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Unpredictability, Uncertainty and Fractal Structures in

Physics
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ABSTRACT In Physics, we have laws that determine the time evolution of a given physical system, depending
on its parameters and its initial conditions. When we have multi-stable systems, many attractors coexist so
that their basins of attraction might possess fractal or even Wada boundaries in such a way that the prediction
becomes more complicated depending on the initial conditions. Chaotic systems typically present fractal
basins in phase space. A small uncertainty in the initial conditions gives rise to a certain unpredictability of
the final state behavior. The new notion of basin entropy provides a new quantitative way to measure the

KEYWORDS
Chaos
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unpredictability of the final states in basins of attraction. Simple methods from chaos theory can contribute to
a better understanding of fundamental questions in physics as well as other scientific disciplines.

The idea of uncertainty has pervaded physics. Among the
sources of uncertainty in dynamical systems, we can men-
tion the notion of sensitivity to initial conditions, and the
existence of fractal structures in phase space as another one,
for a mere simplification.

In this regard, it is interesting to bring up a famous rhyme
traditionally associated with Benjamin Franklin (1706-1790),
although antecedents of the same idea date back to the 15th
century, which is known as For Want of a Nail offering an
intuitive and poetic image of the idea of sensitive depen-
dence on initial conditions, which is one of the hallmarks of
chaos:

For want of a nail the shoe was lost,
for want of a shoe the horse was lost,
for want of a horse the knight was lost,
for want of a knight the battle was lost,
for want of a battle the kingdom was lost.
So a kingdom was lost—all for want of a nail.

Due to the enormous consequences on determinism in
physics that quantum mechanics has brought about through
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Heisenberg uncertainty principle, the idea of indeterminism
has been directly related to quantum mechanics. This has
led somehow to consider classical mechanics as completely
deterministic and predictable, which is not entirely true Bera
et al. (2017).

It is fascinating to corroborate that the idea of sensitive
dependence on initial conditions was considered in detail by
the German physicist Max Born (1882-1970), Nobel Prize in
Physics in 1954, in an article entitled Is Classical Mechanics
in fact deterministic? Born (1969). In it he presented a study
of a two-dimensional Lorentz gas initially proposed by the
Dutch physicist Hendrik A. Lorentz (1853-1928) in 1905 as a
model for the study of electrical conductivity in metals. In
this model, a particle moves in a plane that is full of hard
spheres and collides with them so that a small change in the
initial conditions will significantly alter the trajectory of the
particle. This fact led Born to conclude that determinism
traditionally related to classical mechanics is not real, since
it is not possible to know with infinite precision the initial
conditions of a physical experiment.

Furthermore, in the lecture Ballentine (1970) that he gave
in 1954 when he received the Nobel Prize we can read the
following words:
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“Newtonian mechanics is deterministic in the following sense:
If the initial state (positions and velocities of all particles) of a
system is accurately given, then the state at any other time (earlier
or later) can be calculated from the laws of mechanics. All the
other branches of classical physics have been built up according
to this model. Mechanical determinism gradually became a kind
of article of faith: the world as a machine, an automaton. As
far as I can see, this idea has no forerunners in ancient and me-
dieval philosophy. The idea is a product of the immense success
of Newtonian mechanics, particularly in astronomy. In the 19th
century it became a basic philosophical principle for the whole
of exact science. I asked myself whether this was really justified.
Can absolute predictions really be made for all time on the basis
of the classical equations of motion? It can easily be seen, by
simple examples, that this is only the case when the possibility
of absolutely exact measurement (of position, velocity, or other
quantities) is assumed. Let us think of a particle moving without
friction on a straight line between two end-points (walls), at which
it experiences completely elastic recoil. It moves with constant
speed equal to its initial speed vy backwards and forwards, and
it can be stated exactly where it will be at a given time provided
that vy is accurately known. But if a small inaccuracy Avg is
allowed, then the inaccuracy of prediction of the position at time
t is tAvy which increases with t. If one waits long enough until
time tc = l/Avg where 1 is the distance between the elastic walls,
the inaccuracy Ax will have become equal to the whole space 1.
Thus, it is impossible to forecast anything about the position at a
time which is later than t.. Thus, determinism lapses completely
into indeterminism as soon as the slightest inaccuracy in the data
on velocity is permitted.”

Likewise, the American physicist Richard Feynman (1918-
1988), who won the Nobel Prize for Physics in 1965, makes
similar reflections in his well-known book Lectures in
Physics Feynman et al. (1963), where he explains that in-
determinism is a basic property of many physical systems,
and consequently it does not belong exclusively to quantum
mechanics.

In the section 38-6 of the first volume of his Lectures in
Physics, entitled "Philosophical Implications", a masterful
description of indeterminism in classical mechanics is made.
The fundamental idea is the uncertainty in accurately set-
ting initial conditions to predict the final state of a physical
system. Finally affirming: "Because in classical mechanics
there was already indeterminism from a practical point of
view".

Precisely another important source of uncertainty in dy-
namical systems is provided by the fractal structures present
in phase space. The natural analogy comes from hydrology,
thinking on the basin of a river. A drop of water falling
to a river basin goes to the river. We can see geographical
maps of river basins dividing a territory of any country in a
geographic atlas.

In Nonlinear Dynamics a basin of attraction is defined as
the set of initial conditions whose trajectories go to a specific
attractor. Furthermore, when we have several attractors in a
given region of phase space, we have several basins that are
separated by the corresponding boundaries. These bound-
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aries can be classified as smooth basins and fractal basins,
depending on the geometrical nature of the boundaries.

In general, we can affirm that when the boundaries are
fractal, so that we can also say that the basins are fractal,
the fractality implies unpredictability and uncertainty in the
future events of trajectories corresponding to the dynamical
system associated to theses basins.

An interesting fundamental problem arises when we try
to compare a couple of basins, either basins of attraction
for dissipative dynamical systems or exit basins for open
Hamiltonian systems, since they do not have attractors and
as a consequence they cannot have basins of attraction. The
fundamental question is to ascertain which basin is more un-
predictable. This is the question we may raise by observing
the exit basins plotted in Fig.1.

Traditionally the unpredictability associated to fractal
boundaries has been measured by using the uncertainty
dimension. However, there are many examples where we
can see that the uncertainty dimension does not help to
accurately discriminate among fractal basins with a different
degree of unpredictability.

Further for another type of more complicated basins such
as riddled basins, where we can say that a basin A is riddled
by B, if for every point of A is possible to find arbitrarily
close points of B, the uncertainty dimension a ~ 0 . What
basically implies randomness of a deterministic system, and
actually two different riddled basins with different structure
might not be able to be discerned its degree of unpredictabil-
ity by using the uncertainty dimension.

Another type of basins are the Wada basins Kennedy and
Yorke (1991), which are fractal basins possessing the Wada
property. This property implies that there is a single bound-
ary separating three or more basins, and as a consequence
the degree of unpredictability is stronger. For a long period
of time there was only one method available to ascertain
when a given basin had the Wada property due to Nusse
and Yorke Nusse and Yorke (1996). In the past few years,
we have developed new methods for testing Wada basins:
The Grid Method, the Merging Method and the Saddle-
straddle method Wagemakers et al. (2020); Daza et al.
(2018c, 2015). A general overview of how to detect Wada
basins is offered in Wagemakers et al. (2021).

However, until the appearance of the novel concept of
basin entropy Daza et al. (2016) there was not a quantitative
way to identify when a given basin, either Wada or not,
was more unpredictable than another one. This is precisely
what the basin entropy offers, a quantitative tool to measure
the unpredictability of basins. Typically, the algorithm to
compute the basin entropy depends on three key ingredients
that are related to the size of the boundary, the uncertainty
dimension of the basin boundaries and the total number of
attractors in the specific region in phase space.

Since the appearance of the concept, it has been applied
to numerous problems in physics Daza et al. (2018b), such as
chaotic scattering associated to experiments of cold-atoms
Daza et al. (2017a), chaotic dynamics in relativistic chaotic
scattering Bernal et al. (2020, 2018), dynamical systems with

CHAOS Theory and Applications



Figure 1 These figures represent the exit basins corresponding to the Hénon-Heiles Hamiltonian for values of the con-
served energy above the critical energy in the physical space, so that the Hamiltonian becomes an open system and three
different asymptotic states are possible for orbits whose initial conditions are located in the central region.

delay Daza et al. (2017b), in astrophysics to measure the
transition between nonhyperbolic and hyperbolic regimes
in open Hamiltonian systems Nieto et al. (2020), and indi-
rectly through research on Wada structures associated to the
dynamics of photons in binary black hole shadows Daza
et al. (2018a) constituting a problem of chaos in general rela-
tivity, to cite just a few of them.

The basin entropy quantifies the final state unpredictabil-
ity of dynamical systems by analyzing the fractal nature of
their basins. As such, it constitutes a new tool for the explo-
ration of the uncertainty and unpredictability in nonlinear
dynamics. We have applied these methods to different do-
mains in Physics, such as cold atoms, shadows of binary
black holes, and classical and relativistic chaotic scattering
in astrophysics. We believe that the concept of basin entropy
will become an important tool in complex systems stud-
ies with applications in multiple scientific fields especially
those with multi-stability and other scientific areas as well.
Methods derived from nonlinear dynamics have had so far,
an enormous influence in many disciplines in science and
engineering, though it is important to highlight that tools
from the field of chaos theory can be used to understand the
rich dynamics of many fundamental problems in physics
that are worth to keep exploring through fruitful scientific
interactions.

CHAOS Theory and Applications
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On Offset Boosting in Chaotic System
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ABSTRACT Offset boosting is an important issue for chaos control due to its broadband property and polarity
control. There are two main approaches to realize offset boosting. One is resort to parameter introducing
where an offset booster realizes attractor boosting. The other one is by the means of periodic function or
absolute value function where any self-reproduced or doubled attractors with diverse offset are extracted out

KEYWORDS
Offset boosting
Chaos control
Multistability

by a specific initial condition. The former also provides a unique window for observing multistability and the

latter gives the direction for constructing desired multistability.

INTRODUCTION

Chaotic signal is wide used in chaos-based information engineer-
ing including chaotic secure communication, image encryption
and neural signal processing. Any chaotic signal has its inherent
features namely identified as scale (C. Sprott and Xiong 2015; C.
Sprott 2010; Gu et al. 2021; Lu et al. 2019; Liu et al. 2020; Wang et al.
2020; Zhao et al. 2020; Akgul et al. 2016, 2019; Falco et al. 2012) and
offset (Li ef al. 2019, 2017a; Liu et al. 2020; Li and Sprott 2017; Li
et al. 2021, 2017b; Kingni et al. 2020; Ma et al. 2021; Zhang et al.
2018; Mezatio et al. 2019; Bao et al. 2020; Chen et al. 2020; Zhang
et al. 2020; Wu et al. 2019a; Ding et al. 2020). For rescaling a chaotic
signal, people usually design dynamical systems with amplitude
control from the very beginning. In fact, for an attractor in phase
space, amplitude control typically gets involved with offset boost-
ing. Offset boosting means that the attractor is moved in phase
space in any direction, which indicates that the average value of
corresponding variable is rescaled accordingly. In a differential
equation, a simple substation of x; — x; + c revises the average
value of x; without revising the left hand of its master system.
Therefore it looks very simple in the mathematic view. However,
offset boosting is such an important issue in chaotic system since
that it gives a direct way for an engineer to transform a bipolar
chaotic signal to a unipolar one. And besides this, it seems that
offset boosting shows more varieties than our imagination such as
attractor boosting, attractor self-reproducing (Li et al. 2017a), attrac-
tor doubling (Li et al. 2019), conditional symmetry (Li et al. 2020c),
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time-reversible symmetry (Li and Sprott 2017) or even repellor
construction (Li ef al. 2021). For this reason, offset boosting has
attracted great interests recently both in continuous system and in
discrete maps. Researchers pays great effort to learn how to get
those attractors controlled by parameters (Li et al. 2017b; Kingni
et al. 2020; Ma et al. 2021; Zhang et al. 2018; Mezatio et al. 2019) or
by initial conditions (Bao ef al. 2020; Chen et al. 2020; Zhang et al.
2020; Wu et al. 2019a; Ding et al. 2020). Even in those memristive
systems (Chen et al. 2019; Kengne et al. 2018; Lu et al. 2020; Wu
et al. 2019b; Yuan et al. 2019) offset boosting is still a hot spot for
discussion.

As shown in Fig. 1, offset booster can be attached in a chaotic
system for attractor boosting, which means that the newly derived
attractor stays at different positions controlled by the offset con-
stant. Typically, to realize offset boosting a unified constant is nec-
essary to insert into multiple terms if the corresponding variable
appears many times. Specific variable-boostable chaotic systems
(Li and Sprott 2016) give the simple possibility for offset boosting
since in the right hand there is a variable appearing only once.
However, for attractor self-reproducing, periodic functions includ-
ing multiple similar linear segments are needed where any specific
initial condition can visit its most closed attractor obeying the dis-
tribution of basin of attraction. In this work, parameter-oriented
offset boosting and initial-condition-oriented are systematically
discussed based on system VB14 (Li and Sprott 2016), as indicated
in Table.1. The case of absolute value function introducing is not
listed in the table for easy discussion in the following text where
more parameters are embedded and correspondingly the original
system is changed more dramatically. In section 2, we discuss how
to insert a constant to realize offset boosting in some dimensions
of a system. In section 3, periodic functions specifically trigono-
metric functions are addressed for initial condition-triggered offset
boosting. In section 4, absolute value functions are introduced for
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Table 1 Two regimes of offset boosting

Cases Constant or function introducing for offset Research focus
boosting
A F(x)=x +d, G(y)=y Attractor Boosting
B F(x)=x, G(y)=y + h
C F(x)=3sin(x), G(y)=y Attractor Self-reproducing and Attractor Growing

F(x)=1.8sin(1.3x), G(y)=y
F(x)=x, G(y)=2cos(y)
F(x)=8tan(0.5x), G(y)=sin(y)

F(x)=x +d, G(y)=sin(y)

attractor doubling. In section 6, absolute value function is applied
for polarity reverse for the observation of conditional symmetry
and repellor construction. Conclusions are wrapped in the last
section.

Offset Booster Attractor Boosting
" (AB)
Attractor Self-reproducing
Periodic Function (AS)
Dynamical v L Attractor Growing
; (AG)
Syst: Boosti
ystem R Attractor Doubling
Absolute Value (AD)
(DS) Function (OB) —
Conditional Symmetry |
(CS)
Repellor Constructing
(RC)

Figure 1 Offset boosting in a dynamical system.

OFFSET BOOSTING BY INTRODUCING CONSTANT TERMS

As mentioned above, to realize offset boosting in a dynamical
system, a direct method of introducing a constant in any of the di-
mension can be applied for this target. For example, we introduce
a constant in the variable x in VB14, correspondingly system (1)
turns to be system (2) where only an extra single constant appear
in the right hand,

x=1-ayz

y=2z>—z D
zZ=x-—bz

x=1—ayz

y':zz—z ()
z=x4+d—bz

Correspondingly, the original attractor, shown in Fig. 2, will
be shifted in the x dimension, shown in Fig. 3, without shaking
the Lyapunov exponents but spitting out the chaotic signal x in a
smoothly revised average, shown in Fig. 4.
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Figure 2 Chaotic attractor of system (1) witha = 3.55,b = 0.5
under initial condition (1, 0, 1): (a) x-y, (b) x-z.

() (b)

Figure 3 Shifted chaotic attractors in system (2) with a = 3.55,
b = 0.5 under initial condition (1 — d, 0, 1) (Case A in Table 1): (a)
d=5,(b)d=-b5.
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Figure 4 Offset boosting of x in system (2) witha = 3.55,b = 0.5
under initial condition (1 — 4, 0, 1): (a) Lyapunov exponents, (b)
average values.
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The operation for offset boosting can be repeated in other di-
mensions. But this does not mean that all this kind of operations
share the same complexity for a dynamical system and correspond-
ingly does not benefit circuit realization equally. For example, it
is shown that even an exactly similar operation of y—y + h needs
much more effort for circuit realization as indicated in system (3).
For system (2), a newly introduced direct current source revise
the average value of x, while for system (3) (Case B in Table. 1),
a new feedback of —ahz should be attached in the x dimension.
The offset of y is based on the adjustable resistance in the branch
of x-dimension, which is not getting worse. In fact, the constant
h still returns the average-value-revised y with unified Lyapunov
exponents, as shown in Fig. 5. In some circumstances, it will be
much more catastrophic even a single constant is needed for a
variable but multiple existence of this variable brings much more
complexity.

x=1—a(y+h):z

y= 22—z 3)
z=x—bz
03 6 “ ——mean(x)
ke A Aot A AR 4 —mean(y)
0 mean(z)
2
i -0.3 §
29
06 2
o @ (b) \
0% 0 5 s 0 5
h h

Figure 5 Offset boosting of y in system (3) witha = 3.55,
b = 0.5under initial condition (1, —h, 1) (Case B in Table 1): (a)
Lyapunov exponents, (b) average values.

OFFSET BOOSTING BY INTRODUCING PERIODIC FUNC-
TIONS

Offset boosting can be realized in a hidden mode where a peri-
odic function is applied for attractor boosting. In this direction,
as pointed in (Li et al. 2017a), periodic trigonometric function is
introduced for hidden offset boosting by initial condition. In this
example, a sinusoidal is equipped as,

¥ =1-aG(y)z
y=2*-z 4)
2z =F(x)—bz

where G(y) =y, F(x) = 3sin(x). Thus, system (4) (Case C in Table
1) is a self-reproducing system giving infinitely many coexisting
attractors, which can be extracted by various initial conditions, as
shown in Fig. 6, eight coexisting attractors are given, each of which
is of the same shape with same Lyapunov exponents (0.23401, 0,
—0.73402) as shown in Fig. 7. The stout structure of attractor in
Fig.6 is flattened for the increasing scale in the x-axis. In fact, sys-
tem (4) reproduces infinitely many attractors standing on different
positions in the x-axis but with unified Lyapunov exponents, as
shown in Fig. 8. Note that the step-growing average value shows
the offset boosting triggered by initial conditions. Each step rep-
resents a corresponding attractor and the whole sinusoidal-like
evolution reveals the trigonometric nonlinearity.
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30 30

0 0
X X
Figure 6 Coexisting attractors in system (4) with G(y) =y, F(x)

= 3sin(x), a = 3.55, b = 0.5 (Case C in Table. 1): (a) x-y, (b) x-z.
Each attractor is under different initial conditions (IC). Here cyan
is for IC = (-5, 0, 1), pink is for IC = (—4, 0, 1), yellow is for IC =
(=3,0, 1), red is for (-2, 0, 1), green for IC = (1, 0, 1), blue is for
IC = (5,0, 1), white is for IC = (8, 0, 1), black is for (11, 0, 1).

