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Research Article

A New Asymptotic Series and Estimates Related to Euler
Mascheroni Constant

VALENTIN GABRIEL CRISTEA*

ABSTRACT. In this article, we give a new asymptotic series for a sequence (qn) that converges to Euler-Mascheroni’s
constant with the convergence speed as n−4. We present and prove a theorem about how to get the sequence (qn).
Using this asymptotic series, we establish the lower and upper bounds for the sequence (qn).

Keywords: Euler-Mascheroni’s constant, asymptotic series, inequalities.
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1. INTRODUCTION

One of the famous constants in mathematics is the Euler-Mascheroni’s constant
γ = 0, 57721566490153286... . It is defined as the limit of the sequence:

γn = 1 +
1

2
+

1

3
+ ...+

1

n
− lnn

in honor of the Swiss mathematician Leonhard Euler (1707-1783) and the Italian mathemati-
cian Lorenzo Mascheroni (1750-1800), who studied the Euler-Mascheroni’s constant γ. The se-
quence (γn)n≥1 and the constant γ have many applications in several branches of mathematics
as probability, analysis, special functions and number theory. The sequence (γn)n≥1 converges
very slowly to the constant γ, with the convergence speed as n−1. In the beginning, Tims and
Tyrell [18], and then Young [19] got the lower and upper bounds for the sequence (γn)n≥1 as
the following:

1

2 (n+ 1)
< γn − γ <

1

2n

with the convergence speed as n−1. Many authors [2, 3, 6, 7, 10, 12–17] interested in obtaining
sequences that converge very fast to the limit γ. One of them is DeTemple [6], who introduced
the sequence

Rn = 1 +
1

2
+

1

3
+ ...+

1

n
− ln

(
n+

1

2

)
that converges to the limit γ as n−2. Then Mortici [12] has introduced the sequence

(1.1) tn = 1 +
1

2
+ ...+

1

n− 1
+

1

2n
− 1

2
ln

(
n2 − 1

6

)
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2 Valentin Gabriel Cristea

in order to obtain a faster convergence to the limit γ with the convergence speed as n−4 and
the following limit:

lim
n→∞

n4 (tn − γ) =
11

720
.

Then, Cristea [4] has showed in 2014, the following double inequality
11

720n4
− 29

9072n6
< tn − γ <

11

720n4

for all integers n ≥ 1 and has got the following asymptotic series for the sequence (tn) given in
(1.1)

tn = γ +

∞∑
k=2

1

2k

{
1

6k
−B2k

}
1

n2k

or
tn = γ +

11

720n4
− 29

9072n6
+

221

51 840n8
− 6469

855 360n10
+ · · ·

Cristea and Mortici [5] have introduced the sequence

(1.2) sn = 1 +
1

2
+ ...+

1

n− 2
+

13

12 (n− 1)
+

5

12n
− lnn

that converges to the limit γ with the convergence speed as n−3 and have demonstrated the
following double inequality

1

12n3
+

11

120n4
< sn − γ <

1

12n3
+

13

120n4
.

Then, X. Hu, D. Lu, X. Wang [9] have presented the following sequence:

r3n,2 = 1 +
1

2
+ ...+

1

n
− lnn− 1

2
ln

(
1 +

1

n− n
3n+1

)
that converges to the limit γ with the convergence speed as n−4, with the following approxi-
mation:

1

180 (n+ 1)
4 < γ − r3n,2 <

1

180n4
.

The aim of the paper is to introduce a new sequence (qn) that converges very fast to the limit
γ and to establish the lower and upper bounds for this sequence. Motivated by Mortici [12]
and Hu [9], we introduce new sequence

(1.3) qn(a, b, c) = 1 +
1

2
+ ...+

1

n− 2
+

an+ b

n(n− 1)
− 1

3
ln
(
n3 + c

)
,

where a, b, c are real parameters and for a = 3
2 , b = − 5

12 , c = 1
4 the new sequence given by

(1.4) qn = qn(
3

2
,− 5

12
,

1

4
) = 1 +

1

2
+ ...+

1

n− 2
+

13

12 (n− 1)
+

5

12n
− 1

3
ln

(
n3 +

1

4

)
converges to the limit γ with the convergence speed as n−4. We will show the following double
inequality

11

120n4
+

1

12n5
+

181

2016n6
< qn − γ <

11

120n4
+

1

12n5
+

182

2016n6

for all integers n ≥ 2 in the left side inequality and for all integers n ≥ 225 in the right side
inequality. We will also construct the asymptotic series

qn = γ +
11

120n4
+

1

12n5
+

181

2016n6
+

1

12n7
+ · · ·
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for the sequence (qn) (1.4).

2. THE RESULTS

We consider the sequence (qn(a, b, c)) given by (1.3). To obtain the best real parameters
a, b, c, for which the sequence (qn(a, b, c)) converges to γ with the highest convergence speed,
we prove the following theorem:

Theorem 2.1. (i) If a 6= 3
2 , b 6= −

5
12 and c 6= 1

4 then the sequence (qn(a, b, c))n≥1 has the convergence
speed as n−1.

(ii) If a = 3
2 , b 6= −

5
12 and c 6=

1
4 then the sequence (qn(a, b, c))n≥1 has the convergence speed as

n−2.
(iii) If a = 3

2 , b = − 5
12 and c 6=

1
4 then the sequence (qn(a, b, c))n≥1 has the convergence speed as

n−3.
(iv) If a = 3

2 , b = − 5
12 and c = 1

4 then the sequence (qn(a, b, c))n≥1 has the convergence speed as
n−4.

We will use the following:

Lemma 2.1. If the sequence (xn)n≥1 converges to x and if there exists the limit

lim
n→∞

nk (xn − xn+1) = l ∈ R

with k > 1, then there exists the limit

lim
n→∞

nk−1 (xn − x) =
l

k − 1
.

For the proof see [11]. This lemma is a form of Cesaro-Stolz’s lemma. We utilize it in the
construction of the asymptotics series and in order to estimate the convergence speed.

Proof. We compute the difference

qn(a, b, c)− qn+1(a, b, c) =
an+ b

n(n− 1)
− 1

n− 1
− an+ a+ b

n(n+ 1)

−1

3
ln
(
n3 + c

)
+

1

3
ln
(

(n+ 1)
3

+ c
)
.

Using a computer program as Maple, we get

qn(a, b, c)− qn+1(a, b, c) =

(
a− 3

2

)
1

n2
+

(
a+ 2b− 2

3

)
1

n3
+

(
a− c− 5

4

)
1

n4

(2.5) +

(
a+ 2b+ 2c− 4

5

)
1

n5
+O

(
1

n6

)
.

(i) If a− 3
2 6= 0, then

lim
n→∞

n2 (qn(a, b, c)− qn+1(a, b, c)) =

(
a− 3

2

)
6= 0

and Lemma 2.1 says that

lim
n→∞

n (qn(a, b, c)− γ) =

(
a− 3

2

)
6= 0.
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We get that the sequence (qn(a, b, c))n≥1 has the convergence speed as n−1.
(ii) If a = 3

2 , b 6= −
5
12 and c 6= 1

4 then the relation (2.5) is written as

qn(a, b, c)− qn+1(a, b, c) =

(
2b+

5

6

)
1

n3
+

(
1

4
− c
)

1

n4

(2.6) +

(
7

10
+ 2b+ 2c

)
1

n5
+O

(
1

n6

)
.

If b 6= − 5
12 , then from the relation (2.6), we get

lim
n→∞

n3 (qn(a, b, c)− qn+1(a, b, c)) =

(
2b+

5

6

)
6= 0

and Lemma 2.1 says that

lim
n→∞

n2 (qn(a, b, c)− γ) =
1

2

(
2b+

5

6

)
6= 0.

We obtain that the sequence
(
qn( 3

2 , b, c)
)
n≥1 has the convergence speed as n−2.

(iii) If a = 3
2 , b = − 5

12 and c 6= 1
4 then the relation (2.5) is written as

(2.7) qn(a, b, c)− qn+1(a, b, c) =

(
1

4
− c
)

1

n4
+

(
− 2

15
+ 2c

)
1

n5
+O

(
1

n6

)
.

Then from the relation (2.7), we get

lim
n→∞

n4 (qn(a, b, c)− qn+1(a, b, c)) =

(
1

4
− c
)
6= 0

and Lemma 2.1 says that

lim
n→∞

n3 (qn(a, b, c)− γ) =
1

3

(
1

4
− c
)
6= 0.

We get that the sequence
(
qn( 3

2 ,−
5
12 , c)

)
n≥1 has the convergence speed as n−3.

(iv) If a = 3
2 , b = − 5

12 ,and c = 1
4 then the relation (2.5) is written as

(2.8) qn(a, b, c)− qn+1(a, b, c) =
11

30n5
+O

(
1

n6

)
and Lemma 2.1 says that

lim
n→∞

n4 (qn(a, b, c)− γ) =
11

120
.

We get that the sequence
(
qn( 3

2 ,−
5
12 ,

1
4 )
)
n≥1 has the convergence speed as n−4. �

We notice that (2.8) gives us the approximation

qn − γ ≈
11

120n4
as n→∞.

We give the following theorem related to the estimates of (qn) given in (1.4):

Theorem 2.2. We have the following double inequality for all integers n ≥ 2 in the left side inequality
and for all integers n ≥ 225 in the right side inequality:

11

120n4
+

1

12n5
+

181

2016n6
< qn − γ <

11

120n4
+

1

12n5
+

182

2016n6
.
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Proof. We consider the following sequences

an = (qn − γ)−
(

11

120n4
+

1

12n5
+

181

2016n6

)
and

bn = (qn − γ)−
(

11

120n4
+

1

12n5
+

182

2016n6

)
that converges to zero. To prove that an > 0 and bn < 0, it suffices to show that (an)n≥1
is strictly decreasing and (bn)n≥1 is strictly increasing. Let f1(n) = an+1 − an and f2(n) =

bn+1 − bn, where

f1(x) =
8

12x
+

5

12 (x+ 1)
− 1

12 (x− 1)
+

1

3
ln

(
x3 +

1

4

)
− 1

3
ln

(
(x+ 1)

3
+

1

4

)
−

(
11

120 (x+ 1)
4 −

11

120x4

)
−

(
1

12 (x+ 1)
5 −

1

12x5

)
−

(
181

2016 (x+ 1)
6 −

181

2016x6

)

and

f2(x) =
8

12x
+

5

12 (x+ 1)
− 1

12 (x− 1)
+

1

3
ln

(
x3 +

1

4

)
− 1

3
ln

(
(x+ 1)

3
+

1

4

)
−

(
11

120 (x+ 1)
4 −

11

120x4

)
−

(
1

12 (x+ 1)
5 −

1

12x5

)
−

(
182

2016 (x+ 1)
6 −

182

2016x6

)
.

We get

(2.9) f ′1(x) =
P (x− 2)

1680 (x+ 1)
7

(x− 1)
2

(4x3 + 1)
1

(12x+ 12x2 + 4x3 + 5)
1
x5

> 0

for all real numbers x ≥ 2 and

(2.10) f ′2(x) = − Q (x− 225)

120 (x+ 1)
7

(x− 1)
2

(12x+ 12x2 + 4x3 + 5)
1

(4x3 + 1)
1
x7

< 0

for all real numbers x ≥ 225, where

P (x) = 8615781393 + 48322358 535x+ 124 451770884x2 + 195088765300x3

+207843366162x4 + 159018283386x5 + 89932803430x6 + 38082594545x7

+12078804629x8 + 2834912752x9 + 478671564x10 + 55071128x11

+3869824x12 + 125440x13
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and

Q(x) = 22876 348962124636919596278035200

+156125891834161825105090 815353280x

+8964689205792820697567513156375x2

+238298913583029626485888825003x3

+3874001939229085395299660913x4

+42953509800254866165809975x5

+342954298088658683537331x6

+2028513740325127816093x7

+8999214295901801973x8

+29943893833882652x9

+73805584698144x10

+130981721712x11

+158491784x12

+117200x13

+40x14

are two polynomials with positive integers coefficients for all real numbers x ≥ 2 and re-
spectively for all real numbers x ≥ 225. Then, from (2.9), we have f1 is strictly increasing
on [2,∞) and from (2.10), we have f2 is strictly decreasing on [225,∞). It follows that from
f1 (∞) = f2 (∞) = 0, we have f1 < 0 on [2,∞) and f2 > 0 on [225,∞). Thus, (an)n≥2 is strictly
decreasing and (bn)n≥225 is strictly increasing. This concludes the proof. �

We can get the asymptotic series of the sequence (qn) , using the sequence (hn)

hn = 1 +
1

2
+ ...+

1

n− 2
+

1

n− 1
+

1

n

harmonic sum in terms of digamma function ψ

hn = γ +
1

n
+ ψ(n),

with the digamma function defined by

ψ(x) =
d

dx
(ln Γ(x)) =

Γ′(x)

Γ(x)
.

See, e.g., [1, p. 258, Rel. 6.3.2]. We have the following asymptotic expansion for the digamma
function ψ that

ψ (x) = lnx− 1

2x
−
∞∑
k=1

B2k

2kx2k
,

where Bj is the jth Bernoulli numbers given by

1

et − 1
+

1

2
− 1

t
=

∞∑
j=1

(−1)
j−1 t2j

(2j)!
Bj .

We will demonstrate the following theorem related to the asymptotic expansion of qn :
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Theorem 2.3. We get the following asymptotic expansion of (qn) as n→∞ :

qn = γ +
1

12n (n− 1)
−
∞∑
k=1

1

k

{
(−1)

k−1

3 · 4kn3k
+
B2k

2n2k

}
.

Proof. We get

qn = hn −
1

n
+

1

12 (n− 1)
+

5

12n
− 1

3
ln

(
n3 +

1

4

)
= γ + ψ(n) +

1

12 (n− 1)
+

5

12n
− 1

3
ln

(
n3 +

1

4

)
= γ + ψ (n)− lnn+

1

12 (n− 1)
+

5

12n
− 1

3
ln

(
1 +

1

4n3

)
= γ +

1

12 (n− 1)
− 1

2n
+

5

12n
−
∞∑
k=1

B2k

2kn2k
− 1

3
ln

(
1 +

1

4n3

)

= γ +
1

12n (n− 1)
−
∞∑
k=1

1

k

{
(−1)

k−1

3 · 4kn3k
+
B2k

2n2k

}
.

Using the binomial theorem given in [8], we get

1

12n (n− 1)
=

1

12n2
(
1− 1

n

) =
1

12n2
+

1

12n3
+

1

12n4
+

1

12n5
+ · · ·

We get an explicite form as

(2.11) qn = γ +
11

120n4
+

1

12n5
+

181

2016n6
+

1

12n7
+ · · ·

We notice that the three terms of the asymptotic series (2.11) were used for the estimate of qn.
We give the table with the above sequences:

n |tn − γ| |sn − γ| |r3n,2 − γ| |qn − γ|
250 1. 309 35× 10−17 4. 266 67× 10−12 2. 252 98× 10−14 2. 031 75× 10−18

500 2. 045 86× 10−19 2. 666 67× 10−13 7. 075 70× 10−16 3. 174 6× 10−20

1000 3. 196 65× 10−21 1. 666 67× 10−14 2. 216 68× 10−17 4. 960 32× 10−22

10000 3. 196 65× 10−27 1. 666 67× 10−18 2. 221 67× 10−22 4. 960 32× 10−28

50000 2. 045 86× 10−31 2. 666 67× 10−21 7. 110 76× 10−26 3. 174 6× 10−32

Using the values from the above table, we conclude the superiority of the sequence (qn)n≥225
over Mortici’s sequence (tn)n≥225, Lu’s sequence

(
r3n,2

)
n≥225, Cristea and Mortici’s sequence

(sn)n≥225. �

Acknowledgements. The author thanks the editors and the anonymous refree for useful
ideas which improved much the initial form of this paper. Some computations made in this
paper were performed using Maple software.
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are analytic in the unit ball. There are deduced analogs of known growth estimates obtained early for functions ana-
lytic in the unit ball. Our estimates contain logarithm of sup-norm instead of logarithm modulus of the function. They
describe the behavior of logarithm of norm of analytic vector-valued function on a skeleton in a bidisc by behavior of
the function L. These estimates are sharp in a general case. The presented results are based on bidisc exhaustion of a
unit ball.
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1. INTRODUCTION

In this paper, we consider vector-valued functions of bounded L-index in joint variables
which are analytic in the unit ball. This paper is a continuation of investigations initiated in
[1, 2, 3]. There was proposed the definition of L-index boundedness in joint variables and
obtained some criteria of L-index boundedness in joint variables for vector-valued analytic
functions in the unit ball.

