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İstanbul Üniversitesi-Cerrahpaşa,

TÜRKİYE
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Evolution Equations by Improved F-Expansion in
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Md. Habibul Bashar1*, Md. Mamunur Roshid2

Abstract
With the assistance of representative calculation programming, the present paper examines the careful voyaging

wave arrangements from the general (2+1)-dimensional nonlinear development conditions by utilizing the

Improved F-expansion strategy. As a result, the used technique is effectively utilized and recently delivered

some definite voyaging wave arrangements. The recently created arrangements have been communicated as far

as trigonometric and hyperbolic capacities. The created arrangements have been returned into their relating

condition with the guide of emblematic calculation programming Maple. Among the produced solutions, some

solutions have been visualized by 3D and 2D line graphs under the choice of suitable arbitrary parameters to

show their physical interpretation. The delivered arrangements show the intensity of the executed technique to

evaluate the accurate arrangements of the nonlinear (2+1)-dimensional nonlinear advancement conditions, which

are reasonably pertinent for using nonlinear science, scientific material science and designing. The Improved

F-expansion method is a reliable treatment for searching essential nonlinear waves that enrich a variety of

dynamic models that arise in engineering fields.

Keywords: The Improved F-expansion scheme, The general (2+1)-dimensional nonlinear evolution equation,

Traveling wave solutions, Soliton solution.
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1. Introduction

As of late, nonlinear incomplete differential conditions (NPDEs) is comprehensively used to delineate various huge marvels and

dynamic methodology in various fields of science and designing, particularly in liquid mechanics, hydrodynamics, numerical

science, dissemination process, strong state material science, plasma material science, neural material science, substance energy

and geo-optical filaments. In this article, we will study the generalized (2+1)-dimensional nonlinear evolution equations in the

form

uxt +uxxxy +auxuxy +buxxuy = 0 (1.1)

Recently, some special cases of Eq. (1.1) have been studied by several authors[1]-[4]. When setting a =4 and b = 2, we get:

uxt +uxxxy +4uxuxy +2uxxuy = 0 (1.2)
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Eq. (1.2) known as the Calogero–Bogoyavlenskii–Schiff (CBS) equation with (2+1) dimensional.

where u = u(x,y, t) is used for brevity. In the article, subscript occurring with a term denotes its partial derivative with

respect to the subscript variable.in equ.(1.2) ut describes the time evolution of the wave, while the terms uxxuy and uxuxy are

account for nonlinearity of the wave. The CBS equation has some physical situated history like it very well may be composed as

potential structure [5]. The CBS equation was at first built by Bogoyavlenskii and Schiff in different ways [6]-[9]. The ongoing

history of some past inquires about show that few powerful strategies for getting definite arrangements of the CBS condition

are contributed by a differing gathering of specialists over the globe [10]-[13], for instance, the periodic and soliton solutions of

the CBS equation were gotten by Gandarias et al.[10]. Its integrability has been demonstrated by Zhang et al.[11] and derived

also the symmetry reductions of the equation. Li and Chen [12] found the exact solutions by using the generalized Raccati

equation expansion method. Wang and Yang [13] employed the Hirota Bilinear strategy for construction of the quasi-periodic

wave solutions in terms of theta functions for a Hirota bilinear equation.

When setting a = – 4 and b = – 2, we get:

uxt +uxxxy −4uxuxy −2uxxuy = 0 (1.3)

Eq. (3) known as the breaking soliton equation with (2+1) dimensional.

When setting a = 4 and b = 4, we get:

uxt +uxxxy +4uxuxy +4uxxuy = 0 (1.4)

Eq. (4) known as the Bogoyavlenskii equation with (2+1) dimensional.

Numerous researchers arranged through nonlinear evolution equations (NEEs) to build voyaging wave arrangement by

executing a few techniques. The methods that are entrenched in ongoing writing, for example, the extended Kudryashov

method[14], the modified simple equation method [15], the new extended (G′/G) expansion method [16]-[17], the Darboux

transformation [18], the trial solution method [19], the Exp-Function Method [20], the multiple simplest equation method [21],

exp(−φ(ξ )) -expansion method [22]-[26], Pseudo parabolic model [27]-[29], Sine-Gordon expansion method[30], Complex

solitons in the conformable (2+1)-dimensional Ablowitz-Kaup-Newell-Segur equation [31], Modified auxiliary expansion

method [32], Method of line [33], Bernoulli sub-equation function method [34]-[35], The modified exponential function method

[36], Improved Bernoulli sub equation function method [37], Finite difference method [38] and so on.

The target of this article is to apply the Improved F-expansion technique to build the precise voyaging wave answers for

nonlinear advancement conditions in scientific material science by means of the generalized (2+1)-dimensional nonlinear

evolution equations.

The article is set up as pursues: In section 2, the Improved F-expansion scheme has been talked about. In segment 3, we

apply this plan to the nonlinear development conditions raised previously. In section 4, represents Results and Discussion, In

section and in section 5 ends are given.

2. Description of the Improved F-Expansion Method

In this segment, we portray in subtleties The Improved F-extension strategy technique for discovering traveling wave equations

of nonlinear equations. Any nonlinear condition in two free factors x and t can be communicated in following structure:

Re(u,ut ,ux,utt ,uxx,uxt .........) = 0 (2.1)

where, u(ξ ) = u(x, t) is an unknown function, ℜ is a polynomial of u(ξ ) = u(x, t) and its partial derivatives in which the

highest order derivatives and nonlinear terms are included.

Step 1: The given PDE (2.1) can be changed into ODE utilizing the change ξ = x±ω t where ω is the speed of traveling wave

such that ω ∈ R−{0}
The traveling wave change grants us to diminish Eq. (2.1) to the following ODE:

ℜ(u,u′,u′′, ..................) = 0 (2.2)

where ℜ is a polynomial in u(ξ ) and its derivatives, where u′(ξ ) = du
dξ
, u′′(ξ ) = d2u

dξ 2 , and so on.

step 2:Suppose the solution of Eq. (2.2) can be expressed by a polynomial in ψ(ξ ) :

U = u(ξ ) =
N

∑
j=0

α j(ψ(ξ )) j+
N

∑
j=1

β j(ψ(ξ ))− j
(2.3)
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where

ψ(ξ ) = (m+ϕ(ξ )) (2.4)

Here αN or βN may be zero, but both could not be zero simultaneously. α j( j = 0,1,2 · · ·N),β j( j = 1,2 · · ·N) and m are

constants to be determined later and Φ(ξ ) satisfies the ODE in form:

ϕ ′(ξ ) = K +ϕ2(ξ ) (2.5)

We now present three cases of the general solutions of the Riccati Equation (2.5) (Cruz, Schuch, Castanos and Rosas-Ortiz,

2015).

Case-I: When K < 0, we get following hyperbolic solution

Φ(ξ ) =−
√
−K tanh(

√
−Kξ )

Φ(ξ ) =−
√
−K coth(

√
−Kξ )

Case-II: When K > 0, we get following trigonometric solution

Φ(ξ ) =
√

K tan(
√

Kξ )

Φ(ξ ) =−
√

K cot(
√

Kξ )

Case-III: When K = 0, we get following solution

Φ(ξ ) =− 1

ξ

Step 3: The value of the positive integer N can be determined by balancing the highest order linear terms with nonlinear terms

of the highest order appearing in Eq. (2.2).

If the degree of u(ξ ) is D [u(ξ )] = n, then the degree of the other expressions will be as follows:

D

[

dpu(ξ )

dξ p

]

= n+ p, D

[

up

(

dqu(ξ )

dξ q

)s]

= n p+ s(n+q)

Step 4: Substituting Eq. (2.3) along with Eqs. (2.4) and (2.5) into Eq. (2.2), we obtain polynomials in (m+ϕ(ξ )) j
and

(m+ϕ(ξ ))− j
, ( j = 0, 1, 2, · · · ,N).Gathering every coefficient of the came about polynomials to zero, yields an over-decided

arrangement of arithmetical equations for α j, β j, ω and m.

Step 5: Assume the estimation of the constants can be gotten by fathoming the mathematical conditions got in step 4.

Substituting the estimations of the constants together with the arrangements of Eq. (2.5), we will acquire new and far reaching

precise traveling wave arrangements of the nonlinear development Eq. (2.1).

3. Application of the Method

In this section, we will exert the Improved F-expansion method to solve the equation (1.1).Now Using the traveling wave

variable ξ = x+ y−ω t and integrating with respect to ξ reduces Eq. (1.1) to the following ordinary differential equation for

u = u(ξ ).

−ω u′+

(

a+b

2

)

(

u′
)2

+u′′′ = 0 (3.1)

Where, primes denote the differentiation with regard to ξ By balancing u′′′ and (u′)2
we obtain N = 1.Therefore the Improve

F-expansion method admits to solution of (2.1) in the form

U (x,y, t) = α0 +α1 (m+ϕ(ξ ))+β1 (m+ϕ(ξ ))−1 (3.2)

Now, substituting Eq. (3.2) into Eq. (3.1), and equating the coefficients of the powers ϕ(ξ ) then we obtain a system of algebraic

equations. Solving this system of equations for α0,α1,β1,m and ω we obtain the following set values:
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Set-1: m = m,ω =−4K,α0 = α0,α1 = 0,β1 =
12(m2+K)

a+b
.

Set-2: m = m,ω =−4K,α0 = α0,α1 =− 12
a+b

,β1 = 0.

Set-3: m = 0,ω =−16K,α0 = α0,α1 =− 12
a+b

,β1 =
12K
a+b

.

Case-I: When K < 0, we get following hyperbolic solution

Family-1

U1 (x,y, t) = α0 +
12

(

m2 +K
)

(a+b)
(

m−
√
−K tanh(

√
−Kξ )

)

U2 (x,y, t) = α0 +
12

(

m2 +K
)

(a+b)
(

m−
√
−Kcoth(

√
−Kξ )

)

where, ω =−4K and ξ = x+ y−ω t.

Family-2

U3 (x,y, t) = α0 −
12

(

m−
√
−K tanh(

√
−Kξ )

)

(a+b)

U4 (x,y, t) = α0 −
12

(

m−
√
−Kcoth(

√
−Kξ )

)

(a+b)

where, ω =−4K and ξ = x+ y−ω t.

Family-3

U5 (x,y, t) = α0 +
12
√
−K tanh(

√
−Kξ )

(a+b)
− 12K

(a+b)
√
−K tanh(

√
−Kξ )

U6 (x,y, t) = α0 +
12
√
−Kcoth(

√
−Kξ )

(a+b)
− 12K

(a+b)
√
−Kcoth(

√
−Kξ )

where, ω =−16K and ξ = x+ y−ω t.

Case-II: When K > 0, we get following trigonometric solution

Family-4

U7 (x,y, t) = α0 +
12

(

m2 +K
)

(a+b)
(

m+
√

K tan(
√

Kξ )
)

U8 (x,y, t) = α0 +
12

(

m2 +K
)

(a+b)
(

m−
√

K cot(
√

Kξ )
)

where, ω =−4K and ξ = x+ y−ω t.

Family-5

U9 (x,y, t) = α0 −
12

(

m+
√

K tan(
√

Kξ )
)

(a+b)

U10 (x,y, t) = α0 −
12

(

m−
√

K cot(
√

Kξ )
)

(a+b)

where, ω =−4K and ξ = x+ y−ω t.

Family-6

U11 (x,y, t) = α0 +
12

√
K tan(

√
Kξ )

(a+b)
+

12K

(a+b)
√

K tan(
√

Kξ )

U12 (x,y, t) = α0 +
12

√
K cot(

√
Kξ )

(a+b)
− 12K

(a+b)
√

K cot(
√

Kξ )
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where, ω =−16K and ξ = x+ y−ω t.

Case-III: When K = 0, we get following rational solution

Family-7

U13 (x,y, t) = α0 +
12(m2 +K)

(a+b)
(

m− 1
ξ

)

where, ω =−4K and ξ = x+ y−ω t.

Family-8

U14 (x,y, t) = α0 −
12

(

m− 1
ξ

)

(a+b)

where, ω =−4K and ξ = x+ y−ω t.

Family-9

U15 (x,y, t) = α0 +
12

(a+b)ξ
− 12Kξ

(a+b)

where, ω =−16K and ξ = x+ y−ω t.

4. Results and Discussion

Around there, we will discuss the physical depiction of the procured careful and singular wave answer for the general

(2+1)-dimensional nonlinear advancement condition. We address these arrangements in graphical and check about the

kind of arrangement. Presently we pictorial some get arrangements acknowledge by applied techniques for the general

(2+1)-dimensional nonlinear advancement condition.

Figure 4.1. Kink Shape of U1(ξ ) for a0 =−2,a = 2,b = 3,m = 2,K =−.33,y = 2 within −10 ≤ x, t ≤ 10. The left-sided

figure shows the 3D plot and the right-sided figure shows the 2D plot for t = 0
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Figure 4.2. Kink Shape of U3(ξ ) for a0 =−2,a = 2,b = 3,m = 2,K =−.33,y = 2 within −10 ≤ x, t ≤ 10. The left-sided

figure shows the 3D plot and the right-sided figure shows the 2D plot for t = 0

Figure 4.3. Kink Shape of U2(ξ ) for a0 =−2,a = 2,b = 1,m =−2,K =−2,y = 0 within −10 ≤ x, t ≤ 10.
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Figure 4.4. Singular Kink Shape of U4(ξ ) for a0 =−2,a = 2,b = 3,m = 2,K =−.33,y = 2 within −10 ≤ x, t ≤ 10. The

left-sided figure shows the 3D plot and the right-sided figure shows the 2D plot for t = 0

Figure 4.5. Periodic N soliton Shape of U7(ξ ) for a0 = 2,a = 2,b = 3,m = 2,K = .3,y = 0 within −10 ≤ x, t ≤ 10. The

left-sided figure shows the 3D plot and the right-sided figure shows the 2D plot for t = 0

5. Conclusion

In this segment, we have seen that two kinds of traveling wave arrangements as far as hyperbolic and trigonometric capacities

for the general (2+1)-dimensional nonlinear evolution equation is effectively discovered by utilizing the Improved F-expansion

method. From our outcomes got in this paper, we finish up the Improved F-expansion scheme strategy is amazing, powerful

and helpful. The exhibition of this technique is dependable, basic and gives numerous new arrangements. Likewise, the

arrangements of the proposed nonlinear development conditions in this paper have numerous potential applications in atomic

and molecule material science. At long last, this technique gives a ground-breaking scientific instrument to get increasingly

broad accurate arrangements of a large number of nonlinear PDEs in numerical material science.
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1. Introduction

Let Σ symbolized the class of analytic functions, which are with a simple pole at the origin with residue 1 of the form in the

punctured unit disc E = {z : 0 < |z|< 1} and of the form

f (z) =
1

z
+

∞

∑
n=1

anzn. (1.1)

Let Σs,Σ
∗(α) and Σk(α) be the subclass of Σ consisting of univalent, meromorphically starlike of order α and meromorphi-

cally convex functions of α, 0 ≤ α < 1 respectively.

A function given by (1.1) is in the Σ∗(α)

⇔ ℜ

{

− z f ′(z)
f (z)

}

> α (z ∈ E) (1.2)

and f ∈ Σk(α)

⇔ ℜ

{

− (1+ z f ′′(z))
f ′(z)

}

> α, (z ∈ E). (1.3)

Recent years, many authors investigated the subcalss of meromorphic functions with positive coefficients (see [1, 2, 3, 4, 5].
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Let Σp denote the class of functions of the form

f (z) =
1

z
+

∞

∑
n=1

anzn, (an ≥ 0) (1.4)

that are analytic and univalent in E.
We recall here the generalized Bessel function of first kind of order γ (see [6]), denoted by

w(z) =
∞

∑
n=0

(−c)n

n!Γ(γ +n+ b+1
2
)

( z

2

)2n+γ
(z ∈U)

(where Γ stands for the Gamma Euler function) which is the particular solution of the second order linear homogeneous

differential equation (see, for details, [7] )

z2w′′(z)+bzw′(z)+ [cz2 − γ2 +(1−b)γ]w(z) = 0,

where c,γ,b ∈C.
We introduce the function ϕ defined, in terms of the generalized Bessel function w by

ϕ(z) = 2γ Γ

(

γ +
b+1

2

)

z−(1+ γ
2 )w(

√
z).

By using the well-known Pochhammer symbol (x)τ defined, for x ∈C and in terms of the Euler gamma function, by

(x)τ =
Γ(x+ τ)

Γ(x)
=

{

1, (τ = 0);
x(x+1)(x+2) · · ·(x+n−1), (τ = n ∈ N = {1,2,3 · · ·}).

We obtain the following series representation for the function ϕ(z)

ϕ(z) =
1

z
+

∞

∑
n=0

(−c)n+1

4n+1(n+1)!(τ)n+1
zn

(

τ = γ +
b+1

2
/∈ Z−

0 = {0,−1,−2, · · ·}
)

.

Corresponding to the function ϕ define the Bessel operator S c
τ by the following Hadamard product

S c
τ f (z) = (ϕ ∗ f )(z) =

1

z
+

∞

∑
n=0

(−c
4

)n+1
an

(n+1)!(τ)n+1
zn

=
1

z
+

∞

∑
n=1

φ(n,τ,c)anzn, (1.5)

where φ(n,τ,c) =
(−c

4 )
n

(n)!(τ)n

Definition 1.1. Let Σ∗
p(G,H,τ,c) denote the subclass of Σp consisting of functions f (z) in Σp which satisfy

∣

∣

∣

z(Sc
τ f (z))′

S c
τ f (z)

+1

∣

∣

∣
<
∣

∣

∣
G+H

z(S c
τ f (z))′

S c
τ f (z)

∣

∣

∣
, (1.6)

for −1 ≤ G < H, 0 < H ≤ 1.

2. Coefficient Inequalities

Our first theorem gives a necessary and sufficient condition for a function to be in Σ∗
p(G,H,τ,c).

Theorem 2.1. Let f (z) ∈ Σp as given by (1.4). Then f (z) ∈ Σ∗
p(G,H,τ,c) if and only if

∞

∑
n=1

[(n+1)+(G+Hn)]φ(n,τ,c)an ≤ H −G, (2.1)

for −1 ≤ G < H, 0 < H ≤ 1.
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Proof. Suppose f (z) = 1
z
+

∞

∑
n=1

anzn, an ≥ 0, is in Σ∗
p(G,H,τ,c). Then

∣

∣

∣

∣

∣

z(S c
τ f (z))′

S c
τ f (z) +1

G+H
z(S c

τ f (z))′
S c

τ f (z)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞

∑
n=1

(n+1)φ(n,τ,c)anzn

(H −G) 1
z
−

∞

∑
n=1

(G+Hn)φ(n,τ,c)anzn

∣

∣

∣

∣

∣

< 1 (2.2)

for all z ∈ E. Since Re(z)≤ |z| for all z, we have

Re

{

∞

∑
n=1

(n+1)φ(n,τ,c)anzn

(H −G) 1
z
−

∞

∑
n=1

(G+Hn)φ(n,τ,c)anzn

}

< 1, (z ∈ E).

Now choose the values of z on real axis so that
z(S c

τ f (z))′

S c
τ f (z) is real.

Upon clearing the denominator in (2.2) and letting z → 1 through positive values, we obtain

∞

∑
n=1

[(n+1)+(G+Hn)]φ(n,τ,c)an ≤ H −G.

Conversely, suppose that (2.1) holds for all admissible values of G and H. We have

M( f , f ′) = |z(S c
τ f (z))′+S c

τ f (z)|− |GS c
τ f (z)+Hz(S c

τ f (z))′|

=
∣

∣

∣

∞

∑
n=1

(n+1)φ(n,τ,c)anzn
∣

∣

∣
−
∣

∣

∣
(H −G)

1

z
−

∞

∑
n=1

(G+Hn)φ(n,τ,c)anzn
∣

∣

∣

or

zM( f , f ′)≤
∞

∑
n=1

(n+1)φ(n,τ,c)an|z|n+1 − (H −G)+
∞

∑
n=1

(G+Hn)φ(n,τ,c)an|z|n+1

=
∞

∑
n=1

[(n+1)+(G+Hn)]φ(n,τ ,c)an|z|n+1 − (H −G).

Since the above inequality holds for all r = |z|, 0 < r < 1, letting r → 1, we have

∞

∑
n=1

[(n+1)+(G+Hn)]φ(n,τ,c)an ≤ (H −G)

by (2.1). Hence it follows that f (z) is in the class Σ∗
p(G,H,τ,c).

