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Abstract 
In this paper, we have investigated the periodicity of the well-defined 

solutions of the system of difference equations  

                                                1 1

1 1 1

1 1

,  ,  
1 1

n n n n n

n n n

n n n n n

u v v u u
u v w

v u u v v 
 

  

 

 
  

 
 

where  0 1 0 1 0 1, , , , , \ 0u u v v w w     and 0.   

Keywords: Difference equation; system; solutions; periodicity. 

 

1. Introduction 

In recent years, there has been a lot of interest in studying difference equations an their systems 

[1-24]. One of the reasons for this is a necessity for some techniques which can be used in investigating 

difference equations and their systems arising in mathematical models describing real life situations in 

population biology, economics, probability theory, genetics etc. There are many papers with related to 

the systems of difference equations for example, 

In [3] Cinar studied the solutions of the systems of the difference equations 

1 1

-1 -1

1
,  .n

n n

n n n

y
x y

y x y
    

In [2] Camouzis and Papaschinnopoulos studied the global asymptotic behavior of positive 

solutions of the system of rational difference equations  

1 11 ,  1 .n n

n n

n m n m

x y
x y

y x
 

 

     

In [11] Kulenović and Nurkanović studied the global asymptotic behavior of solutions of the system 

of difference equations  

1 1 1,  ,  .n n n

n n n

n n n

a x c y e z
x y z

b y d z f x
  

  
  

  
 

In [22] Yalcinkaya and Cinar studied the global asmptotic stability of the system of difference 

equations  

1 1

1 1
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t z a z t a
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In [12] Kurbanli et al. studied the periodicity of solutions of the system of rational difference 

equations 

1 1

1 1
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y x x y
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 
 

In [13] Kurbanli et al. studied the behavaior of positive solutions of the system of rational difference 

equations  
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x y
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In this paper, we investigated the periodicity of the well-defined solutions of the difference equation 

system 

                                        1 1

1 1 1

1 1

,  ,  
1 1

n n n n n

n n n

n n n n n

u v v u u
u v w

v u u v v 
 

  

 

 
  

 
                                   (1)  

where  0 1 0 1 0 1, , , , , \ 0u u v v w w     and 0.   Note that system (1) can be written as 

                                                  1 1

1 1 1

1 1

,  ,  
1 1

n n n n n

n n n

n n n n n

x y y x x
x y z

y x x y y

 

  

 

 
  

 
                                    (2) 

by the change of variables ,  ,  .n n

n n n n

x y
u v w z

 
    That’s why, we will consider system (2) instead 

of system (1) for the remaining part of the paper. 

 

2. Main Result 

Our main result in this paper is the following: 

Theorem 1. Let 0 1 0 1 0 1,  ,  ,  ,  ,  y a y b x c x d z e z f         be nonzero arbitrary real numbers and 

 , ,n n nx y z be a solution of system (2). Also, assume that 1ad  , 1bc  , ( ) 0b c   and ( ) 0d a  . Then, 

all solutions of system (2) are as following: 

0
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, 6 4
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n
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Proof.  We prove the theorem by induction for k. If k = 0, from system (2) we have 
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Now, suppose that 0k   and that our assumption holds for 1k n  . That is; 
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From system (2), we have the following for k n : 
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Therefore, the proof is completed by induction. 

The followig Corollary is a natural result of Theorem 1: 

Corollary 1. Let 0 1 0 1 0 1,  ,  ,  ,  ,  y a y b x c x d z e z f         be nonzero arbitrary real numbers and 

 , ,n n nx y z be a solutions of the system (2). Also, assume that 1ad  , 1bc  , ( ) 0b c   and ( ) 0d a  . 

Then the sequences ( )nx , ( )ny  and ( )nz  are six periodic.  
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Abstract 
In this study, the multiplicative Volterra integral equation is defined by using the 

concept of multiplicative integral. The solution of multiplicative Volterra integral 

equation of the second kind is researched by using the successive approximations 

method with respect to the multiplicative calculus and the necessary conditions for the 

continuity and uniqueness of the solution are given. The main purpose of this study is 

to investigate the relationship of the multiplicative integral equations with the 

multiplicative differential equations. 
Keywords: Multiplicative calculus; Multiplicative differential equations; 

Multiplicative Volterra integral equations; Successive approximations method. 

 

1. Introduction 

Grossman and Katz [10] have built non-Newtonian calculus between years 1967-1970 as an 

alternative to classic calculus. They have set an infinite family of calculus, including classic, geometric, 

harmonic, quadratic, bigeometric, biharmonic and biquadratic calculus. Also, they defined a new kind 

of derivative and integral by using multiplication and division operations instead of addition and 

subtraction operations. Later, the new calculus that establish in this way is named multiplicative calculus 

by Stanley [16]. Multiplicative calculus provide different point of view for applications in science and 

engineering. It is discussed and developed by many researchers. Stanley [16] developed multiplicative 

calculus, gave some basic theorems about derivatives, integrals and proved infinite products in this 

calculus. Aniszewska [1] used the multiplicative version of Runge-Kutta method for solving 

multiplicative differential equations. Bashirov, Mısırlı and Özyapıcı [2] demonstrated some applications 

and usefulness of multiplicative calculus for the attention of researchers in the branch of analysis. Rıza, 

Özyapıcı and Mısırlı [14] studied the finite difference methods for the numerical solutions of 

multiplicative differential equations and Volterra integral equations. Mısırlı and Gurefe [13] developed 

multiplicative Adams Bashforth-Moulton methods to obtain the numerical solution of multiplicative 

differential equations. Bashirov, Rıza [4] discussed multiplicative differentiation for complex valued 

functions and Bashirov, Norozpour [6] extended the multiplicative integral to complex valued functions. 

Bashirov [5] studied double integrals in the sense of multiplicative calculus. Bhat et al. [7] defined 

multiplicative Fourier transform and found the solution of multiplicative differential equations by 

applying multiplicative Fourier transform. Bhat et al. [8] defined multiplicative Sumudu transform and 

solved some multiplicative differential equations by using multiplicative Sumudu transform. For more 

details see in [1-10, 13, 14, 16-20]. 
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Integral equations have used for the solution of many problems in applied mathematics, 

mathematical physics and engineering since the 18th century. The integral equations have begun to enter 

the problems of engineering and other fields because of the relationship with differential equations and 

so their importance has increased in recent years. The reader may refer for relevant terminology on the 

integral equations to [11, 12, 15, 21, 22]. 

 

Now, we will give some necessary definitions and theorems in multiplicative calculus as follows: 

 

Definition 1. Let 𝑓  be a function whose domain is ℝ the set of real numbers and whose range is a 

subset of ℝ. The multiplicative derivative of the 𝑓 at 𝑥 is defined as the limit 

 
𝑑∗𝑓(𝑥)

𝑑𝑥
= 𝑓∗(𝑥) = lim

ℎ→0
(
𝑓(𝑥+ℎ)

𝑓(𝑥)
)

1

ℎ
.  

The limit is also called ∗-derivative of  𝑓 at 𝑥, briefly.  

 

If  𝑓  is a positive function on an open set 𝐴 ⊆ ℝ and its classical derivative 𝑓′(𝑥) exists, then its 

multiplicative derivative also exists and 

 𝑓∗(𝑥) = 𝑒
[
𝑓′(𝑥)

𝑓(𝑥)
]
= 𝑒(𝑙𝑛∘𝑓)

′(𝑥) 

where  𝑙𝑛 ∘ 𝑓(𝑥) = 𝑙𝑛𝑓(𝑥). Moreover, if 𝑓 is multiplicative differentiable and 𝑓∗(𝑥) ≠ 0, then its 

classical derivative exists and 

𝑓′(𝑥) = 𝑓(𝑥) ⋅ 𝑙𝑛𝑓∗(𝑥) [16]. 

 

The multiplicative derivative of 𝑓∗ is called the second multiplicative derivative and it is denoted 

by 𝑓∗∗. Likewise, the 𝑛-th multiplicative derivative can be defined of 𝑓 and denoted by 𝑓∗(𝑛) for 𝑛 =

0,1,2, ... . If 𝑛-th derivative 𝑓(𝑛)(𝑥) exists, then its 𝑛-th multiplicative derivative 𝑓∗(𝑛)(𝑥)  also exists 

and  

𝑓∗(𝑛)(𝑥) = 𝑒(𝑙𝑛∘𝑓)
(𝑛)(𝑥), 𝑛 = 0,1,2,…  [2]. 

 

Definition 2. The multiplicative absolute value of 𝑥 ∈ ℝ denoted with the symbol |𝑥|∗ and defined 

by 

|𝑥|∗ = {
𝑥,         𝑥 ≥ 1  
1

𝑥
,         𝑥 < 1.

 

 

Theorem 1. Let 𝑓 and 𝑔 be multiplicative differentiable functions. Then the functions 𝑐. 𝑓, 𝑓. 𝑔, 𝑓 +

𝑔,
𝑓
𝑔⁄ , 𝑓𝑔 are multiplicative differentiable where 𝑐 is an arbitrary constant and their multiplicative 

derivative can be shown as 

(1)   (𝑐𝑓)∗(𝑥) = 𝑓∗(𝑥) 

(2)   (𝑓𝑔)∗(𝑥) = 𝑓∗(𝑥)𝑔∗(𝑥) 

(3)   (𝑓 + 𝑔)∗(𝑥) = 𝑓∗(𝑥)
𝑓(𝑥)

𝑓(𝑥)+𝑔(𝑥)𝑔∗(𝑥)
𝑔(𝑥)

𝑓(𝑥)+𝑔(𝑥) 

(4)   (
𝑓

𝑔
)
∗
(𝑥) =

𝑓∗(𝑥)

𝑔∗(𝑥)
 

(5)    (𝑓𝑔)∗(𝑥) = 𝑓∗(𝑥)𝑔(𝑥)𝑓(𝑥)𝑔
′(𝑥) 

(6) [𝑓∗(𝑥)]𝑛 = [𝑓𝑛(𝑥)]∗ for 𝑛 ∈ ℝ  [16]. 
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Theorem 2. (Multiplicative Mean Value Theorem) If the function 𝑓 is continuous on [𝑎, 𝑏] and is 

*-differentiable on (𝑎, 𝑏), then there exits 𝑎 < 𝑐 < 𝑏 such that 

𝑓∗(𝑐) = (
𝑓(𝑏)

𝑓(𝑎)
)

1

𝑏−𝑎
   [3]. 

 

Definition 3. Let 𝑓 be a function with two variables, then its multiplicative partial derivatives are 

defined as 

𝜕∗𝑓(𝑥,𝑦)

𝜕𝑥
= 𝑓𝑥

∗(𝑥, 𝑦) = 𝑒
𝜕

𝜕𝑥
𝑙𝑛(𝑓(𝑥,𝑦))

     and     
𝜕∗𝑓(𝑥,𝑦)

𝜕𝑦
= 𝑓𝑦

∗(𝑥, 𝑦) = 𝑒
𝜕

𝜕𝑦
𝑙𝑛(𝑓(𝑥,𝑦))

 [5].  

 

Theorem 3. (Multiplicative Chain Rule) Suppose that 𝑓 be a function of two variables 𝑦 and 𝑧 with 

continuous multiplicative partial derivatives. If  𝑦 and 𝑧 are differentiable functions on (𝑎, 𝑏) such that 

𝑓(𝑦(𝑥), 𝑧(𝑥)) is defined for every 𝑥 ∈ (𝑎, 𝑏), then 

𝑑∗𝑓(𝑦(𝑥), 𝑧(𝑥))

𝑑𝑥
= 𝑓𝑦

∗(𝑦(𝑥), 𝑧(𝑥))
𝑦′(𝑥)

𝑓𝑧
∗(𝑦(𝑥), 𝑧(𝑥))

𝑧′(𝑥)
 [2]. 

 

Definition 4. Let 𝑓 be a positive function and continuous on the interval [𝑎, 𝑏], then it is 

multiplicative integrable or briefly ∗-integrable on [𝑎, 𝑏] and  

∗ ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= 𝑒∫ ln(𝑓(𝑥))𝑑𝑥
𝑏

𝑎   [16]. 

 

Theorem 4. If 𝑓 and 𝑔 are integrable functions on [𝑎, 𝑏] in the sense of multiplicative, then 

(1)  ∗ ∫ (𝑓(𝑥)𝑘)
𝑑𝑥𝑏

𝑎
= (∗ ∫ (𝑓(𝑥))

𝑑𝑥𝑏

𝑎
)
𝑘

  

(2)  ∗ ∫ (𝑓(𝑥)𝑔(𝑥))
𝑑𝑥𝑏

𝑎
=∗ ∫ (𝑓(𝑥))

𝑑𝑥𝑏

𝑎
∗ ∫ (𝑔(𝑥))

𝑑𝑥𝑏

𝑎
 

(3)  ∗ ∫ (
𝑓(𝑥)

𝑔(𝑥)
)
𝑑𝑥𝑏

𝑎
=
∗∫ (𝑓(𝑥))

𝑑𝑥𝑏

𝑎

∗∫ (𝑔(𝑥))
𝑑𝑥𝑏

𝑎

 

(4)  ∗ ∫ (𝑓(𝑥))
𝑑𝑥𝑏

𝑎
=∗ ∫ (𝑓(𝑥))

𝑑𝑥𝑐

𝑎
∗ ∫ (𝑓(𝑥))

𝑑𝑥𝑏

𝑐
 

where 𝑘 ∈ ℝ  and 𝑎 ≤ 𝑐 ≤ 𝑏 [2,3]. 

 

Theorem 5. (Fundamental Theorem of Multiplicative Calculus) If the function 𝑓 has multiplicative 

derivative on [𝑎, 𝑏] and 𝑓∗ is multiplicative integrable on [𝑎, 𝑏] , then  

∗ ∫𝑓∗(𝑥)𝑑𝑥
𝑏

𝑎

=
𝑓(𝑏)

𝑓(𝑎)
  [2,3]. 

 

Definition 5. The equation of the form 

 𝑦∗(𝑥) = 𝑓(𝑥, 𝑦(𝑥))  

including the multiplicative derivative of 𝑦 is called first order multiplicative differential equation. It is 

equivalent to the ordinary differential equation 𝑦′(𝑥) = 𝑦(𝑥) ln 𝑓(𝑥, 𝑦(𝑥)). Similarly, 𝑛-th order 

multiplicative differential equation is defined by 𝐹 (𝑥, 𝑦, 𝑦∗, … , 𝑦∗(𝑛−1), 𝑦∗(𝑛)(𝑥)) = 1, (𝑥, 𝑦) ∈ ℝ ×

ℝ+ [2,3]. The equation of the form 
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(𝑦∗(𝑛))
𝑎𝑛(𝑥)

(𝑦∗(𝑛−1))
𝑎𝑛−1(𝑥)

…(𝑦∗∗)𝑎2(𝑥)(𝑦∗)𝑎1(𝑥)𝑦𝑎0(𝑥) = 𝑓(𝑥)     

that 𝑓 is a positive function, is called multiplicative linear differential equation. If the exponentials 𝑎𝑛(𝑥) 

are constants, then the equation called as multiplicative linear differential equation with constant 

exponentials; if not it is called as multiplicative linear differential equation with variable exponentials 

[17]. 

 

2. Multiplicative Volterra Integral Equations 

An equation in which an unknown function appears under one or more signs of multiplicative 

integration is called a multiplicative integral equation (MIE), if the multiplicative integral exists. The 

equation  

𝑢(𝑥) = 𝑓(𝑥)  ∗ ∫[𝑢(𝑡)]𝐾(𝑥,𝑡)
𝑑𝑡

𝑥

𝑎

 

where 𝑓(𝑥) and 𝐾(𝑥, 𝑡)  are known functions, 𝑢(𝑥) is unknown function, is called linear multiplicative 

Volterra integral equation (LMVIE) of the second kind. The function 𝐾(𝑥, 𝑡) is the kernel of 

multiplicative Volterra integral equation. If 𝑓(𝑥) = 1, then the equation takes the form 

𝑢(𝑥) = ∗ ∫[𝑢(𝑡)]𝐾(𝑥,𝑡)
𝑑𝑡

𝑥

𝑎

 

and it is called LMVIE of the first kind. 

 

Example 1. Show that the function 𝑢(𝑥) = 𝑒2𝑥  is a solution of the MVIE 𝑢(𝑥) = 𝑒𝑥 ∗ ∫ [(𝑢(𝑡))
1

𝑥]
𝑑𝑡

𝑥

0
. 

Solution. Substituting the function 𝑒2𝑥  in place of 𝑢(𝑥) into the right side of the equation, we obtain  

𝑒𝑥  ∗ ∫ [(𝑢(𝑡))
1

𝑥]
𝑑𝑡

𝑥

0
= 𝑒𝑥  ∗ ∫ [(𝑒2𝑡)

1

𝑥]
𝑑𝑡

𝑥

0
 = 𝑒𝑥  𝑒∫ ln 𝑒

2𝑡
𝑥 𝑑𝑡

𝑥

0 = 𝑒𝑥  𝑒∫
2𝑡

𝑥
𝑑𝑡

𝑥

0  = 𝑒𝑥 𝑒
2

𝑥
∙
𝑡2

2
|
0

𝑥

= 𝑒2𝑥 = 𝑢(𝑥)  

So, this means that the function 𝑢(𝑥) = 𝑒2𝑥  is a solution of the MVIE.  

 

2.1. The Successive Approximation Method For Solving Multiplicative Volterra Integral 

Equations 

 

Theorem 6. Consider LMVIE of the second kind as 

𝑢(𝑥) = 𝑓(𝑥)  ∗ ∫ [𝑢(𝑡)]𝐾(𝑥,𝑡)
𝑑𝑡𝑥

0
.                                                                                                                       (1) 

If 𝑓(𝑥) is positive and continuous on [0, 𝑎] and 𝐾(𝑥, 𝑡) is continuous on the rectangle 0 ≤ 𝑡 ≤ 𝑥 and 

0 ≤ 𝑥 ≤ 𝑎, then there exists an unique continuous solution of (1) as 

𝑢(𝑥) = ∏ 𝜑𝑛(𝑥)
∞
𝑛=0 = 𝑒∑ 𝑙𝑛𝜑𝑛(𝑥)

∞
𝑛=0   

such that the series ∑ 𝑙𝑛𝜑𝑛(𝑥)
∞
𝑛=0  is absolute and uniform convergent where 

  𝜑0(𝑥) = 𝑓(𝑥) , 𝜑𝑛(𝑥) =∗ ∫ [ 𝜑𝑛−1(𝑡)]
𝐾(𝑥,𝑡)𝑑𝑡𝑥

0
, 𝑛 = 1,2, … . 

 

Proof: Take the initial approximation as  

𝑢0(𝑥) = 𝑓(𝑥) =   𝜑0(𝑥) .                                                                                                                               (2) 
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If we write 𝑢0(𝑥)  instead of 𝑢(𝑥) in equation (1), then we get the new function showed with 𝑢1(𝑥)  as 

𝑢1(𝑥) = 𝑓(𝑥)  ∗ ∫[𝑢0(𝑡)]
𝐾(𝑥,𝑡)𝑑𝑡.

𝑥

0

                                                                                                                    (3) 

Since the multiplicative integral which is in equation (3) depends on variable 𝑥, we can show it with  

𝜑1(𝑥) =∗ ∫[𝑢0(𝑡)]
𝐾(𝑥,𝑡)𝑑𝑡

𝑥

0

=∗∫[𝜑0(𝑡)]
𝐾(𝑥,𝑡)𝑑𝑡

𝑥

0

 

and write the equation (3) as follow 

𝑢1(𝑥) = 𝑓(𝑥)𝜑1(𝑥) = 𝜑0(𝑥)𝜑1(𝑥)                                                                                                                 (4) 

by using (2). Therefore the third approximation is obtained as 

𝑢2(𝑥) = 𝑓(𝑥)  ∗ ∫[𝑢1(𝑡)]
𝐾(𝑥,𝑡)𝑑𝑡.

