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Abstract 

This paper presents static analysis of a simply supported beam made of fiber reinforced composite material resting 
on elastic foundation. The foundation type is considered as Winkler-Pasternak foundation type. The first-shear 
beam theory is used in the kinematics of the beam and the Ritz method is used and in the solution of the problem. 
In the Ritz method, algebraic polynomials are used with the trivial functions. In the numerical examples, the effects 
of fibre orientation angles, the volume fraction and foundation parameters on the static deflections of fiber 
reinforced composite beam are investigated. The numerical results show that fiber orientation angle, volume 
fraction and foundation parameter have great influence on static behavior of fiber reinforced composites. 

Keywords: Fiber Reinforced Composite Material; Static Analysis; Winkler-Pasternak Foundation; Ritz Method  

1. Introduction 

Fiber reinforced composite (FRC) structures are used in a lot of engineering applications, for 
example, airplanes, machine, marine, and civil engineering projects. FRC structures mainly 
preferred in the engineering projects due to their higher strength-weight ratios, more lightweight 
and ductile properties.  
 
In the literature, many researchers investigated the static, dynamic and stability analyses of FRC 
structures in last decades. Some investigations about of FRC structures are as follows; 
Krawczuk et al. [1] studied the vibration of cracked composite beams. Shen [2] presented post-
buckling analysis of laminated plate with thermal effects resting on elastic foundation. Sayman 
[3] investigated elastic-plastic analysis of aluminum metal-matrix laminated plate under 
thermal effect. Shukla et al. [4] presented thermal postbuckling analysis of laminated plates. 
Emery et al. [5] analyzed thermoelastic stress analysis of laminated orthotropic plates. Shen [6] 
presented thermal nonlinear analysis of functionally graded nanocomposite plates reinforced 
by single-walled carbon nanotubes. Akgöz and Civalek [7,8,9,10] presented mechanical 
behavior of composite structure resting on foundation. 
 
Kishore et al. [11] investigated nonlinear analysis of magnetostrictive layered plate by using 
third order shear deformation theory. Sahoo and Singh [12] analyzed static of layered composite 
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plates by using the hyperbolic zigzag theory. Houmat [13] presented nonlinear vibration of 
laminated composite plates with curvilinear fibers. Khorshid and Farhadi [14] analyzed 
hydrostatic vibration analysis of a laminated composite rectangular plate partially contacting 
with a bounded fluid. DeValve and Pitchumani [15] investigated damping vibration analysis of 
rotating composite beams with embedded carbon nanotubes. Tornabene et al. [16] investigated 
static and vibration analysis of laminated doubly-curved shells and panels embedded in elastic 
foundation by using the generalized differential quadrature. Akbaş [17-22] presented free 
vibration of functionally graded composite beams. Yüksel and Akbaş [23] presented thermal 
effects of laminated plates by using the Navier method. Draiche et al. [24] presented static 
analysis of laminated reinforced composite plates based on first-order shear deformation theory 
by using the Navier method. Jena et al. [25] analysed dynamic behavior of cracked fiber 
reinforced composite beams. Zenkour et al. [26] investigated torsional dynamics of carbon 
nanotubes embedded in viscoelastic medium. Waddar et al. [27] investigated buckling and 
dynamic response of cenosphere reinforced epoxy composite core sandwich beam with sisal 
fabric/epoxy composite facings under compressive load by experimentally. Akbaş [28-43] 
investigated nonlinear behavior and forced vibration analysis of composite structures. Also, 
many researchers investigated mechanical analysis of composite structures resting on 
foundation [44-60].  
 
The main purpose of this study is to investigate the effects of the fibre orientation angles, the 
volume fraction and foundation parameters on the static deflections of the FRC beam in detail. 
In solution of the problem, first shear deformation beam theory and the energy based Ritz 
method are used. In the numerical results, the effects of fibre orientation angles, the volume 
fraction and foundation parameters on the static deflections of the FRC beam are investigated. 

2. Formulations 

 
Figure 1 shows a simply supported FRC beam resting on Winkler-Pasternak Foundation with 
with spring constant kw and kp, the length L, the height h and width b under a point load (Q) at 
midpoint of the beam. When the Pasternak foundation spring constant kp=0, the foundation 
model reduces to Winkler type.   

 
Fig.1. A simply supported FRC beam resting on Winkler-Pasternak Foundation under a point load. 

 
The axial strain (ε") and shear strain (γ"$) are given according to the first shear deformation    
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where, 𝑢, 𝑣 and ∅  are axial displacement, vertical displacement and rotation, respectively. 

The constitute relation is presented as follows; 
 

               
𝜎&
𝜎&/ = 𝑄77 𝑄78

𝑄78 𝑄88

𝜖&
𝛾&/                      (2)   

                      
where  𝑄:; are the transformed components of the reduced constitutive tensor. The 

transformed components of the reduced constitutive tensor for orthotropic material are as 
follows: 

 
                           𝑄77 = 𝑄77𝑙= + 2 𝑄7@ + 2𝑄88 𝑙@𝑛@ + 𝑄@@𝑛=                                           (3a)    
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                          𝑄@@ = 𝑄77𝑛= + 2 𝑄7@ + 2𝑄88 𝑛@𝑙@ + 𝑄@@𝑙=                                          (3d) 
                          𝑄@8 = 𝑄77 − 𝑄7@ − 2𝑄88 𝑛I𝑙 + (𝑄7@ − 𝑄@@ + 2𝑄88)𝑛𝑙I                     (3e) 
                          𝑄88 = 𝑄77 + 𝑄@@ − 2𝑄7@ − 2𝑄88 𝑛@𝑙@ 	+ 𝑄88 𝑛= + 𝑙=                        (3f) 
 
where l=cos	𝜃 and n= sin	𝜃, 𝜃 indicates the fiber orientation angle and the expressions of  

