
JOURNAL OF
MATHEMATICAL
SCIENCES AND
MODELLING

 ISSN: 2636-8692

VOLUME III 
ISSUE I



VOLUME III ISSUE II April 2020
ISSN 2636-8692 http://dergipark.gov.tr/jmsm

JOURNAL OF

MATHEMATICAL SCIENCES

AND MODELLING



Editors

Editor in Chief

Mahmut Akyiğit
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TÜRKİYE
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Abstract

This work investigates the well known localization problem of energy and momentum.

The purpose of this paper is two fold. First, we compute Einstein, Landau-Lifshitz and

Bergmann’s energy-momentum complexes for static spherically symmetric magnetically

charged regular black hole spacetime in general relativity. We observe strong coincidences

among the results obtained form the three descriptions. These resembling results from

different energy-momentum prescriptions may offer some basis to explain a exclusive

quantity which supports Virabhadra’s viewpoint. Secondly, the problem is discussed in

modified gravity. In particular, we use generalized Landau-Lifshitz prescription for the

determination of energy-momentum with reference to f (R) theory of gravity. We explicitly

compute the energy-momentum complex for the static spherically symmetric magnetically

consistent regular black hole metric for a well-known choice of the f (R) gravity models.

1. Introduction

The energy-momentum localization in curved spacetimes is one of the most important issues since the emergence of general relativity (GR).

This problem has no proper solution till date. Several attempts have been carried out by researchers to overcome this issue, using different

tools and hypothesis. A unique tensorial definition of energy and momentum has been a focus of many findings in the GR. Energy-momentum

tensor T b
a is a second rank symmetric, localized and divergence-less quantity introduced in both, the special relativity and the classical

mechanics. It gives the account of the energy and momentum matter source, and non-gravitational field sources. Given below equation

defines the conservation law of energy and momentum

T b
a; b = 0. (1.1)

Unique definitions of energy and momentum exist in classical physics. However, ordinary derivatives transforms to covariant derivatives in

GR. Thus, we get

T b
a;b =

1
√
−g

(
√
−gT b

a ),b −Γ
b
acT c

b = 0. (1.2)

This conservation law was formulated by Einstein [1]. Eq. (1.2) shows that T b
a does not satisfy Eq. (1.1) in the presence of gravitational

field. The summation of these two terms (stress-energy tensor and a pseudo-tensor) remains divergence-less. The addition of a non-tensor

quantity to justify the gravitational field energy was criticized by many researchers. Levi Civita argued on an alternate gravitational energy

tensor. Penrose [2] introduced another concept of energy, known as quasi-local energy in order to find a feasible expression other than tb
a

(pseudo-tensor). Pauli criticized Einstein’s work on energy-momentum distribution but Einstien argued that his energy-momentum complex

(EMC) gave reasonable outcomes for the energy and momentum of isolated systems which obey the conservation laws.

Email addresses and ORCID numbers: farasat.shamir@nu.edu.pk, https://orcid.org/0000-0002-3310-8806 (M. Farasat Shamir), ridaejaz362@gmail.com, (R.

Ejaz),coolmushtaque@gmail.com, https://orcid.org/0000-0002-3775-926X (M. Ahmad)



2 Journal of Mathematical Sciences and Modelling

Later on, different prescriptions were suggested by many researchers including Landau-Lifshitz [3], Bergmann-Thomson [4], Tolman [5],

Weinberg [6], Papapetrou [7], and Möller [8]. All of these works are coordinate dependent i.e one has to perform the computations in

the quasi-cartesian coordinates except Möller’s prescription which is coordinate free. Due to non-tensorial nature, these complexes are

also called pseudo-tensors. Misner et al. [9] proved that spherical coordinate system can be used for the localization of energy. But later

on, possibility of energy localization in any system was proved by Sarracino and Cooperstock [10] as they showed that the energy can be

localized in any system, if it is localized in spherical systems. In 1990, Virabhadra claimed that energy-momentum complexes might provide

intuitive conclusions just for the isolated systems total energy. Virabhadra and his co-authors [11] studied several spacetimes and found

various energy distributions for such spacetimes. The issue of localization of energy-momentum in the GR gained a new viewpoint from the

results elaborated by Xulu et al. [12]. Rosen [13] investigated the total energy of a closed homogenous isotropic universe using Einstein’s

EMC. Many efforts have been made to solve the problem of localization of energy and momentum [14]-[20]. Amir and Mirshekari [21]

investigated energy-momentum distributions in static and non-static cosmic strings space-times using Einstein, Landau-Lifshitz, papapetrou,

Bergmann-Thomson, Tolman, Mø̈ller, and Weinberg’s prescriptions. They noted strong similarities between the findings. These results were

thought to be the extension of Virabhadra’s point of view that different energy-momentum prescriptions may provide some basis to explain

an exclusive quantity. Xulu and his collaborators [12] investigated the matter source of black hole phantom metric with the help of Einstein’s

EMC. Sharif and Kanwal [22] evaluated energy-momentum distribution of Bell-Szekeres metric in the GR and teleparallel gravity with

the help of Bergmann-Thomson, Einstein, Landau-Lifshitz, and Mø̈ller’s prescriptions. Bergmann and Einstein’s prescriptions for Bianchi

type-V spacetime in the GR and teleparallel theory of gravity were investigated by Salti and Aydogdu [23]. Bianchi type-II universe was

investigated by Aydogdu using Landau-Lifshitz and Einstein EMC in the GR [24]. Banerjee and Sen [25] calculated the total energy density

for Bianchi type-I universe using Einstein’s EMC. Sharif and Fatima [26] computed the energy-momentum distribution of the Weyl metrics,

singularity-free cosmological model and non-null Einstein-Maxwell solution using different prescriptions.

Modified theories of gravity have enthused many researchers lately due to the collective motivation imminent from high-energy physics,

astrophysics, and cosmology. Among several alternatives to the Einstein’s theory of gravity, theories which comprise high order scalar

curvature invariants, and explicitly the class of f (R) theories, enjoys a long history. In the last seven years or so, there has been a novel

incentive for their study, leading to numerous fascinating results in this modified gravity. Furthermore, it has proven to be an effective

and consistent to the GR and it continues to behave so. This definitely happens to be the reason to consider this theory for our present

work Mainly, most of the work in the literature on the problem of energy momentum localization is with in the framework of the GR. In

particular, the f (R) gravity seems an interesting and straight forward modification for the discussion. Multämaki et al. [27] were the pioneers

to generalize Landau-Lifshitz EMC in f (R) theories of gravity. However, they restricted the generalization for those spacetimes having

constant scaler curvature. Sharif and Shamir evaluated the energy density of plane symmetric solutions for some popular choices of f (R)
models. They also investigated the energy distribution of cosmic string spacetime [28]. Similar work can be found in [29]-[32].

Black holes gained much importance since Schwarzschild era. Xulu computed the energy distribution of Melvins magnetic universe and a

charged dilaton black hole [12]. Gao and Zhang [33] investigated the properties of a phantom black hole metric. The accretion process

of phantom fluid onto a black hole was studied by Babichev et al. [34]. Fabris and Bronnikov [35] obtained some interesting results on

investigating the physics of neutral phantom black holes. Ding et al. [36] studied the influence of phantom fields on strong gravitational

lensing.

In this paper, we interest to investigate some EMCs for static spherically symmetric magnetically charged regular black hole metric.

For this purpose, we choose Landau-Lifshitz, Einstein, and Bergmann’s prescriptions. We also investigate the energy and momenta for

generalized Landau-Lifshitz EMC in f (R) theory. The sequence of this manuscript is given as: Section 2 gives a brief discussion on the static

spherically symmetric magnetically charged regular black hole metric. Section 3 is devoted to discuss different EMCs. In particular Einstein,

Landau-Lifshitz and Bergmann’s EMCs have been discussed for the magnetically charged regular black hole metric in detail. Section 4

gives the generalized expressions for Landau-Lifshitz in context of f (R) gravity. Specifically, we calculate the components of energy and

momentum. The last section is devoted to the comments and conclusive remarks.

2. Magnetically charged regular black hole metric

We use here the static, spherically symmetric magnetically charged regular black hole metric [37],

ds2 = w(r)dt2 −
dr2

w(r)
− r2dΩ

2
, (2.1)

where metric function w(r) is given

w(r) = 1−
2m(r)

r
,

with m(r) is the mass function given by

m(r) =
q

3
2

16 4
√

γ

[

ln
2
√

γq−2 4
√

γ
√

qr+ r2

2
√

γq+2 4
√

γ
√

qr+ r2
+2arctan

(

1+
r

4
√

γ
√

q

)

−2arctan

(

1−
r

4
√

γ
√

q

)]

,

where q gives magnetic charge. To workout a black hole solution being consistent at r = 0, the parameter γ has to assume the value [37]

γ =

(

πq
3
2

8M

)4

.
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Thus the metric function w(r) turns out to be

w(r) = 1+
M

πr

[

ln
32M2r2 +8πMq2r+π2q4

32M2r2 −8πMq2r+π2q4
−2arctan

(

8Mr

πq2
+1

)

+2arctan

(

1−
8Mr

πq2

)]

.

Here M is the mass parameter. Ding and collaborators. [36] explored that for M = 0, the metric provides the Ellis wormhole geometries. For

the computation of components of energy and momentum, the line element (2.1)should be transformed from spherical polar coordinates (t, r,

θ , φ ) to quasi-cartesian coordinates i.e. (t, x, y, z) applying the following transformations

x = r cosφ sinθ ,

y = r sinφ sinθ ,

z = r cosθ .

The line element just transformed reads

ds2 = w(r)dt2 − (dx2 +dy2 +dz2)−
1

w(r)

(

xdx+ ydy+ zdz

r

)2

+

(

xdx+ ydy+ zdz

r

)2

.

The corresponding determinant g of the tensor gik gives

g =−1.

We obtain seven non-zero independent contra-variant components of the symmetric metric tensor.

g
00

=
1

w
,

g
11

=
x2(1−w)− r2

r2
,

g
22

=
y2(1−w)− r2

r2
,

g
33

=
z2(1−w)− r2

r2
,

g
12

=
(1−w)xy

r2
,

g
23

=
(1−w)yz

r2
,

g
31

=
(1−w)xz

r2
.

3. Energy-momentum prescriptions in the GR

Here, we discuss the three different EMCs in the GR. In particular we discuss Einstein, Landau-Lifshitz and Bergmann’s EMCs.

3.1. Einstein energy-momentum prescription

The Einstein EMC is given as[38]

Θ
b
a =

1

16π
hbc

a,c,

where

hbc
a =−hcb

a =
gad√
−g

[

−g

(

gbdgce −gcdgbe

)]

,e

.

The energy, momentum components are denoted by Θ
0
0 and Θ

0
i respectively. Θ

b
a satisfies the covarient local Einstein’s conservation laws

∂Θ
b
a

∂xb
= 0.

The momentum four-vector (or the components of energy-momentum) is expressed as

Pa =
∫ ∫ ∫

Θ
0
adx1dx2dx3

. (3.1)
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Pi with (i = 1,2,3) provides the components of momentum and the energy the energy is represented by P0. Energy of physical system when

the integration is taken over the hypersurface element by considering constant t is

E =
∫ ∫ ∫

Θ
0
0dx1dx2dx3

.

All the calculations are restricted to be carried out in quasi-cartesian coordinates. Applying Gauss’s divergence theorem on the Eq. (3.1)leads

to

Pa =
1

16π

∫ ∫

h0b
aµbdS, (3.2)

where µb = xi

r is the normal unit vector directed outward over an infinitesimal surface element dS. For the purpose to attain energy, we

acquire three independent components of hbc
a

h01
0 =

2x(1−w)

r2
,

h02
0 =

2y(1−w)

r2
,

h03
0 =

2z(1−w)

r2
. (3.3)

Using the Eq. (3.3) in Eq. (3.2), the energy distribution is obtained as

PE(r) =
r(1−w)

4
,

where PE(r) expresses the total energy (gravitational field plus matter) within radius r. Likewise, Pi gives the total momentum due to both

gravitational field and matter. It is to be noted that

h01
1 = h01

2 = h01
3 = 0,

h02
1 = h02

2 = h02
3 = 0,

h03
1 = h03

2 = h03
3 = 0,

suggesting that Px = Py = Pz = 0. It is worthwhile to note that our results agree with [12] when we take q = 0.

3.2. Landau-Lifshitz energy-momentum prescription

The EMC of Landau-Lifshitz is [38]

Lab = (−g)(T ab + tab) =
1

16π
χabcd

,cd ,

where χabcd is defined as

χabcd =−g(gabgcd −gacgbd).

The components of energy and momentum are expressed by L00 and L0i respectively.

∂Lab

∂xb
= 0. (3.4)

Eq. (3.4) further gives the conservation law for the quantity

Pa =
∫ ∫

(−g)(T ab + tab)µbdS.

The quantities tab vanish in the quasi-cartesian coordinates when there is no gravitational field, and the above relation takes the form

Pa =
∫ ∫

(−g)T abµbdS,

which represents the four-momentum of the physical system. It gives the total four-momentum of the matter plus gravitational field. Thus,

tab is refereed as the energy-momentum pseudo-tensor of the gravitational field. The energy-momentum components are described as a

three-dimensional integral space, given as

Pa =
∫ ∫ ∫

Ła0dx1dx2dx3
. (3.5)

Here also using Gauss’s Theorem in Eq. (3.5), we get

Pa =
1

16π

∫ ∫

χa0bd
,d µbdS, (3.6)
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After some lengthy calculations the following independent components of χabcd turn out to be

χ0011 =
r2 + x2(w−1)

wr2
,

χ0022 =
r2 + y2(w−1)

wr2
,

χ0033 =
r2 + z2(w−1)

wr2
,

χ0012 =
−(w−1)

x
ywr2

,

χ0023 =
−(w−1)

y
zwr2

,

χ0031 =
−(w−1)

x
zwr2

. (3.7)

Using Eq. the (3.7) in Eq. (3.6), we obtain

PL(r) =
(1−w)r

4w
,

where PL(r) gives the total energy within radius r. Here we also get all the other components zero as expected from the geometry of a static

metric.

3.3. Bergmann energy-momentun prescription

The Bergmann’s EMC is given as[4]

Bab =
1

16π
β abc
,c ,

where β abc is given as

β abc = gadV bc
d ,

and V bc
d is defined as

V bc
d =−V cb

d =
gde√
−g

[

−g

(

gbegc f −gcegb f

)]

, f

.

Here Bab approves the covariant local laws of conservation

∂Bab

∂xb
= 0.

The energy-momentum components are expressed as

Pa =
∫ ∫ ∫

Ba0dx1dx2dx3
. (3.8)

Applying the Gauss’s theorem in the Eq. (3.8), we obtain

Pa =
1

16π

∫ ∫

β a0bµbdS. (3.9)

Now, to obtain the energy distribution, we get just three components of Babc

B001 =
2x(1−w)

wr2
,

B002 =
2y(1−w)

wr2
,

B003 =
2z(1−w)

wr2
. (3.10)

Using Eqs. (3.10) in the Eq. (3.9), the energy distribution is obtained as

PB(r) =
r(1−w)

4w
.

All the other components of Babc are vanished resulting in zero momentum. It is worthwhile to mention here that the energy-momentum

distribution for magnetically charged regular black hole metric in both Landau-Lifshitz and Bergmann prescription is same. Now, we

investigate the energy-momentum distribution in modified f (R) gravity.
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4. Energy-momentum distribution in f (R) theory of gravity

Exploring the localization problem in alternative theories of gravity might be an intresting task. Researchers have worked on this localization

issue in the teleparallel theory of gravity [39]-[41] expecting a positive solution of this complex problem. The energy-momentum distribution

for particular space-times has been computed using different prescriptions by Sharif and Jamil [42]. No general conclusion was deduced

form the results though they were consistent in some cases. Because of the cosmologically vibrant f (R) model, the f (R) theory has proven

to be very attractive in the recent years. The generalization of Landau-Lifshitz EMC has been studied in the framework of this modified

gravity [27].

4.1. Generalized Landau-Lifshitz energy-momentum complex

The f (R) gravity is a generalised form of the GR. The f (R) gravity is equipped with the following field equations

F(R)Rµν −
1

2
f (R)gµν −∇µ ∇ν F(R)+gµν�F(R) = 8πGT m

µν ,

where F(R) is the differentiation of f (R) with respect to R. T m
µν defines the standard minimally coupled stress-energy tensor. The generalized

Landau-Lifshitz EMC is given by [27]

T µν = F(R0)τ
µν
LL +

1

6k2
(F(R0)R0 − f (R0))∂λ (g

µν xλ −gµλ xν ). (4.1)

where τLL
µν represents the Landau-Lifshitz EMC worked out in the GR and κ is the coupling constant. This is a generic expression validating

any f (R) theory of gravity when the scaler curvature of the chosen metric happens to be constant. The 00-component becomes

T 00 = F(R0)τ
00
LL +

1

6k2
(F(R0)R0 − f (R0))∂λ (g

00xλ −g0λ x0), (4.2)

where τ00
LL (the Landau-Lifshitz EMC) may also be computed the summation of energy-momentum and energy-momentum pseudo tensor as

τ00
LL = (−g)(T 00 + t00

LL), (4.3)

where t00
LL is given by

t00
LL =

1

2k
[(2Γ

γ
αβ

Γ
δ
γδ −Γ

γ
αδ

Γ
δ
βγ −Γ

γ
αγ Γ

δ
βδ )(g

µα gνβ −gµν gαβ )

+ (gµα gβγ )(Γν
αδ Γ

δ
βγ +Γ

ν
βγ Γ

δ
αδ −Γ

ν
γδ Γ

δ
αβ −Γ

ν
αβ Γ

δ
γδ )

+ (gνα gβγ )(Γ
µ
αδ

Γ
δ
βγ +Γ

µ
βγ

Γ
δ
αδ −Γ

µ
γδ

Γ
δ
αβ −Γ

µ
αβ

Γ
δ
γδ )

+ (gαβ gγδ )(Γ
µ
αγ Γ

ν
βδ −Γ

µ
αβ

Γ
ν
γδ )].

It may be noted we need here the cartesian coordinates to apply the general formula in the Eq. (4.2). For convenience and without any loss of

generality, we discuss the energy-momentum distribution of magnetically charged regular black hole metric in f (R) gravity using polar

coordinates.

4.2. Energy distribution of magnetically charged regular black hole metric

It is mentioned here that the value of scaler curvature for the metric (2.1) is

R =
2

r

(d2m

dr2
−

dm

dr

)

.

On putting the value of m(r) the Ricci scaler comes out to be constant i.e R0 = 0. Hence, the static spherically symmetric magnetically

charged regular black hole metric is an exact solution of any f (R) theory, that satisfies the constant curvature condition. Now, as the Ricci

scaler R remains constant, we may find the energy density for this f (R) model by implementing the generalized Landau-Lifshitz EMC.

Using the Eq. (4.2) comes out with the following 00-component

τ00 = F(R0)τ
00
LL +

1

2κ
(F(R0)R0)− f (R0)(rF(R)+3 f (R)). (4.4)

Using Eq. (4.3) and after some manipulations, we get

τ00
LL =

1

2κ2

[

(

−3

2

w′(r)2

w(r)2
− rw′(r)− rw′(r)sin2θ −

7

r2
+2w(r)−2

(

cos2θ

sin2θ

)

+ w(r)sin2θ +
−3

2

w′(r)

rw(r)
−

2

r

cosθ

sinθ

)(

1+
1

r2w(r)
+

1

r2w(r)sin2θ

)

+

(

1

w(r)2

)(

w′(r)2

2w′(r)
+

2w′(r)

rw(r)

)

]

. (4.5)
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Substituting Eq. (4.5) in Eq. (4.4), it follows that

τ00 =
1

2κ2

[

(

−3

2

w′(r)2

w(r)2
− rw′(r)− rw′(r)sin2θ −

7

r2
+2w(r)−2

(

cos2θ

sin2θ

)

+ w(r)sin2θ +
−3

2

w′(r)

rw(r)
−

2

r

cosθ

sinθ

)(

1+
1

r2w(r)
+

1

r2w(r)sin2θ

)

+
( 1

w(r)2

)(

w′(r)2

2w′(r)
+

2w′(r)

rw(r)

)

]

F(R0)

+
1

6k2
(F(R0)R0 − f (R0))

(

−rw′(r)

w(r)2
+

3

w(r)

)

.

Now we discuss an important case by choosing a f (R) model. It is to be noted that we can not consider a model which becomes non-analytic

at R0 = 0. For example we can not choose f (R) = R+ c2

R . Thus the simplest and commonly used model is

f (R) = R+ c1R2
.

For this model, the corresponding 00-component of the Landau-Lifshitz EMC, reads as

τ00 = τ00
LL(1) =

1

2κ2

[

(

−3

2

w′(r)2

w(r)2
− rw′(r)− rw′(r)sin2θ −

7

r2
+2w(r)−2

(

cos2θ

sin2θ

)

+ w(r)sin2θ +
−3

2

w′(r)

rw(r)
−

2

r

cosθ

sinθ

)(

1+
1

r2w(r)
+

1

r2w(r)sin2θ

)

+

(

1

w(r)2

)(

w′(r)2

2w′(r)
+

2w′(r)

rw(r)

)

]

.

