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Exact Travelling Wave Solutions of the Nonlinear
Evolution Equations by Improved F-Expansion in
Mathematical Physics

Md. Habibul Basharl*, Md. Mamunur Roshid?

Abstract

With the assistance of representative calculation programming, the present paper examines the careful voyaging
wave arrangements from the general (2+1)-dimensional nonlinear development conditions by utilizing the
Improved F-expansion strategy. As a result, the used technique is effectively utilized and recently delivered
some de nite voyaging wave arrangements. The recently created arrangements have been communicated as far
as trigonometric and hyperbolic capacities. The created arrangements have been returned into their relating
condition with the guide of emblematic calculation programming Maple. Among the produced solutions, some
solutions have been visualized by 3D and 2D line graphs under the choice of suitable arbitrary parameters to
show their physical interpretation. The delivered arrangements show the intensity of the executed technique to
evaluate the accurate arrangements of the nonlinear (2+1)-dimensional nonlinear advancement conditions, which
are reasonably pertinent for using nonlinear science, scienti c material science and designing. The Improved
F-expansion method is a reliable treatment for searching essential nonlinear waves that enrich a variety of
dynamic models that arise in engineering elds.

Keywords: The Improved F-expansion scheme, The general (2+1)-dimensional nonlinear evolution equation,
Traveling wave solutions, Soliton solution.
2010 AMS: Primary 35C07, 35C08

1. Introduction

As of late, nonlinear incomplete differential conditions (NPDES) is comprehensively used to delineate various huge marvels and
dynamic methodology in various elds of science and designing, particularly in liquid mechanics, hydrodynamics, numerical
science, dissemination process, strong state material science, plasma material science, neural material science, substance energ
and geo-optical laments. In this article, we will study the generalized (2+1)-dimensional nonlinear evolution equations in the
form

Uxt + Uxyxy 8UkUxy+ DUy = O (1.1)
Recently, some special cases of Eq. (1.1) have been studied by several aj{prsyhen setting a =4 and b = 2, we get:

uXt + uXxxy+ 4uXqu+ ZUXXuy = 0 (12)
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Eqg. (1.2) known as the Calogero—Bogoyavlenskii—Schiff (CBS) equation with (2+1) dimensional.

whereu = u(x;y;t) is used for brevity. In the article, subscript occurring with a term denotes its partial derivative with
respect to the subscript variable.in equ.(lx2)jescribes the time evolution of the wave, while the teaqs, anduyuyy are
account for nonlinearity of the wave. The CBS equation has some physical situated history like it very well may be composed as
potential structured]. The CBS equation was at rst built by Bogoyavlenskii and Schiff in different wa}g 9]. The ongoing
history of some past inquires about show that few powerful strategies for getting de nite arrangements of the CBS condition
are contributed by a differing gathering of specialists over the gldf[[L3], for instance, the periodic and soliton solutions of
the CBS equation were gotten by Gandarias et@].[lts integrability has been demonstrated by Zhang et §ldnd derived
also the symmetry reductions of the equation. Li and CA€hfpund the exact solutions by using the generalized Raccati
equation expansion method. Wang and Yah§] mployed the Hirota Bilinear strategy for construction of the quasi-periodic
wave solutions in terms of theta functions for a Hirota bilinear equation.
When settinga=-4and b =— 2, we get:

Uxt + Uxxxy  4UxUxy 22Uy = 0 (1.3)

Eqg. (3) known as the breaking soliton equation with (2+1) dimensional.
When setting a =4 and b = 4, we get:

Uyt + Uxxy AUxUxy + dUxxly = O 1.4)

Eq. (4) known as the Bogoyavlenskii equation with (2+1) dimensional.

Numerous researchers arranged through nonlinear evolution equations (NEES) to build voyaging wave arrangement by
executing a few techniques. The methods that are entrenched in ongoing writing, for example, the extended Kudryashov
method[L4], the modi ed simple equation method§], the new extende@G%=G) expansion methodLp]-[17], the Darboux
transformation 18], the trial solution method1[9], the Exp-Function Method[0], the multiple simplest equation methal],
exp( f (x)) -expansion metho®p]-[26€], Pseudo parabolic mode2T]-[29], Sine-Gordon expansion meth@d], Complex
solitons in the conformable (2+1)-dimensional Ablowitz-Kaup-Newell-Segur equa@nNlodi ed auxiliary expansion
method B2], Method of line B3], Bernoulli sub-equation function metho84]-[ 35], The modi ed exponential function method
[36], Improved Bernoulli sub equation function meth@&¥], Finite difference method3g] and so on.

The target of this article is to apply the Improved F-expansion technique to build the precise voyaging wave answers for
nonlinear advancement conditions in scienti c material science by means of the generalized (2+1)-dimensional nonlinear
evolution equations.

The article is set up as pursues: In section 2, the Improved F-expansion scheme has been talked about. In segment 3, we
apply this plan to the nonlinear development conditions raised previously. In section 4, represents Results and Discussion, In
section and in section 5 ends are given.

2. Description of the Improved F-Expansion Method

In this segment, we portray in subtleties The Improved F-extension strategy technique for discovering traveling wave equations
of nonlinear equations. Any nonlinear condition in two free facioasdt can be communicated in following structure:

RE(U; Ut; Ux; Ut ; Uyx; Uxt:222222) = 0 (2.1)
where,u(x) = u(x;t) is an unknown functionA is a polynomial ofu(x) = u(x;t) and its partial derivatives in which the
highest order derivatives and nonlinear terms are included.
Step 1: The given PDE (2.1) can be changed into ODE utilizing the changex wt wherew is the speed of traveling wave

suchthativ 2 R f Og
The traveling wave change grants us to diminish Eqg. (2.1) to the following ODE:

Al u®nn) =0 (2.2)
whereA is a polynomial inu(x) and its derivatives, wheng(x) = 9¥; u%x)= %4: and so on.

- odx T odx??

step 2Suppose the solution of Eq. (2.2) can be expressed by a polynonyigkin:

N N .
U=ux)= g ajly (x))'+ & bjly (x)) ' (2.3)
j=0 j=1
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where

y (x)=(m+] (x)) (2.4)

Hereay or by may be zero, but both could not be zero simultaneously.j = 0;1;2 N),bj(j= 1,2 N) andmare
constants to be determined later d&n(k) satis es the ODE in form:

j )= K+j2(x) (2.5)

We now present three cases of the general solutions of the Riccati Equation (2.5) (Cruz, Schuch, Castanos and Rosas-Ortiz,
2015).
Case-l: WhenK < 0, we get following hyperbolic solution

F(x)= P Ttandp T KX)

F(x)= P 7Kcotk(p Kx)

Case-ll: WhenK > 0, we get following trigopnometric solution

F(x)= P Rtan(p Kx)
F(x)= P Rcot(p Kx)

Case-lll: WhenK = 0, we get following solution

F(x)= x}

Step 3: The value of the positive integ®& can be determined by balancing the highest order linear terms with nonlinear terms
of the highest order appearing in Eq. (2.2).
If the degree ofi(x) is D[u(x)] = n, then the degree of the other expressions will be as follows:

dPu(x) ddu(x) °
dxP dxd

Step 4: Substituting Eq. (2.3) along with Egs. (2.4) and (2.5) into Eq. (2.2), we obtain polynomigis+ir) (x))! and

(m+j (x)) 1, (j=0;1;2; :N).Gathering every coef cient of the came about polynomials to zero, yields an over-decided
arrangement of arithmetical equations &gy bj, w andm.

Step 5: Assume the estimation of the constants can be gotten by fathoming the mathematical conditions got in step 4.
Substituting the estimations of the constants together with the arrangements of Eq. (2.5), we will acquire new and far reaching
precise traveling wave arrangements of the nonlinear development Eq. (2.1).

=n+p, D U

= np+s(n+q)

3. Application of the Method

In this section, we will exert the Improved F-expansion method to solve the equation (1.1).Now Using the traveling wave
variablex = x+y wt and integrating with respect toreduces Eq. (1.1) to the following ordinary differential equation for
u= u(x).

+b
wul+ a2 W 24+ %02 o (3.1)

Where, primes denote the differentiation with regard By balancingjoo%md(u()2 we obtainN = 1.Therefore the Improve
F-expansion method admits to solution of (2.1) in the form

U(xyt) = ao+ ar(m+j (x)+ ba(m+j (x)) * 3.2)

Now, substituting Eg. (3.2) into Eq. (3.1), and equating the coef cients of the pgwersthen we obtain a system of algebraic
equations. Solving this system of equationsdgrai; bs; mandw we obtain the following set values:
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Set-1:m=mw= 4K;ap= ag;a;= 0;b; =

12(mP+K)

at+b

Set-2:m=mw= 4K;ap= ag;ar= 4%;b1=0.

Set-3:m= 0O;w= 16K;ap= ag;a1=

2. — 12K
w6 P1= 30p

atb”

Case-l: WhenK < 0, we get following hyperbolic solution

Family-1
Ureet) = a0+ 12 P+ K
LX) = do (atb) m © Ktani' Kx)
12 m?+ K
Uz (X yit) = ao P

wherew = 4K andx = x+y wt.
Family-2

+ — P—
(atb) m v Kcotr(P Kx)

pP— pP—
. _ 12 m Ktani(  KXx)
Us(Xyit) = ao )
Un 6 vet) = 12 m pTcotK - Kx)
4(le;)_a0 (a+ b)
wherew = 4K andx = x+y wt.
Family-3
Us (yit) = ag+ 12p7tandp - Kx) L 1K
SR Ao o@D (at )" Ktan(  Kx)
12" Kcoth(  Kx) 12K
Us(Xy;t)= ap+ p— p——
s06%0 = 20 (a+b) (a+ b)"  Kcoth" ~ Kx)

wherew = 16K andx = x+y wt.

Case-Il: WhenK > 0, we get following trigonometric solution

Family-4
12 nf+ K

)

Uz(xyit)= ao+

12 m2+K

)

(a+ b) m+ Ktan( Kx)

Us(Xy:t) = ap

wherew = 4K andx = x+y wt.
Family-5

12 m+ P Ktar(p Kx)

Uo (X i) = ap @+ )

p

12 m Kcot(p Kx)

Uo(Xy:t) = ao @+ D)

wherew = 4K andx = x+y wt.
Family-6

+ — —
(a+b) m ' Kcot Kx)

B0y = age 12 Kan"Kx), 1K
1PeRL = do (a+ b) (a+ b)" Ktan(" Kx)
12p Kcot( Kx) J12K

Ua(xyit) = ag+

(a+ b) (a+ b) Kcot(p Kx)

Physics — 118/ 123
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wherew = 16K andx = x+y wt.
Case-lll: WhenK = 0, we get following rational solution

Family-7

12(mP + K)

(a+b) m 1

Us(Xy;t) = ao+

wherew = 4K andx = x+y wt.
Family-8
12m i
Uia(xy;t) = ao “(atb)

wherew = 4K andx = x+y wt.
Family-9

12 12Kx

Uis(avi) = 8o+ by e b

wherew = 16K andx = x+y wt.
4. Results and Discussion
Around there, we will discuss the physical depiction of the procured careful and singular wave answer for the general

(2+1)-dimensional nonlinear advancement condition. We address these arrangements in graphical and check about the
kind of arrangement. Presently we pictorial some get arrangements acknowledge by applied techniques for the general

(2+1)-dimensional nonlinear advancement condition.
¥ i

U lx, 1)

Lo

N

PR

12 -
i T P B e b

| BT

Ln

Figure 4.1. Kink Shape olU1(x) forag= 2;a= 2;b=3;m=2;K= :33y=2within 10 x;t 10. The left-sided
gure shows the 3D plot and the right-sided gure shows the 2D plot ferO
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Figure 4.2. Kink Shape olU3(x) forag= 2;a= 2;b=3;m=2;K= :33y= 2within 10 x;t 10. The left-sided
gure shows the 3D plot and the right-sided gure shows the 2D plot ferO

Figure 4.3. Kink Shape olUy(x) forag= 2;a=2;b=1m= 2,K= 2y=0within 10 xt 10.
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Figure 4.4. Singular Kink Shape dfls(x) forag= 2;a= 2;b= 3;m= 2;K= :33;y= 2within 10 x;t 10. The
left-sided gure shows the 3D plot and the right-sided gure shows the 2D plat fof

Figure 4.5. Periodic N soliton Shape &f7(x) forag= 2;a= 2;b= 3;m= 2;K = :3;y= Owithin 10 x;t 10. The
left-sided gure shows the 3D plot and the right-sided gure shows the 2D plat fo0

5. Conclusion

In this segment, we have seen that two kinds of traveling wave arrangements as far as hyperbolic and trigonometric capacities
for the general (2+1)-dimensional nonlinear evolution equation is effectively discovered by utilizing the Improved F-expansion
method. From our outcomes got in this paper, we nish up the Improved F-expansion scheme strategy is amazing, powerful
and helpful. The exhibition of this technique is dependable, basic and gives numerous new arrangements. Likewise, the
arrangements of the proposed nonlinear development conditions in this paper have numerous potential applications in atomic
and molecule material science. At long last, this technique gives a ground-breaking scienti c instrument to get increasingly
broad accurate arrangements of a large number of nonlinear PDEs in numerical material science.
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Certain Subclass of Meromorphic Functions with
Positive Coef cients De ned by Bessel Function

Santosh M. Popade?!, Rajkumar N. Ingle?, P. Thirupathi Reddy 3 and B. Venkateswarlu**

Abstract

The aim of the present paper is to introduce a class S,(G;H;t ;c) of meromorphic univalent functions in E = f0 <
jZ < 1g and investigate coef cient estimates, distortion properties and radius of convexity estimates for this class.
Furthermore, it is shown that this class is closed under convex linear combinations, convolutions and integral
transforms.

Keywords: Convolutions, distortion, meromorphic.

2010 AMS: 30C45

1. Introduction

Let S symbolized the class of analytic functions, which are with a simple pole at the origin with rdsaddle form in the
punctured unit dis€ = fz: 0< jz < 1g and of the form

1 4
f(2= ~ta anZ": (1.2)
n=1

LetSs; S (a) andSk(a) be the subclass @& consisting of univalent, meromorphically starlike of ordeand meromorphi-
cally convex functions oh; 0 a < 1respectively.
A function given by (.1) is in theS (a)

Nziqz)©
A f(2)

andf 2 Sg(a)

> a (z2 E) 1.2)

(14 21%2) ©
A fq2)

Recent years, many authors investigated the subcalss of meromorphic functions with positive coef ciedt2($d,[5].

> a; (z2 E): (1.3)
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Let S, denote the class of functions of the form

1 ¥
f()= >+ § ad (& 0 (1.4)
z n=1
that are analytic and univalent it
We recall here the generalized Bessel function of rst kind of ogiésee p]), denoted by

W(2) = H ( on 7 2ntg

2onGgr n+ BY) 2
(whereG stands for the Gamma Euler function) which is the particular solution of the second order linear homogeneous
differential equation (see, for details]|)

(z2 V)

2w+ bz +[cZ ¢?+(1 b)gw(2) = O;

wherec;g;b 2 C:
We introduce the functionp de ned, in terms of the generalized Bessel functioby

i @=26 g+ 201 2 Dy

By using the well-known Pochhammer symlfg); de ned, forx2 C and in terms of the Euler gamma function, by

_Gx+t) L (t
TEx) | X(x+D(x+2) (x+n 1); (t

0);
n2N=1f12,3 g).

(Xt

We obtain the following series representation for the functi¢z)

. 1 ¢ ( om1 b+ 1
= —+ Zn t =g+
F@= 2% 8 31T Di(t)nes 9

27,=10, 1, 2, ¢

Corresponding to the functign de ne the Bessel operat&°€ by the following Hadamard product

c n+t1

. . 1 5 4
$f@=0 N@= * &  Him
— }+ g_ f (n;t;c)anz"; o
z n=1

wheref (n;t;c) = %

De nition 1.1. LetSy(G;H;t;c) denote the subclass 8f, consisting of functions() in Sp which satisfy

(Sf(2)° 2S°f(2)°.

W+1< G+ HW' (1.6)
for 1 G<H;0<H L

2. Coef cient Inequalities

Our rst theorem gives a necessary and suf cient condition for a function to I8(®; H;t ;c):
Theorem 2.1. Let f(2) 2 Sp as given by(1.4). Then {(2) 2 S,(G;H;t;c) if and only if

¥

a [(n+ D+(G+Hn)Jf (mt;dan H G; 2.1)

n=1

for 1 G<H;0<H 1
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¥
Proof. Supposef(2) = %+ & aZ"; a 0; isin Sy(G;H;t;c): Then
n=1

¥
%S°1(2)° 4 (n+ Df (n;t;c)anz"
gt 1l K 1( ) ( ) .

