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Research Article

The A-integral and Restricted Riesz Transform

RASHID A. ALIEV* AND KHANIM I. NEBIYEVA

ABSTRACT. It is known that the restricted Riesz transform of a Lebesgue integrable function is not Lebesgue inte-
grable. In this paper, we prove that the restricted Riesz transform of a Lebesgue integrable function is A-integrable
and the analogue of Riesz’s equality holds.
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1. INTRODUCTION

The j-th Riesz transform of a function f ∈ Lp(Rd), 1 ≤ p < +∞ is defined as the following
singular integral:

Rj(f)(x) = C(d) lim
ε→0

∫
{y∈Rd : |x−y|>ε}

xj − yj
|x− y|d+1

f(y)dy, j = 1, d,

where C(d) = Γ((d+1)/2)
π(d+1)/2 , Γ(z) =

+∞∫
0

tz−1e−tdt - Euler Gamma function and d - dimension of the

space Rd.
Let Ω ⊂ Rd be a bounded domain and f ∈ L1(Ω). In the present paper, we consider the

corresponding modification of Rj . Namely, the restricted Riesz transform Rj,Ω is defined as

(Rj,Ωf)(z) = Rj(χΩf)(z)

= C(d) lim
ε→0

∫
{y∈Ω : |x−y|>ε}

xj − yj
|x− y|d+1

f(y)dy, j = 1, d, z ∈ Ω,

where χΩ(z) = 1 for z ∈ Ω and χΩ(z) = 0 for z ∈ Rd\Ω is the characteristic function of the set
Ω.

From the theory of singular integrals (see [15]) it is known that the Riesz transform is a
bounded operator in the space Lp(Ω), p > 1, that is, if f ∈ Lp(Ω), then Rj,Ω(f) ∈ Lp(Ω) and
the inequality

(1.1) ‖Rj,Ωf‖Lp
≤ C(p)‖f‖Lp

holds. In the case f ∈ L1(Ω) only the weak inequality holds:

(1.2) m{x ∈ Ω : |(Rj,Ωf)(x)| > λ} ≤ C1

λ
‖f‖L1 ,
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The A-integral and Restricted Riesz Transform 105

where m stands for the Lebesgue measure, C(p), C1 are constants independent of f . From the
inequalities (1.1), (1.2) it follows that the Riesz transform of the function f ∈ L1(Ω) satisfies the
condition

m{x ∈ Ω : |(Rj,Ωf)(x)| > λ} = o

(
1

λ

)
, λ→ +∞.

Note that the Riesz transform of a function f ∈ L1(Ω) is not Lebesgue integrable. In this
paper, we prove that the Riesz transform of a function f ∈ L1(Ω) is A-integrable on Ω and the
analogue of Riesz’s equality holds.

2. A - INTEGRAL

For a measurable complex function f(x) on domain Ω we set

[f(x)]n = [f(x)]n = f(x) for |f(x)| ≤ n

[f(x)]n = n sgn f(x), [f(x)]n = 0 for |f(x)| > n, n ∈ N,
where sgn z = z/|z| for z 6= 0 and sgn 0 = 0.

In 1929, E.Titchmarsh [16] introduced the notions of Q- and Q′-integrals of function, mea-
surable on Ω.

Definition 2.1. If a finite limit lim
n→∞

∫
Ω

[f(x)]ndx ( lim
n→∞

∫
Ω

[f(x)]ndx, respectively) exists, then

f is said to be Q-integrable (Q′-integrable, respectively) on Ω, that is f ∈ Q(Ω) (f ∈ Q′(Ω)), and
the value of this limit is referred to as the Q-integral (Q′-integral) of this function and is denoted
by

(Q)

∫
Ω

f(x)dx

(
(Q′)

∫
Ω

f(x)dx

)
.

In the same paper, E.Titchmarsh established that, when studying the properties of trigono-
metric series conjugate to Fourier series of Lebesgue integrable functions, Q-integration leads
to a series of natural results. A very uncomfortable fact impeding the application ofQ-integrals
and Q′-integrals when studying diverse problems of function theory is the absence of the ad-
ditivity property, that is, the Q-integrability (Q′-integrability) of two functions does not imply
the Q-integrability (Q′-integrability) of their sum. If one adds the condition

(2.3) m{ z ∈ Ω : |f(x)| > λ } = o

(
1

λ

)
, λ→ +∞

to the definition of Q-integrability (Q′-integrability) of a function f , then the Q-integral and
Q′-integral coincide (Q(Ω) = Q′(Ω)), and these integrals become additive.

Definition 2.2. If f ∈ Q′(Ω) (or f ∈ Q(Ω)) and condition (2.3) holds, then f is said to be
A-integrable on Ω, f ∈ A (Ω), and the limit lim

n→∞

∫
Ω

[f(x)]ndx (or the limit lim
n→∞

∫
Ω

[f(x)]ndx) is
denoted in this case by

(A)

∫
Ω

f(x)dx.

The properties of Q- and Q′-integrals were investigated in [2, 8, 9, 16, 17], and for the ap-
plications of A-, Q- and Q′-integrals in the theory of functions of real and complex variables,
covering and flattering arguments, we refer the reader to [1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 17, 18]
and references therein.
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3. A - INTEGRABILITY AND RIESZ’S EQUALITY FOR THE RIESZ TRANSFORM OF LEBESGUE
INTEGRABLE FUNCTIONS

From the properties of singular integrals it follows that (see [15]) if f ∈ Lp(Ω), p > 1 and
g ∈ Lq(Ω), q > 1, 1/p+ 1/q = 1, then ∫

Ω

g(x)(Rj,Ωf)(x)dx

= Cd lim
ε→0

∫∫
{x,y∈Ω : |x−y|>ε}

xj − yj
|x− y|d+1

f(y)g(x)dydx

(3.4) = −
∫

Ω

f(x)(Rj,Ωg)(x)dx.

In this section, we prove that the Riesz transform of the function f ∈ L1(Ω) is A-integrable
on Ω and the analogue of (3.1) holds.

