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Department of Mathematics,

Faculty of Science and Arts, Sakarya University,

Sakarya-TÜRKİYE
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Abstract

This paper concerns with the oscillation of numerical solutions of a kind of nonlinear delay

differential equation proposed by Benjamin Gompertz, this equation usually be used to

describe the population dynamics and tumour growth. We obtained some conditions under

which the numerical solutions are oscillatory. The non-oscillatory behaviors of numerical

solutions are also analyzed. Numerical examples are given to test our theoretical results.

1. Introduction

In recent years, the studies on oscillation of the solutions of delay differential equations (DDEs) are developing rapidly (see

[1, 2]). This research has been applied to many fields including biology, physics, ecology and so on. Nonetheless there are few

papers have been published on the oscillation of numerical solutions of DDEs (see [3]-[6]). So we will consider numerical

oscillation for Gompertz equation with one delay in this paper. In the past few years, Gompertz equation has been generally

used to describe the population dynamics and tumour growth (see [7, 8]). In 1825, Benjamin Gompertz proposed the classical

Gompertz model[9]

V̇ (t) =−rV (t) ln
V (t)

K
, V (0) =V0 > 0.

In 1932, Winsor analyzed some analytical properties of a modified Gompertz model and pointed that it can be used to describe

empirically the deceleration of tumour growth[10]. In 2000, Ferrante et al. considered a stochastic version of the Gompertz

model to describe vivo tumor growth [11]. While to study the investigated phenomena better, some researchers prefer to

incorporate various equations with the time delays in different ways. In [12], four kinds of models were derived by introducing

the discrete delays into the classical Gompertz model. One of them, which occurs in the following form will be discussed in

the rest paper

V̇ (t) =−rV (t) ln
V (t − τ)

K
, t ≥ 0, (1.1)

with r,K ∈ (0,∞), where r is the growth rate, V is the number of individuals or cells and K is the plateau number of individuals

or cells. The time delay figures maturation period of the individuals in the context of population growth. While it may figure

the time lag during the course of tumor growth (or degradation) owing to the time which is required for the cells to identify and

accommodate to changes in the environment. The existence, uniqueness and asymptotic properties of the solutions of (1.1)
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were studied in [12]. In [13], the occurrence of period orbits owing to the Hopf bifurcation was analyzed. Meanwhile, the

existence of periodic solutions was confirmed and some results for the asymptotically stability of the periodic solutions were

given. Later, for the Gompetrz model with one delay, the stability and Hopf bifurcation were studied in [14]. However, to the

best of our knowledge, until now very few results dealing with the oscillation of solutions of (1.1) were found. Therefore,

from the viewpoint of analytically and numerically, our objective in this paper is to acquire some sufficient conditions for

oscillation of all positive solutions of (1.1) about the equilibrium. We also prove that every non-oscillatory solution will tend to

the equilibrium when the time approaches to infinity.

In the rest paper, we only study the solutions of (1.1) with initial condition of the form

V (t) = φ(t), −τ ≤ t ≤ 0,

where φ ∈ C([−τ,0], [0,∞)) and φ(0)> 0. By the method of steps one can prove that (1.1) has positive solutions for all t ≥ 0.

From [15], we know the difference equation

an+1 −an +
l

∑
j=−k

q jan+ j = 0 (1.2)

is oscillatory if and only if the characteristic equation of (1.2) has no positive roots. So we introduce a useful theorem.

Theorem 1.1. [15] Consider the difference equation

an+1 −an + pan−k = 0, (1.3)

where p ∈ R, k ∈ Z. Then every solution of (1.3) oscillates if and only if one of the following conditions holds:

1. k =−1 and p ≤−1;

2. k = 0 and p ≥ 1;

3. k ∈ {. . . ,−3,−2}∪{1,2, . . .} and p
(k+1)k+1

kk > 1.

2. The oscillation of solutions

In this section, we will illustrate some sufficient conditions for oscillation of (1.1) about the equilibrium K analytically and

numerically.

Theorem 2.1. Every positive solution of (1.1) oscillates about K if

rτ >
1

e
. (2.1)

Proof. Set V (t) = Key(t), then V (t) oscillates about K if and only if y(t) oscillates about zero. So from (1.1) we find that

ẏ(t) =−ry(t − τ). (2.2)

Then by Theorem 2.2.3 in [15], we know that every solution of (1.1) oscillates if and only if (2.1) holds.

Next, we transfer to discuss the numerical case. Applying the linear θ -method to (2.2), one has

yn+1 = yn −hθryn+1−m −h(1−θ)ryn−m, (2.3)

where 0 ≤ θ ≤ 1, h = τ/m is stepsize and m is a positive integer. yn+1 and yn+1−m are approximations to y(t) and y(t − τ) at

tn+1, respectively. Let yn = ln(Vn/K), then (2.3) reads

ln
Vn+1

K
= ln

Vn

K
−hθr ln

Vn+1−m

K
−h(1−θ)r ln

Vn−m

K
= ln

[

Vn

K

(

K

Vn+1−m

)hθr (
K

Vn−m

)h(1−θ)r
]

,

that is

Vn+1 =VnKhr 1

V hθr
n+1−m

1

V
h(1−θ)r
n−m

. (2.4)

It is obvious that Vn is oscillatory about K if and only if yn is oscillatory. In the following we seek the conditions under which

(2.4) is oscillatory.
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Lemma 2.2. The characteristic equation of (2.3) is given by

λ = R(−hrλ−m), (2.5)

where R(x) = (1+(1−θ)x)/(1−θx) is the stability function of the linear θ -method.

The proof of this Lemma can be given directly and we omit it.

Lemma 2.3. Under the condition (2.1), (2.5) has no positive roots for 0 ≤ θ ≤ 1/2.

Proof. Let P(λ ) = λ −R(−hrλ−m). From [16], we have

R(−hrλ−m)≤ exp(−hrλ−m), λ > 0, 0 ≤ θ ≤ 1/2.

Further, we will prove Q(λ ) = λ − exp(−hrλ−m) > 0 for λ > 0. Assume there is a λ0 > 0 such that Q(λ0) ≤ 0, then

λ0 ≤ exp(−hrλ−m
0 ), and λ m

0 ≤ exp(−rτλ−m
0 ). Thus

rτe ≤ rτλ−m
0 exp(1− rτλ−m

0 ).

So we have

• If 1− rτλ−m
0 = 0, then rτe ≤ 1, which contradicts to (2.1).

• If 1− rτλ−m
0 6= 0, since ex < 1/(1− x) for x < 1 and x 6= 0, we get rτe ≤ 1, which also contradicts to (2.1).

Therefore, for λ > 0, P(λ ) = λ −R(−hrλ−m)≥ λ − exp(−hrλ−m) = Q(λ )> 0, which suggests that (2.5) has no positive

roots.

Next we consider the case 1/2 < θ ≤ 1 under the assumption m > 1.

Lemma 2.4. Under the conditions (2.1) and 1/2 < θ ≤ 1, (2.5) has no positive roots for h < h0, where

h0 =

{

∞, rτ ≥ 1,

τ(1+ lnrτ), rτ < 1.
(2.6)

Proof. It can be noted that R(−hrλ−m) is an increasing function for θ when λ > 0, then

R(−hrλ−m) =
1−h(1−θ)rλ−m

1+hθrλ−m
≤

1

1+hrλ−m
.

Next, we will illustrate that λ −1/(1+hrλ−m) is positive under some conditions. Actually

λ −
1

1+hrλ−m
=

λ−m+1

1+hrλ−m
S(λ ),

we need to prove S(λ ) = λ m−λ m−1+hr > 0 for each λ > 0. Obviously, S(λ ) is the characteristic polynomial of the difference

equation

wn+1 = wn −hrwn−m+1.

According to Theorem 1.1, S(λ ) has no positive roots if and only if

hr
mm

(m−1)m−1
> 1,

equivalently

lnrτ +(m−1) ln

(

1+
1

m−1

)

> 0. (2.7)

If rτ ≥ 1, then (2.7) holds. If rτ < 1 and h < τ(1+ lnrτ), from the fact ”ln(1+ x)> x/(1+ x) holds for x >−1 and x 6= 0”

we have

lnrτ +(m−1) ln

(

1+
1

m−1

)

> lnrτ +
m−1

m
> 0.

Thus we find

P(λ ) = λ −R(−hrλ−m)≥ λ −1/(1+hrλ−m)> 0,

which implies that (2.5) has no positive roots.
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In view of Lemmas 2.3, 2.4 and Theorem 2.1, we get the following theorem.

Theorem 2.5. Under the condition (2.1), (2.4) is oscillatory for

h <

{

∞, for 0 ≤ θ ≤ 1/2,

h0, for 1/2 < θ ≤ 1,

where h0 is defined in (2.6).

3. Non-oscillatory solutions

In this section, we study the asymptotic behavior of non-oscillatory solutions of (1.1) and (2.4).

Theorem 3.1. Let V (t) be a positive solution of (1.1), which does not oscillate about K, then lim
t→∞

V (t) = K.

Proof. Since V (t) = Key(t) we only need to prove that lim
t→∞

y(t) = 0. Assume that y(t) ≥ 0 for sufficiently large t (the case

y(t)< 0 is similar and will be omitted). Then from (2.2) we have ẏ(t)≤ 0. So y(t) is decreasing and

lim
t→∞

y(t) = Y ∈ [0,∞), (3.1)

we prove Y = 0 by contradiction. Assume Y > 0 and (2.2) produces

lim
t→∞

ẏ(t) =−r lim
t→∞

y(t − τ) =−rY < 0.

Then lim
t→∞

y(t) =−∞, which is a contradiction to (3.1).

In the following, we will prove that the numerical solution Vn can inherit this property.

Theorem 3.2. Let yn be a solution of (2.3), which does not oscillate, then lim
t→∞

yn = 0.

Proof. Assume that yn > 0 for n sufficiently large (the case yn < 0 is similar and will be omitted). From (2.3) we know

yn+1 − yn =−(hθryn+1−m +h(1−θ)ryn−m)< 0, (3.2)

then yn is decreasing. So there exists a constant Z such that

lim
n→∞

yn = Z ∈ [0,∞). (3.3)

We argue Z = 0 by contradiction. Suppose Z > 0, then there is N ∈N and ε > 0 such that 0 < Z−ε < yn < Z+ε for n−m > N,

hence yn−m > Z − ε and yn−m+1 > Z − ε . So (3.2) gives

yn+1 − yn <−(hθrZ +h(1−θ)rZ),

which indicates that yn+1 − yn < A, where A =−(hθrZ +h(1−θ)rZ)< 0. Thus yn →−∞ as n → ∞, which contradicts to

(3.3).

Theorem 3.3. Let Vn be a positive solution of (2.4), which does not oscillate about K , then lim
n→∞

Vn = K.

4. Numerical examples

In this section we give two numerical examples to verify the previous results.

Firstly, in order to test Theorems 2.1 and 2.5, we consider the following equation

V̇ (t) =−
1

15
V (t) ln

V (t −13)

2
, t ≥ 0 (4.1)

with the initial condition

V (t) = 7, −13 ≤ t ≤ 0.

In (4.1), we have 1/e < rτ = 13/15 < 1, which implies that the solutions of (4.1) are oscillatory according to Theorem 2.1.

In Figure 4.1, we draw the figures of the analytic solutions and the numerical solutions with θ = 0.1 ≤ 1/2 and h = τ/m =
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Figure 4.1: The analytic solutions and the numerical solutions of (4.1) with h = 0.52, θ = 0.1.
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Figure 4.2: The analytic solutions and the numerical solutions of (4.1) with h = 0.65, θ = 0.9.
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Figure 4.3: The analytic solutions and the numerical solutions of (4.2) with h = 0.4 and θ = 0.2.

13/25 = 0.52 <+∞. On the other hand, we set 1/2 < θ = 0.9 ≤ 1 and m = 20 in Figure 4.2. Then h0 = τ(1+ lnrτ)≈ 8.1140

and h = τ/m = 13/20 = 0.65 < h0. Therefore, according to Theorem 2.5, the numerical solutions of (4.1) are also oscillatory

for these two cases, which are all the same with Figures 4.1 and 4.2.

Next, we illustrate the validity of Theorems 3.1 and 3.2 in the second example. Consider the equation

V̇ (t) =−
1

10
V (t) ln

V (t − 4
5
)

3
, t ≥ 0 (4.2)

with the initial condition

V (t) = 5, −
4

5
≤ t ≤ 0.

In (4.2), we have rτ = 0.08 < 1/e, which does not satisfy Theorem 2.1. So the analytic solutions and the numerical solutions

of (4.2) are non-oscillatory. In Figure 4.3, we draw the figures of the analytic solutions and the numerical solutions of (4.2).

From this figure, we can see that V (t)→ K = 3 as t → ∞ and Vn → K = 3 as n → ∞. That is, the linear θ−method preserves

the asymptotic behavior of non-oscillatory solutions, which coincides with Theorems 3.1 and 3.2.

5. Conclusion

In this paper, numerical oscillation and asymptotic behavior for Gompertz equation with one delay are studied. Some sufficient

conditions are proposed. Numerical examples are provided to illustrate the validity of our results. In the future, we will

consider the multidimensional and stochastic case.
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Abstract

A rectifying curve γ in the Euclidean 3-space E3 is defined as a space curve whose position

vector always lies in its rectifying plane (i.e., the plane spanned by the unit tangent vector

field Tγ and the unit binormal vector field Bγ of the curve γ), and an f -rectifying curve γ in

the Euclidean 3-space E
3 is defined as a space curve whose f -position vector γ f , defined

by γ f (s) =
∫

f (s)dγ , always lies in its rectifying plane, where f is a nowhere vanishing

real-valued integrable function in arc-length parameter s of the curve γ . In this paper, we

introduce the notion of f -rectifying curves which are null (lightlike) in the Minkowski

3-space E
3
1. Our main aim is to characterize and classify such null (lightlike) f -rectifying

curves having spacelike or timelike rectifying plane in the Minkowski 3-Space E
3
1.

1. Introduction

Let E3 denote the Euclidean 3-space. Let γ : I −→ E
3 be a unit-speed curve parametrized by arc-length function s with at least

four continuous derivatives. Needless to mention, I denotes a non-trivial interval in R, i.e., a connected set in R containing at

least two points. For the curve γ in E
3, we consider the Frenet apparatus {Tγ ,Nγ ,Bγ ,κγ ,τγ}, where Tγ is the unit tangent vector

field, Nγ is the unit principal normal vector field, Bγ = Tγ ×Nγ is the unit binormal vector field of the curve γ , and κγ : I −→ R

is a differentiable function with κγ > 0, known as the curvature of γ , and τγ : I −→ R is a differentiable function, called the

torsion of γ . Then the Serret-Frenet formulae for the curve γ are given by ([1]-[4])





T ′
γ

N′
γ

B′
γ



=





0 κγ 0

−κγ 0 τγ

0 −τγ 0









Tγ

Nγ

Bγ



 .

The planes spanned by {Tγ ,Nγ}, {Nγ ,Bγ} and {Tγ ,Bγ} are called the osculating plane, the normal plane and the rectifying

plane of the curve γ , respectively ([2, 5]).

In the Euclidean 3-space E
3, the notion of a rectifying curve was introduced by B.Y. Chen in [5] as a tortuous curve whose

position vector always lies in the rectifying plane of the curve. That is, for a rectifying curve γ : I −→ E
3, the position vector

of γ can be expressed as

γ(s) = λ (s)Tγ(s)+µ(s)Bγ(s), s ∈ I,

Email addresses and ORCID numbers: zafariqbal math@yahoo.com, https://orcid.org/0000-0003-4405-1160 (Z. Iqbal), joydeep1972@yahoo.com,

https://orcid.org/0000-0002-1609-0798 (J. Sengupta)
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for two differentiable functions λ ,µ : I −→ R in arc-length parameter s of γ .

Several characterizations and classification of the rectifying curves in E
3 were studied in [5]-[8]. Meanwhile the notion

of rectifying curves were extended to several sort of Riemannian and pseudo-Riemannian spaces. As for example, many

characterizations and classification of rectifying curves in the Minkowski 3-space E
3
1 were studied in [9]-[11].

In this paper, we study null f -rectifying curves in the Minkowski 3-space E
3
1. We organize this paper with three sections. In

the first section, we give some basic preliminaries and then introduce the notion of f -rectifying curves which are null (or

lightlike) in E
3
1. Thereafter the second section is devoted to investigate some characterizations of null f -rectifying curves in E

3
1.

In the concluding section, we classify null f -rectifying curves in terms of their f -position vectors in E
3
1.

2. Preliminaries

The Minkowski 3-space E
3
1 is the Euclidean 3-space E

3 equipped with the standard flat metric g (called the Lorentzian inner

product) defined by

g(v,w) = v1w1 + v2w2 − v3w3

for all tangent vectors v = (v1,v2,v3) and w = (w1,w2,w3) to E
3
1 (see [12, 13]). A tangent vector v to E

3
1 is called a

spacelike vector if and only if g(v,v)> 0 or v = 0,

lightlike vector (null vector) if and only if g(v,v) = 0 and v 6= 0,

timelike vector if and only if g(v,v)< 0 ([12, 13]).

As usual, the norm of a tangent vector v to E
3
1 is denoted and defined by ‖v‖=

√

|g(v,v)|. It is trivial to mention that a tangent

vector v to E
3
1 is called a unit vector if and only if ‖v‖= 1, i.e., if and only if |g(v,v)|= 1, i.e., if and only if g(v,v) =±1.

Two tangent vectors v and w to E
3
1 are said to be orthogonal if and only if g(v,w) = 0. For any two tangent vectors v and w to

E
3
1, the vectorial product of v and w is defined by

v×w =

∣

∣

∣

∣

∣

∣

e1 e2 −e3

v1 v2 v3

w1 w2 w3

∣

∣

∣

∣

∣

∣

= (v2w3 − v3w2)e1 +(v3w1 − v1w3)e2 +(v2w1 − v1w2)e3,

where ei = (δi1,δi2,δi3) for each i ∈ {1,2,3}, δi j =

{

1 if i = j,

0 if i 6= j
such that e1 × e2 = −e3, e2 × e3 = e1, e3 × e1 =

e2 ([12, 13]).

Let γ : I −→ E
3
1 be a curve in E

3
1 and γ ′ stands for its velocity vector field. The curve γ is said to be a spacelike curve, a

lightlike curve (null curve) or a timelike curve in E
3
1 if and only if its velocity vector γ ′(t) is a spacelike vector, a lightlike

vector (null vector) or a timelike vector, respectively, for each t ∈ I. To elaborate, the curve γ in E
3
1 is a

spacelike curve if and only if g(γ ′(t),γ ′(t))> 0 or γ ′(t) = 0,

lightlike curve (null curve) if and only if g(γ ′(t),γ ′(t)) = 0 and γ ′(t) 6= 0,

timelike curve if and only if g(γ ′(t),γ ′(t))< 0

for all t ∈ I (see [12, 13]). Thus, the curve γ is said to be a non-null curve in E
3
1 if and only if it is either a spacelike curve or a

timelike curve in E
3
1, i.e., if and only if g(γ ′(t),γ ′(t)) 6= 0 for all t ∈ I. If γ is a non-null (spacelike or timelike) curve in E

3
1

and we change the parameter t by the function s = s(t) given by s(t) =
∫ t

0 ‖γ ′(u)‖ du such that ‖γ ′(s)‖=
√

|g(γ ′(s),γ ′(s))|=
1, i.e., g(γ ′(s),γ ′(s)) =±1 for all s ∈ I, then the non-null curve γ is said to be parametrized by arc-length function s or a unit-

speed non-null curve in E
3
1. Again, if γ is a null (lightlike) curve in E

3
1 and we change the parameter t by the function s = s(t)

given by s(t) =
∫ t

0

√

‖γ ′′(u)‖du such that g(γ ′′(s),γ ′′(s)) = 1 for all s ∈ I, then the null curve γ is said to be parametrized by

pseudo arc-length function s or a unit-speed null curve in E
3
1.

Let γ : I −→ E
3
1 be a unit-speed null or non-null curve in the Minkowski 3-space E

3
1 parametrized by arc-length function or

pseudo arc-length function s with Frenet apparatus {Tγ ,Nγ ,Bγ ,κγ ,τγ}, where {Tγ ,Nγ ,Bγ = Tγ ×Nγ} is the dynamic Frenet

frame along the curve γ in E
3
1 and κγ , τγ are two differentiable functions in the parameter s called, respectively, the curvature

and the torsion of the curve γ in E
3
1. Then to write the Serret-Frenet formulae for the curve γ the following mutually distinct

cases come up for consideration:

Case I: Let γ be a spacelike curve with a spacelike principal normal Nγ in E
3
1. Then the Serret-Frenet formulae for the curve

γ are given by





T ′
γ

N′
γ

B′
γ



=





0 κγ 0

−κγ 0 τγ

0 τγ 0









Tγ

Nγ

Bγ



 ,
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where g
(

Tγ(s),Tγ(s)
)

= 1, g
(

Nγ(s),Nγ(s)
)

= 1, g
(

Bγ(s),Bγ(s)
)

= −1, g
(

Tγ(s),Nγ(s)
)

= 0, g
(

Tγ(s),Bγ(s)
)

= 0,

g
(

Nγ(s),Bγ(s)
)

= 0 for all s ∈ I.

Case II: Let γ be a spacelike curve with a timelike principal normal Nγ in E
3
1. Then the Serret-Frenet formulae for the curve

γ are given by




T ′
γ

N′
γ

B′
γ



=





0 κγ 0

κγ 0 τγ

0 τγ 0









Tγ

Nγ

Bγ



 ,

where g
(

Tγ(s),Tγ(s)
)

= 1, g
(

Nγ(s),Nγ(s)
)

= −1, g
(

Bγ(s),Bγ(s)
)

= 1, g
(

Tγ(s),Nγ(s)
)

= 0, g
(

Tγ(s),Bγ(s)
)

= 0,

g
(

Nγ(s),Bγ(s)
)

= 0 for all s ∈ I.

Case III: Let γ be a spacelike curve with a null principal normal Nγ in E
3
1. Then the Serret-Frenet formulae for the curve γ

are given by




T ′
γ

N′
γ

B′
γ



=





0 κγ 0

0 τγ 0

−κγ 0 −τγ









Tγ

Nγ

Bγ



 ,

where g
(

Tγ(s),Tγ(s)
)

= 1, g
(

Nγ(s),Nγ(s)
)

= 0, g
(

Bγ(s),Bγ(s)
)

= 0, g
(

Tγ(s),Nγ(s)
)

= 0, g
(

Tγ(s),Bγ(s)
)

= 0,

g
(

Nγ(s),Bγ(s)
)

= 1 for all s ∈ I. In this case, κγ can take only two values: κγ = 0 if γ is a straight line and κγ = 1 in the

remaining cases.

Case IV: Let γ be a timelike curve in E
3
1. Then the Serret-Frenet formulae for the curve γ are given by





T ′
γ

N′
γ

B′
γ



=





0 κγ 0

κγ 0 τγ

0 −τγ 0









Tγ

Nγ

Bγ



 ,

where g
(

Tγ(s),Tγ(s)
)

= −1, g
(

Nγ(s),Nγ(s)
)

= 1, g
(

Bγ(s),Bγ(s)
)

= 1, g
(

Tγ(s),Nγ(s)
)

= 0, g
(

Tγ(s),Bγ(s)
)

= 0,

g
(

Nγ(s),Bγ(s)
)

= 0 for all s ∈ I.

Case V: Let γ be a null (lightlike) curve in E
3
1. Then the Serret-Frenet formulae for the curve γ are given by





T ′
γ

N′
γ

B′
γ



=





0 κγ 0

τγ 0 −κγ

0 −τγ 0









Tγ

Nγ

Bγ



 , (2.1)

where g
(

Tγ(s),Tγ(s)
)

= 0, g
(

Nγ(s),Nγ(s)
)

= 1, g
(

Bγ(s),Bγ(s)
)

= 0, g
(

Tγ(s),Nγ(s)
)

= 0, g
(

Tγ(s),Bγ(s)
)

= 1,

g
(

Nγ(s),Bγ(s)
)

= 0 for all s ∈ I. In this case, κγ can take only two values: κγ = 0 if γ is a straight null line and κγ = 1 in the

remaining cases.

The two-dimensional pseudo-Riemannian sphere of unit radius and centred at the origin in E
3
1 is denoted and defined by

S
2
1(1) :=

{

v ∈ E
3
1 : g(v,v) = 1

}

,

and the two-dimensional pseudo-hyperbolic space of unit radius and centred at the origin in E
3
1 is denoted and defined by

H
2
0(1) :=

{

v ∈ E
3
1 : g(v,v) =−1

}

.

For more elaborations of the above discussion please see [9]-[13].

An arbitrary plane π in E
3
1 is spacelike, timelike or lightlike if the induced Lorentzian metric g|π is respectively positive

definite, non-degenerate of index 1, or degenerate. A unit-speed null curve γ : I −→ E
3
1 parametrized by pseudo arc-length

function s is called a rectifying curve in E
3
1 if its position vector always lies in its rectifying plane in E

3
1, i.e., if its position

vector γ in E
3
1 can be expressed as

γ(s) = λ (s)Tγ(s)+µ(s)Bγ(s), s ∈ I,

for some differentiable functions λ ,µ : I −→ R in pseudo arc-length parameter s of γ . Now, for some non-zero integrable

function f : I −→ R in pseudo arc-length function s, the f -position vector of the curve γ in E
3
1 is denoted by γ f and is defined

by

γ f (s) :=
∫

f (s) dγ

for all s ∈ I. Keeping in mind this notion of position vector of a curve in E
3
1, we define a null f -rectifying curve in E

3
1 as

follows:
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Definition 2.1. (Null f -Rectifying Curve) Let γ : I −→E
3
1 be a unit-speed null curve in E

3
1 parametrized by pseudo arc-length

function s with Frenet apparatus {Tγ ,Nγ ,Bγ ,κγ ,τγ}, and let f : I −→ R be a nowhere vanishing integrable function in pseudo

arc-length parameter s. The curve γ is called an f -rectifying curve in E
3
1 if its f -position vector γ f =

∫

f dγ always lies in its

rectifying plane in E
3
1, i.e., if its f -position vector γ f =

∫

f dγ in E
3
1 can be expressed as

γ f (s) =
∫

f (s) dγ = λ (s)Tγ(s)+µ(s)Bγ(s), s ∈ I,

for two differentiable functions λ ,µ : I −→ R in pseudo arc-length parameter s.

In the next section, we shall see that if the function f vanishes on I, then the ratio
τγ

κγ
for the curve γ in E

3
1 is constant, and

hence it becomes a helix in E
3
1. This is why we have taken here the function f as nowhere vanishing integrable function on I.

And if the function f is a non-zero constant on I, then the ratio
τγ

κγ
for the curve γ in E

3
1 is a non-constant linear function in

pseudo arc-length parameter s, and hence it reduces to a rectifying curve in E
3
1.

3. Characterizations of null f -rectifying curves in the Minkowski 3-space E
3
1

First, we mention (and then prove) a theorem in which we characterize unit-speed null (lightlike) f -rectifying curves in the

Minkowski 3-space E
3
1 in terms of the norm functions, tangential components and binormal components of their f -position

vectors.

Theorem 3.1. Let γ : I −→ E
3
1 be a unit-speed null f -rectifying curve in E

3
1 parametrized by pseudo arc-length function s with

the curvature function κγ ≡ 1 and the torsion function τγ , and let f : I −→ R be a nowhere vanishing integrable function in

pseudo arc-length parameter s with primitive function F. Then the following statements hold:

1. The norm function ρ = ‖γ f ‖ is given by

ρ(s) =
√

|2cF(s)|

for all s ∈ I, where c is a non-zero constant.

2. The tangential component g(γ f ,Tγ) of the f -position vector γ f of the curve γ is a non-zero constant.

3. The torsion function τγ is non-zero, and the binormal component g(γ f ,Bγ) of the f -position vector γ f of the curve γ is

given by

g
(

γ f (s),Bγ(s)
)

= F(s) =
∫

f (s)ds

for all s ∈ I.

Conversely, if f : I −→ R is a nowhere vanishing integrable function in pseudo arc-length function s with primitive function F,

and if γ : I −→ E
3
1 is a unit-speed null curve in E

3
1 and with the curvature function κγ ≡ 1 and the torsion function τγ , and any

one of the statements 1, 2 or 3 holds, then γ is an f -rectifying curve in E
3
1.

Proof. Let us first assume that γ : I −→ E
3
1 be a unit-speed null f -rectifying curve in E

3
1 parametrized by pseudo arc-length

function s with the curvature function κγ ≡ 1 and the torsion function τγ , where f : I −→ R is a nowhere vanishing integrable

function in pseudo arc-length parameter s with primitive function F . Then the f -position vector γ f of the curve γ can be

expressed as

γ f (s) =
∫

f (s) dγ = λ (s)Tγ(s)+µ(s)Bγ(s), s ∈ I, (3.1)

for two derivable functions λ ,µ : I −→ R in pseudo arc-length parameter s. Differentiating both the sides of the equation (3.1)

with respect to s and then applying the Serret-Frenet formulae (2.1), we obtain

f (s)Tγ(s) = λ ′(s)Tγ(s)+
(

λ (s)−µ(s)τγ(s)
)

Nγ(s)+µ ′(s)Bγ(s) (3.2)

for all s ∈ I. Equating the coefficients of like-terms from both the sides of equation (3.2), we find

λ ′(s) = f (s), λ (s)−µ(s)τγ(s) = 0, µ ′(s) = 0
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which implies























λ (s) =
∫

f (s) ds = F(s) ,

τγ(s) =
λ (s)

µ(s)
,

µ(s) = a non-zero constant = c (suppose)

(3.3)

for all s ∈ I. We have the following:

1. Using the equation (3.1) and the relations (3.3), the norm function ρ = ‖γ f ‖ is given by

ρ2(s) =
∥

∥γ f (s)
∥

∥

2
=
∣

∣g
(

γ f (s),γ f (s)
)∣

∣= |2cF(s)|

for all s ∈ I. That is,

ρ(s) =
√

|2cF(s)|

for all s ∈ I, where c is a non-zero constant.

2. Using the equation (3.1) and the relations (3.3), the tangential component g(γ f ,Tγ) of the f -position vector γ f of γ is

given by

g
(

γ f (s),Tγ(s)
)

= µ(s) = c

for all s ∈ I. Hence, the tangential component g(γ f ,Tγ) of the f -position vector γ f of the curve γ is a non-zero constant.

3. From the relations (3.3) it is evident that τγ(s) 6= 0 for all s ∈ I. Using the equation (3.1) and the relations (3.3), the

binormal component g(γ f ,Bγ) of the f -position vector γ f of γ is given by

g
(

γ f (s),Bγ(s)
)

= λ (s) = F(s)

for all s ∈ I.

Conversely, we assume that f : I −→ R is a nowhere vanishing integrable function in pseudo arc-length function s with

primitive function F , and we also assume that γ : I −→ E
3
1 is a unit-speed null (lightlike) curve in E

3
1 and with the curvature

function κγ ≡ 1 and the torsion function τγ , and the statement 1 or 2 holds. For the statement 1, we have

g
(

γ f (s),γ f (s)
)

= 2cF(s) (3.4)

for all s ∈ I, where c is a non-zero constant. Differentiating both the sides of the equation (3.4), and using the relations

γ ′f (s) = f (s)Tγ(s) and F ′(s) = f (s) for all s ∈ I, we obtain

g
(

γ f (s),T (s)
)

= c (3.5)

for all s ∈ I. This is nothing but the statement 2. So, in either case, we find the equation (3.5). Now, differentiating both the

sides of the equation (3.5) with respect to s, and applying the relations γ ′f (s) = f (s)Tγ(s), T ′
γ (s) = κγ(s)Nγ(s), κγ(s) = 1 and

g
(

Tγ(s),Tγ(s)
)

= 0 for all s ∈ I, we obtain

f (s) g
(

Tγ(s),Tγ(s)
)

+κγ(s) g
(

γ f (s),Nγ(s)
)

= 0

=⇒ g
(

γ f (s),Nγ(s)
)

= 0

for all s ∈ I. This asserts us that γ is an f -rectifying curve in E
3
1.

Finally, we assume that the statement 3 holds. Then for all s ∈ I, we have

g
(

γ f (s),Bγ(s)
)

= F(s). (3.6)

Differentiating both the sides of the equation (3.6) with respect to s, and in virtue of the relations γ ′f (s) = f (s)Tγ(s), B′
γ(s) =

−τγ(s)Nγ(s), τγ(s) 6= 0, g
(

Tγ(s),Bγ(s)
)

= 1 and F ′(s) = f (s) for all s ∈ I, we obtain

f (s)g
(

Tγ(s),Bγ(s)
)

− τγ(s)g
(

γ f (s),Nγ(s)
)

= f (s)

=⇒ g
(

γ f (s),Nγ(s)
)

= 0

for all s ∈ I. This asserts us that γ is an f -rectifying curve in E
3
1.
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In the next theorem, we characterize a unit-speed null f -rectifying curve in the Minkowski 3-space E3
1 by virtue of the ratio

τγ

κγ

of the curvature function κγ and the torsion function τγ .

Theorem 3.2. Let γ : I −→ E
3
1 be a unit-speed null curve in E

3
1 parametrized by pseudo arc-length function s with the

curvature function κγ ≡ 1 and the torsion function τγ . Also, let f : I −→ R be a nowhere vanishing integrable function

in pseudo arc-length parameter s with primitive function F. Then, up to isometries of E3
1, the curve γ is congruent to an

f -rectifying curve in E
3
1 if and only if the ratio

τγ

κγ
satisfies

τγ(s)

κγ(s)
=

1

c
F(s)

for all s ∈ I, where c is a non-zero constant.

Proof. Let us first assume that γ : I −→ E
3
1 be a unit-speed null f -rectifying curve in E

3
1 parametrized by pseudo arc-length

function s with the curvature function κγ ≡ 1 and the torsion function τγ , and f : I −→ R is a nowhere vanishing integrable

function in pseudo arc-length parameter s with primitive function F . Then from the second one of the relations (3.3), we have

τγ(s)

κγ(s)
=

λ (s)

µ(s)
=

1

c
F(s)

for all s ∈ I, where c is a non-zero constant.

