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A CLASS OF THIRD-ORDER BOUNDARY VALUE PROBLEM

WITH INTEGRAL CONDITION AT RESONANCE

NOUREDDINE BOUTERAA* AND SLIMANE BENAICHA**

*LABORATORY OF FUNDAMENTAL AND APPLIED MATHEMATICS OF ORAN
(LMFAO), UNIVERSITY OF ORAN 1, AB, 31000, ALGERIA

**LABORATORY OF FUNDAMENTAL AND APPLIED MATHEMATICS OF ORAN
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Abstract. In this paper, we consider third-order boundary value problem

with, Dirichlet, Neumann and integral conditions at resonance case, where the
kernel’s dimension of the ordinary differential operator is equal to one and the

ordinary differential equation which can be written as the abstract equation

Lu = Nu, called semilinear form, where L is a linear Fredholm operator of
index zero, and N is a nonlinear operator. First, we prove a priori estimates,

and then we use Mawhin’s coincidence degree theory to deduce the existence

of solutions. One important ingredient to be able to apply this abstract results
(Mawhin’s coincidence degree theory) is proving the Fredholm property of the

operator L. An example is also presented to illustrate the effectiveness of the

main results.

1. Introduction

In this paper, we consider the following nonlinear third-order boundary value
problem

u′′′ (t) = f (t, u (t) , u′ (t) , u′′ (t)) , t ∈ (0, 1) , (1.1)

u (0) = u′ (0) = 0, u (1) =
3

η3

η∫
0

u (t) dt, η ∈ (0, 1) , (1.2)

where f : [0, 1]× R3 → R is a continuous function, and η ∈ (0, 1). We say that the
boundary value problem (1.1)− (1.2) is a resonance problem if the linear equation
Lu = u′′′ = 0, with the boundary value conditions (1.2) has non-trivial solution i.e.
dimKerL ≥ 1.

The theory of the boundary value problems with integral boundary conditions
arises in different areas of applied mathematics and physics. For example, heat
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44 NOUREDDINE BOUTERAA AND SLIMANE BENAICHA

conduction, chemical engineering, underground water flow, thermo-elasticity and
plasma physics can be reduced to the nonlocal problems with integral bound-
ary conditions. Recently, several authors have studied nonlocal boundary value
problems at resonance and non-resonance for second-order, third-order and higher-
order (in particular, third-order) ordinary differential equations, for instance see
[2, 3, 5, 6, 8, 12, 14, 16, 18, 19, 21] and the references therein. However, to our knowl-
edge the corresponding results for third-order with integral boundary conditions
are rarely seen [1, 7, 9, 10, 11, 15, 17, 20, 22] and the references therein. In the most
papers mentioned above, the coincidence degree theory of Mawhin was applied to
establish existence theorem.

Inspired and motivation by works mentioned above, in the present article, we use
the coincidence degree theory of Mawhin [13] to discuss the existence of solution
for third-order nonlocal boundary value problem (1.1) − (1.2) at resonance case,
and establish an existence theorem. The paper is organized as follows. In Section 2
we give the background information from coincidence degree theory, we also define
appropriate mappings and projectors that will be used in the sequel. We state and
prove our main result in Section 3, and we give an example to illustrate Theorem
3.1.

2. Preliminaries

We first recall some notations and an abstract existence result (Mawhin 1979).
Let Y, Z be two real Banach spaces and let L : domL ⊂ Y → Z be a lin-
ear operator which is Fredholm map of index zero (that is, ImL, the image of
L, KerL, the kernel of L is finite dimensional with the same dimension as the
Z/ImL), and P : Y → Y, Q : Z → Z be continuous projections such that
ImP = KerL, KerQ = ImL and Y = KerL⊕KerP, Z = ImL⊕ ImQ. It follows
that L |domL∩KerP→ ImL is invertible, we denote the inverse of that map by KP .
Let Ω be an open bounded subset of Y such that domL∩Ω 6= φ, the map N : Y → Z
is said to be L − compact on Ω if the map QN : Ω → Z is bounded and
KP (I −Q)N : Ω→ Y is compact.

We will formulate the boundary value problem (1.1)− (1.2) as Lu = Nu where
L and N are appropriate operators. To obtain our existence results we use the
following fixed point theorem of Mawhin.

Theorem 2.1. (See [13]) Let L be a Fredholm operator of index zero and N be
L− compact on Ω. Assume that the following conditions are satisfied:
(i) Lu 6= λNu for every (u, λ) ∈ [(domL \KerL) ∩ ∂Ω]× (0, 1).
(ii) Nu /∈ ImL for every u ∈ KerL ∩ ∂Ω.
(iii) deg (QN |KerL,Ω ∩KerL, 0) 6= 0,
where Q : Z → Z is a projection as above with ImL = KerQ.
Then the abstract equation Lu = Nu has at least one solution in domL ∩ Ω.

In the following, we shall use the classical spaces C [0, 1] , C1 [0, 1] , C2 [0, 1] and
L1 [0, 1]. For u ∈ C2 [0, 1], we use the norm ‖u‖ = max {‖u‖∞ , ‖u′‖∞ , ‖u′′‖∞}
where ‖u‖∞ = max

t∈[0,1]
|u (t)| and denote the norm in L1 [0, 1] by ‖·‖1.

We will use the Sobolev space W 3,1 (0, 1) which is defined by

W 3,1 (0, 1) =
{
u : [0, 1]→ R : u, u′, u′′are absolutely continuous on [0, 1] with u′′′ ∈ L1 [0, 1]

}
.
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Let Y = C2 [0, 1] , Z = L1 [0, 1], define the linear operator L : domL ⊂ Y → Z by

Lu = u′′′, u ∈ domL,

where

domL =

u ∈W 3,1 (0, 1) : u (0) = u′ (0) = 0, u (1) =
3

η3

η∫
0

u (t) dt

 ,

and define N : Y → Z by

Nu (t) = f (t, u (t) , u′ (t) , u′′ (t)) , t ∈ (0, 1) .

Then the boundary value problem (1.1)− (1.2) can be written as Lu = Nu.

3. Existence results

We will assume that the following conditions hold and in all this paper let us set

Rf (s, u (s) , u′ (s) , u′′ (s)) =

1∫
0

(1− s)2 f (s, u (s) , u′ (s) , u′′ (s)) ds

− 1

η3

η∫
0

(η − s)3 f (s, u (s) , u′ (s) , u′′ (s)) ds.

(H1) There exist functions α, β, γ, r ∈ L1 [0, 1], such that for (u, v, w) ∈ R3, t ∈
[0, 1], it holds

|f (t, u, v, w)| ≤ α (t) |u|+ β (t) |v|+ γ (t) |w|+ r (t) . (3.1)

(H2) There exists a constant M > 0 such that for u ∈ domL, if |u′′ (t)| > M for all
t ∈ [0, 1], then

Rf (s, u (s) , u′ (s) , u′′ (s)) 6= 0. (3.2)

(H3) There exists a constant M∗ > 0 such that for any u (t) = b
2 t

2 ∈ KerL with∣∣ b
2

∣∣ > M∗, either

b

2
[Rf (s, u (s) , u′ (s) , u′′ (s))] < 0, (3.3)

or else
b

2
[Rf (s, u (s) , u′ (s) , u′′ (s))] > 0. (3.4)

Theorem 3.1. Let f : [0, 1] × R3 → R be a continuous function, assume that
conditions (H1)− (H3) hold and that

‖α‖1 + ‖β‖1 + ‖γ‖1 <
1

2
. (3.5)

Then the boundary value problem (1.1)− (1.2) has at least one solution in C2 [0, 1].
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For the Proof of Theorem 3.1 we shall apply Theorem 2.1 and the following
Lemmas. Before we state our lemmas, we say that L is a Fredholm operator of
index zero, that is, ImL is closed and dimKerL = codim ImL. This implies that
there exist a continuous projections P : Y → Y and Q : Z → Z such that
ImP = KerL and KerQ = ImL. For this purpose, we must define P by (3.1) (see
later), the linear continuous projector operator Q by

Qy (t) =
1

C

 1∫
0

(1− s)2 y (s) ds− 1

η3

η∫
0

(η − s)3 y (s) ds

 t2,
where 1

C = 60
2−η3 and the linear operator KP : ImL→ domL ∩KerP by

KP y (t) =
1

2

t∫
0

(t− s)2 y (s) ds, ∀y ∈ ImL.

Lemma 3.2. (i) The operator L : domL ⊂ Y → Z is a Fredholm operator of
index zero.
(ii) For every y ∈ ImL, we have

‖KP y‖ ≤ ‖y‖1 .

Proof. First, we prove (i). It is clear that

KerL = {u ∈ domL : Lu = 0} ,

= {u ∈ domL : u′′′ = 0} ,

=

{
u ∈ domL : u (t) =

b

2
t2, b ∈ R

}
' R.

Now, we show that

ImL =

y ∈ Z :

1∫
0

(1− s)2 y (s) ds− 1

η3

η∫
0

(η − s)3 y (s) ds = 0

 . (3.6)

In fact

u′′′ = y, (3.7)

has a solution u (t) that satisfies the boundary value conditions (1.2), if and only if

1∫
0

(1− s)2 y (s) ds− 1

η3

η∫
0

(η − s)3 y (s) ds = 0. (3.8)

From (3.7), we have

u (t) = u (0) + u′ (0) t+ u′′ (0)
t2

2
+

1

2

t∫
0

(t− s)2 y (s) ds.

Thus from the condition u (0) = u′ (0) = 0, we have

u (t) = u′′ (0)
t2

2
+

1

2

t∫
0

(t− s)2 y (s) ds.



THIRD ORDER BVP WITH INTEGRAL CONDITION 47

According to u (1) = 3
η3

∫ η
0
u (t) dt, we have

1

2
u′′ (0) +

1

2

1∫
0

(1− s)2 y (s) ds =
3

η3

 η∫
0

u′′ (0)
t2

2
dt+

1

2

η∫
0

t∫
0

(t− s)2 y (s) dsdt

 ,
i.e.

1∫
0

(1− s)2 y (s) ds− 1

η3

η∫
0

(η − s)3 y (s) ds = 0.

Hence

ImL =

y ∈ Z :

1∫
0

(1− s)2 y (s) ds− 1

η3

η∫
0

(η − s)3 y (s) ds = 0

 .

On the other hand, if (3.8) holds, setting

u (t) =
b

2
t2 +

1

2

t∫
0

(t− s)2 y (s) ds,

where b is an arbitrary constant, then u (t) is a solution of (3.7). Hence (3.6) holds.
For simplicity of notation in the definition of the projector operator Q, we set

Ry =

1∫
0

(1− s)2 y (s) ds− 1

η3

η∫
0

(η − s)3 y (s) ds.

Let C =
∫ 1

0
(1− t)2 t2dt− 1

η3

∫ η
0

(η − t)3 t2dt 6= 0, t ∈ (0, 1]. By simple calculation,

we get C = 2−η3
60 .

Now, we need to show that the operator Q is projector. From Qy (t) = 1
C · (Ry) · t2,

we have (
Q2y

)
(t) = (Q (Qy)) (t) ,

=
1

C

(
1

C
Ry

) 1∫
0

(1− t)2 t2ds− 1

η3

η∫
0

(η − t)3 t2ds

 t2,

=
1

C
(Ry) t2

= (Qy) (t) ,

which implies that the operator Q is a projector. Furthermore, ImL = KerQ.
In order, to show Z = ImL⊕ ImQ, it remains to shows two following steps.

Step 1. For y ∈ Z, let y = (y −Qy) + Qy, since Q (y −Qy) = Qy − Q2y = 0, we
know (y −Qy) ∈ KerQ = ImL and Qy ∈ ImQ. Thus

Z = ImL+ ImQ.

Step 2. Let y ∈ ImL ∩ ImQ. Since y ∈ ImQ, then there exists ρ ∈ R such that
y (t) = ρt2, t ∈ [0, 1]. Since y ∈ ImL = KerQ, then

0 = ρ (Ry) (t) = ρ

 1∫
0

(1− t)2 t2ds− 1

η3

η∫
0

(η − t)3 t2ds

 = ρC.
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Since C 6= 0, then ρ = 0, so we have y (t) = 0, t ∈ [0, 1], which implies

ImL ∩ ImQ = {0} .

As consequence of Step 1 and Step 2, we deduce that

Z = ImL⊕ ImQ,

and so

dimKerL = codim ImL = dim ImQ = 1.

Thus L is Fredholm operator of index zero.
We are now ready to give the other projector employed in the proof of (ii). Define
P : Y → Y by

(Pu) (t) = u′′ (0)
t2

2
. (3.9)

Note that KerP =
{
u ∈ Y : u′′ (0) t

2

2 = 0
}

= {u ∈ Y : u′′ (0) = 0} and ImP =

KerL.
Similarly, we shall prove that the operator P is projector and Y = KerP ⊕KerL.
Fistly, since (Pu)

′′
(t) = u′′ (0), then

(
P 2u

)
(t) = Pu (t) , t ∈ [0, 1].

Secondly, for all u ∈ Y and t ∈ [0, 1], we have

u (t) = (u (t)− Pu (t)) + Pu (t)

=

(
u (t)− u′′ (0)

t2

2

)
+ u′′ (0)

t2

2
,

that is Y = KerP +KerL. By simple calculation we can get KerL∩KerP = {0}.
Then Y = KerP ⊕KerL.
Before, to estimate the supremum norm of the generalized inverse operator KP . It
remains to prove that the operator KP is the generalized inverse of L. In fact, if
y ∈ ImL, then

(LKP ) y (t) = [(KP y) (t)]
′′′

= y (t) .

And for u ∈ domL ∩KerP , we know

(KPL)u (t) = (KP )u′′′ (t) =
1

2

t∫
0

(t− s)2 u′′′ (s) ds = u (t)−u (0)−u′ (0) t−u′′ (0)
t2

2
,

in view of u ∈ domL ∩KerP, u (0) = u′ (0) = 0 and Pu = 0, it follows that

(KPL)u (t) = u (t) .

This shows that KP = (L |domL∩KerP )
−1

.
Lastly, we estimate the supremum norm of the generalized inverse operator KP .
From the definition of KP , it follows that

‖KP y‖∞ ≤
1

2

1∫
0

(1− s)2 |y (s)| ds ≤
1∫

0

|y (s)| ds = ‖y‖1 .

From (KP y)
′
(t) =

∫ t
0

(t− s) y (s) ds, we obtain

∥∥(KP y)
′∥∥
∞ ≤

1∫
0

(1− s) |y (s)| ds ≤
1∫

0

|y (s)| ds = ‖y‖1 ,
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and from (KP y)
′′

(t) =
∫ t
0
y (s) ds, we obtain

∥∥(KP y)
′′∥∥
∞ ≤

1∫
0

|y (s)| ds = ‖y‖1 ,

then
‖KP y‖ ≤ ‖y‖1 . (3.10)

�

Lemma 3.3. Let Ω1 = {u ∈ domL \KerL : Lu = λNu, for some λ ∈ [0, 1]}. Then
Ω1 is bounded.

Proof. Suppose that u ∈ Ω1, and Lu = λNu. Thus λ 6= 0 and QNu = 0, so it
yields

Rf (s, u (s) , u′ (s) , u′′ (s)) = 0.

Thus, by condition (H2), there exists t1 ∈ [0, 1], such that |u′′ (t1)| ≤ M . In view
of

u′′ (0) = u′′ (t1)−
t1∫
0

u′′′ (t) dt,

then, we have

|u′′ (0)| ≤M +

1∫
0

|u′′′ (s)| ds = M + ‖u′′′‖1 = M + ‖Lu‖1 ≤M + ‖Nu‖1 . (3.11)

Again for u ∈ Ω1, then (I − P )u ∈ domL∩KerP = ImKP and LPu = 0, 0 < λ < 1
and Nu = 1

λLu ∈ ImL, thus from Lemma 3.2, we know

‖(I − P )u‖ = ‖KPL (I − P )u‖ ≤ ‖L (I − P )u‖1 = ‖Lu‖1 ≤ ‖Nu‖1 . (3.12)

From (3.11),(3.12) and ‖Pu‖ = |u′′ (0)| , we have

‖u‖ ≤ ‖Pu‖+ ‖(I − P )u‖ = |u′′ (0)|+ ‖(I − P )u‖ ≤M + 2 ‖Nu‖1 . (3.13)

From (3.1) and (3.13), we obtain

‖u‖ ≤ 2

[
‖α‖1 ‖u‖∞ + ‖β‖1 ‖u

′‖∞ + ‖γ‖1 ‖u
′′‖∞ + ‖r‖1 +

M

2

]
. (3.14)

Thus, from ‖u‖∞ ≤ ‖u‖ and (3.14), we have

‖u‖∞ ≤
2

1− 2 ‖α‖1

[
‖β‖1 ‖u

′‖∞ + ‖γ‖1 ‖u
′′‖∞ + ‖r‖1 +

M

2

]
. (3.15)

From ‖u′‖∞ ≤ ‖u‖, (3.14) and (3.15), we have

‖u′‖∞ ≤ ‖u‖ ,

‖u′‖∞ ≤ 2

[
1 +

2 ‖α‖1
1− 2 ‖α‖1

] [
‖β‖1 ‖u

′‖∞ + ‖γ‖1 ‖u
′′‖∞ + ‖r‖1 +

M

2

]
,

=
2

1− 2 ‖α‖1

[
‖β‖1 ‖u

′‖∞ + ‖γ‖1 ‖u
′′‖∞ + ‖r‖1 +

M

2

]
,

i.e

‖u′‖∞

[
1− 2 ‖α‖1 − 2 ‖β‖1

1− 2 ‖α‖1

]
≤ 2

1− 2 ‖α‖1

[
‖γ‖1 ‖u

′′‖∞ + ‖r‖1 +
M

2

]
.