Here, we pose the following goal: to obtain growth estimates of analytic functions having bounded
L-index in joint variables. It is important because functions of bounded index has many appli-
cations in analytic theory of linear differential equations. Moreover, vector-valued entire func-
tions of bounded index in joint variables have applications to some system of partial differen-
tial equations [19]. Therefore, combination of sufficient conditions of L-index boundedness for
analytic solutions of the system with growth estimates of functions from this class will give a
priori estimates of growth for all analytical solutions of the system.

Other applications of concept of bounded index in analytic theory of differential equations
were considered for various function classes: entire functions of bounded L-index in direction
[12], entire functions of bounded L-index in joint variables [15], analytic functions in the unit
ball having bounded L-index in joint variables [4], entire bivariate vector-valued function of
bounded index [19].
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2. NOTATIONS, DEFINITIONS AND AUXILIARY PROPOSITIONS

We need some standard notations (for example see [5, 4, 6]). Let R+ = [0; +∞), 0 = (0, 0) ∈
R2

+, 1 = (1, 1) ∈ R2
+, R = (r1, r2) ∈ R2

+, |(z, ω)| =
√
|z|2 + |ω|2. For A = (a1, a2) ∈ R2,

B = (b1, b2) ∈ R2, we will use formal notations without violation of the existence of these
expressions: AB = (a1b1, a2b2), A/B = (a1/b1, a2/b2), AB = (ab11 , a

b2
2 ), and the notation A < B

means that aj < bj , j ∈ {1, 2}; the relation A ≤ B is defined in the similar way. For K =
(k1, k2) ∈ Z2

+, let us denote K! = k1! · k2!. Addition, multiplication by scalar and conjugation
in C2 is defined componentwise. For z ∈ C2, w ∈ C2 we define 〈z, w〉 = z1w1 + z2w2, where
w1, w2 is the complex conjugate of w1, w2.

The bidisc {(z, ω) ∈ C2 : |z − z0| < r1, |ω − ω0| < r2} is denoted by D2((z0, ω0), R), its
skeleton {(z, ω) ∈ C2 : |z − z0| = r1, |ω − ω0| = r2} is denoted by T2((z0, ω0), R), the closed
polydisc {(z, ω) ∈ C2 : |z − z0| ≤ r1, |ω − ω0| ≤ r2} is denoted by D2[(z0, ω0), R], D2 = D2(0;1),
D = {z ∈ C : |z| < 1}. The open ball {(z, ω) ∈ C2 :

√
|z − z0|2 + |ω − ω0|2 < r} is de-

noted by B2((z0, ω0), r), the sphere {(z, ω) ∈ C2 :
√
|z − z0|2 + |ω − ω0|2 = r} is denoted

by S2((z0, ω0), r), and the closed ball {z ∈ C2 :
√
|z − z0|2 + |ω0 − ω0|2 ≤ r} is denoted by

B2[(z0, ω0), r], B2 = B2(0,1), D = B1 = {z ∈ C : |z| < 1}.
Let F (z, ω) = (f1(z, ω), f2(z, ω)) be an analytic vector-function in B2. Then at a point (a, b) ∈

B2, the function F (z, ω) has a bivariate Taylor expansion:

F (z, ω) =

∞∑
k=0

∞∑
m=0

Ckl(z − a)k(ω − b)m,

where Ckm = 1
k!m!

(
∂k+mf1(z,ω)
∂zk∂ωm , ∂

k+mf2(z,ω)
∂zk∂ωm

) ∣∣
z=a,ω=b

= 1
k!m!F

(k,m)(a, b).

Let L(z, ω) = (l1(z, ω), l2(z, ω)), where lj(z, ω) : B2 → R2
+ is a positive continuous function

such that

(2.1) ∀(z, ω) ∈ B2 : lj(z, ω) >
β

1−
√
|z|2 + |ω|2

,

j ∈ {1, 2}, where β >
√

2 is a some constant.
The norm for the vector-function F : B2 → C2 is defined as the sup-norm:

‖F (z, ω)‖ = max
1≤j≤2

{|fj(z, ω)|}.

We write

F (i,j)(z, ω) =
∂i+jF (z, ω)

∂zi∂ωj
=

(
∂i+jf1(z, ω)

∂zi∂ωj
,
∂i+jf2(z, ω)

∂zi∂ωj

)
.

An analytic vector-function F : B2 → C2 is said to be of bounded L-index (in joint variables),
if there exists n0 ∈ Z+ such that

∀(z, ω) ∈ B2 ∀(i, j) ∈ Z2
+ :

(2.2)
‖F (i,j)(z, ω)‖

i!j!li1(z, ω)lj2(z, ω)
≤ max

{
‖F (k,m)(z, ω)‖

k!m!lk1(z, ω)lm2 (z, ω)
: k,m ∈ Z+, k +m ≤ n0

}
.

The least such integer n0 is called the L-index in joint variables of the vector-function F and
is denoted by N(F,L,B2). The concept of boundedness of L-index in joint variables were con-
sidered for other classes of analytic functions. They are differed domains of analyticity: the
unit ball [5, 4, 11, 13], the polydisc [8, 10], the Cartesian product of the unit disc and complex
plane [9], n-dimensional complex space [7, 11, 14]. Vector-valued functions of one and several
complex variables having bounded index were considered in [18, 20, 17, 23, 21, 19].
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The function class Q(B2) is defined as following: ∀R ∈ R2
+, |R| ≤ β, j ∈ {1, 2} :

0 < λ1,j(R) ≤ λ2,j(R) <∞,

where

λ1,j(R) = inf
(z0,ω0)∈B2

inf

{
lj(z, ω)

lj(z0, ω0)
: (z, ω) ∈ D2[(z0, ω0), R/L(z0, ω0)]

}
,(2.3)

λ2,j(R) = sup
(z0,ω0)∈B2

sup

{
lj(z, ω)

lj(z0, ω0)
: (z, ω) ∈ D2[(z0, ω0), R/L(z0, ω0)]

}
.(2.4)

We need some propositions from [1, 2].
For an analytic vector-function F : B2 → C2, we put

M(R, (z0, ω0), F ) = max
{
‖F (z, ω)‖ : (z, ω) ∈ T2((z0, ω0), R)

}
,

where (z0, ω0) ∈ B2, R ∈ R2
+. Then

M(R, (z0, ω0), F ) = max
{
‖F (z, ω)‖ : (z, ω) ∈ D2((z0, ω0), R)

}
,

because the maximum modulus of the analytic vector-function in a closed bidisc is attained on
its skeleton.

To prove an growth estimates, we need the following theorem. The theorem gives sufficient
conditions by the estimate of maximum modulus on the skeleton of bidisc.

Theorem 2.1 ([2]). Let L ∈ Q(B2). If analytic vector-function F : B2 → C2 has bounded L-index in
joint variables, then for all R′, R′′ ∈ R2

+, R′ < R′′, |R′′| ≤ β there exists p1 = p1(R′, R′′) ≥ 1 such
that for every (z0, ω0) ∈ B2 inequality

(2.5) M

(
R′′

L(z0, ω0)
, (z0, ω0), F

)
≤ p1M

(
R′

L(z0, ω0)
, (z0, ω0), F

)
holds.

3. GROWTH ESTIMATES OF ANALYTIC VECTOR-VALUED FUNCTIONS IN THE UNIT BALL

We put [0, 2π]2 = [0, 2π]×[0, 2π]. ForR = (r1, r2) ∈ R2
+, Θ = (θ1, θ2) ∈ [0, 2π]2,A = (a1, a2) ∈

C2, we will write

ReiΘ = (r1e
iθ1 , r2e

iθ2), argA = (arg a1, arg a2).

Denote by K(B2) the class of positive continuous vector-valued functions L = (l1, l2) , where
every lj : B2 → R+ obeys inequality (2.1) and there exists c ≥ 1 such that for all R ∈ R2

+ with
|R| < 1 and j ∈ {1, 2},

max
Θ1,Θ2∈[0,2π]2

lj(Re
iΘ2)

lj(ReiΘ1)
≤ c.

In the case L(z, w) = (l1(|z|, |w|), l2(|z|, |w|)) , we have that L ∈ K(B2). Put β =
(
β√
2
, β√

2

)
.
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Theorem 3.2. Let L ∈ Q(B2)
⋂
K(B2), β > c

√
2. If an analytic vector-function F : B2 → C2 has

bounded L-index in joint variables, then

ln max{|F (z, w)| : (z, w) ∈ T2(0, R)} =

= O

(
min

{
min

Θ∈[0,2π]2

(∫ r1

0

l1(teiθ1 , r2e
iθ2)dt+

∫ r2

0

l2(r0
1, t)dt

)
;

min
Θ∈[0,2π]2

(∫ r1

0

l1(teiθ1 , r2e
iθ2)dt+

∫ r2

0

l2(r0
1, t)dt

)})
,(3.6)

with |R| → 1− 0, R0 = (r0
1, r

0
2) is a fixed radius.

Proof. Let R > 0 , |R| > 1, Θ ∈ [0, 2π]2, and a point (z∗, w∗) ∈ T2
(
0, R+ β

L(ReiΘ)

)
be such that

‖F (z∗, w∗)‖ = max

{
‖F (z, w)‖ : (z, w) ∈ T2(0, R+

β

L(ReiΘ)
)

}
.

We put z0 = z∗r1
R+β/L(ReiΘ) , w0 = w∗r2

R+β/L(ReiΘ) . Thus,

|z0 − z∗| =

∣∣∣∣∣∣ z∗r1

r1 + β

c
√

2l1(ReiΘ)

− z∗
∣∣∣∣∣∣ =

∣∣∣∣∣∣z
∗β/(c

√
2l1(ReiΘ))

r1 + β

c
√

2l1(ReiΘ)

∣∣∣∣∣∣ =
β

c
√

2l1(ReiΘ)
,

|w0 − w∗| =

∣∣∣∣∣∣ w∗r2

r2 + β

c
√

2l2(ReiΘ)

− w∗
∣∣∣∣∣∣ =

∣∣∣∣∣∣w
∗β/(c

√
2l2(ReiΘ))

r2 + β

c
√

2l2(ReiΘ)

∣∣∣∣∣∣ =
β

c
√

2l2(ReiΘ)
,

L(z0, w0) = L

(
z∗r1

R+ β/L(ReiΘ)
,

w∗r2

R+ β/L(ReiΘ)

)
=

= L

(
(R+ β/L(ReiΘ))r1e

i arg z∗

R+ β/L(ReiΘ)
,

(R+ β/L(ReiΘ))r2e
i argw∗

R+ β/L(ReiΘ)

)
=

= L(r1e
i arg z∗ , r2e

i argw∗).

Since L ∈ K(B2), we have

cL(z0, w0) = cL(r1e
i arg z∗ , r2e

i argw∗) ≥ L(r1e
iθ1 , r2e

iθ2) ≥ 1

c
L(z0, w0).

We will consider two skeletons T2
(

(z0, w0), e
L(z0,w0)

)
and T2

(
(z0, w0), β

L(z0,w0)

)
. By Theorem

2.1, there exist p1 = p1

(
e
c , cβ

)
≥ 1 such that (2.5) is true for R′ = e

c , R′′ = cβ :

max

{
‖F (z, w)‖ : (z, w) ∈ T2

(
0, R+

β

L(r1eiθ1 , r2eiθ2)

)}
≤

≤
{
‖F (z, w)‖ : (z, w) ∈ T2

(
(z0, w0),

β

L(r1eiθ1 , r2eiθ2)

)}
≤

≤
{
‖F (z, w)‖ : (z, w) ∈ T2

(
(z0, w0),

cβ

L(z0, w0)

)}
≤

≤ p1

{
‖F (z, w)‖ : (z, w) ∈ T2

(
(z0, w0),

e

cL(z0, w0)

)}
≤

≤ p1

{
‖F (z, w)‖ : (z, w) ∈ T2

(
0, R+

e

L(r1eiθ1 , r2eiθ2)

)}
.(3.7)
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The function ln+ max{‖F (z, w)‖ : (z, w) ∈ T2(0, R)} is convex relative ln r1, ln r2 . Therefore,

ln+ max{‖F (z, w)‖ : (z, w) ∈ T2(0, R)}−

− ln+ max{‖F (z, w)‖ : (z, w) ∈ T2(0, R+ (r0
1 − r1)e1)} =

∫ r1

r0
1

A1(t, r2)

t
dt,(3.8)

ln+ max{‖F (z, w)‖ : (z, w) ∈ T2(0, R)}−

− ln+ max{‖F (z, w)‖ : (z, w) ∈ T2(0, R+ (r0
2 − r2)e2)} =

∫ r2

r0
2

A2(r1, t)

t
dt(3.9)

for each 0 < r0
j < rj , j{1, 2} , where functions A1(t, r2), A2(r1, t) are positive non-decreasing t.

Then from (3.7), we obtain

ln p1 ≥ ln max

{
‖F (z, w)‖ : (z, w) ∈ T2

(
0, R+

β

L(ReiΘ)

)}
−

− ln max

{
‖F (z, w)‖ : (z, w) ∈ T2

(
0, R+

e

L(ReiΘ)

)}
=

= ln max

{
‖F (z, w)‖ : (z, w) ∈ T2

(
0, R+

e + ( β√
2c
− 1)e1

L(ReiΘ)

)}
−

− ln max

{
‖F (z, w)‖ : (z, w) ∈ T2

(
0, R+

e + ( β√
2c
− 1)e2

L(ReiΘ)

)}
=

=

∫ r1+β/(c
√

2l1(ReiΘ))

r1+1/l1(ReiΘ)

1

t
A1

(
t, r2 +

β

c
√

2l2(ReiΘ)

)
dt+

+

∫ r2+β/(c
√

2l2(ReiΘ))

r2+1/l2(ReiΘ)

1

t
A2

(
r1 +

β

c
√

2l1(ReiΘ, t)

)
dt ≥

≥ ln

(
1 +

β√
2c
− 1

r1l1(ReiΘ) + 1

)
A1

(
r1, r2 +

1

l2(ReiΘ)

)
+ ln

(
1 +

β√
2c
− 1

r2l2(ReiΘ) + 1

)
×

×A2

(
r1 +

1

l1(ReiΘ)
, r2

)
.(3.10)

Then, we have rj lj(ReiΘ) −→ +∞with |R| −→ 1− 0 . We obtain, for j ∈ {1, 2} and rj ≥ r0
j :

ln

(
1 +

β√
2c
− 1

rj lj(ReiΘ) + 1

)
∼

β√
2c
− 1

rj lj(ReiΘ) + 1
≥

β√
2c
− 1

2rj lj(ReiΘ)
.

Thus, (3.10) implies that

A1

(
r1, r2 +

β

c
√

2
l2(ReiΘ)

)
≤ 2 ln p1

β

c
√

2
− 1

r1l1(ReiΘ),

A2

(
r1

β

c
√

2l1(ReiΘ)
, r2

)
≤ 2 ln p1

β

c
√

2
− 1

r2l2(ReiΘ).
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Let R0 = (r0
1, r

0
2), where r0

j it is chosen higher. From inequalities (3.8) and (3.9) , it follows that

ln max
{
‖F (z, w)‖ : (z, w) ∈ T2(0, R)

}
=

= ln max
{
‖F (z, w)‖ : (z, w) ∈ T2(0, R+ (r0

1 − r1)e1)
}

+

∫ r1

r0
1

A1(t, r2)

t
dt =

= ln max
{
‖F (z, w)‖ : (z, w) ∈ T2(0, R+ (r0

1 − r1)e1 + (r0
2 − r2)e2)

}
+

+

∫ r1

r0
1

A1(t, r2)

t
dt+

∫ r2

r0
2

A2(r0
1, t)

t
dt =

= ln max
{
‖F (z, w)‖ : (z, w) ∈ T2(0, R0)

}
+

2 ln p1

β√
2c
− 1
×

×
(∫ r1

0

l1(teiθ1 , r2e
iθ2)dt+

∫ r2

0

l2(r0
1e
iθ1 , teiθ2)dt

)
≤

≤ (1 +O(1))
2 ln p1

β

c
√

2
− 1

(∫ r1

0

l1(teiθ1 , r2e
iθ2)dt+

∫ r2

0

l2(r0
1e
iθ1 , teiθ2)dt

)
.

Function ln max{‖F (z, w)‖ : (z, w) ∈ T2(0, R)} is independent of Θ . We obtain

ln max{‖F (z, w)‖ : (z, w) ∈ T2(0, R)} =

= O( min
Θ∈[0,2π]2

(∫ r1

0

l1(teiθ1 , r2e
iθ2)dt+

∫ r2

0

l2(r0
1e
iθ1 , teiθ2)dt

)
,

with |R| −→ 1− 0 . Theorem is proved. �

Corollary 3.1. If L ∈ Q(B2)
⋂
K(B2), minΘ∈[0,2π]2 lj(Re

iΘ) is non-decreasing in each variable rk,
k ∈ {1, 2}, j ∈ {1, 2}, k 6= j, an analytic vector-function F : B2 → C2 has bounded L-index in joint
variables, then

ln max{‖F (z, w)‖ : (z, w) ∈ T2(0, R)} = O

 min
Θ∈[0,2π]2

2∑
j=1

∫ rj

0

lj(R
(j)eiΘ)dt

 ,

as |R| −→ 1− 0, with R(1) = (t, r2), R(2) = (r1, t).

