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Abstract 
 
In this study, a practical jointed approach in the forced vibration investigation of functionally graded material (FGM) structures 
under internal pressure are applied by modified Durbin’s method. The FGM material consists of heterogeneous material that 
shows exponential variation in the thickness. Four types of dynamic loads are applied to the FGM cylinder for forced vibration. 
Displacement and stress distributions due to non-homogeneous constant are intended. Stress distribution dependent on the 
homogeneity parameter is computed and the results obtained for cylindrical structures were compared with the finite element 
method (FEM). The inhomogeneity parameter is empirically regulated, with a continuously changing volume fraction of the 
ingredients. The parameters for homogeneity were randomly selected to show displacement and stress distributions. 
 
Keywords:  Functionally graded materials, Structural elements, Boundary value problems, Modified Durbin’s 
method 
 
 
1. Introduction 

The structural elements of the pressure vessels used in engineering areas such as aerospace 
and petroleum are important in engineering applications such as cylinder and sphere. As a 
result, the internal loads are one of the main problems of industrial structures. It may lead to 
stress gradient and / or cracked nuclei occurring in the stress distribution of the specified loads. 
By the analysis of the structures under the influence of the internal pressure, it facilitates the 
determination of the density of the points affected by the stress and the unsuitable stress 
distributions. Previous research has provided analytical resolutions for homogeneous isotropic 
and orthotropic structures. Tranter [1], Mirsky [2], Klosner and Dym [3], Ahmed [4], Ghosh 
[5] have pioneered their work in the cylinders, discs and spheres due to axial symmetry. 

 
The functional graded materials (FGM) are more advanced structural materials in determining 
the material properties in the direction of the thickness in the solution of problems due to the 
composite materials interfaces. Güven [6] explained the mechanical stress distribution of the 
isotropic functional grade thick walled sphere under the influence of internal pressure. 
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Tutuncu and Ozturk [7] presented exact solutions in the form of stresses occurring in 
functionally graded pressure vessels. A study close to this work was also printed by Horgan 
and Chan [8]. Obata and Noda [9] submitted the studies of constant thermal stresses in order 
to understand the design of the functional graded thick-walled spheres and cylinders and the 
effects of the stresses. Tutuncu and Temel [10] functional-grade hollow cylinders have solved 
the displacements and stresses of the disc and spheres using an analytical method. Differential 
equations and systems obtained in the analysis of stress distributions are not easy to solve 
with analytical methods. In most cases, this is impossible. Therefore, numerical methods are 
applied in case of large equation systems, non-linearity and complex geometry. Therefore, it is 
a good option to select a numerical method to determine the stress distributions of FGM 
cylinders and spheres. 
 
Loy et al. [11] and Pradhan et al. [12] includes the dynamic response of heterogeneous 
cylinders to the vibration of FGM cylindrical projectiles using the Rayleigh-Ritz method. 
Bayat et al. [13] presented a flexible solution for the analysis of rotating discs classified as 
functional in variable thickness by considering the material properties and the disc thickness 
profile as two power law distributions. Xiang et al. [14] presented two recursive algorithms to 
determine extrusion stresses between two adjacent layers in a multilayer cylinder exposed to 
internal and external pressure. The effects of transient waves in the FGM cylinder on stresses 
and displacements using the hybrid numerical method were investigated by Han et al. [15]. 
Assuming that FGM thick hollow cylinders are made from many bottom rollers, the finite 
element vibration analysis is handled by Shakeri et al. [16]. Ng et al. [17] examined the 
stabilization of FGM cylindrical projectiles under axial harmonic loading. 
 
The main idea behind the modelling of FGM structural elements is to create subdivisions of 
material that are homogeneous in themselves with different properties as is the case with 
graded behavior. Although some analytical solutions (see, e.g., Keles [18])for this type of the 
problem is available in the literature, they either are restricted to one inhomogeneity 
parameter for all material properties that is not the case in real or contain complex solutions 
such that usually it is necessary to solve for each parameter separately, which is not practical 
for parametric analysis. From a parametric analysis point of view, for this type of problems 
numerical solution is becoming essential. In this study, we present the application of modified 
Durbin’s method (MDM) as a numerical method for stress and displacement solutions of 
FGM cylinders of variable thickness. As a material feature, the change in thickness of the 
modulus of elasticity(E(r) = E0 rβ) is defined. The results were compared with FEM compared 
with the results. The non-homogeneous β values were used to indicate the distribution over 
the stress. The inhomogeneity constant β used in the study does not represent a specific 
material. Forced vibration analysis of structures under the influence of dynamic internal 
pressure changes over time through the residue theorem of Cauchy, one of the analytical 
solutions, is valid only for simple internal pressure loads. In this context, in order to test the 
accuracy of the numerical method, Keles [18] compared the solution with the literature. It is 
inevitable to use numerical transformation methods to determine displacement and stress 
distributions of structures under point, point, continuous and repulsive internal pressure. 
Durbin's numerical inverse Laplace transform method was chosen in this study. It is seen that 
this method has been applied successfully in vibration analysis for different structural 
elements in the literature (see for example, [19]). Laplace transformation of such loads will 
not be possible, especially if the internal pressure is given in point or point form. It has been 
found in the literature(see for example, [20, 21]) that vibration analysis is successfully applied 
with different methods and assumptions for the load types that are possible for Laplace 
transformation. In this case, Durbin's method will provide a fast and effective result. MDM is 
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an efficient solution procedure whose theoretical background is available in the literature [22, 
23]. The method is also successfully applied in other structural mechanics problems such as 
those involving spherical shells [24], Timoshenko beam [25] and cylinders [26]. Dynamic 
behavior of cylindrical structures of different values of inhomogeneity parameter is presented. 
The numerical method described can be conveniently applied to FGM cylinders, discs and 
spherical structural members. A comparison was made with FEM (ANSYS) to determine the 
accuracy and effectiveness of the numerical method.  
 
 
2. Basic Equation 

The stress and displacement distribution in a thick-walled hollow cylinder will be considered 
as the inner radius a and the outer radius ka where k is a constant.  The elasticity modules 
and density vary throughout the thickness as 𝐸(𝑟) = 𝐸&𝑟' and𝜌(𝑟) = 𝜌&𝑟', respectively. 
The subscripted terms in Table 1 that is ()i and ()o are the material properties of FGM thick-
walled hollow cylinder. 
 

