and p = 2), are particularly interesting.

Note once for all that the signature of K is [0,2], the Galois closure of K is of degree 8 with Galois group [8,−1,1,”D(4)”]
and DK = 2m q3.

3.3.1 Program for various p

In this part, we fix the prime number q and compute the structure of AK,S for all sets S ⊆ P. Recall that the parameter n must be

such that pn be much larger than the exponent of TK .

For instance, for P = x4 +23, we give the results for p = 3 and p = 71:

{q=23;P=xˆ4+q;print("P=",P);bp=2;Bp=500;n0=8;K=bnfinit(P,1);

forprime(p=bp,Bp,n=n0+floor(30/p);print();print("p=",p);

F=idealfactor(K,p);d=matsize(F)[1];F1=component(F,1);

for(j=1,d,print(F1[j]));for(z=2ˆd,2*2ˆd-1,bin=binary(z);mod=List;

for(j=1,d,listput(mod,bin[j+1],j));M=1;for(j=1,d,ch=component(mod,j);

if(ch==1,F1j=component(F1,j);ej=F1j[3];FF1j=idealpow(K,F1j,ej);

M=idealmul(K,M, FF1j)));Idn=idealpow(K,M,n);Kpn=bnrinit(K,Idn);

Hpn=Kpn.cyc;L=List;e=component(matsize(Hpn),2);R=0;

for(k=1,e,c=Hpn[e-k+1];w=valuation(c,p);if(w>0,R=R+1;

listinsert(L,pˆw,1)));print("S=",mod," rk(A_S)=",R," A_S=",L)))}

P=xˆ4 + 23

p=3

[3, [-1, 1, 0, 0]˜, 1, 1, [1, 0, 1, 1]˜]

[3, [1, 1, 0, 0]˜, 1, 1, [0, 0, 0, 1]˜]

[3, [2, 0, 2, 0]˜, 1, 2, [0, 0, -1, 0]˜]
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S=[0, 0, 0] rk(A_S)=1 A_S=[3]

S=[0, 0, 1] rk(A_S)=1 A_S=[68630377364883]

S=[0, 1, 0] rk(A_S)=1 A_S=[3]

S=[0, 1, 1] rk(A_S)=2 A_S=[68630377364883, 22876792454961]

S=[1, 0, 0] rk(A_S)=1 A_S=[3]

S=[1, 0, 1] rk(A_S)=2 A_S=[68630377364883, 22876792454961]

S=[1, 1, 0] rk(A_S)=1 A_S=[68630377364883]

S=[1, 1, 1] rk(A_S)=3 A_S=[68630377364883, 22876792454961, 22876792454961]

p=71

[71, [-32, 1, 0, 0]˜, 1, 1, [0, 29, -5, 4]˜]

[71, [32, 1, 0, 0]˜, 1, 1, [4, 29, 9, 4]˜]

[71, [31, 0, 2, 0]˜, 1, 2, [-29, 0, 2, 0]˜]

S=[0, 0, 0] rk(A_S)=0 A_S=[]

S=[0, 0, 1] rk(A_S)=1 A_S=[9095120158391]

S=[0, 1, 0] rk(A_S)=1 A_S=[71]

S=[0, 1, 1] rk(A_S)=2 A_S=[9095120158391, 9095120158391]

S=[1, 0, 0] rk(A_S)=1 A_S=[71]

S=[1, 0, 1] rk(A_S)=2 A_S=[9095120158391, 9095120158391]

S=[1, 1, 0] rk(A_S)=2 A_S=[9095120158391, 71]

S=[1, 1, 1] rk(A_S)=3 A_S=[9095120158391, 9095120158391, 9095120158391]

The user is invited to vary n at will to certify the numerical results when the p-rank of AK,S is unknown (i.e., when S ( P).

In the above examples, some TK,S are of order p and the Zp-rank of AK,S is 0 or 1.

3.3.2 Program for various q and p = 2

The analogous program is the following (n = 32 is large enough):

{bq=3;Bq=100;p=2;n=32;forprime(q=bq,Bq,P=xˆ4+q;print();

print("q=",q," ",Mod(q,16));K=bnfinit(P,1);

F=idealfactor(K,p);d=matsize(F)[1];F1=component(F,1);

for(j=1,d,print(F1[j]));for(z=2ˆd,2*2ˆd-1,bin=binary(z);mod=List;

for(j=1,d,listput(mod,bin[j+1],j));M=1;for(j=1,d,ch=component(mod,j);

if(ch==1,F1j=component(F1,j);ej=F1j[3];FF1j=idealpow(K,F1j,ej);

M=idealmul(K,M, FF1j)));Idn=idealpow(K,M,n);Kpn=bnrinit(K,Idn);

Hpn=Kpn.cyc;L=List;e=component(matsize(Hpn),2);R=0;

for(k=1,e,c=Hpn[e-k+1];w=valuation(c,p);if(w>0,R=R+1;

listinsert(L,pˆw,1)));print("S=",mod," rk(A_S)=",R," A_S=",L)))}

We give an example of each congruence class q (mod 16); for q ≡ 7 (mod 16), the decomposition of (2) in Q(
√−q) is

(2) = p ·p∗ where ep = 2 in K/Q:

q=17 Mod(1, 16)

[2, [1, 1, 0, 0]˜, 4, 1, [1, 1, 1, 1]˜]

S=[0] rk(A_S)=2 A_S=[8, 2]

S=[1] rk(A_S)=5 A_S=[4294967296, 2147483648, 2147483648, 8, 2]

q=3 Mod(3, 16)

[2, [1, 0, -1, 0]˜, 2, 2, [1, 0, 1, 0]˜]

S=[0] rk(A_S)=0 A_S=[]

S=[1] rk(A_S)=3 A_S=[4294967296, 2147483648, 1073741824]

q=5 Mod(5, 16)

[2, [1, 1, 0, 0]˜, 4, 1, [1, 1, 1, 1]˜]

S=[0] rk(A_S)=1 A_S=[4]

S=[1] rk(A_S)=3 A_S=[8589934592, 4294967296, 4294967296]

q=7 Mod(7, 16)

[2, [0, -1, 0, 1]˜, 2, 1, [1, 0, 0, 1]˜]

[2, [0, 1, 0, 0]˜, 1, 2, [1, 1, 0, 0]˜]

S=[0, 0] rk(A_S)=0 A_S=[]

S=[0, 1] rk(A_S)=2 A_S=[1073741824, 4]

S=[1, 0] rk(A_S)=1 A_S=[2147483648]

S=[1, 1] rk(A_S)=4 A_S=[2147483648, 2147483648, 1073741824, 2]

q=41 Mod(9, 16)

[2, [1, 1, 0, 0]˜, 4, 1, [1, 1, 1, 1]˜]

S=[0] rk(A_S)=2 A_S=[16, 2]

S=[1] rk(A_S)=4 A_S=[8589934592, 4294967296, 2147483648, 8]



Practice of the Incomplete p-Ramification Over a Number Field – History of Abelian p-Ramification — 264/280

q=11 Mod(11, 16)

[2, [1, 0, -1, 0]˜, 2, 2, [1, 0, 1, 0]˜]

S=[0] rk(A_S)=0 A_S=[]

S=[1] rk(A_S)=3 A_S=[4294967296, 2147483648, 1073741824]

q=13 Mod(13, 16)

[2, [1, 1, 0, 0]˜, 4, 1, [1, 1, 1, 1]˜]

S=[0] rk(A_S)=1 A_S=[4]

S=[1] rk(A_S)=3 A_S=[8589934592, 4294967296, 4294967296]

q=31 Mod(15, 16)

[2, [-1, 0, 0, 1]˜, 1, 1, [0, 0, 0, 1]˜]

[2, [0, 1, -1, 0]˜, 2, 1, [1, 1, 0, 0]˜]

[2, [2, 0, 1, 1]˜, 1, 1, [1, 0, 1, 1]˜]

S=[0, 0, 0] rk(A_S)=0 A_S=[]

S=[0, 0, 1] rk(A_S)=1 A_S=[4]

S=[0, 1, 0] rk(A_S)=2 A_S=[2147483648, 4]

S=[0, 1, 1] rk(A_S)=3 A_S=[2147483648, 1073741824, 8]

S=[1, 0, 0] rk(A_S)=1 A_S=[4]

S=[1, 0, 1] rk(A_S)=3 A_S=[1073741824, 4, 2]

S=[1, 1, 0] rk(A_S)=3 A_S=[2147483648, 1073741824, 8]

S=[1, 1, 1] rk(A_S)=5 A_S=[2147483648, 1073741824, 1073741824, 8, 2]

Remark 3.2. A more complete table shows some rules:

(i) For q ≡ 3 (mod 8), TK,S = 1 for S = /0 and S = P = {p};

(ii) For q ≡ 5 (mod 8), TK, /0 =CℓK ≃ Z/4Z and TK,P = 1 for P = {p} (which means that the 2-Hilbert class field of K

is contained in the compositum of the Z2-extensions of K);

(iii) For q ≡ 7 (mod 16), for S = {p} with ep = 2, we get TK,S ≃ Z/4Z and for S = {p∗} with ep∗ = 1, we get TK,S = 1;

then TK,P ≃ Z/2Z.

These properties may be proved easily and are left to the reader as exercises on the LogS-function (Definition A.4): consider

first the arithmetic of the subfield k =Q(
√−q) and use fixed point formulas (A.5) in K/k.

(iv) For q ≡ 15 (mod 16), the results do not follow any obvious rule and offers some interesting examples as the following

ones:

q=5503

[2, [-1, 0, 0, 1]˜, 1, 1, [0, 0, 0, 1]˜]

[2, [0, 1, -1, 0]˜, 2, 1, [1, 1, 0, 0]˜]

[2, [2, 0, 1, 1]˜, 1, 1, [1, 0, 1, 1]˜]

S=[0, 0, 0] rk(A_S)=0 A_S=[]

S=[0, 0, 1] rk(A_S)=1 A_S=[512]

S=[0, 1, 0] rk(A_S)=2 A_S=[2147483648, 8]

S=[0, 1, 1] rk(A_S)=3 A_S=[2147483648, 1073741824, 16]

S=[1, 0, 0] rk(A_S)=1 A_S=[512]

S=[1, 0, 1] rk(A_S)=3 A_S=[1073741824, 512, 2]

S=[1, 1, 0] rk(A_S)=3 A_S=[2147483648, 1073741824, 16]

S=[1, 1, 1] rk(A_S)=5 A_S=[2147483648, 1073741824, 1073741824, 16, 2]

q=8191

[2, [-1, 0, 0, 1]˜, 1, 1, [0, 0, 0, 1]˜]

[2, [0, 1, -1, 0]˜, 2, 1, [1, 1, 0, 0]˜]

[2, [2, 0, 1, 1]˜, 1, 1, [1, 0, 1, 1]˜]

S=[0, 0, 0] rk(A_S)=0 A_S=[]

S=[0, 0, 1] rk(A_S)=1 A_S=[64]

S=[0, 1, 0] rk(A_S)=2 A_S=[2147483648, 64]

S=[0, 1, 1] rk(A_S)=3 A_S=[2147483648, 1073741824, 128]

S=[1, 0, 0] rk(A_S)=1 A_S=[64]

S=[1, 0, 1] rk(A_S)=3 A_S=[1073741824, 64, 2]

S=[1, 1, 0] rk(A_S)=3 A_S=[2147483648, 1073741824, 128]

S=[1, 1, 1] rk(A_S)=5 A_S=[2147483648, 1073741824, 1073741824, 128, 2]

q=123551

[2, [-1, 0, 0, 1]˜, 1, 1, [0, 0, 0, 1]˜]

[2, [0, 1, -1, 0]˜, 2, 1, [1, 1, 0, 0]˜]

[2, [2, 0, 1, 1]˜, 1, 1, [1, 0, 1, 1]˜]

S=List([0, 0, 0]) rk(A_S)=0 A_S=List([])
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S=List([0, 0, 1]) rk(A_S)=1 A_S=List([16])

S=List([0, 1, 0]) rk(A_S)=2 A_S=List([2147483648, 16])

S=List([0, 1, 1]) rk(A_S)=3 A_S=List([2147483648, 1073741824, 32])

S=List([1, 0, 0]) rk(A_S)=1 A_S=List([16])

S=List([1, 0, 1]) rk(A_S)=3 A_S=List([1073741824, 16, 2])

S=List([1, 1, 0]) rk(A_S)=3 A_S=List([2147483648, 1073741824, 32])

S=List([1, 1, 1]) rk(A_S)=5 A_S=List([2147483648, 1073741824, 1073741824, 32, 2])

1. Appendix: History of abelian p-ramification

A.1 Motivations

We intend, in this detailed survey, to give a maximum of practical information and results about the torsion groups TK,S that we

have numerically computed in the first part of the paper with a PARI/GP program. Since all the invariants, associated with

TK,S, need numerical computations for a better understanding, we choose the more suitable technical presentation (the main

philosophical remark is that they are all equivalent).

For convenience, we indicate both the original historical contributions and the corresponding results processed systematically

in our book [1].

We will not detail the immense domains of pro-p-groups and Galois cohomology, whose main purpose is for instance

the existence of infinite towers of S-ramified extensions and the Fontaine–Mazur conjecture studied by various schools of

mathematicians (for this, see, e.g., [5, § 10]), nor the analytic aspects as the non-vanishing at s = 1 of complex L-series

associated to elliptic curves . . . Similarly, we shall not consider the context of Iwasawa’s theory because this efficient tool does

not exempt from having the “basic” arithmetical properties of the corresponding objects.

Note that the solutions of the analogous problems of S-ramification over local fields are not sufficient for a “globalization”

over a number field K as remarked by Nguyen Quang Do in [35, § 9]. Indeed, the global theory depends on Leopoldt’s

conjecture (usually assumed) and the torsion groups TK,S are, in some sense, refinements of this conjecture.

So we will focus, mainly, on class field theory and on these specific deep p-adic properties or conjectures which are, in our

opinion, the main obstructions for many contemporary researches.

We will not give the most general statements but restrict ourselves to the case of S-ramification, S⊆P, without decomposition

of finite or infinite places (indeed, in these more elaborate cases, the formalism is identical and may be found in our book).

Since the properties of S-ramification may be used by many researchers working on different subjects, we will try to explain the

numerous steps of its progress. This must be understood for practical information and will be an opportunity to clarify the

vocabulary and the main contributions.

We apologize for the probable lack of references (and citation of their authors).

A.2 Prehistory

The origin of interest for S-ramification theory over a number field is probably a paper of Brumer [4], following Serre’s book

[2] and seems also due to a lecture by Šafarevič (1963) showing the importance of the subject. In [3], Šafarevič gives the

cohomological characteristics of the group GK,S (number of generators and relations, cohomological dimension . . .).

Recall at this step the Golod–Šafarevič theorem (1964), named soon after the theorem of Golod–Šafarevič–Gaschütz–

Vinberg, saying that if a pro-p-group G is finite, then r(G )> 1
4
(d(G ))2 where d(G ) (resp. r(G )) is the minimal number of

generators (resp. relations) for the presentation of G . All of this was developed in Koch’s book [36] from the works of many

German mathematicians and is amply improved in [5] (see also in Hajir–Maire [37, 38] a good introduction on the subject and

some of its developments [39], [40, 41], [42, 43]).

More precisely, in [3, Théorème I], Šafarevič gives, for any number field K and any set of places S, the main formula (1.2)

that we recall:

A.2.1 Šafarevič formula

The p-rank of the Zp-module AK,S (giving the minimal number of generators dimFp
(H1(GK,S,Z/pZ)) of GK,S) is:

rkp(AK,S) = rkp

(
VK,S/K

×p

(S)

)
+ ∑

p∈S∩P
[Kp : Qp]+ ∑

p∈S
δp−δK − (r1 + r2 −1), (A.1)

where:

K×
(S) :=

{
α ∈ K×,α prime to S

}
, VK,S :=

{
α ∈ K×

(S), (α) = ap
}
,
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then δp = 1 or 0 according as the completion Kp contains µp or not, and δK = 1 or 0 according as K contains µp or not.

Of course, dimFp
(H2(GK,S,Z/pZ)), giving the minimal number of relations, is easily obtained only when P ⊆ S (equal to

rkp(TK,S) under Leopoldt’s conjecture), which shall explain the forthcoming studies about this:

[5], [6, 7], [8], [11], [12], [14], [36], [44], Haberland [45], [46], El Habibi–Ziane [47] . . ..

A.2.2 Kubota formalism

Mention that Kubota [48] begins the study of the structure of the dual A ∗
K,S of AK,S, study which is based on the Grunwald–

Wang theorem and which leads to a characterization of this group in terms of its fundamental invariants called, following

Kaplansky, the “Ulm invariants”.

Then in [49], Miki uses this formalism, about ℓ(= p)-ramification, then class field theory, Iwasawa’s theory, in direction of

Leopoldt’s conjecture. Some statements, equivalent to some results that we shall recall in this survey (as well as the notion of

p-rationality and its main properties), should be mentioned in his paper, despite the difficulty of translating vocabulary and

technique.

A.3 Main developments after the pioneering works

The computation of rkp(TK,P), from Kummer theory, is already given by Bertrandias–Payan [18], then in [50, Théorèmes I.2,

I.3, Corollaire 1] and by many authors, for instance by means of cohomological techniques (e.g., [26, Proposition 3]).

This will give reflection formulas.

A.3.1 Reflection and rank formulas

From [51, Chapitre III, § 10] or [1, § II.5.4.1][Gr2003]. Using the Šafarevič formula and Kummer theory when K contains the

group µp of pth roots of unity, and writing (for S ⊆ P):

P = S ∪ Σ with S ∩ Σ = /0,

one obtains the reflection theorem in its simplest form:

rkp(A
Σ

K,S)− rkp(A
S res

K,Σ ) = #S− #Σ+ ∑
p∈S

[Kp : Qp]− r1 − r2, (A.2)

where A Σ
K,S is the Galois group of the maximal abelian pro-p-extension of K in HK,S, which is Σ ∪ {∞}-split (i.e., in which all

the places of Σ ∪ {∞} split completely), and similarly for the definition of A Sres
K,Σ , in the restricted sense for p = 2 (i.e., only

S-split); in other words, the mention of {∞} is implicit in the upper script to give the ordinary sense when p = 2.

The case S = P leads to the following well-known result:

Theorem A.1. [1, Proposition III.4.2.2]. Let K be any number field fulfilling the Leopoldt conjecture for the prime number p.

Let K′ := K(µp), P′ be the set of p-places above P in K′, and let Pdec be the set of p-places of K totaly split in K′. Let ω be the

Teichmüller character and denote by rkω the p-rank of an isotypic ω-component for Gal(K′/K); then:

rkp(TK,P) = rkω(Cℓ
P′res
K′ )+ #Pdec −δK ,

where CℓP′res
K′ is the quotient of the p-class group Cℓres

K′ by the subgroup generated by the classes of P′ (in the restricted sense for

p = 2) and where δK = 1 or 0 according as K contains µp or not. Whence the following properties:

(i) If µp ⊂ K, we then have rkp(TK,P) = rkp(Cℓ
P res
K )+ #P−1.

(ii) We have TK,P = 1 if and only if:

• µp 6⊂ K (so p 6= 2): then Pdec = /0 and the ω-component of CℓK′ is trivial;

• µp ⊂ K: p does not split in K/Q and the unique p ∈ P generates Cℓres
K .

Example A.2. For K =Q(µp) =: Q(ζp), p 6= 2, taking Σ = /0 and S = P:

rkp(AK,P)− rkp(A
P

K, /0) = 1+ p−1− p−1
2

= p+1
2
.

Since A P
K, /0 =CℓK/〈cℓK(p)〉, with p= (1−ζp), and AK,P ≃ Z

p+1
2

p

⊕
TK,P, this yields:

rkp(TK,P) = rkp(CℓK), (A.3)

as well as the writing rkp(T
±

K,P) = rkp(Cℓ
∓
K ) (for analogous equalities with pairs of isotopic components associated by means

of the mirror involution, and the consequences for Vandiver’s conjecture, see [52]).
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If the condition S ∪ Σ = P is not fulfilled, we have (still assuming µp ⊂ K) the reflection formula:

rkp(A
Σ

K,S)− rkp(Cℓ
Sres
K (m∗)) = #S− #Σ+ ∑

p∈S
[Kp : Qp]− r1 − r2, with m∗ := ∏

p∈Σ
ppep+1 · ∏

p∈P\S∪Σ
ppep (A.4)

where CℓSres
K (m∗) is the S-split p-ray class group of modulus m∗ (see [1, Exercise II.5.4.1, proof of (iii)] and (iv) for the case

p = 2). Note that CℓSres
K (m∗) is isomorphic to a quotient of A Sres

K,P\S
.

Finaly, if K does not contain µp, but assuming P = S ∪ Σ with S ∩ Σ = /0, the general formula is:

rkp(T
Σ

K,S) = rkω(A
S′ res

K′,Σ′ )+ ∑
p∈S

δp−δK − #Σ−
(
r1 + r2 −1− rΣ

K,S

)
, (A.5)

where:

rΣ
K,S = ∑

p∈S
[Kp : Qp]− r̃Σ

K,S;

here, r̃Σ
K,S ≤ r2 +1 is the Zp-rank of ZplogS(IK,S) modulo QplogS(E

Σ
K) dealing with the group EΣ

K of Σ-units of K (see also [11],

[14] for some applications).

One can restrict some of the above equalities to p-class groups, giving only inequalities on the p-ranks (Hecke theorem

(1910), Scholz theorem (1932), Leopoldt Spiegelungssatz (1958), Armitage–Fröhlich–Serre, Oriat, for p = 2.

For reflection theorems and formulas with characters, see [1, II.5.4, Theorem II.5.4.5)] from the computations of [51, Ch.

I, Theorem 5.18] where p-rank formulas link p-class groups and torsion groups as in Theorem A.1 (this context is used by

Ellenberg–Venkatesh in [53] for the ε-conjecture on p-class groups).

For the annihilation of the Galois module TK,P, of real abelian extensions K/Q, in relation with the construction of p-adic

L-functions and reflection principle, see [54] and its bibliography. There is probably equivalent information whatever the

process (algebraic or analytic), as shown by Oriat in [55]. This logical aspect should deserve further investigation.

A.3.2 Regulators and p-adic residues of the ζp-functions

We continue the story with the p-adic analytic computations of the residue of the p-adic ζ -function at s = 1 of real abelian

fields K by Amice–Fresnel [56], from Kubota–Leopoldt Lp-functions (1964), by Coates [57], Serre [58] introducing p-adic

pseudo-measures, then by Colmez [59] in full generality, via the formula:

1

2[K:Q]−1
lim
s→1

(s−1)ζK,p(s) =
Rp hEp(1)√

D
,

where Rp is the classical p-adic regulator, h the class number, D the discriminant of K and Ep(1) the eulerian factor ∏p|p(1−
Np−1). For totally real fields, the normalised p-adic regulator RK,P, in the formula (2.2), is given (under Leopoldt’s conjecture)

by the expression [19, Proposition 5.2]:

#RK,P ∼ 1

2
·
(
Zp : log(NK/Q(UK,P))

)

#WK,P ·∏p|p Np
· Rp√

D
,

where ∼ means equality up to a p-adic unit factor; whence:

1

2[K:Q]−1 lim
s→1

(s−1)ζK,p(s) =
1

p [K∩Qc:Q]
#TK,P,

where Qc is the Zp-cyclotomic extension of K. In [120], Hatada uses the link between the p-adic valuation of ζK(2− p) and

that of RK,P to study the p-rationality of some totally real number fields; he studies the case of quadratic fields with general

Fibonacci sequences (from the fundamental unit), a method that will be rediscovered by some authors to characterize the

p-rationality.

