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trol and Stabilization of Distributed Systems
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Abstract. In this paper, the Fourier method is effectively implemented for

solving a conformable fractional telegraph equation. We discuss and derive
the analytical solution of the conformable fractional telegraph equation with

nonhomogeneous Dirichlet boundary condition.

1. Introduction

The telegraph equation is better than the heat equation in modeling of physical
phenomena, which has a parabolic behavior [3]. The one-dimensional telegraph
equation can be written as follows:

∂2u (x, t)

∂t2
+

(
R

L
+
G

C

)
∂u (x, t)

∂t
+
RG

LC
u (x, t) =

1

LC

∂2u (x, t)

∂x2
+ f (x, t) , (1.1)

where R and G are, respectively, the resistance and the conductance of resistor,
C is the capacitance of capacitor, and L is the inductance of coil. Many concrete
applications amount to replacing the time derivative in the telegraph equation with
a fractional derivative. For example, in the works [4, 5], the authors have exten-
sively studied the time-fractional telegraph equation with Caputo fractional deriv-
ative. For more details about the good effect of the fractional derivative, we refer
to monographs [1, 2]. Recently, a new definition of fractional derivative, named
”fractional conformable derivative”, is introduced by Khalil et al. [6]. This novel
fractional derivative is compatible with the classical derivative and it is excellent
for studying nonregular solutions. The subject of the fractional conformable deriv-
ative has attracted the attention of many authors in domains such as mechanics,
electronic, and anomalous diffusion. We are interested in studying in this paper the
telegraph model (1.1) in framework of the time-fractional conformable derivative.
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2 ABDELKEBIR SAAD AND NOUIRI BRAHIM

Precisely, we will propose the following transformations:

∂

∂t
→ D(α)

t and
∂2

∂t2
→ D(2α)

t = D(α)
t D

(α)
t , (1.2)

a = G/C, b = R/L, k2 = 1/LC (1.3)

where D(α)
t is the time-fractional conformable derivative operator [6]. Then, we

get the fractional conformable telegraph model associated with the transformation
(1.2) and (1.3) as follows:

D(2α)
t u (x, t) + (a+ b)D(α)

t u (x, t) + abu (x, t) = k2
∂2u (x, t)

∂x2
+ f (x, t) , (1.4)

where x and t are the space and time variables, f (x, t) is a sufficiently smooth
function.

2. Preliminaries on conformable fractional calculus

We start recalling some concepts on the conformable fractional calculus.

Definition 2.1. ([6]). Let ϕ : [0,+∞ [ → R be a function. Then, the conformable
fractional derivative of function ϕ of order α at t > 0 is defined by the following
limit:

D(α)
t (ϕ) (t) = lim

ε→0

ϕ
(
t+ εt1−α

)
− ϕ (t)

ε
, (2.1)

when this limit exists and finished.

Definition 2.2. ([6]). Let α ∈ ] 0, 1 ] and ϕ : [0,+∞ [ → R be real valued
function. The conformable fractional integral of ϕ of order α from zero to t is
defined by:

Iαϕ (t) :=

∫ t

0

sα−1ϕ (s) ds, t ≥ 0, (2.2)

Lemma. Assume that ϕ is a continuous function on ] 0,+∞ [ and 0 < α ≤ 1.

Then, for all t > 0, we have D(α)
t [Iαϕ (t)] = ϕ (t). According to [7], if ϕ is

differentiable, then we have Iα
[
D(α)
t (ϕ) (t)

]
= ϕ (t)− ϕ (0).

Definition 2.3. ([7]) Let 0 < α ≤ 1 and ϕ : [0,+∞ [ → R be real valued function.
Then, the fractional Laplace transform of order α starting from zero of ϕ is defined
by:

Lα [ϕ (t)] (s) =

∫ +∞

0

tα−1ϕ (t) e−s
tα

α dt. (2.3)

Theorem. ([7]) Let 0 < α ≤ 1 and ϕ : [0,+∞ [ → R be differentiable real valued
function. Then, we have:

Lα
[
D(α)
t ϕ (t)

]
(s) = sLα [ϕ (t)] (s)− ϕ (0) . (2.4)

We introduce the following theorem, which is used further in this paper.
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Proposition. Let λ and µ be positive constants with 4µ > λ2 and g : [0,+∞ [ → R
is a continuous function. For all 0 < α ≤ 1, The initial value problem{

D(2α)
t y (t) + λD(α)

t y (t) + µy (t) = g (t) ,

y (0) = y0, D(α)
t y (0) = yα.

(2.5)

admits a unique solution given by

y (t) =

[
y0 cos

(√
4µ− λ2 t

α

2α

)
+
λy0 + 2yα√

4µ− λ2
sin

(√
4µ− λ2 t

α

2α

)]
e−

λtα

2α

+
2√

4µ− λ2

∫ t

0

e−
λτα

2α sin

(√
4µ− λ2 τ

α

2α

)
g (t− τ) dτ.

(2.6)

3. Nonhomogeneous conformable fractional telegraph equation
with Dirichlet boundary condition

We determine the solution of conformable fractional telegraph equation (1.4)
with the intial conditions

u (x, 0) = φ (x) , D(α)
t u (x, 0) = ψ (x) , 0 ≤ x ≤ `, (3.1)

and the nonhomogeneous Dirichlet boundary conditions

u (0, t) = µ1 (t) , u (`, t) = µ2 (t) , t > 0, (3.2)

where µ1 (t) and µ2 (t) are nonzero smooth functions with order-one continuous
derivative, using the method of separating variables, in which φ (x), ψ (x) are con-
tinuous functions satisfying

φ (0) = µ1 (0) and φ (`) = µ2 (0) . (3.3)

Other hand, we assume that

|a− b|
2k

<
π

`
. (3.4)

In order to solve the problem with nonhomogeneous boundary, we firstly transform
the nonhomogeneous boundary into a homogeneous condition. Let

u (x, t) = W1 (x, t) + V1 (x, t) ,

where W1 (x, t) is a new unknown function and

V1 (x, t) = µ1 (t) +
[µ2 (t)− µ1 (t)]x

`
(3.5)

which satisfies the boundary conditions

V1 (0, t) = µ1 (t) and V1 (`, t) = µ2 (t) . (3.6)

The function W1 (x, t) then satisfies the problem with homogeneous boundary con-
ditions:
D(2α)
t W1 (x, t) + (a+ b)D(α)

t W1 (x, t) + abW1 (x, t) = k2 ∂
2W1(x,t)
∂x2 + f̃ (x, t) ,

W1 (x, 0) = φ1 (x) , D(α)
t W1 (x, 0) = ψ1 (x) ,

W1 (0, t) = W1 (`, t) = 0,

(3.7)
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in which

f̃ (x) = −D(2α)
t V1 (x, t)− (a+ b)D(α)

t V1 (x, t)− abV1 (x, t) + f (x, t) ,

φ1 (x) = φ (x)− µ1 (0)− µ2 (0)− µ1 (0)

`
x,

ψ1 (x) = ψ (x)−D(α)
t µ1 (0)− D

(α)
t µ2 (0)−D(α)

t µ1 (0)

`
x.

(3.8)

We solve the corresponding homogeneous equation (3.7) (f̃ (x, t) being replaced by
0) with the boundary conditions by the method of separation of variables.

If we let W1 (x, t) = X (x)Y (t) and substitute for W1 (x, t) in (3.7), we obtain
an ordinary linear differential equation for X (x):{

X ′′ (x) + λX (x) = 0,

X (0) = X (`) = 0,
(3.9)

and a fractional ordinary linear differential equation with the conformable derivative
for Y (t),

D(2α)
t Y (t) + (a+ b)D(α)

t Y (t) +
(
ab+ λk2

)
Y (t) = 0, (3.10)

where the parameter λ is a positive constant.
The Sturm-Liouville problem given by (3.9) has eigenvalues

λn =
n2π2

`2
, n ∈ N∗, (3.11)

and corresponding eigenfunctions

Xn (x) = sin
(nπx

`

)
, n ∈ N∗. (3.12)

Now we seek a solution of the nonhomogeneous problem (3.7) in the following form

W1 (x, t) =

+∞∑
n=1

Bn (t) sin
(nπx

`

)
. (3.13)

We assume that the series can be differentiated term by term. In order to determine
Bn (t), we expand f̃ (x, t) as a Fourier series by the eigenfunctions

{
sin
(
nπx
`

)}
:

f̃ (x, t) =

+∞∑
n=1

f̃n (t) sin
(nπx

`

)
, where f̃n (t) =

2

`

∫ `

0

f̃ (x, t) sin
(nπx

`

)
dx. (3.14)

Substituting (3.13), (3.14) into (3.7) yields

D(2α)
t Bn (t) + (a+ b)D(α)

t Bn (t) +
(
ab+ λnk

2
)
Bn (t) = f̃n (t) . (3.15)

Since W1 (x, t) satisfies the initial conditions in (3.7), we must have{∑+∞
n=0Bn (0) sin

(
nπx
`

)
= φ1 (x) , 0 < x < `,∑+∞

n=0D
(α)
t Bn (0) sin

(
nπx
`

)
= ψ1 (x) , 0 < x < `,

(3.16)

which yields {
Bn (0) = 2

`

∫ `
0
φ1 (x) sin

(
nπx
`

)
dx, n ∈ N∗,

D(α)
t Bn (0) = 2

`

∫ `
0
ψ1 (x) sin

(
nπx
`

)
dx, n ∈ N∗.

(3.17)

For each value of n, (3.15) and (3.17) make up a fractional initial value problem.
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According to Proposition, we obtain the solution of problem (1.4), (3.1) and
(3.2) as

u (x, t) =

+∞∑
n=1

[
Bn (0) e−

(a+b)tα

2α cos

(√
4k2λn − (a− b)2 t

α

2α

)

+
(a+ b)Bn (0) + 2D(α)

t Bn (0)√
4k2λn − (a− b)2

e−
(a+b)tα

2α sin

(√
4k2λn − (a− b)2 t

α

2α

)

+
2√

4k2λn − (a− b)2

∫ t

0

e−
(a+b)τα

2α sin

(√
4k2λn − (a− b)2 τ

α

2α

)
f̃n (t− τ) dτ

 sin
(nπx

`

)

+ µ1 (t) +
(µ2 (t)− µ1 (t))x

`
.

(3.18)

4. Conclusion

We have derived the analytical solution of the nonhomogeneous conformable frac-
tional telegraph equation with Dirichlet boundary condition using Fourier method.
The solution is given in the form of a series of functions with the use of the Fourier
sine series and the conformable Lapalce transform.

Acknowledgments. This research work is supported by the The General Direc-
tion of Scientific Research and Technological Development (DGRSDT)-Algeria.
The authors wish to thank the referees for this constructive comments and sug-
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Abstract. The paper is concerned with a second-order abstract semilinear
evolution equation with infinite memory and time delay. With the help of the

semigroup arguments and under suitable conditions on initial data and the

kernel memory function, we state and prove the global existence of solution.
Then, we establish the decay rates of the energy using the multiplier method

by defining a suitable Lyapunov functional. This work extends previous works

with time delay for a much wider class of kernels. We give also some applica-
tions to illustrate our results.

1. Introduction

Let H be a real Hilbert space with inner product and related norm denoted
by 〈., .〉 and ‖ . ‖, respectively. Let A : D(A) −→ H and B : D(B) −→ H be a
self-adjoint linear positive operator with domains D(A) ⊂ D(B) ⊂ H such that
the embeddings are dense and compact. Let C : H −→ H is a self-adjoint linear
operator and h : R+ −→ R+ is the kernel of the memory term. τ > 0 represents

a time delay and F : D(A
1
2 ) → H is function satisfying some conditions to be

specified later. We consider the following second-order abstract semilinear evolution
equation with infinite memory and time delay utt(t) +Au(t)−

∫ +∞
0

h(s)Bu(t− s)ds+ Cut(t− τ) = F (u(t)), t ∈ (0,+∞),
ut(t− τ) = f0(t− τ) t ∈ (0, τ),
u(−t) = u0(t), ut(0) = u1, t ∈ R+,

(1.1)
where the initial datum (u0, u1, f0) belongs to a suitable spaces.

2020 Mathematics Subject Classification. 35L90; 35B40; 93D20; 74D05.
Key words and phrases. Abstract evolution equation; Decay rates; Infinite memory; Time

delay.
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In absence of time delay term, a large number of works are available, where
various decay estimates were obtained, see [7, 14, 21]. For the particular case of
the wave equation with finite memory, see [2, 24].

In many cases, delay is a source of instability and even an arbitrarily small delay
may destabilize a system which is uniformly asymptotically stable in the absence
of delay. Nicaise and Pignotti in [15] considered a wave equation with a linear
damping and delay term and they proved that the energy is exponentially stable
and some instability results are also given by constructing some sequences of delays
for which the energy of some solutions does not tend to zero, see also [3, 17].

When the memory term is replaced by a frictional damping But(t):

utt(t) +Au(t) +But(t) + µut(t− τ) = 0, t > 0,

where µ, τ are fixed constants and B is a given operator, there exist in the literature
different stability results. These results show that the damping But(t) is strong
enough to stabilize the system in presence of a time delay provided that |µ| is small
enough, see [10, 16, 17].

Guesmia in [11] considered the following second-order abstract linear problem
with infinite memory and time delay terms utt(t) +Au(t)−

∫ +∞
0

h(s)Au(t− s)ds+ µut(t− τ) = 0, t > 0,
u(−t) = u0(t), t ∈ R+

ut(0) = u1, ut(t− τ) = f0(t− τ), t ∈ (0, τ),

He proved that the unique dissipation given by the memory term is strong enough
to stabilize exponentially the system in presence of delay. In this work and others,
the condition h′(s) ≤ −δh(s) for all s ≥ 0 and some δ > 0 is assumed to prove
exponential decay of the energy, see [1, 4]. In [13], the previous condition is replaced
by

h′(s) ≤ −ζ(t)h(s), ∀s ≥ 0, (1.2)

where ζ is a positive nonincreasing differentiable function. The authors established
the existence and the general decay results of the energy. Dai and Yang in [8] con-
sidered the same problem in [13] and solved the open problem proposed by Kirane
and Said-Houari. Recently, Boukhatem and Benabderrahmane in [5] considered a
variable coefficient viscoelastic equation with a time-varying delay in the bound-
ary feedback and acoustic boundary conditions and nonlinear source term. They
established a general decay results of the energy via suitable Lyapunov functionals
and some properties of the convex functions where the kernel memory satisfies the
equation (1.2). In [6], the same results have obtained in the case of constant delay.

Tatar in [23] introduced a new class of admissible kernels which lead to a wide
range of possible decay rates. More precisely, He consider kernels satisfying

h(t− s) ≥ ξ(t)
∫ +∞

t

h(π − s)dπ, 0 ≤ s ≤ t,

for some ξ(t) > 0. This class contains the polynomial type functions and the expo-
nential type. He proved that the last assumption on the relaxation in a viscoelastic
problem ensuring uniform stability in an arbitrary rate.
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For the case of distributed time delay, Guesmia and Tatar in [12] considered the
following class of second-order linear hyperbolic equations utt(t) +Au(t)−

∫ +∞
0

h(s)Bu(t− s)ds+
∫ +∞

0
f(s)ut(t− s)ds = 0, t > 0,

u(−t) = u0(t), t ∈ R+

ut(0) = u1, t ∈ R+,

where the function f is of class C1(R+,R) and satisfies, for some positive constant
α,

|f(s)| ≤ αh(s), and |f ′(s)| ≤ αh(s), ∀s ∈ R+.

They given well-posedness and stability of the system and they proved that the
infinite memory alone guarantees the asymptotic stability of the system and the
decay rate of solutions is found explicitly in terms of the growth at infinity of the
infinite memory and the distributed time delay convolution kernels.

Nicaise and Pignotti in [18] considered the following system{
Ut(t) = AU(t) + F (U(t)) + kBU(t− τ), t ∈ (0,+∞),
U(0) = u0,BU(t− τ) = f(t), t ∈ (0, τ),

where A generates a C0-semigroup (S(t))t≥0 that is exponentially stable, i.e., there
exist two positive constants M and w such that

‖S(t)‖L(H) ≤Me−wt, ∀t ≥ 0,

and L(H) denotes the space of bounded linear operators from H into itself. For
a fixed delay parameter τ , a fixed bounded operator B from H into itself and
for a real parameter k and F : H −→ H satisfies some Lipschitz conditions, the
initial datum U0 belongs to H and f ∈ C([0, τ ];H). They showed that, if the
C0-semigroup describing the linear part of the model is exponentially stable, then
the whole system retains this good property when a suitable smallness condition
on the time-delay feedback is satisfied, see also [19].

Motivated by previous works, we study the well-posedness and the stability result
of a semilinear abstract viscoelastic equation with infinite memory in presence of
a time delayed damping and a nonlinear source term. Our results extend the
decay results in previous works to kernels h which do not necessarily converge
exponentially to zero at infinity. Moreover, our problem generalizes the linear
problems to those with a nonlinear source term and to problems with more general
time delayed damping term.

The paper is organized as follows. In Sect. 2, we prove the well-posedness
by using the semigroup arguments under some assumptions on A, B, C, h and F .
Then, we state and prove the stability result of solution by using the energy method
to produce a suitable Lyapunov functional with arbitrary decay on h. Section 4 is
devoted to some concrete examples in the aim to illustrate our abstract result.

2. Well-posedness

In this section, we state some assumptions on A, B, C and h and prove the
well-posedness result by using semigroup theory.

For studying the problem (1.1), we introduce a new variable z as in [15]

z(ρ, t) = ut(t− ρτ), ρ ∈ (0, 1), t > 0.
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Thus, we have
τzt(ρ, t) + zρ(ρ, t) = 0, ρ ∈ (0, 1), t > 0.

Moreover, as in [9], we define

ηt(s) = u(t)− u(t− s), t, s > 0.

Therefore, problem (1.1) takes the form

utt(t) +Au(t)− h0Bu(t) +
∫ +∞

0
h(s)Bηt(s)ds

+Cz(1, t) = F (u(t)), t ∈ (0,+∞),
τzt(ρ, t) + zρ(ρ, t) = 0, ρ ∈ (0, 1), t > 0,
ηtt(s) = ut(t)− ηts(s), t, s > 0,
z(ρ, 0) = f0(−ρτ), ρ ∈ (0, 1),
z(0, t) = ut(t), t > 0,
u(−t) = u0(t), ut(0) = u1, t ≥ 0,
η0(s) = u0(0)− u0(s), s ≥ 0.

(2.1)

We will need the following assumptions:
(A1) There exist positive constants a and b satisfying

b‖u‖2 ≤
∥∥∥B 1

2u
∥∥∥2

≤ a
∥∥∥A 1

2u
∥∥∥2

, ∀u ∈ D(A
1
2 ). (2.2)

(A2) The kernel function h : R+ −→ R+ is of class C1 nonincreasing function
satisfying

h0 =

∫ +∞

0

h(s)ds <
1

a
. (2.3)

(A3) There exists µ ∈ R∗ such that

‖Cu‖2 ≤ |µ|‖u‖2, ∀u ∈ H. (2.4)

(A4) F : D(A
1
2 )→ H is globally Lipschitz continuous, namely

∃γ > 0 such that ‖F (u)− F (v)‖ ≤ γ
∥∥∥A 1

2 (u− v)
∥∥∥ , ∀u, v ∈ H

Let us denote U = (u, ut, η
t, z)T , the problem (2.1) can be rewritten:{

Ut(t) = AU(t) + F(U(t)), ∀t > 0,

U(0) = U0 =
(
u0, u1, η

0, f0(−τ.)
)T
,

(2.5)

where the operator A is defined by

A


φ1

φ2

φ3

φ4

 =


φ2

−(A− h0B)φ1 −
∫ +∞

0
h(s)Bφ3(s)ds− Cφ4(1)

φ2 −
∂φ3

∂s
−1

τ

∂φ4

∂ρ


and

F(φ1, φ2, φ3, φ4)T = (0, F (φ1), 0, 0)T

The domain D(A) is given by

D(A) =


(φ1, φ2, φ3, φ4)T ∈ H, (A− h0B)φ1 +

∫ +∞
0

h(s)Bφ3(s)ds ∈ H,

φ2 ∈ D(A
1
2 ),

∂φ3

∂s
∈ L2

h(R+, D(B
1
2 )),

∂φ4

∂ρ
∈ L2(0, 1;H), φ3(0) = 0, φ4(0) = φ2


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where
H = D(A

1
2 )×H × L2

h(R+, D(B
1
2 ))× L2(0, 1;H).

The sets L2
h(R+, D(B

1
2 )) and L2(0, 1;H) are respectively defined by

L2
h(R+, D(B

1
2 )) =

{
φ : R+ → D(B

1
2 ),

∫ +∞

0

h(s)
∥∥∥B 1

2φ(s)
∥∥∥2

ds < +∞
}
,

equipped with the inner product

〈φ1, φ2〉
L2

h(R+,D(B
1
2 ))

=

∫ +∞

0

h(s)
〈
B

1
2φ1(s), B

1
2φ2(s)

〉
ds.

And

L2(0, 1;H) =

{
φ : (0, 1)→ H,

∫ 1

0

‖φ(ρ)‖2dρ < +∞
}
,

equipped with the inner product

〈φ1, φ2〉L2(0,1;H) =

∫ 1

0

〈φ1(ρ), φ2(ρ)〉 dρ.

The Hilbert space H equipped with the following inner product. For all Φ =
(φ1, φ2, φ3, φ4)T and W = (w1, w2, w3, w4)T in H, we have

〈Φ,W 〉H = 〈φ1, w1〉
D(A

1
2 )
− h0〈φ1, w1〉

D(B
1
2 )

+ 〈φ2, w2〉

+〈φ3, w3〉
L2

h(R+,D(B
1
2 ))

+ τµ〈φ4, w4〉L2(0,1;H).

The well-posedness of problem (2.5) is ensured by the following theorem:

Theorem 2.1. Under the assumptions (A1)-(A4), for an initial datum U0 ∈ H,
the system (2.5) has a unique mild solution U ∈ C(R+,H) satisfies the following
formula,

U(t) = S(t)U0 +

∫ t

0

S(t− s)F(U(s))ds.

Moreover, if U0 ∈ D(A) and F ∈ C1(H), then the solution of (2.5) satisfies (clas-
sical solution)

U ∈ C(R+,D(A)) ∩ C1(R+,H).

Proof. To prove Theorem 2.1, we use the semigroup theory. The problem (2.5)
can be seen as an inhomogeneous evolution problem. It’s clear that F is globally
lipschitz continuous, let show that the operator A generate a linear C0-semigroup
(S(t))t≥0 on H. Indeed,
• First, we prove that the linear operator A is dissipative.

Take Φ = (φ1, φ2, φ3, φ4)T ∈ D(A), then〈
AΦ,Φ

〉
H = 〈φ2, φ1〉

D(A
1
2 )

+

∫ +∞

0

h(s)
〈
φ2 −

∂φ3

∂s
, φ3

〉
D(B

1
2 )
ds

−h0〈φ2, φ1〉
D(B

1
2 )

+ τ |µ|
∫ 1

0

〈−1

τ

∂φ4

∂ρ
, φ4

〉
dρ

−
〈

(A− h0B)φ1 +

∫ +∞

0

h(s)Bφ3(s)ds+ Cφ4(1), φ2

〉
.

Using the definition of A
1
2 and B

1
2 and the fact that H is a real Hilbert space, we

conclude
〈A− h0Bφ1, φ2〉 = 〈A 1

2φ2, A
1
2φ1〉 − h0〈B

1
2φ2, B

1
2φ1〉 (2.6)
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using the Cauchy-Schwarz and Young’s inequalities and by (2.4), we have

− 〈Cφ4(1), φ2〉 ≤
|µ|
2

(
‖φ4(1)‖2 + ‖φ2‖2

)
. (2.7)〈∫ +∞

0

h(s)Bφ3(s)ds, φ2

〉
=

∫ +∞

0

h(s)〈φ2, φ3〉
D(B

1
2 )
ds.

Integrating by parts and using the definition of D(A) (φ3(0) = 0), we obtain∫ +∞

0

h(s)
〈
− ∂φ3

∂s
, φ3

〉
D(B

1
2 )
ds ≤ 1

2

∫ +∞

0

h′(s)‖B 1
2φ3(s)‖2ds. (2.8)

Also using the fact that φ4(0) = φ2, we obtain

τ |µ|
∫ 1

0

〈−1

τ

∂φ4

∂ρ
, φ4

〉
dρ =

|µ|
2

(
‖φ4(0)‖2 − ‖φ4(1)‖2

)
=
|µ|
2

(
‖φ2‖2 − ‖φ4(1)‖2

)
.

(2.9)
Consequently, inserting (2.6), (2.7), (2.8) and (2.9) in (2.6) and using the fact that
h is nonincreasing, we find

〈AΦ,Φ〉H ≤
1

2

∫ +∞

0

h′(s)
∥∥∥B 1

2φ3(s)
∥∥∥2

ds+ |µ|‖ut‖2 ≤ |µ|‖Φ‖2, (2.10)

which means that the operator A− |µ|I is dissipative.
• Let us now prove that λI − A is surjective. Indeed, let (f1, f2, f3, f4)T ∈ H,

we show that there exists Φ = (φ1, φ2, φ3, φ4)T ∈ D(A) satisfying

(λI −A)


φ1

φ2

φ3

φ4

 =


f1

f2

f3

f4

 ,

which is equivalent to

λφ1 − φ2 = f1

λφ2 + (A− h0B)φ1 +
∫ +∞

0
h(s)Bφ3(s)ds+ Cφ4(1) = f2

λφ3 − φ2 +
∂φ3

∂s
= f3

λφ4 +
1

τ

∂φ4

∂ρ
= f4.

(2.11)

Suppose that we have found φ1 with the appropriate regularity. Then, we have

φ2 = λφ1 − f1. (2.12)

We note that the third equation in (2.11) with φ3(0) = 0 has a unique solution

φ3(s) = e−λs
∫ s

0

eλy (f3(y)− f1 + λφ1) dy. (2.13)

On the other hand, the fourth equation in (2.11) with φ4(0) = φ2 = λφ1 − f1 has
a unique solution

φ4(ρ) =

(
λφ1 − f1 + τ

∫ ρ

0

f4(y)eλτydy

)
e−λτρ, ρ ∈ (0, 1). (2.14)

In particular,

φ4(1) =

(
λφ1 − f1 + τ

∫ 1

0

f4(y)eλτydy

)
e−λτ .

It remains only to determine φ1.



STABILITY RESULT 13

Next, plugging (2.12) and (2.13) into the second equation in (2.11), we get(
A− αB + λe−λτC + λ2I

)
φ1 = f̃ , (2.15)

where

α = h0 − λ
∫ ∞

0

h(s)e−λs
(∫ s

0

eλydy

)
ds =

∫ ∞
0

h(s)e−λsds,

and

f̃ = f2 + λf1 + e−λτC

(
f1 − τ

∫ 1

0

f4(y)eτydy

)
−
∫ ∞

0

e−λsh(s)

∫ s

0

e−λyB (f3(y)− f1) dyds.

We have just to prove that (2.15) has a solution φ1 ∈ D(A
1
2 ) and replace in (2.12),

(2.13) and (2.14) to obtain Φ ∈ D(A) satisfying (2.11).
We have α < h0, by (2.3) and (2.2), we deduce that A − αB is a positive definite

operator. Then, we take the duality brackets 〈., .〉
D(A

1
2 )′×D(A

1
2 )

with w ∈ D(A
1
2 ) :〈(

A− αB + λe−λτC + λ2I
)
φ1, w

〉
D(A

1
2 )′×D(A

1
2 )

=
〈
f̃ , w

〉
D(A

1
2 )′×D(A

1
2 )
. (2.16)

Consequently, the left-hand side of (2.16) is bilinear, continuous and coercive on

D(A
1
2 ). Since, applying the Lax-Milgram theorem and classical regularity argu-

ments, we conclude that (2.11) has a unique solution φ1 ∈ D(A
1
2 ) satisfying. Using

(2.13), (
(A− h0B)φ1 +

∫ +∞

0

h(s)Bφ3(s)ds

)
∈ H.