𝑄:; are as follows;   
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                		𝑄88 = 𝐺7@	                                         (4d) 
 
where E1 is the Young’s modulus in the X direction, E2 is the Young’s modulus in the Y 

direction, 𝜈7@ and 𝜈@7 are Poisson’s ratios and 𝐺7@ is the shear modulus in XY plane. The gross 
mechanical properties of the composite materials are calculated by using the following 
expression (Vinson and Sierakowski [61]): 

 
                 𝐸7 = 𝐸T𝑉T + 𝐸V	 1 −	𝑉T ,	                 (5a) 

                  𝐸@ = 𝐸V 		
KXYKZY KXMKZ [X
KXYKZM KXMKZ [X

                (5b) 

                          𝜈7@ = 𝜈T		𝑉T + 𝜈V	 1 −	𝑉T ,               (5c)    

      𝐺7@ = 𝐺V 		
\XY\ZY \XM\Z [X
\XY\ZM \XM\Z [X

                (5d) 

           𝜌 = 𝜌T𝑉T + 𝜌V	 1 − 𝑉T ,	                               (5e) 
 
where f indicates the fibre and m indicates the matrix. Vf is the volume fraction of fiber. E, 

G, ν and 𝜌 are the Young’s modulus, the shear modulus, Poisson’s ratio and mass density, 
respectively. 
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The strain energy (Ui), and potential energy of the external loads (Ue) are presented as 
follows; 
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                       𝑈l = −𝑄 𝑡 	𝑣 𝑧k, 𝑡                                                     (6b) 
where, 
 

𝐴a, 𝐴7, 𝐴@ = 𝑄77 1, 𝑌, 𝑌
@ 𝑑𝐴o , 𝐵a = 𝑄88𝑑𝐴o ,          (7) 

 
The total potential energy of the problem is expressed as follows: 
 
                  ᴨ = (𝑈_ − 𝑈l)                         (8) 
 
In the solution of the problem in Ritz method, approximate solution is given as series of i 

terms of the following form: 
 

     𝑢 𝑧 = 	 a_	𝛼_(𝑧)s
_(7                            (9a) 

     
     𝑣 𝑧 = 	 b_	𝛽_(𝑧)s

_(7                                (9b) 
  

     ∅ 𝑧 = 	 c_	𝛾_(𝑧)s
_(7                                    (9c) 

                                                         
where ai, bi and ci are the unknown coefficients, 𝛼_(𝑧), 𝛽_(𝑧), 𝛾_(𝑧) are the coordinate 

functions depend on the boundary conditions over the interval [0,L]. The coordinate functions 
for the simply supported beam are given as algebraic polynomials: 

 
According to the minimum total potential energy principle, unknown coefficients ai,, bi , ci 

which correspond to the minimum of the total potential energy (П) are determined by the 
conditions: 

 
)П
)xy

= 0 ,  )П
){y

= 0 ,  )П
)|y

= 0         (10) 
 
Differentiation of П in respect to unknown coefficients produces the following equilibrium 

equations: 
 
                   K q = F                       (11) 

 
where 𝐾  and F  are the stiffness matrix and load vector, respectively. The detail of these 

expressions are given as follows; 
 

                 𝐾 =
𝐾77 𝐾7@ 𝐾7I
𝐾@7 𝐾@@ 𝐾@I
𝐾I7 𝐾I@ 𝐾II

	                          (12) 

 
Where 
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              F(t) = 𝑄𝛽�                   (14) 
 
The dimensionless quantities can be expressed as 
 

𝑘j 	=
��	h�

KX�
 ,   𝑘k 	=

��	hO

KX�
 ,  v 	= �

h
                                          (15) 

 
𝑘j and 𝑘k are the dimensionless Winkler Pasternak parameters, v is lateral dimensionless 

displacement. 
 

3. Numerical Results 
 
In the numerical study, static displacements of the FRC simply supported beam are presented 

and discussed. In the numerical examples, the materials of the beams are selected as made of 
graphite fibre-reinforced polyamide composite and its material parameters are as follows 
(Krawczuk et al [1]); Em = 2.756 GPa, Ef = 275.6 GPa, Gm = 1.036 GPa, Gf = 114.8 GPa, νm = 
0.33, νf = 0.2. The geometry properties of the beam are selected as  𝑏 = 0.1	m, h=0.1 m and 
L=1.2 m. In the numerical results, number of the series term is taken as 10. The load value is 
selected as Q0=1000 kN.  

 
In figure 2, effects of the volume fraction of fiber (vf) on the lateral static dimensionless 

displacements of FRC beam at midpoint (vV) are presented with effects of foundation 
parameter for 𝜃 = 30 . It is seen from figure 2 that, displacements of the FRC beam decrease 
with increasing of the volume fraction of fiber and foundation stiffness parameters due to the 
bending rigidity increases according to Eq. 5. With increasing of foundation stiffness 
parameters, the difference among the results of vf decreases considerably. It is seen from figures 
2 that Pasternak parameter 𝑘k is more effective than Winkler parameter 𝑘j on the behavior of 
the volume fraction of fiber.  

