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merveilkhan@duzce.edu.tr

Soley Ersoy
Department of Mathematics,
Faculty of Science and Arts, Sakarya University,
Sakarya-TÜRKİYE
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Tülay Kösemen
Karadeniz Technical University,
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TÜRKİYE
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Erdinç Dündar
Afyon Kocatepe University,
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Abstract

The object of the present paper is to classify N(κ)-contact metric manifolds admitting the

semi-symmetric non-metric connection with certain curvature conditions the projectively

curvature tensor. We studied projective flat, ξ−projectively flat, φ−projectively flat N(κ)-
contact metric manifolds admitting the semi-symmetric non-metric connection. Also,

we examine such manifolds under some local symmetry conditions related to projective

curvature tensor.

1. Introduction

An almost contact metric manifold is a (2n+1)−dimensional differentiable manifold with a structure (φ ,ξ ,η ,g) such as

φ 2(W1) =−W1 +η(W1)ξ ,η(ξ ) = 1, φ(ξ ) = 0, η(φ(W1)) = 0,g(φ(W1),φ(W2)) = g(W1,W2)−η((W1))η((W2)) (1.1)

for any vector fields W1,W2 ∈ χ(M), where g is Riemannian metric, φ is a (1,1)−tensor field, ξ is a vector field and η is a 1−
form on M [1]. Blair, et al. [2] introduced the (κ,µ)-nullity distribution of an almost contact metric manifold M that is defined

by

N(κ,µ) : p −→ Np(κ,µ)

Np(κ,µ) =
{

W3 ∈ Γ(TpM) : R(W1,W2)W3 = (κI +µh) [g(W2,W3)W1 −g(W1,W3)W2]
}

for all W1,W2 ∈ Γ(T M), where κ and µ are real constants and p ∈ M. If ξ ∈ N(κ,µ), then M is called (κ,µ)−contact metric

manifold. If µ = 0, the (κ,µ)-nullity distribution reduces to κ-nullity distribution.

The idea of κ-nullity distribution on a contact metric manifold was firstly presented by Tanno in 1988 [3]. κ-nullity distribution

of an almost contact metric manifold (M,φ ,ξ ,η ,g) is a distribution defined as

N(κ) : p −→ Np(κ) =
{

W3 ∈ Γ(TpM) : R(W1,W2)W3 = κ [g(W2,W3)W1 −g(W1,W3)W2]
}

for any W1, W2 ∈ Γ(TpM) and κ ∈ R, where R is the Riemannian curvature tensor of M. If ξ belongs to κ−nullity distribution

then M is called N(κ)−contact metric manifold. Thus on a N(κ) contact metric manifold, we have

R(W1,W2)ξ = κ [η(W2)W1 −η(W1)W2] .

Email address and ORCID number: maltin@bingol.edu.tr, https://orcid.org/0000-0001-5544-5910
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A N(κ)-contact metric manifold is Sasakian if and only if k = 1. Also, if k = 0, then the manifold is locally isometric to the

product En+1(0)×Sn(4) for n > 1 and flat for n = 1 [4]. The Riemannian geometry of N(κ)−contact metric manifolds is

studied in [2], [5]-[9]. Levi-Civita connection ∇ is a torsion free, i.e has zero torsion, and a metric connection, i.e ∇g = 0.

There are some kinds of linear connections except for Levi-Civita connection which is not need to be torsion free or metric.

One of them is semi-symmetric non-metric connection [10]. Manifolds with semi-symmetric non-metric connection have

been studied by many researchers [11]-[15]. In the Riemannian geometry of contact manifolds curvature tensors-such as

conformal, concircular, projective curvature tensor etc.-have important applications. Some of geometric properties of structure

on manifolds have been examined by the certain conditions on these curvature tensors. Many works on contact manifolds are

stated in [16]-[23].

In this paper we study projective curvature tensor on N(κ)-contact metric manifolds with semi-symmetric non metric

connection. In [24], Barman gave the curvature relations on such as manifolds. We use these properties and we examine flatness

conditions of projective curvature tensor. Specifically, we given results for ξ -projectively flat, pseudo-quasi-projectively

flat and φ−projectively flat on N(κ)-contact metric manifolds with semi-symmetric non metric connection. After we

investigate φ−projectively semi-symmetric on N(κ)-contact manifolds admitting the semi-symmetric non-metric connection,

we characterize this manifolds satisfying
⋆

Q.
⋆

P = 0 and
⋆

S.
⋆

P = 0 , where
⋆

P,
⋆

Q,
⋆

Ric are projective curvature tensor, Ricci tensor,

Ricci curvature tensor, with a semi-symmetric non metric connection, respectively.

2. Preliminaries

Let (M,φ ,ξ ,η ,g) be an almost contact metric manifold. The h = 1
2

L ξ φ , L ξ denotes the Lie derivative along vector field ξ .

For any W1 ∈ Γ(T M), we have

∇W1
ξ =−φW1 −φhW1

An almost contact metric manifold M is called K−contact if ξ is Killing vector field. M is called normal contact metric

manifold if Nφ +2dη ⊗ξ = 0 , where Nφ is the Nijenhuis tensor of φ . A normal contact metric manifold is called Sasakian.

On the other hand a contact metric manifold is Sasakian if and only if

R(W1,W2)ξ = [η(W2)W1 −η(W1)W2]

for all W1,W2 ∈ Γ(T M). On a K−contact and Sasakian manifold h = 0.

A N(κ)-contact metric manifold is Sasakian if κ = 1. N(κ)-contact metric manifolds are characterized the different values of

κ . As we mentioned in the introduction when κ = 0 then the manifold M is locally isometric to E(n+1)(0)×S(n)(4). On a

N(κ)-contact metric manifold M2n+1, we have following relations (for details see [1] ):

(∇W1
φ)W2 = g(W1 +hW1,W2)ξ −η(W2)(W1 +hW1),

(∇W1
η)W2 = g(W1 +hW1,φW2).

The Riemannian curvature R of a N(κ)−contact metric manifold has following properties:

R(W1,W2)ξ = κ [η(W2)W1 −η(W1)W2] , (2.1)

R(ξ ,W1)W2 = κ [g(W1,W2)ξ −η(W2)W1] (2.2)

for all W1,W2 ∈ Γ(T M). On the other hand the Ricci curvature of M is stated as [1];

Ric(W1,W2) = 2(n−1)g(W1,W2)+2(n−1)g(hW1,W2)+2(nκ − (n−1))η(W1)η(W2) (2.3)

Ric(φW1,φW2) = Ric(W1,W2)−2nκη(W1)η(W2)−4(n−1)g(hW1,W2) (2.4)

Ric(W1,ξ ) = 2κnη(W1) (2.5)

and the scalar curvature is given by

r = 2n(2n+κ −2).

Example 2.1. E. Boeckx [25] gave a classification for non-Sasakian (κ,µ)−spaces. The number IM =
1− µ

2√
1−k

is called by

Boeckx invariant. D.E. Blair, et al. [26] gave an example of N(κ)−contact metric manifolds by using Boeckx invariant. They

constructed (2n+1)-dimensional N(1− 1
n
)-contact metric manifold, n > 1. For details see [26].

Let define a map
⋆

∇on a Riemann manifold M as

⋆

∇W1
W2 = ∇W1

W2 +η(W2)W1
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where ∇ is Levi-Civita connection on M. This map is a linear connection. The torsion of
⋆

∇ is given by

⋆

T (W1,W2) = η(W2)W1 −η(W1)W2

for all W1,W2 ∈ Γ(T M). Also we have

(
⋆

∇U g)(W1,W2) =−η(W1)g(W2,U)−η(W2)g(W1,U) 6= 0.

Thus
⋆

∇ is not symmetric and not metric connection. This type of connection is called by semi-symmetric non-metric connection

[10].

N(κ)− contact metric manifolds with a semi-symmetric non-metric connection were studied by Barman [24]. For the sake of

brevity we denote (M,

⋆

∇) by a N(κ)−contact metric manifolds with a semi-symmetric non-metric connection. Barman gave

the curvature of (M,

⋆

∇) as follow:

⋆

R(W1,W2)W3 = R(W1,W2)W3 +g(W1,φW3)W2 +g(hW1,φW3)W2 −η(W1)η(W3)W2 −g(W2,φW3)W1

−g(hW2,φW3)W1 +η(W3)η(W2)W1. (2.6)

Thus, we have following curvature properties [24]:

⋆

R(ξ ,W2)W3 = κg(W2,W3)ξ − (κ +1)η(W3)W2 −g(W2,φW3)ξ −g(hW2,φW3)ξ +η(W3)η(W2)ξ (2.7)

⋆

R(ξ ,W2)ξ = (κ +1)(η(W2)ξ −W2)
⋆

R(W1,W2)ξ = (κ +1)(η(W2)W1 −η(W1)W2).

The Ricci curvature of a (M,

⋆

∇) is given by

⋆

Ric(W2,W3) = Ric(W2,W3)−2ng(W2,φW3)−2ng(hW2,φW3)+2nη(W3)η(W2). (2.8)

Thus, we have
⋆

Ric(W2,ξ ) = 2n(κ +1)η(W2) (2.9)

⋆
r = 2n+ r

where
⋆

Ric,
⋆

R and
⋆
r are the Ricci tensor, the Riemann curvature tensor and scalar curvature admitting the semi-symmetric

non-metric connection respectively [24].

The projective curvature tensor P admitting the semi-symmetric non-metric connection is defined by

⋆

P(W1,W2)W3 =
⋆

R(W1,W2)W3 −
1

2n

(

⋆

Ric(W2,W3)W1 −
⋆

Ric(W1,W3)W2

)

, (2.10)

for all W1,W2,W3 ∈ T M.

3. Flatness conditions of projective curvature tensor on (M,

⋆

∇)

In this section, we examine that a (M,

⋆

∇) is ξ -projectively flat, pseudo-quasi-projectively flat and φ−projectively flat.

Definition 3.1. A (M,

⋆

∇) is called

• ξ -projectively flat if we have
⋆

P(W1,W2)ξ = 0 for all W1,W2 ∈ Γ(T M),

• pseudo-quasi-projectively flat if we have g(
⋆

P(φW1,W2)W3,φW4) = 0 for all W1,W2,W3 ∈ Γ(T M),

• φ -projectively flat if we have g(
⋆

P(φW1,φW2)φW3,φW4) = 0 for all W1,W2,W3 ∈ Γ(T M).

Theorem 3.2. A (M,

⋆

∇) is always ξ -projectively flat.
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Proof. By putting W3 = ξ in (2.10), we obtain

⋆

P(W1,W2)ξ =
⋆

R(W1,W2)ξ − 1

2n

(

⋆

Ric(W2,ξ )W1 −
⋆

Ric(W1,ξ )W2

)

.

Also from (2.7) and (2.9), we get

⋆

P(W1,W2)ξ = R(W1,W2)ξ −η(W1)W2 +η(W2)W1 −
1

2n
(2n(k+1)η(W2)W1 −2n(k+1)η(W1)W2) .

and take into account (2.1), we have
⋆

P(W1,W2)ξ = 0 (3.1)

for all W1,W2 ∈ Γ(T M).

Theorem 3.3. If (M,

⋆

∇) is pseudo-quasi-projectively flat, then M is an Einstein manifold admitting Levi-Civita connection.

Proof. Using (2.10), we have

g(
⋆

P(φW1,W2)W3,φW4) =
⋆

R(φW1,W2,W3,φW4)−
1

2n
[

⋆

Ric(W2,W3)g(φW1,φW4)−
⋆

Ric(φW1,W3)g(W2,φW4)]. (3.2)

Let (M,

⋆

∇) be a pseudo-quasi-projectively flat. Then, by using (2.8) in (3.2) , it follows that

⋆

R(φW1,W2,W3,φW4) =
1

2n
[(Ric(W2,W3)−2ng(W2,φW3)−2ng(hW2,φW3)+2nη(W2)η(W3))g(φW1,φW4)

− (Ric(φW1,W3)−2ng(φW1,φW3)−2ng(hφW1,φW3))g(W2,φW4)]

and from (2.6) we get

R(φW1,W2,W3,φW4) =
1

2n
(Ric(W2,W3)g(φW1,φW4)−Ric(φW1,W3)g(W2,φW4)) . (3.3)

Take a local orthonormal basis set of M as {e1,e2, ...,e2n,ξ}, then {φe1,φe2, ...,φe2n,ξ} is also a local orthonormal basis.

Putting W1 =W4 = ei in (3.3) and summing over i = 1 to 2n, we get

2n

∑
i=1

R(φei,W2,W3,φei) =
1

2n

[

2n

∑
i=1

(Ric(W2,W3)g(φei,φei)−Ric(φei,W3)g(W2,φei))

]

.

From (2.2) and (2.5), we obtain

Ric(W2,W3) = 2nκg(W2,W3).

Theorem 3.4. Let a (M,

⋆

∇) be φ -projectively flat. If ξ is Killing vector field, then the manifold is an Einstein manifold.

Proof. Firstly, putting W2 = φW2 and W3 = φW3 in (3.2), we get

g(
⋆

P(φW1,φW2)φW3,φW4) =
⋆

R(φW1,φW2,φW3,φW4)−
1

2n

(

⋆

Ric(φW2,φW3)g(φW1,φW4)−
⋆

Ric(φW1,φW3)g(φW2,φW4)

)

. (3.4)

Now, by using (2.8) in (3.4) and from definition of φ -projectively flat, it follows that

⋆

R(φW1,W2,W3,φW4) =
1

2n
[
(

Ric(φW2,φW3)−2ng(φW2,φ
2W3)−2ng(hφW2,φ

2W3)
)

g(φW1,φW4)

−
(

Ric(φW1,φW3)−2ng(φW1,φ
2W3)−2ng(hφW1,φ

2W3)
)

g(φW2,φW4)]

and from (1.1), we get

R(φW1,φW2,φW3,φW4) =
1

2n
(Ric(φW2,φW3)g(φW1,φW4) −Ric(φW1,φW3)g(φW2,φW4)) . (3.5)

For local orthonormal basis {e1,e2, ...,e2n,φe1,φe2, ...,φe2n,ξ} of M by putting W1 = W4 = ei in (3.5) and summing over

i = 1 to 2n, we get

2n

∑
i=1

R(φei,φW2,φW3,φei) =
1

2n

[

2n

∑
i=1

(Ric(φW2,φW3)g(φei,φei)−Ric(φei,φW3)g(φW2,φei))

]

From (2.2) and (2.5), we obtain

Ric(φW2,φW3) = 2nκg(φW2,φW3).

Also, from (2.4) we have

Ric(W2,W3) = 2nκg(W2,W3)+4(n−1)g(hW2,W3)

If ξ is Killing vector field then M is an Einstein manifold.
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4. Symmetry conditions admitting projective curvature tensor on (M,

⋆

∇)

In this section, we study on a (M,

⋆

∇) under certain symmetry conditions. We firstly examine φ−projectively semi-symmetric

(M,

⋆

∇) and then we characterize this manifolds satisfying
⋆

Q.
⋆

P = 0 and
⋆

Ric.
⋆

P = 0 , where
⋆

Q is the Ricci operator defined by
⋆

Ric(W1,W2) = g(
⋆

QW1,W2).

Definition 4.1. A (M,

⋆

∇) is said to be φ−projectively semisymmetric if
⋆

P(W1,W2)φ = 0 for all W1,W2 ∈ Γ(M).

Theorem 4.2. A φ−projectively (M,

⋆

∇) is isometric to Example 2.1.

Proof. Suppose (M,

⋆

∇) be a φ−projectively . Then, we have

⋆

P(W1,W2)φW3 −φ(
⋆

P(W1,W2)W3) = 0. (4.1)

From (2.10), it follows that

⋆

P(W1,W2)φW3 =
⋆

R(W1,W2)φW3 −
1

2n

(

⋆

Ric(W2,φW3)W1 −
⋆

Ric(W1,φW3)W2

)

. (4.2)

Using (2.8) in (4.2), we obtain

⋆

P(W1,W2)φW3 =
⋆

R(W1,W2)φW3 −
1

2n

{

Ric(W2,φW3)W1 −2ng(W2,φ
2W3)W1 −2ng(hW2,φ

2W3)W1

}

+
1

2n

{

Ric(W1,φW3)W2 −2ng(W1,φ
2W3)W2 −2ng(hW1,φ

2W3)W2

}

.

From (2.1), (2.2) and (2.6), we have

⋆

P(W1,W2)φW3 = κg(W2,φW3)W1 −κg(W1,φW3)W2 −
1

2n
Ric(W2,φW3)W1 +

1

2n
Ric(W1,φW3)W2. (4.3)

Also, by applying φ to
⋆

P, we get

φ(
⋆

P(W1,W2)W3) = φ(
⋆

R(W1,W2)W3)−
1

2n
φ

[

⋆

Ric(W2,W3)W1 −
⋆

Ric(W1,W3)W2

]

, (4.4)

and using (2.8) in (4.4) yields

φ(
⋆

P(W1,W2)W3) = φ(
⋆

R(W1,W2)W3)−
1

2n
{Ric(W2,W3)−2ng(W2,φW3)−2ng(hW2,φW3)+2nη(W2)η(W3)}φW1

+
1

2n
{Ric(W1,W3)−2ng(W1,φW3)−2ng(hW1,φW3)+2nη(W1)η(W3)}φW2

Thus from (2.4) and (2.6), we have

φ(
⋆

P(W1,W2)W3) = κg(W2,W3)φW1 −κg(W1,W3)φW2 −
1

2n
Ric(W2,W3)φW1 +

1

2n
Ric(W1,W3)φW2. (4.5)

Putting (2.3), (4.3) and (4.5) in (4.1), we have

⋆

P(W1,W2)φW3 −φ(
⋆

P(W1,W2)W3) = κg(W2,φW3)W1 −κg(W1,φW3)W2 −
2(n−1)

2n
[g(W2,φW3)+g(hW2,φW3)]W1

+
2(n−1)

2n
[g(W1,φW3)+g(hW1,φW3)]W2 −κg(W2,W3)φW1 +κg(W1,W3)φW2

(4.6)

+
1

2n
[2(n−1)(g(W2,W3)+g(hW2,W3))+2(nκ − (n−1)η(W2)η(W3))]φW1

− 1

2n
[2(n−1)(g(W1,W3)+g(hW1,W3))+2(nκ − (n−1)η(W1)η(W3))]φW2

Let take inner product with W4 of (4.6) and then to contract W2 and W4, we obtain

{

2κ(1−n)+2(
n2 −2n+1

n
)

}

g(W1,φW3)+{2(n−1)}g(hW1,φW3) = 0. (4.7)
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Now, putting W3 = φW3 in (4.7) and from (1.1), we get

{

2κ(1−n)+2(
n2 −2n+1

n
)

}

g(φW1,φW3)+{2(n−1)}g(hW1,W3) = 0. (4.8)

Taking trace in both sides of (4.8) and using trh = 0, we obtain

κ =
n−1

n
.

Thus M is isometric to Example 2.1.

Theorem 4.3. On a (M,

⋆

∇), we have
⋆

Q.
⋆

P = 0.

Proof. For all W1,W2,W3 ∈ Γ(T M), we have

(
⋆

Q(W1).
⋆

P)(W2,W3) =
⋆

Q(
⋆

P(W1,W2)W3)−
⋆

P(
⋆

QW1,W2)W3 −
⋆

P(W1,
⋆

QW2)W3 −
⋆

P(W1,W2)
⋆

QW3. (4.9)

From (2.8) and (2.9), we have

⋆

QW2 = 2(n−1)(W2 +hW2)+2n(φW2 +φhW2)+2(nκ +1)η(W2)ξ (4.10)

and, so
⋆

Qξ = 2n(κ +1)ξ . (4.11)

Thus, for W3 = ξ in (4.9) we get

(
⋆

Q(W1).
⋆

P)(W2,ξ ) =
⋆

Q(
⋆

P(W1,W2)ξ )−
⋆

P(
⋆

QW1,W2)ξ −
⋆

P(W1,
⋆

QW2)ξ −
⋆

P(W1,W2)
⋆

Qξ .

From (3.1), (4.10) and (4.11), it follows that
⋆

Q.
⋆

P = 0.

Theorem 4.4. A (M,

⋆

∇) satisfies
⋆

P.
⋆

Ric = 0 if and only if M is an Einstein manifold.

Proof. Let
⋆

P.
⋆

Ric = 0 satisfies on (M,

⋆

∇) , then we get

⋆

Ric(
⋆

P(W4,W2)W3,W1)+
⋆

Ric(W3,
⋆

P(W4,W2)W1) = 0. (4.12)

Putting W1 =W4 = ξ in (4.12), we have

⋆

Ric(
⋆

P(ξ ,W2)W3,ξ )+
⋆

Ric(W3,
⋆

P(ξ ,W2)ξ ) = 0. (4.13)

Also, from (2.10), we get

⋆

P(ξ ,W2)W3 =
⋆

R(ξ ,W2)W3 −
1

2n

(

⋆

Ric(W2,W3)ξ −
⋆

Ric(ξ ,W3)W2

)

,

from (2.7), (2.8), (2.9), it follows that

⋆

P(ξ ,W2)W3 = κg(W2,W3)ξ − 1

2n
Ric(W2,W3)ξ . (4.14)

Again putting W3 = ξ in (4.14) and using (2.5), we obtain

⋆

P(ξ ,W2)ξ = 0. (4.15)

Using (2.9), (4.14) and (4.15) in (4.13), it follows that

Ric(W2,W3) = 2nκg(W2,W3).

Conversely, let M be an Einstein manifold , i.e Ric(W2,W3) = 2nκg(W2,W3). Then, we get

⋆

P(W1,W2)W3 = κ(g(W2,W3)W1 −g(W1,W3)W2)−
1

2n
(2nκg(W2,W3)W1 −2nκg(W1,W3)W2) .

which implies
⋆

P(W1,W2)W3 = 0. This also give us
⋆

P.
⋆

Ric = 0.
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Abstract

We introduce logarithmic summability in intuitionistic fuzzy normed spaces(IFNS) and give

some Tauberian conditions for which logarithmic summability yields convergence in IFNS.

Besides, we define the concept of slow oscillation with respect to logarithmic summability

in IFNS, investigate its relation with the concept of q-boundedness and give Tauberian

theorems by means of q-boundedness and slow oscillation with respect to logarithmic

summability. A comparison theorem between Cesàro summability method and logarithmic

summability method in IFNS is also proved in the paper.

1. Introduction and preliminaries

Fuzzy sets are put forward by Zadeh [1] in 1965 as a generalization of classical sets and have been studied by many

mathematicians from varied branches. In classical sets, elements in the universal set are divided crisply into two groups

as members and nonmembers, and partial membership is not allowed. Unlike the classical sets, fuzzy sets allow partial

membership and take every elements in the universe into account by assigning degrees of membership between 1 and 0. Owing

to the power in handling unclassifiable data, fuzzy sets are utilized in many real-world scenarios to cope with problems of

uncertainty and indefiniteness. In 1983, inspired by fuzzy sets, Atanassov [2, 3] considered also partial non-membership and

extended fuzzy sets to intuitionistic fuzzy sets. Following Atanassov’s introduction, concepts of intuitionistic fuzzy metric [4]

and intuitionistic fuzzy norm (IF-norm) [5,6] are defined and related topics are studied. In particular, convergence of sequences

in IFNS is investigated and different types of convergence(e.g., statistical convergence and ideal convergence) are applied to

sequences in IFNS to grasp the convergence [7–11].

Recently Talo and Yavuz [12] introduced Cesàro summability of sequences in IFNS and gave Tauberian theorems for Cesàro

summability method in IFNS, by which they initiated summability theory and Tauberian theory in IFNS. In their study,

they also defined the concept of slow oscillation in IFNS and gave related theorems. Following their study, we now define

logarithmic summability of sequences in IFNS and prove a Tauberian theorem for logarithmic summability method. In the

sequel, we define the notion of slow oscillation with respect to logarithmic summability in IFNS and give slowly oscillating

type Tauberian conditions for which logarithmic summability yields convergence in IFNS. Besides, we compare Cesàro

summability and logarithmic summability in IFNS. Before continuing with main results we now give some preliminaries.

Definition 1.1. [6] The triplicate (N,µ,ν) is said to be an IFNS if N is a real vector space, and µ,ν are fuzzy sets on N ×R

satisfying the following conditions for every u,w ∈ N and t,s ∈ R:

(a) µ(u, t) = 0 for t ≤ 0,

Email address and ORCID number: enes.yavuz@cbu.edu.tr, https://orcid.org/0000-0002-4335-5210
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(b) µ(u, t) = 1 for all t ∈ R
+ if and only if u = θ

(c) µ(cu, t) = µ
(

u, t
|c|

)

for all t ∈ R
+ and c 6= 0,

(d) µ(u+w, t + s)≥ min{µ(u, t),µ(w,s)},

(e) limt→∞ µ(u, t) = 1 and limt→0 µ(u, t) = 0,

(f) ν(u, t) = 1 for t ≤ 0,

(g) ν(u, t) = 0 for all t ∈ R
+ if and only if u = θ

(h) ν(cu, t) = ν
(

u, t
|c|

)

for all t ∈ R
+ and c 6= 0,

(i) max{ν(u, t),ν(w,s)} ≥ ν(u+w, t + s),
(j) limt→∞ ν(u, t) = 0 and limt→0 ν(u, t) = 1.

We call (µ,ν) an IF−norm on N.

Example 1.2. Let (N,‖ · ‖) be a normed space and µ0, ν0 be fuzzy sets on N ×R defined by

µ0(u, t) =

{

0, t ≤ 0,
t

t+‖u‖ , t > 0,
ν0(u, t) =

{

1, t ≤ 0,
‖u‖

t+‖u‖ , t > 0.

Then (µ0,ν0) is IF−norm on N.

Throughout the paper (N,µ,ν) will denote an IFNS.

Definition 1.3. [6] A sequence (un) in (N,µ,ν) is said to be convergent to a ∈ N and denoted by un → a if for every ε > 0

and t > 0 there exists n0 ∈ N such that µ(un −a, t)> 1− ε and ν(un −a, t)< ε for all n ≥ n0.

Definition 1.4. [6] A sequence (un) in (N,µ,ν) is said to be Cauchy if for every ε > 0 and t > 0 there exists n0 ∈ N such

that µ(uk −un, t)> 1− ε and ν(uk −un, t)< ε for all k,n ≥ n0.

Every convergent sequence is Cauchy in IFNS.

Definition 1.5. [13] A sequence (un) in (N,µ,ν) is called q-bounded if limt→∞ infn∈N µ(un, t)= 1 and limt→∞ supn∈N ν(un, t)=
0.

2. Main results

Now we introduce logarithmic summability in IFNS and prove corresponding Tauberian theorems. For some other studies

concerning logarithmic summability and convergence methods in fuzzy setting see [14–26].

Definition 2.1. Let sequence (un) be in (N,µ,ν). Logarithmic mean τn of (un) is defined by

τn =
1

ℓn

n

∑
k=1

uk

k
where ℓn =

n

∑
k=1

1

k
·

(un) is said to be logarithmic summable to a ∈ N if

lim
n→∞

τn = a.

Following theorem shows that convergence yields logarithmic summability in IFNS.

Theorem 2.2. Let sequence (un) be in (N,µ,ν). If (un) is convergent to a ∈ N, then (un) is logarithmic summable to a.

Proof. Let sequence (un) converge to a ∈ N. Fix t > 0. For ε > 0

• There exists n0 ∈ N such that µ
(

un −a, t
2

)

> 1− ε and ν
(

un −a, t
2

)

< ε for n > n0.

• There exists n1 ∈ N such that

µ

(

n0

∑
k=1

uk −a

k
,
ℓnt

2

)

> 1− ε and ν

(

n0

∑
k=1

uk −a

k
,
ℓnt

2

)

< ε

for n > n1, since we have

lim
n→∞

µ

(

n0

∑
k=1

uk −a

k
,
ℓnt

2

)

= 1 and lim
n→∞

ν

(

n0

∑
k=1

uk −a

k
,
ℓnt

2

)

= 0.



Fundamental Journal of Mathematics and Applications 103

Hence we get

µ

(

1

ℓn

n

∑
k=1

uk

k
−a, t

)

= µ

(

1

ℓn

n

∑
k=1

uk −a

k
, t

)

= µ

(

n

∑
k=1

uk −a

k
, ℓnt

)

≥ min

{

µ

(

n0

∑
k=1

uk −a

k
,
ℓnt

2

)

,µ

(

n

∑
k=n0+1

uk −a

k
,
ℓnt

2

)}

≥ min

{

µ

(

n0

∑
k=1

uk −a

k
,
ℓnt

2

)

,µ

(

n

∑
k=n0+1

uk −a

k
,
(ℓn − ℓn0

)t

2

)}

≥ min

{

µ

(

n0

∑
k=1

uk −a

k
,
ℓnt

2

)

,µ

(

un0+1 −a

n0 +1
,

t

2(n0 +1)

)

, · · · ,µ
(

un −a

n
,

t

2n

)

}

= min

{

µ

(

n0

∑
k=1

uk −a

k
,
ℓnt

2

)

,µ
(

un0+1 −a,
t

2

)

, · · · ,µ
(

un −a,
t

2

)

}

> 1− ε

and

ν

(

1

ℓn

n

∑
k=1

uk

k
−a, t

)

< max

{

ν

(

n0

∑
k=1

uk −a

k
,
ℓnt

2

)

,ν
(

un0+1 −a,
t

2

)

, · · · ,ν
(

un −a,
t

2

)

}

< ε

whenever n > max{n0,n1}, which completes the proof.

Logarithmic summability does not imply convergence in IFNS by the next example.

Example 2.3. Take (un) = ((−1)n) in IF−normed space (R,µ0,ν0) where µ0 and ν0 are as in Example 1.2. Sequence (un)
is logarithmic summable to 0 in view of Theorem 2.13 and [12, Example 3.3], but it is not convergent.

We now give some Tauberian conditions for which logarithmic summability yields convergence in IFNS.

Theorem 2.4. Let sequence (un) be in (N,µ,ν). If (un) is logarithmic summable to a ∈ N, then it converges to a if and only if

for each t > 0

sup
λ>1

liminf
n→∞

µ





1

ℓ⌊nλ ⌋− ℓn

⌊nλ ⌋
∑

k=n+1

uk −un

k
, t



= 1 (2.1)

and

inf
λ>1

limsup
n→∞

ν





1

ℓ⌊nλ ⌋− ℓn

⌊nλ ⌋
∑

k=n+1

uk −un

k
, t



= 0. (2.2)

Proof. Necessity. Let (un) converge to a. For all λ > 1 and large enough n, that is when ⌊nλ ⌋> n, we can write(see [27, Lemma

5.5(i)])

un − τn =
ℓ⌊nλ ⌋

ℓ⌊nλ ⌋− ℓn

(

τ⌊nλ ⌋− τn

)

− 1

ℓ⌊nλ ⌋− ℓn

⌊nλ ⌋
∑

k=n+1

uk −un

k
· (2.3)

Since (τn) is Cauchy, for each t > 0 we have

lim
n→∞

µ
(

τ⌊nλ ⌋− τn, t
)

= 1 and lim
n→∞

ν
(

τ⌊nλ ⌋− τn, t
)

= 0.

Hence, for sufficiently large n such that
ℓ⌊nλ ⌋

ℓ⌊nλ ⌋−ℓn
≤ 2λ

λ−1
is satisfied, we have

µ

(

ℓ⌊nλ ⌋
ℓ⌊nλ ⌋− ℓn

(

τ⌊nλ ⌋− τn

)

, t

)

= µ









τ⌊nλ ⌋− τn,
t

ℓ⌊nλ ⌋
ℓ⌊nλ ⌋−ℓn









≥ µ

(

τ⌊nλ ⌋− τn,
t

2λ
λ−1

)

→ 1 (n → ∞)
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and

ν

(

ℓ⌊nλ ⌋
ℓ⌊nλ ⌋− ℓn

(

τ⌊nλ ⌋− τn

)

, t

)

= ν









τ⌊nλ ⌋− τn,
t

ℓ⌊nλ ⌋
ℓ⌊nλ ⌋−ℓn









≤ µ

(

τ⌊nλ ⌋− τn,
t

2λ
λ−1

)

→ 0 (n → ∞)

revealing that
ℓ⌊nλ ⌋

ℓ⌊nλ ⌋−ℓn

(

τ⌊nλ ⌋− τn

)

→ 0. So, by equation (2.3), we conclude

lim
n→∞

µ





1

ℓ⌊nλ ⌋− ℓn

⌊nλ ⌋
∑

k=n+1

uk −un

k
, t



= 1 and lim
n→∞

ν





1

ℓ⌊nλ ⌋− ℓn

⌊nλ ⌋
∑

k=n+1

uk −un

k
, t



= 0,

which means that (2.1) and (2.2) are satisfied.

Sufficiency. Let conditions (2.1) and (2.2) be satisfied. Let t > 0 be fixed. For ε > 0 we have:

• There exist λ > 1 and n0 ∈ N such that

µ





1

ℓ⌊nλ ⌋− ℓn

⌊nλ ⌋
∑

k=n+1

uk −un

k
,

t

3



> 1− ε and µ





1

ℓ⌊nλ ⌋− ℓn

⌊nλ ⌋
∑

k=n+1

uk −un

k
,

t

3



< ε

for n > n0.

• There exists n1 ∈ N such that µ
(

τn −a, t
3

)

> 1− ε and ν
(

τn −a, t
3

)

< ε for n > n1.

• There exists n2 ∈ N such that

µ

(

ℓ⌊nλ ⌋
ℓ⌊nλ ⌋− ℓn

(

τ⌊nλ ⌋− τn

)

,
t

3

)

> 1− ε and ν

(

ℓ⌊nλ ⌋
ℓ⌊nλ ⌋− ℓn

(

τ⌊nλ ⌋− τn

)

,
t

3

)

< ε,

for n > n2, since
ℓ⌊nλ ⌋

ℓ⌊nλ ⌋−ℓn

(

τ⌊nλ ⌋− τn

)

→ 0.

Hence, by equation (2.3), we get

µ(un −a, t) = µ (un − τn + τn −a, t)

= µ





ℓ⌊nλ ⌋
ℓ⌊nλ ⌋− ℓn

(

τ⌊nλ ⌋− τn

)

− 1

ℓ⌊nλ ⌋− ℓn

⌊nλ ⌋
∑

k=n+1

uk −un

k
+ τn −a, t





≥ min







µ

(

ℓ⌊nλ ⌋
ℓ⌊nλ ⌋− ℓn

(

τ⌊nλ ⌋− τn

)

,
t

3

)

,µ





1

ℓ⌊nλ ⌋− ℓn

⌊nλ ⌋
∑

k=n+1

uk −un

k
,

t

3



 ,µ
(

τn −a,
t

3

)







> 1− ε

and

ν(un −a, t) < max







ν

(

ℓ⌊nλ ⌋
ℓ⌊nλ ⌋− ℓn

(

τ⌊nλ ⌋− τn

)

,
t

3

)

,ν





1

ℓ⌊nλ ⌋− ℓn

⌊nλ ⌋
∑

k=n+1

uk −un

k
,

t

3



 ,ν
(

τn −a,
t

3

)







< ε

for n > max{n0,n1,n2}, which completes the proof.

Theorem 2.5. Let sequence (un) be in (N,µ,ν). If (un) is logarithmic summable to a ∈ N, then it converges to a if and only if

for each t > 0

sup
0<λ<1

liminf
n→∞

µ





1

ℓn − ℓ⌊nλ ⌋

n

∑
k=⌊nλ ⌋+1

un −uk

k
, t



= 1

and

inf
0<λ<1

limsup
n→∞

ν





1

ℓn − ℓ⌊nλ ⌋

n

∑
k=⌊nλ ⌋+1

un −uk

k
, t



= 0.
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Proof. The proof is done similarly to that of Theorem 2.4 by using equation(see [27, Lemma 5.5(ii)])

un − τn =
ℓ⌊nλ ⌋

ℓn − ℓ⌊nλ ⌋

(

τn − τ⌊nλ ⌋

)

+
1

ℓn − ℓ⌊nλ ⌋

n

∑
k=⌊nλ ⌋+1

un −uk

k
(0 < λ < 1)

instead of (2.3).

Now we introduce the concept of slow oscillation with respect to logarithmic summability in IFNS.

Definition 2.6. (un) in (N,µ,ν) is said to be slowly oscillating with respect to logarithmic summability if

sup
λ>1

liminf
n→∞

min
n<k≤⌊nλ ⌋

µ(uk −un, t) = 1 (2.4)

and

inf
λ>1

limsup
n→∞

max
n<k≤⌊nλ ⌋

ν(uk −un, t) = 0, (2.5)

for each t > 0. “supλ>1” in (2.4) and “infλ>1” in (2.5) can be replaced by “limλ→1+”.

A sequence (un) in (N,µ,ν) is slowly oscillating with respect to logarithmic summability if for each t > 0 and for all ε > 0

there exist λ > 1 and n0 ∈ N such that

µ(uk −un, t)> 1− ε and ν(uk −un, t)< ε

whenever n0 ≤ n < k ≤ ⌊nλ ⌋.

The proof of next theorem is analogous to that of Theorem 4.2 in [12] and hence omitted.

Theorem 2.7. Let sequence (un) be in (N,µ,ν). For t > 0, conditions (2.4) and (2.5) are equivalent to

sup
0<λ<1

liminf
n→∞

min
⌊nλ ⌋<k≤n

µ(uk −un, t) = 1 (2.6)

and

inf
0<λ<1

limsup
n→∞

max
⌊nλ ⌋<k≤n

ν(uk −un, t) = 0, (2.7)

respectively. “sup0<λ<1” in (2.6) and “inf0<λ<1” in (2.7) can be replaced by “limλ→1−”.

Example 2.8. Consider IF−normed space (R,µ0,ν0) where µ0 and ν0 are as in Example 1.2. un = ∑
n
j=1

1
j ln j

is slowly

oscillating with respect to logarithmic summability by the calculations below:

Fix t > 0. For ε > 0 take λ = e
tε

1−ε . Then for 1 < n < k ≤ ⌊nλ ⌋ we have

µ0(uk −un, t) =
t

t + |uk −un|
>

t

t + tε
1−ε

= 1− ε

and

ν0(uk −un, t) =
|uk −un|

|uk −un|+ t
<

tε
1−ε

tε
1−ε + t

= ε,

since |uk −un|= ∑
k
j=n+1

1
j ln j

<

k
∫

n

du
u lnu

≤ ln
(

lnk
lnn

)

≤ lnλ = tε
1−ε ·

Theorem 2.9. Let sequence (un) be in (N,µ,ν). If (un) is slowly oscillating with respect to logarithmic summability then

(2.1) and (2.2) are satisfied.