SF(2)° ——y
G+H%°% (H G)I & (G+Hnf(nt;0)a
n=1

forall z2 E: SinceRg2) | Z for all z, we have

( & (n+ Df (N t:0)a?" )
Re AL < 1 (z2 E):
H 61 & (G+ Hn)f (mt;c)anz’

n=1

0
Now choose the values afon real axis so th ::ﬁg;) is real.
Upon clearing the denominator i@.@) and lettingz! 1 through positive values, we obtain

¥
a [(n+ D+(G+Hn)Jf (nt;da, H G
n=1

Conversely, suppose th&.{) holds for all admissible values & andH: We have
M(f; 19 = j2(S°f(2)% S°f(D] | GS°F()+ HASf(2)Y
¥ ¥
= & (n+ Df (mt;0)a (H G)% & (G+ HN)f (n;t;c)an?"
1

n=1 n=
or
¥ ¥
M(f; 19 3 (n+ Df (mt;0)anjzd™?® (H G)+ g (G+ Hn)f (mt;c)anjg™?

n=1 n=1

¥

= & [(n+ D) +( G+ HN)f (Mt;0)a,jd™: (H G):
n=1

Since the above inequality holds for al jz; 0< r < 1; lettingr! 1; we have
¥
A [(n+ )+(G+ HN)Jf (nt;ga, (H G
n=1

by (2.1). Hence it follows thatf(2) is in the classS,(G;H;t ;c):

Corollary 2.2. If the function {2) 2 Sy(G;H;t;c) then

H G

& [(nr D+(G+ HNf (nit;0) (n b
The result is sharp for the function
fn(2) = 1, H © 2% (n 1):

z [(n+ +(G+Hn)Jf (nit;c)

3. Distortion Properties and Radius of Convexity Estimates
Theorem 3.1. If the function {2) 2 Sy(G;H;t;c) thenfor0 j Z=r<1;

1 (H G) . o1 (H G
r (2+ G+ H)f (1;t;c)r 1@ o (2+ G+ H)f (1;t;0)

The result is sharp.

129

(2.2)

(2.3)

(2.4)

(3.1)
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Proof. Supposef(2) is in Sp(G;H;t;c): By Theorem2.1, we have

¥
3 (H G
; 1): 3.2
Ela" [(n+ 1)+ ( G+ HN)]f (n;t;C) (n 1) (3.2
. . ¥ H G .
Thusif@i  3+i3 & a0 1+ grarmroo”
1 s 1 H G

Alsojf(2)j ﬁjqnglan T @rermf@rgn
Thus the result is sharp for the function

_1 (H G :
M@= 2 * Zaeraf@tg?
O
Theorem 3.2. If the functionf(2) 2 S,(G;H;t ;c) thenf(2) is meromorphically convex of ordeir(0 d< 1)injz<r =
r(G;H;t;c;d); where
h RS B
e @ d(n+ D)+ (GH+ HN)If (mit;0) mer
f(GHitcd)= Inf (H On(n+2 d) '
The result is sharp.
Proof. Let f(2) be inSy(G;H;t;c): Then by Theoren2.1, we have
¥ o
g U+ D+(GHHNIf (niti0) 63

(H G

n=1

It is suf cient to show that 2+ %)(?Z—? 1 dforjz r(G;H;t;c;d); wherer(G;H;t;c;d) is as speci ed in the statement

of the theorem. Then

¥ ¥
0 ann+t Da,® 1 & n(n+ Dagjg™?
Zf ?Z) n=1 n=1
2+ = ¢ v :
f12) F+ & ng2" ! 1 & najzm™!?
2 14
n=1 n=1

This will be bounded by 1 d if

nn+2 d), nen g, (3.4)

By (3.3), it follows that 3.4) is true if

n(n+ 2 d)jzjn+1 [(n+ 1)+ (G+ Hn)f (n;t;c),

1 d H G (n 1)

or
) 1
(1 d)(n+ 1)+( G+ HM]f (n;t;0) ™7 .
12 (H On(n+2 d) L) (3:5)

SettingjZ = r(G;H;t ;c;d) in (3.5, the result follows.
The result is sharp for the functions

1 H G . :
fu(2) = St [(n+ D+ (G+ H)f (n;t;c)zn’ (n 1): (3.6)
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4. Convex Linear Combinations and Convolution Properties

We shall prove that the clagy(G;H;t ;c) is closed under convex linear combinations and convolutions.

Theorem 4.1. Let fy(2) = L and

H O o
 Dr(Gr AN g~ ™ (4-1)

1
fn(2) = E+
¥ ¥
Then 1(2) 2 Sy(G;H;t;c) if and only if it can be expressed in the forr(ef= & | ,fn(2); wherel , Oand & | n= 1
n=0 n=0

¥ ¥
Proof. Let f(2) = & | hfn(2d withl, Oandd |,= 1. Then
n=0 n=0

3 1 ¢ (H G) _
2= E‘OI nfn(2) = z7 néo [(n+ 1)+( G+ HN)f (n;t;0) "~ (4.2)
Since
[(n+ 1)+ ( G+ Hn)f (n;t;c)I (H G
(H G) "[(n+ 1)+( G+ HN)]f (n;t;c)

ln=1 1, 1;
1
by Theoren?.1, f(2) is in the classS,(G;H;t;c):
Conversely, suppose that the functibfz) is the classS,(G;H;t ;c): Setting
_ [(n+ D+(G+ Hn)f (nit;c)
| n=— (H G) an, n

1
7 Qo

1

¥ ¥

andlg=1 @& | itfollowsthatf(2 = & | nfi(2):

n=1 n=0

Here, we see thdt, 0(n 1) by de nitionandl ¢ 0 in view of Theoren®.1 This completes the proof of the theorem.
The result is sharp for the function

(= S+ i

D (Gr AT (92 Y (4-1)

O
¥ y
Robertson §], has shown that iff (2) = %+ 4 a)bp” and g(2 = %+ 4 b,Z" are inSsthen so their convolutions
n=1 n=1
y
(f 9= 3+ 8 anbnz"

Theorem 4.2. If the function {2) and ¢2) are in the classS,(G;H;t ;c) then(f g)(2) is the classSy(G;H;t;c):
Proof. Suppose that(2) andg(z) are inSy(G;H;t;c): By Theorem2.1, we have

5 [(n+ 1)+ ( G+ HN)f (n;t;0)
1 H G)

1

n

& [(n+ 1)+ ( G+ HN)Jf (n;t;c)
a (H 0

Sincef(2) andg(2) are regular irg; so(f g)(2): Furthermore

s [(n+ 1)+ ( G+ Hn)]f (n;t;c) [(n+ 1)+( G+ HN)]f (n;t;c) ?

b, 1L

a H O anbn H O anbn
¢ [(n+ 1)+( G+ H)f (n;t;c) [(n+ 1)+ ( G+ H)f (n;t;c) b
a (H 0 (H 0 n
1

Hence by Theorer2.1, (f g)(2) is in the classS,(G;H;t;c): O
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5. Integral Transforms
In this section, we consider transforms of functions in the ci¢&; H;t ; c) of the type considered by Bajpd][

Theorem 5.1. If the function {2) is in the classS,(G;H;t ;c) then the integral transforms

Z1
F(2=c u°f(uddz (0< c< ¥)
0

is in the classS,(G;H;t ;c):

Proof. Supposef(2) is in Sp(G;H;t;c): Then we have

z 1 3 c
F(2 = C =2+ 3 :
<(2=c uf(uadu Z+ re_anr o 1an2"
0 -
Since
H 1)+ ( G+ Hn)f (n;t;
$ [(n+ 1)+( G+ HN)f (Mt;0) can & [(n+ D+(G+ Hnf (n;t50) .
gl (H G n+c+1 (H G) & d
by Theoren?.1, it follows thatFc(2) is in the classS,(G;H;t ;c): O

Acknowledgement

I warmly thank the referees for the careful reading of the paper and their comments.

References

(11 3. Clunie,On meromorphic schlicht function3, Londan Math. Soc34 (1959), 215-216 .
21 3. E. Miller, Convex meromorphic mapping and related functidtrec. Amer. Math. Soc25 (1970), 220-228 .
Bl Ch. Pommarenkeé®n meromorphic starlike functionBeci ¢ , J. Math.,13 (1963), 221-235 .

[l B.A. Uralegaddi and M. D. Ganigh certain class of meromorphic celly starlike functions with positive coef ci¢hise.
Appl. Math. Sci.,26 (1987) , 75-81.

[l B. Venkateswarlu, P. Thirupathi Reddy, Ch. Meng and R. Madhuri Shi#paew subclass of meromorphic functions with
positive coef cients de ned by Bessel functidiote di Matematica (Accepted).

6] E. Deniz, H. Orhan and H.M. Srivastaome suf cient conditions for univalence of certain families of integral operators
involving generalized Bessel functioffgjwan J. Math.15(2)(2011) , 883-917 .

[7l G. N. Watson,A treatise on the theory of Bessel functiobisd edn. Cambridge University Press, Cambridge, (1994).
(8] M. S. RobertsonConvolution of Schlicht function®roc. Amer. Math. Soc13(1962), 585-587.
[l 5. K. Bajpai,A note on a class of meromorphic univalent functidey. Roumanie Math. Pure App22 (1997) , 295-297.



Communications in Advanced Mathematical Sciences
Vol. 111, No. 3, 130-142, 2020
Research Article
e-ISSN: 2651-4001
DOI: 10.33434/cams.680381

Dual Jacobsthal Quaternions

Fiigen Torunbalc Ayd n *

Abstract
In this paper, dual Jacobsthal quaternions were de ned. Also, the relations between dual Jacobsthal quaternions
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1. Introduction
In 1843, Hamilton 1] introduced the set of quaternions which can be represented as

H=1fqg=do+iga+ jo2+ Kaj oo; du; G; 432 RQ (1.1)
where

2= j?=kK= 1;ij= ji=k; jk= kj=i; ki= ik=j:
After the work of Hamilton, several authors worked on different quaternions and their generaliza@pha2)).
In 1973, SloaneZ3] introduced the set of Jacobsthal numbers.
Further, in 1988, Horadan2f]]-[ 25] de ned the Jacobsthal and Jacobsthal-Lucas sequéidggandf j,g with the recurrence
relations respectively, as follows

Jo=0 =1 In=Jh 1+2) 2 forn 2 (1.2)

and

jo=2 j1=1 jn=jn 1+ 2jn 2 forn 2 1.3)

In 1996, Horadam studied on the Jacobsthal and Jacobsthal-Lucas sequences and he gave Cassini-like formula2g} follows [

Jedn 1 2=( pm2n 't (1.4)
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jejn 1 J2=3( pmhn t (1.5)

The rst eleven terms of Jacobsthal sequehdg are 0;1;1;3;5;11;21;43; 85;171and341 This sequence is given by the
formula
2n ( 1)n

h= (1.6)

The rst eleven terms of Jacobsthal-Lucas sequdrjgg are 21;5;7;17,31
65;127,257:511 and 1025. This sequence is given by the formula
jn=2"+( 1)° 1.7)

Also, we can see the matrix representations of Jacobsthal and Jacobsthal-Lucas nur2idgf28h [The members of these
integer sequences can also be obtained in different ways: Binet formulae or matrix methokdryatd Bozkurtd7]-[ 28].
Several authors worked on Jacobsthal numbers and polynomi&9]if32].

In 2015, Szynal-Liana and W ocl33] de ned the Jacobsthal quaternions and the Jacobsthal- Lucas quaternions respec-
tively as follows

JQy= In+ idner+ jIne2+ Kdes; (1.8)
and

ILQy = jn*ijnert jine2+ Kjnes: (1.9)
where

= j°=K;= 1;ij= ji=k; jk= kj=i; ki= ik=|:

In 2017, Torunbalc Ayd n and iYce 4] given a new approach to Jacobsthal quaternions. Furthermore, some relations between
Jacobsthal and Jacobsthal-Lucas quaternions are givad]in [

In 2017, Tasc 35 de ned k-Jacobsthal and k-Jacobsthal-Lucas quaternions as follows

Qkn= Jen+ indene 1+ i2dene 2+ i3Jn+ 3 (1.10)
and

Qjkn= Jknt itjkne 1+ i2Jkne 2+ i3 Jikone 3 (1.11)
where
= i3=i=ijipiz= 1
In 2017, Cerda-Morales8p] worked on identities of third order Jacobsthal quaternions.
In 2018, Cerda-Morales3[] de ned fourth-order Jacobsthal and Jacobsthal-Lucas quaternions as follows

QR = 1+ 130 1@+ 302 + ks (1.12)
and

an(4) = jn(4) +ijne 19+ jins 2+ k jn+ 3 (1.13)

In this paper, dual Jacobsthal and dual Jacobsthal-Lucas quaternions will be de ned as follows

Jo= fDﬂ =t idpe1t jIne2t Koz jJn; n thJacobsthal number
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and
ip= fDrj]: jntijne1t jjne2+ Kjnez j jm;n thJacobsthal-Lucas numlger
where

i°= j°=KP=ijk=0; ij= ji= jk= kj=ki= ik=0:

All the studies on Jacobsthal quaternions are summarized in Table 1.

Table 1. Types of Jacobsthal quaterniorss]-[ 35].

De nition Multiplication Rules
Jacobsthal JQh = (In; Ins 1590+ 23 I+ 3) (Lisj;k; %= 2= k2= 1
quaternion =3 1+2xh 2;0h=%=1 ij= ji=zk jk= kj=i
ki= ik= |
k-Jacobsthal  QJcn = ((Jns Jen+ 15 Jen+ 23 Jkn+ 3) (Lig;i;i3),
quaternion Q2= KQkn+ 1+ 2Qkn i2=i3=i3=ijipig= 1
Dual Jacobsthal D = (Jn; Jn+ 1; dne 2,90+ 3) (Lij:ki2= j2=Ke=ijk=0

quaternion Ih=dh 1+t2kh 2h=%=1 ij= |ji=jk= Kkj=ki= ik=0

2. Dual Jacobsthal Quaternions

In this section, the dual Jacobsthal quaternions will be de ned. Also, the relations between dual Jacobsthal quaternions which
connected with Jacobsthal and Jacobsthal-Lucas numbers were investigated.

Dual Jacobsthal quaternions is de ned by relation recurreh@ s follows
Jo=1D3= Jn+idne1+ jIne2+ kdzjdn;n  thJacobsthal number (2.1)
where
i2=j2=K=ijk=0; ij= ji= jk= kj=ki= ik=0: (2.2)
Also, the dual Jacobsthal-Lucas quaternion is de ned by relation recurrér}es follows
jip= fDrj1 = jptijnert Jjne2t Kjnesjjn; n thJacobsthal-Lucas numlggr (2.3)
i?=j?=K=ijk=0; ij= ji= jk= kj=ki= ik=0:
Let Di* andDy? be n-th terms of the dual Jacobsthal quaternion seqt(@fé:)zand(Dﬁz) such that

D‘rJ11 = It idne1t jIne2t K (2.4)
and

DF]wZZ Kn+ iKne1+ jKne2+ KKnes (2.5)
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Then, the addition and subtraction of the dual Jacobsthal quaternions is de ned by

Dit D= (Jn+idner+ jdnez+ kdwa)
(Kn+ iKn+1+ jKne2+ KKqe3)
= (I K)+i(Jwr Knen)t j(Ine2 Kne2)
+K(In+3 Knea):

(2.6)

Multiplication of the dual Jacobsthal quaternions is de ned by

DDt = (Jn+ idnea+ jne2+ Kdha)
(Kn+ iKn+1+ an+2+ I(Kn+3)
= (InKn)+ i(InKns 1+ Ine 1Kn) + j(InKne 2+ Int 2Kn)
+K(InKn+ 3+ Jne 3Kn):

2.7)

The scalar and the vector partDf which is the n-th term of the dual Jacobsthal quaterg@}) are denoted by
SD,‘]] = Jn and VDF]1 = iJn+l+ jJn+2+ k\}]+3: (28)

Thus, the dual Jacobsthal quaternidis given byD; = Sy + Vpy -
Then, relation (2.7) is de ned by

DYDY = St S+ S Vor + SoniVon ! (2.9

The conjugate of the dual Jacobsthal quateriidiis denoted by} and it is

DI=Jy iJw1 jdm2 Kdws (2.10)

The norm ofD}, is de ned as
Npy= D} *=DJDi= 3 (2.11)

Then, we give the following theorem using statements (2.1), (2.2) and

8
5 Indne 1+ 230 130 = ons

Indme 1+ 200 1Im= Jnemd
2 Jn+_1+ 2 1= jn
" dnjn= o

(2.12)

Theorem 2.1. LetJ, andD}, be the n-th terms of the Jacobsthal sequedgkand the dual Jacobsthal quaternion sequence
(D}), respectively. In this case, for n1 we can give the following relations:

D]+ D} = 2J;; (2.13)
(D))2+ DD} = 23,D}; (2.14)
Dps 1+ 2D} = Dy ; (2.15)

D} iDjei iDpez kDpug= n; (2.16)

Proof. Proof of four equality can easily be done by the equations

Dy = Jn+ idne 1+ jIne2t Kdhes; (2.17)
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D1 = Jne1+ idneo+ jInea+ Kdhea (2.18)
(2.13:
D)+ D]