Table 1. Material properties of the FGM thick-walled hollow cylinder. 
 E0 (GPa) 206   ρ0 (g/cm3) 7.85 

E(r)=E0 rβ 
(GPa) 

β r(m) ()i =1 ()o =2 

 ρ(r)= ρ0 rβ 
 (g/cm3) 

β r(m) ()i =1 ()o =2 
-5  206 6.437 -5  7.85 0.2453 
-2  206 51.5 -2  7.85 1.9625 
0  206 206 0  7.85 7.85 
2  206 824 2  7.85 31.4 
5  206 6592 5  7.85 251.2 

 
 

2.1. Basic Formulation of FGM Cylinders 

Strain-displacement and basic equations considering the assumption of plane strain are [7]  
 
 𝜀* =

+,
+*
,   𝜀. =

,
*
, (1) 

𝜎* = 𝐶11(𝑟)𝜀* + 𝐶13(𝑟)𝜀., 

𝜎. = 𝐶13(𝑟)𝜀* + 𝐶11(𝑟)𝜀., 

      
(2) 

 
where, with 𝜈& the Poisson’s ratio, 

 
        𝐶11(𝑟) = ( 56(1786)

(1986)(17386)
)𝑟'  

and 
        𝐶13(𝑟) = ( 5686

(1986)(17386)
)𝑟'.  

 
The only nontrivial equilibrium equation under assumptions can be inscribed in the following 
form [5], 
 

           :;<
:*
+ ;<7;=

*
= 𝜌&𝑟'

:>,
:?>

 (3) 
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Using Eqs. (1) - (3), basic equation of radial displacement becomes 
 

     
 *>:>,

:*>
+ 𝑟 :,

:*
𝑚1 + 𝑚3𝑢 =

*>

B>
:>,
:?>

  (4) 
 

where 𝑐3 =
( D6(EFG6)
(EHG6)(EF>G6)

)

I6
,𝑚1 = 𝛽 + 1,𝑚3 =

86'
(1786)

− 1 
 

with boundary conditions in radial directions  
 

    𝜎* *MN = −𝑃	and   𝜎* *MQN = 0         (5) 
 
 
Converting the dimensionless variables 
 

 
𝑣 = ,

N
, 𝑥 = *

N
, 𝜏 = B?

N
 (6)

  
reduces Eq. (4) in the form 
 

 
:>8
:V>

+ WE
V
+8
+V
+ W>

V>
𝑣 = :>8

:X>
  (7)

 
 

 
and boundary conditions are as follows 
 

 
𝜎* VM1 = −𝑃(𝜏)					𝜎* VMQ = 0 (8) 

   
with the primary conditions 
 

𝑣 = 0 and :8
:X
= 0	when 𝜏 = 0 for  1 ≤ 𝑥 ≤ 𝑘        (9) 

 
The general equation of displacement in Laplace space takes the following form: 
  

    𝑣(𝑥, 𝑝) = £ [v(x,τ)]= 𝑣(𝑥, 𝜏)𝑒7]X^
& 𝑑𝜏      (10)                

 
where p is the Laplace parameter. Eq. (7) is converted to Laplace space by applying initial 
conditions to obtain the following equation:  
 

 
+>8
+V>

+ WE
V
+8
+V
+ (W>

V>
− 𝑝3)𝑣 = 0

  
(11) 

 
The final form of boundary conditions in Laplace space will take the form 
 

 
𝜎* VM1 = −𝑃(𝑝)𝜎* VMQ = 0

  
(12)

  
Solution of Eq. (11) Bessel function expression 
 

 𝑣(𝑥, 𝑝) = 𝑥`(𝐶1𝐼b(𝑝𝑥) + 𝐶3𝐾b(𝑝𝑥))
  

(13) 
 
where In and Kn are Bessel functions of first and second kind, respectively, of order n with	 
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𝜙 = −'
3
, 𝑛 = 1 − 86'

1786
+ '>

f
,  

 
The final solution of the final solution using the iteration formulas (e.g. see reference [27])  
in Laplace space by obtaining C1 and C2 by applying the general equation obtained without 
dimension using boundary conditions is as follows;  
 

 𝑣(𝑥, 𝑝) = −g(])
hEE

𝑥` i(])
j(])

 (14) 
where  
 
𝐹 𝑝 = 𝐾b 𝑝𝑘 𝑆1 + 𝑝𝑘𝐾b71 𝑝𝑘 𝐼b 𝑝𝑥 − 𝐼b 𝑝𝑘 𝑆1 − 𝑝𝑘𝐼b71 𝑝𝑘 𝐾b 𝑝𝑥    (15) 

 
and 
 

𝐺(𝑝) = 𝐾b(𝑝𝑘)𝑆1 + 𝑝𝑘𝐾b71(𝑝𝑘) 𝐼b(𝑝)𝑆1 − 𝑝𝐼b71(𝑝) 	
 − 𝐾b(𝑝)𝑆1 + 𝑝𝐾b71(𝑝) 𝐼b(𝑝𝑘)𝑆1 − 𝑝𝑘𝐼b71(𝑝𝑘)  (16) 

 
where 𝑆1 = (𝑛 −𝑚 − 𝜙) and 𝑚 = hE>(*)

hEE(<)
 

 
For displacement distribution in the FGM cylinder subject to internal pressure, Eq. 14 in 
Laplace space must be converted to real time space. 
 
 
3. Numerical Inversion of Solution by the Modified Durbin’s Method (MDM) 

The numerical solution of forced vibration analysis for the FGM cylinder was obtained for a 
set value of the Laplace parameter. For the conversion of results to time space, the modified 
Durbin method is used. The inverse Laplace transformation method that provides the 
conversion of Durbin to time space is expressed as [18, 28]: 

 
The meaning 𝑓(𝑡) at time 𝑡p is assumed by 

 

 𝑓(𝑡p) ≅
35V][Nps?]

u

− 1
3
𝑅𝑒 𝐹

_
(𝑎)

+𝑅𝑒 (𝐹(𝑝Q)𝐿Q)𝐸𝑥𝑝[𝑖(
3{
|
)𝑗𝑘]|71

QM&
, (j=0,1,2,… N-1) (17) 

 
where 𝐹 𝑝Q  is the Laplace transform of 𝑓(𝑡). The kth Laplace parameter is demarcated as  
𝑝Q = 𝑎 + 𝑖𝑘 3{

u
.  The number N is𝑁 = u

s?
 where T is the solution recess and Δt is the time 

raise. The choice of constant ‘a’ is done by transmission a value to 𝑎𝑇. It is proposed that the 
value of 𝑎𝑇 be in the range 5 to 10. For the mathematical samples offered in this paper this 
value is taken as 6. Finally, the results are adapted by multiplying each term in the precis by 
Lanczos factor Lk as recommended in (e.g. see reference [29]). 
 