Proof. Suppose that (un) is slowly oscillating with respect to logarithmic summability. Fix t > 0. For ε > 0 there exist λ > 1

and n0 ∈ N such that

µ(uk −un, t)> 1− ε and ν(uk −un, t)< ε
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whenever n0 ≤ n < k ≤ ⌊nλ ⌋. Hence, we have

µ





1

ℓ⌊nλ ⌋− ℓn

⌊nλ ⌋
∑

k=n+1

uk −un

k
, t



 = µ





⌊nλ ⌋
∑

k=n+1

uk −un

k
,(ℓ⌊nλ ⌋− ℓn)t





≥ min

{

µ

(

un+1 −un

n+1
,

t

n+1

)

, . . . ,µ

(

u⌊nλ ⌋−un

⌊nλ ⌋ ,
t

⌊nλ ⌋

)}

= min
{

µ(un+1 −un, t), . . . ,µ(u⌊nλ ⌋−un, t)
}

> 1− ε

and

ν





1

ℓ⌊nλ ⌋− ℓn

⌊nλ ⌋
∑

k=n+1

uk −un

k
, t



 ≤ max
{

ν(un+1 −un, t), . . . ,ν(u⌊nλ ⌋−un, t)
}

< ε

for n ≥ n0 and this completes the proof.

In view of Theorem 2.4 and Theorem 2.9 we give the following Tauberian theorem.

Theorem 2.10. Let sequence (un) be in (N,µ,ν). If (un) is logarithmic summable to a ∈ N and slowly oscillating with respect

to logarithmic summability, then (un) converges to a.

Theorem 2.11. Let sequence (un) be in (N,µ,ν). If {n lnn(un − un−1)} is q-bounded, then (un) is slowly oscillating with

respect to logarithmic summability.

Proof. Let {n lnn(un −un−1)} be q-bounded. In view of Definition 1.5, for given ε > 0 there exists Mε > 0 so that

t > Mε ⇒ inf
n∈N

µ(n lnn(un −un−1), t)> 1− ε and sup
n∈N

ν(n lnn(un −un−1), t)< ε.

For every t > 0 choose λ < 1+ t
Mε

. Then for n0 < n < k ≤ ⌊nλ ⌋ we have

µ(uk −un, t) = µ

(

k

∑
j=n+1

(u j −u j−1), t

)

≥ min
n+1≤ j≤k

µ

(

u j −u j−1,
t

j(ℓk − ℓn)

)

= min
n+1≤ j≤k

µ

(

j ln j(u j −u j−1),
t ln j

ℓk − ℓn

)

≥ min
n+1≤ j≤k

µ

(

j ln j(u j −u j−1),
t lnn

ℓk − ℓn

)

≥ min
n+1≤ j≤k

µ

(

j ln j(u j −u j−1),
t

lnk
lnn

−1

)

≥ min
n+1≤ j≤k

µ

(

j ln j(u j −u j−1),
t

λ −1

)

≥ inf
n∈N

µ

(

n lnn(un −un−1),
t

λ −1

)

> 1− ε

and

ν(uk −un, t)< sup
n∈N

ν

(

n lnn(un −un−1),
t

λ −1

)

< ε.

Hence, (un) is slowly oscillating with respect to logarithmic summability.

By Theorem 2.10 and Theorem 2.11, we conclude following Tauberian theorem.
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Theorem 2.12. Let sequence (un) be in (N,µ,ν). If (un) is logarithmic summable to a ∈ N and {n lnn(un − un−1)} is

q-bounded, then (un) converges to a.

Now we prove a comparison theorem.

Theorem 2.13. Let sequence (un) be in (N,µ,ν). If (un) is Cesàro summable to a ∈ N, then (un) is logarithmic summable to

a.

Proof. Let (un) be Cesàro summable to a ∈ N. Then, Cesàro means σn =
1
n ∑

n
k=1 uk converges to a and 1

ℓn
∑

n
k=1

σk−1

k
→ a by

Theorem 2.2 with the agreement σ0 = 0.

Fix t > 0. For ε > 0

• There exists n0 ∈ N such that µ
(

σn −a, t
2

)

> 1− ε and ν
(

σn −a, t
2

)

< ε whenever n > n0.

• There exists n1 ∈ N such that

µ

(

1

ℓn

n

∑
k=1

σk−1

k
−a,

t

2

)

> 1− ε and ν

(

1

ℓn

n

∑
k=1

σk−1

k
−a,

t

2

)

< ε

whenever n > n1.

• There exists n2 ∈N such that µ
(

a,
(ℓn−1)t

2

)

> 1−ε and ν
(

a,
(ℓn−1)t

2

)

< ε whenever n> n2, since limn→∞ µ
(

a,
(ℓn−1)t

2

)

=

1 and limn→∞ ν
(

a,
(ℓn−1)t

2

)

= 0.

Then, we have(see [28])

µ (τn −a, t) = µ

(

σn

ℓn

+
1

ℓn

n

∑
k=1

σk−1

k
−a, t

)

≥ min

{

µ

(

σn

ℓn

,
t

2

)

,µ

(

1

ℓn

n

∑
k=1

σk−1

k
−a,

t

2

)}

= min

{

µ

(

σn,
ℓnt

2

)

,µ

(

1

ℓn

n

∑
k=1

σk−1

k
−a,

t

2

)}

≥ min

{

µ
(

σn −a,
t

2

)

,µ

(

a,
(ℓn −1)t

2

)

,µ

(

1

ℓn

n

∑
k=1

σk−1

k
−a,

t

2

)}

> 1− ε

and

ν (τn −a, t)≤ max

{

ν
(

σn −a,
t

2

)

,ν

(

a,
(ℓn −1)t

2

)

,ν

(

1

ℓn

n

∑
k=1

σk−1

k
−a,

t

2

)}

< ε

whenever n > max{n0,n1,n2}, which completes the proof.

Logarithmic summability does not imply Cesàro summability in IFNS by the next example.

Example 2.14. Consider sequence (un) = ((−1)nn) in IF−normed space (R,µ0,ν0) where µ0 and ν0 are as in Example 1.2.

Since

lim
n→∞

µ0 (τ2n+1, t) = lim
n→∞

µ0

(

− 1

ℓ2n+1
, t

)

= lim
n→∞

t

t +
∣

∣

∣
− 1

ℓ2n+1

∣

∣

∣

= 1

lim
n→∞

ν0 (τ2n+1, t) = lim
n→∞

ν0

(

− 1

ℓ2n+1
, t

)

= lim
n→∞

∣

∣

∣
− 1

ℓ2n+1

∣

∣

∣

∣

∣

∣
− 1

ℓ2n+1

∣

∣

∣
+ t

= 0

we have τ2n+1 → 0, and since

lim
n→∞

µ0 (τ2n, t) = lim
n→∞

µ0 (0, t) = lim
n→∞

t

t +0
= 1, lim

n→∞
ν0 (τ2n, t) = lim

n→∞
ν0 (0, t) = lim

n→∞

0

0+ t
= 0

we have τ2n → 0 which yields that limn→∞ τn = 0. So, (un) is logarithmic summable to 0. But, sequence (un) is not Cesàro

summable.
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We note that converse of Theorem 2.13 is true under the condition lnn(τn −a)→ 0, which can be seen by the following:

µ (σn −a, t) = µ

(

ℓn (τn −a)− 1

n

n−1

∑
k=1

ℓk (τk −a) , t

)

≥ min

{

µ
(

ℓn (τn −a) ,
t

2

)

,µ

(

1

n

n−1

∑
k=1

ℓk (τk −a) ,
t

2

)}

→ 1 as n → ∞

and

ν (σn −a, t)≤ max

{

ν
(

ℓn (τn −a) ,
t

2

)

,ν

(

1

n

n−1

∑
k=1

ℓk (τk −a) ,
t

2

)}

→ 0 as n → ∞.

By Theorem 2.13 and Example 2.14, we see that logarithmic summability method is stronger than Cesàro summability method

in summing up sequences in IFNS.
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Abstract

We shall determine the coding matrix of the semi-direct product group G = Cn ⋊φ Cm ;

φ : Cm −→ Aut(Cn) of two cyclic groups in order to generalize the known result for the

dihedral group D2n, which is known to be a semi-direct of the two cyclic groups Cn , C2.

1. Introduction

An (n,k)-linear code C of length n over the finite field of q elements Fq is a k-dimensional subspace of Fn
q. It gained more

attention from the work of W. Hamming in 1950 [1]. The first connection between codes and group rings of finite groups

appeared in the work of F. G. MacWilliams (1969) [2]. In (2006) T. Hurley [3] (starting with a coding matrix of the finite

group G based on an appropriate listing of its elements) proved that the group ring RG of a finite group of order n over a ring R

is isomorphic to certain well-defined ring of matrices, and hence gave a construction of codes from certain elements of the

group ring such as units and zero divisors [4]. The coding matrices were determined for several classes of finite groups such as

cyclic [3], elementary-abelian [3], dihedral groups D2n [3], direct product [5] and the general linear group GL(2,F) [6].

In this paper, we shall generalize Hurley’s theorem in [3] to Cn ⋊φ C2 as a special case of Cn ⋊φ Cm and we will decide the

form of the coding matrices of Cn ⋊φ Cm.

The paper is organized as follows in section 2, we present some definitions and basic results with examples about group rings,

coding matrices of group rings and codes. In section 3, we determine the coding matrix of the semi-direct product group of

two cyclic groups with illustrative examples.

2. Preliminaries

Let G be a finite group of order n, and {g1,g2, ...,gn} be a fixed listing of the element of G. Consider the matrix of G relative

to its listing, M(G), which has the following form:

M(G) =











g−1
1 g1 g−1

1 g2 . . . g−1
1 gn

g−1
2 g1 g−1

2 g2 . . . g−1
2 gn

...
...

...
...

g−1
n g1 g−1

n g2 . . . g−1
n gn











n×n

.
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https://orcid.org/0000-0001-9404-1732 (A. A. Khammash)
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Then for each u = ∑
n
i=1 αgi

gi ∈ RG, define the matrix M(RG,u) ∈ Mn(R) as follows:

M(RG,u) =













α
g−1

1 g1
α

g−1
1 g2

. . . α
g−1

1 gn

α
g−1

2 g1
α

g−1
2 g2

. . . α
g−1

2 gn

...
...

...
...

α
g−1

n g1
α

g−1
n g2

. . . α
g−1

n gn













n×n

.

It is quite clear that the shape as well as the coefficients of the coding matrix M(RG,u) depends on the listing of the group

elements of the group G.

In [3], T. Hurley proved that the group ring RG of a group G of order n over a ring R is isomorphic to a certain ring of (n×n)
matrices over R.

Theorem 2.1. ( [3], Theorem 1 )

Let G be a group of order n with the given listing of the elements, then there is a bijective ring homomorphism is given by

σ : u −→ M(RG,u)

between RG and the ring of (n×n) G-matrices over R.

The coding matrices are known for several types of groups, for details see [3].

Definition 2.2. • Let R be a ring, a non zero element u = ∑g∈G αgg ∈ RG is called a zero-divisor if and only if there exists

a non zero element v ∈ RG such that uv = 0 or vu = 0.

• Let R be a ring with identity IR 6= 0, an element u ∈ RG is called a unit if and only if there exists an element v ∈ RG,

such that uv = 1 = vu.

Definition 2.3. • Let C be an (n,k)-code and let G be a (k×n)-matrix whose rows are the basis for C, then G is called a

generator matrix for C.

• A parity-check matrix H for an (n,k)-code C is a generator matrix of C⊥, such that the dual code C⊥ is defined by

C⊥ = {u ∈ F
n
q | u.v = 0 f or all v ∈C}.

Definition 2.4. Let RG be the group ring of the group G over the ring R, where the listing of the elements of G is given by

{g1,g2, . . . ,gn}. Suppose W is a submodule of RG, x ∈W and u ∈ RG is given. Then the group ring encoding is a mapping

f : W −→ RG such that f (x) = xu or f (x) = ux. In the first case, f is a right group ring encoding and in the letter case is a

left group ring encoding.

Thus, a code C derived from a group ring encoding is the image of a group ring encoding, for a given u ∈ RG, either

C = {ux : x ∈W} or C = {xu : x ∈W}.

The map θ : RG → Rn, θ(∑n
i=1 αgi

gi) = (α1,α2, ...,αn) is a ring isomorphism from RG to Rn. Thus every element in RG can

be considered as n-tuple in Rn.

In the group ring the multiplication is not necessary be commute, and this allows the construction of non-commutative.

Definition 2.5. If xu = ux for all x, then the code C = {xu : x ∈W} is said to be commutative, and otherwise non-commutative

codes.

When u is a zero-divisor, it generates a zero-divisor code and when it is a unit, it generates a unit-derived code. The structure

of codes from unit and zero-divisor in RG where done by P. Hurley and T. Hurley in [4] , [7].

Example 2.6. Let R = Z2 = {0,1} be the finite field of two elements and G = S3 =≺ a,b | a3 = b2 = 1,ba = a2b ≻=
{1,a,a2

,b,ab,a2b} be the symmetric group of order 6. Then the coding matrices of S3 is:

× 1 a a2 a2b ab b

1 1 a a2 a2b ab b

a2 a2 1 a ab b a2b

a a a2 1 b a2b ab

a2b a2b ab b 1 a a2

ab ab b a2b a2 1 a

b b a2b ab a a2 1

Thus,

M(S3) =

















1 a a2 a2b ab b

a2 1 a ab b a2b

a a2 1 b a2b ab

a2b ab b 1 a a2

ab b a2b a2 1 a

b a2b ab a a2 1

















6×6
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And the group ring RG=Z2S3 =∑g∈S3
αgg |αg ∈Z2 = {c0+c1a+c2a2+c3a2b+c4ab+c5b ; ci ∈Z2}, Such that (Z2S3,+, .)

is F-algebra. From T. Hurley’s theorem : Z2S3 →֒ M|S3|×|S3| (Z2). So, if u ∈ Z2S3 ; u = c0 + c1a+ c2a2 + c3a2b+ c4ab+ c5b ,

then :

M(Z2S3,u) =

















c0 c1 c2 c3 c4 c5

c2 c0 c1 c4 c5 c3

c1 c2 c0 c5 c3 c4

c3 c4 c5 c0 c1 c2

c4 c5 c3 c2 c0 c1

c5 c3 c4 c1 c2 c0

















6×6

For the unit element u = 1+a+a2 +ab+a2b ∈U(Z2S3) there exists u−1 = 1+a+a2 +ab+a2b such that uu−1 = 1. Then

we have M(Z2S3,u) as follows :

M(Z2S3,u) =

















1 1 1 1 1 0

1 1 1 1 0 1

1 1 1 0 1 1

1 1 0 1 1 1

1 0 1 1 1 1

0 1 1 1 1 1

















6×6

Also , from Hurley’s theorems : If R has an identity 1R, then u ∈ RG is a unit if and only if σ(u) is a unit in Rn×n. Hence we

have the invertible matrix as follows :

U =

(

A

B

)

and V =
(

C D
)

such that UV = 16 in R6×6 .

Taking any r rows of U as a generator matrix define an (n,r)-code. Then we have

A =





1 1 1 1 1 0

1 1 1 1 0 1

1 1 1 0 1 1





3×6

, B =





1 1 0 1 1 1

1 0 1 1 1 1

0 1 1 1 1 1





3×6

,

C =

















1 1 1

1 1 1

1 1 1

1 1 0

1 0 1

0 1 1

















6×3

and D =

















1 1 0

1 0 1

0 1 1

1 1 1

1 1 1

1 1 1

















6×3

.

Such that

AC = BD =





1 0 0

0 1 0

0 0 1





3×3

and AD = BC =





0 0 0

0 0 0

0 0 0





3×3

.

Then,

UV =

(

A

B

)

.
(

C D
)

=

(

AC AD

BC BD

)

=

(

I3 O3

O3 I3

)

= I6×6.

The linear code C of dimension k = 3, generated by the matrix

A =





1 1 1 1 1 0

1 1 1 1 0 1

1 1 1 0 1 1





3×6

,

is the unit derived code C = {ux | x ∈W}, where S = {a} ⊂ G and W =≺ a ≻= {1,a,a2}. The dual code C⊥ is the linear

code generated by the matrix

DT =





1 1 0 1 1 1

1 0 1 1 1 1

0 1 1 1 1 1





3×6

,

with dimension n− k = 3. The dual code can be considered as the submodule C⊥ = {(u−1)T y | y ∈ W⊥}, where W⊥ =≺
G− S ≻= {a2b,ab,b}. So, C = {ux | x ∈ W} = {1+ a+ a2 + a2b+ ab,1+ a+ a2 + b+ a2b,1+ a2 + a+ ab+ b}, θ(C) =
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{111110,111101,111011}, and C⊥ = {(u−1)T y | y∈W⊥}= {1+a2b+ab+b+a,1+ab+b+a2b+a2
,b+a2b+ab+b+a},

θ(C⊥) = {110111,101111,011111}. Clearly, the matrix A is the generator matrix for an (6,3)-code, and DT is the parity-

check matrix for this code, since it is a generator matrix of C⊥ as defined in (definition 2.3 ).

3. Coding matrices of semi-direct product groups

Definition 3.1. Let H and K be groups and let φ be a homomorphism,

φ : K −→ Aut(H)

Then the semi-direct product of H and K with respect the action φ is the group G containing of ordered pairs (h,k) with h ∈ H

and k ∈ K defined by:

(h1,k1)(h2,k2) = (h1φk1
h2,k1k2)

Where φk(h) = kh = khk−1
,∀h ∈ H,k ∈ K.

Denote of semi-direct product by H ⋊φ K (or simply, write H ⋊K).

Example 3.2. Let G = S3, let N be the normal subgroup of order 3 generated by a 3-cycle, and let H be a subgroup of order 2

generated by a 2-cycle. Then G = N ⋊H. This example generalizes a long two different lines:

1 • Let G = Sn , N = An and H a subgroup of order 2 generated by a 2-cycle. Then G = N ⋊H.

2 • Let G = D2n, the dihedral group of order 2n. Then let N =Cn and H =C2. Then D2n
∼=Cn ⋊C2.

We will decide the coding matrices of the semi-direct product groups Cn ⋊Cm as following:

Consider G = Cn ⋊Cm; Cn ⊳G of two groups Cn =< x >= {x | xn = 1} and Cm =< y >= {y | ym = 1}. We may list the

elements of the semi-direct product Cn ⋊Cm as follows: xiy j ; 0 6 i 6 n−1, 0 6 j 6 m−1 :

1,x,x2
, . . . ,xn−1

, y,xy,x2y, . . . ,xn−1y , y2
,xy2

,x2y2
, . . . ,xn−1y2

, . . . . . . . . . ,ym−1
,xym−1

,x2ym−1
, . . . , xn−1ym−1

. (3.1)

( m blocks each with n elements).

This product defined by the action of Cm on Cn (or group homomorphism) given by φ : Cm −→ Aut(Cn) ; Cn ⋊Cm = {xiy j :

xi ∈Cn , y j ∈Cm | xiy j
.xsyt = xiφy j xs

.y jyt}. The inverse of the element xiy j in Cn ⋊Cm is φ(m− j)x
n−i

.ym− j.

In fact, the automorphism group Aut(Cn) is one to one correspondence with the set {xr | hc f (n,r) = 1} of generators of Cn, so

|Aut(Cn)|= ϕ(n) , where ϕ is the Euler function.

Definition 3.3. The Euler ϕ-function is defined as: for n ∈ Z+, let ϕ(n) be the number of positive integers a 6 n with

(a,n) = 1.

Here, the non-identity element of C2 acts on Cn by inverting elements; this is an automorphisms since Cn is an abelian, and the

presentation for this group is: < xy|xn = ym = 1,yxy−1 = x−1
>.

More generally, a semi-direct product of any two cyclic groups Cn with generator x and Cm with generator y is given by one

extra relation, yxy−1 = xk, with (k,n) = 1, where Aut(Cn) : x −→ xk for some k; that is, the presentation: < xy|xn = ym =
1,yxy−1 = xk

>.

If yr is a generator of Cm and (r,m) = 1, hence we have the presentation: < xy|xn = ym = 1,yrxyr−1
= xkr

>.

Now, taking the trivial homomorphism φ : Cm −→ Aut(Cn); Cm 7→ ICn gives the direct product G =Cn ⋊Cm =Cn ×Cm.

And consider G = Cn ⋊Cm, we need to know when there is a non-trivial homomorphism φ : Cm −→ Aut(Cn) but since

Aut(Cn)∼=Cϕ(n) and since Hom(Cm,Cϕ(n))∼=Chc f (m,ϕ(n) ) we have the following:

Lemma 3.4. There is a non-trivial homomorphism φ : Cm −→ Aut(Cn) iff hc f (m,ϕ(n)) 6= 1.

Proof. We have Hom(Cm,Cϕ(n)) ∼= Chc f (m,ϕ(n) ). If hc f ( m,ϕ(n) ) = 1 then Hom(Cm,Cϕ(n)) ∼= C1 the trivial subgroup and

so the only element φ ∈ Hom(Cm,Cϕ(n)) is the trivial one given by φ(y) = ICn . Conversely, suppose that hc f (m,ϕ(n)) 6= 1,

to define φ ∈ Hom(Cm,Cϕ(n)) by φ(y) : x 7−→ xt (where 1 ≤ t < ϕ(n) with hc f (t,ϕ(n)) 6= 1 in order for xt to be a generator

for Cϕ(n)), we must have order(φ(y)) | m (as ym = 1) and order(φ(y)) | ϕ(n) (as φ(y) ∈ Cϕ(n)). But this is possible since

hc f (m,ϕ(n)) 6= 1.

So for example there will be no non-trivial semi-direct product Cn ⋊Cm (i.e. different from the direct product Cn ×Cm) if

hc f (m,ϕ(n)) = 1, for instance C4 ⋊C3 the only homomorphism φ : C3 −→ Aut(C4) is the one which takes y ∈Cm =< y >

to the identity IC4
∈ Aut(C4) =< θ3 >= {IC4

,θ3};θ3 : x 7−→ x3 = x−1, therefore the only semi-direct product C4 ⋊C3 is the

direct product C4 ×C3.
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Definition 3.5. • A circulant matrix is special type of Toeplitz matrix, which is one that is constant a long any diagonal

running from upper left to lower right.

• A (general) Hankel matrix is one which is constant on any diagonal from upper right to lower left.

In the following examples, we will clarify the coding matrices of Cn ⋊Cm .

Example 3.6. The semi-direct product of C3 ⋊C4 ; C3 =≺ x | x3 = 1 ≻= {1,x,x2} and C4 =≺ y | y4 = 1 ≻= {1,y,y2
,y3}.

The listing of elements of C3 ⋊C4 are : 1,x,x2
,y,xy,x2y,y2

,xy2
,x2y2

,y3
,xy3

,x2y3. And it has non-trivial homomorphism

since (4,ϕ(3) ) = (4,2) = 2 6= 1, the action of C4 on C3 given by φ : C4 → Aut(C3), such that Aut(C3) is φ : C3 −→ C3

; | Aut(C3) |= ϕ(3) = 2, hence it has Aut(C3) = {φ1 : x −→ x , φ2 : x −→ x2}. At φ1 give us the semi-direct prod-

uct as a direct product, but at φ2 give us the semi-direct product with the presentation < xy|x3 = y4 = 1,yxy−1 = x2
> ;

C3 ⋊C4 = { xy : x ∈ C3 , y ∈ C4 : x1y1.x2y2 = x1φy1
(x2).y1y2 } and the inverse of the element xy is (φy−1(x−1).y−1) as

following:

at φ2

⋊ 1 x x2 x2y xy y x2y2 xy2 y2 x2y3 xy3 y3

1 1 x x2 x2y xy y x2y2 xy2 y2 x2y3 xy3 y3

x2 x2 1 x xy y x2y xy2 y2 x2y2 xy3 y3 x2y3

x x x2 1 y x2y xy y2 x2y2 xy2 y3 x2y3 xy3

x2y3 x2y3 xy3 y3 1 x x2 y xy x2y y2 xy2 x2y2

xy3 xy3 y3 x2y3 x2 1 x x2y y xy x2y2 y2 xy2

y3 y3 x2y3 xy3 x x2 1 xy x2y y xy2 x2y2 y2

xy2 xy2 x2y2 y2 y3 x2y3 xy3 1 x2 x y x2y xy

x2y2 x2y2 y2 xy2 xy3 y3 x2y3 x 1 x2 xy y x2y

y2 y2 xy2 x2y2 x2y3 xy3 y3 x2 x 1 x2y xy y

x2y x2y xy y y2 xy2 x2y2 y3 xy3 x2y3 1 x x2

xy xy y x2y x2y2 y2 xy2 x2y3 y3 xy3 x2 1 x

y y x2y xy xy2 x2y2 y2 xy3 x2y3 y3 x x2 1

It follows that the coding matrix

M(C3 ⋊C4) =









T0 H1 H2 H3

H4 T1 T2 T3

H5 T4 T5 T6

H6 T7 T8 T9









12×12

,

is a block matrix consisting of 16 = 4×4 matrices all are of size (3×3)-matrices from which 10 = (4−1)2 +1 are circulant

(Toeplitz) matrices and 6 = 2(4−1) Hankel-type-matrices.

Example 3.7. Consider the semi-direct product C7⋊C3, C7 =≺ x | x7 = 1≻= {1,x,x2
,x3

,x4
,x5

,x6} and C3 =≺ y | y3 = 1≻=
{1,y,y2}, where φ : C3 −→ Aut(C7)∼=C6. In fact Aut(C7) = {θi|i = 1,2,3,4,5,6}=< θ3 >=< θ5 >

∼=C6 ; i.e. order(θ3) =
order(θ5) = 6, while order(θ2) = order(θ4) = 3 and order(θ6) = 2. Therefore we may take φi : C3 −→ Aut(C7) to be the

group homomorphism (or the action of C3 on C7) defined as (φi(y) = θi; i = 1,2,4), since order(θi); i = 1,2,4 | order(y) = 3 .

Clearly φ1(y) = θ1 = IC7
will induce the direct product C7 ×C3. (In fact it is easy to prove from the relations that C7 ⋊φ4

C3
∼=

C7 ⋊φ2
C3). So we take φ2(y) = θ2 : x 7−→ x2 and consider C7 ⋊φ2

C3 =< xy | x7 = y3 = 1,yxy−1 = x2
>, generally G =C7 ⋊φi

C3 =< xy | x7 = y3 = 1,yxy−1 = xi; i = 1,2,4 >. Therefore C7 ⋊C3 has the listing: 1,x,x2
,x3

,x4
,x5

,x6
,y,xy,x2y,x3y,x4y,x5y,

x6y,y2
,xy2

,x2y2
,x3y2

,x4y2
,x5y2

,x6y2 subject to the above relations. From it we may deduce the product of different elements

as { xy : x ∈C7 , y ∈C3 : x1y1.x2y2 = x1φy1
(x2).y1y2 } and the inverse of the element yx is (φy−1(x−1).y−1) as following:
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at φ2

⋊ 1 x · · · x5 x6 x6y x5y · · · xy y x6y2 x5y2 · · · xy2 y2

1 1 x · · · x5 x6 x6y x5y · · · xy y x6y2 x5y2 · · · xy2 y2

x6 x6 1 · · · x4 x5 x5y x4y · · · y x6y x5y2 x4y2 · · · y2 x6y2

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
. . .

...
...

x2 x2 x3 · · · 1 x xy y · · · x3y x2y xy2 y2 · · · x3y2 x2y2

x x x2 · · · x6 1 y x6y · · · x2y xy y2 x6y2 · · · x2y2 xy2

x4y2 x4y2 xy2 · · · x3y2 y2 1 x3 · · · x x4 y x3y · · · xy x4y

xy2 xy2 x5y2 · · · y2 x4y2 x4 1 · · · x5 x x4y y · · · x5y xy
...

...
...

. . .
...

...
...

...
. . .

...
...

...
...

. . .
...

...

x3y2 x3y2 y2 · · · x2y2 x6y2 x6 x2 · · · 1 x3 x6y x2y · · · y x3y

y2 y2 x4y2 · · · x6y2 x3y2 x3 x6 · · · x4 1 x3y x6y · · · x4y y

x2y x2y x4y · · · x5y y y2 x5y2 · · · x4y2 x2y2 1 x5 · · · x4 x2

x4y x4y x6y · · · y x2y x2y2 y2 · · · x6y2 x4y2 x2 1 · · · x6 x4

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
. . .

...
...

x5y x5y y · · · xy x3y x3y2 xy2 · · · y2 x5y2 x3 x · · · 1 x5

y y x2y · · · x3y x5y x5y2 x3y2 · · · x2y2 y2 x5 x3 · · · x2 1

It follows that the coding matrix

M(C7 ⋊C3) =





T0 H1 H2

H3 T1 T2

H4 T3 T4





21×21

,

is a block matrix consisting of 9 = 3×3 matrices all are of size (7×7)-matrices from which 5 = (3−1)2 +1 are circulant

(Toeplitz) matrices and 4 = 2(3−1) Hankel-type-matrices.

In general, we take G =Cn ⋊φ Cm with respect the action φ as previously and it has the elements listing (3.1). By inspecting

each block sub-matrix provided by each sub-list in (1)− (m) and there corresponding inverse elements, we conclude the

following theorem:

Theorem 3.8. With respect to the above elements listing (3.1) for the semi-direct product groups

G =Cn ⋊φ Cm =< xy|xn = ym = 1,yxy−1 = xk
>,

the coding matrix of this group is a block matrix











T0 H1 . . . Hm−1

Hm T1 . . . Tm−1

...
...

...
...

H2(m−1) T(m−2)(m−1) . . . T(m−1)2











nm×nm

,

consisting of m2 matrices all are of size (n×n) from which the (m−1)2 +1 matrices T0,T1, . . . ,T(m−1)2 are circulant (Toeplitz)

and the 2(m−1) matrices H1,H2, . . . ,H2(m−1) are Hankel-type-matrices.

As a special case of this theorem, we deduce the coding matrices for the dihedral group D2n
∼=Cn ⋊C2 which was determined

in [3].

Corollary 3.9. The coding matrices for Cn ⋊C2
∼= D2n have the following form

(

T1 H1

H2 T2

)

2n×2n

,

where Ti,Hi ; i = 1,2 are circulant, Hankel-type (n×n)-matrices, respectively.

Proof. Consider Cn ⋊C2
∼= D2n such that Cn =≺ x | xn = 1 ≻= {1,x,x2

, . . . ,xn−1}, C2 =≺ y | y2 = 1 ≻= {1,y}, the

listing of elements of Cn ⋊C2 are : 1,x,x2
, ...,xn−1

,y,xy,x2y, ...,xn−1y. And there is a non-trivial homomorphism since

(2,ϕ(n) ) 6= 1, so the action of C2 on Cn given by φ : C2 −→ Aut(Cn) ; Aut(Cn) : φ : Cn −→Cn, | Aut(Cn) |= ϕ(n), hence we

have Aut(Cn) = {φ1 : x −→ x , φn−1 : x −→ xn−1}.
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Cn ⋊C2 = { xy : x ∈Cn , y ∈C2 : x1y1.x2y2 = x1φy1
(x2).y1y2 }, and the inverse of the element yx is (φy−1(x−1).y−1). At φ1

give us the semi-direct product as a direct product, but at φn−1 give us the semi-direct product groups as following:

at φn−1

⋊ 1 x x2 .. xn−1 xn−1y .. x2y xy y

1 1 x x2 .. xn−1 xn−1y .. x2y xy y

xn−1 xn−1 1 x .. xn−2 xn−2y .. xy y xn−1y

xn−2 xn−2 xn−1 1 .. xn−3 xn−3y .. y xn−1y xn−2y

: : : : : : : : : : :

x x x2 x3 .. 1 y .. x3y x2y xy

xn−1y xn−1y xn−2y xn−3y .. y 1 .. xn−3 xn−2 xn−1

: : : : : : : : : : :

x2 x2 xy y .. x3y x3 .. 1 x x2

xy xy y xn−1y .. x2y x2 .. xn−1 1 x

y y xn−1y x2y .. xy x .. xn−2 xn−1 1

Acknowledgement

This work is a part of a dissertation written by the first author and submitted to Umm Al-Qura University as a partial fulfillment

for the master degree in mathematics. The first author would like to thank her supervisor Prof. Ahmed A. Khammash for his

support and encouragement.

References

[1] R. Hamming, Error detecting and error correcting codes, The Bell Syst. Tech. J., 29 (1950), 147-160.
[2] F. J. MacWilliams, Codes and ideals in group algebra, Comb. Math. Appl., (1969), 317-328.
[3] T. Hurley, Group rings and rings of matrices, Int. J. Pure Appl. Math, 31(3) (2006), 319-335.
[4] P. Hurley, T. Hurley, Codes from zero-divisors and units in group rings, (2007), arXiv:0710.5893v1 [cs.IT].
[5] M. Hamed, Constructing codes from group rings, Msc dissertation, Umm Al-Qura University, 2018.
[6] M. Hamed, A. Khammash, Coding matrices for GL (2, q), Fundam. J. Math. Appl., 1(2) (2018), 118-130.
[7] P. Hurley, T. Hurley, Block codes from matrix and group rings, Chapter 5, in Selected topics in information and coding theory, I. Woungang, S. Misra,

(Eds.), World Scientific, (2010), 159-194.



Fundamental Journal of Mathematics and Applications, 3 (2) (2020) 116-124

Research Article

Fundamental Journal of Mathematics and Applications

Journal Homepage: www.dergipark.gov.tr/fujma

ISSN: 2645-8845

doi: 10.33401/fujma.718157

Covariant and Contravariant Symbols of Operators on l2 (Z)

Abdelhamid S. Elmabrok

Department of Mathematics, Faculty of Science, University of Benghazi, Benghazi, Libya

Article Info

Keywords: Bounded, Compact and

finite rank operators, Covariant and

contravariant symbols of operators,

Wavelet transformation

2010 AMS: 43A70, 47F05

Received: 10 April 2020

Accepted: 18 August 2020

Available online: 15 December 2020

Abstract

In this paper, we investigate covariant and contravariant symbols of operators generated

by a representation of the integer group Z. Then we describe some properties (Existence,

Uniqueness, Boundedness, Compactnessi and Finite rank) of these operators and refor-

mulated some know results in terms of wavelet transform (covariant and contravariant

symbols).

1. Introduction

The notion of covariant and contravariant symbols of operators was introduced by Berezin in 1972 [1], as a generalization of a

Wick and anti-Wick operator symbols [2]. Then a general theory of quantization was developed by F. A. Berezin in [3]. The

construction of wavelet transform as covariant and contravariant symbols was realized with wavelets in Hilbert spaces [4].

Recently, in 2014 V. Kisil in his paper [5, Sec 4.2] studied Berezin covariant symbols as a special case of the covariant

transform. Also, he applied wavelets on operator algebras by means of symbols of operators [6], which is an extension of

the Berezin calculus. The purpose of the present paper is to describe some properties (existence, uniqueness, boundedness

and compactness) of operators which have covariant and contravariant symbols and reformulated some know results on these

operators.

The paper outline is as follows: In the second Section, we collects preliminary information from other works, which will be

used here. In particular, the concepts of covariant and contravariant symbols of operators. In the third Section, we describe

some proprieties of covariant and contravariant symbols of operators which generated by the representation of the integer

group. Then, we reformulate some know results on existence, uniqueness, boundedness and compactness of linear operators in

terms of wavelet transform. The final Section offers summary of our observations which lead to new directions for further

research.

2. Preliminaries

In this section we present some fundamental concepts and known results on boundedness and compactness of linear operators

in Hilbert spaces and wavelet transform on groups. We denoted by B(H ) the sets of all bounded linear operator A on Hilbert

space H . Let G be a group with a left Haar measure dµ and let π be a unitary irreducible representation of a group G by

operators πg,g ∈G in a Hilbert space H .

Definition 2.1. [6] Let ψ0 be a fixed vector in a space H , it is called a vacuum vector (mother wavelet). Then the set of

vectors ψg = π(g)ψ0 for g ∈G is called a family of coherent states (wavelets). We define wavelet transform as a mapping W

Email address and ORCID number: abdelhamid.elmabrok@uob.edu.ly, https://orcid.org/0000-0002-3393-0277
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from the Hilbert space to a space of functions over a group G via its representational coefficients W : H → L(G) : v 7→ v̂(g),
by

v̂(g) =
〈

π(g−1)v,ψ0

〉

= 〈v,π(g)ψ0〉=
〈

v,ψg

〉

. (2.1)

The wavelet transform W is a continuous linear mapping and the image of a vector is a bounded continuous function on G.

The linear space of all such images is denoted by W (G).

Definition 2.2. [6] The inverse wavelet transform is a mapping M : L1(G)→ H : v̂(g) 7→ M [v̂(g)] given by the formula:

M [v̂(g)] =
∫

G

v̂(g)π(g)dµ(g)ψ0 =
∫

G

v̂(g)ψg dµ(g), (2.2)

where the integral expresses an operator acting on vector ψ0.

An important observation [6] is that, two representations for groups G and G×G were defined correspondingly in the space

B(H ) of bounded linear operators H → H as follows:

π̂ : G→ B(B(H )) : A 7−→ π(g)−1Aπ(g)

π̆ : G×G→ B(B(H )) : A 7−→ π(g1)
−1Aπ(g2)

where A ∈ B(H ).
Let there be selected a vacuum vector h0 ∈ H and a test functional l0 ∈ H ∗ for π . Then there are canonically associated

vacuum vector p0 ∈ B(H ) and test functional f0 ∈ B∗(H ) defined as follows:

p0 : H −→ H : h 7−→ p0h = 〈h, l0〉h0;

f0 : B(H )−→ C : A 7−→ 〈Ah0, l0〉 .

