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Abstract 

Visual localization of a robot is to determine the location using visual input from a camera. We present in this 
article a new visual localization algorithm to find the robot location with respect a visual route map stored as a 
video sequence.  The sequence of the current and past images is matched to the map, i.e. the reference image 
sequence, to produce the best match of the current image. The image sequence matching is achieved by measuring 
the similarity between the two image sequences using the dynamic time warping (DTW) algorithm. The DTW 
algorithm employs Dynamic Programming (DP) to calculate the distance (the cost function) between the two 
image sequences. Consequently, the output of the alignment process is an optimal match of each image in the 
current image sequence to an image in the reference one. Our proposed DTW matching algorithm is suitable to 
be used with a wide variety of engineered features, they are SIFT, HOG, LDP in particular. The proposed DTW 
algorithm is compared to other recognition algorithms like Support Vector Machine (SVM) and Binary- 
appearance Loop-closure (ABLE) algorithm. The datasets used in the experiments are challenging and 
benchmarks, they are commonly used in the literature of the visual localization. These datasets are the” Garden 
point”, “St. Lucia”, and “Nordland”. The experimental observations have proven that the proposed technique 
can significantly improve the performance of all the used descriptors like HOG, LDB, and SIFT. The performance 
of these features is compared to the case of using the proposed DTW instead of the classical nearest neighbor. In 
addition, it was able to the SVM and ABLE localization algorithm. 

Keywords: Visual localization, Image sequence matching, Dynamic programming. 

1. Introduction 

The visual localization techniques belong to the content-based image retrieval algorithms. It 
can be used for visual localization, also called Place recognition, by using the available 
reference sequence (experience(s) of the robot) to determine the appropriate response for the 
current observation. In addition, the significant improvements in the visual localization topic, 
leads to increase the attention of the robotics community [1-4]. Fig. 1 depicts the main 
components of the visual localization process. The main two components are the feature 
extraction and the localization algorithms.  We propose in this work a localization algorithm 
that is based on DP, and test it with different feature extraction methods. 
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Fig. 1. Schematic diagram of the visual localization (place recognition) process showing the 
different components and links between them. 

There are several works in the literature on visual localization and place recognition. They 
mainly focus on matching two or more image sequences for the purpose of localizing the object 
in the environment. The work called FabMap that is presented in [5], SeqSLAM presented [1], 
the Flow networks based algorithm presented in [6], and ABLE [7], [8] are example of the 
pioneering works in the topic of visual localization. 

Several attempts on localization with respect to visual map that is represented using sequences 
of images are reported in the literature. These attempts include visual localization in crowded 
environment [9], [10], experience based navigation for long-term localization [11], [12], and 
summarizing the map of experiences for long-term localization [13]. Other methods like 
RTAB-Map [14], [15] focus on memory management to satisfy the real time conditions. 

The contribution of this paper is mainly a novel visual localization algorithm that uses image 
sequence alignment for localizing mobile robots. In this work, the sequence matching and 
alignment is done using the Dynamic Time Warping (DTW). In addition, a set of common 
handcrafted features used to compare the proposed algorithm with two of the-state-of-the-art 
algorithms. These are the ABLE and SVM ones. The validation process for the developed 
approach and the experimental study were performed using some common benchmark datasets. 

2. Review of Previous Works 

The RTAB-Map presented in [14], [15] works fine with the loop closure problem solving issues 
like when the map is large enough to slow the system down. RTAB-Map track SURF features 
using discrete Kalman filter without dealing with processes of matching and retrieving multiple 
images which are the core of our proposals. Our main focus, in contrast, is on localization in 
environments that show considerable changes in its representation. 

FabMap localization algorithm system [16] is topological pure image retrieval that use 
probabilistic model to update the vocabulary of the image retrieval. Image retrieval techniques 
are borrowed from computer vision community [17] in which a set of selected features are 
stored in a dictionary of vocabularies, while the reference images are sorted using inverted 
index techniques. In particular, the inverted index is updated to accommodate new positively 
observed features. FabMap is a data driven approach to calculate the observation likelihood. It 
uses a bag-of-word of SIFT features model to describe the distinctiveness of each feature during 
the learning stage. There still is a scalability problem with bag-of-words model since it needs 
large number of vocabularies for larger environments. 
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Visual localization in crowded environment from multiple experiences was proposed in [9], 
[10]. The work addresses the case where the vehicle frequently visits the same environment 
updating it’s a priori knowledge after each visit. A bag-of-words model along with a weighted 
inverted index are employed as a map of the considered environment. The aim was to learn 
useful visual features and visually stable features that are static in the environment by assigning 
a weight to each feature. In this work, the visual map is suggested to store several reference 
image sequences since cyclic appearance changes require more than one representation model. 

Long-term localization is achieved based on visual experience as presented in [12]. The visual 
experiences here are stored as a series of visual odometry data attached to a sequence of visual 
images. A new experience is created and stored after each visit to non-recognized place. This 
is noted as failure of all localizer which are associated with the multiple experiences stored in 
the map. The experiences are connected to each other via GPS priors or geometric consistency 
among image frames. However, they do not systematically explore the connectivity between 
experiences. Hence, a few nodes are connected in each experience depends on whether an 
accurate GPS data is available or not for example. 

Multiple experiences case is also considered in [11]. Here, a probabilistic cost map is created 
in a self-supervised manner using a Gaussian process. Multiple representations of the 
environment in the visual map are used here to describe the travers-ability of the environment 
rather than to localize the robot. The Gaussian process model is successfully used to plan a path 
for the robot through traversable areas.  A summary map is proposed in [18] as a solution for 
the mapping from multiple sequences problem, in which scoring functions are used, similarly 
to [9], [10], to update the summary map after every arrival of new experience. The scoring 
function is used to evaluate the usefulness of the landmarks and trajectory segments. Those 
have high score are retained in the summary map while others are forgotten. However, these 
methods represent fine-grained information about the environment, but do not consider any 
appearance aspects since it does not store whole image information, that what is done in our 
proposal.  

FabMap considers the localization problem as a visual loop closure problem. On the other hand, 
the SeqSLAM algorithm [1] using and searching all possible visual maps matching to solve the 
localization problem. Overall, the variations of view and camera poses can badly affect the 
performance of such a technique. A recent impressive visual localization using sequence 
matching and consider the problem as an alignment of two sequences of images were presented 
in [6]. This approach works on minimizing the cost of the high computational complexity flow 
network. In more details, it uses the ABLE algorithm [7], to represent the sequences of images 
as binary code, then, the effect of changes in appearance while taking the images was reduced 
using the Illumination invariance color. 

Recently, SVM was able to archive a good performance as a classifier in many filed such as 
object classification, image matching, etc. In [19], some vision-based techniques for visual 
place recognition were introduced. First, an image salience generation was adapted to improve 
the single image-based matching. Then, the Support Vector Machines (SVMs) was used to filter 
the outliers from both the reference and test datasets. In [20] the Kernel Principal Component 
Analysis (KPCA) was used to extract the image features. In more details, the SIFT features 
from a given image is extracted, then, the minimum Euclidean is used to find the distance 
between the extracted features and the visual codebook that was constructed offline by K-
means. In the approach of [20], SVM was used for data analysis as a classifier. In [21], both 
HOG and LBP were used for visual localization. 
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3. Dynamic Programming and Dynamic Time Warping  

DP aims at solving the problem in hand by combining the individual solutions to smaller 
problems that are sub problems of the original problem [22]. DP efficiently solves such 
subproblems when these subproblems overlap. In other words, when these subproblems are 
sharing another lower level subproblems like subsubproblems, and so on. A DP algorithm 
provide a solution to each of these subsubproblem, which is stored in a table matrix to avoid 
solving the same individual problem again. 

The DTW algorithm has applications in several areas. Its applications are increasing since it 
was first introduced and developed in the 60s and 70s of the last century till today. Its 
application was initially explored to solve the speech recognition problem [23], [24], but it 
currently has applications in topics like: online and offline handwriting and signature 
verification [25], [26], sign language recognition [27], mining and searching databases of time 
series [28], [29], image understanding and computer graphics [30], surveillance [31], matching 
protein sequences in bioinformatics [32], and music applications [33]. 

DTW algorithm has become much popular his efficient solutions to the time series problems. 
It measures the similarity between two sequences by minimizing a cost function in order to 
detect their shape similarity over different times, i.e. they have different phases. 

Let us have two time sequences 𝑋 = 𝑥$, 𝑥&, … , 𝑥(	 , where 𝑛 ∈ 𝑁 and 𝑌 = 𝑦$, 𝑦&, … , 𝑦/	 , 
where  𝑚 ∈ 𝑁. Here, 𝑁 is the group of natural numbers. DTW produces an optimal solution 
with a time complexity in the order of 𝑂 𝑀𝑁 .  The data sequences must be sampled evenly at 
a uniform basis, so sometimes a resampling stage in the feature space is needed. 

To compare these two different sequences 𝑋 and 𝑌 using DTW, we need to use a local distance 
measure between two values 𝑥3, 𝑦4 each from one sequence. This distance can be defined as a 
function 𝐷(𝑥3, 𝑦4) ∈ 𝑅, where 𝑅 is the real numbers. The value of the distance function between 
two elements from the sequences 𝑋 and 𝑌 is smaller when they are more similar, and is larger 
when they are more different. Since DTW is a Dynamic Programming based algorithm, it is 
more convenient to call this distance function as the “cost function”. Consequently, the process 
of finding the optimal alignment between the two sequences is becoming the arranging of the 
two sequences by optimizing the cost function. 

3.1. Sequence Alignment using DTW 

In this subsection, the mechanism of aligning the main two image sequences is explained. One 
of the sequences is 𝑌 = 𝑦4  that is the reference one, here 𝑗 = 1,… ,𝑚	 , and the second 
sequence is the test that denoted by 𝑋 = 𝑥3   where 𝑖 = 1,… , 𝑛	 , this process uses the DTW, 
and as a first step, we build the cost matrix 𝐶. In general, as shown in Equation (2), the elements 
of the distance matrix are accumulated to obtain the cost matrix. Note that  n represent the 
lengths of test sequence and  𝑚 the lengths of the reference sequence. 