(Jn+ idne1+ ]-~Jn+2+ kJn+3)

+(Jn i~]n+1 jJn+2 kJﬂ+3)

(Jn+ Jn)"' i(Jn+l Jn+1)+ j(-]n+2 Jn+2)
+K(In+3  Jne3)

= 2

(2.14:

(DP)2+ DDy = (Jn+ idne1+ jIne2+ Kdea)

(Jn"' i\Jn+1"' J Jn+2+ I(\]n+3)

(It idnt1+ Izt Kdhe3)

(Jn i~]n+1 J In+2 I(Jn+ 3)

= (Indn)+ i(Indne 1+ Ine1dn)+ j(Indnt 2+ Int20n)

+K(InIn+ 3+ In+3Jn)
It i( Indne 1+ Ine1dn)
+§( Indne2+ Jne2dn)
+ k( -]n-]n+ 3+ Jn+ BJn)
200+ 21ndne 1+ 2)Indne2+ 2k Jne 3
2J0(In+ idne 1+ jIne2+ Kde 3)

23,D}
(2.195:
DF]1+1+ ZD%: (In+1+ idne 2+ jInezt Kdhea)
+2(In+ idne1+ jIne2+ Kde3)
= (1t 20+ 1(Gne2t 2dne2) + J(Inezt 200+ 2)
+K(Int 4+ 2n+3)
= Jn2t ezt jIneat Kdus
= DJ .
n+2:
(2.16:

D% iD}]H.l jD'rJ]+2 kD}]1+3: (In+ Ine1t jIne2t kdhe3)
i1+ Jne2+ jInez+ kdhesa)
JOne2+ idne 3+ jIneat Kdhes)
K(In 3+ idnea+t jInes+ Kdeo)
= Jn:

O

Theorem 2.2. LetD} and D}, be the n-th terms of the dual Jacobsthal quaternion sequ@dieand the dual Jacobsthal-Lucas
quaternion sequend®y,), respectively. The following relations are satis ed

Dpe1* 2D} 1= D; (2.19)

2D),, D}=D]: (2.20)

Proof. (2.19: From equations.17), (2.18 and identity between Jacobsthal number and Jacobsthal-Lucas njyrbé. 1 + 2J, 1,
it follows that

D), ,+2D] |

(1t idne2t JIne3+ Kdhea)
+2(Jn 1t iJn"’ jJn+1+ kxlq+2)
= (Jner+ 20y 1)+ i(Jne2t 230)

+ J (Jn+3+ 2-]n+ l)"' k(-]n+4+ 2~Jn+2)
= jn_+ijn+1+jjn+2+kjn+3
= D:
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(2.20: Using the identity between Jacobsthal number and Jacobsthal -Lucas nlymbgr= 2J.+1 , we get

2D‘r]1+1 D%: 2(In+ 1+ 1dne2t jInezt+ Khes)
(In+ 1 dne1t jIne2+ K a)

(23n+1 Jn)"' i(~]r1+2 Jn+ 1)

+](2Iw3 Ine2)+ K(2Jnea  Inea)

= jntijpert jine2t Kines

Di:

O

Theorem 2.3. Let D} be the n-th term of the dual Jacobsthal quaternion sequeDyE;)aandDi;]1 be conjugate ob}. Then, we
can give the following relations between these quaternions:

(D)?= 21Dy I
(DR)?+2(D; )?=2D3, 1 Jon 1
DID3+2D; 1D} 1= K+ 2% 1= In 1; (2.21)
Dj 1D, 1+ 2D3DF = JE 1+ 233 = Jone 1
Dh1Dl; 2D0DA= 31 28 = Doy 43
Proof. It can be proved easily by using.0. Now, we will prove rst two equalities

(Drjw)2 = Jdht i(Gndne 1t Jnerdn) + [ (ndne 2+ Jne2dn)

+K(Indn+ 3+ Jnv3dn)

2Jn(Jn"' iJn+1+ j\]n+2+ k~]r1+ 3) Jn\]n
23D 32

(D)2+2(Dp ?= F+ 2i(Indne 1)+ 2] (FnJne2) + 2K(Indne 3)
+2(Jr% D+ 4G 1dn)+ 4] 1)
+4k(Jn 1~]n+2)

(J§+ ZJE P+ 1(2hdne 1+ 4 1dn)

+ J (ZJan+2+ 4 1+ 1)

+ k(ZJan+3+ 4dn 130+ 2)

Jon 1+ 2100+ 2jJone 1+ 2Kone 2

ZD%n 1 Jon 1

We can prove last three equalities by using equation (2.12) as follows:

DAD3+ 2D} ;D) | =33+ 232 1= I 15

D}, Dy, 1+ 2D3D] = 32,1+ 202 = Jone1;

n+t1=n+1

D}, D3, 2DAD} =032, 2J2= D1 4F
where identitiesndne 1+ 2Jm 1Jn = Jmen and J2+ 232 | = Jpn 1 were used. O

Theorem 2.4. Let D} be the n-th term of dual Jacobsthal quaternion sequé¢Bbg@. Then, we have the following identities

n

1
& D3= 5Dz D3k (2.22)
s=1
‘P J 1 J J
a Dns= E[Dn+p+2 DR (2.23)
=0
n 2D 1
& D3 1= 5+ 3[n(2D; D3) 2Dy (2.24)
s=1



n 2D3 1
& D= —3"* ;[n(2D; D)+ 2Dj):
=1

Proof. (2.22 Hence, we can write

én D3 = én Js+ i én Jsr1+ | én Jse 2+ kén Jst 3

s=1 s=1 s=1 s=1 s=1
= %[(sz D+ i(Gnes )+ j(Inea 5+ k(Ies 11)]
= MOnz 2+ iGns B)* [Gna W)+ KQws )
= %[Jn+2+ iJnt3+ JIneat Kus (R+iJ3+ jIa+ k&)

1
= E[D\r]wz D%] .

(2.23 Hence, we can write

p p p p p
o o . O . O o
ADns=a dsti@dnsr1t A Ins2t KA Jnests
s=0 s=0 s=0 s=0 s=0

1 . .
= [(Oneprz Iw)F iGneprs Jne2)+ j(Inepra Jne3)l
2
1
+ E[k(Jm pt5  JIn+a)]

1 . :
= E[Jn+ p+2t IJn+p+3+ JJn+p+4+ k‘l’\+p+5
(Jn+ 1+ 1dne2t JInest K a)l

1
= E [D}]1+ pt+2 D;]1+ 1] :

n 1l n
(2.24: Using & Jir1= 20" " and & Jp= 2211 2 e get
i=0 i=0

n
A Dl 1=(d1+ o+ i+ Jon 1)+ i(do+ Jg+ i+ Jn)
s=1
+ j(Jz3+ Is+ it one )+ K(Ja+ g+ i+ Jone2)
_ (@t 1) i (281 n 2) j (22t n 2
3 3 3
+"M

2 . .
= g[JZn"' idone 1+ jJdone 2+ Kdone 3]

+%[n(1 i+j k 2>+ j+ 3K)]

2D}
= 32”+%[n(2D§ D3) 2D}
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(2.25)



n
(2.29: Using & X =
i=0

2hne1 N 2

5 we obtain

n
A Ds=(Jo+ Ja+ i+ Jon)+ i(Ja+ Js+ 110+ Jone1)
=1

+ j(Ja+ Jot i1l Jone2) + K(Js+ J7+ 11+ Jone 3)

- (2¥n+1 n 2 +i (2kn+2+tn 2 + (2¥n+3 N 6)

3

3

4 (st n 10

3

2 . .
= é[JZn+1+ idont 2+ jdon+ 3+ Kdon+ 4]

+%[ Nl i+] K 2(1+i+3j+5K)]

_ 2D,

3

1
é[n(zDg D3) + 2D

3
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O

Theorem 2.5. LetD} and D,‘} be the n-th terms of the dual Jacobsthal quaternion sequ@teand the dual Jacobsthal-Lucas
quaternion sequend®y,) ,respectively. Then, we have

Proof.

(2.27):

DiD} DiD}= 2[%D} nDll;

DD + DAD) = 2jndn= 2Jan;

DiD) DADJ=2[D}Jn+ Dljn  23al;

DI D} + DiD} = 23

(2.20:
DiD! DiD}

DAD} + DhD}

(jn*tijneat jjne2+ Kjnes)
(Jn i1 Jn+1 jJn+2 k-]n+3)
(Jn dje1r Jine2 Kines)
(In+ iJner+ JIne2+ K a)
(jndn jndn)
+2i(jn+l~]n jan+1)
+2j(jn+2-Jn jan+2)
+2k(jn+3\]n jan+3)
2n(in+ijnea+ jine2+ Kjne3)
2jn(In+ idne1+ jIne2+ Kdhes)
2[ D} jaDRl:

(Jntijneat Jjne2t Kjnes)

(Jn iJn+1 jJn+2 k~]r1+3)

+(jn iJ.n+1 jjn+2 kjn+3)
(In+ idne1+ jIne2+ Kdhes)

jn[Jn 1Jn+1 jJn+2 I(\]n+3]
F(ijne1+ Jjne2t Kjne3) dn

+ jn[dn+ idne1+ jIne2t K sl
+( ijn+l jjn+2 I(J.n+3)'-']n
2jan: 2J2n2

(2.26)

(2.27)

(2.28)

(2.29)



(2.28:

D%D;]] D%Dif]: (jntijne1t jine2+ Kjnes)

(Jn+ i~Jn+1+ jJn+2+ k‘l"l+3)

(jn. iJ.n+1 ] jjn+2 kjn+3)
G nes JInez Kohes) _
= (jndn jndn)+ 2(ijne1t Jine2t Kjne3)dn

+2(jn* ijneat Jine2t Kjnes)dn
2(Drj_1~]n+ Dijn  2indn)
2(Dhdn+ DY jn 23n):

2jndn

(2.29:

Drj1D‘r1+ D%Hﬁ: (jntijpest jine2+ Kjnes)

(Jn+ i-Jn+1"' J'\]n+2+ k~1n+3)

+(jn_ iJ'n+1 ] jjn+2 I(jn+3)
(In It jInw2 kdw3)
= 2jndh= 20n:
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In proofs, the identities of Jacobsthal and Jacobsthal-Lucas numbers given below were used, respectively,

Jnin JInim=( 1)n2n+1~]m m Jndn= Inandjpe2= jre1+ 2jn:

O

Theorem 2.6. (Binet's Formula). LetD; and D,J} ben thterms of dual Jacobsthal quaternion seque(i®g) and the dual

Jacobsthal-Lucas quaternion sequeriBg), respectively. Fon
respectively,

and
Di=(aa"+bb"

where

a=1+i(1 b)+j(3 b)+k(5 3b); a=2

b=1+i(1 a)+j(3 a)+k(5 3a);b= 1

a=(1 2b)+i(5 b)+j(7 5b)+k(17 7h);a=2
2: (2a 1+i(a 5+ ja 7+k(ra 17); b= 1
Proof. The characteristic equation of recurrence relatbps, = D}, ; + 2D} is
t? t 2=0

The roots of this equationara = 2 andb = 1
wherea+b=1;a b=3; ab= 2.

Using recurrence relation and initial valuéé =(0;1 13,
D] =(1; 1; 3; 5) the Binet's formula foD;, we get

h i

D)= Aa"+ Bb"= 1 aa" bb";

1, Binet's formula for these quaternions are as follows

(2.30)

(2.31)
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abD] DJ
=5~ and

D] Db
whereA= =L~ B=

a=1+i(1 b)+ j(3 b)+k(5 3b);b=1+i(1 a)+ j(3 a)+ k(5 3a): Similarly, using recurrence relations
D),,= D}, + 2D}, the Binet's formula foD}, is obtained as follows:
D)=(aa"+bb"
O

Theorem 2.7. (Honsberger Identity)ror n;m 0 the Honsberger identity for the dual Jacobsthal quaternibgsand D}, is
given by

DaDXh+ 2D5 1D 1= 2D 1 Jnem 1 (2.32)
Proof. (2.32:

D%Drj'n: Jndm+ 1 (Indme 1+ Ine1Im)+ j (Indme2+ Ine2dm) (2.33)
+K(In I+ 3+ Ine3Im) '
and

ZD}]q 1DrJn 1= 2(Jr_1 1Im 1)+ 2i(Jh 1Im+ Indm 1)
+2j (I 1Im 1t Inr1Im 1) (2.34)
+2k(~]n 1~]m+2+ Jn+2\]m l)

Finally, adding equation22(33 and @.34) side by side, we obtain

D} D}, + ZDﬂ lqun 1= JnJ.rm 1+ 1 (234 m)
+ ] (2 me 1) + K(2Ine me2)
= ZD;]'H'I’T‘I 1 Jn+m 1.

where the identityhe m = Jndne 1+ 2Jn 1J, was usedZ7] and [2§]. O

Theorem 2.8. D'ocagne’s IdentityFor n;m 0 the D'ocagne's identity for the dual-complex Jacobsthal quatern@hand
D}, is given by

DiD); DL, Di= ( "2y n(1+ i+ 5j+ 7k): (2.35)
Proof. (2.35:

DiDpv1 DpeaDR= [(Indner Jme1dn)]
+i[(Imdn+2 Imerdne ) +(Imerdner I 2dn)]
+ 1 [(OmInes Imr1dne2) +(Ime2dne s Imeadn)]
+ K[(Imdnea  Ime1dne3) ¥ (Imeadne 1 I 4dn)]
= ( )"2"Iy n(1+ i+ 5+ 7k):

where the identitymJn+ 1 I+ 1dn=( 1)"2"Jy,  was usedZ7] and [28].
]

Theorem 2.9. (Cassini's Identity) Let Dﬂ_ and D% ben thterms of dual Jacobsthal quaternion seque(@g) and the dual
Jacobsthal-Lucas quaternion sequeiibg), respectively. Then, we have

D} 1Dy (DD?=( "2 X1+ i+ 5j+ 7H): (2.36)

D} D)., (Dl)2=( 2)" 13%(1+i+5)+ 7K): (2.37)

n 1=-ntl



Proof. (2.36):

D} 1Dp.; (Dp)2=

and @.37:

D) D), (Dh?

n+1

(I 1Ine1 )

+i (Jn 12 Jndns 1)

+ ] (\]n 1\]n+ 3 2~]an+ 2+t J§+ 1)

+ k(Jn 1Jn+ 4t Jn+ 1Jn+ 2 2Jn\]n+ 3)
(I 1ne1 D)

+i (Jn l~]n+ 1 Jr%)

+ 5j (Jn 1\]n+ 1 Jr%)

+ 7k(Jn 1Jn+ 1 ‘]r% )

( D"2" YA+ i+ 5)+ 7K):

(in 1jm1 j3)

+i(jn 1jn+2 jnjn+1)

+i(in 1jne3 2jninr2+ j2eq)
+k(jn 1jn+4+ jn+1jn+2 2jnjn+3)
(in 11 J3)

+i(jn 1jne1 3

+5j(jn 1jme1  J2)

+7K(jn 11 J2)

( 2" 1321+ i+ 5]+ 7K):
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where identities of Jacobsthal numbers and Jacobsthal-Lucas numbers as follows:

Jmdn 1
jmin 1 Jm 1in=(

were usedZ%7] and [28].

Im 1 =(

D"2" Y ny Jne2= Jnert 20y
2" 132jm m Jne2= jnert 2jn

O

Theorem 2.10. (Catalan's Identity) LetDﬂ, andD}, ben thterms of dual Jacobsthal quaternion seque(@g) and the dual
Jacobsthal-Lucas quaternion sequeiiBg), respectively. Then, we have

D‘r]1+rD‘r]1 r (D‘r]1)2:
Drj1+rD£1 r (Drjw)zz
Proof. (2.39:

DP]1+r DF]1 r (D%)z =

and @.39:

Dhi Dy ¢+ (DR)?=

( 2" "PA+i+5j+7K):

( 2" "32j2(1+i+ 5]+ 7K):

(Jn+rJn r Jr%)
+i[(~]n+r~]n r+1
+( NN
+ ] [(Fnerdn 12
+( Jntre2dn o
+K[(In+rdn r+3  Jdndn+3)
+( Jntr+3dn r Jn+3‘]n)]

( 2" "J(A+i+ 5]+ TK):

JIndn+ 1)
Jn+ 1~Jn)

JIndn+ 2)
Jn+ ZJn)]

(nerdn v J3)
+i[(jn+rjn r+1
+j[(jn+rjn r+2
+K[(jn+rin re3

( 2" "3RI+ i+5j+ 7K):

j_nj_n+ l) + ( j_n+ r+ 1j_n r
Jnint2) +(intr+2in r
Jnt Jne3) + (neresjn ¢

(2.38)

(2.39)

jne1in)]
jn+2jn)]
jn+3in)]
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where identities of Jacobsthal numbers and Jacobsthal-Lucas numbers as follows:
Iirdn v Indn= (" rJrZ
joerin r dnin=( 2" r323r2:

were usedZ9). O

3. Conclusion

The difference between the Jacobsthal and the dual Jacobsthal quaternions originated from the quaternionic units, i.e., the
guaternionic units for the Jacobsthal quaternion are

2= j2=K= 1 ij= ji=k jk= kj=i; ki= ik=]j
whereas for the dual Jacobsthal quaternions they are
2= j?2=K=ijk=0;ij= ji=jk= kj=ki= ik=0:

The set)p forms a commutative ring under the dual Jacobsthal quaternion multiplication and also it is a vector space of
dimensions four on R and its basis is the fskt; j;kg. The interesting property of dual Jacobsthal quaternions is that by

their means one can express the Galilean transformation in one quaternion equation. Since the multiplication and ratio of two
dual Jacobsthal quaternio@§1 andD;? is again a dual Jacobsthal quaternion, the set of dual Jacobsthal quaternions form a
division algebra under addition and multiplication. There have been several studies on curve theory and magnetism by using
the isomorphism between dual quaternion space and Galilean §da&milar applications for dual Jacobsthal and dual
Jacobsthal-Lucas quaternions can be applied to these areas.