 𝐿Q =
��b(��� )

(��� )
, (L0=1) (18) 
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If the Laplace transform of the function 𝑓(𝑡) is not given in closed-form as in the case of 
point-by-point definition, the discrete values need first to be transformed into the Laplace 
domain as follows: 

 𝐹(𝑝Q) = ∆𝑡 𝑓(𝑡b)𝑒7N?�|71
bM& 𝑒7�

>���
�  (19) 

 
For various pressures only the term 𝑃(𝑝) is altered in the solution certain by Eq. (14).  
 
 
 
4. Implementation Disc and Spherical Structures 

The expressions given the preceding sections can readily be used for solutions of FGM 
annular disks in plane stress with the material constants in Eq. (2) redefined as 
 

 𝐶11(𝑟) =
56

1986>
𝑟',     𝐶13(𝑟) =

5686
1986>

𝑟' (20) 
 
As for FGM spheres structure; 𝑢 is  
 

 𝜀* =
:,
:*

 and 𝜀. = 𝜀� =
,
*
 (21) 

 
Expressions between stress-strain are 
 

𝜎* = 𝐶11𝜀* + 𝐶13𝜀. + 𝐶13𝜀� = 𝐶11(𝑟)𝜀* + 2𝐶13(𝑟)𝜀.	
      𝜎. = 𝜎� = 𝐶13𝜀* + 𝐶11𝜀. + 𝐶13𝜀� = 𝐶13(𝑟)𝜀* + (𝐶13(𝑟) + 𝐶11(𝑟))𝜀. (22) 

 
The radial displacement solution given for the FGM cylinder is still legal with the next 
constraints now redefined as 

 

 𝜙 = −(19'
3
), 𝑛 = 𝜙3 − 2( 86'

1786
− 1), 𝑚 = hE>(*)

hEE(*)
, 𝑆1 = (𝑛 − 2𝑚 − 𝜙) (23)                        

 
 
5. Results 

Figures (1,6) show comparison of the methods and evolution of circumferential stress 𝜎.and 
radial displacement v for 			𝜈 = 0.3, 𝑘 = 2.0  and 𝛽 = −5.0, −2.0,0.0,2.0,5.0    The 
boundary conditions for stresses are assumed as 𝜎* VM1 = −𝑃(𝑝), 𝜎* VMQ = 0. In accordance 
with the material and geometric properties used in the numerical method model, commercial 
(ANSYS) finite element code was compared and generated [29]. Due to the symmetry in the 
cylinder, four of the four geometries formed in the finite element model are considered. In the 
finite element model, an 8-axis axial symmetric rectangular element is used. For the modeling 
of the cylindrical structures FGM, each layer was applied with 20 layers having a fixed 
material property value.  
 
Results obtained by Keles [18] are used for validation purposes, analytical. The comparing 
will be illustrated in the Tables 2-3. It can be observed form Tables, the results are in good 
agreement with the same results from Keles [18] It is proven that upon a screening results 
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given in Tables 2-3, a substantial amount of accuracy and efficiency is achieved using the 
MDM method. 
 

Table 2. Comparison of MDM results with Keles [18] for the radial displacements with 
different dynamic loads applied to the inner surface of the cylinder. (β = 0.0, 0.1=ω ,γ=1.0, 

k=2.0) 
𝜏 𝑃1(𝜏) = 𝑃&(1 − 𝐶𝑜𝑠(𝜔𝜏)) 𝑃3(𝜏) = 𝑃& 𝑃�(𝜏) = 𝑃&(1 − 𝑒7�X) 

v C11 / P0 v C11 / P0 v C11 / P0 
 Keles [18] MDM Keles [18] MDM Keles [18] MDM 

0 0 0,000003 0 0,00001 0 0,000001 
5 6,54644 6,54643 4,88701 4,88700 4,17045 4,17043 

10 -2,11269 -2,11267 0,07458 0,07456 0,83551 0,83550 
15 5,33630 5,33629 4,78081 4,78079 4,26004 4,26002 
20 -0,66194 -0,66191 0,23675 0,23674 0,76713 0,76710 
25 7,32722 7,32720 4,62315 4,62313 4,30325 4,30323 
30 -0,91986 -0,91984 0,42225 0,42224 0,73963 0,73960 
35 5,09853 5,09851 4,49282 4,49280 4,3124 4,31239 
40 -1,80397 -1,80396 0,55301 0,55300 0,73936 0,73934 
45 6,66612 6,66610 4,44839 4,44837 4,30764 4,30762 
50 0,16580 0,16579 0,58978 0,58976 0,74312 0,74310 

 
 

Table 3. Comparison of MDM results with Keles [18] for the hoop stresses with different 
dynamic loads applied to the inner surface of the cylinder. (β = 0.0, 0.1=ω ,γ=1.0, k=2.0) 

𝜏 𝑃1(𝜏) = 𝑃&(1 − 𝐶𝑜𝑠(𝜔𝜏)) 𝑃3(𝜏) = 𝑃& 𝑃�(𝜏) = 𝑃&(1 − 𝑒7�X) 
σθ / P0 σθ / P0 σθ / P0 

 Keles [18] MDM Keles [18] MDM Keles [18] MDM 
0 0 0,000003 -0,41145 -0,41142 0,00002 0,00001 
5 5,09078 5,09076 3,60494 3,60491 3,01761 3,01760 

10 -2,51242 -2,51241 -0,35857 -0,35855 0,26815 0,26812 
15 3,655910 3,655909 3,51747 3,51743 3,08857 3,08855 
20 -0,79378 -0,79373 -0,22501 -0,22500 0,21180 0,21179 
25 6,03100 6,03099 3,38763 3,38761 3,12415 3,12413 
30 -1,11281 -1,11280 -0,07223 -0,07220 0,18916 0,18914 
35 3,39960 3,39959 3,28029 3,28028 3,13169 3,13166 
40 -2,18586 -2,18582 0,03545 0,03543 0,18894 0,18893 
45 5,29085 5,29083 3,24369 3,24367 3,12777 3,12776 
50 0,12184 0,12182 0,06574 0,06572 0,19204 0,19202 
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Fig. 1. Dynamic loads: (a) rectangular impulsive load, (b) triangular impulsive load, (c) half 

