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TÜRKİYE

F. G. Lupianez

Complutense University of Madrid,

SPAIN

Khrisnan Balasubramanian

Arizona State University,

USA

Ismat Beg

Lahor School of Economics,

PAKISTAN

Murat Kirişçi
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Abstract

This work presents the synthetical mathematical analysis of available knowledge regarding

physical phenomena of research interest. The work is not focusing on providing the

phenomena according to the physical laws but rather because of them, hence, it is grounded

on the philosophically defined concept of ”similarity”, and progresses to the mathematical

treatments of those factors and parameters that are involved into the similarity validation

among physical phenomena.A critical validation regarding the effectiveness of such an

approach was also performed, in order to conceptualize the relevance of the factors and

parameters interactions as a potential control tool against engineering-based hypothesis.

Such factors and parameters are generated through the description and delimitation of the

system of interest. A ”matrix” is used for the classification of the existing knowledge

regarding this system. It is consisted of the categorical descriptors of the system in question

and the levels of these descriptors.A mathematical analysis of this ”matrix” supports that

all the existent perceptions of a physical phenomenon constitute a four-dimensional vector

space. Within this space, the concept of similarity allows for the definition on which of a

specific non-linear mapping that might be applied to strictly classify the existing knowledge

about the phenomenon in question.Similarity is used here to define the conditions and the

constrains that this mapping must satisfy. In conclusion, the applicability of the suggested

approach on an engineering approach regarding a physical problem, was also demonstrated

in this study.

1. Introduction

Experimentation is providing the evidently ground base for criticism and rational discussion. The outcome of such a process provides a

reason-based scientific knowledge of any world of phenomena. Experiments are the fields of testing theories for their validity, need for

changes or corrections. While a new theory may often derive along with a new phenomenon that needs explanation [1]. So far, scientific

studies are based on either empirical or transcendental research approaches, aiming towards picturing the identity and/or the differences

in time occurring throughout the phenomenon under investigation. Accordingly, research outcome is logically analyzed, and results are

combined with empiricism and are all placed against the validity of the scientific hypothesis and its theoretical and practical interpretations.

However, any reported result throughout the study is applied instantly and therefore records a series of incidents at certain time intervals. The

empirical observations and/or their correlations are only to be further enhanced with an exceeding accumulation of data. In this context,

incommensurability is a common situation impacting the objective view of researchers and the meaning they provide and the criteria they

implement. The so called, social behavior of the researchers reflected on their commitments as well as on their objectivity is rather rich and

diverse as may be realized via the multiplicity of research objects, fields and research subdivisions [2, 3].
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Furthermore, the attempt to induct the empirical justification into a theoretical interpretation is additionally present. Although vastly

applied, statistical analysis results may contradict to the potential meaning and significance of the independent phenomenological events and

individual steps or causes. It is more than obvious that the outcome of such applicational treatments is focusing on the ”general” evolutionary

trend, letting away of any valuable incorporation of any data differences that may be eventually lost when the general curve ”trends” or the

statistical significance level of the differences are presented. Supplementarytreatments on the curves with geometrical means in order to get

additional estimations, such as kinetic parameters and phenomenological rates, are also applied. Therefore, derived conclusions may be

highly biased by the selected treatments [4].

It is important to note that any physically executed experiment is actually a reproduction of the physical world under controlled conditions,

hence within an artificial environment, namely the lab or an experimental field.What allows for such a transfer is actually, the acceptance that

individual phenomena or their classes are referenced on the ground of similarities. Such similarities are constructed or perceived by the lead

researcher on the ground of his/her fundamental considerations [5]. Such a reproduction is valid and accepted when it is applied in a standard

and repeatable manner [6]. Having said that, the perception of the phenomena under study, is initiated with the essential initial hypothesis

and is further build using the empirical observations that eventually lead to a logical understanding fitted well into a theory and practice [3].

Therefore, what is reality may well be perceived via an infinite number of phenomena, reproduced by the researchers in order to approach an

objective view of the world, yet with questionable precision level. Moreover, and after having defined that two systems are similar, we may

safely interchangeably infer the values of quantities in each of the physical systems from known values of each other. In other words, among

two similar systems, it is allowed to draw conclusive outcomes for quantities based on a certain similarity mapping [7].

2. Similarity concept

Any experiment aiming in the collection of data, hence, empirical evidences, aims in identifying that information that may allow for further

and broader view of the events well fitting into a theoretical method. The extrapolation of the knowledge gained in such a way, is valid and

applicable, on the ground of similarity among the applied phenomena and fields and information may flow interchangeable among them

Nevertheless, the definite similarity of events and/or their classes background remains a question [8]. The answer apparently, may derive

when considering that it is allowed to build comparative relationships and draw comparisons on the ground of the objects themselves or the

hypothesis under which these objects are investigated [9].

As in any search attempt, the selection of criteria are fundamental as well for identifyingsimilarity. [7] suggested that a classification of the

existing knowledge is necessary. Evidently, any inappropriate application of similarity criteria might easily lead to drawing of results lacking

solid logical and/or meaningful ground. The role of any researcher is rather apparent in that process in order to avoid research waist and dead

ends. Following that, any weak or erroneous used or selected similarity criteria shall guide the researchers into spending money and effort

for to gain already existing knowledge, leading to resources’ waste.

A number of knowledge classification attempts have been proposed, based on empirical and arbitrary rules and definitions [4]. In order to

fulfil the requirement of similarity criteria selection and application, the work in hand suggests a solid mathematical treatment of identifying

similarity and establishing robust similarity criteria through the application of fundamental Linear Algebra concepts (namely, vector spaces

and mapping between them) on the relative philosophical aspects already arisen.

3. Knowledge classification

Scientists have aimed in studying any phenomenon in the Newtonian 3-dimensional world with certitude and clearness, completely in the

light of principles, and, after having discovered the cause of the doubts and contradictions into which reason fell, to initiate an attempt to

have them solved to its highest satisfaction possible.we will call ”judgement” this inner logic that approaches the hypothesis with the thought

that a thing is known to have a certain quality or attribute.

Judgement would be herein appointed as either ”analytical”, which when applied will expose the opposite sense to a logical contradictions,

or ”synthetical”, in a sense that are additionally supporting that hypothesis, via extra treatments, such as in the case of mathematical laws

applied as a judgemental tool. Furthermore, we shall call ”proposals” the valid ways for approaching this logic. The a-posteriori proposals

are those providing the possibility, while the a-priori proposals are those being based on inevitability and universality, distinguishing them as

non – revisable. Overall, each and every way of approaching the logic may be either analytical or synthetic

Consistently, by combining the above, the following common general proposals derive: a) verification or the a-posteriori-analytical proposals,

b) validation, or a-posteriori-synthetical proposals and c) prediction, or a-priori-analytical proposals. The current work is not focusing

on providing the phenomena according to the physical laws but rather because of them, implying that our goal is a knowledge that is

simultaneously non-empirical and a priori.

There may be no question regarding the phenomena non-existence before their expression and consequent empirical experience recorded

and reported, only constructed through a local and cognitional process. Nevertheless, the level of distinction among the outcomes of the

aforementioned process for various researchers, is not easily identified. Furthermore, a general principle of all the analogies rests on the

synthetical unity of all phenomena according to their relation in time [10]. In order to overcome such obstacles, the use of mathematical

synthetical treatments may allow for a synthetical representation of the perception of a phenomenon, [11].

In order to apply the above, we shall primarily need to define the functionality of the system under investigation and attempt to impend the

empirical connections, sense and significance into its hypothesis. A summary of the organizational scheme for this work, is presented in

Table 1, were the sequential (left to right and top to bottom) proposed developments, named the ”epistemic structure” of the final engineering

judgement, are acknowledged.

In specific, the developmental roadmap proposed, is divided in three (4.2) Stages. Within each development Stage and at the transitional
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Table 1: The developmental roadmap for organizing the work

Stages 1 Proposals 2 Proposals 3

Principles Physical Intellectual Mathematical Engineering

Proctorship Empirical Analytical Formulation Relativistic

Functions of

Judgment

Potential Synthetical Necessity Hypothesis

potential

conditions

Deliverables System Categories Model

steps in-between, we shall aim in applying a judgemental process on the critical derived milestones (”Deliverables”). In order to do so we

shall implement the essential scientific values for this particular system (”Principles”) and the potential ways and methodology that will

allow us to identify the interconnections (”Proctorship”) among the systemic parts. This whole procedure will eventually define the outmost

interesting deliverable, that may be used as an engineering tool and asset, the ”Model” in Stage 3.

A detailed description of the fundamental activities we acknowledge as per Stage of Table 1, is following. That includes: i) the recognition

and classification of the inherent systemic ”ways-of-order” apprehendedas the categorical descriptors of the particular system and ii) the

mathematical expressions that are evidently incorporating the principles and the logic and consequently the proof as a straight forward

powerful application tool that is capable of assessing the system against the initial hypothesis.

a) Stage 1

We shall initially proceed with a validation first action focusing on the physical description of the system. Taken that experience is always

proceeding the developed and emerged knowledge, the procedural progress along stages 1 and 2 needs to take int consideration the physical

consider both the physical philosophies of the system along with empiricism’s practices. This is only sto be solidly founded on both an

appropriate experimental design and incorporate the much-needed monitoring means of the system’s development in time and in space. That

will be further discussed later in this work (see Section 5).

As mentioned above, the application of certain methodological, technical and mechanical borders during experimentation practice, place the

upcoming expression of the system under the control of the selected border conditions. And therefore, the experimental outcome. Having

worked in that manner, allows for a highly trustworthy data collected from the potential combinations within an experimental design hence,

allowing us to collect and structure a holistic approach of the system. Through that overall picture, we may be certain of the particular and

unique cohesive points of the phenomena occurring in such a well-defined system. From a certain point of view, it is the rationality of any

model that may assist an ”economic” experimentation.

b) Stage 2

The Deliverable in Stage 2 is the ”Categories”; that are deriving from the research hypothesis itself. The relevant classification scheme shall

then necessary and successfully derive the need and aims which when capably applied shall properly complete the description of the system.

The description may be perceived as the reflection of the system on humans and that is why it may well be seen asa formal act of human

cognition.

Nonetheless, the overall Categories need to contain the hypothesis’ context possibilities for the system in question and regulate the system

boundaries (classification frame), via impacting on each and every systemic participant, in-principal. Furthermore, the classification will

reflect the theoretical solidness of the upcoming mathematical concept, independent of the empirical experience, in which case the deliverable

model of Stage 3, ought to be capable of assessing the shaped categorical imperative of the hypothesis.

For an essential conceptual description of a system under investigation, we may convert the typical ”in-process-out” context into a ”system”,

via the incorporation of the finest, yet minimal, but still straightforward, systemic participants of generalized activities. Such activities are

adequately described by the following four principal ”categorical descriptors” in an equation form:

matter+ energy relationships > outcome (3.1)

In order to advance the above core expression, the ”categorical descriptors” have to be further developed with each and every thing in

experience, the properties, the qualities, and the characteristics of any possibility in general.

Accordingly, when the aforementioned four categorical descriptors placed in a classification matrix of three, empirically defined, levels were

basically adopted and later on drafted for the hypothesis in particular. Notably, the three levels also firmly satisfy the mathematical principle

for the least linearly independent points to follow a non-linear relationship, as presented below.

Looking at each of the descriptors level, we may identify that a set of conditions exist. Moreover, our critical judgement’s degrees of freedom

are also present linking the descriptors to the hypothesis in question. Simply stated, all the three levels of each categorical descriptor,

condense the impact for this systemic participant against the disclaiming of the hypothesis. Specifically, in Table 2, the four specific

categories and their corresponding general levels are presented.

In that sense, the therefore formed 12 classes of the knowledge classification matrix there are the cohesions within the system context. These

cohesions may be then expressed and presented with the appropriate mathematical expressions. Last but not least, it is an inter subjective
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Table 2: The knowledge classification matrix

CATEGORIES LEVELS

Matter (Quantity) One many all

Energy (Quality) Reality disallowance restrictions

Inherent potential (Relationships) inter-dependent reasons intra-dependent

Outcome (Processes) Potential existence necessity

validation of the hypothesis, that is deriving through the cross sections of the classification cells , since the common ground among all

classes’ interactions may eventually deliver the basic and only physically meaningful and accountable potential conditions of knowledge.

The compulsory - exact analogy - filling-in of the specific hypothesis classes, demarcates the necessitating empirical and theoretical possibility

conditions for the phenomena occur. As indicated in Table 1, the physical principles of the system along with the empirical (experimental and

knowledge) available proctorship, shall be applied in this transitional step. The conceptual description of the system will, hence, border-lined

upon a validation judgement assessment, corresponding to the classification scheme represented by Table 2, filled accordingly to the system,

the hypothesis and the phenomena considered.

The validation analysis along with the categorical descriptions,allows the user to structure a system’s awareness and consequently may

generate the inherent mathematical relativistic expression that exist in the system and are based on their interrelationships. Having an and

adequate consideration and performing a proper investigation of all classes, the process guarantees that, in principal, each and every systemic

participant will accurately influence the boundaries of the model.

Finally, looking for a theoretical sound base of the system, the Categories may be used to provide the appropriate model, far beyond and

above the empirical experience the study of the system may have or will allow. In that way, it is the model that shall assess the shaped

categorical imperative of the hypothesis. This classification of the systemic properties will be the contextual guideline in logically conveying

the physics in the system, from their mathematical description, to the engineering tool of Stage 3.

c) Stage 3

This stage is actually the use of the above two stages for a specific engineering problem.Therefore, a fulfilled 4x3 matrix can be produced,

which contains all the necessary information about the knowledge regarding a specific physical phenomenon.

4. The mathematics of classification

Given the goals of this work, let us initially consider a physical and/or chemical phenomenon. What we have actually in mind is the

perception of an incident or a series of interconnected incidents that belong to a specific class of physico chemical phenomena. This

perception could be described by Equation (3.1) when and only when, the exclusive phenomenon’s characteristics may be incorporated

within the categorical descriptors specified for this phenomenon. Accordingly, this means that one has to quantify the ”matter” and the

”energy” involved, to identify a macroscopic magnitude that serves as the ”outcome” of the phenomenon as well as to express a valid

”relationship” among the parameters involved in the expression of the phenomenon in question. There should be a linear independence

among these descriptors because (a)matter is a manifest object, (b) energy is a manifest object, as well, (c) relationship is a mathematical

object being valid independently regarding where it is applied for, and (d) outcome is defined subjectively, yet, in-line with the scientific

hypothesis, under which the phenomenon is studied.

To the extent that there may exist an infinite number of perceptions of any phenomenon, there are also infinite tetrads, consisted of values for

the matter, energy, relationships and outcome categorical descriptors. Each one of these tetrads forms a vector of the form u = {m,e,R,o},

where a one-by-one correspondence exists between the values of vector components and a specific perception. Then, we may now determine

a set V, consisted of all these vectors u. There is a non-obvious relation between vectors u and time: each vector corresponds to the whole

amount of knowledge regarding the phenomenon, which is available at a specific time. This means that every element of V reflects a precise

value of time. In that sense, vectors u ∈V can be considered as functions of time.

Hence, it could now become able to underline that the set Vis an ordered set where an arrangement, denoted by ≺, can be defined as follows:

for t̂1 < t̂2 ⇔ u 1 (t̂1)≺ u 2 (t̂2) (4.1)

Note also that each u ∈V embeds all the vectors of lower values, i.e. all the knowledge previously obtained and currently available. By

considering a physical phenomenon along with a disclaiming hypothesis superimposed (as previously stated), every new perception consists

of the current knowledge about the phenomenon plus a new contribution

u i (t̂i) = u i−1 (t̂i−1)+A (4.2)

where u i (t̂i)is the current of knowledge, u i−1 (t̂i−1) is the previously obtained of knowledge and A is the amount of knowledge added to the

previous knowledge in order to produce the current one.

Having described the arrangement of the set V, we can define an internal operation ⊕ as follows

∀v,w ∈V ∃u ∈V : u = v⊕w = 〈
v if w ≺ v

w if v ≺ w
(4.3)
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This operation describes mathematically the knowledge evolution through time, which is obtained by ”adding” new contribution on the

existing accumulated knowledge.

Regarding its properties, this operation

(a) is commutative

v,w ∈V v⊕w = w⊕ v (4.4)

Proof :

If

w ≺ u =⇒
u⊕w = u

w⊕u = u

}

⇒ u⊕w = w⊕u (4.5)

If

u ≺ w =⇒
u⊕w = w

w⊕u = w

}

⇒ u⊕w = w⊕u (4.6)

(b) is associative

∀v,w,u ∈V v⊕ (w⊕u) = (w⊕ v)⊕u (4.7)

Proof :

If

v ≺ w ≺ u =⇒
v⊕ (u⊕w) = v⊕u = u

(w⊕ v)⊕u = w⊕u = u

}

⇒ v⊕ (u⊕w) = (w⊕ v)⊕u (4.8)

The other cases for the arrangement (v ≺ w ≺ u, v ≺ u ≺ w, u ≺ v ≺ w, w ≺ v ≺ u, u ≺ w ≺ v and w ≺ u ≺ v) can be proven in the same way.

(c) has identity element

∀v ∈V ∃0 ∈V : v⊕0 = 0⊕ v = v (4.9)

Proof :

The element 0stands for the trivial knowledge that tends to zero, thus not actually favoring knowledge evolution.

(d) each vector in V has inverse elements

∀v ∈V ∃(−v) ∈V : v⊕ (−v) = (−v)⊕ v = 0 (4.10)

Proof :

Vector (−v) in fact represents a singularity on the knowledge evolution, i.e. one point the knowledge of which tends to collapse all the

existing knowledge.

As far as u is a vector, its regular norm λ = ‖u‖ ∈ R is the amount of knowledge that is embedded in the perception of the phenomenon.

This norm allows for the quantification of the amount of knowledge between any two elements of V, and given that V is an ordered set, the

ratio of such quantities is a realization of knowledge evolution. In terms of mathematics, the above can be expressed as

if u ≺ v with u,v ∈V, then ∃µ ∈ (1,+∞) : µ =
‖u‖

‖v‖
(4.11)

We can now define another operation
⊗

as follows:

∀v,w ∈V ∃µ ∈ R : w = µ
⊗

v ⇔ µ =
‖w‖

‖v‖
(4.12)

which describes the relative importance of the difference in knowledge amounts between two particular time periods, i.e. between two

perceptions expressed in different times.

Having determined the set V as well the operations
⊕

by eq. (4.3) and
⊗

by eq. (4.12), we can now that the group {V,
⊕

,
⊗

} is a

4th dimensional vector space. It is assured because, on top of the properties of operation
⊕

presented through eqs. (4.4) – (4.10), it is

straightforward to prove that operation
⊗

satisfies the following relations
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λ
(

µ
⊗

v
)

= λ µ
⊗

v (4.13)

(λ +µ)
⊗

v = λ
⊗

v
⊕

µ
⊗

v (4.14)

λ
(

u
⊕

v
)

= λu
⊕

µv (4.15)

Note also that the dimensions of this vector space are defined by the number of categorical descriptors, as visualized in eq. (3.1). One basis

of this space consists of the four vectors em = {m,0,0,0}, ee = {0,e,0,0},eR = {0,0,R,0} and eo = {0,0,0,o}. We may then report that,

(a) the components of the basis are linearly independent since they reflect the independent categorical descriptors, as previously stated

(b) any vector in the space is described by a unique linear combination of the basis vectors.