Theorem 3.1. Let f ∈ L1(Ω) and g(x) is a bounded function on Ω such that the (Rj,Ωg)(x) is
also bounded on Ω. Then the function g(x) · (Rj,Ωf)(x) is A-integrable on Ω and the equation

(3.5) (A)

∫
Ω

g(x)(Rj,Ωf)(x)dx = −
∫

Ω

f(x)(Rj,Ωg)(x)dx.

holds.
Proof. Since the A-integral satisfies the additivity property, it can be assumed that the func-

tion f is real, f(x) ≥ 0 for any x ∈ Ω, and

max
x∈Ω
{|g(x)|, |(Rj,Ωg)(x)|} ≤ 1.

For x /∈ Ω, we assume that f(x) = 0.
Our proof will depend on a certain refinement of Besicovitch’s method [7] for a direct proof

of the existence of conjugate function (this method employs only the machinery of the theory
of sets of points). This method was improved by Titchmarsh [16] and Ul’yanov [17] for the
study of properties of the conjugate function. It is worth noting that Besicovitch–Titchmarsh–
Ul’yanov’s method is applicable only to functions of one real variable (because this method
relies on some facts that are valid only in one-dimensional case). For example, it depends on
the fact that any open set is a union of at most a countable number of intervals (to overcome
this difficulty, we used Vitali’s covering theorem). To make this method to work in the setting
of functions of several variables, we have slightly improved the construction.

Denote Φn(x) = f(x)− [f(x)]n. Then αn =
∫

Ω
Φn(x)dx→ 0 at n→∞. Take n ∈ N such that

αn < 1. Let En = {x ∈ Ω : f(x) > n}. For any x ∈ En, we set

rx = sup{r > 0 :

∫
B(x;r)

Φn(y)dy =
1

2
· πd/2

Γ(1 + d/2)
rd · n}

if {r > 0 :
∫
B(x;r)

Φn(y)dy = 1
2 ·

πd/2

Γ(1+d/2)r
d · n} 6= ∅, and rx = 0 otherwise, where B(x; r)

- open ball with center at x and with radius r > 0. Note that if x ∈ En is a Lebesgue point
of the function Φn(x), then rx > 0 and, therefore, the set En\E′n has a zero measure, where
E′n = {x ∈ En : rx > 0}.

Consider the system of sets {B(x; rx)}x∈E′
n

. It follows from the covering theorem (see [10])
that there exists at most a countable points xk ∈ E′n, k ∈ I ⊂ N such that the balls B(xk; rxk

),
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k ∈ I are pairwise disjoint and ⋃
x∈E′

n

B(x; rx) ⊂
⋃
k∈I

B(xk; 5rxk
).

Denote
G1 = B(x1; 5 rx1)\

⋃
k>1

B(xk; rxk
),

Gp = B(xp; 5rxp
)\

p−1⋃
j=1

Gj
⋃⋃

k>p

B(xk; rxk
)

 , p ≥ 2, p ∈ I.

Then, the measurable sets Gp, p ∈ I are pairwise disjoint, and

B(xp; rxp
) ⊂ Gp ⊂ B(xp; 5rxp

), p ∈ I,

E′n ⊂
⋃
x∈En

B(x; rx) ⊂
⋃
p∈I

Gp =
⋃
p∈I

B(xp; 5rxp
).

Denote Φ∗n(x) = 1
m(Gp)

∫
Gp

Φn(y)dy for z ∈ Gp, p ∈ I and Φ∗n(x) = 0 for x ∈ Rd\
⋃
p∈I Gp.

Then for any p ∈ I , we have

(3.6)
∫
Gp

Φn(x)dx =

∫
Gp

Φ∗n(x)dx.

Note that for any x ∈ Gp, p ∈ I , the inequalities

0 ≤ Φ∗n(x) ≤ 1

m(B(xp; rxp
))

∫
B(xp; 5rxp )

Φn(y)dy

≤ Γ(1 + d/2)

πd/2rdxp

· 1

2

πd/2 · 5drdxp

Γ(1 + d/2)
· n =

5dn

2

hold. Denote Ln =
⋃
p∈I Gp, L′n =

⋃
p∈I B(xp; 10rxp

). Then

m(Ln) ≤
∑
p∈I

πd/2 · 5drdxp

Γ(1 + d/2)
≤ 5d · 2

n

∑
p∈I

∫
B(xp; rxp )

Φn(y)dy

≤ 5d · 2

n

∑
p∈I

∫
B(xp; rxp )

Φn(y)dy ≤ 2 · 5d

n

∫
Ω

Φn(y)dy =
2 · 5dαn

n
,

(3.7) m(L′n) ≤
∑
p∈I

πd/2 · 10drdxp

Γ(1 + d/2)
≤ 2 · 10dαn

n
.

Let Tn = Ω\L′n. First we prove that the inequality

(3.8)
∫
Tn

|Rj,Ω(Φn − Φ∗n)(x)|dx < C2 · αn

holds, where C2 is a constant, independent of n. Denote

hn(x) = Rj,Ω(Φn − Φ∗n)(x).

For any x ∈ Tn, we have

|hn(x)| = C(d)

∣∣∣∣∫
Ω

xj − yj
|x− y|d+1

[Φn(y)− Φ∗n(y)]dy

∣∣∣∣
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= C(d)

∣∣∣∣∣∣
∑
p∈I

∫
Gp

xj − yj
|x− y|d+1

[Φn(y)− Φ∗n(y)]dy

∣∣∣∣∣∣
(3.9) ≤ C(d)

∑
p∈I

∣∣∣∣∣
∫
Gp

xj − yj
|x− y|d+1

Φn(y)dy −
∫
Gp

xj − yj
|x− y|d+1

Φ∗n(y)dy

∣∣∣∣∣ .
It follows from the integral mean value theorem that for any p ∈ I there are points y(p), ỹ(p) ∈

B(xp; 5rxp), such that∫
Gp

xj − yj
|x− y|d+1

Φn(y)dy =
xj − y(p)

j

|x− y(p)|d+1
·
∫
Gp

Φn(y)dy,

∫
Gp

xj − yj
|x− y|d+1

Φ∗n(y)dy =
xj − ỹ(p)

j

|x− ỹ(p)|d+1
·
∫
Gp

Φ∗n(y)dy.