We denote a+ = max{a, 0}, uj(t) = uj(t, R,Θ) = lj
(
tR
r∗ e

iΘ
)
, with a ∈ R, t ∈ R+, j ∈ {1, 2} ,

r∗ = max1≤j≤2 rj 6= 0 and t
r∗ |R| < 1.

Theorem 3.3. Let L(ReiΘ) be a positive continuously differentiable function in each variable rk, k ∈
{1, 2}, |R| < 1, Θ ∈ [0, 2π]2 . If the function L obeys inequality (2.1) and an analytic vector-function
F : B2 → C2 has bounded L-index in joint variables, then for each Θ ∈ [0, 2π]2 and for all R ∈ R2

+,
|R| < 1 and (s, p) ∈ Z2,

ln max

{
‖F (s,p)(ReiΘ)‖

s!p!ls1(ReiΘ)lp2(ReiΘ)
: s+ p ≤ N

}
≤

≤ ln max

{
‖F (s,p)(0)‖
s!p!ls1(0)lp2(0)

: s+ p ≤ N
}

+∫ r∗

0

(
max
s+p≤N

{
(s+ 1)l1

( τ
r∗
ReiΘ

)
+ (p+ 1)l2

( τ
r∗
ReiΘ

)}
+

+ max
s+p≤N

{
s(−u′1(τ))+

l1( τr∗Re
iΘ)

+
p(−u′2(τ))+

l2( τr∗Re
iΘ)

})
dτ.(3.11)
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Proof. Let R ∈ R2 \ {0}, Θ ∈ [0, 2π]2. We put aj =
rj
r∗ , j ∈ {1, 2} and A = (a1, a2). Consider the

function

g(t) = max

{
‖F (s,p)(AeiΘ)‖

s!p!ls1(AeiΘ)lp2(AeiΘ)
: s+ p ≤ N

}
,(3.12)

where At = (a1t, a2t), AteiΘ = (a1t
iθ1 , a2t

iθ2).
Since the function

‖F (s,p)(a1e
iθ1 , a2e

iθ2)‖
s!p!ls1(a1eiθ1 , a2eiθ2)lp2(a1eiθ1 , a2eiθ2)

is continuously differentiable function of real variable t ∈ [0; +∞), outside the zero set of func-
tion ‖F (s,p)(a1e

iθ1 , a2e
iθ2)‖, then g(t) is also a continuously differentiable function on [0, r

∗

|R| )

except for a countable set of points.
Hence, in view of d

dr |g(r)| ≤ |g′(r)| , which holds everywhere except r = t, where g(t) = 0 we
obtain that:

d

dt

(
‖F (s,p)(a1e

iθ1 , a2e
iθ2)‖

s!p!ls1(a1eiθ1 , a2eiθ2)lp2(a1eiθ1 , a2eiθ2)

)
=

=
1

s!p!ls1(a1eiθ1 , a2eiθ2)lp2(a1eiθ1 , a2eiθ2)

d

dt
‖F (s,p)(a1e

iθ1 , a2e
iθ2)‖+ ‖F (s,p)(a1e

iθ1 , a2e
iθ2)‖×

× d

dt

1

s!p!ls1(a1eiθ1 , a2eiθ2)lp2(a1eiθ1 , a2eiθ2)
≤ 1

s!p!ls1(a1eiθ1 , a2eiθ2)lp2(a1eiθ1 , a2eiθ2)
×

×
(
‖F (s+1,p)(a1e

iθ1 , a2e
iθ2)a1e

iθ1‖+ ‖F (s,p+1)(a1e
iθ1 , a2e

iθ2)a2e
iθ2‖

)
−

− ‖F (s,p)(a1e
iθ1 , a2e

iθ2)‖
s!p!ls1(a1eiθ1 , a2eiθ2)lp2(a1eiθ1 , a2eiθ2)

(
su′1(t)

l1(AteiΘ)
+

pu′2(t)

l2(AteiΘ)

)
≤

≤ ‖F (s+1,p)(a1e
iθ1 , a2e

iθ2)‖
(s+ 1)!p!ls+1

1 (a1eiθ1 , a2eiθ2)lp2(a1eiθ1 , a2eiθ2)
a1(s+ 1)l1(a1e

iθ1 , a2e
iθ2)+

+
‖F (s,p+1)(a1e

iθ1 , a2e
iθ2)‖

s!(p+ 1)!ls1(a1eiθ1 , a2eiθ2)lp+1
2 (a1eiθ1 , a2eiθ2)

a2(p+ 1)l2(a1e
iθ1 , a2e

iθ2)+

+
‖F (s,p)(a1e

iθ1 , a2e
iθ2)‖

s!p!ls1(a1eiθ1 , a2eiθ2)lp2(a1eiθ1 , a2eiθ2)

(
s(−u′1(t))+

l1(AteiΘ)
+
p(−u′2(t))+

l2(AteiΘ)

)
.(3.13)
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For absolutely continuous functions h1, h2 and h(x) := max{hj(z, w) : 1 ≤ j ≤ 2}, one has
h′(x) ≤ max{h′j(z, w) : 1 ≤ j ≤ 2}, x ∈ [a, b]. The function g is absolutely continuous. There-
fore, (3.13) implies that

g′(t) ≤ max

{
d

dt

(
‖F (s,p)(a1e

iθ1 , a2e
iθ2)‖

s!p!ls1(a1eiθ1 , a2eiθ2)lp2(a1eiθ1 , a2eiθ2)

)
: s+ p ≤ N

}
≤

≤ max
s+p≤N

{
a1(s+ 1)l1(AeiΘ)‖F (s+1,p)(AeiΘ)‖

(s+ 1)!p!ls+1
1 (AeiΘ)lp2(AeiΘ)

+

+
a2(p+ 1)l2(AeiΘ)‖F (s,p+1)(AeiΘ)‖

s!(p+ 1)!ls1(AeiΘ)lp+1
2 (AeiΘ)

+

+
‖F (s,p)(AeiΘ)‖

s!p!ls1(AeiΘ)lp2(AeiΘ)

(
s(−u′1(t))+

l1(AeiΘ)
+
p(−u′2(t))+

l2(AeiΘ)

)}
≤

≤ g(t)( max
s+p≤N

{a1(s+ 1)l1(AeiΘ) + a2(p+ 1)l2(AeiΘ)}+

+ max
s+p≤N

{
s(−u′1(t))+

l1(AeiΘ)
+
p(−u′2(t))+

l2(AeiΘ)

}
) =

= g(t)(β(t) + γ(t)),

with

β(t) = max
s+p≤N

{
a1(s+ 1)l1(AeiΘ) + a2(p+ 1)l2(AeiΘ)

}
,

γ(t) = max
s+p≤N

{
s(−u′1(t))+

l1(AeiΘ)
+
p(−u′2(t))+

l2(AeiΘ)

}
.

Then, d
dt ln g(t) ≤ β(t) + γ(t) and

g(t) ≤ g(0) exp

∫ t

0

(β(τ) + γ(τ))dτ,(3.14)

because g(0) 6= 0. But, one has r∗A = R. It follows from (3.14) and (3.12) that

ln max

{
‖F (s,p)(ReiΘ)‖

s!p!ls1(ReiΘ)lp2(ReiΘ)
: s+ p ≤ N

}
≤ ln max

{
‖F (s,p)(0)‖
s!p!ls1(0)lp2(0)

: s+ p ≤ N
}

+

+

∫ r∗

0

max
s+p≤N

{
a1(s+ 1)l1(AτeiΘ) + a2(p+ 1)l2(AτeiΘ)

}
dτ+

+

∫ r∗

0

max
s+p≤N

{
s(−u′1(τ))+

l1(AτeiΘ)
+
p(−u′2(τ))+

l2(AτeiΘ)

}
dτ.

Inequality (3.14) is true. �

Proposition 3.1. Let L(ReiΘ) be a positive continuously differentiable function in each variable rk,k ∈
{1, 2}, |R| < 1, Θ ∈ [0, 2π]2. If the function L obeys inequality (2.1) and an analytic vector-function
F : B2 → C2 has bounded L-index N = N(F,L,B2) in joint variables and there exists C > 0 such
that the function L satisfies the inequality

sup
|R|<1

max
t∈[0,r∗]

max
Θ∈[0,2π]2

max
1≤j≤2

(−(uj(t, R,Θ))′t)
+

rj
r∗ l

2
j (

t
r∗Re

iΘ)
≤ C(3.15)
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and

lim|R|−→1−0
ln max{‖F (z, w)‖ : (z, w) ∈ T2(0, R)}

maxΘ∈[0,2π]2
∫ 1

0
〈R,L(τ,ReiΘ)〉dτ

≤ (C + 1)N + 1.(3.16)

Proof. If the function L satisfies inequality (2.1), then

max
Θ∈[0,2π]2

∫ 1

0

〈R,L(τReiΘ)〉dτ −→ +∞, as|R| −→ 1− 0.(3.17)

We put β̃(t) =
∑2
j=1 aj lj(Ate

iΘ). If in addition (3.15) holds, then for some s∗, p∗, s∗ + p∗ ≤ N

and s̃, p̃, s̃+ p̃ ≤ N ,

γ(t)

β̃(t)
=

s∗(−u′1(t))+

l1(AteiΘ) +
p∗(−u′2(t))+

l2(AteiΘ)∑2
j=1 aj lj(Ate

iΘ)
≤ s∗ (−u′1(t))+

a1l21(AteiΘ)
+ p∗

(−u′2(t))+

a2l22(AteiΘ)
≤

≤ (s∗ + p∗)C ≤ NC

and

β(t)

β̃(t)
=
a1(s̃+ 1)l1(AteiΘ) + a2(p∗ + 1)l2(AteiΘ)∑2

j=1 aj lj(Ate
iΘ)

= 1 +
a1s̃l1(AteiΘ)

a1l1(AteiΘ)
+

+
a2p̃l2(AteiΘ)

a2l2(AteiΘ)
≤ 1 + s̃+ p̃ ≤ 1 +N.

But, ‖F (AteiΘ)‖ ≤ g(t) ≤ g(0) exp
∫ t

0
(β(τ)+γ(τ))dτ and r∗A = R. Put t = r∗. In view of (3.17),

we have

ln max{‖F (z, w)‖ : (z, w) ∈ T2(0, R)} = ln max
Θ∈[0,2π]2

‖F (ReiΘ)‖ ≤

≤ ln max
Θ∈[0,2π]2

g(r∗) ≤ ln g(0) + max
Θ∈[0,2π]2

∫ r∗

0

(β(τ) + γ(τ))dτ ≤

≤ ln g(0) + (NC +N + 1) max
Θ∈[0,2π]2

∫ r∗

0

(β̃(τ))dτ =

= ln g(0) + (NC +N + 1) max
Θ∈[0,2π]2

∫ r∗

0

2∑
j=1

aj lj(Aτe
iΘ)dτ =

= ln g(0) + (NC +N + 1) max
Θ∈[0,2π]2

∫ r∗

0

2∑
j=1

rj
r
lj(

τ

r∗
ReiΘ)dτ =

= ln g(0) + (NC +N + 1) max
Θ∈[0,2π]2

∫ 1

0

2∑
j=1

rj lj(τRe
iΘ)dτ.

Then, (3.16) is true. The Proposition 3.1 is proved. �

Proposition 3.2. Let L(ReiΘ) be a positive continuously differentiable function in each variable rk,k ∈
{1, 2}, |R| < 1, Θ ∈ [0, 2π]2. If the function L obeys inequality (2.1) and an analytic vector-function
F : B2 → C2 has bounded L-index N = N(F,L) in joint variables and

r∗(−(uj(t, R,Θ))′t
∣∣
t=r∗

)+/(rj l
2
j (Re

iΘ)) −→ 0(3.18)
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for all Θ ∈ [0, 2π]2, j ∈ {1, 2}, with |R| −→ 1− 0 , then

lim|R|−→1−0
ln max{‖F (z, w)‖ : (z, w) ∈ T2(0, R)}

maxΘ∈[0,2π]2
∫ 1

0
〈R,L(τ,ReiΘ)〉dτ

≤ N + 1.(3.19)

If L(z, w) = L(r1, r2) = L(R), then (3.18) can be rewritten in another form.

Corollary 3.2. Let L(R) be a positive continuously differentiable function in each variable rk, k ∈
{1, 2}, |R| < 1. If the function L obeys inequality (2.1) and an analytic vector-function F : B2 → C2

has bounded L-index N = N(F,L) in joint variables and for each j ∈ {1, 2}
〈R,∇lj(R)〉
rj l2j (R)

−→ 0,

with |R| −→ 1− 0, then

lim|R|−→1−0
ln max{‖F (z, w)‖ : (z, w) ∈ T2(0, R)}∫ 1

0
〈R,L(τR)〉dτ

≤ N + 1,

where ∇lj(R) =
(
∂l1(R)
∂r1

, ∂l2(R)
∂r2

)
.

The main result in this section is following:

Theorem 3.4. Let L(R) = (l1(R), l2(R)), lj(R) be a positive continuously differentiable non-decreasing
function in each variable rk, k ∈ {1, 2},|R| < 1. If the function L obeys inequality (1) and an analytic
vector-function F : B2 → C2 has bounded L-index N = N(F,L) in joint variables, then

lim|R|−→1−0
ln max{‖F (z, w)‖ : (z, w) ∈ T2(0, R)}∫ 1

0
〈R,L(τR)〉dτ

≤ N + 1.

Proof. Note that L(ReiΘ) ≡ L(R) in this theorem. Since lj(R) is a positive continuously dif-
ferentiable non-decreasing function and uj(t) = uj(t, R) = lj

(
tR
r∗

)
, one has (uj(t, R))′t ≤ 0.

Therefore, we obtain r∗(−(uj(t, R))′t
∣∣
t=r∗

)+/(rj l
2
j (R)) = 0. Thus, condition (3.18) is satisfied.

Thus, the theorem is a direct consequence of the Proposition 3.2. �
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Decay of Fourier Transforms and Generalized Besov Spaces
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ABSTRACT. A characterization of the generalized Lipschitz and Besov spaces in terms of decay of Fourier trans-
forms is given. In particular, necessary and sufficient conditions of Titchmarsh type are obtained. The method is based
on two-sided estimate for the rate of approximation of a β-admissible family of multipliers operators in terms of decay
properties of Fourier transforms.
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1. INTRODUCTION

The study of decay of Fourier transform / Fourier coefficients is one of the classical
topics in Fourier analysis. Classical inequalities as Hardy-Littlewood and Haurdorsff-Young
(see [29]) give us the basic decay of Fourier transforms. Titchmarsh showed ([29]) that the decay
of Fourier transform can be improved for univariate functions satisfying a Lipschitz condition
defined by smoothness. His result reads as follows.

Theorem 1.1. ([29, Theorem 85]) Let f ∈ L2 and f̂ its Fourier transform. The following conditions
are equivalent ∫ ∞

−∞
|f(x+ h)− f(x− h)|2dx = O(h2α) as h→ 0+ (0 < α < 1)

and ∫
1/h≤|x|

[f̂(x)]2dx = O(h2α) as h→ 0+.

Extensions of the Titchmarsh theorem were obtained by several authors ([19, 20, 21, 33])
and can be extended to higher dimensional Euclidean spaces ([7, 34]) replacing the majorant
function ϕ(h) = hα in the Lipschitz condition by a regularly varying one ([4, 16]). The problem
concerning about Fourier series on T can be found in [24, 25] while for Fourier transforms in
[31]. The problem in Lp(Rd) for Fourier series can be seen in [13, 18] and for Fourier transforms
we suggest [6, 8, 13] and references quoted there.

In this paper, we provide a further extension of Theorem 1.1 for functions in Lp(Rd) and
an abstract Lipschitz condition, see Theorem 1.3 below. In particular, for p = 2, d = 1 and
ϕ(t) = tα, t ∈ (0,∞), 0 < α < 1, our achievement recovers Theorem 1.1, due Lemma 2.2. In
order to present this generalized version of the result, we need to establish a two-sided estimate
for the rate of approximation of an admissible family of multipliers operators in terms of decay
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DOI: 10.33205/cma.646557
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properties of Fourier transforms. This extends the known results proved in [13] for d ≥ 2 and
for the combination of multivariate averages.