𝑥

0

 

By the equation (4), we find 

𝑢2(𝑥) = 𝑓(𝑥)  ∗ ∫[𝜑0(𝑡). 𝜑1(𝑡)]
𝐾(𝑥,𝑡)𝑑𝑡

𝑥

0

 

           = 𝑓(𝑥)   ∗ ∫([𝜑0(𝑡)]
𝐾(𝑥,𝑡)[𝜑1(𝑡)]

𝐾(𝑥,𝑡))
𝑑𝑡

𝑥

0

 

           = 𝑓(𝑥)  ∗ ∫[𝜑0(𝑡)]
𝐾(𝑥,𝑡)𝑑𝑡

𝑥

0

 ∗ ∫[𝜑1(𝑡)]
𝐾(𝑥,𝑡)𝑑𝑡

𝑥

0

. 

If we set 𝜑2(𝑥) =∗ ∫ [𝜑1(𝑡)]
𝐾(𝑥,𝑡)𝑑𝑡𝑥

0
, then  𝑢2(𝑥) = 𝜑0(𝑥) 𝜑1(𝑥) 𝜑2(𝑥). In a similar way, we get  

𝑢𝑛(𝑥) = 𝜑0(𝑥) 𝜑1(𝑥) 𝜑2(𝑥) …  𝜑𝑛(𝑥)                                                                                                            (5) 

where 

 𝜑0(𝑥) = 𝑓(𝑥) , 𝜑𝑛(𝑥) =∗ ∫ [ 𝜑𝑛−1(𝑡)]
𝐾(𝑥,𝑡)𝑑𝑡𝑥

0
,  𝑛 = 1,2, … . 

Continuing this process, we get the series 

𝑢(𝑥) = 𝜑0(𝑥) 𝜑1(𝑥) 𝜑2(𝑥) …  𝜑𝑛(𝑥). … =∏𝜑𝑛(𝑥)

∞

𝑛=0

= 𝑒∑ 𝑙𝑛𝜑𝑛(𝑥)
∞
𝑛=0 .                                                  (6) 

From (5) and (6), it is clear that  lim
𝑛→∞

𝑢𝑛 (𝑥) = 𝑢(𝑥). 

Assume that 𝐹 = 𝑚𝑎𝑥
𝑥∈[0,𝑎]

𝑓(𝑥) and 𝐾 = 𝑚𝑎𝑥
0≤𝑡≤𝑥≤𝑎

|𝐾(𝑥, 𝑡)|. Then we find 

𝜑0(𝑥) = 𝑓(𝑥) ≤ 𝐹 

𝜑1(𝑥) =∗ ∫[𝜑0(𝑡)]
𝐾(𝑥,𝑡)𝑑𝑡

𝑥

0

= 𝑒∫ 𝐾(𝑥,𝑡)𝑙𝑛𝜑0(𝑡)𝑑𝑡
𝑥

0 ≤ 𝑒∫ |𝐾(𝑥,𝑡)| |𝑙𝑛𝜑0(𝑡)|𝑑𝑡
𝑥

0 = 𝑒∫ |𝐾(𝑥,𝑡)| 𝑙𝑛|𝜑0(𝑡)|∗𝑑𝑡
𝑥

0

≤ 𝑒𝐾.𝑙𝑛𝐹.𝑥 

𝜑2(𝑥) =∗ ∫[𝜑1(𝑡)]
𝐾(𝑥,𝑡)𝑑𝑡

𝑥

0

= 𝑒∫ 𝐾(𝑥,𝑡)𝑙𝑛𝜑1(𝑡)𝑑𝑡
𝑥

0 ≤ 𝑒𝐾.𝑙𝑛𝐹 ∫ |𝐾(𝑥,𝑡)|.𝑡𝑑𝑡
𝑥

0 ≤ 𝑒𝐾
2.𝑙𝑛𝐹 ∫ 𝑡𝑑𝑡

𝑥

0 = 𝑒𝑙𝑛𝐹.𝐾
2.
𝑥2

2!  

⋮ 

𝜑𝑛(𝑥) ≤ 𝑒
𝑙𝑛𝐹.

𝐾𝑛𝑥𝑛

𝑛! . 
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Also, we can see that |𝑙𝑛𝜑𝑛(𝑥)| = 𝑙𝑛|𝜑𝑛(𝑥)|∗ ≤ 𝑙𝑛𝐹 
𝐾𝑛𝑎𝑛

𝑛!
 for = 1,2,… . Because of  |𝑙𝑛𝜑𝑛(𝑥)| ≤

𝑙𝑛𝐹 
𝐾𝑛𝑎𝑛

𝑛!
  , the series ∑ 𝑙𝑛𝜑𝑛(𝑥)

∞
𝑛=0  is absolute and uniform convergence from the Weierstrass 𝑀-test. 

Since each terms of this series are continuous, the function which this series convergences uniformly is 

continuous. Hence 𝑢(𝑥) is continuous function. Now, we will show 𝑢(𝑥) is a solution of the equation 

(1). Since  𝜑𝑛(𝑥) =∗ ∫ 𝜑𝑛−1(𝑡)
𝐾(𝑥,𝑡)𝑑𝑡𝑥

0
 and 𝜑0(𝑥) = 𝑓(𝑥), we find  

𝜑0(𝑥)∏𝜑𝑛(𝑥)

𝑁

𝑛=1

= 𝑓(𝑥)∏(∗∫𝜑𝑛−1(𝑡)
𝐾(𝑥,𝑡)𝑑𝑡

𝑥

0

)

𝑁

𝑛=1

 

∏𝜑𝑛(𝑥)

𝑁

𝑛=0

= 𝑓(𝑥) ∗ ∫(∏𝜑𝑛−1(𝑡)

𝑁−1

𝑛=1

)

𝐾(𝑥,𝑡)𝑑𝑡𝑥

0

 

∏𝜑𝑛(𝑥)

𝑁

𝑛=0

= 𝑓(𝑥) ∗ ∫(∏𝜑𝑛(𝑡)

𝑁

𝑛=0

)

𝐾(𝑥,𝑡)𝑑𝑡𝑥

0

                                                                                                   (7) 

From (6) and (7), we obtain 

𝑢(𝑥) = lim
𝑁→∞

∏𝜑𝑛(𝑥)

𝑁

𝑛=0

= lim
𝑁→∞

𝑓(𝑥) 𝑒∫ 𝐾(𝑥,𝑡)∑ 𝑙𝑛𝜑𝑛(𝑡)
𝑁
𝑛=0 𝑑𝑡

𝑥

0 = 𝑓(𝑥) 𝑒
∫ 𝐾(𝑥,𝑡) lim

𝑁→∞
(∑ 𝑙𝑛𝜑𝑛(𝑡)
𝑁
𝑛=0 )𝑑𝑡

𝑥

0  

          = 𝑓(𝑥) 𝑒∫ 𝐾(𝑥,𝑡)𝑙𝑛𝑒∑ 𝑙𝑛𝜑𝑛(𝑡)
∞
𝑛=0 𝑑𝑡

𝑥

0 = 𝑓(𝑥) 𝑒∫ 𝐾(𝑥,𝑡)𝑙𝑛𝑢(𝑡)𝑑𝑡
𝑥

0 = 𝑓(𝑥)  ∗ ∫𝑢(𝑡)𝐾(𝑥,𝑡)
𝑑𝑡

𝑥

0

. 

by using the uniform convergence of the series ∑ 𝑙𝑛𝜑𝑛(𝑥)
∞
𝑛=0  . This indicates that 𝑢(𝑥) is the solution 

of the equation (1).  Now, we will show the uniqueness of the solution. Assume that 𝑢(𝑥)  and  𝑣(𝑥) are 

different solutions of the equation (1). Since 

𝑢(𝑥) = 𝑓(𝑥)  ∗ ∫[𝑢(𝑡)]𝐾(𝑥,𝑡)
𝑑𝑡

𝑥

0

 

𝑣(𝑥) = 𝑓(𝑥) ∗ ∫[𝑣(𝑡)]𝐾(𝑥,𝑡)
𝑑𝑡

𝑥

0

 

we find 

𝑢(𝑥)

𝑣(𝑥)
= ∗ ∫ [

𝑢(𝑡)

𝑣(𝑡)
]

𝐾(𝑥,𝑡)𝑑𝑡

=

𝑥

0

𝑒∫ 𝐾(𝑥,𝑡)(𝑙𝑛𝑢(𝑡)−𝑙𝑛𝑣(𝑡))𝑑𝑡
𝑥

0 . 

If we set 
𝑢(𝑥)

𝑣(𝑥)
= 𝜙(𝑥),  we can write 𝜙(𝑥) = ∗ ∫ [𝜙(𝑡)]𝐾(𝑥,𝑡)

𝑑𝑡
=

𝑥

0
𝑒∫ 𝐾(𝑥,𝑡)𝑙𝑛𝜙(𝑡)𝑑𝑡

𝑥

0 . Because of 

𝑙𝑛𝜙(𝑥) = ∫ 𝐾(𝑥, 𝑡)𝑙𝑛𝜙(𝑡)𝑑𝑡
𝑥

0
, we find  

|𝑙𝑛𝜙(𝑥)| = |∫ 𝐾(𝑥, 𝑡)𝑙𝑛𝜙(𝑡)𝑑𝑡
𝑥

0

| ≤ ∫ |𝐾(𝑥, 𝑡)||𝑙𝑛𝜙(𝑡)|𝑑𝑡
𝑥

0

≤ 𝐾∫ |𝑙𝑛𝜙(𝑡)|𝑑𝑡
𝑥

0

. 

It is taken as ℎ(𝑥) = ∫ |𝑙𝑛𝜙(𝑡)|𝑑𝑡
𝑥

0
, then we write 

|𝑙𝑛𝜙(𝑥)| ≤ 𝐾ℎ(𝑥) 

|𝑙𝑛𝜙(𝑥)| − 𝐾ℎ(𝑥) ≤ 0. 

By multiplication with 𝑒−𝐾𝑥  both sides of the inequality, then 
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𝑒−𝐾𝑥|𝑙𝑛𝜙(𝑥)| − 𝑒−𝐾𝑥𝐾ℎ(𝑥) ≤ 0 

𝑑

𝑑𝑥
(𝑒−𝐾𝑥ℎ(𝑥)) ≤ 0  

and by integration both sides of this inequality from 0 to 𝑥 we find 

𝑒−𝐾𝑥ℎ(𝑥) − 𝑒−𝐾0ℎ(0) ≤ 0 

𝑒−𝐾𝑥ℎ(𝑥) ≤ 0. 

Since ℎ(𝑥) ≤ 0 and ℎ(𝑥) ≥ 0, we find ℎ(𝑥) = 0. Therefore |𝑙𝑛𝜙(𝑥)| = 0 for every 𝑥 ∈ [0, 𝑎], i.e., 

𝜙(𝑥) = 1 for every 𝑥 ∈ [0, 𝑎]. Thus  𝜙(𝑥) =
𝑢(𝑥)

𝑣(𝑥)
= 1 and we obtain 𝑢(𝑥) = 𝑣(𝑥). This completes the 

proof. 

 

Remark 1.  If the following iterations of method of successive approximations are set by 

𝑢0(𝑥) = 𝑓(𝑥) 

𝑢𝑛(𝑥) = 𝑓(𝑥) ∗ ∫[𝑢𝑛−1(𝑡)]
𝐾(𝑥,𝑡)𝑑𝑡,      𝑛 = 1,2,3,…

𝑥

0

 

for the multiplicative integral equation 

 𝑢(𝑥) = 𝑓(𝑥) ∗ ∫ [𝑢(𝑡)]𝐾(𝑥,𝑡)
𝑑𝑡𝑥

0
 

where 𝑓(𝑥) is positive and continuous on [0, 𝑎] and 𝐾(𝑥, 𝑡) is continuous for 0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑡 ≤ 𝑥, 

then the sequence of successive approximations 𝑢𝑛(𝑥) converges to the solution 𝑢(𝑥).  

 

Example 2. Solve the multiplicative Volterra integral equation 

𝑢(𝑥) = 𝑒𝑥 ∗ ∫ [(𝑢(𝑡))
(𝑡−𝑥)

]
𝑑𝑡

𝑥

0

 

with using the successive approximations method.  

 

Solution. Let taken 𝑢0(𝑥) = 𝑒
𝑥, then the first approximation is obtained as 

 𝑢1(𝑥) = 𝑒
𝑥 ∗ ∫ [(𝑒𝑡)(𝑡−𝑥)]

𝑑𝑡𝑥

0
= 𝑒𝑥𝑒∫ 𝑙𝑛(𝑒𝑡.(𝑡−𝑥))𝑑𝑡

𝑥

0 = 𝑒𝑥𝑒∫ 𝑡.(𝑡−𝑥)𝑑𝑡
𝑥

0  = 𝑒
(𝑥−

𝑥3

3!
)
 

and by using this approximation it can be obtained as 

 𝑢2(𝑥) = 𝑒
𝑥 ∗ ∫ [(𝑒

(𝑡−
𝑡3

3!
)
)

(𝑡−𝑥)

]

𝑑𝑡

𝑥

0
= 𝑒

(𝑥−
𝑥3

3!
+
𝑥5

5!
)
. 

By proceeding similarly,  the 𝑛𝑡ℎ approximation is  

𝑢𝑛(𝑥) = 𝑒
(𝑥−

𝑥3

3!
+
𝑥5

5!
−⋯+(−1)𝑛

𝑥2𝑛+1

(2𝑛+1)!
)
. 

Since the expression 𝑥 −
𝑥3

3!
+
𝑥5

5!
−⋯+ (−1)𝑛

𝑥2𝑛+1

(2𝑛+1)!
+⋯  is the Maclaurin series of 𝑠𝑖𝑛𝑥, 

lim
𝑛→∞

𝑢𝑛(𝑥) = 𝑒
𝑠𝑖𝑛𝑥. Therefore the solution of the equation 𝑢(𝑥) = 𝑒𝑠𝑖𝑛𝑥.  
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    3. The Relationship Between Multiplicative Differential Equations 

 
We will investigate the relationship of the multiplicative Volterra integral equations with the 

multiplicative differential equations.  

 

3.1. The Conversion of the Multiplicative Volterra Integral Equations to Multiplicative 

Differential Equations 

 

In this section, we demonstrate the method of converting a multiplicative Volterra integral 

equation into a multiplicative differential equation. For this, we need the Leibniz Formula in the sense 

of multiplicative calculus.  

Firstly, we will give necessary lemma with using proof of multiplicative Leibniz formula. 

 

Lemma 1. Let Ω be an open set in ℝ2. Suppose that 𝑓:Ω → ℝ be a function such that the 

multiplicative partial derivatives 𝑓𝑥𝑦
∗∗(𝑥, 𝑦) , 𝑓𝑦𝑥

∗∗(𝑥, 𝑦) exists in Ω and are continuous, then we have 

𝜕∗

𝜕𝑥
(
𝜕∗

𝜕𝑦
𝑓(𝑥, 𝑦)) =

𝜕∗

𝜕𝑦
(
𝜕∗

𝜕𝑥
𝑓(𝑥, 𝑦)). 

Proof. Fix 𝑥 and 𝑦. 𝐹(ℎ, 𝑘) is taken as 

𝐹(ℎ, 𝑘) = (
𝑓(𝑥 + ℎ, 𝑦 + 𝑘) 𝑓(𝑥, 𝑦)

𝑓(𝑥, 𝑦 + 𝑘) 𝑓(𝑥 + ℎ, 𝑦)
)

1
ℎ𝑘

 

By using the multiplicative mean value theorem, we find 

𝐹(ℎ, 𝑘) = (
𝑓(𝑥 + ℎ, 𝑦 + 𝑘) 𝑓(𝑥, 𝑦)

𝑓(𝑥, 𝑦 + 𝑘) 𝑓(𝑥 + ℎ, 𝑦)
)

1
ℎ𝑘

=

(

 
 
(

𝑓(𝑥 + ℎ, 𝑦 + 𝑘)
𝑓(𝑥, 𝑦 + 𝑘)

𝑓(𝑥 + ℎ, 𝑦)
𝑓(𝑥, 𝑦)

)

1
𝑘

)

 
 

1
ℎ

= (
𝜕∗

𝜕𝑦
(
𝑓(𝑥 + ℎ, 𝑦+𝜆1𝑘)

𝑓(𝑥, 𝑦+𝜆1𝑘)
))

1
ℎ

 

               =
𝜕∗

𝜕𝑦
((
𝑓(𝑥 + ℎ, 𝑦+𝜆1𝑘)

𝑓(𝑥, 𝑦+𝜆1𝑘)
)

1
ℎ

) =
𝜕∗

𝜕𝑦
(
𝜕∗

𝜕𝑥
𝑓(𝑥+𝜆2ℎ, 𝑦+𝜆1𝑘)) 

and 

𝐹(ℎ, 𝑘) = (
𝑓(𝑥 + ℎ, 𝑦 + 𝑘) 𝑓(𝑥, 𝑦)

𝑓(𝑥, 𝑦 + 𝑘) 𝑓(𝑥 + ℎ, 𝑦)
)

1
ℎ𝑘

=

(

 
 
(

𝑓(𝑥 + ℎ, 𝑦 + 𝑘)
𝑓(𝑥 + ℎ, 𝑦)

𝑓(𝑥, 𝑦 + 𝑘)
𝑓(𝑥, 𝑦)

)

1
ℎ

)

 
 

1
𝑘

= (
𝜕∗

𝜕𝑥
(
𝑓(𝑥+𝜆3ℎ, 𝑦 + 𝑘)

𝑓(𝑥+𝜆3ℎ, 𝑦)
))

1
𝑘

 

               =
𝜕∗

𝜕𝑥
((
𝑓(𝑥+𝜆3ℎ, 𝑦 + 𝑘)

𝑓(𝑥+𝜆3ℎ, 𝑦)
)

1
𝑘

) =
𝜕∗

𝜕𝑦
(
𝜕∗

𝜕𝑦
𝑓(𝑥+𝜆3ℎ, 𝑦+𝜆4𝑘)) 

for some 0 < 𝜆1, 𝜆2, 𝜆3, 𝜆4 < 1  which all of them depend on 𝑥, 𝑦, ℎ, 𝑘. Therefore,  

𝜕∗

𝜕𝑦
(
𝜕∗

𝜕𝑥
𝑓(𝑥+𝜆2ℎ, 𝑦+𝜆1𝑘)) =

𝜕∗

𝜕𝑦
(
𝜕∗

𝜕𝑦
𝑓(𝑥+𝜆3ℎ, 𝑦+𝜆4𝑘)) 

for all ℎ and 𝑘. Taking the limit ℎ, 𝑘 → 0 and using the assumed continuity of both partial derivatives, 
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it gives    

𝜕∗

𝜕𝑦
(
𝜕∗

𝜕𝑥
𝑓(𝑥, 𝑦)) =

𝜕∗

𝜕𝑦
(
𝜕∗

𝜕𝑦
𝑓(𝑥, 𝑦)). 

 

Theorem 7. (Multiplicative Leibniz Formula) Let 𝐴, 𝐼 ⊆ ℝ be open set and  𝑓 be a continuous 

function on 𝐴 × 𝐼 into ℝ. If 𝑓𝑥
∗ exists and is continuous on 𝐴 × 𝐼,  ℎ(𝑥), 𝑣(𝑥) are continuously 

differentiable functions of 𝐴 into 𝐼, then we have  

𝑑∗

𝑑𝑥
(∗ ∫ 𝑓(𝑥, 𝑡)𝑑𝑡

𝑣(𝑥)

ℎ(𝑥)

) = ∗ ∫ 𝑓𝑥
∗(𝑥, 𝑡)𝑑𝑡

𝑣(𝑥)

ℎ(𝑥)

 
𝑓(𝑥, 𝑣(𝑥))

𝑣′(𝑥)

𝑓(𝑥, ℎ(𝑥))
ℎ′(𝑥)

  

 

Proof. Let 𝑓(𝑥, 𝑡) =
𝜕∗

𝜕𝑡
𝐹(𝑥, 𝑡) = 𝐹𝑡

∗(𝑥, 𝑡). Hence we can write ∗ ∫ 𝑓(𝑥, 𝑡)𝑑𝑡
𝑣(𝑥)

ℎ(𝑥)
=∗ ∫ 𝐹𝑡

∗(𝑥, 𝑡)𝑑𝑡
𝑣(𝑥)

ℎ(𝑥)
. 