50 NOUREDDINE BOUTERAA AND SLIMANE BENAICHA

Therefore

‖u′‖∞ ≤
2

1− 2 ‖α‖1 − 2 ‖β‖1

[
‖γ‖1 ‖u

′′‖∞ + ‖r‖1 +
M

2

]
. (3.16)

Again, from ‖u′′‖∞ ≤ ‖u‖ , (3.14) , (3.15) and (3.16), we have

‖u′′‖∞ ≤
[
2 ‖β‖1 +

4 ‖β‖1 ‖α‖1
1− 2 ‖α‖1

]
‖u′‖∞+

[
4 ‖α‖1

1− 2 ‖α‖1
+ 2

] [
‖γ‖1 ‖u

′′‖∞ + ‖r‖1 +
M

2

]
,

≤
[

4 ‖β‖1
(1− 2 ‖α‖1 − 2 ‖β‖1) (1− 2 ‖α‖1)

+
2

1− 2 ‖α‖1

] [
‖γ‖1 ‖u

′′‖∞ + ‖r‖1 +
M

2

]
,

=
2

(1− 2 ‖α‖1 − 2 ‖β‖1)

[
‖γ‖1 ‖u

′′‖∞ + ‖r‖1 +
M

2

]
,

i.e

‖u′′‖∞ ≤

[
2
(
‖r‖1 + M

2

)
1− 2 ‖α‖1 − 2 ‖β‖1 − 2 ‖γ‖1

]
, (3.17)

thus, from (3.17), there exists M1 > 0 such that

‖u′′‖∞ ≤M1, (3.18)

therefore, from (3.18) and (3.16), there exists M2 > 0, such that

‖u′‖∞ ≤M2, (3.19)

hence, from (3.19) and (3.15), there exists M3 > 0, such that

‖u‖∞ ≤M3. (3.20)

Consequently

‖u‖ = max {‖u‖∞ , ‖u′‖∞ , ‖u′′‖∞} ≤ max {M1,M2,M3} .

Again, from (3.1) , (3.18) , (3.19) and (3.20), we have

‖u′′′‖1 = ‖Lu‖1 ≤ ‖Nu‖1 ≤ ‖α‖1M3 + ‖β‖1M2 + ‖γ‖1M1 + ‖r‖1 .

So, Ω1 is bounded. �

Lemma 3.4. The set Ω2 = {u ∈ KerL : Nu ∈ ImL} is bounded.

Proof. Let u ∈ Ω2, then u ∈ KerL =
{
u ∈ domL : u = b

2 t
2, b ∈ R, t ∈ [0, 1]

}
.

Also, since KerQ = ImL, then QNu = 0, therefore

Rf

(
s,
b

2
s2, bs, b

)
= 0.

From condition (H2), ‖u‖∞ =
∣∣ b
2

∣∣ ≤M , so ‖u‖ ≤M , thus Ω2 is bounded. �

Before we define the set Ω3, we must state our isomorphism, J : KerL→ ImQ.
Let

J

(
b

2
t2
)

=
b

2
t2, ∀b ∈ R, t ∈ [0, 1] ,

and define

Ω3 = {u ∈ KerL : −λJu+ (1− λ)QNu = 0, λ ∈ [0, 1]} .
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Lemma 3.5. If the first part of condition (H3) holds, then(
b

2

)(
60

2− η3

)[
Rf

(
s,
b

2
s2, bs, b

)
ds

]
< 0, (3.21)

for all
∣∣ b
2

∣∣ > M∗ and Ω3 is bounded.

Proof. Suppose that u = b0
2 t

2 ∈ Ω3. Then we obtain

λ

(
b0
2

)
= (1− λ)

(
60

2− η3

)(
Rf

(
s, b0

s2

2
, b0s, b0

))
.

If λ = 1, then b0 = 0, which gives Ω3 bounded.
Otherwise, if λ 6= 1, there exist M∗ > 0 such that

∣∣ b0
2

∣∣ > M∗. Then in view of
(3.21), we have

λ

(
b0
2

)2

= (1− λ)
b0
2

(
60

2− η3

)(
Rf

(
s, b0

s2

2
, b0s, b0

))
< 0,

which contradicts the fact that λ
(
b0
2

)2 ≥ 0. Then |u| =
∣∣ b0
2 t

2
∣∣ ≤ ∣∣ b02 ∣∣ ≤ M∗, we

obtain ‖u‖ ≤M∗. Hence Ω3 ⊂ {u ∈ KerL : ‖u‖ ≤M∗} is bounded.
If λ = 0, it yields

Rf

(
s,
b0
2
s2, b0s, b0

)
= 0.

Taking condition (H2) into account, we obtain ‖u‖ =
∣∣ b
2

∣∣ ≤M∗. �

Now, define Ω3 by

Ω3 = {u ∈ KerL : λJu+ (1− λ)QNu = 0, λ ∈ [0, 1]}

Lemma 3.6. If the second part of (H3) holds, then(
b

2

)(
60

2− η3

)[
Rf

(
s,
b

2
s2, bs, b

)]
> 0, (3.22)

for all
∣∣ b
2

∣∣ > M∗ and Ω3 is bounded.

Proof. A similar argument as above shows that Ω3 is bounded. �

The Proof of Theorem 3.1 is now an easy consequence of the above lemmas and
Theorem 2.1.

Proof. of Theorem 3.1.

Let Ω to be an open bounded subset of Y such that
3
∪
i=1

Ωi ⊂ Ω. By using

the fact that u′′′ is bounded and the Arzela-Ascoli Theorem, we can prove that
KP (I −Q)N : Ω→ Y is compact, thus N is L− compact on Ω. Then by Lemmas
3.3 and 3.4, we have
(i) Lu 6= λNu for every (u, λ) ∈ [(domL \KerL) ∩ ∂Ω]× (0, 1).
(ii) Nu /∈ ImL for every u ∈ KerL ∩ ∂Ω.
(iii) Let H (u, λ) = ±λJu+ (1− λ)QNu = 0, λ ∈ [0, 1].
According to Lemmas 3.5 and 3.6, we know that H (u, λ) 6= 0 for every u ∈ KerL∩
∂Ω. Thus, by the homotopy property of degree, we obtain

deg (QN |KerL,Ω ∩KerL, 0) = deg (H (·, 0) ,Ω ∩KerL, 0) ,

= deg (H (·, 1) ,Ω ∩KerL, 0) ,
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= deg (±J,Ω ∩KerL, 0) 6= 0.

Then, by Theorem 2.1, Lu = Nu has at least one solution in domL ∩ Ω, so the
boundary value problem (1.1) − (1.2) has at least one solution in C2 [0, 1]. The
proof is complete. �

We construct an example to illustrate the applicability of the results presented.

Example 3.1. Consider the following boundary value problem

u′′′ (t) = f (t, u (t) , u′ (t) , u′′ (t)) , t ∈ (0, 1) , (3.23)

u (0) = u′ (0) = 0, u (1) =
3

η3

η∫
0

u (t) dt, η ∈ (0, 1) , (3.24)

where

f (t, u (t) , u′ (t) , u′′ (t)) =
1

3
u′′ (t) +

1

6
(1− t) (1− cos (u′(t)) sin (u(t)), t ∈ (0, 1) .

Here we have∣∣∣∣13u′′ (t) +
1

6
(1− t) (1− cos (u′(t)) sin (u(t))

∣∣∣∣ ≤ 1

3
+

1

3
|u′′ (t)| ,

that is

α (t) = 0, β (t) = 0, γ (t) =
1

3
and r (t) =

1

3
.

So, condition (H1) is satisfied, which gives

‖α‖1 + ‖β‖1 + ‖γ‖1 =
1

3
<

1

2
.

Set

I = Rf (s, u (s) , u′ (s) , u′′ (s))

=

1∫
0

(1− s)2 f (s, u (s) , u′ (s) , u′′ (s)) ds− 1

η3

η∫
0

(η − s)3 f (s, u (s) , u′ (s) , u′′ (s)) ds.

If u′′ (t) < −M = −10, then

f (t, u (t) , u′ (t) , u′′ (t)) <
1

3
(1−M) = −3 < 0.

In this case, we have I < 0, because

1∫
0

(1− s)2 f (s, u (s) , u′ (s) , u′′ (s)) ds <

η∫
0

(
1− s

η

)3

f (s, u (s) , u′ (s) , u′′ (s)) ds.

If u′′ (t) > M = 10, then

f (t, u (t) , u′ (t) , u′′ (t)) >
1

3
(1 +M) =

11

3
> 0.

Hence, I > 0, because

1∫
0

(1− s)2 f (s, u (s) , u′ (s) , u′′ (s)) ds >

η∫
0

(
1− s

η

)3

f (s, u (s) , u′ (s) , u′′ (s)) ds.
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Therefore, the condition (H2) is satisfied.
If b

2 < −M
∗ = −5 and u (t) = b

2 t
2 , then

f (t, u (t) , u′ (t) , u′′ (t)) <
1

3
(1 + b) = −3 < 0.

In this case, we have I < 0, because

1∫
0

(1− s)2 f (s, u (s) , u′ (s) , u′′ (s)) ds <

η∫
0

(
1− s

η

)3

f (s, u (s) , u′ (s) , u′′ (s)) ds.

Hence

b

2

 1∫
0

(1− s)2 f (s, u (s) , u′ (s) , u′′ (s)) ds− 1

η3

η∫
0

(η − s)3 f (s, u (s) , u′ (s) , u′′ (s)) ds

 > 0.

Therefore b
2I > 0. So condition (H3) is satisfied.

Thus, all the conditions of Theorem 3.1 are satisfied, which implies that the bound-
ary value problem (3.23)− (3.24) has at least one solution u ∈ C2 [0, 1].
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Abstract. Fractional calculus is a generalization of ordinary differentiation

and integration to arbitrary order (non-integer). In recent years, fractional

differential equations(FDEs) arise naturally in various fields such as rheology,
fractals, chaotic dynamics, modelling and control theory, signal processing,

bioengineering and biomedical applications, etc. In this paper, we discuss the
existence results for hybrid differential equation with Katugampola fractional

derivative. The argument is based upon Dhage fixed point theorem. We also

discuss the existence result for hybrid differential equation.

1. Introduction

Fractional calculus is a generalization of ordinary differentiation and integra-
tion to arbitrary order (non-integer). In recent years, fractional differential equa-
tions(FDEs) arise naturally in various fields such as rheology, fractals, chaotic dy-
namics, modelling and control theory, signal processing, bioengineering and biomed-
ical applications, etc. Detailed study on fractional differential equations can be seen
in, see [1, 2, 3, 4, 16]. Theory of fractional hybrid differential equation has been ex-
tensively studied by many authors [5, 6, 7, 8, 9, 15]. Recently, U. N. Katugampola
[10] introduced generalized fractional derivative and it has been studied extensively
by some researchers [11, 12, 13, 14].

Consider the hybrid differential equation involving generalized fractional deriv-
ative of the form{

ρDα
(

x(t)
f(t,x(t))

)
= g(t, x(t)), t ∈ J := [0, a],

x(t)
f(t,x(t)) |t=0 = x0,

(1.1)

where ρDα
a+ is Katugampola fractional derivative of order α and ρ > 0. Here

f : J ×R→ R| {0} and g : J ×R→ R are given continuous function.
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The paper is organized as follows. In Section 2, we present notations and defi-
nition used throughout the paper. In Section 3, we discuss the existence result for
hybrid differential equation.

2. Preliminary

In this section, we recall some definitions and results from fractional calculus.
The following observations are taken from [9, 11]. Throughout this paper, let C(J)
a space of continuous functions from J into R with the norm

‖x‖ = sup {|x(t)| : t ∈ J} .

Definition 2.1. The generalized left-sided fractional integral ρIαa+f of order α is
defined by

(ρIαa+) f(t) =
ρ1−α

Γ(α)

∫ t

a

(tρ − sρ)α−1sρ−1f(s)ds, t > a, (2.1)

if the integral exists.
The generalized fractional derivative, corresponding to the generalized fractional

integral (2.1), is defined for 0 ≤ a < t, by

(ρDα
a+f) (t) =

ρα−n−1

Γ(n− α)

(
t1−ρ

d

dt

)n ∫ t

a

(tρ − sρ)n−α+1sρ−1f(s)ds, (2.2)

if the integral exists.

Lemma 2.1. A function x ∈ C(J) is the solution of fractional initial value problem{
ρDα

(
x(t)

f(t,x(t))

)
= g(t, x(t)), t ∈ J,

x(t)
f(t,x(t)) |t=0 = x0,

if and only if x satisfies the following Volterra integral equation

x(t) = f(t, x(t))

(
x0 +

1

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1
sρ−1g(s, x(s))ds

)
. (2.3)

Lemma 2.2. Let S be a non-empty, closed convex and bounded subset of the Banach
algebra X let A : X → X and B : S → X be two operators such that

(1) A is Lipschitzian with a Lipschitz constant k,
(2) B is completely continuous,
(3) x = AxBy ⇒ x ∈ S for all y ∈ S, and
(4) Mk < 1, where M = ‖B(S)‖ = sup {‖B(x)‖ : x ∈ S},

then the operators has a solution.

3. Existence results

We make the following hypotheses to prove our main results.

(H1) The function f : J ×R→ R| {0}, there exixts a constant L > 0, such that

|f(t, x(t))− f(t, y(t))| ≤ L(|x(t)− y(t)|),
for t ∈ J and for all x, y ∈ R.

(H2) There exists a function h : J → R, such that

|g(t, x(t))| ≤ h(t), ∀ t ∈ J, x ∈ R.
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(H3)

r ≥ K
(
x0 +

(
aρ

ρ

)α
1

Γ(α+ 1)
‖h‖C

)
(3.1)

where |f(t, x)| ≤ K, ∀ t ∈ J, x ∈ R.

L

(
x0

Γ(γ)
+

(
aρ

ρ

)α
B(γ, α)

Γ(α)
‖h‖C

)
< 1.

Theorem 3.1. Assume that [H1]-[H3] are satisfied. Then, (1.1) has solution on
J .

Proof. We define a subset S of X by

S = {x ∈ X : ‖x‖C ≤ r}

where r satisfies inequality

r ≥ K
(
x0 +

(
aρ

ρ

)α
1

Γ(α+ 1)
‖h‖C

)
,

where |f(t, x)| ≤ K.
Clearly S is closed, convex and bounded subset of the Banach space X. By Lemma
2.1 the initial value problem (1.1)

x(t) = f(t, x(t))

(
x0 +

1

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1
sρ−1g(s, x(s))ds

)
. (3.2)

Define two operators A : X → X by

Ax(t) = f(t, x(t)), (3.3)

and B : S → X by

Bx(t) = x0 +
1

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1
sρ−1g(s, x(s))ds. (3.4)

Then x = AxBx. We shall show that the operators A and B satisfy all the condition
of Lemma 2.2. We split the proof into a sequence of steps.
Step 1. The operator A is a Lipschitz on X.

|(Ax(t)−Ay(t))| = |f(t, x(t))− f(t, y(t))|
≤ L |(x(t)− y(t))|
≤ L ‖x− y‖C ,

which implies

‖Ax−Ay‖ ≤ L ‖x− y‖C .

Step 2. The Operator B is completely continuous on S.
First, we show that B is continuous on S. Let {xn} be a sequence in S convergent



58 S. HARIKRISHNAN, E. M. ELSAYED, AND K. KANAGARAJAN

to a point x ∈ S. Then by Lebesgue dominated convergence theorem,

lim
n→∞

Bxn(t) = lim
n→∞

(
x0 +

1

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1
sρ−1g(s, xn(s))ds

)

= x0 +
1

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1
sρ−1 lim

n→∞
g(s, xn(s))ds

= x0 +
1

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1
sρ−1g(s, x(s))ds

= Bx(t).