Then from (3.6) and (3.9), we obtain that

(3.10) |hn(x)| ≤ C(d)

∑
p∈I

∣∣∣∣∣ xj − y(p)
j

|x− y(p)|d+1
−

xj − ỹ(p)
j

|x− ỹ(p)|d+1

∣∣∣∣∣ ·
∫
Gp

Φn(y)dy.

Since for any y, ỹ ∈ B(xp; 5rxp
) and x ∈ Tn, the inequality∣∣∣∣ xj − yj

|x− y|d+1
− xj − ỹj
|x− ỹ|d+1

∣∣∣∣
≤ |(xj − yj) · [|x− ỹ|

d+1 − |x− y|d+1]− (yj − ỹj) · |x− y|d+1|
|x− y|d+1 · |x− ỹ|d+1

≤
|xj − yj | · ||x− ỹ| − |x− y|| ·

∑d
k=0 |x− ỹ|k · |x− y|d−k

|x− y|d+1 · |x− ỹ|d+1
+
|yj − ỹj |
|x− ỹ|d+1

≤
(d+ 1) · 10rxp · 2d+1

|x− xp|d+1
+

10rxp · 2d+1

|x− xp|d+1
=

10(d+ 2) · 2d+1 · rxp

|x− xp|d+1

holds, then it follows from (3.10) that

|hn(x)| ≤ C(d)

∑
p∈I

10(d+ 2) · 2d+1 · rxp

|x− xp|d+1
·
∫
Gp

Φn(y)dy

≤ C(d)

∑
p∈I

10(d+ 2) · 2d+1 · rxp

|x− xp|d+1
· (1

2
· πd/2

Γ(1 + d/2)
rdxp
· n)

= C3 · n ·
∑
p∈I

rd+1
xp

|x− xp|d+1
,

where C3 = Γ((d+1)/2)·10(d+2)·2d

π1/2·Γ(1+d/2)
. From this, we get that∫

Tn

|hn(x)|dx ≤ C3 · n ·
∑
p∈I

rd+1
xp

∫
Tn

dx

|x− xp|d+1

≤ C3 · n ·
∑
p∈I

rd+1
xp

∫
{x∈Rd: |x−xp|≥10rxp}

dx

|x− xp|d+1
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= C3 · n ·
∑
p∈I

rd+1
xp
· 2πd/2

Γ(d/2)

∫ +∞

10rxp

dr

r2
=

C3π
d/2

5Γ(d/2)
· n ·

∑
p∈I

rdxp

=
C3π

d/2

5Γ(d/2)
· n · 2αn

n
· Γ(1 + d/2)

πd/2
=
C3d

5
αn.

That is, inequality (3.8) is satisfied.
We represent the function f(x) in the form

(3.11) f(x) = [f(x)]n + Φ∗n(x) + [Φn − Φ∗n](x).

Let us prove that the equality

(3.12) lim
n→∞

∫
Tn

g(x)(Rj,Ωf)(x)dx = −
∫

Ω

f(x)(Rj,Ωg)(x)dx.

holds. Consider the integral ∫
Tn

g(x)(Rj,Ωf)(x)dx

=

∫
Tn

g(x){(Rj,Ω[f ]n)(x) + (Rj,ΩΦ∗n)(x) +Rj,Ω(Φn − Φ∗n)(x)}dx

=

∫
Tn

g(x)(Rj,Ω[f ]n)(x)dx+

∫
Tn

g(x)(Rj,ΩΦ∗n)(x)dx

(3.13) +

∫
Tn

g(x)Rj,Ω(Φn − Φ∗n)(x)dx = S1 + S2 + S3.

By (3.4) for square integrable functions, we obtain

S1 =

∫
Tn

g(x)(Rj,Ω[f ]n)(x)dx

=

∫
Ω

g(x)(Rj,Ω[f ]n)(x)dx−
∫
L′

n

g(x)(Rj,Ω[f ]n)(x)dx

= −
∫

Ω

[f(x)]n(Rj,Ωg)(x)dx−
∫
L′

n

g(x)(Rj,Ω[f ]n)(x)dx = S
(1)
1 + S

(2)
1 .

Since

|S(2)
1 | =

∣∣∣∣∣
∫
L′

n

g(x)(Rj,Ω[f ]n)(x)dx

∣∣∣∣∣ ≤
∫
L′

n

|(Rj,Ω[f ]n)(x)|dx

≤
[
m(L′n) ·

∫
Ω

(Rj,Ω[f ]n)2(x)dx

]1/2

≤ C(2)

[
m(L′n) ·

∫
Ω

([f(x)]n)2dx

]1/2

≤ C(2)

[
n ·m(L′n) ·

∫
Ω

f(x)dx

]1/2

,

then it follows from (3.7) that

lim
n→∞

S1 = − lim
n→∞

∫
Ω

[f(x)]n(Rj,Ωg)(x)dx

(3.14) = −
∫

Ω

f(x)(Rj,Ωg)(x)dx.
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For the integral S2, we also have

S2 =

∫
Tn

g(x)(Rj,ΩΦ∗n)(x)dx

=

∫
Ω

g(x)(Rj,ΩΦ∗n)(x)dx−
∫
L′

n

g(x)(Rj,ΩΦ∗n)(x)dx

= −
∫

Ω

Φ∗n(x)(Rj,Ωg)(x)dx−
∫
L′

n

g(x)(Rj,ΩΦ∗n)(x)dx = S
(1)
2 + S

(2)
2 .