Mention the relative version of the Coates formula in the totally real case:

Theorem A.3. [50, Théorème III.3]. Let L/K be an abelian extension of totally real number fields fulfilling the Leopoldt

conjecture. Let NL/K be the group of local norms and let Cℓ
gen

L/K
:= Gal(Hab

L /LHK) be the p-genus group in L/K; the

superscript ∗ denotes Ker(NL/K). Then:

#TL,P ∼
#TK,P[

L ∩ HK,P : L ∩ Kc
] × ∏l ∤ p el,p

[L : L ∩ HK,P]
× #Cℓ

gen

L/K
×
(
EK ∩ NL/K : NL/K(EL)

)

×
(
logP(U

∗
L,P) : logP(E

∗
L)
)
×
(
torZp

(U∗
L,P) : µ∗

p

)
,

where µ∗
p = 1 for p 6= 2 and #µ∗

2 = gcd(2, [L : K]).



Practice of the Incomplete p-Ramification Over a Number Field – History of Abelian p-Ramification — 268/280

A.3.3 Cohomological interpretation

In [16], Nguyen Quang Do gives the cohomological interpretation of the dual of TK,P: T ∗
K,P ≃ H2(GK,P,Zp), considered as

the first of the mysterious non positive twists H2(GK,P,Zp(i)) of the motivic cohomology; for concrete results of genus type

about the corresponding case of motivic tame kernels, see Assim–Movahhedi [60] and its important bibliography which would

deserve to be in part among our references, despite it is beyond our goals.

It is indeed well known that H2(GK,P,Zp) does appear as a tricky obstruction in many questions of Galois theory over

number fields, whatever the technical approach. For H2(GK,S,Zp), see [1, Appendix][Gr2003].

But considering the two “equivalent” invariants H2(GK,P,Zp) and TK,P, only the last one may be used, with arithmetic or

analytic tools, to obtain numerical experiments and to understand the true intrinsic p-adic difficulties.

A.3.4 Principal Conjectures and Theorems

Considering the invariants CℓK and TK,P as fundamental objects, we have given, for the abelian fields K, the conjectural

behavior of their isotopic χ-components for irreducible p-adic characters χ in [61]; the proofs of these conjectures and of some

improvements in Iwasawa’s theory are well known and the reader may refer to the illuminating paper of Ribet [62] (available

at https://www.dropbox.com/s/1uir9crhidorejy/smf.Ribet.pdf?dl=0) about the so-called “Principal

Theorem” stemming from Bernoulli–Kummer–Herbrand then Ribet–Mazur–Wiles–Thaine–Rubin–Kolyvagin–Greither works

on cyclotomy and p-adic L-functions, as a prelude of wide generalizations in the same spirit.

A.4 Basic p-adic properties of AK,P & TK,P

During the 1980’s, we have written in [50, 63, 64] 3 the main properties of the groups TK,P with their behaviour in any extension

L/K and proved (assuming Leopoldt’s conjecture in the Galois closure of L) that the transfer maps:

AK,P −→ AL,P & TK,P −→ TL,P

are always injective [50, Théorème I.1]; which has major consequences for the arithmetic of number fields (e.g., non-capitulation

in an extension contrary to class groups). Of course, this property has been obtained soon after by Jaulent, Nguyen Quang Do

and others with different techniques.

A.4.1 The p-adic LogS-functions

Definition A.4. [63, § 2, Théorème 2.1], [1, § III.2.2]. Let IK,P be the group of prime to p ideals of K. We define the logarithm

function:

LogP : IK,P −→
( ⊕
p∈P

Kp

)/
QplogP(EK)

as follows. For any ideal a ∈ IK,P let m be such that am =: (α), α ∈ K×, then:

LogP(a) :=
1

m
logP(α) (mod QplogP(EK)).

The main property of LogP is that for any ideal a ∈ IK,P, LogP(a) defines the Artin symbol in the compositum K̃
P

of the

Zp-extensions of K by means of the canonical exact sequence:

1 → TK,P −→ AK,P
LogP−−−→LogP(IK,P)≃ Gal(K̃

P
/K)→ 1,

which may be generalized with arbitrary S ⊆ P:

1 → TK,S −→ AK,S
LogS−−−→LogS(IK,S)≃ Gal(K̃

S
/K)→ 1,

with an obvious definition of LogS(a) in
⊕
p∈S

Kp modulo QplogS(EK).

This formalism is equivalent to that given by the theory of pro-p-groups (here GK,P), but may yield numerical computations

as follows:

3 [64] is only available at: https://www.dropbox.com/s/fusia63znk0kcky/Lectures1982.pdf?dl=0
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The formula for #TK,S, S ⊆ P, is the following [65, Theorems III.2.5], [1, Corollary III.2.6.1] (under Leopoldt’s conjecture):

#TK,S = #WK,S × #RK,S ×
#CℓK(

ZpLogS(IK,S) : ZpLogS(PK,S)
) , (A.6)

where PK,S is the group of principal ideals prime to S, so that ZpLogS(PK,S) depends obviously on logS(UK,S) modulo

QplogS(EK). When S ( P, WK,S is not necessarily equal to torZp
(UK,S)/ιS(µK) (cf. Lemmas 2.1, 2.2).

The denominator in (A.6) gives the degree [K̃
S∩HK : K] and the quotient gives #C̃ℓK

S
.

For S = P, the LogP-function allows, when µp ⊂ K, the numerical determination of the initial Kummer radical contained in

K̃
P

[66], [67].

A.4.2 Fixed point formula

Then we have obtained a fixed point formula for S = P which, contrary to Chevalley’s formula for class groups in cyclic

extensions [68], does exist whatever the Galois extension L/K ([63, § 5], [69, Section 2 (c)], [65, Proposition 6], [25, Appendice

I], [70, Appendice]):

Theorem A.5. [1, § IV.3, Theorem 3.3]. Let L/K be a Galois extension of number fields and G := Gal(L/K). Let p be a prime

number; we assume that L satisfies the Leopoldt conjecture for p. Then:

#T
G

L,P = #TK,P ×
∏
l ∤ p

el,p
(

∑
l ∤ p

1
e
l,p
ZpLogP(l)+ZpLogP(IK,P) : ZpLogP(IK,P)

) ,

where el,p is the p-part of the ramification index of l in L/K.

Remark A.6. Contrary to the computation of torZp
(UK,P/E

P
K ), that of the Qp-vector space QplogP(EK) does not need the

knowledge of the group of units EK; it only depends of Leopoldt’s conjecture (assumed) and its Qp-dimension is r1 + r2 −1;

the case of QplogS(EK) is more mysterious.

The case of totally real fields is easier since the Log-function trivializes because we have
⊕

p∈P Kp =QplogP(EK)
⊕

Qp,

which allows explicit computations [50, Théorème III.1]:

Corollary A.7. [1, Exercise IV.3.3.1]. In the case of a totally real number field L, the above formula becomes (under Leopoldt’s

conjecture): #T G
L,P = #TK,P · pρ−r ·∏l∤p el,p, where pr ∼ [L : K] and ρ only depends on the decomposition of the ramified primes

ℓ ∤ p in L/K.

A.4.3 p-primitive ramification

The fixed point formula of Theorem A.5 allows to characterize the case where #TL,P = 1 in a p-extension L/K:

Corollary A.8. Let L/K be any finite p-extension. Then TL,P = 1 if and only if the two following conditions are fulfilled (under

Leopoldt’s conjecture):

(i) TK,P = 1;

(ii)
(

∑
l ∤ p

1
e
l,p
ZpLogP(l)+ZpLogP(IK,P) : ZpLogP(IK,P)

)
= ∏

l ∤ p
el,p.

Definition A.9. [1, § IV.3, (b)]. When the condition (ii) is fulfilled, we say that the p-extension L/K is p-primitively ramified

and that the set T of tame places l, ramified in L/K, is primitive [65, Ch. III, Definition & Remark], which is equivalent (in

terms of Frobenius automorphisms) to:

Gal(K̃
P
/K)≃ AK,P/TK,P =

⊕
l∈T

〈( K̃
P
/K

l

)〉
. (A.7)

Of course, any P-ramified extension is p-primitively ramified.

Then in [65, Ch. III, § 2, Theorem 2 & Corollary] are characterized, for p = 2 and p = 3, the abelian p-extensions K of Q
such that TK,P = 1. This is connected with the “regular kernel” of K which, from results of Tate, follows similar properties

which have been explained in a joint work with Jaulent [71] and developed in Jaulent–Nguyen Quang Do [72]. We can state:
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Theorem A.10. [1, Theorem III.4.2.5, Theorem IV.3.5]. Let K be any number field.The following properties are equivalent:

(i) K satisfies the Leopoldt conjecture at p and TK,P = 1;

(ii) AK,P := G ab
K,P = Gal(HK,P/K)≃ Zr2+1

p ,

(iii) the Galois group GK,P is a free pro-p-group on r2 +1 generators, which is equivalent to fulfill the following four

conditions:

• K satisfies the Leopoldt conjecture at p,

• CℓK ≃ ZpLogP(IK,P)
/(

logP(UK,P)+QplogP(EK)
)
,

• torZp
(UK,P) = µp(K),

• ZplogP(EK) is a direct summand in logP(UK,P).

A.5 New formalisms and use of pro-p-group theory

A.5.1 Infinitesimal arithmetic

From [69, 67, 73, 17]. At the same time, in his Thesis, Jaulent defines the infinitesimal arithmetic in a number field proving,

in a nice conceptual framework, generalizations of our previous results, especially in the new context of logarithmic classes

[73, 74], adding Iwasawa theory results, study of the p-regularity (replacing TK,P by the tame kernel K2(ZK) of the ring of

integers of K), and genus theory.

The same technical context of ℓ(= p)-adic class field theory and a logarithmic class field theory was developed later in

much papers, including computational methods of Bourbon–Jaulent [29]. He studies in [73] the logarithmic class group C̃ℓK

(do not confuse with C̃ℓK

P
) whose finiteness is equivalent to the Gross (or Gross–Kuz’min) conjecture [75], [76] (a survey is

given in [1, § III.7]); see also some comments in [77, 78].

Some properties of capitulation of generalized ray class groups and of C̃ℓK are given in [79, 80, 81, 82].

A.5.2 Pro-p-group theory version

Shortly after, at the end of the 1980’s, in his thesis, Movahhedi [25, 26] gives a wide study of the abelian p-ramification theory,

using mainly the properties of the pro-p-group GK,S and deduces again most of the previous items, then he gives the main

structural and cohomological properties of GK,P and the classical characterization of the triviality of TK,P. He proposes for this

to speak of “p-rational fields” [26, Definition 1], that is to say the number fields K such that Leopoldt’s conjecture holds for p

and TK,P = 1 (cf. Theorem A.10); this was inspired by the fact that Q is (obviously) p-rational for all p. This vocabulary has

been adopted by the arithmeticians.

Then Movahhedi gives properties of p-rational extensions L/K and the reciprocal of our result characterizing the p-

rationality in a p-extension L/K, in other words the “going up” of the p-rationality:

Theorem A.11. [25, Théorème 3, § 3]. Let L/K be a p-extension of number fields. The field L is p-rational if and only if K is

p-rational and the set T of tame primes, ramified in L/K, is p-primitive in K. Moreover, under these conditions, the extension

T (L) of T to L is p-primitive.

This implies that if K is p-rational and T p-primitive, then any T -ramified p-extension L/K fulfills the Leopoldt conjecture

and T (L) is p-primitive (a particular case was given in [50, Théorème III.4] for totally real fields).

Remark A.12. In practice, in research papers, one assumes in general an universal Leopoldt conjecture, so that the above

statement becomes:

L is p-rational if and only if K is p-rational and T is p-primitive

(equivalent to use the fixed point formula of Theorem A.5 and Corollary A.8).

In the 1990’s, the classical results on p-ramification, p-rationality, and p-regularity about the triviality of the tame kernel

K2(ZK), are amply illustrated in various directions by Movahhedi, Nguyen Quang Do, Jaulent (see Movahhedi [26], Movahhedi–

Nguyen Quang Do [70], Berger–Gras [83], Jaulent–Nguyen Quang Do [72], Jaulent–Sauzet [27] and Jaulent [17]): pro-p-group

theory with explicit determination of a system of generators and relations for GK,S, Galois cohomology, Iwasawa’s theory,

Leopoldt and Gross conjectures.

Recall that in [77, Scolie, p. 112] Jaulent shows that, when µp ⊂ K the nullity of the p-Hilbert kernel H2(L)⊗Zp implies

Leopoldt and Gross conjectures. Moreover [17] deals with ramification and decomposition.

Under the assumptions: µp ⊂ K, H2(L)⊗Zp = 0, for the Hilbert kernel, and the existence of p0 ∈ S such that µKp0
= µK ,

some results in [84], after [25] and [70] on the primitive reciprocity laws, in the framework of p-rationality, describe (by means

of generators and relations) the Galois group GK,S.
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A.5.3 Links between these invariants and Iwasawa’s theory

Despite the fact that we limit ourselves to arithmetical invariants of the base field (which is always possible), we give a short

overview on the Iwasawa context and we indicate the main references for the reader.4

The base field invariants concerned are (in the case S = P), the torsion group TK,P, the p-Hilbert kernel H2(K)⊗Zp, and

the logarithmic class group C̃ℓK .

Let K∞ := K(µp∞), Γ := Gal(K∞/K) =: 〈γ〉, X the Galois group of the maximal abelian pro-p-extension of K∞, non-ramified

and in which all places totally split. For a field k, we put µp∞(k) = µp∞ ∩ k×. For any module M over the Iwasawa algebra,

denote by M(i) the ith twist on which Γ acts by γ ·m := κ i(γ) ·mγ , where κ is the cyclotomic character.

Then the interpretation of the above invariants, in the Iwasawa framework is given, in part, by the following two results:

Theorem A.13. [16, Theorem 4.2]. Assuming the Leopoldt conjecture for p in K, one has the following exact sequence

1 → µp∞(K)−→
⊕
p|p

µp∞(Kp)−→ TK,P −→ HomΓ(X ,µp∞)→ 1. Then we have the following relation:

HomΓ(X ,µp∞) = HomΓ(X(−1),Qp/Zp) = Hom(X(−1)Γ,Qp/Zp)≃ Gal
(
H

bp
K /K̃

P)

(see Remark 2.3), while (in relation with the paper of Federer–Gross–Sinnott [75]):

XΓ ≃ C̃ℓK . (A.8)

The relation (A.8) is given in [67], then in [85, 17].

The considerable advantage of C̃ℓK , introduced in [73], is that it only involves some specific and explicit notions of classes

and units of the base field K and is then likely to be numerically calculated (Belabas–Jaulent [86]).

When i varies, similar results may be interpreted by means of higher K-groups [87]. The main K2-theoretic interpretation is

given as follows:

Theorem A.14. [16, Theorem 5.6]. One has: (H2(K)⊗Zp)
∗ = Ker2

P(Qp/Zp(−1)); if K contains µpe , e ≥ 1, one obtains the

perfect duality: Gal
(
H

bp
K /K̃

P)
[pe]×

(
H2(K)/peH2(K)

)
(−1)−→ µpe , where T [pe] := {x ∈ T, pe · x = 0} for a Zp-module T ,

and where Ker2
P is the kernel of the localization homomorphism H2(GK,P)−→

⊕
p|p

H2(GK,p).

This result of duality does appear in [67, 85]. If µp ⊂ K, the nullity of H2(K)⊗Zp is equivalent to that of C̃ℓK , which

makes the link with the above Scolie [77, Scolie, p. 112] of Jaulent. For relations between logarithmic classes and higher

K-groups, mention the work of Jaulent–Michel [88] and that of Hutchinson [89].

A.5.4 Synthesis 2003–2005

Because our Crelle papers, were written in french, whence largely ignored, all the results and consequences, that we have given

in [61, 50, 63, 64, 66, 65, 51], were widely developed and improved in [1] where a systematic and general use of ramification

and decomposition is considered, the infinite places playing a specific role (decomposition or complexification).

Furthermore, [1, Theorem V.2.4 and Corollary V.2.4.2] give a characterization (with explicit governing fields) of the

existence of degree p cyclic extensions of K with given ramification and decomposition. This criteria has been used by

Hajir–Maire and Hajir–Maire–Ramakrishna in several of their papers for results on S-ramified pro-p-groups (see, e.g., [90,

Theorem 5.3], [91, Remark 2.2.] for the most recent publications).

A.6 Present theoretical and algorithmic aspects

One may say that there is no important progress for p-rationality, for itself, since p-rational fields are in some sense the

“simplest fields” in a p-adic sense, but that the significance of the p-adic properties of the groups TK,S, in much domains of

number theory, has given a great lot of heuristics, conjectures, computations; so we shall now describe some of these aspects

with some illustrations (it is not possible to be comprehensive since the concerned literature becomes enormous).

4 This Subsection, describing the two different (but equivalent) techniques, is close to personal communications of Jean-François Jaulent and Thong Nguyen

Quang Do (up to the notations and some comments). We thank them also for some remarks and corrections about this subsection.
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A.6.1 Absolute abelian Galois group AK of K

Let Kab be the maximal abelian pro-extension of K. In [92], [93], Angelakis–Stevenhagen and Angelakis, after some work by

Kubota [48] and Onabe [94], provide a direct computation of the profinite group AK := Gal(Kab/K) for imaginary quadratic

fields K, and use it to obtain many different K that all have the same “minimal” absolute abelian Galois group, which is in

some sense a condition of minimality of the groups TK,P for all primes p. They obtain for instance, among other results and

numerical illustrations:

Theorem A.15. [92, Theorem 4.1 & Section 7]. An imaginary quadratic field K 6= Q(i), Q(
√
−2) of class number 1 has

absolute abelian Galois group isomorphic to Ẑ2 ×∏n≥1Z/nZ.

This corresponds to the fact that such fields are p-rational for all p (up to the factors WK,P for p = 2,3). Then the

generalization to an arbitrary K involves the TK,P for all primes p, giving:

Theorem A.16. [95, Theorem 2.1 & Corollary 2.1]. Let Kab be the maximal Abelian pro-extension of K. Let HK be the

compositum, over p, of the maximal P-ramified Abelian pro-p-extensions HK,P of K. Under the Leopoldt conjecture, there

exists an Abelian extension LK of K such that Gal(LK/K) ≃ ∏p TK,P and such that HK is the direct compositum over K of LK

and the maximal Ẑ-extension of K, and such that we have the non-canonical isomorphism (for some explicit integers δ and w):

Gal
(
Kab/LK

)
= Ẑr2+1×Gal

(
Kab/HK

)
≃ Ẑr2+1× ∏

n≥1

(
(Z/2Z)δ×Z/wnZ

)
.

Angelakis–Stevenhagen conjecture in [92, Conjecture 7.1] the infiniteness of imaginary quadratic fields K such that

AK ≃ Ẑ2 ×∏n≥1Z/nZ.

Note that when the p-class group of K is non-trivial, K is p-rational if and only if CℓK is cyclic and the p-Hilbert class field

HK is contained in K̃
P

(assuming WK,P = 1).

Whence the importance of fields K being p-rational for all p (or more precisely such that TK,P = WK,P for all p); it

is an easier problem only for Q and imaginary quadratic fields, but dreadfully difficult when K contains units of infinite

order since it is an analogous question as for Fermat’s quotients of algebraic numbers (various heuristics and conjectures in

[96]), or values of L-functions which intervene as in Coates–Li [33, 34], Goren [97], and more or less, in many papers as

Boeckle–Guiraud–Kalyanswamy–Khare [98] when the normalized p-adic regulator is a unit. We have conjectured that, in any

given number field K, TK,P = 1 for almost all p.

A.6.2 Greenberg’s conjecture on Iwasawa’s λ , µ

For a totally real number field K, consider (under the Leopoldt conjecture) the cyclotomic Zp-extension Kc of K. Then

Greenberg has conjectured in [99] that the Iwasawa’s invariants λ and µ are zero.

Equivalent formulations of this conjecture have been given, as in [100] for an encompassing approach covering the necessary

and sufficient conditions considered by Greenberg in two particular cases (we give up to provide a complete bibliography), but

we must mention that the two invariants TK,P and C̃ℓK (the logarithmic class group of Jaulent) are in some sense “governing

invariants” for the Greenberg conjecture (in a theoretical and numerical viewpoint) and explain the p-adic obstructions for a

standard proof in the framework of Iwasawa’s theory; for instance, as soon as TK,P = 1 or C̃ℓK = 1, Greenberg’s conjecture is

true for trivial reasons. For this, see [101, Théorèmes 3.4, 4.8, 6.3] and [102] about TK,P, then the interpretation by Jaulent

with the group of universal norms [103] and the following criterion (under the Gross-Leopoldt conjecture):

Theorem A.17. [104, Théorème 7, § 1.4]. The totally real number field K fulfills the conjecture of Greenberg if and only if its

logarithmic class group C̃ℓK capitulates in the cyclotomic Zp-extension Kc of K.

If Greenberg’s conjecture is true (which is no doubt), such general condition of capitulation is very reassuring since we

recall that, on the contrary, the group TK,P never capitulates. Moreover the property of capitulation (well known in Hilbert’s

class fields) is more general for generalized ray class groups and, especially, is possible in absolute abelian extensions as shown

in many papers including [105], Bosca [106], then [81, 82].

This result may be deduced in the framework of Iwasawa’s theory recalled in the §A.5.3 [100, Théorème 2.1].

Unfortunately, at the time of writing this text, no proof of Greenberg’s conjecture does exist, despite some unsuccessful

attempts in [107, 108] (to understand the key-points of the p-adic obstruction to be analyzed and possibly completed, see [104,

§ 3.4, Remark] and [102, § 6.2, Diagram]).
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A.6.3 Galois representations with open image

For constructions by Greenberg, in [109], of continuous Galois representations Gal(Q/Q)→ GLn(Zp) with open image, the

p-rational fields play a great role, and the first obvious case is that of p-regular cyclotomic fields Q(µp) which are p-rational

(yet reported by [3], [65], and generalized by introducing in [71] the notion of p-regularity of number fields that we do not

develop in this paper, for short, but which behaves as p-rationality; see a survey in [72]).

Then, an interesting typical conjecture is the following:

Conjecture A.18. [109, Conjecture 4.2.1]. For any odd prime p and for any t ≥ 1, there exists a p-rational field K such that

Gal(K/Q)≃ (Z/2Z)t .

Numerical examples and statistics have been given for various p and t; see [109] and (Robert Bradshaw) the 3-rationality of:

K =Q(
√

13,
√

145,
√

209,
√

269,
√

373,
√
−1).

Some PARI/GP programs are given in Pitoun–Varescon [110, 111], and [20, § 5.2] showing the 3-rationality of:

K =Q(
√
−2,

√
−5,

√
7,
√

17,
√
−19,

√
59).

For fixed p (e.g., p= 3), the probability of p-rationality decreases dramatically when t →∞; indeed, if Gal(K/Q)≃ (Z/2Z)t ,

K is p-rational if and only if the 2t −1 quadratic subfields k of K are p-rational whose probability is of the order of
(

1
p

)2t−1

assuming that class groups and units of each k are random and largely independent regarding the p-adic properties.

A.6.4 Order of magnitude of TK,P and conjectures

We have conjectured in [96, Conjecture 8.11] that for a fixed number field K, TK,P = 1 for all p ≫ 0. Moreover, all numerical

calculations show that the non-p-rationality constitutes an exception.