(b)

Figure 7 Chaotic attractor of system (4) with G(y) =y, F(x) =
3sin(x),a = 3.55,b = 0.5 in principal interval when initial
condition IC= (-2, 0, 1): (a) x-y, (b) x-z.
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Figure 8 Offset boosting of system (4) with G(y) =y, F(x) =

3sin(x),a = 3.55,b = 0.5, and IC = (xg, 0, 1), x¢ varies in [—6,
7]: (a) Lyapunov exponents, (b) average values.

Figure 9 Attractor growing in system (4) with G(y) = y, F(x) =
1.2sin(1.8x), a = 3.6, b = 0.5 and time duration T = 1000. Here
green is for IC = (1, 0, 1), yellow is for IC = (5, 0, 1), blue is for IC
=(10, 0, 1): (a) x-y, (b) x-z.
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Meanwhile revising the feedback of sinusoidal function, at-
tractor growing appears as predicted. In this case the introduced
functions in system (4) are: G(y) = y, F(x) = 1.2sin(1.8x) (Case D in
Table. 1). Different initial values select the start point for attractor
growing indicated in green, yellow and blue in Fig. 9. This is
the typical phenomenon of homogenous multistability. Unified
Lyapunov exponents are proved along with randomly increasing
of the average value of x as shown in Fig.10.

0.2 40
Byttt A A A Sl ——mean(x)
30 mean(y)
0 mean(z)
20
o -0.2 —LE1 H
4 Le2| g1 | \
04 LE3 o |
-10
-0.6 (a)- R 0 (b
-10 0 10 15 10 -5 0 5 10 15
x0 x0

Figure 10 Feature of the growing attractor in system (4) with
G(y) =y, F(x) = 1.2sin(1.8x), a = 3.6, b = 0.5 and time duration of
T = 1000 under the initial condition [xg, 0, 1], where x( varies in
[—4m, 47t]: (a) Lyapunov exponents, (b) average variables.

The initial-condition-oriented offset boosting can extend to
other dimension with the same approach. Here a cosine function
is introduced in the y dimension in system (4) by G(y) = 2cos(y),
F(x) = x (Case E in Table. 1),

¥ =1-2acos(y)z
y=2>—z ®)

z=x—bz

As shown in Fig. 11, when a = 2.2, b = 0.7 and initial condition
IC = (1, 0, 1), system (5) exhibits a chaotic attractor with Lyapunov
exponents (0.13415, 0, —0.83416). For the same reason of peri-
odicity, system (5) is a self-reproducing system giving infinitely
many coexisting attractors with different average values in the
y-dimension, as shown in Fig. 12. Almost unchanged Lyapunov
exponents can be seen in Fig. 13, where linearly modulated offset
in the y-dimension shows up. There is no conflict in Fig. 8 and
Fig. 13. In Fig. 8, the initial condition of x( varies in a continuous
way in region of [—6, 7], the sinusoidal-like evolution reveals the
trigonometric nonlinearity combined with the fractal structure of
basin of attraction. Meanwhile in Fig. 13, the initial condition of
Yo varies in a discrete way in the period of cosine function 2n,
the linearly rescaled offset also betrays that the basins for each
attractor stand apart from each other in general.

All the operations can be mixed together for flexible offset
boosting in any dimension. And furthermore, the attractor self-
reproducing can be achieved by other periodic functions. For
example, periodic functions are introduced into system (4) in both
x and y dimension. Here G(y) and F(x) are selected from other
trigonometric functions. When a = 3.57, b = 0.7, F(x) = 3 tan (0.5x),
G(y) = sin (y) (Case F in Table. 1), infinitely many attractors scatter
in the x-dimension and y-dimension with corresponding attractor
space under unified Lyapunov exponents (0.22152, 0, —0.93029).
In x-dimension, the attractor distance is defined by the period of
tangent function while in y-dimension the attractor distance is
defined by the period of sinusoidal function. The attractor dis-
tances in x-dimension and y-dimension are equal this time, which
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Figure 11 Chaotic attractor of system (5) (case E in Table. 1) with
a = 2.2,b = 0.7 under initial condition (1, 0, 1): (a) y-x, (b) y-z.

Figure 12 Coexisting attractors in system (5) witha = 2.2, b =
0.7, and IC = (1, o, 1): (a) y-x, (b) y-z. Here cyan is for yo=—6,
pink is for yo=—4m, yellow is for yp=—27, red is for yy=0, green
is for yp=27, blue is for yg=4r, black is for yy=67.
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Figure 13 Offset boosting of system (5) witha = 2.2,b = 0.7,
and IC = (1, yo, 1), yo=2nrt: (a) Lyapunov exponents, (b) average
values.
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Figure 14 Lattice of strange attractors in system (4) with 2 = 3.57,
b = 0.7, F(x) = 3 tan (0.5x), G(y) = sin (y) (Case F in Table. 1): (a)
Coexisting strange attractors when initial conditions are (1 + 2k,
0+2Im,1(—1<k,1eZ<1)), (b) regulated offset when initial
conditions are (1 - 2k7t, 0 + 2k, 1 (=50 < k € Z < 50)).
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is because both functions of tan (0.5x) and sin (y) have same period
of 27, as shown in Fig. 14.

Combined regime of offset boosting can be realized in the fol-
lowing system,

x=1-aG(y)z
y=z>—z (6)
Z=x+d—bz

where the offset boosting in the x dimension is controlled by the
constant d, while the offset boosting in the y dimension is oriented
by the initial condition of y (Case G in Table. 1). When a = 4.5,
b = 0.7, F(x) = x + d, G(y) = sin (y), infinitely many attractors
scatter in the y-dimension. Meanwhile the location in x-axis is
set by the constant d, as shown in Fig. 15. All these coexisting
attractors and constant-controlled attractors share a unified set of
Lyapunov exponents (0.12917, 0, —0.82917).

100 d=5
.
5
>
0
5
(a)
5

Figure 15 Infinitely many attractors shifted by d in system (6)
witha = 4.5,b = 0.7, G(y) = sin (y) (Case G in Table. 1): (a) x-y,
(b) x-z.

ATTRACTOR DOUBLING BY INTRODUCING ABSOLUTE
VALUE FUNCTIONS

Offset boosting from a substitution of absolute value function can
bring doubled coexisting attractors (Li et al. 2019). For example,
take y—|y| — c like,

x=1—a(ly| —c)z
y = sgn(y)(* — z) @)
z=x+d—bz

The original attractor obtained its reproducing in the dimension
of y, pseudo-double-scroll attractor with Lyapunov exponents
(0.1477, 0, —0.64335) is as shown in Fig. 16. Combined regime
of offset boosting can be realized when the offset booster d is not
zero. As shown in Fig. 17, the pseudo-double-scroll attractor
is controlled locating at various positions in the dimension of
x according to the offset booster d. Furthermore, the distance
between any two doubled coexisting attractors can be controlled
by selecting a propitiate value of ¢ in the absolute value function.
As plotted in Fig. 18, when c = 1, doubled coexisting attractors
stand separately at both sides in the dimension of y. If we hide the
obvious independent constant d as the period in the x-dimension
trigonometric function as,

£=1-a(ly| - o)z
y = sgn(y)(22 ) ®)

z = 3sin(x) — bz
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Infinitely many attractors in the dimension of x will also get
doubled according to the dimension of y, as shown in Fig. 19. As
proved, any of those reproduced coexisting attractors share the
unified set of Lyapunov exponents [0.2328, 0, —0.7328]. As col-
lected in Table. 2, in fact, all those reproduced coexisting attractors
have almost the same sets of Lyapunov exponents.

Figure 16 Pseudo-double-scroll attractor in system (7) witha =
3.55,b = 0.5, c = d = 0 under initial condition (1, 2, 1): (a) y-x, (b)
y-z.

Figure 17 Chaotic attractors in system (7) with a = 3.55, b = 0.5,
¢ = 0: (a) y-x, (b) y-z. Here in the left plot, red is for d = 5 and
IC =(—4,2,1), greenis ford = 0 and IC = (1, 2, 1) and blue is for
d = =5and IC = (6, 2, 1); because of the same plot in y-z plane,
here a third color is applied for representing each coexisting
attractor.

POLARITY CONTROL BASED ON OFFSET BOOSTING

Moreover, the offset boosting can introduce polarity reversal lead-
ing to other regimes of systems with coexisting attractors if the
polarity balance is maintained typically conditional symmetry is
expectable (Li et al. 2020c). Revising the original system to be,

*=1—ayz
y =22z )
z=x—bz

The offset in the dimension of x and y win the polarity return
in the right hand of the equation breeding conditional symmetry,
£=1-a(ly| o)z
y=1z>—|z| (10)

2= (x| - f)—bz

It is clear that the offset boosting in the dimension x and y
does not change the polarity of the left hand of Eq. (10) but gives
birth to polarity reversal by the absolute value function, which is
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Table 2 Chaotic systems with flexible offset boosting and their basic properties

System Parameters LEg Dxy

(1) a=2355b=05 0.1510, 0, —0.6510 2.2319
(2)(Case A) a=2355b=05 0.1510, 0, —0.6510 2.2319
(3)(Case B) a=2355b=05 0.1510, 0, —0.6510 2.2319
(4)(Case C) a=2355b=05 0.23401, 0, —0.73402 2.3188
(4)(Case D) a=23550b=05 0.14275, 0, —0.64275 2.2221
(5)(Case E) a=22,b=07 0.13415, 0, —0.83416 2.1608
(4)(Case F) a=2357,b=07 0.22152, 0, —0.93029 2.2381
(6)(Case F) a=45b=07 0.12917, 0, —0.82917 2.1558
(7) a=2355b=05 0.1477, 0, —0.64335 2.2228

Figure 18 Chaotic attractors in system (7) with a = 3.55, b = 0.5,
¢ = 1: (a) y-x, (b) y-z. Here in the left plot, red is for d = —5 and
IC =(6,1,1),blueis ford = —5and IC = (6, —1, 1), green is for
d = 0and IC =(1, —1, 1), magentais ford = 0Oand IC = (1, 1,
1), yellow is ford = 5and IC =(—4, 1, 1) and cyanis ford = 5
and IC = (—4, —1, 1); because of the same plot in y-z plane, here
a third color is applied for representing each coexisting attractor.
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Figure 19 Chaotic attractors in system (8) with a = 3.55, b = 0.5,
¢ = 1: (a) y-x, (b) y-z. Here because of the same plot in y-z plane,
a third color is applied for representing each coexisting attractor.
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counteracted by the polarity reversal of z leading to conditional
reflectional symmetry. As depicted in Fig. 20, coexisting chaotic at-
tractors are produced by 2-D offset boosting in x and y dimensions
where the polarity balance is retained by the inverse of z.

I ic=(121) I ic=p121) N
IC=(-3-21) 2) IC=(-3-21)
L]

N 0 Y N0

-1 -1

2 2 )

6 0 3 6 4 2 0 2 4

X Y

Figure 20 Coexisting attractors in conditional symmetrical sys-
tem (10) witha = 2,b = 0.8,e = f = 4 induced by 2-D offset
boosting in x and y dimensions: (a) x-z, (b) y-z.

As pointed in (Li and Sprott 2017; Li et al. 2021), offset boosting
may create flexibly-selected repellor if it exists in a function for
equilibria controlling. With the transformation like,

t=(1—a(lyl —e)z)p
y= (2 —|z])p (1)
2= ((Ix| = f) = bz)p
one of the coexisting attractors turns to be a repellor when the
function p is introduced as p = y or p = y — 1, as shown in Fig.
21. Since the coexisting attractors scatter in the y dimension with
relatively larger distance, here the offset in the equilibria plane

y = 1 creates desired repellor. Moreover, system (9) can be revised
to be a time-reversable chaotic system (Li ef al. 2021),

t=1-ay(|z| - g)
v =zl -8 Izl = gl (12)
z=x-b(lz| -g)
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The time reversable property can be proved by the
invariance of system (12) under the transformation of
t——t,x——x,y——y,z—z + d. Polarity balance is maintained by
the offset boosting in the dimension of z giving coexisting attractor
and repellor as shown in Fig. 22.

ez e
IcC=(121) G IC=(121)
1 1

-1 -1

Figure 21 Coexisting chaotic attractor (red) and repellor (green)
of system (11) witha = 2,b = 08,e = f = 3:(a)p = y, (b)
p=y—1
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Figure 22 Coexisting chaotic attractor (red) and repellor (green)
of system (12) witha =2, b = 0.8, g = 3: (a) x-z, (b) y-z.

RESULTS AND DISCUSSION

Offset boosting of a chaotic signal or attractor represents corre-
sponding attractor boosting. Extra introduced constant and initial
condition can both trigger this process giving attractor boosting
with any desired offset and producing chaotic signals with de-
signed averaged values in a continuous or a discrete way. From
the above demonstration, we can select proper approach to realize
offset boosting according to our restriction. For obtaining a chaotic
waveform with desired average, the offset booster is reliable since
any DC power supply is easily available and selectable. For po-
larity control from the bipolar signal to monopolar signal or vice
versa, direct constant control with a DC source can also accomplish
this task effectively and output any desired stable signals.

For free access to the attractor with various offset, periodic func-
tion or absolute value function can also be introduced for attractor
reproducing or doubling, where initial condition is applied to visit
any included attractor. For this purpose, periodic functions may
be introduced for free attractor reproducing. Attractor growing
may happen in this case. Absolute value function can be pulled
in a dynamical system for attractor doubling. For some specif-
ical systems, the insert of absolute value function may bring a
polarity reversal giving conditional symmetry or time-reversable
conditional symmetry.

Parameter-oriented and initial-condition-oriented offset boost-
ing can be combined together for engineering application accord-
ing to the engineering restriction. Furthermore, some other piece-
wise linear functions (Li et al. 2020a,b) can be designed for attractor
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selecting and reproducing, where all the selected attractors can be
arranged in any dimension or in any order if the offset is controlled
harmoniously for all the attractors. Dynamic editing is heading to
this direction for further exploration.
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ABSTRACT Theoretical analysis and microcontroller implementation of linear resistor-capacitor shunted
Josephson junction (LRCSJJ) model are studied in this paper. The rate-equations describing the LRCSJJ
model has no or two equilibrium points. One of the equilibrium points is a saddle node and the other one is

KEYWORDS
Chaos
Josephson junc-

a stable node. The hysteresis loop of current-voltage curves increases with the rising of the capacitance of  tion

Josephson junction (JJ). Excitable mode, limit cycle, periodic and chaotic behaviors are found in LRCSJJ
model with external alternative current (AC) source thanks to the two modulation parameters largest Lyapunov
exponents (LLE) diagram. LRCSJJ model exhibits two different shapes of chaotic attractors by varying the
modulation amplitude. Finally, the existence of chaotic behaviors is confirmed by microcontroller results

Hysteresis loop
Excitable mode
Microcontroller
implementation.

obtained from the microcontroller implementation of LRCSJJ model.

INTRODUCTION

Josephson junction devices have been studied by many researchers
because they are very good candidates commonly exploited for the
construction of complex systems for specific applications (Levi et al.
1978; Kautz and Monaco 1985; McCumber 1968; Zhang et al. 2011;
Malishevskii and Uryupin 2020). In the literature, there is two
main electrical rate-equations of JJ: Resistor and capacitor shunted
JJ (RCSJ]) mode (Cawthorne et al. 1998) and resistor, capacitor and
inductive shunted JJ (RCISJJ) model (Dana et al. 2006; Whan et al.
1995). Typically by using RCSJJ model to describe JJ, resulted in
a fairly good agreement with experiment. Nonetheless, it was
not able to generate significant features of experimental current-
voltage characteristics. Better agreement with experiment is found
when the RCSJJ model is adopted by inserting an inductor in
series with the shunt resistor in order to obtain the RCLS]J] model
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(Cawthorne et al. 1998; Dana et al. 2006; Whan et al. 1995; Stewart
1968; Neumann and Pikovsky 2003; Takougang Kingni et al. 2017).

In fact, there is four models of J] namely: Nonlinear RCS]JJ
model(Levi et al. 1978; Likharev 1986), LRCSJ] model (Salam
and Sastry 1985; Bartuccelli et al. 1986),nonlinear RCLSJJ] model
(Cawthorne et al. 1998; Dana et al. 2006; Whan et al. 1995; Stewart
1968), and linear RCIS]] model (Neumann and Pikovsky 2003;
Takougang Kingni et al. 2017) have been reviewed to check if
a JJ device can be used as a transmitter and receiver in chaos
based communications. The two RCS]JJ models show chaotic be-
haviors when driven by external sinusoidal current source (Levi
et al. 1978; Likharev 1986; Salam and Sastry 1985; Bartuccelli et al.
1986) whereas the two RCIS]] models generated chaotic behav-
iors with external DC (Cawthorne et al. 1998; Dana et al. 2006;
Whan et al. 1995; Stewart 1968; Neumann and Pikovsky 2003; Tak-
ougang Kingni et al. 2017; Dana et al. 2001).The RCIS] models have
been revealed more appropriate in high-frequency applications
(Cawthorne et al. 1998; Dana et al. 2006; Whan ef al. 1995; Stew-
art 1968; Neumann and Pikovsky 2003; Takougang Kingni et al.
2017). In (Dana et al. 2006), Dana et al. have been studied how
the chaos found in nonlinear RCLSJ] model could be applied as a
chaos generator for communications.

The authors of (Takougang Kingni et al. 2017) have been studied
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the dynamical analysis of linear RCISJ] model and its fractional-
order form as well as its application to digital cryptography. Syn-
chronization of two coupled linear RCISJJ models via cyclic cou-
pling and its microcontroller-based implementation was reported
by Ojo and al (Ojo et al. 2019). Few research works have been re-
ported on RCSJ] models (Levi et al. 1978; Likharev 1986; Salam and
Sastry 1985; Bartuccelli et al. 1986; Kautz and Monaco 1985). Salam
and Shastry have been studied the dynamical behaviors of LRCS]]J
model actuated both by direct current (DC) and AC with emphasis
on the AC case (Salam and Sastry 1985). In (Bartuccelli et al. 1986),
Chaos in LRCS]J] model driven AC have been investigated by using
the Melnikov method. Chaotic behavior in LRCSJJ model driven
by an AC have been studied through digital simulations by Kantz
and Monaco (Kautz and Monaco 1985). McCumber have been
investigated on the alternative current impedance and he saw the
influence both in the response time and the DC voltage-current
characteristics (McCumber 1968).