In DTW, matrix 𝐶 refers to the cumulative distance, i.e., 𝐷 i, j + 𝑀𝑐𝑑, where 𝐷 i, j  is the 
distance between currently matching two images. The 𝑀𝑐𝑑 i, j  is the smaller distance 𝐷 i, j 	 
among the images in surrounding neighborhood. It can formulated as in Equation (1): 
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                                            𝑀𝑐𝑑 i, j = min
𝐷 i − 1, j
𝐷 i, j − 1

𝐷 i − 1, j − 1
,                                      (1) 

Then, the cost matrix 𝐶 is filled by dynamic programming by implying the following relation: 

                                               𝐶	 i, j = 	𝐷 i, j + 𝑀𝑐𝑑 i, j 	                                                     (2) 

After filling the matrix 𝐶, the optimal path 𝑃 = 𝑝G , where 𝑘 = 1,… , 𝐿	 	is found by DTW. 
Hence, whenever images 𝑥 𝑖G  and 𝑦 𝑗G  are found to be a part of the optimal path 𝑃, they are 
represented by 𝑝G = 𝑖G, 𝑗G . 

It is worth mentioning that by back-tracing the matrix 𝐶 and choosing the lowest cumulative 
distance of the previous elements we define what is called the optimal path. Hence, by 
minimizing the following function, we can obtain the optimal path, i.e., the path through the 
elements of the matrix 𝐶 . These matrix elements have the minimum accumulated cost values 
𝐶	 i, j . 

Q P = 𝐶 𝑖L, 𝑗LM
LN$                                          (3) 

For more details about DTW, the reader is referred to [24], [34] and [35]. Fortunately, even 
after integrating the DTW, the complexity of our approach is reasonable as compared with other 
existing approaches and as compared with the improvement that has been archived by 
integrating the DTW. In other words, complexity equals 𝑂 𝑚×𝑢 , whereas mentioned before 
m is the lengths of the reference sequence and u is the number of images in the optimal path. 
As a result, since 𝑢 is much less than 𝑛, DTW decreases the number of required comparisons. 
However, the complexity of Flow network algorithm, the well common another matching 
algorithm, is estimated as 𝑂(𝑛×𝑚).    In more details, the redaction in the complexity came 
from the sequential nature that applied by DTW, i.e., when a test image arrives let say 𝑥 𝑖 , it 
will be compared with the sequence of reference images which has the same or lager index 
𝑗, where	j >= i . It is worth mentioning that in this work the vehicle can move forward only, 

and allowing the vehicle to other directions can be done as future work. The diagram of the 
proposed sequence method is shown in Fig. 2.  
 

 
(a)         (b) 

Fig. 2. This figure shows calculating the cost matrix element C (i, j) for matching mage xi with 
reference image yj in (a), while the corresponding optimal matching path is shown in (b). 

 



A. H. Abdulhafiz   

 6 

4. Sequence Matching Method for Visual Localization  

In general, image matching/alignment has been used frequently for visual place recognition, 
however, its efficiency and execution time can be effected by the size of the used visual dataset 
and it is impractical for processing large visual datasets. In this paper, we have solved this 
problem by integrating the DTW into the image matching/alignment [24].  

4.1. Image Features Presentation and their Distances  

Three of the most popular handcrafted descriptors are used. These are the local difference 
binary features (LDB), the scale-invariant feature transform (SIFT), and  the histogram of 
gradient (HOG), however, any other descriptor(s) can be integrated into the proposed algorithm. 
The used descriptors is summarized in the following: 

SIFT: This descriptor work on detecting the image's key points which can be considered as the 
most important regions. Then, the appearance of these key points is characterized by a 3-D 
spatial histogram. 

HOG: This descriptor starts by dividing the image into small squared cells, where each cell is 
then represented by a histogram of oriented gradients. Then the block-wise pattern is used to 
normalize the results obtained from the previous step.  

LDB: This descriptor represents each image by a binary string. It firstly extracts the patches 
from the image. After that, the differences in the gradient and intensityare tested used to find 
the binary string. This process is done for a pairs of grid cells for each patch.  

Based on the above, the distance between the feature vectors are given as 

                                𝐷(i, j) 	= 	𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(xi, yj) = 1 − \]^ . \`^
\]^ . \`a

                                              (4) 

Here, the vectors 	𝐴𝑥3 and 𝐴𝑦3  are extracted from images 𝑥3 and 𝑦4. Also, the element 
𝐷 i, j 	represents the distance between matching the test image 𝑥3 and the reference image 𝑦4.  

It is worth mentioning that related to the LDB descriptor, as it produces a binary vector, it has 
been proven that it is preferred to use Hamming distance with LDB. Hence, we have used the 
Hamming distance to represent the distance matrix 𝐷 i, j 	whenever LDB is used in this study, 
Hamming distance is given as 

                                         𝐷(i, j) 	= 	𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥3, 𝑦4) = 𝐴𝑥3⊕𝐴𝑦3                                                    (5) 

Finally, independent of the selected cost function, as soon as the elements of 	𝐷 i, j  are 
calculated, the same steps will be allows used by DTW  for the alignment. 

5. Experimental Study 

Several experiments have been conducted in order to evaluate the performance of the proposed 
algorithm using different data sets. They are namely “St. Lucia” [36], “Nordland" [37], and the 
“Garden point'' dataset. We compare the performance of the proposed algorithm with two of 
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the recent similar works, they are SVM and ABLE in particular. Besides, the LDB, SIFT, and 
HOG handcrafted features are used in these experiments.  

5.1. Datasets and Evaluation 

The “St. Lucia" dataset has been recorded using a webcam that is fixed to a car along a selected 
route across the St. Lucia suburb. The dataset was collected during ten runs. The route was 
visited five times in the early morning and the afternoon to show the difference in appearance. 
The same visits are repeated later after two weeks. 

The Nordland dataset contains four video sequences each of which is recorded using a camera 
fixed to a train during its 10 hours trip during a train journey in a different season. Garden point 
dataset consists of three series of images collected at the Queensland campus. Two of the series 
(Day Left and Day Right) were collected at day, but with slightly different viewpoint, the third 
one (Night Right) collected at night with the same pose of the (Day Right). Each of these series 
consists of 200 images where the labels of images represent the correspondence between the 
series. 

The performance of our proposed DTW algorithm is analyzed and quantified using the 
precision-recall curve (PRC). The curve is obtained after finding the best matches between the 
current and reference sequence, and then calculate the number of true positives, false positives, 
and false negatives. Then, the precision is according to 

                                                     	𝑃 = de
defge

,                                                                          (6) 

and the recall value is given as   

                                                       𝑅 = de
defgh

 .                                                                             (7) 

 In our analysis, a positive match is considered when the distance 𝐷 i, j 	is smaller than a given 
threshold 𝑡. If the distance is larger, we consider the match as a negative match. 

5.2. Experiments and Results Analysis 

In the following subsections we present our experiments outcomes. The three algorithms, i.e. 
DTW, ABLE and the SVM are evaluated using three types of features which are the HOG, 
SIFT, and LDB binary features. In these experiments, we have resized the image frames to a 
single unified dimensions. The size of the grid of HOG feature descriptor is set to 32 x 32, while 
a 128 bins are used for representing SIFT descriptor and a total of 40 SIFT features points are 
extracted. In addition, the OpenCV library was used to implement DTW and HOG, SIFT 
descriptors with python programming language. The source code provided by OpenABLE [1] 
was used to obtain the LDB features. 

5.3. Experiments using “Nordland” Dataset 

We present in this section the experimentation using the “Nordland" dataset, where the 
“Summer” and “Winter” sequences were used in these experiments. Two experiments were 
mainly conducted using this dataset. 
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Fig. 3. Examples of pair images from the three datasets used in our experimentation. They are the “St. 

Lucia”, “Garden point'', and “Nordland" datasets from top down. 

 
Fig. 4. Using the “Nordland" Dataset, the performance of HOG and SIFT using a nearest neighbor 

model is compared to the one using the, HOG-DTW and SIFT-DTW, i.e. using the proposed DTW. 
The precision-recall curve is used to quantify the performance. 

5.3.1. Experiment 1 

The performance of using the DTW algorithm along with HOG and SIFT was explored in this 
experiment using the “Nordland" dataset. The PRC is found using SIFT and HOG in a nearest 
neighbor model. In other words the best similar HOG or SIFT feature vector is used to classify 
the image from the test sequence to its matching frame from the reference sequence. After that 
the curve is found by applying the DTW to the image sequences represented by the HOG and 
the SIFT descriptors. Fig. 4 shows these PRCs. 

As shown in Fig. 4, using the DTW algorithm has shown higher precision values for all recall 
values. The threshold between true or false positive matches is set to 1 frame. 
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Fig. 5. Using the “Nordland" Dataset, the performance of DTW and ABLE algorithms is compared 

using the three types of features, HOG, SIFT, and LDB. The precision-recall curves is used to quantify 
the performance. 

5.3.2. Experiment 2 

The second experiment evaluates the performance of our proposal with respect to the ABLE 
algorithm using this “Nordland" dataset. As depicted in Fig. 5, both the HOG and LDB features 
using the proposed DTW (in green and blue) have outperformed the SIFT features, and also 
outperformed the same features using the ABLE algorithm. However, the HOG features have 
shown higher precision value for medium and higher recall values. 

5.4. Experiments using “St. Lucia" Dataset 

The experiments in this section are carried out using the “St. Lucia" dataset. The reference 
sequence was recorded at 8:45 o’clock morning, while the test sequence was recorded at the 
afternoon from the same day. Since the frames are tagged with its GPS coordinates values, a 15 
meters threshold is selected to discriminate true positive matches from false positive ones. 

Two experiments have been conducted using this dataset. The performance of the DTW 
algorithm is compared to the one of the ABLE algorithm and the SVM one. 

5.4.1. Experiment 1: DTW vs. ABLE  

The precision-recall curves resulted from these comparison with ABLE algorithm are shown in 
Fig. 6. The figure shows that the ABLE algorithm has resulted with  a lower precision, 
regardless the recall values is large or small. This low precision has been observed for the 
different three feature descriptors. Besides, the precision of DTW while using the  SIFT 
descriptor was small as well. The proposed DTW algorithm has shown a meaningfully higher 
precision for both descriptors HOG and LDB.  

5.4.2. Experiment 2: DTW vs. SVM  

Fig. 7 shows the comparison with SVM. The Figure shows lower precision using SVM 
algorithm. While the precision of DTW with SIFT descriptor was low, it achieved a  
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Fig. 6. Using the “St. Lucia" dataset, the performance of DTW and ABLE algorithms is compared 

using the three types of features, HOG, SIFT, and LDB. The precision-recall curves is used to quantify 
the performance. 

 
Fig. 7. Using the “St. Lucia" dataset, the performance of DTW and SVM algorithms is compared using 

the three types of features, HOG, SIFT, and LDB. The precision-recall curves is used to quantify the 
performance. 

significantly higher precision for both HOG and LDB descriptors. It can be concluded that 
DTW with HOG and LDB has the best results. 

5.5. Experiments using “Garden point” Dataset 

The performance of our algorithm is compared to both ABLE and SVM algorithms using the 
“Garden point'' dataset. The performance is quantified in the form of the precision-recall curve 
as depicted in Fig. 8 for comparison with ABLE and in Fig. 9 for comparison with SVM. 