For d ≥ 1 the Fourier transform f̂ of a function f , in the Schwartz class S(Rd), is given by

f̂(ξ) =

∫
Rd

f(x)eiξ·xdx, x ∈ Rd.

We write Lp(Rd) := (Lp(Rd), ‖ · ‖p) for the usual Banach spaces of p-integrable functions (1 ≤
p ≤ ∞).

We deal with a family of multipliers operators ([23]) {Tt}t>0 on Lp(Rd) with its multiplier
family {ηt}t>0 generated by dilations of a measurable function η : (0,∞) −→ R, i.e.,

Tt(f)̂(ξ) = ηt(|ξ|)f̂(ξ),

where ηt(|ξ|) := η(t|ξ|), for all ξ ∈ Rd and t > 0. If there exists γ > 0 such that

(1.1) [min(1, ts)]2γ � |1− ηt(s)|, for all t > 0,

then we say that {Tt}t>0 is a γ-admissible family of multipliers operators on Lp(Rd). A well-known
admissible family of multipliers operators , on Lp(Rd) for d ≥ 2, includes the classical spherical
mean operator and its combinations (see [2, 9, 13] and references quoted there).

We will employ generalized Lipschitz (and Besov) classes defined in terms of the rate of ap-
proximation of an admissible family of multipliers operators. The main point of the definition
resides on the majorant function (defined ahead) and not on the fractional choice of orders of
admissibility for the families of multipliers operators above. Indeed, no new Lipschitz/Besov
classes are given just by considering fractional orders admissible family of multipliers opera-
tors, due condition (1.1) and Marchaud-type inequalities (see [10, 22, 30] and references quoted
there).

In order to state the main theorems of the paper, we need to introduce some more definition.
A majorant function in this paper is always a nondecreasing measurable functionϕ : (0,∞) −→
R+ such that

lim
t→0+

ϕ(t)→ 0,

and

(1.2)
∫ t

0

ϕ(u)

u
du . ϕ(t) for all t > 0.

We denote by M the collection of all majorant functions. For β > 0, we define the following
subset of M

Ωβ :=

{
ϕ ∈M :

∫ ∞
t

ϕ(u)

uβ+1
du .

ϕ(t)

tβ
, t > 0

}
.

The family Ωβ can be defined in terms of the almost monotonicity property.
A function ϕ : (0,∞) −→ R+ is β-almost decreasing ([4, p. 72]) if it satisfies the condition:

ϕ(u2)

uβ2
.
ϕ(u1)

uβ1
, for any u1 ≤ u2.

For β > 0, we write

Ω′β := {ϕ ∈M : there exists 0 < ε < β such that ϕ is (β − ε)-almost decreasing} .

A(t) � B(t) stands for B(t) . A(t) and A(t) . B(t), where A(t) . B(t) means that A(t) ≤ cB(t), for some
constant c > 0 not depending upon t.
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Simple calculations and Bari-Stechkin Lemma ([1], see also [26, p.754]) are enough to prove
that the classes Ω′β and Ωβ coincide:

(1.3) Ωβ = Ω′β , for each β > 0.

Obviously, ⋃
0<α<β

Ωα = Ωβ , for any β > 0.

In fact, for any 0 < α < β we have Ωα ⊂ Ωβ . In order to verify equality above, is enough to
prove that for a given ϕ ∈ Ωβ there exists 0 < α < β such that ϕ ∈ Ωα. If ϕ ∈ Ωβ , then (1.3)
implies that ϕ is (β − ε)-almost decreasing, for some 0 < ε < β. It means that for any t ≤ s, it
holds

ϕ(s)

sβ−ε/2
.

ϕ(t)

tβ−εsε/2
.

Integrating both sides of inequality above, we obtain∫ ∞
t

ϕ(s)

sβ−ε/2+1
ds .

ϕ(t)

tβ−ε

∫ ∞
t

s−ε/2−1ds = 2/ε
ϕ(t)

tβ−ε/2
.

Thus, ϕ ∈ Ωβ−ε/2.
An interesting subclass of Ωβ is given via the following definition. A function f : (0,∞) −→

R+ is regularly varying ([16]) with index α ∈ R if for any λ > 0, it holds f(λx)/f(x) → λα as
x →∞. We write RVα for the set of all regularly varying functions with index α. It is not hard
to see that if ϕ ∈ RVα, then it can be represented as ϕ(x) = xας(x), x ∈ (0,∞), where ς is a
regularly varying function with index zero (i.e., a slowly varying function). More than that the
Representation Theorem ([4, p. 17]) gives a characterization for all regularly varying functions.

We observe that RVα ( Ωβ , for all 0 < α < β. This fact follows from basic theory of regularly
varying functions, the needed details can be found in [4, p. 68–72]. Due to this, the following
functions belong to Ωβ ,

tα ln(1 + t), (t ln(1 + t))α, tα ln(ln(e+ t)), tα exp

[
ln t

ln(ln t)

]
and

tα exp[(log t)α1(log2 t)
α2 . . . (logn t)

αn ],

where αi ∈ (0, 1), i = 1, 2, . . . , n, for all 0 < α < β. The usual majorant function employed in
the Titchmarsh theorem ϕ(t) = tα, belongs to Ωβ if and only if 0 < α < β.

Definition 1.2. For ϕ ∈ Ω2β , we define the generalized Lipschitz class in Lp(Rd) by

(1.4) Lip (p, β, ϕ) =
{
f ∈ Lp(Rd) : ‖Tt(f)− f‖p = O(ϕ(t)) as t→ 0+

}
, 1 ≤ p ≤ ∞,

where {Tt}t is a β-admissible family of multipliers operators.

Necessary and sufficient conditions of Titchmarsh type for the generalized Lipschitz class
read as follow.

Theorem 1.3. Let {Tt}t>0 be a β-admissible family of multipliers operators on Lp(Rd) and ϕ ∈ Ω2β .
(A) Let 1 < p ≤ 2 and p ≤ q ≤ p′. If f ∈ Lip (p, β, ϕ), then

(1.5)

(∫
t≤|ξ|≤2t

[
|ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
dξ

)1/q

= O
(
ϕ(t−1)

)
, as t→∞.
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(B) Let 2 ≤ p <∞, | · |d(1−1/p−1/q)f̂(·) ∈ Lq and p′ ≤ q ≤ p. If(∫
t≤|ξ|≤2t

[
|ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
dξ

)1/q

= O
(
ϕ(t−1)

)
, as t→∞,

then f ∈ Lip (p, β, ϕ).

In order to define the generalized Besov spaces, we need to restrict our majorant classes as
follows. For 0 < q, γ <∞, we write

Ωqγ :=

{
ϕ ∈ Ωγ :

∫ 1

0

1

[ϕ(t−1)]q
dt

t
<∞

}
.

Definition 1.4. For 0 < q <∞ and ϕ ∈ Ωq2β , we define the generalized Besov space Bϕp,q(Rd) by

(1.6) Bϕp,q(Rd) =

{
f ∈ Lp(Rd) : |f |Bϕ

p,q
:=

∫ 1

0

(
‖Tt(f)− f‖p

ϕ(t)

)q
dt

t
<∞

}
.

For q =∞ and ϕ ∈ Ωγ ,

Bϕp,∞(Rd) :=

{
f ∈ Lp(Rd) : |f |Bϕ

p,∞ := sup
t>0

{
‖Tt(f)− f‖p

ϕ(t)

}
<∞

}
.

As usual, if q <∞, we endow Bϕp,q with the norm ‖ · ‖Bϕ
p,q

:=
(
‖ · ‖qp + | · |Bϕ

p,q

)1/q
, otherwise

‖ · ‖Bϕ
p,∞ := ‖ · ‖p + | · |Bϕ

p,∞ . In particular, for q =∞, these spaces are the generalized Lipschitz
ones. The Besov spaces here seem to depend upon a majorant function and an admissible
family of multipliers operators, but, as usual, that is not true. As a matter of fact, this is a topic
of investigation [14].

The following gives us necessary and sufficient conditions in terms of decay properties of
Fourier transforms for functions in the generalized Besov spaces.

Theorem 1.5. Let {Tt}t>0 be a β-admissible family of multipliers operators on Lp(Rd) and ϕ ∈ Ωq2β .

(A) Let 1 < p ≤ 2 and p ≤ q ≤ p′. If f ∈ Bϕp,q(Rd), then

(1.7)
∫ ∞
0

∫
t≤|ξ|≤2t

(
|ξ|d(1−1/p−1/q)|f̂(ξ)|

ϕ(|ξ|−1)

)q
dξ
dt

t
<∞.

(B) Let 2 ≤ p <∞, | · |d(1−1/p−1/q)f̂(·) ∈ Lq and p′ ≤ q ≤ p. If

(1.8)
∫ ∞
0

∫
t≤|ξ|≤2t

(
|ξ|d(1−1/p−1/q)|f̂(ξ)|

ϕ(|ξ|−1)

)q
dξ
dt

t
<∞,

then f ∈ Bϕp,q(Rd).

For the particular choice ϕ(t) = tα, 0 < α < ` for some ` ∈ N, and the `-th family of

combinations of multivariate averages on Rd, for d ≥ 2, spaces Bϕp,q(Rd) ∩ ĜM
d

p became the

ones characterized in [13, Section 7] (ĜM
d

p is defined ahead).
The paper is organized as follows. In Section 2, we present a two-sided estimate for the

rate of approximation of an β-admissible family of multipliers operators in terms of decay
properties of Fourier transforms. This estimate plays a crucial role in the proof of Theorem 1.3,
presented in this section. The inverse Fourier-Hankel transform of certain radial functions is
applied in order to show the necessity of the condition concerning the majorant functions in
order to prove Theorem 1.3. Section 3 is regarded to the proof of Theorem 1.5. Finally, in Section
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4, we present the concept of general monotonicity of functions (GMd
p class) and we outline

how to make assumptions in Theorems 1.3 and 1.5 less restrictive. As a corollary, we prove a

pointwise inequality for Fourier transforms of functions in ĜM
d

p, that is, a Riemann-Lebesgue
type inequality.

2. PROOF OF THEOREM 1.3

The rate of approximation of an admissible family of multipliers operators can be estimated
in terms of decay properties of Fourier transforms as follows. For d ≥ 2, the following result
can be seen as a corollary of [13, Theorem 2.1, p. 1289] and the ideas of the proof are included
below for completeness.

Proposition 2.1. Let {Tt}t>0 be a γ-admissible family of multipliers operators on Lp(Rd) and f ∈
Lp(Rd).

(A) Let 1 < p ≤ 2. If p ≤ q ≤ p′, then | · |d(1−1/p−1/q)f̂(·) ∈ Lq and(∫
Rd

[
min(1, t|ξ|)2γ |ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
d ξ

)1/q

. ‖Tt(f)− f‖p.

(B) Let 2 ≤ p <∞. If | · |d(1−1/p−1/q)f̂(·) ∈ Lq and p′ ≤ q ≤ p, then

‖Tt(f)− f‖p .
(∫

Rd

[
min(1, t|ξ|)2γ |ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
d ξ

)1/q

.

The proof of proposition above is a simple adaptation of the proof of [13, Theorem 2.1, p.
1289], since the main arguments completely fit here. An application of Pitt’s inequality (see
[3]) combined to the admissibility condition on the family of multipliers operators finishes the
proof.

For d ≥ 2, Theorem 2.1 in [13] is easily recovered from Proposition 2.1 for γ = ` a natural
number and the combinations of multivariate averages family as the admissible one. The latter
has a generalized version as follows. All the facts mentioned below can be found in [15]. Let
r > 0, a real number. For each t > 0, we write

(2.1) Vr,t(f)(x) :=
−2(
2r
r

) ∞∑
k=1

(−1)k
(

2r

r − k

)
Vkt(f)(x), f ∈ Lp(Rd), x ∈ Rd,

where {Vt}t is the usual family of spherical mean operator on Lp(Rd), and for r and s real
numbers,(

r

s

)
=

Γ(r + 1)

Γ(s+ 1)Γ(r − s+ 1)
, for s 6∈ Z−,

(
r

0

)
= r and

(
r

s

)
= 0, for s ∈ Z−.

The operator defined by (2.1) is bounded on Lp(Rd) and for r = ` a natural number the family
{Vr,t}t becomes the combination of multivariate averages {V`,t}t given in [9]. If mr,t stands for
the multiplier of Vr,t, for each t > 0, then

1−mr
t (|ξ|) = 1−mr(t|ξ|) :=

22r+1Γ((m+ 1)/2)(
2r
r

)
Γ(m/2)Γ(1/2)

∫ 1

0

(sin(t|ξ|s/2))
2r

(1− s2)(d−1)/2ds, ξ ∈ Rd.

In this case, {Vr,t}t is a r-admissible family of multipliers operators, since

min(1, s)2r � 1−mr,t(s) = 1−mr(ts), s > 0.

Proof of Theorem 1.3 makes use of the next lemma.
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Lemma 2.2. Let ϕ ∈M , f ∈ Lp(Rd) and 1 < p, q <∞. The following two conditions are equivalent:

(2.2)

(∫
1/t≤|ξ|≤2/t

[
|ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
dξ

)1/q

. ϕ(t), t > 0

and

(2.3)

(∫
1/t≤|ξ|

[
|ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
dξ

)1/q

. ϕ(t), t > 0.

Proof. It is easy to see that (2.3) implies (2.2). Assuming that (2.2) holds, we write the integral
in the left-hand side of inequality (2.3) in terms of the radial part (see [32]) of the integrating
function, as follows

I(t) :=

∫ ∞
1/t

rdq(1−1/p−1/q)
(∫

Sd−1

|f̂(rω)|qdω
)
r(d−1)dr, t > 0,

where Sd−1 is the (d− 1)-dimensional unit sphere in Rd centered at origin endowed with σd−1
the induced Lebesgue measure (if d = 1 we skip this step). It is easily seen that

I(t) .
∫ ∞
1/t

rdq(1−1/p−1/q)
[∫ 2r

r

(∫
Sd−1

|f̂(ρω)|qdω
)
dρ

]
r(d−1)

dr

r
.

If r ≤ ρ ≤ 2r, then rdq(1−1/p−1/q) . ρdq(1−1/p−1/q), and due to inequality (2.2) we arrive at

I(t) .
∫ ∞
1/t

[ϕ(r−1)]q

r
dr =

∫ t

0

[ϕ(u)]q

u
du.

In order to finish the proof, it is enough to observe that∫ t

0

[ϕ(u)]q

u
du . [ϕ(t)]q and

∫ t

0

[ϕ(u)]

u
du . ϕ(t), t > 0,

are equivalent (see [26]) and the later is the condition (1.2) for ϕ ∈M . �

Proof. of Theorem 1.3. The proof of part (A) is a trivial application of Proposition 2.1, part (A).
In order to prove part (B), we apply Proposition 2.1, part (B), and we obtain

‖Tt(f)− f‖qp .
∫
Rd

[
min(1, t|ξ|)2β |ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
d ξ.

Denoting by Iβq (f) the right-hand side of inequality above, we have

‖Tt(f)− f‖qp . Iβq (f),

where

Iβq (f) =

∫
|ξ|≥1/t

[
|ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
d ξ + t2qβ

∫
|ξ|<1/t

|ξ|2qβ
[
|ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
d ξ.

Due to Lemma 2.2, the proof will be completed if the following holds

(2.4) t2qβ
∫
|ξ|<1/t

[
|ξ|2β |ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
d ξ = O (ϕ(t))

q
, as t→ 0+.
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We first consider the case d ≥ 2 and we employ an adaption of the Titchmarsh proof in [29,
Theorem 84]. For t > 0, denote

Iβ<
q (f) :=

∫
|ξ|<1/t

[
|ξ|2β |ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
d ξ.

The following inequality holds

Iβ<
q (f) ≤

∫
|τ |<1/t

|τ |2qβh(τ)|τ |q(d−1)dτ,

where

h(τ) :=

∫
Sd−1

[
|τω|d(1−1/p−1/q)|f̂(τω)|

]q
dσd−1(ω), −1/t < τ < 1/t.

By writing

(2.5)
∫
|τ |<1/t

|τ |2qβh(τ)|τ |q(d−1)dτ := Iβ
−

q (h, t) + Iβ
+

q (h, t),

where

Iβ
−

q (h, t) :=

∫ 0

−1/t
(−τ)2qβ

∫
Sd−1

[
|τω|d(1−1/p−1/q)|f̂(τω)|(−τ)(d−1)

]q
dσd(ω)dτ

and

Iβ
+

q (h, t) :=

∫ 1/t

0

τ2qβ
∫
Sd−1

[
|τω|d(1−1/p−1/q)|f̂(τω)|τ (d−1)

]q
dσd(ω)dτ, t > 0,

it is sufficient to show that both Iβ
−

q (h, t) and Iβ
+

q (h, t) are O
(
t−2qβ (ϕ(t))

q) as t→ 0+.
We define

φ+(t) =

∫ +∞

1/t

h(τ)τ q(d−1)dτ, t > 0,

and observe that

(2.6) lim
t→0+

t2qβφ+(t−1) = 0.