Since     ∗ ∫ 𝑓(𝑥, 𝑡)𝑑𝑡
𝑣(𝑥)

ℎ(𝑥)
=
𝐹(𝑥,𝑣(𝑥))

𝐹(𝑥,ℎ(𝑥))
 , we find 

𝑑∗

𝑑𝑥
(∗ ∫ 𝑓(𝑥, 𝑡)𝑑𝑡

𝑣(𝑥)

ℎ(𝑥)

) =
𝑑∗

𝑑𝑥
(
𝐹(𝑥, 𝑣(𝑥))

𝐹(𝑥, ℎ(𝑥))
) =

𝑑∗

𝑑𝑥
𝐹(𝑥, 𝑣(𝑥))

𝑑∗

𝑑𝑥
𝐹(𝑥, ℎ(𝑥))

 

by using properties of multiplicative derivative. Therefore we get 

𝑑∗

𝑑𝑥
(∗ ∫ 𝑓(𝑥, 𝑡)𝑑𝑡

𝑣(𝑥)

ℎ(𝑥)

) =
𝐹𝑥
∗(𝑥, 𝑣(𝑥))

1
 [𝐹𝑣(𝑥)

∗ (𝑥, 𝑣(𝑥))]
𝑣′(𝑥)

𝐹𝑥
∗(𝑥, ℎ(𝑥))

1
 [𝐹ℎ(𝑥)

∗ (𝑥, ℎ(𝑥))]
ℎ′(𝑥)

                                                                      (8) 

with multiplicative chain rule. By using Lemma 1, we obtain 

𝑑∗

𝑑𝑥∗
(∗ ∫ 𝑓(𝑥, 𝑡)𝑑𝑡

𝑣(𝑥)

ℎ(𝑥)

) =∗ ∫ (
𝜕∗

𝜕𝑡
𝐹𝑥
∗(𝑥, 𝑡))

𝑑𝑡𝑣(𝑥)

ℎ(𝑥)

𝑓(𝑥, 𝑣(𝑥))
𝑣′(𝑥)

𝑓(𝑥, ℎ(𝑥))
ℎ′(𝑥)

 

                                           =∗ ∫ (
𝜕∗

𝜕𝑡
(
𝜕∗

𝜕𝑥
𝐹(𝑥, 𝑡)))

𝑑𝑡

𝑓(𝑥, 𝑣(𝑥))
𝑣′(𝑥)

𝑓(𝑥, ℎ(𝑥))
ℎ′(𝑥)

𝑣(𝑥)

ℎ(𝑥)

 

                                           =∗ ∫
𝜕∗

𝜕𝑥
(
𝜕∗

𝜕𝑡
𝐹(𝑥, 𝑡))

𝑑𝑡𝑣(𝑥)

ℎ(𝑥)

𝑓(𝑥, 𝑣(𝑥))
𝑣′(𝑥)

𝑓(𝑥, ℎ(𝑥))
ℎ′(𝑥)

 

                                           =∗ ∫
𝜕∗

𝜕𝑥
(𝐹𝑡
∗(𝑥, 𝑡))

𝑑𝑡

𝑣(𝑥)

ℎ(𝑥)

 
𝑓(𝑥, 𝑣(𝑥))

𝑣′(𝑥)

𝑓(𝑥, ℎ(𝑥))
ℎ′(𝑥)

 

                                           =∗ ∫ 𝑓𝑥
∗(𝑥, 𝑡)𝑑𝑡

ℎ(𝑥)

𝑣(𝑥)

 
𝑓(𝑥, 𝑣(𝑥))

𝑣′(𝑥)

𝑓(𝑥, ℎ(𝑥))
ℎ′(𝑥)

 . 

from the equality (8). This completes the proof. 
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Example 3. Show that the multiplicative integral equation 𝑢(𝑥) = sin𝑥 ∗ ∫ ([𝑢(𝑡)]𝑥 tan 𝑡)𝑑𝑡
𝑥

0
  

can be transformed to a multiplicative differential equation.  

 

Solution. If we consider the equation 𝑢(𝑥) = sin𝑥  ∗ ∫ ([𝑢(𝑡)]𝑥tan𝑡)𝑑𝑡
𝑥

0
  and differentiate it by 

using multiplicative Leibniz formula, we write  

𝑢∗(𝑥) =
𝑑∗

𝑑𝑥
(sin𝑥) 

𝑑∗

𝑑𝑥
(∗ ∫([𝑢(𝑡)]𝑥 tan𝑡)𝑑𝑡

𝑥

0

)  

            = 𝑒
𝑐𝑜𝑠 𝑥
𝑠𝑖𝑛 𝑥  ∗ ∫ [

𝜕∗

𝜕𝑥
([𝑢(𝑡)]𝑥 tan 𝑡)]

𝑑𝑡
𝑥

0

(𝑢(𝑥)𝑥 tan𝑥)𝑥
′

(𝑢(0)𝑥 tan0)0
′  

            = 𝑒cot𝑥 ∗ ∫[𝑢(𝑡)tan 𝑡]𝑑𝑡
𝑥

0

𝑢(𝑥)𝑥 tan𝑥 

To take derivative is continued until the expression gets rid of the integral sign. Hence, we obtain 

𝑢∗∗(𝑥) =
𝑑∗

𝑑𝑥
(𝑒cot𝑥)

𝑑∗

𝑑𝑥
(∗ ∫[𝑢(𝑡)tan 𝑡]𝑑𝑡

𝑥

0

)
𝑑∗

𝑑𝑥
(𝑢(𝑥)𝑥 tan𝑥) 

              = 𝑒−𝑐𝑜𝑠𝑒𝑐
2𝑥 ∗ ∫[1]𝑑𝑡

𝑥

0

(𝑢(𝑥)tan𝑥)𝑥
′

(𝑢(0)tan0)0
′ 𝑒
((𝑥.𝑡𝑎𝑛𝑥)′ 𝑙𝑛𝑢(𝑥)+

𝑢′(𝑥)
𝑢(𝑥)

 𝑥 𝑡𝑎𝑛𝑥)
 

              = 𝑒−𝑐𝑜𝑠𝑒𝑐
2𝑥 [𝑢(𝑥)]tan𝑥  𝑒

(𝑙𝑛𝑢(𝑥)(𝑥 𝑡𝑎𝑛𝑥)
′
+
𝑢′(𝑥)

𝑢(𝑥)
 𝑥 𝑡𝑎𝑛𝑥)

  

              = 𝑒−𝑐𝑜𝑠𝑒𝑐
2𝑥 [𝑢(𝑥)](2tan𝑥+𝑥 𝑠𝑒𝑐

2𝑥)  (𝑒
𝑢′(𝑥)

𝑢(𝑥) )

𝑥𝑡𝑎𝑛𝑥

 

              = 𝑒−𝑐𝑜𝑠𝑒𝑐
2𝑥 [𝑢(𝑥)](2tan𝑥+𝑥 𝑠𝑒𝑐

2𝑥) [𝑢∗(𝑥)]𝑥 tan𝑥 . 

 

Thus the multiplicative integral equation is equivalent to the multiplicative differential equation                              

𝑢∗∗(𝑥) = 𝑒−𝑐𝑜𝑠𝑒𝑐
2𝑥 𝑢(𝑥)(2tan𝑥+𝑥 𝑠𝑒𝑐

2𝑥). [𝑢∗(𝑥)]𝑥 tan𝑥 . 

 

3.2. The Conversion of the Multiplicative Linear Differential Equations to Multiplicative 

Integral Equations  

 

In this section, we prove that the multiplicative linear differential equation with constant or 

variable exponentials is converted to MVIE. We need to following theorem for converting 𝑛𝑡ℎ order 

multiplicative differential equation to MVIE.  

 

Theorem 8. If   𝑛  is a positive integer and  𝑎 is a constant with 𝑥 ≥ 𝑎, then we have 

∗ ∫…(𝑛)…

𝑥

𝑎

∗ ∫𝑢(𝑡)𝑑𝑡…𝑑𝑡
𝑥

𝑎

=∗ ∫ [(𝑢(𝑡))
(𝑥−𝑡)(𝑛−1)

(𝑛−1)! ]

𝑑𝑡𝑥

𝑎
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Proof. Let 

𝛪𝑛 =∗ ∫[𝑢(𝑡)]
(𝑥−𝑡)(𝑛−1)

𝑑𝑡
𝑥

𝑎

 .                                                                                                                                  (9) 

If it is taken 𝐹(𝑥, 𝑡) = [𝑢(𝑡)](𝑥−𝑡)
(𝑛−1)

, we can write that  

 

𝑑∗𝛪𝑛
𝑑𝑥

=∗ ∫𝐹𝑥
∗(𝑥, 𝑡)𝑑𝑡

𝑥

𝑎

[𝐹(𝑥, 𝑥)]1

[𝐹(𝑥, 𝑎)]0
 

          =∗ ∫𝐹𝑥
∗(𝑥, 𝑡)𝑑𝑡

𝑥

𝑎

            

by using the multiplicative Leibniz formula to equation (9). Then we find  

𝑑∗𝛪𝑛
𝑑𝑥

=∗ ∫ (𝑒
𝜕
𝜕𝑥
𝑙𝑛𝐹(𝑥,𝑡)

)
𝑑𝑡

𝑥

𝑎

                 

         =∗ ∫ (𝑒(𝑛−1)(𝑥−𝑡)
(𝑛−2) 𝑙𝑛𝑢(𝑡))

𝑑𝑡
𝑥

𝑎

 

         =∗ ∫ (𝑒
𝑙𝑛([𝑢(𝑡)](𝑛−1)(𝑥−𝑡)

(𝑛−2)
)
)
𝑑𝑡

𝑥

𝑎

 

         =∗ ∫ ([𝑢(𝑡)](𝑛−1)(𝑥−𝑡)
(𝑛−2)

)
𝑑𝑡
.

𝑥

𝑎

 

Hence we get  

𝑑∗𝛪𝑛
𝑑𝑥

= (∗ ∫([𝑢(𝑡)](𝑥−𝑡)
(𝑛−2)

)
𝑑𝑡

𝑥

𝑎

)

(𝑛−1)

= (𝛪𝑛−1)
(𝑛−1)                                                                            (10) 

where  𝑛 > 1 .  Since  𝛪1(𝑥) =∗ ∫ 𝑢(𝑡)𝑑𝑡
𝑥

𝑎
 for 𝑛 = 1, then we can write 

𝑑∗𝛪1
𝑑𝑥

=
𝑑∗

𝑑𝑥
(∗ ∫(𝑢(𝑡))

𝑑𝑡

𝑥

𝑎

) = 𝑢(𝑥).                                                                                                                 (11) 

If it is taken multiplicative derivative of the equation (10) by using multiplicative Leibniz formula, then 

𝑑∗∗𝛪𝑛

𝑑𝑥(2)
=
𝑑∗

𝑑𝑥
(∗ ∫([𝑢(𝑡)](𝑥−𝑡)

(𝑛−2)
)
𝑑𝑡

𝑥

𝑎

)

(𝑛−1)

                    

           = (
𝑑∗

𝑑𝑥
(∗ ∫ ([𝑢(𝑡)](𝑥−𝑡)

(𝑛−2)
)
𝑑𝑡

𝑥

𝑎

))

(𝑛−1)

          



 

20 
 

Ikonion Journal of Mathematics                                                                                                       2020, 2 (2) 

           = (∗ ∫ [
𝜕∗

𝜕𝑥
 ([𝑢(𝑡)](𝑥−𝑡)

(𝑛−2)
)]
𝑑𝑡 [[𝑢(𝑥)](𝑥−𝑥)

(𝑛−2)
]
1

[[𝑢(𝑎)](𝑥−𝑎)
𝑛−2
]
0  
  

𝑥

𝑎

)

(𝑛−1)

 

           = (∗ ∫(
𝜕∗

𝜕𝑥
 ([𝑢(𝑡)](𝑥−𝑡)

(𝑛−2)
))

𝑑𝑡

   

𝑥

𝑎

)

(𝑛−1)

        

           = (∗ ∫(𝑒

𝜕
𝜕𝑥
 (𝑙𝑛([𝑢(𝑡)](𝑥−𝑡)

(𝑛−2)
))
)

𝑑𝑡

   

𝑥

𝑎

)

(𝑛−1)

 

          = (∗ ∫ [𝑒
(𝑙𝑛((𝑢(𝑡))

(𝑛−2)(𝑥−𝑡)(𝑛−3)

))
]

𝑑𝑡𝑥

𝑎

)

(𝑛−1)

 

          = (∗ ∫ [(𝑢(𝑡))
(𝑛−2)(𝑥−𝑡)(𝑛−3)

]
𝑑𝑡

𝑥

𝑎

)

(𝑛−1)

 

          = (∗ ∫ [(𝑢(𝑡))
(𝑥−𝑡)(𝑛−3)

]
𝑑𝑡

𝑥

𝑎

)

(𝑛−1).(𝑛−2)

 

          = (𝛪𝑛−2)
(𝑛−1)(𝑛−2) .                                 

By proceeding similarly, we obtain 

𝑑∗(𝑛−1)𝛪𝑛

𝑑𝑥(𝑛−1)
= (𝛪1)

(𝑛−1)!  

Hence, we write  

𝑑∗(𝑛)𝛪𝑛

𝑑𝑥(𝑛)
= (
𝑑∗𝛪1
𝑑𝑥
)

(𝑛−1)!

= [𝑢(𝑥)](𝑛−1)! 

from the equation (11). Now, we will take multiplicative integral by considering the above relations.   

 

From the equation (11),   𝛪1(𝑥) =∗ ∫ 𝑢(𝑡)𝑑𝑡
𝑥

𝑎
 . Also, we have   

𝛪2(𝑥) =∗ ∫  𝛪1(𝑥2)
𝑑𝑥2

𝑥

𝑎

=∗ ∫∗ ∫ 𝑢(𝑥1)
𝑑𝑥1𝑑𝑥2

𝑥2

𝑎

𝑥

𝑎

               

where 𝑥1 and 𝑥2 are parameters. By proceeding similarly, we obtain 

𝛪𝑛(𝑥) = (∗ ∫∗ ∫ …∗ ∫ ∗ ∫ 𝑢(𝑥1)
𝑑𝑥1𝑑𝑥2…𝑑𝑥𝑛

𝑥2

𝑎

𝑥3

𝑎

𝑥𝑛

𝑎

𝑥

𝑎

)

(𝑛−1)!

 

where 𝑥1, 𝑥2, … , 𝑥𝑛  are parameters. If we write the equation (9) instead of the statement 𝛪𝑛, then it is 

find 
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∗ ∫ [(𝑢(𝑡))
(𝑥−𝑡)𝑛−1

]
𝑑𝑡

𝑥

𝑎

= (∗ ∫∗ ∫ …∗ ∫ ∗ ∫ 𝑢(𝑥1)
𝑑𝑥1𝑑𝑥2…𝑑𝑥𝑛

𝑥2

𝑎

𝑥3

𝑎

𝑥𝑛

𝑎

𝑥

𝑎

)

(𝑛−1)!

 

Hence we can write 

(∗ ∫ [(𝑢(𝑡))
(𝑥−𝑡)𝑛−1

]
𝑑𝑡

𝑥

𝑎

)

1
(𝑛−1)!

=∗ ∫∗ ∫ …∗ ∫ ∗ ∫ 𝑢(𝑥1)
𝑑𝑥1𝑑𝑥2…𝑑𝑥𝑛

𝑥2

𝑎

𝑥3

𝑎

𝑥𝑛

𝑎

𝑥

𝑎

 

 If it is taken = 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑛 , therefore we obtain  

∗ ∫…(𝑛)…

𝑥

𝑎

∗ ∫𝑢(𝑡)𝑑𝑡…𝑑𝑡
𝑥

𝑎

=∗ ∫ [(𝑢(𝑡))
(𝑥−𝑡)𝑛−1

(𝑛−1)! ]

𝑑𝑡

.

𝑥

𝑎

 

This completes the proof. 

 

Let the 𝑛𝑡ℎ- order multiplicative linear differential equation  

𝑑∗(𝑛)𝑦

𝑑𝑥(𝑛)
 (
𝑑∗(𝑛−1)𝑦

𝑑𝑥(𝑛−1)
)

𝑎1(𝑥)

(
𝑑∗(𝑛−2)𝑦

𝑑𝑥(𝑛−2)
)

𝑎2(𝑥)

…(
𝑑∗𝑦

𝑑𝑥
)
𝑎𝑛−1(𝑥)

(𝑦)𝑎𝑛(𝑥) = 𝑓(𝑥)                                          (12) 

that given the initial conditions 

𝑦(0) = 𝑐0 , 𝑦
∗(0) = 𝑐1 , 𝑦

∗(𝑛−1)(0) = 𝑐𝑛−1                                                                                                  (13) 

It can be transformed the multiplicative Volterra integral equation. Hence the solution of (12)-(13) 

may be reduced to a solution of some multiplicative Volterra integral equation.  