Finally, it could be able to identify a non-linear mapping mIn
p over the space {V,

⊕

,
⊗

}, as follows

RxV
mIn

p
−→M3x1 (V ) : mIn

p (v) =
{

λ1v, λ2v, λ3v
}

(4.16)

with

λ1 → 0 (4.17)

∀λ2 ∈ R∃M > 0 : λ2 > M (4.18)

λ3 →+∞ (4.19)

The first component of the product, given by eq. (4.16) under the constraint (4.17), corresponds to a very low amount of knowledge that tends

to zero but it should always be non-zero, meaning that it is even at its minimum level enough to initiate the scientific/research interest for

studying the specific phenomenon. The next component describes the currently available knowledge while the last one, along with constraint

(4.19) represents the nearly infinite amount of knowledge, needed to be obtained in order to finalize the research on this topic. The above eqs.

(4.17)-(4.19) assure the compatibility of ”one-many-all”, commonly used in modern philosophy as a well-known Kantian wit [12].

The above mapping [eq. (4.16)] produces a matrix with four lines, each one standing for each of the elements {m,e,R,o}, and three columns,

the first for the vector λ1v, the second for the λ2v and the third for the λ3v. As previously stated, the first column refers to a vector containing

the minimum non-zero knowledge of the phenomenon, where only one variable, along with only one mathematical equation produced by

one simple conservation law or a relative mass/energy balance, are considered adequate to describe the particular perception. In fact, the

first column of the matrix produces a rather primitive ideal outcome, which can roughly represent the phenomenon. The second column

refers to the maximum finite knowledge currently available, where a finite number of variables are selected to describe the phenomenon and,

therefore, a system of equations is produced, while a single one parameter is again selected to macroscopically describe the phenomenon.

Briefly speaking, the second vector is a more accurate and more efficient representation of the phenomenon under consideration. Finally, the

third column describes the absolutely holistic perception of the phenomenon, taking into account an infinite number of variables that define a

system of equations with infinite dimension. In other words, the third vector describes the overall currently available knowledge about a

phenomenon, identifying all the parameters’ impact, although not necessarily known in full details.

Following the order of set V, it is

λ1v ≺ λ2v ≺ λ3v (4.20)

where each vector contains the knowledge represented by the previous vectors.

We support that the non-linear mapping defined by eqs. (4.16), (4.17)-(4.19), quantifies the similarity between any two perceptions of the

phenomenon in question, in terms of the way the evolution of knowledge occurs withing and cross the phenomenon’s expressions.

It is also important that the definition of such a mapping is not unique. In order for the researcher to select the most suitable and appropriate

mapping, i.e. to select values for λ1, λ2, λ3 as well as m, e, R and o, a complicated methodology must be followed, as described in detail

elsewhere [13]. The final aim of the application of this methodology is to identify potential lacks of knowledge, in order to direct the relative

research and to avoid resources waste.
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Table 3: Classification matrix for adsorption in granular media

λ1v λ2v λ3v

Matter A A, solid A, solid, products Bi

Energy Diffusion:

j
A
=−DA∇CA

Diffusion:

j
A
=−DA∇CA

Diffusion:

j
i
=−Di∇Ci

Convection:

j
A
=UACA

Convection:

j
A
=UACA

Convection:

j
i
=UiCi

Instantaneous adsorp-

tion

CA(r = R) = 0

Adsorption by isotherm

DAn ·∇cA = k
K cs

Θeq =
Kcb

1+Kcb

Reaction of first order

A → B,

with reaction rate

Rn = k0e
−EA
RT cA

Relation

ships

dCA

dt + UA · ∇CA =

DA∇
2CA

dCA

dt + UA · ∇CA =

DA∇
2CA

dCi

dt + U i · ∇Ci =

Di∇
2Ci

Outcome CA(r, t) Sho =
ko·L
D λ0 = 1 −

∫∫

Soutlet
cAU ·ndS

∫∫

Sinlet
cAU ·ndS

5. Application & discussion

In order to further support our approach, we shall now provide an application of the above described methodology to the physico-chemical

phenomenon of mass transport in porous materials. The geometry where the phenomena occur is described by a swarm of uniform solid

spheres. It is assumed that a Newtonian dilution flowsunder laminar flow conditionsthroughout the void space. There is a substance A diluted

in the fluid phase, that flows in the pore volume and can be adsorbed on the solid surface of the grains. In general, mass transport of A is

driven by diffusion and convection in the fluid phase, and by the considered sorption mechanism on the fluid-solid interfaces. All the above

can be mathematically summarized in a generalized form of a vector u ∈V described as [14]:

u = {A, mass transport mechanisms,
dCA

dt
+UA ·∇CA = DA∇

2CA ± RA

with appropriate BCs, macroscopic quantity described adsorption} (5.1)

In this context,the output of the non-linear mapping is presented in the following 4X3 matrix:

The highly significant point to underline for Table 3, is that it unfolds through levels. In terms of mathematics given in eq. (4.16), the

mapping can be defined through the identification of vector v and real numbers λ1, λ2 and λ3. Precisely,

v = {A,convective-diffusion with instantaneous adsorption,
dCA

dt
+UA ·∇CA = DA∇

2CAwith CA(r = R) = 0 ,CA(r, t)} (5.2)

therefore

λ1 = 1 (5.3)

λ2 = any finite number (5.4)

λ3 → ∞. (5.5)

6. Conclusions

Systemic characteristics, predicates, attributes, qualities, or properties control the progress of the phenomena. A justified selection of them

has to be included at certain fine-tuned levels, during the experimental phase, for an ably economic combination at the experimental phase

and a comparable outcome data. Such a holistic approach shall adequately reveal the cohesiveness among the phenomena, rather than their

simple description. Common ground establishments, under which certain common characteristic are shared among classes, may somehow be

related to one another. Creating and applying precise conditions,that shall define the progress of any experimental phase, have a well-defined

and significant role in allowing the system in question to unroll and progress on the base of its systemic properties, towards the particular

processes’ outcome, at empirically controlled environments.

Finally, the matrix may possess an additional added value, which is to confirm the experimental set-up that shall lead researchers to set

the out most pragmatic input to an engineering model. The engineering tool’s usefulness relies on the fact that it may work far beyond the

judgemental capabilities of typical predictions and verifications that a mathematical model typically provides, yet such a model allows for
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the identification and management of the experimentation risk options. These should accordingly hold the overall optimum engineering that

shall provide the minimum possibility of disclaiming the fundamental disclaiming hypothesis.

Utilizing the herein presented concept of similarity between physical phenomena, when interested in engineering approaches, this work also

presents a strict mathematical formulation for the classification of the existing knowledge regarding a physical phenomenon.

This work proves that all the potential perceptions of a phenomenon along with specific operations (analogous to summation and mul-

tiplication) with proven properties, constitute a vector space. By taking into account that this space is of four dimensions, a non-linear

mapping over this vector space has been also defined to describe mathematically the similarity concept. The value of such a mathematical

treatment relies on its capability to provide a deep insight on a specific phenomenon, while at the same time assists the researchers to set up

an experimentation plan focusing on the knowledge gaps and work towards filling in these gaps properly. Finally, the proposed model is

therefore an engineering tool for avoiding repetition of results and managing waste of research effort, in general.
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Abstract

In the present paper, formulas for the Rayleigh-quotient representation of the real parts,

imaginary parts, and moduli of the eigenvalues of general matrices are obtained that

resemble corresponding formulas for the eigenvalues of self-adjoint and diagonalizable

matrices. These formulas are of interest in Linear Algebra and in the theory of linear

dynamical systems. The key point is that a weighted scalar product is used that is defined

by means of a special positive definite matrix. As applications, one obtains convexity

properties of newly-defined numerical ranges of a matrix. A numerical example underpins

the theoretical findings.

1. Introduction

For self-adjoint matrices, there are formulas for the eigenvalues in the form of Rayleigh quotients; more precisely, max-, min-, min-max-,

and max-min-formulas are known; for this, see, e.g., the book [ 1, Section 5.4]. Recently, the author has carried over these formulas to the

real parts, imaginary parts, and moduli of diagonalizable matrices. The aim of the present paper is to extend these results to general matrices.

We mention also that the presentation of this paper parallels that of [ 2]. So, similarities in the formulation do not happen by accident, but are

intended in order to underline the similarities. As a consequence, many verbatim passages in the formulations are taken from there.

As it has already been said in [ 2], first, the obtained formulas are of interest on their own in Linear Algebra. Second, these are also of potential

interest, for example, in the theory of linear dynamical systems. The reason for this is as follows. The real parts of the eigenvalues multiplied

by the time are equal to the arguments of the exponential functions that describe the decay behavior of the solution (see, e.g., [ 3, Section 7.1,

p.2011, Formulas (89), (90)]). Further, the system is asymptotically stable if the real parts of all eigenvalues are negative. Moreover, when

the eigenvalues are pairwise conjugate-complex, then the moduli of the imaginary parts are the circular damped eigenfrequencies of the

system (see, e.g., [ 3, Section 7.1, p. 2011, (89)]). Third, the paper could be of interest in graduate/undergraduate teaching or research at

college level since its style is expository and since its subject can be seen as a supplement of the curriculum in Linear Algebra and Numerical

Analysis.

The paper is structured as follows. In Section 2, preliminary materials are assembled on biorthogonality relations for the principal vectors of

a general matrix A and the principal vectors of A∗ that will be useful in the sequel. Moreover, the construction of positive semi-definite

matrices R j and of the positive definite matrix R = ∑
n
j=1 R j is reviewed where the last one is employed to define a weighted scalar product

(·, ·)R that plays a key role in deriving the new results. In Sections 3, 4, and 5, formulas for the Rayleigh-quotient representation of the real

parts, imaginary parts, and moduli of the eigenvalues of a general matrix are given, as the case may be. In Section 6, a connection between

the matrices R−1 A∗R+RA
2 , R−1 RA−A∗R

2i , and R−1A∗RA is established that play a key role in the study of the real parts, imaginary parts, and

moduli of the eigenvalues of A, respectively. Section 7 describes the applications and, in Section 8, we give a numerical example. Finally,

Section 9 contains the conclusions. The non-cited references [ 4], [ 5], [ 6], [ 7], [ 8], [ 9], [10], and [11] are given because they may be

useful to the reader in the context of the present paper.

Email addresses and ORCID numbers: kohaupt@bht-berlin.de, https://orcid.org/0000-0003-1781-0600 (L. Kohaupt)
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2. Preliminaries

As a preparation to Theorem 2.1, we formulate the following conditions:

(C1′) A ∈C n×n

(C2′) λi, i = 1, · · · ,r are the eigenvalues of A corresponding to the Jordan blocks Ji(λi) ∈C mi×mi , i = 1, · · · ,r with the chains of principal

vectors p
(i)
1 , · · · , p

(i)
mi
, i = 1, · · · ,r

(C3′) u
(i)
1

∗
, · · · ,u(i)mi

∗
, i = 1, · · · ,r are the principal vectors of A∗ corresponding to the eigenvalues λi, i = 1, · · · ,r of the Jordan blocks

Ji(λi) ∈C mi×mi , i = 1, · · · ,r
(C4′) λi 6= λ j, i 6= j, i, j = 1, · · · ,r
One has the following theorem.

Theorem 2.1. (Biorthogonality relations for principal vectors)

Let the conditions (C1′)-(C4′) be fulfilled. Then, the systems {p
(1)
1 , · · · , p

(1)
m1

; · · · ; p
(r)
1 , · · · , p

(r)
mr
} and {u

(1)
1

∗
, · · · ,u(1)m1

∗
; · · · ;u

(r)
1

∗
, · · · ,u(r)mr

∗
}

can be constructed such that the following biorthogonality relations hold:

(p
(i)
k
,u

(i)
l

∗
) =

{
1, l = mi − k+1

0, l 6= mi − k+1

k = 1, · · · ,mi, i = 1, · · · ,r and

(p
(i)
k
,u

( j)
l

∗
) = 0, i 6= j,

k = 1, · · · ,mi, l = 1, · · · ,m j, i, j = 1, · · · ,r.

So, with

v
(i)
l

∗
:= u

(i)
mi−l+1

∗
,

l = 1, · · · ,mi, i = 1, · · · ,r one has the biorthogonality relations

(p
(i)
k
,v

(i)
l

∗
) = δkl ,

k, l = 1, · · · ,mi, i = 1, · · · ,r, and

(p
(i)
k
,v

( j)
l

∗
) = 0, i 6= j,

k = 1, · · · ,mi, l = 1, · · · ,m j, i, j = 1, · · · ,r.

Proof. See proof of [12, Theorem 2].

Remark 2.2. The hypothesis λi 6= λ j, i 6= j, i, j = 1, · · · ,r can be omitted, see [12, Theorem 4]. But, since in our example this condition is

fulfilled, we preserve it.

Theorem 2.3. (Construction of positive definite matrix R)

Let the conditions (C1′)-(C4′) be fulfilled. Let α j = λ j(A) be the eigenvalues and u
( j)
1 , . . . ,u

( j)
m j

be a chain of associated left principal vectors

for j = 1, . . . ,r. Further, let A∗ ∈C n×n be the adjoint matrix of A so that u
( j)
1

∗
, . . . ,u

( j)
m j

∗
is a chain of right principal vectors corresponding

to the eigenvalues α j = λ j(A
∗) for j = 1, · · · ,r, i.e.,

u
( j)
k

A = α ju
( j)
k

+u
( j)
k−1

with u
( j)
0 = 0, k = 1, . . . ,m j; j = 1, . . . ,r and

A∗u
( j)
k

∗
= α ju

( j)
k

∗
+u

( j)
k−1

∗

with u
( j)
0

∗
= 0, j = 1, . . . ,r.

Let

ρ j = α j +α j = 2Reα j = 2Reα j, j = 1, · · · ,r,

σ j = α j −α j = 2 i Imα j, j = 1, · · · ,r,

and

R
(k,k)
j := u

( j)
k

∗
u
( j)
k

, k = 1, · · · ,m j, j = 1, · · · ,r.

Then,

A∗R
(1,1)
j +R

(1,1)
j A = ρ jR

(1,1)
j , j = 1, · · · ,r ,
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R
(1,1)
j A−A∗R

(1,1)
j = σ jR

(1,1)
j , j = 1, · · · ,r .

In other word, the matrix eigenvalue problem

A∗V +VA = µV

has the r solution pairs

(µ,V ) = (ρ j,R
(1,1)
j )

with real ρ j, and the matrix eigenvalue problem

VA−A∗V = µV

has the r solution pairs

(µ,V ) = (σ j,R
(1,1)
j )

with purely imaginary σ j.

The matrices R
(k,k)
j ∈C n×n, k = 1, . . . ,m j, j = 1, . . . ,r are positive semi-definite. Further,

R :=
r

∑
j=1

R j =
r

∑
j=1

m j

∑
k=1

R
(k,k)
j (2.1)

is positive definite.

Proof. See [13, Theorem 2].

Remark 2.4. Since R in (2.1) is positive definite, by

(u,v)R := (Ru,v), u, v ∈C n,

a weighted scalar product (·, ·)R is defined and by

‖u‖R := (Ru,u)
1
2 , u ∈C n,

a weighted norm ‖ · ‖R.

3. Formulas for the representation of the real parts of the eigenvalues of a general matrix

In this section, we want to derive formulas for the representation of the real parts of the eigenvalues of a general matrix A by Rayleigh

quotients. More precisely, max-, min-, min-max-, and max-min-representations are obtained corresponding to associated formulas for the

eigenvalues of diagonalizable matrices in [ 2] or to the eigenvalues of self-adjoint matrices, assembled, for instance, in the book of [ 1,

Section 5.4].

First, we derive a result similar to that of [ 2, Lemma 3.1]. For this, with the identity matrix E, we introduce the abbreviation

Nλ j(A) := {u ∈C n |(A−λ j(A)E)u = 0}, j = 1, . . . ,r

for the geometric eigenspaces so that

Nλ j(A) = [p
( j)
1 ] = [p j], j = 1, . . . ,r.

Herewith, we define

Nσ(A) :=
r⊕

j=1

Nλ j(A).

We have the following lemma.

Lemma 3.1. Let the conditions (C1′)-(C4′) be fulfilled and R be defined by (2.1).

Then, with the denotations of Theorem 2.3,

(Au,u)R =
r

∑
j=1

λ j(A)(u,u)R j
+

r

∑
j=1

m j

∑
k=2

(u,v
( j)
k

∗
)(u,v

( j)
k−1

∗
), u ∈C n (3.1)

leading to

(Au,u)R =
r

∑
j=1

λ j(A)(u,u)R j
, u ∈ Nσ(A) (3.2)

and thus to

Re(Au,u)R =
r

∑
j=1

Reλ j(A)(u,u)R j
, u ∈ Nσ(A) (3.3)
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where

R j =
m j

∑
k=1

R
(k,k)
j =

m j

∑
k=1

u
( j)
k

∗
u
( j)
k

=
m j

∑
k=1

v
( j)
k

∗
v
( j)
k

,

j = 1, . . . ,r.

If matrix A is, beyond this, asymptotically stable, i.e., if

Reλ j(A) < 0, j = 1, · · · ,r,

then

Re(Au,u)R =−
r

∑
j=1

|Reλ j(A)|(u,u)R j
, u ∈ Nσ(A),

so that, in this case,

Re(Au,u)R < 0, 0 6= u ∈ Nσ(A) (3.4)

and

|Re(Au,u)R|=
r

∑
j=1

|Reλ j(A)|(u,u)R j
, u ∈ Nσ(A). (3.5)

Proof. First, we prove (3.1). For this, let u ∈C n. Then with the denotations of Theorem 2.1,

u =
r

∑
j=1

m j

∑
k=1

(u,v
( j)
k

∗
) p

( j)
k

leading to

Au =
r

∑
j=1

m j

∑
k=1

(u,v
( j)
k

∗
)Ap

( j)
k

=
r

∑
j=1

m j

∑
k=1

(u,v
( j)
k

∗
) [λ j p

( j)
k

+ p
( j)
k−1]

=
r

∑
j=1

λ j

m j

∑
k=1

(u,v
( j)
k

∗
) p

( j)
k

+
r

∑
j=1

m j

∑
k=2

(u,v
( j)
k

∗
) p

( j)
k−1

since p
( j)
0 = 0, j = 1, . . . ,r. This implies

(Au,Ru) =
r

∑
j=1

λ j

m j

∑
k=1

(u,v
( j)
k

∗
)(p

( j)
k

,Ru)+
r

∑
j=1

m j

∑
k=2

(u,v
( j)
k

∗
)(p

( j)
k−1,Ru)

=
r

∑
j=1

λ j

m j

∑
k=1

(u,v
( j)
k

∗
)(Rp

( j)
k

,u)+
r

∑
j=1

m j

∑
k=2

(u,v
( j)
k

∗
)(Rp

( j)
k−1,u).

Now,

Rp
( j)
k−1 =

r

∑
l=1

ml

∑
s=1

R
(s,s)
l

p
( j)
k−1 =

r

∑
l=1

ml

∑
s=1

v
(l)
s

∗
v
(l)
s p

( j)
k−1

=
r

∑
l=1

ml

∑
s=1

v
(l)
s

∗
(p

( j)
k−1,v

(l)
s

∗
)

=
r

∑
l=1

ml

∑
s=1

v
(l)
s

∗
δ jl δs,k−1 =

m j

∑
s=1

v
( j)
s

∗
δs,k−1 = v

( j)
k−1

∗
.

This leads to

(Au,Ru) =
r

∑
j=1

λ j

m j

∑
k=1

(u,v
( j)
k

∗
)(p

( j)
k

,Ru)+
r

∑
j=1

m j

∑
k=2

(u,v
( j)
k

∗
)(v

( j)
k−1

∗
,u)

=
r

∑
j=1

λ j

m j

∑
k=1

(u,v
( j)
k

∗
)(p

( j)
k

,Ru)+
r

∑
j=1

m j

∑
k=2

(u,v
( j)
k

∗
)(u,v

( j)
k−1

∗
).
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Further,

(p
( j)
k−1,Ru) = (Rp

( j)
k−1,u)

and, as before,

Rp
( j)
k−1 = v

( j)
k−1

∗
= R j p

( j)
k−1.