In another direction, fixing p and taking K in some given infinite family K (e.g., real fields of given degree d) we have

given extensive numerical computations in direction of the following “p-adic Brauer–Siegel” property:

Conjecture A.19. [30, Conjecture 8.1]. There exists a constant Cp(K ) such that:

vp(#TK,p)≤ Cp(K ) · log∞(
√

DK)

log∞(p)
,

for all K ∈ K , where log∞ is the usual complex logarithm.

Thus there are two questions about Cp(K) :=
vp(#TK,P) · log∞(p)

log∞(
√

DK)
and the quantities Cp := sup

K

(Cp(K)), CK := sup
p
(Cp(K)):

(i) The existence of CK < ∞, for a given K, only says that the Conjecture “TK,P = 1 ∀p ≫ 0” is true for the field K; for

this field, we get limsup
p

(Cp(K)) = 0.

(ii) If Cp <∞ does exist for a given p, we have an universal p-adic analog of Brauer–Siegel theorem (the above Conjecture

A.19).

These questions being out of reach, many results give, on the contrary, the infintness of primes p yielding the p-rationality

of a field K, in general under the abc conjecture, following the method given by Silverman [112], Graves–Murty [113],

Boeckle–Guiraud–Kalyanswamy–Khare [98], Maire–Rougnant [114]; for instance:

Theorem A.20. [114, Corollary to Theorem A]. Let K be a real quadratic field or an imaginary S3-extension. If the generalized

abc-conjecture holds for K, then #
{

p ≤ x, K is p-rational
}
≥ c · log(x) as x → ∞, for some constant c > 0 depending on K.

This shows the awesome distance between the two aspects of the problem; indeed, for K =Q(
√

5), no prime number (up to

p < 1014 from Elsenhans–Jahnel: https://oeis.org/A060305) is known giving TK,P 6= 1.

In another viewpoint, as in [115] (after some works of Hartung, Horie, Naito) and [116], it is shown, using modular forms,

the infiniteness of p-rational real quadratic fields for p = 3 and p = 5.
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A.6.5 Fermat curves

To study Fermat curves of exponent p, one uses the base field K =Q(µp) and works in some Kummer extensions; for instance:

(i) Shu [117] gives general formulae of the root numbers of the Jacobian varieties of the Fermat curves X p +Y p = δ ,

where δ is an integer, and studies their distribution. In this article the Vandiver conjecture or the regularity of p implies some

precise properties of the Selmer groups of these Jacobian varieties.

(ii) Davis–Pries [118] work in P-ramified Kummer extensions of K with P = {p= (1−ζp)}, as follows. Let L ⊂ HK,P

be defined by:

L = K
(

p

√
ζp,

p

√
1−ζp, · · · , p

√
1−ζ r

p

)
, r = p−1

2
,

The Kummer radical of L is also generated by the real cyclotomic units and the numbers ζp, 1−ζp. In the same way as

previously, non-Vandiver’s conjecture or non-regularity for p are crucial obstructions.

Under the Vandiver conjecture, this radical is of p-rank r+1 since it is then given by EK · 〈1−ζp〉 modulo K×p.

Under the regularity of p, we get TK,P = 1 (reflection theorem (A.3)) and L is the maximal p-elementary subextension of

HK,P; L/K being p-ramified, whence p-primitively ramified (§A.4.3), this gives the p-rationality of L.

Let E be the maximal p-elementary subextension of HL,P; since TL,P = 1 with E/L p-ramified, we then have TE,P = 1

and rkp(Gal(E/L)) = r · pr+1 +1. One can deduce that CℓL =CℓE = 1 since E/K is totally ramified at p (Theorem A.1 and

Chevalley’s formula in any successive p-cyclic extensions in E/K).

In simple cases as p = 37, where #CℓK = p and where HK ⊆ L in which p splits, the formula of Theorem A.1 gives

rkp(TL,P) = rkp(Cℓ
P
L)+ p−1, whence rkp(Gal(E/L)) = r · pr+1 +2r+1+ rkp(Cℓ

P
L) depending on CℓP

L , a priori unknown.

The purpose of [118] is to get information on H1(Gal(E/K),M) for some Gal(E/K)-modules M, subquotients of the

relative homology H1(U,Y ;Fp) of the Fermat curve, where U is the affine curve xp + yp = 1 and Y the set of 2p cusps where

xy = 0. They completely elucidate the case p = 3.

A.7 Computational references and numerical tables

Many references may be cited:

The first table for the computation of #TK,P for imaginary quadratic fields is that of Charifi [119], using formula (A.6). In

Hatada [120, 121] the computations correspond to statistics about the values (modulo p) of the normalized regulator RK,P of

real fields as K = Q(
√

5) by the way of Fibonacci numbers and values at 2− p of zeta-functions as we have mentioned in

§A.3.2. He obtains for instance that Q(
√

2) is p-rational for all p ≤ 20000, except p = 13,31 (our program gives the next

exception p = 1546463 up to 108).

A precise study of p-rationality of imaginary quadratic fields is given by Angelakis–Stevenhagen in [92, Section 7].

A wide study of TK,P, with tables and publication of PARI/GP programs, is done by Pitoun [110, Chapitre 4], but these

more conceptual programs are not so easy to manage by the reader. Then some statistical results with tables are given by

Pitoun–Varescon in [111].

In [122] Hofmann–Zhang compute the valuation of the (usual) p-adic regulators of cyclic cubic fields with discriminant up

to 1016, for 3 ≤ p ≤ 100, and observe the distribution of these valuations.

About the conjecture of Greenberg [109] Kraft–Schoof [123] have computed such Iwasawa’s invariants and confirm the

conjecture for p = 3 and conductors f of real quadratic fields f 6≡ 1 (mod 3) up to 104. In [20], some heuristics on the

conjecture and numerical examples are given with programs; then we illustrate the following conjecture of Hajir–Maire [43,

Conjecture 4.16]:

Given a prime p and an integer m ≥ 1, co-prime to p, there exist a totally imaginary field K0 and a degree m cyclic extension

K/K0 such that K is p-rational; it is conjectured that the statement is true taking for K0 an imaginary p-rational quadratic

field.

In [124, Table 1, § 2], Barbulescu–Ray give explicit p-rational large compositum of quadratic fields. We may cite some

works by Bouazzaoui [125], El Habibi–Ziane [47] based on p-rationality of quadratic fields.

In the similar context of p-ramification, a new PARI/GP package allows the computation of the logarithmic class group C̃ℓK

of a number field by Belabas–Jaulent [86] that we can illustrate as follows where the invariants [Y,X,Z] are linked by the exact

sequence:

1 → X −→ Y := C̃ℓK −→ Z :=CℓP
K :=CℓK/〈cℓK(P)〉 → 1.
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{P=xˆ2+3;bp=2;Bp=10ˆ8;K=bnfinit(P,1);print("P=",P);

forprime(p=bp,Bp,H=bnflog(K,p);if(H!=[[],[],[]],print("p=",p," ",H)))}

P=xˆ2 + 3

p=13 [[13], [13], []]

p=181 [[181], [181], []]

p=2521 [[2521], [2521], []]

p=76543 [[76543], [76543], []]

p=489061 [[489061], [489061], []]

p=6811741 [[6811741], [6811741], []]

P=xˆ2 + 5

p=5881 [[5881], [5881], []]

These are the only solutions for p < 108. More computations would give heuristics to see if the analogous conjecture:

“C̃ℓK = 1 for all p ≫ 0”, is credible or not since the rarefaction of non-trivial cases is similar to that of the groups TK,P.

The case of real quadratic fields is studied in [101, § 5.2] with a table and in [104, § 2.4], after the work of Ozaki–Taya

[126] and others.

In another direction, the paper [127] of Maire–Rougnant gives examples of triviality of isotopic components of the torsion

groups TK,P; more precisely the fields K are cyclic extensions of Q of degrees 3 and 4 (from polynomials of Balady, Lecacheux,

Balady–Washington) and S3-extensions of Q.

In [30], are given numerous programs to test some heuristics and conjectures about the order of magnitude of the groups

TK,P in totally real number fields in a Brauer–Siegel framework.

A.8 Conclusion and open questions

In all the aspects of p-rationality that we have developed (theoretical and computational), some interesting applications are

done today, including for instance, for the most recent ones, [43] by Hajir–Maire on the µ-invariant in Iwasawa’s theory, then

[90] by Hajir–Maire–Ramakrishna, showing the existence of p-rational fields having large p-rank of the class group, or [91]

about the existence of a solvable number field L, P-ramified, whose p-Hilbert class field tower is infinite. See the bibliographies

of these articles to expand the list of contributions.

Of course it is not possible to evoke all the studied families of pro-p-groups having some logical links with S-ramification

(with more general sets S regarding P) as, for instance, that of “mild groups” introduced by Labute [12] (and [13] for the case

p = 2) dealing with the numbers of generators d(G) and of relations r(G) and defined as follows:

A class of finitely presented pro-p-groups G of cohomological dimension 2 such that r(G)≥ d(G) and d(G)≥ 2 arbitrary.

Many articles where then published giving an overview of the wide variety of such groups as the following short excerpt of

a result of Schmidt about global fields [46, Theorem 1.1]:

Let S,T,M be pairwise disjoint sets of places of K, where S and T are finite and M has Dirichlet density 0. Then there

exists a finite set of places S0 of K which is disjoint from S ∪ T ∪ M and such that the group G T
K,S∪S0

has cohomological

dimension 2.

But let’s go back to the basic abelian invariants, asking some open questions:

(i) We know the fixed point formula in a p-extension L/K (under the conjecture of Leopoldt), but, even in a p-cyclic

extension with Galois group G, and contrary to the case of p-class groups (as done in [128] after a very long history), we do not

know how to compute the filtration (Mi)i≥0, of M := TK,P, defined inductively by:

M0 = 1 and Mi+1/Mi := (M/Mi)
G, for all i ≥ 0.

(ii) The explicit computation of the p-rank, r̃K,S (1.3), of AK,S/TK,S for S ⊆ P, is available only in favorable Galois

cases with an algebraic reasoning on the canonical representation QplogS(EK) given by the Herbrand theorem on units under

Leopoldt’s conjecture (see § 2.4).

(iii) In the definition of WK,S :=WK,S/torZp
(E

S
K), we do not know how to compute torZp

(E
S
K)⊇ ιS(µK) when S ( P. We

ignore, in a p-adic framework, if Leopoldt’s conjecture is sufficient to obtain the responses apart from a Galois context.

A reasonable conjecture is that torZp
(E

S
K) = ιS(µK) whatever K, p and S; but this must be deepened.

We hope that our programs in § 3.1.1 may help to give heuristics about this.
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Note

In the programs in verbatim text, one must replace the symbol of power (in aˆb) by the corresponding PARI/GP symbol (which

is nothing else than that of the computer keyboard); otherwise the program does not work (this is due to the character font used

by some Journals). The good print for the programs is also available at:

https://www.dropbox.com/s/1srmksbr2ujf40i/Incomplete%20p-ramification.pdf?dl=0
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1–349.
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(2016), 5–18.

[87] T. Nguyen Quang Do, Analogues supérieurs du noyau sauvage, J. Théor. Nombres Bordeaux, 2(4) (1991), 263–271.
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1. Introduction

Difference equations and systems of difference equations are great importance in the field of mathematics as well as in other

sciences. The applications of the theory of difference equations appear as discrete mathematical models of many phenomena

such as in biology, economics, ecology, control theory, physics, engineering, population dynamics and so forth. Recently, there

has been a growing interest in the study of finding closed-form solutions of difference equations and systems of difference

equations. Some of the forms of solutions of these equations are representable via well-known integer sequences such as

Fibonacci numbers, Lucas numbers, Pell numbers and Padovan numbers.

Now, we give information about integer sequences that establish a large part of our study.

• The Fibonacci sequence is defined by

Fn = Fn−1 +Fn−2, n ≥ 2 (1.1)

with initial conditions F0 = 0, F1 = 1. Also, it is obtained to extend the Fibonacci sequence backward as

F−n = (−1)n+1
Fn.

The characteristic equation of (1.1) is x2 − x−1 = 0 such that the roots

α =
1+

√
5

2
(golden ratio) and β =

1−
√

5

2
.
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Also, there exists the following limit

lim
n→∞

Fn+1

Fn

= α ,

where Fn is nth Fibonacci number.

• The Padovan sequence is defined by

Pn = Pn−2 +Pn−3, n ∈ N (1.2)

with initial conditions P−2 = 0, P−1 = 0, P0 = 1.

The characteristic equation of (1.2) is x3 − x−1 = 0 such that the roots

p =
r2 +12

6r

q = − r2 +12

12r
− i

√
3

2

(

r

6
− 2

r

)

t = − r2 +12

12r
+ i

√
3

2

(

r

6
− 2

r

)

where r =
3
√

108+12
√

69 and the unique real root is p named as plastic number. Also, there exists the following limit

lim
n→∞

Pn+1

Pn

= p,

where Pn is nth Padovan number.

• Horadam sequence, a generalization of Fibonacci sequence, (Wn(a,b; p,q))n≥0 or simply (Wn)n≥0 is defined by

Wn = pWn−1 +qWn−2, W0 = a,W1 = b, n ≥ 2, (1.3)

where a, b, p and q are arbitrary real numbers.

The characteristic equation of (1.3) is x2 − px−q = 0 such that the roots

λ =
p+

√

p2 +4q

2
and µ =

p−
√

p2 +4q

2
.

Also, there exists the following limit

lim
n→∞

Wn+1

Wn

= λ ,

where Wn is nth Horadam number.

• The generalized Padovan sequence, an extension of the padovan sequence, is defined by

Sn = pSn−2 +qSn−3, n ∈ N (1.4)

with initial conditions S−2 = 0, S−1 = 0, S0 = 1, where p and q are arbitrary real numbers.

The characteristic equation of (1.4) is x3 − px−q = 0 such that the roots

φ =
R2 +12p

6R

ϕ = −R2 +12p

12R
+ i

√
3

2

(

R

6
− 2p

R

)

ψ = −R2 +12p

12R
− i

√
3

2

(

R

6
− 2p

R

)
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where R = 3

√

108q+12
√

−12p3 +81q2. Also, there exists the following limit

lim
n→∞

Sn+1

Sn

= φ ,

where Sn is nth generalized Padovan number.

• Generalized Tribonacci sequence is defined by

Vn = rVn−1 + sVn−2 + tVn−3, n ≥ 3 (1.5)

with initial conditions V0 = a,V1 = b,V2 = c and r,s, t are real numbers.

The characteristic equation is x3 − rx2 − sx− t = 0, whose roots are

α = α(r,s, t) =
r

3
+A+B

β = β (r,s, t) =
r

3
+ωA+ω2B

γ = γ(r,s, t) =
r

3
+ω2A+ωB

where

A =

(

r3

27
+

rs

6
+

t

2
+
√

∆

)1/3

, B =

(

r3

27
+

rs

6
+

t

2
−
√

∆

)1/3

∆ = ∆(r,s, t) =
r3t

27
− r2s2

108
+

rst

6
− s3

27
+

t2

4
,

ω =
−1+ i

√
3

2
= exp(2πi/3).

• When r = 1, s = 1, t = 1 and a = 0, b = 1, c = 1 in (1.5), Tribonacci sequence is defined by

Tn+3 = Tn+2 +Tn+1 +Tn, (1.6)

with initial conditions T0 = 0, T1 = 1, T2 = 1. Also, it can be extended the Tribonacci sequence backward (negative

subscripts) as

T−n = T−n+3 −T−n+2 −T−n+1.

The characteristic equation of (1.6) is

x3 − x2 − x−1 = 0

such that the roots

α =
1+

3
√

19+3
√

33+
3
√

19−3
√

33

3

β =
1+ω

3
√

19+3
√

33+ω2 3
√

19−3
√

33

3

γ =
1+ω2 3

√

19+3
√

33+ω
3
√

19−3
√

33

3

where α is called Tribonacci constant and

ω =
−1+ i

√
3

2
= exp(2πi/3)

is a primitive cube root of unity.

Furthermore, there exist the following limit

lim
n→∞

Tn+r

Tn

= αr,

where r ∈ Z and Tn is the nth Tribonacci number.
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• Lucas sequence is defined by

Ln = Ln−1 +Ln−2, L0 = 2, L1 = 1.

• Pell sequence is defined by

Pn = 2Pn−1 +Pn−2, P0 = 0, P1 = 1.

• Pell-Lucas sequence is defined by

Pn = 2Pn−1 +Pn−2, P0 = 2, P1 = 2.

• Jacobsthal sequence is defined by

Jn = Jn−1 +2Jn−2, J0 = 0, J1 = 1.

• Jacobsthal-Lucas sequence is defined by

Jn = Jn−1 +2Jn−2, J0 = 2, J1 = 1.

• Perrin sequence is defined by

Pn = Pn−2 +Pn−3, P0 = 3, P1 = 0, P2 = 2.

2. Literature review

In [1], Tollu et al. considered the following difference equations

xn+1 =
1

1+ xn

, yn+1 =
1

−1+ yn

, n = 0,1, ..., (2.1)

such that their solutions are associated with Fibonacci numbers, where initial conditions are x0 ∈ R−
{

−Fm+1

Fm

}∞

m=1
and

y0 ∈ R−
{

−Fm+1

Fm

}∞

m=1
and Fm is the mth Fibonacci number.

They investigated the some relationships both between Fibonacci numbers and solutions of equations (2.1) and between the

golden ratio and equilibrium points of equations (2.1). Then, they proved that: the solutions of equations (2.1) are given by

xn =
Fn +Fn−1x0

Fn+1 +Fnx0
, yn =

F−n +F−(n−1)y0

F−(n+1)+F−ny0
,

where Fn is the nth Fibonacci number, and the nontrival solutions of equations (2.1) converge to −β and β , so that β is

conjugate to the golden ratio.

Next, Rabago [2] presented a theoretical explanation in deriving the closed-form solution of Eq. (2.1) which Tollu et al.

studied in [1] and provided another approach in proving Sroysang’s conjecture (2013).

Then, in [3], Yazlik et al. studied the following rational difference equation systems

xn+1 =
xn−1 ±1

ynxn−1
, yn+1 =

yn−1 ±1

xnyn−1
, n = 0,1, ..., (2.2)

such that their solutions associated with Padovan numbers. In their study, they obtained that the forms of solutions of system

(2.2) are as follows

xn =

{

∓Pnx−1y0∓Pn+1x−1+Pn−1

Pn−1x−1y0∓Pnx−1+Pn−2
, if n is odd

∓Pny−1x0∓Pn+1y−1+Pn−1

Pn−1y−1x0∓Pny−1+Pn−2
, if n is even

yn =

{

∓Pny−1x0∓Pn+1y−1+Pn−1

Pn−1y−1x0∓Pny−1+Pn−2
, if n is odd

∓Pnx−1y0∓Pn+1x−1+Pn−1

Pn−1x−1y0∓Pnx−1+Pn−2
, if n is even
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where Pn is the nth Padovan number. Also, they demonstrated that every solutions of the systems (2.2) converge to point (p, p)
and (−p,−p), where p is the plastic number.

Tollu et al. [4] considered the following four Riccati difference equations

xn+1 =
1+ xn

xn

, yn+1 =
1− yn

yn

, un+1 =
1

un +1
, vn+1 =

1

vn −1
, (2.3)

in which the initial conditions are real numbers. They derived the formulae for the solutions of equations (2.3) are given by

xn =
Fn+1x0 +Fn

Fnx0 +Fn−1
,

yn =
F−(n+1)y0 +F−n

F−ny0 +F−(n−1)
,

un =
Fn +Fn−1u0

Fn+1 +Fnu0
,

vn =
F−n +F−(n−1)v0

F−(n+1)+F−nv0
,

where Fn is nth Fibonacci number, F−n is nth negative Fibonacci number. In addition to, they stated the asymptotic behaviors of

the solutions of these equations and introduced that every solutions of these equations converge to their positive or negative

equilibrium points.

Also, they in [5] studied the systems of difference equations

xn+1 =
1+ pn

qn

, yn+1 =
1+ rn

sn

, n ∈ N0,

where each of the sequences pn, qn, rn and sn is some of the sequences xn or yn by their own. They solved fourteen systems

out of sixteen possible systems. In particularly, the representation formulae of solutions of twelve systems were stated via

Fibonacci numbers. Also, for ten systems, they expressed that the solutions of these systems tend to the unique point (α,α)
where α is the golden ratio.

In [6], Halim concerned with the following systems of rational difference equations

xn+1 =
1

1+ yn

, yn+1 =
1

1+ xn

, n = 0,1, ..., (2.4)

and

xn+1 =
1

1− yn

, yn+1 =
1

1− xn

, n = 0,1, ..., (2.5)

initial conditions are arbitrary nonzero real numbers. He determined the form of solutions of system (2.4) as given below

x2n−1 =
F2n−1+F2n−2y0

F2n+F2n−1y0
, x2n =

F2n+F2n−1x0

F2n+1+F2nx0
,

y2n−1 =
F2n−1+F2n−2x0

F2n+F2n−1x0
, y2n =

F2n+F2n−1y0

F2n+1+F2ny0
,

and proved that the equilibrium point E of system (2.4) is globally asymptotically stable, where E =
(

−1+
√

5
2

, −1+
√

5
2

)

=
(

1
α ,

1
α

)

,

where α is the golden ratio. Furthermore, he established the solutions of system (2.5) are periodic with period six and are

unstable.

In [7], Bacani and Rabago studied the behavior of solutions of the following nonlinear difference equations

xn+1 =
q

p+ xv
n

and yn+1 =
q

−p+ yv
n

, (2.6)

where p, q ∈ R
+ and v ∈ N. They proved that the solutions of equations (2.6) in case v = 1 are as follows

xn =
qWn + x0qWn−1

Wn+1 + x0Wn

,

yn =
qW−n + y0qW−(n−1)

W−(n+1)+ y0W−n

,
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where Wn is the nth Horadam number.

In [8], Halim and Bayram investigated the solutions, stability character, and asymptotic behavior of the difference equation

xn+1 =
α

β + γxn−k

, n ∈ N0,

where the initial conditions x−k,x−k+1, ...,x0 are nonzero real numbers, such that its solutions are associated to Horadam

numbers, which are generalized Fibonacci numbers. Firstly, they had the difference equation

xn+1 =
q

p+ xn−k

, (2.7)

by putting q = α
γ and p = β

γ . Then, they proved that the forms of the solutions of difference equation (2.7) are as follows

x(k+1)n+i =
Wn+1 +Wnxi−(k+1)

Wn+2 +Wn+1xi−(k+1)
q, i = 1,2, ...,k+1,

where Wn is the nth Horadam number. Also, they obtained that the equilibrium point E of difference equation (2.7) is globally

asymptotically stable, where E =
−p+

√
p2+4q

2
.

Then, in [9] Halim considered the system of difference equations

xn+1 =
1

1+ yn−2
, yn+1 =

1

1+ xn−2
, n = 0,1, ..., (2.8)

where N0 = N∪{0} and the initial conditions x−2, x−1, x0, y−2, y−1, and y0 are real numbers. He presented the relationship

between Fibonacci numbers and the solutions of system (2.8), i.e., the form of the solutions of system (2.8) are given by

x6n+i =
F2n+1+F2nyi−3

F2n+2+F2n+1yi−3
, i = 1,2,3,

y6n+i =
F2n+1+F2nxi−3

F2n+2+F2n+1xi−3
, i = 1,2,3,

x6n+i =
F2n+2+F2n+1xi−6

F2n+3+F2n+2xi−6
, i = 4,5,6,

y6n+i =
F2n+2+F2n+1yi−6

F2n+3+F2n+2yi−6
, i = 4,5,6,

where Fn is the nth Fibonacci number. Otherwise, he showed that the equilibrium point E of system (2.8) is globally

asymptotically stable, where E =
(

−1+
√

5
2

, −1+
√

5
2

)

.