Corollary 2.2. If the function f (z) ∈ Σ∗
p(G,H,τ,c) then

an ≤
(H −G)

[(n+1)+(G+Hn)]φ(n,τ,c)
, (n ≥ 1). (2.3)

The result is sharp for the function

fn(z) =
1

z
+

(H −G)

[(n+1)+(G+Hn)]φ(n,τ,c)
zn, (n ≥ 1). (2.4)

3. Distortion Properties and Radius of Convexity Estimates

Theorem 3.1. If the function f (z) ∈ Σ∗
p(G,H,τ,c) then for 0 ≤ |z|= r < 1,

1

r
− (H −G)

(2+G+H)φ(1,τ,c)
r ≤ | f (z)| ≤ 1

r
+

(H −G)

(2+G+H)φ(1,τ,c)
r. (3.1)

The result is sharp.
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Proof. Suppose f (z) is in Σ∗
p(G,H,τ,c). By Theorem 2.1, we have

∞

∑
n=1

an ≤
(H −G)

[(n+1)+(G+Hn)]φ(n,τ,c)
, (n ≥ 1). (3.2)

Thus | f (z)| ≤ 1
|z| + |z|

∞

∑
n=1

an ≤ 1
r
+ (H−G)

(2+G+H)φ(1,τ,c) r.

Also | f (z)| ≥ 1
|z| −|z|

∞

∑
n=1

an ≥ 1
r
− (H−G)

(2+G+H)φ(1,τ,c) r.

Thus the result is sharp for the function

f (z) =
1

z
+

(H −G)

(2+G+H)φ(1,τ,c)
z.

Theorem 3.2. If the function f (z) ∈ Σ∗
p(G,H,τ,c) then f (z) is meromorphically convex of order δ (0 ≤ δ < 1) in |z|< r =

r(G,H,τ,c,δ ), where

r(G,H,τ,c,δ ) = inf
n≥1

[ (1−δ )[(n+1)+(G+Hn)]φ(n,τ,c)

(H −G)n(n+2−δ )

]
1

n+1
.

The result is sharp.

Proof. Let f (z) be in Σ∗
p(G,H,τ,c). Then by Theorem 2.1, we have

∞

∑
n=1

[(n+1)+(G+Hn)]φ(n,τ,c)

(H −G)
an ≤ 1. (3.3)

It is sufficient to show that

∣

∣

∣
2+ z f ′′(z)

f ′(z)

∣

∣

∣
≤ 1−δ for |z| ≤ r(G,H,τ,c,δ ), where r(G,H,τ,c,δ ) is as specified in the statement

of the theorem. Then

∣

∣

∣

∣

2+
z f ′′(z)
f ′(z)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∞

∑
n=1

n(n+1)anzn−1

−1
z2 +

∞

∑
n=1

nanzn−1

∣

∣

∣

∣

∣

∣

∣

∣

≤

∞

∑
n=1

n(n+1)an|z|n+1

1−
∞

∑
n=1

nan|z|n+1

.

This will be bounded by 1−δ if

∞

∑
n=1

n(n+2−δ )

1−δ
an|z|n+1 ≤ 1. (3.4)

By (3.3), it follows that (3.4) is true if

n(n+2−δ )

1−δ
|z|n+1 ≤ [(n+1)+(G+Hn)]φ(n,τ,c)

H −G
, (n ≥ 1)

or

|z| ≤
{

(1−δ )[(n+1)+(G+Hn)]φ(n,τ,c)

(H −G)n(n+2−δ )

}
1

n+1

, (n ≥ 1). (3.5)

Setting |z|= r(G,H,τ,c,δ ) in (3.5), the result follows.

The result is sharp for the functions

fn(z) =
1

z
+

(H −G)

[(n+1)+(G+Hn)]φ(n,τ,c)
zn, (n ≥ 1). (3.6)



Certain Subclass of Meromorphic Functions with Positive Coefficients Defined by Bessel Function — 128/129

4. Convex Linear Combinations and Convolution Properties

We shall prove that the class Σ∗
p(G,H,τ,c) is closed under convex linear combinations and convolutions.

Theorem 4.1. Let f0(z) =
1
z

and

fn(z) =
1

z
+

(H −G)

[(n+1)+(G+Hn)]φ(n,τ,c)
zn, (n ≥ 1). (4.1)

Then f (z) ∈ Σ∗
p(G,H,τ,c) if and only if it can be expressed in the form f (z) =

∞

∑
n=0

λn fn(z), where λn ≥ 0 and
∞

∑
n=0

λn = 1.

Proof. Let f (z) =
∞

∑
n=0

λn fn(z) with λn ≥ 0 and
∞

∑
n=0

λn = 1. Then

f (z) =
∞

∑
n=0

λn fn(z) =
1

z
+

∞

∑
n=0

(H −G)

[(n+1)+(G+Hn)]φ(n,τ,c)
zn. (4.2)

Since

[(n+1)+(G+Hn)]φ(n,τ,c)

(H −G)
λn

(H −G)

[(n+1)+(G+Hn)]φ(n,τ,c)

=
∞

∑
n=1

λn = 1−λn ≤ 1,

by Theorem 2.1, f (z) is in the class Σ∗
p(G,H,τ,c).

Conversely, suppose that the function f (z) is the class Σ∗
p(G,H,τ,c). Setting

λn =
[(n+1)+(G+Hn)]φ(n,τ,c)

(H −G)
an, n ≥ 1

and λ0 = 1−
∞

∑
n=1

λn, it follows that f (z) =
∞

∑
n=0

λn fn(z).

Here, we see that λn ≥ 0 (n ≥ 1) by definition and λ0 ≥ 0 in view of Theorem 2.1. This completes the proof of the theorem.

The result is sharp for the function

fn(z) =
1

z
+

(H −G)

[(n+1)+(G+Hn)]φ(n,τ,c)
zn, (n ≥ 1). (4.1)

Robertson [8], has shown that if f (z) = 1
z
+

∞

∑
n=1

anbnzn and g(z) = 1
z
+

∞

∑
n=1

bnzn are in Σs then so their convolutions

( f ∗g)(z) = 1
z
+

∞

∑
n=1

anbnzn.

Theorem 4.2. If the function f (z) and g(z) are in the class Σ∗
p(G,H,τ,c) then ( f ∗g)(z) is the class Σ∗

p(G,H,τ,c).

Proof. Suppose that f (z) and g(z) are in Σ∗
p(G,H,τ ,c). By Theorem 2.1, we have

∞

∑
n=1

[(n+1)+(G+Hn)]φ(n,τ,c)

(H −G)
an ≤ 1,

∞

∑
n=1

[(n+1)+(G+Hn)]φ(n,τ,c)

(H −G)
bn ≤ 1.

Since f (z) and g(z) are regular in E, so ( f ∗g)(z). Furthermore

∞

∑
n=1

[(n+1)+(G+Hn)]φ(n,τ,c)

(H −G)
anbn ≤

{

[(n+1)+(G+Hn)]φ(n,τ,c)

(H −G)

}2

anbn

≤
∞

∑
n=1

[(n+1)+(G+Hn)]φ(n,τ,c)

(H −G)
an

{

[(n+1)+(G+Hn)]φ(n,τ,c)

(H −G)

}

bn

≤ 1.

Hence by Theorem 2.1, ( f ∗g)(z) is in the class Σ∗
p(G,H,τ,c).
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5. Integral Transforms

In this section, we consider transforms of functions in the class Σ∗
p(G,H,τ,c) of the type considered by Bajpai [9].

Theorem 5.1. If the function f (z) is in the class Σ∗
p(G,H,τ,c) then the integral transforms

Fc(z) = c

1
∫

0

uc f (uz)dz, (0 < c < ∞)

is in the class Σ∗
p(G,H,τ,c).

Proof. Suppose f (z) is in Σ∗
p(G,H,τ,c). Then we have

Fc(z) = c

1
∫

0

uc f (uz)du =
1

z
+

∞

∑
n=1

c

n+ c+1
anzn.

Since

∞

∑
n=1

[(n+1)+(G+Hn)]φ(n,τ,c)

(H −G)

can

n+ c+1
≤

∞

∑
n=1

[(n+1)+(G+Hn)]φ(n,τ,c)

(H −G)
an ≤ 1,

by Theorem 2.1, it follows that Fc(z) is in the class Σ∗
p(G,H,τ,c).
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1. Introduction

In 1843, Hamilton [1] introduced the set of quaternions which can be represented as

H = {q = q0 + iq1 + j q2 + k q3 | q0, q1, q2, q3 ∈ R} (1.1)

where

i2 = j2 = k2 =−1 , i j =− j i = k , j k =−k j = i , k i =−i k = j .

After the work of Hamilton, several authors worked on different quaternions and their generalizations. ([2]-[22]).

In 1973, Sloane [23] introduced the set of Jacobsthal numbers.

Further, in 1988, Horadam [24]-[25] defined the Jacobsthal and Jacobsthal-Lucas sequences {Jn} and { jn} with the recurrence

relations respectively, as follows

J0 = 0, J1 = 1, Jn = Jn−1 +2Jn−2, f or n ≥ 2, (1.2)

and

j0 = 2, j1 = 1, jn = jn−1 +2 jn−2, f or n ≥ 2, (1.3)

In 1996, Horadam studied on the Jacobsthal and Jacobsthal-Lucas sequences and he gave Cassini-like formula as follows [26]

Jn+1Jn−1 − J2
n = (−1)n

.2n−1 (1.4)
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jn+1 jn−1 − j2
n = 32

.(−1)n+1
.2n−1 (1.5)

The first eleven terms of Jacobsthal sequence {Jn} are 0,1,1,3,5,11,21,43, 85,171 and 341. This sequence is given by the

formula

Jn =
2n − (−1)n

3
(1.6)

The first eleven terms of Jacobsthal-Lucas sequence { jn} are 2,1,5,7,17,31

65,127,257,511 and 1025. This sequence is given by the formula

jn = 2n +(−1)n (1.7)

Also, we can see the matrix representations of Jacobsthal and Jacobsthal-Lucas numbers in [27],[28]. The members of these

integer sequences can also be obtained in different ways: Binet formulae or matrix method by Köken and Bozkurt [27]-[28].

Several authors worked on Jacobsthal numbers and polynomials in [29]-[32].

In 2015, Szynal-Liana and Włoch [33] defined the Jacobsthal quaternions and the Jacobsthal- Lucas quaternions respec-

tively as follows

JQn = Jn + i Jn+1 + j Jn+2 + k Jn+3 , (1.8)

and

JLQn = jn + i jn+1 + j jn+2 + k jn+3 . (1.9)

where

i2 = j2 = k2 =−1 , i j =− j i = k , j k =−k j = i , k i =−i k = j.

In 2017, Torunbalcı Aydın and Yüce [34] given a new approach to Jacobsthal quaternions. Furthermore, some relations between

Jacobsthal and Jacobsthal-Lucas quaternions are given in [34].

In 2017, Taşçı [35] defined k-Jacobsthal and k-Jacobsthal-Lucas quaternions as follows

QJk,n = Jk,n + i1 Jk,n+1 + i2 Jk,n+2 + i3 Jk,n+3 (1.10)

and

Q jk,n = jk,n + i1 jk,n+1 + i2 jk,n+2 + i3 jk,n+3 (1.11)

where

i21 = i22 = i23 = i1 i2 i3 =−1 .

In 2017, Cerda-Morales [36] worked on identities of third order Jacobsthal quaternions.

In 2018, Cerda-Morales [37] defined fourth-order Jacobsthal and Jacobsthal-Lucas quaternions as follows

QJn
(4) = Jn

(4)+ i Jn+1
(4)+ j Jn+2

(4)+ k Jn+3
(4) (1.12)

and

Q jn
(4) = jn

(4)+ i jn+1
(4)+ j jn+2

(4)+ k jn+3
(4) (1.13)

In this paper, dual Jacobsthal and dual Jacobsthal-Lucas quaternions will be defined as follows

JD = {DJ
n = Jn + i Jn+1 + j Jn+2 + k Jn+3 | Jn, n− thJacobsthal number}
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and

jD = {D j
n = jn + i jn+1 + j jn+2 + k jn+3 | jn, n− thJacobsthal-Lucas number}

where

i2 = j2 = k2 = i j k = 0 , i j = − j i = j k = −k j = k i = −i k = 0 .

All the studies on Jacobsthal quaternions are summarized in Table 1.

Table 1. Types of Jacobsthal quaternions [33]-[35].

Definition Multiplication Rules

Jacobsthal JQn = (Jn,Jn+1,Jn+2,Jn+3) (1, i, j,k), i2 = j2 = k2 =−1

quaternion Jn = Jn−1 +2Jn−2, J1 = J2 = 1 i j =− j i = k, j k =−k j = i

k i =−i k = j

k-Jacobsthal QJk,n = (Jk,n,Jk,n+1,Jk,n+2,Jk,n+3) (1, i1, i2, i3),
quaternion QJk,n+2 = k QJk,n+1 +2QJk,n i21 = i22 = i23 = i1 i2 i3 =−1

Dual Jacobsthal DJ
n = (Jn,Jn+1,Jn+2,Jn+3) (1, i, j,k) i2 = j2 = k2 = i j k = 0

quaternion Jn = Jn−1 +2Jn−2, J1 = J2 = 1 i j =− j i = j k =−k j = k i =−i k = 0

2. Dual Jacobsthal Quaternions

In this section, the dual Jacobsthal quaternions will be defined. Also, the relations between dual Jacobsthal quaternions which

connected with Jacobsthal and Jacobsthal-Lucas numbers were investigated.

Dual Jacobsthal quaternions is defined by relation recurrence (1.2) as follows

JD = {DJ
n = Jn + i Jn+1 + j Jn+2 + k Jn+3 |Jn, n− thJacobsthal number} (2.1)

where

i2 = j2 = k2 = i j k = 0 , i j = − j i = j k = −k j = k i = −i k = 0 . (2.2)

Also, the dual Jacobsthal-Lucas quaternion is defined by relation recurrence (1.3) as follows

jD = {D j
n = jn + i jn+1 + j jn+2 + k jn+3 | jn, n− thJacobsthal-Lucas number}, (2.3)

i2 = j2 = k2 = i j k = 0 , i j = − j i = j k = −k j = k i = −i k = 0 .

Let D
J1
n and D

J2
n be n-th terms of the dual Jacobsthal quaternion sequence (DJ1

n ) and (DJ2
n ) such that

DJ1
n = Jn + i Jn+1 + j Jn+2 + k Jn+3 (2.4)

and

DJ2
n = Kn + iKn+1 + j Kn+2 + k Kn+3 (2.5)
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Then, the addition and subtraction of the dual Jacobsthal quaternions is defined by

D
J1
n ±D

J2
n = (Jn + i Jn+1 + j Jn+2 + k Jn+3)

±(Kn + iKn+1 + j Kn+2 + k Kn+3)
= (Jn ±Kn)+ i(Jn+1 ±Kn+1)+ j (Jn+2 ±Kn+2)

+k (Jn+3 ±Kn+3) .

(2.6)

Multiplication of the dual Jacobsthal quaternions is defined by

D
J1
n D

J2
n = (Jn + i Jn+1 + j Jn+2 + k Jn+3)

(Kn + iKn+1 + j Kn+2 + k Kn+3)
= (Jn Kn)+ i(JnKn+1 + Jn+1Kn)+ j(JnKn+2 + Jn+2Kn)

+k(JnKn+3 + Jn+3Kn).

(2.7)

The scalar and the vector part of DJ
n which is the n-th term of the dual Jacobsthal quaternion (DJ

n) are denoted by

SDJ
n
= Jn and VDJ

n
= iJn+1 + jJn+2 + kJn+3. (2.8)

Thus, the dual Jacobsthal quaternion DJ
n is given by DJ

n = SDJ
n
+VDJ

n
.

Then, relation (2.7) is defined by

D
J1
n D

J2
n = S

D
J1
n
.S

D
J2
n
+ S

D
J1
n
.V

D
J2
n
+S

D
J2
n
.V

D
J1
n
. (2.9)

The conjugate of the dual Jacobsthal quaternion DJ
n is denoted by DJ

n and it is

DJ
n = Jn − i Jn+1 − j Jn+2 − k Jn+3. (2.10)

The norm of DJ
n is defined as

NDJ
n
=
∥

∥DJ
n

∥

∥

2
= DJ

n DJ
n = J2

n . (2.11)

Then, we give the following theorem using statements (2.1), (2.2) and















JnJn+1 +2Jn−1Jn = J2n,

JnJm+1 +2Jn−1Jm = Jn+m,

Jn+1 +2Jn−1 = jn,

Jn jn = J2n.

(2.12)

Theorem 2.1. Let Jn and DJ
n be the n-th terms of the Jacobsthal sequence (Jn) and the dual Jacobsthal quaternion sequence

(DJ
n), respectively. In this case, for n ≥ 1 we can give the following relations:

DJ
n +DJ

n = 2Jn, (2.13)

(DJ
n)

2 +DJ
n DJ

n = 2Jn DJ
n, (2.14)

DJ
n+1 +2DJ

n = DJ
n+2, (2.15)

DJ
n − iDJ

n+1 − j DJ
n+2 − k DJ

n+3 = Jn, (2.16)

Proof. Proof of four equality can easily be done by the equations

DJ
n = Jn + i Jn+1 + j Jn+2 + k Jn+3, (2.17)
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DJ
n+1 = Jn+1 + i Jn+2 + j Jn+3 + k Jn+4 (2.18)

(2.13):

DJ
n +DJ

n = (Jn + i Jn+1 + j Jn+2 + k Jn+3)
+(Jn − i Jn+1 − j Jn+2 − k Jn+3)

= (Jn + Jn)+ i(Jn+1 − Jn+1)+ j(Jn+2 − Jn+2)
+k(Jn+3 − Jn+3)

= 2Jn.

(2.14):

(DJ
n)

2 +DJ
n DJ

n = (Jn + i Jn+1 + j Jn+2 + k Jn+3)
(Jn + i Jn+1 + j Jn+2 + k Jn+3)
+(Jn + i Jn+1 + j Jn+2 + k Jn+3)
(Jn − i Jn+1 − j Jn+2 − k Jn+3)

= (JnJn)+ i(JnJn+1 + Jn+1Jn)+ j(JnJn+2 + Jn+2Jn)
+k(JnJn+3 + Jn+3Jn)
+JnJn + i(−JnJn+1 + Jn+1Jn)
+ j(−JnJn+2 + Jn+2Jn)
+k(−JnJn+3 + Jn+3Jn)

= 2JnJn +2i JnJn+1 +2 j JnJn+2 +2k JnJn+3

= 2Jn(Jn + i Jn+1 + j Jn+2 + k Jn+3)
= 2Jn DJ

n

(2.15):

DJ
n+1 +2DJ

n = (Jn+1 + i Jn+2 + j Jn+3 + k Jn+4)
+2(Jn + i Jn+1 + j Jn+2 + k Jn+3 )

= (Jn+1 +2Jn)+ i(Jn+2 +2Jn+1)+ j (Jn+3 +2Jn+2)
+k (Jn+4 +2Jn+3)

= Jn+2 + i Jn+3 + j Jn+4 + k Jn+5

= DJ
n+2.

(2.16):

DJ
n − iDJ

n+1 − j DJ
n+2 − k DJ

n+3 = (Jn + iJn+1 + jJn+2 + kJn+3)
− i(Jn+1 + iJn+2 + jJn+3 + kJn+4)
− j(Jn+2 + iJn+3 + jJn+4 + kJn+5)
− k(Jn+3 + iJn+4 + jJn+5 + kJn+6)
= Jn .

Theorem 2.2. Let DJ
n and D

j
n be the n-th terms of the dual Jacobsthal quaternion sequence (DJ

n) and the dual Jacobsthal-Lucas

quaternion sequence (D j
n), respectively. The following relations are satisfied

DJ
n+1 +2DJ

n−1 = D j
n , (2.19)

2DJ
n+1 −DJ

n = D j
n . (2.20)

Proof. (2.19): From equations (2.17), (2.18) and identity between Jacobsthal number and Jacobsthal-Lucas number jn = Jn+1 +2Jn−1,

it follows that

DJ
n+1 +2DJ

n−1 = (Jn+1 + i Jn+2 + j Jn+3 + k Jn+4)
+2(Jn−1 + i Jn + j Jn+1 + k Jn+2)

= (Jn+1 +2Jn−1)+ i(Jn+2 +2Jn)
+ j (Jn+3 +2Jn+1)+ k (Jn+4 +2Jn+2)

= jn + i jn+1 + j jn+2 + k jn+3

= D
j
n .
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(2.20): Using the identity between Jacobsthal number and Jacobsthal -Lucas number Jn + jn = 2Jn+1 , we get

2DJ
n+1 −DJ

n = 2(Jn+1 + i Jn+2 + j Jn+3 + k Jn+4)
−(Jn + i Jn+1 + j Jn+2 + k Jn+3)

= (2Jn+1 − Jn)+ i(Jn+2 − Jn+1)
+ j (2Jn+3 − Jn+2)+ k (2Jn+4 − Jn+3)

= jn + i jn+1 + j jn+2 + k jn+3

= D
j
n .