Galilean transformation expressed by the dual four-component numbers shows the linkage between the space and time exists in
the Newtonian physics. Moreover, it may have a considerable heuristic value for the study of the underlying mathematical
formalism of physical laws. This study llIs the gap in the literature by providing dual Jacobsthal quaternions.
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Abstract

In the early 2000s, the geometry of a one-parameter family of generalized complex number systems was studied
(Math. Mag. 77(2)(2004)). This family is denoted by Cy. It is well known that C, matches up with the elliptical
complex number system when p is any negative real number. By using this system, Ozen and Tosun expressed
the elliptical complex valued trigonometric functions cosine, sine and p-trigonometric functions p-cosine, p-sine
(Adv. Appl. Clifford Algebras 28(3)(2018)). In this study, we introduce the remained elliptical complex valued
trigonometric and p-trigonometric functions. Also we de ne the corresponding single-valued principal values of

the inverse trigonometric and p-trigonometric functions by following the similar steps given in the literature.

Keywords: Generalized complex numbers, p-trigpnometric functions, Elliptical complex numbers.
2010 AMS: 97F50, 33B10

1. Introduction
The generalized complex numbers were introduced by Yagldmdin the following:

z=x+1ly (xy2R); 1°=1g+ p (;p2 R)

wherel denotes a formal quantity which is subject to the relation indicated above.
In [2], Harkins studied the geometry of a one parameter family of generalized complex number systems. In this one
parameter familyg = 0 andl?= p2 R. Itis denoted by

Cp= x+ly : xy2R;1?=p; p2R :

In the special casp < 0, C, corresponds to the set of elliptical complex numbers. Let this set be deno@gl byhat is,
Cp = x+ly : xy2R;I1?=p; p2R

Forzy = (xy+ ly1), z2 = (%2 + ly2) 2 C, , addition and multiplication are de ned by

n+z = (Xt ly)+(xe+ly2) =(xe+ x)+ [(y1+ ¥2)
uz (X2 + pyry2) + | (Xey2 + X2y1)

As itis well known,C, is a eld under these two operation2|[
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On the other hand, the p-magnitudezef X+ 1y 2 Cp iskzk, = P X2 py?. As aresult of this case, the unit circle@,

is an Euclidean ellipse which is given by the equatidn py? = 1. Specially, ifp= 1 this ellipse matches the Euclidean unit
circle [2].

Letz= x+ ly be a number irC, . This number can be expressed with a position vector (see Figi)teThe arc of ellipse
between this vector and the real axis determines an elliptic apglehis angle is called p-argument of

Figure 1.1. Elliptic angle inCp

On the other hand, the p-trigonometric functions p-cosine, p-sine and p-tangent are deGyedsis follows PJ:

pﬁ
co(dp) = €Os Gp jpj (1.1)
sing(dp) = Fﬁsm dp Jpi (1.2)
_ sinp(gp) .
t = P . 1.3
any (dp) 008, (ap) (1.3)

There can be found some interesting studg&sel[5, 6, 7, 8, 9, 10, 11, 12] on the generalized complex numbers and elliptical
complex numbers in the literature.

Recently,Ozen and Tosun have extended the trigonometric functions cosine, sing-tagdnometric functionsp-
cosine,p-sine to the elliptical complex variable3][ The functionscos sin, cos, andsin, of an elliptical complex variable
| p= X+ 1y 2 Cp are given as in the following

cos(jp) = cos(x)cosh yp ini Ip]_'—p_sin(x) sinh yIO ioi (1.4)
1P

sin(j p) = sin(x)cosh yp il + Ip;cos(x) sinh yp ioi (1.5)
1Y

€05 (j p) = cos(X)cosh(py)+ Isiny(X)sinh(py) (1.6)

Sinp(j p) = sinp(X) cosh(py)+ I%cosp(x) sinh(py) 1.7

in which casej p is called elliptical complex angle. Also, these functions hold the following relatigns [
. P —
co$(jp) = cosjp jpj
o N T
sinp(j p) = ﬁsm jp Ipi

Let the set of generalized complex numbers be showed@dtin the casd?= ¢ rl r2 4q< 0 . Thanks to Yaglom
[1], it is known that there is an isomorphism between theCzeaind the se€ as in the following:
p:Cs! C

p__
ap+ byl ! p(ag+bil)= & %bl + % 49 r2 i
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If this isomorphism is restricted to the set of elliptical complex numbers, the following isomorphism
p :Cp ! C
p__
a+bl! p (a+bil)=a+iby jpj

is immediately written by considering= 0andq=  p,Here the statemerﬁ)tjﬁ represents the positive square root of the
positive numbejpj. Throughout the paper the statemenitpj will be used in this sense.

Theorem 1.1. [13] For the elliptical complex valued sine and cosine functions, the equalities
L sin(p (j p))= p (sin( p))
2. cos(p (j p))= p (cos(j p))

are satis ed wherg p= x+1y2 Cy .

The next two theorems, which reveal that the elliptical complex vapurijonometric functiongos, (j p) andsing (j p)
are surjective, can be given as consequences of the last theorem.

Theorem 1.2. [3] For any elliptical complex numbey , = a+ Ib 2 Cp, , the equalitycos, | ‘5 = yp is satis ed by the
elliptical complex angles

e SR
|,l§: Arg’(}ul;lvk) . Ilnjuk |ka; K= 12
1P p
!
. . B . . p T . . p T . 2
where Y + ivy;ux + ivo 2 C are the complex numbers derived from the expressiat ib jpj + atib jp 1.

Theorem 1.3. [13] For any elliptical complex numbey , = a+ Ib 2 C,, , the equalitysing cg = yp is satis ed by the
elliptical complex angles
Argr(}\,{(;nk) N IInj\,{(+ |th; k= 1.2

1P p

k —
Cp—

r !
2

whereV, + it ;b + it 2 C are complex numbers derived from the expressibnaIO jpi+ibjpi + 1 ap jpi+ ibjpj

Note that the last three theorems will be used to obtain single-valued principal values of the inverse cosineosine,
and p-sine functions in Sectio.

Finally, we need to emphasize the principal square root of a complex number=Lrefl be a complex number given by
principal argument p < j  p inthe polar form. As it is well-known in the literature, the principal square roatisfde ned

as z= Fe'lf; b< 'f E. We will use the statement "principle square root” in this sense throughout the rest of the paper.

2. Main Results

In this section, we obtain the elliptical complex valued tangent, cotangent, secant and cosecant functions. Then we de ne the
corresponding single-valued principal values of the all inverse trigonometric functions by following the similar stefs in [
Finally, we will repeat the same fgr trigonometric functions.

2.1 Results Related to Elliptical Complex-Valued Trigonometric Functions
In this subsection, rstly, we can give the following theorem by using the equations (1.4) and (1.5).

Theorem 2.1. Tangent, cotangent, secant and cosecant functions of an elliptical complex varjgble+ ly 2 C,, are given
as in the following:

. p ryry
o sinip) sin(29) 1 _ shh2y e
1. tan(j p)= —5-5 = p="t1P= Pia
G cof(j p) ~ cog29+cosh 2y jpj i cog2+ cosh 2y
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2 COt(' )_ cos(j p) _ sin(2x) cog2x)+ cosh r_2\yp inj | 1 sinh 2yp ip cog2x)+ consh 2yp i
. V% Sni0) = 7 sik@grsn 2 in inl Sir(20+ sin? 2y jp
. 2cogx)coshy jpj sin(x)sinh 'y jpj
3.sedjp)= —4—~ = p— + | p p—,
COE(J p) cog2x)+ cosh 2y jpj JP) cog2x)+ cosh 2y jpj
. 2sin(x)coshy jpj cogx)sinh y jpj
4. cs0j p)= =4~ = p— I p p— :
sm(] p) cosh 2y jpj cog2x) ipicosh2y jpj cog2x)

Proof. We will prove the rstitem. The proofs of other items can be similarly completed.
1. By consideringpj = p and using some well-known trigonometric and hyperbolic identities, we get

) sin j p
t = —F
anle CoSsj p
. [ N P
sin(x)cosh 'y jpj + Ipﬁcos(x)smh y ipi
"~ cos()cosh y jp | P sin(x) sinh T
sin(x) cos(x) cosi? yp il sint? yp iol | sinh yp ipi cosh yp ipi cof(X)+ si?(X)
= P— ) p— *tP=— P— : P—
co@(x)costt y jpj +siP(X)sintt y jpj iPico2(x)costt y jpj +siP(X)sintt y jpi
. p— p—
2 sin(x) cos(x) |2 sinh 'y jpj coshy jpj
= 5 P— ) p— *tP=—=7 P— : P—
co@(x)cosit y jp +siP(X)sintt y jpi ipi €co2 () costt y jpj +sirP(X)sint? y jpj
. p—
sin(2x) 1 sinh 2y jpj
= p—tlP—= p—"
cos(2x)+ cosh 2y jpj IR cos(2x)+ cosh 2y jpj
Lemma 2.2. For the elliptical complex valued tangent, cotangent, secant and cosecant functions, the equalities

1. tan(p ( p) = p (tan(j p)),
2. cot(p (j p))= p (cot(j p)),

3. sedp (j p)) = p (sedj p)),
4. cso(p (j p) = p (csd p))-
are satis ed where is the aforesaid isomorphism afgy = x+ ly 2 Cp, .

Proof. We will prove the rst and third item. Other items can be similarly proved.

1. Itis very easy to see

p (tan(j p))

02 3 2 o p__ 31
i sinh 2y jpj
sin(2x) _— 5+Ip;4 y Jplpi 5A
cos(2x)+ cosh 2y jpj 1P cos(2x)+ cosh 2y jpj
3

2 . P
sin(2x) g, . 1P, Sinh2y jp
p—>tIP—= |pn P —
cos(2x)+ cosh 2y jpj 1Y cos(2x)+ cosh 2y jpj
2 3 2  p 3
4 sin(2x) 5,4 oM Ip) 5.
cos(2x) + cosh 2yP ipi cos(2x) + cosh 2yp ipi

3
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On the other hand, according to the theory of complex trigonometric functionsl(4eks] for more details on the theory of
complex trigonometric functions), it is clear that

p
tan x+iy jpj
2 3 2 3

- p T .
sin(2x) 5.4 sinh 2y jpj

cos(2x) + cosh 2yp ipi cos(2x) + cosh 2yp ipi

tan(p (i p))

= 4

So, the proof is completed.

3. Similarly above, we have the equalities

02 - hpi 3 2 0 hpi 31
. 2cogx)cosh y jpi 2 sin(x)sinh y  jpj
p(sedjp) = p @ p—o+Ip—4 p—5A
cos(2x)+ cosh 2y jpj IP cos(2x)+ cosh 2y jpj
2 p__ 3 2 p 3
2cogx)cosh y jpj 2 p— sin(x)sinh y jpj
cos(2x)+ cosh 2y jpj i1y cos(2x)+ cosh 2y jpj
p_ 3 2 p__ 3
2cogx)cosh y jpj 2sin(x)sinh y jpj
- 4 — 544 P 5:
cos(2x)+ cosh 2y jpj cos(2x)+ cosh 2y jpj
and
) P —
seqp (jp) = secx+iy jpj
2 p__ 3 2 p__
2cogx)cosh y jpj 5.4 2sin(x)sinh y jpj
= + i
cos(2x)+ cosh 2y jpj cos(2x) + cosh 2yp il

Thus the desired equality holds.
O

Theorem 2.3. For any elliptical complex number, = a+ 1b 2 Cp , the equalitiesinj p = y p, cosap = y p, tanby = y p,
cotgp = Y p. Sedp = Y p andcsadp = y p are satis ed by the principal elliptical complex angles

1. j p= Arg(s +iw) I%%

2. ap= Arg(e+ ik) Iﬂf%r’

Arg g P o i—p-2a In —_Jgobt? e i—p-2a
_ 1 20 jp+a2 pk2 1 20 jpi+a? pb2 1 20 jpi+a? prg 1 2 jpi+a? pk2 |
3. bp— 2 + I = ’
2 jpi
Arg g£b2+a2 p_2a In A£b2+a2 Pﬁa
_ 1+2br4jpj+a2 pb2 1+2br‘jpj+a2 pb2 1+2br‘jpj+a2 pt:ig1 1+2b jpj+a2 pb2 .
4. gp— 2 + | P y
2 jpi
5. gp= Arg(h + iz) | N+ iz ;;p'jzl;
6. dp= Arg(W+ if ) |#IT jTJijJ;
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wheres + iw 2 C; et ik 2 C; h+iz2,CandW+if 2 Crare the principal complex values derived from the gxpressions

_ — 2 o 2 r

ia+ibpjpj + 1 a+ibpjpj , a+ibpjpj+ a+ibp]pj 1, ﬁ%+ W 1 and
!

r

1 —p—o+—P— | respectively.

arib jp - arib i

Proof. Now, we will show that the rst and third equalities are satis ed. Similar steps can be followed for the other equalities.
1. By considering Theorerh.1and the theory of complex trigonometric functions (sk£ [L5] for more details), we can
write

sin(x+ ly)=a+1Ib , p (sin(x+1ly))=p (a+Ib)
,sin(p (x+1y))=p (a+t Ib)
p p

. sin x+iy jpj =a+ib jpi

. P — P —
, arcsin a+ib jpj =x+iy jpj
r !
— 2 N
, ilog i a+ ibpjpj + 1 a+ ibpjpj = X+ iypjpj:

The purpose of us is to get unique solutions ¥Xandy. To do so, we use the principal value of arcsine function. It is
determined by employing the principal value of the logarithm function and the principal value of the square-root function.
By keeping thesersituations in mind, let us denotesby iw the principal complex value derived from the expression

. P — . P 2
i a+ib jpj + 1 a+ib jpj . Then we have

iLog(s + iw) = x+ iyIo ipi:
This equation yields the followings

i(Injs + iwj+ iArg(s + iw)) = x+ iyp ipi;
Arg(s +iw) ilnjs+iwj = x+iy jpi:

Then we get the unique solutions foandy as

x= Arg(s +iw); y= Inis :WJ:
1P
Thus, we can conclude
j p= Arg(s +iw) IInJS :WJi
i1y

3. Similarly above, we can write

tan(x+ ly)=a+1lb , p (tan(x+1y))= p (a+ 1b)
, tan(p (xt1y))=p (a+ lb)

S P
, tan x+iy jpi =a+ib jpj

, arctanatib jpj =x+iy jpj
0 [ R 1
i i+ a+ib jpj P
. 5log@————p——A=x+iy jpi:
2 i a+ib jpj
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We aim to obtain the unique solutions foandy. To do so, if we use the principal value of arctangent function which is
determined by employing the principal value of the logarithm function, we have

0 p_ 1
i ati 1+b jpi P
éLog@ : p—A=x+iy jpi:
ati 1 b jp
This equation yields the followings
0 p 0 p_ 11
i a+i 1+b jpj a+ti 1+b jp p
—@n p— +iAg@ —AA = x+iy jpi;
2 a+i 1 b jpj ati 1 b jpj
Arg PP e i—p-2a In o & i p2a
120 jp+a2 pt? 120 jp+a2 pb? . 1 20 jpi+a2 pb? 120 jp+a2 pt? P —
+i = x+iy jpi
2 2
In this case, we obtain the unique solutionsX@ndy as follows
Arg o e i—p22 In o i—p22
120 jp+a2 pk? 120 jp+a? pb? 1 20 jp+a2 pk? 120 jp+a2 pt?
X= 3 VY= P— :
2 jpj
Therefore, we can conclude
Arg Yo @ i—p2a | ypr? o i_po
b. = 120 jp+a® p? 1 2b jpi+a? pr? o 20" jpi+a? p?2 120 jpira? pb? .
p= p— :
2 2" jpj

By taking into consideration Theoretn3, we can give the following corollary.