In fact, we have

lim
t→0+

t2qβφ+(t−1) . lim
t→0+

(
t2βϕ(t)

)q
= lim
t→∞

(
ϕ(t−1)

t2β

)q
.

Equality (1.3) implies that there exists 0 < ε < 2β such that ϕ is (2β − ε)-almost decreasing.
This leads us to

lim
t→∞

(
ϕ(t−1)

t2β

)q
= lim
t→∞

(
ϕ(t−1)

t2β−ε

)q
1

tqε
. (ϕ(1))q lim

t→∞

1

tqε
= 0,

and (2.6) holds.
Note that φ

′

+(τ) = −h(τ−1)τ−q(d−1)/2, 0 < τ < 1/t, and

Iβ
+

q (h, t) =

∫ 1/t

0

−τ2qβφ
′

+(τ−1)dτ, t > 0,
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thus integration by parts and (2.6) imply

Iβ
+

q (h, t) =
(
−τ2qβφ+(τ−1)

)1/t
0

+ 2qβ

∫ 1/t

0

τ2qβ−1φ+(τ−1)dτ

= −t−2qβφ+(t) + 2qβ

∫ 1/t

0

τ2qβ−1φ+(τ−1)dτ

≤ 2qβ

∫ 1/t

0

τ2qβ−1φ+(τ−1)dτ, t > 0.

Since φ+((·)−1) is a nondecreasing function on (0,∞), it follows

(2.7) Iβ
+

q (h, t) ≤ 2qβφ+(t)

∫ 1/t

0

τ2qβ−1dτ = φ+(t)t−2qβ , t > 0.

Handling Iβ
−

q (h, t) as above, by defining

φ−(t) =

∫ −1/t
−∞

h(τ)(−τ)q(d−1)dτ, t > 0,

we get

(2.8) Iβ
−

q (h, t) ≤ t−2qβφ−(t) + 2qβφ−(t)

∫ 0

−1/t
(−τ)2qβ−1dτ = 2t−2qβφ−(t), t > 0.

Combining inequalities (2.5), (2.7) and (2.8) with our assumptions (i.e. φ+(t) = O (ϕ(t))
q

and φ−(t) = O (ϕ(t))
q , as t→ 0+), we reach to

‖Tt(f)− f‖p .
(∫

Rd

[
min(1, t|ξ|)2β |ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
d ξ

)1/q

= O (ϕ(t)) , as t→ 0+.

Thus, f ∈ Lip (p, β, ϕ).
For d = 1, the same proof presented above can be rewritten with minor adjustments as

follows. For t > 0, denote

Iβ<
q (f) :=

∫
|ξ|<1/t

[
|ξ|2β |ξ|(1−1/p−1/q)|f̂(ξ)|

]q
d ξ = Iβ

−

q (f, t) + Iβ
+

q (f, t),

where

Iβ
−

q (f, t) :=

∫ 0

−1/t

[
ξ2β |ξ|(1−1/p−1/q)|f̂(ξ)|

]q
d ξ

and

Iβ
+

q (f, t) :=

∫ 1/t

0

[
ξ2β |ξ|(1−1/p−1/q)|f̂(ξ)|

]q
d ξ, t > 0,

it is sufficient to show that both Iβ
−

q (f, t) and Iβ
+

q (f, t) are O
(
t−2qβ (ϕ(t))

q) as t→ 0+.
It is not hard to see that if

g(t) =

∫
|s|<1/t

|s|q(1−1/p−1/q)|f̂(s)|qd s, t > 0,

then

Iβ
−

q (f, t) =

∫ 0

−1/t
s2qβg′(s−1)d s, and Iβ

+

q (f, t) =

∫ 1/t

0

s2qβg′(s−1)d s, t > 0,
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Also, we observe that the same reasoning applied in order to prove equality (2.6) fits here and
we have

(2.9) lim
t→0+

t2qβg(t−1) = 0.

Thus integration by parts and (2.9) imply

Iβ
+

q (f, t) = −t−2qβg(t) + 2qβ

∫ 1/t

0

s2qβ−1g(s−1)d s

≤ 2qβ

∫ 1/t

0

s2qβ−1g(s−1)d s, t > 0.

Since g((·)−1) is a nondecreasing function on (0,∞), it follows

(2.10) Iβ
+

q (f, t) ≤ 2qβg(t)

∫ 1/t

0

s2qβ−1d s = g(t)t−2qβ , t > 0.

Handling Iβ
−

q (f, t) similarly as above, we reach to

(2.11) Iβ
−

q (f, t) ≤ t−2qβg(t) + 2qβg(t)

∫ 0

−1/t
(−s)2qβ−1d s = 2t−2qβg(t), t > 0.

Combining inequalities (2.10) and (2.11) with our assumption (g(t) = O (ϕ(t))
q as t → 0+),

we obtain

‖Tt(f)− f‖p .
(∫

R

[
min(1, t|ξ|)2β |ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
d ξ

)1/q

= O (ϕ(t)) , as t→ 0+,

and therefore f ∈ Lip (p, β, ϕ). �

Corollary 2.3. If ϕ ∈ Ω2β , then f ∈ Lip (2, β, ϕ) if and only if(∫
t≤|ξ|≤2t

|f̂(ξ)|2dξ

)1/2

= O
(
ϕ(t−1)

)
, as t→∞.

Remark 2.4. We have defined the class Ωβ by the collection of all ϕ ∈M satisfying the follow-
ing

(2.12)
∫ ∞
t

ϕ(u)

uβ+1
du .

ϕ(t)

tβ
.

Inequality (2.12) is necessary in order to have Theorem 1.3, part (B), true. Let ϕ ∈M a function
that does not fulfill (2.12), then Theorem 1.3, part (A), still holds true. However, the same does
not hold for part (B).

We consider the case d ≥ 2, similarly we can deal with d = 1. Let 2 ≤ p <∞ and f : Rd −→ R
in Lp(Rd) given in terms of the inverse Fourier-Hankel transform of |ξ|−(2β+1/p′), ξ ∈ R \ {0},
that is,

f(x) =
σd

(2π)d

∫ ∞
0

jd/2−1(xs)

|x|2β+1/p′
sd−1ds,

where σd is the volume of the unit sphere in Rd and jα( · ) denotes the normalize Bessel function
(see [11]).

If ϕ(t) := t2β , then ϕ ∈M but ϕ does not meet condition (2.12). Also, it is clear that∫
1/t≤|ξ|

|f̂(ξ)|p
′
dξ = 2

∫ +∞

1/t

1

|ξ|2βp′+1
dξ = O([ϕ(t)]p

′
)
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or, equivalently, (∫
1/t≤|ξ|≤2/t

|f̂(ξ)|p
′
dξ

)1/p′

= O(ϕ(t)).

It means that for q = p′, the function f fits into assumptions of Theorem 1.3, part (B). Also, we
have

t2p
′β

∫
1/t<|ξ|

|ξ|2p
′β |f̂(ξ)|p

′
d ξ = t2p

′β

∫
1/t<|ξ|

|ξ|−1d ξ = +∞, for all t > 0,

and therefore, f 6∈ Lip(p, β, ϕ).

3. PROOF OF THEOREM 1.5

In this section, we only work with d ≥ 2. For d = 1, the result was proved in [13] for the
usual fractional moduli of smoothness ([5, 22]). If one wants to consider the admissible family
of multipliers operators instead the fractional moduli of smoothness, for this case, with small
adjustments the same proof presented in [13, p. 1310] fits here.

Proof. of Theorem 1.5.We rewrite the integral in the left-hand side of inequality (1.7), as I1 + I2,
where

I1 :=

∫ 1/2

0

∫
t≤|ξ|≤2t

(
|ξ|d(1−1/p−1/q)|f̂(ξ)|

ϕ(|ξ|−1)

)q
dξ
dt

t

and

I2 :=

∫ ∞
1/2

∫
t≤|ξ|≤2t

(
|ξ|d(1−1/p−1/q)|f̂(ξ)|

ϕ(|ξ|−1)

)q
dξ
dt

t
.

Since ϕ is non-decreasing, for any t ≤ |ξ| ≤ 2t it holds ϕ(t−1/2) ≤ ϕ(|ξ|−1) and we have

I1 .
∫ 1/2

0

1

[ϕ(t−1/2)]q

(∫
t≤|ξ|≤2t

[
|ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
dξ

)
ds

s
.

The change of variables t = s/2 leads us to

I1 .
∫ 1

0

1

[ϕ(s−1)]q

(∫
s/2≤|ξ|≤s

[
|ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
dξ

)
dt

t

. ‖(·)d(1−1/p−1/q)f̂(·)‖qq.

For I2, the change of variables t = s−1/2 implies

I2 =

∫ 1

0

∫
1/2s≤|ξ|≤1/s

(
|ξ|d(1−1/p−1/q)|f̂(ξ)|

ϕ(|ξ|−1)

)q
dξ
ds

s
.
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We note that if 0 < s ≤ 1 and 1/2s ≤ |ξ| ≤ 1/s, then ϕ(s) ≤ ϕ(|ξ|−1) and s|ξ| ≤ 1. Combining
these inequalities to Propositon 2.1, part (A), we have

I2 .
∫ 1

0

∫
1/2s≤|ξ|≤1/s

(
|ξ|d(1−1/p−1/q)|f̂(ξ)|

ϕ(|ξ|−1)

)q
dξ
ds

s

≤
∫ 1

0

∫
1/2s≤|ξ|≤1/s

(
|ξ|d(1−1/p−1/q)|f̂(ξ)|

ϕ(s)

)q
dξ
ds

s

.
∫ 1

0

‖Ts(f)− f‖qp
[ϕ(s)]q

ds

s
=

∫ 1

0

‖Ts(f)− f‖qp
[ϕ(s)]q

ds

s
≤ ‖f‖q

Bϕ
p,q
.

Thus the first part of the theorem is proved.
To prove the second part, with an application of Proposition 2.1, part (B), we arrive at

‖Tt(f)− f‖qp
[ϕ(t)]q

.
∫
Rd

It(ξ)d ξ =

∫ ∞
0

It,0(r)r(d−1)dr for all t > 0,(3.1)

where

It(ξ) :=
min(1, t|ξ|)2qβ

[ϕ(t)]q
|ξ|dq(1−1/p−1/q)|f̂(ξ)|q, ξ ∈ Rd,

and It,0 denotes its radial part. Integrating both sides of inequality (3.1) and defining

J1 + J2 :=

∫ 1

0

(∫ 1

0

It0(r)r(d−1)dr

)
dt

t
+

∫ 1

0

(∫ 1/t

1

It0(r)r(d−1)dr

)
dt

t

and

J3 :=

∫ 1

0

(∫ ∞
1/t

It0(r)r(d−1)dr

)
dt

t
,

we just need to conclude that Ji <∞, i = 1, 2, 3.
In order to estimate J1, we apply the (2β− ε)-almost decreasingness property to ϕ, to obtain

J1 =

∫ 1

0

t2qβ

[ϕ(t)]q

[∫ 1

0

rdq(1−1/p−1/q)+2qβ

(∫
Sd−1

|f̂(rω)|qdω
)
r(d−1)dr

]
dt

t

.
∫ 1

0

tεq
[∫ 1

0

rdq(1−1/p−1/q)
(∫

Sd−1

|f̂(rω)|qdω
)
r(d−1)dr

]
dt

t

≤ ‖(·)d(1−1/p−1/q)f̂(·)‖qq
∫ 1

0

tεq−1dt <∞.

Moving on to the estimate for J2 + J3, we first write J2 explicitly as follows

J2 =

∫ 1

0

t2βq

[ϕ(t)]q

[∫ 1/t

1

rdq(1−1/p−1/q)+2qβ

(∫
Sd−1

|f̂(rω)|qdω
)
r(d−1)dr

]
ds

s
.

Since ϕ is (2β − ε)-almost decreasing, we have

ϕ(r−1)

r−2β+ε
.

ϕ(t)

t2β−ε
, for 1 ≤ r ≤ 1/t,

which leads us to
t2β

ϕ(t)
.
r−2β+εtε

ϕ(r−1)
, for 1 ≤ r ≤ 1/t.
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Consequently,

J2 .
∫ 1

0

tεq

[∫ 1/t

1

rdq(1−1/p−1/q)+qε

(∫
Sd−1

|f̂(rω)|q

[ϕ(r−1)]q
dω

)
r(d−1)dr

]
ds

s
.

Now, the change of variables t = s−1 in the right-hand side of inequality above gives us

J2 .
∫ ∞
1

s−qε

[∫ s

1

rdq(1−1/p−1/q)+qε

(∫
Sd−1

|f̂(rω)|q

[ϕ(r−1)]q
dω

)
r(d−1)dr

]
ds

s

.
∫ ∞
1

s−qε

{∫ s

1

rqε−1

[∫ 2r

r

udq(1−1/p−1/q)

(∫
Sd−1

|f̂(uω)|q

[ϕ(u−1)]q
dω

)
u(d−1)du

]
dr

}
ds

s
.

For J3, the change of variable t−1 = s implies

J3 =

∫ 1

0

1

[ϕ(t)]q

[∫ ∞
1/t

rdq(1−1/p−1/q)
(∫

Sd−1

|f̂(rω)|qdω
)
r(d−1)dr

]
dt

t

=

∫ ∞
1

1

[ϕ(s−1)]q

[∫ ∞
s

rdq(1−1/p−1/q)
(∫

Sd−1

|f̂(rω)|qdω
)
r(d−1)dr

]
ds

s
.

Observing that, for all 1 ≤ s ≤ r <∞, the inequality ϕ(r−1) ≤ ϕ(s−1) holds, we obtain

J3 .
∫ ∞
1

[∫ ∞
s

rdq(1−1/p−1/q)

(∫
Sd−1

|f̂(rω)|q

[ϕ(r−1)]q
dω

)
r(d−1)dr

]
ds

s

.
∫ ∞
1

{∫ ∞
s

r−1

[∫ 2r

r

udq(1−1/p−1/q)

(∫
Sd−1

|f̂(uω)|q

[ϕ(u−1)]q
dω

)
u(d−1)du

]
dr

}
ds

s
.

Finally, taking in account the estimates for J2 and J3, Hardy’s inequalities [23, p. 272] imply

J2 + J3 .
∫ ∞
0

[∫ 2r

r

udq(1−1/p−1/q)

(∫
Sd−1

|f̂(uω)|q

[ϕ(u−1)]q
dω

)
u(d−1)du

]
dr

r

=

∫ ∞
0

∫
r≤|ξ|≤2r

(
|ξ|d(1−1/p−1/q)|f̂(ξ)|

ϕ(|ξ|−1)

)q
dξ
dr

r
<∞,

and f ∈ Bϕp,q(Rd). The theorem is proved. �

We close this section with a direct consequence of Theorem 1.5.

Corollary 3.1. If ϕ ∈ Ωq2β , then f ∈ Bϕ2,2(Rd) if and only if∫ ∞
0

∫
t≤|ξ|≤2t

(
|f̂(ξ)|
ϕ(|ξ|−1)

)2

dξ
dt

t
<∞.

4. ĜM
d

p CLASS: RIEMANN-LEBESGUE TYPE INEQUALITY AND FINAL REMARKS

From now on, we will work with GM -classes (general monotone classes) of functions. This
concept was firstly introduced in [27], where also the main properties were established.

A locally bounded variation function g : (0,∞) −→ R, vanishing at infinity and such that
for some c > 0 (only depending on g) satisfies

(4.1)
∫ ∞
t

|d g(s)| .
∫ ∞
t/c

|g(s)|
s

ds <∞, for all t > 0,
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is called general monotone (see [17, 25, 28]) and we write g ∈ GM . In addition, if g satisfies the
following condition ∫ 1

0

sd−1|g(s)|ds+

∫ ∞
1

s(d−1)/2|dg(s)| <∞,

for d ≥ 1 an integer number, then we write g ∈ GMd (see [12, 13] and references quoted there
for details).

In this section, we write f0 for the radial part of a given f from Rd. We consider the following
collection of functions defined in terms of the inverse Fourier-Hankel transform:
(4.2)

ĜM
d

p :=

{
f ∈ Lp(Rd) : f is radial, f0(t) =

σd−1
(2π)d

∫ ∞
0

sd−1F0(s)jd/2−1(ts)ds, F0 ∈ GMd

}
.