This paper studies the dynamical behavior and the microcon-
troller implementation of the LRCSJ] model. The paper is orga-
nized as follows: Theoretical analysis of LRCS]] model is studied
in Section 2. Microcontroller implementation of the LRCSJJ model
is investigated in Section 3. Section 4 presents the conclusion.

DYNAMICAL ANALYSIS OF LRCSJJ MODEL
LRCSJJ model (Kautz and Monaco 1985) is represented in Fig. 1.

I
A4

R X Cc—

Figure 1 Schematic view of LRCSJJ model.

The circuit of Fig. 1 consists of the external current source I,
capacitor C, linear resistor R and JJ element connected in parallel.
A voltage V is developed across the J] due to the application of by
applying the Kirchhoff law, the following equations are obtained:

ko dg

= Yredr ()
dv
cdt,+ +h=1 )

where v is the voltage, h is the Planck constant, t' is the
time, e is the electron charge, I} = Ijcsin¢ is the JJ current and
¢ = ¢2 — ¢1 is the phase difference By introducing the follow-

ing parameters t = wot’, i(t) = I/Ic;, wy = (27reI]C/hC)1/2
V = vy/2meC/hlc; and ﬁc = 2m3R2CIC[/h > 0, the set of Egs.
(1, 2) can be normalized as:

a¢

0t =V ®3)
av

g j V/ﬁ —sin ( 4)
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where B¢ is the capacitance of JJ

Analytical and numerical analysis of LRCSJJ model driven by
external DC source

The external current source is considered as a DC: i (t) = iz, LRC-
SJJ] model displays two equilibrium points E; = (arcsin (iz.),0)

and E; = (7 — arcsin (ig.),0) for izye < 1 whereas it has no-
equilibrium point for iz, > 1. The characteristic equation as-
sociated to the equilibrium point E; = (arcsin (iz.),0) is

1
A4 A+ V/1-22=0 5
C 1 ()

and the eigenvalues are

1 ;
M= N (—1+ 1—4/3(;,/1—156) (6)

and

1
Ay = —1—/1—4Bc\/1-i3 . 7
2= 5 Jbe < Bc dc) @)
Since A1 < 0 and A < 0 , the equilibrium point E; =
(arcsin (i4.),0) is a stable node. The characteristic equation at
the equilibrium point E; = (7t — arcsin (iz.),0) is

1
A+ —=A—/1-i2 =0 (8)

VBc

and the eigenvalues are

1 .
A= W<—1+\/1+4ﬁcw/1—zﬁc> )

2\/1% (—1— 1+45C./1—i§c). (10)

Since A; > 0 and A < 0, the equilibrium pointE; = (7 —
arcsin (iz.),0) is a saddle node.

Figure 2 presents the current-voltage curve for given values of
the capacitance of J] .

When the DCi (t) = iy increases (black line in Fig. 2), the
trajectories of voltage exhibits excitable mode for i (t) =iy < 1.0.
The voltage exhibits period-1-oscillations for i(t) = iz > 1.0.
By decreasing DC i (t) = iy, (see red line in Fig. 2), the voltage
depicts the similar dynamical behaviors as in Fig. 2 (black line).
By comparing the two sets of data [for increasing (black line) and
decreasing (red line)] used to plot Fig. 2, there is a region of
the DC called hysteresis loop where the voltage V exhibis the
similar dynamical behaviors as seen in Fig. 2 (black line) but the
amplitudes of the voltage V are differents. So, LRCS]J model shows
bistability phenomenon in the hysteresis loop. By increasing the
capacitance of JJ B¢, the hysteresis loop increases.

and

Ay =

Numerical analysis of LRCSJJ model driven by external AC
source

In this subsection, we consider the external current source is to
be an AC:i (t) = iy, + iy sin (wpt) where the parameters iy, iy

and w;; are DC, modulation current and modulation pulsation,
respectively. The two modulation parameters LLE diagram of the
LRCSJJ] model is illustrated in Fig. 3.
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Figure 2 Current-voltage curve for given values of B¢: (a) Bc =
2.25,(b) Bc =4, (c) Bc =9 and (d) Bc = 25. The current-voltage
curves are found by increasing (black line) and decreasing (red line)
the DC i = iy,.

Figure 3 Two parameters LLE diagram of the LRCSJJ model
in(w, im) space for iz, = 0.3 and B¢c = 25.
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Figure 4 Bifurcation diagrams of V (¢) (a) and LLE (b) versus the
parameter iy, for iz. = 0.3, wy, = 0.25 and B = 25.
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Excitable mode, periodic behaviors and chaotic behaviors re-
gions are illustrated in Fig. 3. The bifurcation diagram versus the
parameter i, and LLE are depicted in Fig. 4 for w,, = 0.25.

By increasing the amplitude of modulation i,; from 0.0001 to
1.4, the voltage V () in Fig. 4(a) displays limit cycle, period-2-
oscillation, period-3-oscillation, period-2-oscillations then period-
doubling bifurcation to chaos encrusted with periodic windows.
The LLE of Fig. 4(b) confirms the results of Fig. 4(a). Figure 5
depicts the chaos obtained in Fig. 4 for given values of parameter

I -
(a)
=
1000 2000 0 1000 2000
Time Time
9000 /]
= 8000 >
7000
0 1000 2000 0 1000 2000 7000 8000 9000

Time Time ¢

Figure 5 Time histories of ¢, V, and phase planes for given values
of parameter iy, : i, = 0.705 and i, = 1.2, are iz, = 0.3, wy =
0.25 and B¢ = 25. The initial conditions are (¢(0) = 0, V(0) = 0).

Fori, = 0.705, the phase difference and the voltage exhibit
chaotic attractors as seen in Fig. 5(a). While in Fig. 5(b) fori,, = 1.2,
the phase difference does not depict chaotic oscillations and the
voltage displays chaotic oscillations. The phase portraits in Fig.
5 shows two different shapes of chaotic attractors for two given
values of amplitude of modulation iy, .

MICROCONTROLLER IMPLEMENTATION OF LRCSJJ
MODEL

The microcontroller implementation of LRCSJ] model is presented
in Fig. 6.
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Figure 6 Microcontroller design circuit of the LRCSJJ model.

The microcontroller implementation of RCSJJ] model shown in
Fig. 6 is based on the Arduino. Fig. 7 presents the time series and
phase portraits obtained from the microcontroller implementation
of the LRCS]JJ] model.

|

|

Time Time [}

Figure 7 Time series and phase portrait obtained from the microcon-
troller implementation of LRCSJJ model.

The microcontroller results of Fig. 7 are qualitatively matched
with the results of Fig. 5(a). Thus, the existence of chaotic behaviors
found in LRCS]JJ model is confirmed.

CONCLUSION

This paper deals with the theoretical analysis and microcontroller
implementation of linear resistor-capacitor shunted Josephson
junction model. The rate-equations describing the linear resistive-
capacitive shunted Josephson junction model has two or no equi-
librium points relying on the external direct current source. The
stability analysis of the two equilibrium points of linear resistor-
capacitor shunted Josephson junction model was investigated. The
increasing of the capacitance of Josephson junction leaded to an in-
creased in the hysteresis loop of current-voltage curves. For given
modulation parameters of external current source, linear resistor-
capacitor shunted Josephson junction model displayed two differ-
ent shapes of chaotic attractors, periodic attractors, limit cycle and
excitable mode. The existence of chaotic behaviors was confirmed
by microcontroller results obtained from the microcontroller imple-
mentation of linear resistor-capacitor shunted Josephson junction
model.
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ABSTRACT An effective design procedure has been introduced for implementing the fractional order integrator
structures with a modified low pass filters (LPFs) and its functionality is verified by realizing a fractional-order
chaotic system. In these applications, the state variables of the fractional-order Sprott’s Jerk system are
emulated by these first order LPFs. Since the discrete device based designs have the hard adjustment features

and the circuit complexities; the realizations of these LPFs are carried out with the Field Programmable Analog ~ System
Arrays (FPAAs), sensitively. Hence, the introduced LPF based method has been applied to the fractional order Low pass filter
Sprott’'s Jerk systems and these fractional-order systems, which are built by the several nonlinear functions, = FPAAs

have been implemented with a programmable analog device. In this context, the minimum fractional-orders of
the Sprott’'s Jerk systems are calculated by considering the stability of the fractional-order nonlinear systems.
After that, these systems are simulated by employing the Griinwald-Letnikov (G-L) fractional derivative method
by using a common fractional-order. Thus, the stability analyses of the fractional-order Sprott’s Jerk system
are supported by the numerical simulation results. After the numerical simulation stage, the design procedures
of the FPAA based implementations of the Sprott’s Jerk systems have been dealt with in detail. Finally, thanks
to the introduced first-order LPF method, the hardware realizations of the Sprott’s Jerk systems have been
achieved successfully with a single FPAA device.

INTRODUCTION

After the discovery of the Lorenz’s chaotic system, the chaos con-
cepts, the chaotic stability and the circuit implementations of the
chaotic structures are well documented in the literature. Simu-
lations of the chaotic attractors by solving two- or higher dimen-
sional ordinary differential equations with numerical analysis tools

research fields and applicability to the problems in real life. Thus,
these systems have been studied easily; also they have found an
extensive application field in scientific engineering problems such
as quantum chaos (Stockmann 1999), chaos-based secure commu-
nications (Chen and Ueta 2002), to truly random number generator
(Oztiirk and Kili¢ 2019) and the fractional-order definitions of the

or generations of these structures by emulating their mathematical
descriptions with the several electronic hardware have become
more interesting in the last few decades (Kili¢ 2010). However,
expressing a nonlinear system with simple definitions is very im-
portant in terms of both adaptation of the system to different
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chaotic systems (Tlelo-Cuautle ef al. 2020). Among these scientific
accretions about the chaotic systems, Sprott’s chaotic models have
taken a considerable attention in the literature thanks to their sim-
plicities and rich contents (Sprott 1994). This simple chaotic system
is based on “Jerk systems” and the source of its rich contents is to
include the different nonlinear functions in the system definition
(Sprott 1997, 2000b,a; Ahmad and Sprott 2003).

The simplicities of the nonlinear systems provide an extra ad-
vantage for the fractional-order definition, because the fractional
order models have the extra degrees and these methods enrich the
analysis with more details in new dimensions. Thus, the real time
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problems and systems are able to be modeled by the fractional
equations more accurately than the integer ones. Fractional calcu-
lus has found various applications in areas such as control system
theory, biochemistry and medicine, circuit theory and design (El-
wakil 2010). While the fractional-order PID controllers provide an
extra freedom for tuning of time and frequency responses in the
control system theory (Deniz et al. 2019); the fractional calculus is
used for modeling the measured impedance versus the frequency
of the investigated material in the biochemistry (Azar et al. 2018).
Besides, the fractional capacitor (-fractance) or fractional induc-
tance concepts are brought in the literature and these structures are
adapted to the canonical theories of the integer order RC-RL-RLC
circuits in the circuit theory (Krishna and Reddy 2008; Atangana
and Alkahtani 2015). The main circuit applications such as os-
cillators, filters, differentiators and integrators etc. are also built
by utilizing their fractional-order definitions (Radwan et al. 2008;
Sacu and Alci 2019; Chen and Moore 2002; Charef 2006). The most
important advantages of the fractional-order systems are able to
be listed as follows: i) The high frequency real-time signals are
generated with the fractional-order oscillators (Ahmad et al. 2001),
ii) Both the frequency and the phase shifts among these generated
signals are controlled by tuning the fractional-orders of the oscilla-
tors (Maundy ef al. 2012), iii) The fractional-order differentiators
and integrators provide adjustable phase shifts depending on the
fractional order (Krishna 2011), iv) The slope of the filter response,
the cutoff frequency (-center frequency) and the quality factor in
the fractional filters are changed by adjusting the fractional-orders
(Radwan et al. 2009), and v) the fractional-order controllers can
provide robust performance (Caponetto 2010). Considering the
advantages listed above, the fractional-order chaotic oscillators
have become the one of the most important research fields of the
nonlinear circuits and systems in the resent years.

The usage of the numerical simulation results is an often re-
ferred approach to demonstrate the effectiveness of the obtained
results in the scientific studies, which are about the fractional-order
chaotic oscillators. Two alternative numerical analyses methods
are commonly used to simulate the fractional-order chaotic oscil-
lators (Arena 2000; Chen et al. 2016). First of them is based on
Griinwald-Letnikov (G-L) fractional derivative that is used for cal-
culation of the time domain responses of the studied systems and
this method demands more memory size. In the second method,
the fractional integral operator 1/s7 (0 < q < 1 is fractional order) is
approximated by the high order integer transfer functions within
a limited frequency band. These high order integer transfer func-
tions are generally implemented by the R-C networks, but there is
a tradeoff between simplicity of the implementation and frequency
band in this method. On the other hand, although the circuit imple-
mentations of the fractional-order chaotic systems have impressive
advantages, the number of their hardware implementations is lim-
ited. A large part of these studies are usually realized with discrete
devices by using the coupled R-C circuits (Radwan and Salama
2012; Gémez et al. 2013; Gémez-Aguilar ef al. 2017). Also, since
the programmable and reconfigurable analog/digital devices have
several effective specialties such as the flexible designing, the low
time and equipment costs and the rapid prototyping, a few the
programmable analog/digital devices based hardware validation
studies about the fractional-order chaotic systems are also available
in the literature (Petras 2011; Singh et al. 2020). However, the fol-
lowed processes in these available studies do not offer a common
design procedure in order to implement programmable analog
device based implementations of the fractional-order chaotic sys-
tems.
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In this context, an effective alternative design process will be
suggested for realizing of the fractional-order chaotic systems with
the electronic hardware in this study. In this introduced proce-
dure, the state variables of the fractional-order chaotic systems are
emulated by the modified first order low-pass filters (LPFs), so
the hardware usage cost and the circuit complexities have been
decreased at the beginning of the hardware design process. The
analog filter designs and their realizations are carried out with the
Field Programmable Analog Arrays (FPAAs), logically. Thus, the
introduced method has been applied to the fractional order Sprott’s
Jerk systems and the best of our knowledge, the fractional order
Sprott’s Jerk systems, which are built by the several nonlinear func-
tions, have been implemented with a programmable analog device.
To this end, the minimum fractional-orders of the state variables of
the Sprott’s Jerk systems are derived by taking into stability of the
nonlinear systems consideration at the equilibrium points. After
the determination of the fractional orders, the Sprott’s Jerk sys-
tems, which include several nonlinear functions, are simulated by
employing the G-L fractional derivative method. Then, the details
of the introduced alternative design process have been handled.
Finally, by means of this method, the hardware realizations of the
Sprott’s Jerk systems have been achieved successfully with a single
FPAA device.

This paper is organized as follows: The general background
about the Sprott’s Jerk systems and their fractional-order counter-
parts are given in Section 2. The main definition of the G-L frac-
tional derivative method and the numerical simulation results of
the fractional-order Sprott’s Jerk systems are also presented in Sec-
tion 2. The alternative design procedure is introduced in Section 3
and the FPAA based implementation results of the fractional-order
Sprott’s Jerk systems are also given in this section. The discussions
about the performance evaluations of the introduced methods and
the concluding remarks are given in the last section.

THE GENERAL BACKGROUND ABOUT THE FRACTIONAL-
ORDER SPROTT’S JERK SYSTEMS

In 1994, Sprott offered several simple chaotic systems (Sprott 1994).
After the response of the Gottlieb’s question about the Jerk function
(Gottlieb 1996), these simple chaotic systems have been adapted
to an explicit third order form as X" = J(x, %, X). These redefined
systems have been called Sprott’s Jerk systems and defined by
to following equations (Sprott 1997, 2000b,a; Ahmad and Sprott
2003):

dx _ . _

@ =X=y

2

dx —i=y=2z 1)
Px

G =X=j=z=Fx)-pz—y

where, ‘x’, ‘y’ and ‘z’ are the state variables of this system. ‘F(x)’
is a nonlinear function and plays an important role in the chaos
mechanism of the system. Several chaotic structures with different
characteristics have been obtained by using these piecewise linear
functions (PWLs), which have different nonlinear definitions as
seen in Table 1 (Sprott 1997, 2000b,a; Ahmad and Sprott 2003). ‘p’
is a control parameter, the chaotic dynamics of this system change
by depending on the values of “p’.
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Table 1 The nonlinear functions of the Sprott’s Jerk system and the values of the nonlinear function’s parameters

The Nonlinear Functions-‘F(x)’ Eqg. No Function Parameters The minimum fractional orders
F(x)=|x|—r () r=2,p=035 Gmin > 0.885
F(x) = —Bx + Csgn(x) (3) B=12 C=2,p=06 Gmin > 0.904
E3(x) = B(x2/C - C) (4) B=058, C=1,p=042 Gmin > 0.831
Fy(x) = Bx(x?/C—1) (5) B=16, C=5p=04 Gmin > 0.848
Fs5(x) = —Bx(x2/C —1) (6) B=109, C=047,p=04 Gmin > 0.837
F¢(x) = —B[x — 2tanh(Cx)/C] (7) B=215 C=1,p =058 Jmin > 0.864

In the literature, several chaotic oscillators such as Chua,
Rossler, Duffing etc. have been redefined by using the fractional-
order integrators (Petra$ 2011). The Sprott’s Jerk system has been
also transported a fractional order system in Ref (Ahmad and
Sprott 2003). In Ref (Ahmad and Sprott 2003), only one state vari-
able (“x") is given as a fractional-order integrator. In our study, all
state variables are dealt with as the fractional-order integrators
and their fractional-orders are set to equal values. The values of
the fractional-order are calculated by considering the stability of
these nonlinear systems.