sinus impulsive load (d) impulsive load given discretely 
 

In this study, results are offered for many impulsive deployed loads. Four cases of impulsive 
loadings (rectangular impulsive load, triangular impulsive load, half sinus impulsive load, 
impulsive load given discretely step) are considered (see Fig. 1). Figs. 2 and 3 show the 
effect of rectangular impulsive load on the radial displacements and circumferential stress of 
the suggested method and FEM. In Figs. 2 and 3, displacement decreases with increasing 
inhomogeneity parameter. Second, the triangular impulsive load is considered. Figs. 4 and 5 
include displacements in the problem solved by the numerical method used and ANSYS 
software. As 𝛽 increases, a decrease occurs in the value of circumferential stress in Figs. 4-5. 
When the numerical results of radial displacements and tangential stresses are compared with 
the results obtained with MDM and FEM, it is seen that the results are almost identical. Third, 
the half sinus impulsive load is considered. A collation of damping of radial displacement and 
stress are obtainable in Figs. 6-7. If the inhomogeneity constant is positive, it expresses the 
increase of hardness by providing stress protective effect in the radial direction. Finally, the 
impulsive load given discretely is considered. The radial displacements and circumferential 
stress of FG cylinder for inhomogeneity constant (𝛽 = −5.0, −2.0,0.0,2.0,5.0) are presented 
in Figs. 8-9. It is clearly obvious that the radial displacements and circumferential stress for 
all approaches are identical (Figs. 8–9). It is seen that the results of Durbin's method solutions 
are overlapping with the model created using a commercial finite element code, FEM [30]. 
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6. Conclusion  

Numerical model of FGM cylinders for stresses and displacement are obtained and solved by 
Durbin's method. The efficacy and adequacy of the present method is first compared to 
analytical results presented for constant Elastic Modulus and Poisson Ratio. The solution 
procedure can be applied to any continuous grading function option. The solution technique 
and procedure are simple, efficient and well structured, in addition to providing low cost 
accuracy. We have seen that FGM thick-walled cylindrical engineering structures with 
exponential variable properties have a significant effect on mechanical behavior. In particular, 
the positive inhomogeneity constant has a major effect on the stress distribution. Although the 
inhomogeneity parameter is a useful parameter in design, it can be applied for special 
applications in order to control stress distributions and displacement 
 
 
References 
 
[1] Tranter, C., LXV. The application of the Laplace transformation to a problem on elastic 
vibrations. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of 
Science, 33, 614-622, 1942 
[2] Mirsky, I., Axisymmetric vibrations of orthotropic cylinders. The Journal of the Acoustical 
Society of America, 36, 2106-2112, 1964 
[3] Klosner, J.M. and C.L. Dym, Axisymmetric, Plane- Strain Dynamic Response of a Thick 
Orthotropic Shell. The Journal of the Acoustical Society of America, 39, 1-7, 1966 
[4] Ahmed, N., Axisymmetric Plane- Strain Vibrations of a Thick- Layered Orthotropic 
Cylindrical Shell. The Journal of the Acoustical Society of America, 40, 1509-1516, 1966 
[5] Ghosh, A., Axisymmetric vibration of a long cylinder. Journal of sound and vibration, 186, 
711-721, 1995 
[6] Güven, U.u., On stress distributions in functionally graded isotropic spheres subjected to 
internal pressure. Mechanics Research Communications, 3, 277-281, 2001 
[7] Tutuncu, N. and M. Ozturk, Exact solutions for stresses in functionally graded pressure 
vessels. Composites Part B: Engineering, 32, 683-686, 2001 



I. Keles, K. Aydın 

 68 

[8] Horgan, C. and A. Chan, The pressurized hollow cylinder or disk problem for functionally 
graded isotropic linearly elastic materials. Journal of Elasticity, 55, 43-59, 1999 
[9] Obata, Y. and N. Noda, Steady thermal stresses in a hollow circular cylinder and a hollow 
sphere of a functionally gradient material. Journal of Thermal stresses, 17, 471-487, 1994 
[10] Tutuncu, N. and B. Temel, A novel approach to stress analysis of pressurized FGM 
cylinders, disks and spheres. Composite Structures, 91, 385-390, 2009 
[11] Loy, C., K. Lam, and J. Reddy, Vibration of functionally graded cylindrical shells. 
International Journal of Mechanical Sciences, 41, 309-324, 1999 
[12] Pradhan, S., C. Loy, K. Lam, and J. Reddy, Vibration characteristics of functionally 
graded cylindrical shells under various boundary conditions. Applied Acoustics, 61, 111-129, 
2000 

[13] Bayat, M., M. Saleem, B. Sahari, A. Hamouda, and E. Mahdi, Analysis of functionally 
graded rotating disks with variable thickness. Mechanics Research Communications, 35, 283-
309, 2008 
[14] Xiang, H., Z. Shi, and T. Zhang, Elastic analyses of heterogeneous hollow cylinders. 
Mechanics Research Communications, 33, 681-691, 2006 
[15] Han, X., G. Liu, Z. Xi, and K. Lam, Transient waves in a functionally graded cylinder. 
International Journal of Solids and Structures, 38, 3021-3037, 2001 
[16] Shakeri, M., M. Akhlaghi, and S. Hoseini, Vibration and radial wave propagation 
velocity in functionally graded thick hollow cylinder. Composite structures, 76, 174-181, 
2006 

[17] Ng, T., K. Lam, K. Liew, and J. Reddy, Dynamic stability analysis of functionally graded 
cylindrical shells under periodic axial loading. International Journal of Solids and Structures, 
38, 1295-1309, 2001 
[18] Keles, I., Elastic response of FGM and anisotropic thick-walled pressure vessels under 
dynamic internal pressure. 2007, PhD thesis, Cukurova University. 
[19] Çalım, F.F., Dynamic analysis of beams on viscoelastic foundation. European Journal of 
Mechanics-A/Solids, 28, 469-476, 2009 
[20] Celebi, K., I. Keles, and N. Tutuncu, Closed-Form Solutions For Forced Vibration 
Analysis of Inhomogenous Rod. 2012 
[21] Celebi, K., I. Keles, and N. Tutuncu, Exact Solutions for Forced Vibration of Non-
Uniform Rods by Laplace Transformation. Gazi University Journal of Science, 24, 347-353, 
2011 

[22] Temel, B. and M.F. Şahan, Transient analysis of orthotropic, viscoelastic thick plates in 
the Laplace domain. European Journal of Mechanics-A/Solids, 37, 96-105, 2013 

[23] Liang, X., Y. Deng, Z. Cao, X. Jiang, T. Wang, Y. Ruan, and X. Zha, Three-dimensional 
dynamics of functionally graded piezoelectric cylindrical panels by a semi-analytical 
approach. Composite Structures, 226, 111176, 2019 
[24] Şahan, M.F., Viscoelastic damped response of cross-ply laminated shallow spherical 
shells subjected to various impulsive loads. Mechanics of Time-Dependent Materials, 21, 499-
518, 2017 