 
In figure 3, effects of the fiber orientation angles (𝜃) on the lateral static dimensionless 

displacements of FRC beam at midpoint (vV) are presented with effects of foundation 
parameter for vf=0.3. Figure 3 shows that, displacements of the FRC beam increase with 
increasing of the fiber orientation angles (𝜃) due to the bending rigidity increases according to 
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Eq. 3. It is observed from figure 3, Pasternak parameter 𝑘k is more effective on the results of 
fiber orientation angles like the results of the volume fraction of fiber.  

 

 

 
Fig.2. Load – dimensionless lateral displacement (at midpoint) relation for different values of the 

volume fraction of fiber (vf ) for a) 𝑘j = 0 ,	𝑘k = 0 b) 𝑘j = 1 ,	𝑘k = 0, c) 𝑘j = 2 ,	𝑘k = 0, d) 𝑘j =
1 ,	𝑘k = 0.3, e) 𝑘j = 1 ,	𝑘k = 1 
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Fig.3. Load – dimensionless lateral displacement (at midpoint) relation for different values of the fiber 

orientation angles (𝜃) for a) 𝑘j = 0 ,	𝑘k = 0 b) 𝑘j = 1 ,	𝑘k = 0, c) 𝑘j = 2 ,	𝑘k = 0, d) 𝑘j = 1 
,	𝑘k = 0.3, e) 𝑘j = 1 ,	𝑘k = 1 

 

4. Conclusions 
 
Effects of Winkler-Pasternak foundation parameters and composite material parameters on the 
static displacements of the FRC simply supported beam are investigated in this paper by using 
the first shear deformation beam theory. In solution of the problem, the energy based Ritz 
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method is implemented.  The presented results show that the displacements of FRC beam 
change significantly with fiber orientation angle and the volume fraction. The Pasternak 
parameter is a great influence on behavior of material properties of FRC. 
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Abstract 

Zinc oxide nanowires (ZnO NWs) can be used in some NEMS applications due to their remarkable chemical, 
physical, mechanical and thermal resistance properties. In terms of the suitability of such NEMS organizations, a 
correct mechanical model and design of ZnO NWs should also be established under different effects. In this study, 
thermal vibration analyses of elastic beam models of ZnO NWs are examined based on Eringen's nonlocal 
elasticity theory. The resulting equation of motion is solved with a finite element formulation developed for the 
atomic size-effect and thermal environment. The vibration frequencies of ZnO NWs with different boundary 
conditions are calculated under nonlocal parameter and temperature change values and numerical results were 
discussed. 

Keywords: Finite element method, nonlocal elasticity, thermal environment, vibration, Zinc Oxide nanowire. 

1. Introduction 

It is seen that people use products with stronger physical, chemical, thermal, mechanical, 
optical, etc. properties. This is possible with the science of nanotechnology that is today’s 
pioneer technology. Nanotechnology is a science that aims to investigate the properties of 
materials with dimensions from 1 nm to 100 nm and to integrate these materials into classical 
applications of science and engineering disciplines. It can be stated that nanotechnology, which 
started its adventure with gave a conference by R. Feynman [1] in 1959, gained a serious 
importance with the discovery of the carbon nanotube material [2,3]. Additionally, properties 
of wide range of nanomaterials such as boron nitride nanotube [4], graphene [5] and metallic 
or molecular nanowires [6-8] are fundamental topics of this discipline. It can be expressed that 
such nanomaterials show their effect in different applications such as sensor, switch, actuator, 
bridge, transistor.  

The structural-electronic applications containing nanomaterials are generally collected under 
the name of nanoelectromechanical systems (NEMS). To perform the accurate mechanical 
analyses of NEMS is essential for NEMS applications to work properly in terms of engineering. 
To perform mechanical analysis via experimental methods requires high operation costs, 
professional expert approaches and long processes. Also, it is a well-known fact that the results 
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obtained by experimental methods do not present results in accordance with the classical 
elasticity theory. These difficulties have been overcome by adapting the mathematical 
approaches developed in different periods to the classical elasticity theory. The new elasticity 
theories, namely, higher-order continuum theories, generally include parameters related to the 
atomic dimensions of nanomaterials. It can be said that nonlocal elasticity theory [9-10], couple 
stress elasticity theory [11,12], strain gradient elasticity theory [13,14], surface energy elasticity 
theory [15,16] and doublet mechanics elasticity theory [17] exemplify for higher-order 
continuum theories.  

The nonlocal elasticity theory states that the stress and strain of other regions adjacent to that 
region must also be taken into consideration in order to calculate the stress and strain in a certain 
region of the atomic structure. Thus, the uncertainty in the strain energy that goes to infinity 
due to atomic factors is resolved. In the 1960s, the studies of Eringen et al. enabled the 
establishment of the nonlocal elasticity theory and the determination of its main principles. It 
can be stated that approximately 45 years later, analyses of continuous mechanical models of 
nanoscaled structures started to be handled with the nonlocal elasticity theory [18-20]. 
Following these, vibration, buckling and bending analyses of nonlocal Euler–Bernoulli nano 
beams are given [21-23]. Lu et al. studied the nonlocal vibration phase velocities of single and 
multi-walled carbon nanotubes by using Euler-Bernoulli and Timoshenko beam theories [24]. 
Numanoğlu examined axial and flexural vibration analyses of different nanowires and 
nanotubes [25]. Axial and torsional vibration analyses of nonlocal nanorods are also available 
in the literature [26-32]. Jalaei and Civalek studied the nonlocal elasticity dynamic instability 
of functionally graded porous beam under magnetic effects resting on viscoelastic foundation 
by employing Navier’s technique and Bolotins’s approach [33]. Apart from these, vibration and 
bending of some nanomaterials are tackled based on the classical theory [34-36]. Civalek 
presented the finite element formulations of plates and shells [37]. On the other hand, it can be 
stated that studies on the use of finite element formulation in mechanical analysis of 
nanostructures with nonlocal elasticity have taken place in the literature [27,28,38-52]. 
Additionally, the free vibration behavior of a functionally graded beam is researched for Euler-
Bernoulli, Timoshenko, Shear and Rayleigh beam theories [53]. Moreover, mechanical 
analyses of different continuous structures have been performed via novel numerical 
approaches such as discrete singular convolution and differential quadrature [54-60].  