This shows that B is continuous on S. It is sufficient to show that B(S) is uniformly
bounded and equicontinuous set in X. First we note that

|Bx(t)| =

∣∣∣∣∣x0 +
1

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1
sρ−1g(s, x(s))ds

∣∣∣∣∣
≤ x0 +

1

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1
sρ−1 |g(s, x(s))| ds

≤ x0 +
1

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1
sρ−1 |h(s)| ds

≤ x0 +

(
aρ

ρ

)α
1

Γ(α+ 1)
‖h‖C ,

for all t ∈ J .

‖Bx‖C ≤ x0 +

(
aρ

ρ

)α
1

Γ(α+ 1)
‖h‖C .

This shows that B is uniformly bounded on S.
Next, we show that B is an equicontinuous set in X. Let t1, t2 ∈ J with t1 < t2
and x ∈ S. Then we have

|Bx(t1)−Bx(t2)| ≤ 1

Γ(α+ 1)
‖h‖C

((
tρ1
ρ

)α
−
(
tρ2
ρ

)α)
.

Obviously the right hand side of the above inequality tends to zero independently
of x ∈ S as t1 − t2 → 0. Therefore, it follows fom the Arzela-Ascoli theorem that
B is a completely continuous operator on S.
Step 3. Next we prove that (3) of Lemma 2.2.

|x(t)| =

∣∣∣∣∣f(t, x(t))

(
x0 +

1

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1
sρ−1g(s, x(s))ds

)∣∣∣∣∣
≤ |f(t, x(t))|

(
x0 +

1

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1
sρ−1 |g(s, x(s))| ds

)

≤ K

(
x0 +

1

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1
sρ−1 |h(s)| ds

)

≤ K
(
x0 +

(
aρ

ρ

)α
1

Γ(α+ 1)
‖h‖C

)
.
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Thus, we obtain

‖x‖C ≤ K
(
x0 +

(
aρ

ρ

)α
1

Γ(α+ 1)
‖h‖C

)
≤ r.

Step 4. Now, we show that Mk < 1, that is (4) of Lemma 2.2 holds.
Thus we have

M = ‖B(s)‖ = sup {‖Bx : x ∈ S‖} ≤ x0 +

(
aρ

ρ

)α
1

Γ(α+ 1)
‖h‖C ≤ r,

and k = L. Thus, all the conditions of Lemma 2.2 are satisfied and hence the
operator equation x = AxBx has a solution in S. In consequence, the problem (1.1)
has a solution on J . This complete the proof. �
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Abstract. In this article, we deal with the soft separation axioms using soft
points on soft topological space and discuss the characterizations and proper-

ties of them. We extend these separation axioms to the soft product of soft

topological spaces. Also we provide correct examples for the wrong examples
example:1, example:2 and example:3 given in article [8].

For the vagueness and uncertinity of real life problems, there are several math-
ematical tools such as fuzzy sets, intuitionistic fuzzy sets, rough sets, vague sets
etc. There is one more mathematical tool named soft sets which was introduced
by Molodsov[12] in 1999. After that it was developed and used in decision mak-
ing problems by Maji et. al in [10] and [11]. Aktas and Cagman [1] introduced
the applications of soft set theory in algebraic structures in 2007. Kharral and
Ahmad [9] introduced and discussed several properties of soft mappings. Shabir
and Naz [16] investigated soft seperation axioms defined for crisp points in 2011.
Hussain and Ahmad [7] investigate the properties of soft interior, soft closure and
soft boundary in 2011. Aygunoglu and Aygun [2] in 2012 generalize Alexander
subbase theorem and Tychonoff theorem to the soft topological spaces by defining
and using the product of soft topological spaces. Nazmul and Samanta [13] studied
the neighbourhood properties of soft topological spaces in 2013. There are several
articles related to the properties of soft topological spaces and soft mappings on soft
topological spaces. Some of them are [4], [6], [14], [17], [19] [20], [21]. Four differ-
ent types of sepereation axioms were defined and discussed in [5], [8], [16] and [18].
Singh and Noorie [17] derives the relation among these four types of Ti, i = 1, 2, 3, 4
spaces in 2017.

In the second section of this article, we give some basic definitions and prelimi-
naries of soft topological spaces.

In the third section of this article, we deal with the soft separation axioms using
soft points and discuss about the characterizations and properties of them. In fact

2010 Mathematics Subject Classification. Primary: 54D10 ; Secondaries: 54A40, 54A05 .
Key words and phrases. Soft toplogical spaces; Soft separation axioms; Soft product space.
c©2020 Maltepe Journal of Mathematics.

Submitted on April 20th,2020. Published on October 30th, 2020.
Communicated by Pratulananda DAS.

61



62 RAMKUMAR SOLAI, AND VINOTH SUBBIAH

these separation axioms are stronger than other separation axioms. We extend
these separation axioms to the product of soft topological spaces. Also we provide
correct examples for the wrong examples Example:1, Example:2 and Example:3
given in article [8]

Throughout this paper, X is the universe set, E is a set of parameters and P(X)
is the set of all subsets of X.

1. Preliminaries

Definition 1.1. [12] A mapping F : E → P(X) is called a soft set and is denoted
by (F, E). The family of all soft sets over X is denoted as SS(X, E)

Definition 1.2. [12] Let (F, E) and (G, E) be two soft sets over X. Then (F, E)
is a soft subset of (G, E) written as (F, E) ⊆̃(G, E), if F (e) ⊆ G(e), for all e ∈ E.
Also the soft sets (F, E) and (G, E) are equal written as (F, E) =̃(G, E), if
(F, E)⊆̃(G, E) and (G, E)⊆̃(F, E).

Definition 1.3. [12] Let {(Fi, E) : i ∈ I}⊆̃SS(X, E), where I is an arbitrary
index set. Then

(1) the soft union of {(Fi, E) : i ∈ I} is the soft set (F, E), where F is the
mapping defined as F (e) = ∪{Fi(e) : i ∈ I}, for every e ∈ E and is denoted
as (F, E) = ∪̃{(Fi, E) : i ∈ I}.

(2) the soft intersection of {(Fi, E) : i ∈ I} is the soft set (F, E), where F
is the mapping defined as F (e) = ∩{Fi(e) : i ∈ I}, for every e ∈ E and is
denoted as (F, E) = ∩̃{(Fi, E) : i ∈ I}.

Definition 1.4. [21] Let (F, E) be a soft set over X. Then the soft relative
complement F c of (F, E) is the mapping from E to P(X) defined by F c(e) =
X − F (e) for every e ∈ E and is denoted as (F, E)c or (F c, E).

Definition 1.5. [12] Let (F, E) be a soft set over X. Then

(1) (F, E) is called as null soft set, if F (e) = φ, for every e ∈ E. We simply

write it as φ̃.
(2) (F, E) is called as absolute soft set, if F (e) = X, for every e ∈ E. We

simply write it as X̃.

Definition 1.6. ([16], [21]) Let τ ⊆ SS(X, E). Then τ is a soft topology on X if
it satifies the following three conditions

(1) φ̃, X̃ ∈ τ .
(2) The soft union of any number of soft sets in τ is in τ .
(3) The soft intersection of finite number of soft sets in τ is in τ .

This soft topological space over X is written as (X, τ, E) and the members of τ
are called as soft open sets in X. Also the soft complement of soft open sets are
called soft closed sets.

Definition 1.7. [21] The soft set (F, E) over X is called as a soft point in X,

denoted by xe, if F (e′) =

{
{x} if e′ = e

φ if e′ ∈ E − {e}
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Definition 1.8. [2] Let (X, τ, E) be a soft topological space. A subcollection B
of τ is said to be a base for τ if every member of τ can be expressed as a union of
members of τ .

Definition 1.9. [2] Let (X, τ, E) be a soft topological space. A subcollection S
of τ is said to be a subbase for τ if the family of all finite intersetions of members
of S forms a base for τ .

Definition 1.10. [21] A soft set (G, E) in a soft topological space (X, τ, E) is
known as a soft neighbourhood of a soft set (F, E) if there exists a soft open set
(H, E) such that (F, E)⊆̃(H, E)⊆̃(G, E).

Definition 1.11. [16]
Let (F, E) be a soft set in a soft topological space (X, τ, E). Then the soft

closure of (F, E) is denoted as Cl(F, E) and defined as Cl(F, E) = ∩̃{(G, E) :
(G, E)∈̃τ c and (G, E)⊇̃(F, E)}.

Definition 1.12. [16] Let Y be a nonempty soft subset of a soft topological space
(X, τ, E). Then τY = {(F, E)∩̃EY : (F, E)∈̃τ} is called a soft relative topology
on Y and (Y, τY , E) is called a soft subspace of (X, τ, E), where EY : E → P(Y )
such that EY (e) = Y , for every e ∈ E.

Proposition 1.1. [16] Let (Y, τY , E) be a soft subspace of a soft topological space
(X, τ, E) and (F,A) be a soft set over Y . Then (F,A) is a soft open set in Y if
and only if (F, E) = (G, E)∩̃EY , for some (G, E)∈̃τ .

Theorem 1.2. [21] A soft set (F, E) is soft open set if and only if (G, E) is a soft
neighbourhood of a soft set (F, E), for each soft set (F, E) contained in (G, E).

Proposition 1.3. [16] Let (X, τ, E) be a soft topological space over X. Then the
collection τe = {F (e) : (F, E)∈̃τ} defines a topology on X.

Proposition 1.4. [16] Let (X, τ, E) be a soft topological space over X and Y ⊆ X.
Then (Y, τYe) is a subspace of (X, τe).

Definition 1.13. [3] Let (F, E1)∈̃ SS(X1, E1) and (G, E2) ∈̃SS(X2, E2). Then
the cartesian product (F, E1) × (G, E2) is defined by (F × G)(E1×E2), where
(F ×G)(E1×E2)(e1i , e2j ) = F (e1i)×G(e2j ), ∀(e1i , e2j ) ∈ E1 × E2.

Definition 1.14. [2] The soft mappings (pq)i, i ∈ {1, 2} is called soft projection
mappings from X1 ×X2 to Xi defined by (pq)i((F, E)1 × (F, E)2) = (pq)i((F1 ×
F2)(E1×E2)) = pi(F1 × F2)qi(E1×E2) = (F,E)i, where (F, E)1 ∈ SS(X1, E1),
(F, E)2 ∈ SS(X2, E2) and pi : X1 ×X2 → Xi, qi : E1 × E2 → Ei are projection
mappings in classical meaning.

Definition 1.15. [2] Let {(φψ)i : S(X, E) → (Yi, τi)}i∈∆ be a family of soft
mappings where {(Yi, τi)}i∈∆ be a family of soft topological spaces. Then the
topology τ generated from the subbase {(φψ)−1

i ((F,E)) : (F,E) ∈ τi, i ∈ ∆} is
called the initial soft topology induced by the family of soft mappings {(φψ)i}i∈∆.

Definition 1.16. [2] Let {(Xi, τi)}i∈∆ be a family of soft topological spaces. Then
the initial soft topology on X(=

∏
i∈∆

Xi) generated by the family {(pq)i}i∈∆ is called

soft product topology on X, where (pq)i are the soft projection mapping from X
to Xi.
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Theorem 1.5. [9] Let X and Y be crisp sets, FA, (FA)i ∈ SS(X, E) and
GB , (GB)i ∈ SS(Y, K), where i ∈ ∆, an index set.Then

(1) If (FA)1⊆̃(FA)2, then Φψ((FA)1)⊆̃Φψ((FA)2).

(2) If (GB)1⊆̃(GB)2, then Φ−1
ψ ((GB)1)⊆̃Φ−1

ψ ((GB)2).

(3) (FA)⊆̃Φ−1
ψ (Φψ(FA)), the equality holds if Φψ is injective.

(4) Φψ(Φ−1
ψ (FA))⊆̃(FA), the equality holds if Φψ is surjective.

(5) Φψ( ∪̃
i∈∆

(FA)i) = ∪̃
i∈∆

Φψ((FA)i).

(6) Φψ( ∩
i∈∆

(FA)i)⊆̃ ∩
i∈∆

Φψ((FA)i).

(7) Φ−1
ψ ( ∩

i∈∆
(GB)i) = ∩

i∈∆
Φ−1
ψ ((GB)i).

(8) Φ−1
ψ ( ∩

i∈∆
(GB)i) = ∩

i∈∆
Φ−1
ψ ((GB)i).

(9) Φ−1
ψ (EY ) = EX and Φ−1

ψ (φY ) = φX .

(10) Φψ(EX) = EY if Φψ is surjective.
(11) Φψ(φx) = φY .

2. Soft separation axioms and product soft topological spaces

Definition 2.1. [8] A soft topological space (X, τ,E) is said to be a soft T0 -space
if for every pair of soft points xe1 , ye2 such that xe1 6= ye2 , there exists (F,E) ∈ τ
such that xe1 ∈̃(F,E), ye2 /̃∈(F,E) or there exists (G,E) ∈ τ such that ye2∈̃(G,E),

xe1 /̃∈(G,E).

Definition 2.2. [8] A soft topological space (X, τ,E) is said to be a soft T1 -space
if every pair of soft points xe1 , ye2 , such that xe1 6= ye2 there exist (F,E), (G,E) ∈ τ
such that xe1 ∈̃(F,E), ye2 /̃∈(F,E) and xe1 /̃∈(G,E), ye2∈̃(G,E) .

Example 2.1. Example for T0-space.
Let X = {x, y}, E = {e1, e2} and τ = {φ̃, X̃, (F1, E), (F2, E), (F3, E), (F4, E)}
where

F1(e) =

{
{x} if e = e1

{y} if e = e2

, F2(e) =

{
{x} if e = e1

{x} if e = e2

,

F3(e) =

{
{x} if e = e1

X if e = e2

, F4(e) =

{
{x} if e = e1

φ if e = e2

,

For the soft points xe1 , ye1 , there is a soft open set (F1, E) ∈ τ with xe1∈̃(F1, E)

and ye1 /̃∈(F1, E). For the soft points xe2 , ye2 , there is a (F1, E) ∈ τ with xe2 /̃∈(F1, E)
and ye2 ∈̃ (F1, E). For the soft points xe1 , ye2 , there is a (F2, E) ∈ τ with xe1∈̃
(F2, E) and ye2 /̃∈(F2, E). For the soft points xe2 , ye1 , there is a (F2, E) ∈ τ with

xe2∈̃(F2, E) and ye1 /̃∈(F2, E). For the soft points xe1 , xe2 , there is a (F1, E) ∈ τ
with xe1∈̃(F1, E) and xe2 /̃∈(F1, E). For the soft points ye1 , ye2 , there is a (F1, E) ∈ τ
with ye1 /̃∈ (F1, E) and ye2 ∈̃(F1, E). Thus (X, τ,E) is a soft T0-space.

Example 2.2. Let X = Z, the set of all integers and E = N, the set of all
natural numbers. Define a soft topology on X as τ = {(F,E)c : F (ei) is finite

for each ei ∈ E}∪{φ̃}.
(1) Clearly φ̃ ∈ τ and X̃ ∈ τ .
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(2) If (Fα, E) ∈ τ for some α ∈ ∆, where ∆ is some index set, then F cα(ei) is
finite for each ei ∈ E. Now ∩F cα(ei) = (∪Fα(ei))

c is finite for each ei ∈ E.
So that ∪(Fα, E) ∈ τ .

(3) If (F1, E), (F2, E) ∈ τ , F c1 (ei) and F c2 (ei) are finite for each ei ∈ E. Now
F c1 (ei)∪F c2 (ei) = (F1(ei)∩F2(ei))

c = ((F1 ∩F2)(ei))
c = (F1 ∩F2)c(ei) is

finite for each ei ∈ E. So that (F1, E)∩(F2, E) ∈ τ .

Thus (X, τ,E) is a soft topological space. For any two distinct soft points xei and
yej , x

c
ei and ycej are soft open sets such that xei ∈ ycej , yej /∈ ycej and xei /∈ xcei ,

yej ∈ xcei . Thus (X, τ,E) is a soft T1 space.

Theorem 2.1. Every soft T1-space is a soft T0-space.

Proof. Proof is straight forward �

Theorem 2.2. Let (X, τ, E) be a soft topological space. Then (X, τ, E) is a
soft T0 space if and only if for any two distinct soft points xei and yej , there is soft

closed set (H, E) such that xei∈̃(H, E), yej /̃∈(H, E) or there is soft closed set

(K, E) such that xei /̃∈(K, E), yej ∈̃(K, E).

Proof. Let us consider two distinct soft points xei and yej . Since (X, τ, E) is a

soft T0 space, there is soft open set (F, E) such that xei∈̃ (F, E), yej /̃∈ (F, E) or

there is soft open set (G, E) such that xei /̃∈ (G, E), yej ∈̃ (G, E). Let (H, E) =
(Gc, E) and (K, E) = (F c, E). Then (H, E) is a soft closed set such that xei∈̃
(H, E), yej /̃∈ (H, E) or (K, E) is a soft closed set such that xei /̃∈ (K, E), yej ∈̃
(K, E).