Conversely, we assume that γ : I −→ E
3
1 be a unit-speed null curve in E

3
1 parametrized s with the curvature function κγ ≡ 1

and the torsion function τγ , where f : I −→R is a nowhere vanishing integrable function in pseudo arc-length parameter s with

primitive function F such that the ratio
τγ

κγ
is given by

τγ(s)

κγ(s)
=

1

c
F(s)

for all s ∈ I, where c is a non-zero constant. Then by applying the Serret-Frenet formulae (2.1), we obtain

d

ds

(

γ f (s)−F(s)Tγ(s)− cBγ(s)
)

= 0

for all s ∈ I. This proves that, up to isometries of E3
1, γ is an f - rectifying curve in E

3
1.

Remark 3.3. Let γ : I −→ E
3
1 be a unit-speed null curve in E

3
1 parametrized by pseudo arc-length function s with curvature

function κγ ≡ 1 and the torsion function τγ . If the function f vanishes identically on I, then its primitive function F is a

constant on I. Hence, by the previous theorem, the ratio
τγ

κγ
for the curve γ in E

3
1 is given by

τγ(s)

κγ(s)
=

1

c
F(s) = a constant

for all s ∈ I. Consequently, the curve γ reduces to becomes a helix in E
3
1 ([1]).

Again, if the function f is a non-zero constant on I, then its primitive function F is given by

F(s) = c1s+ c2

for all s ∈ I, where c1 and c2 are constants. Hence, by the previous theorem, the ratio
τγ

κγ
for the curve γ in E

3
1 is given by

τγ(s)

κγ(s)
=

1

c
F(s) =

1

c
(c1s+ c2) = as+b

for all s ∈ I, where a =
c1

c
(6= 0) and b =

c2

c
are constants. Thus, the ratio

τγ

κγ
is a non-constant linear function in pseudo

arc-length parameter s. Consequently, the curve γ reduces to a rectifying curve in E
3
1 ([11]).
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4. Classification of null f -rectifying curves in the Minkowski 3-space E
3
1

In this section, we determine explicitly all unit-speed null f -rectifying curves in the Minkowski 3-space E
3
1 in terms of their

f -position vectors. The main theorem reads as follows:

Theorem 4.1. Let γ : I −→ E
3
1 be a unit-speed null curve in E

3
1 parametrized by pseudo arc-length function s and f : I −→ R

be a nowhere vanishing integrable function in s with primitive function F. Then γ is an f -rectifying curve in E
3
1 having a

spacelike (or timelike) f -position vector γ f if and only if, up to a parametrization, its f -position vector γ f is given by

γ f (t) =
√

2cF(0) et y(t)

for all possible t, where c is a positive constant, F(0)> 0 and y = y(t) is a unit-speed timelike (respectively spacelike) curve

in the pseudo-sphere S
2
1(1) (respectively the pseudo-hyperbolic space H

2
0(1)).

Proof. First, we assume that γ is a unit-speed null f -rectifying curve in E
3
1 having a spacelike f -position vector γ f , where

f : I −→ R is a nowhere vanishing integrable function in s with primitive function F . Then we have

g
(

γ f (s),γ f (s)
)

> 0, g
(

Tγ(s),Tγ(s)
)

= 0

for all s ∈ I, and from the proof of the Theorem 3.1, we obtain

ρ2(s) =
∥

∥γ f (s)
∥

∥

2
=
∣

∣g
(

γ f (s),γ f (s)
)∣

∣= 2cF(s), (4.1)

for all s ∈ I, where we may choose c as an arbitrary positive constant. Now, we define a curve y = y(s) by

y(s) :=
γ f (s)

ρ(s)
(4.2)

for all s ∈ I. Then we have

g(y(s),y(s)) =
g
(

γ f (s),γ f (s)
)

ρ2(s)
= 1, (4.3)

for all s ∈ I. Therefore, y = y(s) is a curve in the pseudo-sphere S2
1(1). Differentiating both the sides of the equation (4.3) with

respect to s, we obtain

g
(

y(s),y′(s)
)

= 0 (4.4)

for all s ∈ I. Now, from the equations (4.1) and (4.2), we find

γ f (s) = y(s)
√

2cF(s) (4.5)

for all s ∈ I. Differentiating both the sides of the equation (4.5) with respect to s, we get

f (s)Tγ(s) = y′(s)
√

2cF(s) +
c f (s)y(s)
√

2cF(s)
, (4.6)

for all s ∈ I. From the equations (4.3), (4.4) and (4.6), we obtain

g
(

y′(s),y′(s)
)

=−
f 2(s)

4F2(s)
(4.7)

for all s ∈ I. This indicates that y is a timelike curve. From the equation (4.7), we find

∥

∥y′(s)
∥

∥=
√

|g(y′(s),y′(s))|=
f (s)

2F(s)

for all s ∈ I. Let t be arc-length parameter of the curve y in S
2
1(1) given by

t =
∫ s

0

∥

∥y′(u)
∥

∥du.

Then we obtain

t =
∫ s

0

f (u)

2F(u)
du

=⇒ t =
1

2
lnF(s)−

1

2
lnF(0)

=⇒ F(s) = F(0)e2t
. (4.8)
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It is obvious that F(0)> 0. Substituting the result (4.8) in (4.5), we obtain the f -position vector of γ as follows:

γ f (t) = y(t)
√

2cF(0) e2t =
√

2cF(0) et y(t)

for all possible t, where c is a positive constant, F(0) > 0 and y = y(t) is a unit-speed timelike curve in the pseudo-sphere

S
2
1(1).

Conversely, we assume that γ is a unit-speed null curve in E
3
1 such that for some nowhere vanishing integrable function

f : I −→ R in s with primitive function F the f -position vector γ f of γ is given by

γ f (t) :=
√

2cF(0) et y(t) (4.9)

for all possible t, where c is a positive constant, F(0) > 0 and y = y(t) is a unit-speed timelike curve in the pseudo-sphere

S
2
1(1). Since y = y(t) is a unit-speed timelike curve in the pseudo-sphere S2

1(1), we have g(y′(t),y′(t)) =−1, g(y(t),y(t)) = 1

and consequently g(y(t),y′(t)) = 0 for all t. Therefore, from the equation (4.9), we have

g
(

γ f (t),γ f (t)
)

= 2cF(0)e2t (4.10)

for all t. Now, we may reparametrize the curve γ by

t =
1

2
(lnF(s)− lnF(0)) ,

where s stands for arc-length parameter of γ . Then from (4.10), we have

g
(

γ f (s),γ f (s)
)

= 2cF(s)

for all s ∈ I. Therefore, the norm function ρ = ‖γ f ‖ is given by

ρ2(s) =
∥

∥γ f (s)
∥

∥

2
=
∣

∣g
(

γ f (s),γ f (s)
)∣

∣= |2cF(s)|

for all s ∈ I, that is,

ρ(s) =
√

|2cF(s)|

for all s ∈ I, where c is a positive constant. Therefore, by applying Theorem 3.1, we conclude the nature of γ as an f -rectifying

curve in E
3
1.

The proof is analogous when γ is considered as a unit-speed null f -rectifying curve in E
3
1 having a timelike f -position vector

γ f .

5. Conclusion

In this paper, we introduced the notion of null (lightlike) f -rectifying curves in the Minkowski 3-Space E
3
1 for some nowhere

vanishing integrable function f : I −→ R in pseudo arc-length parameter s with primitive function F . Then we characterized

such curves in E
3
1. In Theorem 3.1, we have shown that for a unit-speed f -rectifying curve γ in E

3
1, the norm function of its

f -position vector γ f is expressed in terms of the primitive function F , the tangential component of its f -position vector γ f is a

non-zero constant and the binormal component of its f -position vector γ f is nothing but the primitive function F . Thereafter,

in Theorem 3.2, it is shown that for a unit-speed f -rectifying curve γ in E
3
1, the ratio

τγ

κγ
of the curvature function κγ and the

torsion function τγ is a non-zero constant multiple of the primitive function F . Finally, in Theorem 4.1, we classified all such

unit-speed null f -rectifying curves having spacelike or timelike f -position vectors in E
3
1.
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Abstract

In this study, we determine the isoparametric surfaces and we give the Gauss map of these

surfaces by semi symmetric matrix, in Lorentz space. Also we define any chord property

and we show that the surfaces which have the chord property corresponds to isoparametric

surfaces. Moreover, we consider the chord property locally and we give some examples in

the Euclidean space.

1. Introduction and preliminaries

Isoparametric surfaces, surfaces with constant principal curvatures, are studied in [1]-[3] in terms of the chord property and

helical points of the surface in the Euclidean space. In [4], the unit disk characterized by the following:

Lemma 1.1. The only bounded, smooth and simply-connected plane region whose Szegö kernel coincides with the Cauchy

kernel is the disc.

Kerzman and Stein [4] used complex analysis technics related with the chord of the curve and they proved the Lemma above.

Then, Boas [5] extended this idea to n− dimensional Euclidean space. Boas gave the following theorem, by the help of

Bochner-Martinelli kernel:

Theorem 1.2. Ball is the only bounded C1 domain in R
m such that given any two points of the boundary, the chord joining

them meets the normals at the two endpoints with equal angles.

Thus, in ([5], Proof of Theorem 2, pp. 277-278), the chord property idea of [4] extended to the hyperspheres. Moreover, Boas

[2], extended his study [5], to all isoparametric surfaces in the Euclidean space. He gave such a local characterization theorem

for hyperspheres and spherical cylinders and proved that these surfaces satisfy
〈

x− y,
−→
∇ f (x)

〉

=
〈

y− x,
−→
∇ f (y)

〉

(1.1)

where x,y are points on surface and
−→
∇ f is the unit normal (gradient) vector field. Wegner [6], gave the short proof of ([2],

Local characterization theorem, p.120). In [1], in the light of [2, 5], the equation (1.1) considered on a hypersurface such that a

unit normal vector field G is naturally defined on the surface. Such G is called the Gauss map of surface. For any hypersphere,

the chord joining any two points on it meets the sphere at the same angle at the two points, that is, the sphere satisfies

〈y− x,G(x)+G(y)〉= 0 (1.2)

Email addres and ORCID number: emreozturk1471@gmail.com https://orcid.org/0000-0001-6638-3233 (E. Öztürk)
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In [1], the following question considered:

What are the hypersurfaces of Euclidean space that satisfy the (1.2)?

They used algebraic approaches and stated that Gauss map of surfaces which satisfy (1.2) is written as G(x) = Ax+b where A

is constant symmetric matrix, b is column vector. In [7], some special curves are defined and relations between these curves

and isoparametric surfaces are given in Lorentz-Minkowski space. In this study, we are looking for answers of the followings:

What are the hypersurfaces of Lorentz space that satisfy the (1.2)?

and

What are the hypersurfaces of Euclidean space that satisfy the (1.2) locally?

In Lorentz space, vectors have different causal characters such as if 〈u,u〉> 0 or u = 0, 〈u,u〉< 0 and 〈u,u〉= 0 (u 6= 0) then

u is called by spacelike, timelike and lightlike (or null) vector respectively. The number of timelike vectors of the orthonormal

basis of the vector space is called the index of space and usually denoted by ν . Through the [8], we give the followings:

Definition 1.3. Let X = (x1,x2, ...,xn) and Y = (y1,y2, ...,yn) be a two vector distinct from zero in n− dimensional real vector

space R
n. Following inner product,

〈X ,Y 〉=−x1y1 +
n

∑
i=2

xiyi

is called by Lorentzian inner product of X and Y , and 〈,〉 is called metric tensor of vector space. (Rn,〈,〉) is called Lorentz

space and denoted by L
n or R

n
1. If 〈u,v〉 = 0 implies that u=0 for all v where u,v ∈ TPR

n, then 〈,〉 is called canonical

non-degenerated inner product with arbitrary index.

Norm of the vector u ∈ R
n
1 is given by ‖u‖=

√

|〈u,u〉|. Let the index of n−dimensional non-degenerated inner product space

of V be 1 ≤ ν ≤ n and its orthonormal base be {e1,e2, ...,en}. Then ε1 = ε2 = ...= εν =−1 and εν+1 = εν+2 = ...= εn = 1,

where εi = 〈ei,ei〉. Therefore, the diagonal matrix (δi jε j) is called by the sign matrix of V such that

δi j =

{

1, i = j

0, i 6= j
, 1 ≤ i, j ≤ n

is Kronecker delta.

Definition 1.4. [8] Let n ≥ 2 and 0 ≤ ν ≤ n,

(1) The pseudosphere of radius r > 0 in R
n+1
ν is the hyperquadric

S
n
ν(r) =

{

P ∈ R
n+1
ν | 〈P,P〉= r2

}

with dimension n and index ν .

(2) The pseudohyperbolic space of radius r > 0 in R
n+1
ν+1 is the hyperquadric

H
n
ν(r) =

{

P ∈ R
n+1
ν+1 | 〈P,P〉=−r2

}

with dimension n and index ν .

Definition 1.5. Let M be a hypersurface in the Minkowski space and −→n be a unit normal vector field of M. If 〈−→n ,
−→n 〉< 0,

(〈−→n ,
−→n 〉> 0) then M is said to be spacelike (timelike) surface.

Lemma 1.6. [8] Let S be a shape operator (Weingarten map) and v be a tangent vector on M. S(v) = −∇v
−→n and for all

P ∈ M, linear operator of S is self-adjoint on TPM. Here ∇ is Levi-Civita connection on M in R
n
1space.

2. Linear operators and isoparametric surfaces

An integral operator in complex space C
n is given by

ζ ( f ,x) =

b
∫

a

f (x)K(t,x)dt
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such that K(t,x) is continuous according to parameter t and it is called the kernel of the operator ζ . Suppose that B is a

bounded smooth domain in the complex plane. The Cauchy kernel represents holomorphic functions f in B in terms of the

boundary values on γ. Here γ is the boundary of the domain B. Cauchy integral operator on any B domain whose bounded by

the curve γ in complex plane is given by

ζ (z,w) =
1

2πi

∫

z∈γ

f (z)

z−w

·
γ(z)dσ(z)

where w ∈ C is on γ . Here dz =
·
γ(z)dσ , z = γ(s) unit speed curve and dσ is Lebesgue measure (arc lenght). Hence, Cauchy

kernel of the ζ operator is
1

2πi

1

z−w

·
γ(z). Similarly the S (z,w) Szegö integral operator is given by

ζ (z,w) =
1

2πi

∫

z∈γ

f (z)S (z,w)dσ(z)

where the kernel is considered the orthogonal projection of S : L 2(γ,dσ) → H 2(γ). Here H 2(γ) is closed subspace of

L 2(γ,dσ) of boundary values of holomorphic functions in B. It is easy to see that Sζ = ζ holds identically and the curve γ
satisfy

〈γ(t)− γ(s),T (t)−T (s)〉= 0 (2.1)

where T is the unit tangent normal vector field of the curve. It follows from the definitions above and (2.1) that γ is non-null

hyperbolic curve in Lorentz plane.

Now we extend the chord idea to the surfaces in the high dimensions and we give some characterizations about these surfaces

by the help of Gauss map itself, in terms of [1] and [7], in Lorentz space. Throughout this chapter, the metric tensor will be

considered as a Lorentzian unless otherwise mentioned. Let us give the following definition first.

Definition 2.1. Let M be a non-null hypersurface and G is Gauss map of M. If

〈Q−P,G(P)+G(Q)〉= 0

for all P,Q ∈ M then, M is called by G−hypersurface.

Theorem 2.2. Let M be a G−hypersurface. Gauss map of this surface is given by

G(x) = Ax+b

where A is the semi-symmetric matrix and b ∈ En
1 column vector.

Proof. Let the hypersurface M fully lies in space and consider the points y0,y1, ...,yn on M such that
{

y j−y0 | 1 ≤ j ≤ n
}

spans Rn
1. Similar to [1], we find

AT = ε
(

B jA
−1
j

)

ε (2.2)

where ε = diag(−1,1, ...,1) is the sign matrix, A j and B j are the n×n matrices that accepts the y j−y0 and G(y j)−G(y0) as

j−column respectively. Also b =
n

∑
k=1

bkαk such that bk is given by













〈α1,α1〉 〈α1,α2〉 ... 〈α1,αn〉
〈α2,α1〉

. . . 〈α2,αn〉
...

. . .
...

〈αn,α1〉 〈αn,α2〉 ... 〈αn,αn〉























b1

b2

...

bn











=











c1

c2

...

cn











where α j = y j − y0 and c j = 〈G(y0) ,y0〉−
〈

G(y j) ,y j

〉

. Hence we write

c j =
〈

α j,α1

〉

b1 +
〈

α j,α2

〉

b2 + · · ·+
〈

α j,αn

〉

bn. (2.3)

It follows from (2.2) and (2.3) that

G(x) = Ax+b.
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We note that A is constant matrix (see [1]). Now we prove that A is semi-symmetric matrix. Let X ,Y ∈ TxM be a tangent vector.

Due to Lemma 1.6

∇X G(X) = AX =−S(X) (2.4)

and

〈S(X),Y 〉= 〈X ,S(Y )〉 . (2.5)

It follows from (2.4) and (2.5) that

〈−AX ,Y 〉= 〈X ,−AY 〉 ⇔ 〈AX ,Y 〉= 〈X ,AY 〉
⇔

〈

X ,(εAT ε)Y
〉

= 〈X ,AY 〉
⇔ A = εAT ε

which is intended.

Theorem 2.3. Let us assume that hypersurface M have diagonalized shape operator. For non-null hypersurface M, the

following statements are equivalent:

i) M is the G-hypersurface.

ii) M is an isopametric surface.

iii) M is the open part of non-null hyperplane, pseudosphere, pseudohyperbolic space, pseudospherical cylinder or pseudohy-

perbolic cylinder.

Proof. Let M be a G−hypersurface and {E1,E2, ...,En−1} orthonormal frame on surface such that Ei,1 ≤ i ≤ n− 1 are

characteristic vectors corresponding to characteristic values µi of the shape operator. Hence, S(Ei) = µiEi for all i. Due to

Theorem 2.2, G(x) = Ax+b where A is semi-symmetric matrix. It follows from (2.4) that

AE j(x) =−S(E j(x)) =−µ j(x)E j(x)

and

(A+µ jI)E j(x) = 0.

In order to the existence of non-zero characteristic vectors

det(A+µ jI) = 0. (2.6)

From equation (2.6), it is obvious that µi is constant. Therefore, M is an isoparametric surface.

Let M be an isoparametric surface. Let us define

f (x) = 〈Ax+b,Ax+b〉 (2.7)

where f : Rn
1 → R and M ⊂ f−1(±1). It follows from (2.7) that

f (x) =
〈

x,A2x
〉

+2〈x,Ab〉+ 〈b,b〉 .

By straightforward calculations we get
−→
∇ f (x) = 2A(Ax+b). Since the gradient of f and Gauss map G is linear dependent

A(Ax+b) = λ (x)(Ax+b), x ∈ M (2.8)

for some real valued λ (x) functions. It follows from (2.8) that (A−λ (x)I)(Ax+b) = 0 and det(A−λ (x)I) = 0. Obviously

λ (x) is constant. Let us consider V = {Ax+b | x ∈ M} as a characteristic space that corresponding to λ (x) = λ and Sp{V} is

normal space at x ∈ M. Let us determine the surface M depends on the norm of V.

a) Let ‖V‖= 1. In this case G(x) = b is constant and M is the open part of non-null hyperplane.

b) If ‖V‖ = n then V = Im(A). For some r > 0 and λ = ±1

r
we have A |V= ±1

r
I such that G(x) = ±1

r
x+ b. Depends on

causal character of Sp{V}, we get pseudosphere of Sn−1
1 or pseudohyperbolic space of Hn−1

1 .
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c) Let ‖V‖ = p,2 ≤ p ≤ n−1. Dimension of V⊥ orthogonal complement is n− p and V⊥ ⊆ TxM. In the neighborhood of

x0 ∈ M, we choose {E1(x),E2(x), ...,En−1(x)} orthonormal frame such that E1,E2, ...,En−p are constant in V⊥., we write

V = Sp
{

En−p+1(x),En−p+2(x), ...,En−1(x),G(x)
}

The tangent subspace spanned by
{

En−p+1(x),En−p+2(x), ...,En−1(x)
}

is integrable and integral submanifold of M1 through

the point x0 is given as M1 = M ∩ (x0 +V ) . Hence R
n−p
1 = V⊥ and M = M1 ×R

n−p
1 where M1 is hypersurface in R

p
1 and

Gauss map of M1 satisfy the G1(x) = G(x). Besides, A1 = A |V satisfy

G1(x) = A1x+b. (2.9)

It follows from (2.8) and (2.9) that A1 = ±1

r
I. So M1 is pseudosphere of S

p−1
1 (r) or pseudohyperbolic space of H

p−1
1 (r).

Hence M is the open part of S
p−1
1 (r)×R

n−p or H
p−1
1 (r)×R

n−p, respectively.

Let us consider isometric immersion f1 : M → R
n
1 with respect to [x1,x2, ...,xn] rectangular coordinate system. Let us give

f1(x1,x2, ...,xn) = a1x1 +a2x2 + ...+anxn = c

where ai,1 ≤ i ≤ n are constant coefficients, x = (x1,x2, ...,xn) ∈ M and c is real number. The Gauss map of this immersion is

given by

G(P) :=

−→
∇ f 1
∥

∥

∥

−→
∇ f 1

∥

∥

∥

|P=
1

m
(−a1,a2, ...,an) |P

where P ∈ M and m =
√

∣

∣−a2
1 +a2

2 + ...+a2
n

∣

∣. It can be easily seen that

〈Q−P,G(P)+G(Q)〉= 0

where P,Q ∈ f1. By Definition 1.4, pseudosphere with center x0 and radius r is given by

S
n−1
1 (r) =

{

x ∈ R
n
1 : 〈x− x0,x− x0〉= r2

}

.

Without loss of generality, we can consider x0 = (0,0, ...,0) and x = (x1,x2, ...,xn). In this case,

f2(x1,x2, ...,xn) =−x2
1 + x2

2 + ...+ x2
n = r2

where f2 : Sn−1
1 → R

n
1 is an isometric immersion. The Gauss map of this immersion is given by

G(P) :=

−→
∇ f 2
∥

∥

∥

−→
∇ f 2

∥

∥

∥

|P=
1

r
(x1,x2, ...,xn) |P .

By straightforward calculations we get

〈Q−P,G(P)+G(Q)〉= 0

where P,Q ∈ f2. Therefore, Sn−1
1 (r) is G−hypersurface (similarly H

n−1
1 (r) is G−hypersurface). Moreover, we consider

−x2
1 + x2

2 + ...+ x2
p = r2

, xp+1 = up+1,xp+2 = up+2, ...,xn = un

where ui are real variables such that p+1 ≤ i ≤ n. By the help of natural Lorentz projection πL : R
p
1 ×R

n−p
1 →R

p
1 →֒R

n
1 onto

S
p−1
1 we get

G(P) =
1

r
(x1,x2, ...,xp,0, ...,0) |P .

Hence,

〈Q−P,G(P)+G(Q)〉= 0

where P,Q ∈ S
p−1
1 (r)×R

n−p. Proof is similar for H
p−1
1 (r)×R

n−p.
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3. Local isoparametric surfaces in Euclidean space

Chord property of isoparametric surfaces are examined locally and globally in [2, 5]. Our point of view to localization is totally

different from previous studies. Let us give the following definition and results.

Definition 3.1. Let M be a hypersurface in Euclidean space and 〈,〉 be the metric tensor of the space. If some points such

P,Q ∈ M satisfy

〈Q−P,G(P)+G(Q)〉= 0

then, M is called as local isoparametric surface.

Theorem 3.2. The helicoid surface given by

Φ(s, t) = (0,0,bs)+ t (coss,sins,0) , b 6= 0

is local isoparametric surface if and only if

p1 = q1 or p2 =−q2

where ϕ(p1, p2) = P, ϕ (q1,q2) = Q, ϕ : U ⊆ R
2 → Φ and (p1, p2) , (q1,q2) ∈U.

Proof. Let us consider the surface ϕ(U) = Φ and ϕ : U → Φ differentiable map where U ⊆ R
2. Let P,Q ∈ Φ two points on

surface such that ϕ(p1, p2) = P and ϕ (q1,q2) = Q. By straightforward calculations we get

Φs(s, t) = (−t sins, t coss,b)

and

Φt(s, t) = (coss,sins,0)

Unit normal vector field Z of helicoid is given by

Z ◦ϕ =
Φs(s, t)×Φt(s, t)

‖Φs(s, t)×Φt(s, t)‖
=

(

− b√
b2 + t2

sins,
b√

b2 + t2
coss,− 1√

b2 + t2
t

)

.

Therefore,

G(P)+G(Q) = (α1,α2,α3) (3.1)

where

α1 =− b
√

b2 + p2
2

sin p1 −
b

√

b2 +q2
2

sinq1

α2 =
b

√

b2 + p2
2

cos p1 +
b

√

b2 +q2
2

cosq1

α3 =− b
√

b2 + p2
2

p2 −
1

√

b2 +q2
2

q2.

Besides,

Q−P = (q2 cosq1 − p2 cos p1,q2 sinq1 − p2 sin p1,bq1 −bp1) . (3.2)

It follows from (3.1) and (3.2) that

〈Q−P,G(P)+G(Q)〉= b





p2
√

b2 + p2
2

+
q2

√

b2 +q2
2



(sin(q1 − p1)+(p1 −q1)) .

Obviously 〈Q−P,G(P)+G(Q)〉 = 0 if and only if p1 = q1 or p2 = −q2. By Definition 3.1, Φ is local isoparametric

surface.
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Theorem 3.3. The hyperbolic paraboloid surface given by

Φ(u,v) = (u,v,
v2

b2
− u2

a2
), a,b ∈ R\{0}

is local isoparametric surface if and only if

a

b
=

∣

∣

∣

∣

p1 −q1

p2 −q2

∣

∣

∣

∣

where ϕ(p1, p2) = P, ϕ (q1,q2) = Q ,ϕ : U ⊆ R
2 → Φ and (p1, p2) , (q1,q2) ∈U.

Proof. By straightforward calculations we get

Z ◦ϕ =









− 2u

a2

√

1+
4u2

a4
+

4v2

b4

,
2v

b2

√

1+
4u2

a4
+

4v2

b4

,− 1
√

1+
4u2

a4
+

4v2

b4









and

〈Q−P,G(P)+G(Q)〉=

(

−b2 (p1 −q1)
2 +a2 (p2 −q2)

2
)

(
√

1+
4p2

1

a4
+

4p2
2

b4
−
√

1+
4q2

1

a4
+

4q2
2

b4

)

a2b2

√

1+
4p2

1

a4
+

4p2
2

b4

√

1+
4q2

1

a4
+

4q2
2

b4

.

Hence 〈Q−P,G(P)+G(Q)〉= 0 if and only if

a

b
=

∣

∣

∣

∣

p1 −q1

p2 −q2

∣

∣

∣

∣

which is intended.

Let us give the following surface, in the light of [9].

Theorem 3.4. The Viviani ruled surface given by

Φ(u,v) = (
5

2
+

5

2
cosu,

5

2
sinv,5sin

u

2
)+4v(1+ cosu,sinu,2sin

u

2
)

is local isoparametric surface if and only if

p1 = q1 +4kπ, k ∈ Z

where ϕ(p1, p2) = P, ϕ (q1,q2) = Q ,ϕ : U ⊆ R
2 → Φ and (p1, p2) , (q1,q2) ∈U.

Proof. Similar to previous operations we get

Z ◦ϕ =







√
2sin3 u

2√
3+ cosu

,

−5cos
u

2
+ cos

3u

2

2
√

2
√

3+ cosu
,

√
2cos2 u

2√
3+ cosu







and

〈Q−P,G(P)+G(Q)〉= α sin2(
p1 −q1

4
)

where α is non-zero constant. Hence 〈Q−P,G(P)+G(Q)〉= 0 if and only if

p1 = q1 +4kπ, k ∈ Z

and this completes the proof.
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4. Conclusion

In this study, we showed that the Gauss map of isoparametric surfaces is written by G(x) = Ax+b where A is semi-symmetric

matrix and b is column vector, in Lorentz space. Moreover, in the Euclidean space; we gave the definition of local isoparametric

surface, and we examined the some of them such as helicoid, hyperbolic paraboloid and Viviani ruled surface, by different

point of view from the previous studies.
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Abstract

The main purpose of Digital topology is the study of topological properties of discrete

objects which are obtained digitizing continuous objects. Digital topology plays a very

important role in computer vision, image processing and computer graphics. The ultimate

aim of this article is to analyze the behavior of various general topological concepts in the

Khalimsky topology. In this article, we provide some results and examples of topology on

Z, the set of all integers. Also, we explain the concepts of digital line and digital intervals

with illustrative counterexamples.

1. Introduction

Digital topology is a term that has arisen in the study the digital images. Topological properties of images on a Cathode ray

tube are essential in studying graphics, digital processing, pattern analysis and artificial intelligence. There are two fundamental

approaches to the digital images. They are graph theoretic and topological approaches. The first approach was initiated by A.

Rosenfeld [1]-[4] and the topological approach was originated by Kong, Kopperman, Meyer and Khalimsky et. al.[5] in the

1990s. For finite spaces, these two approaches are equivalent. The study commences with the Jordan Curve Theorem and

elucidates that a simple closed curve separates the real plane R×R into exactly two connected components. Khalimsky et.al

[5] utilized a connected topology on a finite ordered set in the context of computer graphics. One such a topology on Z, (the

set of all integers) is the topology generated by the triples {2m−1,2m,2m+1} as a subbase. This topology was introduced by

Khalimsky and so it is called the Khalimsky topology.

2. Preliminaries

Let D stand for the set of all triples {2m−1,2m,2m+1} where m ∈ Z. Then D is a subbase for some topology on Z,

symbolized by k. The set of all integers Z with this topology k that is (Z,k) is called the digital line. Throughout, O and E

denote the set of all odd and even integers respectively and Ď denotes the set of all dense subsets of Z. The closure and interior

of a set A of a topological space (X,τ) is denoted by clτ(A) and intτ(A). Similarly the interior and closure of (Z,k) is denoted

by clk(A) and intk(A). Beyond doubt, a base for (Z,k) is D ∪B where B = {{m} : m ∈O}. This follows from the fact that :

Let C = {2m−1,2m,2m+1} and D = {2n−1,2n,2n+1} ,m,n ∈ Z. Then
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C ∩D =















C if n = m

(2m+1) if m = n−1

(2m−1) if m = n+1

/0 elsewhere















Also, Let D ⊆ Z. D is open (resp. closed) ⇔ for every d ∈ D , (d is odd)(resp. d is even) or (d is even with d−1,d+1 ∈ D)

(resp. d is odd with d−1,d+1 ∈ D). Let N (n) (resp. N [n]) denote the smallest neighbourhood (resp. closed neighbour-

hood) of n in (Z,k). Now N (n) =

{

{n} if n ∈O

{n−1,n,n+1} if n ∈ E

}

and N [n] =

{

{n} if n ∈ E

{n−1,n,n+1} if n ∈O

}

. Also pay

attention to clk({2n+1}) = {2n,2n+1,2n+2}, intk(clk({2n+1})) = {2n+1}, clk(intk({2n+1})) = {2n,2n+1,2n+2},

intk(clk(intk({2n+1}))) = {2n+1}, clk(intk(clk(intk({2n+1})))) = {2n,2n+1,2n+2}.

Definition 2.1. Let (X,τ) be a topological space and S⊆X. S is semi-open [6] if S⊆ clτ(intτ(S)), semi-closed if intτ(clτ(S))⊆
S, p-set [7] if clτ(intτ(S))⊆ intτ(clτ(S)), q-set if intτ(clτ(S))⊆ clτ(intτ(S)), Gδ -set if it equals the countable intersection of

open sets of X, Fσ -set if it equals the countable union of closed sets of X, pointwise dense [8] if Yx∈Bclτ({x}) : {x} is open =

X and g-closed [9] if clτ(S)⊆ U whenever S ⊆ U and U is open in X.

Definition 2.2. A topological space (X,τ) is T 1
2

[9] if every g-closed set is closed, semi-T0 [10] if for any two distinct points

x and y of X, there exists a semi-open set S such that (x ∈ S and y /∈ S) or (y ∈ S and x /∈ S), semi-T1 [10] if for x 6= y ∈ X,

there exist semi-open sets S1 and S2 such that x ∈ S1 but y /∈ S1 and y ∈ S2 but x /∈ S2, semi-R0 [10] if for each semi-open

set S,x ∈ S implies scl({x}) ⊆ S, where scl({x}) is the set of all semi-closed sets that containing {x}, semi-R1 [11] if for

x,y ∈ X such that scl({x}) 6= scl({y}), there are disjoint semi-open sets U and V such that scl({x})⊆ U and scl({y})⊆ V,

Urysohn [12] if whenever x 6= y in X, there are neighbourhoods S of x and T of y with cl(S)∩ cl(T) 6= /0, door [13] if every

subset is either open or closed, extremally disconnected [12] if the closure of every open set is open, Alexandroff [14] if every

intersection of open sets is open locally finite [8] if each point lies in a finite open set and in a finite closed set.

3. Properties

In this section, we investigate the properties of the topological space (Z,k) and discuss the subspaces of the digital intervals of

the digital line.

Proposition 3.1.

(i) clk(O) = Z.

(ii) O is pointwise dense in Z.

(iii) Every dense subset of Z is open.

(iv) (Z,k) is second countable, Lindelof and separable.

(v) (Z,k) is T 1
2
,T0 and neither T1 nor R0.

(vi) (Z,k) is semi-T0, semi-T1 and semi-R0.

(vii) (Z,k) is locally finite, connected, Alexandroff and neither door nor extremally disconnected.

(viii) Every Fσ set is closed and Gδ set is open in (Z,k)

Proof.