Similar to the case with “St. Lucia" dataset, the proposed DTW algorithm has outperformed 
both the ABLE and SVM algorithms, as depicted in Fig. 8 and  Fig. 9 respectively. In these two 
figures, the precision-recall curve shows higher precision using the proposed DTW algorithm 
for all recall values. It is worth to notice that DTW has resulted with relatively lower  precision 
values using the “Garden point'' dataset than the case of using the “St. Lucia" dataset. This is  
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Fig. 8. Using the “Garden point" dataset, the performance of DTW and ABLE algorithms is compared 
using the three types of features, HOG, SIFT, and LDB. The precision-recall curves is used to quantify 

the performance.
 

 

 
Fig. 9. Using the “Garden point" dataset, the performance of DTW and SVM algorithms is compared 

using the three types of features, HOG, SIFT, and LDB. The precision-recall curves are used to 
quantify the performance. 

 

due to the nature of the “Garden point'' dataset since it is highly textured comparing to the `St. 
Lucia" dataset. In addition to the different in pose and illumination between the test and 
reference sequences. 

6. Conclusion Remarks  

The dynamic programming based DTW algorithm is used here to perform visual localization 
of an autonomous agent. The basic idea of the contribution in this paper is to achieve a visual 
localization by aligning the pre-knowledge of the agent about the environment, i.e. stored in the 
form of a previously observed sequence of images, to the currently observed sequence of 
images. 
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The matching is achieved by dynamic time warping. The evaluation results have shown higher 
precision values for most of the recall values while using the proposed DTW algorithm. This 
proves the superiority of it with respect to the ABLE and SVM algorithms. 

We plan to explore deep learning features with the proposed algorithm. In addition, a future 
work may include the introduction of encoding stage to reduce the complexity of the cost matrix 
calculation. Fisher vectors may help in reducing the dimensionality of the feature vector and 
also may eliminate the calculation of the complete cost matrix. 
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Abstract 

In this paper, numerical solutions of second order initial value problems of Bratu-type equation using predictor-
corrector method is considered. The stability and convergence analysis are investigated. To validate the 
applicability of the scheme, two model problems are considered for numerical experimentation. In a nutshell, the 
present method improves the findings of some existing numerical methods reported in the literature. 

Keywords: Predictor-corrector method, Initial value problem, quasi linearization method, Bratu-Type equation 

 

1. Introduction 

 

In this paper we presented a problem of the form 
 

  

                                 
( )''( ) 0, 0u xu x e x lλ+ = ≤ ≤                                          (1) 

 

subject to the initial conditions 
 
 

(0) , '(0)u uα γ= =                                    (2) 
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where , andλ α γ  are constant numbers  for ( )u x is unknown function. 
In numerical analysis, predictor-corrector methods belong to a class of algorithms designed to 
integrate ordinary differential equations to find an unknown function that satisfies a given 
differential equation. When considering the numerical solution of ordinary differential 
equations (ODEs), a predictor-corrector method typically uses an explicit method for the 
predictor step and an implicit method for the corrector step. Bratu-Type equation is widely 
used in science and engineering to describe complicated physical and chemical models [1]. As 
author [2] stated, recently much attention has been given to develop several iterative methods 
for solving nonlinear equations of Bratu-type of equations. The nonlinear models of real-life 
problems are still difficult to solve analytically. Authors [3], [4] said that there has been 
recently  much attention devoted to the search for better and more efficient numerical  
methods for determining a solution  to nonlinear models. Recently, authors [5-9] solves Bratu 
type equation using different numerical method but still there is a room for accuracy of the 
governing problem under consideration. Therefore, it is important to develop more accurate 
and convergent numerical method for solving second order Bratu-type equation. Thus, the 
purpose of this study is to develop stable, convergent and more accurate numerical method for 
solving initial value problems of Bratu-Type equations. We first linearize the given equation 
using quasi-linearization formula and then used fourth order Adams-Bash forth method as a 
predictor and Adams-Moulton fourth order method as a corrector. The starting values    
1 2 3( , , )u u u  were calculated using Runge-Kutta fourth order method. 

 

2. Formulation of the method 
 

Bratu-type of Eq. (1) can be transformed to a linear differential problem using the quasi 
linearization method and we get the iterative scheme as 
 
                

( ) ( )
1 1( ) ( ) ( ( ) 1)k ku x u x

k k ku x e u x e u xλ λ+ +ʹ́ ʹ+ + = −                                   (3) 
 

with initial condition  
 

                                          1(0)ku β+ =  and 1(0)ku γ+ʹ =                                                            (4) 
 
where 1, 2, 3, ....k =   
Eq. (3) can be used to compute 1( )ku x+  provided ( )ku x is known. In particular, the initial 
approximation 0( )u x  must be specified so that we compute 1( )u x . Once 1( )u x is known, we 
compute 2( )u x  using Eq. (3) and so on.  
Eqs. (3) and (4) can be reduced to the equations 
 
 

  ( ) ( ) ( ) ( ),   0 ,Lu u x a x u x b x x lʹ́≡ + = ≤ ≤                                                (5) 
 

where, ( ) ( )( ) ( ) ( ( ) 1)u x u xa x e and b x e u xλ λ= = −  
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with initial condition  
 
                                         (0)u α=  and (0)u γʹ =                                (6) 
 
Therefore, the given second order IVP of Bratu equation is linearized to Eq. (5) with initial 
condition (6) can be solved by explicit-implicit Adams-Bashforth-Moulton predictor-corrector 
method. Eq. (5) can be reduced to first order system of equations using the 
substitutions ( ) ( ) and ( ) ( )v x u x v x u xʹ ʹ ʹ́= = . Then Eq. (5) and Eq. (6) can be re-written as: 
 

                       

( ) ( ) ( , , ),   (0)
( ) ( ) ( ) ( ) ( , , ), (0)
u x v x F x u v u
v x b x a x u x G x u v v

α

γ

ʹ = = =⎧
⎨ ʹ = − = =⎩      

                              (7) 

 
Dividing the interval [0, ]l  into  N equal subinterval of mesh length h and the mesh point is 
given by 0 , for 1,2,..., 1.nx x nh n N= + = −  For the sake of simplicity let use the notation: 
( )n nu x u= , ( )n nv x v= , etc. Thus, at the nodal point nx  Eq. (7), written as: 

 

                              

( , , ), (0)
( , , ), (0)

n n n n

n n n n

u F x u v u
v G x u v v

α

γ

ʹ = =⎧
⎨ ʹ = =⎩

                                         (8) 

 

where   ( , , ) ( ) ( ) ( )n n n n n nG x u v a x u x b x= − +       

To solve the system of equations given in Eq. (8), we use explicit-implicit multi step methods 
that require information about the solution at nx  to calculate at 1nx +  from the solution at a 
number of previous solutions using Runge-Kutta method as self-starter. 

For the general case let’s consider the first order nonlinear equal spaced initial value problem 
(IVP) of the form  

 

																																																																	 0( ) ( , ( )),    ( )u x f x u x u x αʹ = =                                            (9) 

 

The IVP of the form of Eq. (9) can be solved by using fourth order Runge-Kutta method. The 
general fourth order Runge-Kutta method of Eq. (9) is given by [10]. 

 

                                            

4

1
1

n n n n
n

u u h w k+
=

= + ∑

                                                               

(10) 
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where 
4

,
1

( ,  )n n n n n j j
j

k f x c h u a k
=

= + +∑  

For particular fourth order classical Runge-Kutta method we have: 

 

  

1 1 2 3 4
1 ( 2 2 )
6n nu u h k k k k+ = + + + +                                       (11) 

 

where       1 2 1 3 2

4 3

1 1 1 1( , ),   ( , ),    ( , )
2 2 2 2

( , )

n n n n n n

n n

k f x u k f x h u k k f x h u k

k f x h u k

= = + + = + +

= + +
 

For the fourth order Runge-Kutta method of the system of equations of the form of Eq. (8) 
can also be expressed as: 

 

            

1
1

1

4

4

1

n n n

n n n

n
n

n
n

u w k

v w

u

v k

+
=

+
=

= +⎧
⎪⎪
⎨

+⎪
⎪

=
⎩

∑

∑
                                                   (12) 

 

where  
1 1

1 1

4 4

4 4

( ,  , ) 

( , ,  ) 

n n nj j nj j
j j

nj j nj j
j j

n n n

n n n n n

hF x c h u a k v a

hG x

k m

m mc h u a k v a

= =

= =

= + + +

= + + +

⎧
⎪
⎪
⎨
⎪
⎪⎩

∑ ∑

∑ ∑
 

 Eq. (12) can also be simplified to the fourth order of classical Runge-Kutta method as: 

 

1 1 2 3 4

1 1 2 3 4

1 ( 2 2 )
6
1 ( 2 2 )
6

n n

n n

u u h k k k k

v v h m m m m

+

+

⎧ = + + + +⎪⎪
⎨
⎪ = + + + +
⎪⎩

                                    (13) 

 

where  
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1 1

2 1 1 2 1 1

3 2 2 3 2 2

4

( , ,  )                                    ( , ,  )
1 1 1 1 1 1( , , )        ( , , )
2 2 2 2 2 2
1 1 1 1 1 1( , , )        ( , , )
2 2 2 2 2 2

(

n n n n n n

n n n n n n

n n n n n n

k F x u v m G x u v

k F x h u k v m m G x h u k v m

k F x h u k v m m G x h u k v m

k F x

= =

= + + + = + + +

= + + + = + + +

= 3 3 4 3 3, , )                 ( , , )n n n n n nh u k v m m G x h u k v m+ + + = + + +

 

Using Eq. (13) we can derive the general formula of the linearized Bratu equation of Eq. (8). 
Let calculate the values of ik  and im  for 1, 2, 3i =  and 4  as follow: 

'
1

1

( , , )
( , , ) -
n n n n

n n n n n n

k F x u v u
m G x u v a u b
= =

= = +

 

2 1 1 2 1 1
1 1 1 1 1 1( , , )                 ( , , )
2 2 2 2 2 2

1 1                                                           - ( )
2 2

n n n n n n

n n n n n n

k F x h u k v m m G x h u k v m

u u a u u b

= + + + = + + +

ʹ ʹ́ ʹ= + = + +

 

3 2 2 3 2 2
1 1 1 1 1 1( , , )     ( , , )
2 2 2 2 2 2

1 1 1 1                                 ( )
2 4 2 4

n n n n n n

n n n n n n n

k F x h u k v m m G x h u k v m

u u u a u u u b

= + + + = + + +

ʹ ʹ́ ʹ́ʹ ʹ ʹ́= + + = − + + +

 