Corollary 2.4. For any elliptical complex numbey, = a+ Ib 2 C, , the principal values of the inverse trigonometric
functions:

Arcsin(yp) = jp
Arccos(yp) = ap
Arctan(yp) = by
Arccot(yp) =
Arcsedyp) = Qp
Arccsdlyp) = dp

can be expressed.

2.2 Results Related to Elliptical Complex-Valued p-Trigonometric Functions
In this subsection, rstly, let us de ne the elliptical complex valupdrigonometric functions:

sinp(i p) _ C . Cos(p) _ 1
cos o) 2P0 P Gy c0%( o)

by means of the elliptical complex valugetrigonometric functions

coty(j p); =se¢(j p); ) = csG(j p)

Sinp(j p
. P — . .
Cco5(j p) = €cos jp jp = cos(X)cosh(py)+ Ising(x) sinh(py)
and
. i . 1 .
sinp(j p) = pﬁsm jp ipi = sing(x)cosh(py)+ Iacosp(x) sinh(py)
givenin (1.6) and (1.7).

As mentioned earlier in Section 1, real-valued p-trigonometric functions p-cosine, p-sine and p-tangent are de ned in
[2]. There is no such de nition for neither cotangent function, secant function nor cosecant function. While the elliptical
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complex-valued functionsos,(j p), siny(j p) andtary(j p) are extensions of real-valued functions p-cosine, p-sine and
p-tangent, we can not say the same for the elliptical complex-valued functity($ p), seG (j p) andcsg (j p). So, to use

the notationsos, (j p), sinp(j p), tany (j p) and to use the statemerp-trigonometric function” are very natural for these
functions. But, the reason of maintaining this situation for other funcoj p), seg(j p) andcsg (j p) is not obvious.

This reason is based on the relationships of these functions with the elliptical complex-valued trigonometric functions cotangent,
secant and cosecant. Now, we give the next theorem including these relationships.

Theorem 2.5. For any elliptical complex anglg, = x+ ly 2 C,, , the following equalities hold:

_ o1 _ s sinh2yp)
Ltam(jp)= P=tan jp JB = Gogme cosiayn * ! peos(0+ peosiam

_ sinp(2x) (cos(2X)+ cosi2yp)) + sinh(2yp) (cosp(2x)+ cost(2yp))

2. coty(j p)= jpicot jp jpi

sinp2(29  LsintP(2yp) (sinfP(2yp) psing®(29)
, P o
— npl _  2co(x) cosiyp) 2sinp(X) sinh(y p)
3. 56 p)= PIgSeC i p 1P = cogiorcostioyn | costag+ costizym
P — P . b — _  2psinp(x) cosiyp) 2cos(X) sinh(yp)
4.¢sq(ip)= " JpicsC jp IP = ooy con) t | cosiayn con 29

Proof. We will prove the second and last items. The other items can be proved similarly.
2. Itis easy to see the equality

. p T .
cos(jp) _  COSip IP

P— = P
05 ( —— = jpjcot jp jpi
sing (j p) p%sin j pp ipi '

coty(j p) =

On the other hand, sinqq)p jpi= N ipi+ IyIO i,

2 - p_ [(J— . . - P 3
P p__ P, Sin 2X jpi cos 2x jpj + cosh(2yjpj) | sinh(2yjpi) cos 2x jpj + cosh(2yjpj) 5

jpicot jp ipi = ip e — p— e —

si? 2x jpj + sint?(2yjp) ipi si? 2x jpj + sint?(2yjpj)

. p— p— - _
_ Plssin 2C i cos 2¢ jpj +cosHyip) | sinh(2yjpi) cos 28 Tp + cosh(2yipi)
pt— sir? ZXPE + sint? (2yjpi) ipi pr— sir? 2xpjﬁ + sink?(2yjpi)
jni i

Sinp(2x) cos(2x)+ cosh(2yp) . Isinh(2yp) cos(2x)+ cosh(2yp)

sing?(2x)  $sint? (2yp) sini? (2yp)  psinp? (2x)

can be written from the second item of Theor2rh Then, we can immediately obtain the desired equality.

4. Itis not dif cult to nd the equality
P E—— L == idesc iy i :
P sing (i p) p%sin j pp ini sin j pp ipi " .

Also, from the fourth item of Theorem.1
2 . p_ . P
pﬁ4 2sin X jpi coshyjpj) 2l cos X jpi sinh(yjpj)

p— . P —
Ipesc jp 1P — p— P= — o pu—
cosh(2yjpj)) cos 2X jpj JPI cosh(2yjpj) cos 2x jpj

L P o —
ZJDJP%SIH X jpj coshyjpj) cos xIO ipi sinh(yjpj)
= — 2l
cosh(2yjpj) cos 2K ipi

— P—
cosh(2yjpj) cos 2x jpj

2psiny (x) cosh(yp) .l 2c0%,(X) sinh(yp)
cosh(2yp) cos(2x) cosh(2yp) c€os(2x)
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can be written by keepinjgpIO ipi = xIo ipi+ Iyp jpi in mind. From above, we immediately get

R . P— _ 2psing(x) cosh(yp) 2c0% (X) sinh(yp)
oSG p)= " Jpicsc jp 1Pl = cosh(2yp) co§3(2x)+ cosh(2yp) €0%,(2X)°

Theorem 2.6. For any elliptical complex number, = a+ Ib2 C;, , the equalitiesos, (I p) = y p, Sinp(Cp) = ¥ p, tap (Gy) =
Y p coto(Lp) = yp. 5€G(Dp) = ypandcsg (i p) = Y p are satis ed by the principal elliptical complex angles

1.1 0= Argl.ilv) + IIn]u+ |v1;

ip p

2. Cp= Arg\@t)_i_ ||njV+ItJ;

ipi P
o2 p2? 220 5 2 202 2P
Arg pa® pcbo+1 i a  jpj n paf p’h*+l 4 a jpj
_ pal+ p2b2+1 2bjph  pal+ p?bZ+1 2bjpj pa?+ p2bZ+1 2bjpj pa+p2bZ+1 20jp |
3.Gy= b y s ,
2 jpi
) P ) P
Arg a®+pt? p +i 22 jpj I a2+ p? p +i 2a jpj
a2+ ptP+2bprp a%+ pbP+2optp + a2+ pb2+ 2bpt p a2+ pb2+ 2bpt p

4 Lp= 2" i 2pj

5. Dp: Argc;ld) + In1c+|dj;

ipi P

. Ager'f Injetifj.

ip

whereu+ iv 2 q V+it 2C,c+id 2 Cande+ if 2 Carethe qyincipal complex valuesg which are derived from the expressions

_ 2 _ . 2 r—.._
avibl joi+ arib jp 1, ia jmeibip + 1 a jmeibi . Pt g 1
0 1 atib jpj
57 .
?@ L+ X, respectively.

pe+ib pPa_+ib
ipi P

Proof. We will show that the rst, third and last equalities are satis ed. Similar steps can be followed for the other equalities.

. . . . . . p T . 2 . .
1. Let us take into consideration the principle value of a+ ib* jpj 1 and calculate the principle value of the
r !

- __ 2
statement a+ ibp ipi+ at ibp ipj 1 . If we show this principle value withi+ iv, Theoreml.2 gives the proof of

this item.
3. By considering Lemma&.2 and the theory of complex trigonometric functions, we can write
1 p— P
tanp(x+ ly)=a+1b pﬁtan X jpi+ly jpi =a+lb

P — P P— P
, tan x jpi+ly jpj =a jpj+Ib jp
P— P P— P
, P tan x jpi+ly jp =p a jpi+lb jpj
P— P P— P
, tanp X jpi+ly jpi =p a jpi+lb jpi
, tan x jpi+iyjp =a jpj+ibjpj
pﬁ . . . p.i . . .
, arctana jpj+ibjpj =x jpj+iyjpj
0. p— 1
i i+ a jpj+ibjp p —
o 5l09@——p————A=xjpi+iyjpi:
i a jpj+ibjpj
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To get unique solutions forandy is our aim. To do so, if we use the principal value of arctangent function which is determined
by employing the principal value of the logarithm function, we obtain

P— !

[ a +i(l+b
Tlog 2pP i(1+ bjpj)

p—
=X Jptiyip

2 a jpi+i(1 bjp)
and so
p !
o p? pbR+ 1 i 2a jpj P
2 9 paf+ p2b2+ 1 2bjpj pa+ p?b2+ 1 2bjpj - P+ 1yjp:
From here, the equalities
0 P 0 p_ 11
| @ pa p?+1+i 2a jp @pa2 P2+1 +i 2a jpi o
2 n pa2+ p?b2+ 1  2bjpj + iArg pa2+ p2b2+ 1 2bjpj = X Jptlylp
a2 2b2 1 Zapﬁ a2 2b2 1 Zapﬁ
Arg pa_pot +i L) In —_p& pb’+ +i ipi

pa+ p?b2+1 2bjpj pa2+ p2b?+1 2bjpj ) pa+ p2b?+ 1 2bjpj pa2+ p?b2+ 1 2bjpj
+ 1

2 2

can be written. Thus we nd the unique solutions kaandy as follows

p—
X Jp+iylp)

Ar pe p??+1l i 2a jp In pe p?*+1 i 2a jpj
9 pa2+ p?b2+ 1 2bjpj pa+ p2b2+1 2bjpj pa2+ p?b2+1 2bjpj pa2+ p?b2+ 1 2bjpj
2 jpi 2jpj
Therefore,
212 P 212 P
Ar pa? p?b?+1 +i 2a jpj In pa p?b?+1 +i 22 jpi
9 @ p2+ 1 2 pa+ P22+ 1 2hj pa+ p202+ 1 20j e+ P22+ 1 2hj
Go= P

2 ipi 2jpj
can be concluded.
6. By considering Lemma&.2 and the theory of complex trigonometric functions, we can write

P — p— P
CSGp(x+ly)=a+lb jpicsc X jpi+ly jpi =a+lb
p— p— a b
, o cscx jptly jp = p=+tIp—=
1Y 1Y |
p— p— a b
) p cscx jptly jpi =p p=+Ip—=
i1y P
p— p— a b
, o Cscp X jpitly jpi =p Pp=+lp=
i1y 1Y
p— a .
, CsC X jpjtiyjpj = p—=+1ib
| i1y
a . P—
, arcesc p—+ib =x jpi+iyjp
0 1Y 1
U i D
, iIog%P 1 1 5+ ! E:x ipi+iyjpi:
P +ib P +ib
ipi ipi

The aim of us is to obtain unique solutions foandy. For this reason, we use the principal value of arccosecant func-
tion. It is determined by employing the principal value of the logarithm function and the principal value of square-root



On the Trigonometric and p-Trigonometric Functions of Elliptical Complex Variables — 153/ 154

fiinction. By considering thege cases, let us denote-byf the principal complex value derived from the expression

s
%} 1+ L& Inthis case, we have
pa_+ib pa_+ib
I I

p __
iLog(et+if)= x jpj+iyjpj:
This equation yields the followings

i(Inje+ ifj+ iArg(e+ if))

Xp Ip+yIp);
Arg(e+if) ilnje+ ifj

X jpi+ iyjpi:
Then we get the unique solutions foandy as
= Ar ((ilf); y= Inje+ Ifj:
1Y P
Thus, we can conclude

_ Argp(eilf) . Inje+ Ifj:
1P p
By taking into account of Theore6, the following corollary can be given.

ip O

Corollary 2.7. For any elliptical complex number, = a+ Ib 2 C, , the principal values of the invergetrigonometric
functions:

Arccog(yp) = Ip
Arcsim(yp) = Cp
Arctarp(yp) = G
Arccoty(yp) = Lp
Arcseg(yp) = Dp
Arccsg(Yp) = ip

can be expressed.

3. Conclusion

In this paper, the trigonometric ar trigonometric functions of elliptical complex variables are considered. Also, the
corresponding single-valued principle values of the inverse trigonometrip atrdgonometric functions are de ned.

Inthe casep= 1, elliptical complex numbers correspond to complex numbers. As a result of this case, the elliptical
complex valued trigonometric functions can be seen as generalized form of the complex valued trigonometric functions which
have important roles in many areas of science.

In the future, the results obtained here may be used as a valuable tool in many areas of science just like in the case of
complex valued trigonometric functions.
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Abstract

Roopaei in [13] has introduced some factorization for the in nite Hilbert matrix and the Ces aro matrix of order n
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1. Introduction

Letw be the space of all real-valued sequences. The spammsists all real sequences ( xk)fz 02 wsuch thaﬁﬁ: olXP< ¥
which a Banach space with the norm

¥
kxk: |, = & ixdg® <¥;

wherel p< ¥,
Let T is a matrix with non-negative entries, assumed to mgipto itself and satis es the inequality

KT xk- kak~p;

p

whereK is a constant which is not dependingxfor everyx 2 *,. The constanK is called an upper bound for operafbrnd
the smallest possible value Kfis called the norm of .
For an in nite matrixA and sequence spaXe we de ne the matrix domaii(X) as the set

A(X) = fx2w:Ax2 Xg

which is also a sequence space. In this study, we use the nofgtiom the matrix domain associated with the mathxon the
spaceX = "p. For an invertible matrix, the matrix domairh, is a normed space witkxka, := kAxk: ;. There are several

new Banach spaces who have introduced and studied by using matrix domains of special lower triangular matrices. For more

references we encourage the readers to some pdp&slf, 18] and textbook 2]. Recently, several mathematicians have
computed the bounds of operators on some matrix domairgs iri[12, 15, 16, 17, 18, 19].
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Cesaro matrix. The in nite Cesaro operator is de ned by

1 :

c= 1 O K I
' 0 otherwise

for all j;k2 N. It can be represented by its arrays as

0 1
1 0 0

1=2 1=2 0
C=R1=3 13 13

This matrix has thép-normkCk: = pil. The inequality
!
P
id p °
oht1 p 1

7 Qo
Qo5

0

=
1

which is called Hardy's inequality is resulted from the boundedness cirGexperator.
The matrix domain associated with the @esmatrix is the set

( . e )
Cp = X=(x)2W:d & —— <¥ ;
20 Ko

which is a Banach space with norm

1
_ ol 1
d X 8
§0j+1

kaCp =

T Qo
=~

0

The Cearo sequence spa€g is studied in L0, 20]. Recently, Roopaei et al1f] have investigated the general c&k its
inclusion relations, dual spaces, matrix transformations as well as computing the norm of operators on this matrix domain in
thecasel p< ¥.

Generalized Cesaro matrix. LetN 1 be a real number, the generalized &esmatrix,CN = ( c'j\‘;k), is de ned by

1 -
M= pn 0 k]
X 0 otherwise

and has thé,-normkCNk- | = pil ([6], Lemma 2.3). That is

0 1
0
0
1 :
2+

RZ|-

0
1

N

ot
Z|
N
Z|

T
1
m

Z|

| _

Note thatC! is the well-known Cesro matrixC. For more examples

0 1 0 1
1=2 0 0 1=3 O 0

) 1=3 1=3 O 1=4 1=4 O
C?=Bl-a 14 1=4 and C=B1=5 1=5 1=5 1

Nl
.+
Z
Nl

The sequence space associated with the generalizedddweatrix is the set
( . P )
Xk
C(N;p = X=(X)2w: <¥ ;

ol*N

Qo
w Qo

0
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who has the norm

kxke(n:p) =

Qo«
T Qo

o Oj+N

Note that forN = 1 we use the notatio@, instead ofC(1; p).
Recall the in nite Hilbert matrix which is de ned by = ( h;) = ﬁ for all non-negative integerpandk and has the
matrix representation

1 1=2

1
1=3
1=2 1=3 1=4
H=B1=3 14 1=5 :

According to B] Theorem 323, the Hilbert matrix is a bounded operatot pwith

p
ki, = ———:
P sin(p=p)
It has proved by Bennet§] that the Hilbert operator can be factorized of the fdine BC, whereC is the Cearo matrix
andB = ( bj,) is de ned by

b = k+1
T G+ k+ D(j+k+2)

(5ik=0;1;:0): (1.1)

The matrixB is also a bounded operator og ([5], Proposition 2), an#Bk- , =
1=p+ 1=p = 1.

More recently, Roopaei inp, 14] has generalized Bennett's factorization to introduce several factorization for the Hilbert
matrix. He has showed thit can be presented of the fodsh= BNCN, whereCN is the generalized Cas matrix of the form:

ﬁr?(pr)' wherep is the conjugate op i.e.

Theorem 1.1([13], Theorem 2.2) The Hilbert matrixH, admits a factorization of the foritd = BNCN, whereBN = ( b?l;k) has
the entries
k+ N

bN =
W ke )+ k2

(j:k=0;1;::0): (1.2)
and is a bounded operator op with bounds
p N Np .
—— kB%, ———:
p sin(p=p) * p sin(p=p)
. _ _ o
In particular, for N= 1, H = BC andkBk 0= Q"—p S CEDR

2. Norm of Hilbert operator on generalized Ces aro space

The main purpose of this section is computing the norm of Hilbert operator on the generalized Spegce. Meanwhile, we
introduce some factorization for the Hilbert matrix.