(i) Let n ∈ Z and N be neighbourhood of n in (Z,k). Since N contains an odd integer, clk(O) = Z.

(ii) Clearly O is open in Z, and for each n ∈O, clk(n) = {n−1,n,n+1} and hence Z= Yn∈Oclk(n).
(iii) Let D ∈ Ď. Then D = A∪B where A ∈O and B ∈ E. Take A= {n}, and n is even implies D = A∪{n−1,n,n+1}

and hence D is open.

(iv) Follows from the fact that Z is countable.

(v) Since any neighbourhood of 2n contains 2n− 1, (Z,k) is not T1. We can easily verify that (Z,k) is T0. Since

clk(2n−1) = {2n,2n−1,2n+1} and {2n−1} is open implies that (Z,k) is not R0. T 1
2

follows from every singleton is

either open or closed in Z.

(vi) (Z,k) is semi-T0, semi-T1 and semi-R0 follows from the fact that every singleton is semi-closed.

(vii) Let n ∈ Z. If n ∈ O, then {n} is a finite open set such that n ∈ {n} and {n− 1,n,n+ 1} is a finite closed set and

n ∈ {n− 1,n,n+ 1}. This implies (Z,k) is locally finite. A locally finite space is Alexandroff implies (Z,k) is an

Alexandroff space. {2n,2n− 1} is neither open nor closed implies (Z,k) is not door. Also {2n+ 1} is open and

clk({2n+1}) = {2n+2n+1,2n+2} is not open. Therefore (Z,k) is not extremally disconnected. Let A be a non-

empty clopen subset of (Z,k). Fix n ∈ A. If n ∈ O and A is closed, n− 1,n+ 1 ∈ A. Thus {n− 1,n,n+ 1} ⊆ A.

Since n− 1 and n+ 1 are even and A is open, {n− 2,n− 1,n,n+ 1,n+ 2} ⊆ A. Continuing we get Z = A. If

n ∈ E and A is open, n− 1,n+ 1 ∈ A. Thus {n− 1,n,n+ 1} ⊆ A. Since n− 1 and n+ 1 are odd and A is closed,

{n−2,n−1,n,n+1,n+2} ⊆ A. Continuing, we get τ equals A. That is (Z,k) is connected.
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(viii) Let A ∈ (Z,k) where A= ∪An each An is closed if x is in A, then x is in some An. If x is even, it is evident. If x is odd,

then {x−1,x,x+1} ⊆ An ⊆ A. That is A is closed.

(ix) Let A ∈ (Z,k) where A = ∩An each An is open. If x is in A, then x is in every An. If x is even, then the open set

{x−1,x,x+1} ⊆ An ⊆ A. That is A is open.

Levine’s Property Q

Levine defined that a set S has the property Q if the interior and the closure operators commute on S and characterized

the sets having the property Q. That is a set A in a topological space (X,τ) has the property Q [15] if intτ(clτ(S)) =
clτ(intτ(S)).

Example 3.2.

(i) Let X be an infinite set with co-finite topology. Then every non-empty open subset is infinite and hence every finite subset

of X has the property Q.

(ii) Let X be an uncountable set with co-countable topology. Then every non-empty open subset is uncountable and hence

every countable subset of X has the property Q.

(iii) Let X be an non-empty set with x ∈ X. Assign X with x-inclusion topology, then X does not have the property Q.

(iv) In (X,τ), X=W, the set of all whole numbers and τ = { /0,{0},X}. Then every subset of X has the property Q.

4. Digital subspaces

From now on we consider subspaces of (Z,k), and investigate the behaviour of cardinalities of some kind of subspace

topologies. We will now prove that the cardinalities of topologies on the intervals {1},{1,2},{1,2,3}, ....,{1,2,3, ..,n}, ....
form a subsequence of the well known Fibonacci sequence. Also observe that

(i) If S= {1},τ1 = { /0,S}, then |τ1|= 2.

(ii) If S= {1,2},τ2 = { /0,{1},S}, then |τ2|= 3.

(iii) If S= {1,2,3}, subbase = {{1},{1,2,3},{3}}, Base = {{1},{3},S} and τ3 = { /0,{1},{3},{1,3},S} then |τ2|= 5.

(iv) Let S= {1,2,3,4}, subbase = {{1},{1,2,3},{3,4}}, Base = {1},{3},{1,2,3},{3,4},S} and τ4 = { /0,{1},{3},{1,3},
{3,4}, {1,2,3},{1,3,4},S} then |τ4|= 8.

(v) Let S = {1,2,3,4,5} with Sk = τ5, the subspace topology generated by {{1},{5},{1,2,3},{3,4,5}}. Here

τ5 = { /0,{1},{3}, {5},{1,3},{1,5}, {3,5},{1,2,3},{1,3,5},{3,4,5},{1,2,3,5},{1,3,4,5},S}. Then (S,τ5) is a

subspace of (Z,k). Also from this we observe that q(τ5) and p(τ5) are discrete topology on S. Also, Q(τ5) =
{ /0,{4},{2,4},{1,3,5},{1,2,3,5}, {1,3,4,5},S}. Then |τ5|= 13.

(vi) Let S= {1,2,3,4,5,6}, then subbase = {{1},{1,2,3},{3,4,5},{5,6}} and Base = {{1},{3},{1,2,3},{3,4,5},{5,6}}
and τ6 = { /0,{1}, {3}, {5}, {1,3}, {1,5}, {3,5},{5,6}, {1,2,3}, {1,3,5}, {3,4,5}, {1,5,6}, {3,5,6}, {1,2,3,5},
{1,3,4,5},{1,3,5,6}, {3,4,5,6},{1,2,3,5,6},{1,2,3,4,5},{1,3,4,5,6},S}. Then |τ6|= 21.

(vii) Let S= {1,2,3,4,5,6,7}, then subbase = {{1},{7},{1,2,3},{3,4,5},{5,6,7}} and Base = {{1},{3},{5},{7},{1,2,3},

{3,4,5},{5,6,7}} and τ7 = { /0,{1},{3}, {5},{7},{1,3},{1,5},{1,7},{3,5}, {3,7},{5,6}, {5,7},{1,2,3}, {3,4,5},
{5,6,7}, {1,3,5}, {1,3,7}, {1,5,7}, {3,5,7}, {1,2,3,5}, {1,2,3,7}, {1,3,4,5}, {1,3,5,7}, {1,5,6,7}, {3,4,5,7},
{3,5,6,7}, {1,2,3,4,5}, {3,4,5,6,7}, {1,2,3,5,7}, {1,3,5,6,7}, {1,3,4,5,7}, {1,2,3,4,5,7}, {1,2,3,5,6,7},
{1,3,4,5,6,7},S}. Then |τ7|= 34.

Lemma 4.1. Let S= {1,2,3,4,5}. Then

(i) q(τ5) is the discrete topology on S,

(ii) p(τ5) is the discrete topology on S,

(iii) Q(τ5) is a topology on S other than discrete topology and the indiscrete topology on S, where q(τ5), p(τ5) and Q(τ5)
respectively denote the collection of all q-sets, p-sets and collection of all subsets of S having the property Q in (S,τ5).

Lemma 4.2. If τm−1,τm,τm+1 are the topologies on the digital intervals Z∩ [1,m−1], Z∩ [1,m], Z∩ [1,m+1] respectively

inherited from the Khalimsky topology k on Z, then |τm−1|= |τm+1|= |τm|.

Proof.

Case (a) Since [1,m−1]⊆ [1,m+1] and m−1 ∈O. Then τm+1 ⊆ τm+2. Now {m+1} is the basic open set in [1,m+1].
τ = {{m+1}∪A : A ∈ τm}. Then τm−1 ∪ τ = τm+1 and τm−1 ∩ τ = /0.

Case (b) Since [1,m] ⊆ [1,m+ 1] and m ∈ O. Then τm ⊆ τm+1. Now {m,m+ 1} is the base open set in [1,m+ 1].
τ = {{m,m+1}∪A : A ∈ τm+1}. Then τm ∪ τ = τm+1 and τm ∩ τ = /0.

In both cases |τm+1|= |τm−1|= |τm|.
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5. Conclusion

In this work, we provide some results and examples of the topology on Z, the set of all integers. Also we explain the

concepts of digital line and digital intervals. We prove that the cardinalities of topologies on the digital intervals form a sub

sequence of the Fibonacci sequence.
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Abstract

We have given a simple contact Hamiltonian description of a system with exponentially

vanishing (or zero) potential under a friction term that is quadratic in velocity. We have

given two applications: to cavity solitons and to a free body under air friction.

1. Introduction

Hamiltonian mechanics is done in phase space which is a symplectic manifold. Symplectic mainfolds are even dimensional

mainfolds equipped with a symplectic 2-form ω . On the other hand, contact geometry is carried on odd dimensional manifolds

equipped with a contact 1-form η . η is a contact form if η ∧dη ∧·· ·∧dη 6= 0 (in a 2n+1 dimensional contact manifold, the

term dη is wedge-multiplied n times). For more information on contact manifolds, the reader is referred to [1] and to [2] for

the relation between contact geometry and the Huygens’ Principle.

Recently, Hamiltonian mechanics has been generalized to work in contact manifolds with the addition of extra parameter S [3].

Ref. [4] studied variational aspects of contact Hamiltonian mechanics and ref. [5] applied contact geometric methods to a

theory of gravity called shape dynamics [6–8] (see ref. [9] for a review of shape dynamics). Also in ref. [3] time-dependent

contact Hamiltonians are introduced. In our study, we will use time-independent contact Hamiltonian mechanics in 1D. So the

variables we have are q, p,S. In this variables the equations of motion derived from the contact Hamiltonian (H) read as [3]:

q̇ =
∂H

∂ p
,

ṗ = −
∂H

∂q
− p

∂H

∂S
,

Ṡ = p
∂H

∂ p
−H.

The organization of the paper is as follows: in Section 2 we introduce the contact Hamiltonian we use, in Section 3 we give

a solution of the equations of motion derived from the contact system, in Section 4 we give two applications where our

description can be used and finally in Section 5 we conclude the paper.
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2. Contact Hamiltonian description

It is known in the literature (see ref. [3]) that the contact Hamiltonian H = p2/2m+V (q)+γS describes a system with frictional

force linear in velocity for an arbitrary potential term V (q). In this study we make a minor change in the last term and use the

following contact Hamiltonian:

H =
p2

2m
+V (q)+ γ pS.

The equations of motion that follow are as:

q̇ =
p

m
+ γS, (2.1)

ṗ = −V ′(q)− γ p2, (2.2)

Ṡ =
p2

2m
−V (q). (2.3)

When we take the time derivative of Equation (2.1) we obtain:

q̈ =
ṗ

m
+ γ Ṡ,

= −
1

m
(V ′(q)+ γ p2)+ γ

(

p2

2m
−V (q)

)

,

mq̈ = −V ′(q)−
γ

2
p2 −mγV (q). (2.4)

Using Equation (2.1) we can write p = mq̇−mγS. As an ansatz let us assume S = α q̇ for some α . Then we get p = m(1−γα)q̇.

If we put this form of p into Equation (2.4) we obtain:

mq̈+
m2γ

2
(1− γα)2q̇2 =−V ′(q)−mγV (q). (2.5)

On the other hand, when we use the ansatz S = α q̇ in Equation (2.3) we obtain:

α q̈ = Ṡ =
m

2
(1− γα)2q̇2 −V (q). (2.6)

In order to be consistent, Equation (2.5) and Equation (2.6) must give the same answer. So we must have the following:

m2

2α
(1− γα)2q̇2 −

m

α
V (q) =−

m2γ

2
(1− γα)2q̇2 −V ′(q)−mγV (q).

Equating the terms in front of q̇2 on both sides gives us α =−1/γ . There appears a condition on the potential V (q):

V ′(q) =−2mγV (q). (2.7)

So with the ansatz we put, arbitrary potentials are not allowed. The solution of Equation (2.7) is elementary:

V (q) = Aexp(−2mγq),

for some constant A. Now we have determined α in S = α q̇ as α = −1/γ . As a consistency check let us put this in

Equation (2.1) and obtain p = 2mq̇. On the other hand we have ṗ =−V ′(q)− γ p2 from Equation (2.2). This yields:



Fundamental Journal of Mathematics and Applications 31

2mq̈ =−
∂

∂q
(Aexp(−2mγq))− γ p2,

and

mq̈+2γm2q̇2 = Amγ exp(−2mγq).

Comparing this Equation with Equation (2.6) we see that there is no inconsistency. So the consistent equation of motion is as

follows:

mq̈+ γnq̇2 =−
∂

∂q
Ane−γnq/m, (2.8)

where γn (new γ) is given through γn = 2m2γ and An (new A) is An = A/2.

3. Solution of the equation of motion

In this Section, we will solve the equation of motion of the system given by Equation (2.8). Let us define Q = γnq/m. So we

have:

Q̈+ Q̇2 =
Anγ2

n

m3
e−Q.

We now define F via Q = logF . Then we get:

F̈

F
−

Ḟ2

F2
+

Ḟ2

F2
=

Anγ2
n

m3

1

F
.

The second and third terms cancel out with each other and we obtain F̈ = Anγ2
n/m3. Making changes of variables in the reverse

order, one obtains:

q(t) =
m

γn

log

(

Anγ2
n

2m3
t2 + c1t + c2

)

,

where c1 and c2 are two constants of integration.

4. Possible applications

The equation of motion (see Equation (2.8)) derived from the contact Hamiltonian, H = p2/2m+V (q)+(γn/2m2)pS, is:

mq̈+ γnq̇2 =−
∂

∂q
Ane−γnq/m,

where γn,An are some constant parameters. In this Section, we give two possible applications of our choice of contact

Hamiltonian. The first one is cavity solitons with friction quadratic in velocity, and the other one is air friction with quadratic

dependency on velocity.

4.1. Cavity solitons

Recently Ref. [10] put forward that cavity solitons (for a review see Ref. [11]) may be modeled with an effective potential of

the form −K2e−r/R with the strength K and the range R. Our potential term is V (q) = Ane−γnq/m. So if we choose A =−K2

and γn = m/R we can model cavity solitons. But our model has a quadratic friction term: γnq̇2 = (m/R)q̇2. It may be possible

that our contact Hamiltonian can model cavity solitons with an exponentially decreasing force and a friction term that is

quadratic in velocity.
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4.2. Air friction

It is well known in literature that for large bodies, air friction can be modelled with frictional force that has quadratic

dependency on the velocity. Therefore our contact Hamiltonian may also model a free particle under air friction if An = 0 or

with a driving force equal to (Anγn/m)e−γnq/m.

5. Conclusion

Recently contact Hamiltonian mechanics has gained some interest [3–5]. In this paper we used a simple contact Hamiltonian

to account for quadratic dependence on velocity. As we mentioned in Section 4 this description may be useful for modelling

cavity solitons with a quadratic friction term or air friction for free particles. We note that our work is only an initial step

towards giving a contact Hamiltonian description of a system with an arbitrary potential under a friction that is quadratic in

velocity.
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Abstract

This paper addresses optimal control problems governed by semilinear parabolic partial

differential equations, subject to control constraints and state constraints of integral type.

Since such problems may not have classical solutions, a relaxed optimal control problem is

considered. The relaxed control problem is discretized by using a finite element method

and the behavior in the limit of discrete optimality, admissibility and extremality properties

is studied. A conditional descent method with penalties applied to the discrete problems is

proposed. It is shown that the accumulation points of sequences produced by this method

are admissible and extremal for the discrete problem. Finally, numerical examples are

given.

1. Introduction

In the absence of any convexity assumptions, optimal control problems, in general, have no classical solutions. To study them,

they usually need to be reformulated to their corresponding relaxed form. Warga [1], Roubı́ček [2] and Fattorini [3] have

extensively studied the concept of relaxation on optimal control problems. Relaxation had been introduced initially to prove the

existence of optimal controls and then to derive necessary optimality conditions. Additionally, relaxed controls are used as a

tool to develop optimization methods (Warga [4], Chryssoverghi et al. [5]) and discrete approximation schemes (Chryssoverghi

et al. [6], Roubı́ček [7], Azhmyakov et al. [8]). Relaxed controls have been applied to optimal control problems for systems

defined by PDEs in [3], [2] as well as in many papers, among them [6], [9]-[13]. In particular, Arada and Raymond in [9] prove

existence and a Pontryagin’s minimum principle for relaxed solutions of state-constrained relaxed optimal control problems

governed by semilinear elliptic equations under a stability condition. The approximation of similar problems was studied by

the same authors in [10] and by Casas in [11]. Chryssoverghi and Bacopoulos in [6] present approximation results for relaxed

semilinear parabolic optimal control problems. In [12] relaxed controls have been used to develop iterative optimization

methods applied directly on a relaxed problem. Finally, Luan in [13], using relaxed controls obtains some results on the

nonexistence and existence of multisolution semilinear elliptic optimal control problems.

In this paper, an optimal control problem with distributed control is considered for systems defined by a semilinear parabolic

PDE, in the presence of constraints on the control and the state. The parabolic equation has two separate semilinear terms

in order to allow more general assumptions, monotonicity for the term on the left-hand side and Lipschitz continuity for the

term on the right-hand side. The state constraints depend both on the state and its gradient and are of integral type. The cost

functional depends also on the state gradient. Convexity assumptions are not imposed, so this problem may have no classical

solutions. To deal with this, the problem is reformulated in its relaxed form using relaxed controls. The state equation in relaxed
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form is then discretized in space using a Galerkin finite element method (semi-discretization). The spatial discretization is done

with continuous piecewise linear functions. The controls are approximated by piecewise constant relaxed ones. Necessary

conditions for optimality are stated for the discrete relaxed problem. Then it is shown that sequences of optimal (resp. extremal)

relaxed controls for the discrete problem have subsequences which converge to optimal (resp. extremal) controls for the

continuous relaxed problem. Next, an algorithm based on a penalized conditional descent method is proposed, applied to the

discrete problems, which generates Gamkrelidze controls. It is shown that accumulation points of sequences constructed by

the algorithm satisfy the necessary conditions for optimality for the discrete problem and such accumulation points always

exist. For implementation reasons relaxed controls have to be approximated by classical ones. So, using standard techniques,

the Gamkrelidze controls computed by the above method can be approximated by piecewise constant classical ones, see [5].

Thus the above method using relaxed controls has all the theoretical advantages of them and gives us at last, through the

above-mentioned approximation, classical controls. Finally, two numerical examples are presented.

The novelty points of this paper are: (i) the study of such nonconvex optimal control problems with relaxation, (ii) the

discretization of such problems, and (iii) the construction of methods applied to the discrete problem with relaxed controls. In

order to solve these problems numerically one must necessarily disretize them and then apply some optimization method to

the resulting discrete problem. Since the structures of the continuous and the discrete problems are basically different it is

necessary to know if discrete optimality (or extremality) carries over in the limit to continuous optimality (resp. extremality).

This paper actually extends the results of [14] by semi-discretizing the problem and studying the behavior in the limit and then

by applying an optimization method to this discretized problem.

The paper is organized as follows. In section 2 the relaxed controls are introduced, and the classical and the relaxed optimal

control problems are formulated. The existence of optimal relaxed controls is also proved. In section 3 the relaxed problem is

discretized and in section 4 the behavior in the limit of discrete relaxed optimality and extremality is studied. A penalized

conditional descent method is presented in section 5. Two numerical examples are given in section 6.

2. The continuous optimal control problems

Let Ω be a bounded domain in R
d , with boundary Γ, and set Q := Ω× (0,T ), Σ := Γ× (0,T ) with given final time T > 0.

Consider the following semilinear parabolic initial boundary value problem

yt +A(t)y+
d

∑
i=1

a0i(x,t)∂y/∂xi +b(x,t,y(x, t),u(x, t))= f (x,t,y(x, t),u(x, t)) in Q, (2.1)

y(x, t) = 0 on Σ (2.2)

y(x,0) = y0(x) in Ω. (2.3)

Here A(t) is the elliptic differential operator

A(t)y :=−
d

∑
j,i=1

(∂/∂xi)[ai j(x, t)∂y/∂x j].

Throughout the paper, we shall use the notation (·, ·), (·, ·)1, (·, ·)Q for the inner product and ‖·‖ , ‖·‖1 , ‖·‖Q for the norm of

the spaces L2(Ω),V := H1
0 (Ω), L2(Q) respectively. We define on V ×V the bilinear form associated with A(t)

a(t,y,v) :=
d

∑
j,i=1

∫

Ω
ai j(x, t)

∂y

∂xi

∂v

∂x j

dx. (2.4)

Also, q1 and q2 are given nonnegative integers.

The set of classical controls is defined by

U := {u : Q →U |u measurable} ⊂ L∞(Q),

U ⊂ R is compact, not necessarily convex and the functionals by

Jm(u) :=
∫

Q
gm(x, t,y,∇y,u)dxdt, m = 0, ...,q2.

The continuous classical optimal control problem is

minimizeJ0(u)

subject to the state equation (2.1 - 2.3), the control constraints u ∈ U and the state constraints

Jm(u) = 0, m = 1, ...,q1,

Jm(u) ≤ 0, m = q1 +1, ...,q2.
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The above problem in order to have a solution has to be endowed with undesirable convexity assumptions (for example, Cesari

property), which are usually not realistic for nonlinear systems. But when we formulate the problem in its relaxed form using

relaxed controls then the new problem has a solution in a larger space under weaker assumptions.

Let C(U) be the set of continuous functions on U and M(U) (resp. M1(U)) the set of Radon (resp. probability) measures on U .

We endow M(U) =C(U)∗ with the weak* topology. We define the set of relaxed controls ([1], [2])

R := {r : Q̄ → M1(U) |r weakly measurable} ⊂ L∞
w(Q;M(U))≡ L1(Q;C(U))∗.

The topology of R is the weak* topology induced by L1(Q;C(U))∗. R is convex, and with the above topology metrizable

and compact. We identify each element u ∈ U with the relaxed control r(·) = δu(·), where δu(·) denotes the Dirac measure

concentrated at u(·) and thus we can regard U as a subset of R. Furthermore U is dense in R. For simplicity reasons, for

h ∈ L1(Q;C(U)) and r ∈ R ,we write

h(x, t,r(x, t)) :=
∫

U
h(x, t,u)r(x, t)(du). (2.5)

It follows (see [1]) that h(x, t,r(x, t)) is linear in r. Let (rk) be a sequence of relaxed controls and r ∈ R. Then, (rk) is said to

converge to r if and only if

lim
k→∞

∫

Q
h(x, t,rk(x, t))dxdt =

∫

Q
h(x, t,r(x, t))dxdt,

for all h ∈ L1(Q;C(U)).

For the case of noncompact U , Fattorini in [3], gives a new definition of relaxed controls based on finitely additive measures

on U .

The weak relaxed form of the state equation (2.1), using the notation (2.5), is given by

< yt ,v >+a(t,y,v)+
d

∑
i=1

(a0i(t)∂y/∂xi,v)+(b(t,y,r),v) = ( f (t,y,r),v), (2.6)

for every v ∈V , a.e. in (0,T ), y(t) ∈V, a.e. in (0,T )

y(0) = y0, (2.7)

where < ·, ·> denotes the dual pairing between V and its dual space V ∗ = H−1(Ω) and a(t,y,v) is the bilinear form given in

(2.4) .

The continuous relaxed optimal control problem (ROCP) is

minimize J0(r)

subject to the relaxed state equation (2.6), (2.7), the control constraints r ∈ R and the state constraints

Jm(r) = 0, m = 1, ...,q1,

Jm(r) ≤ 0, m = q1 +1, ...,q2,

where

Jm(r) :=
∫

Q

∫

U
gm(x, t,y,∇y,u)r(du)dxdt, m = 0, ...,q2.

We introduce the following assumptions.

(H1) Ω ⊂ R
d ,d ≤ 3, is a bounded domain with C1-boundary Γ.

(H2) The coefficient functions ai j of A(t) belong to L∞(Q) and

d

∑
j=1

d

∑
i=1

ai j(x, t)ξiξ j ≥ γ0

d

∑
i=1

ξ 2
i , ∀ξi,ξ j ∈ R, (x, t) ∈ Q,with γ0 > 0,

from which easily follow the inequalities

|a(t,y,v)| ≤ α1 ‖y‖1 ‖v‖1 , a(t,v,v)≥ α2 ‖v‖2
1 , ∀y,v ∈V, t ∈ (0,T ),

for some α1 ≥ 0, α2 > 0.
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(H3) a0 = (a01, ...,a0d)
T ∈ L∞(Q)d . The functions b and f : Q×R×U → R are measurable w.r.t. (x, t) ∈ Q for any fixed y,u,

continuous for fixed (x, t) ∈ Q and satisfy the conditions

|b(x, t,y,u)| ≤ ϕ(x, t)+β |y|2 , (x, t,y,u) ∈ Q×R×U,

| f (x, t,y,u)| ≤ ψ(x, t)+ γ |y| , (x, t,y,u) ∈ Q×R×U,

| f (x, t,y1,u)− f (x, t,y2,u)| ≤ L |y1 − y2| , (x, t,y1,y2,u) ∈ Q×R
2 ×U,

where ϕ,ψ ∈ L2(Q), β ,γ, L ≥ 0.

The function b is monotone increasing with respect to y for almost every (x, t) ∈ Q. Assuming that b(·, ·,y, ·) = 0, (if not, we

subtract this term from both sides of (2.1)) it follows that b(x, t,y,u)y ≥ 0.

(H4) The functions gm : Q×R
d+1 ×U →R are measurable for fixed (y, ȳ,u) ∈R

d+1 ×U , continuous for fixed (x, t) ∈ Q and

satisfy

|gm(x, t,y, ȳ,u)| ≤ ζm(x, t)+δmy2 + δ̄m |ȳ|2 , (x, t,y, ȳ,u) ∈ Q×R
d+1 ×U,

with ζm ∈ L1(Q), δm ≥ 0, δ̄m ≥ 0.

(H5) The functions by, fy : Q×R×U → R are measurable on Q for fixed (y,u) ∈ R×U and continuous on R×U for fixed

(x, t) ∈ Q and satisfy

∣

∣by(x, t,y,u)
∣

∣≤ ξ (x, t)+η |y| , (x, t,y,u) ∈ Q×R×U,
∣

∣ fy(x, t,y,u)
∣

∣≤ L1, (x, t,y,u) ∈ Q×R×U,

with ξ ∈ L2(Q), η ≥ 0, L1 ≥ 0.

(H6) The functions gmy,gmȳ : Q×R
d+1 ×U → R are measurable on Q for fixed (y, ȳ,u) ∈ R

d+1 ×U and continuous on

R
d+1 ×U for fixed (x, t) ∈ Q and satisfy

∣

∣gmy(x, t,y, ȳ,u)
∣

∣≤ ζm1(x, t)+δm1 |y|+ δ̄m1 |ȳ|
2 , (x, t,y, ȳ,u) ∈ Q×R

d+1 ×U,
∣

∣gmȳ(x, t,y, ȳ,u)
∣

∣≤ ζm2(x, t)+δm2y2 + δ̄m2 |ȳ| , (x, t,y, ȳ,u) ∈ Q×R
d+1 ×U,

with ζm1,ζm2 ∈ L2(Q), δm1, δ̄m1,δm2, δ̄m2 ≥ 0.

Using assumptions (H1-H3) and the fact that V is compactly embedded in L4 (Ω), we can see that equation (2.6) is well

defined.

Theorem 2.1. Under Assumptions (H1-H3), for every r ∈ R and y0 ∈ L2(Ω) (or y0 ∈V ), there exist a unique y := yr such that

y ∈ L2((0,T ),V ), yt ∈ L2((0,T ),V ∗) satisfying (2.6), (2.7). In addition, y is essentially equal to a function in C([0,T ],L2(Ω)),
and thus the initial condition (2.7) is well defined.

Proof. The proof is based on compactness arguments (see [15]).

Next lemma describes the continuity of the state and the functionals w.r.t. the corresponding relaxed control. This result is the

basic tool to prove the existence of optimal relaxed controls.

Lemma 2.2. Under Assumptions (H1-H3), the mapping r 7→ yr, from R to L2 (Q) and L2 ((0,T ),V ), is continuous. Under

Assumptions (H1-H4), the functionals r 7→ Jm(r), m = 0, ...,q2, from R to R, are continuous.

Proof. Let rk → r in R and set yk := yrk
. Taking y = v = yk in (2.6), using Assumptions (H2-H3) and the basic inequality

2ab ≤ 1
ε a2 + εb2, ε > 0, we have

1

2

d

dt
‖yk‖

2 +a2 ‖yk‖
2
1 ≤

1

2
‖ψ (t)‖

2

+

(

1

2
+ γ +

c

2ε

)

‖yk‖
2 + c

ε

2
‖yk‖

2
1 , where c := ‖a0‖L∞ .

Integrating w.r.t. t on [0, t] for t ≤ T and selecting appropriate ε > 0 to hide the term
∫ t

0 ‖yk (s)‖
2
1 ds to the left-hand side we

obtain

1

2
‖yk‖

2 +
(

a2 − c
ε

2

)

∫ t

0
‖yk (s)‖

2
1 ds ≤

1

2

∥

∥y0
∥

∥

2
+

1

2
‖ψ‖2

L2(Q)+

(

1

2
+ γ +

c

2ε

)

∫ t

0
‖yk (s)‖

2
ds. (2.8)
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Using Gronwall’s inequality we deduce from (2.8) that yk is bounded in L2 (Q). Then again from (2.8) we obtain that yk is

bounded in L2 ((0,T ),V ). One can also check using (2.6) that y′k is bounded in L2 ((0,T ),V ∗). Thus, there exist a subsequence

still denoted by (yk) such that yk −→ y in L2 ((0,T ),V ) weakly and y′k −→ y′ in L2 ((0,T ),V ∗) weakly. Since V is compactly

embedded in L2 (Ω) by Theorem 2.1 chap. III in [16] follows that yk −→ y in L2 (Q) strongly. It follows easily that y = yr and

that the convergence holds for the original sequence. The strong convergence yk −→ y in L2 ((0,T ),V ) can be proved as in

Lemma 4.2 here. Finally, from Proposition 2.1 in [6] we derive that the functionals r 7→ Jm(r), m = 0, ...,q2 are continuous.

Theorem 2.3. Under Assumptions (H1-H4) and supposing the existence of a feasible control the ROCP has a solution.

Proof. It follows from Lemma 2.2 and the compactness of R.

Necessary conditions for optimality for the ROCP are given in Chryssoverghi et al. [14].

3. The semi-discrete optimal control problems

(H7) a, a0 are independent of t (for simplicity), b,by, f , fy are continuous on Q̄×R×U , gm,gmy,gmȳ are continuous on

Q̄×R
d+1 ×U and y0 ∈V .

For each integer n ≥ 0, let Ωn be a subdomain of Ω with polyhedral boundary Γn such that dist(Γn,Γ) = o(hn), {En
i }

Mn

i=1 be an

admissible regular quasi-uniform triangulation of Ω̄n into closed d-simplices (finite elements), with hn = maxi[diam(En
i )]→ 0

as n → ∞. Associated with the above triangulation we define

V n :=
{

yn ∈V |yn ∈C(Ω̄),affine on each En
i , yn = 0 in Ω−Ωn

}

with dimV n = Nn and vn
i , i = 1, ...,Nn be a basis of V n,

Rn := {rn ∈ R |rn = {rn
i , i = 1, ...Mn} ,rn

i is equal to a constant measure w.r.t. x in M1(U)on the interior of (En
i × (0,T )), i = 1, ...Mn}

the set of (semi)discrete relaxed controls and U
n := Rn ∩U the set of (semi)discrete classical controls. Clearly, we have

U
n ⊂ Rn.

For a given rn ∈ Rn, the corresponding (semi)discrete state yn is given by the (semi)discrete state equation (system of ODE’s

w.r.t. cn)

(yn′ ,vn
i )+a(yn,vn

i )+(aT
0 (t)∇yn,vn

i )+(b(t,yn,rn),vn
i ) = ( f (t,yn,rn),vn

i ), i = 1, ...,Nn, ∀t ∈ (0,T ), (3.1)

(yn(0)− y0,vn
i )1 = 0, i = 1, ...,Nn, (3.2)

where yn (t) =
Nn

∑
i=1

cn
i (t)vn

i . Note that yn (0) is the orthogonal projection of y0 onto V .

Theorem 3.1. Under Assumptions (H2-H3) and (H7), for every n and rn ∈ Rn the equation (3.1), (3.2) admits a unique

solution yn. In addition, the solutions are uniformly (w.r.t. rn) bounded and equicontinuous.

The discrete functionals are defined by

Jn
m(r

n) :=
∫

Q
gm(x, t,y

n,∇yn,rn)dxdt, m = 0, ...,q2.

We consider the following two discrete problems:

minimize Jn
0 (r

n)

subject to (3.1), (3.2), the control constraints rn ∈ Rn and the state constraints

Case (a)
|Jn

m(r
n)| ≤ εn

m, m = 1, ...,q1

Jn
m(r

n)≤ εn
m, εn

m ≥ 0, m = q1 +1, ...,q2,
(3.3)

and

Case (b)
Jn

m(r
n) = εn

m, m = 1, ...,q1,
Jn

m(r
n)≤ εn

m, εn
m ≥ 0, m = q1 +1, ...,q2,

(3.4)

where εn
m are non-negative given numbers, introduced for feasibility reasons.

The first of the above discrete problems with state constraints (3.3) is denoted by DROCPa and the second one with state

constraints (3.4) by DROCPb.
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Theorem 3.2. Under Assumptions (H2-H4) and (H7), the mappings rn 7→ yn and rn 7→ Jn
m(r

n), defined on Rn, are continuous.

If any of the discrete problems is feasible, then it has a solution.

Proof. The continuity of the operator rn 7→ yn is proved by Theorem 3.1 and using Ascoli’s theorem to pass in the limit in

(3.1), (3.2). The continuity of rn → Jn
m(r

n) follows from the continuity of gm. Since the set Rn is compact with the relative

weak* topology of M(U)Mn
it follows that the discrete problems DROCPa, DROCPb defined above have a solution.