The stabilities of the fractional order nonlinear systems are as
important as in the integer-order nonlinear systems. Although
the Lyapunov criterion is commonly employed for the stability
of the integer nonlinear systems, this criterion is not valid for the
fractional-order nonlinear systems. There are two methods in order
to check the stabilities of the fractional-order nonlinear systems:
In the case of the commensurate order fractional system, namely
g1 = q2 = ..... = qn = q, Tavazoei and Haeri (Tavazoei and Haeri
2007) have proposed a method. According to this method, if the
arguments of all the eigenvalues [A; (i = 1,2, .....,n)] of the system
satisfy the | arg(};)| > LT condition, the equilibrium points of this
system are asymptotically stable. On the other hand, in the case
of the incommensurate order fractional system, namely g1 # g #
..... # qn # g, the stability of the system is determined as following
(Tavazoei and Haeri 2008): If the arguments of all the roots A of
the Eq.8 satisfy the | arg(A;)| > 75 condition, this system is the
asymptotically stable, where m is the least common factor of the
denominators of fractional orders and ‘]’ is the Jacobian matrix.

det(diag([ y\mq \mq Amq ])—]=0 8)

As mentioned before, all fractional-orders of the Sprott’s Jerk
systems are set to equal values in order to get a simple stability
analysis and the fractional-order Sprott’s Jerk system is given as in
Eq. 9.

dx1 _
T =Y
q
. g
dzi

Gi =F(x)—pz—y

The fractional-order of the Sprott’s Jerk systems including a
PWL function in Eq.3 has been calculated as in the following
part in terms of being an example of the stability analysis of the
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fractional-order nonlinear systems. Firstly, the equilibrium points
of the system are derived by equaling the right hand side of the
equations in Eq.9 to zero. Then, three of equilibrium points of
Eq. (9) are calculated for p = 0.6 and the values of the equi-
librium points are reported as E1(—2/1.2, 0, 0), E5(0, 0, 0) and
E1(2/1.2, 0, 0). The eigenvalues of this system are calculated as
('0.1619 +11.1282/,/0.1619 — 11.1282/,/ —0.9237') by utilizing the
values of the equilibrium points with the det(AI — J) = 0 for-
mula. After the determinations of the eigenvalues, the minimum
fractional order is identified by using the method proposed by
Tavazoei and Haeri (Tavazoei and Haeri 2007). The minimum frac-
tional orders for the Sprott’s Jerk system including the nonlinear
functions in Eqs.2-7 are calculated by following these procedures
and their values are also reported to Table 1.

After these calculations, the fractional-orders of the Sprott’s
Jerk systems are identified as ¢ = 0.95 in order to provide a ro-
bust stability for all applications in this study. Then, the nonlinear
functions in Table 1 have been adapted to the Eq.9 and the em-
ployability of the fractional-order has been verified by observing
the results of the numerical analyses. Several effective methods
such as the Riemann-Liouville, Caputo and Griinwald-Letnikov
are improved for calculating the fractional derivatives in the lit-
erature (Arena 2000; Oldham and Spanier 1974; 199 1999). Here,
the G-L method has been preferred due to its prevalent usage in
the numerical analysis of the chaotic systems. This method is used
for the numerical analyses of the Sprott’s Jerk systems and this
method is defined as in Eq. 10.

T fre-jm o

Where ‘a’ and ‘t’ are bounds of derivative operation, ‘%" is the
time step, ’ [t_T“]  means the integer part of the function and the
binomial coefficients are expressed in terms of Gamma ‘T'(*)” func-
tion as in Eq.11.

q ) _ I(g+1)
T(G+Dr(g—j+1)

(11)

Here, the G-L numerical analyses method has been applied
to the fractional-order Sprott’s Jerk systems, successfully. The
obtained numerical simulation results of these systems are given
in Figs.la-f for the nonlinear functions in Eqgs.2-7, respectively.

61



The value of the ‘j’ parameter is set to 5000 and ‘i’ is equal to
0.1. The initial conditions of the state variables are adjusted as
[(x(0) = 0.1,y(0) = 0,2(0) = 0] in all numerical simulations.

As seen from the numerical simulation results given in Fig.1, the
fractional-order Sprott’s Jerk systems exhibit the chaotic behaviors
for the g = 0.95 value. Additionally, these results support the
results of the stability analyses in the previous part. Therefore, the
all fractional orders of the Sprott’s Jerk systems are taken as 0.95 in
the following parts.
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Figure 1 The numerical simulation results of the fractional-order
Sprott’s Jerk systems including the a) F; (x) function in Eq.2, b)
F,(x) function in Eq.3, ¢) F3(x) function in Eq.4, d) Fy(x) function
in Eq.5, e) F5(x) function in Eq.6, and f) Fs(x) function in Eq.7

THE APPLICATION OF THE PROPOSED METHOD TO THE
SPROTT’S JERK SYSTEMS BY UTILIZING THE FPAA DE-
VICE

Although the time domain responses of the fractional-order non-
linear systems are observed with the G-L method in the numerical
simulation studies, it is very hard to realize this method with the
electronic hardware because of the requirement to storage of the
previous calculations. Thus, the high order transfer function ap-
proximations of the fractional integration operator 1/s7 are able
to be qualified as an alternative analyzing method for the hard-
ware realizations of the fractional-order nonlinear systems. In the
literature, these high order transfer functions are widely derived
from the systematic methods such as the continued fraction expan-
sion (CFE), Carlson, Oustaloup, Matsuda and Valsa (Khovanskii
1963; Carlson and Halijak 1964; Oustaloup et al. 2000; Matsuda
and Fujii 1993; Valsa et al. 2011). These high order approximation
transfer functions are framed in a limited frequency band and they
are implemented with the combinations of the R-C, R-L or R-L-C
pairs. However, it is preferred to use of the R-C networks for their
implementation easiness, and there is also a tradeoff between sim-
plicity of the implementation and frequency band in this method.
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Additionally, as the order of the approximation function increases,
the count of the employed passive components increases also, so
an alternative method is introduced to overcome these problems
in this study. In this proposed method, the fractional integrator
operator is considered as a single parallel connected R-C pair in a
limited frequency band with an acceptable error. This connection
corresponds to a first order low pass filter (LPF) and the transfer
function of this LPF is defined by the following equation:

Vout (s) ky
HO=Vo ~5+h
In Eq12, while ‘k;” is the zero of the LPF and its value is calcu-
lated by using the formula in Eq.13, ‘ky” is the pole of this LPF and
its value is identified by the formula in Eq.14.

12)

ki = wmaxlfq/sin(%) (13)

ky = wmax/tan(%) (14)

where while ‘q” is the fractional order of the nonlinear system,
‘Wmay” is the radial frequency of the nonlinear system. The fre-
quency response of a fractional-order integrator is shown in the
bode diagram in Fig.2. In this figure, the black line represents an
ideal fractional-order integrator for g = 0.95, the blue dotted line
is plotted for the proposed LPF in Eq.12. The ‘g" and “wy1y” param-
eters of this LPF are set to 0.95 and 100 rad/s, respectively. The
value of the radial frequency is adjusted to this value arbitrarily
similar to Ref (Ahmad and Sprott 2003). However, the proposed
LPF closes to the ideal frequency response at this value.

Ideal-1/s® (q = 0.95)

|- = LPF(q=095w, =100radis)

-20

Magnitude (dB)
b &
s 8

8

70 -

10° 10’ 10? 10° 10*
Frequency (rad/s)

Figure 2 The bode diagram of an ideal fractional order system
for g = 0.95 and the proposed LPF (7 = 0.95 and wmax = 100
rad/s)

As mentioned in the introduction part, the circuit implemen-
tations of the fractional-order chaotic systems have impressive
advantages, but the number of their hardware implementations
is limited. Thus, here, an effective alternative design process has
been suggested for realizing of the fractional-order chaotic sys-
tems with the electronic hardware in an easy way. In this intro-
duced procedure, the LPF’s characteristic in Eq.12 is adapted to
the fractional-order nonlinear systems properly and this modified
LPF structure can be used successfully instead of the fractional-
order integrators in the in Eq.9. Thus, the hardware usage cost and
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the circuit complexities have been decreased at the beginning of
the hardware design process. To this end, after the Sprott’s Jerk
system is transported to the s-domain (the initial conditions are
accepted as zero), its definition can be rewritten as in the following
for adapting to the proposed LPF’s characteristic:

X(s) = [(Y(5) + kX () (1/k0)] | 2
Y(s) = [(Z(s) + kY (5)) (1/k1)] [ 5] (15)

2(5) = [(F(s) — pZ(s) = Y(5)) + kaZ(s)) (1 /)] [

After these arrangements, a representative illustration of the
obtained configuration is given in Fig. 3. In this figure, the LPFs
should provide the characteristic in Eq. 12. Although the imple-
mentation issue of the fractional-order nonlinear system is solved
with this design, the adjustment of the R-C pairs’ values is hard
to get the characteristic in Eq.12. Thus, the analog low pass filter
designs and their realizations are carried out with the Field Pro-
grammable Analog Arrays (FPAAs) very sensitively by using the
“BILINEAR FILTER” block in this device.

X7
7

|

/1 LPF X

N4

3 o> e

% LPF z

=1

F(x)

Figure 3 A representative illustration of the LPF in Eq. 12 based
design of the fractional-order Sprott’s Jerk system

The FPAA device offers the flexible designing, the low time and
equipment costs, programmability and reconfigurability properties
and the rapid prototyping features by programming a matrix of the
elements. These programmable elements are called Configurable
Analog Blocks (CABs). The Configurable Analog Modules (CAMs)
in the FPAA device are built by using the switched-capacitor tech-
nology, so the predefined CAM block in the FPAA can be pro-
grammed easily in order to get the desired configurations. The
list of these CAM blocks and their functions are available in the
ANADIGM DESIGNER™ tool. According to this tool the “BILIN-

e e
EAR FILTER” CAM block ( l_ ) has the characteristic as in Eq.
16:

_ Vout (s)
Vin(s)

_ 4 21hG
_:ts+27'[f0 (16)

LPF(s)
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where, ‘G’ is the adjustable gain value and “fy’ is the corner
frequency of this LPF. The characteristic of the “BILINEAR FIL-
TER” CAM block in Eq.16 is very similar to the LPF in Eq.12 that is
proposed to realize the fractional-order integrators. Therefore, the
“BILINEAR FILTER” block can be used to implement the desired
LPF in the FPAA based realizations of the Sprott’s Jerk systems.
The remained mathematical descriptions in Eq.15 are also real-

L

B #
ized by using the “SUM DIFF” ( s ) and the “TRANSFER

B E-n

FUNCTION” ( =7 )Dblocks. An example of the FPAA based
design scheme of the Sprott’s Jerk system is given in Fig.4. In this
figure, while the “SUM DIFF” block creates a half cycle summing/
subtraction stage with up to four inputs, the “TRANSFER FUNC-
TION” block implements a user specified voltage transfer function
with 256 quantization steps. The nonlinear functions in Table 1
have been embedded to the “TRANSFER FUNCTION” blocks in
all designs. On the other hand, the FPAA device has a saturation
level (£2 V), so the studied model must be rescaled according to
this saturation level. After these modifications, the coefficients of
the Sprott’s Jerk systems in Eq.15 have been rearranged and their
final values are given in Table 2. The gain inputs of the “SUM
DIFF” blocks have been set to these values. Additionally, the k¢’
and ‘ky” parameters of the LPF are calculated as 1.2628 and 7.8702
respectively for ¢ = 0.95 and wmax = 100 rad/s.
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: ) L:

= anel
: = :}/ - m +D . ce Panel
‘ =
u dr?

L g ~
. " fyoaw | \m »
n "
: - < dr? | com
i D
| d-1
| -
: ] % =

F(x
- =
FPAAL

Figure 4 An example FPAA design scheme of the fractional-
order Sprott’s Jerk system

After the similar configurations are completed in ANADIGM
DESIGNERTM to0l for all nonlinear functions in Table 1, the de-
signed models are downloaded to the AN231E04 FPAA board one
by one via a serial interface by utilizing the FPAA board’s pro-
grammability and reconfigurability properties. The less power
consumptions and the CAB usages are also seen in Fig. 4 and they
are common in all realizations for the different nonlinear function
based Sprott’s Jerk system. Additionally, only a single FPAA de-
vice has been used in these realizations in contrast to the available
FPAA based applications of the fractional-order chaotic systems
in the literature (Petrds 2011). A photograph of the experimental
setup is seen in Fig.5 and the obtained experimental realization
results of the fractional-order Sprott’s Jerk system are presented in
Fig. 6. The time domain and the phase portraits’ illustrations of

63



Table 2 The ultimate definitions of the rearranged Sprott’s Jerk systems and the nonlinear functions including in these systems

for the FPAA based implementations

The Nonlinear Functions-‘F(X(s))’

The rearranged Sprott’s Jerk systems

Fi(X(s)) = [1.25X(s)| — 1

B(X(s)) = —1.2X(s) + sgn(2X(s))

F3(X(s)) = 0.58(X(s)2 — 1)

F4(X(s)) = 1.6X(s)(0.2X(s)% — 1)

F5(X(s)) = —0.9X(s)(2.128X(s)*> — 1)

Fs(X(s)) = —2.15[X(s) — tanh(2X(s))]

X(s) = [0.1019Y (s) + 1.02X ()] [ -1 750

Y(s) = [0.128Z(s) + 1.01Y ()] [ (545570 (17)

Z(s) = [0.118F,(X(s)) + 0.891Z(s) — 0.128Y (s)] [ 139255

X(s) = [0.128Y(s) + 1.01X(s)] [ 22028

(s+7.8702)
Y(s) = [0.128Z(s) + Y ()] [ ;52500 | (18)
Z(s) = [0.112F,(X(s)) + 0.908Z(s) — 0.132Y (s)][ sigﬁs@% ]
X(s) = [0.128Y(s) + X (5)] [ 5175702y )
Y(s) = [0.128Z(s) + Y ()] [ ;52500 | (19)

Z(s) = [0.256F3(X (s)) +0921Z(s) — 0.128Y (s)] [ ;175705

X(s) = [0.128Y(s) + X(s)] [ 50

Y(s) = [0.128Z(s) + Y ()] [ 512500y | (20)

Z(s) = [0:268F4(X(s)) +0.924Z(s) — 0128Y (s)][ 12525 ]

X(5) = [0128Y(5) + 101X (5)] [ ;12528

Y(s) = [0.128Z(s) +0.99Y (5)] [ 175303 (21)

Z(s) = [319F5(X(s)) + 0.89Z(s) — 0.128Y (s)] [ 12528 ]

X(5) = [0.128Y(s) + X(s)] [ ;125

=[0.128Z(s) + Y(s)][ (#’3.6827%2)] (22)

Z(s) = [0.256Fs(X(s)) + 0.924Z (s) — 0.128Y (s)] [ ;12525
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the fractional-order Sprott’s Jerk system including the nonlinear
functions in Eqs.2-7 have been given separately in Figs.6a-f, respec-
tively. As seen from these figures, these experimental results agree
well with the numerical simulation results in Fig.1. Therefore,
the proposed LPF based implementations of the fractional-order
systems are achieved with the FPAA based designs, successfully.

Figure 5 A photograph for the experimental setup of the FPAA
based implementation of the fractional-order Sprott’s Jerk sys-
tem

DISCUSSION AND CONCLUSION

In this study, an effective and alternative design process has been
introduced to implement the fractional-order chaotic systems with
the electronic hardware. According to this procedure, the state
variables of the fractional-order chaotic systems have been em-
ulated by the modified first order low-pass filters (LPF), so the
hardware usage costs and the circuit complexities have been de-
creased at the beginning of the hardware design process. Thus, the
introduced method has been tested on the fractional-order Sprott’s
Jerk systems and these systems have been implemented with a
programmable analog device.

In this context, firstly, the minimum fractional-orders of the
state variables of the Sprott’s Jerk systems have been calculated
by considering the stability of the fractional-order nonlinear sys-
tems and the calculation of the minimum fractional-order has been
exemplified in detail for a nonlinear function. After a common
fractional order was identified for all nonlinear functions of the
Sprott’s Jerk system, these fractional-order systems have been sim-
ulated for g = 0.95 by employing the G-L fractional derivative
method. Thus, both the fractional derivative concepts have been
handled and the results of the stability analyses have been verified
by the G-L fractional derivative method. After the identification of
the fractional order for the Sprott’s Jerk system, the modified first
order low-pass filters (LPFs), which emulate the state variables of
the fractional-order chaotic systems, have been dealt with in detail.
The most important arguments about this LPF structure are listed
as following: i) the modified LPF structure has been characterized
by depending on the changes of the fractional order and the ra-
dial frequency, ii) the desired fractional-order integrator has been
built by using this LPF, iii) the adjustment of the discrete devices’
values is hard to get the characteristic of the proposed LPF. On
the other hand, since the identification of the “BILINEAR FILTER”
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Figure 6 The time domain and the phase portraits illustrations
of the fractional-order Sprott’s Jerk system including the a) F; (x)
function in Eq.2, b) F,(x) function in Eq.3, ¢) F3(x) function in
Eq.4, d) F4(x) function in Eq.5, e) F5(x) function in Eq.6, and f)
F¢(x) function in Eq.7

CAM block in the FPAA device is very similar to the proposed
LPF structure’s one, this CAM block has been used as a fractional-
order integrator emulator in this study, successfully. Therefore,
the fractional-order Sprott’s Jerk system has been implemented
by using the FPAA devices in order to prove the effectiveness of
the LPF-based approximation for the fractional-order integrators.
Additionally, the fractional-order Sprott’s Jerk systems including
the different nonlinear functions have been realized with a pro-
grammable analog device, namely FPAA. Moreover, the proposed
LPF characteristic can be employed as a fractional-order integrator
in the various research fields, where the desired frequency band is
limited.
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ABSTRACT This study investigates the power systems that involve various numbers of busbars. To prevent the
disturbances and instabilities in the power systems, power system stabilizers and various control methods have
been used. A hyperchaotic blackout has been created by using an existing hyperchaotic system. Hyperchaotic
voltage collapse and hyperchaotic disturbance have been injected to the test systems. The situations of the
various power systems are illustrated under proposed hyperchaotic blackout and noise. The stability analysis
of the power system has been executed according to the dynamic features of hyperchaos.
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INTRODUCTION

Power System Stabilizers (PSS) are used to damp low-frequency
oscillations in the range of 0.2 Hz to 2.5 Hz. The automatic voltage
regulator (AVR) improves the terminal voltage of the generator
by controlling the amount of current supplied from the exciter to
the generator field winding. Thus, the generator excitation sys-
tem maintains generator voltage and controls the reactive power
flow using an automatic voltage regulator. It is mainly used to
dampen oscillations that occur during load changes in the power
system. It keeps the generator terminal voltage constant, so that
the voltage on the load side remains almost constant even if the
load changes with time. Therefore, the stability of the AVR system
would seriously affect the security of the power system. AVR helps
to improve the steady-state stability of power systems, but tran-
sient stability has become a problem for power system operators.
To improve system damping, the generator is equipped with a
PSS, which provides an additional feedback stabilization signal in
the excitation system (DELAVARI and BAYAT 2015; Demello and
Concordia 1969; Sauer and Pai 1998).