El-Dessoky in [10] dealt with the following difference equation

xn+1 = axn +
αxnxn−l

βxn + γxn−k

, n = 0,1, ..., (2.9)

where the parameters α , β , γ and a and the initial conditions x−t , x−t+1, ,x−1 and x0 where t = max{l,k} are positive real

numbers. He introduced the explicit formula of solutions of some special cases of Eq. (2.9) via Fibonacci numbers and also,

discussed the global behavior of solutions of Eq. (2.9).

In [11], Halim and Rabago studied the systems of difference equaions

xn+1 =
1

±1± yn−k

, yn+1 =
1

±1± xn−k

, n, k ∈ N0,

where the initial conditions x−k, x−k+1, ..., x0, y−k, y−k+1, ..., y0 are nonzero real numbers.

Initially, they examined the form and behavior of solutions of system of difference equations

xn+1 =
1

1+ yn−k

, yn+1 =
1

1+ xn−k

. (2.10)

Therefore, they determined that the exact solutions of system (2.10) are as follows

x2(k+1)n+i =
F2n+1+F2nyi−(k+1)

F2n+2+F2n+1yi−(k+1)
, i = 1,2, ...,k+1,

y2(k+1)n+i =
F2n+1+F2nxi−(k+1)

F2n+2+F2n+1xi−(k+1)
, i = 1,2, ...,k+1,

x2(k+1)n+i =
F2n+2+F2n+1xi−(2k+2)

F2n+3+F2n+2xi−(2k+2)
, i = k+2, ...,2k+2,

y2(k+1)n+i =
F2n+2+F2n+1yi−(2k+2)

F2n+3+F2n+2yi−(2k+2)
, i = k+2, ...,2k+2,
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and the equilibrium point of system (2.10) is globally asymptotically stable. In addition, the authors gave some results for other

systems.

Then, in [12], the authors studied the rational difference equation

xn+1 =
αxn−1 +β

γxnxn−1
, n ∈ N0, (2.11)

where N0 = N∪{0}, α , β , γ ∈ R
+ and the initial conditions nonzero real numbers and also investigated the two-dimensional

case of the this equation given by

xn+1 =
αxn−1 +β

γynxn−1
, yn+1 =

αyn−1 +β

γxnyn−1
, n ∈ N0. (2.12)

Firstly, they reduced the difference equation (2.11) to the difference equation

xn+1 =
pxn−1 +q

xnxn−1
(2.13)

by using changes variables p = α
γ and q = β

γ . Then, they presented that the closed-form solution of difference equation (2.13)

is given by

xn =
Sn+1x−1 +Snx0x−1 +qSn−1

Snx−1 +Sn−1x0x−1 +qSn−2
,

where Sn is the nth generalized Padovan number and the equilibrium point of Eq (2.13) is globally asymptotically stable.

Later, they reduced the system of difference equation (2.12) to the system

xn+1 =
pxn−1 +q

ynxn−1
, yn+1 =

pyn−1 +q

xnyn−1
(2.14)

by using changes variables p = α
γ and q = β

γ . Then, they presented that the closed-form solutions of system (2.14) are given by

xn =

{

Sn+1y−1+Snx0y−1+qSn−1

Sny−1+Sn−1x0y−1+qSn−2
, if n is even,

Sn+1x−1+Sny0x−1+qSn−1

Snx−1+Sn−1y0x−1+qSn−2
, if n is odd,

yn =

{

Sn+1x−1+Sny0x−1+qSn−1

Snx−1+Sn−1y0x−1+qSn−2
, if n is even,

Sn+1y−1+Snx0y−1+qSn−1

Sny−1+Sn−1x0y−1+qSn−2
, if n is odd,

and the equilibrium point of the system (2.14) is global attractor.

Then, in [13], Stevic et al. the following nonlinear second-order difference equation

xn+1 = a+
b

xn

+
c

xnxn−1
, n ∈ N0, (2.15)

in which parameters a, b, c and the initial values x−1 and x0 are complex numbers such that c 6= 0. Next, they used the following

change of variables

xn =
yn

yn−1
,

and obtained the following third-order linear difference equation with constant coefficients

yn+1 = ayn +byn−1 + cyn−2.

After, they introduced that the representation formula of every solution of Eq. (2.15) is

xn =
(sn+1 −asn)x−1 + snx0x−1 + csn−1

(sn −asn−1)x−1 + sn−1x0x−1 + csn−2
,

where sn is the nth generalized Padovan number. Note that, Eq. (2.11) is a special case of Eq. (2.15) such that a = 0.
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Alotaibi et al. in [14] considered the following systems of difference equations

xn+1 =
ynyn−2

xn−1 + yn−2
, yn+1 =

xnxn−2

±yn−1 ± xn−2
, n = 0,1, ..., (2.16)

where the initial conditions x−2, x−1, x0, y−2, y−1, y0 are arbitrary positive real numbers. They analyzed the solutions of the

systems (2.16) such that their solutions are associated with Fibonacci numbers.

In [15], El-Dessoky et al. examined the following difference equation

yn+1 = αyn +
βynyn−3

Ayn−4 +Byn−3
, n = 0,1, ..., (2.17)

where α , β , A, and B are real numbers and the initial values y−4, y−3, y−2,y−1and y0 are positive real numbers. They presented

the solutions of Eq. (2.17) in terms of Fibonacci numbers according to some special cases of the parameters α , β , A, and B.

Then, in [16], Matsunaga and Suzuki studied the following system of rational difference equations

xn+1 =
ayn +b

cyn +d
, yn+1 =

axn +b

cxn +d
, n = 0,1, ..., (2.18)

where the parameters a, b, c, d and the initial values x0, y0 are real numbers. They obtained that the explicit solutions of system

(2.18) are as follows

x2n−1 =
(ay0 +b)G2n−1 +(bc−ad)y0G2n−2

G2n +(cy0 −a)G2n−1
, x2n =

(ax0 +b)G2n +(bc−ad)x0G2n−1

G2n+1 +(cx0 −a)G2n

,

y2n−1 =
(ax0 +b)G2n−1 +(bc−ad)x0G2n−2

G2n +(cx0 −a)G2n−1
, y2n =

(ay0 +b)G2n +(bc−ad)y0G2n−1

G2n+1 +(cy0 −a)G2n

,

where Gn is a generalized Fibonacci sequence defined by

Gn+2 = (a+d)Gn+1 +(bc−ad)Gn,

with G0 = 0 and G1 = 1. Moreover, they presented that every solution of system (2.18) converges to its equilibrium points.

In [17], Öcalan and Duman considered the following nonlinear recursive difference equation

xn+1 =
xn−1

xn

, n = 0,1, ..., (2.19)

with any nonzero initial values x−1 and x0. Then, they extended their all results to solutions of the following nonlinear recursive

equations

xn+1 =

(

xn−1

xn

)p

, p > 0 and n = 0,1, ..., (2.20)

with any nonzero initial values x−1 and x0. Later, they obtained that the exact solution of Eq. (2.19) is

xn =















x
fn−1
−1

x
fn
0

if n = 1,3,5, ...,

x
fn
0

x
fn−1
−1

if n = 2,4,6, ...,

where fn is the nth Fibonacci number. Under the special case of initial values, they determined that there exist non-oscillatory

positive solutions of Eq. (2.19), which converge monotonically to the equilibrium point 1.

Furthermore, they given that the exact solution of Eq. (2.20) is

xn =















x
gn−1(p)

−1

x
fn(p)
0

if n = 1,3,5, ...,

x
fn(p)
0

x
fn−1(p)

−1

if n = 2,4,6, ...,

where fn (p) and gn (p) are the nth Fibonacci-type number. And also, under the special case of initial values, they demonstrated

that there exist non-oscillatory positive solutions of Eq. (2.20), which converge monotonically to the equilibrium point 1 and

the Eq. (2.20) has unbounded solutions.
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Next, Akrour et al. [18] studied the following system of difference equations

xn+1 =
aynxn−1 +bxn−1 + c

ynxn−1
, yn+1 =

axnyn−1 +byn−1 + c

xnyn−1
, n = 0,1, ...,

where the parameters a, b, c are arbitrary real numbers with c 6= 0 and the initial values x−1, x0, y−1 and y0 are arbitrary nonzero

real numbers. They examined that the explicit solutions of system (2.10) are given by

x2n+1 =
cJ2n+1 +(J2n+3 −aJ2n+2)x−1 + J2n+2x−1y0

cJ2n +(J2n+2 −aJ2n+1)x−1 + J2n+1x−1y0
,

x2n+2 =
cJ2n+2 +(J2n+4 −aJ2n+3)y−1 + J2n+3x0y−1

cJ2n+1 +(J2n+3 −aJ2n+2)y−1 + J2n+2x0y−1
,

y2n+1 =
cJ2n+1 +(J2n+3 −aJ2n+2)y−1 + J2n+2x0y−1

cJ2n +(J2n+2 −aJ2n+1)y−1 + J2n+1x0y−1
,

y2n+2 =
cJ2n+2 +(J2n+4 −aJ2n+3)x−1 + J2n+3x−1y0

cJ2n+1 +(J2n+3 −aJ2n+2)x−1 + J2n+2x−1y0
,

where Jn is defined by the recurrent relation

Jn+3 = aJn+2 +bJn+1 + cJn, n ∈ N,

such that J0 = 0, J1 = 1, J2 = a.

Then, Okumuş and Soykan in [19] considered the following four difference equations

xn+1 =
1

xn (xn−1 −1)−1
, n = 0,1, ...,

xn+1 =
1

xn (xn−1 +1)+1
, n = 0,1, ..., (2.21)

xn+1 =
−1

xn (xn−1 −1)+1
, n = 0,1, ...,

xn+1 =
−1

xn (xn−1 +1)−1
, n = 0,1, ...,

and determined the solutions of these difference equations are associated to Tribonacci numbers. For example, the solutions of

Eq.(2.21) are

xn =
Tn−1x−1x0 +(Tn+1 −Tn)x0 +Tn

Tnx−1x0 +(Tn−1 +Tn)x0 +Tn+1
,

where the initial conditions x−1, x0 ∈ R−F2, with F2 is the forbidden set of Eq.(2.21) given by

F2 = ∪∞

n=−1 {(x−1,x0) : Tnx−1x0 +(Tn−1 +Tn)x0 +Tn+1 = 0} ,

and for the others see [19].

Also, in [21], they examined the following systems of difference equations

xn+1 =
±1

yn (xn−1 ±1)+1
, yn+1 =

±1

xn (yn−1 ±1)+1
, n = 0,1, ...,

and proved the exact solutions of these systems of difference equations via Tribonacci numbers. E.g. the form of solutions

{xn,yn}∞

n=−1 of one of these systems is given by

x2n−1 =
T2n−2x−1y0 +(T2n −T2n−1)y0 +T2n−1

T2n−1x−1y0 +(T2n−2 +T2n−1)y0 +T2n

,

x2n =
T2n−1y−1x0 +(T2n+1 −T2n)x0 +T2n

T2ny−1x0 +(T2n−1 +T2n)x0 +T2n+1
,

y2n−1 =
T2n−2y−1x0 +(T2n −T2n−1)x0 +T2n−1

T2n−1y−1x0 +(T2n−2 +T2n−1)x0 +T2n

,

y2n =
T2n−1x−1y0 +(T2n+1 −T2n)y0 +T2n

T2nx−1y0 +(T2n−1 +T2n)y0 +T2n+1
,
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where the initial conditions x−1, y−1, x0, y0 ∈ R−F1, with F1 is the forbidden set of system given by

F1 = ∪∞

n=−1 {(x−1,y−1,x0,y0) : An = 0 or Bn = 0 or Cn = 0 or Dn = 0}

where

An = T2n−1x−1y0 +(T2n−2 +T2n−1)y0 +T2n,

Bn = T2ny−1x0 +(T2n−1 +T2n)x0 +T2n+1,

Cn = T2n−1y−1x0 +(T2n−2 +T2n−1)x0 +T2n,

Dn = T2nx−1y0 +(T2n−1 +T2n)y0 +T2n+1.

Next, they in [22] studied the following difference equation

xn+1 =
γ

xn (xn−1 +α)+β
, n = 0,1, ..., (2.22)

where the parameters α , β and γ are nonnegative real numbers with γ 6= 0 and the initial values x−1 and x0 are arbitrary nonzero

real numbers. They examined that the exact solutions of Eq.(2.22) is given by

xn =
tVn−1x−1x0 +(Vn+1 − rVn)x0 +Vn

tVnx−1x0 +(Vn+2 − rVn+1)x0 +Vn+1
,

where Vn is defined by the recurrent relation

Vn+3 = rVn+2 + sVn+1 + tVn, n ∈ N,

such that V0 = 0, V1 = 1, V2 = r.

Besides these studies, for related studies on solving difference equations and systems of difference equations and investigat-

ing the asymptotic behavior of their solutions, see [20, 23-38].
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1. Introduction

Let N, R and C be the sets of all natural, real and complex numbers, respectively. We denote

ω = {x = (xk) : xk ∈ R or C}

the vector space of all real or complex sequences. Any vector subspace of ω is called a sequence space.

Definition 1.1. Let X be a linear space. A function g : X → R, is called paranorm if for all x,y ∈ X,

(i) g(x)≥ 0 for all x ∈ X,

(ii) g(−x) = g(x),

(iii) g(x+ y)≤ g(x)+g(y),∀x,y ∈ X,

(iv) (cn) is a sequence of scalars with cn → c(n → ∞) and (xn) is a sequence of vetors with g(xn − x)→ 0 as (n → ∞), then

g(xncn − xc)→ 0 as (n → ∞).

A paranorm g which g(x) = 0 implies that x = θ is called a total paranorm and the pair (X ,g) is called a totally paranormed

space. The concept of paranorm is related to the linear metric spaces given by some total paranorm [1]. The notion of

paranormed sequence was studied at the initial stage by Nakano[2] and Simons [3]. Later on it was investigated by Maddox

[4, 5] and others [6]. Tripathy and Hazarika [7] generalized the sequence spaces of Maddox to introduced the new idea of

paranorm I–convergent sequence spaces cI
0(p), cI(p), ℓI

∞(p) and ℓ∞(p) where p = (pn) is the sequence of strictly positive real

numbers.
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Initially, as a generalization of statistical convergence which was first introduced by Fast [8] and Steinhaus [9] for real and

complex sequences, the notation of ideal convergence (I-convergence) was introduced and studied by Kostyrko et al.[10].

Recall that a family of sets I ⊆ 2N is called an ideal if (i) for each A,B ∈ I ⇒ A∪B ∈ I, (ii) for each A ∈ I,B ⊆ A ⇒ B ∈ I.

An ideal I is said to be admissible if I 6= 2N and contains every finite subset of N and I is said to be maximal if there cannot

exist any non–trivial ideal J 6= I containing I as a subset. For each ideal I there is a filter F (I) which corresponds to I ( filter

associated with ideal I), defined by F (I) = {K ⊆ N : Kc ∈ I}. The notion of I–convergence defined in [10] as the sequence

(xn) ∈ ω is said to be I–convergent to a number L ∈ C if, for every ε > 0, the set {n ∈ N : |xn −L| ≥ ε} belongs to I. And we

write I–limxn = L. In case L = 0 then (xn) ∈ ω is said to be I–null. Where I assumed to be admissible. Some notions for usual

convergence have been extended with respect to the admissible ideal in N, such as the notions of bounded and Cauchy sequence

extended to I–bounded and I–Cauchy defined in [11], respectively, as follows: A sequence (xn) ∈ ω is said to be I–Cauchy if,

for every ε > 0, there exists a number N = N(ε) such that the set {n ∈ N : |xn − xN | ≥ ε} belongs to I. A sequence (xn) ∈ ω is

said to be I–bounded if there exists K > 0, such that, the set {n ∈ N : |xn|> K} belongs to I. Throughout the paper, cI , cI
0 and

ℓI
∞ represent the I–convergent, I–null and I–bounded sequence spaces, respectively. Further, details on ideal convergence see,

[12, 13, 14, 15, 16, 17] and their references.

Let λ and µ be two arbitrary sequence spaces and A = (ank) be an infinite matrix of complex numbers ank, where n,k ∈ N.

By the sequence space λA defined by λA := {x = (xk) ∈ ω : Ax ∈ λ}, we denote the domain of the matrix A in the space λ , the

sequence Ax = {An(x)} for all x ∈ λ , the A–transform of x, is in µ defined by An(x) = ∑
∞
k=0 ankxk, for each n ∈ N. By (λ ,µ),

we denote the class of all matrices A such that λ ⊆ µA. Many researchers have addressed this approach to constructing a new

sequence space by means of the matrix domain of a particular limitation method; see, for instance, [18, 19, 20, 21, 22, 23].

Recently, by using the sequence of Fibonacci numbers { fn}∞
n=0 defined by the linear recurrence equalities f0 = f1 = 1 and

fn = fn−1 + fn−2,n ≥ 2, Kara [24] defined the Fibonacci band matrix F̂ = ( fnk) as follows:

f̂nk =











− fn+1

fn
, (k = n−1)

fn
fn+1

, (k = n)

0 , 0 ≤ k < n−1 or k > n

for all n,k ∈ N, and introduced some new difference sequence spaces by means of the matrix F̂ . Where the notion of difference

sequence spaces was firstly introduced by Kizmaz[25] for more detail [26, 27, 28, 29, 30]. Afterward, Kara and Demiriz [24]

introduced the paranormed sequence spaces c0(F̂ , p), c(F̂ , p) and ℓ∞(F̂ , p) related to the matrix domain of F̂ . i.e.,

c0(F̂ , p) =

{

x = (xn) ∈ ω : lim
n→∞

∣

∣

∣

∣

fn

fn+1
xn −

fn+1

fn

xn−1

∣

∣

∣

∣

pn

= 0

}

c(F̂ , p) =

{

x = (xn) ∈ ω : ∃L ∈ C ∋ lim
n→∞

∣

∣

∣

∣

fn

fn+1
xn −

fn+1

fn

xn−1

∣

∣

∣

∣

pn

= L

}

ℓ∞(F̂ , p) =

{

x = (xn) ∈ ω : sup
n∈N

∣

∣

∣

∣

fn

fn+1
xn −

fn+1

fn

xn−1

∣

∣

∣

∣

pn

< ∞

}

.

Lately, by combining the definitions of Fibonacci difference matrix F̂ and the notion of ideal convergence, Khan et al.[13]

introduced the sequence spaces cI
0(F̂), cI(F̂), and ℓI

∞(F̂) defined as the set of all sequences whose F̂–transforms are in the

spaces cI
0, cI and ℓI

∞, respectively, defined as follows:

λF̂ = {x = (xk) ∈ ω : F̂n(x) ∈ λ} for λ = {cI
0,c

I , ℓI
∞},

where the sequence F̂n(x) is frequently used as the F̂–transform of the sequence x = (xn) defined by

F̂n(x) =

{

f0
f1

x0 = x0 , n = 0
fn

fn+1
xn − fn+1

fn
xn−1 , n ≥ 1 for all n ∈ N.

(1.1)

In this paper, by using the Fibonacci difference matrix F̂ and same technique we introduce the paranorm ideal convergent

Fibonacci difference sequence spaces cI
0(F̂ , p), cI(F̂ , p), and ℓI

∞(F̂ , p) related to the matrix domain of F̂ in the sequence spaces

cI
0(p), cI(p) and ℓI

∞(p). Further, we study some topological and algebraic properties on these spaces and examine some

inclusion relations concerning these spaces.
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Definition 1.2. [13] Let x = (xn) and z = (zn) be two sequences. We say that xn = zn for almost all n relative to I (in short

a.a.n.r.I) if the set {n ∈ N : xn 6= zn} ∈ I.

Definition 1.3. [31] A sequence space E is said to be symmetric, if (xπ(n)) ∈ E whenever (xn) ∈ E where π(n) is a permutation

on N.

Definition 1.4. [31] A sequence space E is said to be solid or normal, if (αnxn) ∈ E whenever (xn) ∈ E and for any sequence

of scalars (αn) ∈ ω with |αn|< 1, for every n ∈ N.

Definition 1.5. [31] Let K = {ni ∈ N : n1 < n2 < .. .} ⊆ N and E be a sequence space. A K–step space of E is a sequence

space

λ E
K = {(xni

) ∈ ω : (xn) ∈ E}.

A canonical pre–image of a sequence (xni
) ∈ λ E

K is a sequence (yn) ∈ ω defined as follows:

yn =

{

xn , if n ∈ K

0 , otherwise.

A canonical pre–image of a step space λ E
K is a set of canonical pre–images of all elements in λ E

K . i.e., y is in canonical

pre–image of λ E
K iff y is canonical pre–image of some element x ∈ λ E

K .

Definition 1.6. [31] A sequence space E is said to be monotone, if it contains the canonical pre–images of its step space.

Lemma 1.7. [31] Every solid space is monotone.

Lemma 1.8. [ [31], Lemma 2.5] Let K ∈ F (I) and M ⊆ N. If M /∈ I, then M∩K /∈ I.

Lemma 1.9. [ Lascarides [32], Proposition 1] Let h = inf pn, H = supn pn. Then the following conditions are equivalent:

(i) H < ∞ and h > 0,

(ii) c0(p) = c0 or ℓ∞(p) = ℓ∞,

(iii) ℓ∞{p}= ℓ∞(p),

(iv) c0{p}= c0(p),

(v) ℓ{p}= ℓ(p).

2. Main results

In this section, we introduce the paranormed sequence spaces cI
0(F̂ , p), cI(F̂ , p) and ℓI

∞(F̂ , p) related to the matrix domain

of F̂ in the sequence spaces cI
0(p), cI(p) and ℓI

∞(p). Further, we study some inclusion theorems and study some topological

and algebraic properties on these resulting. We assume throughout this section that the sequences x = (xn) and (F̂n(x)) are

connected by relation (1.1) and p = (pn) be a sequence of positive real numbers and I is an admissible ideal of subset of N. We

define

cI
0(F̂ , p) :=

{

x = (xn) ∈ ω :
{

n ∈ N : |F̂n(x)|pn ≥ ε
}

∈ I
}

,

cI(F̂ , p) :=
{

x = (xn) ∈ ω :
{

n ∈ N : |F̂n(x)−L|pn ≥ ε, for some L ∈ C
}

∈ I
}

,

ℓI
∞(F̂ , p) :=

{

x = (xn) ∈ ω : ∃K > 0 s.t
{

n ∈ N : |F̂n(x)|pn > K
}

∈ I
}

.

We write

mI
0(F̂ , p) := cI

0(F̂ , p)∩ ℓ∞(F̂ , p),

and

mI(F̂ , p) := cI(F̂ , p)∩ ℓ∞(F̂ , p).
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Theorem 2.1. The sequence spaces cI(F̂ , p), cI
0(F̂ , p), ℓI

∞(F̂ , p), mI
0(F̂ , p) and mI(F̂ , p) are linear spaces.

Proof. Let x = (xn), y = (yn) be two arbitrary elements of the space cI(F̂ , p) and α,β be scalars. Now, since x,y ∈ cI(F̂ , p),
then for given ε > 0, we have

{

n ∈ N : |F̂n(x)−L1|pn ≥ ε

2
, for same L1 ∈ C

}

∈ I,

and
{

n ∈ N : |F̂n(y)−L2|pn ≥ ε

2
, for same L2 ∈ C

}

∈ I.