[25] Wu, J.-S. and L.-K. Chiang, Out-of-plane responses of a circular curved Timoshenko 
beam due to a moving load. International Journal of Solids and Structures, 40, 7425-7448, 



I. Keles, K. Aydın 

 69 

2003 

[26] Daneshjou, K., M. Bakhtiari, and A. Tarkashvand, Wave propagation and transient 
response of a fluid-filled FGM cylinder with rigid core using the inverse Laplace transform. 
European Journal of Mechanics-A/Solids, 61, 420-432, 2017 
[27] Watson, G.N., A treatise on the theory of Bessel functions. 1995: Cambridge university 
press. 
[28] Durbin, F., Numerical inversion of Laplace transforms: an efficient improvement to 
Dubner and Abate's method. The Computer Journal, 17, 371-376, 1974 
[29] Narayanan, G.V., Numerical Operational Methods in Structural Dynamics. 1981, PhD 
thesis, University of Minnesota. 
[30] ANSYS Swanson Analysis System, Inc., 201 Johnson Road, Houston, PA 15342-1300, 
USA.,  
 



© 2020 S. Islam, A. Hasib  published by  International Journal of Engineering & Applied Sciences. This work is licensed under a 
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 

70 

 
Effect of Slenderness Ratio on Fatigue Life of CFRP Strengthened Steel I-Beam  

 
 
 

 Md. Shariful Islam a, Md. Abdul Hasibb*  

a,bDepartment of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna, 
Bangladesh. 

*E-mail address:  sharifulmekuet@gmail.com a, ahasib@me.kuet.ac.bd b* 
 

ORCID numbers of authors: 
b4078-2915-0002-0000, a871X-2851-0003-0000 

Received date: 21.07.2020 
Accepted date: 30.09.2020 

 

 

Abstract 

Carbon fiber reinforced polymers (CFRP) to repair and strengthen the steel I-beam has been increasingly used 
since last decade. CFRP composites bonded to steel members offer many advantages over steel plate bonding 
including excellent corrosion resistance, high stiffness and high strength to weight ratios etc. This study 
numerically investigates the fatigue performance of CFRP strengthened steel I-beam. One non-strengthened 
control beam and several strengthened beams using steel plates and CFRP strips were investigated primarily. 
The effect of slenderness ratios of web on fatigue behavior of CFRP strengthened steel I-beam is investigated. 
The beams were simulated in full three-dimension and fatigue life was investigated by using general-purpose 
finite element program, ANSYS. Simply supported beam subjected to two loads on compression flange is 
analyzed to show the effect of CFRP and slenderness ratios on fatigue behavior of steel I beam. The results 
show, that the life cycle of a CFRP strengthened beam before failure is higher than that of bare beam. It is also 
observed that beams with higher slenderness ratios (fixed thickness of the web) give better fatigue performance. 

Keywords: CFRP, I-beam, Fatigue, Slenderness ratio. 

1. Introduction 

Strengthening of steel structural member with carbon fiber reinforced polymer (CFRP) has 
gained much research attraction last couple of years. The structures used in bridges of railway 
and highway, marine industry may experience deterioration over time due to lots of reasons 
like environmental effects, corrosion, fatigue, high intensity loading, and gradual loss of 
strength with time, etc. The deterioration due to fatigue of structural member has become a 
major challenge faced by different infrastructure, bridge and other industries. FRP externally 
bonded to structures possesses many advantages such as high strength to weight ratio, high 
corrosion resistance or resistance to oxidation, high durability, ease of installation etc. Among 
different FRP, carbon fiber and glass fiber have shown more stability in strengthening 
structural members. 
Numerous experiments have been carried out on the behavior of steel or concrete beams 
reinforced with CFRP plates. Conventionally steel plates are added to the bottom flange of I-
beam. In similar fashion CFRP laminates are also added to the tension flange for flexural 
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strengthening. Edberg et al. carried out experimental investigations on some different 
configurations of strengthened beam, with CFRP and GFRP. The results obtained in both 
cases were observed, and it found that CFRP laminated beams show more strength than GFRP 
laminated beams. In other words, CFRP strengthening is more effective than GFRP 
strengthening [1]. Tavakkolizadeh et al. also investigated the fatigue performance of CFRP 
strengthened steel girders [2]. They showed that CFRP strengthened beam has much higher 
life than with strengthening, in fact, they found three times life in CFRP strengthened beam. 
Also, crack growth rates are decreased significantly. Dawood et al investigated the primary 
behavior of scaled bridge beams of steel-concrete combination strengthened with HM CFRP 
materials [3]. They compared their results with analytical models based on the fundamental 
principles of equilibrium and compatibility. Fernando et al conducted several studies on the 
fatigue strengthening of steel beams using fiber reinforced polymer and they showed the 
overall performance of beam strengthened with CFRP [4]. They also investigated the fatigue 
behavior of cracked steel beams with externally bonded CFRP laminates. Kim et al 
investigated fatigue behavior of intentionally created notched beam strengthened with CFRP 
in Finite element method and predicted the fatigue life based on strain life theory [5]. Finally, 
they propose an empirical model to predict fatigue behavior of the interface. Xie et al 
investigated the fatigue behavior of CFRP strengthened beam equipped with three-point 
bending [6]. An empirical formula was developed to predict the fatigue life of CFRP 
strengthened beam based on experimental observation. Colombi et al performed fatigues tests 
on cracked steel plates strengthened on one side and evaluated fatigue crack propagation 
curves by integrating paris law and finally compared this with experimental data [7]. Wang et 
al investigated experimentally the fatigue behavior of bonded surface between steel plates and 
carbon fiber reinforced polymer laminate [8]. It is observed that fatigue life is very much 
responsive to adhesive thickness and fatigue life increases with increase in adhesive thickness. 
El-Emam et al used ultra-high modulus (UHM) CFRP laminates to enhance the fatigue life of 
pre-cracked steel beams [9]. They found positive results in UHM carbon fiber reinforced 
polymer and the life is much increased with UHM CFRP. Effects of significant parameters 
like the slenderness ratio of web of I-beam on fatigue performance are yet to be analyzed. 
In this paper fatigue performance of CFRP strengthened steel I-beams is observed. The effect 
of the slenderness ratio of web of CFRP strengthened I-beam is investigated.  