Therefore,

(p
( j)
k

,Ru) = (Rp
( j)
k

,u) = (v
( j)
k

∗
,u)

and thus

r

∑
j=1

λ j

m j

∑
k=1

(u,v
( j)
k

∗
)(p

( j)
k

,Ru) =
r

∑
j=1

λ j

m j

∑
k=1

(u,v
( j)
k

∗
)(v

( j)
k

∗
,u)

=
r

∑
j=1

λ j

m j

∑
k=1

|(u,v( j)
k

∗
)|=

r

∑
j=1

λ j(u,u)R j

since

(u,u)R j
= (R ju,u) =

m j

∑
k=1

(R
(k,k)
j u,u) =

m j

∑
k=1

(v
( j)
k

∗
vku,u) =

m j

∑
k=1

(v
( j)
k

u,v
( j)
k

u) =
m j

∑
k=1

|(u,v( j)
k

∗
)|.

So, we obtain (3.1).

In order to get (3.2), i.e.,

(Au,Ru) =
r

∑
j=1

λ j(A)(u,u)R j
,

we must have

r

∑
j=1

m j

∑
k=2

(u,v
( j)
k

∗
)(u,v

( j)
k−1

∗
) = 0.

Sufficient for this is

(u,v
( j)
k

∗
) = 0, k = 2, . . . ,m j, j = 1, . . . ,r,

for example,

u ∈
r⊕

j=1

[p
( j)
1 ] =

r⊕

j=1

Nλ j(A) = Nσ(A).

The rest of the proof is clear.

Remark 3.2. We have shown that

Nσ(A) ⊂ {u ∈C n |
r

∑
j=1

m j

∑
k=2

(u,v
( j)
k

∗
)(u,v

( j)
k−1

∗
) = 0}=: N.

But, the set on the right-hand side can be larger than the set Nσ(A). For, if ms > 1 for some s ∈ {1, . . . ,r}, then

p
(s)
ms

∈ N,

even though p
(s)
ms

6∈ Nσ(A) . Moreover, we have even for all single p
(k)
j j = 1, · · · ,mk,k = 1, · · · ,r the relations

p
(k)
j ∈ N.

Remark 3.3. If condition (C4′) is not fulfilled, then the results of Lemma 3.1 remain valid if its formulation is adapted to [14, Theorem 4].

The details are left to the reader.

Next, we have the following lemma.

Lemma 3.4. Let the conditions (C1′)-(C4′) be fulfilled and R be defined by (2.1). Further, let matrix A be asymptotically stable.

Then, A∗R+RA is negative definite on Nσ(A).
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Proof. With Lemma 3.1, Formula (3.3), and ρ j = 2Reλ j(A), j = 1, · · · ,n, we obtain

(−[A∗R+RA]u,u) =
n

∑
j=1

(−ρ j)(u,u)R j
= 2

r

∑
j=1

Re(−λ j(A))(u,u)R j

= 2
r

∑
j=1

|Reλ j(A)|(u,u)R j

≥ 2 min
j=1,··· ,r

|Reλ j(A)|
n

∑
j=1

(u,u)R j

= c0(Ru,u)> 0, 0 6= u ∈ Nσ(A)

with c0 = 2 min
j=1,··· ,r

|Reλ j(A)|> 0.

Similarly as in [ 2, Formula (3.6)], we define the following vector spaces.

M1,Nσ(A)
:= Nσ(A),

Mk,Nσ(A)
:= {u ∈ Nσ(A) |(u,u)Ri

= 0, i = 1,2, · · · ,k−1}, k = 2, · · · ,r.
(3.6)

The next lemma characterizes these spaces.

Lemma 3.5. Let the conditions (C1′)-(C4′) be fulfilled.

Then,

Mk,Nσ(A)
= [pk, . . . , pr], k = 1,2, . . . ,r. (3.7)

Proof. The proof is done for k = 3. The general case can be made by induction. So, we have to prove

M3,Nσ(A)
= {u ∈ Nσ(A) |(u,u)R1

= 0, (u,u)R2
= 0}= [p3, . . . , pr].

(i) [p3, p4, · · · , pr]⊂ M3,Nσ(A)
:

Let u ∈ [p3, p4, · · · , pr]. Then, u = ∑
r
j=3 β j p j with elements β j ∈C , j = 3, · · · ,r. Let s ∈ {1,2}. This entails, due to Theorem 2.3, Lemma

3.1, and (p j, pk)Rs
= (p j, pk)R

(1,1)
s

,

(u,u)Rs
=

r

∑
j,k=3

β jβk(p j, pk)Rs
=

r

∑
j,k=3

β jβk(p j, pk)R
(1,1)
s

=
r

∑
j,k=3

β jβk(R
(1,1)
s p

( j)
1 , p

(k)
1 ) =

r

∑
j,k=3

β jβk(v
(s)
1

∗
v
(s)
1 p

( j)
1 , p

(k)
1 )

=
r

∑
j,k=3

β jβk(v
(s)
1

∗
(p

( j)
1 ,v

(s)
1

∗
)

︸ ︷︷ ︸

δ js=0

, p
(k)
1 ) = 0,

j ∈ {3, . . . ,r}, s ∈ {1,2}. Therefore, (u,u)Rs
= 0, s = 1,2 and thus u ∈ M3,Nσ(A)

so that [p3, p4, · · · , pr]⊂ M3,Nσ(A)
is proven.

(ii) M3,Nσ(A)
⊂ [p3, p4, · · · , pr]:

Let u ∈ M3,Nσ(A)
. This implies u ∈ Nσ(A) with (u,u)Rs

= 0, s = 1,2 or

(Rsu,u) = ∑
ms

l=1(R
(l,l)
s u,u) = ∑

ms

l=1(v
(s)
l

∗
v
(s)
l

u,u) = ∑
ms

l=1(v
(s)
l

∗
(u,v

(s)
l

∗
),u)

= ∑
ms

l=1(v
(s)
l

∗
,u)(v

(s)
l

∗
,u) = ∑

ms

l=1 |(v
(s)
l

∗
,u)|2 = 0, s = 1,2,

that is, in particular,

u ∈ Nσ(A) with (u,v
(s)
1

∗
) = (u,v∗s ) = 0, s = 1,2. (3.8)

Since u ∈ Nσ(A), we have,

u =
r

∑
j=1

(u,v∗j)p j

so that with (3.8),

u =
r

∑
j=1

(u,v∗j)p j =
r

∑
j=3

(u,v∗j)p j ∈ [p3, . . . , pr].

This completes the proof of the assertion.
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Similarly to [ 2], we suppose that the eigenvalues λ1(A), · · · ,λr(A) of matrix A are arranged such that

Reλ1(A)≥ Reλ2(A)≥ ·· · ≥ Reλr(A). (3.9)

If A is asymptotically stable, (3.9) is replaced by

|Reλ1(A)| ≥ |Reλ2(A)| ≥ · · · ≥ |Reλr(A)|. (3.10)

One has the following theorem.

Theorem 3.6. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (3.9). Moreover, let the

vector spaces Mk,Nσ(A)
, k = 1, · · · ,r be defined by (3.6) or (3.7).

Then,

Reλk(A) = max
06=u∈Mk,Nσ(A)

Re(Au,u)R

(u,u)R
, k = 1,2, · · · ,r. (3.11)

If matrix A is, beyond this, asymptotically stable, and if the eigenvalues are arranged according to (3.10), then also

|Reλk(A)|= max
06=u∈Mk,Nσ(A)

|Re(Au,u)R|
(u,u)R

, k = 1,2, · · · ,r. (3.12)

The maximum is attained for u = pk.

Proof. According to (3.3), one has

Re(Au,u)R =
r

∑
j=1

Reλ j(A)(R ju,u), u ∈ Nσ(A).

Choosing k ∈ {1, · · · ,r} fixed and u ∈ Mk,Nσ(A)
, using (3.6), one obtains

Re(Au,u)R =
r

∑
j=k

Reλ j(A)(R ju,u)≤ max
j=k,··· ,r

Reλ j(A)
r

∑
j=k

(R ju,u)

= Reλk(A)
r

∑
j=1

(R ju,u) = Reλk(A)(u,u)R,

that is,

Re(Au,u)R

(u,u)R
≤ Reλk(A), 0 6= u ∈ Mk,Nσ(A)

and thus

max
0 6=u∈Mk,Nσ(A)

Re(Au,u)R

(u,u)R
≤ Reλk(A).

Now, the maximum is attained for u = pk ∈ Mk,Nσ(A)
, that is,

Reλk(A) =
Re(Apk, pk)R

(pk, pk)R
≤ max

0 6=u∈Mk,Nσ(A)

Re(Au,u)R

(u,u)R
≤ Reλk(A)

so that the assertion (3.11) is proven.

Relation (3.12) is proven in the same way as (3.11), but based on (3.5) instead of (3.3) and (3.10) instead of (3.9).

Remark 3.7. As we have seen, the proof is similar to that of [ 2, Theorem 3.4]. The essential difference is that the full space C n is replaced

by the geometric eigenspace NNσ(A)
⊂C n. Therefore, in the sequel, we state the results without proofs.

Next, we want to state a min-max characterization for the real parts of eigenvalues similar to results for diagonalizable matrices in [ 2,

Theorem 3.5].

One has the following theorem.

Theorem 3.8. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (3.9).

Then, for every j = 1, · · · ,r and every subspace M ⊂ Nσ(A) with dimM = m = r+1− j, the following inequalities are valid:

Reλ j(A)≤ max
0 6=u∈M

Re(Au,u)R

(u,u)R
≤ Reλ1(A), (3.13)

and the following representation formulas hold:

Reλ j(A) = min
dimM=m

max
06=u∈M⊂Nσ(A)

Re(Au,u)R

(u,u)R
.

If matrix A is, beyond this, asymptotically stable and the eigenvalues are arranged according to (3.10), then also

|Reλ j(A)|= min
dimM=m

max
06=u∈M⊂Nσ(A)

|Re(Au,u)R|
(u,u)R

.
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Remark 3.9. From (3.13), it follows

Re(Au,u)R

(u,u)R
≤ ν [A] = max

j=1,··· ,r
Reλ j(A), 0 6= u ∈ Nσ(A).

For the following theorem, we need the vector spaces Nk defined by

Nk := [p1, p2, · · · , pk], k = 1,2, · · · ,r. (3.14)

Then, we have a result similar to that of Theorem 3.6.

Theorem 3.10. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (3.9). Moreover, let the

vector spaces Nk, k = 1, · · · ,r be defined by (3.14).

Then,

Reλk(A) = min
0 6=u∈Nk

Re(Au,u)R

(u,u)R
, k = 1,2, · · · ,r.

If matrix A is, beyond this, asymptotically stable and if the eigenvalues are arranged according to (3.10), then also

|Reλk(A)|= min
0 6=u∈Nk

|Re(Au,u)R|
(u,u)R

, k = 1,2, · · · ,r.

The minimum is attained for u = pk.

Next, we want to derive a max-min characterization for the real parts of eigenvalues similar to results for diagonalizable matrices in [ 2].

One has the following theorem.

Theorem 3.11. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (3.9).

Then, for every j = 1, · · · ,r and every subspace N ⊂ Nσ(A) with dimN = j, the following inequalities are valid:

Reλr(A)≤ min
06=u∈N

Re(Au,u)R

(u,u)R
≤ Reλ j(A), (3.15)

and the following representation formulas hold:

Reλ j(A) = max
dimN= j

min
06=u∈N

Re(Au,u)R

(u,u)R
.

If matrix A is, beyond this, asymptotically stable and the eigenvalues are arranged according to (3.10), then also

|Reλ j(A)|= max
dimN= j

min
06=u∈N

|Re(Au,u)R|
(u,u)R

.

Remark 3.12. From (3.15), it follows

Re(Au,u)R

(u,u)R
≥−ν [−A] = min

j=1,··· ,r
Reλ j(A), 0 6= u ∈ Nσ(A).

4. Formulas for the representation of the imaginary parts of the eigenvalues of a general matrix

In this section, we want to state formulas for the representation of the imaginary parts of the eigenvalues of a general matrix A by Rayleigh

quotients. More precisely, max-, min-, min-max-, and max-min-representations are obtained corresponding to associated formulas for the

eigenvalues of self-adjoint matrices in the textbook [ 1, Section 5.4] resp. corresponding to those for the imaginary parts of eigenvalues of

diagonalizable matrices in [ 2].

First, we state a result similar to that of [ 1, Section 5.4 (18)]. This is done in the following Formula (4.1).

Lemma 4.1. Let the conditions (C1′)-(C4′) be fulfilled and R be defined by (2.1).

Then, with the denotations of Theorem 2.3,

Im(Au,u)R =
r

∑
j=1

Imλ j(A)(u,u)R j
, u ∈ Nσ(A). (4.1)

Proof. The proof follows immediately from (3.2).

Similarly to [ 1, Section 5.4 (22)] or (3.9), we suppose that the eigenvalues λ1(A), · · · ,λr(A) of matrix A are arranged such that

Imλ1(A)≥ Imλ2(A)≥ ·· · ≥ Imλr(A). (4.2)

One has the following theorem.

Theorem 4.2. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (4.2). Moreover, let the

vector spaces Mk,Nσ(A)
, k = 1, · · · ,r be defined by (3.6) or (3.7).

Then,

Imλk(A) = max
06=u∈Mk,Nσ(A)

Im(Au,u)R

(u,u)R
, k = 1,2, · · · ,r.

The maximum is attained for u = pk.
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Next, we want to state a min-max characterization for the imaginary parts of eigenvalues that corresponds to results for diagonalizable

matrices in [ 2] or that corresponds to results for the real parts of eigenvalues of general matrices in Section 3.

One has the following theorem.

Theorem 4.3. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (4.2).

Then, for every j = 1, · · · ,r and every subspace M ⊂ Nσ(A) with dimM = m = r+1− j, the following inequalities are valid:

Imλ j(A)≤ max
0 6=u∈M

Im(Au,u)R

(u,u)R
≤ Imλ1(A), (4.3)

and the following representation formulas hold:

Imλ j(A) = min
dimM=m

max
06=u∈M⊂Nσ(A)

Im(Au,u)R

(u,u)R
.

Remark 4.4. From (4.3), it follows

Im(Au,u)R

(u,u)R
≤ max

j=1,··· ,r
Imλ j(A), 0 6= u ∈ Nσ(A).

With the vector spaces Nk, we have the following theorem.

Theorem 4.5. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (4.2). Moreover, let the

vector spaces Nk, k = 1, · · · ,r be defined by (3.14).

Then,

Imλk(A) = min
0 6=u∈Nk

Im(Au,u)R

(u,u)R
, k = 1,2, · · · ,r.

The minimum is attained for u = pk.

Next, we state a max-min characterization for the imaginary parts of eigenvalues for general matrices similar to results for the real parts in

Section 3.

One has the following theorem.

Theorem 4.6. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (4.2).

Then, for every j = 1, · · · ,r and every subspace N ⊂ Nσ(A) with dimN = j, the following inequalities are valid:

Imλr(A)≤ min
06=u∈N

Im(Au,u)R

(u,u)R
≤ Imλ j(A), (4.4)

and the following representation formulas hold:

Imλ j(A) = max
dimN= j

min
06=u∈N

Im(Au,u)R

(u,u)R
.

Remark 4.7. From (4.4), it follows

Im(Au,u)R

(u,u)R
≥ min

j=1,··· ,r
Imλ j(A), 0 6= u ∈ Nσ(A).

5. Formulas for the representation of the moduli of the eigenvalues of a general matrix

In this section, we want to derive formulas for the representation of the moduli of the eigenvalues of a general matrix A by Rayleigh quotients.

More precisely, max-, min-, min-max-, and max-min-representations are obtained corresponding to associated formulas for the eigenvalues

of diagonalizable matrices in [ 2] and for the real and imaginary parts of eigenvalues of general matrices in Sections 3 and 4.

First, we derive a result similar to that of [ 2, Lemma 5.1].

Lemma 5.1. Let the conditions (C1′)-(C4′) be fulfilled and R be defined by (2.1).

Then, with the denotations of Theorem 2.1,

‖Au‖2
R = (RAu,Au) = (A∗RAu,u) = (R−1A∗RAu,u)R

=
r

∑
j=1

|λ j(A)|2 (u,u)R j

+
r

∑
j=1

λ j(A)
m j−1

∑
k=1

(u,v
( j)
k

∗
)(u,v

( j)
k+1

∗
)

+
r

∑
j=1

λ j(A)
m j

∑
k=2

(u,v
( j)
k

∗
)(u,v

( j)
k−1

∗
)

+
r

∑
j=1

m j

∑
k=2

|(u,v( j)
k

∗
)|2, u ∈C n

(5.1)
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leading to

‖Au‖2
R = (RAu,Au) = (A∗RAu,u) = (R−1A∗RAu,u)R

=
r

∑
j=1

|λ j(A)|2 (u,u)R j
, u ∈ Nσ(A)

(5.2)

where

(u,u)R j
= (u,u)

R
(1,1)
j

, u ∈ Nσ(A),

j = 1, . . . ,r.

Proof. First, we prove (5.1). For this, let u ∈C n. Then with the denotations of Theorem 2.1,

u =
r

∑
j=1

m j

∑
k=1

(u,v
( j)
k

∗
) p

( j)
k

(5.3)

leading to

Au =
r

∑
j=1

m j

∑
k=1

(u,v
( j)
k

∗
)Ap

( j)
k

=
r

∑
j=1

m j

∑
k=1

(u,v
( j)
k

∗
) [λ j p

( j)
k

+ p
( j)
k−1]

=
r

∑
j=1

λ j

m j

∑
k=1

(u,v
( j)
k

∗
) p

( j)
k

+
r

∑
j=1

m j

∑
k=2

(u,v
( j)
k

∗
) p

( j)
k−1

since p
( j)
0 = 0, j = 1, . . . ,r. This implies

RAu =
r

∑
j=1

λ j

m j

∑
k=1

(u,v
( j)
k

∗
)Rp

( j)
k

+
r

∑
j=1

m j

∑
k=2

(u,v
( j)
k

∗
)Rp

( j)
k−1.

Now,

Rp
( j)
k

=
r

∑
l=1

ml

∑
s=1

R
(s,s)
l

p
( j)
k

=
r

∑
l=1

ml

∑
s=1

v
(l)
s

∗
v
(l)
s p

( j)
k

=
r

∑
l=1

ml

∑
s=1

v
(l)
s

∗
(p

( j)
k

,v
(l)
s

∗
)

=
r

∑
l=1

ml

∑
s=1

v
(l)
s

∗
δ jl δs,k =

m j

∑
s=1

v
( j)
s

∗
δs,k = v

( j)
k

∗

and correspondingly

Rp
( j)
k−1 = v

( j)
k−1

∗
.

This leads to

RAu =
r

∑
j=1

λ j

m j

∑
k=1

(u,v
( j)
k

∗
)v

( j)
k

∗
+

r

∑
j=1

m j

∑
k=2

(u,v
( j)
k

∗
)v

( j)
k−1

∗
. (5.4)

Thus,

A∗RAu =
r

∑
j=1

λ j

m j

∑
k=1

(u,v
( j)
k

∗
)A∗v

( j)
k

∗
+

r

∑
j=1

m j

∑
k=2

(u,v
( j)
k

∗
)A∗v

( j)
k−1

∗

=
r

∑
j=1

λ j

m j

∑
k=1

(u,v
( j)
k

∗
)A∗u

( j)
m j−k+1

∗
+

r

∑
j=1

m j

∑
k=2

(u,v
( j)
k

∗
)A∗u

( j)
m j−(k−1)+1

∗

=
r

∑
j=1

λ j

m j

∑
k=1

(u,v
( j)
k

∗
) [λ j u

( j)
m j−k+1

∗
+u

( j)
m j−k

∗
]

+
r

∑
j=1

m j

∑
k=2

(u,v
( j)
k

∗
) [λ j u

( j)
m j−k+2

∗
+u

( j)
m j−k+1

∗
]

=
r

∑
j=1

λ j

m j

∑
k=1

(u,v
( j)
k

∗
) [λ j v

( j)
k

∗
+ v

( j)
k+1

∗
]

+
r

∑
j=1

m j

∑
k=2

(u,v
( j)
k

∗
) [λ j v

( j)
k−1

∗
+ v

( j)
k

∗
]
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and thus

A∗RAu =
r

∑
j=1

|λ j|2
m j

∑
k=1

(u,v
( j)
k

∗
)v

( j)
k

∗
+

r

∑
j=1

λ j

m j

∑
k=1

(u,v
( j)
k

∗
)v

( j)
k+1

∗

+
r

∑
j=1

λ j

m j

∑
k=2

(u,v
( j)
k

∗
)v

( j)
k−1

∗
+

r

∑
j=1

m j

∑
k=2

(u,v
( j)
k

∗
)v

( j)
k

∗
.