In conclusion, we have found Φ = (φ1, φ2, φ3, φ4)T ∈ D(A), which verifies (2.11),
and thus λI − A is surjective for all λ > 0 and the same holds for the operator
λI − (A− |µ|I).

Then, the Lumer-Phillips theorem implies that |µ|I −A is a maximal monotone
operator, A−|µ|I is an infinitesimal generator of a strongly continuous semigroup of
contraction in H. Hence, the operator A generates a strongly continuous semigroup
(S(t))t≥0 in H. Consequently, by using Theorem 1.2, Ch. 6 of [22], the problem
(2.5) has a unique solution U ∈ C([0,+∞),H). �

3. Stability result

The stability result of the solution of (2.1) holds under the following additional
assumptions:

(A5) There exist a positive constant d satisfying∥∥∥A 1
2u
∥∥∥2

≤ d
∥∥∥B 1

2u
∥∥∥2

, ∀u ∈ D(A
1
2 ). (3.1)

(A6) Moreover, we assume that F (0) = 0 and there exists a continuous and

differentiable mapping ψ : D(A
1
2 )→ R satisfying

Dψ = F and 〈F (u), u〉 ≥ 2ψ(u), ∀u ∈ D(A
1
2 ). (3.2)
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(A7) The function h satisfies (A2) and there exists a positive function ξ ∈
C(R+,R∗+) satisfying lims→+∞ ξ(s) exists such that h(t− s) ≥ ξ(t)

∫ +∞

t

h(π − s)dπ, ∀t ∈ R+, ∀s ∈ [0, t],

h′(s) < 0, ∀s ∈ R+.
(3.3)

The first inequality in (3.3), introduced in [25] and [23], implies that h converges
to zero at least exponentially but it does not involve the derivative of h. This class
contains the polynomial (or power) type (h(t) = (1 + t)−a, a > 1) functions and
the exponential type (h(t) = e−at, a > 0) functions.

Let establish some several Lemmas needed of our main result. We define the
modified energy functional E associated to problem (2.1) by

E(t) =
1

2

(∥∥∥A 1
2u
∥∥∥2

− h0

∥∥∥B 1
2u
∥∥∥2

+ ‖ut‖2 +

∫ +∞

0

h(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds

−2ψ(u) + τ |µ|
∫ 1

0

‖z(ρ, t)‖2dρ
)
. (3.4)

Lemma 3.1. Assume that (A1)-(A4) hold and let U0 ∈ D(A). Then, the energy
functional defined by (3.4) satisfies

E′(t) ≤ 1

2

∫ +∞

0

h′(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds+ |µ|‖ut‖2. (3.5)

Proof. Multiplying the first equation of (2.1) by ut. Using (A6) and repeating
exactly the same arguments to obtain (2.10). �

Remark. Note that, from (3.5), the energy of solutions to problem (2.1) is not
decreasing in general. Indeed, the second term in the right-hand side of (3.5),
coming from the delay term, is nonnegative.

Now, as in [20], for n ∈ N∗, let consider the set

An = {s ∈ R+, h(s) + nh′(s) ≤ 0},

and put hn =
∫
Ac

n
h(s)ds. We have hn > 0, otherwise, Acn = ∅. Furthermore, by

the second inequality in (3.3), we have

lim
n→+∞

Acn = ∩n∈N∗Acn = ∅, and then lim
n→+∞

hn = 0.

In order to state our results, we need the following four lemmas.

Lemma 3.2. Let U be solution of (2.1). Then the functional

I1(t) = −
〈
ut(t),

∫ +∞

0

h(s)ηt(s)ds

〉
, (3.6)
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satisfies, for ε1, ε2 > 0,

I ′1(t) ≤ −(h0 − ε1)‖ut‖2 +

(
ε2 +

√
dhn
2

)∥∥∥A 1
2u
∥∥∥2

− h2
0

2

∥∥∥B 1
2u
∣∣∣2

+

(
2hn −

h0

2
+

√
dhn
2

)∫ +∞

0

h(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds

+
h0

2

∫ +∞

0

h(s)
∥∥∥B 1

2u(t− s)
∥∥∥2

ds

−
(

2nh0 +
dnh0

4ε2
+
h(0)

4bε1

)∫ +∞

0

h′(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds

+

〈
Cz(1, t)− F (u),

∫ +∞

0

h(s)ηt(s)ds

〉
, (3.7)

Proof. Differentiating (3.6) with respect to t and using the third equation of 2.1,
we find

I ′1(t) = −
〈
utt(t),

∫ +∞

0

h(s)ηt(s)ds

〉
+

〈
ut(t),

∫ +∞

0

h(s)ηts(s)ds

〉
− h0‖ut‖2.

Integrating by parts with respect to s the second term in the right hand side of the
previous equality and using the fact that lims→+∞ h(s) = 0, ηt(0) = 0, we obtain

I ′1(t) = −
〈
utt(t),

∫ +∞

0

h(s)ηt(s)ds

〉
−
〈
ut(t),

∫ +∞

0

h′(s)ηt(s)ds

〉
− h0‖ut‖2.

On the other hand, by the first equation of (2.1), we have〈
utt(t),

∫ +∞

0

h(s)ηt(s)ds

〉
+

〈
Au(t),

∫ +∞

0

h(s)ηt(s)ds

〉
− h0

〈
Bu(t),

∫ +∞

0

h(s)ηt(s)ds

〉
+

〈∫ +∞

0

h(s)Bηt(s)ds,

∫ +∞

0

h(s)ηt(s)ds

〉
+

〈
Cz(1, t)− F (u),

∫ +∞

0

h(s)ηt(s)ds

〉
= 0,

using the definitions of A
1
2 and B

1
2 , we get

I ′1(t) = −h0‖ut‖2 +

〈
Cz(1, t)− F (u),

∫ +∞

0

h(s)ηt(s)ds

〉
−
〈
ut(t),

∫ +∞

0

h′(s)ηt(s)ds

〉
+

〈
A

1
2u(t),

∫ +∞

0

h(s)A
1
2 ηt(s)ds

〉
∥∥∥∥∫ +∞

0

h(s)B
1
2 ηt(s)ds

∥∥∥∥2

− h0

〈
B

1
2u(t),

∫ +∞

0

h(s)B
1
2 ηt(s)ds

〉
.(3.8)

Let estimate the last three terms in the right hand by using Cauchy-Schwarz and
Young’s inequalities and the definition of An. Then, using (2.2), (3.1) and (2.3),
we get

−
〈
ut(t),

∫ +∞

0

h′(s)ηt(s)ds

〉
≤ ε1‖ut‖2 −

h(0)

4bε1

∫ +∞

0

h′(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds

〉
,
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A

1
2u(t),

∫ +∞

0

h(s)A
1
2 ηt(s)ds

〉
=

〈
A

1
2u(t),

∫
An

h(s)A
1
2 ηt(s)ds

〉
+

〈
A

1
2u(t),

∫
Ac

n

h(s)A
1
2 ηt(s)ds

〉
.

≤ ε2

∥∥∥A 1
2u
∥∥∥2

+
dh0

4ε2

∫
An

h(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds+

√
dhn
2

∥∥∥A 1
2u
∥∥∥2

+

√
dhn
2

∫
Ac

n

h(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds

≤ ε2

∥∥∥A 1
2u
∥∥∥2

− dnh0

4ε2

∫ +∞

0

h(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds+

√
dhn
2

∥∥∥A 1
2u
∥∥∥2

+

√
dhn
2

∫ +∞

0

h(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds,

∥∥∥∥∫ +∞

0

h(s)B
1
2 ηt(s)ds

∥∥∥∥2

=

∥∥∥∥∫
An

h(s)B
1
2 ηt(s)ds+

∫
Ac

n

h(s)B
1
2 ηt(s)ds

∥∥∥∥2

≤ 2

∥∥∥∥ ∫
An

h(s)B
1
2 ηt(s)ds

∥∥∥∥2

+ 2

∥∥∥∥∫
Ac

n

h(s)B
1
2 ηt(s)ds

∥∥∥∥2

≤ 2h0

∫
An

h(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds+ 2hn

∫
Ac

n

h(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds

≤ −2nh0

∫ +∞

0

h′(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds+ 2hn

∫ +∞

0

h(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds.

And for the last one, we have

−h0

〈
B

1
2u(t),

∫ +∞

0

h(s)B
1
2 ηt(s)ds

〉
= −h2

0

∥∥∥B 1
2u
∥∥∥2

+ h0

〈
B

1
2u(t),

∫ +∞

0

h(s)B
1
2u(t− s)ds

〉
= −h

2
0

2

∥∥∥B 1
2u
∥∥∥2

+
h0

2

∫ +∞

0

h(s)
∥∥∥B 1

2u(t− s)
∥∥∥2

ds

−h0

2

∫ +∞

0

h(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds. (3.9)

Inserting these four inequalities in (3.8), we get (3.7). �

Lemma 3.3. Let U be solution of (2.1). Then the functional

I2(t) = 〈ut(t), u(t)〉, (3.10)

satisfies,

I ′2(t) = ‖ut‖2 −
∥∥∥A 1

2u
∥∥∥2

+
h0

2

∥∥∥B 1
2u
∥∥∥2

+
1

2

∫ +∞

0

h(s)
∥∥∥B 1

2u(t− s)
∥∥∥2

ds

−1

2

∫ +∞

0

h(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds−
〈
Cz(1, t) + F (u), u

〉
. (3.11)
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Proof. Differentiating (3.10) with respect to t, we find

I ′2(t) = ‖ut‖2 + 〈utt(t), u(t)〉.

On the other hand, multiplying the first equation of (2.1) by u(t), we have

〈utt(t), u(t)〉+ 〈(A− h0B)u(t), u(t)〉+

〈∫ +∞

0

h(s)Bηt(s)ds, u(t)

〉
+〈Cz(1, t), u(t)〉 = 0,

By the definitions of A
1
2 and B

1
2 , we have

〈utt(t), u(t)〉+
∥∥∥A 1

2u
∥∥∥2

− h0

∥∥∥B 1
2u
∥∥∥2

+

〈∫ +∞

0

h(s)Bηt(s)ds, u(t)

〉
+〈Cz(1, t), u(t)〉 = 0.

Consequently,

I ′2(t) = ‖ut‖2−
∥∥∥A 1

2u
∥∥∥2

+h0

∥∥∥B 1
2u
∥∥∥2

−
〈∫ +∞

0

h(s)Bηt(s)ds, u(t)

〉
−〈Cz(1, t), u(t)〉,

By using the inequality (3.9), we get (3.11). �

Similarly to [15], we introduce the following functional.

Lemma 3.4. Let U be solution of (2.1). Then the functional

I3(t) = τe2τ

∫ 1

0

e−2τρ‖z(ρ, t)‖2ds, (3.12)

satisfies,

I ′3(t) ≤ −2τ

∫ 1

0

‖z(ρ, t)‖2ds+ e2τ‖ut‖2 − ‖z(1, t)‖2. (3.13)

Proof. By using the second equation of (2.1), we get

I ′3(t) = 2τe2τ

∫ 1

0

e−2τρ〈zt(ρ, t), z(ρ, t)〉dρ

= −2e2τ

∫ 1

0

e−2τρ〈zρ(ρ, t), z(ρ, t)〉dρ

= −2e2τ

∫ 1

0

e−2τρ ∂

∂ρ
‖z(ρ, t)‖2dρ.

Then, by integrating by parts and z(0, t) = ut(t), we get

I ′3(t) = −2τe2τ

∫ 1

0

e−2τρ‖z(ρ, t)‖2ds+ e2τ‖ut‖2 − ‖z(1, t)‖2,

which is (3.13) by using the fact that e−2τρ ≥ e−2τ , for any ρ ∈]0, 1[. �

Now, we consider two functionals J1 and J2 and we give their derivatives in the
following lemma.

Lemma 3.5. Let

J1(t) =

∫ t

0

(∫ +∞

t

h(π − s)dπ
) ∥∥∥B 1

2 ηt(s)
∥∥∥2

ds, ∀t ∈ R+, (3.14)
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and

J2(t) =

∫ t

0

(∫ +∞

t

h(π − s)dπ
) ∥∥∥A 1

2 ηt(s)
∥∥∥2

ds, ∀t ∈ R+. (3.15)

Then, for any λ1 ∈]0, 1[,

J ′1(t) ≤ h0

∥∥∥B 1
2u
∥∥∥2

− (1− λ1)ξ(t)J1(t)− λ1

∫ t

0

h(s)
∥∥∥B 1

2u(t− s)
∥∥∥2

ds

+λ1

∫ +∞

t

h(s)
∥∥∥B 1

2u0(s− t)
∥∥∥2

ds, ∀t ∈ R+, (3.16)

and

J ′2(t) ≤ h0

∥∥∥A 1
2u
∥∥∥2

− (1− λ1)ξ(t)J2(t)− λ1

a

∫ t

0

h(s)
∥∥∥B 1

2u(t− s)
∥∥∥2

ds

+dλ1

∫ +∞

t

h(s)
∥∥∥B 1

2u0(s− t)
∥∥∥2

ds, ∀t ∈ R+. (3.17)

Proof. The functional J1 is well-defined. Indeed, by using the fact that η ∈
L2
h(R+, D(B

1
2 )) and (3.3), we have

J1(t) ≤ 1

ξ(t)

∫ t

0

h(t− s)
∥∥∥B 1

2u(s)
∥∥∥2

ds ≤ 1

ξ(t)

∫ t

0

h(s)
∥∥∥B 1

2u(t− s)
∥∥∥2

ds < +∞.

By (3.1), we conclude that J2 also is well defined.
Then, differentiating J1 with respect to t and using the definition of u0 and (3.3),

we obtain

J ′1(t) =

(∫ +∞

t

h(π − s)dπ
)∥∥∥B 1

2u(t)
∥∥∥2

−
∫ t

0

h(t− s)
∥∥∥B 1

2u(s)
∥∥∥2

ds

= h0

∥∥∥B 1
2u
∥∥∥2

− (1− λ1)

∫ t

0

h(t− s)
∥∥∥B 1

2u(s)
∥∥∥2

ds

−λ1

∫ t

−∞
h(t− s)

∥∥∥B 1
2u(s)

∥∥∥2

ds+ λ1

∫ 0

−∞
h(t− s)

∥∥∥B 1
2u(s)

∥∥∥2

ds

≤ h0

∥∥∥B 1
2u
∥∥∥2

− (1− λ1)ξ(t)J1(t)− λ1

∫ +∞

0

h(s)
∥∥∥B 1

2u(t− s)
∥∥∥2

ds

+aλ1

∫ +∞

t

h(s)
∥∥∥B 1

2u0(s− t)
∥∥∥2

ds,

which is exactly (3.16). A similar argument yields the relation (3.17). �

In this case, the Lyapunov functional L we will work with is

L(t) = E(t) + ε
(
N1I1(t) +N2I2(t) + I3(t)

)
+M1J1(t) + aM1J2(t), (3.18)

where ε,N1, N2,M1 > 0 are positive constants to be chosen later.

Now we are in position to state and prove the decay result of solution of problem
(2.1).

Theorem 3.6. Assume that (A1)-(A7) hold. For any initial datum U0 ∈ H.
Assume that h satisfies ∫ +∞

0

h(s)ds <
γ2

b
, (3.19)



STABILITY RESULT 19

and there exists a positive constant δ0 independent of µ such that, if

|µ| < δ0, (3.20)

then, for any U0 ∈ H, there exist positive constants δ1 and δ2 such that

E(t) ≤ δ2e−δ1t
(

1 +

∫ t

0

eδ1s
∫ +∞

s

h(π)
∥∥∥B 1

2u0(π − s)
∥∥∥2

dπds

)
, ∀t ∈ R+, (3.21)

if limt→+∞ ξ(t) > 0, and

E(t) ≤ δ2e−δ1ξ̂(t)
(

1 +

∫ t

0

eδ1ξ̂(s)
∫ +∞

s

h(π)
∥∥∥B 1

2u0(π − s)
∥∥∥2

dπds

)
, ∀t ∈ R+,

(3.22)
if limt→+∞ ξ(t) = 0, where

ξ̂(s) =

∫ s

0

ξ(π)dπ, ∀t ∈ R+. (3.23)

Proof. In order to proof the decay estimates, we start by the derivative of the
function L. On the other hand, by using (A6) and (2.2), we have

−
〈
F (u),

∫ +∞

0

h(s)ηt(s)ds

〉
≤ 1

b
‖F (u)‖2 +

b

4

∥∥∥∥∫ +∞

0

h(s)ηt(s)ds

∥∥∥∥2

≤ γ2

b

∥∥∥A 1
2u
∥∥∥2

+
h0

4

∫ +∞

0

h(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds,

Combining (3.5), (3.7), (3.11), (3.13), (3.16) and (3.17), we obtain

L′(t) ≤ −ε
[
(C1 −

|µ|
ε

)‖ut‖2 + C2

∥∥∥A 1
2u
∥∥∥2

+ C3h0

∥∥∥B 1
2u
∥∥∥2

− 2τ

∫ 1

0

‖z(ρ, t)‖2dρ

+

∫ +∞

0

h(s)

(
C4

∥∥∥B 1
2 ηt(s)

∥∥∥2

+ C5

∥∥∥B 1
2u(t− s)

∥∥∥2
)
ds− 2N2ψ(u)

]
+

√
dhn
2

εN1

∥∥∥A 1
2u
∥∥∥2

+

(
2hn +

√
dhn
2

)
εN1

∫ +∞

0

h(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds

+

(
1

2
− εC6

)∫ +∞

0

h′(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds− C7ξ(t)(J1(t) + J2(t))

+C8

∫ +∞

t

h(s)
∥∥∥B 1

2u0(s− t)
∥∥∥2

ds− ε‖z(1, t)‖2

+ε

〈
Cz(1, t), N1

∫ +∞

0

h(s)ηt(s)ds−N2u

〉
, (3.24)

where

C1 = (h0 − ε1)N1 −N2 − e2τ , C2 = N2 − (ε2 +
γ2

b
)N1 −

ah0

ε
M1,

C3 =
h0

2
N1 −

N2

2
− M1

ε
, C4 =

h0

4
N1 +

N2

2
,

C5 =
2λ1

ε
M1 −

h0

2
N1 −

N2

2
, C6 =

(
2nh0 +

dnh0

4ε2
+
h(0)

4bε1

)
N1,

C7 = (1− λ1)M1 min{1, a}, C8 = M1λ1(1 + ad).

(3.25)
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At this point, we choose the different constants to obtain some results. First, we
select N2 = (1 + ah0)e2τ and we choose M1, N1 such that

εN2

2(1 + ah0)
< M1 <

e2τ

2ε
.

max

{
b

bh0 − 2γ2

(
2(1 + ah0)

M1

ε
−N2

)
,

1

h0
(N2 + e2τ )

}
< N1 <

1

h0

(
N2 +

2M1

ε

)
.

Note that M1 exists as a result of the selection of N2 for certain value of ε to be
choose later and the choice of M1 and N2 guarantees the existence of N1. Now, let
pick ε1, ε2 and λ1 such that

0 < ε1 < h0 −
N2 + e2τ

N1
,

ε2 =
h0

2
− γ2

b
+

1

2N1

(
N2 − 2(1 + ah0)

M1

ε

)
,

and
ε

4M1
(N2 + h0N1) ≤ λ1 < 1,

ε2 and λ1 exist by the previous selection of N1 and N2. Consequently, it result that
C1 > 0, C2 = −C3, C3 < 0 and C5 ≥ 0. Moreover, it’s clear that C4 > 0, so, we
have

−ε
[
C1‖ut‖2 + C2

(∥∥∥A 1
2u
∥∥∥2

− h0

∥∥∥B 1
2u
∥∥∥2
)
− 2N2ψ(u)

+

∫ +∞

0

h(s)

(
C4

∥∥∥B 1
2 ηt(s)

∥∥∥2

+ C5

∥∥∥B 1
2u(t− s)

∥∥∥2
)
ds

]
≤ −εC9

(
‖ut‖2 +

∥∥∥A 1
2u
∥∥∥2

− h0

∥∥∥B 1
2u
∥∥∥2

− 2ψ(u) +

∫ +∞

0

h(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds

)
where

C9 =
1

N2
min

{
C1, C2, C4

}
.

Observe that C9 is positive and independent on µ. Next, using Cauchy-Schwarz’s
and Young’s inequalities for estimate the last term in the right hand in (3.24).
Then, by (2.2) and (2.4), we get

ε

〈
Cz(1, t), N1

∫ +∞

0

h(s)ηt(s)ds−N2u

〉
≤ ε‖z(1, t)‖2 + ε|µ|C10

(∥∥∥A 1
2u
∥∥∥2

+

∫ +∞

0

h(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds

)
,

where

C10 =
1

2b
max{aN2

2 , h0N
2
1 }.
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Inserting the above inequality and (3.26) in (3.24), we obtain

L′(t) ≤ −εC11E(t) +

(
4hn +

√
dhn

2

)
εN1E(t)

+

(
1

2
− εC6

)∫ +∞

0

h′(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds− C7ξ(t)(J1(t) + J2(t))

+C8

∫ +∞

t

h(s)
∥∥∥B 1

2u0(s− t)
∥∥∥2

ds, (3.26)

where

C11 = 2 min

{
C9 −

|µ|
ε
,

2

|µ|
, C9 − ε|µ|C10

}
.

Finally, we assume that |µ| satisfies (3.20) under the following choice of δ0

δ0 = min

{
C9

C6
,
C9

√
2√

C10

}
. (3.27)

Then, we can choose n big enough and we fix ε such that

|µ|
2C9

< ε ≤ 1

2C6
<

1

M
, (3.28)

where

M = N1 max

{
1,
h0

b

}
+N2 max

{
1,
a

b

}
+

2e2τ

|µ|
.

which imply that E is equivalent to E + ε(N1I1 + N2I2 + I3). Indeed, by using
Cauchy-Schwarz’s and Young’s inequalities, we have

|I1(t)| ≤ 1

2

(
‖ut‖2 +

h0

b

∫ +∞

0

h(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds

)
(3.29)

≤ max

{
1,
h0

b

}
E(t) (3.30)

and

|I2(t)| ≤ 1

2

(
‖ut‖2 +

a

b

∥∥∥A 1
2u
∥∥∥2
)
≤ max

{
1,
a

b

}
E(t). (3.31)

From (3.12), it follows

|I3(t)| = τe2τ

∫ 1

0

e−2τρ‖z(ρ, t)‖2ds ≤ τe2τ

∫ 1

0

e−2τρ‖z(ρ, t)‖2ds ≤ 2e2τ

|µ|
E(t)

(3.32)
Combining (3.4), (3.29), (3.31) and (3.32) and by using (3.28), we have

E ∼ E + ε(N1I1 +N2I2 + I3).

Moreover, the third term in the right hand of (3.26) is non-positive. Note that
δ0 is a positive constant independent of µ. Under the condition (3.20), we conclude
that C11 is a positive constant and by using the fact that limn→+∞ hn = 0, we get

C12 = εC11 +

(
4hn +

√
dhn

2

)
εN1 > 0.



22 HOURIA CHELLAOUA, YAMNA BOUKHATEM

Consequently, we obtain, for all t ∈ R+,

L′(t) ≤ −C12E(t)− C7ξ(t)

(
J1(t) + J2(t)

)
+C8

∫ +∞

t

h(s)
∥∥∥B 1

2u0(s− t)
∥∥∥2

ds. (3.33)

Let distinguish two cases corresponding to the limit of ξ at infinity.
I If limt→+∞ ξ(t) > 0, there exist t0 ≥ 0 and ξ0 > 0 such that ξ(t) ≥ ξ0, for all
t ≥ t0. Therefore, using (3.18), we find

L′(t) ≤ −δ1L(t) + C8

∫ +∞

t

h(s)
∥∥∥B 1

2u0(s− t)
∥∥∥2

ds, ∀t ∈ R+, (3.34)

where

δ1 = min

{
C12

1 + εM
,
C7ξ0
M1

,
C7ξ0
aM1

}
.

Then, integrating the differential inequality (3.34) over [t0, t], we obtain

L(t) ≤ e−δ1t
(
eδ1t0L(t0) + C7

∫ t

0

eδ1s
∫ +∞

s

h(π)
∥∥∥B 1

2u0(π − s)
∥∥∥2

dπds

)
, ∀t ∈ R+.

So, using (3.18) and (3.34), we get, for all t ≥ t0,

E(t) ≤ 1

1− εM
L(t)

≤ 1

1− εM
max

{
C7, e

δ1t0L(t0)

}
×

×
(

1 +

∫ t

0

eδ1s
∫ +∞

s

h(π)
∥∥∥B 1

2u0(π − s)
∥∥∥2

dπds

)
. (3.35)

For t ∈ [0, t0], we have

E(t) ≤ 1

1− εM
L(t)eδ1te−δ1t ≤ 1

1− εM
max
s∈[0,t0]

L(s)eδ1t0e−δ1t. (3.36)

Inequalities (3.35) and (3.36) gives (3.21) with

δ2 =
1

1− εM

{
C7, e

δ1t0 max
s∈[0,t0]

L(s)

}
.

I If limt→+∞ ξ(t) = 0, there exist t0 ≥ 0 such that ξ(t) ≤ C12, for all t ≥ t0.
Therefore, using (3.18), we obtain, for

δ1 = min

{
1

1 + εM
,
C7

M1
,
C7

aM1

}
,

L′(t) ≤ −δ1ξ(t)L(t) + C8

∫ +∞

t

h(s)
∥∥∥B 1

2u0(s− t)
∥∥∥2

ds, ∀t ∈ R+, (3.37)

By integrating the above differential inequality over [t0, t], we get, for all t ∈ R+,

L(t) ≤ e−δ1ξ̂(t)
(
eδ1ξ̂(t0)L(t0) + C7

∫ t

0

eδ1ξ̂(s)
∫ +∞

s

h(π)
∥∥∥B 1

2u0(π − s)
∥∥∥2

dπds

)
.
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Then, using (3.18) and (3.37), we get, for all t ≥ t0,

E(t) ≤ 1

1− εM
max

{
C7, e

δ1ξ̂(t0)L(t0)

}
×

×
(

1 +

∫ t

0

eδ1s
∫ +∞

s

h(π)
∥∥∥B 1

2u0(π − s)
∥∥∥2

dπds

)
. (3.38)

For t ∈ [0, t0], we have

E(t) ≤ 1

1− εM
L(t)eδ1ξ̂(t)e−δ1ξ̂(t) ≤ 1

1− εM
max
s∈[0,t0]

(
L(s)eδ1

ˆξ(s)

)
e−δ1ξ̂(t). (3.39)

Inequalities (3.38) and (3.39) gives (3.21) with

δ2 =
1

1− εM

{
C7, max

s∈[0,t0]

(
L(s)eδ1

ˆξ(s)

)}
.

Thus the proof of Theorem 3.6 is completed. �

4. Applications

We can seek our results in some problems. In this section, we consider only three
illustrative problems. In the whole section, Ω is a bounded and regular domain of
Rn, with n ≥ 1.