They define the following coherent states and transformations of the test functional

pg = π̂(g)p0 =
〈

·, lg
〉

hg, p(g1,g2) = π̆(g1,g2)p0 =
〈

·, lg1

〉

hg2
,

fg = π̂∗(g) f0 =
〈

·hg, lg
〉

, f(g1,g2) = π̆∗(g1,g2) f0 =
〈

·hg1
, lg2

〉

,

where as usual we denote hg = π(g)h0, lg = π∗(g)l0.

Definition 2.3. [6] The covariant symbol ã(g)(ã(g1,g2)) of an operator A acting on a Hilbert space H defined by h0 ∈ H

and l0 ∈ H ∗ is its wavelet transform with respect to the representation π̂(g),(π̆(g1,g2)) respectively and the functional f0,

they are defined by the formulas

ã(g) = (π̂(g)A, f0) =
〈

π(g)−1Aπ(g)h0, l0
〉

=
〈

Ahg, lg
〉

, (2.3)

ã(g1,g2) = (π̆(g1,g2)A, f0) =
〈

π(g1)
−1Aπ(g2)h0, l0

〉

=
〈

Ahg2
, lg1

〉

. (2.4)

Definition 2.4. [6] The contravariant symbol of an operator A is a function a(g) and (a(g1,g2)) such that A is the inverse

wavelet transform of a(g),a(g1,g2) correspondingly with respect to π̂(g), π̆(g1,g2), i.e.

A =
∫

G
a(g)π̂(g)p0 dµ(g) =

∫

G
a(g)pg dµ(g). (2.5)

A =
∫

G

∫

G

a(g1,g2)π̆(g1,g2)p0 dµ(g1)dµ(g2)

=
∫

G

∫

G

a(g1,g2)p(g1,g2) dµ(g1)dµ(g2), (2.6)

where the integral is defined in the weak sense.
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Now, we turn to the separable Hilbert space H isomorphic to l2(Z) which is the space of all square-summable complex

sequences on Z. Formally

l2(Z) =

{

x(n),n ∈ Z : x(n) ∈ C and ∑
n∈Z

|x(n)|2 < ∞

}

,

with the inner product and the norm, respectively,

〈x,y〉= ∑
n∈Z

x(n)y(n), ‖x‖=
(

∑
n∈Z

|x(n)|2
)

1
2

.

Let X
′

be a dual space (conjugate space), which is a normed vector space of all bounded linear functional from a normed

space X into the field C, with norm

‖ f‖= sup{| f (x)| : ‖x‖ ≤ 1} .

Also, if X
′

is the dual of a Banach space X . Then for all x ∈ X

‖x‖= max
{

| f (x)| : f ∈ X
′
,‖ f‖= 1

}

.

Definition 2.5. Let F(S,X) is denoted to the collection of functions S → X for set S and a vector space X over C. The support

of f ∈ F(S,X) is

supp( f ) := {s ∈ S : f (s) 6= 0}= f−1(X\{0}).

The collection of functions S → X having finite support is denoted

F00(S,X) := { f ∈ F(S,X) : supp( f )⊂⊂ S} ,

where ⊂⊂ denoted to a subset of finite cardinality. Also,

F(S) = F(S,C) and F00(S) = F00(S,C).

Proposition 2.6. [7, p.98] The necessary and sufficient condition that there exist a bounded linear operator A defined on H

such that 〈Aen,em〉= amn, is that, for any finite p and q and for arbitrary α1,α2, . . . ,αp; β1,β2, . . . ,βq, the inequality

∣

∣

∣

∣

p

∑
m

q

∑
n

amnαmβ̄n

∣

∣

∣

∣

≤ M

√

p

∑
m

|αm|2
√

q

∑
n

|βn|2, (2.7)

holds, M being a fixed number.

Proposition 2.7. [8] A bounded operator A ∈ B(H ) is compact if and only if satisfies:

lim
n→∞

Aen = 0, (2.8)

for each orthonormal basis for H .

Proposition 2.8. [9, p.91] Let A be a finite rank linear operator in H into itself, then A is compact.

Definition 2.9. [10, p.442] Let H be a Hilbert space and let {Pm} be a resolution of the identity defined on H . Further, let

{λm} be a sequence of scalars. A transformation of the form

Av =
∞

∑
m=1

λmPmv, v ∈ DA, (2.9)

where

DA =

{

v ∈ H : lim
N→∞

N

∑
m

λmPmv, exists

}

is said to be a weighted sum of projections.

Theorem 2.10. [10] Let A be a compact normal operator on a Hilbert space H . Then there is a resolution of the identity

{Pm} and a sequence of complex numbers {λm} such that A = ∑m λmPm, where the convergence is in terms of the uniform

operator norm topology.



Fundamental Journal of Mathematics and Applications 119

3. Covariant and contravariant symbols of operators generated by representation of the integer

group

One goal of this paper is to describe some proprieties of covariant and contravariant symbols of operators which generated by

the representation of the integer group. We can reformulate some know results on existence, uniqueness, boundedness and

compactness of linear operators in terms of covariant and contravariant symbols (wavelet transform).

3.1. Wavelet transforms for the integer group in l2 (Z) space

The subject of wavelet transform has arisen many times in many applied areas and we are not able to give a comprehensive

history and proper credit. One could mention important books [11, 12]. In the first part of this section, we look for wavelet

transformation in a separable Hilbert space l2(Z)) with an orthonormal basis {ek} ,k ∈ Z. Then the group Z of integers has a

unitary representation π on l2(Z), which is defined on the base as follows

π(m)ek = ek+m, m ∈ Z.

The adjoint representation is

π∗(m)ek = ek−m, m ∈ Z.

Hence, e0 could be taken as a vacuum vector and test functional. Therefore, by Equation (2.1) the wavelet transform with a

vacuum vector ψ0 = e0 is

W (v) = v̂(m) = 〈v,π(m)e0〉= 〈v,em〉 . (3.1)

and by Equation (2.2) the inverse wavelet transform is

M [v̂(m)] = ∑
Z

v̂(m)π(m)e0 =
∞

∑
−∞

v̂(m)em. (3.2)

This is the Fourier series.

Inspired by the corresponding propositions, [13, Sec 4.1], we now equivalently reformulate the following:

Remark 3.1. The left regular representation Λ(m) of the group Z is the unitary representation by left shifts in the space l2 (Z)
by

Λ(m) : v(m)−→ v(−m+n) . (3.3)

Proposition 3.2. The wavelet transform W intertwines π and the left regular representation Λ (3.3) of Z:

W π(m) = Λ(m)W .

Proof. By Equations (3.1) and (3.3). We have

[W π(m)v] (n) = 〈π(m)v,π(n)e0〉 ,
= 〈v,π∗ (m)π(n)e0〉 ,
= 〈v,π∗ (m)en〉 ,
=

〈

v,e(−m+n)

〉

,

= [W v] (−m+n) ,

= Λ(m) [W v] (n) .

Corollary 3.3. The function space W(Z) is invariant under the representation Λ of Z.

Proposition 3.4. The inverse wavelet transform M intertwines Λ on L2(Z) and π on H :

M Λ(m) = π(m)M .
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Proof. By Equations (3.2) and (3.3). We have

M [Λ(m) v̂(n)] = M [v̂(−m+n)] ,

= ∑
n

v̂(−m+n)π (n)e0,

= ∑
n

v̂(−m+n)en,

= ∑
k

v̂(k)em+k,

= ∑
k

v̂(k)π (m)ek,

= π (m)∑
k

v̂(k)ek,

= π (m)M [v̂(k)] ,

where, k = n−m.

Corollary 3.5. The image M (L1(Z)) ⊂ H of subspace under the inverse wavelet transform M is invariant under the

representation π .

Proposition 3.6. The image W (Z) of the wavelet transform W has a reproducing kernel K (m,n) = 〈wm,wn〉. The reproducing

formula is in fact a Discrete convolution:

v̂(n) = ∑
m∈Z

k (n,m) v̂(m) = ∑
m∈Z

ŵ0 (n−m) v̂(m) .

with a wavelet transform of the vacuum vector ŵ0 (n) = 〈w0,π (n)w0〉.

Proof. By Equation (3.1) and since π is an irreducible square integrable representation defined by the same admissible vector

w0 ([13, Sec 8.2]) we have

v̂(n) = 〈π(−n)v,w0〉,
= ∑

m∈Z
〈π(−k)π(−n)v,w0〉〈π(−k)w0,w0〉,

= ∑
m∈Z

〈π (−(k+n))v,w0〉〈π(k)w0,w0〉 ,

= ∑
m∈Z

v̂(n+ k) ŵ0 (−k) ,

= ∑
m∈Z

v̂(m) ŵ0 (n−m) .

3.2. Covariant and contravariant symbols

Berezin symbols and coherent states are a useful tool in quantum theory and have a lot of essentially diferent definitions

[14]-[16]. In particular, they were described by Berezin, concerning so-called covariant and contravariant (or Wick and

anti-Wick) symbols of operators (see, for example, [17]-[19]). In the second part of this section as the first applications, we

describe the covariant and contravariant symbols of operators which realizes the unitary irreducible representations of Z on

Hilbert spaces l2 (Z). By Equations (2.3) and (2.4) the covariant symbol ã(m), ã(m,n) of an operator A ∈ l2 (Z) is its wavelet

transform with respect to the representation π̂(m), π̆(m,n), i.e.

ã(m) = (π̂(m)A,e0) =
〈

π(m)−1Aπ(m)e0,e0

〉

= 〈Aem,em〉= amm, (3.4)

ã(m,n) = (π̆(m,n)A,e0) =
〈

π(m)−1Aπ(n)e0,e0

〉

= 〈Aen,em〉= amn, (3.5)

where amn is a matrix representation in orthonormal basis ek.

Now, by Equation (2.5) A is the inverse wavelet transform of a(m) with respect to π̂(m), where the function a(m) is the

contravariant symbol of an operator A, i.e.

A = ∑
m∈Z

a(m)π̂(m)p0 = ∑
m∈Z

a(m)pm, (3.6)
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Aek = ∑
m∈Z

a(m)pmek = ∑
m∈Z

a(m)em ·δkm = a(k)ek,

where δkm is the Kronecker delta. Similarly, by (2.6) the inverse wavelet transform of a(m,n) with respect to π̆(m,n) is

A = ∑
n∈Z

∑
m∈Z

a(m,n)π̆(m,n)p0 = ∑
n∈Z

∑
m∈Z

a(m,n)p(m,n) (3.7)

Aek = ∑
n∈Z

∑
m∈Z

a(m,n)p(m,n)ek = ∑
n∈Z

a(k,n)en.

Remark 3.7. (i) The coherent states pm and p(m,n) are a rank-one operators,

(ii) The formula (3.5) yields a representation of A as an infinite matrix.

3.3. Some proprieties of covariant and contravariant symbols

The Berezin symbol of an operator provides important information about the operators, in particular, that, the Berezin symbol

uniquely determines the operator (i.e., A = 0 if and only if Ã = 0), (see, for example, [20]-[24]). In the third part of this section

we will classify some proprieties of covariant and contravariant symbols of operators in B(l2 (Z)). Also, we will discuss further

questions and reformulate some know results on existence, uniqueness, boundedness and compactness of these operators in

terms of covariant and contravaraint symbols of operators: First, does every operator on l2(Z) have covariant symbols (3.4)

and (3.5)? If yes, is it unique? If not, how to characterize operators which do have? This question is answered by the following

proposition.

Proposition 3.8. For every bounded operator A on l2(Z)), there exists a unique covariant symbol given by formula (3.5).

Proof. Let A be a bounded operator on l2(Z). Since l2(Z) contains an orthonormal basis {en} (they span l2(Z) ). Also the set

{

en ∈ l2(Z) : Aen = ∑
m

amnem = bm ∈ l2(Z)

}

,

which is subset of DA domain of A. Therefore, any bounded operator on l2(Z) can be represent as a matrix amn = 〈Aen,em〉=
ã(m,n), which is (3.5). To prove uniqueness of covariant symbols ã(m,n). From Riesz representation theorem on l2(Z), one

simply notes that, there is one element Aen ∈ l2(Z), such that 〈Aen,em〉= ã(m,n). Hence, ã(m,n) is unique.

Remark 3.9. The formula (3.4) is a special case of (3.5) where m = n.

The second question was about the contravariant symbol. Does any operator on l2(Z) have contravariant symbols (3.6) and

(3.7)? If yes, is it unique? If not, how to characterize operator which do have?

Not every operator A on l2(Z) has a contravariant symbol satisfying (3.6). For example, let A be the operator of multiplication

by t on L2 [0,1] defined by (Av)(t) = tv(t). A is a self-adjoint, bounded operator and has no eigenvalue. Therefore it does not

have contravariant symbol a(m) which satisfies (3.6).

Proposition 3.10. For every compact normal operator A on l2(Z), there exists a unique contravariant symbol a(m)) satisfying

formula (3.6).

Proof. Let A be a compact normal operator on l2(Z). Then by Theorem 2.10 there is a resolution of the identity {Pm} where

Pm is an orthogonal projection and a measurable complex-valued function a(m) on Z (weighted function) such that the operator

A can be expressed as weighted sums (2.9)

A = ∑
m∈Z

a(m)Pm,

which is (3.6). It is easily to prove uniqueness of the contravariant symbol a(m). We omit it here.

Remark 3.11. Formula (3.7) in the second question still needs more discussion.

The third question, how to see from a covariant or contravariant symbol of operator if it is finite rank?

Not all operator on l2(Z) which have a covariant symbol satisfying (3.5) are of finite rank. For example, let A be the identity

operator I which has the covariant symbol I(m,n) = 〈Ien,em〉= δmn. But Ien = en. Therefore rak(I) = dim(Im(I)) = ∞. Then

I is not finite rank operator.

Proposition 3.12. If the covariant symbol which satisfy (2.6) equal zero for any m < m1 or m > m2 and for all n, then A is a

finite rank operator on l2(Z).
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Proof. Let the covariant symbol ã(m,n) = 〈Aen,em〉= amn = 0, for any m < m1 or m > m2 and for all n. Since A define on

l2(Z). Then there exists a complete orthonormal basis em ∈ l2(Z) such that the range of A is spanned by em1
,em1+1, ....,em2

.

So A has a finite rank.

Also, not all operators on l2(Z) which have a contravariant symbol satisfying (3.7) are of finite rank. For example, let A be the

identity operator I which has the contravariant symbol δmn such that

Iv = ∑
m

∑
n

δmnPmnv = ∑
m

〈v,em〉em.

But Iv = v. Therefore rak(I) = dim(Im(I)) = ∞. Then I is not a finite rank operator.

Proposition 3.13. If an operator A on l2 (Z) has the contravariant symbol a(m,n) which satisfies (3.7) such that a(m,n) = 0

for any m < m1 or m < m2 and for all n, then A is a finite rank operator.

Proof. Let A on l2(Z) have the contravariant symbol a(m,n) satisfying (3.7) such that a(m,n) = 0 for any m < m1 or

m < m2 and for all n. Then there exists a complete orthonormal basis {em} ∈ l2(Z) such that the range of A is spanned by

em1
,em1+1, ....,em2

. Now by (3.7)

A =
m2

∑
m=m1

∑
n∈Z

a(m,n)〈.,en〉em.

Then A is a finite rank operator.

Proposition 3.14. A bounded operator A ∈ B(H ) is compact if and only if the covariant symbol amn for a fixed n makes a l2

function on Z such that its norm tends to 0 as n −→ ∞.

Proof. Let A be a compact linear operator from l2(Z) into itself and (en) a complete orthonormal set in l2(Z), therefore

Aen = ∑m∈Z amn em.

Then by proposition 2.7 Equation (2.8).

⇔ lim
n→∞

Aen = 0,

⇔ lim
n→∞

∑
m∈Z

amn em = 0,

⇔ lim
n→∞

∑
m∈Z

|amn|2 = 0,

⇔ lim
n→∞

‖an‖= 0,

where an = amn, for a fixed n, with the norm ‖an‖=
(

∑m∈Z |amn|2
)

1
2
.

Proposition 3.15. Let for an operator A, there exist a basis em such that the covariant symbol amn = 0, for any m < m1 or

m > m2 and for all n, then A is compact.

Proof. For an operator A let there exist a basis em such that the covariant symbol amn 6= 0 only for m1 ≤ m ≤ m2, then the

range of A is spanned by em1
,em1+1, . . . ,em2

. Therefore A has finite rank. Finally, by proposition 2.8 A is compact.

Proposition 3.16. Let A be an operator acting on a Hilbert space H and the covariant symbol amn of A belong to the Banach

space F
′
00(Z×Z) with norm

‖amn‖ := sup{|〈amn, lmn〉| : lmn ∈ F00(Z×Z),‖lmn‖2 = 1} . (3.8)

Then the operator A is bounded if and only if the covariant symbol amn is bounded in F
′
00(Z×Z).

Proof. Let A be an operator acting on a Hilbert space H . Let its covariant symbol amn be bounded in a Banach space

F
′
00(Z×Z) with norm ‖amn‖ and

lmn = α ⊗ β̄ ∈ F00(Z×Z)∼= F00(Z)⊗F00(Z),

then by proposition 2.6 and Equation (3.8), we have

|〈amn, lmn〉| ≤ ‖amn‖‖lmn‖2
∣

∣

〈

amn,α ⊗ β̄
〉∣

∣ ≤ ‖amn‖‖α ⊗β‖2
∣

∣

∣

∣

∣

∑
m,n

amnαmβ̄n

∣

∣

∣

∣

∣

≤ M ‖α‖2 ‖β‖2 .
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Thus, A is bounded.

Conversely, let A be a bounded linear operator acting on a Hilbert space H and amn its covariant symbol in a Banach space

F
′
00(Z×Z) with norm (3.8), then by necessary condition of proposition 2.6 amn satisfies the inequality (2.7), i.e

∣

∣

∣

∣

p

∑
m

q

∑
n

amnαmβ̄n

∣

∣

∣

∣

≤ M ‖α‖2 ‖β‖2 ,

therefore by equation (3.8)

∣

∣

〈

amn,α ⊗ β̄
〉∣

∣ ≤ M ‖α‖2 ‖β‖2

|〈amn, lmn〉| ≤ M ‖lmn‖2 .

Then amn is bounded in F
′
00(Z×Z).

Proposition 3.17. The mapping σ : A 7−→ σA(m,n) of operators to their covariant symbols is an algebra homomorphism from

the algebra of operators on H to the algebra of infinite matrices on W (Z), i.e.

σA1A2
(m,k) = ∑

n∈Z
σA1

(m,n)σA2
(n,k).

Proof. By (3.5), we have

σA1A2
(m,k) = 〈A1A2em,en〉,

= 〈A1A2π (m)h0,π (n) l0〉,
= 〈π (m)A1A2π−1 (n)h0, l0〉,
= 〈A2π−1 (n)h0,A

∗
1π∗ (m) l0〉,

= ∑
n

〈π (k)A2π−1 (n)h0, l0〉,〈π (k)h0,A
∗
1π∗ (m) l0〉,

= ∑
n

〈π (m)A1π−1 (k)h0, l0〉〈π (k)A2π−1 (n)h0, l0〉,

= ∑
n

〈A1em,ek〉〈A2ek,en〉,

= ∑
n

σA1
(m,n)σA2

(n,k).

Finally, is there a relationship between the covariant and contravariant symbols of these operators?

Proposition 3.18. If an operator A on l2(Z) has a contravariant symbol a(m) which satisfies (3.6), then the covariant symbol

of A which satisfies (3.4) is

ã(m) = a(m).

Proof. Let an operator A on l2(Z) have a contravariant symbol a(m) which satisfies (3.6), that is

A = ∑
k

a(k)pk.

Then

Aem = ∑
k

a(k)pkem = ∑
k

a(k)〈em,ek〉ek = a(k)ek

Now by (3.4)

ã(m) = 〈Aem,em〉= 〈a(k)ek,em〉
= ∑

n

a(k)ek(n)ēm(n) = a(m).
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Proposition 3.19. If an operator A on l2(Z) has a contravariant symbol a(m,n) which satisfies (3.7), then the covariant

symbol of A which satisfies (3.5) is

ã(m,n) = a(n,m).

Proof. Let the operator A on l2(Z) have a contravariant symbol a(m,n) which satisfies (3.7), that is

A = ∑
j
∑

i

a(i, j)p(i, j).

Then

Aen = ∑
j
∑

i

a(i, j)p(i, j)en = ∑
j
∑

i

a(i, j)〈en,ei〉e j = ∑
j

a(n, j)e j

Now by (3.5)

ã(m,n) = 〈Aen,em〉=
〈

∑
j

a(n, j)e j,em

〉

= ∑
k

∑
j

a(n, j)e j(k)ēm(k)

= ∑
k

a(n,k)ek(m) = a(n,m).

4. Conclusion

In this paper, we introduced the concepts of covariant and contravariant symbols of operators which generated by a representa-

tion of the integer group Z. Then we described some properties of covariant and contravariant symbols in B(l2 (Z)). Also,

we reformulated some know results on (existence, uniqueness, boundedness and compactness) of these operators in terms of

wavelet transform (covariant and contravariant symbols). Finally, the full investigation to find similar conditions for bounded

and compact in term of covariant and contravariant symbols generated by another groups is left for further work.
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Abstract

The axioms for a metric D were transformed into axioms of the function expD, and a

new generalized metric called multiplicative metric was introduced in 2008 based on these

transformed axioms. A review of a method of converting metric fixed point results through

logarithmic transformation to multiplicative metric fixed point results and converting multi-

plicative metric fixed point results through exponential transformation to metric fixed point

results has been presented. Applications of this procedure have also been discussed.

1. Introduction

Fixed point theory accommodates many types of distance functions. On many occasions distance functions are introduced just

to derive fixed point theorems and this is justified in the survey articles ([1],[2]). The survey article [2] presents conversions of

metric fixed point results through exponential logarithmic transformations into fixed point results on a class of generalized

metric spaces which are called multiplicative metric spaces. The concept of a multiplicative metric was just mentioned in the

article [3] in the year 2008. But, other researchers used this concept to derive fixed point results by transforming arguments of

proofs of results of metric fixed point theory. The survey article [2] applied transformations on statements instead of proofs,

by referring to many research articles. The present article is to review these techniques of applying transformations, but by

referring to books having collections of results with proofs. It is concluded as in [2] that there is a one to one correspondence

between metric fixed point results and multiplicative metric fixed point results. Exact applications are also mentioned. The

main purpose of applying transformations is to obtain many examples and to obtain new results. The main purpose of fixed

point theory is to solve equations.

Only very few results are selected, mostly from the book [4], for transformation, and new articles like [5] are not considered

for transformations. The statements of these results chosen for transformations are not presented for management of symbols.

One more thing should be mentioned. The name “multiplicative metric” given in [3] is changed into “EL metric” to stress the

usefulness of transformations. The usual notation used for a multiplicative metric is also changed in this article for convenience.

It should be mentioned that apart from special nonlinear transformations there are special linear transformations. See for

example [6]-[9].

2. Transformed metrics and topologies

Let us first recall the definition of a metric D.

Email address and ORCID number: ganesamoorthyc@gmail.com, https://orcid.org/0000-0003-3119-7531



126 Fundamental Journal of Mathematics and Applications

Definition 2.1. [1] Let X be a non empty set. Let D be a real valued function on X ×X satisfying the following axioms.

(I) D(x,y)≥ 0, for all x,y ∈ X

(II) D(x,y) = D(y,x), for all x,y ∈ X

(III) D(x,y)≤ D(x,z)+D(z,y), for all x,y,z ∈ X

(IV) D(x,y) = 0 if and only if x = y in X.

Then D is called a metric on X. The pair (X ,D) is called a metric space.

Definition 2.2. [3] Let X be a non empty set. Let d be a real valued function on X ×X satisfying the following axioms.

(i) d(x,y)≥ 1, for all x,y ∈ X

(ii) d(x,y) = d(y,x), for all x,y ∈ X

(iii) d(x,y)≤ d(x,z)d(z,y), for all x,y,z ∈ X

(iv) d(x,y) = 1 if and only if x = y in X.

Then d is called an EL metric on X. The pair (X ,d) is called an EL metric space.

E and L are used for the words “Exponential” and “Logarithmic”. So, EL metrics are our transformed metrics. The word

“generalized” is suppressed in giving name in Definition 2.2, because metrics are to be derived from EL metrics and EL metrics

are to be derived from metrics.

Let (X ,D) be a metric space. Let us use the notation “ expD” for the composite function which is defined by

(expD)(x,y) = exp(D(x,y)) = eD(x,y)
, for all x,y ∈ X .

Let d = expD. Then d satisfies the conditions (i),(ii),(iii) and (iv) given in Definition 2.2. Thus, (X ,d) is an EL metric space,

when d = expD.

On the other hand, let us consider an EL metric space (X ,d). Let us use the notation “logd” for the composite function which

is defined by

(logd)(x,y) = log(d(x,y)), for all x,y ∈ X .

Let D = logd. Then D satisfies the conditions (I),(II),(III) and (IV) given in Definition 2.1. Thus (X ,D) is a metric space,

when D = logd.

These two transformations provide fundamental techniques required to convert classical fixed point results for metric spaces

into fixed point results for EL metric spaces. Let us first introduce technical terms required for transformations in results. Let

us always associate D for a metric and d for an EL metric, even if it is not mentioned explicitly. Some times, the variations

like DX ,DY ,D1,D2, and dX ,dY ,d1,d2 will be used for these purposes. Let us assume all classical definitions for open sets,

closed sets, closures, topology induced by a metric, Cauchy sequences, convergent sequences, complete metric spaces, totally

bounded metric spaces, compact spaces, etc., corresponding to metric spaces.

Notation 2.3. Let (X ,D) be a metric space. For each r ≥ 0, and for each x ∈ X, let BD(x,r) = {y ∈ X : D(x,y) < r} and

CD(x,r) = {y ∈ X : D(x,y)≤ r} denote open balls and closed balls.

Definition 2.4. [10] Let (X ,d) be an EL metric space. For each r ≥ 1, and for each x ∈ X, let Bd(x,r) = {y ∈ X : d(x,y)< r}
and Cd(x,r) = {y ∈ X : d(x,y)≤ r}. Let us call them also as open ball and closed ball having centre x and radius r. Let us

say that (X ,d) is totally bounded if for every r > 1, X is covered by finitely many open balls with radius r.

Remark 2.5. [10] Let d be an EL metric on X. Let D = logd so that d = expD. Then BD(x,r) = Bd(x,expr), because

D(x,y)< r if and only if d(x,y)< expr, for r > 0. Similarly, CD(x,r) =Cd(x,expr), for r > 0. So, (X ,d) is totally bounded if

and only if (X ,D) is totally bounded.

Definition 2.6. [10] A subset A of an EL metric space (X ,d) is said to be open, if for each x ∈ A, there is a number r > 1

such that Bd(x,r)⊆ A. Let τd = {A ⊆ X : A is open in (X ,d)}.

Remark 2.7. [10] Let A be a subset of an EL metric space (X ,d). Then A ∈ τd if and only if it is open with respect to the

topology τD induced by D = logd. This is a consequence of Remark 2.5. Thus τd is a topology and it coincides with τD. Let us

say that (X ,d) is compact, if (X ,τd) is compact.

Definition 2.8. [10] Let (xn)
+∞
n=1 be a sequence in an EL metric space (X ,d). Then (xn)

+∞
n=1 is said to be Cauchy in (X ,d), if

for every ε > 1, there is an integer n0 such that d(xn,xm)< ε , for all n,m ≥ n0. The sequence (xn)
+∞
n=1 is said to be convergent

in (X ,d), if for every ε > 1, there is an element x ∈ X, and there is an integer n0 such that d(xn,x)< ε , for all n ≥ n0. Let us

say that (xn)
+∞
n=1 converges to a limit point x in (X ,d), in this case. An EL metric space is said to be complete, if every Cauchy

sequence is convergent in it.
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Remark 2.9. [10] Let (xn)
+∞
n=1 be a sequence in an EL metric space (X ,d). Let D = logd. By Remark 2.5, (xn)

+∞
n=1 is Cauchy

in (X ,d) if and only if it is Cauchy in (X ,D). Also, (xn)
+∞
n=1 is convergent to x in (X ,d) if and only if it is convergent to x in

(X ,D). In particular, every convergent sequence in (X ,d) is Cauchy. Moreover, (X ,d) is complete if and only if (X ,D) is

complete.

A transformation method can be applied for arguments of proofs. The first illustration for this action is a proof of the following

known fact.

Proposition 2.10. Let (X ,d) be an EL metric space. Let (xn)
+∞
n=1 be a sequence converging to x in (X ,d). Then (xn)

+∞
n=1 is

Cauchy in (X ,d).

Proof. Fix ε > 1. Then there is an integer n0 such that d(xn,x)<
√

ε , for all n ≥ n0. Then d(xn,xm)≤ d(xn,x)d(x,xm)< ε ,

for all n,m ≥ n0. This completes the proof.

Let us establish two more results which can also be obtained by applying transformation directly to the known results.

Lemma 2.11. Let (X ,d) be an EL metric space. Then

1 ≤ max

{

d(u,v)

d(x,y)
,

d(x,y)

d(u,v)

}

≤ d(u,x)d(v,y), for all x,y,u,v ∈ X .

Proof. d(u,v)≤ d(u,x)d(x,y)d(y,v). So,
d(u,v)
d(x,y) ≤ d(u,x)d(y,v). Similarly,

d(x,y)
d(u,v) ≤ d(u,x)d(y,v). Now, the lemma follows.

Proposition 2.12. Let (X ,d) be an EL metric space. Let (xn)
+∞
n=1 converge to x and (yn)

+∞
n=1 converge to y in (X ,d). Then

d(xn,yn)→ d(x,y) as n →+∞.

Proof.

1 ≤ max

{

d(xn,yn)

d(x,y)
,

d(x,y)

d(xn,yn)

}

≤ d(xn,x)d(yn,y), for all n,

by Lemma 2.11. The result follows, because d(xn,x)→ 1 and d(yn,y)→ 1 as n →+∞.

Let us now transform arguments of the proof of the metrization lemma ([11], Chapter 6, Lemma 12).

Lemma 2.13. Let (Un)
+∞
n=0 be a sequence of symmetric subsets of X ×X such that U0 = X ×X, each Un contains the diagonal

∆ = {(x,x) : x ∈ X},Un+1 ◦Un+1 ◦Un+1 ⊆Un for each n, and such that ∆ =
+∞
⋂

n=1

Un. Then there is an EL metric d on X (that is,

a function on X ×X) such that Un ⊆ {(x,y) ∈ X ×X : d(x,y)< 52−n} ⊆Un−1, for each positive integer n.

Proof. Define a function f : X×X → [1,+∞) by f (x,y) = 52−n
if and only if (x,y)∈Un−1\Un and by f (x,x) = 1, for all x∈X .

For every x,y ∈ X , let d(x,y) = inf
n

∏
i=0

f (xi,xi+1), where infimum is taken over all finite sequences (or chains) x0,x1, ...,xn+1

such that x = x0 and y = xn+1. Then d(x,y)≥ 1 and d(x,y)≤ d(x,z)d(z,y), for all x,y,z ∈ X . Also, f (x,y) = f (y,x), for all

x,y ∈ X , because each Un is symmetric. So, d(x,y) = d(y,x), for all x,y ∈ X . Moreover, d(x,x) = 1, for all x ∈ X , because

f (x,x) = 1, for all x ∈ X . Since d(x,y)< 52−n
, for all (x,y) ∈Un, then Un ⊆ {(x,y) ∈ X ×X : d(x,y)< 52−n}. Let us claim

that, for any chain x0,x1, ...,xn+1, f (x0,xn+1) ≤ (
n

∏
i=0

f (xi,xi+1))
2. Let us establish the claim by induction on n. Let us call

n as the length of the chain x0,x1, ...,xn+1. The claim is true for any chain with length n = 0, because f (x,y) ≥ 1, for all

x,y ∈ X . Let us assume for induction that the claim is true for any chain with length less than n, and n ≥ 1. To complete

the proof of our claim, let us consider a chain x0,x1, ...,xn+1 in X such that f (xi,xi+1) > 1, for all i. Let a =
n

∏
i=0

f (xi,xi+1).

Let k be the largest integer such that
k

∏
i=0

f (xi,xi+1)≤
√

a. Then
n

∏
i=k+1

f (xi,xi+1)≤
√

a. Hence, by our induction hypothesis,

f (x0,xk) ≤ a and f (xk+1,xn+1) ≤ a. Moreover, f (xk,xk+1) ≤ a. If m is the smallest integer such that 52−m−1 ≤ a, then

(x0,xk),(xk,xk+1),(xk+1,xm+1) ∈ Um and hence (x0,xn+1) ∈ Um−1. Hence f (x0,xn+1) ≤ 52−m ≤ a2. Thus our claim is true.

This claim proves that {(x,y) ∈ X ×X : d(x,y)< 52−n} ⊆Un−1, for all n = 1,2, , ... . This completes the proof.
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One should compare the previous proof with the proof of ([11], Chapter 6, Lemma 12). This comparison is necessary to

understand the technique of applying transformation in arguments of proofs. Note that the exponential function does not appear

in the previous proof. This one happens, because 5d(x,y) is also a metric, when d is an EL metric. One can also observe that the

statement of ([11], Chapter 6, Lemma 12) can be directly converted into the statement of Lemma 2.13 of this article without

going through proofs. Lemma 2.13 of this article and ([11], Chapter 6, Lemma 12) jointly imply the following. The topology

induced by an EL metric is also induced by a metric, and the topology induced by a metric is also induced by an EL metric.

But, this was already implied by Remark 2.7.

Conclusion 2.14. If d is an EL metric and D = logd, then topologies, convergent sequences, Cauchy sequences, continuity,

compactness, and completeness are common for both d and D. Both d and D are jointly continuous. All these fundamental

facts will be applied in this article.

3. Advantage of transformations in arguments

Theorem 3.1. Let (X ,d) be a compact EL metric space. Let T : X → X be a mapping such that d(T 2x,T x) < d(T x,x),
whenever T x 6= x in X. Then T has a fixed point. Moreover, if d(T x.Ty)< d(x,y), whenever x 6= y in X, then T has a unique

fixed point x∗, and (T nx0)
+∞
n=1 converges to x∗, for any fixed x0 in X.

Proof. Let φ(x) = d(T x,x), for all x ∈ X . Then φ has a minimum at some x∗ ∈ X . If T x∗ 6= x∗, then

1 ≤ φ(T x∗) = d(T 2x∗,T x∗)< d(T x∗,x∗) = φ(x∗).

So, T x∗ = x∗, because φ has a minimum at x∗.

Suppose further that d(T x,Ty)< d(x,y), whenever x 6= y in X . Suppose T x∗∗ = x∗∗ and T x∗ = x∗ for two points x∗,x∗∗ in X .

If x∗ 6= x∗∗, then

1 ≤ d(x∗∗,x∗) = d(T x∗∗,T x∗)< d(x∗∗,x∗).

So, x∗ = x∗∗. Thus T has a unique fixed point x∗ in X . Fix x0 in X . Let cn = d(T nx0,x
∗). If cm = 1 for some m, then (T nx0)

+∞
n=1

converges to x∗ in (X ,d). Suppose cn 6= 1 for every n. Then

1 ≤ cn+1 ≤ d(T n+1x0,x
∗) = d(T (T nx0),T x∗)< d(T nx0,x

∗) = cn, for all n.

Let lim
n→+∞

cn = c. If c = 1, then (T nx0)
+∞
n=1 converges to x∗ in (X ,d). Suppose c > 1. Let (T nix0)

+∞
i=1 be a subsequence of

(T nx0)
+∞
n=1 such that the subsequence converges to some z in (X ,d). Then

1 < c = lim
i→+∞

cni
= lim

i→+∞
d(T nix0,x

∗) = d(z,x∗)

so that x∗ 6= z. Since T is continuous,

1 < c = lim
i→+∞

d(T ni+1x0,x
∗) = d(T z,x∗) = d(T z,T x∗)< d(z,x∗) = c.

This is impossible. Thus c = 1, and the result follows.

Corollary 3.2. Let (X ,D) be a compact metric space. Let T : (X ,D)→ (X ,D) be a mapping such that D(T x,Ty)< D(x,y),
for x 6= y in X. Then there is a unique fixed point x∗ in X. Moreover, for any x0 ∈ X, (T nx0)

+∞
n=1 converges to x∗ in (X ,D).

Proof. Define d = expD. Then (X ,d) is a compact EL metric space. Also, d(T x,Ty)< d(x,y), for x 6= y in X . So, the result

follows from Theorem 3.1.

The previous Corollary 3.2 is ([4], Theorem 3.5). The following Corollary 3.4 is the most fundamental theorem of metric

fixed point theory. It is ([4], Theorem 3.1), which is the Banach contraction principle.

Theorem 3.3. Let (X ,d) be a complete EL metric space. Let k ∈ (0,1). Let T : X → X be a mapping such that d(T x,Ty)≤
(d(x,y))k, for all x,y ∈ X. Then T has a unique fixed point x∗. Also, for each x0 in X, the sequence (T nx0)

+∞
n=1 converges to x∗

in (X ,d). Moreover,

d(T nx0,x
∗)≤ (d(x0,T x0))

kn

1−k , for all n.



Fundamental Journal of Mathematics and Applications 129

Proof. Fix x0 ∈ X . Let xn = T nx0, for all n = 1,2,3... . Then d(xn+1,xn)≤ (d(xn,xn−1))
k ≤ (d(x1,x0))

kn
. For m > n,

1 ≤ d(xn,xm)

≤ d(xn,xn+1)d(xn+1,xn+2)....d(xm−1,xm)

≤ (d(x1,x0))
kn+kn+1+...+km−1

≤ (d(x1,x0))
kn+kn+1+....

= (d(x1,x0))
kn

1−k .

Since the right hand side tends to 1 as n →+∞, (xn)
+∞
n=1 is a Cauchy sequence that converges to some element x∗ in (X ,d).

Moreover, when m tends to infinity in the previous relation, it is obtained that

1 ≤ d(xn,x
∗)≤ (d(T x0,x0))

kn

1−k ,

for every n = 1,2,... . If n tends to infinity in this relation, then it is concluded that d(xn,x
∗)→ 1 as n →+∞. Since

1 ≤ d(T x∗,x∗) = lim
n→+∞

d(xn+1,xn)≤ lim
n→+∞

(d(x1,x0))
kn

= 1,

it follows that T x∗ = x∗. Moreover, if T x∗∗ = x∗∗, then

1 ≤ d(x∗,x∗∗) = d(T x∗,T x∗∗)≤ (d(x∗,x∗∗))k
.