In sequel, we need the de nition of another Hilbert matt, who has the same norm as the Hilbert matrix and is de ned
by
1

1 _
M= j+k+2

(J:;k=0;1;::2); (2.1)
or
0
1=2 1=3 14

, B1=8 1= 15
H*=B1=4 1=5 1-6 :



Norm of Operators on the Generalized Ces aro Matrix Domain — 158/ 161

Theorem 2.1. The Hilbert operator is a bounded operator froginto the generalized Cag space ¢N; p) and
‘ pPp .
kHk p:C(N;p) sin(p=p)

Proof. We have

~ KHxken:py _ KCNHxk: |
ka‘p;C(N;p) - XSZUE ka‘p _xqu kxk-

kCNHk:,  pp csqp=p):

p

Theorem 2.2. The Hilbert operator is a bounded operator from the generalizeda@espace CN; p) into " and
Np .

p sin(p=p)

In particular, the Hilbert matrix is a bounded operator from the @essequence space intg and

p .
p sin(p=p)’

kaC(N;p);‘p

kH ka;‘ p =

Proof. According to Theoreni.1, the Hilbert matrix can be written a$ = BNCN, whereB is a bounded operator 65 and

p N Np .
—r kg% —
p sin(p=p) P p sin(p=p)

SinceCy and’, are isomorphic, hence

KHke kHxk: | kBNCNxk- kBNyk: ,
Nip): sup ———> = sup —— "= sup
(P ec(ip) KKeip  ecp KCNXK, e Kk,
Np
= kB,
 p sin(p=p)
In particular, for the symbadN = 1, CN = C andBN = B, whereB is the factor in the Bennett's factorization of the Hilbert
operator. Now, we have the desired result. O

Theorem 2.3. The Hilbert operator is a bounded operator on the generalizedafdespace and
Np .

sin(p=p)

In special case, the Hilbert operator is a bounded operator on thef@anatrix domain and

__P__.

sin(p=p)

Proof. Let DN =( d}\;'k) beCNBN, whereBN was de ned by the relationl(2). Then

kHKe(n; )

kHke, =

N - g 1 k+ N

L j§Oi+N(j+k+l)(j+k+2)
k+ N i+1 1
k+1 i+N i+k+2

But, 'ﬂ—'}‘ N andii%,}‘ 1, for all non-negative integelisk. Hence,czlg\;‘k Nhjl;k which results in

p

kDVk- NkHk = N——:
P sin(p=p)

p
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The mapx! CNx shows that the two sequence spa€éy; p) and p are isomorphic, hence

kHXkc(N-p) kCNHxk-
kKHkcinpg = Sup ————— = —
(P eciip) Kkepvip  ecip KCWXK
kDNCNxk- , kDNyk: |
= sup = sup
xecNp KCMXk, oy kyke,
Np
= kDVk, ——=:
® sin(p=p)
In particular, forN = 1,CN = C andDN = H* which results the desired result. O

Corollary 2.4. The Hilbert operator is a bounded operator from the generalizedaespaceC(N; p) into Cesro sequence
space G and

Np .
sin(p=p)
In particular, the Hilbert matrix is a bounded operator on the @esmatrix domain and

P
sin(p=p) '

kHKe(n;p):cp

kHkg, =
Proof. Let PN = ( p'j\‘;k) beCBY, whereBN was de ned by the relationl(2). Then

1 k+ N

i
N = 3

P = QI+ ke D(j+ k+ 2)

_ k+ N 1

k+1 i+k+2
But, ¥*% N for all non-negative integec Hence,p,  Nhi, which results in

kPNk. . NKHk = NP .

P * sin(p=p)

SinceC}) and" , are isomorphic, hence

KHke kHxkc, kCBYCNxk:
iP):C Sup o = P ol
(PG 2ciip) Kkenig  xecvip KCNXK
KkPNyk-
= sup YKy kPN, ———— Np_ :
2, Kyk sin(p=p)

In particular, for the symbadN = 1, CN = C andBN = B, whereB is the factor in the Bennett's factorization of the Hilbert
operator. Now, we have the desired result. O

Similar to the above corollary we have the following result.

Corollary 2.5. The Hilbert operator is a bounded operator from the @®ssequence spacg, into the generalized Caso
space ¢N; p) and

p
kHKc .c(n: !
kavC(N,p) sin(p=p)
In particular, the Hilbert matrix is a bounded operator on the @essequence space and

p .
sin(p=p)

Hke, =
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Corollary 2.6. The Hilbert matrix H, can be represented of the forn=tC PNCN, where P' = ( pl,) is de ned by

N (KEN) gy,
P Grn(jrkrg kS 0L
In particular, for N= 1, kPk-, = p csqp=p).

Proof. By a simple calculatiorPN = CBN. Therefore by applying Theorein1, C PNCN = H, which proves the factorization.
Note that forN = 1, P! = P= H1, where the Hilbert matrixd? is

1
L= = 1)
hijx [+ k+ 2 (iik=0;1;::0);
and has the norkH'k , = b -

Theorem 2.7. The Hilbert matrix H, has a factorization of the form#+C NANC, where A' = ( a'j\‘;k) is de ned by

N j+1

aj;k:W (j;k=0;1;::0):

In particular, for N= 1, H has the factorization ¥ C AC, wherekAk: /= p csqp=p).

Proof. It is not dif cult to verify that AN = CNB, therefore by applying Theoreth1, C NANCN = H, which proves the

factorization. Note that foN = 1, Al = A= H! and has the norkAk: | = kHlk‘p = ﬁ?;?p) O

3. Norm of Ces aro operator on the generalized Ces aro space

In this section we intend to compute the norm of &esoperator of orden on the generalized Caso space.
For the probability measumaon the interval0; 1], the Hausdorff matrit™ = ( h;), is de ned by

R, : .
hy= o0 kAL @) fdm@) 0 Kk |
I 0 otherwise
Forl p< ¥, by Hardy's formula (], Theorem 216) one can obtain the norm of Hausdorff matrices. These operators are
1
bounded iff &g dm(q) < ¥ and
Z,
1
kak\p: g P dmQ):
0

By insertingdm(q) = n(1 q)" 'dq in the de nition of the Hausdorff matrix, the Cas matrix of orden, C" = ( cT;k) is

8 .
< (n+} t 1 .
vy k 0
= )
0 otherwise

This matrix has thép-norm

n.. - Gn+ HE1=p ),
kC'k-, = Gn+ 1=p)
according to Hardy's formula. Note th&! = C, whereC is the well-known Cesro matrix.

For computing the norm of Caso matrix of ordemn on the generalized Cas matrix domain we need the following
theorem.

Theorem 3.1([13], Theorem 3.2) For n 1, Cesaro matrix of ordern, C", has a factorization of the for@" = R*NCN,
where €' is the generalized Caso matrix of order N and RN is a bounded operator ofy, with

N NG+ HE1+1=p ),
KRNk Gnr i)
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Corollary 3.2. The Cearo operator of ordemn is a bounded operator from the generalized &espaceC(N; p) into sequence
space p and

NG(n+ )G(1+ 1=p ) |

n

kC kC(N?p);‘P (an. l:p )
Proof. SinceC(N; p) and" , are isomorphic, hence according to the TheoBetrwe have

KCke KC"xk: KRPNCNxk:

) sup ———>= sup —————>
(P xecN:p) Kkenp  xecnzp KCMXK,
KR“Nyk- , =
= s gy NG+ DRI 15p),
vy KK, Gn+ 1=p)
Now, we have the desired result. O
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1. Introduction

The notion of a generalized topological space was igtroduced BgAlsin [3]. Let X be any non-null set. A family
m ex{X) is ageneralized topologff] in X if 02 mand = G; 2 mwheneverfG;jt2 Tg mwhereexgX) is a power

2T
set of X. We call the pair(X;m) as ageneralized topological spad&TS) [9]. If X 2 m then the pai(X;m) is called a
strong generalized topological spaceGTS) P]. LetY X. Then thesubspace generalized topolof} is de ned by,
my = fY\ U jU 2 ng and the paifY; ny) is called as theubspace generalized topological sp§2k

Let(X;m bea GTS and X. Theinterior of A [9] denoted byiA, is the union of allmopen sets contained land the
closure ofA [9] denoted bycA, is the intersection of alint-closed sets containingwhen no confusion can arise. The elements
in mare called thenopen sets, the complement ofreopen set is called therclosed set and the complementrofs denoted
by m. Denotef U 2 mj U 6 Og by m[8] and denotd U 2 mj x2 Ug by m(x) [8].

Throughout this papeR;Z;Q andN denote the set of all real numbers, integers, rational numbers and natural num-
bers, respectively. The notatioXs; X4; X5 and Xg are mean the sefs; b;cg;f a; b;c;dg;f a; b;c;d;eg andf a;b;c;d;e; fg;
respectively.

2. Preliminaries

In this section, we remember some basic de nitions and lemmas which will be useful in the development of the next sections.
A subsetA of a GTS(X;m) is said to be annowhere densfs] (resp. mdensd 6], mcodensd7]) set ificA= 0 (resp.
cA= X, c(X A)= X). Ais said to be an-strongly nowhere denset if for everyV 2 it there isU 2 msuch thaty Vv
andU\ A= 0: ThenA s said to be anrmeager(or m rst category) (resp. ms-meageror ms- rst category) set B] if
A= onAn WhereA, is mnowhere dense (resmrstrongly nowhere dense) for all2 N:
In a GTS, every subset of mstrongly nowhere dense setrisnowhere dense and every subset ofteneager (resp.
ms-meager) set istmeager (respms-meager)§].
Let (X;m be a GTS and X: ThenA s said to be ansecond categoryml category) (resp.ms-second category
(ms-1l category)) setq] if Ais notmmeager (respms-meager)A is mresidual(resp.ms-residua) [8] if X Ais mmeager
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(resp.ms-meager).

A GTS(X;m) is said to bantll category(resp.ms-II category if X is mll category (respms-II category) as a subset. A
spaceX is called aBaire spaceBS) [8] if eachV 2 mis of mHl category inX. A spaceg(X; m) is astrong Baire spacésBS) [B]
if Vi\ W\ o\ Vn'g of ml category set for alV1;Vs; :::; Vi 2 msuch thavy\ o\ 2\ V, 6 0. Also, every sBS is a BS[.

De ne n¥ = 7 (U\ UL\ UL\ i\ U) jUSUS UL 2 mgandn??= fA - X Alis of mil category sej [f 0g [8].
Thenm n7 andm nv?if (X;m) is a Baire space]. Also, ¥ n??if (X;m) is a sBS 1L1].

A space(X; m) is called hyperconnecte@][if every non-nullm-open subset ok is mdense inX: A GTS (X; m) is said to
be ageneralized submaximal spacg if every mdense subset of is amopen set irX:

The following lemmas will be useful in the sequel.

Lemma 2.1. [8, Property 2.3] Le{X;m) be a GTS and X be amnowhere (respm-strongly nowhere) dense set. Then the
closure ofA and any subset & aremnowhere (respm-strongly nowhere) dense sets.

Lemma 2.2. [8, Property 2.5] Le{X;m) be a GTS and X: Then the following hold.
(a) If Ais s-meager then it is meager.

(b) If Ais of Il category then it is of s-Il category.

(c) If Alis s-residual then it is residual.

" . S .
Lemma 2.3. [9, Proposition 4.7] Le{X; m) be a GTS. If, is ammeager set for eaalh2 N; then .,y F, is ammeager set
in X:

Lemma 2.4. [9, Theorem 5.3] Le{X; m) be a GTS. The following are equivalent.
(a) X is Baire.

(b) If A6 0 is mresidual inX; thenA is mdense inX:

(c) If B6 X is mmeager inX; thenB is mcodense irX:

(d) EveryU 2 fnis ml category inX:

(e)iF = 0; for everyF is ammeager set itX:

(f) For everym-closed sef, with iF, = 0;i( o5 Fn) = O

Lemma 2.5. [12, Theorem 3.3] Le{X; m) b§ a GTS. Then the following hold.
(a) If G is ms-meager for each2 N; thenTnZN Gy, is ms-meager.
(b) If F, is ms-residual for each 2 N; then |, Fn is ms-residual.

3. Properties of Generalized Topology

In this section, we give some properties of generalized topologies de ned in a generalized topological space. Also, we check
some families are either satis ed with the stack property or not.
We start the study of various types of generalized topologies in a generalized topological space by reminding the well-known
de nitions in GTSs.
Let (X;m) be a GTS. A collectiol© of subsets oK is called astack[10] if A2 C wheneveB2 C andB A: A stackH
on X is called ap-stack[10] if A;B2 H ;thenA\ B6& 0:

Theorem 3.1. Let(X;m) be a GTS. Thef’” is a stack.

Proof. SupposdB2 i’?andB A  X: ThenBis of mll category set inX: Since subset of exmeager set istmeagerA is

of mll category set irX implies thatA 2 iv?: ThereforeiY? is a stack. O

The below CorollanB.2 directly follows from Theoren8.1 so the proof is omitted.

Corollary 3.2. Let(X;m) be a GTS and A X: Then the following hold.
(@) Ifin?A6 0; thenA2 m’”

(b) If (X;m) isa BS and ii /A6 0; thenA2 m’”:

() If (X;m) is asBS and if,yA6& 0; thenA2 n’?:

(d) If A2 m??; thencpA; ChpA; Chp?A2 M7

The following Example3.3, (a) shows that the generalized topolagys not a stack in a generalized topological space, (b)
proves that there exist a topology in which mis not a stack and (c) proves thais not a topology even ifnis a stack. The
generalized topologyY is not a stack as shown by the below Exanthié
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Example 3.3. (a) Consider the generalized topological spéXgm whereX = R andmis theZ forbidden generalized
topology onR; thatis,m= fU RjU R Zg: Thenis not a stack. Because,lf= f -1 j n2 Ng; thenU 2 fit Here
U Q:ButQzm

(b) Consider the generalized topological sp&¢am) whereX =[0;5] andm= f0;[0; 2);(1;2);(1;4];[0;4]; Xg: Thenmis a
topology. Butmis not a stack. For, l€6=[0;2) andH =[0;2]: ThenG H andG2 i ButH 2 m

(c) Consider the generalized topological spég m) wherem= f 0;f a; bg;f a; b;cg;f a;b; dg;f a; c; dg; f b; c; dg; X49: Thenm
is a stack. Butnis not a topology.

Example 3.4. Consider the generalized topological spé¥em) whereX =[0;5] andm= f 0;[0;2); (1, %); (1;4];[0; 4]g: Then
v = £0;[0;2);(1;41; (L 3); (1,2);[0;4g: LetA=(1;2) 2 fi¥ andB=[1,2]: ThenA B: ButB 2 iiv: Thus,ii¥ is not a stack.

Theorem 3.5. Let(X;m) be a GTS. The(X;n7?) is a hyperconnected space if and onlyif¥’ is a p-stack.
Proof. Suppose thatX; n?) is a hyperconnected space. By Theor@m i is a stack. Lef\;B 2 fiv”: ThenA andB are

non-nulln??-open sets and sbandB arenY’-dense sets iX; by hypothesis. Thereford\ B 6 0: Hencefiv” is a p-stack.

The reverse implication is directly follows from the de nition of p-stack so the proof is omitted. O

Example 3.6. Consider the generalized topological sp&sem) whereX =[0;5] and m= f;[0;2);(1;4];[0;4]g: Then
m?=fog[f AB XjA2exd(1,2) f 0g;A Bgand so(X;m’?) is not a hyperconnected space. Because, if we take
W=[0;3)[ (3;5]; thenW 2 n¥? and hencé 3gis anv’-closed set butt 3g is a non-nulin??-open set irX: LetU =[0; 1][f 3g

andV = f 1fg[ [2;5]: ThenU;V 2 ii¥? ButU\ V = 0: Thus,i¥? is not a p-stack.

Theorem 3.7. Let(X;m) be a BS. If every non-nuthropen set is anresidual set, theiiX; m) is a hyperconnected space.

Proof. Let G 2 m Then by hypothesis; is mresidual inX: By Lemma2.4, G is amdense set irX: Hence(X;m) is a
hyperconnected space. O

Theorem 3.8. Let (X; m) be a BS and every non-nuttopen set isntresidual inX: If (X;m) is a generalized submaximal
space, then the following hold.

(@m?=m

(b) finis a stack.