1-: Abstract linear problem utt(t) +Au(t)−
∫ +∞

0
h(s)Au(t− s)ds+ Cut(t− τ) = 0, t ∈ (0,+∞),

ut(t− τ) = f0(t− τ), t ∈ (0, τ),
u(−t) = u0(t), ut(0) = u1, t ≥ 0,

(4.1)
where the operators A and C are a self-adjoint linear positive operators satisfy the
assumptions (A1) and (A3), respectively. The memory kernel h satisfying (A2) and
(A7).

2-: Let us consider the semilinear problem
utt(t) +Au(t) +

∫ +∞
0

h(s)∆u(t− s)ds+ b(x)ut(t− τ)
= F (u(t)), t ∈ (0,+∞),

u(x, t) = 0, x ∈ ∂Ω,
u(x,−t) = u0(x, t), ut(x, 0) = u1(x), x ∈ Ω, t ≥ 0,
ut(t− τ) = f0(t− τ) t ∈ (0, τ),

(4.2)

with initial data (u0, u1, f0) ∈ [H2(Ω) ∈ ∩H1
0 (Ω)]×H1

0 (Ω)×H1(0, τ ;L2(Ω)). The
constant β > 0 satisfies a suitable restriction to be specified below. The memory
kernel h satisfying (A2) and (A7) and b ∈ L∞(Ω) is a function such that

b(x) ≥ 0 a. e. in Ω.

The source term F be globally Lipschitz continuous functional such that F (0) = 0
and satisfies (3.2).Our results hold with H = L2(Ω) and the operators A, B are
given by

A : D(A) −→ H : u 7→ −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
, B : D(B) −→ H : u 7→ −∆u,
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where D(A) = D(B)) = H2(Ω) ∩H1
0 (Ω). aij ∈ C1(Ω), is symmetric and

∃a0 > 0,

n∑
i,j=1

aij(x)ζjζi ≥ a0|ζ|2, x ∈ Ω, ζ = (ζ1, · · · , ζn) ∈ Rn.

The operators A and B are a linear, self-adjoint and positive operators in H such

that D(A
1
2 ) = H1

0 (Ω) with
∥∥∥A 1

2u
∥∥∥ = (a(u, u))1/2 and

∥∥∥B 1
2u
∥∥∥ = ‖∇u‖2, where

a(u, u) =

n∑
i,j=1

∫
Ω

aij(x)
∂u

∂xi

∂u

∂xj
dx.

Moreover, by using Poincare’s inequality and the Sobolev’s embedding theorem, we
get (A1) and (A5). Then, the assumption (A3) holds with Cu(x, t) = b(x)u(x, t).

3-: Coupled systems

wtt(t)− α∆w(t) +

∫ +∞

0

h(s)div(a1(x)∇w(t− s))ds

+µwt(t− τ) + dv(t) = f1(w(t)), t ∈ (0,+∞),

vtt(t)− β∆v(t) +

∫ +∞

0

h(s)div(a2(x)∇v(t− s))ds

+µvt(t− τ) + dw(t) = f2(v(t)), t ∈ (0,+∞),
w(x, t) = v(x, t) = 0, x ∈ ∂Ω,
w(x,−t) = w0(x, t), v(x,−t) = v0(x, t), x ∈ Ω, t ≥ 0,
wt(x, 0) = w1(x), vt(x, 0) = v1(x), x ∈ Ω, t ≥ 0,
wt(t− τ) = f0(t− τ), vt(t− τ) = f0(t− τ), t ∈ (0, τ),

(4.3)

where α and β are positive constants, a1, a2 ∈ C1(Ω), a1(x), a2(x) > 0 with
The memory kernel h satisfying (A2) and (A7). The above system is equivalent to
(1.1) where u = (w, v), f0 = (l0,m0) and H = (L2(Ω))2 with

〈(w1, v1), (w2, v2)〉 =

∫
Ω

w1w2 + v1v2dx.

We take D(A) = D(B)) = (H2(Ω) ∩H1
0 (Ω))2 and the operators A, B are given

by

Au = −(α∆w, β∆v) + d(v, w),

Bu = −(div(a1(x)∇w), div(a2(x)∇w)).

The function F2(u(t)) = (f1(w(t)), f2(v(t))) satisfies (A6).
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Abstract. In this paper, we prove the existence and uniqueness of common
fixed points for two pairs of selfmaps satisfying a Geraghty-Suzuki type con-

traction condition in which one pair is compatible, b-continous and the another
one is weakly compatible in complete b-metric spaces. Further, we prove the

same with different hypotheses on two pairs of selfmaps which satisfy b-(E.A)-

property. We draw some corollaries from our results and provide examples in
support of our results.

1. Introduction

The development of fixed point theory is based on the generalization of con-
traction conditions in one direction or/and generalization of ambient spaces of the
operator under consideration on the other. Banach contraction principle plays an
important role in solving nonlinear equations, and it is one of the most useful
results in fixed point theory. In the direction of generalization of contraction con-
ditions, in 1973, Geraghty [17] proved a fixed point theorem, generalizing Banach
contraction principle. In 1975, Dass and Gupta [14] extended contraction map to
contraction map with rational expression and proved the existence of fixed points
in complete metric spaces. In 2008, Suzuki [30] proved two fixed point theorems,
one of which is a new type of generalization of the Banach contraction principle
and does characterize the metric completeness.

The main idea of b-metric was initiated from the works of Bourbaki [10] and
Bakhtin [6]. The concept of b-metric space or metric type space was introduced by
Czerwik [12] as a generalization of metric space. Afterwards, many authors studied
fixed point theorems for single-valued and multi-valued mappings in b-metric spaces,
we refer [2, 3, 8, 9, 13, 22, 28, 29].

In 2002, Aamari and Moutawakil [1] introduced the notion of property (E.A).
Different authors applied this concept to prove the existence of common fixed points,
we refer [4, 5, 25, 26, 27].
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We denote N, the set of all natural numbers and R+ = [0,∞).

Definition 1.1. [12] Let X be a non-empty set. A function d : X ×X → R+ is
said to be a b-metric if the following conditions are satisfied: for any x, y, z ∈ X

(b1) 0 ≤ d(x, y) and d(x, y) = 0 if and only if x = y,
(b2) d(x, y) = d(y, x),
(b3) there exists s ≥ 1 such that d(x, z) ≤ s[d(x, y) + d(y, z)].

In this case, the pair (X, d) is called a b-metric space with coefficient s.

Every metric space is a b-metric space with s = 1. In general, every b-metric
space is not a metric space.

Definition 1.2. [9] Let (X, d) be a b-metric space and {xn} a sequence in X.

(i) A sequence {xn} in X is called b-convergent if there exists x ∈ X such that
d(xn, x)→ 0 as n→∞. In this case, we write lim

n→∞
xn = x.

(ii) A sequence {xn} in X is called b-Cauchy if d(xn, xm)→ 0 as n,m→∞.
(iii) A b-metric space (X, d) is said to be a complete b-metric space if every

b-Cauchy sequence in X is b-convergent.
(iv) A set B ⊂ X is said to be b-closed if for any sequence {xn} in B such that

{xn} is b-convergent to z ∈ X then z ∈ B.

In general, a b-metric is not necessarily continuous.

Example 1.1. [19] Let X = N ∪ {∞}. We define a mapping d : X ×X → R+ as
follows:

d(m,n) =


0 if m = n,

| 1m −
1
n | if one of m,n is even and the other is even or ∞,

5 if one of m,n is odd and the other is odd or ∞,
2 otherwise.

Then (X, d) is a b-metric space with coefficient s = 5
2 .

Definition 1.3. [9] Let (X, dX) and (Y, dY ) be two b-metric spaces. A function
f : X → Y is a b-continuous at a point x ∈ X, if it is b-sequentially continuous at
x. i.e., whenever {xn} is b-convergent to x, fxn is b-convergent to fx.

Definition 1.4. [20] A pair (A,B) of selfmaps on a metric space (X, d) is said to
be compatible if lim

n→∞
d(BAxn, ABxn) = 0 whenever {xn} is a sequence in X such

that lim
n→∞

Axn = lim
n→∞

Bxn = z for some z ∈ X.

Definition 1.5. [1] A pair (A,B) of selfmaps on a metric space (X, d) is said to be
satisfy (E.A)-property if there exists a sequence {xn} in X such that lim

n→∞
Axn =

lim
n→∞

Bxn = z for some z ∈ X.

Definition 1.6. [25] A pair (A,B) of selfmaps on a b-metric space (X, d) is
said to be satisfy b-(E.A)-property if there exists a sequence {xn} in X such that
lim
n→∞

Axn = lim
n→∞

Bxn = z for some z ∈ X.

Definition 1.7. [21] A pair (A,B) of selfmaps on a set X is said to be weakly
compatible if ABx = BAx whenever Ax = Bx for any x ∈ X.

In 1973, Geraghty [17] introduced a class of functions
S = {β : [0,∞)→ [0, 1)/ lim

n→∞
β(tn) = 1 =⇒ lim

n→∞
tn = 0}.
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Theorem 1.1. [17] Let (X, d) be a complete metric space. Let T : X → X be a
selfmap satisfying the following: there exists β ∈ S such that
d(Tx, Ty) ≤ β(d(x, y))d(x, y) for all x, y ∈ X. Then T has a unique fixed point.

We denote B = {α : [0,∞)→ [0, 1s )/ lim
n→∞

α(tn) = 1
s =⇒ lim

n→∞
tn = 0}.

In 2011, Dukic, Kadelburg and Radenović [15] extended Theorem 1.9 to the case
of b-metric spaces as follows.

Theorem 1.2. [15] Let (X, d) ba a complete b-metric space with coefficient s ≥ 1
and let T : X → X be a selfmap of X. Suppose that there exists α ∈ B such that
d(Tx, Ty) ≤ α(d(x, y))d(x, y) for all x, y ∈ X. Then T has a unique fixed point in
X.

The following lemmas are useful in proving our main results.

Lemma 1.3. [18] Let (X, d) be a b-metric space with coefficient s ≥ 1. Suppose
that {xn} is a sequence in X such that d(xn, xn+1) ≤ kd(xn−1, xn) for all n ∈ N,
where k ∈ [0, 1) is a constant. Then {xn} is a b-Cauchy sequence in X.

Lemma 1.4. [2] Let (X, d) be a b-metric space with coefficient s ≥ 1. Suppose
that {xn} and {yn} are b-convergent to x and y respectively, then we have

1
s2 d(x, y) ≤ lim inf

n→∞
d(xn, yn) ≤ lim sup

n→∞
d(xn, yn) ≤ s2d(x, y).

In particular, if x = y, then we have lim
n→∞

d(xn, yn) = 0. Moreover for each z ∈ X
we have

1
sd(x, z) ≤ lim inf

n→∞
d(xn, z) ≤ lim sup

n→∞
d(xn, z) ≤ sd(x, z).

In 2015, Latif, Parvaneh, Salimi and Al-Mazrooei [23] proved the existence and
uniqueness of fixed points of a single selfmap satisfying Suzuki type contraction
condition in b-metric spaces as follows.

Theorem 1.5. [23] Let (X, d) be a complete b-metric space (with parameter s > 1)
and let f : X → X,α : X ×X → [0,∞) satisfying
(a) α(x, y) ≥ 1 =⇒ α(fx, fy) ≥ 1,
(b) α(x, z) ≥ 1, α(z, y) ≥ 1 =⇒ α(x, y) ≥ 1, x, y, z ∈ X. Suppose that β ∈ B
such that 1

2sd(x, fx) ≤ d(x, y) =⇒ sα(x, y)d(fx, fy) ≤ β(M(x, y))M(x, y) for all
x, y ∈ X, where

M(x, y) = max{d(x, y), d(x,fx)d(x,fy)+d(y,fy)d(y,fx)
1+s[d(x,y)+d(fx,fy)] , d(x,fx)d(x,fy)+d(y,fy)d(y,fx)

1+d(x,fy)+d(y,fx) }.
Also, suppose that the following assertions hold:
(i) there exists x0 ∈ Xsuch that α(x0, fx0) ≥ 1;

(ii) for any sequence {xn} in X with α(xn, xn+1) ≥ 1 for all n ∈ N∪{0} such that
xn → x as n→∞, we have α(xn, x) ≥ 1 for all n ∈ N ∪ {0}.

Then, f has a fixed point.

The set {x0, fx0, f2x0, f3x0, . . .} is called an orbit of f at the point x0 and is
denoted by Of (x0) [7].

Definition 1.8. [11] A b-metric space X is said to be f -orbitally complete if every
Cauchy sequence in Of (x0) converges in X, where f is a selfmapping on X and
x0 ∈ X.

Definition 1.9. [24] Let X be any nonempty set and α : X ×X → R. A selfmap
f : X → X is said to have a property (H), if for any x, y ∈ X with x 6= y, there
exists z ∈ X such that α(x, z) ≥ 1, α(y, z) ≥ 1 and α(z, fz) ≥ 1.
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Definition 1.10. [24] Let (X, d) be a b-metric space with parameter s ≥ 1 and
α : X ×X → R. A selfmap f : X → X is called a generalized α-Suzuki-Geraghty
contraction if there exists a β ∈ B such that for any x, y ∈ X,
1
2sd(x, fx) ≤ sd(x, y) =⇒ d(fx, fy) ≤ β(M(x, y))M(x, y),
where
M(x, y) = max{d(x, y), d(x, fx), d(y, fy), d(f2x, fx), d(f2x, y), d(f

2x,fy)
s , d(f

2x,x)
2s ,

d(x,fy)+d(y,fx)
2s , d(x,fx)d(x,fy)+d(y,fy)d(y,fx)

1+s[d(x,y)+d(fx,fy)] , d(x,fx)d(x,fy)+d(y,fy)d(y,fx)
1+d(x,fy)+d(y,fx) }.

Theorem 1.6. [24] Let (X, d) be a complete b-metric space with parameter
s ≥ 1, α : X ×X → R and f : X → X. Assume that X is f -orbitally complete and
the following conditions hold:

(i) there exists x0 ∈ X such that α(x0, fx0) ≥ 1;
(ii) f is a generalized α− Suzuki−Geraghty contraction and a triangular

α-orbital admissible;
(iii) either f is continuous or for any sequence {xn} in X with

α(xn, xn+1) ≥ 1 such that xn → x as n→∞, we have α(xn, x) ≥ 1
for all n ∈ N ∪ {0}.

Then f has a fixed point z in X and {fnx0} converges to z. Moreover, f has a
unique fixed point if condition (i) is replaced with the property (H).

Throughout this paper we denote
F = {β : [0,∞)→ [0, 1s )/ lim sup

n→∞
β(tn) = 1

s =⇒ lim
n→∞

tn = 0}.

In 2019, Faraji, Savić and Radenović [16] proved the following theorem.

Theorem 1.7. [16] Let (X, d) be a complete b-metric space with parameter s ≥ 1.
Let T, S : X → X be selfmaps on X which satisfy: there exists β ∈ F such that

sd(Tx, Sy) ≤ β(M(x, y))M(x, y) for all x, y ∈ X,
where M(x, y) = max{d(x, y), d(x, Tx), d(y, Sy)}.
If either T or S is continuous, then T and S have a unique common fixed point.

Motivated by Theorem 1.5 and Theorem 1.6, in Section 2 of this paper, we prove
the existence and uniqueness of common fixed points for two pairs of selfmaps satis-
fying a Geraghty-Suzuki type contraction condition in which one pair is compatible,
b-continous and the another one is weakly compatible in complete b-metric spaces.
Further, we prove the same with different hypotheses on two pairs of selfmaps which
satisfy b-(E.A)-property. In Section 3, we draw some corollaries and examples in
support of our results.

2. Main Results

Let A,B, S and T be mappings from a b-metric space (X, d) into itself and
satisfying

A(X) ⊆ T (X) and B(X) ⊆ S(X). (2.1)

Now by (2.1), for any x0 ∈ X, there exists x1 ∈ X such that y0 = Ax0 = Tx1. In
the same way for this x1, we can choose a point x2 ∈ X such that y1 = Bx1 = Sx2
and so on. In general, we define

y2n = Ax2n = Tx2n+1 and y2n+1 = Bx2n+1 = Sx2n+2 for n = 0, 1, 2, . . . . (2.2)

Proposition 2.1. Let (X, d) be a b-metric space wuth coefficient s ≥ 1. Assume
that A,B, S and T are selfmappings of X which satisfy the following condition:
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there exists β ∈ F such that

1
2s min{d(Sx,Ax), d(Ty,By)} ≤ max{d(Sx, Ty), d(Ax,By)}

=⇒ s4d(Ax,By) ≤ β(M(x, y))M(x, y)
(2.3)

where
M(x, y) = max{d(Sx, Ty), d(Sx,Ax), d(Ty,By), d(Sx,By)

2s , d(Ty,Ax)
2s ,

d(Sx,Ax)d(Ty,By)
1+d(Sx,Ty)+d(Ax,By) ,

d(Sx,By)d(Ty,Ax)
1+s4[d(Sx,Ty)+d(Ax,By)]},

for all x, y ∈ X. Then we have the following:

(i) If A(X) ⊆ T (X) and the pair (B, T ) is weakly compatible and if z is a com-
mon fixed point of A and S then z is a common fixed point of A,B, S and T
and it is unique.

(ii) If B(X) ⊆ S(X) and the pair (A,S) is weakly compatible and if z is a com-
mon fixed point of B and T then z is a common fixed point of A,B, S and T
and it is unique.

Proof. First, we assume that (i) holds. Let z be a common fixed point of A and S.
Then Az = Sz = z. Since A(X) ⊆ T (X), there exists u ∈ X such that Tu = z.
Therefore Az = Sz = Tu = z.
We now prove that Az = Bu. Suppose that Az 6= Bu.
Since 1

2s min{d(Sz,Az), d(Tu,Bu)} ≤ max{d(Sz, Tu), d(Az,Bu)}.
From the inequality (2.3), we have

s4d(Az,Bu) ≤ β(M(z, u))M(z, u) (2.4)

where
M(z, u) = max{d(Sz, Tu), d(Sz,Az), d(Tu,Bu), d(Sz,Bu)

2s , d(Tu,Az)
2s ,

d(Sz,Az)d(Tu,Bu)
1+d(Sz,Tu)+d(Az,Bu) ,

d(Sz,Bu)d(Tu,Az)
1+s4[d(Sz,Tu)+d(Az,Bu)]}

= max{0, 0, d(Az,Bu), d(Az,Bu)
2s , 0, 0, 0} = d(Az,Bu).

From the inequality (2.4), we have

s4d(Az,Bu) ≤ β(d(z, u))d(z, u) ≤ d(Az,Bu)
s so that (s5 − 1)d(Az,Bu) ≤ 0.

Since (s5 − 1) ≥ 0, it follows that d(Az,Bu) = 0.
Hence Az = Bu. Therefore Az = Bu = Sz = Tu = z.
Since the pair (B, T ) is weakly compatible and Bu = Tu, we have BTu = TBu.
i.e., Bz = Tz.
Now we show that Bz = z.
If Bz 6= z, then we have
1
2s min{d(Sz,Az), d(Tz,Bz)} ≤ max{d(Sz, Tz), d(Az,Bz)}
From the inequality (2.3), we have

s4d(z,Bz) = s4d(Az,Bz) ≤ β(M(z, z))M(z, z) (2.5)

where
M(z, z) = max{d(Sz, Tz), d(Sz,Az), d(Tz,Bz), d(Sz,Bz)

2s , d(Tz,Az)
2s ,

d(Sz,Az)d(Tz,Bz)
1+d(Sz,Tz)+d(Az,Bz) ,

d(Sz,Bz)d(Tz,Az)
1+s4[d(Sz,Tz)+d(Az,Bz)]}

= max{d(z,Bz), 0, 0, d(z,Bz)
2s , d(z,Bz)

2s , 0, [d(z,Bz)]2

1+2s4[d(z,Bz)]} = d(z,Bz).

From the inequality (2.5), we have

s4d(z,Bz) ≤ β(M(z, z))M(z, z) = β(d(z,Bz))d(z,Bz) ≤ d(z,Bz)
s so that

(s5 − 1)d(z,Bz) ≤ 0.
Since (s5 − 1) ≥ 0, it follows that d(z,Bz) = 0.
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Hence Bz = z. Therefore Az = Bz = Sz = Tz = z.
Therefore z is a common fixed point of A,B, S and T .

In a similar way, under the assumption (ii), the conclusion of the proposition
follows.

Uniqueness follows from the inequality (2.3). �

Remark. Selfmaps A,B, S and T of a b-metric space X that satisfy (2.3) is said
to be Geraghty-Suzuki type contraction maps on X.

Proposition 2.2. Let A,B, S and T be selfmaps of a b-metric space (X, d) and
satisfy (2.1) and Geraghty-Suzuki type contraction maps. Then for any x0 ∈ X, the
sequence {yn} defined by (2.2) is b-Cauchy in X.

Proof. Let x0 ∈ X and let {yn} be defined by (2.2). Assume that yn = yn+1 for
some n.
Case (i): n even.
We write n = 2m for some m ∈ N. Suppose that d(yn+1, yn+2) > 0. Since
1
2s min{d(Sx2m+2, Ax2m+2), d(Tx2m+1, Bx2m+1)} ≤ max{d(Sx2m+2, Tx2m+1),

d(Ax2m+2, Bx2m+1)}
From the inequality (2.3), we have

s4d(yn+1, yn+2) = s4d(y2m+1, y2m+2)
= s4d(y2m+2, y2m+1)
= s4d(Ax2m+2, Bx2m+1)
≤ β(M(x2m+2, x2m+1))M(x2m+2, x2m+1)

(2.6)

where
M(x2m+2, x2m+1) = max{d(Sx2m+2, Tx2m+1), d(Sx2m+2, Ax2m+2),

d(Tx2m+1, Bx2m+1), d(Sx2m+2,Bx2m+1)
2s , d(Tx2m+1,Ax2m+2)

2s ,
d(Sx2m+2,Ax2m+2)d(Tx2m+1,Bx2m+1)

1+d(Sx2m+2,Tx2m+1)+d(Ax2m+2,Bx2m+1)
,

d(Sx2m+2,Bx2m+1)d(Tx2m+1,Ax2m+2)
1+s4[d(Sx2m+2,Tx2m+1)+d(Ax2m+2,Bx2m+1)]

}
= max{0, d(yn+1, yn+2), 0, 0, d(yn,yn+2)

2s , 0, 0} = d(yn+1, yn+2).
From the inequality (2.6), we have
s4d(yn+1, yn+2) ≤ β(M(x2m+2, x2m+1))M(x2m+1, x2m+1)

≤ β(d(yn+1, yn+2))d(yn+1, yn+2) ≤ d(yn+1,yn+2)
s

which implies that (s5 − 1)d(yn+1, yn+2) ≤ 0.
Since (s5 − 1) ≥ 0, we have d(yn+1, yn+2) ≤ 0.
Therefore yn+2 = yn+1 = yn.
In general, we have yn+k = yn for k = 0, 1, 2, . . . .
Case (ii): n odd.
We write n = 2m+ 1 for some m ∈ N.
Since
1
2s min{d(Sx2m+2, Ax2m+2), d(Tx2m+3, Bx2m+3)} ≤ max{d(Sx2m+2, Tx2m+3),

d(Ax2m+2, Bx2m+3)},
from the inequality (2.3), we have

s4d(yn+1, yn+2) = s4d(y2m+2, y2m+3) = d(Ax2m+2, Bx2m+3)
≤ β(M(x2m+2, x2m+3))M(x2m+2, x2m+3)

(2.7)
where
M(x2m+2, x2m+3) = max{d(Sx2m+2, Tx2m+3), d(Sx2m+2, Ax2m+2),
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d(Tx2m+3, Bx2m+3), d(Sx2m+2,Bx2m+3)
2s , d(Tx2m+3,Ax2m+2)

2s ,
d(Sx2m+2,Ax2m+2)d(Tx2m+3,Bx2m+3)

1+d(Sx2m+2,Tx2m+3)+d(Ax2m+2,Bx2m+3)
,

d(Sx2m+2,Bx2m+3)d(Tx2m+3,Ax2m+2)
1+s4[d(Sx2m+2,Tx2m+3)+d(Ax2m+2,Bx2m+3)]

}
= max{0, 0, d(yn+1, yn+2), d(yn,yn+2)

2s , 0, 0, 0} = d(yn+1, yn+2).
From the inequality (2.7), we have
s4d(yn+1, yn+2) ≤ β(M(x2m+2, x2m+3))M(x2m+2, x2m+3)

≤ β(d(yn+1, yn+2))d(yn+1, yn+2) ≤ d(yn+1,yn+2)
s

which implies that (s5 − 1)d(yn+1, yn+2) ≤ 0.
Since (s5 − 1) ≥ 0, we have d(yn+1, yn+2) ≤ 0.
Therefore yn+2 = yn+1 = yn.
In general, we have yn+k = yn for k = 0, 1, 2, . . . .
From Case (i) and Case (ii), we have yn+k = yn for all k = 0, 1, 2, . . . .
Hence {yn+k} is a constant sequence and hence {yn} is Cauchy.
Now we assume that yn−1 6= yn for all n ∈ N.
If n is odd, then n = 2m+ 1 for some m ∈ N.
Since
1
2s min{d(Sx2m+2, Ax2m+2), d(Tx2m+1, Bx2m+1)} ≤ max{d(Sx2m+2, Tx2m+1),

d(Ax2m+2, Bx2m+1)}.
From the inequality (2.3), we have

s4d(yn, yn+1) = s4d(y2m+1, y2m+2) = s4d(y2m+2, y2m+1)
= s4d(Ax2m+2, Bx2m+1) ≤ β(M(x2m+2, x2m+1))M(x2m+2, x2m+1)

(2.8)
where
M(x2m+2, x2m+1) = max{d(Sx2m+2, Tx2m+1), d(Sx2m+2, Ax2m+2),

d(Tx2m+1, Bx2m+1), d(Sx2m+2,Bx2m+1)
2s , d(Tx2m+1,Ax2m+2)

2s ,
d(Sx2m+2,Ax2m+2)d(Tx2m+1,Bx2m+1)

1+d(Sx2m+2,Tx2m+1)+d(Ax2m+2,Bx2m+1)
,

d(Sx2m+2,Bx2m+1)d(Tx2m+1,Ax2m+2)
1+s4[d(Sx2m+2,Tx2m+1)+d(Ax2m+2,Bx2m+1)]

}
≤ max{d(yn−1, yn), d(yn, yn+1), d(yn−1, yn), 0, d(yn,yn)+d(yn,yn+1)

2 ,
d(yn,yn+1)d(yn−1,yn)

1+d(yn−1,yn)+d(yn,yn+1)
, 0}

≤ max{d(yn−1, yn), d(yn, yn+1)}.
Suppose M(x2m+2, x2m+1) = d(yn, yn+1).
Then from the inequality (2.8), we have
s4d(yn, yn+1) ≤ β(M(x2m+2, x2m+1))M(x2m+2, x2m+1)

≤ β(d(yn, yn+1))d(yn, yn+1) ≤ d(yn,yn+1)
s

which implies that (s5 − 1)d(yn, yn+1) ≤ 0.
Since (s5 − 1) ≥ 0, we have d(yn, yn+1) ≤ 0.
Therefore M(x2m+2, x2m+1) = d(yn−1, yn).
From the inequality (2.8), we have

s4d(yn, yn+1) ≤ β(M(x2m+2, x2m+1))M(x2m+2, x2m+1)

≤ β(d(yn−1, yn))d(yn−1, yn) ≤ d(yn−1,yn)
s .