4 3 3 4 3 3

(4)

( , , )          ( , , )
1 1 1 1            ( )
2 4 2 4

n n n n n n

n n n n n n n n

k F x h u k v m m G x h u k v m

u u u u a u u u u b

= + + + = + + +

ʹ ʹ́ ʹ́ʹ ʹ ʹ́ ʹ́ʹ= + + + = − + + + +

 

Using Eq. (13) we can derive the general formula of the linearized Bratu equation of Eq. (8). 
Let calculate the values of ik  and im  for 1, 2, 3i =  and 4  as follow: 

'
1

1

( , , )
( , , ) -
n n n n

n n n n n n

k F x u v u
m G x u v a u b
= =

= = +

 

2 1 1 2 1 1
1 1 1 1 1 1( , , )                 ( , , )
2 2 2 2 2 2

1 1                                                           - ( )
2 2

n n n n n n

n n n n n n

k F x h u k v m m G x h u k v m

u u a u u b

= + + + = + + +

ʹ ʹ́ ʹ= + = + +
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3 2 2 3 2 2
1 1 1 1 1 1( , , )     ( , , )
2 2 2 2 2 2

1 1 1 1                                 ( )
2 4 2 4

n n n n n n

n n n n n n n

k F x h u k v m m G x h u k v m

u u u a u u u b

= + + + = + + +

ʹ ʹ́ ʹ́ʹ ʹ ʹ́= + + = − + + +

 

4 3 3 4 3 3

(4)

( , , )          ( , , )
1 1 1 1            ( )
2 4 2 4

n n n n n n

n n n n n n n n

k F x h u k v m m G x h u k v m

u u u u a u u u u b

= + + + = + + +

ʹ ʹ́ ʹ́ʹ ʹ ʹ́ ʹ́ʹ= + + + = − + + + +

 

Then substituting these values of 'sik  and 'sim  ( )i 1,  2,  3,  4=  in Eq. (13) and simplifying the 
equations separately for 1 1and n nu v+ + we get: 

 

                     

1 1 2 3 4

(4)

1 ( 2 2 )
6

1 1 1( )
2 6 24n n

nn

n nu u u

u u h k k k k

u h u

+

ʹ ʹ́ ʹ́ʹ

= + + + +

= + + + +

                                      

(14) 

 

and the values of 1nv + can also be calculated as follows: 

    

1 1 2 3 4
1 ( 2 2 )
6

1 1 1 ( )
2 6 24 n

nn

n n n n n n n n n

v v h m m m m

v h a u a u a u a u b

+ = + + + +

ʹ ʹ́ ʹ́ʹ= − + + + +
                             (15) 

 

Therefore the system of equation (13) simplified to: 

 
(4)

1

1

1 1 1( )
2 6 24
1 1 1( )
2 6 24

n

n

n n n nn

n n n n n n n n nn

u u h u u u u

v v h a u a u a u a u b

+

+

⎧
⎪⎪
⎨
⎪
⎪⎩

ʹ ʹ́ ʹ́ʹ= + + + +

ʹ ʹ́ ʹ́ʹ= − + + + +
                        (16) 

 

This equation is Runge-Kutta fourth order formula used to approximate the values of 
 and n nu v  for n 1,  2,  3=  since the Adams-Bashforth-Moulton predictor-corrector method 

requires these values. 
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To solve Eq. (9), we can apply the explicit-implicit multistep method that requires 
information about the solution at 1nx +  from the solution at a number of previous solutions. 

To begin the derivation of the multi-step methods, if we integrate the initial-value problem 
over the interval 1[ , ],n nx x +  then the following property exists:     

 

                                   

1

1( ) ( ) ( , ( ))
n

n

x

n n
x

u x u x f x u x dx
+

+ = + ∫                                          (17) 

 

where ( , ( ))f x u x  is the first derivative of ( ).u x  To derive an Adams-Bashforth method, 
Newton backward difference formula with a set of equal spacing points, 1 1, ..., , ,n k n nx x x+ − −  is 
used to approximate the integral and the fourth order Adams-Bashforth method is given by 
[2]. 

 

																									 [ ]1 1 2 355 59 37 9
24n n n n n n k
hu u f f f f T+ − − −= + − + − +                                  (18) 

 

where, kT  is the truncation error of the fourth order Adams-Bashforth method and is given by:    

             

                              ( ) ( )55 5251 ( )
720kT h u O hξ= =                                                  (19)   

  

To use Eq. (18), we require the starting values 1 2, ,n n nu u u− −  and 3nu −  which are calculated by 
self-starting single step method, Runge-Kutta fourth order method for our case. The fourth 
order Adams-Bashforth method for the system of Eq.  (8), can be solved using Eq. (18) and it 
becomes 

 

                                    
[ ]

[ ]

1 1 2 3

1 1 2 3

55 59 37 9
24

55 59 37 9
24

n n n n n n

n n n n n n

hu u F F F F

hv v G G G G

+ − − −

+ − − −

⎧ = + − + −⎪⎪
⎨
⎪ = + − + −
⎪⎩

                                   (20) 

 

Using Eq. (20) we can formulate the general form of the systems of Eq. (8) for 4n ≥ . 
Therefore, Eq. (20) can be derived as follow: 
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1 1 2 3(55 59 37 9 )
24n n n n n n
hu u F F F F+ − − −= + − + −                                         (21) 

But, since the values of 1 2, ,n n nF F F− − and 3nF − , for 4n ≥ , can be calculated using the linearized 
system of Eq. (8), we have 

 

1 1 2 2 3 3, , ,  ,n n n n n n n nF u F u F u F u− − − − − −ʹ ʹ ʹ ʹ= = = =                           
            

(22) 

 

Then 

 

1 1 2 3(55 59 37 9 )
24n n n n n n
hu u u u u u+ − − −ʹ ʹ ʹ ʹ= + − + −                                 (23) 

 

For  

 

1 1 2 3(55 59 37 9 )
24n n n n n n
hv v G G G G+ − − −= + − + −                        (24) 

 

where the values of 1 2 3 ,  , ,n n n nG G G G− − −   are given by: 

 

                          
1 1 1 1

2 2 2 2 3 3 3 3

,   ,
,   

n n n n n n n n

n n n n n n n n

G a u b G a u b
G a u b G a u b

− − − −

− − − − − − − −

= − + = − +⎧
⎨

= − + = − +⎩
                     (25) 

 

So, Eq. (24) becomes 

 

1 1 1 1 2 2 2

3 3 3

(55( ) 59( ) 37( )
24

9( ))

n n n n n n n n n n n

n n n

hv v a u b a u b a u b

a u b

+ − − − − − −

− − −

= + − + − − + + − +

− − +   

  (26) 

 

Then summarizing Eq. (23) and (26), we have  
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1 1 2 3

1 1 1 1 2 2 2

3 3 3

(55 59 37 9 )
24

(55( ) 59( ) 37( )
24

9( ))

n n n n n n

n n n n n n n n n n n

n n n

hu u u u u u

hv v a u b a u b a u b

a u b

+ − − −

+ − − − − − −

− − −

⎧ ʹ ʹ ʹ ʹ= + − + −⎪
⎪
⎪

= + − + − − + + − +⎨
⎪

− − +⎪
⎪⎩             

(27) 

 

Therefore,  Eq. (27) is the fourth order Adams-Bashforth predictor method for the given 
system of Eq. (8). 

Similarly,  to solve the given nonlinear differential equation using fourth order Adams-
Moulton method, first let’s consider the first order nonlinear IVP of the form Eq. (9) and the 
method is derived by using the set of equal spacing points, 2 1, ..., ,n k n nx x x+ − + . 
Integrating both sides of Eq. (9) with respect to x  from 1ton nx x + we have, 

 

            

1

1( ) ( ) ( , ( ))
n

n

x

n n
x

u x u x f x u x dx
+

+ = + ∫
                                 

(28) 

 

Replace ( , )f x u of Eq. (27) by the polynomial ( )kp x of degree ,k  which interpolates 
( , )f x u at 1k +  points and Newton backward interpolation formula, gives polynomial of 

degree  k and the fourth order Adams-Moulton method is given by: 

 

            
[ ]1 1 1 29 19 5

24n n n n n n l
hu u f f f f T+ + − −= + + − + +

                                 (29) 

 

where, the truncation error lT  is given by: 

 

            
( ) ( )55 519( ) ( )

720
T x h u O hξ

−
= =

                                            (30) 

 

The system of  Eq.  (8), is then given by 
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[ ]

[ ]

1 1 1 2

1 1 1 2

9 19 5
24

9 19 5
24

n n n n n n

n n n n n n

hu u F F F F

hv v G G G G

+ + − −

+ + − −

⎧ = + + − +⎪⎪
⎨
⎪ = + + − +
⎪⎩

                                     
(31)   

 

To apply Eq. (31) on Bratu equation, we simplify this equation using the same procedures as 
we have done for the predictor (Adams-Bashforth method) above. 

That is, the values of 1 1 2, , ,n n n nF F F F+ − − and 1 1 2, ,  ,n n n nG G G G+ − − are as calculated for the 
predictor method. Therefore, the system of Eq. (31) can be written as: 

 

          

1 1 1 2

1 1 1 1 1 1 1

2 2 2

(9 19 5 )
24

(9( ) 19( ) 5( )
24

( ))

n n n n n n

n n n n n n n n n n n

n n n

hu u u u u u

hv v a u b a u b a u b

a u b

+ + − −

+ + + + − − −

− − −

⎧ ʹ ʹ ʹ ʹ= + + − +⎪
⎪
⎪

= + − + + − + − − +⎨
⎪

+ − +⎪
⎪⎩                  

(32) 

 

This is the Adams-Moulton corrector formula. We use the fourth order Adams-Bashforth 
method as a predictor and Adams-Moulton method as a corrector and we have the following 
equations. 