Theorem 2.3. Let DJ
n be the n-th term of the dual Jacobsthal quaternion sequence (DJ

n) and DJ
n be conjugate of DJ

n. Then, we

can give the following relations between these quaternions:

(DJ
n)

2 = 2Jn DJ
n − J2

n ,

(DJ
n)

2 +2(DJ
n−1)

2 = 2DJ
2n−1 − J2n−1,

DJ
n DJ

n +2DJ
n−1 DJ

n−1 = J2
n +2J2

n−1 = J2n−1,

DJ
n+1 DJ

n+1 +2DJ
n DJ

n = J2
n+1 +2J2

n = J2n+1,

DJ
n+1 DJ

n+1 −2DJ
n DJ

n = J2
n+1 −2J2

n = J2n+1 −4J2
n

(2.21)

Proof. It can be proved easily by using (2.10). Now, we will prove first two equalities

(DJ
n)

2 = JnJn + i(JnJn+1 + Jn+1Jn)+ j (JnJn+2 + Jn+2Jn)
+k (JnJn+3 + Jn+3Jn)

= 2Jn(Jn + i Jn+1 + j Jn+2 + k Jn+3)− JnJn

= 2Jn DJ
n − J2

n .

(DJ
n)

2 +2(DJ
n−1)

2 = J2
n +2 i(Jn Jn+1)+2 j (Jn Jn+2)+2k (Jn Jn+3)
+2(J2

n−1)+4 i(Jn−1 Jn)+4 j (Jn−1 Jn+1)
+4k (Jn−1 Jn+2)

= (J2
n +2J2

n−1)+ i(2JnJn+1 +4Jn−1Jn)
+ j (2JnJn+2 +4Jn−1Jn+1)
+k (2JnJn+3 +4Jn−1Jn+2)

= J2n−1 +2i J2n +2 j J2n+1 +2k J2n+2

= 2DJ
2n−1 − J2n−1.

We can prove last three equalities by using equation (2.12) as follows:

DJ
n DJ

n +2DJ
n−1.D

J
n−1 = J2

n +2J2
n−1 = J2n−1,

DJ
n+1 DJ

n+1 +2DJ
n DJ

n = J2
n+1 +2J2

n = J2n+1,

DJ
n+1 DJ

n+1 −2DJ
n DJ

n = J2
n+1 −2J2

n = J2n+1 −4J2
n

where identities JmJn+1 +2Jm−1Jn = Jm+n and J2
n +2J2

n−1 = J2n−1 were used.

Theorem 2.4. Let DJ
n be the n-th term of dual Jacobsthal quaternion sequence (DJ

n). Then, we have the following identities

n

∑
s=1

DJ
s =

1

2
[DJ

n+2 −DJ
2], (2.22)

p

∑
s=0

DJ
n+s =

1

2
[DJ

n+p+2 −DJ
n+1], (2.23)

n

∑
s=1

DJ
2s−1 =

2DJ
2n

3
+

1

3
[n(2DJ

2 −DJ
3)−2DJ

0], (2.24)
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n

∑
s=1

DJ
2s =

2DJ
2n+1

3
−

1

3
[n(2DJ

2 −DJ
3)+2DJ

1]. (2.25)

Proof. (2.22) Hence, we can write

n

∑
s=1

DJ
s =

n

∑
s=1

Js + i
n

∑
s=1

Js+1 + j
n

∑
s=1

Js+2 + k
n

∑
s=1

Js+3

=
1

2
[(Jn+2 −1)+ i(Jn+3 −3)+ j (Jn+4 −5)+ k (Jn+5 −11)]

=
1

2
[(Jn+2 − J2)+ i(Jn+3 − J3)+ j (Jn+4 − J4)+ k (Jn+5 − J5)]

=
1

2
[Jn+2 + i Jn+3 + j Jn+4 + k Jn+5 − (J2 + i J3 + j J4 + k J5)]

=
1

2
[DJ

n+2 −DJ
2] .

(2.23) Hence, we can write

p

∑
s=0

DJ
n+s =

p

∑
s=0

Jn+s + i

p

∑
s=0

Jn+s+1 + j

p

∑
s=0

Jn+s+2 + k

p

∑
s=0

Jn+s+3

=
1

2
[(Jn+p+2 − Jn+1)+ i(Jn+p+3 − Jn+2)+ j (Jn+p+4 − Jn+3)]

+
1

2
[k (Jn+p+5 − Jn+4)]

=
1

2
[Jn+p+2 + i Jn+p+3 + j Jn+p+4 + k Jn+p+5

− (Jn+1 + i Jn+2 + j Jn+3 + k Jn+4)]

=
1

2
[DJ

n+p+2 −DJ
n+1] .

(2.24): Using
n−1

∑
i=0

J2i+1 =
2J2n+n

3
and

n

∑
i=0

J2i =
2J2n+1−n−2

3
, we get

n

∑
s=1

DJ
2s−1 =(J1 + J3 + . . .+ J2n−1)+ i(J2 + J4 + . . .+ J2n)

+ j(J3 + J5 + . . .+ J2n+1)+ k(J4 + J6 + . . .+ J2n+2)

=
(2J2n +n)

3
+ i

(2J2n+1 −n−2)

3
+ j

(2J2n+2 +n−2)

3

+ k
(2J2n+3 −n−6)

3

=
2

3
[J2n + i J2n+1 + j J2n+2 + k J2n+3]

+
1

3
[n(1− i+ j− k)−2(i+ j+3k)]

=
2DJ

2n

3
+

1

3
[n(2DJ

2 −DJ
3)−2DJ

0] .
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(2.25): Using
n

∑
i=0

J2i =
2J2n+1−n−2

3
we obtain

n

∑
s=1

DJ
2s =(J2 + J4 + . . .+ J2n)+ i(J3 + J5 + . . .+ J2n+1)

+ j(J4 + J6 + . . .+ J2n+2)+ k(J5 + J7 + . . .+ J2n+3)

=
(2J2n+1 −n−2)

3
+ i

(2J2n+2 +n−2)

3
+ j

(2J2n+3 −n−6)

3

+ k
(2J2n+4 +n−10)

3

=
2

3
[J2n+1 + i J2n+2 + j J2n+3 + k J2n+4]

+
1

3
[−n(1− i+ j− k)−2(1+ i+3 j+5k)]

=
2DJ

2n+1

3
−

1

3
[n(2DJ

2 −DJ
3)+2DJ

1] .

Theorem 2.5. Let DJ
n and D

j
n be the n-th terms of the dual Jacobsthal quaternion sequence (DJ

n) and the dual Jacobsthal-Lucas

quaternion sequence (D j
n) ,respectively. Then, we have

D j
n DJ

n −D
j
n DJ

n = 2 [Jn D j
n − jn DJ

n ], (2.26)

D j
n DJ

n +D
j
n DJ

n =2 jn Jn = 2J2n, (2.27)

D j
n DJ

n −D
j
n DJ

n =2 [D j
n Jn +DJ

n jn −2J2n] , (2.28)

D j
n DJ

n +D
j
n DJ

n =2J2n. (2.29)

Proof. (2.26):

D
j
n DJ

n −D
j
n DJ

n = ( jn + i jn+1 + j jn+2 + k jn+3)
(Jn − i Jn+1 − j Jn+2 − k Jn+3)
−( jn − i jn+1 − j jn+2 − k jn+3)
(Jn + i Jn+1 + j Jn+2 + k Jn+3)

= ( jnJn − jnJn)
+2i( jn+1Jn − jnJn+1)
+2 j ( jn+2Jn − jnJn+2)
+2k ( jn+3Jn − jnJn+3)

= 2Jn( jn + i jn+1 + j jn+2 + k jn+3)
−2 jn(Jn + i Jn+1 + j Jn+2 + k Jn+3)

= 2 [Jn D
j
n − jn DJ

n ].

(2.27):

D
j
n DJ

n +D
j
n DJ

n = ( jn + i jn+1 + j jn+2 + k jn+3)
(Jn − i Jn+1 − j Jn+2 − k Jn+3)
+( jn − i jn+1 − j jn+2 − k jn+3)
(Jn + i Jn+1 + j Jn+2 + k Jn+3)

= jn [Jn − i Jn+1 − j Jn+2 − k Jn+3]
+(i jn+1 + j jn+2 + k jn+3)Jn

+ jn [Jn + i Jn+1 + j Jn+2 + k Jn+3]
+(−i jn+1 − j jn+2 − k jn+3)Jn

= 2 jnJn = 2J2n.
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(2.28):

D
j
n DJ

n −D
j
n DJ

n = ( jn + i jn+1 + j jn+2 + k jn+3)
(Jn + i Jn+1 + j Jn+2 + k Jn+3)
−( jn − i jn+1 − j jn+2 − k jn+3)
(Jn − i Jn+1 − j Jn+2 − k Jn+3)

= ( jn Jn − jn Jn)+2(i jn+1 + j jn+2 + k jn+3)Jn

+2( jn + i jn+1 + j jn+2 + k jn+3)Jn −2 jn Jn

= 2(D j
n Jn +DJ

n jn −2 jn Jn)

= 2(D j
n Jn +DJ

n jn −2J2n).

(2.29):

D
j
n DJ

n +D
j
n DJ

n = ( jn + i jn+1 + j jn+2 + k jn+3)
(Jn + i Jn+1 + j Jn+2 + k Jn+3)
+( jn − i jn+1 − j jn+2 − k jn+3)
(Jn − i Jn+1 − j Jn+2 − k Jn+3)

= 2 jn Jn = 2J2n.

In proofs, the identities of Jacobsthal and Jacobsthal-Lucas numbers given below were used, respectively,

Jm jn − Jn jm = (−1)n 2n+1Jm−n, jnJn = J2n and jn+2 = jn+1 +2 jn.

Theorem 2.6. (Binet’s Formula). Let DJ
n and D

j
n be n− th terms of dual Jacobsthal quaternion sequence (DJ

n) and the dual

Jacobsthal-Lucas quaternion sequence (D j
n), respectively. For n ≥ 1, Binet’s formula for these quaternions are as follows

respectively,

DJ
n =

1

α −β

[

α αn −β β n
]

(2.30)

and

D j
n = (α αn +β β n) (2.31)

where

α = 1+ i(1−β )+ j (3−β )+ k (5−3β ), α = 2,

β = 1+ i(1−α)+ j (3−α)+ k (5−3α), β =−1,

α = (1−2β )+ i(5−β )+ j (7−5β )+ k (17−7β ), α = 2,

β = (2α −1)+ i(α −5)+ j (5α −7)+ k (7α −17), β =−1.

Proof. The characteristic equation of recurrence relations DJ
n+2 = DJ

n+1 +2DJ
n is

t2 − t −2 = 0.

The roots of this equation are α = 2 and β =−1

where α +β = 1 , α −β = 3 , αβ =−2 .

Using recurrence relation and initial values DJ
0 = (0, 1, 1, 3),

DJ
1 = (1, 1, 3, 5) the Binet’s formula for DJ

n, we get

DJ
n = A αn +Bβ n =

1

3

[

α αn −β β n
]

,
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where A =
DJ

1−DJ
0 β

α−β
, B =

α DJ
0−DJ

1

α−β
and

α = 1+ i(1−β )+ j (3−β )+ k (5− 3β ), β = 1+ i(1−α)+ j (3−α)+ k (5− 3α). Similarly, using recurrence relations

D
j
n+2 = D

j
n+1 +2D

j
n, the Binet’s formula for D

j
n is obtained as follows:

D j
n = (α αn +β β n)

Theorem 2.7. (Honsberger Identity) For n,m ≥ 0 the Honsberger identity for the dual Jacobsthal quaternions DJ
n and DJ

m is

given by

DJ
n DJ

m +2DJ
n−1 DJ

m−1 = 2DJ
n+m−1 − Jn+m−1. (2.32)

Proof. (2.32):

DJ
n DJ

m = Jn Jm + i(Jn Jm+1 + Jn+1 Jm)+ j (Jn Jm+2 + Jn+2 Jm)
+k (Jn Jm+3 + Jn+3 Jm)

(2.33)

and

2DJ
n−1 DJ

m−1 = 2(Jn−1 Jm−1)+2i(Jn−1 Jm + Jn Jm−1)
+2 j (Jn−1 Jm+1 + Jn+1 Jm−1)
+2k (Jn−1 Jm+2 + Jn+2 Jm−1)

(2.34)

Finally, adding equations (2.33) and (2.34) side by side, we obtain

DJ
n DJ

m +2DJ
n−1 DJ

m−1 = Jn+m−1 + i(2Jn+m)
+ j (2Jn+m+1)+ k (2Jn+m+2)

= 2DJ
n+m−1 − Jn+m−1.

where the identity Jn+m = JmJn+1 +2Jm−1Jn was used [27] and [28].

Theorem 2.8. D’ocagne’s Identity For n,m ≥ 0 the D’ocagne’s identity for the dual-complex Jacobsthal quaternions DJ
n and

DJ
m is given by

DJ
m DJ

n+1 −DJ
m+1 DJ

n = (−1)n 2n Jm−n (1+ i+5 j+7k ). (2.35)

Proof. (2.35):

DJ
m DJ

n+1 −DJ
m+1 DJ

n = [(JmJn+1 − Jm+1Jn)]
+ i [(JmJn+2 − Jm+1Jn+1)+(Jm+1Jn+1 − Jm+2Jn)]
+ j [(JmJn+3 − Jm+1Jn+2)+(Jm+2Jn+1 − Jm+3Jn)]
+k [(JmJn+4 − Jm+1Jn+3)+(Jm+3Jn+1 − Jm+4Jn)]

= (−1)n 2n Jm−n (1+ i+5 j+7k ).

where the identity JmJn+1 − Jm+1Jn = (−1)n 2n Jm−n was used [27] and [28].

Theorem 2.9. (Cassini’s Identity). Let DJ
n and D

j
n be n− th terms of dual Jacobsthal quaternion sequence (DJ

n) and the dual

Jacobsthal-Lucas quaternion sequence (D j
n), respectively. Then, we have

DJ
n−1 DJ

n+1 − (DJ
n)

2 = (−1)n 2n−1(1+ i+5 j+7k). (2.36)

D
j
n−1 D

j
n+1 − (D j

n)
2 = (−2)n−1 32(1+ i+5 j+7k). (2.37)
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Proof. (2.36):

DJ
n−1 DJ

n+1 − (DJ
n)

2 = (Jn−1Jn+1 − J2
n )

+i(Jn−1Jn+2 − JnJn+1)
+ j (Jn−1Jn+3 −2JnJn+2 + J2

n+1)
+k (Jn−1Jn+4 + Jn+1Jn+2 − 2JnJn+3)

= (Jn−1Jn+1 − J2
n )

+i(Jn−1Jn+1 − J2
n )

+5 j (Jn−1Jn+1 − J2
n )

+7k (Jn−1Jn+1 − J2
n )

= (−1)n 2n−1(1+ i+5 j+7k).

and (2.37):

D
j
n−1 D

j
n+1 − (D j

n)
2 = ( jn−1 jn+1 − j2

n)
+i( jn−1 jn+2 − jn jn+1)
+ j ( jn−1 jn+3 −2 jn jn+2 + j2

n+1)
+k ( jn−1 jn+4 + jn+1 jn+2 − 2 jn jn+3)

= ( jn−1 jn+1 − j2
n)

+i( jn−1 jn+1 − j2
n)

+5 j ( jn−1 jn+1 − j2
n)

+7k ( jn−1 jn+1 − j2
n)

= (−2)n−1 32(1+ i+5 j+7k).

where identities of Jacobsthal numbers and Jacobsthal-Lucas numbers as follows:

Jm Jn−1 − Jm−1 Jn = (−1)n 2n−1 Jm−n, Jn+2 = Jn+1 +2Jn

jm jn−1 − jm−1 jn = (−2)n−1 32 jm−n, jn+2 = jn+1 +2 jn.

were used [27] and [28].

Theorem 2.10. (Catalan’s Identity). Let DJ
n and D

j
n be n− th terms of dual Jacobsthal quaternion sequence (DJ

n) and the dual

Jacobsthal-Lucas quaternion sequence (D j
n), respectively. Then, we have

DJ
n+r DJ

n−r − (DJ
n)

2 =−(−2)n−r J2
r (1+ i+5 j+7k). (2.38)

D
j
n+r D

j
n−r − (D j

n)
2 =−(−2)n−r 32 j2

r (1+ i+5 j+7k). (2.39)

Proof. (2.38):

DJ
n+r DJ

n−r − (DJ
n)

2 = (Jn+r Jn−r − J2
n )

+i [(Jn+rJn−r+1 − JnJn+1)
+(Jn+r+1Jn−r − Jn+1Jn)
+ j [(Jn+rJn−r+2 − JnJn+2)
+(Jn+r+2Jn−r − Jn+2Jn)]
+k [(Jn+rJn−r+3 − JnJn+3)
+(Jn+r+3Jn−r − Jn+3Jn)]

= −(−2)n−r J2
r (1+ i+5 j+7k).

and (2.39):

D
j
n+r D

j
n−r − (D j

n)
2 = ( jn+r jn−r − j2

n)
+i [( jn+r jn−r+1 − jn jn+1)+( jn+r+1 jn−r − jn+1 jn)]
+ j [( jn+r jn−r+2 − jn jn+2)+( jn+r+2 jn−r − jn+2 jn)]
+k [( jn+r jn−r+3 − jn+ jn+3)+( jn+r+3 jn−r − jn+3 jn)]

= −(−2)n−r 32 J2
r (1+ i+5 j+7k).
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where identities of Jacobsthal numbers and Jacobsthal-Lucas numbers as follows:

Jn+r Jn−r − Jn Jn =−(−2)n−r J2
r

jn+r jn−r − jn jn = (−2)n−r 32 J2
r .

were used [29].

3. Conclusion

The difference between the Jacobsthal and the dual Jacobsthal quaternions originated from the quaternionic units, i.e., the

quaternionic units for the Jacobsthal quaternion are

i2 = j2 = k2 =−1, i j =− j i = k, j k =−k j = i, k i =−i k = j

whereas for the dual Jacobsthal quaternions they are

i2 = j2 = k2 = i j k = 0, i j =− j i = j k =−k j = k i =−i k = 0.

The set JD forms a commutative ring under the dual Jacobsthal quaternion multiplication and also it is a vector space of

dimensions four on R and its basis is the set {1, i, j,k}. The interesting property of dual Jacobsthal quaternions is that by

their means one can express the Galilean transformation in one quaternion equation. Since the multiplication and ratio of two

dual Jacobsthal quaternions D
J1
n and D

J2
n is again a dual Jacobsthal quaternion, the set of dual Jacobsthal quaternions form a

division algebra under addition and multiplication. There have been several studies on curve theory and magnetism by using

the isomorphism between dual quaternion space and Galilean space G4. Similar applications for dual Jacobsthal and dual

Jacobsthal-Lucas quaternions can be applied to these areas.

Galilean transformation expressed by the dual four-component numbers shows the linkage between the space and time exists in

the Newtonian physics. Moreover, it may have a considerable heuristic value for the study of the underlying mathematical

formalism of physical laws. This study fills the gap in the literature by providing dual Jacobsthal quaternions.
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the elliptical complex valued trigonometric functions cosine, sine and p-trigonometric functions p-cosine, p-sine

(Adv. Appl. Clifford Algebras 28(3)(2018)). In this study, we introduce the remained elliptical complex valued

trigonometric and p-trigonometric functions. Also we define the corresponding single-valued principal values of

the inverse trigonometric and p-trigonometric functions by following the similar steps given in the literature.

Keywords: Generalized complex numbers, p-trigonometric functions, Elliptical complex numbers.

2010 AMS: 97F50, 33B10

1Sakarya, Turkey, ORCID: 0000-0002-3299-6709

*Corresponding author: kahraman.ozen1@ogr.sakarya.edu.tr

Received: 1 September 2020, Accepted: 22 September 2020, Available online: 29 September 2020

1. Introduction

The generalized complex numbers were introduced by Yaglom [1] as in the following:

z = x+ Iy (x,y ∈ R), I2 = Iq+ p (q, p ∈ R)

where I denotes a formal quantity which is subject to the relation indicated above.

In [2], Harkins studied the geometry of a one parameter family of generalized complex number systems. In this one

parameter family, q = 0 and I2 = p ∈ R. It is denoted by

Cp =
{

x+ Iy : x,y ∈ R, I2 = p, p ∈ R
}

.