In the literature, large number of studies about the hyperchaos
that has been recently discovered exist. (Rossler 1979) first intro-
duced the hyperchaotic systems and has enabled it to be used in
many studies such as this study. Various analyses were executed
about the hyperchaos in the papers such as (Matsumoto et al. 1986;
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Wang and Wang 2008; Li and Chen 2004; Li et al. 2005; Fonzin Fozin
et al. 2019; Rossler and Letellier 2020; Vaidyanathan et al. 2020; Rech
2017) It is possible to reach hyperchaotic systems in many fields
such as control theory (Fonzin Fozin et al. 2019), synchronization
(Sajjadi et al. 2020; Tian ef al. 2019), secure communication applica-
tions (Yu et al. 2019; Xiu et al. 2021) and image encryption (Yuan
et al. 2017; Liu et al. 2019; Zhu and Zhu 2020). The corresponding
topic of this study is power system stability. The recent state of its
literature can be summarized by mentioning the following studies
that optimizing the parameters of power systems (Huang et al.
2017; Ahsan and Mufti 2020). The studies that improve the power
system stability by proposing a novel whale optimization algo-
rithm (Kumar et al. 2021; Sahu et al. 2018), energy reshaping (Dong
et al. 2017), FACTS devices (Singh and Agnihotri 2018; Van Dai
et al. 2017), UPFC Based on Neuro-Fuzzy Method (Jamal et al. 2017)
and wide area fuzzy-2 logic based damping controller Sharma et al.
(2017) exist. The most of analyses about the power system stability
aim to enhance the stability of the test system by proposing novel
control methods. However, relating analyses have been executed
under ordinary faults that have short time and are linear.

The chaos in power systems is basically investigated in (Yu et al.
2003; Chiang et al. 1993) in the simple power systems. Amongst
the studies that includes chaos with power systems, Chen et al.
(2005) presented the bifurcation in a SMIB system. (Harb and
Abdel-Jabbar 2003) controlled bifurcation in a small power system.
Nangrani and Bhat (2018) proposed a fractional order controller,
and Das et al. (2021) proposed a PID Sliding Mode Controller
for chaotic power systems. Previous studies have not elaborated
the analyze of power systems and have not comprised sufficient
benchmark. This study aims to make a more detailed analysis on
the topic, and present a superior hyperchaotic situation.
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This study basically recounts the corresponding power system
stabilizers in Section 2. The hyperchaotic system and how it is
considered as a blackout are shown in Section 3. The hyperchaotic
blackout is introduced in the test systems such as two-area model,
Heffron-Philips model that involve infinite bus, single machine
infinite bus system in Section 4. The detailed stability analysis has
been made in section 5. Finally, the conclusions in the study have
been presented in Section 6.

THE POWER SYSTEM STABILIZERS

The power system stabilizers have been used to add damping
to electromechanical oscillations and optimize the system. They
operate basically the production of electrical torque proportional
to the speed change through the generator’s excitation system.
The PSS is one of the supplementary controllers, which is often
applied as part of the excitation control system. Grid codes and
regulatory agencies are increasingly specifying PSS controls for
new generation and retrofit on existing units. In the excitation
system, PSS applies a signal creating electrical torques that damp
out power oscillations and it is the main function of the PSS. The
transfer function of the PSS (Ekinci and Hekimoglu 2018) is simply
given as Eq. 1.

V() = Kess(f o 8(s) 0

The PSS response control, part of the integrated generator con-
trol system, provides an additional signal that can be added to the
Automatic Voltage Regulator (AVR) input. By adding the stabiliza-
tion signal, the PSS should generate an electrical torque component
that counteracts the mechanical dynamics. The electrical torque
component generated should be in phase with the generator rotor
speed deviations to be able to damp the oscillations. The main
structure of PSS has been shown as Figure. 1 and it has been used

widely.
1 [
Sensor Overall Wash-out
Gain
Lead-Lag #2 Lead-Lag #1
Limiter
1+T1s 1+T1s
1 - < —
1+T2s 1+T2s

Figure 1 Block Diagram of PSS

The generic configuration of the PSS in a power system is de-
picted in Fig. 2. The PSS is not usually utilized as alone. In the
power systems, various control models and devices have been
accompanied the PSS. The AVR is the primary of these devices.
Flexible alternating current transmission system (FACTS), static
VAR compensator (SVC) and thyristor-switched reactor (TSR) are
amongst the mentioned devices.

Additionally, numerous control methods such as decentralized
modal control, fuzzy logic control, PID control and adaptive fuzzy
sliding mode control have been developed. Hybrid methods are
also proposed in terms of accordance and robustness. These meth-
ods are also improved with metaheuristic optimization algorithms.
Hence, power system stability has been aimed to improve by
means of the corresponding methods.
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DESIGN OF THE POWER SYSTEM BASED ON HYPER-
CHAOS

The generic control model of PSS and AVR is seen in Figure 2. In
the control system, the reference is generally taken as 1 pu. The
PSS has used the rotor speed deviation of the generator. Automatic
voltage regulator (AVR) regulates the excitation voltage of the
exciter.

. Voltage —
i Generator < Exciter < Regulator
Aw
Reference
voltage
Load » PSS )]
<
Vt 3

Figure 2 Conventional power system model

The generic equations of the power system models have been
listed in Eq. 2 - 6. In Eq. 2, Aw(t) represents the speed deviation,
is loaded by hyperchaotic oscillator. In Eq. 6, reference voltage is
consisted of a set of equations that given in Eq. 7 - 10.

w(t) = wy + Aw(t) 2)
t
Aw(t) = % [ (= Tyt — Kyl 3
0
s,
atr = Wi — Wref 4)
dw; _ (=Di(w; = Wrer) + Pi — Poi) )
ar M;
7 = (*EfdJFKa(VreerVSfV))/Ta (6)

Where the w(t) is the speed or frequency, H is inertia constant
that is inversely proportional to noise, nomenclature T is the recip-
rocating torques, K; is damping coefficient, ¢ is load angle, D is
damping factor, P,,; is real power generated, M is angular torque,
Pg; is output electrical power of the generator, Ey is field voltage,
Vs is terminal voltage, K, is gain of the excitation system, Eq. 2 - 6
are basic equations of power systems.

The PSS is implemented in power systems and is investigated
under various faults and disturbances. Reference voltage indicates
that the type of disturbance and fault. The reference voltage is
replaced by an oscillator that is obtained from well-known Rossler
attractor (Rossler 1979) as follows:

Vréfl = 7(Vref2 + VrefS) @)
VréfZ = Vrefl + “VrefZ + Vref4 8
VréfS =b+ Vrefl Vref3 9)
VT(‘?f4 = 7CVref3 + dVref4 (10)
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Reference voltages are given to the test system where o = 0.25,
b=3, c=-0.5 and d=0.05. The initial conditions are set as V,, ¢ (0) =
=10, Vier2(0) = —6, Vier3(0) = 0 and Vi.r4(0) = 10.1. Each
generator is supplied by hyperchaotic oscillator voltage instead of
normal reference voltage.

As a signal of noise, Aw(t) is similarly replaced by the equations
of well-known Rossler attractor. Equation model of the power
system is basically transformed into follows:

wy(f) = wo — / (Aw; + Aws)dt (1)
ws(t) =+ / (bwy + aBw, + Awy)dt (12)
ws(t) = wo + / (b+ Aw; Aws)dt (13)

w4 () = wo + / (—cAws + dAwy)dt (14)

t
Aw(t) = %/(Tm ~ Tt + Ky [ (dwp+ Bws)dt (15)
0

PROPOSED HYPERCHAOTIC BLACKOUT FOR THE CASES

Case 1: 11 Buses and 4 machines system

This system consists of two largely symmetrical areas connected by
two 230 kV lines twice 110 km long. Each has two identical rotary
generators with a rated power of 20 kV /900 MVA. The parameters
of the synchronous machines are all the same except for the inertia,
which is H=6.5s for the area 1 machines and H=4s for the area 2
machines. The load flow in this case (with generator 2 as the slack
machine) is such that all generators in the system produce about
700 MW each. The loads are assumed to be constant impedance
load models throughout, with the loads for Area 1 and 2 being 976
MW and 1765 MW respectively. To improve the voltage profile,
capacitors were added in each area, can be seen in Figure 3.

This system is also referred as Kundur’s two-area system and
its features can be summarized as follows:

* Two loads are comprised to the test system at bus 7 and 9;

¢ Both areas have been provided with the fundamental fre-
quency 60 Hz;

* Two shunt capacitors are connected to bus 7 and 9;

The system is consisted two similar areas connected by a

transmission line.;

Each generators of the system (G1, G2, G3, G4) in Figure 3 have
been connected with the 4-D hyperchaotic system (Sheikh and
Starrett 2015). The other parameters are not changed and power
system stabilizers are activated taking into account the cases.
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Figure 3 Four machines or two-area test system (Sheikh and Star-
rett 2015)

Case 2 : Infinite Bus Power System

Heffron-Phillips model of the synchronous generator is a fourth-
order linear model with a third-order synchronous machine and
a first-order AVR. This model is suitable for the analysis of small
signals where a linear approximation is reasonable. Therefore, all
input and output signals of this model have variations with a small
range around the nominal value represented by nomenclature
"Delta". The block diagram of the linear model is shown in Figure
4.

¢ Heffron-Phillips model is widely studied in small signal sta-
bility analysis, also for off-line design of power system stabi-
lizers;

¢ The parameters are mostly processed using the parameters of
synchronous generator and system variables at steady-state
conditions;

* The model can be modified according to proposed control
algorithm.
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Figure 4 The Heffron-Phillips Model that involve infinite bus

Case 3 : SMIB system

Single machine-infinite bus system (SMIB) is a basic system that
is consisted of a generator, a transformer, the transmission line, a
source, high impedance and infinite bus as Fig. 5. In this study line
reactance is taken as 100 ohm and 1000 VA synchronous machine
is selected. The main features of the test systems are denoted
in Table 1. The excitation voltage of the machine is connected
with hyperchaotic oscillator. It is aimed to consider under single
phase-hyperchaotic blackout.

E/LS

v, VLo

Figure 5 SMIB system model
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STABILITY FINDINGS FOR THE CASES

Stability refers to a power system'’s tendency to create restorative
forces that are equal to or larger than the disturbing forces in order
to preserve equilibrium. Problems with power system stability
are often classified into two categories: steady state and transient.
The ability of the power system to reestablish synchronism after
modest or slow shocks, such as a gradual power change, is referred
to as steady-state stability. Dynamic stability is a subset of steady-
state stability. With the addition of automatic control mechanisms,
dynamic stability is concerned with tiny disruptions enduring for
a long time. Transient stability is concerned with the impacts of
large, sudden disruptions such as fault onset, line loss, and load
application or removal.

Results for Case 1

The mentioned tests for the cases have been realized in Matlab
Environment. The results of the test for two areas system have been
depicted in Figs. 6-11. The corresponding results are obtained from
the system that is injected with hyperchaotic voltage. Accordingly,
the balance of the speed deviation is not overly disturbed as it can
be seen in Fig. 6. In the generator voltages and load angle, the
oscillations that instantaneously increase with some time intervals
are occured as Figs. 7-8. Once PSS restorer is activated, the case can
be seen in Figs. 10-11. The power system stabilizers have increased
the magnitude of violent voltage swells and had a negative impact.
The power system stabilizers have caused to worsen small signal
stability, too.

For voltage stabilty evaluation, PV curve is obtained as Fig. 12.
In the first state, there is no points under the saddle point and the
system is stable. In Fig. 13 tornado type curve obtained instead of
nose curve as Power-Voltage characteristic has been shown. The
power-voltage characteristic in hyperchaotic blackout has included
large number of noses. It indicates that many critical eigen values
are found in power system.

CHAOS Theory and Applications



Table 1 Standart values for the test systems

Test Model Speed Deviation Voltage (V) Frequency (Hz) Power (VA)
Two-area system 0.0024 pu 20 kV 60 Hz 900 MVA
Infinite bus power system 0 rad/s 400V 60 Hz -

SMIB system -0.0013 rad/s 220V 60 Hz 1 kVA

Table 2 Noise characteristics of power systems for the cases

Speed deviation

Test Type/Model

Hyperchaotic Blackout

Damping Characteristic

Two-area system (G1)
Two-area system (G2)
Two-area system (G3)
Two-area system (G4)
Infinite bus system

SMIB system

Mean Value
0.0509 pu
0.0520 pu
0. 3277 pu
0.3034 pu
0.0007 rad/s

-0.7211 rad/s

Maximum Value
0.1769 pu
0.1816 pu
0.4977 pu
0.4671 pu
0.2342 rad/s

512 rad/s

Mean Value
0.02765 pu
0.02836 pu
0.2466 pu
0.2456 pu
0.0007 rad/s

-0.6891 rad/s

Maximum Value
0.1164 pu
0.1181 pu
0.4265 pu
0.4234 pu
0.169 rad/s

128 rad/s

Table 3 Frequency stability of two-area system

Frequency (Hz)

Test Type/Model

Hyperchaotic Blackout

Damping Characteristic

Two-area system (G1)
Two-area system (G2)
Two-area system (G3)

Two-area system (G4)

Mean Value

60 Hz

60.06 Hz

61.28 Hz

61.88 Hz

Maximum Value

60.75 Hz

61.29 Hz

80.54 Hz

83.65 Hz

Mean Value

60 Hz

60.04 Hz

62.10 Hz

62.07 Hz

Maximum Value

60.72 Hz

61 Hz

82.65 Hz

81.75 Hz

CHAOS Theory and Applications
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Figure 6 Speed deviation of generators against hyperchaotic noise

Figure 7 Generator voltages against hyperchaotic noise
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Figure 8 Load angle of generator 3 against hyperchaotic noise
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Figure 9 Speed deviation of generators against hyperchaotic noise
when PSS is activated
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Figure 10 Generator voltages against hyperchaotic noise when PSS
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Figure 11 Load angle of generator 3 against hyperchaotic noise
when PSS is activated
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Figure 12 The standart P-V curve (Nose curve) for SMIB system
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Figure 13 P-V curve during hyperchaotic blackout
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According to the results in Table 2, the stability of generator 3
and generator 4 have been more reduced than that of generator
1 and generator 2. PSS could not be very effective for them. The
frequency values for the cases have been given in Table 3. In
two-area system, generator 1 and generator 2 have been bordered
on stability. In generator 3 and generator 4, very high frequency
instability occurred . The PSS has not been very advantageous for
the devastating blackouts.

Results for Case 2

In the second case, infinite-bus model is used to analyze hyper-
chaotic blackout characteristics. The generators showed more
oscillations than that of standart noises. Unlike standart noises
in power systems, very small and ineque oscillations have been
observed. The PID controlled PSS have filtered the small noises
in the generators. It can be seen by the variety between the Fig.
14 and Fig. 15. However, high magnituded noises could not be
prevented.

0-3 T T T T T T T T T

0.2
)
& 0.1 i
k-]
L |
=
3 0 1
< \

-0.1

_0.2 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 920 100

time (sec)

Figure 14 Speed deviation of generators against hyperchaotic noise
in infinite bus power system

0.2 T T T T T T T

Generators

0.15 1

0.1 1
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0 k

-0.1 b

Aw (rad/sec)

.0.15 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

time (sec)

Figure 15 Speed deviation of generators against hyperchaotic noise
with PID controlled PSS in infinite bus power system

Results for Case 3

The third case is realized with the single synchronous machine un-
der load. The corresponding power curves have been investigated
in depth. The assesment on the tests have been realized in terms
of noise damping and power quality improvement.

The speed deviation curves according to the cases are given in
Fig. 16. In line with various tests, it is found that hyperchaotic
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blackouts have not caused to occur more oscillations in SMIB sys-
tem. But it overly increased the peak value of the speed deviation
as Table 2 and it reversed the direction of the oscillations in the
speed deviations. The PSS rarely had a negative effect on counter-
acting the hyperchaotic blackout. The PSS sometimes increased
the occurrence and magnitude of oscillations in speed deviation.

Electrical power in the SMIB system under hyperchaotic black-
out is shown in Fig. 17. The PSS has been damped noises and
improved power quality as it can be seen in Fig 18. However, the
instabilites in power could not be filtered completely. In both cases,
standard power of the power system has been run out in terms of
steady state stability.

80 F T T
Normal Conditions

Hyperchaotic Blackout ||
Using PSS

60 [y

40 f1

20 [y

Aw (rad/s)

-20

-40 H 4

-60 H i
I I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

Figure 16 Speed deviation of the generator in a SMIB system that is
excited by hypcerhaotic system

T T
Hyperchaotic Blackout ||

100

W)

Pe of the Generator

I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100
t

Figure 17 Electrical power in the generator under hyperchaotic
blackout condition

Using PSS

W)

Pe of the Generator

40 50 60 70 80 90 100

Figure 18 Damping characteristic of electrical power in the gener-
ator under hyperchaotic blackout condition
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Summary Findings for Cases

As a result, the peak values of the well-known controllers against
the proposed blackout is summarized in Table 4. PSS and AVR
have slightly regulated the hyperchaotic noise in infinite bus. PID
controller has damp out the oscillations better than that of them.
PID controlled PSS shows the best damping rate amongst the
mentioned controllers. This inference is made given that infinite
bus system with hyperchaotic excitation.

In the SMIB system, the output voltages are shown in Fig. 19.
The normal effective system voltage is a 220 V. Against the hyper-
chaotic noise, AVR has provided a great voltage stability. After
about 0.2 seconds of oscillation, AVR has provided steady stability.
PSS and PID has shown virtually same effects in terms of transient
stability. Even though the PID has provided more damping than
that of PSS in the long term. The PSS is seen to cause the system
unstable in the very long term.

Table 4 Deviation values for the infinite bus system

Peak Overshoot ( Aw(t)(rad/s))

Without AVR PSS PID con-
Controller trolled
PSS
Normal 222e-06 219e-06 215e-06 155e-06

Hyperchaotic 0.2342 0.2393 0.177 0.169

w
a
=3

VRMS (V)

Normal

\ \ !
sol U\ ‘ Hyperchaotic i

AVR

PSS
PID

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

Figure 19 Effective value of the voltage in hyperchaotic noised
SMIB system

RESULTS AND DISCUSSION

This study proposes a novel assesment in power system stabil-
ity for the so-called hyperchaotic noise. Hyperchaotic noise is
obtained from an existing system by implementing into the con-
trollers. The test has been realized in the systems that have 11
buses, infinite buses and single machine. The stability analyses
of the selected systems have been investigated according to the
restorers such as PSS, PID contoller and AVR. That restorers are

CHAOS Theory and Applications

investigated whether it maintains against hyperchaotic blackouts.
The mentioned analyzes have been realized in cases of nonchaotic,
hyperchaotic and hyperchaotic with controller. The effects of the
hyperchaotic blackouts in various systems have been presented.
As a primary apparatus, the AVR could not immensely prevent
the devastating hyperchaotic noises. But, the AVR have showed
a great performance in providing voltage stability. The PSS have
counteracted the amidst of hyperchaotic blackout in the power
systems. The hyperchaotic noise damping rate of the PSS has been
close to of PID controller. However, the PID controlled PSS has
provided steady stability and small signal stability.

Conflicts of interest

The author declares that there is no conflict of interest regarding
the publication of this paper.