Take  
𝑑∗(𝑛)𝑦

𝑑𝑥(𝑛)
= 𝑢(𝑥). By integrating both sides of the equality  

𝑑∗

𝑑𝑥
(
𝑑∗(𝑛−1)𝑦

𝑑𝑥(𝑛−1)
) = 𝑢(𝑥), we write 

∗ ∫𝑑∗ (
𝑑∗(𝑛−1)𝑦

𝑑𝑥(𝑛−1)
)

𝑥

0

 = ∗ ∫𝑢(𝑡)𝑑𝑡
𝑥

0

 

              
𝑦∗(𝑛−1)(𝑥)

𝑦∗(𝑛−1)(0)
 = ∗ ∫𝑢(𝑡)𝑑𝑡

𝑥

0

 

              𝑦∗(𝑛−1)(𝑥)  = 𝑐𝑛−1 ∗ ∫𝑢(𝑡)
𝑑𝑡

𝑥

0

 

By proceeding similarly, we find 

∗ ∫𝑑∗ (
𝑑∗(𝑛−2)𝑦

𝑑𝑥(𝑛−2)
)

𝑥

0

=∗∫(𝑐𝑛−1 ∗ ∫𝑢(𝑡)
𝑑𝑡

𝑥

0

)

𝑑𝑡𝑥

0

 

              
𝑦∗(𝑛−2)(𝑥)

𝑦∗(𝑛−2)(0)
=∗ ∫ 𝑐𝑛−1

𝑑𝑡 ∗ ∫∗ ∫𝑢(𝑡)𝑑𝑡𝑑𝑡
𝑥

0

𝑥

0

𝑥

0

 

              
𝑦∗(𝑛−2)(𝑥)

𝑐𝑛−2
= 𝑒∫ 𝑙𝑛 𝑐𝑛−1𝑑𝑡

𝑥

0 ∗ ∫∗ ∫𝑢(𝑡)𝑑𝑡𝑑𝑡
𝑥

0

𝑥

0
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𝑦∗(𝑛−2)(𝑥)

𝑐𝑛−2
= (𝑐𝑛−1)

𝑥 ∗ ∫∗ ∫𝑢(𝑡)𝑑𝑡𝑑𝑡
𝑥

0

𝑥

0

 

              𝑦∗(𝑛−2)(𝑥) = 𝑐𝑛−2 (𝑐𝑛−1)
𝑥 ∗ ∫∗ ∫𝑢(𝑡)𝑑𝑡𝑑𝑡

𝑥

0

𝑥

0

 

∗ ∫𝑑∗ (
𝑑∗(𝑛−3)𝑦

𝑑𝑥(𝑛−3)
)

𝑥

0

=∗∫[(𝑐𝑛−1)
𝑥. 𝑐𝑛−2]

𝑑𝑡

𝑥

0

∗ ∫∗ ∫∗ ∫𝑢(𝑡)𝑑𝑡𝑑𝑡𝑑𝑡
𝑥

0

𝑥

0

𝑥

0

 

              𝑦∗(𝑛−3)(𝑥) = 𝑐𝑛−3 (𝑐𝑛−2)
𝑥 (𝑐𝑛−1)

𝑥2 ∗ ∫∗ ∫∗ ∫𝑢(𝑡)𝑑𝑡𝑑𝑡𝑑𝑡
𝑥

0

𝑥

0

𝑥

0

 

                                                                        ⋮ 

 𝑦∗ = 𝑐1 (𝑐2)
𝑥 (𝑐3)

𝑥2 …(𝑐𝑛−2)
𝑥(𝑛−3)  (𝑐𝑛−1)

𝑥(𝑛−2) ∗ ∫. . . (𝑛 − 1). . .∗ ∫𝑢(𝑡)𝑑𝑡…𝑑𝑡
𝑥

0

𝑥

0

 

Hence, we get 

𝑦 = 𝑐0 (𝑐1)
𝑥 (𝑐2)

𝑥2 …(𝑐𝑛−1)
𝑥(𝑛−1) ∗ ∫…(𝑛)… ∗ ∫𝑢(𝑡)𝑑𝑡…𝑑𝑡

𝑥

0

𝑥

0

 

If we take into account the above expressions, the multiplicative linear differential equation (12) is 

written as follows 

𝑢(𝑥) [(𝑐𝑛−1)
𝑎1(𝑥)(∗ ∫𝑢(𝑡)𝑑𝑡

𝑥

0

)

𝑎1(𝑥)

] [(𝑐𝑛−2)
𝑎2(𝑥) (𝑐𝑛−1)

𝑥 𝑎2(𝑥)(∗ ∫∗ ∫𝑢(𝑡)𝑑𝑡𝑑𝑡
𝑥

0

𝑥

0

)

𝑎2(𝑥)

]⋯ 

[(𝑐0)
𝑎𝑛(𝑥) (𝑐1)

𝑥𝑎𝑛(𝑥) (𝑐2)
𝑥2𝑎𝑛(𝑥). … . (𝑐𝑛−1)

𝑥𝑛−1𝑎𝑛(𝑥)     (∗ ∫…(𝑛)…∗ ∫𝑢(𝑡)𝑑𝑡…𝑑𝑡
𝑥

0

𝑥

0

)

𝑎𝑛(𝑥)

] = 𝑓(𝑥) 

𝑢(𝑥) (𝑐0)
𝑎𝑛(𝑥) (𝑐1)

𝑥 𝑎𝑛(𝑥)+𝑎𝑛−1(𝑥)…(𝑐𝑛−1)
𝑥𝑛−1𝑎𝑛(𝑥)+⋯+𝑎1(𝑥)(∗ ∫𝑢(𝑡)𝑑𝑡

𝑥

0

)

𝑎1(𝑥)

(∗ ∫∗ ∫𝑢(𝑡)𝑑𝑡𝑑𝑡
𝑥

0

𝑥

0

)

𝑎2(𝑥)

 …  

(∗ ∫…(𝑛)…∗ ∫𝑢(𝑡)𝑑𝑡…𝑑𝑡
𝑥

0

𝑥

0

)

𝑎𝑛(𝑥)

= 𝑓(𝑥)                                                                                                   (14) 

If we set  

𝑎1(𝑥) + 𝑎2(𝑥) 𝑥 + ⋯+ 𝑎𝑛(𝑥) 𝑥
𝑛−1 = 𝑓𝑛−1(𝑥) 

𝑎2(𝑥) + 𝑎3(𝑥) 𝑥 +⋯+ 𝑎𝑛(𝑥) 𝑥
𝑛−2 = 𝑓𝑛−2(𝑥) 

⋮ 

𝑎𝑛−1(𝑥) + 𝑎𝑛(𝑥) 𝑥 = 𝑓1(𝑥) 

𝑎𝑛(𝑥) = 𝑓0(𝑥) 
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and 

𝐹(𝑥) =
𝑓(𝑥)

(𝑐0)
𝑓0(𝑥) (𝑐1)

𝑓1(𝑥)…(𝑐𝑛−1)
𝑓𝑛−1(𝑥)

   

 

then we can edit the equation (14) in the form as follows  

𝑢(𝑥) (∗ ∫𝑢(𝑡)𝑑𝑡
𝑥

0

)

𝑎1(𝑥)

(∗ ∫∗ ∫𝑢(𝑡)𝑑𝑡𝑑𝑡
𝑥

0

𝑥

0

)

𝑎2(𝑥)

…(∗ ∫…(𝑛)…∗ ∫𝑢(𝑡)𝑑𝑡…𝑑𝑡
𝑥

0

𝑥

0

)

𝑎𝑛(𝑥)

= 𝐹(𝑥) . 

By using Theorem 8, we get  

𝑢(𝑥) (∗ ∫𝑢(𝑡)𝑑𝑡
𝑥

0

)

𝑎1(𝑥)

(∗ ∫[𝑢(𝑡)𝑥−𝑡]𝑑𝑡
𝑥

0

)

𝑎2(𝑥)

…(∗ ∫𝑢(𝑡)
(𝑥−𝑡)𝑛−1

(𝑛−1)!
𝑑𝑡

𝑥

0

)

𝑎𝑛(𝑥)

= 𝐹(𝑥). 

Then we find the equation 

𝑢(𝑥) ∗ ∫(𝑢(𝑡)
[𝑎1(𝑥)+(𝑥−𝑡)𝑎2(𝑥)+⋯+𝑎𝑛(𝑥)

(𝑥−𝑡)𝑛−1

(𝑛−1)!
]
)

𝑑𝑡𝑥

0

= 𝐹(𝑥). 

If we put  𝐾(𝑥, 𝑡) = 𝑎1(𝑥) + (𝑥 − 𝑡)𝑎2(𝑥) + ⋯+ 𝑎𝑛(𝑥)
(𝑥−𝑡)𝑛−1

(𝑛−1)!
 as the kernel function, then the 

equation (12) is turned into  

𝑢(𝑥) ∗ ∫𝑢(𝑡)𝐾(𝑥,𝑡)
𝑑𝑡

𝑥

0

= 𝐹(𝑥) 

which is a MVIE of the second kind. 

 

Example 4. Form a multiplicative Volterra integral equation corresponding to the multiplicative 

differential equation   
𝑑∗2𝑦(𝑥)

𝑑𝑥(2)
= 𝑦(𝑥)𝑐𝑜𝑠𝑥  with the initial conditions 𝑦(0) = 1, 𝑦∗(0) = 1. 

Solution. Let 
𝑑∗2𝑦(𝑥)

𝑑𝑥(2)
= 𝑢(𝑥). Then we write 

∗ ∫𝑑∗𝑦∗
𝑥

0

=∗∫𝑢(𝑡)𝑑𝑡
𝑥

0

 

𝑦∗(𝑥)

𝑦∗(0)
=∗ ∫𝑢(𝑡)𝑑𝑡

𝑥

0

 

𝑦∗(𝑥) =∗ ∫𝑢(𝑡)𝑑𝑡
𝑥

0

. 

Therefore we find 

∗ ∫𝑦∗(𝑡)𝑑𝑡
𝑥

0

=∗∫∗ ∫𝑢(𝑡)𝑑𝑡
𝑥

0

𝑥

0
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𝑦(𝑥)

𝑦(0)
=∗ ∫∗ ∫𝑢(𝑡)𝑑𝑡

𝑥

0

𝑥

0

 

𝑦(𝑥) =∗ ∫[𝑢(𝑡)(𝑥−𝑡)]
𝑑𝑡

𝑥

0

 

If we replace the equation 𝑦(𝑥) =∗ ∫ [𝑢(𝑡)(𝑥−𝑡)]
𝑑𝑡𝑥

0
 into the given multiplicative differential equation, 

we obtain 𝑢(𝑥) =∗ ∫ [𝑢(𝑡)𝑐𝑜𝑠 𝑥 (𝑥−𝑡)]
𝑑𝑡𝑥

0
. 

 

4. Conclusion 

 
In this paper, the multiplicative Voltterra integral equation is defined by using the concept of 

multiplicative integral. The solution of multiplicative Volterra integral equation is obtained with the 

successive approximations method. The multiplicative Leibniz formula is proved and the multiplicative 

Volterra integral equation is converted to a multiplicative differential equation by aid of multiplicative 

Leibniz formula. The multiplicative linear differential equation with constant or variable exponentials 

is converted to a multiplicative Volterra integral equation is proved. 
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Abstract 

In this paper, we investigate general properties and basic concepts of circular inversions 

in the maximum plane. We delve into cross-ratio and harmonic conjugates under 

maximum circular inversion. Furthermore, we illustrated figures related to inversions 

obtained in the maximum plane via Mathematica. 

Keywords: Inversion; maximum metric; cross-ratio; harmonic conjugates.  

 

1. Introduction 

Whatever we are working on these days, we think according to Euclidean geometry. Especially 

considering the distance between two points, the first thing that comes to mind is the Euclidean metric 

and its distance function. There are so many useful metrics for measuring distance. One of them is the 

maximum metric which is defined in maximum metric geometry.  In [5], the maximum metric is defined 

as follows. 

 

Definition 1.1. 𝑋 = (𝑥1, 𝑦1) and  𝑌 = (𝑥2, 𝑦2) are two points in the Cartesian plane, the maximum 

metric distance is given by 

 

                   𝑑𝑀(𝑋, 𝑌) = max⁡{|𝑥2 − 𝑥1|, |𝑦2 − 𝑦1|}.                       (1) 

 

We use this distance function to define circular inversion in the maximum plane. Inversion in 

geometry is a transformation, that is not an isometry and not even an affine transformation. Inversions 

have the property that they transform certain circles in lines and that they preserve the angles. According 

to [5], inversion, which is a kind of study of transformations in the Euclidean plane, is also called 

“circular inversion” since it is defined on a circle. Inversion can be thought of as a reflection in the 

circle. Inversion can map the circle into the circle, circle into the line, or line into the circle. It is possible 

to apply inversion which has different transformation examples from subjects previously studied, to the 

solution of many problems in geometry. For more details about concepts and properties of inversions in 

different planes, see [1], [2] and [4]. 

 

In this paper, we define an inversion in the maximum plane. After giving the definition, we 

examine basic concepts and general properties of circular inversions in this plane. Cross-ratio and 

harmonic conjugates under maximum circular inversion are also studied. Moreover, we draw figures 

related to the properties of inversions that we obtained during this study.  
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2. Basic Concepts 

In this section, we briefly mention some basic concepts. By the maximum metric ⁡𝑑𝑀 , the 

shortest path between the points 𝑃1 and 𝑃2 is a line segment that is parallel to a coordinate axis. 

 

Proposition 2.1. Every Euclidean translation preserves the distance in the maximum plane. Thence, 

each of them is an isometry in ℝ𝑀
2 . 

 

Proposition 2.2. Let  𝑑𝐸 denote the Euclidean distance function and 𝑙 be the line passing through the 

points 𝑃1 and 𝑃2 in the analytical plane. If 𝑙 has the slope 𝑚, then 

 

𝑑𝑀(𝑃1, 𝑃2) =
𝑚𝑎𝑥{1,|𝑚|}

√1+𝑚2
𝑑𝐸(𝑃1, 𝑃2).                                                        (2) 

 

Proposition 2.2 states that 𝑑𝑀-distance along any line is a positive constant multiple of Euclidean 

distance along the same line.  

 

Corollary 2.3. Let 𝑃1, 𝑃2 and 𝑋 be three collinear points in ℝ2. Then, 𝑑𝐸(𝑃1, 𝑋) = 𝑑𝐸(𝑃2, 𝑋) if and 

only if 𝑑𝑀(𝑃1, 𝑋) = 𝑑𝑀(𝑃2, 𝑋). 

 

Corollary 2.4. Let 𝑃1, 𝑃2 and 𝑋 be three distinct collinear points in ℝ2. Then,  

 

𝑑𝐸(𝑃1, 𝑋)/𝑑𝐸(𝑃2, 𝑋) = 𝑑𝑀(𝑃1, 𝑋)/𝑑𝑀(𝑃2, 𝑋).                                                (3) 

 

That is the ratios of the Euclidean and 𝑑𝑀-distance along a line are the same. 

 

Definition 2.5. Let 𝒞 be a circle centered at a point 𝑂 with radius 𝑟. If 𝑃 is any point other than 𝑂, the 

inverse of 𝑃 with respect to⁡𝒞 is the point 𝑃′ on the ray 𝑂𝑃⃗⃗⃗⃗  ⃗ such that the product of the distances of 𝑃 

and 𝑃′ from 𝑂 is equal to 𝑟2 , that is 

 

𝑑𝐸(𝑂, 𝑃). 𝑑𝐸(𝑂, 𝑃′) = 𝑟2,                                                       (4) 

see [3]. 

 

Clearly, if 𝑃′ is the inverse point of 𝑃, then 𝑃 is the inverse point of the 𝑃′. Note that if 𝑃 is in the interior 

of 𝒞, 𝑃′ is exterior to 𝒞; and vice-versa. So, the interior of 𝒞 except for 𝑂 is mapped to the exterior and 

the exterior to the interior. 𝒞 itself is left by the inversion pointwise fixed. 𝑂 has no image, and no point 

of the plane is mapped to 𝑂. However, points close to 𝑂 are mapped to points far from 𝑂, and points far 

from 𝑂 mapped to points close to 𝑂. By adjoining one “ideal point”, or “point at infinity”, to the 

Euclidean plane, we can include 𝑂 in the domain and range of an inversion. 

 

Now in ℝ𝑀
2 , the definition of inversion with respect to a 𝑀-circle (maximum circle) can be given as 

follows. 

 

Definition 2.6. Let 𝒞 be a 𝑀-circle centered at point 𝑂 with radius 𝑟 in ℝ𝑀
2 , and 𝑃∞ be the ideal point 

adjoined to the maximum plane. In ℝ𝑀
2 , the maximum circular inversion with respect to 𝒞 is the 

transformation  

𝐼𝑀(𝑂, 𝑟):⁡ℝ𝑀
2 ∪ {𝑃∞} → ℝ𝑀

2 ∪ {𝑃∞} 
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given by 

                                     𝑑𝑀(𝑂, 𝑃). 𝑑𝑀(𝑂, 𝑃′) = 𝑟2,                                                   (5) 

 

where 𝐼𝑀(𝑂, 𝑟)(𝑂) = 𝑃∞, 𝐼𝑀(𝑂, 𝑟)(𝑃∞) = 𝑂 ,  𝐼𝑀(𝑂, 𝑟)(𝑃) = 𝑃′ for 𝑃 ≠ 0 and P' is on the ray 𝑂𝑃⃗⃗⃗⃗  ⃗. 

 

Lemma 2.7. Let 𝒞 be the 𝑀-circle which is centered at the origin and the radius is r. If  the point P is in 

the interior of 𝒞, the point 𝑃′  is in the exterior to 𝒞, and vice-versa.  

 

Proof. Let us consider that the point P is in the interior of 𝒞. Thus,   

 

𝑑𝑀(𝑂, 𝑃) < 𝑟 . 

 

Since 𝑃′ = 𝐼𝑀(𝑂, 𝑟)  and from Equation 5, then it is obtained 

 

𝑟2 = 𝑑𝑀(𝑂, 𝑃). 𝑑𝑀(𝑂, 𝑃′) < 𝑟. 𝑑𝑀(𝑂, 𝑃′)   

and 

𝑑𝑀(𝑂, 𝑃′) > 𝑟. 

 

So, the point⁡𝑃′ is in the exterior of 𝒞. 

 

Proposition 2.8. Let 𝐼𝑀(𝑂, 𝑟) be the maximum circular inversion, with respect to a 𝑀-circle, 𝒞 centered 

at the orijin and the radius is 𝑟 in ℝ𝑀
2 . Therefore, the maximum circular inverse of the point 𝑃 = (𝑥, 𝑦) 

is the point 𝑃′ = (𝑥′, 𝑦′), whose coordinates are 

 

                                             𝑥′ =
𝑟2𝑥

(max{|𝑥|,|𝑦|})2
  , 𝑦′ =

𝑟2𝑦

(max{|𝑥|,|𝑦|})2
 .         (6) 

 

Proof. The 𝑀-circle 𝒞, which is centered at the origin and has the radius 𝑟, is the set of points satisfies 

the equation max{|𝑥|, |𝑦|} = 𝑟. Let 𝑃 = (𝑥, 𝑦) and 𝑃′ = (𝑥′, 𝑦′) are inverse points with respect to 𝒞. 

Since the points 𝑂, 𝑃 and 𝑃′ are collinear and the rays 𝑂𝑃⃗⃗⃗⃗  ⃗ and 𝑂𝑃′⃗⃗⃗⃗⃗⃗  ⃗ have the same direction, then 

𝑂𝑃′⃗⃗⃗⃗⃗⃗  ⃗ = 𝑘. 𝑂𝑃⃗⃗ ⃗⃗  ⃗ for 𝑘 ∈ ℝ+, and (𝑥′, 𝑦′) = (𝑘𝑥, 𝑘𝑦).  Using by 𝑑𝑀(𝑂, 𝑃). 𝑑𝑀(𝑂, 𝑃′) = 𝑟2 , 𝑘 =
𝑟2

(max{|𝑥|,|𝑦|})2
 is obtained and by substituting the obtained value of 𝑘, the required results are obtained. 

Note that, if the point 𝑃′ is inverse of 𝑃, then 𝑃 is the inverse of 𝑃′.  As a result of this, the equivalent 

form would be written as 

  

                                                  𝑥 =
𝑟2𝑥′

(max{|𝑥′|,|𝑦′|})2
  , 𝑦 =

𝑟2𝑦′

(max{|𝑥′|,|𝑦′|})2
 .                      (7) 

 

Corollary 2.6. Let 𝐼𝑀(𝑂′, 𝑟) be the maximum circular inversion, with respect to a 𝑀-circle centered at 

𝑂′ = (𝑎, 𝑏) and the radius is 𝑟 in ℝ𝑀
2 , then the maximum circular inverse of the point 𝑃 = (𝑥, 𝑦) is the 

point 𝑃′ = (𝑥′, 𝑦′), whose coordinates are 

 

                                𝑥′ = 𝑎 +
𝑟2(𝑥−𝑎)

(max{|𝑥−𝑎|,|𝑦−𝑏|})2
  , 𝑦′ = 𝑏 +

𝑟2(𝑦−𝑏)

(max{|𝑥−𝑎|,|𝑦−𝑏|})2
 .                     (8) 

 

Proof. The proof is obvious by the fact that all translations are isometries of the maximum plane.  
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Remark 2.7.  It is clear that the interior of 𝒞𝑀 , except the center O, is mapped to the exterior and 

exterior to the interior under maximum circular inversion. 

 

3.      Circular Inversions in ℝ𝑴
𝟐  

 

In this section, the results and the definitions obtained by maximum circular inversion are given. 

First, inversions of lines and circles according to their positions in ℝ𝑀
2  are investigated.  In addition, 

properties of inversions in the Euclidean and the Maximum planes are compared. First, the following 

properties of inversion in the Euclidean plane, which are well known, will be given as: 

 

i. The inverse of a line through the center of inversion is the line itself. 

ii. The inverse of a line not passing through the center of inversion is a circle passing through the 

center of inversion and conversely. 

iii. The inverse of a circle not passing through the center of inversion is a circle not passing through 

the center of inversion.  

iv. Circles with center of inversion are mapped into circles with center of inversion. 