Now, let

Ax =

{

n ∈ N : |F̂n(x)−L1|pn <
ε

2M1

}

∈ F (I),

Ay =

{

n ∈ N : |F̂n(y)−L2|pn <
ε

2M2

}

∈ F (I),

be such that Ac
x,A

c
y ∈ I, where M1 = D ·max{1,supn |α|pn}, M2 = D ·max{1,supn |β |pn} and D = max{1,2H−1} and H =

supn pn ≥ 0. Then

{

n ∈ N : |(αF̂n(x)+β F̂n(y))− (αL1 +βL2)|pn < ε
}

⊇
{

{

n ∈ N : |α|pn |F̂n(x)−L1|pn <
ε

2M1
|α|pn D

}

∩
{

n ∈ N : |β |pn|F̂n(x)−L2|pn <
ε

2M2
|β |pn D

}

}

.

(2.1)

Thus, the set on the right hand side of equation (2.1) belongs to F (I). By definition of filter associated with an ideal the

complement of the set on the left hand side of (2.1) belongs to I. This implies that (αx+βy) ∈ cI(F̂ , p). Hence, cI(F̂ , p) is a

linear space. The proof for other spaces will follow similarly.

Theorem 2.2. The classes of sequences mI(F̂ , p) and mI
0(F̂ , p) are paranormed spaces, paranormed by g(xn) = supn |xn|

pn
M ,

where M = max{1,supn pn}.

Proof. The proof of the result is easy, so omitted.

Theorem 2.3. The set mI(F̂ , p) is closed subspace of ℓ∞(F̂ , p).

Proof. Let (x
(m)
n ) is a Cauchy sequence in mI(F̂ , p) such that (x(m))→ x. We show that x ∈ mI(F̂ , p). Since (x

(m)
n ) ∈ mI(F̂ , p),

then there exists (am), and for every ε > 0 such that

{n ∈ N : |F̂(m)
n (x)−am|pn ≥ ε} ∈ I.

We need to show that

(i) (am) converges to a.

(ii) If A = {n ∈ N : |F̂n(x)−a|pn < ε}, then Ac ∈ I.

(i) Since (x
(m)
n ) be a Cauchy sequence in mI(F̂ , p) then for a given ε > 0 there exists n0 ∈ N such that

sup
n
|F̂(m)

n (x)− F̂
(r)
n (x)|

pn
M <

ε

3
, for all m,r ≥ n0.

For a given ε > 0, we have

Bmr = {n ∈ N : |F̂(m)
n (x)− F̂

(r)
n (x)|pn <

(ε

3

)M

},

Br = {n ∈ N : |n ∈ N : |F̂(r)
n (x)−ar|pn <

(ε

3

)M

},
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Bm = {n ∈ N : |F̂(m)
n (x)−am|pn <

(ε

3

)M

}.

Then Bc
mr, Bc

r , Bc
m ∈ I. Let Bc = Bc

mr ∪Bc
m ∪Bc

r , where

B = {n ∈ N : |am −ar|pn < ε}.

Then Bc ∈ I. We choose n0 ∈ Bc, then for each m,r ≥ n0 we have

{n ∈ N : |am −ar|pn < ε} ⊇
[

{

n ∈ N : |am − F̂
(m)
n (x)|pn <

(ε

3

)M}

∩
{

n ∈ N : |F̂(m)
n (x)− F̂

(r)
n (x)|pn <

(ε

3

)M}

∩
{

n ∈ N : |F̂(r)
n (x)−ar|pn <

(ε

3

)M}

]

.

Then (am) is a Cauchy sequence in C. So, there exists a scalar a ∈ C such that am → a, as m → ∞.
(ii) For the next step, let 0 < δ < 1 be given. Then, we show that if

A = {n ∈ N : |F̂n(x)−a|pn < δ}

then Ac ∈ I. Since x(m) → x, then there exists q0 ∈ N such that,

A1 = {n ∈ N : |F̂(q0)
n (x)− F̂n(x)|pn < (

δ

3D
)M} (2.2)

implies Ac
1 ∈ I. The numbers q0 can be so chosen that together with (2.2) , we have

A2 = {n ∈ N : |aq0
−a|pn < (

δ

3D
)M}

such that Ac
2 ∈ I. Since {n ∈ N : |F̂(q0)

n (x)−aq0
|pn ≥ δ} ∈ I, then, we have a subset A3 of N such that Ac

3 ∈ I, where

A3 =

{

n ∈ N : |F̂(q0)
n (x)−aq0

|pn < (
δ

3D
)M

}

.

Let Ac = Ac
1 ∪Ac

2 ∪Ac
3, where A = {n ∈ N : |F̂n(x)−a|pn < δ}. Therefore, for each n ∈ Ac, we have

{n ∈ N : |F̂n(x))−a|pn < δ} ⊇
[

{

n ∈ N : |F̂n(x)− F̂
(q0)
n (x)|pn <

( δ

3D

)M}

∩
{

n ∈ N : |F̂(q0)
n (x)−aq0

|pn <
( δ

3D

)M}

∩
{

n ∈ N : |aq0
−a|pn <

( δ

3D

)M}

]

.

Then the result follows.

Corollary 2.4. The set mI
0(F̂ , p) is closed subspace of ℓ∞(F̂ , p).

Since the inclusions mI(F̂ , p) ⊂ ℓ∞(F̂ , p) and mI
0(F̂ , p) ⊂ ℓ∞(F̂ , p) are strict, so in view of last theorem, we have the

following result.

Theorem 2.5. The spaces mI(F̂ , p) and mI
0(F̂ , p) are nowhere dense subsets of ℓ∞(F̂ , p).

Theorem 2.6. The spaces cI
0(F̂ , p) and mI

0(F̂ , p) are solid and monotone.
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Proof. We shall prove the result for cI
0(F̂ , p). The other result follows similarly. Let x = (xk) ∈ cI

0(F̂ , p) and α = (αn) be a

sequence of scalars with |α| ≤ 1, for all n ∈ N. Since |α|pn ≤ max{1, |αn|pn} ≤ 1, for all n ∈ N, we have

|F̂n(αx)|pn ≤ |αF̂n(x)|pn ≤ |F̂n(x)|pn for all n ∈ N.

From this we have

{n ∈ N : |F̂n(αx)|pn ≥ ε} ⊆ {n ∈ N : |F̂n(x)|pn ≥ ε} ∈ I

which implies

{n ∈ N : |F̂n(αx)|pn ≥ ε} ∈ I.

Therefore, (αxn) ∈ cI
0(F̂ , p). Hence, the space cI

0(F̂ , p) is solid, and hence, by Lemma 1.7 the space cI
0(F̂ , p) is monotone.

Theorem 2.7. The spaces cI(F̂ , p), mI(F̂ , p) are neither monotone nor solid in general.

Proof. Here we give a counter example for establishment of this result.

Example 2.8. Let I = I f = {A ⊆ N : A is finite }. Let pn = 1 if n is even and pn = 2 if n is odd. Consider the K–step spaces

EK(F̂ , p) of E(F̂ , p) defined as follows: Let x = (xn) ∈ E(F̂ , p) and y = (yn) ∈ EK(F̂ , p) be such that

F̂n(y) =

{

F̂n(x) , if n is even

0 , otherwise.

Consider the sequence x = (xn) ∈ ω such that F̂n(x) =
1
n
, for all n ∈ N. Then (xn) ∈ E(F̂ , p), but its Kth–step space pre–image

does not belong to E(F̂ , p), where E = cI and mI . Thus cI(F̂ , p) and mI(F̂ , p) are not monotone and hence by Lemma1.7 the

spaces cI(F̂ , p) and mI(F̂ , p) are not solid.

Theorem 2.9. Let (pn) and (qn) be two sequences of positive real numbers. Then mI
0(F̂ ,q) ⊆ mI

0(F̂ , p), if and only if

lim
n∈A

in f
pn

qn

> 0, where A ⊆ N such that A ∈ F (I).

Proof. Let lim
n∈A

in f
pn

qn

> 0 and (xn) ∈ mI
0(F̂ ,q). Then there exists β > 0 such that pn > βqn, for all sufficiently large n ∈ A.

Since (xn) ∈ mI
0(F̂ ,q), for a given ε > 0, we have

B = {n ∈ N : |F̂n(x)|qn ≥ ε} ∈ I. (2.3)

Let G = Ac ∪B. Then G ∈ I. Then for all sufficiently large n ∈ G,

{n ∈ N : |F̂n(x)|pn ≥ ε} ⊆ {n ∈ N : |F̂n(x)|βqn ≥ ε} ∈ I.

Therefore, (xn) ∈ mI
0(F̂ , p). The converse part of the result follows obviously.

Corollary 2.10. Let (pn) and (qn) be two sequences of positive real numbers. Then mI
0(F̂ , p) = mI

0(F̂ ,q) and only if

lim
n∈A

inf pnqn > 0, where A ⊆ N such that A ∈ F (I).

Theorem 2.11. If I neither maximal nor I = I f , then the space H(F̂ , p) are not symmetric, where H = cI
0,c

I ,mI
0, and mI .

Proof. We prove the result with the help of the following example.

Example 2.12. Let I = Ic = {A ⊆ N : ∑n∈A n−1 < ∞}, (see [33]). Let

A = {n : n = s2 or t3, for s, t ∈ N}= {n ∈ N : n = s2, for n ∈ N}∪{n ∈ N : n = t3, t ∈ N},

then

∑
n∈A

n−1 < ∞.
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Let

pn =

{

1 , if n is even ,

2 , if n is odd .

Consider the sequence x = (xn) such that

F̂n(x) =

{

n−1 , if n = t3, t ∈ N,

0 , otherwise.

Consider the rearrangement F̂n(y) of F̂n(x) defined by

F̂n(y) = (F̂1(x), F̂3(x), F̂3(x), F̂8(x), F̂4(x), F̂5(x), F̂27(x), F̂6(x), F̂7(x), F̂64(x), F̂8(x), F̂9(x), . . .).

Then (yn) /∈ H(F̂ , p), but (xn) ∈ H(F̂ , p), where H = cI
0,c

I ,mI
0, and mI .

Theorem 2.13. The spaces mI
0(F̂ , p) and mI(F̂ , p) are not separable.

Proof. Let A = {m1 < m2 < .. .} be an infinite subset of N such that A ∈ I. Let

pn =

{

1, if n ∈ A;

2, otherwise.

Let P = {(F̂n(x)) : F̂n(x) = 0 or 1, if n ∈ A; F̂n(x) = 0,otherwise}. Since A is infinite, so P is uncountable. Consider the class

of open balls B1 = {B(F̂n(z),
1
2
) : F̂n(z) ∈ P}. Let C1 be an open cover of mI

0(F̂ ,P) or mI(F̂ , p) containing B1. Since B1 is

uncountable, so C1 cannot be reduced to a countable subcover for mI
0(F̂ , p) as well as mI(F̂ , p). Thus, mI

0(F̂ , p) and mI(F̂ , p)
are not separable.

Theorem 2.14. Let H = supn pn < ∞ and I be a maximal admissible ideal. Then the following are equivalent:

(a) (xn) ∈ cI(F̂ , p),

(b) There exists (yn) ∈ c(F̂ , p) such that xn = yn, for a.a.n.r.I,

(c) There exists (yn) ∈ c(F̂ , p) and (zn) ∈ cI
0(F̂ , p) such that xn = yn + zn for all n ∈ N and {n ∈ N : |F̂n(x)−L|pn ≥ ε} ∈ I.

(d) There exists a subset K = {ni : i ∈ N,n1 < n2 < n3 < .. .} of N, such that K ∈ F (I) and

lim
n→∞

|F̂ni
(x)−L|pni = 0.

Proof. (a) implies (b). Let x = (xn) ∈ cI(F̂ , p), then for any ε > 0, there exists a number L ∈ C such that

{n ∈ N : |F̂n(x)−L|pn ≥ ε} ∈ I.

Let (mt) be an increasing sequence with mt ∈ N such that

{n ≤ mt : |F̂n(x)−L|pn ≥ t−1} ∈ I.

Define a sequence y = (yn) as yn = xn for all n ≤ m1. For mt < n < mt+1, for t ∈ N,

yn =

{

xn, if |F̂n(x)−L|pn < t−1

L, otherwise.

Then (yn) ∈ c(F̂ , p) and from the following inclusion

{n ≤ mt : xn 6= yn} ⊆ {n ∈ N : |F̂n(x)−L| ≥ ε} ∈ I

we get xn = yn for a.a.n.r.I.
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(b) implies (c). For x= (xn)∈ cI(F̂ , p) there exists y= (yn)∈ c(F̂ , p) such that xn = yn for a.a.n.r.I. Let K = {n∈N : xn 6= yn},

then K ∈ I. Define a sequence z = (zn) as follows:

zn =

{

xn − yn, if n ∈ K

0, otherwise.

Then (zn) ∈ cI
0(F̂ , p) and so (yn) ∈ c(F̂ , p).

(c) implies (d). Suppose (c) holds. Let ε > 0 be given. Let P = {n ∈ N : |F̂n(x)|pn ≥ ε} ∈ I, and

K = Pc = {(ni ∈ N : i ∈ N,n1 < n2 < n3 < .. .} ∈ F (I).

Then we have

lim
i→∞

|F̂ni
(x)−L|pni = 0.

(d) implies (a). Let ε > 0 be given and suppose that (c) holds. Then for any ε > 0, and by Lemma 1.9 we have

{n ∈ N : |F̂n(x)−L|pn ≥ ε} ⊆ Kc ∪{n ∈ K : |F̂n(x)−L|pn ≥ ε}.

Thus (xn) ∈ cI(F̂ , p).

Theorem 2.15. The sequence spaces:

(i) cI(F̂ , p) and ℓ∞(F̂ , p) overlap but neither one contains the other,

(ii) cI
0(F̂ , p) and ℓ∞(F̂ , p) overlap but neither one contains the other.

Proof. (i) We prove that cI(F̂ , p) and ℓ∞(F̂ , p) are not disjoint. Consider the sequence x = (xn) ∈ ω such that F̂n(x) =
1
n

for

n ∈ N. Then, x ∈ cI(F̂ , p) but x ∈ ℓ∞(F̂ , p). Next, define the sequence x = (xn) ∈ ω such that

F̂n(x) =

{√
n, if n is square

0, otherwise.

Thus, x ∈ cI(F̂ , p) but x /∈ ℓ∞(F̂ , p). Next, choose the sequence x = (xn) ∈ ω such that

F̂n(x) =

{

n, if is even

0, otherwise.

Then (x) ∈ ℓ∞(F̂ , p) but x /∈ cI(F̂ , p).

(ii) The proof is similar to proof of part one.

3. Conclusion

In this paper, we defined some new paranorm ideal convergent Fibonacci difference sequence spaces cI
0(F̂ , p), cI(F̂ , p) and

ℓI
∞(F̂ , p) as the sets of all sequences are in the space cI

0(p), cI(p) and ℓI
∞(p) respectively. Furthermore, we studied some

topological and algebraic properties of these spaces such as solidity, monotonicity and overlap. Also, we provided an example

to show that these, new sequence spaces are not symmetric and show that the sets mI
0(F̂ , p) and mI(F̂ , p) are not separable.
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[31] T. Šalát, M. Tripathy, M. Ziman, On some properties of i-convergence, Tatra Mt. Math. Publ, 28(5) (2004), 279-289.

[32] C. Lascarides, On the equivalence of certain sets of sequences, Indian J. Math., 25(1) (1983), 41-52.

[33] G. Petersen, Regular Matrix Transformations, McGraw-Hill, 1966.



Communications in Advanced Mathematical Sciences

Vol. II, No. 4, 303-308, 2019

Research Article

e-ISSN: 2651-4001

DOI: 10.33434/cams.607382

The Univalent Function Created by the Meromorphic

Functions Where Defined on the Period Lattice
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1. Introduction

We begin this important paper by introducing some important functions and some important classes.

Definition 1.1. A get the subset of complex numbers C . If A is a group according to the collection process, then A in called a

module defined on the ring of integers Z.

Definition 1.2. If the module A does not have a stack point in the finite plane, then this module A is called a lattice. Lattices

can be divided into three groups as follows.

i. Zero dimensional lattices;

Wm = {mω : m = 0 ∈ Z,ω 6= 0 ∈ C}

ii. One dimensional lattices;

Wm = {mω1 : m 6= 0 ∈ Z,ω 6= 0 ∈ C}

iii. Two dimensional lattices;

Wm,n = {mω1 +nω2 : m 6= 0,n 6= 0 ∈ Z,ω1 6= 0,ω2 6= 0 ∈ C}

Lemma 1.3. The function ξ (z) is absolute and uniform convergence [1].
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Proof.

ξ (z) =
1

z
+ ∑

m,n6=(0,0)

(
1

z−W
+

1

W
+

z

W 2
)

where

∑
m,n 6=(0,0)

= ∑
m

∑
n

∣

∣

∣

∣

∣

1

z−Wmn

+
1

Wmn

−
z

(Wmn)2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(Wmn)
2 +(z−Wmn)Wmn +(1−Wmn)z

(z−Wmn)(Wmn)2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

z

(z−Wmn)(Wmn)2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

z

(1−
z

Wmn

)(Wmn)2

∣

∣

∣

∣

∣

≤
| z |

(1−
| z |

|Wmn |
) |Wmn |2

<
2 | z |

|Wmn |2
.

For all m,n such that |W |> 2 | z | the series under consideration in therefore absolutely and convergent.Thus, function ξ (z) has

a simple pole at point z =W . In that case, ξ (z) is meromorphic. On the other hand it is clear that ξ (z) in the odd function so

ξ (z) =−ξ (−z).

Theorem 1.4. The function ξ (z) has following the power series for point z = 0 .

ξ (z) =
1

z
−

A2

3
−

A4

5
− ...=

1

z
− ∑

k≥2

A2k−2

2k−1
z2k−1

Proof. Let

ξ (z) =
1

z
+ ∑

m,n6=(0,0)

(

1

z−W
+

1

W
+

z

W 2

)

ξ (z) =
1

z
+ ∑

m,n6=(0,0)

(

1

−W (1−
z

W
)
+

1

W
+

z

W 2

)

then

ξ (z) =
1

z
+ ∑

m,n6=(0,0)

[

−
1

W
(1+

z

W
+(

z

W
)2 + ...+

1

W
+

z

W 2

]

=
1

z
+ ∑

m,n6=(0,0)

1

−∆mn

[

1+
z

∆mn

+
( z

∆mn

)2

+ ...+
1

∆mn

+
( z

(∆mn)2

)

]

=
1

z
− ∑

m,n6=(0,0)

1

−∆mn

[

z2

(∆mn)3
+

z3

(∆mn)4
+

z4

(∆mn)5
+ ...

]

=
1

z
+ ∑

m,n6=(0,0)

1

−W

[

z2

W 3
+

z3

W 4
+

z4

W 5
+ ...

]

=
1

z
− ∑

m,n6=(0,0)
∑
k=2

1

W k+1
zk =

1

z
− ∑

k=2

Ak+1.z
k

=
1

z
− ∑

k≥2

(z2 + z3 + z4 + ...).Ak+1

where Ak+1 = ∑
m,n6=(0,0)

.

Coefficients of toms z2k in evidently zero for k=1,2,3, since the functions ξ (z) is an odd function, ie equality is as follows

ξ (z) =
1

z
−

A2

3
−

A4

5
− ...=

1

z
− ∑

k≥2

A2k−2

2k−1
z2k−1.
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Definition 1.5. Weierstrass’s function ℘(z) is defined by the double series as

℘(z) =
1

z2
+ ∑

m,n 6=(0,0)

[

1

(z−w)2
+

1

W 2

]

−
d

dz
ξ (z) =℘(z) equality can be seen here. That is to say ℘(z) is double function [1].

The function ℘(z) is meromorphic function in the complex plan (
∣

∣z
∣

∣ < 1) with second order poles at the lattices points

z =W . It is in double periodic with periods ω1 and ω2 . This mean that ℘(z) satisfies. Considering the following equality

℘(z) =
1

z2
+ ∑

k≥2

A2k−2.z
2k−2 for

1

z
− ∑

k≥2

A2k−2

2k−1
z2k−1 where −

d

dz
ξ (z) =℘(z). The funtions ℘(z) is a meromorphic and elliptic

funtion which has z =W second order pole points.

Theorem 1.6. The series ℘(z) is absolutely and uniformly convergent for every z =W .

Proof.

∣
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10
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2
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∑
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∣
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1
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1

W 2

∣

∣

∣

∣

∣

= ∑
m,n6=(0,0)

10
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W 2
.

The function ℘(z) is meromorphic region
∣

∣z
∣

∣ < 1 whether the function ℘(z) is not analytical region
∣

∣z
∣

∣ < 1. If we get

consecutive derivatives from the equation as

℘(z) =
1

z2
+ ∑

k≥2

A2k−2.z
2k−2

℘′(z) =−
1.2

z3
+ ∑

k≥2
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2k−3
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1.2.3
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...

℘n(z) = (−1)n (n+1)!

zn+2
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In that case

℘2n−1(z) =−
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(2k−2).(2k−3)...(2k−2n).A2k−2.z
(2k−2n)

℘2n−2(z) =
(n−1)!

z2n+1
+ ∑

k≥2

(2k−2).(2k−3)...(2k− (2n−1)).A2k−2.z
(2k−(2n−1))
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Theorem 1.7. If αi and βi (i = 1,2, . . . . . . ..,r) be the zeros and poles respectively of an elliptic function f (z) in a cell, then

r

∑
i=1

αi ≡
r

∑
i=1

βi (mod.2ω1,2ω2)

where every zero or pole is counted as many times as the multiplicity indicates.

Proof. We have

r

∑
i=1

αi −
r

∑
i=1

βi =
1

2πi

∫

P

z f ′(z)

f (z)
dz (P is any suitably chosen contour)

=
1

2πi

[ z0+2ω1
∫

z0

z f ′(z)

f (z)
dz+

z0+2ω1+2ω2
∫

z0+2ω1

z f ′(z)

f (z)
dz+

z0+2ω2
∫

z0+2ω1+2ω2

z f ′(z)

f (z)
dz+

z0
∫

z0+2ω2

z f ′(z)

f (z)
dz

]

=
1

2πi

[ z0+2ω1
∫

z0

(z− (z+2ω2))
f ′(z)

f (z)
dz+

z0+2ω2
∫

z0

(z+2ω1 − z)
f ′(z)

f (z)
dz

]

=
1

2πi

[

2ω1

z0+2ω2
∫

z0

f ′(z)

f (z)
dz−2ω2

z0+2ω1
∫

z0

f ′(z)

f (z)
dz

]

=
1

2πi

{

2ω1

[

log f (z)

]z0+2ω2

z0

−2ω2

[

log f (z)

]z0+2ω1

z0

}

=
1

2πi
(4πimω1 −4πinω2) = (m2ω1 +2nω2) (n =−n).

Hence we conclude

r

∑
i=1

αi ≡
r

∑
i=1

βi (mod.2ω1,2ω2)[1].

Theorem 1.8. The sum, difference, product and the quotient of any two co-periodic elliptic functions are also elliptic function

of the same period.

Proof. Since fi(z+2ω) = fi(z), where 2ω = 2ω1 and 2ω2 (i = 1,2) therefore

f1(z+2ω)± f2(z+2ω) = f1(z)± f2(z)

f1(z+2ω). f2(z+2ω) = f1(z). f2(z)

f1(z+2ω)/ f2(z+2ω) = f1(z)/ f2(z).

Again since the set of all meromorphic functions forms a field and f1(z)± f2(z), f1(z). f2(z) and f1(z)/ f2(z) are meromor-

phic and periodic with periods 2ω1 and 2ω2. So they are elliptic functions with the same periods [1].