For d ≥ 2 and 1 ≤ p < 2d/(d + 1), the collection above contains all radial positive-definite
functions f(x) = f0(|x|), x ∈ Rd, such that its Fourier transforms F0 lies in GMd. For d = 1, the
same conclusion holds if p = 1 (see [13, p. 1293] and [17] for more examples).

Conditions in Theorem 2.1 can be considerably relaxed if we consider the class ĜM
d

p as
showed in [13, Theorem 4.1]. Following the path designed by the authors in [13], conditions of
Theorem 2.1 are extended as follows.

Proposition 4.1. Let {Tt}t>0 be a β-admissible family of multipliers operators on Lp(Rd) and f ∈
ĜM

d

p.

(A) Let 1 < p ≤ q <∞. If f̂ is nonnegative, then

(4.3)
(∫

Rd

[
min(1, t|ξ|)2β |ξ|d(1−1/p−1/q)f̂(ξ)

]q
d ξ

)1/q

. ‖Tt(f)− f‖p.

(B) Let 1 < q ≤ p <∞ with 2d/(d+ 1) < p. If | · |d(1−1/p−1/q)f̂(·) ∈ Lq , then

(4.4) ‖Tt(f)− f‖p .
(∫

Rd

[
min(1, t|ξ|)2β |ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
d ξ

)1/q

.

Due to [13, Theorem 4.1, p. 1293] is not hard to see that the basics facts (besides several
calculations) needed in order to repeat that proof in here are the following: [min(1, t(·))]2βF0(·)
must be in GMd, h := f − Tt(f) must be radial and its radial part given by h0(s) = [1 −
ηt(s)]F0(s), s ∈ (0,∞). It is clear that all these facts hold true under assumptions made in
Proposition 4.1, that is why the details of the proof were omitted.

Proposition 4.2. Let {Tt}t>0 be a β-admissible family of multipliers operators on Lp(Rd), 1 < p ≤
q <∞, and ϕ ∈ Ω2β . If f ∈ Lip (p, β, ϕ) ∩ ĜM

d

p and f̂ is nonnegative, then

(4.5)

(∫
t≤|ξ|≤2t

[
|ξ|d(1−1/p−1/q)f̂(ξ)

]q
dξ

)1/q

= O
(
ϕ(t−1)

)
.

Additionally, if 2d/(d+ 1) < q, f ∈ ĜM
d

q , | · |d(1−1/p−1/q)f̂(·) ∈ Lp(Rd) and

(4.6)

(∫
t≤|ξ|≤2t

[
|ξ|d(1−1/p−1/q)|f̂(ξ)|

]p
dξ

)1/p

= O
(
ϕ(t−1)

)
,

then f ∈ Lip (q, β, ϕ).
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The proof of (4.5) is a direct application of Theorem 4.1, part (A). While (4.6) follows from
the proof of Theorem 1.3, but instead of applying Proposition 2.1, we need to apply Proposition
4.1, part (B). For p = q, the proposition above becomes the following.

Corollary 4.3. Let 2d/(d+ 1) < p and f ∈ ĜM
d

p such that f̂ is non-negative and | · |d(1−2/p)f̂(·) ∈
Lp(Rd). Then f ∈ Lip (p, β, ϕ) if and only if(∫

t≤|ξ|≤2t

[
|ξ|d(1−2/p)f̂(ξ)

]p
dξ

)1/p

= O
(
ϕ(t−1)

)
.

Another consequence of Proposition 4.1 is a pointwise estimate for the Fourier transforms

of functions in ĜM
d

p satisfying the Lipschitz condition. The Riemann-Lebesgue type inequality
is the content of the next result.

Corollary 4.4. Let 1 < p ≤ q < ∞ and ϕ ∈ Ω2β . If f ∈ ĜM
d

p ∩ Lip (p, β, ϕ) is such that f̂ is
nonnegative, then

f̂(ξ) = O
(
|ξ|−d/q

′
ϕ(|ξ|−1)

)
, as |ξ| → ∞.

Proof. Observe that for f ∈ ĜM
d

p, if its Fourier transform f̂ is written as F0, then it satisfies
inequality (4.1) and it holds

F0(t) .
∫ ∞
t/c

F0(s)

s
ds, for all t > 0.

An application of Hölder inequality leads us to

F0(t) . t−d/q
′

(∫ ∞
t/c

sqd−d−1[F0(s)]qds

)1/q

, for all t > 0.

Finally, Proposition (4.2) implies(∫ ∞
t/c

sqd−d−1[F0(s)]qds

)1/q

= O
(
ϕ(t−1)

)
, as t→∞,

and the proof follows. �

A version of Theorem 1.5 for ĜM
d

p class also has a more relaxed condition version.

Proposition 4.5. Let {Tt}t>0 be a β-admissible family of multipliers operators on Lp(Rd), ϕ ∈ Ωq2β

and f ∈ ĜM
d

p.

(A) Let 1 < p ≤ q <∞. If f ∈ Bϕp,q(Rd) is such that f̂ is nonnegative, then∫ ∞
0

td(q−1)
(
F0(t)

ϕ(t−1)

)q
dt

t
<∞.

(B) Let 1 < q ≤ p <∞ with 2d/(d+ 1) < p. If | · |d(1−1/p−1/q)f̂(·) ∈ Lq , and∫ ∞
0

td(q−1)
(
|F0(t)|
ϕ(t−1)

)q
dt

t
<∞,

then f ∈ Bϕp,q(Rd).
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The proof is a simple adaptation of the proofs of Theorem 1.5 above and Theorem 7.3 in [13,
p. 1310]. For p = q, we obtain the following.

Corollary 4.6. Let 2d/(d+1) < p, f ∈ ĜM
d

p such that f̂ is nonnegative and |·|d(1−2/p)f̂(·) ∈ Lp(Rd).
Then, f ∈ Bϕp,q(Rd) if and only if ∫ ∞

0

td(q−1)
(
F0(t)

ϕ(t−1)

)q
dt

t
<∞.
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1. INTRODUCTION

Let A denote the class of functions of the form:

(1.1) f (z) = z +

∞∑
k=2

akz
k

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. If f and g are analytic in U, we
say that f is subordinate to g, written as f ≺ g in U or f(z) ≺ g(z) (z ∈ U), if there exists a
Schwarz function ω, which (by definition) is analytic in U with ω (0) = 0 and |ω (z)| < 1 (z ∈ U)
such that f(z) = g(ω(z)) (z ∈ U). Furthermore, if the function g is univalent in U, then we have
the following equivalence holds (see [12] and [7]):

f(z) ≺ g(z)⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

For function f ∈ A given by (1.1) and 0 < q < 1, the q−derivative of a function f is defined by
(see [10, 9] and [6])

(1.2) Dqf(z) =

{
f(qz)−f(z)

(q−1)z , z 6= 0

f
′
(0) , z = 0

provided that f
′
(0) exists and D2

qf(z) = Dq(Dqf(z)). We note from (1.2) that

lim
q→1−

Dqf (z) = f
′
(z) and lim

q→1−
D2
qf (z) = f

′′
(z) .
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It is readily deduced from (1.1) and (1.2) that

(1.3) Dqf(z) = 1 +

∞∑
k=2

[k]q akz
k−1,

where

(1.4) [k]q =
qk − 1

q − 1
.

Aldweby and Darus [1] defined q−analogue of Ruscheweyh operatorRδq : A → A as follows:

Rδqf (z) = z +

∞∑
k=2

[k + δ − 1]q!

[δ]q! [k − 1]q!
akz

k (δ ≥ −1) ,

where [i]q! is given by

[i]q! =

{
[i]q [i− 1]q ... [1]q , i ∈ N = {1, 2, 3, ...}
1 , i = 0

.

We note that
R0
qf (z) = f (z) and R1

qf (z) = zDqf(z).

From the definition ofRδq we observe that if q → 1−, we have

lim
q→1
Rδqf (z) = Rδf (z) = z +

∞∑
k=2

(k + δ − 1)!

δ! (k − 1)!
akz

k,

whereRδ is Ruscheweyh differential operator defined by Ruscheweyh [16].
It is easy to check that

(1.5) zDq

(
Rδqf (z)

)
=

(
1 +

[δ]q
qδ

)
Rδ+1
q f (z)−

[δ]q
qδ
Rδqf (z) .

If q → 1−, the equality (1.5) implies

z
(
Rδf (z)

)′
= (1 + δ)Rδ+1f (z)− δRδf (z)

which is the well known recurrence formula for Ruscheweyh differential operator.
By making use of the q−analogue of Ruscheweyh operatorRδq and the principle of subordi-

nation, we now introduce the following subclass of analytic functions of complex order.

Definition 1.1. Let P be the class of all functions φ which are analytic and univalent in U and for
which φ (U) is convex with φ (0) = 1 and <φ (z) > 0 for z ∈ U. A function f ∈ A is said to be in the
class Kδq,b (γ, φ) if it satisfies the following subordination condition:

(1.6) 1 +
1

b

[
(1− γ) zDqRδqf(z) + γzDq(zDqRδqf(z))

(1− γ)Rδqf (z) + γzDqRδqf(z)
− 1

]
≺ φ (z) (b ∈ C∗) .

We note that:
(i) limq→1− K0

q,b (γ, φ) = Kb (γ, φ) (b ∈ C∗)

=

{
f ∈ A : 1 +

1

b

[
zf
′
(z) + γz2f

′′
(z)

(1− γ) f (z) + γzf ′(z)
− 1

]
≺ φ (z)

}
,
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(ii) K0
q,(1−α)e−iθ cos θ (0, φ) = S

θ
q (α;φ)

(
|θ| ≤ π

2 , 0 ≤ α < 1
)

=

f ∈ A :
eiθ

zDqf(z)
f(z) − α cos θ − i sin θ

(1− α) cos θ
≺ φ (z)

 ,

(iii) K0
q,(1−α)e−iθ cos θ (1, φ) = C

θ
q (α;φ)

(
|θ| ≤ π

2 , 0 ≤ α < 1
)

=

f ∈ A :
eiθ

Dq(zDqf(z))
Dqf(z)

− α cos θ − i sin θ
(1− α) cos θ

≺ φ (z)

 ,

(iv) Kδq,1 (0, φ) = Sδq (φ) and Kδq,1 (1, φ) = Cδq (φ) (Alweby and Darus [3]),
(v) K0

q,b (0, φ) = Sq,b (φ) and K0
q,b (1, φ) = Cq,b (φ) (Seoudy and Aouf [18]),

(vi) K0
q,1 (0, φ) = Sq (φ) and K0

q,1 (1, φ) = Cq (φ) (Alweby and Darus [2]),
(vii) limq→1− K0

q,b (0, φ) = Sb (φ) and limq→1− K0
q,b (1, φ) = Cb (φ) (Ravichandran et al. [15]),

(viii) limq→1− K0
q,1 (0, φ) = S∗ (φ) and limq→1− K0

q,1 (1, φ) = C (φ) (Ma and Minda [11]),

(ix) limq→1− K0
q,b

(
0,

1 + (1− 2α) z

1− z

)
= S∗α (b) and limq→1− K0

q,b

(
1,

1 + (1− 2α) z

1− z

)
= Cα (b)

(0 ≤ α < 1) (Frasin [8]),

(x) limq→1− K0
q,b

(
0,

1 + z

1− z

)
= S∗ (b) (Nasr and Aouf [14]),

(xi) limq→1− K0
q,b

(
1,

1 + z

1− z

)
= C (b) (b ∈ C∗) (Nasr and Aouf [13] and Wiatrowski [19]),

(xii) limq→1− K0
q,1−α

(
0,

1 + z

1− z

)
= S∗ (α) and limq→1− K0

q,1−α

(
1,

1 + z

1− z

)
= C (α) (0 ≤ α < 1)

(Robertson [17]),

(xiii) limq→1− K0
q,be−iθ cos θ

(
0,

1 + z

1− z

)
= Sθ (b) and limq→1− K0

q,be−iθ cos θ

(
1,

1 + z

1− z

)
= Cθ (b)

(|θ| < π

2
) (Al-Oboudi and Haidan [4] and Aouf et al. [5]).

In order to establish our main results, we need the following lemma.

Lemma 1.1. [11] If p(z) = 1 + c1z + c2z
2 + ... is a function with positive real part in U and µ is a

complex number, then ∣∣c2 − µc21∣∣ ≤ 2max{1; |2µ− 1|}.
The result is sharp for the functions given by

p(z) =
1 + z2

1− z2
and p(z) =

1 + z

1− z
.

Lemma 1.2. [11] If p (z) = 1 + c1z + c2z
2 + ... is an analytic function with a positive real part in U,

then ∣∣c2 − νc21∣∣ ≤
 −4ν + 2 if ν ≤ 0

2 if 0 ≤ ν ≤ 1,
4ν − 2 if ν ≥ 1

when υ < 0 or ν > 1, the equality holds if and only if p(z) is (1 + z)/(1 − z) or one of its rotations.
If 0 < ν < 1, then the equality holds if and only if p(z) is (1 + z2)/(1 − z2) or one of its rotations. If
ν = 0, the equality holds if and only if

p (z) =

(
1 + λ

2

)
1 + z

1− z
+

(
1− λ
2

)
1− z
1 + z

(0 ≤ λ ≤ 1)
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or one of its rotations. If ν = 1, the equality holds if and only if p is the reciprocal of one of the functions
such that equality holds in the case of ν = 0.

Also the above upper bound is sharp, and it can be improved as follows when 0 < ν < 1:∣∣c2 − νc21∣∣+ ν |c1|2 ≤ 2

(
0 ≤ ν ≤ 1

2

)
and ∣∣c2 − νc21∣∣+ (1− ν) |c1|2 ≤ 2

(
1

2
≤ ν ≤ 1

)
.

In the present paper, we obtain the Fekete-Szegö inequalities for the class Kq,b (γ, φ). The
motivation of this paper is to generalize previously results. Unless otherwise mentioned, we
assume throughout this paper that the function 0 < q < 1, b ∈ C∗, 0 ≤ γ ≤ 1, φ ∈ P , [k]q is
given by (1.4) and z ∈ U.

Theorem 1.1. Let φ (z) = 1 + B1z + B2z
2 + ... with B1 6= 0. If f given by (1.1) belongs to the class

Kq,b (γ, φ), then

(1.7)
∣∣a3 − µa22∣∣ ≤ |bB1|

q[1+γq(q+1)][δ+2]q [δ+1]q
max

{
1;
∣∣∣B2

B1
+
(
1− [1+γq(q+1)] [δ+2]q

(1+γq)2 [δ+1]q
µ
)
B1b
q

∣∣∣} .
The result is sharp.

Proof. If f ∈ Kδq,b (γ, φ), then there is a Schwarz function ω, analytic in U with ω (0) = 0 and
|ω (z)| < 1 in U such that

(1.8) 1 +
1

b

[
(1− γ) zDqRδqf(z) + γzDq(zDqRδqf(z))

(1− γ)Rδqf (z) + γzDqRδqf(z)
− 1

]
= φ (ω (z)) .

Define the function p (z) by

(1.9) p (z) =
1 + ω (z)

1− ω (z)
= 1 + c1z + c2z

2 + ... .

Since ω is a Schwarz function, we see that <p (z) > 0 and p (0) = 1. Therefore,

φ (ω (z)) = φ

(
p (z)− 1

p (z) + 1

)
= φ

(
1

2

[
c1z +

(
c2 −

c21
2

)
z2 +

(
c3 − c1c2 +

c31
4

)
z3 + ...

])
= 1 +

B1c1
2

z +

[
B1

2

(
c2 −

c21
2

)
+
B2c

2
1

4

]
z2 + ... .(1.10)

Now, by substituting (1.10) in (1.8), we have

1 +
1

b

[
(1− γ) zDqRδqf(z) + γzDq(zDqRδqf(z))

(1− γ)Rδqf (z) + γzDqRδqf(z)
− 1

]

= 1 +
B1c1
2

z +

[
B1

2

(
c2 −

c21
2

)
+
B2c

2
1

4

]
z2 + ... .

From the above equation, we obtain

1

b
q (1 + γq) [δ + 1]q a2 =

B1c1
2
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and

q

b

(
[1 + γq (q + 1)] [δ + 2]q [δ + 1]q a3 − (1 + γq)

2
(
[δ + 1]q

)2
a22

)
=
B1c2
2
− B1c

2
1

4
+
B2c

2
1

4

or, equivalently,

a2 =
B1c1b

2q (1 + γq) [δ + 1]q

and

a3 =
bB1

2 [1 + γq (q + 1)] q [δ + 2]q [δ + 1]q

{
c2 −

1

2

[
1− B2

B1
− B1b

q

]
c21

}
.

Therefore, we have

(1.11) a3 − µa22 =
bB1

2q [1 + γq (q + 1)] [δ + 2]q [δ + 1]q

{
c2 − νc21

}
,

where

(1.12) ν =
1

2

[
1− B2

B1
− B1b

q

(
1−

[1 + γq (q + 1)] [δ + 2]q µ

(1 + γq)
2
[δ + 1]q

)]
.