The following estimations are valid.

|S(1)
2 | =

∣∣∣∣∫
Ω

Φ∗n(x)(Rj,Ωg)(x)dx

∣∣∣∣ ≤ ∫
Ω

|Φ∗n(x)(Rj,Ωg)(x)|dx

≤
∫

Ω

Φ∗n(x)dx =

∫
Ω

Φn(x)dx = αn,

|S(2)
2 | =

∣∣∣∣∣
∫
L′

n

g(x)(Rj,ΩΦ∗n)(x)dx

∣∣∣∣∣ ≤
∫
L′

n

|(Rj,ΩΦ∗n)(x)|dx

≤
[
m(L′n) ·

∫
Ω

(Rj,ΩΦ∗n)2(x)dx

]1/2

≤ C(2)

[
m(L′n) ·

∫
Ω

(Φ∗n(x))2dx

]1/2

≤ C(2)

[
5dn

2
·m(L′n) ·

∫
Ω

Φ∗n(x)dx

]1/2

= C(2)

[
5dn

2
·m(L′n) · αn

]1/2

.

Then it follows from (3.7) that

(3.15) lim
n→∞

S2 = 0.

To estimate the integral S3, we need to apply the inequality (3.8):

|S3| =
∣∣∣∣∫
Tn

g (x)Rj,Ω (Φn − Φ∗n) (x) dx

∣∣∣∣
≤
∫
Tn

|g (x)Rj,Ω (Φn − Φ∗n) (x)| dx

≤
∫
Tn

|Rj,Ω (Φn − Φ∗n) (x)| dx < C2 · αn.

This implies the equality

(3.16) lim
n→∞

S3 = 0.

From the equalities (3.13), (3.14), (3.15) and (3.16), we obtain the equality (3.12). It remains
to prove the equality

(3.17) (A)

∫
Ω

g(x)(Rj,Ωf)(x)dx = lim
n→∞

∫
Tn

g(x)(Rj,Ωf)(x)dx.

Consider the difference of integrals∫
Tn

g(x)(Rj,Ωf)(x)dx−
∫

Ω

[g(x)(Rj,Ωf)(x)]ndx

= −
∫
L′

n

[g(x)(Rj,Ωf)(x)]ndx+
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(3.18) +

∫
Tn

{g(x)(Rj,Ωf)(x)− [g(x)(Rj,Ωf)(x)]n}dx = S(1) + S(2).

From the inequality |S(1)| ≤ n ·m(L′n), it follows that

(3.19) lim
n→∞

S(1) = 0.

Denote σn = {x ∈ Ω : |g(x)(Rj,Ωf)(x)| > n}. Since

m{x ∈ Ω : |(Rj,Ωf)(x)| > n} = o

(
1

n

)
, n→∞,

then m(σn) = o
(

1
n

)
, n→∞. Using (3.8) and (3.11), we obtain

|S(2)| ≤
∫
Tn

⋂
σn

|g(x)(Rj,Ωf)(x)|dx

≤
∫
Tn

⋂
σn

|(Rj,Ωf)(x)|dx ≤
∫
σn

|(Rj,Ω[f ]n)(x)|dx

+

∫
σn

|(Rj,ΩΦ∗n)(x)|dx+

∫
Tn

|Rj,Ω(Φn − Φ∗n)(x)|dx

≤
[
m(σn) ·

∫
Ω

(Rj,Ω[f ]n)2(x)dx

]1/2

+

[
m(σn) ·

∫
Ω

(Rj,ΩΦ∗n)2(x)dx

]1/2

+ C · αn

≤ c2
[
m(σn) ·

∫
Ω

([f(x)]n)2dx

]1/2

+c2

[
m(σn) ·

∫
Ω

(Φ∗n(x))2dx

]1/2

+ C · αn

≤ c2
[
n ·m(σn) ·

∫
Ω

f(x)dx

]1/2

+c2

[
5dn

2
·m(σn) ·

∫
Ω

Φ∗n(x)dx

]1/2

+ C · αn.

It follows that

(3.20) lim
n→∞

S(2) = 0.

From the equalities (3.18), (3.19) and (3.20), we obtain the equality (3.17). Theorem 3.1 is proved.
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1. INTRODUCTION

This paper is concerned with the Ulam stability of some classical equations arising in the
context of inner-product spaces. For the general notion of Ulam stability see, e.q., [1]. Roughly
speaking an equation is called Ulam stable if near every approximate solution there exists an
exact solution; the precise meaning in each case presented in this paper is described in three
theorems. Related results can be found in [2, 3, 4]. See also [5] for some inequalities in inner
product spaces.

2. THE CAUCHY-SCHWARZ EQUATION

Let (V, (·|·)) be a real inner-product space. Consider the Cauchy-Schwarz equation, i.e.,

(2.1) ‖x‖2‖y‖2 − (x|y)2 = 0.

The set of its solutions is

(2.2) S = {(x, y) ∈ V 2 : x, y are linearly dependent vectors}.

Theorem 2.1. Let ε > 0 and (u, v) ∈ V 2 an approximate solution of (2.1), i.e.,

(2.3) ‖u‖2‖v‖2 − (u|v)2 ≤ ε.

Then there exists an exact solution (x, y) ∈ S such that

(2.4) ‖u− x‖2 + ‖v − y‖2 ≤
√
ε.

Proof. If u and v are linearly dependent, then it suffices to take x = u, y = v. So, let u and v be
linearly independent. Then u 6= 0, v 6= 0; suppose that ‖v‖ ≤ ‖u‖ and let wt := u + tv, t ∈ R.
Then wt 6= 0, t ∈ R; let zt := wt/‖wt‖ and Wt := Span{zt}. Let xt := prWt

u and yt := prWt
v

be the orthogonal projections of u, respectively v, on Wt. Then xt and yt are linearly dependent
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vectors, i.e., (xt, yt) ∈ V 2 is a solution of (2.1). Moreover, ‖u−xt‖2+‖v−yt‖2 = ‖u‖2−(u|zt)2+
‖v‖2 − (v|zt)2. Let a := (v|v), b := (u|v), c := (u|u). Then

(2.5) ac− b2 > 0; 0 < a ≤ c.
We have

(2.6) ‖u− xt‖2 + ‖v − yt‖2 = c+ a− (u|zt)2 − (v|zt)2

and

s := s(t) := (u|zt)2 + (v|zt)2 =
(u|wt)2 + (v|wt)2

‖wt‖2
=

(c+ tb)2 + (b+ ta)2

‖wt‖2
,

so that

s =
(a2 + b2)t2 + 2b(a+ c)t+ b2 + c2

at2 + 2bt+ c
.