4.3. Momentum Of magnetically charged regular black hole metric

We also calculate the momenta of the magnetically charged regular black hole metric by implementing the same technique and relations. τ0i

represents the components of momentum. For momentum calculation, Eq. (4.1) becomes

T 0i = F(R0)τ
0i
LL +

1

6k2
(F(R0)R0 − f (R0))∂λ (g

0ixλ −g0λ xi). (4.6)

Using Eq. (4.6), the simplified momentum components for i = 1,2,3 are

τ01 =
1

2κ2

[

(

2w(r)w′(r)

r
−

2w′(r)

rw(r)
+(2w(r)+3)cos2θ −

w′(r)2

w(r)2
−

w′(r)2

2
−

2
cos2θ

sin2θ

)

(

−1
)

+

(

−1−
1

w(r)2 − 1
r2w(r)

−
1

r2w(r)sin2θ

)

(

w(r)w′(r)

2r
+ rw(r)sinθcosθ

)

+

(

−1+w(r)2 +
w(r)

r2
+

w(r)

r2sin2θ

)

(

w′(r)2

2w(r)2
−

2w′(r)

rw(r)

)

]

,

τ02 =
1

2κ2

[

(

−w′(r)2

2
+

2w(r)w′(r)

r
−2w(r)−2 f (r)sin2θ

−
w′(r)2

2w(r)

2

r

cosθ

sinθ
− cos2θ −

2w′(r)

rw(r)
−2(

cos2θ

sin2θ
)

)(

−1

r2w(r)

)

+

(

−1−
1

w(r)2
−

1

r2w(r)
−

1

r2w(r)sin2θ

)(

−4sinθcosθ

r

)

]

,
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τ03 =
1

2κ2

[

(

2w(r)w′(r)

r
+

2w′(r)

rw(r)
−2w(r)−3w(r)sin2θ +4cos2θ

−
w′(r)2

2
−

w′(r)2

2w(r)2
−

2

r2
−

2cos2θ

sin2θ
+

w′(r)

2w′(r)r
−

2cosθ

rsinθ
+

w′(r)cosθ

2w(r)sinθ

)

(

−1

w(r)r2sin2θ

)

+

(

−1+
1

w(r)2
−

1

w(r)r2
−

1

w(r)r2sin2θ

)

(

−w(r)sin2θ +
2

r2
+

2cos2θ

sin2θ
+ cos2θ

)

+

(

−1

r2w(r)sin2θ
−

w(r)

r2sin2θ

)

(

3

4

w′(r)2

w(r)2
−

2w′(r)

rw(r)

)

]

.

5. Concluding remarks

Many investigations have been put forward to address the issue of energy-momentum as it is an important conserved quantity. Unfortunately,

there does not exist a general definition of energy and momentum in the GR. In this work, we focus to investigate the well-known problem of

localization of energy-momentum with reference to the GR by using these three EMCs and also give some analysis under the modified

gravity. In particular, we calculate the energy and momentum distributions for a static spherically symmetric magnetically charged regular

black hole metric using Einstein, Bergmann-Thomson and Landau-Lifshitz EMCs. We conclude that energy turns to be well-defined and

finite in these prescriptions for the black hole metric. It is worth noting that for w = 1 the final results of all these three prescriptions gives

constant energy equal to zero. It is to be noted that the unique results are obtained for Einstein, Bergmann-Thomson and Landau-Lifshitz

energy-momentum prescriptions. Extension of Virbhadra’s viewpoint [43] (different energy-momentum prescriptions may provide some

basis to define a unique quantity) is supported by the coincidences observed in the results of these prescriptions. It is worthwhile to mention

here that our results agree with [12] when we ignore the magnetic charge, i.e. q = 0.

We have also worked on the energy and momentum distributions of the same metric in the context of modified gravity. For this purpose,

we choose f (R) theory of gravity and the Landau-Lifshitz energy-momentum prescription. Inspired by the recent interesting f (R) gravity

models, we generalize the results obtained for Landau-Lifshitz prescription. Here, we limit ourselves to investigate the Landau-Lifshitz EMC

using the constant curvature assumption. The obtained energy and momentum components are well-defined for a space r > 0. It would be an

attractive task to get more generalized results by evaluating the Landau-Lifshitz EMC for non-constant Ricci scaler. Extending other EMCs

in the context of f (R) gravity as well in other modified theories of gravity would also be interesting.

For the comparative analysis of Energy-Momentum Distribution for Magnetically Charged Black Hole Metric, we have noted some worthy

works in modified f (R) theories of gravity in [29], [27], and [28] under some specific assumptions of different models and parameters. It

has been noted that our work about Einstein, Landau-Lifshitz and Bergmann’s energy-momentum complexes for static spherically symmetric

magnetically charged regular black hole metric is consistent and similar in many aspects. However, a very few dissimilarities wherever they

have appeared might be because of some different choices of the models and the corresponding parameters.

References

[1] C. Møller, The Theory of Relativity Oxford Univ. Press, London, (1958).
[2] R. Penrose, Quasi-local mass and angular momentum in general relativity, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., A381 (1982), 53-63.
[3] L. D. Landau, E. M. Lifshitz, The Classical Theory of Fields , Pergamon Press, 1987.
[4] P. G. Bergmann, R. Thomson, Spin and angular momentum in general relativity, Phys. Rev., 89 (1953), 400.
[5] R. C. Tolman, On the use of the energy-momentum principle in general relativity, Phys. Rev. 35 (1930), 875.
[6] S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, John Wiley and Sons Inc., New York, 1972.
[7] A. Papapetrou, Einstein’s theory of gravitation and flat space, Proceedings of the Royal Irish Academy. Section A, Mathematical and Physical Sciences,

Royal Irish Academy, A52 1948, pp. 11-23.
[8] C. Møller, On the localization of the energy of a physical system in the general theory of relativity, Ann. Physics, 4 (1958), 347-371.
[9] C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation, W. H. Freeman and Company, San Francisco, 1973.

[10] F. I. Cooperstock, R. S. Sarracino, The localisation of energy in general relativity, J. Phys. A: Math. Gen., 11 (1978), 877.
[11] A. Chamorro, K. S. Virbhadra, A radiating dyon solution, Pramana-J. Phys., 45 (1995), 181.
[12] P. K. Sahoo, K. L. Mahanta, D. Goit, A. K. Sinha, S. S. Xulu, U. R. Das, A. Prasad, and R. Prasad, Einstein energy-momentum complex for a phantom

black hole metric, Chinese Physics Letters, 32(2) (2015), 020402.
[13] N. Rosen, The energy of the universe, Gen. Relativ. Gravit, 26 (1994), 319-321.
[14] S. S. Xulu, Energy distribution in Melvin’s magnetic universe, Int. J. Modern Physics A, 15(30) (2000), 4849-4856.
[15] S. S. Xulu, Total energy of the Bianchi type I universes, Int. J. Theor. Phys., 39 (2000), 1153-1161.
[16] S. S. Xulu, Møller energy for the Kerr–Newman metric, Modern Phys. Lett. A, 15 (2000), 1511-1517.
[17] S. S. Xulu, Bergmann–Thomson energy-momentum complex for solutions more general than the Kerr–Schild class, Int. J. Theor. Phys., 46 (2007),

2915-2922.
[18] S. S. Xulu, Bergmann-Thomson energy of a charged rotating black hole, Found. Phys. Lett., 19 (2006), 603-609.
[19] A. K. Sinha, G. K.Pandey, A. K. Bhaskar, B. C. Rai, A. K. Jha, S. Kumar and S. S. Xulu, Effective gravitational mass of the Ayón-Beato and Garcı́a

metric, Modern Phys. Lett. A, A 30 (2015), 1550120.
[20] S. Aygün, I. Tarhan,Energy–momentum localization for Bianchi type-IV Universe in general relativity and teleparallel gravity, Pramana, 78 (2012),

531-548.
[21] A. M. Abbassi, S. Mirshekari and A. H. Abbassi, Energy-momentum distribution in static and nonstatic cosmic string space-times, Phys. Rev., D 78

(2008), 064053.
[22] M. Sharif, K. Nazir, Energy-momentum problem of Bell-Szekeres metric in general relativity and teleparallel gravity, Brazilian J. Phys., 38 (2008),

156-166.
[23] O. Aydogdu, M. Salti, The momentum 4-vector in bulk viscous Bianchi type-V space-time, Czechoslovak J. Phys., 56 (2006), 789-798.
[24] O. Aydogdu, Gravitational energy–momentum density in Bianchi type II space–times, Int. J. Modern Phys., D1504 (2006), 459-468.
[25] N. Banerjee, S. Sen, Einstein pseudotensor and total energy of the universe, Pramana, 49 (1997), 609-615.
[26] M. Sharif, T. Fatima, Energy-momentum distribution: A crucial problem in general relativity, Int. J. Modern Phys., A20 (2005), 4309-4330.



Journal of Mathematical Sciences and Modelling 9
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Abstract

Trisexual species with female, male and self-fertilizing hermaphrodite sub-populations

are rather exceptions in nature. Though, certain nematode/ worm species, like Auanema

Rhodensis, have evolved that way. Applying Kendall-like non-logistic mating functions, we

provide a series of reproduction models to holistically study the iterations between the sexes

and shed light on the increased population stability/ survival strength compared to bisexual

species or trisexual species with non-self-fertilizing hermaphrodites. Besides the increased

survival strength, the survival of such trisexual species populations is, in contrast to usually

known (bisexual) species populations, entirely linked to the relation between birth and death

proportionality factors, and no population thresholds are required for survival. In that sense,

while mathematically studying the complete equilibria and bifurcation landscape in terms

of existence and (non-linear) stability, as well as the global dynamics of these models, we

provide a comprehensive analysis of the reproduction dynamics of trisexual species.

1. Introduction

Recently, the trisexual nematode/ worm Auanema Rhodensis has drawn a lot of attention as an amazing example for reproductive mode

evolution and, especially, for bending the typical rules of genetics, cf. Refs. [1, 2, 3, 4]. The nematode species Auanema Rhodensis is a

member of the Auanema (Rhabditina) genus that evolved several trisexual species which have female, male and hermaphrodite members, cf.

Ref. [5]. Auanema Rhodensis hermaphrodite’s are self-fertilizing which is very uncommon in particular in the context of having a female

and male sex as well. Moreover, the way Auanema Rhodensis handles the ’X’-chromosome is also not typical at all, see Ref. [4]: both the

females and hermaphrodites are XX, whereas the males have a single X. The females produce eggs bearing one X-chromosome, males

produce exclusively X-bearing sperms1, and hermaphrodites produce XX-bearing sperm and eggs with no X. Hence, crossing females and

males leads to either female or hermaphrodite offspring, males and hermaphrodites produce only male offspring, and the self-fertilizing

hermaphrodites produce either female or hermaphrodite offspring, too. These reproduction dynamics are sketched in Fig. 1.1.

In Ref. [1] it is shown that XX-individuals of Auanema Rhodensis become hermaphrodites or females depending on whether they undergo

the non-feeding juvenile stage, called dauer larva, or not. The actual reasons for undergoing or skipping the dauer larva stage seem to be still

unknown, cf. Ref. [4].

Typically, and in alignment with the commonly accepted Mendel-rules of genetics, females are XX (producing X-bearing eggs) and males

are XY (producing an equal split of the heterogametic sperm with an X- and a Y-chromosome/ -gamet), which typically leads to an (almost)

equal ratio of male and female offspring. Moreover, when it comes to hermaphrodites, which are pretty common among invertebrates,

typically one observes them being XX-type as well and producing one X-bearing egg and one X-bearing sperm such that it needs two of

them to create offspring.

1 Though, the cell-biological mechanism of meiosis suggest that an X-male must produce two sperm cells with a haploid set of chromosomes, i.e. an X-bearing sperm together

with a non-X-bearing sperm. These non-X-bearing sperms are discarded later on.

Email address and ORCID number: florian.rupp@ccr-munich.de, https://orcid.org/0000-0002-5111-6041 (F. Rupp)
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Figure 1.1: Sketch of the reproduction dynamics of the trisexual nematode Auanema Rhodensis and the interaction between the female, male and
hermaphrodite species.

(a) (b)

Figure 1.2: Sketch of the dynamics for a bisexual female-male population (a), and a corresponding simulation with α = 0.5 (which leads to a symmetric
behavior), β = 1, and δ = 0.6 (b).

So the major question is whether the reproduction mode of Auanema Rhodensis has or has not some evolutionary competitive advantage

compared to the typical reproduction mode found in non-self-fertilizing trisexual species?

Therefore, we set-up a series mathematical ordinary differential equation models for both the Auanema Rhodensis population as well as

for a non-self-fertilizing trisexual population and compare the results of the corresponding mathematical discussions in terms of equilibria

and invariant structures, their stability and domains of attraction. Hereby, our interest is on the early population growth dynamics to obtain

insights on how fast a population can occupy a given biological niche and how few specimen are required to keep a population alive. We

assume these traits (fast growth dynamics and population resilience at low numbers of individuals) as indicators of evolutionary fitness. Once

the population has (nearly) occupied the habitat new effects, like competition for food or migration, take place, that are, by purpose, not

considered here, as they occur due to population density and independent of how fast and resilient this population density is reached.

To get a first impression on how different the population dynamics of trisexual species will turn out to be compared to bisexual species, let us

already in this introduction shortly discuss the time-evolution of a bisexual heterogametic population with XX-females and XY-males as

just introduced, cf. Refs. [6, 7, 8, 9]. In accordance with the standard description of population dynamics, cf. Refs. [10, 11, 12, 13], we

assume that the time-dependent female population f : R+
0 → R and the time-dependent male population m : R+

0 → R are completely mixed,

that there are no spatial effects (i.e. we are in some kind of averaged picture) or limiting factors, like nutrients or overcrowding. Then, by

suppressing the time arguments and using a Kendall-like non-logistic mating function, cf. Ref. [8], we obtain

ḟ = β ·α · f ·m−δ · f , and ṁ = β · (1−α) · f ·m−δ ·m ,

where β > 0 is proportionality factor related to birth events and taking fertility, mating success, etc. into account, δ > 0 is the sex-independent

proportionality factor related to death events, and α ∈ (0,1) is a splitting factor of the offspring into females and males.

We rather immediately have for all admissible values of the parameters, that the non-negative quadrant with f ≥ 0 and m ≥ 0 is (positively

and negatively) invariant, and that there are two equilibrium points: the origin ( f ,m) = (0,0), i.e. the complete extinction point, and the

point ( f ∗,m∗) :=
(

δ
β ·(1−α)

,
δ

β ·α

)

. For all admissible values of the parameters the origin is asymptotically stable, which means that too small

populations will eventually get extinct. Hence, one is typically interested in population threshold values at which the dynamic attraction

of the origin is no longer present and where one can guarantee mathematical long-time survival of the complete population. The second

equilibrium point ( f ∗,m∗) turns out to be locally an unstable saddle with one stable and one unstable manifold.
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Figure 1.3: Overview of the different models that we discuss in this article for trisexual species with self-fertilizing and non-self-fertilizing hermaphrodites. A
chain of symbols like f +m,h → f indicates that the offspring of both the crossing of females and males and the self-fertilization of hermaphrodites evolves
to females.

Fig. 1.2 gives a sketch of the phase space dynamics and some results of a numerical simulation for this bisexual population model. Besides

others, it illustrates that the stable manifold of the saddle point equilibrium acts as a separatrix between the region of extinction, i.e. the

domain of attraction of the origin, and the region of survival/ (unbounded) growth (the gray area in the figure). Certainly, our model does not

capture the whole picture of a population, as at some time limitations to growth will be present (modeled, e.g., via logistic functions), though

we see that survival of a bisexual population requires a certain threshold on the population or threshold mixture between the sexes.

Let us return to the mathematical discussion of trisexual species. In Refs. [14, 15] a heterogametic species with the three sexes XX, XY,

and YY is studied. It is suggested that, under the conditions discussed there, such trisexual systems are not stable over time, and are

destined to converge to bisexual systems. In Ref. [16] numerical computations, based on a stochastic evolutionary algorithm, are performed

that indicated that self-fertilizing strategies are rather stable in evolutionary settings and out-competed sexual ones. Though, changing

environments seem to favor bisexual species. The reproduction of the three- or pluri-/ multisexual species studied therein are such that three

or more members of a species have to meet in order to produce offspring.

In this article we augment this body of knowledge by studying the very specific situation of the self-fertilizing trisexual species Auanema

Rhodensis with a bisexual reproduction between females and males as well as hermaphrodites and males, and a asexual reproduction of the

hermaphrodites. Moreover, as already stated, we compare this situation with that of a generic trisexual species, where, instead of a asexual

reproduction, two hermaphrodites are required to cross.

In particular, we analyze several three-dimensional models, cf. Fig. 1.3: The first one is a model for Auanema Rhodensis with its self-

fertilizing hermaphrodites (Model A), and the second one is a model for a trisexual species with non-self-fertilizing hermaphrodites (Model

B). Next, the option of female-male offspring to mature to hermaphrodites is examined. Model C applies the Auanema Rhodensis case with

its self-fertilizing hermaphrodites, and Model C the case of a trisexual species with non-self-fertilizing hermaphrodites. Certain special cases

are finally discussed in the appendices, like the situation that female-male offspring evolves to females and hermaphrodite offspring evolves

to hermaphrodites only (Models E1 and E2), as well as both a part of female-male offspring and the whole of hermaphrodite offspring

evolves to hermaphrodites and the second part of female-male offspring evolves to females (Models F1 and F2). In all these models the

origin is an equilibrium point and for some parameter vales it is even unstable with a certain bifurcation scenario in Model A. Moreover, for

specific values of the parameters a line of additional equilibria in the interior of the positive orthant exists.

Our key insights are that, compared to bisexual species populations, the introduction of self-fertilizing hermaphrodite members stabilizes a

trisexual population. Moreover, instead of species thresholds for the female and male sub-populations, the survival of such a trisexual species

populations is entirely linked to the relation between birth and death proportionality factors. I.e., no matter how small the population may

become recovery is certain, provided the birth and death proportionality factors are favorable. (In contrast, a too small bi-sexual species

population will for sure become extinct.)

The remainder of this article is structured as follows: In Section 2 we set-up a deterministic Model of the population dynamics of Auanema

Rhodensis (Model A) and give a complete description of its equilibria in terms of existence and (non-linear) stability, as well as a description

of the global dynamics of this model. Analogously, Section 3 mathematically studies Model B, Section 4 examines Model C, and Model D is

analyzed in Section 5. The mathematical discussion of the somewhat restricted models A and B before that of the complete models C and

D allows us to describe and develop the (standard) methods necessary for the complete model in the easier cases and then being able to

refer to the previous steps later on for the required solution steps. Thus, at these later stages, we can focus on the specific and interesting

additional challenges of the complete models. Finally, the main part of the text concludes with a resume in Section 6, where we summarize

and interpret our results obtained by our models and their comparison with each other and bisexual species populations. As stated, the

appendices study specific special cases to complete the discussion of the reproduction dynamics of trisexual species populations. First, in

appendix A, we state and analyze mathematical models for species with neither hermaphrodites-producing females nor females-producing
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hermaphrodites, and second, in appendix B, we state and analyze mathematical models for species with hermaphrodites-producing females

and no-females-producing hermaphrodites.

2. A first mathematical model for the Auanema Rhodensis population (Model A)

In a first approach to study the competitiveness of a Auanema Rhodensis population, let us assume that there is a complete bias towards

female offspring after crossing female and male members of the population, and that with some splitting factor hermaphrodite offspring are

females or hermaphrodites.

Following the description of the reproductive dynamics given in the introduction, let f : R+
0 →R denote the time-dependent female Auanema

Rhodensis population, m : R+
0 → R the corresponding male population, and h : R+

0 → R the corresponding hermaphrodite population.

Assuming complete mixing and spatial homogeneity of the Auanema Rhodensis population, then, according to the standard description of

population dynamics, cf. Refs. [10, 11, 12, 13], the deterministic population dynamics of Auanema Rhodensis are given by

ḟ = β1 · f ·m+(1−α) ·β3 ·h−δ · f , (2.1)

ṁ = β2 ·h ·m−δ ·m , (2.2)

ḣ = α ·β3 ·h−δ ·h , (2.3)

where we suppressed the time arguments of the population functions f (t), m(t), and h(t). Here, β1,β2,β3 > 0 are proportionality factors

related to birth events, δ > 0 is the sex-independent proportionality factor related to death events, and α ∈ (0,1) a splitting factor of the

hermaphrodite offspring into females and hermaphrodites2. For further reference, we will denote this set of equation Eqs. (2.1)-(2.3) as

Model A.

In view of later simulations, we see that Eq. (2.3) decouples from the system Eqs. (2.1)-(2.3) such that h(t) = h0 · exp((α ·β3 −δ ) · t),
t ∈ R

+
0 , where h0 ≥ 0 is the initial hermaphrodite population at the initial time t0 = 0.

2.1. A mathematical discussion of Model A’s equilibrium points and their stability

For all admissible values of the parameters, we immediately have that the non-negative orthant P
+
0 := {( f ,m,h) ∈ R

3 : f ,m,h ≥ 0} is

invariant, and that the complete population eventually becomes extinct for a vanishing hermaphrodite population.