Conversely, for any two distinct soft points xei and yej , there is a soft closed set

(H, E) such that xei∈̃ (H, E), yej /̃∈ (H, E) or there is soft closed set (K, E) such

that xei /̃∈ (K, E), yej ∈̃ (K, E). Then (Hc, E) is a soft open set such that xei /̃∈
(Hc, E), yej ∈̃ (Hc, E) or (Kc, E) is a soft open set such that xei∈̃ (Kc, E), yej /̃∈
(Kc, E). This proves that (X, τ, E) is a soft T0 space. �

Example:1 given in the artice [8] for soft T1 space which is not a soft T0 space is
wrong. Because it is not a soft T0 space too.

Example 2.3. [8] X = {x1, x2}, A = {e1, e2} and τ = {φ̃, X̃, (F,A)} where

F (e) =

{
{x1} if e = e1

{x2} if e = e2

This (X, τ,A) is verified as soft T0 space in [8].

consider two soft points eF =

{
{x2} if e = e1

φ if e = e2

and eG =

{
φ if e = e1

{x1} if e = e2

,

then there is no soft open set (F,A) in (X, τ,A) such that eF ∈̃(F,A) and eG /̃∈(F,A).
Thus (X, τ,A) is not a soft T0 space.

The following example will be a correct example for example:1 of [8]. It also
shows that the converse of above theorem 2.1 is not true in general.

Example 2.4. Example for a soft T0-space which is not a soft T1-space.
Let X = {x, y}, E = {e1, e2} and τ = {φ̃, X̃, (F1, E), (F2, E), (F3, E), (F4, E),
(F5, E)} where

F1(e) =

{
{x} if e = e1

{y} if e = e2

, F2(e) =

{
{x} if e = e1

φ if e = e2

, F3(e) =

{
φ if e = e1

{x} if e = e2

,
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F4(e) =

{
{x} if e = e1

{x} if e = e2

, F5(e) =

{
{x} if e = e1

X if e = e2

For the soft points xe1 , ye1 , there is a (F2, E) ∈ τ with xe1 ∈̃ (F2, E) and ye1 /̃∈
(F2, E). For the soft points xe2 , ye2 , there is a (F3, E) ∈ τ with xe2 ∈̃ (F3, E) and

ye2 /̃∈ (F3, E). For the soft points xe1 , ye2 , there is a (F2, E) ∈ τ with xe1∈̃ (F2, E)

and ye2 /̃∈ (F2, E). For the soft points xe2 , ye1 , there is a (F3, E) ∈ τ with xe2∈̃
(F3, E) and ye1 /̃∈ (F3, E). For the soft points xe1 , xe2 , there is a (F2, E) ∈ τ with

xe1 ∈̃ (F2, E) and xe2 /̃∈ (F2, E). For the soft points ye1 , ye2 , there is a (F1, E) ∈
τ with ye2∈̃ (F1, E) and ye1 /̃∈ (F1, E). Thus (X, τ,E) is a soft T0-space. But for
the pair of soft points ye1 , ye2 , we dont have (K,E) ∈ τ such that ye1∈̃ (K,E) and

ye2 /̃∈ (K,E). Thus (X, τ, E) is not a soft T1-space.

Theorem 2.3. (1) A subspace of a soft T0-space is a soft T0-space.
(2) A subspace of a soft T1-space is a soft T1-space

Proof. (1) Let (X, τ, E) be a soft T0-space and (Y, τY , E) be a soft subspace.
Let xei , yej be two soft points in SS(Y, E). Then xei , yej ∈̃ SS(X, E).
Since (X, τ,E) is a soft T0 space, there is a soft open set (F, E) in (X, τ,E)

such that xei∈̃ (F, E), yej /̃∈ (F, E) or there is a soft open set (G, E) in

(X, τ, E) such that yej ∈̃ (G, E), xei /̃∈ (G, E). Then (F, E) ∩̃EY is a

soft open set in (Y, τY , E) such that xei∈̃ (F, E)∩̃EY yej /̃∈ (F, E)∩̃EY
or (G, E)∩̃EY is a soft open set in (Y, τY , E) such that yej ∈̃ (G, E)∩̃EY ,
xei /̃∈ (G, E)∩̃EY . Thus (Y, τ, E) is a soft T0-space

(2) Proof is similar to (1)
�

Theorem 2.4. Let (X, τ, E) be a soft topological space. Then (X, τ, E) is a soft
T1 space if and only if for any soft points xei and yej , there exist two soft closed

sets (H, E) and (K, E) such that xei∈̃ (H, E), yej /̃∈ (H, E), yej ∈̃ (K, E) and

xei /̃∈ (K, E).

Proof. Proof is similar to the theorem 2.2 �

The following example shows that the product of soft T0-spaces need not be a
soft T0-space

Definition 2.3. Let {(Xi, τi, Ei) : i ∈ I} be a family of soft topological spaces
and (

∏
Xi,

∏
τi,

∏
Ei) be their product soft toplogical space. Then a soft point

in (
∏
Xi,

∏
τi,

∏
Ei) is denoted as xe, where x =< xi >i∈I , xi ∈ Xi and e =<

ei >i∈I , ei ∈ Ei.

Example 2.5. Let X1 = {x1, y1}, E1 = {e11, e12} and τ1 = {φ̃, X̃1, (F1, E1),
(F2, E1), (F3, E1), (F4, E1), (F5, E1), (F6, E1), (F7, E1)}. X2 = {x2, y2}, E2 =

{e21, e22} and τ2 = {φ̃, X̃2, (G1, E2), (G2, E2), (G3, E2), (G4, E2), (G5, E2), (G6, E2),
(G7, E2)} where

F1(e) =

{
{x1} if e = e11

φ if e = e12

, G1(e) =

{
{x2} if e = e21

φ if e = e22

, F2(e) =

{
φ if e = e11

{x1} if e = e12

,

G2(e) =

{
φ if e = e21

{x2} if e = e22

, F3(e) =

{
{x1} if e = e11

{x1} if e = e12

, G3(e) =

{
{x2} if e = e21

{x2} if e = e22

,
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F4(e) =

{
{y1} if e = e11

{x1} if e = e12

, G4(e) =

{
{x2} if e = e21

{y2} if e = e22

, F5(e) =

{
{y1} if e = e11

φ if e = e12

,

G5(e) =

{
φ if e = e21

{y2} if e = e22

, F6(e) =

{
X1 if e = e11

φ if e = e12

, G6(e) =

{
φ if e = e21

X2 if e = e22

,

F7(e) =

{
X1 if e = e11

{x1} if e = e12

, G7(e) =

{
{x2} if e = e21

X2 if e = e22

.

For the soft points x1e11
, y1e11

, there is a soft open set (F1, E1) ∈ τ1 with x1e11
∈̃

(F1, E1) and y1e11
/̃∈ (F1, E1). For the soft points x1e11

, y1e12
, there is a soft open set

(F1, E1) ∈ τ1 with x1e11
∈̃ (F1, E1) and y1e12

/̃∈ (F1, E1). For the soft points x1e12
,

y1e11
, there is (F2, E1) ∈ τ1 with x1e12

∈̃ (F2, E1) and y1e11
/̃∈ (F2, E1). For the soft

points x1e12
, y1e12

, there is (F2, E1) ∈ τ1 with x1e12
∈̃ (F2, E1) and y1e12

/̃∈ (F2, E1).

For the soft points x1e11
, x1e12

, there is a soft open set (F1, E1) ∈ τ1 with x1e11
∈̃

(F1, E1) and x1e12
/̃∈ (F1, E1). For the soft points y1e11

, y1e12
, there is a soft open

set (F5, E1) ∈ τ1 with y1e11
∈̃ (F5, E1) and y1e12

/̃∈ (F5, E1). Thus (X1, τ1, E1) is a
soft T0-space.

For the soft points x2e21
, y2e21

, there is a soft open set (G1, E2) ∈ τ2 with x2e21
∈̃

(G1, E2) and y2e21
/̃∈ (G1, E2). For the soft points x2e21

, y2e22
, there is a soft open

set (G1, E2) ∈ τ2 with x2e21
∈̃ (G1, E2) and y2e22

/̃∈ (G1, E2). For the soft points

x2e22
, y2e21

, there is a soft open set (G2, E2) ∈ τ2 with x2e22
∈̃ (G2, E2) and y2e21

/̃∈
(G2, E2). For the soft points x2e22

, y2e22
, there is a soft open set (G2, E2) ∈ τ2 with

x2e22
∈̃ (G2, E2) and y2e22

/̃∈ (G2, E2). For the soft points x2e21
, x2e22

, there is a

soft open set (G1, E2) ∈ τ2 with x2e21
∈̃ (G1, E2) and x2e22

/̃∈ (G1, E2). For the soft

points y2e21
, y2e22

, there is a soft open set (G4, E2) ∈ τ2 with y2e21
/̃∈ (G4, E2) and

y2e22
∈̃ (G4, E2). Thus (X2, τ2, E2) is a soft T0-space.

Now E1 × E2 = {(e11, e21), (e11, e22), (e12, e21), (e12 e22)} and τ1 × τ2 = {φ̃,
˜X1 ×X2, (F1×G1, E1×E2), (F1×G2, E1×E2), (F1×G3, E1×E2), (F1×G4, E1×

E2), (F1×G5, E1×E2), (F1×G6, E1×E2), (F1×G7, E1×E2), (F2×G1, E1×E2),
(F2 × G2, E1 × E2), (F2 × G3, E1 × E2), (F2 × G4, E1 × E2), (F2 × G5, E1 × E2),
(F2 × G6, E1 × E2), (F2 × G7, E1 × E2), (F3 × G1, E1 × E2), (F3 × G2, E1 × E2),
(F3 × G3, E1 × E2), (F3 × G4, E1 × E2), (F3 × G5, E1 × E2), (F3 × G6, E1 × E2),
(F3 × G7, E1 × E2), (F4 × G1, E1 × E2), (F4 × G2, E1 × E2), (F4 × G3, E1 × E2),
(F4 × G4, E1 × E2), (F4 × G5, E1 × E2), (F4 × G6, E1 × E2), (F4 × G7, E1 × E2),
(F5 × G1, E1 × E2), (F5 × G2, E1 × E2), (F5 × G3, E1 × E2), (F5 × G4, E1 × E2),
(F5 × G5, E1 × E2), (F5 × G6, E1 × E2), (F5 × G7, E1 × E2), (F6 × G1, E1 × E2),
(F6 × G2, E1 × E2), (F6 × G3, E1 × E2), (F6 × G4, E1 × E2), (F6 × G5, E1 × E2),
(F6 × G6, E1 × E2), (F6 × G7, E1 × E2), (F7 × G1, E1 × E2), (F7 × G2, E1 × E2),
(F7 × G3, E1 × E2), (F7 × G4, E1 × E2), (F7 × G5, E1 × E2), (F7 × G6, E1 × E2),
(F7 ×G7, E1 × E2)}.
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Suppose if the soft product of (X1, τ1, E1) and (X2, τ2, E2) is a soft T0 space, then

for any two distinct soft points (x1, y2)(e11, e21) =


{(x1, y2)} if e = (e11, e21)

φ if e = (e11, e22)

φ if e = (e12, e21)

φ if e = (e12, e22)

and (y1, y2)(e11, e21) =


{(y1, y2)} if e = (e11, e21)

φ if e = (e11, e22)

φ if e = (e12, e21)

φ if e = (e12, e22)

, there is a soft open set

(Fm × Gn, E1 × E2) in τ1 × τ2 such that (x1, y2)(e11, e21) ∈̃ (Fm × Gn, E1 × E2)

and (y1, y2)(e11, e21) /̃∈ (Fm × Gn, E1 × E2), for some m,n ∈ {1, 2, 3 . . . , 7}. Now
(pq)2((x1, y2)(e11, e21)) ∈̃ (pq)2((Fm×Gn, E1×E2)). That is p2(x1, y2)q2(e11, e21) ∈̃
p2(Fm×Gn)q2(E1×E2). This implies y2e21

∈̃(Gn, E2), for some m,n ∈ {1, 2, 3 . . . , 7}.
Since (pq)2 is a soft projection mapping and (Fm ×Gn, E1 ×E2) is a soft open set
in X1×X2, (Gn, E2) is a soft open set in (X2, τ2, E2) containing y2e21

. But there is

no soft open set (Gn, E2) in (X2, τ2, E2) containing y2e21
, for any n ∈ {1, 2, 3 . . . , 7}

and hence (X1 ×X2, τ1 × τ2, E1 × E2) is not a soft T0 space.

Definition 2.4. Let (X, τ, E) be a soft topological space and A = {xei : xei is a
soft points of (X, τ, E)}.

(1) If the number of elements of the set A is finite, then (X, τ, E) is called a
finite soft topological space.

(2) If the number of elements of the set A is countable, then (X, τ, E) is called
a countable soft topological space.

Theorem 2.5. If (X, τ, E) is a finite soft T1 space, then (X, τ, E) is a soft
discrete space.

Proof. Let xei be a soft point, x ∈ X and ei ∈ E. (X, τ, E) is a soft T1 space,
for any soft point yej 6= xei , there is a soft open set (Fxj , E) such that xei∈̃
(Fxj , E) and yej /̃∈ (Fxj , E). Since (X, τ, E) is a finite soft topological space,

∩̃
yej 6=xei

(Fxj , E) is a soft open set such that ∩̃
yej 6=xei

(Fxj , E) =

{
{x} if e = ei

φ if e 6= ei
.

Thus xei is soft open and hence (X, τ, E) is a soft discrete space. �

Definition 2.5. Let (X, τ, E) be a soft topological space. Then the soft set
(F, E) is called a soft Gδ set if it is a countable intersection of soft open sets.

Theorem 2.6. If (X, τ, E) is a countable soft T1 space and if every soft Gδ set
is soft open in (X, τ, E), then (X, τ, E) is a soft discrete space.

Proof. Let xei be a soft point. Since (X, τ, E) is a soft T1 space, for any soft
point yej 6= xei , there is a soft open set (Fxj , E) such that xei∈̃ (Fxj , E) and

yej /̃∈(Fxj , E). Since every soft Gδ set is soft open and (X, τ, E) is a countable soft
topological space, ∩̃

yej 6=xei
(Fxj , E) is a soft open set such that ∩̃

yej 6=xei
(Fxj , E) ={

{x} if e = ei

φ if e 6= ei
. Thus xei is soft open and hence (X, τ, E) is a soft discrete

space. �
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Theorem 2.7. Product of soft T1-spaces is a soft T1-space

Proof. Let {(Xi, τi, Ei) : i ∈ I} be a family of soft topological spaces and
(
∏
Xi,

∏
τi,

∏
Ei) be their product soft toplogical space. Suppose xe and yf be

two distinct soft points, where x =< xi >i∈I , y =< yi >i∈I xi, yi ∈ Xi and
e =< ei >i∈I , f =< fi >i∈I , ei, fi ∈ Ei. Then there exists atleast one β ∈ I such
that xβ 6= yβ or there exist eik , eim ∈ Ei such that eik 6= eim .
Case: 1
If xβ 6= yβ , (pq)β(xe) = (pβqβ )(xe) = pβ(x)qβ(e) = xβeβ and (pq)β (yf ) = (pβqβ )(yf ) =

pβ(y)qβ(f) = yβfβ . Since Xβ is a soft T1 space, there exist soft open sets (Fβ , Eβ)

and (Gβ , Eβ) such that xβeβ ∈̃(Fβ , Eβ), yβfβ /̃∈(Fβ , Eβ) and yβfβ ∈̃(Gβ , Eβ), xβeβ
/̃∈(Gβ , Eβ). Then the soft subbasic members (pq)

−1
β (Fβ , Eβ) and (pq)

−1
β (Gβ , Eβ) are

the soft open sets containing xe and yf respectively. Suppose if yf ∈̃ (pq)
−1
β (Fβ , Eβ),

then pβ(y)qβ(f) = (pq)β(yf )∈̃ (pq)β((pq)
−1
β (Fβ , Eβ)). That is yβfβ ∈̃ (Fβ , Eβ) which

is a contradiction. Similarly we can prove xe /̃∈(pq)
−1
β (Gβ , Eβ). Thus (pq)

−1
β (Fβ , Eβ)

and (pq)
−1
β (Gβ , Eβ) are the soft open sets such that xe ∈̃(pq)

−1
β (Fβ , Eβ), yf /̃∈(pq)

−1
β

(Fβ , Eβ) and yf ∈̃(pq)
−1
β (Gβ , Eβ), xe /̃∈(pq)

−1
β (Gβ , Eβ).

Case: 2
If eik 6= eim , there are soft open sets (Fik , Ei) and (Fim , Ei) in (Xi, τi, Ei) such

that xeik ∈̃(Fik , Ei), xeim (= yeim ) /̃∈ (Fik , Ei) and xeim ∈̃(Fim , Ei), xeik /̃∈(Fim , Ei).