It follows that
(a2 + b2 − as)t2 + 2b(a+ c− s)t+ b2 + c2 − cs = 0,

which entails

(2.7) b2(a+ c− s)2 − (a2 + b2 − as)(b2 + c2 − cs) ≥ 0.

From (2.5) and (2.7), we deduce

s2 − (a+ c)s+ ac− b2 ≤ 0.

Let s1 and s2 be the roots of the corresponding equation, i.e.,

s1 =
a+ c−

√
(a− c)2 + 4b2

2
, s2 =

a+ c+
√
(a− c)2 + 4b2

2
.

Then s1 ≤ s(t) ≤ s2 for all t ∈ R. By using (2.5), it is easy to prove that there exists τ ∈ R such
that s(τ) = s2. Now,

‖u− xτ‖2 + ‖v − xτ‖2 = a+ c− s(τ) = a+ c− s2 = a+ c−
a+ c+

√
(a− c)2 + 4b2

2
=

=
a+ c−

√
(a− c)2 + 4b2

2
≤

√
ac− b2 =

√
‖u‖2‖v‖2 − (u|v)2.

Combined with (2.3), this gives (2.4) and the proof is finished.
�

3. THE ORTHOGONALITY EQUATION

Consider the orthogonality equation (x|y) = 0.

Theorem 3.2. Let ε > 0 and (u, v) ∈ V 2 such that ‖u‖ = ‖v‖ = 1 and |(u|v)| ≤ ε. Then, there exists
(x, y) ∈ V 2 such that ‖x‖ = ‖y‖ = 1, (x|y) = 0 and

(3.8) ‖u− x‖2 + ‖v − y‖2 ≤ (4− 2
√
2)ε.

Proof. (i) Let (u|v) > 0. Choose w ∈ Span{u, v}, ‖w‖ = 1, (w|u) = 0. Then v = u cosα+ w sinα,
for a suitable α ∈ [0, Π

2 ). Define xt := u cos t− w sin t, yt := u sin t+ w cos t, t ∈ R. Then ‖xt‖ =
1, ‖yt‖ = 1, (xt|yt) = 0, and ‖u−xt‖2 + ‖v− yt‖2 = ‖(1− cos t)u+w sin t‖2 + ‖(cosα− sin t)u+
(sinα−cos t)w‖2 = (1−cos t)2+sin2 t+(cosα−sin t)2+(sinα−cos t)2 = 4−2((1+sinα) cos t+
cosα sin t). Clearly (1 + sinα) cos t+ cosα sin t ≤

√
2 + 2 sinα, t ∈ R. Choose τ ∈ R such that

(1 + sinα) cos τ + cosα sin τ =
√
2 + 2 sinα.
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Then

(3.9) ‖u− xτ‖2 + ‖v − yτ‖2 = 4− 2
√
2
√
1 + sinα.

Now consider the function f(α) = (4− 2
√
2) cosα− 4 + 2

√
2
√
1 + sinα, α ∈ [0, Π

2 ]. It is easy to
verify that f(0) = f(Π

2 ) = 0 and there exists 0 < β < Π
2 such that f is increasing on [0, β] and

decreasing on [β, Π
2 ]. It follows that f(α) ≥ 0, α ∈ [0, Π

2 ]; combined with (3.9), this yields

(3.10) ‖u− xτ‖2 + ‖v − yτ‖2 ≤ (4− 2
√
2) cosα.

On the other hand, cosα = (u|v) ≤ ε, and so (3.8) is a consequence of (3.10).
(ii) If (u|v) < 0, it suffices to use the proof of (i) with v replaced by −v. Thus, the theorem is

proved.
�

4. THE GRAM EQUATION

Denote byG(u1, ..., um) the Gram determinant of the vectors u1, ..., um ∈ V. Let v1, ..., vn ∈ V
be linearly independent vectors. Consider the equation

(4.11) G(x, v1, ..., vn) = 0.

Theorem 4.3. Let ε > 0 and u ∈ V such that

G(u, v1, ..., vn) ≤ ε.
Then, there exists x ∈ V which satisfy (4.11) and

‖u− x‖ ≤ 1√
G(v1, ..., vn)

√
ε.

Proof. Let W = Span{v1, ..., vn} and x := prWu. Then x ∈ W and therefore it satisfies (4.11).
Moreover,

‖u− x‖ =

√
G(u, v1, ..., vn)

G(v1, ..., vn)
≤ 1√

G(v1, ..., vn)

√
ε.

�
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ABSTRACT. The purpose of the paper called “A new class of Kantorovich-type operators”, as the title says, is to
introduce a new class of Kantorovich-type operators with the property that the test functions e1 and e2 are reproduced.
Furthermore, in our approach, an asymptotic type convergence theorem, a Voronovskaja type theorem and two error
approximation theorems are given. As a conclusion, we make a comparison between the classical Kantorovich opera-
tors and the new class of Kantorovich - type operators.
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1. INTRODUCTION

Let N be the set of positive integers and N0 = N ∪ {0}. We denote by ej the monomial of j
degree, j ∈ N0, L1([0, 1]) = {f |f : [0, 1] −→ R and f integrable Lebesgue on [0, 1]}.

In 1930, L. Kantorovich [7] constructed and studied the linear positive operators Km :
L1([0, 1]) −→ C([0, 1]), defined for any f ∈ L1([0, 1]), x ∈ [0, 1] and m ∈ N by

(1.1) (Kmf)(x) = (m+ 1)

m∑
k=0

(
m

k

)
xk(1− x)m−k

∫ k+1
m+1

k
m+1

f(t)dt.