In this article, vibration analyses of nanobeams modeled by using zinc oxide nanowires (ZnO 
NWs), which has an important area in the applications of nanotechnology science, are carried 
out with the nonlocal elasticity theory. The temperature effect is considered in the vibration 
analysis. A nonlocal finite element formulation (NL-FEM) is presented for the solution of 
equation of motion. Then, the vibration frequencies of simply supported ZnO NWs are 
calculated via analytical method and NL-FEM and compared. Also, thermal vibration 
frequency results are presented by using NL-FEM for beam models with boundary condition 
that is not possible to be solve analytically. In the solution of nonlocal free vibration, the 
accuracy of the proposed formulation is discussed. Finally, the most general results are 
summarized. 

2. Nonlocal Finite Element Analysis for Thermal Vibration of Nanobeams 

The equation of motion of nonlocal thermal vibration of nano scaled beams according to Euler-
Bernoulli beam theory can be presented as follows: 
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where EI  is bending rigidity, ae0  is nonlocal parameter and EA  is axial rigidity. α  defines 
the thermal expansion coefficient. TΔ  is temperature change and w is transverse displacement. 
On the other hand, Aρ  explains volume of unit length and f  is transverse distributed force. 

The solution of Eq. (1) will be performed in this current study by using finite element. The 
fundamental of this solution based on weighted residual method [49]. According to this, average 
weighted residue is written as  
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here, h is weighting function and l is length of finite element. The transverse motion of bending 
finite element is described as 
 
	 wφ=w  (3) 

where φ  is shape function of beam finite element and w is displacement vector. Additionally, 
the first derivation of displacement of bending finite element can be written as 
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∂
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x
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where B=φkD  and kD  is defined as kinematic operator. 

The partial integrations of all terms seen in Eq. (2) can be written as  
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If above equations are substituted into Eq. (2) and weighted residual is evanished, the weak 
formulation is attained as follows 
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To rearrange Eq. (6), following expressions can be used:  
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Substituting of Eq. (7) into Eq. (6) yields following equation 
 
	

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 0ddd

dddd

0

T2
0

0

T2
0

0

T

0

T

0

T

0

T2
0

0

T

=ʹ−++

−Δ−ʹʹΔ−ʹʹ

∫∫∫

∫∫∫∫

xfaexAaexA

xfxTEAxTEAaexEI

lll

llll

BwBBw

wBBwBBwBB

!!!! ρφφρ

φαα

 

 
 
 

 
(8) 

this equation can be written as follows in the matrix form: 
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where K is bending stiffness matrix. cTK ,  and nlTK ,  state the local and nonlocal negative 
stiffness matrices originating from temperature change, respectively. On the other hand, cM  
and nlM  are local and nonlocal mass matrices, respectively. cf  and nlf  express local and 
nonlocal external force vectors, respectively. 

If the 0=f  is taken for free vibration and ( ) ( ) ( )αω −= txWtxw sin,  expression is utilized into 
Eq. (9), the eigenvalue formulation of finite element analysis is obtained as follows: 
 
    [ ] [ ]( ) 0det 2 =− ∑∑ MK ω  (17) 

where [ ]∑ K  and [ ]∑ M  are total stiffness and mass matrices. ω  is natural frequency of 
nanobeam. 

Also, the frequency equation of simply supported beams can be solved analytically. According 
to this, the series expansion as follows, ensures geometric and mechanical boundary conditions 
of simply supported beams:    
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where nW  is unknown series coefficient, n is mode number, L is length of nanobeam. ω  
explains the natural frequency of nanobeam. Additionally, t is time and α  is phase angle. Using 
Eq. (18) into Eq. (1), the following expression can be obtained   
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Substituting of Eq. (20) into Eq. (19) yields the natural frequency equation of simply supported 
nano beams for nonlocal parameter and temperature change: 
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3. Numerical Examples 

In this section, vibration frequencies are calculated for thermal vibration analysis of ZnO NWs. 
The numerical results are given for simply supported (S-S), cantilever (C-F), propped cantilever 
(C-S) and clamped supported (C-C) boundary conditions. In order to include the nano scale 
effect in the analysis, nonlocal elasticity theory is considered. Mechanical properties are taken 
as follows in the thermal vibration analysis: modulus of elasticity GPa58=E  [61], unit 
volume mass 3mkg5600=ρ  [62] and thermal expansion coefficient 16 K109.2 −−×=α  [63]. 
Additionally, the geometric features are chosen as follows: beam length nm20=L  and circular 
cross-section diameter nm2=d . On the other hand, 20 finite elements are used for nonlocal 
finite element analyses.  