Moreover, for all admissible values of the parameters, the origin ( f ,m,h) = (0,0,0) is an equilibrium (complete extinction equilibrium),

where the local linearized dynamics around the origin are determined by ẋ = A1x with x = ( f ,m,h) and

d

dt





f

m

h



 =





−δ 0 (1−α) ·β3

0 −δ 0

0 0 α ·β3 −δ





︸ ︷︷ ︸

=:A1





f

m

h



+





β1 · f ·m
β2 ·h ·m

0



 .

Due to the triangular structure of A1 the eigenvalues of A1 can be read off as −δ < 0 with algebraic multiplicity two and corresponding

2-dimensional eigenspace spanned by (1,0,0) and (0,1,0), as well as α ·β3 −δ with the corresponding eigenspace spanned by (1−α,0,α).
Next, the Theorem of Linearized Stability implies the following stability properties of the origin in the complete system Eqs. (2.1)-(2.3):

First, for α ·β3 −δ < 0 the origin is an asymptotically stable equilibrium, second, for α ·β3 −δ > 0 the origin is a unstable equilibrium.

Finally, taking the non-linear structure into account, we have that for αβ3 −δ = 0 the origin is a Lyapunov stable (though not asymptotically

stable) hyperbolic equilibrium of the complete system Eqs. (2.1)-(2.3).

Hence, at α ·β3 −δ = 0 a bifurcation takes place. Biologically, this bifurcation point corresponds to the situation where the hermaphrodite

populations remains constant for all times (as the right-hand side of Eq. (2.2) vanishes). Moreover, for parameters that allow α ·β3 −δ > 0 a

survival of the population is guaranteed for all initial conditions with h0 > 0 due to the unstable/ repulsive character of the origin and its

unstable direction (1−α,0,α), as we will see in more detail in Sections 2.2 and 2.3.

Besides the origin, for parameters with α ·β3 = δ , i.e. at the bifurcation point, every point of the form ( f ,m,h) = ( f0,0,hi) is an equilibrium

as well, where f0 := f0(hi) := (1−α) ·β3 ·hi ·δ
−1, and hi ≥ 0 is a feasible initial value of Eq. (2.3) which reduces in the case of α ·β3 = δ

to ḣ = 0. This gives rise to a line of equilibria

Γ0 :=
{

( f0,0,hi) ∈ P
+
0 : f0 = f0(hi) = (1−α) ·β3 ·hi ·δ

−1
, hi > 0

}

at the {m = 0}-face of the non-negative orthant P
+
0 that emerges from the origin.

In order to determine the stability of a member ( f0,0,hi) ∈ Γ0, we translate the coordinate system into ( f0,0,hi), i.e. ( f ,m,h) 7→
( f + f0,m,h+hi), and discuss the Taylor-expansion of the appropriately modified complete system Eqs. (2.1)-(2.3) about this new coordinate

frame origin. Here, the correspondingly transformed equivalent dynamics read

d

dt





f

m

h



 =





−δ β1 · f0 (1−α) ·β3

0 β2 ·hi −δ 0

0 0 0





︸ ︷︷ ︸

=:B1





f

m

h



+





β1 · f ·m
β2 ·h ·m

0



 .

2 According to the description of Auanema Rhodensis hermaphrodites as being similar to the females of the species in the biological literature, cf. [1, 2, 5, 3, 4], there seems to

be pure self-fertilization of the hermaphrodites only, i.e. two hermaphrodites of this species do not match. In other words, biological insights suggest that hermaphrodites of the

Auanema Rhodensis species have the same sexual organs as females of this species.
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Figure 2.1: Sketch of the stability bifurcation of the extinction equilibrium at the origin and the occurrence of the lines Γ0 and Γ1 of additional equilibria at
the bifurcation point α ·β−1

3 = δ .

The eigenvalues of B1 are 0 with the corresponding eigenspace being spanned by ((1−α),0,δ ), and −δ < 0 with the corresponding

eigenspace being spanned by (1,0,0), as well as

β2 ·hi −δ







< 0 , for hi < h∗ ,

= 0 , for hi = h∗ := δ ·β−1
2 = α ·β3 ·β

−1
2 ,

> 0 , for hi > h∗ ,

with the corresponding eigenspace being spanned by (β1 · f0,β2 ·hi,0). Hence, the elements of Γ0 are Lyapunov stable equilibrium points

for 0 ≤ hi < h∗ and unstable ones for h∗ ≤ hi.

Moreover, there are additional equilibrium values ( f ∗,m∗,h∗) in the interior of P
+
0 only if the parameters are such that α ·β3 = δ , i.e. again

at the bifurcation point. From Eq. (2.2) we obtain h∗ = δ ·β−1
2 = α ·β3 ·β

−1
2 . Next, from Eq. (2.1) we get, after some small algebraic

manipulations3,

0 < m∗ =
α ·β3

β1 ·β2 · f ∗
· (β2 · f ∗− (1−α) ·β3)

f ∗→∞
−→ α ·β3 ·β

−1
1 =: mmax ,

and f ∗ > f0 = f0(h
∗) = (1−α) ·β3 ·β

−1
2 . In particular, these additional equilibria ( f ∗,m∗,h∗) thus form a one-dimensional family Γ1

depending on the feasible values of f ∗.

In order to determine the stability of a member ( f ∗,m∗,h∗) ∈ Γ1, we progress as outlined previously for the members of Γ0: We translate the

coordinate system into ( f ∗,m∗,h∗), i.e. ( f ,m,h) 7→ ( f + f ∗,m+m∗,h+h∗), and discuss the Taylor-expansion of the appropriately modified

complete system Eqs. (2.1)-(2.3) about this new coordinate frame origin. Here, the correspondingly transformed equivalent dynamics read

d

dt





f

m

h



 =





β1 ·m
∗−δ β1 · f ∗ (1−α) ·β3

0 0 β2 ·m
∗

0 0 0





︸ ︷︷ ︸

=:C1





f

m

h



+





β1 · f ·m
β2 ·h ·m

0



 ,

where

β1 ·m
∗−δ = β1 ·

α·β3

β1·β2· f ∗
· (β2 · f ∗− (1−α) ·β3)−α ·β3

= α·β3

β2· f ∗
· (β2 · f ∗− (1−α) ·β3 −β2 · f ∗) < 0 .

The eigenvalues of C1 are β1 ·m
∗−δ < 0 with the corresponding eigenspace being spanned by (1,0,0), and the algebraically two-dimensional

eigenvalue 0 with (−β1 · f ∗,β1 ·m
∗−δ ,0) spanning the corresponding geometrically one-dimensional eigenspace. Taking the non-linear

terms into account, we hence have that each element ( f ∗,m∗,h∗) ∈ Γ1 is an unstable hyperbolic equilibrium of the complete system

Eqs. (2.1)-(2.3).

Note, that further equilibria of Eqs. (2.1)-(2.3) do not exist and we have established a complete classification of the equilibria of our system

including their stability. Fig. 2.1 summarizes our results on the types and stability properties of these equilibria as well as the underlying

bifurcation scenarios.

2.2. The global dynamics at the bifurcation point

Once knowing what happens locally around the equilibria (0,0,0), ( f0,0,hi) ∈ Γ0, and ( f ∗,m∗,h∗) ∈ Γ1, we are interested in the global

dynamics, i.e. the complete picture of the dynamics in the phase space P
+
0 . Let us start with parameters leading to the origin’s bifurcation

3 By virtue of Eq. (2.1), f 6= 0 holds at an equilibrium other than the origin.
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(a) (b)

Figure 2.2: Sketch of the dynamics of Model A at the bifurcation parameters α ·β3 = δ with h ≡ h∗ (a), and a corresponding simulation with α = 0.5,
β1 = β2 = β3 = 1, and δ = 0.5 (b).

(a) (b)

Figure 2.3: Sketch of the dynamics of Model A at the bifurcation parameters α ·β3 = δ with h < h∗ (a), and h > h∗ (b).

point α ·β3 = δ , and discuss f -m-planar slices with different constant values of h= const. For α ·β3 = δ the governing system Eqs. (2.1)-(2.3)

reduces to

ḟ (t) = β1 · f (t) ·m(t)+(1−α) ·β3 ·hi −δ · f (t) , (2.4)

ṁ(t) = (β2 ·hi −δ ) ·m(t) , (2.5)

together with ḣ(t) = 0, where f (0) = fi ≥ 0, m(0) = mi ≥ 0, and h(0) = hi ≥ 0. Here, Eq. (2.5) becomes ṁ(t) = 0 (i.e. m(t) = mi) for

hi = h∗ = δ ·β−1
2 = α ·β3 ·β

−1
2 , such that in this case the dynamics in the f -m-plane are governed by vectors parallel to the f -axis (the

m-value is constant) pointing to f = 0 or to f → ∞ corresponding to the sign determined in Eq. (2.4).

Next, for hi < h∗ we have ṁ < 0 for all times and thus that the direction field is always pointing towards m = 0 and as well either towards

f = 0, f → ∞ or being stationary (for ḟ = 0) depending on the sign determined in Eq. (2.4). Finally, for hi > h∗ we have ṁ > 0 for all times

and thus that the direction field is always pointing towards m → ∞ and as well either towards f = 0, f → ∞ or being stationary (for ḟ = 0)

depending on the sign determined in Eq. (2.4).

As some first illustration at the bifurcation point α ·β3 = δ , let us assume (i) that α = 0.5, i.e. hermaphrodites give birth to the same amount

of females and hermaphrodites, and (ii) that the birth proportionality factors β1,β2,β3 are equal. In this situation, we have 0 < m∗ < h∗ < f ∗.

Fig. 2.2 uses these parameters to show a sketch of the slice of the dynamics for h ≡ h∗. Here, the direction of the evolution vector field,

the line of equilibria Γ1, and the region of survival/ (unbounded) growth (the gray area in the figure), are included, as well as the results

of a corresponding simulations that takes that actual strength of the evolution vector field into account (length of the direction vectors).

Analogously, Fig. 2.3 shows sketches of the typical dynamics for h < h∗ as well as for h∗ < h. Again, the region of survival/ (unbounded)

growth is displayed by the gray area in the figure. Altogether this allows us to compose Fig. 2.1, Fig. 2.2, and Fig. 2.3 together and to receive

the complete picture of the governing dynamics at the bifurcation point.

What remains to discuss are the dynamics for values of the parameters with α ·β3 6= δ .
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2.3. A global view outside of the bifurcation point

As we have already seen, if the hermaphrodites vanish then the extinction of the complete population happens for sure. By virtue of the

decoupling of the hermaphrodite dynamics from those of females and males this already gives the essential indication for survival of the

complete population.

If 0 < α ·β3 < δ (and hi > 0), then Eq. (2.3) leads to ḣ(t) < 0 and hence, independent of the initial values for the females and males,

the complete population will eventually get extinct. In this case, the origin is a globally asymptotically stable equilibrium governing the

dynamics.

If δ < α ·β3 (and hi > 0), then according to Eq. (2.3) the hermaphrodite population continues to grow (beyond any bounds) as ḣ(t)> 0, i.e.

we are in the setting we denoted as a survival regime. Next considering Eq. (2.2), eventually a value of h is hence reached where β2 ·h > δ ,

and hence eventually the size of the male population will increase (beyond any bounds) together with h (presumed mi > 0). In complete

analogy, the size of the female population will eventually increase (beyond any bounds), even if their initial size vanishes ( fi = 0).

We thus see that in Model A the survival of Auanema Rhodensis is entirely linked to the relation between the birth (α ·β3) and death (δ )

proportionality factors. This as well contrasts the dynamics of bisexual species where survival is linked to certain population thresholds

and, due to the asymptotic stability of the origin, too small populations are determined to get extinct for all choices of the birth and death

proportionality factors.

The results presented in Ref. [1] indicate that XX-individuals may be forced to develop into hermaphrodites instead of females (and vice

versa) based on the juvenile stages they undergo. Hence, there is also some kind of (unusual) mechanism that increases the hermaphrodite

population and may additionally stabilize the complete population. We will discuss this as Model C in Section 4.

Next, let us compare the our self-fertilizing hermaphrodite nematode Auanema Rhodensis (Model A) with a species that has non-self-

fertilizing hermaphrodite in order to discuss competitive advantages of the one or other reproduction model.

3. Trisexual species with non-self-fertilizing hermaphrodites – Model B

In order to gain insights into the dynamics of trisexual species, this section mathematically analyzes a model equivalent to Model A though

with non-self-fertilizing hermaphrodites. I.e., two members of the hermaphrodite species are required to produce offspring such that

the crossing terms with a single h in Eqs. (2.1) and (2.3) are replaced by a term with h2. Assuming again complete mixing and spatial

homogeneity of the involved populations, then, according to the standard description of population dynamics, this leads to the following

ordinary differential Model B4:

ḟ = β1 · f ·m+(1−α) ·β3 ·h
2 −δ · f , (3.1)

ṁ = β2 ·h ·m−δ ·m , (3.2)

ḣ = α ·β3 ·h
2 −δ ·h . (3.3)

As in Model A, we have for all admissible values of the parameters, that P
+
0 is invariant, and that the population eventually becomes extinct

for vanishing numbers of hermaphrodite population. Again, the dynamics of the hermaphrodite population ḣ = h · (α ·β3 ·h−δ ) decouples

from the other governing equations, with a repulsive equilibrium at h∗ = δ · (α ·β3)
−1 that constitutes a threshold value first of all for the

hermaphrodite sub-population and hence for the total population as well.

The origin ( f ,m,h) = (0,0,0) ∈ P
+
0 is an equilibrium (complete extinction equilibrium). In this case, the local linearized dynamics around

the origin are determined by ẋ = A2x with x = ( f ,m,h) and

d

dt





f

m

h



 =





−δ 0 0

0 −δ 0

0 0 −δ





︸ ︷︷ ︸

=:A2





f

m

h



+





β1 · f ·m+(1−α) ·β3 ·h
2

β2 ·h ·m
α ·β3 ·h

2



 .

Hence, the origin is an asymptotically stable equilibrium in model B for all admissible parameter values. Biologically, these are somewhat

bad news as it tells us that once the population numbers are too small the population will get extinct for sure.

Moreover, there is a line Γ2 ⊂ P
+
0 of additional equilibria ( f ∗,m∗,h∗) ∈ Γ2. From Eq. (3.3) we effortlessly get h∗ = δ · (α ·β3)

−1, and by

virtue of Eq. (3.2) we obtain that the line of equilibria Γ2 exists only for parameter values where α ·β3 = β2. Next, from Eq. (3.1) we get5

0 ≤ m∗ =
δ

α ·β1 · f ∗
· (α · f ∗− (1−α) ·h∗)

f ∗→∞
−→ δ ·β−1

1 = mmax ,

where f ∗ ≥ (1−α) ·α−1 ·h∗. After linearly translating the coordinate system into ( f ∗,m∗,h∗)∈Γ2, the Taylor-expansion of the appropriately

modified complete system Eqs. (3.1)-(3.3) about this new coordinate frame origin reads

d

dt





f

m

h



 =





β1 ·m
∗−δ β1 · f ∗ 2 · (1−α) ·β3 ·h

∗

0 0 β2 ·m
∗

0 0 δ





︸ ︷︷ ︸

=:B2





f

m

h



+





β1 · f ·m+(1−α) ·β3 ·h
2

β2 ·h ·m
α ·β3 ·h

2



 .

4 Here, we are discussing the situation of non-self-fertilizing hermaphrodites that can additionally pair with males in order to have a model comparable to Model A. From a

biological perspective it may make sense to assume that in this situation hermaphrodites have the same sexual organs as males and females and can thus also mate with females of

the species. Considering, in terms of a comparison to the biological situation witnessed at Auanema Rhodensis, the gametic structure of female eggs and hermaphrodite sperms

would, in such a pairing, result in XXX-offspring, that we can discard as not fit for survival.
5 By virtue of Eq. (3.1), f 6= 0 holds at an equilibrium other than the origin.
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Figure 3.1: Sketch of the stability bifurcation of the equilibrium (0,0,h∗) at and the occurrence of the line Γ2 of additional equilibria at the bifurcation point
α ·β3 = β2.

The three distinct eigenvalues of B2 are β1 ·m
∗−δ < 0 with its corresponding eigenspace being spanned by (1,0,0), 0 with its corresponding

eigenspace being spanned by (β1 · f ∗,β1 ·m
∗,0), and δ > 0 with its corresponding eigenspace being spanned by (0,β2 ·m

∗,δ ). Hence, Γ2 is

a line of unstable (flattened) saddle point equilibria.

Let f (0) =: fi, m(0) =: mi, and h(0) =: hi. If α ·β3 = β2 and 0 < hi < h∗, then Eq. (3.3) leads to ḣ(t)< 0 and hence, independent of the

initial values for the females and males as well as the values of the other parameter, the complete population will eventually get extinct. On

the other hand, if α ·β3 = β2 and h∗ < hi then according to Eq. (3.3) the hermaphrodite population continues to grow (beyond any bounds)

as ḣ(t)> 0, i.e. we are in a survival regime. Next considering Eq. (3.1), eventually a value of h is hence reached where β2 ·h > δ , and hence

eventually the size of the male population will increase (beyond any bounds) together with h (presumed mi > 0). In complete analogy, the

size of the female population will eventually increase (beyond any bounds), even if their initial size vanishes ( fi = 0). In particular, in the

case α ·β3 = β2 the affine plane h = h∗ serves as a 2-dimensional separatrix between the complete extinction regime and the survival regime.

What remains is to discuss the dynamics if α ·β3 6= β2. Let f0 := f (0), m0 := m(0), and h0 := h(0) denote the initial population sizes of the

female, male, and hermaphrodite sub-populations. Besides the origin, the point ( f ,m,h) =
(

1−α
α ·h∗,0,h∗

)
, with h∗ = δ · (α ·β3)

−1, is an

equilibrium for all admissible parameter values. Due to the instability in the h-direction, this additional equilibrium point is unstable.

First for β2 < α ·β3, based on Eq. (3.3) if, h0 < h∗ = δ · (α ·β3)
−1, then, irrespective of the size of the female and male sub-populations, the

hermaphrodite sub-population and hence the complete population eventually gets extinct. If h0 = h∗ = δ · (α ·β3)
−1 < δ ·β−1

2 , then the

hermaphrodite sub-population stays constant for all times, i.e. h(t)≡ h∗ for all t ∈R
1
0, whereas the male sub-population eventually gets extinct

due to Eq. (3.2). Next, in this limit h(t)≡ h∗ and m ≡ 0 Eq. (3.1) becomes ḟ = δ ·
(
(1−α)·δ

α2β2
− f

)

such that all initial conditions ( f0,m0,h
∗)

in the affine plane h = h∗ converge towards the unstable equilibrium ( f ,m,h) =
(

1−α
α ·h∗,0,h∗

)
. Finally, if h0 > h∗ = δ · (α ·β3)

−1, then

the hermaphrodite sub-population and thus both, the male and the female sub-populations will eventually, grow beyond all bounds (survival

regime). Hence, in the case β2 < α ·β3 the affine plane h = h∗ with its in this plane attractive equilibrium ( f ,m,h) =
(

1−α
α ·h∗,0,h∗

)
serves

as a separatrix between the complete extinction regime and the survival regime.

Second for β2 > α ·β3, we analogously conclude complete extinction if h0 < h∗ = δ · (α ·β3)
−1. If h0 = h∗ = δ · (α ·β3)

−1 > δ ·β−1
2 , then

the hermaphrodite sub-population stays constant for all times, i.e. h(t)≡ h∗ for all t ∈R
1
0, whereas for positive initial conditions the male sub-

population eventually grows beyond all bounds due to Eq. (3.2). Then, due to Eq. (3.1), the female sub-population grows beyond all bounds

as well. For m0 = 0 an initial condition ( f0,0,h
∗) either is or eventually converges towards the equilibrium ( f ,m,h) =

(
1−α

α ·h∗,0,h∗
)
. If

h0 > h∗ = δ · (α ·β3)
−1, then as above, we can conclude that we are again in a survival regime for all initial conditions ( f0,m0,h0). Hence,

in the case β2 > α ·β3 the affine plane h = h∗ serves again as a separatrix between the complete extinction regime and the survival regime.

The complete bifurcation diagram is sketched in Fig. 3.1. Note that further equilibria of Eqs. (3.1)-(3.3) do not exist and we have thus indeed

established a complete classification of the equilibria of our system including their stability.

In summary we can already conclude that survival/ proliferation of the species in model A depends on the relation between the birth and

death parameters. On the other hand, independent of the feasible parameter values, the non-self-fertilizing exhibits the classical feature of

bi-sexual species of population thresholds. In particular, in this case, a certain number of hermaphrodites.