(2.9)

Also, it is easy to see that (2.9) is valid when n is even.
Hence we have d(yn, yn+1) ≤ 1

s5 d(yn−1, yn) for all n ∈ N.
From Lemma 1.3, we have the sequence {yn} is a b-Cauchy sequence in X. �

The following is the main result of this paper.
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Theorem 2.3. Let A,B, S and T be selfmaps on a complete b-metric space (X, d)
and satisfy (2.1) and Geraghty-Suzuki type contractive maps. If either

(i) the pair (A,S) compatible, A (or) S is b-continuous and the pair (B, T ) is
weakly compatible

or
(ii) the pair (B, T ) compatible, B (or) T is b-continuous and the pair (A,S) is

weakly compatible

then A,B, S and T have a unique common fixed point in X.

Proof. By Proposition 2.2, the sequence {yn} is b-Cauchy in X.
Since X is b-complete, there exists z ∈ X such that lim

n→∞
yn = z. Thus{

lim
n→∞

y2n = lim
n→∞

Ax2n = lim
n→∞

Tx2n+1 = z and

lim
n→∞

y2n+1 = lim
n→∞

Bx2n+1 = lim
n→∞

Sx2n+2 = z.
(2.10)

Assume that (i) holds.
Since S is b-continuous, it follows that lim

n→∞
SSx2n+2 = Sz, lim

n→∞
SAx2n = Sz.

By the b-triangle inequality, we have d(ASx2n, Sz) ≤ s[d(ASx2n, SAx2n)+d(SAx2n, Sz)].
Since the pair (A,S) is compatible, lim

n→∞
d(ASx2n, SAx2n) = 0.

Taking limit superior as n→∞, we have
lim sup
n→∞

d(ASx2n, Sz) ≤ s[lim sup
n→∞

d(ASx2n, SAx2n) + lim sup
n→∞

d(SAx2n, Sz)] = 0.

Therefore lim
n→∞

ASx2n = Sz.

We now prove that Sz = z.
Suppose that Sz 6= z. Since
1
2s min{d(SSx2m+2, ASx2m+2), d(Tx2m+1, Bx2m+1)} ≤ max{d(SSx2m+2, Tx2m+1),

d(ASx2m+2, Bx2m+1)}
From the inequality (2.3), we have

s4d(ASx2n+2, Bx2n+1) ≤ β(M(Sx2n+2, x2n+1))M(Sx2n+2, x2n+1) (2.11)

where
M(Sx2n+2, x2n+1) = max{d(SSx2n+2, Tx2n+1), d(SSx2n+2, ASx2n+s),

d(Tx2n+1, Bx2n+1), d(SSx2n+2,Bx2n+1)
2s , d(Tx2n+1,ASx2n+2)

2s ,
d(SSx2n+2,ASx2n+2)d(Tx2n+1,Bx2n+1)

1+d(SSx2n+2,Tx2n+1)+d(ASx2n+2,Bx2n+1)
,

d(SSx2n+2,Bx2n+1)d(Tx2n+1,ASx2n+2)
1+s4[d(SSx2n+2,Tx2n+1)+d(ASx2n+2,Bx2n+1)]

}.
By taking limit superior as n → ∞ on M(Sx2n+2, x2n+1) and using Lemma 1.4,
we obtain
lim sup
n→∞

M(Sx2n+2, x2n+1) ≤ max{s2d(Sz, z), 0, 0, s
2d(Sz,z)

2s , s
2d(Sz,z)

2s , 0, s4[d(Sz,z)]2

1+2s4d(Sz,z)}

= s2d(Sz, z).
Therefore

1

s2
d(Sz, z) ≤ lim inf

n→∞
M(Sx2n+2, x2n+1) ≤ lim sup

n→∞
M(Sx2n+2, x2n+1) ≤ s2d(Sz, z).

(2.12)
Taking limit superior as n→∞ in the inequality (2.11) and using Lemma 1.4, we
get
s4 1

s2 d(Sz, z) ≤ s4 lim sup
n→∞

d(ASx2n+2, Bx2n+1)

= lim sup
n→∞

s4d(ASx2n+2, Bx2n+1)
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≤ lim sup
n→∞

[β(M(Sx2n+2, x2n+1))M(Sx2n+2, x2n+1)]

= lim sup
n→∞

β(M(Sx2n+2, x2n+1)) lim sup
n→∞

M(Sx2n+2, x2n+1)

≤ lim sup
n→∞

β(M(Sx2n+2, x2n+1))s2d(Sz, z).

Therefore
1
s ≤ 1 ≤ lim sup

n→∞
β(M(Sx2n+2, x2n+1)) ≤ 1

s which implies that

lim sup
n→∞

β(M(Sx2n+2, x2n+1)) = 1
s .

Since β ∈ F, it follows that lim
n→∞

M(Sx2n+2, x2n+1) = 0.

Therefore from the inequality (2.12), we have
1
s2 d(Sz, z) ≤ lim

n→∞
M(Sx2n+2, x2n+1) = 0 which implies that d(Sz, z) ≤ 0.

Therefore Sz = z.
We now show that Az = z. Suppose that Az 6= z.
Since
1
2s min{d(Sz,Az), d(Tx2m+1, Bx2m+1)} ≤ max{d(Sz, Tx2m+1), d(Az,Bx2m+1)}
From the inequality (2.3), we have

s4d(Az,Bx2n+1) ≤ β(M(z, x2n+1))M(z, x2n+1) (2.13)

where
M(z, x2n+1) = max{d(Sz, Tx2n+1), d(Sz,Az), d(Tx2n+1, Bx2n+1),

d(Sz,Bx2n+1)
2s , d(Tx2n+1,Az)

2s , d(Sz,Az)d(Tx2n+1,Bx2n+1)
1+d(Sz,Tx2n+1)+d(Az,Bx2n+1)

,
d(Sz,Bx2n+1)d(Tx2n+1,Az)

1+s4[d(Sz,Tx2n+1)+d(Az,Bx2n+1)]
}.

By taking limit superior as n→∞ on M(z, x2n+1) and using Lemma 1.4, we obtain

lim sup
n→∞

M(z, x2n+1) ≤ max{s2d(Az, z), 0, 0, s
2d(Az,z)

2s , s
2d(Az,z)

2s , 0, s4[d(Az,z)]2

1+2s4d(Az,z)}

= s2d(Az, z).
Therefore

1

s2
d(Az, z) ≤ lim inf

n→∞
M(z, x2n+1) ≤ lim sup

n→∞
M(z, x2n+1) ≤ s2d(Az, z). (2.14)

Taking limit superior as n→∞ in the inequality (2.13) and using Lemma 1.4, we
get
s4 1

s2 d(Az, z) ≤ s4 lim sup
n→∞

d(Az,Bx2n+1)

= lim sup
n→∞

s4d(Az,Bx2n+1)

≤ lim sup
n→∞

[β(M(z, x2n+1))M(z, x2n+1)]

= lim sup
n→∞

β(M(z, x2n+1)) lim sup
n→∞

M(z, x2n+1)

≤ lim sup
n→∞

β(M(z, x2n+1))s2d(Az, z).

Hence
1
s ≤ 1 ≤ lim sup

n→∞
β(M(z, x2n+1)) ≤ 1

s which implies that

lim sup
n→∞

β(M(z, x2n+1)) = 1
s .

Since β ∈ F, it follows that lim
n→∞

M(z, x2n+1) = 0.

Therefore from the inequality (2.14), we have
1
s2 d(Az, z) ≤ lim

n→∞
M(z, x2n+1) = 0 which implies that d(Az, z) ≤ 0.

Therefore Az = Sz = z. Hence z is a common fixed point of A and S.
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Now by Proposition 2.1, we have z is a unique common fixed point of A,B, S and T .
Assume that A is b-continuous, it follows that
lim

n→∞
AAx2n = Az, lim

n→∞
ASx2n+2 = Az.

By the b-triangle inequality, we have
d(SAx2n, Az) ≤ s[d(SAx2n, ASx2n) + d(ASx2n, Az)].
Since the pair (A,S) is compatible, lim

n→∞
d(ASx2n, SAx2n) = 0.

Taking limit superior as n→∞, we have
lim sup
n→∞

d(SAx2n, Az) ≤ s[lim sup
n→∞

d(SAx2n, ASx2n) + lim sup
n→∞

d(ASx2n, Az)] = 0.

Therefore lim
n→∞

SAx2n = Az.

Now we prove that Az = z. Suppose that Az 6= z.
Since
1
2s min{d(SAx2n, AAx2n), d(Tx2n+1, Bx2n+1)} ≤ max{d(SAx2n, Tx2n+1),

d(AAx2n, Bx2n+1)}
From the inequality (2.3), we have

s4d(ASx2n+2, Bx2n+1) ≤ β(M(Sx2n+2, x2n+1))M(Sx2n+2, x2n+1) (2.15)

where
M(Ax2n, x2n+1) = max{d(SAx2n, Tx2n+1), d(SAx2n, AAx2n), d(Tx2n+1, Bx2n+1),

d(SAx2n,Bx2n+1)
2s , d(Tx2n+1,AAx2n)

2s , d(SAx2n,AAx2n)d(Tx2n+1,Bx2n+1)
1+d(SAx2n,Tx2n+1)+d(AAx2n,Bx2n+1)

,
d(SAx2n,Bx2n+1)d(Tx2n+1,AAx2n)

1+s4[d(SAx2n,Tx2n+1)+d(AAx2n,Bx2n+1)]
}.

By taking limit superior as n → ∞ on M(Ax2n, x2n+1) and using Lemma 1.4, we
obtain
lim sup
n→∞

M(Ax2n, x2n+1) ≤ max{s2d(Az, z), 0, 0, s
2d(Az,z)

2s , s
2d(Az,z)

2s , 0, s4[d(Az,z)]2

1+2s2d(Az,z)}

= s2d(Az, z).
Therefore

1

s2
d(Az, z) ≤ lim inf

n→∞
M(Ax2n, x2n+1) ≤ lim sup

n→∞
M(Ax2n, x2n+1) ≤ s2d(Az, z).

(2.16)
Taking limit superior as n→∞ in the inequality (2.15) and using Lemma 1.4, we
get
s4 1

s2 d(Az, z) ≤ s4 lim sup
n→∞

d(AAx2n, Bx2n+1)

= lim sup
n→∞

s4d(AAx2n, Bx2n+1)

≤ lim sup
n→∞

[β(M(Ax2n, x2n+1))M(Ax2n, x2n+1)

= lim sup
n→∞

β(M(Ax2n, x2n+1)) lim sup
n→∞

M(Ax2n, x2n+1)

≤ lim sup
n→∞

β(M(Ax2n, x2n+1))s2d(Az, z).

Thus
1
s ≤ 1 ≤ lim sup

n→∞
β(M(Ax2n, x2n+1)) ≤ 1

s which implies that

lim sup
n→∞

β(M(Ax2n, x2n+1)) = 1
s .

Since β ∈ F, it follows that lim
n→∞

M(Ax2n, x2n+1) = 0.

Therefore from the inequality (2.16), we have
1
s2 d(Az, z) ≤ lim

n→∞
M(Ax2n, x2n+1) = 0 which implies that d(Az, z) ≤ 0.

Therefore Az = z.
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Since A(X) ⊆ T (X), there exists u ∈ X such that z = Tu.
We now show that Bu = z. Suppose that Bu 6= z.
Since
1
2s min{d(Sx2n, Ax2n), d(Tu,Bu)} ≤ max{d(Sx2n, Tu), d(Ax2n, Bu)}
From the inequality (2.3), we have

s4d(Ax2n, Bu) ≤ β(M(x2n, u))M(x2n, u) (2.17)

where
M(x2n, u) = max{d(Sx2n, Tu), d(Sx2n, Ax2n), d(Tu,Bu), d(Sx2n,Bu)

2s , d(Tu,Ax2n)
2s ,

d(Sx2n,Ax2n)d(Tu,Bu)
1+d(Sx2n,Tu)+d(Ax2n,Bu) ,

d(Sx2n,Bu)d(Tu,Ax2n)
1+s4[d(Sx2n,Tu)+d(Ax2n,Bu)]}.

By taking limit superior as n→∞ on M(x2n, u) and using Lemma 1.4, we obtain

lim sup
n→∞

M(x2n, u) ≤ max{s2d(z,Bu), 0, 0, s
2d(z,Bu)

2s , s
2d(z,Bu)

2s , 0, s4[d(z,Bu)]2

1+2s2d(z,Bu)}

= s2d(Az, z).
Therefore

1

s2
d(z,Bu) ≤ lim inf

n→∞
M(x2n, u) ≤ lim sup

n→∞
M(x2n, u) ≤ s2d(z,Bu). (2.18)

Taking limit superior as n→∞ in the inequality (2.17) and using Lemma 1.4, we
get
s4 1

s2 d(z,Bu) ≤ s4 lim sup
n→∞

d(Ax2n, Bu)

= lim sup
n→∞

s4d(Ax2n, Bu)

≤ lim sup
n→∞

[β(M(x2n, u))M(x2n, u)

= lim sup
n→∞

β(M(x2n, u)) lim sup
n→∞

M(x2n, u)

≤ lim sup
n→∞

β(M(x2n, u))s2d(z,Bu).

Therefore
1
s ≤ 1 ≤ lim sup

n→∞
β(M(x2n, u)) ≤ 1

s which implies that lim sup
n→∞

β(M(x2n, u)) = 1
s .

Since β ∈ F, it follows that lim
n→∞

M(x2n, u) = 0.

Therefore from the inequality (2.18), we have
1
s2 d(z,Bu) ≤ lim

n→∞
M(x2n, u) = 0. implies that d(z,Bu) ≤ 0.

Therefore Bu = Tu = z. Since the pair (B, T ) is weakly compatible and Bu = Tu,
we have
BTu = TBu. i.e., Bz = Tz.
We now show that Bz = z. Suppose that Bz 6= z.
Since
1
2s min{d(Sx2n, Ax2n), d(Tz,Bz)} ≤ max{d(Sx2n, T z), d(Ax2n, Bz)}
From the inequality (2.3), we have

s4d(Ax2n, Bz) ≤ β(M(x2n, z))M(x2n, z) (2.19)

where
M(x2n, z) = max{d(Sx2n, T z), d(Sx2n, Ax2n), d(Tz,Bz), d(Sx2n,Bz)

2s , d(Tz,Ax2n)
2s ,

d(Sx2n,Ax2n)d(Tz,Bz)
1+d(Sx2n,Tz)+d(Ax2n,Bz) ,

d(Sx2n,Bz)d(Tz,Ax2n)
1+s4d(Sx2n,Tz)+d(Ax2n,Bz)}.

By taking limit superior as n→∞ on M(x2n, z) and using Lemma 1.4, we obtain

lim sup
n→∞

M(x2n, z) ≤ max{s2d(z,Bz), 0, 0, s
2d(z,Bz)

2s , s
2d(z,Bz)

2s , 0, s6[d(z,Bz)]2

1+2s2d(z,Bz)}
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= s2d(Az, z).
Therefore

1

s2
d(z,Bz) ≤ lim inf

n→∞
M(x2n, z) ≤ lim sup

n→∞
M(x2n, z) ≤ s2d(z,Bz). (2.20)

Taking limit superior as n→∞ in the inequality (2.19) and using Lemma 1.4, we
get
s4 1

s2 d(z,Bz) ≤ s4 lim sup
n→∞

d(Ax2n, Bz)

= lim sup
n→∞

s4d(Ax2n, Bz)

≤ lim sup
n→∞

[β(M(x2n, z))M(x2n, z)

= lim sup
n→∞

β(M(x2n, z)) lim sup
n→∞

M(x2n, z)

≤ lim sup
n→∞

β(M(x2n, z))s
2d(z,Bz).

Therefore
1
s ≤ 1 ≤ lim sup

n→∞
β(M(x2n, z)) ≤ 1

s which implies that lim sup
n→∞

β(M(x2n, z)) = 1
s .

Since β ∈ F, it follows that lim
n→∞

M(x2n, z) = 0.

Therefore from the inequality (2.20), we have
1
s2 d(z,Bz) ≤ lim

n→∞
M(x2n, z) = 0. implies that d(z,Bz) ≤ 0.

Hence Bz = z.
Therefore Bz = Tz = z.
Hence z is a common fixed point of A and S.
Now by Proposition 2.1, we have z is a unique common fixed point of A,B, S and T .

In a similar way, under the assumption (ii), the conclusion of the theorem holds.
�

Theorem 2.4. Let (X, d) be a b-metric space with coefficient s ≥ 1. Let A,B, S, T :
X → X be selfmaps of X and satisfy (2.1) and Geraghty-Suzuki type contractive
maps. Suppose that one of the pairs (A,S) and (B, T ) satisfies the b-(E.A)-property
and that one of the subspace A(X), B(X), S(X) and T (X) is b-closed in X. Then
the pairs (A,S) and (B, T ) have a point of coincidence in X. Moreover, if the pairs
(A,S) and (B, T ) are weakly compatible, then A,B, S and T have a unique common
fixed point in X.

Proof. We first assume that the pair (A,S) satisfies the b-(E.A)-property. So there
exists a sequence {xn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = q (2.21)

for some q ∈ X.
Since A(X) ⊆ T (X), there exists a sequence {yn} in X such that Axn = Tyn, and
hence

lim
n→∞

Tyn = q. (2.22)

Now we show that lim
n→∞

Byn = q.

Since 1
2s min{d(Sxn, Axn), d(Tyn, Byn)} ≤ max{d(Sxn, T yn), d(Axn, Byn)}.

From the inequality (2.3), we have

s4d(Axn, Byn) ≤ β(M(xn, yn))M(xn, yn) (2.23)
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where
M(xn, yn) = max{d(Sxn, T yn), d(Sxn, Axn), d(Tyn, Byn), d(Sxn,Byn)

2s , d(Tyn,Axn)
2s ,

d(Sxn,Axn)d(Tyn,Byn)
1+d(Sxn,Tyn)+d(Axn,Byn)

, d(Sxn,Byn)d(Tyn,Axn)
1+s4[d(Sxn,Tyn)+d(Axn,Byn)]

}.
By taking limit superior as n→∞ on M(xn, yn), and using (2.21) and (2.22), we
obtain lim sup

n→∞
M(xn, yn) = max{0, 0, lim sup

n→∞
d(Axn, Byn),

lim sup
n→∞

d(Axn,Byn)

2s , 0, 0, 0}

= lim sup
n→∞

d(Axn, Byn).

(2.24)
On taking limit superior as n→∞ in (2.23), and using (2.24), we get
s4 lim sup

n→∞
d(Axn, Byn) = lim sup

n→∞
[β(M(xn, yn))M(xn, yn)]

= lim sup
n→∞

β(M(xn, yn)) lim sup
n→∞

M(xn, yn)

= lim sup
n→∞

β(M(xn, yn)) lim sup
n→∞

d(Axn, Byn).

Therefore
1
s ≤ 1 ≤ lim sup

n→∞
β(M(xn, yn)) ≤ 1

s5 ≤
1
s which implies that

lim sup
n→∞

β(M(xn, yn)) = 1
s .

Since β ∈ F, we have lim
n→∞

M(xn, yn) = 0. i.e., lim sup
n→∞

d(Axn, Byn) = 0.

Therefore

lim
n→∞

d(Axn, Byn) = 0. (2.25)

By the b-triangular inequality, we have

d(q,Byn) ≤ s[d(q, Axn) + d(Axn, Byn)]. (2.26)

On taking limits as n→∞ in (2.26), and using (2.21) and (2.25), we get
lim

n→∞
d(q,Byn) ≤ s[ lim

n→∞
d(q, Axn) + lim

n→∞
d(Axn, Byn)] = 0.

Therefore lim
n→∞

d(q,Byn) = 0.

Case (i): Assume that T (X) is a b-closed subset of X.
In this case q ∈ T (X), we can choose r ∈ X such that Tr = q.
We now prove that Br = q. Suppose that d(Br, q) > 0.
Since 1

2s min{d(Sxn, Axn), d(Tr,Br)} ≤ max{d(Sxn, T r), d(Axn, Br)}
From the inequality (2.3), we have

s4d(Axn, Br) ≤ β(M(xn, r))M(xn, r) (2.27)

where
M(xn, r) = max{d(Sxn, T r), d(Sxn, Axn), d(Tr,Br), d(Sxn,Br)

2s , d(Tr,Axn)
2s ,

d(Sxn,Axn)d(Tr,Br)
1+d(Sxn,Tr)+d(Axn,Br) ,

d(Sxn,Br)d(Tr,Axn)
1+s4[d(Sxn,Tr)+d(Axn,Br)]}.

By taking limit superior as n → ∞ on M(xn, r), and using (2.21), (2.22) and
Lemma 1.4, we obtain

lim sup
n→∞

M(xn, r) ≤ max{0, 0, d(q,Br),
d(q,Br)

2
, 0, 0, 0} = d(q,Br). (2.28)

We have
d(Br, q) ≤ s[d(Br, Sxn) + d(Sxn, q)]

= 2s2[d(Br,Sxn)
2s ] + sd(Sxn, q) ≤ 2s2M(xn, r) + sd(Sxn, q).

On taking limit inferior as n→∞, we get
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Therefore 1
2s2 d(Br, q) ≤ lim inf

n→∞
M(xn, r).

Taking limit superior as n→∞ in (2.27) and using (2.28) and Lemma 1.4, we have

s4( 1
sd(q,Br)) ≤ s4 lim sup

n→∞
d(Axn, Br)

= lim sup
n→∞

[β(M(xn, r))M(xn, r)]

= lim sup
n→∞

β(M(xn, r)) lim sup
n→∞

M(xn, r)

≤ lim sup
n→∞

β(M(xn, r))d(q,Br).

Therefore
1
s ≤ lim sup

n→∞
β(M(xn, r)) ≤ 1

s which implies that lim sup
n→∞

β(M(xn, r)) = 1
s .

Since β ∈ F, we have lim
n→∞

M(xn, r) = 0.

Therefore 1
2s2 d(Br, q) ≤ lim

n→∞
M(xn, r) = 0.

Thus Br = q. Hence Br = Tr = q, so that q is a coincidence point of B and T .
Since B(X) ⊆ S(X), we have q ∈ S(X), there exists z ∈ X such that Sz = q = Br.
Now we show that Az = q. Suppose Az 6= q.
Since
1
2s min{d(Sz,Az), d(Tr,Br)} ≤ max{d(Sz, Tr), d(Az,Br)}
From the inequality (2.3), we have

s4d(Az, q) = s4d(Az,Br) ≤ β(M(z, r))M(z, r) (2.29)

where
M(z, r) = max{d(Sz, Tr), d(Sz,Az), d(Tr,Br), d(Sz,Br)

2s , d(Tr,Az)
2s ,

d(Sz,Az)d(Tr,Br)
1+d(Sz,Tr)+d(Az,Br) ,

d(Sz,Br)d(Tr,Az)
1+s4[d(Sz,Tr)+d(Az,Br)]}

= max{0, d(q, Az), 0, 0, d(q,Az)
2s , 0, 0} = d(q, Az).

From the inequality (2.29), we have
s4d(Az, q) ≤ β(d(Az, q)d(Az, q)) < d(Az, q),
a contradiction.
Therefore Az = Sz = q so that z is a coincidence point of A and S.
Since the pairs (A,S) and (B, T ) are weakly compatible, we have Aq = Sq and
Bq = Tq.
Therefore q is also a coincidence point of the pairs (A,S) and (B, T ).
We now show that q is a common fixed point of A,B, S and T .
Suppose Aq 6= q.
Since 1

2s min{d(Sq,Aq), d(Tr,Br)} ≤ max{d(Sq, Tr), d(Aq,Br)},
from the inequality (2.3), we have

s4d(Aq, q) = s4d(Aq,Br) ≤ β(M(q, r))M(q, r) (2.30)

where
M(q, r) = max{d(Sq, Tr), d(Sq,Aq), d(Tr,Br), d(Sq,Br)

2s , d(Tr,Aq)
2s ,

d(Sq,Aq)d(Tr,Br)
1+d(Sq,Tr)+d(Aq,Br) ,

d(Sq,Br)d(Tr,Aq)
1+s4[d(Sq,Tr)+d(Aq,Br)]}

= max{d(Aq, q), 0, 0, d(Aq,q)
2s , d(Aq,q)

2s , 0, 0} = d(Aq, q).
Now, from the inequality (2.30), we have
s4d(Aq, q) ≤ β(d(Aq, q)d(Aq, q)) < d(Aq, q),
a contradiction.
Therefore Aq = Sq = q so that q is a common fixed point of A and S.
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By Proposition 2.1, we get that q is a unique common fixed point of A,B, S and T .
Case (ii): Suppose A(X) is b-closed.
In this case, we have q ∈ A(X) and since A(X) ⊆ T (X), we choose r ∈ X such
that q = Tr.
The proof follows as in Case (i).
Case (iii): Suppose S(X) is b-closed.
We follow the argument similar as Case (i) and we get conclusion.
Case (iv): Suppose B(X) is b-closed. As in Case (ii), we get the conclusion.

For the case of (B, T ) satisfies the b-(E.A)-property, we follow the argument
similar to the case (A,S) satisfies the b-(E.A)-property. �

3. Corollaries and examples

In this section we draw some corollaries from our main results and provide ex-
amples in support of our results.

If we take A = B = f and S = T = g in Theorem 2.3 and Theorem 2.4, we get
Corollary 3.1 and Corollary 3.2, respectively.

Corollary 3.1. Let (X, d) be a b-metric space and f and g be selfmaps of X.
Assume that there exists β ∈ F such that

1
2s min{d(fx, gx), d(fy, gy)} ≤ max{d(gx, gy), d(fx, fy)}

=⇒ s4d(fx, fy) ≤ β(M(x, y))M(x, y)
(3.1)

where
M(x, y) = max{d(gx, gy), d(gx, fx), d(gy, fy), d(gx,fy)2s , d(gy,fx)2s , d(gx,fx)d(gy,fy)

1+d(gx,gy)+d(fx,fy) ,
d(gx,fy)d(gy,fx)

1+s4[d(gx,gy)+d(fx,fy)]},
for all x, y ∈ X. If f(X) ⊆ g(X), the pair (f, g) is compatible and f or g is
b-continuous then f and g have a unique common fixed point in X.

Corollary 3.2. Let (X, d) be a b-metric space with coefficient s ≥ 1. Let f, g : X →
X be selfmaps of X and satisfy f(X) ⊆ g(X) and the inequality (3.1). Suppose
that the pair (f, g) satisfies the b-(E.A)-property and that one of the subspace f(X)
and g(X) is b-closed in X. Then the pairs (f, g) have a point of coincidence in
X. Moreover, if the pair (f, g) is weakly compatible, then f and g have a unique
common fixed point in X.

The following is an example in support of Theorem 2.3.

Example 3.1. Let X = R+ and let d : X ×X → R+ defined by

d(x, y) =


0 if x = y,
4 if x, y ∈ [0, 1],

5 + 1
x+y if x, y ∈ (1,∞),

27
10 otherwise.

The b-metric conditions (b1) and (b2) are trivially hold for this example.
Let us now check (b3).
For this purpose we consider the following nontrivial case.
Let y ∈ [0, 1] and x, z ∈ (1,∞).
Then d(x, z) = 5 + 1

x+z , d(x, y) = 27
10 , d(y, z) = 27

10 .
We have
2 ≤ x+ z =⇒ 1

x+z ≤
1
2 so that 5 + 1

x+z ≤ 5 + 1
2 <

489
480 ( 27

5 ).

Therefore d(x, z) = 5 + 1
x+z <

489
480 ( 27

10 + 27
10 ) = s[d(x, y) + d(y, z)] where s = 489

480
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so that (b3) holds.
Thus d is a b-metric with s = 489

480 .
Clearly this d is complete so that (X, d) is a complete b-metric space.