In Table 1, the first three mode vibration frequencies of simply supported beams modeled with 
ZnO NWs are calculated and compared with analytical and finite elements for different 
nondimensional nonlocal parameter values. In addition, the frequencies of the beams not under 
temperature change were compared with frequencies of the beams under temperature change. 
First of all, nonlocal expression is a parameter that reduces classical vibration frequencies. By 
the increase of this value reveals, the frequencies of nanoscaled beams more decrease. Also, 
temperature change decreases the frequencies of ZnO NWs. In the case that the nonlocal 
parameter is higher, the temperature factor is more influential. On the other hand, it is seen that 
the values obtained by the finite element method are very close to the analytically calculated 
frequencies. In general, while the increase in the mode number raises the difference between 
calculated values by using the analytical method and NL-FEM, the increase of nonlocal 
parameter decreases this difference. 

In Table 2, the first three mode frequencies of ZnO NWs are tabulated for three different 
boundary conditions and temperature change. Analytical vibration analysis for boundary 
conditions except S-S is not possible in case of nonlocal elasticity. Also, when it is considered 
that the temperature parameter is included in the analysis, an alternative to the analytical method 
has to be used and therefore the analyses are given only with the finite element formulation. 
When the stiffness states between the boundary conditions are compared, it can be said that the 
results obtained are reasonable. The frequencies of the clamped supported beams are the 
highest, while the frequencies of the cantilever beams are the lowest. Additionally, the boundary 
condition in which the nonlocal parameter has the highest effect is C-C. 

Table 1. Comparison of the first three modes flexural frequencies (GHz) of simply supported Zinc 
Oxide nanowires.  

Nonlocal 
parameter 

Mode 
Number 

K0=ΔT   K300=ΔT  
Analytical NL-FEM  Analytical NL-FEM 

00 =Lae  1 6.3190 6.3190  5.8565 5.8565 
2 25.2761 25.2763  24.8265 24.8266 
3 56.8712 56.8731  56.4238 56.4258 

       

15.00 =Lae  1 5.7161 5.7161  5.2002 5.2002 
2 18.3941 18.3942  17.7712 17.7713 
3 32.8423 32.8434  32.0614 32.0625 

       

35.00 =Lae  1 4.2516 4.2516  3.5276 3.5276 
2 10.4628 10.4629  9.3244 9.3244 
3 16.4991 16.4997  14.8841 14.8846 

 
Table 2. The first three modes flexural frequencies (GHz) of Zinc Oxide nanowires with different 

boundary conditions under temperature change. 
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Nonlocal 
parameter 

Mode 
Number 

Boundary Conditions ( K300=ΔT ) 
C-F C-S C-C 

00 =Lae  1 1.5191 9.5326 14.0772 
2 13.4342 31.6055 39.1525 
3 38.9400 66.3446 77.0480 

     

15.00 =Lae  1 1.3875 8.3462 12.2447 
2 10.0411 22.1828 26.9237 
3 23.5060 37.0263 42.2733 

     

35.00 =Lae  1 0.9311 5.5268 8.0226 
2 5.6495 11.5262 13.7018 
3 11.6736 17.1731 19.6303 

 

 

4. Conclusions 

In this study, a vibration analysis is performed for elastic beam models of ZnO NWs based on 
the nonlocal elasticity theory. It is also thought that the beams are under the influence of 
temperature change. Finite element formulation is used to solve the equation of motion. With 
this formulation, frequencies of different vibration modes of ZnO NW beams with different 
boundary conditions are calculated under nondimensional nonlocal parameter and temperature 
change values and the results are discussed. 

In general, it is understood that the atomic scale effect and ambient temperature are definitely 
factors to be taken into account in the dynamic analysis of continuous models of nanoscale 
structures. In addition, it is concluded that the use of finite element formulation based on the 
size effect is an important way for the cases where dynamic analysis cannot be performed by 
analytical methods. It is thought that these results will guide the proper and optimum structural 
designs of NEMS using ZnO NWs. 
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Abstract 

In this study, a numerical approach has been introduced in the elastic stress solutions of hollow disks made of 
functionally graded materials (FGM) that are exposed to linearly increasing temperature dispersion.  The modulus 
of elasticity and the coefficient of thermal expansion of the FGM disk is assumed to vary in radial direction in 
different forms, and it is further assumed that the Poisson’s ratio is constant. It causes the differential equation 
that manages the behaviour of the object under different material properties and boundary conditions to be a 
variable coefficient equation. Except for some simple grade materials and boundary conditions, it is hardly 
possible to produce an analytical solution of such equations. In this case, the solution of the problems can only be 
found with numerical approaches. Complementary Functions Method (CFM) was used to solve the problem. 
Different material models were used from the written works and corresponding radial, tangential and equivalent 
stresses and radial displacements were calculated. Simple, effective and well-structured solution steps can be 
easily implemented for disks. 

Keywords: Functionally Graded Materials, Complementary Functions Method, Hollow Disc, Thermal Stress 
Analysis. 