Our result now follows from Lemma 1.1. The result is sharp for the functions

1 +
1

b

[
(1− γ) zDqRδqf(z) + γzDq(zDqRδqf(z))

(1− γ)Rδqf (z) + γzDqRδqf(z)
− 1

]
= φ

(
z2
)

and

1 +
1

b

[
(1− γ) zDqRδqf(z) + γzDq(zDqRδqf(z))

(1− γ)Rδqf (z) + γzDqRδqf(z)
− 1

]
= φ (z) .

This completes the proof of Theorem 1.1. �

Taking γ = 0 and b = 1 in Theorem 1.1, we obtain the following corollary which improves
the result of Aldweby and Darus [3, Theorem 6].

Corollary 1.1. Let φ (z) = 1 +B1z +B2z
2 + ... with B1 6= 0. If f given by (1.1) belongs to the class

Sδq (φ), then ∣∣a3 − µa22∣∣ ≤ |B1|
q[δ+2]q [δ+1]q

max
{
1;
∣∣∣B2

B1
+
(
1− [δ+2]q

[δ+1]q
µ
)
B1

q

∣∣∣} .
The result is sharp.

Taking γ = b = 1 in Theorem 1.1, we obtain the following corollary which improves the
result of Aldweby and Darus [3, Theorem 7].

Corollary 1.2. Let φ (z) = 1 +B1z +B2z
2 + ... with B1 6= 0. If f given by (1.1) belongs to the class

Kδq (φ), then∣∣a3 − µa22∣∣ ≤ |B1|
q[1+q(q+1)][δ+2]q [δ+1]q

max
{
1;
∣∣∣B2

B1
+
(
1− [1+q(q+1)][δ+2]q

[δ+1]q(1+q)
2 µ

)
B1b
q

∣∣∣} .
The result is sharp.

Taking γ = δ = 0 and b = 1 in Theorem 1.1, we obtain the following corollary which
improves the result of Aldweby and Darus [2, Theorem 2.1].
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Corollary 1.3. Let φ (z) = 1 +B1z +B2z
2 + ... with B1 6= 0. If f given by (1.1) belongs to the class

Sq (φ), then ∣∣a3 − µa22∣∣ ≤ |B1|
q(q+1) max

{
1;
∣∣∣B2

B1
+ (1− (q + 1)µ) B1

q

∣∣∣} .
The result is sharp.

Taking γ = b = 1 and δ = 0 in Theorem 1.1, we obtain the following corollary which
improves the result of Aldweby and Darus [2, Theorem 2.2].

Corollary 1.4. Let φ (z) = 1 +B1z +B2z
2 + ... with B1 6= 0. If f given by (1.1) belongs to the class

Kq (φ), then ∣∣a3 − µa22∣∣ ≤ |B1|
q(q+1)[1+q(q+1)] max

{
1;
∣∣∣B2

B1
+
(
1− [1+q(q+1)]

(1+q) µ
)
B1

q

∣∣∣} .
The result is sharp.

Taking γ = δ = 0 and q → 1− in Theorem 1.1, we obtain the following corollary which
improves the result of Ravichandran et al. [15, Theorem 4.1].

Corollary 1.5. Let φ (z) = 1 +B1z +B2z
2 + ... with B1 6= 0. If f given by (1.1) belongs to the class

Sb (φ) , then ∣∣a3 − µa22∣∣ ≤ |B1b|
2

max

{
1;

∣∣∣∣B2

B1
+ (1− 2µ)B1b

∣∣∣∣} .
The result is sharp.

Theorem 1.2. Let φ (z) = 1 +B1z +B2z
2 + ... with B1 > 0 and B2 ≥ 0. Let

σ1 =
(1 + γq)

2
[δ + 1]q

[
bB2

1 + q (B2 −B1)
]

[1 + γq (q + 1)] [δ + 2]q bB
2
1

,(1.13)

σ2 =
(1 + γq)

2
[δ + 1]q

[
bB2

1 + q (B2 +B1)
]

[1 + γq (q + 1)] [δ + 2]q bB
2
1

,(1.14)

σ3 =
(1 + γq)

2
[δ + 1]q

(
bB2

1 + qB2

)
[1 + γq (q + 1)] [δ + 2]q bB

2
1

.(1.15)

If f given by (1.1) belongs to the class Kδq,b (γ, φ) with b > 0, then
(1.16)

∣∣a3 − µa22∣∣ ≤


b
q[1+γq(q+1)][δ+2]q [δ+1]q

[
B2 +

B2
1b
q

(
1− [1+γq(q+1)][δ+2]q

(1+γq)2[δ+1]q
µ
)]

, µ ≤ σ1
bB1

q[1+γq(q+1)][δ+2]q [δ+1]q
, σ1 ≤ µ ≤ σ2

b
q[1+γq(q+1)][δ+2]q [δ+1]q

[
−B2 − B2

1b
q

(
1− [1+γq(q+1)][δ+2]q

(1+γq)2[δ+1]q
µ
)]

, µ ≥ σ2

.

Further, if σ1 ≤ µ ≤ σ3, then∣∣a3 − µa22∣∣+ q(1+γq)2[δ+1]q
[1+γq(q+1)][δ+2]qB

2
1b

[
B1 −B2 − B2

1b
q

(
1− [1+γq(q+1)][δ+2]q

(1+γq)2[δ+1]q
µ
)]
|a2|2

(1.17) ≤ bB1

q [1 + γq (q + 1)] [δ + 2]q [δ + 1]q
.

If σ3 ≤ µ ≤ σ2, then∣∣a3 − µa22∣∣+ q(1+γq)2[δ+1]q
[1+γq(q+1)][δ+2]q B

2
1b

[
B1 +B2 +

B2
1b

q

(
1− [1+γq(q+1)][δ+2]qµ

(1+γq)2[δ+1]q

)]
|a2|2
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(1.18) ≤ bB1

q [1 + γq (q + 1)] [δ + 2]q [δ + 1]q
.

The result is sharp.

Proof. Applying Lemma 1.2 to (1.11) and (1.12), we can obtain our results asserted by Theorem
1.2. �

Taking γ = 0 and b = 1 in Theorem 1.2, we obtain the following corollary which improves
the result of Aldweby and Darus [3, Theorem 10].

Corollary 1.6. Let φ (z) = 1 +B1z +B2z
2 + ... with B1 > 0 and B2 ≥ 0. Let

χ1 =
[δ + 1]q

[
B2

1 + q (B2 −B1)
]

[δ + 2]q B
2
1

,

χ2 =
[δ + 1]q

[
B2

1 + q (B2 +B1)
]

[δ + 2]q B
2
1

,

χ3 =
[δ + 1]q

(
B2

1 + qB2

)
[δ + 2]q B

2
1

.

If f given by (1.1) belongs to the class Sδq (φ), then

∣∣a3 − µa22∣∣ ≤


1
q[δ+2]q [δ+1]q

[
B2 +

B2
1

q

(
1− [δ+2]q

[δ+1]q
µ
)]

, µ ≤ χ1

B1

q[δ+2]q [δ+1]q
, χ1 ≤ µ ≤ χ2

1
q[δ+2]q [δ+1]q

[
−B2 − B2

1

q

(
1− [δ+2]q

[δ+1]q
µ
)]

, µ ≥ χ2

.

Further, if σ1 ≤ µ ≤ σ3, then∣∣a3 − µa22∣∣+ q[δ+1]q
[δ+2]qB

2
1

[
B1 −B2 − B2

1

q

(
1− [δ+2]q

[δ+1]q
µ
)]
|a2|2 ≤ B1

q[δ+2]q [δ+1]q
.

If σ3 ≤ µ ≤ σ2, then∣∣a3 − µa22∣∣+ q[δ+1]q
[δ+2]q B

2
1

[
B1 +B2 +

B2
1

q

(
1− [δ+2]qµ

[δ+1]q

)]
|a2|2 ≤ B1

q[δ+2]q [δ+1]q
.

The result is sharp.

Taking γ = b = 1 in Theorem 1.2, we obtain the following corollary which improves the
result of Aldweby and Darus [3, Theorem 11].

Corollary 1.7. Let φ (z) = 1 +B1z +B2z
2 + ... with B1 > 0 and B2 ≥ 0. Let

κ1 =
[2]

2
q [δ + 1]q

[
B2

1 + q (B2 −B1)
]

[3]q [δ + 2]q B
2
1

,

κ2 =
[2]

2
q [δ + 1]q

[
B2

1 + q (B2 +B1)
]

[3]q [δ + 2]q B
2
1

,

κ3 =
[2]

2
q [δ + 1]q

(
B2

1 + qB2

)
[3]q [δ + 2]q B

2
1

.
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If f given by (1.1) belongs to the class Kδq (φ), then

∣∣a3 − µa22∣∣ ≤


1
q[3]q [δ+2]q [δ+1]q

[
B2 +

B2
1

q

(
1− [3]q [δ+2]q

[2]2q [δ+1]q
µ
)]

, µ ≤ κ1

B1

q[3]q [δ+2]q [δ+1]q
,κ1 ≤ µ ≤ κ2

1
q[3]q [δ+2]q [δ+1]q

[
−B2 − B2

1

q

(
1− [3]q [δ+2]q

[2]2q [δ+1]q
µ
)]

, µ ≥ κ2

.

Further, if κ1 ≤ µ ≤ κ3, then∣∣a3 − µa22∣∣+ q[2]2q [δ+1]q
[3]q [δ+2]qB

2
1

[
B1 −B2 − B2

1

q

(
1− [3]q [δ+2]q

[2]2q [δ+1]q
µ
)]
|a2|2 ≤ B1

q[3]q [δ+2]q [δ+1]q
.

If κ3 ≤ µ ≤ κ2, then∣∣a3 − µa22∣∣+ q[2]2q [δ+1]q
[3]q [δ+2]q B

2
1

[
B1 +B2 +

B2
1

q

(
1− [3]q [δ+2]q

[2]2q [δ+1]q
µ
)]
|a2|2 ≤ B1

q[3]q [δ+2]q [δ+1]q
.

The result is sharp.

Remark 1.1. Putting δ = γ = 0 in Theorems 1.1 and 1.2, respectively, we deduce the corresponding
results derived by Seoudy and Aouf [18, Theorems 1 and 3, respectively].

Remark 1.2. Putting δ = 0 and γ = 1 in Theorems 1.1 and 1.2, respectively, we deduce the corre-
sponding results derived by Seoudy and Aouf [18, Theorems 2 and 4, respectively].

Remark 1.3. For different choices of the parameters b, δ, q, γ and φ in Theorems 1.1 and 1.2, we can
deduce some results for the classes Kb (γ, φ), Sθq (α;φ), Cθq (α;φ), Sq (φ), Cq (φ), Sb (φ), Cb (φ), S∗ (φ),
C (φ), S∗α (b), Cα (b), S∗ (b), C (b), S∗ (α), C (α), Sθ (b) and Cθ (b) which are defined in Section 1.
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ABSTRACT. We consider a fixed-point problem for mappings involving a mixed-type contractive condition in the
setting of metric spaces. Precisely, we establish the existence and uniqueness of fixed point using the recent notions of
F -contraction and (H,ϕ)-contraction.
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2010 Mathematics Subject Classification: 47H10, 54H25.

1. INTRODUCTION

Let (X, d) be a complete metric space and let T : X → X be a mapping. In this paper, we
study the following fixed-point problem:

(Pτ )

{
Find z ∈ X such that Tz = z,
τ + F (H(d(Tx, Ty), ϕ(Tx), ϕ(Ty))) ≤ F (H(d(x, y), ϕ(x), ϕ(y))), τ > 0,

for all x, y ∈ X such that H(d(Tx, Ty), ϕ(Tx), ϕ(Ty)) > 0.
This problem is determined by using three functions, namely F : R+ → R, H : [0,+∞[3→

[0,+∞[ and ϕ : X → [0,+∞[, with suitable properties (properly stated in Section 2).
Existence results of solutions for different fixed-point problems were proved by many

authors. Here, we mention Banach [1] (the pioneering paper on contractions), Wardowski [12]
(F -contractions, where F belongs to an appropriate family of functions, namely F in the se-
quel), Reem-Reich-Zaslavski [6] (contractive nonself-mappings), Reich-Zaslavski [7] (Matkowski
contractions), Reich-Zaslavski [8] (Rakotch contractions), Jleli-Samet-Vetro [2] ((H,ϕ)-contractions,
where H belongs to an appropriate family of functions, namely H in the sequel). Also, we re-
call the comprehensive book of Rus-Petruşel-Petruşel [9], and some results establishing the
existence and uniqueness of fixed points that are zeros of a given function (see Samet-Vetro-
Vetro [10] and Vetro-Vetro [11]). Finally, we quote the important results of Anthony To-Ming
Lau and coworkers, who in a series of remarkable papers discussed the fixed-point property of
mappings (see, for example, [3, 4, 5] and the references therein).

In this paper, we establish two existence and uniqueness results using a new type of
contractive condition working on the classical metric space. In particular, we show that under
appropriate assumptions these fixed points are zeros of given functions. Also, we give an
example to support the new contractive condition. Precisely, the main result of our paper is the
following existence and uniqueness theorem for problem (Pτ ):
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Theorem 1.1. If ϕ : X → [0,+∞[ is a lower semicontinuous function, then problem (Pτ ) admits a
unique solution z such that ϕ(z) = 0.

2. PRELIMINARIES

Let (X, d) be a metric space and let T : X → X be a mapping. We introduce the notation and
notions needed in the sequel of this paper. For convenience of the reader, we start with basic
facts concerning F -contractions and (H,ϕ)-contractions.

Definition 2.1. Let F be the family of all functions F : R+ → R satisfying the following conditions:
(F1) F is nondecreasing,
(F2) for every sequence {αn} of positive numbers limn→+∞ αn = 0 if and only if limn→+∞ F (αn) =

−∞,
(F3) there exists k ∈ ]0, 1[ such that limα→0+ α

kF (α) = 0.

Now, the mapping T is said to be an F -contraction if there exists τ > 0 and F ∈ F such that

(2.1) τ + F (d(Tx, Ty)) ≤ F (d(x, y)) for all x, y ∈ X, d(Tx, Ty) 6= 0.

From (2.1), since τ > 0, we infer that

F (d(Tx, Ty)) < F (d(x, y)) for all x, y ∈ X, Tx 6= Ty.

Using the property (F1) of the function F , we deduce that

d(Tx, Ty) < d(x, y) for all x, y ∈ X, Tx 6= Ty.

So, each F -contraction is a continuous mapping. Using this notion, Wardowski (see [12]) es-
tablished the following significant result.

Theorem 2.2. Let (X, d) be a complete metric space and let T : X → X be an F -contraction. Then T
has a unique fixed point z ∈ X and for every x0 ∈ X the sequence {Tnx0} is convergent to z.

The functions from R+ to R defined by
(i) F (t) = ln t for all t ∈ R+,

(ii) F (t) = t+ ln t for all t ∈ R+

are classical examples of functions belonging to F .
In [2], Jleli et al. introduced a family H of functions H : [0,+∞[3→ [0,+∞[ satisfying the

following conditions:
(H1) max{a, b} ≤ H(a, b, c) for all a, b, c ∈ [0,+∞[,
(H2) H(0, 0, 0) = 0,
(H3) H is continuous.
Some examples of functions belonging toH are given as follows:

(i) H(a, b, c) = a+ b+ c for all a, b, c ∈ [0,+∞[,
(ii) H(a, b, c) = max{a, b}+ c for all a, b, c ∈ [0,+∞[,

(iii) H(a, b, c) = a+ b+ ab+ c for all a, b, c ∈ [0,+∞[.
Using a function H ∈ H, the authors of [2] introduced the following notion of (H,ϕ)-

contraction.

Definition 2.2. Let (X, d) be a metric space, ϕ : X → [0,+∞[ be a given function and H ∈ H. Then,
T : X → X is called a (H,ϕ)-contraction with respect to the metric d if and only if

H(d(Tx, Ty), ϕ(Tx), ϕ(Ty)) ≤ kH(d(x, y), ϕ(x), ϕ(y)) for all x, y ∈ X,
for some constant k ∈ ]0, 1[.
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Now, we set

Zϕ := {x ∈ X : ϕ(x) = 0},
FT := {x ∈ X : Tx = x}.

Furthermore, we say that T is a ϕ-Picard operator if and only if the following condition
holds:

FT ∩ Zϕ = {z} and Tnx→ z, as n→ +∞, for each x ∈ X .
Consequently, we recall the following theorem of [2].