(5.5)

From (5.3) and (5.5), we conclude that the following chain of equations is valid

(A∗RAu,u) = (
r

∑
j=1

|λ j|2
m j

∑
k=1

(u,v
( j)
k

∗
)v

( j)
k

∗
,

r

∑
l=1

ml

∑
s=1

(u,v
(l)
s

∗
) p

(l)
s )

+ (
r

∑
j=1

λ j

m j

∑
k=1

(u,v
( j)
k

∗
)v

( j)
k+1

∗
,

r

∑
l=1

ml

∑
s=1

(u,v
(l)
s

∗
) p

(l)
s )

+ (
r

∑
j=1

λ j

m j

∑
k=2

(u,v
( j)
k

∗
)v

( j)
k−1

∗
,

r

∑
l=1

ml

∑
s=1

(u,v
(l)
s

∗
) p

(l)
s )

+ (
r

∑
j=1

m j

∑
k=2

(u,v
( j)
k

∗
)v

( j)
k

∗
,

r

∑
l=1

ml

∑
s=1

(u,v
(l)
s

∗
) p

(l)
s )

=
r

∑
j=1

|λ j|2
m j

∑
k=1

(u,v
( j)
k

∗
)

r

∑
l=1

ml

∑
s=1

(u,v
(l)
s

∗
) (v

( j)
k

∗
, p

(l)
s )

︸ ︷︷ ︸

δl jδsk

+
r

∑
j=1

λ j

m j

∑
k=1

(u,v
( j)
k

∗
)

r

∑
l=1

ml

∑
s=1

(u,v
(l)
s

∗
) (v

( j)
k+1

∗
, p

(l)
s )

︸ ︷︷ ︸

δl jδs,k+1

+
r

∑
j=1

λ j

m j

∑
k=2

(u,v
( j)
k

∗
)

r

∑
l=1

ml

∑
s=1

(u,v
(l)
s

∗
) (v

( j)
k−1

∗
, p

(l)
s )

︸ ︷︷ ︸

δl jδs,k−1

+
r

∑
j=1

m j

∑
k=2

(u,v
( j)
k

∗
)

r

∑
l=1

ml

∑
s=1

(u,v
(l)
s

∗
) (v

( j)
k

∗
, p

(l)
s )

︸ ︷︷ ︸

δl jδs,k

so that

(A∗RAu,u) =
r

∑
j=1

|λ j|2
m j

∑
k=1

(u,v
( j)
k

∗
)(u,v

( j)
k

∗
)

+
r

∑
j=1

λ j

m j

∑
k=1

(u,v
( j)
k

∗
)(u,v

( j)
k+1

∗
)

+
r

∑
j=1

λ j

m j

∑
k=2

(u,v
( j)
k

∗
)(u,v

( j)
k−1

∗
)

+
r

∑
j=1

m j

∑
k=2

(u,v
( j)
k

∗
)(u,v

( j)
k

∗
) .

(5.6)

Now,

m j

∑
k=1

(u,v
( j)
k

∗
)(u,v

( j)
k

∗
) = (u,

m j

∑
k=1

(u,v
( j)
k

∗
)v

( j)
k

∗
) = (u,

m j

∑
k=1

v
( j)
k

∗
v
( j)
k

u)

= (u,R ju) = (u,u)R j
.

(5.7)

Further, for k = m j,

v
( j)
k+1

∗
= u

( j)
m j−(k+1)+1

∗
= v

( j)
m j−(m j+1)+1

∗
= u

( j)
0

∗
= 0. (5.8)

With (5.4)-(5.8), relation (5.1) follows. The rest is clear.

Similarly to [ 2], we suppose that the eigenvalues λ1(A), · · · ,λr(A) of matrix A are arranged such that

|λ1(A)| ≥ |λ2(A)| ≥ · · · ≥ |λr(A)|. (5.9)

One has the following theorem.

Theorem 5.2. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (5.9). Moreover, let the

vector spaces Mk,Nσ(A)
, k = 1, · · · ,r be defined by (3.6) or (3.7).

Then,

|λk(A)|= max
0 6=u∈Mk,Nσ(A)

‖Au‖R

‖u‖R
, k = 1,2, · · · ,r.

The maximum is attained for u = pk.
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Proof. For the proof, one uses (5.2) and proceeds as in the proof of [ 2] with the only difference that the full space C n is replaced by the

subspace Nσ(A).

In the same way, one obtains the following results.

Theorem 5.3. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (5.9).

Then, for every j = 1, · · · ,r and every subspace M ⊂ Nσ(A) with dimM = m = r+1− j, the following inequalities are valid:

|λ j(A)| ≤ max
0 6=u∈M

‖Au‖R

‖u‖R
≤ |λ1(A)|, (5.10)

and the following representation formulas hold:

|λ j(A)|= min
dimM=m

max
0 6=u∈M⊂Nσ(A)

‖Au‖R

‖u‖R
.

Remark 5.4. From (5.9), it follows

‖Au‖R

‖u‖R
≤ max

j=1,··· ,r
|λ j(A)|= ρ(A), 0 6= u ∈ Nσ(A),

where ρ(A) is the spectral radius of matrix A.

Further, we have the following theorem.

Theorem 5.5. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (5.9). Moreover, let the

vector spaces Nk, k = 1, · · · ,r be defined by (3.14).

Then,

|λk(A)|= min
0 6=u∈Nk

‖Au‖R

‖u‖R
, k = 1,2, · · · ,r.

The minimum is attained for u = pk.

Moreover, the following theorem holds.

Theorem 5.6. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (5.9).

Then, for every j = 1, · · · ,r and every subspace N ⊂ Nσ(A) with dimN = j, the following inequalities are valid:

|λr(A)| ≤ min
06=u∈N

‖Au‖R

‖u‖R
≤ |λ j(A)|, (5.11)

and the following representation formulas hold:

|λ j(A)|= max
dimN= j

min
0 6=u∈N

‖Au‖R

‖u‖R
.

Remark 5.7. From (5.11), it follows

‖Au‖R

‖u‖R
≥ |λr(A)| = min

j=1,··· ,r
|λ j(A)|= min

j=1,··· ,r
1

|λ j(A−1)|

= 1

max
j=1,··· ,r

|λ j(A
−1)| =

1

ρ(A−1)
= (ρ(A−1))−1, 0 6= u ∈ Nσ(A).

6. Connection between the matrices R−1 A∗R+RA
2

, R−1 RA−A∗R
2i

, and R−1A∗RA

In [ 2, Section 6], for diagonalizable matrices A ∈C n×n, we have shown that the equation

(

R−1 A∗R+RA
2

)2
+
(

R−1 RA−A∗R
2i

)2
= R−1A∗RA (6.1)

is valid. In this section, we prove that this equation remains valid in the subspace

N′
σ(A) :=

r⊕

m j=1

j=1

Nλ j(A) ⊂
r⊕

j=1

Nλ j(A) = Nσ(A). (6.2)

One has the following theorem.

Theorem 6.1. Let the conditions (C1′)-(C4′) be fulfilled, and R be defined by (2.1).

Then,
[(

R−1 A∗R+RA
2

)2
+
(

R−1 RA−A∗R
2i

)2
]

u = R−1A∗RAu, u ∈ N′
σ(A). (6.3)
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Proof. Let j ∈ {1, · · · ,r} with m j = 1. According to [13, Theorems 6 and 7], one has

[(

R−1 A∗R+RA
2

)2
+
(

R−1 RA−A∗R
2i

)2
]

p j

=
(

R−1 A∗R+RA
2

)2
p j +

(

R−1 RA−A∗R
2i

)2
p j

= [Reλ j(A)]
2 p j +[Imλ j(A)]

2 p j

= |λ j(A)|2 p j = λ j(R
−1A∗RA)p j = R−1A∗RAp j.

This implies (6.3).

Remark 6.2. For diagonalizable matrices A ∈C n×n, the equations (6.3) deliver (6.1) since then N′
σ(A) = Nσ(A) =C n×n.

7. Applications

In this section, we apply the results of Sections 3, 4, and 5 to obtain the convexity of newly-defined numerical ranges of a general matrix A.

7.1. Applications pertinent to Section 3

Let the conditions (C1′)-(C4′) be fulfilled.

The numerical range of A restricted to Nσ(A) with respect to the weighted scalar product (·, ·)R is defined by

WNσ(A),(·,·)R
(A) =

{

z ∈C |z = (Au,u)R

(u,u)R
, 0 6= u ∈ Nσ(A)

}

.

Further, let

Re[WNσ(A),(·,·)R
(A)] :=

{

x ∈ IR |x = Re(Au,u)R

(u,u)R
, 0 6= u ∈ Nσ(A)

}

;

we call it real part of the numerical range WNσ(A),(·,·)R
(A).

Let σ(A) = {λ j(A), j = 1, · · · ,r} be the spectrum of A, i.e., the set of all eigenvalues of A.

Similarly as before, we define

Re[σ(A)] := {Reλ j(A), j = 1, · · · ,r}

and call it the real part of the spectrum of A.

Finally, let co{Re[σ(A)]} be the convex hull of Re[σ(A)].
Next, we show the following corollary as an application of Theorem 3.8, Formula (3.13), and Theorem 3.11, Formula (3.15).

Corollary 7.1. (Application 1)

Let the conditions (C1′)-(C4′) be fulfilled.

Then, the set Re[WNσ(A),(·,·)R
(A)] is convex, and one has the chain of equations

Re[WNσ(A),(·,·)R
(A)] =

{

x ∈ IR |x = Re(Au,u)R

(u,u)R
, 0 6= u ∈ Nσ(A)

}

=

{

x ∈ IR |x = (R−1 A∗R+RA
2 u,u)R

(u,u)R
, 0 6= u ∈ Nσ(A)

}

= WNσ(A),(·,·)R
(R−1 A∗R+RA

2 )

= co{Re [σ(A)]}.

If the eigenvalues of A are arranged according to (3.9), then

Re[WNσ(A),(·,·)R
(A)] = [Reλr(A),Reλ1(A)].

Proof. Let 0 6= u ∈ Nσ(A). Then,

2
Re(Au,u)R

(u,u)R
=

([A∗R+RA]u,u)

(u,u)R
=

(R−1[A∗R+RA]u,u)R

(u,u)R
.

The convexity follows from the last form with R−1[A∗R+RA] and the scalar product (·, ·)R, see the convexity of the numerical range of a

matrix due to Hausdorff in [ 1, Section 5.4]. Since, with (3.9), one has

co{Re [σ(A)]}= [Reλr(A),Reλ1(A)],



68 Journal of Mathematical Sciences and Modelling

it remains to show that

Re[WNσ(A),(·,·)R
(A)] = [Reλr(A),Reλ1(A)].

The proof of this relation is as follows.

(i) Re[WNσ(A),(·,·)R
(A)]⊂ [Reλr(A),Reλ1(A)]

This inclusion can be deduced from (3.13) with dimM = m = r− j+1 for j = 1 and (3.15) with dimN = r. Namely, from (3.13), for j = 1

and dimM = r, i.e., M = Nσ(A), one has

max
06=u∈Nσ(A)

Re(Au,u)R

(u,u)R
≤ Reλ1(A)

and from (3.15), for j = r and dimN = r, i.e., N = Nσ(A),

min
0 6=u∈Nσ(A)

Re(Au,u)R

(u,u)R
≥ Reλr(A).

(ii) [Reλr(A),Reλ1(A)]⊂ Re[WNσ(A),(·,·)R
(A)]

Let β ∈ [Reλr(A),Reλ1(A)]. Then, there exists an α in 0 ≤ α ≤ 1 with

β = α Reλr(A)+(1−α)Reλ1(A).

Now, due to Theorem 2.3, with the eigenvectors pr and p1,

Reλr(A) =
Re(Apr, pr)R

(pr, pr)R
∈ Re[WNσ(A),(·,·)R

(A)]

and

Reλ1(A) =
Re(Ap1, p1)R

(p1, p1)R
∈ Re[WNσ(A),(·,·)R

(A)].

Thus, due to the convexity of Re[WNσ(A),(·,·)R
(A)], it follows that β ∈ Re[WNσ(A),(·,·)R

(A)].
In other words, the proof is done along the same line as for [ 2, Section 7.1] with (3.13) for j = 1 and (3.15) for j = r.

Remark 7.2. One has the relations

Reλ1(A) = max
j=1,··· ,r

Reλ j(A) = ν [A]

and

Reλr(A) = min
j=1,··· ,r

Reλ j(A) =−ν [−A].

Corollary 7.3. (Application 2)

Let the conditions (C1′)-(C4′) be fulfilled. Further, let A be asymptotically stable.

Then,

Re[WNσ(A),(·,·)R
(A)]⊂ IR− = {x ∈ IR |x < 0}.

If A is only stable, then

Re[WNσ(A),(·,·)R
(A)]⊂ IR−

0 = {x ∈ IR |x ≤ 0}.

Proof. The first assertion follows from (3.4). The second assertion follows in a similar way.

7.2. Applications pertinent to Section 4

In this section, we proceed in a similar way as in 7.1. So, let

Im[WNσ(A),(·,·)R
(A)] :=

{

x ∈ IR |x = Im(Au,u)R

(u,u)R
, 0 6= u ∈ Nσ(A)

}

;

we call it imaginary part of the numerical range WNσ(A),(·,·)R
(A).

Further, we define

Im[σ(A)] := {Imλ j(A), j = 1, · · · ,r}

and call it the imaginary part of the spectrum of A.

Finally, let co{Im[σ(A)]} be the convex hull of Im[σ(A)].

Herewith, we obtain the following corollary.
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Corollary 7.4. (Application 3)

Let the conditions (C1′)-(C4′) be fulfilled.

Then, the set Im[WNσ(A),(·,·)R
(A)] is convex, and one has the chain of equations

Im[WNσ(A),(·,·)R
(A)] =

{

x ∈ IR |x = Im(Au,u)R

(u,u)R
, 0 6= u ∈ Nσ(A)

}

=

{

x ∈ IR |x = (R−1 RA−A∗R
2i u,u)R

(u,u)R
, 0 6= u ∈ Nσ(A)

}

= WNσ(A),(·,·)R
(R−1 RA−A∗R

2i )

= co{Im [σ(A)]}.
Proof. The assertion follows as in [ 2, Section 7.2] along with (4.3) for j = 1 and (4.4) for j = r.

7.3. Applications pertinent to Section 5

In this subsection, we continue along the same lines as in 7.1 and 7.2.

Let

WNσ(A),‖·‖R
(A) :=

{

x ∈ IR+
0 |x = ‖Au‖R

‖u‖R
, 0 6= u ∈ Nσ(A)

}

.

Further,

|σ(A)| := {|λ j(A)|, j = 1, · · · ,r}
is called the modulus of the spectrum of A.

Moreover, let co{|σ(A)|} be the convex hull of |σ(A)|.
Finally, let S ⊂ IR+

0 be any subset. We define

S2 := {y |y = s2,s ∈ S}.
Next, we show the following corollary.

Corollary 7.5. (Application 4)

Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (5.9).

Then, the set [WNσ(A),‖·‖R
(A)]2 is convex, and one has the chain of relations

[WNσ(A),‖·‖R
(A)]2 =

{

x ∈ IR+
0 |x =

[‖Au‖R

‖u‖R

]2

=
‖Au‖2

R

‖u‖2
R

, 0 6= u ∈ Nσ(A)

}

=

{

x ∈ IR+
0 |x = ([R−1A∗RA]u,u)R

(u,u)R
, 0 6= u ∈ Nσ(A)

}

= [|λr(A)|2, |λ1(A)|2]

= co{|σ(A)|2}.
If A is regular, then R−1A∗RA is positive definite.

Proof. The assertion follows as for [ 2, Corollary 7.4] along with (5.10) for j = 1 and (5.11) for j = r. Further, R−1A∗RA is apparently

regular if A is so as well as self-adjoint and positive definite in the weighted scalar product (·, ·)R.

Next, for S ⊂ IR+
0 , we define

√
S := {y |y =

√
s, s ∈ S}.

Herewith, one can rewrite Corollary 7.5 in the following form.

Corollary 7.6. (Application 5)

Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (5.9).

Then, the set WNσ(A),‖·‖R
(A) is convex, and one has the chain of relations

WNσ(A),‖·‖R
(A) =

{

x ∈ IR+
0 |x = ‖Au‖R

‖u‖R
, 0 6= u ∈ Nσ(A)

}

=






x ∈ IR+

0 |x =
√

([R−1A∗RA]u,u)R

(u,u)R
, 0 6= u ∈ Nσ(A)







= [|λr(A)|, |λ1(A)|]

= co{|σ(A)|}.
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Proof. For any subset S ⊂ IR+
0 , one has

√

S2 = (
√

S)2 = S.

Thus, from Corollary 7.5, the equations of Corollary 7.6 follow.

8. Numerical example

In this section, we check the results of Subsection 7.1 as well as of Theorem 6.1, Formula (6.3) numerically. The numerical check of the

results of Subsections 7.2 and 7.3 is left to the reader.

8.1. A two-mass vibration model

We take up the multi-mass vibration model of [12], shown in Figure 8.1.

. . .

. . .
k1 k2

b1 b2
y1 y2

kn

bn bn 1

kn 1

yn

m1 m2 mn

Figure 8.1: Multi-mass vibration model

and study the case n = 2 as in [13]. For the sake of completeness, we give again the details. The associated initial value problem is given by

M ÿ+Bẏ+K y = 0, y(0) = y0, ẏ(0) = ẏ0,

where y = [y1,y2]
T and

M =

[
m1 0

0 m2

]

,

B =

[
b1 +b2 −b2

−b2 b2 +b3

]

,

K =

[
k1 + k2 −k2

−k2 k2 + k3

]

,

with the mass, damping, and stiffness matrices M, B, and K, as the case may be, and the displacement vector y. In state-space description,

this problem takes the form

ẋ = Ax, t ≥ 0, x(0) = x0,

where x = [yT ,zT ]T , z = ẏ, and where the system matrix A is given by

A =

[
0 E

−M−1K −M−1B

]

.

(i) Construction of a non-diagonalizable matrix A:

The pertinent characteristic equation reads

|λ 2M+λB+K| =
∣
∣
∣
∣

λ 2m1 +λ (b1 +b2)+(k1 + k2) λ (−b2)− k2

λ (−b2)− k2 λ 2m2 +λ (b2 +b3)+(k2 + k3)

∣
∣
∣
∣
= 0.

As in [13], for the construction of a case with non-diagonalizable matrix A, we choose

b2 = 0, m2 = m1 = 1, b3 = b1, k3 = k1.

Then,

λ 2m1 +λb1 +(k1 + k2) = sk2 with s ∈ {+1,−1}.

Hence, with m1 = 1,

λ =−b1

2
±
√

(
b1

2
)2 − k1 − k2 + sk2.

Now, in order to get one real solution, we set

k1 := (
b1

2
)2.
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This implies

λ =







−b1

2
, s =+1,

−b1

2
± i

√

2k2, s =−1.