The operators (1.1) are known as Kantorovich operators and they preserve the test function
e0. Following the ideas from [3]-[6], in this paper we introduce a general class which preserves
the test functions e1 and e2. For our operators a convergence theorem, a Voronovskaja-type
theorem and two error approximation theorems are obtained.

The paper is organized as follows: in Section 2 we introduce some preliminary notions
which we will use in the construction of the new type of Kantorovich operators, in Section 3
we will construct the new operators and in Section 4 we give an asymptotic type convergence
theorem, a Voronovskaja type theorem, two error approximation theorems and a comparison
between the classical Kantorovich operators and the new one.
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2. PRELIMINARIES

In this section, we recall some notions and results which we will use in what follows. We
consider I, J real intervals with the property I ∩ J 6= ∅, let E(I), F (J) be certain subsets of the
space of all real functions defined on I , respectively J ,

B(I) = {f |f : I → R, f bounded on I},
C(I) = {f |f : I → R, f continuous on I}

and
CB(I) = B(I) ∩ C(I).

For x ∈ I , we consider the function ψx : I → R, ψx(t) = t − x, t ∈ I . For any m ∈ N,
we consider the functions ϕm,k : J → R, with the property ϕm,k(x) ≥ 0, for any x ∈ J, k ∈
{0, 1, ...,m} and the linear positive functionals Am,k : E(I) → R, k ∈ {0, 1, ...,m}. For m ∈ N,
we define the operators Lm : E(I)→ F (J) by

(2.1) (Lmf)(x) =

m∑
k=0

ϕm,k(x)Am,k(f).

Remark 2.1. The operators (Lm)m∈N are linear and positive on E(I ∩ J).

For any f ∈ E(I), x ∈ I ∩ J and for i ∈ N0, we define Tm,i by

(2.2) (Tm,iLm)(x) = mi(Lmψ
i
x)(x) = mi

m∑
k=0

ϕm,k(x)Am,k(ψix).

In the following, let s be a fixed even natural number and we suppose that the operators
(Lm)m∈N verifies the following conditions:
there exists the smallest αs, αs+2 ∈ [0,∞) such that

(2.3) lim
m−→∞

(Tm,jLm)(x)

mαj
= Bj(x) ∈ R,

for any x ∈ I ∩ J, j ∈ {s, s+ 2} and

(2.4) αs+2 < αs + 2.

If I ⊂ R is a given interval and f ∈ CB(I), then the first order modulus of smoothness of f
is the function ω1(f ; ·) : [0,+∞) → R defined for any δ ≥ 0 by ω1(f, δ) = sup{|f(x′)− f(x′′)| :
x′, x′′ ∈ I, |x′ − x′′| ≤ δ}.

Theorem 2.1. ([8]) Let f : I −→ R be a function. If x ∈ I ∩ J and f is s times derivable function on
I , the function f (s) is continuous on I , then

(2.5) lim
m−→∞

ms−αs

(
(Lmf)(x)−

s∑
i=0

f (i)(x)

mii!
(Tm,iLm)(x)

)
= 0.

If f is a s times differentiable function on I , the function f (s) is continuous on I and there exists
m(s) ∈ N and kj ∈ R such that for any natural number m ≥ m(s) and for any x ∈ I ∩ J we have

(2.6)
(Tm,jLm)(x)

mαj
≤ kj ,

where j ∈ {s, s+ 2}, then the convergence given in (2.5) is uniformly on I ∩ J and

(2.7) ms−αs

∣∣∣(Lmf)(x)−
s∑
i=0

f (i)(x)

mii!
(Tm,iLm)(x)

∣∣∣
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≤ 1

s!
(ks + ks+2)ω1

(
f (s);

1√
m2+αs−αs+2

)
for any x ∈ I ∩ J and m ≥ m(s).

Let ϕx be defined by

(2.8) ϕx(t) = |t− x|, t ∈ I, x ∈ I.

Theorem 2.2. [9] Let L : C(I) −→ B(I) be a linear positive operator. Let ϕx be defined by (2.8).
(i) If f ∈ CB(I), then for every x ∈ I and δ > 0, one has

|(Lf)(x)− f(x)| ≤ |f(x)| |(Le0)(x)− 1|

+
(

(Le0)(x) + δ−1
√

(Le0)(x) · (Lϕ2
x)(x)

)
ω1(f ; δ).

(ii) If f is differentiable on I and f ′ ∈ CB(I), then for every x ∈ I and δ > 0, one has

|(Lf)(x)− f(x)| ≤ |f(x)| |(Le0)(x)− 1|+ |f ′(x)||(Le1)(x)− x(Le0)(x)|

+
√

(Lϕ2
x)(x)

(√
(Le0)(x) + δ−1 ·

√
(Lϕ2

x)(x)
)
ω1(f ′; δ).

3. A NEW CLASS OF KANTOROVICH-TYPE OPERATORS

Let am, bm : J −→ R be functions such that am(x) ≥ 0, bm(x) ≥ 0 for any x ∈ J and m ∈ N1,
where J and N1 ⊂ N will be determined later. We define the operators of the following form

(3.1) (K∗mf)(x) = (m+ 1)

m∑
k=0

(
m

k

)
(am(x))k(bm(x))m−k

∫ k+1
m+1

k
m+1

f(t)dt

for any x ∈ J , m ∈ N1 and f ∈ L1([0, 1]). Then, we get

(3.2) (K∗me0)(x) =
(
am(x) + bm(x)

)m
,

(3.3) (K∗me1)(x) =
m

m+ 1
am(x)

(
am(x) + bm(x)

)m−1
+

1

2(m+ 1)

(
am(x) + bm(x)

)m
and

(3.4)

(K∗me2)(x) =
m(m− 1)

(m+ 1)2
a2m(x)

(
am(x) + bm(x)

)m−2
+

2m

(m+ 1)2
am(x)

(
am(x) + bm(x)

)m−1
+

1

3(m+ 1)2
(
am(x) + bm(x)

)m
for any x ∈ J and m ∈ N1.