Theorem 2.3. Let (X, d) be a complete metric space, ϕ : X → [0,+∞[ be a given function andH ∈ H.
Suppose that the following conditions hold:
(A1) ϕ is lower semi-continuous,
(A2) T : X → X is a (H,ϕ)-contraction with respect to the metric d.

Then
(i) FT ⊂ Zϕ,

(ii) T is a ϕ-Picard operator,
(iii) for all x ∈ X and for all n ∈ N, we have

d(Tnx, z) ≤ kn

1− k
H(d(Tx, x), ϕ(Tx), ϕ(x)),

where {z} = FT ∩ Zϕ = FT .

3. MAIN RESULTS

Let X 6= ∅, T : X → X , x0 ∈ X and xn = Txn−1 for all n ∈ N. Then, we call {xn} a sequence
of Picard starting at x0. In this section, we state and prove our results (Theorems 1.1 and 3.5),
using a new mixed-type contraction. Precisely, we establish the existence and uniqueness of
fixed point that are zeros of a given function.

Definition 3.3. Let (X, d) be a metric space and let T : X → X be a mapping. The mapping T is
called an F -H-contraction if there exist a function F ∈ F , a function H ∈ H, a real number τ > 0 and
a function ϕ : X → [0,+∞[ such that

(3.2) τ + F (H(d(Tx, Ty), ϕ(Tx), ϕ(Ty))) ≤ F (H(d(x, y), ϕ(x), ϕ(y)))

for all x, y ∈ X with H(d(Tx, Ty), ϕ(Tx), ϕ(Ty)) > 0.

We remark that every F -contraction is an F -H-contraction if we choose H ∈ H defined by
H(a, b, c) = a + b + c for all a, b, c ∈ [0,+∞[, and ϕ : X → [0,+∞[ defined by ϕ(x) = 0 for all
x ∈ X . The following is an example of an F -H-contraction that is not an F -contraction, so that
the new definition is a proper extension of the previous one.

Example 3.1. Let X = [0, 1] endowed with the usual metric d(x, y) = |x − y| for all x, y ∈ X .
Consider the mapping T : X → X defined by

Tx =


x

2
if x ∈ [0, 1[,

3

4
if x = 1.

Clearly, T is not an F -contraction since it is not continuous. Now, T is an F -H-contraction with respect
to the functions F ∈ F defined by F (t) = ln t for all t > 0, H ∈ H defined by H(a, b, c) = a + b + c
for all a, b, c ∈ [0,+∞[, and ϕ : X → [0,+∞[ defined by ϕ(x) = x for all x ∈ X .
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Indeed, for all x, y ∈ X with 0 < x ≤ y < 1 or 0 = x < y < 1, we have

F (H(d(Tx, Ty) + ϕ(Tx) + ϕ(Ty))) = ln y,

F (H(d(x, y) + ϕ(x) + ϕ(y))) = ln 2y,

and for all x ∈ [0, 1] and y = 1, we have

F (H(d(Tx, Ty) + ϕ(Tx) + ϕ(Ty))) = ln
3

2
,

F (H(d(x, x) + ϕ(x) + ϕ(x))) = ln 2.

Consequently, for every 0 < τ < ln
4

3
, we infer that

τ + F (H(d(Tx, Ty) + ϕ(Tx) + ϕ(Ty))) ≤ F (H(d(x, y) + ϕ(x) + ϕ(y)))

for all x, y ∈ X with H(d(Tx, Ty) + ϕ(Tx) + ϕ(Ty)) > 0, that is, T is an F -H-contraction.

We establish the following auxiliary lemma.

Lemma 3.1. Let (X, d) be a metric space and let T : X → X be an F -H-contraction with respect to
the functions F ∈ F , H ∈ H, ϕ : X → [0,+∞[ and the real number τ > 0. If {xn} is a sequence of
Picard starting at x0 ∈ X , then

(3.3) lim
n→+∞

H(d(xn−1, xn), ϕ(xn−1), ϕ(xn)) = 0,

and hence

(3.4) lim
n→+∞

d(xn−1, xn) = 0 and lim
n→+∞

ϕ(xn) = 0.

Proof. Let x0 be an arbitrary point in X and let {xn} be a sequence of Picard starting at x0 ∈ X .
Firstly, we assume that there exists k ∈ N such that xk−1 = xk, then xn = xk for all n ≥ k.
We claim that H(d(xk−1, xk), ϕ(xk−1), ϕ(xk)) = 0.

Assume the contrary, that is, suppose H(d(xk−1, xk), ϕ(xk−1), ϕ(xk)) > 0. We remark that

H(d(xk, xk+1), ϕ(xk), ϕ(xk+1)) = H(d(xk−1, xk), ϕ(xk−1), ϕ(xk)) > 0.

Using (3.2) with x = xk−1 and y = xk, we get

τ + F (H(d(Txk−1, Txk)), ϕ(Txk−1), ϕ(Txk))) = τ + F (H(0, ϕ(xk−1), ϕ(xk−1)))

≤ F (H(0, ϕ(xk−1), ϕ(xk−1))),

which is a contradiction, since τ > 0. So, H(d(xn−1, xn), ϕ(xn−1), ϕ(xn)) = 0 for all n ∈ N with
n ≥ k. This ensures that (3.3) holds and, by the property (H1) of the function H , (3.4) holds too.

Then, it is not restrictive to suppose that xn−1 6= xn for all n ∈ N. By the property (H1) of the
function H , we obtain that

H(d(xn−1, xn), ϕ(xn−1), ϕ(xn)) ≥ d(xn−1, xn) > 0 for all n ∈ N.

Using (3.2), with x = xn−1 and y = xn, we deduce that

τ + F (H(d(Txn−1, Txn), ϕ(Txn−1), ϕ(Txn))) ≤ F (H(d(xn−1, xn), ϕ(xn−1), ϕ(xn)))

for all n ∈ N. The above inequality shows that

F (H(d(xn, xn+1), ϕ(xn), ϕ(xn+1))) < F (H(d(xn−1, xn), ϕ(xn−1), ϕ(xn)))

for all n ∈ N. Then, the property (F1) of the function F implies that the sequence

{H(d(xn−1, xn), ϕ(xn−1), ϕ(xn))}
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is a decreasing sequence of positive real numbers. So, there exists some l ≥ 0 such that

lim
n→+∞

H(d(xn−1, xn), ϕ(xn−1), ϕ(xn)) = l.

If l = 0, then the property (H1) of the function H gives us

lim
n→+∞

d(xn−1, xn) = 0 and lim
n→+∞

ϕ(xn−1) = 0.

Now, suppose l > 0. Using (3.2), with x = xn−1 and y = xn, we get

F (H(d(xn, xn+1), ϕ(xn), ϕ(xn+1))) ≤ F (H(d(xn−1, xn), ϕ(xn−1), ϕ(xn)))− τ
≤ F (H(d(x0, x1), ϕ(x0), ϕ(x1)))− nτ

for all n ∈ N. From the previous inequality, passing to the limit as n→ +∞, we obtain

lim
n→+∞

F (H(d(xn, xn+1), ϕ(xn), ϕ(xn+1))) = −∞

and, using the property (F2) of the function F , we get

lim
n→+∞

H(d(xn, xn+1), ϕ(xn), ϕ(xn+1)) = 0,

which leads to contradiction and hence l = 0. So, (3.3) and (3.4) hold. �

Remark 3.1. Note that in the proof of Lemma 3.1, we use only the conditions (F1) and (F2).

Now, we are ready to give the proof of Theorem 1.1. For reader convenience, we restate
Theorem 1.1 in a classical fixed-point form.

Theorem 3.4. Let (X, d) be a complete metric space and let T : X → X be an F -H-contraction with
respect to the functions F ∈ F , H ∈ H, the real number τ > 0 and a lower semicontinuous function
ϕ : X → [0,+∞[ such that (3.2) holds, that is,

τ + F (H(d(Tx, Ty), ϕ(Tx), ϕ(Ty))) ≤ F (H(d(x, y), ϕ(x), ϕ(y)))

for all x, y ∈ X with H(d(Tx, Ty), ϕ(Tx), ϕ(Ty)) > 0. Then, T has a unique fixed point z such that
ϕ(z) = 0.

Proof. We start with the proof of fixed-point uniqueness. Arguing by contradiction, we suppose
that there exist z, w ∈ X such that z = Tz, w = Tw and z 6= w (that is, T admits two distinct
fixed points). The hypothesis z 6= w ensures, by the property (H1) of the function H , that

H(d(Tz, Tw), ϕ(Tz), ϕ(Tw)) ≥ d(Tz, Tw) = d(z, w) > 0.

Now, using (3.2), with x = z and y = w, we get that

τ + F (H(d(Tz, Tw), ϕ(Tz), ϕ(Tw))) = τ + F (H(d(z, w), ϕ(z), ϕ(w)))

≤ F (H(d(z, w), ϕ(z), ϕ(w))).

Clearly, this is a contradiction, and hence we have, w = z. So, we obtain the claim.
The next step is to establish the existence of a fixed point. We consider a point x0 ∈ X . Let

{xn} be a sequence of Picard starting at x0. We stress that if xk−1 = xk for some k ∈ N, then
z = xk−1 = xk = Txk−1 = Tz, that is, z is a fixed point of T such that ϕ(z) = 0. In fact, by
Lemma 3.1, H(d(xk−1, xk), ϕ(xk−1), ϕ(xk)) = 0 and by the property (H1) of the function H , we
have ϕ(z) = 0. So, we can suppose that xn−1 6= xn for every n ∈ N.

Now, we prove that {xn} is a Cauchy sequence. By Lemma 3.1, we say that

0 < hn−1 = H(d(xn−1, xn), ϕ(xn−1), ϕ(xn))→ 0 as n→ +∞.
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The property (F3) of the function F ensures that there exists k ∈ ]0, 1[ such that hknF (hn) → 0
as n→ +∞. Using (3.2), with x = xn−1 and y = xn, we get

F (H(d(xn, xn+1), ϕ(xn), ϕ(xn+1))) ≤ F (H(d(xn−1, xn), ϕ(xn−1), ϕ(xn)))− τ
≤ F (H(d(x0, x1), ϕ(x0), ϕ(x1)))− nτ

for all n ∈ N, that is,

F (hn) ≤ F (hn−1)− τ ≤ · · · ≤ F (h0)− nτ for all n ∈ N.
From

0 = lim
n→+∞

hknF (hn) ≤ lim
n→+∞

hkn(F (h0)− nτ) ≤ 0,

we deduce that
lim

n→+∞
hknn = 0.

This ensures that the series
∑+∞
n=1 hn is convergent. By the property (H1) of the function H also

the series
∑+∞
n=1 d(xn, xn+1) is convergent, and hence {xn} is a Cauchy sequence. Now, since

(X, d) is complete, there exists some z ∈ X such that

lim
n→+∞

xn = z.

By (3.4), taking into account that ϕ is a lower semicontinuous function, we get

0 ≤ ϕ(z) ≤ lim inf
n→+∞

ϕ(xn) = 0,

that is, ϕ(z) = 0. We assert that z is a fixed point of T . Clearly, z is a fixed point of T if there
exists a subsequence {xnk

} of {xn} such that xnk
= z or Txnk

= Tz, for all k ∈ N. Otherwise,
we can assume that xn 6= z and Txn 6= Tz for all n ∈ N. So, using (3.2) with x = xn and y = z,
we deduce that

τ + F (H(d(Txn, T z), ϕ(Txn), ϕ(Tz))) ≤ F (H(d(xn, z), ϕ(xn), ϕ(z))).

Since τ > 0, this inequality leads to

H(d(Txn, T z), ϕ(Txn), ϕ(Tz)) < H(d(xn, z), ϕ(xn), ϕ(z)) for all n ∈ N,
and so

d(z, Tz) ≤ d(z, xn+1) + d(Txn, T z)

≤ d(z, xn+1) +H(d(Txn, T z), ϕ(Txn), ϕ(Tz))

< d(z, xn+1) +H(d(xn, z), ϕ(xn), ϕ(z))

for all n ∈ N.
Finally, letting n→ +∞ in the above calculations and taking into account that H is continu-

ous in (0, 0, 0), we deduce that d(z, Tz) ≤ H(0, 0, 0) = 0, that is, z = Tz. �

Imposing that F is a continuous function and relaxing the hypothesis (F3), we establish the
following result.

Theorem 3.5. Let (X, d) be a complete metric space and let T : X → X be a mapping. Assume that
there exists a continuous function F that satisfies the conditions (F1) and (F2), a function H ∈ H, a
real number τ > 0 and a lower semicontinuous function ϕ : X → [0,+∞[ such that (3.2) holds, that
is,

τ + F (H(d(Tx, Ty), ϕ(Tx), ϕ(Ty))) ≤ F (H(d(x, y), ϕ(x), ϕ(y)))

for all x, y ∈ X with H(d(Tx, Ty), ϕ(Tx), ϕ(Ty)) > 0. Then T , has a unique fixed point z such that
ϕ(z) = 0.
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Proof. Following the similar arguments as in the proof of Theorem 3.4, we obtain easily the
uniqueness of the fixed point. In order to establish the existence of a fixed point, we consider
a point x0 ∈ X . Let {xn} be a sequence of Picard starting at x0. Clearly if xk−1 = xk for some
k ∈ N, then z = xk−1 = xk = Txk−1 = Tz, that is, z is a fixed point of T such that ϕ(z) = 0 (see
the proof of Theorem 3.4), and so, we have already done.

So, we can suppose that xn−1 6= xn for every n ∈ N. We claim that {xn} is a Cauchy
sequence. We assume for way of contradiction that {xn} is not a Cauchy sequence. Then, there
exist a positive real number ε and two sequences {mk} and {nk} such that

nk > mk ≥ k and d(xmk
, xnk

) ≥ ε > d(xmk
, xnk−1) for all k ∈ N.

By Lemma 3.1 and Remark 3.1, we say that d(xn−1, xn) → 0, ϕ(xn) → 0 as n → +∞. This
implies

lim
k→+∞

d(xmk
, xnk

) = lim
k→+∞

d(xmk−1, xnk−1) = ε.

Now, the hypothesis that d(xmk
, xnk

) > ε ensures that

H(d(xmk
, xnk

), ϕ(xmk
), ϕ(xnk

)) > 0 for all k ∈ N.

So, taking into account that H is a continuous function, we have

lim
k→+∞

H(d(xmk−1, xnk−1), ϕ(xmk−1), ϕ(xnk−1))

= lim
k→+∞

H(d(xmk
, xnk

), ϕ(xmk
), ϕ(xnk

))

= H(ε, 0, 0) > 0.

Using again (3.2), with x = xmk−1 and y = xnk−1, we deduce that

τ + F (H(d(xmk
, xnk

), ϕ(xmk
), ϕ(xnk

)))

≤ F (H(d(xmk−1, xnk−1), ϕ(xmk−1), ϕ(xnk−1)))

for all k ∈ N. Letting k → +∞ in the previous inequality, since the function F is continuous,
we get

τ + F (H(ε, 0, 0))) ≤ F (H(ε, 0, 0))),

which leads to contradiction. It follows that {xn} is a Cauchy sequence.
Now, since (X, d) is complete, there exists some z ∈ X such that

lim
n→+∞

xn = z.

By (3.4), taking into account that ϕ is a lower semicontinuous function, we get

0 ≤ ϕ(z) ≤ lim inf
n→+∞

ϕ(xn) = 0,

that is, ϕ(z) = 0. We assert that z is a fixed point of T . Clearly, z is a fixed point of T if there
exists a subsequence {xnk

} of {xn} such that xnk
= z or Txnk

= Tz, for all k ∈ N. Otherwise,
we can assume that xn 6= z and Txn 6= Tz for all n ∈ N. Then, the property (H1) of the function
H ensures that H(d(Txn, T z), ϕ(Txn), ϕ(Tz)) > 0 for all n ∈ N. So, using (3.2), with x = xn
and y = z, we deduce that

τ + F (H(d(Txn, T z), ϕ(Txn), ϕ(Tz))) ≤ F (H(d(xn, z), ϕ(xn), ϕ(z))) for all n ∈ N.

Since τ > 0, we conclude that

H(d(Txn, T z), ϕ(Txn), ϕ(Tz)) < H(d(xn, z), ϕ(xn), ϕ(z)) for all n ∈ N,
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and so

d(z, Tz) ≤ d(z, xn+1) + d(Txn, T z)

≤ d(z, xn+1) +H(d(Txn, T z), ϕ(Txn), ϕ(Tz))

< d(z, xn+1) +H(d(xn, z), ϕ(xn), ϕ(z))

for all n ∈ N. Finally, letting n → +∞ and taking into account that H is continuous in (0, 0, 0),
we deduce that d(z, Tz) ≤ H(0, 0, 0) = 0, that is, z = Tz. �
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