2. Materials and Methods 

2.1. Materials 

In this analysis, steel I-beam of grade ASTM(A36) is strengthened by CFRP strip and steel 
plate as well to investigate the fatigue performance of CFRP. Table 1 shows material 
properties of the I-beams. Fig. 1 indicates the dimensions of the steel I-section. The steel 
plates used for flexural reinforcement and stiffener are of the same grade as the steel I-beams. 
Steel plate A is installed on the bottom flange by using adhesive (Sikadur-30). The 
dimensions of the steel plates, CFRP and adhesive are shown in table 2. CFRP materials have 
high tensile strength which can improve the structural behavior of structures. Normally, CFRP  
  

Table 1: Mechanical properties of structural steel [10]. 

Young’s Modulus 
(MPa) Poisson’s Ratio 

Strength 
Yield Strength 

(MPa) 
Tangent Modulus 

(MPa) 
210000 0.3 250 1450 
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Fig.1. Dimensions of steel I-Section. 

 
Table 2: Dimensions of steel plate, CFRP and adhesive. 

 Width (mm) Length (mm) Thickness (mm) 
Plate A 100 1500 6,8 

CFRP 100 1500 1.2 

Adhesive 100 1500 1 

 
Table 3: Properties of CFRP [11,12]. 

Parameter Value 

Young’s modulus in X direction (MPa) 310000 

Young’s modulus in Y direction (MPa) 11200 

Young’s modulus in Z direction (MPa) 11200 

Poisson’s Ratio XY 0.0058 

Poisson’s Ratio YZ 0.3 

Poisson’s Ratio XZ 0.0058 

Shear Modulus XY (MPa) 26500 

Shear Modulus YZ (MPa) 3700 

Shear Modulus XZ (MPa) 26500 

Tensile strength (MPa) 3100 

 
is produced in the form of a strip (plate) or a sheet (wrap). In this study, CFRP strip is 
installed on the tensile region to improve the fatigue performance of structures. Table 3 shows 
material properties of the CFRP, which is orthotropic in behavior 

2.2. Finite Element Model 

This analysis is performed by the general-purpose finite element program, Ansys v18.1. All 
the parts, including I section, CFRP, steel plate and adhesive, in the Finite element analysis, 
were modelled using higher order 3D 20 nodes solid elements, SOLID186. The beam is 
supported with simply supported condition as shown in fig 3. There are two supports at two 
ends, one is pin support another is roller support. In pin support displacements in the x, y and 
z direction is restricted but moments in these directions are not restricted i.e. free to rotate. On 
the other hand, in roller support displacement in y direction is restricted but there are five  
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Fig. 2. Solid 186 element type in Ansys [13]. 

degrees of freedom this support. Two loads of equal magnitude are applied at the top of the 
compression flange along lines. The beam's free span is 1.8 m and the length of the CFRP 
sheets adhered to the tension flange is 1.5 m. The free length between the end of the CFRP 
and the supports is not strengthened. For fatigue life estimation S-N curve is used and S-N 
curve for steel and CFRP are shown in fig. 4. 

 

 
Fig. 3. Specifications of the strengthened steel I-beam. 
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Fig. 4. S-N curve for (a) CFRP [13] and (b) Steel [14] 

2.3. Model Validation 

The model is investigated by using a general-purpose finite element program, ANSYS. To 
validate the present model, the specimen was equipped and material properties were taken as 
of reference specimen from literature. The load-deflection curve at midspan of the without 
strengthening beam is compared with the experimental result as shows in fig. 5(a). It is 
observed that the present study maintains a very good agreement with the reference beam 
from literature. 
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(a)                 (b) 

Fig. 5. (a) Load-deflection curves for previous study and present study, (b) Deflection along the length 
of CFRP for different element counts. 

2.4. Mesh Independence Test  

To obtain independent mesh for the further analysis a result is compared to different meshing 
combination. In this case deflections along the length of the beam for a specific loading 
condition for different elements are shown in fig. 5(b). It is found that for different elements 
and nodes the change in deflection is very little or negligible. That indicates independence of 
the model. Finally, a model with elements of 32160 was selected for further analysis.  

3. Results and Discussions  

3.1. Effect of CFRP on Fatigue Life   

In order to show the effect of CFRP on life expectancy the fatigue life for bare beam, steel 
plate strengthened beams and CFRP strengthened beam are compared as shown in fig. 6. It is 
obvious from figure that the minimum life, at which any part of the beam will fail before 
design life is reached for CFRP strengthened beam is much higher than that of the bare beam 
and steel plate strengthened beams.  

 
Fig. 6. Estimated life for the load of 100 kN for bare beam and strengthened beams. 
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Fig. 7. (a) Estimated life, and (b) Equivalent alternating stress for the load of 100 kN for different 
Slenderness ratios 

3.2. Fatigue life and Equivalent Alternating Stress 

Fig. 7(a) depicts the fatigue life for different slenderness ratio ranging from 25 to 108. With 
the increase in slenderness ratios with a fixed height of the web, life cycle of the beam before 
failure decreases. But, when slenderness ratio is increased with a fixed width of the web, then 
life cycle of the beam increases. Fig. 7(b) shows the equivalent alternating stresses for 
different slenderness ratios. It is observed that with the increase in the slenderness ratio from 
25 to 108 with varying width of the web, the equivalent alternating stress increases, but when 
slenderness ratio is increased with varying height of the beam, equivalent alternating stress 
decreases.  

3.3. Fatigue Sensitivity  

Fatigue sensitivity analysis shows, how fatigue life will respond with change of load at a 
certain range. In this analysis, fatigue sensitivity analysis is done in the range of 50% of load 
to 150% of load. Fatigue sensitivity analysis is performed for different slenderness ratios. 
With the increase in the slenderness ratio keeping the height of the web fixed, the life cycle is  
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Fig. 8. Comparison of fatigue sensitivity for 100 kN load among slenderness ratios.  
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decreased for all loading condition. At the same time, while the slenderness ratio is increased 
keeping fixed the width of the web, life cycle is increased. Fig. 8 depicts available life cycle 
for different slenderness ratios, where 1 indicates the original loading(100kN) and 1.5 
indicates 150kN and so on. 