Since k ∈ (0,1), it follows that x∗ = x∗∗. That is, T has a unique fixed point x∗ in X .

Corollary 3.4. Let (X ,D) be a complete metric space. Let k ∈ (0,1). Let T : X → X be a mapping such that D(T x,Ty)≤
kD(x,y), for all x,y ∈ X. Then T has a unique fixed point x∗. Moreover, for any x0 in X, the sequence (T nx0)

+∞
n=1 converges to

x∗.

Proof. Let d = expD. Then (X ,d) is a complete EL metric space. Also, d(T x,Ty)≤ (d(x,y))k, for all x,y ∈ X . Corollary 3.4

now follows from Theorem 3.3.

Conclusion 3.5. One may understand that the proofs of Theorem 3.1 and Theorem 3.3 use arguments which resemble

classical arguments and the arguments used in this article are obtained from classical arguments by means of logarithmic

transformation. These types of transformed arguments should be developed, because one can derive fixed point results for

metric spaces, as it is illustrated in Corollary 3.2 and Corollary 3.4.

4. Transformation in statements

Sometimes, it would be convenient to establish existence of fixed points in particular examples, when transformed statements

of results are applied. This is the main advantage of transformation of statements of results.

Example 4.1. Let X =
[

1
2
,2
]

. Let d(x,y) = max{xy−1,yx−1}, for all x,y ∈ X. Then (X ,d) is a compact EL metric space.

Define T : X → X by T x = x
1
2 , for all x ∈ X. Then d(T x,Ty)< d(x,y) whenever x 6= y. This mapping T has a unique fixed

point 1. For any fixed x ∈ X, T nx → 1 as n →+∞.

One may understand that the following Corollary 4.2 can be associated with Example 4.1. Although Corollary 4.2 is a part of

Theorem 3.1, let us derive it from Corollary 3.2 for an illustration of transformation techniques.

Corollary 4.2. Let (X ,d) be a compact EL metric space. Let T : X → X be a mapping such that d(T x,Ty)< d(x,y), for all

x,y ∈ X. Then T has a unique fixed point x∗. Moreover, for any x0 in X, (T nx0)
+∞
n=1 converges to x∗ in (X ,d).

Proof. Let D = logd. Then (X ,D) is a compact metric space, and D(T x,Ty)< D(x,y), whenever x 6= y in X . Now, Corollary

3.2 implies Corollary 4.2.

Corollary 4.3. Let (X ,d) be a complete EL metric space. Let k ∈ (0,1). Let T : X → X be a mapping such that d(T x,Ty)≤
(d(x,y))k, for all x,y ∈ X. Then T has a unique fixed point.

Proof. Let D = logd. Then (X ,D) is a complete metric space and D(T x,Ty)≤ kD(x,y), for all x,y ∈ X . Now, Corollary 3.4

implies Corollary 4.3.
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Corollaries 3.2, 3.4, 4.2 and 4.3 are evidences for existence of a one to one correspondence between fixed point results for

metric spaces and fixed point results for EL metric spaces. Since fixed point results for metric spaces have already been

established, let us go for transformations of fixed point results for metric spaces. Let us consider some results from the book

[4] for transformation.

Theorem 4.4. Let (X ,d) be a complete EL metric space. Let k ∈ (0,1). Let T : X → X be a mapping such that d(T x,Ty)≤
(d(x,y))k, for all x,y ∈ X. Let x∗ be the unique fixed point of T . Let (εn)

+∞
n=1 be a sequence of numbers such that lim

n→+∞
εn = 1

and εn > 1, for all n. Let (yn)
+∞
n=1 be a sequence in X such that d(yn+1,Tyn)≤ εn, for all n = 1,2, ... . Then lim

n→+∞
yn = x∗.

Proof. Let D = logd. Then D(T x,Ty)≤ kD(x,y), for all x,y ∈ X . Also, (logεn)
+∞
n=1 is a sequence of positive numbers such

that D(yn+1,Tyn) ≤ logεn, for all n = 1,2, ..., and such that logεn → 0 as n → +∞. Now, ([4], Theorem 3.2) implies the

result.

Theorem 4.5. Let (X ,d) be a complete EL metric space. Let k ∈ (0,1). Let n be a positive integer. Let T : X → X be a

mapping such that d(T nx,T ny)≤ (d(x,y))k, for all x,y ∈ X. Then T has a unique fixed point.

Proof. Let D = logd. Then D(T nx,T ny)≤ kD(x,y), for all x,y ∈ X . By ([4], Theorem 3.3), the result follows.

Theorem 4.6. Let (X ,d) be a complete EL metric space. Let α : [1,+∞)→ [0,1) be a function which satisfies the condition

“α(tn)→ 1 implies tn → 1”. Let T : X → X be a mapping such that d(T x,Ty)≤ (d(x,y))α(d(x,y)), for all x,y ∈ X. Then T has a

unique fixed point x∗. Also, for each x0 in X, (T nx0)
+∞
n=1 converges to x∗.

Proof. Let D = logd. Let A : [0,+∞)→ [0,1) be a mapping defined by A(t) = α(exp t) , for all t ∈ (0,+∞). If A(tn)→ 1,

then α(exp tn)→ 1, exp tn → 1, and tn → 0 as n →+∞. Moreover,

D(T x,Ty) ≤ α(d(x,y))D(x,y)

= α(explogd(x,y))D(x,y)

= A(D(x,y))D(x,y), for all x,y ∈ X .

The conditions required for ([4], Theorem 3.6) are satisfied for T : (X ,D)→ (X ,D) in the complete metric space (X ,D). Now,

([4], Theorem 3.6) implies the result.

Definition 4.7. Let (X ,d) be an EL metric space. For a subset A of X, diameter of A is denoted by diam A and defined by

diam A = sup{d(x,y) : x,y ∈ A}. The subset A is said to be a bounded set, if diam A is finite. The EL metric space (X ,d) is

bounded, if diam X is finite.

Let D = logd for an EL metric d on X . A subset A of X is bounded in the metric space (X ,D) if and only if it is bounded in

the EL metric space (X ,d).

Theorem 4.8. Let (X ,d) be a bounded EL metric space. Let ψ : [1,+∞)→ [1,+∞) be a function such that ψ is continuous

from right at all points and such that 1 < ψ(r)< r for r > 1. Let T : (X ,d)→ (X ,d) be a continuous mapping, with respect to

the topology induced by d, such that d(T x,Ty)≤ ψ(d(x,y)), for all x,y ∈ X. Then T has a unique fixed point x∗. Also, for

each x0 in X, (T nx0)
+∞
n=1 converges to x∗ as n →+∞.

Proof. Let D = logd so that (X ,D) is a complete metric space and T : (X ,D)→ (X ,D) is continuous. Define A : [0,+∞)→
[0,+∞) by A(x) = log(ψ(expx)), for all x ∈ [0,+∞). Then A is continuous from right at all points such that 0 < A(r) =
log(ψ(expr))< r for r > 0. Moreover,

D(T x,Ty)≤ logψ(exp(logd(x,y))) = A(D(x,y)), for all x,y ∈ X .

Then, the conditions of ([4], Theorem 3.7) are satisfied. So, by ([4], Theorem 3.7), the result follows.

Let us recall from [4] that a real valued function ψ on [a,+∞) is upper semi continuous at r ∈ [a,+∞) from right, if

limsup
j→+∞

ψ(r j)≤ ψ(r), whenever r j → r.

Theorem 4.9. Let (X ,d) be a complete EL metric space. Let a mapping ψ : [1,+∞)→ [1,+∞) be upper semi continuous

from right at all points such that 1 < ψ(t)< t for t > 1. Let T : (X ,d)→ (X ,d) be a mapping such that d(T x,Ty)≤ ψ(d(x,y)),
for all x,y ∈ X. Then T has a unique fixed point x∗. Also, for each x0 in X, (T nx0)

+∞
n=1 converges to x∗.
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Proof. Define D and A as in the proof of the previous theorem. Then 0 < A(t)< t for t > 0 and A is upper semi continuous

from right at all points. Moreover,

D(T x,Ty)≤ A(D(x,y)), for all x,y ∈ X ,

and (X ,D) is a complete metric space. Then, by ([4], Theorem 3.8), the result follows.

Theorem 4.10. Let (X ,d) be a complete EL metric space. Let ψ : [1,+∞)→ [1,+∞) be a monotone non decreasing function

such that lim
n→+∞

ψn(t) = 1 for t > 1. Let T : (X ,d)→ (X ,d) be a mapping such that d(T x,Ty)≤ ψ(d(x,y)), for all x,y ∈ X.

Then T has a unique fixed point x∗ and (T nx0)
+∞
n=1 converges to x∗, for every x0 ∈ X.

Proof. Let D = logd. Define A : (0,+∞)→ (0,+∞) by A(t) = log(ψ(exp t)), for all t ∈ (0,+∞). Then A is a monotone non

decreasing function such that An(t) = log(ψn(exp t)), for all t > 0 and for all n = 1,2, .... So, lim
n→+∞

An(t) = 0, for every t > 0.

Also,

D(T x,Ty)≤ A(D(x,y)), for all x,y ∈ X .

Now the result follows from ([4], Theorem 3.10).

Notation 4.11. For a mapping T : (X ,d)→ (X ,d) on an EL metric space (X ,d), let k(T ) = sup
{

logd(T x,Ty)
logd(x,y) : x,y ∈ X ,x 6= y

}

,

and let k+∞(T ) = limsup
n→+∞

(k(T n))
1
n .

Theorem 4.12. Let (X ,d) be a complete EL metric space. Let T : (X ,d) → (X ,d) be a continuous mapping for which

k+∞(T )< 1. Then T has a unique fixed point x∗. Also, (T nx0)
+∞
n=1 converges to x∗, for each x0 ∈ X.

Proof. Let D = logd. Then the result follows from ([4], Theorem 3.11).

Theorem 4.13. Let (X ,d) be a complete EL metric space. Let φ : X → [1,+∞) be a mapping. Let T : (X ,d)→ (X ,d) be a

continuous mapping which satisfies d(x,T x)≤ φ(x)
φ(T x) , for all x ∈ X. Then (T nx0)

+∞
n=1 converges to a fixed point of T , for each

x0 ∈ X.

Proof. Let D = logd. Define A : X → [0,+∞) by A(x) = log(φ(x)), for all x ∈ X . Then T : (X ,D)→ (X ,D) is a continuous

mapping such that

D(x,T x)≤ A(x)−A(T x), for all x ∈ X .

Now the result follows from ([4], Theorem 3.13).

Let us recall from [4] that a real valued function φ on a metric space (X ,D) is lower semi continuous at x, if φ(x) ≤ r,

whenever lim
n→+∞

xn = x in (X ,D) and lim
n→+∞

φ(xn) = r in the real line. In this case, it can also be stated that φ on (X ,d) is lower

semi continuous at x, where d = expD, in view of Remark 2.7.

Theorem 4.14. Let (X ,d) be a complete EL metric space. Let φ : (X ,d) → [1,+∞) be a function which is lower semi

continuous at every point of (X ,d). Let T : X → X be a mapping which satisfies d(x,T x)≤ φ(x)
φ(T x) , for all x ∈ X. Then T has a

fixed point.

Proof. Let D = logd. Define A : (X ,D)→ [0,+∞) by A(x) = log(φ(x)), for all x ∈ X . Then A is lower semi continuous at

every point of (X ,d). Moreover,

D(x,T x)≤ A(x)−A(T x), for all x ∈ X .

Now the result follows from ([4], Theorem 3.15).

Theorem 4.15. Let (X ,dX ) and (Y,dY ) be complete EL metric spaces. Let T : X → X be a mapping. Let S : (X ,dX )→ (Y,dY )
be a mapping having closed graph. Let φ : (S(X),dY )→ [1,+∞) be a function which is lower semi continuous at every point

of (S(X),dY ). Let c > 0 be a constant such that

max{dX (x,T x),(dY (Sx,S(T x)))c} ≤ φ(Sx)

φ(S(T x))
, for all x ∈ X .

Then T has a fixed point.
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Proof. Let DX = logdX and DY = logdY . Define A : (S(X),DY )→ [0,+∞) by A(y) = logφ(y), for all y ∈ S(X). Then A is

lower semi continuous at every point of (S(X),DY ). Also,

max{DX (x,T x),cDY (Sx,S(T x))} ≤ A(Sx)−A(S(T x)), for all x ∈ X .

Now the result follows from ([4], Theorem 3.16).

Definition 4.16. Let (X ,d) be an EL metric space. Let D = logd. Let CB(X) denote the collection of all nonempty closed

and bounded subsets of (X ,d) (or of (X ,D)). For every A,B ∈CB(X), let

P(A,B) = max
{

sup
y∈B

inf
x∈A

d(x,y),sup
y∈A

inf
x∈B

d(x,y)
}

,

and let

H(A,B) = max
{

sup
y∈B

inf
x∈A

D(x,y),sup
y∈A

inf
x∈B

D(x,y)
}

.

Then H is the usual Hausdorff metric on CB(X) derived from D. Then P = expH on CB(X) so that P is an EL metric on

CB(X). Let us call the EL metric P as Pompieu EL metric.

Let us recall that if (X ,D) is a complete metric space, then (CB(X),H) is also a complete metric space. The next theorem is a

transform of the first fundamental fixed point theorem for set valued mappings.

Theorem 4.17. Let (X ,d) be a complete EL metric space. Let P be the Pompeiu EL metric on CB(X) derived from d. Let

k ∈ (0,1). Let T : X →CB(X) be a mapping such that P(T x,Ty)≤ (d(x,y))k, for all x,y ∈ X. Then there exists an element

x∗ ∈ X such that x∗ ∈ T (x∗).

Proof. Let D = logd and H = logP. Then H(T x,Ty)≤ kD(x,y), for all x,y ∈ X . Now, the result follows from ([4], Theorem

3.20).

Let (X ,d) be an EL metric space. For a subset A of X , let us use the notation diam A for the diameter sup{d(x,y) : x,y ∈ A} in

(X ,d). Let D = logd. Let us use the notation Diam A for the diameter sup{D(x,y) : x,y ∈ A} in (X ,D). Let us observe that

Diam A = log diam A.

Theorem 4.18. Let (X ,d) be a bounded complete EL metric space. For every x,y∈X, let O(x,y)= {x,T x,T 2(x), ...,y,Ty,T 2y, ...}.

Let φ : [1,+∞)→ [1,+∞) be a non decreasing continuous function such that φ(s)< s, for s > 1. Let T : (X ,d)→ (X ,d) be a

continuous mapping. Suppose for each x ∈ X, there exists a positive integer n(x) such that d(T nx,T ny)≤ φ(diam O(x,y)), for

all y ∈ X, for all n ≥ n(x). Then there exists a unique fixed point x∗ such that (T nx0)
+∞
n=1 converges to x∗, for every x0 ∈ X.

Proof. Let D = logd. Define A : [0,+∞)→ [0,+∞) by A(x) = log(φ(expx)), for all x ∈ [0,+∞). Then A is a non decreasing

continuous function such that A(s)< s for s > 0. Also, for each x ∈ X there exists a positive integer n(x) such that

D(T nx,T ny)≤ log(φ(exp(log(diam O(x,y))))) = A(Diam O(x,y)), f orally ∈ X , for all n ≥ n(x).

Here T : (X ,D)→ (X ,D) is continuous. Now the result follows from ([4], Theorem 3.22).

The arguments used in the previous proof and ([4], Theorem 3.23) imply the following theorem.

Theorem 4.19. Let (X ,d), φ and O(x,y) be as described in the previous theorem. Let T : X → X be a mapping such that

d(T x,Ty)≤ φ(diam O(x,y)), for all x,y ∈ X .

Then T has a unique fixed point x∗. Also, for each x0 ∈ X, the sequence (T nx0)
+∞
n=1 converges to x∗.

Let us next convert ([4], Exercise 3.3), which is ([12], Chapter 1, Theorem 5.1). Let us recall the notations used in Definition

2.4 and let us use the transformation D = logd for this purpose.

Theorem 4.20. Let (X ,d) be a complete EL metric space and Let T : X → X be a mapping. Assume that for each ε > 1, there

is a δ > 1 such that T (Bd(x,ε)) ⊆ Bd(x,ε), whenever d(x,T x) < δ . If d(T nx0,T
n+1x0)→ 1, as n → +∞, for some x0 ∈ X,

then the sequence (T nx0)
+∞
n=1 converges to a fixed point x∗ of T in (X ,d).

Let us again use the notations used in Definition 2.4 to transform ([4], Definition 4.1).
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Definition 4.21. Let (X ,d) be an EL metric space. Suppose, for any class (Cd(xi,ri))i∈I of closed balls in (X ,d) which satisfy

d(xi,x j)≤ rir j, for all i, j ∈ I,

the intersection
⋂

i∈I

Cd(xi,ri) is non empty. Then (X ,d) is said to be EL hyperconvex.

Remark 4.22. Suppose (X ,d) is EL hyperconvex. Let D = logd. Then, for any class (CD(xi,ri))i∈I of closed balls in (X ,D)
which satisfy

D(xi,x j)≤ ri + r j, for all i, j ∈ I,

the intersection
⋂

i∈I

CD(xi,ri) is non empty, because CD(xi,ri) =Cd(xi,expri), for all i ∈ I, and

d(xi,x j)≤ (expri)(expr j), for all i, j ∈ I.

Then, by ([4], Definition 4.1), the metric space (X ,D) is hyperconvex. On the other hand, if (X ,D) is a hyperconvex metric

space, then the EL metric space (X ,d) is EL hyperconvex, where d = expD.

Example 4.23. Consider the vector space l∞ of all bounded real sequences with the usual metric D defined by

D((xn)
+∞
n=1,(yn)

+∞
n=1) = sup

n=1,2,...

|xn − yn|.

Then by ([4], Proposition 4.2) and ([4], Theorem 4.2), (l∞,D) is hyperconvex and hence (l∞,d) is EL hyperconvex, where

d = expD.

Theorem 4.24. Let (X ,d) be a bounded EL hyper convex EL metric space. Let T : X → X be a mapping such that

d(T x,Ty) ≤ d(x,y), for all x,y ∈ X. Then the fixed point set {x ∈ X : T x = x} is non empty and it is EL hyper convex with

respect to d.

Proof. Let D = logd. Then D(T x,Ty)≤ D(x,y), for all x,y ∈ X . Now, the result follows from ([4], Theorem 4.8).

Definition 4.25. Let (X ,d) be an EL metric space, and let D = logd. Let A be a subset of X. Let covd(A) (or, covD(A))
denote the intersection of all closed balls in (X ,d) (or, in (X ,D), respectively) which contain A. Since CD(x, logr) =Cd(x,r),
for r ≥ 1 and x ∈ X, then covd(A) = covD(A), for any subset A of X.

A bounded set A in a metric space (X ,D) is an admissible subset of X , according to ([4], Definition 4.2), if A = covD(A). So,

let us say that a bounded subset A of an EL metric space (X ,d) is admissible when A = covd(A), because covd(A) = covD(A)
for D = logd. Following the book [4], let us write A(X) for the collection of all admissible subsets of (X ,d) or (X ,D).

The next definition is ([4], Definition 5.1) for metric spaces.

Definition 4.26. Let (X ,D) be a metric space. Then A(X) is said to be compact, if every descending chain non empty members

of A(X) has non empty intersection. Let us follow the same terminology even for (X ,d), where d = logD.

Let (X ,D) be a metric space and let d = expD. Let A be a subset of X . Let rD(A) = inf
{

sup{D(x,y) : y ∈ A} : x ∈ A
}

and

rd(A) = inf
{

sup{d(x,y) : y ∈ A} : x ∈ A
}

. Then rd(A) = exprD(A). Hence rd(A)< diam A if and only if rD(A)< Diam A.

The next definition is ([4], Definition 5.2) given for metric spaces.

Definition 4.27. Let (X ,D) be a metric space. Then A(X) is said to be normal if rD(A)< Diam A, whenever A ∈ A(X) and

Diam A > 0. Equivalently, A(X) is said to be normal if rd(A)< diam A, whenever A ∈ A(X) and diam A > 1, where d = logD.

The following is an obvious transformed form of ([4], Theorem 5.1).

Theorem 4.28. Let (X ,d) be a non empty bounded EL metric space for which A(X) is compact and normal. Let T : X → X

be a mapping such that d(T x,Ty)≤ d(x,y), for all x,y ∈ X. Then T has atleast one fixed point.

From the results which have been derived, it can be observed that a transformation for a fixed point result requires transfor-

mations for some concepts. It has been established indirectly that there is an assurance for transformations of metric fixed

point results to EL metric fixed point results. Only one thing should be observed: Results to be transformed should depend

only on metrics. For example, let us consider ([4], Corollary 8.4) which states that if T : A → A is a mapping on an admissible

subset A of (l1, || ||1) such that ||T x−Ty||1 ≤ ||x− y||1, for all x,y ∈ A, then T has a fixed point in A. It seems to be a result
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for a normed space depending on algebraic structures; but it is a result for a metric space which is independent of algebraic

structures. So, it is a result for the EL metric space (l1,d) when

d((xn)
+∞
n=1,(yn)

+∞
n=1) =

+∞

∏
n=1

e|xn−yn|, for all (xn)
+∞
n=1,(yn)

+∞
n=1 ∈ l1.

For this metric d, ([4], Corollary 8.4) can be transformed to the following form.

Theorem 4.29. Let A be an admissible subset of (l1,d). Let T : A → A be a mapping such that d(T x,Ty)≤ d(x,y), for all

x,y ∈ X. Then T has a fixed point in A.

A continuation is separated by the following conclusion of this section.

Conclusion 4.30. Convert hypotheses of a metric fixed point result by means of exponential transform to get hypotheses for

an EL metric fixed point result. For a proof of the EL metric fixed point result, use logarithmic transform.

5. More transformed results

The next definition is proposed for transformed norms.

Definition 5.1. Let X be a vector space over the field of real numbers or the field of complex numbers. Let || || be a real

valued function on X satisfying the following conditions, where ||x|| is || ||(x):

(i) ||x|| ≥ 1, for all x ∈ X, and ||x||= 1 if and only if x = 0 in X.

(ii) ||λx||= ||x|||λ |, for all x ∈ X, and for all scalars λ .

(iii) ||x+ y|| ≤ ||x|| ||y||, for all x,y ∈ X.

Then, let us call || || as EL norm, and (X , || ||) as EL normed space.

Example 5.2. If (X , || ||) is a normed space, then || ||0 is defined by ||x||0 = 8π||x||, for all x ∈ X, is an EL norm on X. On the

other hand, if (X , || ||) is an EL normed space, then ||x||0 defined by ||x||0 = log ||x||, for all x ∈ X, is a norm on X.

Let us discuss fixed point theorems again on metric spaces. Let us first transform the statement of ([4], Theorem 3.4), but let

us present a direct proof (out line).

Corollary 5.3. Let X be a non empty set with two EL metrics d1 and d2. Suppose d1(x,y)≤ d2(x,y), for all x,y ∈ X. Suppose

(X ,d1) be complete. Let T : (X ,d1)→ (X ,d1) be a continuous mapping such that d2(T x,Ty)≤ (d2(x,y))
k, for all x,y ∈ X, for

some k ∈ (0,1). Then T has a unique fixed point x∗.

Proof. Fix x0 ∈ X . Then (T nx0)
+∞
n=1 is a Cauchy sequence in (X ,d2), because d2(T x,Ty)≤ (d2(x,y))

k, for all x,y ∈ X . Since

d1(x,y)≤ d2(x,y), for all x,y ∈ X , the sequence (T nx0)
+∞
n=1 is Cauchy also in (X ,d1). Let (T nx0)

+∞
n=1 converge to x∗ in (X ,d1).

Then x∗ is a fixed point of T , because T : (X ,d1)→ (X ,d1) is continuous. The uniqueness of x∗ follows, because k ∈ (0,1).

One can introduce D1 = logd1, D2 = logd2 and apply ([4], Theorem 3.4) to obtain the previous Theorem 5.3. But a direct

proof has been presented just to observe that there is a technique of sharing conditions in hypotheses in a metric fixed point

result between two metrics. This sharing technique is also a simple technique for converting results for generalizations. This

sharing technique is also indirectly applied by using metric preserving functions; see [13]. For a good introduction about

results on metric preserving functions, one may see the article [14].

Definition 5.4. Let us say that a function f : [1,+∞)→ [1,+∞) is EL metric preserving, if f ◦d is an EL metric for every EL

metric d. It is said to be strongly metric preserving, if the topologies induced by d and f ◦d coincide, for every EL metric d.

The exercise problem ([11], Chapter 4, Problem C) is converted to the following result.

Proposition 5.5. Let f : [1,+∞)→ [1,+∞) be a non decreasing continuous function such that f (x) = 1 if and only if x = 1

and such that f (xy)≤ f (x) f (y), for all x,y ∈ [1,+∞). Then f is a strongly EL metric preserving function.

Proof. Define F : [0,+∞)→ [0,+∞) by F(x) = log( f (expx)). Then F is continuous, non decreasing, and F(x) = 0 if and

only if x = 0 in [0,+∞). Moreover,

F(x+ y) = log( f (exp(x+ y)))≤ log( f (expx))+ log( f (expy)) = F(x)+F(y), for all x,y ∈ [0,+∞).

Then F is a strongly metric preserving function (see [14], for definition). Then F ◦ logd is a metric whenever d is an EL metric,

and the metrics logd, F ◦ logd induce a common topology. Hence,

exp◦F ◦ logd = exp◦ log◦ f ◦ exp◦ logd = f ◦d

is an EL metric whenever d is an EL metric, and the EL metrics f ◦d and d induce the same topology.
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Let us now state a simplified version of ([4], Theorem 3.17) in transformed form.

Theorem 5.6. Let (X ,d) be a complete EL metric space. Let r > 0. Let φ : (X ,d)→ [r,+∞) be a function. Let ψ : [1,+∞)→
[1,+∞) be an EL metric preserving function, which is strictly increasing. Let T : (X ,d)→ (X ,d) be a continuous mapping

which satisfies ψ(d(x,T x))≤ φ(x)
φ(T x) , for all x ∈ X. Then T has a fixed point.

Proof. Let d1 = ψ ◦d. Fix x0 ∈ X . Let xn = T nx0, for all n = 1,2, ... . Then

1 ≤ d1(xn,xn+1)≤
φ(xn)

φ(xn+1)
, for all n = 1,2, ....

For n > m,

1 ≤ d1(xm,xn)≤ d1(xm,xm+1)d1(xm+1,xm+2)...d1(xn−1,xn)≤
φ(xm)

φ(xn)
.

So, (φ(xn))
+∞
n=1 is a monotone non increasing sequence. Let φ(xn)→ M ≥ r > 0, as n →+∞. Then, by the previous inequality,

d1(xm,xn)→ 1 as n,m →+∞. That is, (ψ ◦d)(xm,xn)→ 1 as n,m →+∞. Therefore, d(xm,xn)→ 1 as n,m →+∞, because

ψ is strictly increasing. Since (X ,d) is complete, (xn)
+∞
n=1 converges to some point x∗ in (X ,d). Since T : (X ,d)→ (X ,d) is

continuous, and (T xn)
+∞
n=1 converges to x∗, then T x∗ = x∗.

Corollary 5.7. Let (X ,D) be a complete metric space. Let φ be a bounded below real valued function on (X ,D). Let

ψ : [0,+∞)→ [0,+∞) be a strictly increasing metric preserving function. Let T : (X ,D)→ (X ,D) be a continuous mapping

which satisfies the condition ψ(D(x,T x))≤ φ(x)−φ(T x), for all x ∈ X. Then T has a fixed point.

Proof. Let d = expD. Define a real valued function A on (X ,d) by A(x) = exp(φ(x)), for all x ∈ X . Then, there is a number

r > 0 such that A(x) ≥ r, for all x ∈ X . Define B : [1,+∞) → [1,+∞) by B(s) = exp(ψ(logs)), for all s ≥ 1. Then B is a

strictly increasing EL metric preserving function. Moreover,

B(d(x,T x)) = exp(ψ(logd(x,T x))) = exp(ψ(D(x,T x)))≤ exp(φ(x)−φ(T x))

=
A(x)

A(T x)
, for all x ∈ X

Also, T : (X ,d)→ (X ,d) is continuous, and (X ,d) is complete. Now, the result follows from the previous theorem.

Remark 5.8. The function ψ given in Theorem 5.6 should be continuous at 1, and the function ψ given in Corollary 5.7

should be continuous at 0. So, by ([14], Theorem 3.4), ψ should be a strongly EL metric preserving function in Theorem 5.6

and ψ should be a strongly metric preserving function in Corollary 5.7. In both results, the conditions on ψ may be replaced

by following simple conditions. For Theorem 5.6, assume that ψ is a strongly EL metric preserving function. For Corollary 5.7,

assume that ψ is a strongly EL metric preserving function.

Conclusion 5.9. There are standard methods in literature to convert results for extensions and generalizations. Exponential-

Logarithmic transformation method can be extended to derive many transformed results in analysis.

6. Applications

It has been mentioned in Section 4 that the main advantage of transformed statements lies in verifying conditions in examples.

Let us modify slightly Example 4.1 for justification of this sentence.

Example 6.1. Let X =
[

1
2
,+∞

]

. Let d(x,y) = max{xy−1,yx−1}, for all x,y ∈ X. Let D(x,y) = |x− y|, for all x,y ∈ X. Then

(X ,d) is a complete EL metric space and (X ,D) is a complete metric space. Let T : X → X be defined by T x = x
1
2 , for all

x ∈ X. Then,

D(x,y) = |x− y|=
∣

∣

∣
x

1
2 − y

1
2

∣

∣

∣

∣

∣

∣
x

1
2 + y

1
2

∣

∣

∣
= D(T x,Ty)

∣

∣

∣
x

1
2 + y

1
2

∣

∣

∣
, for all x,y ∈ X .

Thus, there is no constant M > 0 such that

D(T x,Ty)≤ MD(x,y), for all x,y ∈ X .

Hence, the Banach contraction principle is not applicable in this case. However,

1 ≤ d(T x,Ty) = max
{(x

y

)
1
2
,

(y

x

)
1
2
}

= (d(x,y))
1
2 ≤ (d(x,y))k

,k ∈
[1

2
,1
)

, for all x,y ∈ X .

By Theorem 3.3, for x0 ∈ X, the sequence (T nx0)
+∞
n=1 converges to the unique fixed point 1.



136 Fundamental Journal of Mathematics and Applications

Example 6.2. Let X ,d,D be as in the previous Example 6.1. Let T : X → X be defined by T x = x+1
2

, for all x ∈ X. Then

d(T x,Ty) = max
{x+1

y+1
,

y+1

x+1

}

and

d(x,y) = max
{x

y
,

y

x

}

.

Hence, there is no k ∈ (0,1] such that

d(T x,Ty)≤ (d(x,y))k
, for all x,y ∈ X .

Thus, Theorem 3.3 is not applicable in this case. However,

D(T x,Ty) =
1

2
|x− y|= 1

2
D(x,y), for all x,y ∈ X .

Then, by the Banach contraction principle, for each x0 ∈ X, the sequence (T nx0)
+∞
n=1 converges to the unique fixed point 1.

Conclusion 6.3. Results in both metric fixed point theory and EL metric fixed point theory are applicable, and both of them

should be developed.

7. Final conclusions

Both metric fixed point theory and EL metric fixed point theory should be developed, as it has been explained by Example 6.1

and Example 6.2. Some more things have to be concluded for transformations.

The open mapping theorem and the closed graph theorem are equivalent in the sense that if one theorem is assumed then the

other theorem can be derived from the first one. One may apply these theorems according to convenience in any particular

format. A similar event happens in measure theory. Lebesgue monotone convergence theorem, Fatou’s lemma and Lebesgue

dominated convergence theorem are equivalent. They are applied according to convenience. So, there is a need to transform

arguments and results of fixed point theory, because of the same reason.

The transformations used in this article are natural ones, but not trivial ones. The ultimate aim of transformation is to increase

possibilities to derive new examples and results. The most expected application of fixed point theory is to increase possibilities

to solve equations. The transform used in this article can be extended to many branches of analysis.
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Abstract

In this paper, we classify warped translation surfaces being invariant surfaces of i-type, that

is, the generating curve has formed by the intersection of the surface with the isotropic

xz-plane in the three-dimensional simply isotropic space I
3 under the condition

∆Jxi = λixi, with J = I, II.

Here, ∆J is the Laplace operator with respect to first and second fundamental form and

λi, i = 1,2,3 are some real numbers. Also, as an application, we give some examples for

these surfaces and also some explicit graphics of them. All graphics have been plotted with

Maple14.

1. Introduction

Let Em denotes the m-dimensional Euclidean space and Mn be a connected n-dimensional submanifold in this space. An

isometric immersion x : M → E
m is said to be of k-type if it can be expressed as a sum of eigenvectors of the Laplace-Beltrami

operator of the induced metric ∆, corresponding to k distinct eigenvalues of ∆:

x = x0 +x1 + · · ·+xk, such that ∆xi = λixi, i = 1, . . . ,k,

for a consant vector x0, smooth non-constant functions xk and λi ∈ R, [1]. If an isometric immersion x is of k-type, then the

submanifold M is said to be of k-type [2, 3]. In [4], Chen gave a good survey related to finite type submanifolds. In [5], author

proved that a submanifold Mn in E
m is of 1-type, that is, ∆x = λx, λ ∈ R

+, if and only if it is either a minimal submanifold of

E
m (λ = 0) or a minimal submanifold of hypersphere S

m−1 in E
m (λ 6= 0). In [6, 7], by generalizing of this, authors showed

that if a hypersurface Mn of En+1 satisfies

∆x = Ax, (1.1)

where A ∈ R
(n+1)×(n+1) is a diagonal matrix A = diag(λ1, . . . ,λn+1). Moreover, Senoussi and Bekkar studied helicoidal

surfaces in Euclidean 3-spaces satisfying the condition (1.1), [8]. Furthermore, in [9], Chen gave a detailed paper account of

recent development about finite type submanifolds in Euclidean spaces.

On the other hand, very recently, the study on intrinsic (or extrinsic) properties of surfaces in (pseudo-) isotropic spaces has

become a research subject for many researchers, see for examples [10]-[17]. Moreover, coordinate finite-type submanifolds
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have been studied in isotropic spaces [18, 19]. Moreover, the study of finite type submanifolds was studied in simply isotropic

spaces. In particular, Karacan et. al. studied translation surfaces and surfaces of revolution satisfying

∆Jxi = λixi, (1.2)

where J = I, II and i = 1,2,3, in these spaces in [20, 21] and [22], respectively. Also, in [23], [24] and [25], authors studied

affine translation surfaces, helicoidal surfaces and ruled surfaces satisfying the same condition.

In this paper, we are going to study on warped translation surfaces of finite type in three dimensional Isotropic space I
3

satisfying (1.2).

2. Preliminaries

The simply isotropic 3-space I
3 is a Cayley-Klein space defined from the 3-dimensional real projective space P

3(R) with the

absolute figure as given {ω,d1,d2, f}. In this space, the homogeneous coordinates [x0 : x1 : x2 : x3] are presented such that

ω : x0 = 0 is a plane in P
3(R), d1 : x0 = 0 = x1 + ix2 and d2 : x0 = 0 = x1 − ix2 are two complex-conjugate straight lines in the

plane, and also f = [0 : 0 : 0 : 1] is a point in the intersection d1 ∩d2.

The group of motions of I3 is a six-parameter group given by [26]

x̃ = a0 + xcosφ − ysinφ ,

ỹ = a1 + xsinφ + ycosφ , (2.1)

z̃ = a2 + c1x+ c2y+ z,

where φ ,a0,a1,a2,c1,c2 ∈R. Concerning this group of i-motions, it can be easily seen that these motions are indeed composed

of an Euclidean motions onto the xy-plane and an affine shear transformation in z-direction. Thus, the projection of a point

S(x,y,z), in the z-direction onto R
2, ˜S(x,y,0) is called the top view of S. Let ~A = (x1,x2,x3) be a vector in I

3. If x1 = x2 = 0,

then ~A is called as isotropic, otherwise non-isotropic. A plane having an isotropic line is said to be an isotropic plane and a line

with an isotropic director is an isotropic line.

Given two vectors ~A = (x1,x2,x3) and ~B = (y1,y2,y3), the isotropic inner product is calculated by [26]

〈

~A,~B
〉

= x1y1 + x2y2.

Moreover, M2 is called as an admissible surface when the metric in M2 induced by the isotropic scalar product has rank

2. More precisely, M2 parameterized by a C2 map x(u1
,u2) =

(

x1(u1
,u2),x2(u1

,u2),x3(u1
,u2)

)

, is admissible if and only if

X12 = x1
1x2

2 − x1
2x2

1 6= 0, where xi
k = ∂xi

/∂uk and

Xi j =
∣

∣

∣
xi

1x
j
2 − x

j
1xi

2

∣

∣

∣
, (2.2)

[17, 26]. As a result, every admissible C2 surface M2 can be locally parameterized as x(u1
,u2) =

(

u1
,u2

, f (u1
,u2)

)

: one can

say that M is in its normal form.

Furthermore, the isotropic first and second fundamental forms I and II, and also their coefficients of the isotropic metric tensor

gi j and hi j are given by, respectively, [17]

I = gi ju
iu j and gi j = 〈xi,x j〉, (2.3)

II = hi ju
iu j and hi j = xi j ·Nm,

where

Nm =
x1 ×x2

X12
= (

X23

X12
,

X31

X12
,1). (2.4)

Here, we may call Nm the minimal normal because the trace of the Weingarten-like operator −Nm vanishes identically.