Proof. It is enough to prove (a) only. SingX;m) is a BS we haven m’”: LetB2 m’”: If B= 0; then there is nothing
to prove. SupposB 2 i7”: ThenB is of ml category set and sB is notmmeager so tha is not am-nowhere dense set.
Thus,imcmB 6 0: TakeV = incmB: ThenV 2 i By hypothesis and Theore®7, (X;m) is a hyperconnected space so tds
mdense set ilX: ThenB is mdense set iiX: Since(X;m) is a generalized submaximal spaBés amopen set. Therefore,
B2 fmso thatB 2 m Thus,m’” m Hencen?’= m O

In Theorem3.8, replace the condition()X; m) be a BS” by the condition(X; m) be a sBS”, we getn= n¥ = n7’” and then
fiY is a stack.
The following Example8.9 shows that the necessary conditions are can not be dropped in The@&em

Example 3.9. (a) Consider the generalized topological sp@¢am) whereX =[0;5] andm= f0;[0;2); (1; %); (1; 3];[0; 3]o:
Then(X;m) is a BS and every non-nuti-open set is anresidual set irK: Let A= 1;4] be a subset oX: Thenc,,A= X and
soAis amdense subset of: But A2 m Thus,(X;m) is not a generalized submaximal space. Hete= fOg[f A;B X
A2 exf(L3) f 0g;A Bg: ChooseN =[1;2]: ThenW 2 n¥?: ButW 2 m Hencen??* m

(b) Consider the generalized topological spég m) wherem= f0;f a;bg;f a; cg;f a;dg;f b;cg;fa;b;cg;fa;b;dg;f a;b; eg;
fajc,dg;fa;ceg;fa;d;eg;fb;c;dg;fb;c eg;fab;c,dg;fa b;c eg;fab;d;eg;fa;c;d;eg;fb;c;d; eg; Xsg: Therefore(Xs; m)
is a generalized submaximal space and every nonrmojben set is anresidual set is: But (Xs; m) is not a BS. For, if we
takeA= fa;c;dgis a subset 0Ks: Nowincm(fag) = im(fag) = f0g;imcm(fcg) = im(fcg) = fOg;imcm(fdg) = im(fdg) = f0g:
Thenf a;c; dg is ammeager set and $dis not am-ll category set ins: Here,n?? = f 0g: Hencem* n’”:

(c) Consider the generalized topological sp@$g m) wherem= f 0;f ag; f bg; f a; bg; f a; cg; f a; b; cg; f a; b; dg; f a; b; eg; f b; c; dg;
fa;b;c;dg;fa;b;c; eg;f a;b;d; eg; Xsg: Then(Xs; m) is a BS and generalized submaximal space Aetf ag be a subset ofs:
ThenXs A= fb;c;d;eg: Considerjncm(fbg) = im(fb;d;eg) = fbg 8 0: Thus,fbgis of mIl category set iXs: Therefore,
Xs Alis of mll category set inXs so thatXs A is not ammeager set which implies thatis not amresidual set ifXs: Thus,
there is a non-nulinopen set which is not arresidual set ifks: Here,m?” = f0g[f A Xsj eithera2 Aorb2 Ag: Let
G= fa;c;dg: ThenG2 m’”: But G 2 m Hencem?”* m

Theorem 3.10. Every collection of all non-nulinresidual sets in X is a stack whemeis a generalized topology on: X
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Proof. Leth = fA X j Ais a non-nulimresidual sef: Suppose that 2 h andV  U: ThenV is mresidual and s&X V
is mmeager inX: SinceV.  U;X U X VsothatX U isammeager setiiX; since subset of a meager set is meager.
Thus,U is mresidual inX: ThereforeJ 2 h: Henceh is a stack. O

Theorem 3.11.Let(X;m) be aGTS anth = fO0g[f A X jAis non-nullmresidual seg: Thenh is a topology on X

Proof. By Theorem3.1Q, h is closed under arbitrary union. Alsh,is closed under nite intersection, by Lemr2z3. Let
A X beanon-nulmresidual set. The=(X X) (X A)andsoX is anon-nullmresidual set. Thus{ 2 h: Therefore,
h is a topology onX: O

The below Theorer3.12(a) follows from the similar arguments in Theor&11.Q, Theorem3.12(b) follows from Lemma
2.5(b) and the same considerations in Theoffri so the proof is omitted.

Theorem 3.12. Let(X; m) be a GTS. Then the following hold.
(a) Every collection of alms-residual sets iiX is a stack.
(b)Ifh=fog[f A XjAis non-nullms-residual sg; thenh is a topology orx:

Theorem 3.13. Let(X;m) be a GTS. Then every collection of alidense sets in X is a stack.
Theorem 3.14. Let (X; m) be a generalized submaximal space. Then every collection of@dinse sets in X is a p-stack.

Proof. Leth = fAj Ais mdense subset ofg: By Theorem3.13 h is a stack. LeG;H 2 h: ThenG andH arem-dense sets
in X: By hypothesis andH are non-nulimopen sets iiX so thatG\ H 6 0: Henceh is a p-stack. O

The following Example3.15shows that the condition(X; m) be a generalized submaximal space” can not be dropped in
Theorem3.14 Also, this example shows that the collection ofraltodense sets iX is not a stack.

Example 3.15. Consider the generalized topological sp&¥g m) wherem= f 0;f a;bg;f b; cg; f a; b; cg; f b; ¢; dg; Xag: Here,
f bg is amdense set. Butbg 2 m Thus,(X4; M) is not a generalized submaximal space. TakefAj Ais mdense subset
of X40: Thenh = ff bg;f a; bg;f a;cg;f b; cg; f b;dg;f a;b; cg; f a;b; dg;f a;c; dg;f b; ¢, dg; X4g: TakeA = fa;cg andB = f b;dg:
ThenA;B2 h: ButA\ B= 0:

Takez is the collection of allm-codense sets iX: Thenz = f0;f ag:f bg; f cg;

fdg;fa;cg;fa;dg;fb;dg;fc;dg;f a;c;dg; X49: ChooseA = fb;dgandB = fb;c;dg: ThenA2 z andA B:ButB2z: Thus,
Z is not a stack.

Next, Theoren8.16follows from Lemma2.4and Theoren3.14so the direct proof is omitted.

Theorem 3.16. Let(X; m) be a BS. I{X; m) be a generalized submaximal space, then fA X j Ais a non-nullmresidual
segis a p-stack.

The following Theoren8.17follows from the fact that “super set of a dense set is dense” and the trivial proof is omitted.
Theorem 3.17. Let(X;m) be a GTS anth = fOg[f A XjAismdens@: Thenh is a strong generalized topology on X

The collectionh de ned on the above Theorefi17is not closed under the nite intersection as shown by the following
Example3.18

Example 3.18.Consider the generalized topological spéXg m) wherem= f 0;f a; bg; f b; dg; f a; b; cg; f a; b; dg; f b; c; dg; X49:
Takeh = fOg[f A XzjAismdense st Thenh = fOg[ff bg;fa;bg;fa;dg;fb;cg;fb;dg;fa;b;cg;fa;b;dg;fa;c;dg;fb;c;dg;
X40: LetA= fa;dgandB = fb;dg: ThenA;B2 h: ButA\ B= fdg2 h: Thus,h is not closed under the nite intersection.

S
Theorem 3.19. Let (X; m) be a GTS. Then?? 6 f0g if and only ifn?? is a strong GT inX wheren?? = £~ (WI\ WA\
t
W) §WEWE; 1 WE 2 mPPgand hence it is a topology.

Proof. Suppose that? & f 0g: Then there exists a non-nuif *-open set inX: TakeG is the non-null’’-open set irX Then
Gis of el category set irX: Since subset of axmeager set |mmeagerx is of mll category. Thereforex 2 m’? and so
X 2 n??: Hencen?? is a strong generahzed topology. Alsn!” is closed under nite intersection. Henog? is a topology.
Converse, follows from the de nition af?”’ O

Theorem 3.20. Let (X;m) be a GTS. Ifnis a stack, then the following hold.
(a) mis a strong GT.
(b) M’ is a topology.
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Proof. Itis enough to prove (a) only. Supposes f 0g andmis a stack. Then we can choose a non-null open set fakeG
is a non-nullmopen set inX: If G= X; then there is nothing to prove. Assume that, X: By hypothesisX 2 imso that
X 2 m Hencemis a strong GT. O

The converse implication of (a) in Theore8r20is not true as shown by the following Exam@e£1

Example 3.21. Consider the generalized topological spéem) whereX =[0;5] andm= f0;[0; 2); (1; 3]; (1; 5];[O; 3]; Xg:
Then(X;m) is a strong generalized topological space. Bus not a stack. Fof0;2)  [0;2]: Here[0;2) 2 mbut[0;2] 2 m

The following Theoren8.22is a direct consequence of the de nition of the stack so the proofis omittad. 1eExpgX) f 0g
whereX isanon-nullsetm h gand ifh is a stack, then neithgrnor mis stack as shown by the following Exam@#e3

Theorem 3.22. Let X be a non-null setand expgX): If h is a stack and generalized topology, tHeis a strong GT.

Example 3.23. Consider the non-null spa¢§: Takeh = ff ag;f a;bg;f a;cg;f a;dg;f a;b; cg;f a;b;dg;f a;c;dg; X4g: Letg=
ff ag;fbg;fa;bg;fa;cg;fa;dg;fa;b;cg;fa;b;dg;fa;c;dg; Xag andm= ff ag;fa;bg;fa;cg;fa;b;cg;fa;b;dg;f a;c;dg; Xa0:
Thenm h @: Hereh is a stack. But neitheg nor mis stack. For, lefA\; = fbg; A, = fag andB; = fb;dg; B, = fa;dg:
ThenA; 2 g;A22 mandA; Bi;A» By ButB;2g;By2m

Moreover,nt is a topology ifn7 is a stack.

4. Nature of a New GT

In this section, we de ne a new generalized topology and give some of its properties in a generalized topological space.

First of all, we recall some de nitions and facts for the development of this section.

A GTS(X;m) is said to be aveak Baire spacéor short, wBS) 8] if for every U 2 mis of ms-Il category set irX: Also,
every BS is a wBS.

Let(X;m) bea GTS and X: ThenAis calledmsemi-oper{resp.ma-oper if A CciA (resp.A iciA) [5].

In [8], Korczak - Kubiak et al. introduced a new generalized topology, nam&lyde ned by usingml category sets and
gave some properties of this generalized topology in a generalized topological space.

Motivated by this, we will introduce a new generalized topology, namely (dependent on GTr) in a generalized
topological space which will be a convenient tool for considerations in this section.

The GTm’ de ned as in the following way:

De nition 4.1. Let(X:m) be a GTS. Them’ = fOg[f A Xj Ais of ms-Il category sef

The familym is a strong generalized topologyrit’ 6 f0g: The converse implication is always true.
Let (X;m) be a GTS. Ifm6 f 0g; thenX is of ms-1l category and hena®” is a sGTS. Also, the reverse implication is true.
The following Examplet.2 shows that the familyn’ is not closed under the nite intersection.

Example 4.2. Consider the generalized topological spé¥g m) wherem= f0;f ag;f a;dg;f b;dg;f a;b; cg;f a;b; dg; X49:
Thenm’ = fog[f A Xsja2 Aorb2 Aord2 Ag: Here,fa;cg andf b;cg are of ms-Il category subsets iK;: Take
A= fa;eg\f b;cg= fcg: ThenAis amstrongly nowhere dense setXa and soA is notms-Il category inXs so thatA 2 m’ :
ThereforemV is not closed under the nite intersection.

Lemma 4.3. [8, Lemma 2.12] Le{X; m) be GTS andA X: Then

X if A ismresidual,

Cr??(A) = A if A isnotmresidual

Lemma 4.4. [8, Lemma 2.13] LetX; m) be GTS X be aml category setand  X: If Ais am’’-nowhere dense set, thén
is ammeager set.
Theorem 4.5. Let(X;m) be a GTS. ThenV is a stack.

Proof. SupposeA B andA?2 m’ : ThenA is of ms-Il category set and sB is of ms-Il category set, since subset of a
m-s-meager set isrs-meager. Therefor&2 mV : HencenV is a stack. O

The following Corollary4.6 follows from the similar arguments in Theore8rband so the proof is omitted.

Corollary 4.6. Let(X;m) be a GTS. ThenV isa p-stack if and only ifX; m") is a hyperconnected space.
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The following Propositiort.7 directly follows from the de nition of weak Baire space, strong Baire space and LetnPna
(b) so the proof is omitted. Theore4n3 directly follows from Theorend.5, Propositiond.7 so the trivial proof is omitted.

Proposition 4.7. Let(X; m) be a GTS. Then the following hold.
(@) If (X;m) is awBS, therm  m:

(b) If (X;m) is a SBS, them?® m:

(cym? m:

Theorem 4.8. Let(X;m) be a GTS and A X: Then the following hold.
(@) IfivA6 0;thenA2 m':

(b) If (X;m) isawBS and ii A6 0; thenA2 m":

() If (X;m) is asBS and if,yA6 0; thenA2 m’:

(d) If A2 mV; thencmA; CrpA; Cre?As Gy A2 MY

Theorem 4.9. Let (X;m) be a wBS-sGTS and AX: Then the following hold.
(a) If Ais ma-open, therA2 mV :
(b) If Ais msemi-open, theA2 m’ :

Proof. We will present the detailed proof only for (a). Suppdsis am-a-open set irX: ThenA iciA: If A= 0; then there
is nothing to prove. Assume tha,6 0: TheniciA 6 0 so thatciA 6 0 which implies thaiA 6 0; sincemis a sGT. Thus,
imA 6 0: By hypothesis and Theoreh8 (b), A2 mV : O

By using Theorend.9, immediately we get two Observations as follows.

Observation 4.10. Let (X; m) be a wBS-sGTS. If A ism’ -dense subset of;Xhen the following hold.
(@)A\ U 6 0 for every non-nulina -open set:
(b) A\ V 6 0 for every non-nulinsemi-open se¥:

Observation 4.11. Let(X; m) be a wBS-sGTS and AX: If A is am’ -nowhere dense set in; ¥hen the following hold.
() If Gis a non-nullma-open set, the* A:
(b) If H is a non-nullmsemi-open set, thed * A:

In Theorem4.9, we replace the condition “wBS-sGTS” by “BS-sGTS” we g2 m’”; by Corollary3.2 (b). Theoren%.9
is not reversible as shown in the following Exampgl&2

Example 4.12. Consider the generalized topological spéég m) wherem= f 0;f a;bg: f b; cg; f a;b;cgg: Thenm” = fog[
fA Xsja2 Aorb2 Aorc2 Ag:

LetU = fc;dg: ThenU 2 mV: But U is not ama-open set inXs: For, imCmimU = imtm(f00) = im(fd;eg) = 0: Thus,
U6 imCminV:

LetV = fa;dg: ThenV 2 m" : HerecnimV = cm(f 0g) = fd;eg: Thus,V 6 cminV: ThereforeV is not am-semi-open set iiXs:

Theorem 4.13. Let(X;m) be a GTS and A X: If A is am’ -nowhere dense set, then the following hold.
(a) If (X;m) is a wBS, therA is mcodense.

(b) If (X;m) is a SBS, them\ is n’-codense.

(c) Ais m’’-codense set iX:

Proof. It is enough to prove (b) only. Suppog¢; m) is a SBS andhis am' -nowhere dense set. The ¢,y A= 0 and so
Cyv (X A)= X:By hypothesis and Propositigh7 (b), c,?(X A) = X: ThereforeAis am’-codense set iX: O

Proposition4.14and Propositiod.15are follows from the similar considerations in Lemmm&and Lemmat.4, respectively
so the proofs are omitted.

Proposition 4.14. Let(X;m) be aGTS and A X: Then

X if A isms-residual,

Criv (A) = A if A isnotms-residual

Proposition 4.15. Let(X; m) be a GTS, X be ars-1l category set and A X: Then the following hold.
(a) If Ais am’ -nowhere dense set, théris ams-meager set.

(b) If Ais am’ -meager set, theA is ams-meager set.

(c) If Ais am’ -residual set, theA is am-s-residual set.

(d) If Ais of ms-II category, then it is ofr -1l category.
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Theorem 4.16. Let (X; m) be a wBS. Then evengstrongly nowhere dense setri¥ -nowhere dense in X

Proof. SupposéX;m) is a wBS. LetA be am-strongly nowhere dense setXh Supposeé,y c,v A8 0: Thenc,y A contains
a non-nullm” -open set irX and sac,v A contains ams-1l category set irX: Thus,cA contains an-s-1l category set irX;
sincem m’: ButcmAis ams-meager set iX; by Lemma2.1 Thereforej v c,v A= 0: Hence everyn-strongly nowhere
dense set is &’ -nowhere dense set X O

The following Corollary4.17follows from Theorenm#.16so0 the direct proof is omitted.

Corollary 4.17. Let(X;m) be awBS and A X: Then the following hold.
(a) If Ais ms-meager, theA is m’ -meager inX:

(b) If Ais of m” -1l category, therA is of ms-Il category inX:

(c) If Ais ms-residual, thei is m" -residual inX:

Theorem 4.18. Let(X;m) be a GTS. If X is ofrts-1I category, ther{X;m") is a BS.

Proof. LetG2 mV : Supposes is am’ -meager set. Then by hypothesis and Propos#ids(b), G is am-s-meager set, which
is a contradiction t@ 2 mV : Therefore G is of m’ -1l category inX: Hence(X;m" ) is a BS. O

The following Theoren#t.19follows from the similar considerations in Theor@19so the easy proof is omitted.