Theorem 1.9. Let f (z) be regular and univalent in the closed disk D :
∣

∣z
∣

∣≤ R. Then f (z) maps D onto a convex domain if and

only if

Re

[

1+
z f ′(z)

f (z)

]

≥ 0, for z on D :
∣

∣z
∣

∣≤ R.

Suppose further that f (0) = 0 . Then f (z) maps D onto a region that is starlike with respect to w = 0 if and only if

Re

[

z f ′(z)

f (z)

]

≥ 0, for z on D :
∣

∣z
∣

∣≤ R.
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We must assume that f (z) is univalent (or replace this with some order condition) or we fall into error. Indeed, suppose that

f (z) = z2. Then the inequality becomes for starlike 2 ≥ 0 and also for convex domain becomes 2 ≥ 0 . f (z) = z2 is not really a

convex or starlike domain. The concepts of convexity and starlikeness can be extended to multi-sheeted regions, and indeed

these extensions have been thoroughly explored, but for the present we consider only plane regions. We observe that if f (z) is

univalent in D, then f ′(z) 6= 0 in and hence the expression on the left is a harmonic function in D and takes its minimum on the

boundary D . Thus, if f (z) maps D onto a closed convex curve, then for each r < R, f (z) maps D onto a convex curve, and

hence maps D onto a convex domain. The same type of reasoning can be applied because if f (z) is in S, then the singularity at

z = 0 is a removable singularity [2].

Theorem 1.10. The function ℘(z) and the function ξ (z) have the following equality

℘(2n−1)(z1)

℘(2n−2)(z1)−℘(2n−2)(z2)
= 2ξ (z2 − z1)−2n(ξ (z1)−ξ (z2)).

Lemma 1.11. The sum, difference, product and quotient of any co-periodic elliptic functions are also elliptic function of the

same period.

Lemma 1.12. If the elliptic function f (z) has simple pole at and only at the points β1,β2,β3, ...,βn in cell with residues

A1,A2,A3, ...,An, then

℘(z) = A0 +
s

∑
r=1

(z− r).Ar,

where A0 is a constant. It is in the fact that a constant A0 in zero. In that case, the function

℘(2n−1)(z)

℘(2n−2)(z)−℘(2n−2)(z2)

is an elliptical function with poles at z2,−z2. 0 with residues 1, 1, -2n respectively. If the last equation is written in place of z,

then the following equation is found

℘(2n−1)(z)

℘(2n−2)(z)−℘(2n−2)(z2)
= A0 +ξ (z− z2)+ξ (z− z2)−2nξ (z).

If in the above equation z is written instead of (–z) then ℘ is an even function and ξ (z) is an odd function

−
℘(2n−1)(z)

℘(2n−2)(z)−℘(2n−2)(z2)
= A0 −ξ (z+ z2)−ξ (z− z2)+2nξ (z).

℘(2n−1)(z)

℘(2n−2)(z)−℘(2n−2)(z2)
=−A0 +ξ (z+ z2)+ξ (z− z2)−2nξ (z)

equations are obtained. If A0 = 0 and z1 are written instead of z then the following equation is continue

℘(2n−1)(z)

℘(2n−2)(z)−℘(2n−2)(z2)
= ξ (z1 + z2)+ξ (z1 − z2)−2nξ (z1).

The function ϕ(z) defined as follows

ϕ(z) =℘(z)+
z3 −1

z2
= z+ ∑

k≥2

A2k−2.z
2k−2 = z+A2z2 +A4z4 + ...

The function ϕ(z) is an analytical function for every z ∈
∣

∣z
∣

∣< 1. Also because of its ϕ(0) = 0 and ϕ ′(0) = 1,this function

is class A.
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2. Main Theorem

Theorem 2.1. The function ϕ(z) is an univalent function.

Proof. If ϕ(z1)−ϕ(z2) = 0, then

ϕ(z1)−ϕ(z2) = z1 + ∑
k≥2

A2k−2.z
2k−2
1 − z2 − ∑

k≥2

A2k−2.z
2k−2
2 = 0

(z1 − z2)

(

1+ ∑
k≥2

A2k−2(z
2k−3
1 − z2k−4

1 z2 + ...+ z2k−3
2 )

)

= 0

1+ ∑
k≥2

A2k−2(z
2k−3
1 − z2k−4

1 z2 + ...+ z2k−3
2 ) 6= 0

z1 − z2 = 0 be must because 1+ ∑
k≥2

A2k−2(z
2k−3
1 − z2k−4

1 z2 + ...+ z2k−3
2 ) 6= 0 for every z ∈

∣

∣z
∣

∣< 1.

Thus, the function ϕ(z) is in class S. The subclass of S consisting of the convex functions is defined by K , and S∗ denotes

the subclass of starlike functions. Thus K ⊂ S∗ ⊂ S [3].

We can do this proof in another way as follows:
∣

∣z
∣

∣< 1 is clear that there is convex region.

Note that ϕ(z1)−ϕ(z2) =
z2
∫

z1

ϕ ′(η)dη .

If

η = tz2 +(1− t)z1, 0 ≤ t0 ≤ 1, then z1 −ϕ(z2) =
1
∫

0

ϕ ′(tz2 +(1− t)z1)dη .

Because,

η = (tz2 +(1− t)z1) ∈
∣

∣z
∣

∣< 1 and Reϕ ′(z) = Reϕ ′(tz2 +(1− t)z1)> 0.
Thus

ϕ ′(η) = ϕ ′(tz2 +(1− t)z1) 6= 0. Therefore, if z1 − z2 6= 0, then ϕ(z1)−ϕ(z2) 6= 0. This means that ϕ(z) is univalent in
∣

∣z
∣

∣< 1 . On the other hand,

Re

(

1+
zϕ ′′(z)

ϕ ′(z)

)

=Re

(

1+4A2z+14A4z3 +36A6z5 + ...

1+2A2z+4A4z3 +6A6z5 +8A8z7 + ...

)

=Re(1+2A2z−4A2A2z2+(10A4+8A2A2A2)z
3+ ...)> 0

since for every z ∈
∣

∣z
∣

∣< 1.
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1. Introduction

Assume that the kernel k is defined either on (0,∞) or on [0,∞) with complex values and integrable on any finite subinterval.

We define the function K : [0,∞)→ C by

K (t) :=







∫ t
0 k (s)ds if 0 < t,

0 if t = 0.

As a simple example, if k (t) = tα−1 then for α ∈ (0,1) the function k is defined on (0,∞) and K (t) := 1
α tα for t ∈ [0,∞) . If

α ≥ 1, then k is defined on [0,∞) and K (t) := 1
α tα for t ∈ [0,∞) .

Let g be a strictly increasing function on (a,b) , having a continuous derivative g′ on (a,b) . For the Lebesgue integrable

function f : (a,b)→ C, we define the k-g-left-sided fractional integral of f by

Sk,g,a+ f (x) =
∫ x

a
k (g(x)−g(t))g′ (t) f (t)dt, x ∈ (a,b] (1.1)

and the k-g-right-sided fractional integral of f by

Sk,g,b− f (x) =
∫ b

x
k (g(t)−g(x))g′ (t) f (t)dt, x ∈ [a,b). (1.2)
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If we take k (t) = 1
Γ(α) t

α−1, where Γ is the Gamma function, then

Sk,g,a+ f (x) =
1

Γ(α)

∫ x

a
[g(x)−g(t)]α−1

g′ (t) f (t)dt

=: Iα
a+,g f (x), a < x ≤ b

and

Sk,g,b− f (x) =
1

Γ(α)

∫ b

x
[g(t)−g(x)]α−1

g′ (t) f (t)dt (1.3)

=: Iα
b−,g f (x), a ≤ x < b,

which are the generalized left- and right-sided Riemann-Liouville fractional integrals of a function f with respect to another

function g on [a,b] as defined in [1, p. 100]

For g(t) = t in (1.3) we have the classical Riemann-Liouville fractional integrals while for the logarithmic function

g(t) = ln t we have the Hadamard fractional integrals [1, p. 111]

Hα
a+ f (x) :=

1

Γ(α)

∫ x

a

[

ln
(x

t

)]α−1 f (t)dt

t
, 0 ≤ a < x ≤ b

and

Hα
b− f (x) :=

1

Γ(α)

∫ b

x

[

ln
( t

x

)]α−1 f (t)dt

t
, 0 ≤ a < x < b.

One can consider the function g(t) =−t−1 and define the ”Harmonic fractional integrals” by

Rα
a+ f (x) :=

x1−α

Γ(α)

∫ x

a

f (t)dt

(x− t)1−α
tα+1

, 0 ≤ a < x ≤ b

and

Rα
b− f (x) :=

x1−α

Γ(α)

∫ b

x

f (t)dt

(t − x)1−α
tα+1

, 0 ≤ a < x < b.

Also, for g(t) = exp(β t) , β > 0, we can consider the ”β -Exponential fractional integrals”

Eα
a+,β f (x) :=

β

Γ(α)

∫ x

a
[exp(βx)− exp(β t)]α−1

exp(β t) f (t)dt,

for a < x ≤ b and

Eα
b−,β f (x) :=

β

Γ(α)

∫ b

x
[exp(β t)− exp(βx)]α−1

exp(β t) f (t)dt,

for a ≤ x < b.
If we take g(t) = t in (1.1) and (1.2), then we can consider the following k-fractional integrals

Sk,a+ f (x) =
∫ x

a
k (x− t) f (t)dt, x ∈ (a,b] (1.4)

and

Sk,b− f (x) =
∫ b

x
k (t − x) f (t)dt, x ∈ [a,b). (1.5)

In [2], Raina studied a class of functions defined formally by

F σ
ρ,λ (x) :=

∞

∑
k=0

σ (k)

Γ(ρk+λ )
xk, |x|< R, with R > 0 (1.6)
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for ρ, λ > 0 where the coefficients σ (k) generate a bounded sequence of positive real numbers. With the help of (1.6), Raina

defined the following left-sided fractional integral operator

J σ
ρ,λ ,a+;w f (x) :=

∫ x

a
(x− t)λ−1 F σ

ρ,λ

(

w(x− t)ρ)
f (t)dt, x > a (1.7)

where ρ, λ > 0, w ∈ R and f is such that the integral on the right side exists.

In [3], the right-sided fractional operator was also introduced as

J σ
ρ,λ ,b−;w f (x) :=

∫ b

x
(t − x)λ−1 F σ

ρ,λ

(

w(t − x)ρ)
f (t)dt, x < b (1.8)

where ρ, λ > 0, w ∈ R and f is such that the integral on the right side exists. Several Ostrowski type inequalities were also

established.

We observe that for k (t) = tλ−1F σ
ρ,λ (wtρ) we re-obtain the definitions of (1.7) and (1.8) from (1.4) and (1.5).

In [4], Kirane and Torebek introduced the following exponential fractional integrals

T α
a+ f (x) :=

1

α

∫ x

a
exp

{

−1−α

α
(x− t)

}

f (t)dt, x > a (1.9)

and

T α
b− f (x) :=

1

α

∫ b

x
exp

{

−1−α

α
(t − x)

}

f (t)dt, x < b (1.10)

where α ∈ (0,1) .
We observe that for k (t) = 1

α exp
(

− 1−α
α t

)

, t ∈ R we re-obtain the definitions of (1.9) and (1.10) from (1.4) and (1.5).

Let g be a strictly increasing function on (a,b) , having a continuous derivative g′ on (a,b) . We can define the more general

exponential fractional integrals

T α
g,a+ f (x) :=

1

α

∫ x

a
exp

{

−1−α

α
(g(x)−g(t))

}

g′ (t) f (t)dt, x > a

and

T α
g,b− f (x) :=

1

α

∫ b

x
exp

{

−1−α

α
(g(t)−g(x))

}

g′ (t) f (t)dt, x < b

where α ∈ (0,1) .
Let g be a strictly increasing function on (a,b) , having a continuous derivative g′ on (a,b) . Assume that α > 0. We can

also define the logarithmic fractional integrals

L α
g,a+ f (x) :=

∫ x

a
(g(x)−g(t))α−1

ln(g(x)−g(t))g′ (t) f (t)dt,

for 0 < a < x ≤ b and

L α
g,b− f (x) :=

∫ b

x
(g(t)−g(x))α−1

ln(g(t)−g(x))g′ (t) f (t)dt,

for 0 < a ≤ x < b, where α > 0. These are obtained from (1.4) and (1.5) for the kernel k (t) = tα−1 ln t, t > 0.
For α = 1 we get

Lg,a+ f (x) :=
∫ x

a
ln(g(x)−g(t))g′ (t) f (t)dt, 0 < a < x ≤ b

and

Lg,b− f (x) :=
∫ b

x
ln(g(t)−g(x))g′ (t) f (t)dt, 0 < a ≤ x < b.
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For g(t) = t, we have the simple forms

L α
a+ f (x) :=

∫ x

a
(x− t)α−1

ln(x− t) f (t)dt, 0 < a < x ≤ b,

L α
b− f (x) :=

∫ b

x
(t − x)α−1

ln(t − x) f (t)dt, 0 < a ≤ x < b,

La+ f (x) :=
∫ x

a
ln(x− t) f (t)dt, 0 < a < x ≤ b

and

Lb− f (x) :=
∫ b

x
ln(t − x) f (t)dt, 0 < a ≤ x < b.

In the recent paper [5] we obtained the following Ostrowski and trapezoid type inequalities for the generalized left- and

right-sided Riemann-Liouville fractional integrals of a function f with respect to another function g on [a,b] .

Theorem 1.1. Let f : [a,b]→ C be a function of bounded variation on [a,b] . Also let g be a strictly increasing function on

(a,b) , having a continuous derivative g′ on (a,b) . Then we have

∣

∣

∣

∣

Iα
x−,g f (a)+ Iα

x+,g f (b)− 1

Γ(α +1)

[

(g(x)−g(a))α +(g(b)−g(x))α]
f (x)

∣

∣

∣

∣

≤ 1

Γ(α)

[

∫ x

a
(g(t)−g(a))α−1

g′ (t)
x
∨

t

( f )dt +
∫ b

x
(g(b)−g(t))α−1

g′ (t)
t
∨

x

( f )dt

]

≤ 1

Γ(α +1)

[

(g(x)−g(a))α
x
∨

a

( f )+(g(b)−g(x))α
b
∨

x

( f )

]

≤ 1

Γ(α +1)























































[

1
2
(g(b)−g(a))+

∣

∣

∣
g(x)− g(a)+g(b)

2

∣

∣

∣

]α
∨b

a ( f ) ;

(

(g(x)−g(a))α p +(g(b)−g(x))α p
)1/p

(

(
∨x

a ( f ))q +
(

∨b
x ( f )

)q)1/q

with p, q > 1, 1
p
+ 1

q
= 1;

[

1
2

∨b
a ( f )+ 1

2

∣

∣

∣

∨x
a ( f )−∨b

x ( f )
∣

∣

∣

]

(

(g(x)−g(a))α +(g(b)−g(x))α)

and
∣

∣

∣

∣

Iα
a+,g f (x)+ Iα

b−,g f (x)− 1

Γ(α +1)

[

(g(x)−g(a))α
f (a)+(g(b)−g(x))α

f (b)
]

∣

∣

∣

∣

≤ 1

Γ(α)

[

∫ x

a
(g(x)−g(t))α−1

g′ (t)
t
∨

a

( f )dt +
∫ b

x
(g(t)−g(x))α−1

g′ (t)
b
∨

t

( f )dt

]

≤ 1

Γ(α +1)

[

(g(x)−g(a))α
x
∨

a

( f )+(g(b)−g(x))α
b
∨

x

( f )

]

≤ 1

Γ(α +1)























































[

1
2
(g(b)−g(a))+

∣

∣

∣
g(x)− g(a)+g(b)

2

∣

∣

∣

]α
∨b

a ( f ) ;

(

(g(x)−g(a))α p +(g(b)−g(x))α p
)1/p

(

(
∨x

a ( f ))q +
(

∨b
x ( f )

)q)1/q

with p, q > 1, 1
p
+ 1

q
= 1;

[

1
2

∨b
a ( f )+ 1

2

∣

∣

∣

∨x
a ( f )−∨b

x ( f )
∣

∣

∣

]

(

(g(x)−g(a))α +(g(b)−g(x))α)

for any x ∈ (a,b) .
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For applications to the classical Riemann-Liouville fractional integrals, Hadamard fractional integrals and Harmonic

fractional integrals see [5].

For several Ostrowski type inequalities for Riemann-Liouville fractional integrals see [6]-[21], [22]-[32] and the references

therein.

Motivated by the above results, in this paper we establish some Ostrowski and trapezoid type inequalities for the k-g-

fractional integrals of functions of bounded variation. Applications for mid-point and trapezoid inequalities are provided as

well. Some examples for a general exponential fractional integral are also given.

2. Some identities for the operator Sk,g,a+,b−

For k and g as at the beginning of Introduction, we consider the mixed operator

Sk,g,a+,b− f (x)

:=
1

2

[

Sk,g,a+ f (x)+Sk,g,b− f (x)
]

=
1

2

[

∫ x

a
k (g(x)−g(t))g′ (t) f (t)dt +

∫ b

x
k (g(t)−g(x))g′ (t) f (t)dt

]

for the Lebesgue integrable function f : (a,b)→ C and x ∈ (a,b) .
The following two parameters representation for the operator Sk,g,a+,b− holds:

Lemma 2.1. With the above assumptions for k, g and f we have

Sk,g,a+,b− f (x) =
1

2
[γK (g(b)−g(x))+λK (g(x)−g(a))] (2.1)

+
1

2

∫ x

a
k (g(x)−g(t))g′ (t) [ f (t)−λ ]dt

+
1

2

∫ b

x
k (g(t)−g(x))g′ (t) [ f (t)− γ]dt

for any λ , γ ∈ C.

Proof. We have, by taking the derivative over t and using the chain rule, that

[K (g(x)−g(t))]′ = K′ (g(x)−g(t))(g(x)−g(t))′ =−k (g(x)−g(t))g′ (t)

for t ∈ (a,x) and

[K (g(t)−g(x))]′ = K′ (g(t)−g(x))(g(t)−g(x))′ = k (g(t)−g(x))g′ (t)

for t ∈ (x,b) .
Therefore, for any λ , γ ∈ C we have

∫ x

a
k (g(x)−g(t))g′ (t) [ f (t)−λ ]dt (2.2)

=
∫ x

a
k (g(x)−g(t))g′ (t) f (t)dt −λ

∫ x

a
k (g(x)−g(t))g′ (t)dt

= Sk,g,a+ f (x)+λ

∫ x

a
[K (g(x)−g(t))]′ dt

= Sk,g,a+ f (x)+λ [K (g(x)−g(t))]|xa = Sk,g,a+ f (x)−λK (g(x)−g(a))

and
∫ b

x
k (g(t)−g(x))g′ (t) [ f (t)− γ]dt (2.3)

=
∫ b

x
k (g(t)−g(x))g′ (t) f (t)dt − γ

∫ b

x
k (g(t)−g(x))g′ (t)dt

= Sk,g,b− f (x)− γ

∫ b

x
[K (g(t)−g(x))]′ dt

= Sk,g,b− f (x)− γ [K (g(t)−g(x))]|bx = Sk,g,b− f (x)− γK (g(b)−g(x))
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for x ∈ (a,b) .
If we add the equalities (2.2) and (2.3) and divide by 2 then we get the desired result (2.1).

Corollary 2.2. With the above assumptions for k, g and f we have the Ostrowski type identity

Sk,g,a+,b− f (x) =
1

2
[K (g(b)−g(x))+K (g(x)−g(a))] f (x) (2.4)

+
1

2

∫ x

a
k (g(x)−g(t))g′ (t) [ f (t)− f (x)]dt

+
1

2

∫ b

x
k (g(t)−g(x))g′ (t) [ f (t)− f (x)]dt

and the trapezoid type identity

Sk,g,a+,b− f (x) =
1

2
[K (g(b)−g(x)) f (b)+K (g(x)−g(a)) f (a)] (2.5)

+
1

2

∫ x

a
k (g(x)−g(t))g′ (t) [ f (t)− f (a)]dt

+
1

2

∫ b

x
k (g(t)−g(x))g′ (t) [ f (t)− f (b)]dt

for any x ∈ (a,b) .

For x = a+b
2

we can consider

Mk,g,a+,b− f := Sk,g,a+,b− f

(

a+b

2

)

=
1

2

∫ a+b
2

a
k

(

g

(

a+b

2

)

−g(t)

)

g′ (t) f (t)dt

+
1

2

∫ b

a+b
2

k

(

g(t)−g

(

a+b

2

))

g′ (t) f (t)dt.

By (2.4) we have the representation

Mk,g,a+,b− f

=
1

2

[

K

(

g(b)−g

(

a+b

2

))

+K

(

g

(

a+b

2

)

−g(a)

)]

f

(

a+b

2

)

+
1

2

∫ a+b
2

a
k

(

g

(

a+b

2

)

−g(t)

)

g′ (t)

[

f (t)− f

(

a+b

2

)]

dt

+
1

2

∫ b

a+b
2

k

(

g(t)−g

(

a+b

2

))

g′ (t)

[

f (t)− f

(

a+b

2

)]

dt

and (2.5) we have

Mk,g,a+,b− f

=
1

2

[

K

(

g(b)−g

(

a+b

2

))

f (b)+K

(

g

(

a+b

2

)

−g(a)

)

f (a)

]

+
1

2

∫ a+b
2

a
k

(

g

(

a+b

2

)

−g(t)

)

g′ (t) [ f (t)− f (a)]dt

+
1

2

∫ b

a+b
2

k

(

g(t)−g

(

a+b

2

))

g′ (t) [ f (t)− f (b)]dt.

If g is a function which maps an interval I of the real line to the real numbers, and is both continuous and injective then we

can define the g-mean of two numbers a, b ∈ I as

Mg (a,b) := g−1

(

g(a)+g(b)

2

)

.
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If I = R and g(t) = t is the identity function, then Mg (a,b) = A(a,b) := a+b
2
, the arithmetic mean. If I = (0,∞) and

g(t) = ln t, then Mg (a,b) = G(a,b) :=
√

ab, the geometric mean. If I = (0,∞) and g(t) = 1
t
, then Mg (a,b) = H (a,b) := 2ab

a+b
,

the harmonic mean. If I = (0,∞) and g(t) = t p, p 6= 0, then Mg (a,b) = Mp (a,b) :=
(

ap+bp

2

)1/p

, the power mean with

exponent p. Finally, if I = R and g(t) = exp t, then

Mg (a,b) = LME (a,b) := ln

(

expa+ expb

2

)

,

the LogMeanExp function.

Using the g-mean of two numbers we can introduce

Pk,g,a+,b− f := Sk,g,a+,b− f (Mg (a,b))

=
1

2

∫ Mg(a,b)

a
k

(

g(a)+g(b)

2
−g(t)

)

g′ (t) f (t)dt

+
1

2

∫ b

Mg(a,b)
k

(

g(t)− g(a)+g(b)

2

)

g′ (t) f (t)dt.

Using (2.4) and (2.5) we have the representations

Pk,g,a+,b− f

= K

(

g(b)−g(a)

2

)

f (Mg (a,b))

+
1

2

∫ Mg(a,b)

a
k

(

g(a)+g(b)

2
−g(t)

)

g′ (t) [ f (t)− f (Mg (a,b))]dt

+
1

2

∫ b

Mg(a,b)
k

(

g(t)− g(a)+g(b)

2

)

g′ (t) [ f (t)− f (Mg (a,b))]dt

and

Pk,g,a+,b− f

= K

(

g(b)−g(a)

2

)

f (b)+ f (a)

2

+
1

2

∫ Mg(a,b)

a
k

(

g(a)+g(b)

2
−g(t)

)

g′ (t) [ f (t)− f (a)]dt

+
1

2

∫ b

Mg(a,b)
k

(

g(t)− g(a)+g(b)

2

)

g′ (t) [ f (t)− f (b)]dt.