To compute the directional derivative of the functional Jn, where for simplicity reasons the index m is omitted, we introduce
the linear adjoint state equation

−(zn′ ,v)+a(v,zn)+(aT
0 ∇v,zn)+(znby(t,y

n,rn),v) =(zn fy(t,y
n,rn)+gy(t,y

n,∇yn,rn),v)+(gȳ(t,y
n,∇yn,rn),∇v),∀v∈V n, (3.5)

zn(T ) = 0, (3.6)

which has a unique solution zn = zrn with yn = yrn .

We define, for each function g, the Hamiltonian H

H(x, t,y, ȳ,z,u) := z[ f (x, t,y,u)−b(x, t,y,u)]+g(x, t,y, ȳ,u).

The following lemma and theorem can be proved by using the techniques of [1], [6]. See also [17], where necessary optimality

conditions on signomial constrained optimal control problems are proved.

Lemma 3.3. Under Assumptions (H2-H7), the directional derivative of the functional Jn is given by

DJn(rn,r′n − rn) =
∫

Q
H(x, t,yn,∇yn,zn,r′n − rn)dxdt, rn,r′n ∈ Rn,

where zn is given by (3.5), (3.6). Moreover, the mappings rn 7→ zn and (rn,r′n) 7→ DJn(rn,r′n − rn) are continuous.

Proof. For simplicity of notation we drop the index n. For r,r′ ∈ R, 0 < ε ≤ 1, set rε = r + ε(r′ − r),y := yr,yε := yrε ,
δε y := yε − y. Now, by our assumptions, for fixed r ∈ R, the functional

Φ(y, ȳ,r) :=
∫

Q
g(x, t,y, ȳ,r)dxdt,

is Fréchet differentiable uniformly in r, i.e.

Φ(y+δy, ȳ+δ ȳ,r)−Φ(y, ȳ,r) =
∫

Q
[gy(x, t,y, ȳ,r)δy+gȳ(x, t,y, ȳ,r)δ ȳ]dxdt +θ(δy,δ ȳ)(‖δy‖∞ +‖δ ȳ‖),

where θ(δy,δ ȳ)→ 0 as ‖δy‖∞+‖δ ȳ‖→ 0, with θ independent of the control r ∈ R. This can be shown under our assumptions

by using the Mean Value Theorem, Hölder’s inequality and Proposition 2.1 in [6] for a fixed control. By Lemma 2.2 in [6], we

have

J (rε)− J (r) =
∫

Q [g(yε ,∇yε ,rε)−g(y,∇y,rε)+g(y,∇y,rε)−g(y,∇y,r)]dxdt

=
∫

Q gy(y,∇y,r)δε ydxdt +
∫

Q gȳ (y,∇y,r)∇δε ydxdt + ε
∫

Q g(y,∇y,r′− r)dxdt +o(ε).
(3.7)

Since δε y(0) = z(T ) = 0, by similar arguments, the state equation (3.1) yields

−
∫ T

0
(z′,δε y)dt+

∫ T

0
a(δε y,z)dt+

∫ T

0
(aT

0 ∇δε y,z)dt =
∫

Q

(

fy(y,r)−by(y,r)
)

δε yzdxdt+ε

∫

Q

(

f (y,r′−r)−b(y,r′−r)
)

zdxdt+o(ε). (3.8)

On the other hand, the adjoint equation (3.5) yields

−
∫ T

0 (z′,δε y)dt +
∫ T

0 a(δε y,z)dt +
∫ T

0 (aT
0 ∇δε y,z)dt

=
∫

Q ( fy(y,r)−by(y,r))δε yzdxdt +
∫

Q gy(y,∇y,r)δε ydxdt +
∫

Q gȳ(y,∇y,r)∇δε ydxdt.
(3.9)

Gathering (3.7), (3.8) and (3.9), we obtain

DJ(r,r′− r) =
∫

Q

[

z
(

f (x, t,y,r′− r)−b(x, t,y,r′− r)
)

+g(x, t,y,∇y,r′− r)
]

dxdt.
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Theorem 3.4. (i) Under Assumptions (H2-H7), if rn ∈ Rn is a solution of the DROCPb, then it is extremal, i.e. there exist

multipliers λ n
m ∈ R, m = 0, ...,q2, with λ n

0 ≥ 0, λ n
m ≥ 0, m = q1 +1, ...,q2,

q2

∑
m=0

|λ n
m|= 1, such that

q2

∑
m=0

λ n
mDJn

m(r
n,r′n−rn)=

∫

Q
H(x, t,yn,∇yn,zn,r′n−rn)dxdt≥0,∀r′n∈Rn, (3.10)

λ n
m[J

n
m(r

n)− εn
m] = 0, m = q1 +1, ...,q2, (3.11)

where H and zn are defined with g :=
q2

∑
m=0

λ n
mgm. Condition (3.10) is equivalent to the strong discrete block pointwise minimum

principle

∫

En
i

H(x, t,yn,∇yn,zn,rn)dx = min
u∈U

∫

En
i

H(x, t,yn,∇yn,zn,u)dx, i = 1, ...,Mn, a.e. in(0,T ). (3.12)

(ii) With Assumptions (H2-H7) and assuming that Jn
0 ,J

n
q1+1, ...,J

n
q2

are convex and Jn
1 , ...,J

n
q1

are affine, if rn ∈ Rn is admissible

and extremal for the DROCPb, with λ n
0 > 0, then rn is optimal for this problem.

Proof. (i) The global condition (3.10) and the conditions (3.11) follow from the general multiplier theorem V.2.3 in [1]. The

equivalence of the conditions (3.10) and (3.12) is standard (see [1]), since the closed set U has a dense denumerable subset.

(ii) The assumptions imply that the functional Jn(rn) :=
q

∑
m=0

λ n
mJn

m(r
n) is convex. The condition (3.10) is then satisfied if and

only if rn minimizes Jn on Rn. Supposing now that rn does not minimize Jn
0 and using the constraints and the conditions (3.11),

easily follows that rn does not minimize Jn, which is a contradiction.

4. Behavior in the limit

Here we study the limiting behavior of the discrete problems as n → ∞. Next proposition gives us a control approximation

result. It is proved in [6] for totally (i.e. in space and time) discrete controls, from which it follows for semidiscrete ones.

Proposition 4.1. For every r ∈ R, there exist (un) ∈ U
n such that un → r in R.

Lemma 4.2 (Consistency of states and functionals). Under Assumptions (H2-H3) and (H7), if rn → r in R, then the corre-

sponding discrete states yn converge to yr in L2((0,T ),V ) strongly and

lim
n→∞

Jn
m(r

n) = Jm(r), m = 0, ...,q2. (4.1)

Proof. Multiplying (3.1) by cn
i and summing over i we obtain for every t∈(0,T )

〈yn′,yn〉+a(yn,yn)+(aT
0 (t)∇yn,yn)+(b(t,yn,rn),yn)=( f (t,yn,rn),yn). (4.2)

Integrating (4.2) on [0, t], t ≤ T and working similarly to the proof of Lemma 2.2, we deduce that

1

2
‖yn(t)‖2 + c1

t
∫

0

‖yn(s)‖2
1 ds ≤

1

2
‖yn(0)‖2 +

1

2

t
∫

0

‖ψ (s)‖2
ds+ c2

t
∫

0

‖yn(s)‖2
ds, ∀t ∈ (0,T ), (4.3)

for some appropriate constants c1,c2.

Using Gronwall’s inequality and the fact that yn(0) is bounded (since clearly yn(0)→ yn in V strongly, due to the projection)

we deduce from (4.3) that yn is bounded in L2(Q). Then from (4.3) we obtain that yn is bounded in L2((0,T ),V ). One can

also prove using (3.1) that yn′ is bounded in L2((0,T ),V ∗). Since the injection of V in L2(Ω) is compact, by the compactness

Theorem 2.2 chap. III in [16], there exists a subsequence still denoted by yn : yn → y in L2(Q) strongly.

Let v ∈C1
0(Ω̄) an arbitrary given function and (vn) ∈V n a sequence of functions interpolating the function v at the vertices

inside Ωn and vanishing on Γn. The sequence converges to v in V strongly. Then, the integral form of the discrete equation

(3.1) is written

(yn(T ), vn)− (yn
0,v

n)+

T
∫

0

a(yn,vn)dt +

T
∫

0

(aT
0 ∇yn,vn)dt =

T
∫

0

( f (t,yn,rn)−b(t,yn,rn),vn)dt. (4.4)
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We obtain from (4.4) using the above convergences and Proposition 2.1 in [6] that, ∀v ∈C1
0(Ω̄)

(yn(T ),v) = (yn(T ), v− vn)+(yn(T ), vn) = (yn(T ), v− vn)+(yn
0,v

n)

+
T
∫

0

( f (t,yn,rn)−b(t,yn,rn),vn)dt −
T
∫

0

a(yn,vn)dt −
T
∫

0

(aT
0 ∇yn,vn)dt

−→ (y0,v)+
T
∫

0

( f (y,r)−b(y,r),v)dt −
T
∫

0

a(y,v)dt −
T
∫

0

(aT
0 ∇y,v)dt = (y(T ),v).

Since C1
0(Ω̄) is dense in L2(Ω) it follows that (yn(T ),v)→ (y(T ),v)∀v ∈ L2(Ω), i.e. yn(T )→ y(T ) in L2(Ω) weakly. By the

above convergences, we get from (4.4)

(y(T ),v) − (y0,v)+
∫ T

0
a(y,v)dt +

∫ T

0
(aT

0 ∇y,v)dt =
∫ T

0
( f (y,r)−b(y,r),v)dt,

hence y = yr.

Next, we prove that yn → y in L2((0,T ),V ) strongly. We have

α2 ‖yn − y‖2
L2((0,T ),V ) ≤

∫ T
0 a(yn − y,yn − y)dt + 1

2
‖yn(T )− y(T )‖2 = 1

2

∥

∥yn
0

∥

∥

2
− 1

2
(yn(T ),y(T ))− 1

2
(y(T ),yn(T )− y(T ))

+
∫ T

0 ( f (yn,rn)−b(yn,rn),yn)dt −
∫ T

0 (aT
0 ∇yn,yn)dt −

∫ T
0 a(yn,y)dt −

∫ T
0 a(y,yn − y)dt,

and as n → ∞ the right-hand side of the above inequality convergence to zero.

Finally, the convergences (4.1) follow from Proposition 2.1 in [6].

In what follows the feasibility of the ROCP is assumed. Next theorem addresses the limit behavior of optimal discrete relaxed

controls for the DROCPa.

Theorem 4.3. Under Assumptions (H2-H4) and (H7) and the additional assumption that the sequences (εn
m) converge to zero

as n → ∞ and satisfy

|Jn
m(r̃

n)| ≤ εn
m, m = 1, ...,q1, Jn

m(r̃
n)≤ εn

m, εn
m ≥ 0, m = q1 +1, ...,q2,

for every n, where (r̃n) ∈ Rn is a sequence which converges in R to some r̃ ∈ R optimal for the ROCP. Then, for each n, we

consider (rn) which is optimal for the DROCPa. The above sequence (rn) has accumulation points in R that are optimal for

the ROCP.

Proof. From theorem’s assumptions the feasibility of the DROCPa, for every n, follows. Let a subsequence of (rn), still

denoted by (rn), such that rn → r, r ∈ R. Since rn is admissible as optimal and r̃n is admissible for the DROCPa, it follows

Jn
0 (r

n)≤ Jn
0 (r̃

n), |Jn
m(r

n)| ≤ εn
m, m = 1, ...,q1, Jn

m(r
n)≤ εn

m, m = q1 +1, ...,q2.

Taking limits as n → ∞, with the help of Lemma 4.2, we conclude that r is optimal for the ROCP.

Lemma 4.4. Under Assumptions (H2-H7), if rn → r in R, then zn → zr in L2((0,T ),V ) strongly, where zn the corresponding

discrete adjoint states. If rn → r and r′n → r′, then

lim
n→∞

DJn
m(r

n,r′n − rn) = DJm(r,r
′− r), m = 0, ...,q2.

Proof. It follows easily from Lemma 4.2 and the same arguments as those in the proof of that Lemma.

Next, we consider the DROCPb. We can choose (εn
m), m = 1, ...,q2, such that εn

m → 0, n → ∞ and the DROCPb is feasible for

every n (see [6]).

Theorem 4.5. Under Assumptions (H2-H7), for each n, let rn be admissible and extremal for the DROCPb. Then the sequence

(rn) has accumulation points that are admissible and extremal for the ROCP.

Proof. Since R is compact, consider a subsequence (rn) such that rn → r in R. From Theorem 3.4, there exist multipliers

λ n
m ∈ R, m = 0, ...,q2 with

q2

∑
m=0

|λ n
m|= 1, thus there exist subsequences (λ n

m), m = 0, ...,q2, such that λ n
m → λm, m = 0, ...,q2.

Let any r′ ∈ R and (r′n) be a sequence such that r′n → r′ (Proposition 4.1). Using the above convergences, Lemmas 4.2, 4.4

and Proposition 2.1 in [6] and passing to the limit in (3.10), (3.11) we have

∫

Q
H(x, t,y,∇y,z,r′(x, t)− r(x, t))dxdt ≥ 0, ∀r′ ∈ R,
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λmJm(r) = lim
n→∞

λ n
m[J

n
m(r

n)− εn
m] = 0, m = q1 +1, ...,q2.

Also,

Jm(r) = lim
n→∞

[Jn
m(r

n)− εn
m] = 0, m = 1, ...,q1,

Jm(r) = lim
n→∞

[Jn
m(r

n)− εn
m]≤ 0, m = q1 +1, ...,q2.

Therefore, r is admissible and extremal for the ROCP (see [14]).

5. Discrete penalized conditional descent method

We choose a fixed discretization and for notational simplicity we shall drop the index n in the data. Let (Ml
m), m = 1, ...,q2, be

increasing sequences with (Ml
m)> 0 and Ml

m → ∞ as l → ∞. Define the discrete functionals with penalties

Jl(r) := J0(r)+0.5{
q1

∑
m=1

Ml
m[Jm(r)]

2 +
q2

∑
m=q1+1

Ml
m[max(0,Jm(r))]

2}.

Let ρ,σ ∈ (0,1), and let (β l), (ζk) be positive sequences, with (β l) decreasing and converging to zero, and ζk ≤ 1. A penalized

conditional descent method with Armijo line step search applied on the DROCPb is presented in the following algorithm.

Algorithm

Step 1. k = 0, l = 1. Choose an initial discrete control r1
0 ∈ R.

Step 2. Compute the state and the adjoint associated with rl
k. Find r̄l

k ∈ R such that

r̄l
k = argmin

{

DJl(rl
k,r

′− rl
k), r′ ∈ R

}

and set dk := DJl(rl
k, r̄

l
k − rl

k).

Step 3. If |dk|> β l , then go to Step 4, else rl = rl
k, r̄l = r̄l

k, dl = dk, rl+1
k = rl

k, l = l +1 and return to Step 2.

Step 4. Find the smallest nonnegative integer s, denoted s̄:

Jl(rl
k +σ sζk(r̄

l
k − rl

k))− Jl(rl
k)≤ σ sζkρdk.

Set αk = σ s̄ζk.

Step 5. Choose an equivalent rl
k+1 ∈ R such that

Jl(rl
k+1) = Jl(rl

k +αk(r̄
l
k − rl

k)),

set k = k+1, and return to Step 2.

We now define the sequences of multipliers

λ l
m :=Ml

mJm(r
l), m = 1, ...,q1, λ l

m :=Ml
m max(0,Jm(r

l)), m = q1 +1, ...,q2, (5.1)

where rl are defined in Step 3 of the Algorithm.

In the following theorem we study the convergence properties of the above algorithm.

Theorem 5.1. Consider the sequence (rl) constructed in Step 3 of the Algorithm. If the sequences (λ l
m),m = 1, ...,q2 remain

bounded, then any accumulation point of (rl) satisfies the optimality conditions (3.10), (3.11) for the discrete problem.

Proof. We can prove that l → ∞ in the Algorithm as in Theorem 5.1 in [12].

If r ∈ R is an accumulation point of the sequence (rl), there exist a subsequence of it, still denoted by (rl), converging to r ∈ R

as l → ∞. If the sequences (λ l
m), m = 1, ...,q2 defined in (5.1) are bounded, then they have subsequences, again denoted by

(λ l
m), such that λ l

m → λm. Using Lemma 4.2, we obtain

0 = lim
l→∞

λ l
m

Ml
m

= lim
l→∞

Jm(r
l) = Jm(r), m = 1, ...,q1,
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0 = lim
l→∞

λ l
m

Ml
m

= lim
l→∞

[max(0,Jm(r
l))] = max(0,Jm(r)), m = q1 +1, ...,q2,

thus r is admissible. Next, for every r′ ∈ R, Steps 2, 3 of the Algorithm give

DJl(rl ,r′− rl) = λ l
0DJ0(r

l ,r′− rl)+
q1

∑
m=1

λ l
mDJm(r

l ,r′− rl)+
q2

∑
m=q1+1

λ l
mDJm(r

l ,r′− rl)≥ dl , (5.2)

with λ l
0 := 1. From Step 3 of the Algorithm we have

∣

∣dl
∣

∣≤ β l → 0. We use the above convergences and Lemma 3.3 to pass to

the limit in (5.2), as l → ∞ and obtain

λ0DJ0(r,r
′− r)+

q1

∑
m=1

λmDJm(r,r
′− r)+

q2

∑
m=q1+1

λmDJm(r,r
′− r)≥ 0. (5.3)

Obviously, λ0 = 1 and the construction of λ l
m implies that in the limit λm ≥ 0, m = q1+1, ...,q2. Dividing (5.3) by

q2

∑
m=0

|λm| ≥ 1

we can suppose that
q2

∑
m=0

|λm|= 1. Also, if Jm(r)< 0, for some m ∈ [q1+1, q2], then for l sufficiently large, we have Jl
m(r

l)< 0

and λ l
m = 0, hence λm = 0, i.e. the conditions (3.11) hold. Therefore, r is also extremal.

Under the additional assumptions of Theorem 3.4 the Algorithm computes optimal controls.

Finally, we can show, see [5], that the constructed control rl
k in Step 5 of the Algorithm can be chosen to be of Gamkrelidze

type and these controls can be approximated by classical controls. So, the relaxed controls can be implemented.

6. Numerical examples

In this section, two examples are presented. The first one without state constraints and the second one with an equality state

constraint. The Algorithm applied on both problems (in the first one without penalties) with ρ = σ = 0.5 and initial control

r := (r0 + r1)/2, where r0(x, t) := δ0, r1(x, t) := δ1 (Dirac measures).

Example 6.1. Let Q := (0,1)× (0,1) and U := {0,1}. Consider the following optimal control problem

minimize J0(u) :=
∫

Q
{0.5 [(y− ȳ)2 + |∇y−∇ȳ|2]−u2 +u}dxdt

subject to

yt − yxx +0.5y |y|+(1+u− ū)y = 0.5 ȳ |ȳ|+ ȳ+ x(1− x)(−1+ t)+2−2t + t2 + siny− sin ȳ+3(u− ū) in Q,

y(0, t) = y(1, t) = 0,

y(x,0) = x(1− x) in (0,1),

and the control constraints u ∈U, where

ū(x, t) :=

{

1, if 0 ≤ t ≤ 0.5,
1−2(t −0.5)(−0.4x+0.7), if 0.5 < t ≤ 1,

ȳ(x, t) := x(1− x)
(

1− t +0.5t2
)

.

It is easy to verify that

r(x, t){1}= ū(x, t), r(x, t){0}= 1− r(x, t){1}, (x, t) ∈ Q,

is the unique optimal relaxed control distributed between the points 0 and 1 with optimal state ȳ and optimal cost 0.

These are the results when the Algorithm was applied for 90 iterations.

Jn
0 (r

n
k) = 3.5376 ·10−5, dk =−1.2321 ·10−4,

where dk was defined in Step 2 of the Algorithm. Figure 6.1 shows the last control probability function p1(x, t) := rn
k(x, t){1}.

The state y for the final iteration is shown in Figure 6.2.

Example 6.2. Consider the above problem under the equality state constraint

J1(u) :=
∫

Q
ydxdt = 0.

These are the results when the Algorithm was applied for 210 iterations.

Jn
0 (r

nl
k ) = 8.3807 ·10−2, Jn

1 (r
nl
k ) = 3.8048 ·10−5, dk =−3.8013 ·10−3.

Here, p1(x, t) := rnl
k (x, t){1} is shown in Figure 6.3 and the state y for the final iteration in Figure 6.4.
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Figure 6.1: Example 6.1: Last relaxed control probability p1

Figure 6.2: Example 6.1: State y for the final iteration

Figure 6.3: Example 6.2: Last relaxed control probability p1

Figure 6.4: Example 6.2: State y for the final iteration
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7. Conclusion

In the absence of any convexity assumptions, relaxed controls are an important tool to prove existence of optimal controls.

Thus, the corresponding relaxed optimal control problem is introduced, which is then discretized and the behavior in the limit

of sequences of optimal and admissible extremal controls was studied. Finally, a penalized conditional descent method using

relaxed controls, applied to the discrete relaxed problem, is proposed. This method constructs discrete Gamkrelidze controls

which, for implementation reasons, can be approximated by piecewise classical ones.
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Abstract

The main purpose of this study is to characterize some matrix classes from classical sequence

spaces into a newly introduced space and find the norm of some special matrix operators.

Also, we give certain geometric properties of this space.

1. Introduction

The matrix transformations in sequence spaces have been studied by many authors over years. Since the most general linear

operators from a sequence space to another one can be given by an infinite matrix, the theory of matrix transformations has

been of great importance in the study of sequence spaces. For the relevant literature consult to [1]-[6].

In the recent times, the interest in investigating geometric properties of sequence spaces with topological properties have

increased. Over years several papers on the geometric properties of various spaces have appeared. For instance, Mursaleen et

al. [7] examined the geometric properties of Euler sequence space. More information about the relevant literature can be found

in [8]-[14].

The main purpose of this work is to characterize some matrix classes on a newly introduced sequence space and find the norm

of certain bounded linear matrix operators. Also, we prove that the resulting space is of type p Banach-Saks and it has the

weak fixed point property. Finally, we investigate the strictly convexity and uniformly convexity of this space.

2. Preliminaries and notations

A sequence space is a linear subspace of the space of all real valued sequences ω . ℓ∞,c,c0 and ℓp (1 ≤ p < ∞) are the sequence

spaces of all bounded, convergent, null sequences and absolutely p-summable sequences, respectively.

Given any sequence spaces X and Y and an infinite matrix T = (ti j), T is called a matrix mapping from X into Y if for every

sequence x = (x j) ∈ X , T x = (Ti(x)) with

Ti(x) =
∞

∑
j=1

ti jx j

is in Y and the series is convergent for each i ∈ N= {1,2, ...}. Then, T x is called the T -transform of x.

Email address and ORCID number: merveilkhan@duzce.edu.tr, https://orcid.org/0000-0002-0831-1474 (M. İlkhan)
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The set

XT = {x = (x j) ∈ ω : T x ∈ X}

is called the matrix domain of T in the space X and it is also a sequence space.

Let ϕ : N→ N be the Euler function defined as

ϕ(i) =
i

∑
j=1,( j,i)=1

1,

where ( j, i) is the greatest common divisor of j and i. That is, ϕ(i) gives the number of positive integers less than i which are

coprime with j.

The Euler function ϕ satisfies the following properties:

1. i = ∑ j|i ϕ( j) holds for every i ∈ N.

2. ϕ(i) = i∏p|i(1−
1
p
), where p is the prime divisor of i.

3. ϕ(i j) = ϕ(i)ϕ( j) holds for (i, j) = 1.

Let i = p
α1
1 p

α2
2 ...p

αl

l . The Möbius function µ : N→{−1,0,1} is defined as

µ(i) = (−1)l if α1 = α2 = ...= αl = 1

µ(i) = 0 if αk 6= 1 for at least one k ∈ {1,2, ..., l},

where p1, p2, ..., pl are non-equivalent prime numbers and p
α1
1 p

α2
2 ...p

αl

l is the prime factorization of i > 1. Also,

µ(1) = 1

and for i 6= 1

∑
p|i

µ(p) = 0

holds.

Φ-summability was introduced by Schoenberg [15] in order to study the Riemann integrability of a generalized Dirichlet

function in [0,1]. It is said that a sequence x = (x j) is ϕ-convergent to l if

lim
i→∞

1

i
∑
j|i

ϕ( j)x j = l.

Let Φ = (φi j) be the matrix defined as

φi j =

{

ϕ( j)
i

, if j | i,
0 , if j ∤ i.

The regularity of this special matrix is also observed by Schoenberg [15]. This means that the matrix Φ maps c into c and the

limit is preserved.

In [16], by using this matrix, the sequence spaces

ℓp(Φ) =

{

x = (xi) ∈ ω : ∑
i

∣

∣

∣

∣

∣

1

i
∑
j|i

ϕ( j)x j

∣

∣

∣

∣

∣

p

< ∞

}

(1 ≤ p < ∞)

and

ℓ∞(Φ) =

{

x = (xi) ∈ ω : sup
i

∣

∣

∣

∣

∣

1

i
∑
j|i

ϕ( j)x j

∣

∣

∣

∣

∣

< ∞

}

are introduced and proved that these spaces are Banach spaces with the norms

‖x‖ℓp(Φ) =

(

∑
i

∣

∣

∣

∣

∣

1

i
∑
j|i

ϕ( j)x j

∣

∣

∣

∣

∣

p)1/p

(1 ≤ p < ∞)
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and

‖x‖ℓ∞(Φ) = sup
i

∣

∣

∣

∣

∣

1

i
∑
j|i

ϕ( j)x j

∣

∣

∣

∣

∣

,

respectively.

Unless otherwise stated, x̃ = (x̃i) will be the Φ-transform of a sequence x = (xi), that is,

x̃i = Φi(x) =
1

i
∑
j|i

ϕ( j)x j (2.1)

for all i ∈ N.

3. Some matrix transformations and norms of matrix operators

In this part of the study, we firstly give the characterization of matrix classes (X , ℓp(Φ)), where X ∈ {ℓ∞,c,c0, ℓ1} and

1 ≤ p ≤ ∞. For this aim, we give the following results, where F denotes the collection of all finite subsets of N. q is conjugate

of p; that is p−1 +q−1 = 1 with 1 < p,q < ∞.

Lemma 3.1. [17] Let 1 ≤ p < ∞.

(a) T = (ti j) ∈ (ℓ∞, ℓp) = (c, ℓp) = (c0, ℓp) if and only if

sup
K∈F

∑
i

∣

∣

∣

∣

∣

∑
j∈K

ti j

∣

∣

∣

∣

∣

p

< ∞.

(b) T = (ti j) ∈ (ℓ1, ℓp) if and only if

sup
j

∑
i

∣

∣ti j

∣

∣

p
< ∞.

(c) T = (ti j) ∈ (ℓ∞, ℓ∞) = (c, ℓ∞) = (c0, ℓ∞) if and only if

sup
i

∑
j

∣

∣ti j

∣

∣< ∞.

(d) T = (ti j) ∈ (ℓ1, ℓ∞) if and only if

sup
i, j

|ti j|< ∞.

Theorem 3.2. Let 1 ≤ p < ∞.

(a) T = (ti j) ∈ (ℓ∞, ℓp(Φ)) = (c, ℓp(Φ)) = (c0, ℓp(Φ)) if and only if

sup
K∈F

∑
i

∣

∣

∣

∣

∣

∑
j∈K

∑
l|i

ϕ(l)

i
tl j

∣

∣

∣

∣

∣

p

< ∞.

(b) T = (ti j) ∈ (ℓ1, ℓp(Φ)) if and only if

sup
j

∑
i

∣

∣

∣

∣

∣

∑
l|i

ϕ(l)

i
tl j

∣

∣

∣

∣

∣

p

< ∞.

(c) T = (ti j) ∈ (ℓ∞, ℓ∞(Φ)) = (c, ℓ∞(Φ)) = (c0, ℓ∞(Φ)) if and only if

sup
i

∑
j

∣

∣

∣

∣

∣

∑
l|i

ϕ(l)

i
tl j

∣

∣

∣

∣

∣

< ∞.

(d) T = (ti j) ∈ (ℓ1, ℓ∞(Φ)) if and only if

sup
i, j

∣

∣

∣

∣

∣

∑
l|i

ϕ(l)

i
tl j

∣

∣

∣

∣

∣

< ∞.
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Proof. Given any infinite matrix T = (ti j) ∈ (ℓ∞, ℓp(Φ)), define a new matrix T̂ = (t̂i j) by

t̂i j = ∑
l|i

ϕ(l)

i
tl j

for all i, j ∈ N. Then, for any x = (x j) ∈ ℓ∞, the equality

∑
j

t̂i jx j = ∑
l|i

ϕ(l)

i
∑

j

tl jx j

means that T̂i(x) = Φi(T x) for all i ∈N. This implies that T x ∈ ℓp(Φ) for x = (x j) ∈ ℓ∞ if and only if T̂ x ∈ ℓp for x = (x j) ∈ ℓ∞.

Hence, we conclude from Lemma 3.1 (a) that

sup
K∈F

∑
i

∣

∣

∣

∣

∣

∑
j∈K

∑
l|i

ϕ(l)

i
tl j

∣

∣

∣

∣

∣

p

< ∞.

The other results follow with the same technique by using Lemma 3.1 (b), (c) and (d).

Now, we investigate the norm of the bounded linear matrix operators from ℓp(Φ) into ℓ1(Φ) and ℓ∞(Φ) for 1 ≤ p ≤ ∞. Firstly,

we have a lemma which is essential for our investigation.

Lemma 3.3. Given any infinite matrix T = (ti j), the following statements hold:

(a) The norm of T ∈ B(ℓp, ℓ∞) is defined by

‖T‖(ℓ1,ℓ∞) = sup
i, j

|ti j|

and

‖T‖(ℓp,ℓ∞) = sup
i

∑
j

|ti j|
q (1 < p ≤ ∞).

(b) The norm of T ∈ B(ℓp, ℓ1) is defined by

‖T‖(ℓ1,ℓ1) = sup
j

∑
i

|ti j|

and

‖T‖(ℓp,ℓ1) = sup
K∈F

∑
j

∣

∣

∣

∣

∣

∑
i∈K

ti j

∣

∣

∣

∣

∣

q

(1 < p ≤ ∞).

Theorem 3.4. Let T = (ti j) be an infinite matrix.

(a) If T ∈ B(ℓ1(Φ), ℓ∞(Φ)), then

A∞
1 = sup

i, j

∣

∣

∣

∣

∣

∑
j|l

µ( l
j
)

ϕ(l)
j∑

k|i

ϕ(k)

i
tkl

∣

∣

∣

∣

∣

is finite. In this case, ‖T‖(ℓ1(Φ),ℓ∞(Φ)) = A∞
1 .

(b) Let 1 < p ≤ ∞. If T ∈ B(ℓp(Φ), ℓ∞(Φ)), then

A∞
p = sup

i
∑

j

∣

∣

∣

∣

∣

∑
j|l

µ( l
j
)

ϕ(l)
j∑

k|i

ϕ(k)

i
tkl

∣

∣

∣

∣

∣

q

is finite. In this case, ‖T‖(ℓp(Φ),ℓ∞(Φ)) = A∞
p .

(c) If T ∈ B(ℓ1(Φ), ℓ1(Φ)), then

A1
1 = sup

j
∑

i

∣

∣

∣

∣

∣

∑
j|l

µ( l
j
)

ϕ(l)
j∑

k|i

ϕ(k)

i
tkl

∣

∣

∣

∣

∣

is finite. In this case, ‖T‖(ℓ1(Φ),ℓ1(Φ)) = A1
1.

(d) Let 1 < p ≤ ∞. If T ∈ B(ℓp(Φ), ℓ1(Φ)), then

A1
p = sup

K∈F
∑

j

∣

∣

∣

∣

∣

∑
i∈K

∑
j|l

µ( l
j
)

ϕ(l)
j∑

k|i

ϕ(k)

i
tkl

∣

∣

∣

∣

∣

q

is finite. In this case, ‖T‖(ℓp(Φ),ℓ1(Φ)) = A1
p.
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Proof. Let T̃ = ΦT Φ−1. From Theorem 3 in [16], it is known that the spaces ℓp(Φ) and ℓp are linearly isomorphic, where

1 ≤ p ≤ ∞. Hence, we deduce from the following diagram

ℓp(Φ)
T // X(Φ)

Φ

��
ℓp

Φ−1

OO

T̃=ΦT Φ−1

// X

that ‖T‖(ℓp(φ),X(Φ)) = ‖T̃‖(ℓp,X), where X ∈ {ℓ∞, ℓ1} and 1 ≤ p ≤ ∞. Thus, the desired results follows from Lemma 3.3.

4. Certain geometric properties of ℓp(Φ)

In this part of the study, some geometric properties of the space ℓp(Φ) for 1 < p < ∞ is given. BX denotes the unit ball in a

normed space (X ,‖.‖).

It is said that a Banach space X satisfies the Banach-Saks property if every sequence (un) in X ∩ ℓ∞ has a subsequence (tn)
such that the sequence (ak(t)) is convergent, where

ak(t) =
1

k+1
(t0 + t1 + ...+ tk); (k ∈ N).

It is said that a Banach space X satisfies the weak Banach-Saks property if there exists a subsequence (tn) of a given weakly

null sequence (un) in X such that the sequence (ak(t)) is strongly convergent to zero.

It is said that a Banach space satisfies the property Banach-Saks type p if every weakly null sequence (uk) has a subsequence

(uk j
) such that for some C > 0,

∥

∥

∥

∥

∥

n

∑
j=1

uk j

∥

∥

∥

∥

∥

<Cn1/p

for all n ∈ N. Note that n1/∞ = 1 for all n ∈ N ([18]).

Theorem 4.1. The space ℓp(Φ) is of type p Banach-Saks for 1 < p < ∞.

Proof. Let (δn) be a sequence such that δn > 0 for all n ∈ N and ∑n δn ≤ 1/2. Choose a weakly null sequence (un) in Bℓp(Φ).