4. Model C

As a significant extension of Model A, we now include the situation that a part 1−γ with γ ∈ (0,1) of the female-male offspring may become

hermaphrodites. Thus, in particular Eq. 2.3 is changed by an additional term. Assuming again complete mixing and spatial homogeneity of

the involved populations, then, according to the standard description of population dynamics, this leads to the following ordinary differential
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model C:

ḟ = γ ·β1 · f ·m+(1−α) ·β3 ·h−δ · f , (4.1)

ṁ = β2 ·h ·m−δ ·m , (4.2)

ḣ = α ·β3 ·h+(1− γ) ·β1 · f ·m−δ ·h , (4.3)

As in our previous models, the non-negative orthant P
+
0 is invariant for all admissible values of the parameters. Contrary to the previous

models, though, and as intended by introducing the transport term (1− γ) ·β1 · f ·m from female-male offspring towards the hermaphrodite

sub-population, a vanishing hermaphrodite sub-population, this time, does not automatically imply extinction of the complete population.

Like in Model A, for all admissible values of the parameters, the origin ( f ,m,h) = (0,0,0) is an equilibrium (complete extinction equilibrium),

where the local linearized dynamics around the origin are determined by ẋ = A3x with x = ( f ,m,h) and

d

dt





f

m

h



 =





−δ 0 (1−α) ·β3

0 −δ 0

0 0 α ·β3 −δ





︸ ︷︷ ︸

=:A3





f

m

h



+





γ ·β1 · f ·m
β2 ·h ·m

(1− γ) ·β1 · f ·m



 .

The eigenvalues of A3 are −δ < 0 with algebraic multiplicity two and corresponding 2-dimensional eigenspace spanned by (1,0,0) and

(0,1,0), as well as α ·β3 −δ with the corresponding eigenspace spanned by (1−α ,0,α). For α ·β3 −δ < 0 the origin is an asymptotically

stable equilibrium, and, due to the non-linear part, for α ·β3 −δ ≥ 0 the origin is a unstable equilibrium. Again, a bifurcation w.r.t. to the

stability of the origin takes place at α ·β3 = δ .

Moreover, at this bifurcation point α ·β3 = δ the line

Γ3 :=
{

( f0,0,hi) ∈ P
+
0 : f0 = f0(hi) = (1−α) ·β3 ·hi ·δ

−1
, hi > 0

}

is (as in Model A) a line of equilibria at the {m = 0}-face of P
+
0 that emerges from the origin. The correspondingly transformed equivalent

dynamics about each member ( f0,0,hi) ∈ Γ3 are given by

d

dt





f

m

h



 =





−δ γ ·β1 · f0 (1−α) ·β3

0 β2 ·hi −δ 0

0 (1− γ) ·β1 · f0 0





︸ ︷︷ ︸

=:B3





f

m

h



+





γ ·β1 · f ·m
β2 ·h ·m

(1− γ) ·β1 · f ·m



 ,

and, in complete alignment to the eigenvalue structure of B3, the eigenvalues of the rank two matrix B3 are 0 with the corresponding

eigenspace being spanned by ((1−α),0,δ ), and −δ < 0 with the corresponding eigenspace being spanned by (1,0,0), as well as

β2 ·hi −δ







< 0 , for hi < h∗ ,

= 0 , for hi = h∗ := δ ·β−1
2 = α ·β3 ·β

−1
2 ,

> 0 , for hi > h∗ ,

with the corresponding eigenspace being spanned by (β1 · f0,β2 ·hi,0). Hence, the elements of Γ3 are Lyapunov stable equilibrium points

for 0 ≤ hi < h∗ and unstable ones for h∗ ≤ hi.

Finally, below the bifurcation point, i.e. for α ·β3 < δ , there is an additional equilibrium point x∗ := ( f ∗,m∗,h∗) in the interior of P
+
0 :

From Eq. (4.2) we first obtain h∗ := δ ·β−1
2 . Plugging this into Eq. (4.3) leads to

β1 · f ·m =
δ · (δ −α ·β3)

β2 · (1− γ)
> 0 ,

which requires α ·β3 < δ . Substituting β1 · f ·m accordingly into Eq. (4.1) gives

f ∗ :=
γ ·β1 · (δ −α ·β3)+(1− γ) · (1−α) ·β3

β2 · (1− γ)
> 0 ,

and

m∗ :=
δ · (δ −α ·β3)

γ ·β1 · (δ −α ·β3)+(1− γ) · (1−α) ·β3
> 0 .

The correspondingly transformed equivalent dynamics about x∗ := ( f ∗,m∗,h∗) are given by

d

dt





f

m

h



 =





γ ·β1 ·m
∗−δ γ ·β1 · f ∗ (1−α) ·β3

0 0 β2 ·m
∗

(1− γ) ·β1 ·m
∗ (1− γ) ·β1 · f ∗ α ·β3 −δ





︸ ︷︷ ︸

=:B4





f

m

h



+





γ ·β1 · f ·m
β2 ·h ·m

(1− γ) ·β1 · f ·m



 .

Due to the complicated nature of f ∗ and m∗ as well as the nearly complete occupation of B4 with non-vanishing entries a direct computation

of the eigenvalues and its corresponding eigenvectors is cumbersome. Therefore, we apply an indirect approach to determine the stability of

the equilibrium ( f ∗,m∗,h∗). Let B4 := (bi, j)i, j=1,2,3, then the characteristic polynomial χB4
(λ ) of B4 reads

χB4
(λ ) = −λ 3 +(b1,1 +b3,3) ·λ

2 − (b1,1 ·b3,3 −b1,3 ·b3,1) ·λ +b1,2 ·b2,3 ·b3,1 .



Journal of Mathematical Sciences and Modelling 19

Figure 4.1: Sketch of the stability bifurcation of the extinction equilibrium at the origin at the bifurcation point α ·β−1
3 = δ , as well as of the transformation

of the equilibrium ( f ∗,m∗,h∗) with the occurrence of the line of equilibria Γ3.

As b1,1 = γ ·β1 ·m
∗−δ < 0 Descartes’s sign rule gives that there is one positive real positive root, such that the equilibrium ( f ∗,m∗,h∗)

is unstable. For α ·β3 ↑ δ the m-component of the equilibrium ( f ∗,m∗,h∗) vanishes such that the interior point ( f ∗,m∗,h∗) moves with

increasing values of α ·β3 towards the f -h-face of the first orthant, and eventually bifurcates to the line of equilibria Γ3 at α ·β3 = δ .

The complete bifurcation diagram is sketched in Fig. 4.1. Note that no further equilibria of Eqs. (4.1)-(4.3) exist and we have thus indeed

established a complete classification of the equilibria of our system including their stability.

In analogy to Model A we again have that the complete population survives/ proliferates for admissible parameter values δ < αβ3. In

addition, model C offers some survival/ proliferation advantage at the bifurcation point.

5. Model D

Finally, we perform the same extension as from Model A to Model B and assume that the dynamics described by Model C are altered in view

of a non-self-fertilizing hermaphrodite population. I.e., in particular the transport from female-male offspring towards the hermaphrodite

sub-population is hence added. Assuming furthermore once again complete mixing and spatial homogeneity of the involved populations,

then, according to the standard description of population dynamics, this leads to the following ordinary differential equation model D:

ḟ = γ ·β1 · f ·m+(1−α) ·β3 ·h
2 −δ · f , (5.1)

ṁ = β2 ·h ·m−δ ·m , (5.2)

ḣ = α ·β3 ·h
2 +(1− γ) ·β1 · f ·m−δ ·h , (5.3)

Again, the non-negative orthant P
+
0 is invariant for all admissible values of the parameters, and, as in Model C, a vanishing hermaphrodite

population does not automatically imply extinction of the complete population compared to Model B.

Though, in complete analogy to Model B, the origin ( f ,m,h) = (0,0,0) ∈ P
+
0 is an asymptotically stable equilibrium for all admissible

parameter values (complete extinction equilibrium), as the local linearized dynamics about the origin are determined by

d

dt





f

m

h



 =





−δ 0 0

0 −δ 0

0 0 −δ









f

m

h



+





γ ·β1 · f ·m+(1−α) ·β3 ·h
2

β2 ·h ·m
(1− γ) ·β1 · f ·m+α ·β3 ·h

2



 .

Next, in complete analogy to Model B, for all admissible values of the parameters the point ( f0,0,h0) is an equilibrium as well, where

h0 := δ · (α ·β3)
−1 and f0 := δ · (1−α) · (α2 ·β3)

−1 = (1−α) ·α−1 ·h0. The local linearized dynamics about ( f0,0,h0) read as

d

dt





f

m

h



 =





−δ γ ·β1 · f0 2 · (1−α) ·h0

0 β2 ·h0 −δ 0

0 (1− γ) ·β1 · f0 2 ·α ·β3 ·h0 −δ





︸ ︷︷ ︸

=:B4





f

m

h



+





γ ·β1 · f ·m+(1−α) ·β3 ·h
2

β2 ·h ·m
(1− γ) ·β1 · f ·m+α ·β3 ·h

2



 ,

where the systems matrix B4 has three distinct eigenvalues of algebraic multiplicity one: −δ < 0, 2 ·α ·β3 · h0 − δ = δ > 0, as well as

β2 · h0 − δ which is negative for h0 < δ ·β−1
2 , vanishes for h0 = h∗ = δ ·β−1

2 , and is positive for h0 < δ ·β−1
2 . Hence, the equilibrium

( f0,0,h0) is unstable and the stability of one of its eigen-manifolds changes at h0 = h∗.

Finally, for parameter values with β2 > α ·β3, there is a further equilibrium point ( f ∗,m∗,h∗) in the interior of P
+
0 : From Eq. (5.2) we get

h∗ = δ ·β−1
2 , and plugging this into Eq. (5.2), we obtain

β1 · f ·m =
δ 2 · (β2 −α ·β3)

β 2
2 · (1− γ)

> 0 ,
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which requires β2 > α ·β3. Substituting β1 · f ·m accordingly into Eq. (5.1) gives

f ∗ =
δ · (γ · (β2 −α ·β3)+(1−α) · (1− γ) ·β3)

β 2
2 · (1− γ)

> 0 ,

and

m∗ =
δ · (β2 −α ·β3)

β1 · (γ · (β2 −α ·β3)+(1−α) · (1− γ) ·β3)
> 0 .

Due to β2 ·h
∗−δ = 0, the correspondingly transformed equivalent dynamics about ( f ∗,m∗,h∗) are given by

d

dt





f

m

h



 =





γ ·β1 ·m
∗−δ γ ·β1 · f ∗ 2 · (1−α) ·h∗

0 0 β2 ·m
∗

(1− γ) ·β1 ·m
∗ (1− γ) ·β1 · f ∗ 2 ·α ·β3 ·h

∗−δ





︸ ︷︷ ︸

=:B5





f

m

h



+





γ ·β1 · f ·m+(1−α) ·β3 ·h
2

β2 ·h ·m
(1− γ) ·β1 · f ·m+α ·β3 ·h

2



 ,

such that we can follow the same line of argumentation as in Model C. Let B5 := (bi, j)i, j=1,2,3, then its characteristic polynomial χB4
(λ )

reads

χB5
(λ ) = −λ 3 +(b1,1 +b3,3) ·λ

2 − (b1,1 ·b3,3 −b1,3 ·b3,1) ·λ +b1,2 ·b2,3 ·b3,1 .

In complete analogy to Model C, we have that b1,1 = γ ·β1 ·m
∗−δ < 0, and hence Descartes’s sign rule implies that there is one positive

real positive root, such that the equilibrium ( f ∗,m∗,h∗) is unstable. For α ·β3 ↑ β2 the m-component of the equilibrium ( f ∗,m∗,h∗) vanishes

such that the interior point ( f ∗,m∗,h∗) moves with increasing values of α ·β3 towards the f -h-face of the first orthant, and eventually

coincides with the previously discussed equilibrium ( f ∗ = f0,0,h
∗ = h0) at α ·β3 = β2.

6. Resume

During the course of our mathematical discussion and comparison of the two models we can conclude, that models A and D show a survival/

proliferation advantage over models B and C, respectively, for small population numbers. Survival/ proliferation in models A and D depends

only on the birth and death parameters of the hermaphrodite populations and not on certain threshold populations. In models B and D the

origin (complete extinction equilibrium) is always asymptotically stable and hence supporting the extinction of the complete population,

whereas models A and prevent, under some further conditions, the complete extinction due to the unstable/ repulsive nature of the origin.

Additionally, to numerical studies already carried out in the literature, cf. Ref. [16], we analytically showed the extremely robust survival/

proliferation properties of self-fertilizing species. Moreover, in contrast, to the usual heterogametic view of reproduction that predict

convergence towards a bisexual species, cf. Refs. [14, 15], the homogametic reproduction strategy used by Aunema Rhodensis shows clear

advantages in terms of a survival of all sub-species.

Thus, the mathematical discussion of the dynamics of self-fertilizing trisexual homogametic species adds a further piece to the puzzle of

evolutionary competitiveness.

Appendix A: Mathematical Models for Species with Neither Hermaphrodites-Producing Females

Nor Females-Producing Hermaphrodites

As discussed in the introduction, the two mathematical models in this appendix serve a reference and a completion of our study of the

dynamics of trisexual species. They are rather simple in the mutual interaction of the female, male and hermaphrodite populations and their

mathematical analysis is straight-forward utilizing the same lines of argumentation as applied in the main part of the article.

Model E1: A Species with Self-Fertilizing Hermaphrodites

A mathematical model of a trisexual species with self-fertilizing hermaphrodites, like our Auanema Rhodensis, where there are no-

hermaphrodites producing females and no-females producing hermaphrodites can be considered as a special limit case of Model A with

α = 1 as

ḟ = (β1 ·m−δ ) · f , ṁ = (β2 ·h−δ ) ·m , and ḣ = (β3 −δ ) ·h ,

where, as previously, β1,β2,β3 > 0 are the proportionality factors related to birth events, and δ > 0 is the sex-independent proportionality

factor related to death events. We will call this set of equations together with the corresponding initial conditions f (0) = fi ≥ 0, m(0) =mi ≥ 0

and h(0) = hi ≥ 0 as Model E1.

The non-negative orthant P
+
0 is invariant under the dynamics of Model E1. Immediately, we see that the origin (0,0,0) is an equilibrium

point for all admissible values of the parameters, that is asymptotically stable for β3 < δ , Lyapunov stable for β3 = δ , and unstable for

β3 > δ . As in Model A, we have a bifurcation point at β3 = δ .

In particular, for β3 < δ (or β3 > δ ) we have that ḣ < 0 (or ḣ > 0) for all times such that the hermaphrodite population eventually vanishes

(or grows beyond all bounds). This implies, that at some finite time β2 ·h−δ < 0 (or β2 ·h−δ > 0) such that the male population eventually

vanishes (or grows beyond all bounds). Consequently, at some finite time β1 ·m−δ < 0 (or β1 ·m−δ > 0) such that the female population

eventually vanishes (or grows beyond all bounds). Hence, for β3 < δ (or β3 > δ ) the origin is a globally stable (or globally unstable)

equilibrium. Note, that there are no further equilibrium points for β3 6= δ .

Finally, the dynamics for β3 = δ are sketched in Fig. 6.1 and a complete picture of the additional equilibria that occur at this set of parameters

is given in the following proposition.



Journal of Mathematical Sciences and Modelling 21

Figure 6.1: Sketch of the bifurcation scenario and some illustrative dynamics of Model E1.

Theorem E.1: Additional Lines of Equilibria at the Bifurcation Point. Let h∗ := δ ·β−1
2 and m∗ := δ ·β−1

1 . For β3 = δ and besides

the origin there are three lines of equilibria

• Γ1a :=
{
(0,0,hi) ∈ P

+
0 : hi ≥ 0

}
, where each element is Lyapunov stable for 0 ≤ hi ≤ h∗ and unstable for h∗ < hi,

• Γ1b :=
{
(0,mi,h

∗) ∈ P
+
0 : mi ≥ 0

}
, where each element is unstable, and

• Γ1c :=
{
( fi,m

∗,h∗) ∈ P
+
0 : fi ≥ 0

}
, where each element is unstable.

Moreover, there are no further equilibrium points for β3 = δ .

Proof: A short calculation leads to the existence of these lines of equilibria and that, besides the origin, there are no further ones. The local

dynamics about each equilibrium point ( f̃ , m̃, h̃) are given by

d

dt





f

m

h



 =





β1 · m̃−δ β1 · f̃ 0

0 β2 · h̃−δ β2 · m̃
0 0 0





︸ ︷︷ ︸

=:E1( f̃ ,m̃,h̃)





f

m

h



+





β1 · f ·m
β2 ·h ·m

0



 .

The eigenvalues of E1(0,0,hi), with a specific value hi ≥ 0, are λ1 := 0 with the corresponding eigenspace being spanned by (0,0,1),
λ2 :=−δ < 0 with the corresponding eigenspace being spanned by (1,0,0), and λ3 := β2 ·hi −δ with the corresponding eigenspace being

spanned by (0,1,0). In particular, λ3 < 0 if 0 ≤ hi < h∗, λ3 = 0 if hi = h∗, and λ3 > 0 if h∗ < hi.

The eigenvalues of E1(0,mi,h
∗), with a specific value mi ≥ 0, are λ1 := 0 with algebraic multiplicity two and the corresponding one-

dimensional eigenspace being spanned by (0,1,0), and λ2 := β1 ·mi −δ with the corresponding eigenspace being spanned by (1,0,0). In

particular, λ2 < 0 if 0 ≤ mi < m∗, λ2 = 0 if mi = m∗, and λ2 > 0 if m∗ < mi.

The only eigenvalue of E1( fi,m
∗,h∗), with a specific value of fi ≥ 0, is λ1 := 0 with algebraic multiplicity three and corresponding

one-dimensional eigenspace being spanned by (1,0,0). �

The global dynamics β3 = δ are derived in complete analogy to Model A.

Model E2: A Species with Non-Self-Fertilizing Hermaphrodites

Next, a mathematical model of a trisexual species with non-self-fertilizing hermaphrodites, where there are no-hermaphrodites-producing

females and no-females producing hermaphrodites can be considered as a special limit case of Model B with α = 1 as

ḟ = (β1 ·m−δ ) · f , ṁ = (β2 ·h−δ ) ·m , and ḣ = (β3 ·h−δ ) ·h ,

where, as previously, β1,β2,β3 > 0 are the proportionality factors related to birth events, and δ > 0 is the sex-independent proportionality

factor related to death events. We will call this set of equations together with the corresponding initial conditions f (0) = fi ≥ 0, m(0) =mi ≥ 0

and h(0) = hi ≥ 0 as Model E2.
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Figure 6.2: Sketch of the bifurcation scenario and some illustrative dynamics of Model E2.

The non-negative orthant P
+
0 is invariant under the dynamics of Model E1, and for all values of the parameters the origin (0,0,0) is an

asymptotically stable equilibrium point with diag(−δ ,−δ ,−δ ) as the matrix of linearization about the origin. Moreover, for all values

of the parameters, the point (0,0,h∗), with h∗ := δ ·β−1
3 , is a further equilibrium point. The matrix of linearization about (0,0,h∗) is

diag(−δ ,δ · (β2 ·β
−1
3 −1),δ ) such that this equilibrium is unstable though exhibits a change of stability at β2 = β1 where a geometrically

two-dimensional (asymptotically) stable sub-space bifurcates into a (asymptotically) stable one and an unstable one.

Finally, the dynamics for Model E2 are sketched in Fig. 6.2 and a complete picture of the additional equilibria that occur at β3 = β2 is given

in the following proposition.

Theorem E.2: Additional Lines of Equilibria. Let h∗ := δ ·β−1
3 and m∗ := δ ·β−1

1 . For β3 = β2 and besides the origin there are two

lines of equilibria

• Γ2a :=
{
(0,mi,h

∗) ∈ P
+
0 : mi ≥ 0

}
, where each element is unstable, and

• Γ2b :=
{
( fi,m

∗,h∗) ∈ P
+
0 : fi ≥ 0

}
, where each element is unstable.

Moreover, there are no further equilibrium points for β3 = β2.

Proof: A short calculation leads to the existence of these lines of equilibria and that, besides the origin, there are no further ones. The local

dynamics about each equilibrium point ( f̃ , m̃, h̃) are given by

d

dt





f

m

h



 =





β1 · m̃−δ β1 · f̃ 0

0 0 β2 · m̃
0 0 0





︸ ︷︷ ︸

=:E2( f̃ ,m̃,h̃)





f

m

h



+





β1 · f ·m
β2 ·h ·m
β3 ·h

2



 .

The eigenvalues of E2(0,mi,h
∗), with a specific value mi ≥ 0, are λ1 := 0 with algebraic multiplicity two and the corresponding one-

dimensional eigenspace being spanned by (0,1,0), and λ2 := β1 ·mi −δ with the corresponding eigenspace being spanned by (1,0,0). In

particular, λ2 < 0 if 0 ≤ mi < m∗, λ2 = 0 if mi = m∗, and λ2 > 0 if m∗ < mi.

The only eigenvalue of E2( fi,m
∗,h∗), with a specific value of fi ≥ 0, is λ1 := 0 with algebraic multiplicity three and corresponding

one-dimensional eigenspace being spanned by (1,0,0). �

The global dynamics β3 = δ are derived in complete analogy to Model B.

Appendix B: Mathematical Models for Species with Hermaphrodites-Producing Females and No-

Females-Producing Hermaphrodites

The two rather simple mathematical models in this appendix close the remaining gap in our discussion by studying species with

hermaphrodites-producing females and no-females-producing hermaphrodites, i.e. models where female XX-offspring can evolve to
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both females and hermaphrodites, whereas hermaphrodite XX-offspring can only evolve to hermaphrodites.