LITERATURE CITED

Ahsan, H. and M. D. Mufti, 2020 Comprehensive power system
stability improvement with rocof controlled smes. Electric Power
Components and Systems 48: 162-173.

Chen, H.-K., T.-N. Lin, and J.-H. Chen, 2005 Dynamic analysis,
controlling chaos and chaotification of a smib power system.
Chaos, Solitons & Fractals 24: 1307-1315.

Chiang, H.-D., C.-W. Liu, P. P. Varaiya, F. F. Wu, and M. G. Lauby,
1993 Chaos in a simple power system. IEEE Transactions on
Power Systems 8: 1407-1417.

Das, P, P. C. Gupta, and P. P. Singh, 2021 Bifurcation, chaos and
pid sliding mode control of 3-bus power system. In 2020 3rd In-
ternational Conference on Energy, Power and Environment: Towards
Clean Energy Technologies, pp. 1-6, IEEE.

DELAVARI, H. and E. BAYAT, 2015 Comparison of different
techniques for tuning of power system stabilizer. Cumhuriyet
Universitesi Fen-Edebiyat Fakiiltesi Fen Bilimleri Dergisi 36:
248-257.

Demello, E. P. and C. Concordia, 1969 Concepts of synchronous
machine stability as affected by excitation control. IEEE Transac-
tions on power apparatus and systems 88: 316-329.

Dong, J., S. Li, S. Wu, T. He, B. Yang, et al., 2017 Nonlinear observer-
based robust passive control of doubly-fed induction generators
for power system stability enhancement via energy reshaping.
Energies 10: 1082.

Ekinci, S. and B. Hekimoglu, 2018 Parameter optimization of power
system stabilizer via salp swarm algorithm. In 2018 5th interna-
tional conference on electrical and electronic engineering (ICEEE), pp.
143-147, IEEE.

Fonzin Fozin, T., P. Megavarna Ezhilarasu, Z. Njitacke Tabekoueng,
G. Leutcho, J. Kengne, et al., 2019 On the dynamics of a simpli-
fied canonical chua’s oscillator with smooth hyperbolic sine
nonlinearity: hyperchaos, multistability and multistability con-
trol. Chaos: An Interdisciplinary Journal of Nonlinear Science
29: 113105.

Harb, A. M. and N. Abdel-Jabbar, 2003 Controlling hopf bifur-
cation and chaos in a small power system. Chaos, Solitons &
Fractals 18: 1055-1063.

Huang, R., R. Diao, Y. Li, J. Sanchez-Gasca, Z. Huang, et al., 2017
Calibrating parameters of power system stability models using
advanced ensemble kalman filter. IEEE Transactions on Power
Systems 33: 2895-2905.

Jamal, A., S. Suripto, and R. Syahputra, 2017 Power flow optimiza-
tion using upfc based on neuro-fuzzy method for multi-machine
power system stability. International Journal of Applied Engi-
neering Research (IJAER) 12: 898-907.

75



Kumar, R., R. Singh, H. Ashfagq, S. K. Singh, and M. Badoni, 2021
Power system stability enhancement by damping and control of
sub-synchronous torsional oscillations using whale optimization
algorithm based type-2 wind turbines. ISA transactions 108: 240—
256.

Li, C. and G. Chen, 2004 Chaos and hyperchaos in the fractional-
order rossler equations. Physica A: Statistical Mechanics and its
Applications 341: 55-61.

Li, Y., W. K. Tang, and G. Chen, 2005 Hyperchaos evolved from
the generalized lorenz equation. International Journal of Circuit
Theory and Applications 33: 235-251.

Liu, Z., C. Wu, J. Wang, and Y. Hu, 2019 A color image encryp-
tion using dynamic dna and 4-d memristive hyper-chaos. IEEE
Access 7: 78367-78378.

Matsumoto, T., L. Chua, and K. Kobayashi, 1986 Hyper chaos:
laboratory experiment and numerical confirmation. IEEE Trans-
actions on Circuits and Systems 33: 1143-1147.

Nangrani, S. and S. Bhat, 2018 Fractional order controller for con-
trolling power system dynamic behavior. Asian Journal of Con-
trol 20: 403—414.

Rech, P. C., 2017 Hyperchaos and quasiperiodicity from a four-
dimensional system based on the lorenz system. The European
Physical Journal B 90: 1-7.

Rossler, O., 1979 An equation for hyperchaos. Physics Letters A 71:
155-157.

Réssler, O. E. and C. Letellier, 2020 Hyperchaos. In Chaos, pp. 55-62,
Springer.

Sahu, P.R., P. K. Hota, and S. Panda, 2018 Power system stability en-
hancement by fractional order multi input sssc based controller
employing whale optimization algorithm. Journal of Electrical
Systems and Information Technology 5: 326-336.

Sajjadi, S. S., D. Baleanu, A. Jajarmi, and H. M. Pirouz, 2020 A new
adaptive synchronization and hyperchaos control of a biological
snap oscillator. Chaos, Solitons & Fractals 138: 109919.

Sauer, P. W. and M. A. Pai, 1998 Power system dynamics and stability,
volume 101. Wiley Online Library.

Sharma, A., L. Nagar, N. Patidar, M. Kolhe, S. Nandanwar, et al.,
2017 Minimizing uncertainties with improved power system
stability using wide area fuzzy-2 logic based damping controller.
In 2017 3rd International Conference on Computational Intelligence
& Communication Technology (CICT), pp. 1-5, IEEE.

Sheikh, A. F. and S. K. Starrett, 2015 Comparison of input signal
choices for a fuzzy logic-based power system stabilizer. In 2015
North American Power Symposium (NAPS), pp. 1-6, IEEE.

Singh, N. and P. Agnihotri, 2018 Power system stability improve-
ment using facts devices. International Journal of Advance Re-
search and Development 3: 171-176.

Tian, K., C. Bai, H.-P. Ren, and C. Grebogi, 2019 Hyperchaos syn-
chronization using univariate impulse control. Physical Review
E 100: 052215.

Vaidyanathan, S., C. Lien, W. Fuadi, M. Mamat, et al., 2020 A
new 4-d multi-stable hyperchaotic two-scroll system with no-
equilibrium and its hyperchaos synchronization. In Journal of
Physics: Conference Series, volume 1477, p. 022018, IOP Publish-
ing.

Van Dai, L., D. Duc Tung, T. Le Thang Dong, and C. Le Quyen, 2017
Improving power system stability with gramian matrix-based
optimal setting of a single series facts device: feasibility study in
vietnamese power system. Complexity 2017.

Wang, X. and M. Wang, 2008 A hyperchaos generated from lorenz
system. Physica A: Statistical Mechanics and its Applications
387: 3751-3758.

76 | Hakan Ozturk

Xiu, C., R. Zhou, S. Zhao, and G. Xu, 2021 Memristive hyperchaos
secure communication based on sliding mode control. Nonlinear
Dynamics 104: 789-805.

Yu, F, L. Liu, B. He, Y. Huang, C. Shi, et al., 2019 Analysis and fpga
realization of a novel 5d hyperchaotic four-wing memristive sys-
tem, active control synchronization, and secure communication
application. Complexity 2019.

Yu, Y, H. Jia, P. Li, and J. Su, 2003 Power system instability and
chaos. Electric power systems research 65: 187-195.

Yuan, W,, X. Yang, W. Guo, and W. Hu, 2017 A double-domain im-
age encryption using hyper chaos. In 2017 19th International Con-
ference on Transparent Optical Networks (ICTON), pp. 1-4, IEEE.

Zhu, S. and C. Zhu, 2020 Secure image encryption algorithm based
on hyperchaos and dynamic dna coding. Entropy 22: 772.

How to cite this article: Ozturk, H. An Analysis of Power System
Stability against Hyperchaotic Noises and Blackouts. Chaos Theory
and Applications, 3(2), 67-76, 2021.

CHAOS Theory and Applications



e-ISSN: 2687-4539

RESEARCH ARTICLE

Vol.3/No.2 /2021 / pp.77-86
https://doi.org/10.51537/chaos.979842

CHAOS

Theory and Applications

in Applied Sciences and Engineering

Vibrational Analysis of a Metallic Column Submitted to
Mechanical Axial Load and Fire Exposure

A.N. Ndoukouo “*, J. Metsebo %! and J.M Njankouo ’$
*Department of Architecture and Engineering Arts, Fine Arts Institute, P.O Box 31 Foumban, University of Dschang, Cameroon, “Department of Hydraulics
and Water Management, National Advanced School of Engineering, University of Maroua, P.O Box 46 Maroua, Cameroon, SDepartment of Civil Engineering

and Urban Planning of National Advanced School of Engineering, University of Yaounde I, P.O Box 8390 Yaounde, Cameroon.

ABSTRACT Vibrational behavior and structural failure of a metallic beam submitted to simultaneous action
of axial load and fire exposure are investigated. Analyses are made at ambient conditions and for two types
of fire, ISO 834 fire and parametric fire. Vibrational equation based on heat conduction equation and field
equations are constructed and numerically solved to obtain the responses in terms of time histories, bending
moment in fire and time to failure against axial load ratio. The heat flux is high enough to affect material
properties of the structure and their variation with temperature is taking into account in the mathematical
formulation. Results show that heat flux resulting from fire action transforms the buckling problem occurring at
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Beam vibration
Axial load ratio
ISO 834 fire
Parametric fire
Structural failure
Constructional

room temperature into a bending one. Non-reversible responses and sooner arising of failure are observed for  steel
ISO 834 fire even for axial load ratio not able to cause buckling at room temperature. Unlike the case of ISO
fire, parametric fire improves reversible deflections within the exposure time and later occurring of failure.

INTRODUCTION

Structural behavior under temperature change has been of num-
ber of analytical, computational and experimental studies per-
formed by several researchers (Aditya 2021; Al-Hamd 2020; Yaob-
ing 2018; Kingsley 2018; Abbas 2016; Harshad 2016; Feng 2012; Nu-
bissie 2011; Mouréao 2007; Liu 2006; Ribeiro 2005; Buchanan 2001;
Rotter 2000). Mechanical machines often operate under diverse
temperature conditions (Nubissie 2011). In internal combustion
engines, rocket systems, movement of satellites etc. the condi-
tions are particularly temperature-sensitive. Thermal effects are
frequently ignored in research and this may yield totally incorrect
results. Literature shows that even moderate change in temper-
ature leads to huge alteration of structural vibration properties
(Yaobing 2018).

In civil and structural engineering but also in marine engineer-
ing, elevated temperatures are often caused by fire leading to
material properties alteration. As a result the performance of these
structures is affected due to unwanted dynamic responses and
their integrity is sacrificed due to buckling. (Mourdo 2007) an-
alyzed the behavior of steel beams under uniform temperature
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rising. The study covered beams under several load levels and
presented the variation of deflection, critical temperature, bending
moment, normal force and stresses with temperature. No type of
fire is mentioned in this study and the method is straight computa-
tional with the aid of computer software ANSYS. (Seputro 2001)
did similar study with computer software SAFIR but considered
some types of fire.

(Ndoukouo 2011; Nubissie 2011; Avsec 2007) developed mathe-
matical models where fundamental thermomechanical properties
of state are functions of temperature. (Avsec 2007) validated the
mathematical model by comparison with experimental data and
obtained satisfactory agreement. (Yaobing 2018) used the extended
Hamilton principle to model the vibration characteristics of Euler-
Bernoulli beams under moderate thermal loads and mechanical
excitations. (Feng 2012) applied the principle of minimum acceler-
ation in dynamics of elastic plastic continua coupled with dynamic
finite difference to numerically compute the responses of steel
beams at elevated temperatures. In the same line with (Seputro
2001; Ndoukouo 2011; Feng 2012) considered a beam supporting
transverse mechanical load and ISO 834 fire.
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The present study is devoted to the analysis of vibration char-
acteristics as well as critical temperature at failure of a vertical
metallic beam supporting simultaneous actions of axial load and
fire, based on mathematical model and numerical simulation. Two
types of fire are considered; ISO 834 fire which is the standard fire
and parametric fire which is reported by the literature to be closer
to the real fire situation. The structure and modeling are presented
in Section II, while section III focuses on numerical simulation,
results and discussion, with sub-section III.1 for ambient tempera-
ture, sub-section III.2 concentrates on ISO 834 fire and sub-section
II1.3 focuses on parametric fire. A conclusion is drawn in section
Iv.

STRUCTURE, MATHEMATICAL MODELING AND NUMERI-
CAL SCHEME

The structure

Consider a beam-column submitted to axial load and fire expo-
sure. This situation is common in civil and structural Engineering
(buildings and bridges) but also in marine Engineering (offshore).
The system consists of an elastic beam with mass m, density p,
young modulus E, length [, inertial moment I and a rectangular
cross section A. An axial load P is applied to the beam which
simultaneously undergoes the effect of an external fire. Two types
of fire should be studied; the ISO 834 fire and the parametric fire.
Under the influence of fire, the beam temperature changes with
time and reaches high values that affects its material properties
which are called to vary with temperature as the beam vibrates.
The coordinates system associated with the beam (figure 1) of
width b and thickness & consists of a Cartesian frame with origin
O, coinciding with the bottom edge midpoint of the beam. The
x-axis is oriented toward the beam length such that 0 < x <[ the
y-axis is parallel to the beam width such that —% <y< % and the

z-axis parallel to the thickness with f% <z< ’%

; 2
e -~
=

= /
- &

Figure 1 Sketch of the investigated system

Mathematical modeling
The following assumptions are made :

¢ The fire is uniformly distributed along the beam;

* Material degradation is not considered though material prop-
erties are temperature-dependent;

¢ The study is made under the limit of validation of Hooke law.

The system modeling the beam behavior in such a situation
consists of the heat conduction equation coupled with the field
equation written respectively as follows (Timoshenko 1951; Nayfeh
1979; Kant 1991; Huang 2002)

oT ?*T | 0°T de
T)= =Ar| =+ | —arE(T) = 1
CP()at T(ax2+azz) ar ()at ()
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Equation (1) must be completed with prescribed boundary and
initial conditions on temperature. Into equation (2), the term
E (T) AaTAT refers to the internal axial load developed in the
member as a result of thermal expansion against ends restraints.
Equation (2) has to be completed with given initial and boundary
conditions on displacement. A beam with clamped-clamped ends
has been considered in this study In equations (1) and (2) , U is the
transversal displacement of the beam, a7 is the thermal conductiv-
ity, T(x, t) is the temperature field, e(x, t) the total strain, cp(T) the
specific heat, At the coefficient of thermal expansion, AT = T — T
the temperature difference, Ty the room temperature and Mr the
thermal moment given by the following expression :

@)

h/2
[ (T (20— To) 2z @)
~h/2

MT =E (T) leT

In Egs. (1)-(2), since the temperature varies in a range that af-
fects material properties, one has to take into account the variation
with temperature of material properties (see appendix). One is
concerned for the purpose of this study with constructional steel.
According to the above assumption, the mass m(T) of the beam
is taken to be constant. It is also assumed that the heat flow that
acts on the beam is much slower than the mechanical stress-strain
variations. Therefore, the temperature distribution can be consid-
ered independent of the deformation and can thus be defined by a
given function which represents the quasi-steady state of the heat
transfer equation (1). This allows the reduction of the conductivity
equation. The temperature field is assumed to be uniform along
the beam and the thermal moment intervening in equation (2) thus
vanishes. The design fire is modeled by an international standard
time-temperature law defined for ISO 834 from (Eurocode 3 2003)
by:

T(t)=To+345In(8t+1) 4)

The parametric fire will be modeled later. Thereafter, the sys-
tem of equations (1)-(2) is reduced to the following dimensionless
equation.

*Uu ou *u U
o tHg(t) - +g(t) ke (t) 54 T8 (t) [+ yaTATke (t)] =

ot2 ot 9x2
1

au\?, | u

=€pg (t) (0/ (g) dx) Y

©)

Where, function g(t) and k. (t) are given in Eq. (17)-(19) (see

appendix) .
" Pz AL?
I P

« is the axial load ratio and € the nonlinearity coefficient. The

critical Euler load is classically given by :

(6)

EI
Py = nzﬁ (7)
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. 2 .
Therefore, setting a.r = % , one obtains ac = 72

It should be pointed out that P, is influenced by temperature
change and can be written at any temperature as follows :

Py (T) = P20ke (T) (8)

Where k. (T) is given in Eq. (A.2). The variation of P, with
temperature is plotted in fig. 2. It is a decreasing function of
temperature.

0.9 -
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Per/P0 [ 1
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Figure 2 Variation with temperature of critical load ratio

NUMERICAL SIMULATION, RESULTS AND DISCUSSIONS

Nonlinear integral partial differential equation (5) is numeri-
cally computed for constructional steel with the following parame-
ters values.

E=21x10"Pa; 1=52x10""m? p=7800kg.m 5;

o ©)
A=25x10"3m? L=05m; ar=14x10"°"C"!

Initial and boundary conditions associated with equation (5)
are set as follows. For the concern of boundary conditions, a beam
clamped at both ends is considered as this is one of the frequently
found situations for structural components in engineering.

Ut = % —0; UL = w =0  (10a)
U (x,0) = W =0 (10b)

Zero initial conditions on deflection and velocity have been
considered and associated with a small transverse load g = 5N /m
for the sake of nontrivial solutions.

A full discretization using centered finite differences within
space of PDE (5) associated with Runge Kutta 4 on time, has been
used for the purpose of numerical method. The axial load ratio « is
varied as the temperature increases in the beam and the previous
equation is numerically solved in the sake of vibrational behavior
of the structure.

Behaviour at ambient conditions

Fig. 3 presents the deflection versus position within the mid-
line of the beam at ambient conditions. It can be observed that the
mid-span position admits maximum deflection amplitude. The
effect of temperature on this result will be presented in the next
sections.
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Figure 3 Deflection versus position on the beam mid-line at am-
bient temperature for « = 0.5

Figures 4(a)-4(c) present the time histories of the beam mid-
span at ambient temperature for different values of axial load ratio,
namely « = 0.25 (fig.4(a)), « = 0.5 (fig. 4(b)) and a = 0.75 (fig.4(c)).
It can be seen that the deflection has constant amplitude within the
time and there is no notably change in amplitude nor in frequency
for these different values of axial load ratios. The effect of fire
on these responses are investigated in the next sections. Figures
4(d) and 5(a) present the time history and bending moment at
beam mid-span for higher value of axial load ratio, « = 9.0. It is
found that amplitude and frequency of oscillations had increased
compared to the previous cases corresponding to smaller values
of « (figs. 4(a)-4(c)). Meanwhile, the oscillations remain regular
within the time. However as from the critical value of axial load
(« = 10.0), oscillations lose their regular behaviour and the beam
responds with increasing amplitude within the time. This can be
seen in figures 5(b) and 5(c) presenting mid-span time history and
bending moment at room temperature for critical value of axial
load ratio,x = 10 = .. It can be seen in these figures that the
responses explode due to the buckling of the structure at critical
axial load ratio.