Put t1 = un1
= u1. There exists m1 ∈ N such that

∥

∥

∥

∥

∥

∞

∑
i=m1+1

t i
1ε i

∥

∥

∥

∥

∥

ℓp(Φ)

< δ1.

Since (un) is weakly null sequence implies un → 0 coordinatewise, there is an n2 ∈ N such that

∥

∥

∥

∥

∥

m1

∑
i=1

ui
nε i

∥

∥

∥

∥

∥

ℓp(Φ)

< δ1,

for all n ≥ n2. Put t2 = un2
. Then, there exists an m2 > m1 such that

∥

∥

∥

∥

∥

∞

∑
i=m2+1

t i
2ε i

∥

∥

∥

∥

∥

ℓp(Φ)

< δ2.

Again using the fact that un → 0 coordinatewise, there exists an n3 > n2 such that

∥

∥

∥

∥

∥

m2

∑
i=1

ui
nε i

∥

∥

∥

∥

∥

ℓp(Φ)

< δ2,

for all n ≥ n3.

By continuing this process, we obtain two sequences (mi) with m1 < m2 < ... < mi < ... and (ni) with n1 < n2 < ... < ni < ...
such that

∥

∥

∥

∥

∥

m j

∑
i=1

ui
nε i

∥

∥

∥

∥

∥

ℓp(Φ)

< δ j,
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for all n ≥ n j+1 and
∥

∥

∥

∥

∥

∞

∑
i=m j+1

t i
jε

i

∥

∥

∥

∥

∥

ℓp(Φ)

< δ j,

where t j = un j
. It follows that

∥

∥

∥

∥

∥

n

∑
j=1

t j

∥

∥

∥

∥

∥

ℓp(Φ)

=

∥

∥

∥

∥

∥

n

∑
j=1

(

m j−1

∑
i=1

t i
jε

i +
m j

∑
i=m j−1+1

t i
jε

i +
∞

∑
i=m j+1

t i
jε

i

)∥

∥

∥

∥

∥

ℓp(Φ)

≤

∥

∥

∥

∥

∥

n

∑
j=1

(

m j

∑
i=m j−1+1

t i
jε

i

)∥

∥

∥

∥

∥

ℓp(Φ)

+2
n

∑
j=0

δ j.

Also, given any u ∈ Bℓp(Φ), we have ‖u‖p

ℓp(Φ)
= ∑

∞
i=1

∣

∣

1
i ∑k|i ϕ(k)uk

∣

∣

p
< 1. Therefore, we have that

∥

∥

∥

∥

∥

n

∑
j=1

(

m j

∑
i=m j−1+1

t i
jε

i

)∥

∥

∥

∥

∥

p

ℓp(Φ)

=
n

∑
j=1

m j

∑
i=m j−1+1

∣

∣

∣

∣

∣

1

i
∑
k|i

ϕ(k)tk
j

∣

∣

∣

∣

∣

p

≤
n

∑
j=1

∞

∑
i=1

∣

∣

∣

∣

∣

1

i
∑
k|i

ϕ(k)tk
j

∣

∣

∣

∣

∣

p

≤ n.

Hence, we obtain
∥

∥

∥

∥

∥

n

∑
j=1

(

m j

∑
i=m j−1+1

t i
jε

i

)∥

∥

∥

∥

∥

ℓp(Φ)

≤ n1/p.

Since n1/p ≥ 1 holds for all n ∈ N and 1 < p < ∞, we have

∥

∥

∥

∥

∥

n

∑
j=1

t j

∥

∥

∥

∥

∥

ℓp(Φ)

≤ n1/p +1 ≤ 2n1/p.

Hence, we conclude that ℓp(Φ) is of type p Banach-Saks for 1 < p < ∞.

Garcı́a-Falset [19] introduce the following coefficient:

R(X) = sup
{

liminf
n→∞

‖un −L‖ : (un) is a sequence in BX , un
w
→ 0, L ∈ BX

}

.

Here un
w
→ 0 means that (un) is weakly convergent to zero. A Banach space X with R(X)< 2 has the weak fixed point property

([20]).

Remark 4.2. R(ℓp(Φ)) = R(ℓp) = 21/p since ℓp(Φ) is linearly isomorphic to ℓp.

Hence, we have the following result.

Theorem 4.3. The space ℓp(Φ) has the weak fixed point property for 1 < p < ∞.

Let SX = {u ∈ X : ‖u‖= 1}. The Gurarii’s modulus of convexity is

βX (δ ) = inf

{

1− inf
0≤λ≤1

‖λu+(1−λ )v‖ : u,v ∈ SX ,‖u− v‖= δ

}

,

where 0 ≤ δ ≤ 2 ([21]).

Theorem 4.4. The inequality βℓp(Φ)(δ )≤ 1− [1− ( δ
2
)p]1/p holds, where 0 ≤ δ ≤ 2.

Proof. Let 0 ≤ δ ≤ 2. Consider the sequences

ũ =

(

(

1−

(

δ

2

)p)1/p

,
δ

2
,0,0,0, ...

)
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and

ṽ =

(

(

1−

(

δ

2

)p)1/p

,−
δ

2
,0,0,0, ...

)

.

Set u = Φ−1ũ and v = Φ−1ṽ. By using the relation (2.1), we obtain that

‖u‖p

ℓp(Φ)
= ‖Φu‖p

ℓp
= ‖ũ‖p

ℓp
=

∣

∣

∣

∣

∣

(

1−

(

δ

2

)p)1/p
∣

∣

∣

∣

∣

p

+

∣

∣

∣

∣

δ

2

∣

∣

∣

∣

p

= 1

and

‖v‖p

ℓp(Φ)
= ‖Φv‖p

ℓp
= ‖ṽ‖p

ℓp
=

∣

∣

∣

∣

∣

(

1−

(

δ

2

)p)1/p
∣

∣

∣

∣

∣

p

+

∣

∣

∣

∣

−
δ

2

∣

∣

∣

∣

p

= 1.

Also, we have

‖u− v‖p

ℓp(Φ)
= ‖ũ− ṽ‖p

ℓp
= (|δ |p)1/p = δ .

Hence, we conclude that

βℓp(Φ)(δ ) ≤ 1− inf
0≤λ≤1

‖λu+(1−λ )v‖ℓp(Φ)

≤ 1− inf
0≤λ≤1

‖λ ũ+(1−λ )ṽ‖ℓp

≤ 1− inf
0≤λ≤1

[∣

∣

∣

∣

∣

λ

(

1−

(

δ

2

)p)1/p

+(1−λ )

(

1−

(

δ

2

)p)1/p
∣

∣

∣

∣

∣

p

+

∣

∣

∣

∣

λ
δ

2
− (1−λ )

δ

2

∣

∣

∣

∣

p
]1/p

≤ 1− inf
0≤λ≤1

[

1−

(

δ

2

)p

+ |2λ −1|p
δ

2

p]1/p

≤ 1−

[

1−

(

δ

2

)p]1/p

.

Corollary 4.5. If βℓp(Φ)(δ ) = 1, then ℓp(Φ) is strictly convex.

Corollary 4.6. If 0 < βℓp(Φ)(δ )≤ 1, then ℓp(Φ) is uniformly convex.
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Abstract

In this study, we asymptotically reconsider the relations between the pre-factors of a general

inhomogeneous second-order ordinary differential equation and the high-order coefficients

of its asymptotic power series for complex values of the asymptotic parameter ε1. The

study provides a general formula for its generic high-order coefficients with the associated

pre-factors for complex ε1 based on the use of a well-known factorial divided by a power

approach.

1. Introduction

Many of the essential properties of the ordinary differential equations (ODE) can be investigated by using asymptotic expansion

methods such as perturbation methods of Poincaré [1, 2], method of matched asymptotic expansion [3], WKB approximation

method [4, 5] and SCEM method [6]. The generic feature of the singular differential equations is that the high-order coefficients

of the singular perturbation expansions always behave in the characteristic factorial divided by a power (factorial/power) form,

and they factorially diverge for a wide range of singular perturbation problems. It is principally first discussed in detail by

Dingle [7] and Berry [8]. In the companion paper [9], we already considered the link between the pre-factor functions of a

particular type of second-order inhomogeneous ODEs and the associated high-order coefficients of the asymptotic expansion.

Motivated by the previous study, in this paper, we will reapply the same idea permitted us to obtain the formulae in [9] to the

asymptotic solution of the general differential equation in the case of small parameter ε1 is complex-valued. We will address

what difference it will make in the derived formulae. Once it is done, one could use them while addressing the asymptotic

properties of the differential equations such as superasymptotics, hyperasymptotics and Stokes rays [8], [10]-[12] since the

exponential asymptotics is usually discussed in the complex plane. For instance, Stokes rays are the local properties of the

differential equations and across which the exponentially growing terms occur along the complex plane. For this reason

alone, it is nice to interpret the findings of [9] in terms of the complex values of a small parameter. Moreover, the neglected

highest derivative of the singular differential equations at leading order becomes important as it varies rapidly. Therefore, the

asymptotic behavior of the differential equations (and integrals) has been comprehensively studied in detail in the last few

decades and, as a consequence, the subject of exponential asymptotics is introduced, see for example [13]-[17] and references

therein. For this reason, studying the asymptotic behavior of such equations, especially for the ones whose exact solutions

cannot be derived via conventional asymptotic techniques, are always of great interest.

In this paper, albeit briefly, we reconsider whether the formulas in [9] can be further extended for complex values of the
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small parameter while addressing the general representations of the general inhomogeneous second-order ODE. We again

take into account the factorial/power ansatz of high-order coefficients [7, 15, 18] to capture the formulas in the derivation

of the asymptotic expansions for the particular case of this paper. We present that the links between the pre-factors and the

coefficients of the asymptotic expansion of the ODE work for the complex values of ε1. The outline of the article is as follows:

First, we introduce the illustrative singular ordinary differential equation and re-define the small parameter of the ODE in

terms of its complex values in Section 2. We next expand the equation in the traditional asymptotic expansion method where

we derive the leading order solution along with the recurrence relationship of the successive terms of the expansion. To be able

to address and interpret the general form of the high-order coefficients in terms of the pre-factor functions of the ODE for the

complex parameter, we employ the common and powerful factorial/power formula whereby we determine their relationships in

the limit n → ∞ in Section 3. We finish the study with the concluding remarks in Section 4.

2. The asymptotic expansion of ODE

In order to be able to capture the relationship between the high-order terms of the expansion and the pre-factor functions, we

will address the asymptotic expansion of the following singular inhomogeneous ODE of [9], that is,

ε1
d2w(z)

dz2
+ ε1 f (z)

dw(z)

dz
+g(z)w(z) = t(z), (2.1)

in which ε1 ∈C is the small perturbation parameter and pre-factor functions f (z), g(z) and t(z) are not constant. Before starting

to study this section, let us first discuss the form of the asymptotic expansions occurring in exponential asymptotics. Divergent

solutions of the differential equations including this particular case mostly appear in the following nature in exponential

asymptotics [19]

w(z) =

(

w0(z)+ ε1w1(z)+ ε2
1 w2(z)+ · · ·+ εn

1

Γ(2n+β )

χ1(z)2n+β

(

∞

∑
k=0

Ak(z)

(2n+β )k

))

+

(

m−1

∑
l=0

ε l
1Bl(z)

)

exp

(

−
χ1(z)

ε1

)

+

(

s−1

∑
t=0

ε t
1Ct(z)

)

exp

(

−
χ2(z)

ε1

)

+R(ε1,z) ,

(2.2)

in which χi≥1(z)s are subject to every single singularity of the early ordered terms of each level, and R(ε1,z) is the resultant

remainder of the expansion with respect to the order of the first neglected term. As it suffices for this particular case, only

χ1(z), Ak(z) and β will be addressed in (3.1) of the following section. Functions χi≥2(z), Bl(z) and Ct(z) can be addressed, in

a similar way, when needed. It is indeed one of the main ideas lying behind the exponential asymptotics, see [19]. This will

particularly be discussed in the succeeding section. The reason that such expansions diverge is in fact the singular point(s)

of their early terms; most particularly, it is w0(z) in this general case. Moreover, the Stokes rays usually sprout from the

singular point(s) of the early terms. The exponentially small terms which occur in the form of exp(−χi≥1(z)/ε1) appear

and disappear across the active Stokes rays, and this can be observed when analytically continued in the Argand diagram;

particularly, this jump occurs smoothly via error function. Based on the sectors occurred by the Stokes rays in the diagram,

associated sub-dominant exponential terms come into play. Thence, the subject of exponential asymptotics deals with this

divergence and its relation with the exponentially small terms hidden behind algebraic order terms [20]. Furthermore, the

magnitude of the powers of the exponentially small terms of (2.2) shows at which point the asymptotic expansions change

their behavior from decreasing to diverging to infinity; for more details, see [19].

The equation (2.1) currently contains no complex parameter besides ε1. Since we are only interested in finding the asymptotic

solutions for ε1 in terms of pre-factor functions f (z), g(z) and t(z), we need to first introduce complex ε1 in a useful way.

Unlike to [21] where the independent variable is changed by multiplying complex factor, we re-scale the small perturbation

parameter in this case. In particular, to address whether the links between the factors and the expansion coefficients derived in

[9] work for the complex values of ε1 in the asymptotic procedure or not, we principally re-scale ε1, without loss of generality,

by

ε1 = eiθ ε, (2.3)

where 0 < ε ≪ 1. To express herein that we will focus on the general form of the first summation of (2.2) in terms of pre-factor

functions in our derivation since we are only concerned with the limits n → ∞ and ε → 0 for the singular ODEs in the form

of this paper. Upon substitution of this re-scaled values of ε1 into the original differential equation (2.1), we may find the

following singular differential equation depending on θ

eiθ ε
d2w(z)

dz2
+ eiθ ε f (z)

dw(z)

dz
+g(z)w(z) = t(z). (2.4)
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The solution of ODEs by conventional asymptotic methods usually proceeds in a similar way, see [1, 2] for details. Therefore,

we will first assume that a regular asymptotic expansion of the solution of equation (2.4) exists. We then substitute it into the

equation and equate the factors of like powers of the small parameter on both sides. In particular, let us proceed with the usual

approach that its asymptotic power series solution in powers of ε is

w(z)∼
∞

∑
n=0

εnwn(z), (2.5)

which is valid in the limit as ε → 0. Because this series expansion of w(z) must satisfy the differential equation (2.4), we

employ the summation in the equation. After rearranging into a hierarchy of powers of ε , we find

∞

∑
n=1

εn
[

w′′
n−1(z)+ f (z)w′

n−1(z)+ e−iθ g(z)wn(z)
]

+ e−iθ g(z)w0(z) = e−iθ t(z), (2.6)

where the prime ′ indicates the differentiation of the functions respecting to z. Once the factors of like powers of ε are equated

for both sides of the asymptotic equality (2.6), the leading order solution w0(z) at O(1) and the differential recurrence relation

of wn−1(z) and wn(z) of the expansion in (2.6) at O(εn) are derived, respectively, as follows

w0(z) =
t(z)

g(z)
, (2.7)

w′′
n−1(z)+ f (z)w′

n−1(z)+ e−iθ g(z)wn(z) = 0, (2.8)

for n ≥ 1. An observant reader may notice that the low-ordered term w0(z) is not affected with the complex values of the small

parameter and it is the same as the corresponding one of [9]; in fact, this reinforces the consistency between the two pieces of

the works. When the leading order term and then the associated succeeding terms of the expansion are employed repeatedly in

the above sequence (2.8), one can derive the high-order terms as n increases in practice by earlier terms. However, one must

make sure that singularity or singularities of the low-ordered term(s) must be secured in the high-order terms of the expansion.

Calculation of the exact expansion coefficients at each order by this relation, unlike for the low-ordered terms, could be

challenging at times. Therefore, to describe the n → ∞ behavior of the high-order terms as well as the size of the approximation

by seeking an asymptotic expansion of the solution in terms of the pre-factors, we may employ the factorial/power formula as

it generates the form of the expansion coefficients, without loss of generality. It is worth to point out that as one may notice

these approximated solutions will clearly be not exact when ε is small but nonzero, they only define their asymptotic equality

for sufficiently large n and small ε . Moreover, the presence of the singularity or singularities of (2.7) forces the asymptotic

expansion to diverge in the standard factorial divided by a power nature in the limits n → ∞ and ε → 0 as the calculation of the

general terms requires the differentiation of the preceding terms at each order.

3. Asymptotic formula of the high-order terms

As discussed earlier, finding the exact solution of such equations in the form of (2.1) could be extremely difficult sometimes in

the asymptotic procedure. However, as before, our motivation is to study the general asymptotic form of the coefficients for

sufficiently large values of n in terms of the pre-factor functions of the particular ODE. These coefficients are governed by

the nearest singularity of the expansions. For this reason, we will approximate the higher-order coefficients of the expansion

using the powerful factorial/power method as they are naturally divergent in this nature in many cases in the limit ε → 0. We

consider the high-order terms wn(z) of a function w(z), which is asymptotic to a factorially divergent power series [7, 15],

diverge in the following form

wn(z) =
Γ(2n+β )

χ1(z)2n+β

(

∞

∑
k=0

Ak(z)

(2n+β )k

)

, as n → ∞, (3.1)

where χ1(z) = 0 at the singular point(s) of the leading order term (2.7), β is a constant and Γ is the gamma function, or factorial

function, as described in [22]; it enables to extend the domain of the factorial to complex arguments for negative values of

the non-integers, see [23, pg. 149]. We remark that the ansatz given in (3.1) is the only leading order approximation of the

expansion (2.5) or (2.2) in most general form. There must be separate factorial/power ansatz for each singular points exist. It

indeed extracts the high-order term behavior of the expansion wherein derivation of the behavior of χ1(z) plays a pivotal role

in the asymptotic procedure. To fully determine all components of the high-order terms in (3.1), we substitute the ansatz (3.1)

into the relation (2.8). After performing some computations, we find at the leading order for sufficiently large values of n that

χ ′
1(z)

2 + e−iθ g(z) = 0,

through which we find that

χ ′
1(z) =±

√

−e−iθ g(z). (3.2)
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After having the integration of both sides in (3.2), we subsequently derive the denominator χ1(z) as a function of the pre-factor

g(z) such that

χ1(z) =±

∫ √

−e−iθ g(z)dz+ cχ1

=±

∫

√

exp(i(π −θ))g(z)dz+ cχ1
,

(3.3)

in which cχ1
is an integration constant. χ1(z) requires to satisfy the singularity or singularities of the early term w0(z), which

precisely causes the general terms to diverge, by which the integration constant can be derived. The denominator of the

high-order coefficients is expressed as a multiplication of the pre-factor g(z) and eiθ as a result of the choice of re-scaled ε1 in

(2.3). Next, we will focus on deriving the general form of the leading A0(z) term in relation to the pre-factors f (z) and g(z) for

sufficiently large values of n since it contributes to the expansion before the subsequent An≥1(z) functions in the limit n → ∞.

To be able to do this, we carry on the next order of balancing when the summation index n is sufficiently large. Similarly to

previous order of balancing, after doing the required calculations and simplifications, we attain the differential equation of

A0(z) as

χ ′′
1 (z)A0(z)+2χ ′

1(z)A
′
0(z)+ f (z)χ ′

1(z)A0(z) = 0. (3.4)

Although it looks the same as its corresponding one in [9], A0(z) of (3.1) will be a complex function as well in this case as the

denominator function χ1(z) depends upon θ given by the relation in (3.3). Particularly for this expression (3.4), after doing the

simple separation and then doing the direct integration with respect to z, unknown A0(z) may be evaluated in the following

form

A0(z) = c0

exp

(

−

∫

f (z)dz

2

)

√

χ ′
1(z)

. (3.5)

Back substitution of the relation obtained in (3.2) into (3.5) completely derives A0(z) as

A0(z) = c0

exp

(

−

∫

f (z)dz

2

)

[±exp(i(π −θ))g(z)]1/4
.

Note that all of the integration constants obtained so far can be absorbed into a single constant c0, without loss of generality. In

this conjecture, substituting all the relations derived by now for χ1(z) and A0(z) in (3.3) and (3.5) into the factorial/power form

in (3.1), we may generate the most general form of the high-order coefficients as following

wn(z)∼ c0
Γ(2n+β )

χ1(z)2n+β









exp

(

−

∫

f (z)dz

2

)

[±exp(i(π −θ))g(z)]1/4









, as n → ∞. (3.6)

Substituting this coefficient (3.6) back into the summation of the singularly perturbed ODE completes the derivation of the

general asymptotic representation of the singular ODE in terms of f (z), g(z) and t(z) of (2.4) in powers of ε , wherein t(z)
and its zeros are crucial while deriving the low-ordered terms of the expansion, so does the high-order terms. Finally, to

establish the most general form of the solutions by the complex values of ε1, we should use the equation (2.3) and leave ε
alone. Once doing this and substituting it into the summation, we establish the leading order approximation of w(z) as a

function of pre-factor functions in powers of ε1 and exp(−iθ) such that

w(z)∼ c0

∞

∑
n=0

(

ε1e−iθ
)n Γ(2n+β )

χ1(z)2n+β









exp

(

−

∫

f (z)dz

2

)

[±exp(i(π −θ))g(z)]1/4









, as n → ∞,

which is the leading high-order behavior of the asymptotic solution w(z) of equation (2.1) derived based on using the facto-

rial/power representation (3.1) with the limit n → ∞. The choice of rescaling ε1 permits us to expand (2.1) as a power series of

its complex values. Again, the region of its validity depends on its singularity structure which may be addressed via exponential

asymptotics and it preserves all the features of the differential equation. Because the exact solutions of such type of equations

are rare in physics applications, one can implement this for the suitable choices of the pre-factor functions and can find the

limiting behavior of w(z) when needed. However, if it is not sufficient, this means that the perturbation parameter is not small

enough. Furthermore, as this expansion is naturally divergent due to increasing powers of the low-ordered terms, by taking

the ratio of the adjacent terms of the expansion, a general form of the optimal truncation point as well as the relation of the

resultant remainder, which is exponentially small, and divergent series can be directly and easily formulated and interpreted by

these specified formulas.
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4. Concluding remarks

This work has taken into consideration how to straightforwardly address the general form of the tail of the expansions for

complex ε1 by focusing on the pre-factor functions of the certain ODEs in the form of this paper along with their effects in

the asymptotic expansions. The obtained links in relation to pre-factors can be implemented for the complex values of ε1,

whence they are extendable to complex region. Moreover, as one may notice that being ε1 complex turns the pre-factors and

the right-hand side of the inhomogeneous singular equations into complex factors. Therefore, the formulas we have attained

are applicable for the study of the singular ODEs having the complex pre-factors as well.
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Abstract

The average area and perimeter of triangles defined by three random points on the circum-

ference of a unit circle are already known. In this paper, we calculate the average value

of the inradius along with its variance. We also consider the average area, inradius and

circumradius of triangles of unit perimeter.

1. Triangles of unit circumradius

How to choose a triangle randomly on the circumference of a unit circle? An answer is selecting three points A,B,C on the

circumference uniformly. Many questions arise regarding these triangles ABC. What is the average area or average perimeter

or average inradius of the triangles? The average area of these triangles is known to be 3
2π

= 0.47746 . . ., see [2], while the

average perimeter is 12
π
= 3.81971 . . ., see [1]. Our goal is to calculate the average value of the inradius of the triangles. We

use the same characterization of the triangle as in [2]. Suppose without loss of generality that the center of the circumcircle of

the triangle is O(0,0), one vertex is A(1,0) and the other two vertices are determined by directed angles ∠AOB = θ1 ∈ [0,π]
and ∠AOC = θ2 ∈ [0,2π). Then the inradius of the triangle is equal to

r(θ1,θ2) = r(△ABC) =
A(△ABC)

P(△ABC)
2

=
2sin

θ1
2

sin
θ2
2

∣

∣

∣
sin

θ2−θ1
2

∣

∣

∣

sin
θ1
2
+ sin

θ2
2
+
∣

∣

∣
sin

θ2−θ1
2

∣

∣

∣

.

We calculate the average value of the inradius. First note that

r =
1

π2

∫

π

0

∫ 2π

0

sin
θ1
2

sin
θ2
2

∣

∣

∣
sin

θ2−θ1
2

∣

∣

∣

sin
θ1
2
+ sin

θ2
2
+
∣

∣

∣
sin

θ2−θ1
2

∣

∣

∣

dθ2 dθ1

=
1

π2

∫

π

0

∫ 2π

θ1

sin
θ1
2

sin
θ2
2

sin
θ2−θ1

2

sin
θ1
2
+ sin

θ2
2
+ sin

θ2−θ1
2

dθ2 dθ1 +
1

π2

∫

π

0

∫

θ1

0

sin
θ1
2

sin
θ2
2

sin
θ1−θ2

2

sin
θ1
2
+ sin

θ2
2
+ sin

θ1−θ2
2

dθ2 dθ1

=
1

π2

[

∫

π

0
I1 dθ1 +

∫

π

0
I2 dθ1

]

.
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Simplify the integrand in I1 as follows.

sin
θ1
2

sin
θ2
2

sin
θ2−θ1

2

sin
θ1
2
+ sin

θ2
2
+ sin

θ2−θ1
2

=
2sin

θ1
2

sin
θ2
2

sin
θ2−θ1

4
cos

θ2−θ1
4

2sin
θ2+θ1

4
cos

θ2−θ1
4

+2sin
θ2−θ1

4
cos

θ2−θ1
4

=
sin

θ1
2

sin
θ2
2

sin
θ2−θ1

4

sin
θ2+θ1

4
+ sin

θ2−θ1
4

=
4sin

θ1
4

cos
θ1
4

sin
θ2
4

cos
θ2
4

sin
θ2−θ1

4

2sin
θ2
4

cos
θ1
4

= 2sin
θ1
4

cos
θ2
4

sin
θ2−θ1

4
. (1.1)

Analogously, for the integrand in I2,

sin
θ1
2

sin
θ2
2

sin
θ1−θ2

2

sin
θ1
2
+ sin

θ2
2
+ sin

θ1−θ2
2

= 2cos
θ1
4

sin
θ2
4

sin
θ1−θ2

4
.

Using (1.1), we calculate I1 similarly as in [2]:

I1 = 2sin
θ1
4

∫ 2π

θ1

cos
θ2
4

sin
θ2−θ1

4
dθ2

= 2sin
θ1
4

∫ 2π

θ1

cos
θ2
4

[

sin
θ2
4

cos
θ1
4
− sin

θ1
4

cos
θ2
4

]

dθ2

= 2sin
θ1
4

cos
θ1
4

∫ 2π

θ1

cos
θ2
4

sin
θ2
4

dθ2 −2sin2 θ1
4

∫ 2π

θ1

cos2 θ2
4

dθ2

= sin
θ1
2

[

−cos
θ2
2

]2π

θ1

−2sin2 θ1
4

[

sin
θ2
2
+ θ2

2

]2π

θ1

= sin
θ1
2

[

1+ cos
θ1
2
+2sin2 θ1

4

]

−2π sin2 θ1
4
+θ1 sin2 θ1

4

= 2sin
θ1
2
−2π sin2 θ1

4
+θ1 sin2 θ1

4
,

while

I2 = 2cos
θ1
4

∫

θ1

0
sin

θ2
4

sin
θ1−θ2

4
dθ2 = 2sin

θ1
2
−θ1 cos2 θ1

4
.

Therefore, integration by parts gives us
∫

π

0
I1 dθ1 =

∫

π

0
2sin

θ1
2
−π

(

1− cos
θ1
2

)

+ θ1
2

(

1− cos
θ1
2

)

dθ1

=
[

−4cos
θ1
2
−πθ1 +2π sin

θ1
2
+

θ
2
1
4

]π

0
−
[

θ1 sin
θ1
2

]π

0
+

∫

π

0
sin

θ1
2

dθ1

= −π
2 +2π + π

2

4
+4−π +2 = 6+π − 3

4
π

2

and analogously,
∫

π

0
I2 dθ1 =

∫

π

0
2sin

θ1
2
− θ1

2

(

1+ cos
θ1
2

)

dθ1

=
[

−4cos
θ1
2
− θ

2
1
4

]π

0
−
[

θ1 sin
θ1
2

]π

0
+

∫

π

0
sin

θ1
2

dθ1

= 6−π − 1
4
π

2
,

and we obtain the average value of the inradius as follows.

Formula 1.

r =
1

π2

[

∫

π

0
I1 dθ1 +

∫

π

0
I2 dθ1

]

=
12

π2
−1 = 0.21585 . . . .

1.1. Variance of the inradius

Calculate the second moment of the inradius.

r2 =
2

π2

∫

π

0

∫ 2π

θ1

sin2 θ1
2

sin2 θ2
2

sin2 θ2−θ1
2

(

sin
θ1
2
+ sin

θ2
2
+ sin

θ2−θ1
2

)2
dθ2 dθ1 +

2

π2

∫

π

0

∫

θ1

0

sin2 θ1
2

sin2 θ2
2

sin2 θ1−θ2
2

(

sin
θ1
2
+ sin

θ2
2
+ sin

θ1−θ2
2

)2
dθ2 dθ1

=
2

π2

[

∫

π

0
J1 dθ1 +

∫

π

0
J2 dθ1

]

.
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Simplification for the integrand in J1 is

sin2 θ1
2

sin2 θ2
2

sin2 θ2−θ1
2

(

sin
θ1
2
+ sin

θ2
2
+ sin

θ2−θ1
2

)2
= 4sin2 θ1

4
cos2 θ2

4
sin2 θ2−θ1

4

and for the integrand in J2 is

sin2 θ1
2

sin2 θ2
2

sin2 θ1−θ2
2

(

sin
θ1
2
+ sin

θ2
2
+ sin

θ1−θ2
2

)2
= 4cos2 θ1

4
sin2 θ2

4
sin2 θ1−θ2

4
.

Calculate J1 as follows:

J1 = 1
2

(

1− cos
θ1
2

)

∫ 2π

θ1

(

1+ cos
θ2
2

)(

1− cos
θ2−θ1

2

)

dθ2

= 1
2

(

1− cos
θ1
2

)[

θ2 +2sin
θ2
2
−2sin

θ2−θ1
2

]2π

θ1

− 1
2

(

1− cos
θ1
2

)

∫ 2π

θ1

1
2

(

cos
θ1
2
+ cos

(

θ2 − θ1
2

))

dθ2

= 1
2

(

1− cos
θ1
2

)(

2π −θ1 −3sin
θ1
2
−π cos

θ1
2
+ θ1

2
cos

θ1
2

)

.

Similarly,

J2 =
1
2

(

1+ cos
θ1
2

)

∫

θ1

0

(

1− cos
θ2
2

)(

1− cos
θ2−θ1

2

)

dθ2 =
1
2

(

1+ cos
θ1
2

)(

θ1 −3sin
θ1
2
+ θ1

2
cos

θ1
2

)

.

Calculation shows that
∫

π

0
J1 dθ1 =

∫

π

0

1
2

(

1− cos
θ1
2

)(

2π −θ1 −3sin
θ1
2
−π cos

θ1
2
+ θ1

2
cos

θ1
2

)

dθ1 =− 17
4
− 3

2
π + 15

16
π

2
.

and
∫

π

0
J2 dθ1 =

∫

π

0

1
2

(

1+ cos
θ1
2

)(

θ1 −3sin
θ1
2
+ θ1

2
cos

θ1
2

)

dθ1 =− 31
4
+ 3

2
π + 5

16
π

2
.

Hence

r2 =
2

π2

[

∫

π

0
J1 dθ1 +

∫

π

0
J2 dθ1

]

=
5

2
− 24

π2
= 0.06829 . . . ,

and we get the variance of the inradius.

Formula 2.

var(r) = r2 − r2 =
3

2
− 144

π4
= 0.02169 . . . .

2. Triangles of unit perimeter

Consider those triangles, whose perimeter is equal to 1. Our goal is to calculate the average area, average inradius and

average circumradius of these triangles. The first question is, how to choose a random triangle ABC of sides a,b,c with

P(△ABC) = a+b+ c = 1? Note that necessary and sufficient conditions for a,b,c to generate such a triangle are a,b,c > 0,

a+b+ c = 1 and triangle inequalities a+b > c, a+ c > b, b+ c > a. These necessary and sufficient conditions become

a+b+ c = 1 and 0 < a,b,c <
1

2
. (2.1)

Our method of random choosing is the following. Choose number a uniformly from
(

0, 1
2

)

, then choose number b uniformly

from
(

1
2
−a, 1

2

)

and then fix c = 1−a−b. This method ensures that (2.1) holds. Then the average value of area

A(△ABC) =
1

4

√

(a+b+ c)(−a+b+ c)(a−b+ c)(a+b− c) =
1

4

√

(1−2a)(1−2b)(2a+2b−1)

given by Heron’s formula is

A = 8

∫ 1
2

0

√
1−2a

4

[

∫ 1
2

1
2−a

√

(1−2b)(2a+2b−1)db

]

da.

Calculation [3] gives us

∫

√

(1−2b)(2a+2b−1)db =
(a+2b−1)

√

(1−2b)(2a+2b−1)

4
− a2

2
arctan

√
1−2b√

2a+2b−1
+C,

whence
∫ 1

2

1
2−a

√

(1−2b)(2a+2b−1)db =
π

4
a2
.



60 Fundamental Journal of Mathematics and Applications

Formula 3.

A =
π

2

∫ 1
2

0

√
1−2aa2da =

π

105
= 0.02991 . . . .

One can easily obtain

A2 = 8

∫ 1
2

0

1−2a

16

[

∫ 1
2

1
2−a

(1−2b)(2a+2b−1)db

]

da =
1

960
,

and then the variance of the area.

Formula 4.

var(A) = A2 −A
2
=

1

960
− π

2

11025
= 0.000146 . . . .

Since the inradius of triangle ABC is r(△ABC) = A(△ABC)
P(△ABC)

2

= 2A(△ABC), we can easily obtain the average value and the

variance of the inradius.

Formula 5.

r =
2π

105
= 0.05983 . . . .

var(r) = r2 − r2 =
4

960
− 4π

2

11025
= 0.000585 . . . .