4. Conclusions  

 In this study fatigue performance of steel I-beam strengthened with carbon fiber reinforced 
polymer (CFRP) is analyzed numerically. CFRP laminates and steel plates are added to the 
bottom of the steel I beam to strengthen the member. One bare beam along with strengthened 
beams using CFRP laminates and steel plates are investigated. Specific outcomes of this 
investigation are- 

o Life cycle that a beam can sustain under fatigue loading, before failure for CFRP  
   strengthened is higher than that of bare beam. 
o Beams with higher slenderness ratios (fixed thickness of the web) give better fatigue  
   performance. 
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Abstract 

In the present study, a nonlocal finite element formulation of free longitudinal vibration is derived for 
functionally graded nano-sized rods. Size dependency is considered via Eringen’s nonlocal elasticity theory. 
Material properties, Young’s modulus and mass density, of the nano-sized rod change in the thickness direction 
according to the power-law. For the examined FG nanorod finite element, the axial displacement is specified 
with a linear function. The stiffness and mass matrices of functionally graded nano-sized rod are found by means 
of interpolation functions. Functionally graded nanorod is considered with clamped-free boundary condition 
and its longitudinal vibration analysis is performed. 

Keywords: Nonlocal elasticity theory, Functionally graded materials, Nanorod, Finite element method, 
Vibration 

1. Introduction 

One of the popular structures of recent times is functionally graded (FG) composite materials. 
The difference of these materials which are usually a combination of metal and ceramic from 
traditional laminated composites is that the smooth changing of material properties. In 
functionally graded materials, the material properties like Young’s modulus, density, shear 
modulus etc. change according to a certain rule continuously along at least one direction. 
Thanks to this smooth property changing, functionally graded materials have been precious 
for many applications such as biomedical, chemistry, electronics, optics, aircraft, space 
vehicles and biology etc. [1,2]. In addition, functionally graded structures have attracted 
considerable attention in models of nano/micro mechanics. The studies on functionally graded 
nano/micro structures such as FG nanoplate [3-7], FG nanobeam [8-14], FG nanorod [14-18] 
have been presented by researchers in recent years. 
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In addition to the analytical solution [19,20], many other methods like discrete singular 
convolution method [21,22], polynomial differential quadrature method [23], finite difference 
method, finite element method [24] etc. have been used by researchers to solve a problem. In 
this study, a finite element formulation for free longitudinal vibration behavior of functionally 
graded nanorod is presented. Small-scale effect of the functionally graded nanorod is 
discussed based on the nonlocal elasticity theory. The nonlocal elasticity theory has an 
additional small-scale parameter (nonlocal parameter) and thanks to this nonlocal parameter 
the small-scale effects occurring in nano/micro-sized structures can be evaluated. The 
nonlocal elasticity theory has become a frequently performed theory in nanomechanics and 
micromechanics, as it allows the consideration of small-scale effects. In addition, articles 
using finite element method to examine the behavior of size-dependent 
microstructures/nanostructures such as vibration [25-30], buckling [29-32] and bending [29-
30, 33-35] are also found in the literature. 

 
a) Type - I 

 
b) Type - II 

 
Fig. 1. Functionally graded nanorods with various boundary conditions 
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2. Functionally Graded Rod 

FG nanorods with various boundary conditions like free-free, clamped-clamped and clamped-
free are illustrated in Figure 1. L, b and h represent the length, width and thickness of the FG 
rod, respectively. Type I (Fig. 1a) and Type II (Fig. 1b) represent the FG nanorods whose 
material properties vary continuously in the axial direction and thickness direction, 
respectively. The material properties such as Young’s modulus, density etc. change of the rod 
according to a power-law. If the changing of material properties of the rod is assumed in the 
thickness direction, the effective material properties of rod can be defined as [11, 13] 

 
 1( ) ( )

2

k

c m m
zP z P P P
h
⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

 (1) 

 
 

Where, P represents the effective material property, while k represents the non-negative 
materials,  ceramic and metalindicate the  mand  cThe subscripts  law exponent.-power

directions,  z, y, xin the  rodare the displacements of the FG  3uand  2u, 1u respectively.
respectively, and may be written as follow 
 

 1 2 3( , , ) ( , ), ( , , ) 0, ( , , ) 0u x z t u x t u x z t u x z t= = = 
 

(2) 

u, and t denote the axial displacement of any point on the neutral axis and time, respectively. 
Stress (σ ) and normal force (N) expressions for the FG rod are written as follows 

 
 ( )xx xxE zσ ε= (3) 
 ( )xx

A

N z dAσ= ∫ (4) 

 
Here, ε  and A are strain and cross-section area, respectively. The equations of motions of FG 
nano-sized rod can be obtained by means of the Hamilton’s principle [36] 
 

 
( )

2

1

0
t

t

K U W dtδ δ δ− + =∫ (5) 

 
Where U, K and W are the strain energy, kinetic energy and work done by external forces, 
respectively. The external loads can be encountered as elastic foundation, axial compressive 
force, thermal loading etc. However, there are no external forces in this vibration problem of 
FG nanorod and so W is set to zero.  The first variations of the strain energy and kinetic 
energy are given as follows 
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2 2

1 1 0

t t L

t t

uUdt N dxdt
x

δ δ
∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠∫ ∫ ∫     (6) 

2 2

1 1

0
0

t t L

t t

u uKdt I dxdt
t t

δ δ
∂ ∂⎛ ⎞= ⎜ ⎟∂ ∂⎝ ⎠∫ ∫ ∫     (7) 

 
Here, I0 is expressed as 
 

 
0 ( ) ,

A

I z dAρ= ∫     (8) 
 
By substituting equations (6) - (7) into equation (5) and after some mathematical 
arrangements, we obtain the equation of motion of the rod as follows 
 

 2

0 2: N uu I
x t

δ
∂ ∂

=
∂ ∂

 (9) 

3. Size-Dependent Finite Element Formulation 
 

The nonlocal constitutive formulation is [37] 
 

 ( )2 2
01 ij ijkl kle a Cσ ε⎡ ⎤− ∇ =⎣ ⎦ (10) 

Where σij is the stress tensor, Cijkl is the fourth-order Young’s modulus tensor, εkl is the strain 
tensor, e0a is the nonlocal parameter. The Equation (10) can be rewritten as 

 
( )

2
2

0 2 ( )xx
xx xxe a E z

x
σ

σ ε
∂

− =
∂

 (11) 

 
Integrating Eq. (11) over the cross-section area, we obtain the axial force-strain relation as Eq. 
(12) 
 

 2
2

0 12( ) N uN e a A
x x

∂ ∂
− =

∂ ∂
 (12) 

 
Here, A1 is expressed as 
 

 
1 ( ) ,

A

A E z dA= ∫     (13) 

 
Differentiating Equation (9) with respect to x, then substituting into Equation (12) we obtain 
Equation (14).  
 