Model F1: A Species with Self-Fertilizing Hermaphrodites

Analogue to our previous modeling the driving biological dynamics in the setting with self-fertilizing hermaphrodites, like for Auanema

Rhodensis, with hermaphrodites-producing females and no-females-producing hermaphrodites read as

ḟ = (γ ·β1 ·m−δ ) · f , and ṁ = (β2 ·h−δ ) ·m ,

as well as

ḣ = β3 ·h+(1− γ) ·β1 ·m · f −δ ·h ,

where β1,β2,β3 > 0 are proportionality factors related to birth events, δ > 0 is the sex-independent proportionality factor related to death

events, and γ the transport factor from female offspring towards the female sub-population (correspondingly, the factor 1− γ is the transport

factor from female offspring towards the hermaphrodites sub-population). We will call this set of equations together with the corresponding

initial conditions f (0) = fi ≥ 0, m(0) = mi ≥ 0 and h(0) = hi ≥ 0 as Model F1.

The non-negative orthant P
+
0 is invariant under the dynamics of Model F1, and for all admissible values of the parameters the origin (0,0,0)

is an equilibrium with diag(−δ ,−δ ,β3 − δ ) as the matrix of linearization about it. In particular, the origin is asymptotically stable for

β3 < δ , Lyapunov stable for β3 = δ , and unstable for β3 > δ . As in Model A, we have a bifurcation point at β3 = δ .

Let h∗ := δ ·β−1
2 . At β3 = δ we have two additional lines of equilibria:

• Γ3,a := {(0,0,hi) ∈ P
+
0 : hi ≥ 0}, where, analogous to the proof of Theorem E.1, each element is Lyapunov stable for 0 ≤ hi ≤ h∗

and unstable for h∗ < hi, and

• Γ3,b := {(0,mi,h
∗) ∈ P

+
0 : mi ≥ 0}, where, analogous to the proof of Theorem E.1, each element is unstable.

If β3 > δ holds, besides the origin, another equilibrium exists at the point ( f ,m,h) := ( f ∗,m∗,h∗), where m∗ := δ · (γ ·β1)
−1, h∗ := δ ·β−1

2 ,

and

f ∗ :=
(β3 −δ ) ·h∗

(1− γ) ·β1 ·m∗
=

(β3 −δ ) · γ

(1− γ) ·β2
> 0 .

The correspondingly transformed equivalent dynamics about this interior mixed species equilibrium ( f ∗,m∗,h∗) are given by

d

dt





f

m

h



 =







=0
︷ ︸︸ ︷

γ ·β1 ·m
∗−δ γ ·β1 · f ∗ 0

0 0 β2 ·m
∗

(1− γ) ·β1 ·m
∗ (1− γ) ·β1 · f ∗ β3 −δ







︸ ︷︷ ︸

=:F1( f ∗,m∗,h∗)





f

m

h



+





γ ·β1 · f ·m
β2 ·h ·m

(1− γ) ·β1 · f ·m



 .

The three distinct eigenvalues of F1( f ∗,m∗,h∗), each with geometric multiplicity 1, are λ1 := δ ·β2 · (γ ·β1)
−1 > 0, λ2 := (β3 − δ ) · γ2 ·

β1 ((1− γ) ·β2)
−1, and λ3 = δ · (1− γ) · γ−1 > 0. Hence, the equilibrium ( f ∗,m∗,h∗) is unstable for all admissible parameter values.

Moreover, there are no further equilibrium points, and the global dynamics in Model F1 are derived in complete analogy to Model A.

Model F2: A Species with Non-Self-Fertilizing Hermaphrodites

The driving biological dynamics in the setting with non-self-fertilizing hermaphrodites together with hermaphrodites-producing females and

no-females-producing hermaphrodites read as

ḟ = (γ ·β1 ·m−δ ) · f , and ṁ = (β2 ·h−δ ) ·m ,

as well as

ḣ = β3 ·h
2 +(1− γ) ·β1 ·m · f −δ ·h ,

where β1,β2,β3 > 0 are proportionality factors related to birth events, δ > 0 is the sex-independent proportionality factor related to death

events, and γ the transport factor from female offspring towards the female sub-population (correspondingly, the factor 1− γ is the transport

factor from female offspring towards the hermaphrodites sub-population). We will call this set of equations together with the corresponding

initial conditions f (0) = fi ≥ 0, m(0) = mi ≥ 0 and h(0) = hi ≥ 0 as Model F2.

The non-negative orthant P
+
0 is invariant under the dynamics of Model F2, and for all admissible values of the parameters the origin (0,0,0)

is an asymptotically stable equilibrium with diag(−δ ,−δ ,−δ ) as the matrix of linearization about it.

Let m∗ := δ · (γ ·β1)
−1, h∗ := δ ·β−1

2 . For 0 < β3 < β2, the point ( f ∗,m∗,h∗) is an additional mixed species equilibium, where

f ∗ =
(β2 −β3) · γ ·δ

(1− γ) ·β 2
2

> 0 .

The correspondingly transformed equivalent dynamics about this interior mixed species equilibrium ( f ∗,m∗,h∗) are given by

d

dt





f

m

h



 =







=0
︷ ︸︸ ︷

γ ·β1 ·m
∗−δ γ ·β1 · f ∗ 0

0 0 β2 ·m
∗

(1− γ) ·β1 ·m
∗ (1− γ) ·β1 · f ∗ 2 ·β3 ·h

∗−δ







︸ ︷︷ ︸

=:F2( f ∗,m∗,h∗)





f

m

h



+





γ ·β1 · f ·m
β2 ·h ·m

(1− γ) ·β1 · f ·m+β3 ·h
2



 ,
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such that, in complete analogy to Model F1, this is an unstable equilibrium.

At β3 = β2, additional to the origin, this mixed species equilibrium bifurcates to a line of equilibria Γ4,a := {(0,mi,h
∗) ∈ P

+
0 : mi > 0}

such that analogous to the proof of Theorem E.2 each member of this line is unstable.

Moreover, there are no further equilibrium points, and the global dynamics in Model F2 are derived in complete analogy to Model A.
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Abstract

Vulnerability is the most important concept in analysis of communication networks to

disruption. Any network can be modelled by graphs. So measures defined on graphs gives

an idea in design. Integrity is one of the well-known vulnerability measures interested in

remaining structure of a graph after any failure. Domination is also an another popular

concept in network design. Nowadays new vulnerability measures take a great role in

network design. Recently designers take into account of any failure not only on nodes

also on links which have special properties. A new measure edge domination integrity

of a connected and undirected graph was defined by E. Kılıç and A. Beşirik such as

DI
′
(G) = min{ |S|+m(G−S) : S ⊆ E(G)} where m(G−S) is the order of a maximum

component of G−S and S is an edge dominating set. In this paper some results concerning

this parameter on corona products of graph structures Pn ⊙Pm, Pn ⊙Cm, Pn ⊙K1,m are

presented.

1. Introduction

A communication network can be modeled by a graph G where nodes are represented by vertices V (G) and links are represented by edges

such as E(G) respectively. Any communication network can be considered to be highly vulnerable to any disruption on its nodes or links.

All graphs considered in this paper are connected, undirected, do not contain loops and multiple edges. First simple vulnerability measures

are connectivity or edge connectivity which shows how easily a graph can be broken apart [1]. Later on, it is observed that these measures

are not enough to compare the stability of network structures which have the same order. Most network designers are interested in what

happens in the remaining part of the network after failures such as, how many nodes or links are still connected to each other and what is the

communication between remaining parts. Integrity and the edge integrity concepts are interested in these questions. Both types of integrity

were introduced by C. A. Barefoot et al. [2] and W. Goddard and H.C. Swart [3] has great contributions for this area. Integrity or edge

integrity have been widely studied on specific graph families and relationships with other parameters and bounds were obtained K. S. Bagga

et al. have presented many results about edge integrity in [4].

The order of a graph G will generally be denoted by n. For a real number x; ⌊x⌋ denotes the greatest integer less than or equal to x and ⌈x⌉
denotes the smallest integer greater than or equal to x.

Domination is another important concept widely studied in graph theory. A subset S of V is called a dominating set of G if every vertex not

in S is adjacent to some vertex in S. The domination number γ (G) (or γ for short) of G is the minimum cardinality taken over all dominating

sets of G [5].

S. Mitchell and S.T. Hedetniemi [6] have introduced the concept of edge domination. A subset X of E is called an edge dominating set of

G if every edge not in X is adjacent to some edge in X . The edge domination number γ ′ (G) (or γ ′ for short) of G is the minimum cardinality

taken over all edge dominating sets of G. Later on S.Arumugamm [7] did some contributions to topic.

Email addresses and ORCID numbers: elgin.kilic@ege.edu.tr, https://orcid.org/0000-0002-1074-5589 (E. Kılıç), ayse.besirik@gmail.com, https://orcid.org/0000-0002-

3980-196X (A. Beşirik)
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Domination and integrity were examined together and many new vulnerability measures were defined. Some of them are domination integrity

[8] [9] , domination edge integrity [10], and total domination integrity [11].

The concept of domination edge integrity of a connected graph as a new vulnerability parameter was defined by E. Kılıç and A. Beşirik [10]

as follows.

Definition 1.1. The domination edge integrity of a connected graph G is denoted by DI
′
(G) and is defined by

DI
′

(G) = min{|S|+m(G−S) : S is an edge dominating set }

where m(G−S) is the order of a maximum component of G−S.

Definition 1.2. A subset S of E(G) is a DI
′
-set if DI

′
(G) = min{|S|+m(G−S) : S ⊆ E(G)} where S is an edge dominating set of G.

DI
′
values of Pn, Cn, K1,n, Km,n were presented and some properties for domination edge integrity value of a connected graph were determined

in [10].

2. DI’ of corona products Pn with some graphs

DI
′

values of some resulting graphs after corona operation of Pn with Pm, Cm, K1,m are found as follows.

Definition 2.1. The corona G1 ⊙G2 is defined as G obtained by taking one copy of G1 of order p1 and p1 copies of G2, and then joining

the i’th node of G1 to every node in the i’th copy of G2 [1].

Proposition 2.2. Let n be an integer,
⌊

n
2

⌋

+
⌈

n
2

⌉

= n.

Proof. There are 2 cases for integer n.

Case 1: Let n is an even integer. Then
⌊

n
2

⌋

=
⌈

n
2

⌉

= n
2 . Hence;

⌊

n
2

⌋

+
⌈

n
2

⌉

= n
2 +

n
2 = n.

Case 2: Let n is an odd integer. Then
⌊

n
2

⌋

= n−1
2 ( since n is odd, then n−1 is even) and

⌈

n
2

⌉

= n−1
2 +1. Hence,

⌊

n
2

⌋

+
⌈

n
2

⌉

= n−1
2 + n−1

2 +1=
n.

In proof of all theorems, for graph G of order m, edge dominating sets X1 and X2 are taken which satisfies, m(Pn ⊙G−X1) = 2(m+1) and

m(Pn ⊙G−X2) = m+1 respectively (Figure 2.1). There is no other possible selection of edge dominating sets which gives DI
′

to be mini-

mum. If X3 is taken to be another edge dominating set, cardinality of X3 is greater than both X1 and X2. It is easy to observe from structure of

corona product of Pn with G. And also m(Pn⊙G−X1)> 2(m+1) since more edges are added. This selection does not give a minimum result.

Figure 2.1: Maximum components of (Pn ⊙G)−X1 and (Pn ⊙G)−X2

For n < 3, DI
′

values of corona products of Pn with Pm, Cm, K1,m are obvious.

Theorem 2.3. For n ≥ 3 and m ≥ 2, let n to be odd and

A =

⌊

n−1

2

⌋

+n

⌈

m−1

3

⌉

+2m+3,

B = n+n.

⌈

m−1

3

⌉

+m.

Then, DI
′
(Pn ⊙Pm) is obtained as follows,

DI
′

(Pn ⊙Pm) =







A, i f m+2 <
n−1

2

B, i f m+2 >
n−1

2

A = B, i f m+2 = n−1
2
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Proof. Let V (Pn) = {v1,v2, ...,vn} and V (Pm) = {u1,u2, ...,um} for path graph Pn and Pm. Let E(Pn) = {v1v2,v2v3, ...,vn−1vn} and

E(Pm) = {u1u2, ...,um−1um}.

For n ≥ 3 and n is odd, we have 2 cases as follows.

Case 1: Let X1 is an edge dominating set of Pn ⊙Pm and m(Pn ⊙Pm −X1) = 2(m+1). X1 is obtained as follows.

Let S1 = {v2v3,v4v5, ...,vn−1vn} ⊂ E(Pn). S1 is an edge dominating set of Pn and |S1|=
⌊

n−1
2

⌋

.

Let S2i
is a minimum edge dominating set of ith copy of Pm and |S2i

|=
⌈

m−1
3

⌉

and S2 = S21
∪S22

∪ ...∪S2n
.

S1 ∪S2 is not an edge dominating set of Pn ⊙Pm because some edges between v1 and vertices of 1st copy of Pm are not dominated by any

edges in S1 ∪ S2. So one of these edges (called e) is added S1 ∪ S2, X1 = S1 ∪ S2 ∪{e} is an edge dominating set of Pn ⊙Pm. Therefore,

|X1|=
⌊

n−1
2

⌋

+n
⌈

m−1
3

⌉

+1 and m(Pn ⊙Pm −X1) = 2(m+1). Thus,

DI
′

(Pn ⊙Pm)≤ |X1|+m(Pn ⊙Pm −X1) =

⌊

n−1

2

⌋

+n

⌈

m−1

3

⌉

+2m+3 = DI
′

(Pn ⊙Pm)X1
.

Case 2: Let X2 is an edge dominating set of Pn ⊙Pm and m(Pn ⊙Pm −X2) = m+1. X2 is obtained as follows.

Let S
′

1 = E(Pn). S
′

1 is an edge dominating set of Pn and

∣

∣

∣
S
′

1

∣

∣

∣
= n−1.

Let S2i
is a minimum edge dominating set of ith copy of Pm and |S2i

|=
⌈

m−1
3

⌉

and S2 = S21
∪S22

∪ ...∪S2n
.

X2 = S
′

1 ∪S2 is an edge dominating set of Pn ⊙Pm.Therefore, |X2|= n−1+n
⌈

m−1
3

⌉

and m(Pn ⊙Pm −X2) = m+1. Thus,

DI
′

(Pn ⊙Pm)≤ |X2|+m(Pn ⊙Pm −X2) = n+n

⌈

m−1

3

⌉

+m = DI
′

(Pn ⊙Pm)X2
.

Because of definition of DI
′
, the relationship between DI

′
(Pn ⊙Pm)X1

and DI
′
(Pn ⊙Pm)X2

must be examined as follows.

1. If m+2 <
n−1

2 , then we have

DI
′

(Pn ⊙Pm)X1
=

⌊

n−1

2

⌋

+n

⌈

m−1

3

⌉

+2m+3 =

⌊

n−1

2

⌋

+n

⌈

m−1

3

⌉

+m+2+m+1

<
n−1

2
+n

⌈

m−1

3

⌉

+
n−1

2
+m+1

= n−1+n

⌈

m−1

3

⌉

+m+1 = n+n

⌈

m−1

3

⌉

+m = DI
′

(Pn ⊙Pm)X2
.

Since DI
′
(Pn ⊙Pm)X1

< DI
′
(Pn ⊙Pm)X2

, then DI
′
(Pn ⊙Pm) = DI

′
(Pn ⊙Pm)X1

=
⌊

n−1
2

⌋

+n
⌈

m−1
3

⌉

+2m+3.

2. If m+2 >
n−1

2 , then we have DI
′
(Pn ⊙Pm)X2

< DI
′
(Pn ⊙Pm)X1

. It can be proved in similar way as above. Therefore, DI
′
(Pn ⊙Pm) =

DI
′
(Pn ⊙Pm)X2

= n+n
⌈

m−1
3

⌉

+m.

3. If m+2 = n−1
2 , then we have DI

′
(Pn ⊙Pm)X1

= DI
′
(Pn ⊙Pm)X2

. Hence, DI
′
(Pn ⊙Pm) = DI

′
(Pn ⊙Pm)X1

= DI
′
(Pn ⊙Pm)X2

.

Theorem 2.4. For n ≥ 4 and m ≥ 2, let n to be even and

A =

⌊

n−1

2

⌋

+n

⌈

m−1

3

⌉

+2m+4,

B = n+n

⌈

m−1

3

⌉

+m.

Then DI
′
(Pn ⊙Pm) is obtained as follows,

DI
′

(Pn ⊙Pm) =







A, i f m+3 <
⌈

n−1
2

⌉

B, i f m+3 >
⌈

n−1
2

⌉

A = B, i f m+3 =
⌈

n−1
2

⌉

Proof. Let V (Pn) = {v1,v2, ...,vn} and V (Pm) = {u1,u2, ...,um} for path graph Pn and Pm. Let E(Pn) = {v1v2,v2v3, ...,vn−1vn} and

E(Pm) = {u1u2, ...,um−1um}. For n ≥ 2 and n is even, we have 2 cases as follows.

Case 1: Let X1 is an edge dominating set of Pn ⊙Pm and m(Pn ⊙Pm −X1) = 2(m+1). X1 is obtained as follows.
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Let S1 = {v2v3,v4v5, ...,vn−1vn} ⊂ E(Pn). S1 is an edge dominating set of Pn and |S1|=
⌊

n−1
2

⌋

.

Let S2i
is a minimum edge dominating set of ith copy of Pm and |S2i

|=
⌈

m−1
3

⌉

and S2 = S21
∪S22

∪ ...∪S2n
.

S1 ∪S2 is not an edge dominating set of Pn ⊙Pm because some edges between v1 and vertices of 1st copy of Pm and vn and vertices of nth

copy of Pm are not dominated by any edges in S1 ∪S2. So one of edges between v1 and vertices of 1st copy of Pm (called e1) and one of

edges between vn and vertices of nth copy of Pm (called e2) are added S1 ∪S2, X1 = S1 ∪S2 ∪{e1,e2} is an edge dominating set of Pn ⊙Pm.

Therefore, |X1|=
⌊

n−1
2

⌋

+n
⌈

m−1
3

⌉

+2 and m(Pn ⊙Pm −X1) = 2(m+1). Thus,

DI
′

(Pn ⊙Pm)≤ |X1|+m(Pn ⊙Pm −X1) =

⌊

n−1

2

⌋

+n

⌈

m−1

3

⌉

+2m+4 = DI
′

(Pn ⊙Pm)X1
.

Case 2: Let X2 is an edge dominating set of Pn ⊙Pm and m(Pn ⊙Pm −X2) = m+1. X2 is obtained as follows.

Let S
′

1 = E(Pn). S
′

1 is an edge dominating set of Pn and

∣

∣

∣
S
′

1

∣

∣

∣
= n−1.

Let S2i
is a minimum edge dominating set of ith copy of Pm and |S2i

|=
⌈

m−1
3

⌉

and S2 = S21
∪S22

∪ ...∪S2n
.

X2 = S
′

1 ∪S2 is an edge dominating set of Pn ⊙Pm.Therefore, |X2|= n−1+n
⌈

m−1
3

⌉

and m(Pn ⊙Pm −X2) = m+1. Thus,

DI
′

(Pn ⊙Pm)≤ |X2|+m(Pn ⊙Pm −X2) = n+n

⌈

m−1

3

⌉

+m = DI
′

(Pn ⊙Pm)X2
.

Because of definition of DI
′
, the relationship between DI

′
(Pn ⊙Pm)X1

and DI
′
(Pn ⊙Pm)X2

must be examined as follows.

1. If m+3 <
⌈

n−1
2

⌉

, then we have

DI
′

(Pn ⊙Pm)X1
=

⌊

n−1

2

⌋

+n

⌈

m−1

3

⌉

+2m+4 =

⌊

n−1

2

⌋

+n

⌈

m−1

3

⌉

+m+3+m+1

<

⌊

n−1

2

⌋

+n

⌈

m−1

3

⌉

+

⌈

n−1

2

⌉

+m+1, (by Proposition 2.2)

= n−1+n

⌈

m−1

3

⌉

+m+1 = n+n

⌈

m−1

3

⌉

+m = DI
′

(Pn ⊙Pm)X2
.

Since DI
′
(Pn ⊙Pm)X1

< DI
′
(Pn ⊙Pm)X2

, then DI
′
(Pn ⊙Pm) = DI

′
(Pn ⊙Pm)X1

=
⌊

n−1
2

⌋

+n
⌈

m−1
3

⌉

+2m+4.

2. If m+3 >
⌈

n−1
2

⌉

, then we have DI
′
(Pn ⊙Pm)X2

< DI
′
(Pn ⊙Pm)X1

. It can be proved in similar way as above. Therefore, DI
′
(Pn ⊙Pm) =

DI
′
(Pn ⊙Pm)X2

= n+n
⌈

m−1
3

⌉

+m.