In the special case p < 0, Cp corresponds to the set of elliptical complex numbers. Let this set be denoted by Cp
∗. That is,

Cp
∗ =

{

x+ Iy : x,y ∈ R, I2 = p, p ∈ R
−}

.

For z1 = (x1 + Iy1), z2 = (x2 + Iy2) ∈ Cp
∗, addition and multiplication are defined by

z1 + z2 = (x1 + Iy1)+(x2 + Iy2) = (x1 + x2)+ I(y1 + y2)

z1z2 = (x1x2 + py1y2)+ I (x1y2 + x2y1) .

As it is well known, Cp
∗ is a field under these two operations [2].
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On the other hand, the p-magnitude of z = x+ Iy ∈Cp
∗ is ‖z‖p =

√

x2 − py2. As a result of this case, the unit circle in Cp
∗

is an Euclidean ellipse which is given by the equation x2 − py2 = 1. Specially, if p =−1 this ellipse matches the Euclidean unit

circle [2].

Let z = x+ Iy be a number in Cp
∗. This number can be expressed with a position vector (see Figure 1.1). The arc of ellipse

between this vector and the real axis determines an elliptic angle θp. This angle is called p-argument of z.

 

Imaginary axis 

Real axis 

z = x+Iy 

O θp
 

Figure 1.1. Elliptic angle in Cp
∗

On the other hand, the p-trigonometric functions p-cosine, p-sine and p-tangent are defined in Cp
∗ as follows [2]:

cosp (θp) = cos
(

θp

√

|p|
)

(1.1)

sinp (θp) =
1

√

|p|
sin
(

θp

√

|p|
)

(1.2)

tanp (θp) =
sinp (θp)

cosp (θp)
. (1.3)

There can be found some interesting studies [3, 4, 5, 6, 7, 8, 9, 10, 11, 12] on the generalized complex numbers and elliptical

complex numbers in the literature.

Recently, Özen and Tosun have extended the trigonometric functions cosine, sine and p-trigonometric functions p-

cosine, p-sine to the elliptical complex variables [3]. The functions cos, sin, cosp and sinp of an elliptical complex variable

ϕp = x+ Iy ∈ Cp are given as in the following

cos(ϕp) = cos(x)cosh
(

y
√

|p|
)

− I
1

√

|p|
sin(x)sinh

(

y
√

|p|
)

(1.4)

sin(ϕp) = sin(x)cosh
(

y
√

|p|
)

+ I
1

√

|p|
cos(x)sinh

(

y
√

|p|
)

(1.5)

cosp (ϕp) = cosp (x)cosh(py)+ Isinp (x)sinh(py) (1.6)

sinp (ϕp) = sinp (x)cosh(py)+ I
1

p
cosp (x)sinh(py) (1.7)

in which case, ϕp is called elliptical complex angle. Also, these functions hold the following relations [3]:

cosp (ϕp) = cos
(

ϕp

√

|p|
)

sinp (ϕp) =
1

√

|p|
sin
(

ϕp

√

|p|
)

.

Let the set of generalized complex numbers be showed with CG in the case I2 =−q− rI
(

r2 −4q < 0
)

. Thanks to Yaglom

[1], it is known that there is an isomorphism between the set CG and the set C as in the following:

π : CG → C

a1 +b1I → π (a1 +b1I) =
(

a1 −
r

2
b1

)

+

(

b1

2

√

4q− r2

)

i.
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If this isomorphism is restricted to the set of elliptical complex numbers, the following isomorphism

π∗ : Cp
∗ → C

a1 +b1I → π∗ (a1 +b1I) = a1 + ib1

√

|p|

is immediately written by considering r = 0 and q =−p. Here the statement
√

|p| represents the positive square root of the

positive number |p|. Throughout the paper the statement
√

|p| will be used in this sense.

Theorem 1.1. [13] For the elliptical complex valued sine and cosine functions, the equalities

1. sin(π∗ (ϕp)) = π∗ (sin(ϕp))

2. cos(π∗ (ϕp)) = π∗ (cos(ϕp))

are satisfied where ϕp = x+ Iy ∈ Cp
∗.

The next two theorems, which reveal that the elliptical complex valued p-trigonometric functions cosp (ϕp) and sinp (ϕp)
are surjective, can be given as consequences of the last theorem.

Theorem 1.2. [3] For any elliptical complex number ψp = a+ Ib ∈ Cp
∗, the equality cosp

(

λ k
p

)

= ψp is satisfied by the

elliptical complex angles

λ k
p =

Arg(uk + ivk)
√

|p|
+ I

ln |uk + ivk|
p

, k = 1,2

where u1 + iv1,u2 + iv2 ∈ C are the complex numbers derived from the expression

(

a+ ib
√

|p|+
√

(

a+ ib
√

|p|
)2

−1

)

.

Theorem 1.3. [13] For any elliptical complex number ψp = a+ Ib ∈ Cp
∗, the equality sinp

(

χk
p

)

= ψp is satisfied by the

elliptical complex angles

χk
p =

Arg(ςk + iτk)
√

|p|
+ I

ln |ςk + iτk|
p

, k = 1,2

where ς1+ iτ1,ς2+ iτ2 ∈C are complex numbers derived from the expression

(

i
(

a
√

|p|+ ib |p|
)

+

√

1−
(

a
√

|p|+ ib |p|
)2

)

.

Note that the last three theorems will be used to obtain single-valued principal values of the inverse cosine, sine, p-cosine

and p-sine functions in Section 2.

Finally, we need to emphasize the principal square root of a complex number. Let z = reiϕ be a complex number given by

principal argument −π < ϕ ≤ π in the polar form. As it is well-known in the literature, the principal square root of z is defined

as
√

z =
√

rei
ϕ
2 , −π

2
<

ϕ
2
≤ π

2
. We will use the statement ”principle square root” in this sense throughout the rest of the paper.

2. Main Results

In this section, we obtain the elliptical complex valued tangent, cotangent, secant and cosecant functions. Then we define the

corresponding single-valued principal values of the all inverse trigonometric functions by following the similar steps in [14].

Finally, we will repeat the same for p−trigonometric functions.

2.1 Results Related to Elliptical Complex-Valued Trigonometric Functions

In this subsection, firstly, we can give the following theorem by using the equations (1.4) and (1.5).

Theorem 2.1. Tangent, cotangent, secant and cosecant functions of an elliptical complex variable ϕp = x+ Iy ∈Cp
∗ are given

as in the following:

1. tan(ϕp) =
sin(ϕp)
cos(ϕp)

= sin(2x)

cos(2x)+cosh
(

2y
√

|p|
) + I 1√

|p|
sinh

(

2y
√

|p|
)

cos(2x)+cosh
(

2y
√

|p|
) ,
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2. cot(ϕp) =
cos(ϕp)
sin(ϕp)

=
sin(2x)

(

cos(2x)+cosh
(

2y
√

|p|
))

sin2(2x)+sinh2
(

2y
√

|p|
) − I 1√

|p|
sinh

(

2y
√

|p|
)(

cos(2x)+cosh
(

2y
√

|p|
))

sin2(2x)+sinh2
(

2y
√

|p|
) ,

3. sec(ϕp) =
1

cos(ϕp)
=

2cos(x)cosh
(

y
√

|p|
)

cos(2x)+cosh
(

2y
√

|p|
) + I 2√

|p|
sin(x)sinh

(

y
√

|p|
)

cos(2x)+cosh
(

2y
√

|p|
) ,

4. csc(ϕp) =
1

sin(ϕp)
=

2sin(x)cosh
(

y
√

|p|
)

cosh
(

2y
√

|p|
)

−cos(2x)
− I 2√

|p|
cos(x)sinh

(

y
√

|p|
)

cosh
(

2y
√

|p|
)

−cos(2x)
.

Proof. We will prove the first item. The proofs of other items can be similarly completed.
1. By considering |p|=−p and using some well-known trigonometric and hyperbolic identities, we get

tan
(

ϕp

)

=
sin
(

ϕp

)

cos
(

ϕp

)

=
sin(x)cosh

(

y
√

|p|
)

+ I 1√
|p| cos(x)sinh

(

y
√

|p|
)

cos(x)cosh
(

y
√

|p|
)

− I 1√
|p| sin(x)sinh

(

y
√

|p|
)

=
sin(x)cos(x)

(

cosh2
(

y
√

|p|
)

− sinh2
(

y
√

|p|
))

cos2 (x)cosh2
(

y
√

|p|
)

+ sin2 (x)sinh2
(

y
√

|p|
) +

I
√

|p|
sinh

(

y
√

|p|
)

cosh
(

y
√

|p|
)

(

cos2 (x)+ sin2 (x)
)

cos2 (x)cosh2
(

y
√

|p|
)

+ sin2 (x)sinh2
(

y
√

|p|
)

=
2

2

sin(x)cos(x)

cos2 (x)cosh2
(

y
√

|p|
)

+ sin2 (x)sinh2
(

y
√

|p|
) +

I
√

|p|
2

2

sinh
(

y
√

|p|
)

cosh
(

y
√

|p|
)

cos2 (x)cosh2
(

y
√

|p|
)

+ sin2 (x)sinh2
(

y
√

|p|
)

=
sin(2x)

cos(2x)+ cosh
(

2y
√

|p|
) + I

1
√

|p|
sinh

(

2y
√

|p|
)

cos(2x)+ cosh
(

2y
√

|p|
) .

Lemma 2.2. For the elliptical complex valued tangent, cotangent, secant and cosecant functions, the equalities

1. tan(π∗ (ϕp)) = π∗ (tan(ϕp)),

2. cot(π∗ (ϕp)) = π∗ (cot(ϕp)),

3. sec(π∗ (ϕp)) = π∗ (sec(ϕp)),

4. csc(π∗ (ϕp)) = π∗ (csc(ϕp)).

are satisfied where π∗ is the aforesaid isomorphism and ϕp = x+ Iy ∈ Cp
∗.

Proof. We will prove the first and third item. Other items can be similarly proved.

1. It is very easy to see

π∗ (tan(ϕp)) = π∗









sin(2x)

cos(2x)+ cosh
(

2y
√

|p|
)



+ I
1

√

|p|





sinh
(

2y
√

|p|
)

cos(2x)+ cosh
(

2y
√

|p|
)









=





sin(2x)

cos(2x)+ cosh
(

2y
√

|p|
)



+ i
1

√

|p|
√

|p|





sinh
(

2y
√

|p|
)

cos(2x)+ cosh
(

2y
√

|p|
)





=





sin(2x)

cos(2x)+ cosh
(

2y
√

|p|
)



+ i





sinh
(

2y
√

|p|
)

cos(2x)+ cosh
(

2y
√

|p|
)



 .
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On the other hand, according to the theory of complex trigonometric functions (see [14, 15] for more details on the theory of

complex trigonometric functions), it is clear that

tan(π∗ (ϕp)) = tan
(

x+ iy
√

|p|
)

=





sin(2x)

cos(2x)+ cosh
(

2y
√

|p|
)



+ i





sinh
(

2y
√

|p|
)

cos(2x)+ cosh
(

2y
√

|p|
)



 .

So, the proof is completed.

3. Similarly above, we have the equalities

π∗ (sec(ϕp)) = π∗









2cos(x)cosh
(

y
√

|p|
)

cos(2x)+ cosh
(

2y
√

|p|
)



+ I
2

√

|p|





sin(x)sinh
(

y
√

|p|
)

cos(2x)+ cosh
(

2y
√

|p|
)









=





2cos(x)cosh
(

y
√

|p|
)

cos(2x)+ cosh
(

2y
√

|p|
)



+ i
2

√

|p|
√

|p|





sin(x)sinh
(

y
√

|p|
)

cos(2x)+ cosh
(

2y
√

|p|
)





=





2cos(x)cosh
(

y
√

|p|
)

cos(2x)+ cosh
(

2y
√

|p|
)



+ i





2sin(x)sinh
(

y
√

|p|
)

cos(2x)+ cosh
(

2y
√

|p|
)



 .

and

sec(π∗ (ϕp)) = sec
(

x+ iy
√

|p|
)

=





2cos(x)cosh
(

y
√

|p|
)

cos(2x)+ cosh
(

2y
√

|p|
)



+ i





2sin(x)sinh
(

y
√

|p|
)

cos(2x)+ cosh
(

2y
√

|p|
)



 .

Thus the desired equality holds.

Theorem 2.3. For any elliptical complex number ψp = a+ Ib ∈ Cp
∗, the equalities sinϕp = ψp, cosαp = ψp, tanβp = ψp,

cotγp = ψp, secθp = ψp and cscδp = ψp are satisfied by the principal elliptical complex angles

1. ϕp = Arg(σ + iω)− I
ln|σ+iω|√

|p|
,

2. αp = Arg(ε + iκ)− I
ln|ε+iκ|√

|p|
,

3. βp =
Arg

(

1+pb2−a2

1−2b
√

|p|+a2−pb2 −i 2a

1−2b
√

|p|+a2−pb2

)

−2
+ I

ln

∣

∣

∣

∣

1+pb2−a2

1−2b
√

|p|+a2−pb2 −i 2a

1−2b
√

|p|+a2−pb2

∣

∣

∣

∣

2
√

|p|
,

4. γp =
Arg

(

−1−pb2+a2

1+2b
√

|p|+a2−pb2 −i 2a

1+2b
√

|p|+a2−pb2

)

−2
+ I

ln

∣

∣

∣

∣

−1−pb2+a2

1+2b
√

|p|+a2−pb2 −i 2a

1+2b
√

|p|+a2−pb2

∣

∣

∣

∣

2
√

|p|
,

5. θp = Arg(η + iζ )− I
ln|η+iζ |√

|p|
,

6. δp = Arg(Ω+ i℧)− I
ln|Ω+i℧|√

|p|
,
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where σ + iω ∈ C, ε + iκ ∈ C, η + iζ ∈ C and Ω+ i℧ ∈ C are the principal complex values derived from the expressions
(

i
(

a+ ib
√

|p|
)

+

√

1−
(

a+ ib
√

|p|
)2

)

,

(

a+ ib
√

|p|+
√

(

a+ ib
√

|p|
)2

−1

)

,

(

1

a+ib
√

|p|
+
√

1
(

a+ib
√

|p|
)2 −1

)

and

(

√

1− 1
(

a+ib
√

|p|
)2 +

i

a+ib
√

|p|

)

, respectively.

Proof. Now, we will show that the first and third equalities are satisfied. Similar steps can be followed for the other equalities.

1. By considering Theorem 1.1 and the theory of complex trigonometric functions (see [14, 15] for more details), we can

write

sin(x+ Iy) = a+ Ib ⇔ π∗ (sin(x+ Iy)) = π∗ (a+ Ib)

⇔ sin(π∗ (x+ Iy)) = π∗ (a+ Ib)

⇔ sin
(

x+ iy
√

|p|
)

= a+ ib
√

|p|

⇔ arcsin
(

a+ ib
√

|p|
)

= x+ iy
√

|p|

⇔ −i log

(

i
(

a+ ib
√

|p|
)

+

√

1−
(

a+ ib
√

|p|
)2

)

= x+ iy
√

|p|.

The purpose of us is to get unique solutions for x and y. To do so, we use the principal value of arcsine function. It is

determined by employing the principal value of the logarithm function and the principal value of the square-root function.

By keeping these situations in mind, let us denote by σ + iω the principal complex value derived from the expression
(

i
(

a+ ib
√

|p|
)

+

√

1−
(

a+ ib
√

|p|
)2

)

. Then we have

−iLog(σ + iω) = x+ iy
√

|p|.

This equation yields the followings

−i(ln |σ + iω|+ iArg(σ + iω)) = x+ iy
√

|p|,
Arg(σ + iω)− i ln |σ + iω| = x+ iy

√

|p|.

Then we get the unique solutions for x and y as

x = Arg(σ + iω) , y =− ln |σ + iω|
√

|p|
.

Thus, we can conclude

ϕp = Arg(σ + iω)− I
ln |σ + iω|
√

|p|
.

3. Similarly above, we can write

tan(x+ Iy) = a+ Ib ⇔ π∗ (tan(x+ Iy)) = π∗ (a+ Ib)

⇔ tan(π∗ (x+ Iy)) = π∗ (a+ Ib)

⇔ tan
(

x+ iy
√

|p|
)

= a+ ib
√

|p|

⇔ arctan
(

a+ ib
√

|p|
)

= x+ iy
√

|p|

⇔ i

2
log





i+
(

a+ ib
√

|p|
)

i−
(

a+ ib
√

|p|
)



= x+ iy
√

|p|.
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We aim to obtain the unique solutions for x and y. To do so, if we use the principal value of arctangent function which is

determined by employing the principal value of the logarithm function, we have

i

2
Log





a+ i
(

1+b
√

|p|
)

−a+ i
(

1−b
√

|p|
)



= x+ iy
√

|p|.

This equation yields the followings

i

2



ln

∣

∣

∣

∣

∣

∣

a+ i
(

1+b
√

|p|
)

−a+ i
(

1−b
√

|p|
)

∣

∣

∣

∣

∣

∣

+ iArg





a+ i
(

1+b
√

|p|
)

−a+ i
(

1−b
√

|p|
)







 = x+ iy
√

|p|,

Arg

(

1+pb2−a2

1−2b
√

|p|+a2−pb2
− i 2a

1−2b
√

|p|+a2−pb2

)

−2
+ i

ln

∣

∣

∣

∣

1+pb2−a2

1−2b
√

|p|+a2−pb2
− i 2a

1−2b
√

|p|+a2−pb2

∣

∣

∣

∣

2
= x+ iy

√

|p|.

In this case, we obtain the unique solutions for x and y as follows

x =

Arg

(

1+pb2−a2

1−2b
√

|p|+a2−pb2
− i 2a

1−2b
√

|p|+a2−pb2

)

−2
, y =

ln

∣

∣

∣

∣

1+pb2−a2

1−2b
√

|p|+a2−pb2
− i 2a

1−2b
√

|p|+a2−pb2

∣

∣

∣

∣

2
√

|p|
.

Therefore, we can conclude

βp =

Arg

(

1+pb2−a2

1−2b
√

|p|+a2−pb2
− i 2a

1−2b
√

|p|+a2−pb2

)

−2
+ I

ln

∣

∣

∣

∣

1+pb2−a2

1−2b
√

|p|+a2−pb2
− i 2a

1−2b
√

|p|+a2−pb2

∣

∣

∣

∣

2
√

|p|
.

By taking into consideration Theorem 2.3, we can give the following corollary.

Corollary 2.4. For any elliptical complex number ψp = a+ Ib ∈ Cp
∗, the principal values of the inverse trigonometric

functions:

Arcsin(ψp) = ϕp

Arccos(ψp) = αp

Arctan(ψp) = βp

Arccot(ψp) = γp

Arcsec(ψp) = θp

Arccsc(ψp) = δp

can be expressed.

2.2 Results Related to Elliptical Complex-Valued p-Trigonometric Functions

In this subsection, firstly, let us define the elliptical complex valued p-trigonometric functions:

sinp (ϕp)

cosp (ϕp)
= tanp (ϕp) ,

cosp (ϕp)

sinp (ϕp)
= cotp (ϕp) ,

1

cosp (ϕp)
= secp (ϕp) ,

1

sinp (ϕp)
= cscp (ϕp)

by means of the elliptical complex valued p-trigonometric functions

cosp (ϕp) = cos
(

ϕp

√

|p|
)

= cosp (x)cosh(py)+ Isinp (x)sinh(py)

and

sinp (ϕp) =
1

√

|p|
sin
(

ϕp

√

|p|
)

= sinp (x)cosh(py)+ I
1

p
cosp (x)sinh(py)

given in (1.6) and (1.7).

As mentioned earlier in Section 1, real-valued p-trigonometric functions p-cosine, p-sine and p-tangent are defined in

[2]. There is no such definition for neither cotangent function, secant function nor cosecant function. While the elliptical
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complex-valued functions cosp (ϕp), sinp (ϕp) and tanp (ϕp) are extensions of real-valued functions p-cosine, p-sine and

p-tangent, we can not say the same for the elliptical complex-valued functions cotp (ϕp), secp (ϕp) and cscp (ϕp). So, to use

the notations cosp (ϕp), sinp (ϕp), tanp (ϕp) and to use the statement ”p-trigonometric function” are very natural for these

functions. But, the reason of maintaining this situation for other functions cotp (ϕp), secp (ϕp) and cscp (ϕp) is not obvious.

This reason is based on the relationships of these functions with the elliptical complex-valued trigonometric functions cotangent,

secant and cosecant. Now, we give the next theorem including these relationships.