3
2

1 0 0 2( )u uN A e a I
x x t
∂ ∂

= +
∂ ∂ ∂

 (14) 
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By substituting Equation (14) into Equation (9), the equation of the motion of FG nanorod is 
obtained as 
 

2 4 2
2

1 0 0 02 2 2 2( ) 0u u uA e a I I
x x t t
∂ ∂ ∂

+ − =
∂ ∂ ∂ ∂

 (15) 

 
 
In this study, a rod finite element is considered has two nodes. ϕ is the interpolation (or shape) 
functions matrix of a rod finite element and expressed as below 
 

 [ ] 1 x x
L L

φ ⎡ ⎤= −⎢ ⎥⎣ ⎦
 (16) 

The stiffness matrix, classical mass and nonlocal mass matrices are obtained using Eqs. (15) - 
(16) as follows 

 
 

[ ] [ ]1
0

TL

K A dxφ φ⎛ ⎞ʹ ʹ= ⎜ ⎟
⎝ ⎠∫ (17) 

 
[ ]( ) [ ]0

0

L
T

clM I dxφ φ= ∫ (18) 

 
[ ] [ ]2

0 0
0

( )
L T

nlM e a I dxφ φ⎛ ⎞ʹ ʹ= ⎜ ⎟
⎝ ⎠∫ (19) 

 
 
In the above Equations, superscript T represents the transpose operator. The subscripts cl and 
nl are used to indicate the classical and nonlocal theories, respectively. The frequencies of FG 
nano-sized rod are found as follows 
 

 ( )2 0n nl clK M Mω− + = (20) 
 
Here ωn and the subscript n indicate the circular frequency and mode number.  
 

4. Numerical Results 

In this section, comparison studies and numerical examples are performed. Comparison 
studies are presented by Xu et al. [38] and Numanoğlu et al. [39]. Table 1 is presented to 
compare the validity of the method and to show the compatibility with each other. 
Comparisons of non-dimensional frequencies for the first four modes of clamped-free 
homogeneous nanorods are shown in Table 1. Also, this Table demonstrates the effect of the 
number of finite element (N) on convergence.  As can be seen, the number of finite elements 
is an important issue for the convergence of frequency values. The appropriate number of 
elements should be chosen to ensure desired convergence. As can be seen, low number of 
finite elements provides the desired convergence for low modes. However, it may be 
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necessary to increase the number of finite elements as the mode number increase. 
Dimensionless parameters used in the comparison studies are defined as follows 

 
 

0/ , /n nL E e a Lω ω ρ µ= = (21) 

 
Table 1. Comparison of dimensionless frequencies of homogeneous nanorod 

   
µ  

    

nω  Xu et al. [38] 
Numanoğlu et 
al. 
        [39] 

Present 
study 
   (N=200) 

Present study 
    (N=100) 

Present 
study 
    (N=50) 

 Present study 
      (N=20) 

   
0.0 

    
n=1 1.57080 1.57080   1.5708   1.5708 1.5709 1.5712 

 
n=2 4.71239 4.71239 4.7125 4.7128 4.7141 4.7233 
n=3 7.85398 7.85398 7.8545 7.8560 7.8621 7.9045 
n=4 10.99557 10.99557 10.9970 11.0011 11.0177 11.1345 

   
0.1 n=1 1.55177 1.55177  1.5518   1.5518 1.5518 1.5522 

 
n=2 4.26279 4.26279 4.2629 4.2631 4.2641 4.2709 
n=3 6.17668 6.17668 6.1769 6.1777 6.1806 6.2012 
n=4 7.39805 7.39805 7.3985 7.3997 7.4048 7.4399 

   
0.2 n=1 1.49858 1.49858   1.4986   1.4986 1.4986 1.4989 

 
n=2 3.42933 3.42933 3.4294 3.4295 3.4300 3.4335 
n=3 4.21782 4.21782 4.2179 4.2181 4.2191 4.2256 
n=4 4.55152 4.55152 4.5516 4.5519 4.5531 4.5612 

 

In this section, effects of power-law exponent and the nonlocal parameter on the free vibration 
response of functionally graded nanorod are investigated. In the numerical calculations, the 
number of finite elements for FG nanorod is chosen as 200. Functionally graded nanorod is 
considered composed of aluminum and alumina and with clamped-free boundary condition. 
The top and bottom surfaces of the nanorod are composed of pure alumina (ceramic) and 
aluminum (metal), respectively. Mechanical properties of functionally graded nanorod 
constituents are given as [40]: Em=70 GPa, ρm=2700 kg/m3 for aluminum and Ec=393 Gpa, 
ρc=3960 kg/m3 for alumina. The following dimensionless frequency parameter is used  

 
 /n n c cL Eλ ω ρ= (22) 
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(a) 

 
(b) 

   

 
(c) 

 
(d) 

 
Fig. 2. Variation of dimensionless frequencies of FG nanorod 

Figure 2 displays the variation of dimensionless frequencies of functionally graded nanorod 
with respect to mode numbers for various power-law exponent (k) and nonlocal parameter 
(e0a) values. The Figure 2 is plotted from the analyses of FG nanorod with various nonlocal 
parameters ranging from 0 to 1.5 and various power-law exponents ranging from 0 to ∞. It is 
concluded from the Figure that the increasing values of power-law exponent and nonlocal 
parameter lead to a decrease in the dimensionless frequencies of FG nanorods. It should be 
noted that when the power-law exponent set to zero (k=0), the results give the frequencies of 
alumina (pure ceramic). If the power-law exponent sets to infinity (k=∞), the frequencies of 
aluminum (pure metal) are obtained. Also, if the nonlocal parameter e0a set to zero, the 
frequencies of the classical theory are obtained. 
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5. Conclusions 

In the present study, the nonlocal finite element formulation of functionally graded nanorod is 
proposed in conjunction with Eringen’s nonlocal elasticity theory. The stiffness and mass 
matrices essential to the vibration response of functionally graded nanorod are found using 
interpolation functions. Finally, an eigenvalue problem is defined with the obtained matrices 
and nω , and the eigenvalues nω  are found by setting the determinant of the coefficient matrix 
to zero. A numerical example for clamped-free boundary condition is given to investigate the 
influences of some parameters on frequencies of FG nanorod. The main results obtained in 
this study can be summarized as follows: When the nonlocal effect is ignored, that is when the 
e0a value is taken as zero, the frequencies of the FG nanorod have the highest values. It is 
understood from that the nonlocal effect causes a reduction in the frequency of the FG 
nanorod. In addition, it is seen that with the increase of the power-law exponent value, that is 
with the transition of material properties from ceramic to metal, there is a decrease in 
frequencies. 
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