1. Introduction 

The issue of the effect of variable thickness FGM cylindrical materials and high temperatures 
on these structures has become increasingly popular. Applications of cylindrical FGM 
structures include aerospace, nuclear power plants, aero-marine and chemical plants where the 
metals and metal alloys used exhibit elastic behavior. FGMs are variegated materials with 
continuous fluctuation of elastic and thermal properties throughout the material. Constituent 
materials having various properties are formed by methodically changing the bulk portion of 
the materials. The materials used in FGM applications are heat resistant, corrosion durable, 
erosion and elevated breakage toughness. Therefore, the material requirements are quite 
advanced as these structures are often subjected to high density heat fluxes and are subject to 
significant changes. Therefore, precise and accurate heat transfer analysis of thick-walled 
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cylindrical FGM structures is a requirement for engineering design and production. FGMs were 
created as updraft protector for aerospace and various reactors as their first application. 
Nowadays, under the thermomechanical loading, flywheel, turbine, such as high-temperature 
operating environments, such as components of the machine elements began to be used in 
general. The use of heterogeneous materials, called FGM, has been increasing recently. FGMs: 
These are composite materials that consist of two components and have mechanic properties 
that vary depending on the location in a continuous functional structure. Thermal stress analysis 
has been performed in structures made of FGM, which are frequently used in engineering 
structures (such as cylindrical containers, circular discs, pressure vessels, beams and hollow 
spheres)[1-4]. Although there have been many studies on the analysis of isotropic and laminated 
composite beams (i.e., [5-9]), however, the research effort dedicated to stability analysis of 
rectangular of FG plates has been very limited. 

The numerical and exact solutions of thermo-elastic analysis of FG rotating disks have 
submitted by Arnab et al. [10]. Zenkour [11] examined the effect of gradient grading on FG 
rotating solid disks on radial displacement and stresses in a sandwich structure. Çallıoğlu et al. 
[12] calculated thermal stresses by combining the high level shear deformation theory with 
multi-layer method in rotating thick-walled cylindrical containers made of FGM. Sharma et al. 
[13] showed tensile stress and displacement for the thin FGM disk-shaped under the influence 
of temperature dispersion, angular velocity and thickness. Durodola and Adlington [14] 
examined the effects of non-homogeneous material parameters on stresses on stress analysis on 
FG rotary discs (and rotors) at a certain angular velocity. Go et al. [15],  using the finite element 
approach, have shown that a regular cutter or grinding disc with circular free force uniformity 
can be designed by properly controlling certain parameters to have better thermo-elastic 
properties. Hassani et al. [16] using Mindlin's theory, created stress distributions on FG rotary 
discs with nonhomogeneous thickness under thermal loads. Liew et al. [17] analyzed the 
thermal stresses in the FGM cylinder. Kordkheili and Naghdabadi [18] obtained a quasi-
analytical resolution analysis with the centrifugal force and power law dispersal of the volume 
portion under volumetric thermal loads for a fine axial symmetrical rotary free wheel drive 
made of FGM. Based on Afsar and Go [19], 2-D thermoelastic theories, the FGM rotating disc 
with radial direction exponentially varying material properties exposed to combined thermal 
and centrifugal load was investigated. Peng and Li [20] have developed an efficient method by 
transforming the thermo-elastic behavior of the FGM disc, whose material properties arbitrarily 
changing radial way, into Fredholm integral equations. The effects of the gradient considering 
both the law of power and radial homogeneity on the stress dispersion in FGM rotary solid 
disks have investigated through Peng and Li [21]. Naghdabadi and Kordkheili [22] obtained 
using a finite element method for thermo-elastic analysis of FG number plates and crusts. You 
et al. [23] are utilized a Runge-Kutta mathematical solution technique for elastoplastic stresses 
on revolving discs of varying thickness and density. A design of the thermo-elastic load-
dependent FGM disc designed with load optimization is proposed by Khorsand and Tang [24]. 

This paper, the evaluation of hollow FGM discs subject to linearly rising temperature 
dispersion, with the boundary conditions, is reproduced by deriving radial, tangential, 
equivalent stresses and radial displacement equations. Two different functions form such as 
power-law, exponential with free state(fr-f) and fixed–free(fx-f) boundary conditions are 
applied for the governing equation. The differential equations obtained mathematically in the 
space coordinate system consist mostly of variable coefficients. Thus, this situation indicates 
the two-point boundary value problem. This article, the complementary functions method 
(CFM), which is an effective analysis procedure [1, 25-27] as a starting-worth problem, which 
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can be resolved by traditional procedures in the current written works, is used. In this study, 
fourth grade Runga-Kutta (RK4) method was used. The main of the Runge-Kutta method is 
easy to apply, provides better precision in numerical approximation cases, and process 
dynamics can be solved efficiently with solid differential equation models. Analytical 
benchmarking solutions for a homogeneous disk are utilized to verify outcomes and to observe 
the merging of numerical resolutions. In the current process, the place of the collocation points 
can be selected randomly. The major aim of this research is to show an effective and correct 
resolution technique. CFM is an effective and basic resolution procedure with a theoretic 
background in the written works [28, 29] The technique is effectively employed to structures 
such as curved rods [30], composite beams [31], cylinders [32, 33], spheres [34] and annular 
fin [35, 36] with different structural mechanical problems. 

2. Formulation of Thermal Elastic Solution of the Disk 

The equilibrium differential equation for the plane stress state for thick wall hollow circular 
disks is expressed in the form below. 

 
( )( ) 0rrd

dr r
θσ σσ −

− =  i or r r≤ ≤ (1) 

where inside radius ir , outside radius or , radial stress rσ and circumferential stress are θσ . 
Tangential rσ and radial stresses θσ can be written in terms of Airy stress function F  

  

r
F
r

σ = dF
drθσ = (2) 

The relationships between strains and stresses occurring in an FGM disk in the impact of 
temperature for elastic materials can be explained by Hooke's law. 