 

                                

[ ]

[ ]

1

1

1 2 3

1 2 3

55 59 37 9
24

55 59 37 9
24

n

n

p
n n n n n

p
n n n n n

hu u F F F F

hv v G G G G

+

+

− − −

− − −

⎧ = + − + −⎪⎪
⎨
⎪ = + − + −
⎪⎩

                                         (33)        

  

  1 1 1 1

1 1 1 1

where     ( , , )

               ( , , )

p p
n n n n

p p
n n n n

F F x u v
G G x u v

∗
+ + + +

∗
+ + + +

=

=  

 

                                   
1 1 1 2

1 1 1 2

9 19 5
24

9 19 5
24

c
n n n n n n

c
n n n n n n

hy y F F F F

hz z G G G G

∗
+ + − −

∗
+ + − −

⎧ ⎡ ⎤= + + − +⎣ ⎦⎪⎪
⎨
⎪ ⎡ ⎤= + + − +⎣ ⎦⎪⎩

                                        (34) 
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1 1and  p p
n nu v+ + are calculated from Eq.  (34) and applying these equations on the linearized 

Bratu equations is the same as combining  Eq. (27)  and  Eq. (32), using Eq. (27) as a 
predictor and Eq.(32) as a corrector and it becomes:

 Predictor Formula 

 

    

1 1 2 3

1 1 1 1 2 2 2

3 3 3

(55 59 37 9 )
24

(55( ) 59( ) 37( )
24

9( ))

p
n n n n n n

p
n n n n n n n n n n n

n n n

hu u u u u u

hv v a u b a u b a u b

a u b

+ − − −

+ − − − − − −

− − −

⎧ ʹ ʹ ʹ ʹ= + − + −⎪
⎪
⎪

= + − + − − + + − +⎨
⎪

− − +⎪
⎪⎩                 

(35) 

 

and corrector formula 

 

         

' ' ' '
1 1 1 2

1 1 1 1 1 1 1

2 2 2

(9( ) 19 5 )
24

(9( ) 19( ) 5( )
24

( ))

c p
n n n n n n

c p
n n n n n n n n n n n

n n n

hu u u u u u

hv v a u b a u b a u b

a u b

+ + − −

+ + + + − − −

− − −

⎧ = + + − +⎪
⎪
⎪

= + − + + − + − − +⎨
⎪

+ − +⎪
⎪⎩                     

(36) 

 

3. Truncation Error, Convergence and Stability Analysis 

 

Let’s consider the more general multistep method of the following  

 

                  

[ ]1 1 2 1 1

0 1 1 1 1 1

( ) ( ) ( ) ... ( )

( , ( )) ( , ( )) ... ( , ( ))

k k k m k m

k k k k m k m k m

U t U t U t U t
h

f t U t f t U t f t U t

α α α

β β β

+ − + −

+ + + − + −

+ + + +

= + + +                  

(37) 

 

where iα  and jβ , (for 1, 2, 3, ...,i m=  and 1, 2, 3, ....,j m= ) are constants.

 
Theorem 1: If a sequence of numbers ke satisfies  
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1 1 2 1 1...k k k m k m ke e e e hTρ ρ ρ+ − + −+ + + + =                                           (38) 

 

for 1( 1)k m m≥ − ≥ and if all the roots of the corresponding characteristic polynomial 

 

1 2
1 2 ...m m m

mλ ρ λ ρ λ ρ− −+ + + +                                                        (39) 

 

are less than or equal to one  in absolute value, and all multiple roots are strictly less than one  
in absolute value, then 

0 1max{ ,..., } ,where t , max ,and isaconstantdepending

onlyon the .
k m k k j

i

e M e e t T kh T T Mρ ρ

ρ
−≤ ⎡ + ⎤ = =⎣ ⎦

Definition: The region of absolute stability of a multistep method consists of those values of 
ah in the complex plane for which all roots of polynomial  

 

1 2
0 1 1 2 2(1 ) ( ) ( ) ... ( )m m m

m mah ah ah ahβ λ α β λ α β λ α β− −− + − + − + + −                      (40) 

 

are less than or equal to one in absolute value, and all multiple roots are strictly less than one 
in absolute value. 

Theorem 2: The multistep method (29) is stable provided all roots of   

                 

1 2
1 2 ....m m m

mλ α λ α λ α− −+ + + +                                  (41) 

 

are less than or equal to one in absolute value, and all multiple roots are strictly less than one  
in absolute value. 

The error terms for the numerical integration formulas used to obtain both the predictor and 
corrector are of the order 5( ).O h  Therefore, the local truncation errors of predictor and 
corrector are respectively 
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( ) ( )

( ) ( )

55
1 1

55
1 1

251( )
720
19( )
720

n n

n n

u t p h u

u t u h u

ξ

ζ

+ +

+ +

⎧ − =⎪⎪
⎨

−⎪ − =
⎪⎩

      (42) 

 

where 1( )nu t +  is given by Eq. (15) for the predictor and Eq. (20) for corrector and 1np +  and  

1nu + are calculated values for Adams-Bash forth predictor and Adams-Moulton corrector given 
by Eqs. (16) and (29) respectively

  
 

3. Stability Analysis 

 

Some of the most popular higher-order, stable, multistep methods are the Adams methods, 
which ensure stability by choosing 1 2 31 and  ... 0.mα α α α= − = = = = The characteristic 
polynomial corresponding to theorem 1 is 1m mλ λ −−  which has 1 as a simple root and 0 as a 
multiple root. Thus these methods are stable regardless of the values chosen for the 's.iβ   

The values of 'siβ  are determined in order to maximize the order of the truncation error. For 
Adams-Bashforth method we can calculate the value of iβ  as [2]: 

 

( ) ( ) ( )

( ) ( )

01 1 21 1

0 1 20 00 1 20

41 13
3 40 03 4

1 51 1,   1 ,   1 ,   
2 12

3 251 1 ,   1
8 720

s s s

s s

ds ds ds

ds ds

β β β

β β

− − −

− −

⎧ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − = = − = = − =⎪ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎨
⎛ ⎞ ⎛ ⎞⎪ = − = = − =⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎩

∫ ∫ ∫

∫ ∫
      (43) 

 

And also for Adams-Moulton method we have  

 

0 1 2 3 4
1 1 1 191, , , ,
2 12 24 720

β β β β β= = − = − = − = −
  

(44) 

 

Since for all Adams methods the values of 1 2 31  and   ... 0mα α α α= − = = = = , the fourth 
order Adams-Bashforth method (Eq. 18) and fourth order Adams-Moulton method Eq. (31) 
have the characteristic equation of 
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4 3 3( ) 0 ( 1) 0ρ λ λ λ λ λ= − = ⇒ − =                                   (45) 

                           
 

1λ⇒ = is a simple root and 0 is a multiple root with multiplicity 3. 

Therefore, since the simple root is 1, and multiple roots are 0 which is strictly less than 1, by 
Theorem 1, Adams-Bash forth and Adams-Moulton methods are stable.  

 

4. Numerical Examples and Results 

 

To demonstrate the applicability of the method, we implemented the method on four 
numerical examples To show the applicability and efficiency of the method, we have taken 
two examples of Bratu-type model and compared the numerical solutions with different other 
numerical methods and exact solution as follow. 
 
Example 1: Consider the Bratu-type initial value problem 
 

" 2 0,  0 1
(0) 0, '(0) 0

yy e x
y y

⎧ − = < <
⎨

= =⎩
                                                   (46) 

 
 

whose exact solution is ( ) 2ln(cos( ))y x x= −  

 

Table 1. The comparison of absolute errors for Example 1 at different values of the mesh size 

h with different numerical methods 

    Absolute errors at  0.1h =   
     
x   Method in[7] Method in[8] Method in [10] Present Method  

0.1  6.7100e-6 4.3876e-13  6.4102e-7    2.8436e-9 
0.2  9.5500e-6 4.5402e-10 9.7469e-6    1.2788e-7  
0.3  3.3100e-6 2.6638e-8  4.5299e-5    3.9593e-7 
0.4  8.0400e-6 4.8488e-7 1.2711e-4    3.4141e-6  
0.5  8.4800e-6 4.6664e-6  2.6867e-4    4.4904e-6 
0.6  2.0300e-5 3.0124e-5 4.8365e-4    6.8988e-6 
0.7  7.1500e-5 1.4821e-4  8.3679e-4    1.1741e-5  
0.8  2.9100e-4 6.0039e-4 1.6005e-3    2.1580e-5 
0.9  1.0500e-3 2.1074e-3  3.6497e-3  4.2756e-5  
1.0  3.5300e-3 6.6498e-3 9.3915e-3    9.2517e-5 
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Fig. 1. Plot of exact and approximated solution of Bratu-type equation using predictor-corrector 
method for Example 1 with mesh length 0.1.h =  
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Fig. 2. Point-wise absolute error of Example 1 for different values of number of meshes points. 

 

Example 2: Consider the Bratu-type initial value problem 
 

2
2

2 ,

(0) 0, '(0)

yd y e
dx
y y

π

π

−⎧
= −⎪

⎨
⎪ = =⎩

                                           
(47) 

 
 

whose exact solution is ( ) ln(1 sin( ))y x xπ= +  
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Table 2. The comparison of absolute errors for Example 2 at different values of the mesh size h 

x    Absolute errors at  0.1h =   
    
  Exact value Method in [9] Present Method  

0.1  0.26928  3.20777e-4  3.4129e-5 
0.2       0.46234 2.37600e-5  5.7752e-5  
0.3  0.59278  3.58700e-5  7.9099e-5 
0.4       0.66837 8.01000e-5  2.7368e-4  
0.5  0.69315  1.19500e-4  4.2841e-5 
0.6       0.66837 1.66200e-4  6.8607e-5 
0.7  0.59278  2.20200e-4  1.3754e-4  
0.8       0.46234 2.85100e-4  1.8845e-4 
0.9  0.26928  4.03400e-4  2.2350e-4  
1.0  2.2204e-16 5.37400e-4  2.1737e-4 
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Fig. 3. Plot of exact and approximated solution of Bratu-type equation using predictor-corrector 
method for Example 2 with mesh size 0.1.h =  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

Er
ro

r

 

 
N=10
N=15
N=20

	

Fig. 4. Point-wise absolute errors of Example 2 for different values of number of mesh points. 
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5. Discussion and Conclusion 
 

This study introduces numerical solutions of second order initial value problems of Bratu-type 
equations using predictor-corrector method. The stability and convergence of the scheme are 
investigated and established well. The numerical solutions are tabulated in terms of point wise 
absolute errors and observed that the present method improves the findings of some existing 
numerical methods reported in the literature (Table 1 and 2). Moreover, behaviors of the 
numerical solution (Figure 1 and 3) and point-wise absolute errors (Figure 2 and 4) were 
shown in figures. According to the plotted figures one can clearly observe that the numerical 
and exact solutions agree very well and as number of mesh point increases or as step size 
decreases, the point-wise absolute error decreases which clearly indicates the convergence of 
the present scheme. Concisely, the present method gives more accurate solution for solving 
second order initial value problems of Bratu-type equations. 
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Abstract 

Accurate simulation and loss estimation in power transformers are crucial for both the design phase and useful 
life of the transformer. In this study, core losses and magnetic flux densities of a power transformer for different 
frequency values are calculated. For this, ANSYS @ MAXWELL software based on the Finite Elements Method 
(FEM) and the 3D simulation model of the transformer were examined. The results obtained from simulations 
performed at 50 Hz and 60 Hz frequencies were compared with theoretical and experimental results. It has been 
observed that increasing the frequency causes increased heat and loss in the core of the transformer. 