Also, the isotropic Gaussian and mean curvatures are given by [17]

K =
h11h22 −h2

12

g11g22 −g2
12

and H =
1

2

g11h22 −2g12h12 +g22h11

g11g22 −g2
12

. (2.5)

Note that, a surface in I
3 is called as isotropic flat (resp. isotropic minimal ) if K (resp. H) vanishes.
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Consequently, according to a local coordinate system, the Laplacian ∆J , J = I, II in terms of the first and second fundamental

forms are defined as usual by, ([20, 21],[26])

∆I =− 1
√

g11g22 −g2
12

[

∂1

(g22∂1 −g12∂2√
g

)

+∂2

(g11∂2 −g12∂1√
g

)

]

, (2.6)

and

∆II =− 1
√

h11h22 −h2
12



∂1

( h22∂1 −h12∂2
√

h11h22 −h2
12

)

+∂2

( h11∂2 −h12∂1
√

h11h22 −h2
12

)



 , (2.7)

where ∂i = ∂/∂ui and gi j is the inverse of the metric, that is, gikgk j = δ i
j. Moreover, throughout paper we will take as

g11g22 −g2
12 6= 0 and h11h22 −h2

12 6= 0.

2.1. Warped translation surface in Simply Isotropic 3-space

In this work, we will be working on warped translation surfaces being one of the types of invariant surfaces in I
3 and some

algebraic equations in terms of the Laplacian operator and the coordinate functions of these surfaces. So, in this section, we

will work to explain how warped translation surfaces in I
3 are parameterized, (For more details, see [17].)

Let M2 be a warped translation surface being invariant. So, M2 can be parametrized as

M2
(a0,a1,0,c1,c2)

: P(u,v) = (a0v+ x(u),a1v,c1vx(u)+ z(u)), (2.8)

such that a2 = (a0c1 +a1c2) = 0, (a0,a1), (c1,c2) 6= (0,0). Also, φ ,a0,a1,a2,c1,c2 are the real constants as in Eq. (2.1).

Notice that since all simply isotropic invariant surfaces are admissible, throughout paper we will assume that warped translation

surfaces are admissible, (see for more details, [17].)

3. Warped translation surfaces of finite type

As mentioned in the previous section, the warped translation surfaces can be parametrized as in (2.8) in Isotropic 3-spaces. In

this section, we calculate the Laplacian operator ∆J for these surfaces in I
3. And then, we examine the warped translation

surfaces satisfying the condition (1.2). Finally, we give the complete classification of these surfaces of finite type in I
3.

Now, let us consider on a warped translation surface M2
(a0,a1,0,c1,c2)

defined as in (2.8) with the generating curve α , α(u) =

(u,0,z(u)), i.e.,

x(u,v) = (a0v+u,a1v,c1uv+ z(u)), a1 > 0. (3.1)

Thus, we have

xu = (1,0,c1v+ z′),

xv = (a0,a1,c1u).

Since M2
(a0,a1,0,c1,c2)

is admissible, i.e., a1 6= 0 from (2.2), then Nm the minimal normal defined by (2.4) is computed as

Nm = (−c1v− z′,
a0z′+ c1(a0v−u)

a1
,1).

By considering (2.3), we obtain the corresponding fundamental forms as [17]

I = 1du2 +2a0dudv+(a0
2 +a1

2)dv2 and II = z′′du2 +2c1dudv,

and from (2.5), the Gaussian and mean curvatures are

K =− c2
1

a1
2

and H =−a0c1

a1
2
+

(a0
2 +a1

2)

2a1
2

z′′.

Finally, the Laplace-Beltrami operators defined as in (2.6) and (2.7) of a warped translation surface are obtained as, respectively,

∆I =−a0
2 +a1

2

a1
2

∂ 2

∂u2
+

2a0

a1
2

∂ 2

∂u∂v
− 1

a1
2

∂ 2

∂v2
, (3.2)
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and

∆II =− 2

c1

∂ 2

∂u∂v
+

z′′

c1
2

∂ 2

∂v2
,

where c1 is a non-zero constant.

Now, firstly we would like to give the following theorem being the classification of parabolic revolution surfaces satisfying

(3.2) in I
3.

Theorem 3.1. Let M2 be a warped translation surface given by (3.1) in I
3 such that it satisfies the condition ∆Ixi = λixi, where

λi, i = 1,2,3 are some real constants. Then M2 refers to one of the followings:

1. If λ1 = λ2 = 0 and λ3 = 0, then the function z(u) is quadratic.

2. If λ1 = λ2 = 0 and λ3 6= 0, then (a0,a1,0,c1,c2) = (a0,a1,0,0,c2) and z is given by either

(a) z(u) = z1 cosh(
√

Λ3 u)+ z2 sinh(
√

Λ3 u), if λ3 > 0, or

(b) z(u) = z1 cos(
√
−Λ3 u)+ z2 sin(

√
−Λ3 u), if λ3 < 0,

where Λ3 =
λ3a1

2

a0
2+a1

2 .

Proof. Assume that M2 is a warped translation surface given by (3.1) and it satisfies the condition (1.2) for J = I. Let us take

the expressions

∆Ix =
(

∆Ix1,∆
Ix2,∆

Ix3

)

,

(2.6) and (3.1) together. Thus by a straightforward computation, we get

∆Ix =
(

0,0,−z′′
a0

2 +a1
2

a1
2

+
2a0c1

a1
2

)

.

So, as M2 satisfies the condition ∆Ixi = λixi, where λi, i = 1,2,3 are some real constants, we have

0 = λ1(a0v+u), (3.3)

0 = λ2a1v, (3.4)

−z′′
a0

2 +a1
2

a1
2

+
2a0c1

a1
2

= λ3

(

c1uv+ z
)

. (3.5)

So, from (3.3) and (3.4), we get directly λ1 = λ2 = 0. Now, we will consider on two possibilities coming from (3.5). First, if

λ3 = 0 then we get the following ODE

a0
2 +a1

2

a1
2

z′′− 2a0c1

a1
2

= 0, (3.6)

whose solutions are given as in Case (1) in Theorem 3.1. Secondly, let λ3 6= 0. By considering z = z(u) in (3.5), we obtain

c1 = 0 and

z′′+
λ3a1

2

a0
2 +a1

2
z = 0.

By taking Λ3 =− λ3a1
2

a0
2+a1

2 , we can rewrite the last ODE as

z′′−Λ3z = 0,

whose solutions is given as in Case(2) in Theorem 3.1.

Remark 3.2. By comparing the second equality of (3.2) and (3.6), we conclude that the warped translation surface M2

parametrized as in Case (1) in Theorem 3.1 is a isotropic minimal surface in I
3.

Remark 3.3. By comparing the first equality of (3.2) and (3.6), we conclude that the warped translation surface M2

parametrized as in Case (2) in Theorem 3.1 is a isotropic flat surface in I
3.

By considering the above Remark 3.2, we have the following:

Corollary 3.4. A warped translation surface given by (3.1) in the three dimensional simply isotropic space I
3 is harmonic if

and only if the surface M2 is isotropic minimal.
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Figure 3.1: An isotropic minimal warped translation surface is parametrized as in Case (1) in Theorem 3.1.

Figure 3.2: An isotropic flat warped translation surface is parametrized as in Case (2a) in Theorem 3.1.

Now, we would like to give some explicit examples of warped translation surfaces satisfing (1.2) for J = I in I
3:

Secondly, we would like to give the following theorem being the classification of warped translation surfaces satisfying (1.2)

for J = II in I
3.

Theorem 3.5. Let M2 be a warped translation surface given by (3.1) in I
3 such that it satisfies the condition ∆IIxi = λixi,

where λi, i = 1,2,3 are some real constants. Then M2
(a0,a1,0,0,c2)

can be parametrized as

x(u,v) = (a0v+u,a1v,c1uv− 2

λ3
), a1 > 0.

Proof. Let M2 be a warped translation surface given by (3.1) satisfying (1.2) and

∆IIx =
(

∆IIx1,∆
IIx2,∆

IIx3

)

.

By a straightforward computation, we get from (2.7)

∆IIx =
(

0,0,−2
)

.
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Figure 3.3: An isotropic flat warped translation surface is parametrized as in Case (2b) in Theorem 3.1.

So, as M2 satisfies the condition ∆IIxi = λixi, where λi, i = 1,2,3 are some real constants, we have

0 = λ1(a0v+u), (3.7)

0 = λ2a1v, (3.8)

−2 = λ3

(

c1uv+ z(u)
)

. (3.9)

From (3.7) and (3.8), we get directly, λ1 = λ2 = 0. Now by considering (3.9), we conclude directly that λ3 6= 0. And so we

obtain c1 = 0 and z =− 2
λ3

. Thus M2 can be parametrized as in Theorem 3.5.

Definition 3.6. A surface in a simply isotropic 3-space, I3 is called as II−harmonic if it satisfies the condition ∆IIx = 0, [20].

By considering the above Definition and the proof of Theorem 3.5, we have the following:

Corollary 3.7. There are no II−harmonic warped translation surface in I
3.

Now, we would like to give some explicit examples of warped translation surfaces satisfying ∆IIxi = λixi in I
3:

Figure 3.4: A warped translation surface is parametrized as in Theorem 3.5.
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Abstract

In this paper, we study the numerical methods for solving a nonlinear reaction-diffusion

model for the polarization phenomena in ionic conductors. In particular, we propose three

types of numerical methods, including the finite difference, cubic B-spline collocation, and

local discontinuous Galerkin method, to approximate the quenching time of the model.

We prove the conservation properties for all three numerical methods and compare their

numerical performance.

1. Introduction

In this paper, we investigate some numerical approximations of the quenching time of the solutions to the following nonlinear

reaction-diffusion equation

ut(x, t) = uxx(x, t)+
1

1−u(x, t)
, 0 < x < L, 0 < t < T, (1.1)

subject to the initial condition u(x,0) = 0 and two types of boundary conditions, i.e., the zero Neumann boundary condition

ux(0, t) = ux(L, t) = 0, (1.2)

and the zero Dirichlet boundary condition

u(0, t) = u(L, t) = 0. (1.3)

Here L > 0 is a given constant. The quenching time of the solutions to the equation (1.1) with some initial and boundary

conditions is defined to be the finite time T (if it exists), such that

lim
t→T−

max{u(x, t) : 0 ≤ x ≤ L}→ 1,

where u(x, t) is the solution [1]. One can show that the initial-boundary value problem (1.1),(1.2) along with the zero initial

condition leads to quenching at T = 1/2. For the initial-boundary value problem (1.1),(1.3) with the zero initial condition,

Email addresses and ORCID numbers: fjones19@augusta.edu, https://orcid.org/0000-0000-0000-0000 (F. Jones), hyang1@augusta.edu, https://orcid.org/0000-0001-9608-

4920 (H. Yang)
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it has been shown that the quenching time exists if L > 2
√

2 (see [2]). However, there is no analytical formulation for the

quenching time. The objective of this paper is to propose numerical methods to approximate the quenching time, and prove

their conservation property and compare their numerical performance. Specifically, we design the finite difference, cubic

B-spline collocation and local discontinuous Galerkin method for equation (1.1) with Dirichlet and Neumann boundary

conditions.

Finite difference methods have been widely used to solve a great number of differential equation models due to its simplicity.

For certain nonlinear acoustics problems, however, it has been shown that the local discontinuous Galerkin (LDG) methods

lead to more accurate solution than the benchmark finite difference methods in literature [3]. The LDG methods, as a special

type of finite element methods, are suitable for complicated geometry and parallel computing. It is also easy to design LDG

methods with high order of accuracy and conservation properties [4]-[6]. The cubic B-spline collocation methods have also

been applied to solve various partial differential equations [7]. In addition, the Galerkin approach with the cubic B-spline has

been applied to solve the modified regularized long wave equation [8], the generalized regularized long wave equation [9, 10],

and the Benjamin-Bona-Mahony-Burgers equation [11]. One of the advantages of the cubic B-spline collocation methods over

the finite element type of methods is that the calculation of coefficient matrices does not require numerical quadrature [12]. In

this work, we propose three numerical methods based on the finite difference, cubic B-spline collocation and LDG methods.

We can prove that all three numerical methods satisfy certain conservation property. We also compute the quenching time of

equation (1.1) with Dirichlet and Neumann boundary conditions using these methods. To make fair comparison, we compute

the results using three numerical methods which have the same order accuracy in both time and space.

The remaining of the paper is organized as follows. In section 2, we present the numerical methods for the nonlinear reaction-

diffusion equation. In section 3, we discuss the conservation properties of the proposed methods. In section 4, we show the

numerical results for the approximation of quenching time.

2. Description of numerical methods

In this section, we describe our numerical methods for solving the nonlinear reaction-diffusion equation (1.1) with zero initial

condition, and Neumann boundary condition (1.2) or Dirichlet boundary condition (1.3). In particular, we focus on the finite

difference method (FDM), the cubic B-splines method and the local discontinuous Galerkin (LDG) method, and investigate the

performance of these numerical methods.

2.1. Finite difference method

We partition the spatial domain [0,L] into N elements uniformly using (N +1) grid points: 0 = x0 < x1 < .. . < xN = L. We

denote the length of each element by h, thus we have h = L/N and xi = ih for i = 0,1, . . . ,N. Suppose we want to solve the

nonlinear reaction-diffusion equation (1.1) up to the final time T , then we discretize the temporal domain [0,T ] using (M+1)
uniformly spaced nodes t j := j∆t for j = 0,1, . . . ,M with the step size ∆t = T/M. Now we denote the numerical solution at

x = xi and t = t j by U
j

i , then finite difference discretization of (1.1) can be written as

U
j+1

i −U
j

i

∆t
=

U
j

i−1 −2U
j

i +U
j

i+1

h2
+

1

1−U
j

i

,

for i = 1,2, . . . ,N −1 and j = 0,1, . . . ,M−1. Here we have used the second-order centered difference in space and forward

Euler method in time. That is,

ut(xi, t j)≈
U

j+1
i −U

j
i

∆t
,

and

uxx(xi, t j)≈
U

j
i−1 −2U

j
i +U

j
i+1

h2
.

For the case of homogeneous Dirichlet boundary condition, we have

U
j

0 =U
j

N = 0,

for any j. Moreover, due to the initial condition, there is U0
i = 0 for any i. Therefore, at ( j+1)th time level ( j ≤ M1), we

update U
j+1

i by

U
j+1

i = rU
j

i+1 +(1−2r)U j
i + rU

j
i−1 +

∆t

1−U
j

i

, i = 1,2, . . . ,N −1, (2.1)

and U
j+1

0 =U
j+1

N = 0. Here r = ∆t/h2 has to be chosen small enough for the stability of the scheme.
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For the case of homogeneous Neumann boundary condition, we introduce the ghost points x−1 := x0 −h and xN+1 := xN +h,

and approximate the Neumann boundary condition using the second-order centered difference, which leads to

U
j
−1 =U

j
1 , U

j
N+1 =U

j
N−1. (2.2)

Then we update U
j+1

0 and U
j+1

N by applying (2.1) at i = 0 and i = N, as well as conditions in (2.2). Therefore, the scheme for

this case can be written as

U
j+1

0 = (1−2r)U j
0 +2rU

j
1 +

∆t

1−U
j

0

, U
j+1

N = 2rU
j

N−1 +(1−2r)U j
N +

∆t

1−U
j

N

, (2.3)

coupled with (2.1).

2.2. Cubic B-spline collocation method

The idea of the cubic B-spline collocation method is to look for the numerical solution represented using the cubic B-spline

basis, such that equation (1.1) is satisfied at all the collocation points.

To describe the cubic B-spline collocation method, we use the same notation for the grid points in [0,L] (see section 2.1), and

define x j = jh for j = 0,±1,±2, . . .. Let B j(x) be the cubic B-spline function defined as

B j(x) =
1

h3























(x− x j−2)
3, if x ∈ [x j−2,x j−1)

(x− x j−2)
3 −4(x− x j−1)

3, if x ∈ [x j−1,x j)
(x j+2 − x)3 −4(x j+1 − x)3, if x ∈ [x j,x j+1)

(x j+2 − x)3, if x ∈ [x j+1,x j+2]
0, if x 6∈ [x j−2,x j+2]

for any integer j. Note that each cubic B-spline basis function B j(x) is only nonzero when x ∈ [x j−2,x j+2]. Then the numerical

solution U(x, t) for x ∈ [0,L] can be represented by

U(x, t) =
N+1

∑
j=−1

α j(t)B j(x), (2.4)

since B j(x) = 0 for x ∈ [0,L] and any j ≤−2 or j ≥ N +2. Here α j(t) for j =−1,0, . . . ,N +1 are the unknown coefficients

to be determined.

For the case of homogeneous Dirichlet boundary condition, we require U(x, t) in (2.4) to satisfy equation (1.1) at x j, for

j = 0,1, . . . ,N, and vanish at x = 0 and x = L. These conditions lead to (N +3) ordinary differential equations with (N +3)
unknowns, which can be further solved by any time discretization method. With the help of the results in Table 1, we can

derive the formulation of the scheme as follows

α ′
j−1 +4α ′

j +α ′
j+1 =

6

h2
(α j−1 −2α j +α j+1)+

1

1−α j−1 −4α j −α j+1
, (2.5)

for j = 0,1, . . . ,N, coupled with

U(x0, t) = α−1 +4α0 +α1 = 0, (2.6)

U(xN , t) = αN−1 +4αN +αN+1 = 0. (2.7)

If we apply (2.6) to (2.5) at j = 0, then we can show that α−1 − 2α0 + α1 = −h2/6, which leads to α0 = h2/36 and

α−1 = −h2/9−α1. Similarly, if we apply (2.7) to (2.5), we can show that αN = h2/36 and αN+1 = −h2/9−αN−1. If we

further use these equations in (2.5), we can derive the following ODE system

A
dα

dt
= f, (2.8)

where

A =



















4 1

1 4 1

1 4 1

. . .
. . .

. . .

1 4 1

1 4



















, α =





















α1

α2

...

...

αN−2

αN−1





















and f =





















f1

f2

...

...

fN−2

fN−1





















,
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x j−2 x j−1 x j x j+1 x j+2

B j(x) 0 1 4 1 0

B′
j(x) 0 3/h 0 −3/h 0

B′′
j (x) 0 6/h2 −12/h2 6/h2 0

Table 1: Evaluation of cubic B-spline basis function and its derivatives at grid points.

with f j = 6(α j−1 − 2α j +α j+1)/h2 + 1/(1−α j−1 − 4α j −α j+1). We then solve equation (2.8) using the forward Euler

method.

For the case of homogeneous Neumann boundary condition, we impose the boundary condition for U(x, t) defined in (2.4).

Thus, we have

Ux(x0, t) =
3

h
(α1 −α−1) = 0

Ux(xN , t) =
3

h
(αN+1 −αN−1) = 0,

which leads to α−1 = α1 and αN+1 = αN−1. We then apply these equations to (2.5) for j = 0,1, . . . ,N, and obtain the following

ODE system

Ã
dα̃

dt
= f̃, (2.9)

where

Ã =



















4 2

1 4 1

1 4 1

. . .
. . .

. . .

1 4 1

2 4



















, α̃ =





















α0

α1

...

...

αN−1

αN





















and f̃ =





















f0

f1

...

...

fN−1

fN





















.

Note that we can compute f0 and fN using f0 = 12(α1 −α0)/h2 +1/(1−2α1 −4α0) and fN = 12(αN−1 −αN)/h2 +1/(1−
2αN−1 −4αN). Similarly, we can then solve equation (2.9) using the forward Euler method.

2.3. Local discontinuous Galerkin method

To define the local discontinuous Galerkin (LDG) method for the initial-boundary value problem, we use I j := [x j−1,x j] to

denote the jth element, and rewrite (1.1) as

ut = qx +
1

1−u
, q = ux.

Let V k
h be the piecewise defined polynomial space given by V k

h = {v : v|I j
∈ Pk(I j),∀I j}, where Pk(I j) is the space of

polynomials of degree up to k on I j. The LDG scheme is to look for uh and qh ∈V k
h , such that

∫

I j

∂

∂ t
uhvdx = −

∫

I j

qhvx dx+ q̂ jv
−
j − q̂ j−1v+j−1 +

∫

I j

v

1−uh

dx, (2.10)

∫

I j

qhwdx = −
∫

I j

uhwx dx+ û jw
−
j − û j−1w+

j−1, (2.11)

for any v,w ∈V k
h and j = 1,2, . . . ,N. Here v−j := lim

ε→0+
v(x j −ε) and v+j−1 := lim

ε→0+
v(x j−1 +ε) are the left- and right-hand limit

of v(x) at x
j+ 1

2
and x

j− 1
2
, respectively. Similar definition holds for w−

j and w+
j−1. Due to the discontinuity of the numerical

solution at the grid points, we use q̂ j and û j for j = 0,1, . . . ,N, to denote the so-called numerical fluxes, which will be carefully

chosen for different boundary conditions.

For the initial-boundary value problem with the homogeneous Dirichlet boundary condition, we choose

q̂ j = (qh)
+
j , û j = (uh)

−
j , for j = 1,2, . . . ,N −1. (2.12)
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That is, at any interior grid points x j, the numerical fluxes q̂ j and û j are computed using qh|I j+1
(i.e., the restriction of the

function qh on the interval I j+1) and uh|I j
(i.e., the restriction of the function uh on the interval I j), respectively. At the left and

right endpoints, we take

q̂0 = (qh)
+
0 , û0 = 0, q̂N = (qh)

−
N − 1

h
(uh)

−
N , ûN = 0. (2.13)

Note that we have used the penalty term (uh)
−
N/h in the definition of q̂N . Such a term is crucial when we design the numerical

scheme [13].

For the problem with the homogeneous Neumann boundary condition, we use (2.12) along with the following choice at the

boundary [14]:

q̂0 = 0, û0 = (uh)
+
0 , q̂N = 0, ûN = (uh)

−
N . (2.14)

Let {v
j
1(x),v

j
2(x), . . . ,v

j
k+1(x)} be a local basis of V k

h on I j (1 ≤ j ≤ N). We can express the numerical solution on I j as

uh|I j
=

k+1

∑
l=1

C
j
l (t)v

j
l (x), qh|I j

=
k+1

∑
l=1

D
j
l (t)v

j
l (x), (2.15)

where {C
j
l (t)}l=1,...,k+1 and {D

j
l (t)}l=1,...,k+1 are the unknown coefficients to be determined. If we use (2.15) in equa-

tions (2.10)-(2.13) (for the case of Dirichlet boundary condition), or equations (2.10)-(2.12), (2.14) (for the case of Neumann

boundary condition), we can derive an ODE system of C
j
l (t) and D

j
l (t) for l = 1,2, . . . ,k+1 and j = 1,2, . . . ,N, which will be

solved by any time integration method.

3. Conservation properties of numerical methods

In this section, we present some properties of the three numerical methods described in section 2, when they are used to solve

the initial-boundary value problem (1.1) with zero initial condition and the boundary condition (1.2). Throughout this section,

we assume that the quenching time of such a problem is T > 0. Then it is easy to verify that its exact solution u(x, t) satisfies

the following equalities:

∫ L

0
ut dx =

∫ L

0

1

1−u
dx, (3.1)

and

1

2

d

dt

∫ L

0
u2dx+

∫ L

0
u2

x dx =
∫ L

0

u

1−u
dx, (3.2)

for any t < T . We will show that similar equalities also hold for the numerical solutions.

Theorem 3.1. The numerical solution by the finite difference method in equation (2.1) and (2.3) satisfies the following equation

h
N

∑
i=0

diU
j+1

i = h
N

∑
i=0

diU
j

i +h∆t
N

∑
i=0

di

1−U
j

i

, (3.3)

if U
j

i < 1 for i = 0, . . . ,N. Here di = 1 for i = 0 or N, and di = 2 for i = 1,2, . . . ,N −1.

Proof. We multiply each equation in (2.1) by 2 and sum over i for i = 1,2, . . . ,N −1, to get

N−1

∑
i=1

diU
j+1

i =
N−1

∑
i=1

diU
j

i +
N−1

∑
i=1

2rU
j

i−1 +
N−1

∑
i=1

2rU
j

i+1 −
N−1

∑
i=1

4rU
j

i +∆t
N−1

∑
i=1

di

1−U
j

i

=
N−1

∑
i=1

diU
j

i +2rU
j

0 −2rU
j

1 +2rU
j

N −2rU
j

N−1 +∆t
N−1

∑
i=1

di

1−U
j

i

. (3.4)

We then add each of the equations in (2.3) to equation (3.4), and obtain

U
j+1

0 +U
j+1

N +
N−1

∑
i=1

diU
j+1

i = U
j

0 +U
j

N +
N−1

∑
i=1

diU
j

i +∆t
N

∑
i=1

di

1−U
j

i

. (3.5)

Since equation (3.5) is equivalent to (3.3), we can conclude the proof.
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Note that h∑
N
i=0 diU

j+1
i is the approximation of

∫ L
0 u(x, t j+1)dx using the trapezoidal rule, and the right side of (3.3) is the

approximation of
∫ L

0 u(x, t j)dx+
∫ L

0
1

u(x,t j)
dx. Therefore, we can regard equation (3.3) as the discretization of the equality (3.1).

Next, we consider the cubic B-spline method in (2.9) and we have the following theorem.

Theorem 3.2. With the cubic B-spline method defined in (2.9), the following equality holds

6h
N

∑
i=0

diα
′
i (t) =

h

1−4α0 −2α1
+

N−1

∑
i=1

2h

1−αi−1 −4αi −αi+1
+

h

1−2αN−1 −4αN

, (3.6)

if 4α0 +2α1 < 1, 2αN−1 +4αN < 1 and αi−1 +4αi +αi+1 < 1 for i = 1,2, . . . ,N −1.

Proof. Equation (2.9) leads to

4α ′
0 +2α ′

1 =
12

h2
(α1 −α0)+

1

1−4α0 −2α1
, (3.7)

α ′
j−1 +4α ′

j +α ′
j+1 =

6

h2
(α j−1 −2α j +α j+1)+

1

1−α j−1 −4α j −α j+1
, (3.8)

2α ′
N−1 +4α ′

N =
12

h2
(αN−1 −αN)+

1

1−2αN−1 −4αN

, (3.9)

for j = 1,2, . . . ,N − 1. We then multiply each equation in (3.8) by 2h, sum over j and add (3.7) and (3.9), which leads

to (3.6).

Since
∫ L

0 ut dx ≈ h∑
N
i=0 diUt(xi, t) = h∑

N
i=0 di(α

′
i−1+4α ′

i +α ′
i+1) = 6h∑

N
i=0 diα

′
i , and the right side of (3.6) is an approximation

of
∫ L

0
1

1−u
dx, equation (3.6) is also the discretization of the equality (3.1). The next theorem is about the conservation property

of the local discontinuous Galerkin method (2.10), (2.11), (2.12) and (2.14).

Theorem 3.3. Let uh and qh be the numerical solution to (2.10), (2.11), (2.12) and (2.14), then the following equality holds

for sufficiently small t > 0

1

2

d

dt

∫ L

0
u2

hdx+
∫ L

0
q2

hdx =
∫ L

0

uh

1−uh

dx. (3.10)

Proof. Let v = uh in (2.10), w = qh in (2.11) and add the resulting equations, we have

1

2

d

dt

∫

I j

u2
hdx+

∫

I j

q2
hdx (3.11)

= −
∫

I j

(qhuh)xdx+ q̂ j(uh)
−
j − q̂ j−1(uh)

+
j−1 + û j(qh)

−
j − û j−1(qh)

+
j−1 +

∫

I j

uh

1−uh

dx

= ((qh)
+
j−1 − q̂ j−1)(uh)

+
j−1 +(û j − (uh)

−
j )(qh)

−
j + q̂ j(uh)

−
j − û j−1(qh)

+
j−1 +

∫

I j

uh

1−uh

dx,

for j = 1,2, . . . ,N. Using equation (2.12), we can show that equation (3.11) leads to

1

2

d

dt

∫

I j

u2
hdx+

∫

I j

q2
hdx = (qh)

+
j (uh)

−
j − (qh)

+
j−1(uh)

−
j−1 +

∫

I j

uh

1−uh

dx, (3.12)

for any j = 2,3, . . . ,N −1. For j = 1, equation (3.11) can be simplified as

1

2

d

dt

∫

I1

u2
hdx+

∫

I1

q2
hdx = ((qh)

+
0 − q̂0)(uh)

+
0 +(qh)

+
1 (uh)

−
1 − û0(qh)

+
0 +

∫

I1

uh

1−uh

dx

= (qh)
+
1 (uh)

−
1 +

∫

I1

uh

1−uh

dx, (3.13)

where we have used (2.12) and (2.14) in the first and second equality above, respectively. For j = N, equation (3.11) can be

written as

1

2

d

dt

∫

IN

u2
hdx+

∫

IN

q2
hdx (3.14)

= ((qh)
+
N−1 − q̂N−1)(uh)

+
N−1 +(ûN − (uh)

−
N )(qh)

−
N + q̂N(uh)

−
N − ûN−1(qh)

+
N−1 +

∫

IN

uh

1−uh

dx,

= −(uh)
−
N−1(qh)

+
N−1 +

∫

IN

uh

1−uh

dx.
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Finally, we add (3.12)-(3.14) over all j = 2,3, . . . ,N −1 to get

1

2

d

dt

∫ L

0
u2

hdx+
∫ L

0
q2

hdx

=
N−1

∑
j=2

(

(qh)
+
j (uh)

−
j − (qh)

+
j−1(uh)

−
j−1

)

+(qh)
+
1 (uh)

−
1 − (uh)

−
N−1(qh)

+
N−1 +

∫ L

0

uh

1−uh

dx,

=
∫ L

0

uh

1−uh

dx.

Note that equation (3.10) is the discretized version of the conservation property (3.2) in the PDE level.

4. Numerical experiments

In this section, we present the numerical results of the quenching time for the nonlinear reaction-diffusion equation (1.1).

We compare the accuracy of the finite difference method, the cubic B-spline collocation method and the local discontinuous

Galerkin method for the quenching time. We choose the polynomial degree to be k = 1 for the LDG method, so that all three

numerical methods have the second-order accuracy in space. Numerically, we compute the quenching time T in the following

way

T := min
t

(

max
x∈[0,L]

U(x, t)

)

≥ 1− ε,

where U(x, t) is the numerical solution, and ε is chosen to be 10−7.

We first consider equation (1.1) with zero initial condition and the homogeneous Neumann boundary condition, in which case

the exact solution is

u(x, t) = 1−
√

1−2t, t ≤ 1/2.

Thus the exact quenching time is t = 1/2. We then use the above-mentioned numerical methods to approximate the quenching

time. The results for the case of Neumann boundary condition are shown in Table 2. We have used ∆t = λh2 with λ = 0.16 in

all the simulations for the table. We start with the numerical simulations using N = 80 uniform elements, and then double

the number of elements a few times until N = 640. Suppose the errors corresponding to N1 and N2 := N1/2 are E1 and E2,

respectively. We can approximate the convergence order by

Convergence order ≈ log2(E2/E1).

From Table 2, we observe the second order convergence of the quenching time for all three numerical methods. Moreover,

we find that the numerical quenching time of the local discontinuous Galerkin method is exactly the same as that of the

finite difference method. However, the results of the cubic B-spline method is less accurate then other two methods. Overall

speaking, all of the methods lead to the numerical quenching time with comparable accuracy. Figure 4.1 shows the numerical

solutions at various time, i.e., t = 0.1,0.2, . . . ,0.5, when the finite difference method with 80 elements is used. We can see that

the method captures the quenching phenomena, although the numerical solution at t = 0.5 is slightly smaller than the exact

solution.

Finite Difference Cubic B-Spline Local Discontinuous Galerkin

N Time Error Order Time Error Order Time Error Order

80 0.50120 1.2E-3 - 0.50200 2.0E-3 - 0.50120 1.2E-3 -

160 0.50030 3.0E-4 2 0.50050 5.0E-4 2 0.50030 3.0E-4 2

320 0.50010 1.0E-4 1.585 0.50015 1.5E-4 1.737 0.50010 1.0E-4 1.585

640 0.50003 2.5E-5 2 0.50004 3.75E-5 2 0.50003 2.5E-5 2

Table 2: Numerical results about the quenching time of equation (1.1) with homogeneous Neumann boundary condition.

Next, we consider equation (1.1) with zero initial condition and the homogeneous Dirichlet boundary condition. In [2], the

author proved that this problem leads to quenching in a finite time at x = L/2. However, the analytical formulation or any

estimation of the quenching time was not discussed. Here we compute the quenching time using the aforementioned numerical

methods. In this case, we start with N = 80 elements and keep refining the mesh until N = 2560 elements. Figure 4.2 shows

the solutions by the finite difference method with N = 80 elements. We observe that the numerical solution at x = L/2 grows at

an increasing rate. When we compare the numerical results in Figure 4.1 and 4.2, we notice that the problem with the Dirchlet

boundary condition (1.3) leads to larger quenching time than the problem with the Neumann boundary condition (1.2). The

numerical solution uh(x, t) and qh(x, t) by the LDG method right before quenching occurs is shown in Figure 4.3. We observe
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Figure 4.1: Solutions of equation (1.1) with homogeneous Neumann boundary condition by the finite difference method. N = 80 is used for

the simulation.
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Figure 4.2: Solutions of equation (1.1) with homogeneous Dirichlet boundary condition by the finite difference method. N = 80 is used for

the simulation.

that uh is not very smooth at x = 2, and the quenching is about to happen at this point. Recall that qh is the approximation of

first derivative of the exact solution u. The right-hand figure 4.3 shows that the first derivative of the solution decreases, and

jumps to a negative value at x → 2+.

Moreover, we compute the numerical quenching time for different numerical methods, and present the results in Table 3. We

can see that the quenching time decreases monotonically at a decreasing rate for the finite difference and LDG methods, which

indicates the convergence. However, the quenching time for the cubic B-spline method first decreases to 0.51035 and then

increases to 0.51039. The results from the LDG method shows similar type of convergence as that from the finite difference

method, i.e., the numerical quenching time converges to 0.51041 for both methods. Overall speaking, for both examples with

the same number of elements, the LDG and finite difference method lead to slightly better results then the cubic B-spline

method.

5. Conclusion

In this paper, we propose the finite difference, the cubic B-spline and the local discontinuous Galerkin methods to approximate

the quenching time of a nonlinear reaction-diffusion equation with homogeneous Dirichlet or Neumann boundary condition.

All of these numerical methods have displayed satisfactory results, with the second order convergence of the numerical

quenching time. For the same number of elements in space, the finite difference and the local discontinuous Galerkin methods

have slightly better performance than the cubic B-spline method. One can propose similar methods for higher dimensional

system of reaction-diffusion equations. The theoretical analysis for the convergence of the numerical quenching time is

currently under investigation.
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Figure 4.3: Numerical solution uh and qh of equation (1.1) with homogeneous Dirichlet boundary condition right before quenching occurs.

Left: numerical solution uh; right: numerical solution qh The local discontinuous Galerkin method with N = 320 is used for the simulation.

N Finite Difference Cubic B-Spline Local Discontinuous Galerkin

80 0.52250 0.51160 0.51070

160 0.51080 0.51050 0.51050

320 0.51053 0.51035 0.51043

640 0.51044 0.51035 0.51042

1280 0.51042 0.51037 0.51041

2560 0.51041 0.51039 0.51041

Table 3: Numerical results about the quenching time of equation (1.1) with Dirichlet boundary condition (1.3).
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Abstract

Higher order differential equations (ODE) has an important role in the modelling process.

It is also much significant which the method is used for the solution. In this study, in order

to get the approximate solution of a nonhomogeneous initial value problem, reproducing

kernel Hilbert space method is used. Reproducing kernel functions have been obtained and

the given problem transformed to the homogeneous form. The results have been presented

with the graphics. Absolute errors and relative errors have been given in the tables.

1. Introduction

In this study, by using reproducing kernel method we aim to find the approximate solution of the problem in the form as:

(Lh)(x) = p(x)h′′′(x)+q(x)h′(x) = f (x), a ≤ x ≤ b (1.1)

The reproducing kernel method (RKM) have been used as an efficient way to solve different types of differential equations

by many researcher for years. The theory of RKM was begin with the research of Aronszajn and Bergman [1, 2]. Since the

method is very effective, many researcher applied the method to the several kind of problems. For instance Cui et al. [3]

published a book about numerical analysis in the reproducing kernel space which is a comprehensive study. Syam et al. [4]

used the method to solve a class of fractional Sturm-Liouville eigenvalue problems.

Jiang and Tian [5] solved the Volterra integro-differential equations of fractional order by the reproducing kernel method. Li et

al. [6] applied the method for numerical solutions of fractional Riccati differential equations. For more details see [7]-[9].

In many models and problems, the equations need to be solved numerically. Therefore many approaches have been used

and there have been lots of efforts for solving non-linear higher order ordinary differential equations in researches. For

instance, Homotopy perturbation method [10], Adomian decomposition method [11], Chebyshev collocation method [12] used.

Adomian decomposition method for solving initial value problems in second-order ordinary differential equations is given in

[13]. Lu et al. Furthermore Runge- Kutta method [14], Predictor-Corrector method [15], decomposition method [16], direct

block method [17], have been used for solving IVP. For a further reading and more details one can see [18]-[26].

Email addresses and ORCID numbers: *Corresponding author: enuray@ticaret.edu.tr, https://orcid.org/0000-0002-2934-892X, aliakgul00727@gmail.com,

https://orcid.org/0000-0001-9832-1424
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2. RKM for higher order nonhomogeneous ordinary differential equations

In this section, we will discuss the solution of a class of higher order ODEs for IVPs in the following form:

(Lh)(x) = p(x)h′′′(x)+q(x)h′(x) = f (x), a ≤ x ≤ b

hi(a) = γi, 0 ≤ i ≤ 2
(2.1)

where p(x) and q(x) are continuous functions on the interval [a,b]. With the purpose of finding the solution of the problem

(2.1) by using RKM (reproducing kernel method), we first need to define the RKS(reproducing kernel space) to which the

equation belongs.The space construction is relevant to the order and conditions of the ODE that wanted to solved.

3. Construction of the method

To be able to solve the problem (2.1) using proposed method which we will denote RKM, we first construct reproducing kernel

spaces. After the space construction, we will close to the approximate solution by obtaining the reproducing kernel functions

belong to the given differential equation. In this section, we present some essential definitions and theorems in the theory of

suggested method.

Definition 3.1 (Reproducing Kernel). [2] Let Q be a nonempty set. A function R : Q×Q → F is called a reproducing kernel

of the Hilbert space H if and only if

(a) R(·,x) ∈ H , ∀x ∈ Q,

(b) 〈 γ ,R(·,x)〉= γ(x).