Theorem 2.5. For any elliptical complex angle ϕp = x+ Iy ∈ Cp
∗, the following equalities hold:

1. tanp (ϕp) =
1√
|p|

tan
(

ϕp

√

|p|
)

=
sinp(2x)

cosp(2x)+cosh(2yp) + I
sinh(2yp)

pcosp(2x)+pcosh(2yp) ,

2. cotp (ϕp) =
√

|p|cot
(

ϕp

√

|p|
)

=
sinp(2x)(cosp(2x)+cosh(2yp))
(

sinp
2(2x)− 1

p sinh2(2yp)
) + I

sinh(2yp)(cosp(2x)+cosh(2yp))
(sinh2(2yp)−psinp

2(2x))
,

3. secp (ϕp) =
1√
|p|

sec
(

ϕp

√

|p|
)

=
2cosp(x)cosh(yp)

cosp(2x)+cosh(2yp) − I
2sinp(x)sinh(yp)

cosp(2x)+cosh(2yp) ,

4. cscp (ϕp) =
√

|p|csc
(

ϕp

√

|p|
)

=
−2psinp(x)cosh(yp)
cosh(2yp)−cosp(2x) + I

2cosp(x)sinh(yp)
cosh(2yp)−cosp(2x) .

Proof. We will prove the second and last items. The other items can be proved similarly.

2. It is easy to see the equality

cotp (ϕp) =
cosp (ϕp)

sinp (ϕp)
=

cos
(

ϕp

√

|p|
)

1√
|p|

sin
(

ϕp

√

|p|
) =

√

|p|cot
(

ϕp

√

|p|
)

.

On the other hand, since ϕp

√

|p|= x
√

|p|+ Iy
√

|p|,

√

|p|cot
(

ϕp

√

|p|
)

=
√

|p|





sin
(

2x
√

|p|
)(

cos
(

2x
√

|p|
)

+ cosh(2y |p|)
)

sin2
(

2x
√

|p|
)

+ sinh2 (2y |p|)
− I
√

|p|
sinh(2y |p|)

(

cos
(

2x
√

|p|
)

+ cosh(2y |p|)
)

sin2
(

2x
√

|p|
)

+ sinh2 (2y |p|)





=

1√
|p| sin

(

2x
√

|p|
)(

cos
(

2x
√

|p|
)

+ cosh(2y |p|)
)

1
(√

|p|
)2

(

sin2
(

2x
√

|p|
)

+ sinh2 (2y |p|)
) − I

|p|
sinh(2y |p|)

(

cos
(

2x
√

|p|
)

+ cosh(2y |p|)
)

1
(√

|p|
)2

(

sin2
(

2x
√

|p|
)

+ sinh2 (2y |p|)
)

=
sinp (2x)

(

cosp (2x)+ cosh(2yp)
)

(

sinp
2 (2x)− 1

p sinh2 (2yp)
) + I

sinh(2yp)
(

cosp (2x)+ cosh(2yp)
)

(

sinh2 (2yp)− psinp
2 (2x)

)

can be written from the second item of Theorem 2.1. Then, we can immediately obtain the desired equality.

4. It is not difficult to find the equality

cscp (ϕp) =
1

sinp (ϕp)
=

1

1√
|p|

sin
(

ϕp

√

|p|
) =

√

|p| 1

sin
(

ϕp

√

|p|
) =

√

|p|csc
(

ϕp

√

|p|
)

.

Also, from the fourth item of Theorem 2.1

√

|p|csc
(

ϕp

√

|p|
)

=
√

|p|





2sin
(

x
√

|p|
)

cosh(y |p|)

cosh(2y |p|)− cos
(

2x
√

|p|
) − 2I

√

|p|
cos
(

x
√

|p|
)

sinh(y |p|)

cosh(2y |p|)− cos
(

2x
√

|p|
)





=
2 |p| 1√

|p|
sin
(

x
√

|p|
)

cosh(y |p|)

cosh(2y |p|)− cos
(

2x
√

|p|
) −2I

cos
(

x
√

|p|
)

sinh(y |p|)

cosh(2y |p|)− cos
(

2x
√

|p|
)

=
−2psinp (x)cosh(yp)

cosh(2yp)− cosp (2x)
+ I

2cosp (x)sinh(yp)

cosh(2yp)− cosp (2x)
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can be written by keeping ϕp

√

|p|= x
√

|p|+ Iy
√

|p| in mind. From above, we immediately get

cscp (ϕp) =
√

|p|csc
(

ϕp

√

|p|
)

=
−2psinp (x)cosh(yp)

cosh(2yp)− cosp (2x)
+ I

2cosp (x)sinh(yp)

cosh(2yp)− cosp (2x)
.

Theorem 2.6. For any elliptical complex number ψp = a+Ib∈Cp
∗, the equalities cosp (λp) =ψp, sinp (χp) =ψp, tanp (Γp) =

ψp, cotp (Λp) = ψp, secp (∆p) = ψp and cscp (ϒp) = ψp are satisfied by the principal elliptical complex angles

1. λp =
Arg(u+iv)√

|p|
+ I

ln|u+iv|
p

,

2. χp =
Arg(ς+iτ)√

|p|
+ I

ln|ς+iτ|
p

,

3. Γp =
Arg

(

pa2−p2b2+1

−pa2+p2b2+1−2b|p|+i
−2a

√
|p|

−pa2+p2b2+1−2b|p|

)

−2
√

|p|
+ I

ln

∣

∣

∣

∣

pa2−p2b2+1

−pa2+p2b2+1−2b|p|+i
−2a

√
|p|

−pa2+p2b2+1−2b|p|

∣

∣

∣

∣

2|p| ,

4. Λp =
Arg

(

−a2+pb2−p

−a2+pb2+2bp+p
+i

2a
√

|p|
−a2+pb2+2bp+p

)

−2
√

|p|
+ I

ln

∣

∣

∣

∣

−a2+pb2−p

−a2+pb2+2bp+p
+i

2a
√

|p|
−a2+pb2+2bp+p

∣

∣

∣

∣

2|p|

5. ∆p =
Arg(c+id)√

|p|
+ I

ln|c+id|
p

,

6. ϒp =
Arg(e+i f )√

|p|
+ I

ln|e+i f |
p

,

where u+ iv ∈C, ς + iτ ∈C, c+ id ∈C and e+ i f ∈C are the principal complex values which are derived from the expressions
(

a+ ib
√

|p|+
√

(

a+ ib
√

|p|
)2

−1

)

,

(

i
(

a
√

|p|+ ib |p|
)

+

√

1−
(

a
√

|p|+ ib |p|
)2

)

,

(

1

a+ib
√

|p|
+
√

1
(

a+ib
√

|p|
)2 −1

)

,







√

1− 1
(

a√
|p|+ib

)2 +
i

(

a√
|p|+ib

)






, respectively.

Proof. We will show that the first, third and last equalities are satisfied. Similar steps can be followed for the other equalities.

1. Let us take into consideration the principle value of

√

(

a+ ib
√

|p|
)2

−1 and calculate the principle value of the

statement

(

a+ ib
√

|p|+
√

(

a+ ib
√

|p|
)2

−1

)

. If we show this principle value with u+ iv, Theorem 1.2 gives the proof of

this item.

3. By considering Lemma 2.2 and the theory of complex trigonometric functions, we can write

tanp (x+ Iy) = a+ Ib ⇔ 1
√

|p|
tan
(

x
√

|p|+ Iy
√

|p|
)

= a+ Ib

⇔ tan
(

x
√

|p|+ Iy
√

|p|
)

= a
√

|p|+ Ib
√

|p|

⇔ π∗
(

tan
(

x
√

|p|+ Iy
√

|p|
))

= π∗
(

a
√

|p|+ Ib
√

|p|
)

⇔ tan
(

π∗
(

x
√

|p|+ Iy
√

|p|
))

= π∗
(

a
√

|p|+ Ib
√

|p|
)

⇔ tan
(

x
√

|p|+ iy |p|
)

= a
√

|p|+ ib |p|

⇔ arctan
(

a
√

|p|+ ib |p|
)

= x
√

|p|+ iy |p|

⇔ i

2
log





i+
(

a
√

|p|+ ib |p|
)

i−
(

a
√

|p|+ ib |p|
)



= x
√

|p|+ iy |p| .
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To get unique solutions for x and y is our aim. To do so, if we use the principal value of arctangent function which is determined

by employing the principal value of the logarithm function, we obtain

i

2
Log

(

a
√

|p|+ i(1+b |p|)
−a
√

|p|+ i(1−b |p|)

)

= x
√

|p|+ iy |p|

and so

i

2
Log

(

pa2 − p2b2 +1

−pa2 + p2b2 +1−2b |p| + i
−2a

√

|p|
−pa2 + p2b2 +1−2b |p|

)

= x
√

|p|+ iy |p| .

From here, the equalities

i

2



ln

∣

∣

∣

∣

∣

∣

(

pa2 − p2b2 +1
)

+ i
(

−2a
√

|p|
)

−pa2 + p2b2 +1−2b |p|

∣

∣

∣

∣

∣

∣

+ iArg





(

pa2 − p2b2 +1
)

+ i
(

−2a
√

|p|
)

−pa2 + p2b2 +1−2b |p|







 = x
√

|p|+ iy |p|

Arg

(

pa2−p2b2+1

−pa2+p2b2+1−2b|p| + i
−2a

√
|p|

−pa2+p2b2+1−2b|p|

)

−2
+ i

ln

∣

∣

∣

∣

pa2−p2b2+1

−pa2+p2b2+1−2b|p| + i
−2a

√
|p|

−pa2+p2b2+1−2b|p|

∣

∣

∣

∣

2
= x

√

|p|+ iy |p|

can be written. Thus we find the unique solutions for x and y as follows

x =

Arg

(

pa2−p2b2+1

−pa2+p2b2+1−2b|p| + i
−2a

√
|p|

−pa2+p2b2+1−2b|p|

)

−2
√

|p|
, y =

ln

∣

∣

∣

∣

pa2−p2b2+1

−pa2+p2b2+1−2b|p| + i
−2a

√
|p|

−pa2+p2b2+1−2b|p|

∣

∣

∣

∣

2 |p| .

Therefore,

Γp =

Arg

(

pa2−p2b2+1

−pa2+p2b2+1−2b|p| + i
−2a

√
|p|

−pa2+p2b2+1−2b|p|

)

−2
√

|p|
+ I

ln

∣

∣

∣

∣

pa2−p2b2+1

−pa2+p2b2+1−2b|p| + i
−2a

√
|p|

−pa2+p2b2+1−2b|p|

∣

∣

∣

∣

2 |p|

can be concluded.

6. By considering Lemma 2.2 and the theory of complex trigonometric functions, we can write

cscp (x+ Iy) = a+ Ib ⇔
√

|p|csc
(

x
√

|p|+ Iy
√

|p|
)

= a+ Ib

⇔ csc
(

x
√

|p|+ Iy
√

|p|
)

=
a

√

|p|
+ I

b
√

|p|

⇔ π∗
(

csc
(

x
√

|p|+ Iy
√

|p|
))

= π∗
(

a
√

|p|
+ I

b
√

|p|

)

⇔ csc
(

π∗
(

x
√

|p|+ Iy
√

|p|
))

= π∗
(

a
√

|p|
+ I

b
√

|p|

)

⇔ csc
(

x
√

|p|+ iy |p|
)

=
a

√

|p|
+ ib

⇔ arccsc

(

a
√

|p|
+ ib

)

= x
√

|p|+ iy |p|

⇔ −i log











√

√

√

√

√

1− 1
(

a√
|p|

+ ib

)2
+

i
(

a√
|p|

+ ib

)











= x
√

|p|+ iy |p| .

The aim of us is to obtain unique solutions for x and y. For this reason, we use the principal value of arccosecant func-

tion. It is determined by employing the principal value of the logarithm function and the principal value of square-root
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function. By considering these cases, let us denote by e+ i f the principal complex value derived from the expression






√

1− 1
(

a√
|p|+ib

)2 +
i

(

a√
|p|+ib

)






. In this case, we have

−iLog(e+ i f ) = x
√

|p|+ iy |p| .
This equation yields the followings

−i(ln |e+ i f |+ iArg(e+ i f )) = x
√

|p|+ iy |p| ,
Arg(e+ i f )− i ln |e+ i f | = x

√

|p|+ iy |p| .
Then we get the unique solutions for x and y as

x =
Arg(e+ i f )
√

|p|
, y =

ln |e+ i f |
p

.

Thus, we can conclude

ϒp =
Arg(e+ i f )
√

|p|
+ I

ln |e+ i f |
p

.

By taking into account of Theorem 2.6, the following corollary can be given.

Corollary 2.7. For any elliptical complex number ψp = a+ Ib ∈ Cp
∗, the principal values of the inverse p-trigonometric

functions:

Arccosp (ψp) = λp

Arcsinp (ψp) = χp

Arctanp (ψp) = Γp

Arccotp (ψp) = Λp

Arcsecp (ψp) = ∆p

Arccscp (ψp) = ϒp

can be expressed.

3. Conclusion

In this paper, the trigonometric and p−trigonometric functions of elliptical complex variables are considered. Also, the

corresponding single-valued principle values of the inverse trigonometric and p−trigonometric functions are defined.

In the case p = −1, elliptical complex numbers correspond to complex numbers. As a result of this case, the elliptical

complex valued trigonometric functions can be seen as generalized form of the complex valued trigonometric functions which

have important roles in many areas of science.

In the future, the results obtained here may be used as a valuable tool in many areas of science just like in the case of

complex valued trigonometric functions.
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Keywords: Hilbert matrix, Cesàro matrix, Norm, Sequence space.

2010 AMS: 26D15, 40C05, 40G05, 47B37.

1Department of mathematics, Azad university of Shiraz, Shiraz branch, Shiraz, Iran

*Corresponding author: marysinaei@yahoo.com

Received: 15 August 2020, Accepted: 22 September 2020, Available online: 29 September 2020

1. Introduction

Let ω be the space of all real-valued sequences. The space ℓp consists all real sequences x=(xk)
∞
k=0 ∈ω such that ∑

∞
k=0 |xk|

p <∞

which a Banach space with the norm

‖x‖ℓp
=

(

∞

∑
k=0

|xk|
p

)1/p

< ∞,

where 1 ≤ p < ∞.

Let T is a matrix with non-negative entries, assumed to map ℓp into itself and satisfies the inequality

‖T x‖ℓp
≤ K‖x‖ℓp

,

where K is a constant which is not depending on x for every x ∈ ℓp. The constant K is called an upper bound for operator T and

the smallest possible value of K is called the norm of T .

For an infinite matrix A and sequence space X , we define the matrix domain A(X) as the set

A(X) = {x ∈ ω : Ax ∈ X}

which is also a sequence space. In this study, we use the notation Ap for the matrix domain associated with the matrix A on the

space X = ℓp. For an invertible matrix A, the matrix domain Ap is a normed space with ‖x‖Ap := ‖Ax‖ℓp
. There are several

new Banach spaces who have introduced and studied by using matrix domains of special lower triangular matrices. For more

references we encourage the readers to some papers [1, 3, 17, 18] and textbook [2]. Recently, several mathematicians have

computed the bounds of operators on some matrix domains in [9, 11, 12, 15, 16, 17, 18, 19].
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Cesàro matrix. The infinite Cesàro operator is defined by

c j,k =

{

1
j+1

0 ≤ k ≤ j

0 otherwise,

}

for all j,k ∈ N. It can be represented by its arrays as

C =











1 0 0 · · ·
1/2 1/2 0 · · ·
1/3 1/3 1/3 · · ·

...
...

...
. . .











.

This matrix has the ℓp-norm ‖C‖ℓp
= p

p−1
. The inequality

∞

∑
n=0

(

n

∑
k=0

|xk|

n+1

)p

≤

(

p

p−1

)p ∞

∑
k=0

|xk|
p,

which is called Hardy’s inequality is resulted from the boundedness of Cesàro operator.

The matrix domain associated with the Cesàro matrix is the set

Cp =

{

x = (xk) ∈ ω :
∞

∑
j=0

∣

∣

∣

∣

∣

j

∑
k=0

xk

j+1

∣

∣

∣

∣

∣

p

< ∞

}

,

which is a Banach space with norm

‖x‖Cp =

(

∞

∑
j=0

∣

∣

∣

∣

∣

j

∑
k=0

xk

j+1

∣

∣

∣

∣

∣

p) 1
p

.

The Cesàro sequence space Cp is studied in [10, 20]. Recently, Roopaei et al. [16] have investigated the general case Cn
p, its

inclusion relations, dual spaces, matrix transformations as well as computing the norm of operators on this matrix domain in

the case 1 ≤ p < ∞.

Generalized Cesàro matrix. Let N ≥ 1 be a real number, the generalized Cesàro matrix, CN = (cN
j,k), is defined by

cN
j,k =

{

1
j+N

0 ≤ k ≤ j

0 otherwise,

and has the ℓp-norm ‖CN‖ℓp
= p

p−1
([6], Lemma 2.3). That is

CN =











1
N

0 0 · · ·
1

1+N
1

1+N
0 · · ·

1
2+N

1
2+N

1
2+N

· · ·
...

...
...

. . .











.

Note that, C1 is the well-known Cesàro matrix C. For more examples

C2 =











1/2 0 0 · · ·
1/3 1/3 0 · · ·
1/4 1/4 1/4 · · ·

...
...

...
. . .











and C3 =











1/3 0 0 · · ·
1/4 1/4 0 · · ·
1/5 1/5 1/5 · · ·

...
...

...
. . .











.

The sequence space associated with the generalized Cesàro matrix is the set

C(N, p) =

{

x = (xk) ∈ ω :
∞

∑
j=0

∣

∣

∣

∣

∣

j

∑
k=0

xk

j+N

∣

∣

∣

∣

∣

p

< ∞

}

,
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who has the norm

‖x‖C(N,p) =

(

∞

∑
j=0

∣

∣

∣

∣

∣

j

∑
k=0

xk

j+N

∣

∣

∣

∣

∣

p) 1
p

.

Note that for N = 1 we use the notation Cp instead of C(1, p).
Recall the infinite Hilbert matrix which is defined by H = (h j,k) =

1
j+k+1

for all non-negative integers j and k and has the

matrix representation

H =











1 1/2 1/3 · · ·
1/2 1/3 1/4 · · ·
1/3 1/4 1/5 · · ·

...
...

...
. . .











.

According to [8] Theorem 323, the Hilbert matrix is a bounded operator on ℓp with

‖H‖ℓp
=

π

sin(π/p)
.

It has proved by Bennett [5] that the Hilbert operator can be factorized of the form H = BC, where C is the Cesàro matrix

and B = (b j,k) is defined by

b j,k =
k+1

( j+ k+1)( j+ k+2)
( j,k = 0,1, . . .). (1.1)

The matrix B is also a bounded operator on ℓp, ([5], Proposition 2), and ‖B‖ℓp
= π

p∗ sin(π/p) , where p∗ is the conjugate of p i.e.

1/p+1/p∗ = 1.

More recently, Roopaei in [13, 14] has generalized Bennett’s factorization to introduce several factorization for the Hilbert

matrix. He has showed that H can be presented of the form H = BNCN , where CN is the generalized Cesàro matrix of the form:

Theorem 1.1 ([13], Theorem 2.2). The Hilbert matrix H, admits a factorization of the form H = BNCN , where BN = (bN
j,k) has

the entries

bN
j,k =

k+N

( j+ k+1)( j+ k+2)
( j,k = 0,1, . . .). (1.2)

and is a bounded operator on ℓp with bounds

π

p∗ sin(π/p)
≤ ‖BN‖ℓp

≤
Nπ

p∗ sin(π/p)
.

In particular, for N = 1, H = BC and ‖B‖ℓp
= π

p∗ sin(π/p) .

2. Norm of Hilbert operator on generalized Cesàro space

The main purpose of this section is computing the norm of Hilbert operator on the generalized Cesàro space. Meanwhile, we

introduce some factorization for the Hilbert matrix.

In sequel, we need the definition of another Hilbert matrix, H1, who has the same norm as the Hilbert matrix and is defined

by

h1
j,k =

1

j+ k+2
( j,k = 0,1, . . .), (2.1)

or

H1 =











1/2 1/3 1/4 · · ·
1/3 1/4 1/5 · · ·
1/4 1/5 1/6 · · ·

...
...

...
. . .











.
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Theorem 2.1. The Hilbert operator is a bounded operator from ℓp into the generalized Cesàro space C(N, p) and

‖H‖ℓp,C(N,p) ≤
p∗π

sin(π/p)
.

Proof. We have

‖H‖ℓp,C(N,p) = sup
x∈ℓp

‖Hx‖C(N,p)

‖x‖ℓp

= sup
x∈ℓp

‖CNHx‖ℓp

‖x‖ℓp

= ‖CNH‖ℓp
≤ π p∗ csc(π/p).