 

 All of the properties of inversion in the Euclidean space which are given above are not valid in 

the maximum plane. We now give the theorem to show which properties given above are satisfied or 

not in the maximum plane. 

 

Theorem 3.1. 

 

i. Lines passing through the center 𝑂 are mapped onto themselves under the maximum circular 

inversion 𝐼𝑀(𝑂, 𝑟). 

ii. Lines not containing the center of the maximum circular inversion circle are not mapped onto 

maximum circles centered 𝑂 under the maximum circular inversion 𝐼𝑀(𝑂, 𝑟). 

iii. Maximum circles centered 𝑂 are mapped onto maximum circles with the center 𝑂 under the 

maximum circular inversion 𝐼𝑀(𝑂, 𝑟).  

iv. Maximum circles not through 𝑂 are not mapped onto any maximum circles under the maximum 

circular inversion 𝐼𝑀(𝑂, 𝑟).  

v. Maximum circles containing the center of inversion circle are not mapped onto straight lines 

not containing the center 𝑂 under the maximum circular inversion 𝐼𝑀(𝑂, 𝑟). 

 

Proof.  By examining all possible cases the properties in the Theorem 3.1. are obtained. 

For i. and ii. ⁡let 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 be a line in the maximum plane. By using Equation 7, it is acquired 

that 

𝑎𝑥′𝑟2

(max{|𝑥′|,|𝑦′|})2
+

𝑏𝑦′𝑟2

(max{|𝑥′|,|𝑦′|})2
+ 𝑐 = 0.                                        (9) 

 

 

Thus, it can be written as 

 

                                    𝑎𝑥′𝑟2 + 𝑏𝑦′𝑟2 + 𝑐(max{|𝑥′|, |𝑦′|})2 = 0.                                        (10) 

 

 

Now, Equation 10 would be considered under cases which are given below:  
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Case 1.   If  |𝑥′| ≥ |𝑦′|, then 𝑐(𝑥′)2 + 𝑎𝑟2𝑥′ + 𝑏𝑟2𝑦′ = 0. 

 

 1.1. If 𝑐 = 0, the inverse of the line 𝑎𝑥 + 𝑏𝑦 = 0 is ⁡𝑎𝑥′ + 𝑏𝑦′ = 0 that means both lines are the 

same.  

1.2. If 𝑐 ≠ 0, 𝑎 = 0, the inverse of the line 𝑏𝑦 + 𝑐 = 0 is the parabola 𝑐(𝑥′)2 + 𝑏𝑟2𝑦′ = 0  

             1.3. If 𝑐 ≠ 0, 𝑏 = 0, the inverse of the line 𝑎𝑥 + 𝑐 = 0 is the line 𝑥′ = 0⁡⁡⁡or 𝑥′ =⁡⁡
−𝑎𝑟2

𝑐
⁡.⁡ 

             1.4. If 𝑐 ≠ 0, 𝑎 ≠ 0⁡and 𝑏 ≠ 0, the inverse of the line 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 is the parabola 𝑐(𝑥′)2 +

𝑎𝑟2𝑥′ + 𝑏𝑟2𝑦′ = 0 . 

 

Case 2.   If  |𝑦′| ≥ |𝑥′|,  then  𝑐(𝑦′)2 + 𝑏𝑟2𝑦′ + 𝑎𝑟2𝑥′ = 0. 

 2.1. If 𝑐 = 0, 𝑎 ≠ 0⁡and 𝑏 ≠ 0, the inverse of the line 𝑎𝑥 + 𝑏𝑦 = 0 is ⁡𝑎𝑥′ + 𝑏𝑦′ = 0 which 

means both lines are the same. 

 2.2. If 𝑐 ≠ 0, 𝑎 = 0, the inverse of the line 𝑏𝑦 + 𝑐 = 0 is the line 𝑦′ = 0⁡⁡⁡or 

⁡𝑦′ =
−𝑏𝑟2

𝑐
 . 

 2.3. If 𝑐 ≠ 0, 𝑏 = 0, the inverse of the line 𝑎𝑥 + 𝑐 = 0 is the parabola⁡𝑐(𝑦′)2 + 𝑎𝑟2𝑥′ = 0 . 

 2.4. If 𝑐 ≠ 0, 𝑎 ≠ 0⁡and 𝑏 ≠ 0, the inverse of the line 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 is the 

parabola⁡⁡⁡𝑐(𝑦′)2 + 𝑏𝑟2𝑦′ + 𝑎𝑟2𝑥′ = 0.  

 

 
 

Figure 1. A line not passing through 𝑂 isn’t mapped onto a maximum circle with center 𝑂  

 

 

For iii. let max{|𝑥|, |𝑦|} = 𝑟1 be the radius of the circle 𝒞′ whose center is the same with 𝒞 the 

maximum circular inversion circle. The inversion of this circle respect to 𝒞 is  

 

max {|
|𝑥′|𝑟2

(max{|𝑥′|,|𝑦′|})2
| , |

|𝑦′|𝑟2

(max{|𝑥′|,|𝑦′|})2
|⁡} = 𝑟1                                    (11) 

 

and 

 

max{|𝑥′|, |𝑦′|} =
𝑟2

𝑟1
= 𝑟2.                                                     (12) 
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Figure 2. A maximum circle centered 𝑂 is mapped onto a maximum circle with center 𝑂. 

 

The other properties would be obtained similarly by using the definition of the maximum circular 

inversion and Proposition 2.8. 

 

4. The Cross Ratio and Harmonic Conjugates in ℝ𝑴
𝟐  

 

The inversion in maximum plane is not an isometry. Thence, the distance is not preserved under 

maximum circular inversion. However, related to the concept of the distance, it can be shown that the 

cross-ratio is preserved under maximum circular inversion. Thus, in this section, the cross-ratio and 

harmonic conjugates in ℝ𝑀
2  are investigated.  

 

Proposition 4.1.  Let 𝑃, 𝑄 and 𝑂 be three different collinear points in ℝ𝑀
2 . If  𝑃′ and 𝑄′ are inverses of 

𝑃 and 𝑄 respectively with respect to the maximum inversion circle 𝐼𝑀(𝑂, 𝑟), then  

 

⁡⁡𝑑𝑀(𝑃′, 𝑄′) =
𝑟2𝑑𝑀(𝑃,𝑄)

𝑑𝑀(𝑂,𝑃).𝑑𝑀(𝑂,𝑄)
                                               (13) 

is obtained. 

 

Proof. Let 𝑃, 𝑄 and 𝑂 be three different collinear points, 𝑃 = (𝑥1, 𝑦1), 𝑄 = (𝑥2, 𝑦2), 𝑃′ = (𝑥′1, 𝑦′1) and 

𝑄′ = (𝑥′2, 𝑦′2). Note that inverse points 𝑃′ and 𝑄′ lies on the same line l with P, Q and O. If the slope 

of line l is m, then two cases would be considered; |𝑚| ≥ 1 and |𝑚| ≤ 1. 

 

 If |𝑚| ≥ 1, then  

 

⁡⁡⁡𝑑𝑀(𝑃′, 𝑄′) = max⁡{|𝑥2′ − 𝑥1′|, |𝑦2′ − 𝑦1′|}. 

 

     =max{|
𝑟2.𝑥2

(max{|𝑥2|,|𝑦2|})
2 −

𝑟2.𝑥1

(max{|𝑥1|,|𝑦1|})
2| , |

𝑟2.𝑦2

(max{|𝑥2|,|𝑦2|})
2 −

𝑟2.𝑦1

(max{|𝑥1|,|𝑦1|})
2|}⁡ 

 

         =max{|
𝑟2.𝑥2

(𝑦2)
2 −

𝑟2.𝑥1

(𝑦1)
2| , |

𝑟2

𝑦2
−

𝑟2

𝑦1
|⁡}   

 

           = |
𝑟2

𝑦2
−

𝑟2

𝑦1
| = 

𝑟2|𝑦1−𝑦2|

|𝑦1||𝑦2|
 

 

                                =⁡⁡
𝑟2𝑑𝑀(𝑃,𝑄)

𝑑𝑀(𝑂,𝑃).𝑑𝑀(𝑂,𝑄)
                                                                                    (14) 

is acquired. 

𝒞 

𝒞′ 
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The case |𝑚| ≤ 1 can be easily shown with a similar method. 

 

If 𝑃, 𝑄 and 𝑂 are not collinear, then the equality in Proposition 3.2.1 is not valid for all 𝑃, 𝑄 in ℝ𝑀
2 . 

For example, let 𝑂 = (0,0), 𝑃 = (−1,1) and 𝑄 = (1,2) and the radius is 𝑟 = 2. The inversion 𝐼𝑀(𝑂, 2) 

maps P and Q onto 𝑃′ = (−4,4) and 𝑄′ = (1,2), respectively. Then, it can be easily computed that 

𝑑𝑀(𝑃, 𝑄) = 2,  𝑑𝑀(𝑃′, 𝑄′) = 5, 𝑑𝑀(𝑂, 𝑃) = 1 and 𝑑𝑀(𝑂, 𝑄) = 2. So, the equality in Proposition 4.1 is 

obviously not valid for every points in ℝ𝑀
2 . However, the following two propositions show some 

conditions that the equality in Proposition 4.1 is satisfied. 

 

Proposition 4.2.  Let 𝒞 be the maximum inversion circle which is centered at origin and the radius is r. 

Let P, Q and O be any three distinct non-collinear points in ℝ𝑀
2 . If 𝑃′ and 𝑄′  are inverses of 𝑃 and 𝑄 

respectively and 𝑃 and 𝑄 lie on the lines with slope {0,∞} or {1, −1} passing through the origin, then  

 

𝑑𝑀(𝑃′, 𝑄′) =
𝑟2𝑑𝑀(𝑃,𝑄)

𝑑𝑀(𝑂,𝑃).𝑑𝑀(𝑂,𝑄)
                                                     (15) 

 

is obtained. 

Proof.  Note that 𝑃 = (𝑝, 0) and 𝑄 = (0, 𝑞) are mapped to 𝑃′ = (
𝑟2

𝑝
, 0) and 𝑄′ = (0,

𝑟2

𝑞
) or 𝑃 = (𝑝,−𝑝) 

and 𝑄 = (𝑞, 𝑞) are mapped to 𝑃′ = (
𝑟2

𝑝
,
−𝑟2

𝑝
) and 𝑄′ = (

𝑟2

𝑞
,
𝑟2

𝑞
). So, it can be easily shown that  

 

 𝑑𝑀(𝑃′, 𝑄′) =
𝑟2𝑑𝑀(𝑃,𝑄)

𝑑𝑀(𝑂,𝑃).𝑑𝑀(𝑂,𝑄)
.                                                     (16)      

 

Proposition 4.3. Let 𝒞 be the maximum inversion circle which is centered at origin and the radius is r 

and let 𝑃, 𝑄 and 𝑂 be any three distinct non-collinear points in ℝ𝑀
2 . If the slope of the line passing 

through 𝑃 and 𝑄 is 1 and  𝑥𝑃𝑦𝑄 + 𝑦𝑃𝑥𝑄 = 0 where 𝑃 = (𝑥𝑃 , 𝑦𝑃) and 𝑄 = (𝑥𝑄 , 𝑦𝑄), then  

 

𝑑𝑀(𝑃′, 𝑄′) =
𝑟2𝑑𝑀(𝑃,𝑄)

𝑑𝑀(𝑂,𝑃).𝑑𝑀(𝑂,𝑄)
.                                                     (17) 

 

Proof.  Let the line passing through 𝑃 and 𝑄 be 𝑙: 𝑦 = 𝑥 + 𝑐. Note that 𝑃 = (𝑝, 𝑝 + 𝑐) and 𝑄 =

(𝑞, 𝑞 + 𝑐) are mapped to 𝑃′ = (
𝑟2

𝑝
,
(𝑝+𝑐)𝑟2

𝑝
) and 𝑄′ = (

𝑟2

𝑞
,
(𝑞+𝑐)𝑟2

𝑞
) respectively. Therefore, it can be 

easily shown that 

 

  𝑑𝑀(𝑃′, 𝑄′) =
𝑟2𝑑𝑀(𝑃,𝑄)

𝑑𝑀(𝑂,𝑃).𝑑𝑀(𝑂,𝑄)
 .                                                   (18) 

 

Let 𝑑𝑀[𝑃𝑄] denotes the maximum directed distance from 𝑃 to 𝑄 along a line in the maximum plane. If 

the ray with initial point 𝑃 containing 𝑄 has the positive direction of orientation, then 𝑑𝑀[𝑃𝑄] =

𝑑𝑀(𝑃, 𝑄). If the ray has the opposite direction, then 𝑑𝑀[𝑃𝑄] = −𝑑𝑀(𝑃, 𝑄). 

 

Now let 𝑃, 𝑄, 𝑅 and 𝑆 are four distinct points on an oriented line in the maximum plane. Therefore, their 

maximum cross ratio (𝑃𝑄, 𝑅𝑆)𝑀 is defined by  

 

(𝑃𝑄, 𝑅𝑆)𝑀 =
𝑑𝑀[𝑃𝑅]𝑑𝑀[𝑄𝑆]

𝑑𝑀[𝑃𝑆]𝑑𝑀[𝑄𝑅]
.                                                    (19) 
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Note that the maximum cross ratio is positive if both 𝑅 and 𝑆 are between 𝑃 and 𝑄 or if neither 𝑅 nor 𝑆 

is between 𝑃 and 𝑄, whereas the cross ratio is negative if pairs {𝑃, 𝑄} and {𝑅, 𝑆} seperate each other. 

Also a maximum circular inversion with respect to 𝒞 centered at origin which is different from 𝑃, 𝑄, 𝑅 

and 𝑆 preserve the maximum cross ratio. 

 

Theorem 4.4. The maximum circular inversion preserves the maximum cross ratio. 

 

Proof. Suppose that 𝑃, 𝑄, 𝑅 and 𝑆 are four collinear points in the maximum plane. Let 𝑃′, 𝑄′, 𝑅′ and 𝑆′ 

be inverse points of 𝑃, 𝑄, 𝑅 and 𝑆 respectively according to the maximum circular inversion 𝐼𝑀(𝑂, 𝑟). 

Note that maximum circular inversion preserves the seperation or non-seperation of the pairs {𝑃, 𝑄} and 

{𝑅, 𝑆} and also it reverses the maximum-directed distance from the point 𝑃 to the point 𝑄 along a line 𝑙 

to maximum-directed distance from the point 𝑄′ to the point 𝑃′. The required result follows from 

Proposition 4.1 as  

 

(𝑃′𝑄′, 𝑅′𝑆′)𝑀 =
𝑑𝑀(𝑃′, 𝑅′)𝑑𝑀(𝑄′𝑆′)

𝑑𝑀(𝑃′𝑆′)𝑑𝑀(𝑄′𝑅′)
 

 

                                =

𝑟2𝑑𝑀(𝑃,𝑅)

𝑑𝑀(𝑂,𝑃)𝑑𝑀(𝑂,𝑅)
.

𝑟2𝑑𝑀(𝑄,𝑆)

𝑑𝑀(𝑂,𝑄)𝑑𝑀(𝑂,𝑆)

𝑟2𝑑𝑀(𝑃,𝑆)

𝑑𝑀(𝑂,𝑃)𝑑𝑀(𝑂,𝑆)
.

𝑟2𝑑𝑀(𝑄,𝑅)

𝑑𝑀(𝑂,𝑄)𝑑𝑀(𝑂,𝑅)

 

 

                                                                      =
𝑑𝑀(𝑃,𝑅)𝑑𝑀(𝑄,𝑆)

𝑑𝑀(𝑃,𝑆)𝑑𝑀(𝑄,𝑅)
 

 

= (𝑃𝑄, 𝑅𝑆)𝑀.                                                    (20) 

 

Let 𝑙 be a line in ℝ𝑀
2 . Suppose that 𝑃, 𝑄, 𝑅 and 𝑆 are four points on 𝑙. It is called that 𝑃, 𝑄, 𝑅 and 𝑆 form 

a harmonic set if (𝑃𝑄, 𝑅𝑆)𝑀 = −1, and it is denoted by 𝐻(𝑃𝑄, 𝑅𝑆)𝑀. That is, any pair 𝑅 and 𝑆 on 𝑙 for 

which  

 

⁡⁡
𝑑𝑀[𝑃𝑅]𝑑𝑀[𝑄𝑆]

𝑑𝑀[𝑃𝑆]𝑑𝑀[𝑄𝑅]
= −1                                                     (21) 

 

is said to divide 𝑃 and 𝑄 harmonically. The points 𝑅 and 𝑆 are called maximum harmonic conjugates 

with respect to 𝑃 and 𝑄. 

 

Theorem 4.5. Let 𝒞 be a maximum circle with center 𝑂, and line segment [𝑃𝑄] a diameter of 𝒞 in ℝ𝑀
2 . 

Let 𝑅 and 𝑆 be distinct points of the ray 𝑂𝑃⃗⃗⃗⃗  ⃗, which divide the segment [𝑃𝑄] internally and externally. 

Thus, 𝑅 and 𝑆 are maximum harmonic conjugates with respect to 𝑃 and 𝑄 if and only if 𝑅 and 𝑆 are 

inverse points with respect to the maximum circular inversion 𝐼𝑀(𝑂, 𝑟). 

 

Proof. Let 𝑅 and 𝑆 are maximum harmonic conjugates with respect to 𝑃 and 𝑄. Then, 

 

⁡(𝑃𝑄, 𝑅𝑆)𝑀 = −1 ⇒
𝑑𝑀[𝑃𝑅]𝑑𝑀[𝑄𝑆]

𝑑𝑀[𝑃𝑆]𝑑𝑀[𝑄𝑅]
= −1.⁡⁡                                       (22) 

 

Since 𝑅 divides the line segment [𝑃𝑄] internally and 𝑅 is on the ray 𝑂𝑄⃗⃗⃗⃗⃗⃗ , 
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𝑑𝑀(𝑅, 𝑄) = 𝑟 − 𝑑𝑀(𝑂, 𝑅)  and  𝑑𝑀(𝑃, 𝑅) = 𝑟 + 𝑑𝑀(𝑂, 𝑅).                            (23) 

 

Since 𝑆 divides the line segment [𝑃𝑄] externally and 𝑆 is on the ray 𝑂𝑄⃗⃗⃗⃗⃗⃗ , it is obtained that 

 

𝑑𝑀(𝑃, 𝑆) = 𝑟 + 𝑑𝑀(𝑂, 𝑆) and 𝑑𝑀(𝑄, 𝑆) = 𝑑𝑀(𝑂, 𝑆) − 𝑟.                              (24) 

 

Thus, 

(𝑟+𝑑𝑀(𝑂,𝑅))(𝑑𝑀(𝑂,𝑆)−𝑟)

(𝑟+𝑑𝑀(𝑂,𝑆))(𝑟−𝑑𝑀(𝑂,𝑅))
= −1                                                (25) 

 

⟹ (𝑟 + 𝑑𝑀(𝑂, 𝑅))(𝑑𝑀(𝑂, 𝑆) − 𝑟) = (𝑟 + 𝑑𝑀(𝑂, 𝑆))(𝑑𝑀(𝑂, 𝑅) − 𝑟).                   (26) 

 

By simplifying the last equality, 𝑑𝑀(𝑂, 𝑅). 𝑑𝑀(𝑂, 𝑆) = 𝑟2 is obtained. Then, 𝑅 and 𝑆 are the maximum 

inverse points with respect to the maximum circular inversion 𝐼𝑀(𝑂, 𝑟). For the other condition (𝑆 and 

𝑅 are on the ray 𝑂𝑃⃗⃗⃗⃗  ⃗ ) with similar calculations, the same conclusion is obtained. Conversely, if 𝑅 and 𝑆 

are maximum inverse points with respect to the maximum circular inversion 𝐼𝑀(𝑂, 𝑟), it can be proven 

with a similar method. 