3. If m+3 =
⌈

n−1
2

⌉

, then we have DI
′
(Pn ⊙Pm)X1

= DI
′
(Pn ⊙Pm)X2

. Hence, DI
′
(Pn ⊙Pm) = DI

′
(Pn ⊙Pm)X1

= DI
′
(Pn ⊙Pm)X2

.

Theorem 2.5. For n ≥ 3 and m ≥ 3, let n to be odd and

A =

⌊

n−1

2

⌋

+n
⌈m

3

⌉

+2m+3,

B = n+n
⌈m

3

⌉

+m.

Then, DI
′
(Pn ⊙Cm) is obtained as follows,

DI
′

(Pn ⊙Cm) =







A, i f m+2 <
n−1

2

B, i f m+2 >
n−1

2

A = B, i f m+2 = n−1
2

Proof. Let V (Pn) = {v1,v2, ...,vn} and V (Cm) = {u1,u2, ...,um} for path graph Pn and cycle graph Cm. Let E(Pn) = {v1v2,v2v3, ...,vn−1vn}
and E(Cm) = {u1u2, ...,um−1um,umu1}.

For n ≥ 3 and n is odd, we have 2 cases as follows.

Case 1: Let X1 is an edge dominating set of Pn ⊙Cm and m(Pn ⊙Cm −X1) = 2(m+1). X1 is obtained as follows.

Let S1 = {v2v3,v4v5, ...,vn−1vn} ⊂ E(Pn). S1 is an edge dominating set of Pn and |S1|=
⌊

n−1
2

⌋

.

Let S2i
is a minimum edge dominating set of ith copy of Cm and |S2i

|=
⌈

m
3

⌉

and S2 = S21
∪S22

∪ ...∪S2n
.

S1 ∪S2 is not an edge dominating set of Pn ⊙Cm because some edges between v1 and vertices of 1st copy of Cm are not dominated by any



Journal of Mathematical Sciences and Modelling 29

edges in S1 ∪S2. So one of these edges (called e) is added S1 ∪S2, X1 = S1 ∪S2 ∪{e} is an edge dominating set of Pn ⊙Cm. Therefore,

|X1|=
⌊

n−1
2

⌋

+n
⌈

m
3

⌉

+1 and m(Pn ⊙Cm −X1) = 2(m+1). Thus,

DI
′

(Pn ⊙Cm)≤ |X1|+m(Pn ⊙Cm −X1) =

⌊

n−1

2

⌋

+n
⌈m

3

⌉

+2m+3 = DI
′

(Pn ⊙Cm)X1
.

Case 2: Let X2 is an edge dominating set of Pn ⊙Cm and m(Pn ⊙Cm −X2) = m+1. X2 is obtained as follows.

Let S
′

1 = E(Pn). S
′

1 is an edge dominating set of Pn and

∣

∣

∣
S
′

1

∣

∣

∣
= n−1.

Let S2i
is a minimum edge dominating set of ith copy of Cm and |S2i

|=
⌈

m
3

⌉

and S2 = S21
∪S22

∪ ...∪S2n
.

X2 = S
′

1 ∪S2 is an edge dominating set of Pn ⊙Cm.Therefore, |X2|= n−1+n
⌈

m
3

⌉

and m(Pn ⊙Cm −X2) = m+1. Thus,

DI
′

(Pn ⊙Cm)≤ |X2|+m(Pn ⊙Cm −X2) = n+n
⌈m

3

⌉

+m = DI
′

(Pn ⊙Cm)X2
.

Because of definition of DI
′
, the relationship between DI

′
(Pn ⊙Cm)X1

and DI
′
(Pn ⊙Cm)X2

must be examined as follows.

1. If m+2 <
n−1

2 , then we have

DI
′

(Pn ⊙Cm)X1
=

⌊

n−1

2

⌋

+n
⌈m

3

⌉

+2m+3 =

⌊

n−1

2

⌋

+n
⌈m

3

⌉

+m+2+m+1

<
n−1

2
+n

⌈m

3

⌉

+
n−1

2
+m+1

= n−1+n
⌈m

3

⌉

+m+1 = n+n
⌈m

3

⌉

+m = DI
′

(Pn ⊙Cm)X2
.

Since DI
′
(Pn ⊙Cm)X1

< DI
′
(Pn ⊙Cm)X2

, then DI
′
(Pn ⊙Cm) = DI

′
(Pn ⊙Cm)X1

=
⌊

n−1
2

⌋

+n
⌈

m
3

⌉

+2m+3.

2. If m+2 >
n−1

2 , then we have DI
′
(Pn ⊙Cm)X2

< DI
′
(Pn ⊙Cm)X1

. It can be proved in similar way as above. Therefore, DI
′
(Pn ⊙Cm) =

DI
′
(Pn ⊙Cm)X2

= n+n
⌈

m
3

⌉

+m.

3. If m+2 = n−1
2 , then we have DI

′
(Pn ⊙Cm)X1

= DI
′
(Pn ⊙Cm)X2

. Hence, DI
′
(Pn ⊙Cm) = DI

′
(Pn ⊙Cm)X1

= DI
′
(Pn ⊙Cm)X2

.

Theorem 2.6. For n ≥ 4 and m ≥ 3, let to n be even and

A =

⌊

n−1

2

⌋

+n
⌈m

3

⌉

+2m+4,

B = n+n
⌈m

3

⌉

+m.

Then, DI
′
(Pn ⊙Cm) is obtained as follows,

DI
′

(Pn ⊙Cm) =







A, i f m+3 <
⌈

n−1
2

⌉

B, i f m+3 >
⌈

n−1
2

⌉

A = B, i f m+3 =
⌈

n−1
2

⌉

Proof. Let V (Pn) = {v1,v2, ...,vn} and V (Cm) = {u1,u2, ...,um} for path graph Pn and cycle graph Cm. Let E(Pn) = {v1v2,v2v3, ...,vn−1vn}
and E(Cm) = {u1u2, ...,um−1um,umu1}.

For n ≥ 2 and n is even, we have 2 cases as follows.

Case 1: Let X1 is an edge dominating set of Pn ⊙Cm and m(Pn ⊙Cm −X1) = 2(m+1). X1 is obtained as follows.

Let S1 = {v2v3,v4v5, ...,vn−1vn} ⊂ E(Pn). S1 is an edge dominating set of Pn and |S1|=
⌊

n−1
2

⌋

.

Let S2i
is a minimum edge dominating set of ith copy of Cm and |S2i

|=
⌈

m
3

⌉

and S2 = S21
∪S22

∪ ...∪S2n
.

S1 ∪S2 is not an edge dominating set of Pn ⊙Cm because some edges between v1 and vertices of 1st copy of Cm and vn and vertices of nth

copy of Cm are not dominated by any edges in S1 ∪S2. So one of edges between v1 and vertices of 1st copy of Cm (called e1) and one of

edges between vn and vertices of nth copy of Cm (called e2) are added S1 ∪S2, X1 = S1 ∪S2 ∪{e1,e2} is an edge dominating set of Pn ⊙Cm.

Therefore, |X1|=
⌊

n−1
2

⌋

+n
⌈

m
3

⌉

+2 and m(Pn ⊙Cm −X1) = 2(m+1). Thus,

DI
′

(Pn ⊙Cm)≤ |X1|+m(Pn ⊙Cm −X1) =

⌊

n−1

2

⌋

+n
⌈m

3

⌉

+2m+4 = DI
′

(Pn ⊙Cm)X1
.
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Case 2: Let X2 is an edge dominating set of Pn ⊙Cm and m(Pn ⊙Cm −X2) = m+1. X2 is obtained as follows.

Let S
′

1 = E(Pn). S
′

1 is an edge dominating set of Pn and

∣

∣

∣
S
′

1

∣

∣

∣
= n−1.

Let S2i
is a minimum edge dominating set of ith copy of Cm and |S2i

|=
⌈

m
3

⌉

and S2 = S21
∪S22

∪ ...∪S2n
.

X2 = S
′

1 ∪S2 is an edge dominating set of Pn ⊙Cm. Therefore, |X2|= n−1+n
⌈

m
3

⌉

and m(Pn ⊙Cm −X2) = m+1. Thus,

DI
′

(Pn ⊙Cm)≤ |X2|+m(Pn ⊙Cm −X2) = n+n
⌈m

3

⌉

+m = DI
′

(Pn ⊙Cm)X2
.

Because of definition of DI
′
, the relationship between DI

′
(Pn ⊙Cm)X1

and DI
′
(Pn ⊙Cm)X2

must be examined as follows.

1. If m+3 <
⌈

n−1
2

⌉

, then we have

DI
′

(Pn ⊙Cm)X1
=

⌊

n−1

2

⌋

+n
⌈m

3

⌉

+2m+4 =

⌊

n−1

2

⌋

+n
⌈m

3

⌉

+m+3+m+1

<

⌊

n−1

2

⌋

+n
⌈m

3

⌉

+

⌈

n−1

2

⌉

+m+1, (by Proposition 2.2)

= n−1+n
⌈m

3

⌉

+m+1 = n+n
⌈m

3

⌉

+m = DI
′

(Pn ⊙Cm)X2
.

Since DI
′
(Pn ⊙Pm)X1

< DI
′
(Pn ⊙Pm)X2

, then DI
′
(Pn ⊙Pm) = DI

′
(Pn ⊙Pm)X1

=
⌊

n−1
2

⌋

+n
⌈

m−1
3

⌉

+2m+4.

2. If m+3 >
⌈

n−1
2

⌉

, then we have DI
′
(Pn ⊙Cm)X2

< DI
′
(Pn ⊙Cm)X1

. It can be proved in similar way as above. Therefore, DI
′
(Pn ⊙Cm) =

DI
′
(Pn ⊙Cm)X2

= n+n
⌈

m
3

⌉

+m.

3. If m+3 =
⌈

n−1
2

⌉

, then we have DI
′
(Pn ⊙Cm)X1

= DI
′
(Pn ⊙Cm)X2

. Hence, DI
′
(Pn ⊙Cm) = DI

′
(Pn ⊙Cm)X1

= DI
′
(Pn ⊙Cm)X2

.

Theorem 2.7. For n ≥ 3, let A =
⌊

n−1
2

⌋

+n+2m+4 and B = 2n+m+1. Then, DI
′ (

Pn ⊙K1,m

)

is obtained as follows,

DI
′ (

Pn ⊙K1,m

)

=







A, i f m+2 <
⌈

n−1
2

⌉

B, i f m+2 >
⌈

n−1
2

⌉

A = B, i f m+2 =
⌈

n−1
2

⌉

Proof. Let V (Pn) = {v1,v2, ...,vn} for path graph Pn and for each ith copy of K1,m vertex set Vi(K1,m) = {u1i
,u2i

, ...,umi
,um+1i

}.( u1i
is

central vertex of ith copy of K1,m.) Let E(Pn) = {v1v2,v2v3, ...,vn−1vn} and Ei(K1,m) = {u1i
u2i

, ...,u1i
umi

,u1i
um+1i

}.

For n ≥ 2 and n is even, we have 2 cases as follows.

Case 1: Let X1 is an edge dominating set of Pn ⊙K1,m and m(Pn ⊙K1,m −X1) = 2(m+2). X1 is obtained as follows.

Let S1 = {v2v3,v4v5, ...,vn−1vn} ⊂ E(Pn). S1 is an edge dominating set of Pn and |S1|=
⌊

n−1
2

⌋

.

S2 = {v1u11
,v2u12

, ...,vnu1n
} is a minimum edge dominating set of Pn ⊙K1,m −E(Pn) and |S2|= n.

S1 ∪S2 is an edge dominating set of Pn ⊙K1,m. Therefore, |X1|=
⌊

n−1
2

⌋

+n and m(Pn ⊙Pm −X1) = 2(m+2). Thus,

DI
′ (

Pn ⊙K1,m

)

≤ |X1|+m(Pn ⊙K1,m −X1) =

⌊

n−1

2

⌋

+n+2m+4 = DI
′

(Pn ⊙Pm)X1
.

Case 2: Let X2 is an edge dominating set of Pn ⊙K1,m and m(Pn ⊙K1,m −X2) = m+2. X2 is obtained as follows.

Let S
′

1 = E(Pn). S
′

1 is an edge dominating set of Pn and

∣

∣

∣
S
′

1

∣

∣

∣
= n−1.

S2 = {v1u11
,v2u12

, ...,vnu1n
} is a minimum edge dominating set of Pn ⊙K1,m −E(Pn) and |S2|= n.

X2 = S
′

1 ∪S2 is an edge dominating set of Pn ⊙K1,m. Therefore, |X2|= n−1+n = 2n−1 and m(Pn ⊙K1,m −X2) = m+2. Thus,

DI
′ (

Pn ⊙K1,m

)

≤ |X2|+m(Pn ⊙K1,m −X2) = 2n+m+1 = DI
′ (

Pn ⊙K1,m

)

X2
.

Because of definition of DI
′
, the relationship between DI

′ (

Pn ⊙K1,m

)

X1
and DI

′ (

Pn ⊙K1,m

)

X2
must be examined as follows.

1. If m+2 <
⌈

n−1
2

⌉

, then we have
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DI
′ (

Pn ⊙K1,m

)

X1
=

⌊

n−1

2

⌋

+n+2m+4 =

⌊

n−1

2

⌋

+n+m+2+m+2

<

⌊

n−1

2

⌋

+n+

⌈

n−1

2

⌉

+m+2, (by Proposition2.2)

= n−1+n+m+2 = 2n+m+1 = DI
′ (

Pn ⊙K1,m

)

X2
.

Since DI
′ (

Pn ⊙K1,m

)

X1
< DI

′ (

Pn ⊙K1,m

)

X2
, then DI

′ (

Pn ⊙K1,m

)

= DI
′ (

Pn ⊙K1,m

)

X1
=
⌊

n−1
2

⌋

+n+2m+4.

2. If m + 2 >
⌈

n−1
2

⌉

, then we have DI
′ (

Pn ⊙K1,m

)

X2
< DI

′ (

Pn ⊙K1,m

)

X1
. It can be proved in similar way as above. Therefore,

DI
′ (

Pn ⊙K1,m

)

= DI
′ (

Pn ⊙K1,m

)

X2
= 2n+m+1.

3. If m+2=
⌈

n−1
2

⌉

, then we have DI
′ (

Pn ⊙K1,m

)

X1
=DI

′ (

Pn ⊙K1,m

)

X2
. Hence, DI

′ (

Pn ⊙K1,m

)

=DI
′ (

Pn ⊙K1,m

)

X1
=DI

′ (

Pn ⊙K1,m

)

X2
.

3. Conclusion

Domination concept and integrity are very valuable measures for network designers. Due to the changes of network models and design styles

based on demands, measures on nodes or links which have specific properties became more important. For example edge domination and

integrity are some of these concepts related to these specific properties. Edge domination only gives an idea about the communication on

graph model after any faiulers on edges (links) and integrity itself gives information about only the stability of graph model of network based

on edges. But our new measure domination edge integrity [10] combines these two important concepts. Corona operation is one of those

commonly used operations in network design which has applications. In this paper, domination edge integrity of some graphs under corona

operation is examined such as Pn ⊙Pm, Pn ⊙Cm, Pn ⊙K1,n and results are obtained. For future work we plan to extend our results on other

important classes of graphs under corona operation and generalize the obtained results.
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Erdinç Dündar1* and Nimet Pancaroǧlu Akin2
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Abstract

In this manuscript, we present the ideas of asymptotically [Iσθ ]-equivalence, asymptotically

Iσθ ( f )-equivalence, asymptotically [Iσθ ( f )]-equivalence and asymptotically I (Sσθ )-
equivalence for real sequences. In addition to, investigate some connections among these

new ideas and we give some inclusion theorems about them.

1. Introduction

Before starting article, we give the basic concepts and properties of statistical convergence, ideal convergence, invariant mean and invariant

convergence, asymptotically equivalence and modulus function. Throughout this study, N denotes the set of natural numbers and R denotes

the set of real numbers. Statistical convergence and ideal convergence have recently begun to attract interest in science and engineering as

well as by mathematicians. The idea of convergence of a real sequence was extended to statistical convergence by Fast [1] and Schoenberg [2]

independently, and then statistical convergence has been studied by many authors. Kostyrko et al. [3] firstly, introduced the notion of

I -convergence as a generalization of statistical convergence.

Invariant convergence has recently been gaining more and more interest among mathematicians working on summability theory. Several

authors including Raimi [4], Schaefer [5], Mursaleen and Edely [6], Mursaleen [7], Savaş [8–10], Nuray and Savaş [11], Pancaroǧlu and

Nuray [12] studied on σ -convergent sequences and some properties of σ -convergence. The notion of lacunary strong σ -convergence was

defined by Savaş [10]. Then, Savaş and Nuray [13] introduced the notion of σ -statistical convergence and also, defined lacunary σ -statistical

convergence and examined some inclusion theorems with examples. After that, Nuray et al. [14] defined the notions of σ -uniform density

of a subset A of N, Iσ -convergence and examined connections between Iσ -convergence and σ -convergence and also, Iσ -convergence

and [Vσ ]p-convergence. Also, Pancaroḡlu and Nuray [12] studied statistical lacunary σ -summability. Recently, Ulusu and Nuray [15]

investigated the concepts of lacunary Iσ -convergence and lacunary Iσ -Cauchy sequence of real numbers.

The concept of asymptotically equivalence and applications are of interest to scientists working on convergence types. Marouf [16] peresented

ideas of asymptotically equivalence. Patterson and Savaş [17, 18] denoted the ideas of asymptotically lacunary statistically equivalence and

asymptotically σθ -statistical equivalence of real sequences. Ulusu [19, 20] studied the notion asymptotically ideal invariant equivalence and

asymptotically lacunary Iσ -equivalence.

Modulus function and its various applications are used in many sub-disciplines in the field of mathematics. Nakano [21] denoted the notion

f modulus function. Maddox [22], Pehlivan [23] and several authors using a modulus function f , define some new concepts and give

some inclusion theorems with examples. Kumar and Sharma [24] using a modulus function f , investigated lacunary I -equivalence of real

sequences.

Now, let’s give some basic and important concepts, lemma and properties that are related to our work subject and we will use in our article,

Email addresses and ORCID numbers: edundar@aku.edu.tr, https://orcid.org/0000-0002-0545-7486 (E. Dündar), npancaroglu@aku.edu.tr, https://orcid.org/0000-0003-

2886-3679 (N. Pancaroǧlu Akin)
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by citing the authors we give in the references (see [3, 9, 10, 14–16, 21–26]).

Let σ be a mapping such that σ : N+ → N
+ (the set of positive integers). A continuous linear functional ψ on ℓ∞, the space of bounded

sequences, is said to be an invariant mean or a σ -mean if it satisfies the following conditions:

1. ψ(an)≥ 0, when the sequence (an) has an ≥ 0, for all n,

2. ψ(e) = 1, where e = (1,1,1, . . .) and

3. ψ(aσ(n)) = ψ(an) for all (an) ∈ ℓ∞.

The mappings σ are supposed to be one-to-one and such that σm(n) 6= n for all m,n ∈ N
+, where σm(n) denotes the m th iterate of the

mapping σ at n. Thus ψ extends the limit functional on c, the space of convergent sequences, in the sense that ψ(an) = liman for all

(an) ∈ c.

By a lacunary sequence we mean an increasing integer sequence θ = {kr} such that k0 = 0 and hr = kr − kr−1 → ∞ as r → ∞. The intervals

determined by θ will be denoted by Ir = (kr−1,kr].

Throughout this study, let θ = {kr} be a lacunary sequence.

The concept of lacunary strong σ -convergence was defined as below:

Lθ =

{

a = (ak) : lim
r

1

hr
∑
k∈Ir

|aσ k(m)−K|= 0

}

,

uniformly in m = 1,2, ... .

If for every ε > 0

lim
r

1

hr

∣

∣

∣

{

k ∈ Ir : |aσ k(n)−K| ≥ ε
}

∣

∣

∣
= 0,

uniformly in n = 1,2, ..., then the sequence a = (ak) is Sσθ -convergent to K.

Let I be a family of subsets of 2N. If the following conditions holds, then we named I ⊆ 2N an ideal:

(i) /0 ∈ I ,

(ii) For any C,D ∈ I , we get C∪D ∈ I ,

(iii) For any C ∈ I and any D ⊆C, we get D ∈ I .

An ideal I ⊆ 2N is named a non-trivial if N /∈I and a non-trivial ideal I ⊆ 2N is named admissible if {n} ∈I for each n ∈N. Throughout

this study, we let I ⊆ 2N be an admissible ideal.

Let H ⊆ N and

sm = min
n

∣

∣

∣
H ∩

{

σ(n),σ2(n), ...,σm(n)
}∣

∣

∣
and Sm = max

n

∣

∣

∣
H ∩

{

σ(n),σ2(n), ...,σm(n)
}∣

∣

∣
.

If the limits

V (H) = lim
m→∞

sm

m
and V (H) = lim

m→∞

Sm

m

exist, then they are named a lower σ -uniform density and an upper σ -uniform density of the set H, respectively. If V (H) = V (H), then

V (H) =V (H) =V (H) is named the σ -uniform density of H.

Denote by Iσ the class of all H ⊆ N with V (H) = 0. Obviously, Iσ is an admissible ideal in N.