Then (pq)
−1
i (Fik , Ei) and (pq)

−1
i (Fim , Ei) are soft open sets such that xe ∈̃

(pq)
−1
i (Fik , Ei) and yf ∈̃ (pq)

−1
i (Fim , Ei). We can prove yf /̃∈(pq)

−1
i (Fik , Ei) and

xe /̃∈(pq)
−1
i (Fim , Ei) as we proved in case:1. This completes the proof. �

Theorem 2.8. Let (X, τ,E) be a soft topological space. Then the following are
equivalent.

(1) (X, τ,E) is a soft τ1-space
(2) xei = ∩̃{(G,E) : (G,E) ∈ τ and xei∈̃(G,E)}
(3) xei = ∩̃{(F,E) : (F,E) ∈ τ c and xei∈̃(F,E)}

Proof. (i)⇒ (ii). Clearly xei⊆̃ ∩̃{(G,E) : (G,E) ∈ τ and xei∈̃(G,E)}. Suppose if
yej ∈̃ ∩̃{(G,E) : (G,E) ∈ τ and xei∈̃(G,E)} such that xei 6= yej . Then x 6= y or
ei 6= ej . In either cases, by our assumption, there is a soft open set (G,E) such

that xei∈̃(G,E) and yej /̃∈(G,E).So yej /̃∈ ∩̃{(G,E) : (G,E)∈̃τ and xei∈̃(G,E)}.
Thus xei = ∩̃{(G,E) : (G,E) ∈ τ and xei∈̃(G,E)}.
(ii)⇒ (iii). Clearly xei⊆̃ ∩̃{(F,E) : (F,E) ∈ τ c and xei ∈̃(F,E)}. Let yej ∈̃ ∩̃{(F,E)
: (F,E) ∈ τ c and xei ∈̃(F,E)} such that xei 6= yej . By (ii), there exists (G,E) ∈ τ
such that yej ∈̃(G,E) and xei /̃∈(G,E). Now (G,E)c ∈ τ c and yej /̃∈(G,E)c and

xei∈̃(G,E)c and hence yej /̃∈ ∩̃{(F,E) : (F,E) ∈ τ c and xei∈̃(F,E)}. Thus xei = ∩̃
{(F,E) : (F,E) ∈ τ c and xei∈̃ (F,E)}.
(iii) ⇒ (i). Let xei and yej be two distinct soft points. Then by (iii), xei 6=
yej = ∩̃{(F,E) : (F,E) ∈ τ c and yej ∈̃(F,E)}. There is some soft closed set

(F1, E) such that yej ∈̃(F1, E) and xei /̃∈(F1, E). Then (F1, E)c is a soft open set

such that xei∈̃(F1, E)c and yej /̃∈(F1, E)c. Similarly, from yej 6= xei = ∩̃{(F,E) :
(F,E) ∈ τ c and yej ∈̃(F,E)}, we can find another soft open set (F2, E)c such that

xei /̃∈(F2, E)c and yej ∈̃(F2, E)c. This proves that (X, τ,E) is a soft τ1-space. �
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Remark. (1) From (iii) of theorem 2.8, it is clear that each soft point xei is
a soft closed set in a soft T1 space.

(2) Let Ti= Number of elements in F (ei), i ∈ I an indexed set of E. If T =∑
i∈I Ti is finite, then the soft set (F,E) can be written as a finite union

of soft points. Each soft point is a soft closed set, we have (F,E) is a soft
closed set.

(3) If T =
∑
i∈I Ti is infinite, (F,E) need not be a closed set. Following exam-

ple shows this.

Example 2.6. Let X be an infinite set and E = N. Let τ = {(F,E)c : {ei :

F (ei) 6= φ} is finite} ∪ {φ̃}.
(1) Clearly φ̃ ∈ τ and X̃ ∈ τ .
(2) If (Fαi , E) ∈ τ, αi ∈ I, for some index set I, then {ej : F cαi(ej) 6= φ} is

a finite set. Now {ej : (∪Fαi)c(ej) 6= φ} = {ej : ∩̃F cαi(ej) 6= φ} ⊆ {ej :
F cαk(ej) 6= φ}, for all αk ∈ I. Since {ej : F cαk(ej) 6= φ} is a finite set,
{ej : (∪Fαi)c(ej) 6= φ} is a finite set and hence ∪̃(Fαi , E) ∈ τ .

(3) If (Fα1 , E) and (Fα2 , E) ∈ τ , then {ej : F cα1
(ej) 6= φ} and {ej : F cα2

(ej) 6=
φ} are finite sets. Now {ej : (F cα1

∪̃F cα2
)(ej) 6= φ} = {ej : (Fα1

∩̃Fα2
)c(ej) 6=

φ} is a finite set. Thus (Fα1 , E) ∩̃ (Fα2 , E) ∈ τ
Thus (X, τ,E) is a soft topological space. Let us take two distinct soft points xei
and yej . Then either x 6= y or ei 6= ej. In either cases xcei and ycej are two soft open

sets such that xei ∈̃ ycej , yej /̃∈ y
c
ej and xei /̃∈xcei , yej ∈̃ x

c
ei . This proves that (X, τ,E)

is a soft T1 space.

Let us consider a soft set (G,E) such that G(ei) =

{
{x} if ei is even

φ if ei is odd
. Define

T (ei) =

{
1 if ei is even

0 if ei is odd
. T =

∑
T (ei) = ∞, because 2N is an infinite set.

Since {ej : G(ej) 6= φ} is not a finite set, (G,E) is not a soft closed set.

Definition 2.6. [8] A soft topological space (X, τ,E) is said to be a soft T2 -space
if for every pair of soft points xei and yej such that xei 6= yej there exist soft open

sets (F,E) and (G,E) such that xei∈̃(F,E), yej ∈̃(G,E) and (F,E)∩̃(G,E) = φ̃.

Example:2 given in the artice [8] for soft T1 and soft T2 space is wrong. Because
it is neither soft T1 nor soft T2 space.

Example 2.7. [8] X = {x1, x2}, A = {e1, e2} and τ = {φ̃, X̃, (F1, A), (F2, A),
(F3, A), (F4, A)} where

F1(e) =

{
{x2} if e = e1

{x1} if e = e2

, F2(e) =

{
{x1} if e = e1

{x2} if e = e2

F3(e) =

{
{x1} if e = e1

φ if e = e2

F4(e) =

{
X if e = e1

{x1} if e = e2

This (X, τ,A) is verified as soft T1 and soft T2 spaces in [8].

consider two soft points eF =

{
{x1} if e = e1

φ if e = e2

and eG =

{
φ if e = e1

{x2} if e = e2

,

then there is no soft open set (Fi, A), i ∈ {1, 2, 3, 4} in (X, τ,A) such that eG∈̃(Fi, A)

and eF /̃∈(Fi, A). Thus (X, τ,A) is not a soft T1 space.
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Similarly, there is no two soft open sets (Fi, A) (Fj , A), i, j ∈ {1, 2, 3, 4}, i 6= j in

(X, τ,A) such that eF ∈̃(Fi, A), eG∈̃(Fj , A) and (Fi, A)∩̃(Fj , A) = φ̃ Thus (X, τ,A)
is not a soft T2 space too.

Next the example:3 given in article [8] is wrong.

Example 2.8. [8] X = {x1, x2}, A = {e1, e2} and τ = {φ̃, X̃, (F1, A), (F2, A), (F3, A)}
where

F1(e) =

{
{x1} if e = e1

φ if e = e2

, F2(e) =

{
φ if e = e1

{x2} if e = e2

F3(e) =

{
{x1} if e = e1

{x2} if e = e2

This (X, τ,A) is verified as soft T1 and soft T0 spaces in [8].

consider two soft points eF =

{
{x2} if e = e1

φ if e = e2

and eG =

{
φ if e = e1

{x1} if e = e2

,

then there is no soft open set (Fi, A), i ∈ {1, 2, 3} in (X, τ,A) such that eF ∈̃(Fi, A)

and eG /̃∈(Fi, A). Thus (X, τ,A) is not a soft T1 space. Also there is no soft open

set (Fi, A), i ∈ {1, 2, 3} in (X, τ,A) such that eF /̃∈(Fi, A) and eG∈̃(Fi, A). Hence
(X, τ,A) is not a soft T0 space too.

Correct example for soft T1 spae which is not a soft T2 space is given below.

Example 2.9. Consider a soft topological space (X, τ,E) discussed in Example:
2.6. It is a soft T1 space.

Let xei and yej be two distinct soft points. Then either x 6= y or ei 6= ej.
Assume that there exists two soft open sets (F,E) and (G,E) such that xei∈̃(F,E)
and yej ∈̃(G,E). Since (F,E) and (G,E) are soft open sets, {ej : F c(ej) 6= φ} and
{ej : Gc(ej) 6= φ} are finite sets. Now E − {ej : (F (ej) ∩ G(ej))

c 6= φ} 6= φ. For
any ek ∈ E − {ej : (F (ej) ∩ G(ej))

c 6= φ}, F c(ek) = φ and Gc(ek) = φ. That is
F (ek)∩G(ek) = X and hence (F,E)∩̃(G,E) 6= φ. This proves that (X, τ,E) is not
a soft T2 space.

Theorem 2.9. Every soft T2 space is a soft T1 space

Proof. Proof is straight forward. �

Theorem 2.10. Soft subspace of soft T2-space is a soft T2-space.

Proof. Let (X, τ,E) be a soft T2-space and (Y, τY , E) be a soft subspace. Let
xei , yej be two soft points in (Y, τ, E). Then xei , yej ∈̃SS(X, E). Since (X, τ,E)
is a soft T2 space, there exist two soft open sets (F, E) and (G, E) in (X, τ,E)

such that xei∈̃(F, E), yej ∈̃ (G, E) and (F, E)∩̃(G, E) = φ̃. Now (F, E)∩̃EY and
(G, E)∩̃EY are soft open sets in (Y, τY , E) such that xei∈̃(F, E)∩̃EY , yej ∈̃(G, E)

∩̃EY and ((F, E)∩̃EY )∩̃((G, E)∩̃EY )⊆̃ (F, E)∩̃(G, E) = φ̃. Thus (Y, τY , E) is a
soft T2 space. �

Lemma 2.11. Let (X, τ, E) be a finite soft T2 space. Then (X, τ, E) is a soft
discrete space.

Proof. Proof follows from theorem:2.9 and theorem:2.5. �

Lemma 2.12. If (X, τ, E) is a countable soft T2 space and if every soft Gδ set is
soft open in (X, τ, E), then (X, τ, E) is a soft discrete space.

Proof. Proof follows from theorem:2.9 and theorem:2.6. �
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Theorem 2.13. Let (X, τ, E) be a soft topological space. Then (X, τ, E) is a
soft T2 space if and only if for any soft points xei and yej , there exist two soft closed
neighbourhoods (H, E) and (K, E) containing disjoint soft open sets containing

xei and yej respectively such that (H, E)∪̃(K, E) = X̃.

Proof. Since (X, τ, E) is a soft T2 space, for any two distinct soft points xei
and yej , there exist two soft open sets (F, E) and (G, E) such that xei∈̃(F, E)

and yej ∈̃(G, E) such that (F, E)∩̃(G, E) = φ̃. Now xei∈̃(Gc, E), yej ∈̃(F c, E)

and (F c, E)∪̃(Gc, E) = X̃. Note that (F, E)⊆̃(Gc, E) and (G, E)⊆̃(F c, E).
Let (F c, E) = (K, E) and (Gc, E) = (H, E). Then we have two soft closed
neighbourhoods (H, E) and (K, E) containing disjoint soft open sets (F,E) and

(G,E) respectively, such that xei ∈̃(F,E), yej ∈̃(G,E) (H, E)∪̃(K, E) = X̃.
Conversely let xei and yej be two distinct soft points. Then there exist two

soft closed neighbourhoods (H, E) and (K, E) and two soft open sets (L,E)
containing xei and (M,E) containing yej such that (L,E)⊆̃(H,E), (M,E)⊆̃(K,E),

(L,E)∩̃(M,E) = φ̃ and (H, E)∪̃(K, E) = X̃. This proves that (X, τ,E) is a soft
T2 space �

Theorem 2.14. Product of soft T2-spaces is a soft T2-space

Proof. Let {(Xi, τi, Ei) : i ∈ I} be the collection of soft topoloogical spaces and
(
∏
Xi,

∏
τi,

∏
Ei) be their product soft toplogical space. Suppose xe and yf be

two distinct soft points, where x =< xi >i∈I , y =< yi >i∈I xi, yi ∈ Xi and
e =< ei >i∈I , f =< fi >i∈I , ei, fi ∈ Ei. Then there exists atleast one β ∈ I such
that xβ 6= yβ or there exist eik , eim ∈ Ei such that eik 6= eim .
Case: 1
If xβ 6= yβ , (pq)β (xe) = (pβqβ ) (xe) = pβ(x)qβ(e) = xβeβ and (pq)β (yf ) = (pβqβ )

(yf ) = pβ(y)qβ(f) = yβfβ . Since Xβ is a soft T2 space, there are disjoint soft open

sets (Fβ , Eβ) and (Gβ , Eβ) such that xβeβ ∈̃ (Fβ , Eβ) and yβfβ ∈̃(Gβ , Eβ). Then

the subbasic members (pq)
−1
β (Fβ , Eβ) and (pq)

−1
β (Gβ , Eβ) are the soft open sets

such that xe ∈̃ (pq)
−1
β (Fβ , Eβ) and yf ∈̃ (pq)

−1
β (Gβ , Eβ). Let zg ∈̃ (pq)

−1
β (Fβ ,

Eβ)∩̃ (pq)
−1
β (Gβ , Eβ), where z =< zi >i∈I , zi ∈ Xi and g =< gi >i∈I , gi ∈ Ei.

Then zg∈̃ (pq)
−1
β (Fβ , Eβ) and zg∈̃ (pq)

−1
β (Gβ , Eβ). (pq)β (zg) ∈̃ (pq)β((pq)

−1
β

(Fβ , Eβ)) and (pq)β (zg) ∈̃ (pq)β((pq)
−1
β (Gβ , Eβ)). That is zβgβ ∈̃ (Fβ , Eβ) and

zβgβ ∈̃ (Gβ , Eβ) which is a contradiction to our assumption of soft T2 space.

Case: 2
If eik 6= eim , there are disjoint soft open sets (Fik , Ei) and (Fim , Ei) such that xeik
∈̃ (Fik , Ei) and xeim (= yeim ) ∈̃ (Fim , Ei). Then (pq)

−1
i (Fik , Ei) and (pq)

−1
i (Fim ,

Ei) are disjoint soft open sets containing xe and yf respectively. Let zg ∈̃ (pq)
−1
i

(Fik , Ei)∩̃ (pq)
−1
i (Fim , Ei), where z =< zi >i∈I , zi ∈ Xi and g =< gi >i∈I , gi ∈ Ei.

Then zg ∈̃ (pq)
−1
i (Fik , Ei) and zg∈̃ (pq)

−1
i (Fim , Ei). (pq)i (zg) ∈̃ (pq)i((pq)

−1
i

(Fik , Ei)) and (pq)i (zg) ∈̃ (pq)i((pq)
−1
i (Fim , Ei)). That is zigi ∈̃ (Fik , Ei) and zigi

∈̃ (Fim , Ei) which is a contradiction to our assumption of soft T2 space. �

Definition 2.7. Let (X, τ, E) be a soft topological space. Then (X, τ, E) is a
soft Urysohn space or soft T2 1

2
space if for any two soft points xei and yej , there

exist two soft open sets (F, E) and (G, E) such that xei ∈̃(F, E), yej ∈̃(G, E) and

Cl(F, E)∩̃Cl(G, E) = φ̃.
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Theorem 2.15. Every soft T2 1
2
-space is a soft T2-space.

Proof. Proof is straight forward �

Theorem 2.16. Soft subspace of soft T2 1
2
-space is a soft T2 1

2
-space.

Proof. Proof is similar to theorem 2.10 �

Theorem 2.17. Let (X, τ, E) be a soft topological space. Then (X, τ, E) is a
soft T2 1

2
space if and only if for any two soft points xei and yej , there exist two soft

open sets (H, E) and (K, E) such that xei ∈̃(H, E), yej ∈̃(K, E) and (H, E) and
(K, E) containing the disjoint closed soft neighbourhoods of xei and yej respectively

with (H, E)∪̃(K, E) = X̃.