 

Conclusions 
 

Inversions are not isometries. They transform distances and angles. We examine the way 

inversions transform the distance in the Maximum plane. We investigate general properties and basic 

concepts of circular inversions by means of maximum metric. We delve into cross-ratio and harmonic 

conjugates under maximum circular inversion. In addition, via Mathematica, we illustrated figures 

related to results we acquired. Drawing their figures reinforce the visualization of the results. Within the 

knowledge of the maximum metric is the special case of the alpha metric, which is mentioned in [4], we 

study the maximum circular inversions by examining the special cases in detail. Thence, it is expected 

to contribute to the literature on inversions. 
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1 Introduction

The notion of near sets has been given by Peters [1, 2] and the concept of soft theory has been given
by Molodtsov [4]. Then it was studied by many scientists [3, 4, 5, 6, 7]. The de�nition of soft element
given by Wardowski[8] with a binary operation on the set of all nonempty soft elements of a given
soft set. Then J.Ghosh[9, 10] de�nes soft groupoid based on the set of soft elements. In the rough
set theory, which is another concept, the concepts of group and groupoid have been studied[11, 12].
Feng and Li [5] have investigated the problem of combining soft sets with rough sets, and introduced
the notion of rough soft sets. Afterwards, Tasbozan [13, 14]combine near sets approach with soft set
theory and introduced the notion of near soft sets. In this paper, we introduce the concept of near
soft element and de�ne near soft groupoid using the near soft element with a binary operation on the
set of all nonempty near soft elements of a given near soft set.

2 Preliminary

In this section, we recall some descriptions and results presented and discussed in [13]. Also, we
present the concepts of near soft sets, their fundamental properties, and operations such as near soft
point, near soft elements. Then we de�ne a binary composition on near soft sets and this form is
called near soft groupoid over near soft set.

A nearness approximation space (NAS) is denoted by NAS = (O;F;�Br ; Nr; �Nr) which is de-
�ned with a set of perceived objects O, a set of probe functions F representing object features, an
indiscernibility relation �Br= f(x; x

0
) 2 O�Oj8i 2 Br; i(x) = i(x

0
)g de�ned relative to Br � B � F ,

a collection of partitions (families of neighbourhoods) Nr(B), and a neighbourhood overlap function
Nr . The relation �Br is the usual indiscernibility relation from rough set theory restricted to a subset
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Br � B. The subscript r denotes the cardinality of the restricted subset Br, where we consider
�jBj
r

�
,

i.e., jBj functions i 2 F taken r at a time to de�ne the relation �Br .This relation de�nes a partition
of O into non-empty, pairwise disjoint subsets that are equivalence classes denoted by [x]Br , where
[x]Br = fx0 2 Ojx �Br x

0g. These classes contitue a new set called the quotient set O� �Br , where
O� �Br= f[x]Br jx 2 Og. And the overlap function vNr is de�ned by vNr : P (O) � P (O) ! [0; 1],
where P (O) is the powerset of O.

De�nition 1 Let NAS = (O;F;�Br; Nr; �Nr) be a nearness approximation space and � = (F;B)
be a soft set over O . The lower and upper near approximation of � = (F;B) with respect to NAS
are denoted by Nr � (�) = (F�; B) and N�

r (�) = (F
�; B), which are soft sets over with the set-valued

mappings given by
F�(�) = Nr � (F (�))=[fx 2 O : [x]Br � F (�)g and
F �(�) = N�

r (F (�))=[fx 2 O : [x]Br \ F (�) 6= ;g where all � 2 B: The operators Nr� and N�
r are

called the lower and upper near approximation operators on soft sets, respectively. If BndNr(B)(�) > 0
, then the soft set � is called a near soft set [13].

The collection of all near soft sets on O will be denoted NSS(O):

De�nition 2 Let O be an initial universe set, E be the universe set of parameters and B � E:For a
near soft set (F;B) over O , the set

Supp(F;B) = f� 2 B : F (�) 6= ;g

is called the support of the near soft set (F;B):

1. A near soft set (F;B) is called non-null near soft set (with respect to the parameters of B) if
Supp(F;B) 6= ;: Otherwise (F;B) is called null near soft set.

2. A near soft set (F;B) is called full null near soft set if Supp(F;B) = B: A collection of all full
near soft sets on O will be denoted by NSf (O):

De�nition 3 Let O be an initial universe set, E be the universe set of parameters and B � E and
(F;B) 2 NSS(O): We say that (�; fxkg) is a nonempty near soft element of (F;B) if � 2 B and
xk 2 F (�): The pair (�; ;); where � 2 B will be called an empty near soft element of (F;B). Then
(�; fxkg) is a near soft element of (F;B) and denoted by FB.

Example 4 Let X = fx1; x2; x3g � O = fx1; x2; x3; x4; x5g; B = f�1; �2g � F = f�1; �2; �3g denote
a set of perceptual objects and a set of functions respectively. Let (F;B) = � de�ned by (F;B) =
f(�1; fx1; x2g); (�2; fx3g)g: For r = 1

[x1]�1 = fx1; x2g; [x3]�1 = fx3; x4g
[x1]�2 = fx1; x3g; [x2]�2 = fx2; x4g

N�(�) = f(�1; fx1; x2g)g; N�(�) = f(�1; fx1; x2g); (�2; O)g; then � is a near soft set. For r = 2

[x1]�1;�2 = fx1g; [x2]�1;�2 = fx2g; [x3]�1;�2 = fx3g; [x4]�1;�2 = fx4g

N�(�) = f(�1; fx1; x2g); ; (�2; fx3g)g; N�(�) = f(�1; fx1; x2g); ; (�2; fx3g)g; then � is a near soft set.
Hence all the near soft elements of (F;B) are

(�1; fx1g); (�1; fx2g); (�2; fx3g)

Near Soft Groupoid
Let (F; �) and (O; �) be two groupoids, (O; �) be a group with "�" operation, (F; �) be a group

with "�" operation and B � F: Also let (F;B) 2 NSf (O); i.e., (F;B) be a full near soft set on O.,i:e:,
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for each parameter � 2 B; there exists at least one nonempty near soft element of (F;B): We de�ne
a binary composition � on (F;B) by

(�i; fxag) � (�j ; fxbg) = (�i � �j ; fxa � xbg)

for all (�i; fxag); (�j ; fxbg) 2 (F;B): (F;B) is said to be closed under the binary composition � if and
only if (�i � �j ; fxa � xbg) 2 (F;B) for all (�i; fxag); (�j ; fxbg) 2 (F;B) i.e., if and only if �i � �j 2 B
and xa � xb 2 F (�i � �j) for all (�i; fxag); (�j ; fxbg) 2 (F;B):

De�nition 5 If (F;B) is closed under the binary composition �; then the algebraic system ((F;B); �)
is said to be a near soft groupoid over O.

Theorem 6 Let (F;B) 2 NSf (O); then ((F;B); �) forms a near soft groupoid over O if and only if

1. B is a subgroupoid of F i.e., �i � �j 2 B for all �i; �j 2 B

2. for �i; �j 2 B , xa 2 F (�i); xb 2 F (�j) then xa � xb 2 F (�i � �j):

Proof. Suppose ((F;B); �) is a near soft groupoid over (F;O): Let �i; �j 2 B . Since (F;B) 2 NSf (O);
there exist some xa; xb 2 O such that (�i; fxag); (�j ; fxbg) 2 (F;B): Hence (�i; fxag) � (�j ; fxbg) 2
(F;B): This implies (�i � �j ; fxa � xbg) 2 (F;B); �i � �j 2 B and xa � xb 2 F (�i � �j) by de�nition
(near soft element). Therefore B is a subgroupoid of F and for �i; �j 2 B , xa 2 F (�i); xb 2 F (�j)
then xa � xb 2 F (�i � �j): Conversely, suppose that the given two conditions hold. Now let (�i; fxag);
(�j ; fxbg) 2 (F;B): This implies that �i; �j 2 B , xa 2 F (�i); xb 2 F (�j) by hypothesis (1), �i; �j 2 B
then �i � �j 2 B ,by hypothesis (2), xa 2 F (�i); xb 2 F (�j) then xa � xb 2 F (�i � �j): Therefore
(�i � �j ; fxa � xbg) 2 (F;B): So (F;B) is closed under the binary composition �: Hence ((F;B); �)
forms a near soft groupoid over O.

Example 7 Let O = f0; 1; 4; 5g be the set of objects which (O; �) be a group with "�" operation being
multiplication of O integers modulo 4 and F = f�1; �2g be a set of quotient function

�i : O ! O= ��i

�1 : 0! �(0) =
�
0 = f0; 4g

�2 : 1! �(1) =
�
1 = f1; 5g

which (F;+) be a group with "+" operation being addition the classes of residues of integers modulo
4 .

Take B = f�1g � F and de�ne a near soft set � = (F;B) = f�1; f0; 4gg with [0]�1 = f0; 4g; [1]�1 =
f1; 5g;

N�(�) = f�1; f0; 4gg; N�(�) = f�1; f0; 4gg

Hence all the near soft elements of FB are f�1; f0gg; f�1; f4gg: Then the binary composition "�" is
given by

f�i; fxagg � f�j ; fxbgg = f�i + �j ; fxa � xbgg
f�1; f0gg � f�1; f0gg = f�1; f0gg
f�1; f0gg � f�1; f4gg = f�1; f0gg
f�1; f4gg � f�1; f4gg = f�1; f0gg

Hence (FB; �) is a near soft groupoid over O.

De�nition 8 Let (FB; �) be a near soft groupoid over (F;O) where the binary composition � is de�ned.
Then � said to be

1. commutative if (�i; fxag) � (�j ; fxbg) = (�j ; fxbg) � (�i; fxag)
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2. associative if [ (�i; fxag) � (�j ; fxbg)] � (�k; fxcg) = (�i; fxag) � [(�j ; fxbg) � (�k; fxcg)] for all
(�i; fxag); (�j ; fxbg); (�k; fxcg) 2 FB

De�nition 9 A near soft element (�; fxg) 2 FB is said to be a near soft identity element in a near
soft groupoid (FB; �) if for all (�i; fxag) 2 FB

(�; fxg) � (�i; fxag) = (�i; fxag) = (�i; fxag) � (�; fxg)

De�nition 10 Let (FB; �) be a near soft groupoid over (F;O)

1. If the composition � on B and the composition � on O are associative (commutative) then the
composition � on FB is associative (commutative).

2. If FB contains the near soft identity element (�; fxg) then � is the identity element of B and x
is the identity element of [�i2BF (�i):

3. If � is associative then near soft groupoid (FB; �) is called near soft semigroup.

4. If the soft semigroup (FB; �) contains near soft identity element then called near soft monoid.

De�nition 11 Let (FB; �) be a near soft groupoid with near soft identity element (�; fxg): A near
soft element (�i; fxag) 2 FB is said to be invertible if there exists a near soft element (�0i; fx0ag) 2 FB
such that

(�i; fxag) � (�0i; fx0ag) = (�; fxg) = (�0i; fx0ag) � (�i; fxag)
Then (�0i; fx0ag) is called the near soft inverse of (�i; fxag) and denoted by (�i; fxag)�1:

Theorem 12 Let (FB; �) be a near soft groupoid with near soft identity element (�; fxg): If a near
soft element (�i; fxag) 2 FB is invertible then �i is invertible in F and fxag 2 F (�i) is invertible in
O.

Proof. Suppose (�i; fxag) 2 FB is invertible. then there exist a near soft element (�0i; fx0ag) 2 FB
such that

(�i; fxag) � (�0i; fx0ag) = (�; fxg) = (�0i; fx0ag) � (�i; fxag)
(�i � �0i; fxa � x0ag) = (�; fxg) = (�0i � �i; fx0a � xag)

�i � �0i = � = �0i � �i and xa � x0a = x = x0a � xa
Since (�; fxg) is the near soft identity element of FB then � is the identity element of B and x is
the identity element of [�i2BF (�i): Also �i is invertible in B � F and fxag 2 F (�i) is invertible in
[�i2BF (�i) � O.

Remark 13 Converse of this theorem is not necessarily true. In a near soft groupoid (FB; �) with
near soft identity element, if �i is invertible in B and fxag 2 F (�i) is invertible in O then (�i; fxag) 2
FB is not necessarily invertible in FB:

Example 14 Let O = f0; 1; 4; 5g be the set of objects which (O; �) be a group with "�" operation being
multiplication of O integers modulo 4 and F = f�1; �2g be a set of quotient function

�i : O ! O=R

�1 : 0! �(0) =
�
0 = f0; 4g

�2 : 1! �(1) =
�
1 = f1; 5g

which (F;+) be a group with "+" operation being addition the classes of residues of integers modulo 4
. � = (F;B) = f�1; f0; 4gg is a near soft set , it is all the near soft elements are f�1; f0gg; f�1; f4gg:
Hence (FB; �) is a near soft groupoid with near soft identity element f�1; f0gg. The near soft inverse
of f�1; f4gg is (f�1; f4gg)�1 = (f�1; f0gg) 2 FB: Therefore (f�1; f4gg) is invertible in FB:

Conclusion
As a result, the de�nition of near soft groupoid was given to the concept of near soft set obtained

with the help of near set and soft set concepts in this study by applying the de�nition of soft element
used in previous studies. This new concept can be used in new studies in set theory.
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Abstract 
In this article, the analytical solutions of nonlinear  fractional order Boussinesq-

Double-Sinh-Gordon equation and first Boussinesq-Liouville equation are obtained 

with the aid of auxiulary equation method  where the fractional derivatives are in 

conformable sense. Both equations were first converted to non-linear ordinary 

derivative differential equations with the help of wave transformation. auxiliary 

equation method was used to find analytical solutions of these ordinary derivative 

equations.  Three dimensional graphics of the obtained results for nonlinear  fractional 

order Boussinesq-Double-Sinh-Gordon equation and first Boussinesq-Liouville 

equation are given. 

Keywords: Conformable Fractional Partial Differential Equations; Auxiulary 

Equation Method;  Conformable Boussinesq-Double-Sinh-Gordon; Conformable 

First Boussinesq-Liouville. 

 

1. Introduction 

Obtaining analytical solutions of fractional order nonlinear partial differential equations is 

crucial for understanding the physical behavior and change process of the event under consideration. 

 

 Because the nonlinear partial differential equation models containing integer-order 

derivatives do not correspond exactly to events in nature, while the differential equations containing 

fractional order derivatives in which parameters are present correspond exactly. That is, the nonlinear 

partial differential that occurs when modeling a physical event according to the fractional computation 

integer computation it helps to express the equation more clearly. Analytical and numerical solutions of 

fractional order nonlinear partial differential equations including Riemann-Liouville, Caputo and 

conformable fractional derivative approach, which are frequently encountered in the literature, were 

obtained using various methods. Some of these methods are (G '/ G) expansion [9], first integral [7], 

exponential function [10], jacobi elliptical [12], homotopy analysis [13], finite elements [5], finite 

difference [6], functional change [3], auxiliary equation [2] Alhakim and Moussa, Methods such as 

tangent hyperbolic [4],  separation of variables [11] were used. 

 

 In this article, non-linear Boussinesq-Double-Sinh-Gordon which contains conformable 

fractional order derivatives and analytical solutions of First Boussinesq-Liouville equations with 

auxiliary equation method was obtained.  
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2. Metarial and Method 

 

In 2003, the auxiliary equation method was first used by S. Jion and Sirendaoreji to obtain 

complete solutions of nonlinear partial differential equations [8]. S. Jion and Sirendaoreji to obtain the 

exact solutions of the partial differential equations discussed in this study with the auxiliary equation 

method 

 

(
dz

dξ
)
2
= az2(ξ) + bz3(ξ) +  cz4(ξ)                                                                                                                    (1)   

 

they benefited from the solutions of ordinary differential equations. Then, in 2008, M.A. in his study, 

Abdou [1] gave a wider class of the solutions of his equation, Schrödinger, the nonlinear partial 

differential equation, obtained analytical solutions of the Whitham – Broer – Kaup and generalized 

Zakharov equations [1]. The following steps are followed to solve the analytical solution of the fractional 

order partial differential equation by the auxiliary equation method [8]. 

 
I. Step: General form of a partial differential equation containing a conformable fractional order 

derivative according to the nonlinear time variable 

 

P (
∂pu

∂tp
,
∂u

∂x
,
∂2u

∂x2
, … ) = 0                                                                                                                                      (2)  

 

it can be written as. Here P is a nonlinear function, p ∈ (0,1) ve 
∂pu

∂tp
  derivative,  means the p-order 

conformable fractional derivative of the function u(x, t) . 

II. Step: (2) to show the wave velocity of w, u(x, t) = U(ξ) ,  ξ = x + w
tp

p
  

if conversion is used (2) partial differential equation 

 

G(U, U′, U′′, U′′′, … ) = 0                                                                                                                                 (3)  

 

is transformed into ordinary differential differential equation. 

 

III. Step: (3) given the ordinary differential equation   

 

U(ξ) =∑aiz
i(ξ)                                                                                                                                             (4) 

n

i=0

 

 

search for analytical solution. Here  ai(i = 0,1,… , n)) are the coefficients to be determined later, while 

the function z(ξ) is the solutions of the differential equation (1). The positive n value in the equation 

given by (4) is found with the help of homogeneous balance. For this, for the term derivative which is 

linear from the highest digit in the equation given by (3) 

 

𝒪 (
drU

dξr
) = n + r, r = 0,1,2,…                          

         

and for the highest non-linear term 
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𝒪 (uq
drU

dξr
) = qn + r, r = 0,1,2,… , q = 0,1,2,…                                                

 

the formulas written are synchronized [11]. 

 

IV. Step:  As a last step, by writing the equation  (4)and the necessary derivatives in the equation  

(3), an equation containing the forces of the expression z(ξ) is obtained. The resulting equation is 

arranged according to the forces of the expression z(ξ) and then a coefficient system of algebraic 

equation is created by synchronizing the coefficients of the forces of the expression z(ξ) to zero. This 

algebraic system of equations containing a, b, c,w, ai coefficients is solved with the help of the 

Mathematica program and coefficients are found.  Analytical solutions of fractional order partial 

differential equation are obtained by using the results obtained by solving this system and using the 

formulas given in Table 1. 