The circumradius of triangle ABC is equal to R(△ABC) = abc
4A(△ABC) . Therefore, the average value of the circumradius is

R = 8

∫ 1
2

0

a√
1−2a

[

∫ 1
2

1
2−a

b(1−a−b)
√

(1−2b)(2a+2b−1)
db

]

da.

After some calculation [3] we have

∫

b(1−a−b)
√

(1−2b)(2a+2b−1)
db =

a2 −4a+2

16
arctan

a+2b−1
√

(1−2b)(2a+2b−1)
+

(a+2b−1)
√

(1−2b)(2a+2b−1)

16
+C.

From this, we obtain
∫ 1

2

1
2−a

b(1−a−b)
√

(1−2b)(2a+2b−1)
db =

π

16
(a2 −4a+2).

Finally, we get the average value of the circumradius.

Formula 6.

R =
π

2

∫ 1
2

0

a(a2 −4a+2)√
1−2a

da =
2π

21
= 0.29919 . . . .

Note that since

R2 = 8

∫ 1
2

0

a2

1−2a

[

∫ 1
2

1
2−a

b2(1−a−b)2

(1−2b)(2a+2b−1)
db

]

da

does not converge, the circumradius has infinite variance.

3. Conclusion

Our main aim in this study was to examine the average area, perimeter, inradius, circumradius of triangles. One approach for

considering certain triangles is to fix their circumradiuses to 1. Then the average area and perimeter of triangles were already

known to be 3
2π

and 12
π

. In the paper, we calculated the average inradius and the variance being 12
π2 −1 and 3

2
− 144

π4 . Another

approach is to consider triangles of unit perimeter. We calculated the average area, inradius and circumradius of such triangles

being π

105
, 2π

105
and 2π

21
along with the accompanying variances. A possible extension of these results may be the calculation of

the average values of polygons with more than three sides.
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Abstract

The notion of pseudoblocks is borrowed from [1] and introduced to finite dimensional

algebras. We determine the pseudoblocks for several known algebras such as the triangular

algebra and the cyclic group algebra. Also, we determine the pseudoblocks for the group

algebra of the special linear group SL(2, p) in the natural characteristic being the only finite

group of Lie type of finite representation type.

1. Introduction

In [1], the concept of pseudoblocks of the endomorphism algebra of a module over an algebra was introduced and shown

to have a control on the (Brauer) block distribution of the simple modules for the endomorphism algebra in the light of

the Brauer-Fitting correspondence. In this paper, we borrow the concept of pseudoblock from [1] to introduce it to finite

dimensional (not only endomorphism) algebras. We investigate the pseudoblocks for several known algebras such as the

triangular algebra and the cyclic group algebra. Towards the end, we investigate the pseudoblock distribution for the group

algebra of the special linear group SL(2, p) in the natural characteristic being the only finite group of Lie type of finite

representation type.

2. The pseudoblocks

The Brauer-Fitting correspondence relates the isomorphism classes of indecomposable direct summands of a module to the

projective indecomposable modules for its endomorphism algebra. This correspondence is shown in [1] to be incompatible

with the (Brauer) block distribution of modules in both sides. Instead, the concept of the pseudoblock of an endomorphism

algebra of a module over an algebra was introduced to ensure such compatibility. Here, we borrow this notion and introduce it

for any finite dimensional algebra. Let A be a finite dimensional algebra over an algebraically closed field F , modA denotes

the category of finitely generated A-modules, and we write IndA for the class of indecomposable A-modules. We also write

(X ,Y )A for the A-homomorphism space HomA(X ,Y ) between two modules X ,Y ∈ modA. The pseudoblock linkage relation

≈
PSA

is an equivalence relation defined on IndA in terms of the homomorphism space.

Definition 2.1. If X ,Y ∈ IndA, then X ≈
PSA

Y iff there is a sequence of modules X = X1,X2, ...,Xt = Y in IndA such that for all

i ∈ {1,2, ..., t} either (Xi,Xi+1)A 6= 0 or (Xi+1,Xi)A 6= 0.

Email addresses and ORCID numbers: s43880619@st.uqu.edu.sa, afaf.s@tu.edu.sa, afaf.saad.1438@hotmail.com, 0000-0001-5313-5919 (A. S. Alharthi), aakham-

mash@uqu.edu.sa, prof.khammash@gmail.com, 0000-0001-9404-1732 (A. A. Khammash).
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Clearly, ≈
PSA

is an equivalence relation on IndA. We call the equivalence classes IndA/ ≈
PSA

are called pseudoblocks of

the algebra A.

3. Connection with the Brauer blocks

The following shows that the pseudoblock linkage principle ≈
PSA

is stronger than the Brauer linkage principle ≈
A

relating

indecomposable modules which belong to the same block.

Lemma 3.1. If X ,Y ∈ IndA and X ≈
PSA

Y , then X ≈
A

Y.

Proof. If X ≈
PSA

Y , then there is a sequence of modules X = X1,X2, . . . ,Xt = Y in IndA such that for all i ∈ {1,2, . . . , t} either

(Xi,Xi+1)A 6= 0 or (Xi+1,Xi)A 6= 0. But this implies (see [2], p.93) that for all i ∈ {1,2, . . . , t} either Xi ≈
A

Xi+1 or Xi+1 ≈
A

Xi, and

so X ≈
A

Y .

Remark 3.2. The converse of lemma 3.1 does not hold. If we take A = FSL(2,4) and CharF = 2, then A has four simple

modules namely 1,21,22,4 (the latter being the Steinberg module) distributed into two Brauer blocks 1,21,22
︸ ︷︷ ︸

B1

, 4
︸︷︷︸

B2

. The two

indecomposable modules 1,

21

1

22

∈ IndA belong to the same (Brauer) block, but they lie in a two different pseudoblocks of A. To

see this,

Figure 3.1: Some blocks in IndA split into union of pseudoblocks

It follows that, in principle, some (Brauer) blocks of A split into a union of pseudoblocks, and so we have |IndA/ ≈
A
| 6

|IndA/ ≈
PSA
|.

Motivation 3.3. If we take Y ∈ modA (not necessary indecomposable) and write Inds(Y ) for the isomorphism class of

indecomposable A-summands of Y , then applying the linkage relation ≈
PSA

on Inds(Y ), it was shown in [1] that the (Brauer)

block distribution of the simple modules of the endomorphism algebra E(Y ) = EndA(Y ) is controlled by the pseudoblocks

distribution of Inds(Y ); that is if Yi,Yj ∈ Inds(Y ) and Si,S j ∈ Irr(E(Y )) are the corresponding simple E(Y )-modules under

the Brauer-Fitting correspondence, then Si ≈
E(Y )

S j⇔ Yi ≈
PSA

Yj.

A Useful Criterion 3.4. The pseudoblock equivalence relation ≈
PSA

is defined in terms of the homomorphism space (X ,Y )A. If

X ,Y ∈ IndA, then (X ,Y )A 6= 0 if and only if ∃K ≤
A

X : X/K ∼= submodule of Y . For, if 0 6= f ∈ (X ,Y )A, then K = ker f � X

and X/K ∼= Im f 6
A

Y . Conversely, if ∃K 6
A

X : X/K ∼= T 6
A

Y , then composing the map X/K ∼= T −→ Y with the natural

map X → X/K we get a nonzero map θ : X → Y . Therefore, we have the figure 3.2

Lemma 3.5. (X ,Y )A 6= 0 if and only if ∃K 6
A

X: X/K ∼= a submodule of Y .

4. Connection with tensor algebras

Suppose that A1, A2 are two finite dimensional F-algebras. If Xi ∈ Ind(Ai); i = 1,2, then it is known (by considering

endomorphism algebras) that X1⊗X2 ∈ Ind(A1⊗A2). The following theorem shows that the concept of pseudo-blocks is

compatible with tensor operation of modules.

Theorem 4.1. [3]. If Xi,X
′
i ∈ Ind(Ai); i = 1,2, then X1⊗X2 ≈

PS(A1⊗A2)
X ′1⊗X ′2 if and only if X1 ≈

PSA1

X ′1 ∧ X2 ≈
PSA2

X ′2.
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Figure 3.2

Proof. Since X1 ≈
PSA1

X ′1, there is a sequence X1 = U1,U2, . . . ,Ut = X ′1 in IndA1 such that for all j ∈ {1,2, . . . , t} either

(U j,U j+1)A1
6= 0 or (U j+1,U j)A1

6= 0 . Similarly, since X2 ≈
PSA2

X ′2, there is a sequence X2 = V1,V2, . . . ,Vt = X ′2 in IndA2

such that for all j ∈ {1,2, . . . , t} either (Vj,Vj+1)A2
6= 0 or (Vj+1,Vj)A2

6= 0 if and only if we have a sequence (with refining

sequences if necessary) X1⊗X2 =U1⊗V1,U2⊗V2, . . . ,Ut ⊗Vt = X ′1⊗X ′2 such that for all j ∈ {1,2, . . . , t} either

(U j⊗Vj,U j+1⊗Vj+1)A1⊗A2
6= 0 or (U j+1⊗Vj+1,U j⊗Vj)A1⊗A2

6= 0

(by taking the tensor homomorphisms). Therefore, X1⊗X2 ≈
PS(A1⊗A2)

X ′1⊗X ′2.

5. The pseudoblocks of certain finite dimensional algebras

Here, we determine the pseudoblocks for some finite dimensional algebras. It turns out that the two concepts; blocks and

pseudo-blocks, coincide for all.

5.1. Semisimple algebras

It is clear that the two notions; blocks and pseudoblocks, coincide for any finite dimensional semisimple algebra A; that is

IndA/ ≈
PSA

= IndA/≈
A

. �

5.2. The symmetric group algebra FS3

Let A = FS3.

1. If CharF ∤ |S3|, then A = FS3 is semisimple, and so IndA/ ≈
PSA

= IndA/≈
A

as shown above.

2. If CharF = 2, then A has two simple module 1,2 and IndA (consists of three indecomposable modules) has the following

block distribution: 1,
1

1
︸︷︷︸

B1

, 2
︸︷︷︸

B2

which clearly coincides with the pseudoblock distribution.

3. If CharF = 3, then A has two simple modules both of dimension 1; S0 (the trivial module) and S1 (the sign module), and

IndA consists of six indecomposable modules all lie in one Brauer block and are connected by the following sequence

of A-maps

S1→
S0

S1
→

S1

S0

S1

→
S1

S0
→

S0

S1

S0

→
S0

S1
→ S0.

Hence, A = FS3 has a single pseudoblock in this case. Therefore, we have the following

Theorem 5.1. For A = FS3 and in all characteristic of F, we have IndA/ ≈
PSA

= IndA/≈
A

. �
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5.3. The triangular algebra

Now take

A = {(ai j) ∈Mn(F)|ai j = 0;∀i > j}=

{

a =








a11 a12 . . . a1n

a22 . . . a2n

. . .
...

ann








;ai j ∈ F

}

;

the algebra of n×n upper triangular matrices (which is isomorphic to the algebra of lower triangular matrices). Then, A is

isomorphic to the path algebra of an equi-oriented quiver of type An. By Gabriel’s theorem (see [4, Chapter11]), this quiver has

n(n+1)/2 indecomposable modules corresponding to the positive roots of Lie algebra of type An. In fact, A acts on the space

of column vectors U = Fn by matrix multiplication and

N =

{










0 a12 . . . . . . a1n

0 a23 . . . a2n

. . .
. . .

...

0 an−1n

0










}

= J(A);

the Jacobson radical of A, and consequently A has n simple (1-dimensional) representations ψv : A−→ F (a 7−→ avv);v =
1,2, . . . ,n ( ψv is an algebra map ψv = ψµ ⇔ v = µ). We also have

NU =

{










v1

v2

...

vn−1

0










: vi ∈ F

}

, and NiU =

{










v1

...

vn−i

0

0










: vi ∈ F

}

, so U ⊃ NU ⊃ N2U ⊃ . . .⊃ Nn−1U ⊃ 0 is a composition series

with dimNi−1U/NiU = 1;∀i = 1,2, . . . ,n and Ni−1U/NiU ∼= ψn−i+1. Therefore, as A-module, U = Fn has the following

(unique) composition series

U ⊃ NU ⊃ N2U ⊃ . . .⊃ Nn−1U ⊃ 0

ψn ψn−1 ψn−2 . . .ψ2 ψ1.

It follows that the quotient module Ui,α = Nn−iU/Nn−i+αU is a uniserial (hence indecomposable) with the following (unique)

composition series

Figure 5.1

and hence Ui,α = Nn−iU/Nn−i+αU ; (i = 1,2, . . . ,n and α = 1,2, . . . , i) give a complete set of indecomposable A-modules. Not

that Ui,α
∼=U j,β ⇔ i = j∧α = β and Ui,1 = ψi. The modules U1,1,U2,2, . . . ,Un,n give a complete set of projective indecom-

posable A-modules. In fact, it is clear that Uv,v = Lv =

{











0 0 a1v . . . 0

0 0 a2v . . . 0
...

...
...

...
...

...
... avv

...
...

0 0 0 0 0











: aiv ∈ F, i ≤ v;v = 1,2, . . . ,n

}

⊳A. Note

that the composition factors of Uv,v = Nn−vU/NnU = Nn−1U are as follows:



Fundamental Journal of Mathematics and Applications 65

Figure 5.2

The triangular algebra A is not semisimple (J(A) = N 6= 0), hence it has a nontrivial block theory. In fact, A = ∑
⊕
1≤v≤n Uv,v

(projective indecomposable A-modules PIM decomposition) is known to be connected; i.e. it has a single non-zero central

idempotent, namely In, and so it has a single block. On the other hand, from the structure of the objects Ui,α =Nn−iU/Nn−i+αU

(i = 1,2, . . . ,n and α = 1,2, . . . , i) of Ind(A), the objects of the class Ind(A) can be connected by a series of A-maps as follows:

Un,1

↑
...

↑
U4,1 → . . . → Un,n−3

↑ ↑
U3,1 → U4,2 → . . . → Un,n−2

↑ ↑ ↑
U2,1 → U3,2 → U4,3 → . . . → Un,n−1

↑ ↑ ↑ ↑
U1,1 → U2,2 → U3,3 → U4,4 → . . . → Un,n

︸ ︷︷ ︸

n=2
︸ ︷︷ ︸

n=3
︸ ︷︷ ︸

n=4

Therefore, A has a single pseudo-block, and so we have:

Theorem 5.2. For the triangular algebra A over a field F, we have IndA/ ≈
PSA

= IndA/≈
A

. �

5.4. The group algebra of cylic groups

We now consider the group algebra of cyclic group A = FCn;n = pae; p ∤ e over a field of characteristic p. It is known (see [2],

p.34) that A = FCn has e simple (all are 1-dimensional) modules {Sλ |λ is an e-th root of 1}, where Sλ = F on which Cn acts

by multiplication with λ . It is also known that A = FCn has a total of n = pae indecomposable modules. For each integer

1 ≤ m ≤ pa, there is a uniserial module Lλ ,m of dimension m with all composition factors are isomorphic to Sλ (note that

Lλ ,1 = Sλ ). The set {Lλ ,m|λ ,m} gives a complete set of n = pae indecomposable FCn-modules. Clearly, PIM= {Lλ ,pa |λ}
(Lλ ,pa = P(Sλ ) is the projective cover of Sλ ), and FCn = ∑

⊕
λ

Lλ ,pa . The group algebra FCn has e blocks {Bλ |λ}, where

Bλ = {Lλ ,m|1≤ m≤ pa}. It is clear from the structure of Lλ ,m that FCn has e pseudo-blocks.

Theorem 5.3. For the group algebra FCn over a field F, IndFCn/ ≈
PSFCn

= IndFCn/ ≈
FCn

. �

5.5. p-group algebra in characteristic p

The group algebra FG of a finite p-group over a field F of characteristic p is known to be indecomposable and has a single

simple module, namely the trivial module 1 = FG, and hence has a single block. All indecomposable FG-modules are uniserial

with all of its composition factors are isomorphic to FG. Hence, IndFG forms a single pseudo-block of FG.

Theorem 5.4. For the group algebra FG of a finite p-group over a field F of characteristic p, IndFG/ ≈
PSFG

= IndFG/ ≈
FG

. �
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6. The special linear group SL(2, p)

We now consider the group algebra A = FSL(2, p) in characteristic odd prime number p. It is known that SL(2, p) is the

only finite group of Lie type which is of finite representation type in the natural characteristic (see [5, Chapter1] ). It is

known that SL(2, p) has p (p-regular) conjugacy classes and (hence) p isomorphism classes of simple FSL(2, p)-modules of

dimensions 1,2,3, . . . , p distributed in three blocks B1,B2,B3 (see [6], p.469). We refer to each simple module by its dimension;

hence 1 is the natural representation of SL(2, p) and p is the Steinberg representation. There are p2− p+1 indecomposable

FSL(2, p)-modules of which 2p−1 of them are either simple or projective (The Steinberg representation is both simple and

projective). The number of remaining indecomposable (non-simple non-projective) FSL(2, p)-modules is (p− 1)(p− 2).
Denote by Pi;1≤ i≤ p, the projective cover of the simple FSL(2, p)-module i. The following theorem describes the structure

of the projective indecomposable modules.

Theorem 6.1. [2]. The projective indecomposable FSL(2, p)-modules have the following structures:

Figure 6.1

The structures of the other indecomposable (non-simple, non-projective) FSL(2, p)-modules are explained in the following

theorem

Theorem 6.2. [7]. Every (non-simple,non-projective) indecomposable FSL(2, p)-module M has two socle layers. The socle

of M consists of the modules i, i+2, . . . , j(i 6 j), and the top consists of the modules p− j+ ε, p− j+ ε +2, . . . , p− i+δ ,

where ε,δ =±1.

The following theorem shows that, the compatiblity between the pseudoblock of FSL(2, p) and block theory.

Theorem 6.3. For the group algebra A = FG;G = SL(2, p) over a field F of characteristic prime number p,

IndA/ ≈
PSA

= IndA/≈
A
.

Proof. First: The block B3 (which contains the Steinberg module p∼= Pp) is clearly pseudoblock.

Second: Since B1 contains all odd-dimensional simple A-modules except p, let Pm,Pi be projective indecomposable A-

modules, let m, i be simple A-modules; for all m, i ∈ {1,3, . . . , p− 2}, and let Mi8 be non-simple, non-projective, indecom-

posable A-modules; i8 = {1,2, . . . ,r}; in which Pm, Pi, m, i and Mi8 in B1 for all m, i, i8. Let Pi = i/p− 1− i, p+ 1− i/i,

Pm = m/p− 1−m, p + 1−m/m, M1 = i/p− 1− i, p + 1− i, M2 = p + 1− i/i, M3 = p + 1−m, p− 1−m/m,

M4 = p+1−m, p−1−m/i,m, M5 = m/p−1−m, p+1−m, M6 = p+1− i, p−1− i/i.

Then, we have six cases as follows:

1. Let i,m be any two simple A-modules. Hence,

i→M2→ m.

Then, all odd-dimensional simple A-modules are connected either ways by a sequence of A-module homomorphisms.

2. Let i,m be simple A-modules, and let Pi,Pm be projective indecomposable A-modules. Hence,

Pi→M1→ i, m→M3→ Pm.
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Then, all odd-dimensional simple A-modules and all projective indecomposable A-modules are connected either ways by

a sequence of A-module homomorphisms.

3. Let Mi8 ; i8 = {1,2,3,5} be any non-simple, non-projective, indecomposable A-modules, and let i,m be any two simple

A-modules. Hence,

M1→ i, M2→ m, M3→ Pm→M5→ m.

Then, all odd-dimensional simple A-modules and all non-simple, non-projective, indecomposable A-modules Mi8 ; i8 =
{1,2, . . . ,r} are connected either ways by a sequence of A-module homomorphisms.

4. Let Pi,Pm be any two projective indecomposable A-modules. Hence,

Pi→M1→ i→M2→ p+1− i→M3→ Pm.

Then, all projective indecomposable A-modules Pm,∀m = {1,3, . . . , p−2} are connected either ways by a sequence of

A-module homomorphisms.

5. Let Pi,Pm be any two projective indecomposable A-modules, and let M1,M3,M5,M6 be non-simple, non-projective,

indecomposable A-modules. Hence,

Pi→M1, Pm→M5.

Also,

M6→ Pi, M3→ Pm.

Then, all projective indecomposable A-modules Pm,∀m = {1,3, . . . , p−2} and all non-simple, non-projective, indecom-

posable A-modules Mi8 ; i8 = {1,2, . . . ,r} are connected either ways by a sequence of A-module homomorphisms.

6. Let M1,M2,M3,M4,M5,M6 be any non-simple, non-projective, indecomposable A-modules. Hence,

M6→ Pi→M1,

M1→ i→M2,

M3→ Pm→M5,

and

M4→M3.

Then, all non-simple, non-projective, indecomposable A-modules are connected either ways by a sequence of A-module

homomorphisms.

The previous six cases are enough without loss of generality. So, all indecomposable A-modules in B1 are connected either

ways by a sequence of A-module homomorphisms as follows:

Pi→Mi8 → i→ . . .←M8
i8 ← m←M88

i8 ← Pm;

for all i,m ∈ {1,3,5, . . . , p−2} and i8 = {1,2, . . . ,r}.

Thus, the block B1 does not split into union of pseudoblocks. So, B1 is one pseudoblock.

Third: Similarly, since the block B2 contains all even-dimensional simple A-modules.

Let Pe,Pj be projective indecomposable A-modules, let e, j be simple A-modules; for all j,e ∈ {2,4, . . . , p− 1}, and let

N j8 be non-simple, non-projective, indecomposable A-modules; j8 = {1,2, . . . ,r}; in which Pe,Pj, e, j, and N j8 in B2 for all

e, j, j8. Let Pj = j/p−1− j, p+1− j/ j, Pe = e/p−1−e, p+1−e/e, N1 = j/p−1− j, p+1− j, N2 = p+1− j/ j,

N3 = p−1− e, p+1− e/e, N4 = p−1− e, p+1− e/e, j, N5 = e/p−1− e, p+1− e, N6 = p−1− j, p+1− j/ j.

Then, we have six cases as follows:

1. Let j,e be any two simple A-modules. Hence,

j→ N2→ e.

Then, all even-dimensional simple A-modules are connected either ways by a sequence of A-module homomorphisms.

2. Let j,e be simple A-modules, and let Pj,Pe be projective indecomposable A-modules. Hence,

Pj→ N1→ j, e→ N3→ Pe.

Then, all even-dimensional simple A-modules and all projective indecomposable A-modules are connected either ways

by a sequence of A-module homomorphisms.
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3. Let N j8 ; j8 = {1,2,3,5} be any non-simple, non-projective, indecomposable A-modules, and let j,e be any two simple

A-modules. Hence,

N1→ j, N2→ e, N3→ Pe→ N5→ e.

Then, all even-dimensional simple A-modules and all non-simple, non-projective, indecomposable A-modules N j8 ; j8 =
{1,2, . . . ,r} are connected either ways by a sequence of A-module homomorphisms.

4. Let Pj,Pe be any two projective indecomposable A-modules. Hence,

Pj→ N1→ j→ N2→ p+1− j→ N3→ Pe.

Then, all projective indecomposable A-modules Pe,∀e = {2,4, . . . , p−1} are connected either ways by a sequence of

A-module homomorphisms.

5. Let Pj,Pe be any two projective indecomposable A-modules, and let N1,N3,N5,N6 be non-simple, non-projective,

indecomposable A-modules. Hence,

Pj→ N1, Pe→ N5.

Also,

N6→ Pj, N3→ Pe.

Then, all projective indecomposable A-modules Pe;∀e = {2,4, . . . , p−1} and all non-simple, non-projective, indecom-

posable A-modules N j8 ; j8 = {1,2, . . . ,r} are connected either ways by a sequence of A-module homomorphisms.

6. Let N1,N2,N3,N4,N5,N6 be any non-simple, non-projective, indecomposable A-modules. Hence,

N6→ Pj→ N1,

N1→ j→ N2,

N3→ Pe→ N5,

and

N4→ N3.

Then, all non-simple, non-projective, indecomposable A-modules are connected either ways by a sequence of A-module

homomorphisms.

The previous six cases are enough without loss of generality. So, all indecomposable A-modules in B2 are connected either

ways by a sequence of A-module homomorphisms as follows:

Pj→ N j8 → j→ . . .← N8
j8 ← e← N88

j8 ← Pe;

for all j,e ∈ {2,4, . . . , p−1} and j8 = {1,2, . . . ,r}.

Thus, the block B2 does not split into union of pseudoblocks. So, B2 is one pseudoblock.

Thus, for group algebra FSL(2, p) in characteristic odd prime p the two notions blocks and pseudoblocks coincide.

Example 6.4. If p = 2, then the representations of SL(2,2) ∼= S3 in characteristic 2; hence the two notions blocks and

pseudoblocks coincide as stated in section 5.

If p = 7, then the following are the indecomposable FSL(2,7)-modules:

• The simple FSL(2,7)-modules are: 1,3,5
︸ ︷︷ ︸

B1

, 2,4,6
︸ ︷︷ ︸

B2

, 7
︸︷︷︸

.

B3

• The projective indecomposable FSL(2,7)-modules are:

1/5/1, 3/3,5/3, 5/1,3/5, 4/2,4/4, 2/4,6/2, 6/2/6, 7.

• The (non-projective non-simple) indecomposable FSL(2,7)-modules are:

5/1, 1/5, 3/5, 5/3, 3/3, 3,5/3, 3/3,5 1,3/5, 5/1,3, 3,5/1,3,5,
1,3,5/3,5, 1,3,5/1,3,5, 3,5/1,3, 3,5/3,5, 1,3/3,5. (in B1)

2/6, 6/2, 4/2, 2/4, 4/4, 4,6/2, 2/4,6, 2,4/4, 4/2,4, 2,4/2,4,6,
2,4,6/2,4, 2,4,6/2,4,6, 2,4/2,4, 2,4/4,6, 4,6/2,4. (in B2)
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The total number of indecomposable modules is 43 = 72−7+1, where ExtFSL(2,7)(i, j) are 1-dimension for all indecompos-

able FSL(2,7)-modules as stated in ([5], p.117).

The indecomposable FSL(2,7)-modules in B1 forms a single pseudoblock via the following sequence of homomorphisms:

3/3→ 1,3,5/1,3,5→ 1,3,5/3,5→ 1,3/3,5→ 1,3/5→ 5/1,3/5→ 5/1,3→ 3,5/1,3→ 3,5/1,3,5→ 3,5/3,5→ 3,5/3→
3/3,5/3→ 3/3,5→ 3/5→ 3→ 5/3→ 5→ 1/5→ 1→ 5/1→ 1/5/1.

The indecomposable FSL(2,7)-modules in B2 forms a single pseudoblock via the following sequence of homomorphisms:

4/4→ 2,4,6/2,4,6→ 2,4,6/2,4→ 4,6/2,4→ 4,6/2→ 2/4,6/2→ 2/4,6→ 2,4/4,6→ 2,4/2,4,6→ 2,4/2,4→ 2,4/4→
4/2,4/4→ 4/2,4→ 4/2→ 4→ 2/4→ 2→ 6/2→ 6→ 2/6→ 6/2/6.

Acknowledgement

The main results of this paper are taken from a dissertation written by the first author as a part of a master degree fulfillments

from Umm Al-Qura University. The first author thanks her supervisor Prof. Ahmed A. Khammash for his help and guidance

and Taif University for their generous grant.

References

[1] A. Khammash, The pseudoblocks of endomorphism algebras, Int. Math. Forum, 4(48) (2009), 2363-2368.
[2] J. Alperin, Local Representation Theory: Modular Representations as an Introduction to the Local Representation Theory of Finite Groups, Cambridge

University Press, 1986.
[3] A. Khammash, Brauer-fitting correspondence on tensor algebra, Int. J. Algebra, 8(19) (2014), 895-901.
[4] K. Erdmann, T. Holm, Algebras and Representation Theory, Springer, 2018.
[5] J. Humphreys, Modular Representations of Finite Groups of Lie Type, Cambridge University Press, 2006.
[6] L. Dornhoff, Group Representation Theory: Modular Representation Theory, M. Dekker, 1972.
[7] D. Craven, Maximal psl2 subgroups of exceptional groups of lie type, (2019), arXiv:1610.07469.



Fundamental Journal of Mathematics and Applications, 3 (1) (2020) 70-85

Research Article

Fundamental Journal of Mathematics and Applications

Journal Homepage: www.dergipark.gov.tr/fujma

ISSN: 2645-8845

doi: 10.33401/fujma.670266

Maximal and Willmore Null Hypersurfaces in Generalized

Robertson-Walker Spacetimes

Cyriaque Atindogbe1* and Hippolyte Hounnon1

1Department of Mathematics, Faculty of Science and Techniques, University of Abomey-Calavi, Benin
*Corresponding author

Article Info

Keywords: Generalized Robertson-

Walker spacetimes, Maximal null hyper-

surface, Willmore null hypersurface

2010 AMS: 53C42, 53C50, 53C21

Received: 4 January 2020

Accepted: 25 April 2020

Available online: 10 June 2020

Abstract

We establish after some technical results a characterization of maximal null hypersurfaces

in terms of a constant mean curvature screen foliation (in the slices) induced by the Chen’s

vector field. Thereafter, bounds are provided for both the squared norm of the (screen) shape

operator for non totally geodesic maximal null hypersurfaces and the scalar curvature of the

fiber. In terms of the scalar curvature of the fiber and the warping function, we establish

necessary and sufficient conditions for Null Convergence Condition (NCC) to be satisfied

in which case we prove that there are no non totally geodesic maximal null hypersurfaces.

A generic example consisting of graphs of functions defined on the fiber is given to support

our results. Finally, we provide lower bounds for the extrinsic scalar curvature and give a

characterization result for Willmore null hypersurfaces in generalized Robertson-Walker

spacetimes.

1. Introduction

The study of maximal spacelike hypersurfaces in Lorentzian manifolds is an important topic as evidenced by the considerable

amount of papers devoted to this purpose ([1]-[13], and references therein). The big amount of interest to these objects is due

to to the fact that they play a key role in the dynamic aspects of general relativity and are solutions of existence and uniqueness

Calabi-Berstein type problems [2, 6]. The reason for the terminology maximal (in contrast to the minimality in Riemannian

setting ) is that the vanishing of the mean curvature is equivalent to the fact that the hypersurface realizes a local maximum of

the area functional for compactly supported normal variation. Willmore hypersurfaces are generalization of the maximal ones.

They are critical point of the total squared mean curvature functional whose study was proposed by Willmore in 1965. Most of

the works done since then are on (nondegenerate) 2−dimensional surfaces in (semi-)Riemannian setting [14]-[17].

Null hypersurfaces are genuine objects in Lorentzian geometry in the sense that they have not Riemannian counterpart. They

are very interesting in general relativity and black hole horizons are one of the most remarkable examples, and recent works

show that there is an increasing interest on null hypersurfaces both from a physical and geometrical point of view [18]-[24].

In this paper we are interested in maximal and Willmore null hypersurfaces in generalized Robertson-Walker spacetimes. Our

main aim is to give existence and characterization results both for maximal and Willmore null hypersurfaces and bring out

some of their geometric properties.

The paper is organized as follows. In Section 2 we revise some facts about null hypersurfaces in Lorentzian manifolds with

special attention paid to their connection with Chen’s concircular vector field and symmetries of generalized Robertson-Walker

Email addresses and ORCID numbers: atincyr@gmail.com, https://orcid.org/ 0000-0001-8346-4027 (C. Atindogbe), hiph14@yahoo.fr, https://orcid.org/ 0000-0002-4068-
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spacetimes. Section 3, after some technical results (Proposition 3.1), presents a characterization of maximal null hypersurfaces

in terms of a constant mean curvature screen foliation induced by Chen’s vector field in the slices (Theorem 3.2). Also,

necessary and sufficient conditions to obey the Null Convergence Condition (NCC) are provided in terms of the scalar curvature

of the fiber and the warping function. In this case, we prove that there are no non totally geodesic maximal null hypersurfaces.

Upper and lower bounds are provided for both the squared norm of the (screen) shape operator of non totally geodesic maximal

null hypersurfaces and the scalar curvature of the fiber (Theorem 3.4). In Section 4 we support above results by a generic

example consisting of graphs of functions defined on the fiber and establish the maximality condition in terms of the Laplacian

of the involved functions (Theorem 4.1). Section 5 is concerned with providing a lower bound for the extrinsic scalar curvature

for maximal null hypersurfaces (Theorem 5.2). Finally we give in Section 6 a characterization of Willmore null hypersurfaces

in generalized Robertson-Walker spacetimes (Theorem 6.3).

2. Preliminaries

2.1. Some symmetries of generalized Robertson-Walker spacetimes

A Generalized Robertson-Walker spacetime (GRW in short) is the warped product M = −I× f F, where I (the base) is an open

interval of the real line R, (F,gF) the fiber is a Riemannian manifold of dimension n−1 and f > 0 is a smooth warping function

(or scale factor) defined on I. It is then endowed with the Lorentzian metric

g = −dt2+ f 2(t)gF

where t stands for the natural (global) parameter on R. In particular, when the Riemannian fiber F has constant sectional

curvature, then −I× f F is classically called a Robertson-Walker (RW) spacetime, and it is a spatially homogeneous spacetime.

Throughout, πI (resp. πF) will denote projection on the base space I (resp. on the fiber F).

Observe that the existence of a globally defined timelike coordinate vector field ∂t makes a GRW time-orientable. The vector

field

ζ = f∂t

is timelike, closed and conformal. If ∇ denotes the Levi-Civita connection of M, it holds for vector fields V tangent to M,

∇Vζ = f ′(t)V.

The above definition of GRW spacetimes highlights the existence of a spacelike hypersurface foliation with leaves the slices

{t}×F ( spatial universes), (t ∈ I).