Proof. Since (X, τ, E) be a soft T2 1
2

space, for any soft points xei and yej , there

exist two soft open sets (F, E) and (G, E) such that xei∈̃(F, E) and yej ∈̃(G, E)

such that Cl(F, E)∩̃Cl(G, E) = φ̃. Now xei∈̃[Cl(G, E)]c and yej ∈̃[Cl(F, E)]c and

[Cl(F, E)]c∪̃[Cl(G, E)]c = X̃. Note that Cl(F, E)⊆̃[Cl(G, E)]c and Cl(G, E)⊆̃
[Cl(F, E)]c. Let [Cl(F, E)]c = (K, E) and [Cl(G, E)]c = (H, E). Then we
have two soft open sets (H, E) and (K, E) containing xei and yej respectively,

such that xei∈̃(F, E)⊆̃Cl(F, E) ⊆̃(H, E), yej ∈̃(G, E)⊆̃ Cl(G, E) ⊆̃(K, E) and

(H, E)∪̃(K, E) = X̃. Thus (H, E) and (K, E) are soft open sets containing
the disjoint closed neighbourhoods Cl(F, E) and Cl(G, E), respectively such that

xei ∈̃Cl(F, E), yej ∈̃Cl(G, E) and (H,E)∪̃(K,E) = X̃.
Conversely, let xei and yej be two distinct soft points. By our assumption, there

exist two soft open sets (H,E) and (K,E) containing disjoint closed neighbourhoods

(L,E) and (M,E) of xei and yej respectively such that (H,E)∪̃(K,E) = X̃. Note

that there are soft open sets (F,E) and (G,E) such that (F,E)⊆̃Cl(F,E)⊆̃(L,E)⊆̃
(H,E), (G,E)⊆̃Cl(G,E)⊆̃(M,E) ⊆̃(K,E) and (L,E)∩̃(M,E) = φ̃. So that Cl(F,E)∩̃
Cl(G,E) = φ̃. That is (F,E) and (G,E) are soft open sets containing xei and yej
such that Cl(F,E)∩̃Cl(G,E) = φ̃. Thus (X, τ,E) is a soft T2 1

2
space. �

Soft single point space discussed in [5] is not a soft T0 or T1 or T2 or T2 1
2

space.

Because for the soft points xei and xej , there is no soft open set containing xei not
containing xej .

Theorem 2.18. Product of soft T2 1
2
-spaces is a soft T2 1

2
-space

Proof. Proof is similar to theorem 2.14 �

Lemma 2.19. Let (X, τ,E) be a finite soft T2 1
2

space. Then (X, τ,E) is a soft

discrete space.

Proof. Proof follows from theorem:2.15, theorem:2.9 and theorem:2.5. �

Lemma 2.20. If (X, τ,E) is a countable soft T2 1
2

space and if every soft Gδ set is

soft open in (X, τ, E), then (X, τ,E) is a soft discrete space.

Proof. Proof follows from theorem:2.15, theorem:2.9 and theorem:2.6. �
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3. Conclusion

For the soft separation axioms of soft points defined on soft topological space, we
discuss the characterizations and properties of soft T0, T1, T2 and soft T2 1

2
spaces.

Also it is verified that the product of soft Ti spaces, i = 1, 2, 2 1
2 is a soft Ti space.

But there is an example given here for the product of soft T0 spaces need not be a
soft T0 space. Also we provide correct examples for the wrong examples example:1,
example:2 and example:3 given in article [8].

Acknowledgments. The authors are grateful to the anonymous reviewers and
the editor for their valuable suggestions and useful comments to improve the man-
uscript.
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I−ALMOST LACUNARY VECTOR VALUED SEQUENCE

SPACES IN 2−NORMED SPACES
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Abstract. One of the wide-ranging applications and research areas of Summa-

bility theory is the concept of statistical convergence. This concept was stud-

ied a related concept of convergence by using lacunary sequence by Fridy and
Orhan. At the last quarter of the 20th century, lacunary statistical conver-

gence has been discussed and captured significant aspect of creating the basis

of several investigations conducted in many branches of mathematics. On the
other hand, in 1961 Krasnoselskii and Rutisky presented the definition of Or-

licz function. Also, in 1963 Gähler introduced the notion of 2-normed spaces.

The main goal of this article is to introduce I− almost convergence of la-
cunary sequences with regard to an Orlicz function in 2-normed spaces and

other sequence spaces by considering the concept of ideal that was presented
by Kostyrko and others. Additionally, we examine the relationship between

these sequence spaces and fundamental inclusion theorems are investigated.

1. Introduction

The concept of 2−normed spaces was initially introduced by Gähler [3] in the
1960’s. Since then, this concept has been studied by many authors (see, for instance
( [11], [13], [20], [21] ).

Recall in [8] that an Orlicz function λ : [0,∞) → [0,∞) is continuous, convex,
non-decreasing function such that λ(0) = 0 and λ(u) > 0 for u > 0, and λ(u)→∞
as u→∞.

Subsequently the notion of Orlicz function was used by Mursaleen, Khan, Chishti
[9], Parashar and B. Choudhary [10], Savaş and Savaş [18], Savaş([16], [17], [19] )
and others.

If convexity of Orlicz function λ is replaced by λ(x+ y) ≤ λ(x) + λ(y) then this
function is called Modulus function, which was presented and discussed by Ruckle
[12] and Maddox [5].

An Orlicz function is said to satisfy ∆2− condition if there exists a positive
constant K such that λ (2u) ≤ Tλ (u) for all u ≥ 0.

Note that if λ is an Orlicz function then λ (ψx) ≤ ψλ (u) for all ψ with 0 < ψ < 1.
Let E be a real vector space of dimension d, where 2 ≤ d <∞. A 2−norm on E

is a function ‖., .‖ : E ×E → R which satisfies (i) ‖u, v‖ = 0 if and only if u and v
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are linearly dependent; (ii) ‖u, v‖ = ‖v, u‖ ; (iii) ‖βu, v‖ = |β| ‖u, v‖ , β ∈ R; (iv)
‖u, v + w‖ ≤ ‖u, v‖+ ‖u,w‖ . The pair (E, ‖., .‖) is then called a 2− normed space
[4].

Recall that (E, ‖., .‖) is a 2−Banach space if every Cauchy sequence in E is
convergent to some u in E.

The notion of ideal convergence was introduced first by P. Kostyrko et al [6] as
a generalization of statistical convergence.

A family I ⊂ 2F of subsets a nonempty set F is said to be an ideal in F if (i)
∅ ∈ I; (ii) A,B ∈ I implies A ∪ B ∈ I; (iii) A ∈ I, B ⊂ A imply B ∈ I, while an
admissible ideal I of F further satisfies {u} ∈ I for each u ∈ F (see, [6], [7]) .

Given I ⊂ 2N be a nontrivial ideal in N. The sequence (un)n∈N in E is said to
be I−convergent to u ∈ E, if for each ε > 0 the set A (ε) = {n ∈ N : ‖un − L‖ ≥ ε}
belongs to I ( [1, 14, 15]).

By a lacunary sequence θ = (ls); s = 0, 1, 2, ... where l0 = 0, we shall mean an
increasing sequence of non-negative integers with ls − ls−1 → ∞ as s → ∞. The
intervals determined by θ will be denoted by Is = (ls−1, ls] and µs = ls− ls−1 ([2]).

2. Main Results

Let I be an admissible ideal, λ be an Orlicz function, (E, ‖., .‖) be a 2−normed
space and r = (ri) be a sequence of positive real numbers. By S (2− E) we denote
the space of all sequences defined over (E, ‖., .‖) . Now we define the following
sequence spaces:

ŵI (λ, r, ‖., .‖)θ =

 x ∈ S (2−X) :

{
s ∈ N : 1

µγs

∑
i∈Is

[
λ
(∥∥∥ui+j−Lρ , z

∥∥∥)]ri ≥ ε} ∈ I
for some ρ > 0, L > 0 and each z ∈ E, uniformly in j

 ,

ŵI0 (λ, r, ‖., .‖)θ =

 x ∈ S (2− E) :

{
s ∈ N : 1

µγs

∑
i∈Is

[
λ
∥∥∥ui+jρ , z

∥∥∥]ri ≥ ε} ∈ I
for some ρ > 0 and each z ∈ E, uniformly in j

 ,

ŵ∞ (λ, r, ‖., .‖)θ =

 x ∈ S (2− E) : ∃K > 0 s.t. sup
s∈N

:
1

µγs

∑
i∈Is

[
λ

(∥∥∥∥ui+jρ , z

∥∥∥∥)]ri ≤ K
for some ρ > 0, and each z ∈ E

 ,

ŵI∞ (λ, r, ‖., .‖)θ =

 x ∈ S (2− E) : ∃K > 0 �

{
s ∈ N : 1

µγs

∑
i∈Is

[
λ
∥∥∥ui+jρ , z

∥∥∥]ri ≥ K} ∈ I
for some ρ > 0 and each z ∈ E, uniformly in j

 .

The following inequality will be used in the study which is well known.

0 ≤ ri ≤ sup ri = H, D = max
(
1, 2H−1

)
then

|ui + vi|ri ≤ D {|ui|ri + |vi|ri}
for all i and ui, vi ∈ C

Theorem 2.1. ŵI (λ, r, ‖., .‖)θ , ŵI0 (λ, r, ‖., .‖)θ ,
ŵI∞ (λ, r, ‖., .‖)θ are linear spaces.
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Proof. We shall prove the assertion for ŵI0 (λ, r, ‖., .‖)θonly and the others can be
proved similarly. Suppose that u, v ∈ ŵI0 (λ, r, ‖., .‖)θ and α, β ∈ R. So{

s ∈ N :
1

µγs

∑
i∈Is

[
λ

(∥∥∥∥ui+jρ1
, z

∥∥∥∥)]ri ≥ ε
}
∈ I for some ρ1 > 0

and {
s ∈ N :

1

µγs

∑
i∈Is

[
λ

(∥∥∥∥ui+jρ2
, z

∥∥∥∥)]ri ≥ ε
}
∈ I for some ρ2 > 0.

uniformly in j. Since ‖., .‖ is a 2−norm, and λ is an Orlicz function the following
inequality holds: for all j

1

µγs

∑
i∈Is

[
λ

(∥∥∥∥ (αui+j + βvi+j)

(|α| ρ1 + |β| ρ2)
, z

∥∥∥∥)]ri
≤ D

1

µγs

∑
i∈Is

[
|α|

(|α| ρ1 + |β| ρ2)
λ

(∥∥∥∥ui+jρ1
, z

∥∥∥∥)]ri
+ D

1

µγs

∑
i∈Is

[
|β|

(|α| ρ1 + |β| ρ2)
λ

(∥∥∥∥vi+jρ2
, z

∥∥∥∥)]ri
≤ DF

1

µγs

∑
i∈Is

[
λ

(∥∥∥∥ui+jρ1
, z

∥∥∥∥)]ri
+ DF

1

µγs

∑
i∈Is

[
λ

(∥∥∥∥vi+jρ2
v, z

∥∥∥∥)]ri
where

F = max

[
1,

(
|α|

(|α| ρ1 + |β| ρ2)

)H
,

(
|β|

(|α| ρ1 + |β| ρ2)

)H]
.

From the above inequality we get{
s ∈ N :

1

µγs

∑
i∈Is

[
λ

(∥∥∥∥ (αui+j + βvi+j)

(|α| ρ1 + |β| ρ2)
, z

∥∥∥∥)]ri ≥ ε
}

⊆

{
s ∈ N : DF

1

µγs

∑
i∈Is

[
λ

(∥∥∥∥ui+jρ1
, z

∥∥∥∥)]ri ≥ ε

2

}

∪

{
s ∈ N : DF

1

µγs

∑
i∈Is

[
λ

(∥∥∥∥vi+jρ2
, z

∥∥∥∥)]ri ≥ ε

2

}
,

uniformly in j. Two sets on the right hand side belong to I and this completes the
proof. �

It is also easy to verify that the space ŵ∞ (λ, r, ‖., .‖)θ is also a linear space.

Theorem 2.2. If λ is an Orlicz function and (ri) is bounded sequence of strictly
positive real numbers then ŵ∞ (λ, r, ‖., .‖)θ is a paranormed space with respect to
paranorm g defined by

g (x) =
∑
i∈Is

‖ui+j , z‖+inf

{
ρ
rt
H : sup

k

[
λ

(∥∥∥∥ui+jρ , z

∥∥∥∥)]ri ≤ 1, ρ > 0, t = 1, 2, ...

}
, each z ∈ E
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Corollary 1. If one considers the sequence space ŵI∞ (λ, r, ‖., .‖)θ which is larger
than the space ŵ∞ (λ, r, ‖., .‖)θ the construction of the paranorm is not clear and
we leave it as an open problem.

Theorem 2.3. Let λ, λ1 and λ2 be Orlicz functions. Then we have ŵI0 (λ, r, ‖., .‖)θ ⊆
ŵI0 (λ, r, ‖., .‖)θ provided (ri) is such that H0 = inf ri > 0.

Proof. (i) For given ε > 0, first choose ε0 > 0 such that max{εH0 , ε
H0
0 } < ε. Now

using the continuity of λ choose 0 < δ < 1 such that 0 < t < δ ⇒ λ (t) < ε0. Let
(ui) ∈ ŵI0 (λ, r, ‖., .‖)θ . Now from the definition,

A(δ) =

{
s ∈ N :

1

µγs

∑
i∈Is

[
λ1

(∥∥∥∥ui+jρ , z

∥∥∥∥)]pi ≥ δH
}
∈ I,

uniformly in j. Thus if s /∈ A(δ) then

1

µγs

∑
i∈Is

[
λ1

(∥∥∥∥ui+jρ , z

∥∥∥∥)]ri < δH

i.e.
∑
i∈Is

[
λ1

(∥∥∥∥ui+jρ , z

∥∥∥∥)]ri < µγs δ
H

i.e.

[
λ1

(∥∥∥∥ui+jρ , z

∥∥∥∥)]ri < δH for all i ∈ Is

i.e.λ1

(∥∥∥∥ui+jρ , z

∥∥∥∥) < δ for all i ∈ Is.

Hence from above using the continuity of λ we must have

λ

(
λ1

(∥∥∥∥uiρ , z
∥∥∥∥)) < ε0 for all i ∈ Is

which consequently implies that∑
i∈Is

[
λ

(
λ1

(∥∥∥∥ui+jρ , z

∥∥∥∥))]pk < µγs max{εH0 , ε
H0
0 } < µγsε,

i.e.
1

µγs

∑
i∈Is

[
λ

(
λ1

(∥∥∥∥ui+jρ , z

∥∥∥∥))]ri < ε, uniformly in j.

This shows that{
s ∈ N :

1

µγs

∑
i∈Is

[
λ

(
λ1

(∥∥∥∥ui+jρ , z

∥∥∥∥))]pk ≥ ε
}
⊂ A(δ), uniformly in j

and so belongs to I. This proves the result. �

Theorem 2.4. Let the sequence (ri) be bounded, then ŵI0 (λ, r, ‖., .‖)θ ⊆ ŵI (λ, r, ‖., .‖)θ ⊆
ŵI∞ (λ, r, ‖., .‖)θ .

Proof. Let u = (ui) ∈ ŵI0 (λ, r, ‖., .‖)θ. Then given ε > 0 we have{
s ∈ N :

1

µγs

∑
i∈Is

[
λ

(∥∥∥∥ui+jρ , z

∥∥∥∥)]ri ≥ ε
}
∈ I for some ρ > 0, uniformly in j.
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Since λ is non-decreasing and convex it follows that, for all j,

1

µγs

∑
i∈Is

[
λ

(∥∥∥∥ ui2ρ
, z

∥∥∥∥)]ri ≤ D

µγs

∑
i∈Is

1

2pi

[
λ

(∥∥∥∥ui+j − u0

ρ
, z

∥∥∥∥)]ri+ D

µγs

∑
i∈Is

1

2ri

[
λ

(∥∥∥∥u0

ρ
, z

∥∥∥∥)]ri

≤ D

µγs

∑
i∈Is

[
λ

(∥∥∥∥ui+j − u0

ρ
, z

∥∥∥∥)]ri +Dmax

{
1, sup

[
λ

(∥∥∥∥u0

ρ
, z

∥∥∥∥)]ri} .
Hence we have {

s ∈ N :
1

µγs

∑
i∈Is

[
λ

(∥∥∥∥ ui2ρ
, z

∥∥∥∥)]ri ≥ ε
}

⊆

{
s ∈ N :

D

µγs

∑
i∈Is

[
λ

(∥∥∥∥ui+jρ , z

∥∥∥∥)]ri ≥ ε

2

}

∪
{
s ∈ N : max

{
1, sup

[
λ

(∥∥∥∥u0

ρ
, z

∥∥∥∥)]ri} ≥ ε

2

}
,

uniformly in j. Since the set on the right hand side belongs to I so does the left
hand side. The inclusion ŵI (λ, r, ‖., .‖)θ ⊆ ŵI∞ (λ, r, ‖., .‖)θ is obvious. �

Theorem 2.5. (1) Let 0 < inf ri ≤ ri < 1. Then

ŵI (λ, r, ‖., .‖)θ ⊆ ŵ
I (λ, r, ‖., .‖)θ .

(2) Let 1 ≤ ri ≤ sup ri <∞. Then

ŵI (λ, r, ‖., .‖)θ ⊆ ŵ
I (λ, r, ‖., .‖)θ .