Theorem 2.2. The Hilbert operator is a bounded operator from the generalized Cesàro space C(N, p) into ℓp and

‖H‖C(N,p),ℓp
≤

Nπ

p∗ sin(π/p)
.

In particular, the Hilbert matrix is a bounded operator from the Cesàro sequence space into ℓp and

‖H‖Cp,ℓp
=

π

p∗ sin(π/p)
.

Proof. According to Theorem 1.1, the Hilbert matrix can be written as H = BNCN , where BN is a bounded operator on ℓp and

π

p∗ sin(π/p)
≤ ‖BN‖ℓp

≤
Nπ

p∗ sin(π/p)
.

Since CN
p and ℓp are isomorphic, hence

‖H‖C(N,p),ℓp
= sup

x∈C(N,p)

‖Hx‖ℓp

‖x‖C(N,p)
= sup

x∈C(N,p)

‖BNCNx‖ℓp

‖CNx‖ℓp

= sup
y∈ℓp

‖BNy‖ℓp

‖y‖ℓp

= ‖BN‖ℓp
≤

Nπ

p∗ sin(π/p)
.

In particular, for the symbol N = 1, CN =C and BN = B, where B is the factor in the Bennett’s factorization of the Hilbert

operator. Now, we have the desired result.

Theorem 2.3. The Hilbert operator is a bounded operator on the generalized Cesàro space and

‖H‖C(N,p) ≤
Nπ

sin(π/p)
.

In special case, the Hilbert operator is a bounded operator on the Cesàro matrix domain and

‖H‖Cp =
π

sin(π/p)
.

Proof. Let DN = (dN
j,k) be CNBN , where BN was defined by the relation (1.2). Then

dN
i,k =

i

∑
j=0

1

i+N

k+N

( j+ k+1)( j+ k+2)

=

(

k+N

k+1

)(

i+1

i+N

)

1

i+ k+2
.

But, k+N
k+1

≤ N and i+1
i+N

≤ 1, for all non-negative integers j,k. Hence, dN
j,k ≤ Nh1

j,k which results in

‖DN‖ℓp
≤ N‖H1‖ℓp

= N
π

sin(π/p)
.
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The map x →CNx shows that the two sequence spaces C(N, p) and ℓp are isomorphic, hence

‖H‖C(N,p) = sup
x∈C(N,p)

‖Hx‖C(N,p)

‖x‖C(N,p)
= sup

x∈C(N,p)

‖CNHx‖ℓp

‖CNx‖ℓp

= sup
x∈C(N,p)

‖DNCNx‖ℓp

‖CNx‖ℓp

= sup
y∈ℓp

‖DNy‖ℓp

‖y‖ℓp

= ‖DN‖ℓp
≤

Nπ

sin(π/p)
.

In particular, for N = 1, CN =C and DN = H1 which results the desired result.

Corollary 2.4. The Hilbert operator is a bounded operator from the generalized Cesàro space C(N, p) into Cesàro sequence

space Cp and

‖H‖C(N,p),Cp
≤

Nπ

sin(π/p)
.

In particular, the Hilbert matrix is a bounded operator on the Cesàro matrix domain and

‖H‖Cp =
π

sin(π/p)
.

Proof. Let PN = (pN
j,k) be CBN , where BN was defined by the relation (1.2). Then

pN
i,k =

i

∑
j=0

1

i+1

k+N

( j+ k+1)( j+ k+2)

=

(

k+N

k+1

)

1

i+ k+2
.

But, k+N
k+1

≤ N for all non-negative integer k. Hence, pN
j,k ≤ Nh1

j,k which results in

‖PN‖ℓp
≤ N‖H1‖ℓp

= N
π

sin(π/p)
.

Since CN
p and ℓp are isomorphic, hence

‖H‖C(N,p),Cp
= sup

x∈C(N,p)

‖Hx‖Cp

‖x‖C(N,p)
= sup

x∈C(N,p)

‖CBNCNx‖ℓp

‖CNx‖ℓp

= sup
y∈ℓp

‖PNy‖ℓp

‖y‖ℓp

= ‖PN‖ℓp
≤

Nπ

sin(π/p)
.

In particular, for the symbol N = 1, CN =C and BN = B, where B is the factor in the Bennett’s factorization of the Hilbert

operator. Now, we have the desired result.

Similar to the above corollary we have the following result.

Corollary 2.5. The Hilbert operator is a bounded operator from the Cesàro sequence space Cp into the generalized Cesàro

space C(N, p) and

‖H‖Cp,C(N,p) ≤
π

sin(π/p)
.

In particular, the Hilbert matrix is a bounded operator on the Cesàro sequence space and

‖H‖Cp =
π

sin(π/p)
.
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Corollary 2.6. The Hilbert matrix H, can be represented of the form H =C−1PNCN , where PN = (pN
j,k) is defined by

pN
j,k =

(k+N)

(k+1)( j+ k+2)
( j,k = 0,1, . . .).

In particular, for N = 1, ‖P‖ℓp
= π csc(π/p).

Proof. By a simple calculation, PN =CBN . Therefore by applying Theorem 1.1, C−1PNCN = H, which proves the factorization.

Note that for N = 1, P1 = P = H1, where the Hilbert matrix H1 is

h1
j,k =

1

j+ k+2
( j,k = 0,1, . . .),

and has the norm ‖H1‖ℓp
= π

sin(π/p) .

Theorem 2.7. The Hilbert matrix H, has a factorization of the form H =C−NANC, where AN = (aN
j,k) is defined by

aN
j,k =

j+1

( j+N)( j+ k+2)
( j,k = 0,1, . . .).

In particular, for N = 1, H has the factorization H =C−1AC, where ‖A‖ℓp
= π csc(π/p).

Proof. It is not difficult to verify that AN = CNB, therefore by applying Theorem 1.1, C−NANCN = H, which proves the

factorization. Note that for N = 1, A1 = A = H1 and has the norm ‖A‖ℓp
= ‖H1‖ℓp

= π
sin(π/p) .

3. Norm of Cesàro operator on the generalized Cesàro space

In this section we intend to compute the norm of Cesàro operator of order n on the generalized Cesàro space.

For the probability measure µ on the interval [0,1], the Hausdorff matrix Hµ = (h j,k), is defined by

h j,k =

{
∫ 1

0

(

j
k

)

θ k(1−θ) j−kdµ(θ) 0 ≤ k ≤ j

0 otherwise,

For 1 ≤ p < ∞, by Hardy’s formula ([7], Theorem 216) one can obtain the norm of Hausdorff matrices. These operators are

bounded iff
∫ 1

0 θ
−1
p dµ(θ)< ∞ and

‖Hµ‖ℓp
=
∫ 1

0
θ

−1
p dµ(θ).

By inserting dµ(θ) = n(1−θ)n−1dθ in the definition of the Hausdorff matrix, the Cesàro matrix of order n, Cn = (cn
j,k) is

cn
j,k =







(n+ j−k−1
j−k )

(n+ j
j )

j ≥ k ≥ 0

0 otherwise.

This matrix has the ℓp-norm

‖Cn‖ℓp
=

Γ(n+1)Γ(1/p∗)

Γ(n+1/p∗)
,

according to Hardy’s formula. Note that, C1 =C, where C is the well-known Cesàro matrix.

For computing the norm of Cesàro matrix of order n on the generalized Cesàro matrix domain we need the following

theorem.

Theorem 3.1 ([13], Theorem 3.2). For n ≥ 1, Cesàro matrix of order n, Cn, has a factorization of the form Cn = Rn,NCN ,

where CN is the generalized Cesàro matrix of order N and Rn,N is a bounded operator on ℓp with

‖Rn,N‖ℓp
≤

NΓ(n+1)Γ(1+1/p∗)

Γ(n+1/p∗)
.
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Corollary 3.2. The Cesàro operator of order n is a bounded operator from the generalized Cesàro space C(N, p) into sequence

space ℓp and

‖Cn‖C(N,p),ℓp
≤

NΓ(n+1)Γ(1+1/p∗)

Γ(n+1/p∗)
.

Proof. Since C(N, p) and ℓp are isomorphic, hence according to the Theorem 3.1 we have

‖Cn‖C(N,p),ℓp
= sup

x∈C(N,p)

‖Cnx‖ℓp

‖x‖C(N,p)
= sup

x∈C(N,p)

‖Rn,NCNx‖ℓp

‖CNx‖ℓp

= sup
y∈ℓp

‖Rn,Ny‖ℓp

‖y‖ℓp

= ‖Rn,N‖ℓp
≤

NΓ(n+1)Γ(1+1/p∗)

Γ(n+1/p∗)
.

Now, we have the desired result.
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1. Introduction

The notion of a generalized topological space was introduced by Császár in [3]. Let X be any non-null set. A family

µ ⊂ exp(X) is a generalized topology [9] in X if /0 ∈ µ and
⋃

t∈T

Gt ∈ µ whenever {Gt | t ∈ T} ⊂ µ where exp(X) is a power

set of X . We call the pair (X ,µ) as a generalized topological space (GTS) [9]. If X ∈ µ , then the pair (X ,µ) is called a

strong generalized topological space (sGTS) [9]. Let Y ⊂ X . Then the subspace generalized topology [2] is defined by,

µY = {Y ∩U |U ∈ µ} and the pair (Y,µY ) is called as the subspace generalized topological space [2].

Let (X ,µ) be a GTS and A ⊂ X . The interior of A [9] denoted by iA, is the union of all µ-open sets contained in A and the

closure of A [9] denoted by cA, is the intersection of all µ-closed sets containing A when no confusion can arise. The elements

in µ are called the µ-open sets, the complement of a µ-open set is called the µ-closed set and the complement of µ is denoted

by µ
′
. Denote {U ∈ µ |U 6= /0} by µ̃ [8] and denote {U ∈ µ | x ∈U} by µ(x) [8].

Throughout this paper, R,Z,Q and N denote the set of all real numbers, integers, rational numbers and natural num-

bers, respectively. The notations X3,X4,X5 and X6 are mean the sets {a,b,c},{a,b,c,d},{a,b,c,d,e} and {a,b,c,d,e, f},
respectively.

2. Preliminaries

In this section, we remember some basic definitions and lemmas which will be useful in the development of the next sections.

A subset A of a GTS (X ,µ) is said to be a µ-nowhere dense [6] (resp. µ-dense [6], µ-codense [7]) set if icA = /0 (resp.

cA = X , c(X −A) = X). A is said to be a µ-strongly nowhere dense set if for every V ∈ µ̃, there is U ∈ µ̃ such that U ⊂ V

and U ∩A = /0. Then A is said to be a µ-meager (or µ-first category) (resp. µ-s-meager (or µ-s-first category)) set [8] if

A =
⋃

n∈N An where An is µ-nowhere dense (resp. µ-strongly nowhere dense) for all n ∈ N.
In a GTS, every subset of a µ-strongly nowhere dense set is µ-nowhere dense and every subset of a µ-meager (resp.

µ-s-meager) set is µ-meager (resp. µ-s-meager) [8].

Let (X ,µ) be a GTS and A ⊂ X . Then A is said to be a µ-second category (µ-II category) (resp. µ-s-second category

(µ-s-II category)) set [8] if A is not µ-meager (resp. µ-s-meager). A is µ-residual (resp. µ-s-residual) [8] if X −A is µ-meager
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(resp. µ-s-meager).

A GTS (X ,µ) is said to be µ-II category (resp. µ-s-II category) if X is µ-II category (resp. µ-s-II category) as a subset. A

space X is called a Baire space (BS) [8] if each V ∈ µ̃ is of µ-II category in X . A space (X ,µ) is a strong Baire space (sBS) [8]

if V1 ∩V2 ∩ ...∩Vn is of µ-II category set for all V1,V2, ...,Vn ∈ µ such that V1 ∩V2 ∩ ...∩Vn 6= /0. Also, every sBS is a BS [8].

Define µ⋆ = {
⋃

t(U
t
1 ∩U t

2 ∩U t
3 ∩ ...∩U t

nt
) | U t

1,U
t
2, ...,U

t
nt
∈ µ} and µ⋆⋆ = {A ⊂ X | A is of µ-II category set}∪{ /0} [8].

Then µ ⊂ µ⋆ and µ ⊂ µ⋆⋆ if (X ,µ) is a Baire space [8]. Also, µ⋆ ⊂ µ⋆⋆ if (X ,µ) is a sBS [11].

A space (X ,µ) is called hyperconnected [6] if every non-null µ-open subset of X is µ-dense in X . A GTS (X ,µ) is said to

be a generalized submaximal space [7] if every µ-dense subset of X is a µ-open set in X .
The following lemmas will be useful in the sequel.

Lemma 2.1. [8, Property 2.3] Let (X ,µ) be a GTS and A ⊂ X be a µ-nowhere (resp. µ-strongly nowhere) dense set. Then the

closure of A and any subset of A are µ-nowhere (resp. µ-strongly nowhere) dense sets.

Lemma 2.2. [8, Property 2.5] Let (X ,µ) be a GTS and A ⊂ X . Then the following hold.

(a) If A is s-meager then it is meager.

(b) If A is of II category then it is of s-II category.

(c) If A is s-residual then it is residual.

Lemma 2.3. [9, Proposition 4.7] Let (X ,µ) be a GTS. If Fn is a µ-meager set for each n ∈ N, then
⋃

n∈N Fn is a µ-meager set

in X .

Lemma 2.4. [9, Theorem 5.3] Let (X ,µ) be a GTS. The following are equivalent.

(a) X is Baire.

(b) If A 6= /0 is µ-residual in X , then A is µ-dense in X .
(c) If B 6= X is µ-meager in X , then B is µ-codense in X .
(d) Every U ∈ µ̃ is µ-II category in X .
(e) iF = /0, for every F is a µ-meager set in X .
(f) For every µ-closed set Fn with iFn = /0, i(

⋃

n∈N Fn) = /0.

Lemma 2.5. [12, Theorem 3.3] Let (X ,µ) be a GTS. Then the following hold.

(a) If Gn is µ-s-meager for each n ∈ N, then
⋃

n∈N Gn is µ-s-meager.

(b) If Fn is µ-s-residual for each n ∈ N, then
⋂

n∈N Fn is µ-s-residual.

3. Properties of Generalized Topology

In this section, we give some properties of generalized topologies defined in a generalized topological space. Also, we check

some families are either satisfied with the stack property or not.

We start the study of various types of generalized topologies in a generalized topological space by reminding the well-known

definitions in GTSs.

Let (X ,µ) be a GTS. A collection C of subsets of X is called a stack [10] if A ∈ C whenever B ∈ C and B ⊂ A. A stack H

on X is called a p-stack [10] if A,B ∈ H , then A∩B 6= /0.

Theorem 3.1. Let (X ,µ) be a GTS. Then µ̃⋆⋆ is a stack.

Proof. Suppose B ∈ µ̃⋆⋆ and B ⊂ A ⊂ X . Then B is of µ-II category set in X . Since subset of a µ-meager set is µ-meager, A is

of µ-II category set in X implies that A ∈ µ̃⋆⋆. Therefore, µ̃⋆⋆ is a stack.

The below Corollary 3.2 directly follows from Theorem 3.1 so the proof is omitted.

Corollary 3.2. Let (X ,µ) be a GTS and A ⊂ X . Then the following hold.

(a) If iµ⋆⋆A 6= /0, then A ∈ µ⋆⋆.
(b) If (X ,µ) is a BS and if iµ A 6= /0, then A ∈ µ⋆⋆.
(c) If (X ,µ) is a sBS and if iµ⋆A 6= /0, then A ∈ µ⋆⋆.
(d) If A ∈ µ⋆⋆, then cµ A,cµ⋆A,cµ⋆⋆A ∈ µ⋆⋆.

The following Example 3.3, (a) shows that the generalized topology µ̃ is not a stack in a generalized topological space, (b)

proves that there exist a topology µ, in which µ̃ is not a stack and (c) proves that µ is not a topology even if µ̃ is a stack. The

generalized topology µ̃⋆ is not a stack as shown by the below Example 3.4.
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Example 3.3. (a) Consider the generalized topological space (X ,µ) where X = R and µ is the Z forbidden generalized

topology on R, that is, µ = {U ⊂ R |U ⊂ R−Z}. Then µ̃ is not a stack. Because, if U = { n
n+1

| n ∈ N}, then U ∈ µ̃. Here

U ⊂Q. But Q /∈ µ̃.
(b) Consider the generalized topological space (X ,µ) where X = [0,5] and µ = { /0, [0,2),(1,2),(1,4], [0,4],X}. Then µ is a

topology. But µ̃ is not a stack. For, let G = [0,2) and H = [0,2]. Then G ⊂ H and G ∈ µ̃. But H /∈ µ̃.
(c) Consider the generalized topological space (X4,µ) where µ = { /0,{a,b},{a, b,c},{a,b,d},{a,c,d},{b,c,d},X4}. Then µ̃
is a stack. But µ is not a topology.

Example 3.4. Consider the generalized topological space (X ,µ) where X = [0,5] and µ = { /0, [0,2),(1, 3
2
),(1,4], [0,4]}. Then

µ⋆ = { /0, [0,2),(1,4],(1, 3
2
),(1,2), [0,4]}. Let A = (1,2) ∈ µ̃⋆ and B = [1,2]. Then A ⊂ B. But B /∈ µ̃⋆. Thus, µ̃⋆ is not a stack.

Theorem 3.5. Let (X ,µ) be a GTS. Then (X ,µ⋆⋆) is a hyperconnected space if and only if µ̃⋆⋆ is a p-stack.

Proof. Suppose that (X ,µ⋆⋆) is a hyperconnected space. By Theorem 3.1, µ̃⋆⋆ is a stack. Let A,B ∈ µ̃⋆⋆. Then A and B are

non-null µ⋆⋆-open sets and so A and B are µ⋆⋆-dense sets in X , by hypothesis. Therefore, A∩B 6= /0. Hence µ̃⋆⋆ is a p-stack.

The reverse implication is directly follows from the definition of p-stack so the proof is omitted.

Example 3.6. Consider the generalized topological space (X ,µ) where X = [0,5] and µ = { /0, [0,2),(1,4], [0,4]}. Then

µ⋆⋆ = { /0}∪{A,B ⊂ X | A ∈ exp((1,2))−{ /0},A ⊂ B} and so (X ,µ⋆⋆) is not a hyperconnected space. Because, if we take

W = [0, 3
2
)∪( 3

2
,5], then W ∈ µ⋆⋆ and hence { 3

2
} is a µ⋆⋆-closed set but { 3

2
} is a non-null µ⋆⋆-open set in X . Let U = [0,1]∪{ 3

2
}

and V = { 17
10
}∪ [2,5]. Then U,V ∈ µ̃⋆⋆. But U ∩V = /0. Thus, µ̃⋆⋆ is not a p-stack.

Theorem 3.7. Let (X ,µ) be a BS. If every non-null µ-open set is a µ-residual set, then (X ,µ) is a hyperconnected space.

Proof. Let G ∈ µ̃. Then by hypothesis, G is µ-residual in X . By Lemma 2.4, G is a µ-dense set in X . Hence (X ,µ) is a

hyperconnected space.

Theorem 3.8. Let (X ,µ) be a BS and every non-null µ-open set is µ-residual in X . If (X ,µ) is a generalized submaximal

space, then the following hold.

(a) µ⋆⋆ = µ.
(b) µ̃ is a stack.

Proof. It is enough to prove (a) only. Since (X ,µ) is a BS we have µ ⊂ µ⋆⋆. Let B ∈ µ⋆⋆. If B = /0, then there is nothing

to prove. Suppose B ∈ µ̃⋆⋆. Then B is of µ-II category set and so B is not µ-meager so that B is not a µ-nowhere dense set.

Thus, iµ cµ B 6= /0. Take V = iµ cµ B. Then V ∈ µ̃. By hypothesis and Theorem 3.7, (X ,µ) is a hyperconnected space so that V is

µ-dense set in X . Then B is µ-dense set in X . Since (X ,µ) is a generalized submaximal space, B is a µ-open set. Therefore,

B ∈ µ̃ so that B ∈ µ. Thus, µ⋆⋆ ⊂ µ. Hence µ⋆⋆ = µ.

In Theorem 3.8, replace the condition “(X ,µ) be a BS” by the condition “(X ,µ) be a sBS”, we get µ = µ⋆ = µ⋆⋆ and then

µ̃⋆ is a stack.

The following Example 3.9 shows that the necessary conditions are can not be dropped in Theorem 3.8.

Example 3.9. (a) Consider the generalized topological space (X ,µ) where X = [0,5] and µ = { /0, [0,2),(1, 3
2
),(1,3], [0,3]}.