A nice characterization theorem by Chen [25, Theorem 1] states that a Lorentzian manifold of dimension n ≥ 3 is a GRW

spacetime if and only if it admits a timelike concircular vector field. Following Fialkow [26], a concircular vector field is a

vector field ν which satisfies

∇Xν = µX

for vector fields X tangent to M, where ∇ denotes the Levi-Civita connection of M and µ is a smooth function on M. A vector

field ν as above is called Chen’s vector field. It is an eigenvector of the Ricci tensor of M with eigenvalue we denote by σ. The

Weyl tensor of M is

W = R+
s

2n(n−1)
gTg+

1

n−2

(
Ric−

s

n
g
)
Tg

where we use the following definition for the Ricci tensor : Ric(X,Y) = trace
(
Z 7−→ R(Z,X)Y

)
, being s the scalar curvature of

M. It can be shown ( [11]) that the components of the Ricci curvature are given by

R jk =
n−2

〈ν,ν〉
W(ν,∂ j, ν,∂k)+

s−σ

n−1

(
g jk −

〈ν,∂ j〉〈ν,∂k〉

〈ν,ν〉

)
+σ
〈ν,∂ j〉〈ν,∂k〉

〈ν,ν〉
. (2.1)

Using warping coordinate frames, it holds

Ric(∂t,∂t) = −(n−1)
f ′′

f

Ric(∂t,X) = 0

Ric(X,Y) = RicgF
(X,Y)+

[
f f ′′+ (n−2) f ′2

]
gF(X,Y) (2.2)

where X and Y are tangent to the fiber F.
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2.2. Geometry of null hypersurfaces

Let M be a null hypersurface in a Lorentzian manifold (M
n
,g), i.e a hypersurface for which the induced metric tensor g = g|M

is degenerate on it. A screen distribution on Mn−1 (n ≥ 3), is a complementary bundle of T M⊥ in T M. It is then a rank n−2

non-degenerate distribution over M. In fact, there are infinitely many possibilities of choices for such a distribution. Each

of them is canonically isomorphic to the factor vector bundle T M/T M⊥. From [20], it is known that for a null hypersurface

equipped with a screen distribution, there exists a unique rank 1 vector subbundle tr(T M) of T M over M, such that for any

non-zero section ξ of T M⊥ on a coordinate neighborhood U ⊂ M, there exists a unique section N of tr(T M) on U satisfying

g(N, ξ) = 1, g(N,N) = g(N,W) = 0, ∀ W ∈S (N)|U )

where S (N) denotes the fixed screen distribution.

Then T M admits the splitting:

T M|M = T M⊕ tr(T M) = {T M⊥⊕ tr(T M)}⊕S (N).

We call tr(T M) a (null) transverse vector bundle along M. Now, we need to clarify the (general) concept of rigging for null

hypersurfaces (see [23] for details).

Definition 2.1. Let M be a null hypersurface in a Lorentzian manifold. A rigging for M is a vector field ζ defined on some

open set containing M such that ζp < TpM for each p ∈ M.

Given a rigging ζ in a neighborhood of M in (M,g) let α denote the 1-form g-metrically equivalent to ζ, i.e. α = g(ζ, .). Take

ω = i⋆α, being i : M ֒→ M the canonical inclusion. Next, consider the tensors

⌣
g = g+α⊗α and g̃ = i⋆

⌣
g .

It is easy to show that g̃ defines a Riemannian metric on the (whole) hypersurface M. The rigged vector field of ζ is the

g̃-metrically equivalent vector field to the 1-form ω and it is denoted by ξ. In fact the rigged vector field ξ is the unique lightlike

vector field in M such that g(ζ,ξ) = 1. Moreover, ξ is g̃-unitary. To a rigging ζ for M is associated the screen distribution S (ζ)

given by S (ζ) = T M∩ ζ⊥. It is the g̃-orthogonal subspace to ξ and the corresponding null transverse vector field on M is

N = ζ −
1

2
g(ζ,ζ)ξ.

A null hypersurface M equipped with a rigging ζ is said to be normalized and is denoted (M, ζ) (the latter is called a

normalization of the null hypersurface). A normalization (M, ζ) is said to be closed (resp. conformal) if the rigging ζ is

closed i.e the 1-form α is closed (resp. ζ is a conformal vector field, i.e there exists a function ρ on the domain of ζ such that

Lζg = 2ρg ). We say that ζ is a null rigging for M if the restriction of ζ to the null hypersurface M is a null vector field.

Let ζ be a rigging for a null hypersurface of a Lorentzian manifold (M,g). The screen distribution S (ζ) = kerω is integrable

whenever ω is closed, in particular if the rigging is closed. Throughout, the ambient Lorentzian metric g will also be denoted

〈 , 〉.

On a normalized null hypersurface (M, ζ), the Gauss and Weingarten formulas are given by

∇XY = ∇XY +B(X,Y)N, (2.3)

∇XN = −AN X+τ(X)N,

∇XPY =
⋆

∇XPY +C(X,PY)ξ, (2.4)

∇Xξ = −
⋆

AξX−τ(X)ξ,

for any X,Y ∈ Γ(T M), where ∇ denotes the Levi-Civita connection on (M,g), ∇ denotes the connection on M induced from ∇

through the projection along the null transverse vector field N and
⋆

∇ denotes the connection on the screen distribution S (ζ)

induced from ∇ through the projection morphism P of Γ(T M) onto Γ
(
S (ζ)

)
with respect to the decomposition (2.4). Now the

(0,2) tensors B and C are the second fundamental forms on T M and S (ζ) respectively, AN and
⋆

Aξ are the shape operators on

T M with respect to the rigging ζ and the rigged vector field ξ respectively and τ a 1-form on T M defined by

τ(X) = g(∇XN, ξ).



Fundamental Journal of Mathematics and Applications 73

For the second fundamental forms B and C the following hold

B(X,Y) = g(
⋆

AξX,Y), C(X,PY) = g(AN X,Y) ∀X,Y ∈ Γ(T M),

and

B(X, ξ) = 0,
⋆

Aξξ = 0 and C(X,Y)−C(Y,X) = 〈[X,Y],N〉,

and the last equality shows that the screen structure S (ζ) is integrable if and only if C is symmetric on it. In this case,
⋆

∇ is the

Levi-Civita connection of the screen foliation from (M,g) and Equations (2.3) and (2.4) show that its second fundamental form

is

I
ζ(X,Y) =C(X,Y)ξ+B(X,Y)N, X,Y ∈S (ζ).

Let denote by R and R the Riemannian curvature tensors of ∇ and ∇, respectively. Then the following are the Gauss-Codazzi

equations [20, p. 93].

〈
R(X,Y)Z, ξ

〉
= (∇X BN)(Y,Z)− (∇Y BN)(X,Z)

+τN(X)BN(Y,Z)−τN(Y)BN(X,Z),〈
R(X,Y)Z,PW

〉
=

〈
R(X,Y)Z,PW

〉
+BN(X,Z)CN(Y,PW)

−BN(Y,Z)CN(X,PW),
〈
R(X,Y)ξ,N

〉
=

〈
R(X,Y)ξ,N

〉
=CN(Y,

⋆

Aξ X)−CN(X,
⋆

Aξ Y)

−2dτN(X,Y), ∀X,Y,Z,W ∈ Γ(T M|U ).〈
R(X,Y)PZ,N

〉
=

〈
(∇XAN)Y,PZ

〉
−

〈
(∇Y AN)X,PZ

〉

+τN(Y)
〈
AN X,PZ

〉
−τN(X)

〈
ANY,PZ

〉
.

A null hypersurface M is said to be totally umbilic (resp. totally geodesic) if there exists a smooth function ρ on M such that at

each p ∈ M and for all u,v ∈ TpM, B(p)(u,v) = ρ(p)g(u,v) (resp. B vanishes identically on M). These are intrinsic notions

on any null hypersurface in the sense that they are independent of the normalization. Remark that M is totally umbilic (resp.

totally geodesic) if and only if
⋆

Aξ = ρP (resp.
⋆

Aξ = 0). The trace of
⋆

Aξ is the null (non normalized) mean curvature of M,

explicitly given by

Hp =

n−1∑

i=2

g(
⋆

Aξ(ei),ei) =

n−1∑

i=2

B(ei,ei),

being (e2, . . . ,en−1) an orthonormal basis of S (ζ) at p. Let ∇̃ denote the Levi-Civita connection on the rigged Riemannian

structure (M, g̃). It holds [23],

(Lξg̃)(X,Y) = −2B(X,Y), X,Y ∈S (ζ).

In particular,

H = −d̃iv ξ. (2.5)

Observe that if M is orientable compact without boundary it follows from (2.5) that

∫

M

Hdg̃ = 0.

Now, we recall from [18], the following generalized Raychaudhury equation,

Ric(ξ) = ξ(H)+τ(ξ)H−‖
⋆

Aξ‖
2. (2.6)

3. Maximal null hypersurfaces in GRW spacetimes

Due to the causal character (0,n−2) of a null hypersurface in any n−dimensional (n≥ 3) Lorentzian manifold, the normalization

problem in a GRW spacetime has the outstanding feature that the Chen’s closed timelike concircular vector field ζ = f∂t can

act as rigging vector field for each of them. Let ξ denote the corresponding rigged vector field. The associated null transverse

vector field is

N = f∂t +
1

2
f 2(t)ξ.
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By the Weingarten formula, it holds

−AN X+τ(X)N = f ′(t)X+
1

2

(
X · f 2

)
ξ+

1

2
f 2

(
−

⋆

Aξ X−τ(X)ξ
)

for X ∈ X(M). (3.1)

Hence, for X ∈S (ζ), (
−AN X+

1

2
f 2

⋆

Aξ X− f ′(t)X
)
+

(1

2
f 2τ(X)− (X · f ) f

)
ξ+τ(X)N = 0.

Then,

τ(X) = 0, X · f = 0 and AN X =
1

2
f 2

⋆

Aξ X− f ′(t)X

for all X ∈S (ζ).

Now take X = ξ in (3.1) and get

ANξ = 0, τ(ξ) = 0 and ξ · f = −
f ′

f
. (3.2)

Then, we can state:

Proposition 3.1. Let M be a null hypersurface in a GRW spacetime normalized with the Chen’s vector field ζ = f∂t. Then,

(i) the 1−form τ vanishes identically on M and the rigged vector field ξ is geodesic.

(ii) ξ · f = −
f ′

f
and for all vector field X tangent to the screen structure S (ζ), it holds X · f = 0.

(iii) For all X ∈ X(M),

AN X =
1

2
f 2

⋆

Aξ XS − f ′(t)XS ,

where XS = PX with P the projection morphism of Γ(T M) onto Γ
(
S (ζ)

)
with respect to the decomposition (2.4).

Since ζ is closed, the screen structure S (ζ) induces a foliation on M. For p = (t, x) ∈ M let Fp denote the leaf of S (ζ) through

p. Every X ∈ X(M) splits as follows

X = −
1

f
α(X)∂t +XF

where XF is the lift of the projection of X onto the fiber F and α = g(ζ, ·) = − f dt is the 1−form metrically equivalent to ζ

respect to g. It follows that X ∈ X(M) is tangent to the screen structure if and only if X = XF ∈ X(F). In other words, each leaf

Fp is a hypersurface in the slice {πI(p)}×F. Furthermore, for X ∈ X(M), it holds X = α(X)ξ+XS which gives

XF = XS +α(X)ξF ,

where ξ = − 1
f
∂t + ξ

F . In particular gF(XS , ξF) = 0. Then, since gF(ξF , ξF) = 1
f 4 it follows that at each point p = (t, x) ∈ M, the

vector f (t)ξF is a unit normal in {t}×F to the leaf Fp of S (ζ) through p. Let AF

f ξF and HF denote respectively the shape

operator and the mean curvature of Fp as a hypersurface of the slice {t}×F which inherits the metric f 2(t)gF .

Theorem 3.2. Let I× f F be a GRW spacetime. A null hypersurface M is maximal if and only if the screen foliation induced

by the Chen’s vector field ζ = f∂t has constant mean curvature −
f ′(t)

f (t)
in each slice {t}×F.

Proof. Given X ∈ X(M), we have

−
⋆

Aξ X = ∇Xξ = ∇X

(
−

1

f
∂t + ξ

F
)
=

X · f

f 2
∂t −

1

f
∇X∂t +∇Xξ

F

=
X · f

f 2
∂t −

1

f 2

[
∇X f∂t − (X · f )∂t

]
+∇Xξ

F

= 2
X · f

f 2
∂t −

f ′

f 2
X−

1

f
α(X)∇∂t

ξF +∇XF ξ
F

= 2
X · f

f 2
∂t −

f ′

f 2
X−

f ′

f
α(X)ξF +∇XF ξ

F (3.3)

As
⋆

Aξ ξ = 0, we just need to compute (3.3) for X ∈ S (ζ) i.e X = XF = XS for which X · f = 0 as seen from item (ii) in

Proposition 3.1 and α(X) = 0. Let ∇F denote the Levi-Civita connection of (F,gF). We have for all X ∈S (ζ),

⋆

Aξ X =
f ′

f 2
X−∇Xξ

F =
f ′

f 2
X−

1

f
∇X f ξF
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=
f ′

f 2
X−

1

f

[
∇F

X f ξF + 〈X, f ξF〉
f ′

f
∂t

]
,

thus for all X ∈S (ζ),

⋆

Aξ X =
f ′

f 2
X+

1

f
AF

f ξF X. (3.4)

Let (∂t, f ξF ,e2, . . . ,en−1) be a frame field on M along M such that (e2, . . . ,en−1) represents an orthonormal basis for S (ζ). The

null mean curvature Hp at p = (t, x) is given by

Hp =

n−1∑

i=2

〈
⋆

Aξ ei,ei〉 =

n−1∑

i=2

[
f ′

f 2
〈ei,ei〉+

1

f

〈
AF

f ξF ei,ei

〉]

= (n−2)
f ′

f 2
+

n−2

f
HF

that is

Hp =
n−2

f 2

[
f ′(t)+ f (t)HF

]
(3.5)

and the claim follows from (3.5). �

In the way of above proof, we have established (combining (3.4) and
⋆

Aξ ξ = 0) the following:

Proposition 3.3. Let I× f F be a GRW spacetime. A null hypersurface M is totally umbilic if and only if the screen foliation

induced by the Chen’s vector field ζ = f∂t is totally umbilic in the slices.

Theorem 3.4. Let I× f F be a GRW spacetime and suppose M is a maximal null hypersurface normalized by the Chen’s vector

field ζ = f∂t.

(i) The squared norm of the screen shape operator has the following upper bound

‖
⋆

Aξ ‖
2 ≤

n−2

f 2
W(ζ,ξ, ζ,ξ)+

1

(n−1) f 4

[
(n−1)(n−2) f f ′′− sF

]
(3.6)

with equality if and only if the scale factor f is constant, in particular the slices are minimal.

(ii) If the warping function f has a convex logarithm i.e (ln f )′′ ≥ 0 (resp. a concave logarithm, i.e (ln f )′′ ≤ 0) then

‖
⋆

Aξ ‖
2 ≥

n−2

f 2
W(ζ,ξ, ζ,ξ)−

1

(n−1) f 4
sF

(
resp. ‖

⋆

Aξ ‖
2 ≤

n−2

f 2
W(ζ,ξ, ζ,ξ)−

1

(n−1) f 4
sF

)

with equality if and only if the warping function is given by

f (t) = k exp(λt), k ∈ R⋆+ , λ ∈ R.

(iii) If the Weyl tensor satisfies i∂t
W = 0, then the Null Convergence Condition (NCC) holds if and only if the scalar curvature

sF of the fiber F has the following lower bound

sF ≥ (n−1)(n−2) f 2(ln f )′′, (3.7)

in which case the GRW spacetime admits no non totally geodesic maximal null hypersurface. Otherwise, on the set of

non geodesic points it holds

‖
⋆

Aξ ‖
2 ≤

1

(n−1) f 4

[
(n−1)(n−2) f f ′′− sF

]
(3.8)

with

sF < (n−1)(n−2) f f ′′.
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Proof. From (2.1) and (2.2) it is easy to see that the eigenvalue σ associated to the Chen’s vector ζ and the scalar curvature s

are given by

σ = (n−1)
f ′′

f

and

s = 2(n−1)
f ′′

f
+ (n−1)(n−2)

f ′2

f 2
+

sF

f 2
.

It follows from (2.1) that for all null vector U,

Ric(U) = −(n−2)W(∂t,U,∂t,U)−
〈∂t,U〉

2

n−1

[
(n−1)(n−2)(ln f )′′−

sF

f 2

]
. (3.9)

In particular,

Ric(ξ) = −
(n−2)

f 2
W(ζ,ξ, ζ,ξ)−

1

(n−1) f 4

[
(n−1)(n−2) f 2(ln f )′′− sF

]
. (3.10)

It follows from (3.10) and (2.6) that for a maximal M,

‖
⋆

Aξ ‖
2 = −Ric(ξ) =

n−2

f 2
W(ζ,ξ, ζ,ξ)+

1

(n−1) f 4

[
(n−1)(n−2) f 2(ln f )′′− sF

]

which gives (3.6) with equality if and only if f ′ = 0 in particular the slices (with mean curvature
f ′(t)

f (t)
) are minimal and (i) is

proved. For (ii), since n ≥ 3, the hypothesis implies (n−1)(n−2) f 2(ln f )′′ ≥ 0 (resp. (n−1)(n−2) f 2(ln f )′′ ≤ 0 ). The equality

case for both estimations is obtained for (ln f )′′ = 0 that is f (t) = k exp(λt), k ∈ R⋆+ , λ ∈ R.

Suppose the Weyl tensor satisfies i∂t
W = 0. Then, from (3.9) the null convergence condition holds if and only if the scalar

curvature sF of the fiber satisfies (3.7). In this case, using (2.6) for a maximal M leads to −‖
⋆

Aξ ‖
2 = Ric(ξ) ≥ 0 i.e

⋆

Aξ = 0 and

M is totally geodesic. Otherwise (i.e if the null convergence condition failed), for the set of non geodesic points,

sF < (n−1)(n−2) f 2(ln f )′′ = (n−1)(n−2)( f f ′′− f ′2) ≤ (n−1)(n−2) f f ′′

and (3.8) follows from (3.6) in which the first term vanishes. �

4. A generic example

Let I× f F be a GRW spacetime and consider ψ : F −→ I a differentiable function with graph

M = {(ψ(x), x), x ∈ F}.

This is a null hypersurface if and only if

‖gradFψ‖F = f ◦ψ, (4.1)

that is ψ is a generalized eikonal function. In this case, a rigging for it is

ζ = ( f ◦ψ)∂t

with associated rigged vector field given by

ξ = −
1

f ◦ψ
∂t −

1

( f ◦ψ)3
gradFψ. (4.2)

In particular ξF = −
1

( f ◦ψ)3
gradFψ. The screen structure is given by the level sets of ψ: for each p = (t0, x0) ∈ M, Fp =

{t0}×ψ
−1(t0). Let us compute the second fundamental form and screen shape operator for {t0}× f ψ

−1(t0) relative to {t0}× f F.

Let

uψ = −
1

( f ◦ψ)2
gradFψ.
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As per (4.1), uψ is a unit normal vector to F(t,x) in {t}× f F and we have

ξ = −
1

f ◦ψ
∂t +

1

( f ◦ψ)
uψ =

1

( f ◦ψ)

[
−∂t +uψ

]
.

Then, for any X ∈ X(M),

−
⋆

Aξ X = ∇Xξ = ∇−〈X,∂t〉∂t +XF

[ 1

f ◦ψ
(−∂t +uψ)

]

= −〈X,∂t〉
1

f ◦ψ

f ′ ◦ψ

f ◦ψ
uψ−

1

f ◦ψ

f ′ ◦ψ

f ◦ψ
XF +

XF · ( f ◦ψ)

( f ◦ψ)2
∂t

+
1

f ◦ψ
∇F

XF uψ+ ( f ′ ◦ψ)gF(XF ,uψ)∂t −
XF · ( f ◦ψ)

( f ◦ψ)2
uψ.

But the left hand side belongs to the screen structure, which is orthogonal to ζ = f∂t, so it holds

XF · ( f ◦ψ)

( f ◦ψ)2
= −( f ′ ◦ψ)gF(XF ,uψ) = −

f ′ ◦ψ

( f ◦ψ)2
〈∂t,X〉, (4.3)

that is

XF · ( f ◦ψ) = −( f ′ ◦ψ)〈∂t,X〉,

where in (4.3) we use 〈∂t,X〉 = 〈X
F ,uψ〉 = ( f ◦ψ)2gF(XF ,uψ) due to 〈X, ξ〉 = 0.

Then,

⋆

Aξ X = 〈X,∂t〉
1

f ◦ψ

f ′ ◦ψ

f ◦ψ
uψ+

1

f ◦ψ

f ′ ◦ψ

f ◦ψ
XF −

1

f ◦ψ
∇F

XF uψ+
XF · ( f ◦ψ)

( f ◦ψ)2
uψ

(4.3)
=

f ′ ◦ψ

( f ◦ψ)2
XF −

1

f ◦ψ
∇F

XF uψ.

Replacing uψ leads to

⋆

Aξ X =
1

( f ◦ψ)3
∇F

XF gradFψ+
f ′ ◦ψ

( f ◦ψ)2
XF +2

f ′ ◦ψ

( f ◦ψ)4
〈X,∂t〉gradFψ.

In particular, for any X ∈S (ζ),

⋆

Aξ X =
1

( f ◦ψ)3
∇F

XgradFψ+
f ′ ◦ψ

( f ◦ψ)2
X.

Hence, for X,Y ∈ X(M),

B(X,Y) =
1

f ◦ψ
HessF

ψ (XF ,YF)+ ( f ′ ◦ψ)gF(XF ,YF)

+2〈X,∂t〉
f ′ ◦ψ

( f ◦ψ)2
dψ(YF).

Then the restriction B|S (ζ)×S (ζ)
of the second fundamental form reads for all X,Y ∈S (ζ),

B(X,Y) =
1

f ◦ψ
HessF

ψ (X,Y)+ ( f ′ ◦ψ)gF(X,Y).

Consider a quasi g−orthonormal frame field (∂t, f ξF ,e2, . . . ,en−1) on M with (ei)2≤i≤n−1 tangent to F . Then, ( f 2ξF , f e2, . . . , f en−1)

is an orthonormal frame field for gF . Therefore, the null mean curvature reads

H =

n−1∑

i=2

B(ei,ei)

=
1

f ◦ψ

n−1∑

i=2

gF

(
∇F

ei
gradFψ,ei

)
+ ( f ′ ◦ψ)

n−1∑

i=2

gF(ei,ei)
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=
1

( f ◦ψ)3

n−1∑

i=2

gF

(
∇F

f ei
gradFψ, f ei

)
+

f ′ ◦ψ

( f ◦ψ)2

n−1∑

i=2

gF( f ei, f ei)

=
1

( f ◦ψ)3

[ n−1∑

i=2

gF

(
∇F

f ei
gradFψ, f ei

)
+gF

(
∇F

f 2ξF gradFψ, f 2ξF
)]

−
1

( f ◦ψ)3
gF

(
∇F

f 2ξF gradFψ, f 2ξF
)
+ (n−2)

f ′ ◦ψ

( f ◦ψ)2

=
1

( f ◦ψ)3
∆Fψ+ (n−2)

f ′ ◦ψ

( f ◦ψ)2

−
1

( f ◦ψ)3
gF

(
∇F

f 2ξF gradFψ, f 2ξF
)
.

Let us compute the term gF

(
∇F

( f◦ψ)2ξF gradFψ, ( f ◦ψ)2ξF
)
. Note that from (4.2) ( f ◦ψ)2ξF = −

1

f ◦ψ
gradFψ. So,

gF

(
∇F

( f◦ψ)2ξF gradFψ, ( f ◦ψ)2ξF
)
= −( f ◦ψ)gF

(
∇F

ξF gradFψ,gradFψ
)

= −
( f ◦ψ)

2
ξF ·

(
‖gradFψ‖2F

)

= −( f ◦ψ)2ξF · ( f ◦ψ)
(4.3)
= ( f ◦ψ)2 f ′ ◦ψ

f ◦ψ
= ( f ′ ◦ψ)( f ◦ψ).

It follows that

H =
1

( f ◦ψ)3

[
∆Fψ+ (n−3)( f ′ ◦ψ)( f ◦ψ)

]
. (4.4)

From (4.4) we can state the following:

Theorem 4.1. Let I× f F be a GRW spacetime and consider ψ : F −→ I a differentiable function with graph

M = {(ψ(x), x), x ∈ F} such that ‖gradFψ‖F = f ◦ψ.

(i) M is a null hypersurface which is maximal if and only if

∆Fψ = −(n−3)( f ′ ◦ψ)( f ◦ψ)

(ii) If M is maximal then ∆Fψ is constant on each leaf Fp, p ∈ M.

(iii) The (Riemannian) mean curvature HF of a leaf Fp as a hypersurface in the slice {πI(p)}×F is given by

HF =
1

(n−2)( f ◦ψ)2

[
∆Fψ− ( f ′ ◦ψ)( f ◦ψ)

]
. (4.5)

It follows that leaves of the foliation F has constant mean curvature if and only if ∆Fψ is constant leafwise. In particular

they are minimal if and only if ∆Fψ|F = ( f ′ ◦ψ)( f ◦ψ).

Proof. The first claim (i) follows from (4.1) and (4.4). For (ii) just recall that ψ is constant on each leaf of the foliation F .

Now, for (iii), use (3.5) and (4.4) to derive (4.5). �

5. The extrinsic scalar curvature estimates

In [19] we pointed out that there are no natural ways to induce a scalar curvature analogue on null hypersurfaces (or more

generally a null submanifolds) as usual. The drawback in considering this concept on null hypersurfaces is twofold: since

the induced connection is not a Levi-Civita connection (unless M be totally geodesic) the (0,2) induced Ricci tensor is not

symmetric in general. Also, as the induced metric is degenerate, its inverse does not exist and it is not possible to proceed in the

usual way by contracting the Ricci tensor to get a scalar quantity. A first attempt in this way was made in [27] which consists to

restrict the concept to a very limited class of null hypersurfaces: those admitting a ”canonical screen distribution” that induces

a canonical transversal vector bundle and a symmetric induced Ricci tensor. Although the above two conditions are interesting

to compensate lacking due to the above quoted difficulties, to admit symmetric induced Ricci tensor in lightlike setting is

very restrictive. Also, the problem in contracting with respect to the noninvertible induced metric is still unsolved for the

general setting. However, when the null hypersurface is provided with a normalization (a rigging), thanks to the nondegenerate

associated rigged structure, we can drop above restrictions and construct an analog of this scalar quantity (see [19]) called

extrinsic scalar curvature, referring to the use of an extra structure ζ, the rigging.
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Our purpose in this section is to determine this scalar quantity for null hypersurfaces in GRW spacetimes, normalized by the

Chen’s vector field ζ = f∂t and give some bounds for it in case the null hypersurface is maximal.

Let Ric denote the induced Ricci tensor on the normalized (M, ζ). We define the symmetrized (0,2)−Ricci tensor Ricsym by

Ricsym(X,Y) =
1

2

[
Ric(X,Y)+Ric(Y,X)

]
.

By direct computation ([19]), we see that

Ricsym(X,Y) = Ric(X,Y)+B(X,Y)tr(AN)

−
1

2

[〈
R(ξ,X)Y,N

〉
+

〈
R(ξ,Y)X,N

〉
+ 〈AN X,

⋆

Aξ Y〉+ 〈ANY,
⋆

Aξ X〉

]
. (5.1)

Now, the extrinsic scalar curvature sζ on (M, ζ) is the g̃−trace of Ricsym, where g̃ is the associated Riemannian rigged structure,

i.e

sζ = g̃αβRic
sym

αβ
(5.2)

being (e1 = ξ,e2, . . . ,en−1) a g̃− orthonormal frame field on M with (ei)1≤i≤n−1 tangent to the screen structure. We compute the

components Ric
sym

αβ
using (5.1), (3.2) and symmetries in (2.2).

Ric
sym

00
= Ricsym(ξ,ξ) = Ric(ξ,ξ) = Ric

(
−

1

f
∂t + ξ

F ,−
1

f
∂t + ξ

F
)

= −(n−1)
f ′′

f 3
+

f f ′′+ (n−2) f ′2

f 4
+RicF

(
ξF , ξF

)

=
2−n

f 2
(ln f )′′+RicF

(
ξF , ξF

)
.

Ric
sym

0i
= Ricsym(ξ,ei) = Ric(ξ,ei)−

1

2

〈
R(ξ,ei)ξ,N

〉

= RicF(ξF ,ei)

Ric
sym

i j
= Ricsym(ei,e j) = Ric(ei,e j)+B(ei,e j)tr(AN)

−
1

2

(〈
f∂t +

1

2
f 2ξ,R(ξ,e j)ei

〉

+
〈

f∂t +
1

2
f 2ξ,R(ξ,ei)e j

〉)

+
〈
ANei,

⋆

Aξ e j

〉
++

〈
ANe j,

⋆

Aξ ei

〉

Then, using the following relations of curvature tensor [28],

R(∂t,∂t)∂t = R(∂t,∂t)X
F = R(XF ,YF)∂t = 0

R(XF ,∂t)∂t = −
f ′′

f
XF , R(∂t,X

F)YF = f f ′′gF(XF ,YF)∂t

R(XF ,YF)ZF = RF((XF ,YF)ZF)+ f ′2
[
gF(XF ,ZF)YF −gF(YF ,ZF)XF

]

we have

Ricsym(ei,e j) = Ric(ei,e j)+B(ei,e j)tr(AN)

−
1

2

(
2 f f ′′gF(ei,e j)+

1

2

〈
RF(ξF ,e j)ei, ξ

F
〉

+
1

2

〈
RF(ξF ,ei)e j, ξ

F
〉
−2

f ′2

f 2
gF(ei,e j)

+
〈 ⋆

Aξ ANei,e j

〉
+

〈 ⋆

Aξ ANe j,ei

〉)
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Now, relation (iii) in Proposition 3.1 implies

〈 ⋆

Aξ ANe j,ei

〉
=

1

2
f 2

〈 ⋆

Aξ
2ei,e j

〉
− f ′B(ei,e j)

and

tr(AN) =
1

2
f 2H− (n−2) f ′.

Then,

Ricsym(ei,e j) = RicF(ei,e j)+
[
(n−2)+

1

f 2

]
f ′2gF(ei,e j)

+
[1

2
f 2H+ (3−n) f ′

]
B(ei,e j)

−
1

2
f 2

[〈
RF(ei, ξ

F)ξF ,e j

〉
+

〈 ⋆

Aξ ei,
⋆

Aξ e j

〉]

Also, the components g̃ab in the same frame field are the following:

g̃00 = 1, g̃0i = g̃i0 = 0, g̃i j =
1

f 2
g

i j

F
.

Finally, after substitution in (5.2) and reducing we get the following expression for the extrinsic scalar curvature sζ on the

normalized (M, ζ).

Proposition 5.1. Let I× f F be a GRW spacetime and suppose M is a null hypersurface normalized by the Chen’s vector field

ζ = f∂t. Then the extrinsic scalar curvature on (M, ζ) is given by

sζ =
1

f 4
sF +

[
1

2
f 2H+ (3−n) f ′

]
H

−
1

2

[
RicF(ξF , ξF)+ f 2‖

⋆

Aξ ‖
2
]

+
2−n

f 2
(ln f )′′+

n−2

f 2

[
(n−2) f +1

]
(ln f )′. (5.3)

Theorem 5.2. Let I× f F be a n−dimensional GRW spacetime (n ≥ 3) and M a maximal null hypersurface normalized with

the Chen’s vector field ζ = f∂t.

(i) If f is a convex decreasing warping function then sζ has the following upper bound

sζ ≤
1

f 4
sF −

1

2
RicF(ξF , ξF).

(ii) If iζW = 0 (a quasi-Einstein space), then on the set of non totally geodesic points of a maximal null hypersurface, it holds

sζ ≥
1

f 4

[
1+

f 2

2(n−1)

]
sF +−

1

2
RicF(ξF , ξF)

−
n−2

f 4

[
1

2
f 3 f ′′+ f f ′′− f ′2−

(
(n−2) f +1

)
f f ′

]
. (5.4)

Proof. Item (i) is immediate using (5.3). Indeed, we have H = 0 (maximality), − 1
2

f 2‖
⋆

Aξ ‖
2 < 0 and as n ≥ 3 the hypothesis on

the warping function f leads to 2−n

f 2 (ln f )′′+ n−2
f 2

[
(n−2) f +1

]
(ln f )′ < 0. For (ii), the hypothesis implies from (3.8) that

−
1

2
f 2‖

⋆

Aξ ‖
2 ≥

−1

2(n−1) f 2

[
(n−1)(n−2) f f ′′− sF

]
.

Then relation (5.4) follows from (5.3). �
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6. Willmore null hypersurfaces

6.1. The Willmore functional

For a normalized null hypersurface (M, ζ) with compactly supported (non normalized) mean curvature H (in particular if M is

compact), the Willmore action is given by

W(M, ζ) =

∫

M

H2 dM

where dM is the volume element induced on M.

An obvious fact is that

H2 ≤ (n−2)‖
⋆

Aξ ‖
2 (6.1)

with equality if and only if M is totally umbilic.

Also,

d̃iv
(
(d̃ivξ)ξ

)
= g̃

(
∇̃d̃ivξ,ξ

)
+

(
d̃ivξ

)2

i.e

−d̃iv
(
Hξ

)
= −ξ(H)+H2. (6.2)

In [18] we established (2.6), that is Ric(ξ) = ξ(H)+τ(ξ)H−‖
⋆

Aξ ‖
2. Assume that there is a constant λ such that (τ(ξ)+λ)H ≤ 0.

Then

H2 ≥ Ric(ξ)+λH− d̃iv
(
Hξ

)
. (6.3)

Combining (6.1) and (6.3), we get

Ric(ξ)+λH− d̃iv
(
Hξ

)
≤ H2 ≤ (n−2)‖

⋆

Aξ ‖
2.