The item (b) is called ”reproducing property” of kernel R. The value of the function γ at the point x is reproduced by the inner

product of γ with R(·,x).

Definition 3.2. [3] The space Sm
2 [a,b] consist of the functions h : [a,b]→ R and define as follows:

Sm
2 [a,b] = {h(x)|h(m−1)(x) ∈ AC[a,b], h(m)(x) ∈ L2[a,b], x ∈ [a,b]}. (3.1)

Sm
2 [a,b] equipped with the inner product

< h, t >Sm
2
=

m−1

∑
i=0

h(i)(a)t(i)(a)+
∫ b

a
h(m)(x)t(m)(x)dx.

Here we denote the vector space of absolutely continuous (real-valued) functions with AC[a,b] and the quadratically integrable

functions on the interval [a,b] with L2[a,b].

Lemma 3.3. If a Hilbert space has a reproducing kernel, it is called a reproducing kernel Hilbert space (RKHS).

Lemma 3.4. [3] Sm
2 [a,b] function space is a reproducing kernel space.

The reproducing kernel function of the space Sm
2 can be written as:

Rx(y) =































R(x,y) =
2m

∑
i=1

hi(y)x
i−1

, x ≤ y,

R(y,x) =
2m

∑
i=1

ti(y)x
i−1

, x > y.

For the proof of Lemma 3.4 one can see [3].

In the next subsection, we present a special reproducing kernel function space on the interval [0,4π].
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3.1. S4
2[0,4π] Reproducing kernel space

According to the reproducing kernel theory, we construct the space with concerning of the order of the derivative in the

problem. For this reason in the equation (3.1) we choose m = 4. Let we now define the function space

S4
2[0,4π] = {h(x)|h′′(x) ∈ AC[0,4π], h′′′(x) ∈ L2[0,4π], x ∈ [0,4π]}

with the inner product

< h,Ry >S4
2[0,4π] = h(0)Ry(0)+h′(0)R′

y(0)+h′′(0)R′′
y (0)−h(3)(0)R

(3)
y (0)

+
∫ 4π

0

(

h(x)+(4)(x)R
(4)
y (x)

)

dx.

Integrating this equation by parts for four times, we have

< h,Ry >S4
2[0,4π] = h(0)Ry(0)+h′(0)R′

y(0)+h′′(0)R′′
y (0)−h(3)(0)R

(3)
y (0)

+h(3)(4π)R
(4)
y (4π)−h(3)(0)R

(4)
y (0)−h′′(4π)R

(5)
y (4π)

+h′′(0)R(5)
y (0)+h′(4π)R

(6)
y (4π)−h′(0)R(6)

y (0)

−h(4π)R
(7)
y (4π)+h(0)R

(7)
y (0)+

∫ 4π

0
h(x)R

(8)
y (x)dx.

Because of the conditions, we get the following equations:

1. Ry(0) = 0

2. R′
y(0) = 0

3. R′′
y (0) = 0.

With these three functions being zero we obtain:

< h,Ry >S4
2[0,4π] = h(3)(0)R

(3)
y (0)+h(3)(4π)R

(4)
y (4π)−h(3)(0)R

(4)
y (0)

−h′′(4π)R
(5)
y (4π)+h′(4π)R

(6)
y (4π)−h(4π)R

(7)
y (4π)

+
∫ 4π

0
h(x)R

(8)
y (x)dx.

When the equation is rearranged we get the following equations:

4. R
(3)
y (0)−R

(4)
y (0) = 0

5. R
(4)
y (4π) = 0

6. R
(5)
y (4π) = 0

7. R
(6)
y (4π) = 0

8. R
(7)
y (4π) = 0.

Then we will get:

< h,Ry >S4
2[0,4π]=

∫ 4π

0
h(x)R

(8)
y (x)dx

With the knowledge of reproducing kernel property, the function u(y) can be written in the form:

< h,Ry >S4
2[0,4π]= h(y).
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For this reason, we reach

∫ 4π

0
h(x)R

(8)
y (x)dx = h(y). (3.2)

Because of the definition of Dirac-Delta function, it is obvious that the equation (3.2) is equal to the δ (x− y) . That gives us

the following equation:

R
(8)
y (x) = δ (x− y).

When x 6= y, the reproducing kernel function Ry can be written in the form as:

Ry(x) =























8

∑
k=1

ckxk−1
, x ≤ y,

8

∑
k=1

dkxk−1
, x > y.

By using the feature of Dirac-Delta function, the following equations can be written:

9. Ry+(y) = Ry−(y)

10. R′
y+(y) = R′

y−(y)

11. R′′
y+(y) = R′′

y−(y)

12. R′′′
y+(y) = R′′′

y−(y)

13. R
(4)
y+
(y) = R

(4)
y− (y)

14. R
(5)
y+
(y) = R

(5)
y− (y)

15. R
(6)
y+
(y) = R

(6)
y− (y)

16. R
(7)
y+
(y)−R

(7)
y− (y) = 1.

In order to find the reproducing kernel function of the given space, we need to solve the differential equation system above.

For this purpose, we needed sixteen equation since the (3.1) has sixteen coefficients and we obtained them.If we solve the

system thus we get the reproducing kernel function as:

Ry(x) =
1

36
y3x3 +

1

144
y3x4 − 1

240
y2x5 +

1

720
yx6 − 1

5040
x7
.

The proof of the following theorem is similar to the proof of the Lemma 3.4, so we omit it.

Theorem 3.5. The function space S4
2[0,4π] is a reproducing kernel Hilbert space.

Reproducing kernel function and the RKS has a vital role in the way to the solution. In the next section we give other essential

part of the method.

4. Implementation of the method

Firstly, we define the linear operator as

L : Sm
2 [0,4π]−→ Sm−n

2 [0,4π]

such that

Lh(x) = K(x,h(x),h′(x), ...,h(n)(x)).

It is known that the operator L is bounded.

After the operator, we now construct the orthogonal system of the space Sm
2 [0,4π]. Let ηi(x) = Rxi

(x) and ψi(x) = L
∗ηi(x).

Here, L∗ is adjoint operator of L and the set of xi which denoted by {xi}∞
j=1 is dens in the interval [0,4π].
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Theorem 4.1. If {xi}∞
i=1 is dense in the [0,4π], then {ψi(x)}∞

i=1 is a complete system of Sm
2 [0,4π].

Proof. Let {xi}∞
j=1 is dense in the interval [0,4π]. By using adjoint operator and reproducing kernel properties we can write

〈h(x),ψi(x)〉= 〈h(x),L∗ηi(x)〉= 〈Lh(x),ηi(x)〉= h(xi) = 0, i = 1,2, ...

With the knowledge of density of {xi}∞
j=1 and considering the continutiy of h(x), we arrive that h(x) = 0.

In order to obtain the approximate solution, with the help of Gram-Schimidt orthogonalization process, the orthonormal system

{ψi(x)}∞
j=1 need to be construct. It can be denoted as:

{ψ̄i(x)}∞
j=1 =

i

∑
r=1

ζirψr(x), ζii > 0, (i = 1,2, ...)

Here the function ζik represents the orthogonal coefficients.

Theorem 4.2. Let {xi}∞
j=1 be dense in [0,4π].If the problem (2.1) has a uniqe solution then it can be denoted as follow:

h(x) =
∞

∑
i=1

i

∑
r=1

ζirK(xr,h(xr),h
′(xr), ...,h

(n)(xr))ψ̄i(x).

Proof. Let we choose the solution of the equation (2.1) as h(x). By knowing that {ψ̄i(x)}∞
i=1 is the orthonormal basis of the

space, we can write the following equality:

h(x) =
∞

∑
i=1

〈h(x), ψ̄i(x)〉ψ̄i(x) =
∞

∑
i=1

i

∑
r=1

ζir〈h(x), ψ̄i(x)〉ψ̄i(x).

Let we now do apply the feature of adjoint operator at this step.

∞

∑
i=1

i

∑
r=1

ζir〈h(x),L∗ηr(x)〉ψ̄i(x) =
∞

∑
i=1

i

∑
r=1

ζir〈Lh(x),ηr(x)〉ψ̄i(x)

=
∞

∑
i=1

i

∑
r=1

ζir〈K(x,h(x,)h′(x), ...,h(n),ηr(x)〉ψ̄i(x)

=
∞

∑
i=1

i

∑
r=1

ζirK(xr,h(xr),h
′(xr), ...,h

(n)(xr))ψ̄i(x).

With the last equation the proof is completed.

5. Application and numerical results

In this section we will apply the proposed method to the problem which in the form (2.1). By aiming to find the approximate

solution we will use suitable reproducing kernel Hilbert space and kernel functions which belongs to the space. Once we

obtained the solution we will present the absolute and relative errors in the tables. Let us begin by considering the initial value

problem given below:

h′′′(x)+4h′(x) = x, 0 ≤ x ≤ 4π

h(0) = h′(0) = 0, h′′(0) = 1.
(5.1)

The exact solution of the equation is

h(x) =
3

16
(1− cos2x)+

1

8
x2
. (5.2)

We seek the solution function h of the form h(x) = H(x)+ S(x). This will ensure that the new boundary conditions are

homogeneous. Here S(x) denotes the transformation function which satisfies the initial conditions and H(x) denotes the terms

of new initial value problem which will be homogeneous. If we do the required arrangements, we will be obtaining the new

homogeneous equation with the homogeneous conditions.
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As a first step, let we start to transform the conditions of the equation (5.1) to the homogeneous one. For this purpose let we

use the transformation function given follow as:

S(x) =
x2

2
.

So we can write the h function as:

h(x) = H(x)+
x2

2

If we calculate the necessary derivatives then we get

h′(x) =H ′(x)+ x

h′′(x) =H ′′(x)+1

h′′′(x) =H ′′′(x).

(5.3)

When we put this equations into the main problem (5.1), the equation will transform to the new version which is homogeneous

as:

H ′′′(x)+4H ′(x) =−3x,0 ≤ x ≤ 4π

with the initial conditions

H(0) = H ′(0) = H ′′(0) = 0.

By using the reproducing kernel function which found in section 3.1 and with the help of the programme Matlab we obtained

the approximate solutions of the problem (5.1). By taking the dense point M=100, the exact solution and approximate solution

compared. Besides, absolute and relative errors of the results are presented in the Table 1, Table 2 and graphics below.

x Exact RKM (App.)

0.1 0 0

0.2 0.004987516700 0.004986813148

0.3 0.01980106360 0.01979816350

0.4 0.04399957220 0.04399305315

0.5 0.07686749200 0.07685607747

0.6 0.1174433176 0.1174259428

0.7 0.1645579210 0.1645337905

0.8 0.2168811607 0.2168497896

0.9 0.2729749104 0.2729361522

1.0 0.3313503928 0.3313044491

Table 1: Exact solution and approximate solution.
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x RKM (AE) RKM (RE)

0.1 0 0

0.2 7.03552 ·10−7 0.0001410625853

0.3 0.00000290010 0.0001464618295

0.4 0.00000651905 0.0001481616678

0.5 0.00001141453 0.0001484961939

0.6 0.0000173748 0.0001479420060

0.7 0.0000241305 0.0001466383378

0.8 0.0000313711 0.0001446464963

0.9 0.0000387582 0.0001419844774

1.0 0.0000459437 0.0001386559394

Table 2: Absolute Errors (AE) and Relative Errors (RE).

Figure 5.1: 2D Comparison between exact solution and RKM solution

Figure 5.2: 3D Comparison
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6. Conclusions

In this work, we presented the reproducing kernel method for solving an IVP which is a type of higher order differential

equations. We found a new reproducing kernel space and used it to obtain the numerical results of the problem. When the

exact solution and the approximate solution compared, it can easily seen that the method works quite well. The absolute and

relative errors also a proof of that. As a result, it is clear that the method is effective and smooth. Moreover, it is an undeniable

advantage that the method gives the result fast. This prevents waste of time and provides fast access to the solution.
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Abstract

This study is devoted to give solvability conditions and solutions of the Robin boundary

problem with constant coefficients for the homogeneous and the inhomogeneous Cauchy-

Riemann equation in an annular domain. In order to get results, known representations and

theorems in the literature are used. The representations for the solutions and solvability

conditions are given in explicit form and here only a special Robin problem is considered.

At the end of the paper, it is concluded that with some choices, boundary value problems for

the Cauchy-Riemann equation reduce to some basic boundary problems in the ring domain.

1. Introduction and preliminaries

Recently, some complex model partial differential equations, which have important applications in some areas of applied

sciences, were investigated in detail, especially for Robin problem see [1]-[7]. Also, the solvability and solutions of complex

partial differential equations with boundary conditions were considered by many mathematicians. [8]-[11].

The Robin problem, called as third boundary problem, is a mixed form of the Dirichlet and the Neumann problems, which are

basic boundary value problems in complex analysis.

The main aim of this paper is to give solvability conditions and solutions of Robin problem with real parameters for Cauchy-

Riemann operators in an annular domain R = {z ∈ C : 0 < r < |z|< 1}. The results in this paper are obtained by using some

integral representations in the annular domain [12]-[14], which are similar to ones in the unit disc. [15, 16].

For the convenience of the reader, we recall some relevant theorems without proofs:

Theorem 1.1 (The Complex Form of Gauss Theorem). [15] Let D ⊂ C be a bounded domain with smooth boundary ∂D,

and the closure D = D∪∂D. Assume that w ∈C1(D;C)∩C(D;C). Then

∫

D

wz(z)dxdy =
1

2i

∫

∂D

w(z)dz,

∫

D

wz(z)dxdy =− 1

2i

∫

∂D

w(z)dz,

where

∂z =
1

2

(

∂

∂x
− i

∂

∂y

)

, ∂z =
1

2

(

∂

∂x
+ i

∂

∂y

)

; z = x+ iy, x,y ∈ R.
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Theorem 1.2 (Cauchy Integral Formula). Let γ be a simply closed smooth curve and D be the inner domain, bounded by γ .

If w is an analytic function in D, continuous in D and z ∈ D, then

w(z) =
1

2πi

∫

γ

w(ζ )
dζ

ζ − z
. (1.1)

Theorem 1.3 (Cauchy-Pompeiu representation). [17] Under the assumptions of Theorem 1.1, we have for z ∈ D that

w(z) =
1

2πi

∫

∂D

w(ζ )
dζ

ζ − z
− 1

π

∫

D

w
ζ
(ζ )

dξ dη

ζ − z

where ζ = ξ + iη .

The Dirichlet boundary value problem for analytic functions in R is

wz = 0,w = γ on ∂R, (1.2)

for a given function γ ∈C(∂R,C).

The following theorem is proved in [14]:

Theorem 1.4. The Dirichlet problem (1.2) is solvable if and only if for z ∈ R

1

2πi

∫

∂R

γ(ζ )
zdζ

1− zζ
=

1

2πi

∫

∂R

γ(z)
zdζ

r2 − zζ
= 0

in the class of analytic functions. Then the unique solution is given by the Cauchy type integral

w(z) =
1

2πi

∫

∂R

γ(ζ )
dζ

ζ − z
.

The normal derivative on the boundary of R is defined by

∂ν =

{

z∂z + z∂z, |z|= 1,

− z
r
∂z − z

r
∂z, |z|= r.

The Robin boundary value problem for analytic functions in R is

wz = 0,w+λ |z|∂νw = γ on ∂R, λ =

{

1, |z|= 1,

−1, |z|= r,

for a given function γ ∈C(∂R,C).

2. The Robin boundary value problem depending on parameters for analytic functions

In this section, in R we investigate for α,β ∈ R, and γ ∈C(∂R,C), the Robin boundary problem

wz = 0, z ∈ R, (2.1)

(α w+β λ |z|∂ν w) = γ, z ∈ ∂R. (2.2)

As a consequence of analyticity of w, the boundary condition (2.2) can be rewritten in the form

(αw+β zwz)|∂R = γ.

Introducing a new function

ϕ = αw+β zwz,



Fundamental Journal of Mathematics and Applications 163

the boundary problem (2.1)-(2.2) turns out as the Dirichlet problem

ϕ
z
= 0 in R, ϕ = γ on ∂R. (2.3)

On account of Theorem 1.4, boundary problem (2.3) can be uniquely solved if and only if for z ∈ R, the function γ satisfies that

1

2πi

∫

∂R

γ(ζ )
zdζ

1− zζ
=

1

2πi

∫

∂R

γ(z)
zdζ

r2 − zζ
= 0. (2.4)

Then the unique solution of the problem (2.3) is obtained as

ϕ(z) =
1

2πi

∫

∂R

γ(ζ )
dζ

ζ − z
. (2.5)

We note that as an analytic function in R, w(z) has a unique representation by a Laurent series

w(z) =
∞

∑
n=−∞

cnzn

which converges in R.

Then, we have

ϕ(z) = αw(z)+β zwz(z)

= α
∞

∑
n=−∞

cnzn +β
∞

∑
n=−∞

ncnzn

=
∞

∑
n=−∞

(α +nβ )cnzn
.

Considering (2.5), it yields

∞

∑
n=−∞

(α +nβ )cnzn =
1

2πi

∫

∂R

γ(ζ )
dζ

ζ − z

=
∞

∑
n=0

1

2πi

∫

|ζ |=1

γ(ζ )
dζ

ζ n+1
zn +

−1

∑
n=−∞

1

2πi

∫

|ζ |=r

γ(ζ )
dζ

ζ n+1
zn
. (2.6)

Comparing coefficients of both sides of (2.6), we have as long as α +nβ 6= 0,

cn =
1

α +nβ

1

2πi

∫

|ζ |=1

γ(ζ )
dζ

ζ n+1
, n = 0,1,2, ...;

cn =
1

α +nβ

1

2πi

∫

|ζ |=r

γ(ζ )
dζ

ζ n+1
, n = ...,−2,−1.

Therefore, we can assert that

w(z) =
∞

∑
n=0

1

α +nβ







1

2πi

∫

|ζ |=1

γ(ζ )
dζ

ζ n+1






zn +

−1

∑
n=−∞

1

α +nβ







1

2πi

∫

|ζ |=r

γ(ζ )
dζ

ζ n+1






zn
. (2.7)

Theorem 2.1. For α,β ∈ R, and γ ∈ C(∂R,C), Robin boundary value problem (2.1)-(2.2) in R is solvable if and only if

condition (2.4) is satisfied. In this case, solution of the problem if α +nβ 6= 0 for all n ∈ Z is given by (2.7).
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3. The Robin boundary value problem depending on parameters for inhomogeneous Cauchy-

Riemann equation

In this section, we deal for α,β ∈ R, γ ∈C(∂R,C) and f ∈Ca(R;C), 0 < a < 1, with the Robin boundary problem

wz = f , z ∈ R, (3.1)

(α w+β λ |z|∂ν w) = γ, z ∈ ∂R. (3.2)

Solutions of equation wz = f have the form

w(z) = ϕ(z)− 1

π

∫

R

f (ζ )

ζ − z
dξ dη ,

where ϕ(z) is any analytic function in R, see [17].

By differentiating with respect to z implies

wz = ϕz −
1

π

∫

R

f (ζ )

(ζ − z)2
dξ dη .

We note that the latter derivative is taken in distributional sense, see [15].

By introducing the new function

ϕ = w+
1

π

∫

R

f (ζ )

ζ − z
dξ dη , (3.3)

and using wz = f , the problem (3.1)-(3.2) is reduced to

ϕz = 0, in R, (3.4)

(αϕ +β zϕz) =



γ +
1

π

∫

R

[

β z

(ζ − z)2
− α

z−ζ

]

f (ζ )dξ dη −β z f



 := ̂γ, on ∂R, (3.5)

the Robin problem in the previous section. By Theorem 2.1, (3.4)-(3.5) is solvable if and only if

1

2πi

∫

∂R

̂γ(ζ )
zdζ

1− zζ
=

1

2πi

∫

∂R

̂γ(z)
zdζ

r2 − zζ
= 0. (3.6)

In this case, solution of the problem if α +nβ 6= 0 for all n ∈ Z is given by

ϕ(z) =
∞

∑
n=0

1

α +nβ







1

2πi

∫

|ζ |=1

̂γ(ζ )
dζ

ζ n+1






zn +

−1

∑
n=−∞

1

α +nβ







1

2πi

∫

|ζ |=r

̂γ(ζ )
dζ

ζ n+1






zn
. (3.7)

It is clear that (3.5) for z ∈ ∂R is equal to

̂γ(z) = γ(z)+
1

π

∫

R

[

β z

(ζ − z)2
− α

z−ζ

]

f (ζ )dξ dη −β z f (z). (3.8)

So, by (3.8), the first boundary integral in (3.6) for t = t1 + it2 can be written as

1

2πi

∫

∂R

̂γ(ζ )
zdζ

1− zζ
=

1

2πi

∫

∂R



γ(ζ )+
1

π

∫

R

[

βζ

(ζ − t)2
− α

ζ − t

]

f (t)dt1dt2 −βζ f (ζ )





zdζ

1− zζ
.

By applying Fubini’s theorem when changing the order of integrations, we obtain
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1

2πi

∫

∂R

̂γ(ζ )
zdζ

1− zζ
=

1

2πi

∫

∂R

γ(ζ )
zdζ

1− zζ
+

1

π

∫

R

f (t)





1

2πi

∫

∂R

[

βζ

(ζ − t)2
− α

ζ − t

]

zdζ

1− zζ



dt1dt2

− 1

2πi

∫

∂R

βζ f (ζ )
zdζ

1− zζ
.

By aid of the Cauchy integral formula (1.1),

1

2πi

∫

∂R

βζ

(ζ − t)2

dζ

1− zζ
=

1

2πi

∫

|ζ |=1

βζ

(ζ − t)2

dζ

1− zζ
− 1

2πi

∫

|ζ |=r

βζ

(ζ − t)2

dζ

1− zζ
=

β

(1− zt)2

and

1

2πi

∫

∂R

α

ζ − t

dζ

1− zζ
=

1

2πi

∫

|ζ |=1

α

ζ − t

dζ

1− zζ
− 1

2πi

∫

|ζ |=r

α

ζ − t

dζ

1− zζ
=

α

1− zt
,

hence it can be shown that

1

2πi

∫

∂R

̂γ(ζ )
zdζ

1− zζ
=

1

2πi

∫

∂R

[

γ(ζ )−βζ f (ζ )
] zdζ

1− zζ
+

1

π

∫

R

z f (ζ )
β −α +αzζ

(1− zζ )2
dξ dη = 0.

With similar calculations, for the second boundary integral in (3.6), we obtain

1

2πi

∫

∂R

̂γ(ζ )
zdζ

r2 − zζ
=

1

2πi

∫

∂R

[

γ(ζ )−βζ f (ζ )
] zdζ

r2 − zζ
+

1

π

∫

R

z f (ζ )
r2(β −α)+αzζ

(r2 − zζ )2
dξ dη = 0.

If the value of (3.8) is substituted in (3.7), we can get for α
β /∈ Z,

ϕ(z) =
∞

∑
n=0

1

α +nβ







1

2πi

∫

|ζ |=1



γ(ζ )+
1

π

∫

R

[

βζ

(ζ − t)2
− α

ζ − t

]

f (t)dt1dt2 −βζ f (ζ )





dζ

ζ n+1






zn

+
−1

∑
n=−∞

1

α +nβ







1

2πi

∫

|ζ |=r



γ(ζ )+
1

π

∫

R

[

βζ

(ζ − t)2
− α

ζ − t

]

f (t)dt1dt2 −βζ f (ζ )





dζ

ζ n+1






zn
.

or equivalently

ϕ(z) =
∞

∑
n=0

1

α +nβ







1

2πi

∫

|ζ |=1

γ(ζ )
dζ

ζ n+1
+

1

2πi

∫

|ζ |=1





1

π

∫

R

f (t)

[

βζ

(ζ − t)2
− α

ζ − t

]

dt1dt2





dζ

ζ n+1

− 1

2πi

∫

|ζ |=1

βζ f (ζ )
dζ

ζ n+1






zn

+
−1

∑
n=−∞

1

α +nβ







1

2πi

∫

|ζ |=r

γ(ζ )
dζ

ζ n+1
+

1

2πi

∫

|ζ |=r





1

π

∫

R

f (t)

[

βζ

(ζ − t)2
− α

ζ − t

]

dt1dt2





dζ

ζ n+1

− 1

2πi

∫

|ζ |=r

βζ f (ζ )
dζ

ζ n+1






zn
.

Because of

1

2πi

∫

|ζ |=1





1

π

∫

R

f (t)

[

βζ

(ζ − t)2
− α

ζ − t

]

dt1dt2





dζ

ζ n+1
= 0, for n = 0,1, ..
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and

1

2πi

∫

|ζ |=r





1

π

∫

R

f (t)

[

βζ

(ζ − t)2
− α

ζ − t

]

dt1dt2





dζ

ζ n+1
= 0, for n = ...,−2,−1,

we get

ϕ(z) =
∞

∑
n=0

1

α +nβ







1

2πi

∫

|ζ |=1

(

γ(ζ )−βζ f (ζ )
) dζ

ζ n+1






zn

+
−1

∑
n=−∞

1

α +nβ







1

2πi

∫

|ζ |=r

(

γ(ζ )−βζ f (ζ )
) dζ

ζ n+1






zn
.

By using (3.3), solution of the problem (3.1)-(3.2) can be found as

w(z) =
∞

∑
n=0

1

α +nβ







1

2πi

∫

|ζ |=1

(

γ(ζ )−βζ f (ζ )
) dζ

ζ n+1






zn

+
−1

∑
n=−∞

1

α +nβ







1

2πi

∫

|ζ |=r

(

γ(ζ )−βζ f (ζ )
) dζ

ζ n+1






zn

+
1

π

∫

R

1

z−ζ
f (ζ )dξ dη .

Finally, we have just proved the following:

Theorem 3.1. For α,β ∈ R, f ∈Ca(R;C),0 < a < 1,γ ∈C(∂R;C), the Robin problem

wz = f in R, αw+βλ |z|∂ν w = γ on ∂R

is solvable if and only if for all z ∈ R

1

2πi

∫

∂R

[

γ(ζ )−βζ f (ζ )
] zdζ

1− zζ
+

1

π

∫

R

z f (ζ )
β −α +αzζ

(1− zζ )2
dξ dη = 0,

and

1

2πi

∫

∂R

[

γ(ζ )−βζ f (ζ )
] zdζ

r2 − zζ
+

1

π

∫

R

z f (ζ )
r2(β −α)+αzζ

(r2 − zζ )2
dξ dη = 0.

Then, the solution of the problem if α +nβ 6= 0 for all n ∈ Z is represented by

w(z) =
∞

∑
n=0

1

α +nβ







1

2πi

∫

|ζ |=1

(

γ(ζ )−βζ f (ζ )
) dζ

ζ n+1






zn

+
−1

∑
n=−∞

1

α +nβ







1

2πi

∫

|ζ |=r

(

γ(ζ )−βζ f (ζ )
) dζ

ζ n+1






zn

+
1

π

∫

R

1

z−ζ
f (ζ )dξ dη .
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4. Conclusion

In this paper, a special kind of Robin problem for analytic functions (Theorem 2.1) and more generally for the inhomogeneous

Cauchy–Riemann equation (Theorem 3.1) are investigated in a concentric ring domain. The representations of the solutions

and solvability conditions are aimed for in explicit form.

Let us reconsider the Robin boundary condition

(αw+βλ |z|∂ν w) = γ on R. (4.1)

Under above boundary condition (4.1), with some special cases of α and β , the following results can be obtained:

i.) By choosing α = β = 1, we have (w+λ |z|∂ν w) = γ on R. In this case, in (2.7), the coefficient of z−1, c−1 may take

arbitrary values from C. Hence, for solvability of the problem, the condition 1
2πi

∫

|ζ |=r

γ(ζ )dζ = 0 is needed. Furthermore,

with an additional condition z0w(z0) = c, for some fixed point z0 ∈ R,c ∈ C, the problem is uniquely solvable. This

problem is another special kind of Robin problem and appears as Theorem 2.2.14 (for analytic functions) in [14]. As is the

analytic case, by applying similar arguments, in the inhomogeneous case, the conditions 1
2πi

∫

|ζ |=r

(

γ(ζ )−ζ f (ζ )
)

dζ = 0

(for solvability) and z0w(z0) = c, for some fixed point z0 ∈ R,c ∈ C (for uniqueness of the solution) are needed. [14,

Theorem 2.3.18 ]

ii.) By choosing α = 1 and β = 0, we have w = γ on ∂R. Hence, these problems are reduced to the Dirichlet problems for

analytic functions and the inhomogeneous Cauchy-Riemann equation, respectively, in [14, Theorem 2.2.12 and Theorem

2.3.16].

iii.) By choosing α = 0, and β = 1, we have (λ |z|∂ν w) = γ on R. Hence, these problems are reduced to the Neumann

problems for analytic functions and the inhomogeneous Cauchy-Riemann equation, respectively in [14, Theorem 2.2.13

and Theorem 2.3.17], with additional conditions.
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Abstract

This paper investigates the effects of the YHP roughness model on the mean flow solutions
of some flows belong to the family of the rotating BEK system flows. The governing
mean flow equations are formulated in the rotating frame of reference, therefore, they
include terms arising from the centrifugal force. These mean flow equations are solved
using the method of lines and the backward difference method. Then, obtained results
are compared for specifically selected value of roughness parameters with the results of
a fundamentally different roughness model, the MW model. The results of the YHP
model reveal that applying surface roughness changes the characteristics of the mean flow
components. Moreover, the comparison of the YHP and MW models points that these
changes are notably different for each model. Therefore, possible future researches can be
conducted to investigate the stability characteristics of the flows due to the selection of the
roughness model.

1. Introduction

The studies on the rotating disk flows have grown significantly in the literature due to common characteristics of the rotating
disk flows with the swept wing flows. Both flow types have inflectional mean flow components that cause a crossflow instability
known as the Type I instability mode [1, 2]. The governing equations of the rotating disk flows are notably simplifier than those
of the swept-wing flows due to its axisymmetric geometry. Moreover, exact similarity solutions of the Navier-Stokes equations
can be found in case of the rotating disk flows [4].

Early studies on the instability properties of the rotating disk flow are established with a smooth disk configuration [4, 3].
However, the attention of the many researches have shifted to the rough disk configurations after three pioneering studies about
the effect of surface roughness on the instability analysis have been published at Nature [7]-[6]. These studies have altered the
common belief that rough surfaces trigger the flow instabilities and have revealed that surface roughness can be utilized to
delay the onset of instabilities if the roughness is rightly sorted over the disk [5]. Therefore, determination of the right sort of
roughness [5], has been a leading research field for numerous researchers over the past 30 years [8, 10, 13, 12].

An important family of rotating disk boundary layer flows are BEK system flows. This family of flows is driven by the
difference of the rotation speeds of an impermeable rotating disk having an infinite radius, and the incompressible fluid rotating
above the disk [4]. Both the disk and fluid rotate around the vertical axis passing through the center of disk. The angular
velocities are denoted by Ω∗D and Ω∗F for the disk and fluid, respectively. This family includes three main types of flows: the
von Kármán boundary layer flow, the Ekman boundary layer flow and the Bödewadt boundary layer flow. There are also
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infinitely many related flows between these three flows, in which the angular velocities of the disk and fluid are not equal to
zero but also different.

Several attempts have been made to investigate the right sort of roughness for the BEK system flows [11, 12, 13]. In most recent
studies, surface roughness has been modelled using two fundamentally different roughness models: MW model developed by
Miklavcicv & Wang [14] and YHP model developed by Yoon, Hyun, and Park [15]. The first one uses partial-slip boundary
conditions on the surface of the disk in order to apply roughness whereas the latter uses a fundamentally different approach.
Despite easy implementation of the partial-slip boundary conditions in each direction of the disk, MW model sorts the
roughness empirically. In YHP model, a new function of radial position r is introduced and the roughness is modelled as a
wavy surface disk using this function along with assuming a radial symmetry . Therefore, this model can sort roughness in r
direction only.

Many recent studies [11, 9, 12] have been conducted to determine the right sort of roughness for the BEK system flows using
the YHP or MW models. The studies of Cooper et al. [12] and Garrett et al [9] are focused on von Kármán flow that is the
most known member of the BEK system flows. They use both MW and YHP models, and their results reveal that two models
have different effects on the instability characteristics of the flow. The study of Alveroğlu et al. [11] considered whole BEK
system flows using the MW model to sort the roughness. However, the original theoretical research of the YHP model [15]
conducted on the particular flows of the BEK system used a stationary frame of reference for the formulation. Therefore, it did
not account the effects of the centrifugal terms appearing in a rotating frame formulation. This study uses the YHP roughness
model formulated in the rotating frame and investigates the effects of the model on mean flow profiles of those particular flows
of the BEK system, and compare the results with those of the previous study [11] that uses the MW model.

The overall structure of the study is stated as follows. Section 2 presents the governing steady mean-flow equations for the
MW and YHP models for the entire BEK system. Computed mean flow profiles of the interested flows under the YHP model
are presented in Section 3, and a comparison of the effects of the roughness models is also made in this section. Section 4
includes the conclusion.

2. The governing mean flow equations for MW and YHP models

The governing mean flow equations of the BEK system flows for both MW and YHP models are formulated in case of a steady
fluid flow over an infinite disk. Both the disk and fluid are considered to rotate with constant angular velocities Ω∗D and Ω∗F
around a joint axis passing through the centre of the disk. The coordinate system is assumed to be rotating with the disk.
The von Kármán flow occurs if Ω∗D 6= 0, Ω∗F = 0, the Ekman flow occurs if Ω∗D = Ω∗F 6= 0, and the Bödewadt flow occurs if
Ω∗D = 0, Ω∗F 6= 0.

The parameter defined related to the differential rotation rate between the disk and above fluid is used to distinguish the flows
of the BEK system. This parameter are defined as

Ro =
Ω∗F −Ω∗D

Ω∗
, (2.1)

where Ω∗ is the system rotation rate. It is called the Rossby number. The Rossby number for the von Kármán flow is Ro =−1
, for the Ekman flow is Ro = 0, for the Bödewadt flow is Ro = 1. Furthermore, −1≤ Ro≤ 1 for all the flows of the system. In
this study, we will investigate the flows that occur when −1 < Ro < 0.

Using a rotating coordinate frame introduces Coriolis and centrifugal terms in the equations. The Coriolis number can be
defined in terms of the Rossby number as

Co = 2
Ω∗D
Ω∗

= 2−Ro−Ro2.

The nondimensional mean flow equations derived using the MW model are

Ro
(

U2 +U ′W − (V 2−1)
)
−Co

(
V −1

)
−U ′′ = 0,

Ro
(

2UV +V ′W
)
+CoU−V ′′ = 0,

Ro
(

WW ′+P′
)
−W ′′ = 0,

2U +W ′ = 0.

(2.2)

and the boundary conditions are given by
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U(0) = λU ′(0), V (0) = ηV ′(0) and W (0) = 0,
U −→ 0, V −→ 1, as z −→ ∞.

(2.3)

The full discussion on the derivation of the equations (2.2) can be found in the pioneering study of Lingwood [4]. Here, it
is sufficient to note that all derivatives denoted by primes are with respect to z, and U , V & W are the mean flow velocity
components in radial, azimuthal and axial directions, respectively. The pressure term is denoted by P. The boundary conditions
(2.3) on the disk surface are formulated using partial-slip conditions [11, 14]. The boundary conditions at infinity are the usual
no-slip conditions.

The MW model imposes the roughness over the disk surface empirically using particular values for the parameters η and
λ . The case λ = η = 0 corresponds a smooth disk, η > 0, λ = 0 (concentric grooves) and η = 0, λ > 0 (radial grooves)
correspond to anisotropic roughness, radially and azimuthally. The final case η = λ 6= 0 indicates an isotropic roughness.
The effects of different values of these parameters on mean flow profiles of interested flows are discussed individually in the
following section.

In YHP model, the governing mean flow equations are formulated in a new coordinate system (r,θ ,η) using the Prandtl
transformation [15]. Here, the new axial coordinate variable is set to η = z−s(r), and s(r) = δ cos(2πr/γ) is the dimensionless
surface profile.

This surface profile is axisymmetric with respect to the axis of rotation. The governing mean flow equations in this coordinate
system are stated as

Ro
[
r f

∂ f
∂ r

+h
∂ f
∂ζ

+ f 2
(

1+ r
s′s′′

1+ s′2

)]
=

Ro+Co
1+ s′2

+
(
1+ s′2

) ∂ 2 f
∂ζ 2 +

g
1+ s′2

(Co+Rog) ,

Ro
[
r f

∂g
∂ r

+h
∂g
∂ζ

]
=
(
1+ s′2

) ∂ 2g
∂ζ 2 − f (Co+2gRo) ,

2 f + r
∂ f
∂ r

+
∂h
∂ζ

= 0,

(2.4)

and the boundary conditions are given by

f (r,ζ ) = g(r,ζ ) = h(r,ζ ) = 0, at ζ = 0,
f (r,ζ ) = 0, g(r,ζ ) = 1 as ζ → ∞.

(2.5)

Here, the steady-flow profiles in radial, azimuthal and axial directions are denoted ( f , g, h), respectively. A full description for
the derivation of those equations can be found in the previous studies [9, 15]. However, this formulation has slight modifications
to the original presentation of the YHP model [15]. The Coriolis and centrifugal terms appear in this new presentation due to
formulating the model in a rotating frame.

The YHP model controls the roughness using the aspect ratio parameter a = δ/γ . For a = 0, those equations are coincide with
the previous studies of Lingwood [4] and Alveroğlu [11]. However, it is only possible to apply surface roughness only in radial
direction under the YHP model due to the definition of distribution function s(r). Therefore, the YHP model can be compared
with the MW model in only the case of concentric grooves of roughness profile.

3. Results and discussion

The governing equations (2.2)-(2.3) for the MW model are the system of nonlinear ODEs and solved in the previous study
of Alveroğlu [11] for different values of the parameters η and λ using a fourth order Runga Kutta method. However, the
governing equations (2.4)-(2.5) for the YHP model are highly nonlinear system of PDEs, and we provide the solutions of the
YHP model for the flows of −1 < Ro < 0. In other words, we investigate the flows between the von Kármán and Ekman flows.
The results arising from the YHP model for those flows are then compared with the results of the MW model.