 

No 𝒛(𝝃) Condition 

1 
−a𝑏𝑠𝑒𝑐ℎ2 (

√a
2
𝜉)

𝑏2 − a𝑐 (1 − 𝜀tanh (
√a
2
𝜉))

2 

a > 0 

2 
a𝑏𝑐𝑠𝑐ℎ2 (

√a
2
𝜉)

𝑏2 − a𝑐 (1 + 𝜀coth (
√a
2
𝜉))

2 

a > 0 

3 2a𝑏sech(√a𝜉)

𝜀√𝛥 − 𝑏𝑠𝑒𝑐ℎ(√a𝜉)
 

a > 0, ∆> 0 

4 2a𝑏sec(√−a𝜉)

𝜀√𝛥 − 𝑏𝑠𝑒𝑐(√−a𝜉)
 

a < 0, ∆> 0 

5 2a𝑏csch(√a𝜉)

𝜀√−𝛥 − 𝑏𝑐𝑠𝑐ℎ(√a𝜉)
 

a > 0, ∆< 0 

6 2a𝑏csc(√−a𝜉)

𝜀√𝛥 − 𝑏𝑐𝑠𝑐(√−a𝜉))
 

a < 0, ∆> 0 

7 
−a𝑠𝑒𝑐ℎ2 (

√a
2
𝜉)

𝑏 + 2𝜀√a𝑐𝑡𝑎𝑛ℎ (
√a
2
𝜉)

 

a > 0, c > 0 

8 
−a𝑠𝑒𝑐2 (

√−a
2
𝜉)

𝑏 + 2𝜀√−a𝑐𝑡𝑎𝑛 (
√−a
2
𝜉)

 

a < 0, c > 0 

9 
−a𝑐𝑠𝑐ℎ2 (

√a
2
𝜉)

𝑏 + 2𝜀√a𝑐𝑐𝑜𝑡ℎ (
√a
2
𝜉)

 

a > 0, c > 0 



 

43 
 

Ikonion Journal of Mathematics                                                                                                       2020, 2 (2) 

10 
−a𝑐𝑠𝑐2 (

√−a
2
𝜉)

𝑏 + 2𝜀√−a𝑐𝑐𝑜𝑡 (
√−a
2
𝜉)

 

a < 0, c > 0 

11 

−
a

𝑏
(1 + 𝜀𝑡𝑎𝑛ℎ (

√a

2
𝜉)) 

a > 0, ∆= 0 

12 

−
a

𝑏
(1 + 𝜀𝑐𝑜𝑡ℎ (

√a

2
𝜉)) 

a > 0, ∆= 0 

13 4a𝑒𝜀√a𝜉

(𝑒𝜀√a𝜉 − 𝑏)
2
− 4a𝑐

 
a > 0 

14 ±4a𝑒𝜀√a𝜉

1 − 4a𝑐𝑒2𝜀√a𝜉
 

a > 0, b = 0 

 
Table 1: Solutions of equation (1) with Δ = b2 - 4ac and Ɛ = ± 1 [1] 

 

    3. Aplications of the Method 

 
In this section, we will show the solution applications of fractional order partial differential 

equations using the auxiliary equation method. 

 

Example 1: Fractional Order Boussinesq-Double-Sinh-Gordon Equation  Boussinesq-Double-Sinh-

Gordon equation with conformable fractional order derivative according to time variable 

 

𝜕2𝑝𝑢

𝜕𝑡2𝑝
− 𝛼

𝜕2𝑢

𝜕𝑥2
+
𝜕4𝑢

𝜕𝑥4
= sinh(𝑢) +

3

2
sinh(2𝑢)                                                                                            (5) 

 

be considered as. Here, α is real constant and p∈ (0,1). (5) Conformable fractional order Boussinesq-

Double-Sinh-Gordon equation 

 

𝑢(𝑥, 𝑡) = 𝑢(𝜉) 

 

İncluding 

 

𝜉 = 𝑥 + 𝑤
𝑡𝑝

𝑝
                                                                                                                                                    (6)  

  

wave transformation is applied 

 

(𝑤2 − 𝛼)𝑢𝜉𝜉 + 𝑢𝜉𝜉𝜉𝜉 = sinh(𝑢) +
3

2
sinh(2𝑢)                                                                                     (7) 

 

ordinary differential system of differential equations is obtained. Here  

 

𝑣(𝜉) = 𝑒𝑢(𝜉)                                                                                                                                                     (8) 

 

is transformed and with the help of this transformation 
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sinh(𝑢) =
𝑣 − 𝑣−1

2
 

and 

sinh(2𝑢) =
𝑣2 − 𝑣−2

2
 

 

by writing down the found equations in the equation given by (7) 

 

−4𝑤2𝑣3𝑣𝜉𝜉 + 4𝑤
2𝑣2(𝑣𝜉)

2
+ 4𝛼𝑣3𝑣𝜉𝜉 − 4𝑣𝜉𝜉𝜉𝜉𝑣

3 − 4𝛼𝑣2(𝑣𝜉)
2
+ 16𝑣𝜉𝜉𝜉𝑣𝜉𝑣

2 + 24(𝑣𝜉)
4
 

−48𝑣𝜉𝜉(𝑣𝜉)
2
𝑣 + 12(𝑣𝜉𝜉)

2
𝑣2 + 3𝑣6 + 2𝑣5 − 2𝑣3 − 3𝑣2 = 0                                                         (9) 

 

equation is obtained. The equilibrium between the terms 𝑣𝜉𝜉𝜉𝜉𝑣
3and the highest order nonlinear 𝑣6 

containing the highest order derivative in the equation given by  (9) 

 

𝑛 + 4 + 3𝑛 = 6𝑛 

 

equality is obtained. This equation has the value of 𝑛 = 2. So in the equation (9) 

 

𝑣(𝜉) = a0 + a1𝑧(𝜉) + a2𝑧
2(𝜉)                                                                                                                       (10)  

 

In the form of an analytical solution is sought. If the equation  (10)  is substituted in the equation (9) 

,an equation based on the forces of the expression 𝑧(𝜉) is obtained. By equating the coefficients of 𝑧(𝜉) 

and forces in this equation to zero; 

 

𝑧0(𝜉) :  − 3a0
2 − 2a0

3 + 2a0
5 + 3a0

6 = 0 

𝑧1(𝜉): − 6a0a1 − 6a0
2a1 − 4a

2a0
3a1 + 10a0

4a1 + 18a0
5a1 − 4aa0

3a1𝑤
2 + 4aa0

3a1𝛼 = 0 

𝑧2(𝜉) :  − 3a1
2 − 6a0a1

2 + 16𝑎2a0
2a1
2 + 20a0

3a1
2 + 45a0

4a1
2 − 6a0a2 − 6a0

2a2 − 64a
2a0
3a2 + 10a0

4a2 +

18a0
5a2 − 30aa0

3a1𝑏 − 8aa0
2a1
2𝑤2 − 16aa0

3a2𝑤
2 − 6a0

3a1𝑏𝑤
2 + 8𝑎a0

2a1
2𝛼 + 16𝑎a0

3a2𝛼 +

6a0
3a1𝑏𝛼 = 0  

𝑧3(𝜉) : − 2a1
3 − 4𝑎2a0a1

3 + 20a0
2a1
3 + 60a0

3a1
3 − 6a1a2 − 12a0a1a2 + 52𝑎

2a0
2a1a2 + 40a0

3a1a2 +

90a0
4a1a2 + 10𝑎a0

2a1
2𝑏 − 260𝑎a0

3a2𝑏 − 30a0
3a1𝑏

2 − 80𝑎a0
3a1𝑐 − 4𝑎a0a1

3𝑤2 − 44𝑎a0
2a1a2𝑤

2 −

14a0
2a1
2𝑏𝑤2 − 20a0

3a2𝑏𝑤
2 − 8a0

3a1𝑐𝑤
2 + 4𝑎a0a1

3𝛼 + 44𝑎a0
2a1a2𝛼 + 14a0

2a1
2𝑏𝛼 + 20a0

3a2𝑏𝛼 +

8a0
3a1𝑐𝛼 = 0  

𝑧4(𝜉): 10a0a1
4 + 45a0

2a1
4 − 6a1

2a2 − 32𝑎
2a0a1

2a2 + 60a0
2a1
2a2 + 180a0

3a1
2a2 − 3a2

2 − 6a0a2
2 +

256𝑎2a0
2a2
2 + 20a0

3a2
2 + 45a0

4a2
2 − 10𝑎a0a1

3𝑏 − 110𝑎a0
2a1a2𝑏 − 15a0

2a1
2𝑏2 − 210a0

3a2𝑏
2 −

80𝑎a0
2a1
2𝑐 − 480𝑎a0

3a2𝑐 − 120a0
3a1𝑏𝑐 − 32𝑎a0a1

2a2𝑤
2 − 32𝑎a0

2a2
2𝑤2 − 10a0a1

3𝑏𝑤2 −

62a0
2a1a2𝑏𝑤

2 − 20a0
2a1
2𝑐𝑤2 − 24a0

3a2𝑐𝑤
2 + 32𝑎a0a1

2a2𝛼 + 32𝑎a0
2a2
2𝛼 + 10a0a1

3𝑏𝛼 +

62a0
2a1a2𝑏𝛼 + 20a0

2a1
2𝑐𝛼 + 24a0

3a2𝑐𝛼 = 0  

𝑧5(𝜉): 2a1
5 + 18a0a1

5 − 4𝑎2a1
3a2 + 40a0a1

3a2 + 180a0
2a1
3a2 − 6a1a2

2 + 52𝑎2a0a1a2
2 + 60a0

2a1a2
2 +

180a0
3a1a2

2 − 2𝑎a1
4𝑏 − 152𝑎a0a1

2a2𝑏 + 436𝑎a0
2a2
2𝑏 − 12a0a1

3𝑏2 − 204a0
2a1a2𝑏

2 − 64𝑎a0a1
3𝑐 −

608𝑎a0
2a1a2𝑐 − 144a0

2a1
2𝑏𝑐 − 672a0

3a2𝑏𝑐 − 96a0
3a1𝑐

2 − 4𝑎a1
3a2𝑤

2 − 44𝑎a0a1a2
2𝑤2 − 2a1

4𝑏𝑤2 −

56a0a1
2a2𝑏𝑤

2 − 44a0
2a2
2𝑏𝑤2 − 16a0a1

3𝑐𝑤2 − 80a0
2a1a2𝑐𝑤

2 + 4𝑎a1
3a2𝛼 + 44𝑎a0a1a2

2𝛼 + 2a1
4𝑏𝛼 +

56a0a1
2a2𝑏𝛼 + 44a0

2a2
2𝑏𝛼 + 16a0a1

3𝑐𝛼 + 80a0
2a1a2𝑐𝛼 = 0  

𝑧6(𝜉): 3a1
6 + 10a1

4a2 + 90a0a1
4a2 + 16𝑎

2a1
2a2
2 + 60a0a1

2a2
2 + 270a0

2a1
2a2
2 − 2a2

3 − 64𝑎2a0a2
3 +

20a0
2a2
3 + 60a0

3a2
3 − 38𝑎a1

3a2𝑏 + 94𝑎a0a1a2
2𝑏 − 3a1

4𝑏2 − 156a0a1
2a2𝑏

2 + 150a0
2a2
2𝑏2 − 16𝑎a1

4𝑐 −
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512𝑎a0a1
2a2𝑐 + 160𝑎a0

2a2
2𝑐 − 96a0a1

3𝑏𝑐 − 1008a0
2a1a2𝑏𝑐 − 144a0

2a1
2𝑐2 − 480a0

3a2𝑐
2 −

8𝑎a1
2a2
2𝑤2 − 16𝑎a0a2

3𝑤2 − 14a1
3a2𝑏𝑤

2 − 74a0a1a2
2𝑏𝑤2 − 4a1

4𝑐𝑤2 − 80a0a1
2a2𝑐𝑤

2 −

56a0
2a2
2𝑐𝑤2 + 8𝑎a1

2a2
2𝛼 + 16𝑎a0a2

3𝛼 + 14a1
3a2𝑏𝛼 + 74a0a1a2

2𝑏𝛼 + 4a1
4𝑐𝛼 + 80a0a1

2a2𝑐𝛼 +

56a0
2a2
2𝑐𝛼 = 0  

𝑧7(𝜉): 18a1
5a2 + 20a1

3a2
2 + 180a0a1

3a2
2 − 4𝑎2a1a2

3 + 40a0a1a2
3 + 180a0

2a1a2
3 − 2𝑎a1

2a2
2𝑏 −

76𝑎a0a2
3𝑏 − 42a1

3a2𝑏
2 − 6a0a1a2

2𝑏2 − 144𝑎a1
3a2𝑐 − 272𝑎a0a1a2

2𝑐 − 24a1
4𝑏𝑐 − 768a0a1

2a2𝑏𝑐 −

48a0
2a2
2𝑏𝑐 − 96a0a1

3𝑐2 − 864a0
2a1a2𝑐

2 − 4𝑎a1a2
3𝑤2 − 26a1

2a2
2𝑏𝑤2 − 28a0a2

3𝑏𝑤2 − 24a1
3a2𝑐𝑤

2 −

104a0a1a2
2𝑐𝑤2 + 4𝑎a1a2

3𝛼 + 26a1
2a2
2𝑏𝛼 + 28a0a2

3𝑏𝛼 + 24a1
3a2𝑐𝛼 + 104a0a1a2

2𝑐𝛼 = 0  

𝑧8(𝜉): 45a1
4a2
2 + 20a1

2a2
3 + 180a0a1

2a2
3 + 10a0a2

4 + 45a0
2a2
4 − 18𝑎a1a2

3𝑏 − 33a1
2a2
2𝑏2 − 30a0a2

3𝑏2 −

176𝑎a1
2a2
2𝑐 − 160𝑎a0a2

3𝑐 − 216a1
3a2𝑏𝑐 − 504a0a1a2

2𝑏𝑐 − 24a1
4𝑐2 − 672a0a1

2a2𝑐
2 − 240a0

2a2
2𝑐2 −

18a1a2
3𝑏𝑤2 − 44a1

2a2
2𝑐𝑤2 − 40a0a2

3𝑐𝑤2 + 18a1a2
3𝑏𝛼 + 44a1

2a2
2𝑐𝛼 + 40a0a2

3𝑐𝛼 = 0  

𝑧9(𝜉): 60a1
3a2
3 + 10a1a2

4 + 90a0a1a2
4 − 4𝑎a2

4𝑏 − 24a1a2
3𝑏2 − 128𝑎a1a2

3𝑐 − 288a1
2a2
2𝑏𝑐 −

192a0a2
3𝑏𝑐 − 192a1

3a2𝑐
2 − 576a0a1a2

2𝑐2 − 4a2
4𝑏𝑤2 − 32a1a2

3𝑐𝑤2 + 4a2
4𝑏𝛼 + 32a1a2

3𝑐𝛼 = 0  

𝑧10(𝜉): 45a1
2a2
4 + 2a2

5 + 18a0a2
5 − 6a2

4𝑏2 − 32𝑎a2
4𝑐 − 192a1a2

3𝑏𝑐 − 288a1
2a2
2𝑐2 − 192a0a2

3𝑐2 −

8a2
4𝑐𝑤2 + 8a2

4𝑐𝛼 = 0  

𝑧11(𝜉): 18a1a2
5 − 48a2

4𝑏𝑐 − 192a1a2
3𝑐2 = 0 

𝑧12(𝜉): 3a2
6 − 48a2

4𝑐2 = 0 

 

algebraic equation system is obtained. By solving this system of equations with the help of Mathematica 

program 

 

a = 1, 𝑏 = 2√𝑐, 𝑤 = −√1 + 𝛼, a0 = −1, a1 = −4√𝑐, a2 = −4𝑐                                       (11)

a = 1, 𝑏 = 2√𝑐, 𝑤 = −√3 + 𝛼, a0 = 1, a1 = 4√𝑐, a2 = 4𝑐                                       (12)

a =
1

4
, 𝑏 = 0, 𝑤 = √3 + 𝛼, a0 = 1, a1 = 0, a2 = 4𝑐                                        (13)

a =
1

4
, 𝑏 = 0, 𝑤 = √1 + 𝛼, a0 = −1, a1 = 0, a2 = −4𝑐                                        (14)

 

 

solution sets are obtained.  

 

The values given by  (11) are substituted in the equations (6) and (10) ,and the solutions given 

in Table 1 and (8) using the transformation are given by the (5) conformable fractional order 

Boussinesq-double-sinh-Gordon Equation 𝑢(𝑥, 𝑡) analytical solutions 

 

  

𝑢1,2(x, t) = log

(

 
 
 
1 −

8sech2 (
1
2 𝜉)

4 − (1 ± tanh (
1
2 𝜉))

2 +
16 sech4 (

1
2 𝜉)

(4 − (1 ± tanh (
1
2 𝜉))

2

)

2

)

 
 
 

 

𝑢3,4(x, t) = log

(

 
 
 
1 +

8 csch2 (
1
2 𝜉)

4 − (1 ± coth (
1
2 𝜉))

2 +
16 csch4 (

1
2 𝜉)

(4 − (1 ± coth (
1
2 𝜉))

2

)

2

)
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𝑢5,6(x, t) = log

(

 
 
1 −

2 sech2 (
1
2 𝜉)

1 ± tanh (
1
2
𝜉)
+

sech4 (
1
2 𝜉)

(1 ± tanh (
1
2
𝜉))

2

)

 
 

 

𝑢7,8(x, t) = log

(

 
 
1 +

2csch2 (
1
2
𝜉)

1 ± coth (
1
2 𝜉)

+
csch4 (

1
2
𝜉)

(1 ± coth (
1
2
𝜉))

2

)

 
 

 

𝑢9,10(x, t) = log(1 − 2(1 ± tanh (
1

2
𝜉)) + (1 ± tanh (

1

2
𝜉))

2

) 

𝑢11,12(x, t) = log(1 − 2(1 ± coth (
1

2
𝜉)) + (1 ± coth (

1

2
𝜉))

2

) 

𝑢13,14(x, t) = log(1 +
16√𝑐𝑒±𝜉

−4𝑐 + (−2√𝑐 + 𝑒±𝜉)
2 +

64𝑐𝑒±2𝜉

(−4𝑐 + (−2√𝑐 + 𝑒±𝜉)
2
)
2) 

 

it is found as. Here  𝜉 = 𝑥 − √3 + 𝛼
𝑡𝑝

𝑝
 . 

 

The values given by  (12) are substituted in the equations (6) and (10) ,and the solutions given 

in Table 1 and (8) using the transformation are given by the (5) conformable fractional order 

Boussinesq-double-sinh-Gordon Equation 𝑢(𝑥, 𝑡) analytical solutions 

 

𝑢15,16(x, t) = log

(

 
 
 
−1+

8 sech2 (
1
2 𝜉)

4 − (1 ± tanh (
1
2 𝜉))

2 −
16 sech4 (

1
2 𝜉)

(4 − (1 ± tanh (
1
2 𝜉))

2

)

2

)

 
 
 

 

𝑢17,18(x, t) = log

(

 
 
 
−1−

8 csch2 (
1
2
𝜉)

4 − (1 ± coth (
1
2 𝜉))

2 −
16 csch4 (

1
2
𝜉)

(4 − (1 ± coth (
1
2 𝜉))

2

)

2

)

 
 
 

 

𝑢19,20(x, t) = log

(

 
 
−1 −

2 sech2 (
1
2 𝜉)

1 ± tanh (
1
2 𝜉)

+
sech4 (

1
2 𝜉)

(1 ± tanh (
1
2 𝜉))

2

)

 
 

 

𝑢21,22(x, t) = log

(

 
 
−1 −

2 csch2 (
1
2 𝜉)

1 ± coth (
1
2
𝜉)
−

csch4 (
1
2 𝜉)

(1 ± coth (
1
2 𝜉))

2

)

 
 

 

𝑢23,24(x, t) = log(−1 + 2(1 ± tanh (
1

2
𝜉)) − (1 ± tanh (

1

2
𝜉))

2

) 
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𝑢25,26(x, t) = log(−1 + 2(1 ± coth (
1

2
𝜉)) − (1 ± coth (

1

2
𝜉))

2

) 

𝑢27,28(x, t) = log(−1 −
16√𝑐𝑒±𝜉

−4𝑐 + (−2√𝑐 + 𝑒±𝜉)
2 −

64𝑐𝑒±2𝜉

(−4𝑐 + (−2√𝑐 + 𝑒±𝜉)
2
)
2) 

 

it is found as. Here  𝜉 = 𝑥 − √1 + 𝛼
𝑡𝑝

𝑝
 . 

 

The values given by  (13) are substituted in the equations (6) and (10) ,and the solutions given 

in Table 1 and (8) using the transformation are given by the (5) conformable fractional order 

Boussinesq-double-sinh-Gordon Equation 𝑢(𝑥, 𝑡) analytical solutions 

 

𝑢29(x, t) = log (1 − sech
2 (
1

2
𝜉)) 

𝑢30(x, t) = log (1 + csch
2 (
1

2
𝜉)) 

𝑢31(x, t) = log (1 +
1

4
csch2 (

1

4
𝜉) sech2 (

1

4
𝜉)) 

𝑢32,33(x, t) = log (1 +
4𝑐𝑒±𝜉

(−𝑐 + 𝑒±𝜉)2
) 

𝑢34,35(x, t) = log (1 +
4𝑐𝑒±𝜉

(1 − 𝑐𝑒±𝜉)2
) 

it is found as. Here  𝜉 = 𝑥 + √3 + 𝛼
𝑡𝑝

𝑝
 . 