In what follows, we impose the additional condition to be fulfilled by our operators

(3.5) (K∗me0)(x) = 1 + um(x),

where x ∈ J , m ∈ N1 and um : J −→ R.

Remark 3.1. We want that K∗m,m ∈ N1 be positive operators, then from (K∗me0) ≥ 0 and (3.5), we
have

(3.6) 1 + um(x) ≥ 0, x ∈ J,m ∈ N1.
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We will show in Lemma 3.3 that 1 + um(x) > 0, x ∈ J,m ∈ N1. From (3.2), we get

(3.7) (am(x) + bm(x))m = 1 + um(x), x ∈ J,m ∈ N1,

from where

(3.8) am(x) + bm(x) = (1 + um(x))
1
m , x ∈ J,m ∈ N1.

The next conditions will be read as follows

(3.9) (K∗me1)(x) = x

and

(3.10) (K∗me2)(x) = x2

for any x ∈ J and m ∈ N1.
From (3.3), (3.8) and (3.9), we get

(3.11) am(x) =
m+ 1

m
(1 + um(x))

1−m
m

(
x− 1

2(m+ 1)
(1 + um(x))

)
,

x ∈ J , m ∈ N1.
From (3.8) and (3.11) we obtain

(3.12)
bm(x) =(1 + um(x))

1
m

(
1− m+ 1

m
· 1

1 + um(x)
·(

x− 1

2(m+ 1)
(1 + um(x))

))
,

x ∈ J , m ∈ N1.
Because am(x) ≥ 0, bm(x) ≥ 0, x ∈ J,m ∈ N1, from (3.7), (3.11) and (3.12) we get

x− 1

2(m+ 1)
(1 + um(x)) ≥ 0

and

1− m+ 1

m
· 1

1 + um(x)

(
x− 1

2(m+ 1)
(1 + um(x))

)
≥ 0,

x ∈ J,m ∈ N1, from where we obtain

(3.13)
2(m+ 1)

2m+ 1
x− 1 ≤ um(x) ≤ 2(m+ 1)x− 1,

x ∈ J,m ∈ N1.
From (3.4), (3.8), (3.10) and (3.11) it follows

(3.14)

(−5m− 3)u2m(x)+

(−12m(m+ 1)2x2 + 12(m+ 1)2x− 2(5m+ 3))um(x)+

(−12(m+ 1)2x2 + 12(m+ 1)2x− (5m+ 3)) = 0.

The relation (3.14) is an equation in um(x) with the discriminant

(3.15) ∆m(x) = 48(m+ 1)2x2
(

3(m+ 1)2(mx− 1)2 + (5m+ 3)(m− 1)
)
.

The discriminant ∆m(x), after some calculation, has the following form

(3.16) ∆m(x) =
(

12m(m+ 1)2x2 − 12(m+ 1)2x
)2

+ 4(5m+ 3)12(m+ 1)2x2(m− 1),

so for x 6= 0 and m ∈ N we obtain that ∆m(x) > 0.
Then, in the above conditions, we have the solutions of the equation (3.14)
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(3.17)
um,1(x) =

−6m(m+ 1)2x2 + 6(m+ 1)2x− (5m+ 3)

5m+ 3

−
2(m+ 1)x

√
9(m+ 1)2(mx− 1)2 + 3(5m+ 3)(m− 1)

5m+ 3

and

(3.18)
um,2(x) =

−6m(m+ 1)2x2 + 6(m+ 1)2x− (5m+ 3)

5m+ 3

+
2(m+ 1)x

√
9(m+ 1)2(mx− 1)2 + 3(5m+ 3)(m− 1)

5m+ 3

for any x ∈ J , m ∈ N1.
For um,1(x), we have lim

m−→∞
um,1(x) = −∞ then um,1(x) does not satisfy the relation (3.6),

so from the relation (3.18) follows that um(x) = um,2(x).

Lemma 3.1. The relation (3.13) happens for any x ∈ J,m ∈ N1 if and only if

(3.19)
2

3(m+ 1)
≤ x ≤ 2(3m2 + 3m+ 1)

3(m+ 1)(2m+ 1)
.

Proof. After some calculation, it follows from the relations (3.13) and (3.18). �

Remark 3.2. (i) The following inequalities state
2

3(m+ 1)
> 0

and
2(3m2 + 3m+ 1)

3(m+ 1)(2m+ 1)
< 1

for m ∈ N.
(ii) The sequence

(
2

3(m+1)

)
m∈N

is decreasing and the sequence
(

2(3m2+3m+1)
3(m+1)(2m+1)

)
m∈N

is increasing.

(iii) From (ii), the following relations state
2

3(m+ 1)
≤ 1

3

and
7

9
≤ 2(3m2 + 3m+ 1)

3(m+ 1)(2m+ 1)
,m ∈ N.

(iv) From (3.19) and (iii) follows 1
3 ≤ x ≤

7
9 , so the operators K∗m are positive for m ∈ N.

(v) If c ∈
(
0, 13
)
, because lim

m−→∞

2

3(m+ 1)
= 0 it follows that there exists m(c) ∈ N such that

2
3(m+1) ≤ c, for any m ∈ N and m ≥ m(c).

(vi) If d ∈
(
7
9 , 1
)
, because lim

m−→∞

2(3m2 + 3m+ 1)

3(m+ 1)(2m+ 1)
= 1 follows that there exists m(d) ∈ N such

that d ≤ 2(3m2+3m+1)
3(m+1)(2m+1) , for any m ∈ N and m ≥ m(d).

(vii) Let N1 = {m ∈ N
∣∣m ≥ max(m(c),m(d)) = m(c, d)}.

Lemma 3.2. If 0 < c < d < 1, then exists m(c, d) ∈ N such that the operators K∗m are positive on
[c, d], for m ∈ N,m ≥ m(c, d).
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Proof. It follows from Lemma 3.1 and Remark 3.2. �

Lemma 3.3. The inequality

(3.20) 1 + um(x) > 0

holds for any x ∈ [c, d] and m ∈ N1.