Here we observe that when x = 101
100 , z = 102

100 ∈ (1,∞) and y ∈ [0, 1), we have

d(x, z) = 1115
203 �

27
5 = d(x, y) + d(y, z) so that d is not a metric.

We define A,B, S, T : X → X by

A(x) = 1 if x ∈ [0,∞), B(x) =

{
x2 + 2 if x ∈ [0, 1)
x2+1

2 if x ∈ [1,∞),

S(x) =

{
x+ 2 if x ∈ [0, 1)
x+1
2 if x ∈ [1,∞),

and T (x) =

{
3x2 + 4 if x ∈ [0, 1)
x(x+2)

3 if x ∈ [1,∞).
Clearly A(X) ⊆ T (X) and B(X) ⊆ S(X).
Here A is b-continuous.
We choose a sequence {xn} with {xn} = 1 + 1

2n , n ≥ 1, we have

ASxn = A(
1+ 1

2n+1

2 ) = 1 and SAxn = S1 = 1.
Therefore lim

n→∞
d(ASxn, SAxn) = 0 so that the pair (A,S) is compatible and clearly

the pair (B, T ) is weakly compatible.

We define β : [0,∞)→ [0, 1s ) by β(t) = 480
489e

−t
100 . Then we have β ∈ F.

Case (i): x, y ∈ [0, 1).
d(Ax,By) = 27

10 , d(Sx, Ty) = 5 + 1
x+y , d(Ty,By) = 5 + 1

x+y , d(Sx,Ax) = 27
10 ,

d(Ax, Ty) = 27
10 , d(Sx,By) = 5 + 1

x+y and

M(x, y) = max{d(Sx, Ty), d(Sx,Ax), d(Ty,By), d(Sx,By)
2s , d(Ty,Ax)

2s ,
d(Sx,Ax)d(Ty,By)

1+d(Sx,Ty)+d(Ax,By) ,
d(Sx,By)d(Ty,Ax)

1+s4[d(Sx,Ty)+d(Ax,By)]}

= max{5 + 1
x+y ,

27
10 , 5 + 1

x+y , (
240
489 )(5 + 1

x+y ), ( 240
489 )( 27

10 ),
( 27
10 )(5+

1
x+y )

1+5+ 1
x+y+ 27

10

,

(5+ 1
x+y )( 27

10 )

1+( 489
480 )

4(5+ 1
x+y+ 27

10 )
}

= 5 + 1
x+y .

Since
1
2s min{d(Sx,Ax), d(Ty,By)} = 240

489 min{ 2710 , 5 + 1
x+y}

= ( 240
489 )( 27

10 )

≤ max{5 + 1
x+y ,

27
10}

= max{d(Sx, Ty), d(Ax,By)}.
Now we consider

s4d(Ax,By) = (489
480 )4( 27

10 ) ≤ 480
489e

−(5+ 1
x+y

)

100 5 + 1
x+y = β(M(x, y))M(x, y).

Case (ii): x, y ∈ (1,∞).
d(Ax,By) = 27

10 , d(Sx, Ty) = 5 + 1
x+y , d(Ty,By) = 5 + 1

x+y , d(Sx,Ax) = 27
10 ,

d(Ax, Ty) = 27
10 , d(Sx,By) = 5 + 1

x+y and

M(x, y) = max{d(Sx, Ty), d(Sx,Ax), d(Ty,By), d(Sx,By)
2s , d(Ty,Ax)

2s ,
d(Sx,Ax)d(Ty,By)

1+d(Sx,Ty)+d(Ax,By) ,
d(Sx,By)d(Ty,Ax)

1+s4[d(Sx,Ty)+d(Ax,By)]}

= max{5 + 1
x+y ,

27
10 , 5 + 1

x+y , (
240
489 )(5 + 1

x+y ), ( 240
489 )( 27

10 ),
( 27
10 )(5+

1
x+y )

1+5+ 1
x+y+ 27

10

,

(5+ 1
x+y )( 27

10 )

1+( 489
480 )

4(5+ 1
x+y+ 27

10 )
}

= 5 + 1
x+y .

Since
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1
2s min{d(Sx,Ax), d(Ty,By)} = 240

489 min{ 2710 , 5 + 1
x+y}

= ( 240
489 )( 27

10 )

≤ max{5 + 1
x+y ,

27
10}

= max{d(Sx, Ty), d(Ax,By)}.
Now we consider

s4d(Ax,By) = (489
480 )4( 27

10 ) ≤ 480
489e

−(5+ 1
x+y

)

100 5 + 1
x+y = β(M(x, y))M(x, y).

Case (iii): x ∈ [0, 1), y ∈ (1,∞).
d(Ax,By) = 27

10 , d(Sx, Ty) = 5 + 1
x+y , d(Ty,By) = 5 + 1

x+y , d(Sx,Ax) = 27
10 ,

d(Ax, Ty) = 27
10 , d(Sx,By) = 5 + 1

x+y and

M(x, y) = max{d(Sx, Ty), d(Sx,Ax), d(Ty,By), d(Sx,By)
2s , d(Ty,Ax)

2s ,
d(Sx,Ax)d(Ty,By)

1+d(Sx,Ty)+d(Ax,By) ,
d(Sx,By)d(Ty,Ax)

1+s4[d(Sx,Ty)+d(Ax,By)]}

= max{5 + 1
x+y ,

27
10 , 5 + 1

x+y , (
240
489 )(5 + 1

x+y ), ( 240
489 )( 27

10 ),
( 27
10 )(5+

1
x+y )

1+5+ 1
x+y+ 27

10

,

(5+ 1
x+y )( 27

10 )

1+( 489
480 )

4(5+ 1
x+y+ 27

10 )
}

= 5 + 1
x+y .

Since
1
2s min{d(Sx,Ax), d(Ty,By)} = 240

489 min{ 2710 , 5 + 1
x+y}

= ( 240
489 )( 27

10 )

≤ max{5 + 1
x+y ,

27
10}

= max{d(Sx, Ty), d(Ax,By)}.
Now we consider

s4d(Ax,By) = (489
480 )4( 27

10 ) ≤ 480
489e

−(5+ 1
x+y

)

100 (5 + 1
x+y ) = β(M(x, y))M(x, y).

Case (iv): x ∈ (1,∞), y ∈ [0, 1).
d(Ax,By) = 27

10 , d(Sx, Ty) = 5 + 1
x+y , d(Ty,By) = 5 + 1

x+y , d(Sx,Ax) = 27
10 ,

d(Ax, Ty) = 27
10 , d(Sx,By) = 5 + 1

x+y and

M(x, y) = max{d(Sx, Ty), d(Sx,Ax), d(Ty,By), d(Sx,By)
2s , d(Ty,Ax)

2s ,
d(Sx,Ax)d(Ty,By)

1+d(Sx,Ty)+d(Ax,By) ,
d(Sx,By)d(Ty,Ax)

1+s4[d(Sx,Ty)+d(Ax,By)]}

= max{5 + 1
x+y ,

27
10 , 5 + 1

x+y , (
240
489 )(5 + 1

x+y ), ( 240
489 )( 27

10 ),
( 27
10 )(5+

1
x+y )

1+5+ 1
x+y+ 27

10

,

(5+ 1
x+y )( 27

10 )

1+( 489
480 )

4(5+ 1
x+y+ 27

10 )
}

= 5 + 1
x+y .

Since
1
2s min{d(Sx,Ax), d(Ty,By)} = 240

489 min{ 2710 , 5 + 1
x+y}

= ( 240
489 )( 27

10 )

≤ max{5 + 1
x+y ,

27
10}

= max{d(Sx, Ty), d(Ax,By)}.
Now we consider

s4d(Ax,By) = (489
480 )4( 27

10 ) ≤ 480
489e

−(5+ 1
x+y

)

100 (5 + 1
x+y ) = β(M(x, y))M(x, y).

Case (v): x = 1, y ∈ [0, 1).
d(Ax,By) = 27

10 , d(Sx, Ty) = 27
10 , d(Ty,By) = 5 + 1

x+y , d(Sx,Ax) = 0,

d(Ax, Ty) = 27
10 , d(Sx,By) = 27

10 and

M(x, y) = max{d(Sx, Ty), d(Sx,Ax), d(Ty,By), d(Sx,By)
2s , d(Ty,Ax)

2s ,
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d(Sx,Ax)d(Ty,By)
1+d(Sx,Ty)+d(Ax,By) ,

d(Sx,By)d(Ty,Ax)
1+s4[d(Sx,Ty)+d(Ax,By)]}

= max{ 2710 , 0, 5 + 1
x+y , (

240
489 )( 27

10 ), ( 240
489 )( 27

10 ), 0,
( 27
10 )(

27
10 )

1+( 489
480 )

4(5+ 1
x+y+ 27

10 )
}

= 5 + 1
x+y .

Since
1
2s min{d(Sx,Ax), d(Ty,By)} = 240

489 min{0, 5 + 1
x+y}

= 0 ≤ max{ 2710 ,
27
10}

= max{d(Sx, Ty), d(Ax,By)}.
Now we consider

s4d(Ax,By) = (489
480 )4( 27

10 ) ≤ 480
489e

−(5+ 1
x+y

)

100 (5 + 1
x+y ) = β(M(x, y))M(x, y).

Case (vi): x = 1, y ∈ (1,∞).
d(Ax,By) = 27

10 , d(Sx, Ty) = 27
10 , d(Ty,By) = 5 + 1

x+y , d(Sx,Ax) = 0,

d(Ax, Ty) = 27
10 , d(Sx,By) = 27

10 and

M(x, y) = max{d(Sx, Ty), d(Sx,Ax), d(Ty,By), d(Sx,By)
2s , d(Ty,Ax)

2s ,
d(Sx,Ax)d(Ty,By)

1+d(Sx,Ty)+d(Ax,By) ,
d(Sx,By)d(Ty,Ax)

1+s4[d(Sx,Ty)+d(Ax,By)]}

= max{ 2710 , 0, 5 + 1
x+y , (

240
489 )( 27

10 ), ( 240
489 )( 27

10 ), 0,
( 27
10 )(

27
10 )

1+( 489
480 )

4(5+ 1
x+y+ 27

10 )
}

= 5 + 1
x+y .

Since
1
2s min{d(Sx,Ax), d(Ty,By)} = 240

489 min{0, 5 + 1
x+y}

= 0 ≤ max{ 2710 ,
27
10}

= max{d(Sx, Ty), d(Ax,By)}.
Now we consider

s4d(Ax,By) = (489
480 )4( 27

10 ) ≤ 480
489e

−(5+ 1
x+y

)

100 (5 + 1
x+y ) = β(M(x, y))M(x, y).

Case (vii): x ∈ [0, 1), y = 1.
Here d(Ax,By) = 0. Clearly the inequality (2.3) holds in this case.
Case (viii): x ∈ [0, 1), y = 1.
Here d(Ax,By) = 0. In this case the inequality (2.3) holds clearly.
From all the above four cases, A,B, S and T are Geraghty-Suzuki type contraction
maps. Therefore A,B, S and T satisfy all the hypotheses of Theorem 2.3 and 1 is
the unique common fixed point of A,B, S and T .

The following is an example in support of Theorem 2.4.

Example 3.2. Let X = [0, 1] and let d : X ×X → R+ defined by

d(x, y) =


0 if x = y,
11
15 if x, y ∈ [0, 23 ),

23
25 + x+y

26 if x, y ∈ [ 23 , 1],
121
250 otherwise.

The conditions (b1) and (b2) are trivially hold.
We now verify condition (b3) for nontrivial case.
Let y ∈ [0, 23 ) and x, z ∈ [ 23 , 1].

Then d(x, z) = 23
25 + x+z

26 , d(x, y) = 121
250 , d(y, z) = 121

250 .
We have
x+ z ≤ 2 =⇒ x+z

26 ≤
1
13 so that 23

25 + x+z
26 ≤

23
25 + 1

13 <
51
49 ( 121

125 ).

Therefore d(x, z) = 23
25 + x+z

26 < 51
49 ( 121

250 + 121
250 ) = s[d(x, y) + d(y, z)] where s = 51

49 .

The other cases also trivially hold with s = 51
49 so that (b3) holds and d is a b-metric.

Clearly this metric d is complete so that (X, d) is a complete b-metric space.
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Here we observe that when x = 9
10 , z = 1 ∈ [ 23 , 1] and y ∈ [0, 23 ), we have

d(x, z) = 1291
1300 �

121
125 = d(x, y) + d(y, z) so that d is not a metric.

We define A,B, S, T : X → X by

A(x) = 2
3 if x ∈ [0, 1], B(x) =

{
1
3 if x ∈ [0, 23 )

1− x
2 if x ∈ [ 23 , 1],

S(x) =

{
x if x ∈ [0, 23 )

4
3 − x if x ∈ [ 23 , 1],

and T (x) =

{
1
4 if x ∈ [0, 23 )

4
3 − x if x ∈ [ 23 , 1].

Clearly A(X) ⊆ T (X) and B(X) ⊆ S(X). A(X) = { 23} is b-closed.

We choose a sequence {xn} with {xn} = 2
3 + 1

2n , n ≥ 2 with

lim
n→∞

Axn = lim
n→∞

Sxn = 2
3 , hence the pair (A,S) satisfies the b-(E.A)-property.

Clearly the pairs (A,S) and (B, T ) are weakly compatible.

We define β : [0,∞)→ [0, 1s ) by β(t) = 49
51e

−t
100 .

Then we have β ∈ F.
Case (i): x, y ∈ [0, 23 ).

d(Ax,By) = 121
250 , d(Sx, Ty) = 11

15 , d(Ty,By) = 11
15 , d(Sx,Ax) = 121

250 ,

d(Ax, Ty) = 121
250 , d(Sx,By) = 11

15 and

M(x, y) = max{d(Sx, Ty), d(Sx,Ax), d(Ty,By), d(Sx,By)
2s , d(Ty,Ax)

2s ,
d(Sx,Ax)d(Ty,By)

1+d(Sx,Ty)+d(Ax,By) ,
d(Sx,By)d(Ty,Ax)

1+s4[d(Sx,Ty)+d(Ax,By)]}

= max{ 1115 ,
121
250 ,

11
15 , (

49
102 )( 11

15 ), ( 49
102 )( 121

250 ),
( 121
250 )(

11
15 )

1+ 11
15+

121
250

,
( 11
15 )(

121
250 )

1+( 51
49 )

4( 11
15+

121
250 )
} = 11

15 .

Since
1
2s min{d(Sx,Ax), d(Ty,By)} = 49

102 min{ 121250 ,
11
15}

= ( 49
102 )( 121

250 )

≤ max{ 1115 ,
121
250}

= max{d(Sx, Ty), d(Ax,By)}.
Now we consider

s4d(Ax,By) = (51
49 )4( 121

250 ) ≤ 49
51e

−( 11
15

)

100
11
15 = β(M(x, y))M(x, y).

Case (ii): x, y ∈ ( 2
3 , 1].

d(Ax,By) = 121
250 , d(Sx, Ty) = 11

15 , d(Ty,By) = 11
15 , d(Sx,Ax) = 121

250 ,

d(Ax, Ty) = 121
250 , d(Sx,By) = 11

15 and

M(x, y) = max{d(Sx, Ty), d(Sx,Ax), d(Ty,By), d(Sx,By)
2s , d(Ty,Ax)

2s ,
d(Sx,Ax)d(Ty,By)

1+d(Sx,Ty)+d(Ax,By) ,
d(Sx,By)d(Ty,Ax)

1+s4[d(Sx,Ty)+d(Ax,By)]}

= max{ 1115 ,
121
250 ,

11
15 , (

49
102 )( 11

15 ), ( 49
102 )( 121

250 ),
( 121
250 )(

11
15 )

1+ 11
15+

121
250

,
( 11
15 )(

121
250 )

1+( 51
49 )

4( 11
15+

121
250 )
} = 11

15 .

Since
1
2s min{d(Sx,Ax), d(Ty,By)} = 49

102 min{ 121250 ,
11
15}

= ( 49
102 )( 121

250 )

≤ max{ 1115 ,
121
250}

= max{d(Sx, Ty), d(Ax,By)}.

Now we consider s4d(Ax,By) = (51
49 )4( 121

250 ) ≤ 49
51e

−( 11
15

)

100
11
15 = β(M(x, y))M(x, y).

Case (iii): x ∈ [0, 23 ), y ∈ ( 2
3 , 1].

d(Ax,By) = 121
250 , d(Sx, Ty) = 11

15 , d(Ty,By) = 11
15 , d(Sx,Ax) = 121

250 ,

d(Ax, Ty) = 121
250 , d(Sx,By) = 11

15 and

M(x, y) = max{d(Sx, Ty), d(Sx,Ax), d(Ty,By), d(Sx,By)
2s , d(Ty,Ax)

2s ,
d(Sx,Ax)d(Ty,By)

1+d(Sx,Ty)+d(Ax,By) ,
d(Sx,By)d(Ty,Ax)

1+s4[d(Sx,Ty)+d(Ax,By)]}
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= max{ 1115 ,
121
250 ,

11
15 , (

49
102 )( 11

15 ), ( 49
102 )( 121

250 ),
( 121
250 )(

11
15 )

1+ 11
15+

121
250

,
( 11
15 )(

121
250 )

(1+( 51
49 )

4 11
15+

121
250 )
} = 11

15 .

Since
1
2s min{d(Sx,Ax), d(Ty,By)} = 49

102 min{ 121250 ,
11
15}

= ( 49
102 )( 121

250 )

≤ max{ 1115 ,
121
250}

= max{d(Sx, Ty), d(Ax,By)}.
Now we consider

s4d(Ax,By) = (51
49 )4( 121

250 ) ≤ 49
51e

−( 11
15

)

100
11
15 = β(M(x, y))M(x, y).

Case (iv): x ∈ ( 2
3 , 1], y ∈ [0, 23 ).

d(Ax,By) = 121
250 , d(Sx, Ty) = 11

15 , d(Ty,By) = 11
15 , d(Sx,Ax) = 121

250 ,

d(Ax, Ty) = 121
250 , d(Sx,By) = 11

15 and

M(x, y) = max{d(Sx, Ty), d(Sx,Ax), d(Ty,By), d(Sx,By)
2s , d(Ty,Ax)

2s ,
d(Sx,Ax)d(Ty,By)

1+d(Sx,Ty)+d(Ax,By) ,
d(Sx,By)d(Ty,Ax)

1+s4[d(Sx,Ty)+d(Ax,By)]}

= max{ 1115 ,
121
250 ,

11
15 , (

49
102 )( 11

15 ), ( 49
102 )( 121

250 ),
( 121
250 )(

11
15 )

1+ 11
15+

121
250

,
( 11
15 )(

121
250 )

1+( 51
49 )

4( 11
15+

121
250 )
}

= 11
15 .

Since
1
2s min{d(Sx,Ax), d(Ty,By)} = 49

102 min{ 121250 ,
11
15}

= ( 49
102 )( 121

250 )

≤ max{ 1115 ,
121
250}

= max{d(Sx, Ty), d(Ax,By)}.

Now we consider s4d(Ax,By) = (51
49 )4( 121

250 ) ≤ 49
51e

−( 11
15

)

100
11
15 = β(M(x, y))M(x, y).

Case (v): x = 2
3 , y ∈ [0, 23 ).

d(Ax,By) = 121
250 , d(Sx, Ty) = 121

250 , d(Ty,By) = 11
15 , d(Sx,Ax) = 0,

d(Ax, Ty) = 121
250 , d(Sx,By) = 121

250 and

M(x, y) = max{d(Sx, Ty), d(Sx,Ax), d(Ty,By), d(Sx,By)
2s , d(Ty,Ax)

2s ,
d(Sx,Ax)d(Ty,By)

1+d(Sx,Ty)+d(Ax,By) ,
d(Sx,By)d(Ty,Ax)

1+s4[d(Sx,Ty)+d(Ax,By)]}

= max{ 121250 , 0,
11
15 , (

49
102 )( 121

250 ), ( 49
102 )( 121

250 ), 0,
( 121
250 )(

121
250 )

(1+( 51
49 )

4 11
15+

121
250 )
} = 11

15 .

Since
1
2s min{d(Sx,Ax), d(Ty,By)} = 240

489 min{0, 1115}
= 0 ≤ max{ 121250 ,

121
250}

= max{d(Sx, Ty), d(Ax,By)}.
Now we consider

s4d(Ax,By) = (51
49 )4( 121

250 ) ≤ 49
51e

−( 11
15

)

100
11
15 = β(M(x, y))M(x, y).

Case (vi): x = 2
3 , y ∈ ( 2

3 , 1].

d(Ax,By) = 121
250 , d(Sx, Ty) = 121

250 , d(Ty,By) = 11
15 , d(Sx,Ax) = 0,

d(Ax, Ty) = 121
250 , d(Sx,By) = 121

250 and

M(x, y) = max{d(Sx, Ty), d(Sx,Ax), d(Ty,By), d(Sx,By)
2s , d(Ty,Ax)

2s ,
d(Sx,Ax)d(Ty,By)

1+d(Sx,Ty)+d(Ax,By) ,
d(Sx,By)d(Ty,Ax)

1+s4[d(Sx,Ty)+d(Ax,By)]}

= max{ 121250 , 0,
11
15 , (

49
102 )( 121

250 ), ( 49
102 )( 121

250 ), 0,
( 121
250 )(

121
250 )

1+( 51
49 )

4( 11
15+

121
250 )
} = 11

15 .

Since
1
2s min{d(Sx,Ax), d(Ty,By)} = 240

489 min{0, 1115}
= 0 ≤ max{ 121250 ,

121
250}

= max{d(Sx, Ty), d(Ax,By)}.
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Now we consider

s4d(Ax,By) = (51
49 )4( 121

250 ) ≤ 49
51e

−( 11
15

)

100
11
15 = β(M(x, y))M(x, y).

Case (vii): x ∈ [0, 23 ), y = 2
3 .

Here d(Ax,By) = 0. Clearly the inequality (2.3) holds in this case.
Case (viii): x ∈ [0, 23 ), y = 2

3 .
Here d(Ax,By) = 0. In this case the inequality (2.3) holds clearly.
From all the above four cases, A,B, S and T are Geraghty-Suzuki type contraction
maps. Therefore A,B, S and T satisfy all the hypotheses of Theorem 2.4 and 2

3 is
the unique common fixed point of A,B, S and T .
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Abstract. This paper deals with the existence and uniqueness of solutions
for a coupled system of fractional differential equations with coupled nonlo-

cal and integral boundary conditions. The existence results are obtained by

using Leray-Schauder nonlinear alternative and Banach contraction principle.
An illustrative example is presented at the end of the paper to illustrate the

validity of our results.

1. Introduction

In this paper, we are interested in the existence of solutions for the nonlinear
fractional differential equations{

cDαu (t) = f (t, u (t) , v (t)) , t ∈ [0, 1] , 2 < α ≤ 3,
cDβv (t) = g (t, u (t) , v (t)) , t ∈ [0, 1] , 2 < β ≤ 3,

(1.1)

subject to three-point coupled boundary conditions
λu (0) + γu (1) = v (η) , λv (0) + γv (1) = u (η) ,
u (0) =

∫ η
0
v (s) ds, u (0) =

∫ η
0
v (s) ds,

λCDPu (0) + γCDPu (1) = v (η) , 1 < p ≤ 2
λCDP v (0) + γCDP v (1) = u (η) , 1 < p ≤ 2

(1.2)

where γ, λ ∈ R+, f, g ∈ C
(
[0, 1]× R2,R

)
and cDα, cDβ denote the Caputo frac-

tional derivatives of order α and β respectively.

The concept of fractional calculus has played an important role in improving
the work based on integer-order (classical) calculus in several diverse disciplines of
science and engineering and the details of its basic notions, results and methods
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can be found in the texts ([2, 17]) and papers ([1, 21, 23]). The nonlocal na-
ture of a fractional order differential operator, which take into account hereditary
properties of various material and processes, has helped to improve the mathemat-
ical modeling of many natural phenomena and physical processes, see for example
([17, 22]). The increasing interest of fractional differential equations and inclusions
are motivated by their applications in various fields of science such as physics chem-
istry, biology, economics, fluid mechanics, control theory, etc, we refer the reader
to ([3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 19, 20, 27]) and the references therein.

Coupled systems of fractional-order differential equations constitute an inter-
esting and important field of research in view of their applications in many real
world problems such as anomalous diffusion [25], disease models [12], synchroniza-
tion of chaotic systems [24], etc. For some theoretical works on coupled systems
of fractional-order differential equations, we refer the reader to a series of papers
([10, 15, 16, 26, 28, 29]).

The goal of this paper is to establish the existence and uniqueness results for
the nonlocal boundary value problem (1.1)− (1.2) by using some well-known tools
of fixed point theory such as Banach contraction principle and Leray-Schauder
nonlinear alternative. The paper is organized as follows. In Section 2, we recall
some preliminary facts that we need in the sequel, for more details; see [17]. Section
3, deals with main results and we give an example to illustrate our results.

2. Preliminaries

In this section, we introduce some definitions and lemmas, see ([17, 18]).

Definition 2.1. Let α > 0, n − 1 < α < n, n = [α] + 1 and u ∈ C ([0,∞) ,R).
The Caputo derivative of fractional order α for the function u is defined by

cDαu (t) =
1

Γ (n− α)

t∫
0

(t− s)n−α−1
u(n) (s) ds,

where Γ (·) is the Euler Gamma function.

Definition 2.2. The Riemann-Liouville fractional integral of order α > 0 for a
function u : (0,∞)→ R is given by

Iαu (t) =
1

Γ (α)

t∫
0

(t− s)α−1
u (s) ds, t > 0,

where Γ (·) is the Euler Gamma function, provided that the right side is pointwise
defined on (0,∞).

Lemma 2.1. [18]. Let α > 0, n − 1 < α < n and the function g : [0, T ] → R be
continuous for each T > 0. Then, the general solution of the fractional differential
equation cDαg (t) = 0 is given by

g (t) = c0 + c1t+ · · ·+ cn−1t
n−1,

where c0, c1, ..., cn−1 are real constants and n = [α] + 1.
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Also, in [8], authors have been proved that for each T > 0 and u ∈ C ([0, T ]) we
have

IαcDαu (t) = u (t) + c0 + c1t+ · · ·+ cn−1t
n−1,

where c0, c1, ..., cn−1 are real constants and n = [α] + 1.

3. Existence results

Let X = {u (t) : u (t) ∈ C ([0, 1] ,R)} endowed with the norm ‖u‖ = sup
t∈[0,1]

|u (t)|

such that ‖u‖ < ∞. Then (X, ‖.‖) is a Banach space and the product space
(X ×X, ‖(u, v)‖) is also a Banach space equipped with the norm ‖(u, v)‖ = ‖u‖+
‖v‖.

Throughout the paper, we let

M =
Γ (3− p)
|γ − η2−p|

6= 0, |λ+ γ − 1| 6= 0,
∣∣γ − η2

∣∣ 6= 0, Q =
∣∣2 (1− η) (γ − η) + η2 |λ+ γ − 1|

∣∣ 6= 0,

A (t) = |Λ1 (t)| = |λ+ γ − 1|
(
η2 + 2 (1− η) t

)
,

B (t) = |Λ2 (t)| =
(
η3 |λ+ γ − 1|+ 3

∣∣γ − η2
∣∣ (1− η)

) (
η2 + 2 (1− η) t

)
−Q

(
η3 + 3 (1− η) t2

)
,

and

Q = 2 (1− η) (γ − η) + η2 (λ+ γ − 1) 6= 0.