 

The values given by (14) are substituted in the equations (6) and (10), and the solutions given 

in Table 1 and (8) using the transformation are given by the (5) conformable fractional order 

Boussinesq-double-sinh-Gordon Equation 𝑢(𝑥, 𝑡) analytical solutions 

 

𝑢36(x, t) = log (−1 − sech
2 (
1

2
𝜉)) 

𝑢37(x, t) = log (−1 + csch
2 (
1

2
𝜉)) 

𝑢38(x, t) = log (−1 +
1

4
csch2 (

1

4
𝜉) sech2 (

1

4
𝜉)) 

 𝑢39,40(x, t) = log (−1 +
4𝑐ⅇ±𝜉

(−𝑐+ⅇ±𝜉)
2) 

𝑢41,42(x, t) = log (−1 +
4𝑐𝑒±𝜉

(1 − 𝑐𝑒±𝜉)2
) 
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it is found as. Here  𝜉 = 𝑥 + √1 + 𝛼
𝑡𝑝

𝑝
 . 

The surfaces of some analytical solutions of the conformable fractional order equation given in 

the following figures 1-3 are given. 

 
Figure 1:The surface of the solution 𝑢15(𝑥, 𝑡) at 𝛼 = 1, 𝑝 = 0.75  

 

 
Figure 2: The surface of the solution 𝑢17(𝑥, 𝑡) at 𝛼 = 1, 𝑝 = 0.75  

 

 
Figure 3: The surface of the solution 𝑢21(𝑥, 𝑡) at 𝛼 = 1, 𝑝 = 0.75  

 

Example 2: Fractional Order First Boussinesq-Liouville Equation 

 

Fractional Order First Boussinesq-Liouville Equation; 
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𝜕2𝑝𝑢

𝜕𝑡2𝑝
− 𝛼

𝜕2𝑢

𝜕𝑥2
+
𝜕4𝑢

𝜕𝑥4
= 𝑒𝑢 +

3

4
𝑒2𝑢                                                                                                             (15)  

 

be considered as. Here, α is real constant and  𝑝 ∈ (0,1) . Conformable fractional order given by (15) 

to the First Boussinesq-Lioville equation 

 

𝑢(𝑥, 𝑡) = 𝑢(𝜉) 

 

İncluding 

 

𝜉 = 𝑥 + 𝑤
𝑡𝑝

𝑝
                                                                                                                                                        (16) 

 

wave transformation is applied; 

 

(𝑤2 − 𝛼)𝑢𝜉𝜉 + 𝑢𝜉𝜉𝜉𝜉 = 𝑒
𝑢 +

3

4
𝑒2𝑢                                                                                                               (17) 

 

ordinary differential differential equation is obtained. In the equation (17) 

 

  𝑣(𝜉) = 𝑒𝑢(𝜉)   

 

if transform is applied; 

 

−4𝑤2𝑣3𝑣′′ + 4𝑤2𝑣2(𝑣′)2 + 4𝛼𝑣3𝑣′′ − 4𝑣(4)𝑣3 − 4𝛼𝑣2(𝑣′)2 + 16𝑣′′′𝑣′𝑣2 − 48𝑣′′(𝑣′)2𝑣 

+24(𝑣′)4 + 12(𝑣′′)2𝑣2 + 3𝑣6 + 4𝑣5 = 0                                                                                                   (18) 

differential equation is obtained. The value of 𝑣(4)𝑣3, which contains the highest order derivative in the 

equation given by (18), and 𝑛 = 2 value from the homogeneous balance between the highest order 

nonlinear term and 𝑣6. Thus, in the equation (18), 

 

𝑢(𝜉) = a0 + a1𝑧(𝜉) + a2𝑧
2(𝜉)                                                                                                                     (19)  

 

In the form of a full solution is sought. If the equation (19) and the necessary derivatives are substituted 

in the equation (18), an equation based on the forces of the expression 𝑧(𝜉) is obtained. 

With this equation the coefficients of 𝑧(𝜉) and their forces equal to zero. 

 

𝑧0(𝜉):  4a0
5 + 3a0

6 = 0 

𝑧1(𝜉) :  − 4𝑎2a0
3a1 + 20a0

4a1 + 18a0
5a1 − 4𝑎a0

3a1𝑤
2 + 4𝑎a0

3a1𝛼 = 0 

𝑧2(𝜉):  16𝑎2a0
2a1
2 + 40a0

3a1
2 + 45a0

4a1
2 − 64𝑎2a0

3a2 + 20a0
4a2 + 18a0

5a2 − 30𝑎a0
3a1𝑏 − 8𝑎a0

2a1
2𝑤2 −

16𝑎a0
3a2𝑤

2 − 6a0
3a1𝑏𝑤

2 + 8𝑎a0
2a1
2𝛼 + 16𝑎a0

3a2𝛼 + 6a0
3a1𝑏𝛼 = 0  

𝑧3(𝜉) :  − 4𝑎2a0a1
3 + 40a0

2a1
3 + 60a0

3a1
3 + 52𝑎2a0

2a1a2 + 80a0
3a1a2 + 90a0

4a1a2 + 10𝑎a0
2a1
2𝑏 −

260𝑎a0
3a2𝑏 − 30a0

3a1𝑏
2 − 80𝑎a0

3a1𝑐 − 4𝑎a0a1
3𝑤2 − 44𝑎a0

2a1a2𝑤
2 − 14a0

2a1
2𝑏𝑤2 − 20a0

3a2𝑏𝑤
2 −

8a0
3a1𝑐𝑤

2 + 4𝑎a0a1
3𝛼 + 44𝑎a0

2a1a2𝛼 + 14a0
2a1
2𝑏𝛼 + 20a0

3a2𝑏𝛼 + 8a0
3a1𝑐𝛼 = 0  
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𝑧4(𝜉):  20a0a1
4 + 45a0

2a1
4 − 32𝑎2a0a1

2a2 + 120a0
2a1
2a2 + 180a0

3a1
2a2 + 256𝑎

2a0
2a2
2 + 40a0

3a2
2 +

45a0
4a2
2 − 10𝑎a0a1

3𝑏 − 110𝑎a0
2a1a2𝑏 − 15a0

2a1
2𝑏2 − 210a0

3a2𝑏
2 − 80𝑎a0

2a1
2𝑐 − 480𝑎a0

3a2𝑐 −

120a0
3a1𝑏𝑐 − 32𝑎a0a1

2a2𝑤
2 − 32𝑎a0

2a2
2𝑤2 − 10a0a1

3𝑏𝑤2 − 62a0
2a1a2𝑏𝑤

2 − 20a0
2a1
2𝑐𝑤2 −

24a0
3a2𝑐𝑤

2 + 32𝑎a0a1
2a2𝛼 + 32𝑎a0

2a2
2𝛼 + 10a0a1

3𝑏𝛼 + 62a0
2a1a2𝑏𝛼 + 20a0

2a1
2𝑐𝛼 + 24a0

3a2𝑐𝛼 = 0  

𝑧5(𝜉):  4a1
5 + 18a0a1

5 − 4𝑎2a1
3a2 + 80a0a1

3a2 + 180a0
2a1
3a2 + 52𝑎

2a0a1a2
2 + 120a0

2a1a2
2

+ 180a0
3a1a2

2 − 2𝑎a1
4𝑏 − 152𝑎a0a1

2a2𝑏 + 436𝑎a0
2a2
2𝑏 − 12a0a1

3𝑏2 − 204a0
2a1a2𝑏

2

− 64𝑎a0a1
3𝑐 − 608𝑎a0

2a1a2𝑐 − 144a0
2a1
2𝑏𝑐 − 672a0

3a2𝑏𝑐 − 96a0
3a1𝑐

2 − 4𝑎a1
3a2𝑤

2

− 44𝑎a0a1a2
2𝑤2 − 

2a1
4𝑏𝑤2 − 56a0a1

2a2𝑏𝑤
2 − 44a0

2a2
2𝑏𝑤2 − 16a0a1

3𝑐𝑤2 − 80a0
2a1a2𝑐𝑤

2 + 4𝑎a1
3a2𝛼 +

44𝑎a0a1a2
2𝛼 + 2a1

4𝑏𝛼 + 56a0a1
2a2𝑏𝛼 + 44a0

2a2
2𝑏𝛼 + 16a0a1

3𝑐𝛼 + 80a0
2a1a2𝑐𝛼 = 0  

𝑧6(𝜉):  3a1
6 + 20a1

4a2 + 90a0a1
4a2 + 16𝑎

2a1
2a2
2 + 120a0a1

2a2
2 + 270a0

2a1
2a2
2 − 64𝑎2a0a2

3 + 40a0
2a2
3 +

60a0
3a2
3 − 38𝑎a1

3a2𝑏 + 94𝑎a0a1a2
2𝑏 − 3a1

4𝑏2 − 156a0a1
2a2𝑏

2 + 150a0
2a2
2𝑏2 − 16𝑎a1

4𝑐 −

512𝑎a0a1
2a2𝑐 + 160𝑎a0

2a2
2𝑐 − 96a0a1

3𝑏𝑐 − 1008a0
2a1a2𝑏𝑐 − 144a0

2a1
2𝑐2 − 480a0

3a2𝑐
2 −

8𝑎a1
2a2
2𝑤2 − 16𝑎a0a2

3𝑤2 − 14a1
3a2𝑏𝑤

2 − 74a0a1a2
2𝑏𝑤2 − 4a1

4𝑐𝑤2 − 80a0a1
2a2𝑐𝑤

2 −

56a0
2a2
2𝑐𝑤2 + 8𝑎a1

2a2
2𝛼 + 16𝑎a0a2

3𝛼 + 14a1
3a2𝑏𝛼 + 74a0a1a2

2𝑏𝛼 + 4a1
4𝑐𝛼 + 80a0a1

2a2𝑐𝛼 +

56a0
2a2
2𝑐𝛼 = 0  

𝑧7(𝜉):  18a1
5a2 + 40a1

3a2
2 + 180a0a1

3a2
2 − 4𝑎2a1a2

3 + 80a0a1a2
3 + 180a0

2a1a2
3 − 2𝑎a1

2a2
2𝑏 −

76𝑎a0a2
3𝑏 − 42a1

3a2𝑏
2 − 6a0a1a2

2𝑏2 − 144𝑎a1
3a2𝑐 − 272𝑎a0a1a2

2𝑐 − 24a1
4𝑏𝑐 − 768a0a1

2a2𝑏𝑐 −

48a0
2a2
2𝑏𝑐 − 96a0a1

3𝑐2 − 864a0
2a1a2𝑐

2 − 4𝑎a1a2
3𝑤2 − 26a1

2a2
2𝑏𝑤2 − 28a0a2

3𝑏𝑤2 − 24a1
3a2𝑐𝑤

2 −

104a0a1a2
2𝑐𝑤2 + 4𝑎a1a2

3𝛼 + 26a1
2a2
2𝑏𝛼 + 28a0a2

3𝑏𝛼 + 24a1
3a2𝑐𝛼 + 104a0a1a2

2𝑐𝛼 = 0  

𝑧8(𝜉):  45a1
4a2
2 + 40a1

2a2
3 + 180a0a1

2a2
3 + 20a0a2

4 + 45a0
2a2
4 − 18𝑎a1a2

3𝑏 − 33a1
2a2
2𝑏2 −

30a0a2
3𝑏2 − 176𝑎a1

2a2
2𝑐 − 160𝑎a0a2

3𝑐 − 216a1
3a2𝑏𝑐 − 504a0a1a2

2𝑏𝑐 − 24a1
4𝑐2 − 672a0a1

2a2𝑐
2 −

240a0
2a2
2𝑐2 − 18a1a2

3𝑏𝑤2 − 44a1
2a2
2𝑐𝑤2 − 40a0a2

3𝑐𝑤2 + 18a1a2
3𝑏𝛼 + 44a1

2a2
2𝑐𝛼 + 40a0a2

3𝑐𝛼 = 0  

𝑧9(𝜉):  60a1
3a2
3 + 20a1a2

4 + 90a0a1a2
4 − 4𝑎a2

4𝑏 − 24a1a2
3𝑏2 − 128𝑎a1a2

3𝑐 − 288a1
2a2
2𝑏𝑐 −

192a0a2
3𝑏𝑐 − 192a1

3a2𝑐
2 − 576a0a1a2

2𝑐2 − 4a2
4𝑏𝑤2 − 32a1a2

3𝑐𝑤2 + 4a2
4𝑏𝛼 + 32a1a2

3𝑐𝛼 = 0  

𝑧10(𝜉):  45a1
2a2
4 + 4a2

5 + 18a0a2
5 − 6a2

4𝑏2 − 32𝑎a2
4𝑐 − 192a1a2

3𝑏𝑐 − 288a1
2a2
2𝑐2 − 192a0a2

3𝑐2 −

8a2
4𝑐𝑤2 + 8a2

4𝑐𝛼 = 0  

𝑧11(𝜉):  18a1a2
5 − 48a2

4𝑏𝑐 − 192a1a2
3𝑐2 = 0 

𝑧12(𝜉):  3a2
6 − 48a2

4𝑐2 = 0 

algebraic equation system is obtained. By solving this system of equations with the help of Mathematica 

program 

 

𝑎 = 2 − 𝑤2 + 𝛼, 𝑏 =
a1
2
, 𝑐 = −

a1
2

16(𝑤2 − 2 − 𝛼)
,  a0 = 0,  a2 = −

a1
2

4(𝑤2 − 2 − 𝛼)
                     (20) 

𝑎 =
1

4
(2 − 𝑤2 + 𝛼), 𝑏 = 0, 𝑐 =

a2
4
, a0 = 0, a1 = 0                                                                                 (21) 

 

solutions are obtained. 𝑢(𝑥, 𝑡) analytical solutions of the conformable fractional order first Boussinesq-

Liouville equation given by using the solutions given in Table 1 with the values given in (20) in the 

equations (16) and (19). 
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𝑢1,2(x, t) = log

(

 
 
 
 

−

8𝑎 sech2 (
√𝑎
2 𝜉)

4 − (1 ± +tanh(
√𝑎
2
𝜉))

2 +

16𝑎 sech4 (
√𝑎
2 𝜉)

(4 − (1 ± tanh(
√𝑎
2 𝜉))

2

)

2

)

 
 
 
 

, 𝑎 > 0 

𝑢3,4(x, t) = log

(

 
 
 
 8𝑎 csch2 (

√𝑎
2 𝜉)

4 − (1 ± coth(
√𝑎
2 𝜉))

2 −

16𝑎 csch4 (
√𝑎
2 𝜉)

(4 − (1 ± coth(
√𝑎
2
𝜉))

2

)

2

)

 
 
 
 

, 𝑎 > 0 

𝑢5,6(x, t) = log

(

 
 
 
−

2𝑎 sech2 (
√𝑎
2 𝜉)

1 ± tanh (
√𝑎
2 𝜉)

+

𝑎 sech4 (
√𝑎
2 𝜉)

(1 ± tanh(
√𝑎
2
𝜉))

2

)

 
 
 
, 𝑎 > 0 

𝑢7,8(x, t) = log

(

 
 
 2𝑎 csch

2 (
√𝑎
2 𝜉)

1 ± coth(
√𝑎
2 𝜉)

+

𝑎 csch4 (
√𝑎
2 𝜉)

(1 ± coth(
√𝑎
2 𝜉))

2

)

 
 
 
, 𝑎 > 0 

𝑢9,10(x, t) = log(−2𝑎(1 ± tanh(
√𝑎

2
𝜉)) + 𝑎(1 ± tanh (

√𝑎

2
𝜉))

2

) , 𝑎 > 0 

𝑢11,12(x, t) = log(−2𝑎(1 ± coth(
√𝑎

2
𝜉)) + 𝑎(1 ± coth(

√𝑎

2
𝜉))

2

) , 𝑎 > 0 

𝑢13,14(x, t) = log

(

 
4𝑎a1𝑒

±√𝑎𝜉

(−
a1
2 + 𝑒

±√𝑎𝜉)
2
−
a1
2

4

+
4𝑎a1

2𝑒±2√𝑎𝜉

((−
a1
2 + 𝑒

±√𝑎𝜉)
2
−
a1
2

4 )
2

)

 , 𝑎 > 0 

 

it is found as. Here 𝜉 = 𝑥 + 𝑤
𝑡𝑝

𝑝
 ve a = 2 − 𝑤2 + 𝛼. 

𝑢(𝑥, 𝑡) analytical solutions of the conformable fractional order first Boussinesq-Liouville 

equation given by using the solutions given in Table 1 with the values given in (21) in the equations 

(16) and (19). 

 

𝑢15,16(x, t) = log (±𝜇 sech
2 (
√−𝜇

2
𝜉)) , 𝜇 < 0 
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𝑢17,18(x, t) = log (±𝜇 sec
2 (
√𝜇

2
𝜉)) , 𝜇 > 0 

𝑢19,20(x, t) = log (±𝜇 csch
2 (
√−𝜇

2
𝜉)) , 𝜇 < 0 

𝑢21,22(x, t) = log (±𝜇 csc
2 (
√𝜇

2
𝜉)) , 𝜇 > 0 

𝑢23(x, t) = log (−
1

4
𝜇 csch2 (

√−𝜇

4
𝜉) sech2 (

√−𝜇

4
𝜉)) , 𝜇 < 0 

𝑢24(x, t) = log (
1

4
𝜇 csc2 (

√𝜇

4
𝜉) sech2 (

√𝜇

4
𝜉)) , 𝜇 > 0 

𝑢25,26(x, t) = log(
a2𝜇

2𝑒±√−𝜇𝜉

(𝑒±√−𝜇𝜉 +
a2𝜇
4 )

2) , 𝜇 < 0 

𝑢27,28(x, t) = log(
a2𝜇

2𝑒±√−𝜇𝜉

(1 +
a2𝜇
4 𝑒±√−𝜇𝜉)

2) , 𝜇 < 0 

 

it is found as. Here 𝜉 = 𝑥 + 𝑤
𝑡𝑝

𝑝
 ve 𝜇 = 𝑤2 − 2 − 𝛼. 

 

The surfaces of some analytical solutions of the conformable fractional order equation given in 

the following figures 4-6 are given. 

 

 

 
Figure 4: The surface of the solution 𝑢17(𝑥, 𝑡) at 𝑤 = 2, 𝛼 = 1, 𝑝 = 0.75  
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Figure 5: The surface of the solution 𝑢19(𝑥, 𝑡) at 𝑤 = 2, 𝛼 = 3, 𝑝 = 0.75  

 

 
Figure 6: The surface of the solution 𝑢21(𝑥, 𝑡) at 𝑤 = 2, 𝛼 = 1, 𝑝 = 0.75 

 

4. Results and Discussions 

 
In this article, the Boussinesq-Double-Sinh-Gordon and First Boussinesq-Liouville equations, 

which are non-linear fractional order partial differential equations containing conformable fractional 

derivatives based on time, are discussed. Both equations were first converted to non-linear ordinary 

derivative differential equations with the help of wave transformation. auxiliary equation method was 

used to find analytical solutions of these ordinary derivative equations. For this, z(ξ) consists of the 

forces of the expression  

 

∑aiz
i(ξ)                                                               

n

i=0

 

 

searched for analytical solution in form. Substituting this analytical solution form into ordinary 

differential equations, an equation containing the powers of the expression z(ξ) was found. The solutions 

of the algebraic equation system obtained by equating the coefficients of the forces of the z(ξ) expression 

in this equation to zero were found with the help of the Mathematica program. Analytical solutions of 

the equations dealt with with the help of these values were found.  As a result; it was seen by using 

Mathematica program that all analytical solutions obtained. 
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