3. Some identities for the dual operator S̆k,g,a+,b−

Observe that

Sk,g,x+ f (b) =
∫ b

x
k (g(b)−g(t))g′ (t) f (t)dt, x ∈ [a,b)

and

Sk,g,x− f (a) =
∫ x

a
k (g(t)−g(a))g′ (t) f (t)dt, x ∈ (a,b].

Define also the mixed operator

S̆k,g,a+,b− f (x)

:=
1

2

[

Sk,g,x+ f (b)+Sk,g,x− f (a)
]

=
1

2

[

∫ b

x
k (g(b)−g(t))g′ (t) f (t)dt +

∫ x

a
k (g(t)−g(a))g′ (t) f (t)dt

]

for any x ∈ (a,b) .
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Lemma 3.1. With the above assumptions for k, g and f we have

S̆k,g,a+,b− f (x) =
1

2
[λK (g(b)−g(x))+ γK (g(x)−g(a))] (3.1)

+
1

2

∫ x

a
k (g(t)−g(a))g′ (t) [ f (t)− γ]dt

+
1

2

∫ b

x
k (g(b)−g(t))g′ (t) [ f (t)−λ ]dt

for any λ , γ ∈ C.

Proof. We have, by taking the derivative over t and using the chain rule, that

[K (g(b)−g(t))]′ = K′ (g(b)−g(t))(g(b)−g(t))′ =−k (g(b)−g(t))g′ (t)

for t ∈ (x,b) and

[K (g(t)−g(a))]′ = K′ (g(t)−g(a))(g(t)−g(a))′ = k (g(t)−g(a))g′ (t)

for t ∈ (a,x) .
For any λ , γ ∈ C we have

∫ b

x
k (g(b)−g(t))g′ (t) [ f (t)−λ ]dt (3.2)

=
∫ b

x
k (g(b)−g(t))g′ (t) f (t)dt −λ

∫ b

x
k (g(b)−g(t))g′ (t)dt

= Sk,g,x+ f (b)+λ

∫ b

x
[K (g(b)−g(t))]′ dt

= Sk,g,x+ f (b)−λK (g(b)−g(x))

and
∫ x

a
k (g(t)−g(a))g′ (t) [ f (t)− γ]dt (3.3)

=
∫ x

a
k (g(t)−g(a))g′ (t) f (t)dt − γ

∫ x

a
k (g(t)−g(a))g′ (t)dt

=
∫ x

a
k (g(t)−g(a))g′ (t) f (t)dt − γ

∫ x

a
[K (g(t)−g(a))]′ dt

=
∫ x

a
k (g(t)−g(a))g′ (t) f (t)dt − γK (g(x)−g(a))

for x ∈ (a,b) .
If we add the equalities (3.2) and (3.3) and divide by 2 then we get the desired result (3.1).

Corollary 3.2. With the assumptions of Lemma 3.1 we have the Ostrowski type identity

S̆k,g,a+,b− f (x) =
1

2
[K (g(b)−g(x))+K (g(x)−g(a))] f (x) (3.4)

+
1

2

∫ x

a
k (g(t)−g(a))g′ (t) [ f (t)− f (x)]dt

+
1

2

∫ b

x
k (g(b)−g(t))g′ (t) [ f (t)− f (x)]dt

and the trapezoid identity

S̆k,g,a+,b− f (x) =
1

2
[K (g(b)−g(x)) f (b)+K (g(x)−g(a)) f (a)] (3.5)

+
1

2

∫ x

a
k (g(t)−g(a))g′ (t) [ f (t)− f (a)]dt

+
1

2

∫ b

x
k (g(b)−g(t))g′ (t) [ f (t)− f (b)]dt

for x ∈ (a,b) .
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For x = a+b
2

we can consider

M̆k,g,a+,b− f := S̆k,g,a+,b− f

(

a+b

2

)

=
1

2

∫ b

a+b
2

k (g(b)−g(t))g′ (t) f (t)dt

+
1

2

∫ a+b
2

a
k (g(t)−g(a))g′ (t) f (t)dt.

Using the equalities (3.4) and (3.5), we have

M̆k,g,a+,b− f

=
1

2

[

K

(

g(b)−g

(

a+b

2

))

+K

(

g

(

a+b

2

)

−g(a)

)]

f

(

a+b

2

)

+
1

2

∫ a+b
2

a
k (g(t)−g(a))g′ (t)

[

f (t)− f

(

a+b

2

)]

dt

+
1

2

∫ b

a+b
2

k (g(b)−g(t))g′ (t)

[

f (t)− f

(

a+b

2

)]

dt

and

M̆k,g,a+,b− f

=
1

2

[

K

(

g(b)−g

(

a+b

2

))

f (b)+K

(

g

(

a+b

2

)

−g(a)

)

f (a)

]

+
1

2

∫ a+b
2

a
k (g(t)−g(a))g′ (t) [ f (t)− f (a)]dt

+
1

2

∫ b

a+b
2

k (g(b)−g(t))g′ (t) [ f (t)− f (b)]dt.

Using the g-mean of two numbers we can introduce

P̆k,g,a+,b− f := S̆k,g,a+,b− f (Mg (a,b))

=
1

2

∫ b

Mg(a,b)
k (g(b)−g(t))g′ (t) f (t)dt

+
1

2

∫ Mg(a,b)

a
k (g(t)−g(a))g′ (t) f (t)dt.

Using the equalities (3.4) and (3.5), we have

P̆k,g,a+,b− f = K

(

g(b)−g(a)

2

)

f (Mg (a,b))

+
1

2

∫ Mg(a,b)

a
k (g(t)−g(a))g′ (t) [ f (t)− f (Mg (a,b))]dt

+
1

2

∫ b

Mg(a,b)
k (g(b)−g(t))g′ (t) [ f (t)− f (Mg (a,b))]dt

and

P̆k,g,a+,b− f = K

(

g(b)−g(a)

2

)

f (b)+ f (a)

2

+
1

2

∫ Mg(a,b)

a
k (g(t)−g(a))g′ (t) [ f (t)− f (a)]dt

+
1

2

∫ b

Mg(a,b)
k (g(b)−g(t))g′ (t) [ f (t)− f (b)]dt.
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4. Trapezoid functional Tk,g,a+,b−

We can also introduce the functional

Tk,g,a+,b− f :=
1

2

[

Sk,g,a+ f (b)+Sk,g,b− f (a)
]

=
1

2

∫ b

a
[k (g(b)−g(t))+ k (g(t)−g(a))]g′ (t) f (t)dt.

We have:

Lemma 4.1. With the assumption of Lemma 2.1, we have

Tk,g,a+,b− f = K (g(b)−g(a))δ (4.1)

+
1

2

∫ b

a
[k (g(b)−g(t))+ k (g(t)−g(a))]g′ (t) [ f (t)−δ ]dt

for any δ ∈ C.

Proof. Observe that

∫ b

a
[k (g(b)−g(t))+ k (g(t)−g(a))]g′ (t)dt

=
∫ b

a
k (g(b)−g(t))g′ (t)dt +

∫ b

a
k (g(t)−g(a))g′ (t)dt

=−
∫ b

a
[K (g(b)−g(t))]′ dt +

∫ b

a
[K (g(t)−g(a))]′ dt

=− K (g(b)−g(t))|ba + K (g(t)−g(a))|ba
= K (g(b)−g(a))+K (g(b)−g(a)) = 2K (g(b)−g(a)) .

Therefore

1

2

∫ b

a
[k (g(b)−g(t))+ k (g(t)−g(a))]g′ (t) [ f (t)−δ ]dt

=
1

2

∫ b

a
[k (g(b)−g(t))+ k (g(t)−g(a))]g′ (t) f (t)dt

− 1

2
δ

∫ b

a
[k (g(b)−g(t))+ k (g(t)−g(a))]g′ (t)dt

= Tk,g,a+,b− f −δK (g(b)−g(a)) ,

which proves the desired equality (4.1).

Corollary 4.2. With the assumptions of Lemma 4.1 we have the Ostrowski type identity

Tk,g,a+,b− f (4.2)

= K (g(b)−g(a)) f (x)

+
1

2

∫ b

a
[k (g(b)−g(t))+ k (g(t)−g(a))]g′ (t) [ f (t)− f (x)]dt

for any x ∈ [a,b] and the trapezoid identity

Tk,g,a+,b− f (4.3)

= K (g(b)−g(a))
f (a)+ f (b)

2

+
1

2

∫ b

a
[k (g(b)−g(t))+ k (g(t)−g(a))]g′ (t)

[

f (t)− f (a)+ f (b)

2

]

dt.
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We observe that for x = a+b
2

we obtain from (4.2) that

Tk,g,a+,b− f

= K (g(b)−g(a)) f

(

a+b

2

)

+
1

2

∫ b

a
[k (g(b)−g(t))+ k (g(t)−g(a))]g′ (t)

[

f (t)− f

(

a+b

2

)]

dt.

5. Inequalities for functions of bounded variation

We considered the cumulative function K : [0,∞)→ C by

K (t) :=







∫ t
0 k (s)ds if 0 < t,

0 if t = 0.

We also define the function K : [0,∞)→ [0,∞) by

K(t) :=







∫ t
0 |k (s)|ds if 0 < t,

0 if t = 0.

We observe that if k takes nonnegative values on (0,∞), as it does in some of the examples in Introduction, then K(t) = K (t)
for t ∈ [0,∞) .

Theorem 5.1. Assume that the kernel k is defined either on (0,∞) or on [0,∞) with complex values and integrable on any finite

subinterval. Let f : [a,b]→ C be a function of bounded variation on [a,b] and g be a strictly increasing function on (a,b) ,
having a continuous derivative g′ on (a,b) . Then we have the Ostrowski type inequality

∣

∣

∣

∣

Sk,g,a+,b− f (x)− 1

2
[K (g(b)−g(x))+K (g(x)−g(a))] f (x)

∣

∣

∣

∣

≤ 1

2

[

∫ b

x
|k (g(t)−g(x))|

t
∨

x

( f )g′ (t)dt +
∫ x

a
|k (g(x)−g(t))|

x
∨

t

( f )g′ (t)dt

]

≤ 1

2

[

K(g(b)−g(x))
b
∨

x

( f ) +K(g(x)−g(a))
x
∨

a

( f )

]

≤ 1

2











































max{K(g(b)−g(x)) ,K(g(x)−g(a))}∨b
a ( f ) ;

[Kp (g(b)−g(x))+Kp (g(x)−g(a))]1/p
(

(
∨x

a ( f ))q +
(

∨b
x ( f )

)q)1/q

with p, q > 1, 1
p
+ 1

q
= 1;

[K(g(b)−g(x))+K(g(x)−g(a))]
[

1
2

∨b
a ( f )+ 1

2

∣

∣

∣

∨x
a ( f )−∨b

x ( f )
∣

∣

∣

]

(5.1)
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and the trapezoid type inequality

∣

∣

∣

∣

Sk,g,a+,b− f (x)− 1

2
[K (g(b)−g(x)) f (b)+K (g(x)−g(a)) f (a)]

∣

∣

∣

∣

≤ 1

2

[

∫ x

a
|k (g(x)−g(t))|

t
∨

a

( f )g′ (t)dt +
∫ b

x
|k (g(t)−g(x))|

b
∨

t

( f )g′ (t)dt

]

≤ 1

2

[

K(g(b)−g(x))
b
∨

x

( f )+K(g(x)−g(a))
x
∨

a

( f )

]

≤ 1

2



























































max{K(g(b)−g(x)) ,K(g(x)−g(a))}∨b
a ( f ) ;

[Kp (g(b)−g(x))+Kp (g(x)−g(a))]1/p

×
(

(
∨x

a ( f ))q +
(

∨b
x ( f )

)q)1/q

with p, q > 1, 1
p
+ 1

q
= 1;

[K(g(b)−g(x))+K(g(x)−g(a))]

×
[

1
2

∨b
a ( f )+ 1

2

∣

∣

∣

∨x
a ( f )−∨b

x ( f )
∣

∣

∣

]

(5.2)

for any x ∈ (a,b) .

Proof. Using the equality (2.4) we have

∣

∣

∣

∣

Sk,g,a+,b− f (x)− 1

2
[K (g(b)−g(x))+K (g(x)−g(a))] f (x)

∣

∣

∣

∣

≤ 1

2

∣

∣

∣

∣

∫ x

a
k (g(x)−g(t))g′ (t) [ f (t)− f (x)]dt

∣

∣

∣

∣

+
1

2

∣

∣

∣

∣

∫ b

x
k (g(t)−g(x))g′ (t) [ f (t)− f (x)]dt

∣

∣

∣

∣

≤ 1

2

∫ x

a

∣

∣k (g(x)−g(t))g′ (t) [ f (t)− f (x)]
∣

∣dt

+
1

2

∫ b

x

∣

∣k (g(t)−g(x))g′ (t) [ f (t)− f (x)]
∣

∣dt

=
1

2

∫ x

a
|k (g(x)−g(t))| | f (x)− f (t)|g′ (t)dt

+
1

2

∫ b

x
|k (g(t)−g(x))| | f (t)− f (x)|g′ (t)dt

=: B(x)

for x ∈ (a,b) .

Since f is of bounded variation, then

| f (x)− f (t)| ≤
x
∨

t

( f )≤
x
∨

a

( f ) for a < t ≤ x ≤ b

and

| f (t)− f (x)| ≤
t
∨

x

( f )≤
b
∨

x

( f ) for a ≤ x ≤ t < b.
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Therefore

B(x)≤ 1

2

∫ x

a
|k (g(x)−g(t))|

x
∨

t

( f )g′ (t)dt

+
1

2

∫ b

x
|k (g(t)−g(x))|

t
∨

x

( f )g′ (t)dt

≤ 1

2

x
∨

a

( f )
∫ x

a
|k (g(x)−g(t))|g′ (t)dt

+
1

2

b
∨

x

( f )
∫ b

x
|k (g(t)−g(x))|g′ (t)dt

=: C (x)

for x ∈ (a,b) .

We have, by taking the derivative over t and using the chain rule, that

[K(g(x)−g(t))]′ = K′ (g(x)−g(t))(g(x)−g(t))′ =−|k (g(x)−g(t))|g′ (t)

for t ∈ (a,x) and

[K(g(t)−g(x))]′ = K′ (g(t)−g(x))(g(t)−g(x))′ = |k (g(t)−g(x))|g′ (t)

for t ∈ (x,b) .

Then

∫ x

a
|k (g(x)−g(t))|g′ (t)dt =−

∫ x

a
[K(g(x)−g(t))]′ dt = K(g(x)−g(a))

and

∫ b

x
|k (g(t)−g(x))|g′ (t)dt =

∫ b

x
[K(g(t)−g(x))]′ dt = K(g(b)−g(x))

giving that

C (x) =
1

2

[

K(g(b)−g(x))
b
∨

x

( f ) +K(g(x)−g(a))
x
∨

a

( f )

]

,

for x ∈ (a,b) , which proves the first and the second inequality in (5.1).

The last part of (4.1 is obvious by making use of the elementary Hölder type inequalities for positive real numbers c, d, m,
n ≥ 0

mc+nd ≤







max{m,n}(c+d) ;

(mp +np)1/p (cq +dq)1/q
with p, q > 1, 1

p
+ 1

q
= 1.
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Further, by the identity (2.5) we have, as above,

∣

∣

∣

∣

Sk,g,a+,b− f (x)− 1

2
[K (g(b)−g(x)) f (b)+K (g(x)−g(a)) f (a)]

∣

∣

∣

∣

≤ 1

2

∫ x

a
|k (g(x)−g(t))| | f (t)− f (a)|g′ (t)dt

+
1

2

∫ b

x
|k (g(t)−g(x))| | f (t)− f (b)|g′ (t)dt

≤ 1

2

∫ x

a
|k (g(x)−g(t))|

t
∨

a

( f )g′ (t)dt

+
1

2

∫ b

x
|k (g(t)−g(x))|

b
∨

t

( f )g′ (t)dt

≤ 1

2

x
∨

a

( f )
∫ x

a
|k (g(x)−g(t))|g′ (t)dt

+
1

2

b
∨

x

( f )
∫ b

x
|k (g(t)−g(x))|g′ (t)dt

=
1

2
K(g(x)−g(a))

x
∨

a

( f )+
1

2
K(g(b)−g(x))

b
∨

x

( f ) ,

which proves (5.2).

The following particular case for the functional

Pk,g,a+,b− f := Sk,g,a+,b− f (Mg (a,b))

=
1

2

∫ Mg(a,b)

a
k

(

g(b)+g(a)

2
−g(t)

)

g′ (t) f (t)dt

+
1

2

∫ b

Mg(a,b)
k

(

g(t)− g(b)+g(a)

2

)

g′ (t) f (t)dt.

is of interest:

Corollary 5.2. With the assumptions of Theorem 5.1 we have

∣

∣

∣

∣

Pk,g,a+,b− f −K

(

g(b)−g(a)

2

)

f (Mg (a,b))

∣

∣

∣

∣

≤ 1

2

∫ b

Mg(a,b)

∣

∣

∣

∣

k

(

g(t)− g(b)+g(a)

2

)∣

∣

∣

∣

t
∨

Mg(a,b)

( f )g′ (t)dt

+
1

2

∫ Mg(a,b)

a

∣

∣

∣

∣

k

(

g(b)+g(a)

2
−g(t)

)∣

∣

∣

∣

Mg(a,b)
∨

t

( f )g′ (t)dt

≤ 1

2
K

(

g(b)−g(a)

2

) b
∨

b

( f ) (5.3)

and

∣

∣

∣

∣

Pk,g,a+,b− f −K

(

g(b)−g(a)

2

)

f (b)+ f (a)

2

∣

∣

∣

∣

≤ 1

2

∫ Mg(a,b)

a

∣

∣

∣

∣

k

(

g(b)+g(a)

2
−g(t)

)∣

∣

∣

∣

t
∨

a

( f )g′ (t)dt

+
1

2

∫ b

Mg(a,b)

∣

∣

∣

∣

k

(

g(t)− g(b)+g(a)

2

)∣

∣

∣

∣

b
∨

t

( f )g′ (t)dt

≤ 1

2
K

(

g(b)−g(a)

2

) b
∨

b

( f ) . (5.4)

We have:
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Theorem 5.3. With the assumptions of Theorem 5.1 we have the Ostrowski type inequality

∣

∣

∣

∣

S̆k,g,a+,b− f (x)− 1

2
[K (g(b)−g(x))+K (g(x)−g(a))] f (x)

∣

∣

∣

∣

≤ 1

2

∫ x

a
|k (g(t)−g(a))|

x
∨

t

( f )g′ (t)dt +
1

2

∫ b

x
|k (g(b)−g(t))|

t
∨

x

( f )g′ (t)dt

≤ 1

2

[

K(g(b)−g(x))
b
∨

x

( f )+K(g(x)−g(a))
x
∨

a

( f )

]

≤ 1

2











































max{K(g(b)−g(x)) ,K(g(x)−g(a))}∨b
a ( f ) ;

[Kp (g(b)−g(x))+Kp (g(x)−g(a))]1/p
(

(
∨x

a ( f ))q +
(

∨b
x ( f )

)q)1/q

with p, q > 1, 1
p
+ 1

q
= 1;

[K(g(b)−g(x))+K(g(x)−g(a))]
[

1
2

∨b
a ( f )+ 1

2

∣

∣

∣

∨x
a ( f )−∨b

x ( f )
∣

∣

∣

]

(5.5)

and the trapezoid inequality

∣

∣

∣

∣

S̆k,g,a+,b− f (x)− 1

2
[K (g(b)−g(x)) f (b)+K (g(x)−g(a)) f (a)]

∣

∣

∣

∣

≤ 1

2

∫ x

a
|k (g(t)−g(a))|

t
∨

a

( f )g′ (t)dt +
1

2

∫ b

x
|k (g(b)−g(t))|

b
∨

t

( f )g′ (t)dt

≤ 1

2

[

K(g(b)−g(x))
b
∨

x

( f )+K(g(x)−g(a))
x
∨

a

( f )

]

≤ 1

2











































max{K(g(b)−g(x)) ,K(g(x)−g(a))}∨b
a ( f ) ;

[Kp (g(b)−g(x))+Kp (g(x)−g(a))]1/p
(

(
∨x

a ( f ))q +
(

∨b
x ( f )

)q)1/q

with p, q > 1, 1
p
+ 1

q
= 1;

[K(g(b)−g(x))+K(g(x)−g(a))]
[

1
2

∨b
a ( f )+ 1

2

∣

∣

∣

∨x
a ( f )−∨b

x ( f )
∣

∣

∣

]

(5.6)

for any x ∈ (a,b) .
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Proof. Using the identity (3.4) we have

∣

∣

∣

∣

S̆k,g,a+,b− f (x)− 1

2
[K (g(b)−g(x))+K (g(x)−g(a))] f (x)

∣

∣

∣

∣

≤ 1

2

∫ x

a
|k (g(t)−g(a))| | f (t)− f (x)|g′ (t)dt

+
1

2

∫ b

x
|k (g(b)−g(t))| | f (t)− f (x)|g′ (t)dt

≤ 1

2

∫ x

a
|k (g(t)−g(a))|

x
∨

t

( f )g′ (t)dt

+
1

2

∫ b

x
|k (g(b)−g(t))|

t
∨

x

( f )g′ (t)dt

≤ 1

2

x
∨

a

( f )
∫ x

a
|k (g(t)−g(a))|g′ (t)dt

+
1

2

b
∨

x

( f )
∫ b

x
|k (g(b)−g(t))|g′ (t)dt

=
1

2

[

K(g(x)−g(a))
x
∨

a

( f )+K(g(b)−g(x))
b
∨

x

( f )

]

,

for any x ∈ (a,b) , which proves (5.5).

By the identity (3.5) we have

∣

∣

∣

∣

S̆k,g,a+,b− f (x)− 1

2
[K (g(b)−g(x)) f (b)+K (g(x)−g(a)) f (a)]

∣

∣

∣

∣

≤ 1

2

∫ x

a
|k (g(t)−g(a))| | f (t)− f (a)|g′ (t)dt

+
1

2

∫ b

x
|k (g(b)−g(t))| | f (b)− f (t)|g′ (t)dt

≤ 1

2

∫ x

a
|k (g(t)−g(a))|

t
∨

a

( f )g′ (t)dt

+
1

2

∫ b

x
|k (g(b)−g(t))|

b
∨

t

( f )g′ (t)dt

≤ 1

2

x
∨

a

( f )
∫ x

a
|k (g(t)−g(a))|g′ (t)dt

+
1

2

b
∨

x

( f )
∫ b

x
|k (g(b)−g(t))|g′ (t)dt

=
1

2

[

K(g(x)−g(a))
x
∨

a

( f )+K(g(b)−g(x))
b
∨

x

( f )

]

for any x ∈ (a,b) , which proves (5.6).