(ii) Data:

Like in [13], as numerical values for the quantities not yet specified, we choose b1 = 1/4, k2 = 23 = 8. On the whole, this delivers the

following data:

m1 = m2 = 1; b1 = 1/4, b2 = 0, b3 = 1/4; k1 = 1/64 = 1/24, k2 = 8, k3 = 1/64 = 1/24,

which leads to

M =

[
m1 0

0 m2

]

=

[
1 0

0 1

]

,

B =

[
b1 +b2 −b2

−b2 b2 +b3

]

=

[
0.25 0

0 0.25

]

,

K =

[
k1 + k2 −k2

−k2 k2 + k3

]

=

[
1/64+8 −1/2

−1/2 8+1/64

]

=

[
8.015625 −0.5

−0.5 8.015625

]

.

Further, we choose

t0 = 0

as well as

y0 = [−1,1]T

and

ẏ0 = [−1,−1]T ,

but y0 and ẏ0 are not needed here.

8.2. Computation of important quantities

Using the Matlab routine jordan, one obtains

λ1(A) = −0.1250+4.0000i,
λ2(A) = −0.1250−4.0000i,
λ3(A) = −0.1250,
λ4(A) = λ3(A).

The pertinent eigenvectors and principal vectors are

[

p
(1)
1 , p

(2)
1 , p

(3)
1 , p

(3)
2

]

= [p1, p2, p3, p4]

with

[

p
(1)
1 , p

(2)
1

]

= [p1, p2]

=







0.250000000000000−0.007812500000000i 0.250000000000000+0.007812500000000i

−0.250000000000000+0.007812500000000i −0.250000000000000−0.007812500000000i

0+1.000976562500000i 0−1.000976562500000i

0−1.000976562500000i 0+1.000976562500000i






.

and
[

p
(3)
1 , p

(3)
2

]

= [p3, p4]

=







0.062500000000000 0.500000000000000

0.062500000000000 0.500000000000000

−0.007812500000000 0

−0.007812500000000 0






.

They are apparently unnormed. The algebraic multiplicities are thus m1 = m2 = 1 and m3 = 2.
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For the adjoint matrix A∗, we obtain

λ1(A
∗) = −0.1250−4.0000i,

λ2(A
∗) = −0.1250+4.0000i,

λ3(A
∗) = −0.1250,

λ4(A
∗) = λ3(A

∗).

The associated eigenvectors and principal vectors are

[

u
(1)
1

∗
,u

(2)
1

∗
,u

(3)
1

∗
,u

(3)
2

∗]
= [u∗1,u

∗
2,u

∗
3,u

∗
4]

with
[

u
(1)
1

∗
,u

(2)
1

∗]
=

[
u∗1,u

∗
2

]

=







0.250000000000000+0.007812500000000i 0.250000000000000−0.007812500000000i

−0.250000000000000+0.007812500000000i −0.250000000000000−0.007812500000000i

0−0.062500000000000i 0+0.062500000000000i

0+0.062500000000000i 0−0.062500000000000i






.

and
[

u
(3)
1

∗
,u

(3)
2

∗]
=

[
u∗3,u

∗
4

]

=







0.062500000000000 0.500000000000000

0.062500000000000 0.500000000000000

0.500000000000000 0

0.500000000000000 0






.

They are also unnormed.

Now, we biorthogonalize these vectors based on Theorem 2.1 such that the relations

(p
(i)
k
,u

(i)
l

∗
) =







1, l = mi − k+1

0, l 6= mi − k+1

and

(p
(i)
k
,u

( j)
l

∗
) = 0, i 6= j.

So, with

v
(i)
l

∗
= u

(i)
mi−l+1

∗
,

one has the biorthogonality relations

(p
(i)
k
,v

( j)
l

∗
) = δklδi j. (8.1)

We give the details. Define

v∗1 = v
(1)
1

∗
= u

(1)
1

∗
= u∗1,

v∗2 = v
(2)
1

∗
= u

(2)
1

∗
= u∗2,

v∗3 = v
(3)
1

∗
= u

(3)
2

∗
= u∗4,

v∗4 = v
(3)
2

∗
= u

(3)
1

∗
= u∗3.

Then,

α3 :=− (p4 ,v
∗
3)

(p3 ,v
∗
3)

=−8.

Define

w4 = p4 +α3 p3

and replace p4 by w4, i.e., in Matlab set p4 = w4.

Normalize v∗i , i = 1, . . . ,4 by the substitutions

v∗i →
v∗i

‖v∗i ‖2
, i = 1, . . . ,4

and pi, i = 1, . . . ,4 by

pi →
pi

(pi ,v
∗
i )

i = 1, . . . ,4.
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Then, we obtain

[

p
(1)
1 , p

(2)
1 , p

(3)
1 , p

(3)
2

]

= [p1, p2, p3, p4]

with

[

p
(1)
1 , p

(2)
1

]

= [p1, p2]

=







0.364601934049314 0.364601934049314

−0.364601934049314 −0.364601934049314

−0.045575241756164+1.458407736197255i −0.045575241756164−1.458407736197255i

0.045575241756164−1.458407736197255i 0.045575241756164+1.458407736197255i






.

and

[

p
(3)
1 , p

(3)
2

]

= [p3, p4]

=







0.707106781186548 0

0.707106781186548 0

−0.088388347648318 0.712609640686961

−0.088388347648318 0.712609640686961






.

as well as
[

v
(1)
1

∗
,v

(2)
1

∗
,v

(3)
1

∗
,v

(3)
2

∗]
= [v∗1,v

∗
2,v

∗
3,v

∗
4]

with

[

v
(1)
1

∗
,v

(2)
1

∗]
=

[
v∗1,v

∗
2

]

=







0.685679302968773+0.021427478217774i 0.685679302968773−0.021427478217774i

−0.685679302968773−0.021427478217774i −0.685679302968773+0.021427478217774i

0+0.171419825742193i 0−0.171419825742193i

0−0.171419825742193i 0+0.171419825742193i






.

and

[

v
(3)
1

∗
,v

(3)
2

∗]
=

[
v∗3,v

∗
4

]

=







0.707106781186547 0.087705801930703

0.707106781186547 0.087705801930703

0 0.701646415445623

0 0.701646415445623






.

With these normed vectors, relations (8.1) are computationally verified.

Further, R in (2.1) can be written as

R = u
(1)
1

∗
u
(1)
1 +u

(2)
1

∗
u
(2)
1 +u

(3)
1

∗
u
(3)
1 +u

(3)
2

∗
u
(3)
2

= ∑
4
i=1 u∗i ui = ∑

4
i=1 v∗i vi

= v
(1)
1

∗
v
(1)
1 + v

(2)
1

∗
v
(2)
1 + v

(3)
1

∗
v
(3)
1 + v

(3)
2

∗
v
(3)
2 ,

where it goes without saying that the u∗i and ui are normed in a similar way as the v∗i and vi. Matlab delivers

R =







1.448922794377340 −0.433538178992724 0.068884650702833 0.054192272374091

−0.433538178992724 1.448922794377340 0.054192272374091 0.068884650702833

0.068884650702833 0.054192272374091 0.551077205622660 0.433538178992725

0.054192272374091 0.068884650702833 0.433538178992725 0.551077205622660






.

The eigenvalues of R in (8.5) are given by

λ1(R) = 0.117416726023999,
λ2(R) = 0.875965265410791,
λ3(R) = 1.124034734589208,
λ4(R) = 1.882583273976000,

so that R is positive definite.
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Remark 8.1. The vector p
(3)
2 is a principal vector of stage 2 for matrix A. But, since it is normed such that (p

(3)
2 ,v

(3)
2

∗
) = 1 instead of

‖p
(3)
2 ‖2 = 1, the equation Ap

(3)
2 = λ3 p

(3)
2 + p

(3)
1 does not hold, but instead, the equation Ap

(3)
2 = λ3 p

(3)
2 + γ

(3)
1 p

(3)
1 is valid with a factor

γ
(3)
1 6= 0, γ

(3)
1 6= 1. Similarly, u

(3)
2

∗
is principal vector of stage 2 for A∗. Similarly, due to the biorthogonalization process, the equation

A∗u
(3)
2

∗
= λ3u

(3)
2

∗
+u

(3)
1

∗
does not hold, but instead, the equation A∗u

(3)
2

∗
= λ3u

(3)
2

∗
+δ

(3)
1 u

(3)
1

∗
is valid with a factor δ

(3)
1 6= 0, δ

(3)
1 6= 1.

We leave it to the reader to check this numerically on our example.

Remark 8.2. Due to the foregoing remark, Formula (3.1) looks somewhat different. But, Formula (3.2) remains valid which is the important

point since the subsequent findings are based on Formula (3.2), not on Formula (3.1).

8.3. Numerical check of the validity of Corollary 7.1 (Application 1)

Here, we check the validity of

Re(Au,u)R

(u,u)R
∈ Re[WNσ(A),(·,·)R

(A)] = [Reλ3(A),Reλ1(A)], 0 6= u ∈ Nσ(A).

or

Re(Au,u)R

(u,u)R
=−0.125, 0 6= u ∈ Nσ(A) ⊂C 4.

We choose u ∈ {p, q, w} where

p = p1+ p2,
q = 2 p1−3 p3,
w = −4 p2+5 p4.

We obtain

Re(Ap, p)R

(p, p)R
= −0.125000000000000,

Re(Aq,q)R

(q,q)R
= −0.125000000000000,

Re(Aw,w)R

(w,w)R
= −0.616601082213326 6=−0.125,

where the last result is not surprising since p4 = p
(3)
2 6∈ Nσ(A) and thus w 6∈ Nσ(A).

8.4. Computational verification of the validity of Theorem 6.1

Here, we check Formula (6.3) of Theorem 6.1 With (3.9), from (6.2) we obtain

N′
σ(A) = Nλ1(A)⊕Nλ2(A)

and

D :=
(

R−1 A∗R+RA
2

)2
+
(

R−1 RA−A∗R
2i

)2
−R−1A∗RA =







0.253906250000002 0.253906250000000 0.000000000000000 0.000000000000000

0.253906249999997 0.253906250000002 0.000000000000000 0.000000000000000

−0.063476562500000 −0.063476562500000 −0.253906249999998 −0.253906250000002

−0.063476562500000 −0.063476562500000 −0.253906250000002 −0.253906250000000






.

For

p = 2p1 −3ip2 ∈ N′
σ(A),

we obtain

p =







0.729203868098627−1.093805802147941i

−0.729203868098627+1.093805802147941i

−4.466373692104092+3.053541197663002i

4.466373692104092−3.053541197663002i







and

Dp =







0.010908063192107−0.018157611026833i

−0.030646883054894+0.047235291651105i

−0.153210777398272+0.103250741290140i

0.073274719625260−0.045519144009631i






×10−13 .

= 0
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so that (6.3) is fulfilled for u = p. On the other hand, for

q = p1 + p3 6∈ N′
σ(A),

we obtain

q =







1.071708715235861

0.342504847137234

−0.133963589404483+1.458407736197255i

−0.042813105892154−1.458407736197255i







and

Dq =







0.359077662321295+0.000000000000000i

0.359077662321291−0.000000000000000i

−0.044884707790162+0.000000000000005i

−0.044884707790162−0.000000000000003i






6= 0

which is not surprising since q 6∈ N′
σ(A).

8.5. Computational aspects

In this subsection, we say something about the used computer equipment and the computation times.

(i) As to the computer equipment, the following hardware was available: an Intel Core2 Duo Processor at 3166 GHz, a 500 GB mass storage

facility, and two 2048 MB high-speed memories. As software package for the computations, we used MATLAB, Version 7.11.

(ii) The computation time t of an operation was determined by the command sequence t1=clock; operation; t=etime(clock,t1). It is put out

in seconds, rounded to four decimal places. For the computation of the eigenvalues of matrix A in Subsection 5.3, we used the command

[XA,DA]=eig(A); the pertinent computation time was less than 0.0001 s.

9. Conclusion

It has been shown that there exist Rayleigh-quotient representations of the real parts, imaginary parts, and moduli of the eigenvalues of

general matrices that parallel those representations known for the eigenvalues of self-adjoint matrices and corresponding to the ones for

diagonalizable matrices. The key idea is to use a weighted scalar product defined by a positive definite matrix that is constructed by means of

the left principal vectors of the considered matrix and the right principal vectors of its adjoint. As Formulas (3.3), (4.1), and (5.2) show, one

essentially obtains the results for general matrices in the same way as for diagonalizable matrices by replacing the full space C n with the

geometric eigenspace Nσ(A). The results are of interest on their own in Linear Algebra. They are also of potential interest in applications.

For example, in the theory of linear dynamical systems, in the study of stability of a vibration problem, the real parts of the eigenvalues

of the system matrix are important. Moreover, in systems with conjugate-complex eigenvalues, the moduli of the imaginary parts of the

eigenvalues are the circular damped eigenfrequencies of the system. Finally, it could also be of interest for college teaching or research. The

relation (R−1 A∗R+RA
2 )2 +(R−1 RA−A∗R

2i )2 = R−1A∗RA derived for diagonalizable matrices A in [ 2] turns out to be valid only on N′
σ(A). One

feature of the present paper is also that, in the special case of diagonalizable matrices, we get back the results of [ 2]. On the whole, the

results should be of interest to mathematicians as well as engineers.
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Abstract

In this paper, the nonlinear differential equation of the elliptic sn function is solved analyti-

cally using the Lindstedt-Poincaré perturbation method. This differential equation has a

cubic nonlinearity and a constant known as the modulus of elliptic integral. This constant

takes any value from zero to one and the square of its value is used as a small parameter.

Fortunately, there is an exact solution to this differential equation known as the Jacobi sn

elliptic function. When the modulus approaches zero, the differential equation becomes

linear with the circular sine function as exact solution. The Lindstedt-Poincaré technique is

used to render the perturbation solution uniformly valid at larger values of the independent

variable and a three-term perturbation solution is obtained. This solution is compared

analytically with the approximate expansion of the elliptic function into circular functions

in case of a small modulus. Then, it is compared with the exact, numerically calculated, sn

elliptic function. The relative percentage error is calculated at certain values of the modulus

and for all values of the independent variable. The relative error is reasonably small but

increases at larger values of the modulus. In addition, the approximate expansion of the

exact solution gives smaller relative error than that of the perturbation solution including

the same order of the modulus.

1. Introduction

In some nonlinear problems a perturbation solution may be obtained when a small parameter exists [1]. The obtained perturbation solution

depends mainly on the existence of an unperturbed solution i.e. the solution of the same problem when the small parameter vanishes.

Through an iterative like procedures, the solution is getting closer to the exact one by adding terms of order of magnitudes less than the

base or unperturbed solution. Difficulties arise when a singularity exists in the solution. In this case, it will be non-uniformly valid and

some techniques such as those established by Lindstedt-Poincaré or Lighthill can be used to eliminate the non-uniformity in the solution

[1, 2, 3]. When applying these techniques the analytical iterations become more difficult as more terms are included in each iteration step.

The differential equation of the Jacobi elliptic sn function is an example of a nonlinear ordinary differential equation which includes a cubic

nonlinearity and a small parameter. This small parameter has the property of deforming the solution from an initial function to a final one as

it goes from zero to unity. The nonlinear differential equation has an exact solution known as Jacobi elliptic sine function or sn function. The

value of this function can be obtained from tables or using scientific software such as Matlab or Maple. But when the value of the modulus is

close to zero the sn function can be approximated as series expansion of circular functions with different harmonics. This approximation can

be calculated without special software [4, 5] and its explicit analytical nature makes it useful in analytical comparison with the perturbation

solution.

In this paper the Lindstedt-Poincaré technique will be used to obtain a uniformly valid three-term perturbation solution to the differential

equation of the Jacobi elliptic function. In the second section, the perturbation solution is derived and the effect of the modulus on its

Email addresses and ORCID numbers: mohammed.ghazy@kfupm.edu.sa, https://orcid.org/0000-0002-1106-112X (M.Ghazy)
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behavior is analytically indicated. In the third section, an approximate series expansion to the exact solution is reviewed. The approximation

is derived so that it includes the same order of the small parameter as the perturbation solution. In the fourth section, the perturbation solution

is compared with the exact solution and its series expansion in case of small modulus. Solutions in addition to relative errors are tabulated

and represented graphically at different values of the modulus. Detailed analysis of behavior of solutions and errors are introduced. Finally,

conclusions are drawn in the fifth section.

2. Perturbation solution

Consider the nonlinear differential equation [6]

d2y/dx2 +(1+ k2)y−2k2y3 = 0,0 ≤ k ≤ 1 (1)

where k is constant known as the modulus of elliptic integral and k ∈ [0,1]. When the modulus k → 0, (1) reduces to a simple harmonic

oscillator whose solution is a circular function. But when k takes any small positive value less than one i.e. k ∈ (0,1), a cubic nonlinearity

exists. Let define another small parameter ε = k2, where ε < k for k ∈ (0,1). Existence of the small parameter allows using the perturbation

technique to solve the above problem. Furthermore, to apply Lindstedt-Poincaré technique, let transform the independent variable from x to

u through the following transformation

u = ωx,ω =
∞

∑
i=0

ε iωi = 1+ εω1 + ε2ω2 +O(ε3) (2)

substituting (2) into (1) gives

ω2y′′+(1+ ε)y−2εy3 = 0, (3)

where (.)′ denotes differentiation with respect to u. The next step is expand the dependent variable as series in the small parameter ε

y(u;ε) =
∞

∑
i=0

ε iyi = y0 + εy1 + ε2y2 +O(ε3). (4)

When substituting (4) into (3) then collecting and equating coefficients of equal powers of ε one obtains the following set of linear differential

equations

y′′0 + y0 = 0 (5)

y′′1 + y1 = (2ω1 −1)y0 +2y0
3 (6)

y′′2 + y2 = (2ω2 +2ω1 −3ω1
2)y0 +(2ω1 −1)y1 −4ω1y0

3 +6y1y0
2. (7)

The solution to (5) is the unperturbed solution y0(u) = A0 sinu. Knowing from the initial conditions of the sn function and its derivative,

i.e. y(x = 0) = sn(0;k) = 0, dy
dx (x = 0) = cn(0;k)dn(0;k) = 1, and using the relation in (2), the initial conditions for (5) are y0(u = 0) =

0,y′0(u = 0) = 1. After applying these initial conditions, the unperturbed solution takes the form

y0(u) = sin(u). (8)

When substituting (8) into (6) one can solve for y1(u). But, to make sure that the solution of y1(u) converges at larger values of u, it is

necessary to set ω1 =−1/4. In this case, the solution to (6) reads

y1(u) =− 3

16
sin(u)+

1

16
sin(3u). (9)

Similarly by substituting y0(u),y1(u) from (8), (9) respectively into (7) one can solve for y2(u). To enforce convergence of y2(u), it is

necessary to set ω2 = 19/64. Then, by integrating (7) one obtains

y2(u) =
7

256
sin(u)− 1

64
sin(3u)+

1

256
sin(5u). (10)

Substituting (8),(9), and (10) into (4), a three term perturbation solution reads

yp(u) = sin(u)+ ε

(

− 3

16
sin(u)+

1

16
sin(3u)

)

+ ε2

(

7

256
sin(u)− 1

64
sin(3u)+

1

256
sin(5u)

)

+O(ε3) (11)

or

yp(u) =

(

1− 3

16
ε +

7

256
ε2

)

sin(u)+

(

1

16
ε − 1

64
ε2

)

sin(3u)+
1

256
ε2 sin(5u)+O(ε3)

Rewriting (11) after substituting ε = k2 gives

yp(u) = sin(u)+ k2

(

− 3

16
sin(u)+

1

16
sin(3u)

)

+ k4

(

7

256
sin(u)− 1

64
sin(3u)+

1

256
sin(5u)

)

+O(k6)

or

yp(u) =

(

1− 3

16
k2 +

7

256
k4

)

sin(u)+

(

1

16
k2 − 1

64
k4

)

sin(3u)+
1

256
k4 sin(5u)+O(k6) (12)

where

u =

(

1− 1

4
k2 +

19

64
k4 +O(k6)

)

x.
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2.1. Behavior of the perturbation solution

Equation (12) shows that any term in the obtained solution takes the form of a circular function multiplied by a finite quantity. In addition for

the solution to converge the following condition should be satisfied

lim
n→∞

| ε
n+1yn+1

εnyn
|= ε|

(

yn+1

yn

)

|= o(1).

knowing that |
(

yn+1

yn

)

| = O(1), the condition of convergence, then, reduces to the condition ε = o(1), which is known by the definition

ε = k2, where k ∈ (0,1) as indicated in the second section.