Keywords: Core loss, power transformer, magnetic flux density, frequency. 

1. Introduction 

Modeling and correct simulation of power transformers has always been a challenge for 
engineers. Power transformers are one of the most expensive elements of the energy system. 
Therefore, the prediction that the transformer is working correctly and possible malfunctions 
have always been a problem for engineers. High frequency models of power transformers are 
recommended for analysis of transient interaction between transformers and power system 
[1]. An algorithm and transformer model is proposed to identify different internal faults that 
cause power interruption in the transformer [2]. In recent years, the Finite Element Method 
(FEM) has been widely used to model various nonlinear materials and permanent 
magnetization of these materials [3-5]. In cases where partial discharge occurs in transformer 
winding FEM is used to calculate transformer parameters [6]. In recent years, various 
powerful software have been developed to calculate transformer parameters, operating modes 
and different types of loss [7]. In this paper, the 3D power transformer model given in Fig. 1 
is presented below to calculate the core losses and magnetic flux density in the transformer 
section. Since the core losses are calculated in case of transformer operation at 50 Hz 
frequency without load, only the low voltage winding is energized with nominal voltage. 
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Fig. 1. 3D model of the transformer 

The distribution of the magnetic flux density in the core section is shown by simulation. Flux 
density is calculated at different time intervals. Flux density information helps to identify 
parts of the nucleus near the saturation point. Depending on the flux density information, the 
saturation characteristic of the nucleus and the core losses are determined depending on the 
characteristic and the transformer design can be modified to optimize them. 

 

2. Modeling of Transformer and Electromagnetic Accounts 

Based on the actual transformer dimensions and geometry, FEM models are created for 3D 
simulations of low frequency temporary electromagnetic fields. The basic process of transient 
simulation includes regional and temporal separation of physical equations. There are various 
approaches for regional separation, such as finite differences, finite elements and limited 
volumes. Finite Element Method (FEM) is the most widely used method in engineering 
applications. With this method, complex, non-homogeneous and anisotropic materials can be 
modeled and complex geometries can be analyzed using irregular meshes (mesh) [8-9]. 

FEM solves Maxwell's equations based on a given excitation and frequency value. Simulation 
is accomplished by field parsing along the time axis to simultaneously solve all time stages. In 
the designed transformer model, boundary conditions, outer geometry and the properties of all 
materials are defined on the design in the program environment. The magnetic core is 
characterized by the B-H curve of magnetization and fine laminations. These characteristic 
features are used in the simulation of the transformer model. The characteristic B-H curve of 
the material used in the core is given below in Fig. 2. The P-B curve, which is the specific 
core losses given in Fig. 3 below, is also introduced in the simulation environment and the 
core losses are calculated for the frequencies of 50 Hz and 60 Hz. 
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Fig. 2. B-H curve of core laminations 

 
Fig. 3. P-B curve of core losses 

 

Where; B is the magnetic flux, H is the magnetic flux intensity and P is the losses per kg. 
Also, the red curve is the actual curve. The black curve is the regression of the original curve. 

The properties and parameters of the transformer designed in ANSYS@MAXWELL 
environment are given in Table 1 below. 

 
Table 1. Design features of the transformer 

Rated Power 15 MVA 
HV 33.000 V 
LV 11.000 V 

Core loss 12.500 W 
Copper loss 97.000 W 
HV Winding 

Resistance 
1.7 Ω 

LV Winding 
Resistance 

40 mΩ 

kU% %11 
Io % 0.44 

HV connection Delta 
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LV connection Star 
HV turn number 135 
LV turn number 665 

HV phase current 784 A 
LV phase current 156 A 
Current density 21.8 A/m 

 

In general, core loss (Pc) is divided into two components: hysteresis losses (Ph) and eddy 
current losses (Pe). According to the Steinmetz equation, the measurement and calculation of 
core losses are done with the normally varying Mag-B and frequency of sinusoidal flux of the 
frequency. These measurements and calculations are often modeled with a bi-term function of 
the form depending on the standard coil. 

 

                                                  (1) 

Where, kh, kc and n are coefficients that depend on lamination, material thickness, 
conductivity and other factors [10]. 

In this study, the calculation of core losses are made according to: 
 

                                                (2) 
 

Eddy current loss: 
  (3) 

 

Hysteresis loss: 
  (4) 

 

Excessive loss: 
            (5) 

For that reason: 
  (6) 

  (7) 

The k1 and k2 coefficients are obtained by minimizing the function. Eddy current loss 
coefficient is calculated as follows: 

  (8) 

Where; σ conductivity and d is the thickness of the lamination layer.  
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In this case, core losses in transformer models are defined as total losses for a specific 
frequency such as 50 Hz or 60 Hz (P-B curve). When the design of the transformer model is 
started with the starting frequency of 60 Hz and the model frequency is changed to 50 Hz, 
both the amplitude of the input phase voltage and the factor of the transformer are reduced. 
This prevents the transformer from overheating when the operating frequency of the 
transformer is changed from 60 Hz to 50 Hz. Because when the frequency is changed, the 
currents passing through the windings do not change. Power losses are calculated at both 
operating frequencies. For core losses, only one energetic winding should be considered. An 
exponentially increased voltage source is applied to eliminate sudden currents and shorten the 
simulation time as given in Fig. 4 below. 

 

 
Fig. 4. Input voltage at 50 Hz 

 

In order to calculate the magnetic flux density B, the magnetic vector potential A must be 
present. For this purpose, all model geometry is divided into many elements, usually triangles, 
where A is approximately matched by a simple function. Mesh (mesh) formed by finite 
elements in 3D model is presented in Fig. 5. 
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Fig. 5. Mesh in transformer models. 

 

 

3. Simulation and Analysis of the Model 

In transient simulation, analysis is performed for predefined time interval and time step. From 
the simulation of the 3D model of the designed transformer, core losses were obtained for two 
different frequencies of 50 Hz and 60 Hz. Core losses are calculated by taking the average of 
the total losses obtained over the given time interval over time. 

 

3.1. Analysis of Losses 

From the simulation of the 3D model, core losses and magnetic flux distribution were 
obtained for two different frequencies of 50 Hz and 60 Hz. Graphs of core losses, eddy 
current losses and hysteresis losses depending on all the above variables are presented in the 
Figs below. 
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Fig. 6. Core loss of the model at a frequency of 50 

Hz 

Fig. 7. Eddy loss of the model at a frequency of 50 Hz 

 
Fig. 8. Hysteresis loss of the model at 50 Hz frequency 
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Fig. 9. Core loss of the model at a frequency of 60 Hz 

 

 
Fig. 10. Eddy loss of the model at a frequency of 60 Hz 

 
Fig. 11. Hysteresis loss of the model at a frequency of 60 Hz 
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The loss values of the transformer at different frequencies are compared in Table 2 below. 
 

Table 2. Loss values at different frequencies. 
 Simulation results Theoretical results 

 50 Hz 60 Hz 50 Hz 

Core loss (kW) 12.41 13.34 12.36 
Eddy current loss 

(kW) 
8.65 8.2 8.59 

Hysteresiz loss 
(kW) 

3.76 5.14 3.77 

 

 

There is a difference between 50 Hz and 60 Hz core and copper loss values of the 
transformer. The core losses tested at 50 Hz are 12.5 kW. The designed model is simulated 
within both the frequencies of 50 Hz and 60 Hz. As expected, core losses were lower at a 
frequency of 50 Hz. 

 

3.2. Electromagnetic Field Analysis 

The operation of the core of the transformer close to the saturation point increases losses and 
heat dissipation, reduces efficiency. Therefore, the flux density was analyzed at different time 
intervals for both frequencies. The 3D magnetic flux density of the transformer is presented 
Fig. 12 below. 

 

 
Fig. 12. Flux density distribution in 3D transformer model for 50 Hz frequency. 
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Fig. 13. Flux density distribution in 3D transformer model for 60 Hz frequency 

 

It is clear that the flux density distribution in the core cross section of the transformer, which 
operates at 50 Hz and 60 Hz frequency without load, determines the saturation point well. As 
expected, the density of flux was higher than the frequency of 50 Hz at 60 Hz, since the loss 
of core occurred more in the model working at 60 Hz. 

When the results in Table 2 are compared, it shows that there is a difference between the core 
loss values obtained in the 3D models of the transformer. The core losses tested at 50 Hz are 
12.5 kW. 3D models are simulated within both the frequencies of 50 Hz and 60 Hz. As 
expected, core losses are low at a frequency of 50 Hz. All physical core loss effects are not 
calculated with the FEM model. Unpredictable effects include variations such as mechanical 
pressure on laminations, edge roughness loss, gradual hollow flux, circulation current and 
sheet loss. 

For accurate estimation of flux density in different parts of the transformer, it is important to 
correctly estimate the parts of the transformer, called the weak part, where the core material is 
close to the saturation point (B-H). Operation of the transformer close to the core saturation 
point increases losses and heat dissipation, decreases efficiency. Therefore, the flux density is 
analyzed at different time intervals for both frequencies. 

4. Conclusions 

Knowing the losses in electrical devices is important in terms of both design and use of the 
device. Therefore, estimating losses with the right simulation models helps designers design 
highly energy efficient devices. FEM based transformer simulation model is presented. The 
obtained 3D models provide the calculation of the main losses for the three-phase 
symmetrical power supply. Models are powered by 50Hz and 60Hz frequency power 
supplies. Losses occurring at 50 Hz are lower than losses occurring at 60 Hz due to low 
frequency losses. The flux density distribution in the transformer section was also calculated. 
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From the results obtained from all models, it has proven that the transformer which operates 
without a load works well above the saturation point of the core. 
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Abstract 

The present study aims to give critical buckling loads of rectangular functionally graded (FG) plates for various 
types of boundary conditions. The finite element formulation of stability of plates is introduced and the procedure 
is applied to obtain critical buckling loads of a plate for two types of boundary conditions: (a) CFFC: two parallel 
edges are clamped and free along the other two; (b) FFFC: the plate is clamped along one edge and free along 
all the others. Variation of mechanical properties of the FG plate along the length and the variation along the 
thickness have been both considered. According to the function of elasticity modulus variation, results have been 
obtained for various power indices of the varying function. Results compare well with those obtained using shell 
elements in ANSYS. 

Keywords: FGM, buckling of plates, finite element method, ANSYS. 