The equality case in the upper bound (resp. in the lower bound) is attained if and only if M is totally umbilic (resp. M is

totally geodesic). Recall from (2.5) that H = −d̃ivξ. Hence if M is compact without boundary and orientable, by the divergence

theorem it holds
∫

M

Ric(ξ) dM ≤W(M, ζ) ≤ (n−2)

∫

M

‖
⋆

Aξ ‖
2 dM.

The equality case in the upper bound is equivalent to
∫

M

(
H2 − (n− 2)‖

⋆

Aξ ‖
2
)

dM = 0 and by use of (6.1) this means that

H2 = (n−2)‖
⋆

Aξ ‖
2 and M is totally umbilic. For the lower bound, the equality case reads

∫

M

(
d̃iv(Hξ)+τ(ξ)H−‖

⋆

Aξ ‖
2
)
dM =

∫

M

(τ(ξ)H−‖
⋆

Aξ ‖
2)dM = 0 =

∫

M

−λHdM.

Hence, ∫

M

(
(τ(ξ)+λ)H−‖

⋆

Aξ ‖
2
)
dM = 0.

As (τ(ξ)+λ)H ≤ 0 it follows that (τ(ξ)+λ)H−‖
⋆

Aξ ‖
2 = 0 and ‖

⋆

Aξ ‖
2 = 0 which means that M is totally geodesic. Thus, we

can state.

Theorem 6.1. Let (M, ζ) be a normalized orientable compact (without boundary) null hypersurface. Suppose there existe a

constant λ such that (τ(ξ)+λ)H ≤ 0. Then, the Willmore action has the following bounds:

∫

M

Ric(ξ) dM ≤W(M, ζ) ≤ (n−2)

∫

M

‖
⋆

Aξ ‖
2 dM.

The equality case in the upper bound (resp. in the lower bound) is attained if and only if M is totally umbilic (resp. M is totally

geodesic).

Remark 6.2. Suppose M is a normalized orientable compact (without boundary) null hypersurface. If H is constant then it

vanishes identically. Indeed, from equality in (6.2), it holds by use of the divergence theorem,

0 =

∫

M

ξ(H) dM =

∫

M

H2 dM which shows that H = 0.



82 Fundamental Journal of Mathematics and Applications

6.2. The Euler equation in GRW spacetimes

In a recent work [29], we pointed out the fact that in Lorentzian manifolds with a closed timelike vector field, there is no

compact simply connected null hypersurfaces. But GRW spacetimes do admit such vector fields, (the Chen’s ones). So,

considering the Willmore problem for null hypersurfaces in GRW spacetimes, we restrict to the family of normalized orientable

null hypersurfaces (M, ζ) for which the mean curvature H has compactly supported variations and for critical points of the

Willmore action (the Willmore null hypersurfaces) we apply standard techniques of the calculus of variations.

Let us consider on M the frame field (∂t, ξ,∂u2 , . . . ,∂un−1 ) with (∂ui )2≤i≤n−1 tangent to the screen structure S (ζ), in which

gαβ ≃



−1 1
f

0 . . . 0
1
f

0

0 0
...

... f 2(t)gFi j

0 0



and g̃ab ≃ G̃ =



1 0 . . . 0

0
... f 2(t)gFi j

0



.

Hence

detgαβ = −
1

f 2
det g̃ab.

Let v be a null coordinate with ξ = ∂v. We have

dg =

√
−detgαβ dt∧dv∧du2 · · · ∧dun−1

and

dM = iζdg = f (t)
√
−detgαβ dv∧du2 · · · ∧dun−1

= f (t)

√
1

f 2
det g̃ab dv∧du2 · · · ∧dun−1

=
√

det g̃ab dv∧du2 · · · ∧dun−1

= dg̃.

Hence

dM = dg̃.

It follows that

W(M, ζ) =

∫

M

H2 dM =

∫

M

(d̃iv ξ)2dg̃.

Let p = (t, x) ∈ I × f F be a generic point on the null hypersurface. We have x = x(u1, . . . ,un−1) where (u1, . . . ,un−1) denotes

coordinates on the fiber F. Then p = p(t,u1, . . . ,un−1). Now consider a variation of the null hypersurface in the normal direction

ξ given by

p(t,u1, . . . ,un−1, s) = exp(t,u1,...,un−1)

(
sφ(t,u1, . . . ,un−1)ξ

)
(6.4)

where φ is a smooth real-valued function and s is real number in a neighborhood of 0. We denote by δ the operator

δ =
∂

∂s |s=0

.

Willmore null hypersurfaces are those for which

δ

∫

M

H2 dM = 0.

The following ranges of indices are in use

α, β, γ, . . . ,= 0,1, . . . , n−1

a, b, c . . . ,= 1, . . . , n−1

i, j, k . . . ,= 2, . . . , n−1.

Without lost of generality, we may assume ∂i := ∂
∂ui ∈S (ζ). Then at each p, span{∂t |p , ∂u1|p} = TpM⊥⊕Rζ.
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From (6.4), we have

δp = φξ.

Then,

δ∂i|p = (∂iφ)ξ+φ∇∂i
ξ

= (∂iφ)ξ−φ
⋆

Aξ ∂i.

δξ|p = (ξ ·φ)ξ+φ∇ξξ

= (ξ ·φ)ξ as ξ is geodesic.

δ∂t|p = (∂tφ)ξ+φ∇∂t
ξ

= (∂tφ)ξ+φ

(
f ′(t)

f 2(t)
∂t +

f ′(t)

f (t)
ξF

)
.

=

(
−
∂tφ

f (t)
+φ

f ′(t)

f 2(t)

)
∂t +

(
(∂tφ)+φ

f ′(t)

f (t)

)
ξF

and

δ∂u1 |p
= (∂u1φ)ξ+φ∇∂

u1
ξ

Now, we compute δ̃gab.

gi j(s) = g
(
∂i+ s(∂iφ)ξ− sφ

⋆

Aξ ∂i,∂ j+ s(∂ jφ)ξ− sφ
⋆

Aξ ∂ j

)

= g̃i j+ s
[
−φg̃(∂i,

⋆

Aξ ∂ j)−φg̃(
⋆

Aξ ∂i,∂ j)
]
+ s2φ2g̃(

⋆

Aξ ∂i,
⋆

Aξ ∂ j).

Hence

δ̃gi j = −2φB(∂i,∂ j).

Also,

δ̃g0i = δ̃gi0 = ∂iφ and δ̃g00 = 2(ξ ·φ).

Using the relation
∑

k

g̃ikg̃k j = δ
i
j,

∑

k

δ̃gikg̃k j+
∑

k

g̃ikδ̃gk j = 0.

Then,

∑

k

δ̃gikg̃k j
(6.5)
= −

∑

k

g̃ik
(
−2φB(∂k,∂ j)

)

= 2φ
∑

l

g̃ilB(∂l,∂ j).

It follows that

δ̃gik = 2φ
∑

l j

g̃k jg̃ilB(∂l,∂ j).

Next, put Bi j := B(∂i,∂ j). We compute δBi j. First, we have

〈
∇∂i

∂ j, δξ
〉
=

〈
∇∂i

∂ j+Bi jN, (ξ ·φ)ξ
〉
= (ξ ·φ)Bi j.



84 Fundamental Journal of Mathematics and Applications

Also,

∇∂i(s)∂ j(s) = ∇
∂i+s(∂iφ)ξ−sφ

⋆
Aξ∂i

(
∂ j+ s(∂ jφ)ξ− sφ

⋆

Aξ ∂ j

)

= ∇∂i
∂ j+ s

[
∇i(∂ jφ)ξ−∇∂i

(
φ
⋆

Aξ ∂ j

)]
+ second order term in s

which gives

δ∇∂i
∂ j = ∇i(∂ jφ)ξ−∇∂i

(
φ
⋆

Aξ ∂ j

)

= (∂i∂ jφ)ξ+ (∂ jφ)(−
⋆

Aξ ∂i)− (∂iφ)
⋆

Aξ ∂ j−φ
(
∇∂i

⋆

Aξ ∂ j

)

−φB(∂i

⋆

Aξ ∂ j)N + (∂φ)∇ξ∂ j−φ∇⋆
Aξ∂i

∂ j−φB(
⋆

Aξ ∂i,∂ j).

It follows that

〈
δ∇∂i

∂ j, ξ
〉
= −2φB(∂i

⋆

Aξ ∂ j) = −2φg̃
( ⋆

Aξ ∂i,
⋆

Aξ ∂ j

)
.

From Bi j = 〈∇∂i
∂ j, ξ〉 it follows,

δBi j =
〈
δ∇∂i

∂ j, ξ
〉
+

〈
∇∂i

∂ j, δξ
〉

= −2φ
〈 ⋆

Aξ ∂i,
⋆

Aξ ∂ j

〉
+ (ξ ·φ)Bi j.

But

H =
∑

i j

g̃i jg̃
( ⋆

Aξ ∂i,∂ j

)
=

∑

i j

g̃i jBi j.

Then,

δH =
∑

i j

δ̃gi jBi j+
∑

i j

g̃i jδBi j

=
∑

i j

(
2φ

∑

lm

g̃ilg̃ jmBlm

)
Bi j+

∑

i j

g̃i j
[
−2φg̃(

⋆

Aξ ∂i,
⋆

Aξ ∂ j)+ (ξ ·φ)Bi j.
]

= 2φ‖
⋆

Aξ ‖
2−2φ‖

⋆

Aξ ‖
2+ (ξ ·φ)H

since
⋆

Aξ ∂i = g̃lmBim∂l and the first term at the right hand side is 2φ‖
⋆

Aξ ‖
2. Thus,

δH = (ξ ·φ)H.

Now, let Ω =
√

det g̃ab =
√

det g̃i j. Then

2Ω
∂Ω

∂s
= Ω2trace

(
G̃−1 ·

∂G̃

∂s

)
,

i.e

δΩ =
1

2
Ω trace

(
g̃ikδ̃gk j

) (6.5)
=

1

2
Ω trace

(
g̃ik

(
−2φBk j

))

= −φΩ trace g̃ikBk j = −φΩg̃i jBi j = −φΩH.

Finally,

δ

∫

M

H2dg̃ =

∫

M

2HδHdg̃+

∫

M

H2δ̃g

=

∫

M

2H(ξ ·φ)Hdg̃+

∫

M

H2(−φH)dg̃,

i.e

δ

∫

M

H2dg̃ =

∫

M

H2
[
2(ξ ·φ)−Hφ

]
dg̃.

Thus the condition that the integral is stationary for all smooth function φ is H = 0. Indeed, take φ = H. Then

0 =

∫

M

H2
[
2(ξ ·H)−H2

]
dg̃ =

∫

M

[
2H2(ξ ·H)−H4

]
dg̃
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=

∫

M

[
2

3
(ξ ·H3)−H4

]
dg̃ =

∫

M

[
−

2

3
H3d̃ivξ−H4

]
dg̃

=

∫

M

[
2

3
H4−H4

]
dg̃ = −

1

3

∫

M

H4dg̃.

Then we can state the following:

Theorem 6.3. In a generalized Robertson-Walker spacetime, the only Willmore normalized null hypersurfaces (M, ζ) where ζ

is the closed conformal timelike concircular vector field f∂t are the maximal ones.
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1Department of Mathematics, Faculty of Science and Arts, Pamukkale University, Denizli, Turkey
*Corresponding author : shalici@pau.edu.tr

Article Info

Keywords: Bicomplex numbers, Dual

numbers, Pell numbers

2010 AMS: 11Y55, 11B39, 11B37

Received: 11 April 2020

Accepted: 9 June 2020

Available online: 10 June 2020

Abstract

In the paper, we have considered the real and dual bicomplex numbers separately. Firstly,

we examine the dual numbers and investigate the characteristic properties of them. Then,

we give the definition, feature and related concepts about bicomplex numbers. And we

define the number of dual k− Pell bicomplex numbers that are not found for the first time

in the literature and we examine the norm and conjugate properties of these numbers. We

give equations about conjugates and give also some important characteristic of these newly

defined numbers, and we write the recursive correlations of these numbers. Using these

relations we give some important identities such as Vajda’s, Honsberger’s and d’Ocagne

identities.

1. Introduction

The sequence k− Pell is defined as follows[1]:

{
Pk,n

}
n≥0

=
{

0,1,2,4+ k,8+4k,16+12k+ k2
, ... ,2Pk,n−1 + kPk,n−2, ...

}
.

The elements of this set are satisfied the following relation:

Pk,n = 2Pk,n−1 + kPk,n−2, k ∈ Z+
, n ≥ 2

and the initial values are

Pk,0 = 0,Pk,1 = 1.

In [2], Binet-like formula related to these numbers is given as

Pk,n =
(1+

√
1+ k)

n − (1−
√

1+ k)
n

2
√

1+ k
.

The characteristic equation that gives these numbers and the roots of this equation are as follows:

x2 −2x− k = 0, α +β = 2,αβ =−k,α −β = 2
√

1+ k.

Email addresses and ORCID numbers: shalici@pau.edu.tr, https://orcid.org/0000-0002-8071-0437 (S. Halici), sule9220@gmail.com, https://orcid.org/0000-0002-4514-

6156 (S. Cürük)
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For more details on Pell sequence can be seen the references [3]. Bicomplex numbers is a 4− dimensional real vector space

and it is defined as follows.

BC = {b = b1 +b2i+b3 j+b4i j : b1,b2,b3,b4 ∈ R} .

Hence, any bicomplex number b consists of a real and three imaginary units. It should be noted that the multiplication of

bicomplex numbers is similar to multiplication of real quaternions. That is,

i2 = j2 =−1, i j2 = 1, i j = ji = k.

It is noted that there are some differences between these two sets of numbers. According to this, we can list these as bicomplex

numbers are commutative and they have zero divisors and non-trivial idempotent elements. On the other hand the real

quaternions are non-commutative and don’t have zero divisors and non-trivial idempotent elements. Also, the commutative

property is satisfied for elements of the set BC.

In this work, we first investigate some properties of bicomplex numbers by examining the conjugates and norms. Then, we have

introduced a new set of bicomplex numbers with coefficient from Pell number sequence, and gave some fundamental properties

of this new set. Also, we gave some generalized identities such as Catalan’s identity, d’Ocagne’s identity, Honsberger formula,

that the elements of this set provided. Working the mathematical structure of quantum mechanics on the bicomplex number

field, there are many studies in this topic(see, [4]-[10]). n− th, k− Pell bicomplex number BPk,n is as follows:

BPk,n = Pk,n + iPk,n+1 + jPk,n+2 + i jPk,n+3.

That is the k− Pell bicomplex number sequence is

{
BPk,n

}
n≥0

= BPk,n : BPk,n = 2BPk,n−1 + kBPk,n−2, k ∈ Z+
, n ≥ 2.

Here BPk,0 = i+2 j+(4+ k)i j and BPk,1 = 1+2i+(4+ k) j+(8+4k)i j.

Follows from that we have

BPk,2 = 2BPk,1 + kBPk,0 = 2+(4+ k)i+(8+4k) j+(16+12k+ k2)i j.

So, we can write

BPk,n+1 = 2BPBPk,n + kBPBPk,n−1

which is a useful equation.

2. Dual k− Pell bicomplex numbers

As known that the dual numbers are binary members or a member of the 2 parameter families of the complex numbers system,

called generalized complex numbers. Then, any dual number can be written as z = x+εy, where (x,y) ∈ R2 and ε is a nilpotent

number, also ε2 = 0 and ε 6= 0. Then, the dual numbers set is

D = R[ε] =
{

z = x+ εy : (x,y) ∈ R2
, ε2 = 0,ε 6= 0

}
.

Now, for the numbers k ∈ Z+, we define dual k− Pell number as follows:

P̂k,n = Pk,n + εPk,n+1.

Hence, we can define any element of the dual bicomplex sequence
{̂

BPk,n

}
n≥0

as

B̂Pk,n = BPk,n + εBPk,n+1.

Here BPk,n is the n− th, k− Pell bicomplex number.

Theorem 2.1. The elements of dual bicomplex sequence
{̂

BPk,n

}
n≥0

are satisfied the following relation:

B̂Pk,n = 2B̂Pk,n−1 + kB̂Pk,n−2, n ≥ 1.

Where the initial values B̂Pk,0 and B̂Pk,1 are follows.

B̂Pk,0 = BPk,0 + εBPk,1 and B̂Pk,1 = BPk,1 + εBPk,2,

respectively.
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Proof. For n = 2, we have

B̂Pk,2 = 2B̂Pk,1 + kB̂Pk,0.

From the following the fact we get

B̂Pk,1 = BPk,1 + εBPk,2 and kB̂Pk,0 = kBPk,0 + kεBPk,1.

So, we write

2B̂Pk,1 + kB̂Pk,0 = (2BPk,1 + kBPk,0)+ ε(2BPk,2 + kBPk,1).

Follows from that, we have this:

2(BPk,1 + εBPk,2)+ k(BPk,0 + εBPk,1) = 2B̂Pk,1 + kB̂Pk,0 = B̂Pk,2.

In here the initial values are

B̂Pk,0 = (i+2 j+(4+ k)i j)+ ε(1+2i+(4+ k) j+(8+4k)i j)

and

B̂Pk,1 = 1+2i+(4+ k) j+(8+4k)i j+ ε(2+(4+ k)i+(8+4k) j+(16+12k+ k2)i j).

Furthermore, we can also write the number B̂Pk,n differently as follows:

B̂Pk,n = (Pk,n + iPk,n+1 + jPk,n+2 + i jPk,n+3)+ ε(Pk,n+1 + iPk,n+2 + jPk,n+3 + i jPk,n+4).

Then, we get

B̂Pk,n = P̂k,n + iP̂k,n+1 + jP̂k,n+2 + i jP̂k,n+3

where P̂k,n is the n− th dual k− Pell number.

Since, usually the absolute values and arguments of bicomplex numbers are defined for each conjugation it is important to

consider the conjugates of these numbers. Since there are four different units in this set, it means that four separate conjugates

will be defined. According to this, for the bicomplex number B̂Pk,n, we can define four different conjugates as follows:

B̂Pk,n = P̂k,n − iP̂k,n+1 − jP̂k,n+2 − i jP̂k,n+3,

B̂Pk,n

i
= P̂k,n − iP̂k,n+1 + jP̂k,n+2 − i jP̂k,n+3,

B̂Pk,n

j
= P̂k,n + iP̂k,n+1 − jP̂k,n+2 − i jP̂k,n+3,

B̂Pk,n

i j
= P̂k,n − iP̂k,n+1 − jP̂k,n+2 + i jP̂k,n+3.

Using this definition, we can give equations provided by conjugates. So, the following theorem is about them.

Theorem 2.2. For the numbers B̂Pk,n the following equalities are satisfied:

B̂Pk,n +
¯̂

BPk,n = 2P̂k,n.

B̂Pk,n + B̂Pk,n

i
= 2(P̂k,n + jP̂k,n+2).

B̂Pk,n + B̂Pk,n

j
= 2(P̂k,n + iP̂k,n+1).

B̂Pk,n + B̂Pk,n

i j
= 2(P̂k,n + i jP̂k,n+3).

B̂Pk,n

i
+ B̂Pk,n

j
= 2(P̂k,n − i jP̂k,n+3).

B̂Pk,n

i
+ B̂Pk,n

i j
= 2(P̂k,n − iP̂k,n+1).

B̂Pk,n

j
+ B̂Pk,n

i j
= 2(P̂k,n − jP̂k,n+2).

B̂Pk,n + B̂Pk,n

i
+ B̂Pk,n

j
+ B̂Pk,n

i j
= 4P̂k,n.

B̂Pk,n − B̂Pk,n

i
=−2 jP̂k,n+2.

¯̂
BPk,n − B̂Pk,n

i j
=−2kP̂k,n+3.

B̂Pk,n

i − B̂Pk,n

j
=−2(iP̂k,n+1 − jP̂k,n+2).

B̂Pk,n

i − B̂Pk,n

i j
= 2 j(P̂k,n+2 − iP̂k,n+3).
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Proof. From the definition and properties of dual numbers the proofs can be easily seen.

Now, using the definitions norm and conjugate we also give the following theorem.

Theorem 2.3. For the numbers B̂Pk,n the following equalities are satisfied:

i) Nr(B̂Pk,n) = P̂k,n

2
+ P̂k,n+1

2
+ P̂k,n+2

2 − P̂k,n+3

2
+2(iP̂k,n+2P̂k,n+3 + jP̂k,n+1P̂k,n+3 − i jP̂k,n+1P̂k,n+2). (2.1)

ii) Nr(B̂Pk,n)
i = P̂k,n

2
+ P̂k,n+1

2 − P̂k,n+2

2 − P̂k,n+3

2
+2 j(P̂k,nP̂k,n+2 − P̂k,n+1P̂k,n+3).

iii) Nr(B̂Pk,n)
j = P̂k,n

2 − P̂k,n+1

2
+ P̂k,n+2

2 − P̂k,n+3

2
+2i(P̂k,nP̂k,n+1 − P̂k,n+2P̂k,n+3).

vi) Nr(B̂Pk,n)
i j = P̂k,n

2
+ P̂k,n+1

2
+ P̂k,n+2

2 − P̂k,n+3

2
+2i j(P̂k,nP̂k,n+3 − P̂k,n+1P̂k,n+2).

Proof. As per the definition of norm, we write

i) Nr(B̂Pk,n) = (B̂Pk,n)(
¯̂

BPk,n) = (P̂k,n + iP̂k,n+1 + jP̂k,n+2 + i jP̂k,n+3)(P̂k,n − iP̂k,n+1 − jP̂k,n+2 − i jP̂k,n+3).

After some calculations, we get

Nr(B̂Pk,n) = P̂k,n

2
+ P̂k,n+1

2
+ P̂k,n+2

2 − P̂k,n+3

2
+2(iP̂k,n+2P̂k,n+3 + jP̂k,n+1P̂k,n+3 − i jP̂k,n+1P̂k,n+2).

In other cases, proof can be made in a similar way.

Note here that the dual k− Pell bicomplex numbers with the negative indices can be given.

Corollary 2.4. Negative dual k− Pell bicomplex numbers B̂Pk,−n are given as

(−1)n−1
{

Pk,n − iPk,n−1 + jPk,n−2 − i jPk,n−3 + ε(−Pk,n−1 + iPk,n−2 − jPk,n−3 + i jPk,n−4)
}
.

Proof. From the equalities P−n = (−1)n−1Pn and P0 = 0, we get

Pk,−n = (−1)n−1Pk,n

and writing negative of its instead of n in the equation

BPk,n = Pk,n + iPk,n+1 + jPk,n+2 + i jPk,n+3,

BPk,−n = (−1)n−1Pk,n + i(−1)nPk,n−1 + j(−1)n+1Pk,n−2 + i j(−1)n+2Pk,n−3

can be written. It follows from that

BPk,−n = (−1)n−1(Pk,n − iPk,n−1 + jPk,n−2 − i jPk,n−3).

On the other hand for dual of these numbers, by the aid of the equality

B̂Pk,n = BPk,n + εBPk,n+1

we have

B̂Pk,−n = BPk,−n + εBPk,−n+1.

Hence, the term B̂Pk,−n is as follows:

(−1)n−1(Pk,n − iPk,n−1 + jPk,n−2 − i jPk,n−3)+ ε(−1)n(Pk,n−1 − iPk,n−2 + jPk,n−3 − i jPk,n−4).

That is we have

B̂Pk,−n = (−1)n−1
{

Pk,n − iPk,n−1 + jPk,n−2 − i jPk,n−3 + ε(−Pk,n−1 + iPk,n−2 − jPk,n−3 + i jPk,n−4)
}

which is desired result.
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Generating functions and their properties are a powerful tool for solving recurrences and combinatorial problems. Generally, a

generating function is a series of formal power containing the information of the inputs of a given sequence in its coefficients.

There are various generating functions according to usage and application areas.

In the following theorem, the generating function will be given for the dual k− Pell bicomplex sequence.

Theorem 2.5. The function that generates the elements of the sequence
{

B̂Pk,n

}
n≥0

is

G(t) =
B̂Pk,0 +(B̂Pk,1 −2B̂Pk,0

)
t

1−2t − kt2
.

Here B̂Pk,0 and B̂Pk,1 are

i+2 j+(4+ k)i j+(1+2i+(4+ k) j+(8+4k)i j)

and

1+2i+(4+ k) j+(8+4k)i j+ ε(2+(4+ k)i+(8+4k) j+(16+12k+ k2)i j).

Proof. The generating function of
{

B̂Pk,n

}
n≥0

is as follows:

g
B̂Pk,nt==G(t)=

∞

∑
n=0

B̂Pk,ntn
,

G(t) = B̂Pk,0 + B̂Pk,1t + B̂Pk,2t2 + . . .+ B̂Pk,ntn + . . . ,

−2tG(t) =−2(B̂Pk,0t + B̂Pk,1t2 + B̂Pk,2t3 + . . .+ B̂Pk,ntn + B̂Pk,n+1tn+1
. . .) ,

−kt2G(t) =−k(B̂Pk,0t2 + B̂Pk,1t3 + B̂Pk,2t4 + . . .+ B̂Pk,ntn+1 + B̂Pk,ntn+2
. . .) .

Using above equations, we write the following formula:

(1−2t − kt2)G(t) = B̂Pk,0 +(B̂Pk,1 −2B̂Pk,0)t.

Then, it follows that

G(t) =
B̂Pk,0 +

(
B̂Pk,1 −2B̂Pk,0

)
t

1−2t − kt2

that the desired generating function. Here B̂Pk,0 and B̂Pk,1 are

B̂Pk,0 = i+2 j+(4+ k)i j+ ε(1+2i+(4+ k) j+(8+4k)i j)

and

B̂Pk,1 = 1+2i+(4+ k) j+(8+4k)i j+ ε(2+(4+ k)i+(8+4k) j+(16+12k+ k2)i j)

respectively.

Theorem 2.6. Elements of the sequence
{

B̂Pk,n

}
n≥0

satisfy in the following formula:

B̂Pk,n =
ααn −ββ n

α −β

where

α = 1+ iα + jα2 + ijα3 + ε(α + iα2 + jα3 + ijα4)

and

β =−
{
(1+ iβ + jβ 2 + ijβ 3)+ ε(β + iβ 2 + jβ 3 + ijβ 4)

}
.

Proof. The general solution of the characteristic equation of the sequence
{

B̂Pk,n

}
n≥0

is

B̂Pk,n = Aαn +Bβ n
.
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The initial conditions B̂Pk,0 and B̂Pk,1 yields the following equations

B̂Pk,0 = A+B

and

B̂Pk,1 = Aα +Bβ

respectively. Solving these equations, we get

A =
B̂Pk,1 −β B̂Pk,0

α −β
, B =

αB̂Pk,0 − B̂Pk,1

α −β
.

So, we have the following formula for the sequence
{

B̂Pk,n

}
n≥0

:

B̂Pk,n =
1

α −β

{
(B̂Pk,1 −β B̂Pk,0)α

n +(αB̂Pk,0 − B̂Pk,1)β
n
}
=

ααn −ββ n

α −β
.

We also note that the remarkable fact the last formula can be rewritten as follows:

B̂Pk,n = B̂Pk,1Pk,n + kB̂Pk,0Pk,n−1

or

B̂Pk,n = BPk,1P̂k,n + kBPk,0P̂k,n−1.

Here, the values Pk,n, Pk,n−1, BPk,1 and BPk,0 are known.

The relation given in the theorem above theorem is known as the Binet formula. Many identities related to all Fibonacci-like

integer sequences are obtained with the help of this formula.

Theorem 2.7. The Cassini’s identity for the sequence
{

B̂Pk,n

}
n≥0

is follows:

B̂Pk,n−1B̂Pk,n+1 − B̂Pk,n

2
= (−1)nαβkn−1 (2.2)

where αβ is equal to this:

(1+ k)
{

k2 −1−2i(1− k)−2 j(k+2)+8i j
}
−2ε

{
(1+ k)− k2(1+ k)+2i(1− k2)+2 j(k2 +3k+2)+4i j(2+ k)

}
.

Proof. If we use the Binet formula for proof, then we get

B̂Pk,n−1B̂Pk,n+1 − B̂Pk,n

2
=

1

4(1+ k)

{
(ααn−1 −ββ n−1)(ααn+1 −ββ n+1)− (ααn −ββ n)2

}
.

B̂Pk,n−1B̂Pk,n+1 − B̂Pk,n

2
=

1

4(1+ k)
(α2α2n −αβαn−1β n+1 −αββ n−1αn+1 +β 2β 2n −α2α2n +2αβαnβ n −β 2β 2n).

If the required simplifications are made, then

B̂Pk,n−1B̂Pk,n+1 − B̂Pk,n

2
= (−1)nαβkn−1

is obtained. Thus, the proof is completed.

Theorem 2.8. The Catalan’s identity for the sequence
{

B̂Pk,n

}
n≥0

is

B̂Pk,n+mB̂Pk,n−m − B̂Pk,n

2
=

(−1)n−m+1kn−m

4(1− k)
αβ

{
α2m +β 2m −2(−k)m

}
.
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Proof. From the Binet formula, we get the following equation.

B̂Pk,n+mB̂Pk,n−m − B̂Pk,n

2
=

1

4(1+ k)

{
(ααn+m −ββ n+m)(ααn−m −ββ n−m)− (ααn −ββ n)2

}
.

If necessary corrections are made,

B̂Pk,n+mB̂Pk,n−m − B̂Pk,n

2
=

(−1)n−m+1kn−m

4(1− k)
αβ

{
α2m +β 2m −2(−k)m

}
.

is obtained. Thus, the proof is completed.

Specially, in the Catalan identity, if we take m = 1 then we get the Cassini’s identity.

Theorem 2.9. The Honsberger’s identity for the sequence
{

B̂Pk,n

}
n≥0

is

B̂Pk,m−1B̂Pk,n+B̂Pk,mB̂Pk,n+1 =
1

4(1+ k)

{
α2αn+m−1(1+α2)+β 2β n+m−1(1+β 2)−αβ (−k)m−1αn−m+1 +β n−m+1)(1− k)

}
.

Here,

α2 =(1−α2)(1−α4)+2iα(1−α4)+2 jα2(1−α2)+4i jα3+2αε
{
(1−α2)(1−α4)+2iα(1−α4)+2 jα2(1−α2)+4i jα3

}
.

β 2 =(1−β 2)(1−β 4)+2iβ (1−β 4)+2 jβ 2(1−β 2)+4i jβ 3+2βε
{
(1−β 2)(1−β 4)+2iβ (1−β 4)+2 jβ 2(1−β 2)+4i jβ 3

}
.

Proof. Let us use the Binet formula. Then

B̂Pk,m−1B̂Pk,n + B̂Pk,mB̂Pk,n+1 =
1

4(1+ k)

{
(ααm−1 −ββ m−1)(ααn −ββ n)+(ααm −ββ m)(ααn+1 −ββ n+1)

}
.

=
1

4(1+ k)
(α2αn+m−1 −αβαm−1β n −αβαnβ m−1 +β 2β n+m−1 +α2αn+m+1 −αβαmβ n+1 −αββ mαn+1 +β 2β n+m+1)

can be written. When the necessary actions are performed, we get the following equation.

=
1

4(1+ k)

{
(α2αn+m−1(1+α2)+β 2β n+m−1(1+β 2)−αβ (−k)m−1(αn−m+1 +β n−m+1)(1− k)

}
.

Thus, the proof is completed.

Theorem 2.10. The d’Ocagne identity for the sequence
{

B̂Pk,n

}
n≥0

is

B̂Pk,mB̂Pk,n+1 − B̂Pk,nB̂Pk,m+1 =
−α β

4(1+ k)

{
(−k)m(β n−m+1 +αn−m+1)− (−k)n(β m−n+1 +αm−n+1)

}
.

Proof. Binet formula can be used to prove the proof. So,

B̂Pk,mB̂Pk,n+1 − B̂Pk,nB̂Pk,m+1

is equal to this:
1

4(1+ k)

{
(ααm −ββ m)(ααn+1 −ββ n+1)− (ααn −ββ n)(ααm+1 −ββ m+1)

}
.

When the necessary arrangements are performed, we get

B̂Pk,mB̂Pk,n+1 − B̂Pk,nB̂Pk,m+1 =
−αβ

4(1+ k)

{
αmβ n+1 +β mαn+1 −αnβ m+1 −β nαm+1

}
.

Thus, we get the desired result. That is,

B̂Pk,mB̂Pk,n+1 − B̂Pk,nB̂Pk,m+1 =
−αβ

4(1+ k)

{
(−k)m(β n−m+1 +αn−m+1)− (−k)n(β m−n+1 +αm−n+1)

}
.
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Theorem 2.11. For the positive integers n, i, j, Vajda’s identity related with the sequence
{

B̂Pk,n

}
n≥0

is follows:

B̂Pk,n+iB̂Pk,n+ j − B̂Pk,n
̂BPk,n+i+ j =

(−1)n+1kn

4(1+ k)

{
αβ (β j −α j)(α i −β i)

}
.

Proof. Let us use the Binet formula for the proof. The desired this value, that is

B̂Pk,n+iB̂Pk,n+ j − B̂Pk,n
̂BPk,n+i+ j

is follows:

1

4(1+ k)

{
(αn+i −β n+i)(αn+ j −β n+ j)− (αn −β n)(αn+i+ j −β n+i+ j)

}
.

When the necessary algebraic operations are performed, we get

−αβ

4(1+ k)

{
αn+iβ n+ j +β n+iαn+ j −αnβ n+i+ j −β nαn+i+ j

}
.

From here, we get

B̂Pk,n+iB̂Pk,n+ j − B̂Pk,n
̂BPk,n+i+ j =

(−1)n+1kn

4(1+ k)

{
αβ (β j −α j)(α i −β i)

}
.

which is desired.

3. Conclusion

In this study, we examine the dual numbers and give them the characteristics of these numbers. Also, we give the definition

and related concepts about bicomplex numbers. Moreover, we define the number of dual k− Pell bicomplex numbers which

are not found for the first time in the literature and we examined the norm and conjugate properties of these numbers. We

have given some important characteristics of these newly defined numbers, and we have obtain the recursive relations of these

numbers. Using obtained relations one can investigate the other important identities.
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