Proof. Let u ∈ ŵI (λ, r, ‖., .‖)θ, since 0 < inf ri ≤ 1, we obtain the following:{
s ∈ N :

1

µγs

∑
i∈Is

[
λ

(∥∥∥∥ui+j − Lρ
, z

∥∥∥∥)] ≥ ε
}
⊆

{
s ∈ N :

1

µγs

∑
i∈Is

[
λ

(∥∥∥∥ui+j − Lρ
, z

∥∥∥∥)]ri ≥ ε
}
∈ I,

uniformly in j. Thus u ∈ ŵI (λ, ‖., .‖)θ. Let us establish part (2). Let ri > 1 for
each i, and sup ri <∞. Let x ∈ ŵI (λ, ‖., .‖)θ. Then for each 0 < ε < 1 there exists
a positive integer N such that

µγs
∑
i∈Is

[
λ

(∥∥∥∥ui − Lρ
, z

∥∥∥∥)] ≤ ε < 1,

uniformly in j, for all s ≥ N . This implies that{
s ∈ N :

1

µγs

∑
i∈Is

[
λ

(∥∥∥∥ui+j − Lρ
, z

∥∥∥∥)]pk,l ≥ ε
}
⊆

{
s ∈ N :

1

µγs

∑
i∈Is

[
λ

(∥∥∥∥ui+j − Lρ
, z

∥∥∥∥)] ≥ ε
}
∈ I,

uniformly in j. Therefore u ∈ ŵI (λ, r, ‖., .‖)θ. This completes the proof. �

Definition 2.1. Let E be a sequence space. Then E is called solid if (αiui) ∈ E
whenever (ui) ∈ E for all sequences (αi) of scalars with |αi| ≤ 1 for all i ∈ N .

We now have

Theorem 2.6. The sequence spaces ŵI0 (λ, r, ‖., .‖)θ , ŵI∞ (λ, r, ‖., .‖)θ are solid.
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Proof. We give the proof for ŵI0 (λ, r, ‖., .‖)θ. Let (ui) ∈ ŵI0 (λ, r, ‖., .‖)θ and (αi)
be sequences of scalars such that |αi| ≤ 1 for all i ∈ N . Then we have,{
r ∈ N :

1

µγs

∑
i∈Is

[(
λ

∥∥∥∥ (αiui+j)

ρ
, z

∥∥∥∥)]ri ≥ ε
}
⊆

{
r ∈ N :

1

µγs

∑
i∈Is

[(
λ

∥∥∥∥ui+j)ρ
, z

∥∥∥∥)]ri ≥ ε
}
∈ I,

uniformly in j. Hence (αiui) ∈ ŵI0 (λ, r, ‖., .‖)θ for all sequences of scalars (αi) with
|αi| ≤ 1 for all i ∈ N whenever (ui) ∈ ŵI0 (λ, r, ‖., .‖)θ . �
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Abstract. By introducing an operator Enµ (β, λ, ω, ϕ, t)fγ(z) via a linear com-

bination of two generalized differential operators involving modified Sigmoid

function, we defined and studied certain geometric properties of a new subclass
TγDλ,ω(α, β, µ, ω, ϕ, λ, η, ξ, t; p : n) of analytic functions in the open unit disk

U. In particular, we give some properties of functions in this subclass such

as; coefficient estimates, growth and distortion theorems, closure theorem and
Fekete-Szego inequality for functions belonging to the subclass. Some ear-

lier known results are special cases of results established for the new subclass

defined.

1. INTRODUCTION AND PRELIMINARIES

Let U = {z ∈ c : |z| < 1} be the unit disk. In the usual notation, let A denote
the class of functions f(z) which are analytic in the open unit disk and of the form

f(z) = z +

∞∑
k=2

akz
k, (1.1)

which is analytic in the open unit disk U and let

γ(s) =
2

(1 + e−s)
; s ≥ 0 (1.2)
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with γ(s) = 1 for s = 0 be the modified Simoid function. (See details in [1, 2, 3, 4,
5]).
Also, we denote by T the class of functions of the form

f(z) = z −
∞∑
k=2

akz
k, ak ≥ 0 (1.3)

as a subclass of A.

The class T of functions with negative coefficients from second term was first in-
troduced by Silverman [6] and has since then opened up a prolific line of research
in that direction among function theorists.
For fγ(z) ∈ Tγ , Oluwayemi and Fadipe-Joseph [5] gave the following definition:

fγ(z) = z −
∞∑
k=2

γ(s)akz
k, ak ≥ 0 (1.4)

as a consequence of (1.3). We note that γ(s) = 1+ 1
2s−

1
24s

3 + 1
240s

5− 17
40320s

7 + . . .
defined by (1.2). Furthermore, we define identity function for Tγ as

eγ(z) = z. (1.5)

2. Differential Operators

2.1. Salagean Differential Operator.

Definition 2.1. [7] For f ∈ A,n ∈ ℵ, the operator Dn is defined by Dn : A→ A.

D0f(z) = f(z)

D1f(z) = zf
′
(z)

Dn+1f(z) = z(Dnf(z))
′
, z ∈ U

(2.1)

Remark 1 : If f(z) = z +
∞∑
k=2

akz
k ∈ A, then

Dnf(z) = z +

∞∑
k=2

knakz
k, z ∈ U (2.2)

2.2. Al-Oboudi Differential Operator.

Definition 2.2. [8] For f ∈ A,n ∈ N ∪ 0, the Al-Oboudi differential operator Dn
δ

is defined by Dn : A→ A.

D0f(z) = f(z)

D1
δf(z) = (1− δ)f(z) + δzf

′
(z) = Dδf(z)

· · ·
Dn
δ f(z) = Dδ(D

n
δ f(z)), z ∈ U.

(2.3)
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Remark 2 : If Dn
δ is a differential operator and for f ∈ A :

f(z) = z +

∞∑
k=2

akz
k,

we have

Dn
δ f(z) = z +

∞∑
k=2

[1 + (k − 1)λ]nakz
k, z ∈ U (2.4)

and
(Dn+1

δ f(z))
′

= (Dn
δ f(z))

′
+ δz(Dn+1

δ f(z))
′′
, z ∈ U. (2.5)

When δ = 1, we get the Salagean differential operator (2.2).

2.3. Opoola New Differential Operator.

Definition 2.3. [9] For a function f ∈ A with

Dtf(z) = 1 +

∞∑
k=2

[1 + (k + β − µ− 1)t]nakz
k−1, 0 ≤ µ ≤ β, t ≥ 0.

Opoola defined the differential operator Dn(µ, β, t)f(z) such that

D0(µ, β, t)f(z) = f(z)

D1(µ, β, t)f(z) = zDtf(z) = ztf
′
(z)− zt(µ− β) + (1 + (µ− β − 1)t)f(z)

· · ·
Dn(µ, β, t)f(z) = zDt[D

n−1(µ, β, t)f(z)], n ∈ N ∪ 0.

(2.6)

Remark 3 : If Dn(µ, β, t)f(z) is a linear operator such that for f ∈ A,

Dn(µ, β, t)f(z) = z+

∞∑
k=2

[1+(k+β−µ−1)t]nakz
k, z ∈ U, 0 ≤ µ ≤ β, t ≥ 0. (2.7)

It turns out that the differential operator Dn(µ, β, t)f(z) reduces to the Salagean
and al-Oboudi differential operators (2.2) and (2.4) respectively for suitably varied
parameters and by letting t = λ.

2.4. Differential Operator Involving Modified Sigmoid Function.

Definition 2.4. [[4], [5]] Fadipe-Joseph et al. introduced Salagean differential op-
erator Dnfγ(z) involving modified sigmoid function which is defined as follows:
Let fγ(z) ∈ Tγ , the Salagean differential operator denoted by Dnfγ(z) is defined by

D0fγ(z) = fγ(z)

D1fγ(z) = zDtf(z)

· · ·
Dnfγ(z) = D[Dn−1fγ(z)]

γ(s)z(Dn−1fγ(z)), z ∈ U.

(2.8)
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Hence,

Dnfγ(z) = γn(s)z +

∞∑
k=2

γn+1(s)knakz
k, z ∈ U. (2.9)

2.5. Darus and Ibrahim Generalized Differential Operator Involving Sig-
moid Function.

Definition 2.5. [[5] Oluwayemi and fadipe-Joseph introduced the generalized dif-
ferential operator Dn

λ,ωfγ(z) involving sigmoid function as a consequence of [10] by

following (2.9):

Dn
λ,ωfγ(z) = γn(s)z −

∞∑
k=2

γn+1(s)[(k − 1)(λ− ω) + k]nakz
k (2.10)

for λ, ω ≥ 0. For more information on this, interested reader may see [4] and [10]

2.6. Ruscheweyh Operator Involving Modified Sigmoid Function.

Definition 2.6. [5] Recently, Oluyemi and Fadipe-Joseph gave a Ruscheweyh Dif-
ferential operator involving the modified Sigmoid function Rn : Tγ → Tγ , with
n ∈ N ∪ 0 such that

Rnfγ(z) = z +

∞∑
k=2

γ(s)Cnn+k−1akz
k, ak ≥ 0, z ∈ U ; (2.11)

where γ(s) = 2
1+e−s , s ≥ 0 with γ(s) = 1 for s = 0.

Moreover,

Cnn+k−1 = Bk(n) = B(n, k) =

(
n+ k − 1

n

)
=

(n+ 1)(n+ 2) · · · (n+ k − 1)

(k − 1)!

=
(n+ 1)k−1

(1)k−1
.

(2.12)

Hence, B(0, k) =

(
k − 1

0

)
= (1)k−1

(1)k−1
= 1.

2.7. Linear Combination of a Generalized Salagean Differential Operator
and Ruscheweyh Operator involving modified sigmoid function.

Definition 2.7. [5] By combining the generalized Salagean differential operator
involving modified sigmoid and the Ruscheweyh operator involving modified sigmoid
function, the following operator was defined in [5] by Oluwayemi and Fadipe-Joseph
as:

Φnλ,ωfγ(z) = µDn
λ,ωfγ(z) + (1− µ)Rnfγ(z)

= [µγn(s)− µ+ 1]z −
∞∑
k=2

γ(s){µγn(s)[(k − 1)(λ− ω)]n + (1− µ)Bk(n)}akzk,

(2.13)
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for λ ∈ [0, 1] , µ ∈ [0, 1], z ∈ U.
Where Dn

λ,ωfγ(z) and Rnfγ(z) are defined respectively in (2.10) and (2.11) respec-
tively.

We note the following in respect of given by (2.13):
(i) Equation (2.13) corrects the one defined for Φnλ,ωfγ(z) in [5].

(ii) That the operator defined in (2.13) is consequent upon a generalized differ-
ent operator defined by Darus and Ibrahim [11].

2.8. New Differential Operator Involving Modified Sigmoid Function.

Definition 2.8. Let fγ(z) ∈ Tγ , then from (2.7) and (2.11) we obtain a generalized
differential operator involving modified sigmoid function as follows:

Dn(ϕ, β, t)fγ(z) = γn(s)z+

∞∑
k=2

γn+1(s)[1+(k+β−ϕ−1)t]nakz
k, z ∈ U, (2.14)

for 0 ≤ ϕ ≤ β, n ∈ N ∪ 0, t ≥ 0.

We note here that µ has been replaced by ϕ for convenience.

2.9. New Differential Operator Involving Sigmoid Defined by Convolu-
tion. For the purpose of defining our new differential operator of interest, the
following definition is required:

Definition 2.9. (Hadamard product or convolution): The Hadamard (or

convolution) of two analytic functions f(z) given by (1.1) and g(z) = z +
∞∑
k=2

bkz
k

is given by

f(z) ∗ g(z) = (f ∗ g)(z) = z +

∞∑
k=2

akbkz
k, z ∈ U. (2.15)

Following (2.15) for (2.10) and (2.15), a certain new differential operator involving
sigmoid function defined by convolution is defined as follows:

Dn
λ,ω(ϕ, β, t)fγ(z) = (Dn

λ,ωfγ(z)) ∗ (Dn(ϕ, β, t)fγ(z))

= γn(s)z +

∞∑
k=2

γn+1(s)[1 + (k + β − ϕ− 1)t]n[(k − 1)(λ− ω) + k]nakz
k

(2.16)

2.10. Linear Combination of the New Differential Operator Involving Sig-
moid defined by Convolution and Ruscheweyh Operator involving modi-
fied sigmoid function. Following (2.15), we combined equations (2.11) and (2.16)
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above to obtain a certain operator define as follows:

Enµ(β, λ, ω, ϕ, t)fγ(z)

= µDn
λ,ω(ϕ, β, t)fγ(z) + (1− µ)Rnfγ(z)

= [µγn(s)− µ+ 1]z −
∞∑
k=2

γ(s){µγn(s)[1 + (k + β − ϕ− 1)t]n[(k − 1)(λ− ω) + k]n

+ (1− µ)Bk(n)}akzk
(2.17)

Remark 4 : (i) For n = 0, µ = 1 in (2.17) we have,

fγ(z) = z −
∞∑
k=2

γ(s)akz
k, ak ≥ 0,

defined by (1.4).
(ii) For t = 0, µ = 1 in (2.17) we have,

Dn(ϕ, β, t)fγ(z) = γn(s)z +

∞∑
k=2

γn+1(s)[1 + (k + β − ϕ− 1)t]nakz
k

defined by (2.16).
(iii) For µ = 0 in (2.17) we have,

Rnfγ(z) = z −
∞∑
k=2

γ(s)Cnn+k−1akz
k, ak ≤ 0, z ∈ U

defined by (2.11).
(1v) For t = 0 in (2.17) we have,

Φnλ,ωfγ(z) = [µγn(s)−µ+1]z−
∞∑
k=2

γ(s){µγn(s)[(k−1)(λ−ω)]n+(1−µ)Bk(n)}akzk,

as defined in (2.13) and corrects the one defined in [5].
(v) For s = 0, µ = 1, t = δ, β = ϕ = 0, λ = 1 and ω = 2 in (2.17) we have,

Dn
δ f(z) = z −

∞∑
k=2

[1 + (k − 1)λ]nakz
k, z ∈ U

which is Al-Oboudi differential operator for function f ∈ T of the form (1.3).
(vi) For s = 0, µ = 1, t = 0, λ = ω = 0 in (2.17) we have,

Dnf(z) = z −
∞∑
k=2

knakz
k, z ∈ U,

which is Salagean differential operator for functions f ∈ T.

In the field of geometric function theory, various subclasses of the normalized
analytic functions which are univalent have been studied from different viewpoints.
Many authors such as [[3],[4],[5],[10],[11],[12],[13],[14],[15],[16][17],[18],[19],[20],[21],[22]]
have successfully defined and studied various subclasses of univalent functions. Par-
ticularly, Joshi and Sangle[13] introduced and investigated subclass TγDλ,ω(α, β, ξ, µ;n)
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of univalent functions by using Al-Oboudi operator as a generalized Salagean dif-
ferential operator in the unit disk U. This was followed by the work of oluwayemi
and Fadipe-Joseph[5] wherein they introduced and investigated subclass
TγDλ,ωfγ(α, β, ξ, µ; p : n) by using the generalized differential operator Φnλ,ωfγ(z).
The motivation for this present work are the works of both Joshi and Sangle and
Oluwayemi and Fadipe-Joseph. In particular, we introduce and investigate the class
TγDλ,ω(α, β, µ, ω, ϕ, λ, η, ξ, t; p : n) as a subclass of univalent functions by using the
generalized differential operator Enµ(β, λ, ω, ϕ, t)fγ(z).

2.11. The class TγDλ,ω(α, β, µ, ω, ϕ, λ, η, ξ, t; p : n).

Definition 2.10. {TγDλ,ω(α, β, ω, ϕ, λ, η, ξ, t; p : n) :} A function fγ(z) ∈ Tγ de-
fined by (1.4) is in the class TγDλ,ω(α, β, ω, ϕ, λ, η, ξ, t; p : n) if∣∣∣∣ [Enµ(β, λ, ω, ϕ, t)fγ(z)]

′ − [µγn(s)− µ+ 1]

pξ[(Enµ(β, λ, ω, ϕ, t)fγ(z))′ ]− [(Enµ(β, λ, ω, ϕ, t)fγ(z))′ − [µγn(s)− µ+ 1]]

∣∣∣∣ < η,

where α ∈ [0, 12 ), η ∈ (0, 1), 12 ≤ ξ ≤ 1, µ ∈ [0, 1], 0 ≥ ϕ 5 β, n ∈ N ∪ 0,
n, t ≥ 0, p ≥ 2 and z ∈ U.

3. Main Results

In this section we find the coefficient estimates for the functions in the class
TγDλ,ω(α, β, µ, ω, ϕ, λ, η, ξ, t; p : n) . Our main characterization theorem for this
function class is stated as Theorem 3.1 below.