1. Introduction 

Typical composite structures with a mixture of two or more different material phases can be 
referred to as functionally graded plates (FG plates) and the performance of the plates is 
achieved by adjusting the component formula that forms the structure. Such plates completely 
inherit the properties of their components and have some special properties such as high 
hardness, high fatigue resistance, wear resistance. For example, ceramic and metal mixed FG 
plates have thermal properties of ceramics while also having ductility of metals. Therefore, FG 
plates, aircraft, vehicles, ships and so on. It is widely used in engineering applications including. 
Generally, FG plates are subjected to different types of mechanical loads depending on the 
environment in which they operate and are located. In particular, the behavior of the structure 
under mechanical loads causing static bending and buckling is very important for the design of 
the structure. Therefore, it is important to examine the static bending and buckling behavior of 
FG plates. 
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Levy [1] proposed a method to demonstrate the buckling behavior of rectangular plates 
subjected to lateral pressure and edge compression. Javaheri and Eslami [2] investigated the 
buckling analysis of functionally graded plates under in-plane compression loads based on 
classical plate theory. Chen and Liew [3] presented buckling analysis using a net method to 
determine the critical buckling loads of functionally graded rectangular plates exposed to 
nonlinear loads at plane edge loads. Vel and Batrab [4] developed a three-dimensional precise 
solution for simply supported free and forced vibrations of functionally graded rectangular 
plates. Chi and Yen [5], a functionally classified rectangular material plate with simple 
constrained conditions subjected to transverse loading. Shariah and Eslami [6] obtained a 
closed-form solution to the buckling of the FG plate, based on the theory that the plate was 
loaded with mechanical, thermal loads and bending loads for third order shear deformation. 
Modeling and analysis of functionally classified material plates was performed by Birman and 
Larry [7]. An analysis of the classical plate theory and the expansion of the Fourier series was 
achieved by Using the second-order shear deformation theory, the natural frequency of the 
functional-grade rectangular plate was estimated by Shahrjerdi et al. [8]. Theoretical analysis 
of FGM plates based on the physical boundary surface was discussed by Zhangand Zhou [9]. 
Prakashetal [10] examined the effect of neutral surface position on the nonlinear stability 
behavior of functionally graded plates using the finite element method. Mohammadi et al. [11] 
have analytically solved the buckling analysis of simply supported, moderately thick, 
functionally graded rectangular plates with two opposite sides. Talha and Singh [12] researched 
the static and free vibration analysis of functionally classified material plates by using finite 
element model and high-grade shear deformation theory. Pendhari et al. [13] established 
analytical and mixed semi-analytical static solutions for a simple supported plate that is 
functionally rated in a rectangular form. Singha et al. [14] utilized the finite element method in 
the analysis of nonlinear behavior of functionally graded plates under transverse load based on 
the first order shear deformation theory. Hashemi et al. [15] done the new fully closed form 
method for free vibration analysis of functionally graded rectangular thick plates, based on 
Reddy's theory of the third-order shear deformation plate. Bousahla et al. [16] offered a plate 
theory for the buckling analysis of functionally graded plates subjected to uniform, linear and 
nonlinear temperature increases throughout the thickness. Demirhan and Taskin [17] submitted 
Levy's solution, which is based on four variable plate theory, for bending analysis of 
functionally graded sandwich plates. By Mohseni et al. [18], higher grade shear and normal 
deformable plate theory was employed for analytical solution of static analysis of functionally 
graded thick micro-plates. Although there have been many studies on the analysis of isotropic 
and laminated composite beams (i.e., [19-22]), however, the research effort dedicated to 
stability analysis of rectangular of FG plates has been very limited. 

In this study, stability analysis of rectangular FG plates was carried out using thin plate theory 
under various boundary conditions. The ceramic-metal (Alumina-Aluminum) composition of 
the FGM was chosen for numerical results. Using the finite element method, critical buckling 
loads for two types of boundary conditions were found. These boundary conditions are as 
follows: 1- The plate is held along the edges to which the load is applied and free at the other 
edges. 2- The plate was applied to be held along one edge and free along the other three edges. 
The change in the characteristics of the FG plate was considered in two ways. The model was 
formed by assuming that the elastic properties of the plate changed along the length of the plate, 
and that the elastic properties of the plate changed along the thickness of the plate. 
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2. FGM Structures 

In order to analyze FGM structures as shown in Fig. 1, two types of FG variation have been 
considered. In the first, the elasticity modulus varies according to the function given in the 

equation 1 2 2( ) ( )( )
2

nx LE x E E E
L
+

= − + .  The other variation function is given as E(x)=E1e-λx. 

 

                z  
Fig. 1. A Rectangular Plate and Coordinate System 

 

3. Provision of Solution Method 

The efficiency and reality of numerical methods is first checked with the analytical results 
obtained for the square plate homogeneous. In the equations given in 

1 2 2( ) ( )( )
2

nx LE x E E E
L
+

= − + and E(x)=E1e-λx, the cases are related to a functionally graded 

plate with λ and n factors. If these are chosen to be zero, the plate will be homogenous. Also, 
when the inclination angle is zero with the λ=0 and n=0 the plate is a square homogenous plate 

which has the analytical solution given in the literature [23] as
2

210.07x
DN
a
π

= ; where D is the 

plate stiffness. To compare the results obtained from FEM and ANSYS a plate with varying 
thicknesses is used. For a plate with the dimensions a=0.5, h from 0.0005 to 0.005 and E= 
380.E+09 GPa. The subscripted terms in Table 1 that is ()b (plate base) and ()t (plate tip) are the 
material properties of FG rectangular plate. Table 2. shows results from analytical method and 
finite element method to observe the difference. Note the results are close to each other for the 
homogenous case.  

 

 

 

 

 

a 

b 

x 

x 

h 

z 
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Table 1.  Material properties of the FGM plate. 
Properties Unit Aluminum; ()b Alumina; ()t 

E Pa 70 x109 380x109 
υ --- 0,3 0,3 

 

 

Table 2.  Critical buckling loads obtained analytically and by FEM, ANSYS for the 
homogenous square plate. 

h ) xNCritical Buckling Load ( 
(FEM) 

) xNCritical Buckling Load ( 
(ANALYTICALL) 

) xNCritical Buckling Load ( 
(ANSYS) 

0.0005 1734.4789 1729.264 1733.4698 
0.001 13875.8309 13834.1123 13874.8219 

0.0015 46830.9239 46690.1235 46829.8392 
0.002 111006.6472 110672.8982 111005.7647 

0.0025 216809.8125 216157.959 216808.7185 
0.003 374647.3908 373520.9879 374646.4009 

0.0035 594926.2204 593137.5341 594927.4202 
0.004 888053.178 885383.1855 888052.872 

0.0045 1264434.748 1260633.139 1264433.848 
0.005 1734478.5 1729263.672 1734477.6 

4. Formulation with FEM and Solution Procedure 
 
Equation of total tensile energy of a rectangular plate:  
 

( )
2 22 2 2 2

2
2 2 2

2
2 1

2

a b
FGM

a b

D w w w w wU dxdy
x x yy x y

ν
− −

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎪ ⎪⎢ ⎥= + − − −⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂∂ ∂ ∂⎪ ⎪⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭
∫ ∫  

                  
221 2

2

a b

x xy y
a b

w w w wN N N dxdy
x x y y

− −

⎧ ⎫⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞⎪ ⎪
− + +⎨ ⎬⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
∫ ∫         (1) 

 
where the stiffness matrix of FGM plate [DFGM] is 
 

[ ]
3

2

1 0
E( ) 1 0
12(1 ) 10 0

2

FGM
x hD

ν

ν
ν

ν

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
− ⎢ ⎥−

⎢ ⎥
⎣ ⎦

     (2) 

 
The Elasticity Module, which changes along the X axis, is defined as displacements in a plate: 

w= off-plane deviation, x
w
y

θ
∂

=
∂

; slope of the plate in the y direction, y
w
x

θ
∂

=
∂

; slope of the 

plate in the x direction, 
2

xy
w
x y

θ
∂

=
∂ ∂

;  
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Deformation equivalents are in matrix form: 
 

{ }

2

2

2

2

2
2

w
x
w
y

w
x y

ε

⎧ ⎫∂
−⎪ ⎪
∂⎪ ⎪

⎪ ⎪∂⎪ ⎪
= −⎨ ⎬

∂⎪ ⎪
⎪ ⎪∂⎪ ⎪− −
⎪ ⎪∂ ∂⎩ ⎭

     (3) 

and the stresses are: 
 

{ }
x

y

xy

M
M

M

σ

⎧ ⎫
⎪ ⎪⎪ ⎪

= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

      (4) 

 
where  
 

3 2 2

2 2 2
( )

12(1 )x
E x h w wM

x y
ν

ν

⎛ ⎞∂ ∂
= − −⎜ ⎟⎜ ⎟− ∂ ∂⎝ ⎠

  
3 2 2

2 2 2
( )

12(1 )y
E x h w wM

y x
ν

ν

⎛ ⎞∂ ∂
= − −⎜ ⎟⎜ ⎟− ∂ ∂⎝ ⎠

 

3 2

2
( )(1 )

12(1 )xy
E x h wM

x y
ν

ν

⎛ ⎞∂
= − −⎜ ⎟⎜ ⎟∂ ∂− ⎝ ⎠

     (5) 

 
since modulus of elasticity varies along the x-axis. 
Therefore, stresses are in matrix form: 
 

{ }
x

y

xy

M
M

M

σ

⎧ ⎫
⎪ ⎪⎪ ⎪

= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

=[D]FGM { }ε  =[D]FGM 

2

2

2

2

2

2

w
x
w
y
w
x y

⎧ ⎫∂
−⎪ ⎪
∂⎪ ⎪

⎪ ⎪∂⎪ ⎪
−⎨ ⎬
∂⎪ ⎪

⎪ ⎪∂
⎪ ⎪− −

∂ ∂⎪ ⎪⎩ ⎭

         (6) 

 
On the other hand, the total tensile energy equation of a rectangular plate at loads thought to be 
applied only to Nx's:  
 

2 2 2 2

2 2 22x xy y x
R R

w w w wU M M M dxdy N dxdy
x yx y x

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
= ⎜ + + ⎟ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
∫∫ ∫∫   (7) 

 
Taking the first variation of the energy equation above, writing equal to zero and in matrix 
form: 
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2

2

2

2

2

    0

2

x y xy x
R R

w
x
w w wU M M M dxdy N dxdy

x xy

w
x y

δ δ

⎛ ⎞⎧ ⎫∂⎜ ⎟−⎪ ⎪
⎜ ⎟∂⎪ ⎪
⎜ ⎟⎪ ⎪∂ ∂ ∂⎛ ⎞⎪ ⎪⎜ ⎟⎡ ⎤= − + =⎨ ⎬ ⎜ ⎟⎣ ⎦⎜ ⎟ ∂ ∂∂ ⎝ ⎠⎪ ⎪⎜ ⎟⎪ ⎪∂⎜ ⎟⎪ ⎪− −⎜ ⎟⎪ ⎪∂ ∂⎩ ⎭⎝ ⎠