3. Approximate series solution

The Jacobi elliptic function sn(x;k) is the solution to the differential equation in (1) [6]. For small values of the modulus k this function can

be expressed in terms of the circular sine and cosine functions. The derivation of this approximation can be started from knowing that the

independent variable in (1), which is the argument of the sn function, is the incomplete elliptic integral of the first kind F(φ ;k);

x = F(φ ;k) =
∫ φ

0

dθ√
1− k2sin2θ

or

x = F(χ;k) =
∫ χ=sinφ

0

dt√
1− t2

√
1− k2t2

where φ is known as the amplitude and θ , t are dummy variables. For small values of the modulus k, the sn function can be written as

follows [4, 5]

sn(x;k) = sinx− k2

4
cosx(x− sinxcosx).

As we derived our perturbation solution to include k4, it may be reasonable if we compare with approximation of the sn function including

k4 as well. Thus, with some efforts we could derive the following approximation

sn(x;k)approx = sinx− k2

4
cosxg(x;k)+

k4

32

(

2cosxg(x;k)− sinxg2(x;k)
)

, (13)

where

g(x;k) = (x− sinxcosx). (14)

4. Results and discussion

The perturbation solution is compared with the exact solution, i.e. the elliptic sn function, and its approximate series expansion in (13).

Equations (12), (13) show that when k → 0 the two solutions there reduce to the same base solution sin(x). Also, the exact sn function

reduces to the same solution when k → 0. In this specific case there is no need to compare these solutions numerically. For other values of

the modulus, the perturbation solution is expected to be different than the other ones. The three solutions are listed in Table 1 to Table 4 for

values of the modulus k = 0.2,0.4,0.6,0.8, respectively. In addition, the following relative percentage error form is used to show how close

are the explicit perturbation solution and snapprox to the exact, numerically calculated, sn solution.

Epert =
snexact−yp

snexact
×100 (15)

Eapprox =
snexact−snapp

snexact
×100. (16)

The perturbation solution, the approximate expansion, and the exact solution at values of the modulus k = 0.2,0.4,0.6,0.8 are graphically

represented in Figure 1 to Figure 4 respectively, for x ∈ [0,K(k)], where K(k) is the complete elliptic integral of the first kind. Figure 1 shows

that the solutions are very close when k = 0.2. In Figure 2 to Figure 4, with increasing k, the Difference between the perturbation solution

and the exact solution increases. However, one can notice the small rate of increase of the difference between the approximate expansion and

the exact solution.

The relative percentage errors indicated in (15), (16) are graphically represented at the values of the modulus k = 0.2,0.4,0.6,0.8 in Figure 5

to Figure 8. It is obvious from Figure 5 to Figure 8, that the relative percentage errors are undefined at x = 0 as all solutions are equal to zero

at this point. More importantly, the maximum difference between the errors Epert and Eapprox increases with k. Moreover,one can note that

in Figure 5 to Figure 8, this maximum difference occurs at the largest value x = K(k). Actually, such a behavior of the perturbation solution

is expected as this solution was not enforced to satisfy the end condition.

The behavior of the error in Figure 5 to Figure 8 can be attributed to the different terms of small and large magnitudes in both solutions

yp and snapprox. The reason can also go back to the different way each solution is mathematically derived, even though, the perturbation
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x ypert snapprox snexact Epert Eapprox

0 0 0 0 NaN NaN

0.083519 0.082624 0.083418 0.083418 0.95251 -4.6268e-05

0.16704 0.16465 0.16623 0.16623 0.95253 -0.00018229

0.25056 0.24548 0.24785 0.24784 0.95258 -0.00039997

0.33408 0.32455 0.32767 0.32767 0.95268 -0.00068665

0.4176 0.40128 0.40514 0.40514 0.95286 -0.0010262

0.50112 0.47513 0.47971 0.47971 0.95316 -0.0014004

0.58464 0.54561 0.55087 0.55086 0.95361 -0.00179

0.66815 0.61221 0.61812 0.61811 0.95426 -0.0021762

0.75167 0.67451 0.68103 0.68101 0.95517 -0.0025407

0.83519 0.73209 0.73918 0.73916 0.9564 -0.0028665

0.91871 0.78458 0.79219 0.79217 0.95799 -0.0031363

1.0022 0.83165 0.83974 0.83971 0.96003 -0.003332

1.0858 0.87301 0.88153 0.8815 0.96257 -0.0034321

1.1693 0.90841 0.9173 0.91727 0.96568 -0.0034096

1.2528 0.93765 0.94686 0.94683 0.96945 -0.0032287

1.3363 0.96055 0.97002 0.96999 0.97393 -0.0028421

1.4198 0.97697 0.98665 0.98663 0.97922 -0.002188

1.5033 0.98683 0.99667 0.99665 0.98539 -0.0011877

1.5869 0.99007 1 1 0.99254 0.00025687

Table 1: ypert , snapprox, sn, Epert , and Eapprox at k = 0.2

x ypert snapprox snexact Epert Eapprox

0 0 0 0 NaN NaN

0.086316 0.083399 0.086192 0.086192 3.2404 -0.00079054

0.17263 0.16608 0.17165 0.17164 3.2416 -0.0031128

0.25895 0.24733 0.25564 0.25562 3.2438 -0.0068231

0.34526 0.32648 0.33748 0.33744 3.2474 -0.011697

0.43158 0.40289 0.4165 0.41643 3.2525 -0.017449

0.51789 0.47597 0.49212 0.492 3.2598 -0.023755

0.60421 0.54518 0.56378 0.56361 3.2698 -0.030275

0.69053 0.61008 0.63102 0.63079 3.2831 -0.036669

0.77684 0.67023 0.6934 0.69311 3.3003 -0.042609

0.86316 0.72532 0.7506 0.75024 3.3222 -0.047775

0.94947 0.77504 0.80232 0.8019 3.3496 -0.051849

1.0358 0.81918 0.84833 0.84787 3.3834 -0.054485

1.1221 0.85755 0.88845 0.88796 3.4246 -0.055282

1.2084 0.89002 0.92254 0.92205 3.4742 -0.053743

1.2947 0.91647 0.95051 0.95004 3.5333 -0.049231

1.3811 0.93685 0.97227 0.97187 3.6031 -0.040921

1.4674 0.9511 0.98776 0.98749 3.6851 -0.027764

1.5537 0.95918 0.99696 0.99687 3.7807 -0.0084412

1.64 0.96109 0.99981 1 3.8914 0.018666

Table 2: ypert , snapprox, sn, Epert , and Eapprox at k = 0.4
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x ypert snapprox snexact Epert Eapprox

0 0 0 0 NaN NaN

0.092145 0.087225 0.091972 0.091968 5.1574 -0.0045588

0.18429 0.17342 0.18291 0.18288 5.1722 -0.017926

0.27643 0.2576 0.27183 0.27173 5.1976 -0.039204

0.36858 0.33885 0.35781 0.35757 5.2343 -0.066992

0.46072 0.41634 0.44001 0.43957 5.2834 -0.099508

0.55287 0.48938 0.51772 0.51702 5.3462 -0.13473

0.64501 0.5574 0.59037 0.58937 5.4243 -0.17051

0.73716 0.61995 0.65751 0.65617 5.5193 -0.20469

0.8293 0.67673 0.71881 0.71713 5.6334 -0.23514

0.92145 0.72753 0.77407 0.77207 5.7689 -0.25971

1.0136 0.77224 0.82318 0.82091 5.9288 -0.27624

1.1057 0.81084 0.86611 0.86367 6.1169 -0.28239

1.1979 0.84333 0.90287 0.90039 6.3375 -0.27554

1.29 0.86976 0.93353 0.93118 6.5958 -0.25258

1.3822 0.89019 0.95816 0.95615 6.8981 -0.20977

1.4743 0.90469 0.97682 0.97543 7.2513 -0.1425

1.5665 0.91331 0.98955 0.98911 7.6633 -0.045073

1.6586 0.91607 0.99639 0.99728 8.143 0.08948

1.7508 0.913 0.9973 1 8.7005 0.26966

Table 3: ypert , snapprox, sn, Epert , and Eapprox at k = 0.6

x ypert snapprox snexact Epert Eapprox

0 0 0 0 NaN NaN

0.10502 0.10064 0.10472 0.1047 3.8767 -0.018692

0.21003 0.19926 0.20769 0.20753 3.9862 -0.073237

0.31505 0.29398 0.30725 0.30676 4.1665 -0.1592

0.42006 0.38318 0.40195 0.40087 4.4146 -0.26971

0.52508 0.46558 0.49061 0.48867 4.7261 -0.39603

0.6301 0.5403 0.57232 0.56931 5.0957 -0.52824

0.73511 0.60684 0.64649 0.64228 5.5183 -0.6557

0.84013 0.66503 0.71283 0.7074 5.9903 -0.76743

0.94514 0.71495 0.77126 0.76474 6.5109 -0.8523

1.0502 0.75687 0.82189 0.81457 7.084 -0.89918

1.1552 0.79113 0.86499 0.8573 7.7188 -0.89703

1.2602 0.8181 0.90089 0.89343 8.431 -0.83504

1.3652 0.83812 0.92995 0.92346 9.2418 -0.70262

1.4702 0.85143 0.95254 0.9479 10.178 -0.48913

1.5752 0.85821 0.96899 0.96722 11.27 -0.18316

1.6803 0.85856 0.97956 0.98181 12.553 0.22877

1.7853 0.85249 0.98442 0.992 14.063 0.7641

1.8903 0.8399 0.98357 0.99801 15.842 1.4465

1.9953 0.82064 0.97692 1 17.936 2.308

Table 4: ypert , snapprox, sn, Epert , and Eapprox at k = 0.8
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Figure 1: yp, snapprox, and exact sn at k = 0.2.

Figure 2: yp, snapprox, and exact sn at k = 0.4.
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Figure 3: yp, snapprox, and exact sn at k = 0.6.

Figure 4: yp, snapprox, and exact sn at k = 0.8.
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Figure 5: Relative percentage error at k = 0.2.

Figure 6: Relative percentage error at k = 0.4.
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Figure 7: Relative percentage error at k = 0.6.

Figure 8: Relative percentage error at k = 0.8.
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solution and the approximate expansion are built on the assumption of a small value of the modulus. The approximate series expansion in

(13) includes the function g(x;k) = (x− sinxcosx) that does not exist in the perturbation solution in (12). At k = 0.2,0.4,0.6 the maximum

absolute value of Epert is 0.99254%,3.8914%,8.7005% respectively, while at k = 0.8 this value jumps to 17.936%. Thus, for small values

of k the relative percentage error is reasonably small and the perturbation solution based on this assumption can be used. Fortunately, in this

specific problem we have an exact solution and an approximation of this solution, to compare with the perturbation solution. However, the

shown results are indicative of how perturbation solution performs in cases when exact solution doesn’t exist.

5. Conclusion

An analytical approximate perturbation solution to the nonlinear ordinary differential equation of the Jacobi elliptic sn function is obtained

assuming a small value of the modulus. The relative percentage error between the perturbation solution and the numerical exact one is

reasonably small. But, at larger values of the modulus, this error becomes very big. An approximate series expansion of the sn function

gives smaller maximum errors than the perturbation solution. However, the magnitude and sign of the error of the series expansion change

at different values of the independent variable. Results also give insights into the effect of the mathematical basis of perturbation and

approximate series solutions on their accuracy even though they both depend on the small parameter assumption. In future, such results can

be considered when applying a Lindstedt-Poincaré perturbation solution to nonlinear problems.
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Abstract

The main purpose of this paper is to compute a highly accurate numerical solution of two

dimensional convection–diffusion equations with variable coefficients by using Legendre

pseudo-spectral method based on Legendre-Gauss-Lobatto nodes. The Kronecker product is

used here to formulate a linear system of differentiation matrices; this system was reduced to

be more accurate with less memory usage. Error analysis with test problems are introduced

to show that the suggested scheme of the spectral method has high accuracy.

1. Introduction

Given a simply connected, domain Ω ≡ [a, b] × [c, d] in R2 , with Lipschitz boundary ∂Ω, a time interval I ≡ [0,T ] and the differential

operator

K u =−∇ · (A(x, t)∇u)+ p(x)u+q ·∇u, (1.1)

where x = (x,y) ,∇ and ∇· denote the gradient and divergence operators, respectively and A(x) represents a matrix-value function. In this

paper we are concerned with the numerical approximation of the linear convection- or advection-diffusion problem: Find u : Q ≡ Ω× I → R

such that:

∂tu+K u = f (x, t) in Q, (1.2)

u = uB (x) On ∂Ω× I, (1.3)

u(x,0) = u0 (x) in Ω, (1.4)

where q ≡ (α,β ) is the convection vector, uB is the boundary function and f represents the source or reaction term. Here and elsewhere we

shall assume that all coefficients occurring in these equations are uniformly bounded.

For solving this problem, we construct a solution using pseudo-spectral method which may be considered as an extension to the work in

[1, 2] There are two steps to form this solution [3, 4, 5]. First, we use polynomial interpolation of the solution based on some suitable nodes

as discrete representation of the solution; here we chose Legendre nodes. Secondly, we form a system of algebraic equations from the

previous discretization after collocating it; this step replaces differential operators by matrix approximations (see[3, 4, 5, 6]).

A brief outline of the paper is as follows: Section 2 describes some necessary notations about the continuous problem. Section 3 summarizes

the steps of solving the problem (1.1)-(1.4) by using Legendre pseudo–spectral method and modifying the resulted system using matrices

properties. As a result a system of algebraic linear equations is formed and a solution of the considered problem is discussed. In Section 4 we

shall prove error estimates of the scheme given in Section 3. In Section 5, some numerical examples are presented to show the effectiveness

of the proposed scheme.
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2. The continuous problem

Throughout this paper we use standard notations that will be used in the sequel [7]. We use the functional spaces L∞ (Ω) ,L2 (Ω) ,V =
H1

0 (Ω) ,C (I;L2 (Ω)) ,L2 (I;L2 (Ω)) (see e.g. [6, 8]). By (., .) we shall denote either the inner product in L2 (Ω). We denote by | . | , ‖.‖∞ , ‖.‖ ,
the norms in L2 (Ω) ,L∞ (Ω) and V , respectively. All the constants which occur in the course of this paper will be denoted by C.(ε is small

and Cε =C(ε−1))
We shall consider the collocation points {xi}

N
i=0 which is the set of (N +1) Legendre-Gauss-Lobatto nodes [4]. Also we define the family

VN = span
{
ℓp (s) : 1 ≤ p ≤ N −1

}
of finite dimensional subspace of V where {ℓp} are the Lagrange basis polynomials associated with

{xi}
N
i=0.

Now we list the following assumptions on the coefficients and data in (1.1)-(1.4):

(A1) A(x, t) is symmetric, Lipschitz continuous in t and uniformly positive definite matrix in Q, i.e.,

(Aξ ,ξ )≥ c |ξ |2 ,

∣∣∣∣A(x, t)−A
(
x, t ′
)∣∣∣∣

M
≤ c
∣∣t − t ′

∣∣ ∀t, t ′ ∈ I,

where ||·||M is a matrix norm.

(A2) p, ∇ ·q ∈ L∞ (Ω) , with p > 0, p ·n ≥ 0 on ∂Ω and

(pξ ,ξ )≥ c |ξ |2 . (2.1)

(A3) p− 1
2 ∇ ·q ≥ 0 in Ω.

(A4) f : Q → R and uB (x) : ∂Ω× I → R are Lipschitz continuous in the sense of

∣∣ f (x, t)− f
(
x, t ′
)∣∣≤ c

∣∣t − t ′
∣∣ ∀t, t ′ ∈ I,

and analogously for uB (x).
(A5) u0 (x) ∈V.

Under these assumptions, the weak solution of (1.1)-(1.4) is defined as:

Find u : Q → R such that

(∂tu,χ)+((u,χ)) = ( f ,χ) , ∀χ ∈V, a.e.t ∈ I, (2.2)

u(x,0) = u0(x) in Ω.

Here we use the notation((u,χ)) to represent the bilinear form corresponding to the differential operator K ; i.e.

((u,χ)) = (A(x)∇u,∇χ)+(q ·∇u+ p(x)u,χ) . (2.3)

Without loss of generality, we may assume a homogeneous Dirichlet boundary condition on ∂Ω, i.e., uB (x) = 0. Otherwise, we write the

bilinear form (2.1) in terms of u and uB (x) in place of u.

The existence of a weak solution u ∈ L2 (I;L2 (Ω))∩C (I;L2 (Ω)) is guaranteed by Lax-Milgram theorem. In fact the use of (A2) and (A3)

imply that the bilinear form ((., .)) is bounded and V-elliptic, i.e.,

|((u,χ))| ≤C‖u‖ ‖χ‖ ∀u,χ ∈ L2 (I;L2 (Ω))∩C (I;L2 (Ω)) ,

((u,u))≥C‖u‖2 ∀u ∈ L2 (I;L2 (Ω))∩C (I;L2 (Ω)) . (2.4)

However, to prove the coercivity condition (2.4), it requires to use (A3) with the application of Gauss’s theorem:

2(q ·∇ω,ω) = (ω (q ·n) ,ω)− (ω (∇ ·q) ,ω) .

3. The suggested approximation scheme

For a given integer number Nz ≥ 0, we denote by z0, z1, · · · ,zN , the nodes of the shifted Nz + 1-point integration formula of Gauss,

Gauss-Radau or Gauss-Lobatto type, and by w0, w1, · · · ,wN the corresponding weights [4]. In order to solve problem (1.1)-(1.4) by

pseudo-spectral method we use the notation

ϕ̂ (z) = ϕ

(
2(z−α)

β −α
−1

)
∀z ∈ [α, β ] ,

to approximate the function u(x, t) in Q by using cubic grid consisting of (Nx +1)×
(
Ny +1

)
× (Nt +1) nodes as

u(x, t)≈
Nx

∑
i

Ny

∑
j

Nt

∑
k

Ui, j,kϕ̂i (x) ϕ̂ j (y) ϕ̂k (t) , (3.1)

where

Ui, j,k = u
(

x
(Nx)
i ,y

(Ny)
j , t

(Nt )
k

)
.
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Here we have used Lagrange’s interpolant functions which are defined by

ϕi (z) =
Nz

∏
j=0, j 6=i

z− z j

zi − z j
, ∀0 ≤ i ≤ Nz.

By using the Kronecker product [9], equation (3.1) can be expressed in the following matrix form:

u(x,y, t)≈
(

Φ̂
(Nx)
[a,b]

(x)⊗ Φ̂
(Ny)

[c,d]
(y)⊗ Φ̂

(Nt )
[0,T ]

(t)
)

Ū ,

or simply

u(x,y, t)≈
(
Φ̂(x)⊗ Φ̂(y)⊗ Φ̂(t)

)
Ū ,

where Ū is a column vector given by:

Ū =
[
u0,0,0,u0,0,1,u0,0,2, . . . ,u0,0,Nt+1,u0,1,0, . . . ,u0,1,Nt+1, . . . . . . ,uNx+1,Ny+1,Nt+1

]T
.