3.1. Coefficient Estimates for class TγDλ,ω(α, β, µ, ω, ϕ, λ, η, ξ, t; p : n).

Theorem 3.1. If a function fγ(z) belongs to the class TγDλ,ω(α, β, µ, ω, ϕ, λ, η, ξ, t; p :
n),
then

∞∑
k=2

kγ(s)[1 + η(pξ − 1)]{µγn(s)[1 + (k + β − ϕ− 1)t]n[(k − 1)(λ− ω) + k]n

+ (1− µ)Bk(n)}akzk

≤ pξη[µγn(s)− µ+ 1− α]

Proof. Suppose fγ(z) ∈ TγDλ,ω(α, β, µ, ω, ϕ, λ, η, ξ, t; p : n), by equation (2.17) and
definition 2.10, we have that∣∣∣∣− ∞∑

k=2

kγ(s){µγn(s)[1 + (k + β − ϕ− 1)t]n[(k − 1)(λ− ω) + k]n

+ (1− µ)Bk(n)}akzk−1
∣∣∣∣

≤ η
∣∣∣∣− ∞∑

k=2

pξη[µγn(s)− µ+ 1− α]kγ(s)[1 + η(1− pξ)]{µγn(s)

[1 + (k + β − ϕ− 1)t]n[(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}akzk−1
∣∣∣∣
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|z| ≤ r and as r → 1+, then
∞∑
k=2

kγ(s){µγn(s)[1 + (k + β − ϕ− 1)t]n[(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}ak

≤ ηpξη[µγn(s)− µ+ 1− α] +

∞∑
k=2

ηkγ(s)(1− pξ){µγn(s)

[1 + (k + β − ϕ− 1)t]n[(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}ak

⇒
∞∑
k=2

kγ(s)[1 + η(pξ − 1)]{µγn(s)[1 + (k + β − ϕ− 1)t]n[(k − 1)(λ− ω) + k]n

+ (1− µ)Bk(n)}ak
≤ pξη[µγn(s)− µ+ 1− α]

(3.1)

Hence,

∞∑
k=2

ak ≤
pξη[µγn(s)− µ+ 1− α]

kγ(s)[1 + η(pξ − 1)]{µγn(s)[1 + (k + β − ϕ− 1)t]n

[(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}

(3.2)

The result is sharp for

f(z) = z − pξη[µγn(s)− µ+ 1− α]

kγ(s)[1 + η(pξ − 1)]{µγn(s)[1 + (k + β − ϕ− 1)t]n

[(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}

zk

�

Corollary 3.2. Let a function fγ(z) ∈ TγDλ,ω(α, β, µ, ω, 0, λ, η, ξ, t; p : n), then

∞∑
k=2

kγ(s)[1 + η(pξ − 1)]{µγn(s)[(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}akzk

≤ pξη[µγn(s)− µ+ 1− α],

which is the correct form of Theorem 3.1 in [5] when η = β.

Corollary 3.3. Let s = 0, then we have that a function fγ(z) belongs to the class
T1Dλ,ω(α, β, µ, ω, ϕ, λ, η, ξ, t; p : n), then

∞∑
k=2

k[1 + η(pξ − 1)]{µγn(s)[1 + (k + β − ϕ− 1)t]n[(k − 1)(λ− ω) + k]n

+ (1− µ)Bk(n)}akzk

≤ pξη(1− α),

Corollary 3.4. If t = 0, in corollary 3.3,then we have the following:
Let a function fγ(z) belongs to the class T1Dλ,ω(α, β, µ, ω, ϕ, λ, η, ξ, 0; p : n), then

∞∑
k=2

k[1 + η(pξ − 1)]{µ[(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}akzk

≤ pξη(1− α),
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which is Corollary 3.2 in [5] when η = β.

Corollary 3.5. If µ = 1, in corollary 3.4,then we have the following:
Let a function fγ(z) belongs to the class T1Dλ,ω(α, β, 1, ω, ϕ, λ, η, ξ, 0; p : n), then

∞∑
k=2

k[1 + η(pξ − 1)]{[(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}akzk

≤ pξη(1− α),

which is Corollary 3.3 in [5] when η = β.

4. Growth and Distortion Theorems for the class
TγDλ,ω(α, β, µ, ω, ϕ, λ, η, ξ, t; p : n)

Theorem 4.1. If a function fγ(z) ∈ TγDλ,ω(α, β, µ, ω, ϕ, λ, η, ξ, t; p : n), then for
|z| ≤ r < 1, we have

r − pξη[µγn(s)− µ+ 1− α]

2[1 + η(pξ − 1)]{µγn(s)[1 + (k + β − ϕ− 1)t]n[(λ− ω) + 2]n + (1− µ)B2(n)}
r2

≤ |fγ(z)|

r +
pξη[µγn(s)− µ+ 1− α]

2[1 + η(pξ − 1)]{µγn(s)[1 + (k + β − ϕ− 1)t]n[(λ− ω) + 2]n + (1− µ)B2(n)}
r2

and

1− pξη[µγn(s)− µ+ 1− α]

[1 + η(pξ − 1)]{µγn(s)[1 + (k + β − ϕ− 1)t]n[(λ− ω) + 2]n + (1− µ)B2(n)}
r

≤ |fγ(z)|

1 +
pξη[µγn(s)− µ+ 1− α]

[1 + η(pξ − 1)]{µγn(s)[1 + (k + β − ϕ− 1)t]n[(λ− ω) + 2]n + (1− µ)B2(n)}
r

Proof. Since fγ(z) ∈ TγDλ,ω(α, β, µ, ω, ϕ, λ, η, ξ, t; p : n), Theorem 3.1 readily yields
the inequality

∞∑
k=2

ak ≤
pξη[µγn(s)− µ+ 1− α]

2γ(s)[1 + η(pξ − 1)]{µγn(s)[1 + (k + β − ϕ− 1)t]n[(λ− ω) + 2]n

+ (1− µ)B2(n)
}

(4.1)
Thus, for |z| = r < 1, and by making use of (4.2) we have

|fγ(z)| ≤ |z|+
∞∑
k=2

γ(s)ak|zk| ≤ r + γ(s)r2
∞∑
k=2

ak

≤ r +
pξη[µγn(s)− µ+ 1− α]

2γ(s)[1 + η(pξ − 1)]{µγn(s)[1 + (k + β − ϕ− 1)t]n[(λ− ω) + 2]n

+ (1− µ)B2(n)
}
r2

and
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|fγ(z)| ≥ |z| −
∞∑
k=2

γ(s)ak|zk| ≥ r − γ(s)r2
∞∑
k=2

ak

≥ r − pξη[µγn(s)− µ+ 1− α]

2[1 + η(pξ − 1)]{µγn(s)[1 + (k + β − ϕ− 1)t]n[(λ− ω) + 2]n

+ (1− µ)B2(n)
}
r2

Also from Theorem 3.1, it follows that

γ(s)[1 + η(pξ − 1)]{µγn(s)[1 + (k + β − ϕ− 1)t]n[(λ− ω) + 2]n

+ (1− µ)B2(n)}
∞∑
k=2

kak

∞∑
k=2

kγ(s)[1 + (k + β − ϕ− 1)t]n[(λ− ω) + 2]n + (1− µ)B2(n)}ak

pξη[µγn(s)− µ+ 1− α].

Hence,

|f
′
(z)| ≤ 1 +

∞∑
k=2

γ(s)kak|zk| ≤ 1 + γ(s)r

∞∑
k=2

ak

≤ 1 +
pξη[µγn(s)− µ+ 1− α]

[1 + η(pξ − 1)]{µγn(s)[1 + (k + β − ϕ− 1)t]n[(λ− ω) + 2]n

+ (1− µ)B2(n)
}
r

and

|f
′
(z)| ≥ 1−

∞∑
k=2

γ(s)kak|zk| ≥ 1− γ(s)r

∞∑
k=2

ak

≥ 1− pξη[µγn(s)− µ+ 1− α]

[1 + η(pξ − 1)]{µγn(s)[1 + (k + β − ϕ− 1)t]n[(λ− ω) + 2]n

+ (1− µ)B2(n)
}
r.

This completes the proof of Theorem 4.1. �

4.1. Closure Theorem.

Theorem 4.2. If a function fγ(z) ∈ TγDλ,ω(α, β, µ, ω, ϕ, λ, η, ξ, t; p : n). Let
f1(z) = z and

fγ(z) = z− pξη[µγn(s)− µ+ 1− α]

kγ(s)[1 + η(pξ − 1)]{µγn(s)[1 + (k + β − ϕ− 1)t]n[(k − 1)(λ− ω) + k]n

+ (1− µ)Bk(n)
}
zk,

k ≥ 2.
Then the function fγ(z) ∈ TγDλ,ω(α, β, µ, ω, ϕ, λ, η, ξ, t; p : n) if and only if it can
be expressed in the form

fγ(z) =

∞∑
k=2

µkfk(z), (4.2)

where µk ≥ 0 and
∞∑
k=1

µk = 1.
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Proof. Let fγ(z) =
∞∑
k=1

µkfk(z), µk ≥ 0, k = 1, 2, · · · , and
∞∑
k=1

µk = 1.

Thus

fγ(z) =

∞∑
k=1

µkfk(z) = µ1f1(z) +

∞∑
k=2

µkfk(z).

Therefore,

fγ(z) = µ1f1(z)

+

∞∑
k=2

µk{z −
pξη[µγn(s)− µ+ 1− α]

kγ(s)[1 + η(pξ − 1)]{µγn(s)[1 + (k + β − ϕ− 1)t]n

[(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)
}
}zk

= (µ1 + µ2 + µ3 + · · · )z

−
∞∑
k=2

µk
pξη[µγn(s)− µ+ 1− α]

kγ(s)[1 + η(pξ − 1)]{µγn(s)[1 + (k + β − ϕ− 1)t]n

[(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)
}
zk

µ1(z) + µ2(z) + µ3(z) + · · · = µ1(z) +

∞∑
k=2

µkfk(z)

where µ1 + µ1 + µ1 + · · · =
∞∑
k=1

µk = 1. Then

fγ(z) = z−
∞∑
k=2

µk
pξη[µγn(s)− µ+ 1− α]

kγ(s)[1 + η(pξ − 1)]{µγn(s)[1 + (k + β − ϕ− 1)t]n[(k − 1)(λ− ω) + k]n

+ (1− µ)Bk(n)
}
.

It follows that

∞∑
k=2

µk
pξη[µγn(s)− µ+ 1− α]

kγ(s)[1 + η(pξ − 1)]{µγn(s)[1 + (k + β − ϕ− 1)t]n[(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}

× kγ(s)[1 + η(pξ − 1)]{µγn(s)[1 + (k + β − ϕ− 1)t]n[(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}
pξη[µγn(s)− µ+ 1− α]

∞∑
k=2

µk = 1− µ1 ≤ 1.

In other words,

fγ(z) = µ1 +

∞∑
k=2

µk = 1⇒ 1− µ1 ≤ 1.

By Theorem 3.1 therefore,
fγ(z) ∈ TγDλ,ω(α, β, µ, ω, ϕ, λ, η, ξ, t; p : n).

Conversely, if fγ(z) ∈ TγDλ,ω(α, β, µ, ω, ϕ, λ, η, ξ, t; p : n), then by Theorem 3.1,

ak ≤
pξη[µγn(s)− µ+ 1− α]

kγ(s)[1 + η(pξ − 1)]{µγn(s)[1 + (k + β − ϕ− 1)t]n[(k − 1)(λ− ω) + k]n

+ (1− µ)Bk(n)
}
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By setting

µk ≤
pξη[µγn(s)− µ+ 1− α]

kγ(s)[1 + η(pξ − 1)]{µγn(s)[1 + (k + β − ϕ− 1)t]n[(k − 1)(λ− ω) + k]n

+ (1− µ)Bk(n)
}ak

and

µ1 = 1−
∞∑
k=2

µk.

So that

µk =

pξη[µγn(s)− µ+ 1− α]kγ(s)[1 + η(pξ − 1)]{µγn(s)[1 + (k + β − ϕ− 1)t]n

[(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)

[1 + η(pξ − 1)]{µγn(s)[1 + (k + β − ϕ− 1)t]n[(k − 1)(λ− ω) + k]n

+ (1− µ)Bk(n)pξη[µγn(s)− µ+ 1− α]kγ(s).

Consequently, fk can be expressed in the form (5.1). Hence , fγ(z) =
∑∞
k=1 µkfk(z).

Thus the proof is complete. �

5. Fekete-Szego inequality for the class
TγDλ,ω(α, β, µ, ω, ϕ, λ, η, ξ, t; p : n)

In this section, Fekete-Szego inequality for functions fγ(z) belonging to the class
TγDλ,ω(α, β, µ, ω, ϕ, λ, η, ξ, t; p : n) was established.

Theorem 5.1. If a function fγ(z) belongs to the class TγDλ,ω(α, β, µ, ω, ϕ, λ, η, ξ, t; p :
n), and ∆ ∈ N. Then ∣∣∣∣a3 −∆a22∣∣∣∣ ≤ ∣∣∣∣AB2 −∆A2C

CB2

∣∣∣∣.
Proof. From (??),

ak ≤
pξη[µγn(s)− µ+ 1− α]

kγ(s)[1 + η(pξ − 1)]{µγn(s)[1 + (k + β − ϕ− 1)t]n

[(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}

, ak ≥ 2. (5.1)

From (5.1),

a2 =
pξη[µγn(s)− µ+ 1− α]

2γ(s)[1 + η(pξ − 1)]{µγn(s)[1 + (1 + β − ϕ)t]n

[(λ− ω) + 2]n + (1− µ)B2(n)}

, (k = 2),

and

a3 =
pξη[µγn(s)− µ+ 1− α]

3γ(s)[1 + η(pξ − 1)]{µγn(s)[1 + (2 + β − ϕ)t]n

[2(λ− ω) + 3]n + (1− µ)B3(n)}

, (k = 2).

So that

a3 −∆a22 =
pξη[µγn(s)− µ+ 1− α]

3γ(s)[1 + η(pξ − 1)]{µγn(s)[1 + (2 + β − ϕ)t]n

[2(λ− ω) + 3]n + (1− µ)B3(n)}

−∆
{

pξη[µγn(s)− µ+ 1− α]

2γ(s)[1 + η(pξ − 1)]{µγn(s)[1 + (1 + β − ϕ)t]n

[(λ− ω) + 2]n + (1− µ)B2(n)}

}2

Such that
A = pξη[µγn(s)− µ+ 1− α]
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B =
3γ(s)[1 + η(pξ − 1)]{µγn(s)[1 + (2 + β − ϕ)t]n

[2(λ− ω) + 3]n + (1− µ)B3(n)}

C =
2γ(s)[1 + η(pξ − 1)]{µγn(s)[1 + (1 + β − ϕ)t]n

[(λ− ω) + 2]n + (1− µ)B2(n)} .

Therefore, ∣∣∣∣a3 −∆a22∣∣∣∣ ≤ ∣∣∣∣AB2 −∆A2C

CB2

∣∣∣∣.
�

Let t = 0 in Theorem 5.1 we have the following:

Corollary 5.2. If a function fγ(z) belongs to the class TγDλ,ω(α, β, µ, ω, ϕ, λ, η, ξ, 0; p :
n), and ϕ ∈ N. Then∣∣∣∣a3 −∆a22∣∣∣∣ ≤ ∣∣∣∣AB2

1 −∆A2C1

C1B2
1

∣∣∣∣ =

∣∣∣∣RΩ2
2 − ϕR2Ω1

Ω1Ω2
2

∣∣∣∣.
For

A = pξη[µγn(s)− µ+ 1− α] = R

B1 =
3γ(s)[1 + η(pξ − 1)]{µγn(s)

[2(λ− ω) + 3]n + (1− µ)B3(n)} = Ω2

C1 =
2γ(s)[1 + η(pξ − 1)]{µγn(s)[1 + (1 + β − ϕ)t]n

[(λ− ω) + 2]n + (1− µ)B2(n)} = Ω1.

Remark 5: ∣∣∣∣a3 −∆a22∣∣∣∣ ≤ ∣∣∣∣RΩ2
2 − ϕR2Ω1

Ω1Ω2
2

∣∣∣∣
where ∆ = ϕ is the result in [5] that is due to Oluwayemi and Fadipe-Joseph.

6. Conclusion

This work is a generalization of some earlier well-known (defined) differential
operators, some of which were illustrated in this work. Particularly in this work,
we studied some geometrical properties of functions in the class

TγDλ,ω(α, β, µ, ω, ϕ, λ, η, ξ, t; p : n),

and when t = 0 we obtained the class TγDλ,ω(α, β, ξ, µ; p : n) studied in [5]. Fur-
thermore, by suitably specializing the parameters involved, we obtained some of
the results in [5] as special cases of our own results. Finally, by suitably varying
the parameters involved in the results obtained in this new work, one is guaranteed
of some other existing results and presumably new ones.
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