Theorem 4.19. Let(X; m) be a GTS. Them" 6 f0gif and only ifm" " is a strong GT inX wherem = £ (W WA oo\
t

In the rest of this section, we give some relations between various types of generalized topology in a generalized topological
space.
First of all, we remember some Lemmas which is useful in the sequel.

Lemma 4.20. [14, Theorem 3.4] Le{X;m) be a sBS ané  X: Then the following hold.
(a) If A is amnowhere dense set, then A is&-nowhere dense set.

(b) If A is ammeager set, then A ism’-meager set.

(c) If Ais an?-ll category set, then A is a1l category set.

Lemma 4.21. [14, Theorem 3.7] LetX; m) be a BS and\  X: Then the following hold.
(a) If A is amnowhere dense set, then A isf&’-nowhere dense set.

(b) If Ais am-meager set, then A isma’’-meager set.

(c) If Ais am’’-1l category set, then A is arll category set.

m g

Now we ql)g ne two generalized topologies and give some procv)perties of these generalized topologies.

Denem’ =f0g[f A XjAisof -l category seyandm’ " = fog[f A XjAis of m’-Il category sey:

It is easily seen that the families’ andm’ " are generalized topologies. Also, these two generalized topologies are
satis ed with the stack property in a GTS.

Theorgm 4.22. Let(X; m) be a generalized topological space. Then the following hold.
(@ an”; is a stack.
(b) M’ " is a stack.

~ S
Proof. Itis enough to prove (a) only. Suppose BwhereA2 iivY?: ThenA= " (AL\ AL\ i\ AL) whereAS; ALt AL 2
t

AQASL (B At Al [ (B A 2 Y7 sincefi?? is a stack. Therefords 2 77 Hencefiv” is a stack. O
Corollary 4.23. Let(X; m) be a generalized topological space aifids a stack. Therfiv’ is a stack.

Obviously,n?? n?? andm’  m’’: The reverse implications are true as shown by the following Thedr@h
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Theorem 4.24. Let (X; m) be agenerallzed topological space. Then the following hold.
(@) If (X;m’?) is a SBS, them?”  nv’™:
(b) If (X; M) is a SBS, them¥’~ mV:

Proog @ Supposeéx n’?) is a sBS. LelG2 m’?: If G= (D then there is nothing to prove Assume thHats 0: Then
(Gt \ GL\ i\ GY) whereG} 2 nv? for i = 1;2;::;nk: Take G = G\ GK\ ::::\ G such thatGy 6 0 where

4.21(c). Thus Gis of ml category set inX: ThereforeG2 m’? :Hencen??”  n??:

(b) It is follows from the similar arguments in above case and Corollaty (b). O
The condition {X;m") is a SBS” is necessary in Theoreh24(b) as shown by the following Exampte25

Example 4.25.Consider the generalized topological spéXg m) wherem= f0;f a;bg; f a;b; cgg: Thenm” = fOg[f A X4j
eithera2 Aorb2 Ag: Then(X; mV) is not a sBS. For, IdIJ = fb;dg;V = fa;dg: ThenU;V 2 m": ButU\ V = fdg which
is am’ -nowhere dense set. HemY * = exg(X): Thus,m’’ * m":

Theorem 4.26. Let (X; m) be a generalized topological space. Theti, m'’:

Proof. Follows from the fact that’? m": O
Theorem 4.27. Let(X;m) be awBS. Then? m’":

Proof. Let G2 m’: If G = 0; then there is nothing to prove. Assume tta§ 0: ThenG = S(Gt \ GL\ i\ G n) Where
Gi;Gh;iiir; G 2 m By hypothesism  m': Thus,G = (GH\ GhH\ i\ Gp) whereG‘,G‘z;::"'Gt 2 mV: Therefore,
G2m'": O

Theorem 4.28. Let(X;m) be a GTS and X be @s-1l category set. ThemV.  mV

Proof. LetB2 m’: Supposé8 = 0: Then there is nothing to prove. Assume tH&§ 0 ThenB is of ms-Il category set irX:

By hypothesis and Propositieh15(d), B is of m” -1l category set inX: HenceB 2 m' O
Theorem 4. 29 Let(X;m) be a sBS. Then the following hold.

@n’ m?:

OL

Proof. This follows from Lemm&.2and Lemma4.2Q O

The following Examplet.30shows that the reverse implications of Theo#126 Theoren¥.27and Theorend.29(b) are
need not be true in a generalized topological space.

Example 4.30. Consider the generalized topological sp&¥g m) wherem= f 0;f a; bg;f b; cg;f a; b; cgg Thenm = f0;fbg;
fabgfbcgfabcggm =fog[f A Xjb2Agm’ =fog[f A XJaZAorbZAorczAgm —f(l)g[fA Xj
b2 Ag;m’” —f(Z)fbgfabgfbcgfbdgfabcgfabdgfbcngg,mV = exfg(X):

(a). LetA= fag: ThenA2 m’’: ButA2 nv?

(b). LetB= fcg: ThenB2 m¥ ": ButB 2 nv: .

(c). LetC= fa;dg: ThenC2 m’: ButC 2’

The reverse implications of Theorefr29(a) is need not be true as shown by the following ExandpBa.

Example 4.31. Consider the generallzed topological spé¥g m) wherem= f(D fag,f a;bg; f b;cg; f a; b; cgg: Thenm =
f0;fag;fbg;fa;bg;fb;cg;fa;b; cgg, m ?= f(Z)g[f A Xjaz2 Aorb2Agandscm =fog[f B Xja2Borb2 Bg,m
ex(X): LetG = fcg: ThenG 2 n¥? : ButG 2 v :

??

Theorem 4.32. Let(X: m) be a BS-sGTS. (iX; n7?) is a sBS, them?? mV”
» S
Proof. Let A be a non-nulh?’? -open set. TheA = (A‘\ AN i\ AL ) whereA ;AL AL 2 mP? Take A = AR AK\

1\ AS whereAl; AS; i AR 2 n? such thath 6 0 for somek: By hypothesisAy is of m’’-Il category set and s8 is of
mII category set, by hypothesrs and Lemmal Thus, A is of ml category set so thak is of ms-Il category set. Hence
A2 m’: By Theorem¥.28 A2 m¥”: Hencent? m . O
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5. Some Special Spaces

In this section, we analyze the nature of extremally disconnected and submaximal spaces in a generalized topological space.
Finally, we prove everynisolated point is anll category setina GTS.
A GTS(X;m is calledmextremally disconnected or simply, extremally-disconnectgif fhe m-closure of everynopen
set ismropen.

. . . . . T .
A subsetB of a generalized topological spaf¢; m) is said to be anGy-set[1] if B = B, where eactB, is amopen
n2N
set.

A generalized topological spa¢X; m) is said to be generalizedsy4-submaximal spackl] if every mdense subset of is
amGy-set inX:

Lemma5.1. [1, Lemma 3.7] Le(X;m) be a GTS. If(X; m) is a generalized submaximal space, ti€nm) is a generalized
Gy-submaximal space.

Lemma 5.2. [13, Theorem 3.2] Le{X; m) be a GTS. Then the following hold.
(@)m’? 6 f0gif and only if(X;n7?) is a sGTS.
(b) If (X;m) is a BS, them’’ & f 0g:

Theorem 5.3. Let (X;m) be a GTS. If eithe(X;m) is a BS orm?? & f0g; then(X;m’?) is a m’*-extremally disconnected
space.

Proof. We will present the detailed proof only for the cas®’ 6 f0g: Thenm’” is a SGTS, by Lemm&.2 LetG 2 nv’: If
G = 0; thenc,7?G = G and soc,7?G 2 n7?: Suppose thab 6 0: ThenG is of ml category set inX: SinceG  ¢,7°G and
subset of anmeager set isrmeager we have,?°G is of ml category set inX: Thus,c,7°G 2 nv?: Hence(X;n’?) is a
m’?-extremally disconnected space. O

The following Examplés.4 shows that the condition “eith¢X; m) is a Baire space ar’? & f0g” can not be dropped in
Theoremb.3.

Example 5.4. Consider the generalized topological spé¥em) whereX =[0;3] andm= f 0;[0;2);(1;3];[0;1][ [2;3]; Xg:
Then(X;m) is not a BS and’’ = f0g: ChooseG 2 n7”: ThenG = 0 and soc,7?G = X: But X 2 n?”: Thus,cn7°G 2 nv'”:
Hence(X; m’?) is not an’’-extremally disconnected space.

Theorem 5.5. Let(X;m) be a GTS. Then the following hold.
(a) If mis a stack, theX; m) is amextremally disconnected space.
(b) If Mmis a p-stack, the(X; m) is amextremally disconnected space.

Proof. Itis enough to prove that (a) only, since every p-stack is a stack. Supposinthat stack. TheX;m) is a sGTS. Let
U2mlfU= 0;thenc,U = 0; sincemis a sGT. Thusg,U 2 m Assume thatJ 6 0: SinceU ¢, U andmis a stack we
havecU 2 mt Then(X;m) is amextremally disconnected space. O

Next, Examples.6 shows that the conditionftiis a stack” can not be dropped in the above Thedbse®ifa). The reverse
implications of Theorend.5is need not be true as shown by the below Exarbple

Example 5.6. (a) Consider the generalized topological sp@gm) whereX =[0;3] andm= f0;[0;1);[0;2);(1;3];[0; 1) [
(1;3;[0;2) [ [%;3];Xg: Let A=(1;3] andB=[1;3] be subsets ok: HereA2 mandA B: But B 2 fit Thus,Mmis not a stack.
TakeG =[0;1): ThenG 2 mandcyG =[0; 1]: Butc/G 2 mt Hence(X;m) is not amextremally disconnected space.

(b) Consider the generalized topological sp@ég m) wherem= f 0;f a; bg; f b; cg;f a;b;cgg: LetA= fa;bgandB = f a; b;c;dg
be subsets dfs: HereA2 mandA B: ButB 2 fit Thus,mis not a stack. Tak& = f 0g: ThenG 2 mandc,G = fd;eg; fg:
But cnG 2 m Hence(Xe; m) is not am-extremally disconnected space.

Example 5.7. (a) Consider the generalized topological sp@ég m) wherem= f0;f a; cg;f b;cg;f a;b; cg; Xsg: Then(Xs; m)

is amextremally disconnected space. lfet fa;cgandB= fa;b;c;dg be subsets ofs: HereA2 mandA B: ButB2m
Thus,mis not a stack.

(b) Consider the generalized topological sp@ée m) wherem= f 0;f ag;f bg; f a; bg; f a; cg; f a;dg; f b; cg; f b; dg; f a; b; cg; f a; b; dg;
fa;c;dg;fb;c;dg; X4g: Then(X4;m) is a mextremally disconnected space. Butis not a p-stack. For, leA = fag and

B = fb;c;dg be subsets oX4: HereA2 mandB2 m ButA\ B= 0:

The following Theoren.8is directly follows from the fact that subset ofias-meager set ists-meager and the converse
part is trivial so the proof is omitted.
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Theorem 5.8. Let(X;m) be a GTS. Them' 6 f0gif and only if(X;m") is am’ -extremally disconnected space.

Theorem 5.9. Let (X; m) be a hyperconnected sGTS. Ttgnm) is a mextremally disconnected space.
Proof. This is a direct consequence of the de nition of the hyperconnected space. O

By Lemmaz2.1, immediately we get the following two observations so the proofs are omitted.

Observation 5.10. Let(X;m) be a GTS andn= fOg[f A X | Ais amnowhere dense ggtlf mis a GT, ther(X;m) is a
mextremally disconnected space.

Observation 5.11. Let (X;m) be a GTS anan= f0g[f A X jAis amstrongly nowhere dense getf mis a GT, then
(X; m) is amextremally disconnected space.

Moreover, every GT$X; m) is bothm??-extremally disconnected space and-extremally disconnected space.

Lemma5.12. Let(X;m) be a GTS and A X: Then the following hold.
(a) If Ais am’’-dense set iiX; thenA 2 nv’?:
(b) If Ais am’ -dense set iiX; thenA2 m’ :

~ 927,

Proof. We will present the detailed proof only for (a). L&tbe am’?-dense subset of: ThenA\ B; 6 0 for all B; 2 "™
Case 1: First we prove this result for a singleton setift Assume that, ead; is a singleton set ifiY”: SinceA\ C, 6 0

~ 27

for all G; 2 iP? we haveC; Afor all G; 2 i’”: Therefore A is of ml category set in; since subset of exmeager set is

mmeager.
Case 2. Now we prove this result for other sefiiff; Assume that, each; having more than one element. Then e8ch
contains a non-null singleton set which isrofll category set irX: By Case 1A is of mtll category set inX: O

The reverse implication of Lemnal2need not be true as shown by Exampl&3

Example 5.13. (a) Consider the generalized topological spékem) whereX =[0;3] andm= f;[0;2);(1;3];[0;1) [
(1;3];[0;2) [ [%;3];Xg: Thenm??= fog[f A;/B XjA2exp(1;2) f 0g;A Bg: LetA= f%g be a subset oK: Then
A2 n? ButAis not am’’-dense set iiX:

(b) Consider the generalized topological sp@g m) wherem= f 0;f a; bg; f a; b; cg; f a;b; dg; f a;b; c;dg; f a;b; c; egf a; b; c; d; egg:
ThenmV = fOg[f A Xgjeithera2 Aorb2 Ag: Let G = fa;dg be a subset oXs: ThenG 2 m” : But G is not am” -dense
set inXg:

Theorem 5.14. Let(X;m) be a GTS. Them' 6 f0g if and only if(X;m") is a generalized submaximal space.

Proof. Let Abe am’ -dense set itxX: ThenAis am’ -open set ifX; by Lemmas.12b). Therefore(X;m") is a generalized
submaximal space. Converse implication is trivial. O

Corollary5.15is directly follows from Lemma.1and Theoren®.14so the proof is omitted.
Corollary 5.15. Let(X;m) be a GTS. Them” 6 f0gif and only if (X;m") is a generalized g-submaximal space.
Theorem 5.16. Let(X;m) be a GTS. Thent? 6 f 0g if and only if(X; n?) is a generalized submaximal space.
Corollary 5.17. Let(X;m) be a GTS. Thenv? 6 f0g if and only if(X; n7?) is a generalized G-submaximal space.

In the rest of this section, we analyze the nature of an isolated point in a GTS. First of all, we remind the de nition for
isolated point in a generalized topological space.

Let (X; m) be a generalized topological space. TheénX is calledm-isolated [L] if f xg is mopen. If every point oKX is
misolated, therX is calledm-discrete 1].

Theorem 5.18. Let(X;m) be a GTS and 2 X: If x is amisolated point, then the following hold.
(@)fxg 2 n’?:

(b)fxg2 m’:

(c) X is of mll category.

(d) X is of ms-1l category.
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Proof. (a) Letx 2 X: Suppos« is amrisolated point inX: TakeA = fxg: ThenA is amopen subset ok and soA is not a
mnowhere dense set. Thusjs not ammeager set so thatis of m-| category set inX: Thereforef xg 2 m’?:

(b) Sincem®”  m’ we havefxg 2 m’; by (a).

(c) Superset of atll category set is ofrtll category so thakK is of ml category.

(d) Since everyns-meager set isxmeager we havX is of ms-Il category. O

Theoremb.19immediately follows from Theorer.18so the trivial proof is removed. The reverse implications of the
Theoremb.19is not true in general as shown in the below Exantpko,

Theorem 5.19. Let(X;m) be a GTS and A X: Then the following hold.
(a) If X is mdiscrete, therfX; m) is a sBS.
(b) If A contains amisolated point, thed 2 n’? and hence\ 2 m" :

Example 5.20. Consider the generalized topological spé¥g m) wherem= f 0;f a; bg;f b; cg;f a; b; cg; X4g: Then(Xs; m) is
a sBS. ButX, is not amdiscrete space. For, lat2 X4: Thenf agis notmopen and sa is not amisolated point inXs:

Theorem 5.21. Let(X;m) be aGTS and  X: ThenAis of ml category set inX if and only if it has an’-isolated point in
X:

The following Examples.22proves thaiX is notmrdiscrete even iK is m’*-discrete.

Example 5.22. Consider the generalized topological sp&¥g m) wherem= f 0;f a; bg: f ¢; dg; X4g: Heref xg 2 m?’? for all
x 2 X4: Therefore X, is m’’-discrete. But, is not am-discrete space. For, Ibt2 X4: Thenf bg is notm-open and s is not a
misolated point inXy:

Lemma 5.23. [14, Theorem 4.3] LetX; m) be a hyperconnected spaceXIfs of ml category, ther(X; m) is a BS.
Theorem 5.24. Let(X;m) be a GTS andhnis a p-stack. If X is ofrtll category, ther(X; m) is a BS.

Proof. Supposeénis a p-stack. The(X;m) is a hyperconnected space. By Lem®&2a3 (X;m) is a BS. O
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