This inspires to plot the time to failure of the beam as a function
of axial load ratio at room temperature (see fig. 5(d)). To obtain
this figure, a failure criterion is defined (see eq.(11)) comparing the
resistant moment of the beam and the bending moment resulting
from the applied loads.

M (t) > nMcr (11)

where

Mcr =0p X A (12)

0p is the temperature free yield stress and 7 is a safety factor.

It is observed that the time to failure is a decreasing function
of the axial load ratio. The beam undergoes rapid collapse for «
greater than the critical value a¢, =~ 10.0, and the higher the value
of «, the sooner the failure. Eqgs. (11)-(12) show that the time to
failure grows with the cross section of the beam.
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Observing fig. 5(d), an approximated analytical expression
given fc as a function of axial load ratio « can be suggested as
follows.

2.0
x—95
Such an expression is useful in practice as it allows designers
to set some predictions from simple calculation. Eq. (13) gives

a graph quite similar to that of fig. 5(d) for a belonging to the
interval [10 — 12].

tc = (13)

Behaviour in presence of ISO fire 834

Vibrational responses:In presence of an ISO 834 fire modeled
by the time-temperature law (Eq.4), the following results are ob-
tained. Figures 6 present mid-span time histories in presence of
ISO 834 fire and mechanical load with axial load ratios & = 0.25
(Fig. 6(a)), « = 0.5 (Fig. 6(b)) and & = 0.75 (Fig. 6(c)) respectively.
Figures 7 present the bending moment in fire for same conditions
and parameters. It can be observed in opposition to the situation
at ambient temperature previously presented in figures 4(a)-4(c)
where amplitudes of oscillations were small and constant that in
presence of fire, oscillations amplitudes keep increasing during
the fire action. Moreover, a shift within the time towards positive
values of the centers of oscillations is observed. This agrees with
results obtained from computational software ANSYS and SAFIR
(Seputro 2001; Mourao 2007).

It is also important to note that after some duration of fire ex-
posure, oscillations lose their reversible character and amplitudes
keep increasing with a faster speed. Figures 5-7 show that oscilla-
tion amplitudes increase with axial load ratio in presence of fire
faster than in ambient conditions. In presence of fire, oscillations
lose their reversible character sooner for greater values of &. As
an example, this happens after 50 minutes exposure to fire for
a = 0.25, 40 minutes for &« = 0.5 and 35 minutes for & = 0.75, see
Figures 7.

Figure 8 presents the mid-span time history in presence of fire
for different positions along the beam. It is seen that the maximum
deflection amplitudes are observed for the beam mid-span as was
the case in figure 3 for ambient conditions. Figure 9 presents the
beam deformation versus position on the beam mid-line in pres-
ence of fire for axial load ratio & = 0.5, at different temperature
T = 100°C (Fig. 9b) and T = 300°C (Fig. 9c). These responses
are compared with those obtained at ambient conditions (Fig. 9a)
in order to exhibit the influence of warming on the responses. It
is observed that the deflection amplitude grows with tempera-
ture and is at 100°C three times the one at ambient conditions
while at 300°C it worth about nine times the amplitude at room
temperature.
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Figure 9 Deflection versus mid-line position of the beam at dif-
ferent temperatures. « = 0.5(a) T = 20°C, (b) T = 100°C, (c)
T = 300°C (at t=30 min)

Structural failure under ISO 834 fire: The above observation in-
spires to think of structural failure after some time spent by the
structure under simultaneous actions of fire exposure and me-
chanical applied and internal axial loads. What is referred to as
structural failure here is not necessarily the collapse of the structure
but the fact of reaching a limit state of usage defined by the needed
design. As one is dealing with civil and structural engineering
components such as buildings or bridges, it is advantageous to
define this limit so as to avoid structural damage which could be a
risk for people or goods using the structure but also for firefighting
personal. This is the reason why the elastic limit is considered as
the limit state of usage in this study and as such a safety factor
7 (0 < 5 < 1) is introduced into the failure criterion under fire.
Hence conditions set in eqs (11)-(12) are used with actually the re-
sistance moment in fire being a function of time as it is influenced
by temperature (Seputro 2001; Ndoukouo 2011; Nubissie 2011).
The bending moment in fire results of all mechanical and thermal
action on the structure. Eq.(12) becomes :

Mer (£) = 0er (£) x A = opky (£) A (14)

ky ( t) is the reduction factor of the yield strength defined as a
sequential relation of temperature and thus of time (see eqs. A-7-
A-8 (A.7)-(A.8)). 0y is the temperature free yield stress. Condition
(11) associated with eq.(14) enables to obtain Fig. 10 presenting
the time to failure of the structure in fire as a function of axial load
ratio. It is observed that the time to failure decreases as the axial
load ratio increases. This time indicates the maximum duration
the fire fighting personal disposes in order to proceed with the
rescue of people and goods present in the structure without enor-
mous risk of damaging the mechanical integrity of the carrying
structure. Figure 11 presents the critical deflection reached with
corresponding time to failure of the fire-exposed structure. These
deflections are increasing function of the critical time.
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Figure 11 Critical deflection in fire versus time to failure for ISO
834 fire

Behaviour in presence of parametric fire

Vibrational responses: For the sake of comparison of results ob-
tained from ISO 834 fire, we consider a more realistic model in this
section, namely, the parametric fire. It is made of a burning phase
where fire grows following the standard ISO curve and a cooling
phase following a linear heating rate. For the considered paramet-
ric fire, the growing period lasts for the first twenty minutes and
the cooling phase follows a decay rate of 625°C per hour according
to Eurocode reference decay rate (ECI, 1994). The corresponding
time-temperature law can be written as follows :

To+345In (8t + 1 1t < 20min
T(H=4{ " (B wrs (15)

—10.416 (t —20) +781 :t > 20min

Applying this type of fire to the investigated system, the follow-
ing results are obtained.

Figures 12 and 13 present the mid-span time history and bend-
ing moment in fire for parametric fire with mechanical axial load
ratio equal to 0.5. Figure 14 presents the mid-span time history
in fire for axial load ratios « = 1.0. Figures 15 and 16 present the
mid-span time history and bending moment in fire for & = 2.0.
Unlike the previously studied case of ISO 834 fire, it is observed
that the deflection does not increase abruptly with fire exposure
time.

There is an increase of deflection during the burning phase fol-
lowed by a decrease during the cooling phase. This agrees with
results obtained with the aid of computational software SAFIR
(Seputro 2001). Moreover, due to the cooling, the rapid increase
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of deflection with sooner arise of irreversible deformation as was
the case with ISO 834 fire is not observed for parametric fire. It is
possible for structure under this type of fire to undergo elastic de-
formation for axial load ratios greater than the values that induce
irreversible responses under ISO 834 fire. This will obviously im-
pacts structural failure under parametric fire differently from what
obtained with ISO 834.This can be understood since parametric
fire burns up to a given duration (20 minutes for the considered
case) and starts decaying afterwards whereas this is not the case
for ISO fire.
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5x%107 |- -
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Figure 12 Time history at beam mid-span for parametric fire
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Figure 13 Bending moment in fire at beam mid-span for para-
metric fire. « = 0.5
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Figure 14 Time history at beam mid-span for parametric fire.
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Figure 16 Bending moment in fire at beam mid-span for para-
metric fire. # = 2.0
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Structural failure under parametric fire: Vibrational analysis made
in previous section for parametric fire exposed beam has given
results with some important differences as regard to those obtained
under Iso fire. This section investigates the structural failure of
the beam under simultaneous action of mechanical axial load and
parametric fire. Taking into account the time-temperature law
modeling the parametric fire (eq.13) and the failure conditions
(eq.11) and (eq.12) the following results are obtained. Figure 17
presents the time to failure of the beam as a function of axial
load ratio while figure 18 presents the variation of the reached
maximum deflection with the corresponding time to failure. It is
seen that the time to failure is a decreasing function of the axial
load ratio. It can be noted that there is no failure by vibration for
axial load ratio less than &« = 2.0 whereas one had obtained failure
by vibration with axial load ratio less than « = 1.0 in presence
of ISO fire (see fig. 10). This can be explained by energy and
momentum redistribution associated with internal axial load in
the beam due to cooling phase of the parametric fire.
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Figure 17 Failure time as a function of axial load ratio under
parametric fire
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Figure 18 Critical deflection in fire versus time to failure for para-
metric fire
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CONCLUSION

Vibrational behavior as well as structural failure of a metallic
clamped column, supporting mechanical axial load and simulta-
neous action of fire exposure have been investigated. Two types
of fire have been considered, namely standard ISO fire 834 and
parametric fire. A model based on the heat conduction equation
and field equations with inclusion of temperature-dependence of
physical parameters of the structure as well as internal axial load
due to thermal expansion has been considered. For the purpose of
numerical simulation of the obtained PDEs, real numerical data
from constructional steel have been chosen. Results have been
presented in terms of vibrational analysis and structural failure in
fire. For vibrational analysis concern, beam deformation against
position for several temperatures, time histories as well as bend-
ing moment in fire have been presented for the two types of fire.
As per the structural failure concern, structural failure conditions
have been set and results presented in terms of time to failure as
a function of axial load ratio and maximum deflection reached
against critical time for ISO 834 fire and for parametric fire.

As far as the vibrational analysis is concerned it has been ob-
tained that for ISO fire the deflection amplitude grows with time
and the axial load ratio. Higher values of axial load ratio generate
higher deflection amplitude with rapid increase within the time
and sooner arrival of irreversible responses. The axial load ratio
could not exceed some critical value for this type of fire without
sooner apparition of irreversible responses. Meanwhile in presence
of parametric fire, deflection amplitudes increase during the burn-
ing period and decrease during the cooling phase. However this
type of fire shows an improvement of reversible deflection within
the time. Moreover the responses do not diverge for axial load
ratio greater than those giving irreversible responses under ISO
fire, although the deflection and bending moment present higher
values for greater values of axial load ratio.

As per the structural failure concern, the time to failure has been
obtained as a decreasing function of the axial load ratio for each
type of fire. Under ISO 834 fire the time to failure has been obtained
for axial load ratio values less than 1.0, with sooner irreversible
responses for greater values of axial load ratios. Meanwhile under
parametric fire there was no failure by vibration for axial load ratio
less than « = 2 unlike the case of ISO fire 834.

APPENDIX

Variation laws with temperature of some material properties of
the structure (Seputro 2001; Eurocode 2003; Ndoukouo 2011; Feng
2012). The modulus of elasticity can be written at any temperature
as:

E=E(T) = Eoke (T) (A-1)

In Eq. A-1, ke (T) denotes the reduction factor of the Young

modulus and can be obtained as a function of temperature for the

given material the structure is made with. Ey represents the value

of the Young modulus at ambient temperature Tj. In the case of
constructional steel for example k. (T) can be given as follows :

1.0+ 20°C < T <600°C

__T
2000 In 5 (A-2)

__T
690 X 1—8% :  600°C < T < 1000°C

ke (T) =

For the concern of variation with temperature of the effective
length of the beam, the thermal elongation can be written as a
function of thermal expansion :
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I(T)=L(1+¢ey)=LA+arAT) =Lg(T) (A-3)
I (T)represents the effective length of the beam at current tem-
perature and L the length at room temperature. Function g (T) is
given by :
1+12x107°T +0.4 x 10787 — 2.416 :
20°C < T <750°C

1411x1072T: 750°C < T < 860°C

2x107°T—62x1073 :860°C < T < 1200°C
(A-4)
The variation with temperature of the specific heat is given as

follows :

4254+ 7.73T —1.69 x 107372 +2.22 x 107°T3 :

20°C < T <600°C

cp(T) =1 666+ A%2 . 600°C < T <7350C

545+ 7820 7350C < T <9000C

650:9000C < T <12000C
(A-5)
Meanwhile the temperature-dependent thermal conductivity is
given as :

54 —-333%x1072T: 20°C < T <800°C
Ar = (A-6)

27.3: 800°C < T <1200°C

The yield strength of the material at given temperature o ( T), is
related to the value of room temperature by the following relation

o (T) = ooky (T) (A-7)

The reduction factor ky (T) varies with temperature as follows :

1.0: 20°C<T<215°C
ky (T) = (A-8)

(905 —T) /690: 215°C < T <905°C
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ABSTRACT In this study, the Michelson—Morley experiment and the result of this experiment (the speed of light
appears to be the same in all directions) were explored. Although Lorentz gave a mathematical explanation
(Lorentz transformations) for this, he did not explain the decreasing momentum with the internal motion of
systems. In relation to this decreasing momentum, Einstein solved the problem mathematically by proposing
that the mass of the systems increases with the movement of systems (moving mass). We will study this
process in a chronological order below. Our primary purpose in this study is to open a platform for discussion
by asking questions about the changes in moving systems, as suggested by Lorentz and Einstein (length
contraction and mass increase of the object), and to propose a different relativity model by presenting our

suggestions and opinions in relation to these discussions.
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INTRODUCTION

We will define our interpretation of the narratives on special and general
relativity theory and the (Einstein 1905) Michelson—Morley experiment in
chronological order (Michelson and Morley 1881, 1887). It can be stated
that the term “relativity” is most often used after the Michelson—-Morley
experiment in physics. The Michelson—-Morley experiment concluded
that the speed of light appears to be the same in all directions. Lorentz
interpreted the result using a mathematical model and proposed that
the length of systems contract in the direction of motion and time also
contracts similar to length contraction (Lorentz 1937).

This mathematical model is known as the “Lorentz transformations.”
Although Lorentz solved the problem here mathematically, he did not
explain the decrease in momentum with the internal motion of a moving
system. Einstein solved this problem mathematically by proposing that
the mass of the system increases with its motion (general relativity).
Einstein proposed that objects in motion have more mass than when at
rest. This gain in mass is known as “moving mass” (Lorentz 1937).

Here, we introduce a discussion platform with questions about these
propositions of Lorentz and Einstein, and then through these discussions,
we define the relativity model using a different mathematical model
(Dervisoglu 2019).

The principle of relativity, which forms the basis of the special relativ-
ity model, and the invariance of the speed of light forms the basis of our
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proposed relativity model (Einstein 1923; Einstein et al. 2014). However,
based on these assumptions, results obtained from the principle of rela-
tivity will be different. In the proposed relativity model, we propose that
the mass (m), length (x, y, z), internal velocity (v), momentum (p), and
energy (E) of the moving systems will decrease at an equal rate. That is,
when an object or a system (atom) is in motion, it will have reduced mass,
length, and internal velocity than those at rest.

Herein, we will examine a case where we will suggest an unchanging
time irrespective of the system’s acceleration and a changing time on
exposure to acceleration or gravity (Dervisoglu 2019).

THE THEORY OF RELATIVITY THAT BEGAN WITH THE
MICHELSON-MORLEY EXPERIMENT

Michelson—Morley Experiment and Special Relativity Model

This section examines the special and general relativity model, which
started with the Michelson—-Morley experiment, in chronological order,
through our interpretation of classical thought experiments. Since the
Michelson—Morley experiment is a familiar topic, we will examine it here
without going into in detail.

Michelson—Morley Experiment: Michelson and Morley conducted an
experiment to prove the existence of ether experimentally. However, they
did not observe the expected shift even after conducting several experi-
ments over one year (1880-1881). Although this experiment concluded
that ether does not exist, these two scientists still believed in the existence
of ether (Gautreau and W 1999).

This experiment concluded that the speed of light is the same in
all directions. However, this observation did not agree with Maxwell’s
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equations (Maxwell 1873). In Maxwell’s equations, when Galileo trans-
formations (Lorentz 1937; Relativity 2021b) are used for moving from
one inertial system to another, the speed of light changes (1):

x/zx—vt, y’:y, z/:z, =t (1)

Since Michelson and Morley did not doubt the Earth’s rotation around
the Sun, the problem here seemed to lie in the Galileo transformations
(Gautreau and W 1999). Meanwhile, in 1887, Lorentz thought that the
result of the Michelson—Morley experiment did not prove the ether’s
absence but substantiate its existence. To verify it, he made a proposition
that this invariance in the speed of light causes the length of the system
to contract in the direction of motion and that there is time dilation and
length contraction (Lorentz 1937; Michelson and Morley 1881).

Lorentz addressed the problem of time dilation mathematically sim-
ilarly to the length contraction (Fig. 1) and proposed that the obtained
mathematical expression is compatible with Maxwell’s equations, i.e.,
(Maxwell 1873) the speed of light does not change in inertial moving
systems. According to this mathematical model, the schematic of the
Michelson—Morley experiment is shown in Fig. 1 (Gautreau and W 1999;
Einstein 1935).

Ether Wind
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Figure 1 Schematic of the Michelson—-Morley experiment. Visual and
mathematical description of the speed of light appears the same in all
directions based on Lorentz’s proposition.

Transformation equations from a stationary system K to another mov-
ing system K’ (Fig. 2): Basically, the transformation equations from
equations (2) to (5) are “Lorentz transformations” (Lorentz 1937, 1895).

¥y=V1/1—-0v2/c2 )

/

¥ =qx-vt),y =y 3)

=a(t=3) “

Here, it will be seen that the measured speed of light does not change
regardless of the unaccelerated speed of the system K (Lorentz 1937,
1895) (5).

x/Z +y/2 —I—Z’Z _ C/2t12 5)
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Figure 2 Inertial system K and noninertial system K’ moving with
velocity v in x’-direction.

However, Lorentz could not provide a physical explanation for the
decreasing momentum, which is proportional to the length contraction in
moving systems. Further expanding upon the Lorentz transformations,
Einstein published a paper in 1905 regarding the “principle of relativity”
and “the speed of light being invariant” under the theory of special
relativity (Einstein 1935; Cahill 2004b).

In summary, special relativity states that the speed of light is constant.
Therefore, the mass, length, energy, and time, which we think are constant
in systems traveling at a constant speed, vary but transform into invariance
within the invariance of the speed of light. In other words, the laws of
physics are the same for all observers moving at constant speed, but their
consequences in time will be different. Einstein knew, like Lorentz, that
the most important problem facing special relativity was the changing
momentum, which needs to be explained (Cahill 2004b,a).

oy

Free falling elevator in
the mass

Free floaring elevator
in the space

Figure 3 An observer in a free-falling elevator in a gravitational field
(left) and a free-floating elevator in a space environment (right). Irre-
spective of the environment, the results are the same.
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General Relativity Model

The “geometric model of gravity” or “general theory of relativity” de-
scribes the mass in modern physics in its most simple and plain definition.
We are familiar with Einstein’s imaginary elevator experiment, which
reflects the idea underlying the general theory of relativity.