A sequence a = (ak) is told to be Iσ -convergent to K if for each ε > 0, the set Hε =
{

k : |ak −K| ≥ ε
}

belongs to Iσ , i.e., V (Hε ) = 0. It is

denoted by Iσ − lim
k→∞

ak = K.

Let θ = {kr} be a lacunary sequence, H ⊆ N and

sr = min
n

{

∣

∣H ∩{σm(n) : m ∈ Ir}
∣

∣

}

and Sr = max
n

{

∣

∣H ∩{σm(n) : m ∈ Ir}
∣

∣

}

.

If the limits

Vθ (H) = lim
r→∞

sr

hr
and Vθ (H) = lim

r→∞

Sr

hr

exist, then they are named a lower lacunary σ -uniform density and an upper lacunary σ -uniform density of the set H, respectively. If

Vθ (H) =Vθ (H), then Vθ (H) =Vθ (H) =Vθ (H) is named the lacunary σ -uniform density of H.

Denoted by Iσθ the class of all H ⊆ N with Vθ (H) = 0. Obviously, Iσθ is an admissible ideal in N.

A sequence (ak) is told to be lacunary Iσ -convergent or Iσθ -convergent to K if for each ε > 0, Hε =
{

k : |ak −K| ≥ ε
}

∈ Iσθ , i.e.,

Vθ (Hε ) = 0. It is denoted by Iσθ − lim
k→∞

ak = K.
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Two non-negative sequences a = (ak) and v = (vk) are told to be asymptotically equivalent if lim
k→∞

ak

vk
= 1, (denoted by a ∼ v).

Two non-negative sequences a = (ak) and v = (vk) are told to be strongly asymptotically lacunary invariant equivalent of multiple K if

lim
r

1

hr
∑
k∈Ir

∣

∣

∣

∣

aσ k(m)

vσ k(m)
−K

∣

∣

∣

∣

= 0,

uniformly in m (denoted by a
NK

σθ∼ v). If we let K = 1, then a = (ak) and v = (vk) are told to be simply asymptotically Nσθ -equivalent.

Two non-negative sequences a = (ak) and v = (vk) are told to be asymptotically lacunary invariant statistical equivalent of multiple K if for

each ε > 0,

lim
r

1

hr

∣

∣

∣

∣

{

k ∈ Ir :

∣

∣

∣

∣

aσ k(m)

vσ k(m)
−K

∣

∣

∣

∣

≥ ε

}∣

∣

∣

∣

= 0,

uniformly in m (denoted by a
SK

σθ∼ v). If we let K = 1, then a = (ak) and v = (vk) are told to be simply asymptotically lacunary invariant

statistical equivalent.

Two non-negative sequences a = (ak) and v = (vk) are told to be strongly asymptotically lacunary I -equivalent of multiple K provided that

for each ε > 0,

{

r ∈ N :
1

hr
∑
k∈Ir

∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

≥ ε

}

∈ I

(denoted by a
I (NK

θ )
∼ v). If we let K = 1, then a = (ak) and v = (vk) are told to be simply strongly asymptotically lacunary I -equivalent.

Two non-negative sequences a = (ak) and v = (vk) are told to be asymptotically lacunary statistical I -equivalent of multiple K if for each

ε > 0 and γ > 0,

{

r ∈ N :
1

hr

∣

∣

∣

∣

{

k ∈ Ir :

∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

≥ ε

}∣

∣

∣

∣

≥ γ

}

∈ I

(denoted by a
I (SK

θ )∼ v). If we let K = 1, then a = (ak) and v = (vk) are told to be simply asymptotically lacunary I -statistical equivalent.

Two non-negative sequences a = (ak) and v = (vk) are told to be asymptotically Iσθ -equivalent of multiple K if for each ε > 0,

∼
Hε =

{

k ∈ Ir :

∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

≥ ε

}

∈ Iσθ ,

i.e., Vθ (
∼
Hε ) = 0. It is denoted by a

I K
σθ∼ v. If we let K = 1, then a = (ak) and v = (vk) are told to be simply asymptotically Iσθ -equivalent.

A function f : [0,∞)→ [0,∞) is called a modulus if

1. f (t) = 0 if and if only if t = 0,

2. f (t + v)≤ f (t)+ f (v),
3. f is increasing,

4. f is continuous from the right at 0.

A modulus may be unbounded (for example f (t) = t p, 0 < p < 1) or bounded (for example f (t) = t
t+1 ).

Throughout this study, let f be a modulus function.

Two non-negative a = (ak) and v = (vk) are told to be strongly f -asymptotically lacunary I -equivalent of multiple K provided that for each

ε > 0,

{

r ∈ N :
1

hr
∑
k∈Ir

f

(∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

)

≥ ε

}

∈ I

(denoted by a
I K(N f

θ )∼ v). If we let K = 1, then a = (ak) and v = (vk) are told to be simply strongly f -asymptotically lacunary I -equivalent.

Two non-negative sequences a = (ak) and v = (vk) are told to be strongly asymptotically I -invariant equivalent of multiple K if for each

ε > 0,

{

n ∈ N :
1

n

n

∑
k=1

∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

≥ ε

}

∈ Iσ

(denoted by a
[I K

σ ]
∼ v). If we let K = 1, then a = (ak) and v = (vk) are told to be simply strongly asymptotically I -invariant equivalent.
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Two non-negative sequences a = (ak) and v = (vk) are told to be f -asymptotically I -invariant equivalent of multiple K if for each ε > 0,

{

k ∈ N : f

(∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

)

≥ ε

}

∈ Iσ

(denoted by a
I K

σ ( f )
∼ v). If we let K = 1, then a = (ak) and v = (vk) are told to be simply f -asymptotically I -invariant equivalent.

Two non-negative sequences a = (ak) and v = (vk) are told to be strongly f -asymptotically I -invariant equivalent of multiple K if for each

ε > 0,
{

n ∈ N :
1

n

n

∑
k=1

f

(∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

)

≥ ε

}

∈ Iσ

(denoted by a
[I K

σ ( f )]
∼ v). If we let K = 1, then a = (ak) and v = (vk) are told to be simply strongly f -asymptotically I -invariant equivalent.

Two non-negative sequences a = (ak) and v = (vk) are told to be asymptotically I -invariant statistical equivalent of multiple K if for each

ε > 0 and each γ > 0,

{

n ∈ N :
1

n

∣

∣

∣

∣

{

k ≤ n :

∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

≥ ε

}∣

∣

∣

∣

≥ γ

}

∈ Iσ

(denoted by a
I (SK

σ )∼ v). If we let K = 1, then a = (ak) and v = (vk) are told to be simply asymptotically I -invariant statistical equivalent.

Lemma 1.1. [23] Let 0 < λ < 1. Then, we have f (s)≤ 2 f (1)λ−1s, for each s ≥ λ .

2. Main results

Now, we give the original definitions of our article and explain the theorems that are original, together with their proofs. Our theorems give

many features and necessity relations between these new concepts.

Definition 2.1. Two non-negative sequences a = (ak) and v = (vk) are told to be strongly asymptotically lacunary I -invariant equivalent

of multiple K if for each ε > 0

{

r ∈ N :
1

hr
∑
k∈Ir

∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

≥ ε

}

∈ Iσθ

(denoted by a
[I K

σθ ]∼ v). If we let K = 1, then a = (ak) and v = (vk) are told to be simply strongly asymptotically lacunary I -invariant

equivalent.

Definition 2.2. Two non-negative sequences a = (ak) and v = (vk) are told to be f -asymptotically lacunary I -invariant equivalent of

multiple K if for each ε > 0

{

k ∈ Ir : f

(∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

)

≥ ε

}

∈ Iσθ ,

(denoted by a
I K

σθ ( f )
∼ v). If we let K = 1, then a = (ak) and v = (vk) are told to be simply f -asymptotically lacunary I -invariant equivalent.

Definition 2.3. Two non-negative sequences a = (ak) and v = (vk) are told to be strongly f -asymptotically lacunary I -invariant equivalent

of multiple K if for each ε > 0

{

r ∈ N :
1

hr
∑
k∈Ir

f

(∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

)

≥ ε

}

∈ Iσθ

(denoted by a
[I K

σθ ( f )]
∼ v). If we let K = 1, then a = (ak) and v = (vk) are told to be simply strongly f -asymptotically lacunary I -invariant

equivalent.

Theorem 2.4. For two non-negative sequences a = (ak) and v = (vk) we have a
[I K

σθ ]∼ v ⇒ a
[I K

σθ ( f )]
∼ v.

Proof. Let a
[I K

σθ ]∼ v and ε > 0 be given. For 0 ≤ s ≤ λ , select 0 < λ < 1 such that f (s)< ε . Then, we have

1

hr
∑
k∈Ir

f

(∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

)

=
1

hr
∑
k∈Ir

∣

∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

∣

≤λ

f

(∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

)

+
1

hr
∑
k∈Ir

∣

∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

∣

>λ

f

(∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

)

and so by Lemma 1.1

1

hr
∑
k∈Ir

f

(∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

)

< ε +

(

2 f (1)

λ

)

1

hr
∑
k∈Ir

∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

.
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Thus, for each γ > 0 we have

{

r ∈ N :
1

hr
∑
k∈Ir

f

(∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

)

≥ γ

}

⊆

{

r ∈ N :
1

hr
∑
k∈Ir

∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

≥
(γ − ε)λ

2 f (1)

}

.

Since a
[I K

σθ ]∼ v, the next set and so the first set in the foregoing statement pertain to Iσθ . This proves that

a
[I K

σθ ( f )]
∼ v.

Theorem 2.5. If lim
s→∞

f (s)

s
= α > 0, then for two non-negative sequences a = (ak) and v = (vk) we have

a
[I K

σθ ( f )]
∼ v ⇔ a

[I K
σθ ]∼ v.

Proof. In Theorem 2.4, we showed that a
[I K

σθ ]∼ v ⇒ a
[I K

σθ ( f )]
∼ v. Now, we must show that

a
[I K

σθ ( f )]
∼ v ⇒ a

[I K
σθ ]∼ v.

For all a ≥ 0, if we let lim
a→∞

f (a)

a
= α > 0, then we have f (a)≥ α a. Assume that a

[I K
σθ ( f )]
∼ v. Since

1

hr
∑
k∈Ir

f

(∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

)

≥
1

hr
∑
k∈Ir

α

(∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

)

= α

(

1

hr
∑
k∈Ir

∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

)

holds, hence for each ε > 0, we have

{

r ∈ N :
1

hr
∑
k∈Ir

∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

≥ ε

}

⊆

{

r ∈ N :
1

hr
∑
k∈Ir

f

(∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

)

≥ αε

}

.

Since a
[I K

σθ ( f )]
∼ v, the next set and so the first set in the foregoing statement pertains to Iσθ . This proves that

a
[I K

σθ ]∼ v ⇔ a
[I K

σθ ( f )]
∼ v.

Definition 2.6. Two non-negative sequences a = (ak) and v = (vk) are told to be asymptotically lacunary I -invariant statistical equivalent

of multiple K if for any ε > 0 and any γ > 0

{

r ∈ N :
1

hr

∣

∣

∣

∣

{

k ∈ Ir :

∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

≥ ε

}∣

∣

∣

∣

≥ γ

}

∈ Iσθ

(denoted by a
I (SK

σθ )∼ v). If we let K = 1, then a = (ak) and v = (vk) are told to be simply asymptotically lacunary I -invariant statistical

equivalent.

Theorem 2.7. For two non-negative sequences a = (ak) and v = (vk) we have

a
[I K

σθ ( f )]
∼ v ⇒ a

I (SK
σθ )∼ v.

Proof. Granted that a
[I K

σθ ( f )]
∼ v and ε > 0 be given. Since

1

hr
∑
k∈Ir

f

(∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

)

≥
1

hr
∑
k∈Ir

∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

≥ε

f

(∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

)

≥ f (ε)
1

hr

∣

∣

∣

∣

{

k ∈ Ir :

∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

≥ ε

}∣

∣

∣

∣

holds, hence for each γ > 0, we have

{

r ∈ N :
1

hr

∣

∣

∣

{

k ∈ Ir :

∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

≥ ε
}

∣

∣

∣
≥ γ

}

⊆

{

r ∈ N :
1

hr
∑
k∈Ir

f

(∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

)

≥ γ f (ε)

}

.

Since a
[I K

σθ ( f )]
∼ v, the next set and so the first set in the foregoing statement pertains to Iσθ and hence, a

I (SK
σθ )∼ v.

Theorem 2.8. If f is bounded, then for two non-negative sequences a = (ak) and v = (vk) we have

a
I (SK

σθ )∼ v ⇔ a
[I K

σθ ( f )]
∼ v.
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Proof. In Theorem 2.7, we showed that a
[I K

σθ ( f )]
∼ v ⇒ a

I (SK
σθ )∼ v. Now, we must show that

a
I (SK

σθ )∼ v ⇒ a
[I K

σθ ( f )]
∼ v.

Granted that f is bounded and a
I (SK

σθ )∼ v. Hence, there exists a positive real number L such that | f (a)| ≤ L, for all a ≥ 0. Further using this

fact, we have

1

hr
∑
k∈Ir

f

(∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

)

=
1

hr
∑
k∈Ir

∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

≥ε

f

(∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

)

+
1

hr
∑
k∈Ir

∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

<ε

f

(∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

)

≤
L

hr

∣

∣

∣

∣

{

k ∈ Ir :

∣

∣

∣

∣

ak

vk

−K

∣

∣

∣

∣

≥ ε

}∣

∣

∣

∣

+ f (ε).

This proves that a
[I K

σθ ( f )]
∼ v.

3. Conclusion

In the present study, using modulus function and lacunary sequences, we investigated the types of asymptotically ideal invariant equivalence

for real sequences and give theorems about some properties. These new concepts can be examine for set sequences.
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Abstract

In this paper, two-dimensional modified block-pulse functions (2D-MBPFs) method is

introduced for approximate solution of 2D-linear stochastic Volterra-Fredholm integral

equations so the ordinary and stochastic operrational matrices of integration are utilized

to reduce the computation of such equations into some algebraic equations. Convergence

analysis of this method is discussed. Finally an illustrative example is given to show the

accuracy of the proposed method so the results of it is compared with the block-pulse

functions (BPFs) method.

1. Introduction

Mainly 2D-integral equations furnish the important implement for modeling the engineering and science problems [1, 2]. We have used the

variant methods for solving 2D-linear stochastic integral equations in [3, 4, 5, 6, 7] that the BPFs method is one of these methods. The BPFs

are very common in use, but it seems that their convergence is weak. Here the modified block-pulse functions (MBPFs) method is used for

deriving approximation solution of 2D-linear stochastic Volterra-Fredholm integral equation of the second kind

g(x,y) = f (x,y)+
∫ 1

0

∫ 1

0
V1(x,y,s, t)g(s, t)dsdt +

∫ y

0

∫ x

0
V2(x,y,s, t)g(s, t)dsdt +

∫ y

0

∫ x

0
V3(x,y,s, t)g(s, t)dB(s)dB(t), (1.1)

where (x,y) ∈ [0,T1)× [0,T2) and

s 6 x < t 6 y. (1.2)

In (1.1), g(x,y) is the unknown function and the condition (1.2) is necessary.

We organize the paper as follows:

The properties of 2D-MBPFs are introduced in the next section. In Section 3 we solve (1.1) by finding the ordinary and stochastic operational

matrices. We depict the error analysis in Section 4. The certitude of the method is evinced by an example in Section 5. Eventually, we afford

the brief conclusion in Section 6.

2. Two dimentional MBPFs

An (n1 +1)× (n2 +1)-set of 2D-MBPFs ωa1,a2
(x,y) (a1 = 0,1, ...,n1); (a2 = 0,1, ...,n2) consists of (n1 +1)× (n2 +1) functions which

are defined over district D by [8]

ωa1,a2
(x,y) =

{

1, (x,y) ∈ Da1,a2

0, otherwise,
(2.1)

Email addresses and ORCID numbers: M.Fallahpour@kiau.ac.ir, https://orcid.org/0000-0003-2469-4804 (M. Fallahpour), m-khodabin@kiau.ac.ir, https://orcid.org/0000-

0001-6113-2208 (M. Khodabin)
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where

Da1,a2
= (x,y) : x ∈ Ia1,ε ,y ∈ Ia2,ε ,

and

Ia1,ε =







[0,k1 − ε), a1 = 0

[a1k1 − ε,(a1 +1)k1 − ε), a1 = 1(1)(n1 −1)
[1− ε,1) a1 = n1,

Ia2,ε =







[0,k2 − ε), a2 = 0

[a2k2 − ε,(a2 +1)k2 − ε), a2 = 1(1)(n2 −1)
[1− ε,1) a2 = n1,

where n1 and n2 are arbitary positive integers and we have

k1 =
T1

n1
, k2 =

T2

n2
.

From (2.1), we can represent 2D-MBPFs as

ωa1,a2
(x,y) = ωa1

(x)ωa2
(y),

where ωa1
and ωa2

are the one-dimensional MBPFs. Similar to the one-dimensional case, 2D-MBPFs have the elementary properties

that are: disjointness, orthogonality and completeness. Also the set of 2D-MBPFs can be written as a vector Ω(x,y) of dimension

ς1 = (n1 +1)(n2 +1)×1 as

Ω(x,y) = [ω0,0(x,y), ...,ω0,n2
(x,y), ...,ωn1,0(x,y), ...,ωn1,n2

(x,y)]T , (2.2)

where (x,y) ∈ D. For every ς1-vector K from (2.2) we have

Ω(x,y)ΩT (x,y)K = K̃Ω(x,y), (2.3)

where K̃ = diag(K) is a diagonal matrix of dimension ς2 = (n1 +1)(n2 +1)× (n1 +1)(n2 +1). Moreover, for every ς2-matrix H we get

ΩT (x,y)HΩ(x,y) = ĤT Ω(x,y), (2.4)

where Ĥ is an ς1-vector with elements equal to the diagonal entries of matrix H.

2.1. Two dimensional MBPFs expansions

A function f (x,y) defined over L2(D) can be expanded by the 2D-MBPFs as [8, 9]

f ≃ fε =
n1

∑
a1=0

n2

∑
a2=0

fa1,a2
ωa1,a2

= FT Ω,

where F is an ς1-vector given by

F = [ f0,0, ..., f0,n2
, ..., fn1,0, ..., fn1,n2

]T ,

and Ω is defined in (2.2). The modified block-pulse coefficients, fa1,a2
, are obtained as

fa1,a2
=

1

ℓ(Ia1,ε )× ℓ(Ia2,ε )

∫

Ia1 ,ε

∫

Ia2 ,ε

f (x,y)dydx,

where ℓ(Ia1,ε ) and ℓ(Ia2,ε ) are length of intervals Ia1,ε and Ia2,ε respectively. Similarly for every function f (x,y,s, t), we can write

f (x,y,s, t)≃ Ω(x,y)T Fε Ω(s, t),

where Fε is 2D-MBPF coefficient matrix of dimension ς2.

2.2. Ordinary perational matrix of 2D-MBPFs

By the double integration of the vector Ω defined in (2.2) we have [8, 10, 11]

∫ y

0

∫ x

0
Ω(s, t)dsdt ≃ Pε Ω(x,y) = [Oε,(n1+1)×(n1+1)⊗Oε,(n2+1)×(n2+1)]Ω(x,y), (2.5)

where (x,y) ∈ D and Pε is ς2-ordinary operational matrix of integration for 2D-MBPFs so Oε is defined in [5]. In (2.5), ⊗ denotes the

Kronecker product. By disjointness and orthogonality properties of 2D-MBPFs we have

∫ 1

0

∫ 1

0
Ω(s, t)ΩT (s, t)dsdt =















(k1 − ε)(k2 − ε) 0 0 ... 0

0 k1k2 0 ... 0

...
...

. . .
. . .

...

0 0 ... k1k2 0

0 0 ... 0 ε















= Rε , (2.6)

where Rε is the ς2-known matrix.
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2.3. Stochastic operational matrix of 2D-MBPFs

Similarly we obtain

∫ y

0

∫ x

0
Ω(s, t)dB(s)dB(t)≃ Pε,sΩ(x,y) = [Oε,s,(n1+1)×(n1+1)⊗Oε,s,(n2+1)×(n2+1)]Ω(x,y), (2.7)

where Pε,s is the ς2-stochastic operational matrix of integration for 2D-MBPFs where Oε,s is defined in [3]. In the next sections, it is assumed

that T1 = T2 = 1.