Then (X ,µ) is a BS and every non-null µ-open set is a µ-residual set in X . Let A = [1,4] be a subset of X . Then cµ A = X and

so A is a µ-dense subset of X . But A /∈ µ. Thus, (X ,µ) is not a generalized submaximal space. Here µ⋆⋆ = { /0}∪{A,B ⊂ X |
A ∈ exp((1, 3

2
))−{ /0},A ⊂ B}. Choose W = [1,2]. Then W ∈ µ⋆⋆. But W /∈ µ. Hence µ⋆⋆ * µ .

(b) Consider the generalized topological space (X5,µ) where µ = { /0,{a,b},{a, c},{a,d},{b,c},{a,b,c},{a,b,d},{a,b,e},
{a,c,d},{a,c,e},{a,d,e},{b,c,d},{b,c,e},{a,b,c,d},{a,b,c,e},{a,b,d,e},{a,c,d,e},{b,c,d,e},X5}. Therefore, (X5,µ)
is a generalized submaximal space and every non-null µ-open set is a µ-residual set in X5. But (X5,µ) is not a BS. For, if we

take A = {a,c,d} is a subset of X5. Now iµ cµ({a}) = iµ({a}) = { /0}; iµ cµ({c}) = iµ({c}) = { /0}; iµ cµ({d}) = iµ({d}) = { /0}.
Then {a,c,d} is a µ-meager set and so A is not a µ-II category set in X5. Here, µ⋆⋆ = { /0}. Hence µ * µ⋆⋆.
(c) Consider the generalized topological space (X5,µ) where µ = { /0,{a},{b},{a,b},{a,c},{a,b,c},{a,b,d},{a,b,e},{b,c,d},
{a,b,c,d},{a,b,c,e},{a,b,d,e},X5}. Then (X5,µ) is a BS and generalized submaximal space. Let A = {a} be a subset of X5.
Then X5 −A = {b,c,d,e}. Consider, iµ cµ({b}) = iµ({b,d,e}) = {b} 6= /0. Thus, {b} is of µ-II category set in X5. Therefore,

X5 −A is of µ-II category set in X5 so that X5 −A is not a µ-meager set which implies that A is not a µ-residual set in X5. Thus,

there is a non-null µ-open set which is not a µ-residual set in X5. Here, µ⋆⋆ = { /0}∪{A ⊂ X5 | either a ∈ A or b ∈ A}. Let

G = {a,c,d}. Then G ∈ µ⋆⋆. But G /∈ µ. Hence µ⋆⋆ * µ.

Theorem 3.10. Every collection of all non-null µ-residual sets in X is a stack where µ is a generalized topology on X .
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Proof. Let η = {A ⊂ X | A is a non-null µ-residual set}. Suppose that V ∈ η and V ⊂U. Then V is µ-residual and so X −V

is µ-meager in X . Since V ⊂U,X −U ⊂ X −V so that X −U is a µ-meager set in X , since subset of a meager set is meager.

Thus, U is µ-residual in X . Therefore, U ∈ η . Hence η is a stack.

Theorem 3.11. Let (X ,µ) be a GTS and η = { /0}∪{A ⊂ X | A is non-null µ-residual set}. Then η is a topology on X .

Proof. By Theorem 3.10, η is closed under arbitrary union. Also, η is closed under finite intersection, by Lemma 2.3. Let

A ⊂ X be a non-null µ-residual set. Then /0 = (X −X)⊂ (X −A) and so X is a non-null µ-residual set. Thus, X ∈ η . Therefore,

η is a topology on X .

The below Theorem 3.12 (a) follows from the similar arguments in Theorem 3.10, Theorem 3.12 (b) follows from Lemma

2.5 (b) and the same considerations in Theorem 3.11 so the proof is omitted.

Theorem 3.12. Let (X ,µ) be a GTS. Then the following hold.

(a) Every collection of all µ-s-residual sets in X is a stack.

(b) If η = { /0}∪{A ⊂ X | A is non-null µ-s-residual set}, then η is a topology on X .

Theorem 3.13. Let (X ,µ) be a GTS. Then every collection of all µ-dense sets in X is a stack.

Theorem 3.14. Let (X ,µ) be a generalized submaximal space. Then every collection of all µ-dense sets in X is a p-stack.

Proof. Let η = {A | A is µ-dense subset of X}. By Theorem 3.13, η is a stack. Let G,H ∈ η . Then G and H are µ-dense sets

in X . By hypothesis, G and H are non-null µ-open sets in X so that G∩H 6= /0. Hence η is a p-stack.

The following Example 3.15 shows that the condition “(X ,µ) be a generalized submaximal space” can not be dropped in

Theorem 3.14. Also, this example shows that the collection of all µ-codense sets in X is not a stack.

Example 3.15. Consider the generalized topological space (X4,µ) where µ = { /0,{a,b},{b,c},{a,b,c},{b,c,d},X4}. Here,

{b} is a µ-dense set. But {b} /∈ µ. Thus, (X4,µ) is not a generalized submaximal space. Take η = {A | A is µ-dense subset

of X4}. Then η = {{b},{a,b},{a,c},{b,c},{b,d},{a,b,c},{a,b,d},{a,c,d},{b,c,d},X4}. Take A = {a,c} and B = {b,d}.
Then A,B ∈ η . But A∩B = /0.
Take ζ is the collection of all µ-codense sets in X . Then ζ = { /0,{a}.{b},{c},
{d},{a,c},{a,d},{b,d},{c,d},{a,c,d},X4}. Choose A = {b,d} and B = {b,c,d}. Then A ∈ ζ and A ⊂ B. But B /∈ ζ . Thus,

ζ is not a stack.

Next, Theorem 3.16 follows from Lemma 2.4 and Theorem 3.14 so the direct proof is omitted.

Theorem 3.16. Let (X ,µ) be a BS. If (X ,µ) be a generalized submaximal space, then η = {A ⊂ X | A is a non-null µ-residual

set} is a p-stack.

The following Theorem 3.17 follows from the fact that “super set of a dense set is dense” and the trivial proof is omitted.

Theorem 3.17. Let (X ,µ) be a GTS and η = { /0}∪{A ⊂ X | A is µ-dense}. Then η is a strong generalized topology on X .

The collection η defined on the above Theorem 3.17 is not closed under the finite intersection as shown by the following

Example 3.18.

Example 3.18. Consider the generalized topological space (X4,µ) where µ = { /0,{a,b},{b,d},{a,b,c},{a,b,d},{b,c,d},X4}.
Take η = { /0}∪{A⊂X4 |A is µ-dense set}. Then η = { /0}∪{{b},{a,b},{a,d},{b,c},{b,d},{a,b,c},{a,b,d},{a,c,d},{b,c,d},
X4}. Let A = {a,d} and B = {b,d}. Then A,B ∈ η . But A∩B = {d} /∈ η . Thus, η is not closed under the finite intersection.

Theorem 3.19. Let (X ,µ) be a GTS. Then µ⋆⋆ 6= { /0} if and only if µ⋆⋆⋆ is a strong GT in X where µ⋆⋆⋆ = {
⋃

t
(W t

1 ∩W t
2 ∩

. . . .∩W t
nt
) |W t

1 ,W
t
2 , . . . .,W

t
nt
∈ µ⋆⋆} and hence it is a topology.

Proof. Suppose that µ⋆⋆ 6= { /0}. Then there exists a non-null µ⋆⋆-open set in X . Take G is the non-null µ⋆⋆-open set in X . Then

G is of µ-II category set in X . Since subset of a µ-meager set is µ-meager, X is of µ-II category. Therefore, X ∈ µ⋆⋆ and so

X ∈ µ⋆⋆⋆ . Hence µ⋆⋆⋆ is a strong generalized topology. Also, µ⋆⋆⋆ is closed under finite intersection. Hence µ⋆⋆⋆ is a topology.

Converse, follows from the definition of µ⋆⋆⋆ .

Theorem 3.20. Let (X ,µ) be a GTS. If µ̃ is a stack, then the following hold.

(a) µ is a strong GT.

(b) µ⋆ is a topology.
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Proof. It is enough to prove (a) only. Suppose µ 6= { /0} and µ̃ is a stack. Then we can choose a non-null open set in µ. Take G

is a non-null µ-open set in X . If G = X , then there is nothing to prove. Assume that, G ⊂ X . By hypothesis, X ∈ µ̃ so that

X ∈ µ. Hence µ is a strong GT.

The converse implication of (a) in Theorem 3.20 is not true as shown by the following Example 3.21.

Example 3.21. Consider the generalized topological space (X ,µ) where X = [0,5] and µ = { /0, [0,2),(1,3],(1,5], [0,3],X}.
Then (X ,µ) is a strong generalized topological space. But µ̃ is not a stack. For, [0,2)⊂ [0,2]. Here [0,2) ∈ µ but [0,2] /∈ µ.

The following Theorem 3.22 is a direct consequence of the definition of the stack so the proof is omitted. If η ⊂ exp(X)−{ /0}
where X is a non-null set, µ ⊂ η ⊂ γ and if η is a stack, then neither γ nor µ is stack as shown by the following Example 3.23.

Theorem 3.22. Let X be a non-null set and η ⊂ exp(X). If η is a stack and generalized topology, then η is a strong GT.

Example 3.23. Consider the non-null space X4. Take η = {{a},{a,b},{a,c},{a,d},{a,b,c},{a,b,d},{a,c,d},X4}. Let γ =
{{a},{b},{a,b},{a,c},{a,d},{a,b,c},{a,b,d},{a,c,d},X4} and µ = {{a},{a,b},{a,c},{a,b,c},{a,b,d},{a,c,d},X4}.
Then µ ⊂ η ⊂ γ. Here η is a stack. But neither γ nor µ is stack. For, let A1 = {b},A2 = {a} and B1 = {b,d},B2 = {a,d}.
Then A1 ∈ γ ,A2 ∈ µ and A1 ⊂ B1,A2 ⊂ B2. But B1 /∈ γ,B2 /∈ µ.

Moreover, µ⋆ is a topology if µ̃⋆ is a stack.

4. Nature of a New GT

In this section, we define a new generalized topology and give some of its properties in a generalized topological space.

First of all, we recall some definitions and facts for the development of this section.

A GTS (X ,µ) is said to be a weak Baire space (for short, wBS) [8] if for every U ∈ µ̃ is of µ-s-II category set in X . Also,

every BS is a wBS.

Let (X ,µ) be a GTS and A ⊂ X . Then A is called µ-semi-open (resp. µ-α-open) if A ⊂ ciA (resp. A ⊂ iciA) [5].

In [8], Korczak - Kubiak et al. introduced a new generalized topology, namely µ⋆⋆, defined by using µ-II category sets and

gave some properties of this generalized topology in a generalized topological space.

Motivated by this, we will introduce a new generalized topology, namely µV , (dependent on GT µ) in a generalized

topological space which will be a convenient tool for considerations in this section.

The GT µV defined as in the following way:

Definition 4.1. Let (X ,µ) be a GTS. Then µV = { /0}∪{A ⊂ X | A is of µ-s-II category set}.

The family µV is a strong generalized topology if µV 6= { /0}. The converse implication is always true.

Let (X ,µ) be a GTS. If µ 6= { /0}, then X is of µ-s-II category and hence µV is a sGTS. Also, the reverse implication is true.

The following Example 4.2 shows that the family µV is not closed under the finite intersection.

Example 4.2. Consider the generalized topological space (X4,µ) where µ = { /0,{a},{a,d},{b,d},{a,b,c},{a,b,d},X4}.
Then µV = { /0}∪ {A ⊂ X4 | a ∈ A or b ∈ A or d ∈ A}. Here, {a,c} and {b,c} are of µ-s-II category subsets in X4. Take

A = {a,c}∩{b,c}= {c}. Then A is a µ-strongly nowhere dense set in X4 and so A is not µ-s-II category in X4 so that A /∈ µV .
Therefore, µV is not closed under the finite intersection.

Lemma 4.3. [8, Lemma 2.12] Let (X ,µ) be GTS and A ⊂ X . Then

cµ⋆⋆(A) =

{

X if A is µ-residual,

A if A is not µ-residual

Lemma 4.4. [8, Lemma 2.13] Let (X ,µ) be GTS, X be a µ-II category set and A ⊂ X . If A is a µ⋆⋆-nowhere dense set, then A

is a µ-meager set.

Theorem 4.5. Let (X ,µ) be a GTS. Then ˜µV is a stack.

Proof. Suppose A ⊂ B and A ∈ ˜µV . Then A is of µ-s-II category set and so B is of µ-s-II category set, since subset of a

µ-s-meager set is µ-s-meager. Therefore, B ∈ ˜µV . Hence ˜µV is a stack.

The following Corollary 4.6 follows from the similar arguments in Theorem 3.5 and so the proof is omitted.

Corollary 4.6. Let (X ,µ) be a GTS. Then ˜µV is a p-stack if and only if (X ,µV ) is a hyperconnected space.
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The following Proposition 4.7 directly follows from the definition of weak Baire space, strong Baire space and Lemma 2.2

(b) so the proof is omitted. Theorem 4.8 directly follows from Theorem 4.5, Proposition 4.7 so the trivial proof is omitted.

Proposition 4.7. Let (X ,µ) be a GTS. Then the following hold.

(a) If (X ,µ) is a wBS, then µ ⊂ µV .
(b) If (X ,µ) is a sBS, then µ⋆ ⊂ µV .
(c) µ⋆⋆ ⊂ µV .

Theorem 4.8. Let (X ,µ) be a GTS and A ⊂ X . Then the following hold.

(a) If iµV A 6= /0, then A ∈ µV .

(b) If (X ,µ) is a wBS and if iµ A 6= /0, then A ∈ µV .
(c) If (X ,µ) is a sBS and if iµ⋆A 6= /0, then A ∈ µV .
(d) If A ∈ µV , then cµ A,cµ⋆A,cµ⋆⋆A,cµV A ∈ µV .

Theorem 4.9. Let (X ,µ) be a wBS-sGTS and A ⊂ X . Then the following hold.

(a) If A is µ-α-open, then A ∈ µV .
(b) If A is µ-semi-open, then A ∈ µV .

Proof. We will present the detailed proof only for (a). Suppose A is a µ-α-open set in X . Then A ⊂ iciA. If A = /0, then there

is nothing to prove. Assume that, A 6= /0. Then iciA 6= /0 so that ciA 6= /0 which implies that iA 6= /0, since µ is a sGT. Thus,

iµ A 6= /0. By hypothesis and Theorem 4.8 (b), A ∈ µV .

By using Theorem 4.9, immediately we get two Observations as follows.

Observation 4.10. Let (X ,µ) be a wBS-sGTS. If A is a µV -dense subset of X , then the following hold.

(a) A∩U 6= /0 for every non-null µ-α-open set U.
(b) A∩V 6= /0 for every non-null µ-semi-open set V.

Observation 4.11. Let (X ,µ) be a wBS-sGTS and A ⊂ X . If A is a µV -nowhere dense set in X , then the following hold.

(a) If G is a non-null µ-α-open set, then G * A.
(b) If H is a non-null µ-semi-open set, then H * A.

In Theorem 4.9, we replace the condition “wBS-sGTS” by “BS-sGTS” we get A ∈ µ⋆⋆, by Corollary 3.2 (b). Theorem 4.9

is not reversible as shown in the following Example 4.12.

Example 4.12. Consider the generalized topological space (X5,µ) where µ = { /0,{a,b},{b,c},{a,b,c}}. Then µV = { /0}∪
{A ⊂ X5 | a ∈ A or b ∈ A or c ∈ A}.
Let U = {c,d}. Then U ∈ µV . But U is not a µ-α-open set in X5. For, iµ cµ iµU = iµ cµ({ /0}) = iµ({d,e}) = /0. Thus,

U 6⊂ iµ cµ iµU.
Let V = {a,d}. Then V ∈ µV . Here cµ iµV = cµ({ /0}) = {d,e}. Thus, V 6⊂ cµ iµV. Therefore, V is not a µ-semi-open set in X5.

Theorem 4.13. Let (X ,µ) be a GTS and A ⊂ X . If A is a µV -nowhere dense set, then the following hold.

(a) If (X ,µ) is a wBS, then A is µ-codense.

(b) If (X ,µ) is a sBS, then A is µ⋆-codense.

(c) A is µ⋆⋆-codense set in X .

Proof. It is enough to prove (b) only. Suppose (X ,µ) is a sBS and A is a µV -nowhere dense set. Then iµV cµV A = /0 and so

cµV (X −A) = X . By hypothesis and Proposition 4.7 (b), cµ⋆(X −A) = X . Therefore, A is a µ⋆-codense set in X .

Proposition 4.14 and Proposition 4.15 are follows from the similar considerations in Lemma 4.3 and Lemma 4.4, respectively

so the proofs are omitted.

Proposition 4.14. Let (X ,µ) be a GTS and A ⊂ X . Then

cµV (A) =

{

X if A is µ-s-residual,

A if A is not µ-s-residual

Proposition 4.15. Let (X ,µ) be a GTS, X be a µ-s-II category set and A ⊂ X . Then the following hold.

(a) If A is a µV -nowhere dense set, then A is a µ-s-meager set.

(b) If A is a µV -meager set, then A is a µ-s-meager set.

(c) If A is a µV -residual set, then A is a µ-s-residual set.

(d) If A is of µ-s-II category, then it is of µV -II category.
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Theorem 4.16. Let (X ,µ) be a wBS. Then every µ-strongly nowhere dense set is µV -nowhere dense in X .

Proof. Suppose (X ,µ) is a wBS. Let A be a µ-strongly nowhere dense set in X . Suppose iµV cµV A 6= /0. Then cµV A contains

a non-null µV -open set in X and so cµV A contains a µ-s-II category set in X . Thus, cµ A contains a µ-s-II category set in X ,

since µ ⊂ µV . But cµ A is a µ-s-meager set in X , by Lemma 2.1. Therefore, iµV cµV A = /0. Hence every µ-strongly nowhere

dense set is a µV -nowhere dense set in X .

The following Corollary 4.17 follows from Theorem 4.16 so the direct proof is omitted.

Corollary 4.17. Let (X ,µ) be a wBS and A ⊂ X . Then the following hold.

(a) If A is µ-s-meager, then A is µV -meager in X .
(b) If A is of µV -II category, then A is of µ-s-II category in X .
(c) If A is µ-s-residual, then A is µV -residual in X .

Theorem 4.18. Let (X ,µ) be a GTS. If X is of µ-s-II category, then (X ,µV ) is a BS.

Proof. Let G ∈ ˜µV . Suppose G is a µV -meager set. Then by hypothesis and Proposition 4.15 (b), G is a µ-s-meager set, which

is a contradiction to G ∈ ˜µV . Therefore, G is of µV -II category in X . Hence (X ,µV ) is a BS.

The following Theorem 4.19 follows from the similar considerations in Theorem 3.19 so the easy proof is omitted.

Theorem 4.19. Let (X ,µ) be a GTS. Then µV 6= { /0} if and only if µV ⋆
is a strong GT in X where µV ⋆

= {
⋃

t
(W t

1 ∩W t
2 ∩ . . . .∩

W t
nt
) |W t

1 ,W
t
2 , . . . .,W

t
nt
∈ µV } and hence it is a topology.

In the rest of this section, we give some relations between various types of generalized topology in a generalized topological

space.

First of all, we remember some Lemmas which is useful in the sequel.

Lemma 4.20. [14, Theorem 3.4] Let (X ,µ) be a sBS and A ⊂ X . Then the following hold.

(a) If A is a µ-nowhere dense set, then A is a µ⋆-nowhere dense set.

(b) If A is a µ-meager set, then A is a µ⋆-meager set.

(c) If A is a µ⋆-II category set, then A is a µ-II category set.

Lemma 4.21. [14, Theorem 3.7] Let (X ,µ) be a BS and A ⊂ X . Then the following hold.

(a) If A is a µ-nowhere dense set, then A is a µ⋆⋆-nowhere dense set.

(b) If A is a µ-meager set, then A is a µ⋆⋆-meager set.

(c) If A is a µ⋆⋆-II category set, then A is a µ-II category set.

Here, µ⋆⋆⋆ = {
⋃

t
(W t

1 ∩W t
2 ∩ . . . .∩W t

nt
) |W t

1 ,W
t
2 , . . . .,W

t
nt
∈ µ⋆⋆} and µV ⋆

= {
⋃

t
(W t

1 ∩W t
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nt
) |W t

1 ,W
t
2 , . . . .,W

t
nt
∈

µV }.
Now we define two generalized topologies and give some properties of these generalized topologies.

Define µ⋆⋆⋆ = { /0}∪{A ⊂ X | A is of µ⋆-II category set} and µV ⋆⋆
= { /0}∪{A ⊂ X | A is of µV -II category set}.

It is easily seen that the families µ⋆⋆⋆ and µV ⋆⋆
are generalized topologies. Also, these two generalized topologies are

satisfied with the stack property in a GTS.