By using a general form of the first differentiation matrix

DNz+1 =

(
Di j =

d

dz
φ j (z)

∣∣∣∣
z=zi

)

0≤i, j≤Nz

from Lagrange interpolation with a modification [6] to improve accuracy

Dim =





∏
Nz
k 6=i,m(zi−zk)

∏
Nz
k 6=m(zm−zk)

i < m, i 6= 0,Nz,

−DNz−i,Nz−m i > m, i 6= 0,Nz,

−∑
Nz

k 6=i
Dik i = m 6= 0,Nz,

−
Nz(Nz+1)

4 i = m = 0,
Nz(Nz+1)

4 i = m = Nz,

with the classical form of the second order differentiation matrix D2
Nz+1 [1]:

D2
im =

{
2Dim

(
Dii −

1
zi−zm

)
i 6= m,

−∑
Nz

k=0,k 6=i
D2

ik i = m,

we can rewrite equation (1.2) in discrete form
[

2
T

(
Φ̂(x)⊗ Φ̂(y)⊗ Φ̂(t)DNt+1

)
+

2λ1(x,y,t)
b−a

(
Φ̂(x)DNx+1 ⊗ Φ̂(y)⊗ Φ̂(t)

)

+
2λ2(x,y,t)

d−c

(
Φ̂(x)⊗ Φ̂(y)DNy+1 ⊗ Φ̂(t)

)
−

4λ3(x,y,t)

(b−a)2

(
Φ̂(x)D2

Nx+1 ⊗ Φ̂(y)⊗ Φ̂(t)
)

−
4λ4(x,y,t)

(d−c)2

(
Φ̂(x)⊗ Φ̂(y) D2

Ny+1 ⊗ Φ̂(t)
)

−
4λ5(x,y,t)

(b−a)(d−c)

(
Φ̂(x)DNx+1 ⊗ Φ̂(y) DNy+1 ⊗ Φ̂(t)

)

+p(x,y)
(
Φ̂(x)⊗ Φ̂(y)⊗ Φ̂(t)

)]
Ū = F (x,y, t) ,

(3.2)

where λi, i = 1,2, . . . ,5 are the coefficients of ∂xu, ∂yu,∂ 2
x u,∂ 2

y u and ∂xyu respectively.

Then, by collocating equation (3.2) at any interior collocation point
{(

xi,y j, tk
)}

i, j,k
, 1 ≤ i ≤ Nx − 1,1 ≤ j ≤ Ny − 1, and 1 ≤ k ≤ Nt ,

equation (3.2) becomes:
[

2
T

(
e

Nx+1
i ⊗ e

Ny+1

j ⊗DNt+1e
Nt+1
k

)
+

2λ 1
i jk

b−a

(
DNx+1e

Nx+1
i ⊗ e

Ny+1

j ⊗ e
Nt+1
k

)

+
2λ 2

i jk

d−c

(
e

Nx+1
i ⊗DNy+1e

Ny+1

j ⊗ e
Nt+1
k

)
−

4λ 3
i jk

(b−a)2

(
D2

Nx+1e
Nx+1
i ⊗ e

Ny+1

j ⊗ e
Nt+1
k

)

−
4λ 4

i jk

(d−c)2

(
e

Nx+1
i ⊗D2

Ny+1e
Ny+1

j ⊗ e
Nt+1
k

)
−

4λ 5
i jk

(b−a)(d−c)

(
DNx+1e

Nx+1
i ⊗DNy+1e

Ny+1

j ⊗ e
Nt+1
k

)

+ pi j

(
e

Nx+1
i ⊗ e

Ny+1

j ⊗ e
Nt+1
k

)]
Ū = Fi jk,

(3.3)

where eM
r is the r-th row of the identity matrix IM . Rewriting equation (3.3) in matrix form yields

[
2
T

(
[INx+1]1:Nx−1.: ⊗

[
INy+1

]
1:Ny−1.:

⊗ [DNt+1]1:Nt .:

)

+ 2
b−a λ̃1

(
[DNx+1]1:Nx−1.: ⊗

[
INy+1

]
1:Ny−1.:

⊗ [INt+1]2:Nt .:

)

+ 2
d−c λ̃2

(
[INx+1]1:Nx−1.: ⊗

[
DNy+1

]
1:Ny−1.:

⊗ [INt+1]2:Nt .:

)

− 4

(b−a)2 λ̃3

([
D2

Nx+1

]
1:Nx−1.:

⊗
[
INy+1

]
1:Ny−1.:

⊗ [INt+1]2:Nt .:

)

− 4

(d−c)2 λ̃4

(
[INx+1]1:Nx−1.: ⊗

[
D2

Ny+1

]
1:Ny−1.:

⊗ [INt+1]2:Nt .:

)

− 4
(b−a)(d−c)

λ̃5

(
[DNx+1]1:Nx−1.: ⊗

[
DNy+1

]
1:Ny−1.:

⊗ [INt+1]2:Nt .:

)

p̃
(
[INx+1]1:Nx−1.: ⊗

[
INy+1

]
1:Ny−1.:

⊗ [INt+1]2:Nt .:

)]
Ū =

∨
F ,
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or

AŪ = F̆ , (3.4)

where F̆ =
[

f1,1,1, f1,1,2, . . . , f1,1,Nt 1, f1,2,1, . . . , f1,2,Nt
, . . . . . . , fNx−1,Ny−1,Nt

]T
, the notation [AM ]i: j.: represents the intersection of rows from

i to j and all columns from any matrix AM×M ,and the notation ν̃ is a diagonal matrix with {ν}i, j,k as diagonal elements for interior points

1 ≤ i ≤ Nx −1,1 ≤ j ≤ Ny −1, and 1 ≤ k ≤ Nt .

The system (3.4) represents (Nx −1)×
(
Ny −1

)
×Nt equations in (Nx +1)×

(
Ny +1

)
× (Nt +1) variables, which contain variables at both

interior and initial-boundary nodes. As we only interested in the unknown interior points
{(

xi,y j, tk
)}

i, j,k
, 1 ≤ i ≤ Nx −1,1 ≤ j ≤ Ny −1,

and 1 ≤ k ≤ Nt , the incomplete system (3.4) can be rewritten as

A(V̄ +W̄ ) = F̆ , (3.5)

with

vi, j,k =

{
ui, j,k ∀ 1 ≤ i ≤ Nx −1, 1 ≤ j ≤ Ny −1, 1 ≤ k ≤ Nt ,

0 otherwise,

and

W̄ = Ū −V̄ .

After separating the unknown variables from the known ones, the system (3.5) could be rewritten as

A1
¯̄V = K̆ −A2

¯̄W,

where ¯̄V, ¯̄W represent the columns of the nonzero elements of V̄ ,W̄ and the matrices A1,A2 represent the remaining matrices of A after

eliminating columns corresponding to zeros elements of V̄ and W̄ respectively.

4. Error estimates

This section is devoted to proving the convergence of the proposed scheme and estimating its accuracy. In order to that we will need the

following two lemmas:

Lemma 4.1. [10] Assume that (N +1 )− point Gauss, or Gauss-Radau, or Gauss-Lobatto quadrature formula relative to Legendre weight

is used to integrate the product uv where u ∈ Hm (Ω) and v ∈ PN . Then there exists a constant C independent of N such that

∣∣(u ,v)− (u ,v)N

∣∣ ≤CN−m ‖u‖Hm(Ω) |v|L2(Ω) ,

where

(u ,v)N =
N

∑
i=0

u(xi)v(xi)wi

Lemma 4.2. (Gronwall inequality) [10] If a non-negative integrable function u(t) satisfies

u(t)≤ α (t)+C ∫ t
−1 u(s)ds,−1 ≤ t ≤ 1,

where α (t) is an integrable function, then

‖u(t)‖Lp ≤C‖α (t)‖Lp , p ≥ 1 or p = ∞.

Now, we have the following main result.

Theorem 4.3. Under the assumptions (A1)-(A5), the solution of problem (1.1)-(1.4) is u ∈ L2(I,V )∩L∞(I,V ) with ∂tu ∈ L2(I,H
m(Ω)), and

there exists a positive constant C independent of u, f ,N,m and r such that the estimate

|eu|
2
L∞(I,L2(Ω))+‖eu‖

2
L2(I,V )+‖eu‖

2
L∞(I,V ) ≤CN−r ‖ f‖2

L2(I,Hr(Ω))

+CN−m
(
|∂tu|

2
L2(I,Hm(Ω))+‖u‖2

L2(I,Hm(Ω))

)

holds uniformly for any integer numbers r,m ≥ 1.

Proof. On applying (2.2) at xi, 0 ≤ i ≤ N, we get

(
∂tU

N ,χ
)

N
+
((

UN ,χ
))

N
= ( f ,χ)N , ∀χ ∈V, a.e. t ∈ I (4.1)

where UN ∈ L2 (I;V )∩C (I;L2 (Ω)) Subtracting equation(4.1) from (2.2) yields

(∂tu,χ)−
(

∂tU
N ,χ

)
N
+((u,χ))−

((
UN ,χ

))
N
= ( f ,χ)− ( f ,χ)N

Denoting eu = u−UN , we get

(∂teu,χ)+((eu,χ)) = ( f ,χ)− ( f ,χ)N −
((

∂tU
N ,χ

)
−
(

∂tU
N ,χ

)
N

)
−
(((

UN ,χ
))

−
((

UN ,χ
))

N

)
. (4.2)
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Putting χ = eu and then χ = ∂teu in equation (4.2) respectively and summing up we get

1
2 ∂t |eu|

2 +‖eu‖
2
V + |∂teu|

2 + 1
2 ∂t ‖eu‖

2
V

= ( f ,eu)− ( f ,eu)N −
((

∂tU
N ,eu

)
−
(
∂tU

N ,eu

)
N

)

−
(((

UN ,eu

))
−
((

UN ,eu

))
N

)
+( f ,∂teu)− ( f ,∂teu)N

−
((

∂tU
N ,∂teu

)
−
(
∂tU

N ,∂teu

)
N

)

−
(((

UN ,∂teu

))
−
((

UN ,∂teu

))
N

)
.

From equation (2.3) and Lemma 4.1

1
2 ∂t |eu|

2 +‖eu‖
2
V + |∂teu|

2 + 1
2 ∂t ‖eu‖

2
V ≤

CN−r ‖ f‖Hr(Ω) |eu|L2(Ω) +CN−r ‖ f‖Hr(Ω) |∂teu|L2(Ω)

+CN−m
∥∥∂tU

N
∥∥

Hm(Ω)
|eu|L2(Ω) +CN−m

∥∥∂tU
N
∥∥

Hm(Ω)
|∂teu|L2(Ω)

+N−m
∥∥UN

∥∥
Hm(Ω)

|eu|L2(Ω) +CN−m
∥∥UN

∥∥
Hm(Ω)

|∂teu|L2(Ω) .

(4.3)

The first two terms on are estimated by the use of Peter-Paul inequality [11] as

CN−r ‖ f‖Hr(Ω) |eu|L2(Ω) ≤CN−r
(

Cε ‖ f‖2
Hr(Ω)+ ε |eu|

2
L2(Ω)

)
,

CN−r ‖ f‖Hr(Ω) |∂teu|L2(Ω) ≤CN−r
(

Cε ‖ f‖2
Hr(Ω)+ ε |∂teu|

2
L2(Ω)

)
,

where ε a very small constant. The application of Young’s inequality estimates the third term of (4.3)

CN−m
∥∥∥∂tU

N
∥∥∥

Hm(Ω)
|eu|L2(Ω) ≤CN−m

(
Cε |∂tu|

2
Hm(Ω)+

1

2
|∂teu|

2
Hm(Ω)+

1

2
|eu|

2
L2(Ω)

)
.

Similarly, we estimate the last three terms of (4.3). Finally, choosing ε sufficiently small we get

1
2 ∂t |eu|

2 +‖eu‖
2
V + 1

2 ∂t ‖eu‖
2
V

≤CN−rCε ‖ f‖2
Hr(Ω)

+CN−m
(

Cε |∂tu|
2
Hm(Ω)+Cε ‖u‖2

Hm(Ω)+ |eu|
2
L2(Ω)

)
.

(4.4)

The integration of equation (4.4) over the interval I with the use of Grönwall’s inequality yields the asserted estimate.

5. Numerical examples

To test our proposed method, we apply the proposed scheme for various examples whose exact solutions are provided in each case. For all

examples, we take Nx = Ny = Nt = N, to study the convergence behavior of the presented method, we also calculated the following norms

[8] for errors with different values of N at t = T :

1. The L2-norm (Frobenius norm) defined for any matrix A by:

A2 =

(

∑
i, j

∣∣ai j

∣∣2
) 1

2

.

2. The L∞-norm defined for A by

A∞ = max
i, j

∣∣ai j

∣∣ .

All the computations are carried out in double precision arithmetic using Matlab7.12.0.635 (R2011a). The code was executed on an Intel

Core i7-3610QM, 2.3 GHz Laptop.

Example 5.1. Consider equation (1.2) with constant coefficients.

∂tu−∆u = et
(

x2 + y2 −4
)
, x,y, t ∈ [0,1] ,

with initial and boundary conditions as follows:

u(x,y,0) = x2 + y2,

u(x,0, t) = x2et , u(x,1, t) =
(

1+ x2
)

et ,

u(0,y, t) = y2et , u(1,y, t) =
(

1+ y2
)

et .

and the exact solution

uexact (x,y, t) = et
(

x2 + y2
)
.

Table 1 shows the Max error and Frobenius error at different values of N, Figure 5.1 shows the similarity in results of the present Method

with the exact solution and surface and contour plots for the error ui j −uex
i j at t = T respectively.
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Example 5.2. Consider another example for convection diffusion equation (1.2) with constant coefficients

∂tu+∇u−∆u = et (3cos(x+ y)−2sin(x+ y)) , x,y ∈ [0,π] , t ∈ [0,1] ,

with initial and boundary conditions as follows

u(x,y,0) = cos(x+ y) ,

u(x,0, t) = et cosx, u(x,π, t) =−et cosx,

u(0,y, t) = et cosy, u(π,y, t) =−et cosy.

and the exact solution

uexact (x,y, t) = et cos(x+ y)

Table 2 shows the Max error and Frobenius error at different values of N. Figure 5.2 shows the similarity in results of the present Method

with the exact solution and the surface and contour plots for the error ui j −uex
i j at t = T respectively.

Example 5.3. Now, consider the following differential equation:

∂tu+ x2∂xu+ y3∂yu− xye−(x+y)∂xxu− e−(x+y)∂yyu = f (x,y, t) , x,y ∈ [0,π] , t ∈ [0,1] ,

where

f (x,y, t) = et
((

1+(1+ xy)e−(x+y)
)

cos(x+ y)−
(

x2 + y3
)

sin(x+ y)
)

with initial and boundary conditions as follows:

u(x,y,0) = cos(x+ y)

u(x,0, t) = et cosx, u(x,π, t) =−et cosx,

u(0,y, t) = et cosy, u(π,y, t) =−et cosy.

and the exact solution

uexact (x,y, t) = et cos(x+ y) .

then the results are given in Table 3, again the similarity in results of the present Method with the exact solution, and the surface and contour

plots for the error ui j −uex
i j at t = T are given in Figure 5.3 respectively.

(a) Exact Solution. (b) Numerical Solution.

(c) Surface plot for error ui j−ui jex at t = T . (d) Contour plot for error ui j−ui jex at t = T .

Figure 5.1: Comparison between exact and numerical solutions of Example 5.1 with surface and counter plots of the error.
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(a) Exact Solution. (b) Numerical Solution.

(c) Surface plot for error ui j−ui jex at t = T . (d) Contour plot for error ui j−ui jex at t = T .

Figure 5.2: Comparison between exact and numerical solutions of Example 5.2 with surface and counter plots of the error.
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Table 1: Max error and Frobenius error at different valuse of N for Example 5.1.

N L∞ L2

6 5.1338e-007 1.5710e-006

8 5.7054e-010 2.0571e-009

10 4.2011e-013 1.6188e-012

12 8.8041e-014 3.7847e-013

14 2.1450e-013 7.0891e-013

16 2.5818e-013 1.0988e-012

18 4.8848e-013 1.8580e-012

20 3.7392e-013 2.0660e-012

Table 2: Max error and Frobenius error at different valuse of N for Example 5.2.

N L∞ L2

6 1.2460e-004 2.5773e-004

8 7.5038e-007 2.2982e-006

10 3.4863e-009 1.3228e-008

12 1.1002e-011 5.3229e-011

14 3.0198e-014 1.6745e-013

16 2.9754e-014 9.1839e-014

18 1.9096e-014 7.2120e-014

20 3.1974e-014 1.1562e-013

(a) Exact Solution. (b) Numerical Solution.

(c) Surface plot for error ui j−ui jex at t = T . (d) Contour plot for error ui j−ui jex at t = T .

Figure 5.3: Comparison between exact and numerical solutions of Example 5.3 with surface and counter plots of the error.

6. Conclusion

In this paper, Legendre collocation method was applied to calculate approximated solution of 2D Advection-Diffusion Equation with variable

Coefficients. By using Kronecker product and modified differentiation matrices with reducing the resulting system, Error analysis and

numerical results for this equation show that the suggested method is a high accuracy method.
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Table 3: Max error and Frobenius error at different values of N for Example 5.3.

N L∞ L2

6 0.0017 0.0033

8 1.2645e-005 2.9322e-005

10 9.7233e-008 2.9858e-007

12 2.6289e-010 9.5973e-010

14 9.8699e-013 3.5146e-012

16 1.9718e-013 5.7126e-013

18 1.4566e-013 6.6142e-013

20 2.2049e-013 8.2462e-013
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Abstract

A mathematical classification of two-dimensional ornaments into 17 plane symmetry

groups is presented, which were created by five medieval cultural groups of Middle East.

The data are considered representative for the cultural groups. By applying a correlation

algorithm on the individual use of symmetry classes by each cultural group, the strength of

the interaction between the pairs of groups are quantitatively determined. The analysis

shows that the strongest similarity in the creation of periodic ornaments is between Rum

Seljuks and Arab Muslims and between Armenians and Byzantium. It is also found that the

Rum Seljuks, followed by Armenians, are the most interactive cultures. This report is the

first attempt to quantify cultural communication by mathematical means.

1. Introduction

It seems justified to claim that the region of the Middle East, the so-called fertile crescent, is the cradle of our civilizations [1]. Evidence to

support this claim is constantly being discovered. I find that there is a region of cultural exchange somewhere north of the fertile crescent

where prominent cultures have interacted. Here I present arguments to substantiate this claim qualitatively and quantitatively.

The symmetry properties of planar ornaments are characteristic of an ethnic group that produced them [2]. We classify the ornaments

according to their symmetries using group theoretical methods of mathematics. In analogy to surface crystallography, this results in 17

symmetry groups [3]. To reach our goal, we consider artistic ornaments of five individual cultural groups that lived in and around the

geographical region of interest.

The comparison of the ornamental features of two groups shows the degree of their cultural similarity or even cultural interaction. To

qualitatively determine the interaction, I apply a correlation algorithm to each pair of symmetry distributions, and I obtain a similarity

function for the degree of interaction between two groups under consideration. I apply the procedure to all pairs of groups. This operation is

the new idea of the present work to rigorously evaluate cultural similarities.

The first cultural establishment one encounters in this region is Armenia, which extends from modern Armenia to the Van Lake plateau in the

south and further southwest to Cappadocia and Cilicia [4]. There are four other groups of people who come and go to the region of cultural

exchange after the year 700 AD.

I mention the Eastern Roman Empire [5], later called Byzantium [6]. Emperor Constantine declared Constantinople the capital of his empire

after his victory at Milan. The Eastern Roman Empire expanded to the East, conquered Anatolia, today’s Syria and its bordering territories.