If we look at Einstein’s conclusion from this experiment without
going into detail, he showed that an observer in a free-falling elevator
in a gravitational field or a free-floating elevator in a space environment
would give the same result (Fig. 3).

In other words, experiments carried out by an observer in an elevator
suspended in a gravitational field or an elevator moving with a constant
acceleration in space will give the same result (Fig. 4) (Wheeler and
Ohanian 1991; Norton 1985; Wald 2006).

However, with his experiments inside the elevator, the observer could
differentiate due to his/her approach to the center of mass, even if it is
very small. By analyzing this difference, the observer can differentiate
between the gravitational field and the accelerating elevator. Nevertheless,
this is not what the thought experiment wants to describe.

Einstein thought that there is a more general physical law that encom-
passes all these and proposed the equality of gravity and acceleration
locally as the “equivalence principle” (Wheeler and Ohanian 1991; Nor-
ton 1985; Miller 1981). Based on this principle, he suggested that gravity
does not exist, instead, objects bend the space in their sphere (Fig. 5) and
the objects travel along the bent path giving the illusion of gravity.

Il

ﬁ

Elevator hanging in the
mass field

Elevator hoisted
in the space

Figure 4 An observer in an elevator suspended in a gravitational field
(left) and an elevator moving with a constant acceleration in space
(right).

Einstein defined this bending of mass on ether, space, or fabric. Ein-
stein suggested that this mass would increase due to the motion of the
objects, i.e., the moving objects would have more mass. This mass, which
increases due to motion, is known as the “moving mass” (Einstein 1917).
Let us examine the mechanism underlying moving mass.

Moving Mass
Einstein relates the physical effect that causes the slowdown of velocity
(momentum) of the moving systems to the increase in mass (77y) because
of the motion of the system. Thus, he suggested that when a system
(body/particle) moves, it has more mass than rest. However, it does not
mean that this increase in mass is accompanied by an increase in the
amount of particles or the physical dimensions of the particle.

Let us try to understand this proposed increase in mass over a thought
experiment. For instance, assume an accelerating system (a, as shown
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Curved Space

Figure 5 Mass bending space (curved space).

in Fig. 6) with zero friction around a shaft. When this system starts to
move (a’, as shown in Fig. 6), it is suggested that the centripetal force of
the moving weight in the system (deviation coefficient) will increase in
proportion to the mass of the system (y). This increase will decrease
the velocity to allow the moving weight to maintain its momentum in a
straight-line.

—
Increase in the deviation of the weight Ether wing
moving on ether
—

Movement of the system

Moving system

a Inertial system 4

Figure 6 A visual illustration of the moving mass suggested by the
general relativity.

General relativity suggests that not only will the mass of moving sys-
tems increase but that for the systems entering or leaving the gravitational
field, the mass will change just like the moving mass above (Relativity
2021a).

DISCUSSIONS ON SPECIAL AND GENERAL RELATIVITY
MODELS

Question 1: The relationship between the contraction of an object along
the direction of motion and its volume and area: Why should the force
exerted on an object change proportionally to the volume of the object
and not its area? So, what is the changing area here? Is this change
(force—volume) not in contradiction to the definition of quantum mechan-
ics? Interestingly, when the v of the object approaches c, it changes from
three dimensions to two dimensions (Fig. 9) (Dervisoglu 2019).
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Figure 7 Tensile depiction of what goes with the movement of the ball,
not the surface area due to its movement.

Question 2: What could be the physical effect that shrinks (shortens)
the moving system (body) to only the direction of motion? Let us assume
that we are teleporting an object into space. According to the definition
of mass in general relativity, (Lorentz 1937) for the teleported object to
create a mass in space, it has to bend the space fabric (Fig. 5) outward.
Since the object cannot bend space (speed of gravitational effect) to be
different from the speed of light propagating in the same direction, (6-7)
the following questions come to mind:

Fl=d=v1-22/c2 (6)

Vertical to the direction of travel

F'=c"=1-v?/c% %)

Parallel to the direction of travel

Why should the force acting on the object (namely the object’s accel-
eration) cause the electrons moving around the nucleus to shrink only in
the direction of movement? While the accuracy of the equations (6-7)
we suggested above is very clear, what could be the physical effects that
force the atoms of the object to contract only in the direction of motion?

Question 3: Even if there is a strong suggestion (Fig. 6) that the
centripetal force of the (Wald 2006) weight y (F,,,x) will increase with an
increase in the deviation or deflection coefficient of the moving weight in
space arising from the movement of the system, why should the linear
momentum; thus, the mass (my) of the system increases in proportion to
such increase? With this expected mass increase, it is suggested that the
density of the space (captive area) will increase by stacking the space (a
in Fig. 10) that objects bend space in proportion to their mass in front of
the object (2’ in Fig. 10). This mass increase can only be realized from
the “Wave” model. Then this proposed mass will not be the “geometric
model of gravity”.

Question 4: Starting again from the proposition that the object will
bend the space proportional to its mass in front of it, how is it possible
that the speed of light traveling through the curved space in front of the
object and the speed of light traveling in uncontracted space outside the
object have the same speed in the same direction? Is the light having a
velocity independent of its source relative to the space fabric, or space?
Therefore, for the speed of light in the inner space of the object to be at
the same speed as that in the outer space in the same direction, should
not the texture in the outer space of the object and the texture in the inner
space of the object preserve the same property (Dervisoglu 2019)?

Question 5: At the zero point of the length of an object accelerating
to the speed of light, the general relativity model

0=xy/1-(c2/c?) 3

-suggests that the mass of the object

1
- - 9
e 1—(c2/c2) ®
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a Inertial abject a' Movement at 0.87¢

Space concentrated
movemenent

The mass bending the space

Figure 8 Representative drawing shows the increase in mass of the
object proportional to the contraction of space in the object’s direction
of motion.

will also be infinite. Thus, how can the mass of an object whose length is
at the zero point (8), i.e., an object that disappears physically, be infinite
(Equation (9))? Although I do not agree with the proposition that the
mass will increase due to motion, it is clear that the problem here is not
in the Lorentz’s length contraction in the direction of the motion of the
system or the Einstein’s mass increase explanation, (Einstein 1916) but
in the laws of physics (Dervisoglu 2019) itself. We will examine this
proposition below.

Question 6: Does the gravitational force between objects change due
to motion? For example, we can define the gravitational force between
the Sun and a system passing close to the Sun having a low velocity (v) as
F = (Mm)/R? (Newton 1686) (A in Fig. 9). If the system had passed
near the Sun in the same way as the speed of light (0.87c) (A’ in Fig. 9),
it would be very wrong to suggest that the gravitational pull applied by
the system would decrease (A’ in Fig. 9) since the displacement speed
of the bending (mass) would not exceed the communication speed of the
light moving in the system, while the system was carrying the curved
space, i.e., its mass (Fig. 9-A and formula 6 and 7).

F=(M.m)/R?

2=(M.m)/R*

Figure 9 Representative thought experiment showing the relationship
between force and motion.
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A DIFFERENT INTERPRETATION OF THE MICHEL-
SON-MORLEY EXPERIMENT

Above in Section 2 we first examined the special and general relativity
model in summary with well-known classical definitions, and then in
Section 3 we drew attention to the controversial issues by asking questions
to the special and general relativity model. Section 4 describes a new
theory of relativity by proposing a different mathematical model to the
Michelson—Morley experiment result.

The Ultimate Unreachable Velocity of The Universe “c + vg”

According to the general relativity model, how does an object traveling at
the speed of light have an infinite mass (Equation (9)) when its length is
at the zero (Equation (8)) point. In fact, it is clear that this anomaly can
neither be found in Lorentz’s length contraction nor in Einstein’s mass
increase, but in the laws of physics.

Einstein’s view that the ultimate speed of the universe is the speed of
light and that objects and particles cannot move at speeds higher than this
speed, and that the speed of light is a law is a very valid opinion. The
problem here is that the universe has no ultimate unattainable speed.

Ultimate Unattainable Velocity of the Universe: We strongly suggest
that the entire constituting space is covered with ether (captive space).
In addition, we suggest that this ether will collapse on its surface with a
velocity proportional to the masses of the objects and that this collapse
(mass) will be inversely proportional to the velocity of the object. Thus,
here it becomes “mass is a different form of motion”. Of course, the
mechanism in the mass definition we propose is a subject of separate
discussion.

For example, when we stand still on its surface, we are physically
traveling on the surface at a speed (Equation (10)) proportional to the
mass of the Earth. For example, at this moment, ether wind blows over
me at speed proportional to the mass of the Earth, and its direction is
toward the center of the Earth. In addition, we do not mind saying ether
wind here, this velocity is at a very low rate, as seen in the Equation (10)
below:

vg = i—f = 0.000000000000002 112 /s (10)

Here, g is the acceleration due to gravity (9.8 m/s), and vg is the rate of
collapse of the ether to the surface proportional to the mass of the Earth.

If this speed of ether was to be measured, the ether would sink or
travel to the Earth’s surface at only 6 m in approximately 100 million
years. Therefore, it would not be wrong to say that the mass of the moving
celestial bodies only changes the resistance of this space (ether). This
suggested speed (Equation (10)) will be different for objects larger or
smaller than Earth.

Therefore, our reference mass in this suggested ether wind speed is
not the Earth, but the mass of the place (body) where the event takes place.
This speed is given by the following equation (Dervisoglu 2019):

2Gm
v ="3 an

Here, g is the rate of collapse of the ether to the surface proportional
to the mass of the object, G is the gravitational constant, ¢ is the final
velocity of the universe, and m is the mass of the object.

This velocity (vg) we suggested above becomes a physical velocity
originating from the mass. The sum of v¢ and the speed of light (c), given
in Equation (12), gives us the final speed of the ether:

¢+ vy (12)

We define it as “the ultimate unattainable speed of the universe”.
Visually, nothing can reach this speed that we have defined. Thus, with
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the speed that we have proposed, we are proposing a new physical law in
the definition of events.

Basic Assumptions of Our Suggested Relativity Model

The “principle of relativity” and “invariance of the speed of light,” which
form the basis of the general relativity model, also form the basis of
our proposed theory of relativity. However, from these assumptions, the
definition and the results of the principle of relativity would be different.
The basic assumptions of the theory of relativity, which is our proposition,
are as follows:

The Principle of Relativity Einstein proposes that the laws of physics
will be the same for all observation frames that move steadily without
acceleration and which do not rotate around their own axis, but the results
will be different (Relativity 2021b).

The difference between Einstein’s proposition and our proposed prin-
ciple of relativity is that the proposed relativity model tells us that no
matter what the unaccelerated steady motion of a system is, the laws
of physics and temporal results will be the same in all observation frames,
i.e., the time of the system will not change. However, it suggests that
the time of systems subjected to acceleration or gravitation will change
(Dervisoglu 2019).

Invariance of The Speed of Light Einstein proposes that the speed of
light will be the same for every observer, regardless of the non-accelerated
motions of the observers. This principle also holds in our proposed theory
of relativity.

The Proposed Relativity Model

Let us define the proposed relativity model on a system: For example, the
light thrown from a stationary system in the (x, y, z) directions at “t = 0”
time will spread in the following way (Fig. 12).

0=r—ctss, (13)
0=x24y*+22 -2, (14)

In addition, we know that when we do this experiment again, it will
give the same result. It is strongly suggested here that the particles move

(float) within the ether.

250 —

0=x.y,z,¢t

2
, —

/ \ x.c
/ Light
v,¢

Figure 10 Inert system.
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We are suggesting that when this system moves in the “x” direction
with half the speed of light (0.5¢), the mass of the system (1), the lengths
(x, ¥, z) and the communication speed of light at those lengths (c) or
the speed of the rotating clock wheel will decrease equally (Fig. 13).).
That is, when the system moves, it has less mass, length, and internal
movement velocity than at rest:

X=m'=c =1-0v*/(c+vg)? (15)
g o= = = \J1— 02/ (c+0p) (16)
2w = =102/ (c+og) (17)

Although the internal movement speed of the system (¢ or the speed
of the clock wheel and the speed of the clock) decreases here, the system
is moving with the internal rotational speed. The time of the system
preserves itself toward invariance within an equal change in lengths, i.e.,
it does not change:

0=x-c=y -=72-¢ (18)

1:tgzzf:f:f (19)

Therefore, regardless of the unaccelerated speed of the system, its time
(amount of movement) does not change. When we look at the propagation
of light with the changes, estimated from equations (15, 16, 18, and 19),
we propose in mobile systems; it will spread following the Equation (20):

0=x2 42422 18, (20)

For Equation (20) to be a result of Equation (14), Equation (21) must
be satisfied:

X2+ y2 +22— Czttzjz =x?+ }//2 +2% - Clzt%z 2D

If we look at the force balance in the ratio of mass to length within
these changes, we propose in the system: gravity also preserves itself
toward invariance within the equal variation of the lengths (x', i/, z'):

” mlz
1:1::?:?:2#2 (22)

In the mathematical model suggested above, we can naturally fall into
the perception that the movement (time) in the system traveling at the
speed of light will stop. However, as per the conversion equations we
suggested above (15-16-17), there is movement everywhere that there is
a mass, and time flow everywhere there is a movement, since the mass of
the system traveling at the speed of light is not at the zero point.

For example, when the speed “v” of the system in Fig. 13 is “c,” the
observer measures “vg” speed of light as the “c” speed. In other words,
even if the system is close to the zero point, it carries all the physical
values that will show that it is there. These transformation or change
equations (15-16-17) that we propose in moving systems become the
mathematical theory of relativity.

Note: The effect that causes this change in mobile systems is the
resistance of the object to the change in velocity (Dervisoglu 2019).
However, the content of this resistance is not the subject of this article.
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Figure 11 When the system travels at 0.5¢ speed of light.

Figure 12 When switching from one inert system to another mobile
system.
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Conversion Formulas

When moving from an inert K system to another mobile K’ system,
we propose transition formulas in which time (1=substance) does not
change within the invariance of the laws of physics, instead of the Lorentz
transformation formulas (2-3-4-5-6) (23-24-25).

, x — vt

X=—" " (23)
1-v2/(c+vg)?
y/ — = y=2 (24)
1—v2/(c—|—vg)2
vX
t=t— = (25)

The transformation formulas we suggested above can be valid for
measuring the distance of K from the point P when moving from the
stationary system K to the mobile system K. The stationary system is not
valid for the speed of light traveling from K to P (Dervisoglu 2019).

Mathematical Description of the Michelson—-Morley Experiment

In the framework of the proposed mathematical model, the Michel-
son—Morley experiment visual and mathematical test results are presented
in Fig. 13. It can be seen that the proposed mathematical model is com-
patible with Maxwell’s equations (Maxwell 1873) (the speed of light
appears to be the same in all directions in unaccelerated motion systems).

L= 1-v*/(c+ vg)° Ether wind

z=L T

) —
e
-
] ‘.
. "
r ‘- T;Z%
“ x , 1 J1-v3/(c+vy)”
1 \
- L]
, —— L L
; 3 EREE Al e ey e v
Linght source | « Y (ekvg)—v (cEvg)te
” - [ 4 1
- e
¢ !
= 1 . 2 2
. L'=1-v*/(c+vy)
'
1
1 ]
: T¢’=T:=2":(ﬂ_’ﬁ
—taa .

Figure 13 The equation we propose in the Michelson-Morley experi-
ment.

Fixed Multiplier (/)
We define the closed (non-directional) form of the proposed mathematical
model on moving systems as the constant multiplier (D):

1- —2 1- 2 1- 2
-+ (i i + (- o)
3

D= (26)

L’ =DL: (x, y, z) lengths of the system,

m’ = Dm: Mass of the system,
¢’ =Dc: Speed of the inner system communicating at a speed of light,
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v’ = Dy: Internal speed of the system,
E’ = DE: Internal energy of the system.

For Equation (26) to be a result of Equation (20), Equation (27) must
be true.

2 4y?+ 2% -, =PI - DA, @7
Notice that there is no time (#) in the transformations suggested in
Equation (27). The lack of time, as we said above, is that the time of
the system (1 = t¢ore) Will not change (universal) regardless of the unac-
celerated speed of the system. However, we are suggesting a changing
time in systems entering or existing in a gravitation field or in systems
accelerating in the framework of equality of gravity and acceleration.
Nevertheless, the definition of this universal and relative time that we
propose is not the subject of this article (Dervisoglu 2019).

CONCLUSIONS AND RECOMMENDATIONS

In this study, we proposed a relativity model. The proposed mathematical
model is a summary of the theory of relativity in our book “The Great
Formation” universe model. We can briefly explain our book as following:
Although “the Great Formation” is a different universe model, we are
proposing a new gravity model under the name “general model of gravity.”
The gravity that we propose is described in the quantum-scale mechanism
within the standard model. The “general model of gravity” also introduces
a different theory of relativity that we have summarized above.

Here we propose the ultimate unattainable speed “c + vg” of the
universe, which we suggested in the description of events above,
as a new physical law. Although this speed (v = 210716 =
0.000000000000002m/s), which we suggest as a plus (+) to the speed
of light, seems like a very small speed, we can describe all events in the
universe with this velocity. Thus, with this (¢ + v¢) speed, we propose a
different dimension and a different meaning to the definition of events.
Some of these are as follows:

* The further away we observe in space, the more we observe the
spectrum of light shifting toward red. This observed redshift is a
measure of the amount of matter in that observed radius.

* The farther away the electron (photon) reaches from us, the more it
is absorbed, i.e., it loses energy (momentum).

* The universe keeps its entropy in balance by cooling the radiated
energy. That is, the entropy of the universe does not change.

* In the inverse proportion that we propose between mass and motion,
mass becomes a different form of motion.

* Regardless of the steady motion of a system without acceleration,
its time will preserve itself toward invariance within the invariance
of the laws of physics, i.e., it will not change.

» The time of systems entering or exiting a gravitational field or sys-
tems accelerating within the framework of the gravitational acceler-
ation equation will change.

* In the framework of the final velocity “c + v¢” (law) of the universe
that we proposed, the result of an event “x” may be “0 < x” close
to zero or “co > x” close to infinity, but it cannot be zero “0 = x” or
infinity “co = x”.

* The mass (m) of the moving systems, the (x, v, z) lengths and the
communication speed of light (c) will decrease equally and when
the speed “v” of the object is “c,” this decrease will be close to the
zero point, but it will not be at the zero point. The fact that it is not
at the zero point is a result of the final velocity “c + vg” (law) of the
universe we proposed.

We have many propositions that we cannot list here yet. In addition,
the content of our propositions here has much broader explanations and
equations but it is the subject of our book “The Great Formation” universe
model, the 3" edition of which has not been published yet.
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