In order to compute mean flow components those PDEs are reduced to ODEs with respect to ζ variable using method of lines.
The required initial solution for the methods of lines is achieved at r = 0 from the ODEs in ζ of the BEK system [4]. Then, the
flow profiles at each incremental r value are computed using the the backward difference method. The computation grid at
each r value is set from ζ = 0 to ζ = 16. In order to make a comparison with solutions of the MW model, the computed flow
profiles of YHP model are averaged spatially. This averaged flow field is denoted by ( f̄ (ζ ), ḡ(ζ ), h̄(ζ )) [9].
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Figure 3.1: The mean flow components in radial direction at various values of roughness parameter a.
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Figure 3.2: The mean flow components in azimuthal direction at various values of roughness parameter a.
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Figure 3.3: The mean flow components in axial direction at various values of roughness parameter a.
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The spatially averaged flow components of the YHP model over one wavelength for roughness parameter a = 0 to a = 0.3 are
given in Figures 3.1-3.3. The results indicate that increasing roughness level reduces the amount of the wall jet at vicinity of
disk surface, i.e., it decreases the maximum radial velocity, max( f̄ ), as seen in Figure 3.2(a)-(d) for each flow configuration.
Also, increased roughness leads to an incremental widening of the azimuthal velocity component as shown in Figure 3.2(a)-(d)
for each flow. In other words, increased roughness makes the boundary layer thicker. However, Figure 3.3(a)-(d) presents the
increase in the magnitude of h̄ component, i.e., the amount of the axial flow increases with the greater values of the roughness.

The MW and YHP roughness models are theoretically different as the latter one uses transformed coordinates. Therefore, it is
not possible to make a quantitative comparison for equal values of roughness parameters. Instead, a qualitative approach is
considered to compare the effects of increased roughness levels for both models. The moderate roughness value a = 0.2 is
selected in YHP model and the maximum values of radial jets of flows between −1 < Ro < 0 are matched for both models.
In other words, for each flow, the corresponding roughness parameter value of η in the MW model is determined such that
the maximum values of radial mean flow components are same under both models. The matched mean flow profiles of the
different flows are presented in Figure 3.4(a)-(d). The numerical values of matching parameters are also presented at Table 1.

Rossby Number Ro max( f̄ ) Roughness parameter η for MW Model
Ro =−0.8 -0.1528 0.988
Ro =−0.6 -0.1813 0.689
Ro =−0.4 -0.2030 0.521
Ro =−0.2 -0.2220 0.416

Table 1: Corresponding matching values of different flows for a = 0.2 of YHP model
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Figure 3.4: Compared mean flow profiles of different flows in case of the MW and YHP models in radial direction.
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Figure 3.5: Compared mean flow profiles of different flows in case of the MW and YHP models in azimuthal direction.
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Figure 3.6: Compared mean flow profiles of different flows in case of the MW and YHP models in axial direction.



174 Fundamental Journal of Mathematics and Applications

The difference of the effects of the MW and YHP models can be interpreted from Figures 3.5 - 3.6. The solid red lines in each
parts shows the velocity components in absence of roughness. Figure 3.5 includes the velocity profiles in azimuthal direction
and reveals that applying the MW model increases the value of azimuthal velocity profile for each flow, whereas applying YHP
model causes a decrease. However, this difference is not huge and the values of this component become equal for each model
at the far field of z domain. The main different effect of the models, on the other hand, has been observed at the axial flow
components of each flow. The results for these components, h̄ in the YHP model and W in the MW model, are represented in
Figure 3.6. This figure reveals a substantial increase in the amount of axial flow in case of the YHP model, and a reduction in
case of the MW model. Moreover, the presence of the roughness modelled with the YHP model seems to increase oscillatory
behaviour of that component compared to the smooth case.

4. Conclusion

The aim of this study was to investigate the effects of the YHP model [15] in a rotating frame of reference on the mean
flow solutions of some member of the BEK system flows, particularly the flows with −1 < Ro < 0. The mean flow profiles
are computed using the method of lines and the backward difference from highly nonlinear governing equations (2.2). The
obtained mean-flow components agree with the previous findings in case of a smooth disk [4, 11]. The results indicate that
increased roughness for each flow vanishes the oscillations of the steady mean flows towards the boundary layer, and the
magnitude of the wall jet, f̄ , is also reduced.

The computed profiles are also compared with the results of another theoretical roughness model, the MW model [14]. The
comparison is made in each flow for selected the roughness parameter value a = 0.2 of YHP model and the corresponding
roughness parameter η of the MW model. It seems that the results are changed substantially due to selection of the roughness
model. This points possible future researches investigating the effects of the roughness models on the stability characteristics
of the flows.
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Abstract

In this manuscript, almost para-contact metric structures on 5 dimensional nilpotent Lie

algebras are studied. Some examples of para-Sasakian and para-contact structures on

five-dimensional nilpotent Lie algebras are given.

1. Introduction

Almost paracontact structures were first studied by [1] and after the work of Zamkovoy in [2], many authors have made

contribution. For recent studies, see [3]-[8]. In [9], almost paracontact metric structures were classified into 212 classes taking

into consideration the Levi-Civita covariant derivative of the fundamental 2-form of the structure. In this work, we study

almost paracontact metric structures on 5-dimensional nilpotent Lie algebras.

In the literature, there are many researches on five dimensional Lie algebras equipped with an almost contact metric structure.

Andrada et al., studied Sasakian structures on five dimensional Lie algebras [10]. Calvaruso and Fino introduced an approach

on five dimensional K-contact Lie algebras [11]. Nilpotent Lie algebras having dimension 5 were classified in [12]. According

to this classification, we examined the Lie algebras equipped with quasi-Sasakian structures in [13]. Also in [14], we studied

some certain classes, such as α− Sasakian, β− Kenmotsu, cosymplectic, nearly cosymplectic, on five dimensional nilpotent

Lie algebras and obtained some results on the corresponding Lie groups. This paper is organised in a similar vein with almost

paracontact metric structure. Under the light of the classifications given in [9] and [12], we investigate the existence of left

invariant para-cosymplectic, nearly para-cosymplectic, α-para-Sasakian, β -para-Kenmotsu and paracontact structures on 5

dimensional nilpotent Lie algebras.

2. Preliminaries

A 2n+1 dimensional differentiable manifold M has an almost paracontact structure (φ ,ξ ,η), if it has an endomorphism φ , a

vector field ξ and a 1-form η such that

φ 2 = I −η ⊗ξ , η(ξ ) = 1,φ(ξ ) = 0,
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there exists a disribution D : p ∈ M −→ Dp = Kerη .

An almost paracontact manifold is one which has an almost paracontact structure and if in addition M has a semi-Riemannian

metric g satisfying

g(φ(X),φ(Y )) =−g(X ,Y )+η(X)η(Y )

for all vector fields X ,Y , then M is called an almost paracontact metric manifold with an almost paracontact metric structure

and a compatible metric g. The 2-form

Φ(X ,Y ) = g(φ(X),Y )

for all X ,Y ∈ X(M), where X(M) denotes the set of smooth vector fields on M, is defined to be the fundamental 2-form of M.

In [2], a classification of almost paracontact metric manifolds was obtained by using the covariant derivative of Φ.

In this work we focus on following almost paracontact structures.

Let M be a differentiable manifold with an almost paracontact metric structure (φ ,ξ ,η ,g) and the fundamental 2-form Φ.

(φ ,ξ ,η ,g) is said to be

• para-cosymplectic if ∇X Φ(Y,Z) = 0,

• nearly para-cosymplectic if ∇X Φ(X ,Y ) = 0, or equivalently, (∇X φ)(Y )+(∇Y φ)(X) = 0,

• α-para-Sasakian if ∇X φ(Y ) = α(g(X ,Y )ξ −η(Y )X) for a constant α ,

• β -para-Kenmotsu if ∇X φ(Y ) = β (g(X ,φ(Y ))ξ +η(Y )φ(X)) for a constant β ,

• α-paracontact if Φ = αdη , where dη is the exterior derivative of η and α is a constant,

• paracontact if Φ = dη

for all vector fields X , Y , Z on M.

An almost paracontact metric structure (φ ,ξ ,η ,g) on a connected Lie group G uniquely induces an almost paracontact metric

structure (φ ,ξ ,η ,g) on the corresponding Lie algebra g.

In this manuscript, we investigate almost paracontact metric structures on 5-dimensional nilpotent Lie algebras. Nilpotent Lie

algebras with dimensions ≤ 5 were classified in [12], see also [15, 16]. These are algebras denoted by gi with the corresponding

basis {e1, . . . ,e5} and non-zero brackets:

g1 : [e1,e2] = e5, [e3,e4] = e5

g2 : [e1,e2] = e3, [e1,e3] = e5, [e2,e4] = e5

g3 : [e1,e2] = e3, [e1,e3] = e4, [e1,e4] = e5, [e2,e3] = e5

g4 : [e1,e2] = e3, [e1,e3] = e4, [e1,e4] = e5

g5 : [e1,e2] = e4, [e1,e3] = e5

g6 : [e1,e2] = e3, [e1,e3] = e4, [e2,e3] = e5

3. Almost paracontact metric structures on gi

Let (φ ,ξ ,η ,g) be a left invariant a.p.c.m.s. (almost paracontact metric structure) on a connected Lie group G with corresponding

Lie algebra gi. We use the same notation for the corresponding a.p.c.m.s. on gi.

We study each algebra gi seperately:

The algebra g1: Consider the basis {e1, . . . ,e5} with non-zero brackets

[e1,e2] = e5, [e3,e4] = e5.

• There is no para-cosymplectic structure on g1.

To see this, we show that g1 does not have a non-zero parallel vector field. Let ξ = ∑aiei be a parallel vector field on g1.

Then for all basis elements, we have g(∇ei
ξ ,e j) = 0. By Kozsul’s formula,

2g(∇e1
ξ ,e2) =−g(e1, [ξ ,e2])+g(ξ , [e2,e1]+g(e2, [e1,ξ ])) =−a5g(e5,e5) = 0,

implying a5 = 0. Similarly, 2g(∇e1
ξ ,e5) = a2g(e5,e5) = 0 gives a2 = 0, 2g(∇e2

ξ ,e5) =−a1g(e5,e5) = 0 yields a1 = 0.

From the equation 2g(∇e3
ξ ,e5) = a4g(e5,e5) = 0, we get a4 = 0 and 2g(∇e4

ξ ,e5) = −a3g(e5,e5) = 0 gives a3 = 0.

Thus, a vector field ξ = ∑aiei is parallel if and only if ai = 0. Since for a para-cosymplectic structure the characteristic

vector field is parallel, there is no para-cosymplectic structure on g1.
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Similarly, there are no nonzero parallel vector fields and no para-cosymplectic structures on remaining Lie algebras gi.

Now we calculate covariant derivatives of basis elements as follows:

∇e1
e2 = ∑εig(∇e1

e2,ei)ei, where εi = g(ei,ei)

We write g(∇e1
e2,ei) by Kozsul’s formula. The nonzero covariant derivatives are:

∇e1
e2 =

1

2
e5, ∇e1

e5 =−1

2
ε2ε5e2,

∇e2
e1 =−1

2
e5, ∇e2

e5 =
1

2
ε1ε5e1,

∇e3
e4 =

1

2
e5, ∇e3

e5 =−1

2
ε4ε5e4,

∇e4
e3 =−1

2
e5, ∇e4

e5 =
1

2
ε3ε5e3,

∇e5
e1 =−1

2
ε2ε5e2, ∇e5

e2 =
1

2
ε1ε5e1, ∇e5

e3 =−1

2
ε4ε5e4, ∇e5

e4 =
1

2
ε3ε5e3

• There is no nearly para-cosymplectic structure on g1.

Assume that (φ ,ξ ,η ,g) is a nearly para-cosymplectic structure. Then we have ∇ei
φ(e j)+∇e j

φ(ei) = 0.

Let

φ(e1) = a1e1 +a2e2 +a3e3 +a4e4 +a5e5,

φ(e2) = b1e1 +b2e2 +b3e3 +b4e4 +b5e5,

φ(e3) = c1e1 + c2e2 + c3e3 + c4e4 + c5e5,

φ(e4) = d1e1 +d2e2 +d3e3 +d4e4 +d5e5,

φ(e5) = f1e1 + f2e2 + f3e3 + f4e4 + f5e5.

Since 0 = Φ(ei,ei) = g(φ(ei),ei), we have a1 = b2 = c3 = d4 = f5 = 0.

From the equation (∇e1
Φ)(e1,e5)= 0, we obtain 0=−Φ(e1,∇e1

e5)=−g(φ(e1),− 1
2
ε2ε5e2), which implies g(φ(e1),e2)=

−g(φ(e2),e1) = 0, thus a2 = b1 = 0.

Similarly, from (∇e1
Φ)(e1,e2) =−Φ(e1,∇e1

e2) =− 1
2
g(φ(e1),e5) = 0, which implies a5 = f1 = 0.

(∇e4
Φ)(e4,e3) = 0 gives g(φ(e4),e5) =−g(φ(e5),e4) = 0 and so d5 = f4 = 0.

(∇e4
Φ)(e4,e5) = 0 gives g(φ(e4),e3) =−g(φ(e3),e4) = 0 and so d3 = c4 = 0.

(∇e2
Φ)(e2,e1) = 0 gives g(φ(e2),e5) =−g(φ(e5),e2) = 0 and so b5 = f2 = 0.

(∇e3
Φ)(e3,e4) = 0 gives g(φ(e3),e5) =−g(φ(e5),e3) = 0 and so c5 = f3 = 0.

Thus,

φ(e1) = a3e3 +a4e4,

φ(e2) = b3e3 +b4e4,

φ(e3) = c1e1 + c2e2,

φ(e4) = d1e1 +d2e2,

φ(e5) = 0.

Since
0 = (∇e1

φ)(e5)+(∇e5
φ)(e1)

= e3{−ε2ε5b3 +
1
2
ε3ε5a4}

+e4{−ε2ε5b4 − 1
2
ε4ε5a3}

and e3, e4 are linearly independent, we have

2ε2b3 + ε3a4 = 0,

2ε2b4 − ε4a3 = 0.

Similarly, from (∇e1
φ)(e5)+(∇e5

φ)(e1) = 0, we get

2ε1a3 + ε3b4 = 0,

−2ε1a4 − ε4b3 = 0.

Now, we have

2ε2b3 + ε3a4 = 0,
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−ε4b3 −2ε1a4 = 0.

Multiply the first equation by 2ε3 and the second equation by ε1. Then we get b3 = 0 and a4 = 0. Similarly a3 = 0 and

b4 = 0.

From the equation (∇e1
φ)(e3)+(∇e3

φ)(e1) = 0, we obtain (c2 +a4)e5 = 0, that is, c2 =−a4 and since a4 = 0, we have

c2 = 0.

From the equation (∇e2
φ)(e3)+(∇e3

φ)(e2) = 0, we obtain c1 = b4 and since b4 = 0, we have c1 = 0.

Similarly, (∇e2
φ)(e4)+(∇e4

φ)(e2) = 0 implies d1 =−b3 = 0 and (∇e1
φ)(e4)+(∇e4

φ)(e1) = 0 yields d2 = a3 = 0.

Therefore φ(ei) = 0 and there is no non-zero nearly para-cosymplectic structure on g1.

• A vector field ξ on g1 is Killing if and only if ξ ∈ 〈e5〉: For a Killing vector field ξ = ∑i ξiei, we have g(∇ei
ξ ,e j) =

−g(∇e j
ξ ,ei). From g(∇e2

ξ ,e5) =−g(∇e5
ξ ,e2), we have ξ1 = 0.

g(∇e1
ξ ,e5) =−g(∇e5

ξ ,e1) gives ξ2 = 0.

g(∇e4
ξ ,e5) =−g(∇e5

ξ ,e4) yields ξ3 = 0.

g(∇e3
ξ ,e5) =−g(∇e5

ξ ,e3) implies ξ4 = 0 and we have no any other restriction on the coefficients of ξ .

By similar calculations, in g2, g3 and g4, a vector field ξ is Killing if and only if ξ = ξ5e5.

A vector field ξ in g5 or g6 is Killing on each of these algebras if and only if ξ = ξ4e4 +ξ5e5.

• There are α-para-Sasakian structures on g1, where α =± 1
2
.

For y = ξ , we get −φ(∇xξ ) = α{g(x,ξ )ξ − x}. Thus, ∇xξ = αφ(x). The characteristic vector field of an α-para-

Sasakian structure is Killing. Thus ξ = ξ5e5 and

φ(e1) =
1

α
∇e1

ξ =
1

α
ξ5(−

1

2
ε2ε5e2),

φ(e2) =
1

α
∇e2

ξ =
1

α
ξ5(

1

2
ε1ε5e1),

φ(e3) =
1

α
∇e3

ξ =
1

α
ξ5(−

1

2
ε4ε5e4),

φ(e4) =
1

α
∇e4

ξ =
1

α
ξ5(

1

2
ε3ε5e3),

φ(e5) = 0.

Now we check the defining relation of an α-para-Sasakian structure (φ ,ξ ,η ,g)

(∇xφ)(y) = α{g(x,y)ξ −η(y)x}

for each pair of basis elements. For x = y = e1, we should have

(∇e1
φ)(e1) = α{g(e1,e1)ξ5e5},

which implies

− 1

4α
ε2ε5e5 = αε1e5.

Multiply both sides of the above equation by ε1, we obtain ε1ε2ε5 =−4α2. Thus ε1ε2ε5 =−1 and α =± 1
2
.

Similarly, for x = y = e3, we get ε3ε4ε5 =−4α2, which gives ε3ε4ε5 =−1 and α =± 1
2
. There is no any other restriction

on εi or on α .

We have ε1ε2ε5 =−1 and ε3ε4ε5 =−1.

Case 1: If ε5 =−1, then ε1ε2 = 1. Either ε1 = 1 and ε2 = 1; or ε1 =−1 and ε2 =−1. Also, since ε3ε4 = 1, ε3 = 1 and

ε4 = 1; or ε3 =−1 and ε4 =−1. In these cases the signature is not (3,2). Thus ε5 6=−1.

Case 2: If ε5 = 1, then ε1ε2 =−1 and ε3ε4 =−1. There are four possibilities for the signature of the metric.

ε1 = 1,ε2 =−1,ε3 = 1,ε4 =−1,ε5 = 1

ε1 = 1,ε2 =−1,ε3 =−1,ε4 = 1,ε5 = 1

ε1 =−1,ε2 = 1,ε3 =−1,ε4 = 1,ε5 = 1

ε1 =−1,ε2 = 1,ε3 = 1,ε4 =−1,ε5 = 1.

One can check that (φ ,ξ ,η ,g), where φ(ei) are given as above and g has one of the signatures above, are α-para-Sasakian

structures, where α =± 1
2
.
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• There is no β -para-Kenmotsu structure on g1.

The characteristic vector field ξ of a β -para-Kenmotsu structure satisfies the property g(∇xξ ,y) = g(∇yξ ,x). Checking

for basis elements, we obtain that ξ = ξ1e1 + ξ2e2 + ξ3e3 + ξ4e4. The definition of a β -para-Kenmotsu structure

(φ ,ξ ,η ,g) is

(∇xφ)(y) =−β{g(x,φ(y))ξ +η(y)φ(x)}.

For y = ξ , we get ∇xξ = βφ 2(x) = β{x−η(x)ξ}. Now

∇e1
ξ = ∇e1

(ξ1e1 +ξ2e2 +ξ3e3 +ξ4e4) =
ξ2

2
e5 = β{e1 − ε1ξ1(ξ1e1 + ...+ξ4e4)}.

Since basis elements are linearly independent, we have ξ2 = 0, 1− ε1ξ 2
1 = 0, ξ1ξ3 = 0, ξ1ξ4 = 0. If ξ1 = 0, then

1− ε1ξ 2
1 = 1 = 0 and thus ξ1 6= 0. Therefore, ξ3 = ξ4 = 0 and ξ = ξ1e1. Now for x = e2, we have

∇e2
ξ =−ξ1

2
e5 = β{e2 −η(e2)ξ}= βe2,

which implies ξ1 = 0, that is ξ = 0.

• There are paracontact structures on g1.

More generally, consider an α-paracontact structure (φ ,ξ ,η ,g) with the fundamental 2-form Φ. Since Φ = αdη , we

have

0 = Φ(ξ ,x) = αdη(ξ ,x) =
1

2
{(∇ξ η)(x)− (∇xη)(ξ )}=−(∇ξ η)(x),

that is, (∇ξ η)(x) = g(ξ ,∇ξ x) = 0. By Kozsul’s formula,

0 = 2g(∇ξ x,ξ ) =−2g(ξ , [x,ξ ]).

Thus for a paracontact structure, the characteristic vector field ξ satisfies g(ξ , [x,ξ ]) = 0 for all vector fields x.

Let ξ = ∑ξiei. We have

0 = g(ξ , [e1,ξ ]) = g(ξ ,ξ2e5) = ξ2ξ5ε5,

0 = g(ξ , [e2,ξ ]) = g(ξ ,−ξ1e5) =−ξ1ξ5ε5,

0 = g(ξ , [e3,ξ ]) = g(ξ ,ξ4e5) = ξ4ξ5ε5,

0 = g(ξ , [e4,ξ ]) = g(ξ ,−ξ3e5) =−ξ3ξ5ε5.

It is easy to observe that the structure (φ ,ξ ,η ,g), where ξ = e5, g has signature +,−,+,−,+, φ(e1) = e2, φ(e2) = e1,

φ(e3) = e4, φ(e4) = e3, φ(e5) = 0 is paracontact.

The algebra g2:

The nonzero brackets of basis elements are:

[e1,e2] = e3, [e1,e3] = e5, [e2,e4] = e5.

Assume that g is a semi Riemannian metric with signature g(ei,ei) = εi. Nonzero covariant derivatives of g calculated by the

Kozsul’s formula are:

∇e1
e2 =

1
2
e3, ∇e1

e3 =− 1
2
ε2ε3e2 +

1
2
e5, ∇e1

e5 =− 1
2
ε3ε5e3,

∇e2
e1 =− 1

2
e3, ∇e2

e3 =
1
2
ε1ε3e1, ∇e2

e4 =
1
2
e5,

∇e2
e5 =− 1

2
ε4ε5e4, ∇e3

e1 =− 1
2
ε2ε3e2 − 1

2
e5, ∇e3

e2 =
1
2
ε1ε3e1,

∇e3
e5 =

1
2
ε1ε5e1, ∇e4

e2 =− 1
2
e5, ∇e4

e5 =
1
2
ε2ε5e2,

∇e5
e1 =− 1

2
ε3ε5e3, ∇e5

e2 =− 1
2
ε4ε5e4,

∇e5
e3 =

1
2
ε1ε5e1, ∇e5

e4 =
1
2
ε2ε5e2.
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• There exists no nearly-para-cosymplectic structure.

Assume that (φ ,ξ ,η ,g) is a nearly para-cosymplectic structure. Then we have ∇ei
φ(e j)+∇e j

φ(ei) = 0.

Let

φ(e1) = a1e1 +a2e2 +a3e3 +a4e4 +a5e5,

φ(e2) = b1e1 +b2e2 +b3e3 +b4e4 +b5e5,

φ(e3) = c1e1 + c2e2 + c3e3 + c4e4 + c5e5,

φ(e4) = d1e1 +d2e2 +d3e3 +d4e4 +d5e5,

φ(e5) = f1e1 + f2e2 + f3e3 + f4e4 + f5e5.

Since 0 = Φ(ei,ei) = g(φ(ei),ei), we have a1 = b2 = c3 = d4 = f5 = 0.

From the equation

0 = (∇e2
ϕ)(e2) = b1∇e2

e1 +b3∇e2
e3 +b4∇e2

e4 +b5∇e2
e5

= b1(− 1
2
e3)+b3(

1
2
ε1ε3)e1 +b4(

1
2
e5)+b5(− 1

2
ε4ε5)e4

we have, b1 = b3 = b4 = b5 = 0. The equation 0 = (∇e5
ϕ)(e5) gives f1 = f2 = f3 = f4 = 0. Since (∇xΦ)(x,y) = 0, we

have

0 = (∇e1
Φ)(e1,e2) =−Φ(e1,∇e1

e2) =−1

2
g(φ(e1),e3) =

1

2
g(φ(e3),e1),

and thus a3 = c1 = 0. In addition,

0 = (∇e1
Φ)(e1,e3) =−Φ(e1,∇e1

e3)
= −g(φ(e1),− 1

2
ε2ε3e2 +

1
2
e5)

= 1
2
g(φ(e1),ε2ε3e2)+

1
2
g(φ(e5),e1)

= 1
2
ε2ε3g(φ(e1),e2)

implies a2 = b1 = 0. Since φ(e5) = 0, we have g(φ(ei),e5) =−g(φ(e5),ei) = 0 and as a result a5 = b5 = c5 = d5 = 0.

Since
0 = (∇e2

Φ)(e2,e5) =−Φ(e2,∇e2
e5)

= 1
2
ε4ε5g(φ(e2),e4),

we get b4 = d2 = 0. Since

0 = (∇e3
Φ)(e3,e1) =−Φ(∇e3

e1,e3) = Φ(e3,∇e3
e1)

= − 1
2
ε2ε3g(φ(e3),e2),

we have c2 = b3 = 0. Now,

0 = (∇e1
φ)(e2)+(∇e2

φ)(e1) = a4∇e2
e4 =

a4

2
e5 = 0

gives a4 = 0. Since φ(e1) = 0, we obtain 0 = g(φ(e1),e4) =−g(φ(e4),e1), that is d1 = 0. From

0 = (∇e1
φ)(e5)+(∇e5

φ)(e1) = ε3ε5c4φ(e3) = 0,

we get c4 = 0 and this implies also d3 = 0. To sum up φ(ei) = 0 for all i = 1, · · · ,5.

By similar calculations, there are no nearly-para-cosymplectic structures on the remaining Lie algebras gi.

• There is no α-para-Sasakian structure.

Let (φ ,ξ ,η ,g) be such a structure. We have ξ = ξ5e5, since the characteristic vector field is Killing. Since g(ξ ,ξ ) =
ξ 2

5 ε5 = 1, ε5 = 1. ∇xξ = αφ(x),

φ(e1) =
1

α
∇e1

e5 =− 1

2α
ε3ε5e3.

Now we check the defining relation (∇xφ)(y) = α{g(x,y)ξ −η(y)x} for basis elements.

Let x = y = e1. In this case, the equation (∇e1
φ)(e1) = αg(e1,e1)e5 implies

1

4α
ε2ε5e2 −{ 1

4α
ε3ε5 +αε1}e5 = 0,

this is not possible since e2 and e5 are linearly independent.

• This algebra does not have a β -para-Kenmotsu structure.

From the equation g(∇xξ ,y) = g(∇yξ ,x) in a β -para-Kenmotsu structure, ξ is obtained in the form ξ = ξ1e1 +ξ2e2 +
ξ3e3 +ξ4e4. Also for x = e3 in the equation

∇xξ = βφ 2(x) = β{x−η(x)ξ},
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we get

{ξ2

2
ε1ε3 +βε3ξ1ξ3}e1 −{ξ2

2
ε2ε3 +βε3ξ2ξ3}e2 +β (ε3ξ 2

3 −1)e3 +βε3ξ3ξ4e4 −
ξ1

2
e5 = 0.

Linear independence of basis element yields ξ1 = 0, ξ2 = 0, ξ3 = 1 and ξ4 = 0. Thus ξ = ξ3e3. However, in this case,

∇e2
ξ =

ξ3

2
ε1ε3e1 6= β{e2 −η(e2)ξ}= βe2.

• There are paracontact structures. Consider a paracontact structure (φ ,ξ ,η ,g) with the fundamental 2-form Φ. Since

Φ = dη , the equation

g(φ(ei),e j) = g(∇ei
ξ ,e j)−g(∇e j

ξ ,ei)

holds for all basis elements. Let ξ = ∑ξiei. Then,

g(φ(e1),e2) = g(∇e1
ξ ,e2)−g(∇e2

ξ ,e1) =−ε3ξ3,

g(φ(e1),e3) = g(∇e1
ξ ,e3)−g(∇e3

ξ ,e1) =−ε5ξ5,

g(φ(e1),e4) = g(∇e1
ξ ,e4)−g(∇e4

ξ ,e1) = 0,

g(φ(e1),e5) = 0,

g(φ(e2),e3) = 0,

g(φ(e2),e4) = g(∇e2
ξ ,e4)−g(∇e4

ξ ,e2) =−ε5ξ5,

g(φ(e2),e5) = g(φ(e3),e4) = g(φ(e3),e5) = g(φ(e4),e5) = 0.

Thus,

φ(e1) =−ξ3ε2ε3e2 −ξ5ε3ε5e3,

φ(e2) = ξ3ε1ε3e1 −ξ5ε4ε5e4,

φ(e3) = ξ5ε1ε5e1,

φ(e4) = ξ5ε2ε5e2,

φ(e5) = 0.

Now the equation φ 2(e3) = e3 −η(e3)ξ and linear independence of basis elements imply

ξ1ξ3 = 0, ξ3ξ4 = 0, ξ3ξ5 = 0.

There are structures satisfying these properties. For example, the structure (φ ,ξ ,η ,g), such that ξ = e5, φ(e1) = e3,

φ(e2) = e4, φ(e3) = e1, φ(e4) = e2 and the metric has signature +,+,−,−,+ is paracontact.

The algebra g3: The nonzero brackets and nonzero covariant derivatives are as follows:

[e1,e2] = e3, [e1,e3] = e4, [e1,e4] = e5, [e2,e3] = e5

∇e1
e2 =

1
2
e3, ∇e1

e3 =− 1
2
ε2ε3e2 +

1
2
e4, ∇e1

e4 =− 1
2
ε3ε4e3 +

1
2
e5,

∇e1
e5 =− 1

2
ε4ε5e4, ∇e2

e1 =− 1
2
e3, ∇e2

e3 =
1
2
ε1ε3e1 +

1
2
e5,

∇e2
e5 =− 1

2
ε3ε5e3, ∇e3

e1 =− 1
2
ε2ε3e2 − 1

2
e4, ∇e3

e2 =
1
2
ε1ε3e1 − 1

2
e5

∇e3
e4 =

1
2
ε1ε4e1, ∇e3

e5 =
1
2
ε2ε5e2, ∇e4

e1 =− 1
2
ε3ε4e3 − 1

2
e5

∇e4
e3 =

1
2
ε1ε4e1, ∇e4

e5 =
1
2
ε1ε5e1, ∇e5

e1 =− 1
2
ε4ε5e4,

∇e5
e2 =− 1

2
ε3ε5e3, ∇e5

e3 =
1
2
ε2ε5e2, ∇e5

e4 =
1
2
ε1ε5e1.
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• There is no α-para-Sasakian structure.

The characteristic vector field of an α-para-Sasakian is Killing. Thus if (φ ,ξ ,η ,g) is an α-para-Sasakian structure,

ξ = e5. Then

φ(e1) =
1

α
∇e1

e5 =− 1

2α
ε4ε5e4

and the equation

(∇e1
φ)(e1) = α{g(e1,e1)e5 −η(e1)e1}

result in the contradiction
1

4α
ε3ε5e3 −{ 1

4α
ε4ε5 −αε1}e5 = 0.

• There is no β -para-Kenmotsu structure.

Since ξ satisfies g(∇xξ ,y) = g(∇yξ ,x), checking this condition for basis elements, we get that ξ is of the form

ξ = ξ1e1 +ξ2e2. For x = e1, the equation ∇xξ = β{x−η(x)ξ} implies (1−βε1ξ 2
1 )e1 −βε1ξ1ξ2e2 − ξ2

2
e3 = 0. From

linear independence, we have ξ2 = 0 and so ξ = ξ1e1. Now for x = e2, we get βe2 +
ξ1
2

e3 = 0, a contradiction.

• There are paracontact structures.

By using the defining equation of an α-paracontact structure

Φ(ei,e j) = g(φ(ei),e j) = αdη = α{g(∇ei
ξ ,e j)−g(∇e j

ξ ,ei)},

we write

φ(e1) =−α{ξ3ε2ε3e2 +ξ4ε3ε4e3 +ξ5ε4ε5e4},
φ(e2) = α{ξ3ε1ε3e1 −ξ5ε3ε5e3},
φ(e3) = α{ξ4ε1ε4e1 +ξ5ε2ε5e2},

φ(e4) = αξ5ε1ε5e1,

φ(e5) = 0.

In addition, the relation 0 = g(φ(e5),φ(ei)) = −g(e5,ei) +η(e5)η(ei) gives ξ1ξ5 = ξ2ξ5 = ξ3ξ5 = ξ4ξ5 = 0. We

can find structures with these properties. For instance, (φ ,ξ ,η ,g), where ξ = e5, φ(e1)e4, φ(e2) = e3, φ(e3) = e2,

φ(e4) = e1, φ(e5) = 0 and g has the signature +,+,−,−,+ is a paracontact structure.

The algebra g4: The nonzero brackets and nonzero covariant derivatives are:

[e1,e2] = e3, [e1,e3] = e4, [e1,e4] = e5

∇e1
e2 =

1
2
e3, ∇e1

e3 =− 1
2
ε2ε3e2 +

1
2
e4, ∇e1

e4 =− 1
2
ε3ε4e3 +

1
2
e5,

∇e1
e5 =− 1

2
ε4ε5e4, ∇e2

e1 =− 1
2
e3, ∇e2

e3 =
1
2
ε1ε3e1,

∇e3
e1 =− 1

2
ε2ε3e2 − 1

2
e4, ∇e3

e2 =
1
2
ε1ε3e1, ∇e3

e4 =
1
2
ε1ε4e1,

∇e4
e1 =− 1

2
ε3ε4e3 − 1

2
e5 ∇e4

e3 =
1
2
ε1ε4e1, ∇e4

e5 =
1
2
ε1ε5e1,

∇e5
e1 =− 1

2
ε4ε5e4, ∇e5

e4 =
1
2
ε1ε5e1.

• This algebra does not admit an α-para-Sasakian structure.

Let (φ ,ξ ,η ,g) be an α-para-Sasakian structure. Since ξ is Killing, we have ξ = e5 in g4. From the equation

∇e2
ξ = αφ(e2), we get φ(e2) = 0. On the other hand,

0 = g(φ(e2),φ(e2)) 6=−g(e2,e2)+η(e2)η(e2) =−ε2.

• There exists no β -para-Kenmotsu structure.

From the equation g(∇xξ ,y) = g(∇yξ ,x), the Reeb vector field is obtained in the form ξ = ξ1e1 +ξ2e2 +ξ4e4 +ξ5e5.

Since ∇e3
ξ = βφ 2(e3), we have

1

2
ε1(ε3ξ2 + ε4ξ4)e1 −

1

2
ε2ε3ξ1e2 −βe3 −

ξ1

2
e4 = 0.

Since basis elements are linearly independent, there is no nonzero number β satisfying this equation.
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• There is no paracontact structure. Since

Φ(ei,e j) = g(φ(ei),e j) = dη(ei,e j) = g(∇ei
ξ ,e j)−g(∇e j

ξ ,ei)

for a paracontact structure, we obtain φ(e4) =
ξ5
2

ε1ε5e1 and φ(e5) = 0. On the other hand, φ 2(e5) = e5 −η(e5)ξ gives

ξ1ξ5ε5e1 +ξ2ξ5ε5e2 +ξ3ξ5ε5e3 +ξ4ξ5ε5e4)+(ξ 2
5 ε5 −1)e5 = 0.

From linear independence of basis elements, we have

ξ1ξ5 = ξ2ξ5 = ξ3ξ5 = ξ4ξ5 = 0, ξ 2
5 ε5 = 1.

Since ξ 2
5 6= 0, we get ξ1 = ξ2 = ξ3 = ξ4 and ξ = ξ5e5. Then, 0 = φ 2(e4) 6= e4 −η(e4)ξ = e4.

The algebra g5:

[e1,e2] = e4, [e1,e3] = e5

∇e1
e2 =

1
2
e4, ∇e1

e3 =
1
2
e5, ∇e1

e4 =− 1
2
ε2ε4e2,

∇e1
e5 =− 1

2
ε3ε5e3, ∇e2

e1 =− 1
2
e4, ∇e2

e4 =
1
2
ε1ε4e1,

∇e3
e1 =− 1

2
e5, ∇e3

e5 =
1
2
ε1ε5e1, ∇e4

e1 =− 1
2
ε2ε4e2,

∇e4
e2 =

1
2
ε1ε4e1, ∇e5

e1 =− 1
2
ε3ε5e3 , ∇e5

e3 =
1
2
ε1ε5e1.

• There exists no α-para-Sasakian structure.

Let (φ ,ξ ,η ,g) be an α-para-Sasakian structure. Since ξ is Killing, ξ = ξ4e4 +ξ5e5. From the equation ∇xξ = αφ(x),
we get φ(e4) = φ(e5) = 0. In addition,

g(φ(e4),φ(e4)) =−g(e4,e4)+η(e4)η(e4)

implies 0 = −ε4 + ξ 2
4 . Thus, ε4 = 1 and ξ 2

4 = 1. Similarly, ξ 2
5 = 1 and ε5 = 1. However, in this case, g(ξ ,ξ ) =

ξ 2
4 ε4 +ξ 2

5 ε5 = 2 6= 1.

• There is no β -para-Kenmotsu structure.

The Reeb vector field ξ satisfies g(∇xξ ,y) = g(∇yξ ,x). Checking for basis elements, ξ is obtained in the form

ξ = ξ1e1 +ξ2e2 +ξ3e3. We also know that ∇xξ = βφ 2(x) = β{x−η(x)ξ}. For x = e4, we have

ξ2

2
ε1ε4e1 −

ξ1

2
ε2ε4e2 −βe4 = 0.

Since basis elements are linearly independent, there is no nonzero number β satisfying this equation.

• There is no paracontact structure. Since

Φ(ei,e j) = g(φ(ei),e j) = dη(ei,e j) = g(∇ei
ξ ,e j)−g(∇e j

ξ ,ei)

for a paracontact structure, we obtain φ(e4) = 0 and φ(e5) = 0. On the other hand, φ 2(e4) = e4 −η(e4)ξ gives

ξ1ξ4ε4e1 +ξ2ξ4ε4e2 +ξ3ξ4ε4e3 +(ξ 2
4 ε4 −1)e4)+ξ5ξ4ε4e5 = 0.