Theorem 4.22. Let (X ,µ) be a generalized topological space. Then the following hold.

(a) µ̃⋆⋆⋆ is a stack.

(b) µ̃V ⋆
is a stack.

Proof. It is enough to prove (a) only. Suppose A ⊂ B where A ∈ µ̃⋆⋆⋆ . Then A =
⋃

t
(At

1∩At
2∩ . . . .∩At

nt
) where At

1,A
t
2, . . . .,A

t
nt
∈

µ⋆⋆. Take Ak = Ak
1 ∩ Ak

2 ∩ . . . .∩ Ak
nk

such that Ak 6= /0 where Ak
1,A

k
2, . . . .,A

k
nk

∈ µ⋆⋆. By hypothesis, Ak ⊂ B so that B =

Ak ∪ (B−Ak). Thus, B = (Ak
1 ∩Ak

2 ∩ . . . .∩Ak
nk
)∪ (B−Ak) where Ak

1,A
k
2, . . . .,A

k
nk

∈ µ⋆⋆ which implies that B = (Ak
1 ∪ (B−

Ak))∩ (Ak
2 ∪ (B−Ak))∩ . . . .∩ (Ak

nk
∪ (B−Ak)) where Ak

1,A
k
2, . . . .,A

k
nk
∈ µ⋆⋆. Since Ak

1,A
k
2, . . . .,A

k
nk
∈ µ̃⋆⋆ we have Ak

1 ∪ (B−

Ak),A
k
2 ∪ (B−Ak), . . . .,A

k
nk
∪ (B−Ak) ∈ µ̃⋆⋆, since µ̃⋆⋆ is a stack. Therefore, B ∈ µ̃⋆⋆⋆ . Hence µ̃⋆⋆⋆ is a stack.

Corollary 4.23. Let (X ,µ) be a generalized topological space and µ̃ is a stack. Then µ̃⋆ is a stack.

Obviously, µ⋆⋆ ⊂ µ⋆⋆⋆ and µV ⊂ µV ⋆
. The reverse implications are true as shown by the following Theorem 4.24.
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Theorem 4.24. Let (X ,µ) be a generalized topological space. Then the following hold.

(a) If (X ,µ⋆⋆) is a sBS, then µ⋆⋆⋆ ⊂ µ⋆⋆.
(b) If (X ,µV ) is a sBS, then µV ⋆

⊂ µV .

Proof. (a) Suppose (X ,µ⋆⋆) is a sBS. Let G ∈ µ⋆⋆⋆ . If G = /0, then there is nothing to prove. Assume that, G 6= /0. Then

G =
⋃

t
(Gt

1 ∩Gt
2 ∩ . . . .∩Gt

nt
) where Gt

i ∈ µ⋆⋆ for i = 1,2, ...,nK . Take Gk = Gk
1 ∩Gk

2 ∩ . . . .∩Gk
nk

such that Gk 6= /0 where

Gk
1,G

k
2, . . . .,G

k
nk
∈ µ⋆⋆. By hypothesis, Gk is of µ⋆⋆-II category set in X so that Gk is of µ-II category set in X , by Lemma

4.21(c). Thus, G is of µ-II category set in X . Therefore, G ∈ µ⋆⋆. Hence µ⋆⋆⋆ ⊂ µ⋆⋆.
(b) It is follows from the similar arguments in above case and Corollary 4.17 (b).

The condition “(X ,µV ) is a sBS” is necessary in Theorem 4.24 (b) as shown by the following Example 4.25

Example 4.25. Consider the generalized topological space (X4,µ) where µ = { /0,{a,b},{a,b,c}}. Then µV = { /0}∪{A⊂ X4 |
either a ∈ A or b ∈ A}. Then (X ,µV ) is not a sBS. For, let U = {b,d};V = {a,d}. Then U,V ∈ µV . But U ∩V = {d} which

is a µV -nowhere dense set. Here µV ⋆
= exp(X). Thus, µV ⋆

* µV .

Theorem 4.26. Let (X ,µ) be a generalized topological space. Then µ⋆⋆⋆ ⊂ µV ⋆
.

Proof. Follows from the fact that µ⋆⋆ ⊂ µV .

Theorem 4.27. Let (X ,µ) be a wBS. Then µ⋆ ⊂ µV ⋆
.

Proof. Let G ∈ µ⋆. If G = /0, then there is nothing to prove. Assume that, G 6= /0. Then G =
⋃

t
(Gt

1 ∩Gt
2 ∩ . . . .∩Gt

nt
) where

Gt
1,G

t
2, . . . .,G

t
nt
∈ µ. By hypothesis, µ ⊂ µV . Thus, G =

⋃

t
(Gt

1 ∩Gt
2 ∩ . . . .∩Gt

nt
) where Gt

1,G
t
2, . . . .,G

t
nt
∈ µV . Therefore,

G ∈ µV ⋆
.

Theorem 4.28. Let (X ,µ) be a GTS and X be a µ-s-II category set. Then µV ⊂ µV ⋆⋆
.

Proof. Let B ∈ µV . Suppose B = /0. Then there is nothing to prove. Assume that, B 6= /0. Then B is of µ-s-II category set in X .
By hypothesis and Proposition 4.15 (d), B is of µV -II category set in X . Hence B ∈ µV ⋆⋆

.

Theorem 4.29. Let (X ,µ) be a sBS. Then the following hold.

(a) µ⋆⋆⋆ ⊂ µ⋆⋆⋆ .
(b) µ⋆⋆⋆ ⊂ µV .

Proof. This follows from Lemma 2.2 and Lemma 4.20.

The following Example 4.30 shows that the reverse implications of Theorem 4.26, Theorem 4.27 and Theorem 4.29 (b) are

need not be true in a generalized topological space.

Example 4.30. Consider the generalized topological space (X4,µ) where µ = { /0,{a,b},{b,c},{a,b,c}}. Then µ⋆ = { /0,{b},
{a,b},{b,c},{a,b,c}}; µ⋆⋆ = { /0}∪{A ⊂ X | b ∈ A}; µV = { /0}∪{A ⊂ X | a ∈ A or b ∈ A or c ∈ A}; µ⋆⋆⋆ = { /0}∪{A ⊂ X |
b ∈ A}; µ⋆⋆⋆ = { /0,{b},{a,b},{b,c},{b,d},{a,b,c},{a,b,d},{b,c,d},X}; µV ⋆

= exp(X).
(a). Let A = {a}. Then A ∈ µV ⋆

. But A /∈ µ⋆⋆⋆ .
(b). Let B = {c}. Then B ∈ µV ⋆

. But B /∈ µ⋆.
(c). Let C = {a,d}. Then C ∈ µV . But C /∈ µ⋆⋆⋆ .

The reverse implications of Theorem 4.29 (a) is need not be true as shown by the following Example 4.31.

Example 4.31. Consider the generalized topological space (X4,µ) where µ = { /0,{a},{a,b},{b,c},{a,b,c}}. Then µ⋆ =
{ /0,{a},{b},{a,b},{b,c},{a,b,c}}; µ⋆⋆ = { /0}∪{A⊂X | a∈A or b∈A} and so µ⋆⋆⋆ = { /0}∪{B⊂X | a∈B or b∈B}; µ⋆⋆⋆ =
exp(X). Let G = {c}. Then G ∈ µ⋆⋆⋆ . But G /∈ µ⋆⋆⋆ .

Theorem 4.32. Let (X ,µ) be a BS-sGTS. If (X ,µ⋆⋆) is a sBS, then µ⋆⋆⋆ ⊂ µV ⋆⋆
.

Proof. Let A be a non-null µ⋆⋆⋆ -open set. Then A =
⋃

t
(At

1 ∩At
2 ∩ . . . .∩At

nt
) where At
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∈ µ⋆⋆. Take Ak = Ak
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where Ak
1,A
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k
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∈ µ⋆⋆ such that Ak 6= /0 for some k. By hypothesis, Ak is of µ⋆⋆-II category set and so Ak is of

µ-II category set, by hypothesis and Lemma 4.21. Thus, A is of µ-II category set so that A is of µ-s-II category set. Hence

A ∈ µV . By Theorem 4.28, A ∈ µV ⋆⋆
. Hence µ⋆⋆⋆ ⊂ µV ⋆⋆

.
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5. Some Special Spaces

In this section, we analyze the nature of extremally disconnected and submaximal spaces in a generalized topological space.

Finally, we prove every µ-isolated point is a µ-II category set in a GTS.

A GTS (X ,µ) is called µ-extremally disconnected or simply, extremally-disconnected [4] if the µ-closure of every µ-open

set is µ-open.

A subset B of a generalized topological space (X ,µ) is said to be a µ-Gδ -set [1] if B =
⋂

n∈N
Bn where each Bn is a µ-open

set.

A generalized topological space (X ,µ) is said to be a generalized Gδ -submaximal space [1] if every µ-dense subset of X is

a µ-Gδ -set in X .

Lemma 5.1. [1, Lemma 3.7] Let (X ,µ) be a GTS. If (X ,µ) is a generalized submaximal space, then (X ,µ) is a generalized

Gδ -submaximal space.

Lemma 5.2. [13, Theorem 3.2] Let (X ,µ) be a GTS. Then the following hold.

(a) µ⋆⋆ 6= { /0} if and only if (X ,µ⋆⋆) is a sGTS.

(b) If (X ,µ) is a BS, then µ⋆⋆ 6= { /0}.

Theorem 5.3. Let (X ,µ) be a GTS. If either (X ,µ) is a BS or µ⋆⋆ 6= { /0}, then (X ,µ⋆⋆) is a µ⋆⋆-extremally disconnected

space.

Proof. We will present the detailed proof only for the case, µ⋆⋆ 6= { /0}. Then µ⋆⋆ is a sGTS, by Lemma 5.2. Let G ∈ µ⋆⋆. If

G = /0, then cµ⋆⋆G = G and so cµ⋆⋆G ∈ µ⋆⋆. Suppose that G 6= /0. Then G is of µ-II category set in X . Since G ⊂ cµ⋆⋆G and

subset of a µ-meager set is µ-meager we have cµ⋆⋆G is of µ-II category set in X . Thus, cµ⋆⋆G ∈ µ⋆⋆. Hence (X ,µ⋆⋆) is a

µ⋆⋆-extremally disconnected space.

The following Example 5.4 shows that the condition “either (X ,µ) is a Baire space or µ⋆⋆ 6= { /0}” can not be dropped in

Theorem 5.3.

Example 5.4. Consider the generalized topological space (X ,µ) where X = [0,3] and µ = { /0, [0,2),(1,3], [0,1]∪ [2,3],X}.
Then (X ,µ) is not a BS and µ⋆⋆ = { /0}. Choose G ∈ µ⋆⋆. Then G = /0 and so cµ⋆⋆G = X . But X /∈ µ⋆⋆. Thus, cµ⋆⋆G /∈ µ⋆⋆.
Hence (X ,µ⋆⋆) is not a µ⋆⋆-extremally disconnected space.

Theorem 5.5. Let (X ,µ) be a GTS. Then the following hold.

(a) If µ̃ is a stack, then (X ,µ) is a µ-extremally disconnected space.

(b) If µ̃ is a p-stack, then (X ,µ) is a µ-extremally disconnected space.

Proof. It is enough to prove that (a) only, since every p-stack is a stack. Suppose that, µ̃ is a stack. Then (X ,µ) is a sGTS. Let

U ∈ µ. If U = /0, then cµU = /0, since µ is a sGT. Thus, cµU ∈ µ. Assume that, U 6= /0. Since U ⊂ cµU and µ̃ is a stack we

have cµU ∈ µ. Then (X ,µ) is a µ-extremally disconnected space.

Next, Example 5.6 shows that the condition “µ̃ is a stack” can not be dropped in the above Theorem 5.5 (a). The reverse

implications of Theorem 5.5 is need not be true as shown by the below Example 5.7.

Example 5.6. (a) Consider the generalized topological space (X ,µ) where X = [0,3] and µ = { /0, [0,1), [0,2),(1,3], [0,1)∪
(1,3], [0,2)∪ [ 5

2
,3],X}. Let A = (1,3] and B = [1,3] be subsets of X . Here A ∈ µ̃ and A ⊂ B. But B /∈ µ̃ . Thus, µ̃ is not a stack.

Take G = [0,1). Then G ∈ µ and cµ G = [0,1]. But cµ G /∈ µ. Hence (X ,µ) is not a µ-extremally disconnected space.

(b) Consider the generalized topological space (X6,µ) where µ = { /0,{a,b},{b,c},{a,b,c}}. Let A= {a,b} and B= {a,b,c,d}
be subsets of X6. Here A ∈ µ̃ and A ⊂ B. But B /∈ µ̃. Thus, µ̃ is not a stack. Take G = { /0}. Then G ∈ µ and cµ G = {d,e, f}.
But cµ G /∈ µ. Hence (X6,µ) is not a µ-extremally disconnected space.

Example 5.7. (a) Consider the generalized topological space (X5,µ) where µ = { /0,{a,c},{b,c},{a,b,c},X5}. Then (X5,µ)
is a µ-extremally disconnected space. Let A = {a,c} and B = {a,b,c,d} be subsets of X5. Here A ∈ µ̃ and A ⊂ B. But B /∈ µ̃.
Thus, µ̃ is not a stack.

(b) Consider the generalized topological space (X4,µ) where µ = { /0,{a},{b},{a,b},{a,c},{a,d},{b,c},{b,d},{a,b,c},{a,b,d},
{a,c,d},{b,c,d},X4}. Then (X4,µ) is a µ-extremally disconnected space. But µ̃ is not a p-stack. For, let A = {a} and

B = {b,c,d} be subsets of X4. Here A ∈ µ̃ and B ∈ µ̃. But A∩B = /0.

The following Theorem 5.8 is directly follows from the fact that subset of a µ-s-meager set is µ-s-meager and the converse

part is trivial so the proof is omitted.
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Theorem 5.8. Let (X ,µ) be a GTS. Then µV 6= { /0} if and only if (X ,µV ) is a µV -extremally disconnected space.

Theorem 5.9. Let (X ,µ) be a hyperconnected sGTS. Then (X ,µ) is a µ-extremally disconnected space.

Proof. This is a direct consequence of the definition of the hyperconnected space.

By Lemma 2.1, immediately we get the following two observations so the proofs are omitted.

Observation 5.10. Let (X ,µ) be a GTS and µ = { /0}∪{A ⊂ X | A is a µ-nowhere dense set}. If µ is a GT, then (X ,µ) is a

µ-extremally disconnected space.

Observation 5.11. Let (X ,µ) be a GTS and µ = { /0}∪{A ⊂ X | A is a µ-strongly nowhere dense set}. If µ is a GT, then

(X ,µ) is a µ-extremally disconnected space.

Moreover, every GTS (X ,µ) is both µ⋆⋆-extremally disconnected space and µV -extremally disconnected space.

Lemma 5.12. Let (X ,µ) be a GTS and A ⊂ X . Then the following hold.

(a) If A is a µ⋆⋆-dense set in X , then A ∈ µ⋆⋆.
(b) If A is a µV -dense set in X , then A ∈ µV .

Proof. We will present the detailed proof only for (a). Let A be a µ⋆⋆-dense subset of X . Then A∩Bi 6= /0 for all Bi ∈ µ̃⋆⋆.
Case 1: First we prove this result for a singleton set in µ̃⋆⋆. Assume that, each Ci is a singleton set in µ̃⋆⋆. Since A∩Ci 6= /0

for all Ci ∈ µ̃⋆⋆ we have Ci ⊂ A for all Ci ∈ µ̃⋆⋆. Therefore, A is of µ-II category set in X , since subset of a µ-meager set is

µ-meager.

Case 2: Now we prove this result for other set in µ̃⋆⋆. Assume that, each Bi having more than one element. Then each Bi

contains a non-null singleton set which is of µ-II category set in X . By Case 1, A is of µ-II category set in X .

The reverse implication of Lemma 5.12 need not be true as shown by Example 5.13.

Example 5.13. (a) Consider the generalized topological space (X ,µ) where X = [0,3] and µ = { /0, [0,2),(1,3], [0,1)∪
(1,3], [0,2)∪ [ 5

2
,3],X}. Then µ⋆⋆ = { /0}∪ {A,B ⊂ X | A ∈ exp((1,2))−{ /0},A ⊂ B}. Let A = { 3

2
} be a subset of X . Then

A ∈ µ⋆⋆. But A is not a µ⋆⋆-dense set in X .
(b) Consider the generalized topological space (X6,µ) where µ = { /0,{a,b},{a,b,c},{a,b,d},{a,b,c,d},{a,b,c,e}{a,b,c,d,e}}.
Then µV = { /0}∪{A ⊂ X6 | either a ∈ A or b ∈ A}. Let G = {a,d} be a subset of X6. Then G ∈ µV . But G is not a µV -dense

set in X6.

Theorem 5.14. Let (X ,µ) be a GTS. Then µV 6= { /0} if and only if (X ,µV ) is a generalized submaximal space.

Proof. Let A be a µV -dense set in X . Then A is a µV -open set in X , by Lemma 5.12(b). Therefore, (X ,µV ) is a generalized

submaximal space. Converse implication is trivial.

Corollary 5.15 is directly follows from Lemma 5.1 and Theorem 5.14 so the proof is omitted.

Corollary 5.15. Let (X ,µ) be a GTS. Then µV 6= { /0} if and only if (X ,µV ) is a generalized Gδ -submaximal space.

Theorem 5.16. Let (X ,µ) be a GTS. Then µ⋆⋆ 6= { /0} if and only if (X ,µ⋆⋆) is a generalized submaximal space.

Corollary 5.17. Let (X ,µ) be a GTS. Then µ⋆⋆ 6= { /0} if and only if (X ,µ⋆⋆) is a generalized Gδ -submaximal space.

In the rest of this section, we analyze the nature of an isolated point in a GTS. First of all, we remind the definition for

isolated point in a generalized topological space.

Let (X ,µ) be a generalized topological space. Then x ∈ X is called µ-isolated [1] if {x} is µ-open. If every point of X is

µ-isolated, then X is called µ-discrete [1].

Theorem 5.18. Let (X ,µ) be a GTS and x ∈ X . If x is a µ-isolated point, then the following hold.

(a) {x} ∈ µ⋆⋆.
(b) {x} ∈ µV .
(c) X is of µ-II category.

(d) X is of µ-s-II category.
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Proof. (a) Let x ∈ X . Suppose x is a µ-isolated point in X . Take A = {x}. Then A is a µ-open subset of X and so A is not a

µ-nowhere dense set. Thus, A is not a µ-meager set so that A is of µ-II category set in X . Therefore, {x} ∈ µ⋆⋆.
(b) Since µ⋆⋆ ⊂ µV we have {x} ∈ µV , by (a).

(c) Superset of a µ-II category set is of µ-II category so that X is of µ-II category.

(d) Since every µ-s-meager set is µ-meager we have X is of µ-s-II category.

Theorem 5.19 immediately follows from Theorem 5.18 so the trivial proof is removed. The reverse implications of the

Theorem 5.19 is not true in general as shown in the below Example 5.20.

Theorem 5.19. Let (X ,µ) be a GTS and A ⊂ X . Then the following hold.

(a) If X is µ-discrete, then (X ,µ) is a sBS.

(b) If A contains a µ-isolated point, then A ∈ µ⋆⋆ and hence A ∈ µV .

Example 5.20. Consider the generalized topological space (X4,µ) where µ = { /0,{a,b},{b,c},{a,b,c},X4}. Then (X4,µ) is

a sBS. But X4 is not a µ-discrete space. For, let a ∈ X4. Then {a} is not µ-open and so a is not a µ-isolated point in X4.

Theorem 5.21. Let (X ,µ) be a GTS and A ⊂ X . Then A is of µ-II category set in X if and only if it has a µ⋆⋆-isolated point in

X .

The following Example 5.22 proves that X is not µ-discrete even if X is µ⋆⋆-discrete.

Example 5.22. Consider the generalized topological space (X4,µ) where µ = { /0,{a,b},{c,d},X4}. Here {x} ∈ µ⋆⋆ for all

x ∈ X4. Therefore, X4 is µ⋆⋆-discrete. But X4 is not a µ-discrete space. For, let b ∈ X4. Then {b} is not µ-open and so b is not a

µ-isolated point in X4.

Lemma 5.23. [14, Theorem 4.3] Let (X ,µ) be a hyperconnected space. If X is of µ-II category, then (X ,µ) is a BS.

Theorem 5.24. Let (X ,µ) be a GTS and µ̃ is a p-stack. If X is of µ-II category, then (X ,µ) is a BS.

Proof. Suppose µ̃ is a p-stack. Then (X ,µ) is a hyperconnected space. By Lemma 5.23, (X ,µ) is a BS.
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