 
1 ( ( ) ( )
( )

)r r v r T r
E r θσε ασ− += (3) 

1 ( ( ) ( )
( )

)rv r T r
E r θθ ασε σ− += (4) 

where ( )T r  is the size of the temperature distribution (Eq. 5) , v  is Poisson’s rate, ( )E r  is 
elasticity modulus and ( )rα  is varying thermal growth coefficient. Elasticity modulus and 
thermal growth coefficient were used as power function (Pwr) (Eq. 6) and as exponential 
function (Exp) (Eq. 7) of radial direction. 
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0( ) nrE r E e=  0( ) mrr eα α= (7) 

where 0E  and 0α  are nominal elasticity modulus and thermal expansion coefficient,  0T  is 
ambient temperature and n ,m  are equivalent to nil for a homogenous disc. Strain-displacement 
relation are shown in Eq. 8. 

 

r
du
dr

ε = u
rθε = (8) 

where the radial displacement is represented by u. The deformation compatibility equation (Eq. 
9) is obtained from Eq. 8. 

 

( )r
d r
dr θε ε= (9) 

By making use of Eqs. (1), (2), (3) and (4), the equilibrium equations in Eqs. (10a) and (10b) 
read 
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Based upon von-Mises failure principle, equivalent stress is described by (Eq. 11) 

 
2 2( )vm r r θ θσ σ σ σ σ= − + (11) 

The boundary condition is selected as Eq. 12 (fr-f) and Eq. 13 (fx-f) depending on the inside 
and outside radius of the disk. 

 
0r r ri

σ ==    and   0r r ro
σ ==  (12) 

0u r ri
==  (13) 
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3. Numerical Solution with CFM 

The constructed of the inhomogeneous governing equations were shown in Eq. 10a and Eq. 
10b. Where F ʹ  expressions denote derivatives taken according to r  [31]. The constructed form 
boundary conditions rewritten in Eq. 12 and Eq. 13. 

The solution of (n)th order common differential equations by CFM [1] : 

 
1 1( ) ( ) ( ) ( )o n ny x y x b y x b y x= + + +! (14) 

where oy  is nonhomogeneous resolution and 1y  … ny  are standardized solution. 

The general solution of Eq. 10a and Eq. 10b in CFM over the interval [ri, ro] is given by 

 

0 1 1 2 2(( ) ) () ( )F r b F r b FF rr +− =	 (15a) 
 

0 1 1 2 2 ( )) ( ) ( )( F r b F r b F rF r ʹ ʹ ʹ+ʹ − =	 (15b) 

The CFM solutions (Eq. 15a and 15b) are calculated from GE’s (Eq. 10a and Eq. 10b) using 
with fourth order Runge-Kutta method (RK4). Mathematical repetitions are produced in the 
i or r r≤ ≤  variety with the footsteps of 0.001h = . In RK4 to get the solutions Eq. 15a and 15b, 

the boundary worths of governing equations (Eq. 16) are utilized variant transformation as sees 

 
,1F Z= 2F Zʹ = (16) 

As a consequence of RK4, 1b  and 2b  can be obtained for fr-f (Eq. 17) and fx-f (Eq. 18) 
conditions as follows 

1 2 01
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(18) 

4. Confirmation of the Suggested Solution Program 

The analytical solutions obtained using the notations of the current study to a homogeneous 
disc are given below. In solutions, symbolized by the modulus of elasticity E  and Poisson's 
rate v , radial displacement is 
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Table 1. Collation of CFM results with analytic solutions for homogeneous disk. 

/ 0r r U rσ σθ 

 CFM Analytic CFM Analytic CFM Analytic 
0.2 0.0000000 0.0000000 0.0000000 0.0000000 -1.0000000 -1.0000000 
0.3 0.0001350 0.0001350 -0.2474747 -0.2474747 -0.5479797 -0.5479797 
0.4 0.0003600 0.0003600 -0.2897727 -0.2897727 -0.3011362 -0.3011362 
0.5 0.0006750 0.0006750 -0.2727272 -0.2727272 -0.1136362 -0.1136362 
0.6 0.0010800 0.0010800 -0.2323232 -0.2323232 0.0505052 0.0505052 
0.7 0.0015750 0.0015750 -0.1808905 -0.1808905 0.2036182 0.2036182 
0.8 0.0021600 0.0021600 -0.1235795 -0.1235795 0.3508525 0.3508525 
0.9 0.0028350 0.0028350 -0.0628505 -0.0628505 0.4946690 0.4946690 
1.0 0.0036000 0.0036000 0.0000000 0.0000000 0.6363636 0.6363636 
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Hoop stress  
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Table 1 is given in order to compare these results with analytical results by calculating radial 
and tangential stresses and radial displacement values at 9 points throughout the thickness, 
provided that they are collocated using the disk sizes and material properties given in Table 2. 

The exact results listed in Table 1 reveal the good correctness and efficacy attained by the CFM 
when analyzing the findings achieved from the above analytic comparison solutions for the 
homogeneous disk; Calculations made only at 9 points along the thickness gave exact numerical 
results. 
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5. Numerical Results and Discussion 

A hollow disk made of a FGM and Table 2 shows that disk dimensions and material properties. 
 

Table 2. Disk dimensions and material properties 
Parameter Unit Value 

ir mm 20 

or mm 100 

0E GPa 200 

0α 1/℃ 6-12x10 

0T ℃ 300 
v -	 0.29 

Figure 1-a illustrates radial stresses in the FGM hollow disk throughout its radius caused by 
thermal lading for n=0.5, m=0.5 used for boundary conditions of both the Pwr and Exp. The 
FG disk both the Pwr and Exp form for fx-f boundary conditions have smaller radial stress 
compared to both the Pwr and Exp form for fr-f boundary conditions. For some specific values 
of n and m for all boundary conditions, it has been determined that the radial stress value 
increases along the radius of the FGM disk.  