Also, we have the particular inequalities for

P̆k,g,a+,b− f := S̆k,g,a+,b− f (Mg (a,b))

=
1

2

∫ b

Mg(a,b)
k (g(b)−g(t))g′ (t) f (t)dt

+
1

2

∫ Mg(a,b)

a
k (g(t)−g(a))g′ (t) f (t)dt.
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Corollary 5.4. With the assumptions of Theorem 5.1 we have

∣

∣

∣

∣

P̆k,g,a+,b− f −K

(

g(b)−g(a)

2

)

f (b)+ f (a)

2

∣

∣

∣

∣

≤ 1

2

∫ Mg(a,b)

a
|k (g(t)−g(a))|

Mg(a,b)
∨

t

( f )g′ (t)dt

+
1

2

∫ b

Mg(a,b)
|k (g(b)−g(t))|

t
∨

Mg(a,b)

( f )g′ (t)dt

≤ 1

2
K

(

g(b)−g(a)

2

) b
∨

b

( f )

and
∣

∣

∣

∣

P̆k,g,a+,b− f −K

(

g(b)−g(a)

2

)

f (b)+ f (a)

2

∣

∣

∣

∣

≤ 1

2

∫ Mg(a,b)

a
|k (g(t)−g(a))|

t
∨

a

( f )g′ (t)dt

+
1

2

∫ b

Mg(a,b)
|k (g(b)−g(t))|

b
∨

t

( f )g′ (t)dt

≤ 1

2
K

(

g(b)−g(a)

2

) b
∨

b

( f ) .

Finally, we have the following result for the trapezoid functional

Tk,g,a+,b− f :=
1

2

[

Sk,g,a+ f (b)+Sk,g,b− f (a)
]

=
1

2

∫ b

a
[k (g(b)−g(t))+ k (g(t)−g(a))]g′ (t) f (t)dt.

Theorem 5.5. With the assumptions of Theorem 5.1 we have the trapezoid type inequality

∣

∣

∣

∣

Tk,g,a+,b− f −K (g(b)−g(a))
f (a)+ f (b)

2

∣

∣

∣

∣

≤ 1

2
K(g(b)−g(a))

b
∨

a

( f ) . (5.7)

Proof. From the identity (4.3) we have
∣

∣

∣

∣

Tk,g,a+,b− f −K (g(b)−g(a))
f (a)+ f (b)

2

∣

∣

∣

∣

≤ 1

2

∫ b

a
|k (g(b)−g(t))+ k (g(t)−g(a))|

∣

∣

∣

∣

f (t)− f (a)+ f (b)

2

∣

∣

∣

∣

g′ (t)dt

≤ 1

2

∫ b

a
[|k (g(b)−g(t))|+ |k (g(t)−g(a))|]

∣

∣

∣

∣

f (t)− f (a)+ f (b)

2

∣

∣

∣

∣

g′ (t)dt

=: D.

Since f : [a,b]→ C is of bounded variation, then for any t ∈ [a,b] we have
∣

∣

∣

∣

f (t)− f (a)+ f (b)

2

∣

∣

∣

∣

=

∣

∣

∣

∣

f (t)− f (a)+ f (t)− f (b)

2

∣

∣

∣

∣

≤ 1

2
[| f (t)− f (a)|+ | f (b)− f (t)|]≤ 1

2

b
∨

a

( f ) .

Therefore

D ≤ 1

4

b
∨

a

( f )
∫ b

a
[|k (g(b)−g(t))|+ |k (g(t)−g(a))|]g′ (t)dt

=
1

4

b
∨

a

( f ) [K(g(b)−g(a))+K(g(b)−g(a))] =
1

2
K(g(b)−g(a))

b
∨

a

( f ) ,

which proves the desired result (5.7).
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6. Example for an exponential kernel

The above inequalities may be written for all the particular fractional integrals introduced in the introduction.

If we take, for instance k (t) = 1
Γ(α) t

α−1, where Γ is the Gamma function, then we recapture the results for the generalized

left- and right-sided Riemann-Liouville fractional integrals of a function f with respect to another function g on [a,b] as

outlined in [5].

For α, β ∈ R we consider the kernel k (t) := exp [(α +β i) t] , t ∈ R. We have

K (t) =
exp [(α +β i) t]−1

(α +β i)
, if t ∈ R

for α, β 6= 0.

Also, we have

|k (s)| := |exp [(α +β i)s]|= exp(αs) for s ∈ R

and

K(t) =
∫ t

0
exp(αs)ds =

exp(αt)−1

α
if 0 < t,

for α 6= 0.

Let f : [a,b]→ C be a function of bounded variation on [a,b] and g be a strictly increasing function on (a,b) , having a

continuous derivative g′ on (a,b) . We have

E α+β i

g,a+,b− f (x) =
1

2

∫ x

a
exp [(α +β i)(g(x)−g(t))]g′ (t) f (t)dt

+
1

2

∫ b

x
exp [(α +β i)(g(t)−g(x))]g′ (t) f (t)dt

for x ∈ (a,b) .

If g = lnh where h : [a,b]→ (0,∞) is a strictly increasing function on (a,b) , having a continuous derivative h′ on (a,b) ,
then we can consider the following operator as well

κ
α+β i

h,a+,b− f (x)

:= E α+β i

lnh,a+,b− f (x)

=
1

2

[

∫ x

a

(

h(x)

h(t)

)α+β i
h′ (t)
h(t)

f (t)dt +
∫ b

x

(

h(t)

h(x)

)α+β i
h′ (t)
h(t)

f (t)dt

]

,

for x ∈ (a,b) .

By using the inequality (5.1) we have for x ∈ (a,b) that
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∣

∣

∣
E α+β i

g,a+,b− f (x)

−1

2

[

exp [(α +β i)(g(b)−g(x))]−1+ exp [(α +β i)(g(x)−g(a))]−1

(α +β i)

]

f (x)

∣

∣

∣

∣

≤ 1

2

[

∫ b

x
exp(α (g(t)−g(x)))g′ (t)

t
∨

x

( f )dt +
∫ x

a
exp(α (g(x)−g(t)))g′ (t)

x
∨

t

( f )dt

]

≤ 1

2

[

exp(α (g(b)−g(x)))−1

α

b
∨

x

( f ) +
exp(α (g(x)−g(a)))−1

α

x
∨

a

( f )

]

≤ 1

2











































max
{

exp(α(g(b)−g(x)))−1

α , exp(α(g(x)−g(a)))−1

α

}

∨b
a ( f ) ;

[(

exp(α(g(b)−g(x)))−1

α

)p

+
(

exp(α(g(x)−g(a)))−1

α

)p]1/p(

(
∨x

a ( f ))q +
(

∨b
x ( f )

)q)1/q

with p, q > 1, 1
p
+ 1

q
= 1;

[

exp(α(g(b)−g(x)))−1+exp(α(g(x)−g(a)))−1

α

][

1
2

∨b
a ( f )+ 1

2

∣

∣

∣

∨x
a ( f )−∨b

x ( f )
∣

∣

∣

]

for α, β ∈ R with α 6= 0.

By using the inequality (5.2) we also have for x ∈ (a,b) that

∣

∣

∣

∣

E α+β i

g,a+,b− f (x)− 1

2

[

(exp [(α +β i)(g(b)−g(x))]−1) f (b)+(exp [(α +β i)(g(x)−g(a))]−1) f (a)

(α +β i)

]∣

∣

∣

∣

≤ 1

2

[

∫ x

a
exp(α (g(t)−g(x)))g′ (t)

t
∨

a

( f )dt +
∫ b

x
exp(α (g(x)−g(t)))g′ (t)

b
∨

t

( f )dt

]

≤ 1

2

[

exp(α (g(b)−g(x)))−1

α

b
∨

x

( f ) +
exp(α (g(x)−g(a)))−1

α

x
∨

a

( f )

]

≤ 1

2







































































max
{

exp(α(g(b)−g(x)))−1

α , exp(α(g(x)−g(a)))−1

α

}

∨b
a ( f ) ;

[(

exp(α(g(b)−g(x)))−1

α

)p

+
(

exp(α(g(x)−g(a)))−1

α

)p]1/p

×
(

(
∨x

a ( f ))q +
(

∨b
x ( f )

)q)1/q

with p, q > 1, 1
p
+ 1

q
= 1;

[

exp(α(g(b)−g(x)))−1+exp(α(g(x)−g(a)))−1

α

]

×
[

1
2

∨b
a ( f )+ 1

2

∣

∣

∣

∨x
a ( f )−∨b

x ( f )
∣

∣

∣

]

for α, β ∈ R with α 6= 0.

If we denote

E
α+β i

g,a+,b− f := E α+β i

g,a+,b− f (Mg (a,b))

=
1

2

∫ x

a
exp

[

(α +β i)

(

g(b)+g(a)

2
−g(t)

)]

g′ (t) f (t)dt

+
1

2

∫ b

x
exp

[

(α +β i)

(

g(t)− g(b)+g(a)

2

)]

g′ (t) f (t)dt
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then by (5.3) and (5.4) we have the simpler results

∣

∣

∣

∣

∣

∣

E
α+β i

g,a+,b− f −
exp

[

(α +β i) g(b)−g(a)
2

]

−1

(α +β i)
f (Mg (a,b))

∣

∣

∣

∣

∣

∣

≤ 1

2

∫ b

Mg(a,b)
exp

(

α

(

g(t)− g(b)+g(a)

2

))

g′ (t)
t
∨

Mg(a,b)

( f )dt

+
1

2

∫ Mg(a,b)

a
exp

(

α

(

g(b)+g(a)

2
−g(t)

))

g′ (t)
Mg(a,b)
∨

t

( f )dt

≤ 1

2

exp
(

α
(

g(b)−g(a)
2

))

−1

α

b
∨

b

( f ) (6.1)

and

∣

∣

∣

∣

∣

∣

E
α+β i

g,a+,b− f −
exp

[

(α +β i) g(b)−g(a)
2

]

−1

(α +β i)

f (b)+ f (a)

2

∣

∣

∣

∣

∣

∣

≤ 1

2

∫ Mg(a,b)

a
exp

(

α

(

g(t)− g(b)+g(a)

2

))

g′ (t)
t
∨

a

( f )dt

+
1

2

∫ b

Mg(a,b)
exp

(

α

(

g(b)+g(a)

2
−g(t)

))

g′ (t)
b
∨

t

( f )dt

≤ 1

2

exp
(

α
(

g(b)−g(a)
2

))

−1

α

b
∨

b

( f ) . (6.2)

In particular, if we take in (6.1) and (6.2) g = ln t, t ∈ [a,b]⊂ (0,∞) , then by using the notation G(γ,δ ) :=
√

γδ for the

geometric mean of the positive real numbers γ, δ > 0 we have

∣

∣

∣

∣

∣

κ̄
α+β i

a+,b− f −
(

b
a

)α+β i −1

(α +β i)
f (G(a,b))

∣

∣

∣

∣

∣

≤ 1

2

∫ b

G(a,b)

(

t

G(a,b)

)α
1

t

t
∨

G(a,b)

( f )dt +
1

2

∫ G(a,b)

a

(

G(a,b)

t

)α
1

t

G(a,b)
∨

t

( f )dt

≤ 1

2

(

b
a

)α −1

α

b
∨

b

( f )

and

∣

∣

∣

∣

∣

κ̄
α+β i

a+,b− f −
(

b
a

)α+β i −1

(α +β i)

f (b)+ f (a)

2

∣

∣

∣

∣

∣

≤ 1

2

∫ b

G(a,b)

(

G(a,b)

t

)α
1

t

b
∨

t

( f )dt +
1

2

∫ G(a,b)

a

(

t

G(a,b)

)α
1

t

t
∨

a

( f )dt

≤ 1

2

(

b
a

)α −1

α

b
∨

b

( f ) ,

where

κ̄
α+β i

a+,b− f :=
1

2

∫ b

G(a,b)

(

t

G(a,b)

)α+β i
1

t
f (t)dt +

1

2

∫ G(a,b)

a

(

G(a,b)

t

)α+β i
1

t
f (t)dt.
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[6] A. Aglić Aljinović, Montgomery identity and Ostrowski type inequalities for Riemann-Liouville fractional integral, J.

Math., 2014, Art. ID 503195, 6 pp.

[7] T. M. Apostol, Mathematical Analysis, Second Edition, Addison-Wesley Publishing Company, 1975.

[8] A. O. Akdemir, Inequalities of Ostrowski’s type for m- and (α,m)-logarithmically convex functions via Riemann-Liouville

fractional integrals, J. Comput. Anal. Appl., 16(2) (2014), 375–383.

[9] G. A. Anastassiou, Fractional representation formulae under initial conditions and fractional Ostrowski type inequalities,

Demonstr. Math., 48(3) (2015), 357–378.

[10] G. A. Anastassiou, The reduction method in fractional calculus and fractional Ostrowski type inequalities, Indian J. Math.,

56(3) (2014), 333-357.

[11] H. Budak, M. Z. Sarikaya, E. Set, Generalized Ostrowski type inequalities for functions whose local fractional derivatives

are generalized s-convex in the second sense, J. Appl. Math. Comput. Mech., 15(4) (2016), 11–21.

[12] P. Cerone, S. S. Dragomir, Midpoint-type rules from an inequalities point of view. Handbook of analytic-computational

methods in applied mathematics, 135–200, Chapman & Hall/CRC, Boca Raton, FL, 2000.

[13] S. S. Dragomir, The Ostrowski’s integral inequality for Lipschitzian mappings and applications, Comput. Math. Appl.,

38(11-12) (1999), 33-37.

[14] S. S. Dragomir, The Ostrowski integral inequality for mappings of bounded variation, Bull. Austral. Math. Soc., 60(3)

(1999), 495-508.

[15] S. S. Dragomir, On the midpoint quadrature formula for mappings with bounded variation and applications, Kragujevac J.

Math., 22 (2000), 13–19.

[16] S. S. Dragomir, On the Ostrowski’s integral inequality for mappings with bounded variation and applications, Math. Ineq.

Appl. 4 (2001), No. 1, 59-66. Preprint: RGMIA Res. Rep. Coll., 2 (1999), Art. 7.

[17] S. S. Dragomir, Refinements of the generalised trapezoid and Ostrowski inequalities for functions of bounded variation,

Arch. Math., 91(5) (2008), 450–460.

[18] S. S. Dragomir, Refinements of the Ostrowski inequality in terms of the cumulative variation and applications, Analysis

(Berlin) 34 (2014), No. 2, 223–240. Preprint: RGMIA Res. Rep. Coll., 16 (2013), Art. 29.

[19] S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent results, Australian J. Math. Anal.

Appl., 14(1) (2017), 1-287.

[20] S. S. Dragomir, Ostrowski type inequalities for Riemann-Liouville fractional integrals of bounded variation, Hölder and
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1. Introduction

Symplectic geometry provided a language for clasical mechanics. Through its recent huge development, it conquered an

independent and rich territory, as a central branch of differantial geometry and topology. On the other hand Symplectic geometry

is mathematical apparatus of such areas of Physics as classical mechanics, geometrical optics and thermodynamics. İn order

words Symplectic geometry arose from the study of optics and mechanics.

The study of local symplectic invariants of curves in affine symplectic geometry was initialed by Chern and Wang [3]. The

issue has however remained silent for many years, before being taken up on several occasions in recent literature [4, 5, 6, 7].

Recently, Kamran et al. [1] developed the results and obtained explicitly the symplectic invariants and Frenet frames for curves

in affine symplectic geometry by successively differentiating the tangent vector of the curve and using the non-degenerate inner

product associated to the symplectic form. Frenet frame and Frenet formulae of curves by using the equivariant moving frame

method due to Fels and Olver [8, 9].

In the present paper, firstly we give a short view of the basis of symplectic curves in the 4-dimensional symplectic space and

secondly we investigate the conditions for symplectic curves to lie on some subspaces of R4and we give some characterizations

and theorems for symplectic curves.

2. Preliminaries

Let us give brief related to symplectic space. One can found a brief account of the symplectic space in [1, 2]. The symplectic

space Sim = (R4,Ω) is the vector space R4 endowed with the standard symplectic form Ω, given in global Darboux coordinates
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by Ω =
2

∑
i=1

dxi ∧dyi. Each tangent space is endowed with symplectic inner product defined in canonical basis by

〈u,v〉= Ω(u,v) = x1η1 + x2η2 − y1ξ1 − y2ξ2

where u = (x1,x2,y1,y2) and v = (ξ1,ξ2,η1,η2).
A symplectic frame is a smooth section of the bundle of linear frames over R4 which assigns to every point z ∈ R

4 an

ordered basis of tangent vectors a1,a2,a3,a4 with the property that

〈

ai,a j

〉

=
〈

a2+i,a2+ j

〉

= 0,1 ≤ i, j ≤ 2,

〈

ai,a2+ j

〉

= 0, 1 ≤ i 6= j ≤ 2,

〈ai,a2+i〉= 1,1 ≤ i ≤ 2.

Let z(t) : R→ R
4 denotes a local parametrized curve. In our notation, we allow z to be defined on an open interval of R. As it

is customary in classical mechanics, we use the notation
.
z to denote differentiation with respect to the parameter t:

.
z =

dz

dt
.

Definition 2.1. A curve z(t) is said to be symplectic regular if it satisfies the following non-degeneracy condition

〈ż , z̈〉 6= 0 , for all t ∈ R. (2.1)

With no loss of generality, the left-hand side of (2.1) may be assumed positive.

Definition 2.2. Let t0 ∈ R, then the symplectic arc length s of a symplectic regular curve starting at t0 is defined by

s(t) =

t
∫

t0

〈ż , z̈〉1/3
dt for t ≥ t0. (2.2)

Taking the extrerior differential of (2.2) we obtain the symplectic arc length element as

ds = 〈ż , z̈〉1/3
dt.

Dually, the arc length derivative operator is

D =
d

ds
= 〈ż , z̈〉−1/3 d

dt
. (2.3)

In the following, primes are used to denote differentiation with respect to the symplectic arc length derivative operator (2.3)

z
′
=

dz

ds
.

Definition 2.3. A symplectic regular curve is parametrized by symplectic arc length if

〈ż; z̈〉= 1,

for all t ∈ R.

Let z(s) be a symplectic regular curve in Sim = (R4,Ω). In this case there exists only one Frenet frame

{a1(s),a2(s),a3(s),a4 (s)} for which z(s) is a symplectic regular curve with Frenet equations

a
′

1(s) = a3(s)

a
′

2(s) = H2(s)a4 (s)

a
′

3(s) = k1(s)a1(s)+a2(s)

a
′

4 (s) = a1(s)+ k2(s)a2(s)

where H2(s) = constant(6= 0),k1(s), k2(s) are symplectic curvatures of z(s) [1].
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3. The characterizations of symplectic curve in 4-dimensional symplectic space

In this section we will investigate some characterizations of symplectic curve to lie on some subspaces of 4-Dimensional

Symplectic Space. In the following, we use notations and concepts from [10], unless otherwise stated

Case 1 : We will investigate the conditions under which symplectic curve z lies on the subspace spanned by {a3(s),a4(s)}.

In this case we can write

z(s) = λ (s)a3(s)+µ(s)a4(s) (3.1)

for some differentiablae functions λand µ of the parameter s. Diffrentiating (3.1) with respect to s

z
′
(s) = λ

′
(s)a3(s)+µ

′
(s)a4(s)+λ (s)a

′

3(s)+µ(s)a
′

4(s)

and by using Frenet equations we find that

z
′
(s) = (λ (s)k1(s)+µ(s))a1(s)+(λ (s)+µ(s)k2(s))a2(s)+λ

′
(s)a3(s)+µ

′
(s)a4(s)

Since {a1(s),a2(s),a3(s),a4(s)} is a Frenet frame we have the following equations.

λ
′
(s) = 0

µ
′
(s) = 0

λ (s)k1(s)+µ(s) = 1

λ (s)+µ(s)k2(s) = 0

From λ
′
(s) = 0 and µ

′
(s) = 0 we find that λ (s) = c1 and µ(s) = c2.Thus we have the following theorem.

Theorem 3.1. A symplectic curve z in R4 lies on the subspace spanned by {a3(s),a4(s)} if and only if it is in the form

z(s) = c1a3(s)+ c2a4(s)

where k1 = const.,k2 = const. and k1(s) =
1

k2(s)
, c1,c2 are constants.

Case 2: We will investigate the conditions under which symplectic curve z lies on the subspace spanned by {a1(s),a3(s),a4(s)}.

In this case we can write

z(s) = λ (s)a1(s)+µ(s)a3(s)+ γ(s)a4(s) (3.2)

for some differentiable functions λ ,µ and γ of the parameter s. Differentiating (3.2) with respect to s

z
′
(s) = λ

′
(s)a1(s)+µ

′
(s)a3(s)+ γ

′
(s)a4(s)+λ (s)a

′

1(s)+µ(s)a
′

3(s)+ γ(s)a
′

4(s)

and by using Frenet equations we find that

z
′
(s) =

(

λ
′
(s)+µ(s)k1(s)+ γ(s)

)

a1(s)+(µ(s)+ γ(s)k2(s))a2(s)

+
(

µ
′
(s)+λ (s)

)

a3(s)+ γ
′
(s)a4(s)

Since {a1(s),a2(s),a3(s),a4(s)} is a Frenet frame we have the following equations.

λ
′
(s)+µ(s)k1(s)+ γ(s) = 1

µ(s)+ γ(s)k2(s) = 0

µ
′
(s)+λ (s) = 0

γ
′
(s) = 0

We obtain that γ(s) = c,µ(s) =−ck2(s) and λ (s) = ck′2(s). Thus we have the following theorem.
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Theorem 3.2. A symplectic curve z in R4 lies on the subspace spanned by {a1(s),a3(s),a4(s)} if and only if it is in the form

z(s) = ck
′

2(s)a1(s)− ck2(s)a3(s)+ ca4(s)

where k2(s) 6= 0, c is constant.

Case 3 : We will investigate the conditions under which symplectic curve z lies on the subspace spanned by {a2(s),a3(s),a4(s)}.

In this case we can write

z(s) = λ (s)a2(s)+µ(s)a3(s)+ γ(s)a4(s) (3.3)

for some differentiable functions λ ,µ and γ of the parameter s. Differentiating (3.3) with respect to s

z′(s) = λ
′
(s)a2(s)+µ

′
(s)a3(s)+ γ

′
(s)a4(s)+λ (s)a′2(s)+µ(s)a′3(s)+ γ(s)a′4(s)

and by using Frenet equations we find that

z′(s) = (µ(s)k1(s)+ γ(s))a1(s)+
(

λ
′
(s)+µ(s)+ γ(s)k2(s)

)

a2(s)

+µ
′
(s)a3(s)+

(

γ
′
(s)+λ (s)H2(s)

)

a4(s)

Since {a1(s),a2(s),a3(s),a4(s)} is a Frenet frame we have the following equations.

µ(s)k1(s)+ γ(s) = 1

λ
′
(s)+µ(s)+ γ(s)k2(s) = 0

µ
′
(s) = 0

γ
′
(s)+λ (s)H2(s) = 0

Here µ(s) = c1 and by using equations µ(s)k1(s)+ γ(s) = 1 and λ
′
(s)+µ(s)+ γ(s)k2(s) = 0, we find γ(s) = 1− c1K1(s) and

λ (s) =
∫

[c− (1− c1k1(s))k2(s)ds]+ c2

γ(s) =
∫

[[

−
∫

(−c− (1− k1)k2)ds+ c2

]

H2(s)

]

ds+ c3

Thus we have the following theorem.

Theorem 3.3. A symplectic curve z in R4 lies on the subspace spanned by {a2(s),a3(s),a4(s)} if and only if it is in the form

z(s) =−
c1

H2(s)
k′1(s)a2(s)+ c1a3(s)+(1− c1k1(s))a4(s)

or

z(s) =

[

∫

[c1 (k1(s)k2(s)−1)− k2(s)]ds+ c2

]

a2(s)+ c1a3(s)+(1− c1k1(s))a4(s)

where c1,c2 are constants.
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