Proof. We take into account the relation (3.18). �

Let c and d be real numbers with 0 < c < d < 1, then I = [0, 1], J = [c, d],

ϕm,k(x) = (m+ 1)(1 + um(x))1−k

×
(
m+ 1

m

(
x− 1

2(m+ 1)
(1 + um(x))

))k
×
(

1− m+ 1

m(1 + um(x))

(
x− 1

2(m+ 1)
(1 + um(x))

))m−k
and

Am,k(f) =

∫ k+1
m+1

k
m+1

f(t)dt,

f ∈ L1([0, 1]), x ∈ [c, d],m ∈ N1.
Then the operators (3.1) become

(3.21)

(K∗mf)(x) = (m+ 1)

m∑
k=0

(
m

k

)
(1 + um(x))1−k

×
(
m+ 1

m

(
x− 1

2(m+ 1)
(1 + um(x))

))k
×
(

1− m+ 1

m(1 + um(x))

(
x− 1

2(m+ 1)
(1 + um(x))

))m−k
×
∫ k+1

m+1

k
m+1

f(t)dt,

x ∈ [c, d],m ∈ N1.

Lemma 3.4. For x ∈ [c, d] and m ∈ N1, the following identities

(Tm,0K
∗
m)(x) = 1 + um(x),(3.22)

(Tm,1K
∗
m)(x) = −mxum(x),(3.23)

(Tm,2K
∗
m)(x) = m2x2um(x)(3.24)

hold.

Proof. We take (2.2), (3.9) and (3.10) into account. �

Lemma 3.5. For x ∈ [c, d], m ∈ N1,m ≥ m∗,m∗ = max
(
m(0),m(2)

)
, we have

α0 = 0, α2 = 1,

B0(x) = 1, B2(x) = x(1− x),

k0 = 1, k2 =
1

4
.
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Proof. We have that
(Tm,0K

∗
m)(x) = 1 + um(x),

then

lim
m−→∞

(Tm,0K
∗
m)(x)

m0
= 1,

so from relations (2.3), (2.4) and (2.6) we get α0 = 0, B0(x) = 1 and k0 = 1 for x ∈ [c, d],
m ∈ N1,m ≥ m(0).

We have that
(Tm,2K

∗
m)(x) = m2x2um(x).

Because
lim

m−→∞
mum(x) =

1− x
x

,

we obtain

lim
m−→∞

(Tm,2K
∗
m)(x)

m1
= x(1− x).

Then from relations (2.3), (2.4) and (2.6), we get α2 = 1, B2(x) = x(1 − x) and k2 = 1
4 for

x ∈ [c, d], m ∈ N1,m ≥ m(2). �

4. PROPERTIES FOR THE NEW CLASS OF KANTOROVICH TYPE OPERATORS

In this section, we present some properties of the new class of Kantorovich type operators,
where c and d are real fixed numbers, 0 < c < d < 1.

Theorem 4.3. If f ∈ C([0, 1]), then

(4.1) lim
m−→∞

(K∗mf)(x) = f(x)

uniformly on [c, d] and

(4.2) |(K∗mf)(x)− f(x)| ≤ |f(x)| · |um(x)|+ 5

4
· ω1

(
f ;

1√
m

)
,

for any x ∈ [c, d] and m ∈ N1.

Proof. From (2.7), for α0 = 0, α2 = 2, k0 = 0 and k2 = 1
4 , we get

(4.3) |(K∗mf)(x)− f(x)(1 + um(x))| ≤ 5

4
· ω1

(
f ;

1√
m

)
,

for any x ∈ [c, d], m ∈ N1, m ≥ m∗ which is equivalent with (4.2).
�

Theorem 4.4. Let f : [0, 1] −→ R be a function. If f is two times differentiable on [0, 1], the function
f (2) is continuous on [0, 1] and x ∈ [c, d], then

(4.4)
lim

m−→∞
m((K∗mf)(x)− f(x)) =

1− x
x

f(x) + (x− 1)f (1)(x)

+
x(1− x)

2
f (2)(x),

for any x ∈ [c, d], m ∈ N1.

Proof. Using the relation (2.5) and Lemma (3.1), the relation (4.4) follows. �
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The relation (4.4) is a Voronovskaja type theorem.

Theorem 4.5. If f ∈ C([0, 1]), then

(4.5) |(K∗mf)(x)− f(x)| ≤ |f(x)| · |um(x)|+ 3 · ω1(f ; δ1)

for any x ∈ [c, d], m ∈ N1, where δ1 =
√

mx+1
m2 .

Proof. Using Theorem 2.2 (i), from relation (3.2) for δ =
√

(K∗me0)(x) · (K∗mϕ2
x)(x), we have

(4.6) |(K∗mf)(x)− f(x)| ≤ |f(x)| · |um(x)|+ 3 · ω1(f ; δ1)

for any x ∈ [c, d],m ∈ N1.

After some calculus, we get δ =
√

(1 + um(x)) · x2 · um(x). Because lim
m−→∞

mum(x) =
1− x
x

,

we have that there exists m(1) ∈ N1 such that um(x) < 1
mx for any x ∈ [c, d],m ≥ m(1),m(1) ∈

N1. Then δ <
√

mx+1
m2 = δ1 and from (4.6) we obtain (4.5).

We observe that for the genuine Kantorovich operators we have the relation |(Kmf)(x) −
f(x)| ≤ 2 · ω1

(
f ; 1

2
√
m+1

)
and for our operators we have the relation (4.5) and if we make a

comparison between this two results, we remark that δ1 < 1
2
√
m+1

, for any x ∈ [c, h], m ≥ m1,
m1 ∈ N1, where h is a real number that has the following properties:
(i) 0 < c < h < d and h < 1

4 ;
(ii) there exists m(h) ∈ N such that for any m ≥ m(h), the inequality h < m2−4m−4

4m2+4m holds,

where δ1 < 1
2
√
m+1

is equivalent with x < m2−4m−4
4m2+4m ;

(iii) m1 = max
(
m(c),m(h),m(d)

)
,m1 ∈ N1.

�
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