 

 

 
(a) 

 
(b) 
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(c) 

 
 

(d) 
Fig. 1. Because of the effect of temperature with the material grading and boundary 

conditions on the distribution of stresses and displacement in FGM hollow disk (a) radial 
stress, (b) hoop stress, (c) radial displacement and (d) equivalent stress. 

The hoop stress dispersion caused by thermal load up for FGM hollow disk along its radius for 
various n and m are produced in Figure 1-b. It is noticed that for the grading mark certain values 
n and m for Exp form with fr-f the highest hoop stresses may not happen at the outer side. 0/r r  

increases in both forms and boundary conditions while the tangential stress value increases. 

The displacement FGM hollow disk with fr-f and fx-f are shown in Figure 1-c for different 
gradient parameter values due to thermal load. It is observed that for some particular values of 
the grading mark n and m (n=0.5, m=0.5) and all boundary conditions the displacement 
increases for the FGM hollow disk along its radius. 

Figure 1-d explain the equivalent stress respectively for various values of n and m, which are 
the inhomogeneity parameters by considering boundary conditions of both the Pwr and Exp 
model for material properties FG hollow disk along its radius due to thermal loading. It can be 
seen from Figure 1-d that for some particular values of the grading mark n and m for all 
boundary conditions, equivalent stresses values decrease to the midpoint of the thickness of the 
thick-walled disk, the rest increases 

The displacement with radial, hoop, and equivalent stresses owing to the thermal loading up 
along the normalized radial direction for different values of n in the hollow disc given in Figure 
2. Thus, radial stresses (a) are high for the highest inhomogeneity parameter for both profiles.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2. Distribution of stresses and displacement in the hollow disk under the impact of 
temperature disk with the material grading and boundary conditions along the normalized 

radial direction for different values of n, m (a) radial stress, (b) hoop stress, (c) radial 
displacement and (d) equivalent stress. 

It was found that for n and m used for Pwr form with fr-f the maximum hoop stresses (in the 
figure b) may occur at the outside side. While the hoop stress values increase, increasing the 
r/r0 for all boundary conditions and both Pwr and Exp function. The increase in gradient 
parameter for both the Exp profile and the Pwr profile of the FG disc findings in a reduction in 
the radial displacement (c) value. The radial displacement values increase, increasing the r/r0 
both Pwr and Exp function. As the gradient parameters increase, the equivalent stress (d) 
decreases down to the midpoint of the r/r0 while the rest increases. 

Figure 3 shows the radial displacement values for radial, tangential, and equivalent stresses 
caused by the thermal loading in the FG disk for various gradient parameter values and variable 
elasticity modulus and thermal expansion coefficient profiles. Looking at this figure, it is seen 
in the radial stress chart (a) that the stress reduces with increasing gradient parameter for both 
function form types, and the stress values increase with increasing thickness. 
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(a)  

(b) 

 
(c) 

 
(d) 

Fig. 3. In the hollow disk under the impact of temperature disk with the material grading and 
boundary conditions various values of the rating parameter n ,m (a) radial stress, (b) hoop 

stress, (c) radial displacement and (d) equivalent stress. 

In the hoop stress graph (b), the tension value decreases with increasing gradient parameter for 
both profiles. However, the hoop stress values increase, increasing the r/r0 for all boundary 
conditions and both Pwr and Exp. In the displacement graph (c), displacement values decrease 
with increasing gradient parameter for both profiles. The r/r0 increases, and the displacement 
value increases for both profiles. In the equivalent tensile graph (d), as the gradient parameters 
increase, the equivalent stress (d) decreases down to the midpoint of the r/r0 while the rest 
increases. 

6. Conclusions 

An examination of the hollow disk made of FGMs owing to thermo-mechanical loading is 
submitted. Thermo-elastic stresses are obtained for the hollow disk with both fr-f and fx-f 
boundary conditions. For FGM disk, modulus of elasticity and thermal growth coefficient are 
assumed to differ power-law and exponentially in radial way and numerical results are 
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presented. When the numerical results in this study are evaluated, the results are briefly 
summarized below: 

• The similar value of the n, m radial pressure is highest when the hollow FGM disk, the power-
law function profile and the exponential function profile disk are the lowest in fr-f and fx-f 
boundary conditions. 

• When the radial stress distribution is examined, FGM is zero on the inner and outer surfaces 
of the disc, although the stress stays on as tension in the central portions for the free state. 

• The hoop stress components linger stressed at the inner side of the functionally graded disc 
and compression at the outer side for the whole profiles and gradient parameters. 

• The displacement components are lower on the inner edge of the FG disc and have higher 
values on the outer edge. 

• The equivalent tensile component has tensile values at the inner edge of the FG disk and has 
an increased tensile value at the outer edge while decreasing towards the middle while 
constant for all profiles and gradient parameters. 

• Differences in strain and displacement behavior of FG disk can be observed under fr-f and fx-
f boundary conditions. 

• In certain applications, the influence of thermal loads is insignificant related to inertial forces 
but may be of equal or greater significance to others. With the solution method proposed in 
this study, it can help to get a solid idea for particular products. In addition, although FG disk 
gradient parameter is helpful before design, it can be said that it is an important parameter in 
determining stresses. 
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