The Byzantine capital is home to at least two masterpieces, the Hagia Sofia and the Chora Church. The Adriatic coast of Croatia and Italy

were already in the possession of the Empire. Inspired by Christianity, Byzantium created other breathtaking examples of its culture: the

Basilica of San Marco in Venice, the Church of San Vitale in Ravenna, the Cathedral and Monreale Monastery near Palermo, to name but a

few. The map in Figure 1 shows schematically the Byzantine territories with their capital (encircled) at the intersection of Europe and Asia.

After the emergence of Islam around 620, the peoples of the Arabian peninsula reached their military and cultural peak during the Umayyad

and Abbasid dynasties, followers of the Muslim prophet. They first moved north and northeast to spread their confession by asserting their

language and culture [7].

The Great Seljuks are Turkic tribes from the prairies of Central Asia who settled in Iran, especially in Khorasan and later in the southern

regions of the Caspian Sea [8, 9, 10]. On their way west they met Byzantine powers to defeat them once and for all. After their own

Email addresses and ORCID numbers: erbudak@phys.ethz.ch, https://orcid.org/0000-0002-6316-5115 (M. Erbudak)
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dissolution due to lack of leadership, their descendants founded a culturally high-ranking sultanate, the Seljuks of Anatolia or the Rum

Seljuks [11, 12]. In Turkish usage Rum stands for Romans or simply West. The Seljuks are responsible for the spread of the Turkish language

in Western Iran, the Caucasus, Iraq, Syria, Anatolia, etc.

Figure 1: The Middle East, the Balkans and Italy, including parts of Arabia, during the greatest expansion of the Byzantine Empire (light blue) in the 10th to
13the centuries. The circle marks their capital Constantinople. The only stationary civilization is that of the Armenians. Byzantium shrinks under the influence
of the Turkish-Persian Seljuk Empire, which moves west. Muslims from Arabia advance north and northeast in their missionary expansion.

It is like a historical play. We have the cast, the stage and the program from about the tenth to the end of the thirteenth century. Below

are some details about the cast and their artistic achievements, before I go into the cultural interactions. These cultural groups overlapped

geographically and in time, or at least were neighbors. Therefore they influenced each other in their artistic habits.

In analogy to surface crystallography, we classify the ornaments according to their symmetries using group-theoretical methods of

mathematics. We obtain 17 symmetry groups [3]. I apply this method to artistic ornaments of five individual cultural groups living in the

geographical region under investigation. I record the occurrence of each symmetry group for these five cultures and visually evaluate the

similarities and differences.

The comparison of the ornamental features of two groups shows the degree of cultural similarity and possibly their cultural interaction. To

determine the degree of interaction, I apply a correlation algorithm to each pair of symmetry distributions, which yields a similarity function.

I apply this procedure to all pairs of groups.

The classification of the ornament symmetries into 17 crystallographic groups is not a new achievement. Nevertheless, it is objective,

rigorous and easily repeatable, anywhere and at any time. The new achievement of this work consists of the idea and the method of how I

compare the results of the classification and obtain a similarity function for the correlation of each pair of cultural groups. Since I have five

different groups when I consider the interaction of each group with its four neighbors, I end up with ten correlation functions. This is a

mathematical procedure that is applied to the established classification scheme for the first time and allows a quantitative measurement of

mutual interactions. I find that cultural groups that interacted most with its neighbors were the Rum Seljuks and Armenians, while the Great

Seljuks developed their works of art quite independently.

2. Mathematical classification of ornaments

The creation of two-dimensional ornaments in art and architecture is an artistic achievement. The ornament is a two-dimensional surface

decoration that covers the surface completely and periodically. For a given ornament, I first determine the unit cell, the smallest surface

that is periodically repeated in two dimensions to form a lattice. The translation operation to cover the entire surface is consistent with the

symmetry properties of the unit cell. I then study the rotational symmetries. A given shape is either two-, three-, four- or sixfold symmetric

(n = 2,3,4,6) or has no such rotational property (n = 1). These numbers refer to the fraction of a complete circle around which an object

is rotated to be mapped onto itself. After determining the rotational symmetries, I look for reflection symmetries in two main directions.

Again, a mirror symmetrical object is imaged onto itself when it is reflected at a mirror symmetry line. A glide symmetry can practically

be compared to foot steps left on sand on both sides of the glide reflection line. This scheme is the basis of the plane symmetry group, a

formalism which is exactly the same as that we use to describe the atomic order on a crystal surface [13].

The formalism of crystal groups was proposed at the end of the 19th century, when mathematicians used crystallography to study the

symmetry problem and found that, according to group theory, there are 17 different types of periodic distribution of atoms on a surface.

These crystal groups are exactly the same as those I obtain for a culturally created artistic ornament. This assumption was made by George

Pólya in 1924 [14] and is proved by Edith Müller in her dissertation which examines the ornaments of the Alhambra Palace in Granada,

Spain [15]. Since then, there have been several fundamental papers on this subject [3], mainly based on the results of Müller.

The 17 distinct translational planar patterns can be characterized according to the convention of crystallographers and physicists [3]. The

ornamental patterns are also called the wallpaper group. The designation of each group follows a four-digit recipe: The first letter is a p or a

c, primitive or centered depending on the type of lattice. The letter c is used if there is an additional unit in the centre of the cell. The second

digit is the rotational order n. The third and fourth digits are a mirror reflection m or glide reflection g along the two major directions. If there

is no mirror or glide, we write 1.
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3. Results

I have classified two-dimensional periodic ornaments created by five medieval societies, the Byzantine Empire, the Armenians, the Muslims

of Arabia, the Great Seljuks and the Rum Seljuks. The results of this classification are presented below in graphic form.

3.1. Byzantium

Byzantium has created numerous architectural monuments with a generous collection of ornaments. They belonged to the Eastern Orthodox

Nomination and founded churches wherever the Empire ruled. Nevertheless, I could not find a statistical relevant number of ornaments in

their main church Hagia Sofia nor in Chora and San Vitale. Therefore, I concentrated on the floor ornaments of the Basilica San Marco

in Venice [16]. On the marble floor of the basilica there are at least 730 different individual areas, which are decorated with periodically

arranged marbles. The frequency of the plane groups is shown in Figure 2. In my analysis I found that almost 80 % of the ornaments have a

fourfold symmetry. Interestingly there are no ornaments with threefold symmetry.

Figure 2: The frequency of the symmetry group in the floor ornaments of the 10th century built St. Marc’s Cathedral in Venice. The results are based on 730
individual ornaments and come from Ref. [16].

Byzantium did not last long. In 1071 a battle against Alparslan of the Great Seljuks took place in Manzikert near Lake Van, which initiated

the collapse of the Eastern Roman Empire until they lost their capital to the Ottomans in 1453.

3.2. Armenia

In the Middle Ages Armenia was mainly ruled by nobles. Two important families were the Bagratuni in the north and the Artsrunik in the

south, from which Vaspurakan emerged as the most powerful kingdom in Armenia. It has suffered from Islamic and Byzantine aggressions

and constant civil wars. But the mighty Gagik I was recognized by the Arabs and Byzantium as the King of Armenia and proved that their

interactions were not always hostile. Armenians were even appointed Byzantine emperors and were occasionally married to Arabs. The

traditional Bagratuni capital Duin was destroyed by a devastating earthquake in 893. Trdat was the brilliant architect who built Ani, the next

capital. Trdat was even invited by the Byzantine Emperor Basil II to rebuild the dome of Hagia Sofia after it was also destroyed by another

devastating earthquake in 989 [4].

The Armenians confess to Oriental Orthodoxy. They have created numerous churches with stone carvings on the walls and khachkars,

gravestones. We have recently studied Armenian ornaments and classified them [17]. Apart from the fourfold symmetry found in the

majority, the Armenian ornaments have a balanced distribution. Figure 3 displays the results.

3.3. Muslims of Arabia

The next group of people I consider are the Muslims from the Arabian Peninsula, Egypt and Syria after they converted to Islam in 622.

Around 680, the Umayyad and Abbasid dynasties moved north to the Armenian countries and east to the Iranian territories. In Iran they

met the Persian, Turkish and Mongolian peoples and converted them to Islam. They also brought their cultures and together with the new

Muslims they created several buildings such as mosques, minarets and madrasas. I found examples of the cultural habits that originated from

Syria and Egypt and were brought by the Arab-Muslim occupation [19]. Arab warriors also moved west along the North African coast in the

early Umayyad period and established a great culture on the Iberian peninsula. The Umayyads of Andalusia lasted more than eight centuries

and shaped the European civilization.
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Figure 3: The plane groups of Armenian ornaments from the personal collection of Armen Kyurkchyan [18]. The results are based on 123 individual
ornaments.

Figure 4: Arab-Muslim ornaments from Syria and Egypt [19, 20]. For the classification 200 drawings are used.

Bourgoin published drawings of more than 200 Arab-Muslim ornaments without mathematical classification [19]. Later in the 1970s two

groups, Emil and Milota Makovicky and Syed Jan Abas and Amer Shaker Salman, studied these ornaments according to the group-theoretical

recipe [20]. Here I use the average of their results to compensate for smaller differences and show them in Figure 4.

3.4. The Great Seljuks

Another culture that has left its mark in this geography are the Great Seljuks. They are Turkish nomad shepherds from the prairies of Central

Asia, descendants of the Göktürk tribes. Since the 8th century they spread steadily westward to the Aral Sea and fought against the invading

Islamic Arabs until their tribal leader Seljuk Bey took over Islam about 960. His sons first moved from Khorasan to Afghanistan around

1030 and then further west. They conquered Shiraz in 1050 before occupying all of Iran and Baghdad, the seat of the Abbasid caliphs. As

Sunni muslims, they fought against the Shiite Fatimids of Cairo. Still as nomads, after 1060 they carried out campaigns with Christians on

the borders of the empire in Anatolia and the Caucasus to plunder the territories. Finally, in 1071, Alpaslan ravaged Byzantium in Manzikert

and captured Emperor Romanus Diogenes. One year later Alpaslan moved to the east to his residence in Isfahan.

After the assassination of Alpaslan in 1072, fratricidal wars between his descendants in 1150 broke the empire apart into a complete anarchy.

The Great Seljuk Empire was a composition of Turks, who were the best fighters, and the Persians, who were administratively the best

organizers. It is difficult to distinguish clearly between the Persians and Seljuks in their artistic achievements. They are certainly strongly

influenced by Islam, as they built mosques and huge minarets in addition to the madrasas. I have collected the ornamental material from

various sources [7, 9, 21, 22]. An earlier analysis was limited to about 30 ornaments from the photographic collection of Emil Makovicky

[21]. The results of plane groups shown in Figure 5 contain additional 55 ornaments. The high value of the c2mm group is a result of the

brick-laying technique used by Seljuks on minarets.
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Figure 5: The plane symmetry groups of the ornaments of the Great Seljuk Empire mainly found in Iran. The classification is based on 84 individual objects.

3.5. The Rum Seljuks

Figure 6: Classification of ornaments of the Sultanate of Rum Seljuks. The results are based on hand drawings by Gerd Schneider [12] and represent 1067
artifacts.

Seljuk warriors, mostly Turkmen tribes, infiltrated Anatolia after 1000. After the Battle at Manzikert in 1071 and the captivity of the

Byzantine emperor a civil war broke out on Byzantine territory. The Turkic tribes took advantage of the unrest and founded their own

sultanate, the Rum Seljuks. With the exception of the coastal regions in the west, they occupied most of Anatolia. Their first capital was

Nicaea in the northwest; which was later conquered by the First Crusades in 1097. Konya became the next capital.

The Rum Seljuks have built great mosques, palaces, caravanserais, mausoleums, madrasas and shipyards. They existed until the impact of

Mongol rule during the second half of the 13th century, when it was the Ilkhans, descendants of Genghis Khan, who took over their land.

The best documentation about the Sultanate’s work of art can be found in the monumental work of Gerd Schneider, which he created during

his several years’ stay in Istanbul [12]. Here I present in Figure 6 the results obtained from his meticulous hand drawings.

4. Discussion

4.1. Visual inspection

I first evaluate the results by visual inspection of the Figures 2-6. I find that almost all cultures prefer the fourfold symmetrical p4, p4mm or

p4gm. I can only speculate about the origin for this preference. In the case of ornaments carved on building materials, the reason could be

the simple manufacture of each masonry block [17]. The reason could also lie in a religious practice, if the ornaments are found in a church,

mosque, madrasa or monastery [16]. Threefold symmetry is quite rare in any repertoire. I note that both Arab Muslims and Rum Seljuks

have predominantly used ornaments with double mirror reflections on sixfold, fourfold and twofold symmetries. The distribution of the
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Groups Armenia Byzantium M. Arabs G. Seljuks R. Seljuks

p1 0.8 4.8 0.2 1.2 0.1

p1m1 4.9 2.6 0.6 0 0

p1g1 0 0.3 0.2 1.2 0

c1m1 2.4 1.1 0.2 0 0.3

p211 0 0.5 0.5 2.4 0.5

p2mm 5.7 3.7 6.6 6.0 6.7

p2mg 0.8 1.1 0.7 1.2 1.5

p2gg 0.8 0.1 0.2 4.8 0.4

c2mm 1.6 0.8 14.0 28.6 9.5

p3 0.8 0 0.4 0 0.7

p3m1 0 0 0.4 0 0

p31m 2.4 0 1.4 0 3.0

p4 12.2 0.3 1.0 7.1 2.94

p4mm 54.5 78.5 31.4 19.0 32.1

p4gm 4.9 4.9 1.9 11.9 3.5

p6 1.6 1.2 4.9 11.9 5.2

p6mm 6.6 0 35.5 4.8 30.1

Table 1: Occurrence of the individual symmetry groups (in percentage) in the artworks of Armenia, Byzantium, Muslim Arabs, Great Seljuks and Rum
Seljuks. The rotational symmetries are grouped together.

plane groups looks remarkably similar, indicating an intensive interaction of cultures between Arab Muslims and Rum Seljuks.

Table 1 summarizes the occurrence of each symmetry group in five different cultures. We observe that ornaments with a rotational symmetry

of 1 and 3 are rare overall. Threefold symmetrical ornaments are completely missing in Byzantium and the Great Seljuks. The fourfold

symmetry is by far the most favorable in all groups. It is obvious that the interlacing in planar ornaments reduces the symmetry. The

published results about the Arab-Muslim group neglect the interlacing [19]. To allow a comparison based on the same assumption, I have

used the Armenian and Seljuk results after I have similarly neglected interlacing.

4.2. Mathematical correlation

In order to rigorously determine the efficiency of the interaction and the resulting correlation of the artwork between the five cultural groups

considered here, I use a scientific approach. In the social sciences the Pearson correlation coefficient is used for metric variables [23]. To

investigate overlapping elements of variables in natural sciences cosine similarity is sometimes preferred [24]. In physics and chemistry,

overlap integrals are used [25].

I determine the correlation of the results considering the product of two vectors X and Y with 17 components xi and yi each represent the

elements of the plane groups. This correlation function is a robust measure of the strength of pairwise interaction between two groups and

quantifies the similarity between these cultural groups. I repeat the operation for all the members of the plane group:

C =

~X

|X |
∗
~Y

|Y |
=

∑i xiyi
√

∑i x2
i ∑i y2

i

,

while i runs between 1 and 17, the number of plane groups. The sums over xi and yi are normalized to one. This metric is often used to

assess the correlation of partially overlapping systems.

C A B AM GS RS

A 1 0.965 0.713 0.576 0.783

B 0.965 1 0.636 0.512 0.705

AM 0.713 0.636 1 0.646 0.988

GS 0.576 0.512 0.646 1 0.649

RS 0.783 0.705 0.988 0.649 1

Table 2: Interaction factor C between 1 and 0, based on the occurrence of plane-group symmetries in the artwork from 5 medieval groups. A stands for
Armenia, B for Byzantium, AM for Arab Muslims, GS for Great Seljuks and RS for Rum Seljuks.

To find the interaction C in pairs between the two cultures, I use the above formula and obtain ten values for the correlation of Armenia,

Byzantium, Arab Muslims, Great Seljuks and Rum Seljuks. The results are presented in Table 2. A high (low) value of C near 1 (near 0)

indicates a strong (weak) correlation, i.e., interaction, between the cultures X and Y . There are several ways to interpret the values of C. The

easiest way allows us to determine the strong interaction between certain two cultures. We see that the strongest interaction factor is between

0.96−0.99 and is found for Armenia and Byzantium as well as for Muslim Arabs and Rum Seljuks. Similarly, I also add the correlation

coefficients of each group with the other four groups and repeat this summation for all five groups. The sum obtained is a measure of the

ability of the group to interact culturally or architecturally. A high value stands for a strong creativity of the group, while a lower correlation

value C is rather modest. The Great Seljuks were warriors and nomads. In their sultanate, the Persian people were responsible for civil
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affairs and administration. According to this analysis, the Great Seljuks were the least interacting group. I find that the groups that interact

most with their neighbors are Rum Seljuks, Armenians and the Muslim Arabs.

5. Conclusions

The comparison of the frequent use of particular symmetries in ornaments of ethnic groups could be a useful indication of their interaction

and mutual artistic influence. The similarity between two groups of the same religious belief is likely to lead to similar habits. In the present

case, however, the Byzantine Empire and the Armenians are both Christians, but from different churches according to the Calcedonian

Schism 451. Seljuks and the Umayyads or Abbasids are all Muslims, but with fundamentally different beliefs about the succession of the

Prophet Mohammad. Therefore, religion gives us no indication of the artistic habits of the peoples concerned. Nor is the geography of

their homeland similar; it differs from the mountainous regions of the Caucasus, the Seljuk prairies, to vast Arab desserts, and the coastal

regions of the Byzantine Empire. What they have in common is their campaign through the region of cultural activity in the eastern part

of present-day Turkey. Yet the exact occurrence of these cultures is geographically and chronologically limited. However, the activity of

craftsmen was not limited by national borders. Even if there was a temporal shift in the occurrence of cultures, this fact only determines the

direction of the flow of information.

I made several assumptions. Firstly, I have taken the symmetry properties of ornaments as a cultural indication of an ethnic group and

neglected all other ornaments that have no symmetry. In order to quantify the symmetries unambiguously, I applied the crystallographic

plane-group classification. I express the results as percentage frequencies of 17 plane groups each, which is a scientific way to evaluate

the ornaments. I apply this method to five individual cultural groups that were neighbors at some time in the Middle Ages, namely the

Armenians, the Byzantine Empire, the Muslim Arabs, the Great Seljuks and the Rum Seljuks.

In order to estimate the mutual interaction of these five groups, I have worked out an interaction coefficient C for each ethnic group with

the other four groups. This factor quantitatively describes the artistic similarities by calculating the overlapping of the frequency of the

symmetries. The technique is common in many other areas of science; it is used in this context for the first time. Mathematically, a

cultural group is a vector and its symmetry groups are the 17 components of the vector. The correlation factor is then the overlapping of the

components for two cultural groups under consideration. I compare these values of each pair of groups to determine those two cultures that

have influenced each other the most. Here is the strongest interaction between Byzantium and Armenia and between Muslim Arabs and Rum

Seljuks. I also add up the C values of each cultural group and find that the Rum Seljuks and Armenians have influenced their neighbors the

most and vice versa.

The Byzantine Empire diffused into European territories after the siege of Constantinople by the Ottomans. It is conceivable that Byzantine

craftsmen made a positive contribution to the flourishing Renaissance. The Great Seljuks disintegrated into smaller emirates under the

influence of the Mongol invasion, while Rum Seljuks survived in Anatolia in the background for several centuries. The art of the Muslim

Arabs reached its peak in various places, in Damascus with the Umayyads, in Baghdad among the Abbasids, and on the Iberian peninsula

with the Umayyads of Andalusia. The Armenian civilization created artistic masterpieces in the Middle Ages and throughout history until

today. They are the only group that has remained on their original Caucasian planes.
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