Lemma 3.1. Let y ∈ C ([0, 1] ,R). Then the solution of the linear differential
system

cDαu (t) = y (t) , cDβv (t) = h (t) , t ∈ [0, 1] , 2 < α, β ≤ 3

λu (0) + γu (1) = v (η) , λv (0) + γv (1) = u (η) ,

u (0) =
∫ η

0
v (s) ds, v (0) =

∫ η
0
u (s) ds,

λcDpu (0) + γcDpu (1) =c Dpv (η) , 1 < p ≤ 2,

λcDpv (0) + γcDpv (1) =c Dpu (η) , 1 < p ≤ 2,

(3.1)
is equivalent to the system of integral equations

u (t) =

t∫
0

(t− s)α−1

Γ (α)
y (s) ds+

1

1− η

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
h (τ) dτ

 ds

− Λ1 (t)

Q (1− η)

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
h (τ) dτ

 ds

− Λ2 (t)M

6 (1− η)Q

 η∫
0

(η − s)β−p−1

Γ (β − p)
h (s) ds− γ

1∫
0

(1− s)α−p−1

Γ (α− p)
y (s) ds


+

Λ1 (t)

Q (λ+ γ − 1)

 η∫
0

(η − s)β−1

Γ (β)
h (s) ds− γ

1∫
0

(1− s)α−1

Γ (α)
y (s) ds

 (3.2)
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and

v (t) =

t∫
0

(t− s)β−1

Γ (β)
y (s) ds+

1

1− η

η∫
0

 s∫
0

(s− τ)
α−1

Γ (α)
h (τ) dτ

 ds

− Λ1 (t)

Q (1− η)

η∫
0

 s∫
0

(s− τ)
α−1

Γ (α)
h (τ) dτ

 ds

− Λ2 (t)M

6 (1− η)Q

 η∫
0

(η − s)α−p−1

Γ (α− p)
h (s) ds− γ

1∫
0

(1− s)β−p−1

Γ (α− p)
y (s) ds


+

Λ1 (t)

Q (λ+ γ − 1)

 η∫
0

(η − s)α−1

Γ (α)
h (s) ds− γ

1∫
0

(1− s)β−1

Γ (α)
y (s) ds

 ,
(3.3)

where

Λ1 (t) = (λ+ γ − 1)
(
η2 + 2 (1− η) t

)
,

and

Λ2 (t) =
(
η3 (λ+ γ − 1) + 3

(
γ − η2

)
(1− η)

) (
η2 + 2 (1− η) t

)
−Q

(
η3 + 3 (1− η) t2

)
.

Proof. It is well known that the solution of equations cDαu (t) = y (t), cDβv (t) =
h (t) can be written as

u (t) = Iαy (t) + c0 + c1t+ c2t
2, (3.4)

v (t) = Iβh (t) + d0 + d1t+ d2t
2, (3.5)

where c0, c1,c2 ∈ R and d0, d1,d2 ∈ R are arbitrary constants.
Then, from (3.4) we have

u′ (t) = Iα−1y (t) + c1 + 2c2t,

and

cDpu (t) = Iα−py (t) + c2
2t2−p

Γ (3− p)
, 1 < p ≤ 2.

By using the three-point boundary conditions, we obtain

c2 =
M

2

(
Iβ−py (η)− γIα−py (1)

)
,

c0 = −2η2 (λ+ γ − 1)

2 (1− η)Q

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
h (τ) dτ

 ds+
1

1− η

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
h (τ) dτ

 ds

−
(
η2
[
η3 (λ+ γ − 1) + 3

(
γ − η2

)
(1− η)

]
− η3Q

)
M

2 (1− η)Q

 η∫
0

(η − s)β−p−1

Γ (β − p)
h (s) ds− γ

1∫
0

(1− s)α−p−1

Γ (α− p)
y (s) ds


+
η2

Q

 η∫
0

(η − s)β−1

Γ (β)
h (s) ds− γ

1∫
0

(1− s)α−1

Γ (α)
y (s) ds

 ,
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and

c1 =
−2 (λ+ γ − 1)

Q

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
h (τ) dτ

 ds

−
(
η3 (λ+ γ − 1) + 3

(
γ − η2

)
(1− η)

)
M

3Q

 η∫
0

(η − s)β−p−1

Γ (β − p)
h (s) ds− γ

1∫
0

(1− s)α−p−1

Γ (α− p)
y (s) ds


+

2 (1− η)

Q

 η∫
0

(η − s)β−1

Γ (β)
y (s) ds− γ

1∫
0

(1− s)α−1

Γ (α)
y (s) ds

 .
Substituting the values of constants c0, c1 and c2 in (3.4), we get solution (3.2).
Similarly, we obtain solution (3.3). The proof is complete. �

The following relations hold:

|A (t)| ≤ |β + γ − 1|
(
η2 + 2 (1− η)

)
= A1,

and

|B (t)| ≤
∣∣(η3 |β + γ − 1|+ 3

∣∣γ − η2
∣∣ (1− η)

) (
η2 + 2 (1− η)

)
−Q

(
η3 + 3 (1− η)

)∣∣ = B1,

For the sake of brevity, we set

∆1 = ηβ+1

(1−η)Γ(β+2) + A1η
β+1

Q(1−η)Γ(β+2) + MB1η
β−p

(1−η)QΓ(λ−p+1) + A1η
β

Q|β+γ−1|Γ(β+1) ,

∆2 = MB1γ
6(1−η)QΓ(α−p+1) + A1γ

Q|λ+γ−1|Γ(α+1) + 1
Γ(α+1) ,

∆3 = ηα+1

(1−η)Γ(α+2) + A1η
α+1

Q(1−η)Γ(α+2) + MB1η
α−p

(1−η)QΓ(α−p+1) + A1η
α

Q|λ+γ−1|Γ(α+1) ,

and
∆4 = MB1γ

6(1−η)QΓ(β−p+1) + A1γ
Q|λ+γ−1|Γ(β+1) + 1

Γ(β+1) .

In view of Lemma 1.2, we define the operator T : X ×X → X ×X by

T (u, v) (t) =

(
T1 (u, v) (t)
T2 (u, v) (t)

)
,

where

T1 (u, v) (t) =

t∫
0

(t− s)α−1

Γ (α)
f (s, u (s) , v (s)) ds+

1

1− η

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
g (τ, u (τ) , v (τ)) dτ

 ds

− B (t)M

6 (1− η)Q

 η∫
0

(η − s)β−p−1

Γ (β − p)
g (s, u (s) , v (s)) ds− γ

1∫
0

(1− s)α−p−1

Γ (α− p)
f (s, u (s) , v (s)) ds


+

A (t)

Q |β + γ − 1|

 η∫
0

(η − s)β−1

Γ (β)
g (s, u (s) , v (s)) ds− γ

1∫
0

(1− s)α−1

Γ (α)
f (s, u (s) , v (s)) ds.


− A (t)

Q (1− η)

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
g (τ, u (τ) , v (τ)) dτ

 ds

and

T2 (u, v) (t) =

t∫
0

(t− s)β−1

Γ (β)
g (s, u (s) , v (s)) ds+

1

1− η

η∫
0

 s∫
0

(s− τ)
α−1

Γ (α)
f (τ, u (τ) , v (τ)) dτ

 ds
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− B (t)M

6 (1− η)Q

 η∫
0

(η − s)α−p−1

Γ (α− p)
f (s, u (s) , v (s)) ds− γ

1∫
0

(1− s)β−p−1

Γ (β − p)
g (s, u (s) , v (s)) ds


+

A (t)

Q |β + γ − 1|

 η∫
0

(η − s)α−1

Γ (α)
f (s, u (s) , v (s)) ds− γ

1∫
0

(1− s)β−1

Γ (β)
g (s, u (s) , v (s)) ds.


− A (t)

Q (1− η)

η∫
0

 s∫
0

(s− τ)
α−1

Γ (α)
f (τ, u (τ) , v (τ)) dτ

 ds.

Observe that the boundary value problem (1.1)− (1.2) has solutions if the operator
equation (u, v) = T (u, v) has fixed points.

Now we are in a position to present the first main results of this paper. The
existence results is based on Leray-Schauder nonlinear alternative.

Lemma 3.2. [14] (Leray-Schauder alternative ). Let E be a Banach space and
T : E → E be a completely continuous operator (i.e., a map restricted to any
bounded set in E is compact). Let

ε (T ) = {(u, v) ∈ X ×X : (u, v) = λT (u, v) , for some 0 < λ < 1} .

Then either the ε (T ) is unbounded or T has at least one fixed point.

Theorem 3.3. Assume that f , g : [0, 1] × R × R → R are a continuous function
and
(H1) there exist constants ki > 0, mi > 0, i = 0, 1, 2 such that ∀u ∈ R, ∀v ∈ R, we
have

|f (t, u, v)| ≤ k0 + k1 |u|+ k2 |v| ,
and

|g (t, u, v)| ≤ m0 +m1 |u|+m2 |v| .
If (∆2 + ∆3) k1 + (∆1 + ∆4)m1 < 1 and (∆2 + ∆3) k2 + (∆1 + ∆4)m3 < 1, where
∆i, i = 1, 2, 3, 4 are given above. Then the boundary value problem (1.1) − (1.2)
has at least one solution on [0, 1].

Proof. It is clear that T is a continuous operator where T : X × X → X × X is
defined above. Now, we show that T is completely continuous. Let Ω ⊂ X ×X be
bounded. Then there exist positive constants L1 and L2 such that

|f (t, u (t) , v (t))| ≤ L1, |g (t, u (t) , v (t))| ≤ L2, ∀ (u, v) ∈ Ω.

Then for any (u, v) ∈ Ω, we have

|T1 (u, v) (t)| ≤ L2

1− η

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
dτ

 ds

+
|A (t)|L2

Q (1− η)

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
dτ

 ds+ L1

t∫
0

(t− s)α−1

Γ (α)
ds

+
M |B (t)|

6 (1− η)Q

L2

η∫
0

(η − s)β−p−1

Γ (β − p)
ds+ γL1

1∫
0

(1− s)α−p−1

Γ (α− p)
ds


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+
|A (t)|

Q |λ+ γ − 1|

L2

η∫
0

(η − s)β−1

Γ (β)
ds+ γL1

1∫
0

(1− s)α−1

Γ (α)
ds


≤ L2

 1

1− η

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
dτ

 ds+
A1

Q (1− η)

η∫
0

 s∫
0

(s− τ)
β−1

Γ (αβ)
dτ

 ds

+
MB1

6 (1− η)Q

η∫
0

(η − s)β−p−1

Γ (β − p)
ds+

A1

6 |λ+ γ − 1|

η∫
0

(η − s)β−1

Γ (β)
ds


+L1

 MγB1

6 (1− η)Q

1∫
0

(1− s)α−p−1

Γ (α− p)
ds+

A1γ

Q |λ+ γ − 1|

1∫
0

(1− s)α−1

Γ (α)
ds

+

t∫
0

(t− s)α−1

Γ (α)
ds


≤ L2∆1 + L1∆2.

Hence

‖T1 (u, v)‖ ≤ L2∆1 + L1∆2. (3.6)

In the same way, we can obtain that

‖T2 (u, v)‖ ≤ L1∆3 + L2∆4. (3.7)

Thus, it follows from (3.6) and (3.7) that the operator T is uniformly bounded, since
‖T (u, v)‖ ≤ L1 (∆1 + ∆3)+L2 (∆2 + ∆4). Now, we show that T is equicontinuous.
Let t1, t2 ∈ [0, 1] with t1 < t2. Then we have

|T1 (u (t2) , v (t2))− T1 (u (t1) , v (t1))| ≤ L1

t1∫
0

(t2 − s)α−1 − (t1 − s)α−1

Γ (α)
ds

+L1

t2∫
t1

(t2 − s)α−1

Γ (α)
ds+

|A (t2)−A (t1)|L2

Q (1− η)

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
dτ

 ds

+
(B (t2)−B (t1))M

6 (1− η)Q

L2

η∫
0

(η − s)β−p−1

Γ (β − p)
ds+ γL1

1∫
0

(1− s)α−p−1

Γ (α− p)
ds


+
A (t2)−A (t1)

Q |λ+ γ − 1|

L2

η∫
0

(η − s)β−1

Γ (β)
ds− γL1

1∫
0

(1− s)α−1

Γ (α)
ds

 .
Obviously, the right-hand side of the above inequality tends to zero as t2 → t1.
Similarly, we have

|T2 (u (t2) , v (t2))− T2 (u (t1) , v (t1))| ≤ L2

t1∫
0

(t2 − s)β−1 − (t1 − s)β−1

Γ (β)
ds
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+L2

t2∫
t1

(t2 − s)β−1

Γ (β)
ds+

|A (t2)−A (t1)|L1

Q (1− η)

η∫
0

 s∫
0

(s− τ)
α−1

Γ (α)
dτ

 ds

+
(B (t2)−B (t1))M

6 (1− η)Q

L1

η∫
0

(η − s)α−p−1

Γ (α− p)
ds+ γL2

1∫
0

(1− s)β−p−1

Γ (β − p)
ds


+
A (t2)−A (t1)

Q |λ+ γ − 1|

L1

η∫
0

(η − s)α−1

Γ (α)
ds− γL2

1∫
0

(1− s)β−1

Γ (β)
ds

 .
Again, it is seen that the right-hand side of the above inequality tends to zero as
t2 → t1. Thus, the operator T is equicontinuous.
Therefore, the operator T is completely continuous.
Finally, it will be verified that the set ε (T ) = {(u, v) ∈ X ×X : (u, v) = λT (u, v) , 0 ≤ λ ≤ 1}
is bounded. Let (u, v) ∈ ε (T ), with (u, v) = λT (u, v) for any t ∈ [0, 1], we have

u (t) = λT1 (u, v) (t) , v (t) = λT2 (u, v) (t) .

Then

|u (t)| ≤ ∆2 (k0 + k1 |u|+ k2 |v|) + ∆1 (m0 +m1 |u|+m2 |v|) ,

= ∆2k0 + ∆1m0 + (∆2k1 + ∆1m1) |u|+ (∆2k2 + ∆1m2) |v| ,
and

|v (t)| ≤ ∆3 (k0 + k1 |u|+ k2 |v|) + ∆4 (m0 +m1 |u|+m2 |v|) ,

= ∆3k0 + ∆4m0 + (∆3k1 + ∆4m1) |u|+ (∆3k2 + ∆4m2) |v| .
Hence we have

‖u‖ = ∆2k0 + ∆1m0 + (∆2k1 + ∆1m1) ‖u‖+ (∆2k2 + ∆1m2) ‖v‖ ,

and

‖v‖ = ∆3k0 + ∆4m0 + (∆3k1 + ∆4m1) |u|+ (∆3k2 + ∆4m2) |v| ,
which imply that

‖u‖+ ‖v‖ = (∆2 + ∆3) k0 + (∆1 + ∆4)m0 + [(∆2 + ∆3) k1 + (∆1 + ∆4)m1] ‖u‖

+ [(∆2 + ∆3) k2 + (∆1 + ∆4)m2] ‖v‖ .
Consequently,

‖(u, v)‖ =
(∆2 + ∆3) k0 + (∆1 + ∆4)m0

∆0
,

where

∆0 = min {1− [(∆2 + ∆3) k1 + (∆1 + ∆4)m1] , 1− [(∆2 + ∆3) k2 + (∆1 + ∆4)m2]},

which proves that ε (T ) is bounded. Thus, by Lemma 3.2, the operator T has at
least one fixed point. Hence boundary value problem (1.1)− (1.2) has at least one
solution. The proof is complete. �

Now, we are in a position to present the second main results of this paper
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Theorem 3.4. Assume that f, g : [0, 1] × R2 → R are continuous functions and
there exist positive constants L1 and L2 such that for all t ∈ [0, 1] and ui , vi ∈
R, i = 1, 2, we havre
(1) |f (t, u1, u2)− f (t, v1, v2)| ≤ L1 (|u1 − v1|+ |u2 − v2|),

(2) |g (t, u1, u2)− g (t, v1, v2)| ≤ L2 (|u1 − v1|+ |u2 − v2|).
Then the boundary value problem (1.1)−(1.2) has a unique solution on [0, 1] provided

(∆1 + ∆3)L1 + (∆2 + ∆4)L2 < 1.

Proof. Let us set sup
t∈[0,1]

|f (t, 0, 0)| = N1 < ∞ and sup
t∈[0,1]

|g (t, 0, 0)| = N2 < ∞. For

u ∈ X, we observe that

|f (t, u (t) , v (t))| ≤ |f (t, u (t))− f (t, 0, 0)|+ |f (t, 0, 0)| ,

≤ L1 (|u (t)|+ |v (t)|) +N1,

≤ L1 (‖u‖+ ‖v‖) +N1,

and

|g (t, u (t) , v (t))| ≤ |g (t, u (t))− g (t, 0, 0)|+ |g (t, 0, 0)| ≤ L2 ‖u‖+N2.

Then for u ∈ X, we have

|T1 (u, v) (t)| ≤ 1

1− η

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
[L2 ‖(u, v)‖+N2] dτ

 ds

+
|A (t)|

Q (1− η)

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
[L2 ‖(u, v)‖+N2] dτ

 ds+

t∫
0

(t− s)α−1

Γ (α)
[L1 ‖(u, v)‖+N1] ds

+
M |B (t)|

6 (1− η)Q

 η∫
0

(η − s)β−p−1

Γ (β − p)
[L2 ‖(u, v)‖+N2] ds+ γ

1∫
0

(1− s)α−p−1

Γ (α− p)
[L1 ‖(u, v)‖+N1] ds


+

|A (t)|
Q |λ+ γ − 1|

 η∫
0

(η − s)β−1

Γ (β)
[L2 ‖(u, v)‖+N2] ds+ γ

1∫
0

(1− s)α−1

Γ (α)
[L1 ‖(u, v)‖+N1] ds,


≤ (L2 ‖(u, v)‖+N2)

 1

1− η

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
dτ

 ds+
A1

Q (1− η)

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
dτ

 ds

+
MB1

6 (1− η)Q

η∫
0

(η − s)β−p−1

Γ (β − p)
ds+

A1

6 |λ+ γ − 1|

η∫
0

(η − s)β−1

Γ (β)
ds


+

MB1

6 (1− η)Q

η∫
0

(η − s)β−p−1

Γ (β − p)
ds+

A1

6 |λ+ γ − 1|

η∫
0

(η − s)β−1

Γ (β)
ds


+ (L1 ‖(u, v)‖+N1)


t∫

0

(t− s)α−1

Γ (α)
ds
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+
MγB1

6 (1− η)Q

1∫
0

(1− s)α−p−1

Γ (α− p)
ds+

A1γ

Q |λ+ γ − 1|

1∫
0

(1− s)α−1

Γ (α)
ds

 ,

≤ (L2r +N2) ∆1 + (L1r +N1) ∆2

Hence

‖T1 (u, v)‖ ≤ (L2∆1 + L1∆2) r +N2∆1 +N1∆2

In the same way, we can obtain that

‖T2 (u, v)‖ ≤ (L1∆3 + L2∆4) r +N2∆4 +N1∆3.

Consequently,

‖T (u, v)‖ ≤ ((∆2 + ∆3)L1 + (∆1 + ∆4)L2) r+N2 (∆1 + ∆4)+N1 (∆2 + ∆3) ≤ r.

Now, for (u1, v1) , (u2, v2) ∈ X×X and for each t ∈ [0, 1], it follows from assumption
(H3) that

|T1 (u2, v2) (t)− T1 (u1, v1) (t)| ≤ L2 (‖u2 − u1‖+ ‖v2 − v1‖)

 1

1− η

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
dτ

 ds

+
A1

Q (1− η)

η∫
0

 s∫
0

(s− τ)
β−1

Γ (β)
dτ

 ds

+
MB1

6 (1− η)Q

η∫
0

(η − s)β−p−1

Γ (β − p)
ds+

A1

6 |λ+ γ − 1|

η∫
0

(η − s)β−1

Γ (β)
ds


+L1 (‖u2 − u1‖+ ‖v2 − v1‖)


t∫

0

(t− s)α−1

Γ (α)
ds

+
MγB1

6 (1− η)Q

1∫
0

(1− s)α−p−1

Γ (α− p)
ds+

A1γ

Q |λ+ γ − 1|

1∫
0

(1− s)α−1

Γ (α)
ds


≤ (L2∆1 + L1∆2) (‖u2 − u1‖+ ‖v2 − v1‖) .

Thus

‖T1 (u2, v2)− T1 (u1, v1)‖ ≤ (L2∆1 + L1∆2) (‖u2 − u1‖+ ‖v2 − v1‖) . (3.8)

. Similarly,

‖T2 (u2, v2)− T2 (u1, v1)‖ ≤ (L2∆3 + L1∆4) (‖u2 − u1‖+ ‖v2 − v1‖) . (3.9)

It follows from (3.8) and (3.9) that

‖T (u2, v2)− T (u1, v1)‖ ≤ (L2 (∆1 + ∆3) + L1 (∆2 + ∆4)) (‖u2 − u1‖+ ‖v2 − v1‖) .

Since L2 (∆1 + ∆3) +L1 (∆2 + ∆4) < 1, thus T is a contraction operator. Hence it
follows by Banach’s contraction principle that the boundary value problem (1.1)−
(1.2) has a unique solution on [0, 1].

�

We construct an example to illustrate the applicability of the results presented.
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Example 3.1. Consider the following system fractional differential equation cD3u (t) = t
8

(
(cost) sin

(
|u(t)|+|v(t)|

2

))
+ e−(u(t)+v(t))2

1+t2 , t ∈ [0, 1] ,

cD3v (t) = 1
32sin (2πu (t)) + |v(t)|

16(1+|v(t)|) + 1
2 , t ∈ [0, 1] ,

subject to the three-point coupled boundary conditions
1

100u (0) + 1
10u (1) = u

(
1
2

)
,

u (0) =
∫ 0,5

0
u (s) ds,

1
100

c
D

3
2u (0) + 1

10

c
D

3
2u (1) =c D

3
2u
(

1
2

)
,

where f (t, u, v) = t
8

(
(cost) sin

(
|u|+|v|

2

))
+ e−(u+v)2

1+t2 , t ∈ [0, 1] , η = 0, 5, λ =

0, 01, γ = 0, 1, p = 1, 5 and g (t, u, v) = 1
32π sin (2πu (t)) + |v(t)|

16(1+|v(t)|) + 1
2 .

It can be easily found that M = 20
3 and Q = 9

400 .
Furthermore, by simple computation, for every ui, vi ∈ R, i = 1, 2, we have

|f (t, u1, u2)− f (t, v1, v2)| ≤ L (|u1 − v1|+ |u2 − v2|) ,
and

|g (t, u1, u2)− g (t, v1, v2)| ≤ L (|u1 − v1|+ |u2 − v2|) ,
where L1 = L2 = L = 1

16 . It can be easily found that ∆1 = ∆
3
∼= 0, 799562, ∆2 =

∆4
∼= 1, 182808.

Finally, since L1 (∆1 + ∆3) + L2 (∆2 + ∆4) = 2L (∆1 + ∆2) ∼= 0, 247796 < 1, thus
all assumptions and conditions of Theorem 3.4 are satisfied. Hence, Theorem im-
plies that the three-point boundary value problem (1.1)− (1.2) has a unique solution

Acknowledgments. The authors want to thank the anonymous referees for the
throughout reading of the manuscript and several suggestions that help us improve
the presentation of the paper.
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Abstract. In this paper, we introduce Chatterjea type (ψ,ϕ)-weakly cyclic
coupled mapping in S-metric spaces and prove the existence and uniqueness of

strong coupled fixed point of such mappings. We give an illustrative example

to support of our result.

1. Introduction

In 1972, Chatterjea [8] introduced a contraction map which is not necessarily
continuous and is known as Chatterjea contraction map or simply Chatterjea map
and proved that every Chatterjea map has a unique fixed point in complete metric
spaces. For more works on Chatterjea type mappings, we refer [7], [9], [10], [21],
[31]. In 1997, Alber and Guerre-Delabriere [2] introduced the concept of weakly con-
tractive mapping as a generalization of contractive map and proved the existence of
fixed points for such mappings in Hilbert spaces. Rhoades [33] extended this study
to metric space setting. In 2003, Kirk, Srinivasan and Veeramani [23] introduced
cyclic contractions in metric spaces and proved the existence and uniqueness of
cyclic contractions in complete metric spaces. After this, many authors introduced
various types of cyclic contractions and cyclic weakly contractions and proved fixed
point results, some of which are in [3], [5], [19], [20], [22], [24], [26], [27], [29], [30],
[34]. Meanwhile, in 2006, Gnana Bhaskar and Lakshmikantham [14] introduced
and developed coupled fixed point theory for mixed monotone operators. Later,
coupled fixed point results were developed by [14], [18], [25], [28], [32], [37]. In
2013, Chandok and Postolache [7] introduced Chatterjea type cyclic weakly con-
tractive maps and obtained fixed point results in complete metric spaces and in
2017, Choudhury, Maity and Konar [10], introduced Chatterjea type coupling and
obtained the existence of strong unique coupled fixed points for such maps.
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Key words and phrases. S-metric space; cyclic mapping; coupled fixed point; strong coupled

fixed point; Chatterjea type (ψ,ϕ)-weakly cyclic coupled mapping;
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Inspired by these works, in section 3 of this paper, we introduce Chatterjea type
(ψ,ϕ)-weakly cyclic coupled mapping and prove the existence and uniqueness of
strong coupled fixed point of such map in complete S-metric spaces. Also, we
present an illustrative example in support of our result.

2. Preliminaries

We use the following propositions in proving our results.

Proposition 2.1. Let {an} and {bn} be two sequences of real numbers. Then
lim sup
n→∞

max{an, bn} = max{lim sup
n→∞

an, lim sup
n→∞

bn}.

Proposition 2.2. (i) Let {cn}, {dn}, {en} and {fn} be real sequences then
max{cn + dn, en + fn} ≤ max{cn, en}+ max{dn, fn}.
(ii) Let {an}, {bn} be two real sequences, {bn} be bounded. Then
lim inf
n→∞

(an + bn) ≤ lim inf
n→∞

an + lim sup
n→∞

bn.

Proposition 2.3. Let {an}, {bn}, {cn}, {dn}, {en} and {fn} be nonnegative
sequences satisfying max{an, bn} ≤ max{cn + dn, en + fn} with lim sup

n→∞
cn = 0 and

lim sup
n→∞

en = 0 then lim inf
n→∞

max{an, bn} ≤ lim inf
n→∞

max{dn, fn}.

Definition 2.1. [23] Let X be a nonempty set and T : X → X be an operator. If

Xi, i = 1, 2, ...m are nonempty subsets of X with X =
m⋃
i=1

Xi satisfying T (X1) ⊂

X2, ..., T (Xm−1) ⊂ Xm, T (Xm) ⊂ X1 is called a cyclic representation of X with
respect to T .

Definition 2.2. [14] Let X be a nonempty set. Let F : X×X → X be a mapping.
An element (x, y) ∈ X ×X is said to be a coupled fixed point of F if F (x, y) = x
and F (y, x) = y.

Throughout this paper, we denote the set of all reals by R, the set of all natural
numbers by N, and
Ψ = {ψ : [0,∞)→ [0,∞) /(i) ψ is continuous (ii) ψ is nondecreasing

(iii) ψ(t) = 0 if and only if t = 0}.

Remark. For any a, b ∈ [0,∞), we have ψ(max{a, b}) = max{ψ(a), ψ(b)} for any
ψ ∈ Ψ.