3. Method of solution

Now, we solve (1.1) using 2D-MBPFs. By applying 2D-MBPFs approximates for functions

f (x,y) , V1(x,y,s, t) , V2(x,y,s, t) , V3(x,y,s, t) , g(x,y),

we have

f = FT
ε Ω, (3.1)

V1 = ΩT (x,y)Γε Ω(s, t), (3.2)

V2 = ΩT (x,y)∆ε Ω(s, t), (3.3)

V3 = ΩT (x,y)Θε Ω(s, t), (3.4)

and

g = GT
ε Ω, (3.5)

where the vectors Fε and Gε and matrices Γε , ∆ε and Θε are the MBPFs coefficients of f , g, V1, V2 and V3 respectively. In (3.1), Fε is

ς1-known vector, also in (3.2), (3.3) and (3.4), Γε , ∆ε and Θε are ς2-known matrices but in (3.5), Gε is ς1-unknown vector. In (1.1), To

approximate Fredholm integral case from (3.2), (3.5) and using operational matrix Rε from (2.6) we get

∫ 1

0

∫ 1

0
V1gdsdt =

∫ 1

0

∫ 1

0
ΩT (x,y)Γε Ω(s, t)ΩT (s, t)Gε dsdt

= ΩT (x,y)Γε

(

∫ 1

0

∫ 1

0
Ω(s, t)ΩT (s, t)dsdt

)

Gε

= ΩT Γε Rε Gε = (Γε Rε Gε )
T Ω =UT

ε Ω,

where Uε is an ς1-vector obtained from Γε Rε Gε . Therefore for the approximation of the first 2D-integral we have

∫ 1

0

∫ 1

0
V1gdsdt ≃UT

ε Ω. (3.6)

In addition from (2.3), (3.3) and (3.5) we get [12]

∫ y

0

∫ x

0
V2gdsdt ≃

∫ y

0

∫ x

0
ΩT (x,y)∆ε Ω(s, t)ΩT (s, t)Gε dsdt = ΩT (x,y)∆ε

(

∫ y

0

∫ x

0
Ω(s, t)ΩT (s, t)Gε dsdt

)

= ΩT ∆ε

(

∫ y

0

∫ x

0
G̃ε Ω(s, t)dsdt

)

= ΩT ∆ε G̃ε

(

∫ y

0

∫ x

0
Ω(s, t)dsdt

)

,

where from (2.5) we arrive
∫ y

0

∫ x

0
V2gdsdt ≃ ΩT ∆ε G̃ε Pε Ω,

in which ∆ε G̃ε Pε is an ς2-matrix. From (2.4) we can write

∫ y

0

∫ x

0
V2gdsdt ≃ Ŵ T

ε Ω, (3.7)

where Ŵε is an ς1-vector with components equal to the diagonal entries of matrix ∆ε G̃ε Pε . Similarly from (2.3), (3.4) and (3.5) we conclude

∫ y

0

∫ x

0
V3gdB(s)dB(t) ≃

∫ y

0

∫ x

0
ΩT (x,y)Θε Ω(s, t)ΩT (s, t)Gε dB(s)dB(t) = ΩT (x,y)Θε

(

∫ y

0

∫ x

0
Ω(s, t)ΩT (s, t)Gε dB(s)dB(t)

)

= ΩT Θε

(

∫ y

0

∫ x

0
G̃ε Ω(s, t)dB(s)dB(t)

)

= ΩT Θε G̃ε

(

∫ y

0

∫ x

0
Ω(s, t)dB(s)dB(t)

)

,

by using (2.7) we can arrive
∫ y

0

∫ x

0
V3gdB(s)dB(t)≃ ΩT Θε G̃ε Pε,sΩ,



Journal of Mathematical Sciences and Modelling 41

in which Θε G̃ε Pε,s is an ς2-matrix. From (2.4) we can write

∫ y

0

∫ x

0
V3gdB(s)dB(t)≃ Ŵ T

ε,sΩ, (3.8)

where Ŵε,s is an ς1-vector with components equal to the diagonal entries of matrix Θε G̃ε Pε,s. Applying (3.1), (3.5), (3.6), (3.7) and (3.8) in

(1.1) give

GT
ε Ω ≃ FT

ε Ω+ÛT
ε Ω+Ŵ T

ε Ω+Ŵ T
ε,sΩ. (3.9)

By replacing ≃ with =, in (3.9) we can get

Gε −Ûε −Ŵε −Ŵε,s = Fε , (3.10)

where after solving System (3.10), we can find Gε and get

g = GT
ε Ω.

Then

g ≃ gε =
1

µ

µ−1

∑
i=0

gεi
,

where εi =
ik

µ
, i = 0(1)(µ −1) is the estimation of the solution of (1.1) and µ is a positive integer.

4. Error analysis

In this section, we show that the convergence order of the proposed method is
1

µn
by introducing several theorems. For convenience, we put

n1 = n2 = n, so k1 = k2 =
1

n
.

Theorem 4.1. Suppose that h is a differentiable function from S ⊂ R2 into R, and for every t ∈ S

‖h′‖2 ≤ ξ ,

where ξ ∈ R. Then

|h(d)−h(c)| ≤ ξ |d − c|,
for all c,d ∈ S.

Proof. See [10].

Theorem 4.2. Assume that

Fn,ε =
n

∑
a=0

n

∑
b=0

n

∑
c=0

n

∑
d=0

Fa,b,c,dωa,b,c,d ,

and

Fa,b,c,d =
1

ℓ(Ia,ε )ℓ(Ib,ε )ℓ(Ic,ε )ℓ(Id,ε )
×

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
Fωa,b,c,ddtdsdydx,

where a,b,c,d = 0,1, ...,n. Then the mean square error between F and Fn,ε on (x,y,s, t) ∈ Da,b,c,d reaches its minimum, moreover we have

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
F2dtdsdydx =

∞

∑
a=0

∞

∑
b=0

∞

∑
c=0

∞

∑
d=0

F2
a,b,c,d‖ωa,b,c,d‖2

2.

Proof. By using [11], we can easily prove this theorem.

Theorem 4.3. Assume f is continuous and differentiable over district [−k,1+ k]× [−k,1+ k] and fn,ε ; εi =
ik

µ
for i = 0,1, ...,µ −1 are

correspondingly 2D−MBPFs(ε0) = 2D−BPFs, 2D−MBPFs(ε1), ..., 2D−MBPFs(εµ−1) expansions of f based on (n+1)2 2D-MBPFs

over district [0,1)× [0,1) and f̄n,µ (x,y) =
1

µ
∑

µ−1
i=0 fn,εi

(x,y), then for sufficient large n we have

‖eε‖2 ≤
√

2N

µn
,

therefore

‖eε‖2 = O(
1

µn
),

where N is bounded of ‖D f‖2.

Proof. See [13].
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Theorem 4.4. If F be an enough smooth function on S = [0,1)4 with ‖F‖2 ≤ M. Let

F̂n = F̂n,ε0
=

n

∑
a=1

n

∑
b=1

n

∑
c=1

n

∑
d=1

Fa,b,c,dωa,b,c,d ,

be 4D−MBPFs(ε0) = 4D−BPFs expansion of F and

e = F − F̂n,

then

‖eε‖2 = O(
1

n
).

Proof. We have

ea,b,c,d = F −Fa,b,c,dφa,b,c,d = F −Fa,b,c,d ,

where φ is the set of 4D-BPFs of dimension n1n2n3n4 and

Sa,b,c,d = {a−1

n
≤ x <

a

n
,

b−1

n
≤ y <

b

n
,

c−1

n
≤ s <

c

n
,

d −1

n
≤ t <

d

n
},

and (x,y,s, t) ∈ Sa,b,c,d . By using the mean value theorem we get

‖ea,b,c,d‖2
2 =

∫ a�n

(a−1)�n

∫ b�n

(b−1)�n

∫ c�n

(c−1)�n

∫ d�n

(d−1)�n

(

F −Fa,b,c,d

)2
dtdsdydx

=
1

n4

(

F(γ1,γ2,γ3,γ4)−Fa,b,c,d

)2
; (γ1,γ2,γ3,γ4) ∈ Sa,b,c,d . (4.1)

We know

Fa,b,c,d =
1

k4

∫ ak

(a−1)k

∫ bk

(b−1)k

∫ ck

(c−1)k

∫ dk

(d−1)k
Fa,b,c,ddtdsdydx,

therefore by using mean value theorem we have

Fa,b,c,d = n4 × 1

n4
×F(θ1,θ2,θ3,θ4); (θ1,θ2,θ3,θ4) ∈ Sa,b,c,d . (4.2)

From Theorem 4.1 and involving (4.2) into (4.1) we obtain

‖ea,b,c,d‖2
2 =

1

n4
(V (γ1,γ2,γ3,γ4)−V (θ1,θ2,θ3,θ4))

2 ≤ 1

n4
×4k2 ×M2 =

4M2

n6
. (4.3)

So

‖e‖2
2 =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
e2dtdsdydx

=
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

n

∑
a=1

n

∑
b=1

n

∑
c=1

n

∑
d=1

e2
abcddtdsdydx+2

n

∑
a<a′

n

∑
b<b′

n

∑
c<c′

n

∑
d<d′

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
eabcd × ea′b′c′d′dtdsdydx.

Since for a < a′,b < b′,c < c′ and d < d′ we have

Sa,b,c,d ∩Sa′,b′,c′,d′ =∅,

where (4.3) give

‖e‖2
2 =

n

∑
a=1

n

∑
b=1

n

∑
c=1

n

∑
d=1

‖eabcd‖2
2 ≤ n4 × 4M2

n6
=

1

n2
×4M2,

namely

‖e‖2 = O(
1

n
).

Theorem 4.5. Assume F(x,y,s, t) is continuous and differentiable over district [−k,1+k]× [−k,1+k]× [−k,1+k]× [−k,1+k], moreover

suppose Fn,εi
(x,y,s, t); εi =

ik

µ
for i = 0,1, ...,µ − 1 are correspondingly 4D−MBPFs(ε0) = 4D−BPFs, 4D−MBPFs(ε1), ..., 4D−

MBPFs(εµ−1) expansions of F based on (n+1)4 4D-MBPFs over district [0,1)4 and

F̄n,µ =
1

µ

µ−1

∑
i=0

Fn,εi
,

then for sufficient large values n

‖F − F̄n,µ‖∞ .
1

µ
max

εi

‖F − F̄n,εi
‖∞.
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Proof. We consider partial differentials
∂F

∂x
,

∂F

∂y
,

∂F

∂ s
,

∂F

∂ t
,

in D4 = [
i−1

n
,

i+1

n
)4 which are approximately equal to constants A1, A2, A3 and A4 respectively, where n is so large. Also we use function,

z = A1x+A2y+A3s+A4t +B instead of F in D4. Now in the district [
i

n
,

i

n
+ ε1)

4 we have

F̄n,µ (x,y,s, t) =
1

µ

µ−1

∑
j=1

1

16
× [(A1 +A2 +A3 +A4)ρ1 +B+(A1 +A2 +A3)ρ1 +A4ρ2 +B+(A1 +A2 +A4)ρ1 +A3ρ2 +B+(A1 +A2)ρ1

+ (A3 +A4)ρ2 +B+(A1 +A3 +A4)ρ1 +A2ρ2 +B+(A1 +A3)ρ1 +(A2 +A4)ρ2 +B+(A1 +A4)ρ1 +(A2 +A3)ρ2 +B+A1ρ1

+ (A2 +A3 +A4)ρ2 +B+A1ρ2 +(A2 +A3 +A4)ρ1 +B+(A1 +A4)ρ2 +(A2 +A3)ρ1 +B+(A1 +A3)ρ2 +(A2 +A4)ρ1 +B

+ (A1 +A3 +A4)ρ2 +A2ρ1 +B+(A1 +A2)ρ2 +(A3 +A4)ρ1 +B+(A1 +A2 +A4)ρ2 +A3ρ1 +B

+ (A1 +A2 +A3)ρ2 +A4ρ1 +B+(A1 +A2 +A3 +A4)ρ2 +B]

= (A1 +A2 +A3 +A4)(

i

n
+

i+1

n
2

)+B− (A1 +A2 +A3 +A4)k(µ −1)

2µ
, (4.4)

where

ρ1 = (
i

n
− jk

µ
),

and

ρ2 = (
i+1

n
− jk

µ
).

Since
i+1

n
=

i

n
+ k, we can reformulete (4.4) as

F̄n,µ = (A1 +A2 +A3 +A4)
i

n
+B+

(A1 +A2 +A3 +A4)k

2µ
.

Also we have

max

x,y,s,t∈[
i

n
,
i

n
+ε j)

|F − F̄n,µ | ≃ max

x,y,s,t∈[
i

n
,
i

n
+ε j)

|A1x+A2y+A3s+A4t +B− F̄n,µ |=
(A1 +A2 +A3 +A4)k

2µ
. (4.5)

Therefore, we get

max
εi

x,y,s, t ∈ D

‖F −Fn,εi
‖∞ ≥ max

εi

x,y,s, t ∈ D′

|F −Fn,εi
| ≃ |(A1 +A2 +A3 +A4)ϖ1 +B− 1

16
[(A1 +A2 +A3 +A4)ϖ1 +B

+(A1 +A2 +A3)ϖ1 +A4ϖ2 +B+(A1 +A2 +A4)ϖ1 +A3ϖ2 +B+(A1 +A2)ϖ1 +(A3 +A4)ϖ2 +B+(A1 ++A3 +A4)ϖ1 +A2ϖ2 +B

+(A1 +A3)ϖ1 +(A2 +A4)ϖ2 +B+(A1 +A4)ϖ1 +(A2 +A3)ϖ2 +B+A1ϖ1 +(A2 +A3 +A4)ϖ2 +B+A1ϖ2 +(A2 +A3 +A4)ϖ1 +B

+(A1 +A4)ϖ2 +(A2 +A3)ϖ1 +B+(A1 +A3)ϖ2 +(A2 +A4)ϖ1 +B+(A1 +A3 +A4)ϖ2 +A2ϖ1 +B+(A1 +A2)ϖ2 +(A3 +A4)ϖ1 +B

+(A1 +A2 +A4)ϖ2 +A3ϖ1 +B+(A1 +A2 +A3)ϖ2 +A4ϖ1 +B+(A1 +A2 +A3 +A4)ϖ2 +B]|

=
(A1 +A2 +A3 +A4)

2
k, (4.6)

where ϖ1 =
i

n
,

i

n
+ k = ϖ2, D = [

i−1

n
,

i+1

n
) and D′ = [

i

n
,

i

n
+ k). From (4.5) and (4.6) we get

‖F − F̄n,µ‖∞ .
1

µ
max

εi

‖F − F̄n,εi
‖∞.

Remark 4.6. Let

en,ε = F − F̄n,µ ,

and

en = F − F̄n,

then from Theorem 4.2, Theorem 4.4 and Theorem 4.5 we have

‖en,ε‖2 6
2M

µn
,

also we can write

lim
n→+∞

Fn,εi
= F.
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Theorem 4.7. If g be the exact solution of (1.1) and ĝn,µ (x,y) be the 2D-MBPFs approximate solution of it. Also

(1) ‖g‖2 ≤ α , (s, t) ∈ [0,1)2,

(2) ‖Vi‖2 ≤ βi , i = 1,2,3 , (x,y,s, t) ∈ [0,1)4,

(3) W1(x,y) = sup
x∈[0,1)

x× sup
y∈[0,1)

y,

(4) W2(x,y) = sup
x∈[0,1)

|B(x)|× sup
y∈[0,1)

|B(y)|,

(5)

[

β1 +β2 +
2β1 +2β2

µn
+

(

β3 +
2β3

µn

)

×W2(x,y)

]

< 1,

then

‖g− ĝn‖2 = O(
1

µn
).

Proof. From (1.1), we get

g− ĝn,µ = f − f̂n,µ +
∫ 1

0

∫ 1

0

(

V1g−V̂1,n,µ ĝn,µ
)

dsdt +
∫ y

0

∫ x

0

(

V2g−V̂2,n,µ ĝn,µ
)

dsdt

+
∫ y

0

∫ x

0

(

V3(x,y,s, t)g(s, t)−V̂3,n,µ ĝn,µ

)

dB(s)dB(t),

so the mean value theorem give

‖g− ĝn,µ‖2 ≤ ‖ f − f̂n,µ‖2 +‖V1g−V̂1,n,µ ĝn,µ‖2 + xy‖V2g−V̂2,n,µ ĝn,µ‖2 +B(x)B(y)‖V3g−V̂3,n,µ ĝn,µ‖2. (4.7)

By using Remark 4.6 and two first hypothesises, we obtain

‖V1g−V̂1,n,µ ĝn,µ‖2 ≤ ‖V1‖2‖g− ĝn,µ‖2 +‖V1 −V̂1,n,µ‖2

(

‖g− ĝn,µ‖2 +‖g‖2

)

≤ β1‖g− ĝn,µ‖2 +
2β1

µn

(

‖g− ĝn,µ‖2 +α
)

=

(

β1 +
2β1

µn

)

‖g− ĝµn‖2 +
2β1

µn
α. (4.8)

Similarly we have

‖V2g−V̂2,n,µ ĝn,µ‖2 =

(

β2 +
2β2

µn

)

‖g− ĝn,µ‖2 +
2β2

µn
α , (4.9)

and

‖V3g−V̂3,n,µ ĝn,µ‖2 =

(

β3 +
2β3

µn

)

‖g− ĝn,µ‖2 +
2β3

µn
α . (4.10)

Substituting (4.8), (4.9) and (4.10) in (4.7) and Theorem 4.3 conclude

‖g− ĝn,µ‖2 ≤
√

2N

µn
+

[(

β1 +
2β1

µn

)

‖g− ĝn,µ‖2 +
2β1

µn
α

]

+ xy

[(

β2 +
2β2

µn

)

‖g− ĝn,µ‖2 +
2β2

µn
α

]

+B(x)B(y)

[(

β3 +
2β3

µn

)

‖g− ĝn,µ‖2 +
2β3

µn
α

]

.

By taking sup and Hypothesises 3 and 4, we have

‖g− ĝn,µ‖2 ≤
√

2N

µn
+

[

(

β1 +
2β1

µn

)

sup
s≤x , t≤y

‖g− ĝn,µ‖2 +
2β1

µn
α

]

+W1(x,y)

[

(

β2 +
2β2

µn

)

sup
s≤x , t≤y

‖g− ĝn,µ‖2 +
2β2

µn
α

]

+W2(x,y)

[

(

β3 +
2β3

µn

)

sup
s≤x , t≤y

‖g− ĝn,µ‖+
2β3

µn
α

]

,

so

‖g− ĝn,µ‖2 ≤

√
2N +2β1α +2β2α

µn
+

2β3α

µn
×W2(x,y)

1−
[

β1 +β2 +
2β1 +2β2

µn
+

(

β3 +
2β3

µn

)

×W2(x,y)

] ,

and from the boundedness of Brownian motion we get

‖g− ĝn,µ‖2 = O(
1

µn
).
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n µ ḡ ē (L,U)

2 1 (BPFs) 0.488705 0.188705 (0.487912,0.489498)
3 (MBPFs) 0.397704 0.097704 (0.390937,0.404471)

3 1 (BPFs) 0.327094 0.027093 (0.326647,0.327540)
3 (MBPFs) 0.316383 0.016382 (0.304258,0.328508)

4 1 (BPFs) 0.246046 0.053945 (0.245386,0.246705)
3 (MBPFs) 0.582630 0.034799 (0.222132,0.343128)

5 1 (BPFs) 0.400235 0.100235 (0.399732,0.400738)
3 (MBPFs) 0.360730 0.060730 (0.356168,0.365292)

Table 1: Results in (0.1,0.2)

n µ ḡ ē (L,U)

2 1 (BPFs) 0.996151 0.296151 (0.987828,1.004470)
3 (MBPFs) 0.906776 0.206776 (0.870497,0.943055)

3 1 (BPFs) 0.997234 0.297234 (0.976630,1.017840)
3 (MBPFs) 0.880689 0.180689 (0.833557,0.927822)

4 1 (BPFs) 0.792689 0.092689 (0.788890,0.796488)
3 (MBPFs) 0.751917 0.051917 (0.733360,0.770475)

5 1 (BPFs) 0.799899 0.099899 (0.799426,0.800373)
3 (MBPFs) 0.782178 0.082178 (0.776386,0.787971)

Table 2: Results in (0,0.7)

5. Numerical example

We consider a numerical example to illustrate the efficiency of the MBPFs method. Consider the 2D-linear stochastic Volterra-Fredholm

integral equation

g(x,y) = f (x,y)+
∫ 1

0

∫ 1

0
(xyst)g(s, t)dsdt +

∫ y

0

∫ x

0
(xyst)g(s, t)dsdt +

∫ y

0

∫ x

0
(xyst)g(s, t)dB(s)dB(t),

where

f (x,y) = x+ y− xy

3
− x3y3(x+ y)

6
− (x3y2 + x2y3)B(x)B(y)+B(x)(x3y+2x2y)

∫ y

0
B(t)dt +B(y)(y3x+2y2x)

∫ x

0
B(s)ds,

with the exact solution

g(x,y) = x+ y.

The solution mean (ḡ(x,y)), error mean (ē(x,y)) and %95 confidence interval (L,U) at arbitrary points (0.1,0.2) and (0,0.7) for some values

of n and µ are shown in Table 1 and Table 2. In this tables by the comparison between the computed results by the presented method and the

BPFs method we will see that in the MBPFs method we achieve the good accuracy by increasing µ . You can see three-dimensional graphs of

this example in Fig. 5.1 and Fig. 5.2.

6. Conclusion

In this paper, we have successfully developed the 2D-MBPFs numerical method for approximate a solution for 2D-linear stochastic

Volterra-Fredholm integral equations. The numerical results represent that ē in new method is lesser from ē in BPF method.

Figure 5.1: (n = 3)
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Figure 5.2: (n = 5)
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