∫∫ ∫∫   (8) 

 
by using Equations (5) and (6) and (8) this statement can be written as: 
 

{ } { }
3

1
2

1 0
E

1 0 0
12(1 ) 10 0

2

xT
x

R R

e h w wU dxdy N dxdy
x x

λ ν

δε ν ε δ
ν

ν

−

⎡ ⎤
⎢ ⎥
⎢ ⎥ ∂ ∂⎛ ⎞

= + =⎢ ⎥ ⎜ ⎟∂ ∂− ⎝ ⎠⎢ ⎥−
⎢ ⎥
⎣ ⎦

∫∫ ∫∫                  (9) 

Hereinafter, the standard Finite Element procedure using Hermitian polynomials will be used. 
The following definitions are used to represent the Eq. (9) in nodal displacements, including 
the shape functions N! ’s generated from the Hermitian polynomials: 
 

{ } { } { }
TTw N a a N⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦

% %      (10) 
 
and  
 

{ }
TTw a Nδ δ ⎡ ⎤= ⎣ ⎦

%      (11) 
 

where T means the transpose of a matrix and { }a is the nodal displacement vector. 
So, the node displacement vector for an element would be: 
 

{ }
.
.
.

x
i

y
e j

xy
k

l

w

a
a

a
a
a

θ

θ

θ

⎧ ⎫
⎪ ⎪
⎪ ⎪⎧ ⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪

= =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎪ ⎪

⎪ ⎪
⎪ ⎪⎩ ⎭

                  (12) 

 
Crucial ε as in the form  { } [ ]{ }L wε =  and [ ] [ ]B L N⎡ ⎤= ⎣ ⎦

%  . Hence { } [ ]{ }B aε =  
 
Substituting the above equation in Eq. (12) gives 
 

{ } [ ] [ ] { } { } { }
1 0
1 0 0,
10 0
2

TTT Ta B D B dxdy a a N N dxdy aR RFGM x

ν

δ ν δ

ν

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥

⎡ ⎤⎛ ⎞⎜ ⎟⎢ ⎥ ⎡ ⎤ ⎡ ⎤⎢ ⎥− =⎜ ⎟⎜ ⎟∫∫ ∫∫⎢ ⎥ ⎣ ⎦⎢ ⎥⎜ ⎟⎣ ⎦⎢ ⎥⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦−⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

% %       (13) 
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Thus, the finite element equation will be in the compact form  
 

 [ ] { } { }F x GxfgmK a N K a− ⎡ ⎤⎣ ⎦      (14) 

 
embodying an eigenvalue problem. [KF] and [KGx] are Bending and geometric hardness 
matrices of FGM plate. Here, the modulus of elasticity of the plate and hence the stiffness 
matrix [D] must be calculated at the nodes due to its dependence on the x values. Thus, when 
finite elements are mounted on spherical matrices, the effect of the diversity of the modulus of 
flexibility is achieved by inserting it into it. But, changing the value λ to zero would be a 
homogeneous plate where the plate is clearly equal to E0 along the elastic modulus. 
For each element [KF] and [KGx] as transmuted into a unit reference element there is  

[ ] [ ] [ ] ( )
1 1

0 0

1 0
1 0 det
10 0
2

e T
F FGMK B D B J d d

η ξ

ν

ν ξ η

ν= =

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

∫ ∫ .     (15) 

 
[B] matrix is described in shape functions and transformation matrices as: 
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     (16) 

 
 
where 
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    (17) 

 
and 

[ ] [ ] [ ]
11 12

1 2
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1 1
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J J
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∂ ∂⎡ ⎤
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   (18) 

 
In the above equations the Jij and jij are the elements Jacobian and inverse Jacobian matrices of 
the transformation respectively. For two dimensional transformation the elements of Jacobian 
matrix are 11 /J x ξ= ∂ ∂ , 12 /J y ξ= ∂ ∂ , 21 /J x η= ∂ ∂ , 22 /J y η= ∂ ∂ . 
As the flexural stiffness matrix [KF] carries the effect of the elasticity modulus change the 
geometric rigidity matrix [KGx] carries the effect of the plate’s and considering the equilibrium 
of the forces will be in the form: 
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( )
1 1

1
11 12 11 12

10 0
2 tan

e
Gx

bK j N j N j N j N d d
b x ξ η ξ η

η ξ

ξ η
θ

= =

= + +⎡ ⎤⎣ ⎦ +∫ ∫ % % % %   (19) 

 
The coordinate x in the real plane is also transformed into the reference plane in both [KF] and 
[KGx] matrices by ( )( ) ( ) ( )1 2 3 41 1 1 1x x x x xξ η ξ η ξη η ξ= − − − − + − −  attained from the transformation 
polynomials. Here x1,.., x4 are the x coordinates of a real element. In Equation (19) simple taking 
the θ value as zero reach the geometric matrix of a rectangular plate. 
Varying elasticity modulus along z-axis to obtain the effect of the change of elasticity modulus 
along the thickness the same procedure is applied but this time the [D] matrix of the FGM plate 
includes the integral of the elasticity modulus along the z-axis. Thus, Eq. (2) will be in the form 

if an E(z) function as in the Equation 2( )
2
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∫  (20) 

 
Although the integral along the z-axis can be calculated analytically as 
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(21) 

 
it is convenient to calculate its value by any of the numerical integral methods such as Gaussian 
Quadrature method to provide its applicability to a numerical computation [24]. This time in 
the Equation (20) E1 and E2 denotes the upper and lower surfaces’ elasticity modulus of the 
plate respectively. The effect of the elasticity modulus change in the z-direction is inserted by 
the [D]fgm matrix. Obviously, choosing n=0 the results pertaining to a homogenous case can be 
reached for the plate which has the elasticity modulus E1.  
Thus the flexural stiffness matrix will be as 
 

             [ ] [ ] [ ] [ ] ( )
1 1

0 0

dete T
F fgmK B D B J d d

η ξ

ξ η
= =

= ∫ ∫  (22) 

 
For the geometric stiffness matrix [KGx] of the trapezoidal plate Equation (19) is still valid. 

5. Results and Discussions 
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Figures (2,7) show comparison of FEM and ANSYS evolution of critical buckling loads Nx of 
FGM plate power law index n with aspect ratio a/b=0.25;0.5;0.75;1.0 at CFFC and FFFC 
boundary conditions for the elasticity modulus varies according to the function 

1 2 2( ) ( )( )
2

nx LE x E E E
L
+

= − +  and E(x)=E1e-λx.   Results pertaining to a rectangular FGM plate have 

been investigated first for various variation of elasticity modulus both along the thickness and 
along the x-axis. Ceramic-metal material composition of FGM plate has been selected due to 
fact that this configuration finds plentiful application in the industry. When ceramic side is 
selected to be alumina the elasticity modulus E=380x109 GPa and Poisson’s ratio υ=0.3 In 
addition to this the metal side has properties E=70x109 GPa and υ=0.3 when the metal is 
aluminum. Various ceramic-metal configurations can be selected for various applications. In 
order to find the effect of these indices on the stability of the FGM plate, buckling of loads 
against power indices λ and n is given. According to the material and geometric properties used 
in numerical method model, commercial (ANSYS) finite element code is produced by 
comparing [25]. Shell models are applied to illustrate how plane mesh size affects the accuracy 
of buckling analysis for plates of various length ratios and thicknesses in ANSYS. In the finite 
element model, the Shell281 element is used with various values of plane mesh size, expressed 
as element per plate edge, and in various thickness values, expressed as the half-thickness ratio 
up to thin to medium FGM plates. The Shell281 model uses the observation size of 80 and 100 
elements per side for each side thickness ratio. The variations of critical buckling loads in FGM) 
plate for different boundary conditions are shows in Fig.2-7. The effect of power law index n 
and λ on the critical buckling loads can be seen for different boundary conditions. Figs.2-7 
shows the critical buckling loads verses power law index value at different boundary conditions. 
As expected, the increasing index value leads to reduce the critical buckling loads. Increasing 
index value reduces the ceramic constituents, it produces the effective material properties 
changes which affect the critical buckling loads. 
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Fig. 2. Critical buckling load of FGM plate verses power law index n with aspect ratio 
a/b=0.25;0.5;0.75;1.0 at CFFC boundary conditions for the elasticity modulus varies 
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Fig. 3. Critical buckling load of FGM plate verses power law index λ with aspect ratio 
a/b=0.25;0.5;0.75;1.0 at CFFC boundary conditions for the elasticity modulus varies 

according to the function E(x)=E1e-λx 
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Fig. 4. Critical buckling load of FGM plate verses power law index n with aspect ratio 
a/b=0.25;0.5;0.75;1.0 at FFFC boundary conditions for the elasticity modulus varies 
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Fig. 5. Critical buckling load of FGM plate verses power law index λ with aspect ratio 
a/b=0.25;0.5;0.75;1.0 at FFFC boundary conditions for the elasticity modulus varies 

according to the function E(x)=E1e-λx 
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Fig. 6. Critical buckling load of FGM plate verses power law index n with aspect ratio 
a/b=0.25;0.5;0.75;1.0 at CFFC boundary conditions for the elasticity modulus varies 

according to the function 1 2 2( ) ( )( )
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Fig. 7. Critical buckling load of FGM plate verses power law index n with aspect ratio 
a/b=0.25;0.5;0.75;1.0 at FFFC boundary conditions for the elasticity modulus varies 

according to the function 1 2 2( ) ( )( )
2

nx LE x E E E
L
+

= − +  

6. Conclusion 

The stability behavior of rectangular FGM plates under various boundary conditions is 
investigated using the finite element method. The ceramic-metal (Alumina-Aluminum) 
composition of FGM has been chosen to obtain numerical results. Two types of boundary 
conditions have been studied CFFC configuration and FFFC configuration. In order to justify 
the proposed model, a homogeneous rectangular plate condition is considered. The results 
obtained for the CFFC configuration were observed to have lower critical buckling loads than 
those obtained for the FFFC configuration. The latter is less stable. This applies to both 
homogeneous and FGM plates. Increasing the power law indices (λ and n) makes the plate less 
stable. At large values of these indices, the plate achieves an unstable behavior as if there were 
no restrictions along the plates and thus buckles easily. This negative impact of the power index 
should be considered during the design of the structures. The effect of the metal-ceramic 
composition (the properties of the components of the FGM plate), the power law indices 
determining the amount of the composition, the dimensions of the plate, the angle of inclination 
and the boundary conditions affect the stability of the plate. Good configuration of these 
parameters will ensure that the structure has the optimum critical buckling load value. Although 
the specified parameters have limitations with respect to each other, optimum configurations 
can be obtained according to use by observing their effects separately. 
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