Definition 2.3. [7] Let (X, d) be a metric space, m be a natural number, A1, A2,

..., Am be nonempty subsets of X and Y =
m⋃
i=1

Ai. An operator T : Y → Y is

called a Chatterjea type cyclic weakly contraction if
m⋃
i=1

Ai is a cyclic representation of Y with respect to T and if there exist ψ ∈ Ψ

and a function ϕ : [0,∞)2 → [0,∞) with ϕ is lower semi continuous, ϕ(t, t) > 0
for t ∈ (0,∞) and ϕ(0, 0) = 0 such that
ψ(d(Tx, Ty)) ≤ ψ( 1

2 [d(x, Ty) + d(y, Tx)])− ϕ(d(x, Ty), d(y, Tx)),
for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, ...,m, where Am+1 = A1.
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Theorem 2.4. [7] Let (X, d) be a complete metric space, m ∈ N , A1, A2,..., Am

be nonempty closed subsets of X and Y =
m⋃
i=1

Ai. Suppose that T is a Chatterjea

type cyclic weakly contraction. Then T has a fixed point z ∈
m⋂
i=1

Ai.

Choudhury, Maity and Konar [10] extended the above notion of cyclic mapping
to the case of mappings defined on X ×X in the following definition.

Definition 2.4. [10] Let A and B be two nonempty subsets of X. A mapping
F : X ×X → X is said to be cyclic with respect to A and B if F (A,B) ⊂ B and
F (B,A) ⊂ A. Such a function F is also said to be a coupling with respect to A
and B.

Definition 2.5. [10] Let X be a nonempty set. Let F : X × X → X be a
mapping. An element (x, x) ∈ X ×X is said to be a strong coupled fixed point of
F if F (x, x) = x.

Definition 2.6. [10] Let A and B be two nonempty subsets of a metric space
(X, d). A coupling F : X × X → X is called a Chatterjea type coupling with
respect to A and B if F is cyclic with respect to A and B satisfying, the inequality

d(F (x, y), F (u, v)) ≤ k[d(x, F (u, v)) + d(u, F (x, y))], (2.1)

where x, v ∈ A and y, u ∈ B, for some k ∈ (0, 12 ).

Theorem 2.5. [10] Let A and B be two nonempty closed subsets of a complete
metric space (X, d). Let F : X×X → X be a Chatterjea type coupling with respect
to A and B. Then A ∩ B 6= ∅ and F has a unique strong coupled fixed point in
A ∩B.

In 2012, Sedghi, Shobe and Aliouche [35] introduced a new concept on met-
ric spaces, namely S-metric spaces and studied some properties of these spaces.
Subsequently, many authors developed coupled fixed point theorems and cyclic
contractions on S-metric spaces. Some of them include [1], [12], [15], [16], [17], [25],
[31], [37].

Definition 2.7. [35] Let X be a nonempty set. An S-metric on X is a function
S : X3 → [0,∞) that satisfies the following conditions: for each x, y, z, a ∈ X

(S1) S(x, y, z) ≥ 0,
(S2) S(x, y, z) = 0 if and only if x = y = z and
(S3) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).

The pair (X,S) is called an S-metric space.

Example 2.1. [35] Let (X, d) be a metric space. Define S : X3 → [0,∞) by
S(x, y, z) = d(x, y) + d(x, z) + d(y, z) for all x, y, z ∈ X. Then S is an S-metric on
X and S is called the S-metric induced by the metric d.

Example 2.2. [13] Let X = R and let S(x, y, z) = |y + z − 2x| + |y − z| for all
x, y, z ∈ X. Then (X,S) is an S-metric space.

Example 2.3. [36] Let R be the real line. Then S(x, y, z) = |x− z|+ |y − z| for
all x, y, z ∈ R is an S-metric on R. This S-metric is called the usual S-metric.

Lemma 2.6. [35] In an S-metric space, we have S(x, x, y) = S(y, y, x).
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Lemma 2.7. [13] Let (X,S) be an S-metric space. Then
S(x, x, z) ≤ 2S(x, x, y) + S(y, y, z).

Definition 2.8. [35] Let (X,S) be an S-metric space.

(i) A sequence {xn} ⊆ X is said to converge to a point x ∈ X if S(xn, xn, x)→
0 as n → ∞. That is, for each ε > 0, there exists n0 ∈ N such that for all
n ≥ n0, S(xn, xn, x) < ε and we denote it by lim

n→∞
xn = x.

(ii) A sequence {xn} ⊆ X is called Cauchy sequence if for each ε > 0, there
exists n0 ∈ N such that S(xn, xn, xm) < ε for all n,m ≥ n0.

(iii) An S-metric space (X,S) is said to be complete if each Cauchy sequence
in X is convergent.

Lemma 2.8. [35] Let (X,S) be an S-metric space. If the sequence {xn} in X
converges to x, then x is unique.

Lemma 2.9. [35] Let (X,S) be an S-metric space. If there exist sequences {xn}
and {yn} in X such that lim

n→∞
xn = x and lim

n→∞
yn = y, then lim

n→∞
S(xn, xn, yn) =

S(x, x, y).

Lemma 2.10. [6] Let (X,S) be an S-metric space. Let {xn} and {yn} be two se-
quences inX, {xn} converges to x inX. Then lim

n→∞
S(xn, xn, yn) = lim

n→∞
S(x, x, yn).

Lemma 2.11. ([4], [11]) Let (X,S) be an S-metric space and {xn} a
sequence in X such that

lim
n→∞

S(xn, xn, xn+1) = 0.

If {xn} is not a Cauchy sequence, then there exist an ε > 0 and two sequences
{mk} and {nk} of positive integers with mk > nk > k such that
S(xmk

, xmk
, xnk

) ≥ ε with S(xmk−1, xmk−1, xnk
) < ε.

Also, we have the following:
(i) lim

k→∞
S(xmk

, xmk
, xnk

) = ε (ii) lim
k→∞

S(xmk−1, xmk−1, xnk
) = ε

(iii) lim
k→∞

S(xmk
, xmk

, xnk−1) = ε (iv) lim
k→∞

S(xmk−1, xmk−1, xnk−1) = ε.

We denote
Φ = {ϕ : [0,∞)2 → [0,∞) such that (i) ϕ is continuous in each of its

variables, and (ii) ϕ(t1, t2) = 0 if and only if t1 = 0 and t2 = 0}.

3. Chatterjea Type (ψ,ϕ)- Weakly cyclic Coupled Mapping

In the following, we define Chatterjea type (ψ,ϕ)-weakly cyclic coupled mapping.

Definition 3.1. Let (X,S) be an S-metric space. Let A and B be two nonempty
subsets of X. Let F : X ×X → X be a mapping. If (i) F is cyclic with respect to
A and B and (ii) there exist ψ ∈ Ψ, ϕ ∈ Φ such that

ψ(S(F (x, y), F (u, v), F (w, z))) ≤ ψ(
1

4
[max{S(x, x, F (w, z)), S(x, x, F (u, v))}

+ max{S(w,w, F (x, y)), S(u, u, F (x, y))}])
−ϕ(max{S(x, x, F (w, z)), S(x, x, F (u, v))},

max{S(w,w, F (x, y)), S(u, u, F (x, y))})
(3.1)
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for any x, u, z ∈ A and y, v, w ∈ B, then we say that F is a Chatterjea type (ψ,ϕ)-
weakly cyclic coupled mapping with respect to A and B.

Example 3.1. Let X = [0, 1]. We define S : X3 → [0,∞) by

S(x, y, z) =

{
0 if x = y = z
x+ y + z otherwise.

Then (X,S) is an S-metric space.
Let A = [0, 12 ] and B = [0, 1]. We define F : X ×X → X by
F (x, y) = xy

16 . Then F (A,B) ⊂ B and F (B,A) ⊂ A so that F is cyclic with respect

to A and B. We define ψ : [0,∞) → [0,∞) by ψ(t) = t
2 and ϕ : [0,∞)2 → [0,∞)

by ϕ(t1, t2) = 1
16 (t1 + t2). We now verify the inequality (3.1). Let x, u, z ∈ A and

y, v, w ∈ B. We now consider
ψ(S(F (x, y), F (u, v), F (w, z))) = ψ(S(xy16 ,

uv
16 ,

wz
16 ))

= 1
2S(xy16 ,

uv
16 ,

wz
16 )

= xy
32 + uv

32 + wz
32

≤ 1
32 [x+ u+ w]

≤ 1
32 [S(x, x, F (w, z)) + S(x, x, F (u, v)) +

+ S(w,w, F (x, y)) + S(u, u, F (x, y))]
≤ 2

32 [max{S(x, x, F (w, z)), S(x, x, F (u, v))}
+ max{S(w,w, F (x, y)), S(u, u, F (x, y))}]

= 1
16 [t1 + t2]

= 1
8 [t1 + t2]− 1

16 [t1 + t2]

= ψ( 1
4 [t1 + t2])− ϕ(t1, t2),

where t1 = max{S(x, x, F (w, z)), S(x, x, F (u, v))} and
t2 = max{S(w,w, F (x, y)), S(u, u, F (x, y))}.

Therefore F is a Chatterjea type (ψ,ϕ)-weakly cyclic coupled mapping with
respect to A and B.

Lemma 3.1. Let (X,S) be an S-metric space. Suppose that {xn} and {yn} are
sequences in X such that lim

n→∞
S(xn, xn, xn+1) = 0 and lim

n→∞
S(yn, yn, yn+1) = 0.

If either {xn} or {yn} is not Cauchy, then there exist an ε > 0 and sequences of
positive integers {mk} and {nk} with mk > nk > k such that

max{S(xmk
, xmk

, xnk
), S(ymk

, ymk
, ynk

)} ≥ ε. (3.2)

We choose mk as the smallest integer with mk > nk satisfying (3.2).
i.e., max{S(xmk

, xmk
, xnk

), S(ymk
, ymk

, ynk
)} ≥ ε with

max{S(xmk−1, xmk−1, xnk
), S(ymk−1, ymk−1, ynk

)} < ε.
Also, the following limits hold.

(i) lim
k→∞

max{S(xmk
, xmk

, xnk
), S(ymk

, ymk
, ynk

)} = ε

(ii) lim
k→∞

max{S(xmk
, xmk

, xnk−1), S(ymk
, ymk

, ynk−1)} = ε and

(iii) lim
k→∞

max{S(xnk
, xnk

, xmk−1), S(ynk
, ynk

, ymk−1)} = ε.

Proof. (i) We consider
S(xmk

, xmk
, xnk

) ≤ 2S(xmk
, xmk

, xmk−1) + S(xmk−1, xmk−1, xnk
)

< 2S(xmk
, xmk

, xmk−1) + ε.
Similarly, we have
S(ymk

, ymk
, ynk

) ≤ 2S(ymk
, ymk

, ymk−1) + S(ymk−1, ymk−1, ynk
)

< 2S(ymk
, ymk

, ymk−1) + ε.
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Hence
max{S(xmk

, xmk
, xnk

), S(ymk
, ymk

, ynk
)} ≤ max{2S(xmk

, xmk
, xmk−1) + ε,

2S(ymk
, ymk

, ymk−1) + ε}.
Now, by applying Proposition 2.1, we have

lim sup
k→∞

max{S(xmk
, xmk

, xnk
), S(ymk

, ymk
, ynk

)} ≤ ε. (3.3)

We have ε ≤ max{S(xmk
, xmk

, xnk
), S(ymk

, ymk
, ynk

)}. Hence
ε ≤ lim inf

k→∞
max{S(xmk

, xmk
, xnk

), S(ymk
, ymk

, ynk
)}

≤ lim sup
k→∞

max{S(xmk
, xmk

, xnk
), S(ymk

, ymk
, ynk

)} ≤ ε (from (3.3)).

Hence lim inf
k→∞

max{S(xmk
, xmk

, xnk
), S(ymk

, ymk
, ynk

)} = ε

= lim sup
k→∞

max{S(xmk
, xmk

, xnk
), S(ymk

, ymk
, ynk

)}.

Therefore lim
k→∞

max{S(xmk
, xmk

, xnk
), S(ymk

, ymk
, ynk

)} exists and

lim
k→∞

max{S(xmk
, xmk

, xnk
), S(ymk

, ymk
, ynk

)} = ε.

Hence (i) holds.
(ii) We now consider
S(xmk

, xmk
, xnk

) = S(xnk
, xnk

, xmk
) ≤ 2S(xnk

, xnk
, xnk−1) + S(xmk

, xmk
, xnk−1).

Similarly, we have
S(ymk

, ymk
, ynk

) = S(ynk
, ynk

, ymk
) ≤ 2S(ynk

, ynk
, ynk−1) + S(ymk

, ymk
, ynk−1).

Then
max{S(xmk

, xmk
, xnk

), S(ymk
, ymk

, ynk
)} ≤ max{2S(xnk

, xnk
, xnk−1)

+ S(xmk
, xmk

, xnk−1),
2S(ynk

, ynk
, ynk−1)+S(ymk

, ymk
, ynk−1)}.

On taking limit infimum as k →∞ and using Proposition 2.3, we get
lim inf
k→∞

max{S(xmk
, xmk

, xnk
), S(ymk

, ymk
, ynk

)}
≤ lim inf

k→∞
max{S(xmk

, xmk
, xnk−1), S(ymk

, ymk
, ynk−1)}.

By using (i), we get ε ≤ lim inf
k→∞

max{S(xmk
, xmk

, xnk−1), S(ymk
, ymk

, ynk−1)}.
We now consider
S(xmk

, xmk
, xnk−1) = S(xnk−1, xnk−1, xmk

) ≤ 2S(xnk−1, xnk−1, xnk
)+S(xnk

, xnk
, xmk

).
Similarly, we have
S(ymk

, ymk
, ynk−1) = S(ynk−1, ynk−1, ymk

) ≤ 2S(ynk−1, ynk−1, ynk
)+S(ynk

, ynk
, ymk

).
Now,
max{S(xmk

, xmk
, xnk−1), S(ymk

, ymk
, ynk−1)}

≤ max{2S(xnk−1, xnk−1, xnk
) + S(xnk

, xnk
, xmk

),
2S(ynk−1, ynk−1, ynk

) + S(ynk
, ynk

, ymk
)}.

On taking limit supremum as k →∞ and using Proposition 2.1, we get
lim sup
k→∞

max{S(xmk
, xmk

, xnk−1), S(ymk
, ymk

, ynk−1)}

≤ lim sup
k→∞

max{S(xnk
, xnk

, xmk
), S(ynk

, ynk
, ymk

)}

= ε ( by (i)).
Therefore we have
ε ≤ lim inf

k→∞
max{S(xmk

, xmk
, xnk−1), S(ymk

, ymk
, ynk−1)}

≤ lim sup
k→∞

max{S(xmk
, xmk

, xnk−1), S(ymk
, ymk

, ynk−1)} ≤ ε.
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Thus, we have
lim inf
k→∞

max{S(xmk
, xmk

, xnk−1), S(ymk
, ymk

, ynk−1)} = ε

= lim sup
k→∞

max{S(xmk
, xmk

, xnk−1), S(ymk
, ymk

, ynk−1)}.

Hence lim
k→∞

max{S(xmk
, xmk

, xnk−1), S(ymk
, ymk

, ynk−1)} exists and

lim
k→∞

max{S(xmk
, xmk

, xnk−1), S(ymk
, ymk

, ynk−1)} = ε. Therefore (ii) holds.

(iii) We consider
S(xmk

, xmk
, xnk

) ≤ 2S(xmk
, xmk

, xmk−1) + S(xmk−1, xmk−1, xnk
)

and
S(ymk

, ymk
, ynk

) ≤ 2S(ymk
, ymk

, ymk−1) + S(ymk−1, ymk−1, ynk
).

Now
max{S(xmk

, xmk
, xnk

), S(ymk
, ymk

, ynk
)}

≤ max{2S(xmk
, xmk

, xmk−1) + S(xmk−1, xmk−1, xnk
),

2S(ymk
, ymk

, ymk−1) + S(ymk−1, ymk−1, ynk
)}.

On taking limit infimum as k →∞ and by Proposition 2.3, we get
ε ≤ lim inf

k→∞
max{S(xmk−1, xmk−1, xnk

), S(ymk−1, ymk−1, ynk
)}.

We have
S(xmk−1, xmk−1, xnk

) ≤ 2S(xmk−1, xmk−1, xmk
) + S(xmk

, xmk
, xnk

)
and
S(ymk−1, ymk−1, ynk

) ≤ 2S(ymk−1, ymk−1, ymk
) + S(ymk

, ymk
, ynk

).
Then
max{S(xmk−1, xmk−1, xnk

), S(ymk−1, ymk−1, ynk
)}

≤ max{2S(xmk−1, xmk−1, xmk
) + S(xmk

, xmk
, xnk

),
2S(ymk−1, ymk−1, ymk

) + S(ymk
, ymk

, ynk
)}.

On taking limit supremum as k →∞, we get
lim sup
k→∞

max{S(xmk−1, xmk−1, xnk
), S(ymk−1, ymk−1, ynk

)}

≤ lim sup
k→∞

max{S(xmk
, xmk

, xnk
), S(ymk

, ymk
, ynk

)}

= ε (by (i))
so that ε ≤ lim inf

k→∞
max{S(xmk−1, xmk−1, xnk

), S(ymk−1, ymk−1, ynk
)}

≤ lim sup
k→∞

max{S(xmk−1, xmk−1, xnk
), S(ymk−1, ymk−1, ynk

)} ≤ ε.

Thus lim inf
k→∞

max{S(xmk−1, xmk−1, xnk
), S(ymk−1, ymk−1, ynk

)} = ε

= lim sup
k→∞

max{S(xmk−1, xmk−1, xnk
), S(ymk−1, ymk−1, ynk

)}.

Hence lim
k→∞

max{S(xmk−1, xmk−1, xnk
), S(ymk−1, ymk−1, ynk

)} exists and

lim
k→∞

max{S(xmk−1, xmk−1, xnk
), S(ymk−1, ymk−1, ynk

)} = ε.

This proves (iii). �

Theorem 3.2. Let (X,S) be a complete S-metric space. Let A and B be two
nonempty closed subsets of X. Let F : X ×X → X be a Chatterjea type (ψ,ϕ)-
weakly cyclic coupled mapping with respect to A and B. Then A ∩ B 6= ∅ and F
has a unique strong coupled fixed point in A ∩B.

Proof. Let x0 ∈ A and y0 ∈ B be arbitrary. We define the sequences {xn} and
{yn} by

xn+1 = F (yn, xn), yn+1 = F (xn, yn), n = 0, 1, 2, ... . (3.4)
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If yn = xn+1 and xn = yn+1 for some n, then we have
ψ(S(xn, xn, yn)) = ψ(S(yn+1, yn+1, xn+1))

= ψ(S(F (xn, yn), F (xn, yn), F (yn, xn)))
≤ ψ( 1

4 [max{S(xn, xn, F (yn, xn)), S(xn, xn, F (xn, yn))}
+ max{S(yn, yn, F (xn, yn)), S(xn, xn, F (xn, yn))}])

− ϕ(max{S(xn, xn, F (yn, xn)), S(xn, xn, F (xn, yn))},
max{S(yn, yn, F (xn, yn)), S(xn, xn, F (xn, yn))}])

= ψ( 1
4 [max{S(xn, xn, xn+1), S(xn, xn, yn+1)}
+ max{S(yn, yn, yn+1), S(xn, xn, yn+1)}])

− ϕ(max{S(xn, xn, xn+1), S(xn, xn, yn+1)},
max{S(yn, yn, yn+1), S(xn, xn, yn+1)})

= ψ( 1
4 [max{S(xn, xn, yn), S(xn, xn, xn)}
+ max{S(yn, yn, xn), S(xn, xn, xn)}])

− ϕ(max{S(xn, xn, yn), S(xn, xn, xn)},
max{S(yn, yn, xn), S(xn, xn, xn)})

= ψ( 1
2S(xn, xn, yn))− ϕ(S(xn, xn, yn), S(xn, xn, yn))

(by using Lemma 2.6)
≤ ψ(S(xn, xn, yn))− ϕ(S(xn, xn, yn), S(xn, xn, yn))

which implies that ϕ(S(xn, xn, yn), S(xn, xn, yn)) = 0 and hence
S(xn, xn, yn) = 0. Thus xn = yn so that A∩B 6= ∅ and (xn, xn) is a strong coupled
fixed point of F and we are through.

If either yn 6= xn+1 or xn 6= yn+1 for all n, then we have the following.
If xn = yn+1 and yn 6= xn+1 for all n, then we have
ψ(S(yn+1, yn+1, xn+2)) = ψ(S(F (xn, yn), F (xn, yn), F (yn+1, xn+1)))

≤ ψ( 1
4 [max{S(xn, xn, F (yn+1, xn+1)),

S(xn, xn, F (xn, yn))}
+ max{S(yn+1, yn+1, F (xn, yn)),

S(xn, xn, F (xn, yn))}])
− ϕ(max{S(xn, xn, F (yn+1, xn+1)),

S(xn, xn, F (xn, yn))},
max{S(yn+1, yn+1, F (xn, yn)),
S(xn, xn, F (xn, yn))})

= ψ( 1
4 [max{S(xn, xn, xn+2), S(xn, xn, yn+1)}

+ max{S(yn+1, yn+1, yn+1), S(xn, xn, yn+1)}])
− ϕ(max{S(xn, xn, xn+2), S(xn, xn, yn+1)},

max{S(yn+1, yn+1, yn+1), S(xn, xn, yn+1)})
≤ ψ( 1

4 [max{2S(xn, xn, yn+1) + S(yn+1, yn+1, xn+2),
S(xn, xn, yn+1)}+ S(xn, xn, yn+1)])

− ϕ(max{S(xn, xn, xn+2), S(xn, xn, yn+1)},
S(xn, xn, yn+1))

= ψ( 1
4 [2S(xn, xn, yn+1) + S(yn+1, yn+1, xn+2)

+ S(xn, xn, yn+1)])
−ϕ(max{S(xn, xn, xn+2), S(xn, xn, yn+1)}, S(xn, xn, yn+1))

= ψ( 1
4S(yn+1, yn+1, xn+2))− ϕ(S(xn, xn, xn+2), 0)

≤ ψ(S(yn+1, yn+1, xn+2))− ϕ(S(xn, xn, xn+2), 0)
which implies that ϕ(S(xn, xn, xn+2), 0) = 0. Therefore S(xn, xn, xn+2) = 0.
Thus xn = xn+2. That is yn+1 = xn+2 which is a contradiction. Hence this case
does not arise.
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Similar as above, the case yn = xn+1 and xn 6= yn+1 for all n does not arise.
Hence, we assume that yn 6= xn+1 and xn 6= yn+1 for all n. Now by using (3.1),

we have

ψ(S(x1, x1, y2)) = ψ(S(y2, y2, x1))
= ψ(S(F (x1, y1), F (x1, y1), F (y0, x0)))
≤ ψ( 1

4 [max{S(x1, x1, F (y0, x0)), S(x1, x1, F (x1, y1))}
+ max{S(y0, y0, F (x1, y1)), S(x1, x1, F (x1, y1))}])

− ϕ(max{S(x1, x1, F (y0, x0)), S(x1, x1, F (x1, y1))},
max{S(y0, y0, F (x1, y1)), S(x1, x1, F (x1, y1))})

= ψ( 1
4 [max{S(x1, x1, x1), S(x1, x1, y2)}
+ max{S(y0, y0, y2), S(x1, x1, y2)}])

− ϕ(max{S(x1, x1, x1), S(x1, x1, y2)},
max{S(y0, y0, y2), S(x1, x1, y2)})

= ψ( 1
4 [S(x1, x1, y2) + max{S(y0, y0, y2), S(x1, x1, y2)}])
− ϕ(S(x1, x1, y2),max{S(y0, y0, y2), S(x1, x1, y2)})

≤ ψ( 1
4 [S(x1, x1, y2) + max{2S(y0, y0, x1) + S(x1, x1, y2),

S(x1, x1, y2)}])
− ϕ(S(x1, x1, y2),max{S(y0, y0, y2), S(x1, x1, y2)})

= ψ( 1
4 [2S(x1, x1, y2) + 2S(y0, y0, x1)])
− ϕ(S(x1, x1, y2),max{S(y0, y0, y2), S(x1, x1, y2)})

< ψ( 1
4 [2S(x1, x1, y2) + 2S(y0, y0, x1)]).