From linear independence of basis elements, we have

ξ1ξ4 = ξ2ξ4 = ξ3ξ4 = ξ5ξ4 = 0, ξ 2
4 ε4 = 1.

Since ξ 2
4 6= 0, we get ξ1 = ξ2 = ξ3 = ξ5 and ξ = ξ4e4. In this case, 0 = φ 2(e5) 6= e5 −η(e5)ξ = e5.

The algebra g6:

[e1,e2] = e3, [e1,e3] = e4, [e2,e3] = e5

∇e1
e2 =

1
2
e3, ∇e1

e3 =− 1
2
ε2ε3e2 +

1
2
e4, ∇e1

e4 =− 1
2
ε3ε4e3,

∇e2
e1 =− 1

2
e3, ∇e2

e3 =
1
2
ε1ε3e1 +

1
2
e5, ∇e2

e5 =− 1
2
ε3ε5e3,

∇e3
e1 =− 1

2
ε2ε3e2 − 1

2
e4, ∇e3

e2 =
1
2
ε1ε3e1 − 1

2
e5, ∇e3

e4 =
1
2
ε1ε4e1,

∇e3
e5 =

1
2
ε2ε5e2 ∇e4

e1 =− 1
2
ε3ε4e3, ∇e4

e3 =
1
2
ε1ε4e1,

∇e5
e2 =− 1

2
ε3ε5e3, ∇e5

e3 =
1
2
ε2ε5e2.
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• There exists no α-para-Sasakian structure.

Since ξ is Killing, we have ξ = ξ4e4 +ξ5e5. From the equation ∇xξ = αφ(x) implies φ(e4) = φ(e5) = 0. In addition,

g(φ(e4),φ(e4)) = −g(e4,e4)+η(e4)η(e4) yields ε4 = 1 and ξ 2
4 = 1. Similarly we have ε5 = 1 and ξ 2

5 = 1, which

contradicts with g(ξ ,ξ ) = 1.

• There is no β -para-Kenmotsu structure.

The characteristic vector field of a β -para-Kenmotsu structure satisfies g(∇xξ ,y) = g(∇yξ ,x). Then ξ should be of the

form ξ = ξ1e1 +ξ2e2. Now since ∇e4
ξ = βφ 2(e4) = β{e4 −η(e4)ξ}, we have

ξ1

2
ε3ε4e3 +βe4 = 0,

and there is no nonzero β with this property.

• There is no paracontact structure.

Since

Φ(ei,e j) = g(φ(ei),e j) = dη(ei,e j) = g(∇ei
ξ ,e j)−g(∇e j

ξ ,ei)

for a paracontact structure, we obtain φ(e4) = 0 and φ(e5) = 0. On the other hand, φ 2(e4) = e4 −η(e4)ξ gives

ξ1ξ4ε4e1 +ξ2ξ4ε4e2 +ξ3ξ4ε4e3 +(ξ 2
4 ε4 −1)e4)+ξ5ξ4ε4e5 = 0.

From linear independence of basis elements, we have

ξ1ξ4 = ξ2ξ4 = ξ3ξ4 = ξ5ξ4 = 0, ξ 2
4 = ε4 = 1.

Since ξ 2
4 6= 0, we get ξ1 = ξ2 = ξ3 = ξ5 and ξ = ξ4e4. In this case, 0 = φ 2(e5) 6= e5 −η(e5)ξ = e5.

After all, we state followings.

Theorem 3.1. An almost paracontact metric structure on a five dimensional nilpotent Lie algebra g is para-cosymplectic if

and only if g is abelian.

Thus we may state

Corollary 3.2. There is no para-cosymplectic left invariant almost paracontact metric structure on a five dimensional

connected Lie group whose corresponding Lie algebra is nilpotent.

In addition we deduce followings.

Theorem 3.3. There is no left-invariant nearly para-cosymplectic structure on a five dimensional nilpotent Lie group.

Theorem 3.4. A 5-dimensional nilpotent Lie algebra has an α-para-Sasakian structure if it is isomorphic to g1.

Corollary 3.5. A five dimensional nilpotent Lie group has a left-invariant α-para-Sasakian structure if its Lie algebra is

isomorphic to g1.

Theorem 3.6. There exists no β -para-Kenmotsu structure on a five dimensional nilpotent Lie algebra.

Corollary 3.7. There is no left-invariant β -para-Kenmotsu structure on a five dimensional nilpotent Lie group.

Theorem 3.8. A 5-dimensional nilpotent Lie algebra has a paracontact structure if it is isomorphic to g1, g2 or g3.

Corollary 3.9. A 5-dimensional nilpotent Lie group has a left invariant paracontact structure if its Lie algebra is isomorphic

to g1, g2 or g3.
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Canan Çiftçi

Department of Mathematics, Faculty of Arts and Sciences, Ordu University, Ordu, Turkey

Article Info

Keywords: Disjunctive total domina-

tion, Domination, Shadow distance

graph

2010 AMS: 05C12, 05C69

Received: 03 September 2020

Accepted: 09 December 2020

Available online: 15 December 2020

Abstract

Let G be a graph having vertex set V (G). For S ⊆V (G), if each vertex is adjacent to a vertex

in S or has at least two vertices in S at distance two from it, then the set S is a disjunctive total

dominating set of G. The disjunctive total domination number is the minimum cardinality

of such a set. In this work, we discuss the disjunctive total domination of shadow distance

graphs of some graphs such as cycle, path, star, complete bipartite and wheel graphs.

1. Introduction

Domination in graphs [1] has received considerable attention in graph theory due to the various applications for real world

problems such as the chess problem, communication network problems, location of radar stations, routing and coding theory

[2]-[4]. There are several variations of domination; one of which is total domination [5]. Since implementations of dominating

and total dominating sets in modern networks are expensive, some restrictions are added to them. Then Henning and Naicker

[6] defined the disjunctive total domination as a relaxation of total domination. For a set S ⊆V (G), if each vertex is adjacent to

a vertex in S or has at least two vertices in S at distance two from it, then the set S is a disjunctive total dominating set, briefly

DTD-set, of G. When a vertex u satisfies one of these two conditions, it is known that u is disjunctively totally dominated,

briefly DT-dominated, by vertices of S. Furthermore, when u satisfies the first condition (the second condition, respectively), it

is known that u is totally dominated (disjunctively dominated, respectively) by vertices of S. The disjunctive total domination

number, γd
t (G), is the minimum cardinality of a DTD-set in G. A DTD-set which gives the value γd

t (G) is called γd
t (G)-set.

This parameter is studied on grids, trees, permutation graphs, claw-free graphs and it is applied on some graph modifications

such as bondage and subdivision [6]-[12]. This paper is about disjunctive total domination number of shadow distance graph

of some special graphs.

Let G be a graph having vertex set V (G) and edge set E(G). For two vertices u and v if there is an edge joining them, then they

are adjacent (or neighbors). The distance dG(u,v) between u and v is the length of the shortest path joining them in G. The

greatest distance between any pair of vertices of G is the diameter of G and denoted by diam(G). We follow [1] for graph

theory terminology and notation which are not defined here for simplicity.

The distance graph [13] D(G,Ds) of G has vertex set V (G) and two vertices u and v are neighbors in D(G,Ds) if d(u,v) ∈ Ds,

in which D is the set of all distances between distinct pairs of vertices in G and Ds is a subset of D. The shadow graph D2(G)
[14] of a connected graph G is obtained by taking two copies of G and joining each vertex u in the first copy to the neighbors

of the corresponding vertex v in the second copy.

The shadow distance graph Dsd(G,Ds) of a connected graph G is defined by Kumar and Muralli [15] and is obtained from G

Email address and ORCID number:cananciftci@odu.edu.tr, https://orcid.org/0000-0001-5397-0367
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with the following properties:

(i) The graph Dsd(G,Ds) consists of two copies of G say G itself and G′.
(ii) For v ∈V (G), the corresponding vertex is denoted by v′ ∈V (G′).

(iii) V (Dsd(G,Ds)) =V (G)∪V (G′).
(iv) E(Dsd(G,Ds)) = E(G)∪E(G′)∪Eds, in which Eds is the set of all edges between two distinct vertices v ∈V (G) and

w′ ∈V (G′) satisfying d(v,w) ∈ Ds in G.

If Ds = {1}, then this gives the definition of shadow graph D2(G). The shadow graph D2(P6) and shadow distance graphs

Dsd(P6,{2}), Dsd(P6,{3}) are shown in Figure 1.1.

Figure 1.1: The shadow and shadow distance graphs of a path P6

Now, we make use of the following known theorems in our results.

Theorem 1.1. [6] Let G be a cycle with n ≥ 3. Then γd
t (G) = 2n/5 when n ≡ 0 (mod 5) and γd

t (G) = ⌈2(n+1)/5⌉ otherwise.

Observation 1.2. [11] If diam(G) ∈ {1,2} for a connected graph G having at least two vertices, then γd
t (G) = 2.

2. Disjunctive total domination of shadow distance graphs

We, in this section, determine the disjunctive total domination number of shadow distance graph of some special graphs

such as cycle, path, star, complete bipartite and wheel graphs. Throughout the paper, we will label vertices of D2(G) and

Dsd(G,Ds) for G ≇ W1,n,Kr,s as the vertices in the first copy of G by 1,2, ...,n and the vertices in the second copy of G by

n+1,n+2, ...,2n starting from the left.

Theorem 2.1. If D2(Cn) is a shadow graph of a cycle with n ≥ 3, then

γd
t (D2(Cn)) =

{

⌈ 2n
5
⌉+1, if n ≡ 2 (mod 5)

⌈ 2n
5
⌉, otherwise.

Proof. We first establish the upper bound for γd
t (D2(Cn)). Let

S =

{

5i+1
∣

∣ 0 ≤ i ≤
⌈n

5

⌉

−1

}

∪
{

n+5i+2
∣

∣ 0 ≤ i ≤
⌈

n−1

5

⌉

−1

}

.

In all cases of n based on mod 5, the set S is a DTD-set of D2(Cn). Thus, if n ≡ 2 (mod 5), then |S|= ⌈ 2n
5
⌉+1 and for other

cases |S|= ⌈ 2n
5
⌉. Therefore,

γd
t (D2(Cn))≤ |S|=

{

⌈ 2n
5
⌉+1, if n ≡ 2 (mod 5)

⌈ 2n
5
⌉, otherwise.

Now, we will prove the reverse inequality. Assume that T = {v1,v2, ...,vi, ...,v j, ...,vt} is a γd
t -set of D2(Cn) with v1 < v2 <

... < vi < ... < vm < vm+1 < ... < v j < ... < vt , where vi and v j are any positive integers such that 1 ≤ vi ≤ n for i ∈ {1,2, ...,m}
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and n+1 ≤ v j ≤ 2n for j ∈ {m+1,m+2, ..., t}. Let fx = vx+1 − vx for x ∈ {1,2, ..., t −1} with x 6= m. We must prove fx ≤ 5

for each x ∈ {1,2, ..., t −1} provided that x 6= m.

Let us suppose that fx ≥ 6 for every x. We claim that fx = 6 for some x ∈ {1,2, ..., t −1} with x 6= m. In accordance with this

claim, we construct the set

{

6i+1
∣

∣ 0 ≤ i ≤
⌈n

6

⌉

−1

}

∪
{

n+6i+2
∣

∣ 0 ≤ i ≤
⌈

n−1

6

⌉

−1

}

.

However, some vertices, i.e. vertices 4 and 5 are not DT-dominated by this set. Thus, it is needed to add some new vertices.

This makes fx < 6 for some x, which contradicts our claim. Therefore, fx ≤ 5 for all x ∈ {1,2, ..., t −1} with x 6= m. Thus, it is

clear that
m−1

∑
x=1

fx +
t−1

∑
x=m+1

fx ≤ 5(t −2). This yields

5

(

⌈n

5

⌉

−1

)

+5

(⌈

n−1

5

⌉

−1

)

=
m−1

∑
x=1

fx +
t−1

∑
x=m+1

fx ≤ 5(t −2).

Therefore, we have |T |= t ≥ ⌈ 2n
5
⌉+1 for n ≡ 2 (mod 5) and |T |= t ≥ ⌈ 2n

5
⌉ for the other cases of n. The proof is completed

by combining the lower and upper bounds for γd
t (D2(Cn)).

Theorem 2.2. If D2(Pn) is a shadow graph of a path with n ≥ 3, then

γd
t (D2(Pn)) =

{

⌈ 2n+2
5

⌉+1, if n ≡ 1 (mod 5)

⌈ 2n+2
5

⌉, otherwise.

Proof. For the upper bound on γd
t (D2(Pn)), let

S =

{

5i+3
∣

∣ 0 ≤ i ≤
⌈

n−2

5

⌉

−1

}

∪
{

n+5i+2
∣

∣ 0 ≤ i ≤
⌈

n−1

5

⌉

−1

}

.

If n ≡ 0,2 (mod 5), then let S′ = S∪{n−1}; if n ≡ 1 (mod 5), then let S′ = S∪{n,2n−1} and if n ≡ 3,4 (mod 5), then let

S′ = S. The set S′ is a DTD-set of D2(Pn) in all cases. Thus, if n ≡ 1 (mod 5), then γd
t (D2(Pn))≤ |S′|= ⌈ 2n+2

5
⌉+1 and for

other cases γd
t (D2(Pn))≤ |S′|= ⌈ 2n+2

5
⌉.

We now prove the lower bound on γd
t (D2(Pn)). Assume that T = {v1,v2, ...,vi, ...,v j, ...,vt} is a γd

t -set of D2(Pn) with

v1 < v2 < ... < vi < ... < vm < vm+1 < ... < v j < ... < vt , where vi and v j are any positive integers such that 1 ≤ vi ≤ n for

i ∈ {1,2, ...,m} and n+ 1 ≤ v j ≤ 2n for j ∈ {m+ 1,m+ 2, ..., t}. Let fx = vx+1 − vx for x ∈ {1,2, ..., t − 1} with x 6= m. As

similar as the proof of Theorem 2.1 we conclude fx ≤ 5 for each x ∈ {1,2, ..., t −1} with x 6= m. This yields

m−1

∑
x=1

fx +
t−1

∑
x=m+1

fx ≤ 5(t −2).

Since v1 = 3 and vm+1 = n+2 in all cases of n, it follows
m−1

∑
x=1

fx +
t−1

∑
x=m+1

fx = vm + vt − (n+5).

If n ≡ 0 (mod 5), then vt = 2n−3 and vm = n−1. Thus,

2n−9 =
m−1

∑
x=1

fx +
t−1

∑
x=m+1

fx ≤ 5(t −2),

and hence |T |= t ≥ ⌈ 2n+1
5

⌉. This implies that γd
t (D2(Pn))≥ ⌈ 2n+2

5
⌉.

If n ≡ 1,3 (mod 5), then vt = 2n−1 and vm = n. Thus,

2n−6 =
m−1

∑
x=1

fx +
t−1

∑
x=m+1

fx ≤ 5(t −2),

and hence |T |= t ≥ ⌈ 2n+4
5

⌉. This implies that γd
t (D2(Pn))≥ ⌈ 2n+2

5
⌉+1 for n ≡ 1 (mod 5) and γd

t (D2(Pn))≥ ⌈ 2n+2
5

⌉ for n ≡ 3

(mod 5).
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If n ≡ i (mod 5) for i ∈ {2,4}, then vt = 2n− i+2 and vm = n−1. Thus,

2n− i−4 =
m−1

∑
x=1

fx +
t−1

∑
x=m+1

fx ≤ 5(t −2),

and hence |T |= t ≥ ⌈ 2n−i+6
5

⌉. This implies that γd
t (D2(Pn))≥ ⌈ 2n+2

5
⌉.

The proof is completed by combining the lower and upper bounds for γd
t (D2(Pn)).

Theorem 2.3. Let K1,s,W1,n,Kr,s denote a star, a wheel and a complete bipartite graph, respectively, and if G ∼= H, where

H ∈ {K1,s,Wn,Kr,s}, then γd
t (D2(G)) = 2.

Proof. Since diam(D2(G)) = 2 for G ∼= H, where H ∈ {K1,s,Wn,Kr,s}, the result follows from Observation 1.2.

Theorem 2.4. For n ≥ 6,

γd
t (Dsd(Pn,{2})) =

{

⌈ 3n
8
⌉+1, if n ≡ 5 (mod 8)

⌈ 3n
8
⌉, otherwise.

Proof. We first establish the upper bound for γd
t (Dsd(Pn,{2})). Let

S =

{

{8i+3,8i+5}
∣

∣ 0 ≤ i ≤
⌈

n−4

8

⌉

−1

}

∪
{

n+8i+6
∣

∣ 0 ≤ i ≤
⌈

n−5

8

⌉

−1

}

.

If n ≡ 0,6,7 (mod 8), then let S′ = S; if n ≡ 1,5 (mod 8), then let S′ = S∪{2n−1}; if n ≡ 2 (mod 8), then let S′ = S∪{2n−2};

if n ≡ 3 (mod 8), then let S′ = S∪{n− 2,2n− 1} and if n ≡ 4 (mod 8), then let S′ = S∪{n− 3,2n− 2}. The set S′ is a

DTD-set of Dsd(Pn,{2}) in all cases. Thus, if n ≡ 5 (mod 8), then γd
t (Dsd(Pn,{2})) ≤ |S′| = ⌈ 3n

8
⌉+ 1 and for other cases

γd
t (Dsd(Pn,{2}))≤ |S′|= ⌈ 3n

8
⌉.

Let T be a γd
t -set of Dsd(Pn,{2}) to prove the lower bound. Assume that T = {v1,v2, ...,vi, ...,v j, ...,vt} with v1 < v2 < ... <

vi < ... < vm < vm+1 < ... < v j < ... < vt , where vi and v j are any positive integers such that 1 ≤ vi ≤ n for i ∈ {1,2, ...,m}
and n+ 1 ≤ v j ≤ 2n for j ∈ {m+ 1,m+ 2, ..., t}. Let fx = vx+2 − vx for x ∈ {1,2, ...,m− 2} and fy = vy+1 − vy for y ∈
{m+1,m+2, ..., t −1}. We must prove fx ≤ 8 for x ∈ {1,2, ...,m−2} and fy ≤ 8 for y ∈ {m+1,m+2, ..., t −1}. Suppose

that at least one inequality is not true. Without loss of generality, let fy > 8 for at least one y. We claim that fm+1 = 9 for

y = m+1. In accordance with this claim, one of the set can be constructed is

{n+6}∪
{

{8i+3,8i+5}
∣

∣ 0 ≤ i ≤
⌈

n−4

8

⌉

−1

}

∪
{

n+8i+7
∣

∣ 0 ≤ i ≤
⌈n

8

⌉

−2

}

.

However, all vertices of this set are not DT-dominated. Therefore, fx ≤ 8 for each x ∈ {1,2, ...,m−2} and fy ≤ 8 for each

y ∈ {m+1,m+2, ..., t −1}. This yields
m−2

∑
x=1

fx +
t−1

∑
y=m+1

fy ≤ 8(t −3).

Since v1 = 3, v2 = 5 and vm+1 = n+6 in all cases of n, it follows
m−2

∑
x=1

fx +
t−1

∑
y=m+1

fy = vm−1 + vm + vt − (n+14).

If n ≡ i (mod 8) for i ∈ {1,2}, then vm−1 = n− i−5, vm = n− i−3 and vt = 2n− i. Thus,

3n−3i−22 =
m−2

∑
x=1

fx +
t−1

∑
y=m+1

fy ≤ 8(t −3)

and hence |T |= t ≥ ⌈ 3n−3i+2
8

⌉. This implies γd
t (Dsd(Pn,{2}))≥ ⌈ 3n

8
⌉.

If n ≡ i (mod 8) for i ∈ {3,4}, then vm−1 = n− i−3, vm = n− i+1 and vt = 2n− i+2. Thus,

3n−3i−14 =
m−2

∑
x=1

fx +
t−1

∑
y=m+1

fy ≤ 8(t −3),

and hence |T |= t ≥ ⌈ 3n−3i+10
8

⌉. This implies γd
t (Dsd(Pn,{2}))≥ ⌈ 3n

8
⌉.
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If n ≡ i (mod 8) for i ∈ {5,6}, then vm−1 = n− i+3, vm = n− i+5 and vt = 2n+ i−6. Thus,

3n− i−12 =
m−2

∑
x=1

fx +
t−1

∑
y=m+1

fy ≤ 8(t −3),

and hence |T |= t ≥ ⌈ 3n−i+12
8

⌉. This implies that γd
t (Dsd(Pn,{2}))≥ ⌈ 3n

8
⌉+1 for n ≡ 5 (mod 8) and γd

t (Dsd(Pn,{2}))≥ ⌈ 3n
8
⌉

for n ≡ 6 (mod 8).

Let n ≡ i (mod 8) for i ∈ {0,7}. We take i = 8 for n ≡ 0 (mod 8). Then vm−1 = n− i+3, vm = n− i+5 and vt = 2n− i+6.

Thus,

3n−3i =
m−2

∑
x=1

fx +
t−1

∑
y=m+1

fy ≤ 8(t −3),

and hence |T |= t ≥ ⌈ 3n−3i+24
8

⌉. This implies γd
t (Dsd(Pn,{2}))≥ ⌈ 3n

8
⌉.

Consequently, the proof follows from the lower and upper bounds.

Theorem 2.5. For n ≥ 3,

γd
t (Dsd(Cn,{2})) =

{

⌈ 3n
8
⌉+1, if n ≡ 3,4,5 (mod 8)

⌈ 3n
8
⌉, otherwise.

Proof. For the upper bound on γd
t (Dsd(Cn,{2})), let

S =

{

{8i+1,8i+3}
∣

∣ 0 ≤ i ≤
⌈

n−2

8

⌉

−1

}

∪
{

n+8i+4
∣

∣ 0 ≤ i ≤
⌈

n−3

8

⌉

−1

}

.

If n ≡ 1 (mod 8), then let S′ = S∪{n}; if n ≡ 2 (mod 8), then let S′ = S∪{n−1}; if n ≡ 3 (mod 8), then let S′ = S∪{2n} and

otherwise let S′ = S. The set S′ is a DTD-set of Dsd(Cn,{2}) in all cases. Thus, if n ≡ 3,4,5 (mod 8), then γd
t (Dsd(Cn,{2}))≤

|S′|= ⌈ 3n
8
⌉+1 and for other cases γd

t (Dsd(Cn,{2}))≤ |S′|= ⌈ 3n
8
⌉.

Now, we need to prove the lower bound to complete the proof. Let T be a γd
t -set of Dsd(Cn,{2}). Assume that T =

{v1,v2, ...,vi, ...,v j, ...,vt} with v1 < v2 < ... < vi < ... < vm < vm+1 < ... < v j < ... < vt , where vi and v j are any positive

integers such that 1 ≤ vi ≤ n for i ∈ {1,2, ...,m} and n+1 ≤ v j ≤ 2n for j ∈ {m+1,m+2, ..., t}. As similar as the proof of

Theorem 2.4, we define functions fx = vx+2 − vx for x ∈ {1,2, ...,m−2} and fy = vy+1 − vy for y ∈ {m+1,m+2, ..., t −1}.

It is easily seen that fx ≤ 8 for each x ∈ {1,2, ...,m− 2} and fy ≤ 8 for each y ∈ {m+ 1,m+ 2, ..., t − 1} as in the proof of

Theorem 2.4. This means that
m−2

∑
x=1

fx +
t−1

∑
y=m+1

fy ≤ 8(t −3).

Since v1 = 1, v2 = 3 and vm+1 = n+4 in all cases of n, it follows
m−2

∑
x=1

fx +
t−1

∑
y=m+1

fy = vm−1 + vm + vt − (n+8).

If n ≡ i (mod 8) for i ∈ {1,2}, then vm−1 = n− i−5, vm = n− i+1 and vt = 2n− i−4. Thus,

3n−3i−16 =
m−2

∑
x=1

fx +
t−1

∑
y=m+1

fy ≤ 8(t −3),

and hence |T |= t ≥ ⌈ 3n−3i+8
8

⌉. This means that γd
t (Dsd(Cn,{2}))≥ ⌈ 3n

8
⌉.

If n ≡ 3 (mod 8), then vm−1 = n−2, vm = n and vt = 2n. Thus,

3n−10 =
m−2

∑
x=1

fx +
t−1

∑
y=m+1

fy ≤ 8(t −3),

and hence |T |= t ≥ ⌈ 3n
8
⌉+1.

Let n≡ i (mod 8) for i∈ {0,4,5,6,7}. We take i= 8 for n≡ 0 (mod 8). Then vm−1 = n− i+1, vm = n− i+3 and vt = 2n− i+4.

Thus,

3n−3i =
m−2

∑
x=1

fx +
t−1

∑
y=m+1

fy ≤ 8(t −3),

and hence |T |= t ≥ ⌈ 3n−3i+24
8

⌉. This implies that γd
t (Dsd(Cn,{2}))≥ ⌈ 3n

8
⌉+1 for n ≡ 4,5 (mod 8) and γd

t (Dsd(Cn,{2}))≥
⌈ 3n

8
⌉ for otherwise.
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Theorem 2.6. For r ≥ 1 and s ≥ 2, γd
t (Dsd(Kr,s,{2})) = 3.

Proof. Let V (Dsd(Kr,s,{2})) =V (Kr,s)∪V (K′
r,s) be vertex set of Dsd(Kr,s,{2}), in which V (Kr,s) = {u1,u2, ...,ur,v1,v2, ...,vs}

and V (K′
r,s) = {u′1,u

′
2, ...,u

′
r,v

′
1,v

′
2, ...,v

′
s}. We first establish the upper bound for γd

t (Dsd(Kr,s,{2})). If S = {u1,u2,v1}, then

the set S is a DTD-set of Dsd(Kr,s,{2}). Thus, γd
t (Dsd(Kr,s,{2}))≤ 3.

For the lower bound, let T be a γd
t (Dsd(Kr,s,{2}))-set. Suppose that |T |= 2, this means that the vertices of T are adjacent.

Then we have the following cases.

Case 1. Let T = {ui,v j} for any i ∈ {1,2, ...,r} and j ∈ {1,2, ...,s} (The case T = {u′i,v
′
j} for any i ∈ {1,2, ...,r} and

j ∈ {1,2, ...,s} is similar). All vertices except u′i and u′j are totally dominated by the vertices of T . However, since d(u′i,v j) = 2

and d(u′i,ui) = 3, the vertex u′i is not DT-dominated by the vertices of T .

Case 2. Let T = {ui,u
′
j} for any i, j ∈ {1,2, ...,r} and i 6= j. (The case T = {vi,v

′
j} for any i, j ∈ {1,2, ...,s} and i 6= j is

similar.) Since d(u j,ui) = 2 and d(u j,u
′
j) = 3, the vertex u j is not DT-dominated by the vertices of T .

Therefore, γd
t (Dsd(Kr,s,{2})) = |T | ≥ 3, and this concludes the proof.

Theorem 2.7. For n ≥ 3, γd
t (Dsd(W1,n,{2})) = 3.

Proof. Let V (Dsd(W1,n,{2})) =V (W1,n)∪V (W ′
1,n) be vertex set of Dsd(W1,n,{2}) in which V (W1,n) = {c,u1,u2, ...,un} and

V (W ′
1,n) = {c′,u′1,u

′
2, ...,u

′
n}, where c is the center vertex of W1,n. We first establish the upper bound for γd

t (Dsd(W1,n,{2})). If

S = {c,u1,u
′
2}, then the set S is a DTD-set of Dsd(W1,n,{2}). Thus, γd

t (Dsd(W1,n,{2}))≤ 3.

Now, we need to prove the lower bound. Let T be a γd
t (Dsd(W1,n,{2}))-set. Suppose that |T |= 2. We have following cases.

Case 1. Let T = {c,ui} for i ≥ 1. (The case T = {c′1,u
′
i} for i ≥ 1 is similar.) Since d(u′i,ui) = 3 and d(c′1,c1) = 3, then

vertices c′ and u′i are not DT-dominated.

Case 2. Let T = {ui,ui+1} for i ∈ {1,2, ...,n− 1}. (The case T = {u′i,u
′
i+1} for i ∈ {1,2, ...,n− 1} is similar.) Since

d(u′i,ui) = 3 and d(u′i+1,ui+1) = 3, vertices u′i and u′i+1 are not DT-dominated.

Case 3. Let T = {ui,u
′
j} for j /∈ {i,(i−1)(mod n),(i+1)(mod n)}. Note that we take j = n when j = 0. In this case, since

d(u′i,ui) = 3 and d(u j,u
′
j) = 3, vertices u′i and u j are not DT-dominated.

In all cases, the assumption is false and γd
t (Dsd(W1,n,{2})) = |T | ≥ 3, which completes the proof.

Theorem 2.8. For n ≥ 14,

γd
t (Dsd(Pn,{3})) =

{

n
3
+2, if n ≡ 0 (mod 6)

⌈ n
3
⌉+1, otherwise.

Proof. For the upper bound for γd
t (Dsd(Pn,{3})), let D = {3}∪{{6i+ 5,n+ 6i+ 5} | 0 ≤ i ≤

⌈

n−4
6

⌉

− 2}. If n ≡ 0 (mod

6), then let S = D∪ {n− 1,2n− 3,2n− 1}; if n ≡ 0,2 (mod 6), then let S = D∪ {n− 3,2n− 3,2n− 1}; if n ≡ 1 (mod

6), then let S = D∪ {n− 2,2n,2n− 2}; if n ≡ 3 (mod 6), then let S = D∪ {n− 4,2n− 4,2n− 2} and if n ≡ 4 (mod 6),

then let S = D∪ {n− 5,n− 2,2n− 5,2n− 2} and if n ≡ 5 (mod 6), then let S = D∪ {n− 3,2n− 3}. Then the set S is

a DTD-set of Dsd(Pn,{3}) in all cases of n. Thus, if n ≡ 0 (mod 6), then γd
t (Dsd(Pn,{3})) = |S| ≤ n

3
+ 2 and otherwise

γd
t (Dsd(Pn,{3})) = |S| ≤ ⌈ n

3
⌉+1.

Now, we prove the lower bound for γd
t (Dsd(Pn,{3})). Let T = {v1,v2, ...,vi, ...,v j, ...,vt} be a γd

t -set of Dsd(Pn,{3}) with

v1 < v2 < ... < vi < ... < vm < vm+1 < ... < v j < ... < vt , where vi and v j are any positive integers such that 1 ≤ vi ≤ n

for i ∈ {1,2, ...,m} and n+ 1 ≤ v j ≤ 2n for j ∈ {m+ 1,m+ 2, ..., t}. Assume that f1 = v2 − v1 and fy = vy+1 − vy for

y ∈ {2, ..., t−1} with y 6= m. We will show that f1 ≤ 2 and fy ≤ 6 for each y. Suppose first that f1 ≥ 3. In order to DT-dominate

v1, the condition fy ≤ 6 must be hold for at least one y. Thus, the set

T ′ = {2,5,n+4}∪{{6i+8,n+6i+8} | 0 ≤ i ≤ ⌈n−7

6
⌉−2}

is constructed. However, this contradicts with our upper bound. For example, if n ≡ 1 (mod 6), then T = T ′ ∪{n− 5,n−
2,2n−5,2n−2} and |T |= n+7

3
, a contradiction.
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Suppose now that f1 ≤ 2 and fy ≥ 7 for at least one y. Then the set

T ′ = {3,5,n+5,n+7,12,n+12}∪{{6i+15,n+6i+15} | 0 ≤ i ≤ ⌈n−14

6
⌉−1}

is constructed. However, this contradicts with our upper bound. For example, if n ≡ 1 (mod 6), then T = T ′∪{2n−2} and

|T |= n+8
3

, a contradiction.

Therefore, f1 ≤ 2 and fy ≤ 6 for each y ∈ {2, ..., t −1}. This yields f1 +
t−1

∑
y=2

fy ≤ 2+6(t −3). Since v2 = 5 and vm+1 = n+5,

it follows 2+
t−1

∑
y=2

fy = 2+ vm − v1 + vt − vm+1 = vm + vt − (n+8).

If n ≡ 0 (mod 6), then vm = n−1 and vt = 2n−1. This yields

2n−10 = 2+
t−1

∑
y=2

fy ≤ 2+6(t −3),

and hence |T |= t ≥ ⌈ 2n+6
6

⌉.

If n ≡ i (mod 6) for i ∈ {1,2,3}, then vm = n− i−1 and vt = 2n− i+1. This yields

2n−2i−8 = 2+
t−1

∑
y=2

fy ≤ 2+6(t −3),

and hence |T |= t ≥ ⌈ 2n−2i+8
6

⌉.

If n ≡ 4 (mod 6), then vm = n−2 and vt = 2n−2. This yields

12(⌈n−4

6
⌉−1)+8 = 2+

t−1

∑
y=2

fy ≤ 8+6(t −5),

and hence |T |= t ≥ n+5
3

.

If n ≡ 5 (mod 6), then vm = n−3 and vt = 2n−3. This yields

2n−14 = 2+
t−1

∑
y=2

fy ≤ 2+6(t −3),

and hence |T |= t ≥ ⌈ 2n+4
6

⌉.

Consequently, if n ≡ 0 (mod 6), then γd
t (Dsd(Pn,{3}))≥ n

3
+2 and otherwise γd

t (Dsd(Pn,{3}))≥ ⌈ n
3
⌉+1. This completes the

proof.

Since Dsd(Pn,{3}) ∼= C8 for n = 4, by Theorem 1.1 we have γd
t (Dsd(P4,{3})) = 4. Therefore, we give the result of

γd
t (Dsd(Pn,{3})) for 5 ≤ n ≤ 13 in Table 1.

n 5 6 7 8 9 10 11 12 13

γd
t (Dsd(Pn,{3})) 4 4 4 4 4 4 4 5 5

Table 1: The values of γd
t (Dsd(Pn,{3})) for 5 ≤ n ≤ 13

Theorem 2.9. For n ≥ 15,

γd
t (Dsd(Cn,{3})) =

{

n+5
3
, if n ≡ 1 (mod 6)

⌈ n+2
3
⌉, otherwise.

Proof. For the upper bound for γd
t (Dsd(Cn,{3})), let D =

{

{6i+ 3,n+ 6i+ 3} | 0 ≤ i ≤
⌈

n−2
6

⌉

− 2
}

. If n ≡ 0 (mod 6),

then let S = D∪{n− 3,2n− 3,2n− 1}; if n ≡ 1 (mod 6), then let S = D∪{n− 4,2n− 4,n,2n}; if n ≡ 2 (mod 6), then let

S=D∪{n−5,2n−5,n−1,2n−1}; if n≡ 3 (mod 6), then let S=D∪{n,2n}; if n≡ 4 (mod 6), then let S=D∪{n−1,2n−1}
and if n ≡ 5 (mod 6), then let S = D∪{n,n−3,2n−6}. The set S is a DTD-set of Dsd(Cn,{3}) in all cases of n. Thus, if

n ≡ 1 (mod 6), then γd
t (Dsd(Cn,{3})) = |S| ≤ n+5

3
and otherwise γd

t (Dsd(Cn,{3})) = |S| ≤ ⌈ n+2
3
⌉.



192 Fundamental Journal of Mathematics and Applications

We need to prove the opposite inequality to complete the proof. Let T = {v1,v2, ...,vi, ...,v j, ...,vt} be a γd
t -set of Dsd(Cn,{3})

with v1 < v2 < ... < vi < ... < vm < vm+1 < ... < v j < ... < vt , where vi and v j are any positive integers such that 1 ≤ vi ≤ n

for i ∈ {1,2, ...,m} and n+1 ≤ v j ≤ 2n for j ∈ {m+1,m+2, ..., t}. Assume that fx = vx+1 − vx for x ∈ {1,2, ..., t −1} with

x 6= m. As similar as the proof of Theorem 2.1 we can show that fx ≤ 6 for each x ∈ {1,2, ..., t −1} with x 6= m. This yields

m−1

∑
x=1

fx +
t−1

∑
x=m+1

fx ≤ 6(t −2).

Since v1 = 3 and vm+1 = n+3 in all cases of n, we have
m−1

∑
x=1

fx +
t−1

∑
x=m+1

fx = vm − v1 + vt − vm+1 = vm + vt − (n+6).

If n ≡ 0 (mod 6), then vm = n−3 and vt = 2n−1. This yields

2n−10 =
m−1

∑
x=1

fx +
t−1

∑
x=m+1

fx ≤ 6(t −2),

and hence |T |= t ≥ ⌈ 2n+2
6

⌉.

If n ≡ i (mod 6) for i ∈ {1,3}, then vm = n and vt = 2n. This yields

2n−6 =
m−1

∑
x=1

fx +
t−1

∑
x=m+1

fx ≤ 6(t −2),

and hence |T |= t ≥ ⌈ 2n+6
6

⌉.

If n ≡ i (mod 6) for i ∈ {2,4}, then vm = n−1 and vt = 2n−1. This yields

2n−8 =
m−1

∑
x=1

fx +
t−1

∑
x=m+1

fx ≤ 6(t −2),

and hence |T |= t ≥ ⌈ 2n+4
6

⌉.

If n ≡ 5 (mod 6), then vm = n and vt = 2n−6. This yields

12

(⌈

n−2

6

⌉

−2

)

+10 =
m−1

∑
x=1

fx +
t−1

∑
x=m+1

fx ≤ 10+6(t −5),

and hence |T |= t ≥ n+4
3

.

As a consequence, if n ≡ 1 (mod 6), then γd
t (Dsd(Cn,{3}))≥ n+5

3
and otherwise γd

t (Dsd(Cn,{3}))≥ ⌈ n+2
3
⌉, and this completes

the proof.

For n = 4, since diameter of Dsd(Cn,{3}) is two, it is clear that γd
t (Dsd(Cn,{3})) = 2. For 5 ≤ n ≤ 14, the result is given in

Table 2.

n 5 6 7 8 9 10 11 12 13 14

γd
t (Dsd(Cn,{3})) 3 3 4 4 4 4 4 5 5 5

Table 2: The values of γd
t (Dsd(Cn,{3})) for 5 ≤ n ≤ 14
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