Since ψ is monotonically increasing, it follows that
S(x1, x1, y2) ≤ 1

2S(x1, x1, y2) + 1
2S(y0, y0, x1) so that

S(x1, x1, y2) ≤ S(y0, y0, x1). (3.5)

Similarly, we have
ψ(S(y1, y1, x2)) = ψ(S(F (x0, y0), F (x0, y0), F (y1, x1)))

≤ ψ( 1
4 [max{S(x0, x0, F (y1, x1)), S(x0, x0, F (x0, y0))}
+ max{S(y1, y1, F (x0, y0)), S(x0, x0, F (x0, y0))}])

− ϕ(max{S(x0, x0, F (y1, x1)), S(x0, x0, F (x0, y0))},
max{S(y1, y1, F (x0, y0)), S(x0, x0, F (x0, y0))})

= ψ( 1
4 [max{S(x0, x0, x2), S(x0, x0, y1)}
+ max{S(y1, y1, y1), S(x0, x0, y1)}])

− ϕ(max{S(x0, x0, x2), S(x0, x0, y1)},
max{S(y1, y1, y1), S(x0, x0, y1)})

≤ ψ( 1
4 [max{2S(x0, x0, y1) + S(y1, y1, x2), S(x0, x0, y1)}
+ S(x0, x0, y1)])

− ϕ(max{S(x0, x0, x2), S(x0, x0, y1)}, S(x0, x0, y1))
= ψ( 1

4 [2S(x0, x0, y1) + S(y1, y1, x2) + S(x0, x0, y1)])
− ϕ(max{S(x0, x0, x2), S(x0, x0, y1)}, S(x0, x0, y1))

< ψ( 3
4S(x0, x0, y1) + 1

4S(y1, y1, x2)), and hence it follows that

S(y1, y1, x2) ≤ 3
4S(x0, x0, y1) + 1

4S(y1, y1, x2) so that

S(y1, y1, x2) ≤ S(x0, x0, y1). (3.6)

Again, by using (3.1), we have
ψ(S(x2, x2, y3)) = ψ(S(y3, y3, x2))

= ψ(S(F (x2, y2), F (x2, y2), F (y1, x1)))
≤ ψ( 1

4 [max{S(x2, x2, F (y1, x1)), S(x2, x2, F (x2, y2))}
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+ max{S(y1, y1, F (x2, y2)), S(x2, x2, F (x2, y2))}])
− ϕ(max{S(x2, x2, F (y1, x1)), S(x2, x2, F (x2, y2))},

max{S(y1, y1, F (x2, y2)), S(x2, x2, F (x2, y2))})
= ψ( 1

4 [max{S(x2, x2, x2), S(x2, x2, y3)}
+ max{S(y1, y1, y3), S(x2, x2, y3)}])

− ϕ(max{S(x2, x2, x2), S(x2, x2, y3)},
max{S(y1, y1, y3), S(x2, x2, y3)})

≤ ψ( 1
4 [S(x2, x2, y3) + max{2S(y1, y1, x2) + S(x2, x2, y3),

S(x2, x2, y3)}])
− ϕ(S(x2, x2, y3),max{S(y1, y1, y3), S(x2, x2, y3)})

= ψ( 1
4 [S(x2, x2, y3) + 2S(y1, y1, x2) + S(x2, x2, y3)])
− ϕ(S(x2, x2, y3),max{S(y1, y1, y3), S(x2, x2, y3)})

< ψ( 1
2S(x2, x2, y3) + 1

2S(y1, y1, x2)),

and hence we have S(x2, x2, y3) ≤ 1
2S(x2, x2, y3) + 1

2S(y1, y1, x2)
so that
S(x2, x2, y3) ≤ S(y1, y1, x2).
Similarly, we have
ψ(S(y2, y2, x3)) = ψ(S(F (x1, y1), F (x1, y1), F (y2, x2)))

≤ ψ( 1
4 [max{S(x1, x1, F (y2, x2)), S(x1, x1, F (x1, y1))}
+ max{S(y2, y2, F (x1, y1)), S(x1, x1, F (x1, y1))}])

− ϕ(max{S(x1, x1, F (y2, x2)), S(x1, x1, F (x1, y1))},
max{S(y2, y2, F (x1, y1)), S(x1, x1, F (x1, y1))})

= ψ( 1
4 [max{S(x1, x1, x3), S(x1, x1, y2)}+ S(x1, x1, y2)])
− ϕ(max{S(x1, x1, x3), S(x1, x1, y2)}, S(x1, x1, y2))

≤ ψ( 1
4 [max{2S(x1, x1, y2) + S(y2, y2, x3), S(x1, x1, y2)}

+ S(x1, x1, y2)])
− ϕ(max{S(x1, x1, x3), S(x1, x1, y2)}, S(x1, x1, y2))

= ψ( 1
4 [2S(x1, x1, y2) + S(y2, y2, x3) + S(x1, x1, y2)])
− ϕ(max{S(x1, x1, x3), S(x1, x1, y2)}, S(x1, x1, y2))

< ψ( 3
4S(x1, x1, y2) + 1

4S(y2, y2, x3)), and hence

S(y2, y2, x3) ≤ 3
4S(x1, x1, y2) + 1

4S(y2, y2, x3) so that
S(y2, y2, x3) ≤ S(x1, x1, y2).
In general, we have
ψ(S(x2n+1, x2n+1, y2n+2)) = ψ(S(y2n+2, y2n+2, x2n+1))

= ψ(S(F (x2n+1, y2n+1), F (x2n+1, y2n+1), F (y2n, x2n)))
≤ ψ( 1

4 [max{S(x2n+1, x2n+1, F (y2n, x2n)),
S(x2n+1, x2n+1, F (x2n+1, y2n+1))}

+ max{S(y2n, y2n, F (x2n+1, y2n+1)),
S(x2n+1, x2n+1, F (x2n+1, y2n+1))}])

− ϕ(max{S(x2n+1, x2n+1, F (y2n, x2n)),
S(x2n+1, x2n+1, F (x2n+1, y2n+1))},
max{S(y2n, y2n, F (x2n+1, y2n+1)),
S(x2n+1, x2n+1, F (x2n+1, y2n+1))})

= ψ( 1
4 [max{S(x2n+1, x2n+1, x2n+1), S(x2n+1, x2n+1, y2n+2)}

+ max{S(y2n, y2n, y2n+2), S(x2n+1, x2n+1, y2n+2)}])
−ϕ(max{S(x2n+1, x2n+1, x2n+1), S(x2n+1, x2n+1, y2n+2)},

max{S(y2n, y2n, y2n+2), S(x2n+1, x2n+1, y2n+2)})
≤ ψ( 1

4 [S(x2n+1, x2n+1, y2n+2)+max{2S(y2n, y2n, x2n+1)
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+S(x2n+1, x2n+1, y2n+2), S(x2n+1, x2n+1, y2n+2)}])
− ϕ(S(x2n+1, x2n+1, y2n+2),max{S(y2n, y2n, y2n+2),

S(x2n+1, x2n+1, y2n+2)}).
That is

ψ(S(x2n+1, x2n+1, y2n+2)) ≤ ψ(
1

4
[2S(x2n+1, x2n+1, y2n+2) + 2S(y2n, y2n, x2n+1)])

−ϕ(S(x2n+1, x2n+1, y2n+2),max{S(y2n, y2n, y2n+2),

S(x2n+1, x2n+1, y2n+2)})
(3.7)

< ψ( 1
2S(x2n+1, x2n+1, y2n+2) + 1

2S(y2n, y2n, x2n+1)) and

hence S(x2n+1, x2n+1, y2n+2) ≤ 1
2S(x2n+1, x2n+1, y2n+2) + 1

2S(y2n, y2n, x2n+1) so
that

S(x2n+1, x2n+1, y2n+2) ≤ S(y2n, y2n, x2n+1), for each n = 1, 2, 3, ... . (3.8)

Similarly, we have
ψ(S(y2n+1, y2n+1, x2n+2))

= ψ(S(F (x2n, y2n), F (x2n, y2n), F (y2n+1, x2n+1)))
≤ ψ( 1

4 [max{S(x2n, x2n, F (y2n+1, x2n+1)), S(x2n, x2n, F (x2n, y2n))}
+max{S(y2n+1, y2n+1, F (x2n, y2n)), S(x2n, x2n, F (x2n, y2n))}])

− ϕ(max{S(x2n, x2n, F (y2n+1, x2n+1)), S(x2n, x2n, F (x2n, y2n))},
max{S(y2n+1, y2n+1, F (x2n, y2n)), S(x2n, x2n, F (x2n, y2n))})

= ψ( 1
4 [max{S(x2n, x2n, x2n+2), S(x2n, x2n, y2n+1)}+S(x2n, x2n, y2n+1)])

−ϕ(max{S(x2n, x2n, x2n+2), S(x2n, x2n, y2n+1)}, S(x2n, x2n, y2n+1))
≤ ψ( 1

4 [max{2S(x2n, x2n, y2n+1) + S(y2n+1, y2n+1, x2n+2),
S(x2n, x2n, y2n+1)}+ S(x2n, x2n, y2n+1)])

−ϕ(max{S(x2n, x2n, x2n+2), S(x2n, x2n, y2n+1)}, S(x2n, x2n, y2n+1)).
That is

ψ(S(y2n+1, y2n+1, x2n+2)) ≤ ψ(
3

4
S(x2n, x2n, y2n+1) +

1

4
S(y2n+1, y2n+1, x2n+2))

−ϕ(max{S(x2n, x2n, x2n+2), S(x2n, x2n, y2n+1)},
S(x2n, x2n, y2n+1))

(3.9)

< ψ( 3
4S(x2n, x2n, y2n+1) + 1

4S(y2n+1, y2n+1, x2n+2))
which implies that
S(y2n+1, y2n+1, x2n+2) ≤ 3

4S(x2n, x2n, y2n+1) + 1
4S(y2n+1, y2n+1, x2n+2) and hence

S(y2n+1, y2n+1, x2n+2) ≤ S(x2n, x2n, y2n+1) for each n = 1, 2, 3, ... . (3.10)

Similarly, we get

S(x2n, x2n, y2n+1) ≤ S(y2n−1, y2n−1, x2n) for each n = 1, 2, 3, ... ; (3.11)

and

S(y2n, y2n, x2n+1) ≤ S(x2n−1, x2n−1, y2n) for each n = 1, 2, 3, ... . (3.12)

From (3.8) and (3.11) it follows that

S(xn, xn, yn+1) ≤ S(yn−1, yn−1, xn) for n = 1, 2, 3, ... (3.13)

and from (3.10) and (3.12) it follows that

S(yn, yn, xn+1) ≤ S(xn−1, xn−1, yn) for n = 1, 2, 3, ... . (3.14)
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Hence, from (3.13) and (3.14), it follows that {S(xn, xn, yn+1)} is a decreasing se-
quence and converges to some r ≥ 0 and {S(yn, yn, xn+1)} is a decreasing sequence
and hence converges to some s ≥ 0.
From (3.13), we have r ≤ s and from (3.14), we have s ≤ r. Therefore r = s.
Now on taking the limits as n→∞ in (3.7), we have
ψ(r) ≤ ψ( 1

2r + 1
2r)− ϕ(r,max{ lim

n→∞
S(y2n, y2n, y2n+2), r})

= ψ(r)− ϕ(r,max{ lim
n→∞

S(y2n, y2n, y2n+2), r})
which implies that ϕ(r,max{ lim

n→∞
S(y2n, y2n, y2n+2), r}) = 0 so that r = 0.

Therefore

lim
n→∞

S(xn, xn, yn+1) = 0 and lim
n→∞

S(yn, yn, xn+1) = 0. (3.15)

We now consider
ψ(S(xn+1, xn+1, yn+1)) = ψ(S(yn+1, yn+1, xn+1))

= ψ(S(F (xn, yn), F (xn, yn), F (yn, xn)))
≤ ψ( 1

4 [max{S(xn, xn, F (yn, xn)), S(xn, xn, F (xn, yn))}
+ max{S(yn, yn, F (xn, yn)), S(xn, xn, F (xn, yn))}])
− ϕ(max{S(xn, xn, F (yn, xn)), S(xn, xn, F (xn, yn))},

max{S(yn, yn, F (xn, yn)), S(xn, xn, F (xn, yn))})
= ψ( 1

4 [max{S(xn, xn, xn+1), S(xn, xn, yn+1)}
+ max{S(yn, yn, yn+1), S(xn, xn, yn+1)}])

− ϕ(max{S(xn, xn, xn+1), S(xn, xn, yn+1)},
max{S(yn, yn, yn+1), S(xn, xn, yn+1)})

≤ ψ( 1
4 [max{2S(xn, xn, yn+1) + S(xn+1, xn+1, yn+1),

S(xn, xn, yn+1)}+S(yn, yn, yn+1)+S(xn, xn, yn+1)])
− ϕ(max{S(xn, xn, xn+1), S(xn, xn, yn+1)},

max{S(yn, yn, yn+1), S(xn, xn, yn+1)})
= ψ( 1

4 [2S(xn, xn, yn+1) + S(xn+1, xn+1, yn+1)
+ 2S(yn, yn, xn+1) + S(xn+1, xn+1, yn+1)

+ S(xn, xn, yn+1)}])
− ϕ(max{S(xn, xn, xn+1), S(xn, xn, yn+1)},

max{S(yn, yn, yn+1), S(xn, xn, yn+1)})
= ψ( 1

4 [3S(xn, xn, yn+1) + 2S(yn, yn, xn+1)
+ 2S(xn+1, xn+1, yn+1)])

− ϕ(max{S(xn, xn, xn+1), S(xn, xn, yn+1)},
max{S(yn, yn, yn+1), S(xn, xn, yn+1)})

< ψ( 1
4 [3S(xn, xn, yn+1) + 2S(yn, yn, xn+1)

+ 2S(xn+1, xn+1, yn+1)]) and hence
S(xn+1, xn+1, yn+1) ≤ 3

4S(xn, xn, yn+1) + 1
2S(yn, yn, xn+1) + 1

2S(xn+1, xn+1, yn+1)
which implies that
S(xn+1, xn+1, yn+1) ≤ S(yn, yn, xn+1) + 3

2S(xn, xn, yn+1).
On taking limits as n→∞ and by using (3.15), we get

lim
n→∞

S(xn+1, xn+1, yn+1) = 0. (3.16)

We now consider
S(xn, xn, xn+1) + S(yn, yn, yn+1) ≤ 2S(xn, xn, yn) + S(yn, yn, xn+1)

+ 2S(yn, yn, xn) + S(xn, xn, yn+1)
= 4S(xn, xn, yn)+S(xn, xn, yn+1)+S(yn, yn, xn+1).
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On taking limits as n→∞, we get
lim
n→∞

S(xn, xn, xn+1) + S(yn, yn, yn+1) = 0.

We now prove that {xn} and {yn} are Cauchy sequences. Suppose that either {xn}
or {yn} is not Cauchy. Then there exist ε > 0 and subsequences {mk} and {nk}
with mk > nk > k such that

max{S(xmk
, xmk

, xnk
), S(ymk

, ymk
, ynk

)} ≥ ε. (3.17)

We choose mk as a smallest integer with mk > nk satisfying (3.17).
That is max{S(xmk

, xmk
, xnk

), S(ymk
, ymk

, ynk
)} ≥ ε

with max{S(xmk−1, xmk−1, xnk
), S(ymk−1, ymk−1, ynk

)} < ε.
We now prove the following.

lim
k→∞

max{S(xmk
, xmk

, ynk
), S(ymk

, ymk
, xnk

)} = ε. (3.18)

We consider S(xmk
, xmk

, ynk
) = S(ynk

, ynk
, xmk

)
≤ 2S(ynk

, ynk
, xnk

) + S(xnk
, xnk

, xmk
).

Also, we have
S(ymk

, ymk
, xnk

) ≤ 2S(xnk
, xnk

, ynk
) + S(ynk

, ynk
, ymk

).
Thus we have
max{S(xmk

, xmk
, ynk

), S(ymk
, ymk

, xnk
)} ≤ max{2S(ynk

, ynk
, xnk

)+S(xnk
, xnk

, xmk
),

2S(xnk
, xnk

, ynk
)+S(ynk

, ynk
, ymk

)}.
On taking limit supremum as k →∞, and using Proposition 2.1, we get
lim sup
k→∞

max{S(xmk
, xmk

, ynk
), S(ymk

, ymk
, xnk

)} ≤ lim sup
k→∞

max{S(xnk
, xnk

, xmk
),

S(ynk
, ynk

, ymk
)}

= ε (by (i) of Lemma 3.1).
We now consider
S(xmk

, xmk
, xnk

) = S(xnk
, xnk

, xmk
)

≤ 2S(xnk
, xnk

, ynk
) + S(ynk

, ynk
, xmk

)
and
S(ymk

, ymk
, ynk

) = S(ynk
, ynk

, ymk
)

≤ 2S(ynk
, ynk

, xnk
) + S(xnk

, xnk
, ymk

) so that
max{S(xmk

, xmk
, xnk

), S(ymk
, ymk

, ynk
)} ≤ max{2S(xnk

, xnk
, ynk

)+S(ynk
, ynk

, xmk
),

2S(ynk
, ynk

, xnk
)+S(xnk

, xnk
, ymk

)}.
On taking limit infimum as k →∞ and using (3.16),
ε ≤ lim inf

k→∞
max{S(xmk

, xmk
, xnk

), S(ymk
, ymk

, ynk
)}

≤ lim inf
k→∞

max{S(ynk
, ynk

, xmk
), S(xnk

, xnk
, ymk

)} (by Proposition 2.3 ).

From the above we have
ε ≤ lim inf

k→∞
max{S(xmk

, xmk
, ynk

), S(ymk
, ymk

, xnk
)}

≤ lim sup
k→∞

max{S(xmk
, xmk

, ynk
), S(ymk

, ymk
, xnk

)} ≤ ε.

Hence lim inf
k→∞

max{S(xmk
, xmk

, ynk
), S(ymk

, ymk
, xnk

)}
= lim sup

k→∞
max{S(xmk

, xmk
, ynk

), S(ymk
, ymk

, xnk
)} = ε.

Therefore lim
k→∞

max{S(xmk
, xmk

, ynk
), S(ymk

, ymk
, xnk

)} exists and

lim
k→∞

max{S(xmk
, xmk

, ynk
), S(ymk

, ymk
, xnk

)} = ε.

Hence (3.18) is proved.

We now consider
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ψ(S(xmk
, xmk

, ynk
)) = ψ(ynk

, ynk
, xmk

)
= ψ(S(F (xnk−1, ynk−1), F (xnk−1, ynk−1), F (ymk−1, xmk−1)))
≤ ψ( 1

4 [max{S(xnk−1, xnk−1, F (ymk−1, xmk−1)),
S(xnk−1, xnk−1, F (xnk−1, ynk−1))}

+ max{S(ymk−1, ymk−1, F (xnk−1, ynk−1)),
S(xnk−1, xnk−1, F (xnk−1, ynk−1))}])

− ϕ(max{S(xnk−1, xnk−1, F (ymk−1, xmk−1)),
S(xnk−1, xnk−1, F (xnk−1, ynk−1))},

max{S(ymk−1, ymk−1, F (xnk−1, ynk−1)),
S(xnk−1, xnk−1, F (xnk−1, ynk−1))})

= ψ( 1
4 [max{S(xnk−1, xnk−1, xmk

), S(xnk−1, xnk−1, ynk
)}

+max{S(ymk−1, ymk−1, ynk
), S(xnk−1, xnk−1, ynk

)}])
− ϕ(max{S(xnk−1, xnk−1, xmk

), S(xnk−1, xnk−1, ynk
)},

max{S(ymk−1, ymk−1, ynk
), S(xnk−1, xnk−1, ynk

)}).

Similarly, we have
ψ(S(ymk

, ymk
, xnk

)) = ψ(S(F (xmk−1, ymk−1), F (xmk−1, ymk−1), F (ynk−1, xnk−1)))
≤ ψ( 1

4 [max{S(xmk−1, xmk−1, F (ynk−1, xnk−1)),
S(xmk−1, xmk−1, F (xmk−1, ymk−1))}

+ max{S(ynk−1, ynk−1, F (xmk−1, ymk−1)),
S(xmk−1, xmk−1, F (xmk−1, ymk−1))}])

− ϕ(max{S(xmk−1, xmk−1, F (ynk−1, xnk−1)),
S(xmk−1, xmk−1, F (xmk−1, ymk−1))},

max{S(ynk−1, ynk−1, F (xmk−1, ymk−1)),
S(xmk−1, xmk−1, F (xmk−1, ymk−1))})

= ψ( 1
4 [max{S(xmk−1, xmk−1, xnk

), S(xmk−1, xmk−1, ymk
)}

+max{S(ynk−1, ynk−1, ymk
), S(xmk−1, xmk−1, ymk

)}])
−ϕ(max{S(xmk−1, xmk−1, xnk

), S(xmk−1, xmk−1, ymk
)},

max{S(ynk−1, ynk−1, ymk
), S(xmk−1, xmk−1, ymk

)}).

We now consider
ψ(max{S(xmk

, xmk
, ynk

), S(ymk
, ymk

, xnk
)})

= max{ψ(S(xmk
, xmk

, ynk
)), ψ(S(ymk

, ymk
, xnk

))}
≤ max{ψ( 1

4 [max{S(xnk−1, xnk−1, xmk
), S(xnk−1, xnk−1, ynk

)}
+max{S(ymk−1, ymk−1, ynk

), S(xnk−1, xnk−1, ynk
)}]),

ψ( 1
4 [max{S(xmk−1, xmk−1, xnk

), S(xmk−1, xmk−1, ymk
)}

+max{S(ynk−1, ynk−1, ymk
), S(xmk−1, xmk−1, ymk

)}])}
−min{ϕ(max{S(xnk−1, xnk−1, xmk

), S(xnk−1, xnk−1, ynk
)},

max{S(ymk−1, ymk−1, ynk
), S(xnk−1, xnk−1, ynk

)}),
ϕ(max{S(xmk−1, xmk−1, xnk

), S(xmk−1, xmk−1, ymk
)},

max{S(ynk−1, ynk−1, ymk
), S(xmk−1, xmk−1, ymk

)})}.

On letting k →∞ and by using (3.15), we get

ψ(ε) ≤ max{ψ( 1
4 [ lim
k→∞

S(xnk−1, xnk−1, xmk
) + lim

k→∞
S(ymk−1, ymk−1, ynk

)]),

ψ( 1
4 [ lim
k→∞

S(xmk−1, xmk−1, xnk
) + lim

k→∞
S(ynk−1, ynk−1, ymk

)])}
−min{ϕ( lim

k→∞
S(xnk−1, xnk−1, xmk

), lim
k→∞

S(ymk−1, ymk−1, ynk
)),
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ϕ( lim
k→∞

S(xmk−1, xmk−1, xnk
), lim
k→∞

S(ynk−1, ynk−1, ymk
))} so that

ψ(ε) ≤ ψ(max{ 14 [ lim
k→∞

max{S(xnk−1, xnk−1, xmk
), S(ynk−1, ynk−1, ymk

)}
+ lim
k→∞

max{S(ymk−1, ymk−1, ynk
), S(xmk−1, xmk−1, xnk

)}],
1
4 [ lim
k→∞

max{S(xmk−1, xmk−1, xnk
), S(ymk−1, ymk−1, ynk

)}
+ lim
k→∞

max{S(ynk−1, ynk−1, ymk
), S(xnk−1, xnk−1, xmk

)}]})
−min{ϕ( lim

k→∞
S(xnk−1, xnk−1, xmk

), lim
k→∞

S(ymk−1, ymk−1, ynk
)),

ϕ( lim
k→∞

S(xmk−1, xmk−1, xnk
), lim
k→∞

S(ynk−1, ynk−1, ymk
))}.

(By using (ii) and (iii) of Lemma 3.1)
= ψ( ε2 )−min{ϕ( lim

k→∞
S(xnk−1, xnk−1, xmk

), lim
k→∞

S(ymk−1, ymk−1, ynk
)),

ϕ( lim
k→∞

S(xmk−1, xmk−1, xnk
), lim
k→∞

S(ynk−1, ynk−1, ymk
))}

( all these limits are positive by using Lemma 2.11)
< ψ( ε2 ), a contradiction.

Therefore {xn} and {yn} are Cauchy sequences and hence convergent. Since A and
B are closed subsets of X and {xn} ⊂ A, {yn} ⊂ B, there exist x ∈ A and y ∈ B
such that

xn → x, yn → y as n→∞. (3.19)

By using (3.16), we get lim
n→∞

S(xn, xn, yn) = 0. Now, by Lemma 2.9, we have

S(x, x, y) = 0 and hence x = y so that A ∩B 6= ∅ and x ∈ A ∩B.
Now, by (3.1) and (3.4), we have
ψ(S(xn+1, xn+1, F (x, x)) = ψ(S(F (x, x), F (x, x), F (yn, xn)))

≤ ψ( 1
4 [max{S(x, x, F (yn, xn)), S(x, x, F (x, x))}
+ max{S(yn, yn, F (x, x)), S(x, x, F (x, x))}])

− ϕ(max{S(x, x, F (yn, xn)), S(x, x, F (x, x))},
max{S(yn, yn, F (x, x)), S(x, x, F (x, x))})

= ψ( 1
4 [max{S(x, x, xn+1), S(x, x, F (x, x))}
+ max{S(yn, yn, F (x, x)), S(x, x, F (x, x))}])

− ϕ(max{S(x, x, xn+1), S(x, x, F (x, x))},
max{S(yn, yn, F (x, x)), S(x, x, F (x, x))}).

On taking limits as n→∞, we get
ψ(S(x, x, F (x, x))) ≤ ψ( 1

4 [max{S(x, x, x), S(x, x, F (x, x))}
+ max{S(y, y, F (x, x)), S(x, x, F (x, x))}])
− ϕ(max{S(x, x, x), S(x, x, F (x, x))},
max{S(y, y, F (x, x)), S(x, x, F (x, x))})

≤ ψ(S(x, x, F (x, x)))−ϕ(S(x, x, F (x, x)), S(x, x, F (x, x))) and
hence ϕ(S(x, x, F (x, x)), S(x, x, F (x, x))) = 0 so that
S(x, x, F (x, x)) = 0. Therefore x = F (x, x) is a strong coupled fixed point of F .
We now prove the uniqueness of strong coupled fixed point of F . Suppose (x, x)
and (y, y) are two strong coupled fixed points of F . We consider
ψ(S(x, x, y)) = ψ(S(F (x, x), F (x, x), F (y, y)))

≤ ψ( 1
4 [max{S(x, x, F (y, y)), S(x, x, F (x, x))}
+ max{S(y, y, F (x, x)), S(x, x, F (x, x))}])

− ϕ(max{S(x, x, F (y, y)), S(x, x, F (x, x))},
max{S(y, y, F (x, x)), S(x, x, F (x, x))})

= ψ( 1
4 [S(x, x, y) + S(y, y, x)])− ϕ(S(x, x, y), S(y, y, x))
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≤ ψ(S(x, x, y))− ϕ(S(x, x, y), S(y, y, x))
so that ϕ(S(x, x, y), S(y, y, x)) = 0. Thus x = y. �

By choosing ψ(t) = t in Theorem 3.2, then we have the following.

Corollary 3.3. Let (X,S) be a complete S-metric space. Let A and B be two
nonempty closed subsets of X. Let F : X × X → X be mapping. If F is cyclic
with respect to A and B and there exists ϕ ∈ Φ such that

S(F (x, y), F (u, v), F (w, z)) ≤ 1

4
[max{S(x, x, F (w, z)), S(x, x, F (u, v))}

+ max{S(w,w, F (x, y)), S(u, u, F (x, y))}]
−ϕ(max{S(x, x, F (w, z)), S(x, x, F (u, v))},

max{S(w,w, F (x, y)), S(u, u, F (x, y))})
where x, u, z ∈ A and y, v, w ∈ B. Then A ∩ B 6= ∅ and F has a unique strong
coupled fixed point in A ∩B.

By choosing ϕ(t1, t2) = (1
4−k)(t1+t2) in Corollary 3.3 then we have the following.

Corollary 3.4. Let (X,S) be a complete S-metric space. Let A and B be two
nonempty closed subsets of X. Let F : X × X → X be mapping. If F is cyclic
with respect to A and B and there exists k ∈ (0, 14 ) such that

S(F (x, y), F (u, v), F (w, z)) ≤ k[max{S(x, x, F (w, z)), S(x, x, F (u, v))}
+ max{S(w,w, F (x, y)), S(u, u, F (x, y))}]

where x, u, z ∈ A and y, v, w ∈ B. Then A ∩ B 6= ∅ and F has a unique strong
coupled fixed point in A ∩B.

By choosing w = u and z = v in Corollary 3.4, then we have the following.

Corollary 3.5. Let (X,S) be a complete S-metric space. Let A and B be two
nonempty closed subsets of X. Let F : X × X → X be mapping. If F is cyclic
with respect to A and B and there exists k ∈ (0, 14 ) such that

S(F (x, y), F (u, v), F (u, v)) ≤ k[S(x, x, F (u, v)) + S(u, u, F (x, y))

where x, v ∈ A and y, u ∈ B. Then A ∩ B 6= ∅ and F has a unique strong coupled
fixed point in A ∩B.

The following example is in support of Theorem 3.2.

Example 3.2. Let X = [0, 1]. We define S : X3 → [0,∞) by

S(x, y, z) =

{
0 if x = y = z
x+ y + z otherwise.

Then (X,S) is a complete S-metric space.
Let A = [0, 12 ] and B = [0, 1]. We define F : X ×X → X by

F (x, y) =

{ x
8(x+y+1) if x ∈ A and y ∈ B
0 otherwise.

Then F (A,B) = [0, 1
16 ] ⊂ B and F (B,A) = {0} ⊂ A so that F is cyclic with respect

to A and B. We define ψ : [0,∞) → [0,∞) by ψ(t) = t
2 and ϕ : [0,∞)2 → [0,∞)

by ϕ(t1, t2) = 1
16 (t1 + t2). We now verify the inequality (3.1). Let x, u, z ∈ A and

y, v, w ∈ B. We now consider
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ψ(S(F (x, y), F (u, v), F (w, z))) = ψ(S( x
8(x+y+1) ,

u
8(u+v+1) , 0))

= 1
2S( x

8(x+y+1) ,
u

8(u+v+1) , 0)

= x
16(x+y+1) + u

16(u+v+1)

≤ 1
16 [x+ u]

≤ 1
16 [max{S(x, x, F (w, z)), S(x, x, F (u, v))}

+ max{S(w,w, F (x, y)), S(u, u, F (x, y))}]
= 1

8 [t1 + t2]− 1
16 [t1 + t2]

= ψ( 1
4 [t1 + t2])− ϕ(t1, t2),

where t1 = max{S(x, x, F (w, z)), S(x, x, F (u, v))} and
t2 = max{S(w,w, F (x, y)), S(u, u, F (x, y))}.

Therefore F is a Chatterjea type (ψ,ϕ)-weakly cyclic coupled mapping with respect
to A and B. Hence F satisfies all the hypotheses of Theorem 3.2 and (0, 0) is a
unique strong coupled fixed point of F .
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